1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2011 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 #include "opt_ddb.h" 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_kern_tls.h" 35 #include "opt_ratelimit.h" 36 #include "opt_rss.h" 37 38 #include <sys/param.h> 39 #include <sys/conf.h> 40 #include <sys/priv.h> 41 #include <sys/kernel.h> 42 #include <sys/bus.h> 43 #include <sys/eventhandler.h> 44 #include <sys/module.h> 45 #include <sys/malloc.h> 46 #include <sys/queue.h> 47 #include <sys/taskqueue.h> 48 #include <sys/pciio.h> 49 #include <dev/pci/pcireg.h> 50 #include <dev/pci/pcivar.h> 51 #include <dev/pci/pci_private.h> 52 #include <sys/firmware.h> 53 #include <sys/sbuf.h> 54 #include <sys/smp.h> 55 #include <sys/socket.h> 56 #include <sys/sockio.h> 57 #include <sys/sysctl.h> 58 #include <net/ethernet.h> 59 #include <net/if.h> 60 #include <net/if_types.h> 61 #include <net/if_dl.h> 62 #include <net/if_vlan_var.h> 63 #ifdef RSS 64 #include <net/rss_config.h> 65 #endif 66 #include <netinet/in.h> 67 #include <netinet/ip.h> 68 #ifdef KERN_TLS 69 #include <netinet/tcp_seq.h> 70 #endif 71 #if defined(__i386__) || defined(__amd64__) 72 #include <machine/md_var.h> 73 #include <machine/cputypes.h> 74 #include <vm/vm.h> 75 #include <vm/pmap.h> 76 #endif 77 #ifdef DDB 78 #include <ddb/ddb.h> 79 #include <ddb/db_lex.h> 80 #endif 81 82 #include "common/common.h" 83 #include "common/t4_msg.h" 84 #include "common/t4_regs.h" 85 #include "common/t4_regs_values.h" 86 #include "cudbg/cudbg.h" 87 #include "t4_clip.h" 88 #include "t4_ioctl.h" 89 #include "t4_l2t.h" 90 #include "t4_mp_ring.h" 91 #include "t4_if.h" 92 #include "t4_smt.h" 93 94 /* T4 bus driver interface */ 95 static int t4_probe(device_t); 96 static int t4_attach(device_t); 97 static int t4_detach(device_t); 98 static int t4_child_location(device_t, device_t, struct sbuf *); 99 static int t4_ready(device_t); 100 static int t4_read_port_device(device_t, int, device_t *); 101 static int t4_suspend(device_t); 102 static int t4_resume(device_t); 103 static int t4_reset_prepare(device_t, device_t); 104 static int t4_reset_post(device_t, device_t); 105 static device_method_t t4_methods[] = { 106 DEVMETHOD(device_probe, t4_probe), 107 DEVMETHOD(device_attach, t4_attach), 108 DEVMETHOD(device_detach, t4_detach), 109 DEVMETHOD(device_suspend, t4_suspend), 110 DEVMETHOD(device_resume, t4_resume), 111 112 DEVMETHOD(bus_child_location, t4_child_location), 113 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 114 DEVMETHOD(bus_reset_post, t4_reset_post), 115 116 DEVMETHOD(t4_is_main_ready, t4_ready), 117 DEVMETHOD(t4_read_port_device, t4_read_port_device), 118 119 DEVMETHOD_END 120 }; 121 static driver_t t4_driver = { 122 "t4nex", 123 t4_methods, 124 sizeof(struct adapter) 125 }; 126 127 128 /* T4 port (cxgbe) interface */ 129 static int cxgbe_probe(device_t); 130 static int cxgbe_attach(device_t); 131 static int cxgbe_detach(device_t); 132 device_method_t cxgbe_methods[] = { 133 DEVMETHOD(device_probe, cxgbe_probe), 134 DEVMETHOD(device_attach, cxgbe_attach), 135 DEVMETHOD(device_detach, cxgbe_detach), 136 { 0, 0 } 137 }; 138 static driver_t cxgbe_driver = { 139 "cxgbe", 140 cxgbe_methods, 141 sizeof(struct port_info) 142 }; 143 144 /* T4 VI (vcxgbe) interface */ 145 static int vcxgbe_probe(device_t); 146 static int vcxgbe_attach(device_t); 147 static int vcxgbe_detach(device_t); 148 static device_method_t vcxgbe_methods[] = { 149 DEVMETHOD(device_probe, vcxgbe_probe), 150 DEVMETHOD(device_attach, vcxgbe_attach), 151 DEVMETHOD(device_detach, vcxgbe_detach), 152 { 0, 0 } 153 }; 154 static driver_t vcxgbe_driver = { 155 "vcxgbe", 156 vcxgbe_methods, 157 sizeof(struct vi_info) 158 }; 159 160 static d_ioctl_t t4_ioctl; 161 162 static struct cdevsw t4_cdevsw = { 163 .d_version = D_VERSION, 164 .d_ioctl = t4_ioctl, 165 .d_name = "t4nex", 166 }; 167 168 /* T5 bus driver interface */ 169 static int t5_probe(device_t); 170 static device_method_t t5_methods[] = { 171 DEVMETHOD(device_probe, t5_probe), 172 DEVMETHOD(device_attach, t4_attach), 173 DEVMETHOD(device_detach, t4_detach), 174 DEVMETHOD(device_suspend, t4_suspend), 175 DEVMETHOD(device_resume, t4_resume), 176 177 DEVMETHOD(bus_child_location, t4_child_location), 178 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 179 DEVMETHOD(bus_reset_post, t4_reset_post), 180 181 DEVMETHOD(t4_is_main_ready, t4_ready), 182 DEVMETHOD(t4_read_port_device, t4_read_port_device), 183 184 DEVMETHOD_END 185 }; 186 static driver_t t5_driver = { 187 "t5nex", 188 t5_methods, 189 sizeof(struct adapter) 190 }; 191 192 193 /* T5 port (cxl) interface */ 194 static driver_t cxl_driver = { 195 "cxl", 196 cxgbe_methods, 197 sizeof(struct port_info) 198 }; 199 200 /* T5 VI (vcxl) interface */ 201 static driver_t vcxl_driver = { 202 "vcxl", 203 vcxgbe_methods, 204 sizeof(struct vi_info) 205 }; 206 207 /* T6 bus driver interface */ 208 static int t6_probe(device_t); 209 static device_method_t t6_methods[] = { 210 DEVMETHOD(device_probe, t6_probe), 211 DEVMETHOD(device_attach, t4_attach), 212 DEVMETHOD(device_detach, t4_detach), 213 DEVMETHOD(device_suspend, t4_suspend), 214 DEVMETHOD(device_resume, t4_resume), 215 216 DEVMETHOD(bus_child_location, t4_child_location), 217 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 218 DEVMETHOD(bus_reset_post, t4_reset_post), 219 220 DEVMETHOD(t4_is_main_ready, t4_ready), 221 DEVMETHOD(t4_read_port_device, t4_read_port_device), 222 223 DEVMETHOD_END 224 }; 225 static driver_t t6_driver = { 226 "t6nex", 227 t6_methods, 228 sizeof(struct adapter) 229 }; 230 231 232 /* T6 port (cc) interface */ 233 static driver_t cc_driver = { 234 "cc", 235 cxgbe_methods, 236 sizeof(struct port_info) 237 }; 238 239 /* T6 VI (vcc) interface */ 240 static driver_t vcc_driver = { 241 "vcc", 242 vcxgbe_methods, 243 sizeof(struct vi_info) 244 }; 245 246 /* ifnet interface */ 247 static void cxgbe_init(void *); 248 static int cxgbe_ioctl(if_t, unsigned long, caddr_t); 249 static int cxgbe_transmit(if_t, struct mbuf *); 250 static void cxgbe_qflush(if_t); 251 #if defined(KERN_TLS) || defined(RATELIMIT) 252 static int cxgbe_snd_tag_alloc(if_t, union if_snd_tag_alloc_params *, 253 struct m_snd_tag **); 254 #endif 255 256 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); 257 258 /* 259 * Correct lock order when you need to acquire multiple locks is t4_list_lock, 260 * then ADAPTER_LOCK, then t4_uld_list_lock. 261 */ 262 static struct sx t4_list_lock; 263 SLIST_HEAD(, adapter) t4_list; 264 #ifdef TCP_OFFLOAD 265 static struct sx t4_uld_list_lock; 266 struct uld_info *t4_uld_list[ULD_MAX + 1]; 267 #endif 268 269 /* 270 * Tunables. See tweak_tunables() too. 271 * 272 * Each tunable is set to a default value here if it's known at compile-time. 273 * Otherwise it is set to -n as an indication to tweak_tunables() that it should 274 * provide a reasonable default (upto n) when the driver is loaded. 275 * 276 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to 277 * T5 are under hw.cxl. 278 */ 279 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 280 "cxgbe(4) parameters"); 281 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 282 "cxgbe(4) T5+ parameters"); 283 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 284 "cxgbe(4) TOE parameters"); 285 286 /* 287 * Number of queues for tx and rx, NIC and offload. 288 */ 289 #define NTXQ 16 290 int t4_ntxq = -NTXQ; 291 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0, 292 "Number of TX queues per port"); 293 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */ 294 295 #define NRXQ 8 296 int t4_nrxq = -NRXQ; 297 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0, 298 "Number of RX queues per port"); 299 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */ 300 301 #define NTXQ_VI 1 302 static int t4_ntxq_vi = -NTXQ_VI; 303 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0, 304 "Number of TX queues per VI"); 305 306 #define NRXQ_VI 1 307 static int t4_nrxq_vi = -NRXQ_VI; 308 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0, 309 "Number of RX queues per VI"); 310 311 static int t4_rsrv_noflowq = 0; 312 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq, 313 0, "Reserve TX queue 0 of each VI for non-flowid packets"); 314 315 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 316 #define NOFLDTXQ 8 317 static int t4_nofldtxq = -NOFLDTXQ; 318 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0, 319 "Number of offload TX queues per port"); 320 321 #define NOFLDRXQ 2 322 static int t4_nofldrxq = -NOFLDRXQ; 323 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0, 324 "Number of offload RX queues per port"); 325 326 #define NOFLDTXQ_VI 1 327 static int t4_nofldtxq_vi = -NOFLDTXQ_VI; 328 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0, 329 "Number of offload TX queues per VI"); 330 331 #define NOFLDRXQ_VI 1 332 static int t4_nofldrxq_vi = -NOFLDRXQ_VI; 333 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0, 334 "Number of offload RX queues per VI"); 335 336 #define TMR_IDX_OFLD 1 337 int t4_tmr_idx_ofld = TMR_IDX_OFLD; 338 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN, 339 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues"); 340 341 #define PKTC_IDX_OFLD (-1) 342 int t4_pktc_idx_ofld = PKTC_IDX_OFLD; 343 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN, 344 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues"); 345 346 /* 0 means chip/fw default, non-zero number is value in microseconds */ 347 static u_long t4_toe_keepalive_idle = 0; 348 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN, 349 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)"); 350 351 /* 0 means chip/fw default, non-zero number is value in microseconds */ 352 static u_long t4_toe_keepalive_interval = 0; 353 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN, 354 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)"); 355 356 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */ 357 static int t4_toe_keepalive_count = 0; 358 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN, 359 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort"); 360 361 /* 0 means chip/fw default, non-zero number is value in microseconds */ 362 static u_long t4_toe_rexmt_min = 0; 363 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN, 364 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)"); 365 366 /* 0 means chip/fw default, non-zero number is value in microseconds */ 367 static u_long t4_toe_rexmt_max = 0; 368 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN, 369 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)"); 370 371 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */ 372 static int t4_toe_rexmt_count = 0; 373 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN, 374 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort"); 375 376 /* -1 means chip/fw default, other values are raw backoff values to use */ 377 static int t4_toe_rexmt_backoff[16] = { 378 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 379 }; 380 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, 381 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 382 "cxgbe(4) TOE retransmit backoff values"); 383 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN, 384 &t4_toe_rexmt_backoff[0], 0, ""); 385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN, 386 &t4_toe_rexmt_backoff[1], 0, ""); 387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN, 388 &t4_toe_rexmt_backoff[2], 0, ""); 389 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN, 390 &t4_toe_rexmt_backoff[3], 0, ""); 391 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN, 392 &t4_toe_rexmt_backoff[4], 0, ""); 393 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN, 394 &t4_toe_rexmt_backoff[5], 0, ""); 395 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN, 396 &t4_toe_rexmt_backoff[6], 0, ""); 397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN, 398 &t4_toe_rexmt_backoff[7], 0, ""); 399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN, 400 &t4_toe_rexmt_backoff[8], 0, ""); 401 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN, 402 &t4_toe_rexmt_backoff[9], 0, ""); 403 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN, 404 &t4_toe_rexmt_backoff[10], 0, ""); 405 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN, 406 &t4_toe_rexmt_backoff[11], 0, ""); 407 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN, 408 &t4_toe_rexmt_backoff[12], 0, ""); 409 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN, 410 &t4_toe_rexmt_backoff[13], 0, ""); 411 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN, 412 &t4_toe_rexmt_backoff[14], 0, ""); 413 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN, 414 &t4_toe_rexmt_backoff[15], 0, ""); 415 416 int t4_ddp_rcvbuf_len = 256 * 1024; 417 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_len, CTLFLAG_RWTUN, 418 &t4_ddp_rcvbuf_len, 0, "length of each DDP RX buffer"); 419 420 unsigned int t4_ddp_rcvbuf_cache = 4; 421 SYSCTL_UINT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_cache, CTLFLAG_RWTUN, 422 &t4_ddp_rcvbuf_cache, 0, 423 "maximum number of free DDP RX buffers to cache per connection"); 424 #endif 425 426 #ifdef DEV_NETMAP 427 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */ 428 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */ 429 static int t4_native_netmap = NN_EXTRA_VI; 430 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap, 431 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs"); 432 433 #define NNMTXQ 8 434 static int t4_nnmtxq = -NNMTXQ; 435 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0, 436 "Number of netmap TX queues"); 437 438 #define NNMRXQ 8 439 static int t4_nnmrxq = -NNMRXQ; 440 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0, 441 "Number of netmap RX queues"); 442 443 #define NNMTXQ_VI 2 444 static int t4_nnmtxq_vi = -NNMTXQ_VI; 445 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0, 446 "Number of netmap TX queues per VI"); 447 448 #define NNMRXQ_VI 2 449 static int t4_nnmrxq_vi = -NNMRXQ_VI; 450 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0, 451 "Number of netmap RX queues per VI"); 452 #endif 453 454 /* 455 * Holdoff parameters for ports. 456 */ 457 #define TMR_IDX 1 458 int t4_tmr_idx = TMR_IDX; 459 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx, 460 0, "Holdoff timer index"); 461 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */ 462 463 #define PKTC_IDX (-1) 464 int t4_pktc_idx = PKTC_IDX; 465 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx, 466 0, "Holdoff packet counter index"); 467 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */ 468 469 /* 470 * Size (# of entries) of each tx and rx queue. 471 */ 472 unsigned int t4_qsize_txq = TX_EQ_QSIZE; 473 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0, 474 "Number of descriptors in each TX queue"); 475 476 unsigned int t4_qsize_rxq = RX_IQ_QSIZE; 477 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0, 478 "Number of descriptors in each RX queue"); 479 480 /* 481 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). 482 */ 483 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; 484 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types, 485 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)"); 486 487 /* 488 * Configuration file. All the _CF names here are special. 489 */ 490 #define DEFAULT_CF "default" 491 #define BUILTIN_CF "built-in" 492 #define FLASH_CF "flash" 493 #define UWIRE_CF "uwire" 494 #define FPGA_CF "fpga" 495 static char t4_cfg_file[32] = DEFAULT_CF; 496 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file, 497 sizeof(t4_cfg_file), "Firmware configuration file"); 498 499 /* 500 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively). 501 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them. 502 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water 503 * mark or when signalled to do so, 0 to never emit PAUSE. 504 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the 505 * negotiated settings will override rx_pause/tx_pause. 506 * Otherwise rx_pause/tx_pause are applied forcibly. 507 */ 508 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG; 509 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN, 510 &t4_pause_settings, 0, 511 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 512 513 /* 514 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively). 515 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5) 516 * 0 to disable FEC. 517 */ 518 static int t4_fec = -1; 519 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0, 520 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); 521 522 /* 523 * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it 524 * issues to the firmware. If the firmware doesn't support FORCE_FEC then the 525 * driver runs as if this is set to 0. 526 * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay. 527 * 0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the 528 * transceiver. Multiple FEC bits may not be okay but will be passed on to 529 * the firmware anyway (may result in l1cfg errors with old firmwares). 530 * 1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO 531 * means set all FEC bits that are valid for the speed. 532 */ 533 static int t4_force_fec = -1; 534 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0, 535 "Controls the use of FORCE_FEC bit in L1 configuration."); 536 537 /* 538 * Link autonegotiation. 539 * -1 to run with the firmware default. 540 * 0 to disable. 541 * 1 to enable. 542 */ 543 static int t4_autoneg = -1; 544 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0, 545 "Link autonegotiation"); 546 547 /* 548 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, 549 * encouraged respectively). '-n' is the same as 'n' except the firmware 550 * version used in the checks is read from the firmware bundled with the driver. 551 */ 552 static int t4_fw_install = 1; 553 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0, 554 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)"); 555 556 /* 557 * ASIC features that will be used. Disable the ones you don't want so that the 558 * chip resources aren't wasted on features that will not be used. 559 */ 560 static int t4_nbmcaps_allowed = 0; 561 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN, 562 &t4_nbmcaps_allowed, 0, "Default NBM capabilities"); 563 564 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ 565 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN, 566 &t4_linkcaps_allowed, 0, "Default link capabilities"); 567 568 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS | 569 FW_CAPS_CONFIG_SWITCH_EGRESS; 570 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN, 571 &t4_switchcaps_allowed, 0, "Default switch capabilities"); 572 573 #ifdef RATELIMIT 574 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 575 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD; 576 #else 577 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 578 FW_CAPS_CONFIG_NIC_HASHFILTER; 579 #endif 580 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN, 581 &t4_niccaps_allowed, 0, "Default NIC capabilities"); 582 583 static int t4_toecaps_allowed = -1; 584 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN, 585 &t4_toecaps_allowed, 0, "Default TCP offload capabilities"); 586 587 static int t4_rdmacaps_allowed = -1; 588 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN, 589 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities"); 590 591 static int t4_cryptocaps_allowed = -1; 592 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN, 593 &t4_cryptocaps_allowed, 0, "Default crypto capabilities"); 594 595 static int t4_iscsicaps_allowed = -1; 596 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN, 597 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities"); 598 599 static int t4_fcoecaps_allowed = 0; 600 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN, 601 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities"); 602 603 static int t5_write_combine = 0; 604 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine, 605 0, "Use WC instead of UC for BAR2"); 606 607 /* From t4_sysctls: doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"} */ 608 static int t4_doorbells_allowed = 0xf; 609 SYSCTL_INT(_hw_cxgbe, OID_AUTO, doorbells_allowed, CTLFLAG_RDTUN, 610 &t4_doorbells_allowed, 0, "Limit tx queues to these doorbells"); 611 612 static int t4_num_vis = 1; 613 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0, 614 "Number of VIs per port"); 615 616 /* 617 * PCIe Relaxed Ordering. 618 * -1: driver should figure out a good value. 619 * 0: disable RO. 620 * 1: enable RO. 621 * 2: leave RO alone. 622 */ 623 static int pcie_relaxed_ordering = -1; 624 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN, 625 &pcie_relaxed_ordering, 0, 626 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone"); 627 628 static int t4_panic_on_fatal_err = 0; 629 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN, 630 &t4_panic_on_fatal_err, 0, "panic on fatal errors"); 631 632 static int t4_reset_on_fatal_err = 0; 633 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN, 634 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors"); 635 636 static int t4_clock_gate_on_suspend = 0; 637 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN, 638 &t4_clock_gate_on_suspend, 0, "gate the clock on suspend"); 639 640 static int t4_tx_vm_wr = 0; 641 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0, 642 "Use VM work requests to transmit packets."); 643 644 /* 645 * Set to non-zero to enable the attack filter. A packet that matches any of 646 * these conditions will get dropped on ingress: 647 * 1) IP && source address == destination address. 648 * 2) TCP/IP && source address is not a unicast address. 649 * 3) TCP/IP && destination address is not a unicast address. 650 * 4) IP && source address is loopback (127.x.y.z). 651 * 5) IP && destination address is loopback (127.x.y.z). 652 * 6) IPv6 && source address == destination address. 653 * 7) IPv6 && source address is not a unicast address. 654 * 8) IPv6 && source address is loopback (::1/128). 655 * 9) IPv6 && destination address is loopback (::1/128). 656 * 10) IPv6 && source address is unspecified (::/128). 657 * 11) IPv6 && destination address is unspecified (::/128). 658 * 12) TCP/IPv6 && source address is multicast (ff00::/8). 659 * 13) TCP/IPv6 && destination address is multicast (ff00::/8). 660 */ 661 static int t4_attack_filter = 0; 662 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN, 663 &t4_attack_filter, 0, "Drop suspicious traffic"); 664 665 static int t4_drop_ip_fragments = 0; 666 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN, 667 &t4_drop_ip_fragments, 0, "Drop IP fragments"); 668 669 static int t4_drop_pkts_with_l2_errors = 1; 670 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN, 671 &t4_drop_pkts_with_l2_errors, 0, 672 "Drop all frames with Layer 2 length or checksum errors"); 673 674 static int t4_drop_pkts_with_l3_errors = 0; 675 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN, 676 &t4_drop_pkts_with_l3_errors, 0, 677 "Drop all frames with IP version, length, or checksum errors"); 678 679 static int t4_drop_pkts_with_l4_errors = 0; 680 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN, 681 &t4_drop_pkts_with_l4_errors, 0, 682 "Drop all frames with Layer 4 length, checksum, or other errors"); 683 684 #ifdef TCP_OFFLOAD 685 /* 686 * TOE tunables. 687 */ 688 static int t4_cop_managed_offloading = 0; 689 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN, 690 &t4_cop_managed_offloading, 0, 691 "COP (Connection Offload Policy) controls all TOE offload"); 692 #endif 693 694 #ifdef KERN_TLS 695 /* 696 * This enables KERN_TLS for all adapters if set. 697 */ 698 static int t4_kern_tls = 0; 699 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0, 700 "Enable KERN_TLS mode for T6 adapters"); 701 702 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 703 "cxgbe(4) KERN_TLS parameters"); 704 705 static int t4_tls_inline_keys = 0; 706 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN, 707 &t4_tls_inline_keys, 0, 708 "Always pass TLS keys in work requests (1) or attempt to store TLS keys " 709 "in card memory."); 710 711 static int t4_tls_combo_wrs = 0; 712 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs, 713 0, "Attempt to combine TCB field updates with TLS record work requests."); 714 #endif 715 716 /* Functions used by VIs to obtain unique MAC addresses for each VI. */ 717 static int vi_mac_funcs[] = { 718 FW_VI_FUNC_ETH, 719 FW_VI_FUNC_OFLD, 720 FW_VI_FUNC_IWARP, 721 FW_VI_FUNC_OPENISCSI, 722 FW_VI_FUNC_OPENFCOE, 723 FW_VI_FUNC_FOISCSI, 724 FW_VI_FUNC_FOFCOE, 725 }; 726 727 struct intrs_and_queues { 728 uint16_t intr_type; /* INTx, MSI, or MSI-X */ 729 uint16_t num_vis; /* number of VIs for each port */ 730 uint16_t nirq; /* Total # of vectors */ 731 uint16_t ntxq; /* # of NIC txq's for each port */ 732 uint16_t nrxq; /* # of NIC rxq's for each port */ 733 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */ 734 uint16_t nofldrxq; /* # of TOE rxq's for each port */ 735 uint16_t nnmtxq; /* # of netmap txq's */ 736 uint16_t nnmrxq; /* # of netmap rxq's */ 737 738 /* The vcxgbe/vcxl interfaces use these and not the ones above. */ 739 uint16_t ntxq_vi; /* # of NIC txq's */ 740 uint16_t nrxq_vi; /* # of NIC rxq's */ 741 uint16_t nofldtxq_vi; /* # of TOE txq's */ 742 uint16_t nofldrxq_vi; /* # of TOE rxq's */ 743 uint16_t nnmtxq_vi; /* # of netmap txq's */ 744 uint16_t nnmrxq_vi; /* # of netmap rxq's */ 745 }; 746 747 static void setup_memwin(struct adapter *); 748 static void position_memwin(struct adapter *, int, uint32_t); 749 static int validate_mem_range(struct adapter *, uint32_t, uint32_t); 750 static int fwmtype_to_hwmtype(int); 751 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t, 752 uint32_t *); 753 static int fixup_devlog_params(struct adapter *); 754 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *); 755 static int contact_firmware(struct adapter *); 756 static int partition_resources(struct adapter *); 757 static int get_params__pre_init(struct adapter *); 758 static int set_params__pre_init(struct adapter *); 759 static int get_params__post_init(struct adapter *); 760 static int set_params__post_init(struct adapter *); 761 static void t4_set_desc(struct adapter *); 762 static bool fixed_ifmedia(struct port_info *); 763 static void build_medialist(struct port_info *); 764 static void init_link_config(struct port_info *); 765 static int fixup_link_config(struct port_info *); 766 static int apply_link_config(struct port_info *); 767 static int cxgbe_init_synchronized(struct vi_info *); 768 static int cxgbe_uninit_synchronized(struct vi_info *); 769 static int adapter_full_init(struct adapter *); 770 static void adapter_full_uninit(struct adapter *); 771 static int vi_full_init(struct vi_info *); 772 static void vi_full_uninit(struct vi_info *); 773 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *); 774 static void quiesce_txq(struct sge_txq *); 775 static void quiesce_wrq(struct sge_wrq *); 776 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *); 777 static void quiesce_vi(struct vi_info *); 778 static int t4_alloc_irq(struct adapter *, struct irq *, int rid, 779 driver_intr_t *, void *, char *); 780 static int t4_free_irq(struct adapter *, struct irq *); 781 static void t4_init_atid_table(struct adapter *); 782 static void t4_free_atid_table(struct adapter *); 783 static void stop_atid_allocator(struct adapter *); 784 static void restart_atid_allocator(struct adapter *); 785 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *); 786 static void vi_refresh_stats(struct vi_info *); 787 static void cxgbe_refresh_stats(struct vi_info *); 788 static void cxgbe_tick(void *); 789 static void vi_tick(void *); 790 static void cxgbe_sysctls(struct port_info *); 791 static int sysctl_int_array(SYSCTL_HANDLER_ARGS); 792 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS); 793 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS); 794 static int sysctl_btphy(SYSCTL_HANDLER_ARGS); 795 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS); 796 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS); 797 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); 798 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); 799 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); 800 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); 801 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS); 802 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS); 803 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS); 804 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS); 805 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS); 806 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS); 807 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); 808 static int sysctl_temperature(SYSCTL_HANDLER_ARGS); 809 static int sysctl_vdd(SYSCTL_HANDLER_ARGS); 810 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS); 811 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS); 812 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); 813 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS); 814 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); 815 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); 816 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); 817 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); 818 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); 819 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); 820 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS); 821 static int sysctl_devlog(SYSCTL_HANDLER_ARGS); 822 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); 823 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); 824 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); 825 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); 826 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); 827 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); 828 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS); 829 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); 830 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); 831 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); 832 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); 833 static int sysctl_tids(SYSCTL_HANDLER_ARGS); 834 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); 835 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS); 836 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS); 837 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); 838 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); 839 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); 840 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); 841 static int sysctl_cpus(SYSCTL_HANDLER_ARGS); 842 static int sysctl_reset(SYSCTL_HANDLER_ARGS); 843 #ifdef TCP_OFFLOAD 844 static int sysctl_tls(SYSCTL_HANDLER_ARGS); 845 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS); 846 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS); 847 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS); 848 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS); 849 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS); 850 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS); 851 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS); 852 #endif 853 static int get_sge_context(struct adapter *, struct t4_sge_context *); 854 static int load_fw(struct adapter *, struct t4_data *); 855 static int load_cfg(struct adapter *, struct t4_data *); 856 static int load_boot(struct adapter *, struct t4_bootrom *); 857 static int load_bootcfg(struct adapter *, struct t4_data *); 858 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *); 859 static void free_offload_policy(struct t4_offload_policy *); 860 static int set_offload_policy(struct adapter *, struct t4_offload_policy *); 861 static int read_card_mem(struct adapter *, int, struct t4_mem_range *); 862 static int read_i2c(struct adapter *, struct t4_i2c_data *); 863 static int clear_stats(struct adapter *, u_int); 864 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *); 865 static int release_clip_addr(struct adapter *, struct t4_clip_addr *); 866 static inline int stop_adapter(struct adapter *); 867 static inline void set_adapter_hwstatus(struct adapter *, const bool); 868 static int stop_lld(struct adapter *); 869 static inline int restart_adapter(struct adapter *); 870 static int restart_lld(struct adapter *); 871 #ifdef TCP_OFFLOAD 872 static int toe_capability(struct vi_info *, bool); 873 static int deactivate_all_uld(struct adapter *); 874 static void stop_all_uld(struct adapter *); 875 static void restart_all_uld(struct adapter *); 876 #endif 877 #ifdef KERN_TLS 878 static int ktls_capability(struct adapter *, bool); 879 #endif 880 static int mod_event(module_t, int, void *); 881 static int notify_siblings(device_t, int); 882 static uint64_t vi_get_counter(if_t, ift_counter); 883 static uint64_t cxgbe_get_counter(if_t, ift_counter); 884 static void enable_vxlan_rx(struct adapter *); 885 static void reset_adapter_task(void *, int); 886 static void fatal_error_task(void *, int); 887 static void dump_devlog(struct adapter *); 888 static void dump_cim_regs(struct adapter *); 889 static void dump_cimla(struct adapter *); 890 891 struct { 892 uint16_t device; 893 char *desc; 894 } t4_pciids[] = { 895 {0xa000, "Chelsio Terminator 4 FPGA"}, 896 {0x4400, "Chelsio T440-dbg"}, 897 {0x4401, "Chelsio T420-CR"}, 898 {0x4402, "Chelsio T422-CR"}, 899 {0x4403, "Chelsio T440-CR"}, 900 {0x4404, "Chelsio T420-BCH"}, 901 {0x4405, "Chelsio T440-BCH"}, 902 {0x4406, "Chelsio T440-CH"}, 903 {0x4407, "Chelsio T420-SO"}, 904 {0x4408, "Chelsio T420-CX"}, 905 {0x4409, "Chelsio T420-BT"}, 906 {0x440a, "Chelsio T404-BT"}, 907 {0x440e, "Chelsio T440-LP-CR"}, 908 }, t5_pciids[] = { 909 {0xb000, "Chelsio Terminator 5 FPGA"}, 910 {0x5400, "Chelsio T580-dbg"}, 911 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ 912 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ 913 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ 914 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ 915 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ 916 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ 917 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ 918 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ 919 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ 920 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ 921 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ 922 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ 923 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */ 924 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */ 925 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */ 926 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */ 927 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */ 928 929 /* Custom */ 930 {0x5483, "Custom T540-CR"}, 931 {0x5484, "Custom T540-BT"}, 932 }, t6_pciids[] = { 933 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */ 934 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */ 935 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */ 936 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */ 937 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */ 938 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */ 939 {0x6405, "Chelsio T6225-OCP-SO"}, /* 2 x 10/25G, nomem */ 940 {0x6406, "Chelsio T62100-OCP-SO"}, /* 2 x 40/50/100G, nomem */ 941 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */ 942 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */ 943 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */ 944 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */ 945 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */ 946 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */ 947 {0x6414, "Chelsio T61100-OCP-SO"}, /* 1 x 40/50/100G, nomem */ 948 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */ 949 950 /* Custom */ 951 {0x6480, "Custom T6225-CR"}, 952 {0x6481, "Custom T62100-CR"}, 953 {0x6482, "Custom T6225-CR"}, 954 {0x6483, "Custom T62100-CR"}, 955 {0x6484, "Custom T64100-CR"}, 956 {0x6485, "Custom T6240-SO"}, 957 {0x6486, "Custom T6225-SO-CR"}, 958 {0x6487, "Custom T6225-CR"}, 959 }; 960 961 #ifdef TCP_OFFLOAD 962 /* 963 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should 964 * be exactly the same for both rxq and ofld_rxq. 965 */ 966 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); 967 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); 968 #endif 969 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE); 970 971 static int 972 t4_probe(device_t dev) 973 { 974 int i; 975 uint16_t v = pci_get_vendor(dev); 976 uint16_t d = pci_get_device(dev); 977 uint8_t f = pci_get_function(dev); 978 979 if (v != PCI_VENDOR_ID_CHELSIO) 980 return (ENXIO); 981 982 /* Attach only to PF0 of the FPGA */ 983 if (d == 0xa000 && f != 0) 984 return (ENXIO); 985 986 for (i = 0; i < nitems(t4_pciids); i++) { 987 if (d == t4_pciids[i].device) { 988 device_set_desc(dev, t4_pciids[i].desc); 989 return (BUS_PROBE_DEFAULT); 990 } 991 } 992 993 return (ENXIO); 994 } 995 996 static int 997 t5_probe(device_t dev) 998 { 999 int i; 1000 uint16_t v = pci_get_vendor(dev); 1001 uint16_t d = pci_get_device(dev); 1002 uint8_t f = pci_get_function(dev); 1003 1004 if (v != PCI_VENDOR_ID_CHELSIO) 1005 return (ENXIO); 1006 1007 /* Attach only to PF0 of the FPGA */ 1008 if (d == 0xb000 && f != 0) 1009 return (ENXIO); 1010 1011 for (i = 0; i < nitems(t5_pciids); i++) { 1012 if (d == t5_pciids[i].device) { 1013 device_set_desc(dev, t5_pciids[i].desc); 1014 return (BUS_PROBE_DEFAULT); 1015 } 1016 } 1017 1018 return (ENXIO); 1019 } 1020 1021 static int 1022 t6_probe(device_t dev) 1023 { 1024 int i; 1025 uint16_t v = pci_get_vendor(dev); 1026 uint16_t d = pci_get_device(dev); 1027 1028 if (v != PCI_VENDOR_ID_CHELSIO) 1029 return (ENXIO); 1030 1031 for (i = 0; i < nitems(t6_pciids); i++) { 1032 if (d == t6_pciids[i].device) { 1033 device_set_desc(dev, t6_pciids[i].desc); 1034 return (BUS_PROBE_DEFAULT); 1035 } 1036 } 1037 1038 return (ENXIO); 1039 } 1040 1041 static void 1042 t5_attribute_workaround(device_t dev) 1043 { 1044 device_t root_port; 1045 uint32_t v; 1046 1047 /* 1048 * The T5 chips do not properly echo the No Snoop and Relaxed 1049 * Ordering attributes when replying to a TLP from a Root 1050 * Port. As a workaround, find the parent Root Port and 1051 * disable No Snoop and Relaxed Ordering. Note that this 1052 * affects all devices under this root port. 1053 */ 1054 root_port = pci_find_pcie_root_port(dev); 1055 if (root_port == NULL) { 1056 device_printf(dev, "Unable to find parent root port\n"); 1057 return; 1058 } 1059 1060 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL, 1061 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2); 1062 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) != 1063 0) 1064 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n", 1065 device_get_nameunit(root_port)); 1066 } 1067 1068 static const struct devnames devnames[] = { 1069 { 1070 .nexus_name = "t4nex", 1071 .ifnet_name = "cxgbe", 1072 .vi_ifnet_name = "vcxgbe", 1073 .pf03_drv_name = "t4iov", 1074 .vf_nexus_name = "t4vf", 1075 .vf_ifnet_name = "cxgbev" 1076 }, { 1077 .nexus_name = "t5nex", 1078 .ifnet_name = "cxl", 1079 .vi_ifnet_name = "vcxl", 1080 .pf03_drv_name = "t5iov", 1081 .vf_nexus_name = "t5vf", 1082 .vf_ifnet_name = "cxlv" 1083 }, { 1084 .nexus_name = "t6nex", 1085 .ifnet_name = "cc", 1086 .vi_ifnet_name = "vcc", 1087 .pf03_drv_name = "t6iov", 1088 .vf_nexus_name = "t6vf", 1089 .vf_ifnet_name = "ccv" 1090 } 1091 }; 1092 1093 void 1094 t4_init_devnames(struct adapter *sc) 1095 { 1096 int id; 1097 1098 id = chip_id(sc); 1099 if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames)) 1100 sc->names = &devnames[id - CHELSIO_T4]; 1101 else { 1102 device_printf(sc->dev, "chip id %d is not supported.\n", id); 1103 sc->names = NULL; 1104 } 1105 } 1106 1107 static int 1108 t4_ifnet_unit(struct adapter *sc, struct port_info *pi) 1109 { 1110 const char *parent, *name; 1111 long value; 1112 int line, unit; 1113 1114 line = 0; 1115 parent = device_get_nameunit(sc->dev); 1116 name = sc->names->ifnet_name; 1117 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) { 1118 if (resource_long_value(name, unit, "port", &value) == 0 && 1119 value == pi->port_id) 1120 return (unit); 1121 } 1122 return (-1); 1123 } 1124 1125 static void 1126 t4_calibration(void *arg) 1127 { 1128 struct adapter *sc; 1129 struct clock_sync *cur, *nex; 1130 uint64_t hw; 1131 sbintime_t sbt; 1132 int next_up; 1133 1134 sc = (struct adapter *)arg; 1135 1136 KASSERT((hw_off_limits(sc) == 0), ("hw_off_limits at t4_calibration")); 1137 hw = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO); 1138 sbt = sbinuptime(); 1139 1140 cur = &sc->cal_info[sc->cal_current]; 1141 next_up = (sc->cal_current + 1) % CNT_CAL_INFO; 1142 nex = &sc->cal_info[next_up]; 1143 if (__predict_false(sc->cal_count == 0)) { 1144 /* First time in, just get the values in */ 1145 cur->hw_cur = hw; 1146 cur->sbt_cur = sbt; 1147 sc->cal_count++; 1148 goto done; 1149 } 1150 1151 if (cur->hw_cur == hw) { 1152 /* The clock is not advancing? */ 1153 sc->cal_count = 0; 1154 atomic_store_rel_int(&cur->gen, 0); 1155 goto done; 1156 } 1157 1158 seqc_write_begin(&nex->gen); 1159 nex->hw_prev = cur->hw_cur; 1160 nex->sbt_prev = cur->sbt_cur; 1161 nex->hw_cur = hw; 1162 nex->sbt_cur = sbt; 1163 seqc_write_end(&nex->gen); 1164 sc->cal_current = next_up; 1165 done: 1166 callout_reset_sbt_curcpu(&sc->cal_callout, SBT_1S, 0, t4_calibration, 1167 sc, C_DIRECT_EXEC); 1168 } 1169 1170 static void 1171 t4_calibration_start(struct adapter *sc) 1172 { 1173 /* 1174 * Here if we have not done a calibration 1175 * then do so otherwise start the appropriate 1176 * timer. 1177 */ 1178 int i; 1179 1180 for (i = 0; i < CNT_CAL_INFO; i++) { 1181 sc->cal_info[i].gen = 0; 1182 } 1183 sc->cal_current = 0; 1184 sc->cal_count = 0; 1185 sc->cal_gen = 0; 1186 t4_calibration(sc); 1187 } 1188 1189 static int 1190 t4_attach(device_t dev) 1191 { 1192 struct adapter *sc; 1193 int rc = 0, i, j, rqidx, tqidx, nports; 1194 struct make_dev_args mda; 1195 struct intrs_and_queues iaq; 1196 struct sge *s; 1197 uint32_t *buf; 1198 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1199 int ofld_tqidx; 1200 #endif 1201 #ifdef TCP_OFFLOAD 1202 int ofld_rqidx; 1203 #endif 1204 #ifdef DEV_NETMAP 1205 int nm_rqidx, nm_tqidx; 1206 #endif 1207 int num_vis; 1208 1209 sc = device_get_softc(dev); 1210 sc->dev = dev; 1211 sysctl_ctx_init(&sc->ctx); 1212 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags); 1213 1214 if ((pci_get_device(dev) & 0xff00) == 0x5400) 1215 t5_attribute_workaround(dev); 1216 pci_enable_busmaster(dev); 1217 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 1218 uint32_t v; 1219 1220 pci_set_max_read_req(dev, 4096); 1221 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); 1222 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5); 1223 if (pcie_relaxed_ordering == 0 && 1224 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) { 1225 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE; 1226 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1227 } else if (pcie_relaxed_ordering == 1 && 1228 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) { 1229 v |= PCIEM_CTL_RELAXED_ORD_ENABLE; 1230 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1231 } 1232 } 1233 1234 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS); 1235 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL); 1236 sc->traceq = -1; 1237 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); 1238 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", 1239 device_get_nameunit(dev)); 1240 1241 snprintf(sc->lockname, sizeof(sc->lockname), "%s", 1242 device_get_nameunit(dev)); 1243 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); 1244 t4_add_adapter(sc); 1245 1246 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); 1247 TAILQ_INIT(&sc->sfl); 1248 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0); 1249 1250 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF); 1251 1252 sc->policy = NULL; 1253 rw_init(&sc->policy_lock, "connection offload policy"); 1254 1255 callout_init(&sc->ktls_tick, 1); 1256 1257 callout_init(&sc->cal_callout, 1); 1258 1259 refcount_init(&sc->vxlan_refcount, 0); 1260 1261 TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc); 1262 TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc); 1263 1264 sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1265 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq", 1266 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues"); 1267 sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1268 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq", 1269 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue"); 1270 1271 rc = t4_map_bars_0_and_4(sc); 1272 if (rc != 0) 1273 goto done; /* error message displayed already */ 1274 1275 memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); 1276 1277 /* Prepare the adapter for operation. */ 1278 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK); 1279 rc = -t4_prep_adapter(sc, buf); 1280 free(buf, M_CXGBE); 1281 if (rc != 0) { 1282 device_printf(dev, "failed to prepare adapter: %d.\n", rc); 1283 goto done; 1284 } 1285 1286 /* 1287 * This is the real PF# to which we're attaching. Works from within PCI 1288 * passthrough environments too, where pci_get_function() could return a 1289 * different PF# depending on the passthrough configuration. We need to 1290 * use the real PF# in all our communication with the firmware. 1291 */ 1292 j = t4_read_reg(sc, A_PL_WHOAMI); 1293 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j); 1294 sc->mbox = sc->pf; 1295 1296 t4_init_devnames(sc); 1297 if (sc->names == NULL) { 1298 rc = ENOTSUP; 1299 goto done; /* error message displayed already */ 1300 } 1301 1302 /* 1303 * Do this really early, with the memory windows set up even before the 1304 * character device. The userland tool's register i/o and mem read 1305 * will work even in "recovery mode". 1306 */ 1307 setup_memwin(sc); 1308 if (t4_init_devlog_params(sc, 0) == 0) 1309 fixup_devlog_params(sc); 1310 make_dev_args_init(&mda); 1311 mda.mda_devsw = &t4_cdevsw; 1312 mda.mda_uid = UID_ROOT; 1313 mda.mda_gid = GID_WHEEL; 1314 mda.mda_mode = 0600; 1315 mda.mda_si_drv1 = sc; 1316 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev)); 1317 if (rc != 0) 1318 device_printf(dev, "failed to create nexus char device: %d.\n", 1319 rc); 1320 1321 /* Go no further if recovery mode has been requested. */ 1322 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 1323 device_printf(dev, "recovery mode.\n"); 1324 goto done; 1325 } 1326 1327 #if defined(__i386__) 1328 if ((cpu_feature & CPUID_CX8) == 0) { 1329 device_printf(dev, "64 bit atomics not available.\n"); 1330 rc = ENOTSUP; 1331 goto done; 1332 } 1333 #endif 1334 1335 /* Contact the firmware and try to become the master driver. */ 1336 rc = contact_firmware(sc); 1337 if (rc != 0) 1338 goto done; /* error message displayed already */ 1339 MPASS(sc->flags & FW_OK); 1340 1341 rc = get_params__pre_init(sc); 1342 if (rc != 0) 1343 goto done; /* error message displayed already */ 1344 1345 if (sc->flags & MASTER_PF) { 1346 rc = partition_resources(sc); 1347 if (rc != 0) 1348 goto done; /* error message displayed already */ 1349 } 1350 1351 rc = get_params__post_init(sc); 1352 if (rc != 0) 1353 goto done; /* error message displayed already */ 1354 1355 rc = set_params__post_init(sc); 1356 if (rc != 0) 1357 goto done; /* error message displayed already */ 1358 1359 rc = t4_map_bar_2(sc); 1360 if (rc != 0) 1361 goto done; /* error message displayed already */ 1362 1363 rc = t4_adj_doorbells(sc); 1364 if (rc != 0) 1365 goto done; /* error message displayed already */ 1366 1367 rc = t4_create_dma_tag(sc); 1368 if (rc != 0) 1369 goto done; /* error message displayed already */ 1370 1371 /* 1372 * First pass over all the ports - allocate VIs and initialize some 1373 * basic parameters like mac address, port type, etc. 1374 */ 1375 for_each_port(sc, i) { 1376 struct port_info *pi; 1377 1378 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); 1379 sc->port[i] = pi; 1380 1381 /* These must be set before t4_port_init */ 1382 pi->adapter = sc; 1383 pi->port_id = i; 1384 /* 1385 * XXX: vi[0] is special so we can't delay this allocation until 1386 * pi->nvi's final value is known. 1387 */ 1388 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE, 1389 M_ZERO | M_WAITOK); 1390 1391 /* 1392 * Allocate the "main" VI and initialize parameters 1393 * like mac addr. 1394 */ 1395 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 1396 if (rc != 0) { 1397 device_printf(dev, "unable to initialize port %d: %d\n", 1398 i, rc); 1399 free(pi->vi, M_CXGBE); 1400 free(pi, M_CXGBE); 1401 sc->port[i] = NULL; 1402 goto done; 1403 } 1404 1405 if (is_bt(pi->port_type)) 1406 setbit(&sc->bt_map, pi->tx_chan); 1407 else 1408 MPASS(!isset(&sc->bt_map, pi->tx_chan)); 1409 1410 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", 1411 device_get_nameunit(dev), i); 1412 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); 1413 sc->chan_map[pi->tx_chan] = i; 1414 1415 /* 1416 * The MPS counter for FCS errors doesn't work correctly on the 1417 * T6 so we use the MAC counter here. Which MAC is in use 1418 * depends on the link settings which will be known when the 1419 * link comes up. 1420 */ 1421 if (is_t6(sc)) 1422 pi->fcs_reg = -1; 1423 else { 1424 pi->fcs_reg = t4_port_reg(sc, pi->tx_chan, 1425 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L); 1426 } 1427 pi->fcs_base = 0; 1428 1429 /* All VIs on this port share this media. */ 1430 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, 1431 cxgbe_media_status); 1432 1433 PORT_LOCK(pi); 1434 init_link_config(pi); 1435 fixup_link_config(pi); 1436 build_medialist(pi); 1437 if (fixed_ifmedia(pi)) 1438 pi->flags |= FIXED_IFMEDIA; 1439 PORT_UNLOCK(pi); 1440 1441 pi->dev = device_add_child(dev, sc->names->ifnet_name, 1442 t4_ifnet_unit(sc, pi)); 1443 if (pi->dev == NULL) { 1444 device_printf(dev, 1445 "failed to add device for port %d.\n", i); 1446 rc = ENXIO; 1447 goto done; 1448 } 1449 pi->vi[0].dev = pi->dev; 1450 device_set_softc(pi->dev, pi); 1451 } 1452 1453 /* 1454 * Interrupt type, # of interrupts, # of rx/tx queues, etc. 1455 */ 1456 nports = sc->params.nports; 1457 rc = cfg_itype_and_nqueues(sc, &iaq); 1458 if (rc != 0) 1459 goto done; /* error message displayed already */ 1460 1461 num_vis = iaq.num_vis; 1462 sc->intr_type = iaq.intr_type; 1463 sc->intr_count = iaq.nirq; 1464 1465 s = &sc->sge; 1466 s->nrxq = nports * iaq.nrxq; 1467 s->ntxq = nports * iaq.ntxq; 1468 if (num_vis > 1) { 1469 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi; 1470 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi; 1471 } 1472 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ 1473 s->neq += nports; /* ctrl queues: 1 per port */ 1474 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ 1475 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1476 if (is_offload(sc) || is_ethoffload(sc)) { 1477 s->nofldtxq = nports * iaq.nofldtxq; 1478 if (num_vis > 1) 1479 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi; 1480 s->neq += s->nofldtxq; 1481 1482 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq), 1483 M_CXGBE, M_ZERO | M_WAITOK); 1484 } 1485 #endif 1486 #ifdef TCP_OFFLOAD 1487 if (is_offload(sc)) { 1488 s->nofldrxq = nports * iaq.nofldrxq; 1489 if (num_vis > 1) 1490 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi; 1491 s->neq += s->nofldrxq; /* free list */ 1492 s->niq += s->nofldrxq; 1493 1494 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), 1495 M_CXGBE, M_ZERO | M_WAITOK); 1496 } 1497 #endif 1498 #ifdef DEV_NETMAP 1499 s->nnmrxq = 0; 1500 s->nnmtxq = 0; 1501 if (t4_native_netmap & NN_MAIN_VI) { 1502 s->nnmrxq += nports * iaq.nnmrxq; 1503 s->nnmtxq += nports * iaq.nnmtxq; 1504 } 1505 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) { 1506 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi; 1507 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi; 1508 } 1509 s->neq += s->nnmtxq + s->nnmrxq; 1510 s->niq += s->nnmrxq; 1511 1512 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq), 1513 M_CXGBE, M_ZERO | M_WAITOK); 1514 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq), 1515 M_CXGBE, M_ZERO | M_WAITOK); 1516 #endif 1517 MPASS(s->niq <= s->iqmap_sz); 1518 MPASS(s->neq <= s->eqmap_sz); 1519 1520 s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE, 1521 M_ZERO | M_WAITOK); 1522 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, 1523 M_ZERO | M_WAITOK); 1524 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, 1525 M_ZERO | M_WAITOK); 1526 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE, 1527 M_ZERO | M_WAITOK); 1528 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE, 1529 M_ZERO | M_WAITOK); 1530 1531 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, 1532 M_ZERO | M_WAITOK); 1533 1534 t4_init_l2t(sc, M_WAITOK); 1535 t4_init_smt(sc, M_WAITOK); 1536 t4_init_tx_sched(sc); 1537 t4_init_atid_table(sc); 1538 #ifdef RATELIMIT 1539 t4_init_etid_table(sc); 1540 #endif 1541 #ifdef INET6 1542 t4_init_clip_table(sc); 1543 #endif 1544 if (sc->vres.key.size != 0) 1545 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start, 1546 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK); 1547 1548 /* 1549 * Second pass over the ports. This time we know the number of rx and 1550 * tx queues that each port should get. 1551 */ 1552 rqidx = tqidx = 0; 1553 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1554 ofld_tqidx = 0; 1555 #endif 1556 #ifdef TCP_OFFLOAD 1557 ofld_rqidx = 0; 1558 #endif 1559 #ifdef DEV_NETMAP 1560 nm_rqidx = nm_tqidx = 0; 1561 #endif 1562 for_each_port(sc, i) { 1563 struct port_info *pi = sc->port[i]; 1564 struct vi_info *vi; 1565 1566 if (pi == NULL) 1567 continue; 1568 1569 pi->nvi = num_vis; 1570 for_each_vi(pi, j, vi) { 1571 vi->pi = pi; 1572 vi->adapter = sc; 1573 vi->first_intr = -1; 1574 vi->qsize_rxq = t4_qsize_rxq; 1575 vi->qsize_txq = t4_qsize_txq; 1576 1577 vi->first_rxq = rqidx; 1578 vi->first_txq = tqidx; 1579 vi->tmr_idx = t4_tmr_idx; 1580 vi->pktc_idx = t4_pktc_idx; 1581 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi; 1582 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi; 1583 1584 rqidx += vi->nrxq; 1585 tqidx += vi->ntxq; 1586 1587 if (j == 0 && vi->ntxq > 1) 1588 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0; 1589 else 1590 vi->rsrv_noflowq = 0; 1591 1592 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1593 vi->first_ofld_txq = ofld_tqidx; 1594 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi; 1595 ofld_tqidx += vi->nofldtxq; 1596 #endif 1597 #ifdef TCP_OFFLOAD 1598 vi->ofld_tmr_idx = t4_tmr_idx_ofld; 1599 vi->ofld_pktc_idx = t4_pktc_idx_ofld; 1600 vi->first_ofld_rxq = ofld_rqidx; 1601 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi; 1602 1603 ofld_rqidx += vi->nofldrxq; 1604 #endif 1605 #ifdef DEV_NETMAP 1606 vi->first_nm_rxq = nm_rqidx; 1607 vi->first_nm_txq = nm_tqidx; 1608 if (j == 0) { 1609 vi->nnmrxq = iaq.nnmrxq; 1610 vi->nnmtxq = iaq.nnmtxq; 1611 } else { 1612 vi->nnmrxq = iaq.nnmrxq_vi; 1613 vi->nnmtxq = iaq.nnmtxq_vi; 1614 } 1615 nm_rqidx += vi->nnmrxq; 1616 nm_tqidx += vi->nnmtxq; 1617 #endif 1618 } 1619 } 1620 1621 rc = t4_setup_intr_handlers(sc); 1622 if (rc != 0) { 1623 device_printf(dev, 1624 "failed to setup interrupt handlers: %d\n", rc); 1625 goto done; 1626 } 1627 1628 rc = bus_generic_probe(dev); 1629 if (rc != 0) { 1630 device_printf(dev, "failed to probe child drivers: %d\n", rc); 1631 goto done; 1632 } 1633 1634 /* 1635 * Ensure thread-safe mailbox access (in debug builds). 1636 * 1637 * So far this was the only thread accessing the mailbox but various 1638 * ifnets and sysctls are about to be created and their handlers/ioctls 1639 * will access the mailbox from different threads. 1640 */ 1641 sc->flags |= CHK_MBOX_ACCESS; 1642 1643 rc = bus_generic_attach(dev); 1644 if (rc != 0) { 1645 device_printf(dev, 1646 "failed to attach all child ports: %d\n", rc); 1647 goto done; 1648 } 1649 t4_calibration_start(sc); 1650 1651 device_printf(dev, 1652 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", 1653 sc->params.pci.speed, sc->params.pci.width, sc->params.nports, 1654 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : 1655 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), 1656 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); 1657 1658 t4_set_desc(sc); 1659 1660 notify_siblings(dev, 0); 1661 1662 done: 1663 if (rc != 0 && sc->cdev) { 1664 /* cdev was created and so cxgbetool works; recover that way. */ 1665 device_printf(dev, 1666 "error during attach, adapter is now in recovery mode.\n"); 1667 rc = 0; 1668 } 1669 1670 if (rc != 0) 1671 t4_detach_common(dev); 1672 else 1673 t4_sysctls(sc); 1674 1675 return (rc); 1676 } 1677 1678 static int 1679 t4_child_location(device_t bus, device_t dev, struct sbuf *sb) 1680 { 1681 struct adapter *sc; 1682 struct port_info *pi; 1683 int i; 1684 1685 sc = device_get_softc(bus); 1686 for_each_port(sc, i) { 1687 pi = sc->port[i]; 1688 if (pi != NULL && pi->dev == dev) { 1689 sbuf_printf(sb, "port=%d", pi->port_id); 1690 break; 1691 } 1692 } 1693 return (0); 1694 } 1695 1696 static int 1697 t4_ready(device_t dev) 1698 { 1699 struct adapter *sc; 1700 1701 sc = device_get_softc(dev); 1702 if (sc->flags & FW_OK) 1703 return (0); 1704 return (ENXIO); 1705 } 1706 1707 static int 1708 t4_read_port_device(device_t dev, int port, device_t *child) 1709 { 1710 struct adapter *sc; 1711 struct port_info *pi; 1712 1713 sc = device_get_softc(dev); 1714 if (port < 0 || port >= MAX_NPORTS) 1715 return (EINVAL); 1716 pi = sc->port[port]; 1717 if (pi == NULL || pi->dev == NULL) 1718 return (ENXIO); 1719 *child = pi->dev; 1720 return (0); 1721 } 1722 1723 static int 1724 notify_siblings(device_t dev, int detaching) 1725 { 1726 device_t sibling; 1727 int error, i; 1728 1729 error = 0; 1730 for (i = 0; i < PCI_FUNCMAX; i++) { 1731 if (i == pci_get_function(dev)) 1732 continue; 1733 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev), 1734 pci_get_slot(dev), i); 1735 if (sibling == NULL || !device_is_attached(sibling)) 1736 continue; 1737 if (detaching) 1738 error = T4_DETACH_CHILD(sibling); 1739 else 1740 (void)T4_ATTACH_CHILD(sibling); 1741 if (error) 1742 break; 1743 } 1744 return (error); 1745 } 1746 1747 /* 1748 * Idempotent 1749 */ 1750 static int 1751 t4_detach(device_t dev) 1752 { 1753 int rc; 1754 1755 rc = notify_siblings(dev, 1); 1756 if (rc) { 1757 device_printf(dev, 1758 "failed to detach sibling devices: %d\n", rc); 1759 return (rc); 1760 } 1761 1762 return (t4_detach_common(dev)); 1763 } 1764 1765 int 1766 t4_detach_common(device_t dev) 1767 { 1768 struct adapter *sc; 1769 struct port_info *pi; 1770 int i, rc; 1771 1772 sc = device_get_softc(dev); 1773 1774 #ifdef TCP_OFFLOAD 1775 rc = deactivate_all_uld(sc); 1776 if (rc) { 1777 device_printf(dev, 1778 "failed to detach upper layer drivers: %d\n", rc); 1779 return (rc); 1780 } 1781 #endif 1782 1783 if (sc->cdev) { 1784 destroy_dev(sc->cdev); 1785 sc->cdev = NULL; 1786 } 1787 1788 sx_xlock(&t4_list_lock); 1789 SLIST_REMOVE(&t4_list, sc, adapter, link); 1790 sx_xunlock(&t4_list_lock); 1791 1792 sc->flags &= ~CHK_MBOX_ACCESS; 1793 if (sc->flags & FULL_INIT_DONE) { 1794 if (!(sc->flags & IS_VF)) 1795 t4_intr_disable(sc); 1796 } 1797 1798 if (device_is_attached(dev)) { 1799 rc = bus_generic_detach(dev); 1800 if (rc) { 1801 device_printf(dev, 1802 "failed to detach child devices: %d\n", rc); 1803 return (rc); 1804 } 1805 } 1806 1807 for (i = 0; i < sc->intr_count; i++) 1808 t4_free_irq(sc, &sc->irq[i]); 1809 1810 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1811 t4_free_tx_sched(sc); 1812 1813 for (i = 0; i < MAX_NPORTS; i++) { 1814 pi = sc->port[i]; 1815 if (pi) { 1816 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid); 1817 if (pi->dev) 1818 device_delete_child(dev, pi->dev); 1819 1820 mtx_destroy(&pi->pi_lock); 1821 free(pi->vi, M_CXGBE); 1822 free(pi, M_CXGBE); 1823 } 1824 } 1825 callout_stop(&sc->cal_callout); 1826 callout_drain(&sc->cal_callout); 1827 device_delete_children(dev); 1828 sysctl_ctx_free(&sc->ctx); 1829 adapter_full_uninit(sc); 1830 1831 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1832 t4_fw_bye(sc, sc->mbox); 1833 1834 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) 1835 pci_release_msi(dev); 1836 1837 if (sc->regs_res) 1838 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, 1839 sc->regs_res); 1840 1841 if (sc->udbs_res) 1842 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, 1843 sc->udbs_res); 1844 1845 if (sc->msix_res) 1846 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, 1847 sc->msix_res); 1848 1849 if (sc->l2t) 1850 t4_free_l2t(sc); 1851 if (sc->smt) 1852 t4_free_smt(sc->smt); 1853 t4_free_atid_table(sc); 1854 #ifdef RATELIMIT 1855 t4_free_etid_table(sc); 1856 #endif 1857 if (sc->key_map) 1858 vmem_destroy(sc->key_map); 1859 #ifdef INET6 1860 t4_destroy_clip_table(sc); 1861 #endif 1862 1863 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1864 free(sc->sge.ofld_txq, M_CXGBE); 1865 #endif 1866 #ifdef TCP_OFFLOAD 1867 free(sc->sge.ofld_rxq, M_CXGBE); 1868 #endif 1869 #ifdef DEV_NETMAP 1870 free(sc->sge.nm_rxq, M_CXGBE); 1871 free(sc->sge.nm_txq, M_CXGBE); 1872 #endif 1873 free(sc->irq, M_CXGBE); 1874 free(sc->sge.rxq, M_CXGBE); 1875 free(sc->sge.txq, M_CXGBE); 1876 free(sc->sge.ctrlq, M_CXGBE); 1877 free(sc->sge.iqmap, M_CXGBE); 1878 free(sc->sge.eqmap, M_CXGBE); 1879 free(sc->tids.ftid_tab, M_CXGBE); 1880 free(sc->tids.hpftid_tab, M_CXGBE); 1881 free_hftid_hash(&sc->tids); 1882 free(sc->tids.tid_tab, M_CXGBE); 1883 t4_destroy_dma_tag(sc); 1884 1885 callout_drain(&sc->ktls_tick); 1886 callout_drain(&sc->sfl_callout); 1887 if (mtx_initialized(&sc->tids.ftid_lock)) { 1888 mtx_destroy(&sc->tids.ftid_lock); 1889 cv_destroy(&sc->tids.ftid_cv); 1890 } 1891 if (mtx_initialized(&sc->tids.atid_lock)) 1892 mtx_destroy(&sc->tids.atid_lock); 1893 if (mtx_initialized(&sc->ifp_lock)) 1894 mtx_destroy(&sc->ifp_lock); 1895 1896 if (rw_initialized(&sc->policy_lock)) { 1897 rw_destroy(&sc->policy_lock); 1898 #ifdef TCP_OFFLOAD 1899 if (sc->policy != NULL) 1900 free_offload_policy(sc->policy); 1901 #endif 1902 } 1903 1904 for (i = 0; i < NUM_MEMWIN; i++) { 1905 struct memwin *mw = &sc->memwin[i]; 1906 1907 if (rw_initialized(&mw->mw_lock)) 1908 rw_destroy(&mw->mw_lock); 1909 } 1910 1911 mtx_destroy(&sc->sfl_lock); 1912 mtx_destroy(&sc->reg_lock); 1913 mtx_destroy(&sc->sc_lock); 1914 1915 bzero(sc, sizeof(*sc)); 1916 1917 return (0); 1918 } 1919 1920 static inline int 1921 stop_adapter(struct adapter *sc) 1922 { 1923 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) { 1924 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n", 1925 __func__, curthread, sc->flags, sc->error_flags); 1926 return (EALREADY); 1927 } 1928 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread, 1929 sc->flags, sc->error_flags); 1930 return (t4_shutdown_adapter(sc)); 1931 } 1932 1933 static inline int 1934 restart_adapter(struct adapter *sc) 1935 { 1936 uint32_t val; 1937 1938 if (!atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_STOPPED))) { 1939 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n", 1940 __func__, curthread, sc->flags, sc->error_flags); 1941 return (EALREADY); 1942 } 1943 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread, 1944 sc->flags, sc->error_flags); 1945 1946 MPASS(hw_off_limits(sc)); 1947 MPASS((sc->flags & FW_OK) == 0); 1948 MPASS((sc->flags & MASTER_PF) == 0); 1949 MPASS(sc->reset_thread == NULL); 1950 1951 /* 1952 * The adapter is supposed to be back on PCIE with its config space and 1953 * BARs restored to their state before reset. Register access via 1954 * t4_read_reg BAR0 should just work. 1955 */ 1956 sc->reset_thread = curthread; 1957 val = t4_read_reg(sc, A_PL_WHOAMI); 1958 if (val == 0xffffffff || val == 0xeeeeeeee) { 1959 CH_ERR(sc, "%s: device registers not readable.\n", __func__); 1960 sc->reset_thread = NULL; 1961 atomic_set_int(&sc->error_flags, ADAP_STOPPED); 1962 return (ENXIO); 1963 } 1964 atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR); 1965 atomic_add_int(&sc->incarnation, 1); 1966 atomic_add_int(&sc->num_resets, 1); 1967 1968 return (0); 1969 } 1970 1971 static inline void 1972 set_adapter_hwstatus(struct adapter *sc, const bool usable) 1973 { 1974 mtx_lock(&sc->reg_lock); 1975 if (usable) { 1976 /* Must be marked reusable by the designated thread. */ 1977 MPASS(sc->reset_thread == curthread); 1978 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS); 1979 } else { 1980 /* Mark the adapter totally off limits. */ 1981 atomic_set_int(&sc->error_flags, HW_OFF_LIMITS); 1982 sc->flags &= ~(FW_OK | MASTER_PF); 1983 sc->reset_thread = NULL; 1984 } 1985 mtx_unlock(&sc->reg_lock); 1986 } 1987 1988 static int 1989 stop_lld(struct adapter *sc) 1990 { 1991 struct port_info *pi; 1992 struct vi_info *vi; 1993 if_t ifp; 1994 struct sge_rxq *rxq; 1995 struct sge_txq *txq; 1996 struct sge_wrq *wrq; 1997 #ifdef TCP_OFFLOAD 1998 struct sge_ofld_rxq *ofld_rxq; 1999 #endif 2000 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2001 struct sge_ofld_txq *ofld_txq; 2002 #endif 2003 int rc, i, j, k; 2004 2005 /* 2006 * XXX: Can there be a synch_op in progress that will hang because 2007 * hardware has been stopped? We'll hang too and the solution will be 2008 * to use a version of begin_synch_op that wakes up existing synch_op 2009 * with errors. Maybe stop_adapter should do this wakeup? 2010 * 2011 * I don't think any synch_op could get stranded waiting for DMA or 2012 * interrupt so I think we're okay here. Remove this comment block 2013 * after testing. 2014 */ 2015 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4slld"); 2016 if (rc != 0) 2017 return (ENXIO); 2018 2019 /* Quiesce all activity. */ 2020 for_each_port(sc, i) { 2021 pi = sc->port[i]; 2022 pi->vxlan_tcam_entry = false; 2023 2024 PORT_LOCK(pi); 2025 if (pi->up_vis > 0) { 2026 /* 2027 * t4_shutdown_adapter has already shut down all the 2028 * PHYs but it also disables interrupts and DMA so there 2029 * won't be a link interrupt. So we update the state 2030 * manually and inform the kernel. 2031 */ 2032 pi->link_cfg.link_ok = false; 2033 t4_os_link_changed(pi); 2034 } 2035 PORT_UNLOCK(pi); 2036 2037 for_each_vi(pi, j, vi) { 2038 vi->xact_addr_filt = -1; 2039 mtx_lock(&vi->tick_mtx); 2040 vi->flags |= VI_SKIP_STATS; 2041 mtx_unlock(&vi->tick_mtx); 2042 if (!(vi->flags & VI_INIT_DONE)) 2043 continue; 2044 2045 ifp = vi->ifp; 2046 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2047 mtx_lock(&vi->tick_mtx); 2048 callout_stop(&vi->tick); 2049 mtx_unlock(&vi->tick_mtx); 2050 callout_drain(&vi->tick); 2051 } 2052 2053 /* 2054 * Note that the HW is not available. 2055 */ 2056 for_each_txq(vi, k, txq) { 2057 TXQ_LOCK(txq); 2058 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED); 2059 TXQ_UNLOCK(txq); 2060 } 2061 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2062 for_each_ofld_txq(vi, k, ofld_txq) { 2063 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED; 2064 } 2065 #endif 2066 for_each_rxq(vi, k, rxq) { 2067 rxq->iq.flags &= ~IQ_HW_ALLOCATED; 2068 } 2069 #if defined(TCP_OFFLOAD) 2070 for_each_ofld_rxq(vi, k, ofld_rxq) { 2071 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED; 2072 } 2073 #endif 2074 2075 quiesce_vi(vi); 2076 } 2077 2078 if (sc->flags & FULL_INIT_DONE) { 2079 /* Control queue */ 2080 wrq = &sc->sge.ctrlq[i]; 2081 wrq->eq.flags &= ~EQ_HW_ALLOCATED; 2082 quiesce_wrq(wrq); 2083 } 2084 } 2085 if (sc->flags & FULL_INIT_DONE) { 2086 /* Firmware event queue */ 2087 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED; 2088 quiesce_iq_fl(sc, &sc->sge.fwq, NULL); 2089 } 2090 2091 /* Stop calibration */ 2092 callout_stop(&sc->cal_callout); 2093 callout_drain(&sc->cal_callout); 2094 2095 if (t4_clock_gate_on_suspend) { 2096 t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN | 2097 F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN | 2098 F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0); 2099 } 2100 2101 end_synchronized_op(sc, 0); 2102 2103 stop_atid_allocator(sc); 2104 t4_stop_l2t(sc); 2105 2106 return (rc); 2107 } 2108 2109 static int 2110 t4_suspend(device_t dev) 2111 { 2112 struct adapter *sc = device_get_softc(dev); 2113 2114 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2115 stop_adapter(sc); 2116 stop_lld(sc); 2117 #ifdef TCP_OFFLOAD 2118 stop_all_uld(sc); 2119 #endif 2120 set_adapter_hwstatus(sc, false); 2121 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread); 2122 2123 return (0); 2124 } 2125 2126 struct adapter_pre_reset_state { 2127 u_int flags; 2128 uint16_t nbmcaps; 2129 uint16_t linkcaps; 2130 uint16_t switchcaps; 2131 uint16_t niccaps; 2132 uint16_t toecaps; 2133 uint16_t rdmacaps; 2134 uint16_t cryptocaps; 2135 uint16_t iscsicaps; 2136 uint16_t fcoecaps; 2137 2138 u_int cfcsum; 2139 char cfg_file[32]; 2140 2141 struct adapter_params params; 2142 struct t4_virt_res vres; 2143 struct tid_info tids; 2144 struct sge sge; 2145 2146 int rawf_base; 2147 int nrawf; 2148 2149 }; 2150 2151 static void 2152 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2153 { 2154 2155 ASSERT_SYNCHRONIZED_OP(sc); 2156 2157 o->flags = sc->flags; 2158 2159 o->nbmcaps = sc->nbmcaps; 2160 o->linkcaps = sc->linkcaps; 2161 o->switchcaps = sc->switchcaps; 2162 o->niccaps = sc->niccaps; 2163 o->toecaps = sc->toecaps; 2164 o->rdmacaps = sc->rdmacaps; 2165 o->cryptocaps = sc->cryptocaps; 2166 o->iscsicaps = sc->iscsicaps; 2167 o->fcoecaps = sc->fcoecaps; 2168 2169 o->cfcsum = sc->cfcsum; 2170 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file)); 2171 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file)); 2172 2173 o->params = sc->params; 2174 o->vres = sc->vres; 2175 o->tids = sc->tids; 2176 o->sge = sc->sge; 2177 2178 o->rawf_base = sc->rawf_base; 2179 o->nrawf = sc->nrawf; 2180 } 2181 2182 static int 2183 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2184 { 2185 int rc = 0; 2186 2187 ASSERT_SYNCHRONIZED_OP(sc); 2188 2189 /* Capabilities */ 2190 #define COMPARE_CAPS(c) do { \ 2191 if (o->c##caps != sc->c##caps) { \ 2192 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \ 2193 sc->c##caps); \ 2194 rc = EINVAL; \ 2195 } \ 2196 } while (0) 2197 COMPARE_CAPS(nbm); 2198 COMPARE_CAPS(link); 2199 COMPARE_CAPS(switch); 2200 COMPARE_CAPS(nic); 2201 COMPARE_CAPS(toe); 2202 COMPARE_CAPS(rdma); 2203 COMPARE_CAPS(crypto); 2204 COMPARE_CAPS(iscsi); 2205 COMPARE_CAPS(fcoe); 2206 #undef COMPARE_CAPS 2207 2208 /* Firmware config file */ 2209 if (o->cfcsum != sc->cfcsum) { 2210 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file, 2211 o->cfcsum, sc->cfg_file, sc->cfcsum); 2212 rc = EINVAL; 2213 } 2214 2215 #define COMPARE_PARAM(p, name) do { \ 2216 if (o->p != sc->p) { \ 2217 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \ 2218 rc = EINVAL; \ 2219 } \ 2220 } while (0) 2221 COMPARE_PARAM(sge.iq_start, iq_start); 2222 COMPARE_PARAM(sge.eq_start, eq_start); 2223 COMPARE_PARAM(tids.ftid_base, ftid_base); 2224 COMPARE_PARAM(tids.ftid_end, ftid_end); 2225 COMPARE_PARAM(tids.nftids, nftids); 2226 COMPARE_PARAM(vres.l2t.start, l2t_start); 2227 COMPARE_PARAM(vres.l2t.size, l2t_size); 2228 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz); 2229 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz); 2230 COMPARE_PARAM(tids.tid_base, tid_base); 2231 COMPARE_PARAM(tids.hpftid_base, hpftid_base); 2232 COMPARE_PARAM(tids.hpftid_end, hpftid_end); 2233 COMPARE_PARAM(tids.nhpftids, nhpftids); 2234 COMPARE_PARAM(rawf_base, rawf_base); 2235 COMPARE_PARAM(nrawf, nrawf); 2236 COMPARE_PARAM(params.mps_bg_map, mps_bg_map); 2237 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support); 2238 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl); 2239 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support); 2240 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr); 2241 COMPARE_PARAM(tids.ntids, ntids); 2242 COMPARE_PARAM(tids.etid_base, etid_base); 2243 COMPARE_PARAM(tids.etid_end, etid_end); 2244 COMPARE_PARAM(tids.netids, netids); 2245 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred); 2246 COMPARE_PARAM(params.ethoffload, ethoffload); 2247 COMPARE_PARAM(tids.natids, natids); 2248 COMPARE_PARAM(tids.stid_base, stid_base); 2249 COMPARE_PARAM(vres.ddp.start, ddp_start); 2250 COMPARE_PARAM(vres.ddp.size, ddp_size); 2251 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred); 2252 COMPARE_PARAM(vres.stag.start, stag_start); 2253 COMPARE_PARAM(vres.stag.size, stag_size); 2254 COMPARE_PARAM(vres.rq.start, rq_start); 2255 COMPARE_PARAM(vres.rq.size, rq_size); 2256 COMPARE_PARAM(vres.pbl.start, pbl_start); 2257 COMPARE_PARAM(vres.pbl.size, pbl_size); 2258 COMPARE_PARAM(vres.qp.start, qp_start); 2259 COMPARE_PARAM(vres.qp.size, qp_size); 2260 COMPARE_PARAM(vres.cq.start, cq_start); 2261 COMPARE_PARAM(vres.cq.size, cq_size); 2262 COMPARE_PARAM(vres.ocq.start, ocq_start); 2263 COMPARE_PARAM(vres.ocq.size, ocq_size); 2264 COMPARE_PARAM(vres.srq.start, srq_start); 2265 COMPARE_PARAM(vres.srq.size, srq_size); 2266 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp); 2267 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter); 2268 COMPARE_PARAM(vres.iscsi.start, iscsi_start); 2269 COMPARE_PARAM(vres.iscsi.size, iscsi_size); 2270 COMPARE_PARAM(vres.key.start, key_start); 2271 COMPARE_PARAM(vres.key.size, key_size); 2272 #undef COMPARE_PARAM 2273 2274 return (rc); 2275 } 2276 2277 static int 2278 restart_lld(struct adapter *sc) 2279 { 2280 struct adapter_pre_reset_state *old_state = NULL; 2281 struct port_info *pi; 2282 struct vi_info *vi; 2283 if_t ifp; 2284 struct sge_txq *txq; 2285 int rc, i, j, k; 2286 2287 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rlld"); 2288 if (rc != 0) 2289 return (ENXIO); 2290 2291 /* Restore memory window. */ 2292 setup_memwin(sc); 2293 2294 /* Go no further if recovery mode has been requested. */ 2295 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 2296 CH_ALERT(sc, "%s: recovery mode during restart.\n", __func__); 2297 rc = 0; 2298 set_adapter_hwstatus(sc, true); 2299 goto done; 2300 } 2301 2302 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK); 2303 save_caps_and_params(sc, old_state); 2304 2305 /* Reestablish contact with firmware and become the primary PF. */ 2306 rc = contact_firmware(sc); 2307 if (rc != 0) 2308 goto done; /* error message displayed already */ 2309 MPASS(sc->flags & FW_OK); 2310 2311 if (sc->flags & MASTER_PF) { 2312 rc = partition_resources(sc); 2313 if (rc != 0) 2314 goto done; /* error message displayed already */ 2315 } 2316 2317 rc = get_params__post_init(sc); 2318 if (rc != 0) 2319 goto done; /* error message displayed already */ 2320 2321 rc = set_params__post_init(sc); 2322 if (rc != 0) 2323 goto done; /* error message displayed already */ 2324 2325 rc = compare_caps_and_params(sc, old_state); 2326 if (rc != 0) 2327 goto done; /* error message displayed already */ 2328 2329 for_each_port(sc, i) { 2330 pi = sc->port[i]; 2331 MPASS(pi != NULL); 2332 MPASS(pi->vi != NULL); 2333 MPASS(pi->vi[0].dev == pi->dev); 2334 2335 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 2336 if (rc != 0) { 2337 CH_ERR(sc, 2338 "failed to re-initialize port %d: %d\n", i, rc); 2339 goto done; 2340 } 2341 MPASS(sc->chan_map[pi->tx_chan] == i); 2342 2343 PORT_LOCK(pi); 2344 fixup_link_config(pi); 2345 build_medialist(pi); 2346 PORT_UNLOCK(pi); 2347 for_each_vi(pi, j, vi) { 2348 if (IS_MAIN_VI(vi)) 2349 continue; 2350 rc = alloc_extra_vi(sc, pi, vi); 2351 if (rc != 0) { 2352 CH_ERR(vi, 2353 "failed to re-allocate extra VI: %d\n", rc); 2354 goto done; 2355 } 2356 } 2357 } 2358 2359 /* 2360 * Interrupts and queues are about to be enabled and other threads will 2361 * want to access the hardware too. It is safe to do so. Note that 2362 * this thread is still in the middle of a synchronized_op. 2363 */ 2364 set_adapter_hwstatus(sc, true); 2365 2366 if (sc->flags & FULL_INIT_DONE) { 2367 rc = adapter_full_init(sc); 2368 if (rc != 0) { 2369 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc); 2370 goto done; 2371 } 2372 2373 if (sc->vxlan_refcount > 0) 2374 enable_vxlan_rx(sc); 2375 2376 for_each_port(sc, i) { 2377 pi = sc->port[i]; 2378 for_each_vi(pi, j, vi) { 2379 mtx_lock(&vi->tick_mtx); 2380 vi->flags &= ~VI_SKIP_STATS; 2381 mtx_unlock(&vi->tick_mtx); 2382 if (!(vi->flags & VI_INIT_DONE)) 2383 continue; 2384 rc = vi_full_init(vi); 2385 if (rc != 0) { 2386 CH_ERR(vi, "failed to re-initialize " 2387 "interface: %d\n", rc); 2388 goto done; 2389 } 2390 2391 ifp = vi->ifp; 2392 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 2393 continue; 2394 /* 2395 * Note that we do not setup multicast addresses 2396 * in the first pass. This ensures that the 2397 * unicast DMACs for all VIs on all ports get an 2398 * MPS TCAM entry. 2399 */ 2400 rc = update_mac_settings(ifp, XGMAC_ALL & 2401 ~XGMAC_MCADDRS); 2402 if (rc != 0) { 2403 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc); 2404 goto done; 2405 } 2406 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, 2407 true); 2408 if (rc != 0) { 2409 CH_ERR(vi, "failed to re-enable VI: %d\n", rc); 2410 goto done; 2411 } 2412 for_each_txq(vi, k, txq) { 2413 TXQ_LOCK(txq); 2414 txq->eq.flags |= EQ_ENABLED; 2415 TXQ_UNLOCK(txq); 2416 } 2417 mtx_lock(&vi->tick_mtx); 2418 callout_schedule(&vi->tick, hz); 2419 mtx_unlock(&vi->tick_mtx); 2420 } 2421 PORT_LOCK(pi); 2422 if (pi->up_vis > 0) { 2423 t4_update_port_info(pi); 2424 fixup_link_config(pi); 2425 build_medialist(pi); 2426 apply_link_config(pi); 2427 if (pi->link_cfg.link_ok) 2428 t4_os_link_changed(pi); 2429 } 2430 PORT_UNLOCK(pi); 2431 } 2432 2433 /* Now reprogram the L2 multicast addresses. */ 2434 for_each_port(sc, i) { 2435 pi = sc->port[i]; 2436 for_each_vi(pi, j, vi) { 2437 if (!(vi->flags & VI_INIT_DONE)) 2438 continue; 2439 ifp = vi->ifp; 2440 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 2441 continue; 2442 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2443 if (rc != 0) { 2444 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc); 2445 rc = 0; /* carry on */ 2446 } 2447 } 2448 } 2449 } 2450 2451 /* Reset all calibration */ 2452 t4_calibration_start(sc); 2453 done: 2454 end_synchronized_op(sc, 0); 2455 free(old_state, M_CXGBE); 2456 2457 restart_atid_allocator(sc); 2458 t4_restart_l2t(sc); 2459 2460 return (rc); 2461 } 2462 2463 static int 2464 t4_resume(device_t dev) 2465 { 2466 struct adapter *sc = device_get_softc(dev); 2467 2468 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2469 restart_adapter(sc); 2470 restart_lld(sc); 2471 #ifdef TCP_OFFLOAD 2472 restart_all_uld(sc); 2473 #endif 2474 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread); 2475 2476 return (0); 2477 } 2478 2479 static int 2480 t4_reset_prepare(device_t dev, device_t child) 2481 { 2482 struct adapter *sc = device_get_softc(dev); 2483 2484 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2485 return (0); 2486 } 2487 2488 static int 2489 t4_reset_post(device_t dev, device_t child) 2490 { 2491 struct adapter *sc = device_get_softc(dev); 2492 2493 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2494 return (0); 2495 } 2496 2497 static int 2498 reset_adapter_with_pci_bus_reset(struct adapter *sc) 2499 { 2500 int rc; 2501 2502 mtx_lock(&Giant); 2503 rc = BUS_RESET_CHILD(device_get_parent(sc->dev), sc->dev, 0); 2504 mtx_unlock(&Giant); 2505 return (rc); 2506 } 2507 2508 static int 2509 reset_adapter_with_pl_rst(struct adapter *sc) 2510 { 2511 stop_adapter(sc); 2512 stop_lld(sc); 2513 #ifdef TCP_OFFLOAD 2514 stop_all_uld(sc); 2515 #endif 2516 set_adapter_hwstatus(sc, false); 2517 2518 /* This is a t4_write_reg without the hw_off_limits check. */ 2519 MPASS(sc->error_flags & HW_OFF_LIMITS); 2520 bus_space_write_4(sc->bt, sc->bh, A_PL_RST, 2521 F_PIORSTMODE | F_PIORST | F_AUTOPCIEPAUSE); 2522 pause("pl_rst", 1 * hz); /* Wait 1s for reset */ 2523 2524 restart_adapter(sc); 2525 restart_lld(sc); 2526 #ifdef TCP_OFFLOAD 2527 restart_all_uld(sc); 2528 #endif 2529 2530 return (0); 2531 } 2532 2533 static void 2534 reset_adapter_task(void *arg, int pending) 2535 { 2536 struct adapter *sc = arg; 2537 const int flags = sc->flags; 2538 const int eflags = sc->error_flags; 2539 int rc; 2540 2541 if (pending > 1) 2542 CH_ALERT(sc, "%s: pending %d\n", __func__, pending); 2543 if (vm_guest == 0) 2544 rc = reset_adapter_with_pci_bus_reset(sc); 2545 else 2546 rc = reset_adapter_with_pl_rst(sc); 2547 if (rc != 0) { 2548 CH_ERR(sc, "adapter did not reset properly, rc = %d, " 2549 "flags 0x%08x -> 0x%08x, err_flags 0x%08x -> 0x%08x.\n", 2550 rc, flags, sc->flags, eflags, sc->error_flags); 2551 } 2552 } 2553 2554 static int 2555 cxgbe_probe(device_t dev) 2556 { 2557 struct port_info *pi = device_get_softc(dev); 2558 2559 device_set_descf(dev, "port %d", pi->port_id); 2560 2561 return (BUS_PROBE_DEFAULT); 2562 } 2563 2564 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ 2565 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ 2566 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \ 2567 IFCAP_HWRXTSTMP | IFCAP_MEXTPG) 2568 #define T4_CAP_ENABLE (T4_CAP) 2569 2570 static void 2571 cxgbe_vi_attach(device_t dev, struct vi_info *vi) 2572 { 2573 if_t ifp; 2574 struct sbuf *sb; 2575 struct sysctl_ctx_list *ctx = &vi->ctx; 2576 struct sysctl_oid_list *children; 2577 struct pfil_head_args pa; 2578 struct adapter *sc = vi->adapter; 2579 2580 sysctl_ctx_init(ctx); 2581 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev)); 2582 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq", 2583 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues"); 2584 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq", 2585 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues"); 2586 #ifdef DEV_NETMAP 2587 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq", 2588 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues"); 2589 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq", 2590 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues"); 2591 #endif 2592 #ifdef TCP_OFFLOAD 2593 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq", 2594 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues"); 2595 #endif 2596 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2597 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq", 2598 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues"); 2599 #endif 2600 2601 vi->xact_addr_filt = -1; 2602 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF); 2603 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0); 2604 if (sc->flags & IS_VF || t4_tx_vm_wr != 0) 2605 vi->flags |= TX_USES_VM_WR; 2606 2607 /* Allocate an ifnet and set it up */ 2608 ifp = if_alloc_dev(IFT_ETHER, dev); 2609 vi->ifp = ifp; 2610 if_setsoftc(ifp, vi); 2611 2612 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 2613 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 2614 2615 if_setinitfn(ifp, cxgbe_init); 2616 if_setioctlfn(ifp, cxgbe_ioctl); 2617 if_settransmitfn(ifp, cxgbe_transmit); 2618 if_setqflushfn(ifp, cxgbe_qflush); 2619 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 2620 if_setgetcounterfn(ifp, vi_get_counter); 2621 else 2622 if_setgetcounterfn(ifp, cxgbe_get_counter); 2623 #if defined(KERN_TLS) || defined(RATELIMIT) 2624 if_setsndtagallocfn(ifp, cxgbe_snd_tag_alloc); 2625 #endif 2626 #ifdef RATELIMIT 2627 if_setratelimitqueryfn(ifp, cxgbe_ratelimit_query); 2628 #endif 2629 2630 if_setcapabilities(ifp, T4_CAP); 2631 if_setcapenable(ifp, T4_CAP_ENABLE); 2632 if_sethwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | 2633 CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2634 if (chip_id(sc) >= CHELSIO_T6) { 2635 if_setcapabilitiesbit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0); 2636 if_setcapenablebit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0); 2637 if_sethwassistbits(ifp, CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | 2638 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP | 2639 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN, 0); 2640 } 2641 2642 #ifdef TCP_OFFLOAD 2643 if (vi->nofldrxq != 0) 2644 if_setcapabilitiesbit(ifp, IFCAP_TOE, 0); 2645 #endif 2646 #ifdef RATELIMIT 2647 if (is_ethoffload(sc) && vi->nofldtxq != 0) { 2648 if_setcapabilitiesbit(ifp, IFCAP_TXRTLMT, 0); 2649 if_setcapenablebit(ifp, IFCAP_TXRTLMT, 0); 2650 } 2651 #endif 2652 2653 if_sethwtsomax(ifp, IP_MAXPACKET); 2654 if (vi->flags & TX_USES_VM_WR) 2655 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_VM_TSO); 2656 else 2657 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_TSO); 2658 #ifdef RATELIMIT 2659 if (is_ethoffload(sc) && vi->nofldtxq != 0) 2660 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_EO_TSO); 2661 #endif 2662 if_sethwtsomaxsegsize(ifp, 65536); 2663 #ifdef KERN_TLS 2664 if (is_ktls(sc)) { 2665 if_setcapabilitiesbit(ifp, IFCAP_TXTLS, 0); 2666 if (sc->flags & KERN_TLS_ON || !is_t6(sc)) 2667 if_setcapenablebit(ifp, IFCAP_TXTLS, 0); 2668 } 2669 #endif 2670 2671 ether_ifattach(ifp, vi->hw_addr); 2672 #ifdef DEV_NETMAP 2673 if (vi->nnmrxq != 0) 2674 cxgbe_nm_attach(vi); 2675 #endif 2676 sb = sbuf_new_auto(); 2677 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq); 2678 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2679 switch (if_getcapabilities(ifp) & (IFCAP_TOE | IFCAP_TXRTLMT)) { 2680 case IFCAP_TOE: 2681 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq); 2682 break; 2683 case IFCAP_TOE | IFCAP_TXRTLMT: 2684 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq); 2685 break; 2686 case IFCAP_TXRTLMT: 2687 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq); 2688 break; 2689 } 2690 #endif 2691 #ifdef TCP_OFFLOAD 2692 if (if_getcapabilities(ifp) & IFCAP_TOE) 2693 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq); 2694 #endif 2695 #ifdef DEV_NETMAP 2696 if (if_getcapabilities(ifp) & IFCAP_NETMAP) 2697 sbuf_printf(sb, "; %d txq, %d rxq (netmap)", 2698 vi->nnmtxq, vi->nnmrxq); 2699 #endif 2700 sbuf_finish(sb); 2701 device_printf(dev, "%s\n", sbuf_data(sb)); 2702 sbuf_delete(sb); 2703 2704 vi_sysctls(vi); 2705 2706 pa.pa_version = PFIL_VERSION; 2707 pa.pa_flags = PFIL_IN; 2708 pa.pa_type = PFIL_TYPE_ETHERNET; 2709 pa.pa_headname = if_name(ifp); 2710 vi->pfil = pfil_head_register(&pa); 2711 } 2712 2713 static int 2714 cxgbe_attach(device_t dev) 2715 { 2716 struct port_info *pi = device_get_softc(dev); 2717 struct adapter *sc = pi->adapter; 2718 struct vi_info *vi; 2719 int i; 2720 2721 sysctl_ctx_init(&pi->ctx); 2722 2723 cxgbe_vi_attach(dev, &pi->vi[0]); 2724 2725 for_each_vi(pi, i, vi) { 2726 if (i == 0) 2727 continue; 2728 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, DEVICE_UNIT_ANY); 2729 if (vi->dev == NULL) { 2730 device_printf(dev, "failed to add VI %d\n", i); 2731 continue; 2732 } 2733 device_set_softc(vi->dev, vi); 2734 } 2735 2736 cxgbe_sysctls(pi); 2737 2738 bus_generic_attach(dev); 2739 2740 return (0); 2741 } 2742 2743 static void 2744 cxgbe_vi_detach(struct vi_info *vi) 2745 { 2746 if_t ifp = vi->ifp; 2747 2748 if (vi->pfil != NULL) { 2749 pfil_head_unregister(vi->pfil); 2750 vi->pfil = NULL; 2751 } 2752 2753 ether_ifdetach(ifp); 2754 2755 /* Let detach proceed even if these fail. */ 2756 #ifdef DEV_NETMAP 2757 if (if_getcapabilities(ifp) & IFCAP_NETMAP) 2758 cxgbe_nm_detach(vi); 2759 #endif 2760 cxgbe_uninit_synchronized(vi); 2761 callout_drain(&vi->tick); 2762 mtx_destroy(&vi->tick_mtx); 2763 sysctl_ctx_free(&vi->ctx); 2764 vi_full_uninit(vi); 2765 2766 if_free(vi->ifp); 2767 vi->ifp = NULL; 2768 } 2769 2770 static int 2771 cxgbe_detach(device_t dev) 2772 { 2773 struct port_info *pi = device_get_softc(dev); 2774 struct adapter *sc = pi->adapter; 2775 int rc; 2776 2777 /* Detach the extra VIs first. */ 2778 rc = bus_generic_detach(dev); 2779 if (rc) 2780 return (rc); 2781 device_delete_children(dev); 2782 2783 sysctl_ctx_free(&pi->ctx); 2784 begin_vi_detach(sc, &pi->vi[0]); 2785 if (pi->flags & HAS_TRACEQ) { 2786 sc->traceq = -1; /* cloner should not create ifnet */ 2787 t4_tracer_port_detach(sc); 2788 } 2789 cxgbe_vi_detach(&pi->vi[0]); 2790 ifmedia_removeall(&pi->media); 2791 end_vi_detach(sc, &pi->vi[0]); 2792 2793 return (0); 2794 } 2795 2796 static void 2797 cxgbe_init(void *arg) 2798 { 2799 struct vi_info *vi = arg; 2800 struct adapter *sc = vi->adapter; 2801 2802 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0) 2803 return; 2804 cxgbe_init_synchronized(vi); 2805 end_synchronized_op(sc, 0); 2806 } 2807 2808 static int 2809 cxgbe_ioctl(if_t ifp, unsigned long cmd, caddr_t data) 2810 { 2811 int rc = 0, mtu, flags; 2812 struct vi_info *vi = if_getsoftc(ifp); 2813 struct port_info *pi = vi->pi; 2814 struct adapter *sc = pi->adapter; 2815 struct ifreq *ifr = (struct ifreq *)data; 2816 uint32_t mask; 2817 2818 switch (cmd) { 2819 case SIOCSIFMTU: 2820 mtu = ifr->ifr_mtu; 2821 if (mtu < ETHERMIN || mtu > MAX_MTU) 2822 return (EINVAL); 2823 2824 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu"); 2825 if (rc) 2826 return (rc); 2827 if_setmtu(ifp, mtu); 2828 if (vi->flags & VI_INIT_DONE) { 2829 t4_update_fl_bufsize(ifp); 2830 if (!hw_off_limits(sc) && 2831 if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2832 rc = update_mac_settings(ifp, XGMAC_MTU); 2833 } 2834 end_synchronized_op(sc, 0); 2835 break; 2836 2837 case SIOCSIFFLAGS: 2838 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg"); 2839 if (rc) 2840 return (rc); 2841 2842 if (hw_off_limits(sc)) { 2843 rc = ENXIO; 2844 goto fail; 2845 } 2846 2847 if (if_getflags(ifp) & IFF_UP) { 2848 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2849 flags = vi->if_flags; 2850 if ((if_getflags(ifp) ^ flags) & 2851 (IFF_PROMISC | IFF_ALLMULTI)) { 2852 rc = update_mac_settings(ifp, 2853 XGMAC_PROMISC | XGMAC_ALLMULTI); 2854 } 2855 } else { 2856 rc = cxgbe_init_synchronized(vi); 2857 } 2858 vi->if_flags = if_getflags(ifp); 2859 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2860 rc = cxgbe_uninit_synchronized(vi); 2861 } 2862 end_synchronized_op(sc, 0); 2863 break; 2864 2865 case SIOCADDMULTI: 2866 case SIOCDELMULTI: 2867 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi"); 2868 if (rc) 2869 return (rc); 2870 if (!hw_off_limits(sc) && if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2871 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2872 end_synchronized_op(sc, 0); 2873 break; 2874 2875 case SIOCSIFCAP: 2876 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap"); 2877 if (rc) 2878 return (rc); 2879 2880 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp); 2881 if (mask & IFCAP_TXCSUM) { 2882 if_togglecapenable(ifp, IFCAP_TXCSUM); 2883 if_togglehwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP); 2884 2885 if (IFCAP_TSO4 & if_getcapenable(ifp) && 2886 !(IFCAP_TXCSUM & if_getcapenable(ifp))) { 2887 mask &= ~IFCAP_TSO4; 2888 if_setcapenablebit(ifp, 0, IFCAP_TSO4); 2889 if_printf(ifp, 2890 "tso4 disabled due to -txcsum.\n"); 2891 } 2892 } 2893 if (mask & IFCAP_TXCSUM_IPV6) { 2894 if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6); 2895 if_togglehwassist(ifp, CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2896 2897 if (IFCAP_TSO6 & if_getcapenable(ifp) && 2898 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) { 2899 mask &= ~IFCAP_TSO6; 2900 if_setcapenablebit(ifp, 0, IFCAP_TSO6); 2901 if_printf(ifp, 2902 "tso6 disabled due to -txcsum6.\n"); 2903 } 2904 } 2905 if (mask & IFCAP_RXCSUM) 2906 if_togglecapenable(ifp, IFCAP_RXCSUM); 2907 if (mask & IFCAP_RXCSUM_IPV6) 2908 if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6); 2909 2910 /* 2911 * Note that we leave CSUM_TSO alone (it is always set). The 2912 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before 2913 * sending a TSO request our way, so it's sufficient to toggle 2914 * IFCAP_TSOx only. 2915 */ 2916 if (mask & IFCAP_TSO4) { 2917 if (!(IFCAP_TSO4 & if_getcapenable(ifp)) && 2918 !(IFCAP_TXCSUM & if_getcapenable(ifp))) { 2919 if_printf(ifp, "enable txcsum first.\n"); 2920 rc = EAGAIN; 2921 goto fail; 2922 } 2923 if_togglecapenable(ifp, IFCAP_TSO4); 2924 } 2925 if (mask & IFCAP_TSO6) { 2926 if (!(IFCAP_TSO6 & if_getcapenable(ifp)) && 2927 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) { 2928 if_printf(ifp, "enable txcsum6 first.\n"); 2929 rc = EAGAIN; 2930 goto fail; 2931 } 2932 if_togglecapenable(ifp, IFCAP_TSO6); 2933 } 2934 if (mask & IFCAP_LRO) { 2935 #if defined(INET) || defined(INET6) 2936 int i; 2937 struct sge_rxq *rxq; 2938 2939 if_togglecapenable(ifp, IFCAP_LRO); 2940 for_each_rxq(vi, i, rxq) { 2941 if (if_getcapenable(ifp) & IFCAP_LRO) 2942 rxq->iq.flags |= IQ_LRO_ENABLED; 2943 else 2944 rxq->iq.flags &= ~IQ_LRO_ENABLED; 2945 } 2946 #endif 2947 } 2948 #ifdef TCP_OFFLOAD 2949 if (mask & IFCAP_TOE) { 2950 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TOE; 2951 2952 rc = toe_capability(vi, enable); 2953 if (rc != 0) 2954 goto fail; 2955 2956 if_togglecapenable(ifp, mask); 2957 } 2958 #endif 2959 if (mask & IFCAP_VLAN_HWTAGGING) { 2960 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING); 2961 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 2962 rc = update_mac_settings(ifp, XGMAC_VLANEX); 2963 } 2964 if (mask & IFCAP_VLAN_MTU) { 2965 if_togglecapenable(ifp, IFCAP_VLAN_MTU); 2966 2967 /* Need to find out how to disable auto-mtu-inflation */ 2968 } 2969 if (mask & IFCAP_VLAN_HWTSO) 2970 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 2971 if (mask & IFCAP_VLAN_HWCSUM) 2972 if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM); 2973 #ifdef RATELIMIT 2974 if (mask & IFCAP_TXRTLMT) 2975 if_togglecapenable(ifp, IFCAP_TXRTLMT); 2976 #endif 2977 if (mask & IFCAP_HWRXTSTMP) { 2978 int i; 2979 struct sge_rxq *rxq; 2980 2981 if_togglecapenable(ifp, IFCAP_HWRXTSTMP); 2982 for_each_rxq(vi, i, rxq) { 2983 if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP) 2984 rxq->iq.flags |= IQ_RX_TIMESTAMP; 2985 else 2986 rxq->iq.flags &= ~IQ_RX_TIMESTAMP; 2987 } 2988 } 2989 if (mask & IFCAP_MEXTPG) 2990 if_togglecapenable(ifp, IFCAP_MEXTPG); 2991 2992 #ifdef KERN_TLS 2993 if (mask & IFCAP_TXTLS) { 2994 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TXTLS; 2995 2996 rc = ktls_capability(sc, enable); 2997 if (rc != 0) 2998 goto fail; 2999 3000 if_togglecapenable(ifp, mask & IFCAP_TXTLS); 3001 } 3002 #endif 3003 if (mask & IFCAP_VXLAN_HWCSUM) { 3004 if_togglecapenable(ifp, IFCAP_VXLAN_HWCSUM); 3005 if_togglehwassist(ifp, CSUM_INNER_IP6_UDP | 3006 CSUM_INNER_IP6_TCP | CSUM_INNER_IP | 3007 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP); 3008 } 3009 if (mask & IFCAP_VXLAN_HWTSO) { 3010 if_togglecapenable(ifp, IFCAP_VXLAN_HWTSO); 3011 if_togglehwassist(ifp, CSUM_INNER_IP6_TSO | 3012 CSUM_INNER_IP_TSO); 3013 } 3014 3015 #ifdef VLAN_CAPABILITIES 3016 VLAN_CAPABILITIES(ifp); 3017 #endif 3018 fail: 3019 end_synchronized_op(sc, 0); 3020 break; 3021 3022 case SIOCSIFMEDIA: 3023 case SIOCGIFMEDIA: 3024 case SIOCGIFXMEDIA: 3025 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd); 3026 break; 3027 3028 case SIOCGI2C: { 3029 struct ifi2creq i2c; 3030 3031 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); 3032 if (rc != 0) 3033 break; 3034 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { 3035 rc = EPERM; 3036 break; 3037 } 3038 if (i2c.len > sizeof(i2c.data)) { 3039 rc = EINVAL; 3040 break; 3041 } 3042 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c"); 3043 if (rc) 3044 return (rc); 3045 if (hw_off_limits(sc)) 3046 rc = ENXIO; 3047 else 3048 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr, 3049 i2c.offset, i2c.len, &i2c.data[0]); 3050 end_synchronized_op(sc, 0); 3051 if (rc == 0) 3052 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c)); 3053 break; 3054 } 3055 3056 default: 3057 rc = ether_ioctl(ifp, cmd, data); 3058 } 3059 3060 return (rc); 3061 } 3062 3063 static int 3064 cxgbe_transmit(if_t ifp, struct mbuf *m) 3065 { 3066 struct vi_info *vi = if_getsoftc(ifp); 3067 struct port_info *pi = vi->pi; 3068 struct adapter *sc; 3069 struct sge_txq *txq; 3070 void *items[1]; 3071 int rc; 3072 3073 M_ASSERTPKTHDR(m); 3074 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */ 3075 #if defined(KERN_TLS) || defined(RATELIMIT) 3076 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) 3077 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 3078 #endif 3079 3080 if (__predict_false(pi->link_cfg.link_ok == false)) { 3081 m_freem(m); 3082 return (ENETDOWN); 3083 } 3084 3085 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR); 3086 if (__predict_false(rc != 0)) { 3087 if (__predict_true(rc == EINPROGRESS)) { 3088 /* queued by parse_pkt */ 3089 MPASS(m != NULL); 3090 return (0); 3091 } 3092 3093 MPASS(m == NULL); /* was freed already */ 3094 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */ 3095 return (rc); 3096 } 3097 3098 /* Select a txq. */ 3099 sc = vi->adapter; 3100 txq = &sc->sge.txq[vi->first_txq]; 3101 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 3102 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) + 3103 vi->rsrv_noflowq); 3104 3105 items[0] = m; 3106 rc = mp_ring_enqueue(txq->r, items, 1, 256); 3107 if (__predict_false(rc != 0)) 3108 m_freem(m); 3109 3110 return (rc); 3111 } 3112 3113 static void 3114 cxgbe_qflush(if_t ifp) 3115 { 3116 struct vi_info *vi = if_getsoftc(ifp); 3117 struct sge_txq *txq; 3118 int i; 3119 3120 /* queues do not exist if !VI_INIT_DONE. */ 3121 if (vi->flags & VI_INIT_DONE) { 3122 for_each_txq(vi, i, txq) { 3123 TXQ_LOCK(txq); 3124 txq->eq.flags |= EQ_QFLUSH; 3125 TXQ_UNLOCK(txq); 3126 while (!mp_ring_is_idle(txq->r)) { 3127 mp_ring_check_drainage(txq->r, 4096); 3128 pause("qflush", 1); 3129 } 3130 TXQ_LOCK(txq); 3131 txq->eq.flags &= ~EQ_QFLUSH; 3132 TXQ_UNLOCK(txq); 3133 } 3134 } 3135 if_qflush(ifp); 3136 } 3137 3138 static uint64_t 3139 vi_get_counter(if_t ifp, ift_counter c) 3140 { 3141 struct vi_info *vi = if_getsoftc(ifp); 3142 struct fw_vi_stats_vf *s = &vi->stats; 3143 3144 mtx_lock(&vi->tick_mtx); 3145 vi_refresh_stats(vi); 3146 mtx_unlock(&vi->tick_mtx); 3147 3148 switch (c) { 3149 case IFCOUNTER_IPACKETS: 3150 return (s->rx_bcast_frames + s->rx_mcast_frames + 3151 s->rx_ucast_frames); 3152 case IFCOUNTER_IERRORS: 3153 return (s->rx_err_frames); 3154 case IFCOUNTER_OPACKETS: 3155 return (s->tx_bcast_frames + s->tx_mcast_frames + 3156 s->tx_ucast_frames + s->tx_offload_frames); 3157 case IFCOUNTER_OERRORS: 3158 return (s->tx_drop_frames); 3159 case IFCOUNTER_IBYTES: 3160 return (s->rx_bcast_bytes + s->rx_mcast_bytes + 3161 s->rx_ucast_bytes); 3162 case IFCOUNTER_OBYTES: 3163 return (s->tx_bcast_bytes + s->tx_mcast_bytes + 3164 s->tx_ucast_bytes + s->tx_offload_bytes); 3165 case IFCOUNTER_IMCASTS: 3166 return (s->rx_mcast_frames); 3167 case IFCOUNTER_OMCASTS: 3168 return (s->tx_mcast_frames); 3169 case IFCOUNTER_OQDROPS: { 3170 uint64_t drops; 3171 3172 drops = 0; 3173 if (vi->flags & VI_INIT_DONE) { 3174 int i; 3175 struct sge_txq *txq; 3176 3177 for_each_txq(vi, i, txq) 3178 drops += counter_u64_fetch(txq->r->dropped); 3179 } 3180 3181 return (drops); 3182 3183 } 3184 3185 default: 3186 return (if_get_counter_default(ifp, c)); 3187 } 3188 } 3189 3190 static uint64_t 3191 cxgbe_get_counter(if_t ifp, ift_counter c) 3192 { 3193 struct vi_info *vi = if_getsoftc(ifp); 3194 struct port_info *pi = vi->pi; 3195 struct port_stats *s = &pi->stats; 3196 3197 mtx_lock(&vi->tick_mtx); 3198 cxgbe_refresh_stats(vi); 3199 mtx_unlock(&vi->tick_mtx); 3200 3201 switch (c) { 3202 case IFCOUNTER_IPACKETS: 3203 return (s->rx_frames); 3204 3205 case IFCOUNTER_IERRORS: 3206 return (s->rx_jabber + s->rx_runt + s->rx_too_long + 3207 s->rx_fcs_err + s->rx_len_err); 3208 3209 case IFCOUNTER_OPACKETS: 3210 return (s->tx_frames); 3211 3212 case IFCOUNTER_OERRORS: 3213 return (s->tx_error_frames); 3214 3215 case IFCOUNTER_IBYTES: 3216 return (s->rx_octets); 3217 3218 case IFCOUNTER_OBYTES: 3219 return (s->tx_octets); 3220 3221 case IFCOUNTER_IMCASTS: 3222 return (s->rx_mcast_frames); 3223 3224 case IFCOUNTER_OMCASTS: 3225 return (s->tx_mcast_frames); 3226 3227 case IFCOUNTER_IQDROPS: 3228 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + 3229 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + 3230 s->rx_trunc3 + pi->tnl_cong_drops); 3231 3232 case IFCOUNTER_OQDROPS: { 3233 uint64_t drops; 3234 3235 drops = s->tx_drop; 3236 if (vi->flags & VI_INIT_DONE) { 3237 int i; 3238 struct sge_txq *txq; 3239 3240 for_each_txq(vi, i, txq) 3241 drops += counter_u64_fetch(txq->r->dropped); 3242 } 3243 3244 return (drops); 3245 3246 } 3247 3248 default: 3249 return (if_get_counter_default(ifp, c)); 3250 } 3251 } 3252 3253 #if defined(KERN_TLS) || defined(RATELIMIT) 3254 static int 3255 cxgbe_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params, 3256 struct m_snd_tag **pt) 3257 { 3258 int error; 3259 3260 switch (params->hdr.type) { 3261 #ifdef RATELIMIT 3262 case IF_SND_TAG_TYPE_RATE_LIMIT: 3263 error = cxgbe_rate_tag_alloc(ifp, params, pt); 3264 break; 3265 #endif 3266 #ifdef KERN_TLS 3267 case IF_SND_TAG_TYPE_TLS: 3268 { 3269 struct vi_info *vi = if_getsoftc(ifp); 3270 3271 if (is_t6(vi->pi->adapter)) 3272 error = t6_tls_tag_alloc(ifp, params, pt); 3273 else 3274 error = EOPNOTSUPP; 3275 break; 3276 } 3277 #endif 3278 default: 3279 error = EOPNOTSUPP; 3280 } 3281 return (error); 3282 } 3283 #endif 3284 3285 /* 3286 * The kernel picks a media from the list we had provided but we still validate 3287 * the requeste. 3288 */ 3289 int 3290 cxgbe_media_change(if_t ifp) 3291 { 3292 struct vi_info *vi = if_getsoftc(ifp); 3293 struct port_info *pi = vi->pi; 3294 struct ifmedia *ifm = &pi->media; 3295 struct link_config *lc = &pi->link_cfg; 3296 struct adapter *sc = pi->adapter; 3297 int rc; 3298 3299 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec"); 3300 if (rc != 0) 3301 return (rc); 3302 PORT_LOCK(pi); 3303 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) { 3304 /* ifconfig .. media autoselect */ 3305 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 3306 rc = ENOTSUP; /* AN not supported by transceiver */ 3307 goto done; 3308 } 3309 lc->requested_aneg = AUTONEG_ENABLE; 3310 lc->requested_speed = 0; 3311 lc->requested_fc |= PAUSE_AUTONEG; 3312 } else { 3313 lc->requested_aneg = AUTONEG_DISABLE; 3314 lc->requested_speed = 3315 ifmedia_baudrate(ifm->ifm_media) / 1000000; 3316 lc->requested_fc = 0; 3317 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE) 3318 lc->requested_fc |= PAUSE_RX; 3319 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE) 3320 lc->requested_fc |= PAUSE_TX; 3321 } 3322 if (pi->up_vis > 0 && !hw_off_limits(sc)) { 3323 fixup_link_config(pi); 3324 rc = apply_link_config(pi); 3325 } 3326 done: 3327 PORT_UNLOCK(pi); 3328 end_synchronized_op(sc, 0); 3329 return (rc); 3330 } 3331 3332 /* 3333 * Base media word (without ETHER, pause, link active, etc.) for the port at the 3334 * given speed. 3335 */ 3336 static int 3337 port_mword(struct port_info *pi, uint32_t speed) 3338 { 3339 3340 MPASS(speed & M_FW_PORT_CAP32_SPEED); 3341 MPASS(powerof2(speed)); 3342 3343 switch(pi->port_type) { 3344 case FW_PORT_TYPE_BT_SGMII: 3345 case FW_PORT_TYPE_BT_XFI: 3346 case FW_PORT_TYPE_BT_XAUI: 3347 /* BaseT */ 3348 switch (speed) { 3349 case FW_PORT_CAP32_SPEED_100M: 3350 return (IFM_100_T); 3351 case FW_PORT_CAP32_SPEED_1G: 3352 return (IFM_1000_T); 3353 case FW_PORT_CAP32_SPEED_10G: 3354 return (IFM_10G_T); 3355 } 3356 break; 3357 case FW_PORT_TYPE_KX4: 3358 if (speed == FW_PORT_CAP32_SPEED_10G) 3359 return (IFM_10G_KX4); 3360 break; 3361 case FW_PORT_TYPE_CX4: 3362 if (speed == FW_PORT_CAP32_SPEED_10G) 3363 return (IFM_10G_CX4); 3364 break; 3365 case FW_PORT_TYPE_KX: 3366 if (speed == FW_PORT_CAP32_SPEED_1G) 3367 return (IFM_1000_KX); 3368 break; 3369 case FW_PORT_TYPE_KR: 3370 case FW_PORT_TYPE_BP_AP: 3371 case FW_PORT_TYPE_BP4_AP: 3372 case FW_PORT_TYPE_BP40_BA: 3373 case FW_PORT_TYPE_KR4_100G: 3374 case FW_PORT_TYPE_KR_SFP28: 3375 case FW_PORT_TYPE_KR_XLAUI: 3376 switch (speed) { 3377 case FW_PORT_CAP32_SPEED_1G: 3378 return (IFM_1000_KX); 3379 case FW_PORT_CAP32_SPEED_10G: 3380 return (IFM_10G_KR); 3381 case FW_PORT_CAP32_SPEED_25G: 3382 return (IFM_25G_KR); 3383 case FW_PORT_CAP32_SPEED_40G: 3384 return (IFM_40G_KR4); 3385 case FW_PORT_CAP32_SPEED_50G: 3386 return (IFM_50G_KR2); 3387 case FW_PORT_CAP32_SPEED_100G: 3388 return (IFM_100G_KR4); 3389 } 3390 break; 3391 case FW_PORT_TYPE_FIBER_XFI: 3392 case FW_PORT_TYPE_FIBER_XAUI: 3393 case FW_PORT_TYPE_SFP: 3394 case FW_PORT_TYPE_QSFP_10G: 3395 case FW_PORT_TYPE_QSA: 3396 case FW_PORT_TYPE_QSFP: 3397 case FW_PORT_TYPE_CR4_QSFP: 3398 case FW_PORT_TYPE_CR_QSFP: 3399 case FW_PORT_TYPE_CR2_QSFP: 3400 case FW_PORT_TYPE_SFP28: 3401 /* Pluggable transceiver */ 3402 switch (pi->mod_type) { 3403 case FW_PORT_MOD_TYPE_LR: 3404 switch (speed) { 3405 case FW_PORT_CAP32_SPEED_1G: 3406 return (IFM_1000_LX); 3407 case FW_PORT_CAP32_SPEED_10G: 3408 return (IFM_10G_LR); 3409 case FW_PORT_CAP32_SPEED_25G: 3410 return (IFM_25G_LR); 3411 case FW_PORT_CAP32_SPEED_40G: 3412 return (IFM_40G_LR4); 3413 case FW_PORT_CAP32_SPEED_50G: 3414 return (IFM_50G_LR2); 3415 case FW_PORT_CAP32_SPEED_100G: 3416 return (IFM_100G_LR4); 3417 } 3418 break; 3419 case FW_PORT_MOD_TYPE_SR: 3420 switch (speed) { 3421 case FW_PORT_CAP32_SPEED_1G: 3422 return (IFM_1000_SX); 3423 case FW_PORT_CAP32_SPEED_10G: 3424 return (IFM_10G_SR); 3425 case FW_PORT_CAP32_SPEED_25G: 3426 return (IFM_25G_SR); 3427 case FW_PORT_CAP32_SPEED_40G: 3428 return (IFM_40G_SR4); 3429 case FW_PORT_CAP32_SPEED_50G: 3430 return (IFM_50G_SR2); 3431 case FW_PORT_CAP32_SPEED_100G: 3432 return (IFM_100G_SR4); 3433 } 3434 break; 3435 case FW_PORT_MOD_TYPE_ER: 3436 if (speed == FW_PORT_CAP32_SPEED_10G) 3437 return (IFM_10G_ER); 3438 break; 3439 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3440 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3441 switch (speed) { 3442 case FW_PORT_CAP32_SPEED_1G: 3443 return (IFM_1000_CX); 3444 case FW_PORT_CAP32_SPEED_10G: 3445 return (IFM_10G_TWINAX); 3446 case FW_PORT_CAP32_SPEED_25G: 3447 return (IFM_25G_CR); 3448 case FW_PORT_CAP32_SPEED_40G: 3449 return (IFM_40G_CR4); 3450 case FW_PORT_CAP32_SPEED_50G: 3451 return (IFM_50G_CR2); 3452 case FW_PORT_CAP32_SPEED_100G: 3453 return (IFM_100G_CR4); 3454 } 3455 break; 3456 case FW_PORT_MOD_TYPE_LRM: 3457 if (speed == FW_PORT_CAP32_SPEED_10G) 3458 return (IFM_10G_LRM); 3459 break; 3460 case FW_PORT_MOD_TYPE_NA: 3461 MPASS(0); /* Not pluggable? */ 3462 /* fall throough */ 3463 case FW_PORT_MOD_TYPE_ERROR: 3464 case FW_PORT_MOD_TYPE_UNKNOWN: 3465 case FW_PORT_MOD_TYPE_NOTSUPPORTED: 3466 break; 3467 case FW_PORT_MOD_TYPE_NONE: 3468 return (IFM_NONE); 3469 } 3470 break; 3471 case FW_PORT_TYPE_NONE: 3472 return (IFM_NONE); 3473 } 3474 3475 return (IFM_UNKNOWN); 3476 } 3477 3478 void 3479 cxgbe_media_status(if_t ifp, struct ifmediareq *ifmr) 3480 { 3481 struct vi_info *vi = if_getsoftc(ifp); 3482 struct port_info *pi = vi->pi; 3483 struct adapter *sc = pi->adapter; 3484 struct link_config *lc = &pi->link_cfg; 3485 3486 if (begin_synchronized_op(sc, vi , SLEEP_OK | INTR_OK, "t4med") != 0) 3487 return; 3488 PORT_LOCK(pi); 3489 3490 if (pi->up_vis == 0 && !hw_off_limits(sc)) { 3491 /* 3492 * If all the interfaces are administratively down the firmware 3493 * does not report transceiver changes. Refresh port info here 3494 * so that ifconfig displays accurate ifmedia at all times. 3495 * This is the only reason we have a synchronized op in this 3496 * function. Just PORT_LOCK would have been enough otherwise. 3497 */ 3498 t4_update_port_info(pi); 3499 build_medialist(pi); 3500 } 3501 3502 /* ifm_status */ 3503 ifmr->ifm_status = IFM_AVALID; 3504 if (lc->link_ok == false) 3505 goto done; 3506 ifmr->ifm_status |= IFM_ACTIVE; 3507 3508 /* ifm_active */ 3509 ifmr->ifm_active = IFM_ETHER | IFM_FDX; 3510 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE); 3511 if (lc->fc & PAUSE_RX) 3512 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 3513 if (lc->fc & PAUSE_TX) 3514 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 3515 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed)); 3516 done: 3517 PORT_UNLOCK(pi); 3518 end_synchronized_op(sc, 0); 3519 } 3520 3521 static int 3522 vcxgbe_probe(device_t dev) 3523 { 3524 struct vi_info *vi = device_get_softc(dev); 3525 3526 device_set_descf(dev, "port %d vi %td", vi->pi->port_id, 3527 vi - vi->pi->vi); 3528 3529 return (BUS_PROBE_DEFAULT); 3530 } 3531 3532 static int 3533 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi) 3534 { 3535 int func, index, rc; 3536 uint32_t param, val; 3537 3538 ASSERT_SYNCHRONIZED_OP(sc); 3539 3540 index = vi - pi->vi; 3541 MPASS(index > 0); /* This function deals with _extra_ VIs only */ 3542 KASSERT(index < nitems(vi_mac_funcs), 3543 ("%s: VI %s doesn't have a MAC func", __func__, 3544 device_get_nameunit(vi->dev))); 3545 func = vi_mac_funcs[index]; 3546 rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1, 3547 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0); 3548 if (rc < 0) { 3549 CH_ERR(vi, "failed to allocate virtual interface %d" 3550 "for port %d: %d\n", index, pi->port_id, -rc); 3551 return (-rc); 3552 } 3553 vi->viid = rc; 3554 3555 if (vi->rss_size == 1) { 3556 /* 3557 * This VI didn't get a slice of the RSS table. Reduce the 3558 * number of VIs being created (hw.cxgbe.num_vis) or modify the 3559 * configuration file (nvi, rssnvi for this PF) if this is a 3560 * problem. 3561 */ 3562 device_printf(vi->dev, "RSS table not available.\n"); 3563 vi->rss_base = 0xffff; 3564 3565 return (0); 3566 } 3567 3568 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3569 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 3570 V_FW_PARAMS_PARAM_YZ(vi->viid); 3571 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3572 if (rc) 3573 vi->rss_base = 0xffff; 3574 else { 3575 MPASS((val >> 16) == vi->rss_size); 3576 vi->rss_base = val & 0xffff; 3577 } 3578 3579 return (0); 3580 } 3581 3582 static int 3583 vcxgbe_attach(device_t dev) 3584 { 3585 struct vi_info *vi; 3586 struct port_info *pi; 3587 struct adapter *sc; 3588 int rc; 3589 3590 vi = device_get_softc(dev); 3591 pi = vi->pi; 3592 sc = pi->adapter; 3593 3594 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via"); 3595 if (rc) 3596 return (rc); 3597 rc = alloc_extra_vi(sc, pi, vi); 3598 end_synchronized_op(sc, 0); 3599 if (rc) 3600 return (rc); 3601 3602 cxgbe_vi_attach(dev, vi); 3603 3604 return (0); 3605 } 3606 3607 static int 3608 vcxgbe_detach(device_t dev) 3609 { 3610 struct vi_info *vi; 3611 struct adapter *sc; 3612 3613 vi = device_get_softc(dev); 3614 sc = vi->adapter; 3615 3616 begin_vi_detach(sc, vi); 3617 cxgbe_vi_detach(vi); 3618 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3619 end_vi_detach(sc, vi); 3620 3621 return (0); 3622 } 3623 3624 static struct callout fatal_callout; 3625 static struct taskqueue *reset_tq; 3626 3627 static void 3628 delayed_panic(void *arg) 3629 { 3630 struct adapter *sc = arg; 3631 3632 panic("%s: panic on fatal error", device_get_nameunit(sc->dev)); 3633 } 3634 3635 static void 3636 fatal_error_task(void *arg, int pending) 3637 { 3638 struct adapter *sc = arg; 3639 int rc; 3640 3641 if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) { 3642 dump_cim_regs(sc); 3643 dump_cimla(sc); 3644 dump_devlog(sc); 3645 } 3646 3647 if (t4_reset_on_fatal_err) { 3648 CH_ALERT(sc, "resetting adapter after fatal error.\n"); 3649 rc = reset_adapter_with_pci_bus_reset(sc); 3650 if (rc == 0 && t4_panic_on_fatal_err) { 3651 CH_ALERT(sc, "reset was successful, " 3652 "system will NOT panic.\n"); 3653 return; 3654 } 3655 } 3656 3657 if (t4_panic_on_fatal_err) { 3658 CH_ALERT(sc, "panicking on fatal error (after 30s).\n"); 3659 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc); 3660 } 3661 } 3662 3663 void 3664 t4_fatal_err(struct adapter *sc, bool fw_error) 3665 { 3666 const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0; 3667 3668 stop_adapter(sc); 3669 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR))) 3670 return; 3671 if (fw_error) { 3672 /* 3673 * We are here because of a firmware error/timeout and not 3674 * because of a hardware interrupt. It is possible (although 3675 * not very likely) that an error interrupt was also raised but 3676 * this thread ran first and inhibited t4_intr_err. We walk the 3677 * main INT_CAUSE registers here to make sure we haven't missed 3678 * anything interesting. 3679 */ 3680 t4_slow_intr_handler(sc, verbose); 3681 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 3682 } 3683 t4_report_fw_error(sc); 3684 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n", 3685 device_get_nameunit(sc->dev), fw_error); 3686 taskqueue_enqueue(reset_tq, &sc->fatal_error_task); 3687 } 3688 3689 void 3690 t4_add_adapter(struct adapter *sc) 3691 { 3692 sx_xlock(&t4_list_lock); 3693 SLIST_INSERT_HEAD(&t4_list, sc, link); 3694 sx_xunlock(&t4_list_lock); 3695 } 3696 3697 int 3698 t4_map_bars_0_and_4(struct adapter *sc) 3699 { 3700 sc->regs_rid = PCIR_BAR(0); 3701 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3702 &sc->regs_rid, RF_ACTIVE); 3703 if (sc->regs_res == NULL) { 3704 device_printf(sc->dev, "cannot map registers.\n"); 3705 return (ENXIO); 3706 } 3707 sc->bt = rman_get_bustag(sc->regs_res); 3708 sc->bh = rman_get_bushandle(sc->regs_res); 3709 sc->mmio_len = rman_get_size(sc->regs_res); 3710 setbit(&sc->doorbells, DOORBELL_KDB); 3711 3712 sc->msix_rid = PCIR_BAR(4); 3713 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3714 &sc->msix_rid, RF_ACTIVE); 3715 if (sc->msix_res == NULL) { 3716 device_printf(sc->dev, "cannot map MSI-X BAR.\n"); 3717 return (ENXIO); 3718 } 3719 3720 return (0); 3721 } 3722 3723 int 3724 t4_map_bar_2(struct adapter *sc) 3725 { 3726 3727 /* 3728 * T4: only iWARP driver uses the userspace doorbells. There is no need 3729 * to map it if RDMA is disabled. 3730 */ 3731 if (is_t4(sc) && sc->rdmacaps == 0) 3732 return (0); 3733 3734 sc->udbs_rid = PCIR_BAR(2); 3735 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3736 &sc->udbs_rid, RF_ACTIVE); 3737 if (sc->udbs_res == NULL) { 3738 device_printf(sc->dev, "cannot map doorbell BAR.\n"); 3739 return (ENXIO); 3740 } 3741 sc->udbs_base = rman_get_virtual(sc->udbs_res); 3742 3743 if (chip_id(sc) >= CHELSIO_T5) { 3744 setbit(&sc->doorbells, DOORBELL_UDB); 3745 #if defined(__i386__) || defined(__amd64__) 3746 if (t5_write_combine) { 3747 int rc, mode; 3748 3749 /* 3750 * Enable write combining on BAR2. This is the 3751 * userspace doorbell BAR and is split into 128B 3752 * (UDBS_SEG_SIZE) doorbell regions, each associated 3753 * with an egress queue. The first 64B has the doorbell 3754 * and the second 64B can be used to submit a tx work 3755 * request with an implicit doorbell. 3756 */ 3757 3758 rc = pmap_change_attr((vm_offset_t)sc->udbs_base, 3759 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); 3760 if (rc == 0) { 3761 clrbit(&sc->doorbells, DOORBELL_UDB); 3762 setbit(&sc->doorbells, DOORBELL_WCWR); 3763 setbit(&sc->doorbells, DOORBELL_UDBWC); 3764 } else { 3765 device_printf(sc->dev, 3766 "couldn't enable write combining: %d\n", 3767 rc); 3768 } 3769 3770 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0); 3771 t4_write_reg(sc, A_SGE_STAT_CFG, 3772 V_STATSOURCE_T5(7) | mode); 3773 } 3774 #endif 3775 } 3776 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0; 3777 3778 return (0); 3779 } 3780 3781 int 3782 t4_adj_doorbells(struct adapter *sc) 3783 { 3784 if ((sc->doorbells & t4_doorbells_allowed) != 0) { 3785 sc->doorbells &= t4_doorbells_allowed; 3786 return (0); 3787 } 3788 CH_ERR(sc, "No usable doorbell (available = 0x%x, allowed = 0x%x).\n", 3789 sc->doorbells, t4_doorbells_allowed); 3790 return (EINVAL); 3791 } 3792 3793 struct memwin_init { 3794 uint32_t base; 3795 uint32_t aperture; 3796 }; 3797 3798 static const struct memwin_init t4_memwin[NUM_MEMWIN] = { 3799 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3800 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3801 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } 3802 }; 3803 3804 static const struct memwin_init t5_memwin[NUM_MEMWIN] = { 3805 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 3806 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 3807 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, 3808 }; 3809 3810 static void 3811 setup_memwin(struct adapter *sc) 3812 { 3813 const struct memwin_init *mw_init; 3814 struct memwin *mw; 3815 int i; 3816 uint32_t bar0; 3817 3818 if (is_t4(sc)) { 3819 /* 3820 * Read low 32b of bar0 indirectly via the hardware backdoor 3821 * mechanism. Works from within PCI passthrough environments 3822 * too, where rman_get_start() can return a different value. We 3823 * need to program the T4 memory window decoders with the actual 3824 * addresses that will be coming across the PCIe link. 3825 */ 3826 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); 3827 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; 3828 3829 mw_init = &t4_memwin[0]; 3830 } else { 3831 /* T5+ use the relative offset inside the PCIe BAR */ 3832 bar0 = 0; 3833 3834 mw_init = &t5_memwin[0]; 3835 } 3836 3837 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) { 3838 if (!rw_initialized(&mw->mw_lock)) { 3839 rw_init(&mw->mw_lock, "memory window access"); 3840 mw->mw_base = mw_init->base; 3841 mw->mw_aperture = mw_init->aperture; 3842 mw->mw_curpos = 0; 3843 } 3844 t4_write_reg(sc, 3845 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i), 3846 (mw->mw_base + bar0) | V_BIR(0) | 3847 V_WINDOW(ilog2(mw->mw_aperture) - 10)); 3848 rw_wlock(&mw->mw_lock); 3849 position_memwin(sc, i, mw->mw_curpos); 3850 rw_wunlock(&mw->mw_lock); 3851 } 3852 3853 /* flush */ 3854 t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2)); 3855 } 3856 3857 /* 3858 * Positions the memory window at the given address in the card's address space. 3859 * There are some alignment requirements and the actual position may be at an 3860 * address prior to the requested address. mw->mw_curpos always has the actual 3861 * position of the window. 3862 */ 3863 static void 3864 position_memwin(struct adapter *sc, int idx, uint32_t addr) 3865 { 3866 struct memwin *mw; 3867 uint32_t pf; 3868 uint32_t reg; 3869 3870 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3871 mw = &sc->memwin[idx]; 3872 rw_assert(&mw->mw_lock, RA_WLOCKED); 3873 3874 if (is_t4(sc)) { 3875 pf = 0; 3876 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */ 3877 } else { 3878 pf = V_PFNUM(sc->pf); 3879 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */ 3880 } 3881 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx); 3882 t4_write_reg(sc, reg, mw->mw_curpos | pf); 3883 t4_read_reg(sc, reg); /* flush */ 3884 } 3885 3886 int 3887 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 3888 int len, int rw) 3889 { 3890 struct memwin *mw; 3891 uint32_t mw_end, v; 3892 3893 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3894 3895 /* Memory can only be accessed in naturally aligned 4 byte units */ 3896 if (addr & 3 || len & 3 || len <= 0) 3897 return (EINVAL); 3898 3899 mw = &sc->memwin[idx]; 3900 while (len > 0) { 3901 rw_rlock(&mw->mw_lock); 3902 mw_end = mw->mw_curpos + mw->mw_aperture; 3903 if (addr >= mw_end || addr < mw->mw_curpos) { 3904 /* Will need to reposition the window */ 3905 if (!rw_try_upgrade(&mw->mw_lock)) { 3906 rw_runlock(&mw->mw_lock); 3907 rw_wlock(&mw->mw_lock); 3908 } 3909 rw_assert(&mw->mw_lock, RA_WLOCKED); 3910 position_memwin(sc, idx, addr); 3911 rw_downgrade(&mw->mw_lock); 3912 mw_end = mw->mw_curpos + mw->mw_aperture; 3913 } 3914 rw_assert(&mw->mw_lock, RA_RLOCKED); 3915 while (addr < mw_end && len > 0) { 3916 if (rw == 0) { 3917 v = t4_read_reg(sc, mw->mw_base + addr - 3918 mw->mw_curpos); 3919 *val++ = le32toh(v); 3920 } else { 3921 v = *val++; 3922 t4_write_reg(sc, mw->mw_base + addr - 3923 mw->mw_curpos, htole32(v)); 3924 } 3925 addr += 4; 3926 len -= 4; 3927 } 3928 rw_runlock(&mw->mw_lock); 3929 } 3930 3931 return (0); 3932 } 3933 3934 CTASSERT(M_TID_COOKIE == M_COOKIE); 3935 CTASSERT(MAX_ATIDS <= (M_TID_TID + 1)); 3936 3937 static void 3938 t4_init_atid_table(struct adapter *sc) 3939 { 3940 struct tid_info *t; 3941 int i; 3942 3943 t = &sc->tids; 3944 if (t->natids == 0) 3945 return; 3946 3947 MPASS(t->atid_tab == NULL); 3948 3949 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE, 3950 M_ZERO | M_WAITOK); 3951 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF); 3952 t->afree = t->atid_tab; 3953 t->atids_in_use = 0; 3954 t->atid_alloc_stopped = false; 3955 for (i = 1; i < t->natids; i++) 3956 t->atid_tab[i - 1].next = &t->atid_tab[i]; 3957 t->atid_tab[t->natids - 1].next = NULL; 3958 } 3959 3960 static void 3961 t4_free_atid_table(struct adapter *sc) 3962 { 3963 struct tid_info *t; 3964 3965 t = &sc->tids; 3966 3967 KASSERT(t->atids_in_use == 0, 3968 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 3969 3970 if (mtx_initialized(&t->atid_lock)) 3971 mtx_destroy(&t->atid_lock); 3972 free(t->atid_tab, M_CXGBE); 3973 t->atid_tab = NULL; 3974 } 3975 3976 static void 3977 stop_atid_allocator(struct adapter *sc) 3978 { 3979 struct tid_info *t = &sc->tids; 3980 3981 mtx_lock(&t->atid_lock); 3982 t->atid_alloc_stopped = true; 3983 mtx_unlock(&t->atid_lock); 3984 } 3985 3986 static void 3987 restart_atid_allocator(struct adapter *sc) 3988 { 3989 struct tid_info *t = &sc->tids; 3990 3991 mtx_lock(&t->atid_lock); 3992 KASSERT(t->atids_in_use == 0, 3993 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 3994 t->atid_alloc_stopped = false; 3995 mtx_unlock(&t->atid_lock); 3996 } 3997 3998 int 3999 alloc_atid(struct adapter *sc, void *ctx) 4000 { 4001 struct tid_info *t = &sc->tids; 4002 int atid = -1; 4003 4004 mtx_lock(&t->atid_lock); 4005 if (t->afree && !t->atid_alloc_stopped) { 4006 union aopen_entry *p = t->afree; 4007 4008 atid = p - t->atid_tab; 4009 MPASS(atid <= M_TID_TID); 4010 t->afree = p->next; 4011 p->data = ctx; 4012 t->atids_in_use++; 4013 } 4014 mtx_unlock(&t->atid_lock); 4015 return (atid); 4016 } 4017 4018 void * 4019 lookup_atid(struct adapter *sc, int atid) 4020 { 4021 struct tid_info *t = &sc->tids; 4022 4023 return (t->atid_tab[atid].data); 4024 } 4025 4026 void 4027 free_atid(struct adapter *sc, int atid) 4028 { 4029 struct tid_info *t = &sc->tids; 4030 union aopen_entry *p = &t->atid_tab[atid]; 4031 4032 mtx_lock(&t->atid_lock); 4033 p->next = t->afree; 4034 t->afree = p; 4035 t->atids_in_use--; 4036 mtx_unlock(&t->atid_lock); 4037 } 4038 4039 static void 4040 queue_tid_release(struct adapter *sc, int tid) 4041 { 4042 4043 CXGBE_UNIMPLEMENTED("deferred tid release"); 4044 } 4045 4046 void 4047 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq) 4048 { 4049 struct wrqe *wr; 4050 struct cpl_tid_release *req; 4051 4052 wr = alloc_wrqe(sizeof(*req), ctrlq); 4053 if (wr == NULL) { 4054 queue_tid_release(sc, tid); /* defer */ 4055 return; 4056 } 4057 req = wrtod(wr); 4058 4059 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid); 4060 4061 t4_wrq_tx(sc, wr); 4062 } 4063 4064 static int 4065 t4_range_cmp(const void *a, const void *b) 4066 { 4067 return ((const struct t4_range *)a)->start - 4068 ((const struct t4_range *)b)->start; 4069 } 4070 4071 /* 4072 * Verify that the memory range specified by the addr/len pair is valid within 4073 * the card's address space. 4074 */ 4075 static int 4076 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len) 4077 { 4078 struct t4_range mem_ranges[4], *r, *next; 4079 uint32_t em, addr_len; 4080 int i, n, remaining; 4081 4082 /* Memory can only be accessed in naturally aligned 4 byte units */ 4083 if (addr & 3 || len & 3 || len == 0) 4084 return (EINVAL); 4085 4086 /* Enabled memories */ 4087 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4088 4089 r = &mem_ranges[0]; 4090 n = 0; 4091 bzero(r, sizeof(mem_ranges)); 4092 if (em & F_EDRAM0_ENABLE) { 4093 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4094 r->size = G_EDRAM0_SIZE(addr_len) << 20; 4095 if (r->size > 0) { 4096 r->start = G_EDRAM0_BASE(addr_len) << 20; 4097 if (addr >= r->start && 4098 addr + len <= r->start + r->size) 4099 return (0); 4100 r++; 4101 n++; 4102 } 4103 } 4104 if (em & F_EDRAM1_ENABLE) { 4105 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4106 r->size = G_EDRAM1_SIZE(addr_len) << 20; 4107 if (r->size > 0) { 4108 r->start = G_EDRAM1_BASE(addr_len) << 20; 4109 if (addr >= r->start && 4110 addr + len <= r->start + r->size) 4111 return (0); 4112 r++; 4113 n++; 4114 } 4115 } 4116 if (em & F_EXT_MEM_ENABLE) { 4117 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4118 r->size = G_EXT_MEM_SIZE(addr_len) << 20; 4119 if (r->size > 0) { 4120 r->start = G_EXT_MEM_BASE(addr_len) << 20; 4121 if (addr >= r->start && 4122 addr + len <= r->start + r->size) 4123 return (0); 4124 r++; 4125 n++; 4126 } 4127 } 4128 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) { 4129 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4130 r->size = G_EXT_MEM1_SIZE(addr_len) << 20; 4131 if (r->size > 0) { 4132 r->start = G_EXT_MEM1_BASE(addr_len) << 20; 4133 if (addr >= r->start && 4134 addr + len <= r->start + r->size) 4135 return (0); 4136 r++; 4137 n++; 4138 } 4139 } 4140 MPASS(n <= nitems(mem_ranges)); 4141 4142 if (n > 1) { 4143 /* Sort and merge the ranges. */ 4144 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp); 4145 4146 /* Start from index 0 and examine the next n - 1 entries. */ 4147 r = &mem_ranges[0]; 4148 for (remaining = n - 1; remaining > 0; remaining--, r++) { 4149 4150 MPASS(r->size > 0); /* r is a valid entry. */ 4151 next = r + 1; 4152 MPASS(next->size > 0); /* and so is the next one. */ 4153 4154 while (r->start + r->size >= next->start) { 4155 /* Merge the next one into the current entry. */ 4156 r->size = max(r->start + r->size, 4157 next->start + next->size) - r->start; 4158 n--; /* One fewer entry in total. */ 4159 if (--remaining == 0) 4160 goto done; /* short circuit */ 4161 next++; 4162 } 4163 if (next != r + 1) { 4164 /* 4165 * Some entries were merged into r and next 4166 * points to the first valid entry that couldn't 4167 * be merged. 4168 */ 4169 MPASS(next->size > 0); /* must be valid */ 4170 memcpy(r + 1, next, remaining * sizeof(*r)); 4171 #ifdef INVARIANTS 4172 /* 4173 * This so that the foo->size assertion in the 4174 * next iteration of the loop do the right 4175 * thing for entries that were pulled up and are 4176 * no longer valid. 4177 */ 4178 MPASS(n < nitems(mem_ranges)); 4179 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) * 4180 sizeof(struct t4_range)); 4181 #endif 4182 } 4183 } 4184 done: 4185 /* Done merging the ranges. */ 4186 MPASS(n > 0); 4187 r = &mem_ranges[0]; 4188 for (i = 0; i < n; i++, r++) { 4189 if (addr >= r->start && 4190 addr + len <= r->start + r->size) 4191 return (0); 4192 } 4193 } 4194 4195 return (EFAULT); 4196 } 4197 4198 static int 4199 fwmtype_to_hwmtype(int mtype) 4200 { 4201 4202 switch (mtype) { 4203 case FW_MEMTYPE_EDC0: 4204 return (MEM_EDC0); 4205 case FW_MEMTYPE_EDC1: 4206 return (MEM_EDC1); 4207 case FW_MEMTYPE_EXTMEM: 4208 return (MEM_MC0); 4209 case FW_MEMTYPE_EXTMEM1: 4210 return (MEM_MC1); 4211 default: 4212 panic("%s: cannot translate fw mtype %d.", __func__, mtype); 4213 } 4214 } 4215 4216 /* 4217 * Verify that the memory range specified by the memtype/offset/len pair is 4218 * valid and lies entirely within the memtype specified. The global address of 4219 * the start of the range is returned in addr. 4220 */ 4221 static int 4222 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len, 4223 uint32_t *addr) 4224 { 4225 uint32_t em, addr_len, maddr; 4226 4227 /* Memory can only be accessed in naturally aligned 4 byte units */ 4228 if (off & 3 || len & 3 || len == 0) 4229 return (EINVAL); 4230 4231 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4232 switch (fwmtype_to_hwmtype(mtype)) { 4233 case MEM_EDC0: 4234 if (!(em & F_EDRAM0_ENABLE)) 4235 return (EINVAL); 4236 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4237 maddr = G_EDRAM0_BASE(addr_len) << 20; 4238 break; 4239 case MEM_EDC1: 4240 if (!(em & F_EDRAM1_ENABLE)) 4241 return (EINVAL); 4242 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4243 maddr = G_EDRAM1_BASE(addr_len) << 20; 4244 break; 4245 case MEM_MC: 4246 if (!(em & F_EXT_MEM_ENABLE)) 4247 return (EINVAL); 4248 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4249 maddr = G_EXT_MEM_BASE(addr_len) << 20; 4250 break; 4251 case MEM_MC1: 4252 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE)) 4253 return (EINVAL); 4254 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4255 maddr = G_EXT_MEM1_BASE(addr_len) << 20; 4256 break; 4257 default: 4258 return (EINVAL); 4259 } 4260 4261 *addr = maddr + off; /* global address */ 4262 return (validate_mem_range(sc, *addr, len)); 4263 } 4264 4265 static int 4266 fixup_devlog_params(struct adapter *sc) 4267 { 4268 struct devlog_params *dparams = &sc->params.devlog; 4269 int rc; 4270 4271 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start, 4272 dparams->size, &dparams->addr); 4273 4274 return (rc); 4275 } 4276 4277 static void 4278 update_nirq(struct intrs_and_queues *iaq, int nports) 4279 { 4280 4281 iaq->nirq = T4_EXTRA_INTR; 4282 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq); 4283 iaq->nirq += nports * iaq->nofldrxq; 4284 iaq->nirq += nports * (iaq->num_vis - 1) * 4285 max(iaq->nrxq_vi, iaq->nnmrxq_vi); 4286 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi; 4287 } 4288 4289 /* 4290 * Adjust requirements to fit the number of interrupts available. 4291 */ 4292 static void 4293 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype, 4294 int navail) 4295 { 4296 int old_nirq; 4297 const int nports = sc->params.nports; 4298 4299 MPASS(nports > 0); 4300 MPASS(navail > 0); 4301 4302 bzero(iaq, sizeof(*iaq)); 4303 iaq->intr_type = itype; 4304 iaq->num_vis = t4_num_vis; 4305 iaq->ntxq = t4_ntxq; 4306 iaq->ntxq_vi = t4_ntxq_vi; 4307 iaq->nrxq = t4_nrxq; 4308 iaq->nrxq_vi = t4_nrxq_vi; 4309 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 4310 if (is_offload(sc) || is_ethoffload(sc)) { 4311 iaq->nofldtxq = t4_nofldtxq; 4312 iaq->nofldtxq_vi = t4_nofldtxq_vi; 4313 } 4314 #endif 4315 #ifdef TCP_OFFLOAD 4316 if (is_offload(sc)) { 4317 iaq->nofldrxq = t4_nofldrxq; 4318 iaq->nofldrxq_vi = t4_nofldrxq_vi; 4319 } 4320 #endif 4321 #ifdef DEV_NETMAP 4322 if (t4_native_netmap & NN_MAIN_VI) { 4323 iaq->nnmtxq = t4_nnmtxq; 4324 iaq->nnmrxq = t4_nnmrxq; 4325 } 4326 if (t4_native_netmap & NN_EXTRA_VI) { 4327 iaq->nnmtxq_vi = t4_nnmtxq_vi; 4328 iaq->nnmrxq_vi = t4_nnmrxq_vi; 4329 } 4330 #endif 4331 4332 update_nirq(iaq, nports); 4333 if (iaq->nirq <= navail && 4334 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4335 /* 4336 * This is the normal case -- there are enough interrupts for 4337 * everything. 4338 */ 4339 goto done; 4340 } 4341 4342 /* 4343 * If extra VIs have been configured try reducing their count and see if 4344 * that works. 4345 */ 4346 while (iaq->num_vis > 1) { 4347 iaq->num_vis--; 4348 update_nirq(iaq, nports); 4349 if (iaq->nirq <= navail && 4350 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4351 device_printf(sc->dev, "virtual interfaces per port " 4352 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, " 4353 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. " 4354 "itype %d, navail %u, nirq %d.\n", 4355 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq, 4356 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi, 4357 itype, navail, iaq->nirq); 4358 goto done; 4359 } 4360 } 4361 4362 /* 4363 * Extra VIs will not be created. Log a message if they were requested. 4364 */ 4365 MPASS(iaq->num_vis == 1); 4366 iaq->ntxq_vi = iaq->nrxq_vi = 0; 4367 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0; 4368 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0; 4369 if (iaq->num_vis != t4_num_vis) { 4370 device_printf(sc->dev, "extra virtual interfaces disabled. " 4371 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, " 4372 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n", 4373 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi, 4374 iaq->nnmrxq_vi, itype, navail, iaq->nirq); 4375 } 4376 4377 /* 4378 * Keep reducing the number of NIC rx queues to the next lower power of 4379 * 2 (for even RSS distribution) and halving the TOE rx queues and see 4380 * if that works. 4381 */ 4382 do { 4383 if (iaq->nrxq > 1) { 4384 iaq->nrxq = rounddown_pow_of_two(iaq->nrxq - 1); 4385 if (iaq->nnmrxq > iaq->nrxq) 4386 iaq->nnmrxq = iaq->nrxq; 4387 } 4388 if (iaq->nofldrxq > 1) 4389 iaq->nofldrxq >>= 1; 4390 4391 old_nirq = iaq->nirq; 4392 update_nirq(iaq, nports); 4393 if (iaq->nirq <= navail && 4394 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4395 device_printf(sc->dev, "running with reduced number of " 4396 "rx queues because of shortage of interrupts. " 4397 "nrxq=%u, nofldrxq=%u. " 4398 "itype %d, navail %u, nirq %d.\n", iaq->nrxq, 4399 iaq->nofldrxq, itype, navail, iaq->nirq); 4400 goto done; 4401 } 4402 } while (old_nirq != iaq->nirq); 4403 4404 /* One interrupt for everything. Ugh. */ 4405 device_printf(sc->dev, "running with minimal number of queues. " 4406 "itype %d, navail %u.\n", itype, navail); 4407 iaq->nirq = 1; 4408 iaq->nrxq = 1; 4409 iaq->ntxq = 1; 4410 if (iaq->nofldrxq > 0) { 4411 iaq->nofldrxq = 1; 4412 iaq->nofldtxq = 1; 4413 } 4414 iaq->nnmtxq = 0; 4415 iaq->nnmrxq = 0; 4416 done: 4417 MPASS(iaq->num_vis > 0); 4418 if (iaq->num_vis > 1) { 4419 MPASS(iaq->nrxq_vi > 0); 4420 MPASS(iaq->ntxq_vi > 0); 4421 } 4422 MPASS(iaq->nirq > 0); 4423 MPASS(iaq->nrxq > 0); 4424 MPASS(iaq->ntxq > 0); 4425 if (itype == INTR_MSI) { 4426 MPASS(powerof2(iaq->nirq)); 4427 } 4428 } 4429 4430 static int 4431 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq) 4432 { 4433 int rc, itype, navail, nalloc; 4434 4435 for (itype = INTR_MSIX; itype; itype >>= 1) { 4436 4437 if ((itype & t4_intr_types) == 0) 4438 continue; /* not allowed */ 4439 4440 if (itype == INTR_MSIX) 4441 navail = pci_msix_count(sc->dev); 4442 else if (itype == INTR_MSI) 4443 navail = pci_msi_count(sc->dev); 4444 else 4445 navail = 1; 4446 restart: 4447 if (navail == 0) 4448 continue; 4449 4450 calculate_iaq(sc, iaq, itype, navail); 4451 nalloc = iaq->nirq; 4452 rc = 0; 4453 if (itype == INTR_MSIX) 4454 rc = pci_alloc_msix(sc->dev, &nalloc); 4455 else if (itype == INTR_MSI) 4456 rc = pci_alloc_msi(sc->dev, &nalloc); 4457 4458 if (rc == 0 && nalloc > 0) { 4459 if (nalloc == iaq->nirq) 4460 return (0); 4461 4462 /* 4463 * Didn't get the number requested. Use whatever number 4464 * the kernel is willing to allocate. 4465 */ 4466 device_printf(sc->dev, "fewer vectors than requested, " 4467 "type=%d, req=%d, rcvd=%d; will downshift req.\n", 4468 itype, iaq->nirq, nalloc); 4469 pci_release_msi(sc->dev); 4470 navail = nalloc; 4471 goto restart; 4472 } 4473 4474 device_printf(sc->dev, 4475 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", 4476 itype, rc, iaq->nirq, nalloc); 4477 } 4478 4479 device_printf(sc->dev, 4480 "failed to find a usable interrupt type. " 4481 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, 4482 pci_msix_count(sc->dev), pci_msi_count(sc->dev)); 4483 4484 return (ENXIO); 4485 } 4486 4487 #define FW_VERSION(chip) ( \ 4488 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ 4489 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ 4490 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ 4491 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) 4492 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) 4493 4494 /* Just enough of fw_hdr to cover all version info. */ 4495 struct fw_h { 4496 __u8 ver; 4497 __u8 chip; 4498 __be16 len512; 4499 __be32 fw_ver; 4500 __be32 tp_microcode_ver; 4501 __u8 intfver_nic; 4502 __u8 intfver_vnic; 4503 __u8 intfver_ofld; 4504 __u8 intfver_ri; 4505 __u8 intfver_iscsipdu; 4506 __u8 intfver_iscsi; 4507 __u8 intfver_fcoepdu; 4508 __u8 intfver_fcoe; 4509 }; 4510 /* Spot check a couple of fields. */ 4511 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver)); 4512 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic)); 4513 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe)); 4514 4515 struct fw_info { 4516 uint8_t chip; 4517 char *kld_name; 4518 char *fw_mod_name; 4519 struct fw_h fw_h; 4520 } fw_info[] = { 4521 { 4522 .chip = CHELSIO_T4, 4523 .kld_name = "t4fw_cfg", 4524 .fw_mod_name = "t4fw", 4525 .fw_h = { 4526 .chip = FW_HDR_CHIP_T4, 4527 .fw_ver = htobe32(FW_VERSION(T4)), 4528 .intfver_nic = FW_INTFVER(T4, NIC), 4529 .intfver_vnic = FW_INTFVER(T4, VNIC), 4530 .intfver_ofld = FW_INTFVER(T4, OFLD), 4531 .intfver_ri = FW_INTFVER(T4, RI), 4532 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), 4533 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4534 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), 4535 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4536 }, 4537 }, { 4538 .chip = CHELSIO_T5, 4539 .kld_name = "t5fw_cfg", 4540 .fw_mod_name = "t5fw", 4541 .fw_h = { 4542 .chip = FW_HDR_CHIP_T5, 4543 .fw_ver = htobe32(FW_VERSION(T5)), 4544 .intfver_nic = FW_INTFVER(T5, NIC), 4545 .intfver_vnic = FW_INTFVER(T5, VNIC), 4546 .intfver_ofld = FW_INTFVER(T5, OFLD), 4547 .intfver_ri = FW_INTFVER(T5, RI), 4548 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), 4549 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4550 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), 4551 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4552 }, 4553 }, { 4554 .chip = CHELSIO_T6, 4555 .kld_name = "t6fw_cfg", 4556 .fw_mod_name = "t6fw", 4557 .fw_h = { 4558 .chip = FW_HDR_CHIP_T6, 4559 .fw_ver = htobe32(FW_VERSION(T6)), 4560 .intfver_nic = FW_INTFVER(T6, NIC), 4561 .intfver_vnic = FW_INTFVER(T6, VNIC), 4562 .intfver_ofld = FW_INTFVER(T6, OFLD), 4563 .intfver_ri = FW_INTFVER(T6, RI), 4564 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4565 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4566 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4567 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4568 }, 4569 } 4570 }; 4571 4572 static struct fw_info * 4573 find_fw_info(int chip) 4574 { 4575 int i; 4576 4577 for (i = 0; i < nitems(fw_info); i++) { 4578 if (fw_info[i].chip == chip) 4579 return (&fw_info[i]); 4580 } 4581 return (NULL); 4582 } 4583 4584 /* 4585 * Is the given firmware API compatible with the one the driver was compiled 4586 * with? 4587 */ 4588 static int 4589 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2) 4590 { 4591 4592 /* short circuit if it's the exact same firmware version */ 4593 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 4594 return (1); 4595 4596 /* 4597 * XXX: Is this too conservative? Perhaps I should limit this to the 4598 * features that are supported in the driver. 4599 */ 4600 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 4601 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 4602 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && 4603 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) 4604 return (1); 4605 #undef SAME_INTF 4606 4607 return (0); 4608 } 4609 4610 static int 4611 load_fw_module(struct adapter *sc, const struct firmware **dcfg, 4612 const struct firmware **fw) 4613 { 4614 struct fw_info *fw_info; 4615 4616 *dcfg = NULL; 4617 if (fw != NULL) 4618 *fw = NULL; 4619 4620 fw_info = find_fw_info(chip_id(sc)); 4621 if (fw_info == NULL) { 4622 device_printf(sc->dev, 4623 "unable to look up firmware information for chip %d.\n", 4624 chip_id(sc)); 4625 return (EINVAL); 4626 } 4627 4628 *dcfg = firmware_get(fw_info->kld_name); 4629 if (*dcfg != NULL) { 4630 if (fw != NULL) 4631 *fw = firmware_get(fw_info->fw_mod_name); 4632 return (0); 4633 } 4634 4635 return (ENOENT); 4636 } 4637 4638 static void 4639 unload_fw_module(struct adapter *sc, const struct firmware *dcfg, 4640 const struct firmware *fw) 4641 { 4642 4643 if (fw != NULL) 4644 firmware_put(fw, FIRMWARE_UNLOAD); 4645 if (dcfg != NULL) 4646 firmware_put(dcfg, FIRMWARE_UNLOAD); 4647 } 4648 4649 /* 4650 * Return values: 4651 * 0 means no firmware install attempted. 4652 * ERESTART means a firmware install was attempted and was successful. 4653 * +ve errno means a firmware install was attempted but failed. 4654 */ 4655 static int 4656 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw, 4657 const struct fw_h *drv_fw, const char *reason, int *already) 4658 { 4659 const struct firmware *cfg, *fw; 4660 const uint32_t c = be32toh(card_fw->fw_ver); 4661 uint32_t d, k; 4662 int rc, fw_install; 4663 struct fw_h bundled_fw; 4664 bool load_attempted; 4665 4666 cfg = fw = NULL; 4667 load_attempted = false; 4668 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install; 4669 4670 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw)); 4671 if (t4_fw_install < 0) { 4672 rc = load_fw_module(sc, &cfg, &fw); 4673 if (rc != 0 || fw == NULL) { 4674 device_printf(sc->dev, 4675 "failed to load firmware module: %d. cfg %p, fw %p;" 4676 " will use compiled-in firmware version for" 4677 "hw.cxgbe.fw_install checks.\n", 4678 rc, cfg, fw); 4679 } else { 4680 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw)); 4681 } 4682 load_attempted = true; 4683 } 4684 d = be32toh(bundled_fw.fw_ver); 4685 4686 if (reason != NULL) 4687 goto install; 4688 4689 if ((sc->flags & FW_OK) == 0) { 4690 4691 if (c == 0xffffffff) { 4692 reason = "missing"; 4693 goto install; 4694 } 4695 4696 rc = 0; 4697 goto done; 4698 } 4699 4700 if (!fw_compatible(card_fw, &bundled_fw)) { 4701 reason = "incompatible or unusable"; 4702 goto install; 4703 } 4704 4705 if (d > c) { 4706 reason = "older than the version bundled with this driver"; 4707 goto install; 4708 } 4709 4710 if (fw_install == 2 && d != c) { 4711 reason = "different than the version bundled with this driver"; 4712 goto install; 4713 } 4714 4715 /* No reason to do anything to the firmware already on the card. */ 4716 rc = 0; 4717 goto done; 4718 4719 install: 4720 rc = 0; 4721 if ((*already)++) 4722 goto done; 4723 4724 if (fw_install == 0) { 4725 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4726 "but the driver is prohibited from installing a firmware " 4727 "on the card.\n", 4728 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4729 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4730 4731 goto done; 4732 } 4733 4734 /* 4735 * We'll attempt to install a firmware. Load the module first (if it 4736 * hasn't been loaded already). 4737 */ 4738 if (!load_attempted) { 4739 rc = load_fw_module(sc, &cfg, &fw); 4740 if (rc != 0 || fw == NULL) { 4741 device_printf(sc->dev, 4742 "failed to load firmware module: %d. cfg %p, fw %p\n", 4743 rc, cfg, fw); 4744 /* carry on */ 4745 } 4746 } 4747 if (fw == NULL) { 4748 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4749 "but the driver cannot take corrective action because it " 4750 "is unable to load the firmware module.\n", 4751 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4752 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 4753 rc = sc->flags & FW_OK ? 0 : ENOENT; 4754 goto done; 4755 } 4756 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver); 4757 if (k != d) { 4758 MPASS(t4_fw_install > 0); 4759 device_printf(sc->dev, 4760 "firmware in KLD (%u.%u.%u.%u) is not what the driver was " 4761 "expecting (%u.%u.%u.%u) and will not be used.\n", 4762 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 4763 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k), 4764 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4765 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4766 rc = sc->flags & FW_OK ? 0 : EINVAL; 4767 goto done; 4768 } 4769 4770 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 4771 "installing firmware %u.%u.%u.%u on card.\n", 4772 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 4773 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, 4774 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 4775 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 4776 4777 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); 4778 if (rc != 0) { 4779 device_printf(sc->dev, "failed to install firmware: %d\n", rc); 4780 } else { 4781 /* Installed successfully, update the cached header too. */ 4782 rc = ERESTART; 4783 memcpy(card_fw, fw->data, sizeof(*card_fw)); 4784 } 4785 done: 4786 unload_fw_module(sc, cfg, fw); 4787 4788 return (rc); 4789 } 4790 4791 /* 4792 * Establish contact with the firmware and attempt to become the master driver. 4793 * 4794 * A firmware will be installed to the card if needed (if the driver is allowed 4795 * to do so). 4796 */ 4797 static int 4798 contact_firmware(struct adapter *sc) 4799 { 4800 int rc, already = 0; 4801 enum dev_state state; 4802 struct fw_info *fw_info; 4803 struct fw_hdr *card_fw; /* fw on the card */ 4804 const struct fw_h *drv_fw; 4805 4806 fw_info = find_fw_info(chip_id(sc)); 4807 if (fw_info == NULL) { 4808 device_printf(sc->dev, 4809 "unable to look up firmware information for chip %d.\n", 4810 chip_id(sc)); 4811 return (EINVAL); 4812 } 4813 drv_fw = &fw_info->fw_h; 4814 4815 /* Read the header of the firmware on the card */ 4816 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); 4817 restart: 4818 rc = -t4_get_fw_hdr(sc, card_fw); 4819 if (rc != 0) { 4820 device_printf(sc->dev, 4821 "unable to read firmware header from card's flash: %d\n", 4822 rc); 4823 goto done; 4824 } 4825 4826 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL, 4827 &already); 4828 if (rc == ERESTART) 4829 goto restart; 4830 if (rc != 0) 4831 goto done; 4832 4833 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); 4834 if (rc < 0 || state == DEV_STATE_ERR) { 4835 rc = -rc; 4836 device_printf(sc->dev, 4837 "failed to connect to the firmware: %d, %d. " 4838 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4839 #if 0 4840 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4841 "not responding properly to HELLO", &already) == ERESTART) 4842 goto restart; 4843 #endif 4844 goto done; 4845 } 4846 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT); 4847 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */ 4848 4849 if (rc == sc->pf) { 4850 sc->flags |= MASTER_PF; 4851 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4852 NULL, &already); 4853 if (rc == ERESTART) 4854 rc = 0; 4855 else if (rc != 0) 4856 goto done; 4857 } else if (state == DEV_STATE_UNINIT) { 4858 /* 4859 * We didn't get to be the master so we definitely won't be 4860 * configuring the chip. It's a bug if someone else hasn't 4861 * configured it already. 4862 */ 4863 device_printf(sc->dev, "couldn't be master(%d), " 4864 "device not already initialized either(%d). " 4865 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4866 rc = EPROTO; 4867 goto done; 4868 } else { 4869 /* 4870 * Some other PF is the master and has configured the chip. 4871 * This is allowed but untested. 4872 */ 4873 device_printf(sc->dev, "PF%d is master, device state %d. " 4874 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4875 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc); 4876 sc->cfcsum = 0; 4877 rc = 0; 4878 } 4879 done: 4880 if (rc != 0 && sc->flags & FW_OK) { 4881 t4_fw_bye(sc, sc->mbox); 4882 sc->flags &= ~FW_OK; 4883 } 4884 free(card_fw, M_CXGBE); 4885 return (rc); 4886 } 4887 4888 static int 4889 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file, 4890 uint32_t mtype, uint32_t moff) 4891 { 4892 struct fw_info *fw_info; 4893 const struct firmware *dcfg, *rcfg = NULL; 4894 const uint32_t *cfdata; 4895 uint32_t cflen, addr; 4896 int rc; 4897 4898 load_fw_module(sc, &dcfg, NULL); 4899 4900 /* Card specific interpretation of "default". */ 4901 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4902 if (pci_get_device(sc->dev) == 0x440a) 4903 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF); 4904 if (is_fpga(sc)) 4905 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF); 4906 } 4907 4908 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4909 if (dcfg == NULL) { 4910 device_printf(sc->dev, 4911 "KLD with default config is not available.\n"); 4912 rc = ENOENT; 4913 goto done; 4914 } 4915 cfdata = dcfg->data; 4916 cflen = dcfg->datasize & ~3; 4917 } else { 4918 char s[32]; 4919 4920 fw_info = find_fw_info(chip_id(sc)); 4921 if (fw_info == NULL) { 4922 device_printf(sc->dev, 4923 "unable to look up firmware information for chip %d.\n", 4924 chip_id(sc)); 4925 rc = EINVAL; 4926 goto done; 4927 } 4928 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file); 4929 4930 rcfg = firmware_get(s); 4931 if (rcfg == NULL) { 4932 device_printf(sc->dev, 4933 "unable to load module \"%s\" for configuration " 4934 "profile \"%s\".\n", s, cfg_file); 4935 rc = ENOENT; 4936 goto done; 4937 } 4938 cfdata = rcfg->data; 4939 cflen = rcfg->datasize & ~3; 4940 } 4941 4942 if (cflen > FLASH_CFG_MAX_SIZE) { 4943 device_printf(sc->dev, 4944 "config file too long (%d, max allowed is %d).\n", 4945 cflen, FLASH_CFG_MAX_SIZE); 4946 rc = EINVAL; 4947 goto done; 4948 } 4949 4950 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); 4951 if (rc != 0) { 4952 device_printf(sc->dev, 4953 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n", 4954 __func__, mtype, moff, cflen, rc); 4955 rc = EINVAL; 4956 goto done; 4957 } 4958 write_via_memwin(sc, 2, addr, cfdata, cflen); 4959 done: 4960 if (rcfg != NULL) 4961 firmware_put(rcfg, FIRMWARE_UNLOAD); 4962 unload_fw_module(sc, dcfg, NULL); 4963 return (rc); 4964 } 4965 4966 struct caps_allowed { 4967 uint16_t nbmcaps; 4968 uint16_t linkcaps; 4969 uint16_t switchcaps; 4970 uint16_t niccaps; 4971 uint16_t toecaps; 4972 uint16_t rdmacaps; 4973 uint16_t cryptocaps; 4974 uint16_t iscsicaps; 4975 uint16_t fcoecaps; 4976 }; 4977 4978 #define FW_PARAM_DEV(param) \ 4979 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 4980 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 4981 #define FW_PARAM_PFVF(param) \ 4982 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 4983 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) 4984 4985 /* 4986 * Provide a configuration profile to the firmware and have it initialize the 4987 * chip accordingly. This may involve uploading a configuration file to the 4988 * card. 4989 */ 4990 static int 4991 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file, 4992 const struct caps_allowed *caps_allowed) 4993 { 4994 int rc; 4995 struct fw_caps_config_cmd caps; 4996 uint32_t mtype, moff, finicsum, cfcsum, param, val; 4997 4998 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST); 4999 if (rc != 0) { 5000 device_printf(sc->dev, "firmware reset failed: %d.\n", rc); 5001 return (rc); 5002 } 5003 5004 bzero(&caps, sizeof(caps)); 5005 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5006 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5007 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) { 5008 mtype = 0; 5009 moff = 0; 5010 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5011 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) { 5012 mtype = FW_MEMTYPE_FLASH; 5013 moff = t4_flash_cfg_addr(sc); 5014 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 5015 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 5016 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 5017 FW_LEN16(caps)); 5018 } else { 5019 /* 5020 * Ask the firmware where it wants us to upload the config file. 5021 */ 5022 param = FW_PARAM_DEV(CF); 5023 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5024 if (rc != 0) { 5025 /* No support for config file? Shouldn't happen. */ 5026 device_printf(sc->dev, 5027 "failed to query config file location: %d.\n", rc); 5028 goto done; 5029 } 5030 mtype = G_FW_PARAMS_PARAM_Y(val); 5031 moff = G_FW_PARAMS_PARAM_Z(val) << 16; 5032 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 5033 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 5034 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 5035 FW_LEN16(caps)); 5036 5037 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff); 5038 if (rc != 0) { 5039 device_printf(sc->dev, 5040 "failed to upload config file to card: %d.\n", rc); 5041 goto done; 5042 } 5043 } 5044 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5045 if (rc != 0) { 5046 device_printf(sc->dev, "failed to pre-process config file: %d " 5047 "(mtype %d, moff 0x%x).\n", rc, mtype, moff); 5048 goto done; 5049 } 5050 5051 finicsum = be32toh(caps.finicsum); 5052 cfcsum = be32toh(caps.cfcsum); /* actual */ 5053 if (finicsum != cfcsum) { 5054 device_printf(sc->dev, 5055 "WARNING: config file checksum mismatch: %08x %08x\n", 5056 finicsum, cfcsum); 5057 } 5058 sc->cfcsum = cfcsum; 5059 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file); 5060 5061 /* 5062 * Let the firmware know what features will (not) be used so it can tune 5063 * things accordingly. 5064 */ 5065 #define LIMIT_CAPS(x) do { \ 5066 caps.x##caps &= htobe16(caps_allowed->x##caps); \ 5067 } while (0) 5068 LIMIT_CAPS(nbm); 5069 LIMIT_CAPS(link); 5070 LIMIT_CAPS(switch); 5071 LIMIT_CAPS(nic); 5072 LIMIT_CAPS(toe); 5073 LIMIT_CAPS(rdma); 5074 LIMIT_CAPS(crypto); 5075 LIMIT_CAPS(iscsi); 5076 LIMIT_CAPS(fcoe); 5077 #undef LIMIT_CAPS 5078 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 5079 /* 5080 * TOE and hashfilters are mutually exclusive. It is a config 5081 * file or firmware bug if both are reported as available. Try 5082 * to cope with the situation in non-debug builds by disabling 5083 * TOE. 5084 */ 5085 MPASS(caps.toecaps == 0); 5086 5087 caps.toecaps = 0; 5088 caps.rdmacaps = 0; 5089 caps.iscsicaps = 0; 5090 } 5091 5092 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5093 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 5094 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5095 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); 5096 if (rc != 0) { 5097 device_printf(sc->dev, 5098 "failed to process config file: %d.\n", rc); 5099 goto done; 5100 } 5101 5102 t4_tweak_chip_settings(sc); 5103 set_params__pre_init(sc); 5104 5105 /* get basic stuff going */ 5106 rc = -t4_fw_initialize(sc, sc->mbox); 5107 if (rc != 0) { 5108 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc); 5109 goto done; 5110 } 5111 done: 5112 return (rc); 5113 } 5114 5115 /* 5116 * Partition chip resources for use between various PFs, VFs, etc. 5117 */ 5118 static int 5119 partition_resources(struct adapter *sc) 5120 { 5121 char cfg_file[sizeof(t4_cfg_file)]; 5122 struct caps_allowed caps_allowed; 5123 int rc; 5124 bool fallback; 5125 5126 /* Only the master driver gets to configure the chip resources. */ 5127 MPASS(sc->flags & MASTER_PF); 5128 5129 #define COPY_CAPS(x) do { \ 5130 caps_allowed.x##caps = t4_##x##caps_allowed; \ 5131 } while (0) 5132 bzero(&caps_allowed, sizeof(caps_allowed)); 5133 COPY_CAPS(nbm); 5134 COPY_CAPS(link); 5135 COPY_CAPS(switch); 5136 COPY_CAPS(nic); 5137 COPY_CAPS(toe); 5138 COPY_CAPS(rdma); 5139 COPY_CAPS(crypto); 5140 COPY_CAPS(iscsi); 5141 COPY_CAPS(fcoe); 5142 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true; 5143 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file); 5144 retry: 5145 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed); 5146 if (rc != 0 && fallback) { 5147 dump_devlog(sc); 5148 device_printf(sc->dev, 5149 "failed (%d) to configure card with \"%s\" profile, " 5150 "will fall back to a basic configuration and retry.\n", 5151 rc, cfg_file); 5152 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF); 5153 bzero(&caps_allowed, sizeof(caps_allowed)); 5154 COPY_CAPS(switch); 5155 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC; 5156 fallback = false; 5157 goto retry; 5158 } 5159 #undef COPY_CAPS 5160 return (rc); 5161 } 5162 5163 /* 5164 * Retrieve parameters that are needed (or nice to have) very early. 5165 */ 5166 static int 5167 get_params__pre_init(struct adapter *sc) 5168 { 5169 int rc; 5170 uint32_t param[2], val[2]; 5171 5172 t4_get_version_info(sc); 5173 5174 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", 5175 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), 5176 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), 5177 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), 5178 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); 5179 5180 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u", 5181 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers), 5182 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers), 5183 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers), 5184 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers)); 5185 5186 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u", 5187 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers), 5188 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers), 5189 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers), 5190 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers)); 5191 5192 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u", 5193 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers), 5194 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers), 5195 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers), 5196 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers)); 5197 5198 param[0] = FW_PARAM_DEV(PORTVEC); 5199 param[1] = FW_PARAM_DEV(CCLK); 5200 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5201 if (rc != 0) { 5202 device_printf(sc->dev, 5203 "failed to query parameters (pre_init): %d.\n", rc); 5204 return (rc); 5205 } 5206 5207 sc->params.portvec = val[0]; 5208 sc->params.nports = bitcount32(val[0]); 5209 sc->params.vpd.cclk = val[1]; 5210 5211 /* Read device log parameters. */ 5212 rc = -t4_init_devlog_params(sc, 1); 5213 if (rc == 0) 5214 fixup_devlog_params(sc); 5215 else { 5216 device_printf(sc->dev, 5217 "failed to get devlog parameters: %d.\n", rc); 5218 rc = 0; /* devlog isn't critical for device operation */ 5219 } 5220 5221 return (rc); 5222 } 5223 5224 /* 5225 * Any params that need to be set before FW_INITIALIZE. 5226 */ 5227 static int 5228 set_params__pre_init(struct adapter *sc) 5229 { 5230 int rc = 0; 5231 uint32_t param, val; 5232 5233 if (chip_id(sc) >= CHELSIO_T6) { 5234 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 5235 val = 1; 5236 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5237 /* firmwares < 1.20.1.0 do not have this param. */ 5238 if (rc == FW_EINVAL && 5239 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) { 5240 rc = 0; 5241 } 5242 if (rc != 0) { 5243 device_printf(sc->dev, 5244 "failed to enable high priority filters :%d.\n", 5245 rc); 5246 } 5247 5248 param = FW_PARAM_DEV(PPOD_EDRAM); 5249 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5250 if (rc == 0 && val == 1) { 5251 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, 5252 &val); 5253 if (rc != 0) { 5254 device_printf(sc->dev, 5255 "failed to set PPOD_EDRAM: %d.\n", rc); 5256 } 5257 } 5258 } 5259 5260 /* Enable opaque VIIDs with firmwares that support it. */ 5261 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 5262 val = 1; 5263 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5264 if (rc == 0 && val == 1) 5265 sc->params.viid_smt_extn_support = true; 5266 else 5267 sc->params.viid_smt_extn_support = false; 5268 5269 return (rc); 5270 } 5271 5272 /* 5273 * Retrieve various parameters that are of interest to the driver. The device 5274 * has been initialized by the firmware at this point. 5275 */ 5276 static int 5277 get_params__post_init(struct adapter *sc) 5278 { 5279 int rc; 5280 uint32_t param[7], val[7]; 5281 struct fw_caps_config_cmd caps; 5282 5283 param[0] = FW_PARAM_PFVF(IQFLINT_START); 5284 param[1] = FW_PARAM_PFVF(EQ_START); 5285 param[2] = FW_PARAM_PFVF(FILTER_START); 5286 param[3] = FW_PARAM_PFVF(FILTER_END); 5287 param[4] = FW_PARAM_PFVF(L2T_START); 5288 param[5] = FW_PARAM_PFVF(L2T_END); 5289 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5290 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 5291 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 5292 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val); 5293 if (rc != 0) { 5294 device_printf(sc->dev, 5295 "failed to query parameters (post_init): %d.\n", rc); 5296 return (rc); 5297 } 5298 5299 sc->sge.iq_start = val[0]; 5300 sc->sge.eq_start = val[1]; 5301 if ((int)val[3] > (int)val[2]) { 5302 sc->tids.ftid_base = val[2]; 5303 sc->tids.ftid_end = val[3]; 5304 sc->tids.nftids = val[3] - val[2] + 1; 5305 } 5306 sc->vres.l2t.start = val[4]; 5307 sc->vres.l2t.size = val[5] - val[4] + 1; 5308 /* val[5] is the last hwidx and it must not collide with F_SYNC_WR */ 5309 if (sc->vres.l2t.size > 0) 5310 MPASS(fls(val[5]) <= S_SYNC_WR); 5311 sc->params.core_vdd = val[6]; 5312 5313 param[0] = FW_PARAM_PFVF(IQFLINT_END); 5314 param[1] = FW_PARAM_PFVF(EQ_END); 5315 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5316 if (rc != 0) { 5317 device_printf(sc->dev, 5318 "failed to query parameters (post_init2): %d.\n", rc); 5319 return (rc); 5320 } 5321 MPASS((int)val[0] >= sc->sge.iq_start); 5322 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1; 5323 MPASS((int)val[1] >= sc->sge.eq_start); 5324 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1; 5325 5326 if (chip_id(sc) >= CHELSIO_T6) { 5327 5328 sc->tids.tid_base = t4_read_reg(sc, 5329 A_LE_DB_ACTIVE_TABLE_START_INDEX); 5330 5331 param[0] = FW_PARAM_PFVF(HPFILTER_START); 5332 param[1] = FW_PARAM_PFVF(HPFILTER_END); 5333 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5334 if (rc != 0) { 5335 device_printf(sc->dev, 5336 "failed to query hpfilter parameters: %d.\n", rc); 5337 return (rc); 5338 } 5339 if ((int)val[1] > (int)val[0]) { 5340 sc->tids.hpftid_base = val[0]; 5341 sc->tids.hpftid_end = val[1]; 5342 sc->tids.nhpftids = val[1] - val[0] + 1; 5343 5344 /* 5345 * These should go off if the layout changes and the 5346 * driver needs to catch up. 5347 */ 5348 MPASS(sc->tids.hpftid_base == 0); 5349 MPASS(sc->tids.tid_base == sc->tids.nhpftids); 5350 } 5351 5352 param[0] = FW_PARAM_PFVF(RAWF_START); 5353 param[1] = FW_PARAM_PFVF(RAWF_END); 5354 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5355 if (rc != 0) { 5356 device_printf(sc->dev, 5357 "failed to query rawf parameters: %d.\n", rc); 5358 return (rc); 5359 } 5360 if ((int)val[1] > (int)val[0]) { 5361 sc->rawf_base = val[0]; 5362 sc->nrawf = val[1] - val[0] + 1; 5363 } 5364 } 5365 5366 /* 5367 * The parameters that follow may not be available on all firmwares. We 5368 * query them individually rather than in a compound query because old 5369 * firmwares fail the entire query if an unknown parameter is queried. 5370 */ 5371 5372 /* 5373 * MPS buffer group configuration. 5374 */ 5375 param[0] = FW_PARAM_DEV(MPSBGMAP); 5376 val[0] = 0; 5377 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5378 if (rc == 0) 5379 sc->params.mps_bg_map = val[0]; 5380 else 5381 sc->params.mps_bg_map = UINT32_MAX; /* Not a legal value. */ 5382 5383 param[0] = FW_PARAM_DEV(TPCHMAP); 5384 val[0] = 0; 5385 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5386 if (rc == 0) 5387 sc->params.tp_ch_map = val[0]; 5388 else 5389 sc->params.tp_ch_map = UINT32_MAX; /* Not a legal value. */ 5390 5391 /* 5392 * Determine whether the firmware supports the filter2 work request. 5393 */ 5394 param[0] = FW_PARAM_DEV(FILTER2_WR); 5395 val[0] = 0; 5396 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5397 if (rc == 0) 5398 sc->params.filter2_wr_support = val[0] != 0; 5399 else 5400 sc->params.filter2_wr_support = 0; 5401 5402 /* 5403 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL. 5404 */ 5405 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 5406 val[0] = 0; 5407 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5408 if (rc == 0) 5409 sc->params.ulptx_memwrite_dsgl = val[0] != 0; 5410 else 5411 sc->params.ulptx_memwrite_dsgl = false; 5412 5413 /* FW_RI_FR_NSMR_TPTE_WR support */ 5414 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 5415 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5416 if (rc == 0) 5417 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0; 5418 else 5419 sc->params.fr_nsmr_tpte_wr_support = false; 5420 5421 /* Support for 512 SGL entries per FR MR. */ 5422 param[0] = FW_PARAM_DEV(DEV_512SGL_MR); 5423 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5424 if (rc == 0) 5425 sc->params.dev_512sgl_mr = val[0] != 0; 5426 else 5427 sc->params.dev_512sgl_mr = false; 5428 5429 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR); 5430 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5431 if (rc == 0) 5432 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0]; 5433 else 5434 sc->params.max_pkts_per_eth_tx_pkts_wr = 15; 5435 5436 param[0] = FW_PARAM_DEV(NUM_TM_CLASS); 5437 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5438 if (rc == 0) { 5439 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */ 5440 sc->params.nsched_cls = val[0]; 5441 } else 5442 sc->params.nsched_cls = sc->chip_params->nsched_cls; 5443 5444 /* get capabilites */ 5445 bzero(&caps, sizeof(caps)); 5446 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5447 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5448 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5449 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5450 if (rc != 0) { 5451 device_printf(sc->dev, 5452 "failed to get card capabilities: %d.\n", rc); 5453 return (rc); 5454 } 5455 5456 #define READ_CAPS(x) do { \ 5457 sc->x = htobe16(caps.x); \ 5458 } while (0) 5459 READ_CAPS(nbmcaps); 5460 READ_CAPS(linkcaps); 5461 READ_CAPS(switchcaps); 5462 READ_CAPS(niccaps); 5463 READ_CAPS(toecaps); 5464 READ_CAPS(rdmacaps); 5465 READ_CAPS(cryptocaps); 5466 READ_CAPS(iscsicaps); 5467 READ_CAPS(fcoecaps); 5468 5469 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) { 5470 MPASS(chip_id(sc) > CHELSIO_T4); 5471 MPASS(sc->toecaps == 0); 5472 sc->toecaps = 0; 5473 5474 param[0] = FW_PARAM_DEV(NTID); 5475 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5476 if (rc != 0) { 5477 device_printf(sc->dev, 5478 "failed to query HASHFILTER parameters: %d.\n", rc); 5479 return (rc); 5480 } 5481 sc->tids.ntids = val[0]; 5482 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5483 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5484 sc->tids.ntids -= sc->tids.nhpftids; 5485 } 5486 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5487 sc->params.hash_filter = 1; 5488 } 5489 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) { 5490 param[0] = FW_PARAM_PFVF(ETHOFLD_START); 5491 param[1] = FW_PARAM_PFVF(ETHOFLD_END); 5492 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5493 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val); 5494 if (rc != 0) { 5495 device_printf(sc->dev, 5496 "failed to query NIC parameters: %d.\n", rc); 5497 return (rc); 5498 } 5499 if ((int)val[1] > (int)val[0]) { 5500 sc->tids.etid_base = val[0]; 5501 sc->tids.etid_end = val[1]; 5502 sc->tids.netids = val[1] - val[0] + 1; 5503 sc->params.eo_wr_cred = val[2]; 5504 sc->params.ethoffload = 1; 5505 } 5506 } 5507 if (sc->toecaps) { 5508 /* query offload-related parameters */ 5509 param[0] = FW_PARAM_DEV(NTID); 5510 param[1] = FW_PARAM_PFVF(SERVER_START); 5511 param[2] = FW_PARAM_PFVF(SERVER_END); 5512 param[3] = FW_PARAM_PFVF(TDDP_START); 5513 param[4] = FW_PARAM_PFVF(TDDP_END); 5514 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5515 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5516 if (rc != 0) { 5517 device_printf(sc->dev, 5518 "failed to query TOE parameters: %d.\n", rc); 5519 return (rc); 5520 } 5521 sc->tids.ntids = val[0]; 5522 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5523 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5524 sc->tids.ntids -= sc->tids.nhpftids; 5525 } 5526 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5527 if ((int)val[2] > (int)val[1]) { 5528 sc->tids.stid_base = val[1]; 5529 sc->tids.nstids = val[2] - val[1] + 1; 5530 } 5531 sc->vres.ddp.start = val[3]; 5532 sc->vres.ddp.size = val[4] - val[3] + 1; 5533 sc->params.ofldq_wr_cred = val[5]; 5534 sc->params.offload = 1; 5535 } else { 5536 /* 5537 * The firmware attempts memfree TOE configuration for -SO cards 5538 * and will report toecaps=0 if it runs out of resources (this 5539 * depends on the config file). It may not report 0 for other 5540 * capabilities dependent on the TOE in this case. Set them to 5541 * 0 here so that the driver doesn't bother tracking resources 5542 * that will never be used. 5543 */ 5544 sc->iscsicaps = 0; 5545 sc->rdmacaps = 0; 5546 } 5547 if (sc->rdmacaps) { 5548 param[0] = FW_PARAM_PFVF(STAG_START); 5549 param[1] = FW_PARAM_PFVF(STAG_END); 5550 param[2] = FW_PARAM_PFVF(RQ_START); 5551 param[3] = FW_PARAM_PFVF(RQ_END); 5552 param[4] = FW_PARAM_PFVF(PBL_START); 5553 param[5] = FW_PARAM_PFVF(PBL_END); 5554 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5555 if (rc != 0) { 5556 device_printf(sc->dev, 5557 "failed to query RDMA parameters(1): %d.\n", rc); 5558 return (rc); 5559 } 5560 sc->vres.stag.start = val[0]; 5561 sc->vres.stag.size = val[1] - val[0] + 1; 5562 sc->vres.rq.start = val[2]; 5563 sc->vres.rq.size = val[3] - val[2] + 1; 5564 sc->vres.pbl.start = val[4]; 5565 sc->vres.pbl.size = val[5] - val[4] + 1; 5566 5567 param[0] = FW_PARAM_PFVF(SQRQ_START); 5568 param[1] = FW_PARAM_PFVF(SQRQ_END); 5569 param[2] = FW_PARAM_PFVF(CQ_START); 5570 param[3] = FW_PARAM_PFVF(CQ_END); 5571 param[4] = FW_PARAM_PFVF(OCQ_START); 5572 param[5] = FW_PARAM_PFVF(OCQ_END); 5573 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5574 if (rc != 0) { 5575 device_printf(sc->dev, 5576 "failed to query RDMA parameters(2): %d.\n", rc); 5577 return (rc); 5578 } 5579 sc->vres.qp.start = val[0]; 5580 sc->vres.qp.size = val[1] - val[0] + 1; 5581 sc->vres.cq.start = val[2]; 5582 sc->vres.cq.size = val[3] - val[2] + 1; 5583 sc->vres.ocq.start = val[4]; 5584 sc->vres.ocq.size = val[5] - val[4] + 1; 5585 5586 param[0] = FW_PARAM_PFVF(SRQ_START); 5587 param[1] = FW_PARAM_PFVF(SRQ_END); 5588 param[2] = FW_PARAM_DEV(MAXORDIRD_QP); 5589 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER); 5590 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val); 5591 if (rc != 0) { 5592 device_printf(sc->dev, 5593 "failed to query RDMA parameters(3): %d.\n", rc); 5594 return (rc); 5595 } 5596 sc->vres.srq.start = val[0]; 5597 sc->vres.srq.size = val[1] - val[0] + 1; 5598 sc->params.max_ordird_qp = val[2]; 5599 sc->params.max_ird_adapter = val[3]; 5600 } 5601 if (sc->iscsicaps) { 5602 param[0] = FW_PARAM_PFVF(ISCSI_START); 5603 param[1] = FW_PARAM_PFVF(ISCSI_END); 5604 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5605 if (rc != 0) { 5606 device_printf(sc->dev, 5607 "failed to query iSCSI parameters: %d.\n", rc); 5608 return (rc); 5609 } 5610 sc->vres.iscsi.start = val[0]; 5611 sc->vres.iscsi.size = val[1] - val[0] + 1; 5612 } 5613 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 5614 param[0] = FW_PARAM_PFVF(TLS_START); 5615 param[1] = FW_PARAM_PFVF(TLS_END); 5616 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5617 if (rc != 0) { 5618 device_printf(sc->dev, 5619 "failed to query TLS parameters: %d.\n", rc); 5620 return (rc); 5621 } 5622 sc->vres.key.start = val[0]; 5623 sc->vres.key.size = val[1] - val[0] + 1; 5624 } 5625 5626 /* 5627 * We've got the params we wanted to query directly from the firmware. 5628 * Grab some others via other means. 5629 */ 5630 t4_init_sge_params(sc); 5631 t4_init_tp_params(sc); 5632 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 5633 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 5634 5635 rc = t4_verify_chip_settings(sc); 5636 if (rc != 0) 5637 return (rc); 5638 t4_init_rx_buf_info(sc); 5639 5640 return (rc); 5641 } 5642 5643 #ifdef KERN_TLS 5644 static void 5645 ktls_tick(void *arg) 5646 { 5647 struct adapter *sc; 5648 uint32_t tstamp; 5649 5650 sc = arg; 5651 tstamp = tcp_ts_getticks(); 5652 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1); 5653 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31); 5654 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK); 5655 } 5656 5657 static int 5658 t6_config_kern_tls(struct adapter *sc, bool enable) 5659 { 5660 int rc; 5661 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5662 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) | 5663 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) | 5664 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE); 5665 5666 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m); 5667 if (rc != 0) { 5668 CH_ERR(sc, "failed to %s NIC TLS: %d\n", 5669 enable ? "enable" : "disable", rc); 5670 return (rc); 5671 } 5672 5673 if (enable) { 5674 sc->flags |= KERN_TLS_ON; 5675 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc, 5676 C_HARDCLOCK); 5677 } else { 5678 sc->flags &= ~KERN_TLS_ON; 5679 callout_stop(&sc->ktls_tick); 5680 } 5681 5682 return (rc); 5683 } 5684 #endif 5685 5686 static int 5687 set_params__post_init(struct adapter *sc) 5688 { 5689 uint32_t mask, param, val; 5690 #ifdef TCP_OFFLOAD 5691 int i, v, shift; 5692 #endif 5693 5694 /* ask for encapsulated CPLs */ 5695 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 5696 val = 1; 5697 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5698 5699 /* Enable 32b port caps if the firmware supports it. */ 5700 param = FW_PARAM_PFVF(PORT_CAPS32); 5701 val = 1; 5702 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0) 5703 sc->params.port_caps32 = 1; 5704 5705 /* Let filter + maskhash steer to a part of the VI's RSS region. */ 5706 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1); 5707 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER), 5708 V_MASKFILTER(val - 1)); 5709 5710 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER | 5711 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN | 5712 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5713 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM; 5714 val = 0; 5715 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) { 5716 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE, 5717 F_ATTACKFILTERENABLE); 5718 val |= F_DROPERRORATTACK; 5719 } 5720 if (t4_drop_ip_fragments != 0) { 5721 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP, 5722 F_FRAGMENTDROP); 5723 val |= F_DROPERRORFRAG; 5724 } 5725 if (t4_drop_pkts_with_l2_errors != 0) 5726 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN; 5727 if (t4_drop_pkts_with_l3_errors != 0) { 5728 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN | 5729 F_DROPERRORCSUMIP; 5730 } 5731 if (t4_drop_pkts_with_l4_errors != 0) { 5732 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 5733 F_DROPERRORTCPOPT | F_DROPERRORCSUM; 5734 } 5735 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val); 5736 5737 #ifdef TCP_OFFLOAD 5738 /* 5739 * Override the TOE timers with user provided tunables. This is not the 5740 * recommended way to change the timers (the firmware config file is) so 5741 * these tunables are not documented. 5742 * 5743 * All the timer tunables are in microseconds. 5744 */ 5745 if (t4_toe_keepalive_idle != 0) { 5746 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle); 5747 v &= M_KEEPALIVEIDLE; 5748 t4_set_reg_field(sc, A_TP_KEEP_IDLE, 5749 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v)); 5750 } 5751 if (t4_toe_keepalive_interval != 0) { 5752 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval); 5753 v &= M_KEEPALIVEINTVL; 5754 t4_set_reg_field(sc, A_TP_KEEP_INTVL, 5755 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v)); 5756 } 5757 if (t4_toe_keepalive_count != 0) { 5758 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2; 5759 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5760 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) | 5761 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2), 5762 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v)); 5763 } 5764 if (t4_toe_rexmt_min != 0) { 5765 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min); 5766 v &= M_RXTMIN; 5767 t4_set_reg_field(sc, A_TP_RXT_MIN, 5768 V_RXTMIN(M_RXTMIN), V_RXTMIN(v)); 5769 } 5770 if (t4_toe_rexmt_max != 0) { 5771 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max); 5772 v &= M_RXTMAX; 5773 t4_set_reg_field(sc, A_TP_RXT_MAX, 5774 V_RXTMAX(M_RXTMAX), V_RXTMAX(v)); 5775 } 5776 if (t4_toe_rexmt_count != 0) { 5777 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2; 5778 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 5779 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) | 5780 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2), 5781 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v)); 5782 } 5783 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) { 5784 if (t4_toe_rexmt_backoff[i] != -1) { 5785 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0; 5786 shift = (i & 3) << 3; 5787 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3), 5788 M_TIMERBACKOFFINDEX0 << shift, v << shift); 5789 } 5790 } 5791 #endif 5792 5793 /* 5794 * Limit TOE connections to 2 reassembly "islands". This is 5795 * required to permit migrating TOE connections to either 5796 * ULP_MODE_TCPDDP or UPL_MODE_TLS. 5797 */ 5798 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, V_PASSMODE(M_PASSMODE), 5799 V_PASSMODE(2)); 5800 5801 #ifdef KERN_TLS 5802 if (is_ktls(sc)) { 5803 sc->tlst.inline_keys = t4_tls_inline_keys; 5804 sc->tlst.combo_wrs = t4_tls_combo_wrs; 5805 if (t4_kern_tls != 0 && is_t6(sc)) 5806 t6_config_kern_tls(sc, true); 5807 } 5808 #endif 5809 return (0); 5810 } 5811 5812 #undef FW_PARAM_PFVF 5813 #undef FW_PARAM_DEV 5814 5815 static void 5816 t4_set_desc(struct adapter *sc) 5817 { 5818 struct adapter_params *p = &sc->params; 5819 5820 device_set_descf(sc->dev, "Chelsio %s", p->vpd.id); 5821 } 5822 5823 static inline void 5824 ifmedia_add4(struct ifmedia *ifm, int m) 5825 { 5826 5827 ifmedia_add(ifm, m, 0, NULL); 5828 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL); 5829 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL); 5830 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL); 5831 } 5832 5833 /* 5834 * This is the selected media, which is not quite the same as the active media. 5835 * The media line in ifconfig is "media: Ethernet selected (active)" if selected 5836 * and active are not the same, and "media: Ethernet selected" otherwise. 5837 */ 5838 static void 5839 set_current_media(struct port_info *pi) 5840 { 5841 struct link_config *lc; 5842 struct ifmedia *ifm; 5843 int mword; 5844 u_int speed; 5845 5846 PORT_LOCK_ASSERT_OWNED(pi); 5847 5848 /* Leave current media alone if it's already set to IFM_NONE. */ 5849 ifm = &pi->media; 5850 if (ifm->ifm_cur != NULL && 5851 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE) 5852 return; 5853 5854 lc = &pi->link_cfg; 5855 if (lc->requested_aneg != AUTONEG_DISABLE && 5856 lc->pcaps & FW_PORT_CAP32_ANEG) { 5857 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); 5858 return; 5859 } 5860 mword = IFM_ETHER | IFM_FDX; 5861 if (lc->requested_fc & PAUSE_TX) 5862 mword |= IFM_ETH_TXPAUSE; 5863 if (lc->requested_fc & PAUSE_RX) 5864 mword |= IFM_ETH_RXPAUSE; 5865 if (lc->requested_speed == 0) 5866 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */ 5867 else 5868 speed = lc->requested_speed; 5869 mword |= port_mword(pi, speed_to_fwcap(speed)); 5870 ifmedia_set(ifm, mword); 5871 } 5872 5873 /* 5874 * Returns true if the ifmedia list for the port cannot change. 5875 */ 5876 static bool 5877 fixed_ifmedia(struct port_info *pi) 5878 { 5879 5880 return (pi->port_type == FW_PORT_TYPE_BT_SGMII || 5881 pi->port_type == FW_PORT_TYPE_BT_XFI || 5882 pi->port_type == FW_PORT_TYPE_BT_XAUI || 5883 pi->port_type == FW_PORT_TYPE_KX4 || 5884 pi->port_type == FW_PORT_TYPE_KX || 5885 pi->port_type == FW_PORT_TYPE_KR || 5886 pi->port_type == FW_PORT_TYPE_BP_AP || 5887 pi->port_type == FW_PORT_TYPE_BP4_AP || 5888 pi->port_type == FW_PORT_TYPE_BP40_BA || 5889 pi->port_type == FW_PORT_TYPE_KR4_100G || 5890 pi->port_type == FW_PORT_TYPE_KR_SFP28 || 5891 pi->port_type == FW_PORT_TYPE_KR_XLAUI); 5892 } 5893 5894 static void 5895 build_medialist(struct port_info *pi) 5896 { 5897 uint32_t ss, speed; 5898 int unknown, mword, bit; 5899 struct link_config *lc; 5900 struct ifmedia *ifm; 5901 5902 PORT_LOCK_ASSERT_OWNED(pi); 5903 5904 if (pi->flags & FIXED_IFMEDIA) 5905 return; 5906 5907 /* 5908 * Rebuild the ifmedia list. 5909 */ 5910 ifm = &pi->media; 5911 ifmedia_removeall(ifm); 5912 lc = &pi->link_cfg; 5913 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */ 5914 if (__predict_false(ss == 0)) { /* not supposed to happen. */ 5915 MPASS(ss != 0); 5916 no_media: 5917 MPASS(LIST_EMPTY(&ifm->ifm_list)); 5918 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL); 5919 ifmedia_set(ifm, IFM_ETHER | IFM_NONE); 5920 return; 5921 } 5922 5923 unknown = 0; 5924 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) { 5925 speed = 1 << bit; 5926 MPASS(speed & M_FW_PORT_CAP32_SPEED); 5927 if (ss & speed) { 5928 mword = port_mword(pi, speed); 5929 if (mword == IFM_NONE) { 5930 goto no_media; 5931 } else if (mword == IFM_UNKNOWN) 5932 unknown++; 5933 else 5934 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword); 5935 } 5936 } 5937 if (unknown > 0) /* Add one unknown for all unknown media types. */ 5938 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN); 5939 if (lc->pcaps & FW_PORT_CAP32_ANEG) 5940 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL); 5941 5942 set_current_media(pi); 5943 } 5944 5945 /* 5946 * Initialize the requested fields in the link config based on driver tunables. 5947 */ 5948 static void 5949 init_link_config(struct port_info *pi) 5950 { 5951 struct link_config *lc = &pi->link_cfg; 5952 5953 PORT_LOCK_ASSERT_OWNED(pi); 5954 5955 lc->requested_caps = 0; 5956 lc->requested_speed = 0; 5957 5958 if (t4_autoneg == 0) 5959 lc->requested_aneg = AUTONEG_DISABLE; 5960 else if (t4_autoneg == 1) 5961 lc->requested_aneg = AUTONEG_ENABLE; 5962 else 5963 lc->requested_aneg = AUTONEG_AUTO; 5964 5965 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX | 5966 PAUSE_AUTONEG); 5967 5968 if (t4_fec & FEC_AUTO) 5969 lc->requested_fec = FEC_AUTO; 5970 else if (t4_fec == 0) 5971 lc->requested_fec = FEC_NONE; 5972 else { 5973 /* -1 is handled by the FEC_AUTO block above and not here. */ 5974 lc->requested_fec = t4_fec & 5975 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE); 5976 if (lc->requested_fec == 0) 5977 lc->requested_fec = FEC_AUTO; 5978 } 5979 if (t4_force_fec < 0) 5980 lc->force_fec = -1; 5981 else if (t4_force_fec > 0) 5982 lc->force_fec = 1; 5983 else 5984 lc->force_fec = 0; 5985 } 5986 5987 /* 5988 * Makes sure that all requested settings comply with what's supported by the 5989 * port. Returns the number of settings that were invalid and had to be fixed. 5990 */ 5991 static int 5992 fixup_link_config(struct port_info *pi) 5993 { 5994 int n = 0; 5995 struct link_config *lc = &pi->link_cfg; 5996 uint32_t fwspeed; 5997 5998 PORT_LOCK_ASSERT_OWNED(pi); 5999 6000 /* Speed (when not autonegotiating) */ 6001 if (lc->requested_speed != 0) { 6002 fwspeed = speed_to_fwcap(lc->requested_speed); 6003 if ((fwspeed & lc->pcaps) == 0) { 6004 n++; 6005 lc->requested_speed = 0; 6006 } 6007 } 6008 6009 /* Link autonegotiation */ 6010 MPASS(lc->requested_aneg == AUTONEG_ENABLE || 6011 lc->requested_aneg == AUTONEG_DISABLE || 6012 lc->requested_aneg == AUTONEG_AUTO); 6013 if (lc->requested_aneg == AUTONEG_ENABLE && 6014 !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 6015 n++; 6016 lc->requested_aneg = AUTONEG_AUTO; 6017 } 6018 6019 /* Flow control */ 6020 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0); 6021 if (lc->requested_fc & PAUSE_TX && 6022 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) { 6023 n++; 6024 lc->requested_fc &= ~PAUSE_TX; 6025 } 6026 if (lc->requested_fc & PAUSE_RX && 6027 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) { 6028 n++; 6029 lc->requested_fc &= ~PAUSE_RX; 6030 } 6031 if (!(lc->requested_fc & PAUSE_AUTONEG) && 6032 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) { 6033 n++; 6034 lc->requested_fc |= PAUSE_AUTONEG; 6035 } 6036 6037 /* FEC */ 6038 if ((lc->requested_fec & FEC_RS && 6039 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) || 6040 (lc->requested_fec & FEC_BASER_RS && 6041 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) { 6042 n++; 6043 lc->requested_fec = FEC_AUTO; 6044 } 6045 6046 return (n); 6047 } 6048 6049 /* 6050 * Apply the requested L1 settings, which are expected to be valid, to the 6051 * hardware. 6052 */ 6053 static int 6054 apply_link_config(struct port_info *pi) 6055 { 6056 struct adapter *sc = pi->adapter; 6057 struct link_config *lc = &pi->link_cfg; 6058 int rc; 6059 6060 #ifdef INVARIANTS 6061 ASSERT_SYNCHRONIZED_OP(sc); 6062 PORT_LOCK_ASSERT_OWNED(pi); 6063 6064 if (lc->requested_aneg == AUTONEG_ENABLE) 6065 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG); 6066 if (!(lc->requested_fc & PAUSE_AUTONEG)) 6067 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE); 6068 if (lc->requested_fc & PAUSE_TX) 6069 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX); 6070 if (lc->requested_fc & PAUSE_RX) 6071 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX); 6072 if (lc->requested_fec & FEC_RS) 6073 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS); 6074 if (lc->requested_fec & FEC_BASER_RS) 6075 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS); 6076 #endif 6077 if (!(sc->flags & IS_VF)) { 6078 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); 6079 if (rc != 0) { 6080 device_printf(pi->dev, "l1cfg failed: %d\n", rc); 6081 return (rc); 6082 } 6083 } 6084 6085 /* 6086 * An L1_CFG will almost always result in a link-change event if the 6087 * link is up, and the driver will refresh the actual fec/fc/etc. when 6088 * the notification is processed. If the link is down then the actual 6089 * settings are meaningless. 6090 * 6091 * This takes care of the case where a change in the L1 settings may not 6092 * result in a notification. 6093 */ 6094 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG)) 6095 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX); 6096 6097 return (0); 6098 } 6099 6100 #define FW_MAC_EXACT_CHUNK 7 6101 struct mcaddr_ctx { 6102 if_t ifp; 6103 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; 6104 uint64_t hash; 6105 int i; 6106 int del; 6107 int rc; 6108 }; 6109 6110 static u_int 6111 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 6112 { 6113 struct mcaddr_ctx *ctx = arg; 6114 struct vi_info *vi = if_getsoftc(ctx->ifp); 6115 struct port_info *pi = vi->pi; 6116 struct adapter *sc = pi->adapter; 6117 6118 if (ctx->rc < 0) 6119 return (0); 6120 6121 ctx->mcaddr[ctx->i] = LLADDR(sdl); 6122 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i])); 6123 ctx->i++; 6124 6125 if (ctx->i == FW_MAC_EXACT_CHUNK) { 6126 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del, 6127 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0); 6128 if (ctx->rc < 0) { 6129 int j; 6130 6131 for (j = 0; j < ctx->i; j++) { 6132 if_printf(ctx->ifp, 6133 "failed to add mc address" 6134 " %02x:%02x:%02x:" 6135 "%02x:%02x:%02x rc=%d\n", 6136 ctx->mcaddr[j][0], ctx->mcaddr[j][1], 6137 ctx->mcaddr[j][2], ctx->mcaddr[j][3], 6138 ctx->mcaddr[j][4], ctx->mcaddr[j][5], 6139 -ctx->rc); 6140 } 6141 return (0); 6142 } 6143 ctx->del = 0; 6144 ctx->i = 0; 6145 } 6146 6147 return (1); 6148 } 6149 6150 /* 6151 * Program the port's XGMAC based on parameters in ifnet. The caller also 6152 * indicates which parameters should be programmed (the rest are left alone). 6153 */ 6154 int 6155 update_mac_settings(if_t ifp, int flags) 6156 { 6157 int rc = 0; 6158 struct vi_info *vi = if_getsoftc(ifp); 6159 struct port_info *pi = vi->pi; 6160 struct adapter *sc = pi->adapter; 6161 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; 6162 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 6163 6164 ASSERT_SYNCHRONIZED_OP(sc); 6165 KASSERT(flags, ("%s: not told what to update.", __func__)); 6166 6167 if (flags & XGMAC_MTU) 6168 mtu = if_getmtu(ifp); 6169 6170 if (flags & XGMAC_PROMISC) 6171 promisc = if_getflags(ifp) & IFF_PROMISC ? 1 : 0; 6172 6173 if (flags & XGMAC_ALLMULTI) 6174 allmulti = if_getflags(ifp) & IFF_ALLMULTI ? 1 : 0; 6175 6176 if (flags & XGMAC_VLANEX) 6177 vlanex = if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING ? 1 : 0; 6178 6179 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) { 6180 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc, 6181 allmulti, 1, vlanex, false); 6182 if (rc) { 6183 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, 6184 rc); 6185 return (rc); 6186 } 6187 } 6188 6189 if (flags & XGMAC_UCADDR) { 6190 uint8_t ucaddr[ETHER_ADDR_LEN]; 6191 6192 bcopy(if_getlladdr(ifp), ucaddr, sizeof(ucaddr)); 6193 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt, 6194 ucaddr, true, &vi->smt_idx); 6195 if (rc < 0) { 6196 rc = -rc; 6197 if_printf(ifp, "change_mac failed: %d\n", rc); 6198 return (rc); 6199 } else { 6200 vi->xact_addr_filt = rc; 6201 rc = 0; 6202 } 6203 } 6204 6205 if (flags & XGMAC_MCADDRS) { 6206 struct epoch_tracker et; 6207 struct mcaddr_ctx ctx; 6208 int j; 6209 6210 ctx.ifp = ifp; 6211 ctx.hash = 0; 6212 ctx.i = 0; 6213 ctx.del = 1; 6214 ctx.rc = 0; 6215 /* 6216 * Unlike other drivers, we accumulate list of pointers into 6217 * interface address lists and we need to keep it safe even 6218 * after if_foreach_llmaddr() returns, thus we must enter the 6219 * network epoch. 6220 */ 6221 NET_EPOCH_ENTER(et); 6222 if_foreach_llmaddr(ifp, add_maddr, &ctx); 6223 if (ctx.rc < 0) { 6224 NET_EPOCH_EXIT(et); 6225 rc = -ctx.rc; 6226 return (rc); 6227 } 6228 if (ctx.i > 0) { 6229 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, 6230 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0); 6231 NET_EPOCH_EXIT(et); 6232 if (rc < 0) { 6233 rc = -rc; 6234 for (j = 0; j < ctx.i; j++) { 6235 if_printf(ifp, 6236 "failed to add mcast address" 6237 " %02x:%02x:%02x:" 6238 "%02x:%02x:%02x rc=%d\n", 6239 ctx.mcaddr[j][0], ctx.mcaddr[j][1], 6240 ctx.mcaddr[j][2], ctx.mcaddr[j][3], 6241 ctx.mcaddr[j][4], ctx.mcaddr[j][5], 6242 rc); 6243 } 6244 return (rc); 6245 } 6246 ctx.del = 0; 6247 } else 6248 NET_EPOCH_EXIT(et); 6249 6250 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0); 6251 if (rc != 0) 6252 if_printf(ifp, "failed to set mcast address hash: %d\n", 6253 rc); 6254 if (ctx.del == 0) { 6255 /* We clobbered the VXLAN entry if there was one. */ 6256 pi->vxlan_tcam_entry = false; 6257 } 6258 } 6259 6260 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 && 6261 pi->vxlan_tcam_entry == false) { 6262 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac, 6263 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 6264 true); 6265 if (rc < 0) { 6266 rc = -rc; 6267 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n", 6268 rc); 6269 } else { 6270 MPASS(rc == sc->rawf_base + pi->port_id); 6271 rc = 0; 6272 pi->vxlan_tcam_entry = true; 6273 } 6274 } 6275 6276 return (rc); 6277 } 6278 6279 /* 6280 * {begin|end}_synchronized_op must be called from the same thread. 6281 */ 6282 int 6283 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags, 6284 char *wmesg) 6285 { 6286 int rc, pri; 6287 6288 #ifdef WITNESS 6289 /* the caller thinks it's ok to sleep, but is it really? */ 6290 if (flags & SLEEP_OK) 6291 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 6292 "begin_synchronized_op"); 6293 #endif 6294 6295 if (INTR_OK) 6296 pri = PCATCH; 6297 else 6298 pri = 0; 6299 6300 ADAPTER_LOCK(sc); 6301 for (;;) { 6302 6303 if (vi && IS_DETACHING(vi)) { 6304 rc = ENXIO; 6305 goto done; 6306 } 6307 6308 if (!IS_BUSY(sc)) { 6309 rc = 0; 6310 break; 6311 } 6312 6313 if (!(flags & SLEEP_OK)) { 6314 rc = EBUSY; 6315 goto done; 6316 } 6317 6318 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) { 6319 rc = EINTR; 6320 goto done; 6321 } 6322 } 6323 6324 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); 6325 SET_BUSY(sc); 6326 #ifdef INVARIANTS 6327 sc->last_op = wmesg; 6328 sc->last_op_thr = curthread; 6329 sc->last_op_flags = flags; 6330 #endif 6331 6332 done: 6333 if (!(flags & HOLD_LOCK) || rc) 6334 ADAPTER_UNLOCK(sc); 6335 6336 return (rc); 6337 } 6338 6339 /* 6340 * Tell if_ioctl and if_init that the VI is going away. This is 6341 * special variant of begin_synchronized_op and must be paired with a 6342 * call to end_vi_detach. 6343 */ 6344 void 6345 begin_vi_detach(struct adapter *sc, struct vi_info *vi) 6346 { 6347 ADAPTER_LOCK(sc); 6348 SET_DETACHING(vi); 6349 wakeup(&sc->flags); 6350 while (IS_BUSY(sc)) 6351 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); 6352 SET_BUSY(sc); 6353 #ifdef INVARIANTS 6354 sc->last_op = "t4detach"; 6355 sc->last_op_thr = curthread; 6356 sc->last_op_flags = 0; 6357 #endif 6358 ADAPTER_UNLOCK(sc); 6359 } 6360 6361 void 6362 end_vi_detach(struct adapter *sc, struct vi_info *vi) 6363 { 6364 ADAPTER_LOCK(sc); 6365 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6366 CLR_BUSY(sc); 6367 CLR_DETACHING(vi); 6368 wakeup(&sc->flags); 6369 ADAPTER_UNLOCK(sc); 6370 } 6371 6372 /* 6373 * {begin|end}_synchronized_op must be called from the same thread. 6374 */ 6375 void 6376 end_synchronized_op(struct adapter *sc, int flags) 6377 { 6378 6379 if (flags & LOCK_HELD) 6380 ADAPTER_LOCK_ASSERT_OWNED(sc); 6381 else 6382 ADAPTER_LOCK(sc); 6383 6384 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6385 CLR_BUSY(sc); 6386 wakeup(&sc->flags); 6387 ADAPTER_UNLOCK(sc); 6388 } 6389 6390 static int 6391 cxgbe_init_synchronized(struct vi_info *vi) 6392 { 6393 struct port_info *pi = vi->pi; 6394 struct adapter *sc = pi->adapter; 6395 if_t ifp = vi->ifp; 6396 int rc = 0, i; 6397 struct sge_txq *txq; 6398 6399 ASSERT_SYNCHRONIZED_OP(sc); 6400 6401 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 6402 return (0); /* already running */ 6403 6404 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0)) 6405 return (rc); /* error message displayed already */ 6406 6407 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 6408 return (rc); /* error message displayed already */ 6409 6410 rc = update_mac_settings(ifp, XGMAC_ALL); 6411 if (rc) 6412 goto done; /* error message displayed already */ 6413 6414 PORT_LOCK(pi); 6415 if (pi->up_vis == 0) { 6416 t4_update_port_info(pi); 6417 fixup_link_config(pi); 6418 build_medialist(pi); 6419 apply_link_config(pi); 6420 } 6421 6422 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true); 6423 if (rc != 0) { 6424 if_printf(ifp, "enable_vi failed: %d\n", rc); 6425 PORT_UNLOCK(pi); 6426 goto done; 6427 } 6428 6429 /* 6430 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized 6431 * if this changes. 6432 */ 6433 6434 for_each_txq(vi, i, txq) { 6435 TXQ_LOCK(txq); 6436 txq->eq.flags |= EQ_ENABLED; 6437 TXQ_UNLOCK(txq); 6438 } 6439 6440 /* 6441 * The first iq of the first port to come up is used for tracing. 6442 */ 6443 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 6444 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 6445 t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL : 6446 A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) | 6447 V_QUEUENUMBER(sc->traceq)); 6448 pi->flags |= HAS_TRACEQ; 6449 } 6450 6451 /* all ok */ 6452 pi->up_vis++; 6453 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 6454 if (pi->link_cfg.link_ok) 6455 t4_os_link_changed(pi); 6456 PORT_UNLOCK(pi); 6457 6458 mtx_lock(&vi->tick_mtx); 6459 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 6460 callout_reset(&vi->tick, hz, vi_tick, vi); 6461 else 6462 callout_reset(&vi->tick, hz, cxgbe_tick, vi); 6463 mtx_unlock(&vi->tick_mtx); 6464 done: 6465 if (rc != 0) 6466 cxgbe_uninit_synchronized(vi); 6467 6468 return (rc); 6469 } 6470 6471 /* 6472 * Idempotent. 6473 */ 6474 static int 6475 cxgbe_uninit_synchronized(struct vi_info *vi) 6476 { 6477 struct port_info *pi = vi->pi; 6478 struct adapter *sc = pi->adapter; 6479 if_t ifp = vi->ifp; 6480 int rc, i; 6481 struct sge_txq *txq; 6482 6483 ASSERT_SYNCHRONIZED_OP(sc); 6484 6485 if (!(vi->flags & VI_INIT_DONE)) { 6486 if (__predict_false(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6487 KASSERT(0, ("uninited VI is running")); 6488 if_printf(ifp, "uninited VI with running ifnet. " 6489 "vi->flags 0x%016lx, if_flags 0x%08x, " 6490 "if_drv_flags 0x%08x\n", vi->flags, if_getflags(ifp), 6491 if_getdrvflags(ifp)); 6492 } 6493 return (0); 6494 } 6495 6496 /* 6497 * Disable the VI so that all its data in either direction is discarded 6498 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz 6499 * tick) intact as the TP can deliver negative advice or data that it's 6500 * holding in its RAM (for an offloaded connection) even after the VI is 6501 * disabled. 6502 */ 6503 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false); 6504 if (rc) { 6505 if_printf(ifp, "disable_vi failed: %d\n", rc); 6506 return (rc); 6507 } 6508 6509 for_each_txq(vi, i, txq) { 6510 TXQ_LOCK(txq); 6511 txq->eq.flags &= ~EQ_ENABLED; 6512 TXQ_UNLOCK(txq); 6513 } 6514 6515 mtx_lock(&vi->tick_mtx); 6516 callout_stop(&vi->tick); 6517 mtx_unlock(&vi->tick_mtx); 6518 6519 PORT_LOCK(pi); 6520 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6521 PORT_UNLOCK(pi); 6522 return (0); 6523 } 6524 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 6525 pi->up_vis--; 6526 if (pi->up_vis > 0) { 6527 PORT_UNLOCK(pi); 6528 return (0); 6529 } 6530 6531 pi->link_cfg.link_ok = false; 6532 pi->link_cfg.speed = 0; 6533 pi->link_cfg.link_down_rc = 255; 6534 t4_os_link_changed(pi); 6535 PORT_UNLOCK(pi); 6536 6537 return (0); 6538 } 6539 6540 /* 6541 * It is ok for this function to fail midway and return right away. t4_detach 6542 * will walk the entire sc->irq list and clean up whatever is valid. 6543 */ 6544 int 6545 t4_setup_intr_handlers(struct adapter *sc) 6546 { 6547 int rc, rid, p, q, v; 6548 char s[8]; 6549 struct irq *irq; 6550 struct port_info *pi; 6551 struct vi_info *vi; 6552 struct sge *sge = &sc->sge; 6553 struct sge_rxq *rxq; 6554 #ifdef TCP_OFFLOAD 6555 struct sge_ofld_rxq *ofld_rxq; 6556 #endif 6557 #ifdef DEV_NETMAP 6558 struct sge_nm_rxq *nm_rxq; 6559 #endif 6560 #ifdef RSS 6561 int nbuckets = rss_getnumbuckets(); 6562 #endif 6563 6564 /* 6565 * Setup interrupts. 6566 */ 6567 irq = &sc->irq[0]; 6568 rid = sc->intr_type == INTR_INTX ? 0 : 1; 6569 if (forwarding_intr_to_fwq(sc)) 6570 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all")); 6571 6572 /* Multiple interrupts. */ 6573 if (sc->flags & IS_VF) 6574 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports, 6575 ("%s: too few intr.", __func__)); 6576 else 6577 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, 6578 ("%s: too few intr.", __func__)); 6579 6580 /* The first one is always error intr on PFs */ 6581 if (!(sc->flags & IS_VF)) { 6582 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); 6583 if (rc != 0) 6584 return (rc); 6585 irq++; 6586 rid++; 6587 } 6588 6589 /* The second one is always the firmware event queue (first on VFs) */ 6590 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt"); 6591 if (rc != 0) 6592 return (rc); 6593 irq++; 6594 rid++; 6595 6596 for_each_port(sc, p) { 6597 pi = sc->port[p]; 6598 for_each_vi(pi, v, vi) { 6599 vi->first_intr = rid - 1; 6600 6601 if (vi->nnmrxq > 0) { 6602 int n = max(vi->nrxq, vi->nnmrxq); 6603 6604 rxq = &sge->rxq[vi->first_rxq]; 6605 #ifdef DEV_NETMAP 6606 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq]; 6607 #endif 6608 for (q = 0; q < n; q++) { 6609 snprintf(s, sizeof(s), "%x%c%x", p, 6610 'a' + v, q); 6611 if (q < vi->nrxq) 6612 irq->rxq = rxq++; 6613 #ifdef DEV_NETMAP 6614 if (q < vi->nnmrxq) 6615 irq->nm_rxq = nm_rxq++; 6616 6617 if (irq->nm_rxq != NULL && 6618 irq->rxq == NULL) { 6619 /* Netmap rx only */ 6620 rc = t4_alloc_irq(sc, irq, rid, 6621 t4_nm_intr, irq->nm_rxq, s); 6622 } 6623 if (irq->nm_rxq != NULL && 6624 irq->rxq != NULL) { 6625 /* NIC and Netmap rx */ 6626 rc = t4_alloc_irq(sc, irq, rid, 6627 t4_vi_intr, irq, s); 6628 } 6629 #endif 6630 if (irq->rxq != NULL && 6631 irq->nm_rxq == NULL) { 6632 /* NIC rx only */ 6633 rc = t4_alloc_irq(sc, irq, rid, 6634 t4_intr, irq->rxq, s); 6635 } 6636 if (rc != 0) 6637 return (rc); 6638 #ifdef RSS 6639 if (q < vi->nrxq) { 6640 bus_bind_intr(sc->dev, irq->res, 6641 rss_getcpu(q % nbuckets)); 6642 } 6643 #endif 6644 irq++; 6645 rid++; 6646 vi->nintr++; 6647 } 6648 } else { 6649 for_each_rxq(vi, q, rxq) { 6650 snprintf(s, sizeof(s), "%x%c%x", p, 6651 'a' + v, q); 6652 rc = t4_alloc_irq(sc, irq, rid, 6653 t4_intr, rxq, s); 6654 if (rc != 0) 6655 return (rc); 6656 #ifdef RSS 6657 bus_bind_intr(sc->dev, irq->res, 6658 rss_getcpu(q % nbuckets)); 6659 #endif 6660 irq++; 6661 rid++; 6662 vi->nintr++; 6663 } 6664 } 6665 #ifdef TCP_OFFLOAD 6666 for_each_ofld_rxq(vi, q, ofld_rxq) { 6667 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q); 6668 rc = t4_alloc_irq(sc, irq, rid, t4_intr, 6669 ofld_rxq, s); 6670 if (rc != 0) 6671 return (rc); 6672 irq++; 6673 rid++; 6674 vi->nintr++; 6675 } 6676 #endif 6677 } 6678 } 6679 MPASS(irq == &sc->irq[sc->intr_count]); 6680 6681 return (0); 6682 } 6683 6684 static void 6685 write_global_rss_key(struct adapter *sc) 6686 { 6687 #ifdef RSS 6688 int i; 6689 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6690 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 6691 6692 CTASSERT(RSS_KEYSIZE == 40); 6693 6694 rss_getkey((void *)&raw_rss_key[0]); 6695 for (i = 0; i < nitems(rss_key); i++) { 6696 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]); 6697 } 6698 t4_write_rss_key(sc, &rss_key[0], -1, 1); 6699 #endif 6700 } 6701 6702 /* 6703 * Idempotent. 6704 */ 6705 static int 6706 adapter_full_init(struct adapter *sc) 6707 { 6708 int rc, i; 6709 6710 ASSERT_SYNCHRONIZED_OP(sc); 6711 6712 /* 6713 * queues that belong to the adapter (not any particular port). 6714 */ 6715 rc = t4_setup_adapter_queues(sc); 6716 if (rc != 0) 6717 return (rc); 6718 6719 MPASS(sc->params.nports <= nitems(sc->tq)); 6720 for (i = 0; i < sc->params.nports; i++) { 6721 if (sc->tq[i] != NULL) 6722 continue; 6723 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, 6724 taskqueue_thread_enqueue, &sc->tq[i]); 6725 if (sc->tq[i] == NULL) { 6726 CH_ERR(sc, "failed to allocate task queue %d\n", i); 6727 return (ENOMEM); 6728 } 6729 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", 6730 device_get_nameunit(sc->dev), i); 6731 } 6732 6733 if (!(sc->flags & IS_VF)) { 6734 write_global_rss_key(sc); 6735 t4_intr_enable(sc); 6736 } 6737 return (0); 6738 } 6739 6740 int 6741 adapter_init(struct adapter *sc) 6742 { 6743 int rc; 6744 6745 ASSERT_SYNCHRONIZED_OP(sc); 6746 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 6747 KASSERT((sc->flags & FULL_INIT_DONE) == 0, 6748 ("%s: FULL_INIT_DONE already", __func__)); 6749 6750 rc = adapter_full_init(sc); 6751 if (rc != 0) 6752 adapter_full_uninit(sc); 6753 else 6754 sc->flags |= FULL_INIT_DONE; 6755 6756 return (rc); 6757 } 6758 6759 /* 6760 * Idempotent. 6761 */ 6762 static void 6763 adapter_full_uninit(struct adapter *sc) 6764 { 6765 int i; 6766 6767 t4_teardown_adapter_queues(sc); 6768 6769 for (i = 0; i < nitems(sc->tq); i++) { 6770 if (sc->tq[i] == NULL) 6771 continue; 6772 taskqueue_free(sc->tq[i]); 6773 sc->tq[i] = NULL; 6774 } 6775 6776 sc->flags &= ~FULL_INIT_DONE; 6777 } 6778 6779 #ifdef RSS 6780 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \ 6781 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \ 6782 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \ 6783 RSS_HASHTYPE_RSS_UDP_IPV6) 6784 6785 /* Translates kernel hash types to hardware. */ 6786 static int 6787 hashconfig_to_hashen(int hashconfig) 6788 { 6789 int hashen = 0; 6790 6791 if (hashconfig & RSS_HASHTYPE_RSS_IPV4) 6792 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 6793 if (hashconfig & RSS_HASHTYPE_RSS_IPV6) 6794 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 6795 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) { 6796 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6797 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6798 } 6799 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) { 6800 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 6801 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6802 } 6803 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4) 6804 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 6805 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6) 6806 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 6807 6808 return (hashen); 6809 } 6810 6811 /* Translates hardware hash types to kernel. */ 6812 static int 6813 hashen_to_hashconfig(int hashen) 6814 { 6815 int hashconfig = 0; 6816 6817 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) { 6818 /* 6819 * If UDP hashing was enabled it must have been enabled for 6820 * either IPv4 or IPv6 (inclusive or). Enabling UDP without 6821 * enabling any 4-tuple hash is nonsense configuration. 6822 */ 6823 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6824 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)); 6825 6826 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6827 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4; 6828 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6829 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6; 6830 } 6831 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 6832 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4; 6833 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 6834 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6; 6835 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 6836 hashconfig |= RSS_HASHTYPE_RSS_IPV4; 6837 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 6838 hashconfig |= RSS_HASHTYPE_RSS_IPV6; 6839 6840 return (hashconfig); 6841 } 6842 #endif 6843 6844 /* 6845 * Idempotent. 6846 */ 6847 static int 6848 vi_full_init(struct vi_info *vi) 6849 { 6850 struct adapter *sc = vi->adapter; 6851 struct sge_rxq *rxq; 6852 int rc, i, j; 6853 #ifdef RSS 6854 int nbuckets = rss_getnumbuckets(); 6855 int hashconfig = rss_gethashconfig(); 6856 int extra; 6857 #endif 6858 6859 ASSERT_SYNCHRONIZED_OP(sc); 6860 6861 /* 6862 * Allocate tx/rx/fl queues for this VI. 6863 */ 6864 rc = t4_setup_vi_queues(vi); 6865 if (rc != 0) 6866 return (rc); 6867 6868 /* 6869 * Setup RSS for this VI. Save a copy of the RSS table for later use. 6870 */ 6871 if (vi->nrxq > vi->rss_size) { 6872 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); " 6873 "some queues will never receive traffic.\n", vi->nrxq, 6874 vi->rss_size); 6875 } else if (vi->rss_size % vi->nrxq) { 6876 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); " 6877 "expect uneven traffic distribution.\n", vi->nrxq, 6878 vi->rss_size); 6879 } 6880 #ifdef RSS 6881 if (vi->nrxq != nbuckets) { 6882 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);" 6883 "performance will be impacted.\n", vi->nrxq, nbuckets); 6884 } 6885 #endif 6886 if (vi->rss == NULL) 6887 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE, 6888 M_ZERO | M_WAITOK); 6889 for (i = 0; i < vi->rss_size;) { 6890 #ifdef RSS 6891 j = rss_get_indirection_to_bucket(i); 6892 j %= vi->nrxq; 6893 rxq = &sc->sge.rxq[vi->first_rxq + j]; 6894 vi->rss[i++] = rxq->iq.abs_id; 6895 #else 6896 for_each_rxq(vi, j, rxq) { 6897 vi->rss[i++] = rxq->iq.abs_id; 6898 if (i == vi->rss_size) 6899 break; 6900 } 6901 #endif 6902 } 6903 6904 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, 6905 vi->rss, vi->rss_size); 6906 if (rc != 0) { 6907 CH_ERR(vi, "rss_config failed: %d\n", rc); 6908 return (rc); 6909 } 6910 6911 #ifdef RSS 6912 vi->hashen = hashconfig_to_hashen(hashconfig); 6913 6914 /* 6915 * We may have had to enable some hashes even though the global config 6916 * wants them disabled. This is a potential problem that must be 6917 * reported to the user. 6918 */ 6919 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig; 6920 6921 /* 6922 * If we consider only the supported hash types, then the enabled hashes 6923 * are a superset of the requested hashes. In other words, there cannot 6924 * be any supported hash that was requested but not enabled, but there 6925 * can be hashes that were not requested but had to be enabled. 6926 */ 6927 extra &= SUPPORTED_RSS_HASHTYPES; 6928 MPASS((extra & hashconfig) == 0); 6929 6930 if (extra) { 6931 CH_ALERT(vi, 6932 "global RSS config (0x%x) cannot be accommodated.\n", 6933 hashconfig); 6934 } 6935 if (extra & RSS_HASHTYPE_RSS_IPV4) 6936 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n"); 6937 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4) 6938 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n"); 6939 if (extra & RSS_HASHTYPE_RSS_IPV6) 6940 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n"); 6941 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6) 6942 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n"); 6943 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4) 6944 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n"); 6945 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6) 6946 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n"); 6947 #else 6948 vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN | 6949 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN | 6950 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6951 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN; 6952 #endif 6953 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0], 6954 0, 0); 6955 if (rc != 0) { 6956 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc); 6957 return (rc); 6958 } 6959 6960 return (0); 6961 } 6962 6963 int 6964 vi_init(struct vi_info *vi) 6965 { 6966 int rc; 6967 6968 ASSERT_SYNCHRONIZED_OP(vi->adapter); 6969 KASSERT((vi->flags & VI_INIT_DONE) == 0, 6970 ("%s: VI_INIT_DONE already", __func__)); 6971 6972 rc = vi_full_init(vi); 6973 if (rc != 0) 6974 vi_full_uninit(vi); 6975 else 6976 vi->flags |= VI_INIT_DONE; 6977 6978 return (rc); 6979 } 6980 6981 /* 6982 * Idempotent. 6983 */ 6984 static void 6985 vi_full_uninit(struct vi_info *vi) 6986 { 6987 6988 if (vi->flags & VI_INIT_DONE) { 6989 quiesce_vi(vi); 6990 free(vi->rss, M_CXGBE); 6991 free(vi->nm_rss, M_CXGBE); 6992 } 6993 6994 t4_teardown_vi_queues(vi); 6995 vi->flags &= ~VI_INIT_DONE; 6996 } 6997 6998 static void 6999 quiesce_txq(struct sge_txq *txq) 7000 { 7001 struct sge_eq *eq = &txq->eq; 7002 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 7003 7004 MPASS(eq->flags & EQ_SW_ALLOCATED); 7005 MPASS(!(eq->flags & EQ_ENABLED)); 7006 7007 /* Wait for the mp_ring to empty. */ 7008 while (!mp_ring_is_idle(txq->r)) { 7009 mp_ring_check_drainage(txq->r, 4096); 7010 pause("rquiesce", 1); 7011 } 7012 MPASS(txq->txp.npkt == 0); 7013 7014 if (eq->flags & EQ_HW_ALLOCATED) { 7015 /* 7016 * Hardware is alive and working normally. Wait for it to 7017 * finish and then wait for the driver to catch up and reclaim 7018 * all descriptors. 7019 */ 7020 while (spg->cidx != htobe16(eq->pidx)) 7021 pause("equiesce", 1); 7022 while (eq->cidx != eq->pidx) 7023 pause("dquiesce", 1); 7024 } else { 7025 /* 7026 * Hardware is unavailable. Discard all pending tx and reclaim 7027 * descriptors directly. 7028 */ 7029 TXQ_LOCK(txq); 7030 while (eq->cidx != eq->pidx) { 7031 struct mbuf *m, *nextpkt; 7032 struct tx_sdesc *txsd; 7033 7034 txsd = &txq->sdesc[eq->cidx]; 7035 for (m = txsd->m; m != NULL; m = nextpkt) { 7036 nextpkt = m->m_nextpkt; 7037 m->m_nextpkt = NULL; 7038 m_freem(m); 7039 } 7040 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx); 7041 } 7042 spg->pidx = spg->cidx = htobe16(eq->cidx); 7043 TXQ_UNLOCK(txq); 7044 } 7045 } 7046 7047 static void 7048 quiesce_wrq(struct sge_wrq *wrq) 7049 { 7050 7051 /* XXXTX */ 7052 } 7053 7054 static void 7055 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl) 7056 { 7057 /* Synchronize with the interrupt handler */ 7058 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) 7059 pause("iqfree", 1); 7060 7061 if (fl != NULL) { 7062 MPASS(iq->flags & IQ_HAS_FL); 7063 7064 mtx_lock(&sc->sfl_lock); 7065 FL_LOCK(fl); 7066 fl->flags |= FL_DOOMED; 7067 FL_UNLOCK(fl); 7068 callout_stop(&sc->sfl_callout); 7069 mtx_unlock(&sc->sfl_lock); 7070 7071 KASSERT((fl->flags & FL_STARVING) == 0, 7072 ("%s: still starving", __func__)); 7073 7074 /* Release all buffers if hardware is no longer available. */ 7075 if (!(iq->flags & IQ_HW_ALLOCATED)) 7076 free_fl_buffers(sc, fl); 7077 } 7078 } 7079 7080 /* 7081 * Wait for all activity on all the queues of the VI to complete. It is assumed 7082 * that no new work is being enqueued by the hardware or the driver. That part 7083 * should be arranged before calling this function. 7084 */ 7085 static void 7086 quiesce_vi(struct vi_info *vi) 7087 { 7088 int i; 7089 struct adapter *sc = vi->adapter; 7090 struct sge_rxq *rxq; 7091 struct sge_txq *txq; 7092 #ifdef TCP_OFFLOAD 7093 struct sge_ofld_rxq *ofld_rxq; 7094 #endif 7095 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7096 struct sge_ofld_txq *ofld_txq; 7097 #endif 7098 7099 if (!(vi->flags & VI_INIT_DONE)) 7100 return; 7101 7102 for_each_txq(vi, i, txq) { 7103 quiesce_txq(txq); 7104 } 7105 7106 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7107 for_each_ofld_txq(vi, i, ofld_txq) { 7108 quiesce_wrq(&ofld_txq->wrq); 7109 } 7110 #endif 7111 7112 for_each_rxq(vi, i, rxq) { 7113 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl); 7114 } 7115 7116 #ifdef TCP_OFFLOAD 7117 for_each_ofld_rxq(vi, i, ofld_rxq) { 7118 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl); 7119 } 7120 #endif 7121 } 7122 7123 static int 7124 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, 7125 driver_intr_t *handler, void *arg, char *name) 7126 { 7127 int rc; 7128 7129 irq->rid = rid; 7130 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, 7131 RF_SHAREABLE | RF_ACTIVE); 7132 if (irq->res == NULL) { 7133 device_printf(sc->dev, 7134 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 7135 return (ENOMEM); 7136 } 7137 7138 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, 7139 NULL, handler, arg, &irq->tag); 7140 if (rc != 0) { 7141 device_printf(sc->dev, 7142 "failed to setup interrupt for rid %d, name %s: %d\n", 7143 rid, name, rc); 7144 } else if (name) 7145 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name); 7146 7147 return (rc); 7148 } 7149 7150 static int 7151 t4_free_irq(struct adapter *sc, struct irq *irq) 7152 { 7153 if (irq->tag) 7154 bus_teardown_intr(sc->dev, irq->res, irq->tag); 7155 if (irq->res) 7156 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); 7157 7158 bzero(irq, sizeof(*irq)); 7159 7160 return (0); 7161 } 7162 7163 static void 7164 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) 7165 { 7166 7167 regs->version = chip_id(sc) | chip_rev(sc) << 10; 7168 t4_get_regs(sc, buf, regs->len); 7169 } 7170 7171 #define A_PL_INDIR_CMD 0x1f8 7172 7173 #define S_PL_AUTOINC 31 7174 #define M_PL_AUTOINC 0x1U 7175 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC) 7176 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC) 7177 7178 #define S_PL_VFID 20 7179 #define M_PL_VFID 0xffU 7180 #define V_PL_VFID(x) ((x) << S_PL_VFID) 7181 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID) 7182 7183 #define S_PL_ADDR 0 7184 #define M_PL_ADDR 0xfffffU 7185 #define V_PL_ADDR(x) ((x) << S_PL_ADDR) 7186 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR) 7187 7188 #define A_PL_INDIR_DATA 0x1fc 7189 7190 static uint64_t 7191 read_vf_stat(struct adapter *sc, u_int vin, int reg) 7192 { 7193 u32 stats[2]; 7194 7195 if (sc->flags & IS_VF) { 7196 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg)); 7197 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4)); 7198 } else { 7199 mtx_assert(&sc->reg_lock, MA_OWNED); 7200 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 7201 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg))); 7202 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA); 7203 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA); 7204 } 7205 return (((uint64_t)stats[1]) << 32 | stats[0]); 7206 } 7207 7208 static void 7209 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats) 7210 { 7211 7212 #define GET_STAT(name) \ 7213 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L) 7214 7215 if (!(sc->flags & IS_VF)) 7216 mtx_lock(&sc->reg_lock); 7217 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES); 7218 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); 7219 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES); 7220 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); 7221 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES); 7222 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); 7223 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES); 7224 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES); 7225 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES); 7226 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES); 7227 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); 7228 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES); 7229 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); 7230 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES); 7231 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); 7232 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES); 7233 if (!(sc->flags & IS_VF)) 7234 mtx_unlock(&sc->reg_lock); 7235 7236 #undef GET_STAT 7237 } 7238 7239 static void 7240 t4_clr_vi_stats(struct adapter *sc, u_int vin) 7241 { 7242 int reg; 7243 7244 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) | 7245 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L))); 7246 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L; 7247 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4) 7248 t4_write_reg(sc, A_PL_INDIR_DATA, 0); 7249 } 7250 7251 static void 7252 vi_refresh_stats(struct vi_info *vi) 7253 { 7254 struct timeval tv; 7255 const struct timeval interval = {0, 250000}; /* 250ms */ 7256 7257 mtx_assert(&vi->tick_mtx, MA_OWNED); 7258 7259 if (vi->flags & VI_SKIP_STATS) 7260 return; 7261 7262 getmicrotime(&tv); 7263 timevalsub(&tv, &interval); 7264 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7265 return; 7266 7267 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats); 7268 getmicrotime(&vi->last_refreshed); 7269 } 7270 7271 static void 7272 cxgbe_refresh_stats(struct vi_info *vi) 7273 { 7274 u_int i, v, tnl_cong_drops, chan_map; 7275 struct timeval tv; 7276 const struct timeval interval = {0, 250000}; /* 250ms */ 7277 struct port_info *pi; 7278 struct adapter *sc; 7279 7280 mtx_assert(&vi->tick_mtx, MA_OWNED); 7281 7282 if (vi->flags & VI_SKIP_STATS) 7283 return; 7284 7285 getmicrotime(&tv); 7286 timevalsub(&tv, &interval); 7287 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7288 return; 7289 7290 pi = vi->pi; 7291 sc = vi->adapter; 7292 tnl_cong_drops = 0; 7293 t4_get_port_stats(sc, pi->port_id, &pi->stats); 7294 chan_map = pi->rx_e_chan_map; 7295 while (chan_map) { 7296 i = ffs(chan_map) - 1; 7297 mtx_lock(&sc->reg_lock); 7298 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1, 7299 A_TP_MIB_TNL_CNG_DROP_0 + i); 7300 mtx_unlock(&sc->reg_lock); 7301 tnl_cong_drops += v; 7302 chan_map &= ~(1 << i); 7303 } 7304 pi->tnl_cong_drops = tnl_cong_drops; 7305 getmicrotime(&vi->last_refreshed); 7306 } 7307 7308 static void 7309 cxgbe_tick(void *arg) 7310 { 7311 struct vi_info *vi = arg; 7312 7313 MPASS(IS_MAIN_VI(vi)); 7314 mtx_assert(&vi->tick_mtx, MA_OWNED); 7315 7316 cxgbe_refresh_stats(vi); 7317 callout_schedule(&vi->tick, hz); 7318 } 7319 7320 static void 7321 vi_tick(void *arg) 7322 { 7323 struct vi_info *vi = arg; 7324 7325 mtx_assert(&vi->tick_mtx, MA_OWNED); 7326 7327 vi_refresh_stats(vi); 7328 callout_schedule(&vi->tick, hz); 7329 } 7330 7331 /* 7332 * Should match fw_caps_config_<foo> enums in t4fw_interface.h 7333 */ 7334 static char *caps_decoder[] = { 7335 "\20\001IPMI\002NCSI", /* 0: NBM */ 7336 "\20\001PPP\002QFC\003DCBX", /* 1: link */ 7337 "\20\001INGRESS\002EGRESS", /* 2: switch */ 7338 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */ 7339 "\006HASHFILTER\007ETHOFLD", 7340 "\20\001TOE", /* 4: TOE */ 7341 "\20\001RDDP\002RDMAC", /* 5: RDMA */ 7342 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */ 7343 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD" 7344 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD" 7345 "\007T10DIF" 7346 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD", 7347 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */ 7348 "\004TLS_HW", 7349 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */ 7350 "\004PO_INITIATOR\005PO_TARGET", 7351 }; 7352 7353 void 7354 t4_sysctls(struct adapter *sc) 7355 { 7356 struct sysctl_ctx_list *ctx = &sc->ctx; 7357 struct sysctl_oid *oid; 7358 struct sysctl_oid_list *children, *c0; 7359 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; 7360 7361 /* 7362 * dev.t4nex.X. 7363 */ 7364 oid = device_get_sysctl_tree(sc->dev); 7365 c0 = children = SYSCTL_CHILDREN(oid); 7366 7367 sc->sc_do_rxcopy = 1; 7368 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW, 7369 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames"); 7370 7371 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, 7372 sc->params.nports, "# of ports"); 7373 7374 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", 7375 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells, 7376 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A", 7377 "available doorbells"); 7378 7379 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, 7380 sc->params.vpd.cclk, "core clock frequency (in KHz)"); 7381 7382 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", 7383 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7384 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val), 7385 sysctl_int_array, "A", "interrupt holdoff timer values (us)"); 7386 7387 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", 7388 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7389 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val), 7390 sysctl_int_array, "A", "interrupt holdoff packet counter values"); 7391 7392 t4_sge_sysctls(sc, ctx, children); 7393 7394 sc->lro_timeout = 100; 7395 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW, 7396 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)"); 7397 7398 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW, 7399 &sc->debug_flags, 0, "flags to enable runtime debugging"); 7400 7401 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version", 7402 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version"); 7403 7404 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", 7405 CTLFLAG_RD, sc->fw_version, 0, "firmware version"); 7406 7407 if (sc->flags & IS_VF) 7408 return; 7409 7410 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, 7411 NULL, chip_rev(sc), "chip hardware revision"); 7412 7413 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn", 7414 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number"); 7415 7416 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn", 7417 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number"); 7418 7419 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec", 7420 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change"); 7421 7422 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version", 7423 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version"); 7424 7425 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na", 7426 CTLFLAG_RD, sc->params.vpd.na, 0, "network address"); 7427 7428 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD, 7429 sc->er_version, 0, "expansion ROM version"); 7430 7431 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD, 7432 sc->bs_version, 0, "bootstrap firmware version"); 7433 7434 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD, 7435 NULL, sc->params.scfg_vers, "serial config version"); 7436 7437 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD, 7438 NULL, sc->params.vpd_vers, "VPD version"); 7439 7440 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", 7441 CTLFLAG_RD, sc->cfg_file, 0, "configuration file"); 7442 7443 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, 7444 sc->cfcsum, "config file checksum"); 7445 7446 #define SYSCTL_CAP(name, n, text) \ 7447 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \ 7448 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \ 7449 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \ 7450 "available " text " capabilities") 7451 7452 SYSCTL_CAP(nbmcaps, 0, "NBM"); 7453 SYSCTL_CAP(linkcaps, 1, "link"); 7454 SYSCTL_CAP(switchcaps, 2, "switch"); 7455 SYSCTL_CAP(niccaps, 3, "NIC"); 7456 SYSCTL_CAP(toecaps, 4, "TCP offload"); 7457 SYSCTL_CAP(rdmacaps, 5, "RDMA"); 7458 SYSCTL_CAP(iscsicaps, 6, "iSCSI"); 7459 SYSCTL_CAP(cryptocaps, 7, "crypto"); 7460 SYSCTL_CAP(fcoecaps, 8, "FCoE"); 7461 #undef SYSCTL_CAP 7462 7463 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, 7464 NULL, sc->tids.nftids, "number of filters"); 7465 7466 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7467 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7468 sysctl_temperature, "I", "chip temperature (in Celsius)"); 7469 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor", 7470 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7471 sysctl_reset_sensor, "I", "reset the chip's temperature sensor."); 7472 7473 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg", 7474 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7475 sysctl_loadavg, "A", 7476 "microprocessor load averages (debug firmwares only)"); 7477 7478 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd", 7479 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd, 7480 "I", "core Vdd (in mV)"); 7481 7482 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus", 7483 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS, 7484 sysctl_cpus, "A", "local CPUs"); 7485 7486 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus", 7487 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS, 7488 sysctl_cpus, "A", "preferred CPUs for interrupts"); 7489 7490 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW, 7491 &sc->swintr, 0, "software triggered interrupts"); 7492 7493 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset", 7494 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I", 7495 "1 = reset adapter, 0 = zero reset counter"); 7496 7497 /* 7498 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. 7499 */ 7500 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", 7501 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 7502 "logs and miscellaneous information"); 7503 children = SYSCTL_CHILDREN(oid); 7504 7505 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", 7506 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7507 sysctl_cctrl, "A", "congestion control"); 7508 7509 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0", 7510 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7511 sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)"); 7512 7513 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1", 7514 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7515 sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)"); 7516 7517 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp", 7518 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7519 sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)"); 7520 7521 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0", 7522 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3, 7523 sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)"); 7524 7525 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1", 7526 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4, 7527 sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)"); 7528 7529 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi", 7530 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5, 7531 sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)"); 7532 7533 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la", 7534 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7535 sysctl_cim_la, "A", "CIM logic analyzer"); 7536 7537 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la", 7538 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7539 sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); 7540 7541 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0", 7542 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7543 0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)"); 7544 7545 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1", 7546 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7547 1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)"); 7548 7549 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2", 7550 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7551 2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)"); 7552 7553 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3", 7554 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7555 3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)"); 7556 7557 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge", 7558 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7559 4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)"); 7560 7561 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi", 7562 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7563 5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)"); 7564 7565 if (chip_id(sc) > CHELSIO_T4) { 7566 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx", 7567 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7568 6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7569 "CIM OBQ 6 (SGE0-RX)"); 7570 7571 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx", 7572 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7573 7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 7574 "CIM OBQ 7 (SGE1-RX)"); 7575 } 7576 7577 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la", 7578 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7579 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); 7580 7581 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg", 7582 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7583 sysctl_cim_qcfg, "A", "CIM queue configuration"); 7584 7585 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", 7586 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7587 sysctl_cpl_stats, "A", "CPL statistics"); 7588 7589 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", 7590 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7591 sysctl_ddp_stats, "A", "non-TCP DDP statistics"); 7592 7593 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats", 7594 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7595 sysctl_tid_stats, "A", "tid stats"); 7596 7597 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", 7598 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7599 sysctl_devlog, "A", "firmware's device log"); 7600 7601 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", 7602 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7603 sysctl_fcoe_stats, "A", "FCoE statistics"); 7604 7605 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", 7606 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7607 sysctl_hw_sched, "A", "hardware scheduler "); 7608 7609 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", 7610 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7611 sysctl_l2t, "A", "hardware L2 table"); 7612 7613 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt", 7614 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7615 sysctl_smt, "A", "hardware source MAC table"); 7616 7617 #ifdef INET6 7618 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip", 7619 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7620 sysctl_clip, "A", "active CLIP table entries"); 7621 #endif 7622 7623 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", 7624 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7625 sysctl_lb_stats, "A", "loopback statistics"); 7626 7627 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", 7628 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7629 sysctl_meminfo, "A", "memory regions"); 7630 7631 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", 7632 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7633 chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6, 7634 "A", "MPS TCAM entries"); 7635 7636 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", 7637 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7638 sysctl_path_mtus, "A", "path MTUs"); 7639 7640 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", 7641 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7642 sysctl_pm_stats, "A", "PM statistics"); 7643 7644 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", 7645 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7646 sysctl_rdma_stats, "A", "RDMA statistics"); 7647 7648 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", 7649 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7650 sysctl_tcp_stats, "A", "TCP statistics"); 7651 7652 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", 7653 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7654 sysctl_tids, "A", "TID information"); 7655 7656 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", 7657 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7658 sysctl_tp_err_stats, "A", "TP error statistics"); 7659 7660 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats", 7661 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7662 sysctl_tnl_stats, "A", "TP tunnel statistics"); 7663 7664 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask", 7665 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7666 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask"); 7667 7668 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", 7669 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7670 sysctl_tp_la, "A", "TP logic analyzer"); 7671 7672 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", 7673 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7674 sysctl_tx_rate, "A", "Tx rate"); 7675 7676 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", 7677 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7678 sysctl_ulprx_la, "A", "ULPRX logic analyzer"); 7679 7680 if (chip_id(sc) >= CHELSIO_T5) { 7681 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", 7682 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7683 sysctl_wcwr_stats, "A", "write combined work requests"); 7684 } 7685 7686 #ifdef KERN_TLS 7687 if (is_ktls(sc)) { 7688 /* 7689 * dev.t4nex.0.tls. 7690 */ 7691 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls", 7692 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters"); 7693 children = SYSCTL_CHILDREN(oid); 7694 7695 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys", 7696 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS " 7697 "keys in work requests (1) or attempt to store TLS keys " 7698 "in card memory."); 7699 7700 if (is_t6(sc)) 7701 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs", 7702 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to " 7703 "combine TCB field updates with TLS record work " 7704 "requests."); 7705 } 7706 #endif 7707 7708 #ifdef TCP_OFFLOAD 7709 if (is_offload(sc)) { 7710 int i; 7711 char s[4]; 7712 7713 /* 7714 * dev.t4nex.X.toe. 7715 */ 7716 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", 7717 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters"); 7718 children = SYSCTL_CHILDREN(oid); 7719 7720 sc->tt.cong_algorithm = -1; 7721 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm", 7722 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control " 7723 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, " 7724 "3 = highspeed)"); 7725 7726 sc->tt.sndbuf = -1; 7727 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, 7728 &sc->tt.sndbuf, 0, "hardware send buffer"); 7729 7730 sc->tt.ddp = 0; 7731 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", 7732 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, ""); 7733 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW, 7734 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)"); 7735 7736 sc->tt.rx_coalesce = -1; 7737 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", 7738 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); 7739 7740 sc->tt.tls = 0; 7741 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT | 7742 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I", 7743 "Inline TLS allowed"); 7744 7745 sc->tt.tx_align = -1; 7746 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align", 7747 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload"); 7748 7749 sc->tt.tx_zcopy = 0; 7750 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy", 7751 CTLFLAG_RW, &sc->tt.tx_zcopy, 0, 7752 "Enable zero-copy aio_write(2)"); 7753 7754 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading; 7755 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7756 "cop_managed_offloading", CTLFLAG_RW, 7757 &sc->tt.cop_managed_offloading, 0, 7758 "COP (Connection Offload Policy) controls all TOE offload"); 7759 7760 sc->tt.autorcvbuf_inc = 16 * 1024; 7761 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc", 7762 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0, 7763 "autorcvbuf increment"); 7764 7765 sc->tt.update_hc_on_pmtu_change = 1; 7766 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 7767 "update_hc_on_pmtu_change", CTLFLAG_RW, 7768 &sc->tt.update_hc_on_pmtu_change, 0, 7769 "Update hostcache entry if the PMTU changes"); 7770 7771 sc->tt.iso = 1; 7772 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW, 7773 &sc->tt.iso, 0, "Enable iSCSI segmentation offload"); 7774 7775 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick", 7776 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7777 sysctl_tp_tick, "A", "TP timer tick (us)"); 7778 7779 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick", 7780 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 7781 sysctl_tp_tick, "A", "TCP timestamp tick (us)"); 7782 7783 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick", 7784 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 7785 sysctl_tp_tick, "A", "DACK tick (us)"); 7786 7787 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer", 7788 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7789 sysctl_tp_dack_timer, "IU", "DACK timer (us)"); 7790 7791 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min", 7792 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7793 A_TP_RXT_MIN, sysctl_tp_timer, "LU", 7794 "Minimum retransmit interval (us)"); 7795 7796 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max", 7797 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7798 A_TP_RXT_MAX, sysctl_tp_timer, "LU", 7799 "Maximum retransmit interval (us)"); 7800 7801 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min", 7802 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7803 A_TP_PERS_MIN, sysctl_tp_timer, "LU", 7804 "Persist timer min (us)"); 7805 7806 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max", 7807 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7808 A_TP_PERS_MAX, sysctl_tp_timer, "LU", 7809 "Persist timer max (us)"); 7810 7811 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle", 7812 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7813 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU", 7814 "Keepalive idle timer (us)"); 7815 7816 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval", 7817 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7818 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU", 7819 "Keepalive interval timer (us)"); 7820 7821 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt", 7822 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7823 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)"); 7824 7825 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer", 7826 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7827 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU", 7828 "FINWAIT2 timer (us)"); 7829 7830 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count", 7831 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7832 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU", 7833 "Number of SYN retransmissions before abort"); 7834 7835 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count", 7836 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7837 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU", 7838 "Number of retransmissions before abort"); 7839 7840 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count", 7841 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7842 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU", 7843 "Number of keepalive probes before abort"); 7844 7845 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff", 7846 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 7847 "TOE retransmit backoffs"); 7848 children = SYSCTL_CHILDREN(oid); 7849 for (i = 0; i < 16; i++) { 7850 snprintf(s, sizeof(s), "%u", i); 7851 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s, 7852 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7853 i, sysctl_tp_backoff, "IU", 7854 "TOE retransmit backoff"); 7855 } 7856 } 7857 #endif 7858 } 7859 7860 void 7861 vi_sysctls(struct vi_info *vi) 7862 { 7863 struct sysctl_ctx_list *ctx = &vi->ctx; 7864 struct sysctl_oid *oid; 7865 struct sysctl_oid_list *children; 7866 7867 /* 7868 * dev.v?(cxgbe|cxl).X. 7869 */ 7870 oid = device_get_sysctl_tree(vi->dev); 7871 children = SYSCTL_CHILDREN(oid); 7872 7873 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL, 7874 vi->viid, "VI identifer"); 7875 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, 7876 &vi->nrxq, 0, "# of rx queues"); 7877 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, 7878 &vi->ntxq, 0, "# of tx queues"); 7879 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, 7880 &vi->first_rxq, 0, "index of first rx queue"); 7881 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, 7882 &vi->first_txq, 0, "index of first tx queue"); 7883 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL, 7884 vi->rss_base, "start of RSS indirection table"); 7885 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL, 7886 vi->rss_size, "size of RSS indirection table"); 7887 7888 if (IS_MAIN_VI(vi)) { 7889 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq", 7890 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7891 sysctl_noflowq, "IU", 7892 "Reserve queue 0 for non-flowid packets"); 7893 } 7894 7895 if (vi->adapter->flags & IS_VF) { 7896 MPASS(vi->flags & TX_USES_VM_WR); 7897 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD, 7898 NULL, 1, "use VM work requests for transmit"); 7899 } else { 7900 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr", 7901 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7902 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit"); 7903 } 7904 7905 #ifdef TCP_OFFLOAD 7906 if (vi->nofldrxq != 0) { 7907 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, 7908 &vi->nofldrxq, 0, 7909 "# of rx queues for offloaded TCP connections"); 7910 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", 7911 CTLFLAG_RD, &vi->first_ofld_rxq, 0, 7912 "index of first TOE rx queue"); 7913 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld", 7914 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7915 sysctl_holdoff_tmr_idx_ofld, "I", 7916 "holdoff timer index for TOE queues"); 7917 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld", 7918 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7919 sysctl_holdoff_pktc_idx_ofld, "I", 7920 "holdoff packet counter index for TOE queues"); 7921 } 7922 #endif 7923 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7924 if (vi->nofldtxq != 0) { 7925 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, 7926 &vi->nofldtxq, 0, 7927 "# of tx queues for TOE/ETHOFLD"); 7928 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", 7929 CTLFLAG_RD, &vi->first_ofld_txq, 0, 7930 "index of first TOE/ETHOFLD tx queue"); 7931 } 7932 #endif 7933 #ifdef DEV_NETMAP 7934 if (vi->nnmrxq != 0) { 7935 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD, 7936 &vi->nnmrxq, 0, "# of netmap rx queues"); 7937 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD, 7938 &vi->nnmtxq, 0, "# of netmap tx queues"); 7939 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq", 7940 CTLFLAG_RD, &vi->first_nm_rxq, 0, 7941 "index of first netmap rx queue"); 7942 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq", 7943 CTLFLAG_RD, &vi->first_nm_txq, 0, 7944 "index of first netmap tx queue"); 7945 } 7946 #endif 7947 7948 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", 7949 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7950 sysctl_holdoff_tmr_idx, "I", "holdoff timer index"); 7951 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", 7952 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7953 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index"); 7954 7955 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", 7956 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7957 sysctl_qsize_rxq, "I", "rx queue size"); 7958 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", 7959 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 7960 sysctl_qsize_txq, "I", "tx queue size"); 7961 } 7962 7963 static void 7964 cxgbe_sysctls(struct port_info *pi) 7965 { 7966 struct sysctl_ctx_list *ctx = &pi->ctx; 7967 struct sysctl_oid *oid; 7968 struct sysctl_oid_list *children, *children2; 7969 struct adapter *sc = pi->adapter; 7970 int i; 7971 char name[16]; 7972 static char *tc_flags = {"\20\1USER"}; 7973 7974 /* 7975 * dev.cxgbe.X. 7976 */ 7977 oid = device_get_sysctl_tree(pi->dev); 7978 children = SYSCTL_CHILDREN(oid); 7979 7980 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", 7981 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 7982 sysctl_linkdnrc, "A", "reason why link is down"); 7983 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { 7984 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7985 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 7986 sysctl_btphy, "I", "PHY temperature (in Celsius)"); 7987 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", 7988 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1, 7989 sysctl_btphy, "I", "PHY firmware version"); 7990 } 7991 7992 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings", 7993 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7994 sysctl_pause_settings, "A", 7995 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 7996 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec", 7997 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A", 7998 "FEC in use on the link"); 7999 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec", 8000 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8001 sysctl_requested_fec, "A", 8002 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)"); 8003 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec", 8004 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A", 8005 "FEC recommended by the cable/transceiver"); 8006 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg", 8007 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8008 sysctl_autoneg, "I", 8009 "autonegotiation (-1 = not supported)"); 8010 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec", 8011 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8012 sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config"); 8013 8014 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD, 8015 &pi->link_cfg.requested_caps, 0, "L1 config requested by driver"); 8016 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD, 8017 &pi->link_cfg.pcaps, 0, "port capabilities"); 8018 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD, 8019 &pi->link_cfg.acaps, 0, "advertised capabilities"); 8020 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD, 8021 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities"); 8022 8023 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL, 8024 port_top_speed(pi), "max speed (in Gbps)"); 8025 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL, 8026 pi->mps_bg_map, "MPS buffer group map"); 8027 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD, 8028 NULL, pi->rx_e_chan_map, "TP rx e-channel map"); 8029 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_chan", CTLFLAG_RD, NULL, 8030 pi->tx_chan, "TP tx c-channel"); 8031 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_chan", CTLFLAG_RD, NULL, 8032 pi->rx_chan, "TP rx c-channel"); 8033 8034 if (sc->flags & IS_VF) 8035 return; 8036 8037 /* 8038 * dev.(cxgbe|cxl).X.tc. 8039 */ 8040 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", 8041 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 8042 "Tx scheduler traffic classes (cl_rl)"); 8043 children2 = SYSCTL_CHILDREN(oid); 8044 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize", 8045 CTLFLAG_RW, &pi->sched_params->pktsize, 0, 8046 "pktsize for per-flow cl-rl (0 means up to the driver )"); 8047 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize", 8048 CTLFLAG_RW, &pi->sched_params->burstsize, 0, 8049 "burstsize for per-flow cl-rl (0 means up to the driver)"); 8050 for (i = 0; i < sc->params.nsched_cls; i++) { 8051 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i]; 8052 8053 snprintf(name, sizeof(name), "%d", i); 8054 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx, 8055 SYSCTL_CHILDREN(oid), OID_AUTO, name, 8056 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class")); 8057 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state", 8058 CTLFLAG_RD, &tc->state, 0, "current state"); 8059 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags", 8060 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags, 8061 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags"); 8062 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount", 8063 CTLFLAG_RD, &tc->refcount, 0, "references to this class"); 8064 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params", 8065 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8066 (pi->port_id << 16) | i, sysctl_tc_params, "A", 8067 "traffic class parameters"); 8068 } 8069 8070 /* 8071 * dev.cxgbe.X.stats. 8072 */ 8073 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", 8074 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics"); 8075 children = SYSCTL_CHILDREN(oid); 8076 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD, 8077 &pi->tx_parse_error, 0, 8078 "# of tx packets with invalid length or # of segments"); 8079 8080 #define T4_REGSTAT(name, stat, desc) \ 8081 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 8082 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \ 8083 t4_port_reg(sc, pi->tx_chan, A_MPS_PORT_STAT_##stat##_L), \ 8084 sysctl_handle_t4_reg64, "QU", desc) 8085 8086 /* We get these from port_stats and they may be stale by up to 1s */ 8087 #define T4_PORTSTAT(name, desc) \ 8088 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \ 8089 &pi->stats.name, desc) 8090 8091 T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames"); 8092 T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames"); 8093 T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames"); 8094 T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames"); 8095 T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames"); 8096 T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames"); 8097 T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range"); 8098 T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range"); 8099 T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range"); 8100 T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range"); 8101 T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range"); 8102 T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range"); 8103 T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range"); 8104 T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames"); 8105 T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted"); 8106 T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted"); 8107 T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted"); 8108 T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted"); 8109 T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted"); 8110 T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted"); 8111 T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted"); 8112 T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted"); 8113 T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted"); 8114 8115 T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames"); 8116 T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames"); 8117 T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames"); 8118 T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames"); 8119 T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames"); 8120 T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU"); 8121 T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames"); 8122 if (is_t6(sc)) { 8123 T4_PORTSTAT(rx_fcs_err, 8124 "# of frames received with bad FCS since last link up"); 8125 } else { 8126 T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR, 8127 "# of frames received with bad FCS"); 8128 } 8129 T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error"); 8130 T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors"); 8131 T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received"); 8132 T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range"); 8133 T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range"); 8134 T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range"); 8135 T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range"); 8136 T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range"); 8137 T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range"); 8138 T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range"); 8139 T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received"); 8140 T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received"); 8141 T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received"); 8142 T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received"); 8143 T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received"); 8144 T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received"); 8145 T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received"); 8146 T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received"); 8147 T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received"); 8148 8149 T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows"); 8150 T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows"); 8151 T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows"); 8152 T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows"); 8153 T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets"); 8154 T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets"); 8155 T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets"); 8156 T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets"); 8157 8158 #undef T4_REGSTAT 8159 #undef T4_PORTSTAT 8160 } 8161 8162 static int 8163 sysctl_int_array(SYSCTL_HANDLER_ARGS) 8164 { 8165 int rc, *i, space = 0; 8166 struct sbuf sb; 8167 8168 sbuf_new_for_sysctl(&sb, NULL, 64, req); 8169 for (i = arg1; arg2; arg2 -= sizeof(int), i++) { 8170 if (space) 8171 sbuf_printf(&sb, " "); 8172 sbuf_printf(&sb, "%d", *i); 8173 space = 1; 8174 } 8175 rc = sbuf_finish(&sb); 8176 sbuf_delete(&sb); 8177 return (rc); 8178 } 8179 8180 static int 8181 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS) 8182 { 8183 int rc; 8184 struct sbuf *sb; 8185 8186 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8187 if (sb == NULL) 8188 return (ENOMEM); 8189 8190 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1); 8191 rc = sbuf_finish(sb); 8192 sbuf_delete(sb); 8193 8194 return (rc); 8195 } 8196 8197 static int 8198 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS) 8199 { 8200 int rc; 8201 struct sbuf *sb; 8202 8203 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8204 if (sb == NULL) 8205 return (ENOMEM); 8206 8207 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1); 8208 rc = sbuf_finish(sb); 8209 sbuf_delete(sb); 8210 8211 return (rc); 8212 } 8213 8214 static int 8215 sysctl_btphy(SYSCTL_HANDLER_ARGS) 8216 { 8217 struct port_info *pi = arg1; 8218 int op = arg2; 8219 struct adapter *sc = pi->adapter; 8220 u_int v; 8221 int rc; 8222 8223 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt"); 8224 if (rc) 8225 return (rc); 8226 if (hw_off_limits(sc)) 8227 rc = ENXIO; 8228 else { 8229 /* XXX: magic numbers */ 8230 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, 8231 op ? 0x20 : 0xc820, &v); 8232 } 8233 end_synchronized_op(sc, 0); 8234 if (rc) 8235 return (rc); 8236 if (op == 0) 8237 v /= 256; 8238 8239 rc = sysctl_handle_int(oidp, &v, 0, req); 8240 return (rc); 8241 } 8242 8243 static int 8244 sysctl_noflowq(SYSCTL_HANDLER_ARGS) 8245 { 8246 struct vi_info *vi = arg1; 8247 int rc, val; 8248 8249 val = vi->rsrv_noflowq; 8250 rc = sysctl_handle_int(oidp, &val, 0, req); 8251 if (rc != 0 || req->newptr == NULL) 8252 return (rc); 8253 8254 if ((val >= 1) && (vi->ntxq > 1)) 8255 vi->rsrv_noflowq = 1; 8256 else 8257 vi->rsrv_noflowq = 0; 8258 8259 return (rc); 8260 } 8261 8262 static int 8263 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS) 8264 { 8265 struct vi_info *vi = arg1; 8266 struct adapter *sc = vi->adapter; 8267 int rc, val, i; 8268 8269 MPASS(!(sc->flags & IS_VF)); 8270 8271 val = vi->flags & TX_USES_VM_WR ? 1 : 0; 8272 rc = sysctl_handle_int(oidp, &val, 0, req); 8273 if (rc != 0 || req->newptr == NULL) 8274 return (rc); 8275 8276 if (val != 0 && val != 1) 8277 return (EINVAL); 8278 8279 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8280 "t4txvm"); 8281 if (rc) 8282 return (rc); 8283 if (hw_off_limits(sc)) 8284 rc = ENXIO; 8285 else if (if_getdrvflags(vi->ifp) & IFF_DRV_RUNNING) { 8286 /* 8287 * We don't want parse_pkt to run with one setting (VF or PF) 8288 * and then eth_tx to see a different setting but still use 8289 * stale information calculated by parse_pkt. 8290 */ 8291 rc = EBUSY; 8292 } else { 8293 struct port_info *pi = vi->pi; 8294 struct sge_txq *txq; 8295 uint32_t ctrl0; 8296 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr; 8297 8298 if (val) { 8299 vi->flags |= TX_USES_VM_WR; 8300 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_VM_TSO); 8301 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8302 V_TXPKT_INTF(pi->tx_chan)); 8303 if (!(sc->flags & IS_VF)) 8304 npkt--; 8305 } else { 8306 vi->flags &= ~TX_USES_VM_WR; 8307 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_TSO); 8308 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8309 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) | 8310 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld)); 8311 } 8312 for_each_txq(vi, i, txq) { 8313 txq->cpl_ctrl0 = ctrl0; 8314 txq->txp.max_npkt = npkt; 8315 } 8316 } 8317 end_synchronized_op(sc, LOCK_HELD); 8318 return (rc); 8319 } 8320 8321 static int 8322 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) 8323 { 8324 struct vi_info *vi = arg1; 8325 struct adapter *sc = vi->adapter; 8326 int idx, rc, i; 8327 struct sge_rxq *rxq; 8328 uint8_t v; 8329 8330 idx = vi->tmr_idx; 8331 8332 rc = sysctl_handle_int(oidp, &idx, 0, req); 8333 if (rc != 0 || req->newptr == NULL) 8334 return (rc); 8335 8336 if (idx < 0 || idx >= SGE_NTIMERS) 8337 return (EINVAL); 8338 8339 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8340 "t4tmr"); 8341 if (rc) 8342 return (rc); 8343 8344 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1); 8345 for_each_rxq(vi, i, rxq) { 8346 #ifdef atomic_store_rel_8 8347 atomic_store_rel_8(&rxq->iq.intr_params, v); 8348 #else 8349 rxq->iq.intr_params = v; 8350 #endif 8351 } 8352 vi->tmr_idx = idx; 8353 8354 end_synchronized_op(sc, LOCK_HELD); 8355 return (0); 8356 } 8357 8358 static int 8359 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) 8360 { 8361 struct vi_info *vi = arg1; 8362 struct adapter *sc = vi->adapter; 8363 int idx, rc; 8364 8365 idx = vi->pktc_idx; 8366 8367 rc = sysctl_handle_int(oidp, &idx, 0, req); 8368 if (rc != 0 || req->newptr == NULL) 8369 return (rc); 8370 8371 if (idx < -1 || idx >= SGE_NCOUNTERS) 8372 return (EINVAL); 8373 8374 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8375 "t4pktc"); 8376 if (rc) 8377 return (rc); 8378 8379 if (vi->flags & VI_INIT_DONE) 8380 rc = EBUSY; /* cannot be changed once the queues are created */ 8381 else 8382 vi->pktc_idx = idx; 8383 8384 end_synchronized_op(sc, LOCK_HELD); 8385 return (rc); 8386 } 8387 8388 static int 8389 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) 8390 { 8391 struct vi_info *vi = arg1; 8392 struct adapter *sc = vi->adapter; 8393 int qsize, rc; 8394 8395 qsize = vi->qsize_rxq; 8396 8397 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8398 if (rc != 0 || req->newptr == NULL) 8399 return (rc); 8400 8401 if (qsize < 128 || (qsize & 7)) 8402 return (EINVAL); 8403 8404 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8405 "t4rxqs"); 8406 if (rc) 8407 return (rc); 8408 8409 if (vi->flags & VI_INIT_DONE) 8410 rc = EBUSY; /* cannot be changed once the queues are created */ 8411 else 8412 vi->qsize_rxq = qsize; 8413 8414 end_synchronized_op(sc, LOCK_HELD); 8415 return (rc); 8416 } 8417 8418 static int 8419 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) 8420 { 8421 struct vi_info *vi = arg1; 8422 struct adapter *sc = vi->adapter; 8423 int qsize, rc; 8424 8425 qsize = vi->qsize_txq; 8426 8427 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8428 if (rc != 0 || req->newptr == NULL) 8429 return (rc); 8430 8431 if (qsize < 128 || qsize > 65536) 8432 return (EINVAL); 8433 8434 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8435 "t4txqs"); 8436 if (rc) 8437 return (rc); 8438 8439 if (vi->flags & VI_INIT_DONE) 8440 rc = EBUSY; /* cannot be changed once the queues are created */ 8441 else 8442 vi->qsize_txq = qsize; 8443 8444 end_synchronized_op(sc, LOCK_HELD); 8445 return (rc); 8446 } 8447 8448 static int 8449 sysctl_pause_settings(SYSCTL_HANDLER_ARGS) 8450 { 8451 struct port_info *pi = arg1; 8452 struct adapter *sc = pi->adapter; 8453 struct link_config *lc = &pi->link_cfg; 8454 int rc; 8455 8456 if (req->newptr == NULL) { 8457 struct sbuf *sb; 8458 static char *bits = "\20\1RX\2TX\3AUTO"; 8459 8460 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8461 if (sb == NULL) 8462 return (ENOMEM); 8463 8464 if (lc->link_ok) { 8465 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) | 8466 (lc->requested_fc & PAUSE_AUTONEG), bits); 8467 } else { 8468 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX | 8469 PAUSE_RX | PAUSE_AUTONEG), bits); 8470 } 8471 rc = sbuf_finish(sb); 8472 sbuf_delete(sb); 8473 } else { 8474 char s[2]; 8475 int n; 8476 8477 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX | 8478 PAUSE_AUTONEG)); 8479 s[1] = 0; 8480 8481 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8482 if (rc != 0) 8483 return(rc); 8484 8485 if (s[1] != 0) 8486 return (EINVAL); 8487 if (s[0] < '0' || s[0] > '9') 8488 return (EINVAL); /* not a number */ 8489 n = s[0] - '0'; 8490 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) 8491 return (EINVAL); /* some other bit is set too */ 8492 8493 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8494 "t4PAUSE"); 8495 if (rc) 8496 return (rc); 8497 if (!hw_off_limits(sc)) { 8498 PORT_LOCK(pi); 8499 lc->requested_fc = n; 8500 fixup_link_config(pi); 8501 if (pi->up_vis > 0) 8502 rc = apply_link_config(pi); 8503 set_current_media(pi); 8504 PORT_UNLOCK(pi); 8505 } 8506 end_synchronized_op(sc, 0); 8507 } 8508 8509 return (rc); 8510 } 8511 8512 static int 8513 sysctl_link_fec(SYSCTL_HANDLER_ARGS) 8514 { 8515 struct port_info *pi = arg1; 8516 struct link_config *lc = &pi->link_cfg; 8517 int rc; 8518 struct sbuf *sb; 8519 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2"; 8520 8521 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8522 if (sb == NULL) 8523 return (ENOMEM); 8524 if (lc->link_ok) 8525 sbuf_printf(sb, "%b", lc->fec, bits); 8526 else 8527 sbuf_printf(sb, "no link"); 8528 rc = sbuf_finish(sb); 8529 sbuf_delete(sb); 8530 8531 return (rc); 8532 } 8533 8534 static int 8535 sysctl_requested_fec(SYSCTL_HANDLER_ARGS) 8536 { 8537 struct port_info *pi = arg1; 8538 struct adapter *sc = pi->adapter; 8539 struct link_config *lc = &pi->link_cfg; 8540 int rc; 8541 int8_t old; 8542 8543 if (req->newptr == NULL) { 8544 struct sbuf *sb; 8545 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2" 8546 "\5RSVD3\6auto\7module"; 8547 8548 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8549 if (sb == NULL) 8550 return (ENOMEM); 8551 8552 sbuf_printf(sb, "%b", lc->requested_fec, bits); 8553 rc = sbuf_finish(sb); 8554 sbuf_delete(sb); 8555 } else { 8556 char s[8]; 8557 int n; 8558 8559 snprintf(s, sizeof(s), "%d", 8560 lc->requested_fec == FEC_AUTO ? -1 : 8561 lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE)); 8562 8563 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8564 if (rc != 0) 8565 return(rc); 8566 8567 n = strtol(&s[0], NULL, 0); 8568 if (n < 0 || n & FEC_AUTO) 8569 n = FEC_AUTO; 8570 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE)) 8571 return (EINVAL);/* some other bit is set too */ 8572 8573 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8574 "t4reqf"); 8575 if (rc) 8576 return (rc); 8577 PORT_LOCK(pi); 8578 old = lc->requested_fec; 8579 if (n == FEC_AUTO) 8580 lc->requested_fec = FEC_AUTO; 8581 else if (n == 0 || n == FEC_NONE) 8582 lc->requested_fec = FEC_NONE; 8583 else { 8584 if ((lc->pcaps | 8585 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) != 8586 lc->pcaps) { 8587 rc = ENOTSUP; 8588 goto done; 8589 } 8590 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC | 8591 FEC_MODULE); 8592 } 8593 if (!hw_off_limits(sc)) { 8594 fixup_link_config(pi); 8595 if (pi->up_vis > 0) { 8596 rc = apply_link_config(pi); 8597 if (rc != 0) { 8598 lc->requested_fec = old; 8599 if (rc == FW_EPROTO) 8600 rc = ENOTSUP; 8601 } 8602 } 8603 } 8604 done: 8605 PORT_UNLOCK(pi); 8606 end_synchronized_op(sc, 0); 8607 } 8608 8609 return (rc); 8610 } 8611 8612 static int 8613 sysctl_module_fec(SYSCTL_HANDLER_ARGS) 8614 { 8615 struct port_info *pi = arg1; 8616 struct adapter *sc = pi->adapter; 8617 struct link_config *lc = &pi->link_cfg; 8618 int rc; 8619 int8_t fec; 8620 struct sbuf *sb; 8621 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3"; 8622 8623 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8624 if (sb == NULL) 8625 return (ENOMEM); 8626 8627 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) { 8628 rc = EBUSY; 8629 goto done; 8630 } 8631 if (hw_off_limits(sc)) { 8632 rc = ENXIO; 8633 goto done; 8634 } 8635 PORT_LOCK(pi); 8636 if (pi->up_vis == 0) { 8637 /* 8638 * If all the interfaces are administratively down the firmware 8639 * does not report transceiver changes. Refresh port info here. 8640 * This is the only reason we have a synchronized op in this 8641 * function. Just PORT_LOCK would have been enough otherwise. 8642 */ 8643 t4_update_port_info(pi); 8644 } 8645 8646 fec = lc->fec_hint; 8647 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE || 8648 !fec_supported(lc->pcaps)) { 8649 PORT_UNLOCK(pi); 8650 sbuf_printf(sb, "n/a"); 8651 } else { 8652 if (fec == 0) 8653 fec = FEC_NONE; 8654 PORT_UNLOCK(pi); 8655 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits); 8656 } 8657 rc = sbuf_finish(sb); 8658 done: 8659 sbuf_delete(sb); 8660 end_synchronized_op(sc, 0); 8661 8662 return (rc); 8663 } 8664 8665 static int 8666 sysctl_autoneg(SYSCTL_HANDLER_ARGS) 8667 { 8668 struct port_info *pi = arg1; 8669 struct adapter *sc = pi->adapter; 8670 struct link_config *lc = &pi->link_cfg; 8671 int rc, val; 8672 8673 if (lc->pcaps & FW_PORT_CAP32_ANEG) 8674 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1; 8675 else 8676 val = -1; 8677 rc = sysctl_handle_int(oidp, &val, 0, req); 8678 if (rc != 0 || req->newptr == NULL) 8679 return (rc); 8680 if (val == 0) 8681 val = AUTONEG_DISABLE; 8682 else if (val == 1) 8683 val = AUTONEG_ENABLE; 8684 else 8685 val = AUTONEG_AUTO; 8686 8687 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8688 "t4aneg"); 8689 if (rc) 8690 return (rc); 8691 PORT_LOCK(pi); 8692 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 8693 rc = ENOTSUP; 8694 goto done; 8695 } 8696 lc->requested_aneg = val; 8697 if (!hw_off_limits(sc)) { 8698 fixup_link_config(pi); 8699 if (pi->up_vis > 0) 8700 rc = apply_link_config(pi); 8701 set_current_media(pi); 8702 } 8703 done: 8704 PORT_UNLOCK(pi); 8705 end_synchronized_op(sc, 0); 8706 return (rc); 8707 } 8708 8709 static int 8710 sysctl_force_fec(SYSCTL_HANDLER_ARGS) 8711 { 8712 struct port_info *pi = arg1; 8713 struct adapter *sc = pi->adapter; 8714 struct link_config *lc = &pi->link_cfg; 8715 int rc, val; 8716 8717 val = lc->force_fec; 8718 MPASS(val >= -1 && val <= 1); 8719 rc = sysctl_handle_int(oidp, &val, 0, req); 8720 if (rc != 0 || req->newptr == NULL) 8721 return (rc); 8722 if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC)) 8723 return (ENOTSUP); 8724 if (val < -1 || val > 1) 8725 return (EINVAL); 8726 8727 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff"); 8728 if (rc) 8729 return (rc); 8730 PORT_LOCK(pi); 8731 lc->force_fec = val; 8732 if (!hw_off_limits(sc)) { 8733 fixup_link_config(pi); 8734 if (pi->up_vis > 0) 8735 rc = apply_link_config(pi); 8736 } 8737 PORT_UNLOCK(pi); 8738 end_synchronized_op(sc, 0); 8739 return (rc); 8740 } 8741 8742 static int 8743 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) 8744 { 8745 struct adapter *sc = arg1; 8746 int rc, reg = arg2; 8747 uint64_t val; 8748 8749 mtx_lock(&sc->reg_lock); 8750 if (hw_off_limits(sc)) 8751 rc = ENXIO; 8752 else { 8753 rc = 0; 8754 val = t4_read_reg64(sc, reg); 8755 } 8756 mtx_unlock(&sc->reg_lock); 8757 if (rc == 0) 8758 rc = sysctl_handle_64(oidp, &val, 0, req); 8759 return (rc); 8760 } 8761 8762 static int 8763 sysctl_temperature(SYSCTL_HANDLER_ARGS) 8764 { 8765 struct adapter *sc = arg1; 8766 int rc, t; 8767 uint32_t param, val; 8768 8769 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); 8770 if (rc) 8771 return (rc); 8772 if (hw_off_limits(sc)) 8773 rc = ENXIO; 8774 else { 8775 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8776 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8777 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); 8778 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8779 } 8780 end_synchronized_op(sc, 0); 8781 if (rc) 8782 return (rc); 8783 8784 /* unknown is returned as 0 but we display -1 in that case */ 8785 t = val == 0 ? -1 : val; 8786 8787 rc = sysctl_handle_int(oidp, &t, 0, req); 8788 return (rc); 8789 } 8790 8791 static int 8792 sysctl_vdd(SYSCTL_HANDLER_ARGS) 8793 { 8794 struct adapter *sc = arg1; 8795 int rc; 8796 uint32_t param, val; 8797 8798 if (sc->params.core_vdd == 0) { 8799 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 8800 "t4vdd"); 8801 if (rc) 8802 return (rc); 8803 if (hw_off_limits(sc)) 8804 rc = ENXIO; 8805 else { 8806 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8807 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8808 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 8809 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, 8810 ¶m, &val); 8811 } 8812 end_synchronized_op(sc, 0); 8813 if (rc) 8814 return (rc); 8815 sc->params.core_vdd = val; 8816 } 8817 8818 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req)); 8819 } 8820 8821 static int 8822 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS) 8823 { 8824 struct adapter *sc = arg1; 8825 int rc, v; 8826 uint32_t param, val; 8827 8828 v = sc->sensor_resets; 8829 rc = sysctl_handle_int(oidp, &v, 0, req); 8830 if (rc != 0 || req->newptr == NULL || v <= 0) 8831 return (rc); 8832 8833 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) || 8834 chip_id(sc) < CHELSIO_T5) 8835 return (ENOTSUP); 8836 8837 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst"); 8838 if (rc) 8839 return (rc); 8840 if (hw_off_limits(sc)) 8841 rc = ENXIO; 8842 else { 8843 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8844 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 8845 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR)); 8846 val = 1; 8847 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8848 } 8849 end_synchronized_op(sc, 0); 8850 if (rc == 0) 8851 sc->sensor_resets++; 8852 return (rc); 8853 } 8854 8855 static int 8856 sysctl_loadavg(SYSCTL_HANDLER_ARGS) 8857 { 8858 struct adapter *sc = arg1; 8859 struct sbuf *sb; 8860 int rc; 8861 uint32_t param, val; 8862 8863 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg"); 8864 if (rc) 8865 return (rc); 8866 if (hw_off_limits(sc)) 8867 rc = ENXIO; 8868 else { 8869 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 8870 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD); 8871 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 8872 } 8873 end_synchronized_op(sc, 0); 8874 if (rc) 8875 return (rc); 8876 8877 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8878 if (sb == NULL) 8879 return (ENOMEM); 8880 8881 if (val == 0xffffffff) { 8882 /* Only debug and custom firmwares report load averages. */ 8883 sbuf_printf(sb, "not available"); 8884 } else { 8885 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff, 8886 (val >> 16) & 0xff); 8887 } 8888 rc = sbuf_finish(sb); 8889 sbuf_delete(sb); 8890 8891 return (rc); 8892 } 8893 8894 static int 8895 sysctl_cctrl(SYSCTL_HANDLER_ARGS) 8896 { 8897 struct adapter *sc = arg1; 8898 struct sbuf *sb; 8899 int rc, i; 8900 uint16_t incr[NMTUS][NCCTRL_WIN]; 8901 static const char *dec_fac[] = { 8902 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 8903 "0.9375" 8904 }; 8905 8906 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8907 if (sb == NULL) 8908 return (ENOMEM); 8909 8910 rc = 0; 8911 mtx_lock(&sc->reg_lock); 8912 if (hw_off_limits(sc)) 8913 rc = ENXIO; 8914 else 8915 t4_read_cong_tbl(sc, incr); 8916 mtx_unlock(&sc->reg_lock); 8917 if (rc) 8918 goto done; 8919 8920 for (i = 0; i < NCCTRL_WIN; ++i) { 8921 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 8922 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], 8923 incr[5][i], incr[6][i], incr[7][i]); 8924 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 8925 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 8926 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 8927 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); 8928 } 8929 8930 rc = sbuf_finish(sb); 8931 done: 8932 sbuf_delete(sb); 8933 return (rc); 8934 } 8935 8936 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { 8937 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ 8938 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ 8939 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ 8940 }; 8941 8942 static int 8943 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS) 8944 { 8945 struct adapter *sc = arg1; 8946 struct sbuf *sb; 8947 int rc, i, n, qid = arg2; 8948 uint32_t *buf, *p; 8949 char *qtype; 8950 u_int cim_num_obq = sc->chip_params->cim_num_obq; 8951 8952 KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq, 8953 ("%s: bad qid %d\n", __func__, qid)); 8954 8955 if (qid < CIM_NUM_IBQ) { 8956 /* inbound queue */ 8957 qtype = "IBQ"; 8958 n = 4 * CIM_IBQ_SIZE; 8959 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 8960 mtx_lock(&sc->reg_lock); 8961 if (hw_off_limits(sc)) 8962 rc = -ENXIO; 8963 else 8964 rc = t4_read_cim_ibq(sc, qid, buf, n); 8965 mtx_unlock(&sc->reg_lock); 8966 } else { 8967 /* outbound queue */ 8968 qtype = "OBQ"; 8969 qid -= CIM_NUM_IBQ; 8970 n = 4 * cim_num_obq * CIM_OBQ_SIZE; 8971 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 8972 mtx_lock(&sc->reg_lock); 8973 if (hw_off_limits(sc)) 8974 rc = -ENXIO; 8975 else 8976 rc = t4_read_cim_obq(sc, qid, buf, n); 8977 mtx_unlock(&sc->reg_lock); 8978 } 8979 8980 if (rc < 0) { 8981 rc = -rc; 8982 goto done; 8983 } 8984 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 8985 8986 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 8987 if (sb == NULL) { 8988 rc = ENOMEM; 8989 goto done; 8990 } 8991 8992 sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]); 8993 for (i = 0, p = buf; i < n; i += 16, p += 4) 8994 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 8995 p[2], p[3]); 8996 8997 rc = sbuf_finish(sb); 8998 sbuf_delete(sb); 8999 done: 9000 free(buf, M_CXGBE); 9001 return (rc); 9002 } 9003 9004 static void 9005 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 9006 { 9007 uint32_t *p; 9008 9009 sbuf_printf(sb, "Status Data PC%s", 9010 cfg & F_UPDBGLACAPTPCONLY ? "" : 9011 " LS0Stat LS0Addr LS0Data"); 9012 9013 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) { 9014 if (cfg & F_UPDBGLACAPTPCONLY) { 9015 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, 9016 p[6], p[7]); 9017 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", 9018 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 9019 p[4] & 0xff, p[5] >> 8); 9020 sbuf_printf(sb, "\n %02x %x%07x %x%07x", 9021 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 9022 p[1] & 0xf, p[2] >> 4); 9023 } else { 9024 sbuf_printf(sb, 9025 "\n %02x %x%07x %x%07x %08x %08x " 9026 "%08x%08x%08x%08x", 9027 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 9028 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 9029 p[6], p[7]); 9030 } 9031 } 9032 } 9033 9034 static void 9035 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 9036 { 9037 uint32_t *p; 9038 9039 sbuf_printf(sb, "Status Inst Data PC%s", 9040 cfg & F_UPDBGLACAPTPCONLY ? "" : 9041 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data"); 9042 9043 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) { 9044 if (cfg & F_UPDBGLACAPTPCONLY) { 9045 sbuf_printf(sb, "\n %02x %08x %08x %08x", 9046 p[3] & 0xff, p[2], p[1], p[0]); 9047 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x", 9048 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, 9049 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); 9050 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x", 9051 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, 9052 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, 9053 p[6] >> 16); 9054 } else { 9055 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x " 9056 "%08x %08x %08x %08x %08x %08x", 9057 (p[9] >> 16) & 0xff, 9058 p[9] & 0xffff, p[8] >> 16, 9059 p[8] & 0xffff, p[7] >> 16, 9060 p[7] & 0xffff, p[6] >> 16, 9061 p[2], p[1], p[0], p[5], p[4], p[3]); 9062 } 9063 } 9064 } 9065 9066 static int 9067 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags) 9068 { 9069 uint32_t cfg, *buf; 9070 int rc; 9071 9072 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9073 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 9074 M_ZERO | flags); 9075 if (buf == NULL) 9076 return (ENOMEM); 9077 9078 mtx_lock(&sc->reg_lock); 9079 if (hw_off_limits(sc)) 9080 rc = ENXIO; 9081 else { 9082 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg); 9083 if (rc == 0) 9084 rc = -t4_cim_read_la(sc, buf, NULL); 9085 } 9086 mtx_unlock(&sc->reg_lock); 9087 if (rc == 0) { 9088 if (chip_id(sc) < CHELSIO_T6) 9089 sbuf_cim_la4(sc, sb, buf, cfg); 9090 else 9091 sbuf_cim_la6(sc, sb, buf, cfg); 9092 } 9093 free(buf, M_CXGBE); 9094 return (rc); 9095 } 9096 9097 static int 9098 sysctl_cim_la(SYSCTL_HANDLER_ARGS) 9099 { 9100 struct adapter *sc = arg1; 9101 struct sbuf *sb; 9102 int rc; 9103 9104 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9105 if (sb == NULL) 9106 return (ENOMEM); 9107 9108 rc = sbuf_cim_la(sc, sb, M_WAITOK); 9109 if (rc == 0) 9110 rc = sbuf_finish(sb); 9111 sbuf_delete(sb); 9112 return (rc); 9113 } 9114 9115 static void 9116 dump_cim_regs(struct adapter *sc) 9117 { 9118 log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n", 9119 device_get_nameunit(sc->dev), 9120 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9121 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9122 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2), 9123 t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN), 9124 t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA)); 9125 log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n", 9126 device_get_nameunit(sc->dev), 9127 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9128 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9129 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800), 9130 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800), 9131 t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN)); 9132 } 9133 9134 static void 9135 dump_cimla(struct adapter *sc) 9136 { 9137 struct sbuf sb; 9138 int rc; 9139 9140 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9141 log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n", 9142 device_get_nameunit(sc->dev)); 9143 return; 9144 } 9145 rc = sbuf_cim_la(sc, &sb, M_WAITOK); 9146 if (rc == 0) { 9147 rc = sbuf_finish(&sb); 9148 if (rc == 0) { 9149 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n", 9150 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9151 } 9152 } 9153 sbuf_delete(&sb); 9154 } 9155 9156 void 9157 t4_os_cim_err(struct adapter *sc) 9158 { 9159 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 9160 } 9161 9162 static int 9163 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) 9164 { 9165 struct adapter *sc = arg1; 9166 u_int i; 9167 struct sbuf *sb; 9168 uint32_t *buf, *p; 9169 int rc; 9170 9171 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9172 if (sb == NULL) 9173 return (ENOMEM); 9174 9175 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, 9176 M_ZERO | M_WAITOK); 9177 9178 rc = 0; 9179 mtx_lock(&sc->reg_lock); 9180 if (hw_off_limits(sc)) 9181 rc = ENXIO; 9182 else 9183 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); 9184 mtx_unlock(&sc->reg_lock); 9185 if (rc) 9186 goto done; 9187 9188 p = buf; 9189 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9190 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], 9191 p[1], p[0]); 9192 } 9193 9194 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); 9195 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9196 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", 9197 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 9198 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 9199 (p[1] >> 2) | ((p[2] & 3) << 30), 9200 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 9201 p[0] & 1); 9202 } 9203 rc = sbuf_finish(sb); 9204 done: 9205 sbuf_delete(sb); 9206 free(buf, M_CXGBE); 9207 return (rc); 9208 } 9209 9210 static int 9211 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) 9212 { 9213 struct adapter *sc = arg1; 9214 u_int i; 9215 struct sbuf *sb; 9216 uint32_t *buf, *p; 9217 int rc; 9218 9219 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9220 if (sb == NULL) 9221 return (ENOMEM); 9222 9223 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, 9224 M_ZERO | M_WAITOK); 9225 9226 rc = 0; 9227 mtx_lock(&sc->reg_lock); 9228 if (hw_off_limits(sc)) 9229 rc = ENXIO; 9230 else 9231 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); 9232 mtx_unlock(&sc->reg_lock); 9233 if (rc) 9234 goto done; 9235 9236 p = buf; 9237 sbuf_printf(sb, "Cntl ID DataBE Addr Data"); 9238 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9239 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", 9240 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, 9241 p[4], p[3], p[2], p[1], p[0]); 9242 } 9243 9244 sbuf_printf(sb, "\n\nCntl ID Data"); 9245 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9246 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", 9247 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); 9248 } 9249 9250 rc = sbuf_finish(sb); 9251 done: 9252 sbuf_delete(sb); 9253 free(buf, M_CXGBE); 9254 return (rc); 9255 } 9256 9257 static int 9258 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) 9259 { 9260 struct adapter *sc = arg1; 9261 struct sbuf *sb; 9262 int rc, i; 9263 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9264 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9265 uint16_t thres[CIM_NUM_IBQ]; 9266 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; 9267 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; 9268 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; 9269 9270 cim_num_obq = sc->chip_params->cim_num_obq; 9271 if (is_t4(sc)) { 9272 ibq_rdaddr = A_UP_IBQ_0_RDADDR; 9273 obq_rdaddr = A_UP_OBQ_0_REALADDR; 9274 } else { 9275 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; 9276 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; 9277 } 9278 nq = CIM_NUM_IBQ + cim_num_obq; 9279 9280 mtx_lock(&sc->reg_lock); 9281 if (hw_off_limits(sc)) 9282 rc = ENXIO; 9283 else { 9284 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); 9285 if (rc == 0) { 9286 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, 9287 obq_wr); 9288 if (rc == 0) 9289 t4_read_cimq_cfg(sc, base, size, thres); 9290 } 9291 } 9292 mtx_unlock(&sc->reg_lock); 9293 if (rc) 9294 return (rc); 9295 9296 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9297 if (sb == NULL) 9298 return (ENOMEM); 9299 9300 sbuf_printf(sb, 9301 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 9302 9303 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 9304 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 9305 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), 9306 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9307 G_QUEREMFLITS(p[2]) * 16); 9308 for ( ; i < nq; i++, p += 4, wr += 2) 9309 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], 9310 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, 9311 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9312 G_QUEREMFLITS(p[2]) * 16); 9313 9314 rc = sbuf_finish(sb); 9315 sbuf_delete(sb); 9316 9317 return (rc); 9318 } 9319 9320 static int 9321 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) 9322 { 9323 struct adapter *sc = arg1; 9324 struct sbuf *sb; 9325 int rc; 9326 struct tp_cpl_stats stats; 9327 9328 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9329 if (sb == NULL) 9330 return (ENOMEM); 9331 9332 rc = 0; 9333 mtx_lock(&sc->reg_lock); 9334 if (hw_off_limits(sc)) 9335 rc = ENXIO; 9336 else 9337 t4_tp_get_cpl_stats(sc, &stats, 0); 9338 mtx_unlock(&sc->reg_lock); 9339 if (rc) 9340 goto done; 9341 9342 if (sc->chip_params->nchan > 2) { 9343 sbuf_printf(sb, " channel 0 channel 1" 9344 " channel 2 channel 3"); 9345 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u", 9346 stats.req[0], stats.req[1], stats.req[2], stats.req[3]); 9347 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u", 9348 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); 9349 } else { 9350 sbuf_printf(sb, " channel 0 channel 1"); 9351 sbuf_printf(sb, "\nCPL requests: %10u %10u", 9352 stats.req[0], stats.req[1]); 9353 sbuf_printf(sb, "\nCPL responses: %10u %10u", 9354 stats.rsp[0], stats.rsp[1]); 9355 } 9356 9357 rc = sbuf_finish(sb); 9358 done: 9359 sbuf_delete(sb); 9360 return (rc); 9361 } 9362 9363 static int 9364 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) 9365 { 9366 struct adapter *sc = arg1; 9367 struct sbuf *sb; 9368 int rc; 9369 struct tp_usm_stats stats; 9370 9371 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9372 if (sb == NULL) 9373 return (ENOMEM); 9374 9375 rc = 0; 9376 mtx_lock(&sc->reg_lock); 9377 if (hw_off_limits(sc)) 9378 rc = ENXIO; 9379 else 9380 t4_get_usm_stats(sc, &stats, 1); 9381 mtx_unlock(&sc->reg_lock); 9382 if (rc == 0) { 9383 sbuf_printf(sb, "Frames: %u\n", stats.frames); 9384 sbuf_printf(sb, "Octets: %ju\n", stats.octets); 9385 sbuf_printf(sb, "Drops: %u", stats.drops); 9386 rc = sbuf_finish(sb); 9387 } 9388 sbuf_delete(sb); 9389 9390 return (rc); 9391 } 9392 9393 static int 9394 sysctl_tid_stats(SYSCTL_HANDLER_ARGS) 9395 { 9396 struct adapter *sc = arg1; 9397 struct sbuf *sb; 9398 int rc; 9399 struct tp_tid_stats stats; 9400 9401 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9402 if (sb == NULL) 9403 return (ENOMEM); 9404 9405 rc = 0; 9406 mtx_lock(&sc->reg_lock); 9407 if (hw_off_limits(sc)) 9408 rc = ENXIO; 9409 else 9410 t4_tp_get_tid_stats(sc, &stats, 1); 9411 mtx_unlock(&sc->reg_lock); 9412 if (rc == 0) { 9413 sbuf_printf(sb, "Delete: %u\n", stats.del); 9414 sbuf_printf(sb, "Invalidate: %u\n", stats.inv); 9415 sbuf_printf(sb, "Active: %u\n", stats.act); 9416 sbuf_printf(sb, "Passive: %u", stats.pas); 9417 rc = sbuf_finish(sb); 9418 } 9419 sbuf_delete(sb); 9420 9421 return (rc); 9422 } 9423 9424 static const char * const devlog_level_strings[] = { 9425 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 9426 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 9427 [FW_DEVLOG_LEVEL_ERR] = "ERR", 9428 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 9429 [FW_DEVLOG_LEVEL_INFO] = "INFO", 9430 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 9431 }; 9432 9433 static const char * const devlog_facility_strings[] = { 9434 [FW_DEVLOG_FACILITY_CORE] = "CORE", 9435 [FW_DEVLOG_FACILITY_CF] = "CF", 9436 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 9437 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 9438 [FW_DEVLOG_FACILITY_RES] = "RES", 9439 [FW_DEVLOG_FACILITY_HW] = "HW", 9440 [FW_DEVLOG_FACILITY_FLR] = "FLR", 9441 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 9442 [FW_DEVLOG_FACILITY_PHY] = "PHY", 9443 [FW_DEVLOG_FACILITY_MAC] = "MAC", 9444 [FW_DEVLOG_FACILITY_PORT] = "PORT", 9445 [FW_DEVLOG_FACILITY_VI] = "VI", 9446 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 9447 [FW_DEVLOG_FACILITY_ACL] = "ACL", 9448 [FW_DEVLOG_FACILITY_TM] = "TM", 9449 [FW_DEVLOG_FACILITY_QFC] = "QFC", 9450 [FW_DEVLOG_FACILITY_DCB] = "DCB", 9451 [FW_DEVLOG_FACILITY_ETH] = "ETH", 9452 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 9453 [FW_DEVLOG_FACILITY_RI] = "RI", 9454 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 9455 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 9456 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 9457 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE", 9458 [FW_DEVLOG_FACILITY_CHNET] = "CHNET", 9459 }; 9460 9461 static int 9462 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags) 9463 { 9464 int i, j, rc, nentries, first = 0; 9465 struct devlog_params *dparams = &sc->params.devlog; 9466 struct fw_devlog_e *buf, *e; 9467 uint64_t ftstamp = UINT64_MAX; 9468 9469 if (dparams->addr == 0) 9470 return (ENXIO); 9471 9472 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9473 buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags); 9474 if (buf == NULL) 9475 return (ENOMEM); 9476 9477 mtx_lock(&sc->reg_lock); 9478 if (hw_off_limits(sc)) 9479 rc = ENXIO; 9480 else 9481 rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, 9482 dparams->size); 9483 mtx_unlock(&sc->reg_lock); 9484 if (rc != 0) 9485 goto done; 9486 9487 nentries = dparams->size / sizeof(struct fw_devlog_e); 9488 for (i = 0; i < nentries; i++) { 9489 e = &buf[i]; 9490 9491 if (e->timestamp == 0) 9492 break; /* end */ 9493 9494 e->timestamp = be64toh(e->timestamp); 9495 e->seqno = be32toh(e->seqno); 9496 for (j = 0; j < 8; j++) 9497 e->params[j] = be32toh(e->params[j]); 9498 9499 if (e->timestamp < ftstamp) { 9500 ftstamp = e->timestamp; 9501 first = i; 9502 } 9503 } 9504 9505 if (buf[first].timestamp == 0) 9506 goto done; /* nothing in the log */ 9507 9508 sbuf_printf(sb, "%10s %15s %8s %8s %s\n", 9509 "Seq#", "Tstamp", "Level", "Facility", "Message"); 9510 9511 i = first; 9512 do { 9513 e = &buf[i]; 9514 if (e->timestamp == 0) 9515 break; /* end */ 9516 9517 sbuf_printf(sb, "%10d %15ju %8s %8s ", 9518 e->seqno, e->timestamp, 9519 (e->level < nitems(devlog_level_strings) ? 9520 devlog_level_strings[e->level] : "UNKNOWN"), 9521 (e->facility < nitems(devlog_facility_strings) ? 9522 devlog_facility_strings[e->facility] : "UNKNOWN")); 9523 sbuf_printf(sb, e->fmt, e->params[0], e->params[1], 9524 e->params[2], e->params[3], e->params[4], 9525 e->params[5], e->params[6], e->params[7]); 9526 9527 if (++i == nentries) 9528 i = 0; 9529 } while (i != first); 9530 done: 9531 free(buf, M_CXGBE); 9532 return (rc); 9533 } 9534 9535 static int 9536 sysctl_devlog(SYSCTL_HANDLER_ARGS) 9537 { 9538 struct adapter *sc = arg1; 9539 int rc; 9540 struct sbuf *sb; 9541 9542 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9543 if (sb == NULL) 9544 return (ENOMEM); 9545 9546 rc = sbuf_devlog(sc, sb, M_WAITOK); 9547 if (rc == 0) 9548 rc = sbuf_finish(sb); 9549 sbuf_delete(sb); 9550 return (rc); 9551 } 9552 9553 static void 9554 dump_devlog(struct adapter *sc) 9555 { 9556 int rc; 9557 struct sbuf sb; 9558 9559 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9560 log(LOG_DEBUG, "%s: failed to generate devlog dump.\n", 9561 device_get_nameunit(sc->dev)); 9562 return; 9563 } 9564 rc = sbuf_devlog(sc, &sb, M_WAITOK); 9565 if (rc == 0) { 9566 rc = sbuf_finish(&sb); 9567 if (rc == 0) { 9568 log(LOG_DEBUG, "%s: device log follows.\n%s", 9569 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9570 } 9571 } 9572 sbuf_delete(&sb); 9573 } 9574 9575 static int 9576 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) 9577 { 9578 struct adapter *sc = arg1; 9579 struct sbuf *sb; 9580 int rc; 9581 struct tp_fcoe_stats stats[MAX_NCHAN]; 9582 int i, nchan = sc->chip_params->nchan; 9583 9584 rc = 0; 9585 mtx_lock(&sc->reg_lock); 9586 if (hw_off_limits(sc)) 9587 rc = ENXIO; 9588 else { 9589 for (i = 0; i < nchan; i++) 9590 t4_get_fcoe_stats(sc, i, &stats[i], 1); 9591 } 9592 mtx_unlock(&sc->reg_lock); 9593 if (rc != 0) 9594 return (rc); 9595 9596 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9597 if (sb == NULL) 9598 return (ENOMEM); 9599 9600 if (nchan > 2) { 9601 sbuf_printf(sb, " channel 0 channel 1" 9602 " channel 2 channel 3"); 9603 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju", 9604 stats[0].octets_ddp, stats[1].octets_ddp, 9605 stats[2].octets_ddp, stats[3].octets_ddp); 9606 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u", 9607 stats[0].frames_ddp, stats[1].frames_ddp, 9608 stats[2].frames_ddp, stats[3].frames_ddp); 9609 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u", 9610 stats[0].frames_drop, stats[1].frames_drop, 9611 stats[2].frames_drop, stats[3].frames_drop); 9612 } else { 9613 sbuf_printf(sb, " channel 0 channel 1"); 9614 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju", 9615 stats[0].octets_ddp, stats[1].octets_ddp); 9616 sbuf_printf(sb, "\nframesDDP: %16u %16u", 9617 stats[0].frames_ddp, stats[1].frames_ddp); 9618 sbuf_printf(sb, "\nframesDrop: %16u %16u", 9619 stats[0].frames_drop, stats[1].frames_drop); 9620 } 9621 9622 rc = sbuf_finish(sb); 9623 sbuf_delete(sb); 9624 9625 return (rc); 9626 } 9627 9628 static int 9629 sysctl_hw_sched(SYSCTL_HANDLER_ARGS) 9630 { 9631 struct adapter *sc = arg1; 9632 struct sbuf *sb; 9633 int rc, i; 9634 unsigned int map, kbps, ipg, mode; 9635 unsigned int pace_tab[NTX_SCHED]; 9636 9637 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req); 9638 if (sb == NULL) 9639 return (ENOMEM); 9640 9641 mtx_lock(&sc->reg_lock); 9642 if (hw_off_limits(sc)) { 9643 mtx_unlock(&sc->reg_lock); 9644 rc = ENXIO; 9645 goto done; 9646 } 9647 9648 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); 9649 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); 9650 t4_read_pace_tbl(sc, pace_tab); 9651 mtx_unlock(&sc->reg_lock); 9652 9653 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " 9654 "Class IPG (0.1 ns) Flow IPG (us)"); 9655 9656 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { 9657 t4_get_tx_sched(sc, i, &kbps, &ipg, 1); 9658 sbuf_printf(sb, "\n %u %-5s %u ", i, 9659 (mode & (1 << i)) ? "flow" : "class", map & 3); 9660 if (kbps) 9661 sbuf_printf(sb, "%9u ", kbps); 9662 else 9663 sbuf_printf(sb, " disabled "); 9664 9665 if (ipg) 9666 sbuf_printf(sb, "%13u ", ipg); 9667 else 9668 sbuf_printf(sb, " disabled "); 9669 9670 if (pace_tab[i]) 9671 sbuf_printf(sb, "%10u", pace_tab[i]); 9672 else 9673 sbuf_printf(sb, " disabled"); 9674 } 9675 rc = sbuf_finish(sb); 9676 done: 9677 sbuf_delete(sb); 9678 return (rc); 9679 } 9680 9681 static int 9682 sysctl_lb_stats(SYSCTL_HANDLER_ARGS) 9683 { 9684 struct adapter *sc = arg1; 9685 struct sbuf *sb; 9686 int rc, i, j; 9687 uint64_t *p0, *p1; 9688 struct lb_port_stats s[2]; 9689 static const char *stat_name[] = { 9690 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", 9691 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", 9692 "Frames128To255:", "Frames256To511:", "Frames512To1023:", 9693 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", 9694 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", 9695 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", 9696 "BG2FramesTrunc:", "BG3FramesTrunc:" 9697 }; 9698 9699 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9700 if (sb == NULL) 9701 return (ENOMEM); 9702 9703 memset(s, 0, sizeof(s)); 9704 9705 rc = 0; 9706 for (i = 0; i < sc->chip_params->nchan; i += 2) { 9707 mtx_lock(&sc->reg_lock); 9708 if (hw_off_limits(sc)) 9709 rc = ENXIO; 9710 else { 9711 t4_get_lb_stats(sc, i, &s[0]); 9712 t4_get_lb_stats(sc, i + 1, &s[1]); 9713 } 9714 mtx_unlock(&sc->reg_lock); 9715 if (rc != 0) 9716 break; 9717 9718 p0 = &s[0].octets; 9719 p1 = &s[1].octets; 9720 sbuf_printf(sb, "%s Loopback %u" 9721 " Loopback %u", i == 0 ? "" : "\n", i, i + 1); 9722 9723 for (j = 0; j < nitems(stat_name); j++) 9724 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], 9725 *p0++, *p1++); 9726 } 9727 9728 if (rc == 0) 9729 rc = sbuf_finish(sb); 9730 sbuf_delete(sb); 9731 9732 return (rc); 9733 } 9734 9735 static int 9736 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) 9737 { 9738 int rc = 0; 9739 struct port_info *pi = arg1; 9740 struct link_config *lc = &pi->link_cfg; 9741 struct sbuf *sb; 9742 9743 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); 9744 if (sb == NULL) 9745 return (ENOMEM); 9746 9747 if (lc->link_ok || lc->link_down_rc == 255) 9748 sbuf_printf(sb, "n/a"); 9749 else 9750 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc)); 9751 9752 rc = sbuf_finish(sb); 9753 sbuf_delete(sb); 9754 9755 return (rc); 9756 } 9757 9758 struct mem_desc { 9759 u_int base; 9760 u_int limit; 9761 u_int idx; 9762 }; 9763 9764 static int 9765 mem_desc_cmp(const void *a, const void *b) 9766 { 9767 const u_int v1 = ((const struct mem_desc *)a)->base; 9768 const u_int v2 = ((const struct mem_desc *)b)->base; 9769 9770 if (v1 < v2) 9771 return (-1); 9772 else if (v1 > v2) 9773 return (1); 9774 9775 return (0); 9776 } 9777 9778 static void 9779 mem_region_show(struct sbuf *sb, const char *name, unsigned int from, 9780 unsigned int to) 9781 { 9782 unsigned int size; 9783 9784 if (from == to) 9785 return; 9786 9787 size = to - from + 1; 9788 if (size == 0) 9789 return; 9790 9791 /* XXX: need humanize_number(3) in libkern for a more readable 'size' */ 9792 sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size); 9793 } 9794 9795 static int 9796 sysctl_meminfo(SYSCTL_HANDLER_ARGS) 9797 { 9798 struct adapter *sc = arg1; 9799 struct sbuf *sb; 9800 int rc, i, n; 9801 uint32_t lo, hi, used, free, alloc; 9802 static const char *memory[] = { 9803 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:" 9804 }; 9805 static const char *region[] = { 9806 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", 9807 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", 9808 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", 9809 "TDDP region:", "TPT region:", "STAG region:", "RQ region:", 9810 "RQUDP region:", "PBL region:", "TXPBL region:", 9811 "TLSKey region:", "DBVFIFO region:", "ULPRX state:", 9812 "ULPTX state:", "On-chip queues:", 9813 }; 9814 struct mem_desc avail[4]; 9815 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ 9816 struct mem_desc *md = mem; 9817 9818 rc = sysctl_wire_old_buffer(req, 0); 9819 if (rc != 0) 9820 return (rc); 9821 9822 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9823 if (sb == NULL) 9824 return (ENOMEM); 9825 9826 for (i = 0; i < nitems(mem); i++) { 9827 mem[i].limit = 0; 9828 mem[i].idx = i; 9829 } 9830 9831 mtx_lock(&sc->reg_lock); 9832 if (hw_off_limits(sc)) { 9833 rc = ENXIO; 9834 goto done; 9835 } 9836 9837 /* Find and sort the populated memory ranges */ 9838 i = 0; 9839 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 9840 if (lo & F_EDRAM0_ENABLE) { 9841 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); 9842 avail[i].base = G_EDRAM0_BASE(hi) << 20; 9843 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20); 9844 avail[i].idx = 0; 9845 i++; 9846 } 9847 if (lo & F_EDRAM1_ENABLE) { 9848 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); 9849 avail[i].base = G_EDRAM1_BASE(hi) << 20; 9850 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20); 9851 avail[i].idx = 1; 9852 i++; 9853 } 9854 if (lo & F_EXT_MEM_ENABLE) { 9855 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 9856 avail[i].base = G_EXT_MEM_BASE(hi) << 20; 9857 avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20); 9858 avail[i].idx = is_t5(sc) ? 3 : 2; /* Call it MC0 for T5 */ 9859 i++; 9860 } 9861 if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) { 9862 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9863 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9864 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 9865 avail[i].idx = 4; 9866 i++; 9867 } 9868 if (is_t6(sc) && lo & F_HMA_MUX) { 9869 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 9870 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 9871 avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20); 9872 avail[i].idx = 5; 9873 i++; 9874 } 9875 MPASS(i <= nitems(avail)); 9876 if (!i) /* no memory available */ 9877 goto done; 9878 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); 9879 9880 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); 9881 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); 9882 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); 9883 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 9884 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); 9885 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); 9886 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); 9887 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); 9888 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); 9889 9890 /* the next few have explicit upper bounds */ 9891 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); 9892 md->limit = md->base - 1 + 9893 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * 9894 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); 9895 md++; 9896 9897 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); 9898 md->limit = md->base - 1 + 9899 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * 9900 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); 9901 md++; 9902 9903 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 9904 if (chip_id(sc) <= CHELSIO_T5) 9905 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); 9906 else 9907 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR); 9908 md->limit = 0; 9909 } else { 9910 md->base = 0; 9911 md->idx = nitems(region); /* hide it */ 9912 } 9913 md++; 9914 9915 #define ulp_region(reg) \ 9916 md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\ 9917 (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) 9918 9919 ulp_region(RX_ISCSI); 9920 ulp_region(RX_TDDP); 9921 ulp_region(TX_TPT); 9922 ulp_region(RX_STAG); 9923 ulp_region(RX_RQ); 9924 ulp_region(RX_RQUDP); 9925 ulp_region(RX_PBL); 9926 ulp_region(TX_PBL); 9927 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 9928 ulp_region(RX_TLS_KEY); 9929 } 9930 #undef ulp_region 9931 9932 md->base = 0; 9933 if (is_t4(sc)) 9934 md->idx = nitems(region); 9935 else { 9936 uint32_t size = 0; 9937 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2); 9938 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE); 9939 9940 if (is_t5(sc)) { 9941 if (sge_ctrl & F_VFIFO_ENABLE) 9942 size = fifo_size << 2; 9943 } else 9944 size = G_T6_DBVFIFO_SIZE(fifo_size) << 6; 9945 9946 if (size) { 9947 md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR); 9948 md->limit = md->base + size - 1; 9949 } else 9950 md->idx = nitems(region); 9951 } 9952 md++; 9953 9954 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); 9955 md->limit = 0; 9956 md++; 9957 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); 9958 md->limit = 0; 9959 md++; 9960 9961 md->base = sc->vres.ocq.start; 9962 if (sc->vres.ocq.size) 9963 md->limit = md->base + sc->vres.ocq.size - 1; 9964 else 9965 md->idx = nitems(region); /* hide it */ 9966 md++; 9967 9968 /* add any address-space holes, there can be up to 3 */ 9969 for (n = 0; n < i - 1; n++) 9970 if (avail[n].limit < avail[n + 1].base) 9971 (md++)->base = avail[n].limit; 9972 if (avail[n].limit) 9973 (md++)->base = avail[n].limit; 9974 9975 n = md - mem; 9976 MPASS(n <= nitems(mem)); 9977 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); 9978 9979 for (lo = 0; lo < i; lo++) 9980 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, 9981 avail[lo].limit - 1); 9982 9983 sbuf_printf(sb, "\n"); 9984 for (i = 0; i < n; i++) { 9985 if (mem[i].idx >= nitems(region)) 9986 continue; /* skip holes */ 9987 if (!mem[i].limit) 9988 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; 9989 mem_region_show(sb, region[mem[i].idx], mem[i].base, 9990 mem[i].limit); 9991 } 9992 9993 sbuf_printf(sb, "\n"); 9994 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); 9995 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; 9996 mem_region_show(sb, "uP RAM:", lo, hi); 9997 9998 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); 9999 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; 10000 mem_region_show(sb, "uP Extmem2:", lo, hi); 10001 10002 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); 10003 for (i = 0, free = 0; i < 2; i++) 10004 free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT)); 10005 sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n", 10006 G_PMRXMAXPAGE(lo), free, 10007 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, 10008 (lo & F_PMRXNUMCHN) ? 2 : 1); 10009 10010 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); 10011 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); 10012 for (i = 0, free = 0; i < 4; i++) 10013 free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT)); 10014 sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n", 10015 G_PMTXMAXPAGE(lo), free, 10016 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), 10017 hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo)); 10018 sbuf_printf(sb, "%u p-structs (%u free)\n", 10019 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT), 10020 G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT))); 10021 10022 for (i = 0; i < 4; i++) { 10023 if (chip_id(sc) > CHELSIO_T5) 10024 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4); 10025 else 10026 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); 10027 if (is_t5(sc)) { 10028 used = G_T5_USED(lo); 10029 alloc = G_T5_ALLOC(lo); 10030 } else { 10031 used = G_USED(lo); 10032 alloc = G_ALLOC(lo); 10033 } 10034 /* For T6 these are MAC buffer groups */ 10035 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", 10036 i, used, alloc); 10037 } 10038 for (i = 0; i < sc->chip_params->nchan; i++) { 10039 if (chip_id(sc) > CHELSIO_T5) 10040 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4); 10041 else 10042 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); 10043 if (is_t5(sc)) { 10044 used = G_T5_USED(lo); 10045 alloc = G_T5_ALLOC(lo); 10046 } else { 10047 used = G_USED(lo); 10048 alloc = G_ALLOC(lo); 10049 } 10050 /* For T6 these are MAC buffer groups */ 10051 sbuf_printf(sb, 10052 "\nLoopback %d using %u pages out of %u allocated", 10053 i, used, alloc); 10054 } 10055 done: 10056 mtx_unlock(&sc->reg_lock); 10057 if (rc == 0) 10058 rc = sbuf_finish(sb); 10059 sbuf_delete(sb); 10060 return (rc); 10061 } 10062 10063 static inline void 10064 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) 10065 { 10066 *mask = x | y; 10067 y = htobe64(y); 10068 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); 10069 } 10070 10071 static int 10072 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) 10073 { 10074 struct adapter *sc = arg1; 10075 struct sbuf *sb; 10076 int rc, i; 10077 10078 MPASS(chip_id(sc) <= CHELSIO_T5); 10079 10080 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10081 if (sb == NULL) 10082 return (ENOMEM); 10083 10084 sbuf_printf(sb, 10085 "Idx Ethernet address Mask Vld Ports PF" 10086 " VF Replication P0 P1 P2 P3 ML"); 10087 rc = 0; 10088 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10089 uint64_t tcamx, tcamy, mask; 10090 uint32_t cls_lo, cls_hi; 10091 uint8_t addr[ETHER_ADDR_LEN]; 10092 10093 mtx_lock(&sc->reg_lock); 10094 if (hw_off_limits(sc)) 10095 rc = ENXIO; 10096 else { 10097 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); 10098 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); 10099 } 10100 mtx_unlock(&sc->reg_lock); 10101 if (rc != 0) 10102 break; 10103 if (tcamx & tcamy) 10104 continue; 10105 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10106 mtx_lock(&sc->reg_lock); 10107 if (hw_off_limits(sc)) 10108 rc = ENXIO; 10109 else { 10110 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10111 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10112 } 10113 mtx_unlock(&sc->reg_lock); 10114 if (rc != 0) 10115 break; 10116 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" 10117 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], 10118 addr[3], addr[4], addr[5], (uintmax_t)mask, 10119 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', 10120 G_PORTMAP(cls_hi), G_PF(cls_lo), 10121 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); 10122 10123 if (cls_lo & F_REPLICATE) { 10124 struct fw_ldst_cmd ldst_cmd; 10125 10126 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10127 ldst_cmd.op_to_addrspace = 10128 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10129 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10130 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10131 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10132 ldst_cmd.u.mps.rplc.fid_idx = 10133 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10134 V_FW_LDST_CMD_IDX(i)); 10135 10136 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10137 "t4mps"); 10138 if (rc) 10139 break; 10140 if (hw_off_limits(sc)) 10141 rc = ENXIO; 10142 else 10143 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10144 sizeof(ldst_cmd), &ldst_cmd); 10145 end_synchronized_op(sc, 0); 10146 if (rc != 0) 10147 break; 10148 else { 10149 sbuf_printf(sb, " %08x %08x %08x %08x", 10150 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10151 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10152 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10153 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10154 } 10155 } else 10156 sbuf_printf(sb, "%36s", ""); 10157 10158 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), 10159 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), 10160 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); 10161 } 10162 10163 if (rc) 10164 (void) sbuf_finish(sb); 10165 else 10166 rc = sbuf_finish(sb); 10167 sbuf_delete(sb); 10168 10169 return (rc); 10170 } 10171 10172 static int 10173 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS) 10174 { 10175 struct adapter *sc = arg1; 10176 struct sbuf *sb; 10177 int rc, i; 10178 10179 MPASS(chip_id(sc) > CHELSIO_T5); 10180 10181 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10182 if (sb == NULL) 10183 return (ENOMEM); 10184 10185 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 10186 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 10187 " Replication" 10188 " P0 P1 P2 P3 ML\n"); 10189 10190 rc = 0; 10191 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10192 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 10193 uint16_t ivlan; 10194 uint64_t tcamx, tcamy, val, mask; 10195 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 10196 uint8_t addr[ETHER_ADDR_LEN]; 10197 10198 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0); 10199 if (i < 256) 10200 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0); 10201 else 10202 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1); 10203 mtx_lock(&sc->reg_lock); 10204 if (hw_off_limits(sc)) 10205 rc = ENXIO; 10206 else { 10207 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10208 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10209 tcamy = G_DMACH(val) << 32; 10210 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10211 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10212 } 10213 mtx_unlock(&sc->reg_lock); 10214 if (rc != 0) 10215 break; 10216 10217 lookup_type = G_DATALKPTYPE(data2); 10218 port_num = G_DATAPORTNUM(data2); 10219 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10220 /* Inner header VNI */ 10221 vniy = ((data2 & F_DATAVIDH2) << 23) | 10222 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10223 dip_hit = data2 & F_DATADIPHIT; 10224 vlan_vld = 0; 10225 } else { 10226 vniy = 0; 10227 dip_hit = 0; 10228 vlan_vld = data2 & F_DATAVIDH2; 10229 ivlan = G_VIDL(val); 10230 } 10231 10232 ctl |= V_CTLXYBITSEL(1); 10233 mtx_lock(&sc->reg_lock); 10234 if (hw_off_limits(sc)) 10235 rc = ENXIO; 10236 else { 10237 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10238 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10239 tcamx = G_DMACH(val) << 32; 10240 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10241 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10242 } 10243 mtx_unlock(&sc->reg_lock); 10244 if (rc != 0) 10245 break; 10246 10247 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10248 /* Inner header VNI mask */ 10249 vnix = ((data2 & F_DATAVIDH2) << 23) | 10250 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10251 } else 10252 vnix = 0; 10253 10254 if (tcamx & tcamy) 10255 continue; 10256 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10257 10258 mtx_lock(&sc->reg_lock); 10259 if (hw_off_limits(sc)) 10260 rc = ENXIO; 10261 else { 10262 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10263 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10264 } 10265 mtx_unlock(&sc->reg_lock); 10266 if (rc != 0) 10267 break; 10268 10269 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10270 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10271 "%012jx %06x %06x - - %3c" 10272 " I %4x %3c %#x%4u%4d", i, addr[0], 10273 addr[1], addr[2], addr[3], addr[4], addr[5], 10274 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 10275 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10276 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10277 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10278 } else { 10279 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 10280 "%012jx - - ", i, addr[0], addr[1], 10281 addr[2], addr[3], addr[4], addr[5], 10282 (uintmax_t)mask); 10283 10284 if (vlan_vld) 10285 sbuf_printf(sb, "%4u Y ", ivlan); 10286 else 10287 sbuf_printf(sb, " - N "); 10288 10289 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 10290 lookup_type ? 'I' : 'O', port_num, 10291 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 10292 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 10293 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 10294 } 10295 10296 10297 if (cls_lo & F_T6_REPLICATE) { 10298 struct fw_ldst_cmd ldst_cmd; 10299 10300 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10301 ldst_cmd.op_to_addrspace = 10302 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10303 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10304 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10305 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10306 ldst_cmd.u.mps.rplc.fid_idx = 10307 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10308 V_FW_LDST_CMD_IDX(i)); 10309 10310 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10311 "t6mps"); 10312 if (rc) 10313 break; 10314 if (hw_off_limits(sc)) 10315 rc = ENXIO; 10316 else 10317 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10318 sizeof(ldst_cmd), &ldst_cmd); 10319 end_synchronized_op(sc, 0); 10320 if (rc != 0) 10321 break; 10322 else { 10323 sbuf_printf(sb, " %08x %08x %08x %08x" 10324 " %08x %08x %08x %08x", 10325 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 10326 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 10327 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 10328 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 10329 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10330 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10331 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10332 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10333 } 10334 } else 10335 sbuf_printf(sb, "%72s", ""); 10336 10337 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 10338 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 10339 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 10340 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 10341 } 10342 10343 if (rc) 10344 (void) sbuf_finish(sb); 10345 else 10346 rc = sbuf_finish(sb); 10347 sbuf_delete(sb); 10348 10349 return (rc); 10350 } 10351 10352 static int 10353 sysctl_path_mtus(SYSCTL_HANDLER_ARGS) 10354 { 10355 struct adapter *sc = arg1; 10356 struct sbuf *sb; 10357 int rc; 10358 uint16_t mtus[NMTUS]; 10359 10360 rc = 0; 10361 mtx_lock(&sc->reg_lock); 10362 if (hw_off_limits(sc)) 10363 rc = ENXIO; 10364 else 10365 t4_read_mtu_tbl(sc, mtus, NULL); 10366 mtx_unlock(&sc->reg_lock); 10367 if (rc != 0) 10368 return (rc); 10369 10370 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10371 if (sb == NULL) 10372 return (ENOMEM); 10373 10374 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", 10375 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], 10376 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], 10377 mtus[14], mtus[15]); 10378 10379 rc = sbuf_finish(sb); 10380 sbuf_delete(sb); 10381 10382 return (rc); 10383 } 10384 10385 static int 10386 sysctl_pm_stats(SYSCTL_HANDLER_ARGS) 10387 { 10388 struct adapter *sc = arg1; 10389 struct sbuf *sb; 10390 int rc, i; 10391 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS]; 10392 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS]; 10393 static const char *tx_stats[MAX_PM_NSTATS] = { 10394 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:", 10395 "Tx FIFO wait", NULL, "Tx latency" 10396 }; 10397 static const char *rx_stats[MAX_PM_NSTATS] = { 10398 "Read:", "Write bypass:", "Write mem:", "Flush:", 10399 "Rx FIFO wait", NULL, "Rx latency" 10400 }; 10401 10402 rc = 0; 10403 mtx_lock(&sc->reg_lock); 10404 if (hw_off_limits(sc)) 10405 rc = ENXIO; 10406 else { 10407 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); 10408 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); 10409 } 10410 mtx_unlock(&sc->reg_lock); 10411 if (rc != 0) 10412 return (rc); 10413 10414 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10415 if (sb == NULL) 10416 return (ENOMEM); 10417 10418 sbuf_printf(sb, " Tx pcmds Tx bytes"); 10419 for (i = 0; i < 4; i++) { 10420 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10421 tx_cyc[i]); 10422 } 10423 10424 sbuf_printf(sb, "\n Rx pcmds Rx bytes"); 10425 for (i = 0; i < 4; i++) { 10426 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10427 rx_cyc[i]); 10428 } 10429 10430 if (chip_id(sc) > CHELSIO_T5) { 10431 sbuf_printf(sb, 10432 "\n Total wait Total occupancy"); 10433 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10434 tx_cyc[i]); 10435 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10436 rx_cyc[i]); 10437 10438 i += 2; 10439 MPASS(i < nitems(tx_stats)); 10440 10441 sbuf_printf(sb, 10442 "\n Reads Total wait"); 10443 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 10444 tx_cyc[i]); 10445 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 10446 rx_cyc[i]); 10447 } 10448 10449 rc = sbuf_finish(sb); 10450 sbuf_delete(sb); 10451 10452 return (rc); 10453 } 10454 10455 static int 10456 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) 10457 { 10458 struct adapter *sc = arg1; 10459 struct sbuf *sb; 10460 int rc; 10461 struct tp_rdma_stats stats; 10462 10463 rc = 0; 10464 mtx_lock(&sc->reg_lock); 10465 if (hw_off_limits(sc)) 10466 rc = ENXIO; 10467 else 10468 t4_tp_get_rdma_stats(sc, &stats, 0); 10469 mtx_unlock(&sc->reg_lock); 10470 if (rc != 0) 10471 return (rc); 10472 10473 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10474 if (sb == NULL) 10475 return (ENOMEM); 10476 10477 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); 10478 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); 10479 10480 rc = sbuf_finish(sb); 10481 sbuf_delete(sb); 10482 10483 return (rc); 10484 } 10485 10486 static int 10487 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) 10488 { 10489 struct adapter *sc = arg1; 10490 struct sbuf *sb; 10491 int rc; 10492 struct tp_tcp_stats v4, v6; 10493 10494 rc = 0; 10495 mtx_lock(&sc->reg_lock); 10496 if (hw_off_limits(sc)) 10497 rc = ENXIO; 10498 else 10499 t4_tp_get_tcp_stats(sc, &v4, &v6, 0); 10500 mtx_unlock(&sc->reg_lock); 10501 if (rc != 0) 10502 return (rc); 10503 10504 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10505 if (sb == NULL) 10506 return (ENOMEM); 10507 10508 sbuf_printf(sb, 10509 " IP IPv6\n"); 10510 sbuf_printf(sb, "OutRsts: %20u %20u\n", 10511 v4.tcp_out_rsts, v6.tcp_out_rsts); 10512 sbuf_printf(sb, "InSegs: %20ju %20ju\n", 10513 v4.tcp_in_segs, v6.tcp_in_segs); 10514 sbuf_printf(sb, "OutSegs: %20ju %20ju\n", 10515 v4.tcp_out_segs, v6.tcp_out_segs); 10516 sbuf_printf(sb, "RetransSegs: %20ju %20ju", 10517 v4.tcp_retrans_segs, v6.tcp_retrans_segs); 10518 10519 rc = sbuf_finish(sb); 10520 sbuf_delete(sb); 10521 10522 return (rc); 10523 } 10524 10525 static int 10526 sysctl_tids(SYSCTL_HANDLER_ARGS) 10527 { 10528 struct adapter *sc = arg1; 10529 struct sbuf *sb; 10530 int rc; 10531 uint32_t x, y; 10532 struct tid_info *t = &sc->tids; 10533 10534 rc = 0; 10535 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10536 if (sb == NULL) 10537 return (ENOMEM); 10538 10539 if (t->natids) { 10540 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, 10541 t->atids_in_use); 10542 } 10543 10544 if (t->nhpftids) { 10545 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n", 10546 t->hpftid_base, t->hpftid_end, t->hpftids_in_use); 10547 } 10548 10549 if (t->ntids) { 10550 bool hashen = false; 10551 10552 mtx_lock(&sc->reg_lock); 10553 if (hw_off_limits(sc)) 10554 rc = ENXIO; 10555 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 10556 hashen = true; 10557 if (chip_id(sc) <= CHELSIO_T5) { 10558 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; 10559 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; 10560 } else { 10561 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX); 10562 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE); 10563 } 10564 } 10565 mtx_unlock(&sc->reg_lock); 10566 if (rc != 0) 10567 goto done; 10568 10569 sbuf_printf(sb, "TID range: "); 10570 if (hashen) { 10571 if (x) 10572 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1); 10573 sbuf_printf(sb, "%u-%u", y, t->ntids - 1); 10574 } else { 10575 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base + 10576 t->ntids - 1); 10577 } 10578 sbuf_printf(sb, ", in use: %u\n", 10579 atomic_load_acq_int(&t->tids_in_use)); 10580 } 10581 10582 if (t->nstids) { 10583 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, 10584 t->stid_base + t->nstids - 1, t->stids_in_use); 10585 } 10586 10587 if (t->nftids) { 10588 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base, 10589 t->ftid_end, t->ftids_in_use); 10590 } 10591 10592 if (t->netids) { 10593 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base, 10594 t->etid_base + t->netids - 1, t->etids_in_use); 10595 } 10596 10597 mtx_lock(&sc->reg_lock); 10598 if (hw_off_limits(sc)) 10599 rc = ENXIO; 10600 else { 10601 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4); 10602 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6); 10603 } 10604 mtx_unlock(&sc->reg_lock); 10605 if (rc != 0) 10606 goto done; 10607 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y); 10608 done: 10609 if (rc == 0) 10610 rc = sbuf_finish(sb); 10611 else 10612 (void)sbuf_finish(sb); 10613 sbuf_delete(sb); 10614 10615 return (rc); 10616 } 10617 10618 static int 10619 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) 10620 { 10621 struct adapter *sc = arg1; 10622 struct sbuf *sb; 10623 int rc; 10624 struct tp_err_stats stats; 10625 10626 rc = 0; 10627 mtx_lock(&sc->reg_lock); 10628 if (hw_off_limits(sc)) 10629 rc = ENXIO; 10630 else 10631 t4_tp_get_err_stats(sc, &stats, 0); 10632 mtx_unlock(&sc->reg_lock); 10633 if (rc != 0) 10634 return (rc); 10635 10636 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10637 if (sb == NULL) 10638 return (ENOMEM); 10639 10640 if (sc->chip_params->nchan > 2) { 10641 sbuf_printf(sb, " channel 0 channel 1" 10642 " channel 2 channel 3\n"); 10643 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", 10644 stats.mac_in_errs[0], stats.mac_in_errs[1], 10645 stats.mac_in_errs[2], stats.mac_in_errs[3]); 10646 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", 10647 stats.hdr_in_errs[0], stats.hdr_in_errs[1], 10648 stats.hdr_in_errs[2], stats.hdr_in_errs[3]); 10649 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", 10650 stats.tcp_in_errs[0], stats.tcp_in_errs[1], 10651 stats.tcp_in_errs[2], stats.tcp_in_errs[3]); 10652 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", 10653 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1], 10654 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]); 10655 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", 10656 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1], 10657 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]); 10658 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", 10659 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1], 10660 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]); 10661 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", 10662 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1], 10663 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]); 10664 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", 10665 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1], 10666 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]); 10667 } else { 10668 sbuf_printf(sb, " channel 0 channel 1\n"); 10669 sbuf_printf(sb, "macInErrs: %10u %10u\n", 10670 stats.mac_in_errs[0], stats.mac_in_errs[1]); 10671 sbuf_printf(sb, "hdrInErrs: %10u %10u\n", 10672 stats.hdr_in_errs[0], stats.hdr_in_errs[1]); 10673 sbuf_printf(sb, "tcpInErrs: %10u %10u\n", 10674 stats.tcp_in_errs[0], stats.tcp_in_errs[1]); 10675 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n", 10676 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]); 10677 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n", 10678 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]); 10679 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n", 10680 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]); 10681 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n", 10682 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]); 10683 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n", 10684 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]); 10685 } 10686 10687 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", 10688 stats.ofld_no_neigh, stats.ofld_cong_defer); 10689 10690 rc = sbuf_finish(sb); 10691 sbuf_delete(sb); 10692 10693 return (rc); 10694 } 10695 10696 static int 10697 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS) 10698 { 10699 struct adapter *sc = arg1; 10700 struct sbuf *sb; 10701 int rc; 10702 struct tp_tnl_stats stats; 10703 10704 rc = 0; 10705 mtx_lock(&sc->reg_lock); 10706 if (hw_off_limits(sc)) 10707 rc = ENXIO; 10708 else 10709 t4_tp_get_tnl_stats(sc, &stats, 1); 10710 mtx_unlock(&sc->reg_lock); 10711 if (rc != 0) 10712 return (rc); 10713 10714 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10715 if (sb == NULL) 10716 return (ENOMEM); 10717 10718 if (sc->chip_params->nchan > 2) { 10719 sbuf_printf(sb, " channel 0 channel 1" 10720 " channel 2 channel 3\n"); 10721 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n", 10722 stats.out_pkt[0], stats.out_pkt[1], 10723 stats.out_pkt[2], stats.out_pkt[3]); 10724 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u", 10725 stats.in_pkt[0], stats.in_pkt[1], 10726 stats.in_pkt[2], stats.in_pkt[3]); 10727 } else { 10728 sbuf_printf(sb, " channel 0 channel 1\n"); 10729 sbuf_printf(sb, "OutPkts: %10u %10u\n", 10730 stats.out_pkt[0], stats.out_pkt[1]); 10731 sbuf_printf(sb, "InPkts: %10u %10u", 10732 stats.in_pkt[0], stats.in_pkt[1]); 10733 } 10734 10735 rc = sbuf_finish(sb); 10736 sbuf_delete(sb); 10737 10738 return (rc); 10739 } 10740 10741 static int 10742 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS) 10743 { 10744 struct adapter *sc = arg1; 10745 struct tp_params *tpp = &sc->params.tp; 10746 u_int mask; 10747 int rc; 10748 10749 mask = tpp->la_mask >> 16; 10750 rc = sysctl_handle_int(oidp, &mask, 0, req); 10751 if (rc != 0 || req->newptr == NULL) 10752 return (rc); 10753 if (mask > 0xffff) 10754 return (EINVAL); 10755 mtx_lock(&sc->reg_lock); 10756 if (hw_off_limits(sc)) 10757 rc = ENXIO; 10758 else { 10759 tpp->la_mask = mask << 16; 10760 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, 10761 tpp->la_mask); 10762 } 10763 mtx_unlock(&sc->reg_lock); 10764 10765 return (rc); 10766 } 10767 10768 struct field_desc { 10769 const char *name; 10770 u_int start; 10771 u_int width; 10772 }; 10773 10774 static void 10775 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) 10776 { 10777 char buf[32]; 10778 int line_size = 0; 10779 10780 while (f->name) { 10781 uint64_t mask = (1ULL << f->width) - 1; 10782 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, 10783 ((uintmax_t)v >> f->start) & mask); 10784 10785 if (line_size + len >= 79) { 10786 line_size = 8; 10787 sbuf_printf(sb, "\n "); 10788 } 10789 sbuf_printf(sb, "%s ", buf); 10790 line_size += len + 1; 10791 f++; 10792 } 10793 sbuf_printf(sb, "\n"); 10794 } 10795 10796 static const struct field_desc tp_la0[] = { 10797 { "RcfOpCodeOut", 60, 4 }, 10798 { "State", 56, 4 }, 10799 { "WcfState", 52, 4 }, 10800 { "RcfOpcSrcOut", 50, 2 }, 10801 { "CRxError", 49, 1 }, 10802 { "ERxError", 48, 1 }, 10803 { "SanityFailed", 47, 1 }, 10804 { "SpuriousMsg", 46, 1 }, 10805 { "FlushInputMsg", 45, 1 }, 10806 { "FlushInputCpl", 44, 1 }, 10807 { "RssUpBit", 43, 1 }, 10808 { "RssFilterHit", 42, 1 }, 10809 { "Tid", 32, 10 }, 10810 { "InitTcb", 31, 1 }, 10811 { "LineNumber", 24, 7 }, 10812 { "Emsg", 23, 1 }, 10813 { "EdataOut", 22, 1 }, 10814 { "Cmsg", 21, 1 }, 10815 { "CdataOut", 20, 1 }, 10816 { "EreadPdu", 19, 1 }, 10817 { "CreadPdu", 18, 1 }, 10818 { "TunnelPkt", 17, 1 }, 10819 { "RcfPeerFin", 16, 1 }, 10820 { "RcfReasonOut", 12, 4 }, 10821 { "TxCchannel", 10, 2 }, 10822 { "RcfTxChannel", 8, 2 }, 10823 { "RxEchannel", 6, 2 }, 10824 { "RcfRxChannel", 5, 1 }, 10825 { "RcfDataOutSrdy", 4, 1 }, 10826 { "RxDvld", 3, 1 }, 10827 { "RxOoDvld", 2, 1 }, 10828 { "RxCongestion", 1, 1 }, 10829 { "TxCongestion", 0, 1 }, 10830 { NULL } 10831 }; 10832 10833 static const struct field_desc tp_la1[] = { 10834 { "CplCmdIn", 56, 8 }, 10835 { "CplCmdOut", 48, 8 }, 10836 { "ESynOut", 47, 1 }, 10837 { "EAckOut", 46, 1 }, 10838 { "EFinOut", 45, 1 }, 10839 { "ERstOut", 44, 1 }, 10840 { "SynIn", 43, 1 }, 10841 { "AckIn", 42, 1 }, 10842 { "FinIn", 41, 1 }, 10843 { "RstIn", 40, 1 }, 10844 { "DataIn", 39, 1 }, 10845 { "DataInVld", 38, 1 }, 10846 { "PadIn", 37, 1 }, 10847 { "RxBufEmpty", 36, 1 }, 10848 { "RxDdp", 35, 1 }, 10849 { "RxFbCongestion", 34, 1 }, 10850 { "TxFbCongestion", 33, 1 }, 10851 { "TxPktSumSrdy", 32, 1 }, 10852 { "RcfUlpType", 28, 4 }, 10853 { "Eread", 27, 1 }, 10854 { "Ebypass", 26, 1 }, 10855 { "Esave", 25, 1 }, 10856 { "Static0", 24, 1 }, 10857 { "Cread", 23, 1 }, 10858 { "Cbypass", 22, 1 }, 10859 { "Csave", 21, 1 }, 10860 { "CPktOut", 20, 1 }, 10861 { "RxPagePoolFull", 18, 2 }, 10862 { "RxLpbkPkt", 17, 1 }, 10863 { "TxLpbkPkt", 16, 1 }, 10864 { "RxVfValid", 15, 1 }, 10865 { "SynLearned", 14, 1 }, 10866 { "SetDelEntry", 13, 1 }, 10867 { "SetInvEntry", 12, 1 }, 10868 { "CpcmdDvld", 11, 1 }, 10869 { "CpcmdSave", 10, 1 }, 10870 { "RxPstructsFull", 8, 2 }, 10871 { "EpcmdDvld", 7, 1 }, 10872 { "EpcmdFlush", 6, 1 }, 10873 { "EpcmdTrimPrefix", 5, 1 }, 10874 { "EpcmdTrimPostfix", 4, 1 }, 10875 { "ERssIp4Pkt", 3, 1 }, 10876 { "ERssIp6Pkt", 2, 1 }, 10877 { "ERssTcpUdpPkt", 1, 1 }, 10878 { "ERssFceFipPkt", 0, 1 }, 10879 { NULL } 10880 }; 10881 10882 static const struct field_desc tp_la2[] = { 10883 { "CplCmdIn", 56, 8 }, 10884 { "MpsVfVld", 55, 1 }, 10885 { "MpsPf", 52, 3 }, 10886 { "MpsVf", 44, 8 }, 10887 { "SynIn", 43, 1 }, 10888 { "AckIn", 42, 1 }, 10889 { "FinIn", 41, 1 }, 10890 { "RstIn", 40, 1 }, 10891 { "DataIn", 39, 1 }, 10892 { "DataInVld", 38, 1 }, 10893 { "PadIn", 37, 1 }, 10894 { "RxBufEmpty", 36, 1 }, 10895 { "RxDdp", 35, 1 }, 10896 { "RxFbCongestion", 34, 1 }, 10897 { "TxFbCongestion", 33, 1 }, 10898 { "TxPktSumSrdy", 32, 1 }, 10899 { "RcfUlpType", 28, 4 }, 10900 { "Eread", 27, 1 }, 10901 { "Ebypass", 26, 1 }, 10902 { "Esave", 25, 1 }, 10903 { "Static0", 24, 1 }, 10904 { "Cread", 23, 1 }, 10905 { "Cbypass", 22, 1 }, 10906 { "Csave", 21, 1 }, 10907 { "CPktOut", 20, 1 }, 10908 { "RxPagePoolFull", 18, 2 }, 10909 { "RxLpbkPkt", 17, 1 }, 10910 { "TxLpbkPkt", 16, 1 }, 10911 { "RxVfValid", 15, 1 }, 10912 { "SynLearned", 14, 1 }, 10913 { "SetDelEntry", 13, 1 }, 10914 { "SetInvEntry", 12, 1 }, 10915 { "CpcmdDvld", 11, 1 }, 10916 { "CpcmdSave", 10, 1 }, 10917 { "RxPstructsFull", 8, 2 }, 10918 { "EpcmdDvld", 7, 1 }, 10919 { "EpcmdFlush", 6, 1 }, 10920 { "EpcmdTrimPrefix", 5, 1 }, 10921 { "EpcmdTrimPostfix", 4, 1 }, 10922 { "ERssIp4Pkt", 3, 1 }, 10923 { "ERssIp6Pkt", 2, 1 }, 10924 { "ERssTcpUdpPkt", 1, 1 }, 10925 { "ERssFceFipPkt", 0, 1 }, 10926 { NULL } 10927 }; 10928 10929 static void 10930 tp_la_show(struct sbuf *sb, uint64_t *p, int idx) 10931 { 10932 10933 field_desc_show(sb, *p, tp_la0); 10934 } 10935 10936 static void 10937 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) 10938 { 10939 10940 if (idx) 10941 sbuf_printf(sb, "\n"); 10942 field_desc_show(sb, p[0], tp_la0); 10943 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 10944 field_desc_show(sb, p[1], tp_la0); 10945 } 10946 10947 static void 10948 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) 10949 { 10950 10951 if (idx) 10952 sbuf_printf(sb, "\n"); 10953 field_desc_show(sb, p[0], tp_la0); 10954 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 10955 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); 10956 } 10957 10958 static int 10959 sysctl_tp_la(SYSCTL_HANDLER_ARGS) 10960 { 10961 struct adapter *sc = arg1; 10962 struct sbuf *sb; 10963 uint64_t *buf, *p; 10964 int rc; 10965 u_int i, inc; 10966 void (*show_func)(struct sbuf *, uint64_t *, int); 10967 10968 rc = 0; 10969 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10970 if (sb == NULL) 10971 return (ENOMEM); 10972 10973 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); 10974 10975 mtx_lock(&sc->reg_lock); 10976 if (hw_off_limits(sc)) 10977 rc = ENXIO; 10978 else { 10979 t4_tp_read_la(sc, buf, NULL); 10980 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { 10981 case 2: 10982 inc = 2; 10983 show_func = tp_la_show2; 10984 break; 10985 case 3: 10986 inc = 2; 10987 show_func = tp_la_show3; 10988 break; 10989 default: 10990 inc = 1; 10991 show_func = tp_la_show; 10992 } 10993 } 10994 mtx_unlock(&sc->reg_lock); 10995 if (rc != 0) 10996 goto done; 10997 10998 p = buf; 10999 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) 11000 (*show_func)(sb, p, i); 11001 rc = sbuf_finish(sb); 11002 done: 11003 sbuf_delete(sb); 11004 free(buf, M_CXGBE); 11005 return (rc); 11006 } 11007 11008 static int 11009 sysctl_tx_rate(SYSCTL_HANDLER_ARGS) 11010 { 11011 struct adapter *sc = arg1; 11012 struct sbuf *sb; 11013 int rc; 11014 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN]; 11015 11016 rc = 0; 11017 mtx_lock(&sc->reg_lock); 11018 if (hw_off_limits(sc)) 11019 rc = ENXIO; 11020 else 11021 t4_get_chan_txrate(sc, nrate, orate); 11022 mtx_unlock(&sc->reg_lock); 11023 if (rc != 0) 11024 return (rc); 11025 11026 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11027 if (sb == NULL) 11028 return (ENOMEM); 11029 11030 if (sc->chip_params->nchan > 2) { 11031 sbuf_printf(sb, " channel 0 channel 1" 11032 " channel 2 channel 3\n"); 11033 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", 11034 nrate[0], nrate[1], nrate[2], nrate[3]); 11035 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", 11036 orate[0], orate[1], orate[2], orate[3]); 11037 } else { 11038 sbuf_printf(sb, " channel 0 channel 1\n"); 11039 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n", 11040 nrate[0], nrate[1]); 11041 sbuf_printf(sb, "Offload B/s: %10ju %10ju", 11042 orate[0], orate[1]); 11043 } 11044 11045 rc = sbuf_finish(sb); 11046 sbuf_delete(sb); 11047 11048 return (rc); 11049 } 11050 11051 static int 11052 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) 11053 { 11054 struct adapter *sc = arg1; 11055 struct sbuf *sb; 11056 uint32_t *buf, *p; 11057 int rc, i; 11058 11059 rc = 0; 11060 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11061 if (sb == NULL) 11062 return (ENOMEM); 11063 11064 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, 11065 M_ZERO | M_WAITOK); 11066 11067 mtx_lock(&sc->reg_lock); 11068 if (hw_off_limits(sc)) 11069 rc = ENXIO; 11070 else 11071 t4_ulprx_read_la(sc, buf); 11072 mtx_unlock(&sc->reg_lock); 11073 if (rc != 0) 11074 goto done; 11075 11076 p = buf; 11077 sbuf_printf(sb, " Pcmd Type Message" 11078 " Data"); 11079 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { 11080 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", 11081 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 11082 } 11083 rc = sbuf_finish(sb); 11084 done: 11085 sbuf_delete(sb); 11086 free(buf, M_CXGBE); 11087 return (rc); 11088 } 11089 11090 static int 11091 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) 11092 { 11093 struct adapter *sc = arg1; 11094 struct sbuf *sb; 11095 int rc; 11096 uint32_t cfg, s1, s2; 11097 11098 MPASS(chip_id(sc) >= CHELSIO_T5); 11099 11100 rc = 0; 11101 mtx_lock(&sc->reg_lock); 11102 if (hw_off_limits(sc)) 11103 rc = ENXIO; 11104 else { 11105 cfg = t4_read_reg(sc, A_SGE_STAT_CFG); 11106 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL); 11107 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH); 11108 } 11109 mtx_unlock(&sc->reg_lock); 11110 if (rc != 0) 11111 return (rc); 11112 11113 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11114 if (sb == NULL) 11115 return (ENOMEM); 11116 11117 if (G_STATSOURCE_T5(cfg) == 7) { 11118 int mode; 11119 11120 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg); 11121 if (mode == 0) 11122 sbuf_printf(sb, "total %d, incomplete %d", s1, s2); 11123 else if (mode == 1) 11124 sbuf_printf(sb, "total %d, data overflow %d", s1, s2); 11125 else 11126 sbuf_printf(sb, "unknown mode %d", mode); 11127 } 11128 rc = sbuf_finish(sb); 11129 sbuf_delete(sb); 11130 11131 return (rc); 11132 } 11133 11134 static int 11135 sysctl_cpus(SYSCTL_HANDLER_ARGS) 11136 { 11137 struct adapter *sc = arg1; 11138 enum cpu_sets op = arg2; 11139 cpuset_t cpuset; 11140 struct sbuf *sb; 11141 int i, rc; 11142 11143 MPASS(op == LOCAL_CPUS || op == INTR_CPUS); 11144 11145 CPU_ZERO(&cpuset); 11146 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset); 11147 if (rc != 0) 11148 return (rc); 11149 11150 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11151 if (sb == NULL) 11152 return (ENOMEM); 11153 11154 CPU_FOREACH(i) 11155 sbuf_printf(sb, "%d ", i); 11156 rc = sbuf_finish(sb); 11157 sbuf_delete(sb); 11158 11159 return (rc); 11160 } 11161 11162 static int 11163 sysctl_reset(SYSCTL_HANDLER_ARGS) 11164 { 11165 struct adapter *sc = arg1; 11166 u_int val; 11167 int rc; 11168 11169 val = atomic_load_int(&sc->num_resets); 11170 rc = sysctl_handle_int(oidp, &val, 0, req); 11171 if (rc != 0 || req->newptr == NULL) 11172 return (rc); 11173 11174 if (val == 0) { 11175 /* Zero out the counter that tracks reset. */ 11176 atomic_store_int(&sc->num_resets, 0); 11177 return (0); 11178 } 11179 11180 if (val != 1) 11181 return (EINVAL); /* 0 or 1 are the only legal values */ 11182 11183 if (hw_off_limits(sc)) /* harmless race */ 11184 return (EALREADY); 11185 11186 taskqueue_enqueue(reset_tq, &sc->reset_task); 11187 return (0); 11188 } 11189 11190 #ifdef TCP_OFFLOAD 11191 static int 11192 sysctl_tls(SYSCTL_HANDLER_ARGS) 11193 { 11194 struct adapter *sc = arg1; 11195 int i, j, v, rc; 11196 struct vi_info *vi; 11197 11198 v = sc->tt.tls; 11199 rc = sysctl_handle_int(oidp, &v, 0, req); 11200 if (rc != 0 || req->newptr == NULL) 11201 return (rc); 11202 11203 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 11204 return (ENOTSUP); 11205 11206 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls"); 11207 if (rc) 11208 return (rc); 11209 if (hw_off_limits(sc)) 11210 rc = ENXIO; 11211 else { 11212 sc->tt.tls = !!v; 11213 for_each_port(sc, i) { 11214 for_each_vi(sc->port[i], j, vi) { 11215 if (vi->flags & VI_INIT_DONE) 11216 t4_update_fl_bufsize(vi->ifp); 11217 } 11218 } 11219 } 11220 end_synchronized_op(sc, 0); 11221 11222 return (rc); 11223 11224 } 11225 11226 static void 11227 unit_conv(char *buf, size_t len, u_int val, u_int factor) 11228 { 11229 u_int rem = val % factor; 11230 11231 if (rem == 0) 11232 snprintf(buf, len, "%u", val / factor); 11233 else { 11234 while (rem % 10 == 0) 11235 rem /= 10; 11236 snprintf(buf, len, "%u.%u", val / factor, rem); 11237 } 11238 } 11239 11240 static int 11241 sysctl_tp_tick(SYSCTL_HANDLER_ARGS) 11242 { 11243 struct adapter *sc = arg1; 11244 char buf[16]; 11245 u_int res, re; 11246 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11247 11248 mtx_lock(&sc->reg_lock); 11249 if (hw_off_limits(sc)) 11250 res = (u_int)-1; 11251 else 11252 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 11253 mtx_unlock(&sc->reg_lock); 11254 if (res == (u_int)-1) 11255 return (ENXIO); 11256 11257 switch (arg2) { 11258 case 0: 11259 /* timer_tick */ 11260 re = G_TIMERRESOLUTION(res); 11261 break; 11262 case 1: 11263 /* TCP timestamp tick */ 11264 re = G_TIMESTAMPRESOLUTION(res); 11265 break; 11266 case 2: 11267 /* DACK tick */ 11268 re = G_DELAYEDACKRESOLUTION(res); 11269 break; 11270 default: 11271 return (EDOOFUS); 11272 } 11273 11274 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000); 11275 11276 return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); 11277 } 11278 11279 static int 11280 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS) 11281 { 11282 struct adapter *sc = arg1; 11283 int rc; 11284 u_int dack_tmr, dack_re, v; 11285 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11286 11287 mtx_lock(&sc->reg_lock); 11288 if (hw_off_limits(sc)) 11289 rc = ENXIO; 11290 else { 11291 rc = 0; 11292 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc, 11293 A_TP_TIMER_RESOLUTION)); 11294 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER); 11295 } 11296 mtx_unlock(&sc->reg_lock); 11297 if (rc != 0) 11298 return (rc); 11299 11300 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr; 11301 11302 return (sysctl_handle_int(oidp, &v, 0, req)); 11303 } 11304 11305 static int 11306 sysctl_tp_timer(SYSCTL_HANDLER_ARGS) 11307 { 11308 struct adapter *sc = arg1; 11309 int rc, reg = arg2; 11310 u_int tre; 11311 u_long tp_tick_us, v; 11312 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 11313 11314 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX || 11315 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX || 11316 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL || 11317 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER); 11318 11319 mtx_lock(&sc->reg_lock); 11320 if (hw_off_limits(sc)) 11321 rc = ENXIO; 11322 else { 11323 rc = 0; 11324 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION)); 11325 tp_tick_us = (cclk_ps << tre) / 1000000; 11326 if (reg == A_TP_INIT_SRTT) 11327 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg)); 11328 else 11329 v = tp_tick_us * t4_read_reg(sc, reg); 11330 } 11331 mtx_unlock(&sc->reg_lock); 11332 if (rc != 0) 11333 return (rc); 11334 else 11335 return (sysctl_handle_long(oidp, &v, 0, req)); 11336 } 11337 11338 /* 11339 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is 11340 * passed to this function. 11341 */ 11342 static int 11343 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS) 11344 { 11345 struct adapter *sc = arg1; 11346 int rc, idx = arg2; 11347 u_int v; 11348 11349 MPASS(idx >= 0 && idx <= 24); 11350 11351 mtx_lock(&sc->reg_lock); 11352 if (hw_off_limits(sc)) 11353 rc = ENXIO; 11354 else { 11355 rc = 0; 11356 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf; 11357 } 11358 mtx_unlock(&sc->reg_lock); 11359 if (rc != 0) 11360 return (rc); 11361 else 11362 return (sysctl_handle_int(oidp, &v, 0, req)); 11363 } 11364 11365 static int 11366 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS) 11367 { 11368 struct adapter *sc = arg1; 11369 int rc, idx = arg2; 11370 u_int shift, v, r; 11371 11372 MPASS(idx >= 0 && idx < 16); 11373 11374 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3); 11375 shift = (idx & 3) << 3; 11376 mtx_lock(&sc->reg_lock); 11377 if (hw_off_limits(sc)) 11378 rc = ENXIO; 11379 else { 11380 rc = 0; 11381 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0; 11382 } 11383 mtx_unlock(&sc->reg_lock); 11384 if (rc != 0) 11385 return (rc); 11386 else 11387 return (sysctl_handle_int(oidp, &v, 0, req)); 11388 } 11389 11390 static int 11391 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS) 11392 { 11393 struct vi_info *vi = arg1; 11394 struct adapter *sc = vi->adapter; 11395 int idx, rc, i; 11396 struct sge_ofld_rxq *ofld_rxq; 11397 uint8_t v; 11398 11399 idx = vi->ofld_tmr_idx; 11400 11401 rc = sysctl_handle_int(oidp, &idx, 0, req); 11402 if (rc != 0 || req->newptr == NULL) 11403 return (rc); 11404 11405 if (idx < 0 || idx >= SGE_NTIMERS) 11406 return (EINVAL); 11407 11408 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11409 "t4otmr"); 11410 if (rc) 11411 return (rc); 11412 11413 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1); 11414 for_each_ofld_rxq(vi, i, ofld_rxq) { 11415 #ifdef atomic_store_rel_8 11416 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); 11417 #else 11418 ofld_rxq->iq.intr_params = v; 11419 #endif 11420 } 11421 vi->ofld_tmr_idx = idx; 11422 11423 end_synchronized_op(sc, LOCK_HELD); 11424 return (0); 11425 } 11426 11427 static int 11428 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS) 11429 { 11430 struct vi_info *vi = arg1; 11431 struct adapter *sc = vi->adapter; 11432 int idx, rc; 11433 11434 idx = vi->ofld_pktc_idx; 11435 11436 rc = sysctl_handle_int(oidp, &idx, 0, req); 11437 if (rc != 0 || req->newptr == NULL) 11438 return (rc); 11439 11440 if (idx < -1 || idx >= SGE_NCOUNTERS) 11441 return (EINVAL); 11442 11443 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 11444 "t4opktc"); 11445 if (rc) 11446 return (rc); 11447 11448 if (vi->flags & VI_INIT_DONE) 11449 rc = EBUSY; /* cannot be changed once the queues are created */ 11450 else 11451 vi->ofld_pktc_idx = idx; 11452 11453 end_synchronized_op(sc, LOCK_HELD); 11454 return (rc); 11455 } 11456 #endif 11457 11458 static int 11459 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt) 11460 { 11461 int rc; 11462 11463 if (cntxt->cid > M_CTXTQID) 11464 return (EINVAL); 11465 11466 if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS && 11467 cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM) 11468 return (EINVAL); 11469 11470 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); 11471 if (rc) 11472 return (rc); 11473 11474 if (hw_off_limits(sc)) { 11475 rc = ENXIO; 11476 goto done; 11477 } 11478 11479 if (sc->flags & FW_OK) { 11480 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id, 11481 &cntxt->data[0]); 11482 if (rc == 0) 11483 goto done; 11484 } 11485 11486 /* 11487 * Read via firmware failed or wasn't even attempted. Read directly via 11488 * the backdoor. 11489 */ 11490 rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); 11491 done: 11492 end_synchronized_op(sc, 0); 11493 return (rc); 11494 } 11495 11496 static int 11497 load_fw(struct adapter *sc, struct t4_data *fw) 11498 { 11499 int rc; 11500 uint8_t *fw_data; 11501 11502 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); 11503 if (rc) 11504 return (rc); 11505 11506 if (hw_off_limits(sc)) { 11507 rc = ENXIO; 11508 goto done; 11509 } 11510 11511 /* 11512 * The firmware, with the sole exception of the memory parity error 11513 * handler, runs from memory and not flash. It is almost always safe to 11514 * install a new firmware on a running system. Just set bit 1 in 11515 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first. 11516 */ 11517 if (sc->flags & FULL_INIT_DONE && 11518 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) { 11519 rc = EBUSY; 11520 goto done; 11521 } 11522 11523 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); 11524 11525 rc = copyin(fw->data, fw_data, fw->len); 11526 if (rc == 0) 11527 rc = -t4_load_fw(sc, fw_data, fw->len); 11528 11529 free(fw_data, M_CXGBE); 11530 done: 11531 end_synchronized_op(sc, 0); 11532 return (rc); 11533 } 11534 11535 static int 11536 load_cfg(struct adapter *sc, struct t4_data *cfg) 11537 { 11538 int rc; 11539 uint8_t *cfg_data = NULL; 11540 11541 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11542 if (rc) 11543 return (rc); 11544 11545 if (hw_off_limits(sc)) { 11546 rc = ENXIO; 11547 goto done; 11548 } 11549 11550 if (cfg->len == 0) { 11551 /* clear */ 11552 rc = -t4_load_cfg(sc, NULL, 0); 11553 goto done; 11554 } 11555 11556 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK); 11557 11558 rc = copyin(cfg->data, cfg_data, cfg->len); 11559 if (rc == 0) 11560 rc = -t4_load_cfg(sc, cfg_data, cfg->len); 11561 11562 free(cfg_data, M_CXGBE); 11563 done: 11564 end_synchronized_op(sc, 0); 11565 return (rc); 11566 } 11567 11568 static int 11569 load_boot(struct adapter *sc, struct t4_bootrom *br) 11570 { 11571 int rc; 11572 uint8_t *br_data = NULL; 11573 u_int offset; 11574 11575 if (br->len > 1024 * 1024) 11576 return (EFBIG); 11577 11578 if (br->pf_offset == 0) { 11579 /* pfidx */ 11580 if (br->pfidx_addr > 7) 11581 return (EINVAL); 11582 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr, 11583 A_PCIE_PF_EXPROM_OFST))); 11584 } else if (br->pf_offset == 1) { 11585 /* offset */ 11586 offset = G_OFFSET(br->pfidx_addr); 11587 } else { 11588 return (EINVAL); 11589 } 11590 11591 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr"); 11592 if (rc) 11593 return (rc); 11594 11595 if (hw_off_limits(sc)) { 11596 rc = ENXIO; 11597 goto done; 11598 } 11599 11600 if (br->len == 0) { 11601 /* clear */ 11602 rc = -t4_load_boot(sc, NULL, offset, 0); 11603 goto done; 11604 } 11605 11606 br_data = malloc(br->len, M_CXGBE, M_WAITOK); 11607 11608 rc = copyin(br->data, br_data, br->len); 11609 if (rc == 0) 11610 rc = -t4_load_boot(sc, br_data, offset, br->len); 11611 11612 free(br_data, M_CXGBE); 11613 done: 11614 end_synchronized_op(sc, 0); 11615 return (rc); 11616 } 11617 11618 static int 11619 load_bootcfg(struct adapter *sc, struct t4_data *bc) 11620 { 11621 int rc; 11622 uint8_t *bc_data = NULL; 11623 11624 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 11625 if (rc) 11626 return (rc); 11627 11628 if (hw_off_limits(sc)) { 11629 rc = ENXIO; 11630 goto done; 11631 } 11632 11633 if (bc->len == 0) { 11634 /* clear */ 11635 rc = -t4_load_bootcfg(sc, NULL, 0); 11636 goto done; 11637 } 11638 11639 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK); 11640 11641 rc = copyin(bc->data, bc_data, bc->len); 11642 if (rc == 0) 11643 rc = -t4_load_bootcfg(sc, bc_data, bc->len); 11644 11645 free(bc_data, M_CXGBE); 11646 done: 11647 end_synchronized_op(sc, 0); 11648 return (rc); 11649 } 11650 11651 static int 11652 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump) 11653 { 11654 int rc; 11655 struct cudbg_init *cudbg; 11656 void *handle, *buf; 11657 11658 /* buf is large, don't block if no memory is available */ 11659 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO); 11660 if (buf == NULL) 11661 return (ENOMEM); 11662 11663 handle = cudbg_alloc_handle(); 11664 if (handle == NULL) { 11665 rc = ENOMEM; 11666 goto done; 11667 } 11668 11669 cudbg = cudbg_get_init(handle); 11670 cudbg->adap = sc; 11671 cudbg->print = (cudbg_print_cb)printf; 11672 11673 #ifndef notyet 11674 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n", 11675 __func__, dump->wr_flash, dump->len, dump->data); 11676 #endif 11677 11678 if (dump->wr_flash) 11679 cudbg->use_flash = 1; 11680 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap)); 11681 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap)); 11682 11683 rc = cudbg_collect(handle, buf, &dump->len); 11684 if (rc != 0) 11685 goto done; 11686 11687 rc = copyout(buf, dump->data, dump->len); 11688 done: 11689 cudbg_free_handle(handle); 11690 free(buf, M_CXGBE); 11691 return (rc); 11692 } 11693 11694 static void 11695 free_offload_policy(struct t4_offload_policy *op) 11696 { 11697 struct offload_rule *r; 11698 int i; 11699 11700 if (op == NULL) 11701 return; 11702 11703 r = &op->rule[0]; 11704 for (i = 0; i < op->nrules; i++, r++) { 11705 free(r->bpf_prog.bf_insns, M_CXGBE); 11706 } 11707 free(op->rule, M_CXGBE); 11708 free(op, M_CXGBE); 11709 } 11710 11711 static int 11712 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop) 11713 { 11714 int i, rc, len; 11715 struct t4_offload_policy *op, *old; 11716 struct bpf_program *bf; 11717 const struct offload_settings *s; 11718 struct offload_rule *r; 11719 void *u; 11720 11721 if (!is_offload(sc)) 11722 return (ENODEV); 11723 11724 if (uop->nrules == 0) { 11725 /* Delete installed policies. */ 11726 op = NULL; 11727 goto set_policy; 11728 } else if (uop->nrules > 256) { /* arbitrary */ 11729 return (E2BIG); 11730 } 11731 11732 /* Copy userspace offload policy to kernel */ 11733 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK); 11734 op->nrules = uop->nrules; 11735 len = op->nrules * sizeof(struct offload_rule); 11736 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11737 rc = copyin(uop->rule, op->rule, len); 11738 if (rc) { 11739 free(op->rule, M_CXGBE); 11740 free(op, M_CXGBE); 11741 return (rc); 11742 } 11743 11744 r = &op->rule[0]; 11745 for (i = 0; i < op->nrules; i++, r++) { 11746 11747 /* Validate open_type */ 11748 if (r->open_type != OPEN_TYPE_LISTEN && 11749 r->open_type != OPEN_TYPE_ACTIVE && 11750 r->open_type != OPEN_TYPE_PASSIVE && 11751 r->open_type != OPEN_TYPE_DONTCARE) { 11752 error: 11753 /* 11754 * Rules 0 to i have malloc'd filters that need to be 11755 * freed. Rules i+1 to nrules have userspace pointers 11756 * and should be left alone. 11757 */ 11758 op->nrules = i; 11759 free_offload_policy(op); 11760 return (rc); 11761 } 11762 11763 /* Validate settings */ 11764 s = &r->settings; 11765 if ((s->offload != 0 && s->offload != 1) || 11766 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED || 11767 s->sched_class < -1 || 11768 s->sched_class >= sc->params.nsched_cls) { 11769 rc = EINVAL; 11770 goto error; 11771 } 11772 11773 bf = &r->bpf_prog; 11774 u = bf->bf_insns; /* userspace ptr */ 11775 bf->bf_insns = NULL; 11776 if (bf->bf_len == 0) { 11777 /* legal, matches everything */ 11778 continue; 11779 } 11780 len = bf->bf_len * sizeof(*bf->bf_insns); 11781 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 11782 rc = copyin(u, bf->bf_insns, len); 11783 if (rc != 0) 11784 goto error; 11785 11786 if (!bpf_validate(bf->bf_insns, bf->bf_len)) { 11787 rc = EINVAL; 11788 goto error; 11789 } 11790 } 11791 set_policy: 11792 rw_wlock(&sc->policy_lock); 11793 old = sc->policy; 11794 sc->policy = op; 11795 rw_wunlock(&sc->policy_lock); 11796 free_offload_policy(old); 11797 11798 return (0); 11799 } 11800 11801 #define MAX_READ_BUF_SIZE (128 * 1024) 11802 static int 11803 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) 11804 { 11805 uint32_t addr, remaining, n; 11806 uint32_t *buf; 11807 int rc; 11808 uint8_t *dst; 11809 11810 mtx_lock(&sc->reg_lock); 11811 if (hw_off_limits(sc)) 11812 rc = ENXIO; 11813 else 11814 rc = validate_mem_range(sc, mr->addr, mr->len); 11815 mtx_unlock(&sc->reg_lock); 11816 if (rc != 0) 11817 return (rc); 11818 11819 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK); 11820 addr = mr->addr; 11821 remaining = mr->len; 11822 dst = (void *)mr->data; 11823 11824 while (remaining) { 11825 n = min(remaining, MAX_READ_BUF_SIZE); 11826 mtx_lock(&sc->reg_lock); 11827 if (hw_off_limits(sc)) 11828 rc = ENXIO; 11829 else 11830 read_via_memwin(sc, 2, addr, buf, n); 11831 mtx_unlock(&sc->reg_lock); 11832 if (rc != 0) 11833 break; 11834 11835 rc = copyout(buf, dst, n); 11836 if (rc != 0) 11837 break; 11838 11839 dst += n; 11840 remaining -= n; 11841 addr += n; 11842 } 11843 11844 free(buf, M_CXGBE); 11845 return (rc); 11846 } 11847 #undef MAX_READ_BUF_SIZE 11848 11849 static int 11850 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) 11851 { 11852 int rc; 11853 11854 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) 11855 return (EINVAL); 11856 11857 if (i2cd->len > sizeof(i2cd->data)) 11858 return (EFBIG); 11859 11860 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); 11861 if (rc) 11862 return (rc); 11863 if (hw_off_limits(sc)) 11864 rc = ENXIO; 11865 else 11866 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, 11867 i2cd->offset, i2cd->len, &i2cd->data[0]); 11868 end_synchronized_op(sc, 0); 11869 11870 return (rc); 11871 } 11872 11873 static int 11874 clear_stats(struct adapter *sc, u_int port_id) 11875 { 11876 int i, v, chan_map; 11877 struct port_info *pi; 11878 struct vi_info *vi; 11879 struct sge_rxq *rxq; 11880 struct sge_txq *txq; 11881 struct sge_wrq *wrq; 11882 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 11883 struct sge_ofld_txq *ofld_txq; 11884 #endif 11885 #ifdef TCP_OFFLOAD 11886 struct sge_ofld_rxq *ofld_rxq; 11887 #endif 11888 11889 if (port_id >= sc->params.nports) 11890 return (EINVAL); 11891 pi = sc->port[port_id]; 11892 if (pi == NULL) 11893 return (EIO); 11894 11895 mtx_lock(&sc->reg_lock); 11896 if (!hw_off_limits(sc)) { 11897 /* MAC stats */ 11898 t4_clr_port_stats(sc, pi->tx_chan); 11899 if (is_t6(sc)) { 11900 if (pi->fcs_reg != -1) 11901 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 11902 else 11903 pi->stats.rx_fcs_err = 0; 11904 } 11905 for_each_vi(pi, v, vi) { 11906 if (vi->flags & VI_INIT_DONE) 11907 t4_clr_vi_stats(sc, vi->vin); 11908 } 11909 chan_map = pi->rx_e_chan_map; 11910 v = 0; /* reuse */ 11911 while (chan_map) { 11912 i = ffs(chan_map) - 1; 11913 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 11914 1, A_TP_MIB_TNL_CNG_DROP_0 + i); 11915 chan_map &= ~(1 << i); 11916 } 11917 } 11918 mtx_unlock(&sc->reg_lock); 11919 pi->tx_parse_error = 0; 11920 pi->tnl_cong_drops = 0; 11921 11922 /* 11923 * Since this command accepts a port, clear stats for 11924 * all VIs on this port. 11925 */ 11926 for_each_vi(pi, v, vi) { 11927 if (vi->flags & VI_INIT_DONE) { 11928 11929 for_each_rxq(vi, i, rxq) { 11930 #if defined(INET) || defined(INET6) 11931 rxq->lro.lro_queued = 0; 11932 rxq->lro.lro_flushed = 0; 11933 #endif 11934 rxq->rxcsum = 0; 11935 rxq->vlan_extraction = 0; 11936 rxq->vxlan_rxcsum = 0; 11937 11938 rxq->fl.cl_allocated = 0; 11939 rxq->fl.cl_recycled = 0; 11940 rxq->fl.cl_fast_recycled = 0; 11941 } 11942 11943 for_each_txq(vi, i, txq) { 11944 txq->txcsum = 0; 11945 txq->tso_wrs = 0; 11946 txq->vlan_insertion = 0; 11947 txq->imm_wrs = 0; 11948 txq->sgl_wrs = 0; 11949 txq->txpkt_wrs = 0; 11950 txq->txpkts0_wrs = 0; 11951 txq->txpkts1_wrs = 0; 11952 txq->txpkts0_pkts = 0; 11953 txq->txpkts1_pkts = 0; 11954 txq->txpkts_flush = 0; 11955 txq->raw_wrs = 0; 11956 txq->vxlan_tso_wrs = 0; 11957 txq->vxlan_txcsum = 0; 11958 txq->kern_tls_records = 0; 11959 txq->kern_tls_short = 0; 11960 txq->kern_tls_partial = 0; 11961 txq->kern_tls_full = 0; 11962 txq->kern_tls_octets = 0; 11963 txq->kern_tls_waste = 0; 11964 txq->kern_tls_options = 0; 11965 txq->kern_tls_header = 0; 11966 txq->kern_tls_fin = 0; 11967 txq->kern_tls_fin_short = 0; 11968 txq->kern_tls_cbc = 0; 11969 txq->kern_tls_gcm = 0; 11970 mp_ring_reset_stats(txq->r); 11971 } 11972 11973 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 11974 for_each_ofld_txq(vi, i, ofld_txq) { 11975 ofld_txq->wrq.tx_wrs_direct = 0; 11976 ofld_txq->wrq.tx_wrs_copied = 0; 11977 counter_u64_zero(ofld_txq->tx_iscsi_pdus); 11978 counter_u64_zero(ofld_txq->tx_iscsi_octets); 11979 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs); 11980 counter_u64_zero(ofld_txq->tx_aio_jobs); 11981 counter_u64_zero(ofld_txq->tx_aio_octets); 11982 counter_u64_zero(ofld_txq->tx_toe_tls_records); 11983 counter_u64_zero(ofld_txq->tx_toe_tls_octets); 11984 } 11985 #endif 11986 #ifdef TCP_OFFLOAD 11987 for_each_ofld_rxq(vi, i, ofld_rxq) { 11988 ofld_rxq->fl.cl_allocated = 0; 11989 ofld_rxq->fl.cl_recycled = 0; 11990 ofld_rxq->fl.cl_fast_recycled = 0; 11991 counter_u64_zero( 11992 ofld_rxq->rx_iscsi_ddp_setup_ok); 11993 counter_u64_zero( 11994 ofld_rxq->rx_iscsi_ddp_setup_error); 11995 ofld_rxq->rx_iscsi_ddp_pdus = 0; 11996 ofld_rxq->rx_iscsi_ddp_octets = 0; 11997 ofld_rxq->rx_iscsi_fl_pdus = 0; 11998 ofld_rxq->rx_iscsi_fl_octets = 0; 11999 ofld_rxq->rx_aio_ddp_jobs = 0; 12000 ofld_rxq->rx_aio_ddp_octets = 0; 12001 ofld_rxq->rx_toe_tls_records = 0; 12002 ofld_rxq->rx_toe_tls_octets = 0; 12003 ofld_rxq->rx_toe_ddp_octets = 0; 12004 counter_u64_zero(ofld_rxq->ddp_buffer_alloc); 12005 counter_u64_zero(ofld_rxq->ddp_buffer_reuse); 12006 counter_u64_zero(ofld_rxq->ddp_buffer_free); 12007 } 12008 #endif 12009 12010 if (IS_MAIN_VI(vi)) { 12011 wrq = &sc->sge.ctrlq[pi->port_id]; 12012 wrq->tx_wrs_direct = 0; 12013 wrq->tx_wrs_copied = 0; 12014 } 12015 } 12016 } 12017 12018 return (0); 12019 } 12020 12021 static int 12022 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 12023 { 12024 #ifdef INET6 12025 struct in6_addr in6; 12026 12027 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 12028 if (t4_get_clip_entry(sc, &in6, true) != NULL) 12029 return (0); 12030 else 12031 return (EIO); 12032 #else 12033 return (ENOTSUP); 12034 #endif 12035 } 12036 12037 static int 12038 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 12039 { 12040 #ifdef INET6 12041 struct in6_addr in6; 12042 12043 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 12044 return (t4_release_clip_addr(sc, &in6)); 12045 #else 12046 return (ENOTSUP); 12047 #endif 12048 } 12049 12050 int 12051 t4_os_find_pci_capability(struct adapter *sc, int cap) 12052 { 12053 int i; 12054 12055 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); 12056 } 12057 12058 int 12059 t4_os_pci_save_state(struct adapter *sc) 12060 { 12061 device_t dev; 12062 struct pci_devinfo *dinfo; 12063 12064 dev = sc->dev; 12065 dinfo = device_get_ivars(dev); 12066 12067 pci_cfg_save(dev, dinfo, 0); 12068 return (0); 12069 } 12070 12071 int 12072 t4_os_pci_restore_state(struct adapter *sc) 12073 { 12074 device_t dev; 12075 struct pci_devinfo *dinfo; 12076 12077 dev = sc->dev; 12078 dinfo = device_get_ivars(dev); 12079 12080 pci_cfg_restore(dev, dinfo); 12081 return (0); 12082 } 12083 12084 void 12085 t4_os_portmod_changed(struct port_info *pi) 12086 { 12087 struct adapter *sc = pi->adapter; 12088 struct vi_info *vi; 12089 if_t ifp; 12090 static const char *mod_str[] = { 12091 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM" 12092 }; 12093 12094 KASSERT((pi->flags & FIXED_IFMEDIA) == 0, 12095 ("%s: port_type %u", __func__, pi->port_type)); 12096 12097 vi = &pi->vi[0]; 12098 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) { 12099 PORT_LOCK(pi); 12100 build_medialist(pi); 12101 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) { 12102 fixup_link_config(pi); 12103 apply_link_config(pi); 12104 } 12105 PORT_UNLOCK(pi); 12106 end_synchronized_op(sc, LOCK_HELD); 12107 } 12108 12109 ifp = vi->ifp; 12110 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 12111 if_printf(ifp, "transceiver unplugged.\n"); 12112 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 12113 if_printf(ifp, "unknown transceiver inserted.\n"); 12114 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 12115 if_printf(ifp, "unsupported transceiver inserted.\n"); 12116 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { 12117 if_printf(ifp, "%dGbps %s transceiver inserted.\n", 12118 port_top_speed(pi), mod_str[pi->mod_type]); 12119 } else { 12120 if_printf(ifp, "transceiver (type %d) inserted.\n", 12121 pi->mod_type); 12122 } 12123 } 12124 12125 void 12126 t4_os_link_changed(struct port_info *pi) 12127 { 12128 struct vi_info *vi; 12129 if_t ifp; 12130 struct link_config *lc = &pi->link_cfg; 12131 struct adapter *sc = pi->adapter; 12132 int v; 12133 12134 PORT_LOCK_ASSERT_OWNED(pi); 12135 12136 if (is_t6(sc)) { 12137 if (lc->link_ok) { 12138 if (lc->speed > 25000 || 12139 (lc->speed == 25000 && lc->fec == FEC_RS)) { 12140 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12141 A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS); 12142 } else { 12143 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 12144 A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS); 12145 } 12146 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 12147 pi->stats.rx_fcs_err = 0; 12148 } else { 12149 pi->fcs_reg = -1; 12150 } 12151 } else { 12152 MPASS(pi->fcs_reg != -1); 12153 MPASS(pi->fcs_base == 0); 12154 } 12155 12156 for_each_vi(pi, v, vi) { 12157 ifp = vi->ifp; 12158 if (ifp == NULL || IS_DETACHING(vi)) 12159 continue; 12160 12161 if (lc->link_ok) { 12162 if_setbaudrate(ifp, IF_Mbps(lc->speed)); 12163 if_link_state_change(ifp, LINK_STATE_UP); 12164 } else { 12165 if_link_state_change(ifp, LINK_STATE_DOWN); 12166 } 12167 } 12168 } 12169 12170 void 12171 t4_iterate(void (*func)(struct adapter *, void *), void *arg) 12172 { 12173 struct adapter *sc; 12174 12175 sx_slock(&t4_list_lock); 12176 SLIST_FOREACH(sc, &t4_list, link) { 12177 /* 12178 * func should not make any assumptions about what state sc is 12179 * in - the only guarantee is that sc->sc_lock is a valid lock. 12180 */ 12181 func(sc, arg); 12182 } 12183 sx_sunlock(&t4_list_lock); 12184 } 12185 12186 static int 12187 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 12188 struct thread *td) 12189 { 12190 int rc; 12191 struct adapter *sc = dev->si_drv1; 12192 12193 rc = priv_check(td, PRIV_DRIVER); 12194 if (rc != 0) 12195 return (rc); 12196 12197 switch (cmd) { 12198 case CHELSIO_T4_GETREG: { 12199 struct t4_reg *edata = (struct t4_reg *)data; 12200 12201 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12202 return (EFAULT); 12203 12204 mtx_lock(&sc->reg_lock); 12205 if (hw_off_limits(sc)) 12206 rc = ENXIO; 12207 else if (edata->size == 4) 12208 edata->val = t4_read_reg(sc, edata->addr); 12209 else if (edata->size == 8) 12210 edata->val = t4_read_reg64(sc, edata->addr); 12211 else 12212 rc = EINVAL; 12213 mtx_unlock(&sc->reg_lock); 12214 12215 break; 12216 } 12217 case CHELSIO_T4_SETREG: { 12218 struct t4_reg *edata = (struct t4_reg *)data; 12219 12220 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 12221 return (EFAULT); 12222 12223 mtx_lock(&sc->reg_lock); 12224 if (hw_off_limits(sc)) 12225 rc = ENXIO; 12226 else if (edata->size == 4) { 12227 if (edata->val & 0xffffffff00000000) 12228 rc = EINVAL; 12229 t4_write_reg(sc, edata->addr, (uint32_t) edata->val); 12230 } else if (edata->size == 8) 12231 t4_write_reg64(sc, edata->addr, edata->val); 12232 else 12233 rc = EINVAL; 12234 mtx_unlock(&sc->reg_lock); 12235 12236 break; 12237 } 12238 case CHELSIO_T4_REGDUMP: { 12239 struct t4_regdump *regs = (struct t4_regdump *)data; 12240 int reglen = t4_get_regs_len(sc); 12241 uint8_t *buf; 12242 12243 if (regs->len < reglen) { 12244 regs->len = reglen; /* hint to the caller */ 12245 return (ENOBUFS); 12246 } 12247 12248 regs->len = reglen; 12249 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); 12250 mtx_lock(&sc->reg_lock); 12251 if (hw_off_limits(sc)) 12252 rc = ENXIO; 12253 else 12254 get_regs(sc, regs, buf); 12255 mtx_unlock(&sc->reg_lock); 12256 if (rc == 0) 12257 rc = copyout(buf, regs->data, reglen); 12258 free(buf, M_CXGBE); 12259 break; 12260 } 12261 case CHELSIO_T4_GET_FILTER_MODE: 12262 rc = get_filter_mode(sc, (uint32_t *)data); 12263 break; 12264 case CHELSIO_T4_SET_FILTER_MODE: 12265 rc = set_filter_mode(sc, *(uint32_t *)data); 12266 break; 12267 case CHELSIO_T4_SET_FILTER_MASK: 12268 rc = set_filter_mask(sc, *(uint32_t *)data); 12269 break; 12270 case CHELSIO_T4_GET_FILTER: 12271 rc = get_filter(sc, (struct t4_filter *)data); 12272 break; 12273 case CHELSIO_T4_SET_FILTER: 12274 rc = set_filter(sc, (struct t4_filter *)data); 12275 break; 12276 case CHELSIO_T4_DEL_FILTER: 12277 rc = del_filter(sc, (struct t4_filter *)data); 12278 break; 12279 case CHELSIO_T4_GET_SGE_CONTEXT: 12280 rc = get_sge_context(sc, (struct t4_sge_context *)data); 12281 break; 12282 case CHELSIO_T4_LOAD_FW: 12283 rc = load_fw(sc, (struct t4_data *)data); 12284 break; 12285 case CHELSIO_T4_GET_MEM: 12286 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); 12287 break; 12288 case CHELSIO_T4_GET_I2C: 12289 rc = read_i2c(sc, (struct t4_i2c_data *)data); 12290 break; 12291 case CHELSIO_T4_CLEAR_STATS: 12292 rc = clear_stats(sc, *(uint32_t *)data); 12293 break; 12294 case CHELSIO_T4_SCHED_CLASS: 12295 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data); 12296 break; 12297 case CHELSIO_T4_SCHED_QUEUE: 12298 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data); 12299 break; 12300 case CHELSIO_T4_GET_TRACER: 12301 rc = t4_get_tracer(sc, (struct t4_tracer *)data); 12302 break; 12303 case CHELSIO_T4_SET_TRACER: 12304 rc = t4_set_tracer(sc, (struct t4_tracer *)data); 12305 break; 12306 case CHELSIO_T4_LOAD_CFG: 12307 rc = load_cfg(sc, (struct t4_data *)data); 12308 break; 12309 case CHELSIO_T4_LOAD_BOOT: 12310 rc = load_boot(sc, (struct t4_bootrom *)data); 12311 break; 12312 case CHELSIO_T4_LOAD_BOOTCFG: 12313 rc = load_bootcfg(sc, (struct t4_data *)data); 12314 break; 12315 case CHELSIO_T4_CUDBG_DUMP: 12316 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data); 12317 break; 12318 case CHELSIO_T4_SET_OFLD_POLICY: 12319 rc = set_offload_policy(sc, (struct t4_offload_policy *)data); 12320 break; 12321 case CHELSIO_T4_HOLD_CLIP_ADDR: 12322 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data); 12323 break; 12324 case CHELSIO_T4_RELEASE_CLIP_ADDR: 12325 rc = release_clip_addr(sc, (struct t4_clip_addr *)data); 12326 break; 12327 default: 12328 rc = ENOTTY; 12329 } 12330 12331 return (rc); 12332 } 12333 12334 #ifdef TCP_OFFLOAD 12335 static int 12336 toe_capability(struct vi_info *vi, bool enable) 12337 { 12338 int rc; 12339 struct port_info *pi = vi->pi; 12340 struct adapter *sc = pi->adapter; 12341 12342 ASSERT_SYNCHRONIZED_OP(sc); 12343 12344 if (!is_offload(sc)) 12345 return (ENODEV); 12346 if (hw_off_limits(sc)) 12347 return (ENXIO); 12348 12349 if (enable) { 12350 #ifdef KERN_TLS 12351 if (sc->flags & KERN_TLS_ON && is_t6(sc)) { 12352 int i, j, n; 12353 struct port_info *p; 12354 struct vi_info *v; 12355 12356 /* 12357 * Reconfigure hardware for TOE if TXTLS is not enabled 12358 * on any ifnet. 12359 */ 12360 n = 0; 12361 for_each_port(sc, i) { 12362 p = sc->port[i]; 12363 for_each_vi(p, j, v) { 12364 if (if_getcapenable(v->ifp) & IFCAP_TXTLS) { 12365 CH_WARN(sc, 12366 "%s has NIC TLS enabled.\n", 12367 device_get_nameunit(v->dev)); 12368 n++; 12369 } 12370 } 12371 } 12372 if (n > 0) { 12373 CH_WARN(sc, "Disable NIC TLS on all interfaces " 12374 "associated with this adapter before " 12375 "trying to enable TOE.\n"); 12376 return (EAGAIN); 12377 } 12378 rc = t6_config_kern_tls(sc, false); 12379 if (rc) 12380 return (rc); 12381 } 12382 #endif 12383 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) != 0) { 12384 /* TOE is already enabled. */ 12385 return (0); 12386 } 12387 12388 /* 12389 * We need the port's queues around so that we're able to send 12390 * and receive CPLs to/from the TOE even if the ifnet for this 12391 * port has never been UP'd administratively. 12392 */ 12393 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 12394 return (rc); 12395 if (!(pi->vi[0].flags & VI_INIT_DONE) && 12396 ((rc = vi_init(&pi->vi[0])) != 0)) 12397 return (rc); 12398 12399 if (isset(&sc->offload_map, pi->port_id)) { 12400 /* TOE is enabled on another VI of this port. */ 12401 pi->uld_vis++; 12402 return (0); 12403 } 12404 12405 if (!uld_active(sc, ULD_TOM)) { 12406 rc = t4_activate_uld(sc, ULD_TOM); 12407 if (rc == EAGAIN) { 12408 log(LOG_WARNING, 12409 "You must kldload t4_tom.ko before trying " 12410 "to enable TOE on a cxgbe interface.\n"); 12411 } 12412 if (rc != 0) 12413 return (rc); 12414 KASSERT(sc->tom_softc != NULL, 12415 ("%s: TOM activated but softc NULL", __func__)); 12416 KASSERT(uld_active(sc, ULD_TOM), 12417 ("%s: TOM activated but flag not set", __func__)); 12418 } 12419 12420 /* Activate iWARP and iSCSI too, if the modules are loaded. */ 12421 if (!uld_active(sc, ULD_IWARP)) 12422 (void) t4_activate_uld(sc, ULD_IWARP); 12423 if (!uld_active(sc, ULD_ISCSI)) 12424 (void) t4_activate_uld(sc, ULD_ISCSI); 12425 12426 pi->uld_vis++; 12427 setbit(&sc->offload_map, pi->port_id); 12428 } else { 12429 pi->uld_vis--; 12430 12431 if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0) 12432 return (0); 12433 12434 KASSERT(uld_active(sc, ULD_TOM), 12435 ("%s: TOM never initialized?", __func__)); 12436 clrbit(&sc->offload_map, pi->port_id); 12437 } 12438 12439 return (0); 12440 } 12441 12442 /* 12443 * Add an upper layer driver to the global list. 12444 */ 12445 int 12446 t4_register_uld(struct uld_info *ui, int id) 12447 { 12448 int rc; 12449 12450 if (id < 0 || id > ULD_MAX) 12451 return (EINVAL); 12452 sx_xlock(&t4_uld_list_lock); 12453 if (t4_uld_list[id] != NULL) 12454 rc = EEXIST; 12455 else { 12456 t4_uld_list[id] = ui; 12457 rc = 0; 12458 } 12459 sx_xunlock(&t4_uld_list_lock); 12460 return (rc); 12461 } 12462 12463 int 12464 t4_unregister_uld(struct uld_info *ui, int id) 12465 { 12466 12467 if (id < 0 || id > ULD_MAX) 12468 return (EINVAL); 12469 sx_xlock(&t4_uld_list_lock); 12470 MPASS(t4_uld_list[id] == ui); 12471 t4_uld_list[id] = NULL; 12472 sx_xunlock(&t4_uld_list_lock); 12473 return (0); 12474 } 12475 12476 int 12477 t4_activate_uld(struct adapter *sc, int id) 12478 { 12479 int rc; 12480 12481 ASSERT_SYNCHRONIZED_OP(sc); 12482 12483 if (id < 0 || id > ULD_MAX) 12484 return (EINVAL); 12485 12486 /* Adapter needs to be initialized before any ULD can be activated. */ 12487 if (!(sc->flags & FULL_INIT_DONE)) { 12488 rc = adapter_init(sc); 12489 if (rc != 0) 12490 return (rc); 12491 } 12492 12493 sx_slock(&t4_uld_list_lock); 12494 if (t4_uld_list[id] == NULL) 12495 rc = EAGAIN; /* load the KLD with this ULD and try again. */ 12496 else { 12497 rc = t4_uld_list[id]->uld_activate(sc); 12498 if (rc == 0) 12499 setbit(&sc->active_ulds, id); 12500 } 12501 sx_sunlock(&t4_uld_list_lock); 12502 12503 return (rc); 12504 } 12505 12506 int 12507 t4_deactivate_uld(struct adapter *sc, int id) 12508 { 12509 int rc; 12510 12511 ASSERT_SYNCHRONIZED_OP(sc); 12512 12513 if (id < 0 || id > ULD_MAX) 12514 return (EINVAL); 12515 12516 sx_slock(&t4_uld_list_lock); 12517 if (t4_uld_list[id] == NULL) 12518 rc = ENXIO; 12519 else { 12520 rc = t4_uld_list[id]->uld_deactivate(sc); 12521 if (rc == 0) 12522 clrbit(&sc->active_ulds, id); 12523 } 12524 sx_sunlock(&t4_uld_list_lock); 12525 12526 return (rc); 12527 } 12528 12529 static int 12530 deactivate_all_uld(struct adapter *sc) 12531 { 12532 int i, rc; 12533 12534 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld"); 12535 if (rc != 0) 12536 return (ENXIO); 12537 sx_slock(&t4_uld_list_lock); 12538 for (i = 0; i <= ULD_MAX; i++) { 12539 if (t4_uld_list[i] == NULL || !uld_active(sc, i)) 12540 continue; 12541 rc = t4_uld_list[i]->uld_deactivate(sc); 12542 if (rc != 0) 12543 break; 12544 clrbit(&sc->active_ulds, i); 12545 } 12546 sx_sunlock(&t4_uld_list_lock); 12547 end_synchronized_op(sc, 0); 12548 12549 return (rc); 12550 } 12551 12552 static void 12553 stop_all_uld(struct adapter *sc) 12554 { 12555 int i; 12556 12557 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldst") != 0) 12558 return; 12559 sx_slock(&t4_uld_list_lock); 12560 for (i = 0; i <= ULD_MAX; i++) { 12561 if (t4_uld_list[i] == NULL || !uld_active(sc, i) || 12562 t4_uld_list[i]->uld_stop == NULL) 12563 continue; 12564 (void) t4_uld_list[i]->uld_stop(sc); 12565 } 12566 sx_sunlock(&t4_uld_list_lock); 12567 end_synchronized_op(sc, 0); 12568 } 12569 12570 static void 12571 restart_all_uld(struct adapter *sc) 12572 { 12573 int i; 12574 12575 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldre") != 0) 12576 return; 12577 sx_slock(&t4_uld_list_lock); 12578 for (i = 0; i <= ULD_MAX; i++) { 12579 if (t4_uld_list[i] == NULL || !uld_active(sc, i) || 12580 t4_uld_list[i]->uld_restart == NULL) 12581 continue; 12582 (void) t4_uld_list[i]->uld_restart(sc); 12583 } 12584 sx_sunlock(&t4_uld_list_lock); 12585 end_synchronized_op(sc, 0); 12586 } 12587 12588 int 12589 uld_active(struct adapter *sc, int id) 12590 { 12591 12592 MPASS(id >= 0 && id <= ULD_MAX); 12593 12594 return (isset(&sc->active_ulds, id)); 12595 } 12596 #endif 12597 12598 #ifdef KERN_TLS 12599 static int 12600 ktls_capability(struct adapter *sc, bool enable) 12601 { 12602 ASSERT_SYNCHRONIZED_OP(sc); 12603 12604 if (!is_ktls(sc)) 12605 return (ENODEV); 12606 if (!is_t6(sc)) 12607 return (0); 12608 if (hw_off_limits(sc)) 12609 return (ENXIO); 12610 12611 if (enable) { 12612 if (sc->flags & KERN_TLS_ON) 12613 return (0); /* already on */ 12614 if (sc->offload_map != 0) { 12615 CH_WARN(sc, 12616 "Disable TOE on all interfaces associated with " 12617 "this adapter before trying to enable NIC TLS.\n"); 12618 return (EAGAIN); 12619 } 12620 return (t6_config_kern_tls(sc, true)); 12621 } else { 12622 /* 12623 * Nothing to do for disable. If TOE is enabled sometime later 12624 * then toe_capability will reconfigure the hardware. 12625 */ 12626 return (0); 12627 } 12628 } 12629 #endif 12630 12631 /* 12632 * t = ptr to tunable. 12633 * nc = number of CPUs. 12634 * c = compiled in default for that tunable. 12635 */ 12636 static void 12637 calculate_nqueues(int *t, int nc, const int c) 12638 { 12639 int nq; 12640 12641 if (*t > 0) 12642 return; 12643 nq = *t < 0 ? -*t : c; 12644 *t = min(nc, nq); 12645 } 12646 12647 /* 12648 * Come up with reasonable defaults for some of the tunables, provided they're 12649 * not set by the user (in which case we'll use the values as is). 12650 */ 12651 static void 12652 tweak_tunables(void) 12653 { 12654 int nc = mp_ncpus; /* our snapshot of the number of CPUs */ 12655 12656 if (t4_ntxq < 1) { 12657 #ifdef RSS 12658 t4_ntxq = rss_getnumbuckets(); 12659 #else 12660 calculate_nqueues(&t4_ntxq, nc, NTXQ); 12661 #endif 12662 } 12663 12664 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI); 12665 12666 if (t4_nrxq < 1) { 12667 #ifdef RSS 12668 t4_nrxq = rss_getnumbuckets(); 12669 #else 12670 calculate_nqueues(&t4_nrxq, nc, NRXQ); 12671 #endif 12672 } 12673 12674 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI); 12675 12676 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12677 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ); 12678 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI); 12679 #endif 12680 #ifdef TCP_OFFLOAD 12681 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ); 12682 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI); 12683 #endif 12684 12685 #if defined(TCP_OFFLOAD) || defined(KERN_TLS) 12686 if (t4_toecaps_allowed == -1) 12687 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; 12688 #else 12689 if (t4_toecaps_allowed == -1) 12690 t4_toecaps_allowed = 0; 12691 #endif 12692 12693 #ifdef TCP_OFFLOAD 12694 if (t4_rdmacaps_allowed == -1) { 12695 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP | 12696 FW_CAPS_CONFIG_RDMA_RDMAC; 12697 } 12698 12699 if (t4_iscsicaps_allowed == -1) { 12700 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU | 12701 FW_CAPS_CONFIG_ISCSI_TARGET_PDU | 12702 FW_CAPS_CONFIG_ISCSI_T10DIF; 12703 } 12704 12705 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS) 12706 t4_tmr_idx_ofld = TMR_IDX_OFLD; 12707 12708 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS) 12709 t4_pktc_idx_ofld = PKTC_IDX_OFLD; 12710 #else 12711 if (t4_rdmacaps_allowed == -1) 12712 t4_rdmacaps_allowed = 0; 12713 12714 if (t4_iscsicaps_allowed == -1) 12715 t4_iscsicaps_allowed = 0; 12716 #endif 12717 12718 #ifdef DEV_NETMAP 12719 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ); 12720 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ); 12721 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI); 12722 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI); 12723 #endif 12724 12725 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS) 12726 t4_tmr_idx = TMR_IDX; 12727 12728 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS) 12729 t4_pktc_idx = PKTC_IDX; 12730 12731 if (t4_qsize_txq < 128) 12732 t4_qsize_txq = 128; 12733 12734 if (t4_qsize_rxq < 128) 12735 t4_qsize_rxq = 128; 12736 while (t4_qsize_rxq & 7) 12737 t4_qsize_rxq++; 12738 12739 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; 12740 12741 /* 12742 * Number of VIs to create per-port. The first VI is the "main" regular 12743 * VI for the port. The rest are additional virtual interfaces on the 12744 * same physical port. Note that the main VI does not have native 12745 * netmap support but the extra VIs do. 12746 * 12747 * Limit the number of VIs per port to the number of available 12748 * MAC addresses per port. 12749 */ 12750 if (t4_num_vis < 1) 12751 t4_num_vis = 1; 12752 if (t4_num_vis > nitems(vi_mac_funcs)) { 12753 t4_num_vis = nitems(vi_mac_funcs); 12754 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis); 12755 } 12756 12757 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) { 12758 pcie_relaxed_ordering = 1; 12759 #if defined(__i386__) || defined(__amd64__) 12760 if (cpu_vendor_id == CPU_VENDOR_INTEL) 12761 pcie_relaxed_ordering = 0; 12762 #endif 12763 } 12764 } 12765 12766 #ifdef DDB 12767 static void 12768 t4_dump_mem(struct adapter *sc, u_int addr, u_int len) 12769 { 12770 uint32_t base, j, off, pf, reg, save, win_pos; 12771 12772 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2); 12773 save = t4_read_reg(sc, reg); 12774 base = sc->memwin[2].mw_base; 12775 12776 if (is_t4(sc)) { 12777 pf = 0; 12778 win_pos = addr & ~0xf; /* start must be 16B aligned */ 12779 } else { 12780 pf = V_PFNUM(sc->pf); 12781 win_pos = addr & ~0x7f; /* start must be 128B aligned */ 12782 } 12783 off = addr - win_pos; 12784 t4_write_reg(sc, reg, win_pos | pf); 12785 t4_read_reg(sc, reg); 12786 12787 while (len > 0 && !db_pager_quit) { 12788 uint32_t buf[8]; 12789 for (j = 0; j < 8; j++, off += 4) 12790 buf[j] = htonl(t4_read_reg(sc, base + off)); 12791 12792 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", 12793 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], 12794 buf[7]); 12795 if (len <= sizeof(buf)) 12796 len = 0; 12797 else 12798 len -= sizeof(buf); 12799 } 12800 12801 t4_write_reg(sc, reg, save); 12802 t4_read_reg(sc, reg); 12803 } 12804 12805 static void 12806 t4_dump_tcb(struct adapter *sc, int tid) 12807 { 12808 uint32_t tcb_addr; 12809 12810 /* Dump TCB for the tid */ 12811 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 12812 tcb_addr += tid * TCB_SIZE; 12813 t4_dump_mem(sc, tcb_addr, TCB_SIZE); 12814 } 12815 12816 static void 12817 t4_dump_devlog(struct adapter *sc) 12818 { 12819 struct devlog_params *dparams = &sc->params.devlog; 12820 struct fw_devlog_e e; 12821 int i, first, j, m, nentries, rc; 12822 uint64_t ftstamp = UINT64_MAX; 12823 12824 if (dparams->start == 0) { 12825 db_printf("devlog params not valid\n"); 12826 return; 12827 } 12828 12829 nentries = dparams->size / sizeof(struct fw_devlog_e); 12830 m = fwmtype_to_hwmtype(dparams->memtype); 12831 12832 /* Find the first entry. */ 12833 first = -1; 12834 for (i = 0; i < nentries && !db_pager_quit; i++) { 12835 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12836 sizeof(e), (void *)&e); 12837 if (rc != 0) 12838 break; 12839 12840 if (e.timestamp == 0) 12841 break; 12842 12843 e.timestamp = be64toh(e.timestamp); 12844 if (e.timestamp < ftstamp) { 12845 ftstamp = e.timestamp; 12846 first = i; 12847 } 12848 } 12849 12850 if (first == -1) 12851 return; 12852 12853 i = first; 12854 do { 12855 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 12856 sizeof(e), (void *)&e); 12857 if (rc != 0) 12858 return; 12859 12860 if (e.timestamp == 0) 12861 return; 12862 12863 e.timestamp = be64toh(e.timestamp); 12864 e.seqno = be32toh(e.seqno); 12865 for (j = 0; j < 8; j++) 12866 e.params[j] = be32toh(e.params[j]); 12867 12868 db_printf("%10d %15ju %8s %8s ", 12869 e.seqno, e.timestamp, 12870 (e.level < nitems(devlog_level_strings) ? 12871 devlog_level_strings[e.level] : "UNKNOWN"), 12872 (e.facility < nitems(devlog_facility_strings) ? 12873 devlog_facility_strings[e.facility] : "UNKNOWN")); 12874 db_printf(e.fmt, e.params[0], e.params[1], e.params[2], 12875 e.params[3], e.params[4], e.params[5], e.params[6], 12876 e.params[7]); 12877 12878 if (++i == nentries) 12879 i = 0; 12880 } while (i != first && !db_pager_quit); 12881 } 12882 12883 static DB_DEFINE_TABLE(show, t4, show_t4); 12884 12885 DB_TABLE_COMMAND_FLAGS(show_t4, devlog, db_show_devlog, CS_OWN) 12886 { 12887 device_t dev; 12888 int t; 12889 bool valid; 12890 12891 valid = false; 12892 t = db_read_token(); 12893 if (t == tIDENT) { 12894 dev = device_lookup_by_name(db_tok_string); 12895 valid = true; 12896 } 12897 db_skip_to_eol(); 12898 if (!valid) { 12899 db_printf("usage: show t4 devlog <nexus>\n"); 12900 return; 12901 } 12902 12903 if (dev == NULL) { 12904 db_printf("device not found\n"); 12905 return; 12906 } 12907 12908 t4_dump_devlog(device_get_softc(dev)); 12909 } 12910 12911 DB_TABLE_COMMAND_FLAGS(show_t4, tcb, db_show_t4tcb, CS_OWN) 12912 { 12913 device_t dev; 12914 int radix, tid, t; 12915 bool valid; 12916 12917 valid = false; 12918 radix = db_radix; 12919 db_radix = 10; 12920 t = db_read_token(); 12921 if (t == tIDENT) { 12922 dev = device_lookup_by_name(db_tok_string); 12923 t = db_read_token(); 12924 if (t == tNUMBER) { 12925 tid = db_tok_number; 12926 valid = true; 12927 } 12928 } 12929 db_radix = radix; 12930 db_skip_to_eol(); 12931 if (!valid) { 12932 db_printf("usage: show t4 tcb <nexus> <tid>\n"); 12933 return; 12934 } 12935 12936 if (dev == NULL) { 12937 db_printf("device not found\n"); 12938 return; 12939 } 12940 if (tid < 0) { 12941 db_printf("invalid tid\n"); 12942 return; 12943 } 12944 12945 t4_dump_tcb(device_get_softc(dev), tid); 12946 } 12947 12948 DB_TABLE_COMMAND_FLAGS(show_t4, memdump, db_show_memdump, CS_OWN) 12949 { 12950 device_t dev; 12951 int radix, t; 12952 bool valid; 12953 12954 valid = false; 12955 radix = db_radix; 12956 db_radix = 10; 12957 t = db_read_token(); 12958 if (t == tIDENT) { 12959 dev = device_lookup_by_name(db_tok_string); 12960 t = db_read_token(); 12961 if (t == tNUMBER) { 12962 addr = db_tok_number; 12963 t = db_read_token(); 12964 if (t == tNUMBER) { 12965 count = db_tok_number; 12966 valid = true; 12967 } 12968 } 12969 } 12970 db_radix = radix; 12971 db_skip_to_eol(); 12972 if (!valid) { 12973 db_printf("usage: show t4 memdump <nexus> <addr> <len>\n"); 12974 return; 12975 } 12976 12977 if (dev == NULL) { 12978 db_printf("device not found\n"); 12979 return; 12980 } 12981 if (addr < 0) { 12982 db_printf("invalid address\n"); 12983 return; 12984 } 12985 if (count <= 0) { 12986 db_printf("invalid length\n"); 12987 return; 12988 } 12989 12990 t4_dump_mem(device_get_softc(dev), addr, count); 12991 } 12992 #endif 12993 12994 static eventhandler_tag vxlan_start_evtag; 12995 static eventhandler_tag vxlan_stop_evtag; 12996 12997 struct vxlan_evargs { 12998 if_t ifp; 12999 uint16_t port; 13000 }; 13001 13002 static void 13003 enable_vxlan_rx(struct adapter *sc) 13004 { 13005 int i, rc; 13006 struct port_info *pi; 13007 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 13008 13009 ASSERT_SYNCHRONIZED_OP(sc); 13010 13011 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) | 13012 F_VXLAN_EN); 13013 for_each_port(sc, i) { 13014 pi = sc->port[i]; 13015 if (pi->vxlan_tcam_entry == true) 13016 continue; 13017 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac, 13018 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 13019 true); 13020 if (rc < 0) { 13021 rc = -rc; 13022 CH_ERR(&pi->vi[0], 13023 "failed to add VXLAN TCAM entry: %d.\n", rc); 13024 } else { 13025 MPASS(rc == sc->rawf_base + pi->port_id); 13026 pi->vxlan_tcam_entry = true; 13027 } 13028 } 13029 } 13030 13031 static void 13032 t4_vxlan_start(struct adapter *sc, void *arg) 13033 { 13034 struct vxlan_evargs *v = arg; 13035 13036 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 13037 return; 13038 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0) 13039 return; 13040 13041 if (sc->vxlan_refcount == 0) { 13042 sc->vxlan_port = v->port; 13043 sc->vxlan_refcount = 1; 13044 if (!hw_off_limits(sc)) 13045 enable_vxlan_rx(sc); 13046 } else if (sc->vxlan_port == v->port) { 13047 sc->vxlan_refcount++; 13048 } else { 13049 CH_ERR(sc, "VXLAN already configured on port %d; " 13050 "ignoring attempt to configure it on port %d\n", 13051 sc->vxlan_port, v->port); 13052 } 13053 end_synchronized_op(sc, 0); 13054 } 13055 13056 static void 13057 t4_vxlan_stop(struct adapter *sc, void *arg) 13058 { 13059 struct vxlan_evargs *v = arg; 13060 13061 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 13062 return; 13063 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0) 13064 return; 13065 13066 /* 13067 * VXLANs may have been configured before the driver was loaded so we 13068 * may see more stops than starts. This is not handled cleanly but at 13069 * least we keep the refcount sane. 13070 */ 13071 if (sc->vxlan_port != v->port) 13072 goto done; 13073 if (sc->vxlan_refcount == 0) { 13074 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; " 13075 "ignoring attempt to stop it again.\n", sc->vxlan_port); 13076 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc)) 13077 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0); 13078 done: 13079 end_synchronized_op(sc, 0); 13080 } 13081 13082 static void 13083 t4_vxlan_start_handler(void *arg __unused, if_t ifp, 13084 sa_family_t family, u_int port) 13085 { 13086 struct vxlan_evargs v; 13087 13088 MPASS(family == AF_INET || family == AF_INET6); 13089 v.ifp = ifp; 13090 v.port = port; 13091 13092 t4_iterate(t4_vxlan_start, &v); 13093 } 13094 13095 static void 13096 t4_vxlan_stop_handler(void *arg __unused, if_t ifp, sa_family_t family, 13097 u_int port) 13098 { 13099 struct vxlan_evargs v; 13100 13101 MPASS(family == AF_INET || family == AF_INET6); 13102 v.ifp = ifp; 13103 v.port = port; 13104 13105 t4_iterate(t4_vxlan_stop, &v); 13106 } 13107 13108 13109 static struct sx mlu; /* mod load unload */ 13110 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload"); 13111 13112 static int 13113 mod_event(module_t mod, int cmd, void *arg) 13114 { 13115 int rc = 0; 13116 static int loaded = 0; 13117 13118 switch (cmd) { 13119 case MOD_LOAD: 13120 sx_xlock(&mlu); 13121 if (loaded++ == 0) { 13122 t4_sge_modload(); 13123 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 13124 t4_filter_rpl, CPL_COOKIE_FILTER); 13125 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, 13126 do_l2t_write_rpl, CPL_COOKIE_FILTER); 13127 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL, 13128 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER); 13129 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 13130 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER); 13131 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, 13132 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER); 13133 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt); 13134 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt); 13135 t4_register_cpl_handler(CPL_SMT_WRITE_RPL, 13136 do_smt_write_rpl); 13137 sx_init(&t4_list_lock, "T4/T5 adapters"); 13138 SLIST_INIT(&t4_list); 13139 callout_init(&fatal_callout, 1); 13140 #ifdef TCP_OFFLOAD 13141 sx_init(&t4_uld_list_lock, "T4/T5 ULDs"); 13142 #endif 13143 #ifdef INET6 13144 t4_clip_modload(); 13145 #endif 13146 #ifdef KERN_TLS 13147 t6_ktls_modload(); 13148 #endif 13149 t4_tracer_modload(); 13150 tweak_tunables(); 13151 vxlan_start_evtag = 13152 EVENTHANDLER_REGISTER(vxlan_start, 13153 t4_vxlan_start_handler, NULL, 13154 EVENTHANDLER_PRI_ANY); 13155 vxlan_stop_evtag = 13156 EVENTHANDLER_REGISTER(vxlan_stop, 13157 t4_vxlan_stop_handler, NULL, 13158 EVENTHANDLER_PRI_ANY); 13159 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK, 13160 taskqueue_thread_enqueue, &reset_tq); 13161 taskqueue_start_threads(&reset_tq, 1, PI_SOFT, 13162 "t4_rst_thr"); 13163 } 13164 sx_xunlock(&mlu); 13165 break; 13166 13167 case MOD_UNLOAD: 13168 sx_xlock(&mlu); 13169 if (--loaded == 0) { 13170 #ifdef TCP_OFFLOAD 13171 int i; 13172 #endif 13173 int tries; 13174 13175 taskqueue_free(reset_tq); 13176 13177 tries = 0; 13178 while (tries++ < 5 && t4_sge_extfree_refs() != 0) { 13179 uprintf("%ju clusters with custom free routine " 13180 "still is use.\n", t4_sge_extfree_refs()); 13181 pause("t4unload", 2 * hz); 13182 } 13183 13184 sx_slock(&t4_list_lock); 13185 if (!SLIST_EMPTY(&t4_list)) { 13186 rc = EBUSY; 13187 sx_sunlock(&t4_list_lock); 13188 goto done_unload; 13189 } 13190 #ifdef TCP_OFFLOAD 13191 sx_slock(&t4_uld_list_lock); 13192 for (i = 0; i <= ULD_MAX; i++) { 13193 if (t4_uld_list[i] != NULL) { 13194 rc = EBUSY; 13195 sx_sunlock(&t4_uld_list_lock); 13196 sx_sunlock(&t4_list_lock); 13197 goto done_unload; 13198 } 13199 } 13200 sx_sunlock(&t4_uld_list_lock); 13201 #endif 13202 sx_sunlock(&t4_list_lock); 13203 13204 if (t4_sge_extfree_refs() == 0) { 13205 EVENTHANDLER_DEREGISTER(vxlan_start, 13206 vxlan_start_evtag); 13207 EVENTHANDLER_DEREGISTER(vxlan_stop, 13208 vxlan_stop_evtag); 13209 t4_tracer_modunload(); 13210 #ifdef KERN_TLS 13211 t6_ktls_modunload(); 13212 #endif 13213 #ifdef INET6 13214 t4_clip_modunload(); 13215 #endif 13216 #ifdef TCP_OFFLOAD 13217 sx_destroy(&t4_uld_list_lock); 13218 #endif 13219 sx_destroy(&t4_list_lock); 13220 t4_sge_modunload(); 13221 loaded = 0; 13222 } else { 13223 rc = EBUSY; 13224 loaded++; /* undo earlier decrement */ 13225 } 13226 } 13227 done_unload: 13228 sx_xunlock(&mlu); 13229 break; 13230 } 13231 13232 return (rc); 13233 } 13234 13235 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0); 13236 MODULE_VERSION(t4nex, 1); 13237 MODULE_DEPEND(t4nex, firmware, 1, 1, 1); 13238 #ifdef DEV_NETMAP 13239 MODULE_DEPEND(t4nex, netmap, 1, 1, 1); 13240 #endif /* DEV_NETMAP */ 13241 13242 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0); 13243 MODULE_VERSION(t5nex, 1); 13244 MODULE_DEPEND(t5nex, firmware, 1, 1, 1); 13245 #ifdef DEV_NETMAP 13246 MODULE_DEPEND(t5nex, netmap, 1, 1, 1); 13247 #endif /* DEV_NETMAP */ 13248 13249 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0); 13250 MODULE_VERSION(t6nex, 1); 13251 MODULE_DEPEND(t6nex, crypto, 1, 1, 1); 13252 MODULE_DEPEND(t6nex, firmware, 1, 1, 1); 13253 #ifdef DEV_NETMAP 13254 MODULE_DEPEND(t6nex, netmap, 1, 1, 1); 13255 #endif /* DEV_NETMAP */ 13256 13257 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0); 13258 MODULE_VERSION(cxgbe, 1); 13259 13260 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0); 13261 MODULE_VERSION(cxl, 1); 13262 13263 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0); 13264 MODULE_VERSION(cc, 1); 13265 13266 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0); 13267 MODULE_VERSION(vcxgbe, 1); 13268 13269 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0); 13270 MODULE_VERSION(vcxl, 1); 13271 13272 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0); 13273 MODULE_VERSION(vcc, 1); 13274