xref: /freebsd/sys/dev/cxgbe/t4_main.c (revision 36d7818975359fd2aacb19e4f9442a841dc954bb)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include "opt_ddb.h"
34 #include "opt_inet.h"
35 #include "opt_inet6.h"
36 #include "opt_ratelimit.h"
37 #include "opt_rss.h"
38 
39 #include <sys/param.h>
40 #include <sys/conf.h>
41 #include <sys/priv.h>
42 #include <sys/kernel.h>
43 #include <sys/bus.h>
44 #include <sys/module.h>
45 #include <sys/malloc.h>
46 #include <sys/queue.h>
47 #include <sys/taskqueue.h>
48 #include <sys/pciio.h>
49 #include <dev/pci/pcireg.h>
50 #include <dev/pci/pcivar.h>
51 #include <dev/pci/pci_private.h>
52 #include <sys/firmware.h>
53 #include <sys/sbuf.h>
54 #include <sys/smp.h>
55 #include <sys/socket.h>
56 #include <sys/sockio.h>
57 #include <sys/sysctl.h>
58 #include <net/ethernet.h>
59 #include <net/if.h>
60 #include <net/if_types.h>
61 #include <net/if_dl.h>
62 #include <net/if_vlan_var.h>
63 #ifdef RSS
64 #include <net/rss_config.h>
65 #endif
66 #include <netinet/in.h>
67 #include <netinet/ip.h>
68 #if defined(__i386__) || defined(__amd64__)
69 #include <machine/md_var.h>
70 #include <machine/cputypes.h>
71 #include <vm/vm.h>
72 #include <vm/pmap.h>
73 #endif
74 #include <crypto/rijndael/rijndael.h>
75 #ifdef DDB
76 #include <ddb/ddb.h>
77 #include <ddb/db_lex.h>
78 #endif
79 
80 #include "common/common.h"
81 #include "common/t4_msg.h"
82 #include "common/t4_regs.h"
83 #include "common/t4_regs_values.h"
84 #include "cudbg/cudbg.h"
85 #include "t4_clip.h"
86 #include "t4_ioctl.h"
87 #include "t4_l2t.h"
88 #include "t4_mp_ring.h"
89 #include "t4_if.h"
90 #include "t4_smt.h"
91 
92 /* T4 bus driver interface */
93 static int t4_probe(device_t);
94 static int t4_attach(device_t);
95 static int t4_detach(device_t);
96 static int t4_child_location_str(device_t, device_t, char *, size_t);
97 static int t4_ready(device_t);
98 static int t4_read_port_device(device_t, int, device_t *);
99 static device_method_t t4_methods[] = {
100 	DEVMETHOD(device_probe,		t4_probe),
101 	DEVMETHOD(device_attach,	t4_attach),
102 	DEVMETHOD(device_detach,	t4_detach),
103 
104 	DEVMETHOD(bus_child_location_str, t4_child_location_str),
105 
106 	DEVMETHOD(t4_is_main_ready,	t4_ready),
107 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
108 
109 	DEVMETHOD_END
110 };
111 static driver_t t4_driver = {
112 	"t4nex",
113 	t4_methods,
114 	sizeof(struct adapter)
115 };
116 
117 
118 /* T4 port (cxgbe) interface */
119 static int cxgbe_probe(device_t);
120 static int cxgbe_attach(device_t);
121 static int cxgbe_detach(device_t);
122 device_method_t cxgbe_methods[] = {
123 	DEVMETHOD(device_probe,		cxgbe_probe),
124 	DEVMETHOD(device_attach,	cxgbe_attach),
125 	DEVMETHOD(device_detach,	cxgbe_detach),
126 	{ 0, 0 }
127 };
128 static driver_t cxgbe_driver = {
129 	"cxgbe",
130 	cxgbe_methods,
131 	sizeof(struct port_info)
132 };
133 
134 /* T4 VI (vcxgbe) interface */
135 static int vcxgbe_probe(device_t);
136 static int vcxgbe_attach(device_t);
137 static int vcxgbe_detach(device_t);
138 static device_method_t vcxgbe_methods[] = {
139 	DEVMETHOD(device_probe,		vcxgbe_probe),
140 	DEVMETHOD(device_attach,	vcxgbe_attach),
141 	DEVMETHOD(device_detach,	vcxgbe_detach),
142 	{ 0, 0 }
143 };
144 static driver_t vcxgbe_driver = {
145 	"vcxgbe",
146 	vcxgbe_methods,
147 	sizeof(struct vi_info)
148 };
149 
150 static d_ioctl_t t4_ioctl;
151 
152 static struct cdevsw t4_cdevsw = {
153        .d_version = D_VERSION,
154        .d_ioctl = t4_ioctl,
155        .d_name = "t4nex",
156 };
157 
158 /* T5 bus driver interface */
159 static int t5_probe(device_t);
160 static device_method_t t5_methods[] = {
161 	DEVMETHOD(device_probe,		t5_probe),
162 	DEVMETHOD(device_attach,	t4_attach),
163 	DEVMETHOD(device_detach,	t4_detach),
164 
165 	DEVMETHOD(bus_child_location_str, t4_child_location_str),
166 
167 	DEVMETHOD(t4_is_main_ready,	t4_ready),
168 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
169 
170 	DEVMETHOD_END
171 };
172 static driver_t t5_driver = {
173 	"t5nex",
174 	t5_methods,
175 	sizeof(struct adapter)
176 };
177 
178 
179 /* T5 port (cxl) interface */
180 static driver_t cxl_driver = {
181 	"cxl",
182 	cxgbe_methods,
183 	sizeof(struct port_info)
184 };
185 
186 /* T5 VI (vcxl) interface */
187 static driver_t vcxl_driver = {
188 	"vcxl",
189 	vcxgbe_methods,
190 	sizeof(struct vi_info)
191 };
192 
193 /* T6 bus driver interface */
194 static int t6_probe(device_t);
195 static device_method_t t6_methods[] = {
196 	DEVMETHOD(device_probe,		t6_probe),
197 	DEVMETHOD(device_attach,	t4_attach),
198 	DEVMETHOD(device_detach,	t4_detach),
199 
200 	DEVMETHOD(bus_child_location_str, t4_child_location_str),
201 
202 	DEVMETHOD(t4_is_main_ready,	t4_ready),
203 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
204 
205 	DEVMETHOD_END
206 };
207 static driver_t t6_driver = {
208 	"t6nex",
209 	t6_methods,
210 	sizeof(struct adapter)
211 };
212 
213 
214 /* T6 port (cc) interface */
215 static driver_t cc_driver = {
216 	"cc",
217 	cxgbe_methods,
218 	sizeof(struct port_info)
219 };
220 
221 /* T6 VI (vcc) interface */
222 static driver_t vcc_driver = {
223 	"vcc",
224 	vcxgbe_methods,
225 	sizeof(struct vi_info)
226 };
227 
228 /* ifnet interface */
229 static void cxgbe_init(void *);
230 static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t);
231 static int cxgbe_transmit(struct ifnet *, struct mbuf *);
232 static void cxgbe_qflush(struct ifnet *);
233 
234 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services");
235 
236 /*
237  * Correct lock order when you need to acquire multiple locks is t4_list_lock,
238  * then ADAPTER_LOCK, then t4_uld_list_lock.
239  */
240 static struct sx t4_list_lock;
241 SLIST_HEAD(, adapter) t4_list;
242 #ifdef TCP_OFFLOAD
243 static struct sx t4_uld_list_lock;
244 SLIST_HEAD(, uld_info) t4_uld_list;
245 #endif
246 
247 /*
248  * Tunables.  See tweak_tunables() too.
249  *
250  * Each tunable is set to a default value here if it's known at compile-time.
251  * Otherwise it is set to -n as an indication to tweak_tunables() that it should
252  * provide a reasonable default (upto n) when the driver is loaded.
253  *
254  * Tunables applicable to both T4 and T5 are under hw.cxgbe.  Those specific to
255  * T5 are under hw.cxl.
256  */
257 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD, 0, "cxgbe(4) parameters");
258 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD, 0, "cxgbe(4) T5+ parameters");
259 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD, 0, "cxgbe(4) TOE parameters");
260 
261 /*
262  * Number of queues for tx and rx, NIC and offload.
263  */
264 #define NTXQ 16
265 int t4_ntxq = -NTXQ;
266 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0,
267     "Number of TX queues per port");
268 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq);	/* Old name, undocumented */
269 
270 #define NRXQ 8
271 int t4_nrxq = -NRXQ;
272 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0,
273     "Number of RX queues per port");
274 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq);	/* Old name, undocumented */
275 
276 #define NTXQ_VI 1
277 static int t4_ntxq_vi = -NTXQ_VI;
278 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0,
279     "Number of TX queues per VI");
280 
281 #define NRXQ_VI 1
282 static int t4_nrxq_vi = -NRXQ_VI;
283 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0,
284     "Number of RX queues per VI");
285 
286 static int t4_rsrv_noflowq = 0;
287 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq,
288     0, "Reserve TX queue 0 of each VI for non-flowid packets");
289 
290 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
291 #define NOFLDTXQ 8
292 static int t4_nofldtxq = -NOFLDTXQ;
293 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0,
294     "Number of offload TX queues per port");
295 
296 #define NOFLDRXQ 2
297 static int t4_nofldrxq = -NOFLDRXQ;
298 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0,
299     "Number of offload RX queues per port");
300 
301 #define NOFLDTXQ_VI 1
302 static int t4_nofldtxq_vi = -NOFLDTXQ_VI;
303 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0,
304     "Number of offload TX queues per VI");
305 
306 #define NOFLDRXQ_VI 1
307 static int t4_nofldrxq_vi = -NOFLDRXQ_VI;
308 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0,
309     "Number of offload RX queues per VI");
310 
311 #define TMR_IDX_OFLD 1
312 int t4_tmr_idx_ofld = TMR_IDX_OFLD;
313 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN,
314     &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues");
315 
316 #define PKTC_IDX_OFLD (-1)
317 int t4_pktc_idx_ofld = PKTC_IDX_OFLD;
318 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN,
319     &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues");
320 
321 /* 0 means chip/fw default, non-zero number is value in microseconds */
322 static u_long t4_toe_keepalive_idle = 0;
323 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN,
324     &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)");
325 
326 /* 0 means chip/fw default, non-zero number is value in microseconds */
327 static u_long t4_toe_keepalive_interval = 0;
328 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN,
329     &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)");
330 
331 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */
332 static int t4_toe_keepalive_count = 0;
333 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN,
334     &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort");
335 
336 /* 0 means chip/fw default, non-zero number is value in microseconds */
337 static u_long t4_toe_rexmt_min = 0;
338 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN,
339     &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)");
340 
341 /* 0 means chip/fw default, non-zero number is value in microseconds */
342 static u_long t4_toe_rexmt_max = 0;
343 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN,
344     &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)");
345 
346 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */
347 static int t4_toe_rexmt_count = 0;
348 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN,
349     &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort");
350 
351 /* -1 means chip/fw default, other values are raw backoff values to use */
352 static int t4_toe_rexmt_backoff[16] = {
353 	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
354 };
355 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, CTLFLAG_RD, 0,
356     "cxgbe(4) TOE retransmit backoff values");
357 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN,
358     &t4_toe_rexmt_backoff[0], 0, "");
359 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN,
360     &t4_toe_rexmt_backoff[1], 0, "");
361 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN,
362     &t4_toe_rexmt_backoff[2], 0, "");
363 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN,
364     &t4_toe_rexmt_backoff[3], 0, "");
365 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN,
366     &t4_toe_rexmt_backoff[4], 0, "");
367 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN,
368     &t4_toe_rexmt_backoff[5], 0, "");
369 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN,
370     &t4_toe_rexmt_backoff[6], 0, "");
371 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN,
372     &t4_toe_rexmt_backoff[7], 0, "");
373 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN,
374     &t4_toe_rexmt_backoff[8], 0, "");
375 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN,
376     &t4_toe_rexmt_backoff[9], 0, "");
377 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN,
378     &t4_toe_rexmt_backoff[10], 0, "");
379 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN,
380     &t4_toe_rexmt_backoff[11], 0, "");
381 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN,
382     &t4_toe_rexmt_backoff[12], 0, "");
383 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN,
384     &t4_toe_rexmt_backoff[13], 0, "");
385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN,
386     &t4_toe_rexmt_backoff[14], 0, "");
387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN,
388     &t4_toe_rexmt_backoff[15], 0, "");
389 #endif
390 
391 #ifdef DEV_NETMAP
392 #define NNMTXQ_VI 2
393 static int t4_nnmtxq_vi = -NNMTXQ_VI;
394 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0,
395     "Number of netmap TX queues per VI");
396 
397 #define NNMRXQ_VI 2
398 static int t4_nnmrxq_vi = -NNMRXQ_VI;
399 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0,
400     "Number of netmap RX queues per VI");
401 #endif
402 
403 /*
404  * Holdoff parameters for ports.
405  */
406 #define TMR_IDX 1
407 int t4_tmr_idx = TMR_IDX;
408 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx,
409     0, "Holdoff timer index");
410 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx);	/* Old name */
411 
412 #define PKTC_IDX (-1)
413 int t4_pktc_idx = PKTC_IDX;
414 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx,
415     0, "Holdoff packet counter index");
416 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx);	/* Old name */
417 
418 /*
419  * Size (# of entries) of each tx and rx queue.
420  */
421 unsigned int t4_qsize_txq = TX_EQ_QSIZE;
422 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0,
423     "Number of descriptors in each TX queue");
424 
425 unsigned int t4_qsize_rxq = RX_IQ_QSIZE;
426 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0,
427     "Number of descriptors in each RX queue");
428 
429 /*
430  * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively).
431  */
432 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
433 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types,
434     0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)");
435 
436 /*
437  * Configuration file.  All the _CF names here are special.
438  */
439 #define DEFAULT_CF	"default"
440 #define BUILTIN_CF	"built-in"
441 #define FLASH_CF	"flash"
442 #define UWIRE_CF	"uwire"
443 #define FPGA_CF		"fpga"
444 static char t4_cfg_file[32] = DEFAULT_CF;
445 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file,
446     sizeof(t4_cfg_file), "Firmware configuration file");
447 
448 /*
449  * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively).
450  * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them.
451  * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water
452  *            mark or when signalled to do so, 0 to never emit PAUSE.
453  * pause_autoneg = 1 means PAUSE will be negotiated if possible and the
454  *                 negotiated settings will override rx_pause/tx_pause.
455  *                 Otherwise rx_pause/tx_pause are applied forcibly.
456  */
457 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG;
458 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN,
459     &t4_pause_settings, 0,
460     "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
461 
462 /*
463  * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively).
464  * -1 to run with the firmware default.  Same as FEC_AUTO (bit 5)
465  *  0 to disable FEC.
466  */
467 static int t4_fec = -1;
468 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0,
469     "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
470 
471 /*
472  * Link autonegotiation.
473  * -1 to run with the firmware default.
474  *  0 to disable.
475  *  1 to enable.
476  */
477 static int t4_autoneg = -1;
478 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0,
479     "Link autonegotiation");
480 
481 /*
482  * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed,
483  * encouraged respectively).  '-n' is the same as 'n' except the firmware
484  * version used in the checks is read from the firmware bundled with the driver.
485  */
486 static int t4_fw_install = 1;
487 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0,
488     "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)");
489 
490 /*
491  * ASIC features that will be used.  Disable the ones you don't want so that the
492  * chip resources aren't wasted on features that will not be used.
493  */
494 static int t4_nbmcaps_allowed = 0;
495 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN,
496     &t4_nbmcaps_allowed, 0, "Default NBM capabilities");
497 
498 static int t4_linkcaps_allowed = 0;	/* No DCBX, PPP, etc. by default */
499 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN,
500     &t4_linkcaps_allowed, 0, "Default link capabilities");
501 
502 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS |
503     FW_CAPS_CONFIG_SWITCH_EGRESS;
504 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN,
505     &t4_switchcaps_allowed, 0, "Default switch capabilities");
506 
507 #ifdef RATELIMIT
508 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
509 	FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD;
510 #else
511 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
512 	FW_CAPS_CONFIG_NIC_HASHFILTER;
513 #endif
514 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN,
515     &t4_niccaps_allowed, 0, "Default NIC capabilities");
516 
517 static int t4_toecaps_allowed = -1;
518 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN,
519     &t4_toecaps_allowed, 0, "Default TCP offload capabilities");
520 
521 static int t4_rdmacaps_allowed = -1;
522 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN,
523     &t4_rdmacaps_allowed, 0, "Default RDMA capabilities");
524 
525 static int t4_cryptocaps_allowed = -1;
526 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN,
527     &t4_cryptocaps_allowed, 0, "Default crypto capabilities");
528 
529 static int t4_iscsicaps_allowed = -1;
530 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN,
531     &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities");
532 
533 static int t4_fcoecaps_allowed = 0;
534 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN,
535     &t4_fcoecaps_allowed, 0, "Default FCoE capabilities");
536 
537 static int t5_write_combine = 0;
538 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine,
539     0, "Use WC instead of UC for BAR2");
540 
541 static int t4_num_vis = 1;
542 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0,
543     "Number of VIs per port");
544 
545 /*
546  * PCIe Relaxed Ordering.
547  * -1: driver should figure out a good value.
548  * 0: disable RO.
549  * 1: enable RO.
550  * 2: leave RO alone.
551  */
552 static int pcie_relaxed_ordering = -1;
553 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN,
554     &pcie_relaxed_ordering, 0,
555     "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone");
556 
557 static int t4_panic_on_fatal_err = 0;
558 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RDTUN,
559     &t4_panic_on_fatal_err, 0, "panic on fatal errors");
560 
561 #ifdef TCP_OFFLOAD
562 /*
563  * TOE tunables.
564  */
565 static int t4_cop_managed_offloading = 0;
566 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN,
567     &t4_cop_managed_offloading, 0,
568     "COP (Connection Offload Policy) controls all TOE offload");
569 #endif
570 
571 /* Functions used by VIs to obtain unique MAC addresses for each VI. */
572 static int vi_mac_funcs[] = {
573 	FW_VI_FUNC_ETH,
574 	FW_VI_FUNC_OFLD,
575 	FW_VI_FUNC_IWARP,
576 	FW_VI_FUNC_OPENISCSI,
577 	FW_VI_FUNC_OPENFCOE,
578 	FW_VI_FUNC_FOISCSI,
579 	FW_VI_FUNC_FOFCOE,
580 };
581 
582 struct intrs_and_queues {
583 	uint16_t intr_type;	/* INTx, MSI, or MSI-X */
584 	uint16_t num_vis;	/* number of VIs for each port */
585 	uint16_t nirq;		/* Total # of vectors */
586 	uint16_t ntxq;		/* # of NIC txq's for each port */
587 	uint16_t nrxq;		/* # of NIC rxq's for each port */
588 	uint16_t nofldtxq;	/* # of TOE/ETHOFLD txq's for each port */
589 	uint16_t nofldrxq;	/* # of TOE rxq's for each port */
590 
591 	/* The vcxgbe/vcxl interfaces use these and not the ones above. */
592 	uint16_t ntxq_vi;	/* # of NIC txq's */
593 	uint16_t nrxq_vi;	/* # of NIC rxq's */
594 	uint16_t nofldtxq_vi;	/* # of TOE txq's */
595 	uint16_t nofldrxq_vi;	/* # of TOE rxq's */
596 	uint16_t nnmtxq_vi;	/* # of netmap txq's */
597 	uint16_t nnmrxq_vi;	/* # of netmap rxq's */
598 };
599 
600 static void setup_memwin(struct adapter *);
601 static void position_memwin(struct adapter *, int, uint32_t);
602 static int validate_mem_range(struct adapter *, uint32_t, uint32_t);
603 static int fwmtype_to_hwmtype(int);
604 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t,
605     uint32_t *);
606 static int fixup_devlog_params(struct adapter *);
607 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *);
608 static int contact_firmware(struct adapter *);
609 static int partition_resources(struct adapter *);
610 static int get_params__pre_init(struct adapter *);
611 static int set_params__pre_init(struct adapter *);
612 static int get_params__post_init(struct adapter *);
613 static int set_params__post_init(struct adapter *);
614 static void t4_set_desc(struct adapter *);
615 static bool fixed_ifmedia(struct port_info *);
616 static void build_medialist(struct port_info *);
617 static void init_link_config(struct port_info *);
618 static int fixup_link_config(struct port_info *);
619 static int apply_link_config(struct port_info *);
620 static int cxgbe_init_synchronized(struct vi_info *);
621 static int cxgbe_uninit_synchronized(struct vi_info *);
622 static void quiesce_txq(struct adapter *, struct sge_txq *);
623 static void quiesce_wrq(struct adapter *, struct sge_wrq *);
624 static void quiesce_iq(struct adapter *, struct sge_iq *);
625 static void quiesce_fl(struct adapter *, struct sge_fl *);
626 static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
627     driver_intr_t *, void *, char *);
628 static int t4_free_irq(struct adapter *, struct irq *);
629 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
630 static void vi_refresh_stats(struct adapter *, struct vi_info *);
631 static void cxgbe_refresh_stats(struct adapter *, struct port_info *);
632 static void cxgbe_tick(void *);
633 static void cxgbe_sysctls(struct port_info *);
634 static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
635 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS);
636 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS);
637 static int sysctl_btphy(SYSCTL_HANDLER_ARGS);
638 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS);
639 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
640 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
641 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
642 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
643 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS);
644 static int sysctl_fec(SYSCTL_HANDLER_ARGS);
645 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS);
646 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
647 static int sysctl_temperature(SYSCTL_HANDLER_ARGS);
648 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS);
649 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS);
650 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS);
651 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS);
652 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS);
653 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS);
654 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS);
655 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS);
656 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS);
657 static int sysctl_devlog(SYSCTL_HANDLER_ARGS);
658 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS);
659 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS);
660 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS);
661 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS);
662 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS);
663 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS);
664 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS);
665 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS);
666 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS);
667 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS);
668 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS);
669 static int sysctl_tids(SYSCTL_HANDLER_ARGS);
670 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS);
671 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS);
672 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS);
673 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS);
674 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS);
675 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS);
676 static int sysctl_cpus(SYSCTL_HANDLER_ARGS);
677 #ifdef TCP_OFFLOAD
678 static int sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS);
679 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS);
680 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS);
681 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS);
682 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS);
683 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS);
684 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS);
685 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS);
686 #endif
687 static int get_sge_context(struct adapter *, struct t4_sge_context *);
688 static int load_fw(struct adapter *, struct t4_data *);
689 static int load_cfg(struct adapter *, struct t4_data *);
690 static int load_boot(struct adapter *, struct t4_bootrom *);
691 static int load_bootcfg(struct adapter *, struct t4_data *);
692 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *);
693 static void free_offload_policy(struct t4_offload_policy *);
694 static int set_offload_policy(struct adapter *, struct t4_offload_policy *);
695 static int read_card_mem(struct adapter *, int, struct t4_mem_range *);
696 static int read_i2c(struct adapter *, struct t4_i2c_data *);
697 static int clear_stats(struct adapter *, u_int);
698 #ifdef TCP_OFFLOAD
699 static int toe_capability(struct vi_info *, int);
700 #endif
701 static int mod_event(module_t, int, void *);
702 static int notify_siblings(device_t, int);
703 
704 struct {
705 	uint16_t device;
706 	char *desc;
707 } t4_pciids[] = {
708 	{0xa000, "Chelsio Terminator 4 FPGA"},
709 	{0x4400, "Chelsio T440-dbg"},
710 	{0x4401, "Chelsio T420-CR"},
711 	{0x4402, "Chelsio T422-CR"},
712 	{0x4403, "Chelsio T440-CR"},
713 	{0x4404, "Chelsio T420-BCH"},
714 	{0x4405, "Chelsio T440-BCH"},
715 	{0x4406, "Chelsio T440-CH"},
716 	{0x4407, "Chelsio T420-SO"},
717 	{0x4408, "Chelsio T420-CX"},
718 	{0x4409, "Chelsio T420-BT"},
719 	{0x440a, "Chelsio T404-BT"},
720 	{0x440e, "Chelsio T440-LP-CR"},
721 }, t5_pciids[] = {
722 	{0xb000, "Chelsio Terminator 5 FPGA"},
723 	{0x5400, "Chelsio T580-dbg"},
724 	{0x5401,  "Chelsio T520-CR"},		/* 2 x 10G */
725 	{0x5402,  "Chelsio T522-CR"},		/* 2 x 10G, 2 X 1G */
726 	{0x5403,  "Chelsio T540-CR"},		/* 4 x 10G */
727 	{0x5407,  "Chelsio T520-SO"},		/* 2 x 10G, nomem */
728 	{0x5409,  "Chelsio T520-BT"},		/* 2 x 10GBaseT */
729 	{0x540a,  "Chelsio T504-BT"},		/* 4 x 1G */
730 	{0x540d,  "Chelsio T580-CR"},		/* 2 x 40G */
731 	{0x540e,  "Chelsio T540-LP-CR"},	/* 4 x 10G */
732 	{0x5410,  "Chelsio T580-LP-CR"},	/* 2 x 40G */
733 	{0x5411,  "Chelsio T520-LL-CR"},	/* 2 x 10G */
734 	{0x5412,  "Chelsio T560-CR"},		/* 1 x 40G, 2 x 10G */
735 	{0x5414,  "Chelsio T580-LP-SO-CR"},	/* 2 x 40G, nomem */
736 	{0x5415,  "Chelsio T502-BT"},		/* 2 x 1G */
737 	{0x5418,  "Chelsio T540-BT"},		/* 4 x 10GBaseT */
738 	{0x5419,  "Chelsio T540-LP-BT"},	/* 4 x 10GBaseT */
739 	{0x541a,  "Chelsio T540-SO-BT"},	/* 4 x 10GBaseT, nomem */
740 	{0x541b,  "Chelsio T540-SO-CR"},	/* 4 x 10G, nomem */
741 
742 	/* Custom */
743 	{0x5483, "Custom T540-CR"},
744 	{0x5484, "Custom T540-BT"},
745 }, t6_pciids[] = {
746 	{0xc006, "Chelsio Terminator 6 FPGA"},	/* T6 PE10K6 FPGA (PF0) */
747 	{0x6400, "Chelsio T6-DBG-25"},		/* 2 x 10/25G, debug */
748 	{0x6401, "Chelsio T6225-CR"},		/* 2 x 10/25G */
749 	{0x6402, "Chelsio T6225-SO-CR"},	/* 2 x 10/25G, nomem */
750 	{0x6403, "Chelsio T6425-CR"},		/* 4 x 10/25G */
751 	{0x6404, "Chelsio T6425-SO-CR"},	/* 4 x 10/25G, nomem */
752 	{0x6405, "Chelsio T6225-OCP-SO"},	/* 2 x 10/25G, nomem */
753 	{0x6406, "Chelsio T62100-OCP-SO"},	/* 2 x 40/50/100G, nomem */
754 	{0x6407, "Chelsio T62100-LP-CR"},	/* 2 x 40/50/100G */
755 	{0x6408, "Chelsio T62100-SO-CR"},	/* 2 x 40/50/100G, nomem */
756 	{0x6409, "Chelsio T6210-BT"},		/* 2 x 10GBASE-T */
757 	{0x640d, "Chelsio T62100-CR"},		/* 2 x 40/50/100G */
758 	{0x6410, "Chelsio T6-DBG-100"},		/* 2 x 40/50/100G, debug */
759 	{0x6411, "Chelsio T6225-LL-CR"},	/* 2 x 10/25G */
760 	{0x6414, "Chelsio T61100-OCP-SO"},	/* 1 x 40/50/100G, nomem */
761 	{0x6415, "Chelsio T6201-BT"},		/* 2 x 1000BASE-T */
762 
763 	/* Custom */
764 	{0x6480, "Custom T6225-CR"},
765 	{0x6481, "Custom T62100-CR"},
766 	{0x6482, "Custom T6225-CR"},
767 	{0x6483, "Custom T62100-CR"},
768 	{0x6484, "Custom T64100-CR"},
769 	{0x6485, "Custom T6240-SO"},
770 	{0x6486, "Custom T6225-SO-CR"},
771 	{0x6487, "Custom T6225-CR"},
772 };
773 
774 #ifdef TCP_OFFLOAD
775 /*
776  * service_iq_fl() has an iq and needs the fl.  Offset of fl from the iq should
777  * be exactly the same for both rxq and ofld_rxq.
778  */
779 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq));
780 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl));
781 #endif
782 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE);
783 
784 static int
785 t4_probe(device_t dev)
786 {
787 	int i;
788 	uint16_t v = pci_get_vendor(dev);
789 	uint16_t d = pci_get_device(dev);
790 	uint8_t f = pci_get_function(dev);
791 
792 	if (v != PCI_VENDOR_ID_CHELSIO)
793 		return (ENXIO);
794 
795 	/* Attach only to PF0 of the FPGA */
796 	if (d == 0xa000 && f != 0)
797 		return (ENXIO);
798 
799 	for (i = 0; i < nitems(t4_pciids); i++) {
800 		if (d == t4_pciids[i].device) {
801 			device_set_desc(dev, t4_pciids[i].desc);
802 			return (BUS_PROBE_DEFAULT);
803 		}
804 	}
805 
806 	return (ENXIO);
807 }
808 
809 static int
810 t5_probe(device_t dev)
811 {
812 	int i;
813 	uint16_t v = pci_get_vendor(dev);
814 	uint16_t d = pci_get_device(dev);
815 	uint8_t f = pci_get_function(dev);
816 
817 	if (v != PCI_VENDOR_ID_CHELSIO)
818 		return (ENXIO);
819 
820 	/* Attach only to PF0 of the FPGA */
821 	if (d == 0xb000 && f != 0)
822 		return (ENXIO);
823 
824 	for (i = 0; i < nitems(t5_pciids); i++) {
825 		if (d == t5_pciids[i].device) {
826 			device_set_desc(dev, t5_pciids[i].desc);
827 			return (BUS_PROBE_DEFAULT);
828 		}
829 	}
830 
831 	return (ENXIO);
832 }
833 
834 static int
835 t6_probe(device_t dev)
836 {
837 	int i;
838 	uint16_t v = pci_get_vendor(dev);
839 	uint16_t d = pci_get_device(dev);
840 
841 	if (v != PCI_VENDOR_ID_CHELSIO)
842 		return (ENXIO);
843 
844 	for (i = 0; i < nitems(t6_pciids); i++) {
845 		if (d == t6_pciids[i].device) {
846 			device_set_desc(dev, t6_pciids[i].desc);
847 			return (BUS_PROBE_DEFAULT);
848 		}
849 	}
850 
851 	return (ENXIO);
852 }
853 
854 static void
855 t5_attribute_workaround(device_t dev)
856 {
857 	device_t root_port;
858 	uint32_t v;
859 
860 	/*
861 	 * The T5 chips do not properly echo the No Snoop and Relaxed
862 	 * Ordering attributes when replying to a TLP from a Root
863 	 * Port.  As a workaround, find the parent Root Port and
864 	 * disable No Snoop and Relaxed Ordering.  Note that this
865 	 * affects all devices under this root port.
866 	 */
867 	root_port = pci_find_pcie_root_port(dev);
868 	if (root_port == NULL) {
869 		device_printf(dev, "Unable to find parent root port\n");
870 		return;
871 	}
872 
873 	v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL,
874 	    PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2);
875 	if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) !=
876 	    0)
877 		device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n",
878 		    device_get_nameunit(root_port));
879 }
880 
881 static const struct devnames devnames[] = {
882 	{
883 		.nexus_name = "t4nex",
884 		.ifnet_name = "cxgbe",
885 		.vi_ifnet_name = "vcxgbe",
886 		.pf03_drv_name = "t4iov",
887 		.vf_nexus_name = "t4vf",
888 		.vf_ifnet_name = "cxgbev"
889 	}, {
890 		.nexus_name = "t5nex",
891 		.ifnet_name = "cxl",
892 		.vi_ifnet_name = "vcxl",
893 		.pf03_drv_name = "t5iov",
894 		.vf_nexus_name = "t5vf",
895 		.vf_ifnet_name = "cxlv"
896 	}, {
897 		.nexus_name = "t6nex",
898 		.ifnet_name = "cc",
899 		.vi_ifnet_name = "vcc",
900 		.pf03_drv_name = "t6iov",
901 		.vf_nexus_name = "t6vf",
902 		.vf_ifnet_name = "ccv"
903 	}
904 };
905 
906 void
907 t4_init_devnames(struct adapter *sc)
908 {
909 	int id;
910 
911 	id = chip_id(sc);
912 	if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames))
913 		sc->names = &devnames[id - CHELSIO_T4];
914 	else {
915 		device_printf(sc->dev, "chip id %d is not supported.\n", id);
916 		sc->names = NULL;
917 	}
918 }
919 
920 static int
921 t4_ifnet_unit(struct adapter *sc, struct port_info *pi)
922 {
923 	const char *parent, *name;
924 	long value;
925 	int line, unit;
926 
927 	line = 0;
928 	parent = device_get_nameunit(sc->dev);
929 	name = sc->names->ifnet_name;
930 	while (resource_find_dev(&line, name, &unit, "at", parent) == 0) {
931 		if (resource_long_value(name, unit, "port", &value) == 0 &&
932 		    value == pi->port_id)
933 			return (unit);
934 	}
935 	return (-1);
936 }
937 
938 static int
939 t4_attach(device_t dev)
940 {
941 	struct adapter *sc;
942 	int rc = 0, i, j, rqidx, tqidx, nports;
943 	struct make_dev_args mda;
944 	struct intrs_and_queues iaq;
945 	struct sge *s;
946 	uint32_t *buf;
947 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
948 	int ofld_tqidx;
949 #endif
950 #ifdef TCP_OFFLOAD
951 	int ofld_rqidx;
952 #endif
953 #ifdef DEV_NETMAP
954 	int nm_rqidx, nm_tqidx;
955 #endif
956 	int num_vis;
957 
958 	sc = device_get_softc(dev);
959 	sc->dev = dev;
960 	TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags);
961 
962 	if ((pci_get_device(dev) & 0xff00) == 0x5400)
963 		t5_attribute_workaround(dev);
964 	pci_enable_busmaster(dev);
965 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
966 		uint32_t v;
967 
968 		pci_set_max_read_req(dev, 4096);
969 		v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
970 		sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5);
971 		if (pcie_relaxed_ordering == 0 &&
972 		    (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) {
973 			v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE;
974 			pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
975 		} else if (pcie_relaxed_ordering == 1 &&
976 		    (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) {
977 			v |= PCIEM_CTL_RELAXED_ORD_ENABLE;
978 			pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
979 		}
980 	}
981 
982 	sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS);
983 	sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL);
984 	sc->traceq = -1;
985 	mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF);
986 	snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer",
987 	    device_get_nameunit(dev));
988 
989 	snprintf(sc->lockname, sizeof(sc->lockname), "%s",
990 	    device_get_nameunit(dev));
991 	mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
992 	t4_add_adapter(sc);
993 
994 	mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
995 	TAILQ_INIT(&sc->sfl);
996 	callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
997 
998 	mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
999 
1000 	sc->policy = NULL;
1001 	rw_init(&sc->policy_lock, "connection offload policy");
1002 
1003 	rc = t4_map_bars_0_and_4(sc);
1004 	if (rc != 0)
1005 		goto done; /* error message displayed already */
1006 
1007 	memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
1008 
1009 	/* Prepare the adapter for operation. */
1010 	buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK);
1011 	rc = -t4_prep_adapter(sc, buf);
1012 	free(buf, M_CXGBE);
1013 	if (rc != 0) {
1014 		device_printf(dev, "failed to prepare adapter: %d.\n", rc);
1015 		goto done;
1016 	}
1017 
1018 	/*
1019 	 * This is the real PF# to which we're attaching.  Works from within PCI
1020 	 * passthrough environments too, where pci_get_function() could return a
1021 	 * different PF# depending on the passthrough configuration.  We need to
1022 	 * use the real PF# in all our communication with the firmware.
1023 	 */
1024 	j = t4_read_reg(sc, A_PL_WHOAMI);
1025 	sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j);
1026 	sc->mbox = sc->pf;
1027 
1028 	t4_init_devnames(sc);
1029 	if (sc->names == NULL) {
1030 		rc = ENOTSUP;
1031 		goto done; /* error message displayed already */
1032 	}
1033 
1034 	/*
1035 	 * Do this really early, with the memory windows set up even before the
1036 	 * character device.  The userland tool's register i/o and mem read
1037 	 * will work even in "recovery mode".
1038 	 */
1039 	setup_memwin(sc);
1040 	if (t4_init_devlog_params(sc, 0) == 0)
1041 		fixup_devlog_params(sc);
1042 	make_dev_args_init(&mda);
1043 	mda.mda_devsw = &t4_cdevsw;
1044 	mda.mda_uid = UID_ROOT;
1045 	mda.mda_gid = GID_WHEEL;
1046 	mda.mda_mode = 0600;
1047 	mda.mda_si_drv1 = sc;
1048 	rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
1049 	if (rc != 0)
1050 		device_printf(dev, "failed to create nexus char device: %d.\n",
1051 		    rc);
1052 
1053 	/* Go no further if recovery mode has been requested. */
1054 	if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
1055 		device_printf(dev, "recovery mode.\n");
1056 		goto done;
1057 	}
1058 
1059 #if defined(__i386__)
1060 	if ((cpu_feature & CPUID_CX8) == 0) {
1061 		device_printf(dev, "64 bit atomics not available.\n");
1062 		rc = ENOTSUP;
1063 		goto done;
1064 	}
1065 #endif
1066 
1067 	/* Contact the firmware and try to become the master driver. */
1068 	rc = contact_firmware(sc);
1069 	if (rc != 0)
1070 		goto done; /* error message displayed already */
1071 	MPASS(sc->flags & FW_OK);
1072 
1073 	rc = get_params__pre_init(sc);
1074 	if (rc != 0)
1075 		goto done; /* error message displayed already */
1076 
1077 	if (sc->flags & MASTER_PF) {
1078 		rc = partition_resources(sc);
1079 		if (rc != 0)
1080 			goto done; /* error message displayed already */
1081 		t4_intr_clear(sc);
1082 	}
1083 
1084 	rc = get_params__post_init(sc);
1085 	if (rc != 0)
1086 		goto done; /* error message displayed already */
1087 
1088 	rc = set_params__post_init(sc);
1089 	if (rc != 0)
1090 		goto done; /* error message displayed already */
1091 
1092 	rc = t4_map_bar_2(sc);
1093 	if (rc != 0)
1094 		goto done; /* error message displayed already */
1095 
1096 	rc = t4_create_dma_tag(sc);
1097 	if (rc != 0)
1098 		goto done; /* error message displayed already */
1099 
1100 	/*
1101 	 * First pass over all the ports - allocate VIs and initialize some
1102 	 * basic parameters like mac address, port type, etc.
1103 	 */
1104 	for_each_port(sc, i) {
1105 		struct port_info *pi;
1106 
1107 		pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
1108 		sc->port[i] = pi;
1109 
1110 		/* These must be set before t4_port_init */
1111 		pi->adapter = sc;
1112 		pi->port_id = i;
1113 		/*
1114 		 * XXX: vi[0] is special so we can't delay this allocation until
1115 		 * pi->nvi's final value is known.
1116 		 */
1117 		pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE,
1118 		    M_ZERO | M_WAITOK);
1119 
1120 		/*
1121 		 * Allocate the "main" VI and initialize parameters
1122 		 * like mac addr.
1123 		 */
1124 		rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
1125 		if (rc != 0) {
1126 			device_printf(dev, "unable to initialize port %d: %d\n",
1127 			    i, rc);
1128 			free(pi->vi, M_CXGBE);
1129 			free(pi, M_CXGBE);
1130 			sc->port[i] = NULL;
1131 			goto done;
1132 		}
1133 
1134 		snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
1135 		    device_get_nameunit(dev), i);
1136 		mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
1137 		sc->chan_map[pi->tx_chan] = i;
1138 
1139 		/* All VIs on this port share this media. */
1140 		ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change,
1141 		    cxgbe_media_status);
1142 
1143 		PORT_LOCK(pi);
1144 		init_link_config(pi);
1145 		fixup_link_config(pi);
1146 		build_medialist(pi);
1147 		if (fixed_ifmedia(pi))
1148 			pi->flags |= FIXED_IFMEDIA;
1149 		PORT_UNLOCK(pi);
1150 
1151 		pi->dev = device_add_child(dev, sc->names->ifnet_name,
1152 		    t4_ifnet_unit(sc, pi));
1153 		if (pi->dev == NULL) {
1154 			device_printf(dev,
1155 			    "failed to add device for port %d.\n", i);
1156 			rc = ENXIO;
1157 			goto done;
1158 		}
1159 		pi->vi[0].dev = pi->dev;
1160 		device_set_softc(pi->dev, pi);
1161 	}
1162 
1163 	/*
1164 	 * Interrupt type, # of interrupts, # of rx/tx queues, etc.
1165 	 */
1166 	nports = sc->params.nports;
1167 	rc = cfg_itype_and_nqueues(sc, &iaq);
1168 	if (rc != 0)
1169 		goto done; /* error message displayed already */
1170 
1171 	num_vis = iaq.num_vis;
1172 	sc->intr_type = iaq.intr_type;
1173 	sc->intr_count = iaq.nirq;
1174 
1175 	s = &sc->sge;
1176 	s->nrxq = nports * iaq.nrxq;
1177 	s->ntxq = nports * iaq.ntxq;
1178 	if (num_vis > 1) {
1179 		s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi;
1180 		s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi;
1181 	}
1182 	s->neq = s->ntxq + s->nrxq;	/* the free list in an rxq is an eq */
1183 	s->neq += nports;		/* ctrl queues: 1 per port */
1184 	s->niq = s->nrxq + 1;		/* 1 extra for firmware event queue */
1185 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1186 	if (is_offload(sc) || is_ethoffload(sc)) {
1187 		s->nofldtxq = nports * iaq.nofldtxq;
1188 		if (num_vis > 1)
1189 			s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi;
1190 		s->neq += s->nofldtxq;
1191 
1192 		s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_wrq),
1193 		    M_CXGBE, M_ZERO | M_WAITOK);
1194 	}
1195 #endif
1196 #ifdef TCP_OFFLOAD
1197 	if (is_offload(sc)) {
1198 		s->nofldrxq = nports * iaq.nofldrxq;
1199 		if (num_vis > 1)
1200 			s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi;
1201 		s->neq += s->nofldrxq;	/* free list */
1202 		s->niq += s->nofldrxq;
1203 
1204 		s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq),
1205 		    M_CXGBE, M_ZERO | M_WAITOK);
1206 	}
1207 #endif
1208 #ifdef DEV_NETMAP
1209 	if (num_vis > 1) {
1210 		s->nnmrxq = nports * (num_vis - 1) * iaq.nnmrxq_vi;
1211 		s->nnmtxq = nports * (num_vis - 1) * iaq.nnmtxq_vi;
1212 	}
1213 	s->neq += s->nnmtxq + s->nnmrxq;
1214 	s->niq += s->nnmrxq;
1215 
1216 	s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq),
1217 	    M_CXGBE, M_ZERO | M_WAITOK);
1218 	s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq),
1219 	    M_CXGBE, M_ZERO | M_WAITOK);
1220 #endif
1221 
1222 	s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE,
1223 	    M_ZERO | M_WAITOK);
1224 	s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
1225 	    M_ZERO | M_WAITOK);
1226 	s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
1227 	    M_ZERO | M_WAITOK);
1228 	s->iqmap = malloc(s->niq * sizeof(struct sge_iq *), M_CXGBE,
1229 	    M_ZERO | M_WAITOK);
1230 	s->eqmap = malloc(s->neq * sizeof(struct sge_eq *), M_CXGBE,
1231 	    M_ZERO | M_WAITOK);
1232 
1233 	sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
1234 	    M_ZERO | M_WAITOK);
1235 
1236 	t4_init_l2t(sc, M_WAITOK);
1237 	t4_init_smt(sc, M_WAITOK);
1238 	t4_init_tx_sched(sc);
1239 #ifdef RATELIMIT
1240 	t4_init_etid_table(sc);
1241 #endif
1242 #ifdef INET6
1243 	t4_init_clip_table(sc);
1244 #endif
1245 	if (sc->vres.key.size != 0)
1246 		sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start,
1247 		    sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK);
1248 
1249 	/*
1250 	 * Second pass over the ports.  This time we know the number of rx and
1251 	 * tx queues that each port should get.
1252 	 */
1253 	rqidx = tqidx = 0;
1254 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1255 	ofld_tqidx = 0;
1256 #endif
1257 #ifdef TCP_OFFLOAD
1258 	ofld_rqidx = 0;
1259 #endif
1260 #ifdef DEV_NETMAP
1261 	nm_rqidx = nm_tqidx = 0;
1262 #endif
1263 	for_each_port(sc, i) {
1264 		struct port_info *pi = sc->port[i];
1265 		struct vi_info *vi;
1266 
1267 		if (pi == NULL)
1268 			continue;
1269 
1270 		pi->nvi = num_vis;
1271 		for_each_vi(pi, j, vi) {
1272 			vi->pi = pi;
1273 			vi->qsize_rxq = t4_qsize_rxq;
1274 			vi->qsize_txq = t4_qsize_txq;
1275 
1276 			vi->first_rxq = rqidx;
1277 			vi->first_txq = tqidx;
1278 			vi->tmr_idx = t4_tmr_idx;
1279 			vi->pktc_idx = t4_pktc_idx;
1280 			vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi;
1281 			vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi;
1282 
1283 			rqidx += vi->nrxq;
1284 			tqidx += vi->ntxq;
1285 
1286 			if (j == 0 && vi->ntxq > 1)
1287 				vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0;
1288 			else
1289 				vi->rsrv_noflowq = 0;
1290 
1291 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1292 			vi->first_ofld_txq = ofld_tqidx;
1293 			vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi;
1294 			ofld_tqidx += vi->nofldtxq;
1295 #endif
1296 #ifdef TCP_OFFLOAD
1297 			vi->ofld_tmr_idx = t4_tmr_idx_ofld;
1298 			vi->ofld_pktc_idx = t4_pktc_idx_ofld;
1299 			vi->first_ofld_rxq = ofld_rqidx;
1300 			vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi;
1301 
1302 			ofld_rqidx += vi->nofldrxq;
1303 #endif
1304 #ifdef DEV_NETMAP
1305 			if (j > 0) {
1306 				vi->first_nm_rxq = nm_rqidx;
1307 				vi->first_nm_txq = nm_tqidx;
1308 				vi->nnmrxq = iaq.nnmrxq_vi;
1309 				vi->nnmtxq = iaq.nnmtxq_vi;
1310 				nm_rqidx += vi->nnmrxq;
1311 				nm_tqidx += vi->nnmtxq;
1312 			}
1313 #endif
1314 		}
1315 	}
1316 
1317 	rc = t4_setup_intr_handlers(sc);
1318 	if (rc != 0) {
1319 		device_printf(dev,
1320 		    "failed to setup interrupt handlers: %d\n", rc);
1321 		goto done;
1322 	}
1323 
1324 	rc = bus_generic_probe(dev);
1325 	if (rc != 0) {
1326 		device_printf(dev, "failed to probe child drivers: %d\n", rc);
1327 		goto done;
1328 	}
1329 
1330 	/*
1331 	 * Ensure thread-safe mailbox access (in debug builds).
1332 	 *
1333 	 * So far this was the only thread accessing the mailbox but various
1334 	 * ifnets and sysctls are about to be created and their handlers/ioctls
1335 	 * will access the mailbox from different threads.
1336 	 */
1337 	sc->flags |= CHK_MBOX_ACCESS;
1338 
1339 	rc = bus_generic_attach(dev);
1340 	if (rc != 0) {
1341 		device_printf(dev,
1342 		    "failed to attach all child ports: %d\n", rc);
1343 		goto done;
1344 	}
1345 
1346 	device_printf(dev,
1347 	    "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n",
1348 	    sc->params.pci.speed, sc->params.pci.width, sc->params.nports,
1349 	    sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" :
1350 	    (sc->intr_type == INTR_MSI ? "MSI" : "INTx"),
1351 	    sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq);
1352 
1353 	t4_set_desc(sc);
1354 
1355 	notify_siblings(dev, 0);
1356 
1357 done:
1358 	if (rc != 0 && sc->cdev) {
1359 		/* cdev was created and so cxgbetool works; recover that way. */
1360 		device_printf(dev,
1361 		    "error during attach, adapter is now in recovery mode.\n");
1362 		rc = 0;
1363 	}
1364 
1365 	if (rc != 0)
1366 		t4_detach_common(dev);
1367 	else
1368 		t4_sysctls(sc);
1369 
1370 	return (rc);
1371 }
1372 
1373 static int
1374 t4_child_location_str(device_t bus, device_t dev, char *buf, size_t buflen)
1375 {
1376 	struct adapter *sc;
1377 	struct port_info *pi;
1378 	int i;
1379 
1380 	sc = device_get_softc(bus);
1381 	buf[0] = '\0';
1382 	for_each_port(sc, i) {
1383 		pi = sc->port[i];
1384 		if (pi != NULL && pi->dev == dev) {
1385 			snprintf(buf, buflen, "port=%d", pi->port_id);
1386 			break;
1387 		}
1388 	}
1389 	return (0);
1390 }
1391 
1392 static int
1393 t4_ready(device_t dev)
1394 {
1395 	struct adapter *sc;
1396 
1397 	sc = device_get_softc(dev);
1398 	if (sc->flags & FW_OK)
1399 		return (0);
1400 	return (ENXIO);
1401 }
1402 
1403 static int
1404 t4_read_port_device(device_t dev, int port, device_t *child)
1405 {
1406 	struct adapter *sc;
1407 	struct port_info *pi;
1408 
1409 	sc = device_get_softc(dev);
1410 	if (port < 0 || port >= MAX_NPORTS)
1411 		return (EINVAL);
1412 	pi = sc->port[port];
1413 	if (pi == NULL || pi->dev == NULL)
1414 		return (ENXIO);
1415 	*child = pi->dev;
1416 	return (0);
1417 }
1418 
1419 static int
1420 notify_siblings(device_t dev, int detaching)
1421 {
1422 	device_t sibling;
1423 	int error, i;
1424 
1425 	error = 0;
1426 	for (i = 0; i < PCI_FUNCMAX; i++) {
1427 		if (i == pci_get_function(dev))
1428 			continue;
1429 		sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev),
1430 		    pci_get_slot(dev), i);
1431 		if (sibling == NULL || !device_is_attached(sibling))
1432 			continue;
1433 		if (detaching)
1434 			error = T4_DETACH_CHILD(sibling);
1435 		else
1436 			(void)T4_ATTACH_CHILD(sibling);
1437 		if (error)
1438 			break;
1439 	}
1440 	return (error);
1441 }
1442 
1443 /*
1444  * Idempotent
1445  */
1446 static int
1447 t4_detach(device_t dev)
1448 {
1449 	struct adapter *sc;
1450 	int rc;
1451 
1452 	sc = device_get_softc(dev);
1453 
1454 	rc = notify_siblings(dev, 1);
1455 	if (rc) {
1456 		device_printf(dev,
1457 		    "failed to detach sibling devices: %d\n", rc);
1458 		return (rc);
1459 	}
1460 
1461 	return (t4_detach_common(dev));
1462 }
1463 
1464 int
1465 t4_detach_common(device_t dev)
1466 {
1467 	struct adapter *sc;
1468 	struct port_info *pi;
1469 	int i, rc;
1470 
1471 	sc = device_get_softc(dev);
1472 
1473 	if (sc->cdev) {
1474 		destroy_dev(sc->cdev);
1475 		sc->cdev = NULL;
1476 	}
1477 
1478 	sc->flags &= ~CHK_MBOX_ACCESS;
1479 	if (sc->flags & FULL_INIT_DONE) {
1480 		if (!(sc->flags & IS_VF))
1481 			t4_intr_disable(sc);
1482 	}
1483 
1484 	if (device_is_attached(dev)) {
1485 		rc = bus_generic_detach(dev);
1486 		if (rc) {
1487 			device_printf(dev,
1488 			    "failed to detach child devices: %d\n", rc);
1489 			return (rc);
1490 		}
1491 	}
1492 
1493 	for (i = 0; i < sc->intr_count; i++)
1494 		t4_free_irq(sc, &sc->irq[i]);
1495 
1496 	if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1497 		t4_free_tx_sched(sc);
1498 
1499 	for (i = 0; i < MAX_NPORTS; i++) {
1500 		pi = sc->port[i];
1501 		if (pi) {
1502 			t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid);
1503 			if (pi->dev)
1504 				device_delete_child(dev, pi->dev);
1505 
1506 			mtx_destroy(&pi->pi_lock);
1507 			free(pi->vi, M_CXGBE);
1508 			free(pi, M_CXGBE);
1509 		}
1510 	}
1511 
1512 	device_delete_children(dev);
1513 
1514 	if (sc->flags & FULL_INIT_DONE)
1515 		adapter_full_uninit(sc);
1516 
1517 	if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1518 		t4_fw_bye(sc, sc->mbox);
1519 
1520 	if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
1521 		pci_release_msi(dev);
1522 
1523 	if (sc->regs_res)
1524 		bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
1525 		    sc->regs_res);
1526 
1527 	if (sc->udbs_res)
1528 		bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid,
1529 		    sc->udbs_res);
1530 
1531 	if (sc->msix_res)
1532 		bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
1533 		    sc->msix_res);
1534 
1535 	if (sc->l2t)
1536 		t4_free_l2t(sc->l2t);
1537 	if (sc->smt)
1538 		t4_free_smt(sc->smt);
1539 #ifdef RATELIMIT
1540 	t4_free_etid_table(sc);
1541 #endif
1542 	if (sc->key_map)
1543 		vmem_destroy(sc->key_map);
1544 #ifdef INET6
1545 	t4_destroy_clip_table(sc);
1546 #endif
1547 
1548 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1549 	free(sc->sge.ofld_txq, M_CXGBE);
1550 #endif
1551 #ifdef TCP_OFFLOAD
1552 	free(sc->sge.ofld_rxq, M_CXGBE);
1553 #endif
1554 #ifdef DEV_NETMAP
1555 	free(sc->sge.nm_rxq, M_CXGBE);
1556 	free(sc->sge.nm_txq, M_CXGBE);
1557 #endif
1558 	free(sc->irq, M_CXGBE);
1559 	free(sc->sge.rxq, M_CXGBE);
1560 	free(sc->sge.txq, M_CXGBE);
1561 	free(sc->sge.ctrlq, M_CXGBE);
1562 	free(sc->sge.iqmap, M_CXGBE);
1563 	free(sc->sge.eqmap, M_CXGBE);
1564 	free(sc->tids.ftid_tab, M_CXGBE);
1565 	free(sc->tids.hpftid_tab, M_CXGBE);
1566 	free_hftid_hash(&sc->tids);
1567 	free(sc->tids.atid_tab, M_CXGBE);
1568 	free(sc->tids.tid_tab, M_CXGBE);
1569 	free(sc->tt.tls_rx_ports, M_CXGBE);
1570 	t4_destroy_dma_tag(sc);
1571 	if (mtx_initialized(&sc->sc_lock)) {
1572 		sx_xlock(&t4_list_lock);
1573 		SLIST_REMOVE(&t4_list, sc, adapter, link);
1574 		sx_xunlock(&t4_list_lock);
1575 		mtx_destroy(&sc->sc_lock);
1576 	}
1577 
1578 	callout_drain(&sc->sfl_callout);
1579 	if (mtx_initialized(&sc->tids.ftid_lock)) {
1580 		mtx_destroy(&sc->tids.ftid_lock);
1581 		cv_destroy(&sc->tids.ftid_cv);
1582 	}
1583 	if (mtx_initialized(&sc->tids.atid_lock))
1584 		mtx_destroy(&sc->tids.atid_lock);
1585 	if (mtx_initialized(&sc->sfl_lock))
1586 		mtx_destroy(&sc->sfl_lock);
1587 	if (mtx_initialized(&sc->ifp_lock))
1588 		mtx_destroy(&sc->ifp_lock);
1589 	if (mtx_initialized(&sc->reg_lock))
1590 		mtx_destroy(&sc->reg_lock);
1591 
1592 	if (rw_initialized(&sc->policy_lock)) {
1593 		rw_destroy(&sc->policy_lock);
1594 #ifdef TCP_OFFLOAD
1595 		if (sc->policy != NULL)
1596 			free_offload_policy(sc->policy);
1597 #endif
1598 	}
1599 
1600 	for (i = 0; i < NUM_MEMWIN; i++) {
1601 		struct memwin *mw = &sc->memwin[i];
1602 
1603 		if (rw_initialized(&mw->mw_lock))
1604 			rw_destroy(&mw->mw_lock);
1605 	}
1606 
1607 	bzero(sc, sizeof(*sc));
1608 
1609 	return (0);
1610 }
1611 
1612 static int
1613 cxgbe_probe(device_t dev)
1614 {
1615 	char buf[128];
1616 	struct port_info *pi = device_get_softc(dev);
1617 
1618 	snprintf(buf, sizeof(buf), "port %d", pi->port_id);
1619 	device_set_desc_copy(dev, buf);
1620 
1621 	return (BUS_PROBE_DEFAULT);
1622 }
1623 
1624 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
1625     IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
1626     IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \
1627     IFCAP_HWRXTSTMP | IFCAP_NOMAP)
1628 #define T4_CAP_ENABLE (T4_CAP)
1629 
1630 static int
1631 cxgbe_vi_attach(device_t dev, struct vi_info *vi)
1632 {
1633 	struct ifnet *ifp;
1634 	struct sbuf *sb;
1635 
1636 	vi->xact_addr_filt = -1;
1637 	callout_init(&vi->tick, 1);
1638 
1639 	/* Allocate an ifnet and set it up */
1640 	ifp = if_alloc_dev(IFT_ETHER, dev);
1641 	if (ifp == NULL) {
1642 		device_printf(dev, "Cannot allocate ifnet\n");
1643 		return (ENOMEM);
1644 	}
1645 	vi->ifp = ifp;
1646 	ifp->if_softc = vi;
1647 
1648 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
1649 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
1650 
1651 	ifp->if_init = cxgbe_init;
1652 	ifp->if_ioctl = cxgbe_ioctl;
1653 	ifp->if_transmit = cxgbe_transmit;
1654 	ifp->if_qflush = cxgbe_qflush;
1655 	ifp->if_get_counter = cxgbe_get_counter;
1656 #ifdef RATELIMIT
1657 	ifp->if_snd_tag_alloc = cxgbe_snd_tag_alloc;
1658 	ifp->if_snd_tag_modify = cxgbe_snd_tag_modify;
1659 	ifp->if_snd_tag_query = cxgbe_snd_tag_query;
1660 	ifp->if_snd_tag_free = cxgbe_snd_tag_free;
1661 #endif
1662 
1663 	ifp->if_capabilities = T4_CAP;
1664 	ifp->if_capenable = T4_CAP_ENABLE;
1665 #ifdef TCP_OFFLOAD
1666 	if (vi->nofldrxq != 0)
1667 		ifp->if_capabilities |= IFCAP_TOE;
1668 #endif
1669 #ifdef RATELIMIT
1670 	if (is_ethoffload(vi->pi->adapter) && vi->nofldtxq != 0) {
1671 		ifp->if_capabilities |= IFCAP_TXRTLMT;
1672 		ifp->if_capenable |= IFCAP_TXRTLMT;
1673 	}
1674 #endif
1675 	ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
1676 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6;
1677 
1678 	ifp->if_hw_tsomax = IP_MAXPACKET;
1679 	ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO;
1680 #ifdef RATELIMIT
1681 	if (is_ethoffload(vi->pi->adapter) && vi->nofldtxq != 0)
1682 		ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_EO_TSO;
1683 #endif
1684 	ifp->if_hw_tsomaxsegsize = 65536;
1685 
1686 	ether_ifattach(ifp, vi->hw_addr);
1687 #ifdef DEV_NETMAP
1688 	if (vi->nnmrxq != 0)
1689 		cxgbe_nm_attach(vi);
1690 #endif
1691 	sb = sbuf_new_auto();
1692 	sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq);
1693 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1694 	switch (ifp->if_capabilities & (IFCAP_TOE | IFCAP_TXRTLMT)) {
1695 	case IFCAP_TOE:
1696 		sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq);
1697 		break;
1698 	case IFCAP_TOE | IFCAP_TXRTLMT:
1699 		sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq);
1700 		break;
1701 	case IFCAP_TXRTLMT:
1702 		sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq);
1703 		break;
1704 	}
1705 #endif
1706 #ifdef TCP_OFFLOAD
1707 	if (ifp->if_capabilities & IFCAP_TOE)
1708 		sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq);
1709 #endif
1710 #ifdef DEV_NETMAP
1711 	if (ifp->if_capabilities & IFCAP_NETMAP)
1712 		sbuf_printf(sb, "; %d txq, %d rxq (netmap)",
1713 		    vi->nnmtxq, vi->nnmrxq);
1714 #endif
1715 	sbuf_finish(sb);
1716 	device_printf(dev, "%s\n", sbuf_data(sb));
1717 	sbuf_delete(sb);
1718 
1719 	vi_sysctls(vi);
1720 
1721 	return (0);
1722 }
1723 
1724 static int
1725 cxgbe_attach(device_t dev)
1726 {
1727 	struct port_info *pi = device_get_softc(dev);
1728 	struct adapter *sc = pi->adapter;
1729 	struct vi_info *vi;
1730 	int i, rc;
1731 
1732 	callout_init_mtx(&pi->tick, &pi->pi_lock, 0);
1733 
1734 	rc = cxgbe_vi_attach(dev, &pi->vi[0]);
1735 	if (rc)
1736 		return (rc);
1737 
1738 	for_each_vi(pi, i, vi) {
1739 		if (i == 0)
1740 			continue;
1741 		vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1);
1742 		if (vi->dev == NULL) {
1743 			device_printf(dev, "failed to add VI %d\n", i);
1744 			continue;
1745 		}
1746 		device_set_softc(vi->dev, vi);
1747 	}
1748 
1749 	cxgbe_sysctls(pi);
1750 
1751 	bus_generic_attach(dev);
1752 
1753 	return (0);
1754 }
1755 
1756 static void
1757 cxgbe_vi_detach(struct vi_info *vi)
1758 {
1759 	struct ifnet *ifp = vi->ifp;
1760 
1761 	ether_ifdetach(ifp);
1762 
1763 	/* Let detach proceed even if these fail. */
1764 #ifdef DEV_NETMAP
1765 	if (ifp->if_capabilities & IFCAP_NETMAP)
1766 		cxgbe_nm_detach(vi);
1767 #endif
1768 	cxgbe_uninit_synchronized(vi);
1769 	callout_drain(&vi->tick);
1770 	vi_full_uninit(vi);
1771 
1772 	if_free(vi->ifp);
1773 	vi->ifp = NULL;
1774 }
1775 
1776 static int
1777 cxgbe_detach(device_t dev)
1778 {
1779 	struct port_info *pi = device_get_softc(dev);
1780 	struct adapter *sc = pi->adapter;
1781 	int rc;
1782 
1783 	/* Detach the extra VIs first. */
1784 	rc = bus_generic_detach(dev);
1785 	if (rc)
1786 		return (rc);
1787 	device_delete_children(dev);
1788 
1789 	doom_vi(sc, &pi->vi[0]);
1790 
1791 	if (pi->flags & HAS_TRACEQ) {
1792 		sc->traceq = -1;	/* cloner should not create ifnet */
1793 		t4_tracer_port_detach(sc);
1794 	}
1795 
1796 	cxgbe_vi_detach(&pi->vi[0]);
1797 	callout_drain(&pi->tick);
1798 	ifmedia_removeall(&pi->media);
1799 
1800 	end_synchronized_op(sc, 0);
1801 
1802 	return (0);
1803 }
1804 
1805 static void
1806 cxgbe_init(void *arg)
1807 {
1808 	struct vi_info *vi = arg;
1809 	struct adapter *sc = vi->pi->adapter;
1810 
1811 	if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0)
1812 		return;
1813 	cxgbe_init_synchronized(vi);
1814 	end_synchronized_op(sc, 0);
1815 }
1816 
1817 static int
1818 cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data)
1819 {
1820 	int rc = 0, mtu, flags;
1821 	struct vi_info *vi = ifp->if_softc;
1822 	struct port_info *pi = vi->pi;
1823 	struct adapter *sc = pi->adapter;
1824 	struct ifreq *ifr = (struct ifreq *)data;
1825 	uint32_t mask;
1826 
1827 	switch (cmd) {
1828 	case SIOCSIFMTU:
1829 		mtu = ifr->ifr_mtu;
1830 		if (mtu < ETHERMIN || mtu > MAX_MTU)
1831 			return (EINVAL);
1832 
1833 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu");
1834 		if (rc)
1835 			return (rc);
1836 		ifp->if_mtu = mtu;
1837 		if (vi->flags & VI_INIT_DONE) {
1838 			t4_update_fl_bufsize(ifp);
1839 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1840 				rc = update_mac_settings(ifp, XGMAC_MTU);
1841 		}
1842 		end_synchronized_op(sc, 0);
1843 		break;
1844 
1845 	case SIOCSIFFLAGS:
1846 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg");
1847 		if (rc)
1848 			return (rc);
1849 
1850 		if (ifp->if_flags & IFF_UP) {
1851 			if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1852 				flags = vi->if_flags;
1853 				if ((ifp->if_flags ^ flags) &
1854 				    (IFF_PROMISC | IFF_ALLMULTI)) {
1855 					rc = update_mac_settings(ifp,
1856 					    XGMAC_PROMISC | XGMAC_ALLMULTI);
1857 				}
1858 			} else {
1859 				rc = cxgbe_init_synchronized(vi);
1860 			}
1861 			vi->if_flags = ifp->if_flags;
1862 		} else if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1863 			rc = cxgbe_uninit_synchronized(vi);
1864 		}
1865 		end_synchronized_op(sc, 0);
1866 		break;
1867 
1868 	case SIOCADDMULTI:
1869 	case SIOCDELMULTI:
1870 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi");
1871 		if (rc)
1872 			return (rc);
1873 		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1874 			rc = update_mac_settings(ifp, XGMAC_MCADDRS);
1875 		end_synchronized_op(sc, 0);
1876 		break;
1877 
1878 	case SIOCSIFCAP:
1879 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap");
1880 		if (rc)
1881 			return (rc);
1882 
1883 		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1884 		if (mask & IFCAP_TXCSUM) {
1885 			ifp->if_capenable ^= IFCAP_TXCSUM;
1886 			ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP);
1887 
1888 			if (IFCAP_TSO4 & ifp->if_capenable &&
1889 			    !(IFCAP_TXCSUM & ifp->if_capenable)) {
1890 				ifp->if_capenable &= ~IFCAP_TSO4;
1891 				if_printf(ifp,
1892 				    "tso4 disabled due to -txcsum.\n");
1893 			}
1894 		}
1895 		if (mask & IFCAP_TXCSUM_IPV6) {
1896 			ifp->if_capenable ^= IFCAP_TXCSUM_IPV6;
1897 			ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
1898 
1899 			if (IFCAP_TSO6 & ifp->if_capenable &&
1900 			    !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) {
1901 				ifp->if_capenable &= ~IFCAP_TSO6;
1902 				if_printf(ifp,
1903 				    "tso6 disabled due to -txcsum6.\n");
1904 			}
1905 		}
1906 		if (mask & IFCAP_RXCSUM)
1907 			ifp->if_capenable ^= IFCAP_RXCSUM;
1908 		if (mask & IFCAP_RXCSUM_IPV6)
1909 			ifp->if_capenable ^= IFCAP_RXCSUM_IPV6;
1910 
1911 		/*
1912 		 * Note that we leave CSUM_TSO alone (it is always set).  The
1913 		 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before
1914 		 * sending a TSO request our way, so it's sufficient to toggle
1915 		 * IFCAP_TSOx only.
1916 		 */
1917 		if (mask & IFCAP_TSO4) {
1918 			if (!(IFCAP_TSO4 & ifp->if_capenable) &&
1919 			    !(IFCAP_TXCSUM & ifp->if_capenable)) {
1920 				if_printf(ifp, "enable txcsum first.\n");
1921 				rc = EAGAIN;
1922 				goto fail;
1923 			}
1924 			ifp->if_capenable ^= IFCAP_TSO4;
1925 		}
1926 		if (mask & IFCAP_TSO6) {
1927 			if (!(IFCAP_TSO6 & ifp->if_capenable) &&
1928 			    !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) {
1929 				if_printf(ifp, "enable txcsum6 first.\n");
1930 				rc = EAGAIN;
1931 				goto fail;
1932 			}
1933 			ifp->if_capenable ^= IFCAP_TSO6;
1934 		}
1935 		if (mask & IFCAP_LRO) {
1936 #if defined(INET) || defined(INET6)
1937 			int i;
1938 			struct sge_rxq *rxq;
1939 
1940 			ifp->if_capenable ^= IFCAP_LRO;
1941 			for_each_rxq(vi, i, rxq) {
1942 				if (ifp->if_capenable & IFCAP_LRO)
1943 					rxq->iq.flags |= IQ_LRO_ENABLED;
1944 				else
1945 					rxq->iq.flags &= ~IQ_LRO_ENABLED;
1946 			}
1947 #endif
1948 		}
1949 #ifdef TCP_OFFLOAD
1950 		if (mask & IFCAP_TOE) {
1951 			int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE;
1952 
1953 			rc = toe_capability(vi, enable);
1954 			if (rc != 0)
1955 				goto fail;
1956 
1957 			ifp->if_capenable ^= mask;
1958 		}
1959 #endif
1960 		if (mask & IFCAP_VLAN_HWTAGGING) {
1961 			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1962 			if (ifp->if_drv_flags & IFF_DRV_RUNNING)
1963 				rc = update_mac_settings(ifp, XGMAC_VLANEX);
1964 		}
1965 		if (mask & IFCAP_VLAN_MTU) {
1966 			ifp->if_capenable ^= IFCAP_VLAN_MTU;
1967 
1968 			/* Need to find out how to disable auto-mtu-inflation */
1969 		}
1970 		if (mask & IFCAP_VLAN_HWTSO)
1971 			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1972 		if (mask & IFCAP_VLAN_HWCSUM)
1973 			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1974 #ifdef RATELIMIT
1975 		if (mask & IFCAP_TXRTLMT)
1976 			ifp->if_capenable ^= IFCAP_TXRTLMT;
1977 #endif
1978 		if (mask & IFCAP_HWRXTSTMP) {
1979 			int i;
1980 			struct sge_rxq *rxq;
1981 
1982 			ifp->if_capenable ^= IFCAP_HWRXTSTMP;
1983 			for_each_rxq(vi, i, rxq) {
1984 				if (ifp->if_capenable & IFCAP_HWRXTSTMP)
1985 					rxq->iq.flags |= IQ_RX_TIMESTAMP;
1986 				else
1987 					rxq->iq.flags &= ~IQ_RX_TIMESTAMP;
1988 			}
1989 		}
1990 		if (mask & IFCAP_NOMAP)
1991 			ifp->if_capenable ^= IFCAP_NOMAP;
1992 
1993 #ifdef VLAN_CAPABILITIES
1994 		VLAN_CAPABILITIES(ifp);
1995 #endif
1996 fail:
1997 		end_synchronized_op(sc, 0);
1998 		break;
1999 
2000 	case SIOCSIFMEDIA:
2001 	case SIOCGIFMEDIA:
2002 	case SIOCGIFXMEDIA:
2003 		ifmedia_ioctl(ifp, ifr, &pi->media, cmd);
2004 		break;
2005 
2006 	case SIOCGI2C: {
2007 		struct ifi2creq i2c;
2008 
2009 		rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
2010 		if (rc != 0)
2011 			break;
2012 		if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
2013 			rc = EPERM;
2014 			break;
2015 		}
2016 		if (i2c.len > sizeof(i2c.data)) {
2017 			rc = EINVAL;
2018 			break;
2019 		}
2020 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c");
2021 		if (rc)
2022 			return (rc);
2023 		rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr,
2024 		    i2c.offset, i2c.len, &i2c.data[0]);
2025 		end_synchronized_op(sc, 0);
2026 		if (rc == 0)
2027 			rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c));
2028 		break;
2029 	}
2030 
2031 	default:
2032 		rc = ether_ioctl(ifp, cmd, data);
2033 	}
2034 
2035 	return (rc);
2036 }
2037 
2038 static int
2039 cxgbe_transmit(struct ifnet *ifp, struct mbuf *m)
2040 {
2041 	struct vi_info *vi = ifp->if_softc;
2042 	struct port_info *pi = vi->pi;
2043 	struct adapter *sc = pi->adapter;
2044 	struct sge_txq *txq;
2045 	void *items[1];
2046 	int rc;
2047 
2048 	M_ASSERTPKTHDR(m);
2049 	MPASS(m->m_nextpkt == NULL);	/* not quite ready for this yet */
2050 
2051 	if (__predict_false(pi->link_cfg.link_ok == false)) {
2052 		m_freem(m);
2053 		return (ENETDOWN);
2054 	}
2055 
2056 	rc = parse_pkt(sc, &m);
2057 	if (__predict_false(rc != 0)) {
2058 		MPASS(m == NULL);			/* was freed already */
2059 		atomic_add_int(&pi->tx_parse_error, 1);	/* rare, atomic is ok */
2060 		return (rc);
2061 	}
2062 #ifdef RATELIMIT
2063 	if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) {
2064 		MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
2065 		return (ethofld_transmit(ifp, m));
2066 	}
2067 #endif
2068 
2069 	/* Select a txq. */
2070 	txq = &sc->sge.txq[vi->first_txq];
2071 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
2072 		txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) +
2073 		    vi->rsrv_noflowq);
2074 
2075 	items[0] = m;
2076 	rc = mp_ring_enqueue(txq->r, items, 1, 4096);
2077 	if (__predict_false(rc != 0))
2078 		m_freem(m);
2079 
2080 	return (rc);
2081 }
2082 
2083 static void
2084 cxgbe_qflush(struct ifnet *ifp)
2085 {
2086 	struct vi_info *vi = ifp->if_softc;
2087 	struct sge_txq *txq;
2088 	int i;
2089 
2090 	/* queues do not exist if !VI_INIT_DONE. */
2091 	if (vi->flags & VI_INIT_DONE) {
2092 		for_each_txq(vi, i, txq) {
2093 			TXQ_LOCK(txq);
2094 			txq->eq.flags |= EQ_QFLUSH;
2095 			TXQ_UNLOCK(txq);
2096 			while (!mp_ring_is_idle(txq->r)) {
2097 				mp_ring_check_drainage(txq->r, 0);
2098 				pause("qflush", 1);
2099 			}
2100 			TXQ_LOCK(txq);
2101 			txq->eq.flags &= ~EQ_QFLUSH;
2102 			TXQ_UNLOCK(txq);
2103 		}
2104 	}
2105 	if_qflush(ifp);
2106 }
2107 
2108 static uint64_t
2109 vi_get_counter(struct ifnet *ifp, ift_counter c)
2110 {
2111 	struct vi_info *vi = ifp->if_softc;
2112 	struct fw_vi_stats_vf *s = &vi->stats;
2113 
2114 	vi_refresh_stats(vi->pi->adapter, vi);
2115 
2116 	switch (c) {
2117 	case IFCOUNTER_IPACKETS:
2118 		return (s->rx_bcast_frames + s->rx_mcast_frames +
2119 		    s->rx_ucast_frames);
2120 	case IFCOUNTER_IERRORS:
2121 		return (s->rx_err_frames);
2122 	case IFCOUNTER_OPACKETS:
2123 		return (s->tx_bcast_frames + s->tx_mcast_frames +
2124 		    s->tx_ucast_frames + s->tx_offload_frames);
2125 	case IFCOUNTER_OERRORS:
2126 		return (s->tx_drop_frames);
2127 	case IFCOUNTER_IBYTES:
2128 		return (s->rx_bcast_bytes + s->rx_mcast_bytes +
2129 		    s->rx_ucast_bytes);
2130 	case IFCOUNTER_OBYTES:
2131 		return (s->tx_bcast_bytes + s->tx_mcast_bytes +
2132 		    s->tx_ucast_bytes + s->tx_offload_bytes);
2133 	case IFCOUNTER_IMCASTS:
2134 		return (s->rx_mcast_frames);
2135 	case IFCOUNTER_OMCASTS:
2136 		return (s->tx_mcast_frames);
2137 	case IFCOUNTER_OQDROPS: {
2138 		uint64_t drops;
2139 
2140 		drops = 0;
2141 		if (vi->flags & VI_INIT_DONE) {
2142 			int i;
2143 			struct sge_txq *txq;
2144 
2145 			for_each_txq(vi, i, txq)
2146 				drops += counter_u64_fetch(txq->r->drops);
2147 		}
2148 
2149 		return (drops);
2150 
2151 	}
2152 
2153 	default:
2154 		return (if_get_counter_default(ifp, c));
2155 	}
2156 }
2157 
2158 uint64_t
2159 cxgbe_get_counter(struct ifnet *ifp, ift_counter c)
2160 {
2161 	struct vi_info *vi = ifp->if_softc;
2162 	struct port_info *pi = vi->pi;
2163 	struct adapter *sc = pi->adapter;
2164 	struct port_stats *s = &pi->stats;
2165 
2166 	if (pi->nvi > 1 || sc->flags & IS_VF)
2167 		return (vi_get_counter(ifp, c));
2168 
2169 	cxgbe_refresh_stats(sc, pi);
2170 
2171 	switch (c) {
2172 	case IFCOUNTER_IPACKETS:
2173 		return (s->rx_frames);
2174 
2175 	case IFCOUNTER_IERRORS:
2176 		return (s->rx_jabber + s->rx_runt + s->rx_too_long +
2177 		    s->rx_fcs_err + s->rx_len_err);
2178 
2179 	case IFCOUNTER_OPACKETS:
2180 		return (s->tx_frames);
2181 
2182 	case IFCOUNTER_OERRORS:
2183 		return (s->tx_error_frames);
2184 
2185 	case IFCOUNTER_IBYTES:
2186 		return (s->rx_octets);
2187 
2188 	case IFCOUNTER_OBYTES:
2189 		return (s->tx_octets);
2190 
2191 	case IFCOUNTER_IMCASTS:
2192 		return (s->rx_mcast_frames);
2193 
2194 	case IFCOUNTER_OMCASTS:
2195 		return (s->tx_mcast_frames);
2196 
2197 	case IFCOUNTER_IQDROPS:
2198 		return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
2199 		    s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 +
2200 		    s->rx_trunc3 + pi->tnl_cong_drops);
2201 
2202 	case IFCOUNTER_OQDROPS: {
2203 		uint64_t drops;
2204 
2205 		drops = s->tx_drop;
2206 		if (vi->flags & VI_INIT_DONE) {
2207 			int i;
2208 			struct sge_txq *txq;
2209 
2210 			for_each_txq(vi, i, txq)
2211 				drops += counter_u64_fetch(txq->r->drops);
2212 		}
2213 
2214 		return (drops);
2215 
2216 	}
2217 
2218 	default:
2219 		return (if_get_counter_default(ifp, c));
2220 	}
2221 }
2222 
2223 /*
2224  * The kernel picks a media from the list we had provided but we still validate
2225  * the requeste.
2226  */
2227 int
2228 cxgbe_media_change(struct ifnet *ifp)
2229 {
2230 	struct vi_info *vi = ifp->if_softc;
2231 	struct port_info *pi = vi->pi;
2232 	struct ifmedia *ifm = &pi->media;
2233 	struct link_config *lc = &pi->link_cfg;
2234 	struct adapter *sc = pi->adapter;
2235 	int rc;
2236 
2237 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec");
2238 	if (rc != 0)
2239 		return (rc);
2240 	PORT_LOCK(pi);
2241 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
2242 		/* ifconfig .. media autoselect */
2243 		if (!(lc->supported & FW_PORT_CAP32_ANEG)) {
2244 			rc = ENOTSUP; /* AN not supported by transceiver */
2245 			goto done;
2246 		}
2247 		lc->requested_aneg = AUTONEG_ENABLE;
2248 		lc->requested_speed = 0;
2249 		lc->requested_fc |= PAUSE_AUTONEG;
2250 	} else {
2251 		lc->requested_aneg = AUTONEG_DISABLE;
2252 		lc->requested_speed =
2253 		    ifmedia_baudrate(ifm->ifm_media) / 1000000;
2254 		lc->requested_fc = 0;
2255 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE)
2256 			lc->requested_fc |= PAUSE_RX;
2257 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)
2258 			lc->requested_fc |= PAUSE_TX;
2259 	}
2260 	if (pi->up_vis > 0) {
2261 		fixup_link_config(pi);
2262 		rc = apply_link_config(pi);
2263 	}
2264 done:
2265 	PORT_UNLOCK(pi);
2266 	end_synchronized_op(sc, 0);
2267 	return (rc);
2268 }
2269 
2270 /*
2271  * Base media word (without ETHER, pause, link active, etc.) for the port at the
2272  * given speed.
2273  */
2274 static int
2275 port_mword(struct port_info *pi, uint32_t speed)
2276 {
2277 
2278 	MPASS(speed & M_FW_PORT_CAP32_SPEED);
2279 	MPASS(powerof2(speed));
2280 
2281 	switch(pi->port_type) {
2282 	case FW_PORT_TYPE_BT_SGMII:
2283 	case FW_PORT_TYPE_BT_XFI:
2284 	case FW_PORT_TYPE_BT_XAUI:
2285 		/* BaseT */
2286 		switch (speed) {
2287 		case FW_PORT_CAP32_SPEED_100M:
2288 			return (IFM_100_T);
2289 		case FW_PORT_CAP32_SPEED_1G:
2290 			return (IFM_1000_T);
2291 		case FW_PORT_CAP32_SPEED_10G:
2292 			return (IFM_10G_T);
2293 		}
2294 		break;
2295 	case FW_PORT_TYPE_KX4:
2296 		if (speed == FW_PORT_CAP32_SPEED_10G)
2297 			return (IFM_10G_KX4);
2298 		break;
2299 	case FW_PORT_TYPE_CX4:
2300 		if (speed == FW_PORT_CAP32_SPEED_10G)
2301 			return (IFM_10G_CX4);
2302 		break;
2303 	case FW_PORT_TYPE_KX:
2304 		if (speed == FW_PORT_CAP32_SPEED_1G)
2305 			return (IFM_1000_KX);
2306 		break;
2307 	case FW_PORT_TYPE_KR:
2308 	case FW_PORT_TYPE_BP_AP:
2309 	case FW_PORT_TYPE_BP4_AP:
2310 	case FW_PORT_TYPE_BP40_BA:
2311 	case FW_PORT_TYPE_KR4_100G:
2312 	case FW_PORT_TYPE_KR_SFP28:
2313 	case FW_PORT_TYPE_KR_XLAUI:
2314 		switch (speed) {
2315 		case FW_PORT_CAP32_SPEED_1G:
2316 			return (IFM_1000_KX);
2317 		case FW_PORT_CAP32_SPEED_10G:
2318 			return (IFM_10G_KR);
2319 		case FW_PORT_CAP32_SPEED_25G:
2320 			return (IFM_25G_KR);
2321 		case FW_PORT_CAP32_SPEED_40G:
2322 			return (IFM_40G_KR4);
2323 		case FW_PORT_CAP32_SPEED_50G:
2324 			return (IFM_50G_KR2);
2325 		case FW_PORT_CAP32_SPEED_100G:
2326 			return (IFM_100G_KR4);
2327 		}
2328 		break;
2329 	case FW_PORT_TYPE_FIBER_XFI:
2330 	case FW_PORT_TYPE_FIBER_XAUI:
2331 	case FW_PORT_TYPE_SFP:
2332 	case FW_PORT_TYPE_QSFP_10G:
2333 	case FW_PORT_TYPE_QSA:
2334 	case FW_PORT_TYPE_QSFP:
2335 	case FW_PORT_TYPE_CR4_QSFP:
2336 	case FW_PORT_TYPE_CR_QSFP:
2337 	case FW_PORT_TYPE_CR2_QSFP:
2338 	case FW_PORT_TYPE_SFP28:
2339 		/* Pluggable transceiver */
2340 		switch (pi->mod_type) {
2341 		case FW_PORT_MOD_TYPE_LR:
2342 			switch (speed) {
2343 			case FW_PORT_CAP32_SPEED_1G:
2344 				return (IFM_1000_LX);
2345 			case FW_PORT_CAP32_SPEED_10G:
2346 				return (IFM_10G_LR);
2347 			case FW_PORT_CAP32_SPEED_25G:
2348 				return (IFM_25G_LR);
2349 			case FW_PORT_CAP32_SPEED_40G:
2350 				return (IFM_40G_LR4);
2351 			case FW_PORT_CAP32_SPEED_50G:
2352 				return (IFM_50G_LR2);
2353 			case FW_PORT_CAP32_SPEED_100G:
2354 				return (IFM_100G_LR4);
2355 			}
2356 			break;
2357 		case FW_PORT_MOD_TYPE_SR:
2358 			switch (speed) {
2359 			case FW_PORT_CAP32_SPEED_1G:
2360 				return (IFM_1000_SX);
2361 			case FW_PORT_CAP32_SPEED_10G:
2362 				return (IFM_10G_SR);
2363 			case FW_PORT_CAP32_SPEED_25G:
2364 				return (IFM_25G_SR);
2365 			case FW_PORT_CAP32_SPEED_40G:
2366 				return (IFM_40G_SR4);
2367 			case FW_PORT_CAP32_SPEED_50G:
2368 				return (IFM_50G_SR2);
2369 			case FW_PORT_CAP32_SPEED_100G:
2370 				return (IFM_100G_SR4);
2371 			}
2372 			break;
2373 		case FW_PORT_MOD_TYPE_ER:
2374 			if (speed == FW_PORT_CAP32_SPEED_10G)
2375 				return (IFM_10G_ER);
2376 			break;
2377 		case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
2378 		case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
2379 			switch (speed) {
2380 			case FW_PORT_CAP32_SPEED_1G:
2381 				return (IFM_1000_CX);
2382 			case FW_PORT_CAP32_SPEED_10G:
2383 				return (IFM_10G_TWINAX);
2384 			case FW_PORT_CAP32_SPEED_25G:
2385 				return (IFM_25G_CR);
2386 			case FW_PORT_CAP32_SPEED_40G:
2387 				return (IFM_40G_CR4);
2388 			case FW_PORT_CAP32_SPEED_50G:
2389 				return (IFM_50G_CR2);
2390 			case FW_PORT_CAP32_SPEED_100G:
2391 				return (IFM_100G_CR4);
2392 			}
2393 			break;
2394 		case FW_PORT_MOD_TYPE_LRM:
2395 			if (speed == FW_PORT_CAP32_SPEED_10G)
2396 				return (IFM_10G_LRM);
2397 			break;
2398 		case FW_PORT_MOD_TYPE_NA:
2399 			MPASS(0);	/* Not pluggable? */
2400 			/* fall throough */
2401 		case FW_PORT_MOD_TYPE_ERROR:
2402 		case FW_PORT_MOD_TYPE_UNKNOWN:
2403 		case FW_PORT_MOD_TYPE_NOTSUPPORTED:
2404 			break;
2405 		case FW_PORT_MOD_TYPE_NONE:
2406 			return (IFM_NONE);
2407 		}
2408 		break;
2409 	case FW_PORT_TYPE_NONE:
2410 		return (IFM_NONE);
2411 	}
2412 
2413 	return (IFM_UNKNOWN);
2414 }
2415 
2416 void
2417 cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr)
2418 {
2419 	struct vi_info *vi = ifp->if_softc;
2420 	struct port_info *pi = vi->pi;
2421 	struct adapter *sc = pi->adapter;
2422 	struct link_config *lc = &pi->link_cfg;
2423 
2424 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4med") != 0)
2425 		return;
2426 	PORT_LOCK(pi);
2427 
2428 	if (pi->up_vis == 0) {
2429 		/*
2430 		 * If all the interfaces are administratively down the firmware
2431 		 * does not report transceiver changes.  Refresh port info here
2432 		 * so that ifconfig displays accurate ifmedia at all times.
2433 		 * This is the only reason we have a synchronized op in this
2434 		 * function.  Just PORT_LOCK would have been enough otherwise.
2435 		 */
2436 		t4_update_port_info(pi);
2437 		build_medialist(pi);
2438 	}
2439 
2440 	/* ifm_status */
2441 	ifmr->ifm_status = IFM_AVALID;
2442 	if (lc->link_ok == false)
2443 		goto done;
2444 	ifmr->ifm_status |= IFM_ACTIVE;
2445 
2446 	/* ifm_active */
2447 	ifmr->ifm_active = IFM_ETHER | IFM_FDX;
2448 	ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE);
2449 	if (lc->fc & PAUSE_RX)
2450 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
2451 	if (lc->fc & PAUSE_TX)
2452 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
2453 	ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed));
2454 done:
2455 	PORT_UNLOCK(pi);
2456 	end_synchronized_op(sc, 0);
2457 }
2458 
2459 static int
2460 vcxgbe_probe(device_t dev)
2461 {
2462 	char buf[128];
2463 	struct vi_info *vi = device_get_softc(dev);
2464 
2465 	snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id,
2466 	    vi - vi->pi->vi);
2467 	device_set_desc_copy(dev, buf);
2468 
2469 	return (BUS_PROBE_DEFAULT);
2470 }
2471 
2472 static int
2473 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi)
2474 {
2475 	int func, index, rc;
2476 	uint32_t param, val;
2477 
2478 	ASSERT_SYNCHRONIZED_OP(sc);
2479 
2480 	index = vi - pi->vi;
2481 	MPASS(index > 0);	/* This function deals with _extra_ VIs only */
2482 	KASSERT(index < nitems(vi_mac_funcs),
2483 	    ("%s: VI %s doesn't have a MAC func", __func__,
2484 	    device_get_nameunit(vi->dev)));
2485 	func = vi_mac_funcs[index];
2486 	rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1,
2487 	    vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0);
2488 	if (rc < 0) {
2489 		device_printf(vi->dev, "failed to allocate virtual interface %d"
2490 		    "for port %d: %d\n", index, pi->port_id, -rc);
2491 		return (-rc);
2492 	}
2493 	vi->viid = rc;
2494 
2495 	if (vi->rss_size == 1) {
2496 		/*
2497 		 * This VI didn't get a slice of the RSS table.  Reduce the
2498 		 * number of VIs being created (hw.cxgbe.num_vis) or modify the
2499 		 * configuration file (nvi, rssnvi for this PF) if this is a
2500 		 * problem.
2501 		 */
2502 		device_printf(vi->dev, "RSS table not available.\n");
2503 		vi->rss_base = 0xffff;
2504 
2505 		return (0);
2506 	}
2507 
2508 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
2509 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
2510 	    V_FW_PARAMS_PARAM_YZ(vi->viid);
2511 	rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
2512 	if (rc)
2513 		vi->rss_base = 0xffff;
2514 	else {
2515 		MPASS((val >> 16) == vi->rss_size);
2516 		vi->rss_base = val & 0xffff;
2517 	}
2518 
2519 	return (0);
2520 }
2521 
2522 static int
2523 vcxgbe_attach(device_t dev)
2524 {
2525 	struct vi_info *vi;
2526 	struct port_info *pi;
2527 	struct adapter *sc;
2528 	int rc;
2529 
2530 	vi = device_get_softc(dev);
2531 	pi = vi->pi;
2532 	sc = pi->adapter;
2533 
2534 	rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via");
2535 	if (rc)
2536 		return (rc);
2537 	rc = alloc_extra_vi(sc, pi, vi);
2538 	end_synchronized_op(sc, 0);
2539 	if (rc)
2540 		return (rc);
2541 
2542 	rc = cxgbe_vi_attach(dev, vi);
2543 	if (rc) {
2544 		t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
2545 		return (rc);
2546 	}
2547 	return (0);
2548 }
2549 
2550 static int
2551 vcxgbe_detach(device_t dev)
2552 {
2553 	struct vi_info *vi;
2554 	struct adapter *sc;
2555 
2556 	vi = device_get_softc(dev);
2557 	sc = vi->pi->adapter;
2558 
2559 	doom_vi(sc, vi);
2560 
2561 	cxgbe_vi_detach(vi);
2562 	t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
2563 
2564 	end_synchronized_op(sc, 0);
2565 
2566 	return (0);
2567 }
2568 
2569 static struct callout fatal_callout;
2570 
2571 static void
2572 delayed_panic(void *arg)
2573 {
2574 	struct adapter *sc = arg;
2575 
2576 	panic("%s: panic on fatal error", device_get_nameunit(sc->dev));
2577 }
2578 
2579 void
2580 t4_fatal_err(struct adapter *sc, bool fw_error)
2581 {
2582 
2583 	t4_shutdown_adapter(sc);
2584 	log(LOG_ALERT, "%s: encountered fatal error, adapter stopped.\n",
2585 	    device_get_nameunit(sc->dev));
2586 	if (fw_error) {
2587 		ASSERT_SYNCHRONIZED_OP(sc);
2588 		sc->flags |= ADAP_ERR;
2589 	} else {
2590 		ADAPTER_LOCK(sc);
2591 		sc->flags |= ADAP_ERR;
2592 		ADAPTER_UNLOCK(sc);
2593 	}
2594 
2595 	if (t4_panic_on_fatal_err) {
2596 		log(LOG_ALERT, "%s: panic on fatal error after 30s",
2597 		    device_get_nameunit(sc->dev));
2598 		callout_reset(&fatal_callout, hz * 30, delayed_panic, sc);
2599 	}
2600 }
2601 
2602 void
2603 t4_add_adapter(struct adapter *sc)
2604 {
2605 	sx_xlock(&t4_list_lock);
2606 	SLIST_INSERT_HEAD(&t4_list, sc, link);
2607 	sx_xunlock(&t4_list_lock);
2608 }
2609 
2610 int
2611 t4_map_bars_0_and_4(struct adapter *sc)
2612 {
2613 	sc->regs_rid = PCIR_BAR(0);
2614 	sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2615 	    &sc->regs_rid, RF_ACTIVE);
2616 	if (sc->regs_res == NULL) {
2617 		device_printf(sc->dev, "cannot map registers.\n");
2618 		return (ENXIO);
2619 	}
2620 	sc->bt = rman_get_bustag(sc->regs_res);
2621 	sc->bh = rman_get_bushandle(sc->regs_res);
2622 	sc->mmio_len = rman_get_size(sc->regs_res);
2623 	setbit(&sc->doorbells, DOORBELL_KDB);
2624 
2625 	sc->msix_rid = PCIR_BAR(4);
2626 	sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2627 	    &sc->msix_rid, RF_ACTIVE);
2628 	if (sc->msix_res == NULL) {
2629 		device_printf(sc->dev, "cannot map MSI-X BAR.\n");
2630 		return (ENXIO);
2631 	}
2632 
2633 	return (0);
2634 }
2635 
2636 int
2637 t4_map_bar_2(struct adapter *sc)
2638 {
2639 
2640 	/*
2641 	 * T4: only iWARP driver uses the userspace doorbells.  There is no need
2642 	 * to map it if RDMA is disabled.
2643 	 */
2644 	if (is_t4(sc) && sc->rdmacaps == 0)
2645 		return (0);
2646 
2647 	sc->udbs_rid = PCIR_BAR(2);
2648 	sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
2649 	    &sc->udbs_rid, RF_ACTIVE);
2650 	if (sc->udbs_res == NULL) {
2651 		device_printf(sc->dev, "cannot map doorbell BAR.\n");
2652 		return (ENXIO);
2653 	}
2654 	sc->udbs_base = rman_get_virtual(sc->udbs_res);
2655 
2656 	if (chip_id(sc) >= CHELSIO_T5) {
2657 		setbit(&sc->doorbells, DOORBELL_UDB);
2658 #if defined(__i386__) || defined(__amd64__)
2659 		if (t5_write_combine) {
2660 			int rc, mode;
2661 
2662 			/*
2663 			 * Enable write combining on BAR2.  This is the
2664 			 * userspace doorbell BAR and is split into 128B
2665 			 * (UDBS_SEG_SIZE) doorbell regions, each associated
2666 			 * with an egress queue.  The first 64B has the doorbell
2667 			 * and the second 64B can be used to submit a tx work
2668 			 * request with an implicit doorbell.
2669 			 */
2670 
2671 			rc = pmap_change_attr((vm_offset_t)sc->udbs_base,
2672 			    rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING);
2673 			if (rc == 0) {
2674 				clrbit(&sc->doorbells, DOORBELL_UDB);
2675 				setbit(&sc->doorbells, DOORBELL_WCWR);
2676 				setbit(&sc->doorbells, DOORBELL_UDBWC);
2677 			} else {
2678 				device_printf(sc->dev,
2679 				    "couldn't enable write combining: %d\n",
2680 				    rc);
2681 			}
2682 
2683 			mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0);
2684 			t4_write_reg(sc, A_SGE_STAT_CFG,
2685 			    V_STATSOURCE_T5(7) | mode);
2686 		}
2687 #endif
2688 	}
2689 	sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0;
2690 
2691 	return (0);
2692 }
2693 
2694 struct memwin_init {
2695 	uint32_t base;
2696 	uint32_t aperture;
2697 };
2698 
2699 static const struct memwin_init t4_memwin[NUM_MEMWIN] = {
2700 	{ MEMWIN0_BASE, MEMWIN0_APERTURE },
2701 	{ MEMWIN1_BASE, MEMWIN1_APERTURE },
2702 	{ MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 }
2703 };
2704 
2705 static const struct memwin_init t5_memwin[NUM_MEMWIN] = {
2706 	{ MEMWIN0_BASE, MEMWIN0_APERTURE },
2707 	{ MEMWIN1_BASE, MEMWIN1_APERTURE },
2708 	{ MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 },
2709 };
2710 
2711 static void
2712 setup_memwin(struct adapter *sc)
2713 {
2714 	const struct memwin_init *mw_init;
2715 	struct memwin *mw;
2716 	int i;
2717 	uint32_t bar0;
2718 
2719 	if (is_t4(sc)) {
2720 		/*
2721 		 * Read low 32b of bar0 indirectly via the hardware backdoor
2722 		 * mechanism.  Works from within PCI passthrough environments
2723 		 * too, where rman_get_start() can return a different value.  We
2724 		 * need to program the T4 memory window decoders with the actual
2725 		 * addresses that will be coming across the PCIe link.
2726 		 */
2727 		bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0));
2728 		bar0 &= (uint32_t) PCIM_BAR_MEM_BASE;
2729 
2730 		mw_init = &t4_memwin[0];
2731 	} else {
2732 		/* T5+ use the relative offset inside the PCIe BAR */
2733 		bar0 = 0;
2734 
2735 		mw_init = &t5_memwin[0];
2736 	}
2737 
2738 	for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) {
2739 		rw_init(&mw->mw_lock, "memory window access");
2740 		mw->mw_base = mw_init->base;
2741 		mw->mw_aperture = mw_init->aperture;
2742 		mw->mw_curpos = 0;
2743 		t4_write_reg(sc,
2744 		    PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i),
2745 		    (mw->mw_base + bar0) | V_BIR(0) |
2746 		    V_WINDOW(ilog2(mw->mw_aperture) - 10));
2747 		rw_wlock(&mw->mw_lock);
2748 		position_memwin(sc, i, 0);
2749 		rw_wunlock(&mw->mw_lock);
2750 	}
2751 
2752 	/* flush */
2753 	t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2));
2754 }
2755 
2756 /*
2757  * Positions the memory window at the given address in the card's address space.
2758  * There are some alignment requirements and the actual position may be at an
2759  * address prior to the requested address.  mw->mw_curpos always has the actual
2760  * position of the window.
2761  */
2762 static void
2763 position_memwin(struct adapter *sc, int idx, uint32_t addr)
2764 {
2765 	struct memwin *mw;
2766 	uint32_t pf;
2767 	uint32_t reg;
2768 
2769 	MPASS(idx >= 0 && idx < NUM_MEMWIN);
2770 	mw = &sc->memwin[idx];
2771 	rw_assert(&mw->mw_lock, RA_WLOCKED);
2772 
2773 	if (is_t4(sc)) {
2774 		pf = 0;
2775 		mw->mw_curpos = addr & ~0xf;	/* start must be 16B aligned */
2776 	} else {
2777 		pf = V_PFNUM(sc->pf);
2778 		mw->mw_curpos = addr & ~0x7f;	/* start must be 128B aligned */
2779 	}
2780 	reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx);
2781 	t4_write_reg(sc, reg, mw->mw_curpos | pf);
2782 	t4_read_reg(sc, reg);	/* flush */
2783 }
2784 
2785 int
2786 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
2787     int len, int rw)
2788 {
2789 	struct memwin *mw;
2790 	uint32_t mw_end, v;
2791 
2792 	MPASS(idx >= 0 && idx < NUM_MEMWIN);
2793 
2794 	/* Memory can only be accessed in naturally aligned 4 byte units */
2795 	if (addr & 3 || len & 3 || len <= 0)
2796 		return (EINVAL);
2797 
2798 	mw = &sc->memwin[idx];
2799 	while (len > 0) {
2800 		rw_rlock(&mw->mw_lock);
2801 		mw_end = mw->mw_curpos + mw->mw_aperture;
2802 		if (addr >= mw_end || addr < mw->mw_curpos) {
2803 			/* Will need to reposition the window */
2804 			if (!rw_try_upgrade(&mw->mw_lock)) {
2805 				rw_runlock(&mw->mw_lock);
2806 				rw_wlock(&mw->mw_lock);
2807 			}
2808 			rw_assert(&mw->mw_lock, RA_WLOCKED);
2809 			position_memwin(sc, idx, addr);
2810 			rw_downgrade(&mw->mw_lock);
2811 			mw_end = mw->mw_curpos + mw->mw_aperture;
2812 		}
2813 		rw_assert(&mw->mw_lock, RA_RLOCKED);
2814 		while (addr < mw_end && len > 0) {
2815 			if (rw == 0) {
2816 				v = t4_read_reg(sc, mw->mw_base + addr -
2817 				    mw->mw_curpos);
2818 				*val++ = le32toh(v);
2819 			} else {
2820 				v = *val++;
2821 				t4_write_reg(sc, mw->mw_base + addr -
2822 				    mw->mw_curpos, htole32(v));
2823 			}
2824 			addr += 4;
2825 			len -= 4;
2826 		}
2827 		rw_runlock(&mw->mw_lock);
2828 	}
2829 
2830 	return (0);
2831 }
2832 
2833 int
2834 alloc_atid_tab(struct tid_info *t, int flags)
2835 {
2836 	int i;
2837 
2838 	MPASS(t->natids > 0);
2839 	MPASS(t->atid_tab == NULL);
2840 
2841 	t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE,
2842 	    M_ZERO | flags);
2843 	if (t->atid_tab == NULL)
2844 		return (ENOMEM);
2845 	mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF);
2846 	t->afree = t->atid_tab;
2847 	t->atids_in_use = 0;
2848 	for (i = 1; i < t->natids; i++)
2849 		t->atid_tab[i - 1].next = &t->atid_tab[i];
2850 	t->atid_tab[t->natids - 1].next = NULL;
2851 
2852 	return (0);
2853 }
2854 
2855 void
2856 free_atid_tab(struct tid_info *t)
2857 {
2858 
2859 	KASSERT(t->atids_in_use == 0,
2860 	    ("%s: %d atids still in use.", __func__, t->atids_in_use));
2861 
2862 	if (mtx_initialized(&t->atid_lock))
2863 		mtx_destroy(&t->atid_lock);
2864 	free(t->atid_tab, M_CXGBE);
2865 	t->atid_tab = NULL;
2866 }
2867 
2868 int
2869 alloc_atid(struct adapter *sc, void *ctx)
2870 {
2871 	struct tid_info *t = &sc->tids;
2872 	int atid = -1;
2873 
2874 	mtx_lock(&t->atid_lock);
2875 	if (t->afree) {
2876 		union aopen_entry *p = t->afree;
2877 
2878 		atid = p - t->atid_tab;
2879 		MPASS(atid <= M_TID_TID);
2880 		t->afree = p->next;
2881 		p->data = ctx;
2882 		t->atids_in_use++;
2883 	}
2884 	mtx_unlock(&t->atid_lock);
2885 	return (atid);
2886 }
2887 
2888 void *
2889 lookup_atid(struct adapter *sc, int atid)
2890 {
2891 	struct tid_info *t = &sc->tids;
2892 
2893 	return (t->atid_tab[atid].data);
2894 }
2895 
2896 void
2897 free_atid(struct adapter *sc, int atid)
2898 {
2899 	struct tid_info *t = &sc->tids;
2900 	union aopen_entry *p = &t->atid_tab[atid];
2901 
2902 	mtx_lock(&t->atid_lock);
2903 	p->next = t->afree;
2904 	t->afree = p;
2905 	t->atids_in_use--;
2906 	mtx_unlock(&t->atid_lock);
2907 }
2908 
2909 static void
2910 queue_tid_release(struct adapter *sc, int tid)
2911 {
2912 
2913 	CXGBE_UNIMPLEMENTED("deferred tid release");
2914 }
2915 
2916 void
2917 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq)
2918 {
2919 	struct wrqe *wr;
2920 	struct cpl_tid_release *req;
2921 
2922 	wr = alloc_wrqe(sizeof(*req), ctrlq);
2923 	if (wr == NULL) {
2924 		queue_tid_release(sc, tid);	/* defer */
2925 		return;
2926 	}
2927 	req = wrtod(wr);
2928 
2929 	INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
2930 
2931 	t4_wrq_tx(sc, wr);
2932 }
2933 
2934 static int
2935 t4_range_cmp(const void *a, const void *b)
2936 {
2937 	return ((const struct t4_range *)a)->start -
2938 	       ((const struct t4_range *)b)->start;
2939 }
2940 
2941 /*
2942  * Verify that the memory range specified by the addr/len pair is valid within
2943  * the card's address space.
2944  */
2945 static int
2946 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len)
2947 {
2948 	struct t4_range mem_ranges[4], *r, *next;
2949 	uint32_t em, addr_len;
2950 	int i, n, remaining;
2951 
2952 	/* Memory can only be accessed in naturally aligned 4 byte units */
2953 	if (addr & 3 || len & 3 || len == 0)
2954 		return (EINVAL);
2955 
2956 	/* Enabled memories */
2957 	em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
2958 
2959 	r = &mem_ranges[0];
2960 	n = 0;
2961 	bzero(r, sizeof(mem_ranges));
2962 	if (em & F_EDRAM0_ENABLE) {
2963 		addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
2964 		r->size = G_EDRAM0_SIZE(addr_len) << 20;
2965 		if (r->size > 0) {
2966 			r->start = G_EDRAM0_BASE(addr_len) << 20;
2967 			if (addr >= r->start &&
2968 			    addr + len <= r->start + r->size)
2969 				return (0);
2970 			r++;
2971 			n++;
2972 		}
2973 	}
2974 	if (em & F_EDRAM1_ENABLE) {
2975 		addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
2976 		r->size = G_EDRAM1_SIZE(addr_len) << 20;
2977 		if (r->size > 0) {
2978 			r->start = G_EDRAM1_BASE(addr_len) << 20;
2979 			if (addr >= r->start &&
2980 			    addr + len <= r->start + r->size)
2981 				return (0);
2982 			r++;
2983 			n++;
2984 		}
2985 	}
2986 	if (em & F_EXT_MEM_ENABLE) {
2987 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
2988 		r->size = G_EXT_MEM_SIZE(addr_len) << 20;
2989 		if (r->size > 0) {
2990 			r->start = G_EXT_MEM_BASE(addr_len) << 20;
2991 			if (addr >= r->start &&
2992 			    addr + len <= r->start + r->size)
2993 				return (0);
2994 			r++;
2995 			n++;
2996 		}
2997 	}
2998 	if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) {
2999 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
3000 		r->size = G_EXT_MEM1_SIZE(addr_len) << 20;
3001 		if (r->size > 0) {
3002 			r->start = G_EXT_MEM1_BASE(addr_len) << 20;
3003 			if (addr >= r->start &&
3004 			    addr + len <= r->start + r->size)
3005 				return (0);
3006 			r++;
3007 			n++;
3008 		}
3009 	}
3010 	MPASS(n <= nitems(mem_ranges));
3011 
3012 	if (n > 1) {
3013 		/* Sort and merge the ranges. */
3014 		qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp);
3015 
3016 		/* Start from index 0 and examine the next n - 1 entries. */
3017 		r = &mem_ranges[0];
3018 		for (remaining = n - 1; remaining > 0; remaining--, r++) {
3019 
3020 			MPASS(r->size > 0);	/* r is a valid entry. */
3021 			next = r + 1;
3022 			MPASS(next->size > 0);	/* and so is the next one. */
3023 
3024 			while (r->start + r->size >= next->start) {
3025 				/* Merge the next one into the current entry. */
3026 				r->size = max(r->start + r->size,
3027 				    next->start + next->size) - r->start;
3028 				n--;	/* One fewer entry in total. */
3029 				if (--remaining == 0)
3030 					goto done;	/* short circuit */
3031 				next++;
3032 			}
3033 			if (next != r + 1) {
3034 				/*
3035 				 * Some entries were merged into r and next
3036 				 * points to the first valid entry that couldn't
3037 				 * be merged.
3038 				 */
3039 				MPASS(next->size > 0);	/* must be valid */
3040 				memcpy(r + 1, next, remaining * sizeof(*r));
3041 #ifdef INVARIANTS
3042 				/*
3043 				 * This so that the foo->size assertion in the
3044 				 * next iteration of the loop do the right
3045 				 * thing for entries that were pulled up and are
3046 				 * no longer valid.
3047 				 */
3048 				MPASS(n < nitems(mem_ranges));
3049 				bzero(&mem_ranges[n], (nitems(mem_ranges) - n) *
3050 				    sizeof(struct t4_range));
3051 #endif
3052 			}
3053 		}
3054 done:
3055 		/* Done merging the ranges. */
3056 		MPASS(n > 0);
3057 		r = &mem_ranges[0];
3058 		for (i = 0; i < n; i++, r++) {
3059 			if (addr >= r->start &&
3060 			    addr + len <= r->start + r->size)
3061 				return (0);
3062 		}
3063 	}
3064 
3065 	return (EFAULT);
3066 }
3067 
3068 static int
3069 fwmtype_to_hwmtype(int mtype)
3070 {
3071 
3072 	switch (mtype) {
3073 	case FW_MEMTYPE_EDC0:
3074 		return (MEM_EDC0);
3075 	case FW_MEMTYPE_EDC1:
3076 		return (MEM_EDC1);
3077 	case FW_MEMTYPE_EXTMEM:
3078 		return (MEM_MC0);
3079 	case FW_MEMTYPE_EXTMEM1:
3080 		return (MEM_MC1);
3081 	default:
3082 		panic("%s: cannot translate fw mtype %d.", __func__, mtype);
3083 	}
3084 }
3085 
3086 /*
3087  * Verify that the memory range specified by the memtype/offset/len pair is
3088  * valid and lies entirely within the memtype specified.  The global address of
3089  * the start of the range is returned in addr.
3090  */
3091 static int
3092 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len,
3093     uint32_t *addr)
3094 {
3095 	uint32_t em, addr_len, maddr;
3096 
3097 	/* Memory can only be accessed in naturally aligned 4 byte units */
3098 	if (off & 3 || len & 3 || len == 0)
3099 		return (EINVAL);
3100 
3101 	em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
3102 	switch (fwmtype_to_hwmtype(mtype)) {
3103 	case MEM_EDC0:
3104 		if (!(em & F_EDRAM0_ENABLE))
3105 			return (EINVAL);
3106 		addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
3107 		maddr = G_EDRAM0_BASE(addr_len) << 20;
3108 		break;
3109 	case MEM_EDC1:
3110 		if (!(em & F_EDRAM1_ENABLE))
3111 			return (EINVAL);
3112 		addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
3113 		maddr = G_EDRAM1_BASE(addr_len) << 20;
3114 		break;
3115 	case MEM_MC:
3116 		if (!(em & F_EXT_MEM_ENABLE))
3117 			return (EINVAL);
3118 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
3119 		maddr = G_EXT_MEM_BASE(addr_len) << 20;
3120 		break;
3121 	case MEM_MC1:
3122 		if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE))
3123 			return (EINVAL);
3124 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
3125 		maddr = G_EXT_MEM1_BASE(addr_len) << 20;
3126 		break;
3127 	default:
3128 		return (EINVAL);
3129 	}
3130 
3131 	*addr = maddr + off;	/* global address */
3132 	return (validate_mem_range(sc, *addr, len));
3133 }
3134 
3135 static int
3136 fixup_devlog_params(struct adapter *sc)
3137 {
3138 	struct devlog_params *dparams = &sc->params.devlog;
3139 	int rc;
3140 
3141 	rc = validate_mt_off_len(sc, dparams->memtype, dparams->start,
3142 	    dparams->size, &dparams->addr);
3143 
3144 	return (rc);
3145 }
3146 
3147 static void
3148 update_nirq(struct intrs_and_queues *iaq, int nports)
3149 {
3150 	int extra = T4_EXTRA_INTR;
3151 
3152 	iaq->nirq = extra;
3153 	iaq->nirq += nports * (iaq->nrxq + iaq->nofldrxq);
3154 	iaq->nirq += nports * (iaq->num_vis - 1) *
3155 	    max(iaq->nrxq_vi, iaq->nnmrxq_vi);
3156 	iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi;
3157 }
3158 
3159 /*
3160  * Adjust requirements to fit the number of interrupts available.
3161  */
3162 static void
3163 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype,
3164     int navail)
3165 {
3166 	int old_nirq;
3167 	const int nports = sc->params.nports;
3168 
3169 	MPASS(nports > 0);
3170 	MPASS(navail > 0);
3171 
3172 	bzero(iaq, sizeof(*iaq));
3173 	iaq->intr_type = itype;
3174 	iaq->num_vis = t4_num_vis;
3175 	iaq->ntxq = t4_ntxq;
3176 	iaq->ntxq_vi = t4_ntxq_vi;
3177 	iaq->nrxq = t4_nrxq;
3178 	iaq->nrxq_vi = t4_nrxq_vi;
3179 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
3180 	if (is_offload(sc) || is_ethoffload(sc)) {
3181 		iaq->nofldtxq = t4_nofldtxq;
3182 		iaq->nofldtxq_vi = t4_nofldtxq_vi;
3183 	}
3184 #endif
3185 #ifdef TCP_OFFLOAD
3186 	if (is_offload(sc)) {
3187 		iaq->nofldrxq = t4_nofldrxq;
3188 		iaq->nofldrxq_vi = t4_nofldrxq_vi;
3189 	}
3190 #endif
3191 #ifdef DEV_NETMAP
3192 	iaq->nnmtxq_vi = t4_nnmtxq_vi;
3193 	iaq->nnmrxq_vi = t4_nnmrxq_vi;
3194 #endif
3195 
3196 	update_nirq(iaq, nports);
3197 	if (iaq->nirq <= navail &&
3198 	    (itype != INTR_MSI || powerof2(iaq->nirq))) {
3199 		/*
3200 		 * This is the normal case -- there are enough interrupts for
3201 		 * everything.
3202 		 */
3203 		goto done;
3204 	}
3205 
3206 	/*
3207 	 * If extra VIs have been configured try reducing their count and see if
3208 	 * that works.
3209 	 */
3210 	while (iaq->num_vis > 1) {
3211 		iaq->num_vis--;
3212 		update_nirq(iaq, nports);
3213 		if (iaq->nirq <= navail &&
3214 		    (itype != INTR_MSI || powerof2(iaq->nirq))) {
3215 			device_printf(sc->dev, "virtual interfaces per port "
3216 			    "reduced to %d from %d.  nrxq=%u, nofldrxq=%u, "
3217 			    "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u.  "
3218 			    "itype %d, navail %u, nirq %d.\n",
3219 			    iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq,
3220 			    iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi,
3221 			    itype, navail, iaq->nirq);
3222 			goto done;
3223 		}
3224 	}
3225 
3226 	/*
3227 	 * Extra VIs will not be created.  Log a message if they were requested.
3228 	 */
3229 	MPASS(iaq->num_vis == 1);
3230 	iaq->ntxq_vi = iaq->nrxq_vi = 0;
3231 	iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0;
3232 	iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0;
3233 	if (iaq->num_vis != t4_num_vis) {
3234 		device_printf(sc->dev, "extra virtual interfaces disabled.  "
3235 		    "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, "
3236 		    "nnmrxq_vi=%u.  itype %d, navail %u, nirq %d.\n",
3237 		    iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi,
3238 		    iaq->nnmrxq_vi, itype, navail, iaq->nirq);
3239 	}
3240 
3241 	/*
3242 	 * Keep reducing the number of NIC rx queues to the next lower power of
3243 	 * 2 (for even RSS distribution) and halving the TOE rx queues and see
3244 	 * if that works.
3245 	 */
3246 	do {
3247 		if (iaq->nrxq > 1) {
3248 			do {
3249 				iaq->nrxq--;
3250 			} while (!powerof2(iaq->nrxq));
3251 		}
3252 		if (iaq->nofldrxq > 1)
3253 			iaq->nofldrxq >>= 1;
3254 
3255 		old_nirq = iaq->nirq;
3256 		update_nirq(iaq, nports);
3257 		if (iaq->nirq <= navail &&
3258 		    (itype != INTR_MSI || powerof2(iaq->nirq))) {
3259 			device_printf(sc->dev, "running with reduced number of "
3260 			    "rx queues because of shortage of interrupts.  "
3261 			    "nrxq=%u, nofldrxq=%u.  "
3262 			    "itype %d, navail %u, nirq %d.\n", iaq->nrxq,
3263 			    iaq->nofldrxq, itype, navail, iaq->nirq);
3264 			goto done;
3265 		}
3266 	} while (old_nirq != iaq->nirq);
3267 
3268 	/* One interrupt for everything.  Ugh. */
3269 	device_printf(sc->dev, "running with minimal number of queues.  "
3270 	    "itype %d, navail %u.\n", itype, navail);
3271 	iaq->nirq = 1;
3272 	MPASS(iaq->nrxq == 1);
3273 	iaq->ntxq = 1;
3274 	if (iaq->nofldrxq > 1)
3275 		iaq->nofldtxq = 1;
3276 done:
3277 	MPASS(iaq->num_vis > 0);
3278 	if (iaq->num_vis > 1) {
3279 		MPASS(iaq->nrxq_vi > 0);
3280 		MPASS(iaq->ntxq_vi > 0);
3281 	}
3282 	MPASS(iaq->nirq > 0);
3283 	MPASS(iaq->nrxq > 0);
3284 	MPASS(iaq->ntxq > 0);
3285 	if (itype == INTR_MSI) {
3286 		MPASS(powerof2(iaq->nirq));
3287 	}
3288 }
3289 
3290 static int
3291 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq)
3292 {
3293 	int rc, itype, navail, nalloc;
3294 
3295 	for (itype = INTR_MSIX; itype; itype >>= 1) {
3296 
3297 		if ((itype & t4_intr_types) == 0)
3298 			continue;	/* not allowed */
3299 
3300 		if (itype == INTR_MSIX)
3301 			navail = pci_msix_count(sc->dev);
3302 		else if (itype == INTR_MSI)
3303 			navail = pci_msi_count(sc->dev);
3304 		else
3305 			navail = 1;
3306 restart:
3307 		if (navail == 0)
3308 			continue;
3309 
3310 		calculate_iaq(sc, iaq, itype, navail);
3311 		nalloc = iaq->nirq;
3312 		rc = 0;
3313 		if (itype == INTR_MSIX)
3314 			rc = pci_alloc_msix(sc->dev, &nalloc);
3315 		else if (itype == INTR_MSI)
3316 			rc = pci_alloc_msi(sc->dev, &nalloc);
3317 
3318 		if (rc == 0 && nalloc > 0) {
3319 			if (nalloc == iaq->nirq)
3320 				return (0);
3321 
3322 			/*
3323 			 * Didn't get the number requested.  Use whatever number
3324 			 * the kernel is willing to allocate.
3325 			 */
3326 			device_printf(sc->dev, "fewer vectors than requested, "
3327 			    "type=%d, req=%d, rcvd=%d; will downshift req.\n",
3328 			    itype, iaq->nirq, nalloc);
3329 			pci_release_msi(sc->dev);
3330 			navail = nalloc;
3331 			goto restart;
3332 		}
3333 
3334 		device_printf(sc->dev,
3335 		    "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
3336 		    itype, rc, iaq->nirq, nalloc);
3337 	}
3338 
3339 	device_printf(sc->dev,
3340 	    "failed to find a usable interrupt type.  "
3341 	    "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
3342 	    pci_msix_count(sc->dev), pci_msi_count(sc->dev));
3343 
3344 	return (ENXIO);
3345 }
3346 
3347 #define FW_VERSION(chip) ( \
3348     V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \
3349     V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \
3350     V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \
3351     V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD))
3352 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf)
3353 
3354 /* Just enough of fw_hdr to cover all version info. */
3355 struct fw_h {
3356 	__u8	ver;
3357 	__u8	chip;
3358 	__be16	len512;
3359 	__be32	fw_ver;
3360 	__be32	tp_microcode_ver;
3361 	__u8	intfver_nic;
3362 	__u8	intfver_vnic;
3363 	__u8	intfver_ofld;
3364 	__u8	intfver_ri;
3365 	__u8	intfver_iscsipdu;
3366 	__u8	intfver_iscsi;
3367 	__u8	intfver_fcoepdu;
3368 	__u8	intfver_fcoe;
3369 };
3370 /* Spot check a couple of fields. */
3371 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver));
3372 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic));
3373 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe));
3374 
3375 struct fw_info {
3376 	uint8_t chip;
3377 	char *kld_name;
3378 	char *fw_mod_name;
3379 	struct fw_h fw_h;
3380 } fw_info[] = {
3381 	{
3382 		.chip = CHELSIO_T4,
3383 		.kld_name = "t4fw_cfg",
3384 		.fw_mod_name = "t4fw",
3385 		.fw_h = {
3386 			.chip = FW_HDR_CHIP_T4,
3387 			.fw_ver = htobe32(FW_VERSION(T4)),
3388 			.intfver_nic = FW_INTFVER(T4, NIC),
3389 			.intfver_vnic = FW_INTFVER(T4, VNIC),
3390 			.intfver_ofld = FW_INTFVER(T4, OFLD),
3391 			.intfver_ri = FW_INTFVER(T4, RI),
3392 			.intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU),
3393 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
3394 			.intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU),
3395 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
3396 		},
3397 	}, {
3398 		.chip = CHELSIO_T5,
3399 		.kld_name = "t5fw_cfg",
3400 		.fw_mod_name = "t5fw",
3401 		.fw_h = {
3402 			.chip = FW_HDR_CHIP_T5,
3403 			.fw_ver = htobe32(FW_VERSION(T5)),
3404 			.intfver_nic = FW_INTFVER(T5, NIC),
3405 			.intfver_vnic = FW_INTFVER(T5, VNIC),
3406 			.intfver_ofld = FW_INTFVER(T5, OFLD),
3407 			.intfver_ri = FW_INTFVER(T5, RI),
3408 			.intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU),
3409 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
3410 			.intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU),
3411 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
3412 		},
3413 	}, {
3414 		.chip = CHELSIO_T6,
3415 		.kld_name = "t6fw_cfg",
3416 		.fw_mod_name = "t6fw",
3417 		.fw_h = {
3418 			.chip = FW_HDR_CHIP_T6,
3419 			.fw_ver = htobe32(FW_VERSION(T6)),
3420 			.intfver_nic = FW_INTFVER(T6, NIC),
3421 			.intfver_vnic = FW_INTFVER(T6, VNIC),
3422 			.intfver_ofld = FW_INTFVER(T6, OFLD),
3423 			.intfver_ri = FW_INTFVER(T6, RI),
3424 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3425 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
3426 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3427 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
3428 		},
3429 	}
3430 };
3431 
3432 static struct fw_info *
3433 find_fw_info(int chip)
3434 {
3435 	int i;
3436 
3437 	for (i = 0; i < nitems(fw_info); i++) {
3438 		if (fw_info[i].chip == chip)
3439 			return (&fw_info[i]);
3440 	}
3441 	return (NULL);
3442 }
3443 
3444 /*
3445  * Is the given firmware API compatible with the one the driver was compiled
3446  * with?
3447  */
3448 static int
3449 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2)
3450 {
3451 
3452 	/* short circuit if it's the exact same firmware version */
3453 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3454 		return (1);
3455 
3456 	/*
3457 	 * XXX: Is this too conservative?  Perhaps I should limit this to the
3458 	 * features that are supported in the driver.
3459 	 */
3460 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3461 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3462 	    SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) &&
3463 	    SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe))
3464 		return (1);
3465 #undef SAME_INTF
3466 
3467 	return (0);
3468 }
3469 
3470 static int
3471 load_fw_module(struct adapter *sc, const struct firmware **dcfg,
3472     const struct firmware **fw)
3473 {
3474 	struct fw_info *fw_info;
3475 
3476 	*dcfg = NULL;
3477 	if (fw != NULL)
3478 		*fw = NULL;
3479 
3480 	fw_info = find_fw_info(chip_id(sc));
3481 	if (fw_info == NULL) {
3482 		device_printf(sc->dev,
3483 		    "unable to look up firmware information for chip %d.\n",
3484 		    chip_id(sc));
3485 		return (EINVAL);
3486 	}
3487 
3488 	*dcfg = firmware_get(fw_info->kld_name);
3489 	if (*dcfg != NULL) {
3490 		if (fw != NULL)
3491 			*fw = firmware_get(fw_info->fw_mod_name);
3492 		return (0);
3493 	}
3494 
3495 	return (ENOENT);
3496 }
3497 
3498 static void
3499 unload_fw_module(struct adapter *sc, const struct firmware *dcfg,
3500     const struct firmware *fw)
3501 {
3502 
3503 	if (fw != NULL)
3504 		firmware_put(fw, FIRMWARE_UNLOAD);
3505 	if (dcfg != NULL)
3506 		firmware_put(dcfg, FIRMWARE_UNLOAD);
3507 }
3508 
3509 /*
3510  * Return values:
3511  * 0 means no firmware install attempted.
3512  * ERESTART means a firmware install was attempted and was successful.
3513  * +ve errno means a firmware install was attempted but failed.
3514  */
3515 static int
3516 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw,
3517     const struct fw_h *drv_fw, const char *reason, int *already)
3518 {
3519 	const struct firmware *cfg, *fw;
3520 	const uint32_t c = be32toh(card_fw->fw_ver);
3521 	uint32_t d, k;
3522 	int rc, fw_install;
3523 	struct fw_h bundled_fw;
3524 	bool load_attempted;
3525 
3526 	cfg = fw = NULL;
3527 	load_attempted = false;
3528 	fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install;
3529 
3530 	memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw));
3531 	if (t4_fw_install < 0) {
3532 		rc = load_fw_module(sc, &cfg, &fw);
3533 		if (rc != 0 || fw == NULL) {
3534 			device_printf(sc->dev,
3535 			    "failed to load firmware module: %d. cfg %p, fw %p;"
3536 			    " will use compiled-in firmware version for"
3537 			    "hw.cxgbe.fw_install checks.\n",
3538 			    rc, cfg, fw);
3539 		} else {
3540 			memcpy(&bundled_fw, fw->data, sizeof(bundled_fw));
3541 		}
3542 		load_attempted = true;
3543 	}
3544 	d = be32toh(bundled_fw.fw_ver);
3545 
3546 	if (reason != NULL)
3547 		goto install;
3548 
3549 	if ((sc->flags & FW_OK) == 0) {
3550 
3551 		if (c == 0xffffffff) {
3552 			reason = "missing";
3553 			goto install;
3554 		}
3555 
3556 		rc = 0;
3557 		goto done;
3558 	}
3559 
3560 	if (!fw_compatible(card_fw, &bundled_fw)) {
3561 		reason = "incompatible or unusable";
3562 		goto install;
3563 	}
3564 
3565 	if (d > c) {
3566 		reason = "older than the version bundled with this driver";
3567 		goto install;
3568 	}
3569 
3570 	if (fw_install == 2 && d != c) {
3571 		reason = "different than the version bundled with this driver";
3572 		goto install;
3573 	}
3574 
3575 	/* No reason to do anything to the firmware already on the card. */
3576 	rc = 0;
3577 	goto done;
3578 
3579 install:
3580 	rc = 0;
3581 	if ((*already)++)
3582 		goto done;
3583 
3584 	if (fw_install == 0) {
3585 		device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
3586 		    "but the driver is prohibited from installing a firmware "
3587 		    "on the card.\n",
3588 		    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
3589 		    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
3590 
3591 		goto done;
3592 	}
3593 
3594 	/*
3595 	 * We'll attempt to install a firmware.  Load the module first (if it
3596 	 * hasn't been loaded already).
3597 	 */
3598 	if (!load_attempted) {
3599 		rc = load_fw_module(sc, &cfg, &fw);
3600 		if (rc != 0 || fw == NULL) {
3601 			device_printf(sc->dev,
3602 			    "failed to load firmware module: %d. cfg %p, fw %p\n",
3603 			    rc, cfg, fw);
3604 			/* carry on */
3605 		}
3606 	}
3607 	if (fw == NULL) {
3608 		device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
3609 		    "but the driver cannot take corrective action because it "
3610 		    "is unable to load the firmware module.\n",
3611 		    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
3612 		    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
3613 		rc = sc->flags & FW_OK ? 0 : ENOENT;
3614 		goto done;
3615 	}
3616 	k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver);
3617 	if (k != d) {
3618 		MPASS(t4_fw_install > 0);
3619 		device_printf(sc->dev,
3620 		    "firmware in KLD (%u.%u.%u.%u) is not what the driver was "
3621 		    "expecting (%u.%u.%u.%u) and will not be used.\n",
3622 		    G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
3623 		    G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k),
3624 		    G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
3625 		    G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
3626 		rc = sc->flags & FW_OK ? 0 : EINVAL;
3627 		goto done;
3628 	}
3629 
3630 	device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
3631 	    "installing firmware %u.%u.%u.%u on card.\n",
3632 	    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
3633 	    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason,
3634 	    G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
3635 	    G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
3636 
3637 	rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0);
3638 	if (rc != 0) {
3639 		device_printf(sc->dev, "failed to install firmware: %d\n", rc);
3640 	} else {
3641 		/* Installed successfully, update the cached header too. */
3642 		rc = ERESTART;
3643 		memcpy(card_fw, fw->data, sizeof(*card_fw));
3644 	}
3645 done:
3646 	unload_fw_module(sc, cfg, fw);
3647 
3648 	return (rc);
3649 }
3650 
3651 /*
3652  * Establish contact with the firmware and attempt to become the master driver.
3653  *
3654  * A firmware will be installed to the card if needed (if the driver is allowed
3655  * to do so).
3656  */
3657 static int
3658 contact_firmware(struct adapter *sc)
3659 {
3660 	int rc, already = 0;
3661 	enum dev_state state;
3662 	struct fw_info *fw_info;
3663 	struct fw_hdr *card_fw;		/* fw on the card */
3664 	const struct fw_h *drv_fw;
3665 
3666 	fw_info = find_fw_info(chip_id(sc));
3667 	if (fw_info == NULL) {
3668 		device_printf(sc->dev,
3669 		    "unable to look up firmware information for chip %d.\n",
3670 		    chip_id(sc));
3671 		return (EINVAL);
3672 	}
3673 	drv_fw = &fw_info->fw_h;
3674 
3675 	/* Read the header of the firmware on the card */
3676 	card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK);
3677 restart:
3678 	rc = -t4_get_fw_hdr(sc, card_fw);
3679 	if (rc != 0) {
3680 		device_printf(sc->dev,
3681 		    "unable to read firmware header from card's flash: %d\n",
3682 		    rc);
3683 		goto done;
3684 	}
3685 
3686 	rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL,
3687 	    &already);
3688 	if (rc == ERESTART)
3689 		goto restart;
3690 	if (rc != 0)
3691 		goto done;
3692 
3693 	rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state);
3694 	if (rc < 0 || state == DEV_STATE_ERR) {
3695 		rc = -rc;
3696 		device_printf(sc->dev,
3697 		    "failed to connect to the firmware: %d, %d.  "
3698 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
3699 #if 0
3700 		if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
3701 		    "not responding properly to HELLO", &already) == ERESTART)
3702 			goto restart;
3703 #endif
3704 		goto done;
3705 	}
3706 	MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT);
3707 	sc->flags |= FW_OK;	/* The firmware responded to the FW_HELLO. */
3708 
3709 	if (rc == sc->pf) {
3710 		sc->flags |= MASTER_PF;
3711 		rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
3712 		    NULL, &already);
3713 		if (rc == ERESTART)
3714 			rc = 0;
3715 		else if (rc != 0)
3716 			goto done;
3717 	} else if (state == DEV_STATE_UNINIT) {
3718 		/*
3719 		 * We didn't get to be the master so we definitely won't be
3720 		 * configuring the chip.  It's a bug if someone else hasn't
3721 		 * configured it already.
3722 		 */
3723 		device_printf(sc->dev, "couldn't be master(%d), "
3724 		    "device not already initialized either(%d).  "
3725 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
3726 		rc = EPROTO;
3727 		goto done;
3728 	} else {
3729 		/*
3730 		 * Some other PF is the master and has configured the chip.
3731 		 * This is allowed but untested.
3732 		 */
3733 		device_printf(sc->dev, "PF%d is master, device state %d.  "
3734 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
3735 		snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc);
3736 		sc->cfcsum = 0;
3737 		rc = 0;
3738 	}
3739 done:
3740 	if (rc != 0 && sc->flags & FW_OK) {
3741 		t4_fw_bye(sc, sc->mbox);
3742 		sc->flags &= ~FW_OK;
3743 	}
3744 	free(card_fw, M_CXGBE);
3745 	return (rc);
3746 }
3747 
3748 static int
3749 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file,
3750     uint32_t mtype, uint32_t moff)
3751 {
3752 	struct fw_info *fw_info;
3753 	const struct firmware *dcfg, *rcfg = NULL;
3754 	const uint32_t *cfdata;
3755 	uint32_t cflen, addr;
3756 	int rc;
3757 
3758 	load_fw_module(sc, &dcfg, NULL);
3759 
3760 	/* Card specific interpretation of "default". */
3761 	if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
3762 		if (pci_get_device(sc->dev) == 0x440a)
3763 			snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF);
3764 		if (is_fpga(sc))
3765 			snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF);
3766 	}
3767 
3768 	if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
3769 		if (dcfg == NULL) {
3770 			device_printf(sc->dev,
3771 			    "KLD with default config is not available.\n");
3772 			rc = ENOENT;
3773 			goto done;
3774 		}
3775 		cfdata = dcfg->data;
3776 		cflen = dcfg->datasize & ~3;
3777 	} else {
3778 		char s[32];
3779 
3780 		fw_info = find_fw_info(chip_id(sc));
3781 		if (fw_info == NULL) {
3782 			device_printf(sc->dev,
3783 			    "unable to look up firmware information for chip %d.\n",
3784 			    chip_id(sc));
3785 			rc = EINVAL;
3786 			goto done;
3787 		}
3788 		snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file);
3789 
3790 		rcfg = firmware_get(s);
3791 		if (rcfg == NULL) {
3792 			device_printf(sc->dev,
3793 			    "unable to load module \"%s\" for configuration "
3794 			    "profile \"%s\".\n", s, cfg_file);
3795 			rc = ENOENT;
3796 			goto done;
3797 		}
3798 		cfdata = rcfg->data;
3799 		cflen = rcfg->datasize & ~3;
3800 	}
3801 
3802 	if (cflen > FLASH_CFG_MAX_SIZE) {
3803 		device_printf(sc->dev,
3804 		    "config file too long (%d, max allowed is %d).\n",
3805 		    cflen, FLASH_CFG_MAX_SIZE);
3806 		rc = EINVAL;
3807 		goto done;
3808 	}
3809 
3810 	rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr);
3811 	if (rc != 0) {
3812 		device_printf(sc->dev,
3813 		    "%s: addr (%d/0x%x) or len %d is not valid: %d.\n",
3814 		    __func__, mtype, moff, cflen, rc);
3815 		rc = EINVAL;
3816 		goto done;
3817 	}
3818 	write_via_memwin(sc, 2, addr, cfdata, cflen);
3819 done:
3820 	if (rcfg != NULL)
3821 		firmware_put(rcfg, FIRMWARE_UNLOAD);
3822 	unload_fw_module(sc, dcfg, NULL);
3823 	return (rc);
3824 }
3825 
3826 struct caps_allowed {
3827 	uint16_t nbmcaps;
3828 	uint16_t linkcaps;
3829 	uint16_t switchcaps;
3830 	uint16_t niccaps;
3831 	uint16_t toecaps;
3832 	uint16_t rdmacaps;
3833 	uint16_t cryptocaps;
3834 	uint16_t iscsicaps;
3835 	uint16_t fcoecaps;
3836 };
3837 
3838 #define FW_PARAM_DEV(param) \
3839 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
3840 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
3841 #define FW_PARAM_PFVF(param) \
3842 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
3843 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
3844 
3845 /*
3846  * Provide a configuration profile to the firmware and have it initialize the
3847  * chip accordingly.  This may involve uploading a configuration file to the
3848  * card.
3849  */
3850 static int
3851 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file,
3852     const struct caps_allowed *caps_allowed)
3853 {
3854 	int rc;
3855 	struct fw_caps_config_cmd caps;
3856 	uint32_t mtype, moff, finicsum, cfcsum, param, val;
3857 
3858 	rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST);
3859 	if (rc != 0) {
3860 		device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
3861 		return (rc);
3862 	}
3863 
3864 	bzero(&caps, sizeof(caps));
3865 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3866 	    F_FW_CMD_REQUEST | F_FW_CMD_READ);
3867 	if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) {
3868 		mtype = 0;
3869 		moff = 0;
3870 		caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
3871 	} else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) {
3872 		mtype = FW_MEMTYPE_FLASH;
3873 		moff = t4_flash_cfg_addr(sc);
3874 		caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
3875 		    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
3876 		    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
3877 		    FW_LEN16(caps));
3878 	} else {
3879 		/*
3880 		 * Ask the firmware where it wants us to upload the config file.
3881 		 */
3882 		param = FW_PARAM_DEV(CF);
3883 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3884 		if (rc != 0) {
3885 			/* No support for config file?  Shouldn't happen. */
3886 			device_printf(sc->dev,
3887 			    "failed to query config file location: %d.\n", rc);
3888 			goto done;
3889 		}
3890 		mtype = G_FW_PARAMS_PARAM_Y(val);
3891 		moff = G_FW_PARAMS_PARAM_Z(val) << 16;
3892 		caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
3893 		    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
3894 		    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
3895 		    FW_LEN16(caps));
3896 
3897 		rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff);
3898 		if (rc != 0) {
3899 			device_printf(sc->dev,
3900 			    "failed to upload config file to card: %d.\n", rc);
3901 			goto done;
3902 		}
3903 	}
3904 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
3905 	if (rc != 0) {
3906 		device_printf(sc->dev, "failed to pre-process config file: %d "
3907 		    "(mtype %d, moff 0x%x).\n", rc, mtype, moff);
3908 		goto done;
3909 	}
3910 
3911 	finicsum = be32toh(caps.finicsum);
3912 	cfcsum = be32toh(caps.cfcsum);	/* actual */
3913 	if (finicsum != cfcsum) {
3914 		device_printf(sc->dev,
3915 		    "WARNING: config file checksum mismatch: %08x %08x\n",
3916 		    finicsum, cfcsum);
3917 	}
3918 	sc->cfcsum = cfcsum;
3919 	snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file);
3920 
3921 	/*
3922 	 * Let the firmware know what features will (not) be used so it can tune
3923 	 * things accordingly.
3924 	 */
3925 #define LIMIT_CAPS(x) do { \
3926 	caps.x##caps &= htobe16(caps_allowed->x##caps); \
3927 } while (0)
3928 	LIMIT_CAPS(nbm);
3929 	LIMIT_CAPS(link);
3930 	LIMIT_CAPS(switch);
3931 	LIMIT_CAPS(nic);
3932 	LIMIT_CAPS(toe);
3933 	LIMIT_CAPS(rdma);
3934 	LIMIT_CAPS(crypto);
3935 	LIMIT_CAPS(iscsi);
3936 	LIMIT_CAPS(fcoe);
3937 #undef LIMIT_CAPS
3938 	if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
3939 		/*
3940 		 * TOE and hashfilters are mutually exclusive.  It is a config
3941 		 * file or firmware bug if both are reported as available.  Try
3942 		 * to cope with the situation in non-debug builds by disabling
3943 		 * TOE.
3944 		 */
3945 		MPASS(caps.toecaps == 0);
3946 
3947 		caps.toecaps = 0;
3948 		caps.rdmacaps = 0;
3949 		caps.iscsicaps = 0;
3950 	}
3951 
3952 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
3953 	    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
3954 	caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
3955 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL);
3956 	if (rc != 0) {
3957 		device_printf(sc->dev,
3958 		    "failed to process config file: %d.\n", rc);
3959 		goto done;
3960 	}
3961 
3962 	t4_tweak_chip_settings(sc);
3963 	set_params__pre_init(sc);
3964 
3965 	/* get basic stuff going */
3966 	rc = -t4_fw_initialize(sc, sc->mbox);
3967 	if (rc != 0) {
3968 		device_printf(sc->dev, "fw_initialize failed: %d.\n", rc);
3969 		goto done;
3970 	}
3971 done:
3972 	return (rc);
3973 }
3974 
3975 /*
3976  * Partition chip resources for use between various PFs, VFs, etc.
3977  */
3978 static int
3979 partition_resources(struct adapter *sc)
3980 {
3981 	char cfg_file[sizeof(t4_cfg_file)];
3982 	struct caps_allowed caps_allowed;
3983 	int rc;
3984 	bool fallback;
3985 
3986 	/* Only the master driver gets to configure the chip resources. */
3987 	MPASS(sc->flags & MASTER_PF);
3988 
3989 #define COPY_CAPS(x) do { \
3990 	caps_allowed.x##caps = t4_##x##caps_allowed; \
3991 } while (0)
3992 	bzero(&caps_allowed, sizeof(caps_allowed));
3993 	COPY_CAPS(nbm);
3994 	COPY_CAPS(link);
3995 	COPY_CAPS(switch);
3996 	COPY_CAPS(nic);
3997 	COPY_CAPS(toe);
3998 	COPY_CAPS(rdma);
3999 	COPY_CAPS(crypto);
4000 	COPY_CAPS(iscsi);
4001 	COPY_CAPS(fcoe);
4002 	fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true;
4003 	snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file);
4004 retry:
4005 	rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed);
4006 	if (rc != 0 && fallback) {
4007 		device_printf(sc->dev,
4008 		    "failed (%d) to configure card with \"%s\" profile, "
4009 		    "will fall back to a basic configuration and retry.\n",
4010 		    rc, cfg_file);
4011 		snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF);
4012 		bzero(&caps_allowed, sizeof(caps_allowed));
4013 		COPY_CAPS(switch);
4014 		caps_allowed.niccaps = FW_CAPS_CONFIG_NIC;
4015 		fallback = false;
4016 		goto retry;
4017 	}
4018 #undef COPY_CAPS
4019 	return (rc);
4020 }
4021 
4022 /*
4023  * Retrieve parameters that are needed (or nice to have) very early.
4024  */
4025 static int
4026 get_params__pre_init(struct adapter *sc)
4027 {
4028 	int rc;
4029 	uint32_t param[2], val[2];
4030 
4031 	t4_get_version_info(sc);
4032 
4033 	snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
4034 	    G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
4035 	    G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
4036 	    G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
4037 	    G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
4038 
4039 	snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u",
4040 	    G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers),
4041 	    G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers),
4042 	    G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers),
4043 	    G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers));
4044 
4045 	snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
4046 	    G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
4047 	    G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
4048 	    G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
4049 	    G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
4050 
4051 	snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u",
4052 	    G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers),
4053 	    G_FW_HDR_FW_VER_MINOR(sc->params.er_vers),
4054 	    G_FW_HDR_FW_VER_MICRO(sc->params.er_vers),
4055 	    G_FW_HDR_FW_VER_BUILD(sc->params.er_vers));
4056 
4057 	param[0] = FW_PARAM_DEV(PORTVEC);
4058 	param[1] = FW_PARAM_DEV(CCLK);
4059 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
4060 	if (rc != 0) {
4061 		device_printf(sc->dev,
4062 		    "failed to query parameters (pre_init): %d.\n", rc);
4063 		return (rc);
4064 	}
4065 
4066 	sc->params.portvec = val[0];
4067 	sc->params.nports = bitcount32(val[0]);
4068 	sc->params.vpd.cclk = val[1];
4069 
4070 	/* Read device log parameters. */
4071 	rc = -t4_init_devlog_params(sc, 1);
4072 	if (rc == 0)
4073 		fixup_devlog_params(sc);
4074 	else {
4075 		device_printf(sc->dev,
4076 		    "failed to get devlog parameters: %d.\n", rc);
4077 		rc = 0;	/* devlog isn't critical for device operation */
4078 	}
4079 
4080 	return (rc);
4081 }
4082 
4083 /*
4084  * Any params that need to be set before FW_INITIALIZE.
4085  */
4086 static int
4087 set_params__pre_init(struct adapter *sc)
4088 {
4089 	int rc = 0;
4090 	uint32_t param, val;
4091 
4092 	if (chip_id(sc) >= CHELSIO_T6) {
4093 		param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
4094 		val = 1;
4095 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
4096 		/* firmwares < 1.20.1.0 do not have this param. */
4097 		if (rc == FW_EINVAL && sc->params.fw_vers <
4098 		    (V_FW_HDR_FW_VER_MAJOR(1) | V_FW_HDR_FW_VER_MINOR(20) |
4099 		    V_FW_HDR_FW_VER_MICRO(1) | V_FW_HDR_FW_VER_BUILD(0))) {
4100 			rc = 0;
4101 		}
4102 		if (rc != 0) {
4103 			device_printf(sc->dev,
4104 			    "failed to enable high priority filters :%d.\n",
4105 			    rc);
4106 		}
4107 	}
4108 
4109 	/* Enable opaque VIIDs with firmwares that support it. */
4110 	param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
4111 	val = 1;
4112 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
4113 	if (rc == 0 && val == 1)
4114 		sc->params.viid_smt_extn_support = true;
4115 	else
4116 		sc->params.viid_smt_extn_support = false;
4117 
4118 	return (rc);
4119 }
4120 
4121 /*
4122  * Retrieve various parameters that are of interest to the driver.  The device
4123  * has been initialized by the firmware at this point.
4124  */
4125 static int
4126 get_params__post_init(struct adapter *sc)
4127 {
4128 	int rc;
4129 	uint32_t param[7], val[7];
4130 	struct fw_caps_config_cmd caps;
4131 
4132 	param[0] = FW_PARAM_PFVF(IQFLINT_START);
4133 	param[1] = FW_PARAM_PFVF(EQ_START);
4134 	param[2] = FW_PARAM_PFVF(FILTER_START);
4135 	param[3] = FW_PARAM_PFVF(FILTER_END);
4136 	param[4] = FW_PARAM_PFVF(L2T_START);
4137 	param[5] = FW_PARAM_PFVF(L2T_END);
4138 	param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
4139 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
4140 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
4141 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val);
4142 	if (rc != 0) {
4143 		device_printf(sc->dev,
4144 		    "failed to query parameters (post_init): %d.\n", rc);
4145 		return (rc);
4146 	}
4147 
4148 	sc->sge.iq_start = val[0];
4149 	sc->sge.eq_start = val[1];
4150 	if ((int)val[3] > (int)val[2]) {
4151 		sc->tids.ftid_base = val[2];
4152 		sc->tids.ftid_end = val[3];
4153 		sc->tids.nftids = val[3] - val[2] + 1;
4154 	}
4155 	sc->vres.l2t.start = val[4];
4156 	sc->vres.l2t.size = val[5] - val[4] + 1;
4157 	KASSERT(sc->vres.l2t.size <= L2T_SIZE,
4158 	    ("%s: L2 table size (%u) larger than expected (%u)",
4159 	    __func__, sc->vres.l2t.size, L2T_SIZE));
4160 	sc->params.core_vdd = val[6];
4161 
4162 	if (chip_id(sc) >= CHELSIO_T6) {
4163 
4164 		sc->tids.tid_base = t4_read_reg(sc,
4165 		    A_LE_DB_ACTIVE_TABLE_START_INDEX);
4166 
4167 		param[0] = FW_PARAM_PFVF(HPFILTER_START);
4168 		param[1] = FW_PARAM_PFVF(HPFILTER_END);
4169 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
4170 		if (rc != 0) {
4171 			device_printf(sc->dev,
4172 			   "failed to query hpfilter parameters: %d.\n", rc);
4173 			return (rc);
4174 		}
4175 		if ((int)val[1] > (int)val[0]) {
4176 			sc->tids.hpftid_base = val[0];
4177 			sc->tids.hpftid_end = val[1];
4178 			sc->tids.nhpftids = val[1] - val[0] + 1;
4179 
4180 			/*
4181 			 * These should go off if the layout changes and the
4182 			 * driver needs to catch up.
4183 			 */
4184 			MPASS(sc->tids.hpftid_base == 0);
4185 			MPASS(sc->tids.tid_base == sc->tids.nhpftids);
4186 		}
4187 	}
4188 
4189 	/*
4190 	 * MPSBGMAP is queried separately because only recent firmwares support
4191 	 * it as a parameter and we don't want the compound query above to fail
4192 	 * on older firmwares.
4193 	 */
4194 	param[0] = FW_PARAM_DEV(MPSBGMAP);
4195 	val[0] = 0;
4196 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
4197 	if (rc == 0)
4198 		sc->params.mps_bg_map = val[0];
4199 	else
4200 		sc->params.mps_bg_map = 0;
4201 
4202 	/*
4203 	 * Determine whether the firmware supports the filter2 work request.
4204 	 * This is queried separately for the same reason as MPSBGMAP above.
4205 	 */
4206 	param[0] = FW_PARAM_DEV(FILTER2_WR);
4207 	val[0] = 0;
4208 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
4209 	if (rc == 0)
4210 		sc->params.filter2_wr_support = val[0] != 0;
4211 	else
4212 		sc->params.filter2_wr_support = 0;
4213 
4214 	/*
4215 	 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL.
4216 	 * This is queried separately for the same reason as other params above.
4217 	 */
4218 	param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
4219 	val[0] = 0;
4220 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
4221 	if (rc == 0)
4222 		sc->params.ulptx_memwrite_dsgl = val[0] != 0;
4223 	else
4224 		sc->params.ulptx_memwrite_dsgl = false;
4225 
4226 	/* get capabilites */
4227 	bzero(&caps, sizeof(caps));
4228 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4229 	    F_FW_CMD_REQUEST | F_FW_CMD_READ);
4230 	caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
4231 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
4232 	if (rc != 0) {
4233 		device_printf(sc->dev,
4234 		    "failed to get card capabilities: %d.\n", rc);
4235 		return (rc);
4236 	}
4237 
4238 #define READ_CAPS(x) do { \
4239 	sc->x = htobe16(caps.x); \
4240 } while (0)
4241 	READ_CAPS(nbmcaps);
4242 	READ_CAPS(linkcaps);
4243 	READ_CAPS(switchcaps);
4244 	READ_CAPS(niccaps);
4245 	READ_CAPS(toecaps);
4246 	READ_CAPS(rdmacaps);
4247 	READ_CAPS(cryptocaps);
4248 	READ_CAPS(iscsicaps);
4249 	READ_CAPS(fcoecaps);
4250 
4251 	if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) {
4252 		MPASS(chip_id(sc) > CHELSIO_T4);
4253 		MPASS(sc->toecaps == 0);
4254 		sc->toecaps = 0;
4255 
4256 		param[0] = FW_PARAM_DEV(NTID);
4257 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
4258 		if (rc != 0) {
4259 			device_printf(sc->dev,
4260 			    "failed to query HASHFILTER parameters: %d.\n", rc);
4261 			return (rc);
4262 		}
4263 		sc->tids.ntids = val[0];
4264 		if (sc->params.fw_vers <
4265 		    (V_FW_HDR_FW_VER_MAJOR(1) | V_FW_HDR_FW_VER_MINOR(20) |
4266 		    V_FW_HDR_FW_VER_MICRO(5) | V_FW_HDR_FW_VER_BUILD(0))) {
4267 			MPASS(sc->tids.ntids >= sc->tids.nhpftids);
4268 			sc->tids.ntids -= sc->tids.nhpftids;
4269 		}
4270 		sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
4271 		sc->params.hash_filter = 1;
4272 	}
4273 	if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) {
4274 		param[0] = FW_PARAM_PFVF(ETHOFLD_START);
4275 		param[1] = FW_PARAM_PFVF(ETHOFLD_END);
4276 		param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4277 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val);
4278 		if (rc != 0) {
4279 			device_printf(sc->dev,
4280 			    "failed to query NIC parameters: %d.\n", rc);
4281 			return (rc);
4282 		}
4283 		if ((int)val[1] > (int)val[0]) {
4284 			sc->tids.etid_base = val[0];
4285 			sc->tids.etid_end = val[1];
4286 			sc->tids.netids = val[1] - val[0] + 1;
4287 			sc->params.eo_wr_cred = val[2];
4288 			sc->params.ethoffload = 1;
4289 		}
4290 	}
4291 	if (sc->toecaps) {
4292 		/* query offload-related parameters */
4293 		param[0] = FW_PARAM_DEV(NTID);
4294 		param[1] = FW_PARAM_PFVF(SERVER_START);
4295 		param[2] = FW_PARAM_PFVF(SERVER_END);
4296 		param[3] = FW_PARAM_PFVF(TDDP_START);
4297 		param[4] = FW_PARAM_PFVF(TDDP_END);
4298 		param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4299 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
4300 		if (rc != 0) {
4301 			device_printf(sc->dev,
4302 			    "failed to query TOE parameters: %d.\n", rc);
4303 			return (rc);
4304 		}
4305 		sc->tids.ntids = val[0];
4306 		if (sc->params.fw_vers <
4307 		    (V_FW_HDR_FW_VER_MAJOR(1) | V_FW_HDR_FW_VER_MINOR(20) |
4308 		    V_FW_HDR_FW_VER_MICRO(5) | V_FW_HDR_FW_VER_BUILD(0))) {
4309 			MPASS(sc->tids.ntids >= sc->tids.nhpftids);
4310 			sc->tids.ntids -= sc->tids.nhpftids;
4311 		}
4312 		sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
4313 		if ((int)val[2] > (int)val[1]) {
4314 			sc->tids.stid_base = val[1];
4315 			sc->tids.nstids = val[2] - val[1] + 1;
4316 		}
4317 		sc->vres.ddp.start = val[3];
4318 		sc->vres.ddp.size = val[4] - val[3] + 1;
4319 		sc->params.ofldq_wr_cred = val[5];
4320 		sc->params.offload = 1;
4321 	} else {
4322 		/*
4323 		 * The firmware attempts memfree TOE configuration for -SO cards
4324 		 * and will report toecaps=0 if it runs out of resources (this
4325 		 * depends on the config file).  It may not report 0 for other
4326 		 * capabilities dependent on the TOE in this case.  Set them to
4327 		 * 0 here so that the driver doesn't bother tracking resources
4328 		 * that will never be used.
4329 		 */
4330 		sc->iscsicaps = 0;
4331 		sc->rdmacaps = 0;
4332 	}
4333 	if (sc->rdmacaps) {
4334 		param[0] = FW_PARAM_PFVF(STAG_START);
4335 		param[1] = FW_PARAM_PFVF(STAG_END);
4336 		param[2] = FW_PARAM_PFVF(RQ_START);
4337 		param[3] = FW_PARAM_PFVF(RQ_END);
4338 		param[4] = FW_PARAM_PFVF(PBL_START);
4339 		param[5] = FW_PARAM_PFVF(PBL_END);
4340 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
4341 		if (rc != 0) {
4342 			device_printf(sc->dev,
4343 			    "failed to query RDMA parameters(1): %d.\n", rc);
4344 			return (rc);
4345 		}
4346 		sc->vres.stag.start = val[0];
4347 		sc->vres.stag.size = val[1] - val[0] + 1;
4348 		sc->vres.rq.start = val[2];
4349 		sc->vres.rq.size = val[3] - val[2] + 1;
4350 		sc->vres.pbl.start = val[4];
4351 		sc->vres.pbl.size = val[5] - val[4] + 1;
4352 
4353 		param[0] = FW_PARAM_PFVF(SQRQ_START);
4354 		param[1] = FW_PARAM_PFVF(SQRQ_END);
4355 		param[2] = FW_PARAM_PFVF(CQ_START);
4356 		param[3] = FW_PARAM_PFVF(CQ_END);
4357 		param[4] = FW_PARAM_PFVF(OCQ_START);
4358 		param[5] = FW_PARAM_PFVF(OCQ_END);
4359 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
4360 		if (rc != 0) {
4361 			device_printf(sc->dev,
4362 			    "failed to query RDMA parameters(2): %d.\n", rc);
4363 			return (rc);
4364 		}
4365 		sc->vres.qp.start = val[0];
4366 		sc->vres.qp.size = val[1] - val[0] + 1;
4367 		sc->vres.cq.start = val[2];
4368 		sc->vres.cq.size = val[3] - val[2] + 1;
4369 		sc->vres.ocq.start = val[4];
4370 		sc->vres.ocq.size = val[5] - val[4] + 1;
4371 
4372 		param[0] = FW_PARAM_PFVF(SRQ_START);
4373 		param[1] = FW_PARAM_PFVF(SRQ_END);
4374 		param[2] = FW_PARAM_DEV(MAXORDIRD_QP);
4375 		param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4376 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val);
4377 		if (rc != 0) {
4378 			device_printf(sc->dev,
4379 			    "failed to query RDMA parameters(3): %d.\n", rc);
4380 			return (rc);
4381 		}
4382 		sc->vres.srq.start = val[0];
4383 		sc->vres.srq.size = val[1] - val[0] + 1;
4384 		sc->params.max_ordird_qp = val[2];
4385 		sc->params.max_ird_adapter = val[3];
4386 	}
4387 	if (sc->iscsicaps) {
4388 		param[0] = FW_PARAM_PFVF(ISCSI_START);
4389 		param[1] = FW_PARAM_PFVF(ISCSI_END);
4390 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
4391 		if (rc != 0) {
4392 			device_printf(sc->dev,
4393 			    "failed to query iSCSI parameters: %d.\n", rc);
4394 			return (rc);
4395 		}
4396 		sc->vres.iscsi.start = val[0];
4397 		sc->vres.iscsi.size = val[1] - val[0] + 1;
4398 	}
4399 	if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
4400 		param[0] = FW_PARAM_PFVF(TLS_START);
4401 		param[1] = FW_PARAM_PFVF(TLS_END);
4402 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
4403 		if (rc != 0) {
4404 			device_printf(sc->dev,
4405 			    "failed to query TLS parameters: %d.\n", rc);
4406 			return (rc);
4407 		}
4408 		sc->vres.key.start = val[0];
4409 		sc->vres.key.size = val[1] - val[0] + 1;
4410 	}
4411 
4412 	t4_init_sge_params(sc);
4413 
4414 	/*
4415 	 * We've got the params we wanted to query via the firmware.  Now grab
4416 	 * some others directly from the chip.
4417 	 */
4418 	rc = t4_read_chip_settings(sc);
4419 
4420 	return (rc);
4421 }
4422 
4423 static int
4424 set_params__post_init(struct adapter *sc)
4425 {
4426 	uint32_t param, val;
4427 #ifdef TCP_OFFLOAD
4428 	int i, v, shift;
4429 #endif
4430 
4431 	/* ask for encapsulated CPLs */
4432 	param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4433 	val = 1;
4434 	(void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
4435 
4436 	/* Enable 32b port caps if the firmware supports it. */
4437 	param = FW_PARAM_PFVF(PORT_CAPS32);
4438 	val = 1;
4439 	if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val) == 0)
4440 		sc->params.port_caps32 = 1;
4441 
4442 	/* Let filter + maskhash steer to a part of the VI's RSS region. */
4443 	val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1);
4444 	t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER),
4445 	    V_MASKFILTER(val - 1));
4446 
4447 #ifdef TCP_OFFLOAD
4448 	/*
4449 	 * Override the TOE timers with user provided tunables.  This is not the
4450 	 * recommended way to change the timers (the firmware config file is) so
4451 	 * these tunables are not documented.
4452 	 *
4453 	 * All the timer tunables are in microseconds.
4454 	 */
4455 	if (t4_toe_keepalive_idle != 0) {
4456 		v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle);
4457 		v &= M_KEEPALIVEIDLE;
4458 		t4_set_reg_field(sc, A_TP_KEEP_IDLE,
4459 		    V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v));
4460 	}
4461 	if (t4_toe_keepalive_interval != 0) {
4462 		v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval);
4463 		v &= M_KEEPALIVEINTVL;
4464 		t4_set_reg_field(sc, A_TP_KEEP_INTVL,
4465 		    V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v));
4466 	}
4467 	if (t4_toe_keepalive_count != 0) {
4468 		v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2;
4469 		t4_set_reg_field(sc, A_TP_SHIFT_CNT,
4470 		    V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) |
4471 		    V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2),
4472 		    V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v));
4473 	}
4474 	if (t4_toe_rexmt_min != 0) {
4475 		v = us_to_tcp_ticks(sc, t4_toe_rexmt_min);
4476 		v &= M_RXTMIN;
4477 		t4_set_reg_field(sc, A_TP_RXT_MIN,
4478 		    V_RXTMIN(M_RXTMIN), V_RXTMIN(v));
4479 	}
4480 	if (t4_toe_rexmt_max != 0) {
4481 		v = us_to_tcp_ticks(sc, t4_toe_rexmt_max);
4482 		v &= M_RXTMAX;
4483 		t4_set_reg_field(sc, A_TP_RXT_MAX,
4484 		    V_RXTMAX(M_RXTMAX), V_RXTMAX(v));
4485 	}
4486 	if (t4_toe_rexmt_count != 0) {
4487 		v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2;
4488 		t4_set_reg_field(sc, A_TP_SHIFT_CNT,
4489 		    V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) |
4490 		    V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2),
4491 		    V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v));
4492 	}
4493 	for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) {
4494 		if (t4_toe_rexmt_backoff[i] != -1) {
4495 			v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0;
4496 			shift = (i & 3) << 3;
4497 			t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3),
4498 			    M_TIMERBACKOFFINDEX0 << shift, v << shift);
4499 		}
4500 	}
4501 #endif
4502 	return (0);
4503 }
4504 
4505 #undef FW_PARAM_PFVF
4506 #undef FW_PARAM_DEV
4507 
4508 static void
4509 t4_set_desc(struct adapter *sc)
4510 {
4511 	char buf[128];
4512 	struct adapter_params *p = &sc->params;
4513 
4514 	snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id);
4515 
4516 	device_set_desc_copy(sc->dev, buf);
4517 }
4518 
4519 static inline void
4520 ifmedia_add4(struct ifmedia *ifm, int m)
4521 {
4522 
4523 	ifmedia_add(ifm, m, 0, NULL);
4524 	ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL);
4525 	ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL);
4526 	ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL);
4527 }
4528 
4529 /*
4530  * This is the selected media, which is not quite the same as the active media.
4531  * The media line in ifconfig is "media: Ethernet selected (active)" if selected
4532  * and active are not the same, and "media: Ethernet selected" otherwise.
4533  */
4534 static void
4535 set_current_media(struct port_info *pi)
4536 {
4537 	struct link_config *lc;
4538 	struct ifmedia *ifm;
4539 	int mword;
4540 	u_int speed;
4541 
4542 	PORT_LOCK_ASSERT_OWNED(pi);
4543 
4544 	/* Leave current media alone if it's already set to IFM_NONE. */
4545 	ifm = &pi->media;
4546 	if (ifm->ifm_cur != NULL &&
4547 	    IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE)
4548 		return;
4549 
4550 	lc = &pi->link_cfg;
4551 	if (lc->requested_aneg != AUTONEG_DISABLE &&
4552 	    lc->supported & FW_PORT_CAP32_ANEG) {
4553 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
4554 		return;
4555 	}
4556 	mword = IFM_ETHER | IFM_FDX;
4557 	if (lc->requested_fc & PAUSE_TX)
4558 		mword |= IFM_ETH_TXPAUSE;
4559 	if (lc->requested_fc & PAUSE_RX)
4560 		mword |= IFM_ETH_RXPAUSE;
4561 	if (lc->requested_speed == 0)
4562 		speed = port_top_speed(pi) * 1000;	/* Gbps -> Mbps */
4563 	else
4564 		speed = lc->requested_speed;
4565 	mword |= port_mword(pi, speed_to_fwcap(speed));
4566 	ifmedia_set(ifm, mword);
4567 }
4568 
4569 /*
4570  * Returns true if the ifmedia list for the port cannot change.
4571  */
4572 static bool
4573 fixed_ifmedia(struct port_info *pi)
4574 {
4575 
4576 	return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
4577 	    pi->port_type == FW_PORT_TYPE_BT_XFI ||
4578 	    pi->port_type == FW_PORT_TYPE_BT_XAUI ||
4579 	    pi->port_type == FW_PORT_TYPE_KX4 ||
4580 	    pi->port_type == FW_PORT_TYPE_KX ||
4581 	    pi->port_type == FW_PORT_TYPE_KR ||
4582 	    pi->port_type == FW_PORT_TYPE_BP_AP ||
4583 	    pi->port_type == FW_PORT_TYPE_BP4_AP ||
4584 	    pi->port_type == FW_PORT_TYPE_BP40_BA ||
4585 	    pi->port_type == FW_PORT_TYPE_KR4_100G ||
4586 	    pi->port_type == FW_PORT_TYPE_KR_SFP28 ||
4587 	    pi->port_type == FW_PORT_TYPE_KR_XLAUI);
4588 }
4589 
4590 static void
4591 build_medialist(struct port_info *pi)
4592 {
4593 	uint32_t ss, speed;
4594 	int unknown, mword, bit;
4595 	struct link_config *lc;
4596 	struct ifmedia *ifm;
4597 
4598 	PORT_LOCK_ASSERT_OWNED(pi);
4599 
4600 	if (pi->flags & FIXED_IFMEDIA)
4601 		return;
4602 
4603 	/*
4604 	 * Rebuild the ifmedia list.
4605 	 */
4606 	ifm = &pi->media;
4607 	ifmedia_removeall(ifm);
4608 	lc = &pi->link_cfg;
4609 	ss = G_FW_PORT_CAP32_SPEED(lc->supported); /* Supported Speeds */
4610 	if (__predict_false(ss == 0)) {	/* not supposed to happen. */
4611 		MPASS(ss != 0);
4612 no_media:
4613 		MPASS(LIST_EMPTY(&ifm->ifm_list));
4614 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
4615 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
4616 		return;
4617 	}
4618 
4619 	unknown = 0;
4620 	for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) {
4621 		speed = 1 << bit;
4622 		MPASS(speed & M_FW_PORT_CAP32_SPEED);
4623 		if (ss & speed) {
4624 			mword = port_mword(pi, speed);
4625 			if (mword == IFM_NONE) {
4626 				goto no_media;
4627 			} else if (mword == IFM_UNKNOWN)
4628 				unknown++;
4629 			else
4630 				ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword);
4631 		}
4632 	}
4633 	if (unknown > 0) /* Add one unknown for all unknown media types. */
4634 		ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN);
4635 	if (lc->supported & FW_PORT_CAP32_ANEG)
4636 		ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
4637 
4638 	set_current_media(pi);
4639 }
4640 
4641 /*
4642  * Initialize the requested fields in the link config based on driver tunables.
4643  */
4644 static void
4645 init_link_config(struct port_info *pi)
4646 {
4647 	struct link_config *lc = &pi->link_cfg;
4648 
4649 	PORT_LOCK_ASSERT_OWNED(pi);
4650 
4651 	lc->requested_speed = 0;
4652 
4653 	if (t4_autoneg == 0)
4654 		lc->requested_aneg = AUTONEG_DISABLE;
4655 	else if (t4_autoneg == 1)
4656 		lc->requested_aneg = AUTONEG_ENABLE;
4657 	else
4658 		lc->requested_aneg = AUTONEG_AUTO;
4659 
4660 	lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX |
4661 	    PAUSE_AUTONEG);
4662 
4663 	if (t4_fec == -1 || t4_fec & FEC_AUTO)
4664 		lc->requested_fec = FEC_AUTO;
4665 	else {
4666 		lc->requested_fec = FEC_NONE;
4667 		if (t4_fec & FEC_RS)
4668 			lc->requested_fec |= FEC_RS;
4669 		if (t4_fec & FEC_BASER_RS)
4670 			lc->requested_fec |= FEC_BASER_RS;
4671 	}
4672 }
4673 
4674 /*
4675  * Makes sure that all requested settings comply with what's supported by the
4676  * port.  Returns the number of settings that were invalid and had to be fixed.
4677  */
4678 static int
4679 fixup_link_config(struct port_info *pi)
4680 {
4681 	int n = 0;
4682 	struct link_config *lc = &pi->link_cfg;
4683 	uint32_t fwspeed;
4684 
4685 	PORT_LOCK_ASSERT_OWNED(pi);
4686 
4687 	/* Speed (when not autonegotiating) */
4688 	if (lc->requested_speed != 0) {
4689 		fwspeed = speed_to_fwcap(lc->requested_speed);
4690 		if ((fwspeed & lc->supported) == 0) {
4691 			n++;
4692 			lc->requested_speed = 0;
4693 		}
4694 	}
4695 
4696 	/* Link autonegotiation */
4697 	MPASS(lc->requested_aneg == AUTONEG_ENABLE ||
4698 	    lc->requested_aneg == AUTONEG_DISABLE ||
4699 	    lc->requested_aneg == AUTONEG_AUTO);
4700 	if (lc->requested_aneg == AUTONEG_ENABLE &&
4701 	    !(lc->supported & FW_PORT_CAP32_ANEG)) {
4702 		n++;
4703 		lc->requested_aneg = AUTONEG_AUTO;
4704 	}
4705 
4706 	/* Flow control */
4707 	MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0);
4708 	if (lc->requested_fc & PAUSE_TX &&
4709 	    !(lc->supported & FW_PORT_CAP32_FC_TX)) {
4710 		n++;
4711 		lc->requested_fc &= ~PAUSE_TX;
4712 	}
4713 	if (lc->requested_fc & PAUSE_RX &&
4714 	    !(lc->supported & FW_PORT_CAP32_FC_RX)) {
4715 		n++;
4716 		lc->requested_fc &= ~PAUSE_RX;
4717 	}
4718 	if (!(lc->requested_fc & PAUSE_AUTONEG) &&
4719 	    !(lc->supported & FW_PORT_CAP32_FORCE_PAUSE)) {
4720 		n++;
4721 		lc->requested_fc |= PAUSE_AUTONEG;
4722 	}
4723 
4724 	/* FEC */
4725 	if ((lc->requested_fec & FEC_RS &&
4726 	    !(lc->supported & FW_PORT_CAP32_FEC_RS)) ||
4727 	    (lc->requested_fec & FEC_BASER_RS &&
4728 	    !(lc->supported & FW_PORT_CAP32_FEC_BASER_RS))) {
4729 		n++;
4730 		lc->requested_fec = FEC_AUTO;
4731 	}
4732 
4733 	return (n);
4734 }
4735 
4736 /*
4737  * Apply the requested L1 settings, which are expected to be valid, to the
4738  * hardware.
4739  */
4740 static int
4741 apply_link_config(struct port_info *pi)
4742 {
4743 	struct adapter *sc = pi->adapter;
4744 	struct link_config *lc = &pi->link_cfg;
4745 	int rc;
4746 
4747 #ifdef INVARIANTS
4748 	ASSERT_SYNCHRONIZED_OP(sc);
4749 	PORT_LOCK_ASSERT_OWNED(pi);
4750 
4751 	if (lc->requested_aneg == AUTONEG_ENABLE)
4752 		MPASS(lc->supported & FW_PORT_CAP32_ANEG);
4753 	if (!(lc->requested_fc & PAUSE_AUTONEG))
4754 		MPASS(lc->supported & FW_PORT_CAP32_FORCE_PAUSE);
4755 	if (lc->requested_fc & PAUSE_TX)
4756 		MPASS(lc->supported & FW_PORT_CAP32_FC_TX);
4757 	if (lc->requested_fc & PAUSE_RX)
4758 		MPASS(lc->supported & FW_PORT_CAP32_FC_RX);
4759 	if (lc->requested_fec & FEC_RS)
4760 		MPASS(lc->supported & FW_PORT_CAP32_FEC_RS);
4761 	if (lc->requested_fec & FEC_BASER_RS)
4762 		MPASS(lc->supported & FW_PORT_CAP32_FEC_BASER_RS);
4763 #endif
4764 	rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
4765 	if (rc != 0) {
4766 		/* Don't complain if the VF driver gets back an EPERM. */
4767 		if (!(sc->flags & IS_VF) || rc != FW_EPERM)
4768 			device_printf(pi->dev, "l1cfg failed: %d\n", rc);
4769 	} else {
4770 		/*
4771 		 * An L1_CFG will almost always result in a link-change event if
4772 		 * the link is up, and the driver will refresh the actual
4773 		 * fec/fc/etc. when the notification is processed.  If the link
4774 		 * is down then the actual settings are meaningless.
4775 		 *
4776 		 * This takes care of the case where a change in the L1 settings
4777 		 * may not result in a notification.
4778 		 */
4779 		if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG))
4780 			lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX);
4781 	}
4782 	return (rc);
4783 }
4784 
4785 #define FW_MAC_EXACT_CHUNK	7
4786 
4787 /*
4788  * Program the port's XGMAC based on parameters in ifnet.  The caller also
4789  * indicates which parameters should be programmed (the rest are left alone).
4790  */
4791 int
4792 update_mac_settings(struct ifnet *ifp, int flags)
4793 {
4794 	int rc = 0;
4795 	struct vi_info *vi = ifp->if_softc;
4796 	struct port_info *pi = vi->pi;
4797 	struct adapter *sc = pi->adapter;
4798 	int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
4799 
4800 	ASSERT_SYNCHRONIZED_OP(sc);
4801 	KASSERT(flags, ("%s: not told what to update.", __func__));
4802 
4803 	if (flags & XGMAC_MTU)
4804 		mtu = ifp->if_mtu;
4805 
4806 	if (flags & XGMAC_PROMISC)
4807 		promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0;
4808 
4809 	if (flags & XGMAC_ALLMULTI)
4810 		allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0;
4811 
4812 	if (flags & XGMAC_VLANEX)
4813 		vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0;
4814 
4815 	if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) {
4816 		rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc,
4817 		    allmulti, 1, vlanex, false);
4818 		if (rc) {
4819 			if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags,
4820 			    rc);
4821 			return (rc);
4822 		}
4823 	}
4824 
4825 	if (flags & XGMAC_UCADDR) {
4826 		uint8_t ucaddr[ETHER_ADDR_LEN];
4827 
4828 		bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr));
4829 		rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt,
4830 		    ucaddr, true, &vi->smt_idx);
4831 		if (rc < 0) {
4832 			rc = -rc;
4833 			if_printf(ifp, "change_mac failed: %d\n", rc);
4834 			return (rc);
4835 		} else {
4836 			vi->xact_addr_filt = rc;
4837 			rc = 0;
4838 		}
4839 	}
4840 
4841 	if (flags & XGMAC_MCADDRS) {
4842 		const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK];
4843 		int del = 1;
4844 		uint64_t hash = 0;
4845 		struct ifmultiaddr *ifma;
4846 		int i = 0, j;
4847 
4848 		if_maddr_rlock(ifp);
4849 		CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
4850 			if (ifma->ifma_addr->sa_family != AF_LINK)
4851 				continue;
4852 			mcaddr[i] =
4853 			    LLADDR((struct sockaddr_dl *)ifma->ifma_addr);
4854 			MPASS(ETHER_IS_MULTICAST(mcaddr[i]));
4855 			i++;
4856 
4857 			if (i == FW_MAC_EXACT_CHUNK) {
4858 				rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid,
4859 				    del, i, mcaddr, NULL, &hash, 0);
4860 				if (rc < 0) {
4861 					rc = -rc;
4862 					for (j = 0; j < i; j++) {
4863 						if_printf(ifp,
4864 						    "failed to add mc address"
4865 						    " %02x:%02x:%02x:"
4866 						    "%02x:%02x:%02x rc=%d\n",
4867 						    mcaddr[j][0], mcaddr[j][1],
4868 						    mcaddr[j][2], mcaddr[j][3],
4869 						    mcaddr[j][4], mcaddr[j][5],
4870 						    rc);
4871 					}
4872 					goto mcfail;
4873 				}
4874 				del = 0;
4875 				i = 0;
4876 			}
4877 		}
4878 		if (i > 0) {
4879 			rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, del, i,
4880 			    mcaddr, NULL, &hash, 0);
4881 			if (rc < 0) {
4882 				rc = -rc;
4883 				for (j = 0; j < i; j++) {
4884 					if_printf(ifp,
4885 					    "failed to add mc address"
4886 					    " %02x:%02x:%02x:"
4887 					    "%02x:%02x:%02x rc=%d\n",
4888 					    mcaddr[j][0], mcaddr[j][1],
4889 					    mcaddr[j][2], mcaddr[j][3],
4890 					    mcaddr[j][4], mcaddr[j][5],
4891 					    rc);
4892 				}
4893 				goto mcfail;
4894 			}
4895 		}
4896 
4897 		rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, hash, 0);
4898 		if (rc != 0)
4899 			if_printf(ifp, "failed to set mc address hash: %d", rc);
4900 mcfail:
4901 		if_maddr_runlock(ifp);
4902 	}
4903 
4904 	return (rc);
4905 }
4906 
4907 /*
4908  * {begin|end}_synchronized_op must be called from the same thread.
4909  */
4910 int
4911 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags,
4912     char *wmesg)
4913 {
4914 	int rc, pri;
4915 
4916 #ifdef WITNESS
4917 	/* the caller thinks it's ok to sleep, but is it really? */
4918 	if (flags & SLEEP_OK)
4919 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
4920 		    "begin_synchronized_op");
4921 #endif
4922 
4923 	if (INTR_OK)
4924 		pri = PCATCH;
4925 	else
4926 		pri = 0;
4927 
4928 	ADAPTER_LOCK(sc);
4929 	for (;;) {
4930 
4931 		if (vi && IS_DOOMED(vi)) {
4932 			rc = ENXIO;
4933 			goto done;
4934 		}
4935 
4936 		if (!IS_BUSY(sc)) {
4937 			rc = 0;
4938 			break;
4939 		}
4940 
4941 		if (!(flags & SLEEP_OK)) {
4942 			rc = EBUSY;
4943 			goto done;
4944 		}
4945 
4946 		if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) {
4947 			rc = EINTR;
4948 			goto done;
4949 		}
4950 	}
4951 
4952 	KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
4953 	SET_BUSY(sc);
4954 #ifdef INVARIANTS
4955 	sc->last_op = wmesg;
4956 	sc->last_op_thr = curthread;
4957 	sc->last_op_flags = flags;
4958 #endif
4959 
4960 done:
4961 	if (!(flags & HOLD_LOCK) || rc)
4962 		ADAPTER_UNLOCK(sc);
4963 
4964 	return (rc);
4965 }
4966 
4967 /*
4968  * Tell if_ioctl and if_init that the VI is going away.  This is
4969  * special variant of begin_synchronized_op and must be paired with a
4970  * call to end_synchronized_op.
4971  */
4972 void
4973 doom_vi(struct adapter *sc, struct vi_info *vi)
4974 {
4975 
4976 	ADAPTER_LOCK(sc);
4977 	SET_DOOMED(vi);
4978 	wakeup(&sc->flags);
4979 	while (IS_BUSY(sc))
4980 		mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
4981 	SET_BUSY(sc);
4982 #ifdef INVARIANTS
4983 	sc->last_op = "t4detach";
4984 	sc->last_op_thr = curthread;
4985 	sc->last_op_flags = 0;
4986 #endif
4987 	ADAPTER_UNLOCK(sc);
4988 }
4989 
4990 /*
4991  * {begin|end}_synchronized_op must be called from the same thread.
4992  */
4993 void
4994 end_synchronized_op(struct adapter *sc, int flags)
4995 {
4996 
4997 	if (flags & LOCK_HELD)
4998 		ADAPTER_LOCK_ASSERT_OWNED(sc);
4999 	else
5000 		ADAPTER_LOCK(sc);
5001 
5002 	KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
5003 	CLR_BUSY(sc);
5004 	wakeup(&sc->flags);
5005 	ADAPTER_UNLOCK(sc);
5006 }
5007 
5008 static int
5009 cxgbe_init_synchronized(struct vi_info *vi)
5010 {
5011 	struct port_info *pi = vi->pi;
5012 	struct adapter *sc = pi->adapter;
5013 	struct ifnet *ifp = vi->ifp;
5014 	int rc = 0, i;
5015 	struct sge_txq *txq;
5016 
5017 	ASSERT_SYNCHRONIZED_OP(sc);
5018 
5019 	if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5020 		return (0);	/* already running */
5021 
5022 	if (!(sc->flags & FULL_INIT_DONE) &&
5023 	    ((rc = adapter_full_init(sc)) != 0))
5024 		return (rc);	/* error message displayed already */
5025 
5026 	if (!(vi->flags & VI_INIT_DONE) &&
5027 	    ((rc = vi_full_init(vi)) != 0))
5028 		return (rc); /* error message displayed already */
5029 
5030 	rc = update_mac_settings(ifp, XGMAC_ALL);
5031 	if (rc)
5032 		goto done;	/* error message displayed already */
5033 
5034 	PORT_LOCK(pi);
5035 	if (pi->up_vis == 0) {
5036 		t4_update_port_info(pi);
5037 		fixup_link_config(pi);
5038 		build_medialist(pi);
5039 		apply_link_config(pi);
5040 	}
5041 
5042 	rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true);
5043 	if (rc != 0) {
5044 		if_printf(ifp, "enable_vi failed: %d\n", rc);
5045 		PORT_UNLOCK(pi);
5046 		goto done;
5047 	}
5048 
5049 	/*
5050 	 * Can't fail from this point onwards.  Review cxgbe_uninit_synchronized
5051 	 * if this changes.
5052 	 */
5053 
5054 	for_each_txq(vi, i, txq) {
5055 		TXQ_LOCK(txq);
5056 		txq->eq.flags |= EQ_ENABLED;
5057 		TXQ_UNLOCK(txq);
5058 	}
5059 
5060 	/*
5061 	 * The first iq of the first port to come up is used for tracing.
5062 	 */
5063 	if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
5064 		sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
5065 		t4_write_reg(sc, is_t4(sc) ?  A_MPS_TRC_RSS_CONTROL :
5066 		    A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) |
5067 		    V_QUEUENUMBER(sc->traceq));
5068 		pi->flags |= HAS_TRACEQ;
5069 	}
5070 
5071 	/* all ok */
5072 	pi->up_vis++;
5073 	ifp->if_drv_flags |= IFF_DRV_RUNNING;
5074 
5075 	if (pi->nvi > 1 || sc->flags & IS_VF)
5076 		callout_reset(&vi->tick, hz, vi_tick, vi);
5077 	else
5078 		callout_reset(&pi->tick, hz, cxgbe_tick, pi);
5079 	if (pi->link_cfg.link_ok)
5080 		t4_os_link_changed(pi);
5081 	PORT_UNLOCK(pi);
5082 done:
5083 	if (rc != 0)
5084 		cxgbe_uninit_synchronized(vi);
5085 
5086 	return (rc);
5087 }
5088 
5089 /*
5090  * Idempotent.
5091  */
5092 static int
5093 cxgbe_uninit_synchronized(struct vi_info *vi)
5094 {
5095 	struct port_info *pi = vi->pi;
5096 	struct adapter *sc = pi->adapter;
5097 	struct ifnet *ifp = vi->ifp;
5098 	int rc, i;
5099 	struct sge_txq *txq;
5100 
5101 	ASSERT_SYNCHRONIZED_OP(sc);
5102 
5103 	if (!(vi->flags & VI_INIT_DONE)) {
5104 		if (__predict_false(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
5105 			KASSERT(0, ("uninited VI is running"));
5106 			if_printf(ifp, "uninited VI with running ifnet.  "
5107 			    "vi->flags 0x%016lx, if_flags 0x%08x, "
5108 			    "if_drv_flags 0x%08x\n", vi->flags, ifp->if_flags,
5109 			    ifp->if_drv_flags);
5110 		}
5111 		return (0);
5112 	}
5113 
5114 	/*
5115 	 * Disable the VI so that all its data in either direction is discarded
5116 	 * by the MPS.  Leave everything else (the queues, interrupts, and 1Hz
5117 	 * tick) intact as the TP can deliver negative advice or data that it's
5118 	 * holding in its RAM (for an offloaded connection) even after the VI is
5119 	 * disabled.
5120 	 */
5121 	rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false);
5122 	if (rc) {
5123 		if_printf(ifp, "disable_vi failed: %d\n", rc);
5124 		return (rc);
5125 	}
5126 
5127 	for_each_txq(vi, i, txq) {
5128 		TXQ_LOCK(txq);
5129 		txq->eq.flags &= ~EQ_ENABLED;
5130 		TXQ_UNLOCK(txq);
5131 	}
5132 
5133 	PORT_LOCK(pi);
5134 	if (pi->nvi > 1 || sc->flags & IS_VF)
5135 		callout_stop(&vi->tick);
5136 	else
5137 		callout_stop(&pi->tick);
5138 	if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
5139 		PORT_UNLOCK(pi);
5140 		return (0);
5141 	}
5142 	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
5143 	pi->up_vis--;
5144 	if (pi->up_vis > 0) {
5145 		PORT_UNLOCK(pi);
5146 		return (0);
5147 	}
5148 
5149 	pi->link_cfg.link_ok = false;
5150 	pi->link_cfg.speed = 0;
5151 	pi->link_cfg.link_down_rc = 255;
5152 	t4_os_link_changed(pi);
5153 	PORT_UNLOCK(pi);
5154 
5155 	return (0);
5156 }
5157 
5158 /*
5159  * It is ok for this function to fail midway and return right away.  t4_detach
5160  * will walk the entire sc->irq list and clean up whatever is valid.
5161  */
5162 int
5163 t4_setup_intr_handlers(struct adapter *sc)
5164 {
5165 	int rc, rid, p, q, v;
5166 	char s[8];
5167 	struct irq *irq;
5168 	struct port_info *pi;
5169 	struct vi_info *vi;
5170 	struct sge *sge = &sc->sge;
5171 	struct sge_rxq *rxq;
5172 #ifdef TCP_OFFLOAD
5173 	struct sge_ofld_rxq *ofld_rxq;
5174 #endif
5175 #ifdef DEV_NETMAP
5176 	struct sge_nm_rxq *nm_rxq;
5177 #endif
5178 #ifdef RSS
5179 	int nbuckets = rss_getnumbuckets();
5180 #endif
5181 
5182 	/*
5183 	 * Setup interrupts.
5184 	 */
5185 	irq = &sc->irq[0];
5186 	rid = sc->intr_type == INTR_INTX ? 0 : 1;
5187 	if (forwarding_intr_to_fwq(sc))
5188 		return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"));
5189 
5190 	/* Multiple interrupts. */
5191 	if (sc->flags & IS_VF)
5192 		KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports,
5193 		    ("%s: too few intr.", __func__));
5194 	else
5195 		KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports,
5196 		    ("%s: too few intr.", __func__));
5197 
5198 	/* The first one is always error intr on PFs */
5199 	if (!(sc->flags & IS_VF)) {
5200 		rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err");
5201 		if (rc != 0)
5202 			return (rc);
5203 		irq++;
5204 		rid++;
5205 	}
5206 
5207 	/* The second one is always the firmware event queue (first on VFs) */
5208 	rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt");
5209 	if (rc != 0)
5210 		return (rc);
5211 	irq++;
5212 	rid++;
5213 
5214 	for_each_port(sc, p) {
5215 		pi = sc->port[p];
5216 		for_each_vi(pi, v, vi) {
5217 			vi->first_intr = rid - 1;
5218 
5219 			if (vi->nnmrxq > 0) {
5220 				int n = max(vi->nrxq, vi->nnmrxq);
5221 
5222 				rxq = &sge->rxq[vi->first_rxq];
5223 #ifdef DEV_NETMAP
5224 				nm_rxq = &sge->nm_rxq[vi->first_nm_rxq];
5225 #endif
5226 				for (q = 0; q < n; q++) {
5227 					snprintf(s, sizeof(s), "%x%c%x", p,
5228 					    'a' + v, q);
5229 					if (q < vi->nrxq)
5230 						irq->rxq = rxq++;
5231 #ifdef DEV_NETMAP
5232 					if (q < vi->nnmrxq)
5233 						irq->nm_rxq = nm_rxq++;
5234 
5235 					if (irq->nm_rxq != NULL &&
5236 					    irq->rxq == NULL) {
5237 						/* Netmap rx only */
5238 						rc = t4_alloc_irq(sc, irq, rid,
5239 						    t4_nm_intr, irq->nm_rxq, s);
5240 					}
5241 					if (irq->nm_rxq != NULL &&
5242 					    irq->rxq != NULL) {
5243 						/* NIC and Netmap rx */
5244 						rc = t4_alloc_irq(sc, irq, rid,
5245 						    t4_vi_intr, irq, s);
5246 					}
5247 #endif
5248 					if (irq->rxq != NULL &&
5249 					    irq->nm_rxq == NULL) {
5250 						/* NIC rx only */
5251 						rc = t4_alloc_irq(sc, irq, rid,
5252 						    t4_intr, irq->rxq, s);
5253 					}
5254 					if (rc != 0)
5255 						return (rc);
5256 #ifdef RSS
5257 					if (q < vi->nrxq) {
5258 						bus_bind_intr(sc->dev, irq->res,
5259 						    rss_getcpu(q % nbuckets));
5260 					}
5261 #endif
5262 					irq++;
5263 					rid++;
5264 					vi->nintr++;
5265 				}
5266 			} else {
5267 				for_each_rxq(vi, q, rxq) {
5268 					snprintf(s, sizeof(s), "%x%c%x", p,
5269 					    'a' + v, q);
5270 					rc = t4_alloc_irq(sc, irq, rid,
5271 					    t4_intr, rxq, s);
5272 					if (rc != 0)
5273 						return (rc);
5274 #ifdef RSS
5275 					bus_bind_intr(sc->dev, irq->res,
5276 					    rss_getcpu(q % nbuckets));
5277 #endif
5278 					irq++;
5279 					rid++;
5280 					vi->nintr++;
5281 				}
5282 			}
5283 #ifdef TCP_OFFLOAD
5284 			for_each_ofld_rxq(vi, q, ofld_rxq) {
5285 				snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q);
5286 				rc = t4_alloc_irq(sc, irq, rid, t4_intr,
5287 				    ofld_rxq, s);
5288 				if (rc != 0)
5289 					return (rc);
5290 				irq++;
5291 				rid++;
5292 				vi->nintr++;
5293 			}
5294 #endif
5295 		}
5296 	}
5297 	MPASS(irq == &sc->irq[sc->intr_count]);
5298 
5299 	return (0);
5300 }
5301 
5302 int
5303 adapter_full_init(struct adapter *sc)
5304 {
5305 	int rc, i;
5306 #ifdef RSS
5307 	uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
5308 	uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
5309 #endif
5310 
5311 	ASSERT_SYNCHRONIZED_OP(sc);
5312 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
5313 	KASSERT((sc->flags & FULL_INIT_DONE) == 0,
5314 	    ("%s: FULL_INIT_DONE already", __func__));
5315 
5316 	/*
5317 	 * queues that belong to the adapter (not any particular port).
5318 	 */
5319 	rc = t4_setup_adapter_queues(sc);
5320 	if (rc != 0)
5321 		goto done;
5322 
5323 	for (i = 0; i < nitems(sc->tq); i++) {
5324 		sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT,
5325 		    taskqueue_thread_enqueue, &sc->tq[i]);
5326 		if (sc->tq[i] == NULL) {
5327 			device_printf(sc->dev,
5328 			    "failed to allocate task queue %d\n", i);
5329 			rc = ENOMEM;
5330 			goto done;
5331 		}
5332 		taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d",
5333 		    device_get_nameunit(sc->dev), i);
5334 	}
5335 #ifdef RSS
5336 	MPASS(RSS_KEYSIZE == 40);
5337 	rss_getkey((void *)&raw_rss_key[0]);
5338 	for (i = 0; i < nitems(rss_key); i++) {
5339 		rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]);
5340 	}
5341 	t4_write_rss_key(sc, &rss_key[0], -1, 1);
5342 #endif
5343 
5344 	if (!(sc->flags & IS_VF))
5345 		t4_intr_enable(sc);
5346 	sc->flags |= FULL_INIT_DONE;
5347 done:
5348 	if (rc != 0)
5349 		adapter_full_uninit(sc);
5350 
5351 	return (rc);
5352 }
5353 
5354 int
5355 adapter_full_uninit(struct adapter *sc)
5356 {
5357 	int i;
5358 
5359 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
5360 
5361 	t4_teardown_adapter_queues(sc);
5362 
5363 	for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) {
5364 		taskqueue_free(sc->tq[i]);
5365 		sc->tq[i] = NULL;
5366 	}
5367 
5368 	sc->flags &= ~FULL_INIT_DONE;
5369 
5370 	return (0);
5371 }
5372 
5373 #ifdef RSS
5374 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \
5375     RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \
5376     RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \
5377     RSS_HASHTYPE_RSS_UDP_IPV6)
5378 
5379 /* Translates kernel hash types to hardware. */
5380 static int
5381 hashconfig_to_hashen(int hashconfig)
5382 {
5383 	int hashen = 0;
5384 
5385 	if (hashconfig & RSS_HASHTYPE_RSS_IPV4)
5386 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
5387 	if (hashconfig & RSS_HASHTYPE_RSS_IPV6)
5388 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
5389 	if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) {
5390 		hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
5391 		    F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
5392 	}
5393 	if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) {
5394 		hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
5395 		    F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
5396 	}
5397 	if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4)
5398 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
5399 	if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6)
5400 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
5401 
5402 	return (hashen);
5403 }
5404 
5405 /* Translates hardware hash types to kernel. */
5406 static int
5407 hashen_to_hashconfig(int hashen)
5408 {
5409 	int hashconfig = 0;
5410 
5411 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) {
5412 		/*
5413 		 * If UDP hashing was enabled it must have been enabled for
5414 		 * either IPv4 or IPv6 (inclusive or).  Enabling UDP without
5415 		 * enabling any 4-tuple hash is nonsense configuration.
5416 		 */
5417 		MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
5418 		    F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN));
5419 
5420 		if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
5421 			hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4;
5422 		if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
5423 			hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6;
5424 	}
5425 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
5426 		hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4;
5427 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
5428 		hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6;
5429 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
5430 		hashconfig |= RSS_HASHTYPE_RSS_IPV4;
5431 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
5432 		hashconfig |= RSS_HASHTYPE_RSS_IPV6;
5433 
5434 	return (hashconfig);
5435 }
5436 #endif
5437 
5438 int
5439 vi_full_init(struct vi_info *vi)
5440 {
5441 	struct adapter *sc = vi->pi->adapter;
5442 	struct ifnet *ifp = vi->ifp;
5443 	uint16_t *rss;
5444 	struct sge_rxq *rxq;
5445 	int rc, i, j;
5446 #ifdef RSS
5447 	int nbuckets = rss_getnumbuckets();
5448 	int hashconfig = rss_gethashconfig();
5449 	int extra;
5450 #endif
5451 
5452 	ASSERT_SYNCHRONIZED_OP(sc);
5453 	KASSERT((vi->flags & VI_INIT_DONE) == 0,
5454 	    ("%s: VI_INIT_DONE already", __func__));
5455 
5456 	sysctl_ctx_init(&vi->ctx);
5457 	vi->flags |= VI_SYSCTL_CTX;
5458 
5459 	/*
5460 	 * Allocate tx/rx/fl queues for this VI.
5461 	 */
5462 	rc = t4_setup_vi_queues(vi);
5463 	if (rc != 0)
5464 		goto done;	/* error message displayed already */
5465 
5466 	/*
5467 	 * Setup RSS for this VI.  Save a copy of the RSS table for later use.
5468 	 */
5469 	if (vi->nrxq > vi->rss_size) {
5470 		if_printf(ifp, "nrxq (%d) > hw RSS table size (%d); "
5471 		    "some queues will never receive traffic.\n", vi->nrxq,
5472 		    vi->rss_size);
5473 	} else if (vi->rss_size % vi->nrxq) {
5474 		if_printf(ifp, "nrxq (%d), hw RSS table size (%d); "
5475 		    "expect uneven traffic distribution.\n", vi->nrxq,
5476 		    vi->rss_size);
5477 	}
5478 #ifdef RSS
5479 	if (vi->nrxq != nbuckets) {
5480 		if_printf(ifp, "nrxq (%d) != kernel RSS buckets (%d);"
5481 		    "performance will be impacted.\n", vi->nrxq, nbuckets);
5482 	}
5483 #endif
5484 	rss = malloc(vi->rss_size * sizeof (*rss), M_CXGBE, M_ZERO | M_WAITOK);
5485 	for (i = 0; i < vi->rss_size;) {
5486 #ifdef RSS
5487 		j = rss_get_indirection_to_bucket(i);
5488 		j %= vi->nrxq;
5489 		rxq = &sc->sge.rxq[vi->first_rxq + j];
5490 		rss[i++] = rxq->iq.abs_id;
5491 #else
5492 		for_each_rxq(vi, j, rxq) {
5493 			rss[i++] = rxq->iq.abs_id;
5494 			if (i == vi->rss_size)
5495 				break;
5496 		}
5497 #endif
5498 	}
5499 
5500 	rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, rss,
5501 	    vi->rss_size);
5502 	if (rc != 0) {
5503 		free(rss, M_CXGBE);
5504 		if_printf(ifp, "rss_config failed: %d\n", rc);
5505 		goto done;
5506 	}
5507 
5508 #ifdef RSS
5509 	vi->hashen = hashconfig_to_hashen(hashconfig);
5510 
5511 	/*
5512 	 * We may have had to enable some hashes even though the global config
5513 	 * wants them disabled.  This is a potential problem that must be
5514 	 * reported to the user.
5515 	 */
5516 	extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig;
5517 
5518 	/*
5519 	 * If we consider only the supported hash types, then the enabled hashes
5520 	 * are a superset of the requested hashes.  In other words, there cannot
5521 	 * be any supported hash that was requested but not enabled, but there
5522 	 * can be hashes that were not requested but had to be enabled.
5523 	 */
5524 	extra &= SUPPORTED_RSS_HASHTYPES;
5525 	MPASS((extra & hashconfig) == 0);
5526 
5527 	if (extra) {
5528 		if_printf(ifp,
5529 		    "global RSS config (0x%x) cannot be accommodated.\n",
5530 		    hashconfig);
5531 	}
5532 	if (extra & RSS_HASHTYPE_RSS_IPV4)
5533 		if_printf(ifp, "IPv4 2-tuple hashing forced on.\n");
5534 	if (extra & RSS_HASHTYPE_RSS_TCP_IPV4)
5535 		if_printf(ifp, "TCP/IPv4 4-tuple hashing forced on.\n");
5536 	if (extra & RSS_HASHTYPE_RSS_IPV6)
5537 		if_printf(ifp, "IPv6 2-tuple hashing forced on.\n");
5538 	if (extra & RSS_HASHTYPE_RSS_TCP_IPV6)
5539 		if_printf(ifp, "TCP/IPv6 4-tuple hashing forced on.\n");
5540 	if (extra & RSS_HASHTYPE_RSS_UDP_IPV4)
5541 		if_printf(ifp, "UDP/IPv4 4-tuple hashing forced on.\n");
5542 	if (extra & RSS_HASHTYPE_RSS_UDP_IPV6)
5543 		if_printf(ifp, "UDP/IPv6 4-tuple hashing forced on.\n");
5544 #else
5545 	vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
5546 	    F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
5547 	    F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
5548 	    F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN;
5549 #endif
5550 	rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, rss[0], 0, 0);
5551 	if (rc != 0) {
5552 		free(rss, M_CXGBE);
5553 		if_printf(ifp, "rss hash/defaultq config failed: %d\n", rc);
5554 		goto done;
5555 	}
5556 
5557 	vi->rss = rss;
5558 	vi->flags |= VI_INIT_DONE;
5559 done:
5560 	if (rc != 0)
5561 		vi_full_uninit(vi);
5562 
5563 	return (rc);
5564 }
5565 
5566 /*
5567  * Idempotent.
5568  */
5569 int
5570 vi_full_uninit(struct vi_info *vi)
5571 {
5572 	struct port_info *pi = vi->pi;
5573 	struct adapter *sc = pi->adapter;
5574 	int i;
5575 	struct sge_rxq *rxq;
5576 	struct sge_txq *txq;
5577 #ifdef TCP_OFFLOAD
5578 	struct sge_ofld_rxq *ofld_rxq;
5579 #endif
5580 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
5581 	struct sge_wrq *ofld_txq;
5582 #endif
5583 
5584 	if (vi->flags & VI_INIT_DONE) {
5585 
5586 		/* Need to quiesce queues.  */
5587 
5588 		/* XXX: Only for the first VI? */
5589 		if (IS_MAIN_VI(vi) && !(sc->flags & IS_VF))
5590 			quiesce_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
5591 
5592 		for_each_txq(vi, i, txq) {
5593 			quiesce_txq(sc, txq);
5594 		}
5595 
5596 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
5597 		for_each_ofld_txq(vi, i, ofld_txq) {
5598 			quiesce_wrq(sc, ofld_txq);
5599 		}
5600 #endif
5601 
5602 		for_each_rxq(vi, i, rxq) {
5603 			quiesce_iq(sc, &rxq->iq);
5604 			quiesce_fl(sc, &rxq->fl);
5605 		}
5606 
5607 #ifdef TCP_OFFLOAD
5608 		for_each_ofld_rxq(vi, i, ofld_rxq) {
5609 			quiesce_iq(sc, &ofld_rxq->iq);
5610 			quiesce_fl(sc, &ofld_rxq->fl);
5611 		}
5612 #endif
5613 		free(vi->rss, M_CXGBE);
5614 		free(vi->nm_rss, M_CXGBE);
5615 	}
5616 
5617 	t4_teardown_vi_queues(vi);
5618 	vi->flags &= ~VI_INIT_DONE;
5619 
5620 	return (0);
5621 }
5622 
5623 static void
5624 quiesce_txq(struct adapter *sc, struct sge_txq *txq)
5625 {
5626 	struct sge_eq *eq = &txq->eq;
5627 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
5628 
5629 	(void) sc;	/* unused */
5630 
5631 #ifdef INVARIANTS
5632 	TXQ_LOCK(txq);
5633 	MPASS((eq->flags & EQ_ENABLED) == 0);
5634 	TXQ_UNLOCK(txq);
5635 #endif
5636 
5637 	/* Wait for the mp_ring to empty. */
5638 	while (!mp_ring_is_idle(txq->r)) {
5639 		mp_ring_check_drainage(txq->r, 0);
5640 		pause("rquiesce", 1);
5641 	}
5642 
5643 	/* Then wait for the hardware to finish. */
5644 	while (spg->cidx != htobe16(eq->pidx))
5645 		pause("equiesce", 1);
5646 
5647 	/* Finally, wait for the driver to reclaim all descriptors. */
5648 	while (eq->cidx != eq->pidx)
5649 		pause("dquiesce", 1);
5650 }
5651 
5652 static void
5653 quiesce_wrq(struct adapter *sc, struct sge_wrq *wrq)
5654 {
5655 
5656 	/* XXXTX */
5657 }
5658 
5659 static void
5660 quiesce_iq(struct adapter *sc, struct sge_iq *iq)
5661 {
5662 	(void) sc;	/* unused */
5663 
5664 	/* Synchronize with the interrupt handler */
5665 	while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED))
5666 		pause("iqfree", 1);
5667 }
5668 
5669 static void
5670 quiesce_fl(struct adapter *sc, struct sge_fl *fl)
5671 {
5672 	mtx_lock(&sc->sfl_lock);
5673 	FL_LOCK(fl);
5674 	fl->flags |= FL_DOOMED;
5675 	FL_UNLOCK(fl);
5676 	callout_stop(&sc->sfl_callout);
5677 	mtx_unlock(&sc->sfl_lock);
5678 
5679 	KASSERT((fl->flags & FL_STARVING) == 0,
5680 	    ("%s: still starving", __func__));
5681 }
5682 
5683 static int
5684 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
5685     driver_intr_t *handler, void *arg, char *name)
5686 {
5687 	int rc;
5688 
5689 	irq->rid = rid;
5690 	irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
5691 	    RF_SHAREABLE | RF_ACTIVE);
5692 	if (irq->res == NULL) {
5693 		device_printf(sc->dev,
5694 		    "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
5695 		return (ENOMEM);
5696 	}
5697 
5698 	rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
5699 	    NULL, handler, arg, &irq->tag);
5700 	if (rc != 0) {
5701 		device_printf(sc->dev,
5702 		    "failed to setup interrupt for rid %d, name %s: %d\n",
5703 		    rid, name, rc);
5704 	} else if (name)
5705 		bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name);
5706 
5707 	return (rc);
5708 }
5709 
5710 static int
5711 t4_free_irq(struct adapter *sc, struct irq *irq)
5712 {
5713 	if (irq->tag)
5714 		bus_teardown_intr(sc->dev, irq->res, irq->tag);
5715 	if (irq->res)
5716 		bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
5717 
5718 	bzero(irq, sizeof(*irq));
5719 
5720 	return (0);
5721 }
5722 
5723 static void
5724 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
5725 {
5726 
5727 	regs->version = chip_id(sc) | chip_rev(sc) << 10;
5728 	t4_get_regs(sc, buf, regs->len);
5729 }
5730 
5731 #define	A_PL_INDIR_CMD	0x1f8
5732 
5733 #define	S_PL_AUTOINC	31
5734 #define	M_PL_AUTOINC	0x1U
5735 #define	V_PL_AUTOINC(x)	((x) << S_PL_AUTOINC)
5736 #define	G_PL_AUTOINC(x)	(((x) >> S_PL_AUTOINC) & M_PL_AUTOINC)
5737 
5738 #define	S_PL_VFID	20
5739 #define	M_PL_VFID	0xffU
5740 #define	V_PL_VFID(x)	((x) << S_PL_VFID)
5741 #define	G_PL_VFID(x)	(((x) >> S_PL_VFID) & M_PL_VFID)
5742 
5743 #define	S_PL_ADDR	0
5744 #define	M_PL_ADDR	0xfffffU
5745 #define	V_PL_ADDR(x)	((x) << S_PL_ADDR)
5746 #define	G_PL_ADDR(x)	(((x) >> S_PL_ADDR) & M_PL_ADDR)
5747 
5748 #define	A_PL_INDIR_DATA	0x1fc
5749 
5750 static uint64_t
5751 read_vf_stat(struct adapter *sc, u_int vin, int reg)
5752 {
5753 	u32 stats[2];
5754 
5755 	mtx_assert(&sc->reg_lock, MA_OWNED);
5756 	if (sc->flags & IS_VF) {
5757 		stats[0] = t4_read_reg(sc, VF_MPS_REG(reg));
5758 		stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4));
5759 	} else {
5760 		t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
5761 		    V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg)));
5762 		stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA);
5763 		stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA);
5764 	}
5765 	return (((uint64_t)stats[1]) << 32 | stats[0]);
5766 }
5767 
5768 static void
5769 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats)
5770 {
5771 
5772 #define GET_STAT(name) \
5773 	read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L)
5774 
5775 	stats->tx_bcast_bytes    = GET_STAT(TX_VF_BCAST_BYTES);
5776 	stats->tx_bcast_frames   = GET_STAT(TX_VF_BCAST_FRAMES);
5777 	stats->tx_mcast_bytes    = GET_STAT(TX_VF_MCAST_BYTES);
5778 	stats->tx_mcast_frames   = GET_STAT(TX_VF_MCAST_FRAMES);
5779 	stats->tx_ucast_bytes    = GET_STAT(TX_VF_UCAST_BYTES);
5780 	stats->tx_ucast_frames   = GET_STAT(TX_VF_UCAST_FRAMES);
5781 	stats->tx_drop_frames    = GET_STAT(TX_VF_DROP_FRAMES);
5782 	stats->tx_offload_bytes  = GET_STAT(TX_VF_OFFLOAD_BYTES);
5783 	stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES);
5784 	stats->rx_bcast_bytes    = GET_STAT(RX_VF_BCAST_BYTES);
5785 	stats->rx_bcast_frames   = GET_STAT(RX_VF_BCAST_FRAMES);
5786 	stats->rx_mcast_bytes    = GET_STAT(RX_VF_MCAST_BYTES);
5787 	stats->rx_mcast_frames   = GET_STAT(RX_VF_MCAST_FRAMES);
5788 	stats->rx_ucast_bytes    = GET_STAT(RX_VF_UCAST_BYTES);
5789 	stats->rx_ucast_frames   = GET_STAT(RX_VF_UCAST_FRAMES);
5790 	stats->rx_err_frames     = GET_STAT(RX_VF_ERR_FRAMES);
5791 
5792 #undef GET_STAT
5793 }
5794 
5795 static void
5796 t4_clr_vi_stats(struct adapter *sc, u_int vin)
5797 {
5798 	int reg;
5799 
5800 	t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) |
5801 	    V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L)));
5802 	for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
5803 	     reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
5804 		t4_write_reg(sc, A_PL_INDIR_DATA, 0);
5805 }
5806 
5807 static void
5808 vi_refresh_stats(struct adapter *sc, struct vi_info *vi)
5809 {
5810 	struct timeval tv;
5811 	const struct timeval interval = {0, 250000};	/* 250ms */
5812 
5813 	if (!(vi->flags & VI_INIT_DONE))
5814 		return;
5815 
5816 	getmicrotime(&tv);
5817 	timevalsub(&tv, &interval);
5818 	if (timevalcmp(&tv, &vi->last_refreshed, <))
5819 		return;
5820 
5821 	mtx_lock(&sc->reg_lock);
5822 	t4_get_vi_stats(sc, vi->vin, &vi->stats);
5823 	getmicrotime(&vi->last_refreshed);
5824 	mtx_unlock(&sc->reg_lock);
5825 }
5826 
5827 static void
5828 cxgbe_refresh_stats(struct adapter *sc, struct port_info *pi)
5829 {
5830 	u_int i, v, tnl_cong_drops, bg_map;
5831 	struct timeval tv;
5832 	const struct timeval interval = {0, 250000};	/* 250ms */
5833 
5834 	getmicrotime(&tv);
5835 	timevalsub(&tv, &interval);
5836 	if (timevalcmp(&tv, &pi->last_refreshed, <))
5837 		return;
5838 
5839 	tnl_cong_drops = 0;
5840 	t4_get_port_stats(sc, pi->tx_chan, &pi->stats);
5841 	bg_map = pi->mps_bg_map;
5842 	while (bg_map) {
5843 		i = ffs(bg_map) - 1;
5844 		mtx_lock(&sc->reg_lock);
5845 		t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1,
5846 		    A_TP_MIB_TNL_CNG_DROP_0 + i);
5847 		mtx_unlock(&sc->reg_lock);
5848 		tnl_cong_drops += v;
5849 		bg_map &= ~(1 << i);
5850 	}
5851 	pi->tnl_cong_drops = tnl_cong_drops;
5852 	getmicrotime(&pi->last_refreshed);
5853 }
5854 
5855 static void
5856 cxgbe_tick(void *arg)
5857 {
5858 	struct port_info *pi = arg;
5859 	struct adapter *sc = pi->adapter;
5860 
5861 	PORT_LOCK_ASSERT_OWNED(pi);
5862 	cxgbe_refresh_stats(sc, pi);
5863 
5864 	callout_schedule(&pi->tick, hz);
5865 }
5866 
5867 void
5868 vi_tick(void *arg)
5869 {
5870 	struct vi_info *vi = arg;
5871 	struct adapter *sc = vi->pi->adapter;
5872 
5873 	vi_refresh_stats(sc, vi);
5874 
5875 	callout_schedule(&vi->tick, hz);
5876 }
5877 
5878 /*
5879  * Should match fw_caps_config_<foo> enums in t4fw_interface.h
5880  */
5881 static char *caps_decoder[] = {
5882 	"\20\001IPMI\002NCSI",				/* 0: NBM */
5883 	"\20\001PPP\002QFC\003DCBX",			/* 1: link */
5884 	"\20\001INGRESS\002EGRESS",			/* 2: switch */
5885 	"\20\001NIC\002VM\003IDS\004UM\005UM_ISGL"	/* 3: NIC */
5886 	    "\006HASHFILTER\007ETHOFLD",
5887 	"\20\001TOE",					/* 4: TOE */
5888 	"\20\001RDDP\002RDMAC",				/* 5: RDMA */
5889 	"\20\001INITIATOR_PDU\002TARGET_PDU"		/* 6: iSCSI */
5890 	    "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD"
5891 	    "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD"
5892 	    "\007T10DIF"
5893 	    "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD",
5894 	"\20\001LOOKASIDE\002TLSKEYS",			/* 7: Crypto */
5895 	"\20\001INITIATOR\002TARGET\003CTRL_OFLD"	/* 8: FCoE */
5896 		    "\004PO_INITIATOR\005PO_TARGET",
5897 };
5898 
5899 void
5900 t4_sysctls(struct adapter *sc)
5901 {
5902 	struct sysctl_ctx_list *ctx;
5903 	struct sysctl_oid *oid;
5904 	struct sysctl_oid_list *children, *c0;
5905 	static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"};
5906 
5907 	ctx = device_get_sysctl_ctx(sc->dev);
5908 
5909 	/*
5910 	 * dev.t4nex.X.
5911 	 */
5912 	oid = device_get_sysctl_tree(sc->dev);
5913 	c0 = children = SYSCTL_CHILDREN(oid);
5914 
5915 	sc->sc_do_rxcopy = 1;
5916 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW,
5917 	    &sc->sc_do_rxcopy, 1, "Do RX copy of small frames");
5918 
5919 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL,
5920 	    sc->params.nports, "# of ports");
5921 
5922 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells",
5923 	    CTLTYPE_STRING | CTLFLAG_RD, doorbells, (uintptr_t)&sc->doorbells,
5924 	    sysctl_bitfield_8b, "A", "available doorbells");
5925 
5926 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL,
5927 	    sc->params.vpd.cclk, "core clock frequency (in KHz)");
5928 
5929 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
5930 	    CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.timer_val,
5931 	    sizeof(sc->params.sge.timer_val), sysctl_int_array, "A",
5932 	    "interrupt holdoff timer values (us)");
5933 
5934 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
5935 	    CTLTYPE_STRING | CTLFLAG_RD, sc->params.sge.counter_val,
5936 	    sizeof(sc->params.sge.counter_val), sysctl_int_array, "A",
5937 	    "interrupt holdoff packet counter values");
5938 
5939 	t4_sge_sysctls(sc, ctx, children);
5940 
5941 	sc->lro_timeout = 100;
5942 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW,
5943 	    &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)");
5944 
5945 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW,
5946 	    &sc->debug_flags, 0, "flags to enable runtime debugging");
5947 
5948 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version",
5949 	    CTLFLAG_RD, sc->tp_version, 0, "TP microcode version");
5950 
5951 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
5952 	    CTLFLAG_RD, sc->fw_version, 0, "firmware version");
5953 
5954 	if (sc->flags & IS_VF)
5955 		return;
5956 
5957 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
5958 	    NULL, chip_rev(sc), "chip hardware revision");
5959 
5960 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn",
5961 	    CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number");
5962 
5963 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn",
5964 	    CTLFLAG_RD, sc->params.vpd.pn, 0, "part number");
5965 
5966 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec",
5967 	    CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change");
5968 
5969 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version",
5970 	    CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version");
5971 
5972 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na",
5973 	    CTLFLAG_RD, sc->params.vpd.na, 0, "network address");
5974 
5975 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD,
5976 	    sc->er_version, 0, "expansion ROM version");
5977 
5978 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD,
5979 	    sc->bs_version, 0, "bootstrap firmware version");
5980 
5981 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD,
5982 	    NULL, sc->params.scfg_vers, "serial config version");
5983 
5984 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD,
5985 	    NULL, sc->params.vpd_vers, "VPD version");
5986 
5987 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf",
5988 	    CTLFLAG_RD, sc->cfg_file, 0, "configuration file");
5989 
5990 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL,
5991 	    sc->cfcsum, "config file checksum");
5992 
5993 #define SYSCTL_CAP(name, n, text) \
5994 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \
5995 	    CTLTYPE_STRING | CTLFLAG_RD, caps_decoder[n], (uintptr_t)&sc->name, \
5996 	    sysctl_bitfield_16b, "A", "available " text " capabilities")
5997 
5998 	SYSCTL_CAP(nbmcaps, 0, "NBM");
5999 	SYSCTL_CAP(linkcaps, 1, "link");
6000 	SYSCTL_CAP(switchcaps, 2, "switch");
6001 	SYSCTL_CAP(niccaps, 3, "NIC");
6002 	SYSCTL_CAP(toecaps, 4, "TCP offload");
6003 	SYSCTL_CAP(rdmacaps, 5, "RDMA");
6004 	SYSCTL_CAP(iscsicaps, 6, "iSCSI");
6005 	SYSCTL_CAP(cryptocaps, 7, "crypto");
6006 	SYSCTL_CAP(fcoecaps, 8, "FCoE");
6007 #undef SYSCTL_CAP
6008 
6009 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD,
6010 	    NULL, sc->tids.nftids, "number of filters");
6011 
6012 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", CTLTYPE_INT |
6013 	    CTLFLAG_RD, sc, 0, sysctl_temperature, "I",
6014 	    "chip temperature (in Celsius)");
6015 
6016 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg", CTLTYPE_STRING |
6017 	    CTLFLAG_RD, sc, 0, sysctl_loadavg, "A",
6018 	    "microprocessor load averages (debug firmwares only)");
6019 
6020 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_vdd", CTLFLAG_RD,
6021 	    &sc->params.core_vdd, 0, "core Vdd (in mV)");
6022 
6023 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus",
6024 	    CTLTYPE_STRING | CTLFLAG_RD, sc, LOCAL_CPUS,
6025 	    sysctl_cpus, "A", "local CPUs");
6026 
6027 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus",
6028 	    CTLTYPE_STRING | CTLFLAG_RD, sc, INTR_CPUS,
6029 	    sysctl_cpus, "A", "preferred CPUs for interrupts");
6030 
6031 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW,
6032 	    &sc->swintr, 0, "software triggered interrupts");
6033 
6034 	/*
6035 	 * dev.t4nex.X.misc.  Marked CTLFLAG_SKIP to avoid information overload.
6036 	 */
6037 	oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc",
6038 	    CTLFLAG_RD | CTLFLAG_SKIP, NULL,
6039 	    "logs and miscellaneous information");
6040 	children = SYSCTL_CHILDREN(oid);
6041 
6042 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl",
6043 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6044 	    sysctl_cctrl, "A", "congestion control");
6045 
6046 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0",
6047 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6048 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)");
6049 
6050 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1",
6051 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 1,
6052 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)");
6053 
6054 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp",
6055 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 2,
6056 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)");
6057 
6058 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0",
6059 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 3,
6060 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)");
6061 
6062 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1",
6063 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 4,
6064 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)");
6065 
6066 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi",
6067 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 5,
6068 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)");
6069 
6070 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la",
6071 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_cim_la,
6072 	    "A", "CIM logic analyzer");
6073 
6074 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la",
6075 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6076 	    sysctl_cim_ma_la, "A", "CIM MA logic analyzer");
6077 
6078 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0",
6079 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0 + CIM_NUM_IBQ,
6080 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)");
6081 
6082 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1",
6083 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 1 + CIM_NUM_IBQ,
6084 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)");
6085 
6086 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2",
6087 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 2 + CIM_NUM_IBQ,
6088 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)");
6089 
6090 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3",
6091 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 3 + CIM_NUM_IBQ,
6092 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)");
6093 
6094 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge",
6095 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 4 + CIM_NUM_IBQ,
6096 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)");
6097 
6098 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi",
6099 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 5 + CIM_NUM_IBQ,
6100 	    sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)");
6101 
6102 	if (chip_id(sc) > CHELSIO_T4) {
6103 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx",
6104 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 6 + CIM_NUM_IBQ,
6105 		    sysctl_cim_ibq_obq, "A", "CIM OBQ 6 (SGE0-RX)");
6106 
6107 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx",
6108 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 7 + CIM_NUM_IBQ,
6109 		    sysctl_cim_ibq_obq, "A", "CIM OBQ 7 (SGE1-RX)");
6110 	}
6111 
6112 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la",
6113 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6114 	    sysctl_cim_pif_la, "A", "CIM PIF logic analyzer");
6115 
6116 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg",
6117 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6118 	    sysctl_cim_qcfg, "A", "CIM queue configuration");
6119 
6120 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats",
6121 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6122 	    sysctl_cpl_stats, "A", "CPL statistics");
6123 
6124 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats",
6125 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6126 	    sysctl_ddp_stats, "A", "non-TCP DDP statistics");
6127 
6128 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog",
6129 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6130 	    sysctl_devlog, "A", "firmware's device log");
6131 
6132 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats",
6133 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6134 	    sysctl_fcoe_stats, "A", "FCoE statistics");
6135 
6136 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched",
6137 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6138 	    sysctl_hw_sched, "A", "hardware scheduler ");
6139 
6140 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t",
6141 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6142 	    sysctl_l2t, "A", "hardware L2 table");
6143 
6144 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt",
6145 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6146 	    sysctl_smt, "A", "hardware source MAC table");
6147 
6148 #ifdef INET6
6149 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip",
6150 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6151 	    sysctl_clip, "A", "active CLIP table entries");
6152 #endif
6153 
6154 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats",
6155 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6156 	    sysctl_lb_stats, "A", "loopback statistics");
6157 
6158 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo",
6159 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6160 	    sysctl_meminfo, "A", "memory regions");
6161 
6162 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam",
6163 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6164 	    chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6,
6165 	    "A", "MPS TCAM entries");
6166 
6167 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus",
6168 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6169 	    sysctl_path_mtus, "A", "path MTUs");
6170 
6171 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats",
6172 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6173 	    sysctl_pm_stats, "A", "PM statistics");
6174 
6175 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats",
6176 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6177 	    sysctl_rdma_stats, "A", "RDMA statistics");
6178 
6179 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats",
6180 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6181 	    sysctl_tcp_stats, "A", "TCP statistics");
6182 
6183 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids",
6184 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6185 	    sysctl_tids, "A", "TID information");
6186 
6187 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats",
6188 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6189 	    sysctl_tp_err_stats, "A", "TP error statistics");
6190 
6191 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask",
6192 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_tp_la_mask, "I",
6193 	    "TP logic analyzer event capture mask");
6194 
6195 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la",
6196 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6197 	    sysctl_tp_la, "A", "TP logic analyzer");
6198 
6199 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate",
6200 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6201 	    sysctl_tx_rate, "A", "Tx rate");
6202 
6203 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la",
6204 	    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6205 	    sysctl_ulprx_la, "A", "ULPRX logic analyzer");
6206 
6207 	if (chip_id(sc) >= CHELSIO_T5) {
6208 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats",
6209 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 0,
6210 		    sysctl_wcwr_stats, "A", "write combined work requests");
6211 	}
6212 
6213 #ifdef TCP_OFFLOAD
6214 	if (is_offload(sc)) {
6215 		int i;
6216 		char s[4];
6217 
6218 		/*
6219 		 * dev.t4nex.X.toe.
6220 		 */
6221 		oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", CTLFLAG_RD,
6222 		    NULL, "TOE parameters");
6223 		children = SYSCTL_CHILDREN(oid);
6224 
6225 		sc->tt.cong_algorithm = -1;
6226 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm",
6227 		    CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control "
6228 		    "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, "
6229 		    "3 = highspeed)");
6230 
6231 		sc->tt.sndbuf = 256 * 1024;
6232 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW,
6233 		    &sc->tt.sndbuf, 0, "max hardware send buffer size");
6234 
6235 		sc->tt.ddp = 0;
6236 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp",
6237 		    CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, "");
6238 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW,
6239 		    &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)");
6240 
6241 		sc->tt.rx_coalesce = 1;
6242 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce",
6243 		    CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing");
6244 
6245 		sc->tt.tls = 0;
6246 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tls", CTLFLAG_RW,
6247 		    &sc->tt.tls, 0, "Inline TLS allowed");
6248 
6249 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_ports",
6250 		    CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_tls_rx_ports,
6251 		    "I", "TCP ports that use inline TLS+TOE RX");
6252 
6253 		sc->tt.tx_align = 1;
6254 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align",
6255 		    CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload");
6256 
6257 		sc->tt.tx_zcopy = 0;
6258 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy",
6259 		    CTLFLAG_RW, &sc->tt.tx_zcopy, 0,
6260 		    "Enable zero-copy aio_write(2)");
6261 
6262 		sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading;
6263 		SYSCTL_ADD_INT(ctx, children, OID_AUTO,
6264 		    "cop_managed_offloading", CTLFLAG_RW,
6265 		    &sc->tt.cop_managed_offloading, 0,
6266 		    "COP (Connection Offload Policy) controls all TOE offload");
6267 
6268 		sc->tt.autorcvbuf_inc = 16 * 1024;
6269 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc",
6270 		    CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0,
6271 		    "autorcvbuf increment");
6272 
6273 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick",
6274 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 0, sysctl_tp_tick, "A",
6275 		    "TP timer tick (us)");
6276 
6277 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick",
6278 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 1, sysctl_tp_tick, "A",
6279 		    "TCP timestamp tick (us)");
6280 
6281 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick",
6282 		    CTLTYPE_STRING | CTLFLAG_RD, sc, 2, sysctl_tp_tick, "A",
6283 		    "DACK tick (us)");
6284 
6285 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer",
6286 		    CTLTYPE_UINT | CTLFLAG_RD, sc, 0, sysctl_tp_dack_timer,
6287 		    "IU", "DACK timer (us)");
6288 
6289 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min",
6290 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MIN,
6291 		    sysctl_tp_timer, "LU", "Minimum retransmit interval (us)");
6292 
6293 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max",
6294 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_RXT_MAX,
6295 		    sysctl_tp_timer, "LU", "Maximum retransmit interval (us)");
6296 
6297 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min",
6298 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MIN,
6299 		    sysctl_tp_timer, "LU", "Persist timer min (us)");
6300 
6301 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max",
6302 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_PERS_MAX,
6303 		    sysctl_tp_timer, "LU", "Persist timer max (us)");
6304 
6305 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle",
6306 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_IDLE,
6307 		    sysctl_tp_timer, "LU", "Keepalive idle timer (us)");
6308 
6309 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval",
6310 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_KEEP_INTVL,
6311 		    sysctl_tp_timer, "LU", "Keepalive interval timer (us)");
6312 
6313 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt",
6314 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_INIT_SRTT,
6315 		    sysctl_tp_timer, "LU", "Initial SRTT (us)");
6316 
6317 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer",
6318 		    CTLTYPE_ULONG | CTLFLAG_RD, sc, A_TP_FINWAIT2_TIMER,
6319 		    sysctl_tp_timer, "LU", "FINWAIT2 timer (us)");
6320 
6321 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count",
6322 		    CTLTYPE_UINT | CTLFLAG_RD, sc, S_SYNSHIFTMAX,
6323 		    sysctl_tp_shift_cnt, "IU",
6324 		    "Number of SYN retransmissions before abort");
6325 
6326 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count",
6327 		    CTLTYPE_UINT | CTLFLAG_RD, sc, S_RXTSHIFTMAXR2,
6328 		    sysctl_tp_shift_cnt, "IU",
6329 		    "Number of retransmissions before abort");
6330 
6331 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count",
6332 		    CTLTYPE_UINT | CTLFLAG_RD, sc, S_KEEPALIVEMAXR2,
6333 		    sysctl_tp_shift_cnt, "IU",
6334 		    "Number of keepalive probes before abort");
6335 
6336 		oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff",
6337 		    CTLFLAG_RD, NULL, "TOE retransmit backoffs");
6338 		children = SYSCTL_CHILDREN(oid);
6339 		for (i = 0; i < 16; i++) {
6340 			snprintf(s, sizeof(s), "%u", i);
6341 			SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s,
6342 			    CTLTYPE_UINT | CTLFLAG_RD, sc, i, sysctl_tp_backoff,
6343 			    "IU", "TOE retransmit backoff");
6344 		}
6345 	}
6346 #endif
6347 }
6348 
6349 void
6350 vi_sysctls(struct vi_info *vi)
6351 {
6352 	struct sysctl_ctx_list *ctx;
6353 	struct sysctl_oid *oid;
6354 	struct sysctl_oid_list *children;
6355 
6356 	ctx = device_get_sysctl_ctx(vi->dev);
6357 
6358 	/*
6359 	 * dev.v?(cxgbe|cxl).X.
6360 	 */
6361 	oid = device_get_sysctl_tree(vi->dev);
6362 	children = SYSCTL_CHILDREN(oid);
6363 
6364 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL,
6365 	    vi->viid, "VI identifer");
6366 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
6367 	    &vi->nrxq, 0, "# of rx queues");
6368 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
6369 	    &vi->ntxq, 0, "# of tx queues");
6370 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
6371 	    &vi->first_rxq, 0, "index of first rx queue");
6372 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
6373 	    &vi->first_txq, 0, "index of first tx queue");
6374 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL,
6375 	    vi->rss_base, "start of RSS indirection table");
6376 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL,
6377 	    vi->rss_size, "size of RSS indirection table");
6378 
6379 	if (IS_MAIN_VI(vi)) {
6380 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq",
6381 		    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_noflowq, "IU",
6382 		    "Reserve queue 0 for non-flowid packets");
6383 	}
6384 
6385 #ifdef TCP_OFFLOAD
6386 	if (vi->nofldrxq != 0) {
6387 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD,
6388 		    &vi->nofldrxq, 0,
6389 		    "# of rx queues for offloaded TCP connections");
6390 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq",
6391 		    CTLFLAG_RD, &vi->first_ofld_rxq, 0,
6392 		    "index of first TOE rx queue");
6393 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld",
6394 		    CTLTYPE_INT | CTLFLAG_RW, vi, 0,
6395 		    sysctl_holdoff_tmr_idx_ofld, "I",
6396 		    "holdoff timer index for TOE queues");
6397 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld",
6398 		    CTLTYPE_INT | CTLFLAG_RW, vi, 0,
6399 		    sysctl_holdoff_pktc_idx_ofld, "I",
6400 		    "holdoff packet counter index for TOE queues");
6401 	}
6402 #endif
6403 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
6404 	if (vi->nofldtxq != 0) {
6405 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD,
6406 		    &vi->nofldtxq, 0,
6407 		    "# of tx queues for TOE/ETHOFLD");
6408 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq",
6409 		    CTLFLAG_RD, &vi->first_ofld_txq, 0,
6410 		    "index of first TOE/ETHOFLD tx queue");
6411 	}
6412 #endif
6413 #ifdef DEV_NETMAP
6414 	if (vi->nnmrxq != 0) {
6415 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD,
6416 		    &vi->nnmrxq, 0, "# of netmap rx queues");
6417 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD,
6418 		    &vi->nnmtxq, 0, "# of netmap tx queues");
6419 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq",
6420 		    CTLFLAG_RD, &vi->first_nm_rxq, 0,
6421 		    "index of first netmap rx queue");
6422 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq",
6423 		    CTLFLAG_RD, &vi->first_nm_txq, 0,
6424 		    "index of first netmap tx queue");
6425 	}
6426 #endif
6427 
6428 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
6429 	    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_tmr_idx, "I",
6430 	    "holdoff timer index");
6431 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
6432 	    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_holdoff_pktc_idx, "I",
6433 	    "holdoff packet counter index");
6434 
6435 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
6436 	    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_rxq, "I",
6437 	    "rx queue size");
6438 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
6439 	    CTLTYPE_INT | CTLFLAG_RW, vi, 0, sysctl_qsize_txq, "I",
6440 	    "tx queue size");
6441 }
6442 
6443 static void
6444 cxgbe_sysctls(struct port_info *pi)
6445 {
6446 	struct sysctl_ctx_list *ctx;
6447 	struct sysctl_oid *oid;
6448 	struct sysctl_oid_list *children, *children2;
6449 	struct adapter *sc = pi->adapter;
6450 	int i;
6451 	char name[16];
6452 	static char *tc_flags = {"\20\1USER\2SYNC\3ASYNC\4ERR"};
6453 
6454 	ctx = device_get_sysctl_ctx(pi->dev);
6455 
6456 	/*
6457 	 * dev.cxgbe.X.
6458 	 */
6459 	oid = device_get_sysctl_tree(pi->dev);
6460 	children = SYSCTL_CHILDREN(oid);
6461 
6462 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", CTLTYPE_STRING |
6463 	   CTLFLAG_RD, pi, 0, sysctl_linkdnrc, "A", "reason why link is down");
6464 	if (pi->port_type == FW_PORT_TYPE_BT_XAUI) {
6465 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
6466 		    CTLTYPE_INT | CTLFLAG_RD, pi, 0, sysctl_btphy, "I",
6467 		    "PHY temperature (in Celsius)");
6468 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version",
6469 		    CTLTYPE_INT | CTLFLAG_RD, pi, 1, sysctl_btphy, "I",
6470 		    "PHY firmware version");
6471 	}
6472 
6473 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings",
6474 	    CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_pause_settings, "A",
6475     "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
6476 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fec",
6477 	    CTLTYPE_STRING | CTLFLAG_RW, pi, 0, sysctl_fec, "A",
6478 	    "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
6479 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg",
6480 	    CTLTYPE_INT | CTLFLAG_RW, pi, 0, sysctl_autoneg, "I",
6481 	    "autonegotiation (-1 = not supported)");
6482 
6483 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL,
6484 	    port_top_speed(pi), "max speed (in Gbps)");
6485 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL,
6486 	    pi->mps_bg_map, "MPS buffer group map");
6487 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD,
6488 	    NULL, pi->rx_e_chan_map, "TP rx e-channel map");
6489 
6490 	if (sc->flags & IS_VF)
6491 		return;
6492 
6493 	/*
6494 	 * dev.(cxgbe|cxl).X.tc.
6495 	 */
6496 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", CTLFLAG_RD, NULL,
6497 	    "Tx scheduler traffic classes (cl_rl)");
6498 	children2 = SYSCTL_CHILDREN(oid);
6499 	SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize",
6500 	    CTLFLAG_RW, &pi->sched_params->pktsize, 0,
6501 	    "pktsize for per-flow cl-rl (0 means up to the driver )");
6502 	SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize",
6503 	    CTLFLAG_RW, &pi->sched_params->burstsize, 0,
6504 	    "burstsize for per-flow cl-rl (0 means up to the driver)");
6505 	for (i = 0; i < sc->chip_params->nsched_cls; i++) {
6506 		struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i];
6507 
6508 		snprintf(name, sizeof(name), "%d", i);
6509 		children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx,
6510 		    SYSCTL_CHILDREN(oid), OID_AUTO, name, CTLFLAG_RD, NULL,
6511 		    "traffic class"));
6512 		SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags",
6513 		    CTLTYPE_STRING | CTLFLAG_RD, tc_flags, (uintptr_t)&tc->flags,
6514 		    sysctl_bitfield_8b, "A", "flags");
6515 		SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount",
6516 		    CTLFLAG_RD, &tc->refcount, 0, "references to this class");
6517 		SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params",
6518 		    CTLTYPE_STRING | CTLFLAG_RD, sc, (pi->port_id << 16) | i,
6519 		    sysctl_tc_params, "A", "traffic class parameters");
6520 	}
6521 
6522 	/*
6523 	 * dev.cxgbe.X.stats.
6524 	 */
6525 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD,
6526 	    NULL, "port statistics");
6527 	children = SYSCTL_CHILDREN(oid);
6528 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD,
6529 	    &pi->tx_parse_error, 0,
6530 	    "# of tx packets with invalid length or # of segments");
6531 
6532 #define SYSCTL_ADD_T4_REG64(pi, name, desc, reg) \
6533 	SYSCTL_ADD_OID(ctx, children, OID_AUTO, name, \
6534 	    CTLTYPE_U64 | CTLFLAG_RD, sc, reg, \
6535 	    sysctl_handle_t4_reg64, "QU", desc)
6536 
6537 	SYSCTL_ADD_T4_REG64(pi, "tx_octets", "# of octets in good frames",
6538 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BYTES_L));
6539 	SYSCTL_ADD_T4_REG64(pi, "tx_frames", "total # of good frames",
6540 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_FRAMES_L));
6541 	SYSCTL_ADD_T4_REG64(pi, "tx_bcast_frames", "# of broadcast frames",
6542 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_BCAST_L));
6543 	SYSCTL_ADD_T4_REG64(pi, "tx_mcast_frames", "# of multicast frames",
6544 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_MCAST_L));
6545 	SYSCTL_ADD_T4_REG64(pi, "tx_ucast_frames", "# of unicast frames",
6546 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_UCAST_L));
6547 	SYSCTL_ADD_T4_REG64(pi, "tx_error_frames", "# of error frames",
6548 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_ERROR_L));
6549 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_64",
6550 	    "# of tx frames in this range",
6551 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_64B_L));
6552 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_65_127",
6553 	    "# of tx frames in this range",
6554 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_65B_127B_L));
6555 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_128_255",
6556 	    "# of tx frames in this range",
6557 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_128B_255B_L));
6558 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_256_511",
6559 	    "# of tx frames in this range",
6560 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_256B_511B_L));
6561 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_512_1023",
6562 	    "# of tx frames in this range",
6563 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_512B_1023B_L));
6564 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_1024_1518",
6565 	    "# of tx frames in this range",
6566 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1024B_1518B_L));
6567 	SYSCTL_ADD_T4_REG64(pi, "tx_frames_1519_max",
6568 	    "# of tx frames in this range",
6569 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_1519B_MAX_L));
6570 	SYSCTL_ADD_T4_REG64(pi, "tx_drop", "# of dropped tx frames",
6571 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_DROP_L));
6572 	SYSCTL_ADD_T4_REG64(pi, "tx_pause", "# of pause frames transmitted",
6573 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PAUSE_L));
6574 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp0", "# of PPP prio 0 frames transmitted",
6575 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP0_L));
6576 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp1", "# of PPP prio 1 frames transmitted",
6577 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP1_L));
6578 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp2", "# of PPP prio 2 frames transmitted",
6579 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP2_L));
6580 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp3", "# of PPP prio 3 frames transmitted",
6581 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP3_L));
6582 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp4", "# of PPP prio 4 frames transmitted",
6583 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP4_L));
6584 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp5", "# of PPP prio 5 frames transmitted",
6585 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP5_L));
6586 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp6", "# of PPP prio 6 frames transmitted",
6587 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP6_L));
6588 	SYSCTL_ADD_T4_REG64(pi, "tx_ppp7", "# of PPP prio 7 frames transmitted",
6589 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_TX_PORT_PPP7_L));
6590 
6591 	SYSCTL_ADD_T4_REG64(pi, "rx_octets", "# of octets in good frames",
6592 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BYTES_L));
6593 	SYSCTL_ADD_T4_REG64(pi, "rx_frames", "total # of good frames",
6594 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_FRAMES_L));
6595 	SYSCTL_ADD_T4_REG64(pi, "rx_bcast_frames", "# of broadcast frames",
6596 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_BCAST_L));
6597 	SYSCTL_ADD_T4_REG64(pi, "rx_mcast_frames", "# of multicast frames",
6598 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MCAST_L));
6599 	SYSCTL_ADD_T4_REG64(pi, "rx_ucast_frames", "# of unicast frames",
6600 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_UCAST_L));
6601 	SYSCTL_ADD_T4_REG64(pi, "rx_too_long", "# of frames exceeding MTU",
6602 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_ERROR_L));
6603 	SYSCTL_ADD_T4_REG64(pi, "rx_jabber", "# of jabber frames",
6604 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_MTU_CRC_ERROR_L));
6605 	SYSCTL_ADD_T4_REG64(pi, "rx_fcs_err",
6606 	    "# of frames received with bad FCS",
6607 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L));
6608 	SYSCTL_ADD_T4_REG64(pi, "rx_len_err",
6609 	    "# of frames received with length error",
6610 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LEN_ERROR_L));
6611 	SYSCTL_ADD_T4_REG64(pi, "rx_symbol_err", "symbol errors",
6612 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_SYM_ERROR_L));
6613 	SYSCTL_ADD_T4_REG64(pi, "rx_runt", "# of short frames received",
6614 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_LESS_64B_L));
6615 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_64",
6616 	    "# of rx frames in this range",
6617 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_64B_L));
6618 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_65_127",
6619 	    "# of rx frames in this range",
6620 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_65B_127B_L));
6621 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_128_255",
6622 	    "# of rx frames in this range",
6623 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_128B_255B_L));
6624 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_256_511",
6625 	    "# of rx frames in this range",
6626 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_256B_511B_L));
6627 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_512_1023",
6628 	    "# of rx frames in this range",
6629 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_512B_1023B_L));
6630 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_1024_1518",
6631 	    "# of rx frames in this range",
6632 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1024B_1518B_L));
6633 	SYSCTL_ADD_T4_REG64(pi, "rx_frames_1519_max",
6634 	    "# of rx frames in this range",
6635 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_1519B_MAX_L));
6636 	SYSCTL_ADD_T4_REG64(pi, "rx_pause", "# of pause frames received",
6637 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PAUSE_L));
6638 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp0", "# of PPP prio 0 frames received",
6639 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP0_L));
6640 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp1", "# of PPP prio 1 frames received",
6641 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP1_L));
6642 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp2", "# of PPP prio 2 frames received",
6643 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP2_L));
6644 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp3", "# of PPP prio 3 frames received",
6645 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP3_L));
6646 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp4", "# of PPP prio 4 frames received",
6647 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP4_L));
6648 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp5", "# of PPP prio 5 frames received",
6649 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP5_L));
6650 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp6", "# of PPP prio 6 frames received",
6651 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP6_L));
6652 	SYSCTL_ADD_T4_REG64(pi, "rx_ppp7", "# of PPP prio 7 frames received",
6653 	    PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_RX_PORT_PPP7_L));
6654 
6655 #undef SYSCTL_ADD_T4_REG64
6656 
6657 #define SYSCTL_ADD_T4_PORTSTAT(name, desc) \
6658 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \
6659 	    &pi->stats.name, desc)
6660 
6661 	/* We get these from port_stats and they may be stale by up to 1s */
6662 	SYSCTL_ADD_T4_PORTSTAT(rx_ovflow0,
6663 	    "# drops due to buffer-group 0 overflows");
6664 	SYSCTL_ADD_T4_PORTSTAT(rx_ovflow1,
6665 	    "# drops due to buffer-group 1 overflows");
6666 	SYSCTL_ADD_T4_PORTSTAT(rx_ovflow2,
6667 	    "# drops due to buffer-group 2 overflows");
6668 	SYSCTL_ADD_T4_PORTSTAT(rx_ovflow3,
6669 	    "# drops due to buffer-group 3 overflows");
6670 	SYSCTL_ADD_T4_PORTSTAT(rx_trunc0,
6671 	    "# of buffer-group 0 truncated packets");
6672 	SYSCTL_ADD_T4_PORTSTAT(rx_trunc1,
6673 	    "# of buffer-group 1 truncated packets");
6674 	SYSCTL_ADD_T4_PORTSTAT(rx_trunc2,
6675 	    "# of buffer-group 2 truncated packets");
6676 	SYSCTL_ADD_T4_PORTSTAT(rx_trunc3,
6677 	    "# of buffer-group 3 truncated packets");
6678 
6679 #undef SYSCTL_ADD_T4_PORTSTAT
6680 
6681 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "tx_tls_records",
6682 	    CTLFLAG_RD, &pi->tx_tls_records,
6683 	    "# of TLS records transmitted");
6684 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "tx_tls_octets",
6685 	    CTLFLAG_RD, &pi->tx_tls_octets,
6686 	    "# of payload octets in transmitted TLS records");
6687 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "rx_tls_records",
6688 	    CTLFLAG_RD, &pi->rx_tls_records,
6689 	    "# of TLS records received");
6690 	SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "rx_tls_octets",
6691 	    CTLFLAG_RD, &pi->rx_tls_octets,
6692 	    "# of payload octets in received TLS records");
6693 }
6694 
6695 static int
6696 sysctl_int_array(SYSCTL_HANDLER_ARGS)
6697 {
6698 	int rc, *i, space = 0;
6699 	struct sbuf sb;
6700 
6701 	sbuf_new_for_sysctl(&sb, NULL, 64, req);
6702 	for (i = arg1; arg2; arg2 -= sizeof(int), i++) {
6703 		if (space)
6704 			sbuf_printf(&sb, " ");
6705 		sbuf_printf(&sb, "%d", *i);
6706 		space = 1;
6707 	}
6708 	rc = sbuf_finish(&sb);
6709 	sbuf_delete(&sb);
6710 	return (rc);
6711 }
6712 
6713 static int
6714 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)
6715 {
6716 	int rc;
6717 	struct sbuf *sb;
6718 
6719 	rc = sysctl_wire_old_buffer(req, 0);
6720 	if (rc != 0)
6721 		return(rc);
6722 
6723 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
6724 	if (sb == NULL)
6725 		return (ENOMEM);
6726 
6727 	sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1);
6728 	rc = sbuf_finish(sb);
6729 	sbuf_delete(sb);
6730 
6731 	return (rc);
6732 }
6733 
6734 static int
6735 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)
6736 {
6737 	int rc;
6738 	struct sbuf *sb;
6739 
6740 	rc = sysctl_wire_old_buffer(req, 0);
6741 	if (rc != 0)
6742 		return(rc);
6743 
6744 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
6745 	if (sb == NULL)
6746 		return (ENOMEM);
6747 
6748 	sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1);
6749 	rc = sbuf_finish(sb);
6750 	sbuf_delete(sb);
6751 
6752 	return (rc);
6753 }
6754 
6755 static int
6756 sysctl_btphy(SYSCTL_HANDLER_ARGS)
6757 {
6758 	struct port_info *pi = arg1;
6759 	int op = arg2;
6760 	struct adapter *sc = pi->adapter;
6761 	u_int v;
6762 	int rc;
6763 
6764 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt");
6765 	if (rc)
6766 		return (rc);
6767 	/* XXX: magic numbers */
6768 	rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, op ? 0x20 : 0xc820,
6769 	    &v);
6770 	end_synchronized_op(sc, 0);
6771 	if (rc)
6772 		return (rc);
6773 	if (op == 0)
6774 		v /= 256;
6775 
6776 	rc = sysctl_handle_int(oidp, &v, 0, req);
6777 	return (rc);
6778 }
6779 
6780 static int
6781 sysctl_noflowq(SYSCTL_HANDLER_ARGS)
6782 {
6783 	struct vi_info *vi = arg1;
6784 	int rc, val;
6785 
6786 	val = vi->rsrv_noflowq;
6787 	rc = sysctl_handle_int(oidp, &val, 0, req);
6788 	if (rc != 0 || req->newptr == NULL)
6789 		return (rc);
6790 
6791 	if ((val >= 1) && (vi->ntxq > 1))
6792 		vi->rsrv_noflowq = 1;
6793 	else
6794 		vi->rsrv_noflowq = 0;
6795 
6796 	return (rc);
6797 }
6798 
6799 static int
6800 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
6801 {
6802 	struct vi_info *vi = arg1;
6803 	struct adapter *sc = vi->pi->adapter;
6804 	int idx, rc, i;
6805 	struct sge_rxq *rxq;
6806 	uint8_t v;
6807 
6808 	idx = vi->tmr_idx;
6809 
6810 	rc = sysctl_handle_int(oidp, &idx, 0, req);
6811 	if (rc != 0 || req->newptr == NULL)
6812 		return (rc);
6813 
6814 	if (idx < 0 || idx >= SGE_NTIMERS)
6815 		return (EINVAL);
6816 
6817 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
6818 	    "t4tmr");
6819 	if (rc)
6820 		return (rc);
6821 
6822 	v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1);
6823 	for_each_rxq(vi, i, rxq) {
6824 #ifdef atomic_store_rel_8
6825 		atomic_store_rel_8(&rxq->iq.intr_params, v);
6826 #else
6827 		rxq->iq.intr_params = v;
6828 #endif
6829 	}
6830 	vi->tmr_idx = idx;
6831 
6832 	end_synchronized_op(sc, LOCK_HELD);
6833 	return (0);
6834 }
6835 
6836 static int
6837 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
6838 {
6839 	struct vi_info *vi = arg1;
6840 	struct adapter *sc = vi->pi->adapter;
6841 	int idx, rc;
6842 
6843 	idx = vi->pktc_idx;
6844 
6845 	rc = sysctl_handle_int(oidp, &idx, 0, req);
6846 	if (rc != 0 || req->newptr == NULL)
6847 		return (rc);
6848 
6849 	if (idx < -1 || idx >= SGE_NCOUNTERS)
6850 		return (EINVAL);
6851 
6852 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
6853 	    "t4pktc");
6854 	if (rc)
6855 		return (rc);
6856 
6857 	if (vi->flags & VI_INIT_DONE)
6858 		rc = EBUSY; /* cannot be changed once the queues are created */
6859 	else
6860 		vi->pktc_idx = idx;
6861 
6862 	end_synchronized_op(sc, LOCK_HELD);
6863 	return (rc);
6864 }
6865 
6866 static int
6867 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
6868 {
6869 	struct vi_info *vi = arg1;
6870 	struct adapter *sc = vi->pi->adapter;
6871 	int qsize, rc;
6872 
6873 	qsize = vi->qsize_rxq;
6874 
6875 	rc = sysctl_handle_int(oidp, &qsize, 0, req);
6876 	if (rc != 0 || req->newptr == NULL)
6877 		return (rc);
6878 
6879 	if (qsize < 128 || (qsize & 7))
6880 		return (EINVAL);
6881 
6882 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
6883 	    "t4rxqs");
6884 	if (rc)
6885 		return (rc);
6886 
6887 	if (vi->flags & VI_INIT_DONE)
6888 		rc = EBUSY; /* cannot be changed once the queues are created */
6889 	else
6890 		vi->qsize_rxq = qsize;
6891 
6892 	end_synchronized_op(sc, LOCK_HELD);
6893 	return (rc);
6894 }
6895 
6896 static int
6897 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
6898 {
6899 	struct vi_info *vi = arg1;
6900 	struct adapter *sc = vi->pi->adapter;
6901 	int qsize, rc;
6902 
6903 	qsize = vi->qsize_txq;
6904 
6905 	rc = sysctl_handle_int(oidp, &qsize, 0, req);
6906 	if (rc != 0 || req->newptr == NULL)
6907 		return (rc);
6908 
6909 	if (qsize < 128 || qsize > 65536)
6910 		return (EINVAL);
6911 
6912 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
6913 	    "t4txqs");
6914 	if (rc)
6915 		return (rc);
6916 
6917 	if (vi->flags & VI_INIT_DONE)
6918 		rc = EBUSY; /* cannot be changed once the queues are created */
6919 	else
6920 		vi->qsize_txq = qsize;
6921 
6922 	end_synchronized_op(sc, LOCK_HELD);
6923 	return (rc);
6924 }
6925 
6926 static int
6927 sysctl_pause_settings(SYSCTL_HANDLER_ARGS)
6928 {
6929 	struct port_info *pi = arg1;
6930 	struct adapter *sc = pi->adapter;
6931 	struct link_config *lc = &pi->link_cfg;
6932 	int rc;
6933 
6934 	if (req->newptr == NULL) {
6935 		struct sbuf *sb;
6936 		static char *bits = "\20\1RX\2TX\3AUTO";
6937 
6938 		rc = sysctl_wire_old_buffer(req, 0);
6939 		if (rc != 0)
6940 			return(rc);
6941 
6942 		sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
6943 		if (sb == NULL)
6944 			return (ENOMEM);
6945 
6946 		if (lc->link_ok) {
6947 			sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) |
6948 			    (lc->requested_fc & PAUSE_AUTONEG), bits);
6949 		} else {
6950 			sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX |
6951 			    PAUSE_RX | PAUSE_AUTONEG), bits);
6952 		}
6953 		rc = sbuf_finish(sb);
6954 		sbuf_delete(sb);
6955 	} else {
6956 		char s[2];
6957 		int n;
6958 
6959 		s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX |
6960 		    PAUSE_AUTONEG));
6961 		s[1] = 0;
6962 
6963 		rc = sysctl_handle_string(oidp, s, sizeof(s), req);
6964 		if (rc != 0)
6965 			return(rc);
6966 
6967 		if (s[1] != 0)
6968 			return (EINVAL);
6969 		if (s[0] < '0' || s[0] > '9')
6970 			return (EINVAL);	/* not a number */
6971 		n = s[0] - '0';
6972 		if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG))
6973 			return (EINVAL);	/* some other bit is set too */
6974 
6975 		rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
6976 		    "t4PAUSE");
6977 		if (rc)
6978 			return (rc);
6979 		PORT_LOCK(pi);
6980 		lc->requested_fc = n;
6981 		fixup_link_config(pi);
6982 		if (pi->up_vis > 0)
6983 			rc = apply_link_config(pi);
6984 		set_current_media(pi);
6985 		PORT_UNLOCK(pi);
6986 		end_synchronized_op(sc, 0);
6987 	}
6988 
6989 	return (rc);
6990 }
6991 
6992 static int
6993 sysctl_fec(SYSCTL_HANDLER_ARGS)
6994 {
6995 	struct port_info *pi = arg1;
6996 	struct adapter *sc = pi->adapter;
6997 	struct link_config *lc = &pi->link_cfg;
6998 	int rc;
6999 	int8_t old;
7000 
7001 	if (req->newptr == NULL) {
7002 		struct sbuf *sb;
7003 		static char *bits = "\20\1RS\2BASE-R\3RSVD1\4RSVD2\5RSVD3\6AUTO";
7004 
7005 		rc = sysctl_wire_old_buffer(req, 0);
7006 		if (rc != 0)
7007 			return(rc);
7008 
7009 		sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
7010 		if (sb == NULL)
7011 			return (ENOMEM);
7012 
7013 		/*
7014 		 * Display the requested_fec when the link is down -- the actual
7015 		 * FEC makes sense only when the link is up.
7016 		 */
7017 		if (lc->link_ok) {
7018 			sbuf_printf(sb, "%b", (lc->fec & M_FW_PORT_CAP32_FEC) |
7019 			    (lc->requested_fec & FEC_AUTO), bits);
7020 		} else {
7021 			sbuf_printf(sb, "%b", lc->requested_fec, bits);
7022 		}
7023 		rc = sbuf_finish(sb);
7024 		sbuf_delete(sb);
7025 	} else {
7026 		char s[3];
7027 		int n;
7028 
7029 		snprintf(s, sizeof(s), "%d",
7030 		    lc->requested_fec == FEC_AUTO ? -1 :
7031 		    lc->requested_fec & M_FW_PORT_CAP32_FEC);
7032 
7033 		rc = sysctl_handle_string(oidp, s, sizeof(s), req);
7034 		if (rc != 0)
7035 			return(rc);
7036 
7037 		n = strtol(&s[0], NULL, 0);
7038 		if (n < 0 || n & FEC_AUTO)
7039 			n = FEC_AUTO;
7040 		else {
7041 			if (n & ~M_FW_PORT_CAP32_FEC)
7042 				return (EINVAL);/* some other bit is set too */
7043 			if (!powerof2(n))
7044 				return (EINVAL);/* one bit can be set at most */
7045 		}
7046 
7047 		rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
7048 		    "t4fec");
7049 		if (rc)
7050 			return (rc);
7051 		PORT_LOCK(pi);
7052 		old = lc->requested_fec;
7053 		if (n == FEC_AUTO)
7054 			lc->requested_fec = FEC_AUTO;
7055 		else if (n == 0)
7056 			lc->requested_fec = FEC_NONE;
7057 		else {
7058 			if ((lc->supported | V_FW_PORT_CAP32_FEC(n)) !=
7059 			    lc->supported) {
7060 				rc = ENOTSUP;
7061 				goto done;
7062 			}
7063 			lc->requested_fec = n;
7064 		}
7065 		fixup_link_config(pi);
7066 		if (pi->up_vis > 0) {
7067 			rc = apply_link_config(pi);
7068 			if (rc != 0) {
7069 				lc->requested_fec = old;
7070 				if (rc == FW_EPROTO)
7071 					rc = ENOTSUP;
7072 			}
7073 		}
7074 done:
7075 		PORT_UNLOCK(pi);
7076 		end_synchronized_op(sc, 0);
7077 	}
7078 
7079 	return (rc);
7080 }
7081 
7082 static int
7083 sysctl_autoneg(SYSCTL_HANDLER_ARGS)
7084 {
7085 	struct port_info *pi = arg1;
7086 	struct adapter *sc = pi->adapter;
7087 	struct link_config *lc = &pi->link_cfg;
7088 	int rc, val;
7089 
7090 	if (lc->supported & FW_PORT_CAP32_ANEG)
7091 		val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1;
7092 	else
7093 		val = -1;
7094 	rc = sysctl_handle_int(oidp, &val, 0, req);
7095 	if (rc != 0 || req->newptr == NULL)
7096 		return (rc);
7097 	if (val == 0)
7098 		val = AUTONEG_DISABLE;
7099 	else if (val == 1)
7100 		val = AUTONEG_ENABLE;
7101 	else
7102 		val = AUTONEG_AUTO;
7103 
7104 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
7105 	    "t4aneg");
7106 	if (rc)
7107 		return (rc);
7108 	PORT_LOCK(pi);
7109 	if (val == AUTONEG_ENABLE && !(lc->supported & FW_PORT_CAP32_ANEG)) {
7110 		rc = ENOTSUP;
7111 		goto done;
7112 	}
7113 	lc->requested_aneg = val;
7114 	fixup_link_config(pi);
7115 	if (pi->up_vis > 0)
7116 		rc = apply_link_config(pi);
7117 	set_current_media(pi);
7118 done:
7119 	PORT_UNLOCK(pi);
7120 	end_synchronized_op(sc, 0);
7121 	return (rc);
7122 }
7123 
7124 static int
7125 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
7126 {
7127 	struct adapter *sc = arg1;
7128 	int reg = arg2;
7129 	uint64_t val;
7130 
7131 	val = t4_read_reg64(sc, reg);
7132 
7133 	return (sysctl_handle_64(oidp, &val, 0, req));
7134 }
7135 
7136 static int
7137 sysctl_temperature(SYSCTL_HANDLER_ARGS)
7138 {
7139 	struct adapter *sc = arg1;
7140 	int rc, t;
7141 	uint32_t param, val;
7142 
7143 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp");
7144 	if (rc)
7145 		return (rc);
7146 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
7147 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
7148 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP);
7149 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
7150 	end_synchronized_op(sc, 0);
7151 	if (rc)
7152 		return (rc);
7153 
7154 	/* unknown is returned as 0 but we display -1 in that case */
7155 	t = val == 0 ? -1 : val;
7156 
7157 	rc = sysctl_handle_int(oidp, &t, 0, req);
7158 	return (rc);
7159 }
7160 
7161 static int
7162 sysctl_loadavg(SYSCTL_HANDLER_ARGS)
7163 {
7164 	struct adapter *sc = arg1;
7165 	struct sbuf *sb;
7166 	int rc;
7167 	uint32_t param, val;
7168 
7169 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg");
7170 	if (rc)
7171 		return (rc);
7172 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
7173 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD);
7174 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
7175 	end_synchronized_op(sc, 0);
7176 	if (rc)
7177 		return (rc);
7178 
7179 	rc = sysctl_wire_old_buffer(req, 0);
7180 	if (rc != 0)
7181 		return (rc);
7182 
7183 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7184 	if (sb == NULL)
7185 		return (ENOMEM);
7186 
7187 	if (val == 0xffffffff) {
7188 		/* Only debug and custom firmwares report load averages. */
7189 		sbuf_printf(sb, "not available");
7190 	} else {
7191 		sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff,
7192 		    (val >> 16) & 0xff);
7193 	}
7194 	rc = sbuf_finish(sb);
7195 	sbuf_delete(sb);
7196 
7197 	return (rc);
7198 }
7199 
7200 static int
7201 sysctl_cctrl(SYSCTL_HANDLER_ARGS)
7202 {
7203 	struct adapter *sc = arg1;
7204 	struct sbuf *sb;
7205 	int rc, i;
7206 	uint16_t incr[NMTUS][NCCTRL_WIN];
7207 	static const char *dec_fac[] = {
7208 		"0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
7209 		"0.9375"
7210 	};
7211 
7212 	rc = sysctl_wire_old_buffer(req, 0);
7213 	if (rc != 0)
7214 		return (rc);
7215 
7216 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7217 	if (sb == NULL)
7218 		return (ENOMEM);
7219 
7220 	t4_read_cong_tbl(sc, incr);
7221 
7222 	for (i = 0; i < NCCTRL_WIN; ++i) {
7223 		sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
7224 		    incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i],
7225 		    incr[5][i], incr[6][i], incr[7][i]);
7226 		sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
7227 		    incr[8][i], incr[9][i], incr[10][i], incr[11][i],
7228 		    incr[12][i], incr[13][i], incr[14][i], incr[15][i],
7229 		    sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]);
7230 	}
7231 
7232 	rc = sbuf_finish(sb);
7233 	sbuf_delete(sb);
7234 
7235 	return (rc);
7236 }
7237 
7238 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = {
7239 	"TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI",	/* ibq's */
7240 	"ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI",	/* obq's */
7241 	"SGE0-RX", "SGE1-RX"	/* additional obq's (T5 onwards) */
7242 };
7243 
7244 static int
7245 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS)
7246 {
7247 	struct adapter *sc = arg1;
7248 	struct sbuf *sb;
7249 	int rc, i, n, qid = arg2;
7250 	uint32_t *buf, *p;
7251 	char *qtype;
7252 	u_int cim_num_obq = sc->chip_params->cim_num_obq;
7253 
7254 	KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq,
7255 	    ("%s: bad qid %d\n", __func__, qid));
7256 
7257 	if (qid < CIM_NUM_IBQ) {
7258 		/* inbound queue */
7259 		qtype = "IBQ";
7260 		n = 4 * CIM_IBQ_SIZE;
7261 		buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
7262 		rc = t4_read_cim_ibq(sc, qid, buf, n);
7263 	} else {
7264 		/* outbound queue */
7265 		qtype = "OBQ";
7266 		qid -= CIM_NUM_IBQ;
7267 		n = 4 * cim_num_obq * CIM_OBQ_SIZE;
7268 		buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
7269 		rc = t4_read_cim_obq(sc, qid, buf, n);
7270 	}
7271 
7272 	if (rc < 0) {
7273 		rc = -rc;
7274 		goto done;
7275 	}
7276 	n = rc * sizeof(uint32_t);	/* rc has # of words actually read */
7277 
7278 	rc = sysctl_wire_old_buffer(req, 0);
7279 	if (rc != 0)
7280 		goto done;
7281 
7282 	sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
7283 	if (sb == NULL) {
7284 		rc = ENOMEM;
7285 		goto done;
7286 	}
7287 
7288 	sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]);
7289 	for (i = 0, p = buf; i < n; i += 16, p += 4)
7290 		sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
7291 		    p[2], p[3]);
7292 
7293 	rc = sbuf_finish(sb);
7294 	sbuf_delete(sb);
7295 done:
7296 	free(buf, M_CXGBE);
7297 	return (rc);
7298 }
7299 
7300 static void
7301 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
7302 {
7303 	uint32_t *p;
7304 
7305 	sbuf_printf(sb, "Status   Data      PC%s",
7306 	    cfg & F_UPDBGLACAPTPCONLY ? "" :
7307 	    "     LS0Stat  LS0Addr             LS0Data");
7308 
7309 	for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) {
7310 		if (cfg & F_UPDBGLACAPTPCONLY) {
7311 			sbuf_printf(sb, "\n  %02x   %08x %08x", p[5] & 0xff,
7312 			    p[6], p[7]);
7313 			sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x",
7314 			    (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
7315 			    p[4] & 0xff, p[5] >> 8);
7316 			sbuf_printf(sb, "\n  %02x   %x%07x %x%07x",
7317 			    (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
7318 			    p[1] & 0xf, p[2] >> 4);
7319 		} else {
7320 			sbuf_printf(sb,
7321 			    "\n  %02x   %x%07x %x%07x %08x %08x "
7322 			    "%08x%08x%08x%08x",
7323 			    (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
7324 			    p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
7325 			    p[6], p[7]);
7326 		}
7327 	}
7328 }
7329 
7330 static void
7331 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
7332 {
7333 	uint32_t *p;
7334 
7335 	sbuf_printf(sb, "Status   Inst    Data      PC%s",
7336 	    cfg & F_UPDBGLACAPTPCONLY ? "" :
7337 	    "     LS0Stat  LS0Addr  LS0Data  LS1Stat  LS1Addr  LS1Data");
7338 
7339 	for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) {
7340 		if (cfg & F_UPDBGLACAPTPCONLY) {
7341 			sbuf_printf(sb, "\n  %02x   %08x %08x %08x",
7342 			    p[3] & 0xff, p[2], p[1], p[0]);
7343 			sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x %02x%06x",
7344 			    (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
7345 			    p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
7346 			sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x",
7347 			    (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
7348 			    p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
7349 			    p[6] >> 16);
7350 		} else {
7351 			sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x "
7352 			    "%08x %08x %08x %08x %08x %08x",
7353 			    (p[9] >> 16) & 0xff,
7354 			    p[9] & 0xffff, p[8] >> 16,
7355 			    p[8] & 0xffff, p[7] >> 16,
7356 			    p[7] & 0xffff, p[6] >> 16,
7357 			    p[2], p[1], p[0], p[5], p[4], p[3]);
7358 		}
7359 	}
7360 }
7361 
7362 static int
7363 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags)
7364 {
7365 	uint32_t cfg, *buf;
7366 	int rc;
7367 
7368 	rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
7369 	if (rc != 0)
7370 		return (rc);
7371 
7372 	MPASS(flags == M_WAITOK || flags == M_NOWAIT);
7373 	buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
7374 	    M_ZERO | flags);
7375 	if (buf == NULL)
7376 		return (ENOMEM);
7377 
7378 	rc = -t4_cim_read_la(sc, buf, NULL);
7379 	if (rc != 0)
7380 		goto done;
7381 	if (chip_id(sc) < CHELSIO_T6)
7382 		sbuf_cim_la4(sc, sb, buf, cfg);
7383 	else
7384 		sbuf_cim_la6(sc, sb, buf, cfg);
7385 
7386 done:
7387 	free(buf, M_CXGBE);
7388 	return (rc);
7389 }
7390 
7391 static int
7392 sysctl_cim_la(SYSCTL_HANDLER_ARGS)
7393 {
7394 	struct adapter *sc = arg1;
7395 	struct sbuf *sb;
7396 	int rc;
7397 
7398 	rc = sysctl_wire_old_buffer(req, 0);
7399 	if (rc != 0)
7400 		return (rc);
7401 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7402 	if (sb == NULL)
7403 		return (ENOMEM);
7404 
7405 	rc = sbuf_cim_la(sc, sb, M_WAITOK);
7406 	if (rc == 0)
7407 		rc = sbuf_finish(sb);
7408 	sbuf_delete(sb);
7409 	return (rc);
7410 }
7411 
7412 bool
7413 t4_os_dump_cimla(struct adapter *sc, int arg, bool verbose)
7414 {
7415 	struct sbuf sb;
7416 	int rc;
7417 
7418 	if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb)
7419 		return (false);
7420 	rc = sbuf_cim_la(sc, &sb, M_NOWAIT);
7421 	if (rc == 0) {
7422 		rc = sbuf_finish(&sb);
7423 		if (rc == 0) {
7424 			log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s",
7425 		    		device_get_nameunit(sc->dev), sbuf_data(&sb));
7426 		}
7427 	}
7428 	sbuf_delete(&sb);
7429 	return (false);
7430 }
7431 
7432 static int
7433 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)
7434 {
7435 	struct adapter *sc = arg1;
7436 	u_int i;
7437 	struct sbuf *sb;
7438 	uint32_t *buf, *p;
7439 	int rc;
7440 
7441 	rc = sysctl_wire_old_buffer(req, 0);
7442 	if (rc != 0)
7443 		return (rc);
7444 
7445 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7446 	if (sb == NULL)
7447 		return (ENOMEM);
7448 
7449 	buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE,
7450 	    M_ZERO | M_WAITOK);
7451 
7452 	t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE);
7453 	p = buf;
7454 
7455 	for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
7456 		sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2],
7457 		    p[1], p[0]);
7458 	}
7459 
7460 	sbuf_printf(sb, "\n\nCnt ID Tag UE       Data       RDY VLD");
7461 	for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
7462 		sbuf_printf(sb, "\n%3u %2u  %x   %u %08x%08x  %u   %u",
7463 		    (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
7464 		    (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
7465 		    (p[1] >> 2) | ((p[2] & 3) << 30),
7466 		    (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
7467 		    p[0] & 1);
7468 	}
7469 
7470 	rc = sbuf_finish(sb);
7471 	sbuf_delete(sb);
7472 	free(buf, M_CXGBE);
7473 	return (rc);
7474 }
7475 
7476 static int
7477 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)
7478 {
7479 	struct adapter *sc = arg1;
7480 	u_int i;
7481 	struct sbuf *sb;
7482 	uint32_t *buf, *p;
7483 	int rc;
7484 
7485 	rc = sysctl_wire_old_buffer(req, 0);
7486 	if (rc != 0)
7487 		return (rc);
7488 
7489 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7490 	if (sb == NULL)
7491 		return (ENOMEM);
7492 
7493 	buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE,
7494 	    M_ZERO | M_WAITOK);
7495 
7496 	t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL);
7497 	p = buf;
7498 
7499 	sbuf_printf(sb, "Cntl ID DataBE   Addr                 Data");
7500 	for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
7501 		sbuf_printf(sb, "\n %02x  %02x  %04x  %08x %08x%08x%08x%08x",
7502 		    (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff,
7503 		    p[4], p[3], p[2], p[1], p[0]);
7504 	}
7505 
7506 	sbuf_printf(sb, "\n\nCntl ID               Data");
7507 	for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
7508 		sbuf_printf(sb, "\n %02x  %02x %08x%08x%08x%08x",
7509 		    (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]);
7510 	}
7511 
7512 	rc = sbuf_finish(sb);
7513 	sbuf_delete(sb);
7514 	free(buf, M_CXGBE);
7515 	return (rc);
7516 }
7517 
7518 static int
7519 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)
7520 {
7521 	struct adapter *sc = arg1;
7522 	struct sbuf *sb;
7523 	int rc, i;
7524 	uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
7525 	uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
7526 	uint16_t thres[CIM_NUM_IBQ];
7527 	uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr;
7528 	uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat;
7529 	u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq;
7530 
7531 	cim_num_obq = sc->chip_params->cim_num_obq;
7532 	if (is_t4(sc)) {
7533 		ibq_rdaddr = A_UP_IBQ_0_RDADDR;
7534 		obq_rdaddr = A_UP_OBQ_0_REALADDR;
7535 	} else {
7536 		ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR;
7537 		obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR;
7538 	}
7539 	nq = CIM_NUM_IBQ + cim_num_obq;
7540 
7541 	rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat);
7542 	if (rc == 0)
7543 		rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, obq_wr);
7544 	if (rc != 0)
7545 		return (rc);
7546 
7547 	t4_read_cimq_cfg(sc, base, size, thres);
7548 
7549 	rc = sysctl_wire_old_buffer(req, 0);
7550 	if (rc != 0)
7551 		return (rc);
7552 
7553 	sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
7554 	if (sb == NULL)
7555 		return (ENOMEM);
7556 
7557 	sbuf_printf(sb,
7558 	    "  Queue  Base  Size Thres  RdPtr WrPtr  SOP  EOP Avail");
7559 
7560 	for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
7561 		sbuf_printf(sb, "\n%7s %5x %5u %5u %6x  %4x %4u %4u %5u",
7562 		    qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]),
7563 		    G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
7564 		    G_QUEREMFLITS(p[2]) * 16);
7565 	for ( ; i < nq; i++, p += 4, wr += 2)
7566 		sbuf_printf(sb, "\n%7s %5x %5u %12x  %4x %4u %4u %5u", qname[i],
7567 		    base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff,
7568 		    wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
7569 		    G_QUEREMFLITS(p[2]) * 16);
7570 
7571 	rc = sbuf_finish(sb);
7572 	sbuf_delete(sb);
7573 
7574 	return (rc);
7575 }
7576 
7577 static int
7578 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)
7579 {
7580 	struct adapter *sc = arg1;
7581 	struct sbuf *sb;
7582 	int rc;
7583 	struct tp_cpl_stats stats;
7584 
7585 	rc = sysctl_wire_old_buffer(req, 0);
7586 	if (rc != 0)
7587 		return (rc);
7588 
7589 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7590 	if (sb == NULL)
7591 		return (ENOMEM);
7592 
7593 	mtx_lock(&sc->reg_lock);
7594 	t4_tp_get_cpl_stats(sc, &stats, 0);
7595 	mtx_unlock(&sc->reg_lock);
7596 
7597 	if (sc->chip_params->nchan > 2) {
7598 		sbuf_printf(sb, "                 channel 0  channel 1"
7599 		    "  channel 2  channel 3");
7600 		sbuf_printf(sb, "\nCPL requests:   %10u %10u %10u %10u",
7601 		    stats.req[0], stats.req[1], stats.req[2], stats.req[3]);
7602 		sbuf_printf(sb, "\nCPL responses:   %10u %10u %10u %10u",
7603 		    stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]);
7604 	} else {
7605 		sbuf_printf(sb, "                 channel 0  channel 1");
7606 		sbuf_printf(sb, "\nCPL requests:   %10u %10u",
7607 		    stats.req[0], stats.req[1]);
7608 		sbuf_printf(sb, "\nCPL responses:   %10u %10u",
7609 		    stats.rsp[0], stats.rsp[1]);
7610 	}
7611 
7612 	rc = sbuf_finish(sb);
7613 	sbuf_delete(sb);
7614 
7615 	return (rc);
7616 }
7617 
7618 static int
7619 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)
7620 {
7621 	struct adapter *sc = arg1;
7622 	struct sbuf *sb;
7623 	int rc;
7624 	struct tp_usm_stats stats;
7625 
7626 	rc = sysctl_wire_old_buffer(req, 0);
7627 	if (rc != 0)
7628 		return(rc);
7629 
7630 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7631 	if (sb == NULL)
7632 		return (ENOMEM);
7633 
7634 	t4_get_usm_stats(sc, &stats, 1);
7635 
7636 	sbuf_printf(sb, "Frames: %u\n", stats.frames);
7637 	sbuf_printf(sb, "Octets: %ju\n", stats.octets);
7638 	sbuf_printf(sb, "Drops:  %u", stats.drops);
7639 
7640 	rc = sbuf_finish(sb);
7641 	sbuf_delete(sb);
7642 
7643 	return (rc);
7644 }
7645 
7646 static const char * const devlog_level_strings[] = {
7647 	[FW_DEVLOG_LEVEL_EMERG]		= "EMERG",
7648 	[FW_DEVLOG_LEVEL_CRIT]		= "CRIT",
7649 	[FW_DEVLOG_LEVEL_ERR]		= "ERR",
7650 	[FW_DEVLOG_LEVEL_NOTICE]	= "NOTICE",
7651 	[FW_DEVLOG_LEVEL_INFO]		= "INFO",
7652 	[FW_DEVLOG_LEVEL_DEBUG]		= "DEBUG"
7653 };
7654 
7655 static const char * const devlog_facility_strings[] = {
7656 	[FW_DEVLOG_FACILITY_CORE]	= "CORE",
7657 	[FW_DEVLOG_FACILITY_CF]		= "CF",
7658 	[FW_DEVLOG_FACILITY_SCHED]	= "SCHED",
7659 	[FW_DEVLOG_FACILITY_TIMER]	= "TIMER",
7660 	[FW_DEVLOG_FACILITY_RES]	= "RES",
7661 	[FW_DEVLOG_FACILITY_HW]		= "HW",
7662 	[FW_DEVLOG_FACILITY_FLR]	= "FLR",
7663 	[FW_DEVLOG_FACILITY_DMAQ]	= "DMAQ",
7664 	[FW_DEVLOG_FACILITY_PHY]	= "PHY",
7665 	[FW_DEVLOG_FACILITY_MAC]	= "MAC",
7666 	[FW_DEVLOG_FACILITY_PORT]	= "PORT",
7667 	[FW_DEVLOG_FACILITY_VI]		= "VI",
7668 	[FW_DEVLOG_FACILITY_FILTER]	= "FILTER",
7669 	[FW_DEVLOG_FACILITY_ACL]	= "ACL",
7670 	[FW_DEVLOG_FACILITY_TM]		= "TM",
7671 	[FW_DEVLOG_FACILITY_QFC]	= "QFC",
7672 	[FW_DEVLOG_FACILITY_DCB]	= "DCB",
7673 	[FW_DEVLOG_FACILITY_ETH]	= "ETH",
7674 	[FW_DEVLOG_FACILITY_OFLD]	= "OFLD",
7675 	[FW_DEVLOG_FACILITY_RI]		= "RI",
7676 	[FW_DEVLOG_FACILITY_ISCSI]	= "ISCSI",
7677 	[FW_DEVLOG_FACILITY_FCOE]	= "FCOE",
7678 	[FW_DEVLOG_FACILITY_FOISCSI]	= "FOISCSI",
7679 	[FW_DEVLOG_FACILITY_FOFCOE]	= "FOFCOE",
7680 	[FW_DEVLOG_FACILITY_CHNET]	= "CHNET",
7681 };
7682 
7683 static int
7684 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags)
7685 {
7686 	int i, j, rc, nentries, first = 0;
7687 	struct devlog_params *dparams = &sc->params.devlog;
7688 	struct fw_devlog_e *buf, *e;
7689 	uint64_t ftstamp = UINT64_MAX;
7690 
7691 	if (dparams->addr == 0)
7692 		return (ENXIO);
7693 
7694 	MPASS(flags == M_WAITOK || flags == M_NOWAIT);
7695 	buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags);
7696 	if (buf == NULL)
7697 		return (ENOMEM);
7698 
7699 	rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, dparams->size);
7700 	if (rc != 0)
7701 		goto done;
7702 
7703 	nentries = dparams->size / sizeof(struct fw_devlog_e);
7704 	for (i = 0; i < nentries; i++) {
7705 		e = &buf[i];
7706 
7707 		if (e->timestamp == 0)
7708 			break;	/* end */
7709 
7710 		e->timestamp = be64toh(e->timestamp);
7711 		e->seqno = be32toh(e->seqno);
7712 		for (j = 0; j < 8; j++)
7713 			e->params[j] = be32toh(e->params[j]);
7714 
7715 		if (e->timestamp < ftstamp) {
7716 			ftstamp = e->timestamp;
7717 			first = i;
7718 		}
7719 	}
7720 
7721 	if (buf[first].timestamp == 0)
7722 		goto done;	/* nothing in the log */
7723 
7724 	sbuf_printf(sb, "%10s  %15s  %8s  %8s  %s\n",
7725 	    "Seq#", "Tstamp", "Level", "Facility", "Message");
7726 
7727 	i = first;
7728 	do {
7729 		e = &buf[i];
7730 		if (e->timestamp == 0)
7731 			break;	/* end */
7732 
7733 		sbuf_printf(sb, "%10d  %15ju  %8s  %8s  ",
7734 		    e->seqno, e->timestamp,
7735 		    (e->level < nitems(devlog_level_strings) ?
7736 			devlog_level_strings[e->level] : "UNKNOWN"),
7737 		    (e->facility < nitems(devlog_facility_strings) ?
7738 			devlog_facility_strings[e->facility] : "UNKNOWN"));
7739 		sbuf_printf(sb, e->fmt, e->params[0], e->params[1],
7740 		    e->params[2], e->params[3], e->params[4],
7741 		    e->params[5], e->params[6], e->params[7]);
7742 
7743 		if (++i == nentries)
7744 			i = 0;
7745 	} while (i != first);
7746 done:
7747 	free(buf, M_CXGBE);
7748 	return (rc);
7749 }
7750 
7751 static int
7752 sysctl_devlog(SYSCTL_HANDLER_ARGS)
7753 {
7754 	struct adapter *sc = arg1;
7755 	int rc;
7756 	struct sbuf *sb;
7757 
7758 	rc = sysctl_wire_old_buffer(req, 0);
7759 	if (rc != 0)
7760 		return (rc);
7761 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7762 	if (sb == NULL)
7763 		return (ENOMEM);
7764 
7765 	rc = sbuf_devlog(sc, sb, M_WAITOK);
7766 	if (rc == 0)
7767 		rc = sbuf_finish(sb);
7768 	sbuf_delete(sb);
7769 	return (rc);
7770 }
7771 
7772 void
7773 t4_os_dump_devlog(struct adapter *sc)
7774 {
7775 	int rc;
7776 	struct sbuf sb;
7777 
7778 	if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb)
7779 		return;
7780 	rc = sbuf_devlog(sc, &sb, M_NOWAIT);
7781 	if (rc == 0) {
7782 		rc = sbuf_finish(&sb);
7783 		if (rc == 0) {
7784 			log(LOG_DEBUG, "%s: device log follows.\n%s",
7785 		    		device_get_nameunit(sc->dev), sbuf_data(&sb));
7786 		}
7787 	}
7788 	sbuf_delete(&sb);
7789 }
7790 
7791 static int
7792 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)
7793 {
7794 	struct adapter *sc = arg1;
7795 	struct sbuf *sb;
7796 	int rc;
7797 	struct tp_fcoe_stats stats[MAX_NCHAN];
7798 	int i, nchan = sc->chip_params->nchan;
7799 
7800 	rc = sysctl_wire_old_buffer(req, 0);
7801 	if (rc != 0)
7802 		return (rc);
7803 
7804 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7805 	if (sb == NULL)
7806 		return (ENOMEM);
7807 
7808 	for (i = 0; i < nchan; i++)
7809 		t4_get_fcoe_stats(sc, i, &stats[i], 1);
7810 
7811 	if (nchan > 2) {
7812 		sbuf_printf(sb, "                   channel 0        channel 1"
7813 		    "        channel 2        channel 3");
7814 		sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju %16ju %16ju",
7815 		    stats[0].octets_ddp, stats[1].octets_ddp,
7816 		    stats[2].octets_ddp, stats[3].octets_ddp);
7817 		sbuf_printf(sb, "\nframesDDP:  %16u %16u %16u %16u",
7818 		    stats[0].frames_ddp, stats[1].frames_ddp,
7819 		    stats[2].frames_ddp, stats[3].frames_ddp);
7820 		sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u",
7821 		    stats[0].frames_drop, stats[1].frames_drop,
7822 		    stats[2].frames_drop, stats[3].frames_drop);
7823 	} else {
7824 		sbuf_printf(sb, "                   channel 0        channel 1");
7825 		sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju",
7826 		    stats[0].octets_ddp, stats[1].octets_ddp);
7827 		sbuf_printf(sb, "\nframesDDP:  %16u %16u",
7828 		    stats[0].frames_ddp, stats[1].frames_ddp);
7829 		sbuf_printf(sb, "\nframesDrop: %16u %16u",
7830 		    stats[0].frames_drop, stats[1].frames_drop);
7831 	}
7832 
7833 	rc = sbuf_finish(sb);
7834 	sbuf_delete(sb);
7835 
7836 	return (rc);
7837 }
7838 
7839 static int
7840 sysctl_hw_sched(SYSCTL_HANDLER_ARGS)
7841 {
7842 	struct adapter *sc = arg1;
7843 	struct sbuf *sb;
7844 	int rc, i;
7845 	unsigned int map, kbps, ipg, mode;
7846 	unsigned int pace_tab[NTX_SCHED];
7847 
7848 	rc = sysctl_wire_old_buffer(req, 0);
7849 	if (rc != 0)
7850 		return (rc);
7851 
7852 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
7853 	if (sb == NULL)
7854 		return (ENOMEM);
7855 
7856 	map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP);
7857 	mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG));
7858 	t4_read_pace_tbl(sc, pace_tab);
7859 
7860 	sbuf_printf(sb, "Scheduler  Mode   Channel  Rate (Kbps)   "
7861 	    "Class IPG (0.1 ns)   Flow IPG (us)");
7862 
7863 	for (i = 0; i < NTX_SCHED; ++i, map >>= 2) {
7864 		t4_get_tx_sched(sc, i, &kbps, &ipg, 1);
7865 		sbuf_printf(sb, "\n    %u      %-5s     %u     ", i,
7866 		    (mode & (1 << i)) ? "flow" : "class", map & 3);
7867 		if (kbps)
7868 			sbuf_printf(sb, "%9u     ", kbps);
7869 		else
7870 			sbuf_printf(sb, " disabled     ");
7871 
7872 		if (ipg)
7873 			sbuf_printf(sb, "%13u        ", ipg);
7874 		else
7875 			sbuf_printf(sb, "     disabled        ");
7876 
7877 		if (pace_tab[i])
7878 			sbuf_printf(sb, "%10u", pace_tab[i]);
7879 		else
7880 			sbuf_printf(sb, "  disabled");
7881 	}
7882 
7883 	rc = sbuf_finish(sb);
7884 	sbuf_delete(sb);
7885 
7886 	return (rc);
7887 }
7888 
7889 static int
7890 sysctl_lb_stats(SYSCTL_HANDLER_ARGS)
7891 {
7892 	struct adapter *sc = arg1;
7893 	struct sbuf *sb;
7894 	int rc, i, j;
7895 	uint64_t *p0, *p1;
7896 	struct lb_port_stats s[2];
7897 	static const char *stat_name[] = {
7898 		"OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:",
7899 		"UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:",
7900 		"Frames128To255:", "Frames256To511:", "Frames512To1023:",
7901 		"Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:",
7902 		"BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:",
7903 		"BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:",
7904 		"BG2FramesTrunc:", "BG3FramesTrunc:"
7905 	};
7906 
7907 	rc = sysctl_wire_old_buffer(req, 0);
7908 	if (rc != 0)
7909 		return (rc);
7910 
7911 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
7912 	if (sb == NULL)
7913 		return (ENOMEM);
7914 
7915 	memset(s, 0, sizeof(s));
7916 
7917 	for (i = 0; i < sc->chip_params->nchan; i += 2) {
7918 		t4_get_lb_stats(sc, i, &s[0]);
7919 		t4_get_lb_stats(sc, i + 1, &s[1]);
7920 
7921 		p0 = &s[0].octets;
7922 		p1 = &s[1].octets;
7923 		sbuf_printf(sb, "%s                       Loopback %u"
7924 		    "           Loopback %u", i == 0 ? "" : "\n", i, i + 1);
7925 
7926 		for (j = 0; j < nitems(stat_name); j++)
7927 			sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j],
7928 				   *p0++, *p1++);
7929 	}
7930 
7931 	rc = sbuf_finish(sb);
7932 	sbuf_delete(sb);
7933 
7934 	return (rc);
7935 }
7936 
7937 static int
7938 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)
7939 {
7940 	int rc = 0;
7941 	struct port_info *pi = arg1;
7942 	struct link_config *lc = &pi->link_cfg;
7943 	struct sbuf *sb;
7944 
7945 	rc = sysctl_wire_old_buffer(req, 0);
7946 	if (rc != 0)
7947 		return(rc);
7948 	sb = sbuf_new_for_sysctl(NULL, NULL, 64, req);
7949 	if (sb == NULL)
7950 		return (ENOMEM);
7951 
7952 	if (lc->link_ok || lc->link_down_rc == 255)
7953 		sbuf_printf(sb, "n/a");
7954 	else
7955 		sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc));
7956 
7957 	rc = sbuf_finish(sb);
7958 	sbuf_delete(sb);
7959 
7960 	return (rc);
7961 }
7962 
7963 struct mem_desc {
7964 	unsigned int base;
7965 	unsigned int limit;
7966 	unsigned int idx;
7967 };
7968 
7969 static int
7970 mem_desc_cmp(const void *a, const void *b)
7971 {
7972 	return ((const struct mem_desc *)a)->base -
7973 	       ((const struct mem_desc *)b)->base;
7974 }
7975 
7976 static void
7977 mem_region_show(struct sbuf *sb, const char *name, unsigned int from,
7978     unsigned int to)
7979 {
7980 	unsigned int size;
7981 
7982 	if (from == to)
7983 		return;
7984 
7985 	size = to - from + 1;
7986 	if (size == 0)
7987 		return;
7988 
7989 	/* XXX: need humanize_number(3) in libkern for a more readable 'size' */
7990 	sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size);
7991 }
7992 
7993 static int
7994 sysctl_meminfo(SYSCTL_HANDLER_ARGS)
7995 {
7996 	struct adapter *sc = arg1;
7997 	struct sbuf *sb;
7998 	int rc, i, n;
7999 	uint32_t lo, hi, used, alloc;
8000 	static const char *memory[] = {"EDC0:", "EDC1:", "MC:", "MC0:", "MC1:"};
8001 	static const char *region[] = {
8002 		"DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
8003 		"Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
8004 		"Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
8005 		"TDDP region:", "TPT region:", "STAG region:", "RQ region:",
8006 		"RQUDP region:", "PBL region:", "TXPBL region:",
8007 		"DBVFIFO region:", "ULPRX state:", "ULPTX state:",
8008 		"On-chip queues:", "TLS keys:",
8009 	};
8010 	struct mem_desc avail[4];
8011 	struct mem_desc mem[nitems(region) + 3];	/* up to 3 holes */
8012 	struct mem_desc *md = mem;
8013 
8014 	rc = sysctl_wire_old_buffer(req, 0);
8015 	if (rc != 0)
8016 		return (rc);
8017 
8018 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8019 	if (sb == NULL)
8020 		return (ENOMEM);
8021 
8022 	for (i = 0; i < nitems(mem); i++) {
8023 		mem[i].limit = 0;
8024 		mem[i].idx = i;
8025 	}
8026 
8027 	/* Find and sort the populated memory ranges */
8028 	i = 0;
8029 	lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
8030 	if (lo & F_EDRAM0_ENABLE) {
8031 		hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
8032 		avail[i].base = G_EDRAM0_BASE(hi) << 20;
8033 		avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20);
8034 		avail[i].idx = 0;
8035 		i++;
8036 	}
8037 	if (lo & F_EDRAM1_ENABLE) {
8038 		hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
8039 		avail[i].base = G_EDRAM1_BASE(hi) << 20;
8040 		avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20);
8041 		avail[i].idx = 1;
8042 		i++;
8043 	}
8044 	if (lo & F_EXT_MEM_ENABLE) {
8045 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
8046 		avail[i].base = G_EXT_MEM_BASE(hi) << 20;
8047 		avail[i].limit = avail[i].base +
8048 		    (G_EXT_MEM_SIZE(hi) << 20);
8049 		avail[i].idx = is_t5(sc) ? 3 : 2;	/* Call it MC0 for T5 */
8050 		i++;
8051 	}
8052 	if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) {
8053 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
8054 		avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
8055 		avail[i].limit = avail[i].base +
8056 		    (G_EXT_MEM1_SIZE(hi) << 20);
8057 		avail[i].idx = 4;
8058 		i++;
8059 	}
8060 	if (!i)                                    /* no memory available */
8061 		return 0;
8062 	qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp);
8063 
8064 	(md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR);
8065 	(md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR);
8066 	(md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR);
8067 	(md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
8068 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE);
8069 	(md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE);
8070 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE);
8071 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE);
8072 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE);
8073 
8074 	/* the next few have explicit upper bounds */
8075 	md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE);
8076 	md->limit = md->base - 1 +
8077 		    t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) *
8078 		    G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE));
8079 	md++;
8080 
8081 	md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE);
8082 	md->limit = md->base - 1 +
8083 		    t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) *
8084 		    G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE));
8085 	md++;
8086 
8087 	if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
8088 		if (chip_id(sc) <= CHELSIO_T5)
8089 			md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE);
8090 		else
8091 			md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR);
8092 		md->limit = 0;
8093 	} else {
8094 		md->base = 0;
8095 		md->idx = nitems(region);  /* hide it */
8096 	}
8097 	md++;
8098 
8099 #define ulp_region(reg) \
8100 	md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\
8101 	(md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT)
8102 
8103 	ulp_region(RX_ISCSI);
8104 	ulp_region(RX_TDDP);
8105 	ulp_region(TX_TPT);
8106 	ulp_region(RX_STAG);
8107 	ulp_region(RX_RQ);
8108 	ulp_region(RX_RQUDP);
8109 	ulp_region(RX_PBL);
8110 	ulp_region(TX_PBL);
8111 #undef ulp_region
8112 
8113 	md->base = 0;
8114 	md->idx = nitems(region);
8115 	if (!is_t4(sc)) {
8116 		uint32_t size = 0;
8117 		uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2);
8118 		uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE);
8119 
8120 		if (is_t5(sc)) {
8121 			if (sge_ctrl & F_VFIFO_ENABLE)
8122 				size = G_DBVFIFO_SIZE(fifo_size);
8123 		} else
8124 			size = G_T6_DBVFIFO_SIZE(fifo_size);
8125 
8126 		if (size) {
8127 			md->base = G_BASEADDR(t4_read_reg(sc,
8128 			    A_SGE_DBVFIFO_BADDR));
8129 			md->limit = md->base + (size << 2) - 1;
8130 		}
8131 	}
8132 	md++;
8133 
8134 	md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE);
8135 	md->limit = 0;
8136 	md++;
8137 	md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE);
8138 	md->limit = 0;
8139 	md++;
8140 
8141 	md->base = sc->vres.ocq.start;
8142 	if (sc->vres.ocq.size)
8143 		md->limit = md->base + sc->vres.ocq.size - 1;
8144 	else
8145 		md->idx = nitems(region);  /* hide it */
8146 	md++;
8147 
8148 	md->base = sc->vres.key.start;
8149 	if (sc->vres.key.size)
8150 		md->limit = md->base + sc->vres.key.size - 1;
8151 	else
8152 		md->idx = nitems(region);  /* hide it */
8153 	md++;
8154 
8155 	/* add any address-space holes, there can be up to 3 */
8156 	for (n = 0; n < i - 1; n++)
8157 		if (avail[n].limit < avail[n + 1].base)
8158 			(md++)->base = avail[n].limit;
8159 	if (avail[n].limit)
8160 		(md++)->base = avail[n].limit;
8161 
8162 	n = md - mem;
8163 	qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp);
8164 
8165 	for (lo = 0; lo < i; lo++)
8166 		mem_region_show(sb, memory[avail[lo].idx], avail[lo].base,
8167 				avail[lo].limit - 1);
8168 
8169 	sbuf_printf(sb, "\n");
8170 	for (i = 0; i < n; i++) {
8171 		if (mem[i].idx >= nitems(region))
8172 			continue;                        /* skip holes */
8173 		if (!mem[i].limit)
8174 			mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
8175 		mem_region_show(sb, region[mem[i].idx], mem[i].base,
8176 				mem[i].limit);
8177 	}
8178 
8179 	sbuf_printf(sb, "\n");
8180 	lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR);
8181 	hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1;
8182 	mem_region_show(sb, "uP RAM:", lo, hi);
8183 
8184 	lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR);
8185 	hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1;
8186 	mem_region_show(sb, "uP Extmem2:", lo, hi);
8187 
8188 	lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE);
8189 	sbuf_printf(sb, "\n%u Rx pages of size %uKiB for %u channels\n",
8190 		   G_PMRXMAXPAGE(lo),
8191 		   t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10,
8192 		   (lo & F_PMRXNUMCHN) ? 2 : 1);
8193 
8194 	lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE);
8195 	hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);
8196 	sbuf_printf(sb, "%u Tx pages of size %u%ciB for %u channels\n",
8197 		   G_PMTXMAXPAGE(lo),
8198 		   hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
8199 		   hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo));
8200 	sbuf_printf(sb, "%u p-structs\n",
8201 		   t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT));
8202 
8203 	for (i = 0; i < 4; i++) {
8204 		if (chip_id(sc) > CHELSIO_T5)
8205 			lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4);
8206 		else
8207 			lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4);
8208 		if (is_t5(sc)) {
8209 			used = G_T5_USED(lo);
8210 			alloc = G_T5_ALLOC(lo);
8211 		} else {
8212 			used = G_USED(lo);
8213 			alloc = G_ALLOC(lo);
8214 		}
8215 		/* For T6 these are MAC buffer groups */
8216 		sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated",
8217 		    i, used, alloc);
8218 	}
8219 	for (i = 0; i < sc->chip_params->nchan; i++) {
8220 		if (chip_id(sc) > CHELSIO_T5)
8221 			lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4);
8222 		else
8223 			lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4);
8224 		if (is_t5(sc)) {
8225 			used = G_T5_USED(lo);
8226 			alloc = G_T5_ALLOC(lo);
8227 		} else {
8228 			used = G_USED(lo);
8229 			alloc = G_ALLOC(lo);
8230 		}
8231 		/* For T6 these are MAC buffer groups */
8232 		sbuf_printf(sb,
8233 		    "\nLoopback %d using %u pages out of %u allocated",
8234 		    i, used, alloc);
8235 	}
8236 
8237 	rc = sbuf_finish(sb);
8238 	sbuf_delete(sb);
8239 
8240 	return (rc);
8241 }
8242 
8243 static inline void
8244 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask)
8245 {
8246 	*mask = x | y;
8247 	y = htobe64(y);
8248 	memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN);
8249 }
8250 
8251 static int
8252 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)
8253 {
8254 	struct adapter *sc = arg1;
8255 	struct sbuf *sb;
8256 	int rc, i;
8257 
8258 	MPASS(chip_id(sc) <= CHELSIO_T5);
8259 
8260 	rc = sysctl_wire_old_buffer(req, 0);
8261 	if (rc != 0)
8262 		return (rc);
8263 
8264 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8265 	if (sb == NULL)
8266 		return (ENOMEM);
8267 
8268 	sbuf_printf(sb,
8269 	    "Idx  Ethernet address     Mask     Vld Ports PF"
8270 	    "  VF              Replication             P0 P1 P2 P3  ML");
8271 	for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
8272 		uint64_t tcamx, tcamy, mask;
8273 		uint32_t cls_lo, cls_hi;
8274 		uint8_t addr[ETHER_ADDR_LEN];
8275 
8276 		tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i));
8277 		tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i));
8278 		if (tcamx & tcamy)
8279 			continue;
8280 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
8281 		cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
8282 		cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
8283 		sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx"
8284 			   "  %c   %#x%4u%4d", i, addr[0], addr[1], addr[2],
8285 			   addr[3], addr[4], addr[5], (uintmax_t)mask,
8286 			   (cls_lo & F_SRAM_VLD) ? 'Y' : 'N',
8287 			   G_PORTMAP(cls_hi), G_PF(cls_lo),
8288 			   (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1);
8289 
8290 		if (cls_lo & F_REPLICATE) {
8291 			struct fw_ldst_cmd ldst_cmd;
8292 
8293 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
8294 			ldst_cmd.op_to_addrspace =
8295 			    htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
8296 				F_FW_CMD_REQUEST | F_FW_CMD_READ |
8297 				V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
8298 			ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
8299 			ldst_cmd.u.mps.rplc.fid_idx =
8300 			    htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
8301 				V_FW_LDST_CMD_IDX(i));
8302 
8303 			rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
8304 			    "t4mps");
8305 			if (rc)
8306 				break;
8307 			rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
8308 			    sizeof(ldst_cmd), &ldst_cmd);
8309 			end_synchronized_op(sc, 0);
8310 
8311 			if (rc != 0) {
8312 				sbuf_printf(sb, "%36d", rc);
8313 				rc = 0;
8314 			} else {
8315 				sbuf_printf(sb, " %08x %08x %08x %08x",
8316 				    be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
8317 				    be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
8318 				    be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
8319 				    be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
8320 			}
8321 		} else
8322 			sbuf_printf(sb, "%36s", "");
8323 
8324 		sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo),
8325 		    G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo),
8326 		    G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf);
8327 	}
8328 
8329 	if (rc)
8330 		(void) sbuf_finish(sb);
8331 	else
8332 		rc = sbuf_finish(sb);
8333 	sbuf_delete(sb);
8334 
8335 	return (rc);
8336 }
8337 
8338 static int
8339 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)
8340 {
8341 	struct adapter *sc = arg1;
8342 	struct sbuf *sb;
8343 	int rc, i;
8344 
8345 	MPASS(chip_id(sc) > CHELSIO_T5);
8346 
8347 	rc = sysctl_wire_old_buffer(req, 0);
8348 	if (rc != 0)
8349 		return (rc);
8350 
8351 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8352 	if (sb == NULL)
8353 		return (ENOMEM);
8354 
8355 	sbuf_printf(sb, "Idx  Ethernet address     Mask       VNI   Mask"
8356 	    "   IVLAN Vld DIP_Hit   Lookup  Port Vld Ports PF  VF"
8357 	    "                           Replication"
8358 	    "                                    P0 P1 P2 P3  ML\n");
8359 
8360 	for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
8361 		uint8_t dip_hit, vlan_vld, lookup_type, port_num;
8362 		uint16_t ivlan;
8363 		uint64_t tcamx, tcamy, val, mask;
8364 		uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
8365 		uint8_t addr[ETHER_ADDR_LEN];
8366 
8367 		ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0);
8368 		if (i < 256)
8369 			ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0);
8370 		else
8371 			ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1);
8372 		t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
8373 		val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
8374 		tcamy = G_DMACH(val) << 32;
8375 		tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
8376 		data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
8377 		lookup_type = G_DATALKPTYPE(data2);
8378 		port_num = G_DATAPORTNUM(data2);
8379 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
8380 			/* Inner header VNI */
8381 			vniy = ((data2 & F_DATAVIDH2) << 23) |
8382 				       (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
8383 			dip_hit = data2 & F_DATADIPHIT;
8384 			vlan_vld = 0;
8385 		} else {
8386 			vniy = 0;
8387 			dip_hit = 0;
8388 			vlan_vld = data2 & F_DATAVIDH2;
8389 			ivlan = G_VIDL(val);
8390 		}
8391 
8392 		ctl |= V_CTLXYBITSEL(1);
8393 		t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
8394 		val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
8395 		tcamx = G_DMACH(val) << 32;
8396 		tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
8397 		data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
8398 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
8399 			/* Inner header VNI mask */
8400 			vnix = ((data2 & F_DATAVIDH2) << 23) |
8401 			       (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
8402 		} else
8403 			vnix = 0;
8404 
8405 		if (tcamx & tcamy)
8406 			continue;
8407 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
8408 
8409 		cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
8410 		cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
8411 
8412 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
8413 			sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
8414 			    "%012jx %06x %06x    -    -   %3c"
8415 			    "      'I'  %4x   %3c   %#x%4u%4d", i, addr[0],
8416 			    addr[1], addr[2], addr[3], addr[4], addr[5],
8417 			    (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
8418 			    port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
8419 			    G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
8420 			    cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
8421 		} else {
8422 			sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
8423 			    "%012jx    -       -   ", i, addr[0], addr[1],
8424 			    addr[2], addr[3], addr[4], addr[5],
8425 			    (uintmax_t)mask);
8426 
8427 			if (vlan_vld)
8428 				sbuf_printf(sb, "%4u   Y     ", ivlan);
8429 			else
8430 				sbuf_printf(sb, "  -    N     ");
8431 
8432 			sbuf_printf(sb, "-      %3c  %4x   %3c   %#x%4u%4d",
8433 			    lookup_type ? 'I' : 'O', port_num,
8434 			    cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
8435 			    G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
8436 			    cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
8437 		}
8438 
8439 
8440 		if (cls_lo & F_T6_REPLICATE) {
8441 			struct fw_ldst_cmd ldst_cmd;
8442 
8443 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
8444 			ldst_cmd.op_to_addrspace =
8445 			    htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
8446 				F_FW_CMD_REQUEST | F_FW_CMD_READ |
8447 				V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
8448 			ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
8449 			ldst_cmd.u.mps.rplc.fid_idx =
8450 			    htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
8451 				V_FW_LDST_CMD_IDX(i));
8452 
8453 			rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
8454 			    "t6mps");
8455 			if (rc)
8456 				break;
8457 			rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
8458 			    sizeof(ldst_cmd), &ldst_cmd);
8459 			end_synchronized_op(sc, 0);
8460 
8461 			if (rc != 0) {
8462 				sbuf_printf(sb, "%72d", rc);
8463 				rc = 0;
8464 			} else {
8465 				sbuf_printf(sb, " %08x %08x %08x %08x"
8466 				    " %08x %08x %08x %08x",
8467 				    be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
8468 				    be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
8469 				    be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
8470 				    be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
8471 				    be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
8472 				    be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
8473 				    be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
8474 				    be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
8475 			}
8476 		} else
8477 			sbuf_printf(sb, "%72s", "");
8478 
8479 		sbuf_printf(sb, "%4u%3u%3u%3u %#x",
8480 		    G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
8481 		    G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
8482 		    (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
8483 	}
8484 
8485 	if (rc)
8486 		(void) sbuf_finish(sb);
8487 	else
8488 		rc = sbuf_finish(sb);
8489 	sbuf_delete(sb);
8490 
8491 	return (rc);
8492 }
8493 
8494 static int
8495 sysctl_path_mtus(SYSCTL_HANDLER_ARGS)
8496 {
8497 	struct adapter *sc = arg1;
8498 	struct sbuf *sb;
8499 	int rc;
8500 	uint16_t mtus[NMTUS];
8501 
8502 	rc = sysctl_wire_old_buffer(req, 0);
8503 	if (rc != 0)
8504 		return (rc);
8505 
8506 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8507 	if (sb == NULL)
8508 		return (ENOMEM);
8509 
8510 	t4_read_mtu_tbl(sc, mtus, NULL);
8511 
8512 	sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u",
8513 	    mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6],
8514 	    mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13],
8515 	    mtus[14], mtus[15]);
8516 
8517 	rc = sbuf_finish(sb);
8518 	sbuf_delete(sb);
8519 
8520 	return (rc);
8521 }
8522 
8523 static int
8524 sysctl_pm_stats(SYSCTL_HANDLER_ARGS)
8525 {
8526 	struct adapter *sc = arg1;
8527 	struct sbuf *sb;
8528 	int rc, i;
8529 	uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS];
8530 	uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS];
8531 	static const char *tx_stats[MAX_PM_NSTATS] = {
8532 		"Read:", "Write bypass:", "Write mem:", "Bypass + mem:",
8533 		"Tx FIFO wait", NULL, "Tx latency"
8534 	};
8535 	static const char *rx_stats[MAX_PM_NSTATS] = {
8536 		"Read:", "Write bypass:", "Write mem:", "Flush:",
8537 		"Rx FIFO wait", NULL, "Rx latency"
8538 	};
8539 
8540 	rc = sysctl_wire_old_buffer(req, 0);
8541 	if (rc != 0)
8542 		return (rc);
8543 
8544 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8545 	if (sb == NULL)
8546 		return (ENOMEM);
8547 
8548 	t4_pmtx_get_stats(sc, tx_cnt, tx_cyc);
8549 	t4_pmrx_get_stats(sc, rx_cnt, rx_cyc);
8550 
8551 	sbuf_printf(sb, "                Tx pcmds             Tx bytes");
8552 	for (i = 0; i < 4; i++) {
8553 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
8554 		    tx_cyc[i]);
8555 	}
8556 
8557 	sbuf_printf(sb, "\n                Rx pcmds             Rx bytes");
8558 	for (i = 0; i < 4; i++) {
8559 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
8560 		    rx_cyc[i]);
8561 	}
8562 
8563 	if (chip_id(sc) > CHELSIO_T5) {
8564 		sbuf_printf(sb,
8565 		    "\n              Total wait      Total occupancy");
8566 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
8567 		    tx_cyc[i]);
8568 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
8569 		    rx_cyc[i]);
8570 
8571 		i += 2;
8572 		MPASS(i < nitems(tx_stats));
8573 
8574 		sbuf_printf(sb,
8575 		    "\n                   Reads           Total wait");
8576 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
8577 		    tx_cyc[i]);
8578 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
8579 		    rx_cyc[i]);
8580 	}
8581 
8582 	rc = sbuf_finish(sb);
8583 	sbuf_delete(sb);
8584 
8585 	return (rc);
8586 }
8587 
8588 static int
8589 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)
8590 {
8591 	struct adapter *sc = arg1;
8592 	struct sbuf *sb;
8593 	int rc;
8594 	struct tp_rdma_stats stats;
8595 
8596 	rc = sysctl_wire_old_buffer(req, 0);
8597 	if (rc != 0)
8598 		return (rc);
8599 
8600 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8601 	if (sb == NULL)
8602 		return (ENOMEM);
8603 
8604 	mtx_lock(&sc->reg_lock);
8605 	t4_tp_get_rdma_stats(sc, &stats, 0);
8606 	mtx_unlock(&sc->reg_lock);
8607 
8608 	sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod);
8609 	sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt);
8610 
8611 	rc = sbuf_finish(sb);
8612 	sbuf_delete(sb);
8613 
8614 	return (rc);
8615 }
8616 
8617 static int
8618 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)
8619 {
8620 	struct adapter *sc = arg1;
8621 	struct sbuf *sb;
8622 	int rc;
8623 	struct tp_tcp_stats v4, v6;
8624 
8625 	rc = sysctl_wire_old_buffer(req, 0);
8626 	if (rc != 0)
8627 		return (rc);
8628 
8629 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8630 	if (sb == NULL)
8631 		return (ENOMEM);
8632 
8633 	mtx_lock(&sc->reg_lock);
8634 	t4_tp_get_tcp_stats(sc, &v4, &v6, 0);
8635 	mtx_unlock(&sc->reg_lock);
8636 
8637 	sbuf_printf(sb,
8638 	    "                                IP                 IPv6\n");
8639 	sbuf_printf(sb, "OutRsts:      %20u %20u\n",
8640 	    v4.tcp_out_rsts, v6.tcp_out_rsts);
8641 	sbuf_printf(sb, "InSegs:       %20ju %20ju\n",
8642 	    v4.tcp_in_segs, v6.tcp_in_segs);
8643 	sbuf_printf(sb, "OutSegs:      %20ju %20ju\n",
8644 	    v4.tcp_out_segs, v6.tcp_out_segs);
8645 	sbuf_printf(sb, "RetransSegs:  %20ju %20ju",
8646 	    v4.tcp_retrans_segs, v6.tcp_retrans_segs);
8647 
8648 	rc = sbuf_finish(sb);
8649 	sbuf_delete(sb);
8650 
8651 	return (rc);
8652 }
8653 
8654 static int
8655 sysctl_tids(SYSCTL_HANDLER_ARGS)
8656 {
8657 	struct adapter *sc = arg1;
8658 	struct sbuf *sb;
8659 	int rc;
8660 	struct tid_info *t = &sc->tids;
8661 
8662 	rc = sysctl_wire_old_buffer(req, 0);
8663 	if (rc != 0)
8664 		return (rc);
8665 
8666 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8667 	if (sb == NULL)
8668 		return (ENOMEM);
8669 
8670 	if (t->natids) {
8671 		sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1,
8672 		    t->atids_in_use);
8673 	}
8674 
8675 	if (t->nhpftids) {
8676 		sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n",
8677 		    t->hpftid_base, t->hpftid_end, t->hpftids_in_use);
8678 	}
8679 
8680 	if (t->ntids) {
8681 		sbuf_printf(sb, "TID range: ");
8682 		if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
8683 			uint32_t b, hb;
8684 
8685 			if (chip_id(sc) <= CHELSIO_T5) {
8686 				b = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4;
8687 				hb = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4;
8688 			} else {
8689 				b = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX);
8690 				hb = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE);
8691 			}
8692 
8693 			if (b)
8694 				sbuf_printf(sb, "%u-%u, ", t->tid_base, b - 1);
8695 			sbuf_printf(sb, "%u-%u", hb, t->ntids - 1);
8696 		} else
8697 			sbuf_printf(sb, "%u-%u", t->tid_base, t->ntids - 1);
8698 		sbuf_printf(sb, ", in use: %u\n",
8699 		    atomic_load_acq_int(&t->tids_in_use));
8700 	}
8701 
8702 	if (t->nstids) {
8703 		sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base,
8704 		    t->stid_base + t->nstids - 1, t->stids_in_use);
8705 	}
8706 
8707 	if (t->nftids) {
8708 		sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base,
8709 		    t->ftid_end, t->ftids_in_use);
8710 	}
8711 
8712 	if (t->netids) {
8713 		sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base,
8714 		    t->etid_base + t->netids - 1, t->etids_in_use);
8715 	}
8716 
8717 	sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users",
8718 	    t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4),
8719 	    t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6));
8720 
8721 	rc = sbuf_finish(sb);
8722 	sbuf_delete(sb);
8723 
8724 	return (rc);
8725 }
8726 
8727 static int
8728 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)
8729 {
8730 	struct adapter *sc = arg1;
8731 	struct sbuf *sb;
8732 	int rc;
8733 	struct tp_err_stats stats;
8734 
8735 	rc = sysctl_wire_old_buffer(req, 0);
8736 	if (rc != 0)
8737 		return (rc);
8738 
8739 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
8740 	if (sb == NULL)
8741 		return (ENOMEM);
8742 
8743 	mtx_lock(&sc->reg_lock);
8744 	t4_tp_get_err_stats(sc, &stats, 0);
8745 	mtx_unlock(&sc->reg_lock);
8746 
8747 	if (sc->chip_params->nchan > 2) {
8748 		sbuf_printf(sb, "                 channel 0  channel 1"
8749 		    "  channel 2  channel 3\n");
8750 		sbuf_printf(sb, "macInErrs:      %10u %10u %10u %10u\n",
8751 		    stats.mac_in_errs[0], stats.mac_in_errs[1],
8752 		    stats.mac_in_errs[2], stats.mac_in_errs[3]);
8753 		sbuf_printf(sb, "hdrInErrs:      %10u %10u %10u %10u\n",
8754 		    stats.hdr_in_errs[0], stats.hdr_in_errs[1],
8755 		    stats.hdr_in_errs[2], stats.hdr_in_errs[3]);
8756 		sbuf_printf(sb, "tcpInErrs:      %10u %10u %10u %10u\n",
8757 		    stats.tcp_in_errs[0], stats.tcp_in_errs[1],
8758 		    stats.tcp_in_errs[2], stats.tcp_in_errs[3]);
8759 		sbuf_printf(sb, "tcp6InErrs:     %10u %10u %10u %10u\n",
8760 		    stats.tcp6_in_errs[0], stats.tcp6_in_errs[1],
8761 		    stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]);
8762 		sbuf_printf(sb, "tnlCongDrops:   %10u %10u %10u %10u\n",
8763 		    stats.tnl_cong_drops[0], stats.tnl_cong_drops[1],
8764 		    stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]);
8765 		sbuf_printf(sb, "tnlTxDrops:     %10u %10u %10u %10u\n",
8766 		    stats.tnl_tx_drops[0], stats.tnl_tx_drops[1],
8767 		    stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]);
8768 		sbuf_printf(sb, "ofldVlanDrops:  %10u %10u %10u %10u\n",
8769 		    stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1],
8770 		    stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]);
8771 		sbuf_printf(sb, "ofldChanDrops:  %10u %10u %10u %10u\n\n",
8772 		    stats.ofld_chan_drops[0], stats.ofld_chan_drops[1],
8773 		    stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]);
8774 	} else {
8775 		sbuf_printf(sb, "                 channel 0  channel 1\n");
8776 		sbuf_printf(sb, "macInErrs:      %10u %10u\n",
8777 		    stats.mac_in_errs[0], stats.mac_in_errs[1]);
8778 		sbuf_printf(sb, "hdrInErrs:      %10u %10u\n",
8779 		    stats.hdr_in_errs[0], stats.hdr_in_errs[1]);
8780 		sbuf_printf(sb, "tcpInErrs:      %10u %10u\n",
8781 		    stats.tcp_in_errs[0], stats.tcp_in_errs[1]);
8782 		sbuf_printf(sb, "tcp6InErrs:     %10u %10u\n",
8783 		    stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]);
8784 		sbuf_printf(sb, "tnlCongDrops:   %10u %10u\n",
8785 		    stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]);
8786 		sbuf_printf(sb, "tnlTxDrops:     %10u %10u\n",
8787 		    stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]);
8788 		sbuf_printf(sb, "ofldVlanDrops:  %10u %10u\n",
8789 		    stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]);
8790 		sbuf_printf(sb, "ofldChanDrops:  %10u %10u\n\n",
8791 		    stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]);
8792 	}
8793 
8794 	sbuf_printf(sb, "ofldNoNeigh:    %u\nofldCongDefer:  %u",
8795 	    stats.ofld_no_neigh, stats.ofld_cong_defer);
8796 
8797 	rc = sbuf_finish(sb);
8798 	sbuf_delete(sb);
8799 
8800 	return (rc);
8801 }
8802 
8803 static int
8804 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)
8805 {
8806 	struct adapter *sc = arg1;
8807 	struct tp_params *tpp = &sc->params.tp;
8808 	u_int mask;
8809 	int rc;
8810 
8811 	mask = tpp->la_mask >> 16;
8812 	rc = sysctl_handle_int(oidp, &mask, 0, req);
8813 	if (rc != 0 || req->newptr == NULL)
8814 		return (rc);
8815 	if (mask > 0xffff)
8816 		return (EINVAL);
8817 	tpp->la_mask = mask << 16;
8818 	t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, tpp->la_mask);
8819 
8820 	return (0);
8821 }
8822 
8823 struct field_desc {
8824 	const char *name;
8825 	u_int start;
8826 	u_int width;
8827 };
8828 
8829 static void
8830 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f)
8831 {
8832 	char buf[32];
8833 	int line_size = 0;
8834 
8835 	while (f->name) {
8836 		uint64_t mask = (1ULL << f->width) - 1;
8837 		int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name,
8838 		    ((uintmax_t)v >> f->start) & mask);
8839 
8840 		if (line_size + len >= 79) {
8841 			line_size = 8;
8842 			sbuf_printf(sb, "\n        ");
8843 		}
8844 		sbuf_printf(sb, "%s ", buf);
8845 		line_size += len + 1;
8846 		f++;
8847 	}
8848 	sbuf_printf(sb, "\n");
8849 }
8850 
8851 static const struct field_desc tp_la0[] = {
8852 	{ "RcfOpCodeOut", 60, 4 },
8853 	{ "State", 56, 4 },
8854 	{ "WcfState", 52, 4 },
8855 	{ "RcfOpcSrcOut", 50, 2 },
8856 	{ "CRxError", 49, 1 },
8857 	{ "ERxError", 48, 1 },
8858 	{ "SanityFailed", 47, 1 },
8859 	{ "SpuriousMsg", 46, 1 },
8860 	{ "FlushInputMsg", 45, 1 },
8861 	{ "FlushInputCpl", 44, 1 },
8862 	{ "RssUpBit", 43, 1 },
8863 	{ "RssFilterHit", 42, 1 },
8864 	{ "Tid", 32, 10 },
8865 	{ "InitTcb", 31, 1 },
8866 	{ "LineNumber", 24, 7 },
8867 	{ "Emsg", 23, 1 },
8868 	{ "EdataOut", 22, 1 },
8869 	{ "Cmsg", 21, 1 },
8870 	{ "CdataOut", 20, 1 },
8871 	{ "EreadPdu", 19, 1 },
8872 	{ "CreadPdu", 18, 1 },
8873 	{ "TunnelPkt", 17, 1 },
8874 	{ "RcfPeerFin", 16, 1 },
8875 	{ "RcfReasonOut", 12, 4 },
8876 	{ "TxCchannel", 10, 2 },
8877 	{ "RcfTxChannel", 8, 2 },
8878 	{ "RxEchannel", 6, 2 },
8879 	{ "RcfRxChannel", 5, 1 },
8880 	{ "RcfDataOutSrdy", 4, 1 },
8881 	{ "RxDvld", 3, 1 },
8882 	{ "RxOoDvld", 2, 1 },
8883 	{ "RxCongestion", 1, 1 },
8884 	{ "TxCongestion", 0, 1 },
8885 	{ NULL }
8886 };
8887 
8888 static const struct field_desc tp_la1[] = {
8889 	{ "CplCmdIn", 56, 8 },
8890 	{ "CplCmdOut", 48, 8 },
8891 	{ "ESynOut", 47, 1 },
8892 	{ "EAckOut", 46, 1 },
8893 	{ "EFinOut", 45, 1 },
8894 	{ "ERstOut", 44, 1 },
8895 	{ "SynIn", 43, 1 },
8896 	{ "AckIn", 42, 1 },
8897 	{ "FinIn", 41, 1 },
8898 	{ "RstIn", 40, 1 },
8899 	{ "DataIn", 39, 1 },
8900 	{ "DataInVld", 38, 1 },
8901 	{ "PadIn", 37, 1 },
8902 	{ "RxBufEmpty", 36, 1 },
8903 	{ "RxDdp", 35, 1 },
8904 	{ "RxFbCongestion", 34, 1 },
8905 	{ "TxFbCongestion", 33, 1 },
8906 	{ "TxPktSumSrdy", 32, 1 },
8907 	{ "RcfUlpType", 28, 4 },
8908 	{ "Eread", 27, 1 },
8909 	{ "Ebypass", 26, 1 },
8910 	{ "Esave", 25, 1 },
8911 	{ "Static0", 24, 1 },
8912 	{ "Cread", 23, 1 },
8913 	{ "Cbypass", 22, 1 },
8914 	{ "Csave", 21, 1 },
8915 	{ "CPktOut", 20, 1 },
8916 	{ "RxPagePoolFull", 18, 2 },
8917 	{ "RxLpbkPkt", 17, 1 },
8918 	{ "TxLpbkPkt", 16, 1 },
8919 	{ "RxVfValid", 15, 1 },
8920 	{ "SynLearned", 14, 1 },
8921 	{ "SetDelEntry", 13, 1 },
8922 	{ "SetInvEntry", 12, 1 },
8923 	{ "CpcmdDvld", 11, 1 },
8924 	{ "CpcmdSave", 10, 1 },
8925 	{ "RxPstructsFull", 8, 2 },
8926 	{ "EpcmdDvld", 7, 1 },
8927 	{ "EpcmdFlush", 6, 1 },
8928 	{ "EpcmdTrimPrefix", 5, 1 },
8929 	{ "EpcmdTrimPostfix", 4, 1 },
8930 	{ "ERssIp4Pkt", 3, 1 },
8931 	{ "ERssIp6Pkt", 2, 1 },
8932 	{ "ERssTcpUdpPkt", 1, 1 },
8933 	{ "ERssFceFipPkt", 0, 1 },
8934 	{ NULL }
8935 };
8936 
8937 static const struct field_desc tp_la2[] = {
8938 	{ "CplCmdIn", 56, 8 },
8939 	{ "MpsVfVld", 55, 1 },
8940 	{ "MpsPf", 52, 3 },
8941 	{ "MpsVf", 44, 8 },
8942 	{ "SynIn", 43, 1 },
8943 	{ "AckIn", 42, 1 },
8944 	{ "FinIn", 41, 1 },
8945 	{ "RstIn", 40, 1 },
8946 	{ "DataIn", 39, 1 },
8947 	{ "DataInVld", 38, 1 },
8948 	{ "PadIn", 37, 1 },
8949 	{ "RxBufEmpty", 36, 1 },
8950 	{ "RxDdp", 35, 1 },
8951 	{ "RxFbCongestion", 34, 1 },
8952 	{ "TxFbCongestion", 33, 1 },
8953 	{ "TxPktSumSrdy", 32, 1 },
8954 	{ "RcfUlpType", 28, 4 },
8955 	{ "Eread", 27, 1 },
8956 	{ "Ebypass", 26, 1 },
8957 	{ "Esave", 25, 1 },
8958 	{ "Static0", 24, 1 },
8959 	{ "Cread", 23, 1 },
8960 	{ "Cbypass", 22, 1 },
8961 	{ "Csave", 21, 1 },
8962 	{ "CPktOut", 20, 1 },
8963 	{ "RxPagePoolFull", 18, 2 },
8964 	{ "RxLpbkPkt", 17, 1 },
8965 	{ "TxLpbkPkt", 16, 1 },
8966 	{ "RxVfValid", 15, 1 },
8967 	{ "SynLearned", 14, 1 },
8968 	{ "SetDelEntry", 13, 1 },
8969 	{ "SetInvEntry", 12, 1 },
8970 	{ "CpcmdDvld", 11, 1 },
8971 	{ "CpcmdSave", 10, 1 },
8972 	{ "RxPstructsFull", 8, 2 },
8973 	{ "EpcmdDvld", 7, 1 },
8974 	{ "EpcmdFlush", 6, 1 },
8975 	{ "EpcmdTrimPrefix", 5, 1 },
8976 	{ "EpcmdTrimPostfix", 4, 1 },
8977 	{ "ERssIp4Pkt", 3, 1 },
8978 	{ "ERssIp6Pkt", 2, 1 },
8979 	{ "ERssTcpUdpPkt", 1, 1 },
8980 	{ "ERssFceFipPkt", 0, 1 },
8981 	{ NULL }
8982 };
8983 
8984 static void
8985 tp_la_show(struct sbuf *sb, uint64_t *p, int idx)
8986 {
8987 
8988 	field_desc_show(sb, *p, tp_la0);
8989 }
8990 
8991 static void
8992 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx)
8993 {
8994 
8995 	if (idx)
8996 		sbuf_printf(sb, "\n");
8997 	field_desc_show(sb, p[0], tp_la0);
8998 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
8999 		field_desc_show(sb, p[1], tp_la0);
9000 }
9001 
9002 static void
9003 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx)
9004 {
9005 
9006 	if (idx)
9007 		sbuf_printf(sb, "\n");
9008 	field_desc_show(sb, p[0], tp_la0);
9009 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
9010 		field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1);
9011 }
9012 
9013 static int
9014 sysctl_tp_la(SYSCTL_HANDLER_ARGS)
9015 {
9016 	struct adapter *sc = arg1;
9017 	struct sbuf *sb;
9018 	uint64_t *buf, *p;
9019 	int rc;
9020 	u_int i, inc;
9021 	void (*show_func)(struct sbuf *, uint64_t *, int);
9022 
9023 	rc = sysctl_wire_old_buffer(req, 0);
9024 	if (rc != 0)
9025 		return (rc);
9026 
9027 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9028 	if (sb == NULL)
9029 		return (ENOMEM);
9030 
9031 	buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK);
9032 
9033 	t4_tp_read_la(sc, buf, NULL);
9034 	p = buf;
9035 
9036 	switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) {
9037 	case 2:
9038 		inc = 2;
9039 		show_func = tp_la_show2;
9040 		break;
9041 	case 3:
9042 		inc = 2;
9043 		show_func = tp_la_show3;
9044 		break;
9045 	default:
9046 		inc = 1;
9047 		show_func = tp_la_show;
9048 	}
9049 
9050 	for (i = 0; i < TPLA_SIZE / inc; i++, p += inc)
9051 		(*show_func)(sb, p, i);
9052 
9053 	rc = sbuf_finish(sb);
9054 	sbuf_delete(sb);
9055 	free(buf, M_CXGBE);
9056 	return (rc);
9057 }
9058 
9059 static int
9060 sysctl_tx_rate(SYSCTL_HANDLER_ARGS)
9061 {
9062 	struct adapter *sc = arg1;
9063 	struct sbuf *sb;
9064 	int rc;
9065 	u64 nrate[MAX_NCHAN], orate[MAX_NCHAN];
9066 
9067 	rc = sysctl_wire_old_buffer(req, 0);
9068 	if (rc != 0)
9069 		return (rc);
9070 
9071 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9072 	if (sb == NULL)
9073 		return (ENOMEM);
9074 
9075 	t4_get_chan_txrate(sc, nrate, orate);
9076 
9077 	if (sc->chip_params->nchan > 2) {
9078 		sbuf_printf(sb, "              channel 0   channel 1"
9079 		    "   channel 2   channel 3\n");
9080 		sbuf_printf(sb, "NIC B/s:     %10ju  %10ju  %10ju  %10ju\n",
9081 		    nrate[0], nrate[1], nrate[2], nrate[3]);
9082 		sbuf_printf(sb, "Offload B/s: %10ju  %10ju  %10ju  %10ju",
9083 		    orate[0], orate[1], orate[2], orate[3]);
9084 	} else {
9085 		sbuf_printf(sb, "              channel 0   channel 1\n");
9086 		sbuf_printf(sb, "NIC B/s:     %10ju  %10ju\n",
9087 		    nrate[0], nrate[1]);
9088 		sbuf_printf(sb, "Offload B/s: %10ju  %10ju",
9089 		    orate[0], orate[1]);
9090 	}
9091 
9092 	rc = sbuf_finish(sb);
9093 	sbuf_delete(sb);
9094 
9095 	return (rc);
9096 }
9097 
9098 static int
9099 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)
9100 {
9101 	struct adapter *sc = arg1;
9102 	struct sbuf *sb;
9103 	uint32_t *buf, *p;
9104 	int rc, i;
9105 
9106 	rc = sysctl_wire_old_buffer(req, 0);
9107 	if (rc != 0)
9108 		return (rc);
9109 
9110 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9111 	if (sb == NULL)
9112 		return (ENOMEM);
9113 
9114 	buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE,
9115 	    M_ZERO | M_WAITOK);
9116 
9117 	t4_ulprx_read_la(sc, buf);
9118 	p = buf;
9119 
9120 	sbuf_printf(sb, "      Pcmd        Type   Message"
9121 	    "                Data");
9122 	for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) {
9123 		sbuf_printf(sb, "\n%08x%08x  %4x  %08x  %08x%08x%08x%08x",
9124 		    p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
9125 	}
9126 
9127 	rc = sbuf_finish(sb);
9128 	sbuf_delete(sb);
9129 	free(buf, M_CXGBE);
9130 	return (rc);
9131 }
9132 
9133 static int
9134 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)
9135 {
9136 	struct adapter *sc = arg1;
9137 	struct sbuf *sb;
9138 	int rc, v;
9139 
9140 	MPASS(chip_id(sc) >= CHELSIO_T5);
9141 
9142 	rc = sysctl_wire_old_buffer(req, 0);
9143 	if (rc != 0)
9144 		return (rc);
9145 
9146 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9147 	if (sb == NULL)
9148 		return (ENOMEM);
9149 
9150 	v = t4_read_reg(sc, A_SGE_STAT_CFG);
9151 	if (G_STATSOURCE_T5(v) == 7) {
9152 		int mode;
9153 
9154 		mode = is_t5(sc) ? G_STATMODE(v) : G_T6_STATMODE(v);
9155 		if (mode == 0) {
9156 			sbuf_printf(sb, "total %d, incomplete %d",
9157 			    t4_read_reg(sc, A_SGE_STAT_TOTAL),
9158 			    t4_read_reg(sc, A_SGE_STAT_MATCH));
9159 		} else if (mode == 1) {
9160 			sbuf_printf(sb, "total %d, data overflow %d",
9161 			    t4_read_reg(sc, A_SGE_STAT_TOTAL),
9162 			    t4_read_reg(sc, A_SGE_STAT_MATCH));
9163 		} else {
9164 			sbuf_printf(sb, "unknown mode %d", mode);
9165 		}
9166 	}
9167 	rc = sbuf_finish(sb);
9168 	sbuf_delete(sb);
9169 
9170 	return (rc);
9171 }
9172 
9173 static int
9174 sysctl_cpus(SYSCTL_HANDLER_ARGS)
9175 {
9176 	struct adapter *sc = arg1;
9177 	enum cpu_sets op = arg2;
9178 	cpuset_t cpuset;
9179 	struct sbuf *sb;
9180 	int i, rc;
9181 
9182 	MPASS(op == LOCAL_CPUS || op == INTR_CPUS);
9183 
9184 	CPU_ZERO(&cpuset);
9185 	rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset);
9186 	if (rc != 0)
9187 		return (rc);
9188 
9189 	rc = sysctl_wire_old_buffer(req, 0);
9190 	if (rc != 0)
9191 		return (rc);
9192 
9193 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9194 	if (sb == NULL)
9195 		return (ENOMEM);
9196 
9197 	CPU_FOREACH(i)
9198 		sbuf_printf(sb, "%d ", i);
9199 	rc = sbuf_finish(sb);
9200 	sbuf_delete(sb);
9201 
9202 	return (rc);
9203 }
9204 
9205 #ifdef TCP_OFFLOAD
9206 static int
9207 sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS)
9208 {
9209 	struct adapter *sc = arg1;
9210 	int *old_ports, *new_ports;
9211 	int i, new_count, rc;
9212 
9213 	if (req->newptr == NULL && req->oldptr == NULL)
9214 		return (SYSCTL_OUT(req, NULL, imax(sc->tt.num_tls_rx_ports, 1) *
9215 		    sizeof(sc->tt.tls_rx_ports[0])));
9216 
9217 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tlsrx");
9218 	if (rc)
9219 		return (rc);
9220 
9221 	if (sc->tt.num_tls_rx_ports == 0) {
9222 		i = -1;
9223 		rc = SYSCTL_OUT(req, &i, sizeof(i));
9224 	} else
9225 		rc = SYSCTL_OUT(req, sc->tt.tls_rx_ports,
9226 		    sc->tt.num_tls_rx_ports * sizeof(sc->tt.tls_rx_ports[0]));
9227 	if (rc == 0 && req->newptr != NULL) {
9228 		new_count = req->newlen / sizeof(new_ports[0]);
9229 		new_ports = malloc(new_count * sizeof(new_ports[0]), M_CXGBE,
9230 		    M_WAITOK);
9231 		rc = SYSCTL_IN(req, new_ports, new_count *
9232 		    sizeof(new_ports[0]));
9233 		if (rc)
9234 			goto err;
9235 
9236 		/* Allow setting to a single '-1' to clear the list. */
9237 		if (new_count == 1 && new_ports[0] == -1) {
9238 			ADAPTER_LOCK(sc);
9239 			old_ports = sc->tt.tls_rx_ports;
9240 			sc->tt.tls_rx_ports = NULL;
9241 			sc->tt.num_tls_rx_ports = 0;
9242 			ADAPTER_UNLOCK(sc);
9243 			free(old_ports, M_CXGBE);
9244 		} else {
9245 			for (i = 0; i < new_count; i++) {
9246 				if (new_ports[i] < 1 ||
9247 				    new_ports[i] > IPPORT_MAX) {
9248 					rc = EINVAL;
9249 					goto err;
9250 				}
9251 			}
9252 
9253 			ADAPTER_LOCK(sc);
9254 			old_ports = sc->tt.tls_rx_ports;
9255 			sc->tt.tls_rx_ports = new_ports;
9256 			sc->tt.num_tls_rx_ports = new_count;
9257 			ADAPTER_UNLOCK(sc);
9258 			free(old_ports, M_CXGBE);
9259 			new_ports = NULL;
9260 		}
9261 	err:
9262 		free(new_ports, M_CXGBE);
9263 	}
9264 	end_synchronized_op(sc, 0);
9265 	return (rc);
9266 }
9267 
9268 static void
9269 unit_conv(char *buf, size_t len, u_int val, u_int factor)
9270 {
9271 	u_int rem = val % factor;
9272 
9273 	if (rem == 0)
9274 		snprintf(buf, len, "%u", val / factor);
9275 	else {
9276 		while (rem % 10 == 0)
9277 			rem /= 10;
9278 		snprintf(buf, len, "%u.%u", val / factor, rem);
9279 	}
9280 }
9281 
9282 static int
9283 sysctl_tp_tick(SYSCTL_HANDLER_ARGS)
9284 {
9285 	struct adapter *sc = arg1;
9286 	char buf[16];
9287 	u_int res, re;
9288 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
9289 
9290 	res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
9291 	switch (arg2) {
9292 	case 0:
9293 		/* timer_tick */
9294 		re = G_TIMERRESOLUTION(res);
9295 		break;
9296 	case 1:
9297 		/* TCP timestamp tick */
9298 		re = G_TIMESTAMPRESOLUTION(res);
9299 		break;
9300 	case 2:
9301 		/* DACK tick */
9302 		re = G_DELAYEDACKRESOLUTION(res);
9303 		break;
9304 	default:
9305 		return (EDOOFUS);
9306 	}
9307 
9308 	unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000);
9309 
9310 	return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
9311 }
9312 
9313 static int
9314 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)
9315 {
9316 	struct adapter *sc = arg1;
9317 	u_int res, dack_re, v;
9318 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
9319 
9320 	res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
9321 	dack_re = G_DELAYEDACKRESOLUTION(res);
9322 	v = ((cclk_ps << dack_re) / 1000000) * t4_read_reg(sc, A_TP_DACK_TIMER);
9323 
9324 	return (sysctl_handle_int(oidp, &v, 0, req));
9325 }
9326 
9327 static int
9328 sysctl_tp_timer(SYSCTL_HANDLER_ARGS)
9329 {
9330 	struct adapter *sc = arg1;
9331 	int reg = arg2;
9332 	u_int tre;
9333 	u_long tp_tick_us, v;
9334 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
9335 
9336 	MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX ||
9337 	    reg == A_TP_PERS_MIN  || reg == A_TP_PERS_MAX ||
9338 	    reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL ||
9339 	    reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER);
9340 
9341 	tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION));
9342 	tp_tick_us = (cclk_ps << tre) / 1000000;
9343 
9344 	if (reg == A_TP_INIT_SRTT)
9345 		v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg));
9346 	else
9347 		v = tp_tick_us * t4_read_reg(sc, reg);
9348 
9349 	return (sysctl_handle_long(oidp, &v, 0, req));
9350 }
9351 
9352 /*
9353  * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is
9354  * passed to this function.
9355  */
9356 static int
9357 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)
9358 {
9359 	struct adapter *sc = arg1;
9360 	int idx = arg2;
9361 	u_int v;
9362 
9363 	MPASS(idx >= 0 && idx <= 24);
9364 
9365 	v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf;
9366 
9367 	return (sysctl_handle_int(oidp, &v, 0, req));
9368 }
9369 
9370 static int
9371 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)
9372 {
9373 	struct adapter *sc = arg1;
9374 	int idx = arg2;
9375 	u_int shift, v, r;
9376 
9377 	MPASS(idx >= 0 && idx < 16);
9378 
9379 	r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3);
9380 	shift = (idx & 3) << 3;
9381 	v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0;
9382 
9383 	return (sysctl_handle_int(oidp, &v, 0, req));
9384 }
9385 
9386 static int
9387 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)
9388 {
9389 	struct vi_info *vi = arg1;
9390 	struct adapter *sc = vi->pi->adapter;
9391 	int idx, rc, i;
9392 	struct sge_ofld_rxq *ofld_rxq;
9393 	uint8_t v;
9394 
9395 	idx = vi->ofld_tmr_idx;
9396 
9397 	rc = sysctl_handle_int(oidp, &idx, 0, req);
9398 	if (rc != 0 || req->newptr == NULL)
9399 		return (rc);
9400 
9401 	if (idx < 0 || idx >= SGE_NTIMERS)
9402 		return (EINVAL);
9403 
9404 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
9405 	    "t4otmr");
9406 	if (rc)
9407 		return (rc);
9408 
9409 	v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1);
9410 	for_each_ofld_rxq(vi, i, ofld_rxq) {
9411 #ifdef atomic_store_rel_8
9412 		atomic_store_rel_8(&ofld_rxq->iq.intr_params, v);
9413 #else
9414 		ofld_rxq->iq.intr_params = v;
9415 #endif
9416 	}
9417 	vi->ofld_tmr_idx = idx;
9418 
9419 	end_synchronized_op(sc, LOCK_HELD);
9420 	return (0);
9421 }
9422 
9423 static int
9424 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)
9425 {
9426 	struct vi_info *vi = arg1;
9427 	struct adapter *sc = vi->pi->adapter;
9428 	int idx, rc;
9429 
9430 	idx = vi->ofld_pktc_idx;
9431 
9432 	rc = sysctl_handle_int(oidp, &idx, 0, req);
9433 	if (rc != 0 || req->newptr == NULL)
9434 		return (rc);
9435 
9436 	if (idx < -1 || idx >= SGE_NCOUNTERS)
9437 		return (EINVAL);
9438 
9439 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
9440 	    "t4opktc");
9441 	if (rc)
9442 		return (rc);
9443 
9444 	if (vi->flags & VI_INIT_DONE)
9445 		rc = EBUSY; /* cannot be changed once the queues are created */
9446 	else
9447 		vi->ofld_pktc_idx = idx;
9448 
9449 	end_synchronized_op(sc, LOCK_HELD);
9450 	return (rc);
9451 }
9452 #endif
9453 
9454 static int
9455 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt)
9456 {
9457 	int rc;
9458 
9459 	if (cntxt->cid > M_CTXTQID)
9460 		return (EINVAL);
9461 
9462 	if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS &&
9463 	    cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM)
9464 		return (EINVAL);
9465 
9466 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt");
9467 	if (rc)
9468 		return (rc);
9469 
9470 	if (sc->flags & FW_OK) {
9471 		rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id,
9472 		    &cntxt->data[0]);
9473 		if (rc == 0)
9474 			goto done;
9475 	}
9476 
9477 	/*
9478 	 * Read via firmware failed or wasn't even attempted.  Read directly via
9479 	 * the backdoor.
9480 	 */
9481 	rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]);
9482 done:
9483 	end_synchronized_op(sc, 0);
9484 	return (rc);
9485 }
9486 
9487 static int
9488 load_fw(struct adapter *sc, struct t4_data *fw)
9489 {
9490 	int rc;
9491 	uint8_t *fw_data;
9492 
9493 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw");
9494 	if (rc)
9495 		return (rc);
9496 
9497 	/*
9498 	 * The firmware, with the sole exception of the memory parity error
9499 	 * handler, runs from memory and not flash.  It is almost always safe to
9500 	 * install a new firmware on a running system.  Just set bit 1 in
9501 	 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first.
9502 	 */
9503 	if (sc->flags & FULL_INIT_DONE &&
9504 	    (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) {
9505 		rc = EBUSY;
9506 		goto done;
9507 	}
9508 
9509 	fw_data = malloc(fw->len, M_CXGBE, M_WAITOK);
9510 	if (fw_data == NULL) {
9511 		rc = ENOMEM;
9512 		goto done;
9513 	}
9514 
9515 	rc = copyin(fw->data, fw_data, fw->len);
9516 	if (rc == 0)
9517 		rc = -t4_load_fw(sc, fw_data, fw->len);
9518 
9519 	free(fw_data, M_CXGBE);
9520 done:
9521 	end_synchronized_op(sc, 0);
9522 	return (rc);
9523 }
9524 
9525 static int
9526 load_cfg(struct adapter *sc, struct t4_data *cfg)
9527 {
9528 	int rc;
9529 	uint8_t *cfg_data = NULL;
9530 
9531 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
9532 	if (rc)
9533 		return (rc);
9534 
9535 	if (cfg->len == 0) {
9536 		/* clear */
9537 		rc = -t4_load_cfg(sc, NULL, 0);
9538 		goto done;
9539 	}
9540 
9541 	cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK);
9542 	if (cfg_data == NULL) {
9543 		rc = ENOMEM;
9544 		goto done;
9545 	}
9546 
9547 	rc = copyin(cfg->data, cfg_data, cfg->len);
9548 	if (rc == 0)
9549 		rc = -t4_load_cfg(sc, cfg_data, cfg->len);
9550 
9551 	free(cfg_data, M_CXGBE);
9552 done:
9553 	end_synchronized_op(sc, 0);
9554 	return (rc);
9555 }
9556 
9557 static int
9558 load_boot(struct adapter *sc, struct t4_bootrom *br)
9559 {
9560 	int rc;
9561 	uint8_t *br_data = NULL;
9562 	u_int offset;
9563 
9564 	if (br->len > 1024 * 1024)
9565 		return (EFBIG);
9566 
9567 	if (br->pf_offset == 0) {
9568 		/* pfidx */
9569 		if (br->pfidx_addr > 7)
9570 			return (EINVAL);
9571 		offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr,
9572 		    A_PCIE_PF_EXPROM_OFST)));
9573 	} else if (br->pf_offset == 1) {
9574 		/* offset */
9575 		offset = G_OFFSET(br->pfidx_addr);
9576 	} else {
9577 		return (EINVAL);
9578 	}
9579 
9580 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr");
9581 	if (rc)
9582 		return (rc);
9583 
9584 	if (br->len == 0) {
9585 		/* clear */
9586 		rc = -t4_load_boot(sc, NULL, offset, 0);
9587 		goto done;
9588 	}
9589 
9590 	br_data = malloc(br->len, M_CXGBE, M_WAITOK);
9591 	if (br_data == NULL) {
9592 		rc = ENOMEM;
9593 		goto done;
9594 	}
9595 
9596 	rc = copyin(br->data, br_data, br->len);
9597 	if (rc == 0)
9598 		rc = -t4_load_boot(sc, br_data, offset, br->len);
9599 
9600 	free(br_data, M_CXGBE);
9601 done:
9602 	end_synchronized_op(sc, 0);
9603 	return (rc);
9604 }
9605 
9606 static int
9607 load_bootcfg(struct adapter *sc, struct t4_data *bc)
9608 {
9609 	int rc;
9610 	uint8_t *bc_data = NULL;
9611 
9612 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
9613 	if (rc)
9614 		return (rc);
9615 
9616 	if (bc->len == 0) {
9617 		/* clear */
9618 		rc = -t4_load_bootcfg(sc, NULL, 0);
9619 		goto done;
9620 	}
9621 
9622 	bc_data = malloc(bc->len, M_CXGBE, M_WAITOK);
9623 	if (bc_data == NULL) {
9624 		rc = ENOMEM;
9625 		goto done;
9626 	}
9627 
9628 	rc = copyin(bc->data, bc_data, bc->len);
9629 	if (rc == 0)
9630 		rc = -t4_load_bootcfg(sc, bc_data, bc->len);
9631 
9632 	free(bc_data, M_CXGBE);
9633 done:
9634 	end_synchronized_op(sc, 0);
9635 	return (rc);
9636 }
9637 
9638 static int
9639 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump)
9640 {
9641 	int rc;
9642 	struct cudbg_init *cudbg;
9643 	void *handle, *buf;
9644 
9645 	/* buf is large, don't block if no memory is available */
9646 	buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO);
9647 	if (buf == NULL)
9648 		return (ENOMEM);
9649 
9650 	handle = cudbg_alloc_handle();
9651 	if (handle == NULL) {
9652 		rc = ENOMEM;
9653 		goto done;
9654 	}
9655 
9656 	cudbg = cudbg_get_init(handle);
9657 	cudbg->adap = sc;
9658 	cudbg->print = (cudbg_print_cb)printf;
9659 
9660 #ifndef notyet
9661 	device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n",
9662 	    __func__, dump->wr_flash, dump->len, dump->data);
9663 #endif
9664 
9665 	if (dump->wr_flash)
9666 		cudbg->use_flash = 1;
9667 	MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap));
9668 	memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap));
9669 
9670 	rc = cudbg_collect(handle, buf, &dump->len);
9671 	if (rc != 0)
9672 		goto done;
9673 
9674 	rc = copyout(buf, dump->data, dump->len);
9675 done:
9676 	cudbg_free_handle(handle);
9677 	free(buf, M_CXGBE);
9678 	return (rc);
9679 }
9680 
9681 static void
9682 free_offload_policy(struct t4_offload_policy *op)
9683 {
9684 	struct offload_rule *r;
9685 	int i;
9686 
9687 	if (op == NULL)
9688 		return;
9689 
9690 	r = &op->rule[0];
9691 	for (i = 0; i < op->nrules; i++, r++) {
9692 		free(r->bpf_prog.bf_insns, M_CXGBE);
9693 	}
9694 	free(op->rule, M_CXGBE);
9695 	free(op, M_CXGBE);
9696 }
9697 
9698 static int
9699 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop)
9700 {
9701 	int i, rc, len;
9702 	struct t4_offload_policy *op, *old;
9703 	struct bpf_program *bf;
9704 	const struct offload_settings *s;
9705 	struct offload_rule *r;
9706 	void *u;
9707 
9708 	if (!is_offload(sc))
9709 		return (ENODEV);
9710 
9711 	if (uop->nrules == 0) {
9712 		/* Delete installed policies. */
9713 		op = NULL;
9714 		goto set_policy;
9715 	} else if (uop->nrules > 256) { /* arbitrary */
9716 		return (E2BIG);
9717 	}
9718 
9719 	/* Copy userspace offload policy to kernel */
9720 	op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK);
9721 	op->nrules = uop->nrules;
9722 	len = op->nrules * sizeof(struct offload_rule);
9723 	op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
9724 	rc = copyin(uop->rule, op->rule, len);
9725 	if (rc) {
9726 		free(op->rule, M_CXGBE);
9727 		free(op, M_CXGBE);
9728 		return (rc);
9729 	}
9730 
9731 	r = &op->rule[0];
9732 	for (i = 0; i < op->nrules; i++, r++) {
9733 
9734 		/* Validate open_type */
9735 		if (r->open_type != OPEN_TYPE_LISTEN &&
9736 		    r->open_type != OPEN_TYPE_ACTIVE &&
9737 		    r->open_type != OPEN_TYPE_PASSIVE &&
9738 		    r->open_type != OPEN_TYPE_DONTCARE) {
9739 error:
9740 			/*
9741 			 * Rules 0 to i have malloc'd filters that need to be
9742 			 * freed.  Rules i+1 to nrules have userspace pointers
9743 			 * and should be left alone.
9744 			 */
9745 			op->nrules = i;
9746 			free_offload_policy(op);
9747 			return (rc);
9748 		}
9749 
9750 		/* Validate settings */
9751 		s = &r->settings;
9752 		if ((s->offload != 0 && s->offload != 1) ||
9753 		    s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED ||
9754 		    s->sched_class < -1 ||
9755 		    s->sched_class >= sc->chip_params->nsched_cls) {
9756 			rc = EINVAL;
9757 			goto error;
9758 		}
9759 
9760 		bf = &r->bpf_prog;
9761 		u = bf->bf_insns;	/* userspace ptr */
9762 		bf->bf_insns = NULL;
9763 		if (bf->bf_len == 0) {
9764 			/* legal, matches everything */
9765 			continue;
9766 		}
9767 		len = bf->bf_len * sizeof(*bf->bf_insns);
9768 		bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
9769 		rc = copyin(u, bf->bf_insns, len);
9770 		if (rc != 0)
9771 			goto error;
9772 
9773 		if (!bpf_validate(bf->bf_insns, bf->bf_len)) {
9774 			rc = EINVAL;
9775 			goto error;
9776 		}
9777 	}
9778 set_policy:
9779 	rw_wlock(&sc->policy_lock);
9780 	old = sc->policy;
9781 	sc->policy = op;
9782 	rw_wunlock(&sc->policy_lock);
9783 	free_offload_policy(old);
9784 
9785 	return (0);
9786 }
9787 
9788 #define MAX_READ_BUF_SIZE (128 * 1024)
9789 static int
9790 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr)
9791 {
9792 	uint32_t addr, remaining, n;
9793 	uint32_t *buf;
9794 	int rc;
9795 	uint8_t *dst;
9796 
9797 	rc = validate_mem_range(sc, mr->addr, mr->len);
9798 	if (rc != 0)
9799 		return (rc);
9800 
9801 	buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK);
9802 	addr = mr->addr;
9803 	remaining = mr->len;
9804 	dst = (void *)mr->data;
9805 
9806 	while (remaining) {
9807 		n = min(remaining, MAX_READ_BUF_SIZE);
9808 		read_via_memwin(sc, 2, addr, buf, n);
9809 
9810 		rc = copyout(buf, dst, n);
9811 		if (rc != 0)
9812 			break;
9813 
9814 		dst += n;
9815 		remaining -= n;
9816 		addr += n;
9817 	}
9818 
9819 	free(buf, M_CXGBE);
9820 	return (rc);
9821 }
9822 #undef MAX_READ_BUF_SIZE
9823 
9824 static int
9825 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd)
9826 {
9827 	int rc;
9828 
9829 	if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports)
9830 		return (EINVAL);
9831 
9832 	if (i2cd->len > sizeof(i2cd->data))
9833 		return (EFBIG);
9834 
9835 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd");
9836 	if (rc)
9837 		return (rc);
9838 	rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr,
9839 	    i2cd->offset, i2cd->len, &i2cd->data[0]);
9840 	end_synchronized_op(sc, 0);
9841 
9842 	return (rc);
9843 }
9844 
9845 static int
9846 clear_stats(struct adapter *sc, u_int port_id)
9847 {
9848 	int i, v, bg_map;
9849 	struct port_info *pi;
9850 	struct vi_info *vi;
9851 	struct sge_rxq *rxq;
9852 	struct sge_txq *txq;
9853 	struct sge_wrq *wrq;
9854 #ifdef TCP_OFFLOAD
9855 	struct sge_ofld_rxq *ofld_rxq;
9856 #endif
9857 
9858 	if (port_id >= sc->params.nports)
9859 		return (EINVAL);
9860 	pi = sc->port[port_id];
9861 	if (pi == NULL)
9862 		return (EIO);
9863 
9864 	/* MAC stats */
9865 	t4_clr_port_stats(sc, pi->tx_chan);
9866 	pi->tx_parse_error = 0;
9867 	pi->tnl_cong_drops = 0;
9868 	mtx_lock(&sc->reg_lock);
9869 	for_each_vi(pi, v, vi) {
9870 		if (vi->flags & VI_INIT_DONE)
9871 			t4_clr_vi_stats(sc, vi->vin);
9872 	}
9873 	bg_map = pi->mps_bg_map;
9874 	v = 0;	/* reuse */
9875 	while (bg_map) {
9876 		i = ffs(bg_map) - 1;
9877 		t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v,
9878 		    1, A_TP_MIB_TNL_CNG_DROP_0 + i);
9879 		bg_map &= ~(1 << i);
9880 	}
9881 	mtx_unlock(&sc->reg_lock);
9882 
9883 	/*
9884 	 * Since this command accepts a port, clear stats for
9885 	 * all VIs on this port.
9886 	 */
9887 	for_each_vi(pi, v, vi) {
9888 		if (vi->flags & VI_INIT_DONE) {
9889 
9890 			for_each_rxq(vi, i, rxq) {
9891 #if defined(INET) || defined(INET6)
9892 				rxq->lro.lro_queued = 0;
9893 				rxq->lro.lro_flushed = 0;
9894 #endif
9895 				rxq->rxcsum = 0;
9896 				rxq->vlan_extraction = 0;
9897 
9898 				rxq->fl.mbuf_allocated = 0;
9899 				rxq->fl.mbuf_inlined = 0;
9900 				rxq->fl.cl_allocated = 0;
9901 				rxq->fl.cl_recycled = 0;
9902 				rxq->fl.cl_fast_recycled = 0;
9903 			}
9904 
9905 			for_each_txq(vi, i, txq) {
9906 				txq->txcsum = 0;
9907 				txq->tso_wrs = 0;
9908 				txq->vlan_insertion = 0;
9909 				txq->imm_wrs = 0;
9910 				txq->sgl_wrs = 0;
9911 				txq->txpkt_wrs = 0;
9912 				txq->txpkts0_wrs = 0;
9913 				txq->txpkts1_wrs = 0;
9914 				txq->txpkts0_pkts = 0;
9915 				txq->txpkts1_pkts = 0;
9916 				txq->raw_wrs = 0;
9917 				mp_ring_reset_stats(txq->r);
9918 			}
9919 
9920 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
9921 			for_each_ofld_txq(vi, i, wrq) {
9922 				wrq->tx_wrs_direct = 0;
9923 				wrq->tx_wrs_copied = 0;
9924 			}
9925 #endif
9926 #ifdef TCP_OFFLOAD
9927 			for_each_ofld_rxq(vi, i, ofld_rxq) {
9928 				ofld_rxq->fl.mbuf_allocated = 0;
9929 				ofld_rxq->fl.mbuf_inlined = 0;
9930 				ofld_rxq->fl.cl_allocated = 0;
9931 				ofld_rxq->fl.cl_recycled = 0;
9932 				ofld_rxq->fl.cl_fast_recycled = 0;
9933 			}
9934 #endif
9935 
9936 			if (IS_MAIN_VI(vi)) {
9937 				wrq = &sc->sge.ctrlq[pi->port_id];
9938 				wrq->tx_wrs_direct = 0;
9939 				wrq->tx_wrs_copied = 0;
9940 			}
9941 		}
9942 	}
9943 
9944 	return (0);
9945 }
9946 
9947 int
9948 t4_os_find_pci_capability(struct adapter *sc, int cap)
9949 {
9950 	int i;
9951 
9952 	return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0);
9953 }
9954 
9955 int
9956 t4_os_pci_save_state(struct adapter *sc)
9957 {
9958 	device_t dev;
9959 	struct pci_devinfo *dinfo;
9960 
9961 	dev = sc->dev;
9962 	dinfo = device_get_ivars(dev);
9963 
9964 	pci_cfg_save(dev, dinfo, 0);
9965 	return (0);
9966 }
9967 
9968 int
9969 t4_os_pci_restore_state(struct adapter *sc)
9970 {
9971 	device_t dev;
9972 	struct pci_devinfo *dinfo;
9973 
9974 	dev = sc->dev;
9975 	dinfo = device_get_ivars(dev);
9976 
9977 	pci_cfg_restore(dev, dinfo);
9978 	return (0);
9979 }
9980 
9981 void
9982 t4_os_portmod_changed(struct port_info *pi)
9983 {
9984 	struct adapter *sc = pi->adapter;
9985 	struct vi_info *vi;
9986 	struct ifnet *ifp;
9987 	static const char *mod_str[] = {
9988 		NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM"
9989 	};
9990 
9991 	KASSERT((pi->flags & FIXED_IFMEDIA) == 0,
9992 	    ("%s: port_type %u", __func__, pi->port_type));
9993 
9994 	vi = &pi->vi[0];
9995 	if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) {
9996 		PORT_LOCK(pi);
9997 		build_medialist(pi);
9998 		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
9999 			fixup_link_config(pi);
10000 			apply_link_config(pi);
10001 		}
10002 		PORT_UNLOCK(pi);
10003 		end_synchronized_op(sc, LOCK_HELD);
10004 	}
10005 
10006 	ifp = vi->ifp;
10007 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
10008 		if_printf(ifp, "transceiver unplugged.\n");
10009 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
10010 		if_printf(ifp, "unknown transceiver inserted.\n");
10011 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
10012 		if_printf(ifp, "unsupported transceiver inserted.\n");
10013 	else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) {
10014 		if_printf(ifp, "%dGbps %s transceiver inserted.\n",
10015 		    port_top_speed(pi), mod_str[pi->mod_type]);
10016 	} else {
10017 		if_printf(ifp, "transceiver (type %d) inserted.\n",
10018 		    pi->mod_type);
10019 	}
10020 }
10021 
10022 void
10023 t4_os_link_changed(struct port_info *pi)
10024 {
10025 	struct vi_info *vi;
10026 	struct ifnet *ifp;
10027 	struct link_config *lc;
10028 	int v;
10029 
10030 	PORT_LOCK_ASSERT_OWNED(pi);
10031 
10032 	for_each_vi(pi, v, vi) {
10033 		ifp = vi->ifp;
10034 		if (ifp == NULL)
10035 			continue;
10036 
10037 		lc = &pi->link_cfg;
10038 		if (lc->link_ok) {
10039 			ifp->if_baudrate = IF_Mbps(lc->speed);
10040 			if_link_state_change(ifp, LINK_STATE_UP);
10041 		} else {
10042 			if_link_state_change(ifp, LINK_STATE_DOWN);
10043 		}
10044 	}
10045 }
10046 
10047 void
10048 t4_iterate(void (*func)(struct adapter *, void *), void *arg)
10049 {
10050 	struct adapter *sc;
10051 
10052 	sx_slock(&t4_list_lock);
10053 	SLIST_FOREACH(sc, &t4_list, link) {
10054 		/*
10055 		 * func should not make any assumptions about what state sc is
10056 		 * in - the only guarantee is that sc->sc_lock is a valid lock.
10057 		 */
10058 		func(sc, arg);
10059 	}
10060 	sx_sunlock(&t4_list_lock);
10061 }
10062 
10063 static int
10064 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
10065     struct thread *td)
10066 {
10067 	int rc;
10068 	struct adapter *sc = dev->si_drv1;
10069 
10070 	rc = priv_check(td, PRIV_DRIVER);
10071 	if (rc != 0)
10072 		return (rc);
10073 
10074 	switch (cmd) {
10075 	case CHELSIO_T4_GETREG: {
10076 		struct t4_reg *edata = (struct t4_reg *)data;
10077 
10078 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
10079 			return (EFAULT);
10080 
10081 		if (edata->size == 4)
10082 			edata->val = t4_read_reg(sc, edata->addr);
10083 		else if (edata->size == 8)
10084 			edata->val = t4_read_reg64(sc, edata->addr);
10085 		else
10086 			return (EINVAL);
10087 
10088 		break;
10089 	}
10090 	case CHELSIO_T4_SETREG: {
10091 		struct t4_reg *edata = (struct t4_reg *)data;
10092 
10093 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
10094 			return (EFAULT);
10095 
10096 		if (edata->size == 4) {
10097 			if (edata->val & 0xffffffff00000000)
10098 				return (EINVAL);
10099 			t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
10100 		} else if (edata->size == 8)
10101 			t4_write_reg64(sc, edata->addr, edata->val);
10102 		else
10103 			return (EINVAL);
10104 		break;
10105 	}
10106 	case CHELSIO_T4_REGDUMP: {
10107 		struct t4_regdump *regs = (struct t4_regdump *)data;
10108 		int reglen = t4_get_regs_len(sc);
10109 		uint8_t *buf;
10110 
10111 		if (regs->len < reglen) {
10112 			regs->len = reglen; /* hint to the caller */
10113 			return (ENOBUFS);
10114 		}
10115 
10116 		regs->len = reglen;
10117 		buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
10118 		get_regs(sc, regs, buf);
10119 		rc = copyout(buf, regs->data, reglen);
10120 		free(buf, M_CXGBE);
10121 		break;
10122 	}
10123 	case CHELSIO_T4_GET_FILTER_MODE:
10124 		rc = get_filter_mode(sc, (uint32_t *)data);
10125 		break;
10126 	case CHELSIO_T4_SET_FILTER_MODE:
10127 		rc = set_filter_mode(sc, *(uint32_t *)data);
10128 		break;
10129 	case CHELSIO_T4_GET_FILTER:
10130 		rc = get_filter(sc, (struct t4_filter *)data);
10131 		break;
10132 	case CHELSIO_T4_SET_FILTER:
10133 		rc = set_filter(sc, (struct t4_filter *)data);
10134 		break;
10135 	case CHELSIO_T4_DEL_FILTER:
10136 		rc = del_filter(sc, (struct t4_filter *)data);
10137 		break;
10138 	case CHELSIO_T4_GET_SGE_CONTEXT:
10139 		rc = get_sge_context(sc, (struct t4_sge_context *)data);
10140 		break;
10141 	case CHELSIO_T4_LOAD_FW:
10142 		rc = load_fw(sc, (struct t4_data *)data);
10143 		break;
10144 	case CHELSIO_T4_GET_MEM:
10145 		rc = read_card_mem(sc, 2, (struct t4_mem_range *)data);
10146 		break;
10147 	case CHELSIO_T4_GET_I2C:
10148 		rc = read_i2c(sc, (struct t4_i2c_data *)data);
10149 		break;
10150 	case CHELSIO_T4_CLEAR_STATS:
10151 		rc = clear_stats(sc, *(uint32_t *)data);
10152 		break;
10153 	case CHELSIO_T4_SCHED_CLASS:
10154 		rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
10155 		break;
10156 	case CHELSIO_T4_SCHED_QUEUE:
10157 		rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
10158 		break;
10159 	case CHELSIO_T4_GET_TRACER:
10160 		rc = t4_get_tracer(sc, (struct t4_tracer *)data);
10161 		break;
10162 	case CHELSIO_T4_SET_TRACER:
10163 		rc = t4_set_tracer(sc, (struct t4_tracer *)data);
10164 		break;
10165 	case CHELSIO_T4_LOAD_CFG:
10166 		rc = load_cfg(sc, (struct t4_data *)data);
10167 		break;
10168 	case CHELSIO_T4_LOAD_BOOT:
10169 		rc = load_boot(sc, (struct t4_bootrom *)data);
10170 		break;
10171 	case CHELSIO_T4_LOAD_BOOTCFG:
10172 		rc = load_bootcfg(sc, (struct t4_data *)data);
10173 		break;
10174 	case CHELSIO_T4_CUDBG_DUMP:
10175 		rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data);
10176 		break;
10177 	case CHELSIO_T4_SET_OFLD_POLICY:
10178 		rc = set_offload_policy(sc, (struct t4_offload_policy *)data);
10179 		break;
10180 	default:
10181 		rc = ENOTTY;
10182 	}
10183 
10184 	return (rc);
10185 }
10186 
10187 #ifdef TCP_OFFLOAD
10188 static int
10189 toe_capability(struct vi_info *vi, int enable)
10190 {
10191 	int rc;
10192 	struct port_info *pi = vi->pi;
10193 	struct adapter *sc = pi->adapter;
10194 
10195 	ASSERT_SYNCHRONIZED_OP(sc);
10196 
10197 	if (!is_offload(sc))
10198 		return (ENODEV);
10199 
10200 	if (enable) {
10201 		if ((vi->ifp->if_capenable & IFCAP_TOE) != 0) {
10202 			/* TOE is already enabled. */
10203 			return (0);
10204 		}
10205 
10206 		/*
10207 		 * We need the port's queues around so that we're able to send
10208 		 * and receive CPLs to/from the TOE even if the ifnet for this
10209 		 * port has never been UP'd administratively.
10210 		 */
10211 		if (!(vi->flags & VI_INIT_DONE)) {
10212 			rc = vi_full_init(vi);
10213 			if (rc)
10214 				return (rc);
10215 		}
10216 		if (!(pi->vi[0].flags & VI_INIT_DONE)) {
10217 			rc = vi_full_init(&pi->vi[0]);
10218 			if (rc)
10219 				return (rc);
10220 		}
10221 
10222 		if (isset(&sc->offload_map, pi->port_id)) {
10223 			/* TOE is enabled on another VI of this port. */
10224 			pi->uld_vis++;
10225 			return (0);
10226 		}
10227 
10228 		if (!uld_active(sc, ULD_TOM)) {
10229 			rc = t4_activate_uld(sc, ULD_TOM);
10230 			if (rc == EAGAIN) {
10231 				log(LOG_WARNING,
10232 				    "You must kldload t4_tom.ko before trying "
10233 				    "to enable TOE on a cxgbe interface.\n");
10234 			}
10235 			if (rc != 0)
10236 				return (rc);
10237 			KASSERT(sc->tom_softc != NULL,
10238 			    ("%s: TOM activated but softc NULL", __func__));
10239 			KASSERT(uld_active(sc, ULD_TOM),
10240 			    ("%s: TOM activated but flag not set", __func__));
10241 		}
10242 
10243 		/* Activate iWARP and iSCSI too, if the modules are loaded. */
10244 		if (!uld_active(sc, ULD_IWARP))
10245 			(void) t4_activate_uld(sc, ULD_IWARP);
10246 		if (!uld_active(sc, ULD_ISCSI))
10247 			(void) t4_activate_uld(sc, ULD_ISCSI);
10248 
10249 		pi->uld_vis++;
10250 		setbit(&sc->offload_map, pi->port_id);
10251 	} else {
10252 		pi->uld_vis--;
10253 
10254 		if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0)
10255 			return (0);
10256 
10257 		KASSERT(uld_active(sc, ULD_TOM),
10258 		    ("%s: TOM never initialized?", __func__));
10259 		clrbit(&sc->offload_map, pi->port_id);
10260 	}
10261 
10262 	return (0);
10263 }
10264 
10265 /*
10266  * Add an upper layer driver to the global list.
10267  */
10268 int
10269 t4_register_uld(struct uld_info *ui)
10270 {
10271 	int rc = 0;
10272 	struct uld_info *u;
10273 
10274 	sx_xlock(&t4_uld_list_lock);
10275 	SLIST_FOREACH(u, &t4_uld_list, link) {
10276 	    if (u->uld_id == ui->uld_id) {
10277 		    rc = EEXIST;
10278 		    goto done;
10279 	    }
10280 	}
10281 
10282 	SLIST_INSERT_HEAD(&t4_uld_list, ui, link);
10283 	ui->refcount = 0;
10284 done:
10285 	sx_xunlock(&t4_uld_list_lock);
10286 	return (rc);
10287 }
10288 
10289 int
10290 t4_unregister_uld(struct uld_info *ui)
10291 {
10292 	int rc = EINVAL;
10293 	struct uld_info *u;
10294 
10295 	sx_xlock(&t4_uld_list_lock);
10296 
10297 	SLIST_FOREACH(u, &t4_uld_list, link) {
10298 	    if (u == ui) {
10299 		    if (ui->refcount > 0) {
10300 			    rc = EBUSY;
10301 			    goto done;
10302 		    }
10303 
10304 		    SLIST_REMOVE(&t4_uld_list, ui, uld_info, link);
10305 		    rc = 0;
10306 		    goto done;
10307 	    }
10308 	}
10309 done:
10310 	sx_xunlock(&t4_uld_list_lock);
10311 	return (rc);
10312 }
10313 
10314 int
10315 t4_activate_uld(struct adapter *sc, int id)
10316 {
10317 	int rc;
10318 	struct uld_info *ui;
10319 
10320 	ASSERT_SYNCHRONIZED_OP(sc);
10321 
10322 	if (id < 0 || id > ULD_MAX)
10323 		return (EINVAL);
10324 	rc = EAGAIN;	/* kldoad the module with this ULD and try again. */
10325 
10326 	sx_slock(&t4_uld_list_lock);
10327 
10328 	SLIST_FOREACH(ui, &t4_uld_list, link) {
10329 		if (ui->uld_id == id) {
10330 			if (!(sc->flags & FULL_INIT_DONE)) {
10331 				rc = adapter_full_init(sc);
10332 				if (rc != 0)
10333 					break;
10334 			}
10335 
10336 			rc = ui->activate(sc);
10337 			if (rc == 0) {
10338 				setbit(&sc->active_ulds, id);
10339 				ui->refcount++;
10340 			}
10341 			break;
10342 		}
10343 	}
10344 
10345 	sx_sunlock(&t4_uld_list_lock);
10346 
10347 	return (rc);
10348 }
10349 
10350 int
10351 t4_deactivate_uld(struct adapter *sc, int id)
10352 {
10353 	int rc;
10354 	struct uld_info *ui;
10355 
10356 	ASSERT_SYNCHRONIZED_OP(sc);
10357 
10358 	if (id < 0 || id > ULD_MAX)
10359 		return (EINVAL);
10360 	rc = ENXIO;
10361 
10362 	sx_slock(&t4_uld_list_lock);
10363 
10364 	SLIST_FOREACH(ui, &t4_uld_list, link) {
10365 		if (ui->uld_id == id) {
10366 			rc = ui->deactivate(sc);
10367 			if (rc == 0) {
10368 				clrbit(&sc->active_ulds, id);
10369 				ui->refcount--;
10370 			}
10371 			break;
10372 		}
10373 	}
10374 
10375 	sx_sunlock(&t4_uld_list_lock);
10376 
10377 	return (rc);
10378 }
10379 
10380 int
10381 uld_active(struct adapter *sc, int uld_id)
10382 {
10383 
10384 	MPASS(uld_id >= 0 && uld_id <= ULD_MAX);
10385 
10386 	return (isset(&sc->active_ulds, uld_id));
10387 }
10388 #endif
10389 
10390 /*
10391  * t  = ptr to tunable.
10392  * nc = number of CPUs.
10393  * c  = compiled in default for that tunable.
10394  */
10395 static void
10396 calculate_nqueues(int *t, int nc, const int c)
10397 {
10398 	int nq;
10399 
10400 	if (*t > 0)
10401 		return;
10402 	nq = *t < 0 ? -*t : c;
10403 	*t = min(nc, nq);
10404 }
10405 
10406 /*
10407  * Come up with reasonable defaults for some of the tunables, provided they're
10408  * not set by the user (in which case we'll use the values as is).
10409  */
10410 static void
10411 tweak_tunables(void)
10412 {
10413 	int nc = mp_ncpus;	/* our snapshot of the number of CPUs */
10414 
10415 	if (t4_ntxq < 1) {
10416 #ifdef RSS
10417 		t4_ntxq = rss_getnumbuckets();
10418 #else
10419 		calculate_nqueues(&t4_ntxq, nc, NTXQ);
10420 #endif
10421 	}
10422 
10423 	calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI);
10424 
10425 	if (t4_nrxq < 1) {
10426 #ifdef RSS
10427 		t4_nrxq = rss_getnumbuckets();
10428 #else
10429 		calculate_nqueues(&t4_nrxq, nc, NRXQ);
10430 #endif
10431 	}
10432 
10433 	calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI);
10434 
10435 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
10436 	calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ);
10437 	calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI);
10438 #endif
10439 #ifdef TCP_OFFLOAD
10440 	calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ);
10441 	calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI);
10442 
10443 	if (t4_toecaps_allowed == -1)
10444 		t4_toecaps_allowed = FW_CAPS_CONFIG_TOE;
10445 
10446 	if (t4_rdmacaps_allowed == -1) {
10447 		t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP |
10448 		    FW_CAPS_CONFIG_RDMA_RDMAC;
10449 	}
10450 
10451 	if (t4_iscsicaps_allowed == -1) {
10452 		t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU |
10453 		    FW_CAPS_CONFIG_ISCSI_TARGET_PDU |
10454 		    FW_CAPS_CONFIG_ISCSI_T10DIF;
10455 	}
10456 
10457 	if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS)
10458 		t4_tmr_idx_ofld = TMR_IDX_OFLD;
10459 
10460 	if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS)
10461 		t4_pktc_idx_ofld = PKTC_IDX_OFLD;
10462 #else
10463 	if (t4_toecaps_allowed == -1)
10464 		t4_toecaps_allowed = 0;
10465 
10466 	if (t4_rdmacaps_allowed == -1)
10467 		t4_rdmacaps_allowed = 0;
10468 
10469 	if (t4_iscsicaps_allowed == -1)
10470 		t4_iscsicaps_allowed = 0;
10471 #endif
10472 
10473 #ifdef DEV_NETMAP
10474 	calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI);
10475 	calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI);
10476 #endif
10477 
10478 	if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS)
10479 		t4_tmr_idx = TMR_IDX;
10480 
10481 	if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS)
10482 		t4_pktc_idx = PKTC_IDX;
10483 
10484 	if (t4_qsize_txq < 128)
10485 		t4_qsize_txq = 128;
10486 
10487 	if (t4_qsize_rxq < 128)
10488 		t4_qsize_rxq = 128;
10489 	while (t4_qsize_rxq & 7)
10490 		t4_qsize_rxq++;
10491 
10492 	t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX;
10493 
10494 	/*
10495 	 * Number of VIs to create per-port.  The first VI is the "main" regular
10496 	 * VI for the port.  The rest are additional virtual interfaces on the
10497 	 * same physical port.  Note that the main VI does not have native
10498 	 * netmap support but the extra VIs do.
10499 	 *
10500 	 * Limit the number of VIs per port to the number of available
10501 	 * MAC addresses per port.
10502 	 */
10503 	if (t4_num_vis < 1)
10504 		t4_num_vis = 1;
10505 	if (t4_num_vis > nitems(vi_mac_funcs)) {
10506 		t4_num_vis = nitems(vi_mac_funcs);
10507 		printf("cxgbe: number of VIs limited to %d\n", t4_num_vis);
10508 	}
10509 
10510 	if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) {
10511 		pcie_relaxed_ordering = 1;
10512 #if defined(__i386__) || defined(__amd64__)
10513 		if (cpu_vendor_id == CPU_VENDOR_INTEL)
10514 			pcie_relaxed_ordering = 0;
10515 #endif
10516 	}
10517 }
10518 
10519 #ifdef DDB
10520 static void
10521 t4_dump_tcb(struct adapter *sc, int tid)
10522 {
10523 	uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos;
10524 
10525 	reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2);
10526 	save = t4_read_reg(sc, reg);
10527 	base = sc->memwin[2].mw_base;
10528 
10529 	/* Dump TCB for the tid */
10530 	tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
10531 	tcb_addr += tid * TCB_SIZE;
10532 
10533 	if (is_t4(sc)) {
10534 		pf = 0;
10535 		win_pos = tcb_addr & ~0xf;	/* start must be 16B aligned */
10536 	} else {
10537 		pf = V_PFNUM(sc->pf);
10538 		win_pos = tcb_addr & ~0x7f;	/* start must be 128B aligned */
10539 	}
10540 	t4_write_reg(sc, reg, win_pos | pf);
10541 	t4_read_reg(sc, reg);
10542 
10543 	off = tcb_addr - win_pos;
10544 	for (i = 0; i < 4; i++) {
10545 		uint32_t buf[8];
10546 		for (j = 0; j < 8; j++, off += 4)
10547 			buf[j] = htonl(t4_read_reg(sc, base + off));
10548 
10549 		db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n",
10550 		    buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
10551 		    buf[7]);
10552 	}
10553 
10554 	t4_write_reg(sc, reg, save);
10555 	t4_read_reg(sc, reg);
10556 }
10557 
10558 static void
10559 t4_dump_devlog(struct adapter *sc)
10560 {
10561 	struct devlog_params *dparams = &sc->params.devlog;
10562 	struct fw_devlog_e e;
10563 	int i, first, j, m, nentries, rc;
10564 	uint64_t ftstamp = UINT64_MAX;
10565 
10566 	if (dparams->start == 0) {
10567 		db_printf("devlog params not valid\n");
10568 		return;
10569 	}
10570 
10571 	nentries = dparams->size / sizeof(struct fw_devlog_e);
10572 	m = fwmtype_to_hwmtype(dparams->memtype);
10573 
10574 	/* Find the first entry. */
10575 	first = -1;
10576 	for (i = 0; i < nentries && !db_pager_quit; i++) {
10577 		rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
10578 		    sizeof(e), (void *)&e);
10579 		if (rc != 0)
10580 			break;
10581 
10582 		if (e.timestamp == 0)
10583 			break;
10584 
10585 		e.timestamp = be64toh(e.timestamp);
10586 		if (e.timestamp < ftstamp) {
10587 			ftstamp = e.timestamp;
10588 			first = i;
10589 		}
10590 	}
10591 
10592 	if (first == -1)
10593 		return;
10594 
10595 	i = first;
10596 	do {
10597 		rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
10598 		    sizeof(e), (void *)&e);
10599 		if (rc != 0)
10600 			return;
10601 
10602 		if (e.timestamp == 0)
10603 			return;
10604 
10605 		e.timestamp = be64toh(e.timestamp);
10606 		e.seqno = be32toh(e.seqno);
10607 		for (j = 0; j < 8; j++)
10608 			e.params[j] = be32toh(e.params[j]);
10609 
10610 		db_printf("%10d  %15ju  %8s  %8s  ",
10611 		    e.seqno, e.timestamp,
10612 		    (e.level < nitems(devlog_level_strings) ?
10613 			devlog_level_strings[e.level] : "UNKNOWN"),
10614 		    (e.facility < nitems(devlog_facility_strings) ?
10615 			devlog_facility_strings[e.facility] : "UNKNOWN"));
10616 		db_printf(e.fmt, e.params[0], e.params[1], e.params[2],
10617 		    e.params[3], e.params[4], e.params[5], e.params[6],
10618 		    e.params[7]);
10619 
10620 		if (++i == nentries)
10621 			i = 0;
10622 	} while (i != first && !db_pager_quit);
10623 }
10624 
10625 static struct command_table db_t4_table = LIST_HEAD_INITIALIZER(db_t4_table);
10626 _DB_SET(_show, t4, NULL, db_show_table, 0, &db_t4_table);
10627 
10628 DB_FUNC(devlog, db_show_devlog, db_t4_table, CS_OWN, NULL)
10629 {
10630 	device_t dev;
10631 	int t;
10632 	bool valid;
10633 
10634 	valid = false;
10635 	t = db_read_token();
10636 	if (t == tIDENT) {
10637 		dev = device_lookup_by_name(db_tok_string);
10638 		valid = true;
10639 	}
10640 	db_skip_to_eol();
10641 	if (!valid) {
10642 		db_printf("usage: show t4 devlog <nexus>\n");
10643 		return;
10644 	}
10645 
10646 	if (dev == NULL) {
10647 		db_printf("device not found\n");
10648 		return;
10649 	}
10650 
10651 	t4_dump_devlog(device_get_softc(dev));
10652 }
10653 
10654 DB_FUNC(tcb, db_show_t4tcb, db_t4_table, CS_OWN, NULL)
10655 {
10656 	device_t dev;
10657 	int radix, tid, t;
10658 	bool valid;
10659 
10660 	valid = false;
10661 	radix = db_radix;
10662 	db_radix = 10;
10663 	t = db_read_token();
10664 	if (t == tIDENT) {
10665 		dev = device_lookup_by_name(db_tok_string);
10666 		t = db_read_token();
10667 		if (t == tNUMBER) {
10668 			tid = db_tok_number;
10669 			valid = true;
10670 		}
10671 	}
10672 	db_radix = radix;
10673 	db_skip_to_eol();
10674 	if (!valid) {
10675 		db_printf("usage: show t4 tcb <nexus> <tid>\n");
10676 		return;
10677 	}
10678 
10679 	if (dev == NULL) {
10680 		db_printf("device not found\n");
10681 		return;
10682 	}
10683 	if (tid < 0) {
10684 		db_printf("invalid tid\n");
10685 		return;
10686 	}
10687 
10688 	t4_dump_tcb(device_get_softc(dev), tid);
10689 }
10690 #endif
10691 
10692 /*
10693  * Borrowed from cesa_prep_aes_key().
10694  *
10695  * NB: The crypto engine wants the words in the decryption key in reverse
10696  * order.
10697  */
10698 void
10699 t4_aes_getdeckey(void *dec_key, const void *enc_key, unsigned int kbits)
10700 {
10701 	uint32_t ek[4 * (RIJNDAEL_MAXNR + 1)];
10702 	uint32_t *dkey;
10703 	int i;
10704 
10705 	rijndaelKeySetupEnc(ek, enc_key, kbits);
10706 	dkey = dec_key;
10707 	dkey += (kbits / 8) / 4;
10708 
10709 	switch (kbits) {
10710 	case 128:
10711 		for (i = 0; i < 4; i++)
10712 			*--dkey = htobe32(ek[4 * 10 + i]);
10713 		break;
10714 	case 192:
10715 		for (i = 0; i < 2; i++)
10716 			*--dkey = htobe32(ek[4 * 11 + 2 + i]);
10717 		for (i = 0; i < 4; i++)
10718 			*--dkey = htobe32(ek[4 * 12 + i]);
10719 		break;
10720 	case 256:
10721 		for (i = 0; i < 4; i++)
10722 			*--dkey = htobe32(ek[4 * 13 + i]);
10723 		for (i = 0; i < 4; i++)
10724 			*--dkey = htobe32(ek[4 * 14 + i]);
10725 		break;
10726 	}
10727 	MPASS(dkey == dec_key);
10728 }
10729 
10730 static struct sx mlu;	/* mod load unload */
10731 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload");
10732 
10733 static int
10734 mod_event(module_t mod, int cmd, void *arg)
10735 {
10736 	int rc = 0;
10737 	static int loaded = 0;
10738 
10739 	switch (cmd) {
10740 	case MOD_LOAD:
10741 		sx_xlock(&mlu);
10742 		if (loaded++ == 0) {
10743 			t4_sge_modload();
10744 			t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
10745 			    t4_filter_rpl, CPL_COOKIE_FILTER);
10746 			t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL,
10747 			    do_l2t_write_rpl, CPL_COOKIE_FILTER);
10748 			t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL,
10749 			    t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER);
10750 			t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
10751 			    t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER);
10752 			t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS,
10753 			    t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER);
10754 			t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt);
10755 			t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt);
10756 			t4_register_cpl_handler(CPL_SMT_WRITE_RPL,
10757 			    do_smt_write_rpl);
10758 			sx_init(&t4_list_lock, "T4/T5 adapters");
10759 			SLIST_INIT(&t4_list);
10760 			callout_init(&fatal_callout, 1);
10761 #ifdef TCP_OFFLOAD
10762 			sx_init(&t4_uld_list_lock, "T4/T5 ULDs");
10763 			SLIST_INIT(&t4_uld_list);
10764 #endif
10765 #ifdef INET6
10766 			t4_clip_modload();
10767 #endif
10768 			t4_tracer_modload();
10769 			tweak_tunables();
10770 		}
10771 		sx_xunlock(&mlu);
10772 		break;
10773 
10774 	case MOD_UNLOAD:
10775 		sx_xlock(&mlu);
10776 		if (--loaded == 0) {
10777 			int tries;
10778 
10779 			sx_slock(&t4_list_lock);
10780 			if (!SLIST_EMPTY(&t4_list)) {
10781 				rc = EBUSY;
10782 				sx_sunlock(&t4_list_lock);
10783 				goto done_unload;
10784 			}
10785 #ifdef TCP_OFFLOAD
10786 			sx_slock(&t4_uld_list_lock);
10787 			if (!SLIST_EMPTY(&t4_uld_list)) {
10788 				rc = EBUSY;
10789 				sx_sunlock(&t4_uld_list_lock);
10790 				sx_sunlock(&t4_list_lock);
10791 				goto done_unload;
10792 			}
10793 #endif
10794 			tries = 0;
10795 			while (tries++ < 5 && t4_sge_extfree_refs() != 0) {
10796 				uprintf("%ju clusters with custom free routine "
10797 				    "still is use.\n", t4_sge_extfree_refs());
10798 				pause("t4unload", 2 * hz);
10799 			}
10800 #ifdef TCP_OFFLOAD
10801 			sx_sunlock(&t4_uld_list_lock);
10802 #endif
10803 			sx_sunlock(&t4_list_lock);
10804 
10805 			if (t4_sge_extfree_refs() == 0) {
10806 				t4_tracer_modunload();
10807 #ifdef INET6
10808 				t4_clip_modunload();
10809 #endif
10810 #ifdef TCP_OFFLOAD
10811 				sx_destroy(&t4_uld_list_lock);
10812 #endif
10813 				sx_destroy(&t4_list_lock);
10814 				t4_sge_modunload();
10815 				loaded = 0;
10816 			} else {
10817 				rc = EBUSY;
10818 				loaded++;	/* undo earlier decrement */
10819 			}
10820 		}
10821 done_unload:
10822 		sx_xunlock(&mlu);
10823 		break;
10824 	}
10825 
10826 	return (rc);
10827 }
10828 
10829 static devclass_t t4_devclass, t5_devclass, t6_devclass;
10830 static devclass_t cxgbe_devclass, cxl_devclass, cc_devclass;
10831 static devclass_t vcxgbe_devclass, vcxl_devclass, vcc_devclass;
10832 
10833 DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, mod_event, 0);
10834 MODULE_VERSION(t4nex, 1);
10835 MODULE_DEPEND(t4nex, firmware, 1, 1, 1);
10836 #ifdef DEV_NETMAP
10837 MODULE_DEPEND(t4nex, netmap, 1, 1, 1);
10838 #endif /* DEV_NETMAP */
10839 
10840 DRIVER_MODULE(t5nex, pci, t5_driver, t5_devclass, mod_event, 0);
10841 MODULE_VERSION(t5nex, 1);
10842 MODULE_DEPEND(t5nex, firmware, 1, 1, 1);
10843 #ifdef DEV_NETMAP
10844 MODULE_DEPEND(t5nex, netmap, 1, 1, 1);
10845 #endif /* DEV_NETMAP */
10846 
10847 DRIVER_MODULE(t6nex, pci, t6_driver, t6_devclass, mod_event, 0);
10848 MODULE_VERSION(t6nex, 1);
10849 MODULE_DEPEND(t6nex, firmware, 1, 1, 1);
10850 #ifdef DEV_NETMAP
10851 MODULE_DEPEND(t6nex, netmap, 1, 1, 1);
10852 #endif /* DEV_NETMAP */
10853 
10854 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0);
10855 MODULE_VERSION(cxgbe, 1);
10856 
10857 DRIVER_MODULE(cxl, t5nex, cxl_driver, cxl_devclass, 0, 0);
10858 MODULE_VERSION(cxl, 1);
10859 
10860 DRIVER_MODULE(cc, t6nex, cc_driver, cc_devclass, 0, 0);
10861 MODULE_VERSION(cc, 1);
10862 
10863 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, vcxgbe_devclass, 0, 0);
10864 MODULE_VERSION(vcxgbe, 1);
10865 
10866 DRIVER_MODULE(vcxl, cxl, vcxl_driver, vcxl_devclass, 0, 0);
10867 MODULE_VERSION(vcxl, 1);
10868 
10869 DRIVER_MODULE(vcc, cc, vcc_driver, vcc_devclass, 0, 0);
10870 MODULE_VERSION(vcc, 1);
10871