1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2011 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 #include "opt_ddb.h" 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_kern_tls.h" 35 #include "opt_ratelimit.h" 36 #include "opt_rss.h" 37 38 #include <sys/param.h> 39 #include <sys/conf.h> 40 #include <sys/priv.h> 41 #include <sys/kernel.h> 42 #include <sys/bus.h> 43 #include <sys/eventhandler.h> 44 #include <sys/module.h> 45 #include <sys/malloc.h> 46 #include <sys/queue.h> 47 #include <sys/taskqueue.h> 48 #include <sys/pciio.h> 49 #include <dev/pci/pcireg.h> 50 #include <dev/pci/pcivar.h> 51 #include <dev/pci/pci_private.h> 52 #include <sys/firmware.h> 53 #include <sys/sbuf.h> 54 #include <sys/smp.h> 55 #include <sys/socket.h> 56 #include <sys/sockio.h> 57 #include <sys/sysctl.h> 58 #include <net/ethernet.h> 59 #include <net/if.h> 60 #include <net/if_types.h> 61 #include <net/if_dl.h> 62 #include <net/if_vlan_var.h> 63 #ifdef RSS 64 #include <net/rss_config.h> 65 #endif 66 #include <netinet/in.h> 67 #include <netinet/ip.h> 68 #ifdef KERN_TLS 69 #include <netinet/tcp_seq.h> 70 #endif 71 #if defined(__i386__) || defined(__amd64__) 72 #include <machine/md_var.h> 73 #include <machine/cputypes.h> 74 #include <vm/vm.h> 75 #include <vm/pmap.h> 76 #endif 77 #ifdef DDB 78 #include <ddb/ddb.h> 79 #include <ddb/db_lex.h> 80 #endif 81 82 #include "common/common.h" 83 #include "common/t4_msg.h" 84 #include "common/t4_regs.h" 85 #include "common/t4_regs_values.h" 86 #include "cudbg/cudbg.h" 87 #include "t4_clip.h" 88 #include "t4_ioctl.h" 89 #include "t4_l2t.h" 90 #include "t4_mp_ring.h" 91 #include "t4_if.h" 92 #include "t4_smt.h" 93 94 /* T4 bus driver interface */ 95 static int t4_probe(device_t); 96 static int t4_attach(device_t); 97 static int t4_detach(device_t); 98 static int t4_child_location(device_t, device_t, struct sbuf *); 99 static int t4_ready(device_t); 100 static int t4_read_port_device(device_t, int, device_t *); 101 static int t4_suspend(device_t); 102 static int t4_resume(device_t); 103 static int t4_reset_prepare(device_t, device_t); 104 static int t4_reset_post(device_t, device_t); 105 static device_method_t t4_methods[] = { 106 DEVMETHOD(device_probe, t4_probe), 107 DEVMETHOD(device_attach, t4_attach), 108 DEVMETHOD(device_detach, t4_detach), 109 DEVMETHOD(device_suspend, t4_suspend), 110 DEVMETHOD(device_resume, t4_resume), 111 112 DEVMETHOD(bus_child_location, t4_child_location), 113 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 114 DEVMETHOD(bus_reset_post, t4_reset_post), 115 116 DEVMETHOD(t4_is_main_ready, t4_ready), 117 DEVMETHOD(t4_read_port_device, t4_read_port_device), 118 119 DEVMETHOD_END 120 }; 121 static driver_t t4_driver = { 122 "t4nex", 123 t4_methods, 124 sizeof(struct adapter) 125 }; 126 127 128 /* T4 port (cxgbe) interface */ 129 static int cxgbe_probe(device_t); 130 static int cxgbe_attach(device_t); 131 static int cxgbe_detach(device_t); 132 device_method_t cxgbe_methods[] = { 133 DEVMETHOD(device_probe, cxgbe_probe), 134 DEVMETHOD(device_attach, cxgbe_attach), 135 DEVMETHOD(device_detach, cxgbe_detach), 136 { 0, 0 } 137 }; 138 static driver_t cxgbe_driver = { 139 "cxgbe", 140 cxgbe_methods, 141 sizeof(struct port_info) 142 }; 143 144 /* T4 VI (vcxgbe) interface */ 145 static int vcxgbe_probe(device_t); 146 static int vcxgbe_attach(device_t); 147 static int vcxgbe_detach(device_t); 148 static device_method_t vcxgbe_methods[] = { 149 DEVMETHOD(device_probe, vcxgbe_probe), 150 DEVMETHOD(device_attach, vcxgbe_attach), 151 DEVMETHOD(device_detach, vcxgbe_detach), 152 { 0, 0 } 153 }; 154 static driver_t vcxgbe_driver = { 155 "vcxgbe", 156 vcxgbe_methods, 157 sizeof(struct vi_info) 158 }; 159 160 static d_ioctl_t t4_ioctl; 161 162 static struct cdevsw t4_cdevsw = { 163 .d_version = D_VERSION, 164 .d_ioctl = t4_ioctl, 165 .d_name = "t4nex", 166 }; 167 168 /* T5 bus driver interface */ 169 static int t5_probe(device_t); 170 static device_method_t t5_methods[] = { 171 DEVMETHOD(device_probe, t5_probe), 172 DEVMETHOD(device_attach, t4_attach), 173 DEVMETHOD(device_detach, t4_detach), 174 DEVMETHOD(device_suspend, t4_suspend), 175 DEVMETHOD(device_resume, t4_resume), 176 177 DEVMETHOD(bus_child_location, t4_child_location), 178 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 179 DEVMETHOD(bus_reset_post, t4_reset_post), 180 181 DEVMETHOD(t4_is_main_ready, t4_ready), 182 DEVMETHOD(t4_read_port_device, t4_read_port_device), 183 184 DEVMETHOD_END 185 }; 186 static driver_t t5_driver = { 187 "t5nex", 188 t5_methods, 189 sizeof(struct adapter) 190 }; 191 192 193 /* T5 port (cxl) interface */ 194 static driver_t cxl_driver = { 195 "cxl", 196 cxgbe_methods, 197 sizeof(struct port_info) 198 }; 199 200 /* T5 VI (vcxl) interface */ 201 static driver_t vcxl_driver = { 202 "vcxl", 203 vcxgbe_methods, 204 sizeof(struct vi_info) 205 }; 206 207 /* T6 bus driver interface */ 208 static int t6_probe(device_t); 209 static device_method_t t6_methods[] = { 210 DEVMETHOD(device_probe, t6_probe), 211 DEVMETHOD(device_attach, t4_attach), 212 DEVMETHOD(device_detach, t4_detach), 213 DEVMETHOD(device_suspend, t4_suspend), 214 DEVMETHOD(device_resume, t4_resume), 215 216 DEVMETHOD(bus_child_location, t4_child_location), 217 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 218 DEVMETHOD(bus_reset_post, t4_reset_post), 219 220 DEVMETHOD(t4_is_main_ready, t4_ready), 221 DEVMETHOD(t4_read_port_device, t4_read_port_device), 222 223 DEVMETHOD_END 224 }; 225 static driver_t t6_driver = { 226 "t6nex", 227 t6_methods, 228 sizeof(struct adapter) 229 }; 230 231 232 /* T6 port (cc) interface */ 233 static driver_t cc_driver = { 234 "cc", 235 cxgbe_methods, 236 sizeof(struct port_info) 237 }; 238 239 /* T6 VI (vcc) interface */ 240 static driver_t vcc_driver = { 241 "vcc", 242 vcxgbe_methods, 243 sizeof(struct vi_info) 244 }; 245 246 /* ifnet interface */ 247 static void cxgbe_init(void *); 248 static int cxgbe_ioctl(if_t, unsigned long, caddr_t); 249 static int cxgbe_transmit(if_t, struct mbuf *); 250 static void cxgbe_qflush(if_t); 251 #if defined(KERN_TLS) || defined(RATELIMIT) 252 static int cxgbe_snd_tag_alloc(if_t, union if_snd_tag_alloc_params *, 253 struct m_snd_tag **); 254 #endif 255 256 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); 257 258 /* 259 * Correct lock order when you need to acquire multiple locks is t4_list_lock, 260 * then ADAPTER_LOCK, then t4_uld_list_lock. 261 */ 262 static struct sx t4_list_lock; 263 SLIST_HEAD(, adapter) t4_list; 264 #ifdef TCP_OFFLOAD 265 static struct sx t4_uld_list_lock; 266 SLIST_HEAD(, uld_info) t4_uld_list; 267 #endif 268 269 /* 270 * Tunables. See tweak_tunables() too. 271 * 272 * Each tunable is set to a default value here if it's known at compile-time. 273 * Otherwise it is set to -n as an indication to tweak_tunables() that it should 274 * provide a reasonable default (upto n) when the driver is loaded. 275 * 276 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to 277 * T5 are under hw.cxl. 278 */ 279 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 280 "cxgbe(4) parameters"); 281 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 282 "cxgbe(4) T5+ parameters"); 283 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 284 "cxgbe(4) TOE parameters"); 285 286 /* 287 * Number of queues for tx and rx, NIC and offload. 288 */ 289 #define NTXQ 16 290 int t4_ntxq = -NTXQ; 291 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0, 292 "Number of TX queues per port"); 293 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */ 294 295 #define NRXQ 8 296 int t4_nrxq = -NRXQ; 297 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0, 298 "Number of RX queues per port"); 299 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */ 300 301 #define NTXQ_VI 1 302 static int t4_ntxq_vi = -NTXQ_VI; 303 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0, 304 "Number of TX queues per VI"); 305 306 #define NRXQ_VI 1 307 static int t4_nrxq_vi = -NRXQ_VI; 308 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0, 309 "Number of RX queues per VI"); 310 311 static int t4_rsrv_noflowq = 0; 312 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq, 313 0, "Reserve TX queue 0 of each VI for non-flowid packets"); 314 315 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 316 #define NOFLDTXQ 8 317 static int t4_nofldtxq = -NOFLDTXQ; 318 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0, 319 "Number of offload TX queues per port"); 320 321 #define NOFLDRXQ 2 322 static int t4_nofldrxq = -NOFLDRXQ; 323 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0, 324 "Number of offload RX queues per port"); 325 326 #define NOFLDTXQ_VI 1 327 static int t4_nofldtxq_vi = -NOFLDTXQ_VI; 328 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0, 329 "Number of offload TX queues per VI"); 330 331 #define NOFLDRXQ_VI 1 332 static int t4_nofldrxq_vi = -NOFLDRXQ_VI; 333 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0, 334 "Number of offload RX queues per VI"); 335 336 #define TMR_IDX_OFLD 1 337 int t4_tmr_idx_ofld = TMR_IDX_OFLD; 338 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN, 339 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues"); 340 341 #define PKTC_IDX_OFLD (-1) 342 int t4_pktc_idx_ofld = PKTC_IDX_OFLD; 343 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN, 344 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues"); 345 346 /* 0 means chip/fw default, non-zero number is value in microseconds */ 347 static u_long t4_toe_keepalive_idle = 0; 348 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN, 349 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)"); 350 351 /* 0 means chip/fw default, non-zero number is value in microseconds */ 352 static u_long t4_toe_keepalive_interval = 0; 353 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN, 354 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)"); 355 356 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */ 357 static int t4_toe_keepalive_count = 0; 358 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN, 359 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort"); 360 361 /* 0 means chip/fw default, non-zero number is value in microseconds */ 362 static u_long t4_toe_rexmt_min = 0; 363 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN, 364 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)"); 365 366 /* 0 means chip/fw default, non-zero number is value in microseconds */ 367 static u_long t4_toe_rexmt_max = 0; 368 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN, 369 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)"); 370 371 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */ 372 static int t4_toe_rexmt_count = 0; 373 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN, 374 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort"); 375 376 /* -1 means chip/fw default, other values are raw backoff values to use */ 377 static int t4_toe_rexmt_backoff[16] = { 378 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 379 }; 380 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, 381 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 382 "cxgbe(4) TOE retransmit backoff values"); 383 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN, 384 &t4_toe_rexmt_backoff[0], 0, ""); 385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN, 386 &t4_toe_rexmt_backoff[1], 0, ""); 387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN, 388 &t4_toe_rexmt_backoff[2], 0, ""); 389 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN, 390 &t4_toe_rexmt_backoff[3], 0, ""); 391 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN, 392 &t4_toe_rexmt_backoff[4], 0, ""); 393 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN, 394 &t4_toe_rexmt_backoff[5], 0, ""); 395 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN, 396 &t4_toe_rexmt_backoff[6], 0, ""); 397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN, 398 &t4_toe_rexmt_backoff[7], 0, ""); 399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN, 400 &t4_toe_rexmt_backoff[8], 0, ""); 401 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN, 402 &t4_toe_rexmt_backoff[9], 0, ""); 403 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN, 404 &t4_toe_rexmt_backoff[10], 0, ""); 405 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN, 406 &t4_toe_rexmt_backoff[11], 0, ""); 407 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN, 408 &t4_toe_rexmt_backoff[12], 0, ""); 409 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN, 410 &t4_toe_rexmt_backoff[13], 0, ""); 411 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN, 412 &t4_toe_rexmt_backoff[14], 0, ""); 413 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN, 414 &t4_toe_rexmt_backoff[15], 0, ""); 415 #endif 416 417 #ifdef DEV_NETMAP 418 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */ 419 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */ 420 static int t4_native_netmap = NN_EXTRA_VI; 421 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap, 422 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs"); 423 424 #define NNMTXQ 8 425 static int t4_nnmtxq = -NNMTXQ; 426 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0, 427 "Number of netmap TX queues"); 428 429 #define NNMRXQ 8 430 static int t4_nnmrxq = -NNMRXQ; 431 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0, 432 "Number of netmap RX queues"); 433 434 #define NNMTXQ_VI 2 435 static int t4_nnmtxq_vi = -NNMTXQ_VI; 436 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0, 437 "Number of netmap TX queues per VI"); 438 439 #define NNMRXQ_VI 2 440 static int t4_nnmrxq_vi = -NNMRXQ_VI; 441 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0, 442 "Number of netmap RX queues per VI"); 443 #endif 444 445 /* 446 * Holdoff parameters for ports. 447 */ 448 #define TMR_IDX 1 449 int t4_tmr_idx = TMR_IDX; 450 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx, 451 0, "Holdoff timer index"); 452 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */ 453 454 #define PKTC_IDX (-1) 455 int t4_pktc_idx = PKTC_IDX; 456 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx, 457 0, "Holdoff packet counter index"); 458 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */ 459 460 /* 461 * Size (# of entries) of each tx and rx queue. 462 */ 463 unsigned int t4_qsize_txq = TX_EQ_QSIZE; 464 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0, 465 "Number of descriptors in each TX queue"); 466 467 unsigned int t4_qsize_rxq = RX_IQ_QSIZE; 468 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0, 469 "Number of descriptors in each RX queue"); 470 471 /* 472 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). 473 */ 474 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; 475 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types, 476 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)"); 477 478 /* 479 * Configuration file. All the _CF names here are special. 480 */ 481 #define DEFAULT_CF "default" 482 #define BUILTIN_CF "built-in" 483 #define FLASH_CF "flash" 484 #define UWIRE_CF "uwire" 485 #define FPGA_CF "fpga" 486 static char t4_cfg_file[32] = DEFAULT_CF; 487 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file, 488 sizeof(t4_cfg_file), "Firmware configuration file"); 489 490 /* 491 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively). 492 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them. 493 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water 494 * mark or when signalled to do so, 0 to never emit PAUSE. 495 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the 496 * negotiated settings will override rx_pause/tx_pause. 497 * Otherwise rx_pause/tx_pause are applied forcibly. 498 */ 499 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG; 500 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN, 501 &t4_pause_settings, 0, 502 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 503 504 /* 505 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively). 506 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5) 507 * 0 to disable FEC. 508 */ 509 static int t4_fec = -1; 510 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0, 511 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); 512 513 /* 514 * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it 515 * issues to the firmware. If the firmware doesn't support FORCE_FEC then the 516 * driver runs as if this is set to 0. 517 * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay. 518 * 0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the 519 * transceiver. Multiple FEC bits may not be okay but will be passed on to 520 * the firmware anyway (may result in l1cfg errors with old firmwares). 521 * 1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO 522 * means set all FEC bits that are valid for the speed. 523 */ 524 static int t4_force_fec = -1; 525 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0, 526 "Controls the use of FORCE_FEC bit in L1 configuration."); 527 528 /* 529 * Link autonegotiation. 530 * -1 to run with the firmware default. 531 * 0 to disable. 532 * 1 to enable. 533 */ 534 static int t4_autoneg = -1; 535 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0, 536 "Link autonegotiation"); 537 538 /* 539 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, 540 * encouraged respectively). '-n' is the same as 'n' except the firmware 541 * version used in the checks is read from the firmware bundled with the driver. 542 */ 543 static int t4_fw_install = 1; 544 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0, 545 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)"); 546 547 /* 548 * ASIC features that will be used. Disable the ones you don't want so that the 549 * chip resources aren't wasted on features that will not be used. 550 */ 551 static int t4_nbmcaps_allowed = 0; 552 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN, 553 &t4_nbmcaps_allowed, 0, "Default NBM capabilities"); 554 555 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ 556 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN, 557 &t4_linkcaps_allowed, 0, "Default link capabilities"); 558 559 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS | 560 FW_CAPS_CONFIG_SWITCH_EGRESS; 561 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN, 562 &t4_switchcaps_allowed, 0, "Default switch capabilities"); 563 564 #ifdef RATELIMIT 565 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 566 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD; 567 #else 568 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 569 FW_CAPS_CONFIG_NIC_HASHFILTER; 570 #endif 571 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN, 572 &t4_niccaps_allowed, 0, "Default NIC capabilities"); 573 574 static int t4_toecaps_allowed = -1; 575 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN, 576 &t4_toecaps_allowed, 0, "Default TCP offload capabilities"); 577 578 static int t4_rdmacaps_allowed = -1; 579 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN, 580 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities"); 581 582 static int t4_cryptocaps_allowed = -1; 583 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN, 584 &t4_cryptocaps_allowed, 0, "Default crypto capabilities"); 585 586 static int t4_iscsicaps_allowed = -1; 587 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN, 588 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities"); 589 590 static int t4_fcoecaps_allowed = 0; 591 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN, 592 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities"); 593 594 static int t5_write_combine = 0; 595 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine, 596 0, "Use WC instead of UC for BAR2"); 597 598 static int t4_num_vis = 1; 599 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0, 600 "Number of VIs per port"); 601 602 /* 603 * PCIe Relaxed Ordering. 604 * -1: driver should figure out a good value. 605 * 0: disable RO. 606 * 1: enable RO. 607 * 2: leave RO alone. 608 */ 609 static int pcie_relaxed_ordering = -1; 610 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN, 611 &pcie_relaxed_ordering, 0, 612 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone"); 613 614 static int t4_panic_on_fatal_err = 0; 615 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN, 616 &t4_panic_on_fatal_err, 0, "panic on fatal errors"); 617 618 static int t4_reset_on_fatal_err = 0; 619 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN, 620 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors"); 621 622 static int t4_clock_gate_on_suspend = 0; 623 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN, 624 &t4_clock_gate_on_suspend, 0, "gate the clock on suspend"); 625 626 static int t4_tx_vm_wr = 0; 627 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0, 628 "Use VM work requests to transmit packets."); 629 630 /* 631 * Set to non-zero to enable the attack filter. A packet that matches any of 632 * these conditions will get dropped on ingress: 633 * 1) IP && source address == destination address. 634 * 2) TCP/IP && source address is not a unicast address. 635 * 3) TCP/IP && destination address is not a unicast address. 636 * 4) IP && source address is loopback (127.x.y.z). 637 * 5) IP && destination address is loopback (127.x.y.z). 638 * 6) IPv6 && source address == destination address. 639 * 7) IPv6 && source address is not a unicast address. 640 * 8) IPv6 && source address is loopback (::1/128). 641 * 9) IPv6 && destination address is loopback (::1/128). 642 * 10) IPv6 && source address is unspecified (::/128). 643 * 11) IPv6 && destination address is unspecified (::/128). 644 * 12) TCP/IPv6 && source address is multicast (ff00::/8). 645 * 13) TCP/IPv6 && destination address is multicast (ff00::/8). 646 */ 647 static int t4_attack_filter = 0; 648 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN, 649 &t4_attack_filter, 0, "Drop suspicious traffic"); 650 651 static int t4_drop_ip_fragments = 0; 652 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN, 653 &t4_drop_ip_fragments, 0, "Drop IP fragments"); 654 655 static int t4_drop_pkts_with_l2_errors = 1; 656 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN, 657 &t4_drop_pkts_with_l2_errors, 0, 658 "Drop all frames with Layer 2 length or checksum errors"); 659 660 static int t4_drop_pkts_with_l3_errors = 0; 661 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN, 662 &t4_drop_pkts_with_l3_errors, 0, 663 "Drop all frames with IP version, length, or checksum errors"); 664 665 static int t4_drop_pkts_with_l4_errors = 0; 666 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN, 667 &t4_drop_pkts_with_l4_errors, 0, 668 "Drop all frames with Layer 4 length, checksum, or other errors"); 669 670 #ifdef TCP_OFFLOAD 671 /* 672 * TOE tunables. 673 */ 674 static int t4_cop_managed_offloading = 0; 675 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN, 676 &t4_cop_managed_offloading, 0, 677 "COP (Connection Offload Policy) controls all TOE offload"); 678 #endif 679 680 #ifdef KERN_TLS 681 /* 682 * This enables KERN_TLS for all adapters if set. 683 */ 684 static int t4_kern_tls = 0; 685 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0, 686 "Enable KERN_TLS mode for T6 adapters"); 687 688 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 689 "cxgbe(4) KERN_TLS parameters"); 690 691 static int t4_tls_inline_keys = 0; 692 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN, 693 &t4_tls_inline_keys, 0, 694 "Always pass TLS keys in work requests (1) or attempt to store TLS keys " 695 "in card memory."); 696 697 static int t4_tls_combo_wrs = 0; 698 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs, 699 0, "Attempt to combine TCB field updates with TLS record work requests."); 700 #endif 701 702 /* Functions used by VIs to obtain unique MAC addresses for each VI. */ 703 static int vi_mac_funcs[] = { 704 FW_VI_FUNC_ETH, 705 FW_VI_FUNC_OFLD, 706 FW_VI_FUNC_IWARP, 707 FW_VI_FUNC_OPENISCSI, 708 FW_VI_FUNC_OPENFCOE, 709 FW_VI_FUNC_FOISCSI, 710 FW_VI_FUNC_FOFCOE, 711 }; 712 713 struct intrs_and_queues { 714 uint16_t intr_type; /* INTx, MSI, or MSI-X */ 715 uint16_t num_vis; /* number of VIs for each port */ 716 uint16_t nirq; /* Total # of vectors */ 717 uint16_t ntxq; /* # of NIC txq's for each port */ 718 uint16_t nrxq; /* # of NIC rxq's for each port */ 719 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */ 720 uint16_t nofldrxq; /* # of TOE rxq's for each port */ 721 uint16_t nnmtxq; /* # of netmap txq's */ 722 uint16_t nnmrxq; /* # of netmap rxq's */ 723 724 /* The vcxgbe/vcxl interfaces use these and not the ones above. */ 725 uint16_t ntxq_vi; /* # of NIC txq's */ 726 uint16_t nrxq_vi; /* # of NIC rxq's */ 727 uint16_t nofldtxq_vi; /* # of TOE txq's */ 728 uint16_t nofldrxq_vi; /* # of TOE rxq's */ 729 uint16_t nnmtxq_vi; /* # of netmap txq's */ 730 uint16_t nnmrxq_vi; /* # of netmap rxq's */ 731 }; 732 733 static void setup_memwin(struct adapter *); 734 static void position_memwin(struct adapter *, int, uint32_t); 735 static int validate_mem_range(struct adapter *, uint32_t, uint32_t); 736 static int fwmtype_to_hwmtype(int); 737 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t, 738 uint32_t *); 739 static int fixup_devlog_params(struct adapter *); 740 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *); 741 static int contact_firmware(struct adapter *); 742 static int partition_resources(struct adapter *); 743 static int get_params__pre_init(struct adapter *); 744 static int set_params__pre_init(struct adapter *); 745 static int get_params__post_init(struct adapter *); 746 static int set_params__post_init(struct adapter *); 747 static void t4_set_desc(struct adapter *); 748 static bool fixed_ifmedia(struct port_info *); 749 static void build_medialist(struct port_info *); 750 static void init_link_config(struct port_info *); 751 static int fixup_link_config(struct port_info *); 752 static int apply_link_config(struct port_info *); 753 static int cxgbe_init_synchronized(struct vi_info *); 754 static int cxgbe_uninit_synchronized(struct vi_info *); 755 static int adapter_full_init(struct adapter *); 756 static void adapter_full_uninit(struct adapter *); 757 static int vi_full_init(struct vi_info *); 758 static void vi_full_uninit(struct vi_info *); 759 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *); 760 static void quiesce_txq(struct sge_txq *); 761 static void quiesce_wrq(struct sge_wrq *); 762 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *); 763 static void quiesce_vi(struct vi_info *); 764 static int t4_alloc_irq(struct adapter *, struct irq *, int rid, 765 driver_intr_t *, void *, char *); 766 static int t4_free_irq(struct adapter *, struct irq *); 767 static void t4_init_atid_table(struct adapter *); 768 static void t4_free_atid_table(struct adapter *); 769 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *); 770 static void vi_refresh_stats(struct vi_info *); 771 static void cxgbe_refresh_stats(struct vi_info *); 772 static void cxgbe_tick(void *); 773 static void vi_tick(void *); 774 static void cxgbe_sysctls(struct port_info *); 775 static int sysctl_int_array(SYSCTL_HANDLER_ARGS); 776 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS); 777 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS); 778 static int sysctl_btphy(SYSCTL_HANDLER_ARGS); 779 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS); 780 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS); 781 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); 782 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); 783 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); 784 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); 785 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS); 786 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS); 787 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS); 788 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS); 789 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS); 790 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS); 791 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); 792 static int sysctl_temperature(SYSCTL_HANDLER_ARGS); 793 static int sysctl_vdd(SYSCTL_HANDLER_ARGS); 794 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS); 795 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS); 796 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); 797 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS); 798 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); 799 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); 800 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); 801 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); 802 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); 803 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); 804 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS); 805 static int sysctl_devlog(SYSCTL_HANDLER_ARGS); 806 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); 807 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); 808 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); 809 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); 810 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); 811 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); 812 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS); 813 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); 814 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); 815 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); 816 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); 817 static int sysctl_tids(SYSCTL_HANDLER_ARGS); 818 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); 819 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS); 820 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS); 821 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); 822 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); 823 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); 824 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); 825 static int sysctl_cpus(SYSCTL_HANDLER_ARGS); 826 static int sysctl_reset(SYSCTL_HANDLER_ARGS); 827 #ifdef TCP_OFFLOAD 828 static int sysctl_tls(SYSCTL_HANDLER_ARGS); 829 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS); 830 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS); 831 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS); 832 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS); 833 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS); 834 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS); 835 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS); 836 #endif 837 static int get_sge_context(struct adapter *, struct t4_sge_context *); 838 static int load_fw(struct adapter *, struct t4_data *); 839 static int load_cfg(struct adapter *, struct t4_data *); 840 static int load_boot(struct adapter *, struct t4_bootrom *); 841 static int load_bootcfg(struct adapter *, struct t4_data *); 842 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *); 843 static void free_offload_policy(struct t4_offload_policy *); 844 static int set_offload_policy(struct adapter *, struct t4_offload_policy *); 845 static int read_card_mem(struct adapter *, int, struct t4_mem_range *); 846 static int read_i2c(struct adapter *, struct t4_i2c_data *); 847 static int clear_stats(struct adapter *, u_int); 848 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *); 849 static int release_clip_addr(struct adapter *, struct t4_clip_addr *); 850 #ifdef TCP_OFFLOAD 851 static int toe_capability(struct vi_info *, bool); 852 static int t4_deactivate_all_uld(struct adapter *); 853 static void t4_async_event(struct adapter *); 854 #endif 855 #ifdef KERN_TLS 856 static int ktls_capability(struct adapter *, bool); 857 #endif 858 static int mod_event(module_t, int, void *); 859 static int notify_siblings(device_t, int); 860 static uint64_t vi_get_counter(if_t, ift_counter); 861 static uint64_t cxgbe_get_counter(if_t, ift_counter); 862 static void enable_vxlan_rx(struct adapter *); 863 static void reset_adapter_task(void *, int); 864 static void fatal_error_task(void *, int); 865 static void dump_devlog(struct adapter *); 866 static void dump_cim_regs(struct adapter *); 867 static void dump_cimla(struct adapter *); 868 869 struct { 870 uint16_t device; 871 char *desc; 872 } t4_pciids[] = { 873 {0xa000, "Chelsio Terminator 4 FPGA"}, 874 {0x4400, "Chelsio T440-dbg"}, 875 {0x4401, "Chelsio T420-CR"}, 876 {0x4402, "Chelsio T422-CR"}, 877 {0x4403, "Chelsio T440-CR"}, 878 {0x4404, "Chelsio T420-BCH"}, 879 {0x4405, "Chelsio T440-BCH"}, 880 {0x4406, "Chelsio T440-CH"}, 881 {0x4407, "Chelsio T420-SO"}, 882 {0x4408, "Chelsio T420-CX"}, 883 {0x4409, "Chelsio T420-BT"}, 884 {0x440a, "Chelsio T404-BT"}, 885 {0x440e, "Chelsio T440-LP-CR"}, 886 }, t5_pciids[] = { 887 {0xb000, "Chelsio Terminator 5 FPGA"}, 888 {0x5400, "Chelsio T580-dbg"}, 889 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ 890 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ 891 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ 892 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ 893 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ 894 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ 895 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ 896 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ 897 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ 898 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ 899 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ 900 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ 901 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */ 902 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */ 903 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */ 904 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */ 905 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */ 906 907 /* Custom */ 908 {0x5483, "Custom T540-CR"}, 909 {0x5484, "Custom T540-BT"}, 910 }, t6_pciids[] = { 911 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */ 912 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */ 913 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */ 914 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */ 915 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */ 916 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */ 917 {0x6405, "Chelsio T6225-OCP-SO"}, /* 2 x 10/25G, nomem */ 918 {0x6406, "Chelsio T62100-OCP-SO"}, /* 2 x 40/50/100G, nomem */ 919 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */ 920 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */ 921 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */ 922 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */ 923 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */ 924 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */ 925 {0x6414, "Chelsio T61100-OCP-SO"}, /* 1 x 40/50/100G, nomem */ 926 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */ 927 928 /* Custom */ 929 {0x6480, "Custom T6225-CR"}, 930 {0x6481, "Custom T62100-CR"}, 931 {0x6482, "Custom T6225-CR"}, 932 {0x6483, "Custom T62100-CR"}, 933 {0x6484, "Custom T64100-CR"}, 934 {0x6485, "Custom T6240-SO"}, 935 {0x6486, "Custom T6225-SO-CR"}, 936 {0x6487, "Custom T6225-CR"}, 937 }; 938 939 #ifdef TCP_OFFLOAD 940 /* 941 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should 942 * be exactly the same for both rxq and ofld_rxq. 943 */ 944 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); 945 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); 946 #endif 947 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE); 948 949 static int 950 t4_probe(device_t dev) 951 { 952 int i; 953 uint16_t v = pci_get_vendor(dev); 954 uint16_t d = pci_get_device(dev); 955 uint8_t f = pci_get_function(dev); 956 957 if (v != PCI_VENDOR_ID_CHELSIO) 958 return (ENXIO); 959 960 /* Attach only to PF0 of the FPGA */ 961 if (d == 0xa000 && f != 0) 962 return (ENXIO); 963 964 for (i = 0; i < nitems(t4_pciids); i++) { 965 if (d == t4_pciids[i].device) { 966 device_set_desc(dev, t4_pciids[i].desc); 967 return (BUS_PROBE_DEFAULT); 968 } 969 } 970 971 return (ENXIO); 972 } 973 974 static int 975 t5_probe(device_t dev) 976 { 977 int i; 978 uint16_t v = pci_get_vendor(dev); 979 uint16_t d = pci_get_device(dev); 980 uint8_t f = pci_get_function(dev); 981 982 if (v != PCI_VENDOR_ID_CHELSIO) 983 return (ENXIO); 984 985 /* Attach only to PF0 of the FPGA */ 986 if (d == 0xb000 && f != 0) 987 return (ENXIO); 988 989 for (i = 0; i < nitems(t5_pciids); i++) { 990 if (d == t5_pciids[i].device) { 991 device_set_desc(dev, t5_pciids[i].desc); 992 return (BUS_PROBE_DEFAULT); 993 } 994 } 995 996 return (ENXIO); 997 } 998 999 static int 1000 t6_probe(device_t dev) 1001 { 1002 int i; 1003 uint16_t v = pci_get_vendor(dev); 1004 uint16_t d = pci_get_device(dev); 1005 1006 if (v != PCI_VENDOR_ID_CHELSIO) 1007 return (ENXIO); 1008 1009 for (i = 0; i < nitems(t6_pciids); i++) { 1010 if (d == t6_pciids[i].device) { 1011 device_set_desc(dev, t6_pciids[i].desc); 1012 return (BUS_PROBE_DEFAULT); 1013 } 1014 } 1015 1016 return (ENXIO); 1017 } 1018 1019 static void 1020 t5_attribute_workaround(device_t dev) 1021 { 1022 device_t root_port; 1023 uint32_t v; 1024 1025 /* 1026 * The T5 chips do not properly echo the No Snoop and Relaxed 1027 * Ordering attributes when replying to a TLP from a Root 1028 * Port. As a workaround, find the parent Root Port and 1029 * disable No Snoop and Relaxed Ordering. Note that this 1030 * affects all devices under this root port. 1031 */ 1032 root_port = pci_find_pcie_root_port(dev); 1033 if (root_port == NULL) { 1034 device_printf(dev, "Unable to find parent root port\n"); 1035 return; 1036 } 1037 1038 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL, 1039 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2); 1040 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) != 1041 0) 1042 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n", 1043 device_get_nameunit(root_port)); 1044 } 1045 1046 static const struct devnames devnames[] = { 1047 { 1048 .nexus_name = "t4nex", 1049 .ifnet_name = "cxgbe", 1050 .vi_ifnet_name = "vcxgbe", 1051 .pf03_drv_name = "t4iov", 1052 .vf_nexus_name = "t4vf", 1053 .vf_ifnet_name = "cxgbev" 1054 }, { 1055 .nexus_name = "t5nex", 1056 .ifnet_name = "cxl", 1057 .vi_ifnet_name = "vcxl", 1058 .pf03_drv_name = "t5iov", 1059 .vf_nexus_name = "t5vf", 1060 .vf_ifnet_name = "cxlv" 1061 }, { 1062 .nexus_name = "t6nex", 1063 .ifnet_name = "cc", 1064 .vi_ifnet_name = "vcc", 1065 .pf03_drv_name = "t6iov", 1066 .vf_nexus_name = "t6vf", 1067 .vf_ifnet_name = "ccv" 1068 } 1069 }; 1070 1071 void 1072 t4_init_devnames(struct adapter *sc) 1073 { 1074 int id; 1075 1076 id = chip_id(sc); 1077 if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames)) 1078 sc->names = &devnames[id - CHELSIO_T4]; 1079 else { 1080 device_printf(sc->dev, "chip id %d is not supported.\n", id); 1081 sc->names = NULL; 1082 } 1083 } 1084 1085 static int 1086 t4_ifnet_unit(struct adapter *sc, struct port_info *pi) 1087 { 1088 const char *parent, *name; 1089 long value; 1090 int line, unit; 1091 1092 line = 0; 1093 parent = device_get_nameunit(sc->dev); 1094 name = sc->names->ifnet_name; 1095 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) { 1096 if (resource_long_value(name, unit, "port", &value) == 0 && 1097 value == pi->port_id) 1098 return (unit); 1099 } 1100 return (-1); 1101 } 1102 1103 static void 1104 t4_calibration(void *arg) 1105 { 1106 struct adapter *sc; 1107 struct clock_sync *cur, *nex; 1108 uint64_t hw; 1109 sbintime_t sbt; 1110 int next_up; 1111 1112 sc = (struct adapter *)arg; 1113 1114 KASSERT((hw_off_limits(sc) == 0), ("hw_off_limits at t4_calibration")); 1115 hw = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO); 1116 sbt = sbinuptime(); 1117 1118 cur = &sc->cal_info[sc->cal_current]; 1119 next_up = (sc->cal_current + 1) % CNT_CAL_INFO; 1120 nex = &sc->cal_info[next_up]; 1121 if (__predict_false(sc->cal_count == 0)) { 1122 /* First time in, just get the values in */ 1123 cur->hw_cur = hw; 1124 cur->sbt_cur = sbt; 1125 sc->cal_count++; 1126 goto done; 1127 } 1128 1129 if (cur->hw_cur == hw) { 1130 /* The clock is not advancing? */ 1131 sc->cal_count = 0; 1132 atomic_store_rel_int(&cur->gen, 0); 1133 goto done; 1134 } 1135 1136 seqc_write_begin(&nex->gen); 1137 nex->hw_prev = cur->hw_cur; 1138 nex->sbt_prev = cur->sbt_cur; 1139 nex->hw_cur = hw; 1140 nex->sbt_cur = sbt; 1141 seqc_write_end(&nex->gen); 1142 sc->cal_current = next_up; 1143 done: 1144 callout_reset_sbt_curcpu(&sc->cal_callout, SBT_1S, 0, t4_calibration, 1145 sc, C_DIRECT_EXEC); 1146 } 1147 1148 static void 1149 t4_calibration_start(struct adapter *sc) 1150 { 1151 /* 1152 * Here if we have not done a calibration 1153 * then do so otherwise start the appropriate 1154 * timer. 1155 */ 1156 int i; 1157 1158 for (i = 0; i < CNT_CAL_INFO; i++) { 1159 sc->cal_info[i].gen = 0; 1160 } 1161 sc->cal_current = 0; 1162 sc->cal_count = 0; 1163 sc->cal_gen = 0; 1164 t4_calibration(sc); 1165 } 1166 1167 static int 1168 t4_attach(device_t dev) 1169 { 1170 struct adapter *sc; 1171 int rc = 0, i, j, rqidx, tqidx, nports; 1172 struct make_dev_args mda; 1173 struct intrs_and_queues iaq; 1174 struct sge *s; 1175 uint32_t *buf; 1176 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1177 int ofld_tqidx; 1178 #endif 1179 #ifdef TCP_OFFLOAD 1180 int ofld_rqidx; 1181 #endif 1182 #ifdef DEV_NETMAP 1183 int nm_rqidx, nm_tqidx; 1184 #endif 1185 int num_vis; 1186 1187 sc = device_get_softc(dev); 1188 sc->dev = dev; 1189 sysctl_ctx_init(&sc->ctx); 1190 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags); 1191 1192 if ((pci_get_device(dev) & 0xff00) == 0x5400) 1193 t5_attribute_workaround(dev); 1194 pci_enable_busmaster(dev); 1195 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 1196 uint32_t v; 1197 1198 pci_set_max_read_req(dev, 4096); 1199 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); 1200 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5); 1201 if (pcie_relaxed_ordering == 0 && 1202 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) { 1203 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE; 1204 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1205 } else if (pcie_relaxed_ordering == 1 && 1206 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) { 1207 v |= PCIEM_CTL_RELAXED_ORD_ENABLE; 1208 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1209 } 1210 } 1211 1212 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS); 1213 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL); 1214 sc->traceq = -1; 1215 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); 1216 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", 1217 device_get_nameunit(dev)); 1218 1219 snprintf(sc->lockname, sizeof(sc->lockname), "%s", 1220 device_get_nameunit(dev)); 1221 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); 1222 t4_add_adapter(sc); 1223 1224 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); 1225 TAILQ_INIT(&sc->sfl); 1226 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0); 1227 1228 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF); 1229 1230 sc->policy = NULL; 1231 rw_init(&sc->policy_lock, "connection offload policy"); 1232 1233 callout_init(&sc->ktls_tick, 1); 1234 1235 callout_init(&sc->cal_callout, 1); 1236 1237 refcount_init(&sc->vxlan_refcount, 0); 1238 1239 TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc); 1240 TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc); 1241 1242 sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1243 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq", 1244 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues"); 1245 sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1246 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq", 1247 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue"); 1248 1249 rc = t4_map_bars_0_and_4(sc); 1250 if (rc != 0) 1251 goto done; /* error message displayed already */ 1252 1253 memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); 1254 1255 /* Prepare the adapter for operation. */ 1256 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK); 1257 rc = -t4_prep_adapter(sc, buf); 1258 free(buf, M_CXGBE); 1259 if (rc != 0) { 1260 device_printf(dev, "failed to prepare adapter: %d.\n", rc); 1261 goto done; 1262 } 1263 1264 /* 1265 * This is the real PF# to which we're attaching. Works from within PCI 1266 * passthrough environments too, where pci_get_function() could return a 1267 * different PF# depending on the passthrough configuration. We need to 1268 * use the real PF# in all our communication with the firmware. 1269 */ 1270 j = t4_read_reg(sc, A_PL_WHOAMI); 1271 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j); 1272 sc->mbox = sc->pf; 1273 1274 t4_init_devnames(sc); 1275 if (sc->names == NULL) { 1276 rc = ENOTSUP; 1277 goto done; /* error message displayed already */ 1278 } 1279 1280 /* 1281 * Do this really early, with the memory windows set up even before the 1282 * character device. The userland tool's register i/o and mem read 1283 * will work even in "recovery mode". 1284 */ 1285 setup_memwin(sc); 1286 if (t4_init_devlog_params(sc, 0) == 0) 1287 fixup_devlog_params(sc); 1288 make_dev_args_init(&mda); 1289 mda.mda_devsw = &t4_cdevsw; 1290 mda.mda_uid = UID_ROOT; 1291 mda.mda_gid = GID_WHEEL; 1292 mda.mda_mode = 0600; 1293 mda.mda_si_drv1 = sc; 1294 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev)); 1295 if (rc != 0) 1296 device_printf(dev, "failed to create nexus char device: %d.\n", 1297 rc); 1298 1299 /* Go no further if recovery mode has been requested. */ 1300 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 1301 device_printf(dev, "recovery mode.\n"); 1302 goto done; 1303 } 1304 1305 #if defined(__i386__) 1306 if ((cpu_feature & CPUID_CX8) == 0) { 1307 device_printf(dev, "64 bit atomics not available.\n"); 1308 rc = ENOTSUP; 1309 goto done; 1310 } 1311 #endif 1312 1313 /* Contact the firmware and try to become the master driver. */ 1314 rc = contact_firmware(sc); 1315 if (rc != 0) 1316 goto done; /* error message displayed already */ 1317 MPASS(sc->flags & FW_OK); 1318 1319 rc = get_params__pre_init(sc); 1320 if (rc != 0) 1321 goto done; /* error message displayed already */ 1322 1323 if (sc->flags & MASTER_PF) { 1324 rc = partition_resources(sc); 1325 if (rc != 0) 1326 goto done; /* error message displayed already */ 1327 t4_intr_clear(sc); 1328 } 1329 1330 rc = get_params__post_init(sc); 1331 if (rc != 0) 1332 goto done; /* error message displayed already */ 1333 1334 rc = set_params__post_init(sc); 1335 if (rc != 0) 1336 goto done; /* error message displayed already */ 1337 1338 rc = t4_map_bar_2(sc); 1339 if (rc != 0) 1340 goto done; /* error message displayed already */ 1341 1342 rc = t4_create_dma_tag(sc); 1343 if (rc != 0) 1344 goto done; /* error message displayed already */ 1345 1346 /* 1347 * First pass over all the ports - allocate VIs and initialize some 1348 * basic parameters like mac address, port type, etc. 1349 */ 1350 for_each_port(sc, i) { 1351 struct port_info *pi; 1352 1353 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); 1354 sc->port[i] = pi; 1355 1356 /* These must be set before t4_port_init */ 1357 pi->adapter = sc; 1358 pi->port_id = i; 1359 /* 1360 * XXX: vi[0] is special so we can't delay this allocation until 1361 * pi->nvi's final value is known. 1362 */ 1363 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE, 1364 M_ZERO | M_WAITOK); 1365 1366 /* 1367 * Allocate the "main" VI and initialize parameters 1368 * like mac addr. 1369 */ 1370 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 1371 if (rc != 0) { 1372 device_printf(dev, "unable to initialize port %d: %d\n", 1373 i, rc); 1374 free(pi->vi, M_CXGBE); 1375 free(pi, M_CXGBE); 1376 sc->port[i] = NULL; 1377 goto done; 1378 } 1379 1380 if (is_bt(pi->port_type)) 1381 setbit(&sc->bt_map, pi->tx_chan); 1382 else 1383 MPASS(!isset(&sc->bt_map, pi->tx_chan)); 1384 1385 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", 1386 device_get_nameunit(dev), i); 1387 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); 1388 sc->chan_map[pi->tx_chan] = i; 1389 1390 /* 1391 * The MPS counter for FCS errors doesn't work correctly on the 1392 * T6 so we use the MAC counter here. Which MAC is in use 1393 * depends on the link settings which will be known when the 1394 * link comes up. 1395 */ 1396 if (is_t6(sc)) { 1397 pi->fcs_reg = -1; 1398 } else if (is_t4(sc)) { 1399 pi->fcs_reg = PORT_REG(pi->tx_chan, 1400 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L); 1401 } else { 1402 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 1403 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L); 1404 } 1405 pi->fcs_base = 0; 1406 1407 /* All VIs on this port share this media. */ 1408 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, 1409 cxgbe_media_status); 1410 1411 PORT_LOCK(pi); 1412 init_link_config(pi); 1413 fixup_link_config(pi); 1414 build_medialist(pi); 1415 if (fixed_ifmedia(pi)) 1416 pi->flags |= FIXED_IFMEDIA; 1417 PORT_UNLOCK(pi); 1418 1419 pi->dev = device_add_child(dev, sc->names->ifnet_name, 1420 t4_ifnet_unit(sc, pi)); 1421 if (pi->dev == NULL) { 1422 device_printf(dev, 1423 "failed to add device for port %d.\n", i); 1424 rc = ENXIO; 1425 goto done; 1426 } 1427 pi->vi[0].dev = pi->dev; 1428 device_set_softc(pi->dev, pi); 1429 } 1430 1431 /* 1432 * Interrupt type, # of interrupts, # of rx/tx queues, etc. 1433 */ 1434 nports = sc->params.nports; 1435 rc = cfg_itype_and_nqueues(sc, &iaq); 1436 if (rc != 0) 1437 goto done; /* error message displayed already */ 1438 1439 num_vis = iaq.num_vis; 1440 sc->intr_type = iaq.intr_type; 1441 sc->intr_count = iaq.nirq; 1442 1443 s = &sc->sge; 1444 s->nrxq = nports * iaq.nrxq; 1445 s->ntxq = nports * iaq.ntxq; 1446 if (num_vis > 1) { 1447 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi; 1448 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi; 1449 } 1450 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ 1451 s->neq += nports; /* ctrl queues: 1 per port */ 1452 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ 1453 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1454 if (is_offload(sc) || is_ethoffload(sc)) { 1455 s->nofldtxq = nports * iaq.nofldtxq; 1456 if (num_vis > 1) 1457 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi; 1458 s->neq += s->nofldtxq; 1459 1460 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq), 1461 M_CXGBE, M_ZERO | M_WAITOK); 1462 } 1463 #endif 1464 #ifdef TCP_OFFLOAD 1465 if (is_offload(sc)) { 1466 s->nofldrxq = nports * iaq.nofldrxq; 1467 if (num_vis > 1) 1468 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi; 1469 s->neq += s->nofldrxq; /* free list */ 1470 s->niq += s->nofldrxq; 1471 1472 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), 1473 M_CXGBE, M_ZERO | M_WAITOK); 1474 } 1475 #endif 1476 #ifdef DEV_NETMAP 1477 s->nnmrxq = 0; 1478 s->nnmtxq = 0; 1479 if (t4_native_netmap & NN_MAIN_VI) { 1480 s->nnmrxq += nports * iaq.nnmrxq; 1481 s->nnmtxq += nports * iaq.nnmtxq; 1482 } 1483 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) { 1484 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi; 1485 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi; 1486 } 1487 s->neq += s->nnmtxq + s->nnmrxq; 1488 s->niq += s->nnmrxq; 1489 1490 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq), 1491 M_CXGBE, M_ZERO | M_WAITOK); 1492 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq), 1493 M_CXGBE, M_ZERO | M_WAITOK); 1494 #endif 1495 MPASS(s->niq <= s->iqmap_sz); 1496 MPASS(s->neq <= s->eqmap_sz); 1497 1498 s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE, 1499 M_ZERO | M_WAITOK); 1500 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, 1501 M_ZERO | M_WAITOK); 1502 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, 1503 M_ZERO | M_WAITOK); 1504 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE, 1505 M_ZERO | M_WAITOK); 1506 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE, 1507 M_ZERO | M_WAITOK); 1508 1509 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, 1510 M_ZERO | M_WAITOK); 1511 1512 t4_init_l2t(sc, M_WAITOK); 1513 t4_init_smt(sc, M_WAITOK); 1514 t4_init_tx_sched(sc); 1515 t4_init_atid_table(sc); 1516 #ifdef RATELIMIT 1517 t4_init_etid_table(sc); 1518 #endif 1519 #ifdef INET6 1520 t4_init_clip_table(sc); 1521 #endif 1522 if (sc->vres.key.size != 0) 1523 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start, 1524 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK); 1525 1526 /* 1527 * Second pass over the ports. This time we know the number of rx and 1528 * tx queues that each port should get. 1529 */ 1530 rqidx = tqidx = 0; 1531 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1532 ofld_tqidx = 0; 1533 #endif 1534 #ifdef TCP_OFFLOAD 1535 ofld_rqidx = 0; 1536 #endif 1537 #ifdef DEV_NETMAP 1538 nm_rqidx = nm_tqidx = 0; 1539 #endif 1540 for_each_port(sc, i) { 1541 struct port_info *pi = sc->port[i]; 1542 struct vi_info *vi; 1543 1544 if (pi == NULL) 1545 continue; 1546 1547 pi->nvi = num_vis; 1548 for_each_vi(pi, j, vi) { 1549 vi->pi = pi; 1550 vi->adapter = sc; 1551 vi->first_intr = -1; 1552 vi->qsize_rxq = t4_qsize_rxq; 1553 vi->qsize_txq = t4_qsize_txq; 1554 1555 vi->first_rxq = rqidx; 1556 vi->first_txq = tqidx; 1557 vi->tmr_idx = t4_tmr_idx; 1558 vi->pktc_idx = t4_pktc_idx; 1559 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi; 1560 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi; 1561 1562 rqidx += vi->nrxq; 1563 tqidx += vi->ntxq; 1564 1565 if (j == 0 && vi->ntxq > 1) 1566 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0; 1567 else 1568 vi->rsrv_noflowq = 0; 1569 1570 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1571 vi->first_ofld_txq = ofld_tqidx; 1572 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi; 1573 ofld_tqidx += vi->nofldtxq; 1574 #endif 1575 #ifdef TCP_OFFLOAD 1576 vi->ofld_tmr_idx = t4_tmr_idx_ofld; 1577 vi->ofld_pktc_idx = t4_pktc_idx_ofld; 1578 vi->first_ofld_rxq = ofld_rqidx; 1579 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi; 1580 1581 ofld_rqidx += vi->nofldrxq; 1582 #endif 1583 #ifdef DEV_NETMAP 1584 vi->first_nm_rxq = nm_rqidx; 1585 vi->first_nm_txq = nm_tqidx; 1586 if (j == 0) { 1587 vi->nnmrxq = iaq.nnmrxq; 1588 vi->nnmtxq = iaq.nnmtxq; 1589 } else { 1590 vi->nnmrxq = iaq.nnmrxq_vi; 1591 vi->nnmtxq = iaq.nnmtxq_vi; 1592 } 1593 nm_rqidx += vi->nnmrxq; 1594 nm_tqidx += vi->nnmtxq; 1595 #endif 1596 } 1597 } 1598 1599 rc = t4_setup_intr_handlers(sc); 1600 if (rc != 0) { 1601 device_printf(dev, 1602 "failed to setup interrupt handlers: %d\n", rc); 1603 goto done; 1604 } 1605 1606 rc = bus_generic_probe(dev); 1607 if (rc != 0) { 1608 device_printf(dev, "failed to probe child drivers: %d\n", rc); 1609 goto done; 1610 } 1611 1612 /* 1613 * Ensure thread-safe mailbox access (in debug builds). 1614 * 1615 * So far this was the only thread accessing the mailbox but various 1616 * ifnets and sysctls are about to be created and their handlers/ioctls 1617 * will access the mailbox from different threads. 1618 */ 1619 sc->flags |= CHK_MBOX_ACCESS; 1620 1621 rc = bus_generic_attach(dev); 1622 if (rc != 0) { 1623 device_printf(dev, 1624 "failed to attach all child ports: %d\n", rc); 1625 goto done; 1626 } 1627 t4_calibration_start(sc); 1628 1629 device_printf(dev, 1630 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", 1631 sc->params.pci.speed, sc->params.pci.width, sc->params.nports, 1632 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : 1633 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), 1634 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); 1635 1636 t4_set_desc(sc); 1637 1638 notify_siblings(dev, 0); 1639 1640 done: 1641 if (rc != 0 && sc->cdev) { 1642 /* cdev was created and so cxgbetool works; recover that way. */ 1643 device_printf(dev, 1644 "error during attach, adapter is now in recovery mode.\n"); 1645 rc = 0; 1646 } 1647 1648 if (rc != 0) 1649 t4_detach_common(dev); 1650 else 1651 t4_sysctls(sc); 1652 1653 return (rc); 1654 } 1655 1656 static int 1657 t4_child_location(device_t bus, device_t dev, struct sbuf *sb) 1658 { 1659 struct adapter *sc; 1660 struct port_info *pi; 1661 int i; 1662 1663 sc = device_get_softc(bus); 1664 for_each_port(sc, i) { 1665 pi = sc->port[i]; 1666 if (pi != NULL && pi->dev == dev) { 1667 sbuf_printf(sb, "port=%d", pi->port_id); 1668 break; 1669 } 1670 } 1671 return (0); 1672 } 1673 1674 static int 1675 t4_ready(device_t dev) 1676 { 1677 struct adapter *sc; 1678 1679 sc = device_get_softc(dev); 1680 if (sc->flags & FW_OK) 1681 return (0); 1682 return (ENXIO); 1683 } 1684 1685 static int 1686 t4_read_port_device(device_t dev, int port, device_t *child) 1687 { 1688 struct adapter *sc; 1689 struct port_info *pi; 1690 1691 sc = device_get_softc(dev); 1692 if (port < 0 || port >= MAX_NPORTS) 1693 return (EINVAL); 1694 pi = sc->port[port]; 1695 if (pi == NULL || pi->dev == NULL) 1696 return (ENXIO); 1697 *child = pi->dev; 1698 return (0); 1699 } 1700 1701 static int 1702 notify_siblings(device_t dev, int detaching) 1703 { 1704 device_t sibling; 1705 int error, i; 1706 1707 error = 0; 1708 for (i = 0; i < PCI_FUNCMAX; i++) { 1709 if (i == pci_get_function(dev)) 1710 continue; 1711 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev), 1712 pci_get_slot(dev), i); 1713 if (sibling == NULL || !device_is_attached(sibling)) 1714 continue; 1715 if (detaching) 1716 error = T4_DETACH_CHILD(sibling); 1717 else 1718 (void)T4_ATTACH_CHILD(sibling); 1719 if (error) 1720 break; 1721 } 1722 return (error); 1723 } 1724 1725 /* 1726 * Idempotent 1727 */ 1728 static int 1729 t4_detach(device_t dev) 1730 { 1731 int rc; 1732 1733 rc = notify_siblings(dev, 1); 1734 if (rc) { 1735 device_printf(dev, 1736 "failed to detach sibling devices: %d\n", rc); 1737 return (rc); 1738 } 1739 1740 return (t4_detach_common(dev)); 1741 } 1742 1743 int 1744 t4_detach_common(device_t dev) 1745 { 1746 struct adapter *sc; 1747 struct port_info *pi; 1748 int i, rc; 1749 1750 sc = device_get_softc(dev); 1751 1752 #ifdef TCP_OFFLOAD 1753 rc = t4_deactivate_all_uld(sc); 1754 if (rc) { 1755 device_printf(dev, 1756 "failed to detach upper layer drivers: %d\n", rc); 1757 return (rc); 1758 } 1759 #endif 1760 1761 if (sc->cdev) { 1762 destroy_dev(sc->cdev); 1763 sc->cdev = NULL; 1764 } 1765 1766 sx_xlock(&t4_list_lock); 1767 SLIST_REMOVE(&t4_list, sc, adapter, link); 1768 sx_xunlock(&t4_list_lock); 1769 1770 sc->flags &= ~CHK_MBOX_ACCESS; 1771 if (sc->flags & FULL_INIT_DONE) { 1772 if (!(sc->flags & IS_VF)) 1773 t4_intr_disable(sc); 1774 } 1775 1776 if (device_is_attached(dev)) { 1777 rc = bus_generic_detach(dev); 1778 if (rc) { 1779 device_printf(dev, 1780 "failed to detach child devices: %d\n", rc); 1781 return (rc); 1782 } 1783 } 1784 1785 for (i = 0; i < sc->intr_count; i++) 1786 t4_free_irq(sc, &sc->irq[i]); 1787 1788 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1789 t4_free_tx_sched(sc); 1790 1791 for (i = 0; i < MAX_NPORTS; i++) { 1792 pi = sc->port[i]; 1793 if (pi) { 1794 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid); 1795 if (pi->dev) 1796 device_delete_child(dev, pi->dev); 1797 1798 mtx_destroy(&pi->pi_lock); 1799 free(pi->vi, M_CXGBE); 1800 free(pi, M_CXGBE); 1801 } 1802 } 1803 callout_stop(&sc->cal_callout); 1804 callout_drain(&sc->cal_callout); 1805 device_delete_children(dev); 1806 sysctl_ctx_free(&sc->ctx); 1807 adapter_full_uninit(sc); 1808 1809 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1810 t4_fw_bye(sc, sc->mbox); 1811 1812 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) 1813 pci_release_msi(dev); 1814 1815 if (sc->regs_res) 1816 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, 1817 sc->regs_res); 1818 1819 if (sc->udbs_res) 1820 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, 1821 sc->udbs_res); 1822 1823 if (sc->msix_res) 1824 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, 1825 sc->msix_res); 1826 1827 if (sc->l2t) 1828 t4_free_l2t(sc->l2t); 1829 if (sc->smt) 1830 t4_free_smt(sc->smt); 1831 t4_free_atid_table(sc); 1832 #ifdef RATELIMIT 1833 t4_free_etid_table(sc); 1834 #endif 1835 if (sc->key_map) 1836 vmem_destroy(sc->key_map); 1837 #ifdef INET6 1838 t4_destroy_clip_table(sc); 1839 #endif 1840 1841 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1842 free(sc->sge.ofld_txq, M_CXGBE); 1843 #endif 1844 #ifdef TCP_OFFLOAD 1845 free(sc->sge.ofld_rxq, M_CXGBE); 1846 #endif 1847 #ifdef DEV_NETMAP 1848 free(sc->sge.nm_rxq, M_CXGBE); 1849 free(sc->sge.nm_txq, M_CXGBE); 1850 #endif 1851 free(sc->irq, M_CXGBE); 1852 free(sc->sge.rxq, M_CXGBE); 1853 free(sc->sge.txq, M_CXGBE); 1854 free(sc->sge.ctrlq, M_CXGBE); 1855 free(sc->sge.iqmap, M_CXGBE); 1856 free(sc->sge.eqmap, M_CXGBE); 1857 free(sc->tids.ftid_tab, M_CXGBE); 1858 free(sc->tids.hpftid_tab, M_CXGBE); 1859 free_hftid_hash(&sc->tids); 1860 free(sc->tids.tid_tab, M_CXGBE); 1861 t4_destroy_dma_tag(sc); 1862 1863 callout_drain(&sc->ktls_tick); 1864 callout_drain(&sc->sfl_callout); 1865 if (mtx_initialized(&sc->tids.ftid_lock)) { 1866 mtx_destroy(&sc->tids.ftid_lock); 1867 cv_destroy(&sc->tids.ftid_cv); 1868 } 1869 if (mtx_initialized(&sc->tids.atid_lock)) 1870 mtx_destroy(&sc->tids.atid_lock); 1871 if (mtx_initialized(&sc->ifp_lock)) 1872 mtx_destroy(&sc->ifp_lock); 1873 1874 if (rw_initialized(&sc->policy_lock)) { 1875 rw_destroy(&sc->policy_lock); 1876 #ifdef TCP_OFFLOAD 1877 if (sc->policy != NULL) 1878 free_offload_policy(sc->policy); 1879 #endif 1880 } 1881 1882 for (i = 0; i < NUM_MEMWIN; i++) { 1883 struct memwin *mw = &sc->memwin[i]; 1884 1885 if (rw_initialized(&mw->mw_lock)) 1886 rw_destroy(&mw->mw_lock); 1887 } 1888 1889 mtx_destroy(&sc->sfl_lock); 1890 mtx_destroy(&sc->reg_lock); 1891 mtx_destroy(&sc->sc_lock); 1892 1893 bzero(sc, sizeof(*sc)); 1894 1895 return (0); 1896 } 1897 1898 static inline bool 1899 ok_to_reset(struct adapter *sc) 1900 { 1901 struct tid_info *t = &sc->tids; 1902 struct port_info *pi; 1903 struct vi_info *vi; 1904 int i, j; 1905 int caps = IFCAP_TOE | IFCAP_NETMAP | IFCAP_TXRTLMT; 1906 1907 if (is_t6(sc)) 1908 caps |= IFCAP_TXTLS; 1909 1910 ASSERT_SYNCHRONIZED_OP(sc); 1911 MPASS(!(sc->flags & IS_VF)); 1912 1913 for_each_port(sc, i) { 1914 pi = sc->port[i]; 1915 for_each_vi(pi, j, vi) { 1916 if (if_getcapenable(vi->ifp) & caps) 1917 return (false); 1918 } 1919 } 1920 1921 if (atomic_load_int(&t->tids_in_use) > 0) 1922 return (false); 1923 if (atomic_load_int(&t->stids_in_use) > 0) 1924 return (false); 1925 if (atomic_load_int(&t->atids_in_use) > 0) 1926 return (false); 1927 if (atomic_load_int(&t->ftids_in_use) > 0) 1928 return (false); 1929 if (atomic_load_int(&t->hpftids_in_use) > 0) 1930 return (false); 1931 if (atomic_load_int(&t->etids_in_use) > 0) 1932 return (false); 1933 1934 return (true); 1935 } 1936 1937 static inline int 1938 stop_adapter(struct adapter *sc) 1939 { 1940 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) 1941 return (1); /* Already stopped. */ 1942 return (t4_shutdown_adapter(sc)); 1943 } 1944 1945 static int 1946 t4_suspend(device_t dev) 1947 { 1948 struct adapter *sc = device_get_softc(dev); 1949 struct port_info *pi; 1950 struct vi_info *vi; 1951 if_t ifp; 1952 struct sge_rxq *rxq; 1953 struct sge_txq *txq; 1954 struct sge_wrq *wrq; 1955 #ifdef TCP_OFFLOAD 1956 struct sge_ofld_rxq *ofld_rxq; 1957 #endif 1958 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1959 struct sge_ofld_txq *ofld_txq; 1960 #endif 1961 int rc, i, j, k; 1962 1963 CH_ALERT(sc, "suspend requested\n"); 1964 1965 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4sus"); 1966 if (rc != 0) 1967 return (ENXIO); 1968 1969 /* XXX: Can the kernel call suspend repeatedly without resume? */ 1970 MPASS(!hw_off_limits(sc)); 1971 1972 if (!ok_to_reset(sc)) { 1973 /* XXX: should list what resource is preventing suspend. */ 1974 CH_ERR(sc, "not safe to suspend.\n"); 1975 rc = EBUSY; 1976 goto done; 1977 } 1978 1979 /* No more DMA or interrupts. */ 1980 stop_adapter(sc); 1981 1982 /* Quiesce all activity. */ 1983 for_each_port(sc, i) { 1984 pi = sc->port[i]; 1985 pi->vxlan_tcam_entry = false; 1986 1987 PORT_LOCK(pi); 1988 if (pi->up_vis > 0) { 1989 /* 1990 * t4_shutdown_adapter has already shut down all the 1991 * PHYs but it also disables interrupts and DMA so there 1992 * won't be a link interrupt. So we update the state 1993 * manually and inform the kernel. 1994 */ 1995 pi->link_cfg.link_ok = false; 1996 t4_os_link_changed(pi); 1997 } 1998 PORT_UNLOCK(pi); 1999 2000 for_each_vi(pi, j, vi) { 2001 vi->xact_addr_filt = -1; 2002 mtx_lock(&vi->tick_mtx); 2003 vi->flags |= VI_SKIP_STATS; 2004 mtx_unlock(&vi->tick_mtx); 2005 if (!(vi->flags & VI_INIT_DONE)) 2006 continue; 2007 2008 ifp = vi->ifp; 2009 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2010 mtx_lock(&vi->tick_mtx); 2011 callout_stop(&vi->tick); 2012 mtx_unlock(&vi->tick_mtx); 2013 callout_drain(&vi->tick); 2014 } 2015 2016 /* 2017 * Note that the HW is not available. 2018 */ 2019 for_each_txq(vi, k, txq) { 2020 TXQ_LOCK(txq); 2021 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED); 2022 TXQ_UNLOCK(txq); 2023 } 2024 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2025 for_each_ofld_txq(vi, k, ofld_txq) { 2026 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED; 2027 } 2028 #endif 2029 for_each_rxq(vi, k, rxq) { 2030 rxq->iq.flags &= ~IQ_HW_ALLOCATED; 2031 } 2032 #if defined(TCP_OFFLOAD) 2033 for_each_ofld_rxq(vi, k, ofld_rxq) { 2034 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED; 2035 } 2036 #endif 2037 2038 quiesce_vi(vi); 2039 } 2040 2041 if (sc->flags & FULL_INIT_DONE) { 2042 /* Control queue */ 2043 wrq = &sc->sge.ctrlq[i]; 2044 wrq->eq.flags &= ~EQ_HW_ALLOCATED; 2045 quiesce_wrq(wrq); 2046 } 2047 } 2048 if (sc->flags & FULL_INIT_DONE) { 2049 /* Firmware event queue */ 2050 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED; 2051 quiesce_iq_fl(sc, &sc->sge.fwq, NULL); 2052 } 2053 2054 /* Stop calibration */ 2055 callout_stop(&sc->cal_callout); 2056 callout_drain(&sc->cal_callout); 2057 2058 /* Mark the adapter totally off limits. */ 2059 mtx_lock(&sc->reg_lock); 2060 atomic_set_int(&sc->error_flags, HW_OFF_LIMITS); 2061 sc->flags &= ~(FW_OK | MASTER_PF); 2062 sc->reset_thread = NULL; 2063 mtx_unlock(&sc->reg_lock); 2064 2065 if (t4_clock_gate_on_suspend) { 2066 t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN | 2067 F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN | 2068 F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0); 2069 } 2070 2071 CH_ALERT(sc, "suspend completed.\n"); 2072 done: 2073 end_synchronized_op(sc, 0); 2074 return (rc); 2075 } 2076 2077 struct adapter_pre_reset_state { 2078 u_int flags; 2079 uint16_t nbmcaps; 2080 uint16_t linkcaps; 2081 uint16_t switchcaps; 2082 uint16_t niccaps; 2083 uint16_t toecaps; 2084 uint16_t rdmacaps; 2085 uint16_t cryptocaps; 2086 uint16_t iscsicaps; 2087 uint16_t fcoecaps; 2088 2089 u_int cfcsum; 2090 char cfg_file[32]; 2091 2092 struct adapter_params params; 2093 struct t4_virt_res vres; 2094 struct tid_info tids; 2095 struct sge sge; 2096 2097 int rawf_base; 2098 int nrawf; 2099 2100 }; 2101 2102 static void 2103 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2104 { 2105 2106 ASSERT_SYNCHRONIZED_OP(sc); 2107 2108 o->flags = sc->flags; 2109 2110 o->nbmcaps = sc->nbmcaps; 2111 o->linkcaps = sc->linkcaps; 2112 o->switchcaps = sc->switchcaps; 2113 o->niccaps = sc->niccaps; 2114 o->toecaps = sc->toecaps; 2115 o->rdmacaps = sc->rdmacaps; 2116 o->cryptocaps = sc->cryptocaps; 2117 o->iscsicaps = sc->iscsicaps; 2118 o->fcoecaps = sc->fcoecaps; 2119 2120 o->cfcsum = sc->cfcsum; 2121 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file)); 2122 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file)); 2123 2124 o->params = sc->params; 2125 o->vres = sc->vres; 2126 o->tids = sc->tids; 2127 o->sge = sc->sge; 2128 2129 o->rawf_base = sc->rawf_base; 2130 o->nrawf = sc->nrawf; 2131 } 2132 2133 static int 2134 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2135 { 2136 int rc = 0; 2137 2138 ASSERT_SYNCHRONIZED_OP(sc); 2139 2140 /* Capabilities */ 2141 #define COMPARE_CAPS(c) do { \ 2142 if (o->c##caps != sc->c##caps) { \ 2143 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \ 2144 sc->c##caps); \ 2145 rc = EINVAL; \ 2146 } \ 2147 } while (0) 2148 COMPARE_CAPS(nbm); 2149 COMPARE_CAPS(link); 2150 COMPARE_CAPS(switch); 2151 COMPARE_CAPS(nic); 2152 COMPARE_CAPS(toe); 2153 COMPARE_CAPS(rdma); 2154 COMPARE_CAPS(crypto); 2155 COMPARE_CAPS(iscsi); 2156 COMPARE_CAPS(fcoe); 2157 #undef COMPARE_CAPS 2158 2159 /* Firmware config file */ 2160 if (o->cfcsum != sc->cfcsum) { 2161 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file, 2162 o->cfcsum, sc->cfg_file, sc->cfcsum); 2163 rc = EINVAL; 2164 } 2165 2166 #define COMPARE_PARAM(p, name) do { \ 2167 if (o->p != sc->p) { \ 2168 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \ 2169 rc = EINVAL; \ 2170 } \ 2171 } while (0) 2172 COMPARE_PARAM(sge.iq_start, iq_start); 2173 COMPARE_PARAM(sge.eq_start, eq_start); 2174 COMPARE_PARAM(tids.ftid_base, ftid_base); 2175 COMPARE_PARAM(tids.ftid_end, ftid_end); 2176 COMPARE_PARAM(tids.nftids, nftids); 2177 COMPARE_PARAM(vres.l2t.start, l2t_start); 2178 COMPARE_PARAM(vres.l2t.size, l2t_size); 2179 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz); 2180 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz); 2181 COMPARE_PARAM(tids.tid_base, tid_base); 2182 COMPARE_PARAM(tids.hpftid_base, hpftid_base); 2183 COMPARE_PARAM(tids.hpftid_end, hpftid_end); 2184 COMPARE_PARAM(tids.nhpftids, nhpftids); 2185 COMPARE_PARAM(rawf_base, rawf_base); 2186 COMPARE_PARAM(nrawf, nrawf); 2187 COMPARE_PARAM(params.mps_bg_map, mps_bg_map); 2188 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support); 2189 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl); 2190 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support); 2191 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr); 2192 COMPARE_PARAM(tids.ntids, ntids); 2193 COMPARE_PARAM(tids.etid_base, etid_base); 2194 COMPARE_PARAM(tids.etid_end, etid_end); 2195 COMPARE_PARAM(tids.netids, netids); 2196 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred); 2197 COMPARE_PARAM(params.ethoffload, ethoffload); 2198 COMPARE_PARAM(tids.natids, natids); 2199 COMPARE_PARAM(tids.stid_base, stid_base); 2200 COMPARE_PARAM(vres.ddp.start, ddp_start); 2201 COMPARE_PARAM(vres.ddp.size, ddp_size); 2202 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred); 2203 COMPARE_PARAM(vres.stag.start, stag_start); 2204 COMPARE_PARAM(vres.stag.size, stag_size); 2205 COMPARE_PARAM(vres.rq.start, rq_start); 2206 COMPARE_PARAM(vres.rq.size, rq_size); 2207 COMPARE_PARAM(vres.pbl.start, pbl_start); 2208 COMPARE_PARAM(vres.pbl.size, pbl_size); 2209 COMPARE_PARAM(vres.qp.start, qp_start); 2210 COMPARE_PARAM(vres.qp.size, qp_size); 2211 COMPARE_PARAM(vres.cq.start, cq_start); 2212 COMPARE_PARAM(vres.cq.size, cq_size); 2213 COMPARE_PARAM(vres.ocq.start, ocq_start); 2214 COMPARE_PARAM(vres.ocq.size, ocq_size); 2215 COMPARE_PARAM(vres.srq.start, srq_start); 2216 COMPARE_PARAM(vres.srq.size, srq_size); 2217 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp); 2218 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter); 2219 COMPARE_PARAM(vres.iscsi.start, iscsi_start); 2220 COMPARE_PARAM(vres.iscsi.size, iscsi_size); 2221 COMPARE_PARAM(vres.key.start, key_start); 2222 COMPARE_PARAM(vres.key.size, key_size); 2223 #undef COMPARE_PARAM 2224 2225 return (rc); 2226 } 2227 2228 static int 2229 t4_resume(device_t dev) 2230 { 2231 struct adapter *sc = device_get_softc(dev); 2232 struct adapter_pre_reset_state *old_state = NULL; 2233 struct port_info *pi; 2234 struct vi_info *vi; 2235 if_t ifp; 2236 struct sge_txq *txq; 2237 int rc, i, j, k; 2238 2239 CH_ALERT(sc, "resume requested.\n"); 2240 2241 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4res"); 2242 if (rc != 0) 2243 return (ENXIO); 2244 MPASS(hw_off_limits(sc)); 2245 MPASS((sc->flags & FW_OK) == 0); 2246 MPASS((sc->flags & MASTER_PF) == 0); 2247 MPASS(sc->reset_thread == NULL); 2248 sc->reset_thread = curthread; 2249 2250 /* Register access is expected to work by the time we're here. */ 2251 if (t4_read_reg(sc, A_PL_WHOAMI) == 0xffffffff) { 2252 CH_ERR(sc, "%s: can't read device registers\n", __func__); 2253 rc = ENXIO; 2254 goto done; 2255 } 2256 2257 /* Note that HW_OFF_LIMITS is cleared a bit later. */ 2258 atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR | ADAP_STOPPED); 2259 2260 /* Restore memory window. */ 2261 setup_memwin(sc); 2262 2263 /* Go no further if recovery mode has been requested. */ 2264 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 2265 CH_ALERT(sc, "recovery mode on resume.\n"); 2266 rc = 0; 2267 mtx_lock(&sc->reg_lock); 2268 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS); 2269 mtx_unlock(&sc->reg_lock); 2270 goto done; 2271 } 2272 2273 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK); 2274 save_caps_and_params(sc, old_state); 2275 2276 /* Reestablish contact with firmware and become the primary PF. */ 2277 rc = contact_firmware(sc); 2278 if (rc != 0) 2279 goto done; /* error message displayed already */ 2280 MPASS(sc->flags & FW_OK); 2281 2282 if (sc->flags & MASTER_PF) { 2283 rc = partition_resources(sc); 2284 if (rc != 0) 2285 goto done; /* error message displayed already */ 2286 t4_intr_clear(sc); 2287 } 2288 2289 rc = get_params__post_init(sc); 2290 if (rc != 0) 2291 goto done; /* error message displayed already */ 2292 2293 rc = set_params__post_init(sc); 2294 if (rc != 0) 2295 goto done; /* error message displayed already */ 2296 2297 rc = compare_caps_and_params(sc, old_state); 2298 if (rc != 0) 2299 goto done; /* error message displayed already */ 2300 2301 for_each_port(sc, i) { 2302 pi = sc->port[i]; 2303 MPASS(pi != NULL); 2304 MPASS(pi->vi != NULL); 2305 MPASS(pi->vi[0].dev == pi->dev); 2306 2307 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 2308 if (rc != 0) { 2309 CH_ERR(sc, 2310 "failed to re-initialize port %d: %d\n", i, rc); 2311 goto done; 2312 } 2313 MPASS(sc->chan_map[pi->tx_chan] == i); 2314 2315 PORT_LOCK(pi); 2316 fixup_link_config(pi); 2317 build_medialist(pi); 2318 PORT_UNLOCK(pi); 2319 for_each_vi(pi, j, vi) { 2320 if (IS_MAIN_VI(vi)) 2321 continue; 2322 rc = alloc_extra_vi(sc, pi, vi); 2323 if (rc != 0) { 2324 CH_ERR(vi, 2325 "failed to re-allocate extra VI: %d\n", rc); 2326 goto done; 2327 } 2328 } 2329 } 2330 2331 /* 2332 * Interrupts and queues are about to be enabled and other threads will 2333 * want to access the hardware too. It is safe to do so. Note that 2334 * this thread is still in the middle of a synchronized_op. 2335 */ 2336 mtx_lock(&sc->reg_lock); 2337 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS); 2338 mtx_unlock(&sc->reg_lock); 2339 2340 if (sc->flags & FULL_INIT_DONE) { 2341 rc = adapter_full_init(sc); 2342 if (rc != 0) { 2343 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc); 2344 goto done; 2345 } 2346 2347 if (sc->vxlan_refcount > 0) 2348 enable_vxlan_rx(sc); 2349 2350 for_each_port(sc, i) { 2351 pi = sc->port[i]; 2352 for_each_vi(pi, j, vi) { 2353 mtx_lock(&vi->tick_mtx); 2354 vi->flags &= ~VI_SKIP_STATS; 2355 mtx_unlock(&vi->tick_mtx); 2356 if (!(vi->flags & VI_INIT_DONE)) 2357 continue; 2358 rc = vi_full_init(vi); 2359 if (rc != 0) { 2360 CH_ERR(vi, "failed to re-initialize " 2361 "interface: %d\n", rc); 2362 goto done; 2363 } 2364 2365 ifp = vi->ifp; 2366 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 2367 continue; 2368 /* 2369 * Note that we do not setup multicast addresses 2370 * in the first pass. This ensures that the 2371 * unicast DMACs for all VIs on all ports get an 2372 * MPS TCAM entry. 2373 */ 2374 rc = update_mac_settings(ifp, XGMAC_ALL & 2375 ~XGMAC_MCADDRS); 2376 if (rc != 0) { 2377 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc); 2378 goto done; 2379 } 2380 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, 2381 true); 2382 if (rc != 0) { 2383 CH_ERR(vi, "failed to re-enable VI: %d\n", rc); 2384 goto done; 2385 } 2386 for_each_txq(vi, k, txq) { 2387 TXQ_LOCK(txq); 2388 txq->eq.flags |= EQ_ENABLED; 2389 TXQ_UNLOCK(txq); 2390 } 2391 mtx_lock(&vi->tick_mtx); 2392 callout_schedule(&vi->tick, hz); 2393 mtx_unlock(&vi->tick_mtx); 2394 } 2395 PORT_LOCK(pi); 2396 if (pi->up_vis > 0) { 2397 t4_update_port_info(pi); 2398 fixup_link_config(pi); 2399 build_medialist(pi); 2400 apply_link_config(pi); 2401 if (pi->link_cfg.link_ok) 2402 t4_os_link_changed(pi); 2403 } 2404 PORT_UNLOCK(pi); 2405 } 2406 2407 /* Now reprogram the L2 multicast addresses. */ 2408 for_each_port(sc, i) { 2409 pi = sc->port[i]; 2410 for_each_vi(pi, j, vi) { 2411 if (!(vi->flags & VI_INIT_DONE)) 2412 continue; 2413 ifp = vi->ifp; 2414 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 2415 continue; 2416 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2417 if (rc != 0) { 2418 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc); 2419 rc = 0; /* carry on */ 2420 } 2421 } 2422 } 2423 } 2424 2425 /* Reset all calibration */ 2426 t4_calibration_start(sc); 2427 2428 done: 2429 if (rc == 0) { 2430 sc->incarnation++; 2431 CH_ALERT(sc, "resume completed.\n"); 2432 } 2433 end_synchronized_op(sc, 0); 2434 free(old_state, M_CXGBE); 2435 return (rc); 2436 } 2437 2438 static int 2439 t4_reset_prepare(device_t dev, device_t child) 2440 { 2441 struct adapter *sc = device_get_softc(dev); 2442 2443 CH_ALERT(sc, "reset_prepare.\n"); 2444 return (0); 2445 } 2446 2447 static int 2448 t4_reset_post(device_t dev, device_t child) 2449 { 2450 struct adapter *sc = device_get_softc(dev); 2451 2452 CH_ALERT(sc, "reset_post.\n"); 2453 return (0); 2454 } 2455 2456 static int 2457 reset_adapter(struct adapter *sc) 2458 { 2459 int rc, oldinc, error_flags; 2460 2461 CH_ALERT(sc, "reset requested.\n"); 2462 2463 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst1"); 2464 if (rc != 0) 2465 return (EBUSY); 2466 2467 if (hw_off_limits(sc)) { 2468 CH_ERR(sc, "adapter is suspended, use resume (not reset).\n"); 2469 rc = ENXIO; 2470 goto done; 2471 } 2472 2473 if (!ok_to_reset(sc)) { 2474 /* XXX: should list what resource is preventing reset. */ 2475 CH_ERR(sc, "not safe to reset.\n"); 2476 rc = EBUSY; 2477 goto done; 2478 } 2479 2480 done: 2481 oldinc = sc->incarnation; 2482 end_synchronized_op(sc, 0); 2483 if (rc != 0) 2484 return (rc); /* Error logged already. */ 2485 2486 atomic_add_int(&sc->num_resets, 1); 2487 mtx_lock(&Giant); 2488 rc = BUS_RESET_CHILD(device_get_parent(sc->dev), sc->dev, 0); 2489 mtx_unlock(&Giant); 2490 if (rc != 0) 2491 CH_ERR(sc, "bus_reset_child failed: %d.\n", rc); 2492 else { 2493 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst2"); 2494 if (rc != 0) 2495 return (EBUSY); 2496 error_flags = atomic_load_int(&sc->error_flags); 2497 if (sc->incarnation > oldinc && error_flags == 0) { 2498 CH_ALERT(sc, "bus_reset_child succeeded.\n"); 2499 } else { 2500 CH_ERR(sc, "adapter did not reset properly, flags " 2501 "0x%08x, error_flags 0x%08x.\n", sc->flags, 2502 error_flags); 2503 rc = ENXIO; 2504 } 2505 end_synchronized_op(sc, 0); 2506 } 2507 2508 return (rc); 2509 } 2510 2511 static void 2512 reset_adapter_task(void *arg, int pending) 2513 { 2514 /* XXX: t4_async_event here? */ 2515 reset_adapter(arg); 2516 } 2517 2518 static int 2519 cxgbe_probe(device_t dev) 2520 { 2521 char buf[128]; 2522 struct port_info *pi = device_get_softc(dev); 2523 2524 snprintf(buf, sizeof(buf), "port %d", pi->port_id); 2525 device_set_desc_copy(dev, buf); 2526 2527 return (BUS_PROBE_DEFAULT); 2528 } 2529 2530 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ 2531 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ 2532 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \ 2533 IFCAP_HWRXTSTMP | IFCAP_MEXTPG) 2534 #define T4_CAP_ENABLE (T4_CAP) 2535 2536 static int 2537 cxgbe_vi_attach(device_t dev, struct vi_info *vi) 2538 { 2539 if_t ifp; 2540 struct sbuf *sb; 2541 struct sysctl_ctx_list *ctx = &vi->ctx; 2542 struct sysctl_oid_list *children; 2543 struct pfil_head_args pa; 2544 struct adapter *sc = vi->adapter; 2545 2546 sysctl_ctx_init(ctx); 2547 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev)); 2548 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq", 2549 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues"); 2550 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq", 2551 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues"); 2552 #ifdef DEV_NETMAP 2553 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq", 2554 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues"); 2555 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq", 2556 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues"); 2557 #endif 2558 #ifdef TCP_OFFLOAD 2559 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq", 2560 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues"); 2561 #endif 2562 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2563 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq", 2564 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues"); 2565 #endif 2566 2567 vi->xact_addr_filt = -1; 2568 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF); 2569 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0); 2570 if (sc->flags & IS_VF || t4_tx_vm_wr != 0) 2571 vi->flags |= TX_USES_VM_WR; 2572 2573 /* Allocate an ifnet and set it up */ 2574 ifp = if_alloc_dev(IFT_ETHER, dev); 2575 if (ifp == NULL) { 2576 device_printf(dev, "Cannot allocate ifnet\n"); 2577 return (ENOMEM); 2578 } 2579 vi->ifp = ifp; 2580 if_setsoftc(ifp, vi); 2581 2582 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 2583 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 2584 2585 if_setinitfn(ifp, cxgbe_init); 2586 if_setioctlfn(ifp, cxgbe_ioctl); 2587 if_settransmitfn(ifp, cxgbe_transmit); 2588 if_setqflushfn(ifp, cxgbe_qflush); 2589 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 2590 if_setgetcounterfn(ifp, vi_get_counter); 2591 else 2592 if_setgetcounterfn(ifp, cxgbe_get_counter); 2593 #if defined(KERN_TLS) || defined(RATELIMIT) 2594 if_setsndtagallocfn(ifp, cxgbe_snd_tag_alloc); 2595 #endif 2596 #ifdef RATELIMIT 2597 if_setratelimitqueryfn(ifp, cxgbe_ratelimit_query); 2598 #endif 2599 2600 if_setcapabilities(ifp, T4_CAP); 2601 if_setcapenable(ifp, T4_CAP_ENABLE); 2602 if_sethwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | 2603 CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2604 if (chip_id(sc) >= CHELSIO_T6) { 2605 if_setcapabilitiesbit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0); 2606 if_setcapenablebit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0); 2607 if_sethwassistbits(ifp, CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | 2608 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP | 2609 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN, 0); 2610 } 2611 2612 #ifdef TCP_OFFLOAD 2613 if (vi->nofldrxq != 0) 2614 if_setcapabilitiesbit(ifp, IFCAP_TOE, 0); 2615 #endif 2616 #ifdef RATELIMIT 2617 if (is_ethoffload(sc) && vi->nofldtxq != 0) { 2618 if_setcapabilitiesbit(ifp, IFCAP_TXRTLMT, 0); 2619 if_setcapenablebit(ifp, IFCAP_TXRTLMT, 0); 2620 } 2621 #endif 2622 2623 if_sethwtsomax(ifp, IP_MAXPACKET); 2624 if (vi->flags & TX_USES_VM_WR) 2625 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_VM_TSO); 2626 else 2627 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_TSO); 2628 #ifdef RATELIMIT 2629 if (is_ethoffload(sc) && vi->nofldtxq != 0) 2630 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_EO_TSO); 2631 #endif 2632 if_sethwtsomaxsegsize(ifp, 65536); 2633 #ifdef KERN_TLS 2634 if (is_ktls(sc)) { 2635 if_setcapabilitiesbit(ifp, IFCAP_TXTLS, 0); 2636 if (sc->flags & KERN_TLS_ON || !is_t6(sc)) 2637 if_setcapenablebit(ifp, IFCAP_TXTLS, 0); 2638 } 2639 #endif 2640 2641 ether_ifattach(ifp, vi->hw_addr); 2642 #ifdef DEV_NETMAP 2643 if (vi->nnmrxq != 0) 2644 cxgbe_nm_attach(vi); 2645 #endif 2646 sb = sbuf_new_auto(); 2647 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq); 2648 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2649 switch (if_getcapabilities(ifp) & (IFCAP_TOE | IFCAP_TXRTLMT)) { 2650 case IFCAP_TOE: 2651 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq); 2652 break; 2653 case IFCAP_TOE | IFCAP_TXRTLMT: 2654 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq); 2655 break; 2656 case IFCAP_TXRTLMT: 2657 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq); 2658 break; 2659 } 2660 #endif 2661 #ifdef TCP_OFFLOAD 2662 if (if_getcapabilities(ifp) & IFCAP_TOE) 2663 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq); 2664 #endif 2665 #ifdef DEV_NETMAP 2666 if (if_getcapabilities(ifp) & IFCAP_NETMAP) 2667 sbuf_printf(sb, "; %d txq, %d rxq (netmap)", 2668 vi->nnmtxq, vi->nnmrxq); 2669 #endif 2670 sbuf_finish(sb); 2671 device_printf(dev, "%s\n", sbuf_data(sb)); 2672 sbuf_delete(sb); 2673 2674 vi_sysctls(vi); 2675 2676 pa.pa_version = PFIL_VERSION; 2677 pa.pa_flags = PFIL_IN; 2678 pa.pa_type = PFIL_TYPE_ETHERNET; 2679 pa.pa_headname = if_name(ifp); 2680 vi->pfil = pfil_head_register(&pa); 2681 2682 return (0); 2683 } 2684 2685 static int 2686 cxgbe_attach(device_t dev) 2687 { 2688 struct port_info *pi = device_get_softc(dev); 2689 struct adapter *sc = pi->adapter; 2690 struct vi_info *vi; 2691 int i, rc; 2692 2693 sysctl_ctx_init(&pi->ctx); 2694 2695 rc = cxgbe_vi_attach(dev, &pi->vi[0]); 2696 if (rc) 2697 return (rc); 2698 2699 for_each_vi(pi, i, vi) { 2700 if (i == 0) 2701 continue; 2702 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1); 2703 if (vi->dev == NULL) { 2704 device_printf(dev, "failed to add VI %d\n", i); 2705 continue; 2706 } 2707 device_set_softc(vi->dev, vi); 2708 } 2709 2710 cxgbe_sysctls(pi); 2711 2712 bus_generic_attach(dev); 2713 2714 return (0); 2715 } 2716 2717 static void 2718 cxgbe_vi_detach(struct vi_info *vi) 2719 { 2720 if_t ifp = vi->ifp; 2721 2722 if (vi->pfil != NULL) { 2723 pfil_head_unregister(vi->pfil); 2724 vi->pfil = NULL; 2725 } 2726 2727 ether_ifdetach(ifp); 2728 2729 /* Let detach proceed even if these fail. */ 2730 #ifdef DEV_NETMAP 2731 if (if_getcapabilities(ifp) & IFCAP_NETMAP) 2732 cxgbe_nm_detach(vi); 2733 #endif 2734 cxgbe_uninit_synchronized(vi); 2735 callout_drain(&vi->tick); 2736 sysctl_ctx_free(&vi->ctx); 2737 vi_full_uninit(vi); 2738 2739 if_free(vi->ifp); 2740 vi->ifp = NULL; 2741 } 2742 2743 static int 2744 cxgbe_detach(device_t dev) 2745 { 2746 struct port_info *pi = device_get_softc(dev); 2747 struct adapter *sc = pi->adapter; 2748 int rc; 2749 2750 /* Detach the extra VIs first. */ 2751 rc = bus_generic_detach(dev); 2752 if (rc) 2753 return (rc); 2754 device_delete_children(dev); 2755 2756 sysctl_ctx_free(&pi->ctx); 2757 doom_vi(sc, &pi->vi[0]); 2758 2759 if (pi->flags & HAS_TRACEQ) { 2760 sc->traceq = -1; /* cloner should not create ifnet */ 2761 t4_tracer_port_detach(sc); 2762 } 2763 2764 cxgbe_vi_detach(&pi->vi[0]); 2765 ifmedia_removeall(&pi->media); 2766 2767 end_synchronized_op(sc, 0); 2768 2769 return (0); 2770 } 2771 2772 static void 2773 cxgbe_init(void *arg) 2774 { 2775 struct vi_info *vi = arg; 2776 struct adapter *sc = vi->adapter; 2777 2778 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0) 2779 return; 2780 cxgbe_init_synchronized(vi); 2781 end_synchronized_op(sc, 0); 2782 } 2783 2784 static int 2785 cxgbe_ioctl(if_t ifp, unsigned long cmd, caddr_t data) 2786 { 2787 int rc = 0, mtu, flags; 2788 struct vi_info *vi = if_getsoftc(ifp); 2789 struct port_info *pi = vi->pi; 2790 struct adapter *sc = pi->adapter; 2791 struct ifreq *ifr = (struct ifreq *)data; 2792 uint32_t mask; 2793 2794 switch (cmd) { 2795 case SIOCSIFMTU: 2796 mtu = ifr->ifr_mtu; 2797 if (mtu < ETHERMIN || mtu > MAX_MTU) 2798 return (EINVAL); 2799 2800 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu"); 2801 if (rc) 2802 return (rc); 2803 if_setmtu(ifp, mtu); 2804 if (vi->flags & VI_INIT_DONE) { 2805 t4_update_fl_bufsize(ifp); 2806 if (!hw_off_limits(sc) && 2807 if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2808 rc = update_mac_settings(ifp, XGMAC_MTU); 2809 } 2810 end_synchronized_op(sc, 0); 2811 break; 2812 2813 case SIOCSIFFLAGS: 2814 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg"); 2815 if (rc) 2816 return (rc); 2817 2818 if (hw_off_limits(sc)) { 2819 rc = ENXIO; 2820 goto fail; 2821 } 2822 2823 if (if_getflags(ifp) & IFF_UP) { 2824 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2825 flags = vi->if_flags; 2826 if ((if_getflags(ifp) ^ flags) & 2827 (IFF_PROMISC | IFF_ALLMULTI)) { 2828 rc = update_mac_settings(ifp, 2829 XGMAC_PROMISC | XGMAC_ALLMULTI); 2830 } 2831 } else { 2832 rc = cxgbe_init_synchronized(vi); 2833 } 2834 vi->if_flags = if_getflags(ifp); 2835 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2836 rc = cxgbe_uninit_synchronized(vi); 2837 } 2838 end_synchronized_op(sc, 0); 2839 break; 2840 2841 case SIOCADDMULTI: 2842 case SIOCDELMULTI: 2843 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi"); 2844 if (rc) 2845 return (rc); 2846 if (!hw_off_limits(sc) && if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2847 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2848 end_synchronized_op(sc, 0); 2849 break; 2850 2851 case SIOCSIFCAP: 2852 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap"); 2853 if (rc) 2854 return (rc); 2855 2856 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp); 2857 if (mask & IFCAP_TXCSUM) { 2858 if_togglecapenable(ifp, IFCAP_TXCSUM); 2859 if_togglehwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP); 2860 2861 if (IFCAP_TSO4 & if_getcapenable(ifp) && 2862 !(IFCAP_TXCSUM & if_getcapenable(ifp))) { 2863 mask &= ~IFCAP_TSO4; 2864 if_setcapenablebit(ifp, 0, IFCAP_TSO4); 2865 if_printf(ifp, 2866 "tso4 disabled due to -txcsum.\n"); 2867 } 2868 } 2869 if (mask & IFCAP_TXCSUM_IPV6) { 2870 if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6); 2871 if_togglehwassist(ifp, CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2872 2873 if (IFCAP_TSO6 & if_getcapenable(ifp) && 2874 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) { 2875 mask &= ~IFCAP_TSO6; 2876 if_setcapenablebit(ifp, 0, IFCAP_TSO6); 2877 if_printf(ifp, 2878 "tso6 disabled due to -txcsum6.\n"); 2879 } 2880 } 2881 if (mask & IFCAP_RXCSUM) 2882 if_togglecapenable(ifp, IFCAP_RXCSUM); 2883 if (mask & IFCAP_RXCSUM_IPV6) 2884 if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6); 2885 2886 /* 2887 * Note that we leave CSUM_TSO alone (it is always set). The 2888 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before 2889 * sending a TSO request our way, so it's sufficient to toggle 2890 * IFCAP_TSOx only. 2891 */ 2892 if (mask & IFCAP_TSO4) { 2893 if (!(IFCAP_TSO4 & if_getcapenable(ifp)) && 2894 !(IFCAP_TXCSUM & if_getcapenable(ifp))) { 2895 if_printf(ifp, "enable txcsum first.\n"); 2896 rc = EAGAIN; 2897 goto fail; 2898 } 2899 if_togglecapenable(ifp, IFCAP_TSO4); 2900 } 2901 if (mask & IFCAP_TSO6) { 2902 if (!(IFCAP_TSO6 & if_getcapenable(ifp)) && 2903 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) { 2904 if_printf(ifp, "enable txcsum6 first.\n"); 2905 rc = EAGAIN; 2906 goto fail; 2907 } 2908 if_togglecapenable(ifp, IFCAP_TSO6); 2909 } 2910 if (mask & IFCAP_LRO) { 2911 #if defined(INET) || defined(INET6) 2912 int i; 2913 struct sge_rxq *rxq; 2914 2915 if_togglecapenable(ifp, IFCAP_LRO); 2916 for_each_rxq(vi, i, rxq) { 2917 if (if_getcapenable(ifp) & IFCAP_LRO) 2918 rxq->iq.flags |= IQ_LRO_ENABLED; 2919 else 2920 rxq->iq.flags &= ~IQ_LRO_ENABLED; 2921 } 2922 #endif 2923 } 2924 #ifdef TCP_OFFLOAD 2925 if (mask & IFCAP_TOE) { 2926 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TOE; 2927 2928 rc = toe_capability(vi, enable); 2929 if (rc != 0) 2930 goto fail; 2931 2932 if_togglecapenable(ifp, mask); 2933 } 2934 #endif 2935 if (mask & IFCAP_VLAN_HWTAGGING) { 2936 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING); 2937 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2938 rc = update_mac_settings(ifp, XGMAC_VLANEX); 2939 } 2940 if (mask & IFCAP_VLAN_MTU) { 2941 if_togglecapenable(ifp, IFCAP_VLAN_MTU); 2942 2943 /* Need to find out how to disable auto-mtu-inflation */ 2944 } 2945 if (mask & IFCAP_VLAN_HWTSO) 2946 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 2947 if (mask & IFCAP_VLAN_HWCSUM) 2948 if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM); 2949 #ifdef RATELIMIT 2950 if (mask & IFCAP_TXRTLMT) 2951 if_togglecapenable(ifp, IFCAP_TXRTLMT); 2952 #endif 2953 if (mask & IFCAP_HWRXTSTMP) { 2954 int i; 2955 struct sge_rxq *rxq; 2956 2957 if_togglecapenable(ifp, IFCAP_HWRXTSTMP); 2958 for_each_rxq(vi, i, rxq) { 2959 if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP) 2960 rxq->iq.flags |= IQ_RX_TIMESTAMP; 2961 else 2962 rxq->iq.flags &= ~IQ_RX_TIMESTAMP; 2963 } 2964 } 2965 if (mask & IFCAP_MEXTPG) 2966 if_togglecapenable(ifp, IFCAP_MEXTPG); 2967 2968 #ifdef KERN_TLS 2969 if (mask & IFCAP_TXTLS) { 2970 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TXTLS; 2971 2972 rc = ktls_capability(sc, enable); 2973 if (rc != 0) 2974 goto fail; 2975 2976 if_togglecapenable(ifp, mask & IFCAP_TXTLS); 2977 } 2978 #endif 2979 if (mask & IFCAP_VXLAN_HWCSUM) { 2980 if_togglecapenable(ifp, IFCAP_VXLAN_HWCSUM); 2981 if_togglehwassist(ifp, CSUM_INNER_IP6_UDP | 2982 CSUM_INNER_IP6_TCP | CSUM_INNER_IP | 2983 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP); 2984 } 2985 if (mask & IFCAP_VXLAN_HWTSO) { 2986 if_togglecapenable(ifp, IFCAP_VXLAN_HWTSO); 2987 if_togglehwassist(ifp, CSUM_INNER_IP6_TSO | 2988 CSUM_INNER_IP_TSO); 2989 } 2990 2991 #ifdef VLAN_CAPABILITIES 2992 VLAN_CAPABILITIES(ifp); 2993 #endif 2994 fail: 2995 end_synchronized_op(sc, 0); 2996 break; 2997 2998 case SIOCSIFMEDIA: 2999 case SIOCGIFMEDIA: 3000 case SIOCGIFXMEDIA: 3001 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd); 3002 break; 3003 3004 case SIOCGI2C: { 3005 struct ifi2creq i2c; 3006 3007 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); 3008 if (rc != 0) 3009 break; 3010 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { 3011 rc = EPERM; 3012 break; 3013 } 3014 if (i2c.len > sizeof(i2c.data)) { 3015 rc = EINVAL; 3016 break; 3017 } 3018 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c"); 3019 if (rc) 3020 return (rc); 3021 if (hw_off_limits(sc)) 3022 rc = ENXIO; 3023 else 3024 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr, 3025 i2c.offset, i2c.len, &i2c.data[0]); 3026 end_synchronized_op(sc, 0); 3027 if (rc == 0) 3028 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c)); 3029 break; 3030 } 3031 3032 default: 3033 rc = ether_ioctl(ifp, cmd, data); 3034 } 3035 3036 return (rc); 3037 } 3038 3039 static int 3040 cxgbe_transmit(if_t ifp, struct mbuf *m) 3041 { 3042 struct vi_info *vi = if_getsoftc(ifp); 3043 struct port_info *pi = vi->pi; 3044 struct adapter *sc; 3045 struct sge_txq *txq; 3046 void *items[1]; 3047 int rc; 3048 3049 M_ASSERTPKTHDR(m); 3050 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */ 3051 #if defined(KERN_TLS) || defined(RATELIMIT) 3052 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) 3053 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 3054 #endif 3055 3056 if (__predict_false(pi->link_cfg.link_ok == false)) { 3057 m_freem(m); 3058 return (ENETDOWN); 3059 } 3060 3061 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR); 3062 if (__predict_false(rc != 0)) { 3063 if (__predict_true(rc == EINPROGRESS)) { 3064 /* queued by parse_pkt */ 3065 MPASS(m != NULL); 3066 return (0); 3067 } 3068 3069 MPASS(m == NULL); /* was freed already */ 3070 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */ 3071 return (rc); 3072 } 3073 3074 /* Select a txq. */ 3075 sc = vi->adapter; 3076 txq = &sc->sge.txq[vi->first_txq]; 3077 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 3078 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) + 3079 vi->rsrv_noflowq); 3080 3081 items[0] = m; 3082 rc = mp_ring_enqueue(txq->r, items, 1, 256); 3083 if (__predict_false(rc != 0)) 3084 m_freem(m); 3085 3086 return (rc); 3087 } 3088 3089 static void 3090 cxgbe_qflush(if_t ifp) 3091 { 3092 struct vi_info *vi = if_getsoftc(ifp); 3093 struct sge_txq *txq; 3094 int i; 3095 3096 /* queues do not exist if !VI_INIT_DONE. */ 3097 if (vi->flags & VI_INIT_DONE) { 3098 for_each_txq(vi, i, txq) { 3099 TXQ_LOCK(txq); 3100 txq->eq.flags |= EQ_QFLUSH; 3101 TXQ_UNLOCK(txq); 3102 while (!mp_ring_is_idle(txq->r)) { 3103 mp_ring_check_drainage(txq->r, 4096); 3104 pause("qflush", 1); 3105 } 3106 TXQ_LOCK(txq); 3107 txq->eq.flags &= ~EQ_QFLUSH; 3108 TXQ_UNLOCK(txq); 3109 } 3110 } 3111 if_qflush(ifp); 3112 } 3113 3114 static uint64_t 3115 vi_get_counter(if_t ifp, ift_counter c) 3116 { 3117 struct vi_info *vi = if_getsoftc(ifp); 3118 struct fw_vi_stats_vf *s = &vi->stats; 3119 3120 mtx_lock(&vi->tick_mtx); 3121 vi_refresh_stats(vi); 3122 mtx_unlock(&vi->tick_mtx); 3123 3124 switch (c) { 3125 case IFCOUNTER_IPACKETS: 3126 return (s->rx_bcast_frames + s->rx_mcast_frames + 3127 s->rx_ucast_frames); 3128 case IFCOUNTER_IERRORS: 3129 return (s->rx_err_frames); 3130 case IFCOUNTER_OPACKETS: 3131 return (s->tx_bcast_frames + s->tx_mcast_frames + 3132 s->tx_ucast_frames + s->tx_offload_frames); 3133 case IFCOUNTER_OERRORS: 3134 return (s->tx_drop_frames); 3135 case IFCOUNTER_IBYTES: 3136 return (s->rx_bcast_bytes + s->rx_mcast_bytes + 3137 s->rx_ucast_bytes); 3138 case IFCOUNTER_OBYTES: 3139 return (s->tx_bcast_bytes + s->tx_mcast_bytes + 3140 s->tx_ucast_bytes + s->tx_offload_bytes); 3141 case IFCOUNTER_IMCASTS: 3142 return (s->rx_mcast_frames); 3143 case IFCOUNTER_OMCASTS: 3144 return (s->tx_mcast_frames); 3145 case IFCOUNTER_OQDROPS: { 3146 uint64_t drops; 3147 3148 drops = 0; 3149 if (vi->flags & VI_INIT_DONE) { 3150 int i; 3151 struct sge_txq *txq; 3152 3153 for_each_txq(vi, i, txq) 3154 drops += counter_u64_fetch(txq->r->dropped); 3155 } 3156 3157 return (drops); 3158 3159 } 3160 3161 default: 3162 return (if_get_counter_default(ifp, c)); 3163 } 3164 } 3165 3166 static uint64_t 3167 cxgbe_get_counter(if_t ifp, ift_counter c) 3168 { 3169 struct vi_info *vi = if_getsoftc(ifp); 3170 struct port_info *pi = vi->pi; 3171 struct port_stats *s = &pi->stats; 3172 3173 mtx_lock(&vi->tick_mtx); 3174 cxgbe_refresh_stats(vi); 3175 mtx_unlock(&vi->tick_mtx); 3176 3177 switch (c) { 3178 case IFCOUNTER_IPACKETS: 3179 return (s->rx_frames); 3180 3181 case IFCOUNTER_IERRORS: 3182 return (s->rx_jabber + s->rx_runt + s->rx_too_long + 3183 s->rx_fcs_err + s->rx_len_err); 3184 3185 case IFCOUNTER_OPACKETS: 3186 return (s->tx_frames); 3187 3188 case IFCOUNTER_OERRORS: 3189 return (s->tx_error_frames); 3190 3191 case IFCOUNTER_IBYTES: 3192 return (s->rx_octets); 3193 3194 case IFCOUNTER_OBYTES: 3195 return (s->tx_octets); 3196 3197 case IFCOUNTER_IMCASTS: 3198 return (s->rx_mcast_frames); 3199 3200 case IFCOUNTER_OMCASTS: 3201 return (s->tx_mcast_frames); 3202 3203 case IFCOUNTER_IQDROPS: 3204 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + 3205 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + 3206 s->rx_trunc3 + pi->tnl_cong_drops); 3207 3208 case IFCOUNTER_OQDROPS: { 3209 uint64_t drops; 3210 3211 drops = s->tx_drop; 3212 if (vi->flags & VI_INIT_DONE) { 3213 int i; 3214 struct sge_txq *txq; 3215 3216 for_each_txq(vi, i, txq) 3217 drops += counter_u64_fetch(txq->r->dropped); 3218 } 3219 3220 return (drops); 3221 3222 } 3223 3224 default: 3225 return (if_get_counter_default(ifp, c)); 3226 } 3227 } 3228 3229 #if defined(KERN_TLS) || defined(RATELIMIT) 3230 static int 3231 cxgbe_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params, 3232 struct m_snd_tag **pt) 3233 { 3234 int error; 3235 3236 switch (params->hdr.type) { 3237 #ifdef RATELIMIT 3238 case IF_SND_TAG_TYPE_RATE_LIMIT: 3239 error = cxgbe_rate_tag_alloc(ifp, params, pt); 3240 break; 3241 #endif 3242 #ifdef KERN_TLS 3243 case IF_SND_TAG_TYPE_TLS: 3244 { 3245 struct vi_info *vi = if_getsoftc(ifp); 3246 3247 if (is_t6(vi->pi->adapter)) 3248 error = t6_tls_tag_alloc(ifp, params, pt); 3249 else 3250 error = EOPNOTSUPP; 3251 break; 3252 } 3253 #endif 3254 default: 3255 error = EOPNOTSUPP; 3256 } 3257 return (error); 3258 } 3259 #endif 3260 3261 /* 3262 * The kernel picks a media from the list we had provided but we still validate 3263 * the requeste. 3264 */ 3265 int 3266 cxgbe_media_change(if_t ifp) 3267 { 3268 struct vi_info *vi = if_getsoftc(ifp); 3269 struct port_info *pi = vi->pi; 3270 struct ifmedia *ifm = &pi->media; 3271 struct link_config *lc = &pi->link_cfg; 3272 struct adapter *sc = pi->adapter; 3273 int rc; 3274 3275 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec"); 3276 if (rc != 0) 3277 return (rc); 3278 PORT_LOCK(pi); 3279 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) { 3280 /* ifconfig .. media autoselect */ 3281 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 3282 rc = ENOTSUP; /* AN not supported by transceiver */ 3283 goto done; 3284 } 3285 lc->requested_aneg = AUTONEG_ENABLE; 3286 lc->requested_speed = 0; 3287 lc->requested_fc |= PAUSE_AUTONEG; 3288 } else { 3289 lc->requested_aneg = AUTONEG_DISABLE; 3290 lc->requested_speed = 3291 ifmedia_baudrate(ifm->ifm_media) / 1000000; 3292 lc->requested_fc = 0; 3293 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE) 3294 lc->requested_fc |= PAUSE_RX; 3295 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE) 3296 lc->requested_fc |= PAUSE_TX; 3297 } 3298 if (pi->up_vis > 0 && !hw_off_limits(sc)) { 3299 fixup_link_config(pi); 3300 rc = apply_link_config(pi); 3301 } 3302 done: 3303 PORT_UNLOCK(pi); 3304 end_synchronized_op(sc, 0); 3305 return (rc); 3306 } 3307 3308 /* 3309 * Base media word (without ETHER, pause, link active, etc.) for the port at the 3310 * given speed. 3311 */ 3312 static int 3313 port_mword(struct port_info *pi, uint32_t speed) 3314 { 3315 3316 MPASS(speed & M_FW_PORT_CAP32_SPEED); 3317 MPASS(powerof2(speed)); 3318 3319 switch(pi->port_type) { 3320 case FW_PORT_TYPE_BT_SGMII: 3321 case FW_PORT_TYPE_BT_XFI: 3322 case FW_PORT_TYPE_BT_XAUI: 3323 /* BaseT */ 3324 switch (speed) { 3325 case FW_PORT_CAP32_SPEED_100M: 3326 return (IFM_100_T); 3327 case FW_PORT_CAP32_SPEED_1G: 3328 return (IFM_1000_T); 3329 case FW_PORT_CAP32_SPEED_10G: 3330 return (IFM_10G_T); 3331 } 3332 break; 3333 case FW_PORT_TYPE_KX4: 3334 if (speed == FW_PORT_CAP32_SPEED_10G) 3335 return (IFM_10G_KX4); 3336 break; 3337 case FW_PORT_TYPE_CX4: 3338 if (speed == FW_PORT_CAP32_SPEED_10G) 3339 return (IFM_10G_CX4); 3340 break; 3341 case FW_PORT_TYPE_KX: 3342 if (speed == FW_PORT_CAP32_SPEED_1G) 3343 return (IFM_1000_KX); 3344 break; 3345 case FW_PORT_TYPE_KR: 3346 case FW_PORT_TYPE_BP_AP: 3347 case FW_PORT_TYPE_BP4_AP: 3348 case FW_PORT_TYPE_BP40_BA: 3349 case FW_PORT_TYPE_KR4_100G: 3350 case FW_PORT_TYPE_KR_SFP28: 3351 case FW_PORT_TYPE_KR_XLAUI: 3352 switch (speed) { 3353 case FW_PORT_CAP32_SPEED_1G: 3354 return (IFM_1000_KX); 3355 case FW_PORT_CAP32_SPEED_10G: 3356 return (IFM_10G_KR); 3357 case FW_PORT_CAP32_SPEED_25G: 3358 return (IFM_25G_KR); 3359 case FW_PORT_CAP32_SPEED_40G: 3360 return (IFM_40G_KR4); 3361 case FW_PORT_CAP32_SPEED_50G: 3362 return (IFM_50G_KR2); 3363 case FW_PORT_CAP32_SPEED_100G: 3364 return (IFM_100G_KR4); 3365 } 3366 break; 3367 case FW_PORT_TYPE_FIBER_XFI: 3368 case FW_PORT_TYPE_FIBER_XAUI: 3369 case FW_PORT_TYPE_SFP: 3370 case FW_PORT_TYPE_QSFP_10G: 3371 case FW_PORT_TYPE_QSA: 3372 case FW_PORT_TYPE_QSFP: 3373 case FW_PORT_TYPE_CR4_QSFP: 3374 case FW_PORT_TYPE_CR_QSFP: 3375 case FW_PORT_TYPE_CR2_QSFP: 3376 case FW_PORT_TYPE_SFP28: 3377 /* Pluggable transceiver */ 3378 switch (pi->mod_type) { 3379 case FW_PORT_MOD_TYPE_LR: 3380 switch (speed) { 3381 case FW_PORT_CAP32_SPEED_1G: 3382 return (IFM_1000_LX); 3383 case FW_PORT_CAP32_SPEED_10G: 3384 return (IFM_10G_LR); 3385 case FW_PORT_CAP32_SPEED_25G: 3386 return (IFM_25G_LR); 3387 case FW_PORT_CAP32_SPEED_40G: 3388 return (IFM_40G_LR4); 3389 case FW_PORT_CAP32_SPEED_50G: 3390 return (IFM_50G_LR2); 3391 case FW_PORT_CAP32_SPEED_100G: 3392 return (IFM_100G_LR4); 3393 } 3394 break; 3395 case FW_PORT_MOD_TYPE_SR: 3396 switch (speed) { 3397 case FW_PORT_CAP32_SPEED_1G: 3398 return (IFM_1000_SX); 3399 case FW_PORT_CAP32_SPEED_10G: 3400 return (IFM_10G_SR); 3401 case FW_PORT_CAP32_SPEED_25G: 3402 return (IFM_25G_SR); 3403 case FW_PORT_CAP32_SPEED_40G: 3404 return (IFM_40G_SR4); 3405 case FW_PORT_CAP32_SPEED_50G: 3406 return (IFM_50G_SR2); 3407 case FW_PORT_CAP32_SPEED_100G: 3408 return (IFM_100G_SR4); 3409 } 3410 break; 3411 case FW_PORT_MOD_TYPE_ER: 3412 if (speed == FW_PORT_CAP32_SPEED_10G) 3413 return (IFM_10G_ER); 3414 break; 3415 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3416 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3417 switch (speed) { 3418 case FW_PORT_CAP32_SPEED_1G: 3419 return (IFM_1000_CX); 3420 case FW_PORT_CAP32_SPEED_10G: 3421 return (IFM_10G_TWINAX); 3422 case FW_PORT_CAP32_SPEED_25G: 3423 return (IFM_25G_CR); 3424 case FW_PORT_CAP32_SPEED_40G: 3425 return (IFM_40G_CR4); 3426 case FW_PORT_CAP32_SPEED_50G: 3427 return (IFM_50G_CR2); 3428 case FW_PORT_CAP32_SPEED_100G: 3429 return (IFM_100G_CR4); 3430 } 3431 break; 3432 case FW_PORT_MOD_TYPE_LRM: 3433 if (speed == FW_PORT_CAP32_SPEED_10G) 3434 return (IFM_10G_LRM); 3435 break; 3436 case FW_PORT_MOD_TYPE_NA: 3437 MPASS(0); /* Not pluggable? */ 3438 /* fall throough */ 3439 case FW_PORT_MOD_TYPE_ERROR: 3440 case FW_PORT_MOD_TYPE_UNKNOWN: 3441 case FW_PORT_MOD_TYPE_NOTSUPPORTED: 3442 break; 3443 case FW_PORT_MOD_TYPE_NONE: 3444 return (IFM_NONE); 3445 } 3446 break; 3447 case FW_PORT_TYPE_NONE: 3448 return (IFM_NONE); 3449 } 3450 3451 return (IFM_UNKNOWN); 3452 } 3453 3454 void 3455 cxgbe_media_status(if_t ifp, struct ifmediareq *ifmr) 3456 { 3457 struct vi_info *vi = if_getsoftc(ifp); 3458 struct port_info *pi = vi->pi; 3459 struct adapter *sc = pi->adapter; 3460 struct link_config *lc = &pi->link_cfg; 3461 3462 if (begin_synchronized_op(sc, vi , SLEEP_OK | INTR_OK, "t4med") != 0) 3463 return; 3464 PORT_LOCK(pi); 3465 3466 if (pi->up_vis == 0 && !hw_off_limits(sc)) { 3467 /* 3468 * If all the interfaces are administratively down the firmware 3469 * does not report transceiver changes. Refresh port info here 3470 * so that ifconfig displays accurate ifmedia at all times. 3471 * This is the only reason we have a synchronized op in this 3472 * function. Just PORT_LOCK would have been enough otherwise. 3473 */ 3474 t4_update_port_info(pi); 3475 build_medialist(pi); 3476 } 3477 3478 /* ifm_status */ 3479 ifmr->ifm_status = IFM_AVALID; 3480 if (lc->link_ok == false) 3481 goto done; 3482 ifmr->ifm_status |= IFM_ACTIVE; 3483 3484 /* ifm_active */ 3485 ifmr->ifm_active = IFM_ETHER | IFM_FDX; 3486 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE); 3487 if (lc->fc & PAUSE_RX) 3488 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 3489 if (lc->fc & PAUSE_TX) 3490 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 3491 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed)); 3492 done: 3493 PORT_UNLOCK(pi); 3494 end_synchronized_op(sc, 0); 3495 } 3496 3497 static int 3498 vcxgbe_probe(device_t dev) 3499 { 3500 char buf[128]; 3501 struct vi_info *vi = device_get_softc(dev); 3502 3503 snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id, 3504 vi - vi->pi->vi); 3505 device_set_desc_copy(dev, buf); 3506 3507 return (BUS_PROBE_DEFAULT); 3508 } 3509 3510 static int 3511 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi) 3512 { 3513 int func, index, rc; 3514 uint32_t param, val; 3515 3516 ASSERT_SYNCHRONIZED_OP(sc); 3517 3518 index = vi - pi->vi; 3519 MPASS(index > 0); /* This function deals with _extra_ VIs only */ 3520 KASSERT(index < nitems(vi_mac_funcs), 3521 ("%s: VI %s doesn't have a MAC func", __func__, 3522 device_get_nameunit(vi->dev))); 3523 func = vi_mac_funcs[index]; 3524 rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1, 3525 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0); 3526 if (rc < 0) { 3527 CH_ERR(vi, "failed to allocate virtual interface %d" 3528 "for port %d: %d\n", index, pi->port_id, -rc); 3529 return (-rc); 3530 } 3531 vi->viid = rc; 3532 3533 if (vi->rss_size == 1) { 3534 /* 3535 * This VI didn't get a slice of the RSS table. Reduce the 3536 * number of VIs being created (hw.cxgbe.num_vis) or modify the 3537 * configuration file (nvi, rssnvi for this PF) if this is a 3538 * problem. 3539 */ 3540 device_printf(vi->dev, "RSS table not available.\n"); 3541 vi->rss_base = 0xffff; 3542 3543 return (0); 3544 } 3545 3546 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3547 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 3548 V_FW_PARAMS_PARAM_YZ(vi->viid); 3549 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3550 if (rc) 3551 vi->rss_base = 0xffff; 3552 else { 3553 MPASS((val >> 16) == vi->rss_size); 3554 vi->rss_base = val & 0xffff; 3555 } 3556 3557 return (0); 3558 } 3559 3560 static int 3561 vcxgbe_attach(device_t dev) 3562 { 3563 struct vi_info *vi; 3564 struct port_info *pi; 3565 struct adapter *sc; 3566 int rc; 3567 3568 vi = device_get_softc(dev); 3569 pi = vi->pi; 3570 sc = pi->adapter; 3571 3572 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via"); 3573 if (rc) 3574 return (rc); 3575 rc = alloc_extra_vi(sc, pi, vi); 3576 end_synchronized_op(sc, 0); 3577 if (rc) 3578 return (rc); 3579 3580 rc = cxgbe_vi_attach(dev, vi); 3581 if (rc) { 3582 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3583 return (rc); 3584 } 3585 return (0); 3586 } 3587 3588 static int 3589 vcxgbe_detach(device_t dev) 3590 { 3591 struct vi_info *vi; 3592 struct adapter *sc; 3593 3594 vi = device_get_softc(dev); 3595 sc = vi->adapter; 3596 3597 doom_vi(sc, vi); 3598 3599 cxgbe_vi_detach(vi); 3600 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3601 3602 end_synchronized_op(sc, 0); 3603 3604 return (0); 3605 } 3606 3607 static struct callout fatal_callout; 3608 static struct taskqueue *reset_tq; 3609 3610 static void 3611 delayed_panic(void *arg) 3612 { 3613 struct adapter *sc = arg; 3614 3615 panic("%s: panic on fatal error", device_get_nameunit(sc->dev)); 3616 } 3617 3618 static void 3619 fatal_error_task(void *arg, int pending) 3620 { 3621 struct adapter *sc = arg; 3622 int rc; 3623 3624 #ifdef TCP_OFFLOAD 3625 t4_async_event(sc); 3626 #endif 3627 if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) { 3628 dump_cim_regs(sc); 3629 dump_cimla(sc); 3630 dump_devlog(sc); 3631 } 3632 3633 if (t4_reset_on_fatal_err) { 3634 CH_ALERT(sc, "resetting on fatal error.\n"); 3635 rc = reset_adapter(sc); 3636 if (rc == 0 && t4_panic_on_fatal_err) { 3637 CH_ALERT(sc, "reset was successful, " 3638 "system will NOT panic.\n"); 3639 return; 3640 } 3641 } 3642 3643 if (t4_panic_on_fatal_err) { 3644 CH_ALERT(sc, "panicking on fatal error (after 30s).\n"); 3645 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc); 3646 } 3647 } 3648 3649 void 3650 t4_fatal_err(struct adapter *sc, bool fw_error) 3651 { 3652 const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0; 3653 3654 stop_adapter(sc); 3655 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR))) 3656 return; 3657 if (fw_error) { 3658 /* 3659 * We are here because of a firmware error/timeout and not 3660 * because of a hardware interrupt. It is possible (although 3661 * not very likely) that an error interrupt was also raised but 3662 * this thread ran first and inhibited t4_intr_err. We walk the 3663 * main INT_CAUSE registers here to make sure we haven't missed 3664 * anything interesting. 3665 */ 3666 t4_slow_intr_handler(sc, verbose); 3667 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 3668 } 3669 t4_report_fw_error(sc); 3670 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n", 3671 device_get_nameunit(sc->dev), fw_error); 3672 taskqueue_enqueue(reset_tq, &sc->fatal_error_task); 3673 } 3674 3675 void 3676 t4_add_adapter(struct adapter *sc) 3677 { 3678 sx_xlock(&t4_list_lock); 3679 SLIST_INSERT_HEAD(&t4_list, sc, link); 3680 sx_xunlock(&t4_list_lock); 3681 } 3682 3683 int 3684 t4_map_bars_0_and_4(struct adapter *sc) 3685 { 3686 sc->regs_rid = PCIR_BAR(0); 3687 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3688 &sc->regs_rid, RF_ACTIVE); 3689 if (sc->regs_res == NULL) { 3690 device_printf(sc->dev, "cannot map registers.\n"); 3691 return (ENXIO); 3692 } 3693 sc->bt = rman_get_bustag(sc->regs_res); 3694 sc->bh = rman_get_bushandle(sc->regs_res); 3695 sc->mmio_len = rman_get_size(sc->regs_res); 3696 setbit(&sc->doorbells, DOORBELL_KDB); 3697 3698 sc->msix_rid = PCIR_BAR(4); 3699 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3700 &sc->msix_rid, RF_ACTIVE); 3701 if (sc->msix_res == NULL) { 3702 device_printf(sc->dev, "cannot map MSI-X BAR.\n"); 3703 return (ENXIO); 3704 } 3705 3706 return (0); 3707 } 3708 3709 int 3710 t4_map_bar_2(struct adapter *sc) 3711 { 3712 3713 /* 3714 * T4: only iWARP driver uses the userspace doorbells. There is no need 3715 * to map it if RDMA is disabled. 3716 */ 3717 if (is_t4(sc) && sc->rdmacaps == 0) 3718 return (0); 3719 3720 sc->udbs_rid = PCIR_BAR(2); 3721 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3722 &sc->udbs_rid, RF_ACTIVE); 3723 if (sc->udbs_res == NULL) { 3724 device_printf(sc->dev, "cannot map doorbell BAR.\n"); 3725 return (ENXIO); 3726 } 3727 sc->udbs_base = rman_get_virtual(sc->udbs_res); 3728 3729 if (chip_id(sc) >= CHELSIO_T5) { 3730 setbit(&sc->doorbells, DOORBELL_UDB); 3731 #if defined(__i386__) || defined(__amd64__) 3732 if (t5_write_combine) { 3733 int rc, mode; 3734 3735 /* 3736 * Enable write combining on BAR2. This is the 3737 * userspace doorbell BAR and is split into 128B 3738 * (UDBS_SEG_SIZE) doorbell regions, each associated 3739 * with an egress queue. The first 64B has the doorbell 3740 * and the second 64B can be used to submit a tx work 3741 * request with an implicit doorbell. 3742 */ 3743 3744 rc = pmap_change_attr((vm_offset_t)sc->udbs_base, 3745 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); 3746 if (rc == 0) { 3747 clrbit(&sc->doorbells, DOORBELL_UDB); 3748 setbit(&sc->doorbells, DOORBELL_WCWR); 3749 setbit(&sc->doorbells, DOORBELL_UDBWC); 3750 } else { 3751 device_printf(sc->dev, 3752 "couldn't enable write combining: %d\n", 3753 rc); 3754 } 3755 3756 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0); 3757 t4_write_reg(sc, A_SGE_STAT_CFG, 3758 V_STATSOURCE_T5(7) | mode); 3759 } 3760 #endif 3761 } 3762 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0; 3763 3764 return (0); 3765 } 3766 3767 struct memwin_init { 3768 uint32_t base; 3769 uint32_t aperture; 3770 }; 3771 3772 static const struct memwin_init t4_memwin[NUM_MEMWIN] = { 3773 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3774 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3775 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } 3776 }; 3777 3778 static const struct memwin_init t5_memwin[NUM_MEMWIN] = { 3779 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3780 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3781 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, 3782 }; 3783 3784 static void 3785 setup_memwin(struct adapter *sc) 3786 { 3787 const struct memwin_init *mw_init; 3788 struct memwin *mw; 3789 int i; 3790 uint32_t bar0; 3791 3792 if (is_t4(sc)) { 3793 /* 3794 * Read low 32b of bar0 indirectly via the hardware backdoor 3795 * mechanism. Works from within PCI passthrough environments 3796 * too, where rman_get_start() can return a different value. We 3797 * need to program the T4 memory window decoders with the actual 3798 * addresses that will be coming across the PCIe link. 3799 */ 3800 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); 3801 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; 3802 3803 mw_init = &t4_memwin[0]; 3804 } else { 3805 /* T5+ use the relative offset inside the PCIe BAR */ 3806 bar0 = 0; 3807 3808 mw_init = &t5_memwin[0]; 3809 } 3810 3811 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) { 3812 if (!rw_initialized(&mw->mw_lock)) { 3813 rw_init(&mw->mw_lock, "memory window access"); 3814 mw->mw_base = mw_init->base; 3815 mw->mw_aperture = mw_init->aperture; 3816 mw->mw_curpos = 0; 3817 } 3818 t4_write_reg(sc, 3819 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i), 3820 (mw->mw_base + bar0) | V_BIR(0) | 3821 V_WINDOW(ilog2(mw->mw_aperture) - 10)); 3822 rw_wlock(&mw->mw_lock); 3823 position_memwin(sc, i, mw->mw_curpos); 3824 rw_wunlock(&mw->mw_lock); 3825 } 3826 3827 /* flush */ 3828 t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2)); 3829 } 3830 3831 /* 3832 * Positions the memory window at the given address in the card's address space. 3833 * There are some alignment requirements and the actual position may be at an 3834 * address prior to the requested address. mw->mw_curpos always has the actual 3835 * position of the window. 3836 */ 3837 static void 3838 position_memwin(struct adapter *sc, int idx, uint32_t addr) 3839 { 3840 struct memwin *mw; 3841 uint32_t pf; 3842 uint32_t reg; 3843 3844 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3845 mw = &sc->memwin[idx]; 3846 rw_assert(&mw->mw_lock, RA_WLOCKED); 3847 3848 if (is_t4(sc)) { 3849 pf = 0; 3850 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */ 3851 } else { 3852 pf = V_PFNUM(sc->pf); 3853 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */ 3854 } 3855 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx); 3856 t4_write_reg(sc, reg, mw->mw_curpos | pf); 3857 t4_read_reg(sc, reg); /* flush */ 3858 } 3859 3860 int 3861 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 3862 int len, int rw) 3863 { 3864 struct memwin *mw; 3865 uint32_t mw_end, v; 3866 3867 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3868 3869 /* Memory can only be accessed in naturally aligned 4 byte units */ 3870 if (addr & 3 || len & 3 || len <= 0) 3871 return (EINVAL); 3872 3873 mw = &sc->memwin[idx]; 3874 while (len > 0) { 3875 rw_rlock(&mw->mw_lock); 3876 mw_end = mw->mw_curpos + mw->mw_aperture; 3877 if (addr >= mw_end || addr < mw->mw_curpos) { 3878 /* Will need to reposition the window */ 3879 if (!rw_try_upgrade(&mw->mw_lock)) { 3880 rw_runlock(&mw->mw_lock); 3881 rw_wlock(&mw->mw_lock); 3882 } 3883 rw_assert(&mw->mw_lock, RA_WLOCKED); 3884 position_memwin(sc, idx, addr); 3885 rw_downgrade(&mw->mw_lock); 3886 mw_end = mw->mw_curpos + mw->mw_aperture; 3887 } 3888 rw_assert(&mw->mw_lock, RA_RLOCKED); 3889 while (addr < mw_end && len > 0) { 3890 if (rw == 0) { 3891 v = t4_read_reg(sc, mw->mw_base + addr - 3892 mw->mw_curpos); 3893 *val++ = le32toh(v); 3894 } else { 3895 v = *val++; 3896 t4_write_reg(sc, mw->mw_base + addr - 3897 mw->mw_curpos, htole32(v)); 3898 } 3899 addr += 4; 3900 len -= 4; 3901 } 3902 rw_runlock(&mw->mw_lock); 3903 } 3904 3905 return (0); 3906 } 3907 3908 static void 3909 t4_init_atid_table(struct adapter *sc) 3910 { 3911 struct tid_info *t; 3912 int i; 3913 3914 t = &sc->tids; 3915 if (t->natids == 0) 3916 return; 3917 3918 MPASS(t->atid_tab == NULL); 3919 3920 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE, 3921 M_ZERO | M_WAITOK); 3922 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF); 3923 t->afree = t->atid_tab; 3924 t->atids_in_use = 0; 3925 for (i = 1; i < t->natids; i++) 3926 t->atid_tab[i - 1].next = &t->atid_tab[i]; 3927 t->atid_tab[t->natids - 1].next = NULL; 3928 } 3929 3930 static void 3931 t4_free_atid_table(struct adapter *sc) 3932 { 3933 struct tid_info *t; 3934 3935 t = &sc->tids; 3936 3937 KASSERT(t->atids_in_use == 0, 3938 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 3939 3940 if (mtx_initialized(&t->atid_lock)) 3941 mtx_destroy(&t->atid_lock); 3942 free(t->atid_tab, M_CXGBE); 3943 t->atid_tab = NULL; 3944 } 3945 3946 int 3947 alloc_atid(struct adapter *sc, void *ctx) 3948 { 3949 struct tid_info *t = &sc->tids; 3950 int atid = -1; 3951 3952 mtx_lock(&t->atid_lock); 3953 if (t->afree) { 3954 union aopen_entry *p = t->afree; 3955 3956 atid = p - t->atid_tab; 3957 MPASS(atid <= M_TID_TID); 3958 t->afree = p->next; 3959 p->data = ctx; 3960 t->atids_in_use++; 3961 } 3962 mtx_unlock(&t->atid_lock); 3963 return (atid); 3964 } 3965 3966 void * 3967 lookup_atid(struct adapter *sc, int atid) 3968 { 3969 struct tid_info *t = &sc->tids; 3970 3971 return (t->atid_tab[atid].data); 3972 } 3973 3974 void 3975 free_atid(struct adapter *sc, int atid) 3976 { 3977 struct tid_info *t = &sc->tids; 3978 union aopen_entry *p = &t->atid_tab[atid]; 3979 3980 mtx_lock(&t->atid_lock); 3981 p->next = t->afree; 3982 t->afree = p; 3983 t->atids_in_use--; 3984 mtx_unlock(&t->atid_lock); 3985 } 3986 3987 static void 3988 queue_tid_release(struct adapter *sc, int tid) 3989 { 3990 3991 CXGBE_UNIMPLEMENTED("deferred tid release"); 3992 } 3993 3994 void 3995 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq) 3996 { 3997 struct wrqe *wr; 3998 struct cpl_tid_release *req; 3999 4000 wr = alloc_wrqe(sizeof(*req), ctrlq); 4001 if (wr == NULL) { 4002 queue_tid_release(sc, tid); /* defer */ 4003 return; 4004 } 4005 req = wrtod(wr); 4006 4007 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid); 4008 4009 t4_wrq_tx(sc, wr); 4010 } 4011 4012 static int 4013 t4_range_cmp(const void *a, const void *b) 4014 { 4015 return ((const struct t4_range *)a)->start - 4016 ((const struct t4_range *)b)->start; 4017 } 4018 4019 /* 4020 * Verify that the memory range specified by the addr/len pair is valid within 4021 * the card's address space. 4022 */ 4023 static int 4024 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len) 4025 { 4026 struct t4_range mem_ranges[4], *r, *next; 4027 uint32_t em, addr_len; 4028 int i, n, remaining; 4029 4030 /* Memory can only be accessed in naturally aligned 4 byte units */ 4031 if (addr & 3 || len & 3 || len == 0) 4032 return (EINVAL); 4033 4034 /* Enabled memories */ 4035 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4036 4037 r = &mem_ranges[0]; 4038 n = 0; 4039 bzero(r, sizeof(mem_ranges)); 4040 if (em & F_EDRAM0_ENABLE) { 4041 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4042 r->size = G_EDRAM0_SIZE(addr_len) << 20; 4043 if (r->size > 0) { 4044 r->start = G_EDRAM0_BASE(addr_len) << 20; 4045 if (addr >= r->start && 4046 addr + len <= r->start + r->size) 4047 return (0); 4048 r++; 4049 n++; 4050 } 4051 } 4052 if (em & F_EDRAM1_ENABLE) { 4053 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4054 r->size = G_EDRAM1_SIZE(addr_len) << 20; 4055 if (r->size > 0) { 4056 r->start = G_EDRAM1_BASE(addr_len) << 20; 4057 if (addr >= r->start && 4058 addr + len <= r->start + r->size) 4059 return (0); 4060 r++; 4061 n++; 4062 } 4063 } 4064 if (em & F_EXT_MEM_ENABLE) { 4065 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4066 r->size = G_EXT_MEM_SIZE(addr_len) << 20; 4067 if (r->size > 0) { 4068 r->start = G_EXT_MEM_BASE(addr_len) << 20; 4069 if (addr >= r->start && 4070 addr + len <= r->start + r->size) 4071 return (0); 4072 r++; 4073 n++; 4074 } 4075 } 4076 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) { 4077 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4078 r->size = G_EXT_MEM1_SIZE(addr_len) << 20; 4079 if (r->size > 0) { 4080 r->start = G_EXT_MEM1_BASE(addr_len) << 20; 4081 if (addr >= r->start && 4082 addr + len <= r->start + r->size) 4083 return (0); 4084 r++; 4085 n++; 4086 } 4087 } 4088 MPASS(n <= nitems(mem_ranges)); 4089 4090 if (n > 1) { 4091 /* Sort and merge the ranges. */ 4092 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp); 4093 4094 /* Start from index 0 and examine the next n - 1 entries. */ 4095 r = &mem_ranges[0]; 4096 for (remaining = n - 1; remaining > 0; remaining--, r++) { 4097 4098 MPASS(r->size > 0); /* r is a valid entry. */ 4099 next = r + 1; 4100 MPASS(next->size > 0); /* and so is the next one. */ 4101 4102 while (r->start + r->size >= next->start) { 4103 /* Merge the next one into the current entry. */ 4104 r->size = max(r->start + r->size, 4105 next->start + next->size) - r->start; 4106 n--; /* One fewer entry in total. */ 4107 if (--remaining == 0) 4108 goto done; /* short circuit */ 4109 next++; 4110 } 4111 if (next != r + 1) { 4112 /* 4113 * Some entries were merged into r and next 4114 * points to the first valid entry that couldn't 4115 * be merged. 4116 */ 4117 MPASS(next->size > 0); /* must be valid */ 4118 memcpy(r + 1, next, remaining * sizeof(*r)); 4119 #ifdef INVARIANTS 4120 /* 4121 * This so that the foo->size assertion in the 4122 * next iteration of the loop do the right 4123 * thing for entries that were pulled up and are 4124 * no longer valid. 4125 */ 4126 MPASS(n < nitems(mem_ranges)); 4127 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) * 4128 sizeof(struct t4_range)); 4129 #endif 4130 } 4131 } 4132 done: 4133 /* Done merging the ranges. */ 4134 MPASS(n > 0); 4135 r = &mem_ranges[0]; 4136 for (i = 0; i < n; i++, r++) { 4137 if (addr >= r->start && 4138 addr + len <= r->start + r->size) 4139 return (0); 4140 } 4141 } 4142 4143 return (EFAULT); 4144 } 4145 4146 static int 4147 fwmtype_to_hwmtype(int mtype) 4148 { 4149 4150 switch (mtype) { 4151 case FW_MEMTYPE_EDC0: 4152 return (MEM_EDC0); 4153 case FW_MEMTYPE_EDC1: 4154 return (MEM_EDC1); 4155 case FW_MEMTYPE_EXTMEM: 4156 return (MEM_MC0); 4157 case FW_MEMTYPE_EXTMEM1: 4158 return (MEM_MC1); 4159 default: 4160 panic("%s: cannot translate fw mtype %d.", __func__, mtype); 4161 } 4162 } 4163 4164 /* 4165 * Verify that the memory range specified by the memtype/offset/len pair is 4166 * valid and lies entirely within the memtype specified. The global address of 4167 * the start of the range is returned in addr. 4168 */ 4169 static int 4170 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len, 4171 uint32_t *addr) 4172 { 4173 uint32_t em, addr_len, maddr; 4174 4175 /* Memory can only be accessed in naturally aligned 4 byte units */ 4176 if (off & 3 || len & 3 || len == 0) 4177 return (EINVAL); 4178 4179 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4180 switch (fwmtype_to_hwmtype(mtype)) { 4181 case MEM_EDC0: 4182 if (!(em & F_EDRAM0_ENABLE)) 4183 return (EINVAL); 4184 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4185 maddr = G_EDRAM0_BASE(addr_len) << 20; 4186 break; 4187 case MEM_EDC1: 4188 if (!(em & F_EDRAM1_ENABLE)) 4189 return (EINVAL); 4190 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4191 maddr = G_EDRAM1_BASE(addr_len) << 20; 4192 break; 4193 case MEM_MC: 4194 if (!(em & F_EXT_MEM_ENABLE)) 4195 return (EINVAL); 4196 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4197 maddr = G_EXT_MEM_BASE(addr_len) << 20; 4198 break; 4199 case MEM_MC1: 4200 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE)) 4201 return (EINVAL); 4202 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4203 maddr = G_EXT_MEM1_BASE(addr_len) << 20; 4204 break; 4205 default: 4206 return (EINVAL); 4207 } 4208 4209 *addr = maddr + off; /* global address */ 4210 return (validate_mem_range(sc, *addr, len)); 4211 } 4212 4213 static int 4214 fixup_devlog_params(struct adapter *sc) 4215 { 4216 struct devlog_params *dparams = &sc->params.devlog; 4217 int rc; 4218 4219 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start, 4220 dparams->size, &dparams->addr); 4221 4222 return (rc); 4223 } 4224 4225 static void 4226 update_nirq(struct intrs_and_queues *iaq, int nports) 4227 { 4228 4229 iaq->nirq = T4_EXTRA_INTR; 4230 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq); 4231 iaq->nirq += nports * iaq->nofldrxq; 4232 iaq->nirq += nports * (iaq->num_vis - 1) * 4233 max(iaq->nrxq_vi, iaq->nnmrxq_vi); 4234 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi; 4235 } 4236 4237 /* 4238 * Adjust requirements to fit the number of interrupts available. 4239 */ 4240 static void 4241 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype, 4242 int navail) 4243 { 4244 int old_nirq; 4245 const int nports = sc->params.nports; 4246 4247 MPASS(nports > 0); 4248 MPASS(navail > 0); 4249 4250 bzero(iaq, sizeof(*iaq)); 4251 iaq->intr_type = itype; 4252 iaq->num_vis = t4_num_vis; 4253 iaq->ntxq = t4_ntxq; 4254 iaq->ntxq_vi = t4_ntxq_vi; 4255 iaq->nrxq = t4_nrxq; 4256 iaq->nrxq_vi = t4_nrxq_vi; 4257 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 4258 if (is_offload(sc) || is_ethoffload(sc)) { 4259 iaq->nofldtxq = t4_nofldtxq; 4260 iaq->nofldtxq_vi = t4_nofldtxq_vi; 4261 } 4262 #endif 4263 #ifdef TCP_OFFLOAD 4264 if (is_offload(sc)) { 4265 iaq->nofldrxq = t4_nofldrxq; 4266 iaq->nofldrxq_vi = t4_nofldrxq_vi; 4267 } 4268 #endif 4269 #ifdef DEV_NETMAP 4270 if (t4_native_netmap & NN_MAIN_VI) { 4271 iaq->nnmtxq = t4_nnmtxq; 4272 iaq->nnmrxq = t4_nnmrxq; 4273 } 4274 if (t4_native_netmap & NN_EXTRA_VI) { 4275 iaq->nnmtxq_vi = t4_nnmtxq_vi; 4276 iaq->nnmrxq_vi = t4_nnmrxq_vi; 4277 } 4278 #endif 4279 4280 update_nirq(iaq, nports); 4281 if (iaq->nirq <= navail && 4282 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4283 /* 4284 * This is the normal case -- there are enough interrupts for 4285 * everything. 4286 */ 4287 goto done; 4288 } 4289 4290 /* 4291 * If extra VIs have been configured try reducing their count and see if 4292 * that works. 4293 */ 4294 while (iaq->num_vis > 1) { 4295 iaq->num_vis--; 4296 update_nirq(iaq, nports); 4297 if (iaq->nirq <= navail && 4298 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4299 device_printf(sc->dev, "virtual interfaces per port " 4300 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, " 4301 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. " 4302 "itype %d, navail %u, nirq %d.\n", 4303 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq, 4304 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi, 4305 itype, navail, iaq->nirq); 4306 goto done; 4307 } 4308 } 4309 4310 /* 4311 * Extra VIs will not be created. Log a message if they were requested. 4312 */ 4313 MPASS(iaq->num_vis == 1); 4314 iaq->ntxq_vi = iaq->nrxq_vi = 0; 4315 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0; 4316 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0; 4317 if (iaq->num_vis != t4_num_vis) { 4318 device_printf(sc->dev, "extra virtual interfaces disabled. " 4319 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, " 4320 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n", 4321 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi, 4322 iaq->nnmrxq_vi, itype, navail, iaq->nirq); 4323 } 4324 4325 /* 4326 * Keep reducing the number of NIC rx queues to the next lower power of 4327 * 2 (for even RSS distribution) and halving the TOE rx queues and see 4328 * if that works. 4329 */ 4330 do { 4331 if (iaq->nrxq > 1) { 4332 do { 4333 iaq->nrxq--; 4334 } while (!powerof2(iaq->nrxq)); 4335 if (iaq->nnmrxq > iaq->nrxq) 4336 iaq->nnmrxq = iaq->nrxq; 4337 } 4338 if (iaq->nofldrxq > 1) 4339 iaq->nofldrxq >>= 1; 4340 4341 old_nirq = iaq->nirq; 4342 update_nirq(iaq, nports); 4343 if (iaq->nirq <= navail && 4344 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4345 device_printf(sc->dev, "running with reduced number of " 4346 "rx queues because of shortage of interrupts. " 4347 "nrxq=%u, nofldrxq=%u. " 4348 "itype %d, navail %u, nirq %d.\n", iaq->nrxq, 4349 iaq->nofldrxq, itype, navail, iaq->nirq); 4350 goto done; 4351 } 4352 } while (old_nirq != iaq->nirq); 4353 4354 /* One interrupt for everything. Ugh. */ 4355 device_printf(sc->dev, "running with minimal number of queues. " 4356 "itype %d, navail %u.\n", itype, navail); 4357 iaq->nirq = 1; 4358 iaq->nrxq = 1; 4359 iaq->ntxq = 1; 4360 if (iaq->nofldrxq > 0) { 4361 iaq->nofldrxq = 1; 4362 iaq->nofldtxq = 1; 4363 } 4364 iaq->nnmtxq = 0; 4365 iaq->nnmrxq = 0; 4366 done: 4367 MPASS(iaq->num_vis > 0); 4368 if (iaq->num_vis > 1) { 4369 MPASS(iaq->nrxq_vi > 0); 4370 MPASS(iaq->ntxq_vi > 0); 4371 } 4372 MPASS(iaq->nirq > 0); 4373 MPASS(iaq->nrxq > 0); 4374 MPASS(iaq->ntxq > 0); 4375 if (itype == INTR_MSI) { 4376 MPASS(powerof2(iaq->nirq)); 4377 } 4378 } 4379 4380 static int 4381 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq) 4382 { 4383 int rc, itype, navail, nalloc; 4384 4385 for (itype = INTR_MSIX; itype; itype >>= 1) { 4386 4387 if ((itype & t4_intr_types) == 0) 4388 continue; /* not allowed */ 4389 4390 if (itype == INTR_MSIX) 4391 navail = pci_msix_count(sc->dev); 4392 else if (itype == INTR_MSI) 4393 navail = pci_msi_count(sc->dev); 4394 else 4395 navail = 1; 4396 restart: 4397 if (navail == 0) 4398 continue; 4399 4400 calculate_iaq(sc, iaq, itype, navail); 4401 nalloc = iaq->nirq; 4402 rc = 0; 4403 if (itype == INTR_MSIX) 4404 rc = pci_alloc_msix(sc->dev, &nalloc); 4405 else if (itype == INTR_MSI) 4406 rc = pci_alloc_msi(sc->dev, &nalloc); 4407 4408 if (rc == 0 && nalloc > 0) { 4409 if (nalloc == iaq->nirq) 4410 return (0); 4411 4412 /* 4413 * Didn't get the number requested. Use whatever number 4414 * the kernel is willing to allocate. 4415 */ 4416 device_printf(sc->dev, "fewer vectors than requested, " 4417 "type=%d, req=%d, rcvd=%d; will downshift req.\n", 4418 itype, iaq->nirq, nalloc); 4419 pci_release_msi(sc->dev); 4420 navail = nalloc; 4421 goto restart; 4422 } 4423 4424 device_printf(sc->dev, 4425 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", 4426 itype, rc, iaq->nirq, nalloc); 4427 } 4428 4429 device_printf(sc->dev, 4430 "failed to find a usable interrupt type. " 4431 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, 4432 pci_msix_count(sc->dev), pci_msi_count(sc->dev)); 4433 4434 return (ENXIO); 4435 } 4436 4437 #define FW_VERSION(chip) ( \ 4438 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ 4439 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ 4440 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ 4441 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) 4442 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) 4443 4444 /* Just enough of fw_hdr to cover all version info. */ 4445 struct fw_h { 4446 __u8 ver; 4447 __u8 chip; 4448 __be16 len512; 4449 __be32 fw_ver; 4450 __be32 tp_microcode_ver; 4451 __u8 intfver_nic; 4452 __u8 intfver_vnic; 4453 __u8 intfver_ofld; 4454 __u8 intfver_ri; 4455 __u8 intfver_iscsipdu; 4456 __u8 intfver_iscsi; 4457 __u8 intfver_fcoepdu; 4458 __u8 intfver_fcoe; 4459 }; 4460 /* Spot check a couple of fields. */ 4461 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver)); 4462 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic)); 4463 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe)); 4464 4465 struct fw_info { 4466 uint8_t chip; 4467 char *kld_name; 4468 char *fw_mod_name; 4469 struct fw_h fw_h; 4470 } fw_info[] = { 4471 { 4472 .chip = CHELSIO_T4, 4473 .kld_name = "t4fw_cfg", 4474 .fw_mod_name = "t4fw", 4475 .fw_h = { 4476 .chip = FW_HDR_CHIP_T4, 4477 .fw_ver = htobe32(FW_VERSION(T4)), 4478 .intfver_nic = FW_INTFVER(T4, NIC), 4479 .intfver_vnic = FW_INTFVER(T4, VNIC), 4480 .intfver_ofld = FW_INTFVER(T4, OFLD), 4481 .intfver_ri = FW_INTFVER(T4, RI), 4482 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), 4483 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4484 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), 4485 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4486 }, 4487 }, { 4488 .chip = CHELSIO_T5, 4489 .kld_name = "t5fw_cfg", 4490 .fw_mod_name = "t5fw", 4491 .fw_h = { 4492 .chip = FW_HDR_CHIP_T5, 4493 .fw_ver = htobe32(FW_VERSION(T5)), 4494 .intfver_nic = FW_INTFVER(T5, NIC), 4495 .intfver_vnic = FW_INTFVER(T5, VNIC), 4496 .intfver_ofld = FW_INTFVER(T5, OFLD), 4497 .intfver_ri = FW_INTFVER(T5, RI), 4498 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), 4499 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4500 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), 4501 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4502 }, 4503 }, { 4504 .chip = CHELSIO_T6, 4505 .kld_name = "t6fw_cfg", 4506 .fw_mod_name = "t6fw", 4507 .fw_h = { 4508 .chip = FW_HDR_CHIP_T6, 4509 .fw_ver = htobe32(FW_VERSION(T6)), 4510 .intfver_nic = FW_INTFVER(T6, NIC), 4511 .intfver_vnic = FW_INTFVER(T6, VNIC), 4512 .intfver_ofld = FW_INTFVER(T6, OFLD), 4513 .intfver_ri = FW_INTFVER(T6, RI), 4514 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4515 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4516 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4517 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4518 }, 4519 } 4520 }; 4521 4522 static struct fw_info * 4523 find_fw_info(int chip) 4524 { 4525 int i; 4526 4527 for (i = 0; i < nitems(fw_info); i++) { 4528 if (fw_info[i].chip == chip) 4529 return (&fw_info[i]); 4530 } 4531 return (NULL); 4532 } 4533 4534 /* 4535 * Is the given firmware API compatible with the one the driver was compiled 4536 * with? 4537 */ 4538 static int 4539 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2) 4540 { 4541 4542 /* short circuit if it's the exact same firmware version */ 4543 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 4544 return (1); 4545 4546 /* 4547 * XXX: Is this too conservative? Perhaps I should limit this to the 4548 * features that are supported in the driver. 4549 */ 4550 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 4551 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 4552 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && 4553 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) 4554 return (1); 4555 #undef SAME_INTF 4556 4557 return (0); 4558 } 4559 4560 static int 4561 load_fw_module(struct adapter *sc, const struct firmware **dcfg, 4562 const struct firmware **fw) 4563 { 4564 struct fw_info *fw_info; 4565 4566 *dcfg = NULL; 4567 if (fw != NULL) 4568 *fw = NULL; 4569 4570 fw_info = find_fw_info(chip_id(sc)); 4571 if (fw_info == NULL) { 4572 device_printf(sc->dev, 4573 "unable to look up firmware information for chip %d.\n", 4574 chip_id(sc)); 4575 return (EINVAL); 4576 } 4577 4578 *dcfg = firmware_get(fw_info->kld_name); 4579 if (*dcfg != NULL) { 4580 if (fw != NULL) 4581 *fw = firmware_get(fw_info->fw_mod_name); 4582 return (0); 4583 } 4584 4585 return (ENOENT); 4586 } 4587 4588 static void 4589 unload_fw_module(struct adapter *sc, const struct firmware *dcfg, 4590 const struct firmware *fw) 4591 { 4592 4593 if (fw != NULL) 4594 firmware_put(fw, FIRMWARE_UNLOAD); 4595 if (dcfg != NULL) 4596 firmware_put(dcfg, FIRMWARE_UNLOAD); 4597 } 4598 4599 /* 4600 * Return values: 4601 * 0 means no firmware install attempted. 4602 * ERESTART means a firmware install was attempted and was successful. 4603 * +ve errno means a firmware install was attempted but failed. 4604 */ 4605 static int 4606 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw, 4607 const struct fw_h *drv_fw, const char *reason, int *already) 4608 { 4609 const struct firmware *cfg, *fw; 4610 const uint32_t c = be32toh(card_fw->fw_ver); 4611 uint32_t d, k; 4612 int rc, fw_install; 4613 struct fw_h bundled_fw; 4614 bool load_attempted; 4615 4616 cfg = fw = NULL; 4617 load_attempted = false; 4618 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install; 4619 4620 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw)); 4621 if (t4_fw_install < 0) { 4622 rc = load_fw_module(sc, &cfg, &fw); 4623 if (rc != 0 || fw == NULL) { 4624 device_printf(sc->dev, 4625 "failed to load firmware module: %d. cfg %p, fw %p;" 4626 " will use compiled-in firmware version for" 4627 "hw.cxgbe.fw_install checks.\n", 4628 rc, cfg, fw); 4629 } else { 4630 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw)); 4631 } 4632 load_attempted = true; 4633 } 4634 d = be32toh(bundled_fw.fw_ver); 4635 4636 if (reason != NULL) 4637 goto install; 4638 4639 if ((sc->flags & FW_OK) == 0) { 4640 4641 if (c == 0xffffffff) { 4642 reason = "missing"; 4643 goto install; 4644 } 4645 4646 rc = 0; 4647 goto done; 4648 } 4649 4650 if (!fw_compatible(card_fw, &bundled_fw)) { 4651 reason = "incompatible or unusable"; 4652 goto install; 4653 } 4654 4655 if (d > c) { 4656 reason = "older than the version bundled with this driver"; 4657 goto install; 4658 } 4659 4660 if (fw_install == 2 && d != c) { 4661 reason = "different than the version bundled with this driver"; 4662 goto install; 4663 } 4664 4665 /* No reason to do anything to the firmware already on the card. */ 4666 rc = 0; 4667 goto done; 4668 4669 install: 4670 rc = 0; 4671 if ((*already)++) 4672 goto done; 4673 4674 if (fw_install == 0) { 4675 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4676 "but the driver is prohibited from installing a firmware " 4677 "on the card.\n", 4678 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4679 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4680 4681 goto done; 4682 } 4683 4684 /* 4685 * We'll attempt to install a firmware. Load the module first (if it 4686 * hasn't been loaded already). 4687 */ 4688 if (!load_attempted) { 4689 rc = load_fw_module(sc, &cfg, &fw); 4690 if (rc != 0 || fw == NULL) { 4691 device_printf(sc->dev, 4692 "failed to load firmware module: %d. cfg %p, fw %p\n", 4693 rc, cfg, fw); 4694 /* carry on */ 4695 } 4696 } 4697 if (fw == NULL) { 4698 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4699 "but the driver cannot take corrective action because it " 4700 "is unable to load the firmware module.\n", 4701 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4702 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4703 rc = sc->flags & FW_OK ? 0 : ENOENT; 4704 goto done; 4705 } 4706 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver); 4707 if (k != d) { 4708 MPASS(t4_fw_install > 0); 4709 device_printf(sc->dev, 4710 "firmware in KLD (%u.%u.%u.%u) is not what the driver was " 4711 "expecting (%u.%u.%u.%u) and will not be used.\n", 4712 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 4713 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k), 4714 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4715 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4716 rc = sc->flags & FW_OK ? 0 : EINVAL; 4717 goto done; 4718 } 4719 4720 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4721 "installing firmware %u.%u.%u.%u on card.\n", 4722 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4723 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, 4724 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4725 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4726 4727 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); 4728 if (rc != 0) { 4729 device_printf(sc->dev, "failed to install firmware: %d\n", rc); 4730 } else { 4731 /* Installed successfully, update the cached header too. */ 4732 rc = ERESTART; 4733 memcpy(card_fw, fw->data, sizeof(*card_fw)); 4734 } 4735 done: 4736 unload_fw_module(sc, cfg, fw); 4737 4738 return (rc); 4739 } 4740 4741 /* 4742 * Establish contact with the firmware and attempt to become the master driver. 4743 * 4744 * A firmware will be installed to the card if needed (if the driver is allowed 4745 * to do so). 4746 */ 4747 static int 4748 contact_firmware(struct adapter *sc) 4749 { 4750 int rc, already = 0; 4751 enum dev_state state; 4752 struct fw_info *fw_info; 4753 struct fw_hdr *card_fw; /* fw on the card */ 4754 const struct fw_h *drv_fw; 4755 4756 fw_info = find_fw_info(chip_id(sc)); 4757 if (fw_info == NULL) { 4758 device_printf(sc->dev, 4759 "unable to look up firmware information for chip %d.\n", 4760 chip_id(sc)); 4761 return (EINVAL); 4762 } 4763 drv_fw = &fw_info->fw_h; 4764 4765 /* Read the header of the firmware on the card */ 4766 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); 4767 restart: 4768 rc = -t4_get_fw_hdr(sc, card_fw); 4769 if (rc != 0) { 4770 device_printf(sc->dev, 4771 "unable to read firmware header from card's flash: %d\n", 4772 rc); 4773 goto done; 4774 } 4775 4776 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL, 4777 &already); 4778 if (rc == ERESTART) 4779 goto restart; 4780 if (rc != 0) 4781 goto done; 4782 4783 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); 4784 if (rc < 0 || state == DEV_STATE_ERR) { 4785 rc = -rc; 4786 device_printf(sc->dev, 4787 "failed to connect to the firmware: %d, %d. " 4788 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4789 #if 0 4790 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4791 "not responding properly to HELLO", &already) == ERESTART) 4792 goto restart; 4793 #endif 4794 goto done; 4795 } 4796 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT); 4797 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */ 4798 4799 if (rc == sc->pf) { 4800 sc->flags |= MASTER_PF; 4801 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4802 NULL, &already); 4803 if (rc == ERESTART) 4804 rc = 0; 4805 else if (rc != 0) 4806 goto done; 4807 } else if (state == DEV_STATE_UNINIT) { 4808 /* 4809 * We didn't get to be the master so we definitely won't be 4810 * configuring the chip. It's a bug if someone else hasn't 4811 * configured it already. 4812 */ 4813 device_printf(sc->dev, "couldn't be master(%d), " 4814 "device not already initialized either(%d). " 4815 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4816 rc = EPROTO; 4817 goto done; 4818 } else { 4819 /* 4820 * Some other PF is the master and has configured the chip. 4821 * This is allowed but untested. 4822 */ 4823 device_printf(sc->dev, "PF%d is master, device state %d. " 4824 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4825 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc); 4826 sc->cfcsum = 0; 4827 rc = 0; 4828 } 4829 done: 4830 if (rc != 0 && sc->flags & FW_OK) { 4831 t4_fw_bye(sc, sc->mbox); 4832 sc->flags &= ~FW_OK; 4833 } 4834 free(card_fw, M_CXGBE); 4835 return (rc); 4836 } 4837 4838 static int 4839 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file, 4840 uint32_t mtype, uint32_t moff) 4841 { 4842 struct fw_info *fw_info; 4843 const struct firmware *dcfg, *rcfg = NULL; 4844 const uint32_t *cfdata; 4845 uint32_t cflen, addr; 4846 int rc; 4847 4848 load_fw_module(sc, &dcfg, NULL); 4849 4850 /* Card specific interpretation of "default". */ 4851 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4852 if (pci_get_device(sc->dev) == 0x440a) 4853 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF); 4854 if (is_fpga(sc)) 4855 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF); 4856 } 4857 4858 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4859 if (dcfg == NULL) { 4860 device_printf(sc->dev, 4861 "KLD with default config is not available.\n"); 4862 rc = ENOENT; 4863 goto done; 4864 } 4865 cfdata = dcfg->data; 4866 cflen = dcfg->datasize & ~3; 4867 } else { 4868 char s[32]; 4869 4870 fw_info = find_fw_info(chip_id(sc)); 4871 if (fw_info == NULL) { 4872 device_printf(sc->dev, 4873 "unable to look up firmware information for chip %d.\n", 4874 chip_id(sc)); 4875 rc = EINVAL; 4876 goto done; 4877 } 4878 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file); 4879 4880 rcfg = firmware_get(s); 4881 if (rcfg == NULL) { 4882 device_printf(sc->dev, 4883 "unable to load module \"%s\" for configuration " 4884 "profile \"%s\".\n", s, cfg_file); 4885 rc = ENOENT; 4886 goto done; 4887 } 4888 cfdata = rcfg->data; 4889 cflen = rcfg->datasize & ~3; 4890 } 4891 4892 if (cflen > FLASH_CFG_MAX_SIZE) { 4893 device_printf(sc->dev, 4894 "config file too long (%d, max allowed is %d).\n", 4895 cflen, FLASH_CFG_MAX_SIZE); 4896 rc = EINVAL; 4897 goto done; 4898 } 4899 4900 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); 4901 if (rc != 0) { 4902 device_printf(sc->dev, 4903 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n", 4904 __func__, mtype, moff, cflen, rc); 4905 rc = EINVAL; 4906 goto done; 4907 } 4908 write_via_memwin(sc, 2, addr, cfdata, cflen); 4909 done: 4910 if (rcfg != NULL) 4911 firmware_put(rcfg, FIRMWARE_UNLOAD); 4912 unload_fw_module(sc, dcfg, NULL); 4913 return (rc); 4914 } 4915 4916 struct caps_allowed { 4917 uint16_t nbmcaps; 4918 uint16_t linkcaps; 4919 uint16_t switchcaps; 4920 uint16_t niccaps; 4921 uint16_t toecaps; 4922 uint16_t rdmacaps; 4923 uint16_t cryptocaps; 4924 uint16_t iscsicaps; 4925 uint16_t fcoecaps; 4926 }; 4927 4928 #define FW_PARAM_DEV(param) \ 4929 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 4930 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 4931 #define FW_PARAM_PFVF(param) \ 4932 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 4933 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) 4934 4935 /* 4936 * Provide a configuration profile to the firmware and have it initialize the 4937 * chip accordingly. This may involve uploading a configuration file to the 4938 * card. 4939 */ 4940 static int 4941 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file, 4942 const struct caps_allowed *caps_allowed) 4943 { 4944 int rc; 4945 struct fw_caps_config_cmd caps; 4946 uint32_t mtype, moff, finicsum, cfcsum, param, val; 4947 4948 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST); 4949 if (rc != 0) { 4950 device_printf(sc->dev, "firmware reset failed: %d.\n", rc); 4951 return (rc); 4952 } 4953 4954 bzero(&caps, sizeof(caps)); 4955 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4956 F_FW_CMD_REQUEST | F_FW_CMD_READ); 4957 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) { 4958 mtype = 0; 4959 moff = 0; 4960 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 4961 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) { 4962 mtype = FW_MEMTYPE_FLASH; 4963 moff = t4_flash_cfg_addr(sc); 4964 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 4965 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4966 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 4967 FW_LEN16(caps)); 4968 } else { 4969 /* 4970 * Ask the firmware where it wants us to upload the config file. 4971 */ 4972 param = FW_PARAM_DEV(CF); 4973 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 4974 if (rc != 0) { 4975 /* No support for config file? Shouldn't happen. */ 4976 device_printf(sc->dev, 4977 "failed to query config file location: %d.\n", rc); 4978 goto done; 4979 } 4980 mtype = G_FW_PARAMS_PARAM_Y(val); 4981 moff = G_FW_PARAMS_PARAM_Z(val) << 16; 4982 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 4983 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4984 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 4985 FW_LEN16(caps)); 4986 4987 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff); 4988 if (rc != 0) { 4989 device_printf(sc->dev, 4990 "failed to upload config file to card: %d.\n", rc); 4991 goto done; 4992 } 4993 } 4994 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 4995 if (rc != 0) { 4996 device_printf(sc->dev, "failed to pre-process config file: %d " 4997 "(mtype %d, moff 0x%x).\n", rc, mtype, moff); 4998 goto done; 4999 } 5000 5001 finicsum = be32toh(caps.finicsum); 5002 cfcsum = be32toh(caps.cfcsum); /* actual */ 5003 if (finicsum != cfcsum) { 5004 device_printf(sc->dev, 5005 "WARNING: config file checksum mismatch: %08x %08x\n", 5006 finicsum, cfcsum); 5007 } 5008 sc->cfcsum = cfcsum; 5009 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file); 5010 5011 /* 5012 * Let the firmware know what features will (not) be used so it can tune 5013 * things accordingly. 5014 */ 5015 #define LIMIT_CAPS(x) do { \ 5016 caps.x##caps &= htobe16(caps_allowed->x##caps); \ 5017 } while (0) 5018 LIMIT_CAPS(nbm); 5019 LIMIT_CAPS(link); 5020 LIMIT_CAPS(switch); 5021 LIMIT_CAPS(nic); 5022 LIMIT_CAPS(toe); 5023 LIMIT_CAPS(rdma); 5024 LIMIT_CAPS(crypto); 5025 LIMIT_CAPS(iscsi); 5026 LIMIT_CAPS(fcoe); 5027 #undef LIMIT_CAPS 5028 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 5029 /* 5030 * TOE and hashfilters are mutually exclusive. It is a config 5031 * file or firmware bug if both are reported as available. Try 5032 * to cope with the situation in non-debug builds by disabling 5033 * TOE. 5034 */ 5035 MPASS(caps.toecaps == 0); 5036 5037 caps.toecaps = 0; 5038 caps.rdmacaps = 0; 5039 caps.iscsicaps = 0; 5040 } 5041 5042 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5043 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 5044 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5045 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); 5046 if (rc != 0) { 5047 device_printf(sc->dev, 5048 "failed to process config file: %d.\n", rc); 5049 goto done; 5050 } 5051 5052 t4_tweak_chip_settings(sc); 5053 set_params__pre_init(sc); 5054 5055 /* get basic stuff going */ 5056 rc = -t4_fw_initialize(sc, sc->mbox); 5057 if (rc != 0) { 5058 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc); 5059 goto done; 5060 } 5061 done: 5062 return (rc); 5063 } 5064 5065 /* 5066 * Partition chip resources for use between various PFs, VFs, etc. 5067 */ 5068 static int 5069 partition_resources(struct adapter *sc) 5070 { 5071 char cfg_file[sizeof(t4_cfg_file)]; 5072 struct caps_allowed caps_allowed; 5073 int rc; 5074 bool fallback; 5075 5076 /* Only the master driver gets to configure the chip resources. */ 5077 MPASS(sc->flags & MASTER_PF); 5078 5079 #define COPY_CAPS(x) do { \ 5080 caps_allowed.x##caps = t4_##x##caps_allowed; \ 5081 } while (0) 5082 bzero(&caps_allowed, sizeof(caps_allowed)); 5083 COPY_CAPS(nbm); 5084 COPY_CAPS(link); 5085 COPY_CAPS(switch); 5086 COPY_CAPS(nic); 5087 COPY_CAPS(toe); 5088 COPY_CAPS(rdma); 5089 COPY_CAPS(crypto); 5090 COPY_CAPS(iscsi); 5091 COPY_CAPS(fcoe); 5092 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true; 5093 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file); 5094 retry: 5095 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed); 5096 if (rc != 0 && fallback) { 5097 dump_devlog(sc); 5098 device_printf(sc->dev, 5099 "failed (%d) to configure card with \"%s\" profile, " 5100 "will fall back to a basic configuration and retry.\n", 5101 rc, cfg_file); 5102 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF); 5103 bzero(&caps_allowed, sizeof(caps_allowed)); 5104 COPY_CAPS(switch); 5105 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC; 5106 fallback = false; 5107 goto retry; 5108 } 5109 #undef COPY_CAPS 5110 return (rc); 5111 } 5112 5113 /* 5114 * Retrieve parameters that are needed (or nice to have) very early. 5115 */ 5116 static int 5117 get_params__pre_init(struct adapter *sc) 5118 { 5119 int rc; 5120 uint32_t param[2], val[2]; 5121 5122 t4_get_version_info(sc); 5123 5124 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", 5125 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), 5126 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), 5127 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), 5128 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); 5129 5130 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u", 5131 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers), 5132 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers), 5133 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers), 5134 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers)); 5135 5136 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u", 5137 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers), 5138 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers), 5139 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers), 5140 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers)); 5141 5142 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u", 5143 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers), 5144 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers), 5145 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers), 5146 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers)); 5147 5148 param[0] = FW_PARAM_DEV(PORTVEC); 5149 param[1] = FW_PARAM_DEV(CCLK); 5150 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5151 if (rc != 0) { 5152 device_printf(sc->dev, 5153 "failed to query parameters (pre_init): %d.\n", rc); 5154 return (rc); 5155 } 5156 5157 sc->params.portvec = val[0]; 5158 sc->params.nports = bitcount32(val[0]); 5159 sc->params.vpd.cclk = val[1]; 5160 5161 /* Read device log parameters. */ 5162 rc = -t4_init_devlog_params(sc, 1); 5163 if (rc == 0) 5164 fixup_devlog_params(sc); 5165 else { 5166 device_printf(sc->dev, 5167 "failed to get devlog parameters: %d.\n", rc); 5168 rc = 0; /* devlog isn't critical for device operation */ 5169 } 5170 5171 return (rc); 5172 } 5173 5174 /* 5175 * Any params that need to be set before FW_INITIALIZE. 5176 */ 5177 static int 5178 set_params__pre_init(struct adapter *sc) 5179 { 5180 int rc = 0; 5181 uint32_t param, val; 5182 5183 if (chip_id(sc) >= CHELSIO_T6) { 5184 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 5185 val = 1; 5186 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5187 /* firmwares < 1.20.1.0 do not have this param. */ 5188 if (rc == FW_EINVAL && 5189 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) { 5190 rc = 0; 5191 } 5192 if (rc != 0) { 5193 device_printf(sc->dev, 5194 "failed to enable high priority filters :%d.\n", 5195 rc); 5196 } 5197 5198 param = FW_PARAM_DEV(PPOD_EDRAM); 5199 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5200 if (rc == 0 && val == 1) { 5201 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, 5202 &val); 5203 if (rc != 0) { 5204 device_printf(sc->dev, 5205 "failed to set PPOD_EDRAM: %d.\n", rc); 5206 } 5207 } 5208 } 5209 5210 /* Enable opaque VIIDs with firmwares that support it. */ 5211 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 5212 val = 1; 5213 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5214 if (rc == 0 && val == 1) 5215 sc->params.viid_smt_extn_support = true; 5216 else 5217 sc->params.viid_smt_extn_support = false; 5218 5219 return (rc); 5220 } 5221 5222 /* 5223 * Retrieve various parameters that are of interest to the driver. The device 5224 * has been initialized by the firmware at this point. 5225 */ 5226 static int 5227 get_params__post_init(struct adapter *sc) 5228 { 5229 int rc; 5230 uint32_t param[7], val[7]; 5231 struct fw_caps_config_cmd caps; 5232 5233 param[0] = FW_PARAM_PFVF(IQFLINT_START); 5234 param[1] = FW_PARAM_PFVF(EQ_START); 5235 param[2] = FW_PARAM_PFVF(FILTER_START); 5236 param[3] = FW_PARAM_PFVF(FILTER_END); 5237 param[4] = FW_PARAM_PFVF(L2T_START); 5238 param[5] = FW_PARAM_PFVF(L2T_END); 5239 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5240 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 5241 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 5242 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val); 5243 if (rc != 0) { 5244 device_printf(sc->dev, 5245 "failed to query parameters (post_init): %d.\n", rc); 5246 return (rc); 5247 } 5248 5249 sc->sge.iq_start = val[0]; 5250 sc->sge.eq_start = val[1]; 5251 if ((int)val[3] > (int)val[2]) { 5252 sc->tids.ftid_base = val[2]; 5253 sc->tids.ftid_end = val[3]; 5254 sc->tids.nftids = val[3] - val[2] + 1; 5255 } 5256 sc->vres.l2t.start = val[4]; 5257 sc->vres.l2t.size = val[5] - val[4] + 1; 5258 KASSERT(sc->vres.l2t.size <= L2T_SIZE, 5259 ("%s: L2 table size (%u) larger than expected (%u)", 5260 __func__, sc->vres.l2t.size, L2T_SIZE)); 5261 sc->params.core_vdd = val[6]; 5262 5263 param[0] = FW_PARAM_PFVF(IQFLINT_END); 5264 param[1] = FW_PARAM_PFVF(EQ_END); 5265 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5266 if (rc != 0) { 5267 device_printf(sc->dev, 5268 "failed to query parameters (post_init2): %d.\n", rc); 5269 return (rc); 5270 } 5271 MPASS((int)val[0] >= sc->sge.iq_start); 5272 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1; 5273 MPASS((int)val[1] >= sc->sge.eq_start); 5274 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1; 5275 5276 if (chip_id(sc) >= CHELSIO_T6) { 5277 5278 sc->tids.tid_base = t4_read_reg(sc, 5279 A_LE_DB_ACTIVE_TABLE_START_INDEX); 5280 5281 param[0] = FW_PARAM_PFVF(HPFILTER_START); 5282 param[1] = FW_PARAM_PFVF(HPFILTER_END); 5283 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5284 if (rc != 0) { 5285 device_printf(sc->dev, 5286 "failed to query hpfilter parameters: %d.\n", rc); 5287 return (rc); 5288 } 5289 if ((int)val[1] > (int)val[0]) { 5290 sc->tids.hpftid_base = val[0]; 5291 sc->tids.hpftid_end = val[1]; 5292 sc->tids.nhpftids = val[1] - val[0] + 1; 5293 5294 /* 5295 * These should go off if the layout changes and the 5296 * driver needs to catch up. 5297 */ 5298 MPASS(sc->tids.hpftid_base == 0); 5299 MPASS(sc->tids.tid_base == sc->tids.nhpftids); 5300 } 5301 5302 param[0] = FW_PARAM_PFVF(RAWF_START); 5303 param[1] = FW_PARAM_PFVF(RAWF_END); 5304 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5305 if (rc != 0) { 5306 device_printf(sc->dev, 5307 "failed to query rawf parameters: %d.\n", rc); 5308 return (rc); 5309 } 5310 if ((int)val[1] > (int)val[0]) { 5311 sc->rawf_base = val[0]; 5312 sc->nrawf = val[1] - val[0] + 1; 5313 } 5314 } 5315 5316 /* 5317 * MPSBGMAP is queried separately because only recent firmwares support 5318 * it as a parameter and we don't want the compound query above to fail 5319 * on older firmwares. 5320 */ 5321 param[0] = FW_PARAM_DEV(MPSBGMAP); 5322 val[0] = 0; 5323 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5324 if (rc == 0) 5325 sc->params.mps_bg_map = val[0]; 5326 else 5327 sc->params.mps_bg_map = 0; 5328 5329 /* 5330 * Determine whether the firmware supports the filter2 work request. 5331 * This is queried separately for the same reason as MPSBGMAP above. 5332 */ 5333 param[0] = FW_PARAM_DEV(FILTER2_WR); 5334 val[0] = 0; 5335 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5336 if (rc == 0) 5337 sc->params.filter2_wr_support = val[0] != 0; 5338 else 5339 sc->params.filter2_wr_support = 0; 5340 5341 /* 5342 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL. 5343 * This is queried separately for the same reason as other params above. 5344 */ 5345 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 5346 val[0] = 0; 5347 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5348 if (rc == 0) 5349 sc->params.ulptx_memwrite_dsgl = val[0] != 0; 5350 else 5351 sc->params.ulptx_memwrite_dsgl = false; 5352 5353 /* FW_RI_FR_NSMR_TPTE_WR support */ 5354 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 5355 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5356 if (rc == 0) 5357 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0; 5358 else 5359 sc->params.fr_nsmr_tpte_wr_support = false; 5360 5361 /* Support for 512 SGL entries per FR MR. */ 5362 param[0] = FW_PARAM_DEV(DEV_512SGL_MR); 5363 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5364 if (rc == 0) 5365 sc->params.dev_512sgl_mr = val[0] != 0; 5366 else 5367 sc->params.dev_512sgl_mr = false; 5368 5369 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR); 5370 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5371 if (rc == 0) 5372 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0]; 5373 else 5374 sc->params.max_pkts_per_eth_tx_pkts_wr = 15; 5375 5376 param[0] = FW_PARAM_DEV(NUM_TM_CLASS); 5377 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5378 if (rc == 0) { 5379 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */ 5380 sc->params.nsched_cls = val[0]; 5381 } else 5382 sc->params.nsched_cls = sc->chip_params->nsched_cls; 5383 5384 /* get capabilites */ 5385 bzero(&caps, sizeof(caps)); 5386 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5387 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5388 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5389 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5390 if (rc != 0) { 5391 device_printf(sc->dev, 5392 "failed to get card capabilities: %d.\n", rc); 5393 return (rc); 5394 } 5395 5396 #define READ_CAPS(x) do { \ 5397 sc->x = htobe16(caps.x); \ 5398 } while (0) 5399 READ_CAPS(nbmcaps); 5400 READ_CAPS(linkcaps); 5401 READ_CAPS(switchcaps); 5402 READ_CAPS(niccaps); 5403 READ_CAPS(toecaps); 5404 READ_CAPS(rdmacaps); 5405 READ_CAPS(cryptocaps); 5406 READ_CAPS(iscsicaps); 5407 READ_CAPS(fcoecaps); 5408 5409 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) { 5410 MPASS(chip_id(sc) > CHELSIO_T4); 5411 MPASS(sc->toecaps == 0); 5412 sc->toecaps = 0; 5413 5414 param[0] = FW_PARAM_DEV(NTID); 5415 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5416 if (rc != 0) { 5417 device_printf(sc->dev, 5418 "failed to query HASHFILTER parameters: %d.\n", rc); 5419 return (rc); 5420 } 5421 sc->tids.ntids = val[0]; 5422 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5423 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5424 sc->tids.ntids -= sc->tids.nhpftids; 5425 } 5426 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5427 sc->params.hash_filter = 1; 5428 } 5429 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) { 5430 param[0] = FW_PARAM_PFVF(ETHOFLD_START); 5431 param[1] = FW_PARAM_PFVF(ETHOFLD_END); 5432 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5433 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val); 5434 if (rc != 0) { 5435 device_printf(sc->dev, 5436 "failed to query NIC parameters: %d.\n", rc); 5437 return (rc); 5438 } 5439 if ((int)val[1] > (int)val[0]) { 5440 sc->tids.etid_base = val[0]; 5441 sc->tids.etid_end = val[1]; 5442 sc->tids.netids = val[1] - val[0] + 1; 5443 sc->params.eo_wr_cred = val[2]; 5444 sc->params.ethoffload = 1; 5445 } 5446 } 5447 if (sc->toecaps) { 5448 /* query offload-related parameters */ 5449 param[0] = FW_PARAM_DEV(NTID); 5450 param[1] = FW_PARAM_PFVF(SERVER_START); 5451 param[2] = FW_PARAM_PFVF(SERVER_END); 5452 param[3] = FW_PARAM_PFVF(TDDP_START); 5453 param[4] = FW_PARAM_PFVF(TDDP_END); 5454 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5455 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5456 if (rc != 0) { 5457 device_printf(sc->dev, 5458 "failed to query TOE parameters: %d.\n", rc); 5459 return (rc); 5460 } 5461 sc->tids.ntids = val[0]; 5462 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5463 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5464 sc->tids.ntids -= sc->tids.nhpftids; 5465 } 5466 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5467 if ((int)val[2] > (int)val[1]) { 5468 sc->tids.stid_base = val[1]; 5469 sc->tids.nstids = val[2] - val[1] + 1; 5470 } 5471 sc->vres.ddp.start = val[3]; 5472 sc->vres.ddp.size = val[4] - val[3] + 1; 5473 sc->params.ofldq_wr_cred = val[5]; 5474 sc->params.offload = 1; 5475 } else { 5476 /* 5477 * The firmware attempts memfree TOE configuration for -SO cards 5478 * and will report toecaps=0 if it runs out of resources (this 5479 * depends on the config file). It may not report 0 for other 5480 * capabilities dependent on the TOE in this case. Set them to 5481 * 0 here so that the driver doesn't bother tracking resources 5482 * that will never be used. 5483 */ 5484 sc->iscsicaps = 0; 5485 sc->rdmacaps = 0; 5486 } 5487 if (sc->rdmacaps) { 5488 param[0] = FW_PARAM_PFVF(STAG_START); 5489 param[1] = FW_PARAM_PFVF(STAG_END); 5490 param[2] = FW_PARAM_PFVF(RQ_START); 5491 param[3] = FW_PARAM_PFVF(RQ_END); 5492 param[4] = FW_PARAM_PFVF(PBL_START); 5493 param[5] = FW_PARAM_PFVF(PBL_END); 5494 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5495 if (rc != 0) { 5496 device_printf(sc->dev, 5497 "failed to query RDMA parameters(1): %d.\n", rc); 5498 return (rc); 5499 } 5500 sc->vres.stag.start = val[0]; 5501 sc->vres.stag.size = val[1] - val[0] + 1; 5502 sc->vres.rq.start = val[2]; 5503 sc->vres.rq.size = val[3] - val[2] + 1; 5504 sc->vres.pbl.start = val[4]; 5505 sc->vres.pbl.size = val[5] - val[4] + 1; 5506 5507 param[0] = FW_PARAM_PFVF(SQRQ_START); 5508 param[1] = FW_PARAM_PFVF(SQRQ_END); 5509 param[2] = FW_PARAM_PFVF(CQ_START); 5510 param[3] = FW_PARAM_PFVF(CQ_END); 5511 param[4] = FW_PARAM_PFVF(OCQ_START); 5512 param[5] = FW_PARAM_PFVF(OCQ_END); 5513 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5514 if (rc != 0) { 5515 device_printf(sc->dev, 5516 "failed to query RDMA parameters(2): %d.\n", rc); 5517 return (rc); 5518 } 5519 sc->vres.qp.start = val[0]; 5520 sc->vres.qp.size = val[1] - val[0] + 1; 5521 sc->vres.cq.start = val[2]; 5522 sc->vres.cq.size = val[3] - val[2] + 1; 5523 sc->vres.ocq.start = val[4]; 5524 sc->vres.ocq.size = val[5] - val[4] + 1; 5525 5526 param[0] = FW_PARAM_PFVF(SRQ_START); 5527 param[1] = FW_PARAM_PFVF(SRQ_END); 5528 param[2] = FW_PARAM_DEV(MAXORDIRD_QP); 5529 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER); 5530 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val); 5531 if (rc != 0) { 5532 device_printf(sc->dev, 5533 "failed to query RDMA parameters(3): %d.\n", rc); 5534 return (rc); 5535 } 5536 sc->vres.srq.start = val[0]; 5537 sc->vres.srq.size = val[1] - val[0] + 1; 5538 sc->params.max_ordird_qp = val[2]; 5539 sc->params.max_ird_adapter = val[3]; 5540 } 5541 if (sc->iscsicaps) { 5542 param[0] = FW_PARAM_PFVF(ISCSI_START); 5543 param[1] = FW_PARAM_PFVF(ISCSI_END); 5544 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5545 if (rc != 0) { 5546 device_printf(sc->dev, 5547 "failed to query iSCSI parameters: %d.\n", rc); 5548 return (rc); 5549 } 5550 sc->vres.iscsi.start = val[0]; 5551 sc->vres.iscsi.size = val[1] - val[0] + 1; 5552 } 5553 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 5554 param[0] = FW_PARAM_PFVF(TLS_START); 5555 param[1] = FW_PARAM_PFVF(TLS_END); 5556 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5557 if (rc != 0) { 5558 device_printf(sc->dev, 5559 "failed to query TLS parameters: %d.\n", rc); 5560 return (rc); 5561 } 5562 sc->vres.key.start = val[0]; 5563 sc->vres.key.size = val[1] - val[0] + 1; 5564 } 5565 5566 /* 5567 * We've got the params we wanted to query directly from the firmware. 5568 * Grab some others via other means. 5569 */ 5570 t4_init_sge_params(sc); 5571 t4_init_tp_params(sc); 5572 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 5573 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 5574 5575 rc = t4_verify_chip_settings(sc); 5576 if (rc != 0) 5577 return (rc); 5578 t4_init_rx_buf_info(sc); 5579 5580 return (rc); 5581 } 5582 5583 #ifdef KERN_TLS 5584 static void 5585 ktls_tick(void *arg) 5586 { 5587 struct adapter *sc; 5588 uint32_t tstamp; 5589 5590 sc = arg; 5591 tstamp = tcp_ts_getticks(); 5592 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1); 5593 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31); 5594 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK); 5595 } 5596 5597 static int 5598 t6_config_kern_tls(struct adapter *sc, bool enable) 5599 { 5600 int rc; 5601 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5602 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) | 5603 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) | 5604 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE); 5605 5606 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m); 5607 if (rc != 0) { 5608 CH_ERR(sc, "failed to %s NIC TLS: %d\n", 5609 enable ? "enable" : "disable", rc); 5610 return (rc); 5611 } 5612 5613 if (enable) { 5614 sc->flags |= KERN_TLS_ON; 5615 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc, 5616 C_HARDCLOCK); 5617 } else { 5618 sc->flags &= ~KERN_TLS_ON; 5619 callout_stop(&sc->ktls_tick); 5620 } 5621 5622 return (rc); 5623 } 5624 #endif 5625 5626 static int 5627 set_params__post_init(struct adapter *sc) 5628 { 5629 uint32_t mask, param, val; 5630 #ifdef TCP_OFFLOAD 5631 int i, v, shift; 5632 #endif 5633 5634 /* ask for encapsulated CPLs */ 5635 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 5636 val = 1; 5637 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5638 5639 /* Enable 32b port caps if the firmware supports it. */ 5640 param = FW_PARAM_PFVF(PORT_CAPS32); 5641 val = 1; 5642 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0) 5643 sc->params.port_caps32 = 1; 5644 5645 /* Let filter + maskhash steer to a part of the VI's RSS region. */ 5646 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1); 5647 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER), 5648 V_MASKFILTER(val - 1)); 5649 5650 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER | 5651 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN | 5652 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5653 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM; 5654 val = 0; 5655 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) { 5656 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE, 5657 F_ATTACKFILTERENABLE); 5658 val |= F_DROPERRORATTACK; 5659 } 5660 if (t4_drop_ip_fragments != 0) { 5661 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP, 5662 F_FRAGMENTDROP); 5663 val |= F_DROPERRORFRAG; 5664 } 5665 if (t4_drop_pkts_with_l2_errors != 0) 5666 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN; 5667 if (t4_drop_pkts_with_l3_errors != 0) { 5668 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN | 5669 F_DROPERRORCSUMIP; 5670 } 5671 if (t4_drop_pkts_with_l4_errors != 0) { 5672 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5673 F_DROPERRORTCPOPT | F_DROPERRORCSUM; 5674 } 5675 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val); 5676 5677 #ifdef TCP_OFFLOAD 5678 /* 5679 * Override the TOE timers with user provided tunables. This is not the 5680 * recommended way to change the timers (the firmware config file is) so 5681 * these tunables are not documented. 5682 * 5683 * All the timer tunables are in microseconds. 5684 */ 5685 if (t4_toe_keepalive_idle != 0) { 5686 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle); 5687 v &= M_KEEPALIVEIDLE; 5688 t4_set_reg_field(sc, A_TP_KEEP_IDLE, 5689 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v)); 5690 } 5691 if (t4_toe_keepalive_interval != 0) { 5692 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval); 5693 v &= M_KEEPALIVEINTVL; 5694 t4_set_reg_field(sc, A_TP_KEEP_INTVL, 5695 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v)); 5696 } 5697 if (t4_toe_keepalive_count != 0) { 5698 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2; 5699 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5700 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) | 5701 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2), 5702 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v)); 5703 } 5704 if (t4_toe_rexmt_min != 0) { 5705 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min); 5706 v &= M_RXTMIN; 5707 t4_set_reg_field(sc, A_TP_RXT_MIN, 5708 V_RXTMIN(M_RXTMIN), V_RXTMIN(v)); 5709 } 5710 if (t4_toe_rexmt_max != 0) { 5711 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max); 5712 v &= M_RXTMAX; 5713 t4_set_reg_field(sc, A_TP_RXT_MAX, 5714 V_RXTMAX(M_RXTMAX), V_RXTMAX(v)); 5715 } 5716 if (t4_toe_rexmt_count != 0) { 5717 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2; 5718 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5719 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) | 5720 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2), 5721 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v)); 5722 } 5723 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) { 5724 if (t4_toe_rexmt_backoff[i] != -1) { 5725 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0; 5726 shift = (i & 3) << 3; 5727 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3), 5728 M_TIMERBACKOFFINDEX0 << shift, v << shift); 5729 } 5730 } 5731 #endif 5732 5733 #ifdef KERN_TLS 5734 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS && 5735 sc->toecaps & FW_CAPS_CONFIG_TOE) { 5736 /* 5737 * Limit TOE connections to 2 reassembly "islands". 5738 * This is required to permit migrating TOE 5739 * connections to UPL_MODE_TLS. 5740 */ 5741 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, 5742 V_PASSMODE(M_PASSMODE), V_PASSMODE(2)); 5743 } 5744 5745 if (is_ktls(sc)) { 5746 sc->tlst.inline_keys = t4_tls_inline_keys; 5747 sc->tlst.combo_wrs = t4_tls_combo_wrs; 5748 if (t4_kern_tls != 0 && is_t6(sc)) 5749 t6_config_kern_tls(sc, true); 5750 } 5751 #endif 5752 return (0); 5753 } 5754 5755 #undef FW_PARAM_PFVF 5756 #undef FW_PARAM_DEV 5757 5758 static void 5759 t4_set_desc(struct adapter *sc) 5760 { 5761 char buf[128]; 5762 struct adapter_params *p = &sc->params; 5763 5764 snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id); 5765 5766 device_set_desc_copy(sc->dev, buf); 5767 } 5768 5769 static inline void 5770 ifmedia_add4(struct ifmedia *ifm, int m) 5771 { 5772 5773 ifmedia_add(ifm, m, 0, NULL); 5774 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL); 5775 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL); 5776 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL); 5777 } 5778 5779 /* 5780 * This is the selected media, which is not quite the same as the active media. 5781 * The media line in ifconfig is "media: Ethernet selected (active)" if selected 5782 * and active are not the same, and "media: Ethernet selected" otherwise. 5783 */ 5784 static void 5785 set_current_media(struct port_info *pi) 5786 { 5787 struct link_config *lc; 5788 struct ifmedia *ifm; 5789 int mword; 5790 u_int speed; 5791 5792 PORT_LOCK_ASSERT_OWNED(pi); 5793 5794 /* Leave current media alone if it's already set to IFM_NONE. */ 5795 ifm = &pi->media; 5796 if (ifm->ifm_cur != NULL && 5797 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE) 5798 return; 5799 5800 lc = &pi->link_cfg; 5801 if (lc->requested_aneg != AUTONEG_DISABLE && 5802 lc->pcaps & FW_PORT_CAP32_ANEG) { 5803 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); 5804 return; 5805 } 5806 mword = IFM_ETHER | IFM_FDX; 5807 if (lc->requested_fc & PAUSE_TX) 5808 mword |= IFM_ETH_TXPAUSE; 5809 if (lc->requested_fc & PAUSE_RX) 5810 mword |= IFM_ETH_RXPAUSE; 5811 if (lc->requested_speed == 0) 5812 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */ 5813 else 5814 speed = lc->requested_speed; 5815 mword |= port_mword(pi, speed_to_fwcap(speed)); 5816 ifmedia_set(ifm, mword); 5817 } 5818 5819 /* 5820 * Returns true if the ifmedia list for the port cannot change. 5821 */ 5822 static bool 5823 fixed_ifmedia(struct port_info *pi) 5824 { 5825 5826 return (pi->port_type == FW_PORT_TYPE_BT_SGMII || 5827 pi->port_type == FW_PORT_TYPE_BT_XFI || 5828 pi->port_type == FW_PORT_TYPE_BT_XAUI || 5829 pi->port_type == FW_PORT_TYPE_KX4 || 5830 pi->port_type == FW_PORT_TYPE_KX || 5831 pi->port_type == FW_PORT_TYPE_KR || 5832 pi->port_type == FW_PORT_TYPE_BP_AP || 5833 pi->port_type == FW_PORT_TYPE_BP4_AP || 5834 pi->port_type == FW_PORT_TYPE_BP40_BA || 5835 pi->port_type == FW_PORT_TYPE_KR4_100G || 5836 pi->port_type == FW_PORT_TYPE_KR_SFP28 || 5837 pi->port_type == FW_PORT_TYPE_KR_XLAUI); 5838 } 5839 5840 static void 5841 build_medialist(struct port_info *pi) 5842 { 5843 uint32_t ss, speed; 5844 int unknown, mword, bit; 5845 struct link_config *lc; 5846 struct ifmedia *ifm; 5847 5848 PORT_LOCK_ASSERT_OWNED(pi); 5849 5850 if (pi->flags & FIXED_IFMEDIA) 5851 return; 5852 5853 /* 5854 * Rebuild the ifmedia list. 5855 */ 5856 ifm = &pi->media; 5857 ifmedia_removeall(ifm); 5858 lc = &pi->link_cfg; 5859 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */ 5860 if (__predict_false(ss == 0)) { /* not supposed to happen. */ 5861 MPASS(ss != 0); 5862 no_media: 5863 MPASS(LIST_EMPTY(&ifm->ifm_list)); 5864 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL); 5865 ifmedia_set(ifm, IFM_ETHER | IFM_NONE); 5866 return; 5867 } 5868 5869 unknown = 0; 5870 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) { 5871 speed = 1 << bit; 5872 MPASS(speed & M_FW_PORT_CAP32_SPEED); 5873 if (ss & speed) { 5874 mword = port_mword(pi, speed); 5875 if (mword == IFM_NONE) { 5876 goto no_media; 5877 } else if (mword == IFM_UNKNOWN) 5878 unknown++; 5879 else 5880 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword); 5881 } 5882 } 5883 if (unknown > 0) /* Add one unknown for all unknown media types. */ 5884 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN); 5885 if (lc->pcaps & FW_PORT_CAP32_ANEG) 5886 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL); 5887 5888 set_current_media(pi); 5889 } 5890 5891 /* 5892 * Initialize the requested fields in the link config based on driver tunables. 5893 */ 5894 static void 5895 init_link_config(struct port_info *pi) 5896 { 5897 struct link_config *lc = &pi->link_cfg; 5898 5899 PORT_LOCK_ASSERT_OWNED(pi); 5900 5901 lc->requested_caps = 0; 5902 lc->requested_speed = 0; 5903 5904 if (t4_autoneg == 0) 5905 lc->requested_aneg = AUTONEG_DISABLE; 5906 else if (t4_autoneg == 1) 5907 lc->requested_aneg = AUTONEG_ENABLE; 5908 else 5909 lc->requested_aneg = AUTONEG_AUTO; 5910 5911 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX | 5912 PAUSE_AUTONEG); 5913 5914 if (t4_fec & FEC_AUTO) 5915 lc->requested_fec = FEC_AUTO; 5916 else if (t4_fec == 0) 5917 lc->requested_fec = FEC_NONE; 5918 else { 5919 /* -1 is handled by the FEC_AUTO block above and not here. */ 5920 lc->requested_fec = t4_fec & 5921 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE); 5922 if (lc->requested_fec == 0) 5923 lc->requested_fec = FEC_AUTO; 5924 } 5925 if (t4_force_fec < 0) 5926 lc->force_fec = -1; 5927 else if (t4_force_fec > 0) 5928 lc->force_fec = 1; 5929 else 5930 lc->force_fec = 0; 5931 } 5932 5933 /* 5934 * Makes sure that all requested settings comply with what's supported by the 5935 * port. Returns the number of settings that were invalid and had to be fixed. 5936 */ 5937 static int 5938 fixup_link_config(struct port_info *pi) 5939 { 5940 int n = 0; 5941 struct link_config *lc = &pi->link_cfg; 5942 uint32_t fwspeed; 5943 5944 PORT_LOCK_ASSERT_OWNED(pi); 5945 5946 /* Speed (when not autonegotiating) */ 5947 if (lc->requested_speed != 0) { 5948 fwspeed = speed_to_fwcap(lc->requested_speed); 5949 if ((fwspeed & lc->pcaps) == 0) { 5950 n++; 5951 lc->requested_speed = 0; 5952 } 5953 } 5954 5955 /* Link autonegotiation */ 5956 MPASS(lc->requested_aneg == AUTONEG_ENABLE || 5957 lc->requested_aneg == AUTONEG_DISABLE || 5958 lc->requested_aneg == AUTONEG_AUTO); 5959 if (lc->requested_aneg == AUTONEG_ENABLE && 5960 !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 5961 n++; 5962 lc->requested_aneg = AUTONEG_AUTO; 5963 } 5964 5965 /* Flow control */ 5966 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0); 5967 if (lc->requested_fc & PAUSE_TX && 5968 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) { 5969 n++; 5970 lc->requested_fc &= ~PAUSE_TX; 5971 } 5972 if (lc->requested_fc & PAUSE_RX && 5973 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) { 5974 n++; 5975 lc->requested_fc &= ~PAUSE_RX; 5976 } 5977 if (!(lc->requested_fc & PAUSE_AUTONEG) && 5978 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) { 5979 n++; 5980 lc->requested_fc |= PAUSE_AUTONEG; 5981 } 5982 5983 /* FEC */ 5984 if ((lc->requested_fec & FEC_RS && 5985 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) || 5986 (lc->requested_fec & FEC_BASER_RS && 5987 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) { 5988 n++; 5989 lc->requested_fec = FEC_AUTO; 5990 } 5991 5992 return (n); 5993 } 5994 5995 /* 5996 * Apply the requested L1 settings, which are expected to be valid, to the 5997 * hardware. 5998 */ 5999 static int 6000 apply_link_config(struct port_info *pi) 6001 { 6002 struct adapter *sc = pi->adapter; 6003 struct link_config *lc = &pi->link_cfg; 6004 int rc; 6005 6006 #ifdef INVARIANTS 6007 ASSERT_SYNCHRONIZED_OP(sc); 6008 PORT_LOCK_ASSERT_OWNED(pi); 6009 6010 if (lc->requested_aneg == AUTONEG_ENABLE) 6011 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG); 6012 if (!(lc->requested_fc & PAUSE_AUTONEG)) 6013 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE); 6014 if (lc->requested_fc & PAUSE_TX) 6015 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX); 6016 if (lc->requested_fc & PAUSE_RX) 6017 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX); 6018 if (lc->requested_fec & FEC_RS) 6019 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS); 6020 if (lc->requested_fec & FEC_BASER_RS) 6021 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS); 6022 #endif 6023 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); 6024 if (rc != 0) { 6025 /* Don't complain if the VF driver gets back an EPERM. */ 6026 if (!(sc->flags & IS_VF) || rc != FW_EPERM) 6027 device_printf(pi->dev, "l1cfg failed: %d\n", rc); 6028 } else { 6029 /* 6030 * An L1_CFG will almost always result in a link-change event if 6031 * the link is up, and the driver will refresh the actual 6032 * fec/fc/etc. when the notification is processed. If the link 6033 * is down then the actual settings are meaningless. 6034 * 6035 * This takes care of the case where a change in the L1 settings 6036 * may not result in a notification. 6037 */ 6038 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG)) 6039 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX); 6040 } 6041 return (rc); 6042 } 6043 6044 #define FW_MAC_EXACT_CHUNK 7 6045 struct mcaddr_ctx { 6046 if_t ifp; 6047 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; 6048 uint64_t hash; 6049 int i; 6050 int del; 6051 int rc; 6052 }; 6053 6054 static u_int 6055 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 6056 { 6057 struct mcaddr_ctx *ctx = arg; 6058 struct vi_info *vi = if_getsoftc(ctx->ifp); 6059 struct port_info *pi = vi->pi; 6060 struct adapter *sc = pi->adapter; 6061 6062 if (ctx->rc < 0) 6063 return (0); 6064 6065 ctx->mcaddr[ctx->i] = LLADDR(sdl); 6066 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i])); 6067 ctx->i++; 6068 6069 if (ctx->i == FW_MAC_EXACT_CHUNK) { 6070 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del, 6071 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0); 6072 if (ctx->rc < 0) { 6073 int j; 6074 6075 for (j = 0; j < ctx->i; j++) { 6076 if_printf(ctx->ifp, 6077 "failed to add mc address" 6078 " %02x:%02x:%02x:" 6079 "%02x:%02x:%02x rc=%d\n", 6080 ctx->mcaddr[j][0], ctx->mcaddr[j][1], 6081 ctx->mcaddr[j][2], ctx->mcaddr[j][3], 6082 ctx->mcaddr[j][4], ctx->mcaddr[j][5], 6083 -ctx->rc); 6084 } 6085 return (0); 6086 } 6087 ctx->del = 0; 6088 ctx->i = 0; 6089 } 6090 6091 return (1); 6092 } 6093 6094 /* 6095 * Program the port's XGMAC based on parameters in ifnet. The caller also 6096 * indicates which parameters should be programmed (the rest are left alone). 6097 */ 6098 int 6099 update_mac_settings(if_t ifp, int flags) 6100 { 6101 int rc = 0; 6102 struct vi_info *vi = if_getsoftc(ifp); 6103 struct port_info *pi = vi->pi; 6104 struct adapter *sc = pi->adapter; 6105 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; 6106 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 6107 6108 ASSERT_SYNCHRONIZED_OP(sc); 6109 KASSERT(flags, ("%s: not told what to update.", __func__)); 6110 6111 if (flags & XGMAC_MTU) 6112 mtu = if_getmtu(ifp); 6113 6114 if (flags & XGMAC_PROMISC) 6115 promisc = if_getflags(ifp) & IFF_PROMISC ? 1 : 0; 6116 6117 if (flags & XGMAC_ALLMULTI) 6118 allmulti = if_getflags(ifp) & IFF_ALLMULTI ? 1 : 0; 6119 6120 if (flags & XGMAC_VLANEX) 6121 vlanex = if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING ? 1 : 0; 6122 6123 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) { 6124 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc, 6125 allmulti, 1, vlanex, false); 6126 if (rc) { 6127 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, 6128 rc); 6129 return (rc); 6130 } 6131 } 6132 6133 if (flags & XGMAC_UCADDR) { 6134 uint8_t ucaddr[ETHER_ADDR_LEN]; 6135 6136 bcopy(if_getlladdr(ifp), ucaddr, sizeof(ucaddr)); 6137 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt, 6138 ucaddr, true, &vi->smt_idx); 6139 if (rc < 0) { 6140 rc = -rc; 6141 if_printf(ifp, "change_mac failed: %d\n", rc); 6142 return (rc); 6143 } else { 6144 vi->xact_addr_filt = rc; 6145 rc = 0; 6146 } 6147 } 6148 6149 if (flags & XGMAC_MCADDRS) { 6150 struct epoch_tracker et; 6151 struct mcaddr_ctx ctx; 6152 int j; 6153 6154 ctx.ifp = ifp; 6155 ctx.hash = 0; 6156 ctx.i = 0; 6157 ctx.del = 1; 6158 ctx.rc = 0; 6159 /* 6160 * Unlike other drivers, we accumulate list of pointers into 6161 * interface address lists and we need to keep it safe even 6162 * after if_foreach_llmaddr() returns, thus we must enter the 6163 * network epoch. 6164 */ 6165 NET_EPOCH_ENTER(et); 6166 if_foreach_llmaddr(ifp, add_maddr, &ctx); 6167 if (ctx.rc < 0) { 6168 NET_EPOCH_EXIT(et); 6169 rc = -ctx.rc; 6170 return (rc); 6171 } 6172 if (ctx.i > 0) { 6173 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, 6174 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0); 6175 NET_EPOCH_EXIT(et); 6176 if (rc < 0) { 6177 rc = -rc; 6178 for (j = 0; j < ctx.i; j++) { 6179 if_printf(ifp, 6180 "failed to add mcast address" 6181 " %02x:%02x:%02x:" 6182 "%02x:%02x:%02x rc=%d\n", 6183 ctx.mcaddr[j][0], ctx.mcaddr[j][1], 6184 ctx.mcaddr[j][2], ctx.mcaddr[j][3], 6185 ctx.mcaddr[j][4], ctx.mcaddr[j][5], 6186 rc); 6187 } 6188 return (rc); 6189 } 6190 ctx.del = 0; 6191 } else 6192 NET_EPOCH_EXIT(et); 6193 6194 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0); 6195 if (rc != 0) 6196 if_printf(ifp, "failed to set mcast address hash: %d\n", 6197 rc); 6198 if (ctx.del == 0) { 6199 /* We clobbered the VXLAN entry if there was one. */ 6200 pi->vxlan_tcam_entry = false; 6201 } 6202 } 6203 6204 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 && 6205 pi->vxlan_tcam_entry == false) { 6206 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac, 6207 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 6208 true); 6209 if (rc < 0) { 6210 rc = -rc; 6211 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n", 6212 rc); 6213 } else { 6214 MPASS(rc == sc->rawf_base + pi->port_id); 6215 rc = 0; 6216 pi->vxlan_tcam_entry = true; 6217 } 6218 } 6219 6220 return (rc); 6221 } 6222 6223 /* 6224 * {begin|end}_synchronized_op must be called from the same thread. 6225 */ 6226 int 6227 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags, 6228 char *wmesg) 6229 { 6230 int rc, pri; 6231 6232 #ifdef WITNESS 6233 /* the caller thinks it's ok to sleep, but is it really? */ 6234 if (flags & SLEEP_OK) 6235 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 6236 "begin_synchronized_op"); 6237 #endif 6238 6239 if (INTR_OK) 6240 pri = PCATCH; 6241 else 6242 pri = 0; 6243 6244 ADAPTER_LOCK(sc); 6245 for (;;) { 6246 6247 if (vi && IS_DOOMED(vi)) { 6248 rc = ENXIO; 6249 goto done; 6250 } 6251 6252 if (!IS_BUSY(sc)) { 6253 rc = 0; 6254 break; 6255 } 6256 6257 if (!(flags & SLEEP_OK)) { 6258 rc = EBUSY; 6259 goto done; 6260 } 6261 6262 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) { 6263 rc = EINTR; 6264 goto done; 6265 } 6266 } 6267 6268 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); 6269 SET_BUSY(sc); 6270 #ifdef INVARIANTS 6271 sc->last_op = wmesg; 6272 sc->last_op_thr = curthread; 6273 sc->last_op_flags = flags; 6274 #endif 6275 6276 done: 6277 if (!(flags & HOLD_LOCK) || rc) 6278 ADAPTER_UNLOCK(sc); 6279 6280 return (rc); 6281 } 6282 6283 /* 6284 * Tell if_ioctl and if_init that the VI is going away. This is 6285 * special variant of begin_synchronized_op and must be paired with a 6286 * call to end_synchronized_op. 6287 */ 6288 void 6289 doom_vi(struct adapter *sc, struct vi_info *vi) 6290 { 6291 6292 ADAPTER_LOCK(sc); 6293 SET_DOOMED(vi); 6294 wakeup(&sc->flags); 6295 while (IS_BUSY(sc)) 6296 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); 6297 SET_BUSY(sc); 6298 #ifdef INVARIANTS 6299 sc->last_op = "t4detach"; 6300 sc->last_op_thr = curthread; 6301 sc->last_op_flags = 0; 6302 #endif 6303 ADAPTER_UNLOCK(sc); 6304 } 6305 6306 /* 6307 * {begin|end}_synchronized_op must be called from the same thread. 6308 */ 6309 void 6310 end_synchronized_op(struct adapter *sc, int flags) 6311 { 6312 6313 if (flags & LOCK_HELD) 6314 ADAPTER_LOCK_ASSERT_OWNED(sc); 6315 else 6316 ADAPTER_LOCK(sc); 6317 6318 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6319 CLR_BUSY(sc); 6320 wakeup(&sc->flags); 6321 ADAPTER_UNLOCK(sc); 6322 } 6323 6324 static int 6325 cxgbe_init_synchronized(struct vi_info *vi) 6326 { 6327 struct port_info *pi = vi->pi; 6328 struct adapter *sc = pi->adapter; 6329 if_t ifp = vi->ifp; 6330 int rc = 0, i; 6331 struct sge_txq *txq; 6332 6333 ASSERT_SYNCHRONIZED_OP(sc); 6334 6335 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 6336 return (0); /* already running */ 6337 6338 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0)) 6339 return (rc); /* error message displayed already */ 6340 6341 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 6342 return (rc); /* error message displayed already */ 6343 6344 rc = update_mac_settings(ifp, XGMAC_ALL); 6345 if (rc) 6346 goto done; /* error message displayed already */ 6347 6348 PORT_LOCK(pi); 6349 if (pi->up_vis == 0) { 6350 t4_update_port_info(pi); 6351 fixup_link_config(pi); 6352 build_medialist(pi); 6353 apply_link_config(pi); 6354 } 6355 6356 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true); 6357 if (rc != 0) { 6358 if_printf(ifp, "enable_vi failed: %d\n", rc); 6359 PORT_UNLOCK(pi); 6360 goto done; 6361 } 6362 6363 /* 6364 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized 6365 * if this changes. 6366 */ 6367 6368 for_each_txq(vi, i, txq) { 6369 TXQ_LOCK(txq); 6370 txq->eq.flags |= EQ_ENABLED; 6371 TXQ_UNLOCK(txq); 6372 } 6373 6374 /* 6375 * The first iq of the first port to come up is used for tracing. 6376 */ 6377 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 6378 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 6379 t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL : 6380 A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) | 6381 V_QUEUENUMBER(sc->traceq)); 6382 pi->flags |= HAS_TRACEQ; 6383 } 6384 6385 /* all ok */ 6386 pi->up_vis++; 6387 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 6388 if (pi->link_cfg.link_ok) 6389 t4_os_link_changed(pi); 6390 PORT_UNLOCK(pi); 6391 6392 mtx_lock(&vi->tick_mtx); 6393 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 6394 callout_reset(&vi->tick, hz, vi_tick, vi); 6395 else 6396 callout_reset(&vi->tick, hz, cxgbe_tick, vi); 6397 mtx_unlock(&vi->tick_mtx); 6398 done: 6399 if (rc != 0) 6400 cxgbe_uninit_synchronized(vi); 6401 6402 return (rc); 6403 } 6404 6405 /* 6406 * Idempotent. 6407 */ 6408 static int 6409 cxgbe_uninit_synchronized(struct vi_info *vi) 6410 { 6411 struct port_info *pi = vi->pi; 6412 struct adapter *sc = pi->adapter; 6413 if_t ifp = vi->ifp; 6414 int rc, i; 6415 struct sge_txq *txq; 6416 6417 ASSERT_SYNCHRONIZED_OP(sc); 6418 6419 if (!(vi->flags & VI_INIT_DONE)) { 6420 if (__predict_false(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6421 KASSERT(0, ("uninited VI is running")); 6422 if_printf(ifp, "uninited VI with running ifnet. " 6423 "vi->flags 0x%016lx, if_flags 0x%08x, " 6424 "if_drv_flags 0x%08x\n", vi->flags, if_getflags(ifp), 6425 if_getdrvflags(ifp)); 6426 } 6427 return (0); 6428 } 6429 6430 /* 6431 * Disable the VI so that all its data in either direction is discarded 6432 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz 6433 * tick) intact as the TP can deliver negative advice or data that it's 6434 * holding in its RAM (for an offloaded connection) even after the VI is 6435 * disabled. 6436 */ 6437 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false); 6438 if (rc) { 6439 if_printf(ifp, "disable_vi failed: %d\n", rc); 6440 return (rc); 6441 } 6442 6443 for_each_txq(vi, i, txq) { 6444 TXQ_LOCK(txq); 6445 txq->eq.flags &= ~EQ_ENABLED; 6446 TXQ_UNLOCK(txq); 6447 } 6448 6449 mtx_lock(&vi->tick_mtx); 6450 callout_stop(&vi->tick); 6451 mtx_unlock(&vi->tick_mtx); 6452 6453 PORT_LOCK(pi); 6454 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6455 PORT_UNLOCK(pi); 6456 return (0); 6457 } 6458 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 6459 pi->up_vis--; 6460 if (pi->up_vis > 0) { 6461 PORT_UNLOCK(pi); 6462 return (0); 6463 } 6464 6465 pi->link_cfg.link_ok = false; 6466 pi->link_cfg.speed = 0; 6467 pi->link_cfg.link_down_rc = 255; 6468 t4_os_link_changed(pi); 6469 PORT_UNLOCK(pi); 6470 6471 return (0); 6472 } 6473 6474 /* 6475 * It is ok for this function to fail midway and return right away. t4_detach 6476 * will walk the entire sc->irq list and clean up whatever is valid. 6477 */ 6478 int 6479 t4_setup_intr_handlers(struct adapter *sc) 6480 { 6481 int rc, rid, p, q, v; 6482 char s[8]; 6483 struct irq *irq; 6484 struct port_info *pi; 6485 struct vi_info *vi; 6486 struct sge *sge = &sc->sge; 6487 struct sge_rxq *rxq; 6488 #ifdef TCP_OFFLOAD 6489 struct sge_ofld_rxq *ofld_rxq; 6490 #endif 6491 #ifdef DEV_NETMAP 6492 struct sge_nm_rxq *nm_rxq; 6493 #endif 6494 #ifdef RSS 6495 int nbuckets = rss_getnumbuckets(); 6496 #endif 6497 6498 /* 6499 * Setup interrupts. 6500 */ 6501 irq = &sc->irq[0]; 6502 rid = sc->intr_type == INTR_INTX ? 0 : 1; 6503 if (forwarding_intr_to_fwq(sc)) 6504 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all")); 6505 6506 /* Multiple interrupts. */ 6507 if (sc->flags & IS_VF) 6508 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports, 6509 ("%s: too few intr.", __func__)); 6510 else 6511 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, 6512 ("%s: too few intr.", __func__)); 6513 6514 /* The first one is always error intr on PFs */ 6515 if (!(sc->flags & IS_VF)) { 6516 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); 6517 if (rc != 0) 6518 return (rc); 6519 irq++; 6520 rid++; 6521 } 6522 6523 /* The second one is always the firmware event queue (first on VFs) */ 6524 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt"); 6525 if (rc != 0) 6526 return (rc); 6527 irq++; 6528 rid++; 6529 6530 for_each_port(sc, p) { 6531 pi = sc->port[p]; 6532 for_each_vi(pi, v, vi) { 6533 vi->first_intr = rid - 1; 6534 6535 if (vi->nnmrxq > 0) { 6536 int n = max(vi->nrxq, vi->nnmrxq); 6537 6538 rxq = &sge->rxq[vi->first_rxq]; 6539 #ifdef DEV_NETMAP 6540 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq]; 6541 #endif 6542 for (q = 0; q < n; q++) { 6543 snprintf(s, sizeof(s), "%x%c%x", p, 6544 'a' + v, q); 6545 if (q < vi->nrxq) 6546 irq->rxq = rxq++; 6547 #ifdef DEV_NETMAP 6548 if (q < vi->nnmrxq) 6549 irq->nm_rxq = nm_rxq++; 6550 6551 if (irq->nm_rxq != NULL && 6552 irq->rxq == NULL) { 6553 /* Netmap rx only */ 6554 rc = t4_alloc_irq(sc, irq, rid, 6555 t4_nm_intr, irq->nm_rxq, s); 6556 } 6557 if (irq->nm_rxq != NULL && 6558 irq->rxq != NULL) { 6559 /* NIC and Netmap rx */ 6560 rc = t4_alloc_irq(sc, irq, rid, 6561 t4_vi_intr, irq, s); 6562 } 6563 #endif 6564 if (irq->rxq != NULL && 6565 irq->nm_rxq == NULL) { 6566 /* NIC rx only */ 6567 rc = t4_alloc_irq(sc, irq, rid, 6568 t4_intr, irq->rxq, s); 6569 } 6570 if (rc != 0) 6571 return (rc); 6572 #ifdef RSS 6573 if (q < vi->nrxq) { 6574 bus_bind_intr(sc->dev, irq->res, 6575 rss_getcpu(q % nbuckets)); 6576 } 6577 #endif 6578 irq++; 6579 rid++; 6580 vi->nintr++; 6581 } 6582 } else { 6583 for_each_rxq(vi, q, rxq) { 6584 snprintf(s, sizeof(s), "%x%c%x", p, 6585 'a' + v, q); 6586 rc = t4_alloc_irq(sc, irq, rid, 6587 t4_intr, rxq, s); 6588 if (rc != 0) 6589 return (rc); 6590 #ifdef RSS 6591 bus_bind_intr(sc->dev, irq->res, 6592 rss_getcpu(q % nbuckets)); 6593 #endif 6594 irq++; 6595 rid++; 6596 vi->nintr++; 6597 } 6598 } 6599 #ifdef TCP_OFFLOAD 6600 for_each_ofld_rxq(vi, q, ofld_rxq) { 6601 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q); 6602 rc = t4_alloc_irq(sc, irq, rid, t4_intr, 6603 ofld_rxq, s); 6604 if (rc != 0) 6605 return (rc); 6606 irq++; 6607 rid++; 6608 vi->nintr++; 6609 } 6610 #endif 6611 } 6612 } 6613 MPASS(irq == &sc->irq[sc->intr_count]); 6614 6615 return (0); 6616 } 6617 6618 static void 6619 write_global_rss_key(struct adapter *sc) 6620 { 6621 #ifdef RSS 6622 int i; 6623 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6624 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6625 6626 CTASSERT(RSS_KEYSIZE == 40); 6627 6628 rss_getkey((void *)&raw_rss_key[0]); 6629 for (i = 0; i < nitems(rss_key); i++) { 6630 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]); 6631 } 6632 t4_write_rss_key(sc, &rss_key[0], -1, 1); 6633 #endif 6634 } 6635 6636 /* 6637 * Idempotent. 6638 */ 6639 static int 6640 adapter_full_init(struct adapter *sc) 6641 { 6642 int rc, i; 6643 6644 ASSERT_SYNCHRONIZED_OP(sc); 6645 6646 /* 6647 * queues that belong to the adapter (not any particular port). 6648 */ 6649 rc = t4_setup_adapter_queues(sc); 6650 if (rc != 0) 6651 return (rc); 6652 6653 for (i = 0; i < nitems(sc->tq); i++) { 6654 if (sc->tq[i] != NULL) 6655 continue; 6656 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, 6657 taskqueue_thread_enqueue, &sc->tq[i]); 6658 if (sc->tq[i] == NULL) { 6659 CH_ERR(sc, "failed to allocate task queue %d\n", i); 6660 return (ENOMEM); 6661 } 6662 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", 6663 device_get_nameunit(sc->dev), i); 6664 } 6665 6666 if (!(sc->flags & IS_VF)) { 6667 write_global_rss_key(sc); 6668 t4_intr_enable(sc); 6669 } 6670 return (0); 6671 } 6672 6673 int 6674 adapter_init(struct adapter *sc) 6675 { 6676 int rc; 6677 6678 ASSERT_SYNCHRONIZED_OP(sc); 6679 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 6680 KASSERT((sc->flags & FULL_INIT_DONE) == 0, 6681 ("%s: FULL_INIT_DONE already", __func__)); 6682 6683 rc = adapter_full_init(sc); 6684 if (rc != 0) 6685 adapter_full_uninit(sc); 6686 else 6687 sc->flags |= FULL_INIT_DONE; 6688 6689 return (rc); 6690 } 6691 6692 /* 6693 * Idempotent. 6694 */ 6695 static void 6696 adapter_full_uninit(struct adapter *sc) 6697 { 6698 int i; 6699 6700 t4_teardown_adapter_queues(sc); 6701 6702 for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) { 6703 taskqueue_free(sc->tq[i]); 6704 sc->tq[i] = NULL; 6705 } 6706 6707 sc->flags &= ~FULL_INIT_DONE; 6708 } 6709 6710 #ifdef RSS 6711 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \ 6712 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \ 6713 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \ 6714 RSS_HASHTYPE_RSS_UDP_IPV6) 6715 6716 /* Translates kernel hash types to hardware. */ 6717 static int 6718 hashconfig_to_hashen(int hashconfig) 6719 { 6720 int hashen = 0; 6721 6722 if (hashconfig & RSS_HASHTYPE_RSS_IPV4) 6723 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 6724 if (hashconfig & RSS_HASHTYPE_RSS_IPV6) 6725 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 6726 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) { 6727 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6728 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6729 } 6730 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) { 6731 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6732 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6733 } 6734 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4) 6735 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6736 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6) 6737 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6738 6739 return (hashen); 6740 } 6741 6742 /* Translates hardware hash types to kernel. */ 6743 static int 6744 hashen_to_hashconfig(int hashen) 6745 { 6746 int hashconfig = 0; 6747 6748 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) { 6749 /* 6750 * If UDP hashing was enabled it must have been enabled for 6751 * either IPv4 or IPv6 (inclusive or). Enabling UDP without 6752 * enabling any 4-tuple hash is nonsense configuration. 6753 */ 6754 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6755 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)); 6756 6757 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6758 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4; 6759 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6760 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6; 6761 } 6762 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6763 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4; 6764 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6765 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6; 6766 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 6767 hashconfig |= RSS_HASHTYPE_RSS_IPV4; 6768 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 6769 hashconfig |= RSS_HASHTYPE_RSS_IPV6; 6770 6771 return (hashconfig); 6772 } 6773 #endif 6774 6775 /* 6776 * Idempotent. 6777 */ 6778 static int 6779 vi_full_init(struct vi_info *vi) 6780 { 6781 struct adapter *sc = vi->adapter; 6782 struct sge_rxq *rxq; 6783 int rc, i, j; 6784 #ifdef RSS 6785 int nbuckets = rss_getnumbuckets(); 6786 int hashconfig = rss_gethashconfig(); 6787 int extra; 6788 #endif 6789 6790 ASSERT_SYNCHRONIZED_OP(sc); 6791 6792 /* 6793 * Allocate tx/rx/fl queues for this VI. 6794 */ 6795 rc = t4_setup_vi_queues(vi); 6796 if (rc != 0) 6797 return (rc); 6798 6799 /* 6800 * Setup RSS for this VI. Save a copy of the RSS table for later use. 6801 */ 6802 if (vi->nrxq > vi->rss_size) { 6803 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); " 6804 "some queues will never receive traffic.\n", vi->nrxq, 6805 vi->rss_size); 6806 } else if (vi->rss_size % vi->nrxq) { 6807 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); " 6808 "expect uneven traffic distribution.\n", vi->nrxq, 6809 vi->rss_size); 6810 } 6811 #ifdef RSS 6812 if (vi->nrxq != nbuckets) { 6813 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);" 6814 "performance will be impacted.\n", vi->nrxq, nbuckets); 6815 } 6816 #endif 6817 if (vi->rss == NULL) 6818 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE, 6819 M_ZERO | M_WAITOK); 6820 for (i = 0; i < vi->rss_size;) { 6821 #ifdef RSS 6822 j = rss_get_indirection_to_bucket(i); 6823 j %= vi->nrxq; 6824 rxq = &sc->sge.rxq[vi->first_rxq + j]; 6825 vi->rss[i++] = rxq->iq.abs_id; 6826 #else 6827 for_each_rxq(vi, j, rxq) { 6828 vi->rss[i++] = rxq->iq.abs_id; 6829 if (i == vi->rss_size) 6830 break; 6831 } 6832 #endif 6833 } 6834 6835 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, 6836 vi->rss, vi->rss_size); 6837 if (rc != 0) { 6838 CH_ERR(vi, "rss_config failed: %d\n", rc); 6839 return (rc); 6840 } 6841 6842 #ifdef RSS 6843 vi->hashen = hashconfig_to_hashen(hashconfig); 6844 6845 /* 6846 * We may have had to enable some hashes even though the global config 6847 * wants them disabled. This is a potential problem that must be 6848 * reported to the user. 6849 */ 6850 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig; 6851 6852 /* 6853 * If we consider only the supported hash types, then the enabled hashes 6854 * are a superset of the requested hashes. In other words, there cannot 6855 * be any supported hash that was requested but not enabled, but there 6856 * can be hashes that were not requested but had to be enabled. 6857 */ 6858 extra &= SUPPORTED_RSS_HASHTYPES; 6859 MPASS((extra & hashconfig) == 0); 6860 6861 if (extra) { 6862 CH_ALERT(vi, 6863 "global RSS config (0x%x) cannot be accommodated.\n", 6864 hashconfig); 6865 } 6866 if (extra & RSS_HASHTYPE_RSS_IPV4) 6867 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n"); 6868 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4) 6869 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n"); 6870 if (extra & RSS_HASHTYPE_RSS_IPV6) 6871 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n"); 6872 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6) 6873 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n"); 6874 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4) 6875 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n"); 6876 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6) 6877 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n"); 6878 #else 6879 vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN | 6880 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN | 6881 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6882 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN; 6883 #endif 6884 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0], 6885 0, 0); 6886 if (rc != 0) { 6887 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc); 6888 return (rc); 6889 } 6890 6891 return (0); 6892 } 6893 6894 int 6895 vi_init(struct vi_info *vi) 6896 { 6897 int rc; 6898 6899 ASSERT_SYNCHRONIZED_OP(vi->adapter); 6900 KASSERT((vi->flags & VI_INIT_DONE) == 0, 6901 ("%s: VI_INIT_DONE already", __func__)); 6902 6903 rc = vi_full_init(vi); 6904 if (rc != 0) 6905 vi_full_uninit(vi); 6906 else 6907 vi->flags |= VI_INIT_DONE; 6908 6909 return (rc); 6910 } 6911 6912 /* 6913 * Idempotent. 6914 */ 6915 static void 6916 vi_full_uninit(struct vi_info *vi) 6917 { 6918 6919 if (vi->flags & VI_INIT_DONE) { 6920 quiesce_vi(vi); 6921 free(vi->rss, M_CXGBE); 6922 free(vi->nm_rss, M_CXGBE); 6923 } 6924 6925 t4_teardown_vi_queues(vi); 6926 vi->flags &= ~VI_INIT_DONE; 6927 } 6928 6929 static void 6930 quiesce_txq(struct sge_txq *txq) 6931 { 6932 struct sge_eq *eq = &txq->eq; 6933 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 6934 6935 MPASS(eq->flags & EQ_SW_ALLOCATED); 6936 MPASS(!(eq->flags & EQ_ENABLED)); 6937 6938 /* Wait for the mp_ring to empty. */ 6939 while (!mp_ring_is_idle(txq->r)) { 6940 mp_ring_check_drainage(txq->r, 4096); 6941 pause("rquiesce", 1); 6942 } 6943 MPASS(txq->txp.npkt == 0); 6944 6945 if (eq->flags & EQ_HW_ALLOCATED) { 6946 /* 6947 * Hardware is alive and working normally. Wait for it to 6948 * finish and then wait for the driver to catch up and reclaim 6949 * all descriptors. 6950 */ 6951 while (spg->cidx != htobe16(eq->pidx)) 6952 pause("equiesce", 1); 6953 while (eq->cidx != eq->pidx) 6954 pause("dquiesce", 1); 6955 } else { 6956 /* 6957 * Hardware is unavailable. Discard all pending tx and reclaim 6958 * descriptors directly. 6959 */ 6960 TXQ_LOCK(txq); 6961 while (eq->cidx != eq->pidx) { 6962 struct mbuf *m, *nextpkt; 6963 struct tx_sdesc *txsd; 6964 6965 txsd = &txq->sdesc[eq->cidx]; 6966 for (m = txsd->m; m != NULL; m = nextpkt) { 6967 nextpkt = m->m_nextpkt; 6968 m->m_nextpkt = NULL; 6969 m_freem(m); 6970 } 6971 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx); 6972 } 6973 spg->pidx = spg->cidx = htobe16(eq->cidx); 6974 TXQ_UNLOCK(txq); 6975 } 6976 } 6977 6978 static void 6979 quiesce_wrq(struct sge_wrq *wrq) 6980 { 6981 6982 /* XXXTX */ 6983 } 6984 6985 static void 6986 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl) 6987 { 6988 /* Synchronize with the interrupt handler */ 6989 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) 6990 pause("iqfree", 1); 6991 6992 if (fl != NULL) { 6993 MPASS(iq->flags & IQ_HAS_FL); 6994 6995 mtx_lock(&sc->sfl_lock); 6996 FL_LOCK(fl); 6997 fl->flags |= FL_DOOMED; 6998 FL_UNLOCK(fl); 6999 callout_stop(&sc->sfl_callout); 7000 mtx_unlock(&sc->sfl_lock); 7001 7002 KASSERT((fl->flags & FL_STARVING) == 0, 7003 ("%s: still starving", __func__)); 7004 7005 /* Release all buffers if hardware is no longer available. */ 7006 if (!(iq->flags & IQ_HW_ALLOCATED)) 7007 free_fl_buffers(sc, fl); 7008 } 7009 } 7010 7011 /* 7012 * Wait for all activity on all the queues of the VI to complete. It is assumed 7013 * that no new work is being enqueued by the hardware or the driver. That part 7014 * should be arranged before calling this function. 7015 */ 7016 static void 7017 quiesce_vi(struct vi_info *vi) 7018 { 7019 int i; 7020 struct adapter *sc = vi->adapter; 7021 struct sge_rxq *rxq; 7022 struct sge_txq *txq; 7023 #ifdef TCP_OFFLOAD 7024 struct sge_ofld_rxq *ofld_rxq; 7025 #endif 7026 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7027 struct sge_ofld_txq *ofld_txq; 7028 #endif 7029 7030 if (!(vi->flags & VI_INIT_DONE)) 7031 return; 7032 7033 for_each_txq(vi, i, txq) { 7034 quiesce_txq(txq); 7035 } 7036 7037 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7038 for_each_ofld_txq(vi, i, ofld_txq) { 7039 quiesce_wrq(&ofld_txq->wrq); 7040 } 7041 #endif 7042 7043 for_each_rxq(vi, i, rxq) { 7044 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl); 7045 } 7046 7047 #ifdef TCP_OFFLOAD 7048 for_each_ofld_rxq(vi, i, ofld_rxq) { 7049 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl); 7050 } 7051 #endif 7052 } 7053 7054 static int 7055 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, 7056 driver_intr_t *handler, void *arg, char *name) 7057 { 7058 int rc; 7059 7060 irq->rid = rid; 7061 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, 7062 RF_SHAREABLE | RF_ACTIVE); 7063 if (irq->res == NULL) { 7064 device_printf(sc->dev, 7065 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 7066 return (ENOMEM); 7067 } 7068 7069 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, 7070 NULL, handler, arg, &irq->tag); 7071 if (rc != 0) { 7072 device_printf(sc->dev, 7073 "failed to setup interrupt for rid %d, name %s: %d\n", 7074 rid, name, rc); 7075 } else if (name) 7076 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name); 7077 7078 return (rc); 7079 } 7080 7081 static int 7082 t4_free_irq(struct adapter *sc, struct irq *irq) 7083 { 7084 if (irq->tag) 7085 bus_teardown_intr(sc->dev, irq->res, irq->tag); 7086 if (irq->res) 7087 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); 7088 7089 bzero(irq, sizeof(*irq)); 7090 7091 return (0); 7092 } 7093 7094 static void 7095 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) 7096 { 7097 7098 regs->version = chip_id(sc) | chip_rev(sc) << 10; 7099 t4_get_regs(sc, buf, regs->len); 7100 } 7101 7102 #define A_PL_INDIR_CMD 0x1f8 7103 7104 #define S_PL_AUTOINC 31 7105 #define M_PL_AUTOINC 0x1U 7106 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC) 7107 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC) 7108 7109 #define S_PL_VFID 20 7110 #define M_PL_VFID 0xffU 7111 #define V_PL_VFID(x) ((x) << S_PL_VFID) 7112 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID) 7113 7114 #define S_PL_ADDR 0 7115 #define M_PL_ADDR 0xfffffU 7116 #define V_PL_ADDR(x) ((x) << S_PL_ADDR) 7117 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR) 7118 7119 #define A_PL_INDIR_DATA 0x1fc 7120 7121 static uint64_t 7122 read_vf_stat(struct adapter *sc, u_int vin, int reg) 7123 { 7124 u32 stats[2]; 7125 7126 if (sc->flags & IS_VF) { 7127 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg)); 7128 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4)); 7129 } else { 7130 mtx_assert(&sc->reg_lock, MA_OWNED); 7131 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 7132 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg))); 7133 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA); 7134 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA); 7135 } 7136 return (((uint64_t)stats[1]) << 32 | stats[0]); 7137 } 7138 7139 static void 7140 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats) 7141 { 7142 7143 #define GET_STAT(name) \ 7144 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L) 7145 7146 if (!(sc->flags & IS_VF)) 7147 mtx_lock(&sc->reg_lock); 7148 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES); 7149 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); 7150 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES); 7151 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); 7152 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES); 7153 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); 7154 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES); 7155 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES); 7156 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES); 7157 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES); 7158 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); 7159 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES); 7160 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); 7161 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES); 7162 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); 7163 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES); 7164 if (!(sc->flags & IS_VF)) 7165 mtx_unlock(&sc->reg_lock); 7166 7167 #undef GET_STAT 7168 } 7169 7170 static void 7171 t4_clr_vi_stats(struct adapter *sc, u_int vin) 7172 { 7173 int reg; 7174 7175 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) | 7176 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L))); 7177 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L; 7178 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4) 7179 t4_write_reg(sc, A_PL_INDIR_DATA, 0); 7180 } 7181 7182 static void 7183 vi_refresh_stats(struct vi_info *vi) 7184 { 7185 struct timeval tv; 7186 const struct timeval interval = {0, 250000}; /* 250ms */ 7187 7188 mtx_assert(&vi->tick_mtx, MA_OWNED); 7189 7190 if (vi->flags & VI_SKIP_STATS) 7191 return; 7192 7193 getmicrotime(&tv); 7194 timevalsub(&tv, &interval); 7195 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7196 return; 7197 7198 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats); 7199 getmicrotime(&vi->last_refreshed); 7200 } 7201 7202 static void 7203 cxgbe_refresh_stats(struct vi_info *vi) 7204 { 7205 u_int i, v, tnl_cong_drops, chan_map; 7206 struct timeval tv; 7207 const struct timeval interval = {0, 250000}; /* 250ms */ 7208 struct port_info *pi; 7209 struct adapter *sc; 7210 7211 mtx_assert(&vi->tick_mtx, MA_OWNED); 7212 7213 if (vi->flags & VI_SKIP_STATS) 7214 return; 7215 7216 getmicrotime(&tv); 7217 timevalsub(&tv, &interval); 7218 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7219 return; 7220 7221 pi = vi->pi; 7222 sc = vi->adapter; 7223 tnl_cong_drops = 0; 7224 t4_get_port_stats(sc, pi->port_id, &pi->stats); 7225 chan_map = pi->rx_e_chan_map; 7226 while (chan_map) { 7227 i = ffs(chan_map) - 1; 7228 mtx_lock(&sc->reg_lock); 7229 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1, 7230 A_TP_MIB_TNL_CNG_DROP_0 + i); 7231 mtx_unlock(&sc->reg_lock); 7232 tnl_cong_drops += v; 7233 chan_map &= ~(1 << i); 7234 } 7235 pi->tnl_cong_drops = tnl_cong_drops; 7236 getmicrotime(&vi->last_refreshed); 7237 } 7238 7239 static void 7240 cxgbe_tick(void *arg) 7241 { 7242 struct vi_info *vi = arg; 7243 7244 MPASS(IS_MAIN_VI(vi)); 7245 mtx_assert(&vi->tick_mtx, MA_OWNED); 7246 7247 cxgbe_refresh_stats(vi); 7248 callout_schedule(&vi->tick, hz); 7249 } 7250 7251 static void 7252 vi_tick(void *arg) 7253 { 7254 struct vi_info *vi = arg; 7255 7256 mtx_assert(&vi->tick_mtx, MA_OWNED); 7257 7258 vi_refresh_stats(vi); 7259 callout_schedule(&vi->tick, hz); 7260 } 7261 7262 /* 7263 * Should match fw_caps_config_<foo> enums in t4fw_interface.h 7264 */ 7265 static char *caps_decoder[] = { 7266 "\20\001IPMI\002NCSI", /* 0: NBM */ 7267 "\20\001PPP\002QFC\003DCBX", /* 1: link */ 7268 "\20\001INGRESS\002EGRESS", /* 2: switch */ 7269 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */ 7270 "\006HASHFILTER\007ETHOFLD", 7271 "\20\001TOE", /* 4: TOE */ 7272 "\20\001RDDP\002RDMAC", /* 5: RDMA */ 7273 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */ 7274 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD" 7275 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD" 7276 "\007T10DIF" 7277 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD", 7278 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */ 7279 "\004TLS_HW", 7280 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */ 7281 "\004PO_INITIATOR\005PO_TARGET", 7282 }; 7283 7284 void 7285 t4_sysctls(struct adapter *sc) 7286 { 7287 struct sysctl_ctx_list *ctx = &sc->ctx; 7288 struct sysctl_oid *oid; 7289 struct sysctl_oid_list *children, *c0; 7290 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; 7291 7292 /* 7293 * dev.t4nex.X. 7294 */ 7295 oid = device_get_sysctl_tree(sc->dev); 7296 c0 = children = SYSCTL_CHILDREN(oid); 7297 7298 sc->sc_do_rxcopy = 1; 7299 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW, 7300 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames"); 7301 7302 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, 7303 sc->params.nports, "# of ports"); 7304 7305 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", 7306 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells, 7307 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A", 7308 "available doorbells"); 7309 7310 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, 7311 sc->params.vpd.cclk, "core clock frequency (in KHz)"); 7312 7313 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", 7314 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7315 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val), 7316 sysctl_int_array, "A", "interrupt holdoff timer values (us)"); 7317 7318 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", 7319 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7320 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val), 7321 sysctl_int_array, "A", "interrupt holdoff packet counter values"); 7322 7323 t4_sge_sysctls(sc, ctx, children); 7324 7325 sc->lro_timeout = 100; 7326 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW, 7327 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)"); 7328 7329 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW, 7330 &sc->debug_flags, 0, "flags to enable runtime debugging"); 7331 7332 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version", 7333 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version"); 7334 7335 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", 7336 CTLFLAG_RD, sc->fw_version, 0, "firmware version"); 7337 7338 if (sc->flags & IS_VF) 7339 return; 7340 7341 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, 7342 NULL, chip_rev(sc), "chip hardware revision"); 7343 7344 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn", 7345 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number"); 7346 7347 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn", 7348 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number"); 7349 7350 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec", 7351 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change"); 7352 7353 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version", 7354 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version"); 7355 7356 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na", 7357 CTLFLAG_RD, sc->params.vpd.na, 0, "network address"); 7358 7359 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD, 7360 sc->er_version, 0, "expansion ROM version"); 7361 7362 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD, 7363 sc->bs_version, 0, "bootstrap firmware version"); 7364 7365 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD, 7366 NULL, sc->params.scfg_vers, "serial config version"); 7367 7368 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD, 7369 NULL, sc->params.vpd_vers, "VPD version"); 7370 7371 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", 7372 CTLFLAG_RD, sc->cfg_file, 0, "configuration file"); 7373 7374 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, 7375 sc->cfcsum, "config file checksum"); 7376 7377 #define SYSCTL_CAP(name, n, text) \ 7378 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \ 7379 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \ 7380 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \ 7381 "available " text " capabilities") 7382 7383 SYSCTL_CAP(nbmcaps, 0, "NBM"); 7384 SYSCTL_CAP(linkcaps, 1, "link"); 7385 SYSCTL_CAP(switchcaps, 2, "switch"); 7386 SYSCTL_CAP(niccaps, 3, "NIC"); 7387 SYSCTL_CAP(toecaps, 4, "TCP offload"); 7388 SYSCTL_CAP(rdmacaps, 5, "RDMA"); 7389 SYSCTL_CAP(iscsicaps, 6, "iSCSI"); 7390 SYSCTL_CAP(cryptocaps, 7, "crypto"); 7391 SYSCTL_CAP(fcoecaps, 8, "FCoE"); 7392 #undef SYSCTL_CAP 7393 7394 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, 7395 NULL, sc->tids.nftids, "number of filters"); 7396 7397 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7398 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7399 sysctl_temperature, "I", "chip temperature (in Celsius)"); 7400 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor", 7401 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7402 sysctl_reset_sensor, "I", "reset the chip's temperature sensor."); 7403 7404 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg", 7405 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7406 sysctl_loadavg, "A", 7407 "microprocessor load averages (debug firmwares only)"); 7408 7409 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd", 7410 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd, 7411 "I", "core Vdd (in mV)"); 7412 7413 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus", 7414 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS, 7415 sysctl_cpus, "A", "local CPUs"); 7416 7417 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus", 7418 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS, 7419 sysctl_cpus, "A", "preferred CPUs for interrupts"); 7420 7421 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW, 7422 &sc->swintr, 0, "software triggered interrupts"); 7423 7424 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset", 7425 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I", 7426 "1 = reset adapter, 0 = zero reset counter"); 7427 7428 /* 7429 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. 7430 */ 7431 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", 7432 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 7433 "logs and miscellaneous information"); 7434 children = SYSCTL_CHILDREN(oid); 7435 7436 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", 7437 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7438 sysctl_cctrl, "A", "congestion control"); 7439 7440 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0", 7441 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7442 sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)"); 7443 7444 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1", 7445 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7446 sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)"); 7447 7448 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp", 7449 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7450 sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)"); 7451 7452 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0", 7453 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3, 7454 sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)"); 7455 7456 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1", 7457 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4, 7458 sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)"); 7459 7460 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi", 7461 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5, 7462 sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)"); 7463 7464 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la", 7465 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7466 sysctl_cim_la, "A", "CIM logic analyzer"); 7467 7468 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la", 7469 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7470 sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); 7471 7472 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0", 7473 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7474 0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)"); 7475 7476 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1", 7477 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7478 1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)"); 7479 7480 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2", 7481 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7482 2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)"); 7483 7484 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3", 7485 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7486 3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)"); 7487 7488 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge", 7489 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7490 4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)"); 7491 7492 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi", 7493 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7494 5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)"); 7495 7496 if (chip_id(sc) > CHELSIO_T4) { 7497 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx", 7498 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7499 6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7500 "CIM OBQ 6 (SGE0-RX)"); 7501 7502 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx", 7503 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7504 7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7505 "CIM OBQ 7 (SGE1-RX)"); 7506 } 7507 7508 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la", 7509 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7510 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); 7511 7512 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg", 7513 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7514 sysctl_cim_qcfg, "A", "CIM queue configuration"); 7515 7516 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", 7517 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7518 sysctl_cpl_stats, "A", "CPL statistics"); 7519 7520 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", 7521 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7522 sysctl_ddp_stats, "A", "non-TCP DDP statistics"); 7523 7524 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats", 7525 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7526 sysctl_tid_stats, "A", "tid stats"); 7527 7528 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", 7529 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7530 sysctl_devlog, "A", "firmware's device log"); 7531 7532 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", 7533 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7534 sysctl_fcoe_stats, "A", "FCoE statistics"); 7535 7536 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", 7537 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7538 sysctl_hw_sched, "A", "hardware scheduler "); 7539 7540 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", 7541 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7542 sysctl_l2t, "A", "hardware L2 table"); 7543 7544 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt", 7545 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7546 sysctl_smt, "A", "hardware source MAC table"); 7547 7548 #ifdef INET6 7549 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip", 7550 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7551 sysctl_clip, "A", "active CLIP table entries"); 7552 #endif 7553 7554 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", 7555 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7556 sysctl_lb_stats, "A", "loopback statistics"); 7557 7558 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", 7559 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7560 sysctl_meminfo, "A", "memory regions"); 7561 7562 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", 7563 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7564 chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6, 7565 "A", "MPS TCAM entries"); 7566 7567 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", 7568 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7569 sysctl_path_mtus, "A", "path MTUs"); 7570 7571 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", 7572 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7573 sysctl_pm_stats, "A", "PM statistics"); 7574 7575 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", 7576 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7577 sysctl_rdma_stats, "A", "RDMA statistics"); 7578 7579 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", 7580 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7581 sysctl_tcp_stats, "A", "TCP statistics"); 7582 7583 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", 7584 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7585 sysctl_tids, "A", "TID information"); 7586 7587 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", 7588 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7589 sysctl_tp_err_stats, "A", "TP error statistics"); 7590 7591 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats", 7592 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7593 sysctl_tnl_stats, "A", "TP tunnel statistics"); 7594 7595 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask", 7596 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7597 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask"); 7598 7599 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", 7600 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7601 sysctl_tp_la, "A", "TP logic analyzer"); 7602 7603 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", 7604 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7605 sysctl_tx_rate, "A", "Tx rate"); 7606 7607 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", 7608 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7609 sysctl_ulprx_la, "A", "ULPRX logic analyzer"); 7610 7611 if (chip_id(sc) >= CHELSIO_T5) { 7612 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", 7613 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7614 sysctl_wcwr_stats, "A", "write combined work requests"); 7615 } 7616 7617 #ifdef KERN_TLS 7618 if (is_ktls(sc)) { 7619 /* 7620 * dev.t4nex.0.tls. 7621 */ 7622 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls", 7623 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters"); 7624 children = SYSCTL_CHILDREN(oid); 7625 7626 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys", 7627 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS " 7628 "keys in work requests (1) or attempt to store TLS keys " 7629 "in card memory."); 7630 7631 if (is_t6(sc)) 7632 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs", 7633 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to " 7634 "combine TCB field updates with TLS record work " 7635 "requests."); 7636 } 7637 #endif 7638 7639 #ifdef TCP_OFFLOAD 7640 if (is_offload(sc)) { 7641 int i; 7642 char s[4]; 7643 7644 /* 7645 * dev.t4nex.X.toe. 7646 */ 7647 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", 7648 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters"); 7649 children = SYSCTL_CHILDREN(oid); 7650 7651 sc->tt.cong_algorithm = -1; 7652 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm", 7653 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control " 7654 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, " 7655 "3 = highspeed)"); 7656 7657 sc->tt.sndbuf = -1; 7658 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, 7659 &sc->tt.sndbuf, 0, "hardware send buffer"); 7660 7661 sc->tt.ddp = 0; 7662 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", 7663 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, ""); 7664 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW, 7665 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)"); 7666 7667 sc->tt.rx_coalesce = -1; 7668 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", 7669 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); 7670 7671 sc->tt.tls = 0; 7672 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT | 7673 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I", 7674 "Inline TLS allowed"); 7675 7676 sc->tt.tx_align = -1; 7677 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align", 7678 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload"); 7679 7680 sc->tt.tx_zcopy = 0; 7681 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy", 7682 CTLFLAG_RW, &sc->tt.tx_zcopy, 0, 7683 "Enable zero-copy aio_write(2)"); 7684 7685 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading; 7686 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7687 "cop_managed_offloading", CTLFLAG_RW, 7688 &sc->tt.cop_managed_offloading, 0, 7689 "COP (Connection Offload Policy) controls all TOE offload"); 7690 7691 sc->tt.autorcvbuf_inc = 16 * 1024; 7692 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc", 7693 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0, 7694 "autorcvbuf increment"); 7695 7696 sc->tt.update_hc_on_pmtu_change = 1; 7697 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7698 "update_hc_on_pmtu_change", CTLFLAG_RW, 7699 &sc->tt.update_hc_on_pmtu_change, 0, 7700 "Update hostcache entry if the PMTU changes"); 7701 7702 sc->tt.iso = 1; 7703 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW, 7704 &sc->tt.iso, 0, "Enable iSCSI segmentation offload"); 7705 7706 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick", 7707 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7708 sysctl_tp_tick, "A", "TP timer tick (us)"); 7709 7710 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick", 7711 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7712 sysctl_tp_tick, "A", "TCP timestamp tick (us)"); 7713 7714 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick", 7715 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7716 sysctl_tp_tick, "A", "DACK tick (us)"); 7717 7718 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer", 7719 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7720 sysctl_tp_dack_timer, "IU", "DACK timer (us)"); 7721 7722 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min", 7723 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7724 A_TP_RXT_MIN, sysctl_tp_timer, "LU", 7725 "Minimum retransmit interval (us)"); 7726 7727 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max", 7728 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7729 A_TP_RXT_MAX, sysctl_tp_timer, "LU", 7730 "Maximum retransmit interval (us)"); 7731 7732 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min", 7733 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7734 A_TP_PERS_MIN, sysctl_tp_timer, "LU", 7735 "Persist timer min (us)"); 7736 7737 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max", 7738 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7739 A_TP_PERS_MAX, sysctl_tp_timer, "LU", 7740 "Persist timer max (us)"); 7741 7742 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle", 7743 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7744 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU", 7745 "Keepalive idle timer (us)"); 7746 7747 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval", 7748 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7749 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU", 7750 "Keepalive interval timer (us)"); 7751 7752 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt", 7753 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7754 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)"); 7755 7756 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer", 7757 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7758 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU", 7759 "FINWAIT2 timer (us)"); 7760 7761 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count", 7762 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7763 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU", 7764 "Number of SYN retransmissions before abort"); 7765 7766 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count", 7767 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7768 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU", 7769 "Number of retransmissions before abort"); 7770 7771 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count", 7772 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7773 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU", 7774 "Number of keepalive probes before abort"); 7775 7776 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff", 7777 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 7778 "TOE retransmit backoffs"); 7779 children = SYSCTL_CHILDREN(oid); 7780 for (i = 0; i < 16; i++) { 7781 snprintf(s, sizeof(s), "%u", i); 7782 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s, 7783 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7784 i, sysctl_tp_backoff, "IU", 7785 "TOE retransmit backoff"); 7786 } 7787 } 7788 #endif 7789 } 7790 7791 void 7792 vi_sysctls(struct vi_info *vi) 7793 { 7794 struct sysctl_ctx_list *ctx = &vi->ctx; 7795 struct sysctl_oid *oid; 7796 struct sysctl_oid_list *children; 7797 7798 /* 7799 * dev.v?(cxgbe|cxl).X. 7800 */ 7801 oid = device_get_sysctl_tree(vi->dev); 7802 children = SYSCTL_CHILDREN(oid); 7803 7804 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL, 7805 vi->viid, "VI identifer"); 7806 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, 7807 &vi->nrxq, 0, "# of rx queues"); 7808 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, 7809 &vi->ntxq, 0, "# of tx queues"); 7810 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, 7811 &vi->first_rxq, 0, "index of first rx queue"); 7812 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, 7813 &vi->first_txq, 0, "index of first tx queue"); 7814 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL, 7815 vi->rss_base, "start of RSS indirection table"); 7816 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL, 7817 vi->rss_size, "size of RSS indirection table"); 7818 7819 if (IS_MAIN_VI(vi)) { 7820 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq", 7821 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7822 sysctl_noflowq, "IU", 7823 "Reserve queue 0 for non-flowid packets"); 7824 } 7825 7826 if (vi->adapter->flags & IS_VF) { 7827 MPASS(vi->flags & TX_USES_VM_WR); 7828 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD, 7829 NULL, 1, "use VM work requests for transmit"); 7830 } else { 7831 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr", 7832 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7833 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit"); 7834 } 7835 7836 #ifdef TCP_OFFLOAD 7837 if (vi->nofldrxq != 0) { 7838 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, 7839 &vi->nofldrxq, 0, 7840 "# of rx queues for offloaded TCP connections"); 7841 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", 7842 CTLFLAG_RD, &vi->first_ofld_rxq, 0, 7843 "index of first TOE rx queue"); 7844 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld", 7845 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7846 sysctl_holdoff_tmr_idx_ofld, "I", 7847 "holdoff timer index for TOE queues"); 7848 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld", 7849 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7850 sysctl_holdoff_pktc_idx_ofld, "I", 7851 "holdoff packet counter index for TOE queues"); 7852 } 7853 #endif 7854 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7855 if (vi->nofldtxq != 0) { 7856 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, 7857 &vi->nofldtxq, 0, 7858 "# of tx queues for TOE/ETHOFLD"); 7859 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", 7860 CTLFLAG_RD, &vi->first_ofld_txq, 0, 7861 "index of first TOE/ETHOFLD tx queue"); 7862 } 7863 #endif 7864 #ifdef DEV_NETMAP 7865 if (vi->nnmrxq != 0) { 7866 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD, 7867 &vi->nnmrxq, 0, "# of netmap rx queues"); 7868 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD, 7869 &vi->nnmtxq, 0, "# of netmap tx queues"); 7870 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq", 7871 CTLFLAG_RD, &vi->first_nm_rxq, 0, 7872 "index of first netmap rx queue"); 7873 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq", 7874 CTLFLAG_RD, &vi->first_nm_txq, 0, 7875 "index of first netmap tx queue"); 7876 } 7877 #endif 7878 7879 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", 7880 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7881 sysctl_holdoff_tmr_idx, "I", "holdoff timer index"); 7882 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", 7883 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7884 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index"); 7885 7886 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", 7887 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7888 sysctl_qsize_rxq, "I", "rx queue size"); 7889 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", 7890 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7891 sysctl_qsize_txq, "I", "tx queue size"); 7892 } 7893 7894 static void 7895 cxgbe_sysctls(struct port_info *pi) 7896 { 7897 struct sysctl_ctx_list *ctx = &pi->ctx; 7898 struct sysctl_oid *oid; 7899 struct sysctl_oid_list *children, *children2; 7900 struct adapter *sc = pi->adapter; 7901 int i; 7902 char name[16]; 7903 static char *tc_flags = {"\20\1USER"}; 7904 7905 /* 7906 * dev.cxgbe.X. 7907 */ 7908 oid = device_get_sysctl_tree(pi->dev); 7909 children = SYSCTL_CHILDREN(oid); 7910 7911 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", 7912 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 7913 sysctl_linkdnrc, "A", "reason why link is down"); 7914 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { 7915 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7916 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 7917 sysctl_btphy, "I", "PHY temperature (in Celsius)"); 7918 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", 7919 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1, 7920 sysctl_btphy, "I", "PHY firmware version"); 7921 } 7922 7923 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings", 7924 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7925 sysctl_pause_settings, "A", 7926 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 7927 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec", 7928 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A", 7929 "FEC in use on the link"); 7930 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec", 7931 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7932 sysctl_requested_fec, "A", 7933 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)"); 7934 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec", 7935 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A", 7936 "FEC recommended by the cable/transceiver"); 7937 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg", 7938 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7939 sysctl_autoneg, "I", 7940 "autonegotiation (-1 = not supported)"); 7941 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec", 7942 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7943 sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config"); 7944 7945 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD, 7946 &pi->link_cfg.requested_caps, 0, "L1 config requested by driver"); 7947 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD, 7948 &pi->link_cfg.pcaps, 0, "port capabilities"); 7949 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD, 7950 &pi->link_cfg.acaps, 0, "advertised capabilities"); 7951 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD, 7952 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities"); 7953 7954 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL, 7955 port_top_speed(pi), "max speed (in Gbps)"); 7956 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL, 7957 pi->mps_bg_map, "MPS buffer group map"); 7958 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD, 7959 NULL, pi->rx_e_chan_map, "TP rx e-channel map"); 7960 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_c_chan", CTLFLAG_RD, NULL, 7961 pi->rx_c_chan, "TP rx c-channel"); 7962 7963 if (sc->flags & IS_VF) 7964 return; 7965 7966 /* 7967 * dev.(cxgbe|cxl).X.tc. 7968 */ 7969 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", 7970 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 7971 "Tx scheduler traffic classes (cl_rl)"); 7972 children2 = SYSCTL_CHILDREN(oid); 7973 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize", 7974 CTLFLAG_RW, &pi->sched_params->pktsize, 0, 7975 "pktsize for per-flow cl-rl (0 means up to the driver )"); 7976 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize", 7977 CTLFLAG_RW, &pi->sched_params->burstsize, 0, 7978 "burstsize for per-flow cl-rl (0 means up to the driver)"); 7979 for (i = 0; i < sc->params.nsched_cls; i++) { 7980 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i]; 7981 7982 snprintf(name, sizeof(name), "%d", i); 7983 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx, 7984 SYSCTL_CHILDREN(oid), OID_AUTO, name, 7985 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class")); 7986 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state", 7987 CTLFLAG_RD, &tc->state, 0, "current state"); 7988 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags", 7989 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags, 7990 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags"); 7991 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount", 7992 CTLFLAG_RD, &tc->refcount, 0, "references to this class"); 7993 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params", 7994 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7995 (pi->port_id << 16) | i, sysctl_tc_params, "A", 7996 "traffic class parameters"); 7997 } 7998 7999 /* 8000 * dev.cxgbe.X.stats. 8001 */ 8002 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", 8003 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics"); 8004 children = SYSCTL_CHILDREN(oid); 8005 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD, 8006 &pi->tx_parse_error, 0, 8007 "# of tx packets with invalid length or # of segments"); 8008 8009 #define T4_REGSTAT(name, stat, desc) \ 8010 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 8011 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \ 8012 (is_t4(sc) ? PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##stat##_L) : \ 8013 T5_PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##stat##_L)), \ 8014 sysctl_handle_t4_reg64, "QU", desc) 8015 8016 /* We get these from port_stats and they may be stale by up to 1s */ 8017 #define T4_PORTSTAT(name, desc) \ 8018 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \ 8019 &pi->stats.name, desc) 8020 8021 T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames"); 8022 T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames"); 8023 T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames"); 8024 T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames"); 8025 T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames"); 8026 T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames"); 8027 T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range"); 8028 T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range"); 8029 T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range"); 8030 T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range"); 8031 T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range"); 8032 T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range"); 8033 T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range"); 8034 T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames"); 8035 T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted"); 8036 T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted"); 8037 T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted"); 8038 T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted"); 8039 T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted"); 8040 T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted"); 8041 T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted"); 8042 T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted"); 8043 T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted"); 8044 8045 T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames"); 8046 T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames"); 8047 T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames"); 8048 T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames"); 8049 T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames"); 8050 T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU"); 8051 T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames"); 8052 if (is_t6(sc)) { 8053 T4_PORTSTAT(rx_fcs_err, 8054 "# of frames received with bad FCS since last link up"); 8055 } else { 8056 T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR, 8057 "# of frames received with bad FCS"); 8058 } 8059 T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error"); 8060 T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors"); 8061 T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received"); 8062 T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range"); 8063 T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range"); 8064 T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range"); 8065 T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range"); 8066 T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range"); 8067 T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range"); 8068 T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range"); 8069 T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received"); 8070 T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received"); 8071 T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received"); 8072 T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received"); 8073 T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received"); 8074 T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received"); 8075 T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received"); 8076 T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received"); 8077 T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received"); 8078 8079 T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows"); 8080 T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows"); 8081 T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows"); 8082 T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows"); 8083 T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets"); 8084 T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets"); 8085 T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets"); 8086 T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets"); 8087 8088 #undef T4_REGSTAT 8089 #undef T4_PORTSTAT 8090 } 8091 8092 static int 8093 sysctl_int_array(SYSCTL_HANDLER_ARGS) 8094 { 8095 int rc, *i, space = 0; 8096 struct sbuf sb; 8097 8098 sbuf_new_for_sysctl(&sb, NULL, 64, req); 8099 for (i = arg1; arg2; arg2 -= sizeof(int), i++) { 8100 if (space) 8101 sbuf_printf(&sb, " "); 8102 sbuf_printf(&sb, "%d", *i); 8103 space = 1; 8104 } 8105 rc = sbuf_finish(&sb); 8106 sbuf_delete(&sb); 8107 return (rc); 8108 } 8109 8110 static int 8111 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS) 8112 { 8113 int rc; 8114 struct sbuf *sb; 8115 8116 rc = sysctl_wire_old_buffer(req, 0); 8117 if (rc != 0) 8118 return(rc); 8119 8120 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8121 if (sb == NULL) 8122 return (ENOMEM); 8123 8124 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1); 8125 rc = sbuf_finish(sb); 8126 sbuf_delete(sb); 8127 8128 return (rc); 8129 } 8130 8131 static int 8132 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS) 8133 { 8134 int rc; 8135 struct sbuf *sb; 8136 8137 rc = sysctl_wire_old_buffer(req, 0); 8138 if (rc != 0) 8139 return(rc); 8140 8141 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8142 if (sb == NULL) 8143 return (ENOMEM); 8144 8145 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1); 8146 rc = sbuf_finish(sb); 8147 sbuf_delete(sb); 8148 8149 return (rc); 8150 } 8151 8152 static int 8153 sysctl_btphy(SYSCTL_HANDLER_ARGS) 8154 { 8155 struct port_info *pi = arg1; 8156 int op = arg2; 8157 struct adapter *sc = pi->adapter; 8158 u_int v; 8159 int rc; 8160 8161 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt"); 8162 if (rc) 8163 return (rc); 8164 if (hw_off_limits(sc)) 8165 rc = ENXIO; 8166 else { 8167 /* XXX: magic numbers */ 8168 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, 8169 op ? 0x20 : 0xc820, &v); 8170 } 8171 end_synchronized_op(sc, 0); 8172 if (rc) 8173 return (rc); 8174 if (op == 0) 8175 v /= 256; 8176 8177 rc = sysctl_handle_int(oidp, &v, 0, req); 8178 return (rc); 8179 } 8180 8181 static int 8182 sysctl_noflowq(SYSCTL_HANDLER_ARGS) 8183 { 8184 struct vi_info *vi = arg1; 8185 int rc, val; 8186 8187 val = vi->rsrv_noflowq; 8188 rc = sysctl_handle_int(oidp, &val, 0, req); 8189 if (rc != 0 || req->newptr == NULL) 8190 return (rc); 8191 8192 if ((val >= 1) && (vi->ntxq > 1)) 8193 vi->rsrv_noflowq = 1; 8194 else 8195 vi->rsrv_noflowq = 0; 8196 8197 return (rc); 8198 } 8199 8200 static int 8201 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS) 8202 { 8203 struct vi_info *vi = arg1; 8204 struct adapter *sc = vi->adapter; 8205 int rc, val, i; 8206 8207 MPASS(!(sc->flags & IS_VF)); 8208 8209 val = vi->flags & TX_USES_VM_WR ? 1 : 0; 8210 rc = sysctl_handle_int(oidp, &val, 0, req); 8211 if (rc != 0 || req->newptr == NULL) 8212 return (rc); 8213 8214 if (val != 0 && val != 1) 8215 return (EINVAL); 8216 8217 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8218 "t4txvm"); 8219 if (rc) 8220 return (rc); 8221 if (hw_off_limits(sc)) 8222 rc = ENXIO; 8223 else if (if_getdrvflags(vi->ifp) & IFF_DRV_RUNNING) { 8224 /* 8225 * We don't want parse_pkt to run with one setting (VF or PF) 8226 * and then eth_tx to see a different setting but still use 8227 * stale information calculated by parse_pkt. 8228 */ 8229 rc = EBUSY; 8230 } else { 8231 struct port_info *pi = vi->pi; 8232 struct sge_txq *txq; 8233 uint32_t ctrl0; 8234 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr; 8235 8236 if (val) { 8237 vi->flags |= TX_USES_VM_WR; 8238 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_VM_TSO); 8239 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8240 V_TXPKT_INTF(pi->tx_chan)); 8241 if (!(sc->flags & IS_VF)) 8242 npkt--; 8243 } else { 8244 vi->flags &= ~TX_USES_VM_WR; 8245 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_TSO); 8246 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8247 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) | 8248 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld)); 8249 } 8250 for_each_txq(vi, i, txq) { 8251 txq->cpl_ctrl0 = ctrl0; 8252 txq->txp.max_npkt = npkt; 8253 } 8254 } 8255 end_synchronized_op(sc, LOCK_HELD); 8256 return (rc); 8257 } 8258 8259 static int 8260 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) 8261 { 8262 struct vi_info *vi = arg1; 8263 struct adapter *sc = vi->adapter; 8264 int idx, rc, i; 8265 struct sge_rxq *rxq; 8266 uint8_t v; 8267 8268 idx = vi->tmr_idx; 8269 8270 rc = sysctl_handle_int(oidp, &idx, 0, req); 8271 if (rc != 0 || req->newptr == NULL) 8272 return (rc); 8273 8274 if (idx < 0 || idx >= SGE_NTIMERS) 8275 return (EINVAL); 8276 8277 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8278 "t4tmr"); 8279 if (rc) 8280 return (rc); 8281 8282 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1); 8283 for_each_rxq(vi, i, rxq) { 8284 #ifdef atomic_store_rel_8 8285 atomic_store_rel_8(&rxq->iq.intr_params, v); 8286 #else 8287 rxq->iq.intr_params = v; 8288 #endif 8289 } 8290 vi->tmr_idx = idx; 8291 8292 end_synchronized_op(sc, LOCK_HELD); 8293 return (0); 8294 } 8295 8296 static int 8297 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) 8298 { 8299 struct vi_info *vi = arg1; 8300 struct adapter *sc = vi->adapter; 8301 int idx, rc; 8302 8303 idx = vi->pktc_idx; 8304 8305 rc = sysctl_handle_int(oidp, &idx, 0, req); 8306 if (rc != 0 || req->newptr == NULL) 8307 return (rc); 8308 8309 if (idx < -1 || idx >= SGE_NCOUNTERS) 8310 return (EINVAL); 8311 8312 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8313 "t4pktc"); 8314 if (rc) 8315 return (rc); 8316 8317 if (vi->flags & VI_INIT_DONE) 8318 rc = EBUSY; /* cannot be changed once the queues are created */ 8319 else 8320 vi->pktc_idx = idx; 8321 8322 end_synchronized_op(sc, LOCK_HELD); 8323 return (rc); 8324 } 8325 8326 static int 8327 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) 8328 { 8329 struct vi_info *vi = arg1; 8330 struct adapter *sc = vi->adapter; 8331 int qsize, rc; 8332 8333 qsize = vi->qsize_rxq; 8334 8335 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8336 if (rc != 0 || req->newptr == NULL) 8337 return (rc); 8338 8339 if (qsize < 128 || (qsize & 7)) 8340 return (EINVAL); 8341 8342 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8343 "t4rxqs"); 8344 if (rc) 8345 return (rc); 8346 8347 if (vi->flags & VI_INIT_DONE) 8348 rc = EBUSY; /* cannot be changed once the queues are created */ 8349 else 8350 vi->qsize_rxq = qsize; 8351 8352 end_synchronized_op(sc, LOCK_HELD); 8353 return (rc); 8354 } 8355 8356 static int 8357 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) 8358 { 8359 struct vi_info *vi = arg1; 8360 struct adapter *sc = vi->adapter; 8361 int qsize, rc; 8362 8363 qsize = vi->qsize_txq; 8364 8365 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8366 if (rc != 0 || req->newptr == NULL) 8367 return (rc); 8368 8369 if (qsize < 128 || qsize > 65536) 8370 return (EINVAL); 8371 8372 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8373 "t4txqs"); 8374 if (rc) 8375 return (rc); 8376 8377 if (vi->flags & VI_INIT_DONE) 8378 rc = EBUSY; /* cannot be changed once the queues are created */ 8379 else 8380 vi->qsize_txq = qsize; 8381 8382 end_synchronized_op(sc, LOCK_HELD); 8383 return (rc); 8384 } 8385 8386 static int 8387 sysctl_pause_settings(SYSCTL_HANDLER_ARGS) 8388 { 8389 struct port_info *pi = arg1; 8390 struct adapter *sc = pi->adapter; 8391 struct link_config *lc = &pi->link_cfg; 8392 int rc; 8393 8394 if (req->newptr == NULL) { 8395 struct sbuf *sb; 8396 static char *bits = "\20\1RX\2TX\3AUTO"; 8397 8398 rc = sysctl_wire_old_buffer(req, 0); 8399 if (rc != 0) 8400 return(rc); 8401 8402 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8403 if (sb == NULL) 8404 return (ENOMEM); 8405 8406 if (lc->link_ok) { 8407 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) | 8408 (lc->requested_fc & PAUSE_AUTONEG), bits); 8409 } else { 8410 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX | 8411 PAUSE_RX | PAUSE_AUTONEG), bits); 8412 } 8413 rc = sbuf_finish(sb); 8414 sbuf_delete(sb); 8415 } else { 8416 char s[2]; 8417 int n; 8418 8419 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX | 8420 PAUSE_AUTONEG)); 8421 s[1] = 0; 8422 8423 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8424 if (rc != 0) 8425 return(rc); 8426 8427 if (s[1] != 0) 8428 return (EINVAL); 8429 if (s[0] < '0' || s[0] > '9') 8430 return (EINVAL); /* not a number */ 8431 n = s[0] - '0'; 8432 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) 8433 return (EINVAL); /* some other bit is set too */ 8434 8435 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8436 "t4PAUSE"); 8437 if (rc) 8438 return (rc); 8439 if (!hw_off_limits(sc)) { 8440 PORT_LOCK(pi); 8441 lc->requested_fc = n; 8442 fixup_link_config(pi); 8443 if (pi->up_vis > 0) 8444 rc = apply_link_config(pi); 8445 set_current_media(pi); 8446 PORT_UNLOCK(pi); 8447 } 8448 end_synchronized_op(sc, 0); 8449 } 8450 8451 return (rc); 8452 } 8453 8454 static int 8455 sysctl_link_fec(SYSCTL_HANDLER_ARGS) 8456 { 8457 struct port_info *pi = arg1; 8458 struct link_config *lc = &pi->link_cfg; 8459 int rc; 8460 struct sbuf *sb; 8461 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2"; 8462 8463 rc = sysctl_wire_old_buffer(req, 0); 8464 if (rc != 0) 8465 return(rc); 8466 8467 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8468 if (sb == NULL) 8469 return (ENOMEM); 8470 if (lc->link_ok) 8471 sbuf_printf(sb, "%b", lc->fec, bits); 8472 else 8473 sbuf_printf(sb, "no link"); 8474 rc = sbuf_finish(sb); 8475 sbuf_delete(sb); 8476 8477 return (rc); 8478 } 8479 8480 static int 8481 sysctl_requested_fec(SYSCTL_HANDLER_ARGS) 8482 { 8483 struct port_info *pi = arg1; 8484 struct adapter *sc = pi->adapter; 8485 struct link_config *lc = &pi->link_cfg; 8486 int rc; 8487 int8_t old; 8488 8489 if (req->newptr == NULL) { 8490 struct sbuf *sb; 8491 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2" 8492 "\5RSVD3\6auto\7module"; 8493 8494 rc = sysctl_wire_old_buffer(req, 0); 8495 if (rc != 0) 8496 return(rc); 8497 8498 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8499 if (sb == NULL) 8500 return (ENOMEM); 8501 8502 sbuf_printf(sb, "%b", lc->requested_fec, bits); 8503 rc = sbuf_finish(sb); 8504 sbuf_delete(sb); 8505 } else { 8506 char s[8]; 8507 int n; 8508 8509 snprintf(s, sizeof(s), "%d", 8510 lc->requested_fec == FEC_AUTO ? -1 : 8511 lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE)); 8512 8513 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8514 if (rc != 0) 8515 return(rc); 8516 8517 n = strtol(&s[0], NULL, 0); 8518 if (n < 0 || n & FEC_AUTO) 8519 n = FEC_AUTO; 8520 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE)) 8521 return (EINVAL);/* some other bit is set too */ 8522 8523 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8524 "t4reqf"); 8525 if (rc) 8526 return (rc); 8527 PORT_LOCK(pi); 8528 old = lc->requested_fec; 8529 if (n == FEC_AUTO) 8530 lc->requested_fec = FEC_AUTO; 8531 else if (n == 0 || n == FEC_NONE) 8532 lc->requested_fec = FEC_NONE; 8533 else { 8534 if ((lc->pcaps | 8535 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) != 8536 lc->pcaps) { 8537 rc = ENOTSUP; 8538 goto done; 8539 } 8540 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC | 8541 FEC_MODULE); 8542 } 8543 if (!hw_off_limits(sc)) { 8544 fixup_link_config(pi); 8545 if (pi->up_vis > 0) { 8546 rc = apply_link_config(pi); 8547 if (rc != 0) { 8548 lc->requested_fec = old; 8549 if (rc == FW_EPROTO) 8550 rc = ENOTSUP; 8551 } 8552 } 8553 } 8554 done: 8555 PORT_UNLOCK(pi); 8556 end_synchronized_op(sc, 0); 8557 } 8558 8559 return (rc); 8560 } 8561 8562 static int 8563 sysctl_module_fec(SYSCTL_HANDLER_ARGS) 8564 { 8565 struct port_info *pi = arg1; 8566 struct adapter *sc = pi->adapter; 8567 struct link_config *lc = &pi->link_cfg; 8568 int rc; 8569 int8_t fec; 8570 struct sbuf *sb; 8571 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3"; 8572 8573 rc = sysctl_wire_old_buffer(req, 0); 8574 if (rc != 0) 8575 return (rc); 8576 8577 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8578 if (sb == NULL) 8579 return (ENOMEM); 8580 8581 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) { 8582 rc = EBUSY; 8583 goto done; 8584 } 8585 if (hw_off_limits(sc)) { 8586 rc = ENXIO; 8587 goto done; 8588 } 8589 PORT_LOCK(pi); 8590 if (pi->up_vis == 0) { 8591 /* 8592 * If all the interfaces are administratively down the firmware 8593 * does not report transceiver changes. Refresh port info here. 8594 * This is the only reason we have a synchronized op in this 8595 * function. Just PORT_LOCK would have been enough otherwise. 8596 */ 8597 t4_update_port_info(pi); 8598 } 8599 8600 fec = lc->fec_hint; 8601 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE || 8602 !fec_supported(lc->pcaps)) { 8603 sbuf_printf(sb, "n/a"); 8604 } else { 8605 if (fec == 0) 8606 fec = FEC_NONE; 8607 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits); 8608 } 8609 rc = sbuf_finish(sb); 8610 PORT_UNLOCK(pi); 8611 done: 8612 sbuf_delete(sb); 8613 end_synchronized_op(sc, 0); 8614 8615 return (rc); 8616 } 8617 8618 static int 8619 sysctl_autoneg(SYSCTL_HANDLER_ARGS) 8620 { 8621 struct port_info *pi = arg1; 8622 struct adapter *sc = pi->adapter; 8623 struct link_config *lc = &pi->link_cfg; 8624 int rc, val; 8625 8626 if (lc->pcaps & FW_PORT_CAP32_ANEG) 8627 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1; 8628 else 8629 val = -1; 8630 rc = sysctl_handle_int(oidp, &val, 0, req); 8631 if (rc != 0 || req->newptr == NULL) 8632 return (rc); 8633 if (val == 0) 8634 val = AUTONEG_DISABLE; 8635 else if (val == 1) 8636 val = AUTONEG_ENABLE; 8637 else 8638 val = AUTONEG_AUTO; 8639 8640 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8641 "t4aneg"); 8642 if (rc) 8643 return (rc); 8644 PORT_LOCK(pi); 8645 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 8646 rc = ENOTSUP; 8647 goto done; 8648 } 8649 lc->requested_aneg = val; 8650 if (!hw_off_limits(sc)) { 8651 fixup_link_config(pi); 8652 if (pi->up_vis > 0) 8653 rc = apply_link_config(pi); 8654 set_current_media(pi); 8655 } 8656 done: 8657 PORT_UNLOCK(pi); 8658 end_synchronized_op(sc, 0); 8659 return (rc); 8660 } 8661 8662 static int 8663 sysctl_force_fec(SYSCTL_HANDLER_ARGS) 8664 { 8665 struct port_info *pi = arg1; 8666 struct adapter *sc = pi->adapter; 8667 struct link_config *lc = &pi->link_cfg; 8668 int rc, val; 8669 8670 val = lc->force_fec; 8671 MPASS(val >= -1 && val <= 1); 8672 rc = sysctl_handle_int(oidp, &val, 0, req); 8673 if (rc != 0 || req->newptr == NULL) 8674 return (rc); 8675 if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC)) 8676 return (ENOTSUP); 8677 if (val < -1 || val > 1) 8678 return (EINVAL); 8679 8680 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff"); 8681 if (rc) 8682 return (rc); 8683 PORT_LOCK(pi); 8684 lc->force_fec = val; 8685 if (!hw_off_limits(sc)) { 8686 fixup_link_config(pi); 8687 if (pi->up_vis > 0) 8688 rc = apply_link_config(pi); 8689 } 8690 PORT_UNLOCK(pi); 8691 end_synchronized_op(sc, 0); 8692 return (rc); 8693 } 8694 8695 static int 8696 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) 8697 { 8698 struct adapter *sc = arg1; 8699 int rc, reg = arg2; 8700 uint64_t val; 8701 8702 mtx_lock(&sc->reg_lock); 8703 if (hw_off_limits(sc)) 8704 rc = ENXIO; 8705 else { 8706 rc = 0; 8707 val = t4_read_reg64(sc, reg); 8708 } 8709 mtx_unlock(&sc->reg_lock); 8710 if (rc == 0) 8711 rc = sysctl_handle_64(oidp, &val, 0, req); 8712 return (rc); 8713 } 8714 8715 static int 8716 sysctl_temperature(SYSCTL_HANDLER_ARGS) 8717 { 8718 struct adapter *sc = arg1; 8719 int rc, t; 8720 uint32_t param, val; 8721 8722 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); 8723 if (rc) 8724 return (rc); 8725 if (hw_off_limits(sc)) 8726 rc = ENXIO; 8727 else { 8728 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8729 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8730 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); 8731 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8732 } 8733 end_synchronized_op(sc, 0); 8734 if (rc) 8735 return (rc); 8736 8737 /* unknown is returned as 0 but we display -1 in that case */ 8738 t = val == 0 ? -1 : val; 8739 8740 rc = sysctl_handle_int(oidp, &t, 0, req); 8741 return (rc); 8742 } 8743 8744 static int 8745 sysctl_vdd(SYSCTL_HANDLER_ARGS) 8746 { 8747 struct adapter *sc = arg1; 8748 int rc; 8749 uint32_t param, val; 8750 8751 if (sc->params.core_vdd == 0) { 8752 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 8753 "t4vdd"); 8754 if (rc) 8755 return (rc); 8756 if (hw_off_limits(sc)) 8757 rc = ENXIO; 8758 else { 8759 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8760 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8761 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 8762 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, 8763 ¶m, &val); 8764 } 8765 end_synchronized_op(sc, 0); 8766 if (rc) 8767 return (rc); 8768 sc->params.core_vdd = val; 8769 } 8770 8771 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req)); 8772 } 8773 8774 static int 8775 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS) 8776 { 8777 struct adapter *sc = arg1; 8778 int rc, v; 8779 uint32_t param, val; 8780 8781 v = sc->sensor_resets; 8782 rc = sysctl_handle_int(oidp, &v, 0, req); 8783 if (rc != 0 || req->newptr == NULL || v <= 0) 8784 return (rc); 8785 8786 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) || 8787 chip_id(sc) < CHELSIO_T5) 8788 return (ENOTSUP); 8789 8790 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst"); 8791 if (rc) 8792 return (rc); 8793 if (hw_off_limits(sc)) 8794 rc = ENXIO; 8795 else { 8796 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8797 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8798 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR)); 8799 val = 1; 8800 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8801 } 8802 end_synchronized_op(sc, 0); 8803 if (rc == 0) 8804 sc->sensor_resets++; 8805 return (rc); 8806 } 8807 8808 static int 8809 sysctl_loadavg(SYSCTL_HANDLER_ARGS) 8810 { 8811 struct adapter *sc = arg1; 8812 struct sbuf *sb; 8813 int rc; 8814 uint32_t param, val; 8815 8816 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg"); 8817 if (rc) 8818 return (rc); 8819 if (hw_off_limits(sc)) 8820 rc = ENXIO; 8821 else { 8822 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8823 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD); 8824 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8825 } 8826 end_synchronized_op(sc, 0); 8827 if (rc) 8828 return (rc); 8829 8830 rc = sysctl_wire_old_buffer(req, 0); 8831 if (rc != 0) 8832 return (rc); 8833 8834 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8835 if (sb == NULL) 8836 return (ENOMEM); 8837 8838 if (val == 0xffffffff) { 8839 /* Only debug and custom firmwares report load averages. */ 8840 sbuf_printf(sb, "not available"); 8841 } else { 8842 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff, 8843 (val >> 16) & 0xff); 8844 } 8845 rc = sbuf_finish(sb); 8846 sbuf_delete(sb); 8847 8848 return (rc); 8849 } 8850 8851 static int 8852 sysctl_cctrl(SYSCTL_HANDLER_ARGS) 8853 { 8854 struct adapter *sc = arg1; 8855 struct sbuf *sb; 8856 int rc, i; 8857 uint16_t incr[NMTUS][NCCTRL_WIN]; 8858 static const char *dec_fac[] = { 8859 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 8860 "0.9375" 8861 }; 8862 8863 rc = sysctl_wire_old_buffer(req, 0); 8864 if (rc != 0) 8865 return (rc); 8866 8867 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8868 if (sb == NULL) 8869 return (ENOMEM); 8870 8871 mtx_lock(&sc->reg_lock); 8872 if (hw_off_limits(sc)) 8873 rc = ENXIO; 8874 else 8875 t4_read_cong_tbl(sc, incr); 8876 mtx_unlock(&sc->reg_lock); 8877 if (rc) 8878 goto done; 8879 8880 for (i = 0; i < NCCTRL_WIN; ++i) { 8881 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 8882 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], 8883 incr[5][i], incr[6][i], incr[7][i]); 8884 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 8885 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 8886 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 8887 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); 8888 } 8889 8890 rc = sbuf_finish(sb); 8891 done: 8892 sbuf_delete(sb); 8893 return (rc); 8894 } 8895 8896 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { 8897 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ 8898 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ 8899 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ 8900 }; 8901 8902 static int 8903 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS) 8904 { 8905 struct adapter *sc = arg1; 8906 struct sbuf *sb; 8907 int rc, i, n, qid = arg2; 8908 uint32_t *buf, *p; 8909 char *qtype; 8910 u_int cim_num_obq = sc->chip_params->cim_num_obq; 8911 8912 KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq, 8913 ("%s: bad qid %d\n", __func__, qid)); 8914 8915 if (qid < CIM_NUM_IBQ) { 8916 /* inbound queue */ 8917 qtype = "IBQ"; 8918 n = 4 * CIM_IBQ_SIZE; 8919 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 8920 mtx_lock(&sc->reg_lock); 8921 if (hw_off_limits(sc)) 8922 rc = -ENXIO; 8923 else 8924 rc = t4_read_cim_ibq(sc, qid, buf, n); 8925 mtx_unlock(&sc->reg_lock); 8926 } else { 8927 /* outbound queue */ 8928 qtype = "OBQ"; 8929 qid -= CIM_NUM_IBQ; 8930 n = 4 * cim_num_obq * CIM_OBQ_SIZE; 8931 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 8932 mtx_lock(&sc->reg_lock); 8933 if (hw_off_limits(sc)) 8934 rc = -ENXIO; 8935 else 8936 rc = t4_read_cim_obq(sc, qid, buf, n); 8937 mtx_unlock(&sc->reg_lock); 8938 } 8939 8940 if (rc < 0) { 8941 rc = -rc; 8942 goto done; 8943 } 8944 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 8945 8946 rc = sysctl_wire_old_buffer(req, 0); 8947 if (rc != 0) 8948 goto done; 8949 8950 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 8951 if (sb == NULL) { 8952 rc = ENOMEM; 8953 goto done; 8954 } 8955 8956 sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]); 8957 for (i = 0, p = buf; i < n; i += 16, p += 4) 8958 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 8959 p[2], p[3]); 8960 8961 rc = sbuf_finish(sb); 8962 sbuf_delete(sb); 8963 done: 8964 free(buf, M_CXGBE); 8965 return (rc); 8966 } 8967 8968 static void 8969 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 8970 { 8971 uint32_t *p; 8972 8973 sbuf_printf(sb, "Status Data PC%s", 8974 cfg & F_UPDBGLACAPTPCONLY ? "" : 8975 " LS0Stat LS0Addr LS0Data"); 8976 8977 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) { 8978 if (cfg & F_UPDBGLACAPTPCONLY) { 8979 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, 8980 p[6], p[7]); 8981 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", 8982 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 8983 p[4] & 0xff, p[5] >> 8); 8984 sbuf_printf(sb, "\n %02x %x%07x %x%07x", 8985 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 8986 p[1] & 0xf, p[2] >> 4); 8987 } else { 8988 sbuf_printf(sb, 8989 "\n %02x %x%07x %x%07x %08x %08x " 8990 "%08x%08x%08x%08x", 8991 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 8992 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 8993 p[6], p[7]); 8994 } 8995 } 8996 } 8997 8998 static void 8999 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 9000 { 9001 uint32_t *p; 9002 9003 sbuf_printf(sb, "Status Inst Data PC%s", 9004 cfg & F_UPDBGLACAPTPCONLY ? "" : 9005 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data"); 9006 9007 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) { 9008 if (cfg & F_UPDBGLACAPTPCONLY) { 9009 sbuf_printf(sb, "\n %02x %08x %08x %08x", 9010 p[3] & 0xff, p[2], p[1], p[0]); 9011 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x", 9012 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, 9013 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); 9014 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x", 9015 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, 9016 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, 9017 p[6] >> 16); 9018 } else { 9019 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x " 9020 "%08x %08x %08x %08x %08x %08x", 9021 (p[9] >> 16) & 0xff, 9022 p[9] & 0xffff, p[8] >> 16, 9023 p[8] & 0xffff, p[7] >> 16, 9024 p[7] & 0xffff, p[6] >> 16, 9025 p[2], p[1], p[0], p[5], p[4], p[3]); 9026 } 9027 } 9028 } 9029 9030 static int 9031 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags) 9032 { 9033 uint32_t cfg, *buf; 9034 int rc; 9035 9036 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9037 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 9038 M_ZERO | flags); 9039 if (buf == NULL) 9040 return (ENOMEM); 9041 9042 mtx_lock(&sc->reg_lock); 9043 if (hw_off_limits(sc)) 9044 rc = ENXIO; 9045 else { 9046 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg); 9047 if (rc == 0) 9048 rc = -t4_cim_read_la(sc, buf, NULL); 9049 } 9050 mtx_unlock(&sc->reg_lock); 9051 if (rc == 0) { 9052 if (chip_id(sc) < CHELSIO_T6) 9053 sbuf_cim_la4(sc, sb, buf, cfg); 9054 else 9055 sbuf_cim_la6(sc, sb, buf, cfg); 9056 } 9057 free(buf, M_CXGBE); 9058 return (rc); 9059 } 9060 9061 static int 9062 sysctl_cim_la(SYSCTL_HANDLER_ARGS) 9063 { 9064 struct adapter *sc = arg1; 9065 struct sbuf *sb; 9066 int rc; 9067 9068 rc = sysctl_wire_old_buffer(req, 0); 9069 if (rc != 0) 9070 return (rc); 9071 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9072 if (sb == NULL) 9073 return (ENOMEM); 9074 9075 rc = sbuf_cim_la(sc, sb, M_WAITOK); 9076 if (rc == 0) 9077 rc = sbuf_finish(sb); 9078 sbuf_delete(sb); 9079 return (rc); 9080 } 9081 9082 static void 9083 dump_cim_regs(struct adapter *sc) 9084 { 9085 log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n", 9086 device_get_nameunit(sc->dev), 9087 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9088 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9089 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2), 9090 t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN), 9091 t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA)); 9092 log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n", 9093 device_get_nameunit(sc->dev), 9094 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9095 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9096 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800), 9097 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800), 9098 t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN)); 9099 } 9100 9101 static void 9102 dump_cimla(struct adapter *sc) 9103 { 9104 struct sbuf sb; 9105 int rc; 9106 9107 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9108 log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n", 9109 device_get_nameunit(sc->dev)); 9110 return; 9111 } 9112 rc = sbuf_cim_la(sc, &sb, M_WAITOK); 9113 if (rc == 0) { 9114 rc = sbuf_finish(&sb); 9115 if (rc == 0) { 9116 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n", 9117 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9118 } 9119 } 9120 sbuf_delete(&sb); 9121 } 9122 9123 void 9124 t4_os_cim_err(struct adapter *sc) 9125 { 9126 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 9127 } 9128 9129 static int 9130 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) 9131 { 9132 struct adapter *sc = arg1; 9133 u_int i; 9134 struct sbuf *sb; 9135 uint32_t *buf, *p; 9136 int rc; 9137 9138 rc = sysctl_wire_old_buffer(req, 0); 9139 if (rc != 0) 9140 return (rc); 9141 9142 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9143 if (sb == NULL) 9144 return (ENOMEM); 9145 9146 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, 9147 M_ZERO | M_WAITOK); 9148 9149 mtx_lock(&sc->reg_lock); 9150 if (hw_off_limits(sc)) 9151 rc = ENXIO; 9152 else 9153 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); 9154 mtx_unlock(&sc->reg_lock); 9155 if (rc) 9156 goto done; 9157 9158 p = buf; 9159 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9160 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], 9161 p[1], p[0]); 9162 } 9163 9164 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); 9165 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9166 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", 9167 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 9168 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 9169 (p[1] >> 2) | ((p[2] & 3) << 30), 9170 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 9171 p[0] & 1); 9172 } 9173 rc = sbuf_finish(sb); 9174 done: 9175 sbuf_delete(sb); 9176 free(buf, M_CXGBE); 9177 return (rc); 9178 } 9179 9180 static int 9181 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) 9182 { 9183 struct adapter *sc = arg1; 9184 u_int i; 9185 struct sbuf *sb; 9186 uint32_t *buf, *p; 9187 int rc; 9188 9189 rc = sysctl_wire_old_buffer(req, 0); 9190 if (rc != 0) 9191 return (rc); 9192 9193 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9194 if (sb == NULL) 9195 return (ENOMEM); 9196 9197 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, 9198 M_ZERO | M_WAITOK); 9199 9200 mtx_lock(&sc->reg_lock); 9201 if (hw_off_limits(sc)) 9202 rc = ENXIO; 9203 else 9204 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); 9205 mtx_unlock(&sc->reg_lock); 9206 if (rc) 9207 goto done; 9208 9209 p = buf; 9210 sbuf_printf(sb, "Cntl ID DataBE Addr Data"); 9211 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9212 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", 9213 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, 9214 p[4], p[3], p[2], p[1], p[0]); 9215 } 9216 9217 sbuf_printf(sb, "\n\nCntl ID Data"); 9218 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9219 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", 9220 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); 9221 } 9222 9223 rc = sbuf_finish(sb); 9224 done: 9225 sbuf_delete(sb); 9226 free(buf, M_CXGBE); 9227 return (rc); 9228 } 9229 9230 static int 9231 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) 9232 { 9233 struct adapter *sc = arg1; 9234 struct sbuf *sb; 9235 int rc, i; 9236 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9237 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9238 uint16_t thres[CIM_NUM_IBQ]; 9239 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; 9240 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; 9241 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; 9242 9243 cim_num_obq = sc->chip_params->cim_num_obq; 9244 if (is_t4(sc)) { 9245 ibq_rdaddr = A_UP_IBQ_0_RDADDR; 9246 obq_rdaddr = A_UP_OBQ_0_REALADDR; 9247 } else { 9248 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; 9249 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; 9250 } 9251 nq = CIM_NUM_IBQ + cim_num_obq; 9252 9253 mtx_lock(&sc->reg_lock); 9254 if (hw_off_limits(sc)) 9255 rc = ENXIO; 9256 else { 9257 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); 9258 if (rc == 0) { 9259 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, 9260 obq_wr); 9261 if (rc == 0) 9262 t4_read_cimq_cfg(sc, base, size, thres); 9263 } 9264 } 9265 mtx_unlock(&sc->reg_lock); 9266 if (rc) 9267 return (rc); 9268 9269 rc = sysctl_wire_old_buffer(req, 0); 9270 if (rc != 0) 9271 return (rc); 9272 9273 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9274 if (sb == NULL) 9275 return (ENOMEM); 9276 9277 sbuf_printf(sb, 9278 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 9279 9280 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 9281 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 9282 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), 9283 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9284 G_QUEREMFLITS(p[2]) * 16); 9285 for ( ; i < nq; i++, p += 4, wr += 2) 9286 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], 9287 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, 9288 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9289 G_QUEREMFLITS(p[2]) * 16); 9290 9291 rc = sbuf_finish(sb); 9292 sbuf_delete(sb); 9293 9294 return (rc); 9295 } 9296 9297 static int 9298 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) 9299 { 9300 struct adapter *sc = arg1; 9301 struct sbuf *sb; 9302 int rc; 9303 struct tp_cpl_stats stats; 9304 9305 rc = sysctl_wire_old_buffer(req, 0); 9306 if (rc != 0) 9307 return (rc); 9308 9309 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9310 if (sb == NULL) 9311 return (ENOMEM); 9312 9313 mtx_lock(&sc->reg_lock); 9314 if (hw_off_limits(sc)) 9315 rc = ENXIO; 9316 else 9317 t4_tp_get_cpl_stats(sc, &stats, 0); 9318 mtx_unlock(&sc->reg_lock); 9319 if (rc) 9320 goto done; 9321 9322 if (sc->chip_params->nchan > 2) { 9323 sbuf_printf(sb, " channel 0 channel 1" 9324 " channel 2 channel 3"); 9325 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u", 9326 stats.req[0], stats.req[1], stats.req[2], stats.req[3]); 9327 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u", 9328 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); 9329 } else { 9330 sbuf_printf(sb, " channel 0 channel 1"); 9331 sbuf_printf(sb, "\nCPL requests: %10u %10u", 9332 stats.req[0], stats.req[1]); 9333 sbuf_printf(sb, "\nCPL responses: %10u %10u", 9334 stats.rsp[0], stats.rsp[1]); 9335 } 9336 9337 rc = sbuf_finish(sb); 9338 done: 9339 sbuf_delete(sb); 9340 return (rc); 9341 } 9342 9343 static int 9344 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) 9345 { 9346 struct adapter *sc = arg1; 9347 struct sbuf *sb; 9348 int rc; 9349 struct tp_usm_stats stats; 9350 9351 rc = sysctl_wire_old_buffer(req, 0); 9352 if (rc != 0) 9353 return(rc); 9354 9355 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9356 if (sb == NULL) 9357 return (ENOMEM); 9358 9359 mtx_lock(&sc->reg_lock); 9360 if (hw_off_limits(sc)) 9361 rc = ENXIO; 9362 else 9363 t4_get_usm_stats(sc, &stats, 1); 9364 mtx_unlock(&sc->reg_lock); 9365 if (rc == 0) { 9366 sbuf_printf(sb, "Frames: %u\n", stats.frames); 9367 sbuf_printf(sb, "Octets: %ju\n", stats.octets); 9368 sbuf_printf(sb, "Drops: %u", stats.drops); 9369 rc = sbuf_finish(sb); 9370 } 9371 sbuf_delete(sb); 9372 9373 return (rc); 9374 } 9375 9376 static int 9377 sysctl_tid_stats(SYSCTL_HANDLER_ARGS) 9378 { 9379 struct adapter *sc = arg1; 9380 struct sbuf *sb; 9381 int rc; 9382 struct tp_tid_stats stats; 9383 9384 rc = sysctl_wire_old_buffer(req, 0); 9385 if (rc != 0) 9386 return(rc); 9387 9388 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9389 if (sb == NULL) 9390 return (ENOMEM); 9391 9392 mtx_lock(&sc->reg_lock); 9393 if (hw_off_limits(sc)) 9394 rc = ENXIO; 9395 else 9396 t4_tp_get_tid_stats(sc, &stats, 1); 9397 mtx_unlock(&sc->reg_lock); 9398 if (rc == 0) { 9399 sbuf_printf(sb, "Delete: %u\n", stats.del); 9400 sbuf_printf(sb, "Invalidate: %u\n", stats.inv); 9401 sbuf_printf(sb, "Active: %u\n", stats.act); 9402 sbuf_printf(sb, "Passive: %u", stats.pas); 9403 rc = sbuf_finish(sb); 9404 } 9405 sbuf_delete(sb); 9406 9407 return (rc); 9408 } 9409 9410 static const char * const devlog_level_strings[] = { 9411 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 9412 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 9413 [FW_DEVLOG_LEVEL_ERR] = "ERR", 9414 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 9415 [FW_DEVLOG_LEVEL_INFO] = "INFO", 9416 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 9417 }; 9418 9419 static const char * const devlog_facility_strings[] = { 9420 [FW_DEVLOG_FACILITY_CORE] = "CORE", 9421 [FW_DEVLOG_FACILITY_CF] = "CF", 9422 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 9423 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 9424 [FW_DEVLOG_FACILITY_RES] = "RES", 9425 [FW_DEVLOG_FACILITY_HW] = "HW", 9426 [FW_DEVLOG_FACILITY_FLR] = "FLR", 9427 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 9428 [FW_DEVLOG_FACILITY_PHY] = "PHY", 9429 [FW_DEVLOG_FACILITY_MAC] = "MAC", 9430 [FW_DEVLOG_FACILITY_PORT] = "PORT", 9431 [FW_DEVLOG_FACILITY_VI] = "VI", 9432 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 9433 [FW_DEVLOG_FACILITY_ACL] = "ACL", 9434 [FW_DEVLOG_FACILITY_TM] = "TM", 9435 [FW_DEVLOG_FACILITY_QFC] = "QFC", 9436 [FW_DEVLOG_FACILITY_DCB] = "DCB", 9437 [FW_DEVLOG_FACILITY_ETH] = "ETH", 9438 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 9439 [FW_DEVLOG_FACILITY_RI] = "RI", 9440 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 9441 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 9442 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 9443 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE", 9444 [FW_DEVLOG_FACILITY_CHNET] = "CHNET", 9445 }; 9446 9447 static int 9448 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags) 9449 { 9450 int i, j, rc, nentries, first = 0; 9451 struct devlog_params *dparams = &sc->params.devlog; 9452 struct fw_devlog_e *buf, *e; 9453 uint64_t ftstamp = UINT64_MAX; 9454 9455 if (dparams->addr == 0) 9456 return (ENXIO); 9457 9458 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9459 buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags); 9460 if (buf == NULL) 9461 return (ENOMEM); 9462 9463 mtx_lock(&sc->reg_lock); 9464 if (hw_off_limits(sc)) 9465 rc = ENXIO; 9466 else 9467 rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, 9468 dparams->size); 9469 mtx_unlock(&sc->reg_lock); 9470 if (rc != 0) 9471 goto done; 9472 9473 nentries = dparams->size / sizeof(struct fw_devlog_e); 9474 for (i = 0; i < nentries; i++) { 9475 e = &buf[i]; 9476 9477 if (e->timestamp == 0) 9478 break; /* end */ 9479 9480 e->timestamp = be64toh(e->timestamp); 9481 e->seqno = be32toh(e->seqno); 9482 for (j = 0; j < 8; j++) 9483 e->params[j] = be32toh(e->params[j]); 9484 9485 if (e->timestamp < ftstamp) { 9486 ftstamp = e->timestamp; 9487 first = i; 9488 } 9489 } 9490 9491 if (buf[first].timestamp == 0) 9492 goto done; /* nothing in the log */ 9493 9494 sbuf_printf(sb, "%10s %15s %8s %8s %s\n", 9495 "Seq#", "Tstamp", "Level", "Facility", "Message"); 9496 9497 i = first; 9498 do { 9499 e = &buf[i]; 9500 if (e->timestamp == 0) 9501 break; /* end */ 9502 9503 sbuf_printf(sb, "%10d %15ju %8s %8s ", 9504 e->seqno, e->timestamp, 9505 (e->level < nitems(devlog_level_strings) ? 9506 devlog_level_strings[e->level] : "UNKNOWN"), 9507 (e->facility < nitems(devlog_facility_strings) ? 9508 devlog_facility_strings[e->facility] : "UNKNOWN")); 9509 sbuf_printf(sb, e->fmt, e->params[0], e->params[1], 9510 e->params[2], e->params[3], e->params[4], 9511 e->params[5], e->params[6], e->params[7]); 9512 9513 if (++i == nentries) 9514 i = 0; 9515 } while (i != first); 9516 done: 9517 free(buf, M_CXGBE); 9518 return (rc); 9519 } 9520 9521 static int 9522 sysctl_devlog(SYSCTL_HANDLER_ARGS) 9523 { 9524 struct adapter *sc = arg1; 9525 int rc; 9526 struct sbuf *sb; 9527 9528 rc = sysctl_wire_old_buffer(req, 0); 9529 if (rc != 0) 9530 return (rc); 9531 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9532 if (sb == NULL) 9533 return (ENOMEM); 9534 9535 rc = sbuf_devlog(sc, sb, M_WAITOK); 9536 if (rc == 0) 9537 rc = sbuf_finish(sb); 9538 sbuf_delete(sb); 9539 return (rc); 9540 } 9541 9542 static void 9543 dump_devlog(struct adapter *sc) 9544 { 9545 int rc; 9546 struct sbuf sb; 9547 9548 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9549 log(LOG_DEBUG, "%s: failed to generate devlog dump.\n", 9550 device_get_nameunit(sc->dev)); 9551 return; 9552 } 9553 rc = sbuf_devlog(sc, &sb, M_WAITOK); 9554 if (rc == 0) { 9555 rc = sbuf_finish(&sb); 9556 if (rc == 0) { 9557 log(LOG_DEBUG, "%s: device log follows.\n%s", 9558 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9559 } 9560 } 9561 sbuf_delete(&sb); 9562 } 9563 9564 static int 9565 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) 9566 { 9567 struct adapter *sc = arg1; 9568 struct sbuf *sb; 9569 int rc; 9570 struct tp_fcoe_stats stats[MAX_NCHAN]; 9571 int i, nchan = sc->chip_params->nchan; 9572 9573 rc = sysctl_wire_old_buffer(req, 0); 9574 if (rc != 0) 9575 return (rc); 9576 9577 mtx_lock(&sc->reg_lock); 9578 if (hw_off_limits(sc)) 9579 rc = ENXIO; 9580 else { 9581 for (i = 0; i < nchan; i++) 9582 t4_get_fcoe_stats(sc, i, &stats[i], 1); 9583 } 9584 mtx_unlock(&sc->reg_lock); 9585 if (rc != 0) 9586 return (rc); 9587 9588 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9589 if (sb == NULL) 9590 return (ENOMEM); 9591 9592 if (nchan > 2) { 9593 sbuf_printf(sb, " channel 0 channel 1" 9594 " channel 2 channel 3"); 9595 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju", 9596 stats[0].octets_ddp, stats[1].octets_ddp, 9597 stats[2].octets_ddp, stats[3].octets_ddp); 9598 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u", 9599 stats[0].frames_ddp, stats[1].frames_ddp, 9600 stats[2].frames_ddp, stats[3].frames_ddp); 9601 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u", 9602 stats[0].frames_drop, stats[1].frames_drop, 9603 stats[2].frames_drop, stats[3].frames_drop); 9604 } else { 9605 sbuf_printf(sb, " channel 0 channel 1"); 9606 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju", 9607 stats[0].octets_ddp, stats[1].octets_ddp); 9608 sbuf_printf(sb, "\nframesDDP: %16u %16u", 9609 stats[0].frames_ddp, stats[1].frames_ddp); 9610 sbuf_printf(sb, "\nframesDrop: %16u %16u", 9611 stats[0].frames_drop, stats[1].frames_drop); 9612 } 9613 9614 rc = sbuf_finish(sb); 9615 sbuf_delete(sb); 9616 9617 return (rc); 9618 } 9619 9620 static int 9621 sysctl_hw_sched(SYSCTL_HANDLER_ARGS) 9622 { 9623 struct adapter *sc = arg1; 9624 struct sbuf *sb; 9625 int rc, i; 9626 unsigned int map, kbps, ipg, mode; 9627 unsigned int pace_tab[NTX_SCHED]; 9628 9629 rc = sysctl_wire_old_buffer(req, 0); 9630 if (rc != 0) 9631 return (rc); 9632 9633 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req); 9634 if (sb == NULL) 9635 return (ENOMEM); 9636 9637 mtx_lock(&sc->reg_lock); 9638 if (hw_off_limits(sc)) { 9639 rc = ENXIO; 9640 goto done; 9641 } 9642 9643 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); 9644 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); 9645 t4_read_pace_tbl(sc, pace_tab); 9646 9647 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " 9648 "Class IPG (0.1 ns) Flow IPG (us)"); 9649 9650 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { 9651 t4_get_tx_sched(sc, i, &kbps, &ipg, 1); 9652 sbuf_printf(sb, "\n %u %-5s %u ", i, 9653 (mode & (1 << i)) ? "flow" : "class", map & 3); 9654 if (kbps) 9655 sbuf_printf(sb, "%9u ", kbps); 9656 else 9657 sbuf_printf(sb, " disabled "); 9658 9659 if (ipg) 9660 sbuf_printf(sb, "%13u ", ipg); 9661 else 9662 sbuf_printf(sb, " disabled "); 9663 9664 if (pace_tab[i]) 9665 sbuf_printf(sb, "%10u", pace_tab[i]); 9666 else 9667 sbuf_printf(sb, " disabled"); 9668 } 9669 rc = sbuf_finish(sb); 9670 done: 9671 mtx_unlock(&sc->reg_lock); 9672 sbuf_delete(sb); 9673 return (rc); 9674 } 9675 9676 static int 9677 sysctl_lb_stats(SYSCTL_HANDLER_ARGS) 9678 { 9679 struct adapter *sc = arg1; 9680 struct sbuf *sb; 9681 int rc, i, j; 9682 uint64_t *p0, *p1; 9683 struct lb_port_stats s[2]; 9684 static const char *stat_name[] = { 9685 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", 9686 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", 9687 "Frames128To255:", "Frames256To511:", "Frames512To1023:", 9688 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", 9689 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", 9690 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", 9691 "BG2FramesTrunc:", "BG3FramesTrunc:" 9692 }; 9693 9694 rc = sysctl_wire_old_buffer(req, 0); 9695 if (rc != 0) 9696 return (rc); 9697 9698 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9699 if (sb == NULL) 9700 return (ENOMEM); 9701 9702 memset(s, 0, sizeof(s)); 9703 9704 for (i = 0; i < sc->chip_params->nchan; i += 2) { 9705 mtx_lock(&sc->reg_lock); 9706 if (hw_off_limits(sc)) 9707 rc = ENXIO; 9708 else { 9709 t4_get_lb_stats(sc, i, &s[0]); 9710 t4_get_lb_stats(sc, i + 1, &s[1]); 9711 } 9712 mtx_unlock(&sc->reg_lock); 9713 if (rc != 0) 9714 break; 9715 9716 p0 = &s[0].octets; 9717 p1 = &s[1].octets; 9718 sbuf_printf(sb, "%s Loopback %u" 9719 " Loopback %u", i == 0 ? "" : "\n", i, i + 1); 9720 9721 for (j = 0; j < nitems(stat_name); j++) 9722 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], 9723 *p0++, *p1++); 9724 } 9725 9726 rc = sbuf_finish(sb); 9727 sbuf_delete(sb); 9728 9729 return (rc); 9730 } 9731 9732 static int 9733 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) 9734 { 9735 int rc = 0; 9736 struct port_info *pi = arg1; 9737 struct link_config *lc = &pi->link_cfg; 9738 struct sbuf *sb; 9739 9740 rc = sysctl_wire_old_buffer(req, 0); 9741 if (rc != 0) 9742 return(rc); 9743 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); 9744 if (sb == NULL) 9745 return (ENOMEM); 9746 9747 if (lc->link_ok || lc->link_down_rc == 255) 9748 sbuf_printf(sb, "n/a"); 9749 else 9750 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc)); 9751 9752 rc = sbuf_finish(sb); 9753 sbuf_delete(sb); 9754 9755 return (rc); 9756 } 9757 9758 struct mem_desc { 9759 u_int base; 9760 u_int limit; 9761 u_int idx; 9762 }; 9763 9764 static int 9765 mem_desc_cmp(const void *a, const void *b) 9766 { 9767 const u_int v1 = ((const struct mem_desc *)a)->base; 9768 const u_int v2 = ((const struct mem_desc *)b)->base; 9769 9770 if (v1 < v2) 9771 return (-1); 9772 else if (v1 > v2) 9773 return (1); 9774 9775 return (0); 9776 } 9777 9778 static void 9779 mem_region_show(struct sbuf *sb, const char *name, unsigned int from, 9780 unsigned int to) 9781 { 9782 unsigned int size; 9783 9784 if (from == to) 9785 return; 9786 9787 size = to - from + 1; 9788 if (size == 0) 9789 return; 9790 9791 /* XXX: need humanize_number(3) in libkern for a more readable 'size' */ 9792 sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size); 9793 } 9794 9795 static int 9796 sysctl_meminfo(SYSCTL_HANDLER_ARGS) 9797 { 9798 struct adapter *sc = arg1; 9799 struct sbuf *sb; 9800 int rc, i, n; 9801 uint32_t lo, hi, used, free, alloc; 9802 static const char *memory[] = { 9803 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:" 9804 }; 9805 static const char *region[] = { 9806 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", 9807 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", 9808 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", 9809 "TDDP region:", "TPT region:", "STAG region:", "RQ region:", 9810 "RQUDP region:", "PBL region:", "TXPBL region:", 9811 "TLSKey region:", "DBVFIFO region:", "ULPRX state:", 9812 "ULPTX state:", "On-chip queues:", 9813 }; 9814 struct mem_desc avail[4]; 9815 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ 9816 struct mem_desc *md = mem; 9817 9818 rc = sysctl_wire_old_buffer(req, 0); 9819 if (rc != 0) 9820 return (rc); 9821 9822 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9823 if (sb == NULL) 9824 return (ENOMEM); 9825 9826 for (i = 0; i < nitems(mem); i++) { 9827 mem[i].limit = 0; 9828 mem[i].idx = i; 9829 } 9830 9831 mtx_lock(&sc->reg_lock); 9832 if (hw_off_limits(sc)) { 9833 rc = ENXIO; 9834 goto done; 9835 } 9836 9837 /* Find and sort the populated memory ranges */ 9838 i = 0; 9839 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 9840 if (lo & F_EDRAM0_ENABLE) { 9841 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); 9842 avail[i].base = G_EDRAM0_BASE(hi) << 20; 9843 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20); 9844 avail[i].idx = 0; 9845 i++; 9846 } 9847 if (lo & F_EDRAM1_ENABLE) { 9848 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); 9849 avail[i].base = G_EDRAM1_BASE(hi) << 20; 9850 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20); 9851 avail[i].idx = 1; 9852 i++; 9853 } 9854 if (lo & F_EXT_MEM_ENABLE) { 9855 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 9856 avail[i].base = G_EXT_MEM_BASE(hi) << 20; 9857 avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20); 9858 avail[i].idx = is_t5(sc) ? 3 : 2; /* Call it MC0 for T5 */ 9859 i++; 9860 } 9861 if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) { 9862 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9863 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9864 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 9865 avail[i].idx = 4; 9866 i++; 9867 } 9868 if (is_t6(sc) && lo & F_HMA_MUX) { 9869 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9870 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9871 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 9872 avail[i].idx = 5; 9873 i++; 9874 } 9875 MPASS(i <= nitems(avail)); 9876 if (!i) /* no memory available */ 9877 goto done; 9878 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); 9879 9880 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); 9881 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); 9882 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); 9883 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 9884 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); 9885 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); 9886 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); 9887 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); 9888 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); 9889 9890 /* the next few have explicit upper bounds */ 9891 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); 9892 md->limit = md->base - 1 + 9893 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * 9894 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); 9895 md++; 9896 9897 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); 9898 md->limit = md->base - 1 + 9899 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * 9900 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); 9901 md++; 9902 9903 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 9904 if (chip_id(sc) <= CHELSIO_T5) 9905 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); 9906 else 9907 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR); 9908 md->limit = 0; 9909 } else { 9910 md->base = 0; 9911 md->idx = nitems(region); /* hide it */ 9912 } 9913 md++; 9914 9915 #define ulp_region(reg) \ 9916 md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\ 9917 (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) 9918 9919 ulp_region(RX_ISCSI); 9920 ulp_region(RX_TDDP); 9921 ulp_region(TX_TPT); 9922 ulp_region(RX_STAG); 9923 ulp_region(RX_RQ); 9924 ulp_region(RX_RQUDP); 9925 ulp_region(RX_PBL); 9926 ulp_region(TX_PBL); 9927 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 9928 ulp_region(RX_TLS_KEY); 9929 } 9930 #undef ulp_region 9931 9932 md->base = 0; 9933 if (is_t4(sc)) 9934 md->idx = nitems(region); 9935 else { 9936 uint32_t size = 0; 9937 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2); 9938 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE); 9939 9940 if (is_t5(sc)) { 9941 if (sge_ctrl & F_VFIFO_ENABLE) 9942 size = fifo_size << 2; 9943 } else 9944 size = G_T6_DBVFIFO_SIZE(fifo_size) << 6; 9945 9946 if (size) { 9947 md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR); 9948 md->limit = md->base + size - 1; 9949 } else 9950 md->idx = nitems(region); 9951 } 9952 md++; 9953 9954 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); 9955 md->limit = 0; 9956 md++; 9957 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); 9958 md->limit = 0; 9959 md++; 9960 9961 md->base = sc->vres.ocq.start; 9962 if (sc->vres.ocq.size) 9963 md->limit = md->base + sc->vres.ocq.size - 1; 9964 else 9965 md->idx = nitems(region); /* hide it */ 9966 md++; 9967 9968 /* add any address-space holes, there can be up to 3 */ 9969 for (n = 0; n < i - 1; n++) 9970 if (avail[n].limit < avail[n + 1].base) 9971 (md++)->base = avail[n].limit; 9972 if (avail[n].limit) 9973 (md++)->base = avail[n].limit; 9974 9975 n = md - mem; 9976 MPASS(n <= nitems(mem)); 9977 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); 9978 9979 for (lo = 0; lo < i; lo++) 9980 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, 9981 avail[lo].limit - 1); 9982 9983 sbuf_printf(sb, "\n"); 9984 for (i = 0; i < n; i++) { 9985 if (mem[i].idx >= nitems(region)) 9986 continue; /* skip holes */ 9987 if (!mem[i].limit) 9988 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; 9989 mem_region_show(sb, region[mem[i].idx], mem[i].base, 9990 mem[i].limit); 9991 } 9992 9993 sbuf_printf(sb, "\n"); 9994 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); 9995 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; 9996 mem_region_show(sb, "uP RAM:", lo, hi); 9997 9998 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); 9999 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; 10000 mem_region_show(sb, "uP Extmem2:", lo, hi); 10001 10002 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); 10003 for (i = 0, free = 0; i < 2; i++) 10004 free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT)); 10005 sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n", 10006 G_PMRXMAXPAGE(lo), free, 10007 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, 10008 (lo & F_PMRXNUMCHN) ? 2 : 1); 10009 10010 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); 10011 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); 10012 for (i = 0, free = 0; i < 4; i++) 10013 free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT)); 10014 sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n", 10015 G_PMTXMAXPAGE(lo), free, 10016 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), 10017 hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo)); 10018 sbuf_printf(sb, "%u p-structs (%u free)\n", 10019 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT), 10020 G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT))); 10021 10022 for (i = 0; i < 4; i++) { 10023 if (chip_id(sc) > CHELSIO_T5) 10024 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4); 10025 else 10026 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); 10027 if (is_t5(sc)) { 10028 used = G_T5_USED(lo); 10029 alloc = G_T5_ALLOC(lo); 10030 } else { 10031 used = G_USED(lo); 10032 alloc = G_ALLOC(lo); 10033 } 10034 /* For T6 these are MAC buffer groups */ 10035 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", 10036 i, used, alloc); 10037 } 10038 for (i = 0; i < sc->chip_params->nchan; i++) { 10039 if (chip_id(sc) > CHELSIO_T5) 10040 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4); 10041 else 10042 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); 10043 if (is_t5(sc)) { 10044 used = G_T5_USED(lo); 10045 alloc = G_T5_ALLOC(lo); 10046 } else { 10047 used = G_USED(lo); 10048 alloc = G_ALLOC(lo); 10049 } 10050 /* For T6 these are MAC buffer groups */ 10051 sbuf_printf(sb, 10052 "\nLoopback %d using %u pages out of %u allocated", 10053 i, used, alloc); 10054 } 10055 done: 10056 mtx_unlock(&sc->reg_lock); 10057 if (rc == 0) 10058 rc = sbuf_finish(sb); 10059 sbuf_delete(sb); 10060 return (rc); 10061 } 10062 10063 static inline void 10064 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) 10065 { 10066 *mask = x | y; 10067 y = htobe64(y); 10068 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); 10069 } 10070 10071 static int 10072 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) 10073 { 10074 struct adapter *sc = arg1; 10075 struct sbuf *sb; 10076 int rc, i; 10077 10078 MPASS(chip_id(sc) <= CHELSIO_T5); 10079 10080 rc = sysctl_wire_old_buffer(req, 0); 10081 if (rc != 0) 10082 return (rc); 10083 10084 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10085 if (sb == NULL) 10086 return (ENOMEM); 10087 10088 sbuf_printf(sb, 10089 "Idx Ethernet address Mask Vld Ports PF" 10090 " VF Replication P0 P1 P2 P3 ML"); 10091 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10092 uint64_t tcamx, tcamy, mask; 10093 uint32_t cls_lo, cls_hi; 10094 uint8_t addr[ETHER_ADDR_LEN]; 10095 10096 mtx_lock(&sc->reg_lock); 10097 if (hw_off_limits(sc)) 10098 rc = ENXIO; 10099 else { 10100 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); 10101 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); 10102 } 10103 mtx_unlock(&sc->reg_lock); 10104 if (rc != 0) 10105 break; 10106 if (tcamx & tcamy) 10107 continue; 10108 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10109 mtx_lock(&sc->reg_lock); 10110 if (hw_off_limits(sc)) 10111 rc = ENXIO; 10112 else { 10113 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10114 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10115 } 10116 mtx_unlock(&sc->reg_lock); 10117 if (rc != 0) 10118 break; 10119 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" 10120 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], 10121 addr[3], addr[4], addr[5], (uintmax_t)mask, 10122 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', 10123 G_PORTMAP(cls_hi), G_PF(cls_lo), 10124 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); 10125 10126 if (cls_lo & F_REPLICATE) { 10127 struct fw_ldst_cmd ldst_cmd; 10128 10129 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10130 ldst_cmd.op_to_addrspace = 10131 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10132 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10133 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10134 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10135 ldst_cmd.u.mps.rplc.fid_idx = 10136 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10137 V_FW_LDST_CMD_IDX(i)); 10138 10139 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10140 "t4mps"); 10141 if (rc) 10142 break; 10143 if (hw_off_limits(sc)) 10144 rc = ENXIO; 10145 else 10146 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10147 sizeof(ldst_cmd), &ldst_cmd); 10148 end_synchronized_op(sc, 0); 10149 if (rc != 0) 10150 break; 10151 else { 10152 sbuf_printf(sb, " %08x %08x %08x %08x", 10153 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10154 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10155 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10156 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10157 } 10158 } else 10159 sbuf_printf(sb, "%36s", ""); 10160 10161 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), 10162 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), 10163 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); 10164 } 10165 10166 if (rc) 10167 (void) sbuf_finish(sb); 10168 else 10169 rc = sbuf_finish(sb); 10170 sbuf_delete(sb); 10171 10172 return (rc); 10173 } 10174 10175 static int 10176 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS) 10177 { 10178 struct adapter *sc = arg1; 10179 struct sbuf *sb; 10180 int rc, i; 10181 10182 MPASS(chip_id(sc) > CHELSIO_T5); 10183 10184 rc = sysctl_wire_old_buffer(req, 0); 10185 if (rc != 0) 10186 return (rc); 10187 10188 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10189 if (sb == NULL) 10190 return (ENOMEM); 10191 10192 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 10193 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 10194 " Replication" 10195 " P0 P1 P2 P3 ML\n"); 10196 10197 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10198 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 10199 uint16_t ivlan; 10200 uint64_t tcamx, tcamy, val, mask; 10201 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 10202 uint8_t addr[ETHER_ADDR_LEN]; 10203 10204 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0); 10205 if (i < 256) 10206 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0); 10207 else 10208 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1); 10209 mtx_lock(&sc->reg_lock); 10210 if (hw_off_limits(sc)) 10211 rc = ENXIO; 10212 else { 10213 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10214 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10215 tcamy = G_DMACH(val) << 32; 10216 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10217 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10218 } 10219 mtx_unlock(&sc->reg_lock); 10220 if (rc != 0) 10221 break; 10222 10223 lookup_type = G_DATALKPTYPE(data2); 10224 port_num = G_DATAPORTNUM(data2); 10225 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10226 /* Inner header VNI */ 10227 vniy = ((data2 & F_DATAVIDH2) << 23) | 10228 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10229 dip_hit = data2 & F_DATADIPHIT; 10230 vlan_vld = 0; 10231 } else { 10232 vniy = 0; 10233 dip_hit = 0; 10234 vlan_vld = data2 & F_DATAVIDH2; 10235 ivlan = G_VIDL(val); 10236 } 10237 10238 ctl |= V_CTLXYBITSEL(1); 10239 mtx_lock(&sc->reg_lock); 10240 if (hw_off_limits(sc)) 10241 rc = ENXIO; 10242 else { 10243 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10244 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10245 tcamx = G_DMACH(val) << 32; 10246 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10247 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10248 } 10249 mtx_unlock(&sc->reg_lock); 10250 if (rc != 0) 10251 break; 10252 10253 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10254 /* Inner header VNI mask */ 10255 vnix = ((data2 & F_DATAVIDH2) << 23) | 10256 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10257 } else 10258 vnix = 0; 10259 10260 if (tcamx & tcamy) 10261 continue; 10262 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10263 10264 mtx_lock(&sc->reg_lock); 10265 if (hw_off_limits(sc)) 10266 rc = ENXIO; 10267 else { 10268 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10269 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10270 } 10271 mtx_unlock(&sc->reg_lock); 10272 if (rc != 0) 10273 break; 10274 10275 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10276 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10277 "%012jx %06x %06x - - %3c" 10278 " I %4x %3c %#x%4u%4d", i, addr[0], 10279 addr[1], addr[2], addr[3], addr[4], addr[5], 10280 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 10281 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10282 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10283 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10284 } else { 10285 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10286 "%012jx - - ", i, addr[0], addr[1], 10287 addr[2], addr[3], addr[4], addr[5], 10288 (uintmax_t)mask); 10289 10290 if (vlan_vld) 10291 sbuf_printf(sb, "%4u Y ", ivlan); 10292 else 10293 sbuf_printf(sb, " - N "); 10294 10295 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 10296 lookup_type ? 'I' : 'O', port_num, 10297 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10298 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10299 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10300 } 10301 10302 10303 if (cls_lo & F_T6_REPLICATE) { 10304 struct fw_ldst_cmd ldst_cmd; 10305 10306 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10307 ldst_cmd.op_to_addrspace = 10308 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10309 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10310 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10311 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10312 ldst_cmd.u.mps.rplc.fid_idx = 10313 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10314 V_FW_LDST_CMD_IDX(i)); 10315 10316 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10317 "t6mps"); 10318 if (rc) 10319 break; 10320 if (hw_off_limits(sc)) 10321 rc = ENXIO; 10322 else 10323 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10324 sizeof(ldst_cmd), &ldst_cmd); 10325 end_synchronized_op(sc, 0); 10326 if (rc != 0) 10327 break; 10328 else { 10329 sbuf_printf(sb, " %08x %08x %08x %08x" 10330 " %08x %08x %08x %08x", 10331 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 10332 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 10333 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 10334 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 10335 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10336 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10337 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10338 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10339 } 10340 } else 10341 sbuf_printf(sb, "%72s", ""); 10342 10343 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 10344 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 10345 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 10346 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 10347 } 10348 10349 if (rc) 10350 (void) sbuf_finish(sb); 10351 else 10352 rc = sbuf_finish(sb); 10353 sbuf_delete(sb); 10354 10355 return (rc); 10356 } 10357 10358 static int 10359 sysctl_path_mtus(SYSCTL_HANDLER_ARGS) 10360 { 10361 struct adapter *sc = arg1; 10362 struct sbuf *sb; 10363 int rc; 10364 uint16_t mtus[NMTUS]; 10365 10366 rc = sysctl_wire_old_buffer(req, 0); 10367 if (rc != 0) 10368 return (rc); 10369 10370 mtx_lock(&sc->reg_lock); 10371 if (hw_off_limits(sc)) 10372 rc = ENXIO; 10373 else 10374 t4_read_mtu_tbl(sc, mtus, NULL); 10375 mtx_unlock(&sc->reg_lock); 10376 if (rc != 0) 10377 return (rc); 10378 10379 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10380 if (sb == NULL) 10381 return (ENOMEM); 10382 10383 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", 10384 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], 10385 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], 10386 mtus[14], mtus[15]); 10387 10388 rc = sbuf_finish(sb); 10389 sbuf_delete(sb); 10390 10391 return (rc); 10392 } 10393 10394 static int 10395 sysctl_pm_stats(SYSCTL_HANDLER_ARGS) 10396 { 10397 struct adapter *sc = arg1; 10398 struct sbuf *sb; 10399 int rc, i; 10400 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS]; 10401 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS]; 10402 static const char *tx_stats[MAX_PM_NSTATS] = { 10403 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:", 10404 "Tx FIFO wait", NULL, "Tx latency" 10405 }; 10406 static const char *rx_stats[MAX_PM_NSTATS] = { 10407 "Read:", "Write bypass:", "Write mem:", "Flush:", 10408 "Rx FIFO wait", NULL, "Rx latency" 10409 }; 10410 10411 rc = sysctl_wire_old_buffer(req, 0); 10412 if (rc != 0) 10413 return (rc); 10414 10415 mtx_lock(&sc->reg_lock); 10416 if (hw_off_limits(sc)) 10417 rc = ENXIO; 10418 else { 10419 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); 10420 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); 10421 } 10422 mtx_unlock(&sc->reg_lock); 10423 if (rc != 0) 10424 return (rc); 10425 10426 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10427 if (sb == NULL) 10428 return (ENOMEM); 10429 10430 sbuf_printf(sb, " Tx pcmds Tx bytes"); 10431 for (i = 0; i < 4; i++) { 10432 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10433 tx_cyc[i]); 10434 } 10435 10436 sbuf_printf(sb, "\n Rx pcmds Rx bytes"); 10437 for (i = 0; i < 4; i++) { 10438 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10439 rx_cyc[i]); 10440 } 10441 10442 if (chip_id(sc) > CHELSIO_T5) { 10443 sbuf_printf(sb, 10444 "\n Total wait Total occupancy"); 10445 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10446 tx_cyc[i]); 10447 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10448 rx_cyc[i]); 10449 10450 i += 2; 10451 MPASS(i < nitems(tx_stats)); 10452 10453 sbuf_printf(sb, 10454 "\n Reads Total wait"); 10455 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10456 tx_cyc[i]); 10457 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10458 rx_cyc[i]); 10459 } 10460 10461 rc = sbuf_finish(sb); 10462 sbuf_delete(sb); 10463 10464 return (rc); 10465 } 10466 10467 static int 10468 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) 10469 { 10470 struct adapter *sc = arg1; 10471 struct sbuf *sb; 10472 int rc; 10473 struct tp_rdma_stats stats; 10474 10475 rc = sysctl_wire_old_buffer(req, 0); 10476 if (rc != 0) 10477 return (rc); 10478 10479 mtx_lock(&sc->reg_lock); 10480 if (hw_off_limits(sc)) 10481 rc = ENXIO; 10482 else 10483 t4_tp_get_rdma_stats(sc, &stats, 0); 10484 mtx_unlock(&sc->reg_lock); 10485 if (rc != 0) 10486 return (rc); 10487 10488 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10489 if (sb == NULL) 10490 return (ENOMEM); 10491 10492 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); 10493 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); 10494 10495 rc = sbuf_finish(sb); 10496 sbuf_delete(sb); 10497 10498 return (rc); 10499 } 10500 10501 static int 10502 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) 10503 { 10504 struct adapter *sc = arg1; 10505 struct sbuf *sb; 10506 int rc; 10507 struct tp_tcp_stats v4, v6; 10508 10509 rc = sysctl_wire_old_buffer(req, 0); 10510 if (rc != 0) 10511 return (rc); 10512 10513 mtx_lock(&sc->reg_lock); 10514 if (hw_off_limits(sc)) 10515 rc = ENXIO; 10516 else 10517 t4_tp_get_tcp_stats(sc, &v4, &v6, 0); 10518 mtx_unlock(&sc->reg_lock); 10519 if (rc != 0) 10520 return (rc); 10521 10522 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10523 if (sb == NULL) 10524 return (ENOMEM); 10525 10526 sbuf_printf(sb, 10527 " IP IPv6\n"); 10528 sbuf_printf(sb, "OutRsts: %20u %20u\n", 10529 v4.tcp_out_rsts, v6.tcp_out_rsts); 10530 sbuf_printf(sb, "InSegs: %20ju %20ju\n", 10531 v4.tcp_in_segs, v6.tcp_in_segs); 10532 sbuf_printf(sb, "OutSegs: %20ju %20ju\n", 10533 v4.tcp_out_segs, v6.tcp_out_segs); 10534 sbuf_printf(sb, "RetransSegs: %20ju %20ju", 10535 v4.tcp_retrans_segs, v6.tcp_retrans_segs); 10536 10537 rc = sbuf_finish(sb); 10538 sbuf_delete(sb); 10539 10540 return (rc); 10541 } 10542 10543 static int 10544 sysctl_tids(SYSCTL_HANDLER_ARGS) 10545 { 10546 struct adapter *sc = arg1; 10547 struct sbuf *sb; 10548 int rc; 10549 uint32_t x, y; 10550 struct tid_info *t = &sc->tids; 10551 10552 rc = sysctl_wire_old_buffer(req, 0); 10553 if (rc != 0) 10554 return (rc); 10555 10556 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10557 if (sb == NULL) 10558 return (ENOMEM); 10559 10560 if (t->natids) { 10561 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, 10562 t->atids_in_use); 10563 } 10564 10565 if (t->nhpftids) { 10566 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n", 10567 t->hpftid_base, t->hpftid_end, t->hpftids_in_use); 10568 } 10569 10570 if (t->ntids) { 10571 bool hashen = false; 10572 10573 mtx_lock(&sc->reg_lock); 10574 if (hw_off_limits(sc)) 10575 rc = ENXIO; 10576 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 10577 hashen = true; 10578 if (chip_id(sc) <= CHELSIO_T5) { 10579 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; 10580 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; 10581 } else { 10582 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX); 10583 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE); 10584 } 10585 } 10586 mtx_unlock(&sc->reg_lock); 10587 if (rc != 0) 10588 goto done; 10589 10590 sbuf_printf(sb, "TID range: "); 10591 if (hashen) { 10592 if (x) 10593 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1); 10594 sbuf_printf(sb, "%u-%u", y, t->ntids - 1); 10595 } else { 10596 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base + 10597 t->ntids - 1); 10598 } 10599 sbuf_printf(sb, ", in use: %u\n", 10600 atomic_load_acq_int(&t->tids_in_use)); 10601 } 10602 10603 if (t->nstids) { 10604 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, 10605 t->stid_base + t->nstids - 1, t->stids_in_use); 10606 } 10607 10608 if (t->nftids) { 10609 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base, 10610 t->ftid_end, t->ftids_in_use); 10611 } 10612 10613 if (t->netids) { 10614 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base, 10615 t->etid_base + t->netids - 1, t->etids_in_use); 10616 } 10617 10618 mtx_lock(&sc->reg_lock); 10619 if (hw_off_limits(sc)) 10620 rc = ENXIO; 10621 else { 10622 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4); 10623 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6); 10624 } 10625 mtx_unlock(&sc->reg_lock); 10626 if (rc != 0) 10627 goto done; 10628 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y); 10629 done: 10630 if (rc == 0) 10631 rc = sbuf_finish(sb); 10632 else 10633 (void)sbuf_finish(sb); 10634 sbuf_delete(sb); 10635 10636 return (rc); 10637 } 10638 10639 static int 10640 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) 10641 { 10642 struct adapter *sc = arg1; 10643 struct sbuf *sb; 10644 int rc; 10645 struct tp_err_stats stats; 10646 10647 rc = sysctl_wire_old_buffer(req, 0); 10648 if (rc != 0) 10649 return (rc); 10650 10651 mtx_lock(&sc->reg_lock); 10652 if (hw_off_limits(sc)) 10653 rc = ENXIO; 10654 else 10655 t4_tp_get_err_stats(sc, &stats, 0); 10656 mtx_unlock(&sc->reg_lock); 10657 if (rc != 0) 10658 return (rc); 10659 10660 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10661 if (sb == NULL) 10662 return (ENOMEM); 10663 10664 if (sc->chip_params->nchan > 2) { 10665 sbuf_printf(sb, " channel 0 channel 1" 10666 " channel 2 channel 3\n"); 10667 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", 10668 stats.mac_in_errs[0], stats.mac_in_errs[1], 10669 stats.mac_in_errs[2], stats.mac_in_errs[3]); 10670 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", 10671 stats.hdr_in_errs[0], stats.hdr_in_errs[1], 10672 stats.hdr_in_errs[2], stats.hdr_in_errs[3]); 10673 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", 10674 stats.tcp_in_errs[0], stats.tcp_in_errs[1], 10675 stats.tcp_in_errs[2], stats.tcp_in_errs[3]); 10676 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", 10677 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1], 10678 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]); 10679 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", 10680 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1], 10681 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]); 10682 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", 10683 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1], 10684 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]); 10685 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", 10686 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1], 10687 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]); 10688 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", 10689 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1], 10690 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]); 10691 } else { 10692 sbuf_printf(sb, " channel 0 channel 1\n"); 10693 sbuf_printf(sb, "macInErrs: %10u %10u\n", 10694 stats.mac_in_errs[0], stats.mac_in_errs[1]); 10695 sbuf_printf(sb, "hdrInErrs: %10u %10u\n", 10696 stats.hdr_in_errs[0], stats.hdr_in_errs[1]); 10697 sbuf_printf(sb, "tcpInErrs: %10u %10u\n", 10698 stats.tcp_in_errs[0], stats.tcp_in_errs[1]); 10699 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n", 10700 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]); 10701 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n", 10702 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]); 10703 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n", 10704 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]); 10705 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n", 10706 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]); 10707 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n", 10708 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]); 10709 } 10710 10711 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", 10712 stats.ofld_no_neigh, stats.ofld_cong_defer); 10713 10714 rc = sbuf_finish(sb); 10715 sbuf_delete(sb); 10716 10717 return (rc); 10718 } 10719 10720 static int 10721 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS) 10722 { 10723 struct adapter *sc = arg1; 10724 struct sbuf *sb; 10725 int rc; 10726 struct tp_tnl_stats stats; 10727 10728 rc = sysctl_wire_old_buffer(req, 0); 10729 if (rc != 0) 10730 return(rc); 10731 10732 mtx_lock(&sc->reg_lock); 10733 if (hw_off_limits(sc)) 10734 rc = ENXIO; 10735 else 10736 t4_tp_get_tnl_stats(sc, &stats, 1); 10737 mtx_unlock(&sc->reg_lock); 10738 if (rc != 0) 10739 return (rc); 10740 10741 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10742 if (sb == NULL) 10743 return (ENOMEM); 10744 10745 if (sc->chip_params->nchan > 2) { 10746 sbuf_printf(sb, " channel 0 channel 1" 10747 " channel 2 channel 3\n"); 10748 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n", 10749 stats.out_pkt[0], stats.out_pkt[1], 10750 stats.out_pkt[2], stats.out_pkt[3]); 10751 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u", 10752 stats.in_pkt[0], stats.in_pkt[1], 10753 stats.in_pkt[2], stats.in_pkt[3]); 10754 } else { 10755 sbuf_printf(sb, " channel 0 channel 1\n"); 10756 sbuf_printf(sb, "OutPkts: %10u %10u\n", 10757 stats.out_pkt[0], stats.out_pkt[1]); 10758 sbuf_printf(sb, "InPkts: %10u %10u", 10759 stats.in_pkt[0], stats.in_pkt[1]); 10760 } 10761 10762 rc = sbuf_finish(sb); 10763 sbuf_delete(sb); 10764 10765 return (rc); 10766 } 10767 10768 static int 10769 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS) 10770 { 10771 struct adapter *sc = arg1; 10772 struct tp_params *tpp = &sc->params.tp; 10773 u_int mask; 10774 int rc; 10775 10776 mask = tpp->la_mask >> 16; 10777 rc = sysctl_handle_int(oidp, &mask, 0, req); 10778 if (rc != 0 || req->newptr == NULL) 10779 return (rc); 10780 if (mask > 0xffff) 10781 return (EINVAL); 10782 mtx_lock(&sc->reg_lock); 10783 if (hw_off_limits(sc)) 10784 rc = ENXIO; 10785 else { 10786 tpp->la_mask = mask << 16; 10787 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, 10788 tpp->la_mask); 10789 } 10790 mtx_unlock(&sc->reg_lock); 10791 10792 return (rc); 10793 } 10794 10795 struct field_desc { 10796 const char *name; 10797 u_int start; 10798 u_int width; 10799 }; 10800 10801 static void 10802 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) 10803 { 10804 char buf[32]; 10805 int line_size = 0; 10806 10807 while (f->name) { 10808 uint64_t mask = (1ULL << f->width) - 1; 10809 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, 10810 ((uintmax_t)v >> f->start) & mask); 10811 10812 if (line_size + len >= 79) { 10813 line_size = 8; 10814 sbuf_printf(sb, "\n "); 10815 } 10816 sbuf_printf(sb, "%s ", buf); 10817 line_size += len + 1; 10818 f++; 10819 } 10820 sbuf_printf(sb, "\n"); 10821 } 10822 10823 static const struct field_desc tp_la0[] = { 10824 { "RcfOpCodeOut", 60, 4 }, 10825 { "State", 56, 4 }, 10826 { "WcfState", 52, 4 }, 10827 { "RcfOpcSrcOut", 50, 2 }, 10828 { "CRxError", 49, 1 }, 10829 { "ERxError", 48, 1 }, 10830 { "SanityFailed", 47, 1 }, 10831 { "SpuriousMsg", 46, 1 }, 10832 { "FlushInputMsg", 45, 1 }, 10833 { "FlushInputCpl", 44, 1 }, 10834 { "RssUpBit", 43, 1 }, 10835 { "RssFilterHit", 42, 1 }, 10836 { "Tid", 32, 10 }, 10837 { "InitTcb", 31, 1 }, 10838 { "LineNumber", 24, 7 }, 10839 { "Emsg", 23, 1 }, 10840 { "EdataOut", 22, 1 }, 10841 { "Cmsg", 21, 1 }, 10842 { "CdataOut", 20, 1 }, 10843 { "EreadPdu", 19, 1 }, 10844 { "CreadPdu", 18, 1 }, 10845 { "TunnelPkt", 17, 1 }, 10846 { "RcfPeerFin", 16, 1 }, 10847 { "RcfReasonOut", 12, 4 }, 10848 { "TxCchannel", 10, 2 }, 10849 { "RcfTxChannel", 8, 2 }, 10850 { "RxEchannel", 6, 2 }, 10851 { "RcfRxChannel", 5, 1 }, 10852 { "RcfDataOutSrdy", 4, 1 }, 10853 { "RxDvld", 3, 1 }, 10854 { "RxOoDvld", 2, 1 }, 10855 { "RxCongestion", 1, 1 }, 10856 { "TxCongestion", 0, 1 }, 10857 { NULL } 10858 }; 10859 10860 static const struct field_desc tp_la1[] = { 10861 { "CplCmdIn", 56, 8 }, 10862 { "CplCmdOut", 48, 8 }, 10863 { "ESynOut", 47, 1 }, 10864 { "EAckOut", 46, 1 }, 10865 { "EFinOut", 45, 1 }, 10866 { "ERstOut", 44, 1 }, 10867 { "SynIn", 43, 1 }, 10868 { "AckIn", 42, 1 }, 10869 { "FinIn", 41, 1 }, 10870 { "RstIn", 40, 1 }, 10871 { "DataIn", 39, 1 }, 10872 { "DataInVld", 38, 1 }, 10873 { "PadIn", 37, 1 }, 10874 { "RxBufEmpty", 36, 1 }, 10875 { "RxDdp", 35, 1 }, 10876 { "RxFbCongestion", 34, 1 }, 10877 { "TxFbCongestion", 33, 1 }, 10878 { "TxPktSumSrdy", 32, 1 }, 10879 { "RcfUlpType", 28, 4 }, 10880 { "Eread", 27, 1 }, 10881 { "Ebypass", 26, 1 }, 10882 { "Esave", 25, 1 }, 10883 { "Static0", 24, 1 }, 10884 { "Cread", 23, 1 }, 10885 { "Cbypass", 22, 1 }, 10886 { "Csave", 21, 1 }, 10887 { "CPktOut", 20, 1 }, 10888 { "RxPagePoolFull", 18, 2 }, 10889 { "RxLpbkPkt", 17, 1 }, 10890 { "TxLpbkPkt", 16, 1 }, 10891 { "RxVfValid", 15, 1 }, 10892 { "SynLearned", 14, 1 }, 10893 { "SetDelEntry", 13, 1 }, 10894 { "SetInvEntry", 12, 1 }, 10895 { "CpcmdDvld", 11, 1 }, 10896 { "CpcmdSave", 10, 1 }, 10897 { "RxPstructsFull", 8, 2 }, 10898 { "EpcmdDvld", 7, 1 }, 10899 { "EpcmdFlush", 6, 1 }, 10900 { "EpcmdTrimPrefix", 5, 1 }, 10901 { "EpcmdTrimPostfix", 4, 1 }, 10902 { "ERssIp4Pkt", 3, 1 }, 10903 { "ERssIp6Pkt", 2, 1 }, 10904 { "ERssTcpUdpPkt", 1, 1 }, 10905 { "ERssFceFipPkt", 0, 1 }, 10906 { NULL } 10907 }; 10908 10909 static const struct field_desc tp_la2[] = { 10910 { "CplCmdIn", 56, 8 }, 10911 { "MpsVfVld", 55, 1 }, 10912 { "MpsPf", 52, 3 }, 10913 { "MpsVf", 44, 8 }, 10914 { "SynIn", 43, 1 }, 10915 { "AckIn", 42, 1 }, 10916 { "FinIn", 41, 1 }, 10917 { "RstIn", 40, 1 }, 10918 { "DataIn", 39, 1 }, 10919 { "DataInVld", 38, 1 }, 10920 { "PadIn", 37, 1 }, 10921 { "RxBufEmpty", 36, 1 }, 10922 { "RxDdp", 35, 1 }, 10923 { "RxFbCongestion", 34, 1 }, 10924 { "TxFbCongestion", 33, 1 }, 10925 { "TxPktSumSrdy", 32, 1 }, 10926 { "RcfUlpType", 28, 4 }, 10927 { "Eread", 27, 1 }, 10928 { "Ebypass", 26, 1 }, 10929 { "Esave", 25, 1 }, 10930 { "Static0", 24, 1 }, 10931 { "Cread", 23, 1 }, 10932 { "Cbypass", 22, 1 }, 10933 { "Csave", 21, 1 }, 10934 { "CPktOut", 20, 1 }, 10935 { "RxPagePoolFull", 18, 2 }, 10936 { "RxLpbkPkt", 17, 1 }, 10937 { "TxLpbkPkt", 16, 1 }, 10938 { "RxVfValid", 15, 1 }, 10939 { "SynLearned", 14, 1 }, 10940 { "SetDelEntry", 13, 1 }, 10941 { "SetInvEntry", 12, 1 }, 10942 { "CpcmdDvld", 11, 1 }, 10943 { "CpcmdSave", 10, 1 }, 10944 { "RxPstructsFull", 8, 2 }, 10945 { "EpcmdDvld", 7, 1 }, 10946 { "EpcmdFlush", 6, 1 }, 10947 { "EpcmdTrimPrefix", 5, 1 }, 10948 { "EpcmdTrimPostfix", 4, 1 }, 10949 { "ERssIp4Pkt", 3, 1 }, 10950 { "ERssIp6Pkt", 2, 1 }, 10951 { "ERssTcpUdpPkt", 1, 1 }, 10952 { "ERssFceFipPkt", 0, 1 }, 10953 { NULL } 10954 }; 10955 10956 static void 10957 tp_la_show(struct sbuf *sb, uint64_t *p, int idx) 10958 { 10959 10960 field_desc_show(sb, *p, tp_la0); 10961 } 10962 10963 static void 10964 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) 10965 { 10966 10967 if (idx) 10968 sbuf_printf(sb, "\n"); 10969 field_desc_show(sb, p[0], tp_la0); 10970 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 10971 field_desc_show(sb, p[1], tp_la0); 10972 } 10973 10974 static void 10975 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) 10976 { 10977 10978 if (idx) 10979 sbuf_printf(sb, "\n"); 10980 field_desc_show(sb, p[0], tp_la0); 10981 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 10982 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); 10983 } 10984 10985 static int 10986 sysctl_tp_la(SYSCTL_HANDLER_ARGS) 10987 { 10988 struct adapter *sc = arg1; 10989 struct sbuf *sb; 10990 uint64_t *buf, *p; 10991 int rc; 10992 u_int i, inc; 10993 void (*show_func)(struct sbuf *, uint64_t *, int); 10994 10995 rc = sysctl_wire_old_buffer(req, 0); 10996 if (rc != 0) 10997 return (rc); 10998 10999 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11000 if (sb == NULL) 11001 return (ENOMEM); 11002 11003 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); 11004 11005 mtx_lock(&sc->reg_lock); 11006 if (hw_off_limits(sc)) 11007 rc = ENXIO; 11008 else { 11009 t4_tp_read_la(sc, buf, NULL); 11010 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { 11011 case 2: 11012 inc = 2; 11013 show_func = tp_la_show2; 11014 break; 11015 case 3: 11016 inc = 2; 11017 show_func = tp_la_show3; 11018 break; 11019 default: 11020 inc = 1; 11021 show_func = tp_la_show; 11022 } 11023 } 11024 mtx_unlock(&sc->reg_lock); 11025 if (rc != 0) 11026 goto done; 11027 11028 p = buf; 11029 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) 11030 (*show_func)(sb, p, i); 11031 rc = sbuf_finish(sb); 11032 done: 11033 sbuf_delete(sb); 11034 free(buf, M_CXGBE); 11035 return (rc); 11036 } 11037 11038 static int 11039 sysctl_tx_rate(SYSCTL_HANDLER_ARGS) 11040 { 11041 struct adapter *sc = arg1; 11042 struct sbuf *sb; 11043 int rc; 11044 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN]; 11045 11046 rc = sysctl_wire_old_buffer(req, 0); 11047 if (rc != 0) 11048 return (rc); 11049 11050 mtx_lock(&sc->reg_lock); 11051 if (hw_off_limits(sc)) 11052 rc = ENXIO; 11053 else 11054 t4_get_chan_txrate(sc, nrate, orate); 11055 mtx_unlock(&sc->reg_lock); 11056 if (rc != 0) 11057 return (rc); 11058 11059 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11060 if (sb == NULL) 11061 return (ENOMEM); 11062 11063 if (sc->chip_params->nchan > 2) { 11064 sbuf_printf(sb, " channel 0 channel 1" 11065 " channel 2 channel 3\n"); 11066 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", 11067 nrate[0], nrate[1], nrate[2], nrate[3]); 11068 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", 11069 orate[0], orate[1], orate[2], orate[3]); 11070 } else { 11071 sbuf_printf(sb, " channel 0 channel 1\n"); 11072 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n", 11073 nrate[0], nrate[1]); 11074 sbuf_printf(sb, "Offload B/s: %10ju %10ju", 11075 orate[0], orate[1]); 11076 } 11077 11078 rc = sbuf_finish(sb); 11079 sbuf_delete(sb); 11080 11081 return (rc); 11082 } 11083 11084 static int 11085 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) 11086 { 11087 struct adapter *sc = arg1; 11088 struct sbuf *sb; 11089 uint32_t *buf, *p; 11090 int rc, i; 11091 11092 rc = sysctl_wire_old_buffer(req, 0); 11093 if (rc != 0) 11094 return (rc); 11095 11096 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11097 if (sb == NULL) 11098 return (ENOMEM); 11099 11100 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, 11101 M_ZERO | M_WAITOK); 11102 11103 mtx_lock(&sc->reg_lock); 11104 if (hw_off_limits(sc)) 11105 rc = ENXIO; 11106 else 11107 t4_ulprx_read_la(sc, buf); 11108 mtx_unlock(&sc->reg_lock); 11109 if (rc != 0) 11110 goto done; 11111 11112 p = buf; 11113 sbuf_printf(sb, " Pcmd Type Message" 11114 " Data"); 11115 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { 11116 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", 11117 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 11118 } 11119 rc = sbuf_finish(sb); 11120 done: 11121 sbuf_delete(sb); 11122 free(buf, M_CXGBE); 11123 return (rc); 11124 } 11125 11126 static int 11127 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) 11128 { 11129 struct adapter *sc = arg1; 11130 struct sbuf *sb; 11131 int rc; 11132 uint32_t cfg, s1, s2; 11133 11134 MPASS(chip_id(sc) >= CHELSIO_T5); 11135 11136 rc = sysctl_wire_old_buffer(req, 0); 11137 if (rc != 0) 11138 return (rc); 11139 11140 mtx_lock(&sc->reg_lock); 11141 if (hw_off_limits(sc)) 11142 rc = ENXIO; 11143 else { 11144 cfg = t4_read_reg(sc, A_SGE_STAT_CFG); 11145 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL); 11146 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH); 11147 } 11148 mtx_unlock(&sc->reg_lock); 11149 if (rc != 0) 11150 return (rc); 11151 11152 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11153 if (sb == NULL) 11154 return (ENOMEM); 11155 11156 if (G_STATSOURCE_T5(cfg) == 7) { 11157 int mode; 11158 11159 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg); 11160 if (mode == 0) 11161 sbuf_printf(sb, "total %d, incomplete %d", s1, s2); 11162 else if (mode == 1) 11163 sbuf_printf(sb, "total %d, data overflow %d", s1, s2); 11164 else 11165 sbuf_printf(sb, "unknown mode %d", mode); 11166 } 11167 rc = sbuf_finish(sb); 11168 sbuf_delete(sb); 11169 11170 return (rc); 11171 } 11172 11173 static int 11174 sysctl_cpus(SYSCTL_HANDLER_ARGS) 11175 { 11176 struct adapter *sc = arg1; 11177 enum cpu_sets op = arg2; 11178 cpuset_t cpuset; 11179 struct sbuf *sb; 11180 int i, rc; 11181 11182 MPASS(op == LOCAL_CPUS || op == INTR_CPUS); 11183 11184 CPU_ZERO(&cpuset); 11185 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset); 11186 if (rc != 0) 11187 return (rc); 11188 11189 rc = sysctl_wire_old_buffer(req, 0); 11190 if (rc != 0) 11191 return (rc); 11192 11193 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11194 if (sb == NULL) 11195 return (ENOMEM); 11196 11197 CPU_FOREACH(i) 11198 sbuf_printf(sb, "%d ", i); 11199 rc = sbuf_finish(sb); 11200 sbuf_delete(sb); 11201 11202 return (rc); 11203 } 11204 11205 static int 11206 sysctl_reset(SYSCTL_HANDLER_ARGS) 11207 { 11208 struct adapter *sc = arg1; 11209 u_int val; 11210 int rc; 11211 11212 val = atomic_load_int(&sc->num_resets); 11213 rc = sysctl_handle_int(oidp, &val, 0, req); 11214 if (rc != 0 || req->newptr == NULL) 11215 return (rc); 11216 11217 if (val == 0) { 11218 /* Zero out the counter that tracks reset. */ 11219 atomic_store_int(&sc->num_resets, 0); 11220 return (0); 11221 } 11222 11223 if (val != 1) 11224 return (EINVAL); /* 0 or 1 are the only legal values */ 11225 11226 if (hw_off_limits(sc)) /* harmless race */ 11227 return (EALREADY); 11228 11229 taskqueue_enqueue(reset_tq, &sc->reset_task); 11230 return (0); 11231 } 11232 11233 #ifdef TCP_OFFLOAD 11234 static int 11235 sysctl_tls(SYSCTL_HANDLER_ARGS) 11236 { 11237 struct adapter *sc = arg1; 11238 int i, j, v, rc; 11239 struct vi_info *vi; 11240 11241 v = sc->tt.tls; 11242 rc = sysctl_handle_int(oidp, &v, 0, req); 11243 if (rc != 0 || req->newptr == NULL) 11244 return (rc); 11245 11246 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 11247 return (ENOTSUP); 11248 11249 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls"); 11250 if (rc) 11251 return (rc); 11252 if (hw_off_limits(sc)) 11253 rc = ENXIO; 11254 else { 11255 sc->tt.tls = !!v; 11256 for_each_port(sc, i) { 11257 for_each_vi(sc->port[i], j, vi) { 11258 if (vi->flags & VI_INIT_DONE) 11259 t4_update_fl_bufsize(vi->ifp); 11260 } 11261 } 11262 } 11263 end_synchronized_op(sc, 0); 11264 11265 return (rc); 11266 11267 } 11268 11269 static void 11270 unit_conv(char *buf, size_t len, u_int val, u_int factor) 11271 { 11272 u_int rem = val % factor; 11273 11274 if (rem == 0) 11275 snprintf(buf, len, "%u", val / factor); 11276 else { 11277 while (rem % 10 == 0) 11278 rem /= 10; 11279 snprintf(buf, len, "%u.%u", val / factor, rem); 11280 } 11281 } 11282 11283 static int 11284 sysctl_tp_tick(SYSCTL_HANDLER_ARGS) 11285 { 11286 struct adapter *sc = arg1; 11287 char buf[16]; 11288 u_int res, re; 11289 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11290 11291 mtx_lock(&sc->reg_lock); 11292 if (hw_off_limits(sc)) 11293 res = (u_int)-1; 11294 else 11295 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 11296 mtx_unlock(&sc->reg_lock); 11297 if (res == (u_int)-1) 11298 return (ENXIO); 11299 11300 switch (arg2) { 11301 case 0: 11302 /* timer_tick */ 11303 re = G_TIMERRESOLUTION(res); 11304 break; 11305 case 1: 11306 /* TCP timestamp tick */ 11307 re = G_TIMESTAMPRESOLUTION(res); 11308 break; 11309 case 2: 11310 /* DACK tick */ 11311 re = G_DELAYEDACKRESOLUTION(res); 11312 break; 11313 default: 11314 return (EDOOFUS); 11315 } 11316 11317 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000); 11318 11319 return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); 11320 } 11321 11322 static int 11323 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS) 11324 { 11325 struct adapter *sc = arg1; 11326 int rc; 11327 u_int dack_tmr, dack_re, v; 11328 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11329 11330 mtx_lock(&sc->reg_lock); 11331 if (hw_off_limits(sc)) 11332 rc = ENXIO; 11333 else { 11334 rc = 0; 11335 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc, 11336 A_TP_TIMER_RESOLUTION)); 11337 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER); 11338 } 11339 mtx_unlock(&sc->reg_lock); 11340 if (rc != 0) 11341 return (rc); 11342 11343 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr; 11344 11345 return (sysctl_handle_int(oidp, &v, 0, req)); 11346 } 11347 11348 static int 11349 sysctl_tp_timer(SYSCTL_HANDLER_ARGS) 11350 { 11351 struct adapter *sc = arg1; 11352 int rc, reg = arg2; 11353 u_int tre; 11354 u_long tp_tick_us, v; 11355 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11356 11357 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX || 11358 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX || 11359 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL || 11360 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER); 11361 11362 mtx_lock(&sc->reg_lock); 11363 if (hw_off_limits(sc)) 11364 rc = ENXIO; 11365 else { 11366 rc = 0; 11367 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION)); 11368 tp_tick_us = (cclk_ps << tre) / 1000000; 11369 if (reg == A_TP_INIT_SRTT) 11370 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg)); 11371 else 11372 v = tp_tick_us * t4_read_reg(sc, reg); 11373 } 11374 mtx_unlock(&sc->reg_lock); 11375 if (rc != 0) 11376 return (rc); 11377 else 11378 return (sysctl_handle_long(oidp, &v, 0, req)); 11379 } 11380 11381 /* 11382 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is 11383 * passed to this function. 11384 */ 11385 static int 11386 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS) 11387 { 11388 struct adapter *sc = arg1; 11389 int rc, idx = arg2; 11390 u_int v; 11391 11392 MPASS(idx >= 0 && idx <= 24); 11393 11394 mtx_lock(&sc->reg_lock); 11395 if (hw_off_limits(sc)) 11396 rc = ENXIO; 11397 else { 11398 rc = 0; 11399 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf; 11400 } 11401 mtx_unlock(&sc->reg_lock); 11402 if (rc != 0) 11403 return (rc); 11404 else 11405 return (sysctl_handle_int(oidp, &v, 0, req)); 11406 } 11407 11408 static int 11409 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS) 11410 { 11411 struct adapter *sc = arg1; 11412 int rc, idx = arg2; 11413 u_int shift, v, r; 11414 11415 MPASS(idx >= 0 && idx < 16); 11416 11417 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3); 11418 shift = (idx & 3) << 3; 11419 mtx_lock(&sc->reg_lock); 11420 if (hw_off_limits(sc)) 11421 rc = ENXIO; 11422 else { 11423 rc = 0; 11424 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0; 11425 } 11426 mtx_unlock(&sc->reg_lock); 11427 if (rc != 0) 11428 return (rc); 11429 else 11430 return (sysctl_handle_int(oidp, &v, 0, req)); 11431 } 11432 11433 static int 11434 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS) 11435 { 11436 struct vi_info *vi = arg1; 11437 struct adapter *sc = vi->adapter; 11438 int idx, rc, i; 11439 struct sge_ofld_rxq *ofld_rxq; 11440 uint8_t v; 11441 11442 idx = vi->ofld_tmr_idx; 11443 11444 rc = sysctl_handle_int(oidp, &idx, 0, req); 11445 if (rc != 0 || req->newptr == NULL) 11446 return (rc); 11447 11448 if (idx < 0 || idx >= SGE_NTIMERS) 11449 return (EINVAL); 11450 11451 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11452 "t4otmr"); 11453 if (rc) 11454 return (rc); 11455 11456 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1); 11457 for_each_ofld_rxq(vi, i, ofld_rxq) { 11458 #ifdef atomic_store_rel_8 11459 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); 11460 #else 11461 ofld_rxq->iq.intr_params = v; 11462 #endif 11463 } 11464 vi->ofld_tmr_idx = idx; 11465 11466 end_synchronized_op(sc, LOCK_HELD); 11467 return (0); 11468 } 11469 11470 static int 11471 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS) 11472 { 11473 struct vi_info *vi = arg1; 11474 struct adapter *sc = vi->adapter; 11475 int idx, rc; 11476 11477 idx = vi->ofld_pktc_idx; 11478 11479 rc = sysctl_handle_int(oidp, &idx, 0, req); 11480 if (rc != 0 || req->newptr == NULL) 11481 return (rc); 11482 11483 if (idx < -1 || idx >= SGE_NCOUNTERS) 11484 return (EINVAL); 11485 11486 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11487 "t4opktc"); 11488 if (rc) 11489 return (rc); 11490 11491 if (vi->flags & VI_INIT_DONE) 11492 rc = EBUSY; /* cannot be changed once the queues are created */ 11493 else 11494 vi->ofld_pktc_idx = idx; 11495 11496 end_synchronized_op(sc, LOCK_HELD); 11497 return (rc); 11498 } 11499 #endif 11500 11501 static int 11502 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt) 11503 { 11504 int rc; 11505 11506 if (cntxt->cid > M_CTXTQID) 11507 return (EINVAL); 11508 11509 if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS && 11510 cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM) 11511 return (EINVAL); 11512 11513 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); 11514 if (rc) 11515 return (rc); 11516 11517 if (hw_off_limits(sc)) { 11518 rc = ENXIO; 11519 goto done; 11520 } 11521 11522 if (sc->flags & FW_OK) { 11523 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id, 11524 &cntxt->data[0]); 11525 if (rc == 0) 11526 goto done; 11527 } 11528 11529 /* 11530 * Read via firmware failed or wasn't even attempted. Read directly via 11531 * the backdoor. 11532 */ 11533 rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); 11534 done: 11535 end_synchronized_op(sc, 0); 11536 return (rc); 11537 } 11538 11539 static int 11540 load_fw(struct adapter *sc, struct t4_data *fw) 11541 { 11542 int rc; 11543 uint8_t *fw_data; 11544 11545 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); 11546 if (rc) 11547 return (rc); 11548 11549 if (hw_off_limits(sc)) { 11550 rc = ENXIO; 11551 goto done; 11552 } 11553 11554 /* 11555 * The firmware, with the sole exception of the memory parity error 11556 * handler, runs from memory and not flash. It is almost always safe to 11557 * install a new firmware on a running system. Just set bit 1 in 11558 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first. 11559 */ 11560 if (sc->flags & FULL_INIT_DONE && 11561 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) { 11562 rc = EBUSY; 11563 goto done; 11564 } 11565 11566 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); 11567 11568 rc = copyin(fw->data, fw_data, fw->len); 11569 if (rc == 0) 11570 rc = -t4_load_fw(sc, fw_data, fw->len); 11571 11572 free(fw_data, M_CXGBE); 11573 done: 11574 end_synchronized_op(sc, 0); 11575 return (rc); 11576 } 11577 11578 static int 11579 load_cfg(struct adapter *sc, struct t4_data *cfg) 11580 { 11581 int rc; 11582 uint8_t *cfg_data = NULL; 11583 11584 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11585 if (rc) 11586 return (rc); 11587 11588 if (hw_off_limits(sc)) { 11589 rc = ENXIO; 11590 goto done; 11591 } 11592 11593 if (cfg->len == 0) { 11594 /* clear */ 11595 rc = -t4_load_cfg(sc, NULL, 0); 11596 goto done; 11597 } 11598 11599 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK); 11600 11601 rc = copyin(cfg->data, cfg_data, cfg->len); 11602 if (rc == 0) 11603 rc = -t4_load_cfg(sc, cfg_data, cfg->len); 11604 11605 free(cfg_data, M_CXGBE); 11606 done: 11607 end_synchronized_op(sc, 0); 11608 return (rc); 11609 } 11610 11611 static int 11612 load_boot(struct adapter *sc, struct t4_bootrom *br) 11613 { 11614 int rc; 11615 uint8_t *br_data = NULL; 11616 u_int offset; 11617 11618 if (br->len > 1024 * 1024) 11619 return (EFBIG); 11620 11621 if (br->pf_offset == 0) { 11622 /* pfidx */ 11623 if (br->pfidx_addr > 7) 11624 return (EINVAL); 11625 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr, 11626 A_PCIE_PF_EXPROM_OFST))); 11627 } else if (br->pf_offset == 1) { 11628 /* offset */ 11629 offset = G_OFFSET(br->pfidx_addr); 11630 } else { 11631 return (EINVAL); 11632 } 11633 11634 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr"); 11635 if (rc) 11636 return (rc); 11637 11638 if (hw_off_limits(sc)) { 11639 rc = ENXIO; 11640 goto done; 11641 } 11642 11643 if (br->len == 0) { 11644 /* clear */ 11645 rc = -t4_load_boot(sc, NULL, offset, 0); 11646 goto done; 11647 } 11648 11649 br_data = malloc(br->len, M_CXGBE, M_WAITOK); 11650 11651 rc = copyin(br->data, br_data, br->len); 11652 if (rc == 0) 11653 rc = -t4_load_boot(sc, br_data, offset, br->len); 11654 11655 free(br_data, M_CXGBE); 11656 done: 11657 end_synchronized_op(sc, 0); 11658 return (rc); 11659 } 11660 11661 static int 11662 load_bootcfg(struct adapter *sc, struct t4_data *bc) 11663 { 11664 int rc; 11665 uint8_t *bc_data = NULL; 11666 11667 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11668 if (rc) 11669 return (rc); 11670 11671 if (hw_off_limits(sc)) { 11672 rc = ENXIO; 11673 goto done; 11674 } 11675 11676 if (bc->len == 0) { 11677 /* clear */ 11678 rc = -t4_load_bootcfg(sc, NULL, 0); 11679 goto done; 11680 } 11681 11682 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK); 11683 11684 rc = copyin(bc->data, bc_data, bc->len); 11685 if (rc == 0) 11686 rc = -t4_load_bootcfg(sc, bc_data, bc->len); 11687 11688 free(bc_data, M_CXGBE); 11689 done: 11690 end_synchronized_op(sc, 0); 11691 return (rc); 11692 } 11693 11694 static int 11695 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump) 11696 { 11697 int rc; 11698 struct cudbg_init *cudbg; 11699 void *handle, *buf; 11700 11701 /* buf is large, don't block if no memory is available */ 11702 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO); 11703 if (buf == NULL) 11704 return (ENOMEM); 11705 11706 handle = cudbg_alloc_handle(); 11707 if (handle == NULL) { 11708 rc = ENOMEM; 11709 goto done; 11710 } 11711 11712 cudbg = cudbg_get_init(handle); 11713 cudbg->adap = sc; 11714 cudbg->print = (cudbg_print_cb)printf; 11715 11716 #ifndef notyet 11717 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n", 11718 __func__, dump->wr_flash, dump->len, dump->data); 11719 #endif 11720 11721 if (dump->wr_flash) 11722 cudbg->use_flash = 1; 11723 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap)); 11724 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap)); 11725 11726 rc = cudbg_collect(handle, buf, &dump->len); 11727 if (rc != 0) 11728 goto done; 11729 11730 rc = copyout(buf, dump->data, dump->len); 11731 done: 11732 cudbg_free_handle(handle); 11733 free(buf, M_CXGBE); 11734 return (rc); 11735 } 11736 11737 static void 11738 free_offload_policy(struct t4_offload_policy *op) 11739 { 11740 struct offload_rule *r; 11741 int i; 11742 11743 if (op == NULL) 11744 return; 11745 11746 r = &op->rule[0]; 11747 for (i = 0; i < op->nrules; i++, r++) { 11748 free(r->bpf_prog.bf_insns, M_CXGBE); 11749 } 11750 free(op->rule, M_CXGBE); 11751 free(op, M_CXGBE); 11752 } 11753 11754 static int 11755 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop) 11756 { 11757 int i, rc, len; 11758 struct t4_offload_policy *op, *old; 11759 struct bpf_program *bf; 11760 const struct offload_settings *s; 11761 struct offload_rule *r; 11762 void *u; 11763 11764 if (!is_offload(sc)) 11765 return (ENODEV); 11766 11767 if (uop->nrules == 0) { 11768 /* Delete installed policies. */ 11769 op = NULL; 11770 goto set_policy; 11771 } else if (uop->nrules > 256) { /* arbitrary */ 11772 return (E2BIG); 11773 } 11774 11775 /* Copy userspace offload policy to kernel */ 11776 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK); 11777 op->nrules = uop->nrules; 11778 len = op->nrules * sizeof(struct offload_rule); 11779 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11780 rc = copyin(uop->rule, op->rule, len); 11781 if (rc) { 11782 free(op->rule, M_CXGBE); 11783 free(op, M_CXGBE); 11784 return (rc); 11785 } 11786 11787 r = &op->rule[0]; 11788 for (i = 0; i < op->nrules; i++, r++) { 11789 11790 /* Validate open_type */ 11791 if (r->open_type != OPEN_TYPE_LISTEN && 11792 r->open_type != OPEN_TYPE_ACTIVE && 11793 r->open_type != OPEN_TYPE_PASSIVE && 11794 r->open_type != OPEN_TYPE_DONTCARE) { 11795 error: 11796 /* 11797 * Rules 0 to i have malloc'd filters that need to be 11798 * freed. Rules i+1 to nrules have userspace pointers 11799 * and should be left alone. 11800 */ 11801 op->nrules = i; 11802 free_offload_policy(op); 11803 return (rc); 11804 } 11805 11806 /* Validate settings */ 11807 s = &r->settings; 11808 if ((s->offload != 0 && s->offload != 1) || 11809 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED || 11810 s->sched_class < -1 || 11811 s->sched_class >= sc->params.nsched_cls) { 11812 rc = EINVAL; 11813 goto error; 11814 } 11815 11816 bf = &r->bpf_prog; 11817 u = bf->bf_insns; /* userspace ptr */ 11818 bf->bf_insns = NULL; 11819 if (bf->bf_len == 0) { 11820 /* legal, matches everything */ 11821 continue; 11822 } 11823 len = bf->bf_len * sizeof(*bf->bf_insns); 11824 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11825 rc = copyin(u, bf->bf_insns, len); 11826 if (rc != 0) 11827 goto error; 11828 11829 if (!bpf_validate(bf->bf_insns, bf->bf_len)) { 11830 rc = EINVAL; 11831 goto error; 11832 } 11833 } 11834 set_policy: 11835 rw_wlock(&sc->policy_lock); 11836 old = sc->policy; 11837 sc->policy = op; 11838 rw_wunlock(&sc->policy_lock); 11839 free_offload_policy(old); 11840 11841 return (0); 11842 } 11843 11844 #define MAX_READ_BUF_SIZE (128 * 1024) 11845 static int 11846 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) 11847 { 11848 uint32_t addr, remaining, n; 11849 uint32_t *buf; 11850 int rc; 11851 uint8_t *dst; 11852 11853 mtx_lock(&sc->reg_lock); 11854 if (hw_off_limits(sc)) 11855 rc = ENXIO; 11856 else 11857 rc = validate_mem_range(sc, mr->addr, mr->len); 11858 mtx_unlock(&sc->reg_lock); 11859 if (rc != 0) 11860 return (rc); 11861 11862 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK); 11863 addr = mr->addr; 11864 remaining = mr->len; 11865 dst = (void *)mr->data; 11866 11867 while (remaining) { 11868 n = min(remaining, MAX_READ_BUF_SIZE); 11869 mtx_lock(&sc->reg_lock); 11870 if (hw_off_limits(sc)) 11871 rc = ENXIO; 11872 else 11873 read_via_memwin(sc, 2, addr, buf, n); 11874 mtx_unlock(&sc->reg_lock); 11875 if (rc != 0) 11876 break; 11877 11878 rc = copyout(buf, dst, n); 11879 if (rc != 0) 11880 break; 11881 11882 dst += n; 11883 remaining -= n; 11884 addr += n; 11885 } 11886 11887 free(buf, M_CXGBE); 11888 return (rc); 11889 } 11890 #undef MAX_READ_BUF_SIZE 11891 11892 static int 11893 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) 11894 { 11895 int rc; 11896 11897 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) 11898 return (EINVAL); 11899 11900 if (i2cd->len > sizeof(i2cd->data)) 11901 return (EFBIG); 11902 11903 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); 11904 if (rc) 11905 return (rc); 11906 if (hw_off_limits(sc)) 11907 rc = ENXIO; 11908 else 11909 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, 11910 i2cd->offset, i2cd->len, &i2cd->data[0]); 11911 end_synchronized_op(sc, 0); 11912 11913 return (rc); 11914 } 11915 11916 static int 11917 clear_stats(struct adapter *sc, u_int port_id) 11918 { 11919 int i, v, chan_map; 11920 struct port_info *pi; 11921 struct vi_info *vi; 11922 struct sge_rxq *rxq; 11923 struct sge_txq *txq; 11924 struct sge_wrq *wrq; 11925 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 11926 struct sge_ofld_txq *ofld_txq; 11927 #endif 11928 #ifdef TCP_OFFLOAD 11929 struct sge_ofld_rxq *ofld_rxq; 11930 #endif 11931 11932 if (port_id >= sc->params.nports) 11933 return (EINVAL); 11934 pi = sc->port[port_id]; 11935 if (pi == NULL) 11936 return (EIO); 11937 11938 mtx_lock(&sc->reg_lock); 11939 if (!hw_off_limits(sc)) { 11940 /* MAC stats */ 11941 t4_clr_port_stats(sc, pi->tx_chan); 11942 if (is_t6(sc)) { 11943 if (pi->fcs_reg != -1) 11944 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 11945 else 11946 pi->stats.rx_fcs_err = 0; 11947 } 11948 for_each_vi(pi, v, vi) { 11949 if (vi->flags & VI_INIT_DONE) 11950 t4_clr_vi_stats(sc, vi->vin); 11951 } 11952 chan_map = pi->rx_e_chan_map; 11953 v = 0; /* reuse */ 11954 while (chan_map) { 11955 i = ffs(chan_map) - 1; 11956 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 11957 1, A_TP_MIB_TNL_CNG_DROP_0 + i); 11958 chan_map &= ~(1 << i); 11959 } 11960 } 11961 mtx_unlock(&sc->reg_lock); 11962 pi->tx_parse_error = 0; 11963 pi->tnl_cong_drops = 0; 11964 11965 /* 11966 * Since this command accepts a port, clear stats for 11967 * all VIs on this port. 11968 */ 11969 for_each_vi(pi, v, vi) { 11970 if (vi->flags & VI_INIT_DONE) { 11971 11972 for_each_rxq(vi, i, rxq) { 11973 #if defined(INET) || defined(INET6) 11974 rxq->lro.lro_queued = 0; 11975 rxq->lro.lro_flushed = 0; 11976 #endif 11977 rxq->rxcsum = 0; 11978 rxq->vlan_extraction = 0; 11979 rxq->vxlan_rxcsum = 0; 11980 11981 rxq->fl.cl_allocated = 0; 11982 rxq->fl.cl_recycled = 0; 11983 rxq->fl.cl_fast_recycled = 0; 11984 } 11985 11986 for_each_txq(vi, i, txq) { 11987 txq->txcsum = 0; 11988 txq->tso_wrs = 0; 11989 txq->vlan_insertion = 0; 11990 txq->imm_wrs = 0; 11991 txq->sgl_wrs = 0; 11992 txq->txpkt_wrs = 0; 11993 txq->txpkts0_wrs = 0; 11994 txq->txpkts1_wrs = 0; 11995 txq->txpkts0_pkts = 0; 11996 txq->txpkts1_pkts = 0; 11997 txq->txpkts_flush = 0; 11998 txq->raw_wrs = 0; 11999 txq->vxlan_tso_wrs = 0; 12000 txq->vxlan_txcsum = 0; 12001 txq->kern_tls_records = 0; 12002 txq->kern_tls_short = 0; 12003 txq->kern_tls_partial = 0; 12004 txq->kern_tls_full = 0; 12005 txq->kern_tls_octets = 0; 12006 txq->kern_tls_waste = 0; 12007 txq->kern_tls_options = 0; 12008 txq->kern_tls_header = 0; 12009 txq->kern_tls_fin = 0; 12010 txq->kern_tls_fin_short = 0; 12011 txq->kern_tls_cbc = 0; 12012 txq->kern_tls_gcm = 0; 12013 mp_ring_reset_stats(txq->r); 12014 } 12015 12016 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12017 for_each_ofld_txq(vi, i, ofld_txq) { 12018 ofld_txq->wrq.tx_wrs_direct = 0; 12019 ofld_txq->wrq.tx_wrs_copied = 0; 12020 counter_u64_zero(ofld_txq->tx_iscsi_pdus); 12021 counter_u64_zero(ofld_txq->tx_iscsi_octets); 12022 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs); 12023 counter_u64_zero(ofld_txq->tx_toe_tls_records); 12024 counter_u64_zero(ofld_txq->tx_toe_tls_octets); 12025 } 12026 #endif 12027 #ifdef TCP_OFFLOAD 12028 for_each_ofld_rxq(vi, i, ofld_rxq) { 12029 ofld_rxq->fl.cl_allocated = 0; 12030 ofld_rxq->fl.cl_recycled = 0; 12031 ofld_rxq->fl.cl_fast_recycled = 0; 12032 counter_u64_zero( 12033 ofld_rxq->rx_iscsi_ddp_setup_ok); 12034 counter_u64_zero( 12035 ofld_rxq->rx_iscsi_ddp_setup_error); 12036 ofld_rxq->rx_iscsi_ddp_pdus = 0; 12037 ofld_rxq->rx_iscsi_ddp_octets = 0; 12038 ofld_rxq->rx_iscsi_fl_pdus = 0; 12039 ofld_rxq->rx_iscsi_fl_octets = 0; 12040 ofld_rxq->rx_toe_tls_records = 0; 12041 ofld_rxq->rx_toe_tls_octets = 0; 12042 } 12043 #endif 12044 12045 if (IS_MAIN_VI(vi)) { 12046 wrq = &sc->sge.ctrlq[pi->port_id]; 12047 wrq->tx_wrs_direct = 0; 12048 wrq->tx_wrs_copied = 0; 12049 } 12050 } 12051 } 12052 12053 return (0); 12054 } 12055 12056 static int 12057 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 12058 { 12059 #ifdef INET6 12060 struct in6_addr in6; 12061 12062 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 12063 if (t4_get_clip_entry(sc, &in6, true) != NULL) 12064 return (0); 12065 else 12066 return (EIO); 12067 #else 12068 return (ENOTSUP); 12069 #endif 12070 } 12071 12072 static int 12073 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 12074 { 12075 #ifdef INET6 12076 struct in6_addr in6; 12077 12078 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 12079 return (t4_release_clip_addr(sc, &in6)); 12080 #else 12081 return (ENOTSUP); 12082 #endif 12083 } 12084 12085 int 12086 t4_os_find_pci_capability(struct adapter *sc, int cap) 12087 { 12088 int i; 12089 12090 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); 12091 } 12092 12093 int 12094 t4_os_pci_save_state(struct adapter *sc) 12095 { 12096 device_t dev; 12097 struct pci_devinfo *dinfo; 12098 12099 dev = sc->dev; 12100 dinfo = device_get_ivars(dev); 12101 12102 pci_cfg_save(dev, dinfo, 0); 12103 return (0); 12104 } 12105 12106 int 12107 t4_os_pci_restore_state(struct adapter *sc) 12108 { 12109 device_t dev; 12110 struct pci_devinfo *dinfo; 12111 12112 dev = sc->dev; 12113 dinfo = device_get_ivars(dev); 12114 12115 pci_cfg_restore(dev, dinfo); 12116 return (0); 12117 } 12118 12119 void 12120 t4_os_portmod_changed(struct port_info *pi) 12121 { 12122 struct adapter *sc = pi->adapter; 12123 struct vi_info *vi; 12124 if_t ifp; 12125 static const char *mod_str[] = { 12126 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM" 12127 }; 12128 12129 KASSERT((pi->flags & FIXED_IFMEDIA) == 0, 12130 ("%s: port_type %u", __func__, pi->port_type)); 12131 12132 vi = &pi->vi[0]; 12133 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) { 12134 PORT_LOCK(pi); 12135 build_medialist(pi); 12136 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) { 12137 fixup_link_config(pi); 12138 apply_link_config(pi); 12139 } 12140 PORT_UNLOCK(pi); 12141 end_synchronized_op(sc, LOCK_HELD); 12142 } 12143 12144 ifp = vi->ifp; 12145 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 12146 if_printf(ifp, "transceiver unplugged.\n"); 12147 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 12148 if_printf(ifp, "unknown transceiver inserted.\n"); 12149 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 12150 if_printf(ifp, "unsupported transceiver inserted.\n"); 12151 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { 12152 if_printf(ifp, "%dGbps %s transceiver inserted.\n", 12153 port_top_speed(pi), mod_str[pi->mod_type]); 12154 } else { 12155 if_printf(ifp, "transceiver (type %d) inserted.\n", 12156 pi->mod_type); 12157 } 12158 } 12159 12160 void 12161 t4_os_link_changed(struct port_info *pi) 12162 { 12163 struct vi_info *vi; 12164 if_t ifp; 12165 struct link_config *lc = &pi->link_cfg; 12166 struct adapter *sc = pi->adapter; 12167 int v; 12168 12169 PORT_LOCK_ASSERT_OWNED(pi); 12170 12171 if (is_t6(sc)) { 12172 if (lc->link_ok) { 12173 if (lc->speed > 25000 || 12174 (lc->speed == 25000 && lc->fec == FEC_RS)) { 12175 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12176 A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS); 12177 } else { 12178 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12179 A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS); 12180 } 12181 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 12182 pi->stats.rx_fcs_err = 0; 12183 } else { 12184 pi->fcs_reg = -1; 12185 } 12186 } else { 12187 MPASS(pi->fcs_reg != -1); 12188 MPASS(pi->fcs_base == 0); 12189 } 12190 12191 for_each_vi(pi, v, vi) { 12192 ifp = vi->ifp; 12193 if (ifp == NULL) 12194 continue; 12195 12196 if (lc->link_ok) { 12197 if_setbaudrate(ifp, IF_Mbps(lc->speed)); 12198 if_link_state_change(ifp, LINK_STATE_UP); 12199 } else { 12200 if_link_state_change(ifp, LINK_STATE_DOWN); 12201 } 12202 } 12203 } 12204 12205 void 12206 t4_iterate(void (*func)(struct adapter *, void *), void *arg) 12207 { 12208 struct adapter *sc; 12209 12210 sx_slock(&t4_list_lock); 12211 SLIST_FOREACH(sc, &t4_list, link) { 12212 /* 12213 * func should not make any assumptions about what state sc is 12214 * in - the only guarantee is that sc->sc_lock is a valid lock. 12215 */ 12216 func(sc, arg); 12217 } 12218 sx_sunlock(&t4_list_lock); 12219 } 12220 12221 static int 12222 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 12223 struct thread *td) 12224 { 12225 int rc; 12226 struct adapter *sc = dev->si_drv1; 12227 12228 rc = priv_check(td, PRIV_DRIVER); 12229 if (rc != 0) 12230 return (rc); 12231 12232 switch (cmd) { 12233 case CHELSIO_T4_GETREG: { 12234 struct t4_reg *edata = (struct t4_reg *)data; 12235 12236 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12237 return (EFAULT); 12238 12239 mtx_lock(&sc->reg_lock); 12240 if (hw_off_limits(sc)) 12241 rc = ENXIO; 12242 else if (edata->size == 4) 12243 edata->val = t4_read_reg(sc, edata->addr); 12244 else if (edata->size == 8) 12245 edata->val = t4_read_reg64(sc, edata->addr); 12246 else 12247 rc = EINVAL; 12248 mtx_unlock(&sc->reg_lock); 12249 12250 break; 12251 } 12252 case CHELSIO_T4_SETREG: { 12253 struct t4_reg *edata = (struct t4_reg *)data; 12254 12255 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12256 return (EFAULT); 12257 12258 mtx_lock(&sc->reg_lock); 12259 if (hw_off_limits(sc)) 12260 rc = ENXIO; 12261 else if (edata->size == 4) { 12262 if (edata->val & 0xffffffff00000000) 12263 rc = EINVAL; 12264 t4_write_reg(sc, edata->addr, (uint32_t) edata->val); 12265 } else if (edata->size == 8) 12266 t4_write_reg64(sc, edata->addr, edata->val); 12267 else 12268 rc = EINVAL; 12269 mtx_unlock(&sc->reg_lock); 12270 12271 break; 12272 } 12273 case CHELSIO_T4_REGDUMP: { 12274 struct t4_regdump *regs = (struct t4_regdump *)data; 12275 int reglen = t4_get_regs_len(sc); 12276 uint8_t *buf; 12277 12278 if (regs->len < reglen) { 12279 regs->len = reglen; /* hint to the caller */ 12280 return (ENOBUFS); 12281 } 12282 12283 regs->len = reglen; 12284 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); 12285 mtx_lock(&sc->reg_lock); 12286 if (hw_off_limits(sc)) 12287 rc = ENXIO; 12288 else 12289 get_regs(sc, regs, buf); 12290 mtx_unlock(&sc->reg_lock); 12291 if (rc == 0) 12292 rc = copyout(buf, regs->data, reglen); 12293 free(buf, M_CXGBE); 12294 break; 12295 } 12296 case CHELSIO_T4_GET_FILTER_MODE: 12297 rc = get_filter_mode(sc, (uint32_t *)data); 12298 break; 12299 case CHELSIO_T4_SET_FILTER_MODE: 12300 rc = set_filter_mode(sc, *(uint32_t *)data); 12301 break; 12302 case CHELSIO_T4_SET_FILTER_MASK: 12303 rc = set_filter_mask(sc, *(uint32_t *)data); 12304 break; 12305 case CHELSIO_T4_GET_FILTER: 12306 rc = get_filter(sc, (struct t4_filter *)data); 12307 break; 12308 case CHELSIO_T4_SET_FILTER: 12309 rc = set_filter(sc, (struct t4_filter *)data); 12310 break; 12311 case CHELSIO_T4_DEL_FILTER: 12312 rc = del_filter(sc, (struct t4_filter *)data); 12313 break; 12314 case CHELSIO_T4_GET_SGE_CONTEXT: 12315 rc = get_sge_context(sc, (struct t4_sge_context *)data); 12316 break; 12317 case CHELSIO_T4_LOAD_FW: 12318 rc = load_fw(sc, (struct t4_data *)data); 12319 break; 12320 case CHELSIO_T4_GET_MEM: 12321 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); 12322 break; 12323 case CHELSIO_T4_GET_I2C: 12324 rc = read_i2c(sc, (struct t4_i2c_data *)data); 12325 break; 12326 case CHELSIO_T4_CLEAR_STATS: 12327 rc = clear_stats(sc, *(uint32_t *)data); 12328 break; 12329 case CHELSIO_T4_SCHED_CLASS: 12330 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data); 12331 break; 12332 case CHELSIO_T4_SCHED_QUEUE: 12333 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data); 12334 break; 12335 case CHELSIO_T4_GET_TRACER: 12336 rc = t4_get_tracer(sc, (struct t4_tracer *)data); 12337 break; 12338 case CHELSIO_T4_SET_TRACER: 12339 rc = t4_set_tracer(sc, (struct t4_tracer *)data); 12340 break; 12341 case CHELSIO_T4_LOAD_CFG: 12342 rc = load_cfg(sc, (struct t4_data *)data); 12343 break; 12344 case CHELSIO_T4_LOAD_BOOT: 12345 rc = load_boot(sc, (struct t4_bootrom *)data); 12346 break; 12347 case CHELSIO_T4_LOAD_BOOTCFG: 12348 rc = load_bootcfg(sc, (struct t4_data *)data); 12349 break; 12350 case CHELSIO_T4_CUDBG_DUMP: 12351 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data); 12352 break; 12353 case CHELSIO_T4_SET_OFLD_POLICY: 12354 rc = set_offload_policy(sc, (struct t4_offload_policy *)data); 12355 break; 12356 case CHELSIO_T4_HOLD_CLIP_ADDR: 12357 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data); 12358 break; 12359 case CHELSIO_T4_RELEASE_CLIP_ADDR: 12360 rc = release_clip_addr(sc, (struct t4_clip_addr *)data); 12361 break; 12362 default: 12363 rc = ENOTTY; 12364 } 12365 12366 return (rc); 12367 } 12368 12369 #ifdef TCP_OFFLOAD 12370 static int 12371 toe_capability(struct vi_info *vi, bool enable) 12372 { 12373 int rc; 12374 struct port_info *pi = vi->pi; 12375 struct adapter *sc = pi->adapter; 12376 12377 ASSERT_SYNCHRONIZED_OP(sc); 12378 12379 if (!is_offload(sc)) 12380 return (ENODEV); 12381 if (hw_off_limits(sc)) 12382 return (ENXIO); 12383 12384 if (enable) { 12385 #ifdef KERN_TLS 12386 if (sc->flags & KERN_TLS_ON && is_t6(sc)) { 12387 int i, j, n; 12388 struct port_info *p; 12389 struct vi_info *v; 12390 12391 /* 12392 * Reconfigure hardware for TOE if TXTLS is not enabled 12393 * on any ifnet. 12394 */ 12395 n = 0; 12396 for_each_port(sc, i) { 12397 p = sc->port[i]; 12398 for_each_vi(p, j, v) { 12399 if (if_getcapenable(v->ifp) & IFCAP_TXTLS) { 12400 CH_WARN(sc, 12401 "%s has NIC TLS enabled.\n", 12402 device_get_nameunit(v->dev)); 12403 n++; 12404 } 12405 } 12406 } 12407 if (n > 0) { 12408 CH_WARN(sc, "Disable NIC TLS on all interfaces " 12409 "associated with this adapter before " 12410 "trying to enable TOE.\n"); 12411 return (EAGAIN); 12412 } 12413 rc = t6_config_kern_tls(sc, false); 12414 if (rc) 12415 return (rc); 12416 } 12417 #endif 12418 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) != 0) { 12419 /* TOE is already enabled. */ 12420 return (0); 12421 } 12422 12423 /* 12424 * We need the port's queues around so that we're able to send 12425 * and receive CPLs to/from the TOE even if the ifnet for this 12426 * port has never been UP'd administratively. 12427 */ 12428 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 12429 return (rc); 12430 if (!(pi->vi[0].flags & VI_INIT_DONE) && 12431 ((rc = vi_init(&pi->vi[0])) != 0)) 12432 return (rc); 12433 12434 if (isset(&sc->offload_map, pi->port_id)) { 12435 /* TOE is enabled on another VI of this port. */ 12436 pi->uld_vis++; 12437 return (0); 12438 } 12439 12440 if (!uld_active(sc, ULD_TOM)) { 12441 rc = t4_activate_uld(sc, ULD_TOM); 12442 if (rc == EAGAIN) { 12443 log(LOG_WARNING, 12444 "You must kldload t4_tom.ko before trying " 12445 "to enable TOE on a cxgbe interface.\n"); 12446 } 12447 if (rc != 0) 12448 return (rc); 12449 KASSERT(sc->tom_softc != NULL, 12450 ("%s: TOM activated but softc NULL", __func__)); 12451 KASSERT(uld_active(sc, ULD_TOM), 12452 ("%s: TOM activated but flag not set", __func__)); 12453 } 12454 12455 /* Activate iWARP and iSCSI too, if the modules are loaded. */ 12456 if (!uld_active(sc, ULD_IWARP)) 12457 (void) t4_activate_uld(sc, ULD_IWARP); 12458 if (!uld_active(sc, ULD_ISCSI)) 12459 (void) t4_activate_uld(sc, ULD_ISCSI); 12460 12461 pi->uld_vis++; 12462 setbit(&sc->offload_map, pi->port_id); 12463 } else { 12464 pi->uld_vis--; 12465 12466 if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0) 12467 return (0); 12468 12469 KASSERT(uld_active(sc, ULD_TOM), 12470 ("%s: TOM never initialized?", __func__)); 12471 clrbit(&sc->offload_map, pi->port_id); 12472 } 12473 12474 return (0); 12475 } 12476 12477 /* 12478 * Add an upper layer driver to the global list. 12479 */ 12480 int 12481 t4_register_uld(struct uld_info *ui) 12482 { 12483 int rc = 0; 12484 struct uld_info *u; 12485 12486 sx_xlock(&t4_uld_list_lock); 12487 SLIST_FOREACH(u, &t4_uld_list, link) { 12488 if (u->uld_id == ui->uld_id) { 12489 rc = EEXIST; 12490 goto done; 12491 } 12492 } 12493 12494 SLIST_INSERT_HEAD(&t4_uld_list, ui, link); 12495 ui->refcount = 0; 12496 done: 12497 sx_xunlock(&t4_uld_list_lock); 12498 return (rc); 12499 } 12500 12501 int 12502 t4_unregister_uld(struct uld_info *ui) 12503 { 12504 int rc = EINVAL; 12505 struct uld_info *u; 12506 12507 sx_xlock(&t4_uld_list_lock); 12508 12509 SLIST_FOREACH(u, &t4_uld_list, link) { 12510 if (u == ui) { 12511 if (ui->refcount > 0) { 12512 rc = EBUSY; 12513 goto done; 12514 } 12515 12516 SLIST_REMOVE(&t4_uld_list, ui, uld_info, link); 12517 rc = 0; 12518 goto done; 12519 } 12520 } 12521 done: 12522 sx_xunlock(&t4_uld_list_lock); 12523 return (rc); 12524 } 12525 12526 int 12527 t4_activate_uld(struct adapter *sc, int id) 12528 { 12529 int rc; 12530 struct uld_info *ui; 12531 12532 ASSERT_SYNCHRONIZED_OP(sc); 12533 12534 if (id < 0 || id > ULD_MAX) 12535 return (EINVAL); 12536 rc = EAGAIN; /* kldoad the module with this ULD and try again. */ 12537 12538 sx_slock(&t4_uld_list_lock); 12539 12540 SLIST_FOREACH(ui, &t4_uld_list, link) { 12541 if (ui->uld_id == id) { 12542 if (!(sc->flags & FULL_INIT_DONE)) { 12543 rc = adapter_init(sc); 12544 if (rc != 0) 12545 break; 12546 } 12547 12548 rc = ui->activate(sc); 12549 if (rc == 0) { 12550 setbit(&sc->active_ulds, id); 12551 ui->refcount++; 12552 } 12553 break; 12554 } 12555 } 12556 12557 sx_sunlock(&t4_uld_list_lock); 12558 12559 return (rc); 12560 } 12561 12562 int 12563 t4_deactivate_uld(struct adapter *sc, int id) 12564 { 12565 int rc; 12566 struct uld_info *ui; 12567 12568 ASSERT_SYNCHRONIZED_OP(sc); 12569 12570 if (id < 0 || id > ULD_MAX) 12571 return (EINVAL); 12572 rc = ENXIO; 12573 12574 sx_slock(&t4_uld_list_lock); 12575 12576 SLIST_FOREACH(ui, &t4_uld_list, link) { 12577 if (ui->uld_id == id) { 12578 rc = ui->deactivate(sc); 12579 if (rc == 0) { 12580 clrbit(&sc->active_ulds, id); 12581 ui->refcount--; 12582 } 12583 break; 12584 } 12585 } 12586 12587 sx_sunlock(&t4_uld_list_lock); 12588 12589 return (rc); 12590 } 12591 12592 static int 12593 t4_deactivate_all_uld(struct adapter *sc) 12594 { 12595 int rc; 12596 struct uld_info *ui; 12597 12598 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld"); 12599 if (rc != 0) 12600 return (ENXIO); 12601 12602 sx_slock(&t4_uld_list_lock); 12603 12604 SLIST_FOREACH(ui, &t4_uld_list, link) { 12605 if (isset(&sc->active_ulds, ui->uld_id)) { 12606 rc = ui->deactivate(sc); 12607 if (rc != 0) 12608 break; 12609 clrbit(&sc->active_ulds, ui->uld_id); 12610 ui->refcount--; 12611 } 12612 } 12613 12614 sx_sunlock(&t4_uld_list_lock); 12615 end_synchronized_op(sc, 0); 12616 12617 return (rc); 12618 } 12619 12620 static void 12621 t4_async_event(struct adapter *sc) 12622 { 12623 struct uld_info *ui; 12624 12625 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4async") != 0) 12626 return; 12627 sx_slock(&t4_uld_list_lock); 12628 SLIST_FOREACH(ui, &t4_uld_list, link) { 12629 if (ui->uld_id == ULD_IWARP) { 12630 ui->async_event(sc); 12631 break; 12632 } 12633 } 12634 sx_sunlock(&t4_uld_list_lock); 12635 end_synchronized_op(sc, 0); 12636 } 12637 12638 int 12639 uld_active(struct adapter *sc, int uld_id) 12640 { 12641 12642 MPASS(uld_id >= 0 && uld_id <= ULD_MAX); 12643 12644 return (isset(&sc->active_ulds, uld_id)); 12645 } 12646 #endif 12647 12648 #ifdef KERN_TLS 12649 static int 12650 ktls_capability(struct adapter *sc, bool enable) 12651 { 12652 ASSERT_SYNCHRONIZED_OP(sc); 12653 12654 if (!is_ktls(sc)) 12655 return (ENODEV); 12656 if (!is_t6(sc)) 12657 return (0); 12658 if (hw_off_limits(sc)) 12659 return (ENXIO); 12660 12661 if (enable) { 12662 if (sc->flags & KERN_TLS_ON) 12663 return (0); /* already on */ 12664 if (sc->offload_map != 0) { 12665 CH_WARN(sc, 12666 "Disable TOE on all interfaces associated with " 12667 "this adapter before trying to enable NIC TLS.\n"); 12668 return (EAGAIN); 12669 } 12670 return (t6_config_kern_tls(sc, true)); 12671 } else { 12672 /* 12673 * Nothing to do for disable. If TOE is enabled sometime later 12674 * then toe_capability will reconfigure the hardware. 12675 */ 12676 return (0); 12677 } 12678 } 12679 #endif 12680 12681 /* 12682 * t = ptr to tunable. 12683 * nc = number of CPUs. 12684 * c = compiled in default for that tunable. 12685 */ 12686 static void 12687 calculate_nqueues(int *t, int nc, const int c) 12688 { 12689 int nq; 12690 12691 if (*t > 0) 12692 return; 12693 nq = *t < 0 ? -*t : c; 12694 *t = min(nc, nq); 12695 } 12696 12697 /* 12698 * Come up with reasonable defaults for some of the tunables, provided they're 12699 * not set by the user (in which case we'll use the values as is). 12700 */ 12701 static void 12702 tweak_tunables(void) 12703 { 12704 int nc = mp_ncpus; /* our snapshot of the number of CPUs */ 12705 12706 if (t4_ntxq < 1) { 12707 #ifdef RSS 12708 t4_ntxq = rss_getnumbuckets(); 12709 #else 12710 calculate_nqueues(&t4_ntxq, nc, NTXQ); 12711 #endif 12712 } 12713 12714 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI); 12715 12716 if (t4_nrxq < 1) { 12717 #ifdef RSS 12718 t4_nrxq = rss_getnumbuckets(); 12719 #else 12720 calculate_nqueues(&t4_nrxq, nc, NRXQ); 12721 #endif 12722 } 12723 12724 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI); 12725 12726 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12727 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ); 12728 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI); 12729 #endif 12730 #ifdef TCP_OFFLOAD 12731 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ); 12732 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI); 12733 #endif 12734 12735 #if defined(TCP_OFFLOAD) || defined(KERN_TLS) 12736 if (t4_toecaps_allowed == -1) 12737 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; 12738 #else 12739 if (t4_toecaps_allowed == -1) 12740 t4_toecaps_allowed = 0; 12741 #endif 12742 12743 #ifdef TCP_OFFLOAD 12744 if (t4_rdmacaps_allowed == -1) { 12745 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP | 12746 FW_CAPS_CONFIG_RDMA_RDMAC; 12747 } 12748 12749 if (t4_iscsicaps_allowed == -1) { 12750 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU | 12751 FW_CAPS_CONFIG_ISCSI_TARGET_PDU | 12752 FW_CAPS_CONFIG_ISCSI_T10DIF; 12753 } 12754 12755 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS) 12756 t4_tmr_idx_ofld = TMR_IDX_OFLD; 12757 12758 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS) 12759 t4_pktc_idx_ofld = PKTC_IDX_OFLD; 12760 #else 12761 if (t4_rdmacaps_allowed == -1) 12762 t4_rdmacaps_allowed = 0; 12763 12764 if (t4_iscsicaps_allowed == -1) 12765 t4_iscsicaps_allowed = 0; 12766 #endif 12767 12768 #ifdef DEV_NETMAP 12769 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ); 12770 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ); 12771 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI); 12772 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI); 12773 #endif 12774 12775 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS) 12776 t4_tmr_idx = TMR_IDX; 12777 12778 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS) 12779 t4_pktc_idx = PKTC_IDX; 12780 12781 if (t4_qsize_txq < 128) 12782 t4_qsize_txq = 128; 12783 12784 if (t4_qsize_rxq < 128) 12785 t4_qsize_rxq = 128; 12786 while (t4_qsize_rxq & 7) 12787 t4_qsize_rxq++; 12788 12789 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; 12790 12791 /* 12792 * Number of VIs to create per-port. The first VI is the "main" regular 12793 * VI for the port. The rest are additional virtual interfaces on the 12794 * same physical port. Note that the main VI does not have native 12795 * netmap support but the extra VIs do. 12796 * 12797 * Limit the number of VIs per port to the number of available 12798 * MAC addresses per port. 12799 */ 12800 if (t4_num_vis < 1) 12801 t4_num_vis = 1; 12802 if (t4_num_vis > nitems(vi_mac_funcs)) { 12803 t4_num_vis = nitems(vi_mac_funcs); 12804 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis); 12805 } 12806 12807 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) { 12808 pcie_relaxed_ordering = 1; 12809 #if defined(__i386__) || defined(__amd64__) 12810 if (cpu_vendor_id == CPU_VENDOR_INTEL) 12811 pcie_relaxed_ordering = 0; 12812 #endif 12813 } 12814 } 12815 12816 #ifdef DDB 12817 static void 12818 t4_dump_tcb(struct adapter *sc, int tid) 12819 { 12820 uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos; 12821 12822 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2); 12823 save = t4_read_reg(sc, reg); 12824 base = sc->memwin[2].mw_base; 12825 12826 /* Dump TCB for the tid */ 12827 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 12828 tcb_addr += tid * TCB_SIZE; 12829 12830 if (is_t4(sc)) { 12831 pf = 0; 12832 win_pos = tcb_addr & ~0xf; /* start must be 16B aligned */ 12833 } else { 12834 pf = V_PFNUM(sc->pf); 12835 win_pos = tcb_addr & ~0x7f; /* start must be 128B aligned */ 12836 } 12837 t4_write_reg(sc, reg, win_pos | pf); 12838 t4_read_reg(sc, reg); 12839 12840 off = tcb_addr - win_pos; 12841 for (i = 0; i < 4; i++) { 12842 uint32_t buf[8]; 12843 for (j = 0; j < 8; j++, off += 4) 12844 buf[j] = htonl(t4_read_reg(sc, base + off)); 12845 12846 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", 12847 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], 12848 buf[7]); 12849 } 12850 12851 t4_write_reg(sc, reg, save); 12852 t4_read_reg(sc, reg); 12853 } 12854 12855 static void 12856 t4_dump_devlog(struct adapter *sc) 12857 { 12858 struct devlog_params *dparams = &sc->params.devlog; 12859 struct fw_devlog_e e; 12860 int i, first, j, m, nentries, rc; 12861 uint64_t ftstamp = UINT64_MAX; 12862 12863 if (dparams->start == 0) { 12864 db_printf("devlog params not valid\n"); 12865 return; 12866 } 12867 12868 nentries = dparams->size / sizeof(struct fw_devlog_e); 12869 m = fwmtype_to_hwmtype(dparams->memtype); 12870 12871 /* Find the first entry. */ 12872 first = -1; 12873 for (i = 0; i < nentries && !db_pager_quit; i++) { 12874 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12875 sizeof(e), (void *)&e); 12876 if (rc != 0) 12877 break; 12878 12879 if (e.timestamp == 0) 12880 break; 12881 12882 e.timestamp = be64toh(e.timestamp); 12883 if (e.timestamp < ftstamp) { 12884 ftstamp = e.timestamp; 12885 first = i; 12886 } 12887 } 12888 12889 if (first == -1) 12890 return; 12891 12892 i = first; 12893 do { 12894 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12895 sizeof(e), (void *)&e); 12896 if (rc != 0) 12897 return; 12898 12899 if (e.timestamp == 0) 12900 return; 12901 12902 e.timestamp = be64toh(e.timestamp); 12903 e.seqno = be32toh(e.seqno); 12904 for (j = 0; j < 8; j++) 12905 e.params[j] = be32toh(e.params[j]); 12906 12907 db_printf("%10d %15ju %8s %8s ", 12908 e.seqno, e.timestamp, 12909 (e.level < nitems(devlog_level_strings) ? 12910 devlog_level_strings[e.level] : "UNKNOWN"), 12911 (e.facility < nitems(devlog_facility_strings) ? 12912 devlog_facility_strings[e.facility] : "UNKNOWN")); 12913 db_printf(e.fmt, e.params[0], e.params[1], e.params[2], 12914 e.params[3], e.params[4], e.params[5], e.params[6], 12915 e.params[7]); 12916 12917 if (++i == nentries) 12918 i = 0; 12919 } while (i != first && !db_pager_quit); 12920 } 12921 12922 static DB_DEFINE_TABLE(show, t4, show_t4); 12923 12924 DB_TABLE_COMMAND_FLAGS(show_t4, devlog, db_show_devlog, CS_OWN) 12925 { 12926 device_t dev; 12927 int t; 12928 bool valid; 12929 12930 valid = false; 12931 t = db_read_token(); 12932 if (t == tIDENT) { 12933 dev = device_lookup_by_name(db_tok_string); 12934 valid = true; 12935 } 12936 db_skip_to_eol(); 12937 if (!valid) { 12938 db_printf("usage: show t4 devlog <nexus>\n"); 12939 return; 12940 } 12941 12942 if (dev == NULL) { 12943 db_printf("device not found\n"); 12944 return; 12945 } 12946 12947 t4_dump_devlog(device_get_softc(dev)); 12948 } 12949 12950 DB_TABLE_COMMAND_FLAGS(show_t4, tcb, db_show_t4tcb, CS_OWN) 12951 { 12952 device_t dev; 12953 int radix, tid, t; 12954 bool valid; 12955 12956 valid = false; 12957 radix = db_radix; 12958 db_radix = 10; 12959 t = db_read_token(); 12960 if (t == tIDENT) { 12961 dev = device_lookup_by_name(db_tok_string); 12962 t = db_read_token(); 12963 if (t == tNUMBER) { 12964 tid = db_tok_number; 12965 valid = true; 12966 } 12967 } 12968 db_radix = radix; 12969 db_skip_to_eol(); 12970 if (!valid) { 12971 db_printf("usage: show t4 tcb <nexus> <tid>\n"); 12972 return; 12973 } 12974 12975 if (dev == NULL) { 12976 db_printf("device not found\n"); 12977 return; 12978 } 12979 if (tid < 0) { 12980 db_printf("invalid tid\n"); 12981 return; 12982 } 12983 12984 t4_dump_tcb(device_get_softc(dev), tid); 12985 } 12986 #endif 12987 12988 static eventhandler_tag vxlan_start_evtag; 12989 static eventhandler_tag vxlan_stop_evtag; 12990 12991 struct vxlan_evargs { 12992 if_t ifp; 12993 uint16_t port; 12994 }; 12995 12996 static void 12997 enable_vxlan_rx(struct adapter *sc) 12998 { 12999 int i, rc; 13000 struct port_info *pi; 13001 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 13002 13003 ASSERT_SYNCHRONIZED_OP(sc); 13004 13005 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) | 13006 F_VXLAN_EN); 13007 for_each_port(sc, i) { 13008 pi = sc->port[i]; 13009 if (pi->vxlan_tcam_entry == true) 13010 continue; 13011 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac, 13012 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 13013 true); 13014 if (rc < 0) { 13015 rc = -rc; 13016 CH_ERR(&pi->vi[0], 13017 "failed to add VXLAN TCAM entry: %d.\n", rc); 13018 } else { 13019 MPASS(rc == sc->rawf_base + pi->port_id); 13020 pi->vxlan_tcam_entry = true; 13021 } 13022 } 13023 } 13024 13025 static void 13026 t4_vxlan_start(struct adapter *sc, void *arg) 13027 { 13028 struct vxlan_evargs *v = arg; 13029 13030 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 13031 return; 13032 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0) 13033 return; 13034 13035 if (sc->vxlan_refcount == 0) { 13036 sc->vxlan_port = v->port; 13037 sc->vxlan_refcount = 1; 13038 if (!hw_off_limits(sc)) 13039 enable_vxlan_rx(sc); 13040 } else if (sc->vxlan_port == v->port) { 13041 sc->vxlan_refcount++; 13042 } else { 13043 CH_ERR(sc, "VXLAN already configured on port %d; " 13044 "ignoring attempt to configure it on port %d\n", 13045 sc->vxlan_port, v->port); 13046 } 13047 end_synchronized_op(sc, 0); 13048 } 13049 13050 static void 13051 t4_vxlan_stop(struct adapter *sc, void *arg) 13052 { 13053 struct vxlan_evargs *v = arg; 13054 13055 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 13056 return; 13057 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0) 13058 return; 13059 13060 /* 13061 * VXLANs may have been configured before the driver was loaded so we 13062 * may see more stops than starts. This is not handled cleanly but at 13063 * least we keep the refcount sane. 13064 */ 13065 if (sc->vxlan_port != v->port) 13066 goto done; 13067 if (sc->vxlan_refcount == 0) { 13068 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; " 13069 "ignoring attempt to stop it again.\n", sc->vxlan_port); 13070 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc)) 13071 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0); 13072 done: 13073 end_synchronized_op(sc, 0); 13074 } 13075 13076 static void 13077 t4_vxlan_start_handler(void *arg __unused, if_t ifp, 13078 sa_family_t family, u_int port) 13079 { 13080 struct vxlan_evargs v; 13081 13082 MPASS(family == AF_INET || family == AF_INET6); 13083 v.ifp = ifp; 13084 v.port = port; 13085 13086 t4_iterate(t4_vxlan_start, &v); 13087 } 13088 13089 static void 13090 t4_vxlan_stop_handler(void *arg __unused, if_t ifp, sa_family_t family, 13091 u_int port) 13092 { 13093 struct vxlan_evargs v; 13094 13095 MPASS(family == AF_INET || family == AF_INET6); 13096 v.ifp = ifp; 13097 v.port = port; 13098 13099 t4_iterate(t4_vxlan_stop, &v); 13100 } 13101 13102 13103 static struct sx mlu; /* mod load unload */ 13104 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload"); 13105 13106 static int 13107 mod_event(module_t mod, int cmd, void *arg) 13108 { 13109 int rc = 0; 13110 static int loaded = 0; 13111 13112 switch (cmd) { 13113 case MOD_LOAD: 13114 sx_xlock(&mlu); 13115 if (loaded++ == 0) { 13116 t4_sge_modload(); 13117 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 13118 t4_filter_rpl, CPL_COOKIE_FILTER); 13119 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, 13120 do_l2t_write_rpl, CPL_COOKIE_FILTER); 13121 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL, 13122 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER); 13123 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 13124 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER); 13125 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, 13126 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER); 13127 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt); 13128 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt); 13129 t4_register_cpl_handler(CPL_SMT_WRITE_RPL, 13130 do_smt_write_rpl); 13131 sx_init(&t4_list_lock, "T4/T5 adapters"); 13132 SLIST_INIT(&t4_list); 13133 callout_init(&fatal_callout, 1); 13134 #ifdef TCP_OFFLOAD 13135 sx_init(&t4_uld_list_lock, "T4/T5 ULDs"); 13136 SLIST_INIT(&t4_uld_list); 13137 #endif 13138 #ifdef INET6 13139 t4_clip_modload(); 13140 #endif 13141 #ifdef KERN_TLS 13142 t6_ktls_modload(); 13143 #endif 13144 t4_tracer_modload(); 13145 tweak_tunables(); 13146 vxlan_start_evtag = 13147 EVENTHANDLER_REGISTER(vxlan_start, 13148 t4_vxlan_start_handler, NULL, 13149 EVENTHANDLER_PRI_ANY); 13150 vxlan_stop_evtag = 13151 EVENTHANDLER_REGISTER(vxlan_stop, 13152 t4_vxlan_stop_handler, NULL, 13153 EVENTHANDLER_PRI_ANY); 13154 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK, 13155 taskqueue_thread_enqueue, &reset_tq); 13156 taskqueue_start_threads(&reset_tq, 1, PI_SOFT, 13157 "t4_rst_thr"); 13158 } 13159 sx_xunlock(&mlu); 13160 break; 13161 13162 case MOD_UNLOAD: 13163 sx_xlock(&mlu); 13164 if (--loaded == 0) { 13165 int tries; 13166 13167 taskqueue_free(reset_tq); 13168 sx_slock(&t4_list_lock); 13169 if (!SLIST_EMPTY(&t4_list)) { 13170 rc = EBUSY; 13171 sx_sunlock(&t4_list_lock); 13172 goto done_unload; 13173 } 13174 #ifdef TCP_OFFLOAD 13175 sx_slock(&t4_uld_list_lock); 13176 if (!SLIST_EMPTY(&t4_uld_list)) { 13177 rc = EBUSY; 13178 sx_sunlock(&t4_uld_list_lock); 13179 sx_sunlock(&t4_list_lock); 13180 goto done_unload; 13181 } 13182 #endif 13183 tries = 0; 13184 while (tries++ < 5 && t4_sge_extfree_refs() != 0) { 13185 uprintf("%ju clusters with custom free routine " 13186 "still is use.\n", t4_sge_extfree_refs()); 13187 pause("t4unload", 2 * hz); 13188 } 13189 #ifdef TCP_OFFLOAD 13190 sx_sunlock(&t4_uld_list_lock); 13191 #endif 13192 sx_sunlock(&t4_list_lock); 13193 13194 if (t4_sge_extfree_refs() == 0) { 13195 EVENTHANDLER_DEREGISTER(vxlan_start, 13196 vxlan_start_evtag); 13197 EVENTHANDLER_DEREGISTER(vxlan_stop, 13198 vxlan_stop_evtag); 13199 t4_tracer_modunload(); 13200 #ifdef KERN_TLS 13201 t6_ktls_modunload(); 13202 #endif 13203 #ifdef INET6 13204 t4_clip_modunload(); 13205 #endif 13206 #ifdef TCP_OFFLOAD 13207 sx_destroy(&t4_uld_list_lock); 13208 #endif 13209 sx_destroy(&t4_list_lock); 13210 t4_sge_modunload(); 13211 loaded = 0; 13212 } else { 13213 rc = EBUSY; 13214 loaded++; /* undo earlier decrement */ 13215 } 13216 } 13217 done_unload: 13218 sx_xunlock(&mlu); 13219 break; 13220 } 13221 13222 return (rc); 13223 } 13224 13225 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0); 13226 MODULE_VERSION(t4nex, 1); 13227 MODULE_DEPEND(t4nex, firmware, 1, 1, 1); 13228 #ifdef DEV_NETMAP 13229 MODULE_DEPEND(t4nex, netmap, 1, 1, 1); 13230 #endif /* DEV_NETMAP */ 13231 13232 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0); 13233 MODULE_VERSION(t5nex, 1); 13234 MODULE_DEPEND(t5nex, firmware, 1, 1, 1); 13235 #ifdef DEV_NETMAP 13236 MODULE_DEPEND(t5nex, netmap, 1, 1, 1); 13237 #endif /* DEV_NETMAP */ 13238 13239 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0); 13240 MODULE_VERSION(t6nex, 1); 13241 MODULE_DEPEND(t6nex, crypto, 1, 1, 1); 13242 MODULE_DEPEND(t6nex, firmware, 1, 1, 1); 13243 #ifdef DEV_NETMAP 13244 MODULE_DEPEND(t6nex, netmap, 1, 1, 1); 13245 #endif /* DEV_NETMAP */ 13246 13247 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0); 13248 MODULE_VERSION(cxgbe, 1); 13249 13250 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0); 13251 MODULE_VERSION(cxl, 1); 13252 13253 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0); 13254 MODULE_VERSION(cc, 1); 13255 13256 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0); 13257 MODULE_VERSION(vcxgbe, 1); 13258 13259 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0); 13260 MODULE_VERSION(vcxl, 1); 13261 13262 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0); 13263 MODULE_VERSION(vcc, 1); 13264