1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2011 Chelsio Communications, Inc. 5 * All rights reserved. 6 * Written by: Navdeep Parhar <np@FreeBSD.org> 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 #include "opt_ddb.h" 34 #include "opt_inet.h" 35 #include "opt_inet6.h" 36 #include "opt_kern_tls.h" 37 #include "opt_ratelimit.h" 38 #include "opt_rss.h" 39 40 #include <sys/param.h> 41 #include <sys/conf.h> 42 #include <sys/priv.h> 43 #include <sys/kernel.h> 44 #include <sys/bus.h> 45 #include <sys/eventhandler.h> 46 #include <sys/module.h> 47 #include <sys/malloc.h> 48 #include <sys/queue.h> 49 #include <sys/taskqueue.h> 50 #include <sys/pciio.h> 51 #include <dev/pci/pcireg.h> 52 #include <dev/pci/pcivar.h> 53 #include <dev/pci/pci_private.h> 54 #include <sys/firmware.h> 55 #include <sys/sbuf.h> 56 #include <sys/smp.h> 57 #include <sys/socket.h> 58 #include <sys/sockio.h> 59 #include <sys/sysctl.h> 60 #include <net/ethernet.h> 61 #include <net/if.h> 62 #include <net/if_types.h> 63 #include <net/if_dl.h> 64 #include <net/if_vlan_var.h> 65 #ifdef RSS 66 #include <net/rss_config.h> 67 #endif 68 #include <netinet/in.h> 69 #include <netinet/ip.h> 70 #ifdef KERN_TLS 71 #include <netinet/tcp_seq.h> 72 #endif 73 #if defined(__i386__) || defined(__amd64__) 74 #include <machine/md_var.h> 75 #include <machine/cputypes.h> 76 #include <vm/vm.h> 77 #include <vm/pmap.h> 78 #endif 79 #ifdef DDB 80 #include <ddb/ddb.h> 81 #include <ddb/db_lex.h> 82 #endif 83 84 #include "common/common.h" 85 #include "common/t4_msg.h" 86 #include "common/t4_regs.h" 87 #include "common/t4_regs_values.h" 88 #include "cudbg/cudbg.h" 89 #include "t4_clip.h" 90 #include "t4_ioctl.h" 91 #include "t4_l2t.h" 92 #include "t4_mp_ring.h" 93 #include "t4_if.h" 94 #include "t4_smt.h" 95 96 /* T4 bus driver interface */ 97 static int t4_probe(device_t); 98 static int t4_attach(device_t); 99 static int t4_detach(device_t); 100 static int t4_child_location_str(device_t, device_t, char *, size_t); 101 static int t4_ready(device_t); 102 static int t4_read_port_device(device_t, int, device_t *); 103 static device_method_t t4_methods[] = { 104 DEVMETHOD(device_probe, t4_probe), 105 DEVMETHOD(device_attach, t4_attach), 106 DEVMETHOD(device_detach, t4_detach), 107 108 DEVMETHOD(bus_child_location_str, t4_child_location_str), 109 110 DEVMETHOD(t4_is_main_ready, t4_ready), 111 DEVMETHOD(t4_read_port_device, t4_read_port_device), 112 113 DEVMETHOD_END 114 }; 115 static driver_t t4_driver = { 116 "t4nex", 117 t4_methods, 118 sizeof(struct adapter) 119 }; 120 121 122 /* T4 port (cxgbe) interface */ 123 static int cxgbe_probe(device_t); 124 static int cxgbe_attach(device_t); 125 static int cxgbe_detach(device_t); 126 device_method_t cxgbe_methods[] = { 127 DEVMETHOD(device_probe, cxgbe_probe), 128 DEVMETHOD(device_attach, cxgbe_attach), 129 DEVMETHOD(device_detach, cxgbe_detach), 130 { 0, 0 } 131 }; 132 static driver_t cxgbe_driver = { 133 "cxgbe", 134 cxgbe_methods, 135 sizeof(struct port_info) 136 }; 137 138 /* T4 VI (vcxgbe) interface */ 139 static int vcxgbe_probe(device_t); 140 static int vcxgbe_attach(device_t); 141 static int vcxgbe_detach(device_t); 142 static device_method_t vcxgbe_methods[] = { 143 DEVMETHOD(device_probe, vcxgbe_probe), 144 DEVMETHOD(device_attach, vcxgbe_attach), 145 DEVMETHOD(device_detach, vcxgbe_detach), 146 { 0, 0 } 147 }; 148 static driver_t vcxgbe_driver = { 149 "vcxgbe", 150 vcxgbe_methods, 151 sizeof(struct vi_info) 152 }; 153 154 static d_ioctl_t t4_ioctl; 155 156 static struct cdevsw t4_cdevsw = { 157 .d_version = D_VERSION, 158 .d_ioctl = t4_ioctl, 159 .d_name = "t4nex", 160 }; 161 162 /* T5 bus driver interface */ 163 static int t5_probe(device_t); 164 static device_method_t t5_methods[] = { 165 DEVMETHOD(device_probe, t5_probe), 166 DEVMETHOD(device_attach, t4_attach), 167 DEVMETHOD(device_detach, t4_detach), 168 169 DEVMETHOD(bus_child_location_str, t4_child_location_str), 170 171 DEVMETHOD(t4_is_main_ready, t4_ready), 172 DEVMETHOD(t4_read_port_device, t4_read_port_device), 173 174 DEVMETHOD_END 175 }; 176 static driver_t t5_driver = { 177 "t5nex", 178 t5_methods, 179 sizeof(struct adapter) 180 }; 181 182 183 /* T5 port (cxl) interface */ 184 static driver_t cxl_driver = { 185 "cxl", 186 cxgbe_methods, 187 sizeof(struct port_info) 188 }; 189 190 /* T5 VI (vcxl) interface */ 191 static driver_t vcxl_driver = { 192 "vcxl", 193 vcxgbe_methods, 194 sizeof(struct vi_info) 195 }; 196 197 /* T6 bus driver interface */ 198 static int t6_probe(device_t); 199 static device_method_t t6_methods[] = { 200 DEVMETHOD(device_probe, t6_probe), 201 DEVMETHOD(device_attach, t4_attach), 202 DEVMETHOD(device_detach, t4_detach), 203 204 DEVMETHOD(bus_child_location_str, t4_child_location_str), 205 206 DEVMETHOD(t4_is_main_ready, t4_ready), 207 DEVMETHOD(t4_read_port_device, t4_read_port_device), 208 209 DEVMETHOD_END 210 }; 211 static driver_t t6_driver = { 212 "t6nex", 213 t6_methods, 214 sizeof(struct adapter) 215 }; 216 217 218 /* T6 port (cc) interface */ 219 static driver_t cc_driver = { 220 "cc", 221 cxgbe_methods, 222 sizeof(struct port_info) 223 }; 224 225 /* T6 VI (vcc) interface */ 226 static driver_t vcc_driver = { 227 "vcc", 228 vcxgbe_methods, 229 sizeof(struct vi_info) 230 }; 231 232 /* ifnet interface */ 233 static void cxgbe_init(void *); 234 static int cxgbe_ioctl(struct ifnet *, unsigned long, caddr_t); 235 static int cxgbe_transmit(struct ifnet *, struct mbuf *); 236 static void cxgbe_qflush(struct ifnet *); 237 #if defined(KERN_TLS) || defined(RATELIMIT) 238 static int cxgbe_snd_tag_alloc(struct ifnet *, union if_snd_tag_alloc_params *, 239 struct m_snd_tag **); 240 static int cxgbe_snd_tag_modify(struct m_snd_tag *, 241 union if_snd_tag_modify_params *); 242 static int cxgbe_snd_tag_query(struct m_snd_tag *, 243 union if_snd_tag_query_params *); 244 static void cxgbe_snd_tag_free(struct m_snd_tag *); 245 #endif 246 247 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); 248 249 /* 250 * Correct lock order when you need to acquire multiple locks is t4_list_lock, 251 * then ADAPTER_LOCK, then t4_uld_list_lock. 252 */ 253 static struct sx t4_list_lock; 254 SLIST_HEAD(, adapter) t4_list; 255 #ifdef TCP_OFFLOAD 256 static struct sx t4_uld_list_lock; 257 SLIST_HEAD(, uld_info) t4_uld_list; 258 #endif 259 260 /* 261 * Tunables. See tweak_tunables() too. 262 * 263 * Each tunable is set to a default value here if it's known at compile-time. 264 * Otherwise it is set to -n as an indication to tweak_tunables() that it should 265 * provide a reasonable default (upto n) when the driver is loaded. 266 * 267 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to 268 * T5 are under hw.cxl. 269 */ 270 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 271 "cxgbe(4) parameters"); 272 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 273 "cxgbe(4) T5+ parameters"); 274 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 275 "cxgbe(4) TOE parameters"); 276 277 /* 278 * Number of queues for tx and rx, NIC and offload. 279 */ 280 #define NTXQ 16 281 int t4_ntxq = -NTXQ; 282 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0, 283 "Number of TX queues per port"); 284 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */ 285 286 #define NRXQ 8 287 int t4_nrxq = -NRXQ; 288 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0, 289 "Number of RX queues per port"); 290 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */ 291 292 #define NTXQ_VI 1 293 static int t4_ntxq_vi = -NTXQ_VI; 294 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0, 295 "Number of TX queues per VI"); 296 297 #define NRXQ_VI 1 298 static int t4_nrxq_vi = -NRXQ_VI; 299 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0, 300 "Number of RX queues per VI"); 301 302 static int t4_rsrv_noflowq = 0; 303 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq, 304 0, "Reserve TX queue 0 of each VI for non-flowid packets"); 305 306 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 307 #define NOFLDTXQ 8 308 static int t4_nofldtxq = -NOFLDTXQ; 309 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0, 310 "Number of offload TX queues per port"); 311 312 #define NOFLDRXQ 2 313 static int t4_nofldrxq = -NOFLDRXQ; 314 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0, 315 "Number of offload RX queues per port"); 316 317 #define NOFLDTXQ_VI 1 318 static int t4_nofldtxq_vi = -NOFLDTXQ_VI; 319 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0, 320 "Number of offload TX queues per VI"); 321 322 #define NOFLDRXQ_VI 1 323 static int t4_nofldrxq_vi = -NOFLDRXQ_VI; 324 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0, 325 "Number of offload RX queues per VI"); 326 327 #define TMR_IDX_OFLD 1 328 int t4_tmr_idx_ofld = TMR_IDX_OFLD; 329 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN, 330 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues"); 331 332 #define PKTC_IDX_OFLD (-1) 333 int t4_pktc_idx_ofld = PKTC_IDX_OFLD; 334 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN, 335 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues"); 336 337 /* 0 means chip/fw default, non-zero number is value in microseconds */ 338 static u_long t4_toe_keepalive_idle = 0; 339 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN, 340 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)"); 341 342 /* 0 means chip/fw default, non-zero number is value in microseconds */ 343 static u_long t4_toe_keepalive_interval = 0; 344 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN, 345 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)"); 346 347 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */ 348 static int t4_toe_keepalive_count = 0; 349 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN, 350 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort"); 351 352 /* 0 means chip/fw default, non-zero number is value in microseconds */ 353 static u_long t4_toe_rexmt_min = 0; 354 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN, 355 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)"); 356 357 /* 0 means chip/fw default, non-zero number is value in microseconds */ 358 static u_long t4_toe_rexmt_max = 0; 359 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN, 360 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)"); 361 362 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */ 363 static int t4_toe_rexmt_count = 0; 364 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN, 365 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort"); 366 367 /* -1 means chip/fw default, other values are raw backoff values to use */ 368 static int t4_toe_rexmt_backoff[16] = { 369 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 370 }; 371 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, 372 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 373 "cxgbe(4) TOE retransmit backoff values"); 374 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN, 375 &t4_toe_rexmt_backoff[0], 0, ""); 376 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN, 377 &t4_toe_rexmt_backoff[1], 0, ""); 378 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN, 379 &t4_toe_rexmt_backoff[2], 0, ""); 380 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN, 381 &t4_toe_rexmt_backoff[3], 0, ""); 382 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN, 383 &t4_toe_rexmt_backoff[4], 0, ""); 384 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN, 385 &t4_toe_rexmt_backoff[5], 0, ""); 386 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN, 387 &t4_toe_rexmt_backoff[6], 0, ""); 388 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN, 389 &t4_toe_rexmt_backoff[7], 0, ""); 390 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN, 391 &t4_toe_rexmt_backoff[8], 0, ""); 392 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN, 393 &t4_toe_rexmt_backoff[9], 0, ""); 394 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN, 395 &t4_toe_rexmt_backoff[10], 0, ""); 396 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN, 397 &t4_toe_rexmt_backoff[11], 0, ""); 398 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN, 399 &t4_toe_rexmt_backoff[12], 0, ""); 400 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN, 401 &t4_toe_rexmt_backoff[13], 0, ""); 402 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN, 403 &t4_toe_rexmt_backoff[14], 0, ""); 404 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN, 405 &t4_toe_rexmt_backoff[15], 0, ""); 406 #endif 407 408 #ifdef DEV_NETMAP 409 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */ 410 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */ 411 static int t4_native_netmap = NN_EXTRA_VI; 412 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap, 413 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs"); 414 415 #define NNMTXQ 8 416 static int t4_nnmtxq = -NNMTXQ; 417 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0, 418 "Number of netmap TX queues"); 419 420 #define NNMRXQ 8 421 static int t4_nnmrxq = -NNMRXQ; 422 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0, 423 "Number of netmap RX queues"); 424 425 #define NNMTXQ_VI 2 426 static int t4_nnmtxq_vi = -NNMTXQ_VI; 427 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0, 428 "Number of netmap TX queues per VI"); 429 430 #define NNMRXQ_VI 2 431 static int t4_nnmrxq_vi = -NNMRXQ_VI; 432 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0, 433 "Number of netmap RX queues per VI"); 434 #endif 435 436 /* 437 * Holdoff parameters for ports. 438 */ 439 #define TMR_IDX 1 440 int t4_tmr_idx = TMR_IDX; 441 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx, 442 0, "Holdoff timer index"); 443 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */ 444 445 #define PKTC_IDX (-1) 446 int t4_pktc_idx = PKTC_IDX; 447 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx, 448 0, "Holdoff packet counter index"); 449 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */ 450 451 /* 452 * Size (# of entries) of each tx and rx queue. 453 */ 454 unsigned int t4_qsize_txq = TX_EQ_QSIZE; 455 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0, 456 "Number of descriptors in each TX queue"); 457 458 unsigned int t4_qsize_rxq = RX_IQ_QSIZE; 459 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0, 460 "Number of descriptors in each RX queue"); 461 462 /* 463 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). 464 */ 465 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; 466 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types, 467 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)"); 468 469 /* 470 * Configuration file. All the _CF names here are special. 471 */ 472 #define DEFAULT_CF "default" 473 #define BUILTIN_CF "built-in" 474 #define FLASH_CF "flash" 475 #define UWIRE_CF "uwire" 476 #define FPGA_CF "fpga" 477 static char t4_cfg_file[32] = DEFAULT_CF; 478 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file, 479 sizeof(t4_cfg_file), "Firmware configuration file"); 480 481 /* 482 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively). 483 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them. 484 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water 485 * mark or when signalled to do so, 0 to never emit PAUSE. 486 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the 487 * negotiated settings will override rx_pause/tx_pause. 488 * Otherwise rx_pause/tx_pause are applied forcibly. 489 */ 490 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG; 491 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN, 492 &t4_pause_settings, 0, 493 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 494 495 /* 496 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively). 497 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5) 498 * 0 to disable FEC. 499 */ 500 static int t4_fec = -1; 501 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0, 502 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); 503 504 /* 505 * Link autonegotiation. 506 * -1 to run with the firmware default. 507 * 0 to disable. 508 * 1 to enable. 509 */ 510 static int t4_autoneg = -1; 511 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0, 512 "Link autonegotiation"); 513 514 /* 515 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, 516 * encouraged respectively). '-n' is the same as 'n' except the firmware 517 * version used in the checks is read from the firmware bundled with the driver. 518 */ 519 static int t4_fw_install = 1; 520 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0, 521 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)"); 522 523 /* 524 * ASIC features that will be used. Disable the ones you don't want so that the 525 * chip resources aren't wasted on features that will not be used. 526 */ 527 static int t4_nbmcaps_allowed = 0; 528 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN, 529 &t4_nbmcaps_allowed, 0, "Default NBM capabilities"); 530 531 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ 532 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN, 533 &t4_linkcaps_allowed, 0, "Default link capabilities"); 534 535 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS | 536 FW_CAPS_CONFIG_SWITCH_EGRESS; 537 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN, 538 &t4_switchcaps_allowed, 0, "Default switch capabilities"); 539 540 #ifdef RATELIMIT 541 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 542 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD; 543 #else 544 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 545 FW_CAPS_CONFIG_NIC_HASHFILTER; 546 #endif 547 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN, 548 &t4_niccaps_allowed, 0, "Default NIC capabilities"); 549 550 static int t4_toecaps_allowed = -1; 551 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN, 552 &t4_toecaps_allowed, 0, "Default TCP offload capabilities"); 553 554 static int t4_rdmacaps_allowed = -1; 555 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN, 556 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities"); 557 558 static int t4_cryptocaps_allowed = -1; 559 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN, 560 &t4_cryptocaps_allowed, 0, "Default crypto capabilities"); 561 562 static int t4_iscsicaps_allowed = -1; 563 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN, 564 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities"); 565 566 static int t4_fcoecaps_allowed = 0; 567 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN, 568 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities"); 569 570 static int t5_write_combine = 0; 571 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine, 572 0, "Use WC instead of UC for BAR2"); 573 574 static int t4_num_vis = 1; 575 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0, 576 "Number of VIs per port"); 577 578 /* 579 * PCIe Relaxed Ordering. 580 * -1: driver should figure out a good value. 581 * 0: disable RO. 582 * 1: enable RO. 583 * 2: leave RO alone. 584 */ 585 static int pcie_relaxed_ordering = -1; 586 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN, 587 &pcie_relaxed_ordering, 0, 588 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone"); 589 590 static int t4_panic_on_fatal_err = 0; 591 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RDTUN, 592 &t4_panic_on_fatal_err, 0, "panic on fatal errors"); 593 594 static int t4_tx_vm_wr = 0; 595 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0, 596 "Use VM work requests to transmit packets."); 597 598 /* 599 * Set to non-zero to enable the attack filter. A packet that matches any of 600 * these conditions will get dropped on ingress: 601 * 1) IP && source address == destination address. 602 * 2) TCP/IP && source address is not a unicast address. 603 * 3) TCP/IP && destination address is not a unicast address. 604 * 4) IP && source address is loopback (127.x.y.z). 605 * 5) IP && destination address is loopback (127.x.y.z). 606 * 6) IPv6 && source address == destination address. 607 * 7) IPv6 && source address is not a unicast address. 608 * 8) IPv6 && source address is loopback (::1/128). 609 * 9) IPv6 && destination address is loopback (::1/128). 610 * 10) IPv6 && source address is unspecified (::/128). 611 * 11) IPv6 && destination address is unspecified (::/128). 612 * 12) TCP/IPv6 && source address is multicast (ff00::/8). 613 * 13) TCP/IPv6 && destination address is multicast (ff00::/8). 614 */ 615 static int t4_attack_filter = 0; 616 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN, 617 &t4_attack_filter, 0, "Drop suspicious traffic"); 618 619 static int t4_drop_ip_fragments = 0; 620 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN, 621 &t4_drop_ip_fragments, 0, "Drop IP fragments"); 622 623 static int t4_drop_pkts_with_l2_errors = 1; 624 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN, 625 &t4_drop_pkts_with_l2_errors, 0, 626 "Drop all frames with Layer 2 length or checksum errors"); 627 628 static int t4_drop_pkts_with_l3_errors = 0; 629 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN, 630 &t4_drop_pkts_with_l3_errors, 0, 631 "Drop all frames with IP version, length, or checksum errors"); 632 633 static int t4_drop_pkts_with_l4_errors = 0; 634 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN, 635 &t4_drop_pkts_with_l4_errors, 0, 636 "Drop all frames with Layer 4 length, checksum, or other errors"); 637 638 #ifdef TCP_OFFLOAD 639 /* 640 * TOE tunables. 641 */ 642 static int t4_cop_managed_offloading = 0; 643 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN, 644 &t4_cop_managed_offloading, 0, 645 "COP (Connection Offload Policy) controls all TOE offload"); 646 #endif 647 648 #ifdef KERN_TLS 649 /* 650 * This enables KERN_TLS for all adapters if set. 651 */ 652 static int t4_kern_tls = 0; 653 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0, 654 "Enable KERN_TLS mode for all supported adapters"); 655 656 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 657 "cxgbe(4) KERN_TLS parameters"); 658 659 static int t4_tls_inline_keys = 0; 660 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN, 661 &t4_tls_inline_keys, 0, 662 "Always pass TLS keys in work requests (1) or attempt to store TLS keys " 663 "in card memory."); 664 665 static int t4_tls_combo_wrs = 0; 666 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs, 667 0, "Attempt to combine TCB field updates with TLS record work requests."); 668 #endif 669 670 /* Functions used by VIs to obtain unique MAC addresses for each VI. */ 671 static int vi_mac_funcs[] = { 672 FW_VI_FUNC_ETH, 673 FW_VI_FUNC_OFLD, 674 FW_VI_FUNC_IWARP, 675 FW_VI_FUNC_OPENISCSI, 676 FW_VI_FUNC_OPENFCOE, 677 FW_VI_FUNC_FOISCSI, 678 FW_VI_FUNC_FOFCOE, 679 }; 680 681 struct intrs_and_queues { 682 uint16_t intr_type; /* INTx, MSI, or MSI-X */ 683 uint16_t num_vis; /* number of VIs for each port */ 684 uint16_t nirq; /* Total # of vectors */ 685 uint16_t ntxq; /* # of NIC txq's for each port */ 686 uint16_t nrxq; /* # of NIC rxq's for each port */ 687 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */ 688 uint16_t nofldrxq; /* # of TOE rxq's for each port */ 689 uint16_t nnmtxq; /* # of netmap txq's */ 690 uint16_t nnmrxq; /* # of netmap rxq's */ 691 692 /* The vcxgbe/vcxl interfaces use these and not the ones above. */ 693 uint16_t ntxq_vi; /* # of NIC txq's */ 694 uint16_t nrxq_vi; /* # of NIC rxq's */ 695 uint16_t nofldtxq_vi; /* # of TOE txq's */ 696 uint16_t nofldrxq_vi; /* # of TOE rxq's */ 697 uint16_t nnmtxq_vi; /* # of netmap txq's */ 698 uint16_t nnmrxq_vi; /* # of netmap rxq's */ 699 }; 700 701 static void setup_memwin(struct adapter *); 702 static void position_memwin(struct adapter *, int, uint32_t); 703 static int validate_mem_range(struct adapter *, uint32_t, uint32_t); 704 static int fwmtype_to_hwmtype(int); 705 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t, 706 uint32_t *); 707 static int fixup_devlog_params(struct adapter *); 708 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *); 709 static int contact_firmware(struct adapter *); 710 static int partition_resources(struct adapter *); 711 static int get_params__pre_init(struct adapter *); 712 static int set_params__pre_init(struct adapter *); 713 static int get_params__post_init(struct adapter *); 714 static int set_params__post_init(struct adapter *); 715 static void t4_set_desc(struct adapter *); 716 static bool fixed_ifmedia(struct port_info *); 717 static void build_medialist(struct port_info *); 718 static void init_link_config(struct port_info *); 719 static int fixup_link_config(struct port_info *); 720 static int apply_link_config(struct port_info *); 721 static int cxgbe_init_synchronized(struct vi_info *); 722 static int cxgbe_uninit_synchronized(struct vi_info *); 723 static void quiesce_txq(struct adapter *, struct sge_txq *); 724 static void quiesce_wrq(struct adapter *, struct sge_wrq *); 725 static void quiesce_iq(struct adapter *, struct sge_iq *); 726 static void quiesce_fl(struct adapter *, struct sge_fl *); 727 static int t4_alloc_irq(struct adapter *, struct irq *, int rid, 728 driver_intr_t *, void *, char *); 729 static int t4_free_irq(struct adapter *, struct irq *); 730 static void t4_init_atid_table(struct adapter *); 731 static void t4_free_atid_table(struct adapter *); 732 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *); 733 static void vi_refresh_stats(struct adapter *, struct vi_info *); 734 static void cxgbe_refresh_stats(struct adapter *, struct port_info *); 735 static void cxgbe_tick(void *); 736 static void cxgbe_sysctls(struct port_info *); 737 static int sysctl_int_array(SYSCTL_HANDLER_ARGS); 738 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS); 739 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS); 740 static int sysctl_btphy(SYSCTL_HANDLER_ARGS); 741 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS); 742 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS); 743 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); 744 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); 745 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); 746 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); 747 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS); 748 static int sysctl_fec(SYSCTL_HANDLER_ARGS); 749 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS); 750 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS); 751 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); 752 static int sysctl_temperature(SYSCTL_HANDLER_ARGS); 753 static int sysctl_vdd(SYSCTL_HANDLER_ARGS); 754 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS); 755 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS); 756 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); 757 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS); 758 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); 759 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); 760 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); 761 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); 762 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); 763 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); 764 static int sysctl_devlog(SYSCTL_HANDLER_ARGS); 765 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); 766 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); 767 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); 768 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); 769 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); 770 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); 771 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS); 772 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); 773 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); 774 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); 775 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); 776 static int sysctl_tids(SYSCTL_HANDLER_ARGS); 777 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); 778 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS); 779 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); 780 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); 781 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); 782 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); 783 static int sysctl_cpus(SYSCTL_HANDLER_ARGS); 784 #ifdef TCP_OFFLOAD 785 static int sysctl_tls(SYSCTL_HANDLER_ARGS); 786 static int sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS); 787 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS); 788 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS); 789 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS); 790 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS); 791 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS); 792 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS); 793 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS); 794 #endif 795 static int get_sge_context(struct adapter *, struct t4_sge_context *); 796 static int load_fw(struct adapter *, struct t4_data *); 797 static int load_cfg(struct adapter *, struct t4_data *); 798 static int load_boot(struct adapter *, struct t4_bootrom *); 799 static int load_bootcfg(struct adapter *, struct t4_data *); 800 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *); 801 static void free_offload_policy(struct t4_offload_policy *); 802 static int set_offload_policy(struct adapter *, struct t4_offload_policy *); 803 static int read_card_mem(struct adapter *, int, struct t4_mem_range *); 804 static int read_i2c(struct adapter *, struct t4_i2c_data *); 805 static int clear_stats(struct adapter *, u_int); 806 #ifdef TCP_OFFLOAD 807 static int toe_capability(struct vi_info *, int); 808 static void t4_async_event(void *, int); 809 #endif 810 static int mod_event(module_t, int, void *); 811 static int notify_siblings(device_t, int); 812 813 struct { 814 uint16_t device; 815 char *desc; 816 } t4_pciids[] = { 817 {0xa000, "Chelsio Terminator 4 FPGA"}, 818 {0x4400, "Chelsio T440-dbg"}, 819 {0x4401, "Chelsio T420-CR"}, 820 {0x4402, "Chelsio T422-CR"}, 821 {0x4403, "Chelsio T440-CR"}, 822 {0x4404, "Chelsio T420-BCH"}, 823 {0x4405, "Chelsio T440-BCH"}, 824 {0x4406, "Chelsio T440-CH"}, 825 {0x4407, "Chelsio T420-SO"}, 826 {0x4408, "Chelsio T420-CX"}, 827 {0x4409, "Chelsio T420-BT"}, 828 {0x440a, "Chelsio T404-BT"}, 829 {0x440e, "Chelsio T440-LP-CR"}, 830 }, t5_pciids[] = { 831 {0xb000, "Chelsio Terminator 5 FPGA"}, 832 {0x5400, "Chelsio T580-dbg"}, 833 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ 834 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ 835 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ 836 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ 837 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ 838 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ 839 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ 840 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ 841 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ 842 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ 843 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ 844 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ 845 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */ 846 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */ 847 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */ 848 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */ 849 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */ 850 851 /* Custom */ 852 {0x5483, "Custom T540-CR"}, 853 {0x5484, "Custom T540-BT"}, 854 }, t6_pciids[] = { 855 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */ 856 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */ 857 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */ 858 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */ 859 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */ 860 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */ 861 {0x6405, "Chelsio T6225-OCP-SO"}, /* 2 x 10/25G, nomem */ 862 {0x6406, "Chelsio T62100-OCP-SO"}, /* 2 x 40/50/100G, nomem */ 863 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */ 864 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */ 865 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */ 866 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */ 867 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */ 868 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */ 869 {0x6414, "Chelsio T61100-OCP-SO"}, /* 1 x 40/50/100G, nomem */ 870 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */ 871 872 /* Custom */ 873 {0x6480, "Custom T6225-CR"}, 874 {0x6481, "Custom T62100-CR"}, 875 {0x6482, "Custom T6225-CR"}, 876 {0x6483, "Custom T62100-CR"}, 877 {0x6484, "Custom T64100-CR"}, 878 {0x6485, "Custom T6240-SO"}, 879 {0x6486, "Custom T6225-SO-CR"}, 880 {0x6487, "Custom T6225-CR"}, 881 }; 882 883 #ifdef TCP_OFFLOAD 884 /* 885 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should 886 * be exactly the same for both rxq and ofld_rxq. 887 */ 888 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); 889 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); 890 #endif 891 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE); 892 893 static int 894 t4_probe(device_t dev) 895 { 896 int i; 897 uint16_t v = pci_get_vendor(dev); 898 uint16_t d = pci_get_device(dev); 899 uint8_t f = pci_get_function(dev); 900 901 if (v != PCI_VENDOR_ID_CHELSIO) 902 return (ENXIO); 903 904 /* Attach only to PF0 of the FPGA */ 905 if (d == 0xa000 && f != 0) 906 return (ENXIO); 907 908 for (i = 0; i < nitems(t4_pciids); i++) { 909 if (d == t4_pciids[i].device) { 910 device_set_desc(dev, t4_pciids[i].desc); 911 return (BUS_PROBE_DEFAULT); 912 } 913 } 914 915 return (ENXIO); 916 } 917 918 static int 919 t5_probe(device_t dev) 920 { 921 int i; 922 uint16_t v = pci_get_vendor(dev); 923 uint16_t d = pci_get_device(dev); 924 uint8_t f = pci_get_function(dev); 925 926 if (v != PCI_VENDOR_ID_CHELSIO) 927 return (ENXIO); 928 929 /* Attach only to PF0 of the FPGA */ 930 if (d == 0xb000 && f != 0) 931 return (ENXIO); 932 933 for (i = 0; i < nitems(t5_pciids); i++) { 934 if (d == t5_pciids[i].device) { 935 device_set_desc(dev, t5_pciids[i].desc); 936 return (BUS_PROBE_DEFAULT); 937 } 938 } 939 940 return (ENXIO); 941 } 942 943 static int 944 t6_probe(device_t dev) 945 { 946 int i; 947 uint16_t v = pci_get_vendor(dev); 948 uint16_t d = pci_get_device(dev); 949 950 if (v != PCI_VENDOR_ID_CHELSIO) 951 return (ENXIO); 952 953 for (i = 0; i < nitems(t6_pciids); i++) { 954 if (d == t6_pciids[i].device) { 955 device_set_desc(dev, t6_pciids[i].desc); 956 return (BUS_PROBE_DEFAULT); 957 } 958 } 959 960 return (ENXIO); 961 } 962 963 static void 964 t5_attribute_workaround(device_t dev) 965 { 966 device_t root_port; 967 uint32_t v; 968 969 /* 970 * The T5 chips do not properly echo the No Snoop and Relaxed 971 * Ordering attributes when replying to a TLP from a Root 972 * Port. As a workaround, find the parent Root Port and 973 * disable No Snoop and Relaxed Ordering. Note that this 974 * affects all devices under this root port. 975 */ 976 root_port = pci_find_pcie_root_port(dev); 977 if (root_port == NULL) { 978 device_printf(dev, "Unable to find parent root port\n"); 979 return; 980 } 981 982 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL, 983 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2); 984 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) != 985 0) 986 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n", 987 device_get_nameunit(root_port)); 988 } 989 990 static const struct devnames devnames[] = { 991 { 992 .nexus_name = "t4nex", 993 .ifnet_name = "cxgbe", 994 .vi_ifnet_name = "vcxgbe", 995 .pf03_drv_name = "t4iov", 996 .vf_nexus_name = "t4vf", 997 .vf_ifnet_name = "cxgbev" 998 }, { 999 .nexus_name = "t5nex", 1000 .ifnet_name = "cxl", 1001 .vi_ifnet_name = "vcxl", 1002 .pf03_drv_name = "t5iov", 1003 .vf_nexus_name = "t5vf", 1004 .vf_ifnet_name = "cxlv" 1005 }, { 1006 .nexus_name = "t6nex", 1007 .ifnet_name = "cc", 1008 .vi_ifnet_name = "vcc", 1009 .pf03_drv_name = "t6iov", 1010 .vf_nexus_name = "t6vf", 1011 .vf_ifnet_name = "ccv" 1012 } 1013 }; 1014 1015 void 1016 t4_init_devnames(struct adapter *sc) 1017 { 1018 int id; 1019 1020 id = chip_id(sc); 1021 if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames)) 1022 sc->names = &devnames[id - CHELSIO_T4]; 1023 else { 1024 device_printf(sc->dev, "chip id %d is not supported.\n", id); 1025 sc->names = NULL; 1026 } 1027 } 1028 1029 static int 1030 t4_ifnet_unit(struct adapter *sc, struct port_info *pi) 1031 { 1032 const char *parent, *name; 1033 long value; 1034 int line, unit; 1035 1036 line = 0; 1037 parent = device_get_nameunit(sc->dev); 1038 name = sc->names->ifnet_name; 1039 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) { 1040 if (resource_long_value(name, unit, "port", &value) == 0 && 1041 value == pi->port_id) 1042 return (unit); 1043 } 1044 return (-1); 1045 } 1046 1047 static int 1048 t4_attach(device_t dev) 1049 { 1050 struct adapter *sc; 1051 int rc = 0, i, j, rqidx, tqidx, nports; 1052 struct make_dev_args mda; 1053 struct intrs_and_queues iaq; 1054 struct sge *s; 1055 uint32_t *buf; 1056 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1057 int ofld_tqidx; 1058 #endif 1059 #ifdef TCP_OFFLOAD 1060 int ofld_rqidx; 1061 #endif 1062 #ifdef DEV_NETMAP 1063 int nm_rqidx, nm_tqidx; 1064 #endif 1065 int num_vis; 1066 1067 sc = device_get_softc(dev); 1068 sc->dev = dev; 1069 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags); 1070 1071 if ((pci_get_device(dev) & 0xff00) == 0x5400) 1072 t5_attribute_workaround(dev); 1073 pci_enable_busmaster(dev); 1074 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 1075 uint32_t v; 1076 1077 pci_set_max_read_req(dev, 4096); 1078 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); 1079 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5); 1080 if (pcie_relaxed_ordering == 0 && 1081 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) { 1082 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE; 1083 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1084 } else if (pcie_relaxed_ordering == 1 && 1085 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) { 1086 v |= PCIEM_CTL_RELAXED_ORD_ENABLE; 1087 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1088 } 1089 } 1090 1091 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS); 1092 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL); 1093 sc->traceq = -1; 1094 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); 1095 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", 1096 device_get_nameunit(dev)); 1097 1098 snprintf(sc->lockname, sizeof(sc->lockname), "%s", 1099 device_get_nameunit(dev)); 1100 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); 1101 t4_add_adapter(sc); 1102 1103 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); 1104 TAILQ_INIT(&sc->sfl); 1105 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0); 1106 1107 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF); 1108 1109 sc->policy = NULL; 1110 rw_init(&sc->policy_lock, "connection offload policy"); 1111 1112 callout_init(&sc->ktls_tick, 1); 1113 1114 #ifdef TCP_OFFLOAD 1115 TASK_INIT(&sc->async_event_task, 0, t4_async_event, sc); 1116 #endif 1117 1118 refcount_init(&sc->vxlan_refcount, 0); 1119 1120 rc = t4_map_bars_0_and_4(sc); 1121 if (rc != 0) 1122 goto done; /* error message displayed already */ 1123 1124 memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); 1125 1126 /* Prepare the adapter for operation. */ 1127 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK); 1128 rc = -t4_prep_adapter(sc, buf); 1129 free(buf, M_CXGBE); 1130 if (rc != 0) { 1131 device_printf(dev, "failed to prepare adapter: %d.\n", rc); 1132 goto done; 1133 } 1134 1135 /* 1136 * This is the real PF# to which we're attaching. Works from within PCI 1137 * passthrough environments too, where pci_get_function() could return a 1138 * different PF# depending on the passthrough configuration. We need to 1139 * use the real PF# in all our communication with the firmware. 1140 */ 1141 j = t4_read_reg(sc, A_PL_WHOAMI); 1142 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j); 1143 sc->mbox = sc->pf; 1144 1145 t4_init_devnames(sc); 1146 if (sc->names == NULL) { 1147 rc = ENOTSUP; 1148 goto done; /* error message displayed already */ 1149 } 1150 1151 /* 1152 * Do this really early, with the memory windows set up even before the 1153 * character device. The userland tool's register i/o and mem read 1154 * will work even in "recovery mode". 1155 */ 1156 setup_memwin(sc); 1157 if (t4_init_devlog_params(sc, 0) == 0) 1158 fixup_devlog_params(sc); 1159 make_dev_args_init(&mda); 1160 mda.mda_devsw = &t4_cdevsw; 1161 mda.mda_uid = UID_ROOT; 1162 mda.mda_gid = GID_WHEEL; 1163 mda.mda_mode = 0600; 1164 mda.mda_si_drv1 = sc; 1165 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev)); 1166 if (rc != 0) 1167 device_printf(dev, "failed to create nexus char device: %d.\n", 1168 rc); 1169 1170 /* Go no further if recovery mode has been requested. */ 1171 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 1172 device_printf(dev, "recovery mode.\n"); 1173 goto done; 1174 } 1175 1176 #if defined(__i386__) 1177 if ((cpu_feature & CPUID_CX8) == 0) { 1178 device_printf(dev, "64 bit atomics not available.\n"); 1179 rc = ENOTSUP; 1180 goto done; 1181 } 1182 #endif 1183 1184 /* Contact the firmware and try to become the master driver. */ 1185 rc = contact_firmware(sc); 1186 if (rc != 0) 1187 goto done; /* error message displayed already */ 1188 MPASS(sc->flags & FW_OK); 1189 1190 rc = get_params__pre_init(sc); 1191 if (rc != 0) 1192 goto done; /* error message displayed already */ 1193 1194 if (sc->flags & MASTER_PF) { 1195 rc = partition_resources(sc); 1196 if (rc != 0) 1197 goto done; /* error message displayed already */ 1198 t4_intr_clear(sc); 1199 } 1200 1201 rc = get_params__post_init(sc); 1202 if (rc != 0) 1203 goto done; /* error message displayed already */ 1204 1205 rc = set_params__post_init(sc); 1206 if (rc != 0) 1207 goto done; /* error message displayed already */ 1208 1209 rc = t4_map_bar_2(sc); 1210 if (rc != 0) 1211 goto done; /* error message displayed already */ 1212 1213 rc = t4_create_dma_tag(sc); 1214 if (rc != 0) 1215 goto done; /* error message displayed already */ 1216 1217 /* 1218 * First pass over all the ports - allocate VIs and initialize some 1219 * basic parameters like mac address, port type, etc. 1220 */ 1221 for_each_port(sc, i) { 1222 struct port_info *pi; 1223 1224 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); 1225 sc->port[i] = pi; 1226 1227 /* These must be set before t4_port_init */ 1228 pi->adapter = sc; 1229 pi->port_id = i; 1230 /* 1231 * XXX: vi[0] is special so we can't delay this allocation until 1232 * pi->nvi's final value is known. 1233 */ 1234 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE, 1235 M_ZERO | M_WAITOK); 1236 1237 /* 1238 * Allocate the "main" VI and initialize parameters 1239 * like mac addr. 1240 */ 1241 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 1242 if (rc != 0) { 1243 device_printf(dev, "unable to initialize port %d: %d\n", 1244 i, rc); 1245 free(pi->vi, M_CXGBE); 1246 free(pi, M_CXGBE); 1247 sc->port[i] = NULL; 1248 goto done; 1249 } 1250 1251 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", 1252 device_get_nameunit(dev), i); 1253 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); 1254 sc->chan_map[pi->tx_chan] = i; 1255 1256 /* 1257 * The MPS counter for FCS errors doesn't work correctly on the 1258 * T6 so we use the MAC counter here. Which MAC is in use 1259 * depends on the link settings which will be known when the 1260 * link comes up. 1261 */ 1262 if (is_t6(sc)) { 1263 pi->fcs_reg = -1; 1264 } else if (is_t4(sc)) { 1265 pi->fcs_reg = PORT_REG(pi->tx_chan, 1266 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L); 1267 } else { 1268 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 1269 A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L); 1270 } 1271 pi->fcs_base = 0; 1272 1273 /* All VIs on this port share this media. */ 1274 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, 1275 cxgbe_media_status); 1276 1277 PORT_LOCK(pi); 1278 init_link_config(pi); 1279 fixup_link_config(pi); 1280 build_medialist(pi); 1281 if (fixed_ifmedia(pi)) 1282 pi->flags |= FIXED_IFMEDIA; 1283 PORT_UNLOCK(pi); 1284 1285 pi->dev = device_add_child(dev, sc->names->ifnet_name, 1286 t4_ifnet_unit(sc, pi)); 1287 if (pi->dev == NULL) { 1288 device_printf(dev, 1289 "failed to add device for port %d.\n", i); 1290 rc = ENXIO; 1291 goto done; 1292 } 1293 pi->vi[0].dev = pi->dev; 1294 device_set_softc(pi->dev, pi); 1295 } 1296 1297 /* 1298 * Interrupt type, # of interrupts, # of rx/tx queues, etc. 1299 */ 1300 nports = sc->params.nports; 1301 rc = cfg_itype_and_nqueues(sc, &iaq); 1302 if (rc != 0) 1303 goto done; /* error message displayed already */ 1304 1305 num_vis = iaq.num_vis; 1306 sc->intr_type = iaq.intr_type; 1307 sc->intr_count = iaq.nirq; 1308 1309 s = &sc->sge; 1310 s->nrxq = nports * iaq.nrxq; 1311 s->ntxq = nports * iaq.ntxq; 1312 if (num_vis > 1) { 1313 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi; 1314 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi; 1315 } 1316 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ 1317 s->neq += nports; /* ctrl queues: 1 per port */ 1318 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ 1319 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1320 if (is_offload(sc) || is_ethoffload(sc)) { 1321 s->nofldtxq = nports * iaq.nofldtxq; 1322 if (num_vis > 1) 1323 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi; 1324 s->neq += s->nofldtxq; 1325 1326 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_wrq), 1327 M_CXGBE, M_ZERO | M_WAITOK); 1328 } 1329 #endif 1330 #ifdef TCP_OFFLOAD 1331 if (is_offload(sc)) { 1332 s->nofldrxq = nports * iaq.nofldrxq; 1333 if (num_vis > 1) 1334 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi; 1335 s->neq += s->nofldrxq; /* free list */ 1336 s->niq += s->nofldrxq; 1337 1338 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), 1339 M_CXGBE, M_ZERO | M_WAITOK); 1340 } 1341 #endif 1342 #ifdef DEV_NETMAP 1343 s->nnmrxq = 0; 1344 s->nnmtxq = 0; 1345 if (t4_native_netmap & NN_MAIN_VI) { 1346 s->nnmrxq += nports * iaq.nnmrxq; 1347 s->nnmtxq += nports * iaq.nnmtxq; 1348 } 1349 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) { 1350 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi; 1351 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi; 1352 } 1353 s->neq += s->nnmtxq + s->nnmrxq; 1354 s->niq += s->nnmrxq; 1355 1356 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq), 1357 M_CXGBE, M_ZERO | M_WAITOK); 1358 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq), 1359 M_CXGBE, M_ZERO | M_WAITOK); 1360 #endif 1361 MPASS(s->niq <= s->iqmap_sz); 1362 MPASS(s->neq <= s->eqmap_sz); 1363 1364 s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE, 1365 M_ZERO | M_WAITOK); 1366 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, 1367 M_ZERO | M_WAITOK); 1368 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, 1369 M_ZERO | M_WAITOK); 1370 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE, 1371 M_ZERO | M_WAITOK); 1372 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE, 1373 M_ZERO | M_WAITOK); 1374 1375 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, 1376 M_ZERO | M_WAITOK); 1377 1378 t4_init_l2t(sc, M_WAITOK); 1379 t4_init_smt(sc, M_WAITOK); 1380 t4_init_tx_sched(sc); 1381 t4_init_atid_table(sc); 1382 #ifdef RATELIMIT 1383 t4_init_etid_table(sc); 1384 #endif 1385 #ifdef INET6 1386 t4_init_clip_table(sc); 1387 #endif 1388 if (sc->vres.key.size != 0) 1389 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start, 1390 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK); 1391 1392 /* 1393 * Second pass over the ports. This time we know the number of rx and 1394 * tx queues that each port should get. 1395 */ 1396 rqidx = tqidx = 0; 1397 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1398 ofld_tqidx = 0; 1399 #endif 1400 #ifdef TCP_OFFLOAD 1401 ofld_rqidx = 0; 1402 #endif 1403 #ifdef DEV_NETMAP 1404 nm_rqidx = nm_tqidx = 0; 1405 #endif 1406 for_each_port(sc, i) { 1407 struct port_info *pi = sc->port[i]; 1408 struct vi_info *vi; 1409 1410 if (pi == NULL) 1411 continue; 1412 1413 pi->nvi = num_vis; 1414 for_each_vi(pi, j, vi) { 1415 vi->pi = pi; 1416 vi->adapter = sc; 1417 vi->qsize_rxq = t4_qsize_rxq; 1418 vi->qsize_txq = t4_qsize_txq; 1419 1420 vi->first_rxq = rqidx; 1421 vi->first_txq = tqidx; 1422 vi->tmr_idx = t4_tmr_idx; 1423 vi->pktc_idx = t4_pktc_idx; 1424 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi; 1425 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi; 1426 1427 rqidx += vi->nrxq; 1428 tqidx += vi->ntxq; 1429 1430 if (j == 0 && vi->ntxq > 1) 1431 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0; 1432 else 1433 vi->rsrv_noflowq = 0; 1434 1435 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1436 vi->first_ofld_txq = ofld_tqidx; 1437 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi; 1438 ofld_tqidx += vi->nofldtxq; 1439 #endif 1440 #ifdef TCP_OFFLOAD 1441 vi->ofld_tmr_idx = t4_tmr_idx_ofld; 1442 vi->ofld_pktc_idx = t4_pktc_idx_ofld; 1443 vi->first_ofld_rxq = ofld_rqidx; 1444 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi; 1445 1446 ofld_rqidx += vi->nofldrxq; 1447 #endif 1448 #ifdef DEV_NETMAP 1449 vi->first_nm_rxq = nm_rqidx; 1450 vi->first_nm_txq = nm_tqidx; 1451 if (j == 0) { 1452 vi->nnmrxq = iaq.nnmrxq; 1453 vi->nnmtxq = iaq.nnmtxq; 1454 } else { 1455 vi->nnmrxq = iaq.nnmrxq_vi; 1456 vi->nnmtxq = iaq.nnmtxq_vi; 1457 } 1458 nm_rqidx += vi->nnmrxq; 1459 nm_tqidx += vi->nnmtxq; 1460 #endif 1461 } 1462 } 1463 1464 rc = t4_setup_intr_handlers(sc); 1465 if (rc != 0) { 1466 device_printf(dev, 1467 "failed to setup interrupt handlers: %d\n", rc); 1468 goto done; 1469 } 1470 1471 rc = bus_generic_probe(dev); 1472 if (rc != 0) { 1473 device_printf(dev, "failed to probe child drivers: %d\n", rc); 1474 goto done; 1475 } 1476 1477 /* 1478 * Ensure thread-safe mailbox access (in debug builds). 1479 * 1480 * So far this was the only thread accessing the mailbox but various 1481 * ifnets and sysctls are about to be created and their handlers/ioctls 1482 * will access the mailbox from different threads. 1483 */ 1484 sc->flags |= CHK_MBOX_ACCESS; 1485 1486 rc = bus_generic_attach(dev); 1487 if (rc != 0) { 1488 device_printf(dev, 1489 "failed to attach all child ports: %d\n", rc); 1490 goto done; 1491 } 1492 1493 device_printf(dev, 1494 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", 1495 sc->params.pci.speed, sc->params.pci.width, sc->params.nports, 1496 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : 1497 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), 1498 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); 1499 1500 t4_set_desc(sc); 1501 1502 notify_siblings(dev, 0); 1503 1504 done: 1505 if (rc != 0 && sc->cdev) { 1506 /* cdev was created and so cxgbetool works; recover that way. */ 1507 device_printf(dev, 1508 "error during attach, adapter is now in recovery mode.\n"); 1509 rc = 0; 1510 } 1511 1512 if (rc != 0) 1513 t4_detach_common(dev); 1514 else 1515 t4_sysctls(sc); 1516 1517 return (rc); 1518 } 1519 1520 static int 1521 t4_child_location_str(device_t bus, device_t dev, char *buf, size_t buflen) 1522 { 1523 struct adapter *sc; 1524 struct port_info *pi; 1525 int i; 1526 1527 sc = device_get_softc(bus); 1528 buf[0] = '\0'; 1529 for_each_port(sc, i) { 1530 pi = sc->port[i]; 1531 if (pi != NULL && pi->dev == dev) { 1532 snprintf(buf, buflen, "port=%d", pi->port_id); 1533 break; 1534 } 1535 } 1536 return (0); 1537 } 1538 1539 static int 1540 t4_ready(device_t dev) 1541 { 1542 struct adapter *sc; 1543 1544 sc = device_get_softc(dev); 1545 if (sc->flags & FW_OK) 1546 return (0); 1547 return (ENXIO); 1548 } 1549 1550 static int 1551 t4_read_port_device(device_t dev, int port, device_t *child) 1552 { 1553 struct adapter *sc; 1554 struct port_info *pi; 1555 1556 sc = device_get_softc(dev); 1557 if (port < 0 || port >= MAX_NPORTS) 1558 return (EINVAL); 1559 pi = sc->port[port]; 1560 if (pi == NULL || pi->dev == NULL) 1561 return (ENXIO); 1562 *child = pi->dev; 1563 return (0); 1564 } 1565 1566 static int 1567 notify_siblings(device_t dev, int detaching) 1568 { 1569 device_t sibling; 1570 int error, i; 1571 1572 error = 0; 1573 for (i = 0; i < PCI_FUNCMAX; i++) { 1574 if (i == pci_get_function(dev)) 1575 continue; 1576 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev), 1577 pci_get_slot(dev), i); 1578 if (sibling == NULL || !device_is_attached(sibling)) 1579 continue; 1580 if (detaching) 1581 error = T4_DETACH_CHILD(sibling); 1582 else 1583 (void)T4_ATTACH_CHILD(sibling); 1584 if (error) 1585 break; 1586 } 1587 return (error); 1588 } 1589 1590 /* 1591 * Idempotent 1592 */ 1593 static int 1594 t4_detach(device_t dev) 1595 { 1596 struct adapter *sc; 1597 int rc; 1598 1599 sc = device_get_softc(dev); 1600 1601 rc = notify_siblings(dev, 1); 1602 if (rc) { 1603 device_printf(dev, 1604 "failed to detach sibling devices: %d\n", rc); 1605 return (rc); 1606 } 1607 1608 return (t4_detach_common(dev)); 1609 } 1610 1611 int 1612 t4_detach_common(device_t dev) 1613 { 1614 struct adapter *sc; 1615 struct port_info *pi; 1616 int i, rc; 1617 1618 sc = device_get_softc(dev); 1619 1620 if (sc->cdev) { 1621 destroy_dev(sc->cdev); 1622 sc->cdev = NULL; 1623 } 1624 1625 sx_xlock(&t4_list_lock); 1626 SLIST_REMOVE(&t4_list, sc, adapter, link); 1627 sx_xunlock(&t4_list_lock); 1628 1629 sc->flags &= ~CHK_MBOX_ACCESS; 1630 if (sc->flags & FULL_INIT_DONE) { 1631 if (!(sc->flags & IS_VF)) 1632 t4_intr_disable(sc); 1633 } 1634 1635 if (device_is_attached(dev)) { 1636 rc = bus_generic_detach(dev); 1637 if (rc) { 1638 device_printf(dev, 1639 "failed to detach child devices: %d\n", rc); 1640 return (rc); 1641 } 1642 } 1643 1644 #ifdef TCP_OFFLOAD 1645 taskqueue_drain(taskqueue_thread, &sc->async_event_task); 1646 #endif 1647 1648 for (i = 0; i < sc->intr_count; i++) 1649 t4_free_irq(sc, &sc->irq[i]); 1650 1651 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1652 t4_free_tx_sched(sc); 1653 1654 for (i = 0; i < MAX_NPORTS; i++) { 1655 pi = sc->port[i]; 1656 if (pi) { 1657 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid); 1658 if (pi->dev) 1659 device_delete_child(dev, pi->dev); 1660 1661 mtx_destroy(&pi->pi_lock); 1662 free(pi->vi, M_CXGBE); 1663 free(pi, M_CXGBE); 1664 } 1665 } 1666 1667 device_delete_children(dev); 1668 1669 if (sc->flags & FULL_INIT_DONE) 1670 adapter_full_uninit(sc); 1671 1672 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1673 t4_fw_bye(sc, sc->mbox); 1674 1675 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) 1676 pci_release_msi(dev); 1677 1678 if (sc->regs_res) 1679 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, 1680 sc->regs_res); 1681 1682 if (sc->udbs_res) 1683 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, 1684 sc->udbs_res); 1685 1686 if (sc->msix_res) 1687 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, 1688 sc->msix_res); 1689 1690 if (sc->l2t) 1691 t4_free_l2t(sc->l2t); 1692 if (sc->smt) 1693 t4_free_smt(sc->smt); 1694 t4_free_atid_table(sc); 1695 #ifdef RATELIMIT 1696 t4_free_etid_table(sc); 1697 #endif 1698 if (sc->key_map) 1699 vmem_destroy(sc->key_map); 1700 #ifdef INET6 1701 t4_destroy_clip_table(sc); 1702 #endif 1703 1704 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1705 free(sc->sge.ofld_txq, M_CXGBE); 1706 #endif 1707 #ifdef TCP_OFFLOAD 1708 free(sc->sge.ofld_rxq, M_CXGBE); 1709 #endif 1710 #ifdef DEV_NETMAP 1711 free(sc->sge.nm_rxq, M_CXGBE); 1712 free(sc->sge.nm_txq, M_CXGBE); 1713 #endif 1714 free(sc->irq, M_CXGBE); 1715 free(sc->sge.rxq, M_CXGBE); 1716 free(sc->sge.txq, M_CXGBE); 1717 free(sc->sge.ctrlq, M_CXGBE); 1718 free(sc->sge.iqmap, M_CXGBE); 1719 free(sc->sge.eqmap, M_CXGBE); 1720 free(sc->tids.ftid_tab, M_CXGBE); 1721 free(sc->tids.hpftid_tab, M_CXGBE); 1722 free_hftid_hash(&sc->tids); 1723 free(sc->tids.tid_tab, M_CXGBE); 1724 free(sc->tt.tls_rx_ports, M_CXGBE); 1725 t4_destroy_dma_tag(sc); 1726 1727 callout_drain(&sc->ktls_tick); 1728 callout_drain(&sc->sfl_callout); 1729 if (mtx_initialized(&sc->tids.ftid_lock)) { 1730 mtx_destroy(&sc->tids.ftid_lock); 1731 cv_destroy(&sc->tids.ftid_cv); 1732 } 1733 if (mtx_initialized(&sc->tids.atid_lock)) 1734 mtx_destroy(&sc->tids.atid_lock); 1735 if (mtx_initialized(&sc->ifp_lock)) 1736 mtx_destroy(&sc->ifp_lock); 1737 1738 if (rw_initialized(&sc->policy_lock)) { 1739 rw_destroy(&sc->policy_lock); 1740 #ifdef TCP_OFFLOAD 1741 if (sc->policy != NULL) 1742 free_offload_policy(sc->policy); 1743 #endif 1744 } 1745 1746 for (i = 0; i < NUM_MEMWIN; i++) { 1747 struct memwin *mw = &sc->memwin[i]; 1748 1749 if (rw_initialized(&mw->mw_lock)) 1750 rw_destroy(&mw->mw_lock); 1751 } 1752 1753 mtx_destroy(&sc->sfl_lock); 1754 mtx_destroy(&sc->reg_lock); 1755 mtx_destroy(&sc->sc_lock); 1756 1757 bzero(sc, sizeof(*sc)); 1758 1759 return (0); 1760 } 1761 1762 static int 1763 cxgbe_probe(device_t dev) 1764 { 1765 char buf[128]; 1766 struct port_info *pi = device_get_softc(dev); 1767 1768 snprintf(buf, sizeof(buf), "port %d", pi->port_id); 1769 device_set_desc_copy(dev, buf); 1770 1771 return (BUS_PROBE_DEFAULT); 1772 } 1773 1774 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ 1775 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ 1776 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \ 1777 IFCAP_HWRXTSTMP | IFCAP_NOMAP) 1778 #define T4_CAP_ENABLE (T4_CAP) 1779 1780 static int 1781 cxgbe_vi_attach(device_t dev, struct vi_info *vi) 1782 { 1783 struct ifnet *ifp; 1784 struct sbuf *sb; 1785 struct pfil_head_args pa; 1786 struct adapter *sc = vi->adapter; 1787 1788 vi->xact_addr_filt = -1; 1789 callout_init(&vi->tick, 1); 1790 if (sc->flags & IS_VF || t4_tx_vm_wr != 0) 1791 vi->flags |= TX_USES_VM_WR; 1792 1793 /* Allocate an ifnet and set it up */ 1794 ifp = if_alloc_dev(IFT_ETHER, dev); 1795 if (ifp == NULL) { 1796 device_printf(dev, "Cannot allocate ifnet\n"); 1797 return (ENOMEM); 1798 } 1799 vi->ifp = ifp; 1800 ifp->if_softc = vi; 1801 1802 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 1803 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 1804 1805 ifp->if_init = cxgbe_init; 1806 ifp->if_ioctl = cxgbe_ioctl; 1807 ifp->if_transmit = cxgbe_transmit; 1808 ifp->if_qflush = cxgbe_qflush; 1809 ifp->if_get_counter = cxgbe_get_counter; 1810 #if defined(KERN_TLS) || defined(RATELIMIT) 1811 ifp->if_snd_tag_alloc = cxgbe_snd_tag_alloc; 1812 ifp->if_snd_tag_modify = cxgbe_snd_tag_modify; 1813 ifp->if_snd_tag_query = cxgbe_snd_tag_query; 1814 ifp->if_snd_tag_free = cxgbe_snd_tag_free; 1815 #endif 1816 #ifdef RATELIMIT 1817 ifp->if_ratelimit_query = cxgbe_ratelimit_query; 1818 #endif 1819 1820 ifp->if_capabilities = T4_CAP; 1821 ifp->if_capenable = T4_CAP_ENABLE; 1822 ifp->if_hwassist = CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | 1823 CSUM_UDP_IPV6 | CSUM_TCP_IPV6; 1824 if (chip_id(sc) >= CHELSIO_T6) { 1825 ifp->if_capabilities |= IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO; 1826 ifp->if_capenable |= IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO; 1827 ifp->if_hwassist |= CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | 1828 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP | 1829 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN; 1830 } 1831 1832 #ifdef TCP_OFFLOAD 1833 if (vi->nofldrxq != 0 && (sc->flags & KERN_TLS_OK) == 0) 1834 ifp->if_capabilities |= IFCAP_TOE; 1835 #endif 1836 #ifdef RATELIMIT 1837 if (is_ethoffload(sc) && vi->nofldtxq != 0) { 1838 ifp->if_capabilities |= IFCAP_TXRTLMT; 1839 ifp->if_capenable |= IFCAP_TXRTLMT; 1840 } 1841 #endif 1842 1843 ifp->if_hw_tsomax = IP_MAXPACKET; 1844 if (vi->flags & TX_USES_VM_WR) 1845 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_VM_TSO; 1846 else 1847 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO; 1848 #ifdef RATELIMIT 1849 if (is_ethoffload(sc) && vi->nofldtxq != 0) 1850 ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_EO_TSO; 1851 #endif 1852 ifp->if_hw_tsomaxsegsize = 65536; 1853 #ifdef KERN_TLS 1854 if (sc->flags & KERN_TLS_OK) { 1855 ifp->if_capabilities |= IFCAP_TXTLS; 1856 ifp->if_capenable |= IFCAP_TXTLS; 1857 } 1858 #endif 1859 1860 ether_ifattach(ifp, vi->hw_addr); 1861 #ifdef DEV_NETMAP 1862 if (vi->nnmrxq != 0) 1863 cxgbe_nm_attach(vi); 1864 #endif 1865 sb = sbuf_new_auto(); 1866 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq); 1867 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1868 switch (ifp->if_capabilities & (IFCAP_TOE | IFCAP_TXRTLMT)) { 1869 case IFCAP_TOE: 1870 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq); 1871 break; 1872 case IFCAP_TOE | IFCAP_TXRTLMT: 1873 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq); 1874 break; 1875 case IFCAP_TXRTLMT: 1876 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq); 1877 break; 1878 } 1879 #endif 1880 #ifdef TCP_OFFLOAD 1881 if (ifp->if_capabilities & IFCAP_TOE) 1882 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq); 1883 #endif 1884 #ifdef DEV_NETMAP 1885 if (ifp->if_capabilities & IFCAP_NETMAP) 1886 sbuf_printf(sb, "; %d txq, %d rxq (netmap)", 1887 vi->nnmtxq, vi->nnmrxq); 1888 #endif 1889 sbuf_finish(sb); 1890 device_printf(dev, "%s\n", sbuf_data(sb)); 1891 sbuf_delete(sb); 1892 1893 vi_sysctls(vi); 1894 1895 pa.pa_version = PFIL_VERSION; 1896 pa.pa_flags = PFIL_IN; 1897 pa.pa_type = PFIL_TYPE_ETHERNET; 1898 pa.pa_headname = ifp->if_xname; 1899 vi->pfil = pfil_head_register(&pa); 1900 1901 return (0); 1902 } 1903 1904 static int 1905 cxgbe_attach(device_t dev) 1906 { 1907 struct port_info *pi = device_get_softc(dev); 1908 struct adapter *sc = pi->adapter; 1909 struct vi_info *vi; 1910 int i, rc; 1911 1912 callout_init_mtx(&pi->tick, &pi->pi_lock, 0); 1913 1914 rc = cxgbe_vi_attach(dev, &pi->vi[0]); 1915 if (rc) 1916 return (rc); 1917 1918 for_each_vi(pi, i, vi) { 1919 if (i == 0) 1920 continue; 1921 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1); 1922 if (vi->dev == NULL) { 1923 device_printf(dev, "failed to add VI %d\n", i); 1924 continue; 1925 } 1926 device_set_softc(vi->dev, vi); 1927 } 1928 1929 cxgbe_sysctls(pi); 1930 1931 bus_generic_attach(dev); 1932 1933 return (0); 1934 } 1935 1936 static void 1937 cxgbe_vi_detach(struct vi_info *vi) 1938 { 1939 struct ifnet *ifp = vi->ifp; 1940 1941 if (vi->pfil != NULL) { 1942 pfil_head_unregister(vi->pfil); 1943 vi->pfil = NULL; 1944 } 1945 1946 ether_ifdetach(ifp); 1947 1948 /* Let detach proceed even if these fail. */ 1949 #ifdef DEV_NETMAP 1950 if (ifp->if_capabilities & IFCAP_NETMAP) 1951 cxgbe_nm_detach(vi); 1952 #endif 1953 cxgbe_uninit_synchronized(vi); 1954 callout_drain(&vi->tick); 1955 vi_full_uninit(vi); 1956 1957 if_free(vi->ifp); 1958 vi->ifp = NULL; 1959 } 1960 1961 static int 1962 cxgbe_detach(device_t dev) 1963 { 1964 struct port_info *pi = device_get_softc(dev); 1965 struct adapter *sc = pi->adapter; 1966 int rc; 1967 1968 /* Detach the extra VIs first. */ 1969 rc = bus_generic_detach(dev); 1970 if (rc) 1971 return (rc); 1972 device_delete_children(dev); 1973 1974 doom_vi(sc, &pi->vi[0]); 1975 1976 if (pi->flags & HAS_TRACEQ) { 1977 sc->traceq = -1; /* cloner should not create ifnet */ 1978 t4_tracer_port_detach(sc); 1979 } 1980 1981 cxgbe_vi_detach(&pi->vi[0]); 1982 callout_drain(&pi->tick); 1983 ifmedia_removeall(&pi->media); 1984 1985 end_synchronized_op(sc, 0); 1986 1987 return (0); 1988 } 1989 1990 static void 1991 cxgbe_init(void *arg) 1992 { 1993 struct vi_info *vi = arg; 1994 struct adapter *sc = vi->adapter; 1995 1996 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0) 1997 return; 1998 cxgbe_init_synchronized(vi); 1999 end_synchronized_op(sc, 0); 2000 } 2001 2002 static int 2003 cxgbe_ioctl(struct ifnet *ifp, unsigned long cmd, caddr_t data) 2004 { 2005 int rc = 0, mtu, flags; 2006 struct vi_info *vi = ifp->if_softc; 2007 struct port_info *pi = vi->pi; 2008 struct adapter *sc = pi->adapter; 2009 struct ifreq *ifr = (struct ifreq *)data; 2010 uint32_t mask; 2011 2012 switch (cmd) { 2013 case SIOCSIFMTU: 2014 mtu = ifr->ifr_mtu; 2015 if (mtu < ETHERMIN || mtu > MAX_MTU) 2016 return (EINVAL); 2017 2018 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu"); 2019 if (rc) 2020 return (rc); 2021 ifp->if_mtu = mtu; 2022 if (vi->flags & VI_INIT_DONE) { 2023 t4_update_fl_bufsize(ifp); 2024 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2025 rc = update_mac_settings(ifp, XGMAC_MTU); 2026 } 2027 end_synchronized_op(sc, 0); 2028 break; 2029 2030 case SIOCSIFFLAGS: 2031 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg"); 2032 if (rc) 2033 return (rc); 2034 2035 if (ifp->if_flags & IFF_UP) { 2036 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2037 flags = vi->if_flags; 2038 if ((ifp->if_flags ^ flags) & 2039 (IFF_PROMISC | IFF_ALLMULTI)) { 2040 rc = update_mac_settings(ifp, 2041 XGMAC_PROMISC | XGMAC_ALLMULTI); 2042 } 2043 } else { 2044 rc = cxgbe_init_synchronized(vi); 2045 } 2046 vi->if_flags = ifp->if_flags; 2047 } else if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2048 rc = cxgbe_uninit_synchronized(vi); 2049 } 2050 end_synchronized_op(sc, 0); 2051 break; 2052 2053 case SIOCADDMULTI: 2054 case SIOCDELMULTI: 2055 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi"); 2056 if (rc) 2057 return (rc); 2058 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2059 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2060 end_synchronized_op(sc, 0); 2061 break; 2062 2063 case SIOCSIFCAP: 2064 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap"); 2065 if (rc) 2066 return (rc); 2067 2068 mask = ifr->ifr_reqcap ^ ifp->if_capenable; 2069 if (mask & IFCAP_TXCSUM) { 2070 ifp->if_capenable ^= IFCAP_TXCSUM; 2071 ifp->if_hwassist ^= (CSUM_TCP | CSUM_UDP | CSUM_IP); 2072 2073 if (IFCAP_TSO4 & ifp->if_capenable && 2074 !(IFCAP_TXCSUM & ifp->if_capenable)) { 2075 mask &= ~IFCAP_TSO4; 2076 ifp->if_capenable &= ~IFCAP_TSO4; 2077 if_printf(ifp, 2078 "tso4 disabled due to -txcsum.\n"); 2079 } 2080 } 2081 if (mask & IFCAP_TXCSUM_IPV6) { 2082 ifp->if_capenable ^= IFCAP_TXCSUM_IPV6; 2083 ifp->if_hwassist ^= (CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2084 2085 if (IFCAP_TSO6 & ifp->if_capenable && 2086 !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { 2087 mask &= ~IFCAP_TSO6; 2088 ifp->if_capenable &= ~IFCAP_TSO6; 2089 if_printf(ifp, 2090 "tso6 disabled due to -txcsum6.\n"); 2091 } 2092 } 2093 if (mask & IFCAP_RXCSUM) 2094 ifp->if_capenable ^= IFCAP_RXCSUM; 2095 if (mask & IFCAP_RXCSUM_IPV6) 2096 ifp->if_capenable ^= IFCAP_RXCSUM_IPV6; 2097 2098 /* 2099 * Note that we leave CSUM_TSO alone (it is always set). The 2100 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before 2101 * sending a TSO request our way, so it's sufficient to toggle 2102 * IFCAP_TSOx only. 2103 */ 2104 if (mask & IFCAP_TSO4) { 2105 if (!(IFCAP_TSO4 & ifp->if_capenable) && 2106 !(IFCAP_TXCSUM & ifp->if_capenable)) { 2107 if_printf(ifp, "enable txcsum first.\n"); 2108 rc = EAGAIN; 2109 goto fail; 2110 } 2111 ifp->if_capenable ^= IFCAP_TSO4; 2112 } 2113 if (mask & IFCAP_TSO6) { 2114 if (!(IFCAP_TSO6 & ifp->if_capenable) && 2115 !(IFCAP_TXCSUM_IPV6 & ifp->if_capenable)) { 2116 if_printf(ifp, "enable txcsum6 first.\n"); 2117 rc = EAGAIN; 2118 goto fail; 2119 } 2120 ifp->if_capenable ^= IFCAP_TSO6; 2121 } 2122 if (mask & IFCAP_LRO) { 2123 #if defined(INET) || defined(INET6) 2124 int i; 2125 struct sge_rxq *rxq; 2126 2127 ifp->if_capenable ^= IFCAP_LRO; 2128 for_each_rxq(vi, i, rxq) { 2129 if (ifp->if_capenable & IFCAP_LRO) 2130 rxq->iq.flags |= IQ_LRO_ENABLED; 2131 else 2132 rxq->iq.flags &= ~IQ_LRO_ENABLED; 2133 } 2134 #endif 2135 } 2136 #ifdef TCP_OFFLOAD 2137 if (mask & IFCAP_TOE) { 2138 int enable = (ifp->if_capenable ^ mask) & IFCAP_TOE; 2139 2140 rc = toe_capability(vi, enable); 2141 if (rc != 0) 2142 goto fail; 2143 2144 ifp->if_capenable ^= mask; 2145 } 2146 #endif 2147 if (mask & IFCAP_VLAN_HWTAGGING) { 2148 ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; 2149 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 2150 rc = update_mac_settings(ifp, XGMAC_VLANEX); 2151 } 2152 if (mask & IFCAP_VLAN_MTU) { 2153 ifp->if_capenable ^= IFCAP_VLAN_MTU; 2154 2155 /* Need to find out how to disable auto-mtu-inflation */ 2156 } 2157 if (mask & IFCAP_VLAN_HWTSO) 2158 ifp->if_capenable ^= IFCAP_VLAN_HWTSO; 2159 if (mask & IFCAP_VLAN_HWCSUM) 2160 ifp->if_capenable ^= IFCAP_VLAN_HWCSUM; 2161 #ifdef RATELIMIT 2162 if (mask & IFCAP_TXRTLMT) 2163 ifp->if_capenable ^= IFCAP_TXRTLMT; 2164 #endif 2165 if (mask & IFCAP_HWRXTSTMP) { 2166 int i; 2167 struct sge_rxq *rxq; 2168 2169 ifp->if_capenable ^= IFCAP_HWRXTSTMP; 2170 for_each_rxq(vi, i, rxq) { 2171 if (ifp->if_capenable & IFCAP_HWRXTSTMP) 2172 rxq->iq.flags |= IQ_RX_TIMESTAMP; 2173 else 2174 rxq->iq.flags &= ~IQ_RX_TIMESTAMP; 2175 } 2176 } 2177 if (mask & IFCAP_NOMAP) 2178 ifp->if_capenable ^= IFCAP_NOMAP; 2179 2180 #ifdef KERN_TLS 2181 if (mask & IFCAP_TXTLS) 2182 ifp->if_capenable ^= (mask & IFCAP_TXTLS); 2183 #endif 2184 if (mask & IFCAP_VXLAN_HWCSUM) { 2185 ifp->if_capenable ^= IFCAP_VXLAN_HWCSUM; 2186 ifp->if_hwassist ^= CSUM_INNER_IP6_UDP | 2187 CSUM_INNER_IP6_TCP | CSUM_INNER_IP | 2188 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP; 2189 } 2190 if (mask & IFCAP_VXLAN_HWTSO) { 2191 ifp->if_capenable ^= IFCAP_VXLAN_HWTSO; 2192 ifp->if_hwassist ^= CSUM_INNER_IP6_TSO | 2193 CSUM_INNER_IP_TSO; 2194 } 2195 2196 #ifdef VLAN_CAPABILITIES 2197 VLAN_CAPABILITIES(ifp); 2198 #endif 2199 fail: 2200 end_synchronized_op(sc, 0); 2201 break; 2202 2203 case SIOCSIFMEDIA: 2204 case SIOCGIFMEDIA: 2205 case SIOCGIFXMEDIA: 2206 ifmedia_ioctl(ifp, ifr, &pi->media, cmd); 2207 break; 2208 2209 case SIOCGI2C: { 2210 struct ifi2creq i2c; 2211 2212 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); 2213 if (rc != 0) 2214 break; 2215 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { 2216 rc = EPERM; 2217 break; 2218 } 2219 if (i2c.len > sizeof(i2c.data)) { 2220 rc = EINVAL; 2221 break; 2222 } 2223 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c"); 2224 if (rc) 2225 return (rc); 2226 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr, 2227 i2c.offset, i2c.len, &i2c.data[0]); 2228 end_synchronized_op(sc, 0); 2229 if (rc == 0) 2230 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c)); 2231 break; 2232 } 2233 2234 default: 2235 rc = ether_ioctl(ifp, cmd, data); 2236 } 2237 2238 return (rc); 2239 } 2240 2241 static int 2242 cxgbe_transmit(struct ifnet *ifp, struct mbuf *m) 2243 { 2244 struct vi_info *vi = ifp->if_softc; 2245 struct port_info *pi = vi->pi; 2246 struct adapter *sc; 2247 struct sge_txq *txq; 2248 void *items[1]; 2249 int rc; 2250 2251 M_ASSERTPKTHDR(m); 2252 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */ 2253 #if defined(KERN_TLS) || defined(RATELIMIT) 2254 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) 2255 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 2256 #endif 2257 2258 if (__predict_false(pi->link_cfg.link_ok == false)) { 2259 m_freem(m); 2260 return (ENETDOWN); 2261 } 2262 2263 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR); 2264 if (__predict_false(rc != 0)) { 2265 MPASS(m == NULL); /* was freed already */ 2266 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */ 2267 return (rc); 2268 } 2269 #ifdef RATELIMIT 2270 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) { 2271 if (m->m_pkthdr.snd_tag->type == IF_SND_TAG_TYPE_RATE_LIMIT) 2272 return (ethofld_transmit(ifp, m)); 2273 } 2274 #endif 2275 2276 /* Select a txq. */ 2277 sc = vi->adapter; 2278 txq = &sc->sge.txq[vi->first_txq]; 2279 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 2280 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) + 2281 vi->rsrv_noflowq); 2282 2283 items[0] = m; 2284 rc = mp_ring_enqueue(txq->r, items, 1, 256); 2285 if (__predict_false(rc != 0)) 2286 m_freem(m); 2287 2288 return (rc); 2289 } 2290 2291 static void 2292 cxgbe_qflush(struct ifnet *ifp) 2293 { 2294 struct vi_info *vi = ifp->if_softc; 2295 struct sge_txq *txq; 2296 int i; 2297 2298 /* queues do not exist if !VI_INIT_DONE. */ 2299 if (vi->flags & VI_INIT_DONE) { 2300 for_each_txq(vi, i, txq) { 2301 TXQ_LOCK(txq); 2302 txq->eq.flags |= EQ_QFLUSH; 2303 TXQ_UNLOCK(txq); 2304 while (!mp_ring_is_idle(txq->r)) { 2305 mp_ring_check_drainage(txq->r, 4096); 2306 pause("qflush", 1); 2307 } 2308 TXQ_LOCK(txq); 2309 txq->eq.flags &= ~EQ_QFLUSH; 2310 TXQ_UNLOCK(txq); 2311 } 2312 } 2313 if_qflush(ifp); 2314 } 2315 2316 static uint64_t 2317 vi_get_counter(struct ifnet *ifp, ift_counter c) 2318 { 2319 struct vi_info *vi = ifp->if_softc; 2320 struct fw_vi_stats_vf *s = &vi->stats; 2321 2322 vi_refresh_stats(vi->adapter, vi); 2323 2324 switch (c) { 2325 case IFCOUNTER_IPACKETS: 2326 return (s->rx_bcast_frames + s->rx_mcast_frames + 2327 s->rx_ucast_frames); 2328 case IFCOUNTER_IERRORS: 2329 return (s->rx_err_frames); 2330 case IFCOUNTER_OPACKETS: 2331 return (s->tx_bcast_frames + s->tx_mcast_frames + 2332 s->tx_ucast_frames + s->tx_offload_frames); 2333 case IFCOUNTER_OERRORS: 2334 return (s->tx_drop_frames); 2335 case IFCOUNTER_IBYTES: 2336 return (s->rx_bcast_bytes + s->rx_mcast_bytes + 2337 s->rx_ucast_bytes); 2338 case IFCOUNTER_OBYTES: 2339 return (s->tx_bcast_bytes + s->tx_mcast_bytes + 2340 s->tx_ucast_bytes + s->tx_offload_bytes); 2341 case IFCOUNTER_IMCASTS: 2342 return (s->rx_mcast_frames); 2343 case IFCOUNTER_OMCASTS: 2344 return (s->tx_mcast_frames); 2345 case IFCOUNTER_OQDROPS: { 2346 uint64_t drops; 2347 2348 drops = 0; 2349 if (vi->flags & VI_INIT_DONE) { 2350 int i; 2351 struct sge_txq *txq; 2352 2353 for_each_txq(vi, i, txq) 2354 drops += counter_u64_fetch(txq->r->dropped); 2355 } 2356 2357 return (drops); 2358 2359 } 2360 2361 default: 2362 return (if_get_counter_default(ifp, c)); 2363 } 2364 } 2365 2366 uint64_t 2367 cxgbe_get_counter(struct ifnet *ifp, ift_counter c) 2368 { 2369 struct vi_info *vi = ifp->if_softc; 2370 struct port_info *pi = vi->pi; 2371 struct adapter *sc = pi->adapter; 2372 struct port_stats *s = &pi->stats; 2373 2374 if (pi->nvi > 1 || sc->flags & IS_VF) 2375 return (vi_get_counter(ifp, c)); 2376 2377 cxgbe_refresh_stats(sc, pi); 2378 2379 switch (c) { 2380 case IFCOUNTER_IPACKETS: 2381 return (s->rx_frames); 2382 2383 case IFCOUNTER_IERRORS: 2384 return (s->rx_jabber + s->rx_runt + s->rx_too_long + 2385 s->rx_fcs_err + s->rx_len_err); 2386 2387 case IFCOUNTER_OPACKETS: 2388 return (s->tx_frames); 2389 2390 case IFCOUNTER_OERRORS: 2391 return (s->tx_error_frames); 2392 2393 case IFCOUNTER_IBYTES: 2394 return (s->rx_octets); 2395 2396 case IFCOUNTER_OBYTES: 2397 return (s->tx_octets); 2398 2399 case IFCOUNTER_IMCASTS: 2400 return (s->rx_mcast_frames); 2401 2402 case IFCOUNTER_OMCASTS: 2403 return (s->tx_mcast_frames); 2404 2405 case IFCOUNTER_IQDROPS: 2406 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + 2407 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + 2408 s->rx_trunc3 + pi->tnl_cong_drops); 2409 2410 case IFCOUNTER_OQDROPS: { 2411 uint64_t drops; 2412 2413 drops = s->tx_drop; 2414 if (vi->flags & VI_INIT_DONE) { 2415 int i; 2416 struct sge_txq *txq; 2417 2418 for_each_txq(vi, i, txq) 2419 drops += counter_u64_fetch(txq->r->dropped); 2420 } 2421 2422 return (drops); 2423 2424 } 2425 2426 default: 2427 return (if_get_counter_default(ifp, c)); 2428 } 2429 } 2430 2431 #if defined(KERN_TLS) || defined(RATELIMIT) 2432 static int 2433 cxgbe_snd_tag_alloc(struct ifnet *ifp, union if_snd_tag_alloc_params *params, 2434 struct m_snd_tag **pt) 2435 { 2436 int error; 2437 2438 switch (params->hdr.type) { 2439 #ifdef RATELIMIT 2440 case IF_SND_TAG_TYPE_RATE_LIMIT: 2441 error = cxgbe_rate_tag_alloc(ifp, params, pt); 2442 break; 2443 #endif 2444 #ifdef KERN_TLS 2445 case IF_SND_TAG_TYPE_TLS: 2446 error = cxgbe_tls_tag_alloc(ifp, params, pt); 2447 break; 2448 #endif 2449 default: 2450 error = EOPNOTSUPP; 2451 } 2452 return (error); 2453 } 2454 2455 static int 2456 cxgbe_snd_tag_modify(struct m_snd_tag *mst, 2457 union if_snd_tag_modify_params *params) 2458 { 2459 2460 switch (mst->type) { 2461 #ifdef RATELIMIT 2462 case IF_SND_TAG_TYPE_RATE_LIMIT: 2463 return (cxgbe_rate_tag_modify(mst, params)); 2464 #endif 2465 default: 2466 return (EOPNOTSUPP); 2467 } 2468 } 2469 2470 static int 2471 cxgbe_snd_tag_query(struct m_snd_tag *mst, 2472 union if_snd_tag_query_params *params) 2473 { 2474 2475 switch (mst->type) { 2476 #ifdef RATELIMIT 2477 case IF_SND_TAG_TYPE_RATE_LIMIT: 2478 return (cxgbe_rate_tag_query(mst, params)); 2479 #endif 2480 default: 2481 return (EOPNOTSUPP); 2482 } 2483 } 2484 2485 static void 2486 cxgbe_snd_tag_free(struct m_snd_tag *mst) 2487 { 2488 2489 switch (mst->type) { 2490 #ifdef RATELIMIT 2491 case IF_SND_TAG_TYPE_RATE_LIMIT: 2492 cxgbe_rate_tag_free(mst); 2493 return; 2494 #endif 2495 #ifdef KERN_TLS 2496 case IF_SND_TAG_TYPE_TLS: 2497 cxgbe_tls_tag_free(mst); 2498 return; 2499 #endif 2500 default: 2501 panic("shouldn't get here"); 2502 } 2503 } 2504 #endif 2505 2506 /* 2507 * The kernel picks a media from the list we had provided but we still validate 2508 * the requeste. 2509 */ 2510 int 2511 cxgbe_media_change(struct ifnet *ifp) 2512 { 2513 struct vi_info *vi = ifp->if_softc; 2514 struct port_info *pi = vi->pi; 2515 struct ifmedia *ifm = &pi->media; 2516 struct link_config *lc = &pi->link_cfg; 2517 struct adapter *sc = pi->adapter; 2518 int rc; 2519 2520 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec"); 2521 if (rc != 0) 2522 return (rc); 2523 PORT_LOCK(pi); 2524 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) { 2525 /* ifconfig .. media autoselect */ 2526 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 2527 rc = ENOTSUP; /* AN not supported by transceiver */ 2528 goto done; 2529 } 2530 lc->requested_aneg = AUTONEG_ENABLE; 2531 lc->requested_speed = 0; 2532 lc->requested_fc |= PAUSE_AUTONEG; 2533 } else { 2534 lc->requested_aneg = AUTONEG_DISABLE; 2535 lc->requested_speed = 2536 ifmedia_baudrate(ifm->ifm_media) / 1000000; 2537 lc->requested_fc = 0; 2538 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE) 2539 lc->requested_fc |= PAUSE_RX; 2540 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE) 2541 lc->requested_fc |= PAUSE_TX; 2542 } 2543 if (pi->up_vis > 0) { 2544 fixup_link_config(pi); 2545 rc = apply_link_config(pi); 2546 } 2547 done: 2548 PORT_UNLOCK(pi); 2549 end_synchronized_op(sc, 0); 2550 return (rc); 2551 } 2552 2553 /* 2554 * Base media word (without ETHER, pause, link active, etc.) for the port at the 2555 * given speed. 2556 */ 2557 static int 2558 port_mword(struct port_info *pi, uint32_t speed) 2559 { 2560 2561 MPASS(speed & M_FW_PORT_CAP32_SPEED); 2562 MPASS(powerof2(speed)); 2563 2564 switch(pi->port_type) { 2565 case FW_PORT_TYPE_BT_SGMII: 2566 case FW_PORT_TYPE_BT_XFI: 2567 case FW_PORT_TYPE_BT_XAUI: 2568 /* BaseT */ 2569 switch (speed) { 2570 case FW_PORT_CAP32_SPEED_100M: 2571 return (IFM_100_T); 2572 case FW_PORT_CAP32_SPEED_1G: 2573 return (IFM_1000_T); 2574 case FW_PORT_CAP32_SPEED_10G: 2575 return (IFM_10G_T); 2576 } 2577 break; 2578 case FW_PORT_TYPE_KX4: 2579 if (speed == FW_PORT_CAP32_SPEED_10G) 2580 return (IFM_10G_KX4); 2581 break; 2582 case FW_PORT_TYPE_CX4: 2583 if (speed == FW_PORT_CAP32_SPEED_10G) 2584 return (IFM_10G_CX4); 2585 break; 2586 case FW_PORT_TYPE_KX: 2587 if (speed == FW_PORT_CAP32_SPEED_1G) 2588 return (IFM_1000_KX); 2589 break; 2590 case FW_PORT_TYPE_KR: 2591 case FW_PORT_TYPE_BP_AP: 2592 case FW_PORT_TYPE_BP4_AP: 2593 case FW_PORT_TYPE_BP40_BA: 2594 case FW_PORT_TYPE_KR4_100G: 2595 case FW_PORT_TYPE_KR_SFP28: 2596 case FW_PORT_TYPE_KR_XLAUI: 2597 switch (speed) { 2598 case FW_PORT_CAP32_SPEED_1G: 2599 return (IFM_1000_KX); 2600 case FW_PORT_CAP32_SPEED_10G: 2601 return (IFM_10G_KR); 2602 case FW_PORT_CAP32_SPEED_25G: 2603 return (IFM_25G_KR); 2604 case FW_PORT_CAP32_SPEED_40G: 2605 return (IFM_40G_KR4); 2606 case FW_PORT_CAP32_SPEED_50G: 2607 return (IFM_50G_KR2); 2608 case FW_PORT_CAP32_SPEED_100G: 2609 return (IFM_100G_KR4); 2610 } 2611 break; 2612 case FW_PORT_TYPE_FIBER_XFI: 2613 case FW_PORT_TYPE_FIBER_XAUI: 2614 case FW_PORT_TYPE_SFP: 2615 case FW_PORT_TYPE_QSFP_10G: 2616 case FW_PORT_TYPE_QSA: 2617 case FW_PORT_TYPE_QSFP: 2618 case FW_PORT_TYPE_CR4_QSFP: 2619 case FW_PORT_TYPE_CR_QSFP: 2620 case FW_PORT_TYPE_CR2_QSFP: 2621 case FW_PORT_TYPE_SFP28: 2622 /* Pluggable transceiver */ 2623 switch (pi->mod_type) { 2624 case FW_PORT_MOD_TYPE_LR: 2625 switch (speed) { 2626 case FW_PORT_CAP32_SPEED_1G: 2627 return (IFM_1000_LX); 2628 case FW_PORT_CAP32_SPEED_10G: 2629 return (IFM_10G_LR); 2630 case FW_PORT_CAP32_SPEED_25G: 2631 return (IFM_25G_LR); 2632 case FW_PORT_CAP32_SPEED_40G: 2633 return (IFM_40G_LR4); 2634 case FW_PORT_CAP32_SPEED_50G: 2635 return (IFM_50G_LR2); 2636 case FW_PORT_CAP32_SPEED_100G: 2637 return (IFM_100G_LR4); 2638 } 2639 break; 2640 case FW_PORT_MOD_TYPE_SR: 2641 switch (speed) { 2642 case FW_PORT_CAP32_SPEED_1G: 2643 return (IFM_1000_SX); 2644 case FW_PORT_CAP32_SPEED_10G: 2645 return (IFM_10G_SR); 2646 case FW_PORT_CAP32_SPEED_25G: 2647 return (IFM_25G_SR); 2648 case FW_PORT_CAP32_SPEED_40G: 2649 return (IFM_40G_SR4); 2650 case FW_PORT_CAP32_SPEED_50G: 2651 return (IFM_50G_SR2); 2652 case FW_PORT_CAP32_SPEED_100G: 2653 return (IFM_100G_SR4); 2654 } 2655 break; 2656 case FW_PORT_MOD_TYPE_ER: 2657 if (speed == FW_PORT_CAP32_SPEED_10G) 2658 return (IFM_10G_ER); 2659 break; 2660 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 2661 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 2662 switch (speed) { 2663 case FW_PORT_CAP32_SPEED_1G: 2664 return (IFM_1000_CX); 2665 case FW_PORT_CAP32_SPEED_10G: 2666 return (IFM_10G_TWINAX); 2667 case FW_PORT_CAP32_SPEED_25G: 2668 return (IFM_25G_CR); 2669 case FW_PORT_CAP32_SPEED_40G: 2670 return (IFM_40G_CR4); 2671 case FW_PORT_CAP32_SPEED_50G: 2672 return (IFM_50G_CR2); 2673 case FW_PORT_CAP32_SPEED_100G: 2674 return (IFM_100G_CR4); 2675 } 2676 break; 2677 case FW_PORT_MOD_TYPE_LRM: 2678 if (speed == FW_PORT_CAP32_SPEED_10G) 2679 return (IFM_10G_LRM); 2680 break; 2681 case FW_PORT_MOD_TYPE_NA: 2682 MPASS(0); /* Not pluggable? */ 2683 /* fall throough */ 2684 case FW_PORT_MOD_TYPE_ERROR: 2685 case FW_PORT_MOD_TYPE_UNKNOWN: 2686 case FW_PORT_MOD_TYPE_NOTSUPPORTED: 2687 break; 2688 case FW_PORT_MOD_TYPE_NONE: 2689 return (IFM_NONE); 2690 } 2691 break; 2692 case FW_PORT_TYPE_NONE: 2693 return (IFM_NONE); 2694 } 2695 2696 return (IFM_UNKNOWN); 2697 } 2698 2699 void 2700 cxgbe_media_status(struct ifnet *ifp, struct ifmediareq *ifmr) 2701 { 2702 struct vi_info *vi = ifp->if_softc; 2703 struct port_info *pi = vi->pi; 2704 struct adapter *sc = pi->adapter; 2705 struct link_config *lc = &pi->link_cfg; 2706 2707 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4med") != 0) 2708 return; 2709 PORT_LOCK(pi); 2710 2711 if (pi->up_vis == 0) { 2712 /* 2713 * If all the interfaces are administratively down the firmware 2714 * does not report transceiver changes. Refresh port info here 2715 * so that ifconfig displays accurate ifmedia at all times. 2716 * This is the only reason we have a synchronized op in this 2717 * function. Just PORT_LOCK would have been enough otherwise. 2718 */ 2719 t4_update_port_info(pi); 2720 build_medialist(pi); 2721 } 2722 2723 /* ifm_status */ 2724 ifmr->ifm_status = IFM_AVALID; 2725 if (lc->link_ok == false) 2726 goto done; 2727 ifmr->ifm_status |= IFM_ACTIVE; 2728 2729 /* ifm_active */ 2730 ifmr->ifm_active = IFM_ETHER | IFM_FDX; 2731 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE); 2732 if (lc->fc & PAUSE_RX) 2733 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 2734 if (lc->fc & PAUSE_TX) 2735 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 2736 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed)); 2737 done: 2738 PORT_UNLOCK(pi); 2739 end_synchronized_op(sc, 0); 2740 } 2741 2742 static int 2743 vcxgbe_probe(device_t dev) 2744 { 2745 char buf[128]; 2746 struct vi_info *vi = device_get_softc(dev); 2747 2748 snprintf(buf, sizeof(buf), "port %d vi %td", vi->pi->port_id, 2749 vi - vi->pi->vi); 2750 device_set_desc_copy(dev, buf); 2751 2752 return (BUS_PROBE_DEFAULT); 2753 } 2754 2755 static int 2756 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi) 2757 { 2758 int func, index, rc; 2759 uint32_t param, val; 2760 2761 ASSERT_SYNCHRONIZED_OP(sc); 2762 2763 index = vi - pi->vi; 2764 MPASS(index > 0); /* This function deals with _extra_ VIs only */ 2765 KASSERT(index < nitems(vi_mac_funcs), 2766 ("%s: VI %s doesn't have a MAC func", __func__, 2767 device_get_nameunit(vi->dev))); 2768 func = vi_mac_funcs[index]; 2769 rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1, 2770 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0); 2771 if (rc < 0) { 2772 device_printf(vi->dev, "failed to allocate virtual interface %d" 2773 "for port %d: %d\n", index, pi->port_id, -rc); 2774 return (-rc); 2775 } 2776 vi->viid = rc; 2777 2778 if (vi->rss_size == 1) { 2779 /* 2780 * This VI didn't get a slice of the RSS table. Reduce the 2781 * number of VIs being created (hw.cxgbe.num_vis) or modify the 2782 * configuration file (nvi, rssnvi for this PF) if this is a 2783 * problem. 2784 */ 2785 device_printf(vi->dev, "RSS table not available.\n"); 2786 vi->rss_base = 0xffff; 2787 2788 return (0); 2789 } 2790 2791 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 2792 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 2793 V_FW_PARAMS_PARAM_YZ(vi->viid); 2794 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 2795 if (rc) 2796 vi->rss_base = 0xffff; 2797 else { 2798 MPASS((val >> 16) == vi->rss_size); 2799 vi->rss_base = val & 0xffff; 2800 } 2801 2802 return (0); 2803 } 2804 2805 static int 2806 vcxgbe_attach(device_t dev) 2807 { 2808 struct vi_info *vi; 2809 struct port_info *pi; 2810 struct adapter *sc; 2811 int rc; 2812 2813 vi = device_get_softc(dev); 2814 pi = vi->pi; 2815 sc = pi->adapter; 2816 2817 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via"); 2818 if (rc) 2819 return (rc); 2820 rc = alloc_extra_vi(sc, pi, vi); 2821 end_synchronized_op(sc, 0); 2822 if (rc) 2823 return (rc); 2824 2825 rc = cxgbe_vi_attach(dev, vi); 2826 if (rc) { 2827 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 2828 return (rc); 2829 } 2830 return (0); 2831 } 2832 2833 static int 2834 vcxgbe_detach(device_t dev) 2835 { 2836 struct vi_info *vi; 2837 struct adapter *sc; 2838 2839 vi = device_get_softc(dev); 2840 sc = vi->adapter; 2841 2842 doom_vi(sc, vi); 2843 2844 cxgbe_vi_detach(vi); 2845 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 2846 2847 end_synchronized_op(sc, 0); 2848 2849 return (0); 2850 } 2851 2852 static struct callout fatal_callout; 2853 2854 static void 2855 delayed_panic(void *arg) 2856 { 2857 struct adapter *sc = arg; 2858 2859 panic("%s: panic on fatal error", device_get_nameunit(sc->dev)); 2860 } 2861 2862 void 2863 t4_fatal_err(struct adapter *sc, bool fw_error) 2864 { 2865 2866 t4_shutdown_adapter(sc); 2867 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped.\n", 2868 device_get_nameunit(sc->dev)); 2869 if (fw_error) { 2870 ASSERT_SYNCHRONIZED_OP(sc); 2871 sc->flags |= ADAP_ERR; 2872 } else { 2873 ADAPTER_LOCK(sc); 2874 sc->flags |= ADAP_ERR; 2875 ADAPTER_UNLOCK(sc); 2876 } 2877 #ifdef TCP_OFFLOAD 2878 taskqueue_enqueue(taskqueue_thread, &sc->async_event_task); 2879 #endif 2880 2881 if (t4_panic_on_fatal_err) { 2882 log(LOG_ALERT, "%s: panic on fatal error after 30s", 2883 device_get_nameunit(sc->dev)); 2884 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc); 2885 } 2886 } 2887 2888 void 2889 t4_add_adapter(struct adapter *sc) 2890 { 2891 sx_xlock(&t4_list_lock); 2892 SLIST_INSERT_HEAD(&t4_list, sc, link); 2893 sx_xunlock(&t4_list_lock); 2894 } 2895 2896 int 2897 t4_map_bars_0_and_4(struct adapter *sc) 2898 { 2899 sc->regs_rid = PCIR_BAR(0); 2900 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 2901 &sc->regs_rid, RF_ACTIVE); 2902 if (sc->regs_res == NULL) { 2903 device_printf(sc->dev, "cannot map registers.\n"); 2904 return (ENXIO); 2905 } 2906 sc->bt = rman_get_bustag(sc->regs_res); 2907 sc->bh = rman_get_bushandle(sc->regs_res); 2908 sc->mmio_len = rman_get_size(sc->regs_res); 2909 setbit(&sc->doorbells, DOORBELL_KDB); 2910 2911 sc->msix_rid = PCIR_BAR(4); 2912 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 2913 &sc->msix_rid, RF_ACTIVE); 2914 if (sc->msix_res == NULL) { 2915 device_printf(sc->dev, "cannot map MSI-X BAR.\n"); 2916 return (ENXIO); 2917 } 2918 2919 return (0); 2920 } 2921 2922 int 2923 t4_map_bar_2(struct adapter *sc) 2924 { 2925 2926 /* 2927 * T4: only iWARP driver uses the userspace doorbells. There is no need 2928 * to map it if RDMA is disabled. 2929 */ 2930 if (is_t4(sc) && sc->rdmacaps == 0) 2931 return (0); 2932 2933 sc->udbs_rid = PCIR_BAR(2); 2934 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 2935 &sc->udbs_rid, RF_ACTIVE); 2936 if (sc->udbs_res == NULL) { 2937 device_printf(sc->dev, "cannot map doorbell BAR.\n"); 2938 return (ENXIO); 2939 } 2940 sc->udbs_base = rman_get_virtual(sc->udbs_res); 2941 2942 if (chip_id(sc) >= CHELSIO_T5) { 2943 setbit(&sc->doorbells, DOORBELL_UDB); 2944 #if defined(__i386__) || defined(__amd64__) 2945 if (t5_write_combine) { 2946 int rc, mode; 2947 2948 /* 2949 * Enable write combining on BAR2. This is the 2950 * userspace doorbell BAR and is split into 128B 2951 * (UDBS_SEG_SIZE) doorbell regions, each associated 2952 * with an egress queue. The first 64B has the doorbell 2953 * and the second 64B can be used to submit a tx work 2954 * request with an implicit doorbell. 2955 */ 2956 2957 rc = pmap_change_attr((vm_offset_t)sc->udbs_base, 2958 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); 2959 if (rc == 0) { 2960 clrbit(&sc->doorbells, DOORBELL_UDB); 2961 setbit(&sc->doorbells, DOORBELL_WCWR); 2962 setbit(&sc->doorbells, DOORBELL_UDBWC); 2963 } else { 2964 device_printf(sc->dev, 2965 "couldn't enable write combining: %d\n", 2966 rc); 2967 } 2968 2969 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0); 2970 t4_write_reg(sc, A_SGE_STAT_CFG, 2971 V_STATSOURCE_T5(7) | mode); 2972 } 2973 #endif 2974 } 2975 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0; 2976 2977 return (0); 2978 } 2979 2980 struct memwin_init { 2981 uint32_t base; 2982 uint32_t aperture; 2983 }; 2984 2985 static const struct memwin_init t4_memwin[NUM_MEMWIN] = { 2986 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 2987 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 2988 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } 2989 }; 2990 2991 static const struct memwin_init t5_memwin[NUM_MEMWIN] = { 2992 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 2993 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 2994 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, 2995 }; 2996 2997 static void 2998 setup_memwin(struct adapter *sc) 2999 { 3000 const struct memwin_init *mw_init; 3001 struct memwin *mw; 3002 int i; 3003 uint32_t bar0; 3004 3005 if (is_t4(sc)) { 3006 /* 3007 * Read low 32b of bar0 indirectly via the hardware backdoor 3008 * mechanism. Works from within PCI passthrough environments 3009 * too, where rman_get_start() can return a different value. We 3010 * need to program the T4 memory window decoders with the actual 3011 * addresses that will be coming across the PCIe link. 3012 */ 3013 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); 3014 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; 3015 3016 mw_init = &t4_memwin[0]; 3017 } else { 3018 /* T5+ use the relative offset inside the PCIe BAR */ 3019 bar0 = 0; 3020 3021 mw_init = &t5_memwin[0]; 3022 } 3023 3024 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) { 3025 rw_init(&mw->mw_lock, "memory window access"); 3026 mw->mw_base = mw_init->base; 3027 mw->mw_aperture = mw_init->aperture; 3028 mw->mw_curpos = 0; 3029 t4_write_reg(sc, 3030 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i), 3031 (mw->mw_base + bar0) | V_BIR(0) | 3032 V_WINDOW(ilog2(mw->mw_aperture) - 10)); 3033 rw_wlock(&mw->mw_lock); 3034 position_memwin(sc, i, 0); 3035 rw_wunlock(&mw->mw_lock); 3036 } 3037 3038 /* flush */ 3039 t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2)); 3040 } 3041 3042 /* 3043 * Positions the memory window at the given address in the card's address space. 3044 * There are some alignment requirements and the actual position may be at an 3045 * address prior to the requested address. mw->mw_curpos always has the actual 3046 * position of the window. 3047 */ 3048 static void 3049 position_memwin(struct adapter *sc, int idx, uint32_t addr) 3050 { 3051 struct memwin *mw; 3052 uint32_t pf; 3053 uint32_t reg; 3054 3055 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3056 mw = &sc->memwin[idx]; 3057 rw_assert(&mw->mw_lock, RA_WLOCKED); 3058 3059 if (is_t4(sc)) { 3060 pf = 0; 3061 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */ 3062 } else { 3063 pf = V_PFNUM(sc->pf); 3064 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */ 3065 } 3066 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx); 3067 t4_write_reg(sc, reg, mw->mw_curpos | pf); 3068 t4_read_reg(sc, reg); /* flush */ 3069 } 3070 3071 int 3072 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 3073 int len, int rw) 3074 { 3075 struct memwin *mw; 3076 uint32_t mw_end, v; 3077 3078 MPASS(idx >= 0 && idx < NUM_MEMWIN); 3079 3080 /* Memory can only be accessed in naturally aligned 4 byte units */ 3081 if (addr & 3 || len & 3 || len <= 0) 3082 return (EINVAL); 3083 3084 mw = &sc->memwin[idx]; 3085 while (len > 0) { 3086 rw_rlock(&mw->mw_lock); 3087 mw_end = mw->mw_curpos + mw->mw_aperture; 3088 if (addr >= mw_end || addr < mw->mw_curpos) { 3089 /* Will need to reposition the window */ 3090 if (!rw_try_upgrade(&mw->mw_lock)) { 3091 rw_runlock(&mw->mw_lock); 3092 rw_wlock(&mw->mw_lock); 3093 } 3094 rw_assert(&mw->mw_lock, RA_WLOCKED); 3095 position_memwin(sc, idx, addr); 3096 rw_downgrade(&mw->mw_lock); 3097 mw_end = mw->mw_curpos + mw->mw_aperture; 3098 } 3099 rw_assert(&mw->mw_lock, RA_RLOCKED); 3100 while (addr < mw_end && len > 0) { 3101 if (rw == 0) { 3102 v = t4_read_reg(sc, mw->mw_base + addr - 3103 mw->mw_curpos); 3104 *val++ = le32toh(v); 3105 } else { 3106 v = *val++; 3107 t4_write_reg(sc, mw->mw_base + addr - 3108 mw->mw_curpos, htole32(v)); 3109 } 3110 addr += 4; 3111 len -= 4; 3112 } 3113 rw_runlock(&mw->mw_lock); 3114 } 3115 3116 return (0); 3117 } 3118 3119 static void 3120 t4_init_atid_table(struct adapter *sc) 3121 { 3122 struct tid_info *t; 3123 int i; 3124 3125 t = &sc->tids; 3126 if (t->natids == 0) 3127 return; 3128 3129 MPASS(t->atid_tab == NULL); 3130 3131 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE, 3132 M_ZERO | M_WAITOK); 3133 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF); 3134 t->afree = t->atid_tab; 3135 t->atids_in_use = 0; 3136 for (i = 1; i < t->natids; i++) 3137 t->atid_tab[i - 1].next = &t->atid_tab[i]; 3138 t->atid_tab[t->natids - 1].next = NULL; 3139 } 3140 3141 static void 3142 t4_free_atid_table(struct adapter *sc) 3143 { 3144 struct tid_info *t; 3145 3146 t = &sc->tids; 3147 3148 KASSERT(t->atids_in_use == 0, 3149 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 3150 3151 if (mtx_initialized(&t->atid_lock)) 3152 mtx_destroy(&t->atid_lock); 3153 free(t->atid_tab, M_CXGBE); 3154 t->atid_tab = NULL; 3155 } 3156 3157 int 3158 alloc_atid(struct adapter *sc, void *ctx) 3159 { 3160 struct tid_info *t = &sc->tids; 3161 int atid = -1; 3162 3163 mtx_lock(&t->atid_lock); 3164 if (t->afree) { 3165 union aopen_entry *p = t->afree; 3166 3167 atid = p - t->atid_tab; 3168 MPASS(atid <= M_TID_TID); 3169 t->afree = p->next; 3170 p->data = ctx; 3171 t->atids_in_use++; 3172 } 3173 mtx_unlock(&t->atid_lock); 3174 return (atid); 3175 } 3176 3177 void * 3178 lookup_atid(struct adapter *sc, int atid) 3179 { 3180 struct tid_info *t = &sc->tids; 3181 3182 return (t->atid_tab[atid].data); 3183 } 3184 3185 void 3186 free_atid(struct adapter *sc, int atid) 3187 { 3188 struct tid_info *t = &sc->tids; 3189 union aopen_entry *p = &t->atid_tab[atid]; 3190 3191 mtx_lock(&t->atid_lock); 3192 p->next = t->afree; 3193 t->afree = p; 3194 t->atids_in_use--; 3195 mtx_unlock(&t->atid_lock); 3196 } 3197 3198 static void 3199 queue_tid_release(struct adapter *sc, int tid) 3200 { 3201 3202 CXGBE_UNIMPLEMENTED("deferred tid release"); 3203 } 3204 3205 void 3206 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq) 3207 { 3208 struct wrqe *wr; 3209 struct cpl_tid_release *req; 3210 3211 wr = alloc_wrqe(sizeof(*req), ctrlq); 3212 if (wr == NULL) { 3213 queue_tid_release(sc, tid); /* defer */ 3214 return; 3215 } 3216 req = wrtod(wr); 3217 3218 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid); 3219 3220 t4_wrq_tx(sc, wr); 3221 } 3222 3223 static int 3224 t4_range_cmp(const void *a, const void *b) 3225 { 3226 return ((const struct t4_range *)a)->start - 3227 ((const struct t4_range *)b)->start; 3228 } 3229 3230 /* 3231 * Verify that the memory range specified by the addr/len pair is valid within 3232 * the card's address space. 3233 */ 3234 static int 3235 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len) 3236 { 3237 struct t4_range mem_ranges[4], *r, *next; 3238 uint32_t em, addr_len; 3239 int i, n, remaining; 3240 3241 /* Memory can only be accessed in naturally aligned 4 byte units */ 3242 if (addr & 3 || len & 3 || len == 0) 3243 return (EINVAL); 3244 3245 /* Enabled memories */ 3246 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 3247 3248 r = &mem_ranges[0]; 3249 n = 0; 3250 bzero(r, sizeof(mem_ranges)); 3251 if (em & F_EDRAM0_ENABLE) { 3252 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 3253 r->size = G_EDRAM0_SIZE(addr_len) << 20; 3254 if (r->size > 0) { 3255 r->start = G_EDRAM0_BASE(addr_len) << 20; 3256 if (addr >= r->start && 3257 addr + len <= r->start + r->size) 3258 return (0); 3259 r++; 3260 n++; 3261 } 3262 } 3263 if (em & F_EDRAM1_ENABLE) { 3264 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 3265 r->size = G_EDRAM1_SIZE(addr_len) << 20; 3266 if (r->size > 0) { 3267 r->start = G_EDRAM1_BASE(addr_len) << 20; 3268 if (addr >= r->start && 3269 addr + len <= r->start + r->size) 3270 return (0); 3271 r++; 3272 n++; 3273 } 3274 } 3275 if (em & F_EXT_MEM_ENABLE) { 3276 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 3277 r->size = G_EXT_MEM_SIZE(addr_len) << 20; 3278 if (r->size > 0) { 3279 r->start = G_EXT_MEM_BASE(addr_len) << 20; 3280 if (addr >= r->start && 3281 addr + len <= r->start + r->size) 3282 return (0); 3283 r++; 3284 n++; 3285 } 3286 } 3287 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) { 3288 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 3289 r->size = G_EXT_MEM1_SIZE(addr_len) << 20; 3290 if (r->size > 0) { 3291 r->start = G_EXT_MEM1_BASE(addr_len) << 20; 3292 if (addr >= r->start && 3293 addr + len <= r->start + r->size) 3294 return (0); 3295 r++; 3296 n++; 3297 } 3298 } 3299 MPASS(n <= nitems(mem_ranges)); 3300 3301 if (n > 1) { 3302 /* Sort and merge the ranges. */ 3303 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp); 3304 3305 /* Start from index 0 and examine the next n - 1 entries. */ 3306 r = &mem_ranges[0]; 3307 for (remaining = n - 1; remaining > 0; remaining--, r++) { 3308 3309 MPASS(r->size > 0); /* r is a valid entry. */ 3310 next = r + 1; 3311 MPASS(next->size > 0); /* and so is the next one. */ 3312 3313 while (r->start + r->size >= next->start) { 3314 /* Merge the next one into the current entry. */ 3315 r->size = max(r->start + r->size, 3316 next->start + next->size) - r->start; 3317 n--; /* One fewer entry in total. */ 3318 if (--remaining == 0) 3319 goto done; /* short circuit */ 3320 next++; 3321 } 3322 if (next != r + 1) { 3323 /* 3324 * Some entries were merged into r and next 3325 * points to the first valid entry that couldn't 3326 * be merged. 3327 */ 3328 MPASS(next->size > 0); /* must be valid */ 3329 memcpy(r + 1, next, remaining * sizeof(*r)); 3330 #ifdef INVARIANTS 3331 /* 3332 * This so that the foo->size assertion in the 3333 * next iteration of the loop do the right 3334 * thing for entries that were pulled up and are 3335 * no longer valid. 3336 */ 3337 MPASS(n < nitems(mem_ranges)); 3338 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) * 3339 sizeof(struct t4_range)); 3340 #endif 3341 } 3342 } 3343 done: 3344 /* Done merging the ranges. */ 3345 MPASS(n > 0); 3346 r = &mem_ranges[0]; 3347 for (i = 0; i < n; i++, r++) { 3348 if (addr >= r->start && 3349 addr + len <= r->start + r->size) 3350 return (0); 3351 } 3352 } 3353 3354 return (EFAULT); 3355 } 3356 3357 static int 3358 fwmtype_to_hwmtype(int mtype) 3359 { 3360 3361 switch (mtype) { 3362 case FW_MEMTYPE_EDC0: 3363 return (MEM_EDC0); 3364 case FW_MEMTYPE_EDC1: 3365 return (MEM_EDC1); 3366 case FW_MEMTYPE_EXTMEM: 3367 return (MEM_MC0); 3368 case FW_MEMTYPE_EXTMEM1: 3369 return (MEM_MC1); 3370 default: 3371 panic("%s: cannot translate fw mtype %d.", __func__, mtype); 3372 } 3373 } 3374 3375 /* 3376 * Verify that the memory range specified by the memtype/offset/len pair is 3377 * valid and lies entirely within the memtype specified. The global address of 3378 * the start of the range is returned in addr. 3379 */ 3380 static int 3381 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len, 3382 uint32_t *addr) 3383 { 3384 uint32_t em, addr_len, maddr; 3385 3386 /* Memory can only be accessed in naturally aligned 4 byte units */ 3387 if (off & 3 || len & 3 || len == 0) 3388 return (EINVAL); 3389 3390 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 3391 switch (fwmtype_to_hwmtype(mtype)) { 3392 case MEM_EDC0: 3393 if (!(em & F_EDRAM0_ENABLE)) 3394 return (EINVAL); 3395 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 3396 maddr = G_EDRAM0_BASE(addr_len) << 20; 3397 break; 3398 case MEM_EDC1: 3399 if (!(em & F_EDRAM1_ENABLE)) 3400 return (EINVAL); 3401 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 3402 maddr = G_EDRAM1_BASE(addr_len) << 20; 3403 break; 3404 case MEM_MC: 3405 if (!(em & F_EXT_MEM_ENABLE)) 3406 return (EINVAL); 3407 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 3408 maddr = G_EXT_MEM_BASE(addr_len) << 20; 3409 break; 3410 case MEM_MC1: 3411 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE)) 3412 return (EINVAL); 3413 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 3414 maddr = G_EXT_MEM1_BASE(addr_len) << 20; 3415 break; 3416 default: 3417 return (EINVAL); 3418 } 3419 3420 *addr = maddr + off; /* global address */ 3421 return (validate_mem_range(sc, *addr, len)); 3422 } 3423 3424 static int 3425 fixup_devlog_params(struct adapter *sc) 3426 { 3427 struct devlog_params *dparams = &sc->params.devlog; 3428 int rc; 3429 3430 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start, 3431 dparams->size, &dparams->addr); 3432 3433 return (rc); 3434 } 3435 3436 static void 3437 update_nirq(struct intrs_and_queues *iaq, int nports) 3438 { 3439 3440 iaq->nirq = T4_EXTRA_INTR; 3441 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq); 3442 iaq->nirq += nports * iaq->nofldrxq; 3443 iaq->nirq += nports * (iaq->num_vis - 1) * 3444 max(iaq->nrxq_vi, iaq->nnmrxq_vi); 3445 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi; 3446 } 3447 3448 /* 3449 * Adjust requirements to fit the number of interrupts available. 3450 */ 3451 static void 3452 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype, 3453 int navail) 3454 { 3455 int old_nirq; 3456 const int nports = sc->params.nports; 3457 3458 MPASS(nports > 0); 3459 MPASS(navail > 0); 3460 3461 bzero(iaq, sizeof(*iaq)); 3462 iaq->intr_type = itype; 3463 iaq->num_vis = t4_num_vis; 3464 iaq->ntxq = t4_ntxq; 3465 iaq->ntxq_vi = t4_ntxq_vi; 3466 iaq->nrxq = t4_nrxq; 3467 iaq->nrxq_vi = t4_nrxq_vi; 3468 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 3469 if (is_offload(sc) || is_ethoffload(sc)) { 3470 iaq->nofldtxq = t4_nofldtxq; 3471 iaq->nofldtxq_vi = t4_nofldtxq_vi; 3472 } 3473 #endif 3474 #ifdef TCP_OFFLOAD 3475 if (is_offload(sc)) { 3476 iaq->nofldrxq = t4_nofldrxq; 3477 iaq->nofldrxq_vi = t4_nofldrxq_vi; 3478 } 3479 #endif 3480 #ifdef DEV_NETMAP 3481 if (t4_native_netmap & NN_MAIN_VI) { 3482 iaq->nnmtxq = t4_nnmtxq; 3483 iaq->nnmrxq = t4_nnmrxq; 3484 } 3485 if (t4_native_netmap & NN_EXTRA_VI) { 3486 iaq->nnmtxq_vi = t4_nnmtxq_vi; 3487 iaq->nnmrxq_vi = t4_nnmrxq_vi; 3488 } 3489 #endif 3490 3491 update_nirq(iaq, nports); 3492 if (iaq->nirq <= navail && 3493 (itype != INTR_MSI || powerof2(iaq->nirq))) { 3494 /* 3495 * This is the normal case -- there are enough interrupts for 3496 * everything. 3497 */ 3498 goto done; 3499 } 3500 3501 /* 3502 * If extra VIs have been configured try reducing their count and see if 3503 * that works. 3504 */ 3505 while (iaq->num_vis > 1) { 3506 iaq->num_vis--; 3507 update_nirq(iaq, nports); 3508 if (iaq->nirq <= navail && 3509 (itype != INTR_MSI || powerof2(iaq->nirq))) { 3510 device_printf(sc->dev, "virtual interfaces per port " 3511 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, " 3512 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. " 3513 "itype %d, navail %u, nirq %d.\n", 3514 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq, 3515 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi, 3516 itype, navail, iaq->nirq); 3517 goto done; 3518 } 3519 } 3520 3521 /* 3522 * Extra VIs will not be created. Log a message if they were requested. 3523 */ 3524 MPASS(iaq->num_vis == 1); 3525 iaq->ntxq_vi = iaq->nrxq_vi = 0; 3526 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0; 3527 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0; 3528 if (iaq->num_vis != t4_num_vis) { 3529 device_printf(sc->dev, "extra virtual interfaces disabled. " 3530 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, " 3531 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n", 3532 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi, 3533 iaq->nnmrxq_vi, itype, navail, iaq->nirq); 3534 } 3535 3536 /* 3537 * Keep reducing the number of NIC rx queues to the next lower power of 3538 * 2 (for even RSS distribution) and halving the TOE rx queues and see 3539 * if that works. 3540 */ 3541 do { 3542 if (iaq->nrxq > 1) { 3543 do { 3544 iaq->nrxq--; 3545 } while (!powerof2(iaq->nrxq)); 3546 if (iaq->nnmrxq > iaq->nrxq) 3547 iaq->nnmrxq = iaq->nrxq; 3548 } 3549 if (iaq->nofldrxq > 1) 3550 iaq->nofldrxq >>= 1; 3551 3552 old_nirq = iaq->nirq; 3553 update_nirq(iaq, nports); 3554 if (iaq->nirq <= navail && 3555 (itype != INTR_MSI || powerof2(iaq->nirq))) { 3556 device_printf(sc->dev, "running with reduced number of " 3557 "rx queues because of shortage of interrupts. " 3558 "nrxq=%u, nofldrxq=%u. " 3559 "itype %d, navail %u, nirq %d.\n", iaq->nrxq, 3560 iaq->nofldrxq, itype, navail, iaq->nirq); 3561 goto done; 3562 } 3563 } while (old_nirq != iaq->nirq); 3564 3565 /* One interrupt for everything. Ugh. */ 3566 device_printf(sc->dev, "running with minimal number of queues. " 3567 "itype %d, navail %u.\n", itype, navail); 3568 iaq->nirq = 1; 3569 iaq->nrxq = 1; 3570 iaq->ntxq = 1; 3571 if (iaq->nofldrxq > 0) { 3572 iaq->nofldrxq = 1; 3573 iaq->nofldtxq = 1; 3574 } 3575 iaq->nnmtxq = 0; 3576 iaq->nnmrxq = 0; 3577 done: 3578 MPASS(iaq->num_vis > 0); 3579 if (iaq->num_vis > 1) { 3580 MPASS(iaq->nrxq_vi > 0); 3581 MPASS(iaq->ntxq_vi > 0); 3582 } 3583 MPASS(iaq->nirq > 0); 3584 MPASS(iaq->nrxq > 0); 3585 MPASS(iaq->ntxq > 0); 3586 if (itype == INTR_MSI) { 3587 MPASS(powerof2(iaq->nirq)); 3588 } 3589 } 3590 3591 static int 3592 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq) 3593 { 3594 int rc, itype, navail, nalloc; 3595 3596 for (itype = INTR_MSIX; itype; itype >>= 1) { 3597 3598 if ((itype & t4_intr_types) == 0) 3599 continue; /* not allowed */ 3600 3601 if (itype == INTR_MSIX) 3602 navail = pci_msix_count(sc->dev); 3603 else if (itype == INTR_MSI) 3604 navail = pci_msi_count(sc->dev); 3605 else 3606 navail = 1; 3607 restart: 3608 if (navail == 0) 3609 continue; 3610 3611 calculate_iaq(sc, iaq, itype, navail); 3612 nalloc = iaq->nirq; 3613 rc = 0; 3614 if (itype == INTR_MSIX) 3615 rc = pci_alloc_msix(sc->dev, &nalloc); 3616 else if (itype == INTR_MSI) 3617 rc = pci_alloc_msi(sc->dev, &nalloc); 3618 3619 if (rc == 0 && nalloc > 0) { 3620 if (nalloc == iaq->nirq) 3621 return (0); 3622 3623 /* 3624 * Didn't get the number requested. Use whatever number 3625 * the kernel is willing to allocate. 3626 */ 3627 device_printf(sc->dev, "fewer vectors than requested, " 3628 "type=%d, req=%d, rcvd=%d; will downshift req.\n", 3629 itype, iaq->nirq, nalloc); 3630 pci_release_msi(sc->dev); 3631 navail = nalloc; 3632 goto restart; 3633 } 3634 3635 device_printf(sc->dev, 3636 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", 3637 itype, rc, iaq->nirq, nalloc); 3638 } 3639 3640 device_printf(sc->dev, 3641 "failed to find a usable interrupt type. " 3642 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, 3643 pci_msix_count(sc->dev), pci_msi_count(sc->dev)); 3644 3645 return (ENXIO); 3646 } 3647 3648 #define FW_VERSION(chip) ( \ 3649 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ 3650 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ 3651 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ 3652 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) 3653 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) 3654 3655 /* Just enough of fw_hdr to cover all version info. */ 3656 struct fw_h { 3657 __u8 ver; 3658 __u8 chip; 3659 __be16 len512; 3660 __be32 fw_ver; 3661 __be32 tp_microcode_ver; 3662 __u8 intfver_nic; 3663 __u8 intfver_vnic; 3664 __u8 intfver_ofld; 3665 __u8 intfver_ri; 3666 __u8 intfver_iscsipdu; 3667 __u8 intfver_iscsi; 3668 __u8 intfver_fcoepdu; 3669 __u8 intfver_fcoe; 3670 }; 3671 /* Spot check a couple of fields. */ 3672 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver)); 3673 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic)); 3674 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe)); 3675 3676 struct fw_info { 3677 uint8_t chip; 3678 char *kld_name; 3679 char *fw_mod_name; 3680 struct fw_h fw_h; 3681 } fw_info[] = { 3682 { 3683 .chip = CHELSIO_T4, 3684 .kld_name = "t4fw_cfg", 3685 .fw_mod_name = "t4fw", 3686 .fw_h = { 3687 .chip = FW_HDR_CHIP_T4, 3688 .fw_ver = htobe32(FW_VERSION(T4)), 3689 .intfver_nic = FW_INTFVER(T4, NIC), 3690 .intfver_vnic = FW_INTFVER(T4, VNIC), 3691 .intfver_ofld = FW_INTFVER(T4, OFLD), 3692 .intfver_ri = FW_INTFVER(T4, RI), 3693 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), 3694 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 3695 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), 3696 .intfver_fcoe = FW_INTFVER(T4, FCOE), 3697 }, 3698 }, { 3699 .chip = CHELSIO_T5, 3700 .kld_name = "t5fw_cfg", 3701 .fw_mod_name = "t5fw", 3702 .fw_h = { 3703 .chip = FW_HDR_CHIP_T5, 3704 .fw_ver = htobe32(FW_VERSION(T5)), 3705 .intfver_nic = FW_INTFVER(T5, NIC), 3706 .intfver_vnic = FW_INTFVER(T5, VNIC), 3707 .intfver_ofld = FW_INTFVER(T5, OFLD), 3708 .intfver_ri = FW_INTFVER(T5, RI), 3709 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), 3710 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 3711 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), 3712 .intfver_fcoe = FW_INTFVER(T5, FCOE), 3713 }, 3714 }, { 3715 .chip = CHELSIO_T6, 3716 .kld_name = "t6fw_cfg", 3717 .fw_mod_name = "t6fw", 3718 .fw_h = { 3719 .chip = FW_HDR_CHIP_T6, 3720 .fw_ver = htobe32(FW_VERSION(T6)), 3721 .intfver_nic = FW_INTFVER(T6, NIC), 3722 .intfver_vnic = FW_INTFVER(T6, VNIC), 3723 .intfver_ofld = FW_INTFVER(T6, OFLD), 3724 .intfver_ri = FW_INTFVER(T6, RI), 3725 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 3726 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 3727 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 3728 .intfver_fcoe = FW_INTFVER(T6, FCOE), 3729 }, 3730 } 3731 }; 3732 3733 static struct fw_info * 3734 find_fw_info(int chip) 3735 { 3736 int i; 3737 3738 for (i = 0; i < nitems(fw_info); i++) { 3739 if (fw_info[i].chip == chip) 3740 return (&fw_info[i]); 3741 } 3742 return (NULL); 3743 } 3744 3745 /* 3746 * Is the given firmware API compatible with the one the driver was compiled 3747 * with? 3748 */ 3749 static int 3750 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2) 3751 { 3752 3753 /* short circuit if it's the exact same firmware version */ 3754 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 3755 return (1); 3756 3757 /* 3758 * XXX: Is this too conservative? Perhaps I should limit this to the 3759 * features that are supported in the driver. 3760 */ 3761 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 3762 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 3763 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && 3764 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) 3765 return (1); 3766 #undef SAME_INTF 3767 3768 return (0); 3769 } 3770 3771 static int 3772 load_fw_module(struct adapter *sc, const struct firmware **dcfg, 3773 const struct firmware **fw) 3774 { 3775 struct fw_info *fw_info; 3776 3777 *dcfg = NULL; 3778 if (fw != NULL) 3779 *fw = NULL; 3780 3781 fw_info = find_fw_info(chip_id(sc)); 3782 if (fw_info == NULL) { 3783 device_printf(sc->dev, 3784 "unable to look up firmware information for chip %d.\n", 3785 chip_id(sc)); 3786 return (EINVAL); 3787 } 3788 3789 *dcfg = firmware_get(fw_info->kld_name); 3790 if (*dcfg != NULL) { 3791 if (fw != NULL) 3792 *fw = firmware_get(fw_info->fw_mod_name); 3793 return (0); 3794 } 3795 3796 return (ENOENT); 3797 } 3798 3799 static void 3800 unload_fw_module(struct adapter *sc, const struct firmware *dcfg, 3801 const struct firmware *fw) 3802 { 3803 3804 if (fw != NULL) 3805 firmware_put(fw, FIRMWARE_UNLOAD); 3806 if (dcfg != NULL) 3807 firmware_put(dcfg, FIRMWARE_UNLOAD); 3808 } 3809 3810 /* 3811 * Return values: 3812 * 0 means no firmware install attempted. 3813 * ERESTART means a firmware install was attempted and was successful. 3814 * +ve errno means a firmware install was attempted but failed. 3815 */ 3816 static int 3817 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw, 3818 const struct fw_h *drv_fw, const char *reason, int *already) 3819 { 3820 const struct firmware *cfg, *fw; 3821 const uint32_t c = be32toh(card_fw->fw_ver); 3822 uint32_t d, k; 3823 int rc, fw_install; 3824 struct fw_h bundled_fw; 3825 bool load_attempted; 3826 3827 cfg = fw = NULL; 3828 load_attempted = false; 3829 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install; 3830 3831 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw)); 3832 if (t4_fw_install < 0) { 3833 rc = load_fw_module(sc, &cfg, &fw); 3834 if (rc != 0 || fw == NULL) { 3835 device_printf(sc->dev, 3836 "failed to load firmware module: %d. cfg %p, fw %p;" 3837 " will use compiled-in firmware version for" 3838 "hw.cxgbe.fw_install checks.\n", 3839 rc, cfg, fw); 3840 } else { 3841 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw)); 3842 } 3843 load_attempted = true; 3844 } 3845 d = be32toh(bundled_fw.fw_ver); 3846 3847 if (reason != NULL) 3848 goto install; 3849 3850 if ((sc->flags & FW_OK) == 0) { 3851 3852 if (c == 0xffffffff) { 3853 reason = "missing"; 3854 goto install; 3855 } 3856 3857 rc = 0; 3858 goto done; 3859 } 3860 3861 if (!fw_compatible(card_fw, &bundled_fw)) { 3862 reason = "incompatible or unusable"; 3863 goto install; 3864 } 3865 3866 if (d > c) { 3867 reason = "older than the version bundled with this driver"; 3868 goto install; 3869 } 3870 3871 if (fw_install == 2 && d != c) { 3872 reason = "different than the version bundled with this driver"; 3873 goto install; 3874 } 3875 3876 /* No reason to do anything to the firmware already on the card. */ 3877 rc = 0; 3878 goto done; 3879 3880 install: 3881 rc = 0; 3882 if ((*already)++) 3883 goto done; 3884 3885 if (fw_install == 0) { 3886 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 3887 "but the driver is prohibited from installing a firmware " 3888 "on the card.\n", 3889 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 3890 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 3891 3892 goto done; 3893 } 3894 3895 /* 3896 * We'll attempt to install a firmware. Load the module first (if it 3897 * hasn't been loaded already). 3898 */ 3899 if (!load_attempted) { 3900 rc = load_fw_module(sc, &cfg, &fw); 3901 if (rc != 0 || fw == NULL) { 3902 device_printf(sc->dev, 3903 "failed to load firmware module: %d. cfg %p, fw %p\n", 3904 rc, cfg, fw); 3905 /* carry on */ 3906 } 3907 } 3908 if (fw == NULL) { 3909 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 3910 "but the driver cannot take corrective action because it " 3911 "is unable to load the firmware module.\n", 3912 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 3913 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 3914 rc = sc->flags & FW_OK ? 0 : ENOENT; 3915 goto done; 3916 } 3917 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver); 3918 if (k != d) { 3919 MPASS(t4_fw_install > 0); 3920 device_printf(sc->dev, 3921 "firmware in KLD (%u.%u.%u.%u) is not what the driver was " 3922 "expecting (%u.%u.%u.%u) and will not be used.\n", 3923 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 3924 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k), 3925 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 3926 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 3927 rc = sc->flags & FW_OK ? 0 : EINVAL; 3928 goto done; 3929 } 3930 3931 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 3932 "installing firmware %u.%u.%u.%u on card.\n", 3933 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 3934 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, 3935 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 3936 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 3937 3938 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); 3939 if (rc != 0) { 3940 device_printf(sc->dev, "failed to install firmware: %d\n", rc); 3941 } else { 3942 /* Installed successfully, update the cached header too. */ 3943 rc = ERESTART; 3944 memcpy(card_fw, fw->data, sizeof(*card_fw)); 3945 } 3946 done: 3947 unload_fw_module(sc, cfg, fw); 3948 3949 return (rc); 3950 } 3951 3952 /* 3953 * Establish contact with the firmware and attempt to become the master driver. 3954 * 3955 * A firmware will be installed to the card if needed (if the driver is allowed 3956 * to do so). 3957 */ 3958 static int 3959 contact_firmware(struct adapter *sc) 3960 { 3961 int rc, already = 0; 3962 enum dev_state state; 3963 struct fw_info *fw_info; 3964 struct fw_hdr *card_fw; /* fw on the card */ 3965 const struct fw_h *drv_fw; 3966 3967 fw_info = find_fw_info(chip_id(sc)); 3968 if (fw_info == NULL) { 3969 device_printf(sc->dev, 3970 "unable to look up firmware information for chip %d.\n", 3971 chip_id(sc)); 3972 return (EINVAL); 3973 } 3974 drv_fw = &fw_info->fw_h; 3975 3976 /* Read the header of the firmware on the card */ 3977 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); 3978 restart: 3979 rc = -t4_get_fw_hdr(sc, card_fw); 3980 if (rc != 0) { 3981 device_printf(sc->dev, 3982 "unable to read firmware header from card's flash: %d\n", 3983 rc); 3984 goto done; 3985 } 3986 3987 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL, 3988 &already); 3989 if (rc == ERESTART) 3990 goto restart; 3991 if (rc != 0) 3992 goto done; 3993 3994 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); 3995 if (rc < 0 || state == DEV_STATE_ERR) { 3996 rc = -rc; 3997 device_printf(sc->dev, 3998 "failed to connect to the firmware: %d, %d. " 3999 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4000 #if 0 4001 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4002 "not responding properly to HELLO", &already) == ERESTART) 4003 goto restart; 4004 #endif 4005 goto done; 4006 } 4007 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT); 4008 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */ 4009 4010 if (rc == sc->pf) { 4011 sc->flags |= MASTER_PF; 4012 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 4013 NULL, &already); 4014 if (rc == ERESTART) 4015 rc = 0; 4016 else if (rc != 0) 4017 goto done; 4018 } else if (state == DEV_STATE_UNINIT) { 4019 /* 4020 * We didn't get to be the master so we definitely won't be 4021 * configuring the chip. It's a bug if someone else hasn't 4022 * configured it already. 4023 */ 4024 device_printf(sc->dev, "couldn't be master(%d), " 4025 "device not already initialized either(%d). " 4026 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4027 rc = EPROTO; 4028 goto done; 4029 } else { 4030 /* 4031 * Some other PF is the master and has configured the chip. 4032 * This is allowed but untested. 4033 */ 4034 device_printf(sc->dev, "PF%d is master, device state %d. " 4035 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 4036 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc); 4037 sc->cfcsum = 0; 4038 rc = 0; 4039 } 4040 done: 4041 if (rc != 0 && sc->flags & FW_OK) { 4042 t4_fw_bye(sc, sc->mbox); 4043 sc->flags &= ~FW_OK; 4044 } 4045 free(card_fw, M_CXGBE); 4046 return (rc); 4047 } 4048 4049 static int 4050 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file, 4051 uint32_t mtype, uint32_t moff) 4052 { 4053 struct fw_info *fw_info; 4054 const struct firmware *dcfg, *rcfg = NULL; 4055 const uint32_t *cfdata; 4056 uint32_t cflen, addr; 4057 int rc; 4058 4059 load_fw_module(sc, &dcfg, NULL); 4060 4061 /* Card specific interpretation of "default". */ 4062 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4063 if (pci_get_device(sc->dev) == 0x440a) 4064 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF); 4065 if (is_fpga(sc)) 4066 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF); 4067 } 4068 4069 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 4070 if (dcfg == NULL) { 4071 device_printf(sc->dev, 4072 "KLD with default config is not available.\n"); 4073 rc = ENOENT; 4074 goto done; 4075 } 4076 cfdata = dcfg->data; 4077 cflen = dcfg->datasize & ~3; 4078 } else { 4079 char s[32]; 4080 4081 fw_info = find_fw_info(chip_id(sc)); 4082 if (fw_info == NULL) { 4083 device_printf(sc->dev, 4084 "unable to look up firmware information for chip %d.\n", 4085 chip_id(sc)); 4086 rc = EINVAL; 4087 goto done; 4088 } 4089 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file); 4090 4091 rcfg = firmware_get(s); 4092 if (rcfg == NULL) { 4093 device_printf(sc->dev, 4094 "unable to load module \"%s\" for configuration " 4095 "profile \"%s\".\n", s, cfg_file); 4096 rc = ENOENT; 4097 goto done; 4098 } 4099 cfdata = rcfg->data; 4100 cflen = rcfg->datasize & ~3; 4101 } 4102 4103 if (cflen > FLASH_CFG_MAX_SIZE) { 4104 device_printf(sc->dev, 4105 "config file too long (%d, max allowed is %d).\n", 4106 cflen, FLASH_CFG_MAX_SIZE); 4107 rc = EINVAL; 4108 goto done; 4109 } 4110 4111 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); 4112 if (rc != 0) { 4113 device_printf(sc->dev, 4114 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n", 4115 __func__, mtype, moff, cflen, rc); 4116 rc = EINVAL; 4117 goto done; 4118 } 4119 write_via_memwin(sc, 2, addr, cfdata, cflen); 4120 done: 4121 if (rcfg != NULL) 4122 firmware_put(rcfg, FIRMWARE_UNLOAD); 4123 unload_fw_module(sc, dcfg, NULL); 4124 return (rc); 4125 } 4126 4127 struct caps_allowed { 4128 uint16_t nbmcaps; 4129 uint16_t linkcaps; 4130 uint16_t switchcaps; 4131 uint16_t niccaps; 4132 uint16_t toecaps; 4133 uint16_t rdmacaps; 4134 uint16_t cryptocaps; 4135 uint16_t iscsicaps; 4136 uint16_t fcoecaps; 4137 }; 4138 4139 #define FW_PARAM_DEV(param) \ 4140 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 4141 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 4142 #define FW_PARAM_PFVF(param) \ 4143 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 4144 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) 4145 4146 /* 4147 * Provide a configuration profile to the firmware and have it initialize the 4148 * chip accordingly. This may involve uploading a configuration file to the 4149 * card. 4150 */ 4151 static int 4152 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file, 4153 const struct caps_allowed *caps_allowed) 4154 { 4155 int rc; 4156 struct fw_caps_config_cmd caps; 4157 uint32_t mtype, moff, finicsum, cfcsum, param, val; 4158 4159 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST); 4160 if (rc != 0) { 4161 device_printf(sc->dev, "firmware reset failed: %d.\n", rc); 4162 return (rc); 4163 } 4164 4165 bzero(&caps, sizeof(caps)); 4166 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4167 F_FW_CMD_REQUEST | F_FW_CMD_READ); 4168 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) { 4169 mtype = 0; 4170 moff = 0; 4171 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 4172 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) { 4173 mtype = FW_MEMTYPE_FLASH; 4174 moff = t4_flash_cfg_addr(sc); 4175 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 4176 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4177 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 4178 FW_LEN16(caps)); 4179 } else { 4180 /* 4181 * Ask the firmware where it wants us to upload the config file. 4182 */ 4183 param = FW_PARAM_DEV(CF); 4184 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 4185 if (rc != 0) { 4186 /* No support for config file? Shouldn't happen. */ 4187 device_printf(sc->dev, 4188 "failed to query config file location: %d.\n", rc); 4189 goto done; 4190 } 4191 mtype = G_FW_PARAMS_PARAM_Y(val); 4192 moff = G_FW_PARAMS_PARAM_Z(val) << 16; 4193 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 4194 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 4195 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 4196 FW_LEN16(caps)); 4197 4198 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff); 4199 if (rc != 0) { 4200 device_printf(sc->dev, 4201 "failed to upload config file to card: %d.\n", rc); 4202 goto done; 4203 } 4204 } 4205 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 4206 if (rc != 0) { 4207 device_printf(sc->dev, "failed to pre-process config file: %d " 4208 "(mtype %d, moff 0x%x).\n", rc, mtype, moff); 4209 goto done; 4210 } 4211 4212 finicsum = be32toh(caps.finicsum); 4213 cfcsum = be32toh(caps.cfcsum); /* actual */ 4214 if (finicsum != cfcsum) { 4215 device_printf(sc->dev, 4216 "WARNING: config file checksum mismatch: %08x %08x\n", 4217 finicsum, cfcsum); 4218 } 4219 sc->cfcsum = cfcsum; 4220 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file); 4221 4222 /* 4223 * Let the firmware know what features will (not) be used so it can tune 4224 * things accordingly. 4225 */ 4226 #define LIMIT_CAPS(x) do { \ 4227 caps.x##caps &= htobe16(caps_allowed->x##caps); \ 4228 } while (0) 4229 LIMIT_CAPS(nbm); 4230 LIMIT_CAPS(link); 4231 LIMIT_CAPS(switch); 4232 LIMIT_CAPS(nic); 4233 LIMIT_CAPS(toe); 4234 LIMIT_CAPS(rdma); 4235 LIMIT_CAPS(crypto); 4236 LIMIT_CAPS(iscsi); 4237 LIMIT_CAPS(fcoe); 4238 #undef LIMIT_CAPS 4239 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 4240 /* 4241 * TOE and hashfilters are mutually exclusive. It is a config 4242 * file or firmware bug if both are reported as available. Try 4243 * to cope with the situation in non-debug builds by disabling 4244 * TOE. 4245 */ 4246 MPASS(caps.toecaps == 0); 4247 4248 caps.toecaps = 0; 4249 caps.rdmacaps = 0; 4250 caps.iscsicaps = 0; 4251 } 4252 4253 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4254 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 4255 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 4256 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); 4257 if (rc != 0) { 4258 device_printf(sc->dev, 4259 "failed to process config file: %d.\n", rc); 4260 goto done; 4261 } 4262 4263 t4_tweak_chip_settings(sc); 4264 set_params__pre_init(sc); 4265 4266 /* get basic stuff going */ 4267 rc = -t4_fw_initialize(sc, sc->mbox); 4268 if (rc != 0) { 4269 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc); 4270 goto done; 4271 } 4272 done: 4273 return (rc); 4274 } 4275 4276 /* 4277 * Partition chip resources for use between various PFs, VFs, etc. 4278 */ 4279 static int 4280 partition_resources(struct adapter *sc) 4281 { 4282 char cfg_file[sizeof(t4_cfg_file)]; 4283 struct caps_allowed caps_allowed; 4284 int rc; 4285 bool fallback; 4286 4287 /* Only the master driver gets to configure the chip resources. */ 4288 MPASS(sc->flags & MASTER_PF); 4289 4290 #define COPY_CAPS(x) do { \ 4291 caps_allowed.x##caps = t4_##x##caps_allowed; \ 4292 } while (0) 4293 bzero(&caps_allowed, sizeof(caps_allowed)); 4294 COPY_CAPS(nbm); 4295 COPY_CAPS(link); 4296 COPY_CAPS(switch); 4297 COPY_CAPS(nic); 4298 COPY_CAPS(toe); 4299 COPY_CAPS(rdma); 4300 COPY_CAPS(crypto); 4301 COPY_CAPS(iscsi); 4302 COPY_CAPS(fcoe); 4303 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true; 4304 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file); 4305 retry: 4306 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed); 4307 if (rc != 0 && fallback) { 4308 device_printf(sc->dev, 4309 "failed (%d) to configure card with \"%s\" profile, " 4310 "will fall back to a basic configuration and retry.\n", 4311 rc, cfg_file); 4312 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF); 4313 bzero(&caps_allowed, sizeof(caps_allowed)); 4314 COPY_CAPS(switch); 4315 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC; 4316 fallback = false; 4317 goto retry; 4318 } 4319 #undef COPY_CAPS 4320 return (rc); 4321 } 4322 4323 /* 4324 * Retrieve parameters that are needed (or nice to have) very early. 4325 */ 4326 static int 4327 get_params__pre_init(struct adapter *sc) 4328 { 4329 int rc; 4330 uint32_t param[2], val[2]; 4331 4332 t4_get_version_info(sc); 4333 4334 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", 4335 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), 4336 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), 4337 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), 4338 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); 4339 4340 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u", 4341 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers), 4342 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers), 4343 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers), 4344 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers)); 4345 4346 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u", 4347 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers), 4348 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers), 4349 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers), 4350 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers)); 4351 4352 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u", 4353 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers), 4354 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers), 4355 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers), 4356 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers)); 4357 4358 param[0] = FW_PARAM_DEV(PORTVEC); 4359 param[1] = FW_PARAM_DEV(CCLK); 4360 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 4361 if (rc != 0) { 4362 device_printf(sc->dev, 4363 "failed to query parameters (pre_init): %d.\n", rc); 4364 return (rc); 4365 } 4366 4367 sc->params.portvec = val[0]; 4368 sc->params.nports = bitcount32(val[0]); 4369 sc->params.vpd.cclk = val[1]; 4370 4371 /* Read device log parameters. */ 4372 rc = -t4_init_devlog_params(sc, 1); 4373 if (rc == 0) 4374 fixup_devlog_params(sc); 4375 else { 4376 device_printf(sc->dev, 4377 "failed to get devlog parameters: %d.\n", rc); 4378 rc = 0; /* devlog isn't critical for device operation */ 4379 } 4380 4381 return (rc); 4382 } 4383 4384 /* 4385 * Any params that need to be set before FW_INITIALIZE. 4386 */ 4387 static int 4388 set_params__pre_init(struct adapter *sc) 4389 { 4390 int rc = 0; 4391 uint32_t param, val; 4392 4393 if (chip_id(sc) >= CHELSIO_T6) { 4394 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 4395 val = 1; 4396 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 4397 /* firmwares < 1.20.1.0 do not have this param. */ 4398 if (rc == FW_EINVAL && 4399 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) { 4400 rc = 0; 4401 } 4402 if (rc != 0) { 4403 device_printf(sc->dev, 4404 "failed to enable high priority filters :%d.\n", 4405 rc); 4406 } 4407 } 4408 4409 /* Enable opaque VIIDs with firmwares that support it. */ 4410 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 4411 val = 1; 4412 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 4413 if (rc == 0 && val == 1) 4414 sc->params.viid_smt_extn_support = true; 4415 else 4416 sc->params.viid_smt_extn_support = false; 4417 4418 return (rc); 4419 } 4420 4421 /* 4422 * Retrieve various parameters that are of interest to the driver. The device 4423 * has been initialized by the firmware at this point. 4424 */ 4425 static int 4426 get_params__post_init(struct adapter *sc) 4427 { 4428 int rc; 4429 uint32_t param[7], val[7]; 4430 struct fw_caps_config_cmd caps; 4431 4432 param[0] = FW_PARAM_PFVF(IQFLINT_START); 4433 param[1] = FW_PARAM_PFVF(EQ_START); 4434 param[2] = FW_PARAM_PFVF(FILTER_START); 4435 param[3] = FW_PARAM_PFVF(FILTER_END); 4436 param[4] = FW_PARAM_PFVF(L2T_START); 4437 param[5] = FW_PARAM_PFVF(L2T_END); 4438 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 4439 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 4440 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 4441 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val); 4442 if (rc != 0) { 4443 device_printf(sc->dev, 4444 "failed to query parameters (post_init): %d.\n", rc); 4445 return (rc); 4446 } 4447 4448 sc->sge.iq_start = val[0]; 4449 sc->sge.eq_start = val[1]; 4450 if ((int)val[3] > (int)val[2]) { 4451 sc->tids.ftid_base = val[2]; 4452 sc->tids.ftid_end = val[3]; 4453 sc->tids.nftids = val[3] - val[2] + 1; 4454 } 4455 sc->vres.l2t.start = val[4]; 4456 sc->vres.l2t.size = val[5] - val[4] + 1; 4457 KASSERT(sc->vres.l2t.size <= L2T_SIZE, 4458 ("%s: L2 table size (%u) larger than expected (%u)", 4459 __func__, sc->vres.l2t.size, L2T_SIZE)); 4460 sc->params.core_vdd = val[6]; 4461 4462 param[0] = FW_PARAM_PFVF(IQFLINT_END); 4463 param[1] = FW_PARAM_PFVF(EQ_END); 4464 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 4465 if (rc != 0) { 4466 device_printf(sc->dev, 4467 "failed to query parameters (post_init2): %d.\n", rc); 4468 return (rc); 4469 } 4470 MPASS(val[0] >= sc->sge.iq_start); 4471 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1; 4472 MPASS(val[1] >= sc->sge.eq_start); 4473 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1; 4474 4475 if (chip_id(sc) >= CHELSIO_T6) { 4476 4477 sc->tids.tid_base = t4_read_reg(sc, 4478 A_LE_DB_ACTIVE_TABLE_START_INDEX); 4479 4480 param[0] = FW_PARAM_PFVF(HPFILTER_START); 4481 param[1] = FW_PARAM_PFVF(HPFILTER_END); 4482 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 4483 if (rc != 0) { 4484 device_printf(sc->dev, 4485 "failed to query hpfilter parameters: %d.\n", rc); 4486 return (rc); 4487 } 4488 if ((int)val[1] > (int)val[0]) { 4489 sc->tids.hpftid_base = val[0]; 4490 sc->tids.hpftid_end = val[1]; 4491 sc->tids.nhpftids = val[1] - val[0] + 1; 4492 4493 /* 4494 * These should go off if the layout changes and the 4495 * driver needs to catch up. 4496 */ 4497 MPASS(sc->tids.hpftid_base == 0); 4498 MPASS(sc->tids.tid_base == sc->tids.nhpftids); 4499 } 4500 4501 param[0] = FW_PARAM_PFVF(RAWF_START); 4502 param[1] = FW_PARAM_PFVF(RAWF_END); 4503 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 4504 if (rc != 0) { 4505 device_printf(sc->dev, 4506 "failed to query rawf parameters: %d.\n", rc); 4507 return (rc); 4508 } 4509 if ((int)val[1] > (int)val[0]) { 4510 sc->rawf_base = val[0]; 4511 sc->nrawf = val[1] - val[0] + 1; 4512 } 4513 } 4514 4515 /* 4516 * MPSBGMAP is queried separately because only recent firmwares support 4517 * it as a parameter and we don't want the compound query above to fail 4518 * on older firmwares. 4519 */ 4520 param[0] = FW_PARAM_DEV(MPSBGMAP); 4521 val[0] = 0; 4522 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 4523 if (rc == 0) 4524 sc->params.mps_bg_map = val[0]; 4525 else 4526 sc->params.mps_bg_map = 0; 4527 4528 /* 4529 * Determine whether the firmware supports the filter2 work request. 4530 * This is queried separately for the same reason as MPSBGMAP above. 4531 */ 4532 param[0] = FW_PARAM_DEV(FILTER2_WR); 4533 val[0] = 0; 4534 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 4535 if (rc == 0) 4536 sc->params.filter2_wr_support = val[0] != 0; 4537 else 4538 sc->params.filter2_wr_support = 0; 4539 4540 /* 4541 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL. 4542 * This is queried separately for the same reason as other params above. 4543 */ 4544 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 4545 val[0] = 0; 4546 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 4547 if (rc == 0) 4548 sc->params.ulptx_memwrite_dsgl = val[0] != 0; 4549 else 4550 sc->params.ulptx_memwrite_dsgl = false; 4551 4552 /* FW_RI_FR_NSMR_TPTE_WR support */ 4553 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 4554 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 4555 if (rc == 0) 4556 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0; 4557 else 4558 sc->params.fr_nsmr_tpte_wr_support = false; 4559 4560 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR); 4561 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 4562 if (rc == 0) 4563 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0]; 4564 else 4565 sc->params.max_pkts_per_eth_tx_pkts_wr = 15; 4566 4567 /* get capabilites */ 4568 bzero(&caps, sizeof(caps)); 4569 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 4570 F_FW_CMD_REQUEST | F_FW_CMD_READ); 4571 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 4572 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 4573 if (rc != 0) { 4574 device_printf(sc->dev, 4575 "failed to get card capabilities: %d.\n", rc); 4576 return (rc); 4577 } 4578 4579 #define READ_CAPS(x) do { \ 4580 sc->x = htobe16(caps.x); \ 4581 } while (0) 4582 READ_CAPS(nbmcaps); 4583 READ_CAPS(linkcaps); 4584 READ_CAPS(switchcaps); 4585 READ_CAPS(niccaps); 4586 READ_CAPS(toecaps); 4587 READ_CAPS(rdmacaps); 4588 READ_CAPS(cryptocaps); 4589 READ_CAPS(iscsicaps); 4590 READ_CAPS(fcoecaps); 4591 4592 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) { 4593 MPASS(chip_id(sc) > CHELSIO_T4); 4594 MPASS(sc->toecaps == 0); 4595 sc->toecaps = 0; 4596 4597 param[0] = FW_PARAM_DEV(NTID); 4598 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 4599 if (rc != 0) { 4600 device_printf(sc->dev, 4601 "failed to query HASHFILTER parameters: %d.\n", rc); 4602 return (rc); 4603 } 4604 sc->tids.ntids = val[0]; 4605 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 4606 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 4607 sc->tids.ntids -= sc->tids.nhpftids; 4608 } 4609 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 4610 sc->params.hash_filter = 1; 4611 } 4612 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) { 4613 param[0] = FW_PARAM_PFVF(ETHOFLD_START); 4614 param[1] = FW_PARAM_PFVF(ETHOFLD_END); 4615 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 4616 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val); 4617 if (rc != 0) { 4618 device_printf(sc->dev, 4619 "failed to query NIC parameters: %d.\n", rc); 4620 return (rc); 4621 } 4622 if ((int)val[1] > (int)val[0]) { 4623 sc->tids.etid_base = val[0]; 4624 sc->tids.etid_end = val[1]; 4625 sc->tids.netids = val[1] - val[0] + 1; 4626 sc->params.eo_wr_cred = val[2]; 4627 sc->params.ethoffload = 1; 4628 } 4629 } 4630 if (sc->toecaps) { 4631 /* query offload-related parameters */ 4632 param[0] = FW_PARAM_DEV(NTID); 4633 param[1] = FW_PARAM_PFVF(SERVER_START); 4634 param[2] = FW_PARAM_PFVF(SERVER_END); 4635 param[3] = FW_PARAM_PFVF(TDDP_START); 4636 param[4] = FW_PARAM_PFVF(TDDP_END); 4637 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 4638 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 4639 if (rc != 0) { 4640 device_printf(sc->dev, 4641 "failed to query TOE parameters: %d.\n", rc); 4642 return (rc); 4643 } 4644 sc->tids.ntids = val[0]; 4645 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 4646 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 4647 sc->tids.ntids -= sc->tids.nhpftids; 4648 } 4649 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 4650 if ((int)val[2] > (int)val[1]) { 4651 sc->tids.stid_base = val[1]; 4652 sc->tids.nstids = val[2] - val[1] + 1; 4653 } 4654 sc->vres.ddp.start = val[3]; 4655 sc->vres.ddp.size = val[4] - val[3] + 1; 4656 sc->params.ofldq_wr_cred = val[5]; 4657 sc->params.offload = 1; 4658 } else { 4659 /* 4660 * The firmware attempts memfree TOE configuration for -SO cards 4661 * and will report toecaps=0 if it runs out of resources (this 4662 * depends on the config file). It may not report 0 for other 4663 * capabilities dependent on the TOE in this case. Set them to 4664 * 0 here so that the driver doesn't bother tracking resources 4665 * that will never be used. 4666 */ 4667 sc->iscsicaps = 0; 4668 sc->rdmacaps = 0; 4669 } 4670 if (sc->rdmacaps) { 4671 param[0] = FW_PARAM_PFVF(STAG_START); 4672 param[1] = FW_PARAM_PFVF(STAG_END); 4673 param[2] = FW_PARAM_PFVF(RQ_START); 4674 param[3] = FW_PARAM_PFVF(RQ_END); 4675 param[4] = FW_PARAM_PFVF(PBL_START); 4676 param[5] = FW_PARAM_PFVF(PBL_END); 4677 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 4678 if (rc != 0) { 4679 device_printf(sc->dev, 4680 "failed to query RDMA parameters(1): %d.\n", rc); 4681 return (rc); 4682 } 4683 sc->vres.stag.start = val[0]; 4684 sc->vres.stag.size = val[1] - val[0] + 1; 4685 sc->vres.rq.start = val[2]; 4686 sc->vres.rq.size = val[3] - val[2] + 1; 4687 sc->vres.pbl.start = val[4]; 4688 sc->vres.pbl.size = val[5] - val[4] + 1; 4689 4690 param[0] = FW_PARAM_PFVF(SQRQ_START); 4691 param[1] = FW_PARAM_PFVF(SQRQ_END); 4692 param[2] = FW_PARAM_PFVF(CQ_START); 4693 param[3] = FW_PARAM_PFVF(CQ_END); 4694 param[4] = FW_PARAM_PFVF(OCQ_START); 4695 param[5] = FW_PARAM_PFVF(OCQ_END); 4696 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 4697 if (rc != 0) { 4698 device_printf(sc->dev, 4699 "failed to query RDMA parameters(2): %d.\n", rc); 4700 return (rc); 4701 } 4702 sc->vres.qp.start = val[0]; 4703 sc->vres.qp.size = val[1] - val[0] + 1; 4704 sc->vres.cq.start = val[2]; 4705 sc->vres.cq.size = val[3] - val[2] + 1; 4706 sc->vres.ocq.start = val[4]; 4707 sc->vres.ocq.size = val[5] - val[4] + 1; 4708 4709 param[0] = FW_PARAM_PFVF(SRQ_START); 4710 param[1] = FW_PARAM_PFVF(SRQ_END); 4711 param[2] = FW_PARAM_DEV(MAXORDIRD_QP); 4712 param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER); 4713 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val); 4714 if (rc != 0) { 4715 device_printf(sc->dev, 4716 "failed to query RDMA parameters(3): %d.\n", rc); 4717 return (rc); 4718 } 4719 sc->vres.srq.start = val[0]; 4720 sc->vres.srq.size = val[1] - val[0] + 1; 4721 sc->params.max_ordird_qp = val[2]; 4722 sc->params.max_ird_adapter = val[3]; 4723 } 4724 if (sc->iscsicaps) { 4725 param[0] = FW_PARAM_PFVF(ISCSI_START); 4726 param[1] = FW_PARAM_PFVF(ISCSI_END); 4727 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 4728 if (rc != 0) { 4729 device_printf(sc->dev, 4730 "failed to query iSCSI parameters: %d.\n", rc); 4731 return (rc); 4732 } 4733 sc->vres.iscsi.start = val[0]; 4734 sc->vres.iscsi.size = val[1] - val[0] + 1; 4735 } 4736 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 4737 param[0] = FW_PARAM_PFVF(TLS_START); 4738 param[1] = FW_PARAM_PFVF(TLS_END); 4739 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 4740 if (rc != 0) { 4741 device_printf(sc->dev, 4742 "failed to query TLS parameters: %d.\n", rc); 4743 return (rc); 4744 } 4745 sc->vres.key.start = val[0]; 4746 sc->vres.key.size = val[1] - val[0] + 1; 4747 } 4748 4749 t4_init_sge_params(sc); 4750 4751 /* 4752 * We've got the params we wanted to query via the firmware. Now grab 4753 * some others directly from the chip. 4754 */ 4755 rc = t4_read_chip_settings(sc); 4756 4757 return (rc); 4758 } 4759 4760 #ifdef KERN_TLS 4761 static void 4762 ktls_tick(void *arg) 4763 { 4764 struct adapter *sc; 4765 uint32_t tstamp; 4766 4767 sc = arg; 4768 4769 tstamp = tcp_ts_getticks(); 4770 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1); 4771 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31); 4772 4773 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK); 4774 } 4775 4776 static void 4777 t4_enable_kern_tls(struct adapter *sc) 4778 { 4779 uint32_t m, v; 4780 4781 m = F_ENABLECBYP; 4782 v = F_ENABLECBYP; 4783 t4_set_reg_field(sc, A_TP_PARA_REG6, m, v); 4784 4785 m = F_CPL_FLAGS_UPDATE_EN | F_SEQ_UPDATE_EN; 4786 v = F_CPL_FLAGS_UPDATE_EN | F_SEQ_UPDATE_EN; 4787 t4_set_reg_field(sc, A_ULP_TX_CONFIG, m, v); 4788 4789 m = F_NICMODE; 4790 v = F_NICMODE; 4791 t4_set_reg_field(sc, A_TP_IN_CONFIG, m, v); 4792 4793 m = F_LOOKUPEVERYPKT; 4794 v = 0; 4795 t4_set_reg_field(sc, A_TP_INGRESS_CONFIG, m, v); 4796 4797 m = F_TXDEFERENABLE | F_DISABLEWINDOWPSH | F_DISABLESEPPSHFLAG; 4798 v = F_DISABLEWINDOWPSH; 4799 t4_set_reg_field(sc, A_TP_PC_CONFIG, m, v); 4800 4801 m = V_TIMESTAMPRESOLUTION(M_TIMESTAMPRESOLUTION); 4802 v = V_TIMESTAMPRESOLUTION(0x1f); 4803 t4_set_reg_field(sc, A_TP_TIMER_RESOLUTION, m, v); 4804 4805 sc->flags |= KERN_TLS_OK; 4806 4807 sc->tlst.inline_keys = t4_tls_inline_keys; 4808 sc->tlst.combo_wrs = t4_tls_combo_wrs; 4809 } 4810 #endif 4811 4812 static int 4813 set_params__post_init(struct adapter *sc) 4814 { 4815 uint32_t mask, param, val; 4816 #ifdef TCP_OFFLOAD 4817 int i, v, shift; 4818 #endif 4819 4820 /* ask for encapsulated CPLs */ 4821 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 4822 val = 1; 4823 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 4824 4825 /* Enable 32b port caps if the firmware supports it. */ 4826 param = FW_PARAM_PFVF(PORT_CAPS32); 4827 val = 1; 4828 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0) 4829 sc->params.port_caps32 = 1; 4830 4831 /* Let filter + maskhash steer to a part of the VI's RSS region. */ 4832 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1); 4833 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER), 4834 V_MASKFILTER(val - 1)); 4835 4836 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER | 4837 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN | 4838 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 4839 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM; 4840 val = 0; 4841 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) { 4842 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE, 4843 F_ATTACKFILTERENABLE); 4844 val |= F_DROPERRORATTACK; 4845 } 4846 if (t4_drop_ip_fragments != 0) { 4847 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP, 4848 F_FRAGMENTDROP); 4849 val |= F_DROPERRORFRAG; 4850 } 4851 if (t4_drop_pkts_with_l2_errors != 0) 4852 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN; 4853 if (t4_drop_pkts_with_l3_errors != 0) { 4854 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN | 4855 F_DROPERRORCSUMIP; 4856 } 4857 if (t4_drop_pkts_with_l4_errors != 0) { 4858 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 4859 F_DROPERRORTCPOPT | F_DROPERRORCSUM; 4860 } 4861 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val); 4862 4863 #ifdef TCP_OFFLOAD 4864 /* 4865 * Override the TOE timers with user provided tunables. This is not the 4866 * recommended way to change the timers (the firmware config file is) so 4867 * these tunables are not documented. 4868 * 4869 * All the timer tunables are in microseconds. 4870 */ 4871 if (t4_toe_keepalive_idle != 0) { 4872 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle); 4873 v &= M_KEEPALIVEIDLE; 4874 t4_set_reg_field(sc, A_TP_KEEP_IDLE, 4875 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v)); 4876 } 4877 if (t4_toe_keepalive_interval != 0) { 4878 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval); 4879 v &= M_KEEPALIVEINTVL; 4880 t4_set_reg_field(sc, A_TP_KEEP_INTVL, 4881 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v)); 4882 } 4883 if (t4_toe_keepalive_count != 0) { 4884 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2; 4885 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 4886 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) | 4887 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2), 4888 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v)); 4889 } 4890 if (t4_toe_rexmt_min != 0) { 4891 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min); 4892 v &= M_RXTMIN; 4893 t4_set_reg_field(sc, A_TP_RXT_MIN, 4894 V_RXTMIN(M_RXTMIN), V_RXTMIN(v)); 4895 } 4896 if (t4_toe_rexmt_max != 0) { 4897 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max); 4898 v &= M_RXTMAX; 4899 t4_set_reg_field(sc, A_TP_RXT_MAX, 4900 V_RXTMAX(M_RXTMAX), V_RXTMAX(v)); 4901 } 4902 if (t4_toe_rexmt_count != 0) { 4903 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2; 4904 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 4905 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) | 4906 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2), 4907 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v)); 4908 } 4909 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) { 4910 if (t4_toe_rexmt_backoff[i] != -1) { 4911 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0; 4912 shift = (i & 3) << 3; 4913 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3), 4914 M_TIMERBACKOFFINDEX0 << shift, v << shift); 4915 } 4916 } 4917 #endif 4918 4919 #ifdef KERN_TLS 4920 if (t4_kern_tls != 0 && sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS && 4921 sc->toecaps & FW_CAPS_CONFIG_TOE) 4922 t4_enable_kern_tls(sc); 4923 #endif 4924 return (0); 4925 } 4926 4927 #undef FW_PARAM_PFVF 4928 #undef FW_PARAM_DEV 4929 4930 static void 4931 t4_set_desc(struct adapter *sc) 4932 { 4933 char buf[128]; 4934 struct adapter_params *p = &sc->params; 4935 4936 snprintf(buf, sizeof(buf), "Chelsio %s", p->vpd.id); 4937 4938 device_set_desc_copy(sc->dev, buf); 4939 } 4940 4941 static inline void 4942 ifmedia_add4(struct ifmedia *ifm, int m) 4943 { 4944 4945 ifmedia_add(ifm, m, 0, NULL); 4946 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL); 4947 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL); 4948 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL); 4949 } 4950 4951 /* 4952 * This is the selected media, which is not quite the same as the active media. 4953 * The media line in ifconfig is "media: Ethernet selected (active)" if selected 4954 * and active are not the same, and "media: Ethernet selected" otherwise. 4955 */ 4956 static void 4957 set_current_media(struct port_info *pi) 4958 { 4959 struct link_config *lc; 4960 struct ifmedia *ifm; 4961 int mword; 4962 u_int speed; 4963 4964 PORT_LOCK_ASSERT_OWNED(pi); 4965 4966 /* Leave current media alone if it's already set to IFM_NONE. */ 4967 ifm = &pi->media; 4968 if (ifm->ifm_cur != NULL && 4969 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE) 4970 return; 4971 4972 lc = &pi->link_cfg; 4973 if (lc->requested_aneg != AUTONEG_DISABLE && 4974 lc->pcaps & FW_PORT_CAP32_ANEG) { 4975 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); 4976 return; 4977 } 4978 mword = IFM_ETHER | IFM_FDX; 4979 if (lc->requested_fc & PAUSE_TX) 4980 mword |= IFM_ETH_TXPAUSE; 4981 if (lc->requested_fc & PAUSE_RX) 4982 mword |= IFM_ETH_RXPAUSE; 4983 if (lc->requested_speed == 0) 4984 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */ 4985 else 4986 speed = lc->requested_speed; 4987 mword |= port_mword(pi, speed_to_fwcap(speed)); 4988 ifmedia_set(ifm, mword); 4989 } 4990 4991 /* 4992 * Returns true if the ifmedia list for the port cannot change. 4993 */ 4994 static bool 4995 fixed_ifmedia(struct port_info *pi) 4996 { 4997 4998 return (pi->port_type == FW_PORT_TYPE_BT_SGMII || 4999 pi->port_type == FW_PORT_TYPE_BT_XFI || 5000 pi->port_type == FW_PORT_TYPE_BT_XAUI || 5001 pi->port_type == FW_PORT_TYPE_KX4 || 5002 pi->port_type == FW_PORT_TYPE_KX || 5003 pi->port_type == FW_PORT_TYPE_KR || 5004 pi->port_type == FW_PORT_TYPE_BP_AP || 5005 pi->port_type == FW_PORT_TYPE_BP4_AP || 5006 pi->port_type == FW_PORT_TYPE_BP40_BA || 5007 pi->port_type == FW_PORT_TYPE_KR4_100G || 5008 pi->port_type == FW_PORT_TYPE_KR_SFP28 || 5009 pi->port_type == FW_PORT_TYPE_KR_XLAUI); 5010 } 5011 5012 static void 5013 build_medialist(struct port_info *pi) 5014 { 5015 uint32_t ss, speed; 5016 int unknown, mword, bit; 5017 struct link_config *lc; 5018 struct ifmedia *ifm; 5019 5020 PORT_LOCK_ASSERT_OWNED(pi); 5021 5022 if (pi->flags & FIXED_IFMEDIA) 5023 return; 5024 5025 /* 5026 * Rebuild the ifmedia list. 5027 */ 5028 ifm = &pi->media; 5029 ifmedia_removeall(ifm); 5030 lc = &pi->link_cfg; 5031 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */ 5032 if (__predict_false(ss == 0)) { /* not supposed to happen. */ 5033 MPASS(ss != 0); 5034 no_media: 5035 MPASS(LIST_EMPTY(&ifm->ifm_list)); 5036 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL); 5037 ifmedia_set(ifm, IFM_ETHER | IFM_NONE); 5038 return; 5039 } 5040 5041 unknown = 0; 5042 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) { 5043 speed = 1 << bit; 5044 MPASS(speed & M_FW_PORT_CAP32_SPEED); 5045 if (ss & speed) { 5046 mword = port_mword(pi, speed); 5047 if (mword == IFM_NONE) { 5048 goto no_media; 5049 } else if (mword == IFM_UNKNOWN) 5050 unknown++; 5051 else 5052 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword); 5053 } 5054 } 5055 if (unknown > 0) /* Add one unknown for all unknown media types. */ 5056 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN); 5057 if (lc->pcaps & FW_PORT_CAP32_ANEG) 5058 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL); 5059 5060 set_current_media(pi); 5061 } 5062 5063 /* 5064 * Initialize the requested fields in the link config based on driver tunables. 5065 */ 5066 static void 5067 init_link_config(struct port_info *pi) 5068 { 5069 struct link_config *lc = &pi->link_cfg; 5070 5071 PORT_LOCK_ASSERT_OWNED(pi); 5072 5073 lc->requested_speed = 0; 5074 5075 if (t4_autoneg == 0) 5076 lc->requested_aneg = AUTONEG_DISABLE; 5077 else if (t4_autoneg == 1) 5078 lc->requested_aneg = AUTONEG_ENABLE; 5079 else 5080 lc->requested_aneg = AUTONEG_AUTO; 5081 5082 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX | 5083 PAUSE_AUTONEG); 5084 5085 if (t4_fec & FEC_AUTO) 5086 lc->requested_fec = FEC_AUTO; 5087 else if (t4_fec == 0) 5088 lc->requested_fec = FEC_NONE; 5089 else { 5090 /* -1 is handled by the FEC_AUTO block above and not here. */ 5091 lc->requested_fec = t4_fec & 5092 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE); 5093 if (lc->requested_fec == 0) 5094 lc->requested_fec = FEC_AUTO; 5095 } 5096 } 5097 5098 /* 5099 * Makes sure that all requested settings comply with what's supported by the 5100 * port. Returns the number of settings that were invalid and had to be fixed. 5101 */ 5102 static int 5103 fixup_link_config(struct port_info *pi) 5104 { 5105 int n = 0; 5106 struct link_config *lc = &pi->link_cfg; 5107 uint32_t fwspeed; 5108 5109 PORT_LOCK_ASSERT_OWNED(pi); 5110 5111 /* Speed (when not autonegotiating) */ 5112 if (lc->requested_speed != 0) { 5113 fwspeed = speed_to_fwcap(lc->requested_speed); 5114 if ((fwspeed & lc->pcaps) == 0) { 5115 n++; 5116 lc->requested_speed = 0; 5117 } 5118 } 5119 5120 /* Link autonegotiation */ 5121 MPASS(lc->requested_aneg == AUTONEG_ENABLE || 5122 lc->requested_aneg == AUTONEG_DISABLE || 5123 lc->requested_aneg == AUTONEG_AUTO); 5124 if (lc->requested_aneg == AUTONEG_ENABLE && 5125 !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 5126 n++; 5127 lc->requested_aneg = AUTONEG_AUTO; 5128 } 5129 5130 /* Flow control */ 5131 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0); 5132 if (lc->requested_fc & PAUSE_TX && 5133 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) { 5134 n++; 5135 lc->requested_fc &= ~PAUSE_TX; 5136 } 5137 if (lc->requested_fc & PAUSE_RX && 5138 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) { 5139 n++; 5140 lc->requested_fc &= ~PAUSE_RX; 5141 } 5142 if (!(lc->requested_fc & PAUSE_AUTONEG) && 5143 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) { 5144 n++; 5145 lc->requested_fc |= PAUSE_AUTONEG; 5146 } 5147 5148 /* FEC */ 5149 if ((lc->requested_fec & FEC_RS && 5150 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) || 5151 (lc->requested_fec & FEC_BASER_RS && 5152 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) { 5153 n++; 5154 lc->requested_fec = FEC_AUTO; 5155 } 5156 5157 return (n); 5158 } 5159 5160 /* 5161 * Apply the requested L1 settings, which are expected to be valid, to the 5162 * hardware. 5163 */ 5164 static int 5165 apply_link_config(struct port_info *pi) 5166 { 5167 struct adapter *sc = pi->adapter; 5168 struct link_config *lc = &pi->link_cfg; 5169 int rc; 5170 5171 #ifdef INVARIANTS 5172 ASSERT_SYNCHRONIZED_OP(sc); 5173 PORT_LOCK_ASSERT_OWNED(pi); 5174 5175 if (lc->requested_aneg == AUTONEG_ENABLE) 5176 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG); 5177 if (!(lc->requested_fc & PAUSE_AUTONEG)) 5178 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE); 5179 if (lc->requested_fc & PAUSE_TX) 5180 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX); 5181 if (lc->requested_fc & PAUSE_RX) 5182 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX); 5183 if (lc->requested_fec & FEC_RS) 5184 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS); 5185 if (lc->requested_fec & FEC_BASER_RS) 5186 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS); 5187 #endif 5188 rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc); 5189 if (rc != 0) { 5190 /* Don't complain if the VF driver gets back an EPERM. */ 5191 if (!(sc->flags & IS_VF) || rc != FW_EPERM) 5192 device_printf(pi->dev, "l1cfg failed: %d\n", rc); 5193 } else { 5194 /* 5195 * An L1_CFG will almost always result in a link-change event if 5196 * the link is up, and the driver will refresh the actual 5197 * fec/fc/etc. when the notification is processed. If the link 5198 * is down then the actual settings are meaningless. 5199 * 5200 * This takes care of the case where a change in the L1 settings 5201 * may not result in a notification. 5202 */ 5203 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG)) 5204 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX); 5205 } 5206 return (rc); 5207 } 5208 5209 #define FW_MAC_EXACT_CHUNK 7 5210 struct mcaddr_ctx { 5211 struct ifnet *ifp; 5212 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; 5213 uint64_t hash; 5214 int i; 5215 int del; 5216 int rc; 5217 }; 5218 5219 static u_int 5220 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 5221 { 5222 struct mcaddr_ctx *ctx = arg; 5223 struct vi_info *vi = ctx->ifp->if_softc; 5224 struct port_info *pi = vi->pi; 5225 struct adapter *sc = pi->adapter; 5226 5227 if (ctx->rc < 0) 5228 return (0); 5229 5230 ctx->mcaddr[ctx->i] = LLADDR(sdl); 5231 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i])); 5232 ctx->i++; 5233 5234 if (ctx->i == FW_MAC_EXACT_CHUNK) { 5235 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del, 5236 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0); 5237 if (ctx->rc < 0) { 5238 int j; 5239 5240 for (j = 0; j < ctx->i; j++) { 5241 if_printf(ctx->ifp, 5242 "failed to add mc address" 5243 " %02x:%02x:%02x:" 5244 "%02x:%02x:%02x rc=%d\n", 5245 ctx->mcaddr[j][0], ctx->mcaddr[j][1], 5246 ctx->mcaddr[j][2], ctx->mcaddr[j][3], 5247 ctx->mcaddr[j][4], ctx->mcaddr[j][5], 5248 -ctx->rc); 5249 } 5250 return (0); 5251 } 5252 ctx->del = 0; 5253 ctx->i = 0; 5254 } 5255 5256 return (1); 5257 } 5258 5259 /* 5260 * Program the port's XGMAC based on parameters in ifnet. The caller also 5261 * indicates which parameters should be programmed (the rest are left alone). 5262 */ 5263 int 5264 update_mac_settings(struct ifnet *ifp, int flags) 5265 { 5266 int rc = 0; 5267 struct vi_info *vi = ifp->if_softc; 5268 struct port_info *pi = vi->pi; 5269 struct adapter *sc = pi->adapter; 5270 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; 5271 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 5272 5273 ASSERT_SYNCHRONIZED_OP(sc); 5274 KASSERT(flags, ("%s: not told what to update.", __func__)); 5275 5276 if (flags & XGMAC_MTU) 5277 mtu = ifp->if_mtu; 5278 5279 if (flags & XGMAC_PROMISC) 5280 promisc = ifp->if_flags & IFF_PROMISC ? 1 : 0; 5281 5282 if (flags & XGMAC_ALLMULTI) 5283 allmulti = ifp->if_flags & IFF_ALLMULTI ? 1 : 0; 5284 5285 if (flags & XGMAC_VLANEX) 5286 vlanex = ifp->if_capenable & IFCAP_VLAN_HWTAGGING ? 1 : 0; 5287 5288 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) { 5289 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc, 5290 allmulti, 1, vlanex, false); 5291 if (rc) { 5292 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, 5293 rc); 5294 return (rc); 5295 } 5296 } 5297 5298 if (flags & XGMAC_UCADDR) { 5299 uint8_t ucaddr[ETHER_ADDR_LEN]; 5300 5301 bcopy(IF_LLADDR(ifp), ucaddr, sizeof(ucaddr)); 5302 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt, 5303 ucaddr, true, &vi->smt_idx); 5304 if (rc < 0) { 5305 rc = -rc; 5306 if_printf(ifp, "change_mac failed: %d\n", rc); 5307 return (rc); 5308 } else { 5309 vi->xact_addr_filt = rc; 5310 rc = 0; 5311 } 5312 } 5313 5314 if (flags & XGMAC_MCADDRS) { 5315 struct epoch_tracker et; 5316 struct mcaddr_ctx ctx; 5317 int j; 5318 5319 ctx.ifp = ifp; 5320 ctx.hash = 0; 5321 ctx.i = 0; 5322 ctx.del = 1; 5323 ctx.rc = 0; 5324 /* 5325 * Unlike other drivers, we accumulate list of pointers into 5326 * interface address lists and we need to keep it safe even 5327 * after if_foreach_llmaddr() returns, thus we must enter the 5328 * network epoch. 5329 */ 5330 NET_EPOCH_ENTER(et); 5331 if_foreach_llmaddr(ifp, add_maddr, &ctx); 5332 if (ctx.rc < 0) { 5333 NET_EPOCH_EXIT(et); 5334 rc = -ctx.rc; 5335 return (rc); 5336 } 5337 if (ctx.i > 0) { 5338 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, 5339 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0); 5340 NET_EPOCH_EXIT(et); 5341 if (rc < 0) { 5342 rc = -rc; 5343 for (j = 0; j < ctx.i; j++) { 5344 if_printf(ifp, 5345 "failed to add mcast address" 5346 " %02x:%02x:%02x:" 5347 "%02x:%02x:%02x rc=%d\n", 5348 ctx.mcaddr[j][0], ctx.mcaddr[j][1], 5349 ctx.mcaddr[j][2], ctx.mcaddr[j][3], 5350 ctx.mcaddr[j][4], ctx.mcaddr[j][5], 5351 rc); 5352 } 5353 return (rc); 5354 } 5355 ctx.del = 0; 5356 } else 5357 NET_EPOCH_EXIT(et); 5358 5359 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0); 5360 if (rc != 0) 5361 if_printf(ifp, "failed to set mcast address hash: %d\n", 5362 rc); 5363 if (ctx.del == 0) { 5364 /* We clobbered the VXLAN entry if there was one. */ 5365 pi->vxlan_tcam_entry = false; 5366 } 5367 } 5368 5369 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 && 5370 pi->vxlan_tcam_entry == false) { 5371 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac, 5372 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 5373 true); 5374 if (rc < 0) { 5375 rc = -rc; 5376 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n", 5377 rc); 5378 } else { 5379 MPASS(rc == sc->rawf_base + pi->port_id); 5380 rc = 0; 5381 pi->vxlan_tcam_entry = true; 5382 } 5383 } 5384 5385 return (rc); 5386 } 5387 5388 /* 5389 * {begin|end}_synchronized_op must be called from the same thread. 5390 */ 5391 int 5392 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags, 5393 char *wmesg) 5394 { 5395 int rc, pri; 5396 5397 #ifdef WITNESS 5398 /* the caller thinks it's ok to sleep, but is it really? */ 5399 if (flags & SLEEP_OK) 5400 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 5401 "begin_synchronized_op"); 5402 #endif 5403 5404 if (INTR_OK) 5405 pri = PCATCH; 5406 else 5407 pri = 0; 5408 5409 ADAPTER_LOCK(sc); 5410 for (;;) { 5411 5412 if (vi && IS_DOOMED(vi)) { 5413 rc = ENXIO; 5414 goto done; 5415 } 5416 5417 if (!IS_BUSY(sc)) { 5418 rc = 0; 5419 break; 5420 } 5421 5422 if (!(flags & SLEEP_OK)) { 5423 rc = EBUSY; 5424 goto done; 5425 } 5426 5427 if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) { 5428 rc = EINTR; 5429 goto done; 5430 } 5431 } 5432 5433 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); 5434 SET_BUSY(sc); 5435 #ifdef INVARIANTS 5436 sc->last_op = wmesg; 5437 sc->last_op_thr = curthread; 5438 sc->last_op_flags = flags; 5439 #endif 5440 5441 done: 5442 if (!(flags & HOLD_LOCK) || rc) 5443 ADAPTER_UNLOCK(sc); 5444 5445 return (rc); 5446 } 5447 5448 /* 5449 * Tell if_ioctl and if_init that the VI is going away. This is 5450 * special variant of begin_synchronized_op and must be paired with a 5451 * call to end_synchronized_op. 5452 */ 5453 void 5454 doom_vi(struct adapter *sc, struct vi_info *vi) 5455 { 5456 5457 ADAPTER_LOCK(sc); 5458 SET_DOOMED(vi); 5459 wakeup(&sc->flags); 5460 while (IS_BUSY(sc)) 5461 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); 5462 SET_BUSY(sc); 5463 #ifdef INVARIANTS 5464 sc->last_op = "t4detach"; 5465 sc->last_op_thr = curthread; 5466 sc->last_op_flags = 0; 5467 #endif 5468 ADAPTER_UNLOCK(sc); 5469 } 5470 5471 /* 5472 * {begin|end}_synchronized_op must be called from the same thread. 5473 */ 5474 void 5475 end_synchronized_op(struct adapter *sc, int flags) 5476 { 5477 5478 if (flags & LOCK_HELD) 5479 ADAPTER_LOCK_ASSERT_OWNED(sc); 5480 else 5481 ADAPTER_LOCK(sc); 5482 5483 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 5484 CLR_BUSY(sc); 5485 wakeup(&sc->flags); 5486 ADAPTER_UNLOCK(sc); 5487 } 5488 5489 static int 5490 cxgbe_init_synchronized(struct vi_info *vi) 5491 { 5492 struct port_info *pi = vi->pi; 5493 struct adapter *sc = pi->adapter; 5494 struct ifnet *ifp = vi->ifp; 5495 int rc = 0, i; 5496 struct sge_txq *txq; 5497 5498 ASSERT_SYNCHRONIZED_OP(sc); 5499 5500 if (ifp->if_drv_flags & IFF_DRV_RUNNING) 5501 return (0); /* already running */ 5502 5503 if (!(sc->flags & FULL_INIT_DONE) && 5504 ((rc = adapter_full_init(sc)) != 0)) 5505 return (rc); /* error message displayed already */ 5506 5507 if (!(vi->flags & VI_INIT_DONE) && 5508 ((rc = vi_full_init(vi)) != 0)) 5509 return (rc); /* error message displayed already */ 5510 5511 rc = update_mac_settings(ifp, XGMAC_ALL); 5512 if (rc) 5513 goto done; /* error message displayed already */ 5514 5515 PORT_LOCK(pi); 5516 if (pi->up_vis == 0) { 5517 t4_update_port_info(pi); 5518 fixup_link_config(pi); 5519 build_medialist(pi); 5520 apply_link_config(pi); 5521 } 5522 5523 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true); 5524 if (rc != 0) { 5525 if_printf(ifp, "enable_vi failed: %d\n", rc); 5526 PORT_UNLOCK(pi); 5527 goto done; 5528 } 5529 5530 /* 5531 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized 5532 * if this changes. 5533 */ 5534 5535 for_each_txq(vi, i, txq) { 5536 TXQ_LOCK(txq); 5537 txq->eq.flags |= EQ_ENABLED; 5538 TXQ_UNLOCK(txq); 5539 } 5540 5541 /* 5542 * The first iq of the first port to come up is used for tracing. 5543 */ 5544 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 5545 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 5546 t4_write_reg(sc, is_t4(sc) ? A_MPS_TRC_RSS_CONTROL : 5547 A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) | 5548 V_QUEUENUMBER(sc->traceq)); 5549 pi->flags |= HAS_TRACEQ; 5550 } 5551 5552 /* all ok */ 5553 pi->up_vis++; 5554 ifp->if_drv_flags |= IFF_DRV_RUNNING; 5555 5556 if (pi->nvi > 1 || sc->flags & IS_VF) 5557 callout_reset(&vi->tick, hz, vi_tick, vi); 5558 else 5559 callout_reset(&pi->tick, hz, cxgbe_tick, pi); 5560 if (pi->link_cfg.link_ok) 5561 t4_os_link_changed(pi); 5562 PORT_UNLOCK(pi); 5563 done: 5564 if (rc != 0) 5565 cxgbe_uninit_synchronized(vi); 5566 5567 return (rc); 5568 } 5569 5570 /* 5571 * Idempotent. 5572 */ 5573 static int 5574 cxgbe_uninit_synchronized(struct vi_info *vi) 5575 { 5576 struct port_info *pi = vi->pi; 5577 struct adapter *sc = pi->adapter; 5578 struct ifnet *ifp = vi->ifp; 5579 int rc, i; 5580 struct sge_txq *txq; 5581 5582 ASSERT_SYNCHRONIZED_OP(sc); 5583 5584 if (!(vi->flags & VI_INIT_DONE)) { 5585 if (__predict_false(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 5586 KASSERT(0, ("uninited VI is running")); 5587 if_printf(ifp, "uninited VI with running ifnet. " 5588 "vi->flags 0x%016lx, if_flags 0x%08x, " 5589 "if_drv_flags 0x%08x\n", vi->flags, ifp->if_flags, 5590 ifp->if_drv_flags); 5591 } 5592 return (0); 5593 } 5594 5595 /* 5596 * Disable the VI so that all its data in either direction is discarded 5597 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz 5598 * tick) intact as the TP can deliver negative advice or data that it's 5599 * holding in its RAM (for an offloaded connection) even after the VI is 5600 * disabled. 5601 */ 5602 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false); 5603 if (rc) { 5604 if_printf(ifp, "disable_vi failed: %d\n", rc); 5605 return (rc); 5606 } 5607 5608 for_each_txq(vi, i, txq) { 5609 TXQ_LOCK(txq); 5610 txq->eq.flags &= ~EQ_ENABLED; 5611 TXQ_UNLOCK(txq); 5612 } 5613 5614 PORT_LOCK(pi); 5615 if (pi->nvi > 1 || sc->flags & IS_VF) 5616 callout_stop(&vi->tick); 5617 else 5618 callout_stop(&pi->tick); 5619 if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) { 5620 PORT_UNLOCK(pi); 5621 return (0); 5622 } 5623 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; 5624 pi->up_vis--; 5625 if (pi->up_vis > 0) { 5626 PORT_UNLOCK(pi); 5627 return (0); 5628 } 5629 5630 pi->link_cfg.link_ok = false; 5631 pi->link_cfg.speed = 0; 5632 pi->link_cfg.link_down_rc = 255; 5633 t4_os_link_changed(pi); 5634 PORT_UNLOCK(pi); 5635 5636 return (0); 5637 } 5638 5639 /* 5640 * It is ok for this function to fail midway and return right away. t4_detach 5641 * will walk the entire sc->irq list and clean up whatever is valid. 5642 */ 5643 int 5644 t4_setup_intr_handlers(struct adapter *sc) 5645 { 5646 int rc, rid, p, q, v; 5647 char s[8]; 5648 struct irq *irq; 5649 struct port_info *pi; 5650 struct vi_info *vi; 5651 struct sge *sge = &sc->sge; 5652 struct sge_rxq *rxq; 5653 #ifdef TCP_OFFLOAD 5654 struct sge_ofld_rxq *ofld_rxq; 5655 #endif 5656 #ifdef DEV_NETMAP 5657 struct sge_nm_rxq *nm_rxq; 5658 #endif 5659 #ifdef RSS 5660 int nbuckets = rss_getnumbuckets(); 5661 #endif 5662 5663 /* 5664 * Setup interrupts. 5665 */ 5666 irq = &sc->irq[0]; 5667 rid = sc->intr_type == INTR_INTX ? 0 : 1; 5668 if (forwarding_intr_to_fwq(sc)) 5669 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all")); 5670 5671 /* Multiple interrupts. */ 5672 if (sc->flags & IS_VF) 5673 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports, 5674 ("%s: too few intr.", __func__)); 5675 else 5676 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, 5677 ("%s: too few intr.", __func__)); 5678 5679 /* The first one is always error intr on PFs */ 5680 if (!(sc->flags & IS_VF)) { 5681 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); 5682 if (rc != 0) 5683 return (rc); 5684 irq++; 5685 rid++; 5686 } 5687 5688 /* The second one is always the firmware event queue (first on VFs) */ 5689 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt"); 5690 if (rc != 0) 5691 return (rc); 5692 irq++; 5693 rid++; 5694 5695 for_each_port(sc, p) { 5696 pi = sc->port[p]; 5697 for_each_vi(pi, v, vi) { 5698 vi->first_intr = rid - 1; 5699 5700 if (vi->nnmrxq > 0) { 5701 int n = max(vi->nrxq, vi->nnmrxq); 5702 5703 rxq = &sge->rxq[vi->first_rxq]; 5704 #ifdef DEV_NETMAP 5705 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq]; 5706 #endif 5707 for (q = 0; q < n; q++) { 5708 snprintf(s, sizeof(s), "%x%c%x", p, 5709 'a' + v, q); 5710 if (q < vi->nrxq) 5711 irq->rxq = rxq++; 5712 #ifdef DEV_NETMAP 5713 if (q < vi->nnmrxq) 5714 irq->nm_rxq = nm_rxq++; 5715 5716 if (irq->nm_rxq != NULL && 5717 irq->rxq == NULL) { 5718 /* Netmap rx only */ 5719 rc = t4_alloc_irq(sc, irq, rid, 5720 t4_nm_intr, irq->nm_rxq, s); 5721 } 5722 if (irq->nm_rxq != NULL && 5723 irq->rxq != NULL) { 5724 /* NIC and Netmap rx */ 5725 rc = t4_alloc_irq(sc, irq, rid, 5726 t4_vi_intr, irq, s); 5727 } 5728 #endif 5729 if (irq->rxq != NULL && 5730 irq->nm_rxq == NULL) { 5731 /* NIC rx only */ 5732 rc = t4_alloc_irq(sc, irq, rid, 5733 t4_intr, irq->rxq, s); 5734 } 5735 if (rc != 0) 5736 return (rc); 5737 #ifdef RSS 5738 if (q < vi->nrxq) { 5739 bus_bind_intr(sc->dev, irq->res, 5740 rss_getcpu(q % nbuckets)); 5741 } 5742 #endif 5743 irq++; 5744 rid++; 5745 vi->nintr++; 5746 } 5747 } else { 5748 for_each_rxq(vi, q, rxq) { 5749 snprintf(s, sizeof(s), "%x%c%x", p, 5750 'a' + v, q); 5751 rc = t4_alloc_irq(sc, irq, rid, 5752 t4_intr, rxq, s); 5753 if (rc != 0) 5754 return (rc); 5755 #ifdef RSS 5756 bus_bind_intr(sc->dev, irq->res, 5757 rss_getcpu(q % nbuckets)); 5758 #endif 5759 irq++; 5760 rid++; 5761 vi->nintr++; 5762 } 5763 } 5764 #ifdef TCP_OFFLOAD 5765 for_each_ofld_rxq(vi, q, ofld_rxq) { 5766 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q); 5767 rc = t4_alloc_irq(sc, irq, rid, t4_intr, 5768 ofld_rxq, s); 5769 if (rc != 0) 5770 return (rc); 5771 irq++; 5772 rid++; 5773 vi->nintr++; 5774 } 5775 #endif 5776 } 5777 } 5778 MPASS(irq == &sc->irq[sc->intr_count]); 5779 5780 return (0); 5781 } 5782 5783 int 5784 adapter_full_init(struct adapter *sc) 5785 { 5786 int rc, i; 5787 #ifdef RSS 5788 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 5789 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 5790 #endif 5791 5792 ASSERT_SYNCHRONIZED_OP(sc); 5793 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 5794 KASSERT((sc->flags & FULL_INIT_DONE) == 0, 5795 ("%s: FULL_INIT_DONE already", __func__)); 5796 5797 /* 5798 * queues that belong to the adapter (not any particular port). 5799 */ 5800 rc = t4_setup_adapter_queues(sc); 5801 if (rc != 0) 5802 goto done; 5803 5804 for (i = 0; i < nitems(sc->tq); i++) { 5805 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, 5806 taskqueue_thread_enqueue, &sc->tq[i]); 5807 if (sc->tq[i] == NULL) { 5808 device_printf(sc->dev, 5809 "failed to allocate task queue %d\n", i); 5810 rc = ENOMEM; 5811 goto done; 5812 } 5813 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", 5814 device_get_nameunit(sc->dev), i); 5815 } 5816 #ifdef RSS 5817 MPASS(RSS_KEYSIZE == 40); 5818 rss_getkey((void *)&raw_rss_key[0]); 5819 for (i = 0; i < nitems(rss_key); i++) { 5820 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]); 5821 } 5822 t4_write_rss_key(sc, &rss_key[0], -1, 1); 5823 #endif 5824 5825 if (!(sc->flags & IS_VF)) 5826 t4_intr_enable(sc); 5827 #ifdef KERN_TLS 5828 if (sc->flags & KERN_TLS_OK) 5829 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc, 5830 C_HARDCLOCK); 5831 #endif 5832 sc->flags |= FULL_INIT_DONE; 5833 done: 5834 if (rc != 0) 5835 adapter_full_uninit(sc); 5836 5837 return (rc); 5838 } 5839 5840 int 5841 adapter_full_uninit(struct adapter *sc) 5842 { 5843 int i; 5844 5845 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 5846 5847 t4_teardown_adapter_queues(sc); 5848 5849 for (i = 0; i < nitems(sc->tq) && sc->tq[i]; i++) { 5850 taskqueue_free(sc->tq[i]); 5851 sc->tq[i] = NULL; 5852 } 5853 5854 sc->flags &= ~FULL_INIT_DONE; 5855 5856 return (0); 5857 } 5858 5859 #ifdef RSS 5860 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \ 5861 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \ 5862 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \ 5863 RSS_HASHTYPE_RSS_UDP_IPV6) 5864 5865 /* Translates kernel hash types to hardware. */ 5866 static int 5867 hashconfig_to_hashen(int hashconfig) 5868 { 5869 int hashen = 0; 5870 5871 if (hashconfig & RSS_HASHTYPE_RSS_IPV4) 5872 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 5873 if (hashconfig & RSS_HASHTYPE_RSS_IPV6) 5874 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 5875 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) { 5876 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 5877 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 5878 } 5879 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) { 5880 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 5881 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 5882 } 5883 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4) 5884 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 5885 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6) 5886 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 5887 5888 return (hashen); 5889 } 5890 5891 /* Translates hardware hash types to kernel. */ 5892 static int 5893 hashen_to_hashconfig(int hashen) 5894 { 5895 int hashconfig = 0; 5896 5897 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) { 5898 /* 5899 * If UDP hashing was enabled it must have been enabled for 5900 * either IPv4 or IPv6 (inclusive or). Enabling UDP without 5901 * enabling any 4-tuple hash is nonsense configuration. 5902 */ 5903 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 5904 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)); 5905 5906 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 5907 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4; 5908 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 5909 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6; 5910 } 5911 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 5912 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4; 5913 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 5914 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6; 5915 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 5916 hashconfig |= RSS_HASHTYPE_RSS_IPV4; 5917 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 5918 hashconfig |= RSS_HASHTYPE_RSS_IPV6; 5919 5920 return (hashconfig); 5921 } 5922 #endif 5923 5924 int 5925 vi_full_init(struct vi_info *vi) 5926 { 5927 struct adapter *sc = vi->adapter; 5928 struct ifnet *ifp = vi->ifp; 5929 uint16_t *rss; 5930 struct sge_rxq *rxq; 5931 int rc, i, j; 5932 #ifdef RSS 5933 int nbuckets = rss_getnumbuckets(); 5934 int hashconfig = rss_gethashconfig(); 5935 int extra; 5936 #endif 5937 5938 ASSERT_SYNCHRONIZED_OP(sc); 5939 KASSERT((vi->flags & VI_INIT_DONE) == 0, 5940 ("%s: VI_INIT_DONE already", __func__)); 5941 5942 sysctl_ctx_init(&vi->ctx); 5943 vi->flags |= VI_SYSCTL_CTX; 5944 5945 /* 5946 * Allocate tx/rx/fl queues for this VI. 5947 */ 5948 rc = t4_setup_vi_queues(vi); 5949 if (rc != 0) 5950 goto done; /* error message displayed already */ 5951 5952 /* 5953 * Setup RSS for this VI. Save a copy of the RSS table for later use. 5954 */ 5955 if (vi->nrxq > vi->rss_size) { 5956 if_printf(ifp, "nrxq (%d) > hw RSS table size (%d); " 5957 "some queues will never receive traffic.\n", vi->nrxq, 5958 vi->rss_size); 5959 } else if (vi->rss_size % vi->nrxq) { 5960 if_printf(ifp, "nrxq (%d), hw RSS table size (%d); " 5961 "expect uneven traffic distribution.\n", vi->nrxq, 5962 vi->rss_size); 5963 } 5964 #ifdef RSS 5965 if (vi->nrxq != nbuckets) { 5966 if_printf(ifp, "nrxq (%d) != kernel RSS buckets (%d);" 5967 "performance will be impacted.\n", vi->nrxq, nbuckets); 5968 } 5969 #endif 5970 rss = malloc(vi->rss_size * sizeof (*rss), M_CXGBE, M_ZERO | M_WAITOK); 5971 for (i = 0; i < vi->rss_size;) { 5972 #ifdef RSS 5973 j = rss_get_indirection_to_bucket(i); 5974 j %= vi->nrxq; 5975 rxq = &sc->sge.rxq[vi->first_rxq + j]; 5976 rss[i++] = rxq->iq.abs_id; 5977 #else 5978 for_each_rxq(vi, j, rxq) { 5979 rss[i++] = rxq->iq.abs_id; 5980 if (i == vi->rss_size) 5981 break; 5982 } 5983 #endif 5984 } 5985 5986 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, rss, 5987 vi->rss_size); 5988 if (rc != 0) { 5989 free(rss, M_CXGBE); 5990 if_printf(ifp, "rss_config failed: %d\n", rc); 5991 goto done; 5992 } 5993 5994 #ifdef RSS 5995 vi->hashen = hashconfig_to_hashen(hashconfig); 5996 5997 /* 5998 * We may have had to enable some hashes even though the global config 5999 * wants them disabled. This is a potential problem that must be 6000 * reported to the user. 6001 */ 6002 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig; 6003 6004 /* 6005 * If we consider only the supported hash types, then the enabled hashes 6006 * are a superset of the requested hashes. In other words, there cannot 6007 * be any supported hash that was requested but not enabled, but there 6008 * can be hashes that were not requested but had to be enabled. 6009 */ 6010 extra &= SUPPORTED_RSS_HASHTYPES; 6011 MPASS((extra & hashconfig) == 0); 6012 6013 if (extra) { 6014 if_printf(ifp, 6015 "global RSS config (0x%x) cannot be accommodated.\n", 6016 hashconfig); 6017 } 6018 if (extra & RSS_HASHTYPE_RSS_IPV4) 6019 if_printf(ifp, "IPv4 2-tuple hashing forced on.\n"); 6020 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4) 6021 if_printf(ifp, "TCP/IPv4 4-tuple hashing forced on.\n"); 6022 if (extra & RSS_HASHTYPE_RSS_IPV6) 6023 if_printf(ifp, "IPv6 2-tuple hashing forced on.\n"); 6024 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6) 6025 if_printf(ifp, "TCP/IPv6 4-tuple hashing forced on.\n"); 6026 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4) 6027 if_printf(ifp, "UDP/IPv4 4-tuple hashing forced on.\n"); 6028 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6) 6029 if_printf(ifp, "UDP/IPv6 4-tuple hashing forced on.\n"); 6030 #else 6031 vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN | 6032 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN | 6033 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 6034 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN; 6035 #endif 6036 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, rss[0], 0, 0); 6037 if (rc != 0) { 6038 free(rss, M_CXGBE); 6039 if_printf(ifp, "rss hash/defaultq config failed: %d\n", rc); 6040 goto done; 6041 } 6042 6043 vi->rss = rss; 6044 vi->flags |= VI_INIT_DONE; 6045 done: 6046 if (rc != 0) 6047 vi_full_uninit(vi); 6048 6049 return (rc); 6050 } 6051 6052 /* 6053 * Idempotent. 6054 */ 6055 int 6056 vi_full_uninit(struct vi_info *vi) 6057 { 6058 struct port_info *pi = vi->pi; 6059 struct adapter *sc = pi->adapter; 6060 int i; 6061 struct sge_rxq *rxq; 6062 struct sge_txq *txq; 6063 #ifdef TCP_OFFLOAD 6064 struct sge_ofld_rxq *ofld_rxq; 6065 #endif 6066 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 6067 struct sge_wrq *ofld_txq; 6068 #endif 6069 6070 if (vi->flags & VI_INIT_DONE) { 6071 6072 /* Need to quiesce queues. */ 6073 6074 /* XXX: Only for the first VI? */ 6075 if (IS_MAIN_VI(vi) && !(sc->flags & IS_VF)) 6076 quiesce_wrq(sc, &sc->sge.ctrlq[pi->port_id]); 6077 6078 for_each_txq(vi, i, txq) { 6079 quiesce_txq(sc, txq); 6080 } 6081 6082 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 6083 for_each_ofld_txq(vi, i, ofld_txq) { 6084 quiesce_wrq(sc, ofld_txq); 6085 } 6086 #endif 6087 6088 for_each_rxq(vi, i, rxq) { 6089 quiesce_iq(sc, &rxq->iq); 6090 quiesce_fl(sc, &rxq->fl); 6091 } 6092 6093 #ifdef TCP_OFFLOAD 6094 for_each_ofld_rxq(vi, i, ofld_rxq) { 6095 quiesce_iq(sc, &ofld_rxq->iq); 6096 quiesce_fl(sc, &ofld_rxq->fl); 6097 } 6098 #endif 6099 free(vi->rss, M_CXGBE); 6100 free(vi->nm_rss, M_CXGBE); 6101 } 6102 6103 t4_teardown_vi_queues(vi); 6104 vi->flags &= ~VI_INIT_DONE; 6105 6106 return (0); 6107 } 6108 6109 static void 6110 quiesce_txq(struct adapter *sc, struct sge_txq *txq) 6111 { 6112 struct sge_eq *eq = &txq->eq; 6113 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 6114 6115 (void) sc; /* unused */ 6116 6117 #ifdef INVARIANTS 6118 TXQ_LOCK(txq); 6119 MPASS((eq->flags & EQ_ENABLED) == 0); 6120 TXQ_UNLOCK(txq); 6121 #endif 6122 6123 /* Wait for the mp_ring to empty. */ 6124 while (!mp_ring_is_idle(txq->r)) { 6125 mp_ring_check_drainage(txq->r, 4096); 6126 pause("rquiesce", 1); 6127 } 6128 6129 /* Then wait for the hardware to finish. */ 6130 while (spg->cidx != htobe16(eq->pidx)) 6131 pause("equiesce", 1); 6132 6133 /* Finally, wait for the driver to reclaim all descriptors. */ 6134 while (eq->cidx != eq->pidx) 6135 pause("dquiesce", 1); 6136 } 6137 6138 static void 6139 quiesce_wrq(struct adapter *sc, struct sge_wrq *wrq) 6140 { 6141 6142 /* XXXTX */ 6143 } 6144 6145 static void 6146 quiesce_iq(struct adapter *sc, struct sge_iq *iq) 6147 { 6148 (void) sc; /* unused */ 6149 6150 /* Synchronize with the interrupt handler */ 6151 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) 6152 pause("iqfree", 1); 6153 } 6154 6155 static void 6156 quiesce_fl(struct adapter *sc, struct sge_fl *fl) 6157 { 6158 mtx_lock(&sc->sfl_lock); 6159 FL_LOCK(fl); 6160 fl->flags |= FL_DOOMED; 6161 FL_UNLOCK(fl); 6162 callout_stop(&sc->sfl_callout); 6163 mtx_unlock(&sc->sfl_lock); 6164 6165 KASSERT((fl->flags & FL_STARVING) == 0, 6166 ("%s: still starving", __func__)); 6167 } 6168 6169 static int 6170 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, 6171 driver_intr_t *handler, void *arg, char *name) 6172 { 6173 int rc; 6174 6175 irq->rid = rid; 6176 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, 6177 RF_SHAREABLE | RF_ACTIVE); 6178 if (irq->res == NULL) { 6179 device_printf(sc->dev, 6180 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 6181 return (ENOMEM); 6182 } 6183 6184 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, 6185 NULL, handler, arg, &irq->tag); 6186 if (rc != 0) { 6187 device_printf(sc->dev, 6188 "failed to setup interrupt for rid %d, name %s: %d\n", 6189 rid, name, rc); 6190 } else if (name) 6191 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name); 6192 6193 return (rc); 6194 } 6195 6196 static int 6197 t4_free_irq(struct adapter *sc, struct irq *irq) 6198 { 6199 if (irq->tag) 6200 bus_teardown_intr(sc->dev, irq->res, irq->tag); 6201 if (irq->res) 6202 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); 6203 6204 bzero(irq, sizeof(*irq)); 6205 6206 return (0); 6207 } 6208 6209 static void 6210 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) 6211 { 6212 6213 regs->version = chip_id(sc) | chip_rev(sc) << 10; 6214 t4_get_regs(sc, buf, regs->len); 6215 } 6216 6217 #define A_PL_INDIR_CMD 0x1f8 6218 6219 #define S_PL_AUTOINC 31 6220 #define M_PL_AUTOINC 0x1U 6221 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC) 6222 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC) 6223 6224 #define S_PL_VFID 20 6225 #define M_PL_VFID 0xffU 6226 #define V_PL_VFID(x) ((x) << S_PL_VFID) 6227 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID) 6228 6229 #define S_PL_ADDR 0 6230 #define M_PL_ADDR 0xfffffU 6231 #define V_PL_ADDR(x) ((x) << S_PL_ADDR) 6232 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR) 6233 6234 #define A_PL_INDIR_DATA 0x1fc 6235 6236 static uint64_t 6237 read_vf_stat(struct adapter *sc, u_int vin, int reg) 6238 { 6239 u32 stats[2]; 6240 6241 mtx_assert(&sc->reg_lock, MA_OWNED); 6242 if (sc->flags & IS_VF) { 6243 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg)); 6244 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4)); 6245 } else { 6246 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 6247 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg))); 6248 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA); 6249 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA); 6250 } 6251 return (((uint64_t)stats[1]) << 32 | stats[0]); 6252 } 6253 6254 static void 6255 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats) 6256 { 6257 6258 #define GET_STAT(name) \ 6259 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L) 6260 6261 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES); 6262 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); 6263 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES); 6264 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); 6265 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES); 6266 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); 6267 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES); 6268 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES); 6269 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES); 6270 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES); 6271 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); 6272 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES); 6273 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); 6274 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES); 6275 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); 6276 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES); 6277 6278 #undef GET_STAT 6279 } 6280 6281 static void 6282 t4_clr_vi_stats(struct adapter *sc, u_int vin) 6283 { 6284 int reg; 6285 6286 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) | 6287 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L))); 6288 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L; 6289 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4) 6290 t4_write_reg(sc, A_PL_INDIR_DATA, 0); 6291 } 6292 6293 static void 6294 vi_refresh_stats(struct adapter *sc, struct vi_info *vi) 6295 { 6296 struct timeval tv; 6297 const struct timeval interval = {0, 250000}; /* 250ms */ 6298 6299 if (!(vi->flags & VI_INIT_DONE)) 6300 return; 6301 6302 getmicrotime(&tv); 6303 timevalsub(&tv, &interval); 6304 if (timevalcmp(&tv, &vi->last_refreshed, <)) 6305 return; 6306 6307 mtx_lock(&sc->reg_lock); 6308 t4_get_vi_stats(sc, vi->vin, &vi->stats); 6309 getmicrotime(&vi->last_refreshed); 6310 mtx_unlock(&sc->reg_lock); 6311 } 6312 6313 static void 6314 cxgbe_refresh_stats(struct adapter *sc, struct port_info *pi) 6315 { 6316 u_int i, v, tnl_cong_drops, chan_map; 6317 struct timeval tv; 6318 const struct timeval interval = {0, 250000}; /* 250ms */ 6319 6320 getmicrotime(&tv); 6321 timevalsub(&tv, &interval); 6322 if (timevalcmp(&tv, &pi->last_refreshed, <)) 6323 return; 6324 6325 tnl_cong_drops = 0; 6326 t4_get_port_stats(sc, pi->tx_chan, &pi->stats); 6327 chan_map = pi->rx_e_chan_map; 6328 while (chan_map) { 6329 i = ffs(chan_map) - 1; 6330 mtx_lock(&sc->reg_lock); 6331 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1, 6332 A_TP_MIB_TNL_CNG_DROP_0 + i); 6333 mtx_unlock(&sc->reg_lock); 6334 tnl_cong_drops += v; 6335 chan_map &= ~(1 << i); 6336 } 6337 pi->tnl_cong_drops = tnl_cong_drops; 6338 getmicrotime(&pi->last_refreshed); 6339 } 6340 6341 static void 6342 cxgbe_tick(void *arg) 6343 { 6344 struct port_info *pi = arg; 6345 struct adapter *sc = pi->adapter; 6346 6347 PORT_LOCK_ASSERT_OWNED(pi); 6348 cxgbe_refresh_stats(sc, pi); 6349 6350 callout_schedule(&pi->tick, hz); 6351 } 6352 6353 void 6354 vi_tick(void *arg) 6355 { 6356 struct vi_info *vi = arg; 6357 struct adapter *sc = vi->adapter; 6358 6359 vi_refresh_stats(sc, vi); 6360 6361 callout_schedule(&vi->tick, hz); 6362 } 6363 6364 /* 6365 * Should match fw_caps_config_<foo> enums in t4fw_interface.h 6366 */ 6367 static char *caps_decoder[] = { 6368 "\20\001IPMI\002NCSI", /* 0: NBM */ 6369 "\20\001PPP\002QFC\003DCBX", /* 1: link */ 6370 "\20\001INGRESS\002EGRESS", /* 2: switch */ 6371 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */ 6372 "\006HASHFILTER\007ETHOFLD", 6373 "\20\001TOE", /* 4: TOE */ 6374 "\20\001RDDP\002RDMAC", /* 5: RDMA */ 6375 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */ 6376 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD" 6377 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD" 6378 "\007T10DIF" 6379 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD", 6380 "\20\001LOOKASIDE\002TLSKEYS", /* 7: Crypto */ 6381 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */ 6382 "\004PO_INITIATOR\005PO_TARGET", 6383 }; 6384 6385 void 6386 t4_sysctls(struct adapter *sc) 6387 { 6388 struct sysctl_ctx_list *ctx; 6389 struct sysctl_oid *oid; 6390 struct sysctl_oid_list *children, *c0; 6391 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; 6392 6393 ctx = device_get_sysctl_ctx(sc->dev); 6394 6395 /* 6396 * dev.t4nex.X. 6397 */ 6398 oid = device_get_sysctl_tree(sc->dev); 6399 c0 = children = SYSCTL_CHILDREN(oid); 6400 6401 sc->sc_do_rxcopy = 1; 6402 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW, 6403 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames"); 6404 6405 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, 6406 sc->params.nports, "# of ports"); 6407 6408 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", 6409 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells, 6410 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A", 6411 "available doorbells"); 6412 6413 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, 6414 sc->params.vpd.cclk, "core clock frequency (in KHz)"); 6415 6416 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", 6417 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 6418 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val), 6419 sysctl_int_array, "A", "interrupt holdoff timer values (us)"); 6420 6421 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", 6422 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 6423 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val), 6424 sysctl_int_array, "A", "interrupt holdoff packet counter values"); 6425 6426 t4_sge_sysctls(sc, ctx, children); 6427 6428 sc->lro_timeout = 100; 6429 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW, 6430 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)"); 6431 6432 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW, 6433 &sc->debug_flags, 0, "flags to enable runtime debugging"); 6434 6435 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version", 6436 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version"); 6437 6438 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", 6439 CTLFLAG_RD, sc->fw_version, 0, "firmware version"); 6440 6441 if (sc->flags & IS_VF) 6442 return; 6443 6444 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, 6445 NULL, chip_rev(sc), "chip hardware revision"); 6446 6447 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn", 6448 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number"); 6449 6450 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn", 6451 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number"); 6452 6453 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec", 6454 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change"); 6455 6456 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version", 6457 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version"); 6458 6459 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na", 6460 CTLFLAG_RD, sc->params.vpd.na, 0, "network address"); 6461 6462 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD, 6463 sc->er_version, 0, "expansion ROM version"); 6464 6465 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD, 6466 sc->bs_version, 0, "bootstrap firmware version"); 6467 6468 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD, 6469 NULL, sc->params.scfg_vers, "serial config version"); 6470 6471 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD, 6472 NULL, sc->params.vpd_vers, "VPD version"); 6473 6474 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", 6475 CTLFLAG_RD, sc->cfg_file, 0, "configuration file"); 6476 6477 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, 6478 sc->cfcsum, "config file checksum"); 6479 6480 #define SYSCTL_CAP(name, n, text) \ 6481 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \ 6482 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \ 6483 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \ 6484 "available " text " capabilities") 6485 6486 SYSCTL_CAP(nbmcaps, 0, "NBM"); 6487 SYSCTL_CAP(linkcaps, 1, "link"); 6488 SYSCTL_CAP(switchcaps, 2, "switch"); 6489 SYSCTL_CAP(niccaps, 3, "NIC"); 6490 SYSCTL_CAP(toecaps, 4, "TCP offload"); 6491 SYSCTL_CAP(rdmacaps, 5, "RDMA"); 6492 SYSCTL_CAP(iscsicaps, 6, "iSCSI"); 6493 SYSCTL_CAP(cryptocaps, 7, "crypto"); 6494 SYSCTL_CAP(fcoecaps, 8, "FCoE"); 6495 #undef SYSCTL_CAP 6496 6497 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, 6498 NULL, sc->tids.nftids, "number of filters"); 6499 6500 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 6501 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 6502 sysctl_temperature, "I", "chip temperature (in Celsius)"); 6503 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor", 6504 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 6505 sysctl_reset_sensor, "I", "reset the chip's temperature sensor."); 6506 6507 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg", 6508 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 6509 sysctl_loadavg, "A", 6510 "microprocessor load averages (debug firmwares only)"); 6511 6512 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd", 6513 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd, 6514 "I", "core Vdd (in mV)"); 6515 6516 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus", 6517 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS, 6518 sysctl_cpus, "A", "local CPUs"); 6519 6520 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus", 6521 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS, 6522 sysctl_cpus, "A", "preferred CPUs for interrupts"); 6523 6524 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW, 6525 &sc->swintr, 0, "software triggered interrupts"); 6526 6527 /* 6528 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. 6529 */ 6530 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", 6531 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 6532 "logs and miscellaneous information"); 6533 children = SYSCTL_CHILDREN(oid); 6534 6535 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", 6536 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 6537 sysctl_cctrl, "A", "congestion control"); 6538 6539 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0", 6540 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 6541 sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)"); 6542 6543 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1", 6544 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 6545 sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)"); 6546 6547 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp", 6548 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 6549 sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)"); 6550 6551 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0", 6552 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3, 6553 sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)"); 6554 6555 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1", 6556 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4, 6557 sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)"); 6558 6559 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi", 6560 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5, 6561 sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)"); 6562 6563 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la", 6564 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 6565 sysctl_cim_la, "A", "CIM logic analyzer"); 6566 6567 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la", 6568 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 6569 sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); 6570 6571 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0", 6572 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 6573 0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)"); 6574 6575 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1", 6576 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 6577 1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)"); 6578 6579 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2", 6580 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 6581 2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)"); 6582 6583 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3", 6584 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 6585 3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)"); 6586 6587 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge", 6588 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 6589 4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)"); 6590 6591 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi", 6592 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 6593 5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)"); 6594 6595 if (chip_id(sc) > CHELSIO_T4) { 6596 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx", 6597 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 6598 6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 6599 "CIM OBQ 6 (SGE0-RX)"); 6600 6601 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx", 6602 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 6603 7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", 6604 "CIM OBQ 7 (SGE1-RX)"); 6605 } 6606 6607 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la", 6608 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 6609 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); 6610 6611 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg", 6612 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 6613 sysctl_cim_qcfg, "A", "CIM queue configuration"); 6614 6615 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", 6616 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 6617 sysctl_cpl_stats, "A", "CPL statistics"); 6618 6619 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", 6620 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 6621 sysctl_ddp_stats, "A", "non-TCP DDP statistics"); 6622 6623 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", 6624 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 6625 sysctl_devlog, "A", "firmware's device log"); 6626 6627 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", 6628 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 6629 sysctl_fcoe_stats, "A", "FCoE statistics"); 6630 6631 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", 6632 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 6633 sysctl_hw_sched, "A", "hardware scheduler "); 6634 6635 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", 6636 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 6637 sysctl_l2t, "A", "hardware L2 table"); 6638 6639 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt", 6640 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 6641 sysctl_smt, "A", "hardware source MAC table"); 6642 6643 #ifdef INET6 6644 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip", 6645 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 6646 sysctl_clip, "A", "active CLIP table entries"); 6647 #endif 6648 6649 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", 6650 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 6651 sysctl_lb_stats, "A", "loopback statistics"); 6652 6653 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", 6654 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 6655 sysctl_meminfo, "A", "memory regions"); 6656 6657 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", 6658 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 6659 chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6, 6660 "A", "MPS TCAM entries"); 6661 6662 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", 6663 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 6664 sysctl_path_mtus, "A", "path MTUs"); 6665 6666 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", 6667 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 6668 sysctl_pm_stats, "A", "PM statistics"); 6669 6670 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", 6671 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 6672 sysctl_rdma_stats, "A", "RDMA statistics"); 6673 6674 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", 6675 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 6676 sysctl_tcp_stats, "A", "TCP statistics"); 6677 6678 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", 6679 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 6680 sysctl_tids, "A", "TID information"); 6681 6682 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", 6683 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 6684 sysctl_tp_err_stats, "A", "TP error statistics"); 6685 6686 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask", 6687 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 6688 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask"); 6689 6690 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", 6691 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 6692 sysctl_tp_la, "A", "TP logic analyzer"); 6693 6694 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", 6695 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 6696 sysctl_tx_rate, "A", "Tx rate"); 6697 6698 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", 6699 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 6700 sysctl_ulprx_la, "A", "ULPRX logic analyzer"); 6701 6702 if (chip_id(sc) >= CHELSIO_T5) { 6703 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", 6704 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 6705 sysctl_wcwr_stats, "A", "write combined work requests"); 6706 } 6707 6708 #ifdef KERN_TLS 6709 if (sc->flags & KERN_TLS_OK) { 6710 /* 6711 * dev.t4nex.0.tls. 6712 */ 6713 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls", 6714 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters"); 6715 children = SYSCTL_CHILDREN(oid); 6716 6717 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys", 6718 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS " 6719 "keys in work requests (1) or attempt to store TLS keys " 6720 "in card memory."); 6721 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs", 6722 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to combine " 6723 "TCB field updates with TLS record work requests."); 6724 } 6725 #endif 6726 6727 #ifdef TCP_OFFLOAD 6728 if (is_offload(sc)) { 6729 int i; 6730 char s[4]; 6731 6732 /* 6733 * dev.t4nex.X.toe. 6734 */ 6735 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", 6736 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters"); 6737 children = SYSCTL_CHILDREN(oid); 6738 6739 sc->tt.cong_algorithm = -1; 6740 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm", 6741 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control " 6742 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, " 6743 "3 = highspeed)"); 6744 6745 sc->tt.sndbuf = -1; 6746 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, 6747 &sc->tt.sndbuf, 0, "hardware send buffer"); 6748 6749 sc->tt.ddp = 0; 6750 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", 6751 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, ""); 6752 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW, 6753 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)"); 6754 6755 sc->tt.rx_coalesce = -1; 6756 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", 6757 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); 6758 6759 sc->tt.tls = 0; 6760 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT | 6761 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I", 6762 "Inline TLS allowed"); 6763 6764 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls_rx_ports", 6765 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 6766 sysctl_tls_rx_ports, "I", 6767 "TCP ports that use inline TLS+TOE RX"); 6768 6769 sc->tt.tx_align = -1; 6770 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align", 6771 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload"); 6772 6773 sc->tt.tx_zcopy = 0; 6774 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy", 6775 CTLFLAG_RW, &sc->tt.tx_zcopy, 0, 6776 "Enable zero-copy aio_write(2)"); 6777 6778 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading; 6779 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 6780 "cop_managed_offloading", CTLFLAG_RW, 6781 &sc->tt.cop_managed_offloading, 0, 6782 "COP (Connection Offload Policy) controls all TOE offload"); 6783 6784 sc->tt.autorcvbuf_inc = 16 * 1024; 6785 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc", 6786 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0, 6787 "autorcvbuf increment"); 6788 6789 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick", 6790 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 6791 sysctl_tp_tick, "A", "TP timer tick (us)"); 6792 6793 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick", 6794 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 6795 sysctl_tp_tick, "A", "TCP timestamp tick (us)"); 6796 6797 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick", 6798 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 6799 sysctl_tp_tick, "A", "DACK tick (us)"); 6800 6801 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer", 6802 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 6803 sysctl_tp_dack_timer, "IU", "DACK timer (us)"); 6804 6805 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min", 6806 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 6807 A_TP_RXT_MIN, sysctl_tp_timer, "LU", 6808 "Minimum retransmit interval (us)"); 6809 6810 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max", 6811 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 6812 A_TP_RXT_MAX, sysctl_tp_timer, "LU", 6813 "Maximum retransmit interval (us)"); 6814 6815 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min", 6816 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 6817 A_TP_PERS_MIN, sysctl_tp_timer, "LU", 6818 "Persist timer min (us)"); 6819 6820 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max", 6821 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 6822 A_TP_PERS_MAX, sysctl_tp_timer, "LU", 6823 "Persist timer max (us)"); 6824 6825 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle", 6826 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 6827 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU", 6828 "Keepalive idle timer (us)"); 6829 6830 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval", 6831 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 6832 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU", 6833 "Keepalive interval timer (us)"); 6834 6835 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt", 6836 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 6837 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)"); 6838 6839 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer", 6840 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 6841 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU", 6842 "FINWAIT2 timer (us)"); 6843 6844 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count", 6845 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 6846 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU", 6847 "Number of SYN retransmissions before abort"); 6848 6849 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count", 6850 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 6851 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU", 6852 "Number of retransmissions before abort"); 6853 6854 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count", 6855 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 6856 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU", 6857 "Number of keepalive probes before abort"); 6858 6859 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff", 6860 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 6861 "TOE retransmit backoffs"); 6862 children = SYSCTL_CHILDREN(oid); 6863 for (i = 0; i < 16; i++) { 6864 snprintf(s, sizeof(s), "%u", i); 6865 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s, 6866 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 6867 i, sysctl_tp_backoff, "IU", 6868 "TOE retransmit backoff"); 6869 } 6870 } 6871 #endif 6872 } 6873 6874 void 6875 vi_sysctls(struct vi_info *vi) 6876 { 6877 struct sysctl_ctx_list *ctx; 6878 struct sysctl_oid *oid; 6879 struct sysctl_oid_list *children; 6880 6881 ctx = device_get_sysctl_ctx(vi->dev); 6882 6883 /* 6884 * dev.v?(cxgbe|cxl).X. 6885 */ 6886 oid = device_get_sysctl_tree(vi->dev); 6887 children = SYSCTL_CHILDREN(oid); 6888 6889 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL, 6890 vi->viid, "VI identifer"); 6891 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, 6892 &vi->nrxq, 0, "# of rx queues"); 6893 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, 6894 &vi->ntxq, 0, "# of tx queues"); 6895 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, 6896 &vi->first_rxq, 0, "index of first rx queue"); 6897 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, 6898 &vi->first_txq, 0, "index of first tx queue"); 6899 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL, 6900 vi->rss_base, "start of RSS indirection table"); 6901 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL, 6902 vi->rss_size, "size of RSS indirection table"); 6903 6904 if (IS_MAIN_VI(vi)) { 6905 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq", 6906 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 6907 sysctl_noflowq, "IU", 6908 "Reserve queue 0 for non-flowid packets"); 6909 } 6910 6911 if (vi->adapter->flags & IS_VF) { 6912 MPASS(vi->flags & TX_USES_VM_WR); 6913 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD, 6914 NULL, 1, "use VM work requests for transmit"); 6915 } else { 6916 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr", 6917 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 6918 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit"); 6919 } 6920 6921 #ifdef TCP_OFFLOAD 6922 if (vi->nofldrxq != 0) { 6923 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, 6924 &vi->nofldrxq, 0, 6925 "# of rx queues for offloaded TCP connections"); 6926 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", 6927 CTLFLAG_RD, &vi->first_ofld_rxq, 0, 6928 "index of first TOE rx queue"); 6929 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld", 6930 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 6931 sysctl_holdoff_tmr_idx_ofld, "I", 6932 "holdoff timer index for TOE queues"); 6933 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld", 6934 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 6935 sysctl_holdoff_pktc_idx_ofld, "I", 6936 "holdoff packet counter index for TOE queues"); 6937 } 6938 #endif 6939 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 6940 if (vi->nofldtxq != 0) { 6941 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, 6942 &vi->nofldtxq, 0, 6943 "# of tx queues for TOE/ETHOFLD"); 6944 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", 6945 CTLFLAG_RD, &vi->first_ofld_txq, 0, 6946 "index of first TOE/ETHOFLD tx queue"); 6947 } 6948 #endif 6949 #ifdef DEV_NETMAP 6950 if (vi->nnmrxq != 0) { 6951 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD, 6952 &vi->nnmrxq, 0, "# of netmap rx queues"); 6953 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD, 6954 &vi->nnmtxq, 0, "# of netmap tx queues"); 6955 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq", 6956 CTLFLAG_RD, &vi->first_nm_rxq, 0, 6957 "index of first netmap rx queue"); 6958 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq", 6959 CTLFLAG_RD, &vi->first_nm_txq, 0, 6960 "index of first netmap tx queue"); 6961 } 6962 #endif 6963 6964 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", 6965 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 6966 sysctl_holdoff_tmr_idx, "I", "holdoff timer index"); 6967 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", 6968 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 6969 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index"); 6970 6971 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", 6972 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 6973 sysctl_qsize_rxq, "I", "rx queue size"); 6974 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", 6975 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 6976 sysctl_qsize_txq, "I", "tx queue size"); 6977 } 6978 6979 static void 6980 cxgbe_sysctls(struct port_info *pi) 6981 { 6982 struct sysctl_ctx_list *ctx; 6983 struct sysctl_oid *oid; 6984 struct sysctl_oid_list *children, *children2; 6985 struct adapter *sc = pi->adapter; 6986 int i; 6987 char name[16]; 6988 static char *tc_flags = {"\20\1USER\2SYNC\3ASYNC\4ERR"}; 6989 6990 ctx = device_get_sysctl_ctx(pi->dev); 6991 6992 /* 6993 * dev.cxgbe.X. 6994 */ 6995 oid = device_get_sysctl_tree(pi->dev); 6996 children = SYSCTL_CHILDREN(oid); 6997 6998 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", 6999 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 7000 sysctl_linkdnrc, "A", "reason why link is down"); 7001 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { 7002 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7003 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 7004 sysctl_btphy, "I", "PHY temperature (in Celsius)"); 7005 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", 7006 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1, 7007 sysctl_btphy, "I", "PHY firmware version"); 7008 } 7009 7010 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings", 7011 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7012 sysctl_pause_settings, "A", 7013 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 7014 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fec", 7015 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7016 sysctl_fec, "A", 7017 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)"); 7018 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec", 7019 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A", 7020 "FEC recommended by the cable/transceiver"); 7021 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg", 7022 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 7023 sysctl_autoneg, "I", 7024 "autonegotiation (-1 = not supported)"); 7025 7026 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD, 7027 &pi->link_cfg.pcaps, 0, "port capabilities"); 7028 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD, 7029 &pi->link_cfg.acaps, 0, "advertised capabilities"); 7030 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD, 7031 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities"); 7032 7033 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL, 7034 port_top_speed(pi), "max speed (in Gbps)"); 7035 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL, 7036 pi->mps_bg_map, "MPS buffer group map"); 7037 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD, 7038 NULL, pi->rx_e_chan_map, "TP rx e-channel map"); 7039 7040 if (sc->flags & IS_VF) 7041 return; 7042 7043 /* 7044 * dev.(cxgbe|cxl).X.tc. 7045 */ 7046 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", 7047 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 7048 "Tx scheduler traffic classes (cl_rl)"); 7049 children2 = SYSCTL_CHILDREN(oid); 7050 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize", 7051 CTLFLAG_RW, &pi->sched_params->pktsize, 0, 7052 "pktsize for per-flow cl-rl (0 means up to the driver )"); 7053 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize", 7054 CTLFLAG_RW, &pi->sched_params->burstsize, 0, 7055 "burstsize for per-flow cl-rl (0 means up to the driver)"); 7056 for (i = 0; i < sc->chip_params->nsched_cls; i++) { 7057 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i]; 7058 7059 snprintf(name, sizeof(name), "%d", i); 7060 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx, 7061 SYSCTL_CHILDREN(oid), OID_AUTO, name, 7062 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class")); 7063 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags", 7064 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags, 7065 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags"); 7066 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount", 7067 CTLFLAG_RD, &tc->refcount, 0, "references to this class"); 7068 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params", 7069 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7070 (pi->port_id << 16) | i, sysctl_tc_params, "A", 7071 "traffic class parameters"); 7072 } 7073 7074 /* 7075 * dev.cxgbe.X.stats. 7076 */ 7077 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", 7078 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics"); 7079 children = SYSCTL_CHILDREN(oid); 7080 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD, 7081 &pi->tx_parse_error, 0, 7082 "# of tx packets with invalid length or # of segments"); 7083 7084 #define T4_REGSTAT(name, stat, desc) \ 7085 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 7086 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \ 7087 (is_t4(sc) ? PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##stat##_L) : \ 7088 T5_PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##stat##_L)), \ 7089 sysctl_handle_t4_reg64, "QU", desc) 7090 7091 /* We get these from port_stats and they may be stale by up to 1s */ 7092 #define T4_PORTSTAT(name, desc) \ 7093 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \ 7094 &pi->stats.name, desc) 7095 7096 T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames"); 7097 T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames"); 7098 T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames"); 7099 T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames"); 7100 T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames"); 7101 T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames"); 7102 T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range"); 7103 T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range"); 7104 T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range"); 7105 T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range"); 7106 T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range"); 7107 T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range"); 7108 T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range"); 7109 T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames"); 7110 T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted"); 7111 T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted"); 7112 T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted"); 7113 T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted"); 7114 T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted"); 7115 T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted"); 7116 T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted"); 7117 T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted"); 7118 T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted"); 7119 7120 T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames"); 7121 T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames"); 7122 T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames"); 7123 T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames"); 7124 T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames"); 7125 T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU"); 7126 T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames"); 7127 if (is_t6(sc)) { 7128 T4_PORTSTAT(rx_fcs_err, 7129 "# of frames received with bad FCS since last link up"); 7130 } else { 7131 T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR, 7132 "# of frames received with bad FCS"); 7133 } 7134 T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error"); 7135 T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors"); 7136 T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received"); 7137 T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range"); 7138 T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range"); 7139 T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range"); 7140 T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range"); 7141 T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range"); 7142 T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range"); 7143 T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range"); 7144 T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received"); 7145 T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received"); 7146 T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received"); 7147 T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received"); 7148 T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received"); 7149 T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received"); 7150 T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received"); 7151 T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received"); 7152 T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received"); 7153 7154 T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows"); 7155 T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows"); 7156 T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows"); 7157 T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows"); 7158 T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets"); 7159 T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets"); 7160 T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets"); 7161 T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets"); 7162 7163 #undef T4_REGSTAT 7164 #undef T4_PORTSTAT 7165 7166 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "tx_toe_tls_records", 7167 CTLFLAG_RD, &pi->tx_toe_tls_records, 7168 "# of TOE TLS records transmitted"); 7169 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "tx_toe_tls_octets", 7170 CTLFLAG_RD, &pi->tx_toe_tls_octets, 7171 "# of payload octets in transmitted TOE TLS records"); 7172 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "rx_toe_tls_records", 7173 CTLFLAG_RD, &pi->rx_toe_tls_records, 7174 "# of TOE TLS records received"); 7175 SYSCTL_ADD_ULONG(ctx, children, OID_AUTO, "rx_toe_tls_octets", 7176 CTLFLAG_RD, &pi->rx_toe_tls_octets, 7177 "# of payload octets in received TOE TLS records"); 7178 } 7179 7180 static int 7181 sysctl_int_array(SYSCTL_HANDLER_ARGS) 7182 { 7183 int rc, *i, space = 0; 7184 struct sbuf sb; 7185 7186 sbuf_new_for_sysctl(&sb, NULL, 64, req); 7187 for (i = arg1; arg2; arg2 -= sizeof(int), i++) { 7188 if (space) 7189 sbuf_printf(&sb, " "); 7190 sbuf_printf(&sb, "%d", *i); 7191 space = 1; 7192 } 7193 rc = sbuf_finish(&sb); 7194 sbuf_delete(&sb); 7195 return (rc); 7196 } 7197 7198 static int 7199 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS) 7200 { 7201 int rc; 7202 struct sbuf *sb; 7203 7204 rc = sysctl_wire_old_buffer(req, 0); 7205 if (rc != 0) 7206 return(rc); 7207 7208 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 7209 if (sb == NULL) 7210 return (ENOMEM); 7211 7212 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1); 7213 rc = sbuf_finish(sb); 7214 sbuf_delete(sb); 7215 7216 return (rc); 7217 } 7218 7219 static int 7220 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS) 7221 { 7222 int rc; 7223 struct sbuf *sb; 7224 7225 rc = sysctl_wire_old_buffer(req, 0); 7226 if (rc != 0) 7227 return(rc); 7228 7229 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 7230 if (sb == NULL) 7231 return (ENOMEM); 7232 7233 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1); 7234 rc = sbuf_finish(sb); 7235 sbuf_delete(sb); 7236 7237 return (rc); 7238 } 7239 7240 static int 7241 sysctl_btphy(SYSCTL_HANDLER_ARGS) 7242 { 7243 struct port_info *pi = arg1; 7244 int op = arg2; 7245 struct adapter *sc = pi->adapter; 7246 u_int v; 7247 int rc; 7248 7249 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt"); 7250 if (rc) 7251 return (rc); 7252 /* XXX: magic numbers */ 7253 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, op ? 0x20 : 0xc820, 7254 &v); 7255 end_synchronized_op(sc, 0); 7256 if (rc) 7257 return (rc); 7258 if (op == 0) 7259 v /= 256; 7260 7261 rc = sysctl_handle_int(oidp, &v, 0, req); 7262 return (rc); 7263 } 7264 7265 static int 7266 sysctl_noflowq(SYSCTL_HANDLER_ARGS) 7267 { 7268 struct vi_info *vi = arg1; 7269 int rc, val; 7270 7271 val = vi->rsrv_noflowq; 7272 rc = sysctl_handle_int(oidp, &val, 0, req); 7273 if (rc != 0 || req->newptr == NULL) 7274 return (rc); 7275 7276 if ((val >= 1) && (vi->ntxq > 1)) 7277 vi->rsrv_noflowq = 1; 7278 else 7279 vi->rsrv_noflowq = 0; 7280 7281 return (rc); 7282 } 7283 7284 static int 7285 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS) 7286 { 7287 struct vi_info *vi = arg1; 7288 struct adapter *sc = vi->adapter; 7289 int rc, val, i; 7290 7291 MPASS(!(sc->flags & IS_VF)); 7292 7293 val = vi->flags & TX_USES_VM_WR ? 1 : 0; 7294 rc = sysctl_handle_int(oidp, &val, 0, req); 7295 if (rc != 0 || req->newptr == NULL) 7296 return (rc); 7297 7298 if (val != 0 && val != 1) 7299 return (EINVAL); 7300 7301 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 7302 "t4txvm"); 7303 if (rc) 7304 return (rc); 7305 if (vi->ifp->if_drv_flags & IFF_DRV_RUNNING) { 7306 /* 7307 * We don't want parse_pkt to run with one setting (VF or PF) 7308 * and then eth_tx to see a different setting but still use 7309 * stale information calculated by parse_pkt. 7310 */ 7311 rc = EBUSY; 7312 } else { 7313 struct port_info *pi = vi->pi; 7314 struct sge_txq *txq; 7315 uint32_t ctrl0; 7316 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr; 7317 7318 if (val) { 7319 vi->flags |= TX_USES_VM_WR; 7320 vi->ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_VM_TSO; 7321 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 7322 V_TXPKT_INTF(pi->tx_chan)); 7323 if (!(sc->flags & IS_VF)) 7324 npkt--; 7325 } else { 7326 vi->flags &= ~TX_USES_VM_WR; 7327 vi->ifp->if_hw_tsomaxsegcount = TX_SGL_SEGS_TSO; 7328 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 7329 V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) | 7330 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld)); 7331 } 7332 for_each_txq(vi, i, txq) { 7333 txq->cpl_ctrl0 = ctrl0; 7334 txq->txp.max_npkt = npkt; 7335 } 7336 } 7337 end_synchronized_op(sc, LOCK_HELD); 7338 return (rc); 7339 } 7340 7341 static int 7342 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) 7343 { 7344 struct vi_info *vi = arg1; 7345 struct adapter *sc = vi->adapter; 7346 int idx, rc, i; 7347 struct sge_rxq *rxq; 7348 uint8_t v; 7349 7350 idx = vi->tmr_idx; 7351 7352 rc = sysctl_handle_int(oidp, &idx, 0, req); 7353 if (rc != 0 || req->newptr == NULL) 7354 return (rc); 7355 7356 if (idx < 0 || idx >= SGE_NTIMERS) 7357 return (EINVAL); 7358 7359 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 7360 "t4tmr"); 7361 if (rc) 7362 return (rc); 7363 7364 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1); 7365 for_each_rxq(vi, i, rxq) { 7366 #ifdef atomic_store_rel_8 7367 atomic_store_rel_8(&rxq->iq.intr_params, v); 7368 #else 7369 rxq->iq.intr_params = v; 7370 #endif 7371 } 7372 vi->tmr_idx = idx; 7373 7374 end_synchronized_op(sc, LOCK_HELD); 7375 return (0); 7376 } 7377 7378 static int 7379 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) 7380 { 7381 struct vi_info *vi = arg1; 7382 struct adapter *sc = vi->adapter; 7383 int idx, rc; 7384 7385 idx = vi->pktc_idx; 7386 7387 rc = sysctl_handle_int(oidp, &idx, 0, req); 7388 if (rc != 0 || req->newptr == NULL) 7389 return (rc); 7390 7391 if (idx < -1 || idx >= SGE_NCOUNTERS) 7392 return (EINVAL); 7393 7394 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 7395 "t4pktc"); 7396 if (rc) 7397 return (rc); 7398 7399 if (vi->flags & VI_INIT_DONE) 7400 rc = EBUSY; /* cannot be changed once the queues are created */ 7401 else 7402 vi->pktc_idx = idx; 7403 7404 end_synchronized_op(sc, LOCK_HELD); 7405 return (rc); 7406 } 7407 7408 static int 7409 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) 7410 { 7411 struct vi_info *vi = arg1; 7412 struct adapter *sc = vi->adapter; 7413 int qsize, rc; 7414 7415 qsize = vi->qsize_rxq; 7416 7417 rc = sysctl_handle_int(oidp, &qsize, 0, req); 7418 if (rc != 0 || req->newptr == NULL) 7419 return (rc); 7420 7421 if (qsize < 128 || (qsize & 7)) 7422 return (EINVAL); 7423 7424 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 7425 "t4rxqs"); 7426 if (rc) 7427 return (rc); 7428 7429 if (vi->flags & VI_INIT_DONE) 7430 rc = EBUSY; /* cannot be changed once the queues are created */ 7431 else 7432 vi->qsize_rxq = qsize; 7433 7434 end_synchronized_op(sc, LOCK_HELD); 7435 return (rc); 7436 } 7437 7438 static int 7439 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) 7440 { 7441 struct vi_info *vi = arg1; 7442 struct adapter *sc = vi->adapter; 7443 int qsize, rc; 7444 7445 qsize = vi->qsize_txq; 7446 7447 rc = sysctl_handle_int(oidp, &qsize, 0, req); 7448 if (rc != 0 || req->newptr == NULL) 7449 return (rc); 7450 7451 if (qsize < 128 || qsize > 65536) 7452 return (EINVAL); 7453 7454 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 7455 "t4txqs"); 7456 if (rc) 7457 return (rc); 7458 7459 if (vi->flags & VI_INIT_DONE) 7460 rc = EBUSY; /* cannot be changed once the queues are created */ 7461 else 7462 vi->qsize_txq = qsize; 7463 7464 end_synchronized_op(sc, LOCK_HELD); 7465 return (rc); 7466 } 7467 7468 static int 7469 sysctl_pause_settings(SYSCTL_HANDLER_ARGS) 7470 { 7471 struct port_info *pi = arg1; 7472 struct adapter *sc = pi->adapter; 7473 struct link_config *lc = &pi->link_cfg; 7474 int rc; 7475 7476 if (req->newptr == NULL) { 7477 struct sbuf *sb; 7478 static char *bits = "\20\1RX\2TX\3AUTO"; 7479 7480 rc = sysctl_wire_old_buffer(req, 0); 7481 if (rc != 0) 7482 return(rc); 7483 7484 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 7485 if (sb == NULL) 7486 return (ENOMEM); 7487 7488 if (lc->link_ok) { 7489 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) | 7490 (lc->requested_fc & PAUSE_AUTONEG), bits); 7491 } else { 7492 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX | 7493 PAUSE_RX | PAUSE_AUTONEG), bits); 7494 } 7495 rc = sbuf_finish(sb); 7496 sbuf_delete(sb); 7497 } else { 7498 char s[2]; 7499 int n; 7500 7501 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX | 7502 PAUSE_AUTONEG)); 7503 s[1] = 0; 7504 7505 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 7506 if (rc != 0) 7507 return(rc); 7508 7509 if (s[1] != 0) 7510 return (EINVAL); 7511 if (s[0] < '0' || s[0] > '9') 7512 return (EINVAL); /* not a number */ 7513 n = s[0] - '0'; 7514 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) 7515 return (EINVAL); /* some other bit is set too */ 7516 7517 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 7518 "t4PAUSE"); 7519 if (rc) 7520 return (rc); 7521 PORT_LOCK(pi); 7522 lc->requested_fc = n; 7523 fixup_link_config(pi); 7524 if (pi->up_vis > 0) 7525 rc = apply_link_config(pi); 7526 set_current_media(pi); 7527 PORT_UNLOCK(pi); 7528 end_synchronized_op(sc, 0); 7529 } 7530 7531 return (rc); 7532 } 7533 7534 static int 7535 sysctl_fec(SYSCTL_HANDLER_ARGS) 7536 { 7537 struct port_info *pi = arg1; 7538 struct adapter *sc = pi->adapter; 7539 struct link_config *lc = &pi->link_cfg; 7540 int rc; 7541 int8_t old; 7542 7543 if (req->newptr == NULL) { 7544 struct sbuf *sb; 7545 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2" 7546 "\5RSVD3\6auto\7module"; 7547 7548 rc = sysctl_wire_old_buffer(req, 0); 7549 if (rc != 0) 7550 return(rc); 7551 7552 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 7553 if (sb == NULL) 7554 return (ENOMEM); 7555 7556 /* 7557 * Display the requested_fec when the link is down -- the actual 7558 * FEC makes sense only when the link is up. 7559 */ 7560 if (lc->link_ok) { 7561 sbuf_printf(sb, "%b", (lc->fec & M_FW_PORT_CAP32_FEC) | 7562 (lc->requested_fec & (FEC_AUTO | FEC_MODULE)), 7563 bits); 7564 } else { 7565 sbuf_printf(sb, "%b", lc->requested_fec, bits); 7566 } 7567 rc = sbuf_finish(sb); 7568 sbuf_delete(sb); 7569 } else { 7570 char s[8]; 7571 int n; 7572 7573 snprintf(s, sizeof(s), "%d", 7574 lc->requested_fec == FEC_AUTO ? -1 : 7575 lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE)); 7576 7577 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 7578 if (rc != 0) 7579 return(rc); 7580 7581 n = strtol(&s[0], NULL, 0); 7582 if (n < 0 || n & FEC_AUTO) 7583 n = FEC_AUTO; 7584 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE)) 7585 return (EINVAL);/* some other bit is set too */ 7586 7587 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 7588 "t4fec"); 7589 if (rc) 7590 return (rc); 7591 PORT_LOCK(pi); 7592 old = lc->requested_fec; 7593 if (n == FEC_AUTO) 7594 lc->requested_fec = FEC_AUTO; 7595 else if (n == 0 || n == FEC_NONE) 7596 lc->requested_fec = FEC_NONE; 7597 else { 7598 if ((lc->pcaps | 7599 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) != 7600 lc->pcaps) { 7601 rc = ENOTSUP; 7602 goto done; 7603 } 7604 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC | 7605 FEC_MODULE); 7606 } 7607 fixup_link_config(pi); 7608 if (pi->up_vis > 0) { 7609 rc = apply_link_config(pi); 7610 if (rc != 0) { 7611 lc->requested_fec = old; 7612 if (rc == FW_EPROTO) 7613 rc = ENOTSUP; 7614 } 7615 } 7616 done: 7617 PORT_UNLOCK(pi); 7618 end_synchronized_op(sc, 0); 7619 } 7620 7621 return (rc); 7622 } 7623 7624 static int 7625 sysctl_module_fec(SYSCTL_HANDLER_ARGS) 7626 { 7627 struct port_info *pi = arg1; 7628 struct adapter *sc = pi->adapter; 7629 struct link_config *lc = &pi->link_cfg; 7630 int rc; 7631 int8_t fec; 7632 struct sbuf *sb; 7633 static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3"; 7634 7635 rc = sysctl_wire_old_buffer(req, 0); 7636 if (rc != 0) 7637 return (rc); 7638 7639 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 7640 if (sb == NULL) 7641 return (ENOMEM); 7642 7643 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) 7644 return (EBUSY); 7645 PORT_LOCK(pi); 7646 if (pi->up_vis == 0) { 7647 /* 7648 * If all the interfaces are administratively down the firmware 7649 * does not report transceiver changes. Refresh port info here. 7650 * This is the only reason we have a synchronized op in this 7651 * function. Just PORT_LOCK would have been enough otherwise. 7652 */ 7653 t4_update_port_info(pi); 7654 } 7655 7656 fec = lc->fec_hint; 7657 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE || 7658 !fec_supported(lc->pcaps)) { 7659 sbuf_printf(sb, "n/a"); 7660 } else { 7661 if (fec == 0) 7662 fec = FEC_NONE; 7663 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits); 7664 } 7665 rc = sbuf_finish(sb); 7666 sbuf_delete(sb); 7667 7668 PORT_UNLOCK(pi); 7669 end_synchronized_op(sc, 0); 7670 7671 return (rc); 7672 } 7673 7674 static int 7675 sysctl_autoneg(SYSCTL_HANDLER_ARGS) 7676 { 7677 struct port_info *pi = arg1; 7678 struct adapter *sc = pi->adapter; 7679 struct link_config *lc = &pi->link_cfg; 7680 int rc, val; 7681 7682 if (lc->pcaps & FW_PORT_CAP32_ANEG) 7683 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1; 7684 else 7685 val = -1; 7686 rc = sysctl_handle_int(oidp, &val, 0, req); 7687 if (rc != 0 || req->newptr == NULL) 7688 return (rc); 7689 if (val == 0) 7690 val = AUTONEG_DISABLE; 7691 else if (val == 1) 7692 val = AUTONEG_ENABLE; 7693 else 7694 val = AUTONEG_AUTO; 7695 7696 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 7697 "t4aneg"); 7698 if (rc) 7699 return (rc); 7700 PORT_LOCK(pi); 7701 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 7702 rc = ENOTSUP; 7703 goto done; 7704 } 7705 lc->requested_aneg = val; 7706 fixup_link_config(pi); 7707 if (pi->up_vis > 0) 7708 rc = apply_link_config(pi); 7709 set_current_media(pi); 7710 done: 7711 PORT_UNLOCK(pi); 7712 end_synchronized_op(sc, 0); 7713 return (rc); 7714 } 7715 7716 static int 7717 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) 7718 { 7719 struct adapter *sc = arg1; 7720 int reg = arg2; 7721 uint64_t val; 7722 7723 val = t4_read_reg64(sc, reg); 7724 7725 return (sysctl_handle_64(oidp, &val, 0, req)); 7726 } 7727 7728 static int 7729 sysctl_temperature(SYSCTL_HANDLER_ARGS) 7730 { 7731 struct adapter *sc = arg1; 7732 int rc, t; 7733 uint32_t param, val; 7734 7735 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); 7736 if (rc) 7737 return (rc); 7738 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 7739 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 7740 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); 7741 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 7742 end_synchronized_op(sc, 0); 7743 if (rc) 7744 return (rc); 7745 7746 /* unknown is returned as 0 but we display -1 in that case */ 7747 t = val == 0 ? -1 : val; 7748 7749 rc = sysctl_handle_int(oidp, &t, 0, req); 7750 return (rc); 7751 } 7752 7753 static int 7754 sysctl_vdd(SYSCTL_HANDLER_ARGS) 7755 { 7756 struct adapter *sc = arg1; 7757 int rc; 7758 uint32_t param, val; 7759 7760 if (sc->params.core_vdd == 0) { 7761 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 7762 "t4vdd"); 7763 if (rc) 7764 return (rc); 7765 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 7766 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 7767 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 7768 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 7769 end_synchronized_op(sc, 0); 7770 if (rc) 7771 return (rc); 7772 sc->params.core_vdd = val; 7773 } 7774 7775 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req)); 7776 } 7777 7778 static int 7779 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS) 7780 { 7781 struct adapter *sc = arg1; 7782 int rc, v; 7783 uint32_t param, val; 7784 7785 v = sc->sensor_resets; 7786 rc = sysctl_handle_int(oidp, &v, 0, req); 7787 if (rc != 0 || req->newptr == NULL || v <= 0) 7788 return (rc); 7789 7790 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) || 7791 chip_id(sc) < CHELSIO_T5) 7792 return (ENOTSUP); 7793 7794 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst"); 7795 if (rc) 7796 return (rc); 7797 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 7798 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 7799 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR)); 7800 val = 1; 7801 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 7802 end_synchronized_op(sc, 0); 7803 if (rc == 0) 7804 sc->sensor_resets++; 7805 return (rc); 7806 } 7807 7808 static int 7809 sysctl_loadavg(SYSCTL_HANDLER_ARGS) 7810 { 7811 struct adapter *sc = arg1; 7812 struct sbuf *sb; 7813 int rc; 7814 uint32_t param, val; 7815 7816 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg"); 7817 if (rc) 7818 return (rc); 7819 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 7820 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD); 7821 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 7822 end_synchronized_op(sc, 0); 7823 if (rc) 7824 return (rc); 7825 7826 rc = sysctl_wire_old_buffer(req, 0); 7827 if (rc != 0) 7828 return (rc); 7829 7830 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 7831 if (sb == NULL) 7832 return (ENOMEM); 7833 7834 if (val == 0xffffffff) { 7835 /* Only debug and custom firmwares report load averages. */ 7836 sbuf_printf(sb, "not available"); 7837 } else { 7838 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff, 7839 (val >> 16) & 0xff); 7840 } 7841 rc = sbuf_finish(sb); 7842 sbuf_delete(sb); 7843 7844 return (rc); 7845 } 7846 7847 static int 7848 sysctl_cctrl(SYSCTL_HANDLER_ARGS) 7849 { 7850 struct adapter *sc = arg1; 7851 struct sbuf *sb; 7852 int rc, i; 7853 uint16_t incr[NMTUS][NCCTRL_WIN]; 7854 static const char *dec_fac[] = { 7855 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 7856 "0.9375" 7857 }; 7858 7859 rc = sysctl_wire_old_buffer(req, 0); 7860 if (rc != 0) 7861 return (rc); 7862 7863 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 7864 if (sb == NULL) 7865 return (ENOMEM); 7866 7867 t4_read_cong_tbl(sc, incr); 7868 7869 for (i = 0; i < NCCTRL_WIN; ++i) { 7870 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 7871 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], 7872 incr[5][i], incr[6][i], incr[7][i]); 7873 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 7874 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 7875 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 7876 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); 7877 } 7878 7879 rc = sbuf_finish(sb); 7880 sbuf_delete(sb); 7881 7882 return (rc); 7883 } 7884 7885 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { 7886 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ 7887 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ 7888 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ 7889 }; 7890 7891 static int 7892 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS) 7893 { 7894 struct adapter *sc = arg1; 7895 struct sbuf *sb; 7896 int rc, i, n, qid = arg2; 7897 uint32_t *buf, *p; 7898 char *qtype; 7899 u_int cim_num_obq = sc->chip_params->cim_num_obq; 7900 7901 KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq, 7902 ("%s: bad qid %d\n", __func__, qid)); 7903 7904 if (qid < CIM_NUM_IBQ) { 7905 /* inbound queue */ 7906 qtype = "IBQ"; 7907 n = 4 * CIM_IBQ_SIZE; 7908 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 7909 rc = t4_read_cim_ibq(sc, qid, buf, n); 7910 } else { 7911 /* outbound queue */ 7912 qtype = "OBQ"; 7913 qid -= CIM_NUM_IBQ; 7914 n = 4 * cim_num_obq * CIM_OBQ_SIZE; 7915 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 7916 rc = t4_read_cim_obq(sc, qid, buf, n); 7917 } 7918 7919 if (rc < 0) { 7920 rc = -rc; 7921 goto done; 7922 } 7923 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 7924 7925 rc = sysctl_wire_old_buffer(req, 0); 7926 if (rc != 0) 7927 goto done; 7928 7929 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 7930 if (sb == NULL) { 7931 rc = ENOMEM; 7932 goto done; 7933 } 7934 7935 sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]); 7936 for (i = 0, p = buf; i < n; i += 16, p += 4) 7937 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 7938 p[2], p[3]); 7939 7940 rc = sbuf_finish(sb); 7941 sbuf_delete(sb); 7942 done: 7943 free(buf, M_CXGBE); 7944 return (rc); 7945 } 7946 7947 static void 7948 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 7949 { 7950 uint32_t *p; 7951 7952 sbuf_printf(sb, "Status Data PC%s", 7953 cfg & F_UPDBGLACAPTPCONLY ? "" : 7954 " LS0Stat LS0Addr LS0Data"); 7955 7956 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) { 7957 if (cfg & F_UPDBGLACAPTPCONLY) { 7958 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, 7959 p[6], p[7]); 7960 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", 7961 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 7962 p[4] & 0xff, p[5] >> 8); 7963 sbuf_printf(sb, "\n %02x %x%07x %x%07x", 7964 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 7965 p[1] & 0xf, p[2] >> 4); 7966 } else { 7967 sbuf_printf(sb, 7968 "\n %02x %x%07x %x%07x %08x %08x " 7969 "%08x%08x%08x%08x", 7970 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 7971 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 7972 p[6], p[7]); 7973 } 7974 } 7975 } 7976 7977 static void 7978 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 7979 { 7980 uint32_t *p; 7981 7982 sbuf_printf(sb, "Status Inst Data PC%s", 7983 cfg & F_UPDBGLACAPTPCONLY ? "" : 7984 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data"); 7985 7986 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) { 7987 if (cfg & F_UPDBGLACAPTPCONLY) { 7988 sbuf_printf(sb, "\n %02x %08x %08x %08x", 7989 p[3] & 0xff, p[2], p[1], p[0]); 7990 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x", 7991 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, 7992 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); 7993 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x", 7994 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, 7995 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, 7996 p[6] >> 16); 7997 } else { 7998 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x " 7999 "%08x %08x %08x %08x %08x %08x", 8000 (p[9] >> 16) & 0xff, 8001 p[9] & 0xffff, p[8] >> 16, 8002 p[8] & 0xffff, p[7] >> 16, 8003 p[7] & 0xffff, p[6] >> 16, 8004 p[2], p[1], p[0], p[5], p[4], p[3]); 8005 } 8006 } 8007 } 8008 8009 static int 8010 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags) 8011 { 8012 uint32_t cfg, *buf; 8013 int rc; 8014 8015 rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg); 8016 if (rc != 0) 8017 return (rc); 8018 8019 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 8020 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 8021 M_ZERO | flags); 8022 if (buf == NULL) 8023 return (ENOMEM); 8024 8025 rc = -t4_cim_read_la(sc, buf, NULL); 8026 if (rc != 0) 8027 goto done; 8028 if (chip_id(sc) < CHELSIO_T6) 8029 sbuf_cim_la4(sc, sb, buf, cfg); 8030 else 8031 sbuf_cim_la6(sc, sb, buf, cfg); 8032 8033 done: 8034 free(buf, M_CXGBE); 8035 return (rc); 8036 } 8037 8038 static int 8039 sysctl_cim_la(SYSCTL_HANDLER_ARGS) 8040 { 8041 struct adapter *sc = arg1; 8042 struct sbuf *sb; 8043 int rc; 8044 8045 rc = sysctl_wire_old_buffer(req, 0); 8046 if (rc != 0) 8047 return (rc); 8048 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8049 if (sb == NULL) 8050 return (ENOMEM); 8051 8052 rc = sbuf_cim_la(sc, sb, M_WAITOK); 8053 if (rc == 0) 8054 rc = sbuf_finish(sb); 8055 sbuf_delete(sb); 8056 return (rc); 8057 } 8058 8059 bool 8060 t4_os_dump_cimla(struct adapter *sc, int arg, bool verbose) 8061 { 8062 struct sbuf sb; 8063 int rc; 8064 8065 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) 8066 return (false); 8067 rc = sbuf_cim_la(sc, &sb, M_NOWAIT); 8068 if (rc == 0) { 8069 rc = sbuf_finish(&sb); 8070 if (rc == 0) { 8071 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s", 8072 device_get_nameunit(sc->dev), sbuf_data(&sb)); 8073 } 8074 } 8075 sbuf_delete(&sb); 8076 return (false); 8077 } 8078 8079 static int 8080 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) 8081 { 8082 struct adapter *sc = arg1; 8083 u_int i; 8084 struct sbuf *sb; 8085 uint32_t *buf, *p; 8086 int rc; 8087 8088 rc = sysctl_wire_old_buffer(req, 0); 8089 if (rc != 0) 8090 return (rc); 8091 8092 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8093 if (sb == NULL) 8094 return (ENOMEM); 8095 8096 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, 8097 M_ZERO | M_WAITOK); 8098 8099 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); 8100 p = buf; 8101 8102 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 8103 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], 8104 p[1], p[0]); 8105 } 8106 8107 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); 8108 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 8109 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", 8110 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 8111 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 8112 (p[1] >> 2) | ((p[2] & 3) << 30), 8113 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 8114 p[0] & 1); 8115 } 8116 8117 rc = sbuf_finish(sb); 8118 sbuf_delete(sb); 8119 free(buf, M_CXGBE); 8120 return (rc); 8121 } 8122 8123 static int 8124 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) 8125 { 8126 struct adapter *sc = arg1; 8127 u_int i; 8128 struct sbuf *sb; 8129 uint32_t *buf, *p; 8130 int rc; 8131 8132 rc = sysctl_wire_old_buffer(req, 0); 8133 if (rc != 0) 8134 return (rc); 8135 8136 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8137 if (sb == NULL) 8138 return (ENOMEM); 8139 8140 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, 8141 M_ZERO | M_WAITOK); 8142 8143 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); 8144 p = buf; 8145 8146 sbuf_printf(sb, "Cntl ID DataBE Addr Data"); 8147 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 8148 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", 8149 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, 8150 p[4], p[3], p[2], p[1], p[0]); 8151 } 8152 8153 sbuf_printf(sb, "\n\nCntl ID Data"); 8154 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 8155 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", 8156 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); 8157 } 8158 8159 rc = sbuf_finish(sb); 8160 sbuf_delete(sb); 8161 free(buf, M_CXGBE); 8162 return (rc); 8163 } 8164 8165 static int 8166 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) 8167 { 8168 struct adapter *sc = arg1; 8169 struct sbuf *sb; 8170 int rc, i; 8171 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 8172 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 8173 uint16_t thres[CIM_NUM_IBQ]; 8174 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; 8175 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; 8176 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; 8177 8178 cim_num_obq = sc->chip_params->cim_num_obq; 8179 if (is_t4(sc)) { 8180 ibq_rdaddr = A_UP_IBQ_0_RDADDR; 8181 obq_rdaddr = A_UP_OBQ_0_REALADDR; 8182 } else { 8183 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; 8184 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; 8185 } 8186 nq = CIM_NUM_IBQ + cim_num_obq; 8187 8188 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); 8189 if (rc == 0) 8190 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, obq_wr); 8191 if (rc != 0) 8192 return (rc); 8193 8194 t4_read_cimq_cfg(sc, base, size, thres); 8195 8196 rc = sysctl_wire_old_buffer(req, 0); 8197 if (rc != 0) 8198 return (rc); 8199 8200 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 8201 if (sb == NULL) 8202 return (ENOMEM); 8203 8204 sbuf_printf(sb, 8205 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 8206 8207 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 8208 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 8209 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), 8210 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 8211 G_QUEREMFLITS(p[2]) * 16); 8212 for ( ; i < nq; i++, p += 4, wr += 2) 8213 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], 8214 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, 8215 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 8216 G_QUEREMFLITS(p[2]) * 16); 8217 8218 rc = sbuf_finish(sb); 8219 sbuf_delete(sb); 8220 8221 return (rc); 8222 } 8223 8224 static int 8225 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) 8226 { 8227 struct adapter *sc = arg1; 8228 struct sbuf *sb; 8229 int rc; 8230 struct tp_cpl_stats stats; 8231 8232 rc = sysctl_wire_old_buffer(req, 0); 8233 if (rc != 0) 8234 return (rc); 8235 8236 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 8237 if (sb == NULL) 8238 return (ENOMEM); 8239 8240 mtx_lock(&sc->reg_lock); 8241 t4_tp_get_cpl_stats(sc, &stats, 0); 8242 mtx_unlock(&sc->reg_lock); 8243 8244 if (sc->chip_params->nchan > 2) { 8245 sbuf_printf(sb, " channel 0 channel 1" 8246 " channel 2 channel 3"); 8247 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u", 8248 stats.req[0], stats.req[1], stats.req[2], stats.req[3]); 8249 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u", 8250 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); 8251 } else { 8252 sbuf_printf(sb, " channel 0 channel 1"); 8253 sbuf_printf(sb, "\nCPL requests: %10u %10u", 8254 stats.req[0], stats.req[1]); 8255 sbuf_printf(sb, "\nCPL responses: %10u %10u", 8256 stats.rsp[0], stats.rsp[1]); 8257 } 8258 8259 rc = sbuf_finish(sb); 8260 sbuf_delete(sb); 8261 8262 return (rc); 8263 } 8264 8265 static int 8266 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) 8267 { 8268 struct adapter *sc = arg1; 8269 struct sbuf *sb; 8270 int rc; 8271 struct tp_usm_stats stats; 8272 8273 rc = sysctl_wire_old_buffer(req, 0); 8274 if (rc != 0) 8275 return(rc); 8276 8277 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 8278 if (sb == NULL) 8279 return (ENOMEM); 8280 8281 t4_get_usm_stats(sc, &stats, 1); 8282 8283 sbuf_printf(sb, "Frames: %u\n", stats.frames); 8284 sbuf_printf(sb, "Octets: %ju\n", stats.octets); 8285 sbuf_printf(sb, "Drops: %u", stats.drops); 8286 8287 rc = sbuf_finish(sb); 8288 sbuf_delete(sb); 8289 8290 return (rc); 8291 } 8292 8293 static const char * const devlog_level_strings[] = { 8294 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 8295 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 8296 [FW_DEVLOG_LEVEL_ERR] = "ERR", 8297 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 8298 [FW_DEVLOG_LEVEL_INFO] = "INFO", 8299 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 8300 }; 8301 8302 static const char * const devlog_facility_strings[] = { 8303 [FW_DEVLOG_FACILITY_CORE] = "CORE", 8304 [FW_DEVLOG_FACILITY_CF] = "CF", 8305 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 8306 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 8307 [FW_DEVLOG_FACILITY_RES] = "RES", 8308 [FW_DEVLOG_FACILITY_HW] = "HW", 8309 [FW_DEVLOG_FACILITY_FLR] = "FLR", 8310 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 8311 [FW_DEVLOG_FACILITY_PHY] = "PHY", 8312 [FW_DEVLOG_FACILITY_MAC] = "MAC", 8313 [FW_DEVLOG_FACILITY_PORT] = "PORT", 8314 [FW_DEVLOG_FACILITY_VI] = "VI", 8315 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 8316 [FW_DEVLOG_FACILITY_ACL] = "ACL", 8317 [FW_DEVLOG_FACILITY_TM] = "TM", 8318 [FW_DEVLOG_FACILITY_QFC] = "QFC", 8319 [FW_DEVLOG_FACILITY_DCB] = "DCB", 8320 [FW_DEVLOG_FACILITY_ETH] = "ETH", 8321 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 8322 [FW_DEVLOG_FACILITY_RI] = "RI", 8323 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 8324 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 8325 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 8326 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE", 8327 [FW_DEVLOG_FACILITY_CHNET] = "CHNET", 8328 }; 8329 8330 static int 8331 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags) 8332 { 8333 int i, j, rc, nentries, first = 0; 8334 struct devlog_params *dparams = &sc->params.devlog; 8335 struct fw_devlog_e *buf, *e; 8336 uint64_t ftstamp = UINT64_MAX; 8337 8338 if (dparams->addr == 0) 8339 return (ENXIO); 8340 8341 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 8342 buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags); 8343 if (buf == NULL) 8344 return (ENOMEM); 8345 8346 rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf, dparams->size); 8347 if (rc != 0) 8348 goto done; 8349 8350 nentries = dparams->size / sizeof(struct fw_devlog_e); 8351 for (i = 0; i < nentries; i++) { 8352 e = &buf[i]; 8353 8354 if (e->timestamp == 0) 8355 break; /* end */ 8356 8357 e->timestamp = be64toh(e->timestamp); 8358 e->seqno = be32toh(e->seqno); 8359 for (j = 0; j < 8; j++) 8360 e->params[j] = be32toh(e->params[j]); 8361 8362 if (e->timestamp < ftstamp) { 8363 ftstamp = e->timestamp; 8364 first = i; 8365 } 8366 } 8367 8368 if (buf[first].timestamp == 0) 8369 goto done; /* nothing in the log */ 8370 8371 sbuf_printf(sb, "%10s %15s %8s %8s %s\n", 8372 "Seq#", "Tstamp", "Level", "Facility", "Message"); 8373 8374 i = first; 8375 do { 8376 e = &buf[i]; 8377 if (e->timestamp == 0) 8378 break; /* end */ 8379 8380 sbuf_printf(sb, "%10d %15ju %8s %8s ", 8381 e->seqno, e->timestamp, 8382 (e->level < nitems(devlog_level_strings) ? 8383 devlog_level_strings[e->level] : "UNKNOWN"), 8384 (e->facility < nitems(devlog_facility_strings) ? 8385 devlog_facility_strings[e->facility] : "UNKNOWN")); 8386 sbuf_printf(sb, e->fmt, e->params[0], e->params[1], 8387 e->params[2], e->params[3], e->params[4], 8388 e->params[5], e->params[6], e->params[7]); 8389 8390 if (++i == nentries) 8391 i = 0; 8392 } while (i != first); 8393 done: 8394 free(buf, M_CXGBE); 8395 return (rc); 8396 } 8397 8398 static int 8399 sysctl_devlog(SYSCTL_HANDLER_ARGS) 8400 { 8401 struct adapter *sc = arg1; 8402 int rc; 8403 struct sbuf *sb; 8404 8405 rc = sysctl_wire_old_buffer(req, 0); 8406 if (rc != 0) 8407 return (rc); 8408 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8409 if (sb == NULL) 8410 return (ENOMEM); 8411 8412 rc = sbuf_devlog(sc, sb, M_WAITOK); 8413 if (rc == 0) 8414 rc = sbuf_finish(sb); 8415 sbuf_delete(sb); 8416 return (rc); 8417 } 8418 8419 void 8420 t4_os_dump_devlog(struct adapter *sc) 8421 { 8422 int rc; 8423 struct sbuf sb; 8424 8425 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) 8426 return; 8427 rc = sbuf_devlog(sc, &sb, M_NOWAIT); 8428 if (rc == 0) { 8429 rc = sbuf_finish(&sb); 8430 if (rc == 0) { 8431 log(LOG_DEBUG, "%s: device log follows.\n%s", 8432 device_get_nameunit(sc->dev), sbuf_data(&sb)); 8433 } 8434 } 8435 sbuf_delete(&sb); 8436 } 8437 8438 static int 8439 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) 8440 { 8441 struct adapter *sc = arg1; 8442 struct sbuf *sb; 8443 int rc; 8444 struct tp_fcoe_stats stats[MAX_NCHAN]; 8445 int i, nchan = sc->chip_params->nchan; 8446 8447 rc = sysctl_wire_old_buffer(req, 0); 8448 if (rc != 0) 8449 return (rc); 8450 8451 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 8452 if (sb == NULL) 8453 return (ENOMEM); 8454 8455 for (i = 0; i < nchan; i++) 8456 t4_get_fcoe_stats(sc, i, &stats[i], 1); 8457 8458 if (nchan > 2) { 8459 sbuf_printf(sb, " channel 0 channel 1" 8460 " channel 2 channel 3"); 8461 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju", 8462 stats[0].octets_ddp, stats[1].octets_ddp, 8463 stats[2].octets_ddp, stats[3].octets_ddp); 8464 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u", 8465 stats[0].frames_ddp, stats[1].frames_ddp, 8466 stats[2].frames_ddp, stats[3].frames_ddp); 8467 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u", 8468 stats[0].frames_drop, stats[1].frames_drop, 8469 stats[2].frames_drop, stats[3].frames_drop); 8470 } else { 8471 sbuf_printf(sb, " channel 0 channel 1"); 8472 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju", 8473 stats[0].octets_ddp, stats[1].octets_ddp); 8474 sbuf_printf(sb, "\nframesDDP: %16u %16u", 8475 stats[0].frames_ddp, stats[1].frames_ddp); 8476 sbuf_printf(sb, "\nframesDrop: %16u %16u", 8477 stats[0].frames_drop, stats[1].frames_drop); 8478 } 8479 8480 rc = sbuf_finish(sb); 8481 sbuf_delete(sb); 8482 8483 return (rc); 8484 } 8485 8486 static int 8487 sysctl_hw_sched(SYSCTL_HANDLER_ARGS) 8488 { 8489 struct adapter *sc = arg1; 8490 struct sbuf *sb; 8491 int rc, i; 8492 unsigned int map, kbps, ipg, mode; 8493 unsigned int pace_tab[NTX_SCHED]; 8494 8495 rc = sysctl_wire_old_buffer(req, 0); 8496 if (rc != 0) 8497 return (rc); 8498 8499 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 8500 if (sb == NULL) 8501 return (ENOMEM); 8502 8503 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); 8504 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); 8505 t4_read_pace_tbl(sc, pace_tab); 8506 8507 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " 8508 "Class IPG (0.1 ns) Flow IPG (us)"); 8509 8510 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { 8511 t4_get_tx_sched(sc, i, &kbps, &ipg, 1); 8512 sbuf_printf(sb, "\n %u %-5s %u ", i, 8513 (mode & (1 << i)) ? "flow" : "class", map & 3); 8514 if (kbps) 8515 sbuf_printf(sb, "%9u ", kbps); 8516 else 8517 sbuf_printf(sb, " disabled "); 8518 8519 if (ipg) 8520 sbuf_printf(sb, "%13u ", ipg); 8521 else 8522 sbuf_printf(sb, " disabled "); 8523 8524 if (pace_tab[i]) 8525 sbuf_printf(sb, "%10u", pace_tab[i]); 8526 else 8527 sbuf_printf(sb, " disabled"); 8528 } 8529 8530 rc = sbuf_finish(sb); 8531 sbuf_delete(sb); 8532 8533 return (rc); 8534 } 8535 8536 static int 8537 sysctl_lb_stats(SYSCTL_HANDLER_ARGS) 8538 { 8539 struct adapter *sc = arg1; 8540 struct sbuf *sb; 8541 int rc, i, j; 8542 uint64_t *p0, *p1; 8543 struct lb_port_stats s[2]; 8544 static const char *stat_name[] = { 8545 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", 8546 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", 8547 "Frames128To255:", "Frames256To511:", "Frames512To1023:", 8548 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", 8549 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", 8550 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", 8551 "BG2FramesTrunc:", "BG3FramesTrunc:" 8552 }; 8553 8554 rc = sysctl_wire_old_buffer(req, 0); 8555 if (rc != 0) 8556 return (rc); 8557 8558 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8559 if (sb == NULL) 8560 return (ENOMEM); 8561 8562 memset(s, 0, sizeof(s)); 8563 8564 for (i = 0; i < sc->chip_params->nchan; i += 2) { 8565 t4_get_lb_stats(sc, i, &s[0]); 8566 t4_get_lb_stats(sc, i + 1, &s[1]); 8567 8568 p0 = &s[0].octets; 8569 p1 = &s[1].octets; 8570 sbuf_printf(sb, "%s Loopback %u" 8571 " Loopback %u", i == 0 ? "" : "\n", i, i + 1); 8572 8573 for (j = 0; j < nitems(stat_name); j++) 8574 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], 8575 *p0++, *p1++); 8576 } 8577 8578 rc = sbuf_finish(sb); 8579 sbuf_delete(sb); 8580 8581 return (rc); 8582 } 8583 8584 static int 8585 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) 8586 { 8587 int rc = 0; 8588 struct port_info *pi = arg1; 8589 struct link_config *lc = &pi->link_cfg; 8590 struct sbuf *sb; 8591 8592 rc = sysctl_wire_old_buffer(req, 0); 8593 if (rc != 0) 8594 return(rc); 8595 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); 8596 if (sb == NULL) 8597 return (ENOMEM); 8598 8599 if (lc->link_ok || lc->link_down_rc == 255) 8600 sbuf_printf(sb, "n/a"); 8601 else 8602 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc)); 8603 8604 rc = sbuf_finish(sb); 8605 sbuf_delete(sb); 8606 8607 return (rc); 8608 } 8609 8610 struct mem_desc { 8611 unsigned int base; 8612 unsigned int limit; 8613 unsigned int idx; 8614 }; 8615 8616 static int 8617 mem_desc_cmp(const void *a, const void *b) 8618 { 8619 return ((const struct mem_desc *)a)->base - 8620 ((const struct mem_desc *)b)->base; 8621 } 8622 8623 static void 8624 mem_region_show(struct sbuf *sb, const char *name, unsigned int from, 8625 unsigned int to) 8626 { 8627 unsigned int size; 8628 8629 if (from == to) 8630 return; 8631 8632 size = to - from + 1; 8633 if (size == 0) 8634 return; 8635 8636 /* XXX: need humanize_number(3) in libkern for a more readable 'size' */ 8637 sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size); 8638 } 8639 8640 static int 8641 sysctl_meminfo(SYSCTL_HANDLER_ARGS) 8642 { 8643 struct adapter *sc = arg1; 8644 struct sbuf *sb; 8645 int rc, i, n; 8646 uint32_t lo, hi, used, alloc; 8647 static const char *memory[] = {"EDC0:", "EDC1:", "MC:", "MC0:", "MC1:"}; 8648 static const char *region[] = { 8649 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", 8650 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", 8651 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", 8652 "TDDP region:", "TPT region:", "STAG region:", "RQ region:", 8653 "RQUDP region:", "PBL region:", "TXPBL region:", 8654 "DBVFIFO region:", "ULPRX state:", "ULPTX state:", 8655 "On-chip queues:", "TLS keys:", 8656 }; 8657 struct mem_desc avail[4]; 8658 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ 8659 struct mem_desc *md = mem; 8660 8661 rc = sysctl_wire_old_buffer(req, 0); 8662 if (rc != 0) 8663 return (rc); 8664 8665 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8666 if (sb == NULL) 8667 return (ENOMEM); 8668 8669 for (i = 0; i < nitems(mem); i++) { 8670 mem[i].limit = 0; 8671 mem[i].idx = i; 8672 } 8673 8674 /* Find and sort the populated memory ranges */ 8675 i = 0; 8676 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 8677 if (lo & F_EDRAM0_ENABLE) { 8678 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); 8679 avail[i].base = G_EDRAM0_BASE(hi) << 20; 8680 avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20); 8681 avail[i].idx = 0; 8682 i++; 8683 } 8684 if (lo & F_EDRAM1_ENABLE) { 8685 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); 8686 avail[i].base = G_EDRAM1_BASE(hi) << 20; 8687 avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20); 8688 avail[i].idx = 1; 8689 i++; 8690 } 8691 if (lo & F_EXT_MEM_ENABLE) { 8692 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 8693 avail[i].base = G_EXT_MEM_BASE(hi) << 20; 8694 avail[i].limit = avail[i].base + 8695 (G_EXT_MEM_SIZE(hi) << 20); 8696 avail[i].idx = is_t5(sc) ? 3 : 2; /* Call it MC0 for T5 */ 8697 i++; 8698 } 8699 if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) { 8700 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 8701 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 8702 avail[i].limit = avail[i].base + 8703 (G_EXT_MEM1_SIZE(hi) << 20); 8704 avail[i].idx = 4; 8705 i++; 8706 } 8707 if (!i) /* no memory available */ 8708 return 0; 8709 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); 8710 8711 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); 8712 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); 8713 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); 8714 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 8715 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); 8716 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); 8717 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); 8718 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); 8719 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); 8720 8721 /* the next few have explicit upper bounds */ 8722 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); 8723 md->limit = md->base - 1 + 8724 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * 8725 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); 8726 md++; 8727 8728 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); 8729 md->limit = md->base - 1 + 8730 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * 8731 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); 8732 md++; 8733 8734 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 8735 if (chip_id(sc) <= CHELSIO_T5) 8736 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); 8737 else 8738 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR); 8739 md->limit = 0; 8740 } else { 8741 md->base = 0; 8742 md->idx = nitems(region); /* hide it */ 8743 } 8744 md++; 8745 8746 #define ulp_region(reg) \ 8747 md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\ 8748 (md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) 8749 8750 ulp_region(RX_ISCSI); 8751 ulp_region(RX_TDDP); 8752 ulp_region(TX_TPT); 8753 ulp_region(RX_STAG); 8754 ulp_region(RX_RQ); 8755 ulp_region(RX_RQUDP); 8756 ulp_region(RX_PBL); 8757 ulp_region(TX_PBL); 8758 #undef ulp_region 8759 8760 md->base = 0; 8761 md->idx = nitems(region); 8762 if (!is_t4(sc)) { 8763 uint32_t size = 0; 8764 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2); 8765 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE); 8766 8767 if (is_t5(sc)) { 8768 if (sge_ctrl & F_VFIFO_ENABLE) 8769 size = G_DBVFIFO_SIZE(fifo_size); 8770 } else 8771 size = G_T6_DBVFIFO_SIZE(fifo_size); 8772 8773 if (size) { 8774 md->base = G_BASEADDR(t4_read_reg(sc, 8775 A_SGE_DBVFIFO_BADDR)); 8776 md->limit = md->base + (size << 2) - 1; 8777 } 8778 } 8779 md++; 8780 8781 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); 8782 md->limit = 0; 8783 md++; 8784 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); 8785 md->limit = 0; 8786 md++; 8787 8788 md->base = sc->vres.ocq.start; 8789 if (sc->vres.ocq.size) 8790 md->limit = md->base + sc->vres.ocq.size - 1; 8791 else 8792 md->idx = nitems(region); /* hide it */ 8793 md++; 8794 8795 md->base = sc->vres.key.start; 8796 if (sc->vres.key.size) 8797 md->limit = md->base + sc->vres.key.size - 1; 8798 else 8799 md->idx = nitems(region); /* hide it */ 8800 md++; 8801 8802 /* add any address-space holes, there can be up to 3 */ 8803 for (n = 0; n < i - 1; n++) 8804 if (avail[n].limit < avail[n + 1].base) 8805 (md++)->base = avail[n].limit; 8806 if (avail[n].limit) 8807 (md++)->base = avail[n].limit; 8808 8809 n = md - mem; 8810 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); 8811 8812 for (lo = 0; lo < i; lo++) 8813 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, 8814 avail[lo].limit - 1); 8815 8816 sbuf_printf(sb, "\n"); 8817 for (i = 0; i < n; i++) { 8818 if (mem[i].idx >= nitems(region)) 8819 continue; /* skip holes */ 8820 if (!mem[i].limit) 8821 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; 8822 mem_region_show(sb, region[mem[i].idx], mem[i].base, 8823 mem[i].limit); 8824 } 8825 8826 sbuf_printf(sb, "\n"); 8827 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); 8828 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; 8829 mem_region_show(sb, "uP RAM:", lo, hi); 8830 8831 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); 8832 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; 8833 mem_region_show(sb, "uP Extmem2:", lo, hi); 8834 8835 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); 8836 sbuf_printf(sb, "\n%u Rx pages of size %uKiB for %u channels\n", 8837 G_PMRXMAXPAGE(lo), 8838 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, 8839 (lo & F_PMRXNUMCHN) ? 2 : 1); 8840 8841 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); 8842 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); 8843 sbuf_printf(sb, "%u Tx pages of size %u%ciB for %u channels\n", 8844 G_PMTXMAXPAGE(lo), 8845 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), 8846 hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo)); 8847 sbuf_printf(sb, "%u p-structs\n", 8848 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT)); 8849 8850 for (i = 0; i < 4; i++) { 8851 if (chip_id(sc) > CHELSIO_T5) 8852 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4); 8853 else 8854 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); 8855 if (is_t5(sc)) { 8856 used = G_T5_USED(lo); 8857 alloc = G_T5_ALLOC(lo); 8858 } else { 8859 used = G_USED(lo); 8860 alloc = G_ALLOC(lo); 8861 } 8862 /* For T6 these are MAC buffer groups */ 8863 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", 8864 i, used, alloc); 8865 } 8866 for (i = 0; i < sc->chip_params->nchan; i++) { 8867 if (chip_id(sc) > CHELSIO_T5) 8868 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4); 8869 else 8870 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); 8871 if (is_t5(sc)) { 8872 used = G_T5_USED(lo); 8873 alloc = G_T5_ALLOC(lo); 8874 } else { 8875 used = G_USED(lo); 8876 alloc = G_ALLOC(lo); 8877 } 8878 /* For T6 these are MAC buffer groups */ 8879 sbuf_printf(sb, 8880 "\nLoopback %d using %u pages out of %u allocated", 8881 i, used, alloc); 8882 } 8883 8884 rc = sbuf_finish(sb); 8885 sbuf_delete(sb); 8886 8887 return (rc); 8888 } 8889 8890 static inline void 8891 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) 8892 { 8893 *mask = x | y; 8894 y = htobe64(y); 8895 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); 8896 } 8897 8898 static int 8899 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) 8900 { 8901 struct adapter *sc = arg1; 8902 struct sbuf *sb; 8903 int rc, i; 8904 8905 MPASS(chip_id(sc) <= CHELSIO_T5); 8906 8907 rc = sysctl_wire_old_buffer(req, 0); 8908 if (rc != 0) 8909 return (rc); 8910 8911 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8912 if (sb == NULL) 8913 return (ENOMEM); 8914 8915 sbuf_printf(sb, 8916 "Idx Ethernet address Mask Vld Ports PF" 8917 " VF Replication P0 P1 P2 P3 ML"); 8918 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 8919 uint64_t tcamx, tcamy, mask; 8920 uint32_t cls_lo, cls_hi; 8921 uint8_t addr[ETHER_ADDR_LEN]; 8922 8923 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); 8924 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); 8925 if (tcamx & tcamy) 8926 continue; 8927 tcamxy2valmask(tcamx, tcamy, addr, &mask); 8928 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 8929 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 8930 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" 8931 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], 8932 addr[3], addr[4], addr[5], (uintmax_t)mask, 8933 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', 8934 G_PORTMAP(cls_hi), G_PF(cls_lo), 8935 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); 8936 8937 if (cls_lo & F_REPLICATE) { 8938 struct fw_ldst_cmd ldst_cmd; 8939 8940 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 8941 ldst_cmd.op_to_addrspace = 8942 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 8943 F_FW_CMD_REQUEST | F_FW_CMD_READ | 8944 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 8945 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 8946 ldst_cmd.u.mps.rplc.fid_idx = 8947 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 8948 V_FW_LDST_CMD_IDX(i)); 8949 8950 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 8951 "t4mps"); 8952 if (rc) 8953 break; 8954 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 8955 sizeof(ldst_cmd), &ldst_cmd); 8956 end_synchronized_op(sc, 0); 8957 8958 if (rc != 0) { 8959 sbuf_printf(sb, "%36d", rc); 8960 rc = 0; 8961 } else { 8962 sbuf_printf(sb, " %08x %08x %08x %08x", 8963 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 8964 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 8965 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 8966 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 8967 } 8968 } else 8969 sbuf_printf(sb, "%36s", ""); 8970 8971 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), 8972 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), 8973 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); 8974 } 8975 8976 if (rc) 8977 (void) sbuf_finish(sb); 8978 else 8979 rc = sbuf_finish(sb); 8980 sbuf_delete(sb); 8981 8982 return (rc); 8983 } 8984 8985 static int 8986 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS) 8987 { 8988 struct adapter *sc = arg1; 8989 struct sbuf *sb; 8990 int rc, i; 8991 8992 MPASS(chip_id(sc) > CHELSIO_T5); 8993 8994 rc = sysctl_wire_old_buffer(req, 0); 8995 if (rc != 0) 8996 return (rc); 8997 8998 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 8999 if (sb == NULL) 9000 return (ENOMEM); 9001 9002 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 9003 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 9004 " Replication" 9005 " P0 P1 P2 P3 ML\n"); 9006 9007 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 9008 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 9009 uint16_t ivlan; 9010 uint64_t tcamx, tcamy, val, mask; 9011 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 9012 uint8_t addr[ETHER_ADDR_LEN]; 9013 9014 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0); 9015 if (i < 256) 9016 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0); 9017 else 9018 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1); 9019 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 9020 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 9021 tcamy = G_DMACH(val) << 32; 9022 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 9023 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 9024 lookup_type = G_DATALKPTYPE(data2); 9025 port_num = G_DATAPORTNUM(data2); 9026 if (lookup_type && lookup_type != M_DATALKPTYPE) { 9027 /* Inner header VNI */ 9028 vniy = ((data2 & F_DATAVIDH2) << 23) | 9029 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 9030 dip_hit = data2 & F_DATADIPHIT; 9031 vlan_vld = 0; 9032 } else { 9033 vniy = 0; 9034 dip_hit = 0; 9035 vlan_vld = data2 & F_DATAVIDH2; 9036 ivlan = G_VIDL(val); 9037 } 9038 9039 ctl |= V_CTLXYBITSEL(1); 9040 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 9041 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 9042 tcamx = G_DMACH(val) << 32; 9043 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 9044 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 9045 if (lookup_type && lookup_type != M_DATALKPTYPE) { 9046 /* Inner header VNI mask */ 9047 vnix = ((data2 & F_DATAVIDH2) << 23) | 9048 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 9049 } else 9050 vnix = 0; 9051 9052 if (tcamx & tcamy) 9053 continue; 9054 tcamxy2valmask(tcamx, tcamy, addr, &mask); 9055 9056 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 9057 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 9058 9059 if (lookup_type && lookup_type != M_DATALKPTYPE) { 9060 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 9061 "%012jx %06x %06x - - %3c" 9062 " 'I' %4x %3c %#x%4u%4d", i, addr[0], 9063 addr[1], addr[2], addr[3], addr[4], addr[5], 9064 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 9065 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 9066 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 9067 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 9068 } else { 9069 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 9070 "%012jx - - ", i, addr[0], addr[1], 9071 addr[2], addr[3], addr[4], addr[5], 9072 (uintmax_t)mask); 9073 9074 if (vlan_vld) 9075 sbuf_printf(sb, "%4u Y ", ivlan); 9076 else 9077 sbuf_printf(sb, " - N "); 9078 9079 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 9080 lookup_type ? 'I' : 'O', port_num, 9081 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 9082 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 9083 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 9084 } 9085 9086 9087 if (cls_lo & F_T6_REPLICATE) { 9088 struct fw_ldst_cmd ldst_cmd; 9089 9090 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 9091 ldst_cmd.op_to_addrspace = 9092 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 9093 F_FW_CMD_REQUEST | F_FW_CMD_READ | 9094 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 9095 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 9096 ldst_cmd.u.mps.rplc.fid_idx = 9097 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 9098 V_FW_LDST_CMD_IDX(i)); 9099 9100 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 9101 "t6mps"); 9102 if (rc) 9103 break; 9104 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 9105 sizeof(ldst_cmd), &ldst_cmd); 9106 end_synchronized_op(sc, 0); 9107 9108 if (rc != 0) { 9109 sbuf_printf(sb, "%72d", rc); 9110 rc = 0; 9111 } else { 9112 sbuf_printf(sb, " %08x %08x %08x %08x" 9113 " %08x %08x %08x %08x", 9114 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 9115 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 9116 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 9117 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 9118 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 9119 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 9120 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 9121 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 9122 } 9123 } else 9124 sbuf_printf(sb, "%72s", ""); 9125 9126 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 9127 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 9128 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 9129 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 9130 } 9131 9132 if (rc) 9133 (void) sbuf_finish(sb); 9134 else 9135 rc = sbuf_finish(sb); 9136 sbuf_delete(sb); 9137 9138 return (rc); 9139 } 9140 9141 static int 9142 sysctl_path_mtus(SYSCTL_HANDLER_ARGS) 9143 { 9144 struct adapter *sc = arg1; 9145 struct sbuf *sb; 9146 int rc; 9147 uint16_t mtus[NMTUS]; 9148 9149 rc = sysctl_wire_old_buffer(req, 0); 9150 if (rc != 0) 9151 return (rc); 9152 9153 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9154 if (sb == NULL) 9155 return (ENOMEM); 9156 9157 t4_read_mtu_tbl(sc, mtus, NULL); 9158 9159 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", 9160 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], 9161 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], 9162 mtus[14], mtus[15]); 9163 9164 rc = sbuf_finish(sb); 9165 sbuf_delete(sb); 9166 9167 return (rc); 9168 } 9169 9170 static int 9171 sysctl_pm_stats(SYSCTL_HANDLER_ARGS) 9172 { 9173 struct adapter *sc = arg1; 9174 struct sbuf *sb; 9175 int rc, i; 9176 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS]; 9177 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS]; 9178 static const char *tx_stats[MAX_PM_NSTATS] = { 9179 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:", 9180 "Tx FIFO wait", NULL, "Tx latency" 9181 }; 9182 static const char *rx_stats[MAX_PM_NSTATS] = { 9183 "Read:", "Write bypass:", "Write mem:", "Flush:", 9184 "Rx FIFO wait", NULL, "Rx latency" 9185 }; 9186 9187 rc = sysctl_wire_old_buffer(req, 0); 9188 if (rc != 0) 9189 return (rc); 9190 9191 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9192 if (sb == NULL) 9193 return (ENOMEM); 9194 9195 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); 9196 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); 9197 9198 sbuf_printf(sb, " Tx pcmds Tx bytes"); 9199 for (i = 0; i < 4; i++) { 9200 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 9201 tx_cyc[i]); 9202 } 9203 9204 sbuf_printf(sb, "\n Rx pcmds Rx bytes"); 9205 for (i = 0; i < 4; i++) { 9206 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 9207 rx_cyc[i]); 9208 } 9209 9210 if (chip_id(sc) > CHELSIO_T5) { 9211 sbuf_printf(sb, 9212 "\n Total wait Total occupancy"); 9213 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 9214 tx_cyc[i]); 9215 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 9216 rx_cyc[i]); 9217 9218 i += 2; 9219 MPASS(i < nitems(tx_stats)); 9220 9221 sbuf_printf(sb, 9222 "\n Reads Total wait"); 9223 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 9224 tx_cyc[i]); 9225 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 9226 rx_cyc[i]); 9227 } 9228 9229 rc = sbuf_finish(sb); 9230 sbuf_delete(sb); 9231 9232 return (rc); 9233 } 9234 9235 static int 9236 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) 9237 { 9238 struct adapter *sc = arg1; 9239 struct sbuf *sb; 9240 int rc; 9241 struct tp_rdma_stats stats; 9242 9243 rc = sysctl_wire_old_buffer(req, 0); 9244 if (rc != 0) 9245 return (rc); 9246 9247 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9248 if (sb == NULL) 9249 return (ENOMEM); 9250 9251 mtx_lock(&sc->reg_lock); 9252 t4_tp_get_rdma_stats(sc, &stats, 0); 9253 mtx_unlock(&sc->reg_lock); 9254 9255 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); 9256 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); 9257 9258 rc = sbuf_finish(sb); 9259 sbuf_delete(sb); 9260 9261 return (rc); 9262 } 9263 9264 static int 9265 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) 9266 { 9267 struct adapter *sc = arg1; 9268 struct sbuf *sb; 9269 int rc; 9270 struct tp_tcp_stats v4, v6; 9271 9272 rc = sysctl_wire_old_buffer(req, 0); 9273 if (rc != 0) 9274 return (rc); 9275 9276 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9277 if (sb == NULL) 9278 return (ENOMEM); 9279 9280 mtx_lock(&sc->reg_lock); 9281 t4_tp_get_tcp_stats(sc, &v4, &v6, 0); 9282 mtx_unlock(&sc->reg_lock); 9283 9284 sbuf_printf(sb, 9285 " IP IPv6\n"); 9286 sbuf_printf(sb, "OutRsts: %20u %20u\n", 9287 v4.tcp_out_rsts, v6.tcp_out_rsts); 9288 sbuf_printf(sb, "InSegs: %20ju %20ju\n", 9289 v4.tcp_in_segs, v6.tcp_in_segs); 9290 sbuf_printf(sb, "OutSegs: %20ju %20ju\n", 9291 v4.tcp_out_segs, v6.tcp_out_segs); 9292 sbuf_printf(sb, "RetransSegs: %20ju %20ju", 9293 v4.tcp_retrans_segs, v6.tcp_retrans_segs); 9294 9295 rc = sbuf_finish(sb); 9296 sbuf_delete(sb); 9297 9298 return (rc); 9299 } 9300 9301 static int 9302 sysctl_tids(SYSCTL_HANDLER_ARGS) 9303 { 9304 struct adapter *sc = arg1; 9305 struct sbuf *sb; 9306 int rc; 9307 struct tid_info *t = &sc->tids; 9308 9309 rc = sysctl_wire_old_buffer(req, 0); 9310 if (rc != 0) 9311 return (rc); 9312 9313 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9314 if (sb == NULL) 9315 return (ENOMEM); 9316 9317 if (t->natids) { 9318 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, 9319 t->atids_in_use); 9320 } 9321 9322 if (t->nhpftids) { 9323 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n", 9324 t->hpftid_base, t->hpftid_end, t->hpftids_in_use); 9325 } 9326 9327 if (t->ntids) { 9328 sbuf_printf(sb, "TID range: "); 9329 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 9330 uint32_t b, hb; 9331 9332 if (chip_id(sc) <= CHELSIO_T5) { 9333 b = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; 9334 hb = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; 9335 } else { 9336 b = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX); 9337 hb = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE); 9338 } 9339 9340 if (b) 9341 sbuf_printf(sb, "%u-%u, ", t->tid_base, b - 1); 9342 sbuf_printf(sb, "%u-%u", hb, t->ntids - 1); 9343 } else { 9344 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base + 9345 t->ntids - 1); 9346 } 9347 sbuf_printf(sb, ", in use: %u\n", 9348 atomic_load_acq_int(&t->tids_in_use)); 9349 } 9350 9351 if (t->nstids) { 9352 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, 9353 t->stid_base + t->nstids - 1, t->stids_in_use); 9354 } 9355 9356 if (t->nftids) { 9357 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base, 9358 t->ftid_end, t->ftids_in_use); 9359 } 9360 9361 if (t->netids) { 9362 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base, 9363 t->etid_base + t->netids - 1, t->etids_in_use); 9364 } 9365 9366 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", 9367 t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4), 9368 t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6)); 9369 9370 rc = sbuf_finish(sb); 9371 sbuf_delete(sb); 9372 9373 return (rc); 9374 } 9375 9376 static int 9377 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) 9378 { 9379 struct adapter *sc = arg1; 9380 struct sbuf *sb; 9381 int rc; 9382 struct tp_err_stats stats; 9383 9384 rc = sysctl_wire_old_buffer(req, 0); 9385 if (rc != 0) 9386 return (rc); 9387 9388 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9389 if (sb == NULL) 9390 return (ENOMEM); 9391 9392 mtx_lock(&sc->reg_lock); 9393 t4_tp_get_err_stats(sc, &stats, 0); 9394 mtx_unlock(&sc->reg_lock); 9395 9396 if (sc->chip_params->nchan > 2) { 9397 sbuf_printf(sb, " channel 0 channel 1" 9398 " channel 2 channel 3\n"); 9399 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", 9400 stats.mac_in_errs[0], stats.mac_in_errs[1], 9401 stats.mac_in_errs[2], stats.mac_in_errs[3]); 9402 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", 9403 stats.hdr_in_errs[0], stats.hdr_in_errs[1], 9404 stats.hdr_in_errs[2], stats.hdr_in_errs[3]); 9405 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", 9406 stats.tcp_in_errs[0], stats.tcp_in_errs[1], 9407 stats.tcp_in_errs[2], stats.tcp_in_errs[3]); 9408 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", 9409 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1], 9410 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]); 9411 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", 9412 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1], 9413 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]); 9414 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", 9415 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1], 9416 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]); 9417 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", 9418 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1], 9419 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]); 9420 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", 9421 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1], 9422 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]); 9423 } else { 9424 sbuf_printf(sb, " channel 0 channel 1\n"); 9425 sbuf_printf(sb, "macInErrs: %10u %10u\n", 9426 stats.mac_in_errs[0], stats.mac_in_errs[1]); 9427 sbuf_printf(sb, "hdrInErrs: %10u %10u\n", 9428 stats.hdr_in_errs[0], stats.hdr_in_errs[1]); 9429 sbuf_printf(sb, "tcpInErrs: %10u %10u\n", 9430 stats.tcp_in_errs[0], stats.tcp_in_errs[1]); 9431 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n", 9432 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]); 9433 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n", 9434 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]); 9435 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n", 9436 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]); 9437 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n", 9438 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]); 9439 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n", 9440 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]); 9441 } 9442 9443 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", 9444 stats.ofld_no_neigh, stats.ofld_cong_defer); 9445 9446 rc = sbuf_finish(sb); 9447 sbuf_delete(sb); 9448 9449 return (rc); 9450 } 9451 9452 static int 9453 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS) 9454 { 9455 struct adapter *sc = arg1; 9456 struct tp_params *tpp = &sc->params.tp; 9457 u_int mask; 9458 int rc; 9459 9460 mask = tpp->la_mask >> 16; 9461 rc = sysctl_handle_int(oidp, &mask, 0, req); 9462 if (rc != 0 || req->newptr == NULL) 9463 return (rc); 9464 if (mask > 0xffff) 9465 return (EINVAL); 9466 tpp->la_mask = mask << 16; 9467 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, tpp->la_mask); 9468 9469 return (0); 9470 } 9471 9472 struct field_desc { 9473 const char *name; 9474 u_int start; 9475 u_int width; 9476 }; 9477 9478 static void 9479 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) 9480 { 9481 char buf[32]; 9482 int line_size = 0; 9483 9484 while (f->name) { 9485 uint64_t mask = (1ULL << f->width) - 1; 9486 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, 9487 ((uintmax_t)v >> f->start) & mask); 9488 9489 if (line_size + len >= 79) { 9490 line_size = 8; 9491 sbuf_printf(sb, "\n "); 9492 } 9493 sbuf_printf(sb, "%s ", buf); 9494 line_size += len + 1; 9495 f++; 9496 } 9497 sbuf_printf(sb, "\n"); 9498 } 9499 9500 static const struct field_desc tp_la0[] = { 9501 { "RcfOpCodeOut", 60, 4 }, 9502 { "State", 56, 4 }, 9503 { "WcfState", 52, 4 }, 9504 { "RcfOpcSrcOut", 50, 2 }, 9505 { "CRxError", 49, 1 }, 9506 { "ERxError", 48, 1 }, 9507 { "SanityFailed", 47, 1 }, 9508 { "SpuriousMsg", 46, 1 }, 9509 { "FlushInputMsg", 45, 1 }, 9510 { "FlushInputCpl", 44, 1 }, 9511 { "RssUpBit", 43, 1 }, 9512 { "RssFilterHit", 42, 1 }, 9513 { "Tid", 32, 10 }, 9514 { "InitTcb", 31, 1 }, 9515 { "LineNumber", 24, 7 }, 9516 { "Emsg", 23, 1 }, 9517 { "EdataOut", 22, 1 }, 9518 { "Cmsg", 21, 1 }, 9519 { "CdataOut", 20, 1 }, 9520 { "EreadPdu", 19, 1 }, 9521 { "CreadPdu", 18, 1 }, 9522 { "TunnelPkt", 17, 1 }, 9523 { "RcfPeerFin", 16, 1 }, 9524 { "RcfReasonOut", 12, 4 }, 9525 { "TxCchannel", 10, 2 }, 9526 { "RcfTxChannel", 8, 2 }, 9527 { "RxEchannel", 6, 2 }, 9528 { "RcfRxChannel", 5, 1 }, 9529 { "RcfDataOutSrdy", 4, 1 }, 9530 { "RxDvld", 3, 1 }, 9531 { "RxOoDvld", 2, 1 }, 9532 { "RxCongestion", 1, 1 }, 9533 { "TxCongestion", 0, 1 }, 9534 { NULL } 9535 }; 9536 9537 static const struct field_desc tp_la1[] = { 9538 { "CplCmdIn", 56, 8 }, 9539 { "CplCmdOut", 48, 8 }, 9540 { "ESynOut", 47, 1 }, 9541 { "EAckOut", 46, 1 }, 9542 { "EFinOut", 45, 1 }, 9543 { "ERstOut", 44, 1 }, 9544 { "SynIn", 43, 1 }, 9545 { "AckIn", 42, 1 }, 9546 { "FinIn", 41, 1 }, 9547 { "RstIn", 40, 1 }, 9548 { "DataIn", 39, 1 }, 9549 { "DataInVld", 38, 1 }, 9550 { "PadIn", 37, 1 }, 9551 { "RxBufEmpty", 36, 1 }, 9552 { "RxDdp", 35, 1 }, 9553 { "RxFbCongestion", 34, 1 }, 9554 { "TxFbCongestion", 33, 1 }, 9555 { "TxPktSumSrdy", 32, 1 }, 9556 { "RcfUlpType", 28, 4 }, 9557 { "Eread", 27, 1 }, 9558 { "Ebypass", 26, 1 }, 9559 { "Esave", 25, 1 }, 9560 { "Static0", 24, 1 }, 9561 { "Cread", 23, 1 }, 9562 { "Cbypass", 22, 1 }, 9563 { "Csave", 21, 1 }, 9564 { "CPktOut", 20, 1 }, 9565 { "RxPagePoolFull", 18, 2 }, 9566 { "RxLpbkPkt", 17, 1 }, 9567 { "TxLpbkPkt", 16, 1 }, 9568 { "RxVfValid", 15, 1 }, 9569 { "SynLearned", 14, 1 }, 9570 { "SetDelEntry", 13, 1 }, 9571 { "SetInvEntry", 12, 1 }, 9572 { "CpcmdDvld", 11, 1 }, 9573 { "CpcmdSave", 10, 1 }, 9574 { "RxPstructsFull", 8, 2 }, 9575 { "EpcmdDvld", 7, 1 }, 9576 { "EpcmdFlush", 6, 1 }, 9577 { "EpcmdTrimPrefix", 5, 1 }, 9578 { "EpcmdTrimPostfix", 4, 1 }, 9579 { "ERssIp4Pkt", 3, 1 }, 9580 { "ERssIp6Pkt", 2, 1 }, 9581 { "ERssTcpUdpPkt", 1, 1 }, 9582 { "ERssFceFipPkt", 0, 1 }, 9583 { NULL } 9584 }; 9585 9586 static const struct field_desc tp_la2[] = { 9587 { "CplCmdIn", 56, 8 }, 9588 { "MpsVfVld", 55, 1 }, 9589 { "MpsPf", 52, 3 }, 9590 { "MpsVf", 44, 8 }, 9591 { "SynIn", 43, 1 }, 9592 { "AckIn", 42, 1 }, 9593 { "FinIn", 41, 1 }, 9594 { "RstIn", 40, 1 }, 9595 { "DataIn", 39, 1 }, 9596 { "DataInVld", 38, 1 }, 9597 { "PadIn", 37, 1 }, 9598 { "RxBufEmpty", 36, 1 }, 9599 { "RxDdp", 35, 1 }, 9600 { "RxFbCongestion", 34, 1 }, 9601 { "TxFbCongestion", 33, 1 }, 9602 { "TxPktSumSrdy", 32, 1 }, 9603 { "RcfUlpType", 28, 4 }, 9604 { "Eread", 27, 1 }, 9605 { "Ebypass", 26, 1 }, 9606 { "Esave", 25, 1 }, 9607 { "Static0", 24, 1 }, 9608 { "Cread", 23, 1 }, 9609 { "Cbypass", 22, 1 }, 9610 { "Csave", 21, 1 }, 9611 { "CPktOut", 20, 1 }, 9612 { "RxPagePoolFull", 18, 2 }, 9613 { "RxLpbkPkt", 17, 1 }, 9614 { "TxLpbkPkt", 16, 1 }, 9615 { "RxVfValid", 15, 1 }, 9616 { "SynLearned", 14, 1 }, 9617 { "SetDelEntry", 13, 1 }, 9618 { "SetInvEntry", 12, 1 }, 9619 { "CpcmdDvld", 11, 1 }, 9620 { "CpcmdSave", 10, 1 }, 9621 { "RxPstructsFull", 8, 2 }, 9622 { "EpcmdDvld", 7, 1 }, 9623 { "EpcmdFlush", 6, 1 }, 9624 { "EpcmdTrimPrefix", 5, 1 }, 9625 { "EpcmdTrimPostfix", 4, 1 }, 9626 { "ERssIp4Pkt", 3, 1 }, 9627 { "ERssIp6Pkt", 2, 1 }, 9628 { "ERssTcpUdpPkt", 1, 1 }, 9629 { "ERssFceFipPkt", 0, 1 }, 9630 { NULL } 9631 }; 9632 9633 static void 9634 tp_la_show(struct sbuf *sb, uint64_t *p, int idx) 9635 { 9636 9637 field_desc_show(sb, *p, tp_la0); 9638 } 9639 9640 static void 9641 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) 9642 { 9643 9644 if (idx) 9645 sbuf_printf(sb, "\n"); 9646 field_desc_show(sb, p[0], tp_la0); 9647 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 9648 field_desc_show(sb, p[1], tp_la0); 9649 } 9650 9651 static void 9652 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) 9653 { 9654 9655 if (idx) 9656 sbuf_printf(sb, "\n"); 9657 field_desc_show(sb, p[0], tp_la0); 9658 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 9659 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); 9660 } 9661 9662 static int 9663 sysctl_tp_la(SYSCTL_HANDLER_ARGS) 9664 { 9665 struct adapter *sc = arg1; 9666 struct sbuf *sb; 9667 uint64_t *buf, *p; 9668 int rc; 9669 u_int i, inc; 9670 void (*show_func)(struct sbuf *, uint64_t *, int); 9671 9672 rc = sysctl_wire_old_buffer(req, 0); 9673 if (rc != 0) 9674 return (rc); 9675 9676 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9677 if (sb == NULL) 9678 return (ENOMEM); 9679 9680 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); 9681 9682 t4_tp_read_la(sc, buf, NULL); 9683 p = buf; 9684 9685 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { 9686 case 2: 9687 inc = 2; 9688 show_func = tp_la_show2; 9689 break; 9690 case 3: 9691 inc = 2; 9692 show_func = tp_la_show3; 9693 break; 9694 default: 9695 inc = 1; 9696 show_func = tp_la_show; 9697 } 9698 9699 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) 9700 (*show_func)(sb, p, i); 9701 9702 rc = sbuf_finish(sb); 9703 sbuf_delete(sb); 9704 free(buf, M_CXGBE); 9705 return (rc); 9706 } 9707 9708 static int 9709 sysctl_tx_rate(SYSCTL_HANDLER_ARGS) 9710 { 9711 struct adapter *sc = arg1; 9712 struct sbuf *sb; 9713 int rc; 9714 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN]; 9715 9716 rc = sysctl_wire_old_buffer(req, 0); 9717 if (rc != 0) 9718 return (rc); 9719 9720 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9721 if (sb == NULL) 9722 return (ENOMEM); 9723 9724 t4_get_chan_txrate(sc, nrate, orate); 9725 9726 if (sc->chip_params->nchan > 2) { 9727 sbuf_printf(sb, " channel 0 channel 1" 9728 " channel 2 channel 3\n"); 9729 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", 9730 nrate[0], nrate[1], nrate[2], nrate[3]); 9731 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", 9732 orate[0], orate[1], orate[2], orate[3]); 9733 } else { 9734 sbuf_printf(sb, " channel 0 channel 1\n"); 9735 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n", 9736 nrate[0], nrate[1]); 9737 sbuf_printf(sb, "Offload B/s: %10ju %10ju", 9738 orate[0], orate[1]); 9739 } 9740 9741 rc = sbuf_finish(sb); 9742 sbuf_delete(sb); 9743 9744 return (rc); 9745 } 9746 9747 static int 9748 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) 9749 { 9750 struct adapter *sc = arg1; 9751 struct sbuf *sb; 9752 uint32_t *buf, *p; 9753 int rc, i; 9754 9755 rc = sysctl_wire_old_buffer(req, 0); 9756 if (rc != 0) 9757 return (rc); 9758 9759 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9760 if (sb == NULL) 9761 return (ENOMEM); 9762 9763 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, 9764 M_ZERO | M_WAITOK); 9765 9766 t4_ulprx_read_la(sc, buf); 9767 p = buf; 9768 9769 sbuf_printf(sb, " Pcmd Type Message" 9770 " Data"); 9771 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { 9772 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", 9773 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 9774 } 9775 9776 rc = sbuf_finish(sb); 9777 sbuf_delete(sb); 9778 free(buf, M_CXGBE); 9779 return (rc); 9780 } 9781 9782 static int 9783 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) 9784 { 9785 struct adapter *sc = arg1; 9786 struct sbuf *sb; 9787 int rc, v; 9788 9789 MPASS(chip_id(sc) >= CHELSIO_T5); 9790 9791 rc = sysctl_wire_old_buffer(req, 0); 9792 if (rc != 0) 9793 return (rc); 9794 9795 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9796 if (sb == NULL) 9797 return (ENOMEM); 9798 9799 v = t4_read_reg(sc, A_SGE_STAT_CFG); 9800 if (G_STATSOURCE_T5(v) == 7) { 9801 int mode; 9802 9803 mode = is_t5(sc) ? G_STATMODE(v) : G_T6_STATMODE(v); 9804 if (mode == 0) { 9805 sbuf_printf(sb, "total %d, incomplete %d", 9806 t4_read_reg(sc, A_SGE_STAT_TOTAL), 9807 t4_read_reg(sc, A_SGE_STAT_MATCH)); 9808 } else if (mode == 1) { 9809 sbuf_printf(sb, "total %d, data overflow %d", 9810 t4_read_reg(sc, A_SGE_STAT_TOTAL), 9811 t4_read_reg(sc, A_SGE_STAT_MATCH)); 9812 } else { 9813 sbuf_printf(sb, "unknown mode %d", mode); 9814 } 9815 } 9816 rc = sbuf_finish(sb); 9817 sbuf_delete(sb); 9818 9819 return (rc); 9820 } 9821 9822 static int 9823 sysctl_cpus(SYSCTL_HANDLER_ARGS) 9824 { 9825 struct adapter *sc = arg1; 9826 enum cpu_sets op = arg2; 9827 cpuset_t cpuset; 9828 struct sbuf *sb; 9829 int i, rc; 9830 9831 MPASS(op == LOCAL_CPUS || op == INTR_CPUS); 9832 9833 CPU_ZERO(&cpuset); 9834 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset); 9835 if (rc != 0) 9836 return (rc); 9837 9838 rc = sysctl_wire_old_buffer(req, 0); 9839 if (rc != 0) 9840 return (rc); 9841 9842 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9843 if (sb == NULL) 9844 return (ENOMEM); 9845 9846 CPU_FOREACH(i) 9847 sbuf_printf(sb, "%d ", i); 9848 rc = sbuf_finish(sb); 9849 sbuf_delete(sb); 9850 9851 return (rc); 9852 } 9853 9854 #ifdef TCP_OFFLOAD 9855 static int 9856 sysctl_tls(SYSCTL_HANDLER_ARGS) 9857 { 9858 struct adapter *sc = arg1; 9859 int i, j, v, rc; 9860 struct vi_info *vi; 9861 9862 v = sc->tt.tls; 9863 rc = sysctl_handle_int(oidp, &v, 0, req); 9864 if (rc != 0 || req->newptr == NULL) 9865 return (rc); 9866 9867 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 9868 return (ENOTSUP); 9869 9870 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls"); 9871 if (rc) 9872 return (rc); 9873 sc->tt.tls = !!v; 9874 for_each_port(sc, i) { 9875 for_each_vi(sc->port[i], j, vi) { 9876 if (vi->flags & VI_INIT_DONE) 9877 t4_update_fl_bufsize(vi->ifp); 9878 } 9879 } 9880 end_synchronized_op(sc, 0); 9881 9882 return (0); 9883 9884 } 9885 9886 static int 9887 sysctl_tls_rx_ports(SYSCTL_HANDLER_ARGS) 9888 { 9889 struct adapter *sc = arg1; 9890 int *old_ports, *new_ports; 9891 int i, new_count, rc; 9892 9893 if (req->newptr == NULL && req->oldptr == NULL) 9894 return (SYSCTL_OUT(req, NULL, imax(sc->tt.num_tls_rx_ports, 1) * 9895 sizeof(sc->tt.tls_rx_ports[0]))); 9896 9897 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4tlsrx"); 9898 if (rc) 9899 return (rc); 9900 9901 if (sc->tt.num_tls_rx_ports == 0) { 9902 i = -1; 9903 rc = SYSCTL_OUT(req, &i, sizeof(i)); 9904 } else 9905 rc = SYSCTL_OUT(req, sc->tt.tls_rx_ports, 9906 sc->tt.num_tls_rx_ports * sizeof(sc->tt.tls_rx_ports[0])); 9907 if (rc == 0 && req->newptr != NULL) { 9908 new_count = req->newlen / sizeof(new_ports[0]); 9909 new_ports = malloc(new_count * sizeof(new_ports[0]), M_CXGBE, 9910 M_WAITOK); 9911 rc = SYSCTL_IN(req, new_ports, new_count * 9912 sizeof(new_ports[0])); 9913 if (rc) 9914 goto err; 9915 9916 /* Allow setting to a single '-1' to clear the list. */ 9917 if (new_count == 1 && new_ports[0] == -1) { 9918 ADAPTER_LOCK(sc); 9919 old_ports = sc->tt.tls_rx_ports; 9920 sc->tt.tls_rx_ports = NULL; 9921 sc->tt.num_tls_rx_ports = 0; 9922 ADAPTER_UNLOCK(sc); 9923 free(old_ports, M_CXGBE); 9924 } else { 9925 for (i = 0; i < new_count; i++) { 9926 if (new_ports[i] < 1 || 9927 new_ports[i] > IPPORT_MAX) { 9928 rc = EINVAL; 9929 goto err; 9930 } 9931 } 9932 9933 ADAPTER_LOCK(sc); 9934 old_ports = sc->tt.tls_rx_ports; 9935 sc->tt.tls_rx_ports = new_ports; 9936 sc->tt.num_tls_rx_ports = new_count; 9937 ADAPTER_UNLOCK(sc); 9938 free(old_ports, M_CXGBE); 9939 new_ports = NULL; 9940 } 9941 err: 9942 free(new_ports, M_CXGBE); 9943 } 9944 end_synchronized_op(sc, 0); 9945 return (rc); 9946 } 9947 9948 static void 9949 unit_conv(char *buf, size_t len, u_int val, u_int factor) 9950 { 9951 u_int rem = val % factor; 9952 9953 if (rem == 0) 9954 snprintf(buf, len, "%u", val / factor); 9955 else { 9956 while (rem % 10 == 0) 9957 rem /= 10; 9958 snprintf(buf, len, "%u.%u", val / factor, rem); 9959 } 9960 } 9961 9962 static int 9963 sysctl_tp_tick(SYSCTL_HANDLER_ARGS) 9964 { 9965 struct adapter *sc = arg1; 9966 char buf[16]; 9967 u_int res, re; 9968 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 9969 9970 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 9971 switch (arg2) { 9972 case 0: 9973 /* timer_tick */ 9974 re = G_TIMERRESOLUTION(res); 9975 break; 9976 case 1: 9977 /* TCP timestamp tick */ 9978 re = G_TIMESTAMPRESOLUTION(res); 9979 break; 9980 case 2: 9981 /* DACK tick */ 9982 re = G_DELAYEDACKRESOLUTION(res); 9983 break; 9984 default: 9985 return (EDOOFUS); 9986 } 9987 9988 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000); 9989 9990 return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); 9991 } 9992 9993 static int 9994 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS) 9995 { 9996 struct adapter *sc = arg1; 9997 u_int res, dack_re, v; 9998 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 9999 10000 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 10001 dack_re = G_DELAYEDACKRESOLUTION(res); 10002 v = ((cclk_ps << dack_re) / 1000000) * t4_read_reg(sc, A_TP_DACK_TIMER); 10003 10004 return (sysctl_handle_int(oidp, &v, 0, req)); 10005 } 10006 10007 static int 10008 sysctl_tp_timer(SYSCTL_HANDLER_ARGS) 10009 { 10010 struct adapter *sc = arg1; 10011 int reg = arg2; 10012 u_int tre; 10013 u_long tp_tick_us, v; 10014 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 10015 10016 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX || 10017 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX || 10018 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL || 10019 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER); 10020 10021 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION)); 10022 tp_tick_us = (cclk_ps << tre) / 1000000; 10023 10024 if (reg == A_TP_INIT_SRTT) 10025 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg)); 10026 else 10027 v = tp_tick_us * t4_read_reg(sc, reg); 10028 10029 return (sysctl_handle_long(oidp, &v, 0, req)); 10030 } 10031 10032 /* 10033 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is 10034 * passed to this function. 10035 */ 10036 static int 10037 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS) 10038 { 10039 struct adapter *sc = arg1; 10040 int idx = arg2; 10041 u_int v; 10042 10043 MPASS(idx >= 0 && idx <= 24); 10044 10045 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf; 10046 10047 return (sysctl_handle_int(oidp, &v, 0, req)); 10048 } 10049 10050 static int 10051 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS) 10052 { 10053 struct adapter *sc = arg1; 10054 int idx = arg2; 10055 u_int shift, v, r; 10056 10057 MPASS(idx >= 0 && idx < 16); 10058 10059 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3); 10060 shift = (idx & 3) << 3; 10061 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0; 10062 10063 return (sysctl_handle_int(oidp, &v, 0, req)); 10064 } 10065 10066 static int 10067 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS) 10068 { 10069 struct vi_info *vi = arg1; 10070 struct adapter *sc = vi->adapter; 10071 int idx, rc, i; 10072 struct sge_ofld_rxq *ofld_rxq; 10073 uint8_t v; 10074 10075 idx = vi->ofld_tmr_idx; 10076 10077 rc = sysctl_handle_int(oidp, &idx, 0, req); 10078 if (rc != 0 || req->newptr == NULL) 10079 return (rc); 10080 10081 if (idx < 0 || idx >= SGE_NTIMERS) 10082 return (EINVAL); 10083 10084 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 10085 "t4otmr"); 10086 if (rc) 10087 return (rc); 10088 10089 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1); 10090 for_each_ofld_rxq(vi, i, ofld_rxq) { 10091 #ifdef atomic_store_rel_8 10092 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); 10093 #else 10094 ofld_rxq->iq.intr_params = v; 10095 #endif 10096 } 10097 vi->ofld_tmr_idx = idx; 10098 10099 end_synchronized_op(sc, LOCK_HELD); 10100 return (0); 10101 } 10102 10103 static int 10104 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS) 10105 { 10106 struct vi_info *vi = arg1; 10107 struct adapter *sc = vi->adapter; 10108 int idx, rc; 10109 10110 idx = vi->ofld_pktc_idx; 10111 10112 rc = sysctl_handle_int(oidp, &idx, 0, req); 10113 if (rc != 0 || req->newptr == NULL) 10114 return (rc); 10115 10116 if (idx < -1 || idx >= SGE_NCOUNTERS) 10117 return (EINVAL); 10118 10119 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 10120 "t4opktc"); 10121 if (rc) 10122 return (rc); 10123 10124 if (vi->flags & VI_INIT_DONE) 10125 rc = EBUSY; /* cannot be changed once the queues are created */ 10126 else 10127 vi->ofld_pktc_idx = idx; 10128 10129 end_synchronized_op(sc, LOCK_HELD); 10130 return (rc); 10131 } 10132 #endif 10133 10134 static int 10135 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt) 10136 { 10137 int rc; 10138 10139 if (cntxt->cid > M_CTXTQID) 10140 return (EINVAL); 10141 10142 if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS && 10143 cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM) 10144 return (EINVAL); 10145 10146 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); 10147 if (rc) 10148 return (rc); 10149 10150 if (sc->flags & FW_OK) { 10151 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id, 10152 &cntxt->data[0]); 10153 if (rc == 0) 10154 goto done; 10155 } 10156 10157 /* 10158 * Read via firmware failed or wasn't even attempted. Read directly via 10159 * the backdoor. 10160 */ 10161 rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]); 10162 done: 10163 end_synchronized_op(sc, 0); 10164 return (rc); 10165 } 10166 10167 static int 10168 load_fw(struct adapter *sc, struct t4_data *fw) 10169 { 10170 int rc; 10171 uint8_t *fw_data; 10172 10173 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); 10174 if (rc) 10175 return (rc); 10176 10177 /* 10178 * The firmware, with the sole exception of the memory parity error 10179 * handler, runs from memory and not flash. It is almost always safe to 10180 * install a new firmware on a running system. Just set bit 1 in 10181 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first. 10182 */ 10183 if (sc->flags & FULL_INIT_DONE && 10184 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) { 10185 rc = EBUSY; 10186 goto done; 10187 } 10188 10189 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); 10190 10191 rc = copyin(fw->data, fw_data, fw->len); 10192 if (rc == 0) 10193 rc = -t4_load_fw(sc, fw_data, fw->len); 10194 10195 free(fw_data, M_CXGBE); 10196 done: 10197 end_synchronized_op(sc, 0); 10198 return (rc); 10199 } 10200 10201 static int 10202 load_cfg(struct adapter *sc, struct t4_data *cfg) 10203 { 10204 int rc; 10205 uint8_t *cfg_data = NULL; 10206 10207 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 10208 if (rc) 10209 return (rc); 10210 10211 if (cfg->len == 0) { 10212 /* clear */ 10213 rc = -t4_load_cfg(sc, NULL, 0); 10214 goto done; 10215 } 10216 10217 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK); 10218 10219 rc = copyin(cfg->data, cfg_data, cfg->len); 10220 if (rc == 0) 10221 rc = -t4_load_cfg(sc, cfg_data, cfg->len); 10222 10223 free(cfg_data, M_CXGBE); 10224 done: 10225 end_synchronized_op(sc, 0); 10226 return (rc); 10227 } 10228 10229 static int 10230 load_boot(struct adapter *sc, struct t4_bootrom *br) 10231 { 10232 int rc; 10233 uint8_t *br_data = NULL; 10234 u_int offset; 10235 10236 if (br->len > 1024 * 1024) 10237 return (EFBIG); 10238 10239 if (br->pf_offset == 0) { 10240 /* pfidx */ 10241 if (br->pfidx_addr > 7) 10242 return (EINVAL); 10243 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr, 10244 A_PCIE_PF_EXPROM_OFST))); 10245 } else if (br->pf_offset == 1) { 10246 /* offset */ 10247 offset = G_OFFSET(br->pfidx_addr); 10248 } else { 10249 return (EINVAL); 10250 } 10251 10252 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr"); 10253 if (rc) 10254 return (rc); 10255 10256 if (br->len == 0) { 10257 /* clear */ 10258 rc = -t4_load_boot(sc, NULL, offset, 0); 10259 goto done; 10260 } 10261 10262 br_data = malloc(br->len, M_CXGBE, M_WAITOK); 10263 10264 rc = copyin(br->data, br_data, br->len); 10265 if (rc == 0) 10266 rc = -t4_load_boot(sc, br_data, offset, br->len); 10267 10268 free(br_data, M_CXGBE); 10269 done: 10270 end_synchronized_op(sc, 0); 10271 return (rc); 10272 } 10273 10274 static int 10275 load_bootcfg(struct adapter *sc, struct t4_data *bc) 10276 { 10277 int rc; 10278 uint8_t *bc_data = NULL; 10279 10280 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 10281 if (rc) 10282 return (rc); 10283 10284 if (bc->len == 0) { 10285 /* clear */ 10286 rc = -t4_load_bootcfg(sc, NULL, 0); 10287 goto done; 10288 } 10289 10290 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK); 10291 10292 rc = copyin(bc->data, bc_data, bc->len); 10293 if (rc == 0) 10294 rc = -t4_load_bootcfg(sc, bc_data, bc->len); 10295 10296 free(bc_data, M_CXGBE); 10297 done: 10298 end_synchronized_op(sc, 0); 10299 return (rc); 10300 } 10301 10302 static int 10303 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump) 10304 { 10305 int rc; 10306 struct cudbg_init *cudbg; 10307 void *handle, *buf; 10308 10309 /* buf is large, don't block if no memory is available */ 10310 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO); 10311 if (buf == NULL) 10312 return (ENOMEM); 10313 10314 handle = cudbg_alloc_handle(); 10315 if (handle == NULL) { 10316 rc = ENOMEM; 10317 goto done; 10318 } 10319 10320 cudbg = cudbg_get_init(handle); 10321 cudbg->adap = sc; 10322 cudbg->print = (cudbg_print_cb)printf; 10323 10324 #ifndef notyet 10325 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n", 10326 __func__, dump->wr_flash, dump->len, dump->data); 10327 #endif 10328 10329 if (dump->wr_flash) 10330 cudbg->use_flash = 1; 10331 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap)); 10332 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap)); 10333 10334 rc = cudbg_collect(handle, buf, &dump->len); 10335 if (rc != 0) 10336 goto done; 10337 10338 rc = copyout(buf, dump->data, dump->len); 10339 done: 10340 cudbg_free_handle(handle); 10341 free(buf, M_CXGBE); 10342 return (rc); 10343 } 10344 10345 static void 10346 free_offload_policy(struct t4_offload_policy *op) 10347 { 10348 struct offload_rule *r; 10349 int i; 10350 10351 if (op == NULL) 10352 return; 10353 10354 r = &op->rule[0]; 10355 for (i = 0; i < op->nrules; i++, r++) { 10356 free(r->bpf_prog.bf_insns, M_CXGBE); 10357 } 10358 free(op->rule, M_CXGBE); 10359 free(op, M_CXGBE); 10360 } 10361 10362 static int 10363 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop) 10364 { 10365 int i, rc, len; 10366 struct t4_offload_policy *op, *old; 10367 struct bpf_program *bf; 10368 const struct offload_settings *s; 10369 struct offload_rule *r; 10370 void *u; 10371 10372 if (!is_offload(sc)) 10373 return (ENODEV); 10374 10375 if (uop->nrules == 0) { 10376 /* Delete installed policies. */ 10377 op = NULL; 10378 goto set_policy; 10379 } else if (uop->nrules > 256) { /* arbitrary */ 10380 return (E2BIG); 10381 } 10382 10383 /* Copy userspace offload policy to kernel */ 10384 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK); 10385 op->nrules = uop->nrules; 10386 len = op->nrules * sizeof(struct offload_rule); 10387 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 10388 rc = copyin(uop->rule, op->rule, len); 10389 if (rc) { 10390 free(op->rule, M_CXGBE); 10391 free(op, M_CXGBE); 10392 return (rc); 10393 } 10394 10395 r = &op->rule[0]; 10396 for (i = 0; i < op->nrules; i++, r++) { 10397 10398 /* Validate open_type */ 10399 if (r->open_type != OPEN_TYPE_LISTEN && 10400 r->open_type != OPEN_TYPE_ACTIVE && 10401 r->open_type != OPEN_TYPE_PASSIVE && 10402 r->open_type != OPEN_TYPE_DONTCARE) { 10403 error: 10404 /* 10405 * Rules 0 to i have malloc'd filters that need to be 10406 * freed. Rules i+1 to nrules have userspace pointers 10407 * and should be left alone. 10408 */ 10409 op->nrules = i; 10410 free_offload_policy(op); 10411 return (rc); 10412 } 10413 10414 /* Validate settings */ 10415 s = &r->settings; 10416 if ((s->offload != 0 && s->offload != 1) || 10417 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED || 10418 s->sched_class < -1 || 10419 s->sched_class >= sc->chip_params->nsched_cls) { 10420 rc = EINVAL; 10421 goto error; 10422 } 10423 10424 bf = &r->bpf_prog; 10425 u = bf->bf_insns; /* userspace ptr */ 10426 bf->bf_insns = NULL; 10427 if (bf->bf_len == 0) { 10428 /* legal, matches everything */ 10429 continue; 10430 } 10431 len = bf->bf_len * sizeof(*bf->bf_insns); 10432 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 10433 rc = copyin(u, bf->bf_insns, len); 10434 if (rc != 0) 10435 goto error; 10436 10437 if (!bpf_validate(bf->bf_insns, bf->bf_len)) { 10438 rc = EINVAL; 10439 goto error; 10440 } 10441 } 10442 set_policy: 10443 rw_wlock(&sc->policy_lock); 10444 old = sc->policy; 10445 sc->policy = op; 10446 rw_wunlock(&sc->policy_lock); 10447 free_offload_policy(old); 10448 10449 return (0); 10450 } 10451 10452 #define MAX_READ_BUF_SIZE (128 * 1024) 10453 static int 10454 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) 10455 { 10456 uint32_t addr, remaining, n; 10457 uint32_t *buf; 10458 int rc; 10459 uint8_t *dst; 10460 10461 rc = validate_mem_range(sc, mr->addr, mr->len); 10462 if (rc != 0) 10463 return (rc); 10464 10465 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK); 10466 addr = mr->addr; 10467 remaining = mr->len; 10468 dst = (void *)mr->data; 10469 10470 while (remaining) { 10471 n = min(remaining, MAX_READ_BUF_SIZE); 10472 read_via_memwin(sc, 2, addr, buf, n); 10473 10474 rc = copyout(buf, dst, n); 10475 if (rc != 0) 10476 break; 10477 10478 dst += n; 10479 remaining -= n; 10480 addr += n; 10481 } 10482 10483 free(buf, M_CXGBE); 10484 return (rc); 10485 } 10486 #undef MAX_READ_BUF_SIZE 10487 10488 static int 10489 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) 10490 { 10491 int rc; 10492 10493 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) 10494 return (EINVAL); 10495 10496 if (i2cd->len > sizeof(i2cd->data)) 10497 return (EFBIG); 10498 10499 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); 10500 if (rc) 10501 return (rc); 10502 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, 10503 i2cd->offset, i2cd->len, &i2cd->data[0]); 10504 end_synchronized_op(sc, 0); 10505 10506 return (rc); 10507 } 10508 10509 static int 10510 clear_stats(struct adapter *sc, u_int port_id) 10511 { 10512 int i, v, chan_map; 10513 struct port_info *pi; 10514 struct vi_info *vi; 10515 struct sge_rxq *rxq; 10516 struct sge_txq *txq; 10517 struct sge_wrq *wrq; 10518 #ifdef TCP_OFFLOAD 10519 struct sge_ofld_rxq *ofld_rxq; 10520 #endif 10521 10522 if (port_id >= sc->params.nports) 10523 return (EINVAL); 10524 pi = sc->port[port_id]; 10525 if (pi == NULL) 10526 return (EIO); 10527 10528 /* MAC stats */ 10529 t4_clr_port_stats(sc, pi->tx_chan); 10530 if (is_t6(sc)) { 10531 if (pi->fcs_reg != -1) 10532 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 10533 else 10534 pi->stats.rx_fcs_err = 0; 10535 } 10536 pi->tx_parse_error = 0; 10537 pi->tnl_cong_drops = 0; 10538 mtx_lock(&sc->reg_lock); 10539 for_each_vi(pi, v, vi) { 10540 if (vi->flags & VI_INIT_DONE) 10541 t4_clr_vi_stats(sc, vi->vin); 10542 } 10543 chan_map = pi->rx_e_chan_map; 10544 v = 0; /* reuse */ 10545 while (chan_map) { 10546 i = ffs(chan_map) - 1; 10547 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 10548 1, A_TP_MIB_TNL_CNG_DROP_0 + i); 10549 chan_map &= ~(1 << i); 10550 } 10551 mtx_unlock(&sc->reg_lock); 10552 10553 /* 10554 * Since this command accepts a port, clear stats for 10555 * all VIs on this port. 10556 */ 10557 for_each_vi(pi, v, vi) { 10558 if (vi->flags & VI_INIT_DONE) { 10559 10560 for_each_rxq(vi, i, rxq) { 10561 #if defined(INET) || defined(INET6) 10562 rxq->lro.lro_queued = 0; 10563 rxq->lro.lro_flushed = 0; 10564 #endif 10565 rxq->rxcsum = 0; 10566 rxq->vlan_extraction = 0; 10567 rxq->vxlan_rxcsum = 0; 10568 10569 rxq->fl.cl_allocated = 0; 10570 rxq->fl.cl_recycled = 0; 10571 rxq->fl.cl_fast_recycled = 0; 10572 } 10573 10574 for_each_txq(vi, i, txq) { 10575 txq->txcsum = 0; 10576 txq->tso_wrs = 0; 10577 txq->vlan_insertion = 0; 10578 txq->imm_wrs = 0; 10579 txq->sgl_wrs = 0; 10580 txq->txpkt_wrs = 0; 10581 txq->txpkts0_wrs = 0; 10582 txq->txpkts1_wrs = 0; 10583 txq->txpkts0_pkts = 0; 10584 txq->txpkts1_pkts = 0; 10585 txq->raw_wrs = 0; 10586 txq->vxlan_tso_wrs = 0; 10587 txq->vxlan_txcsum = 0; 10588 txq->kern_tls_records = 0; 10589 txq->kern_tls_short = 0; 10590 txq->kern_tls_partial = 0; 10591 txq->kern_tls_full = 0; 10592 txq->kern_tls_octets = 0; 10593 txq->kern_tls_waste = 0; 10594 txq->kern_tls_options = 0; 10595 txq->kern_tls_header = 0; 10596 txq->kern_tls_fin = 0; 10597 txq->kern_tls_fin_short = 0; 10598 txq->kern_tls_cbc = 0; 10599 txq->kern_tls_gcm = 0; 10600 mp_ring_reset_stats(txq->r); 10601 } 10602 10603 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 10604 for_each_ofld_txq(vi, i, wrq) { 10605 wrq->tx_wrs_direct = 0; 10606 wrq->tx_wrs_copied = 0; 10607 } 10608 #endif 10609 #ifdef TCP_OFFLOAD 10610 for_each_ofld_rxq(vi, i, ofld_rxq) { 10611 ofld_rxq->fl.cl_allocated = 0; 10612 ofld_rxq->fl.cl_recycled = 0; 10613 ofld_rxq->fl.cl_fast_recycled = 0; 10614 } 10615 #endif 10616 10617 if (IS_MAIN_VI(vi)) { 10618 wrq = &sc->sge.ctrlq[pi->port_id]; 10619 wrq->tx_wrs_direct = 0; 10620 wrq->tx_wrs_copied = 0; 10621 } 10622 } 10623 } 10624 10625 return (0); 10626 } 10627 10628 int 10629 t4_os_find_pci_capability(struct adapter *sc, int cap) 10630 { 10631 int i; 10632 10633 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); 10634 } 10635 10636 int 10637 t4_os_pci_save_state(struct adapter *sc) 10638 { 10639 device_t dev; 10640 struct pci_devinfo *dinfo; 10641 10642 dev = sc->dev; 10643 dinfo = device_get_ivars(dev); 10644 10645 pci_cfg_save(dev, dinfo, 0); 10646 return (0); 10647 } 10648 10649 int 10650 t4_os_pci_restore_state(struct adapter *sc) 10651 { 10652 device_t dev; 10653 struct pci_devinfo *dinfo; 10654 10655 dev = sc->dev; 10656 dinfo = device_get_ivars(dev); 10657 10658 pci_cfg_restore(dev, dinfo); 10659 return (0); 10660 } 10661 10662 void 10663 t4_os_portmod_changed(struct port_info *pi) 10664 { 10665 struct adapter *sc = pi->adapter; 10666 struct vi_info *vi; 10667 struct ifnet *ifp; 10668 static const char *mod_str[] = { 10669 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM" 10670 }; 10671 10672 KASSERT((pi->flags & FIXED_IFMEDIA) == 0, 10673 ("%s: port_type %u", __func__, pi->port_type)); 10674 10675 vi = &pi->vi[0]; 10676 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) { 10677 PORT_LOCK(pi); 10678 build_medialist(pi); 10679 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) { 10680 fixup_link_config(pi); 10681 apply_link_config(pi); 10682 } 10683 PORT_UNLOCK(pi); 10684 end_synchronized_op(sc, LOCK_HELD); 10685 } 10686 10687 ifp = vi->ifp; 10688 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 10689 if_printf(ifp, "transceiver unplugged.\n"); 10690 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 10691 if_printf(ifp, "unknown transceiver inserted.\n"); 10692 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 10693 if_printf(ifp, "unsupported transceiver inserted.\n"); 10694 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { 10695 if_printf(ifp, "%dGbps %s transceiver inserted.\n", 10696 port_top_speed(pi), mod_str[pi->mod_type]); 10697 } else { 10698 if_printf(ifp, "transceiver (type %d) inserted.\n", 10699 pi->mod_type); 10700 } 10701 } 10702 10703 void 10704 t4_os_link_changed(struct port_info *pi) 10705 { 10706 struct vi_info *vi; 10707 struct ifnet *ifp; 10708 struct link_config *lc = &pi->link_cfg; 10709 struct adapter *sc = pi->adapter; 10710 int v; 10711 10712 PORT_LOCK_ASSERT_OWNED(pi); 10713 10714 if (is_t6(sc)) { 10715 if (lc->link_ok) { 10716 if (lc->speed > 25000 || 10717 (lc->speed == 25000 && lc->fec == FEC_RS)) { 10718 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 10719 A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS); 10720 } else { 10721 pi->fcs_reg = T5_PORT_REG(pi->tx_chan, 10722 A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS); 10723 } 10724 pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg); 10725 pi->stats.rx_fcs_err = 0; 10726 } else { 10727 pi->fcs_reg = -1; 10728 } 10729 } else { 10730 MPASS(pi->fcs_reg != -1); 10731 MPASS(pi->fcs_base == 0); 10732 } 10733 10734 for_each_vi(pi, v, vi) { 10735 ifp = vi->ifp; 10736 if (ifp == NULL) 10737 continue; 10738 10739 if (lc->link_ok) { 10740 ifp->if_baudrate = IF_Mbps(lc->speed); 10741 if_link_state_change(ifp, LINK_STATE_UP); 10742 } else { 10743 if_link_state_change(ifp, LINK_STATE_DOWN); 10744 } 10745 } 10746 } 10747 10748 void 10749 t4_iterate(void (*func)(struct adapter *, void *), void *arg) 10750 { 10751 struct adapter *sc; 10752 10753 sx_slock(&t4_list_lock); 10754 SLIST_FOREACH(sc, &t4_list, link) { 10755 /* 10756 * func should not make any assumptions about what state sc is 10757 * in - the only guarantee is that sc->sc_lock is a valid lock. 10758 */ 10759 func(sc, arg); 10760 } 10761 sx_sunlock(&t4_list_lock); 10762 } 10763 10764 static int 10765 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 10766 struct thread *td) 10767 { 10768 int rc; 10769 struct adapter *sc = dev->si_drv1; 10770 10771 rc = priv_check(td, PRIV_DRIVER); 10772 if (rc != 0) 10773 return (rc); 10774 10775 switch (cmd) { 10776 case CHELSIO_T4_GETREG: { 10777 struct t4_reg *edata = (struct t4_reg *)data; 10778 10779 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 10780 return (EFAULT); 10781 10782 if (edata->size == 4) 10783 edata->val = t4_read_reg(sc, edata->addr); 10784 else if (edata->size == 8) 10785 edata->val = t4_read_reg64(sc, edata->addr); 10786 else 10787 return (EINVAL); 10788 10789 break; 10790 } 10791 case CHELSIO_T4_SETREG: { 10792 struct t4_reg *edata = (struct t4_reg *)data; 10793 10794 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 10795 return (EFAULT); 10796 10797 if (edata->size == 4) { 10798 if (edata->val & 0xffffffff00000000) 10799 return (EINVAL); 10800 t4_write_reg(sc, edata->addr, (uint32_t) edata->val); 10801 } else if (edata->size == 8) 10802 t4_write_reg64(sc, edata->addr, edata->val); 10803 else 10804 return (EINVAL); 10805 break; 10806 } 10807 case CHELSIO_T4_REGDUMP: { 10808 struct t4_regdump *regs = (struct t4_regdump *)data; 10809 int reglen = t4_get_regs_len(sc); 10810 uint8_t *buf; 10811 10812 if (regs->len < reglen) { 10813 regs->len = reglen; /* hint to the caller */ 10814 return (ENOBUFS); 10815 } 10816 10817 regs->len = reglen; 10818 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); 10819 get_regs(sc, regs, buf); 10820 rc = copyout(buf, regs->data, reglen); 10821 free(buf, M_CXGBE); 10822 break; 10823 } 10824 case CHELSIO_T4_GET_FILTER_MODE: 10825 rc = get_filter_mode(sc, (uint32_t *)data); 10826 break; 10827 case CHELSIO_T4_SET_FILTER_MODE: 10828 rc = set_filter_mode(sc, *(uint32_t *)data); 10829 break; 10830 case CHELSIO_T4_GET_FILTER: 10831 rc = get_filter(sc, (struct t4_filter *)data); 10832 break; 10833 case CHELSIO_T4_SET_FILTER: 10834 rc = set_filter(sc, (struct t4_filter *)data); 10835 break; 10836 case CHELSIO_T4_DEL_FILTER: 10837 rc = del_filter(sc, (struct t4_filter *)data); 10838 break; 10839 case CHELSIO_T4_GET_SGE_CONTEXT: 10840 rc = get_sge_context(sc, (struct t4_sge_context *)data); 10841 break; 10842 case CHELSIO_T4_LOAD_FW: 10843 rc = load_fw(sc, (struct t4_data *)data); 10844 break; 10845 case CHELSIO_T4_GET_MEM: 10846 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); 10847 break; 10848 case CHELSIO_T4_GET_I2C: 10849 rc = read_i2c(sc, (struct t4_i2c_data *)data); 10850 break; 10851 case CHELSIO_T4_CLEAR_STATS: 10852 rc = clear_stats(sc, *(uint32_t *)data); 10853 break; 10854 case CHELSIO_T4_SCHED_CLASS: 10855 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data); 10856 break; 10857 case CHELSIO_T4_SCHED_QUEUE: 10858 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data); 10859 break; 10860 case CHELSIO_T4_GET_TRACER: 10861 rc = t4_get_tracer(sc, (struct t4_tracer *)data); 10862 break; 10863 case CHELSIO_T4_SET_TRACER: 10864 rc = t4_set_tracer(sc, (struct t4_tracer *)data); 10865 break; 10866 case CHELSIO_T4_LOAD_CFG: 10867 rc = load_cfg(sc, (struct t4_data *)data); 10868 break; 10869 case CHELSIO_T4_LOAD_BOOT: 10870 rc = load_boot(sc, (struct t4_bootrom *)data); 10871 break; 10872 case CHELSIO_T4_LOAD_BOOTCFG: 10873 rc = load_bootcfg(sc, (struct t4_data *)data); 10874 break; 10875 case CHELSIO_T4_CUDBG_DUMP: 10876 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data); 10877 break; 10878 case CHELSIO_T4_SET_OFLD_POLICY: 10879 rc = set_offload_policy(sc, (struct t4_offload_policy *)data); 10880 break; 10881 default: 10882 rc = ENOTTY; 10883 } 10884 10885 return (rc); 10886 } 10887 10888 #ifdef TCP_OFFLOAD 10889 static int 10890 toe_capability(struct vi_info *vi, int enable) 10891 { 10892 int rc; 10893 struct port_info *pi = vi->pi; 10894 struct adapter *sc = pi->adapter; 10895 10896 ASSERT_SYNCHRONIZED_OP(sc); 10897 10898 if (!is_offload(sc)) 10899 return (ENODEV); 10900 10901 if (enable) { 10902 if ((vi->ifp->if_capenable & IFCAP_TOE) != 0) { 10903 /* TOE is already enabled. */ 10904 return (0); 10905 } 10906 10907 /* 10908 * We need the port's queues around so that we're able to send 10909 * and receive CPLs to/from the TOE even if the ifnet for this 10910 * port has never been UP'd administratively. 10911 */ 10912 if (!(vi->flags & VI_INIT_DONE)) { 10913 rc = vi_full_init(vi); 10914 if (rc) 10915 return (rc); 10916 } 10917 if (!(pi->vi[0].flags & VI_INIT_DONE)) { 10918 rc = vi_full_init(&pi->vi[0]); 10919 if (rc) 10920 return (rc); 10921 } 10922 10923 if (isset(&sc->offload_map, pi->port_id)) { 10924 /* TOE is enabled on another VI of this port. */ 10925 pi->uld_vis++; 10926 return (0); 10927 } 10928 10929 if (!uld_active(sc, ULD_TOM)) { 10930 rc = t4_activate_uld(sc, ULD_TOM); 10931 if (rc == EAGAIN) { 10932 log(LOG_WARNING, 10933 "You must kldload t4_tom.ko before trying " 10934 "to enable TOE on a cxgbe interface.\n"); 10935 } 10936 if (rc != 0) 10937 return (rc); 10938 KASSERT(sc->tom_softc != NULL, 10939 ("%s: TOM activated but softc NULL", __func__)); 10940 KASSERT(uld_active(sc, ULD_TOM), 10941 ("%s: TOM activated but flag not set", __func__)); 10942 } 10943 10944 /* Activate iWARP and iSCSI too, if the modules are loaded. */ 10945 if (!uld_active(sc, ULD_IWARP)) 10946 (void) t4_activate_uld(sc, ULD_IWARP); 10947 if (!uld_active(sc, ULD_ISCSI)) 10948 (void) t4_activate_uld(sc, ULD_ISCSI); 10949 10950 pi->uld_vis++; 10951 setbit(&sc->offload_map, pi->port_id); 10952 } else { 10953 pi->uld_vis--; 10954 10955 if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0) 10956 return (0); 10957 10958 KASSERT(uld_active(sc, ULD_TOM), 10959 ("%s: TOM never initialized?", __func__)); 10960 clrbit(&sc->offload_map, pi->port_id); 10961 } 10962 10963 return (0); 10964 } 10965 10966 /* 10967 * Add an upper layer driver to the global list. 10968 */ 10969 int 10970 t4_register_uld(struct uld_info *ui) 10971 { 10972 int rc = 0; 10973 struct uld_info *u; 10974 10975 sx_xlock(&t4_uld_list_lock); 10976 SLIST_FOREACH(u, &t4_uld_list, link) { 10977 if (u->uld_id == ui->uld_id) { 10978 rc = EEXIST; 10979 goto done; 10980 } 10981 } 10982 10983 SLIST_INSERT_HEAD(&t4_uld_list, ui, link); 10984 ui->refcount = 0; 10985 done: 10986 sx_xunlock(&t4_uld_list_lock); 10987 return (rc); 10988 } 10989 10990 int 10991 t4_unregister_uld(struct uld_info *ui) 10992 { 10993 int rc = EINVAL; 10994 struct uld_info *u; 10995 10996 sx_xlock(&t4_uld_list_lock); 10997 10998 SLIST_FOREACH(u, &t4_uld_list, link) { 10999 if (u == ui) { 11000 if (ui->refcount > 0) { 11001 rc = EBUSY; 11002 goto done; 11003 } 11004 11005 SLIST_REMOVE(&t4_uld_list, ui, uld_info, link); 11006 rc = 0; 11007 goto done; 11008 } 11009 } 11010 done: 11011 sx_xunlock(&t4_uld_list_lock); 11012 return (rc); 11013 } 11014 11015 int 11016 t4_activate_uld(struct adapter *sc, int id) 11017 { 11018 int rc; 11019 struct uld_info *ui; 11020 11021 ASSERT_SYNCHRONIZED_OP(sc); 11022 11023 if (id < 0 || id > ULD_MAX) 11024 return (EINVAL); 11025 rc = EAGAIN; /* kldoad the module with this ULD and try again. */ 11026 11027 sx_slock(&t4_uld_list_lock); 11028 11029 SLIST_FOREACH(ui, &t4_uld_list, link) { 11030 if (ui->uld_id == id) { 11031 if (!(sc->flags & FULL_INIT_DONE)) { 11032 rc = adapter_full_init(sc); 11033 if (rc != 0) 11034 break; 11035 } 11036 11037 rc = ui->activate(sc); 11038 if (rc == 0) { 11039 setbit(&sc->active_ulds, id); 11040 ui->refcount++; 11041 } 11042 break; 11043 } 11044 } 11045 11046 sx_sunlock(&t4_uld_list_lock); 11047 11048 return (rc); 11049 } 11050 11051 int 11052 t4_deactivate_uld(struct adapter *sc, int id) 11053 { 11054 int rc; 11055 struct uld_info *ui; 11056 11057 ASSERT_SYNCHRONIZED_OP(sc); 11058 11059 if (id < 0 || id > ULD_MAX) 11060 return (EINVAL); 11061 rc = ENXIO; 11062 11063 sx_slock(&t4_uld_list_lock); 11064 11065 SLIST_FOREACH(ui, &t4_uld_list, link) { 11066 if (ui->uld_id == id) { 11067 rc = ui->deactivate(sc); 11068 if (rc == 0) { 11069 clrbit(&sc->active_ulds, id); 11070 ui->refcount--; 11071 } 11072 break; 11073 } 11074 } 11075 11076 sx_sunlock(&t4_uld_list_lock); 11077 11078 return (rc); 11079 } 11080 11081 static void 11082 t4_async_event(void *arg, int n) 11083 { 11084 struct uld_info *ui; 11085 struct adapter *sc = (struct adapter *)arg; 11086 11087 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4async") != 0) 11088 return; 11089 sx_slock(&t4_uld_list_lock); 11090 SLIST_FOREACH(ui, &t4_uld_list, link) { 11091 if (ui->uld_id == ULD_IWARP) { 11092 ui->async_event(sc); 11093 break; 11094 } 11095 } 11096 sx_sunlock(&t4_uld_list_lock); 11097 end_synchronized_op(sc, 0); 11098 } 11099 11100 int 11101 uld_active(struct adapter *sc, int uld_id) 11102 { 11103 11104 MPASS(uld_id >= 0 && uld_id <= ULD_MAX); 11105 11106 return (isset(&sc->active_ulds, uld_id)); 11107 } 11108 #endif 11109 11110 /* 11111 * t = ptr to tunable. 11112 * nc = number of CPUs. 11113 * c = compiled in default for that tunable. 11114 */ 11115 static void 11116 calculate_nqueues(int *t, int nc, const int c) 11117 { 11118 int nq; 11119 11120 if (*t > 0) 11121 return; 11122 nq = *t < 0 ? -*t : c; 11123 *t = min(nc, nq); 11124 } 11125 11126 /* 11127 * Come up with reasonable defaults for some of the tunables, provided they're 11128 * not set by the user (in which case we'll use the values as is). 11129 */ 11130 static void 11131 tweak_tunables(void) 11132 { 11133 int nc = mp_ncpus; /* our snapshot of the number of CPUs */ 11134 11135 if (t4_ntxq < 1) { 11136 #ifdef RSS 11137 t4_ntxq = rss_getnumbuckets(); 11138 #else 11139 calculate_nqueues(&t4_ntxq, nc, NTXQ); 11140 #endif 11141 } 11142 11143 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI); 11144 11145 if (t4_nrxq < 1) { 11146 #ifdef RSS 11147 t4_nrxq = rss_getnumbuckets(); 11148 #else 11149 calculate_nqueues(&t4_nrxq, nc, NRXQ); 11150 #endif 11151 } 11152 11153 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI); 11154 11155 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 11156 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ); 11157 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI); 11158 #endif 11159 #ifdef TCP_OFFLOAD 11160 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ); 11161 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI); 11162 #endif 11163 11164 #if defined(TCP_OFFLOAD) || defined(KERN_TLS) 11165 if (t4_toecaps_allowed == -1) 11166 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; 11167 #else 11168 if (t4_toecaps_allowed == -1) 11169 t4_toecaps_allowed = 0; 11170 #endif 11171 11172 #ifdef TCP_OFFLOAD 11173 if (t4_rdmacaps_allowed == -1) { 11174 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP | 11175 FW_CAPS_CONFIG_RDMA_RDMAC; 11176 } 11177 11178 if (t4_iscsicaps_allowed == -1) { 11179 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU | 11180 FW_CAPS_CONFIG_ISCSI_TARGET_PDU | 11181 FW_CAPS_CONFIG_ISCSI_T10DIF; 11182 } 11183 11184 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS) 11185 t4_tmr_idx_ofld = TMR_IDX_OFLD; 11186 11187 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS) 11188 t4_pktc_idx_ofld = PKTC_IDX_OFLD; 11189 #else 11190 if (t4_rdmacaps_allowed == -1) 11191 t4_rdmacaps_allowed = 0; 11192 11193 if (t4_iscsicaps_allowed == -1) 11194 t4_iscsicaps_allowed = 0; 11195 #endif 11196 11197 #ifdef DEV_NETMAP 11198 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ); 11199 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ); 11200 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI); 11201 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI); 11202 #endif 11203 11204 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS) 11205 t4_tmr_idx = TMR_IDX; 11206 11207 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS) 11208 t4_pktc_idx = PKTC_IDX; 11209 11210 if (t4_qsize_txq < 128) 11211 t4_qsize_txq = 128; 11212 11213 if (t4_qsize_rxq < 128) 11214 t4_qsize_rxq = 128; 11215 while (t4_qsize_rxq & 7) 11216 t4_qsize_rxq++; 11217 11218 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; 11219 11220 /* 11221 * Number of VIs to create per-port. The first VI is the "main" regular 11222 * VI for the port. The rest are additional virtual interfaces on the 11223 * same physical port. Note that the main VI does not have native 11224 * netmap support but the extra VIs do. 11225 * 11226 * Limit the number of VIs per port to the number of available 11227 * MAC addresses per port. 11228 */ 11229 if (t4_num_vis < 1) 11230 t4_num_vis = 1; 11231 if (t4_num_vis > nitems(vi_mac_funcs)) { 11232 t4_num_vis = nitems(vi_mac_funcs); 11233 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis); 11234 } 11235 11236 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) { 11237 pcie_relaxed_ordering = 1; 11238 #if defined(__i386__) || defined(__amd64__) 11239 if (cpu_vendor_id == CPU_VENDOR_INTEL) 11240 pcie_relaxed_ordering = 0; 11241 #endif 11242 } 11243 } 11244 11245 #ifdef DDB 11246 static void 11247 t4_dump_tcb(struct adapter *sc, int tid) 11248 { 11249 uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos; 11250 11251 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2); 11252 save = t4_read_reg(sc, reg); 11253 base = sc->memwin[2].mw_base; 11254 11255 /* Dump TCB for the tid */ 11256 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 11257 tcb_addr += tid * TCB_SIZE; 11258 11259 if (is_t4(sc)) { 11260 pf = 0; 11261 win_pos = tcb_addr & ~0xf; /* start must be 16B aligned */ 11262 } else { 11263 pf = V_PFNUM(sc->pf); 11264 win_pos = tcb_addr & ~0x7f; /* start must be 128B aligned */ 11265 } 11266 t4_write_reg(sc, reg, win_pos | pf); 11267 t4_read_reg(sc, reg); 11268 11269 off = tcb_addr - win_pos; 11270 for (i = 0; i < 4; i++) { 11271 uint32_t buf[8]; 11272 for (j = 0; j < 8; j++, off += 4) 11273 buf[j] = htonl(t4_read_reg(sc, base + off)); 11274 11275 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", 11276 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], 11277 buf[7]); 11278 } 11279 11280 t4_write_reg(sc, reg, save); 11281 t4_read_reg(sc, reg); 11282 } 11283 11284 static void 11285 t4_dump_devlog(struct adapter *sc) 11286 { 11287 struct devlog_params *dparams = &sc->params.devlog; 11288 struct fw_devlog_e e; 11289 int i, first, j, m, nentries, rc; 11290 uint64_t ftstamp = UINT64_MAX; 11291 11292 if (dparams->start == 0) { 11293 db_printf("devlog params not valid\n"); 11294 return; 11295 } 11296 11297 nentries = dparams->size / sizeof(struct fw_devlog_e); 11298 m = fwmtype_to_hwmtype(dparams->memtype); 11299 11300 /* Find the first entry. */ 11301 first = -1; 11302 for (i = 0; i < nentries && !db_pager_quit; i++) { 11303 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 11304 sizeof(e), (void *)&e); 11305 if (rc != 0) 11306 break; 11307 11308 if (e.timestamp == 0) 11309 break; 11310 11311 e.timestamp = be64toh(e.timestamp); 11312 if (e.timestamp < ftstamp) { 11313 ftstamp = e.timestamp; 11314 first = i; 11315 } 11316 } 11317 11318 if (first == -1) 11319 return; 11320 11321 i = first; 11322 do { 11323 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 11324 sizeof(e), (void *)&e); 11325 if (rc != 0) 11326 return; 11327 11328 if (e.timestamp == 0) 11329 return; 11330 11331 e.timestamp = be64toh(e.timestamp); 11332 e.seqno = be32toh(e.seqno); 11333 for (j = 0; j < 8; j++) 11334 e.params[j] = be32toh(e.params[j]); 11335 11336 db_printf("%10d %15ju %8s %8s ", 11337 e.seqno, e.timestamp, 11338 (e.level < nitems(devlog_level_strings) ? 11339 devlog_level_strings[e.level] : "UNKNOWN"), 11340 (e.facility < nitems(devlog_facility_strings) ? 11341 devlog_facility_strings[e.facility] : "UNKNOWN")); 11342 db_printf(e.fmt, e.params[0], e.params[1], e.params[2], 11343 e.params[3], e.params[4], e.params[5], e.params[6], 11344 e.params[7]); 11345 11346 if (++i == nentries) 11347 i = 0; 11348 } while (i != first && !db_pager_quit); 11349 } 11350 11351 static struct command_table db_t4_table = LIST_HEAD_INITIALIZER(db_t4_table); 11352 _DB_SET(_show, t4, NULL, db_show_table, 0, &db_t4_table); 11353 11354 DB_FUNC(devlog, db_show_devlog, db_t4_table, CS_OWN, NULL) 11355 { 11356 device_t dev; 11357 int t; 11358 bool valid; 11359 11360 valid = false; 11361 t = db_read_token(); 11362 if (t == tIDENT) { 11363 dev = device_lookup_by_name(db_tok_string); 11364 valid = true; 11365 } 11366 db_skip_to_eol(); 11367 if (!valid) { 11368 db_printf("usage: show t4 devlog <nexus>\n"); 11369 return; 11370 } 11371 11372 if (dev == NULL) { 11373 db_printf("device not found\n"); 11374 return; 11375 } 11376 11377 t4_dump_devlog(device_get_softc(dev)); 11378 } 11379 11380 DB_FUNC(tcb, db_show_t4tcb, db_t4_table, CS_OWN, NULL) 11381 { 11382 device_t dev; 11383 int radix, tid, t; 11384 bool valid; 11385 11386 valid = false; 11387 radix = db_radix; 11388 db_radix = 10; 11389 t = db_read_token(); 11390 if (t == tIDENT) { 11391 dev = device_lookup_by_name(db_tok_string); 11392 t = db_read_token(); 11393 if (t == tNUMBER) { 11394 tid = db_tok_number; 11395 valid = true; 11396 } 11397 } 11398 db_radix = radix; 11399 db_skip_to_eol(); 11400 if (!valid) { 11401 db_printf("usage: show t4 tcb <nexus> <tid>\n"); 11402 return; 11403 } 11404 11405 if (dev == NULL) { 11406 db_printf("device not found\n"); 11407 return; 11408 } 11409 if (tid < 0) { 11410 db_printf("invalid tid\n"); 11411 return; 11412 } 11413 11414 t4_dump_tcb(device_get_softc(dev), tid); 11415 } 11416 #endif 11417 11418 static eventhandler_tag vxlan_start_evtag; 11419 static eventhandler_tag vxlan_stop_evtag; 11420 11421 struct vxlan_evargs { 11422 struct ifnet *ifp; 11423 uint16_t port; 11424 }; 11425 11426 static void 11427 t4_vxlan_start(struct adapter *sc, void *arg) 11428 { 11429 struct vxlan_evargs *v = arg; 11430 struct port_info *pi; 11431 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 11432 int i, rc; 11433 11434 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 11435 return; 11436 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0) 11437 return; 11438 11439 if (sc->vxlan_refcount == 0) { 11440 sc->vxlan_port = v->port; 11441 sc->vxlan_refcount = 1; 11442 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, 11443 V_VXLAN(v->port) | F_VXLAN_EN); 11444 for_each_port(sc, i) { 11445 pi = sc->port[i]; 11446 if (pi->vxlan_tcam_entry == true) 11447 continue; 11448 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, 11449 match_all_mac, match_all_mac, 11450 sc->rawf_base + pi->port_id, 1, pi->port_id, true); 11451 if (rc < 0) { 11452 rc = -rc; 11453 log(LOG_ERR, 11454 "%s: failed to add VXLAN TCAM entry: %d.\n", 11455 device_get_name(pi->vi[0].dev), rc); 11456 } else { 11457 MPASS(rc == sc->rawf_base + pi->port_id); 11458 rc = 0; 11459 pi->vxlan_tcam_entry = true; 11460 } 11461 } 11462 } else if (sc->vxlan_port == v->port) { 11463 sc->vxlan_refcount++; 11464 } else { 11465 log(LOG_ERR, "%s: VXLAN already configured on port %d; " 11466 "ignoring attempt to configure it on port %d\n", 11467 device_get_nameunit(sc->dev), sc->vxlan_port, v->port); 11468 } 11469 end_synchronized_op(sc, 0); 11470 } 11471 11472 static void 11473 t4_vxlan_stop(struct adapter *sc, void *arg) 11474 { 11475 struct vxlan_evargs *v = arg; 11476 11477 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 11478 return; 11479 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0) 11480 return; 11481 11482 /* 11483 * VXLANs may have been configured before the driver was loaded so we 11484 * may see more stops than starts. This is not handled cleanly but at 11485 * least we keep the refcount sane. 11486 */ 11487 if (sc->vxlan_port != v->port) 11488 goto done; 11489 if (sc->vxlan_refcount == 0) { 11490 log(LOG_ERR, 11491 "%s: VXLAN operation on port %d was stopped earlier; " 11492 "ignoring attempt to stop it again.\n", 11493 device_get_nameunit(sc->dev), sc->vxlan_port); 11494 } else if (--sc->vxlan_refcount == 0) { 11495 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0); 11496 } 11497 done: 11498 end_synchronized_op(sc, 0); 11499 } 11500 11501 static void 11502 t4_vxlan_start_handler(void *arg __unused, struct ifnet *ifp, 11503 sa_family_t family, u_int port) 11504 { 11505 struct vxlan_evargs v; 11506 11507 MPASS(family == AF_INET || family == AF_INET6); 11508 v.ifp = ifp; 11509 v.port = port; 11510 11511 t4_iterate(t4_vxlan_start, &v); 11512 } 11513 11514 static void 11515 t4_vxlan_stop_handler(void *arg __unused, struct ifnet *ifp, sa_family_t family, 11516 u_int port) 11517 { 11518 struct vxlan_evargs v; 11519 11520 MPASS(family == AF_INET || family == AF_INET6); 11521 v.ifp = ifp; 11522 v.port = port; 11523 11524 t4_iterate(t4_vxlan_stop, &v); 11525 } 11526 11527 11528 static struct sx mlu; /* mod load unload */ 11529 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload"); 11530 11531 static int 11532 mod_event(module_t mod, int cmd, void *arg) 11533 { 11534 int rc = 0; 11535 static int loaded = 0; 11536 11537 switch (cmd) { 11538 case MOD_LOAD: 11539 sx_xlock(&mlu); 11540 if (loaded++ == 0) { 11541 t4_sge_modload(); 11542 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 11543 t4_filter_rpl, CPL_COOKIE_FILTER); 11544 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, 11545 do_l2t_write_rpl, CPL_COOKIE_FILTER); 11546 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL, 11547 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER); 11548 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 11549 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER); 11550 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, 11551 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER); 11552 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt); 11553 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt); 11554 t4_register_cpl_handler(CPL_SMT_WRITE_RPL, 11555 do_smt_write_rpl); 11556 sx_init(&t4_list_lock, "T4/T5 adapters"); 11557 SLIST_INIT(&t4_list); 11558 callout_init(&fatal_callout, 1); 11559 #ifdef TCP_OFFLOAD 11560 sx_init(&t4_uld_list_lock, "T4/T5 ULDs"); 11561 SLIST_INIT(&t4_uld_list); 11562 #endif 11563 #ifdef INET6 11564 t4_clip_modload(); 11565 #endif 11566 #ifdef KERN_TLS 11567 t6_ktls_modload(); 11568 #endif 11569 t4_tracer_modload(); 11570 tweak_tunables(); 11571 vxlan_start_evtag = 11572 EVENTHANDLER_REGISTER(vxlan_start, 11573 t4_vxlan_start_handler, NULL, 11574 EVENTHANDLER_PRI_ANY); 11575 vxlan_stop_evtag = 11576 EVENTHANDLER_REGISTER(vxlan_stop, 11577 t4_vxlan_stop_handler, NULL, 11578 EVENTHANDLER_PRI_ANY); 11579 } 11580 sx_xunlock(&mlu); 11581 break; 11582 11583 case MOD_UNLOAD: 11584 sx_xlock(&mlu); 11585 if (--loaded == 0) { 11586 int tries; 11587 11588 sx_slock(&t4_list_lock); 11589 if (!SLIST_EMPTY(&t4_list)) { 11590 rc = EBUSY; 11591 sx_sunlock(&t4_list_lock); 11592 goto done_unload; 11593 } 11594 #ifdef TCP_OFFLOAD 11595 sx_slock(&t4_uld_list_lock); 11596 if (!SLIST_EMPTY(&t4_uld_list)) { 11597 rc = EBUSY; 11598 sx_sunlock(&t4_uld_list_lock); 11599 sx_sunlock(&t4_list_lock); 11600 goto done_unload; 11601 } 11602 #endif 11603 tries = 0; 11604 while (tries++ < 5 && t4_sge_extfree_refs() != 0) { 11605 uprintf("%ju clusters with custom free routine " 11606 "still is use.\n", t4_sge_extfree_refs()); 11607 pause("t4unload", 2 * hz); 11608 } 11609 #ifdef TCP_OFFLOAD 11610 sx_sunlock(&t4_uld_list_lock); 11611 #endif 11612 sx_sunlock(&t4_list_lock); 11613 11614 if (t4_sge_extfree_refs() == 0) { 11615 EVENTHANDLER_DEREGISTER(vxlan_start, 11616 vxlan_start_evtag); 11617 EVENTHANDLER_DEREGISTER(vxlan_stop, 11618 vxlan_stop_evtag); 11619 t4_tracer_modunload(); 11620 #ifdef KERN_TLS 11621 t6_ktls_modunload(); 11622 #endif 11623 #ifdef INET6 11624 t4_clip_modunload(); 11625 #endif 11626 #ifdef TCP_OFFLOAD 11627 sx_destroy(&t4_uld_list_lock); 11628 #endif 11629 sx_destroy(&t4_list_lock); 11630 t4_sge_modunload(); 11631 loaded = 0; 11632 } else { 11633 rc = EBUSY; 11634 loaded++; /* undo earlier decrement */ 11635 } 11636 } 11637 done_unload: 11638 sx_xunlock(&mlu); 11639 break; 11640 } 11641 11642 return (rc); 11643 } 11644 11645 static devclass_t t4_devclass, t5_devclass, t6_devclass; 11646 static devclass_t cxgbe_devclass, cxl_devclass, cc_devclass; 11647 static devclass_t vcxgbe_devclass, vcxl_devclass, vcc_devclass; 11648 11649 DRIVER_MODULE(t4nex, pci, t4_driver, t4_devclass, mod_event, 0); 11650 MODULE_VERSION(t4nex, 1); 11651 MODULE_DEPEND(t4nex, firmware, 1, 1, 1); 11652 #ifdef DEV_NETMAP 11653 MODULE_DEPEND(t4nex, netmap, 1, 1, 1); 11654 #endif /* DEV_NETMAP */ 11655 11656 DRIVER_MODULE(t5nex, pci, t5_driver, t5_devclass, mod_event, 0); 11657 MODULE_VERSION(t5nex, 1); 11658 MODULE_DEPEND(t5nex, firmware, 1, 1, 1); 11659 #ifdef DEV_NETMAP 11660 MODULE_DEPEND(t5nex, netmap, 1, 1, 1); 11661 #endif /* DEV_NETMAP */ 11662 11663 DRIVER_MODULE(t6nex, pci, t6_driver, t6_devclass, mod_event, 0); 11664 MODULE_VERSION(t6nex, 1); 11665 MODULE_DEPEND(t6nex, firmware, 1, 1, 1); 11666 #ifdef DEV_NETMAP 11667 MODULE_DEPEND(t6nex, netmap, 1, 1, 1); 11668 #endif /* DEV_NETMAP */ 11669 11670 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, cxgbe_devclass, 0, 0); 11671 MODULE_VERSION(cxgbe, 1); 11672 11673 DRIVER_MODULE(cxl, t5nex, cxl_driver, cxl_devclass, 0, 0); 11674 MODULE_VERSION(cxl, 1); 11675 11676 DRIVER_MODULE(cc, t6nex, cc_driver, cc_devclass, 0, 0); 11677 MODULE_VERSION(cc, 1); 11678 11679 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, vcxgbe_devclass, 0, 0); 11680 MODULE_VERSION(vcxgbe, 1); 11681 11682 DRIVER_MODULE(vcxl, cxl, vcxl_driver, vcxl_devclass, 0, 0); 11683 MODULE_VERSION(vcxl, 1); 11684 11685 DRIVER_MODULE(vcc, cc, vcc_driver, vcc_devclass, 0, 0); 11686 MODULE_VERSION(vcc, 1); 11687