1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2011, 2025 Chelsio Communications. 5 * Written by: Navdeep Parhar <np@FreeBSD.org> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_ddb.h" 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_kern_tls.h" 34 #include "opt_ratelimit.h" 35 #include "opt_rss.h" 36 37 #include <sys/param.h> 38 #include <sys/conf.h> 39 #include <sys/priv.h> 40 #include <sys/kernel.h> 41 #include <sys/bus.h> 42 #include <sys/eventhandler.h> 43 #include <sys/module.h> 44 #include <sys/malloc.h> 45 #include <sys/queue.h> 46 #include <sys/taskqueue.h> 47 #include <dev/pci/pcireg.h> 48 #include <dev/pci/pcivar.h> 49 #include <sys/firmware.h> 50 #include <sys/sbuf.h> 51 #include <sys/smp.h> 52 #include <sys/socket.h> 53 #include <sys/sockio.h> 54 #include <sys/sysctl.h> 55 #include <net/ethernet.h> 56 #include <net/if.h> 57 #include <net/if_types.h> 58 #include <net/if_dl.h> 59 #include <net/if_vlan_var.h> 60 #ifdef RSS 61 #include <net/rss_config.h> 62 #endif 63 #include <netinet/in.h> 64 #include <netinet/ip.h> 65 #ifdef KERN_TLS 66 #include <netinet/tcp_seq.h> 67 #endif 68 #if defined(__i386__) || defined(__amd64__) 69 #include <machine/md_var.h> 70 #include <machine/cputypes.h> 71 #include <vm/vm.h> 72 #include <vm/pmap.h> 73 #endif 74 #ifdef DDB 75 #include <ddb/ddb.h> 76 #include <ddb/db_lex.h> 77 #endif 78 79 #include "common/common.h" 80 #include "common/t4_msg.h" 81 #include "common/t4_regs.h" 82 #include "common/t4_regs_values.h" 83 #include "cudbg/cudbg.h" 84 #include "t4_clip.h" 85 #include "t4_ioctl.h" 86 #include "t4_l2t.h" 87 #include "t4_mp_ring.h" 88 #include "t4_if.h" 89 #include "t4_smt.h" 90 91 /* T4 bus driver interface */ 92 static int t4_probe(device_t); 93 static int t4_attach(device_t); 94 static int t4_detach(device_t); 95 static int t4_child_location(device_t, device_t, struct sbuf *); 96 static int t4_ready(device_t); 97 static int t4_read_port_device(device_t, int, device_t *); 98 static int t4_suspend(device_t); 99 static int t4_resume(device_t); 100 static int t4_reset_prepare(device_t, device_t); 101 static int t4_reset_post(device_t, device_t); 102 static device_method_t t4_methods[] = { 103 DEVMETHOD(device_probe, t4_probe), 104 DEVMETHOD(device_attach, t4_attach), 105 DEVMETHOD(device_detach, t4_detach), 106 DEVMETHOD(device_suspend, t4_suspend), 107 DEVMETHOD(device_resume, t4_resume), 108 109 DEVMETHOD(bus_child_location, t4_child_location), 110 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 111 DEVMETHOD(bus_reset_post, t4_reset_post), 112 113 DEVMETHOD(t4_is_main_ready, t4_ready), 114 DEVMETHOD(t4_read_port_device, t4_read_port_device), 115 116 DEVMETHOD_END 117 }; 118 static driver_t t4_driver = { 119 "t4nex", 120 t4_methods, 121 sizeof(struct adapter) 122 }; 123 124 125 /* T4 port (cxgbe) interface */ 126 static int cxgbe_probe(device_t); 127 static int cxgbe_attach(device_t); 128 static int cxgbe_detach(device_t); 129 device_method_t cxgbe_methods[] = { 130 DEVMETHOD(device_probe, cxgbe_probe), 131 DEVMETHOD(device_attach, cxgbe_attach), 132 DEVMETHOD(device_detach, cxgbe_detach), 133 { 0, 0 } 134 }; 135 static driver_t cxgbe_driver = { 136 "cxgbe", 137 cxgbe_methods, 138 sizeof(struct port_info) 139 }; 140 141 /* T4 VI (vcxgbe) interface */ 142 static int vcxgbe_probe(device_t); 143 static int vcxgbe_attach(device_t); 144 static int vcxgbe_detach(device_t); 145 static device_method_t vcxgbe_methods[] = { 146 DEVMETHOD(device_probe, vcxgbe_probe), 147 DEVMETHOD(device_attach, vcxgbe_attach), 148 DEVMETHOD(device_detach, vcxgbe_detach), 149 { 0, 0 } 150 }; 151 static driver_t vcxgbe_driver = { 152 "vcxgbe", 153 vcxgbe_methods, 154 sizeof(struct vi_info) 155 }; 156 157 static d_ioctl_t t4_ioctl; 158 159 static struct cdevsw t4_cdevsw = { 160 .d_version = D_VERSION, 161 .d_ioctl = t4_ioctl, 162 .d_name = "t4nex", 163 }; 164 165 /* T5 bus driver interface */ 166 static int t5_probe(device_t); 167 static device_method_t t5_methods[] = { 168 DEVMETHOD(device_probe, t5_probe), 169 DEVMETHOD(device_attach, t4_attach), 170 DEVMETHOD(device_detach, t4_detach), 171 DEVMETHOD(device_suspend, t4_suspend), 172 DEVMETHOD(device_resume, t4_resume), 173 174 DEVMETHOD(bus_child_location, t4_child_location), 175 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 176 DEVMETHOD(bus_reset_post, t4_reset_post), 177 178 DEVMETHOD(t4_is_main_ready, t4_ready), 179 DEVMETHOD(t4_read_port_device, t4_read_port_device), 180 181 DEVMETHOD_END 182 }; 183 static driver_t t5_driver = { 184 "t5nex", 185 t5_methods, 186 sizeof(struct adapter) 187 }; 188 189 190 /* T5 port (cxl) interface */ 191 static driver_t cxl_driver = { 192 "cxl", 193 cxgbe_methods, 194 sizeof(struct port_info) 195 }; 196 197 /* T5 VI (vcxl) interface */ 198 static driver_t vcxl_driver = { 199 "vcxl", 200 vcxgbe_methods, 201 sizeof(struct vi_info) 202 }; 203 204 /* T6 bus driver interface */ 205 static int t6_probe(device_t); 206 static device_method_t t6_methods[] = { 207 DEVMETHOD(device_probe, t6_probe), 208 DEVMETHOD(device_attach, t4_attach), 209 DEVMETHOD(device_detach, t4_detach), 210 DEVMETHOD(device_suspend, t4_suspend), 211 DEVMETHOD(device_resume, t4_resume), 212 213 DEVMETHOD(bus_child_location, t4_child_location), 214 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 215 DEVMETHOD(bus_reset_post, t4_reset_post), 216 217 DEVMETHOD(t4_is_main_ready, t4_ready), 218 DEVMETHOD(t4_read_port_device, t4_read_port_device), 219 220 DEVMETHOD_END 221 }; 222 static driver_t t6_driver = { 223 "t6nex", 224 t6_methods, 225 sizeof(struct adapter) 226 }; 227 228 229 /* T6 port (cc) interface */ 230 static driver_t cc_driver = { 231 "cc", 232 cxgbe_methods, 233 sizeof(struct port_info) 234 }; 235 236 /* T6 VI (vcc) interface */ 237 static driver_t vcc_driver = { 238 "vcc", 239 vcxgbe_methods, 240 sizeof(struct vi_info) 241 }; 242 243 /* T7+ bus driver interface */ 244 static int ch_probe(device_t); 245 static device_method_t ch_methods[] = { 246 DEVMETHOD(device_probe, ch_probe), 247 DEVMETHOD(device_attach, t4_attach), 248 DEVMETHOD(device_detach, t4_detach), 249 DEVMETHOD(device_suspend, t4_suspend), 250 DEVMETHOD(device_resume, t4_resume), 251 252 DEVMETHOD(bus_child_location, t4_child_location), 253 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 254 DEVMETHOD(bus_reset_post, t4_reset_post), 255 256 DEVMETHOD(t4_is_main_ready, t4_ready), 257 DEVMETHOD(t4_read_port_device, t4_read_port_device), 258 259 DEVMETHOD_END 260 }; 261 static driver_t ch_driver = { 262 "chnex", 263 ch_methods, 264 sizeof(struct adapter) 265 }; 266 267 268 /* T7+ port (che) interface */ 269 static driver_t che_driver = { 270 "che", 271 cxgbe_methods, 272 sizeof(struct port_info) 273 }; 274 275 /* T7+ VI (vche) interface */ 276 static driver_t vche_driver = { 277 "vche", 278 vcxgbe_methods, 279 sizeof(struct vi_info) 280 }; 281 282 /* ifnet interface */ 283 static void cxgbe_init(void *); 284 static int cxgbe_ioctl(if_t, unsigned long, caddr_t); 285 static int cxgbe_transmit(if_t, struct mbuf *); 286 static void cxgbe_qflush(if_t); 287 #if defined(KERN_TLS) || defined(RATELIMIT) 288 static int cxgbe_snd_tag_alloc(if_t, union if_snd_tag_alloc_params *, 289 struct m_snd_tag **); 290 #endif 291 292 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); 293 294 /* 295 * Correct lock order when you need to acquire multiple locks is t4_list_lock, 296 * then ADAPTER_LOCK, then t4_uld_list_lock. 297 */ 298 static struct sx t4_list_lock; 299 SLIST_HEAD(, adapter) t4_list; 300 #ifdef TCP_OFFLOAD 301 static struct sx t4_uld_list_lock; 302 struct uld_info *t4_uld_list[ULD_MAX + 1]; 303 #endif 304 305 /* 306 * Tunables. See tweak_tunables() too. 307 * 308 * Each tunable is set to a default value here if it's known at compile-time. 309 * Otherwise it is set to -n as an indication to tweak_tunables() that it should 310 * provide a reasonable default (upto n) when the driver is loaded. 311 * 312 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to 313 * T5 are under hw.cxl. 314 */ 315 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 316 "cxgbe(4) parameters"); 317 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 318 "cxgbe(4) T5+ parameters"); 319 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 320 "cxgbe(4) TOE parameters"); 321 322 /* 323 * Number of queues for tx and rx, NIC and offload. 324 */ 325 #define NTXQ 16 326 int t4_ntxq = -NTXQ; 327 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0, 328 "Number of TX queues per port"); 329 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */ 330 331 #define NRXQ 8 332 int t4_nrxq = -NRXQ; 333 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0, 334 "Number of RX queues per port"); 335 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */ 336 337 #define NTXQ_VI 1 338 static int t4_ntxq_vi = -NTXQ_VI; 339 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0, 340 "Number of TX queues per VI"); 341 342 #define NRXQ_VI 1 343 static int t4_nrxq_vi = -NRXQ_VI; 344 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0, 345 "Number of RX queues per VI"); 346 347 static int t4_rsrv_noflowq = 0; 348 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq, 349 0, "Reserve TX queue 0 of each VI for non-flowid packets"); 350 351 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 352 #define NOFLDTXQ 8 353 static int t4_nofldtxq = -NOFLDTXQ; 354 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0, 355 "Number of offload TX queues per port"); 356 357 #define NOFLDTXQ_VI 1 358 static int t4_nofldtxq_vi = -NOFLDTXQ_VI; 359 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0, 360 "Number of offload TX queues per VI"); 361 #endif 362 363 #if defined(TCP_OFFLOAD) 364 #define NOFLDRXQ 2 365 static int t4_nofldrxq = -NOFLDRXQ; 366 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0, 367 "Number of offload RX queues per port"); 368 369 #define NOFLDRXQ_VI 1 370 static int t4_nofldrxq_vi = -NOFLDRXQ_VI; 371 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0, 372 "Number of offload RX queues per VI"); 373 374 #define TMR_IDX_OFLD 1 375 static int t4_tmr_idx_ofld = TMR_IDX_OFLD; 376 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN, 377 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues"); 378 379 #define PKTC_IDX_OFLD (-1) 380 static int t4_pktc_idx_ofld = PKTC_IDX_OFLD; 381 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN, 382 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues"); 383 384 /* 0 means chip/fw default, non-zero number is value in microseconds */ 385 static u_long t4_toe_keepalive_idle = 0; 386 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN, 387 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)"); 388 389 /* 0 means chip/fw default, non-zero number is value in microseconds */ 390 static u_long t4_toe_keepalive_interval = 0; 391 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN, 392 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)"); 393 394 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */ 395 static int t4_toe_keepalive_count = 0; 396 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN, 397 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort"); 398 399 /* 0 means chip/fw default, non-zero number is value in microseconds */ 400 static u_long t4_toe_rexmt_min = 0; 401 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN, 402 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)"); 403 404 /* 0 means chip/fw default, non-zero number is value in microseconds */ 405 static u_long t4_toe_rexmt_max = 0; 406 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN, 407 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)"); 408 409 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */ 410 static int t4_toe_rexmt_count = 0; 411 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN, 412 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort"); 413 414 /* -1 means chip/fw default, other values are raw backoff values to use */ 415 static int t4_toe_rexmt_backoff[16] = { 416 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 417 }; 418 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, 419 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 420 "cxgbe(4) TOE retransmit backoff values"); 421 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN, 422 &t4_toe_rexmt_backoff[0], 0, ""); 423 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN, 424 &t4_toe_rexmt_backoff[1], 0, ""); 425 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN, 426 &t4_toe_rexmt_backoff[2], 0, ""); 427 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN, 428 &t4_toe_rexmt_backoff[3], 0, ""); 429 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN, 430 &t4_toe_rexmt_backoff[4], 0, ""); 431 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN, 432 &t4_toe_rexmt_backoff[5], 0, ""); 433 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN, 434 &t4_toe_rexmt_backoff[6], 0, ""); 435 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN, 436 &t4_toe_rexmt_backoff[7], 0, ""); 437 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN, 438 &t4_toe_rexmt_backoff[8], 0, ""); 439 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN, 440 &t4_toe_rexmt_backoff[9], 0, ""); 441 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN, 442 &t4_toe_rexmt_backoff[10], 0, ""); 443 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN, 444 &t4_toe_rexmt_backoff[11], 0, ""); 445 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN, 446 &t4_toe_rexmt_backoff[12], 0, ""); 447 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN, 448 &t4_toe_rexmt_backoff[13], 0, ""); 449 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN, 450 &t4_toe_rexmt_backoff[14], 0, ""); 451 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN, 452 &t4_toe_rexmt_backoff[15], 0, ""); 453 454 int t4_ddp_rcvbuf_len = 256 * 1024; 455 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_len, CTLFLAG_RWTUN, 456 &t4_ddp_rcvbuf_len, 0, "length of each DDP RX buffer"); 457 458 unsigned int t4_ddp_rcvbuf_cache = 4; 459 SYSCTL_UINT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_cache, CTLFLAG_RWTUN, 460 &t4_ddp_rcvbuf_cache, 0, 461 "maximum number of free DDP RX buffers to cache per connection"); 462 #endif 463 464 #ifdef DEV_NETMAP 465 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */ 466 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */ 467 static int t4_native_netmap = NN_EXTRA_VI; 468 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap, 469 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs"); 470 471 #define NNMTXQ 8 472 static int t4_nnmtxq = -NNMTXQ; 473 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0, 474 "Number of netmap TX queues"); 475 476 #define NNMRXQ 8 477 static int t4_nnmrxq = -NNMRXQ; 478 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0, 479 "Number of netmap RX queues"); 480 481 #define NNMTXQ_VI 2 482 static int t4_nnmtxq_vi = -NNMTXQ_VI; 483 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0, 484 "Number of netmap TX queues per VI"); 485 486 #define NNMRXQ_VI 2 487 static int t4_nnmrxq_vi = -NNMRXQ_VI; 488 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0, 489 "Number of netmap RX queues per VI"); 490 #endif 491 492 /* 493 * Holdoff parameters for ports. 494 */ 495 #define TMR_IDX 1 496 int t4_tmr_idx = TMR_IDX; 497 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx, 498 0, "Holdoff timer index"); 499 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */ 500 501 #define PKTC_IDX (-1) 502 int t4_pktc_idx = PKTC_IDX; 503 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx, 504 0, "Holdoff packet counter index"); 505 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */ 506 507 /* 508 * Size (# of entries) of each tx and rx queue. 509 */ 510 unsigned int t4_qsize_txq = TX_EQ_QSIZE; 511 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0, 512 "Number of descriptors in each TX queue"); 513 514 unsigned int t4_qsize_rxq = RX_IQ_QSIZE; 515 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0, 516 "Number of descriptors in each RX queue"); 517 518 /* 519 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). 520 */ 521 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; 522 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types, 523 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)"); 524 525 /* 526 * Configuration file. All the _CF names here are special. 527 */ 528 #define DEFAULT_CF "default" 529 #define BUILTIN_CF "built-in" 530 #define FLASH_CF "flash" 531 #define UWIRE_CF "uwire" 532 #define FPGA_CF "fpga" 533 static char t4_cfg_file[32] = DEFAULT_CF; 534 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file, 535 sizeof(t4_cfg_file), "Firmware configuration file"); 536 537 /* 538 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively). 539 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them. 540 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water 541 * mark or when signalled to do so, 0 to never emit PAUSE. 542 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the 543 * negotiated settings will override rx_pause/tx_pause. 544 * Otherwise rx_pause/tx_pause are applied forcibly. 545 */ 546 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG; 547 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN, 548 &t4_pause_settings, 0, 549 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 550 551 /* 552 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively). 553 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5) 554 * 0 to disable FEC. 555 */ 556 static int t4_fec = -1; 557 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0, 558 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); 559 560 static const char * 561 t4_fec_bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2\6auto\7module"; 562 563 /* 564 * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it 565 * issues to the firmware. If the firmware doesn't support FORCE_FEC then the 566 * driver runs as if this is set to 0. 567 * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay. 568 * 0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the 569 * transceiver. Multiple FEC bits may not be okay but will be passed on to 570 * the firmware anyway (may result in l1cfg errors with old firmwares). 571 * 1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO 572 * means set all FEC bits that are valid for the speed. 573 */ 574 static int t4_force_fec = -1; 575 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0, 576 "Controls the use of FORCE_FEC bit in L1 configuration."); 577 578 /* 579 * Link autonegotiation. 580 * -1 to run with the firmware default. 581 * 0 to disable. 582 * 1 to enable. 583 */ 584 static int t4_autoneg = -1; 585 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0, 586 "Link autonegotiation"); 587 588 /* 589 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, 590 * encouraged respectively). '-n' is the same as 'n' except the firmware 591 * version used in the checks is read from the firmware bundled with the driver. 592 */ 593 static int t4_fw_install = 1; 594 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0, 595 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)"); 596 597 /* 598 * ASIC features that will be used. Disable the ones you don't want so that the 599 * chip resources aren't wasted on features that will not be used. 600 */ 601 static int t4_nbmcaps_allowed = 0; 602 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN, 603 &t4_nbmcaps_allowed, 0, "Default NBM capabilities"); 604 605 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ 606 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN, 607 &t4_linkcaps_allowed, 0, "Default link capabilities"); 608 609 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS | 610 FW_CAPS_CONFIG_SWITCH_EGRESS; 611 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN, 612 &t4_switchcaps_allowed, 0, "Default switch capabilities"); 613 614 static int t4_nvmecaps_allowed = -1; 615 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nvmecaps_allowed, CTLFLAG_RDTUN, 616 &t4_nvmecaps_allowed, 0, "Default NVMe capabilities"); 617 618 #ifdef RATELIMIT 619 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 620 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD; 621 #else 622 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 623 FW_CAPS_CONFIG_NIC_HASHFILTER; 624 #endif 625 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN, 626 &t4_niccaps_allowed, 0, "Default NIC capabilities"); 627 628 static int t4_toecaps_allowed = -1; 629 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN, 630 &t4_toecaps_allowed, 0, "Default TCP offload capabilities"); 631 632 static int t4_rdmacaps_allowed = -1; 633 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN, 634 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities"); 635 636 static int t4_cryptocaps_allowed = -1; 637 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN, 638 &t4_cryptocaps_allowed, 0, "Default crypto capabilities"); 639 640 static int t4_iscsicaps_allowed = -1; 641 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN, 642 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities"); 643 644 static int t4_fcoecaps_allowed = 0; 645 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN, 646 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities"); 647 648 static int t5_write_combine = 0; 649 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine, 650 0, "Use WC instead of UC for BAR2"); 651 652 /* From t4_sysctls: doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"} */ 653 static int t4_doorbells_allowed = 0xf; 654 SYSCTL_INT(_hw_cxgbe, OID_AUTO, doorbells_allowed, CTLFLAG_RDTUN, 655 &t4_doorbells_allowed, 0, "Limit tx queues to these doorbells"); 656 657 static int t4_num_vis = 1; 658 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0, 659 "Number of VIs per port"); 660 661 /* 662 * PCIe Relaxed Ordering. 663 * -1: driver should figure out a good value. 664 * 0: disable RO. 665 * 1: enable RO. 666 * 2: leave RO alone. 667 */ 668 static int pcie_relaxed_ordering = -1; 669 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN, 670 &pcie_relaxed_ordering, 0, 671 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone"); 672 673 static int t4_panic_on_fatal_err = 0; 674 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN, 675 &t4_panic_on_fatal_err, 0, "panic on fatal errors"); 676 677 static int t4_reset_on_fatal_err = 0; 678 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN, 679 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors"); 680 681 static int t4_reset_method = 1; 682 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_method, CTLFLAG_RWTUN, &t4_reset_method, 683 0, "reset method: 0 = PL_RST, 1 = PCIe secondary bus reset, 2 = PCIe link bounce"); 684 685 static int t4_clock_gate_on_suspend = 0; 686 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN, 687 &t4_clock_gate_on_suspend, 0, "gate the clock on suspend"); 688 689 static int t4_tx_vm_wr = 0; 690 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0, 691 "Use VM work requests to transmit packets."); 692 693 /* 694 * Set to non-zero to enable the attack filter. A packet that matches any of 695 * these conditions will get dropped on ingress: 696 * 1) IP && source address == destination address. 697 * 2) TCP/IP && source address is not a unicast address. 698 * 3) TCP/IP && destination address is not a unicast address. 699 * 4) IP && source address is loopback (127.x.y.z). 700 * 5) IP && destination address is loopback (127.x.y.z). 701 * 6) IPv6 && source address == destination address. 702 * 7) IPv6 && source address is not a unicast address. 703 * 8) IPv6 && source address is loopback (::1/128). 704 * 9) IPv6 && destination address is loopback (::1/128). 705 * 10) IPv6 && source address is unspecified (::/128). 706 * 11) IPv6 && destination address is unspecified (::/128). 707 * 12) TCP/IPv6 && source address is multicast (ff00::/8). 708 * 13) TCP/IPv6 && destination address is multicast (ff00::/8). 709 */ 710 static int t4_attack_filter = 0; 711 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN, 712 &t4_attack_filter, 0, "Drop suspicious traffic"); 713 714 static int t4_drop_ip_fragments = 0; 715 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN, 716 &t4_drop_ip_fragments, 0, "Drop IP fragments"); 717 718 static int t4_drop_pkts_with_l2_errors = 1; 719 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN, 720 &t4_drop_pkts_with_l2_errors, 0, 721 "Drop all frames with Layer 2 length or checksum errors"); 722 723 static int t4_drop_pkts_with_l3_errors = 0; 724 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN, 725 &t4_drop_pkts_with_l3_errors, 0, 726 "Drop all frames with IP version, length, or checksum errors"); 727 728 static int t4_drop_pkts_with_l4_errors = 0; 729 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN, 730 &t4_drop_pkts_with_l4_errors, 0, 731 "Drop all frames with Layer 4 length, checksum, or other errors"); 732 733 #ifdef TCP_OFFLOAD 734 /* 735 * TOE tunables. 736 */ 737 static int t4_cop_managed_offloading = 0; 738 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN, 739 &t4_cop_managed_offloading, 0, 740 "COP (Connection Offload Policy) controls all TOE offload"); 741 TUNABLE_INT("hw.cxgbe.cop_managed_offloading", &t4_cop_managed_offloading); 742 #endif 743 744 #ifdef KERN_TLS 745 /* 746 * This enables KERN_TLS for all adapters if set. 747 */ 748 static int t4_kern_tls = 0; 749 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0, 750 "Enable KERN_TLS mode for T6 adapters"); 751 752 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 753 "cxgbe(4) KERN_TLS parameters"); 754 755 static int t4_tls_inline_keys = 0; 756 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN, 757 &t4_tls_inline_keys, 0, 758 "Always pass TLS keys in work requests (1) or attempt to store TLS keys " 759 "in card memory."); 760 761 static int t4_tls_combo_wrs = 0; 762 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs, 763 0, "Attempt to combine TCB field updates with TLS record work requests."); 764 765 static int t4_tls_short_records = 1; 766 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, short_records, CTLFLAG_RDTUN, 767 &t4_tls_short_records, 0, "Use cipher-only mode for short records."); 768 769 static int t4_tls_partial_ghash = 1; 770 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, partial_ghash, CTLFLAG_RDTUN, 771 &t4_tls_partial_ghash, 0, "Use partial GHASH for AES-GCM records."); 772 #endif 773 774 /* Functions used by VIs to obtain unique MAC addresses for each VI. */ 775 static int vi_mac_funcs[] = { 776 FW_VI_FUNC_ETH, 777 FW_VI_FUNC_OFLD, 778 FW_VI_FUNC_IWARP, 779 FW_VI_FUNC_OPENISCSI, 780 FW_VI_FUNC_OPENFCOE, 781 FW_VI_FUNC_FOISCSI, 782 FW_VI_FUNC_FOFCOE, 783 }; 784 785 struct intrs_and_queues { 786 uint16_t intr_type; /* INTx, MSI, or MSI-X */ 787 uint16_t num_vis; /* number of VIs for each port */ 788 uint16_t nirq; /* Total # of vectors */ 789 uint16_t ntxq; /* # of NIC txq's for each port */ 790 uint16_t nrxq; /* # of NIC rxq's for each port */ 791 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */ 792 uint16_t nofldrxq; /* # of TOE rxq's for each port */ 793 uint16_t nnmtxq; /* # of netmap txq's */ 794 uint16_t nnmrxq; /* # of netmap rxq's */ 795 796 /* The vcxgbe/vcxl interfaces use these and not the ones above. */ 797 uint16_t ntxq_vi; /* # of NIC txq's */ 798 uint16_t nrxq_vi; /* # of NIC rxq's */ 799 uint16_t nofldtxq_vi; /* # of TOE txq's */ 800 uint16_t nofldrxq_vi; /* # of TOE rxq's */ 801 uint16_t nnmtxq_vi; /* # of netmap txq's */ 802 uint16_t nnmrxq_vi; /* # of netmap rxq's */ 803 }; 804 805 static void setup_memwin(struct adapter *); 806 static void position_memwin(struct adapter *, int, uint32_t); 807 static int validate_mem_range(struct adapter *, uint32_t, uint32_t); 808 static int fwmtype_to_hwmtype(int); 809 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t, 810 uint32_t *); 811 static int fixup_devlog_params(struct adapter *); 812 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *); 813 static int contact_firmware(struct adapter *); 814 static int partition_resources(struct adapter *); 815 static int get_params__pre_init(struct adapter *); 816 static int set_params__pre_init(struct adapter *); 817 static int get_params__post_init(struct adapter *); 818 static int set_params__post_init(struct adapter *); 819 static void t4_set_desc(struct adapter *); 820 static bool fixed_ifmedia(struct port_info *); 821 static void build_medialist(struct port_info *); 822 static void init_link_config(struct port_info *); 823 static int fixup_link_config(struct port_info *); 824 static int apply_link_config(struct port_info *); 825 static int cxgbe_init_synchronized(struct vi_info *); 826 static int cxgbe_uninit_synchronized(struct vi_info *); 827 static int adapter_full_init(struct adapter *); 828 static void adapter_full_uninit(struct adapter *); 829 static int vi_full_init(struct vi_info *); 830 static void vi_full_uninit(struct vi_info *); 831 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *); 832 static void quiesce_txq(struct sge_txq *); 833 static void quiesce_wrq(struct sge_wrq *); 834 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *); 835 static void quiesce_vi(struct vi_info *); 836 static int t4_alloc_irq(struct adapter *, struct irq *, int rid, 837 driver_intr_t *, void *, char *); 838 static int t4_free_irq(struct adapter *, struct irq *); 839 static void t4_init_atid_table(struct adapter *); 840 static void t4_free_atid_table(struct adapter *); 841 static void stop_atid_allocator(struct adapter *); 842 static void restart_atid_allocator(struct adapter *); 843 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *); 844 static void vi_refresh_stats(struct vi_info *); 845 static void cxgbe_refresh_stats(struct vi_info *); 846 static void cxgbe_tick(void *); 847 static void vi_tick(void *); 848 static void cxgbe_sysctls(struct port_info *); 849 static int sysctl_int_array(SYSCTL_HANDLER_ARGS); 850 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS); 851 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS); 852 static int sysctl_btphy(SYSCTL_HANDLER_ARGS); 853 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS); 854 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS); 855 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); 856 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); 857 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); 858 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); 859 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS); 860 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS); 861 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS); 862 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS); 863 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS); 864 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS); 865 static int sysctl_handle_t4_portstat64(SYSCTL_HANDLER_ARGS); 866 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); 867 static int sysctl_temperature(SYSCTL_HANDLER_ARGS); 868 static int sysctl_vdd(SYSCTL_HANDLER_ARGS); 869 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS); 870 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS); 871 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); 872 static int sysctl_cim_ibq(SYSCTL_HANDLER_ARGS); 873 static int sysctl_cim_obq(SYSCTL_HANDLER_ARGS); 874 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); 875 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); 876 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); 877 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); 878 static int sysctl_cim_qcfg_t7(SYSCTL_HANDLER_ARGS); 879 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); 880 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); 881 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS); 882 static int sysctl_devlog(SYSCTL_HANDLER_ARGS); 883 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); 884 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); 885 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); 886 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); 887 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); 888 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); 889 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS); 890 static int sysctl_mps_tcam_t7(SYSCTL_HANDLER_ARGS); 891 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); 892 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); 893 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); 894 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); 895 static int sysctl_tids(SYSCTL_HANDLER_ARGS); 896 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); 897 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS); 898 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS); 899 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); 900 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); 901 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); 902 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); 903 static int sysctl_cpus(SYSCTL_HANDLER_ARGS); 904 static int sysctl_reset(SYSCTL_HANDLER_ARGS); 905 #ifdef TCP_OFFLOAD 906 static int sysctl_tls(SYSCTL_HANDLER_ARGS); 907 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS); 908 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS); 909 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS); 910 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS); 911 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS); 912 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS); 913 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS); 914 #endif 915 static int get_sge_context(struct adapter *, int, uint32_t, int, uint32_t *); 916 static int load_fw(struct adapter *, struct t4_data *); 917 static int load_cfg(struct adapter *, struct t4_data *); 918 static int load_boot(struct adapter *, struct t4_bootrom *); 919 static int load_bootcfg(struct adapter *, struct t4_data *); 920 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *); 921 static void free_offload_policy(struct t4_offload_policy *); 922 static int set_offload_policy(struct adapter *, struct t4_offload_policy *); 923 static int read_card_mem(struct adapter *, int, struct t4_mem_range *); 924 static int read_i2c(struct adapter *, struct t4_i2c_data *); 925 static int clear_stats(struct adapter *, u_int); 926 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *); 927 static int release_clip_addr(struct adapter *, struct t4_clip_addr *); 928 static inline int stop_adapter(struct adapter *); 929 static inline void set_adapter_hwstatus(struct adapter *, const bool); 930 static int stop_lld(struct adapter *); 931 static inline int restart_adapter(struct adapter *); 932 static int restart_lld(struct adapter *); 933 #ifdef TCP_OFFLOAD 934 static int deactivate_all_uld(struct adapter *); 935 static void stop_all_uld(struct adapter *); 936 static void restart_all_uld(struct adapter *); 937 #endif 938 #ifdef KERN_TLS 939 static int ktls_capability(struct adapter *, bool); 940 #endif 941 static int mod_event(module_t, int, void *); 942 static int notify_siblings(device_t, int); 943 static uint64_t vi_get_counter(if_t, ift_counter); 944 static uint64_t cxgbe_get_counter(if_t, ift_counter); 945 static void enable_vxlan_rx(struct adapter *); 946 static void reset_adapter_task(void *, int); 947 static void fatal_error_task(void *, int); 948 static void dump_devlog(struct adapter *); 949 static void dump_cim_regs(struct adapter *); 950 static void dump_cimla(struct adapter *); 951 952 struct { 953 uint16_t device; 954 char *desc; 955 } t4_pciids[] = { 956 {0xa000, "Chelsio Terminator 4 FPGA"}, 957 {0x4400, "Chelsio T440-dbg"}, 958 {0x4401, "Chelsio T420-CR"}, 959 {0x4402, "Chelsio T422-CR"}, 960 {0x4403, "Chelsio T440-CR"}, 961 {0x4404, "Chelsio T420-BCH"}, 962 {0x4405, "Chelsio T440-BCH"}, 963 {0x4406, "Chelsio T440-CH"}, 964 {0x4407, "Chelsio T420-SO"}, 965 {0x4408, "Chelsio T420-CX"}, 966 {0x4409, "Chelsio T420-BT"}, 967 {0x440a, "Chelsio T404-BT"}, 968 {0x440e, "Chelsio T440-LP-CR"}, 969 }, t5_pciids[] = { 970 {0xb000, "Chelsio Terminator 5 FPGA"}, 971 {0x5400, "Chelsio T580-dbg"}, 972 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ 973 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ 974 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ 975 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ 976 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ 977 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ 978 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ 979 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ 980 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ 981 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ 982 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ 983 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ 984 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */ 985 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */ 986 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */ 987 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */ 988 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */ 989 990 /* Custom */ 991 {0x5483, "Custom T540-CR"}, 992 {0x5484, "Custom T540-BT"}, 993 }, t6_pciids[] = { 994 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */ 995 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */ 996 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */ 997 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */ 998 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */ 999 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */ 1000 {0x6405, "Chelsio T6225-SO-OCP3"}, /* 2 x 10/25G, nomem */ 1001 {0x6406, "Chelsio T6225-OCP3"}, /* 2 x 10/25G */ 1002 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */ 1003 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */ 1004 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */ 1005 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */ 1006 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */ 1007 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */ 1008 {0x6414, "Chelsio T62100-SO-OCP3"}, /* 2 x 40/50/100G, nomem */ 1009 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */ 1010 1011 /* Custom */ 1012 {0x6480, "Custom T6225-CR"}, 1013 {0x6481, "Custom T62100-CR"}, 1014 {0x6482, "Custom T6225-CR"}, 1015 {0x6483, "Custom T62100-CR"}, 1016 {0x6484, "Custom T64100-CR"}, 1017 {0x6485, "Custom T6240-SO"}, 1018 {0x6486, "Custom T6225-SO-CR"}, 1019 {0x6487, "Custom T6225-CR"}, 1020 }, t7_pciids[] = { 1021 {0xd000, "Chelsio Terminator 7 FPGA"}, /* T7 PE12K FPGA */ 1022 {0x7400, "Chelsio T72200-DBG"}, /* 2 x 200G, debug */ 1023 {0x7401, "Chelsio T7250"}, /* 2 x 10/25/50G, 1 mem */ 1024 {0x7402, "Chelsio S7250"}, /* 2 x 10/25/50G, nomem */ 1025 {0x7403, "Chelsio T7450"}, /* 4 x 10/25/50G, 1 mem */ 1026 {0x7404, "Chelsio S7450"}, /* 4 x 10/25/50G, nomem */ 1027 {0x7405, "Chelsio T72200"}, /* 2 x 40/100/200G, 1 mem */ 1028 {0x7406, "Chelsio S72200"}, /* 2 x 40/100/200G, nomem */ 1029 {0x7407, "Chelsio T72200-FH"}, /* 2 x 40/100/200G, 2 mem */ 1030 {0x7408, "Chelsio S71400"}, /* 1 x 400G, nomem */ 1031 {0x7409, "Chelsio S7210-BT"}, /* 2 x 10GBASE-T, nomem */ 1032 {0x740a, "Chelsio T7450-RC"}, /* 4 x 10/25/50G, 1 mem, RC */ 1033 {0x740b, "Chelsio T72200-RC"}, /* 2 x 40/100/200G, 1 mem, RC */ 1034 {0x740c, "Chelsio T72200-FH-RC"}, /* 2 x 40/100/200G, 2 mem, RC */ 1035 {0x740d, "Chelsio S72200-OCP3"}, /* 2 x 40/100/200G OCP3 */ 1036 {0x740e, "Chelsio S7450-OCP3"}, /* 4 x 1/20/25/50G OCP3 */ 1037 {0x740f, "Chelsio S7410-BT-OCP3"}, /* 4 x 10GBASE-T OCP3 */ 1038 {0x7410, "Chelsio S7210-BT-A"}, /* 2 x 10GBASE-T */ 1039 {0x7411, "Chelsio T7_MAYRA_7"}, /* Motherboard */ 1040 1041 /* Custom */ 1042 {0x7480, "Custom T7"}, 1043 }; 1044 1045 #ifdef TCP_OFFLOAD 1046 /* 1047 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should 1048 * be exactly the same for both rxq and ofld_rxq. 1049 */ 1050 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); 1051 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); 1052 #endif 1053 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE); 1054 1055 static int 1056 t4_probe(device_t dev) 1057 { 1058 int i; 1059 uint16_t v = pci_get_vendor(dev); 1060 uint16_t d = pci_get_device(dev); 1061 uint8_t f = pci_get_function(dev); 1062 1063 if (v != PCI_VENDOR_ID_CHELSIO) 1064 return (ENXIO); 1065 1066 /* Attach only to PF0 of the FPGA */ 1067 if (d == 0xa000 && f != 0) 1068 return (ENXIO); 1069 1070 for (i = 0; i < nitems(t4_pciids); i++) { 1071 if (d == t4_pciids[i].device) { 1072 device_set_desc(dev, t4_pciids[i].desc); 1073 return (BUS_PROBE_DEFAULT); 1074 } 1075 } 1076 1077 return (ENXIO); 1078 } 1079 1080 static int 1081 t5_probe(device_t dev) 1082 { 1083 int i; 1084 uint16_t v = pci_get_vendor(dev); 1085 uint16_t d = pci_get_device(dev); 1086 uint8_t f = pci_get_function(dev); 1087 1088 if (v != PCI_VENDOR_ID_CHELSIO) 1089 return (ENXIO); 1090 1091 /* Attach only to PF0 of the FPGA */ 1092 if (d == 0xb000 && f != 0) 1093 return (ENXIO); 1094 1095 for (i = 0; i < nitems(t5_pciids); i++) { 1096 if (d == t5_pciids[i].device) { 1097 device_set_desc(dev, t5_pciids[i].desc); 1098 return (BUS_PROBE_DEFAULT); 1099 } 1100 } 1101 1102 return (ENXIO); 1103 } 1104 1105 static int 1106 t6_probe(device_t dev) 1107 { 1108 int i; 1109 uint16_t v = pci_get_vendor(dev); 1110 uint16_t d = pci_get_device(dev); 1111 1112 if (v != PCI_VENDOR_ID_CHELSIO) 1113 return (ENXIO); 1114 1115 for (i = 0; i < nitems(t6_pciids); i++) { 1116 if (d == t6_pciids[i].device) { 1117 device_set_desc(dev, t6_pciids[i].desc); 1118 return (BUS_PROBE_DEFAULT); 1119 } 1120 } 1121 1122 return (ENXIO); 1123 } 1124 1125 static int 1126 ch_probe(device_t dev) 1127 { 1128 int i; 1129 uint16_t v = pci_get_vendor(dev); 1130 uint16_t d = pci_get_device(dev); 1131 uint8_t f = pci_get_function(dev); 1132 1133 if (v != PCI_VENDOR_ID_CHELSIO) 1134 return (ENXIO); 1135 1136 /* Attach only to PF0 of the FPGA */ 1137 if (d == 0xd000 && f != 0) 1138 return (ENXIO); 1139 1140 for (i = 0; i < nitems(t7_pciids); i++) { 1141 if (d == t7_pciids[i].device) { 1142 device_set_desc(dev, t7_pciids[i].desc); 1143 return (BUS_PROBE_DEFAULT); 1144 } 1145 } 1146 1147 return (ENXIO); 1148 } 1149 1150 static void 1151 t5_attribute_workaround(device_t dev) 1152 { 1153 device_t root_port; 1154 uint32_t v; 1155 1156 /* 1157 * The T5 chips do not properly echo the No Snoop and Relaxed 1158 * Ordering attributes when replying to a TLP from a Root 1159 * Port. As a workaround, find the parent Root Port and 1160 * disable No Snoop and Relaxed Ordering. Note that this 1161 * affects all devices under this root port. 1162 */ 1163 root_port = pci_find_pcie_root_port(dev); 1164 if (root_port == NULL) { 1165 device_printf(dev, "Unable to find parent root port\n"); 1166 return; 1167 } 1168 1169 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL, 1170 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2); 1171 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) != 1172 0) 1173 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n", 1174 device_get_nameunit(root_port)); 1175 } 1176 1177 static const struct devnames devnames[] = { 1178 { 1179 .nexus_name = "t4nex", 1180 .ifnet_name = "cxgbe", 1181 .vi_ifnet_name = "vcxgbe", 1182 .pf03_drv_name = "t4iov", 1183 .vf_nexus_name = "t4vf", 1184 .vf_ifnet_name = "cxgbev" 1185 }, { 1186 .nexus_name = "t5nex", 1187 .ifnet_name = "cxl", 1188 .vi_ifnet_name = "vcxl", 1189 .pf03_drv_name = "t5iov", 1190 .vf_nexus_name = "t5vf", 1191 .vf_ifnet_name = "cxlv" 1192 }, { 1193 .nexus_name = "t6nex", 1194 .ifnet_name = "cc", 1195 .vi_ifnet_name = "vcc", 1196 .pf03_drv_name = "t6iov", 1197 .vf_nexus_name = "t6vf", 1198 .vf_ifnet_name = "ccv" 1199 }, { 1200 .nexus_name = "chnex", 1201 .ifnet_name = "che", 1202 .vi_ifnet_name = "vche", 1203 .pf03_drv_name = "chiov", 1204 .vf_nexus_name = "chvf", 1205 .vf_ifnet_name = "chev" 1206 } 1207 }; 1208 1209 void 1210 t4_init_devnames(struct adapter *sc) 1211 { 1212 int id; 1213 1214 id = chip_id(sc); 1215 if (id < CHELSIO_T4) { 1216 device_printf(sc->dev, "chip id %d is not supported.\n", id); 1217 sc->names = NULL; 1218 } else if (id - CHELSIO_T4 < nitems(devnames)) 1219 sc->names = &devnames[id - CHELSIO_T4]; 1220 else 1221 sc->names = &devnames[nitems(devnames) - 1]; 1222 } 1223 1224 static int 1225 t4_ifnet_unit(struct adapter *sc, struct port_info *pi) 1226 { 1227 const char *parent, *name; 1228 long value; 1229 int line, unit; 1230 1231 line = 0; 1232 parent = device_get_nameunit(sc->dev); 1233 name = sc->names->ifnet_name; 1234 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) { 1235 if (resource_long_value(name, unit, "port", &value) == 0 && 1236 value == pi->port_id) 1237 return (unit); 1238 } 1239 return (-1); 1240 } 1241 1242 static void 1243 t4_calibration(void *arg) 1244 { 1245 struct adapter *sc; 1246 struct clock_sync *cur, *nex; 1247 uint64_t hw; 1248 sbintime_t sbt; 1249 int next_up; 1250 1251 sc = (struct adapter *)arg; 1252 1253 KASSERT(hw_all_ok(sc), ("!hw_all_ok at t4_calibration")); 1254 hw = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO); 1255 sbt = sbinuptime(); 1256 1257 cur = &sc->cal_info[sc->cal_current]; 1258 next_up = (sc->cal_current + 1) % CNT_CAL_INFO; 1259 nex = &sc->cal_info[next_up]; 1260 if (__predict_false(sc->cal_count == 0)) { 1261 /* First time in, just get the values in */ 1262 cur->hw_cur = hw; 1263 cur->sbt_cur = sbt; 1264 sc->cal_count++; 1265 goto done; 1266 } 1267 1268 if (cur->hw_cur == hw) { 1269 /* The clock is not advancing? */ 1270 sc->cal_count = 0; 1271 atomic_store_rel_int(&cur->gen, 0); 1272 goto done; 1273 } 1274 1275 seqc_write_begin(&nex->gen); 1276 nex->hw_prev = cur->hw_cur; 1277 nex->sbt_prev = cur->sbt_cur; 1278 nex->hw_cur = hw; 1279 nex->sbt_cur = sbt; 1280 seqc_write_end(&nex->gen); 1281 sc->cal_current = next_up; 1282 done: 1283 callout_reset_sbt_curcpu(&sc->cal_callout, SBT_1S, 0, t4_calibration, 1284 sc, C_DIRECT_EXEC); 1285 } 1286 1287 static void 1288 t4_calibration_start(struct adapter *sc) 1289 { 1290 /* 1291 * Here if we have not done a calibration 1292 * then do so otherwise start the appropriate 1293 * timer. 1294 */ 1295 int i; 1296 1297 for (i = 0; i < CNT_CAL_INFO; i++) { 1298 sc->cal_info[i].gen = 0; 1299 } 1300 sc->cal_current = 0; 1301 sc->cal_count = 0; 1302 sc->cal_gen = 0; 1303 t4_calibration(sc); 1304 } 1305 1306 static int 1307 t4_attach(device_t dev) 1308 { 1309 struct adapter *sc; 1310 int rc = 0, i, j, rqidx, tqidx, nports; 1311 struct make_dev_args mda; 1312 struct intrs_and_queues iaq; 1313 struct sge *s; 1314 uint32_t *buf; 1315 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1316 int ofld_tqidx; 1317 #endif 1318 #ifdef TCP_OFFLOAD 1319 int ofld_rqidx; 1320 #endif 1321 #ifdef DEV_NETMAP 1322 int nm_rqidx, nm_tqidx; 1323 #endif 1324 int num_vis; 1325 1326 sc = device_get_softc(dev); 1327 sc->dev = dev; 1328 sysctl_ctx_init(&sc->ctx); 1329 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags); 1330 if (TUNABLE_INT_FETCH("hw.cxgbe.iflags", &sc->intr_flags) == 0) 1331 sc->intr_flags = IHF_INTR_CLEAR_ON_INIT | IHF_CLR_ALL_UNIGNORED; 1332 1333 if ((pci_get_device(dev) & 0xff00) == 0x5400) 1334 t5_attribute_workaround(dev); 1335 pci_enable_busmaster(dev); 1336 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 1337 uint32_t v; 1338 1339 pci_set_max_read_req(dev, 4096); 1340 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); 1341 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5); 1342 if (pcie_relaxed_ordering == 0 && 1343 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) { 1344 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE; 1345 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1346 } else if (pcie_relaxed_ordering == 1 && 1347 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) { 1348 v |= PCIEM_CTL_RELAXED_ORD_ENABLE; 1349 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1350 } 1351 } 1352 1353 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS); 1354 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL); 1355 sc->traceq = -1; 1356 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); 1357 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", 1358 device_get_nameunit(dev)); 1359 1360 snprintf(sc->lockname, sizeof(sc->lockname), "%s", 1361 device_get_nameunit(dev)); 1362 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); 1363 t4_add_adapter(sc); 1364 1365 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); 1366 TAILQ_INIT(&sc->sfl); 1367 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0); 1368 1369 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF); 1370 1371 sc->policy = NULL; 1372 rw_init(&sc->policy_lock, "connection offload policy"); 1373 1374 callout_init(&sc->ktls_tick, 1); 1375 1376 callout_init(&sc->cal_callout, 1); 1377 1378 refcount_init(&sc->vxlan_refcount, 0); 1379 1380 TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc); 1381 TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc); 1382 1383 sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1384 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq", 1385 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues"); 1386 sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1387 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq", 1388 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue"); 1389 1390 rc = t4_map_bars_0_and_4(sc); 1391 if (rc != 0) 1392 goto done; /* error message displayed already */ 1393 1394 memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); 1395 memset(sc->port_map, 0xff, sizeof(sc->port_map)); 1396 1397 /* Prepare the adapter for operation. */ 1398 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK); 1399 rc = -t4_prep_adapter(sc, buf); 1400 free(buf, M_CXGBE); 1401 if (rc != 0) { 1402 device_printf(dev, "failed to prepare adapter: %d.\n", rc); 1403 goto done; 1404 } 1405 1406 /* 1407 * This is the real PF# to which we're attaching. Works from within PCI 1408 * passthrough environments too, where pci_get_function() could return a 1409 * different PF# depending on the passthrough configuration. We need to 1410 * use the real PF# in all our communication with the firmware. 1411 */ 1412 j = t4_read_reg(sc, A_PL_WHOAMI); 1413 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j); 1414 sc->mbox = sc->pf; 1415 1416 t4_init_devnames(sc); 1417 if (sc->names == NULL) { 1418 rc = ENOTSUP; 1419 goto done; /* error message displayed already */ 1420 } 1421 1422 /* 1423 * Do this really early, with the memory windows set up even before the 1424 * character device. The userland tool's register i/o and mem read 1425 * will work even in "recovery mode". 1426 */ 1427 setup_memwin(sc); 1428 if (t4_init_devlog_ncores_params(sc, 0) == 0) 1429 fixup_devlog_params(sc); 1430 make_dev_args_init(&mda); 1431 mda.mda_devsw = &t4_cdevsw; 1432 mda.mda_uid = UID_ROOT; 1433 mda.mda_gid = GID_WHEEL; 1434 mda.mda_mode = 0600; 1435 mda.mda_si_drv1 = sc; 1436 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev)); 1437 if (rc != 0) 1438 device_printf(dev, "failed to create nexus char device: %d.\n", 1439 rc); 1440 1441 /* Go no further if recovery mode has been requested. */ 1442 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 1443 device_printf(dev, "recovery mode.\n"); 1444 goto done; 1445 } 1446 1447 #if defined(__i386__) 1448 if ((cpu_feature & CPUID_CX8) == 0) { 1449 device_printf(dev, "64 bit atomics not available.\n"); 1450 rc = ENOTSUP; 1451 goto done; 1452 } 1453 #endif 1454 1455 /* Contact the firmware and try to become the master driver. */ 1456 rc = contact_firmware(sc); 1457 if (rc != 0) 1458 goto done; /* error message displayed already */ 1459 MPASS(sc->flags & FW_OK); 1460 1461 rc = get_params__pre_init(sc); 1462 if (rc != 0) 1463 goto done; /* error message displayed already */ 1464 1465 if (sc->flags & MASTER_PF) { 1466 rc = partition_resources(sc); 1467 if (rc != 0) 1468 goto done; /* error message displayed already */ 1469 } 1470 1471 rc = get_params__post_init(sc); 1472 if (rc != 0) 1473 goto done; /* error message displayed already */ 1474 1475 rc = set_params__post_init(sc); 1476 if (rc != 0) 1477 goto done; /* error message displayed already */ 1478 1479 rc = t4_map_bar_2(sc); 1480 if (rc != 0) 1481 goto done; /* error message displayed already */ 1482 1483 rc = t4_adj_doorbells(sc); 1484 if (rc != 0) 1485 goto done; /* error message displayed already */ 1486 1487 rc = t4_create_dma_tag(sc); 1488 if (rc != 0) 1489 goto done; /* error message displayed already */ 1490 1491 /* 1492 * First pass over all the ports - allocate VIs and initialize some 1493 * basic parameters like mac address, port type, etc. 1494 */ 1495 for_each_port(sc, i) { 1496 struct port_info *pi; 1497 1498 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); 1499 sc->port[i] = pi; 1500 1501 /* These must be set before t4_port_init */ 1502 pi->adapter = sc; 1503 pi->port_id = i; 1504 /* 1505 * XXX: vi[0] is special so we can't delay this allocation until 1506 * pi->nvi's final value is known. 1507 */ 1508 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE, 1509 M_ZERO | M_WAITOK); 1510 1511 /* 1512 * Allocate the "main" VI and initialize parameters 1513 * like mac addr. 1514 */ 1515 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 1516 if (rc != 0) { 1517 device_printf(dev, "unable to initialize port %d: %d\n", 1518 i, rc); 1519 free(pi->vi, M_CXGBE); 1520 free(pi, M_CXGBE); 1521 sc->port[i] = NULL; 1522 goto done; 1523 } 1524 1525 if (is_bt(pi->port_type)) 1526 setbit(&sc->bt_map, pi->hw_port); 1527 else 1528 MPASS(!isset(&sc->bt_map, pi->hw_port)); 1529 1530 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", 1531 device_get_nameunit(dev), i); 1532 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); 1533 for (j = 0; j < sc->params.tp.lb_nchan; j++) 1534 sc->chan_map[pi->tx_chan + j] = i; 1535 sc->port_map[pi->hw_port] = i; 1536 1537 /* 1538 * The MPS counter for FCS errors doesn't work correctly on the 1539 * T6 so we use the MAC counter here. Which MAC is in use 1540 * depends on the link settings which will be known when the 1541 * link comes up. 1542 */ 1543 if (is_t6(sc)) 1544 pi->fcs_reg = -1; 1545 else 1546 pi->fcs_reg = A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L; 1547 pi->fcs_base = 0; 1548 1549 /* All VIs on this port share this media. */ 1550 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, 1551 cxgbe_media_status); 1552 1553 PORT_LOCK(pi); 1554 init_link_config(pi); 1555 fixup_link_config(pi); 1556 build_medialist(pi); 1557 if (fixed_ifmedia(pi)) 1558 pi->flags |= FIXED_IFMEDIA; 1559 PORT_UNLOCK(pi); 1560 1561 pi->dev = device_add_child(dev, sc->names->ifnet_name, 1562 t4_ifnet_unit(sc, pi)); 1563 if (pi->dev == NULL) { 1564 device_printf(dev, 1565 "failed to add device for port %d.\n", i); 1566 rc = ENXIO; 1567 goto done; 1568 } 1569 pi->vi[0].dev = pi->dev; 1570 device_set_softc(pi->dev, pi); 1571 } 1572 1573 /* 1574 * Interrupt type, # of interrupts, # of rx/tx queues, etc. 1575 */ 1576 nports = sc->params.nports; 1577 rc = cfg_itype_and_nqueues(sc, &iaq); 1578 if (rc != 0) 1579 goto done; /* error message displayed already */ 1580 1581 num_vis = iaq.num_vis; 1582 sc->intr_type = iaq.intr_type; 1583 sc->intr_count = iaq.nirq; 1584 1585 s = &sc->sge; 1586 s->nctrlq = max(sc->params.nports, sc->params.ncores); 1587 s->nrxq = nports * iaq.nrxq; 1588 s->ntxq = nports * iaq.ntxq; 1589 if (num_vis > 1) { 1590 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi; 1591 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi; 1592 } 1593 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ 1594 s->neq += nports; /* ctrl queues: 1 per port */ 1595 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ 1596 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1597 if (is_offload(sc) || is_ethoffload(sc)) { 1598 s->nofldtxq = nports * iaq.nofldtxq; 1599 if (num_vis > 1) 1600 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi; 1601 s->neq += s->nofldtxq; 1602 1603 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq), 1604 M_CXGBE, M_ZERO | M_WAITOK); 1605 } 1606 #endif 1607 #ifdef TCP_OFFLOAD 1608 if (is_offload(sc)) { 1609 s->nofldrxq = nports * iaq.nofldrxq; 1610 if (num_vis > 1) 1611 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi; 1612 s->neq += s->nofldrxq; /* free list */ 1613 s->niq += s->nofldrxq; 1614 1615 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), 1616 M_CXGBE, M_ZERO | M_WAITOK); 1617 } 1618 #endif 1619 #ifdef DEV_NETMAP 1620 s->nnmrxq = 0; 1621 s->nnmtxq = 0; 1622 if (t4_native_netmap & NN_MAIN_VI) { 1623 s->nnmrxq += nports * iaq.nnmrxq; 1624 s->nnmtxq += nports * iaq.nnmtxq; 1625 } 1626 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) { 1627 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi; 1628 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi; 1629 } 1630 s->neq += s->nnmtxq + s->nnmrxq; 1631 s->niq += s->nnmrxq; 1632 1633 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq), 1634 M_CXGBE, M_ZERO | M_WAITOK); 1635 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq), 1636 M_CXGBE, M_ZERO | M_WAITOK); 1637 #endif 1638 MPASS(s->niq <= s->iqmap_sz); 1639 MPASS(s->neq <= s->eqmap_sz); 1640 1641 s->ctrlq = malloc(s->nctrlq * sizeof(struct sge_wrq), M_CXGBE, 1642 M_ZERO | M_WAITOK); 1643 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, 1644 M_ZERO | M_WAITOK); 1645 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, 1646 M_ZERO | M_WAITOK); 1647 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE, 1648 M_ZERO | M_WAITOK); 1649 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE, 1650 M_ZERO | M_WAITOK); 1651 1652 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, 1653 M_ZERO | M_WAITOK); 1654 1655 t4_init_l2t(sc, M_WAITOK); 1656 t4_init_smt(sc, M_WAITOK); 1657 t4_init_tx_sched(sc); 1658 t4_init_atid_table(sc); 1659 #ifdef RATELIMIT 1660 t4_init_etid_table(sc); 1661 #endif 1662 #ifdef INET6 1663 t4_init_clip_table(sc); 1664 #endif 1665 if (sc->vres.key.size != 0) 1666 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start, 1667 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK); 1668 t4_init_tpt(sc); 1669 1670 /* 1671 * Second pass over the ports. This time we know the number of rx and 1672 * tx queues that each port should get. 1673 */ 1674 rqidx = tqidx = 0; 1675 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1676 ofld_tqidx = 0; 1677 #endif 1678 #ifdef TCP_OFFLOAD 1679 ofld_rqidx = 0; 1680 #endif 1681 #ifdef DEV_NETMAP 1682 nm_rqidx = nm_tqidx = 0; 1683 #endif 1684 for_each_port(sc, i) { 1685 struct port_info *pi = sc->port[i]; 1686 struct vi_info *vi; 1687 1688 if (pi == NULL) 1689 continue; 1690 1691 pi->nvi = num_vis; 1692 for_each_vi(pi, j, vi) { 1693 vi->pi = pi; 1694 vi->adapter = sc; 1695 vi->first_intr = -1; 1696 vi->qsize_rxq = t4_qsize_rxq; 1697 vi->qsize_txq = t4_qsize_txq; 1698 1699 vi->first_rxq = rqidx; 1700 vi->first_txq = tqidx; 1701 vi->tmr_idx = t4_tmr_idx; 1702 vi->pktc_idx = t4_pktc_idx; 1703 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi; 1704 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi; 1705 1706 rqidx += vi->nrxq; 1707 tqidx += vi->ntxq; 1708 1709 if (j == 0 && vi->ntxq > 1) 1710 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0; 1711 else 1712 vi->rsrv_noflowq = 0; 1713 1714 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1715 vi->first_ofld_txq = ofld_tqidx; 1716 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi; 1717 ofld_tqidx += vi->nofldtxq; 1718 #endif 1719 #ifdef TCP_OFFLOAD 1720 vi->ofld_tmr_idx = t4_tmr_idx_ofld; 1721 vi->ofld_pktc_idx = t4_pktc_idx_ofld; 1722 vi->first_ofld_rxq = ofld_rqidx; 1723 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi; 1724 1725 ofld_rqidx += vi->nofldrxq; 1726 #endif 1727 #ifdef DEV_NETMAP 1728 vi->first_nm_rxq = nm_rqidx; 1729 vi->first_nm_txq = nm_tqidx; 1730 if (j == 0) { 1731 vi->nnmrxq = iaq.nnmrxq; 1732 vi->nnmtxq = iaq.nnmtxq; 1733 } else { 1734 vi->nnmrxq = iaq.nnmrxq_vi; 1735 vi->nnmtxq = iaq.nnmtxq_vi; 1736 } 1737 nm_rqidx += vi->nnmrxq; 1738 nm_tqidx += vi->nnmtxq; 1739 #endif 1740 } 1741 } 1742 1743 rc = t4_setup_intr_handlers(sc); 1744 if (rc != 0) { 1745 device_printf(dev, 1746 "failed to setup interrupt handlers: %d\n", rc); 1747 goto done; 1748 } 1749 1750 bus_identify_children(dev); 1751 1752 /* 1753 * Ensure thread-safe mailbox access (in debug builds). 1754 * 1755 * So far this was the only thread accessing the mailbox but various 1756 * ifnets and sysctls are about to be created and their handlers/ioctls 1757 * will access the mailbox from different threads. 1758 */ 1759 sc->flags |= CHK_MBOX_ACCESS; 1760 1761 bus_attach_children(dev); 1762 t4_calibration_start(sc); 1763 1764 device_printf(dev, 1765 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", 1766 sc->params.pci.speed, sc->params.pci.width, sc->params.nports, 1767 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : 1768 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), 1769 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); 1770 1771 t4_set_desc(sc); 1772 1773 notify_siblings(dev, 0); 1774 1775 done: 1776 if (rc != 0 && sc->cdev) { 1777 /* cdev was created and so cxgbetool works; recover that way. */ 1778 device_printf(dev, 1779 "error during attach, adapter is now in recovery mode.\n"); 1780 rc = 0; 1781 } 1782 1783 if (rc != 0) 1784 t4_detach_common(dev); 1785 else 1786 t4_sysctls(sc); 1787 1788 return (rc); 1789 } 1790 1791 static int 1792 t4_child_location(device_t bus, device_t dev, struct sbuf *sb) 1793 { 1794 struct adapter *sc; 1795 struct port_info *pi; 1796 int i; 1797 1798 sc = device_get_softc(bus); 1799 for_each_port(sc, i) { 1800 pi = sc->port[i]; 1801 if (pi != NULL && pi->dev == dev) { 1802 sbuf_printf(sb, "port=%d", pi->port_id); 1803 break; 1804 } 1805 } 1806 return (0); 1807 } 1808 1809 static int 1810 t4_ready(device_t dev) 1811 { 1812 struct adapter *sc; 1813 1814 sc = device_get_softc(dev); 1815 if (sc->flags & FW_OK) 1816 return (0); 1817 return (ENXIO); 1818 } 1819 1820 static int 1821 t4_read_port_device(device_t dev, int port, device_t *child) 1822 { 1823 struct adapter *sc; 1824 struct port_info *pi; 1825 1826 sc = device_get_softc(dev); 1827 if (port < 0 || port >= MAX_NPORTS) 1828 return (EINVAL); 1829 pi = sc->port[port]; 1830 if (pi == NULL || pi->dev == NULL) 1831 return (ENXIO); 1832 *child = pi->dev; 1833 return (0); 1834 } 1835 1836 static int 1837 notify_siblings(device_t dev, int detaching) 1838 { 1839 device_t sibling; 1840 int error, i; 1841 1842 error = 0; 1843 for (i = 0; i < PCI_FUNCMAX; i++) { 1844 if (i == pci_get_function(dev)) 1845 continue; 1846 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev), 1847 pci_get_slot(dev), i); 1848 if (sibling == NULL || !device_is_attached(sibling)) 1849 continue; 1850 if (detaching) 1851 error = T4_DETACH_CHILD(sibling); 1852 else 1853 (void)T4_ATTACH_CHILD(sibling); 1854 if (error) 1855 break; 1856 } 1857 return (error); 1858 } 1859 1860 /* 1861 * Idempotent 1862 */ 1863 static int 1864 t4_detach(device_t dev) 1865 { 1866 int rc; 1867 1868 rc = notify_siblings(dev, 1); 1869 if (rc) { 1870 device_printf(dev, 1871 "failed to detach sibling devices: %d\n", rc); 1872 return (rc); 1873 } 1874 1875 return (t4_detach_common(dev)); 1876 } 1877 1878 int 1879 t4_detach_common(device_t dev) 1880 { 1881 struct adapter *sc; 1882 struct port_info *pi; 1883 int i, rc; 1884 1885 sc = device_get_softc(dev); 1886 1887 #ifdef TCP_OFFLOAD 1888 rc = deactivate_all_uld(sc); 1889 if (rc) { 1890 device_printf(dev, 1891 "failed to detach upper layer drivers: %d\n", rc); 1892 return (rc); 1893 } 1894 #endif 1895 1896 if (sc->cdev) { 1897 destroy_dev(sc->cdev); 1898 sc->cdev = NULL; 1899 } 1900 1901 sx_xlock(&t4_list_lock); 1902 SLIST_REMOVE(&t4_list, sc, adapter, link); 1903 sx_xunlock(&t4_list_lock); 1904 1905 sc->flags &= ~CHK_MBOX_ACCESS; 1906 if (sc->flags & FULL_INIT_DONE) { 1907 if (!(sc->flags & IS_VF)) 1908 t4_intr_disable(sc); 1909 } 1910 1911 if (device_is_attached(dev)) { 1912 rc = bus_detach_children(dev); 1913 if (rc) { 1914 device_printf(dev, 1915 "failed to detach child devices: %d\n", rc); 1916 return (rc); 1917 } 1918 } 1919 1920 for (i = 0; i < sc->intr_count; i++) 1921 t4_free_irq(sc, &sc->irq[i]); 1922 1923 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1924 t4_free_tx_sched(sc); 1925 1926 for (i = 0; i < MAX_NPORTS; i++) { 1927 pi = sc->port[i]; 1928 if (pi) { 1929 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid); 1930 1931 mtx_destroy(&pi->pi_lock); 1932 free(pi->vi, M_CXGBE); 1933 free(pi, M_CXGBE); 1934 } 1935 } 1936 callout_stop(&sc->cal_callout); 1937 callout_drain(&sc->cal_callout); 1938 device_delete_children(dev); 1939 sysctl_ctx_free(&sc->ctx); 1940 adapter_full_uninit(sc); 1941 1942 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1943 t4_fw_bye(sc, sc->mbox); 1944 1945 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) 1946 pci_release_msi(dev); 1947 1948 if (sc->regs_res) 1949 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, 1950 sc->regs_res); 1951 1952 if (sc->udbs_res) 1953 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, 1954 sc->udbs_res); 1955 1956 if (sc->msix_res) 1957 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, 1958 sc->msix_res); 1959 1960 if (sc->l2t) 1961 t4_free_l2t(sc); 1962 if (sc->smt) 1963 t4_free_smt(sc->smt); 1964 t4_free_atid_table(sc); 1965 #ifdef RATELIMIT 1966 t4_free_etid_table(sc); 1967 #endif 1968 if (sc->key_map) 1969 vmem_destroy(sc->key_map); 1970 t4_free_tpt(sc); 1971 #ifdef INET6 1972 t4_destroy_clip_table(sc); 1973 #endif 1974 1975 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1976 free(sc->sge.ofld_txq, M_CXGBE); 1977 #endif 1978 #ifdef TCP_OFFLOAD 1979 free(sc->sge.ofld_rxq, M_CXGBE); 1980 #endif 1981 #ifdef DEV_NETMAP 1982 free(sc->sge.nm_rxq, M_CXGBE); 1983 free(sc->sge.nm_txq, M_CXGBE); 1984 #endif 1985 free(sc->irq, M_CXGBE); 1986 free(sc->sge.rxq, M_CXGBE); 1987 free(sc->sge.txq, M_CXGBE); 1988 free(sc->sge.ctrlq, M_CXGBE); 1989 free(sc->sge.iqmap, M_CXGBE); 1990 free(sc->sge.eqmap, M_CXGBE); 1991 free(sc->tids.ftid_tab, M_CXGBE); 1992 free(sc->tids.hpftid_tab, M_CXGBE); 1993 free_hftid_hash(&sc->tids); 1994 free(sc->tids.tid_tab, M_CXGBE); 1995 t4_destroy_dma_tag(sc); 1996 1997 callout_drain(&sc->ktls_tick); 1998 callout_drain(&sc->sfl_callout); 1999 if (mtx_initialized(&sc->tids.ftid_lock)) { 2000 mtx_destroy(&sc->tids.ftid_lock); 2001 cv_destroy(&sc->tids.ftid_cv); 2002 } 2003 if (mtx_initialized(&sc->tids.atid_lock)) 2004 mtx_destroy(&sc->tids.atid_lock); 2005 if (mtx_initialized(&sc->ifp_lock)) 2006 mtx_destroy(&sc->ifp_lock); 2007 2008 if (rw_initialized(&sc->policy_lock)) { 2009 rw_destroy(&sc->policy_lock); 2010 #ifdef TCP_OFFLOAD 2011 if (sc->policy != NULL) 2012 free_offload_policy(sc->policy); 2013 #endif 2014 } 2015 2016 for (i = 0; i < NUM_MEMWIN; i++) { 2017 struct memwin *mw = &sc->memwin[i]; 2018 2019 if (rw_initialized(&mw->mw_lock)) 2020 rw_destroy(&mw->mw_lock); 2021 } 2022 2023 mtx_destroy(&sc->sfl_lock); 2024 mtx_destroy(&sc->reg_lock); 2025 mtx_destroy(&sc->sc_lock); 2026 2027 bzero(sc, sizeof(*sc)); 2028 2029 return (0); 2030 } 2031 2032 static inline int 2033 stop_adapter(struct adapter *sc) 2034 { 2035 struct port_info *pi; 2036 int i; 2037 2038 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) { 2039 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n", 2040 __func__, curthread, sc->flags, sc->error_flags); 2041 return (EALREADY); 2042 } 2043 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread, 2044 sc->flags, sc->error_flags); 2045 t4_shutdown_adapter(sc); 2046 for_each_port(sc, i) { 2047 pi = sc->port[i]; 2048 if (pi == NULL) 2049 continue; 2050 PORT_LOCK(pi); 2051 if (pi->up_vis > 0 && pi->link_cfg.link_ok) { 2052 /* 2053 * t4_shutdown_adapter has already shut down all the 2054 * PHYs but it also disables interrupts and DMA so there 2055 * won't be a link interrupt. Update the state manually 2056 * if the link was up previously and inform the kernel. 2057 */ 2058 pi->link_cfg.link_ok = false; 2059 t4_os_link_changed(pi); 2060 } 2061 PORT_UNLOCK(pi); 2062 } 2063 2064 return (0); 2065 } 2066 2067 static inline int 2068 restart_adapter(struct adapter *sc) 2069 { 2070 uint32_t val; 2071 2072 if (!atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_STOPPED))) { 2073 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n", 2074 __func__, curthread, sc->flags, sc->error_flags); 2075 return (EALREADY); 2076 } 2077 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread, 2078 sc->flags, sc->error_flags); 2079 2080 MPASS(hw_off_limits(sc)); 2081 MPASS((sc->flags & FW_OK) == 0); 2082 MPASS((sc->flags & MASTER_PF) == 0); 2083 MPASS(sc->reset_thread == NULL); 2084 2085 /* 2086 * The adapter is supposed to be back on PCIE with its config space and 2087 * BARs restored to their state before reset. Register access via 2088 * t4_read_reg BAR0 should just work. 2089 */ 2090 sc->reset_thread = curthread; 2091 val = t4_read_reg(sc, A_PL_WHOAMI); 2092 if (val == 0xffffffff || val == 0xeeeeeeee) { 2093 CH_ERR(sc, "%s: device registers not readable.\n", __func__); 2094 sc->reset_thread = NULL; 2095 atomic_set_int(&sc->error_flags, ADAP_STOPPED); 2096 return (ENXIO); 2097 } 2098 atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR); 2099 atomic_add_int(&sc->incarnation, 1); 2100 atomic_add_int(&sc->num_resets, 1); 2101 2102 return (0); 2103 } 2104 2105 static inline void 2106 set_adapter_hwstatus(struct adapter *sc, const bool usable) 2107 { 2108 if (usable) { 2109 /* Must be marked reusable by the designated thread. */ 2110 ASSERT_SYNCHRONIZED_OP(sc); 2111 MPASS(sc->reset_thread == curthread); 2112 mtx_lock(&sc->reg_lock); 2113 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS); 2114 mtx_unlock(&sc->reg_lock); 2115 } else { 2116 /* Mark the adapter totally off limits. */ 2117 begin_synchronized_op(sc, NULL, SLEEP_OK, "t4hwsts"); 2118 mtx_lock(&sc->reg_lock); 2119 atomic_set_int(&sc->error_flags, HW_OFF_LIMITS); 2120 mtx_unlock(&sc->reg_lock); 2121 sc->flags &= ~(FW_OK | MASTER_PF); 2122 sc->reset_thread = NULL; 2123 end_synchronized_op(sc, 0); 2124 } 2125 } 2126 2127 static int 2128 stop_lld(struct adapter *sc) 2129 { 2130 struct port_info *pi; 2131 struct vi_info *vi; 2132 if_t ifp; 2133 struct sge_rxq *rxq; 2134 struct sge_txq *txq; 2135 struct sge_wrq *wrq; 2136 #ifdef TCP_OFFLOAD 2137 struct sge_ofld_rxq *ofld_rxq; 2138 #endif 2139 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2140 struct sge_ofld_txq *ofld_txq; 2141 #endif 2142 int rc, i, j, k; 2143 2144 /* 2145 * XXX: Can there be a synch_op in progress that will hang because 2146 * hardware has been stopped? We'll hang too and the solution will be 2147 * to use a version of begin_synch_op that wakes up existing synch_op 2148 * with errors. Maybe stop_adapter should do this wakeup? 2149 * 2150 * I don't think any synch_op could get stranded waiting for DMA or 2151 * interrupt so I think we're okay here. Remove this comment block 2152 * after testing. 2153 */ 2154 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4slld"); 2155 if (rc != 0) 2156 return (ENXIO); 2157 2158 /* Quiesce all activity. */ 2159 for_each_port(sc, i) { 2160 pi = sc->port[i]; 2161 if (pi == NULL) 2162 continue; 2163 pi->vxlan_tcam_entry = false; 2164 for_each_vi(pi, j, vi) { 2165 vi->xact_addr_filt = -1; 2166 mtx_lock(&vi->tick_mtx); 2167 vi->flags |= VI_SKIP_STATS; 2168 mtx_unlock(&vi->tick_mtx); 2169 if (!(vi->flags & VI_INIT_DONE)) 2170 continue; 2171 2172 ifp = vi->ifp; 2173 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2174 mtx_lock(&vi->tick_mtx); 2175 callout_stop(&vi->tick); 2176 mtx_unlock(&vi->tick_mtx); 2177 callout_drain(&vi->tick); 2178 } 2179 2180 /* 2181 * Note that the HW is not available. 2182 */ 2183 for_each_txq(vi, k, txq) { 2184 TXQ_LOCK(txq); 2185 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED); 2186 TXQ_UNLOCK(txq); 2187 } 2188 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2189 for_each_ofld_txq(vi, k, ofld_txq) { 2190 TXQ_LOCK(&ofld_txq->wrq); 2191 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED; 2192 TXQ_UNLOCK(&ofld_txq->wrq); 2193 } 2194 #endif 2195 for_each_rxq(vi, k, rxq) { 2196 rxq->iq.flags &= ~IQ_HW_ALLOCATED; 2197 } 2198 #if defined(TCP_OFFLOAD) 2199 for_each_ofld_rxq(vi, k, ofld_rxq) { 2200 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED; 2201 } 2202 #endif 2203 2204 quiesce_vi(vi); 2205 } 2206 2207 if (sc->flags & FULL_INIT_DONE) { 2208 /* Control queue */ 2209 wrq = &sc->sge.ctrlq[i]; 2210 TXQ_LOCK(wrq); 2211 wrq->eq.flags &= ~EQ_HW_ALLOCATED; 2212 TXQ_UNLOCK(wrq); 2213 quiesce_wrq(wrq); 2214 } 2215 2216 if (pi->flags & HAS_TRACEQ) { 2217 pi->flags &= ~HAS_TRACEQ; 2218 sc->traceq = -1; 2219 sc->tracer_valid = 0; 2220 sc->tracer_enabled = 0; 2221 } 2222 } 2223 if (sc->flags & FULL_INIT_DONE) { 2224 /* Firmware event queue */ 2225 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED; 2226 quiesce_iq_fl(sc, &sc->sge.fwq, NULL); 2227 } 2228 2229 /* Stop calibration */ 2230 callout_stop(&sc->cal_callout); 2231 callout_drain(&sc->cal_callout); 2232 2233 if (t4_clock_gate_on_suspend) { 2234 t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN | 2235 F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN | 2236 F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0); 2237 } 2238 2239 end_synchronized_op(sc, 0); 2240 2241 stop_atid_allocator(sc); 2242 t4_stop_l2t(sc); 2243 2244 return (rc); 2245 } 2246 2247 int 2248 suspend_adapter(struct adapter *sc) 2249 { 2250 stop_adapter(sc); 2251 stop_lld(sc); 2252 #ifdef TCP_OFFLOAD 2253 stop_all_uld(sc); 2254 #endif 2255 set_adapter_hwstatus(sc, false); 2256 2257 return (0); 2258 } 2259 2260 static int 2261 t4_suspend(device_t dev) 2262 { 2263 struct adapter *sc = device_get_softc(dev); 2264 int rc; 2265 2266 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2267 rc = suspend_adapter(sc); 2268 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread); 2269 2270 return (rc); 2271 } 2272 2273 struct adapter_pre_reset_state { 2274 u_int flags; 2275 uint16_t nbmcaps; 2276 uint16_t linkcaps; 2277 uint16_t switchcaps; 2278 uint16_t nvmecaps; 2279 uint16_t niccaps; 2280 uint16_t toecaps; 2281 uint16_t rdmacaps; 2282 uint16_t cryptocaps; 2283 uint16_t iscsicaps; 2284 uint16_t fcoecaps; 2285 2286 u_int cfcsum; 2287 char cfg_file[32]; 2288 2289 struct adapter_params params; 2290 struct t4_virt_res vres; 2291 struct tid_info tids; 2292 struct sge sge; 2293 2294 int rawf_base; 2295 int nrawf; 2296 2297 }; 2298 2299 static void 2300 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2301 { 2302 2303 ASSERT_SYNCHRONIZED_OP(sc); 2304 2305 o->flags = sc->flags; 2306 2307 o->nbmcaps = sc->nbmcaps; 2308 o->linkcaps = sc->linkcaps; 2309 o->switchcaps = sc->switchcaps; 2310 o->nvmecaps = sc->nvmecaps; 2311 o->niccaps = sc->niccaps; 2312 o->toecaps = sc->toecaps; 2313 o->rdmacaps = sc->rdmacaps; 2314 o->cryptocaps = sc->cryptocaps; 2315 o->iscsicaps = sc->iscsicaps; 2316 o->fcoecaps = sc->fcoecaps; 2317 2318 o->cfcsum = sc->cfcsum; 2319 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file)); 2320 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file)); 2321 2322 o->params = sc->params; 2323 o->vres = sc->vres; 2324 o->tids = sc->tids; 2325 o->sge = sc->sge; 2326 2327 o->rawf_base = sc->rawf_base; 2328 o->nrawf = sc->nrawf; 2329 } 2330 2331 static int 2332 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2333 { 2334 int rc = 0; 2335 2336 ASSERT_SYNCHRONIZED_OP(sc); 2337 2338 /* Capabilities */ 2339 #define COMPARE_CAPS(c) do { \ 2340 if (o->c##caps != sc->c##caps) { \ 2341 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \ 2342 sc->c##caps); \ 2343 rc = EINVAL; \ 2344 } \ 2345 } while (0) 2346 COMPARE_CAPS(nbm); 2347 COMPARE_CAPS(link); 2348 COMPARE_CAPS(switch); 2349 COMPARE_CAPS(nvme); 2350 COMPARE_CAPS(nic); 2351 COMPARE_CAPS(toe); 2352 COMPARE_CAPS(rdma); 2353 COMPARE_CAPS(crypto); 2354 COMPARE_CAPS(iscsi); 2355 COMPARE_CAPS(fcoe); 2356 #undef COMPARE_CAPS 2357 2358 /* Firmware config file */ 2359 if (o->cfcsum != sc->cfcsum) { 2360 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file, 2361 o->cfcsum, sc->cfg_file, sc->cfcsum); 2362 rc = EINVAL; 2363 } 2364 2365 #define COMPARE_PARAM(p, name) do { \ 2366 if (o->p != sc->p) { \ 2367 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \ 2368 rc = EINVAL; \ 2369 } \ 2370 } while (0) 2371 COMPARE_PARAM(sge.iq_start, iq_start); 2372 COMPARE_PARAM(sge.eq_start, eq_start); 2373 COMPARE_PARAM(tids.ftid_base, ftid_base); 2374 COMPARE_PARAM(tids.ftid_end, ftid_end); 2375 COMPARE_PARAM(tids.nftids, nftids); 2376 COMPARE_PARAM(vres.l2t.start, l2t_start); 2377 COMPARE_PARAM(vres.l2t.size, l2t_size); 2378 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz); 2379 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz); 2380 COMPARE_PARAM(tids.tid_base, tid_base); 2381 COMPARE_PARAM(tids.hpftid_base, hpftid_base); 2382 COMPARE_PARAM(tids.hpftid_end, hpftid_end); 2383 COMPARE_PARAM(tids.nhpftids, nhpftids); 2384 COMPARE_PARAM(rawf_base, rawf_base); 2385 COMPARE_PARAM(nrawf, nrawf); 2386 COMPARE_PARAM(params.mps_bg_map, mps_bg_map); 2387 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support); 2388 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl); 2389 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support); 2390 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr); 2391 COMPARE_PARAM(tids.ntids, ntids); 2392 COMPARE_PARAM(tids.etid_base, etid_base); 2393 COMPARE_PARAM(tids.etid_end, etid_end); 2394 COMPARE_PARAM(tids.netids, netids); 2395 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred); 2396 COMPARE_PARAM(params.ethoffload, ethoffload); 2397 COMPARE_PARAM(tids.natids, natids); 2398 COMPARE_PARAM(tids.stid_base, stid_base); 2399 COMPARE_PARAM(vres.ddp.start, ddp_start); 2400 COMPARE_PARAM(vres.ddp.size, ddp_size); 2401 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred); 2402 COMPARE_PARAM(vres.stag.start, stag_start); 2403 COMPARE_PARAM(vres.stag.size, stag_size); 2404 COMPARE_PARAM(vres.rq.start, rq_start); 2405 COMPARE_PARAM(vres.rq.size, rq_size); 2406 COMPARE_PARAM(vres.pbl.start, pbl_start); 2407 COMPARE_PARAM(vres.pbl.size, pbl_size); 2408 COMPARE_PARAM(vres.qp.start, qp_start); 2409 COMPARE_PARAM(vres.qp.size, qp_size); 2410 COMPARE_PARAM(vres.cq.start, cq_start); 2411 COMPARE_PARAM(vres.cq.size, cq_size); 2412 COMPARE_PARAM(vres.ocq.start, ocq_start); 2413 COMPARE_PARAM(vres.ocq.size, ocq_size); 2414 COMPARE_PARAM(vres.srq.start, srq_start); 2415 COMPARE_PARAM(vres.srq.size, srq_size); 2416 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp); 2417 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter); 2418 COMPARE_PARAM(vres.iscsi.start, iscsi_start); 2419 COMPARE_PARAM(vres.iscsi.size, iscsi_size); 2420 COMPARE_PARAM(vres.key.start, key_start); 2421 COMPARE_PARAM(vres.key.size, key_size); 2422 #undef COMPARE_PARAM 2423 2424 return (rc); 2425 } 2426 2427 static int 2428 restart_lld(struct adapter *sc) 2429 { 2430 struct adapter_pre_reset_state *old_state = NULL; 2431 struct port_info *pi; 2432 struct vi_info *vi; 2433 if_t ifp; 2434 struct sge_txq *txq; 2435 int rc, i, j, k; 2436 2437 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rlld"); 2438 if (rc != 0) 2439 return (ENXIO); 2440 2441 /* Restore memory window. */ 2442 setup_memwin(sc); 2443 2444 /* Go no further if recovery mode has been requested. */ 2445 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 2446 CH_ALERT(sc, "%s: recovery mode during restart.\n", __func__); 2447 rc = 0; 2448 set_adapter_hwstatus(sc, true); 2449 goto done; 2450 } 2451 2452 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK); 2453 save_caps_and_params(sc, old_state); 2454 2455 /* Reestablish contact with firmware and become the primary PF. */ 2456 rc = contact_firmware(sc); 2457 if (rc != 0) 2458 goto done; /* error message displayed already */ 2459 MPASS(sc->flags & FW_OK); 2460 2461 if (sc->flags & MASTER_PF) { 2462 rc = partition_resources(sc); 2463 if (rc != 0) 2464 goto done; /* error message displayed already */ 2465 } 2466 2467 rc = get_params__post_init(sc); 2468 if (rc != 0) 2469 goto done; /* error message displayed already */ 2470 2471 rc = set_params__post_init(sc); 2472 if (rc != 0) 2473 goto done; /* error message displayed already */ 2474 2475 rc = compare_caps_and_params(sc, old_state); 2476 if (rc != 0) 2477 goto done; /* error message displayed already */ 2478 2479 for_each_port(sc, i) { 2480 pi = sc->port[i]; 2481 MPASS(pi != NULL); 2482 MPASS(pi->vi != NULL); 2483 MPASS(pi->vi[0].dev == pi->dev); 2484 2485 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 2486 if (rc != 0) { 2487 CH_ERR(sc, 2488 "failed to re-initialize port %d: %d\n", i, rc); 2489 goto done; 2490 } 2491 MPASS(sc->chan_map[pi->tx_chan] == i); 2492 2493 PORT_LOCK(pi); 2494 fixup_link_config(pi); 2495 build_medialist(pi); 2496 PORT_UNLOCK(pi); 2497 for_each_vi(pi, j, vi) { 2498 if (IS_MAIN_VI(vi)) 2499 continue; 2500 rc = alloc_extra_vi(sc, pi, vi); 2501 if (rc != 0) { 2502 CH_ERR(vi, 2503 "failed to re-allocate extra VI: %d\n", rc); 2504 goto done; 2505 } 2506 } 2507 } 2508 2509 /* 2510 * Interrupts and queues are about to be enabled and other threads will 2511 * want to access the hardware too. It is safe to do so. Note that 2512 * this thread is still in the middle of a synchronized_op. 2513 */ 2514 set_adapter_hwstatus(sc, true); 2515 2516 if (sc->flags & FULL_INIT_DONE) { 2517 rc = adapter_full_init(sc); 2518 if (rc != 0) { 2519 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc); 2520 goto done; 2521 } 2522 2523 if (sc->vxlan_refcount > 0) 2524 enable_vxlan_rx(sc); 2525 2526 for_each_port(sc, i) { 2527 pi = sc->port[i]; 2528 for_each_vi(pi, j, vi) { 2529 mtx_lock(&vi->tick_mtx); 2530 vi->flags &= ~VI_SKIP_STATS; 2531 mtx_unlock(&vi->tick_mtx); 2532 if (!(vi->flags & VI_INIT_DONE)) 2533 continue; 2534 rc = vi_full_init(vi); 2535 if (rc != 0) { 2536 CH_ERR(vi, "failed to re-initialize " 2537 "interface: %d\n", rc); 2538 goto done; 2539 } 2540 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 2541 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 2542 t4_set_trace_rss_control(sc, pi->tx_chan, sc->traceq); 2543 pi->flags |= HAS_TRACEQ; 2544 } 2545 2546 ifp = vi->ifp; 2547 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 2548 continue; 2549 /* 2550 * Note that we do not setup multicast addresses 2551 * in the first pass. This ensures that the 2552 * unicast DMACs for all VIs on all ports get an 2553 * MPS TCAM entry. 2554 */ 2555 rc = update_mac_settings(ifp, XGMAC_ALL & 2556 ~XGMAC_MCADDRS); 2557 if (rc != 0) { 2558 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc); 2559 goto done; 2560 } 2561 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, 2562 true); 2563 if (rc != 0) { 2564 CH_ERR(vi, "failed to re-enable VI: %d\n", rc); 2565 goto done; 2566 } 2567 for_each_txq(vi, k, txq) { 2568 TXQ_LOCK(txq); 2569 txq->eq.flags |= EQ_ENABLED; 2570 TXQ_UNLOCK(txq); 2571 } 2572 mtx_lock(&vi->tick_mtx); 2573 callout_schedule(&vi->tick, hz); 2574 mtx_unlock(&vi->tick_mtx); 2575 } 2576 PORT_LOCK(pi); 2577 if (pi->up_vis > 0) { 2578 t4_update_port_info(pi); 2579 fixup_link_config(pi); 2580 build_medialist(pi); 2581 apply_link_config(pi); 2582 if (pi->link_cfg.link_ok) 2583 t4_os_link_changed(pi); 2584 } 2585 PORT_UNLOCK(pi); 2586 } 2587 2588 /* Now reprogram the L2 multicast addresses. */ 2589 for_each_port(sc, i) { 2590 pi = sc->port[i]; 2591 for_each_vi(pi, j, vi) { 2592 if (!(vi->flags & VI_INIT_DONE)) 2593 continue; 2594 ifp = vi->ifp; 2595 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 2596 continue; 2597 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2598 if (rc != 0) { 2599 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc); 2600 rc = 0; /* carry on */ 2601 } 2602 } 2603 } 2604 } 2605 2606 /* Reset all calibration */ 2607 t4_calibration_start(sc); 2608 done: 2609 end_synchronized_op(sc, 0); 2610 free(old_state, M_CXGBE); 2611 2612 restart_atid_allocator(sc); 2613 t4_restart_l2t(sc); 2614 2615 return (rc); 2616 } 2617 2618 int 2619 resume_adapter(struct adapter *sc) 2620 { 2621 restart_adapter(sc); 2622 restart_lld(sc); 2623 #ifdef TCP_OFFLOAD 2624 restart_all_uld(sc); 2625 #endif 2626 return (0); 2627 } 2628 2629 static int 2630 t4_resume(device_t dev) 2631 { 2632 struct adapter *sc = device_get_softc(dev); 2633 int rc; 2634 2635 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2636 rc = resume_adapter(sc); 2637 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread); 2638 2639 return (rc); 2640 } 2641 2642 static int 2643 t4_reset_prepare(device_t dev, device_t child) 2644 { 2645 struct adapter *sc = device_get_softc(dev); 2646 2647 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2648 return (0); 2649 } 2650 2651 static int 2652 t4_reset_post(device_t dev, device_t child) 2653 { 2654 struct adapter *sc = device_get_softc(dev); 2655 2656 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2657 return (0); 2658 } 2659 2660 static int 2661 reset_adapter_with_pl_rst(struct adapter *sc) 2662 { 2663 /* This is a t4_write_reg without the hw_off_limits check. */ 2664 MPASS(sc->error_flags & HW_OFF_LIMITS); 2665 bus_space_write_4(sc->bt, sc->bh, A_PL_RST, 2666 F_PIORSTMODE | F_PIORST | F_AUTOPCIEPAUSE); 2667 pause("pl_rst", 1 * hz); /* Wait 1s for reset */ 2668 return (0); 2669 } 2670 2671 static int 2672 reset_adapter_with_pcie_sbr(struct adapter *sc) 2673 { 2674 device_t pdev = device_get_parent(sc->dev); 2675 device_t gpdev = device_get_parent(pdev); 2676 device_t *children; 2677 int rc, i, lcap, lsta, nchildren; 2678 uint32_t v; 2679 2680 rc = pci_find_cap(gpdev, PCIY_EXPRESS, &v); 2681 if (rc != 0) { 2682 CH_ERR(sc, "%s: pci_find_cap(%s, pcie) failed: %d\n", __func__, 2683 device_get_nameunit(gpdev), rc); 2684 return (ENOTSUP); 2685 } 2686 lcap = v + PCIER_LINK_CAP; 2687 lsta = v + PCIER_LINK_STA; 2688 2689 nchildren = 0; 2690 device_get_children(pdev, &children, &nchildren); 2691 for (i = 0; i < nchildren; i++) 2692 pci_save_state(children[i]); 2693 v = pci_read_config(gpdev, PCIR_BRIDGECTL_1, 2); 2694 pci_write_config(gpdev, PCIR_BRIDGECTL_1, v | PCIB_BCR_SECBUS_RESET, 2); 2695 pause("pcie_sbr1", hz / 10); /* 100ms */ 2696 pci_write_config(gpdev, PCIR_BRIDGECTL_1, v, 2); 2697 pause("pcie_sbr2", hz); /* Wait 1s before restore_state. */ 2698 v = pci_read_config(gpdev, lsta, 2); 2699 if (pci_read_config(gpdev, lcap, 2) & PCIEM_LINK_CAP_DL_ACTIVE) 2700 rc = v & PCIEM_LINK_STA_DL_ACTIVE ? 0 : ETIMEDOUT; 2701 else if (v & (PCIEM_LINK_STA_TRAINING_ERROR | PCIEM_LINK_STA_TRAINING)) 2702 rc = ETIMEDOUT; 2703 else 2704 rc = 0; 2705 if (rc != 0) 2706 CH_ERR(sc, "%s: PCIe link is down after reset, LINK_STA 0x%x\n", 2707 __func__, v); 2708 else { 2709 for (i = 0; i < nchildren; i++) 2710 pci_restore_state(children[i]); 2711 } 2712 free(children, M_TEMP); 2713 2714 return (rc); 2715 } 2716 2717 static int 2718 reset_adapter_with_pcie_link_bounce(struct adapter *sc) 2719 { 2720 device_t pdev = device_get_parent(sc->dev); 2721 device_t gpdev = device_get_parent(pdev); 2722 device_t *children; 2723 int rc, i, lcap, lctl, lsta, nchildren; 2724 uint32_t v; 2725 2726 rc = pci_find_cap(gpdev, PCIY_EXPRESS, &v); 2727 if (rc != 0) { 2728 CH_ERR(sc, "%s: pci_find_cap(%s, pcie) failed: %d\n", __func__, 2729 device_get_nameunit(gpdev), rc); 2730 return (ENOTSUP); 2731 } 2732 lcap = v + PCIER_LINK_CAP; 2733 lctl = v + PCIER_LINK_CTL; 2734 lsta = v + PCIER_LINK_STA; 2735 2736 nchildren = 0; 2737 device_get_children(pdev, &children, &nchildren); 2738 for (i = 0; i < nchildren; i++) 2739 pci_save_state(children[i]); 2740 v = pci_read_config(gpdev, lctl, 2); 2741 pci_write_config(gpdev, lctl, v | PCIEM_LINK_CTL_LINK_DIS, 2); 2742 pause("pcie_lnk1", 100 * hz / 1000); /* 100ms */ 2743 pci_write_config(gpdev, lctl, v | PCIEM_LINK_CTL_RETRAIN_LINK, 2); 2744 pause("pcie_lnk2", hz); /* Wait 1s before restore_state. */ 2745 v = pci_read_config(gpdev, lsta, 2); 2746 if (pci_read_config(gpdev, lcap, 2) & PCIEM_LINK_CAP_DL_ACTIVE) 2747 rc = v & PCIEM_LINK_STA_DL_ACTIVE ? 0 : ETIMEDOUT; 2748 else if (v & (PCIEM_LINK_STA_TRAINING_ERROR | PCIEM_LINK_STA_TRAINING)) 2749 rc = ETIMEDOUT; 2750 else 2751 rc = 0; 2752 if (rc != 0) 2753 CH_ERR(sc, "%s: PCIe link is down after reset, LINK_STA 0x%x\n", 2754 __func__, v); 2755 else { 2756 for (i = 0; i < nchildren; i++) 2757 pci_restore_state(children[i]); 2758 } 2759 free(children, M_TEMP); 2760 2761 return (rc); 2762 } 2763 2764 static inline int 2765 reset_adapter(struct adapter *sc) 2766 { 2767 int rc; 2768 const int reset_method = vm_guest == VM_GUEST_NO ? t4_reset_method : 0; 2769 2770 rc = suspend_adapter(sc); 2771 if (rc != 0) 2772 return (rc); 2773 2774 switch (reset_method) { 2775 case 1: 2776 rc = reset_adapter_with_pcie_sbr(sc); 2777 break; 2778 case 2: 2779 rc = reset_adapter_with_pcie_link_bounce(sc); 2780 break; 2781 case 0: 2782 default: 2783 rc = reset_adapter_with_pl_rst(sc); 2784 break; 2785 } 2786 if (rc == 0) 2787 rc = resume_adapter(sc); 2788 return (rc); 2789 } 2790 2791 static void 2792 reset_adapter_task(void *arg, int pending) 2793 { 2794 struct adapter *sc = arg; 2795 const int flags = sc->flags; 2796 const int eflags = sc->error_flags; 2797 int rc; 2798 2799 if (pending > 1) 2800 CH_ALERT(sc, "%s: pending %d\n", __func__, pending); 2801 rc = reset_adapter(sc); 2802 if (rc != 0) { 2803 CH_ERR(sc, "adapter did not reset properly, rc = %d, " 2804 "flags 0x%08x -> 0x%08x, err_flags 0x%08x -> 0x%08x.\n", 2805 rc, flags, sc->flags, eflags, sc->error_flags); 2806 } 2807 } 2808 2809 static int 2810 cxgbe_probe(device_t dev) 2811 { 2812 struct port_info *pi = device_get_softc(dev); 2813 2814 device_set_descf(dev, "port %d", pi->port_id); 2815 2816 return (BUS_PROBE_DEFAULT); 2817 } 2818 2819 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ 2820 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ 2821 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \ 2822 IFCAP_HWRXTSTMP | IFCAP_MEXTPG) 2823 #define T4_CAP_ENABLE (T4_CAP) 2824 2825 static void 2826 cxgbe_vi_attach(device_t dev, struct vi_info *vi) 2827 { 2828 if_t ifp; 2829 struct sbuf *sb; 2830 struct sysctl_ctx_list *ctx = &vi->ctx; 2831 struct sysctl_oid_list *children; 2832 struct pfil_head_args pa; 2833 struct adapter *sc = vi->adapter; 2834 2835 sysctl_ctx_init(ctx); 2836 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev)); 2837 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq", 2838 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues"); 2839 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq", 2840 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues"); 2841 #ifdef DEV_NETMAP 2842 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq", 2843 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues"); 2844 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq", 2845 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues"); 2846 #endif 2847 #ifdef TCP_OFFLOAD 2848 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq", 2849 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues"); 2850 #endif 2851 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2852 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq", 2853 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues"); 2854 #endif 2855 2856 vi->xact_addr_filt = -1; 2857 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF); 2858 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0); 2859 if (sc->flags & IS_VF || t4_tx_vm_wr != 0) 2860 vi->flags |= TX_USES_VM_WR; 2861 2862 /* Allocate an ifnet and set it up */ 2863 ifp = if_alloc_dev(IFT_ETHER, dev); 2864 vi->ifp = ifp; 2865 if_setsoftc(ifp, vi); 2866 2867 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 2868 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 2869 2870 if_setinitfn(ifp, cxgbe_init); 2871 if_setioctlfn(ifp, cxgbe_ioctl); 2872 if_settransmitfn(ifp, cxgbe_transmit); 2873 if_setqflushfn(ifp, cxgbe_qflush); 2874 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 2875 if_setgetcounterfn(ifp, vi_get_counter); 2876 else 2877 if_setgetcounterfn(ifp, cxgbe_get_counter); 2878 #if defined(KERN_TLS) || defined(RATELIMIT) 2879 if_setsndtagallocfn(ifp, cxgbe_snd_tag_alloc); 2880 #endif 2881 #ifdef RATELIMIT 2882 if_setratelimitqueryfn(ifp, cxgbe_ratelimit_query); 2883 #endif 2884 2885 if_setcapabilities(ifp, T4_CAP); 2886 if_setcapenable(ifp, T4_CAP_ENABLE); 2887 if_sethwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | 2888 CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2889 if (chip_id(sc) >= CHELSIO_T6) { 2890 if_setcapabilitiesbit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0); 2891 if_setcapenablebit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0); 2892 if_sethwassistbits(ifp, CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | 2893 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP | 2894 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN, 0); 2895 } 2896 2897 #ifdef TCP_OFFLOAD 2898 if (vi->nofldrxq != 0) 2899 if_setcapabilitiesbit(ifp, IFCAP_TOE, 0); 2900 #endif 2901 #ifdef RATELIMIT 2902 if (is_ethoffload(sc) && vi->nofldtxq != 0) { 2903 if_setcapabilitiesbit(ifp, IFCAP_TXRTLMT, 0); 2904 if_setcapenablebit(ifp, IFCAP_TXRTLMT, 0); 2905 } 2906 #endif 2907 2908 if_sethwtsomax(ifp, IP_MAXPACKET); 2909 if (vi->flags & TX_USES_VM_WR) 2910 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_VM_TSO); 2911 else 2912 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_TSO); 2913 #ifdef RATELIMIT 2914 if (is_ethoffload(sc) && vi->nofldtxq != 0) 2915 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_EO_TSO); 2916 #endif 2917 if_sethwtsomaxsegsize(ifp, 65536); 2918 #ifdef KERN_TLS 2919 if (is_ktls(sc)) { 2920 if_setcapabilitiesbit(ifp, IFCAP_TXTLS, 0); 2921 if (sc->flags & KERN_TLS_ON || !is_t6(sc)) 2922 if_setcapenablebit(ifp, IFCAP_TXTLS, 0); 2923 } 2924 #endif 2925 2926 ether_ifattach(ifp, vi->hw_addr); 2927 #ifdef DEV_NETMAP 2928 if (vi->nnmrxq != 0) 2929 cxgbe_nm_attach(vi); 2930 #endif 2931 sb = sbuf_new_auto(); 2932 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq); 2933 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2934 switch (if_getcapabilities(ifp) & (IFCAP_TOE | IFCAP_TXRTLMT)) { 2935 case IFCAP_TOE: 2936 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq); 2937 break; 2938 case IFCAP_TOE | IFCAP_TXRTLMT: 2939 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq); 2940 break; 2941 case IFCAP_TXRTLMT: 2942 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq); 2943 break; 2944 } 2945 #endif 2946 #ifdef TCP_OFFLOAD 2947 if (if_getcapabilities(ifp) & IFCAP_TOE) 2948 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq); 2949 #endif 2950 #ifdef DEV_NETMAP 2951 if (if_getcapabilities(ifp) & IFCAP_NETMAP) 2952 sbuf_printf(sb, "; %d txq, %d rxq (netmap)", 2953 vi->nnmtxq, vi->nnmrxq); 2954 #endif 2955 sbuf_finish(sb); 2956 device_printf(dev, "%s\n", sbuf_data(sb)); 2957 sbuf_delete(sb); 2958 2959 vi_sysctls(vi); 2960 2961 pa.pa_version = PFIL_VERSION; 2962 pa.pa_flags = PFIL_IN; 2963 pa.pa_type = PFIL_TYPE_ETHERNET; 2964 pa.pa_headname = if_name(ifp); 2965 vi->pfil = pfil_head_register(&pa); 2966 } 2967 2968 static int 2969 cxgbe_attach(device_t dev) 2970 { 2971 struct port_info *pi = device_get_softc(dev); 2972 struct adapter *sc = pi->adapter; 2973 struct vi_info *vi; 2974 int i; 2975 2976 sysctl_ctx_init(&pi->ctx); 2977 2978 cxgbe_vi_attach(dev, &pi->vi[0]); 2979 2980 for_each_vi(pi, i, vi) { 2981 if (i == 0) 2982 continue; 2983 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, DEVICE_UNIT_ANY); 2984 if (vi->dev == NULL) { 2985 device_printf(dev, "failed to add VI %d\n", i); 2986 continue; 2987 } 2988 device_set_softc(vi->dev, vi); 2989 } 2990 2991 cxgbe_sysctls(pi); 2992 2993 bus_attach_children(dev); 2994 2995 return (0); 2996 } 2997 2998 static void 2999 cxgbe_vi_detach(struct vi_info *vi) 3000 { 3001 if_t ifp = vi->ifp; 3002 3003 if (vi->pfil != NULL) { 3004 pfil_head_unregister(vi->pfil); 3005 vi->pfil = NULL; 3006 } 3007 3008 ether_ifdetach(ifp); 3009 3010 /* Let detach proceed even if these fail. */ 3011 #ifdef DEV_NETMAP 3012 if (if_getcapabilities(ifp) & IFCAP_NETMAP) 3013 cxgbe_nm_detach(vi); 3014 #endif 3015 cxgbe_uninit_synchronized(vi); 3016 callout_drain(&vi->tick); 3017 mtx_destroy(&vi->tick_mtx); 3018 sysctl_ctx_free(&vi->ctx); 3019 vi_full_uninit(vi); 3020 3021 if_free(vi->ifp); 3022 vi->ifp = NULL; 3023 } 3024 3025 static int 3026 cxgbe_detach(device_t dev) 3027 { 3028 struct port_info *pi = device_get_softc(dev); 3029 struct adapter *sc = pi->adapter; 3030 int rc; 3031 3032 /* Detach the extra VIs first. */ 3033 rc = bus_generic_detach(dev); 3034 if (rc) 3035 return (rc); 3036 3037 sysctl_ctx_free(&pi->ctx); 3038 begin_vi_detach(sc, &pi->vi[0]); 3039 if (pi->flags & HAS_TRACEQ) { 3040 sc->traceq = -1; /* cloner should not create ifnet */ 3041 t4_tracer_port_detach(sc); 3042 } 3043 cxgbe_vi_detach(&pi->vi[0]); 3044 ifmedia_removeall(&pi->media); 3045 end_vi_detach(sc, &pi->vi[0]); 3046 3047 return (0); 3048 } 3049 3050 static void 3051 cxgbe_init(void *arg) 3052 { 3053 struct vi_info *vi = arg; 3054 struct adapter *sc = vi->adapter; 3055 3056 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0) 3057 return; 3058 cxgbe_init_synchronized(vi); 3059 end_synchronized_op(sc, 0); 3060 } 3061 3062 static int 3063 cxgbe_ioctl(if_t ifp, unsigned long cmd, caddr_t data) 3064 { 3065 int rc = 0, mtu, flags; 3066 struct vi_info *vi = if_getsoftc(ifp); 3067 struct port_info *pi = vi->pi; 3068 struct adapter *sc = pi->adapter; 3069 struct ifreq *ifr = (struct ifreq *)data; 3070 uint32_t mask; 3071 3072 switch (cmd) { 3073 case SIOCSIFMTU: 3074 mtu = ifr->ifr_mtu; 3075 if (mtu < ETHERMIN || mtu > MAX_MTU) 3076 return (EINVAL); 3077 3078 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu"); 3079 if (rc) 3080 return (rc); 3081 if_setmtu(ifp, mtu); 3082 if (vi->flags & VI_INIT_DONE) { 3083 t4_update_fl_bufsize(ifp); 3084 if (hw_all_ok(sc) && 3085 if_getdrvflags(ifp) & IFF_DRV_RUNNING) 3086 rc = update_mac_settings(ifp, XGMAC_MTU); 3087 } 3088 end_synchronized_op(sc, 0); 3089 break; 3090 3091 case SIOCSIFFLAGS: 3092 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg"); 3093 if (rc) 3094 return (rc); 3095 3096 if (!hw_all_ok(sc)) { 3097 rc = ENXIO; 3098 goto fail; 3099 } 3100 3101 if (if_getflags(ifp) & IFF_UP) { 3102 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 3103 flags = vi->if_flags; 3104 if ((if_getflags(ifp) ^ flags) & 3105 (IFF_PROMISC | IFF_ALLMULTI)) { 3106 rc = update_mac_settings(ifp, 3107 XGMAC_PROMISC | XGMAC_ALLMULTI); 3108 } 3109 } else { 3110 rc = cxgbe_init_synchronized(vi); 3111 } 3112 vi->if_flags = if_getflags(ifp); 3113 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 3114 rc = cxgbe_uninit_synchronized(vi); 3115 } 3116 end_synchronized_op(sc, 0); 3117 break; 3118 3119 case SIOCADDMULTI: 3120 case SIOCDELMULTI: 3121 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi"); 3122 if (rc) 3123 return (rc); 3124 if (hw_all_ok(sc) && if_getdrvflags(ifp) & IFF_DRV_RUNNING) 3125 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 3126 end_synchronized_op(sc, 0); 3127 break; 3128 3129 case SIOCSIFCAP: 3130 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap"); 3131 if (rc) 3132 return (rc); 3133 3134 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp); 3135 if (mask & IFCAP_TXCSUM) { 3136 if_togglecapenable(ifp, IFCAP_TXCSUM); 3137 if_togglehwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP); 3138 3139 if (IFCAP_TSO4 & if_getcapenable(ifp) && 3140 !(IFCAP_TXCSUM & if_getcapenable(ifp))) { 3141 mask &= ~IFCAP_TSO4; 3142 if_setcapenablebit(ifp, 0, IFCAP_TSO4); 3143 if_printf(ifp, 3144 "tso4 disabled due to -txcsum.\n"); 3145 } 3146 } 3147 if (mask & IFCAP_TXCSUM_IPV6) { 3148 if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6); 3149 if_togglehwassist(ifp, CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 3150 3151 if (IFCAP_TSO6 & if_getcapenable(ifp) && 3152 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) { 3153 mask &= ~IFCAP_TSO6; 3154 if_setcapenablebit(ifp, 0, IFCAP_TSO6); 3155 if_printf(ifp, 3156 "tso6 disabled due to -txcsum6.\n"); 3157 } 3158 } 3159 if (mask & IFCAP_RXCSUM) 3160 if_togglecapenable(ifp, IFCAP_RXCSUM); 3161 if (mask & IFCAP_RXCSUM_IPV6) 3162 if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6); 3163 3164 /* 3165 * Note that we leave CSUM_TSO alone (it is always set). The 3166 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before 3167 * sending a TSO request our way, so it's sufficient to toggle 3168 * IFCAP_TSOx only. 3169 */ 3170 if (mask & IFCAP_TSO4) { 3171 if (!(IFCAP_TSO4 & if_getcapenable(ifp)) && 3172 !(IFCAP_TXCSUM & if_getcapenable(ifp))) { 3173 if_printf(ifp, "enable txcsum first.\n"); 3174 rc = EAGAIN; 3175 goto fail; 3176 } 3177 if_togglecapenable(ifp, IFCAP_TSO4); 3178 } 3179 if (mask & IFCAP_TSO6) { 3180 if (!(IFCAP_TSO6 & if_getcapenable(ifp)) && 3181 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) { 3182 if_printf(ifp, "enable txcsum6 first.\n"); 3183 rc = EAGAIN; 3184 goto fail; 3185 } 3186 if_togglecapenable(ifp, IFCAP_TSO6); 3187 } 3188 if (mask & IFCAP_LRO) { 3189 #if defined(INET) || defined(INET6) 3190 int i; 3191 struct sge_rxq *rxq; 3192 3193 if_togglecapenable(ifp, IFCAP_LRO); 3194 for_each_rxq(vi, i, rxq) { 3195 if (if_getcapenable(ifp) & IFCAP_LRO) 3196 rxq->iq.flags |= IQ_LRO_ENABLED; 3197 else 3198 rxq->iq.flags &= ~IQ_LRO_ENABLED; 3199 } 3200 #endif 3201 } 3202 #ifdef TCP_OFFLOAD 3203 if (mask & IFCAP_TOE) { 3204 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TOE; 3205 3206 rc = toe_capability(vi, enable); 3207 if (rc != 0) 3208 goto fail; 3209 3210 if_togglecapenable(ifp, mask); 3211 } 3212 #endif 3213 if (mask & IFCAP_VLAN_HWTAGGING) { 3214 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING); 3215 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 3216 rc = update_mac_settings(ifp, XGMAC_VLANEX); 3217 } 3218 if (mask & IFCAP_VLAN_MTU) { 3219 if_togglecapenable(ifp, IFCAP_VLAN_MTU); 3220 3221 /* Need to find out how to disable auto-mtu-inflation */ 3222 } 3223 if (mask & IFCAP_VLAN_HWTSO) 3224 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 3225 if (mask & IFCAP_VLAN_HWCSUM) 3226 if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM); 3227 #ifdef RATELIMIT 3228 if (mask & IFCAP_TXRTLMT) 3229 if_togglecapenable(ifp, IFCAP_TXRTLMT); 3230 #endif 3231 if (mask & IFCAP_HWRXTSTMP) { 3232 int i; 3233 struct sge_rxq *rxq; 3234 3235 if_togglecapenable(ifp, IFCAP_HWRXTSTMP); 3236 for_each_rxq(vi, i, rxq) { 3237 if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP) 3238 rxq->iq.flags |= IQ_RX_TIMESTAMP; 3239 else 3240 rxq->iq.flags &= ~IQ_RX_TIMESTAMP; 3241 } 3242 } 3243 if (mask & IFCAP_MEXTPG) 3244 if_togglecapenable(ifp, IFCAP_MEXTPG); 3245 3246 #ifdef KERN_TLS 3247 if (mask & IFCAP_TXTLS) { 3248 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TXTLS; 3249 3250 rc = ktls_capability(sc, enable); 3251 if (rc != 0) 3252 goto fail; 3253 3254 if_togglecapenable(ifp, mask & IFCAP_TXTLS); 3255 } 3256 #endif 3257 if (mask & IFCAP_VXLAN_HWCSUM) { 3258 if_togglecapenable(ifp, IFCAP_VXLAN_HWCSUM); 3259 if_togglehwassist(ifp, CSUM_INNER_IP6_UDP | 3260 CSUM_INNER_IP6_TCP | CSUM_INNER_IP | 3261 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP); 3262 } 3263 if (mask & IFCAP_VXLAN_HWTSO) { 3264 if_togglecapenable(ifp, IFCAP_VXLAN_HWTSO); 3265 if_togglehwassist(ifp, CSUM_INNER_IP6_TSO | 3266 CSUM_INNER_IP_TSO); 3267 } 3268 3269 #ifdef VLAN_CAPABILITIES 3270 VLAN_CAPABILITIES(ifp); 3271 #endif 3272 fail: 3273 end_synchronized_op(sc, 0); 3274 break; 3275 3276 case SIOCSIFMEDIA: 3277 case SIOCGIFMEDIA: 3278 case SIOCGIFXMEDIA: 3279 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd); 3280 break; 3281 3282 case SIOCGI2C: { 3283 struct ifi2creq i2c; 3284 3285 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); 3286 if (rc != 0) 3287 break; 3288 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { 3289 rc = EPERM; 3290 break; 3291 } 3292 if (i2c.len > sizeof(i2c.data)) { 3293 rc = EINVAL; 3294 break; 3295 } 3296 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c"); 3297 if (rc) 3298 return (rc); 3299 if (!hw_all_ok(sc)) 3300 rc = ENXIO; 3301 else 3302 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr, 3303 i2c.offset, i2c.len, &i2c.data[0]); 3304 end_synchronized_op(sc, 0); 3305 if (rc == 0) 3306 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c)); 3307 break; 3308 } 3309 3310 default: 3311 rc = ether_ioctl(ifp, cmd, data); 3312 } 3313 3314 return (rc); 3315 } 3316 3317 static int 3318 cxgbe_transmit(if_t ifp, struct mbuf *m) 3319 { 3320 struct vi_info *vi = if_getsoftc(ifp); 3321 struct port_info *pi = vi->pi; 3322 struct adapter *sc; 3323 struct sge_txq *txq; 3324 void *items[1]; 3325 int rc; 3326 3327 M_ASSERTPKTHDR(m); 3328 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */ 3329 #if defined(KERN_TLS) || defined(RATELIMIT) 3330 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) 3331 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 3332 #endif 3333 3334 if (__predict_false(pi->link_cfg.link_ok == false)) { 3335 m_freem(m); 3336 return (ENETDOWN); 3337 } 3338 3339 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR); 3340 if (__predict_false(rc != 0)) { 3341 if (__predict_true(rc == EINPROGRESS)) { 3342 /* queued by parse_pkt */ 3343 MPASS(m != NULL); 3344 return (0); 3345 } 3346 3347 MPASS(m == NULL); /* was freed already */ 3348 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */ 3349 return (rc); 3350 } 3351 3352 /* Select a txq. */ 3353 sc = vi->adapter; 3354 txq = &sc->sge.txq[vi->first_txq]; 3355 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 3356 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) + 3357 vi->rsrv_noflowq); 3358 3359 items[0] = m; 3360 rc = mp_ring_enqueue(txq->r, items, 1, 256); 3361 if (__predict_false(rc != 0)) 3362 m_freem(m); 3363 3364 return (rc); 3365 } 3366 3367 static void 3368 cxgbe_qflush(if_t ifp) 3369 { 3370 struct vi_info *vi = if_getsoftc(ifp); 3371 struct sge_txq *txq; 3372 int i; 3373 3374 /* queues do not exist if !VI_INIT_DONE. */ 3375 if (vi->flags & VI_INIT_DONE) { 3376 for_each_txq(vi, i, txq) { 3377 TXQ_LOCK(txq); 3378 txq->eq.flags |= EQ_QFLUSH; 3379 TXQ_UNLOCK(txq); 3380 while (!mp_ring_is_idle(txq->r)) { 3381 mp_ring_check_drainage(txq->r, 4096); 3382 pause("qflush", 1); 3383 } 3384 TXQ_LOCK(txq); 3385 txq->eq.flags &= ~EQ_QFLUSH; 3386 TXQ_UNLOCK(txq); 3387 } 3388 } 3389 if_qflush(ifp); 3390 } 3391 3392 static uint64_t 3393 vi_get_counter(if_t ifp, ift_counter c) 3394 { 3395 struct vi_info *vi = if_getsoftc(ifp); 3396 struct fw_vi_stats_vf *s = &vi->stats; 3397 3398 mtx_lock(&vi->tick_mtx); 3399 vi_refresh_stats(vi); 3400 mtx_unlock(&vi->tick_mtx); 3401 3402 switch (c) { 3403 case IFCOUNTER_IPACKETS: 3404 return (s->rx_bcast_frames + s->rx_mcast_frames + 3405 s->rx_ucast_frames); 3406 case IFCOUNTER_IERRORS: 3407 return (s->rx_err_frames); 3408 case IFCOUNTER_OPACKETS: 3409 return (s->tx_bcast_frames + s->tx_mcast_frames + 3410 s->tx_ucast_frames + s->tx_offload_frames); 3411 case IFCOUNTER_OERRORS: 3412 return (s->tx_drop_frames); 3413 case IFCOUNTER_IBYTES: 3414 return (s->rx_bcast_bytes + s->rx_mcast_bytes + 3415 s->rx_ucast_bytes); 3416 case IFCOUNTER_OBYTES: 3417 return (s->tx_bcast_bytes + s->tx_mcast_bytes + 3418 s->tx_ucast_bytes + s->tx_offload_bytes); 3419 case IFCOUNTER_IMCASTS: 3420 return (s->rx_mcast_frames); 3421 case IFCOUNTER_OMCASTS: 3422 return (s->tx_mcast_frames); 3423 case IFCOUNTER_OQDROPS: { 3424 uint64_t drops; 3425 3426 drops = 0; 3427 if (vi->flags & VI_INIT_DONE) { 3428 int i; 3429 struct sge_txq *txq; 3430 3431 for_each_txq(vi, i, txq) 3432 drops += counter_u64_fetch(txq->r->dropped); 3433 } 3434 3435 return (drops); 3436 3437 } 3438 3439 default: 3440 return (if_get_counter_default(ifp, c)); 3441 } 3442 } 3443 3444 static uint64_t 3445 cxgbe_get_counter(if_t ifp, ift_counter c) 3446 { 3447 struct vi_info *vi = if_getsoftc(ifp); 3448 struct port_info *pi = vi->pi; 3449 struct port_stats *s = &pi->stats; 3450 3451 mtx_lock(&vi->tick_mtx); 3452 cxgbe_refresh_stats(vi); 3453 mtx_unlock(&vi->tick_mtx); 3454 3455 switch (c) { 3456 case IFCOUNTER_IPACKETS: 3457 return (s->rx_frames); 3458 3459 case IFCOUNTER_IERRORS: 3460 return (s->rx_jabber + s->rx_runt + s->rx_too_long + 3461 s->rx_fcs_err + s->rx_len_err); 3462 3463 case IFCOUNTER_OPACKETS: 3464 return (s->tx_frames); 3465 3466 case IFCOUNTER_OERRORS: 3467 return (s->tx_error_frames); 3468 3469 case IFCOUNTER_IBYTES: 3470 return (s->rx_octets); 3471 3472 case IFCOUNTER_OBYTES: 3473 return (s->tx_octets); 3474 3475 case IFCOUNTER_IMCASTS: 3476 return (s->rx_mcast_frames); 3477 3478 case IFCOUNTER_OMCASTS: 3479 return (s->tx_mcast_frames); 3480 3481 case IFCOUNTER_IQDROPS: 3482 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + 3483 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + 3484 s->rx_trunc3 + pi->tnl_cong_drops); 3485 3486 case IFCOUNTER_OQDROPS: { 3487 uint64_t drops; 3488 3489 drops = s->tx_drop; 3490 if (vi->flags & VI_INIT_DONE) { 3491 int i; 3492 struct sge_txq *txq; 3493 3494 for_each_txq(vi, i, txq) 3495 drops += counter_u64_fetch(txq->r->dropped); 3496 } 3497 3498 return (drops); 3499 3500 } 3501 3502 default: 3503 return (if_get_counter_default(ifp, c)); 3504 } 3505 } 3506 3507 #if defined(KERN_TLS) || defined(RATELIMIT) 3508 static int 3509 cxgbe_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params, 3510 struct m_snd_tag **pt) 3511 { 3512 int error; 3513 3514 switch (params->hdr.type) { 3515 #ifdef RATELIMIT 3516 case IF_SND_TAG_TYPE_RATE_LIMIT: 3517 error = cxgbe_rate_tag_alloc(ifp, params, pt); 3518 break; 3519 #endif 3520 #ifdef KERN_TLS 3521 case IF_SND_TAG_TYPE_TLS: 3522 { 3523 struct vi_info *vi = if_getsoftc(ifp); 3524 3525 if (is_t6(vi->pi->adapter)) 3526 error = t6_tls_tag_alloc(ifp, params, pt); 3527 else 3528 error = t7_tls_tag_alloc(ifp, params, pt); 3529 break; 3530 } 3531 #endif 3532 default: 3533 error = EOPNOTSUPP; 3534 } 3535 return (error); 3536 } 3537 #endif 3538 3539 /* 3540 * The kernel picks a media from the list we had provided but we still validate 3541 * the requeste. 3542 */ 3543 int 3544 cxgbe_media_change(if_t ifp) 3545 { 3546 struct vi_info *vi = if_getsoftc(ifp); 3547 struct port_info *pi = vi->pi; 3548 struct ifmedia *ifm = &pi->media; 3549 struct link_config *lc = &pi->link_cfg; 3550 struct adapter *sc = pi->adapter; 3551 int rc; 3552 3553 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec"); 3554 if (rc != 0) 3555 return (rc); 3556 PORT_LOCK(pi); 3557 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) { 3558 /* ifconfig .. media autoselect */ 3559 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 3560 rc = ENOTSUP; /* AN not supported by transceiver */ 3561 goto done; 3562 } 3563 lc->requested_aneg = AUTONEG_ENABLE; 3564 lc->requested_speed = 0; 3565 lc->requested_fc |= PAUSE_AUTONEG; 3566 } else { 3567 lc->requested_aneg = AUTONEG_DISABLE; 3568 lc->requested_speed = 3569 ifmedia_baudrate(ifm->ifm_media) / 1000000; 3570 lc->requested_fc = 0; 3571 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE) 3572 lc->requested_fc |= PAUSE_RX; 3573 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE) 3574 lc->requested_fc |= PAUSE_TX; 3575 } 3576 if (pi->up_vis > 0 && hw_all_ok(sc)) { 3577 fixup_link_config(pi); 3578 rc = apply_link_config(pi); 3579 } 3580 done: 3581 PORT_UNLOCK(pi); 3582 end_synchronized_op(sc, 0); 3583 return (rc); 3584 } 3585 3586 /* 3587 * Base media word (without ETHER, pause, link active, etc.) for the port at the 3588 * given speed. 3589 */ 3590 static int 3591 port_mword(struct port_info *pi, uint32_t speed) 3592 { 3593 3594 MPASS(speed & M_FW_PORT_CAP32_SPEED); 3595 MPASS(powerof2(speed)); 3596 3597 switch(pi->port_type) { 3598 case FW_PORT_TYPE_BT_SGMII: 3599 case FW_PORT_TYPE_BT_XFI: 3600 case FW_PORT_TYPE_BT_XAUI: 3601 /* BaseT */ 3602 switch (speed) { 3603 case FW_PORT_CAP32_SPEED_100M: 3604 return (IFM_100_T); 3605 case FW_PORT_CAP32_SPEED_1G: 3606 return (IFM_1000_T); 3607 case FW_PORT_CAP32_SPEED_10G: 3608 return (IFM_10G_T); 3609 } 3610 break; 3611 case FW_PORT_TYPE_KX4: 3612 if (speed == FW_PORT_CAP32_SPEED_10G) 3613 return (IFM_10G_KX4); 3614 break; 3615 case FW_PORT_TYPE_CX4: 3616 if (speed == FW_PORT_CAP32_SPEED_10G) 3617 return (IFM_10G_CX4); 3618 break; 3619 case FW_PORT_TYPE_KX: 3620 if (speed == FW_PORT_CAP32_SPEED_1G) 3621 return (IFM_1000_KX); 3622 break; 3623 case FW_PORT_TYPE_KR: 3624 case FW_PORT_TYPE_BP_AP: 3625 case FW_PORT_TYPE_BP4_AP: 3626 case FW_PORT_TYPE_BP40_BA: 3627 case FW_PORT_TYPE_KR4_100G: 3628 case FW_PORT_TYPE_KR_SFP28: 3629 case FW_PORT_TYPE_KR_XLAUI: 3630 switch (speed) { 3631 case FW_PORT_CAP32_SPEED_1G: 3632 return (IFM_1000_KX); 3633 case FW_PORT_CAP32_SPEED_10G: 3634 return (IFM_10G_KR); 3635 case FW_PORT_CAP32_SPEED_25G: 3636 return (IFM_25G_KR); 3637 case FW_PORT_CAP32_SPEED_40G: 3638 return (IFM_40G_KR4); 3639 case FW_PORT_CAP32_SPEED_50G: 3640 return (IFM_50G_KR2); 3641 case FW_PORT_CAP32_SPEED_100G: 3642 return (IFM_100G_KR4); 3643 } 3644 break; 3645 case FW_PORT_TYPE_FIBER_XFI: 3646 case FW_PORT_TYPE_FIBER_XAUI: 3647 case FW_PORT_TYPE_SFP: 3648 case FW_PORT_TYPE_QSFP_10G: 3649 case FW_PORT_TYPE_QSA: 3650 case FW_PORT_TYPE_QSFP: 3651 case FW_PORT_TYPE_CR4_QSFP: 3652 case FW_PORT_TYPE_CR_QSFP: 3653 case FW_PORT_TYPE_CR2_QSFP: 3654 case FW_PORT_TYPE_SFP28: 3655 case FW_PORT_TYPE_SFP56: 3656 case FW_PORT_TYPE_QSFP56: 3657 case FW_PORT_TYPE_QSFPDD: 3658 /* Pluggable transceiver */ 3659 switch (pi->mod_type) { 3660 case FW_PORT_MOD_TYPE_LR: 3661 case FW_PORT_MOD_TYPE_LR_SIMPLEX: 3662 switch (speed) { 3663 case FW_PORT_CAP32_SPEED_1G: 3664 return (IFM_1000_LX); 3665 case FW_PORT_CAP32_SPEED_10G: 3666 return (IFM_10G_LR); 3667 case FW_PORT_CAP32_SPEED_25G: 3668 return (IFM_25G_LR); 3669 case FW_PORT_CAP32_SPEED_40G: 3670 return (IFM_40G_LR4); 3671 case FW_PORT_CAP32_SPEED_50G: 3672 return (IFM_50G_LR2); 3673 case FW_PORT_CAP32_SPEED_100G: 3674 return (IFM_100G_LR4); 3675 case FW_PORT_CAP32_SPEED_200G: 3676 return (IFM_200G_LR4); 3677 case FW_PORT_CAP32_SPEED_400G: 3678 return (IFM_400G_LR8); 3679 } 3680 break; 3681 case FW_PORT_MOD_TYPE_SR: 3682 switch (speed) { 3683 case FW_PORT_CAP32_SPEED_1G: 3684 return (IFM_1000_SX); 3685 case FW_PORT_CAP32_SPEED_10G: 3686 return (IFM_10G_SR); 3687 case FW_PORT_CAP32_SPEED_25G: 3688 return (IFM_25G_SR); 3689 case FW_PORT_CAP32_SPEED_40G: 3690 return (IFM_40G_SR4); 3691 case FW_PORT_CAP32_SPEED_50G: 3692 return (IFM_50G_SR2); 3693 case FW_PORT_CAP32_SPEED_100G: 3694 return (IFM_100G_SR4); 3695 case FW_PORT_CAP32_SPEED_200G: 3696 return (IFM_200G_SR4); 3697 case FW_PORT_CAP32_SPEED_400G: 3698 return (IFM_400G_SR8); 3699 } 3700 break; 3701 case FW_PORT_MOD_TYPE_ER: 3702 if (speed == FW_PORT_CAP32_SPEED_10G) 3703 return (IFM_10G_ER); 3704 break; 3705 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3706 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3707 switch (speed) { 3708 case FW_PORT_CAP32_SPEED_1G: 3709 return (IFM_1000_CX); 3710 case FW_PORT_CAP32_SPEED_10G: 3711 return (IFM_10G_TWINAX); 3712 case FW_PORT_CAP32_SPEED_25G: 3713 return (IFM_25G_CR); 3714 case FW_PORT_CAP32_SPEED_40G: 3715 return (IFM_40G_CR4); 3716 case FW_PORT_CAP32_SPEED_50G: 3717 return (IFM_50G_CR2); 3718 case FW_PORT_CAP32_SPEED_100G: 3719 return (IFM_100G_CR4); 3720 case FW_PORT_CAP32_SPEED_200G: 3721 return (IFM_200G_CR4_PAM4); 3722 case FW_PORT_CAP32_SPEED_400G: 3723 return (IFM_400G_CR8); 3724 } 3725 break; 3726 case FW_PORT_MOD_TYPE_LRM: 3727 if (speed == FW_PORT_CAP32_SPEED_10G) 3728 return (IFM_10G_LRM); 3729 break; 3730 case FW_PORT_MOD_TYPE_DR: 3731 if (speed == FW_PORT_CAP32_SPEED_100G) 3732 return (IFM_100G_DR); 3733 if (speed == FW_PORT_CAP32_SPEED_200G) 3734 return (IFM_200G_DR4); 3735 if (speed == FW_PORT_CAP32_SPEED_400G) 3736 return (IFM_400G_DR4); 3737 break; 3738 case FW_PORT_MOD_TYPE_NA: 3739 MPASS(0); /* Not pluggable? */ 3740 /* fall through */ 3741 case FW_PORT_MOD_TYPE_ERROR: 3742 case FW_PORT_MOD_TYPE_UNKNOWN: 3743 case FW_PORT_MOD_TYPE_NOTSUPPORTED: 3744 break; 3745 case FW_PORT_MOD_TYPE_NONE: 3746 return (IFM_NONE); 3747 } 3748 break; 3749 case M_FW_PORT_CMD_PTYPE: /* FW_PORT_TYPE_NONE for old firmware */ 3750 if (chip_id(pi->adapter) >= CHELSIO_T7) 3751 return (IFM_UNKNOWN); 3752 /* fall through */ 3753 case FW_PORT_TYPE_NONE: 3754 return (IFM_NONE); 3755 } 3756 3757 return (IFM_UNKNOWN); 3758 } 3759 3760 void 3761 cxgbe_media_status(if_t ifp, struct ifmediareq *ifmr) 3762 { 3763 struct vi_info *vi = if_getsoftc(ifp); 3764 struct port_info *pi = vi->pi; 3765 struct adapter *sc = pi->adapter; 3766 struct link_config *lc = &pi->link_cfg; 3767 3768 if (begin_synchronized_op(sc, vi , SLEEP_OK | INTR_OK, "t4med") != 0) 3769 return; 3770 PORT_LOCK(pi); 3771 3772 if (pi->up_vis == 0 && hw_all_ok(sc)) { 3773 /* 3774 * If all the interfaces are administratively down the firmware 3775 * does not report transceiver changes. Refresh port info here 3776 * so that ifconfig displays accurate ifmedia at all times. 3777 * This is the only reason we have a synchronized op in this 3778 * function. Just PORT_LOCK would have been enough otherwise. 3779 */ 3780 t4_update_port_info(pi); 3781 build_medialist(pi); 3782 } 3783 3784 /* ifm_status */ 3785 ifmr->ifm_status = IFM_AVALID; 3786 if (lc->link_ok == false) 3787 goto done; 3788 ifmr->ifm_status |= IFM_ACTIVE; 3789 3790 /* ifm_active */ 3791 ifmr->ifm_active = IFM_ETHER | IFM_FDX; 3792 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE); 3793 if (lc->fc & PAUSE_RX) 3794 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 3795 if (lc->fc & PAUSE_TX) 3796 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 3797 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed)); 3798 done: 3799 PORT_UNLOCK(pi); 3800 end_synchronized_op(sc, 0); 3801 } 3802 3803 static int 3804 vcxgbe_probe(device_t dev) 3805 { 3806 struct vi_info *vi = device_get_softc(dev); 3807 3808 device_set_descf(dev, "port %d vi %td", vi->pi->port_id, 3809 vi - vi->pi->vi); 3810 3811 return (BUS_PROBE_DEFAULT); 3812 } 3813 3814 static int 3815 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi) 3816 { 3817 int func, index, rc; 3818 uint32_t param, val; 3819 3820 ASSERT_SYNCHRONIZED_OP(sc); 3821 3822 index = vi - pi->vi; 3823 MPASS(index > 0); /* This function deals with _extra_ VIs only */ 3824 KASSERT(index < nitems(vi_mac_funcs), 3825 ("%s: VI %s doesn't have a MAC func", __func__, 3826 device_get_nameunit(vi->dev))); 3827 func = vi_mac_funcs[index]; 3828 rc = t4_alloc_vi_func(sc, sc->mbox, pi->hw_port, sc->pf, 0, 1, 3829 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0); 3830 if (rc < 0) { 3831 CH_ERR(vi, "failed to allocate virtual interface %d" 3832 "for port %d: %d\n", index, pi->port_id, -rc); 3833 return (-rc); 3834 } 3835 vi->viid = rc; 3836 3837 if (vi->rss_size == 1) { 3838 /* 3839 * This VI didn't get a slice of the RSS table. Reduce the 3840 * number of VIs being created (hw.cxgbe.num_vis) or modify the 3841 * configuration file (nvi, rssnvi for this PF) if this is a 3842 * problem. 3843 */ 3844 device_printf(vi->dev, "RSS table not available.\n"); 3845 vi->rss_base = 0xffff; 3846 3847 return (0); 3848 } 3849 3850 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3851 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 3852 V_FW_PARAMS_PARAM_YZ(vi->viid); 3853 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3854 if (rc) 3855 vi->rss_base = 0xffff; 3856 else { 3857 MPASS((val >> 16) == vi->rss_size); 3858 vi->rss_base = val & 0xffff; 3859 } 3860 3861 return (0); 3862 } 3863 3864 static int 3865 vcxgbe_attach(device_t dev) 3866 { 3867 struct vi_info *vi; 3868 struct port_info *pi; 3869 struct adapter *sc; 3870 int rc; 3871 3872 vi = device_get_softc(dev); 3873 pi = vi->pi; 3874 sc = pi->adapter; 3875 3876 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via"); 3877 if (rc) 3878 return (rc); 3879 rc = alloc_extra_vi(sc, pi, vi); 3880 end_synchronized_op(sc, 0); 3881 if (rc) 3882 return (rc); 3883 3884 cxgbe_vi_attach(dev, vi); 3885 3886 return (0); 3887 } 3888 3889 static int 3890 vcxgbe_detach(device_t dev) 3891 { 3892 struct vi_info *vi; 3893 struct adapter *sc; 3894 3895 vi = device_get_softc(dev); 3896 sc = vi->adapter; 3897 3898 begin_vi_detach(sc, vi); 3899 cxgbe_vi_detach(vi); 3900 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3901 end_vi_detach(sc, vi); 3902 3903 return (0); 3904 } 3905 3906 static struct callout fatal_callout; 3907 static struct taskqueue *reset_tq; 3908 3909 static void 3910 delayed_panic(void *arg) 3911 { 3912 struct adapter *sc = arg; 3913 3914 panic("%s: panic on fatal error", device_get_nameunit(sc->dev)); 3915 } 3916 3917 static void 3918 fatal_error_task(void *arg, int pending) 3919 { 3920 struct adapter *sc = arg; 3921 int rc; 3922 3923 if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) { 3924 dump_cim_regs(sc); 3925 dump_cimla(sc); 3926 dump_devlog(sc); 3927 } 3928 3929 if (t4_reset_on_fatal_err) { 3930 CH_ALERT(sc, "resetting adapter after fatal error.\n"); 3931 rc = reset_adapter(sc); 3932 if (rc == 0 && t4_panic_on_fatal_err) { 3933 CH_ALERT(sc, "reset was successful, " 3934 "system will NOT panic.\n"); 3935 return; 3936 } 3937 } 3938 3939 if (t4_panic_on_fatal_err) { 3940 CH_ALERT(sc, "panicking on fatal error (after 30s).\n"); 3941 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc); 3942 } 3943 } 3944 3945 void 3946 t4_fatal_err(struct adapter *sc, bool fw_error) 3947 { 3948 stop_adapter(sc); 3949 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR))) 3950 return; 3951 if (fw_error) { 3952 /* 3953 * We are here because of a firmware error/timeout and not 3954 * because of a hardware interrupt. It is possible (although 3955 * not very likely) that an error interrupt was also raised but 3956 * this thread ran first and inhibited t4_intr_err. We walk the 3957 * main INT_CAUSE registers here to make sure we haven't missed 3958 * anything interesting. 3959 */ 3960 t4_slow_intr_handler(sc, sc->intr_flags); 3961 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 3962 } 3963 t4_report_fw_error(sc); 3964 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n", 3965 device_get_nameunit(sc->dev), fw_error); 3966 taskqueue_enqueue(reset_tq, &sc->fatal_error_task); 3967 } 3968 3969 void 3970 t4_add_adapter(struct adapter *sc) 3971 { 3972 sx_xlock(&t4_list_lock); 3973 SLIST_INSERT_HEAD(&t4_list, sc, link); 3974 sx_xunlock(&t4_list_lock); 3975 } 3976 3977 int 3978 t4_map_bars_0_and_4(struct adapter *sc) 3979 { 3980 sc->regs_rid = PCIR_BAR(0); 3981 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3982 &sc->regs_rid, RF_ACTIVE); 3983 if (sc->regs_res == NULL) { 3984 device_printf(sc->dev, "cannot map registers.\n"); 3985 return (ENXIO); 3986 } 3987 sc->bt = rman_get_bustag(sc->regs_res); 3988 sc->bh = rman_get_bushandle(sc->regs_res); 3989 sc->mmio_len = rman_get_size(sc->regs_res); 3990 setbit(&sc->doorbells, DOORBELL_KDB); 3991 3992 sc->msix_rid = PCIR_BAR(4); 3993 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3994 &sc->msix_rid, RF_ACTIVE); 3995 if (sc->msix_res == NULL) { 3996 device_printf(sc->dev, "cannot map MSI-X BAR.\n"); 3997 return (ENXIO); 3998 } 3999 4000 return (0); 4001 } 4002 4003 int 4004 t4_map_bar_2(struct adapter *sc) 4005 { 4006 4007 /* 4008 * T4: only iWARP driver uses the userspace doorbells. There is no need 4009 * to map it if RDMA is disabled. 4010 */ 4011 if (is_t4(sc) && sc->rdmacaps == 0) 4012 return (0); 4013 4014 sc->udbs_rid = PCIR_BAR(2); 4015 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 4016 &sc->udbs_rid, RF_ACTIVE); 4017 if (sc->udbs_res == NULL) { 4018 device_printf(sc->dev, "cannot map doorbell BAR.\n"); 4019 return (ENXIO); 4020 } 4021 sc->udbs_base = rman_get_virtual(sc->udbs_res); 4022 4023 if (chip_id(sc) >= CHELSIO_T5) { 4024 setbit(&sc->doorbells, DOORBELL_UDB); 4025 #if defined(__i386__) || defined(__amd64__) 4026 if (t5_write_combine) { 4027 int rc, mode; 4028 4029 /* 4030 * Enable write combining on BAR2. This is the 4031 * userspace doorbell BAR and is split into 128B 4032 * (UDBS_SEG_SIZE) doorbell regions, each associated 4033 * with an egress queue. The first 64B has the doorbell 4034 * and the second 64B can be used to submit a tx work 4035 * request with an implicit doorbell. 4036 */ 4037 4038 rc = pmap_change_attr((vm_offset_t)sc->udbs_base, 4039 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); 4040 if (rc == 0) { 4041 clrbit(&sc->doorbells, DOORBELL_UDB); 4042 setbit(&sc->doorbells, DOORBELL_WCWR); 4043 setbit(&sc->doorbells, DOORBELL_UDBWC); 4044 } else { 4045 device_printf(sc->dev, 4046 "couldn't enable write combining: %d\n", 4047 rc); 4048 } 4049 4050 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0); 4051 t4_write_reg(sc, A_SGE_STAT_CFG, 4052 V_STATSOURCE_T5(7) | mode); 4053 } 4054 #endif 4055 } 4056 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0; 4057 4058 return (0); 4059 } 4060 4061 int 4062 t4_adj_doorbells(struct adapter *sc) 4063 { 4064 if ((sc->doorbells & t4_doorbells_allowed) != 0) { 4065 sc->doorbells &= t4_doorbells_allowed; 4066 return (0); 4067 } 4068 CH_ERR(sc, "No usable doorbell (available = 0x%x, allowed = 0x%x).\n", 4069 sc->doorbells, t4_doorbells_allowed); 4070 return (EINVAL); 4071 } 4072 4073 struct memwin_init { 4074 uint32_t base; 4075 uint32_t aperture; 4076 }; 4077 4078 static const struct memwin_init t4_memwin[NUM_MEMWIN] = { 4079 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 4080 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 4081 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } 4082 }; 4083 4084 static const struct memwin_init t5_memwin[NUM_MEMWIN] = { 4085 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 4086 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 4087 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, 4088 }; 4089 4090 static void 4091 setup_memwin(struct adapter *sc) 4092 { 4093 const struct memwin_init *mw_init; 4094 struct memwin *mw; 4095 int i; 4096 uint32_t bar0, reg; 4097 4098 if (is_t4(sc)) { 4099 /* 4100 * Read low 32b of bar0 indirectly via the hardware backdoor 4101 * mechanism. Works from within PCI passthrough environments 4102 * too, where rman_get_start() can return a different value. We 4103 * need to program the T4 memory window decoders with the actual 4104 * addresses that will be coming across the PCIe link. 4105 */ 4106 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); 4107 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; 4108 4109 mw_init = &t4_memwin[0]; 4110 } else { 4111 /* T5+ use the relative offset inside the PCIe BAR */ 4112 bar0 = 0; 4113 4114 mw_init = &t5_memwin[0]; 4115 } 4116 4117 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) { 4118 if (!rw_initialized(&mw->mw_lock)) { 4119 rw_init(&mw->mw_lock, "memory window access"); 4120 mw->mw_base = mw_init->base; 4121 mw->mw_aperture = mw_init->aperture; 4122 mw->mw_curpos = 0; 4123 } 4124 reg = chip_id(sc) > CHELSIO_T6 ? 4125 PCIE_MEM_ACCESS_T7_REG(A_T7_PCIE_MEM_ACCESS_BASE_WIN, i) : 4126 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i); 4127 t4_write_reg(sc, reg, (mw->mw_base + bar0) | V_BIR(0) | 4128 V_WINDOW(ilog2(mw->mw_aperture) - 10)); 4129 rw_wlock(&mw->mw_lock); 4130 position_memwin(sc, i, mw->mw_curpos); 4131 rw_wunlock(&mw->mw_lock); 4132 } 4133 4134 /* flush */ 4135 t4_read_reg(sc, reg); 4136 } 4137 4138 /* 4139 * Positions the memory window at the given address in the card's address space. 4140 * There are some alignment requirements and the actual position may be at an 4141 * address prior to the requested address. mw->mw_curpos always has the actual 4142 * position of the window. 4143 */ 4144 static void 4145 position_memwin(struct adapter *sc, int idx, uint32_t addr) 4146 { 4147 struct memwin *mw; 4148 uint32_t pf, reg, val; 4149 4150 MPASS(idx >= 0 && idx < NUM_MEMWIN); 4151 mw = &sc->memwin[idx]; 4152 rw_assert(&mw->mw_lock, RA_WLOCKED); 4153 4154 if (is_t4(sc)) { 4155 pf = 0; 4156 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */ 4157 } else { 4158 pf = V_PFNUM(sc->pf); 4159 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */ 4160 } 4161 if (chip_id(sc) > CHELSIO_T6) { 4162 reg = PCIE_MEM_ACCESS_T7_REG(A_PCIE_MEM_ACCESS_OFFSET0, idx); 4163 val = (mw->mw_curpos >> X_T7_MEMOFST_SHIFT) | pf; 4164 } else { 4165 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx); 4166 val = mw->mw_curpos | pf; 4167 } 4168 t4_write_reg(sc, reg, val); 4169 t4_read_reg(sc, reg); /* flush */ 4170 } 4171 4172 int 4173 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 4174 int len, int rw) 4175 { 4176 struct memwin *mw; 4177 uint32_t mw_end, v; 4178 4179 MPASS(idx >= 0 && idx < NUM_MEMWIN); 4180 4181 /* Memory can only be accessed in naturally aligned 4 byte units */ 4182 if (addr & 3 || len & 3 || len <= 0) 4183 return (EINVAL); 4184 4185 mw = &sc->memwin[idx]; 4186 while (len > 0) { 4187 rw_rlock(&mw->mw_lock); 4188 mw_end = mw->mw_curpos + mw->mw_aperture; 4189 if (addr >= mw_end || addr < mw->mw_curpos) { 4190 /* Will need to reposition the window */ 4191 if (!rw_try_upgrade(&mw->mw_lock)) { 4192 rw_runlock(&mw->mw_lock); 4193 rw_wlock(&mw->mw_lock); 4194 } 4195 rw_assert(&mw->mw_lock, RA_WLOCKED); 4196 position_memwin(sc, idx, addr); 4197 rw_downgrade(&mw->mw_lock); 4198 mw_end = mw->mw_curpos + mw->mw_aperture; 4199 } 4200 rw_assert(&mw->mw_lock, RA_RLOCKED); 4201 while (addr < mw_end && len > 0) { 4202 if (rw == 0) { 4203 v = t4_read_reg(sc, mw->mw_base + addr - 4204 mw->mw_curpos); 4205 *val++ = le32toh(v); 4206 } else { 4207 v = *val++; 4208 t4_write_reg(sc, mw->mw_base + addr - 4209 mw->mw_curpos, htole32(v)); 4210 } 4211 addr += 4; 4212 len -= 4; 4213 } 4214 rw_runlock(&mw->mw_lock); 4215 } 4216 4217 return (0); 4218 } 4219 4220 CTASSERT(M_TID_COOKIE == M_COOKIE); 4221 CTASSERT(MAX_ATIDS <= (M_TID_TID + 1)); 4222 4223 static void 4224 t4_init_atid_table(struct adapter *sc) 4225 { 4226 struct tid_info *t; 4227 int i; 4228 4229 t = &sc->tids; 4230 if (t->natids == 0) 4231 return; 4232 4233 MPASS(t->atid_tab == NULL); 4234 4235 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE, 4236 M_ZERO | M_WAITOK); 4237 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF); 4238 t->afree = t->atid_tab; 4239 t->atids_in_use = 0; 4240 t->atid_alloc_stopped = false; 4241 for (i = 1; i < t->natids; i++) 4242 t->atid_tab[i - 1].next = &t->atid_tab[i]; 4243 t->atid_tab[t->natids - 1].next = NULL; 4244 } 4245 4246 static void 4247 t4_free_atid_table(struct adapter *sc) 4248 { 4249 struct tid_info *t; 4250 4251 t = &sc->tids; 4252 4253 KASSERT(t->atids_in_use == 0, 4254 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 4255 4256 if (mtx_initialized(&t->atid_lock)) 4257 mtx_destroy(&t->atid_lock); 4258 free(t->atid_tab, M_CXGBE); 4259 t->atid_tab = NULL; 4260 } 4261 4262 static void 4263 stop_atid_allocator(struct adapter *sc) 4264 { 4265 struct tid_info *t = &sc->tids; 4266 4267 if (t->natids == 0) 4268 return; 4269 mtx_lock(&t->atid_lock); 4270 t->atid_alloc_stopped = true; 4271 mtx_unlock(&t->atid_lock); 4272 } 4273 4274 static void 4275 restart_atid_allocator(struct adapter *sc) 4276 { 4277 struct tid_info *t = &sc->tids; 4278 4279 if (t->natids == 0) 4280 return; 4281 mtx_lock(&t->atid_lock); 4282 KASSERT(t->atids_in_use == 0, 4283 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 4284 t->atid_alloc_stopped = false; 4285 mtx_unlock(&t->atid_lock); 4286 } 4287 4288 int 4289 alloc_atid(struct adapter *sc, void *ctx) 4290 { 4291 struct tid_info *t = &sc->tids; 4292 int atid = -1; 4293 4294 mtx_lock(&t->atid_lock); 4295 if (t->afree && !t->atid_alloc_stopped) { 4296 union aopen_entry *p = t->afree; 4297 4298 atid = p - t->atid_tab; 4299 MPASS(atid <= M_TID_TID); 4300 t->afree = p->next; 4301 p->data = ctx; 4302 t->atids_in_use++; 4303 } 4304 mtx_unlock(&t->atid_lock); 4305 return (atid); 4306 } 4307 4308 void * 4309 lookup_atid(struct adapter *sc, int atid) 4310 { 4311 struct tid_info *t = &sc->tids; 4312 4313 return (t->atid_tab[atid].data); 4314 } 4315 4316 void 4317 free_atid(struct adapter *sc, int atid) 4318 { 4319 struct tid_info *t = &sc->tids; 4320 union aopen_entry *p = &t->atid_tab[atid]; 4321 4322 mtx_lock(&t->atid_lock); 4323 p->next = t->afree; 4324 t->afree = p; 4325 t->atids_in_use--; 4326 mtx_unlock(&t->atid_lock); 4327 } 4328 4329 static void 4330 queue_tid_release(struct adapter *sc, int tid) 4331 { 4332 4333 CXGBE_UNIMPLEMENTED("deferred tid release"); 4334 } 4335 4336 void 4337 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq) 4338 { 4339 struct wrqe *wr; 4340 struct cpl_tid_release *req; 4341 4342 wr = alloc_wrqe(sizeof(*req), ctrlq); 4343 if (wr == NULL) { 4344 queue_tid_release(sc, tid); /* defer */ 4345 return; 4346 } 4347 req = wrtod(wr); 4348 4349 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid); 4350 4351 t4_wrq_tx(sc, wr); 4352 } 4353 4354 static int 4355 t4_range_cmp(const void *a, const void *b) 4356 { 4357 return ((const struct t4_range *)a)->start - 4358 ((const struct t4_range *)b)->start; 4359 } 4360 4361 /* 4362 * Verify that the memory range specified by the addr/len pair is valid within 4363 * the card's address space. 4364 */ 4365 static int 4366 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len) 4367 { 4368 struct t4_range mem_ranges[4], *r, *next; 4369 uint32_t em, addr_len; 4370 int i, n, remaining; 4371 4372 /* Memory can only be accessed in naturally aligned 4 byte units */ 4373 if (addr & 3 || len & 3 || len == 0) 4374 return (EINVAL); 4375 4376 /* Enabled memories */ 4377 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4378 4379 r = &mem_ranges[0]; 4380 n = 0; 4381 bzero(r, sizeof(mem_ranges)); 4382 if (em & F_EDRAM0_ENABLE) { 4383 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4384 r->size = G_EDRAM0_SIZE(addr_len) << 20; 4385 if (r->size > 0) { 4386 r->start = G_EDRAM0_BASE(addr_len) << 20; 4387 if (addr >= r->start && 4388 addr + len <= r->start + r->size) 4389 return (0); 4390 r++; 4391 n++; 4392 } 4393 } 4394 if (em & F_EDRAM1_ENABLE) { 4395 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4396 r->size = G_EDRAM1_SIZE(addr_len) << 20; 4397 if (r->size > 0) { 4398 r->start = G_EDRAM1_BASE(addr_len) << 20; 4399 if (addr >= r->start && 4400 addr + len <= r->start + r->size) 4401 return (0); 4402 r++; 4403 n++; 4404 } 4405 } 4406 if (em & F_EXT_MEM_ENABLE) { 4407 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4408 r->size = G_EXT_MEM_SIZE(addr_len) << 20; 4409 if (r->size > 0) { 4410 r->start = G_EXT_MEM_BASE(addr_len) << 20; 4411 if (addr >= r->start && 4412 addr + len <= r->start + r->size) 4413 return (0); 4414 r++; 4415 n++; 4416 } 4417 } 4418 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) { 4419 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4420 r->size = G_EXT_MEM1_SIZE(addr_len) << 20; 4421 if (r->size > 0) { 4422 r->start = G_EXT_MEM1_BASE(addr_len) << 20; 4423 if (addr >= r->start && 4424 addr + len <= r->start + r->size) 4425 return (0); 4426 r++; 4427 n++; 4428 } 4429 } 4430 MPASS(n <= nitems(mem_ranges)); 4431 4432 if (n > 1) { 4433 /* Sort and merge the ranges. */ 4434 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp); 4435 4436 /* Start from index 0 and examine the next n - 1 entries. */ 4437 r = &mem_ranges[0]; 4438 for (remaining = n - 1; remaining > 0; remaining--, r++) { 4439 4440 MPASS(r->size > 0); /* r is a valid entry. */ 4441 next = r + 1; 4442 MPASS(next->size > 0); /* and so is the next one. */ 4443 4444 while (r->start + r->size >= next->start) { 4445 /* Merge the next one into the current entry. */ 4446 r->size = max(r->start + r->size, 4447 next->start + next->size) - r->start; 4448 n--; /* One fewer entry in total. */ 4449 if (--remaining == 0) 4450 goto done; /* short circuit */ 4451 next++; 4452 } 4453 if (next != r + 1) { 4454 /* 4455 * Some entries were merged into r and next 4456 * points to the first valid entry that couldn't 4457 * be merged. 4458 */ 4459 MPASS(next->size > 0); /* must be valid */ 4460 memcpy(r + 1, next, remaining * sizeof(*r)); 4461 #ifdef INVARIANTS 4462 /* 4463 * This so that the foo->size assertion in the 4464 * next iteration of the loop do the right 4465 * thing for entries that were pulled up and are 4466 * no longer valid. 4467 */ 4468 MPASS(n < nitems(mem_ranges)); 4469 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) * 4470 sizeof(struct t4_range)); 4471 #endif 4472 } 4473 } 4474 done: 4475 /* Done merging the ranges. */ 4476 MPASS(n > 0); 4477 r = &mem_ranges[0]; 4478 for (i = 0; i < n; i++, r++) { 4479 if (addr >= r->start && 4480 addr + len <= r->start + r->size) 4481 return (0); 4482 } 4483 } 4484 4485 return (EFAULT); 4486 } 4487 4488 static int 4489 fwmtype_to_hwmtype(int mtype) 4490 { 4491 4492 switch (mtype) { 4493 case FW_MEMTYPE_EDC0: 4494 return (MEM_EDC0); 4495 case FW_MEMTYPE_EDC1: 4496 return (MEM_EDC1); 4497 case FW_MEMTYPE_EXTMEM: 4498 return (MEM_MC0); 4499 case FW_MEMTYPE_EXTMEM1: 4500 return (MEM_MC1); 4501 default: 4502 panic("%s: cannot translate fw mtype %d.", __func__, mtype); 4503 } 4504 } 4505 4506 /* 4507 * Verify that the memory range specified by the memtype/offset/len pair is 4508 * valid and lies entirely within the memtype specified. The global address of 4509 * the start of the range is returned in addr. 4510 */ 4511 static int 4512 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len, 4513 uint32_t *addr) 4514 { 4515 uint32_t em, addr_len, maddr; 4516 4517 /* Memory can only be accessed in naturally aligned 4 byte units */ 4518 if (off & 3 || len & 3 || len == 0) 4519 return (EINVAL); 4520 4521 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4522 switch (fwmtype_to_hwmtype(mtype)) { 4523 case MEM_EDC0: 4524 if (!(em & F_EDRAM0_ENABLE)) 4525 return (EINVAL); 4526 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4527 maddr = G_EDRAM0_BASE(addr_len) << 20; 4528 break; 4529 case MEM_EDC1: 4530 if (!(em & F_EDRAM1_ENABLE)) 4531 return (EINVAL); 4532 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4533 maddr = G_EDRAM1_BASE(addr_len) << 20; 4534 break; 4535 case MEM_MC: 4536 if (!(em & F_EXT_MEM_ENABLE)) 4537 return (EINVAL); 4538 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4539 maddr = G_EXT_MEM_BASE(addr_len) << 20; 4540 break; 4541 case MEM_MC1: 4542 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE)) 4543 return (EINVAL); 4544 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4545 maddr = G_EXT_MEM1_BASE(addr_len) << 20; 4546 break; 4547 default: 4548 return (EINVAL); 4549 } 4550 4551 *addr = maddr + off; /* global address */ 4552 return (validate_mem_range(sc, *addr, len)); 4553 } 4554 4555 static int 4556 fixup_devlog_params(struct adapter *sc) 4557 { 4558 struct devlog_params *dparams = &sc->params.devlog; 4559 int rc; 4560 4561 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start, 4562 dparams->size, &dparams->addr); 4563 4564 return (rc); 4565 } 4566 4567 static void 4568 update_nirq(struct intrs_and_queues *iaq, int nports) 4569 { 4570 4571 iaq->nirq = T4_EXTRA_INTR; 4572 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq); 4573 iaq->nirq += nports * iaq->nofldrxq; 4574 iaq->nirq += nports * (iaq->num_vis - 1) * 4575 max(iaq->nrxq_vi, iaq->nnmrxq_vi); 4576 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi; 4577 } 4578 4579 /* 4580 * Adjust requirements to fit the number of interrupts available. 4581 */ 4582 static void 4583 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype, 4584 int navail) 4585 { 4586 int old_nirq; 4587 const int nports = sc->params.nports; 4588 4589 MPASS(nports > 0); 4590 MPASS(navail > 0); 4591 4592 bzero(iaq, sizeof(*iaq)); 4593 iaq->intr_type = itype; 4594 iaq->num_vis = t4_num_vis; 4595 iaq->ntxq = t4_ntxq; 4596 iaq->ntxq_vi = t4_ntxq_vi; 4597 iaq->nrxq = t4_nrxq; 4598 iaq->nrxq_vi = t4_nrxq_vi; 4599 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 4600 if (is_offload(sc) || is_ethoffload(sc)) { 4601 if (sc->params.tid_qid_sel_mask == 0) { 4602 iaq->nofldtxq = t4_nofldtxq; 4603 iaq->nofldtxq_vi = t4_nofldtxq_vi; 4604 } else { 4605 iaq->nofldtxq = roundup(t4_nofldtxq, sc->params.ncores); 4606 iaq->nofldtxq_vi = roundup(t4_nofldtxq_vi, 4607 sc->params.ncores); 4608 if (iaq->nofldtxq != t4_nofldtxq) 4609 device_printf(sc->dev, 4610 "nofldtxq updated (%d -> %d) for correct" 4611 " operation with %d firmware cores.\n", 4612 t4_nofldtxq, iaq->nofldtxq, 4613 sc->params.ncores); 4614 if (iaq->num_vis > 1 && 4615 iaq->nofldtxq_vi != t4_nofldtxq_vi) 4616 device_printf(sc->dev, 4617 "nofldtxq_vi updated (%d -> %d) for correct" 4618 " operation with %d firmware cores.\n", 4619 t4_nofldtxq_vi, iaq->nofldtxq_vi, 4620 sc->params.ncores); 4621 } 4622 } 4623 #endif 4624 #ifdef TCP_OFFLOAD 4625 if (is_offload(sc)) { 4626 iaq->nofldrxq = t4_nofldrxq; 4627 iaq->nofldrxq_vi = t4_nofldrxq_vi; 4628 } 4629 #endif 4630 #ifdef DEV_NETMAP 4631 if (t4_native_netmap & NN_MAIN_VI) { 4632 iaq->nnmtxq = t4_nnmtxq; 4633 iaq->nnmrxq = t4_nnmrxq; 4634 } 4635 if (t4_native_netmap & NN_EXTRA_VI) { 4636 iaq->nnmtxq_vi = t4_nnmtxq_vi; 4637 iaq->nnmrxq_vi = t4_nnmrxq_vi; 4638 } 4639 #endif 4640 4641 update_nirq(iaq, nports); 4642 if (iaq->nirq <= navail && 4643 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4644 /* 4645 * This is the normal case -- there are enough interrupts for 4646 * everything. 4647 */ 4648 goto done; 4649 } 4650 4651 /* 4652 * If extra VIs have been configured try reducing their count and see if 4653 * that works. 4654 */ 4655 while (iaq->num_vis > 1) { 4656 iaq->num_vis--; 4657 update_nirq(iaq, nports); 4658 if (iaq->nirq <= navail && 4659 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4660 device_printf(sc->dev, "virtual interfaces per port " 4661 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, " 4662 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. " 4663 "itype %d, navail %u, nirq %d.\n", 4664 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq, 4665 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi, 4666 itype, navail, iaq->nirq); 4667 goto done; 4668 } 4669 } 4670 4671 /* 4672 * Extra VIs will not be created. Log a message if they were requested. 4673 */ 4674 MPASS(iaq->num_vis == 1); 4675 iaq->ntxq_vi = iaq->nrxq_vi = 0; 4676 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0; 4677 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0; 4678 if (iaq->num_vis != t4_num_vis) { 4679 device_printf(sc->dev, "extra virtual interfaces disabled. " 4680 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, " 4681 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n", 4682 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi, 4683 iaq->nnmrxq_vi, itype, navail, iaq->nirq); 4684 } 4685 4686 /* 4687 * Keep reducing the number of NIC rx queues to the next lower power of 4688 * 2 (for even RSS distribution) and halving the TOE rx queues and see 4689 * if that works. 4690 */ 4691 do { 4692 if (iaq->nrxq > 1) { 4693 iaq->nrxq = rounddown_pow_of_two(iaq->nrxq - 1); 4694 if (iaq->nnmrxq > iaq->nrxq) 4695 iaq->nnmrxq = iaq->nrxq; 4696 } 4697 if (iaq->nofldrxq > 1) 4698 iaq->nofldrxq >>= 1; 4699 4700 old_nirq = iaq->nirq; 4701 update_nirq(iaq, nports); 4702 if (iaq->nirq <= navail && 4703 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4704 device_printf(sc->dev, "running with reduced number of " 4705 "rx queues because of shortage of interrupts. " 4706 "nrxq=%u, nofldrxq=%u. " 4707 "itype %d, navail %u, nirq %d.\n", iaq->nrxq, 4708 iaq->nofldrxq, itype, navail, iaq->nirq); 4709 goto done; 4710 } 4711 } while (old_nirq != iaq->nirq); 4712 4713 /* One interrupt for everything. Ugh. */ 4714 device_printf(sc->dev, "running with minimal number of queues. " 4715 "itype %d, navail %u.\n", itype, navail); 4716 iaq->nirq = 1; 4717 iaq->nrxq = 1; 4718 iaq->ntxq = 1; 4719 if (iaq->nofldrxq > 0) { 4720 iaq->nofldrxq = 1; 4721 iaq->nofldtxq = 1; 4722 if (sc->params.tid_qid_sel_mask == 0) 4723 iaq->nofldtxq = 1; 4724 else 4725 iaq->nofldtxq = sc->params.ncores; 4726 } 4727 iaq->nnmtxq = 0; 4728 iaq->nnmrxq = 0; 4729 done: 4730 MPASS(iaq->num_vis > 0); 4731 if (iaq->num_vis > 1) { 4732 MPASS(iaq->nrxq_vi > 0); 4733 MPASS(iaq->ntxq_vi > 0); 4734 } 4735 MPASS(iaq->nirq > 0); 4736 MPASS(iaq->nrxq > 0); 4737 MPASS(iaq->ntxq > 0); 4738 if (itype == INTR_MSI) 4739 MPASS(powerof2(iaq->nirq)); 4740 if (sc->params.tid_qid_sel_mask != 0) 4741 MPASS(iaq->nofldtxq % sc->params.ncores == 0); 4742 } 4743 4744 static int 4745 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq) 4746 { 4747 int rc, itype, navail, nalloc; 4748 4749 for (itype = INTR_MSIX; itype; itype >>= 1) { 4750 4751 if ((itype & t4_intr_types) == 0) 4752 continue; /* not allowed */ 4753 4754 if (itype == INTR_MSIX) 4755 navail = pci_msix_count(sc->dev); 4756 else if (itype == INTR_MSI) 4757 navail = pci_msi_count(sc->dev); 4758 else 4759 navail = 1; 4760 restart: 4761 if (navail == 0) 4762 continue; 4763 4764 calculate_iaq(sc, iaq, itype, navail); 4765 nalloc = iaq->nirq; 4766 rc = 0; 4767 if (itype == INTR_MSIX) 4768 rc = pci_alloc_msix(sc->dev, &nalloc); 4769 else if (itype == INTR_MSI) 4770 rc = pci_alloc_msi(sc->dev, &nalloc); 4771 4772 if (rc == 0 && nalloc > 0) { 4773 if (nalloc == iaq->nirq) 4774 return (0); 4775 4776 /* 4777 * Didn't get the number requested. Use whatever number 4778 * the kernel is willing to allocate. 4779 */ 4780 device_printf(sc->dev, "fewer vectors than requested, " 4781 "type=%d, req=%d, rcvd=%d; will downshift req.\n", 4782 itype, iaq->nirq, nalloc); 4783 pci_release_msi(sc->dev); 4784 navail = nalloc; 4785 goto restart; 4786 } 4787 4788 device_printf(sc->dev, 4789 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", 4790 itype, rc, iaq->nirq, nalloc); 4791 } 4792 4793 device_printf(sc->dev, 4794 "failed to find a usable interrupt type. " 4795 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, 4796 pci_msix_count(sc->dev), pci_msi_count(sc->dev)); 4797 4798 return (ENXIO); 4799 } 4800 4801 #define FW_VERSION(chip) ( \ 4802 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ 4803 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ 4804 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ 4805 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) 4806 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) 4807 4808 /* Just enough of fw_hdr to cover all version info. */ 4809 struct fw_h { 4810 __u8 ver; 4811 __u8 chip; 4812 __be16 len512; 4813 __be32 fw_ver; 4814 __be32 tp_microcode_ver; 4815 __u8 intfver_nic; 4816 __u8 intfver_vnic; 4817 __u8 intfver_ofld; 4818 __u8 intfver_ri; 4819 __u8 intfver_iscsipdu; 4820 __u8 intfver_iscsi; 4821 __u8 intfver_fcoepdu; 4822 __u8 intfver_fcoe; 4823 }; 4824 /* Spot check a couple of fields. */ 4825 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver)); 4826 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic)); 4827 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe)); 4828 4829 struct fw_info { 4830 uint8_t chip; 4831 char *kld_name; 4832 char *fw_mod_name; 4833 struct fw_h fw_h; 4834 } fw_info[] = { 4835 { 4836 .chip = CHELSIO_T4, 4837 .kld_name = "t4fw_cfg", 4838 .fw_mod_name = "t4fw", 4839 .fw_h = { 4840 .chip = FW_HDR_CHIP_T4, 4841 .fw_ver = htobe32(FW_VERSION(T4)), 4842 .intfver_nic = FW_INTFVER(T4, NIC), 4843 .intfver_vnic = FW_INTFVER(T4, VNIC), 4844 .intfver_ofld = FW_INTFVER(T4, OFLD), 4845 .intfver_ri = FW_INTFVER(T4, RI), 4846 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), 4847 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4848 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), 4849 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4850 }, 4851 }, { 4852 .chip = CHELSIO_T5, 4853 .kld_name = "t5fw_cfg", 4854 .fw_mod_name = "t5fw", 4855 .fw_h = { 4856 .chip = FW_HDR_CHIP_T5, 4857 .fw_ver = htobe32(FW_VERSION(T5)), 4858 .intfver_nic = FW_INTFVER(T5, NIC), 4859 .intfver_vnic = FW_INTFVER(T5, VNIC), 4860 .intfver_ofld = FW_INTFVER(T5, OFLD), 4861 .intfver_ri = FW_INTFVER(T5, RI), 4862 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), 4863 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4864 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), 4865 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4866 }, 4867 }, { 4868 .chip = CHELSIO_T6, 4869 .kld_name = "t6fw_cfg", 4870 .fw_mod_name = "t6fw", 4871 .fw_h = { 4872 .chip = FW_HDR_CHIP_T6, 4873 .fw_ver = htobe32(FW_VERSION(T6)), 4874 .intfver_nic = FW_INTFVER(T6, NIC), 4875 .intfver_vnic = FW_INTFVER(T6, VNIC), 4876 .intfver_ofld = FW_INTFVER(T6, OFLD), 4877 .intfver_ri = FW_INTFVER(T6, RI), 4878 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4879 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4880 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4881 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4882 }, 4883 }, { 4884 .chip = CHELSIO_T7, 4885 .kld_name = "t7fw_cfg", 4886 .fw_mod_name = "t7fw", 4887 .fw_h = { 4888 .chip = FW_HDR_CHIP_T7, 4889 .fw_ver = htobe32(FW_VERSION(T7)), 4890 .intfver_nic = FW_INTFVER(T7, NIC), 4891 .intfver_vnic = FW_INTFVER(T7, VNIC), 4892 .intfver_ofld = FW_INTFVER(T7, OFLD), 4893 .intfver_ri = FW_INTFVER(T7, RI), 4894 .intfver_iscsipdu = FW_INTFVER(T7, ISCSIPDU), 4895 .intfver_iscsi = FW_INTFVER(T7, ISCSI), 4896 .intfver_fcoepdu = FW_INTFVER(T7, FCOEPDU), 4897 .intfver_fcoe = FW_INTFVER(T7, FCOE), 4898 }, 4899 } 4900 }; 4901 4902 static struct fw_info * 4903 find_fw_info(int chip) 4904 { 4905 int i; 4906 4907 for (i = 0; i < nitems(fw_info); i++) { 4908 if (fw_info[i].chip == chip) 4909 return (&fw_info[i]); 4910 } 4911 return (NULL); 4912 } 4913 4914 /* 4915 * Is the given firmware API compatible with the one the driver was compiled 4916 * with? 4917 */ 4918 static int 4919 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2) 4920 { 4921 4922 /* short circuit if it's the exact same firmware version */ 4923 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 4924 return (1); 4925 4926 /* 4927 * XXX: Is this too conservative? Perhaps I should limit this to the 4928 * features that are supported in the driver. 4929 */ 4930 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 4931 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 4932 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && 4933 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) 4934 return (1); 4935 #undef SAME_INTF 4936 4937 return (0); 4938 } 4939 4940 static int 4941 load_fw_module(struct adapter *sc, const struct firmware **dcfg, 4942 const struct firmware **fw) 4943 { 4944 struct fw_info *fw_info; 4945 4946 *dcfg = NULL; 4947 if (fw != NULL) 4948 *fw = NULL; 4949 4950 fw_info = find_fw_info(chip_id(sc)); 4951 if (fw_info == NULL) { 4952 device_printf(sc->dev, 4953 "unable to look up firmware information for chip %d.\n", 4954 chip_id(sc)); 4955 return (EINVAL); 4956 } 4957 4958 *dcfg = firmware_get(fw_info->kld_name); 4959 if (*dcfg != NULL) { 4960 if (fw != NULL) 4961 *fw = firmware_get(fw_info->fw_mod_name); 4962 return (0); 4963 } 4964 4965 return (ENOENT); 4966 } 4967 4968 static void 4969 unload_fw_module(struct adapter *sc, const struct firmware *dcfg, 4970 const struct firmware *fw) 4971 { 4972 4973 if (fw != NULL) 4974 firmware_put(fw, FIRMWARE_UNLOAD); 4975 if (dcfg != NULL) 4976 firmware_put(dcfg, FIRMWARE_UNLOAD); 4977 } 4978 4979 /* 4980 * Return values: 4981 * 0 means no firmware install attempted. 4982 * ERESTART means a firmware install was attempted and was successful. 4983 * +ve errno means a firmware install was attempted but failed. 4984 */ 4985 static int 4986 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw, 4987 const struct fw_h *drv_fw, const char *reason, int *already) 4988 { 4989 const struct firmware *cfg, *fw; 4990 const uint32_t c = be32toh(card_fw->fw_ver); 4991 uint32_t d, k; 4992 int rc, fw_install; 4993 struct fw_h bundled_fw; 4994 bool load_attempted; 4995 4996 cfg = fw = NULL; 4997 load_attempted = false; 4998 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install; 4999 5000 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw)); 5001 if (t4_fw_install < 0) { 5002 rc = load_fw_module(sc, &cfg, &fw); 5003 if (rc != 0 || fw == NULL) { 5004 device_printf(sc->dev, 5005 "failed to load firmware module: %d. cfg %p, fw %p;" 5006 " will use compiled-in firmware version for" 5007 "hw.cxgbe.fw_install checks.\n", 5008 rc, cfg, fw); 5009 } else { 5010 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw)); 5011 } 5012 load_attempted = true; 5013 } 5014 d = be32toh(bundled_fw.fw_ver); 5015 5016 if (reason != NULL) 5017 goto install; 5018 5019 if ((sc->flags & FW_OK) == 0) { 5020 5021 if (c == 0xffffffff) { 5022 reason = "missing"; 5023 goto install; 5024 } 5025 5026 rc = 0; 5027 goto done; 5028 } 5029 5030 if (!fw_compatible(card_fw, &bundled_fw)) { 5031 reason = "incompatible or unusable"; 5032 goto install; 5033 } 5034 5035 if (d > c) { 5036 reason = "older than the version bundled with this driver"; 5037 goto install; 5038 } 5039 5040 if (fw_install == 2 && d != c) { 5041 reason = "different than the version bundled with this driver"; 5042 goto install; 5043 } 5044 5045 /* No reason to do anything to the firmware already on the card. */ 5046 rc = 0; 5047 goto done; 5048 5049 install: 5050 rc = 0; 5051 if ((*already)++) 5052 goto done; 5053 5054 if (fw_install == 0) { 5055 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 5056 "but the driver is prohibited from installing a firmware " 5057 "on the card.\n", 5058 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 5059 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 5060 5061 goto done; 5062 } 5063 5064 /* 5065 * We'll attempt to install a firmware. Load the module first (if it 5066 * hasn't been loaded already). 5067 */ 5068 if (!load_attempted) { 5069 rc = load_fw_module(sc, &cfg, &fw); 5070 if (rc != 0 || fw == NULL) { 5071 device_printf(sc->dev, 5072 "failed to load firmware module: %d. cfg %p, fw %p\n", 5073 rc, cfg, fw); 5074 /* carry on */ 5075 } 5076 } 5077 if (fw == NULL) { 5078 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 5079 "but the driver cannot take corrective action because it " 5080 "is unable to load the firmware module.\n", 5081 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 5082 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 5083 rc = sc->flags & FW_OK ? 0 : ENOENT; 5084 goto done; 5085 } 5086 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver); 5087 if (k != d) { 5088 MPASS(t4_fw_install > 0); 5089 device_printf(sc->dev, 5090 "firmware in KLD (%u.%u.%u.%u) is not what the driver was " 5091 "expecting (%u.%u.%u.%u) and will not be used.\n", 5092 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 5093 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k), 5094 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 5095 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 5096 rc = sc->flags & FW_OK ? 0 : EINVAL; 5097 goto done; 5098 } 5099 5100 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 5101 "installing firmware %u.%u.%u.%u on card.\n", 5102 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 5103 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, 5104 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 5105 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 5106 5107 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); 5108 if (rc != 0) { 5109 device_printf(sc->dev, "failed to install firmware: %d\n", rc); 5110 } else { 5111 /* Installed successfully, update the cached header too. */ 5112 rc = ERESTART; 5113 memcpy(card_fw, fw->data, sizeof(*card_fw)); 5114 } 5115 done: 5116 unload_fw_module(sc, cfg, fw); 5117 5118 return (rc); 5119 } 5120 5121 /* 5122 * Establish contact with the firmware and attempt to become the master driver. 5123 * 5124 * A firmware will be installed to the card if needed (if the driver is allowed 5125 * to do so). 5126 */ 5127 static int 5128 contact_firmware(struct adapter *sc) 5129 { 5130 int rc, already = 0; 5131 enum dev_state state; 5132 struct fw_info *fw_info; 5133 struct fw_hdr *card_fw; /* fw on the card */ 5134 const struct fw_h *drv_fw; 5135 5136 fw_info = find_fw_info(chip_id(sc)); 5137 if (fw_info == NULL) { 5138 device_printf(sc->dev, 5139 "unable to look up firmware information for chip %d.\n", 5140 chip_id(sc)); 5141 return (EINVAL); 5142 } 5143 drv_fw = &fw_info->fw_h; 5144 5145 /* Read the header of the firmware on the card */ 5146 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); 5147 restart: 5148 rc = -t4_get_fw_hdr(sc, card_fw); 5149 if (rc != 0) { 5150 device_printf(sc->dev, 5151 "unable to read firmware header from card's flash: %d\n", 5152 rc); 5153 goto done; 5154 } 5155 5156 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL, 5157 &already); 5158 if (rc == ERESTART) 5159 goto restart; 5160 if (rc != 0) 5161 goto done; 5162 5163 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); 5164 if (rc < 0 || state == DEV_STATE_ERR) { 5165 rc = -rc; 5166 device_printf(sc->dev, 5167 "failed to connect to the firmware: %d, %d. " 5168 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 5169 #if 0 5170 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 5171 "not responding properly to HELLO", &already) == ERESTART) 5172 goto restart; 5173 #endif 5174 goto done; 5175 } 5176 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT); 5177 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */ 5178 5179 if (rc == sc->pf) { 5180 sc->flags |= MASTER_PF; 5181 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 5182 NULL, &already); 5183 if (rc == ERESTART) 5184 rc = 0; 5185 else if (rc != 0) 5186 goto done; 5187 } else if (state == DEV_STATE_UNINIT) { 5188 /* 5189 * We didn't get to be the master so we definitely won't be 5190 * configuring the chip. It's a bug if someone else hasn't 5191 * configured it already. 5192 */ 5193 device_printf(sc->dev, "couldn't be master(%d), " 5194 "device not already initialized either(%d). " 5195 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 5196 rc = EPROTO; 5197 goto done; 5198 } else { 5199 /* 5200 * Some other PF is the master and has configured the chip. 5201 * This is allowed but untested. 5202 */ 5203 device_printf(sc->dev, "PF%d is master, device state %d. " 5204 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 5205 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc); 5206 sc->cfcsum = 0; 5207 rc = 0; 5208 } 5209 done: 5210 if (rc != 0 && sc->flags & FW_OK) { 5211 t4_fw_bye(sc, sc->mbox); 5212 sc->flags &= ~FW_OK; 5213 } 5214 free(card_fw, M_CXGBE); 5215 return (rc); 5216 } 5217 5218 static int 5219 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file, 5220 uint32_t mtype, uint32_t moff, u_int maxlen) 5221 { 5222 struct fw_info *fw_info; 5223 const struct firmware *dcfg, *rcfg = NULL; 5224 const uint32_t *cfdata; 5225 uint32_t cflen, addr; 5226 int rc; 5227 5228 load_fw_module(sc, &dcfg, NULL); 5229 5230 /* Card specific interpretation of "default". */ 5231 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 5232 if (pci_get_device(sc->dev) == 0x440a) 5233 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF); 5234 if (is_fpga(sc)) 5235 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF); 5236 } 5237 5238 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 5239 if (dcfg == NULL) { 5240 device_printf(sc->dev, 5241 "KLD with default config is not available.\n"); 5242 rc = ENOENT; 5243 goto done; 5244 } 5245 cfdata = dcfg->data; 5246 cflen = dcfg->datasize & ~3; 5247 } else { 5248 char s[32]; 5249 5250 fw_info = find_fw_info(chip_id(sc)); 5251 if (fw_info == NULL) { 5252 device_printf(sc->dev, 5253 "unable to look up firmware information for chip %d.\n", 5254 chip_id(sc)); 5255 rc = EINVAL; 5256 goto done; 5257 } 5258 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file); 5259 5260 rcfg = firmware_get(s); 5261 if (rcfg == NULL) { 5262 device_printf(sc->dev, 5263 "unable to load module \"%s\" for configuration " 5264 "profile \"%s\".\n", s, cfg_file); 5265 rc = ENOENT; 5266 goto done; 5267 } 5268 cfdata = rcfg->data; 5269 cflen = rcfg->datasize & ~3; 5270 } 5271 5272 if (cflen > maxlen) { 5273 device_printf(sc->dev, 5274 "config file too long (%d, max allowed is %d).\n", 5275 cflen, maxlen); 5276 rc = EINVAL; 5277 goto done; 5278 } 5279 5280 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); 5281 if (rc != 0) { 5282 device_printf(sc->dev, 5283 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n", 5284 __func__, mtype, moff, cflen, rc); 5285 rc = EINVAL; 5286 goto done; 5287 } 5288 write_via_memwin(sc, 2, addr, cfdata, cflen); 5289 done: 5290 if (rcfg != NULL) 5291 firmware_put(rcfg, FIRMWARE_UNLOAD); 5292 unload_fw_module(sc, dcfg, NULL); 5293 return (rc); 5294 } 5295 5296 struct caps_allowed { 5297 uint16_t nbmcaps; 5298 uint16_t linkcaps; 5299 uint16_t switchcaps; 5300 uint16_t nvmecaps; 5301 uint16_t niccaps; 5302 uint16_t toecaps; 5303 uint16_t rdmacaps; 5304 uint16_t cryptocaps; 5305 uint16_t iscsicaps; 5306 uint16_t fcoecaps; 5307 }; 5308 5309 #define FW_PARAM_DEV(param) \ 5310 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 5311 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 5312 #define FW_PARAM_PFVF(param) \ 5313 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 5314 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) 5315 5316 /* 5317 * Provide a configuration profile to the firmware and have it initialize the 5318 * chip accordingly. This may involve uploading a configuration file to the 5319 * card. 5320 */ 5321 static int 5322 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file, 5323 const struct caps_allowed *caps_allowed) 5324 { 5325 int rc; 5326 struct fw_caps_config_cmd caps; 5327 uint32_t mtype, moff, finicsum, cfcsum, param, val; 5328 unsigned int maxlen = 0; 5329 const int cfg_addr = t4_flash_cfg_addr(sc, &maxlen); 5330 5331 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST); 5332 if (rc != 0) { 5333 device_printf(sc->dev, "firmware reset failed: %d.\n", rc); 5334 return (rc); 5335 } 5336 5337 bzero(&caps, sizeof(caps)); 5338 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5339 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5340 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) { 5341 mtype = 0; 5342 moff = 0; 5343 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5344 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) { 5345 mtype = FW_MEMTYPE_FLASH; 5346 moff = cfg_addr; 5347 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 5348 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 5349 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 5350 FW_LEN16(caps)); 5351 } else { 5352 /* 5353 * Ask the firmware where it wants us to upload the config file. 5354 */ 5355 param = FW_PARAM_DEV(CF); 5356 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5357 if (rc != 0) { 5358 /* No support for config file? Shouldn't happen. */ 5359 device_printf(sc->dev, 5360 "failed to query config file location: %d.\n", rc); 5361 goto done; 5362 } 5363 mtype = G_FW_PARAMS_PARAM_Y(val); 5364 moff = G_FW_PARAMS_PARAM_Z(val) << 16; 5365 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 5366 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 5367 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 5368 FW_LEN16(caps)); 5369 5370 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff, maxlen); 5371 if (rc != 0) { 5372 device_printf(sc->dev, 5373 "failed to upload config file to card: %d.\n", rc); 5374 goto done; 5375 } 5376 } 5377 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5378 if (rc != 0) { 5379 device_printf(sc->dev, "failed to pre-process config file: %d " 5380 "(mtype %d, moff 0x%x).\n", rc, mtype, moff); 5381 goto done; 5382 } 5383 5384 finicsum = be32toh(caps.finicsum); 5385 cfcsum = be32toh(caps.cfcsum); /* actual */ 5386 if (finicsum != cfcsum) { 5387 device_printf(sc->dev, 5388 "WARNING: config file checksum mismatch: %08x %08x\n", 5389 finicsum, cfcsum); 5390 } 5391 sc->cfcsum = cfcsum; 5392 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file); 5393 5394 /* 5395 * Let the firmware know what features will (not) be used so it can tune 5396 * things accordingly. 5397 */ 5398 #define LIMIT_CAPS(x) do { \ 5399 caps.x##caps &= htobe16(caps_allowed->x##caps); \ 5400 } while (0) 5401 LIMIT_CAPS(nbm); 5402 LIMIT_CAPS(link); 5403 LIMIT_CAPS(switch); 5404 LIMIT_CAPS(nvme); 5405 LIMIT_CAPS(nic); 5406 LIMIT_CAPS(toe); 5407 LIMIT_CAPS(rdma); 5408 LIMIT_CAPS(crypto); 5409 LIMIT_CAPS(iscsi); 5410 LIMIT_CAPS(fcoe); 5411 #undef LIMIT_CAPS 5412 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 5413 /* 5414 * TOE and hashfilters are mutually exclusive. It is a config 5415 * file or firmware bug if both are reported as available. Try 5416 * to cope with the situation in non-debug builds by disabling 5417 * TOE. 5418 */ 5419 MPASS(caps.toecaps == 0); 5420 5421 caps.toecaps = 0; 5422 caps.rdmacaps = 0; 5423 caps.iscsicaps = 0; 5424 caps.nvmecaps = 0; 5425 } 5426 5427 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5428 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 5429 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5430 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); 5431 if (rc != 0) { 5432 device_printf(sc->dev, 5433 "failed to process config file: %d.\n", rc); 5434 goto done; 5435 } 5436 5437 t4_tweak_chip_settings(sc); 5438 set_params__pre_init(sc); 5439 5440 /* get basic stuff going */ 5441 rc = -t4_fw_initialize(sc, sc->mbox); 5442 if (rc != 0) { 5443 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc); 5444 goto done; 5445 } 5446 done: 5447 return (rc); 5448 } 5449 5450 /* 5451 * Partition chip resources for use between various PFs, VFs, etc. 5452 */ 5453 static int 5454 partition_resources(struct adapter *sc) 5455 { 5456 char cfg_file[sizeof(t4_cfg_file)]; 5457 struct caps_allowed caps_allowed; 5458 int rc; 5459 bool fallback; 5460 5461 /* Only the master driver gets to configure the chip resources. */ 5462 MPASS(sc->flags & MASTER_PF); 5463 5464 #define COPY_CAPS(x) do { \ 5465 caps_allowed.x##caps = t4_##x##caps_allowed; \ 5466 } while (0) 5467 bzero(&caps_allowed, sizeof(caps_allowed)); 5468 COPY_CAPS(nbm); 5469 COPY_CAPS(link); 5470 COPY_CAPS(switch); 5471 COPY_CAPS(nvme); 5472 COPY_CAPS(nic); 5473 COPY_CAPS(toe); 5474 COPY_CAPS(rdma); 5475 COPY_CAPS(crypto); 5476 COPY_CAPS(iscsi); 5477 COPY_CAPS(fcoe); 5478 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true; 5479 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file); 5480 retry: 5481 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed); 5482 if (rc != 0 && fallback) { 5483 dump_devlog(sc); 5484 device_printf(sc->dev, 5485 "failed (%d) to configure card with \"%s\" profile, " 5486 "will fall back to a basic configuration and retry.\n", 5487 rc, cfg_file); 5488 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF); 5489 bzero(&caps_allowed, sizeof(caps_allowed)); 5490 COPY_CAPS(switch); 5491 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC; 5492 fallback = false; 5493 goto retry; 5494 } 5495 #undef COPY_CAPS 5496 return (rc); 5497 } 5498 5499 /* 5500 * Retrieve parameters that are needed (or nice to have) very early. 5501 */ 5502 static int 5503 get_params__pre_init(struct adapter *sc) 5504 { 5505 int rc; 5506 uint32_t param[2], val[2]; 5507 5508 t4_get_version_info(sc); 5509 5510 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", 5511 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), 5512 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), 5513 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), 5514 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); 5515 5516 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u", 5517 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers), 5518 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers), 5519 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers), 5520 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers)); 5521 5522 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u", 5523 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers), 5524 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers), 5525 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers), 5526 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers)); 5527 5528 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u", 5529 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers), 5530 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers), 5531 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers), 5532 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers)); 5533 5534 param[0] = FW_PARAM_DEV(PORTVEC); 5535 param[1] = FW_PARAM_DEV(CCLK); 5536 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5537 if (rc != 0) { 5538 device_printf(sc->dev, 5539 "failed to query parameters (pre_init): %d.\n", rc); 5540 return (rc); 5541 } 5542 5543 sc->params.portvec = val[0]; 5544 sc->params.nports = bitcount32(val[0]); 5545 sc->params.vpd.cclk = val[1]; 5546 5547 /* Read device log parameters. */ 5548 rc = -t4_init_devlog_ncores_params(sc, 1); 5549 if (rc == 0) 5550 fixup_devlog_params(sc); 5551 else { 5552 device_printf(sc->dev, 5553 "failed to get devlog parameters: %d.\n", rc); 5554 rc = 0; /* devlog isn't critical for device operation */ 5555 } 5556 5557 return (rc); 5558 } 5559 5560 /* 5561 * Any params that need to be set before FW_INITIALIZE. 5562 */ 5563 static int 5564 set_params__pre_init(struct adapter *sc) 5565 { 5566 int rc = 0; 5567 uint32_t param, val; 5568 5569 if (chip_id(sc) >= CHELSIO_T6) { 5570 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 5571 val = 1; 5572 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5573 /* firmwares < 1.20.1.0 do not have this param. */ 5574 if (rc == FW_EINVAL && 5575 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) { 5576 rc = 0; 5577 } 5578 if (rc != 0) { 5579 device_printf(sc->dev, 5580 "failed to enable high priority filters :%d.\n", 5581 rc); 5582 } 5583 5584 param = FW_PARAM_DEV(PPOD_EDRAM); 5585 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5586 if (rc == 0 && val == 1) { 5587 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, 5588 &val); 5589 if (rc != 0) { 5590 device_printf(sc->dev, 5591 "failed to set PPOD_EDRAM: %d.\n", rc); 5592 } 5593 } 5594 } 5595 5596 /* Enable opaque VIIDs with firmwares that support it. */ 5597 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 5598 val = 1; 5599 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5600 if (rc == 0 && val == 1) 5601 sc->params.viid_smt_extn_support = true; 5602 else 5603 sc->params.viid_smt_extn_support = false; 5604 5605 return (rc); 5606 } 5607 5608 /* 5609 * Retrieve various parameters that are of interest to the driver. The device 5610 * has been initialized by the firmware at this point. 5611 */ 5612 static int 5613 get_params__post_init(struct adapter *sc) 5614 { 5615 int rc; 5616 uint32_t param[7], val[7]; 5617 struct fw_caps_config_cmd caps; 5618 5619 param[0] = FW_PARAM_PFVF(IQFLINT_START); 5620 param[1] = FW_PARAM_PFVF(EQ_START); 5621 param[2] = FW_PARAM_PFVF(FILTER_START); 5622 param[3] = FW_PARAM_PFVF(FILTER_END); 5623 param[4] = FW_PARAM_PFVF(L2T_START); 5624 param[5] = FW_PARAM_PFVF(L2T_END); 5625 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5626 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 5627 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 5628 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val); 5629 if (rc != 0) { 5630 device_printf(sc->dev, 5631 "failed to query parameters (post_init): %d.\n", rc); 5632 return (rc); 5633 } 5634 5635 sc->sge.iq_start = val[0]; 5636 sc->sge.eq_start = val[1]; 5637 if ((int)val[3] > (int)val[2]) { 5638 sc->tids.ftid_base = val[2]; 5639 sc->tids.ftid_end = val[3]; 5640 sc->tids.nftids = val[3] - val[2] + 1; 5641 } 5642 sc->vres.l2t.start = val[4]; 5643 sc->vres.l2t.size = val[5] - val[4] + 1; 5644 /* val[5] is the last hwidx and it must not collide with F_SYNC_WR */ 5645 if (sc->vres.l2t.size > 0) 5646 MPASS(fls(val[5]) <= S_SYNC_WR); 5647 sc->params.core_vdd = val[6]; 5648 5649 param[0] = FW_PARAM_PFVF(IQFLINT_END); 5650 param[1] = FW_PARAM_PFVF(EQ_END); 5651 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5652 if (rc != 0) { 5653 device_printf(sc->dev, 5654 "failed to query parameters (post_init2): %d.\n", rc); 5655 return (rc); 5656 } 5657 MPASS((int)val[0] >= sc->sge.iq_start); 5658 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1; 5659 MPASS((int)val[1] >= sc->sge.eq_start); 5660 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1; 5661 5662 if (chip_id(sc) >= CHELSIO_T6) { 5663 5664 sc->tids.tid_base = t4_read_reg(sc, 5665 A_LE_DB_ACTIVE_TABLE_START_INDEX); 5666 5667 param[0] = FW_PARAM_PFVF(HPFILTER_START); 5668 param[1] = FW_PARAM_PFVF(HPFILTER_END); 5669 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5670 if (rc != 0) { 5671 device_printf(sc->dev, 5672 "failed to query hpfilter parameters: %d.\n", rc); 5673 return (rc); 5674 } 5675 if ((int)val[1] > (int)val[0]) { 5676 sc->tids.hpftid_base = val[0]; 5677 sc->tids.hpftid_end = val[1]; 5678 sc->tids.nhpftids = val[1] - val[0] + 1; 5679 5680 /* 5681 * These should go off if the layout changes and the 5682 * driver needs to catch up. 5683 */ 5684 MPASS(sc->tids.hpftid_base == 0); 5685 MPASS(sc->tids.tid_base == sc->tids.nhpftids); 5686 } 5687 5688 param[0] = FW_PARAM_PFVF(RAWF_START); 5689 param[1] = FW_PARAM_PFVF(RAWF_END); 5690 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5691 if (rc != 0) { 5692 device_printf(sc->dev, 5693 "failed to query rawf parameters: %d.\n", rc); 5694 return (rc); 5695 } 5696 if ((int)val[1] > (int)val[0]) { 5697 sc->rawf_base = val[0]; 5698 sc->nrawf = val[1] - val[0] + 1; 5699 } 5700 } 5701 5702 if (sc->params.ncores > 1) { 5703 MPASS(chip_id(sc) >= CHELSIO_T7); 5704 5705 param[0] = FW_PARAM_DEV(TID_QID_SEL_MASK); 5706 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5707 sc->params.tid_qid_sel_mask = rc == 0 ? val[0] : 0; 5708 } 5709 5710 /* 5711 * The parameters that follow may not be available on all firmwares. We 5712 * query them individually rather than in a compound query because old 5713 * firmwares fail the entire query if an unknown parameter is queried. 5714 */ 5715 5716 /* 5717 * MPS buffer group configuration. 5718 */ 5719 param[0] = FW_PARAM_DEV(MPSBGMAP); 5720 val[0] = 0; 5721 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5722 if (rc == 0) 5723 sc->params.mps_bg_map = val[0]; 5724 else 5725 sc->params.mps_bg_map = UINT32_MAX; /* Not a legal value. */ 5726 5727 param[0] = FW_PARAM_DEV(TPCHMAP); 5728 val[0] = 0; 5729 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5730 if (rc == 0) 5731 sc->params.tp_ch_map = val[0]; 5732 else 5733 sc->params.tp_ch_map = UINT32_MAX; /* Not a legal value. */ 5734 5735 param[0] = FW_PARAM_DEV(TX_TPCHMAP); 5736 val[0] = 0; 5737 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5738 if (rc == 0) 5739 sc->params.tx_tp_ch_map = val[0]; 5740 else 5741 sc->params.tx_tp_ch_map = UINT32_MAX; /* Not a legal value. */ 5742 5743 /* 5744 * Determine whether the firmware supports the filter2 work request. 5745 */ 5746 param[0] = FW_PARAM_DEV(FILTER2_WR); 5747 val[0] = 0; 5748 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5749 if (rc == 0) 5750 sc->params.filter2_wr_support = val[0] != 0; 5751 else 5752 sc->params.filter2_wr_support = 0; 5753 5754 /* 5755 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL. 5756 */ 5757 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 5758 val[0] = 0; 5759 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5760 if (rc == 0) 5761 sc->params.ulptx_memwrite_dsgl = val[0] != 0; 5762 else 5763 sc->params.ulptx_memwrite_dsgl = false; 5764 5765 /* FW_RI_FR_NSMR_TPTE_WR support */ 5766 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 5767 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5768 if (rc == 0) 5769 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0; 5770 else 5771 sc->params.fr_nsmr_tpte_wr_support = false; 5772 5773 /* Support for 512 SGL entries per FR MR. */ 5774 param[0] = FW_PARAM_DEV(DEV_512SGL_MR); 5775 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5776 if (rc == 0) 5777 sc->params.dev_512sgl_mr = val[0] != 0; 5778 else 5779 sc->params.dev_512sgl_mr = false; 5780 5781 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR); 5782 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5783 if (rc == 0) 5784 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0]; 5785 else 5786 sc->params.max_pkts_per_eth_tx_pkts_wr = 15; 5787 5788 param[0] = FW_PARAM_DEV(NUM_TM_CLASS); 5789 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5790 if (rc == 0) { 5791 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */ 5792 sc->params.nsched_cls = val[0]; 5793 } else 5794 sc->params.nsched_cls = sc->chip_params->nsched_cls; 5795 5796 /* get capabilites */ 5797 bzero(&caps, sizeof(caps)); 5798 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5799 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5800 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5801 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5802 if (rc != 0) { 5803 device_printf(sc->dev, 5804 "failed to get card capabilities: %d.\n", rc); 5805 return (rc); 5806 } 5807 5808 #define READ_CAPS(x) do { \ 5809 sc->x = htobe16(caps.x); \ 5810 } while (0) 5811 READ_CAPS(nbmcaps); 5812 READ_CAPS(linkcaps); 5813 READ_CAPS(switchcaps); 5814 READ_CAPS(nvmecaps); 5815 READ_CAPS(niccaps); 5816 READ_CAPS(toecaps); 5817 READ_CAPS(rdmacaps); 5818 READ_CAPS(cryptocaps); 5819 READ_CAPS(iscsicaps); 5820 READ_CAPS(fcoecaps); 5821 5822 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) { 5823 MPASS(chip_id(sc) > CHELSIO_T4); 5824 MPASS(sc->toecaps == 0); 5825 sc->toecaps = 0; 5826 5827 param[0] = FW_PARAM_DEV(NTID); 5828 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5829 if (rc != 0) { 5830 device_printf(sc->dev, 5831 "failed to query HASHFILTER parameters: %d.\n", rc); 5832 return (rc); 5833 } 5834 sc->tids.ntids = val[0]; 5835 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5836 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5837 sc->tids.ntids -= sc->tids.nhpftids; 5838 } 5839 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5840 sc->params.hash_filter = 1; 5841 } 5842 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) { 5843 param[0] = FW_PARAM_PFVF(ETHOFLD_START); 5844 param[1] = FW_PARAM_PFVF(ETHOFLD_END); 5845 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5846 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val); 5847 if (rc != 0) { 5848 device_printf(sc->dev, 5849 "failed to query NIC parameters: %d.\n", rc); 5850 return (rc); 5851 } 5852 if ((int)val[1] > (int)val[0]) { 5853 sc->tids.etid_base = val[0]; 5854 sc->tids.etid_end = val[1]; 5855 sc->tids.netids = val[1] - val[0] + 1; 5856 sc->params.eo_wr_cred = val[2]; 5857 sc->params.ethoffload = 1; 5858 } 5859 } 5860 if (sc->toecaps) { 5861 /* query offload-related parameters */ 5862 param[0] = FW_PARAM_DEV(NTID); 5863 param[1] = FW_PARAM_PFVF(SERVER_START); 5864 param[2] = FW_PARAM_PFVF(SERVER_END); 5865 param[3] = FW_PARAM_PFVF(TDDP_START); 5866 param[4] = FW_PARAM_PFVF(TDDP_END); 5867 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5868 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5869 if (rc != 0) { 5870 device_printf(sc->dev, 5871 "failed to query TOE parameters: %d.\n", rc); 5872 return (rc); 5873 } 5874 sc->tids.ntids = val[0]; 5875 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5876 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5877 sc->tids.ntids -= sc->tids.nhpftids; 5878 } 5879 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5880 if ((int)val[2] > (int)val[1]) { 5881 sc->tids.stid_base = val[1]; 5882 sc->tids.nstids = val[2] - val[1] + 1; 5883 } 5884 sc->vres.ddp.start = val[3]; 5885 sc->vres.ddp.size = val[4] - val[3] + 1; 5886 sc->params.ofldq_wr_cred = val[5]; 5887 sc->params.offload = 1; 5888 } else { 5889 /* 5890 * The firmware attempts memfree TOE configuration for -SO cards 5891 * and will report toecaps=0 if it runs out of resources (this 5892 * depends on the config file). It may not report 0 for other 5893 * capabilities dependent on the TOE in this case. Set them to 5894 * 0 here so that the driver doesn't bother tracking resources 5895 * that will never be used. 5896 */ 5897 sc->iscsicaps = 0; 5898 sc->nvmecaps = 0; 5899 sc->rdmacaps = 0; 5900 } 5901 if (sc->nvmecaps || sc->rdmacaps) { 5902 param[0] = FW_PARAM_PFVF(STAG_START); 5903 param[1] = FW_PARAM_PFVF(STAG_END); 5904 param[2] = FW_PARAM_PFVF(PBL_START); 5905 param[3] = FW_PARAM_PFVF(PBL_END); 5906 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val); 5907 if (rc != 0) { 5908 device_printf(sc->dev, 5909 "failed to query NVMe/RDMA parameters: %d.\n", rc); 5910 return (rc); 5911 } 5912 sc->vres.stag.start = val[0]; 5913 sc->vres.stag.size = val[1] - val[0] + 1; 5914 sc->vres.pbl.start = val[2]; 5915 sc->vres.pbl.size = val[3] - val[2] + 1; 5916 } 5917 if (sc->rdmacaps) { 5918 param[0] = FW_PARAM_PFVF(RQ_START); 5919 param[1] = FW_PARAM_PFVF(RQ_END); 5920 param[2] = FW_PARAM_PFVF(SQRQ_START); 5921 param[3] = FW_PARAM_PFVF(SQRQ_END); 5922 param[4] = FW_PARAM_PFVF(CQ_START); 5923 param[5] = FW_PARAM_PFVF(CQ_END); 5924 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5925 if (rc != 0) { 5926 device_printf(sc->dev, 5927 "failed to query RDMA parameters(1): %d.\n", rc); 5928 return (rc); 5929 } 5930 sc->vres.rq.start = val[0]; 5931 sc->vres.rq.size = val[1] - val[0] + 1; 5932 sc->vres.qp.start = val[2]; 5933 sc->vres.qp.size = val[3] - val[2] + 1; 5934 sc->vres.cq.start = val[4]; 5935 sc->vres.cq.size = val[5] - val[4] + 1; 5936 5937 param[0] = FW_PARAM_PFVF(OCQ_START); 5938 param[1] = FW_PARAM_PFVF(OCQ_END); 5939 param[2] = FW_PARAM_PFVF(SRQ_START); 5940 param[3] = FW_PARAM_PFVF(SRQ_END); 5941 param[4] = FW_PARAM_DEV(MAXORDIRD_QP); 5942 param[5] = FW_PARAM_DEV(MAXIRD_ADAPTER); 5943 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5944 if (rc != 0) { 5945 device_printf(sc->dev, 5946 "failed to query RDMA parameters(2): %d.\n", rc); 5947 return (rc); 5948 } 5949 sc->vres.ocq.start = val[0]; 5950 sc->vres.ocq.size = val[1] - val[0] + 1; 5951 sc->vres.srq.start = val[2]; 5952 sc->vres.srq.size = val[3] - val[2] + 1; 5953 sc->params.max_ordird_qp = val[4]; 5954 sc->params.max_ird_adapter = val[5]; 5955 } 5956 if (sc->iscsicaps) { 5957 param[0] = FW_PARAM_PFVF(ISCSI_START); 5958 param[1] = FW_PARAM_PFVF(ISCSI_END); 5959 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5960 if (rc != 0) { 5961 device_printf(sc->dev, 5962 "failed to query iSCSI parameters: %d.\n", rc); 5963 return (rc); 5964 } 5965 sc->vres.iscsi.start = val[0]; 5966 sc->vres.iscsi.size = val[1] - val[0] + 1; 5967 } 5968 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 5969 param[0] = FW_PARAM_PFVF(TLS_START); 5970 param[1] = FW_PARAM_PFVF(TLS_END); 5971 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5972 if (rc != 0) { 5973 device_printf(sc->dev, 5974 "failed to query TLS parameters: %d.\n", rc); 5975 return (rc); 5976 } 5977 sc->vres.key.start = val[0]; 5978 sc->vres.key.size = val[1] - val[0] + 1; 5979 } 5980 5981 /* 5982 * We've got the params we wanted to query directly from the firmware. 5983 * Grab some others via other means. 5984 */ 5985 t4_init_sge_params(sc); 5986 t4_init_tp_params(sc); 5987 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 5988 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 5989 5990 rc = t4_verify_chip_settings(sc); 5991 if (rc != 0) 5992 return (rc); 5993 t4_init_rx_buf_info(sc); 5994 5995 return (rc); 5996 } 5997 5998 #ifdef KERN_TLS 5999 static void 6000 ktls_tick(void *arg) 6001 { 6002 struct adapter *sc; 6003 uint32_t tstamp; 6004 6005 sc = arg; 6006 tstamp = tcp_ts_getticks(); 6007 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1); 6008 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31); 6009 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK); 6010 } 6011 6012 static int 6013 t6_config_kern_tls(struct adapter *sc, bool enable) 6014 { 6015 int rc; 6016 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 6017 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) | 6018 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) | 6019 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE); 6020 6021 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m); 6022 if (rc != 0) { 6023 CH_ERR(sc, "failed to %s NIC TLS: %d\n", 6024 enable ? "enable" : "disable", rc); 6025 return (rc); 6026 } 6027 6028 if (enable) { 6029 sc->flags |= KERN_TLS_ON; 6030 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc, 6031 C_HARDCLOCK); 6032 } else { 6033 sc->flags &= ~KERN_TLS_ON; 6034 callout_stop(&sc->ktls_tick); 6035 } 6036 6037 return (rc); 6038 } 6039 #endif 6040 6041 static int 6042 set_params__post_init(struct adapter *sc) 6043 { 6044 uint32_t mask, param, val; 6045 #ifdef TCP_OFFLOAD 6046 int i, v, shift; 6047 #endif 6048 6049 /* ask for encapsulated CPLs */ 6050 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 6051 val = 1; 6052 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 6053 6054 /* Enable 32b port caps if the firmware supports it. */ 6055 param = FW_PARAM_PFVF(PORT_CAPS32); 6056 val = 1; 6057 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0) 6058 sc->params.port_caps32 = 1; 6059 6060 /* Let filter + maskhash steer to a part of the VI's RSS region. */ 6061 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1); 6062 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER), 6063 V_MASKFILTER(val - 1)); 6064 6065 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER | 6066 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN | 6067 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 6068 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM; 6069 val = 0; 6070 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) { 6071 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE, 6072 F_ATTACKFILTERENABLE); 6073 val |= F_DROPERRORATTACK; 6074 } 6075 if (t4_drop_ip_fragments != 0) { 6076 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP, 6077 F_FRAGMENTDROP); 6078 val |= F_DROPERRORFRAG; 6079 } 6080 if (t4_drop_pkts_with_l2_errors != 0) 6081 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN; 6082 if (t4_drop_pkts_with_l3_errors != 0) { 6083 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN | 6084 F_DROPERRORCSUMIP; 6085 } 6086 if (t4_drop_pkts_with_l4_errors != 0) { 6087 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 6088 F_DROPERRORTCPOPT | F_DROPERRORCSUM; 6089 } 6090 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val); 6091 6092 #ifdef TCP_OFFLOAD 6093 /* 6094 * Override the TOE timers with user provided tunables. This is not the 6095 * recommended way to change the timers (the firmware config file is) so 6096 * these tunables are not documented. 6097 * 6098 * All the timer tunables are in microseconds. 6099 */ 6100 if (t4_toe_keepalive_idle != 0) { 6101 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle); 6102 v &= M_KEEPALIVEIDLE; 6103 t4_set_reg_field(sc, A_TP_KEEP_IDLE, 6104 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v)); 6105 } 6106 if (t4_toe_keepalive_interval != 0) { 6107 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval); 6108 v &= M_KEEPALIVEINTVL; 6109 t4_set_reg_field(sc, A_TP_KEEP_INTVL, 6110 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v)); 6111 } 6112 if (t4_toe_keepalive_count != 0) { 6113 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2; 6114 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 6115 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) | 6116 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2), 6117 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v)); 6118 } 6119 if (t4_toe_rexmt_min != 0) { 6120 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min); 6121 v &= M_RXTMIN; 6122 t4_set_reg_field(sc, A_TP_RXT_MIN, 6123 V_RXTMIN(M_RXTMIN), V_RXTMIN(v)); 6124 } 6125 if (t4_toe_rexmt_max != 0) { 6126 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max); 6127 v &= M_RXTMAX; 6128 t4_set_reg_field(sc, A_TP_RXT_MAX, 6129 V_RXTMAX(M_RXTMAX), V_RXTMAX(v)); 6130 } 6131 if (t4_toe_rexmt_count != 0) { 6132 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2; 6133 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 6134 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) | 6135 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2), 6136 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v)); 6137 } 6138 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) { 6139 if (t4_toe_rexmt_backoff[i] != -1) { 6140 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0; 6141 shift = (i & 3) << 3; 6142 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3), 6143 M_TIMERBACKOFFINDEX0 << shift, v << shift); 6144 } 6145 } 6146 #endif 6147 6148 /* 6149 * Limit TOE connections to 2 reassembly "islands". This is 6150 * required to permit migrating TOE connections to either 6151 * ULP_MODE_TCPDDP or UPL_MODE_TLS. 6152 */ 6153 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, V_PASSMODE(M_PASSMODE), 6154 V_PASSMODE(2)); 6155 6156 #ifdef KERN_TLS 6157 if (is_ktls(sc)) { 6158 sc->tlst.inline_keys = t4_tls_inline_keys; 6159 if (t4_kern_tls != 0 && is_t6(sc)) { 6160 sc->tlst.combo_wrs = t4_tls_combo_wrs; 6161 t6_config_kern_tls(sc, true); 6162 } else { 6163 sc->tlst.short_records = t4_tls_short_records; 6164 sc->tlst.partial_ghash = t4_tls_partial_ghash; 6165 } 6166 } 6167 #endif 6168 return (0); 6169 } 6170 6171 #undef FW_PARAM_PFVF 6172 #undef FW_PARAM_DEV 6173 6174 static void 6175 t4_set_desc(struct adapter *sc) 6176 { 6177 struct adapter_params *p = &sc->params; 6178 6179 device_set_descf(sc->dev, "Chelsio %s", p->vpd.id); 6180 } 6181 6182 static inline void 6183 ifmedia_add4(struct ifmedia *ifm, int m) 6184 { 6185 6186 ifmedia_add(ifm, m, 0, NULL); 6187 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL); 6188 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL); 6189 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL); 6190 } 6191 6192 /* 6193 * This is the selected media, which is not quite the same as the active media. 6194 * The media line in ifconfig is "media: Ethernet selected (active)" if selected 6195 * and active are not the same, and "media: Ethernet selected" otherwise. 6196 */ 6197 static void 6198 set_current_media(struct port_info *pi) 6199 { 6200 struct link_config *lc; 6201 struct ifmedia *ifm; 6202 int mword; 6203 u_int speed; 6204 6205 PORT_LOCK_ASSERT_OWNED(pi); 6206 6207 /* Leave current media alone if it's already set to IFM_NONE. */ 6208 ifm = &pi->media; 6209 if (ifm->ifm_cur != NULL && 6210 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE) 6211 return; 6212 6213 lc = &pi->link_cfg; 6214 if (lc->requested_aneg != AUTONEG_DISABLE && 6215 lc->pcaps & FW_PORT_CAP32_ANEG) { 6216 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); 6217 return; 6218 } 6219 mword = IFM_ETHER | IFM_FDX; 6220 if (lc->requested_fc & PAUSE_TX) 6221 mword |= IFM_ETH_TXPAUSE; 6222 if (lc->requested_fc & PAUSE_RX) 6223 mword |= IFM_ETH_RXPAUSE; 6224 if (lc->requested_speed == 0) 6225 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */ 6226 else 6227 speed = lc->requested_speed; 6228 mword |= port_mword(pi, speed_to_fwcap(speed)); 6229 ifmedia_set(ifm, mword); 6230 } 6231 6232 /* 6233 * Returns true if the ifmedia list for the port cannot change. 6234 */ 6235 static bool 6236 fixed_ifmedia(struct port_info *pi) 6237 { 6238 6239 return (pi->port_type == FW_PORT_TYPE_BT_SGMII || 6240 pi->port_type == FW_PORT_TYPE_BT_XFI || 6241 pi->port_type == FW_PORT_TYPE_BT_XAUI || 6242 pi->port_type == FW_PORT_TYPE_KX4 || 6243 pi->port_type == FW_PORT_TYPE_KX || 6244 pi->port_type == FW_PORT_TYPE_KR || 6245 pi->port_type == FW_PORT_TYPE_BP_AP || 6246 pi->port_type == FW_PORT_TYPE_BP4_AP || 6247 pi->port_type == FW_PORT_TYPE_BP40_BA || 6248 pi->port_type == FW_PORT_TYPE_KR4_100G || 6249 pi->port_type == FW_PORT_TYPE_KR_SFP28 || 6250 pi->port_type == FW_PORT_TYPE_KR_XLAUI); 6251 } 6252 6253 static void 6254 build_medialist(struct port_info *pi) 6255 { 6256 uint32_t ss, speed; 6257 int unknown, mword, bit; 6258 struct link_config *lc; 6259 struct ifmedia *ifm; 6260 6261 PORT_LOCK_ASSERT_OWNED(pi); 6262 6263 if (pi->flags & FIXED_IFMEDIA) 6264 return; 6265 6266 /* 6267 * Rebuild the ifmedia list. 6268 */ 6269 ifm = &pi->media; 6270 ifmedia_removeall(ifm); 6271 lc = &pi->link_cfg; 6272 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */ 6273 if (__predict_false(ss == 0)) { /* not supposed to happen. */ 6274 MPASS(ss != 0); 6275 no_media: 6276 MPASS(LIST_EMPTY(&ifm->ifm_list)); 6277 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL); 6278 ifmedia_set(ifm, IFM_ETHER | IFM_NONE); 6279 return; 6280 } 6281 6282 unknown = 0; 6283 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) { 6284 speed = 1 << bit; 6285 MPASS(speed & M_FW_PORT_CAP32_SPEED); 6286 if (ss & speed) { 6287 mword = port_mword(pi, speed); 6288 if (mword == IFM_NONE) { 6289 goto no_media; 6290 } else if (mword == IFM_UNKNOWN) 6291 unknown++; 6292 else 6293 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword); 6294 } 6295 } 6296 if (unknown > 0) /* Add one unknown for all unknown media types. */ 6297 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN); 6298 if (lc->pcaps & FW_PORT_CAP32_ANEG) 6299 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL); 6300 6301 set_current_media(pi); 6302 } 6303 6304 /* 6305 * Initialize the requested fields in the link config based on driver tunables. 6306 */ 6307 static void 6308 init_link_config(struct port_info *pi) 6309 { 6310 struct link_config *lc = &pi->link_cfg; 6311 6312 PORT_LOCK_ASSERT_OWNED(pi); 6313 6314 lc->requested_caps = 0; 6315 lc->requested_speed = 0; 6316 6317 if (t4_autoneg == 0) 6318 lc->requested_aneg = AUTONEG_DISABLE; 6319 else if (t4_autoneg == 1) 6320 lc->requested_aneg = AUTONEG_ENABLE; 6321 else 6322 lc->requested_aneg = AUTONEG_AUTO; 6323 6324 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX | 6325 PAUSE_AUTONEG); 6326 6327 if (t4_fec & FEC_AUTO) 6328 lc->requested_fec = FEC_AUTO; 6329 else if (t4_fec == 0) 6330 lc->requested_fec = FEC_NONE; 6331 else { 6332 /* -1 is handled by the FEC_AUTO block above and not here. */ 6333 lc->requested_fec = t4_fec & 6334 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE); 6335 if (lc->requested_fec == 0) 6336 lc->requested_fec = FEC_AUTO; 6337 } 6338 if (t4_force_fec < 0) 6339 lc->force_fec = -1; 6340 else if (t4_force_fec > 0) 6341 lc->force_fec = 1; 6342 else 6343 lc->force_fec = 0; 6344 } 6345 6346 /* 6347 * Makes sure that all requested settings comply with what's supported by the 6348 * port. Returns the number of settings that were invalid and had to be fixed. 6349 */ 6350 static int 6351 fixup_link_config(struct port_info *pi) 6352 { 6353 int n = 0; 6354 struct link_config *lc = &pi->link_cfg; 6355 uint32_t fwspeed; 6356 6357 PORT_LOCK_ASSERT_OWNED(pi); 6358 6359 /* Speed (when not autonegotiating) */ 6360 if (lc->requested_speed != 0) { 6361 fwspeed = speed_to_fwcap(lc->requested_speed); 6362 if ((fwspeed & lc->pcaps) == 0) { 6363 n++; 6364 lc->requested_speed = 0; 6365 } 6366 } 6367 6368 /* Link autonegotiation */ 6369 MPASS(lc->requested_aneg == AUTONEG_ENABLE || 6370 lc->requested_aneg == AUTONEG_DISABLE || 6371 lc->requested_aneg == AUTONEG_AUTO); 6372 if (lc->requested_aneg == AUTONEG_ENABLE && 6373 !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 6374 n++; 6375 lc->requested_aneg = AUTONEG_AUTO; 6376 } 6377 6378 /* Flow control */ 6379 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0); 6380 if (lc->requested_fc & PAUSE_TX && 6381 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) { 6382 n++; 6383 lc->requested_fc &= ~PAUSE_TX; 6384 } 6385 if (lc->requested_fc & PAUSE_RX && 6386 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) { 6387 n++; 6388 lc->requested_fc &= ~PAUSE_RX; 6389 } 6390 if (!(lc->requested_fc & PAUSE_AUTONEG) && 6391 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) { 6392 n++; 6393 lc->requested_fc |= PAUSE_AUTONEG; 6394 } 6395 6396 /* FEC */ 6397 if ((lc->requested_fec & FEC_RS && 6398 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) || 6399 (lc->requested_fec & FEC_BASER_RS && 6400 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) { 6401 n++; 6402 lc->requested_fec = FEC_AUTO; 6403 } 6404 6405 return (n); 6406 } 6407 6408 /* 6409 * Apply the requested L1 settings, which are expected to be valid, to the 6410 * hardware. 6411 */ 6412 static int 6413 apply_link_config(struct port_info *pi) 6414 { 6415 struct adapter *sc = pi->adapter; 6416 struct link_config *lc = &pi->link_cfg; 6417 int rc; 6418 6419 #ifdef INVARIANTS 6420 ASSERT_SYNCHRONIZED_OP(sc); 6421 PORT_LOCK_ASSERT_OWNED(pi); 6422 6423 if (lc->requested_aneg == AUTONEG_ENABLE) 6424 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG); 6425 if (!(lc->requested_fc & PAUSE_AUTONEG)) 6426 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE); 6427 if (lc->requested_fc & PAUSE_TX) 6428 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX); 6429 if (lc->requested_fc & PAUSE_RX) 6430 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX); 6431 if (lc->requested_fec & FEC_RS) 6432 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS); 6433 if (lc->requested_fec & FEC_BASER_RS) 6434 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS); 6435 #endif 6436 if (!(sc->flags & IS_VF)) { 6437 rc = -t4_link_l1cfg(sc, sc->mbox, pi->hw_port, lc); 6438 if (rc != 0) { 6439 device_printf(pi->dev, "l1cfg failed: %d\n", rc); 6440 return (rc); 6441 } 6442 } 6443 6444 /* 6445 * An L1_CFG will almost always result in a link-change event if the 6446 * link is up, and the driver will refresh the actual fec/fc/etc. when 6447 * the notification is processed. If the link is down then the actual 6448 * settings are meaningless. 6449 * 6450 * This takes care of the case where a change in the L1 settings may not 6451 * result in a notification. 6452 */ 6453 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG)) 6454 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX); 6455 6456 return (0); 6457 } 6458 6459 #define FW_MAC_EXACT_CHUNK 7 6460 struct mcaddr_ctx { 6461 if_t ifp; 6462 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; 6463 uint64_t hash; 6464 int i; 6465 int del; 6466 int rc; 6467 }; 6468 6469 static u_int 6470 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 6471 { 6472 struct mcaddr_ctx *ctx = arg; 6473 struct vi_info *vi = if_getsoftc(ctx->ifp); 6474 struct port_info *pi = vi->pi; 6475 struct adapter *sc = pi->adapter; 6476 6477 if (ctx->rc < 0) 6478 return (0); 6479 6480 ctx->mcaddr[ctx->i] = LLADDR(sdl); 6481 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i])); 6482 ctx->i++; 6483 6484 if (ctx->i == FW_MAC_EXACT_CHUNK) { 6485 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del, 6486 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0); 6487 if (ctx->rc < 0) { 6488 int j; 6489 6490 for (j = 0; j < ctx->i; j++) { 6491 if_printf(ctx->ifp, 6492 "failed to add mc address" 6493 " %02x:%02x:%02x:" 6494 "%02x:%02x:%02x rc=%d\n", 6495 ctx->mcaddr[j][0], ctx->mcaddr[j][1], 6496 ctx->mcaddr[j][2], ctx->mcaddr[j][3], 6497 ctx->mcaddr[j][4], ctx->mcaddr[j][5], 6498 -ctx->rc); 6499 } 6500 return (0); 6501 } 6502 ctx->del = 0; 6503 ctx->i = 0; 6504 } 6505 6506 return (1); 6507 } 6508 6509 /* 6510 * Program the port's XGMAC based on parameters in ifnet. The caller also 6511 * indicates which parameters should be programmed (the rest are left alone). 6512 */ 6513 int 6514 update_mac_settings(if_t ifp, int flags) 6515 { 6516 int rc = 0; 6517 struct vi_info *vi = if_getsoftc(ifp); 6518 struct port_info *pi = vi->pi; 6519 struct adapter *sc = pi->adapter; 6520 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; 6521 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 6522 6523 ASSERT_SYNCHRONIZED_OP(sc); 6524 KASSERT(flags, ("%s: not told what to update.", __func__)); 6525 6526 if (flags & XGMAC_MTU) 6527 mtu = if_getmtu(ifp); 6528 6529 if (flags & XGMAC_PROMISC) 6530 promisc = if_getflags(ifp) & IFF_PROMISC ? 1 : 0; 6531 6532 if (flags & XGMAC_ALLMULTI) 6533 allmulti = if_getflags(ifp) & IFF_ALLMULTI ? 1 : 0; 6534 6535 if (flags & XGMAC_VLANEX) 6536 vlanex = if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING ? 1 : 0; 6537 6538 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) { 6539 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc, 6540 allmulti, 1, vlanex, false); 6541 if (rc) { 6542 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, 6543 rc); 6544 return (rc); 6545 } 6546 } 6547 6548 if (flags & XGMAC_UCADDR) { 6549 uint8_t ucaddr[ETHER_ADDR_LEN]; 6550 6551 bcopy(if_getlladdr(ifp), ucaddr, sizeof(ucaddr)); 6552 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt, 6553 ucaddr, true, &vi->smt_idx); 6554 if (rc < 0) { 6555 rc = -rc; 6556 if_printf(ifp, "change_mac failed: %d\n", rc); 6557 return (rc); 6558 } else { 6559 vi->xact_addr_filt = rc; 6560 rc = 0; 6561 } 6562 } 6563 6564 if (flags & XGMAC_MCADDRS) { 6565 struct epoch_tracker et; 6566 struct mcaddr_ctx ctx; 6567 int j; 6568 6569 ctx.ifp = ifp; 6570 ctx.hash = 0; 6571 ctx.i = 0; 6572 ctx.del = 1; 6573 ctx.rc = 0; 6574 /* 6575 * Unlike other drivers, we accumulate list of pointers into 6576 * interface address lists and we need to keep it safe even 6577 * after if_foreach_llmaddr() returns, thus we must enter the 6578 * network epoch. 6579 */ 6580 NET_EPOCH_ENTER(et); 6581 if_foreach_llmaddr(ifp, add_maddr, &ctx); 6582 if (ctx.rc < 0) { 6583 NET_EPOCH_EXIT(et); 6584 rc = -ctx.rc; 6585 return (rc); 6586 } 6587 if (ctx.i > 0) { 6588 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, 6589 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0); 6590 NET_EPOCH_EXIT(et); 6591 if (rc < 0) { 6592 rc = -rc; 6593 for (j = 0; j < ctx.i; j++) { 6594 if_printf(ifp, 6595 "failed to add mcast address" 6596 " %02x:%02x:%02x:" 6597 "%02x:%02x:%02x rc=%d\n", 6598 ctx.mcaddr[j][0], ctx.mcaddr[j][1], 6599 ctx.mcaddr[j][2], ctx.mcaddr[j][3], 6600 ctx.mcaddr[j][4], ctx.mcaddr[j][5], 6601 rc); 6602 } 6603 return (rc); 6604 } 6605 ctx.del = 0; 6606 } else 6607 NET_EPOCH_EXIT(et); 6608 6609 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0); 6610 if (rc != 0) 6611 if_printf(ifp, "failed to set mcast address hash: %d\n", 6612 rc); 6613 if (ctx.del == 0) { 6614 /* We clobbered the VXLAN entry if there was one. */ 6615 pi->vxlan_tcam_entry = false; 6616 } 6617 } 6618 6619 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 && 6620 pi->vxlan_tcam_entry == false) { 6621 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac, 6622 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 6623 true); 6624 if (rc < 0) { 6625 rc = -rc; 6626 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n", 6627 rc); 6628 } else { 6629 MPASS(rc == sc->rawf_base + pi->port_id); 6630 rc = 0; 6631 pi->vxlan_tcam_entry = true; 6632 } 6633 } 6634 6635 return (rc); 6636 } 6637 6638 /* 6639 * {begin|end}_synchronized_op must be called from the same thread. 6640 */ 6641 int 6642 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags, 6643 char *wmesg) 6644 { 6645 int rc; 6646 6647 #ifdef WITNESS 6648 /* the caller thinks it's ok to sleep, but is it really? */ 6649 if (flags & SLEEP_OK) 6650 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); 6651 #endif 6652 ADAPTER_LOCK(sc); 6653 for (;;) { 6654 6655 if (vi && IS_DETACHING(vi)) { 6656 rc = ENXIO; 6657 goto done; 6658 } 6659 6660 if (!IS_BUSY(sc)) { 6661 rc = 0; 6662 break; 6663 } 6664 6665 if (!(flags & SLEEP_OK)) { 6666 rc = EBUSY; 6667 goto done; 6668 } 6669 6670 if (mtx_sleep(&sc->flags, &sc->sc_lock, 6671 flags & INTR_OK ? PCATCH : 0, wmesg, 0)) { 6672 rc = EINTR; 6673 goto done; 6674 } 6675 } 6676 6677 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); 6678 SET_BUSY(sc); 6679 #ifdef INVARIANTS 6680 sc->last_op = wmesg; 6681 sc->last_op_thr = curthread; 6682 sc->last_op_flags = flags; 6683 #endif 6684 6685 done: 6686 if (!(flags & HOLD_LOCK) || rc) 6687 ADAPTER_UNLOCK(sc); 6688 6689 return (rc); 6690 } 6691 6692 /* 6693 * Tell if_ioctl and if_init that the VI is going away. This is 6694 * special variant of begin_synchronized_op and must be paired with a 6695 * call to end_vi_detach. 6696 */ 6697 void 6698 begin_vi_detach(struct adapter *sc, struct vi_info *vi) 6699 { 6700 ADAPTER_LOCK(sc); 6701 SET_DETACHING(vi); 6702 wakeup(&sc->flags); 6703 while (IS_BUSY(sc)) 6704 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); 6705 SET_BUSY(sc); 6706 #ifdef INVARIANTS 6707 sc->last_op = "t4detach"; 6708 sc->last_op_thr = curthread; 6709 sc->last_op_flags = 0; 6710 #endif 6711 ADAPTER_UNLOCK(sc); 6712 } 6713 6714 void 6715 end_vi_detach(struct adapter *sc, struct vi_info *vi) 6716 { 6717 ADAPTER_LOCK(sc); 6718 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6719 CLR_BUSY(sc); 6720 CLR_DETACHING(vi); 6721 wakeup(&sc->flags); 6722 ADAPTER_UNLOCK(sc); 6723 } 6724 6725 /* 6726 * {begin|end}_synchronized_op must be called from the same thread. 6727 */ 6728 void 6729 end_synchronized_op(struct adapter *sc, int flags) 6730 { 6731 6732 if (flags & LOCK_HELD) 6733 ADAPTER_LOCK_ASSERT_OWNED(sc); 6734 else 6735 ADAPTER_LOCK(sc); 6736 6737 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6738 CLR_BUSY(sc); 6739 wakeup(&sc->flags); 6740 ADAPTER_UNLOCK(sc); 6741 } 6742 6743 static int 6744 cxgbe_init_synchronized(struct vi_info *vi) 6745 { 6746 struct port_info *pi = vi->pi; 6747 struct adapter *sc = pi->adapter; 6748 if_t ifp = vi->ifp; 6749 int rc = 0, i; 6750 struct sge_txq *txq; 6751 6752 ASSERT_SYNCHRONIZED_OP(sc); 6753 6754 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 6755 return (0); /* already running */ 6756 6757 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0)) 6758 return (rc); /* error message displayed already */ 6759 6760 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 6761 return (rc); /* error message displayed already */ 6762 6763 rc = update_mac_settings(ifp, XGMAC_ALL); 6764 if (rc) 6765 goto done; /* error message displayed already */ 6766 6767 PORT_LOCK(pi); 6768 if (pi->up_vis == 0) { 6769 t4_update_port_info(pi); 6770 fixup_link_config(pi); 6771 build_medialist(pi); 6772 apply_link_config(pi); 6773 } 6774 6775 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true); 6776 if (rc != 0) { 6777 if_printf(ifp, "enable_vi failed: %d\n", rc); 6778 PORT_UNLOCK(pi); 6779 goto done; 6780 } 6781 6782 /* 6783 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized 6784 * if this changes. 6785 */ 6786 6787 for_each_txq(vi, i, txq) { 6788 TXQ_LOCK(txq); 6789 txq->eq.flags |= EQ_ENABLED; 6790 TXQ_UNLOCK(txq); 6791 } 6792 6793 /* 6794 * The first iq of the first port to come up is used for tracing. 6795 */ 6796 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 6797 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 6798 t4_set_trace_rss_control(sc, pi->tx_chan, sc->traceq); 6799 pi->flags |= HAS_TRACEQ; 6800 } 6801 6802 /* all ok */ 6803 pi->up_vis++; 6804 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 6805 if (pi->link_cfg.link_ok) 6806 t4_os_link_changed(pi); 6807 PORT_UNLOCK(pi); 6808 6809 mtx_lock(&vi->tick_mtx); 6810 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 6811 callout_reset(&vi->tick, hz, vi_tick, vi); 6812 else 6813 callout_reset(&vi->tick, hz, cxgbe_tick, vi); 6814 mtx_unlock(&vi->tick_mtx); 6815 done: 6816 if (rc != 0) 6817 cxgbe_uninit_synchronized(vi); 6818 6819 return (rc); 6820 } 6821 6822 /* 6823 * Idempotent. 6824 */ 6825 static int 6826 cxgbe_uninit_synchronized(struct vi_info *vi) 6827 { 6828 struct port_info *pi = vi->pi; 6829 struct adapter *sc = pi->adapter; 6830 if_t ifp = vi->ifp; 6831 int rc, i; 6832 struct sge_txq *txq; 6833 6834 ASSERT_SYNCHRONIZED_OP(sc); 6835 6836 if (!(vi->flags & VI_INIT_DONE)) { 6837 if (__predict_false(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6838 KASSERT(0, ("uninited VI is running")); 6839 if_printf(ifp, "uninited VI with running ifnet. " 6840 "vi->flags 0x%016lx, if_flags 0x%08x, " 6841 "if_drv_flags 0x%08x\n", vi->flags, if_getflags(ifp), 6842 if_getdrvflags(ifp)); 6843 } 6844 return (0); 6845 } 6846 6847 /* 6848 * Disable the VI so that all its data in either direction is discarded 6849 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz 6850 * tick) intact as the TP can deliver negative advice or data that it's 6851 * holding in its RAM (for an offloaded connection) even after the VI is 6852 * disabled. 6853 */ 6854 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false); 6855 if (rc) { 6856 if_printf(ifp, "disable_vi failed: %d\n", rc); 6857 return (rc); 6858 } 6859 6860 for_each_txq(vi, i, txq) { 6861 TXQ_LOCK(txq); 6862 txq->eq.flags &= ~EQ_ENABLED; 6863 TXQ_UNLOCK(txq); 6864 } 6865 6866 mtx_lock(&vi->tick_mtx); 6867 callout_stop(&vi->tick); 6868 mtx_unlock(&vi->tick_mtx); 6869 6870 PORT_LOCK(pi); 6871 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6872 PORT_UNLOCK(pi); 6873 return (0); 6874 } 6875 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 6876 pi->up_vis--; 6877 if (pi->up_vis > 0) { 6878 PORT_UNLOCK(pi); 6879 return (0); 6880 } 6881 6882 pi->link_cfg.link_ok = false; 6883 pi->link_cfg.speed = 0; 6884 pi->link_cfg.link_down_rc = 255; 6885 t4_os_link_changed(pi); 6886 PORT_UNLOCK(pi); 6887 6888 return (0); 6889 } 6890 6891 /* 6892 * It is ok for this function to fail midway and return right away. t4_detach 6893 * will walk the entire sc->irq list and clean up whatever is valid. 6894 */ 6895 int 6896 t4_setup_intr_handlers(struct adapter *sc) 6897 { 6898 int rc, rid, p, q, v; 6899 char s[8]; 6900 struct irq *irq; 6901 struct port_info *pi; 6902 struct vi_info *vi; 6903 struct sge *sge = &sc->sge; 6904 struct sge_rxq *rxq; 6905 #ifdef TCP_OFFLOAD 6906 struct sge_ofld_rxq *ofld_rxq; 6907 #endif 6908 #ifdef DEV_NETMAP 6909 struct sge_nm_rxq *nm_rxq; 6910 #endif 6911 #ifdef RSS 6912 int nbuckets = rss_getnumbuckets(); 6913 #endif 6914 6915 /* 6916 * Setup interrupts. 6917 */ 6918 irq = &sc->irq[0]; 6919 rid = sc->intr_type == INTR_INTX ? 0 : 1; 6920 if (forwarding_intr_to_fwq(sc)) 6921 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all")); 6922 6923 /* Multiple interrupts. */ 6924 if (sc->flags & IS_VF) 6925 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports, 6926 ("%s: too few intr.", __func__)); 6927 else 6928 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, 6929 ("%s: too few intr.", __func__)); 6930 6931 /* The first one is always error intr on PFs */ 6932 if (!(sc->flags & IS_VF)) { 6933 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); 6934 if (rc != 0) 6935 return (rc); 6936 irq++; 6937 rid++; 6938 } 6939 6940 /* The second one is always the firmware event queue (first on VFs) */ 6941 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt"); 6942 if (rc != 0) 6943 return (rc); 6944 irq++; 6945 rid++; 6946 6947 for_each_port(sc, p) { 6948 pi = sc->port[p]; 6949 for_each_vi(pi, v, vi) { 6950 vi->first_intr = rid - 1; 6951 6952 if (vi->nnmrxq > 0) { 6953 int n = max(vi->nrxq, vi->nnmrxq); 6954 6955 rxq = &sge->rxq[vi->first_rxq]; 6956 #ifdef DEV_NETMAP 6957 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq]; 6958 #endif 6959 for (q = 0; q < n; q++) { 6960 snprintf(s, sizeof(s), "%x%c%x", p, 6961 'a' + v, q); 6962 if (q < vi->nrxq) 6963 irq->rxq = rxq++; 6964 #ifdef DEV_NETMAP 6965 if (q < vi->nnmrxq) 6966 irq->nm_rxq = nm_rxq++; 6967 6968 if (irq->nm_rxq != NULL && 6969 irq->rxq == NULL) { 6970 /* Netmap rx only */ 6971 rc = t4_alloc_irq(sc, irq, rid, 6972 t4_nm_intr, irq->nm_rxq, s); 6973 } 6974 if (irq->nm_rxq != NULL && 6975 irq->rxq != NULL) { 6976 /* NIC and Netmap rx */ 6977 rc = t4_alloc_irq(sc, irq, rid, 6978 t4_vi_intr, irq, s); 6979 } 6980 #endif 6981 if (irq->rxq != NULL && 6982 irq->nm_rxq == NULL) { 6983 /* NIC rx only */ 6984 rc = t4_alloc_irq(sc, irq, rid, 6985 t4_intr, irq->rxq, s); 6986 } 6987 if (rc != 0) 6988 return (rc); 6989 #ifdef RSS 6990 if (q < vi->nrxq) { 6991 bus_bind_intr(sc->dev, irq->res, 6992 rss_getcpu(q % nbuckets)); 6993 } 6994 #endif 6995 irq++; 6996 rid++; 6997 vi->nintr++; 6998 } 6999 } else { 7000 for_each_rxq(vi, q, rxq) { 7001 snprintf(s, sizeof(s), "%x%c%x", p, 7002 'a' + v, q); 7003 rc = t4_alloc_irq(sc, irq, rid, 7004 t4_intr, rxq, s); 7005 if (rc != 0) 7006 return (rc); 7007 #ifdef RSS 7008 bus_bind_intr(sc->dev, irq->res, 7009 rss_getcpu(q % nbuckets)); 7010 #endif 7011 irq++; 7012 rid++; 7013 vi->nintr++; 7014 } 7015 } 7016 #ifdef TCP_OFFLOAD 7017 for_each_ofld_rxq(vi, q, ofld_rxq) { 7018 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q); 7019 rc = t4_alloc_irq(sc, irq, rid, t4_intr, 7020 ofld_rxq, s); 7021 if (rc != 0) 7022 return (rc); 7023 irq++; 7024 rid++; 7025 vi->nintr++; 7026 } 7027 #endif 7028 } 7029 } 7030 MPASS(irq == &sc->irq[sc->intr_count]); 7031 7032 return (0); 7033 } 7034 7035 static void 7036 write_global_rss_key(struct adapter *sc) 7037 { 7038 #ifdef RSS 7039 int i; 7040 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 7041 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 7042 7043 CTASSERT(RSS_KEYSIZE == 40); 7044 7045 rss_getkey((void *)&raw_rss_key[0]); 7046 for (i = 0; i < nitems(rss_key); i++) { 7047 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]); 7048 } 7049 t4_write_rss_key(sc, &rss_key[0], -1, 1); 7050 #endif 7051 } 7052 7053 /* 7054 * Idempotent. 7055 */ 7056 static int 7057 adapter_full_init(struct adapter *sc) 7058 { 7059 int rc, i; 7060 7061 ASSERT_SYNCHRONIZED_OP(sc); 7062 7063 /* 7064 * queues that belong to the adapter (not any particular port). 7065 */ 7066 rc = t4_setup_adapter_queues(sc); 7067 if (rc != 0) 7068 return (rc); 7069 7070 MPASS(sc->params.nports <= nitems(sc->tq)); 7071 for (i = 0; i < sc->params.nports; i++) { 7072 if (sc->tq[i] != NULL) 7073 continue; 7074 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, 7075 taskqueue_thread_enqueue, &sc->tq[i]); 7076 if (sc->tq[i] == NULL) { 7077 CH_ERR(sc, "failed to allocate task queue %d\n", i); 7078 return (ENOMEM); 7079 } 7080 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", 7081 device_get_nameunit(sc->dev), i); 7082 } 7083 7084 if (!(sc->flags & IS_VF)) { 7085 write_global_rss_key(sc); 7086 t4_intr_enable(sc); 7087 } 7088 return (0); 7089 } 7090 7091 int 7092 adapter_init(struct adapter *sc) 7093 { 7094 int rc; 7095 7096 ASSERT_SYNCHRONIZED_OP(sc); 7097 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 7098 KASSERT((sc->flags & FULL_INIT_DONE) == 0, 7099 ("%s: FULL_INIT_DONE already", __func__)); 7100 7101 rc = adapter_full_init(sc); 7102 if (rc != 0) 7103 adapter_full_uninit(sc); 7104 else 7105 sc->flags |= FULL_INIT_DONE; 7106 7107 return (rc); 7108 } 7109 7110 /* 7111 * Idempotent. 7112 */ 7113 static void 7114 adapter_full_uninit(struct adapter *sc) 7115 { 7116 int i; 7117 7118 t4_teardown_adapter_queues(sc); 7119 7120 for (i = 0; i < nitems(sc->tq); i++) { 7121 if (sc->tq[i] == NULL) 7122 continue; 7123 taskqueue_free(sc->tq[i]); 7124 sc->tq[i] = NULL; 7125 } 7126 7127 sc->flags &= ~FULL_INIT_DONE; 7128 } 7129 7130 #ifdef RSS 7131 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \ 7132 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \ 7133 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \ 7134 RSS_HASHTYPE_RSS_UDP_IPV6) 7135 7136 /* Translates kernel hash types to hardware. */ 7137 static int 7138 hashconfig_to_hashen(int hashconfig) 7139 { 7140 int hashen = 0; 7141 7142 if (hashconfig & RSS_HASHTYPE_RSS_IPV4) 7143 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 7144 if (hashconfig & RSS_HASHTYPE_RSS_IPV6) 7145 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 7146 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) { 7147 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 7148 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 7149 } 7150 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) { 7151 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 7152 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 7153 } 7154 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4) 7155 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 7156 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6) 7157 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 7158 7159 return (hashen); 7160 } 7161 7162 /* Translates hardware hash types to kernel. */ 7163 static int 7164 hashen_to_hashconfig(int hashen) 7165 { 7166 int hashconfig = 0; 7167 7168 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) { 7169 /* 7170 * If UDP hashing was enabled it must have been enabled for 7171 * either IPv4 or IPv6 (inclusive or). Enabling UDP without 7172 * enabling any 4-tuple hash is nonsense configuration. 7173 */ 7174 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 7175 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)); 7176 7177 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 7178 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4; 7179 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 7180 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6; 7181 } 7182 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 7183 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4; 7184 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 7185 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6; 7186 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 7187 hashconfig |= RSS_HASHTYPE_RSS_IPV4; 7188 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 7189 hashconfig |= RSS_HASHTYPE_RSS_IPV6; 7190 7191 return (hashconfig); 7192 } 7193 #endif 7194 7195 /* 7196 * Idempotent. 7197 */ 7198 static int 7199 vi_full_init(struct vi_info *vi) 7200 { 7201 struct adapter *sc = vi->adapter; 7202 struct sge_rxq *rxq; 7203 int rc, i, j; 7204 #ifdef RSS 7205 int nbuckets = rss_getnumbuckets(); 7206 int hashconfig = rss_gethashconfig(); 7207 int extra; 7208 #endif 7209 7210 ASSERT_SYNCHRONIZED_OP(sc); 7211 7212 /* 7213 * Allocate tx/rx/fl queues for this VI. 7214 */ 7215 rc = t4_setup_vi_queues(vi); 7216 if (rc != 0) 7217 return (rc); 7218 7219 /* 7220 * Setup RSS for this VI. Save a copy of the RSS table for later use. 7221 */ 7222 if (vi->nrxq > vi->rss_size) { 7223 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); " 7224 "some queues will never receive traffic.\n", vi->nrxq, 7225 vi->rss_size); 7226 } else if (vi->rss_size % vi->nrxq) { 7227 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); " 7228 "expect uneven traffic distribution.\n", vi->nrxq, 7229 vi->rss_size); 7230 } 7231 #ifdef RSS 7232 if (vi->nrxq != nbuckets) { 7233 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);" 7234 "performance will be impacted.\n", vi->nrxq, nbuckets); 7235 } 7236 #endif 7237 if (vi->rss == NULL) 7238 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE, 7239 M_ZERO | M_WAITOK); 7240 for (i = 0; i < vi->rss_size;) { 7241 #ifdef RSS 7242 j = rss_get_indirection_to_bucket(i); 7243 j %= vi->nrxq; 7244 rxq = &sc->sge.rxq[vi->first_rxq + j]; 7245 vi->rss[i++] = rxq->iq.abs_id; 7246 #else 7247 for_each_rxq(vi, j, rxq) { 7248 vi->rss[i++] = rxq->iq.abs_id; 7249 if (i == vi->rss_size) 7250 break; 7251 } 7252 #endif 7253 } 7254 7255 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, 7256 vi->rss, vi->rss_size); 7257 if (rc != 0) { 7258 CH_ERR(vi, "rss_config failed: %d\n", rc); 7259 return (rc); 7260 } 7261 7262 #ifdef RSS 7263 vi->hashen = hashconfig_to_hashen(hashconfig); 7264 7265 /* 7266 * We may have had to enable some hashes even though the global config 7267 * wants them disabled. This is a potential problem that must be 7268 * reported to the user. 7269 */ 7270 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig; 7271 7272 /* 7273 * If we consider only the supported hash types, then the enabled hashes 7274 * are a superset of the requested hashes. In other words, there cannot 7275 * be any supported hash that was requested but not enabled, but there 7276 * can be hashes that were not requested but had to be enabled. 7277 */ 7278 extra &= SUPPORTED_RSS_HASHTYPES; 7279 MPASS((extra & hashconfig) == 0); 7280 7281 if (extra) { 7282 CH_ALERT(vi, 7283 "global RSS config (0x%x) cannot be accommodated.\n", 7284 hashconfig); 7285 } 7286 if (extra & RSS_HASHTYPE_RSS_IPV4) 7287 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n"); 7288 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4) 7289 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n"); 7290 if (extra & RSS_HASHTYPE_RSS_IPV6) 7291 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n"); 7292 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6) 7293 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n"); 7294 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4) 7295 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n"); 7296 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6) 7297 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n"); 7298 #else 7299 vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN | 7300 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN | 7301 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 7302 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN; 7303 #endif 7304 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0], 7305 0, 0); 7306 if (rc != 0) { 7307 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc); 7308 return (rc); 7309 } 7310 7311 return (0); 7312 } 7313 7314 int 7315 vi_init(struct vi_info *vi) 7316 { 7317 int rc; 7318 7319 ASSERT_SYNCHRONIZED_OP(vi->adapter); 7320 KASSERT((vi->flags & VI_INIT_DONE) == 0, 7321 ("%s: VI_INIT_DONE already", __func__)); 7322 7323 rc = vi_full_init(vi); 7324 if (rc != 0) 7325 vi_full_uninit(vi); 7326 else 7327 vi->flags |= VI_INIT_DONE; 7328 7329 return (rc); 7330 } 7331 7332 /* 7333 * Idempotent. 7334 */ 7335 static void 7336 vi_full_uninit(struct vi_info *vi) 7337 { 7338 7339 if (vi->flags & VI_INIT_DONE) { 7340 quiesce_vi(vi); 7341 free(vi->rss, M_CXGBE); 7342 free(vi->nm_rss, M_CXGBE); 7343 } 7344 7345 t4_teardown_vi_queues(vi); 7346 vi->flags &= ~VI_INIT_DONE; 7347 } 7348 7349 static void 7350 quiesce_txq(struct sge_txq *txq) 7351 { 7352 struct sge_eq *eq = &txq->eq; 7353 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 7354 7355 MPASS(eq->flags & EQ_SW_ALLOCATED); 7356 MPASS(!(eq->flags & EQ_ENABLED)); 7357 7358 /* Wait for the mp_ring to empty. */ 7359 while (!mp_ring_is_idle(txq->r)) { 7360 mp_ring_check_drainage(txq->r, 4096); 7361 pause("rquiesce", 1); 7362 } 7363 MPASS(txq->txp.npkt == 0); 7364 7365 if (eq->flags & EQ_HW_ALLOCATED) { 7366 /* 7367 * Hardware is alive and working normally. Wait for it to 7368 * finish and then wait for the driver to catch up and reclaim 7369 * all descriptors. 7370 */ 7371 while (spg->cidx != htobe16(eq->pidx)) 7372 pause("equiesce", 1); 7373 while (eq->cidx != eq->pidx) 7374 pause("dquiesce", 1); 7375 } else { 7376 /* 7377 * Hardware is unavailable. Discard all pending tx and reclaim 7378 * descriptors directly. 7379 */ 7380 TXQ_LOCK(txq); 7381 while (eq->cidx != eq->pidx) { 7382 struct mbuf *m, *nextpkt; 7383 struct tx_sdesc *txsd; 7384 7385 txsd = &txq->sdesc[eq->cidx]; 7386 for (m = txsd->m; m != NULL; m = nextpkt) { 7387 nextpkt = m->m_nextpkt; 7388 m->m_nextpkt = NULL; 7389 m_freem(m); 7390 } 7391 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx); 7392 } 7393 spg->pidx = spg->cidx = htobe16(eq->cidx); 7394 TXQ_UNLOCK(txq); 7395 } 7396 } 7397 7398 static void 7399 quiesce_wrq(struct sge_wrq *wrq) 7400 { 7401 struct wrqe *wr; 7402 7403 TXQ_LOCK(wrq); 7404 while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) { 7405 STAILQ_REMOVE_HEAD(&wrq->wr_list, link); 7406 #ifdef INVARIANTS 7407 wrq->nwr_pending--; 7408 wrq->ndesc_needed -= howmany(wr->wr_len, EQ_ESIZE); 7409 #endif 7410 free(wr, M_CXGBE); 7411 } 7412 MPASS(wrq->nwr_pending == 0); 7413 MPASS(wrq->ndesc_needed == 0); 7414 wrq->nwr_pending = 0; 7415 wrq->ndesc_needed = 0; 7416 TXQ_UNLOCK(wrq); 7417 } 7418 7419 static void 7420 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl) 7421 { 7422 /* Synchronize with the interrupt handler */ 7423 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) 7424 pause("iqfree", 1); 7425 7426 if (fl != NULL) { 7427 MPASS(iq->flags & IQ_HAS_FL); 7428 7429 mtx_lock(&sc->sfl_lock); 7430 FL_LOCK(fl); 7431 fl->flags |= FL_DOOMED; 7432 FL_UNLOCK(fl); 7433 callout_stop(&sc->sfl_callout); 7434 mtx_unlock(&sc->sfl_lock); 7435 7436 KASSERT((fl->flags & FL_STARVING) == 0, 7437 ("%s: still starving", __func__)); 7438 7439 /* Release all buffers if hardware is no longer available. */ 7440 if (!(iq->flags & IQ_HW_ALLOCATED)) 7441 free_fl_buffers(sc, fl); 7442 } 7443 } 7444 7445 /* 7446 * Wait for all activity on all the queues of the VI to complete. It is assumed 7447 * that no new work is being enqueued by the hardware or the driver. That part 7448 * should be arranged before calling this function. 7449 */ 7450 static void 7451 quiesce_vi(struct vi_info *vi) 7452 { 7453 int i; 7454 struct adapter *sc = vi->adapter; 7455 struct sge_rxq *rxq; 7456 struct sge_txq *txq; 7457 #ifdef TCP_OFFLOAD 7458 struct sge_ofld_rxq *ofld_rxq; 7459 #endif 7460 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7461 struct sge_ofld_txq *ofld_txq; 7462 #endif 7463 7464 if (!(vi->flags & VI_INIT_DONE)) 7465 return; 7466 7467 for_each_txq(vi, i, txq) { 7468 quiesce_txq(txq); 7469 } 7470 7471 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7472 for_each_ofld_txq(vi, i, ofld_txq) { 7473 quiesce_wrq(&ofld_txq->wrq); 7474 } 7475 #endif 7476 7477 for_each_rxq(vi, i, rxq) { 7478 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl); 7479 } 7480 7481 #ifdef TCP_OFFLOAD 7482 for_each_ofld_rxq(vi, i, ofld_rxq) { 7483 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl); 7484 } 7485 #endif 7486 } 7487 7488 static int 7489 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, 7490 driver_intr_t *handler, void *arg, char *name) 7491 { 7492 int rc; 7493 7494 irq->rid = rid; 7495 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, 7496 RF_SHAREABLE | RF_ACTIVE); 7497 if (irq->res == NULL) { 7498 device_printf(sc->dev, 7499 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 7500 return (ENOMEM); 7501 } 7502 7503 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, 7504 NULL, handler, arg, &irq->tag); 7505 if (rc != 0) { 7506 device_printf(sc->dev, 7507 "failed to setup interrupt for rid %d, name %s: %d\n", 7508 rid, name, rc); 7509 } else if (name) 7510 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name); 7511 7512 return (rc); 7513 } 7514 7515 static int 7516 t4_free_irq(struct adapter *sc, struct irq *irq) 7517 { 7518 if (irq->tag) 7519 bus_teardown_intr(sc->dev, irq->res, irq->tag); 7520 if (irq->res) 7521 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); 7522 7523 bzero(irq, sizeof(*irq)); 7524 7525 return (0); 7526 } 7527 7528 static void 7529 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) 7530 { 7531 7532 regs->version = chip_id(sc) | chip_rev(sc) << 10; 7533 t4_get_regs(sc, buf, regs->len); 7534 } 7535 7536 #define A_PL_INDIR_CMD 0x1f8 7537 7538 #define S_PL_AUTOINC 31 7539 #define M_PL_AUTOINC 0x1U 7540 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC) 7541 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC) 7542 7543 #define S_PL_VFID 20 7544 #define M_PL_VFID 0xffU 7545 #define V_PL_VFID(x) ((x) << S_PL_VFID) 7546 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID) 7547 7548 #define S_PL_ADDR 0 7549 #define M_PL_ADDR 0xfffffU 7550 #define V_PL_ADDR(x) ((x) << S_PL_ADDR) 7551 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR) 7552 7553 #define A_PL_INDIR_DATA 0x1fc 7554 7555 static uint64_t 7556 read_vf_stat(struct adapter *sc, u_int vin, int reg) 7557 { 7558 u32 stats[2]; 7559 7560 if (sc->flags & IS_VF) { 7561 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg)); 7562 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4)); 7563 } else { 7564 mtx_assert(&sc->reg_lock, MA_OWNED); 7565 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 7566 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg))); 7567 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA); 7568 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA); 7569 } 7570 return (((uint64_t)stats[1]) << 32 | stats[0]); 7571 } 7572 7573 static void 7574 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats) 7575 { 7576 7577 #define GET_STAT(name) \ 7578 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L) 7579 7580 if (!(sc->flags & IS_VF)) 7581 mtx_lock(&sc->reg_lock); 7582 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES); 7583 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); 7584 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES); 7585 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); 7586 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES); 7587 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); 7588 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES); 7589 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES); 7590 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES); 7591 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES); 7592 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); 7593 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES); 7594 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); 7595 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES); 7596 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); 7597 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES); 7598 if (!(sc->flags & IS_VF)) 7599 mtx_unlock(&sc->reg_lock); 7600 7601 #undef GET_STAT 7602 } 7603 7604 static void 7605 t4_clr_vi_stats(struct adapter *sc, u_int vin) 7606 { 7607 int reg; 7608 7609 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) | 7610 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L))); 7611 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L; 7612 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4) 7613 t4_write_reg(sc, A_PL_INDIR_DATA, 0); 7614 } 7615 7616 static void 7617 vi_refresh_stats(struct vi_info *vi) 7618 { 7619 struct timeval tv; 7620 const struct timeval interval = {0, 250000}; /* 250ms */ 7621 7622 mtx_assert(&vi->tick_mtx, MA_OWNED); 7623 7624 if (vi->flags & VI_SKIP_STATS) 7625 return; 7626 7627 getmicrotime(&tv); 7628 timevalsub(&tv, &interval); 7629 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7630 return; 7631 7632 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats); 7633 getmicrotime(&vi->last_refreshed); 7634 } 7635 7636 static void 7637 cxgbe_refresh_stats(struct vi_info *vi) 7638 { 7639 u_int i, v, tnl_cong_drops, chan_map; 7640 struct timeval tv; 7641 const struct timeval interval = {0, 250000}; /* 250ms */ 7642 struct port_info *pi; 7643 struct adapter *sc; 7644 7645 mtx_assert(&vi->tick_mtx, MA_OWNED); 7646 7647 if (vi->flags & VI_SKIP_STATS) 7648 return; 7649 7650 getmicrotime(&tv); 7651 timevalsub(&tv, &interval); 7652 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7653 return; 7654 7655 pi = vi->pi; 7656 sc = vi->adapter; 7657 tnl_cong_drops = 0; 7658 t4_get_port_stats(sc, pi->hw_port, &pi->stats); 7659 chan_map = pi->rx_e_chan_map; 7660 while (chan_map) { 7661 i = ffs(chan_map) - 1; 7662 mtx_lock(&sc->reg_lock); 7663 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1, 7664 A_TP_MIB_TNL_CNG_DROP_0 + i); 7665 mtx_unlock(&sc->reg_lock); 7666 tnl_cong_drops += v; 7667 chan_map &= ~(1 << i); 7668 } 7669 pi->tnl_cong_drops = tnl_cong_drops; 7670 getmicrotime(&vi->last_refreshed); 7671 } 7672 7673 static void 7674 cxgbe_tick(void *arg) 7675 { 7676 struct vi_info *vi = arg; 7677 7678 MPASS(IS_MAIN_VI(vi)); 7679 mtx_assert(&vi->tick_mtx, MA_OWNED); 7680 7681 cxgbe_refresh_stats(vi); 7682 callout_schedule(&vi->tick, hz); 7683 } 7684 7685 static void 7686 vi_tick(void *arg) 7687 { 7688 struct vi_info *vi = arg; 7689 7690 mtx_assert(&vi->tick_mtx, MA_OWNED); 7691 7692 vi_refresh_stats(vi); 7693 callout_schedule(&vi->tick, hz); 7694 } 7695 7696 /* CIM inbound queues */ 7697 static const char *t4_ibq[CIM_NUM_IBQ] = { 7698 "ibq_tp0", "ibq_tp1", "ibq_ulp", "ibq_sge0", "ibq_sge1", "ibq_ncsi" 7699 }; 7700 static const char *t7_ibq[CIM_NUM_IBQ_T7] = { 7701 "ibq_tp0", "ibq_tp1", "ibq_tp2", "ibq_tp3", "ibq_ulp", "ibq_sge0", 7702 "ibq_sge1", "ibq_ncsi", NULL, "ibq_ipc1", "ibq_ipc2", "ibq_ipc3", 7703 "ibq_ipc4", "ibq_ipc5", "ibq_ipc6", "ibq_ipc7" 7704 }; 7705 static const char *t7_ibq_sec[] = { 7706 "ibq_tp0", "ibq_tp1", "ibq_tp2", "ibq_tp3", "ibq_ulp", "ibq_sge0", 7707 NULL, NULL, NULL, "ibq_ipc0" 7708 }; 7709 7710 /* CIM outbound queues */ 7711 static const char *t4_obq[CIM_NUM_OBQ_T5] = { 7712 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", "obq_ncsi", 7713 "obq_sge_rx_q0", "obq_sge_rx_q1" /* These two are T5/T6 only */ 7714 }; 7715 static const char *t7_obq[CIM_NUM_OBQ_T7] = { 7716 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", "obq_ncsi", 7717 "obq_sge_rx_q0", NULL, NULL, "obq_ipc1", "obq_ipc2", "obq_ipc3", 7718 "obq_ipc4", "obq_ipc5", "obq_ipc6", "obq_ipc7" 7719 }; 7720 static const char *t7_obq_sec[] = { 7721 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", NULL, 7722 "obq_sge_rx_q0", NULL, NULL, "obq_ipc0" 7723 }; 7724 7725 static void 7726 cim_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx, 7727 struct sysctl_oid_list *c0) 7728 { 7729 struct sysctl_oid *oid; 7730 struct sysctl_oid_list *children1; 7731 int i, j, qcount; 7732 char s[16]; 7733 const char **qname; 7734 7735 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "cim", 7736 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CIM block"); 7737 c0 = SYSCTL_CHILDREN(oid); 7738 7739 SYSCTL_ADD_U8(ctx, c0, OID_AUTO, "ncores", CTLFLAG_RD, NULL, 7740 sc->params.ncores, "# of active CIM cores"); 7741 7742 for (i = 0; i < sc->params.ncores; i++) { 7743 snprintf(s, sizeof(s), "%u", i); 7744 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, s, 7745 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CIM core"); 7746 children1 = SYSCTL_CHILDREN(oid); 7747 7748 /* 7749 * CTLFLAG_SKIP because the misc.devlog sysctl already displays 7750 * the log for all cores. Use this sysctl to get the log for a 7751 * particular core only. 7752 */ 7753 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "devlog", 7754 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP, 7755 sc, i, sysctl_devlog, "A", "firmware's device log"); 7756 7757 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "loadavg", 7758 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i, 7759 sysctl_loadavg, "A", 7760 "microprocessor load averages (select firmwares only)"); 7761 7762 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "qcfg", 7763 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i, 7764 chip_id(sc) > CHELSIO_T6 ? sysctl_cim_qcfg_t7 : sysctl_cim_qcfg, 7765 "A", "Queue configuration"); 7766 7767 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "la", 7768 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i, 7769 sysctl_cim_la, "A", "Logic analyzer"); 7770 7771 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "ma_la", 7772 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i, 7773 sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); 7774 7775 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "pif_la", 7776 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i, 7777 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); 7778 7779 /* IBQs */ 7780 switch (chip_id(sc)) { 7781 case CHELSIO_T4: 7782 case CHELSIO_T5: 7783 case CHELSIO_T6: 7784 qname = &t4_ibq[0]; 7785 qcount = nitems(t4_ibq); 7786 break; 7787 case CHELSIO_T7: 7788 default: 7789 if (i == 0) { 7790 qname = &t7_ibq[0]; 7791 qcount = nitems(t7_ibq); 7792 } else { 7793 qname = &t7_ibq_sec[0]; 7794 qcount = nitems(t7_ibq_sec); 7795 } 7796 break; 7797 } 7798 MPASS(qcount <= sc->chip_params->cim_num_ibq); 7799 for (j = 0; j < qcount; j++) { 7800 if (qname[j] == NULL) 7801 continue; 7802 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, qname[j], 7803 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7804 (i << 16) | j, sysctl_cim_ibq, "A", NULL); 7805 } 7806 7807 /* OBQs */ 7808 switch (chip_id(sc)) { 7809 case CHELSIO_T4: 7810 qname = t4_obq; 7811 qcount = CIM_NUM_OBQ; 7812 break; 7813 case CHELSIO_T5: 7814 case CHELSIO_T6: 7815 qname = t4_obq; 7816 qcount = nitems(t4_obq); 7817 break; 7818 case CHELSIO_T7: 7819 default: 7820 if (i == 0) { 7821 qname = t7_obq; 7822 qcount = nitems(t7_obq); 7823 } else { 7824 qname = t7_obq_sec; 7825 qcount = nitems(t7_obq_sec); 7826 } 7827 break; 7828 } 7829 MPASS(qcount <= sc->chip_params->cim_num_obq); 7830 for (j = 0; j < qcount; j++) { 7831 if (qname[j] == NULL) 7832 continue; 7833 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, qname[j], 7834 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7835 (i << 16) | j, sysctl_cim_obq, "A", NULL); 7836 } 7837 } 7838 } 7839 7840 /* 7841 * Should match fw_caps_config_<foo> enums in t4fw_interface.h 7842 */ 7843 static char *caps_decoder[] = { 7844 "\20\001IPMI\002NCSI", /* 0: NBM */ 7845 "\20\001PPP\002QFC\003DCBX", /* 1: link */ 7846 "\20\001INGRESS\002EGRESS", /* 2: switch */ 7847 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */ 7848 "\006HASHFILTER\007ETHOFLD", 7849 "\20\001TOE\002SENDPATH", /* 4: TOE */ 7850 "\20\001RDDP\002RDMAC\003ROCEv2", /* 5: RDMA */ 7851 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */ 7852 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD" 7853 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD" 7854 "\007T10DIF" 7855 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD", 7856 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */ 7857 "\004TLS_HW,\005TOE_IPSEC", 7858 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */ 7859 "\004PO_INITIATOR\005PO_TARGET", 7860 "\20\001NVMe_TCP", /* 9: NVMe */ 7861 }; 7862 7863 void 7864 t4_sysctls(struct adapter *sc) 7865 { 7866 struct sysctl_ctx_list *ctx = &sc->ctx; 7867 struct sysctl_oid *oid; 7868 struct sysctl_oid_list *children, *c0; 7869 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; 7870 7871 /* 7872 * dev.t4nex.X. 7873 */ 7874 oid = device_get_sysctl_tree(sc->dev); 7875 c0 = children = SYSCTL_CHILDREN(oid); 7876 7877 sc->sc_do_rxcopy = 1; 7878 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW, 7879 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames"); 7880 7881 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, 7882 sc->params.nports, "# of ports"); 7883 7884 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", 7885 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells, 7886 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A", 7887 "available doorbells"); 7888 7889 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, 7890 sc->params.vpd.cclk, "core clock frequency (in KHz)"); 7891 7892 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", 7893 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7894 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val), 7895 sysctl_int_array, "A", "interrupt holdoff timer values (us)"); 7896 7897 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", 7898 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7899 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val), 7900 sysctl_int_array, "A", "interrupt holdoff packet counter values"); 7901 7902 t4_sge_sysctls(sc, ctx, children); 7903 7904 sc->lro_timeout = 100; 7905 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW, 7906 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)"); 7907 7908 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW, 7909 &sc->debug_flags, 0, "flags to enable runtime debugging"); 7910 7911 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iflags", CTLFLAG_RW, 7912 &sc->intr_flags, 0, "flags for the slow interrupt handler"); 7913 7914 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version", 7915 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version"); 7916 7917 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", 7918 CTLFLAG_RD, sc->fw_version, 0, "firmware version"); 7919 7920 if (sc->flags & IS_VF) 7921 return; 7922 7923 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, 7924 NULL, chip_rev(sc), "chip hardware revision"); 7925 7926 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn", 7927 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number"); 7928 7929 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn", 7930 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number"); 7931 7932 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec", 7933 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change"); 7934 7935 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version", 7936 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version"); 7937 7938 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na", 7939 CTLFLAG_RD, sc->params.vpd.na, 0, "network address"); 7940 7941 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD, 7942 sc->er_version, 0, "expansion ROM version"); 7943 7944 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD, 7945 sc->bs_version, 0, "bootstrap firmware version"); 7946 7947 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD, 7948 NULL, sc->params.scfg_vers, "serial config version"); 7949 7950 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD, 7951 NULL, sc->params.vpd_vers, "VPD version"); 7952 7953 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", 7954 CTLFLAG_RD, sc->cfg_file, 0, "configuration file"); 7955 7956 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, 7957 sc->cfcsum, "config file checksum"); 7958 7959 #define SYSCTL_CAP(name, n, text) \ 7960 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \ 7961 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \ 7962 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \ 7963 "available " text " capabilities") 7964 7965 SYSCTL_CAP(nbmcaps, 0, "NBM"); 7966 SYSCTL_CAP(linkcaps, 1, "link"); 7967 SYSCTL_CAP(switchcaps, 2, "switch"); 7968 SYSCTL_CAP(nvmecaps, 9, "NVMe"); 7969 SYSCTL_CAP(niccaps, 3, "NIC"); 7970 SYSCTL_CAP(toecaps, 4, "TCP offload"); 7971 SYSCTL_CAP(rdmacaps, 5, "RDMA"); 7972 SYSCTL_CAP(iscsicaps, 6, "iSCSI"); 7973 SYSCTL_CAP(cryptocaps, 7, "crypto"); 7974 SYSCTL_CAP(fcoecaps, 8, "FCoE"); 7975 #undef SYSCTL_CAP 7976 7977 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, 7978 NULL, sc->tids.nftids, "number of filters"); 7979 7980 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7981 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7982 sysctl_temperature, "I", "chip temperature (in Celsius)"); 7983 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor", 7984 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7985 sysctl_reset_sensor, "I", "reset the chip's temperature sensor."); 7986 7987 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd", 7988 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd, 7989 "I", "core Vdd (in mV)"); 7990 7991 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus", 7992 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS, 7993 sysctl_cpus, "A", "local CPUs"); 7994 7995 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus", 7996 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS, 7997 sysctl_cpus, "A", "preferred CPUs for interrupts"); 7998 7999 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW, 8000 &sc->swintr, 0, "software triggered interrupts"); 8001 8002 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset", 8003 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I", 8004 "1 = reset adapter, 0 = zero reset counter"); 8005 8006 /* 8007 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. 8008 */ 8009 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", 8010 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 8011 "logs and miscellaneous information"); 8012 children = SYSCTL_CHILDREN(oid); 8013 8014 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", 8015 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8016 sysctl_cctrl, "A", "congestion control"); 8017 8018 cim_sysctls(sc, ctx, children); 8019 8020 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", 8021 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8022 sysctl_cpl_stats, "A", "CPL statistics"); 8023 8024 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", 8025 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8026 sysctl_ddp_stats, "A", "non-TCP DDP statistics"); 8027 8028 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats", 8029 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8030 sysctl_tid_stats, "A", "tid stats"); 8031 8032 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", 8033 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, -1, 8034 sysctl_devlog, "A", "firmware's device log (all cores)"); 8035 8036 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", 8037 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8038 sysctl_fcoe_stats, "A", "FCoE statistics"); 8039 8040 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", 8041 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8042 sysctl_hw_sched, "A", "hardware scheduler "); 8043 8044 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", 8045 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8046 sysctl_l2t, "A", "hardware L2 table"); 8047 8048 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt", 8049 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8050 sysctl_smt, "A", "hardware source MAC table"); 8051 8052 #ifdef INET6 8053 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip", 8054 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8055 sysctl_clip, "A", "active CLIP table entries"); 8056 #endif 8057 8058 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", 8059 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8060 sysctl_lb_stats, "A", "loopback statistics"); 8061 8062 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", 8063 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8064 sysctl_meminfo, "A", "memory regions"); 8065 8066 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", 8067 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8068 chip_id(sc) >= CHELSIO_T7 ? sysctl_mps_tcam_t7 : 8069 (chip_id(sc) >= CHELSIO_T6 ? sysctl_mps_tcam_t6 : sysctl_mps_tcam), 8070 "A", "MPS TCAM entries"); 8071 8072 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", 8073 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8074 sysctl_path_mtus, "A", "path MTUs"); 8075 8076 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", 8077 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8078 sysctl_pm_stats, "A", "PM statistics"); 8079 8080 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", 8081 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8082 sysctl_rdma_stats, "A", "RDMA statistics"); 8083 8084 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", 8085 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8086 sysctl_tcp_stats, "A", "TCP statistics"); 8087 8088 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", 8089 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8090 sysctl_tids, "A", "TID information"); 8091 8092 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", 8093 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8094 sysctl_tp_err_stats, "A", "TP error statistics"); 8095 8096 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats", 8097 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8098 sysctl_tnl_stats, "A", "TP tunnel statistics"); 8099 8100 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask", 8101 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 8102 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask"); 8103 8104 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", 8105 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8106 sysctl_tp_la, "A", "TP logic analyzer"); 8107 8108 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", 8109 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8110 sysctl_tx_rate, "A", "Tx rate"); 8111 8112 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", 8113 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8114 sysctl_ulprx_la, "A", "ULPRX logic analyzer"); 8115 8116 if (chip_id(sc) >= CHELSIO_T5) { 8117 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", 8118 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8119 sysctl_wcwr_stats, "A", "write combined work requests"); 8120 } 8121 8122 #ifdef KERN_TLS 8123 if (is_ktls(sc)) { 8124 /* 8125 * dev.t4nex.0.tls. 8126 */ 8127 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls", 8128 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters"); 8129 children = SYSCTL_CHILDREN(oid); 8130 8131 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys", 8132 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS " 8133 "keys in work requests (1) or attempt to store TLS keys " 8134 "in card memory."); 8135 8136 if (is_t6(sc)) 8137 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs", 8138 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to " 8139 "combine TCB field updates with TLS record work " 8140 "requests."); 8141 else { 8142 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "short_records", 8143 CTLFLAG_RW, &sc->tlst.short_records, 0, 8144 "Use cipher-only mode for short records."); 8145 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "partial_ghash", 8146 CTLFLAG_RW, &sc->tlst.partial_ghash, 0, 8147 "Use partial GHASH for AES-GCM records."); 8148 } 8149 } 8150 #endif 8151 8152 #ifdef TCP_OFFLOAD 8153 if (is_offload(sc)) { 8154 int i; 8155 char s[4]; 8156 8157 /* 8158 * dev.t4nex.X.toe. 8159 */ 8160 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", 8161 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters"); 8162 children = SYSCTL_CHILDREN(oid); 8163 8164 sc->tt.cong_algorithm = -1; 8165 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm", 8166 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control " 8167 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, " 8168 "3 = highspeed)"); 8169 8170 sc->tt.sndbuf = -1; 8171 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, 8172 &sc->tt.sndbuf, 0, "hardware send buffer"); 8173 8174 sc->tt.ddp = 0; 8175 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", 8176 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, ""); 8177 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW, 8178 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)"); 8179 8180 sc->tt.rx_coalesce = -1; 8181 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", 8182 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); 8183 8184 sc->tt.tls = 1; 8185 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT | 8186 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I", 8187 "Inline TLS allowed"); 8188 8189 sc->tt.tx_align = -1; 8190 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align", 8191 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload"); 8192 8193 sc->tt.tx_zcopy = 0; 8194 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy", 8195 CTLFLAG_RW, &sc->tt.tx_zcopy, 0, 8196 "Enable zero-copy aio_write(2)"); 8197 8198 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading; 8199 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8200 "cop_managed_offloading", CTLFLAG_RW, 8201 &sc->tt.cop_managed_offloading, 0, 8202 "COP (Connection Offload Policy) controls all TOE offload"); 8203 8204 sc->tt.autorcvbuf_inc = 16 * 1024; 8205 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc", 8206 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0, 8207 "autorcvbuf increment"); 8208 8209 sc->tt.update_hc_on_pmtu_change = 1; 8210 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8211 "update_hc_on_pmtu_change", CTLFLAG_RW, 8212 &sc->tt.update_hc_on_pmtu_change, 0, 8213 "Update hostcache entry if the PMTU changes"); 8214 8215 sc->tt.iso = 1; 8216 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW, 8217 &sc->tt.iso, 0, "Enable iSCSI segmentation offload"); 8218 8219 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick", 8220 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8221 sysctl_tp_tick, "A", "TP timer tick (us)"); 8222 8223 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick", 8224 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 8225 sysctl_tp_tick, "A", "TCP timestamp tick (us)"); 8226 8227 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick", 8228 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 8229 sysctl_tp_tick, "A", "DACK tick (us)"); 8230 8231 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer", 8232 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8233 sysctl_tp_dack_timer, "IU", "DACK timer (us)"); 8234 8235 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min", 8236 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8237 A_TP_RXT_MIN, sysctl_tp_timer, "LU", 8238 "Minimum retransmit interval (us)"); 8239 8240 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max", 8241 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8242 A_TP_RXT_MAX, sysctl_tp_timer, "LU", 8243 "Maximum retransmit interval (us)"); 8244 8245 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min", 8246 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8247 A_TP_PERS_MIN, sysctl_tp_timer, "LU", 8248 "Persist timer min (us)"); 8249 8250 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max", 8251 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8252 A_TP_PERS_MAX, sysctl_tp_timer, "LU", 8253 "Persist timer max (us)"); 8254 8255 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle", 8256 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8257 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU", 8258 "Keepalive idle timer (us)"); 8259 8260 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval", 8261 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8262 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU", 8263 "Keepalive interval timer (us)"); 8264 8265 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt", 8266 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8267 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)"); 8268 8269 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer", 8270 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8271 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU", 8272 "FINWAIT2 timer (us)"); 8273 8274 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count", 8275 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8276 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU", 8277 "Number of SYN retransmissions before abort"); 8278 8279 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count", 8280 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8281 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU", 8282 "Number of retransmissions before abort"); 8283 8284 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count", 8285 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8286 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU", 8287 "Number of keepalive probes before abort"); 8288 8289 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff", 8290 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 8291 "TOE retransmit backoffs"); 8292 children = SYSCTL_CHILDREN(oid); 8293 for (i = 0; i < 16; i++) { 8294 snprintf(s, sizeof(s), "%u", i); 8295 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s, 8296 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8297 i, sysctl_tp_backoff, "IU", 8298 "TOE retransmit backoff"); 8299 } 8300 } 8301 #endif 8302 } 8303 8304 void 8305 vi_sysctls(struct vi_info *vi) 8306 { 8307 struct sysctl_ctx_list *ctx = &vi->ctx; 8308 struct sysctl_oid *oid; 8309 struct sysctl_oid_list *children; 8310 8311 /* 8312 * dev.v?(cxgbe|cxl).X. 8313 */ 8314 oid = device_get_sysctl_tree(vi->dev); 8315 children = SYSCTL_CHILDREN(oid); 8316 8317 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL, 8318 vi->viid, "VI identifer"); 8319 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, 8320 &vi->nrxq, 0, "# of rx queues"); 8321 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, 8322 &vi->ntxq, 0, "# of tx queues"); 8323 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, 8324 &vi->first_rxq, 0, "index of first rx queue"); 8325 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, 8326 &vi->first_txq, 0, "index of first tx queue"); 8327 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL, 8328 vi->rss_base, "start of RSS indirection table"); 8329 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL, 8330 vi->rss_size, "size of RSS indirection table"); 8331 8332 if (IS_MAIN_VI(vi)) { 8333 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq", 8334 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8335 sysctl_noflowq, "IU", 8336 "Reserve queue 0 for non-flowid packets"); 8337 } 8338 8339 if (vi->adapter->flags & IS_VF) { 8340 MPASS(vi->flags & TX_USES_VM_WR); 8341 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD, 8342 NULL, 1, "use VM work requests for transmit"); 8343 } else { 8344 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr", 8345 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8346 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit"); 8347 } 8348 8349 #ifdef TCP_OFFLOAD 8350 if (vi->nofldrxq != 0) { 8351 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, 8352 &vi->nofldrxq, 0, 8353 "# of rx queues for offloaded TCP connections"); 8354 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", 8355 CTLFLAG_RD, &vi->first_ofld_rxq, 0, 8356 "index of first TOE rx queue"); 8357 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld", 8358 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8359 sysctl_holdoff_tmr_idx_ofld, "I", 8360 "holdoff timer index for TOE queues"); 8361 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld", 8362 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8363 sysctl_holdoff_pktc_idx_ofld, "I", 8364 "holdoff packet counter index for TOE queues"); 8365 } 8366 #endif 8367 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 8368 if (vi->nofldtxq != 0) { 8369 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, 8370 &vi->nofldtxq, 0, 8371 "# of tx queues for TOE/ETHOFLD"); 8372 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", 8373 CTLFLAG_RD, &vi->first_ofld_txq, 0, 8374 "index of first TOE/ETHOFLD tx queue"); 8375 } 8376 #endif 8377 #ifdef DEV_NETMAP 8378 if (vi->nnmrxq != 0) { 8379 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD, 8380 &vi->nnmrxq, 0, "# of netmap rx queues"); 8381 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD, 8382 &vi->nnmtxq, 0, "# of netmap tx queues"); 8383 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq", 8384 CTLFLAG_RD, &vi->first_nm_rxq, 0, 8385 "index of first netmap rx queue"); 8386 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq", 8387 CTLFLAG_RD, &vi->first_nm_txq, 0, 8388 "index of first netmap tx queue"); 8389 } 8390 #endif 8391 8392 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", 8393 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8394 sysctl_holdoff_tmr_idx, "I", "holdoff timer index"); 8395 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", 8396 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8397 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index"); 8398 8399 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", 8400 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8401 sysctl_qsize_rxq, "I", "rx queue size"); 8402 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", 8403 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8404 sysctl_qsize_txq, "I", "tx queue size"); 8405 } 8406 8407 static void 8408 cxgbe_sysctls(struct port_info *pi) 8409 { 8410 struct sysctl_ctx_list *ctx = &pi->ctx; 8411 struct sysctl_oid *oid; 8412 struct sysctl_oid_list *children, *children2; 8413 struct adapter *sc = pi->adapter; 8414 int i; 8415 char name[16]; 8416 static char *tc_flags = {"\20\1USER"}; 8417 8418 /* 8419 * dev.cxgbe.X. 8420 */ 8421 oid = device_get_sysctl_tree(pi->dev); 8422 children = SYSCTL_CHILDREN(oid); 8423 8424 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", 8425 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 8426 sysctl_linkdnrc, "A", "reason why link is down"); 8427 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { 8428 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 8429 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 8430 sysctl_btphy, "I", "PHY temperature (in Celsius)"); 8431 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", 8432 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1, 8433 sysctl_btphy, "I", "PHY firmware version"); 8434 } 8435 8436 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings", 8437 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8438 sysctl_pause_settings, "A", 8439 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 8440 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec", 8441 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A", 8442 "FEC in use on the link"); 8443 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec", 8444 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8445 sysctl_requested_fec, "A", 8446 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)"); 8447 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec", 8448 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A", 8449 "FEC recommended by the cable/transceiver"); 8450 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg", 8451 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8452 sysctl_autoneg, "I", 8453 "autonegotiation (-1 = not supported)"); 8454 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec", 8455 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8456 sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config"); 8457 8458 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD, 8459 &pi->link_cfg.requested_caps, 0, "L1 config requested by driver"); 8460 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD, 8461 &pi->link_cfg.pcaps, 0, "port capabilities"); 8462 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD, 8463 &pi->link_cfg.acaps, 0, "advertised capabilities"); 8464 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD, 8465 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities"); 8466 8467 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL, 8468 port_top_speed(pi), "max speed (in Gbps)"); 8469 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL, 8470 pi->mps_bg_map, "MPS buffer group map"); 8471 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD, 8472 NULL, pi->rx_e_chan_map, "TP rx e-channel map"); 8473 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_chan", CTLFLAG_RD, NULL, 8474 pi->tx_chan, "TP tx c-channel"); 8475 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_chan", CTLFLAG_RD, NULL, 8476 pi->rx_chan, "TP rx c-channel"); 8477 8478 if (sc->flags & IS_VF) 8479 return; 8480 8481 /* 8482 * dev.(cxgbe|cxl).X.tc. 8483 */ 8484 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", 8485 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 8486 "Tx scheduler traffic classes (cl_rl)"); 8487 children2 = SYSCTL_CHILDREN(oid); 8488 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize", 8489 CTLFLAG_RW, &pi->sched_params->pktsize, 0, 8490 "pktsize for per-flow cl-rl (0 means up to the driver )"); 8491 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize", 8492 CTLFLAG_RW, &pi->sched_params->burstsize, 0, 8493 "burstsize for per-flow cl-rl (0 means up to the driver)"); 8494 for (i = 0; i < sc->params.nsched_cls; i++) { 8495 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i]; 8496 8497 snprintf(name, sizeof(name), "%d", i); 8498 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx, 8499 SYSCTL_CHILDREN(oid), OID_AUTO, name, 8500 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class")); 8501 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state", 8502 CTLFLAG_RD, &tc->state, 0, "current state"); 8503 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags", 8504 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags, 8505 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags"); 8506 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount", 8507 CTLFLAG_RD, &tc->refcount, 0, "references to this class"); 8508 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params", 8509 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8510 (pi->port_id << 16) | i, sysctl_tc_params, "A", 8511 "traffic class parameters"); 8512 } 8513 8514 /* 8515 * dev.cxgbe.X.stats. 8516 */ 8517 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", 8518 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics"); 8519 children = SYSCTL_CHILDREN(oid); 8520 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD, 8521 &pi->tx_parse_error, 0, 8522 "# of tx packets with invalid length or # of segments"); 8523 8524 #define T4_LBSTAT(name, stat, desc) do { \ 8525 if (sc->params.tp.lb_mode) { \ 8526 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 8527 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, \ 8528 A_MPS_PORT_STAT_##stat##_L, \ 8529 sysctl_handle_t4_portstat64, "QU", desc); \ 8530 } else { \ 8531 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 8532 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \ 8533 t4_port_reg(sc, pi->tx_chan, A_MPS_PORT_STAT_##stat##_L), \ 8534 sysctl_handle_t4_reg64, "QU", desc); \ 8535 } \ 8536 } while (0) 8537 8538 T4_LBSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames"); 8539 T4_LBSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames"); 8540 T4_LBSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames"); 8541 T4_LBSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames"); 8542 T4_LBSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames"); 8543 T4_LBSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames"); 8544 T4_LBSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range"); 8545 T4_LBSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range"); 8546 T4_LBSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range"); 8547 T4_LBSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range"); 8548 T4_LBSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range"); 8549 T4_LBSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range"); 8550 T4_LBSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range"); 8551 T4_LBSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames"); 8552 T4_LBSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted"); 8553 T4_LBSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted"); 8554 T4_LBSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted"); 8555 T4_LBSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted"); 8556 T4_LBSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted"); 8557 T4_LBSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted"); 8558 T4_LBSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted"); 8559 T4_LBSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted"); 8560 T4_LBSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted"); 8561 8562 T4_LBSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames"); 8563 T4_LBSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames"); 8564 T4_LBSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames"); 8565 T4_LBSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames"); 8566 T4_LBSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames"); 8567 T4_LBSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU"); 8568 T4_LBSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames"); 8569 if (is_t6(sc)) { 8570 /* Read from port_stats and may be stale by up to 1s */ 8571 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "rx_fcs_err", 8572 CTLFLAG_RD, &pi->stats.rx_fcs_err, 8573 "# of frames received with bad FCS since last link up"); 8574 } else { 8575 T4_LBSTAT(rx_fcs_err, RX_PORT_CRC_ERROR, 8576 "# of frames received with bad FCS"); 8577 } 8578 T4_LBSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error"); 8579 T4_LBSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors"); 8580 T4_LBSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received"); 8581 T4_LBSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range"); 8582 T4_LBSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range"); 8583 T4_LBSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range"); 8584 T4_LBSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range"); 8585 T4_LBSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range"); 8586 T4_LBSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range"); 8587 T4_LBSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range"); 8588 T4_LBSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received"); 8589 T4_LBSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received"); 8590 T4_LBSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received"); 8591 T4_LBSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received"); 8592 T4_LBSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received"); 8593 T4_LBSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received"); 8594 T4_LBSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received"); 8595 T4_LBSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received"); 8596 T4_LBSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received"); 8597 #undef T4_LBSTAT 8598 8599 #define T4_REGSTAT(name, stat, desc) do { \ 8600 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 8601 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \ 8602 A_MPS_STAT_##stat##_L, sysctl_handle_t4_reg64, "QU", desc); \ 8603 } while (0) 8604 8605 if (pi->mps_bg_map & 1) { 8606 T4_REGSTAT(rx_ovflow0, RX_BG_0_MAC_DROP_FRAME, 8607 "# drops due to buffer-group 0 overflows"); 8608 T4_REGSTAT(rx_trunc0, RX_BG_0_MAC_TRUNC_FRAME, 8609 "# of buffer-group 0 truncated packets"); 8610 } 8611 if (pi->mps_bg_map & 2) { 8612 T4_REGSTAT(rx_ovflow1, RX_BG_1_MAC_DROP_FRAME, 8613 "# drops due to buffer-group 1 overflows"); 8614 T4_REGSTAT(rx_trunc1, RX_BG_1_MAC_TRUNC_FRAME, 8615 "# of buffer-group 1 truncated packets"); 8616 } 8617 if (pi->mps_bg_map & 4) { 8618 T4_REGSTAT(rx_ovflow2, RX_BG_2_MAC_DROP_FRAME, 8619 "# drops due to buffer-group 2 overflows"); 8620 T4_REGSTAT(rx_trunc2, RX_BG_2_MAC_TRUNC_FRAME, 8621 "# of buffer-group 2 truncated packets"); 8622 } 8623 if (pi->mps_bg_map & 8) { 8624 T4_REGSTAT(rx_ovflow3, RX_BG_3_MAC_DROP_FRAME, 8625 "# drops due to buffer-group 3 overflows"); 8626 T4_REGSTAT(rx_trunc3, RX_BG_3_MAC_TRUNC_FRAME, 8627 "# of buffer-group 3 truncated packets"); 8628 } 8629 #undef T4_REGSTAT 8630 } 8631 8632 static int 8633 sysctl_int_array(SYSCTL_HANDLER_ARGS) 8634 { 8635 int rc, *i, space = 0; 8636 struct sbuf sb; 8637 8638 sbuf_new_for_sysctl(&sb, NULL, 64, req); 8639 for (i = arg1; arg2; arg2 -= sizeof(int), i++) { 8640 if (space) 8641 sbuf_printf(&sb, " "); 8642 sbuf_printf(&sb, "%d", *i); 8643 space = 1; 8644 } 8645 rc = sbuf_finish(&sb); 8646 sbuf_delete(&sb); 8647 return (rc); 8648 } 8649 8650 static int 8651 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS) 8652 { 8653 int rc; 8654 struct sbuf *sb; 8655 8656 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8657 if (sb == NULL) 8658 return (ENOMEM); 8659 8660 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1); 8661 rc = sbuf_finish(sb); 8662 sbuf_delete(sb); 8663 8664 return (rc); 8665 } 8666 8667 static int 8668 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS) 8669 { 8670 int rc; 8671 struct sbuf *sb; 8672 8673 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8674 if (sb == NULL) 8675 return (ENOMEM); 8676 8677 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1); 8678 rc = sbuf_finish(sb); 8679 sbuf_delete(sb); 8680 8681 return (rc); 8682 } 8683 8684 static int 8685 sysctl_btphy(SYSCTL_HANDLER_ARGS) 8686 { 8687 struct port_info *pi = arg1; 8688 int op = arg2; 8689 struct adapter *sc = pi->adapter; 8690 u_int v; 8691 int rc; 8692 8693 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt"); 8694 if (rc) 8695 return (rc); 8696 if (!hw_all_ok(sc)) 8697 rc = ENXIO; 8698 else { 8699 /* XXX: magic numbers */ 8700 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, 8701 op ? 0x20 : 0xc820, &v); 8702 } 8703 end_synchronized_op(sc, 0); 8704 if (rc) 8705 return (rc); 8706 if (op == 0) 8707 v /= 256; 8708 8709 rc = sysctl_handle_int(oidp, &v, 0, req); 8710 return (rc); 8711 } 8712 8713 static int 8714 sysctl_noflowq(SYSCTL_HANDLER_ARGS) 8715 { 8716 struct vi_info *vi = arg1; 8717 int rc, val; 8718 8719 val = vi->rsrv_noflowq; 8720 rc = sysctl_handle_int(oidp, &val, 0, req); 8721 if (rc != 0 || req->newptr == NULL) 8722 return (rc); 8723 8724 if ((val >= 1) && (vi->ntxq > 1)) 8725 vi->rsrv_noflowq = 1; 8726 else 8727 vi->rsrv_noflowq = 0; 8728 8729 return (rc); 8730 } 8731 8732 static int 8733 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS) 8734 { 8735 struct vi_info *vi = arg1; 8736 struct adapter *sc = vi->adapter; 8737 int rc, val, i; 8738 8739 MPASS(!(sc->flags & IS_VF)); 8740 8741 val = vi->flags & TX_USES_VM_WR ? 1 : 0; 8742 rc = sysctl_handle_int(oidp, &val, 0, req); 8743 if (rc != 0 || req->newptr == NULL) 8744 return (rc); 8745 8746 if (val != 0 && val != 1) 8747 return (EINVAL); 8748 8749 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8750 "t4txvm"); 8751 if (rc) 8752 return (rc); 8753 if (!hw_all_ok(sc)) 8754 rc = ENXIO; 8755 else if (if_getdrvflags(vi->ifp) & IFF_DRV_RUNNING) { 8756 /* 8757 * We don't want parse_pkt to run with one setting (VF or PF) 8758 * and then eth_tx to see a different setting but still use 8759 * stale information calculated by parse_pkt. 8760 */ 8761 rc = EBUSY; 8762 } else { 8763 struct port_info *pi = vi->pi; 8764 struct sge_txq *txq; 8765 uint32_t ctrl0; 8766 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr; 8767 8768 if (val) { 8769 vi->flags |= TX_USES_VM_WR; 8770 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_VM_TSO); 8771 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8772 V_TXPKT_INTF(pi->hw_port)); 8773 if (!(sc->flags & IS_VF)) 8774 npkt--; 8775 } else { 8776 vi->flags &= ~TX_USES_VM_WR; 8777 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_TSO); 8778 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8779 V_TXPKT_INTF(pi->hw_port) | V_TXPKT_PF(sc->pf) | 8780 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld)); 8781 } 8782 for_each_txq(vi, i, txq) { 8783 txq->cpl_ctrl0 = ctrl0; 8784 txq->txp.max_npkt = npkt; 8785 } 8786 } 8787 end_synchronized_op(sc, LOCK_HELD); 8788 return (rc); 8789 } 8790 8791 static int 8792 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) 8793 { 8794 struct vi_info *vi = arg1; 8795 struct adapter *sc = vi->adapter; 8796 int idx, rc, i; 8797 struct sge_rxq *rxq; 8798 uint8_t v; 8799 8800 idx = vi->tmr_idx; 8801 8802 rc = sysctl_handle_int(oidp, &idx, 0, req); 8803 if (rc != 0 || req->newptr == NULL) 8804 return (rc); 8805 8806 if (idx < 0 || idx >= SGE_NTIMERS) 8807 return (EINVAL); 8808 8809 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8810 "t4tmr"); 8811 if (rc) 8812 return (rc); 8813 8814 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1); 8815 for_each_rxq(vi, i, rxq) { 8816 #ifdef atomic_store_rel_8 8817 atomic_store_rel_8(&rxq->iq.intr_params, v); 8818 #else 8819 rxq->iq.intr_params = v; 8820 #endif 8821 } 8822 vi->tmr_idx = idx; 8823 8824 end_synchronized_op(sc, LOCK_HELD); 8825 return (0); 8826 } 8827 8828 static int 8829 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) 8830 { 8831 struct vi_info *vi = arg1; 8832 struct adapter *sc = vi->adapter; 8833 int idx, rc; 8834 8835 idx = vi->pktc_idx; 8836 8837 rc = sysctl_handle_int(oidp, &idx, 0, req); 8838 if (rc != 0 || req->newptr == NULL) 8839 return (rc); 8840 8841 if (idx < -1 || idx >= SGE_NCOUNTERS) 8842 return (EINVAL); 8843 8844 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8845 "t4pktc"); 8846 if (rc) 8847 return (rc); 8848 8849 if (vi->flags & VI_INIT_DONE) 8850 rc = EBUSY; /* cannot be changed once the queues are created */ 8851 else 8852 vi->pktc_idx = idx; 8853 8854 end_synchronized_op(sc, LOCK_HELD); 8855 return (rc); 8856 } 8857 8858 static int 8859 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) 8860 { 8861 struct vi_info *vi = arg1; 8862 struct adapter *sc = vi->adapter; 8863 int qsize, rc; 8864 8865 qsize = vi->qsize_rxq; 8866 8867 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8868 if (rc != 0 || req->newptr == NULL) 8869 return (rc); 8870 8871 if (qsize < 128 || (qsize & 7)) 8872 return (EINVAL); 8873 8874 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8875 "t4rxqs"); 8876 if (rc) 8877 return (rc); 8878 8879 if (vi->flags & VI_INIT_DONE) 8880 rc = EBUSY; /* cannot be changed once the queues are created */ 8881 else 8882 vi->qsize_rxq = qsize; 8883 8884 end_synchronized_op(sc, LOCK_HELD); 8885 return (rc); 8886 } 8887 8888 static int 8889 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) 8890 { 8891 struct vi_info *vi = arg1; 8892 struct adapter *sc = vi->adapter; 8893 int qsize, rc; 8894 8895 qsize = vi->qsize_txq; 8896 8897 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8898 if (rc != 0 || req->newptr == NULL) 8899 return (rc); 8900 8901 if (qsize < 128 || qsize > 65536) 8902 return (EINVAL); 8903 8904 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8905 "t4txqs"); 8906 if (rc) 8907 return (rc); 8908 8909 if (vi->flags & VI_INIT_DONE) 8910 rc = EBUSY; /* cannot be changed once the queues are created */ 8911 else 8912 vi->qsize_txq = qsize; 8913 8914 end_synchronized_op(sc, LOCK_HELD); 8915 return (rc); 8916 } 8917 8918 static int 8919 sysctl_pause_settings(SYSCTL_HANDLER_ARGS) 8920 { 8921 struct port_info *pi = arg1; 8922 struct adapter *sc = pi->adapter; 8923 struct link_config *lc = &pi->link_cfg; 8924 int rc; 8925 8926 if (req->newptr == NULL) { 8927 struct sbuf *sb; 8928 static char *bits = "\20\1RX\2TX\3AUTO"; 8929 8930 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8931 if (sb == NULL) 8932 return (ENOMEM); 8933 8934 if (lc->link_ok) { 8935 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) | 8936 (lc->requested_fc & PAUSE_AUTONEG), bits); 8937 } else { 8938 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX | 8939 PAUSE_RX | PAUSE_AUTONEG), bits); 8940 } 8941 rc = sbuf_finish(sb); 8942 sbuf_delete(sb); 8943 } else { 8944 char s[2]; 8945 int n; 8946 8947 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX | 8948 PAUSE_AUTONEG)); 8949 s[1] = 0; 8950 8951 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8952 if (rc != 0) 8953 return(rc); 8954 8955 if (s[1] != 0) 8956 return (EINVAL); 8957 if (s[0] < '0' || s[0] > '9') 8958 return (EINVAL); /* not a number */ 8959 n = s[0] - '0'; 8960 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) 8961 return (EINVAL); /* some other bit is set too */ 8962 8963 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8964 "t4PAUSE"); 8965 if (rc) 8966 return (rc); 8967 if (hw_all_ok(sc)) { 8968 PORT_LOCK(pi); 8969 lc->requested_fc = n; 8970 fixup_link_config(pi); 8971 if (pi->up_vis > 0) 8972 rc = apply_link_config(pi); 8973 set_current_media(pi); 8974 PORT_UNLOCK(pi); 8975 } 8976 end_synchronized_op(sc, 0); 8977 } 8978 8979 return (rc); 8980 } 8981 8982 static int 8983 sysctl_link_fec(SYSCTL_HANDLER_ARGS) 8984 { 8985 struct port_info *pi = arg1; 8986 struct link_config *lc = &pi->link_cfg; 8987 int rc; 8988 struct sbuf *sb; 8989 8990 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8991 if (sb == NULL) 8992 return (ENOMEM); 8993 if (lc->link_ok) 8994 sbuf_printf(sb, "%b", lc->fec, t4_fec_bits); 8995 else 8996 sbuf_printf(sb, "no link"); 8997 rc = sbuf_finish(sb); 8998 sbuf_delete(sb); 8999 9000 return (rc); 9001 } 9002 9003 static int 9004 sysctl_requested_fec(SYSCTL_HANDLER_ARGS) 9005 { 9006 struct port_info *pi = arg1; 9007 struct adapter *sc = pi->adapter; 9008 struct link_config *lc = &pi->link_cfg; 9009 int rc; 9010 int8_t old; 9011 9012 if (req->newptr == NULL) { 9013 struct sbuf *sb; 9014 9015 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 9016 if (sb == NULL) 9017 return (ENOMEM); 9018 9019 sbuf_printf(sb, "%b", lc->requested_fec, t4_fec_bits); 9020 rc = sbuf_finish(sb); 9021 sbuf_delete(sb); 9022 } else { 9023 char s[8]; 9024 int n; 9025 9026 snprintf(s, sizeof(s), "%d", 9027 lc->requested_fec == FEC_AUTO ? -1 : 9028 lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE)); 9029 9030 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 9031 if (rc != 0) 9032 return(rc); 9033 9034 n = strtol(&s[0], NULL, 0); 9035 if (n < 0 || n & FEC_AUTO) 9036 n = FEC_AUTO; 9037 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE)) 9038 return (EINVAL);/* some other bit is set too */ 9039 9040 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 9041 "t4reqf"); 9042 if (rc) 9043 return (rc); 9044 PORT_LOCK(pi); 9045 old = lc->requested_fec; 9046 if (n == FEC_AUTO) 9047 lc->requested_fec = FEC_AUTO; 9048 else if (n == 0 || n == FEC_NONE) 9049 lc->requested_fec = FEC_NONE; 9050 else { 9051 if ((lc->pcaps | 9052 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) != 9053 lc->pcaps) { 9054 rc = ENOTSUP; 9055 goto done; 9056 } 9057 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC | 9058 FEC_MODULE); 9059 } 9060 if (hw_all_ok(sc)) { 9061 fixup_link_config(pi); 9062 if (pi->up_vis > 0) { 9063 rc = apply_link_config(pi); 9064 if (rc != 0) { 9065 lc->requested_fec = old; 9066 if (rc == FW_EPROTO) 9067 rc = ENOTSUP; 9068 } 9069 } 9070 } 9071 done: 9072 PORT_UNLOCK(pi); 9073 end_synchronized_op(sc, 0); 9074 } 9075 9076 return (rc); 9077 } 9078 9079 static int 9080 sysctl_module_fec(SYSCTL_HANDLER_ARGS) 9081 { 9082 struct port_info *pi = arg1; 9083 struct adapter *sc = pi->adapter; 9084 struct link_config *lc = &pi->link_cfg; 9085 int rc; 9086 int8_t fec; 9087 struct sbuf *sb; 9088 9089 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 9090 if (sb == NULL) 9091 return (ENOMEM); 9092 9093 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) { 9094 rc = EBUSY; 9095 goto done; 9096 } 9097 if (!hw_all_ok(sc)) { 9098 rc = ENXIO; 9099 goto done; 9100 } 9101 PORT_LOCK(pi); 9102 if (pi->up_vis == 0) { 9103 /* 9104 * If all the interfaces are administratively down the firmware 9105 * does not report transceiver changes. Refresh port info here. 9106 * This is the only reason we have a synchronized op in this 9107 * function. Just PORT_LOCK would have been enough otherwise. 9108 */ 9109 t4_update_port_info(pi); 9110 } 9111 9112 fec = lc->fec_hint; 9113 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE || 9114 !fec_supported(lc->pcaps)) { 9115 PORT_UNLOCK(pi); 9116 sbuf_printf(sb, "n/a"); 9117 } else { 9118 if (fec == 0) 9119 fec = FEC_NONE; 9120 PORT_UNLOCK(pi); 9121 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, t4_fec_bits); 9122 } 9123 rc = sbuf_finish(sb); 9124 done: 9125 sbuf_delete(sb); 9126 end_synchronized_op(sc, 0); 9127 9128 return (rc); 9129 } 9130 9131 static int 9132 sysctl_autoneg(SYSCTL_HANDLER_ARGS) 9133 { 9134 struct port_info *pi = arg1; 9135 struct adapter *sc = pi->adapter; 9136 struct link_config *lc = &pi->link_cfg; 9137 int rc, val; 9138 9139 if (lc->pcaps & FW_PORT_CAP32_ANEG) 9140 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1; 9141 else 9142 val = -1; 9143 rc = sysctl_handle_int(oidp, &val, 0, req); 9144 if (rc != 0 || req->newptr == NULL) 9145 return (rc); 9146 if (val == 0) 9147 val = AUTONEG_DISABLE; 9148 else if (val == 1) 9149 val = AUTONEG_ENABLE; 9150 else 9151 val = AUTONEG_AUTO; 9152 9153 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 9154 "t4aneg"); 9155 if (rc) 9156 return (rc); 9157 PORT_LOCK(pi); 9158 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 9159 rc = ENOTSUP; 9160 goto done; 9161 } 9162 lc->requested_aneg = val; 9163 if (hw_all_ok(sc)) { 9164 fixup_link_config(pi); 9165 if (pi->up_vis > 0) 9166 rc = apply_link_config(pi); 9167 set_current_media(pi); 9168 } 9169 done: 9170 PORT_UNLOCK(pi); 9171 end_synchronized_op(sc, 0); 9172 return (rc); 9173 } 9174 9175 static int 9176 sysctl_force_fec(SYSCTL_HANDLER_ARGS) 9177 { 9178 struct port_info *pi = arg1; 9179 struct adapter *sc = pi->adapter; 9180 struct link_config *lc = &pi->link_cfg; 9181 int rc, val; 9182 9183 val = lc->force_fec; 9184 MPASS(val >= -1 && val <= 1); 9185 rc = sysctl_handle_int(oidp, &val, 0, req); 9186 if (rc != 0 || req->newptr == NULL) 9187 return (rc); 9188 if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC)) 9189 return (ENOTSUP); 9190 if (val < -1 || val > 1) 9191 return (EINVAL); 9192 9193 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff"); 9194 if (rc) 9195 return (rc); 9196 PORT_LOCK(pi); 9197 lc->force_fec = val; 9198 if (hw_all_ok(sc)) { 9199 fixup_link_config(pi); 9200 if (pi->up_vis > 0) 9201 rc = apply_link_config(pi); 9202 } 9203 PORT_UNLOCK(pi); 9204 end_synchronized_op(sc, 0); 9205 return (rc); 9206 } 9207 9208 static int 9209 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) 9210 { 9211 struct adapter *sc = arg1; 9212 int rc, reg = arg2; 9213 uint64_t val; 9214 9215 mtx_lock(&sc->reg_lock); 9216 if (hw_off_limits(sc)) 9217 rc = ENXIO; 9218 else { 9219 rc = 0; 9220 val = t4_read_reg64(sc, reg); 9221 } 9222 mtx_unlock(&sc->reg_lock); 9223 if (rc == 0) 9224 rc = sysctl_handle_64(oidp, &val, 0, req); 9225 return (rc); 9226 } 9227 9228 static int 9229 sysctl_handle_t4_portstat64(SYSCTL_HANDLER_ARGS) 9230 { 9231 struct port_info *pi = arg1; 9232 struct adapter *sc = pi->adapter; 9233 int rc, i, reg = arg2; 9234 uint64_t val; 9235 9236 mtx_lock(&sc->reg_lock); 9237 if (hw_off_limits(sc)) 9238 rc = ENXIO; 9239 else { 9240 val = 0; 9241 for (i = 0; i < sc->params.tp.lb_nchan; i++) { 9242 val += t4_read_reg64(sc, 9243 t4_port_reg(sc, pi->tx_chan + i, reg)); 9244 } 9245 rc = 0; 9246 } 9247 mtx_unlock(&sc->reg_lock); 9248 if (rc == 0) 9249 rc = sysctl_handle_64(oidp, &val, 0, req); 9250 return (rc); 9251 } 9252 9253 static int 9254 sysctl_temperature(SYSCTL_HANDLER_ARGS) 9255 { 9256 struct adapter *sc = arg1; 9257 int rc, t; 9258 uint32_t param, val; 9259 9260 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); 9261 if (rc) 9262 return (rc); 9263 if (!hw_all_ok(sc)) 9264 rc = ENXIO; 9265 else { 9266 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 9267 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 9268 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); 9269 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 9270 } 9271 end_synchronized_op(sc, 0); 9272 if (rc) 9273 return (rc); 9274 9275 /* unknown is returned as 0 but we display -1 in that case */ 9276 t = val == 0 ? -1 : val; 9277 9278 rc = sysctl_handle_int(oidp, &t, 0, req); 9279 return (rc); 9280 } 9281 9282 static int 9283 sysctl_vdd(SYSCTL_HANDLER_ARGS) 9284 { 9285 struct adapter *sc = arg1; 9286 int rc; 9287 uint32_t param, val; 9288 9289 if (sc->params.core_vdd == 0) { 9290 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 9291 "t4vdd"); 9292 if (rc) 9293 return (rc); 9294 if (!hw_all_ok(sc)) 9295 rc = ENXIO; 9296 else { 9297 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 9298 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 9299 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 9300 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, 9301 ¶m, &val); 9302 } 9303 end_synchronized_op(sc, 0); 9304 if (rc) 9305 return (rc); 9306 sc->params.core_vdd = val; 9307 } 9308 9309 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req)); 9310 } 9311 9312 static int 9313 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS) 9314 { 9315 struct adapter *sc = arg1; 9316 int rc, v; 9317 uint32_t param, val; 9318 9319 v = sc->sensor_resets; 9320 rc = sysctl_handle_int(oidp, &v, 0, req); 9321 if (rc != 0 || req->newptr == NULL || v <= 0) 9322 return (rc); 9323 9324 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) || 9325 chip_id(sc) < CHELSIO_T5) 9326 return (ENOTSUP); 9327 9328 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst"); 9329 if (rc) 9330 return (rc); 9331 if (!hw_all_ok(sc)) 9332 rc = ENXIO; 9333 else { 9334 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 9335 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 9336 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR)); 9337 val = 1; 9338 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 9339 } 9340 end_synchronized_op(sc, 0); 9341 if (rc == 0) 9342 sc->sensor_resets++; 9343 return (rc); 9344 } 9345 9346 static int 9347 sysctl_loadavg(SYSCTL_HANDLER_ARGS) 9348 { 9349 struct adapter *sc = arg1; 9350 struct sbuf *sb; 9351 int rc; 9352 uint32_t param, val; 9353 uint8_t coreid = (uint8_t)arg2; 9354 9355 KASSERT(coreid < sc->params.ncores, 9356 ("%s: bad coreid %u\n", __func__, coreid)); 9357 9358 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg"); 9359 if (rc) 9360 return (rc); 9361 if (!hw_all_ok(sc)) 9362 rc = ENXIO; 9363 else { 9364 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 9365 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD) | 9366 V_FW_PARAMS_PARAM_Y(coreid); 9367 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 9368 } 9369 end_synchronized_op(sc, 0); 9370 if (rc) 9371 return (rc); 9372 9373 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9374 if (sb == NULL) 9375 return (ENOMEM); 9376 9377 if (val == 0xffffffff) { 9378 /* Only debug and custom firmwares report load averages. */ 9379 sbuf_printf(sb, "not available"); 9380 } else { 9381 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff, 9382 (val >> 16) & 0xff); 9383 } 9384 rc = sbuf_finish(sb); 9385 sbuf_delete(sb); 9386 9387 return (rc); 9388 } 9389 9390 static int 9391 sysctl_cctrl(SYSCTL_HANDLER_ARGS) 9392 { 9393 struct adapter *sc = arg1; 9394 struct sbuf *sb; 9395 int rc, i; 9396 uint16_t incr[NMTUS][NCCTRL_WIN]; 9397 static const char *dec_fac[] = { 9398 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 9399 "0.9375" 9400 }; 9401 9402 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9403 if (sb == NULL) 9404 return (ENOMEM); 9405 9406 rc = 0; 9407 mtx_lock(&sc->reg_lock); 9408 if (hw_off_limits(sc)) 9409 rc = ENXIO; 9410 else 9411 t4_read_cong_tbl(sc, incr); 9412 mtx_unlock(&sc->reg_lock); 9413 if (rc) 9414 goto done; 9415 9416 for (i = 0; i < NCCTRL_WIN; ++i) { 9417 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 9418 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], 9419 incr[5][i], incr[6][i], incr[7][i]); 9420 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 9421 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 9422 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 9423 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); 9424 } 9425 9426 rc = sbuf_finish(sb); 9427 done: 9428 sbuf_delete(sb); 9429 return (rc); 9430 } 9431 9432 static int 9433 sysctl_cim_ibq(SYSCTL_HANDLER_ARGS) 9434 { 9435 struct adapter *sc = arg1; 9436 struct sbuf *sb; 9437 int rc, i, n, qid, coreid; 9438 uint32_t *buf, *p; 9439 9440 qid = arg2 & 0xffff; 9441 coreid = arg2 >> 16; 9442 9443 KASSERT(qid >= 0 && qid < sc->chip_params->cim_num_ibq, 9444 ("%s: bad ibq qid %d\n", __func__, qid)); 9445 KASSERT(coreid >= 0 && coreid < sc->params.ncores, 9446 ("%s: bad coreid %d\n", __func__, coreid)); 9447 9448 n = 4 * CIM_IBQ_SIZE; 9449 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 9450 mtx_lock(&sc->reg_lock); 9451 if (hw_off_limits(sc)) 9452 rc = -ENXIO; 9453 else 9454 rc = t4_read_cim_ibq_core(sc, coreid, qid, buf, n); 9455 mtx_unlock(&sc->reg_lock); 9456 if (rc < 0) { 9457 rc = -rc; 9458 goto done; 9459 } 9460 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 9461 9462 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9463 if (sb == NULL) { 9464 rc = ENOMEM; 9465 goto done; 9466 } 9467 for (i = 0, p = buf; i < n; i += 16, p += 4) 9468 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 9469 p[2], p[3]); 9470 rc = sbuf_finish(sb); 9471 sbuf_delete(sb); 9472 done: 9473 free(buf, M_CXGBE); 9474 return (rc); 9475 } 9476 9477 static int 9478 sysctl_cim_obq(SYSCTL_HANDLER_ARGS) 9479 { 9480 struct adapter *sc = arg1; 9481 struct sbuf *sb; 9482 int rc, i, n, qid, coreid; 9483 uint32_t *buf, *p; 9484 9485 qid = arg2 & 0xffff; 9486 coreid = arg2 >> 16; 9487 9488 KASSERT(qid >= 0 && qid < sc->chip_params->cim_num_obq, 9489 ("%s: bad obq qid %d\n", __func__, qid)); 9490 KASSERT(coreid >= 0 && coreid < sc->params.ncores, 9491 ("%s: bad coreid %d\n", __func__, coreid)); 9492 9493 n = 6 * CIM_OBQ_SIZE * 4; 9494 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 9495 mtx_lock(&sc->reg_lock); 9496 if (hw_off_limits(sc)) 9497 rc = -ENXIO; 9498 else 9499 rc = t4_read_cim_obq_core(sc, coreid, qid, buf, n); 9500 mtx_unlock(&sc->reg_lock); 9501 if (rc < 0) { 9502 rc = -rc; 9503 goto done; 9504 } 9505 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 9506 9507 rc = sysctl_wire_old_buffer(req, 0); 9508 if (rc != 0) 9509 goto done; 9510 9511 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9512 if (sb == NULL) { 9513 rc = ENOMEM; 9514 goto done; 9515 } 9516 for (i = 0, p = buf; i < n; i += 16, p += 4) 9517 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 9518 p[2], p[3]); 9519 rc = sbuf_finish(sb); 9520 sbuf_delete(sb); 9521 done: 9522 free(buf, M_CXGBE); 9523 return (rc); 9524 } 9525 9526 static void 9527 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 9528 { 9529 uint32_t *p; 9530 9531 sbuf_printf(sb, "Status Data PC%s", 9532 cfg & F_UPDBGLACAPTPCONLY ? "" : 9533 " LS0Stat LS0Addr LS0Data"); 9534 9535 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) { 9536 if (cfg & F_UPDBGLACAPTPCONLY) { 9537 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, 9538 p[6], p[7]); 9539 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", 9540 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 9541 p[4] & 0xff, p[5] >> 8); 9542 sbuf_printf(sb, "\n %02x %x%07x %x%07x", 9543 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 9544 p[1] & 0xf, p[2] >> 4); 9545 } else { 9546 sbuf_printf(sb, 9547 "\n %02x %x%07x %x%07x %08x %08x " 9548 "%08x%08x%08x%08x", 9549 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 9550 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 9551 p[6], p[7]); 9552 } 9553 } 9554 } 9555 9556 static void 9557 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 9558 { 9559 uint32_t *p; 9560 9561 sbuf_printf(sb, "Status Inst Data PC%s", 9562 cfg & F_UPDBGLACAPTPCONLY ? "" : 9563 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data"); 9564 9565 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) { 9566 if (cfg & F_UPDBGLACAPTPCONLY) { 9567 sbuf_printf(sb, "\n %02x %08x %08x %08x", 9568 p[3] & 0xff, p[2], p[1], p[0]); 9569 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x", 9570 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, 9571 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); 9572 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x", 9573 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, 9574 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, 9575 p[6] >> 16); 9576 } else { 9577 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x " 9578 "%08x %08x %08x %08x %08x %08x", 9579 (p[9] >> 16) & 0xff, 9580 p[9] & 0xffff, p[8] >> 16, 9581 p[8] & 0xffff, p[7] >> 16, 9582 p[7] & 0xffff, p[6] >> 16, 9583 p[2], p[1], p[0], p[5], p[4], p[3]); 9584 } 9585 } 9586 } 9587 9588 static int 9589 sbuf_cim_la(struct adapter *sc, int coreid, struct sbuf *sb, int flags) 9590 { 9591 uint32_t cfg, *buf; 9592 int rc; 9593 9594 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9595 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 9596 M_ZERO | flags); 9597 if (buf == NULL) 9598 return (ENOMEM); 9599 9600 mtx_lock(&sc->reg_lock); 9601 if (hw_off_limits(sc)) 9602 rc = ENXIO; 9603 else { 9604 rc = -t4_cim_read_core(sc, 1, coreid, A_UP_UP_DBG_LA_CFG, 1, 9605 &cfg); 9606 if (rc == 0) 9607 rc = -t4_cim_read_la_core(sc, coreid, buf, NULL); 9608 } 9609 mtx_unlock(&sc->reg_lock); 9610 if (rc == 0) { 9611 if (chip_id(sc) < CHELSIO_T6) 9612 sbuf_cim_la4(sc, sb, buf, cfg); 9613 else 9614 sbuf_cim_la6(sc, sb, buf, cfg); 9615 } 9616 free(buf, M_CXGBE); 9617 return (rc); 9618 } 9619 9620 static int 9621 sysctl_cim_la(SYSCTL_HANDLER_ARGS) 9622 { 9623 struct adapter *sc = arg1; 9624 int coreid = arg2; 9625 struct sbuf *sb; 9626 int rc; 9627 9628 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9629 if (sb == NULL) 9630 return (ENOMEM); 9631 9632 rc = sbuf_cim_la(sc, coreid, sb, M_WAITOK); 9633 if (rc == 0) 9634 rc = sbuf_finish(sb); 9635 sbuf_delete(sb); 9636 return (rc); 9637 } 9638 9639 static void 9640 dump_cim_regs(struct adapter *sc) 9641 { 9642 log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n", 9643 device_get_nameunit(sc->dev), 9644 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9645 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9646 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2), 9647 t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN), 9648 t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA)); 9649 log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n", 9650 device_get_nameunit(sc->dev), 9651 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9652 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9653 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800), 9654 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800), 9655 t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN)); 9656 } 9657 9658 static void 9659 dump_cimla(struct adapter *sc) 9660 { 9661 struct sbuf sb; 9662 int rc; 9663 9664 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9665 log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n", 9666 device_get_nameunit(sc->dev)); 9667 return; 9668 } 9669 rc = sbuf_cim_la(sc, 0, &sb, M_WAITOK); 9670 if (rc == 0) { 9671 rc = sbuf_finish(&sb); 9672 if (rc == 0) { 9673 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n", 9674 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9675 } 9676 } 9677 sbuf_delete(&sb); 9678 } 9679 9680 void 9681 t4_os_cim_err(struct adapter *sc) 9682 { 9683 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 9684 } 9685 9686 static int 9687 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) 9688 { 9689 struct adapter *sc = arg1; 9690 u_int i; 9691 struct sbuf *sb; 9692 uint32_t *buf, *p; 9693 int rc; 9694 9695 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9696 if (sb == NULL) 9697 return (ENOMEM); 9698 9699 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, 9700 M_ZERO | M_WAITOK); 9701 9702 rc = 0; 9703 mtx_lock(&sc->reg_lock); 9704 if (hw_off_limits(sc)) 9705 rc = ENXIO; 9706 else 9707 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); 9708 mtx_unlock(&sc->reg_lock); 9709 if (rc) 9710 goto done; 9711 9712 p = buf; 9713 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9714 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], 9715 p[1], p[0]); 9716 } 9717 9718 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); 9719 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9720 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", 9721 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 9722 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 9723 (p[1] >> 2) | ((p[2] & 3) << 30), 9724 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 9725 p[0] & 1); 9726 } 9727 rc = sbuf_finish(sb); 9728 done: 9729 sbuf_delete(sb); 9730 free(buf, M_CXGBE); 9731 return (rc); 9732 } 9733 9734 static int 9735 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) 9736 { 9737 struct adapter *sc = arg1; 9738 u_int i; 9739 struct sbuf *sb; 9740 uint32_t *buf, *p; 9741 int rc; 9742 9743 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9744 if (sb == NULL) 9745 return (ENOMEM); 9746 9747 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, 9748 M_ZERO | M_WAITOK); 9749 9750 rc = 0; 9751 mtx_lock(&sc->reg_lock); 9752 if (hw_off_limits(sc)) 9753 rc = ENXIO; 9754 else 9755 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); 9756 mtx_unlock(&sc->reg_lock); 9757 if (rc) 9758 goto done; 9759 9760 p = buf; 9761 sbuf_printf(sb, "Cntl ID DataBE Addr Data"); 9762 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9763 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", 9764 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, 9765 p[4], p[3], p[2], p[1], p[0]); 9766 } 9767 9768 sbuf_printf(sb, "\n\nCntl ID Data"); 9769 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9770 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", 9771 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); 9772 } 9773 9774 rc = sbuf_finish(sb); 9775 done: 9776 sbuf_delete(sb); 9777 free(buf, M_CXGBE); 9778 return (rc); 9779 } 9780 9781 static int 9782 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) 9783 { 9784 struct adapter *sc = arg1; 9785 struct sbuf *sb; 9786 int rc, i; 9787 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9788 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9789 uint16_t thres[CIM_NUM_IBQ]; 9790 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; 9791 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; 9792 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; 9793 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { 9794 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ 9795 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ 9796 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ 9797 }; 9798 9799 MPASS(chip_id(sc) < CHELSIO_T7); 9800 9801 cim_num_obq = sc->chip_params->cim_num_obq; 9802 if (is_t4(sc)) { 9803 ibq_rdaddr = A_UP_IBQ_0_RDADDR; 9804 obq_rdaddr = A_UP_OBQ_0_REALADDR; 9805 } else { 9806 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; 9807 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; 9808 } 9809 nq = CIM_NUM_IBQ + cim_num_obq; 9810 9811 mtx_lock(&sc->reg_lock); 9812 if (hw_off_limits(sc)) 9813 rc = ENXIO; 9814 else { 9815 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); 9816 if (rc == 0) { 9817 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, 9818 obq_wr); 9819 if (rc == 0) 9820 t4_read_cimq_cfg(sc, base, size, thres); 9821 } 9822 } 9823 mtx_unlock(&sc->reg_lock); 9824 if (rc) 9825 return (rc); 9826 9827 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9828 if (sb == NULL) 9829 return (ENOMEM); 9830 9831 sbuf_printf(sb, 9832 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 9833 9834 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 9835 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 9836 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), 9837 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9838 G_QUEREMFLITS(p[2]) * 16); 9839 for ( ; i < nq; i++, p += 4, wr += 2) 9840 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], 9841 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, 9842 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9843 G_QUEREMFLITS(p[2]) * 16); 9844 9845 rc = sbuf_finish(sb); 9846 sbuf_delete(sb); 9847 9848 return (rc); 9849 } 9850 9851 static int 9852 sysctl_cim_qcfg_t7(SYSCTL_HANDLER_ARGS) 9853 { 9854 struct adapter *sc = arg1; 9855 u_int coreid = arg2; 9856 struct sbuf *sb; 9857 int rc, i; 9858 u_int addr; 9859 uint16_t base[CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7]; 9860 uint16_t size[CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7]; 9861 uint16_t thres[CIM_NUM_IBQ_T7]; 9862 uint32_t obq_wr[2 * CIM_NUM_OBQ_T7], *wr = obq_wr; 9863 uint32_t stat[4 * (CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7)], *p = stat; 9864 static const char * const qname_ibq_t7[] = { 9865 "TP0", "TP1", "TP2", "TP3", "ULP", "SGE0", "SGE1", "NC-SI", 9866 "RSVD", "IPC1", "IPC2", "IPC3", "IPC4", "IPC5", "IPC6", "IPC7", 9867 }; 9868 static const char * const qname_obq_t7[] = { 9869 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", "SGE0-RX", 9870 "RSVD", "RSVD", "IPC1", "IPC2", "IPC3", "IPC4", "IPC5", 9871 "IPC6", "IPC7" 9872 }; 9873 static const char * const qname_ibq_sec_t7[] = { 9874 "TP0", "TP1", "TP2", "TP3", "ULP", "SGE0", "RSVD", "RSVD", 9875 "RSVD", "IPC0", "RSVD", "RSVD", "RSVD", "RSVD", "RSVD", "RSVD", 9876 }; 9877 static const char * const qname_obq_sec_t7[] = { 9878 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "RSVD", "SGE0-RX", 9879 "RSVD", "RSVD", "IPC0", "RSVD", "RSVD", "RSVD", "RSVD", 9880 "RSVD", "RSVD", 9881 }; 9882 9883 MPASS(chip_id(sc) >= CHELSIO_T7); 9884 9885 mtx_lock(&sc->reg_lock); 9886 if (hw_off_limits(sc)) 9887 rc = ENXIO; 9888 else { 9889 rc = -t4_cim_read_core(sc, 1, coreid, 9890 A_T7_UP_IBQ_0_SHADOW_RDADDR, 4 * CIM_NUM_IBQ_T7, stat); 9891 if (rc != 0) 9892 goto unlock; 9893 9894 rc = -t4_cim_read_core(sc, 1, coreid, 9895 A_T7_UP_OBQ_0_SHADOW_RDADDR, 4 * CIM_NUM_OBQ_T7, 9896 &stat[4 * CIM_NUM_IBQ_T7]); 9897 if (rc != 0) 9898 goto unlock; 9899 9900 addr = A_T7_UP_OBQ_0_SHADOW_REALADDR; 9901 for (i = 0; i < CIM_NUM_OBQ_T7 * 2; i++, addr += 8) { 9902 rc = -t4_cim_read_core(sc, 1, coreid, addr, 1, 9903 &obq_wr[i]); 9904 if (rc != 0) 9905 goto unlock; 9906 } 9907 t4_read_cimq_cfg_core(sc, coreid, base, size, thres); 9908 } 9909 unlock: 9910 mtx_unlock(&sc->reg_lock); 9911 if (rc) 9912 return (rc); 9913 9914 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9915 if (sb == NULL) 9916 return (ENOMEM); 9917 9918 sbuf_printf(sb, 9919 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 9920 9921 for (i = 0; i < CIM_NUM_IBQ_T7; i++, p += 4) { 9922 if (!size[i]) 9923 continue; 9924 9925 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 9926 coreid == 0 ? qname_ibq_t7[i] : qname_ibq_sec_t7[i], 9927 base[i], size[i], thres[i], G_IBQRDADDR(p[0]) & 0xfff, 9928 G_IBQWRADDR(p[1]) & 0xfff, G_QUESOPCNT(p[3]), 9929 G_QUEEOPCNT(p[3]), G_T7_QUEREMFLITS(p[2]) * 16); 9930 } 9931 9932 for ( ; i < CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7; i++, p += 4, wr += 2) { 9933 if (!size[i]) 9934 continue; 9935 9936 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", 9937 coreid == 0 ? qname_obq_t7[i - CIM_NUM_IBQ_T7] : 9938 qname_obq_sec_t7[i - CIM_NUM_IBQ_T7], 9939 base[i], size[i], G_QUERDADDR(p[0]) & 0xfff, 9940 wr[0] << 1, G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9941 G_T7_QUEREMFLITS(p[2]) * 16); 9942 } 9943 9944 rc = sbuf_finish(sb); 9945 sbuf_delete(sb); 9946 return (rc); 9947 } 9948 9949 static int 9950 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) 9951 { 9952 struct adapter *sc = arg1; 9953 struct sbuf *sb; 9954 int rc; 9955 struct tp_cpl_stats stats; 9956 9957 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9958 if (sb == NULL) 9959 return (ENOMEM); 9960 9961 rc = 0; 9962 mtx_lock(&sc->reg_lock); 9963 if (hw_off_limits(sc)) 9964 rc = ENXIO; 9965 else 9966 t4_tp_get_cpl_stats(sc, &stats, 0); 9967 mtx_unlock(&sc->reg_lock); 9968 if (rc) 9969 goto done; 9970 9971 if (sc->chip_params->nchan > 2) { 9972 sbuf_printf(sb, " channel 0 channel 1" 9973 " channel 2 channel 3"); 9974 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u", 9975 stats.req[0], stats.req[1], stats.req[2], stats.req[3]); 9976 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u", 9977 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); 9978 } else { 9979 sbuf_printf(sb, " channel 0 channel 1"); 9980 sbuf_printf(sb, "\nCPL requests: %10u %10u", 9981 stats.req[0], stats.req[1]); 9982 sbuf_printf(sb, "\nCPL responses: %10u %10u", 9983 stats.rsp[0], stats.rsp[1]); 9984 } 9985 9986 rc = sbuf_finish(sb); 9987 done: 9988 sbuf_delete(sb); 9989 return (rc); 9990 } 9991 9992 static int 9993 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) 9994 { 9995 struct adapter *sc = arg1; 9996 struct sbuf *sb; 9997 int rc; 9998 struct tp_usm_stats stats; 9999 10000 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10001 if (sb == NULL) 10002 return (ENOMEM); 10003 10004 rc = 0; 10005 mtx_lock(&sc->reg_lock); 10006 if (hw_off_limits(sc)) 10007 rc = ENXIO; 10008 else 10009 t4_get_usm_stats(sc, &stats, 1); 10010 mtx_unlock(&sc->reg_lock); 10011 if (rc == 0) { 10012 sbuf_printf(sb, "Frames: %u\n", stats.frames); 10013 sbuf_printf(sb, "Octets: %ju\n", stats.octets); 10014 sbuf_printf(sb, "Drops: %u", stats.drops); 10015 rc = sbuf_finish(sb); 10016 } 10017 sbuf_delete(sb); 10018 10019 return (rc); 10020 } 10021 10022 static int 10023 sysctl_tid_stats(SYSCTL_HANDLER_ARGS) 10024 { 10025 struct adapter *sc = arg1; 10026 struct sbuf *sb; 10027 int rc; 10028 struct tp_tid_stats stats; 10029 10030 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10031 if (sb == NULL) 10032 return (ENOMEM); 10033 10034 rc = 0; 10035 mtx_lock(&sc->reg_lock); 10036 if (hw_off_limits(sc)) 10037 rc = ENXIO; 10038 else 10039 t4_tp_get_tid_stats(sc, &stats, 1); 10040 mtx_unlock(&sc->reg_lock); 10041 if (rc == 0) { 10042 sbuf_printf(sb, "Delete: %u\n", stats.del); 10043 sbuf_printf(sb, "Invalidate: %u\n", stats.inv); 10044 sbuf_printf(sb, "Active: %u\n", stats.act); 10045 sbuf_printf(sb, "Passive: %u", stats.pas); 10046 rc = sbuf_finish(sb); 10047 } 10048 sbuf_delete(sb); 10049 10050 return (rc); 10051 } 10052 10053 static const char * const devlog_level_strings[] = { 10054 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 10055 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 10056 [FW_DEVLOG_LEVEL_ERR] = "ERR", 10057 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 10058 [FW_DEVLOG_LEVEL_INFO] = "INFO", 10059 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 10060 }; 10061 10062 static const char * const devlog_facility_strings[] = { 10063 [FW_DEVLOG_FACILITY_CORE] = "CORE", 10064 [FW_DEVLOG_FACILITY_CF] = "CF", 10065 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 10066 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 10067 [FW_DEVLOG_FACILITY_RES] = "RES", 10068 [FW_DEVLOG_FACILITY_HW] = "HW", 10069 [FW_DEVLOG_FACILITY_FLR] = "FLR", 10070 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 10071 [FW_DEVLOG_FACILITY_PHY] = "PHY", 10072 [FW_DEVLOG_FACILITY_MAC] = "MAC", 10073 [FW_DEVLOG_FACILITY_PORT] = "PORT", 10074 [FW_DEVLOG_FACILITY_VI] = "VI", 10075 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 10076 [FW_DEVLOG_FACILITY_ACL] = "ACL", 10077 [FW_DEVLOG_FACILITY_TM] = "TM", 10078 [FW_DEVLOG_FACILITY_QFC] = "QFC", 10079 [FW_DEVLOG_FACILITY_DCB] = "DCB", 10080 [FW_DEVLOG_FACILITY_ETH] = "ETH", 10081 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 10082 [FW_DEVLOG_FACILITY_RI] = "RI", 10083 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 10084 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 10085 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 10086 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE", 10087 [FW_DEVLOG_FACILITY_CHNET] = "CHNET", 10088 }; 10089 10090 static int 10091 sbuf_devlog(struct adapter *sc, int coreid, struct sbuf *sb, int flags) 10092 { 10093 int i, j, rc, nentries, first = 0; 10094 struct devlog_params *dparams = &sc->params.devlog; 10095 struct fw_devlog_e *buf, *e; 10096 uint32_t addr, size; 10097 uint64_t ftstamp = UINT64_MAX; 10098 10099 KASSERT(coreid >= 0 && coreid < sc->params.ncores, 10100 ("%s: bad coreid %d\n", __func__, coreid)); 10101 10102 if (dparams->addr == 0) 10103 return (ENXIO); 10104 10105 size = dparams->size / sc->params.ncores; 10106 addr = dparams->addr + coreid * size; 10107 10108 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 10109 buf = malloc(size, M_CXGBE, M_ZERO | flags); 10110 if (buf == NULL) 10111 return (ENOMEM); 10112 10113 mtx_lock(&sc->reg_lock); 10114 if (hw_off_limits(sc)) 10115 rc = ENXIO; 10116 else 10117 rc = read_via_memwin(sc, 1, addr, (void *)buf, size); 10118 mtx_unlock(&sc->reg_lock); 10119 if (rc != 0) 10120 goto done; 10121 10122 nentries = size / sizeof(struct fw_devlog_e); 10123 for (i = 0; i < nentries; i++) { 10124 e = &buf[i]; 10125 10126 if (e->timestamp == 0) 10127 break; /* end */ 10128 10129 e->timestamp = be64toh(e->timestamp); 10130 e->seqno = be32toh(e->seqno); 10131 for (j = 0; j < 8; j++) 10132 e->params[j] = be32toh(e->params[j]); 10133 10134 if (e->timestamp < ftstamp) { 10135 ftstamp = e->timestamp; 10136 first = i; 10137 } 10138 } 10139 10140 if (buf[first].timestamp == 0) 10141 goto done; /* nothing in the log */ 10142 10143 sbuf_printf(sb, "%10s %15s %8s %8s %s\n", 10144 "Seq#", "Tstamp", "Level", "Facility", "Message"); 10145 10146 i = first; 10147 do { 10148 e = &buf[i]; 10149 if (e->timestamp == 0) 10150 break; /* end */ 10151 10152 sbuf_printf(sb, "%10d %15ju %8s %8s ", 10153 e->seqno, e->timestamp, 10154 (e->level < nitems(devlog_level_strings) ? 10155 devlog_level_strings[e->level] : "UNKNOWN"), 10156 (e->facility < nitems(devlog_facility_strings) ? 10157 devlog_facility_strings[e->facility] : "UNKNOWN")); 10158 sbuf_printf(sb, e->fmt, e->params[0], e->params[1], 10159 e->params[2], e->params[3], e->params[4], 10160 e->params[5], e->params[6], e->params[7]); 10161 10162 if (++i == nentries) 10163 i = 0; 10164 } while (i != first); 10165 done: 10166 free(buf, M_CXGBE); 10167 return (rc); 10168 } 10169 10170 static int 10171 sysctl_devlog(SYSCTL_HANDLER_ARGS) 10172 { 10173 struct adapter *sc = arg1; 10174 int rc, i, coreid = arg2; 10175 struct sbuf *sb; 10176 10177 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10178 if (sb == NULL) 10179 return (ENOMEM); 10180 if (coreid == -1) { 10181 /* -1 means all cores */ 10182 for (i = rc = 0; i < sc->params.ncores && rc == 0; i++) { 10183 if (sc->params.ncores > 0) 10184 sbuf_printf(sb, "=== CIM core %u ===\n", i); 10185 rc = sbuf_devlog(sc, i, sb, M_WAITOK); 10186 } 10187 } else { 10188 KASSERT(coreid >= 0 && coreid < sc->params.ncores, 10189 ("%s: bad coreid %d\n", __func__, coreid)); 10190 rc = sbuf_devlog(sc, coreid, sb, M_WAITOK); 10191 } 10192 if (rc == 0) 10193 rc = sbuf_finish(sb); 10194 sbuf_delete(sb); 10195 return (rc); 10196 } 10197 10198 static void 10199 dump_devlog(struct adapter *sc) 10200 { 10201 int rc, i; 10202 struct sbuf sb; 10203 10204 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 10205 log(LOG_DEBUG, "%s: failed to generate devlog dump.\n", 10206 device_get_nameunit(sc->dev)); 10207 return; 10208 } 10209 for (i = rc = 0; i < sc->params.ncores && rc == 0; i++) { 10210 if (sc->params.ncores > 0) 10211 sbuf_printf(&sb, "=== CIM core %u ===\n", i); 10212 rc = sbuf_devlog(sc, i, &sb, M_WAITOK); 10213 } 10214 if (rc == 0) { 10215 sbuf_finish(&sb); 10216 log(LOG_DEBUG, "%s: device log follows.\n%s", 10217 device_get_nameunit(sc->dev), sbuf_data(&sb)); 10218 } 10219 sbuf_delete(&sb); 10220 } 10221 10222 static int 10223 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) 10224 { 10225 struct adapter *sc = arg1; 10226 struct sbuf *sb; 10227 int rc; 10228 struct tp_fcoe_stats stats[MAX_NCHAN]; 10229 int i, nchan = sc->chip_params->nchan; 10230 10231 rc = 0; 10232 mtx_lock(&sc->reg_lock); 10233 if (hw_off_limits(sc)) 10234 rc = ENXIO; 10235 else { 10236 for (i = 0; i < nchan; i++) 10237 t4_get_fcoe_stats(sc, i, &stats[i], 1); 10238 } 10239 mtx_unlock(&sc->reg_lock); 10240 if (rc != 0) 10241 return (rc); 10242 10243 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10244 if (sb == NULL) 10245 return (ENOMEM); 10246 10247 if (nchan > 2) { 10248 sbuf_printf(sb, " channel 0 channel 1" 10249 " channel 2 channel 3"); 10250 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju", 10251 stats[0].octets_ddp, stats[1].octets_ddp, 10252 stats[2].octets_ddp, stats[3].octets_ddp); 10253 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u", 10254 stats[0].frames_ddp, stats[1].frames_ddp, 10255 stats[2].frames_ddp, stats[3].frames_ddp); 10256 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u", 10257 stats[0].frames_drop, stats[1].frames_drop, 10258 stats[2].frames_drop, stats[3].frames_drop); 10259 } else { 10260 sbuf_printf(sb, " channel 0 channel 1"); 10261 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju", 10262 stats[0].octets_ddp, stats[1].octets_ddp); 10263 sbuf_printf(sb, "\nframesDDP: %16u %16u", 10264 stats[0].frames_ddp, stats[1].frames_ddp); 10265 sbuf_printf(sb, "\nframesDrop: %16u %16u", 10266 stats[0].frames_drop, stats[1].frames_drop); 10267 } 10268 10269 rc = sbuf_finish(sb); 10270 sbuf_delete(sb); 10271 10272 return (rc); 10273 } 10274 10275 static int 10276 sysctl_hw_sched(SYSCTL_HANDLER_ARGS) 10277 { 10278 struct adapter *sc = arg1; 10279 struct sbuf *sb; 10280 int rc, i; 10281 unsigned int map, kbps, ipg, mode; 10282 unsigned int pace_tab[NTX_SCHED]; 10283 10284 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req); 10285 if (sb == NULL) 10286 return (ENOMEM); 10287 10288 mtx_lock(&sc->reg_lock); 10289 if (hw_off_limits(sc)) { 10290 mtx_unlock(&sc->reg_lock); 10291 rc = ENXIO; 10292 goto done; 10293 } 10294 10295 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); 10296 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); 10297 t4_read_pace_tbl(sc, pace_tab); 10298 mtx_unlock(&sc->reg_lock); 10299 10300 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " 10301 "Class IPG (0.1 ns) Flow IPG (us)"); 10302 10303 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { 10304 t4_get_tx_sched(sc, i, &kbps, &ipg, 1); 10305 sbuf_printf(sb, "\n %u %-5s %u ", i, 10306 (mode & (1 << i)) ? "flow" : "class", map & 3); 10307 if (kbps) 10308 sbuf_printf(sb, "%9u ", kbps); 10309 else 10310 sbuf_printf(sb, " disabled "); 10311 10312 if (ipg) 10313 sbuf_printf(sb, "%13u ", ipg); 10314 else 10315 sbuf_printf(sb, " disabled "); 10316 10317 if (pace_tab[i]) 10318 sbuf_printf(sb, "%10u", pace_tab[i]); 10319 else 10320 sbuf_printf(sb, " disabled"); 10321 } 10322 rc = sbuf_finish(sb); 10323 done: 10324 sbuf_delete(sb); 10325 return (rc); 10326 } 10327 10328 static int 10329 sysctl_lb_stats(SYSCTL_HANDLER_ARGS) 10330 { 10331 struct adapter *sc = arg1; 10332 struct sbuf *sb; 10333 int rc, i, j; 10334 uint64_t *p0, *p1; 10335 struct lb_port_stats s[2]; 10336 static const char *stat_name[] = { 10337 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", 10338 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", 10339 "Frames128To255:", "Frames256To511:", "Frames512To1023:", 10340 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", 10341 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", 10342 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", 10343 "BG2FramesTrunc:", "BG3FramesTrunc:" 10344 }; 10345 10346 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10347 if (sb == NULL) 10348 return (ENOMEM); 10349 10350 memset(s, 0, sizeof(s)); 10351 10352 rc = 0; 10353 for (i = 0; i < sc->chip_params->nchan; i += 2) { 10354 mtx_lock(&sc->reg_lock); 10355 if (hw_off_limits(sc)) 10356 rc = ENXIO; 10357 else { 10358 t4_get_lb_stats(sc, i, &s[0]); 10359 t4_get_lb_stats(sc, i + 1, &s[1]); 10360 } 10361 mtx_unlock(&sc->reg_lock); 10362 if (rc != 0) 10363 break; 10364 10365 p0 = &s[0].octets; 10366 p1 = &s[1].octets; 10367 sbuf_printf(sb, "%s Loopback %u" 10368 " Loopback %u", i == 0 ? "" : "\n", i, i + 1); 10369 10370 for (j = 0; j < nitems(stat_name); j++) 10371 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], 10372 *p0++, *p1++); 10373 } 10374 10375 if (rc == 0) 10376 rc = sbuf_finish(sb); 10377 sbuf_delete(sb); 10378 10379 return (rc); 10380 } 10381 10382 static int 10383 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) 10384 { 10385 int rc = 0; 10386 struct port_info *pi = arg1; 10387 struct link_config *lc = &pi->link_cfg; 10388 struct sbuf *sb; 10389 10390 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); 10391 if (sb == NULL) 10392 return (ENOMEM); 10393 10394 if (lc->link_ok || lc->link_down_rc == 255) 10395 sbuf_printf(sb, "n/a"); 10396 else 10397 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc)); 10398 10399 rc = sbuf_finish(sb); 10400 sbuf_delete(sb); 10401 10402 return (rc); 10403 } 10404 10405 struct mem_desc { 10406 uint64_t base; 10407 uint64_t limit; 10408 u_int idx; 10409 }; 10410 10411 static int 10412 mem_desc_cmp(const void *a, const void *b) 10413 { 10414 const uint64_t v1 = ((const struct mem_desc *)a)->base; 10415 const uint64_t v2 = ((const struct mem_desc *)b)->base; 10416 10417 if (v1 < v2) 10418 return (-1); 10419 else if (v1 > v2) 10420 return (1); 10421 10422 return (0); 10423 } 10424 10425 static void 10426 mem_region_show(struct sbuf *sb, const char *name, uint64_t from, uint64_t to) 10427 { 10428 uintmax_t size; 10429 10430 if (from == to) 10431 return; 10432 10433 size = to - from + 1; 10434 if (size == 0) 10435 return; 10436 10437 if (from > UINT32_MAX || to > UINT32_MAX) 10438 sbuf_printf(sb, "%-18s 0x%012jx-0x%012jx [%ju]\n", name, 10439 (uintmax_t)from, (uintmax_t)to, size); 10440 else 10441 sbuf_printf(sb, "%-18s 0x%08jx-0x%08jx [%ju]\n", name, 10442 (uintmax_t)from, (uintmax_t)to, size); 10443 } 10444 10445 static int 10446 sysctl_meminfo(SYSCTL_HANDLER_ARGS) 10447 { 10448 struct adapter *sc = arg1; 10449 struct sbuf *sb; 10450 int rc, i, n, nchan; 10451 uint32_t lo, hi, used, free, alloc; 10452 static const char *memory[] = { 10453 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:" 10454 }; 10455 static const char *region[] = { 10456 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", 10457 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", 10458 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", 10459 "TDDP region:", "TPT region:", "STAG region:", "RQ region:", 10460 "RQUDP region:", "PBL region:", "TXPBL region:", 10461 "TLSKey region:", "RRQ region:", "NVMe STAG region:", 10462 "NVMe RQ region:", "NVMe RXPBL region:", "NVMe TPT region:", 10463 "NVMe TXPBL region:", "DBVFIFO region:", "ULPRX state:", 10464 "ULPTX state:", "RoCE RRQ region:", "On-chip queues:", 10465 }; 10466 struct mem_desc avail[4]; 10467 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ 10468 struct mem_desc *md; 10469 10470 rc = sysctl_wire_old_buffer(req, 0); 10471 if (rc != 0) 10472 return (rc); 10473 10474 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10475 if (sb == NULL) 10476 return (ENOMEM); 10477 10478 for (i = 0; i < nitems(mem); i++) { 10479 mem[i].limit = 0; 10480 mem[i].idx = i; 10481 } 10482 10483 mtx_lock(&sc->reg_lock); 10484 if (hw_off_limits(sc)) { 10485 rc = ENXIO; 10486 goto done; 10487 } 10488 10489 /* Find and sort the populated memory ranges */ 10490 i = 0; 10491 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 10492 if (lo & F_EDRAM0_ENABLE) { 10493 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); 10494 if (chip_id(sc) >= CHELSIO_T7) { 10495 avail[i].base = (uint64_t)G_T7_EDRAM0_BASE(hi) << 20; 10496 avail[i].limit = avail[i].base + 10497 (G_T7_EDRAM0_SIZE(hi) << 20); 10498 } else { 10499 avail[i].base = (uint64_t)G_EDRAM0_BASE(hi) << 20; 10500 avail[i].limit = avail[i].base + 10501 (G_EDRAM0_SIZE(hi) << 20); 10502 } 10503 avail[i].idx = 0; 10504 i++; 10505 } 10506 if (lo & F_EDRAM1_ENABLE) { 10507 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); 10508 if (chip_id(sc) >= CHELSIO_T7) { 10509 avail[i].base = (uint64_t)G_T7_EDRAM1_BASE(hi) << 20; 10510 avail[i].limit = avail[i].base + 10511 (G_T7_EDRAM1_SIZE(hi) << 20); 10512 } else { 10513 avail[i].base = (uint64_t)G_EDRAM1_BASE(hi) << 20; 10514 avail[i].limit = avail[i].base + 10515 (G_EDRAM1_SIZE(hi) << 20); 10516 } 10517 avail[i].idx = 1; 10518 i++; 10519 } 10520 if (lo & F_EXT_MEM_ENABLE) { 10521 switch (chip_id(sc)) { 10522 case CHELSIO_T4: 10523 case CHELSIO_T6: 10524 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 10525 avail[i].base = (uint64_t)G_EXT_MEM_BASE(hi) << 20; 10526 avail[i].limit = avail[i].base + 10527 (G_EXT_MEM_SIZE(hi) << 20); 10528 avail[i].idx = 2; 10529 break; 10530 case CHELSIO_T5: 10531 hi = t4_read_reg(sc, A_MA_EXT_MEMORY0_BAR); 10532 avail[i].base = (uint64_t)G_EXT_MEM0_BASE(hi) << 20; 10533 avail[i].limit = avail[i].base + 10534 (G_EXT_MEM0_SIZE(hi) << 20); 10535 avail[i].idx = 3; /* Call it MC0 for T5 */ 10536 break; 10537 default: 10538 hi = t4_read_reg(sc, A_MA_EXT_MEMORY0_BAR); 10539 avail[i].base = (uint64_t)G_T7_EXT_MEM0_BASE(hi) << 20; 10540 avail[i].limit = avail[i].base + 10541 (G_T7_EXT_MEM0_SIZE(hi) << 20); 10542 avail[i].idx = 3; /* Call it MC0 for T7+ */ 10543 break; 10544 } 10545 i++; 10546 } 10547 if (lo & F_EXT_MEM1_ENABLE && !(lo & F_MC_SPLIT)) { 10548 /* Only T5 and T7+ have 2 MCs. */ 10549 MPASS(is_t5(sc) || chip_id(sc) >= CHELSIO_T7); 10550 10551 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 10552 if (chip_id(sc) >= CHELSIO_T7) { 10553 avail[i].base = (uint64_t)G_T7_EXT_MEM1_BASE(hi) << 20; 10554 avail[i].limit = avail[i].base + 10555 (G_T7_EXT_MEM1_SIZE(hi) << 20); 10556 } else { 10557 avail[i].base = (uint64_t)G_EXT_MEM1_BASE(hi) << 20; 10558 avail[i].limit = avail[i].base + 10559 (G_EXT_MEM1_SIZE(hi) << 20); 10560 } 10561 avail[i].idx = 4; 10562 i++; 10563 } 10564 if (lo & F_HMA_MUX) { 10565 /* Only T6+ have HMA. */ 10566 MPASS(chip_id(sc) >= CHELSIO_T6); 10567 10568 if (chip_id(sc) >= CHELSIO_T7) { 10569 hi = t4_read_reg(sc, A_MA_HOST_MEMORY_BAR); 10570 avail[i].base = (uint64_t)G_HMATARGETBASE(hi) << 20; 10571 avail[i].limit = avail[i].base + 10572 (G_T7_HMA_SIZE(hi) << 20); 10573 } else { 10574 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 10575 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 10576 avail[i].limit = avail[i].base + 10577 (G_EXT_MEM1_SIZE(hi) << 20); 10578 } 10579 avail[i].idx = 5; 10580 i++; 10581 } 10582 MPASS(i <= nitems(avail)); 10583 if (!i) /* no memory available */ 10584 goto done; 10585 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); 10586 10587 md = &mem[0]; 10588 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); 10589 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); 10590 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); 10591 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 10592 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); 10593 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); 10594 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); 10595 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); 10596 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); 10597 10598 /* the next few have explicit upper bounds */ 10599 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); 10600 md->limit = md->base - 1 + 10601 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * 10602 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); 10603 md++; 10604 10605 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); 10606 md->limit = md->base - 1 + 10607 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * 10608 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); 10609 md++; 10610 10611 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 10612 if (chip_id(sc) <= CHELSIO_T5) 10613 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); 10614 else 10615 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR); 10616 md->limit = 0; 10617 } else { 10618 md->base = 0; 10619 md->idx = nitems(region); /* hide it */ 10620 } 10621 md++; 10622 10623 #define ulp_region(reg) do {\ 10624 const u_int shift = chip_id(sc) >= CHELSIO_T7 ? 4 : 0; \ 10625 md->base = (uint64_t)t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT) << shift; \ 10626 md->limit = (uint64_t)t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) << shift; \ 10627 md->limit += (1 << shift) - 1; \ 10628 md++; \ 10629 } while (0) 10630 10631 #define hide_ulp_region() do { \ 10632 md->base = 0; \ 10633 md->idx = nitems(region); \ 10634 md++; \ 10635 } while (0) 10636 10637 ulp_region(RX_ISCSI); 10638 ulp_region(RX_TDDP); 10639 ulp_region(TX_TPT); 10640 ulp_region(RX_STAG); 10641 ulp_region(RX_RQ); 10642 if (chip_id(sc) < CHELSIO_T7) 10643 ulp_region(RX_RQUDP); 10644 else 10645 hide_ulp_region(); 10646 ulp_region(RX_PBL); 10647 ulp_region(TX_PBL); 10648 if (chip_id(sc) >= CHELSIO_T6) 10649 ulp_region(RX_TLS_KEY); 10650 else 10651 hide_ulp_region(); 10652 if (chip_id(sc) >= CHELSIO_T7) { 10653 ulp_region(RX_RRQ); 10654 ulp_region(RX_NVME_TCP_STAG); 10655 ulp_region(RX_NVME_TCP_RQ); 10656 ulp_region(RX_NVME_TCP_PBL); 10657 ulp_region(TX_NVME_TCP_TPT); 10658 ulp_region(TX_NVME_TCP_PBL); 10659 } else { 10660 hide_ulp_region(); 10661 hide_ulp_region(); 10662 hide_ulp_region(); 10663 hide_ulp_region(); 10664 hide_ulp_region(); 10665 hide_ulp_region(); 10666 } 10667 #undef ulp_region 10668 #undef hide_ulp_region 10669 10670 md->base = 0; 10671 if (is_t4(sc)) 10672 md->idx = nitems(region); 10673 else { 10674 uint32_t size = 0; 10675 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2); 10676 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE); 10677 10678 if (is_t5(sc)) { 10679 if (sge_ctrl & F_VFIFO_ENABLE) 10680 size = fifo_size << 2; 10681 } else 10682 size = G_T6_DBVFIFO_SIZE(fifo_size) << 6; 10683 10684 if (size) { 10685 md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR); 10686 md->limit = md->base + size - 1; 10687 } else 10688 md->idx = nitems(region); 10689 } 10690 md++; 10691 10692 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); 10693 md->limit = 0; 10694 md++; 10695 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); 10696 md->limit = 0; 10697 md++; 10698 10699 if (chip_id(sc) >= CHELSIO_T7) { 10700 t4_tp_pio_read(sc, &lo, 1, A_TP_ROCE_RRQ_BASE, false); 10701 md->base = lo; 10702 } else { 10703 md->base = 0; 10704 md->idx = nitems(region); 10705 } 10706 md++; 10707 10708 md->base = sc->vres.ocq.start; 10709 if (sc->vres.ocq.size) 10710 md->limit = md->base + sc->vres.ocq.size - 1; 10711 else 10712 md->idx = nitems(region); /* hide it */ 10713 md++; 10714 10715 /* add any address-space holes, there can be up to 3 */ 10716 for (n = 0; n < i - 1; n++) 10717 if (avail[n].limit < avail[n + 1].base) 10718 (md++)->base = avail[n].limit; 10719 if (avail[n].limit) 10720 (md++)->base = avail[n].limit; 10721 10722 n = md - mem; 10723 MPASS(n <= nitems(mem)); 10724 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); 10725 10726 for (lo = 0; lo < i; lo++) 10727 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, 10728 avail[lo].limit - 1); 10729 10730 sbuf_printf(sb, "\n"); 10731 for (i = 0; i < n; i++) { 10732 if (mem[i].idx >= nitems(region)) 10733 continue; /* skip holes */ 10734 if (!mem[i].limit) 10735 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; 10736 mem_region_show(sb, region[mem[i].idx], mem[i].base, 10737 mem[i].limit); 10738 } 10739 10740 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); 10741 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; 10742 if (hi != lo - 1) { 10743 sbuf_printf(sb, "\n"); 10744 mem_region_show(sb, "uP RAM:", lo, hi); 10745 } 10746 10747 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); 10748 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; 10749 if (hi != lo - 1) 10750 mem_region_show(sb, "uP Extmem2:", lo, hi); 10751 10752 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); 10753 if (chip_id(sc) >= CHELSIO_T7) 10754 nchan = 1 << G_T7_PMRXNUMCHN(lo); 10755 else 10756 nchan = lo & F_PMRXNUMCHN ? 2 : 1; 10757 for (i = 0, free = 0; i < nchan; i++) 10758 free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT)); 10759 sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n", 10760 G_PMRXMAXPAGE(lo), free, 10761 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, nchan); 10762 10763 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); 10764 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); 10765 if (chip_id(sc) >= CHELSIO_T7) 10766 nchan = 1 << G_T7_PMTXNUMCHN(lo); 10767 else 10768 nchan = 1 << G_PMTXNUMCHN(lo); 10769 for (i = 0, free = 0; i < nchan; i++) 10770 free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT)); 10771 sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n", 10772 G_PMTXMAXPAGE(lo), free, 10773 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), 10774 hi >= (1 << 20) ? 'M' : 'K', nchan); 10775 sbuf_printf(sb, "%u p-structs (%u free)\n", 10776 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT), 10777 G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT))); 10778 10779 for (i = 0; i < 4; i++) { 10780 if (chip_id(sc) > CHELSIO_T5) 10781 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4); 10782 else 10783 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); 10784 if (is_t5(sc)) { 10785 used = G_T5_USED(lo); 10786 alloc = G_T5_ALLOC(lo); 10787 } else { 10788 used = G_USED(lo); 10789 alloc = G_ALLOC(lo); 10790 } 10791 /* For T6+ these are MAC buffer groups */ 10792 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", 10793 i, used, alloc); 10794 } 10795 for (i = 0; i < sc->chip_params->nchan; i++) { 10796 if (chip_id(sc) > CHELSIO_T5) 10797 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4); 10798 else 10799 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); 10800 if (is_t5(sc)) { 10801 used = G_T5_USED(lo); 10802 alloc = G_T5_ALLOC(lo); 10803 } else { 10804 used = G_USED(lo); 10805 alloc = G_ALLOC(lo); 10806 } 10807 /* For T6+ these are MAC buffer groups */ 10808 sbuf_printf(sb, 10809 "\nLoopback %d using %u pages out of %u allocated", 10810 i, used, alloc); 10811 } 10812 done: 10813 mtx_unlock(&sc->reg_lock); 10814 if (rc == 0) 10815 rc = sbuf_finish(sb); 10816 sbuf_delete(sb); 10817 return (rc); 10818 } 10819 10820 static inline void 10821 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) 10822 { 10823 *mask = x | y; 10824 y = htobe64(y); 10825 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); 10826 } 10827 10828 static int 10829 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) 10830 { 10831 struct adapter *sc = arg1; 10832 struct sbuf *sb; 10833 int rc, i; 10834 10835 MPASS(chip_id(sc) <= CHELSIO_T5); 10836 10837 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10838 if (sb == NULL) 10839 return (ENOMEM); 10840 10841 sbuf_printf(sb, 10842 "Idx Ethernet address Mask Vld Ports PF" 10843 " VF Replication P0 P1 P2 P3 ML"); 10844 rc = 0; 10845 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10846 uint64_t tcamx, tcamy, mask; 10847 uint32_t cls_lo, cls_hi; 10848 uint8_t addr[ETHER_ADDR_LEN]; 10849 10850 mtx_lock(&sc->reg_lock); 10851 if (hw_off_limits(sc)) 10852 rc = ENXIO; 10853 else { 10854 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); 10855 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); 10856 } 10857 mtx_unlock(&sc->reg_lock); 10858 if (rc != 0) 10859 break; 10860 if (tcamx & tcamy) 10861 continue; 10862 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10863 mtx_lock(&sc->reg_lock); 10864 if (hw_off_limits(sc)) 10865 rc = ENXIO; 10866 else { 10867 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10868 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10869 } 10870 mtx_unlock(&sc->reg_lock); 10871 if (rc != 0) 10872 break; 10873 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" 10874 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], 10875 addr[3], addr[4], addr[5], (uintmax_t)mask, 10876 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', 10877 G_PORTMAP(cls_hi), G_PF(cls_lo), 10878 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); 10879 10880 if (cls_lo & F_REPLICATE) { 10881 struct fw_ldst_cmd ldst_cmd; 10882 10883 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10884 ldst_cmd.op_to_addrspace = 10885 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10886 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10887 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10888 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10889 ldst_cmd.u.mps.rplc.fid_idx = 10890 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10891 V_FW_LDST_CMD_IDX(i)); 10892 10893 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10894 "t4mps"); 10895 if (rc) 10896 break; 10897 if (hw_off_limits(sc)) 10898 rc = ENXIO; 10899 else 10900 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10901 sizeof(ldst_cmd), &ldst_cmd); 10902 end_synchronized_op(sc, 0); 10903 if (rc != 0) 10904 break; 10905 else { 10906 sbuf_printf(sb, " %08x %08x %08x %08x", 10907 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10908 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10909 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10910 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10911 } 10912 } else 10913 sbuf_printf(sb, "%36s", ""); 10914 10915 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), 10916 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), 10917 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); 10918 } 10919 10920 if (rc) 10921 (void) sbuf_finish(sb); 10922 else 10923 rc = sbuf_finish(sb); 10924 sbuf_delete(sb); 10925 10926 return (rc); 10927 } 10928 10929 static int 10930 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS) 10931 { 10932 struct adapter *sc = arg1; 10933 struct sbuf *sb; 10934 int rc, i; 10935 10936 MPASS(chip_id(sc) == CHELSIO_T6); 10937 10938 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10939 if (sb == NULL) 10940 return (ENOMEM); 10941 10942 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 10943 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 10944 " Replication" 10945 " P0 P1 P2 P3 ML"); 10946 10947 rc = 0; 10948 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10949 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 10950 uint16_t ivlan; 10951 uint64_t tcamx, tcamy, val, mask; 10952 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 10953 uint8_t addr[ETHER_ADDR_LEN]; 10954 10955 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0); 10956 if (i < 256) 10957 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0); 10958 else 10959 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1); 10960 mtx_lock(&sc->reg_lock); 10961 if (hw_off_limits(sc)) 10962 rc = ENXIO; 10963 else { 10964 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10965 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10966 tcamy = G_DMACH(val) << 32; 10967 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10968 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10969 } 10970 mtx_unlock(&sc->reg_lock); 10971 if (rc != 0) 10972 break; 10973 10974 lookup_type = G_DATALKPTYPE(data2); 10975 port_num = G_DATAPORTNUM(data2); 10976 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10977 /* Inner header VNI */ 10978 vniy = ((data2 & F_DATAVIDH2) << 23) | 10979 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10980 dip_hit = data2 & F_DATADIPHIT; 10981 vlan_vld = 0; 10982 } else { 10983 vniy = 0; 10984 dip_hit = 0; 10985 vlan_vld = data2 & F_DATAVIDH2; 10986 ivlan = G_VIDL(val); 10987 } 10988 10989 ctl |= V_CTLXYBITSEL(1); 10990 mtx_lock(&sc->reg_lock); 10991 if (hw_off_limits(sc)) 10992 rc = ENXIO; 10993 else { 10994 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10995 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10996 tcamx = G_DMACH(val) << 32; 10997 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10998 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10999 } 11000 mtx_unlock(&sc->reg_lock); 11001 if (rc != 0) 11002 break; 11003 11004 if (lookup_type && lookup_type != M_DATALKPTYPE) { 11005 /* Inner header VNI mask */ 11006 vnix = ((data2 & F_DATAVIDH2) << 23) | 11007 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 11008 } else 11009 vnix = 0; 11010 11011 if (tcamx & tcamy) 11012 continue; 11013 tcamxy2valmask(tcamx, tcamy, addr, &mask); 11014 11015 mtx_lock(&sc->reg_lock); 11016 if (hw_off_limits(sc)) 11017 rc = ENXIO; 11018 else { 11019 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 11020 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 11021 } 11022 mtx_unlock(&sc->reg_lock); 11023 if (rc != 0) 11024 break; 11025 11026 if (lookup_type && lookup_type != M_DATALKPTYPE) { 11027 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 11028 "%012jx %06x %06x - - %3c" 11029 " I %4x %3c %#x%4u%4d", i, addr[0], 11030 addr[1], addr[2], addr[3], addr[4], addr[5], 11031 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 11032 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 11033 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 11034 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 11035 } else { 11036 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 11037 "%012jx - - ", i, addr[0], addr[1], 11038 addr[2], addr[3], addr[4], addr[5], 11039 (uintmax_t)mask); 11040 11041 if (vlan_vld) 11042 sbuf_printf(sb, "%4u Y ", ivlan); 11043 else 11044 sbuf_printf(sb, " - N "); 11045 11046 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 11047 lookup_type ? 'I' : 'O', port_num, 11048 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 11049 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 11050 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 11051 } 11052 11053 11054 if (cls_lo & F_T6_REPLICATE) { 11055 struct fw_ldst_cmd ldst_cmd; 11056 11057 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 11058 ldst_cmd.op_to_addrspace = 11059 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 11060 F_FW_CMD_REQUEST | F_FW_CMD_READ | 11061 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 11062 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 11063 ldst_cmd.u.mps.rplc.fid_idx = 11064 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 11065 V_FW_LDST_CMD_IDX(i)); 11066 11067 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 11068 "t6mps"); 11069 if (rc) 11070 break; 11071 if (hw_off_limits(sc)) 11072 rc = ENXIO; 11073 else 11074 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 11075 sizeof(ldst_cmd), &ldst_cmd); 11076 end_synchronized_op(sc, 0); 11077 if (rc != 0) 11078 break; 11079 else { 11080 sbuf_printf(sb, " %08x %08x %08x %08x" 11081 " %08x %08x %08x %08x", 11082 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 11083 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 11084 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 11085 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 11086 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 11087 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 11088 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 11089 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 11090 } 11091 } else 11092 sbuf_printf(sb, "%72s", ""); 11093 11094 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 11095 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 11096 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 11097 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 11098 } 11099 11100 if (rc) 11101 (void) sbuf_finish(sb); 11102 else 11103 rc = sbuf_finish(sb); 11104 sbuf_delete(sb); 11105 11106 return (rc); 11107 } 11108 11109 static int 11110 sysctl_mps_tcam_t7(SYSCTL_HANDLER_ARGS) 11111 { 11112 struct adapter *sc = arg1; 11113 struct sbuf *sb; 11114 int rc, i; 11115 11116 MPASS(chip_id(sc) >= CHELSIO_T7); 11117 11118 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11119 if (sb == NULL) 11120 return (ENOMEM); 11121 11122 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 11123 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 11124 " Replication" 11125 " P0 P1 P2 P3 ML"); 11126 11127 rc = 0; 11128 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 11129 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 11130 uint16_t ivlan; 11131 uint64_t tcamx, tcamy, val, mask; 11132 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 11133 uint8_t addr[ETHER_ADDR_LEN]; 11134 11135 /* Read tcamy */ 11136 ctl = (V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0)); 11137 if (chip_rev(sc) == 0) { 11138 if (i < 256) 11139 ctl |= V_CTLTCAMINDEX(i) | V_T7_CTLTCAMSEL(0); 11140 else 11141 ctl |= V_CTLTCAMINDEX(i - 256) | V_T7_CTLTCAMSEL(1); 11142 } else { 11143 #if 0 11144 ctl = (V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0)); 11145 #endif 11146 if (i < 512) 11147 ctl |= V_CTLTCAMINDEX(i) | V_T7_CTLTCAMSEL(0); 11148 else if (i < 1024) 11149 ctl |= V_CTLTCAMINDEX(i - 512) | V_T7_CTLTCAMSEL(1); 11150 else 11151 ctl |= V_CTLTCAMINDEX(i - 1024) | V_T7_CTLTCAMSEL(2); 11152 } 11153 11154 mtx_lock(&sc->reg_lock); 11155 if (hw_off_limits(sc)) 11156 rc = ENXIO; 11157 else { 11158 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 11159 val = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA1_REQ_ID1); 11160 tcamy = G_DMACH(val) << 32; 11161 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA0_REQ_ID1); 11162 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA2_REQ_ID1); 11163 } 11164 mtx_unlock(&sc->reg_lock); 11165 if (rc != 0) 11166 break; 11167 11168 lookup_type = G_DATALKPTYPE(data2); 11169 port_num = G_DATAPORTNUM(data2); 11170 if (lookup_type && lookup_type != M_DATALKPTYPE) { 11171 /* Inner header VNI */ 11172 vniy = (((data2 & F_DATAVIDH2) | 11173 G_DATAVIDH1(data2)) << 16) | G_VIDL(val); 11174 dip_hit = data2 & F_DATADIPHIT; 11175 vlan_vld = 0; 11176 } else { 11177 vniy = 0; 11178 dip_hit = 0; 11179 vlan_vld = data2 & F_DATAVIDH2; 11180 ivlan = G_VIDL(val); 11181 } 11182 11183 ctl |= V_CTLXYBITSEL(1); 11184 mtx_lock(&sc->reg_lock); 11185 if (hw_off_limits(sc)) 11186 rc = ENXIO; 11187 else { 11188 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 11189 val = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA1_REQ_ID1); 11190 tcamx = G_DMACH(val) << 32; 11191 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA0_REQ_ID1); 11192 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA2_REQ_ID1); 11193 } 11194 mtx_unlock(&sc->reg_lock); 11195 if (rc != 0) 11196 break; 11197 11198 if (lookup_type && lookup_type != M_DATALKPTYPE) { 11199 /* Inner header VNI mask */ 11200 vnix = (((data2 & F_DATAVIDH2) | 11201 G_DATAVIDH1(data2)) << 16) | G_VIDL(val); 11202 } else 11203 vnix = 0; 11204 11205 if (tcamx & tcamy) 11206 continue; 11207 tcamxy2valmask(tcamx, tcamy, addr, &mask); 11208 11209 mtx_lock(&sc->reg_lock); 11210 if (hw_off_limits(sc)) 11211 rc = ENXIO; 11212 else { 11213 if (chip_rev(sc) == 0) { 11214 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 11215 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 11216 } else { 11217 t4_write_reg(sc, A_MPS_CLS_SRAM_H, 11218 V_SRAMWRN(0) | V_SRAMINDEX(i)); 11219 cls_lo = t4_read_reg(sc, A_MPS_CLS_SRAM_L); 11220 cls_hi = t4_read_reg(sc, A_MPS_CLS_SRAM_H); 11221 } 11222 } 11223 mtx_unlock(&sc->reg_lock); 11224 if (rc != 0) 11225 break; 11226 11227 if (lookup_type && lookup_type != M_DATALKPTYPE) { 11228 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 11229 "%012jx %06x %06x - - %3c" 11230 " I %4x %3c %#x%4u%4d", i, addr[0], 11231 addr[1], addr[2], addr[3], addr[4], addr[5], 11232 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 11233 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 11234 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 11235 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 11236 } else { 11237 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 11238 "%012jx - - ", i, addr[0], addr[1], 11239 addr[2], addr[3], addr[4], addr[5], 11240 (uintmax_t)mask); 11241 11242 if (vlan_vld) 11243 sbuf_printf(sb, "%4u Y ", ivlan); 11244 else 11245 sbuf_printf(sb, " - N "); 11246 11247 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 11248 lookup_type ? 'I' : 'O', port_num, 11249 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 11250 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 11251 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 11252 } 11253 11254 if (cls_lo & F_T6_REPLICATE) { 11255 struct fw_ldst_cmd ldst_cmd; 11256 11257 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 11258 ldst_cmd.op_to_addrspace = 11259 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 11260 F_FW_CMD_REQUEST | F_FW_CMD_READ | 11261 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 11262 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 11263 ldst_cmd.u.mps.rplc.fid_idx = 11264 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 11265 V_FW_LDST_CMD_IDX(i)); 11266 11267 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 11268 "t6mps"); 11269 if (rc) 11270 break; 11271 if (hw_off_limits(sc)) 11272 rc = ENXIO; 11273 else 11274 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 11275 sizeof(ldst_cmd), &ldst_cmd); 11276 end_synchronized_op(sc, 0); 11277 if (rc != 0) 11278 break; 11279 else { 11280 sbuf_printf(sb, " %08x %08x %08x %08x" 11281 " %08x %08x %08x %08x", 11282 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 11283 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 11284 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 11285 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 11286 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 11287 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 11288 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 11289 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 11290 } 11291 } else 11292 sbuf_printf(sb, "%72s", ""); 11293 11294 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 11295 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 11296 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 11297 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 11298 } 11299 11300 if (rc) 11301 (void) sbuf_finish(sb); 11302 else 11303 rc = sbuf_finish(sb); 11304 sbuf_delete(sb); 11305 11306 return (rc); 11307 } 11308 11309 static int 11310 sysctl_path_mtus(SYSCTL_HANDLER_ARGS) 11311 { 11312 struct adapter *sc = arg1; 11313 struct sbuf *sb; 11314 int rc; 11315 uint16_t mtus[NMTUS]; 11316 11317 rc = 0; 11318 mtx_lock(&sc->reg_lock); 11319 if (hw_off_limits(sc)) 11320 rc = ENXIO; 11321 else 11322 t4_read_mtu_tbl(sc, mtus, NULL); 11323 mtx_unlock(&sc->reg_lock); 11324 if (rc != 0) 11325 return (rc); 11326 11327 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11328 if (sb == NULL) 11329 return (ENOMEM); 11330 11331 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", 11332 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], 11333 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], 11334 mtus[14], mtus[15]); 11335 11336 rc = sbuf_finish(sb); 11337 sbuf_delete(sb); 11338 11339 return (rc); 11340 } 11341 11342 static int 11343 sysctl_pm_stats(SYSCTL_HANDLER_ARGS) 11344 { 11345 struct adapter *sc = arg1; 11346 struct sbuf *sb; 11347 int rc, i; 11348 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS]; 11349 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS]; 11350 uint32_t stats[T7_PM_RX_CACHE_NSTATS]; 11351 static const char *tx_stats[MAX_PM_NSTATS] = { 11352 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:", 11353 "Tx FIFO wait", NULL, "Tx latency" 11354 }; 11355 static const char *rx_stats[MAX_PM_NSTATS] = { 11356 "Read:", "Write bypass:", "Write mem:", "Flush:", 11357 "Rx FIFO wait", NULL, "Rx latency" 11358 }; 11359 11360 rc = 0; 11361 mtx_lock(&sc->reg_lock); 11362 if (hw_off_limits(sc)) 11363 rc = ENXIO; 11364 else { 11365 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); 11366 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); 11367 if (chip_id(sc) >= CHELSIO_T7) 11368 t4_pmrx_cache_get_stats(sc, stats); 11369 } 11370 mtx_unlock(&sc->reg_lock); 11371 if (rc != 0) 11372 return (rc); 11373 11374 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11375 if (sb == NULL) 11376 return (ENOMEM); 11377 11378 sbuf_printf(sb, " Tx pcmds Tx bytes"); 11379 for (i = 0; i < 4; i++) { 11380 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 11381 tx_cyc[i]); 11382 } 11383 11384 sbuf_printf(sb, "\n Rx pcmds Rx bytes"); 11385 for (i = 0; i < 4; i++) { 11386 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 11387 rx_cyc[i]); 11388 } 11389 11390 if (chip_id(sc) > CHELSIO_T5) { 11391 sbuf_printf(sb, 11392 "\n Total wait Total occupancy"); 11393 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 11394 tx_cyc[i]); 11395 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 11396 rx_cyc[i]); 11397 11398 i += 2; 11399 MPASS(i < nitems(tx_stats)); 11400 11401 sbuf_printf(sb, 11402 "\n Reads Total wait"); 11403 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 11404 tx_cyc[i]); 11405 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 11406 rx_cyc[i]); 11407 } 11408 11409 if (chip_id(sc) >= CHELSIO_T7) { 11410 i = 0; 11411 sbuf_printf(sb, "\n\nPM RX Cache Stats\n"); 11412 sbuf_printf(sb, "%-40s %u\n", "ReqWrite", stats[i++]); 11413 sbuf_printf(sb, "%-40s %u\n", "ReqReadInv", stats[i++]); 11414 sbuf_printf(sb, "%-40s %u\n", "ReqReadNoInv", stats[i++]); 11415 sbuf_printf(sb, "%-40s %u\n", "Write Split Request", 11416 stats[i++]); 11417 sbuf_printf(sb, "%-40s %u\n", 11418 "Normal Read Split (Read Invalidate)", stats[i++]); 11419 sbuf_printf(sb, "%-40s %u\n", 11420 "Feedback Read Split (Read NoInvalidate)", 11421 stats[i++]); 11422 sbuf_printf(sb, "%-40s %u\n", "Write Hit", stats[i++]); 11423 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit", 11424 stats[i++]); 11425 sbuf_printf(sb, "%-40s %u\n", "Feedback Read Hit", 11426 stats[i++]); 11427 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit Full Avail", 11428 stats[i++]); 11429 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit Full UnAvail", 11430 stats[i++]); 11431 sbuf_printf(sb, "%-40s %u\n", 11432 "Normal Read Hit Partial Avail", 11433 stats[i++]); 11434 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Full Avail", 11435 stats[i++]); 11436 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Full UnAvail", 11437 stats[i++]); 11438 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Partial Avail", 11439 stats[i++]); 11440 sbuf_printf(sb, "%-40s %u\n", "Normal Read Full Free", 11441 stats[i++]); 11442 sbuf_printf(sb, "%-40s %u\n", 11443 "Normal Read Part-avail Mul-Regions", 11444 stats[i++]); 11445 sbuf_printf(sb, "%-40s %u\n", 11446 "FB Read Part-avail Mul-Regions", 11447 stats[i++]); 11448 sbuf_printf(sb, "%-40s %u\n", "Write Miss FL Used", 11449 stats[i++]); 11450 sbuf_printf(sb, "%-40s %u\n", "Write Miss LRU Used", 11451 stats[i++]); 11452 sbuf_printf(sb, "%-40s %u\n", 11453 "Write Miss LRU-Multiple Evict", stats[i++]); 11454 sbuf_printf(sb, "%-40s %u\n", 11455 "Write Hit Increasing Islands", stats[i++]); 11456 sbuf_printf(sb, "%-40s %u\n", 11457 "Normal Read Island Read split", stats[i++]); 11458 sbuf_printf(sb, "%-40s %u\n", "Write Overflow Eviction", 11459 stats[i++]); 11460 sbuf_printf(sb, "%-40s %u", "Read Overflow Eviction", 11461 stats[i++]); 11462 } 11463 11464 rc = sbuf_finish(sb); 11465 sbuf_delete(sb); 11466 11467 return (rc); 11468 } 11469 11470 static int 11471 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) 11472 { 11473 struct adapter *sc = arg1; 11474 struct sbuf *sb; 11475 int rc; 11476 struct tp_rdma_stats stats; 11477 11478 rc = 0; 11479 mtx_lock(&sc->reg_lock); 11480 if (hw_off_limits(sc)) 11481 rc = ENXIO; 11482 else 11483 t4_tp_get_rdma_stats(sc, &stats, 0); 11484 mtx_unlock(&sc->reg_lock); 11485 if (rc != 0) 11486 return (rc); 11487 11488 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11489 if (sb == NULL) 11490 return (ENOMEM); 11491 11492 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); 11493 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); 11494 11495 rc = sbuf_finish(sb); 11496 sbuf_delete(sb); 11497 11498 return (rc); 11499 } 11500 11501 static int 11502 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) 11503 { 11504 struct adapter *sc = arg1; 11505 struct sbuf *sb; 11506 int rc; 11507 struct tp_tcp_stats v4, v6; 11508 11509 rc = 0; 11510 mtx_lock(&sc->reg_lock); 11511 if (hw_off_limits(sc)) 11512 rc = ENXIO; 11513 else 11514 t4_tp_get_tcp_stats(sc, &v4, &v6, 0); 11515 mtx_unlock(&sc->reg_lock); 11516 if (rc != 0) 11517 return (rc); 11518 11519 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11520 if (sb == NULL) 11521 return (ENOMEM); 11522 11523 sbuf_printf(sb, 11524 " IP IPv6\n"); 11525 sbuf_printf(sb, "OutRsts: %20u %20u\n", 11526 v4.tcp_out_rsts, v6.tcp_out_rsts); 11527 sbuf_printf(sb, "InSegs: %20ju %20ju\n", 11528 v4.tcp_in_segs, v6.tcp_in_segs); 11529 sbuf_printf(sb, "OutSegs: %20ju %20ju\n", 11530 v4.tcp_out_segs, v6.tcp_out_segs); 11531 sbuf_printf(sb, "RetransSegs: %20ju %20ju", 11532 v4.tcp_retrans_segs, v6.tcp_retrans_segs); 11533 11534 rc = sbuf_finish(sb); 11535 sbuf_delete(sb); 11536 11537 return (rc); 11538 } 11539 11540 static int 11541 sysctl_tids(SYSCTL_HANDLER_ARGS) 11542 { 11543 struct adapter *sc = arg1; 11544 struct sbuf *sb; 11545 int rc; 11546 uint32_t x, y; 11547 struct tid_info *t = &sc->tids; 11548 11549 rc = 0; 11550 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11551 if (sb == NULL) 11552 return (ENOMEM); 11553 11554 if (t->natids) { 11555 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, 11556 t->atids_in_use); 11557 } 11558 11559 if (t->nhpftids) { 11560 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n", 11561 t->hpftid_base, t->hpftid_end, t->hpftids_in_use); 11562 } 11563 11564 if (t->ntids) { 11565 bool hashen = false; 11566 11567 mtx_lock(&sc->reg_lock); 11568 if (hw_off_limits(sc)) 11569 rc = ENXIO; 11570 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 11571 hashen = true; 11572 if (chip_id(sc) <= CHELSIO_T5) { 11573 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; 11574 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; 11575 } else { 11576 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX); 11577 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE); 11578 } 11579 } 11580 mtx_unlock(&sc->reg_lock); 11581 if (rc != 0) 11582 goto done; 11583 11584 sbuf_printf(sb, "TID range: "); 11585 if (hashen) { 11586 if (x) 11587 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1); 11588 sbuf_printf(sb, "%u-%u", y, t->ntids - 1); 11589 } else { 11590 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base + 11591 t->ntids - 1); 11592 } 11593 sbuf_printf(sb, ", in use: %u\n", 11594 atomic_load_acq_int(&t->tids_in_use)); 11595 } 11596 11597 if (t->nstids) { 11598 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, 11599 t->stid_base + t->nstids - 1, t->stids_in_use); 11600 } 11601 11602 if (t->nftids) { 11603 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base, 11604 t->ftid_end, t->ftids_in_use); 11605 } 11606 11607 if (t->netids) { 11608 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base, 11609 t->etid_base + t->netids - 1, t->etids_in_use); 11610 } 11611 11612 mtx_lock(&sc->reg_lock); 11613 if (hw_off_limits(sc)) 11614 rc = ENXIO; 11615 else { 11616 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4); 11617 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6); 11618 } 11619 mtx_unlock(&sc->reg_lock); 11620 if (rc != 0) 11621 goto done; 11622 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y); 11623 done: 11624 if (rc == 0) 11625 rc = sbuf_finish(sb); 11626 else 11627 (void)sbuf_finish(sb); 11628 sbuf_delete(sb); 11629 11630 return (rc); 11631 } 11632 11633 static int 11634 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) 11635 { 11636 struct adapter *sc = arg1; 11637 struct sbuf *sb; 11638 int rc; 11639 struct tp_err_stats stats; 11640 11641 rc = 0; 11642 mtx_lock(&sc->reg_lock); 11643 if (hw_off_limits(sc)) 11644 rc = ENXIO; 11645 else 11646 t4_tp_get_err_stats(sc, &stats, 0); 11647 mtx_unlock(&sc->reg_lock); 11648 if (rc != 0) 11649 return (rc); 11650 11651 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11652 if (sb == NULL) 11653 return (ENOMEM); 11654 11655 if (sc->chip_params->nchan > 2) { 11656 sbuf_printf(sb, " channel 0 channel 1" 11657 " channel 2 channel 3\n"); 11658 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", 11659 stats.mac_in_errs[0], stats.mac_in_errs[1], 11660 stats.mac_in_errs[2], stats.mac_in_errs[3]); 11661 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", 11662 stats.hdr_in_errs[0], stats.hdr_in_errs[1], 11663 stats.hdr_in_errs[2], stats.hdr_in_errs[3]); 11664 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", 11665 stats.tcp_in_errs[0], stats.tcp_in_errs[1], 11666 stats.tcp_in_errs[2], stats.tcp_in_errs[3]); 11667 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", 11668 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1], 11669 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]); 11670 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", 11671 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1], 11672 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]); 11673 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", 11674 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1], 11675 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]); 11676 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", 11677 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1], 11678 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]); 11679 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", 11680 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1], 11681 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]); 11682 } else { 11683 sbuf_printf(sb, " channel 0 channel 1\n"); 11684 sbuf_printf(sb, "macInErrs: %10u %10u\n", 11685 stats.mac_in_errs[0], stats.mac_in_errs[1]); 11686 sbuf_printf(sb, "hdrInErrs: %10u %10u\n", 11687 stats.hdr_in_errs[0], stats.hdr_in_errs[1]); 11688 sbuf_printf(sb, "tcpInErrs: %10u %10u\n", 11689 stats.tcp_in_errs[0], stats.tcp_in_errs[1]); 11690 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n", 11691 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]); 11692 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n", 11693 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]); 11694 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n", 11695 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]); 11696 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n", 11697 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]); 11698 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n", 11699 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]); 11700 } 11701 11702 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", 11703 stats.ofld_no_neigh, stats.ofld_cong_defer); 11704 11705 rc = sbuf_finish(sb); 11706 sbuf_delete(sb); 11707 11708 return (rc); 11709 } 11710 11711 static int 11712 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS) 11713 { 11714 struct adapter *sc = arg1; 11715 struct sbuf *sb; 11716 int rc; 11717 struct tp_tnl_stats stats; 11718 11719 rc = 0; 11720 mtx_lock(&sc->reg_lock); 11721 if (hw_off_limits(sc)) 11722 rc = ENXIO; 11723 else 11724 t4_tp_get_tnl_stats(sc, &stats, 1); 11725 mtx_unlock(&sc->reg_lock); 11726 if (rc != 0) 11727 return (rc); 11728 11729 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11730 if (sb == NULL) 11731 return (ENOMEM); 11732 11733 if (sc->chip_params->nchan > 2) { 11734 sbuf_printf(sb, " channel 0 channel 1" 11735 " channel 2 channel 3\n"); 11736 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n", 11737 stats.out_pkt[0], stats.out_pkt[1], 11738 stats.out_pkt[2], stats.out_pkt[3]); 11739 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u", 11740 stats.in_pkt[0], stats.in_pkt[1], 11741 stats.in_pkt[2], stats.in_pkt[3]); 11742 } else { 11743 sbuf_printf(sb, " channel 0 channel 1\n"); 11744 sbuf_printf(sb, "OutPkts: %10u %10u\n", 11745 stats.out_pkt[0], stats.out_pkt[1]); 11746 sbuf_printf(sb, "InPkts: %10u %10u", 11747 stats.in_pkt[0], stats.in_pkt[1]); 11748 } 11749 11750 rc = sbuf_finish(sb); 11751 sbuf_delete(sb); 11752 11753 return (rc); 11754 } 11755 11756 static int 11757 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS) 11758 { 11759 struct adapter *sc = arg1; 11760 struct tp_params *tpp = &sc->params.tp; 11761 u_int mask; 11762 int rc; 11763 11764 mask = tpp->la_mask >> 16; 11765 rc = sysctl_handle_int(oidp, &mask, 0, req); 11766 if (rc != 0 || req->newptr == NULL) 11767 return (rc); 11768 if (mask > 0xffff) 11769 return (EINVAL); 11770 mtx_lock(&sc->reg_lock); 11771 if (hw_off_limits(sc)) 11772 rc = ENXIO; 11773 else { 11774 tpp->la_mask = mask << 16; 11775 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, 11776 tpp->la_mask); 11777 } 11778 mtx_unlock(&sc->reg_lock); 11779 11780 return (rc); 11781 } 11782 11783 struct field_desc { 11784 const char *name; 11785 u_int start; 11786 u_int width; 11787 }; 11788 11789 static void 11790 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) 11791 { 11792 char buf[32]; 11793 int line_size = 0; 11794 11795 while (f->name) { 11796 uint64_t mask = (1ULL << f->width) - 1; 11797 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, 11798 ((uintmax_t)v >> f->start) & mask); 11799 11800 if (line_size + len >= 79) { 11801 line_size = 8; 11802 sbuf_printf(sb, "\n "); 11803 } 11804 sbuf_printf(sb, "%s ", buf); 11805 line_size += len + 1; 11806 f++; 11807 } 11808 sbuf_printf(sb, "\n"); 11809 } 11810 11811 static const struct field_desc tp_la0[] = { 11812 { "RcfOpCodeOut", 60, 4 }, 11813 { "State", 56, 4 }, 11814 { "WcfState", 52, 4 }, 11815 { "RcfOpcSrcOut", 50, 2 }, 11816 { "CRxError", 49, 1 }, 11817 { "ERxError", 48, 1 }, 11818 { "SanityFailed", 47, 1 }, 11819 { "SpuriousMsg", 46, 1 }, 11820 { "FlushInputMsg", 45, 1 }, 11821 { "FlushInputCpl", 44, 1 }, 11822 { "RssUpBit", 43, 1 }, 11823 { "RssFilterHit", 42, 1 }, 11824 { "Tid", 32, 10 }, 11825 { "InitTcb", 31, 1 }, 11826 { "LineNumber", 24, 7 }, 11827 { "Emsg", 23, 1 }, 11828 { "EdataOut", 22, 1 }, 11829 { "Cmsg", 21, 1 }, 11830 { "CdataOut", 20, 1 }, 11831 { "EreadPdu", 19, 1 }, 11832 { "CreadPdu", 18, 1 }, 11833 { "TunnelPkt", 17, 1 }, 11834 { "RcfPeerFin", 16, 1 }, 11835 { "RcfReasonOut", 12, 4 }, 11836 { "TxCchannel", 10, 2 }, 11837 { "RcfTxChannel", 8, 2 }, 11838 { "RxEchannel", 6, 2 }, 11839 { "RcfRxChannel", 5, 1 }, 11840 { "RcfDataOutSrdy", 4, 1 }, 11841 { "RxDvld", 3, 1 }, 11842 { "RxOoDvld", 2, 1 }, 11843 { "RxCongestion", 1, 1 }, 11844 { "TxCongestion", 0, 1 }, 11845 { NULL } 11846 }; 11847 11848 static const struct field_desc tp_la1[] = { 11849 { "CplCmdIn", 56, 8 }, 11850 { "CplCmdOut", 48, 8 }, 11851 { "ESynOut", 47, 1 }, 11852 { "EAckOut", 46, 1 }, 11853 { "EFinOut", 45, 1 }, 11854 { "ERstOut", 44, 1 }, 11855 { "SynIn", 43, 1 }, 11856 { "AckIn", 42, 1 }, 11857 { "FinIn", 41, 1 }, 11858 { "RstIn", 40, 1 }, 11859 { "DataIn", 39, 1 }, 11860 { "DataInVld", 38, 1 }, 11861 { "PadIn", 37, 1 }, 11862 { "RxBufEmpty", 36, 1 }, 11863 { "RxDdp", 35, 1 }, 11864 { "RxFbCongestion", 34, 1 }, 11865 { "TxFbCongestion", 33, 1 }, 11866 { "TxPktSumSrdy", 32, 1 }, 11867 { "RcfUlpType", 28, 4 }, 11868 { "Eread", 27, 1 }, 11869 { "Ebypass", 26, 1 }, 11870 { "Esave", 25, 1 }, 11871 { "Static0", 24, 1 }, 11872 { "Cread", 23, 1 }, 11873 { "Cbypass", 22, 1 }, 11874 { "Csave", 21, 1 }, 11875 { "CPktOut", 20, 1 }, 11876 { "RxPagePoolFull", 18, 2 }, 11877 { "RxLpbkPkt", 17, 1 }, 11878 { "TxLpbkPkt", 16, 1 }, 11879 { "RxVfValid", 15, 1 }, 11880 { "SynLearned", 14, 1 }, 11881 { "SetDelEntry", 13, 1 }, 11882 { "SetInvEntry", 12, 1 }, 11883 { "CpcmdDvld", 11, 1 }, 11884 { "CpcmdSave", 10, 1 }, 11885 { "RxPstructsFull", 8, 2 }, 11886 { "EpcmdDvld", 7, 1 }, 11887 { "EpcmdFlush", 6, 1 }, 11888 { "EpcmdTrimPrefix", 5, 1 }, 11889 { "EpcmdTrimPostfix", 4, 1 }, 11890 { "ERssIp4Pkt", 3, 1 }, 11891 { "ERssIp6Pkt", 2, 1 }, 11892 { "ERssTcpUdpPkt", 1, 1 }, 11893 { "ERssFceFipPkt", 0, 1 }, 11894 { NULL } 11895 }; 11896 11897 static const struct field_desc tp_la2[] = { 11898 { "CplCmdIn", 56, 8 }, 11899 { "MpsVfVld", 55, 1 }, 11900 { "MpsPf", 52, 3 }, 11901 { "MpsVf", 44, 8 }, 11902 { "SynIn", 43, 1 }, 11903 { "AckIn", 42, 1 }, 11904 { "FinIn", 41, 1 }, 11905 { "RstIn", 40, 1 }, 11906 { "DataIn", 39, 1 }, 11907 { "DataInVld", 38, 1 }, 11908 { "PadIn", 37, 1 }, 11909 { "RxBufEmpty", 36, 1 }, 11910 { "RxDdp", 35, 1 }, 11911 { "RxFbCongestion", 34, 1 }, 11912 { "TxFbCongestion", 33, 1 }, 11913 { "TxPktSumSrdy", 32, 1 }, 11914 { "RcfUlpType", 28, 4 }, 11915 { "Eread", 27, 1 }, 11916 { "Ebypass", 26, 1 }, 11917 { "Esave", 25, 1 }, 11918 { "Static0", 24, 1 }, 11919 { "Cread", 23, 1 }, 11920 { "Cbypass", 22, 1 }, 11921 { "Csave", 21, 1 }, 11922 { "CPktOut", 20, 1 }, 11923 { "RxPagePoolFull", 18, 2 }, 11924 { "RxLpbkPkt", 17, 1 }, 11925 { "TxLpbkPkt", 16, 1 }, 11926 { "RxVfValid", 15, 1 }, 11927 { "SynLearned", 14, 1 }, 11928 { "SetDelEntry", 13, 1 }, 11929 { "SetInvEntry", 12, 1 }, 11930 { "CpcmdDvld", 11, 1 }, 11931 { "CpcmdSave", 10, 1 }, 11932 { "RxPstructsFull", 8, 2 }, 11933 { "EpcmdDvld", 7, 1 }, 11934 { "EpcmdFlush", 6, 1 }, 11935 { "EpcmdTrimPrefix", 5, 1 }, 11936 { "EpcmdTrimPostfix", 4, 1 }, 11937 { "ERssIp4Pkt", 3, 1 }, 11938 { "ERssIp6Pkt", 2, 1 }, 11939 { "ERssTcpUdpPkt", 1, 1 }, 11940 { "ERssFceFipPkt", 0, 1 }, 11941 { NULL } 11942 }; 11943 11944 static void 11945 tp_la_show(struct sbuf *sb, uint64_t *p, int idx) 11946 { 11947 11948 field_desc_show(sb, *p, tp_la0); 11949 } 11950 11951 static void 11952 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) 11953 { 11954 11955 if (idx) 11956 sbuf_printf(sb, "\n"); 11957 field_desc_show(sb, p[0], tp_la0); 11958 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 11959 field_desc_show(sb, p[1], tp_la0); 11960 } 11961 11962 static void 11963 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) 11964 { 11965 11966 if (idx) 11967 sbuf_printf(sb, "\n"); 11968 field_desc_show(sb, p[0], tp_la0); 11969 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 11970 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); 11971 } 11972 11973 static int 11974 sysctl_tp_la(SYSCTL_HANDLER_ARGS) 11975 { 11976 struct adapter *sc = arg1; 11977 struct sbuf *sb; 11978 uint64_t *buf, *p; 11979 int rc; 11980 u_int i, inc; 11981 void (*show_func)(struct sbuf *, uint64_t *, int); 11982 11983 rc = 0; 11984 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11985 if (sb == NULL) 11986 return (ENOMEM); 11987 11988 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); 11989 11990 mtx_lock(&sc->reg_lock); 11991 if (hw_off_limits(sc)) 11992 rc = ENXIO; 11993 else { 11994 t4_tp_read_la(sc, buf, NULL); 11995 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { 11996 case 2: 11997 inc = 2; 11998 show_func = tp_la_show2; 11999 break; 12000 case 3: 12001 inc = 2; 12002 show_func = tp_la_show3; 12003 break; 12004 default: 12005 inc = 1; 12006 show_func = tp_la_show; 12007 } 12008 } 12009 mtx_unlock(&sc->reg_lock); 12010 if (rc != 0) 12011 goto done; 12012 12013 p = buf; 12014 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) 12015 (*show_func)(sb, p, i); 12016 rc = sbuf_finish(sb); 12017 done: 12018 sbuf_delete(sb); 12019 free(buf, M_CXGBE); 12020 return (rc); 12021 } 12022 12023 static int 12024 sysctl_tx_rate(SYSCTL_HANDLER_ARGS) 12025 { 12026 struct adapter *sc = arg1; 12027 struct sbuf *sb; 12028 int rc; 12029 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN]; 12030 12031 rc = 0; 12032 mtx_lock(&sc->reg_lock); 12033 if (hw_off_limits(sc)) 12034 rc = ENXIO; 12035 else 12036 t4_get_chan_txrate(sc, nrate, orate); 12037 mtx_unlock(&sc->reg_lock); 12038 if (rc != 0) 12039 return (rc); 12040 12041 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 12042 if (sb == NULL) 12043 return (ENOMEM); 12044 12045 if (sc->chip_params->nchan > 2) { 12046 sbuf_printf(sb, " channel 0 channel 1" 12047 " channel 2 channel 3\n"); 12048 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", 12049 nrate[0], nrate[1], nrate[2], nrate[3]); 12050 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", 12051 orate[0], orate[1], orate[2], orate[3]); 12052 } else { 12053 sbuf_printf(sb, " channel 0 channel 1\n"); 12054 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n", 12055 nrate[0], nrate[1]); 12056 sbuf_printf(sb, "Offload B/s: %10ju %10ju", 12057 orate[0], orate[1]); 12058 } 12059 12060 rc = sbuf_finish(sb); 12061 sbuf_delete(sb); 12062 12063 return (rc); 12064 } 12065 12066 static int 12067 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) 12068 { 12069 struct adapter *sc = arg1; 12070 struct sbuf *sb; 12071 uint32_t *buf, *p; 12072 int rc, i; 12073 12074 rc = 0; 12075 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 12076 if (sb == NULL) 12077 return (ENOMEM); 12078 12079 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, 12080 M_ZERO | M_WAITOK); 12081 12082 mtx_lock(&sc->reg_lock); 12083 if (hw_off_limits(sc)) 12084 rc = ENXIO; 12085 else 12086 t4_ulprx_read_la(sc, buf); 12087 mtx_unlock(&sc->reg_lock); 12088 if (rc != 0) 12089 goto done; 12090 12091 p = buf; 12092 sbuf_printf(sb, " Pcmd Type Message" 12093 " Data"); 12094 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { 12095 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", 12096 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 12097 } 12098 rc = sbuf_finish(sb); 12099 done: 12100 sbuf_delete(sb); 12101 free(buf, M_CXGBE); 12102 return (rc); 12103 } 12104 12105 static int 12106 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) 12107 { 12108 struct adapter *sc = arg1; 12109 struct sbuf *sb; 12110 int rc; 12111 uint32_t cfg, s1, s2; 12112 12113 MPASS(chip_id(sc) >= CHELSIO_T5); 12114 12115 rc = 0; 12116 mtx_lock(&sc->reg_lock); 12117 if (hw_off_limits(sc)) 12118 rc = ENXIO; 12119 else { 12120 cfg = t4_read_reg(sc, A_SGE_STAT_CFG); 12121 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL); 12122 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH); 12123 } 12124 mtx_unlock(&sc->reg_lock); 12125 if (rc != 0) 12126 return (rc); 12127 12128 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 12129 if (sb == NULL) 12130 return (ENOMEM); 12131 12132 if (G_STATSOURCE_T5(cfg) == 7) { 12133 int mode; 12134 12135 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg); 12136 if (mode == 0) 12137 sbuf_printf(sb, "total %d, incomplete %d", s1, s2); 12138 else if (mode == 1) 12139 sbuf_printf(sb, "total %d, data overflow %d", s1, s2); 12140 else 12141 sbuf_printf(sb, "unknown mode %d", mode); 12142 } 12143 rc = sbuf_finish(sb); 12144 sbuf_delete(sb); 12145 12146 return (rc); 12147 } 12148 12149 static int 12150 sysctl_cpus(SYSCTL_HANDLER_ARGS) 12151 { 12152 struct adapter *sc = arg1; 12153 enum cpu_sets op = arg2; 12154 cpuset_t cpuset; 12155 struct sbuf *sb; 12156 int i, rc; 12157 12158 MPASS(op == LOCAL_CPUS || op == INTR_CPUS); 12159 12160 CPU_ZERO(&cpuset); 12161 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset); 12162 if (rc != 0) 12163 return (rc); 12164 12165 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 12166 if (sb == NULL) 12167 return (ENOMEM); 12168 12169 CPU_FOREACH(i) 12170 sbuf_printf(sb, "%d ", i); 12171 rc = sbuf_finish(sb); 12172 sbuf_delete(sb); 12173 12174 return (rc); 12175 } 12176 12177 static int 12178 sysctl_reset(SYSCTL_HANDLER_ARGS) 12179 { 12180 struct adapter *sc = arg1; 12181 u_int val; 12182 int rc; 12183 12184 val = atomic_load_int(&sc->num_resets); 12185 rc = sysctl_handle_int(oidp, &val, 0, req); 12186 if (rc != 0 || req->newptr == NULL) 12187 return (rc); 12188 12189 if (val == 0) { 12190 /* Zero out the counter that tracks reset. */ 12191 atomic_store_int(&sc->num_resets, 0); 12192 return (0); 12193 } 12194 12195 if (val != 1) 12196 return (EINVAL); /* 0 or 1 are the only legal values */ 12197 12198 if (hw_off_limits(sc)) /* harmless race */ 12199 return (EALREADY); 12200 12201 taskqueue_enqueue(reset_tq, &sc->reset_task); 12202 return (0); 12203 } 12204 12205 #ifdef TCP_OFFLOAD 12206 static int 12207 sysctl_tls(SYSCTL_HANDLER_ARGS) 12208 { 12209 struct adapter *sc = arg1; 12210 int i, j, v, rc; 12211 struct vi_info *vi; 12212 12213 v = sc->tt.tls; 12214 rc = sysctl_handle_int(oidp, &v, 0, req); 12215 if (rc != 0 || req->newptr == NULL) 12216 return (rc); 12217 12218 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 12219 return (ENOTSUP); 12220 12221 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls"); 12222 if (rc) 12223 return (rc); 12224 if (hw_off_limits(sc)) 12225 rc = ENXIO; 12226 else { 12227 sc->tt.tls = !!v; 12228 for_each_port(sc, i) { 12229 for_each_vi(sc->port[i], j, vi) { 12230 if (vi->flags & VI_INIT_DONE) 12231 t4_update_fl_bufsize(vi->ifp); 12232 } 12233 } 12234 } 12235 end_synchronized_op(sc, 0); 12236 12237 return (rc); 12238 12239 } 12240 12241 static void 12242 unit_conv(char *buf, size_t len, u_int val, u_int factor) 12243 { 12244 u_int rem = val % factor; 12245 12246 if (rem == 0) 12247 snprintf(buf, len, "%u", val / factor); 12248 else { 12249 while (rem % 10 == 0) 12250 rem /= 10; 12251 snprintf(buf, len, "%u.%u", val / factor, rem); 12252 } 12253 } 12254 12255 static int 12256 sysctl_tp_tick(SYSCTL_HANDLER_ARGS) 12257 { 12258 struct adapter *sc = arg1; 12259 char buf[16]; 12260 u_int res, re; 12261 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 12262 12263 mtx_lock(&sc->reg_lock); 12264 if (hw_off_limits(sc)) 12265 res = (u_int)-1; 12266 else 12267 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 12268 mtx_unlock(&sc->reg_lock); 12269 if (res == (u_int)-1) 12270 return (ENXIO); 12271 12272 switch (arg2) { 12273 case 0: 12274 /* timer_tick */ 12275 re = G_TIMERRESOLUTION(res); 12276 break; 12277 case 1: 12278 /* TCP timestamp tick */ 12279 re = G_TIMESTAMPRESOLUTION(res); 12280 break; 12281 case 2: 12282 /* DACK tick */ 12283 re = G_DELAYEDACKRESOLUTION(res); 12284 break; 12285 default: 12286 return (EDOOFUS); 12287 } 12288 12289 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000); 12290 12291 return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); 12292 } 12293 12294 static int 12295 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS) 12296 { 12297 struct adapter *sc = arg1; 12298 int rc; 12299 u_int dack_tmr, dack_re, v; 12300 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 12301 12302 mtx_lock(&sc->reg_lock); 12303 if (hw_off_limits(sc)) 12304 rc = ENXIO; 12305 else { 12306 rc = 0; 12307 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc, 12308 A_TP_TIMER_RESOLUTION)); 12309 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER); 12310 } 12311 mtx_unlock(&sc->reg_lock); 12312 if (rc != 0) 12313 return (rc); 12314 12315 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr; 12316 12317 return (sysctl_handle_int(oidp, &v, 0, req)); 12318 } 12319 12320 static int 12321 sysctl_tp_timer(SYSCTL_HANDLER_ARGS) 12322 { 12323 struct adapter *sc = arg1; 12324 int rc, reg = arg2; 12325 u_int tre; 12326 u_long tp_tick_us, v; 12327 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 12328 12329 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX || 12330 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX || 12331 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL || 12332 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER); 12333 12334 mtx_lock(&sc->reg_lock); 12335 if (hw_off_limits(sc)) 12336 rc = ENXIO; 12337 else { 12338 rc = 0; 12339 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION)); 12340 tp_tick_us = (cclk_ps << tre) / 1000000; 12341 if (reg == A_TP_INIT_SRTT) 12342 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg)); 12343 else 12344 v = tp_tick_us * t4_read_reg(sc, reg); 12345 } 12346 mtx_unlock(&sc->reg_lock); 12347 if (rc != 0) 12348 return (rc); 12349 else 12350 return (sysctl_handle_long(oidp, &v, 0, req)); 12351 } 12352 12353 /* 12354 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is 12355 * passed to this function. 12356 */ 12357 static int 12358 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS) 12359 { 12360 struct adapter *sc = arg1; 12361 int rc, idx = arg2; 12362 u_int v; 12363 12364 MPASS(idx >= 0 && idx <= 24); 12365 12366 mtx_lock(&sc->reg_lock); 12367 if (hw_off_limits(sc)) 12368 rc = ENXIO; 12369 else { 12370 rc = 0; 12371 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf; 12372 } 12373 mtx_unlock(&sc->reg_lock); 12374 if (rc != 0) 12375 return (rc); 12376 else 12377 return (sysctl_handle_int(oidp, &v, 0, req)); 12378 } 12379 12380 static int 12381 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS) 12382 { 12383 struct adapter *sc = arg1; 12384 int rc, idx = arg2; 12385 u_int shift, v, r; 12386 12387 MPASS(idx >= 0 && idx < 16); 12388 12389 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3); 12390 shift = (idx & 3) << 3; 12391 mtx_lock(&sc->reg_lock); 12392 if (hw_off_limits(sc)) 12393 rc = ENXIO; 12394 else { 12395 rc = 0; 12396 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0; 12397 } 12398 mtx_unlock(&sc->reg_lock); 12399 if (rc != 0) 12400 return (rc); 12401 else 12402 return (sysctl_handle_int(oidp, &v, 0, req)); 12403 } 12404 12405 static int 12406 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS) 12407 { 12408 struct vi_info *vi = arg1; 12409 struct adapter *sc = vi->adapter; 12410 int idx, rc, i; 12411 struct sge_ofld_rxq *ofld_rxq; 12412 uint8_t v; 12413 12414 idx = vi->ofld_tmr_idx; 12415 12416 rc = sysctl_handle_int(oidp, &idx, 0, req); 12417 if (rc != 0 || req->newptr == NULL) 12418 return (rc); 12419 12420 if (idx < 0 || idx >= SGE_NTIMERS) 12421 return (EINVAL); 12422 12423 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 12424 "t4otmr"); 12425 if (rc) 12426 return (rc); 12427 12428 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1); 12429 for_each_ofld_rxq(vi, i, ofld_rxq) { 12430 #ifdef atomic_store_rel_8 12431 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); 12432 #else 12433 ofld_rxq->iq.intr_params = v; 12434 #endif 12435 } 12436 vi->ofld_tmr_idx = idx; 12437 12438 end_synchronized_op(sc, LOCK_HELD); 12439 return (0); 12440 } 12441 12442 static int 12443 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS) 12444 { 12445 struct vi_info *vi = arg1; 12446 struct adapter *sc = vi->adapter; 12447 int idx, rc; 12448 12449 idx = vi->ofld_pktc_idx; 12450 12451 rc = sysctl_handle_int(oidp, &idx, 0, req); 12452 if (rc != 0 || req->newptr == NULL) 12453 return (rc); 12454 12455 if (idx < -1 || idx >= SGE_NCOUNTERS) 12456 return (EINVAL); 12457 12458 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 12459 "t4opktc"); 12460 if (rc) 12461 return (rc); 12462 12463 if (vi->flags & VI_INIT_DONE) 12464 rc = EBUSY; /* cannot be changed once the queues are created */ 12465 else 12466 vi->ofld_pktc_idx = idx; 12467 12468 end_synchronized_op(sc, LOCK_HELD); 12469 return (rc); 12470 } 12471 #endif 12472 12473 static int 12474 get_sge_context(struct adapter *sc, int mem_id, uint32_t cid, int len, 12475 uint32_t *data) 12476 { 12477 int rc; 12478 12479 if (len < sc->chip_params->sge_ctxt_size) 12480 return (ENOBUFS); 12481 if (cid > M_CTXTQID) 12482 return (EINVAL); 12483 if (mem_id != CTXT_EGRESS && mem_id != CTXT_INGRESS && 12484 mem_id != CTXT_FLM && mem_id != CTXT_CNM) 12485 return (EINVAL); 12486 12487 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); 12488 if (rc) 12489 return (rc); 12490 12491 if (hw_off_limits(sc)) { 12492 rc = ENXIO; 12493 goto done; 12494 } 12495 12496 if (sc->flags & FW_OK) { 12497 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cid, mem_id, data); 12498 if (rc == 0) 12499 goto done; 12500 } 12501 12502 /* 12503 * Read via firmware failed or wasn't even attempted. Read directly via 12504 * the backdoor. 12505 */ 12506 rc = -t4_sge_ctxt_rd_bd(sc, cid, mem_id, data); 12507 done: 12508 end_synchronized_op(sc, 0); 12509 return (rc); 12510 } 12511 12512 static int 12513 load_fw(struct adapter *sc, struct t4_data *fw) 12514 { 12515 int rc; 12516 uint8_t *fw_data; 12517 12518 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); 12519 if (rc) 12520 return (rc); 12521 12522 if (hw_off_limits(sc)) { 12523 rc = ENXIO; 12524 goto done; 12525 } 12526 12527 /* 12528 * The firmware, with the sole exception of the memory parity error 12529 * handler, runs from memory and not flash. It is almost always safe to 12530 * install a new firmware on a running system. Just set bit 1 in 12531 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first. 12532 */ 12533 if (sc->flags & FULL_INIT_DONE && 12534 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) { 12535 rc = EBUSY; 12536 goto done; 12537 } 12538 12539 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); 12540 12541 rc = copyin(fw->data, fw_data, fw->len); 12542 if (rc == 0) 12543 rc = -t4_load_fw(sc, fw_data, fw->len); 12544 12545 free(fw_data, M_CXGBE); 12546 done: 12547 end_synchronized_op(sc, 0); 12548 return (rc); 12549 } 12550 12551 static int 12552 load_cfg(struct adapter *sc, struct t4_data *cfg) 12553 { 12554 int rc; 12555 uint8_t *cfg_data = NULL; 12556 12557 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 12558 if (rc) 12559 return (rc); 12560 12561 if (hw_off_limits(sc)) { 12562 rc = ENXIO; 12563 goto done; 12564 } 12565 12566 if (cfg->len == 0) { 12567 /* clear */ 12568 rc = -t4_load_cfg(sc, NULL, 0); 12569 goto done; 12570 } 12571 12572 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK); 12573 12574 rc = copyin(cfg->data, cfg_data, cfg->len); 12575 if (rc == 0) 12576 rc = -t4_load_cfg(sc, cfg_data, cfg->len); 12577 12578 free(cfg_data, M_CXGBE); 12579 done: 12580 end_synchronized_op(sc, 0); 12581 return (rc); 12582 } 12583 12584 static int 12585 load_boot(struct adapter *sc, struct t4_bootrom *br) 12586 { 12587 int rc; 12588 uint8_t *br_data = NULL; 12589 u_int offset; 12590 12591 if (br->len > 1024 * 1024) 12592 return (EFBIG); 12593 12594 if (br->pf_offset == 0) { 12595 /* pfidx */ 12596 if (br->pfidx_addr > 7) 12597 return (EINVAL); 12598 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr, 12599 A_PCIE_PF_EXPROM_OFST))); 12600 } else if (br->pf_offset == 1) { 12601 /* offset */ 12602 offset = G_OFFSET(br->pfidx_addr); 12603 } else { 12604 return (EINVAL); 12605 } 12606 12607 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr"); 12608 if (rc) 12609 return (rc); 12610 12611 if (hw_off_limits(sc)) { 12612 rc = ENXIO; 12613 goto done; 12614 } 12615 12616 if (br->len == 0) { 12617 /* clear */ 12618 rc = -t4_load_boot(sc, NULL, offset, 0); 12619 goto done; 12620 } 12621 12622 br_data = malloc(br->len, M_CXGBE, M_WAITOK); 12623 12624 rc = copyin(br->data, br_data, br->len); 12625 if (rc == 0) 12626 rc = -t4_load_boot(sc, br_data, offset, br->len); 12627 12628 free(br_data, M_CXGBE); 12629 done: 12630 end_synchronized_op(sc, 0); 12631 return (rc); 12632 } 12633 12634 static int 12635 load_bootcfg(struct adapter *sc, struct t4_data *bc) 12636 { 12637 int rc; 12638 uint8_t *bc_data = NULL; 12639 12640 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 12641 if (rc) 12642 return (rc); 12643 12644 if (hw_off_limits(sc)) { 12645 rc = ENXIO; 12646 goto done; 12647 } 12648 12649 if (bc->len == 0) { 12650 /* clear */ 12651 rc = -t4_load_bootcfg(sc, NULL, 0); 12652 goto done; 12653 } 12654 12655 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK); 12656 12657 rc = copyin(bc->data, bc_data, bc->len); 12658 if (rc == 0) 12659 rc = -t4_load_bootcfg(sc, bc_data, bc->len); 12660 12661 free(bc_data, M_CXGBE); 12662 done: 12663 end_synchronized_op(sc, 0); 12664 return (rc); 12665 } 12666 12667 static int 12668 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump) 12669 { 12670 int rc; 12671 struct cudbg_init *cudbg; 12672 void *handle, *buf; 12673 12674 /* buf is large, don't block if no memory is available */ 12675 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO); 12676 if (buf == NULL) 12677 return (ENOMEM); 12678 12679 handle = cudbg_alloc_handle(); 12680 if (handle == NULL) { 12681 rc = ENOMEM; 12682 goto done; 12683 } 12684 12685 cudbg = cudbg_get_init(handle); 12686 cudbg->adap = sc; 12687 cudbg->print = (cudbg_print_cb)printf; 12688 12689 #ifndef notyet 12690 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n", 12691 __func__, dump->wr_flash, dump->len, dump->data); 12692 #endif 12693 12694 if (dump->wr_flash) 12695 cudbg->use_flash = 1; 12696 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap)); 12697 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap)); 12698 12699 rc = cudbg_collect(handle, buf, &dump->len); 12700 if (rc != 0) 12701 goto done; 12702 12703 rc = copyout(buf, dump->data, dump->len); 12704 done: 12705 cudbg_free_handle(handle); 12706 free(buf, M_CXGBE); 12707 return (rc); 12708 } 12709 12710 static void 12711 free_offload_policy(struct t4_offload_policy *op) 12712 { 12713 struct offload_rule *r; 12714 int i; 12715 12716 if (op == NULL) 12717 return; 12718 12719 r = &op->rule[0]; 12720 for (i = 0; i < op->nrules; i++, r++) { 12721 free(r->bpf_prog.bf_insns, M_CXGBE); 12722 } 12723 free(op->rule, M_CXGBE); 12724 free(op, M_CXGBE); 12725 } 12726 12727 static int 12728 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop) 12729 { 12730 int i, rc, len; 12731 struct t4_offload_policy *op, *old; 12732 struct bpf_program *bf; 12733 const struct offload_settings *s; 12734 struct offload_rule *r; 12735 void *u; 12736 12737 if (!is_offload(sc)) 12738 return (ENODEV); 12739 12740 if (uop->nrules == 0) { 12741 /* Delete installed policies. */ 12742 op = NULL; 12743 goto set_policy; 12744 } else if (uop->nrules > 256) { /* arbitrary */ 12745 return (E2BIG); 12746 } 12747 12748 /* Copy userspace offload policy to kernel */ 12749 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK); 12750 op->nrules = uop->nrules; 12751 len = op->nrules * sizeof(struct offload_rule); 12752 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 12753 rc = copyin(uop->rule, op->rule, len); 12754 if (rc) { 12755 free(op->rule, M_CXGBE); 12756 free(op, M_CXGBE); 12757 return (rc); 12758 } 12759 12760 r = &op->rule[0]; 12761 for (i = 0; i < op->nrules; i++, r++) { 12762 12763 /* Validate open_type */ 12764 if (r->open_type != OPEN_TYPE_LISTEN && 12765 r->open_type != OPEN_TYPE_ACTIVE && 12766 r->open_type != OPEN_TYPE_PASSIVE && 12767 r->open_type != OPEN_TYPE_DONTCARE) { 12768 error: 12769 /* 12770 * Rules 0 to i have malloc'd filters that need to be 12771 * freed. Rules i+1 to nrules have userspace pointers 12772 * and should be left alone. 12773 */ 12774 op->nrules = i; 12775 free_offload_policy(op); 12776 return (rc); 12777 } 12778 12779 /* Validate settings */ 12780 s = &r->settings; 12781 if ((s->offload != 0 && s->offload != 1) || 12782 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED || 12783 s->sched_class < -1 || 12784 s->sched_class >= sc->params.nsched_cls) { 12785 rc = EINVAL; 12786 goto error; 12787 } 12788 12789 bf = &r->bpf_prog; 12790 u = bf->bf_insns; /* userspace ptr */ 12791 bf->bf_insns = NULL; 12792 if (bf->bf_len == 0) { 12793 /* legal, matches everything */ 12794 continue; 12795 } 12796 len = bf->bf_len * sizeof(*bf->bf_insns); 12797 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 12798 rc = copyin(u, bf->bf_insns, len); 12799 if (rc != 0) 12800 goto error; 12801 12802 if (!bpf_validate(bf->bf_insns, bf->bf_len)) { 12803 rc = EINVAL; 12804 goto error; 12805 } 12806 } 12807 set_policy: 12808 rw_wlock(&sc->policy_lock); 12809 old = sc->policy; 12810 sc->policy = op; 12811 rw_wunlock(&sc->policy_lock); 12812 free_offload_policy(old); 12813 12814 return (0); 12815 } 12816 12817 #define MAX_READ_BUF_SIZE (128 * 1024) 12818 static int 12819 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) 12820 { 12821 uint32_t addr, remaining, n; 12822 uint32_t *buf; 12823 int rc; 12824 uint8_t *dst; 12825 12826 mtx_lock(&sc->reg_lock); 12827 if (hw_off_limits(sc)) 12828 rc = ENXIO; 12829 else 12830 rc = validate_mem_range(sc, mr->addr, mr->len); 12831 mtx_unlock(&sc->reg_lock); 12832 if (rc != 0) 12833 return (rc); 12834 12835 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK); 12836 addr = mr->addr; 12837 remaining = mr->len; 12838 dst = (void *)mr->data; 12839 12840 while (remaining) { 12841 n = min(remaining, MAX_READ_BUF_SIZE); 12842 mtx_lock(&sc->reg_lock); 12843 if (hw_off_limits(sc)) 12844 rc = ENXIO; 12845 else 12846 read_via_memwin(sc, 2, addr, buf, n); 12847 mtx_unlock(&sc->reg_lock); 12848 if (rc != 0) 12849 break; 12850 12851 rc = copyout(buf, dst, n); 12852 if (rc != 0) 12853 break; 12854 12855 dst += n; 12856 remaining -= n; 12857 addr += n; 12858 } 12859 12860 free(buf, M_CXGBE); 12861 return (rc); 12862 } 12863 #undef MAX_READ_BUF_SIZE 12864 12865 static int 12866 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) 12867 { 12868 int rc; 12869 12870 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) 12871 return (EINVAL); 12872 12873 if (i2cd->len > sizeof(i2cd->data)) 12874 return (EFBIG); 12875 12876 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); 12877 if (rc) 12878 return (rc); 12879 if (hw_off_limits(sc)) 12880 rc = ENXIO; 12881 else 12882 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, 12883 i2cd->offset, i2cd->len, &i2cd->data[0]); 12884 end_synchronized_op(sc, 0); 12885 12886 return (rc); 12887 } 12888 12889 static int 12890 clear_stats(struct adapter *sc, u_int port_id) 12891 { 12892 int i, v, chan_map; 12893 struct port_info *pi; 12894 struct vi_info *vi; 12895 struct sge_rxq *rxq; 12896 struct sge_txq *txq; 12897 struct sge_wrq *wrq; 12898 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12899 struct sge_ofld_txq *ofld_txq; 12900 #endif 12901 #ifdef TCP_OFFLOAD 12902 struct sge_ofld_rxq *ofld_rxq; 12903 #endif 12904 12905 if (port_id >= sc->params.nports) 12906 return (EINVAL); 12907 pi = sc->port[port_id]; 12908 if (pi == NULL) 12909 return (EIO); 12910 12911 mtx_lock(&sc->reg_lock); 12912 if (!hw_off_limits(sc)) { 12913 /* MAC stats */ 12914 t4_clr_port_stats(sc, pi->hw_port); 12915 if (is_t6(sc)) { 12916 if (pi->fcs_reg != -1) 12917 pi->fcs_base = t4_read_reg64(sc, 12918 t4_port_reg(sc, pi->tx_chan, pi->fcs_reg)); 12919 else 12920 pi->stats.rx_fcs_err = 0; 12921 } 12922 for_each_vi(pi, v, vi) { 12923 if (vi->flags & VI_INIT_DONE) 12924 t4_clr_vi_stats(sc, vi->vin); 12925 } 12926 chan_map = pi->rx_e_chan_map; 12927 v = 0; /* reuse */ 12928 while (chan_map) { 12929 i = ffs(chan_map) - 1; 12930 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 12931 1, A_TP_MIB_TNL_CNG_DROP_0 + i); 12932 chan_map &= ~(1 << i); 12933 } 12934 } 12935 mtx_unlock(&sc->reg_lock); 12936 pi->tx_parse_error = 0; 12937 pi->tnl_cong_drops = 0; 12938 12939 /* 12940 * Since this command accepts a port, clear stats for 12941 * all VIs on this port. 12942 */ 12943 for_each_vi(pi, v, vi) { 12944 if (vi->flags & VI_INIT_DONE) { 12945 12946 for_each_rxq(vi, i, rxq) { 12947 #if defined(INET) || defined(INET6) 12948 rxq->lro.lro_queued = 0; 12949 rxq->lro.lro_flushed = 0; 12950 #endif 12951 rxq->rxcsum = 0; 12952 rxq->vlan_extraction = 0; 12953 rxq->vxlan_rxcsum = 0; 12954 12955 rxq->fl.cl_allocated = 0; 12956 rxq->fl.cl_recycled = 0; 12957 rxq->fl.cl_fast_recycled = 0; 12958 } 12959 12960 for_each_txq(vi, i, txq) { 12961 txq->txcsum = 0; 12962 txq->tso_wrs = 0; 12963 txq->vlan_insertion = 0; 12964 txq->imm_wrs = 0; 12965 txq->sgl_wrs = 0; 12966 txq->txpkt_wrs = 0; 12967 txq->txpkts0_wrs = 0; 12968 txq->txpkts1_wrs = 0; 12969 txq->txpkts0_pkts = 0; 12970 txq->txpkts1_pkts = 0; 12971 txq->txpkts_flush = 0; 12972 txq->raw_wrs = 0; 12973 txq->vxlan_tso_wrs = 0; 12974 txq->vxlan_txcsum = 0; 12975 txq->kern_tls_records = 0; 12976 txq->kern_tls_short = 0; 12977 txq->kern_tls_partial = 0; 12978 txq->kern_tls_full = 0; 12979 txq->kern_tls_octets = 0; 12980 txq->kern_tls_waste = 0; 12981 txq->kern_tls_header = 0; 12982 txq->kern_tls_fin_short = 0; 12983 txq->kern_tls_cbc = 0; 12984 txq->kern_tls_gcm = 0; 12985 if (is_t6(sc)) { 12986 txq->kern_tls_options = 0; 12987 txq->kern_tls_fin = 0; 12988 } else { 12989 txq->kern_tls_ghash_received = 0; 12990 txq->kern_tls_ghash_requested = 0; 12991 txq->kern_tls_lso = 0; 12992 txq->kern_tls_partial_ghash = 0; 12993 txq->kern_tls_splitmode = 0; 12994 txq->kern_tls_trailer = 0; 12995 } 12996 mp_ring_reset_stats(txq->r); 12997 } 12998 12999 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 13000 for_each_ofld_txq(vi, i, ofld_txq) { 13001 ofld_txq->wrq.tx_wrs_direct = 0; 13002 ofld_txq->wrq.tx_wrs_copied = 0; 13003 counter_u64_zero(ofld_txq->tx_iscsi_pdus); 13004 counter_u64_zero(ofld_txq->tx_iscsi_octets); 13005 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs); 13006 counter_u64_zero(ofld_txq->tx_nvme_pdus); 13007 counter_u64_zero(ofld_txq->tx_nvme_octets); 13008 counter_u64_zero(ofld_txq->tx_nvme_iso_wrs); 13009 counter_u64_zero(ofld_txq->tx_aio_jobs); 13010 counter_u64_zero(ofld_txq->tx_aio_octets); 13011 counter_u64_zero(ofld_txq->tx_toe_tls_records); 13012 counter_u64_zero(ofld_txq->tx_toe_tls_octets); 13013 } 13014 #endif 13015 #ifdef TCP_OFFLOAD 13016 for_each_ofld_rxq(vi, i, ofld_rxq) { 13017 ofld_rxq->fl.cl_allocated = 0; 13018 ofld_rxq->fl.cl_recycled = 0; 13019 ofld_rxq->fl.cl_fast_recycled = 0; 13020 counter_u64_zero( 13021 ofld_rxq->rx_iscsi_ddp_setup_ok); 13022 counter_u64_zero( 13023 ofld_rxq->rx_iscsi_ddp_setup_error); 13024 ofld_rxq->rx_iscsi_ddp_pdus = 0; 13025 ofld_rxq->rx_iscsi_ddp_octets = 0; 13026 ofld_rxq->rx_iscsi_fl_pdus = 0; 13027 ofld_rxq->rx_iscsi_fl_octets = 0; 13028 counter_u64_zero( 13029 ofld_rxq->rx_nvme_ddp_setup_ok); 13030 counter_u64_zero( 13031 ofld_rxq->rx_nvme_ddp_setup_no_stag); 13032 counter_u64_zero( 13033 ofld_rxq->rx_nvme_ddp_setup_error); 13034 counter_u64_zero(ofld_rxq->rx_nvme_ddp_pdus); 13035 counter_u64_zero(ofld_rxq->rx_nvme_ddp_octets); 13036 counter_u64_zero(ofld_rxq->rx_nvme_fl_pdus); 13037 counter_u64_zero(ofld_rxq->rx_nvme_fl_octets); 13038 counter_u64_zero( 13039 ofld_rxq->rx_nvme_invalid_headers); 13040 counter_u64_zero( 13041 ofld_rxq->rx_nvme_header_digest_errors); 13042 counter_u64_zero( 13043 ofld_rxq->rx_nvme_data_digest_errors); 13044 ofld_rxq->rx_aio_ddp_jobs = 0; 13045 ofld_rxq->rx_aio_ddp_octets = 0; 13046 ofld_rxq->rx_toe_tls_records = 0; 13047 ofld_rxq->rx_toe_tls_octets = 0; 13048 ofld_rxq->rx_toe_ddp_octets = 0; 13049 counter_u64_zero(ofld_rxq->ddp_buffer_alloc); 13050 counter_u64_zero(ofld_rxq->ddp_buffer_reuse); 13051 counter_u64_zero(ofld_rxq->ddp_buffer_free); 13052 } 13053 #endif 13054 13055 if (IS_MAIN_VI(vi)) { 13056 wrq = &sc->sge.ctrlq[pi->port_id]; 13057 wrq->tx_wrs_direct = 0; 13058 wrq->tx_wrs_copied = 0; 13059 } 13060 } 13061 } 13062 13063 return (0); 13064 } 13065 13066 static int 13067 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 13068 { 13069 #ifdef INET6 13070 struct in6_addr in6; 13071 13072 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 13073 if (t4_get_clip_entry(sc, &in6, true) != NULL) 13074 return (0); 13075 else 13076 return (EIO); 13077 #else 13078 return (ENOTSUP); 13079 #endif 13080 } 13081 13082 static int 13083 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 13084 { 13085 #ifdef INET6 13086 struct in6_addr in6; 13087 13088 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 13089 return (t4_release_clip_addr(sc, &in6)); 13090 #else 13091 return (ENOTSUP); 13092 #endif 13093 } 13094 13095 int 13096 t4_os_find_pci_capability(struct adapter *sc, int cap) 13097 { 13098 int i; 13099 13100 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); 13101 } 13102 13103 void 13104 t4_os_portmod_changed(struct port_info *pi) 13105 { 13106 struct adapter *sc = pi->adapter; 13107 struct vi_info *vi; 13108 if_t ifp; 13109 static const char *mod_str[] = { 13110 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM", 13111 "LR_SIMPLEX", "DR" 13112 }; 13113 13114 KASSERT((pi->flags & FIXED_IFMEDIA) == 0, 13115 ("%s: port_type %u", __func__, pi->port_type)); 13116 13117 vi = &pi->vi[0]; 13118 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) { 13119 PORT_LOCK(pi); 13120 build_medialist(pi); 13121 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) { 13122 fixup_link_config(pi); 13123 apply_link_config(pi); 13124 } 13125 PORT_UNLOCK(pi); 13126 end_synchronized_op(sc, LOCK_HELD); 13127 } 13128 13129 ifp = vi->ifp; 13130 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 13131 if_printf(ifp, "transceiver unplugged.\n"); 13132 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 13133 if_printf(ifp, "unknown transceiver inserted.\n"); 13134 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 13135 if_printf(ifp, "unsupported transceiver inserted.\n"); 13136 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { 13137 if_printf(ifp, "%dGbps %s transceiver inserted.\n", 13138 port_top_speed(pi), mod_str[pi->mod_type]); 13139 } else { 13140 if_printf(ifp, "transceiver (type %d) inserted.\n", 13141 pi->mod_type); 13142 } 13143 } 13144 13145 void 13146 t4_os_link_changed(struct port_info *pi) 13147 { 13148 struct vi_info *vi; 13149 if_t ifp; 13150 struct link_config *lc = &pi->link_cfg; 13151 struct adapter *sc = pi->adapter; 13152 int v; 13153 13154 PORT_LOCK_ASSERT_OWNED(pi); 13155 13156 if (is_t6(sc)) { 13157 if (lc->link_ok) { 13158 if (lc->speed > 25000 || 13159 (lc->speed == 25000 && lc->fec == FEC_RS)) 13160 pi->fcs_reg = A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS; 13161 else 13162 pi->fcs_reg = A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS; 13163 pi->fcs_base = t4_read_reg64(sc, 13164 t4_port_reg(sc, pi->tx_chan, pi->fcs_reg)); 13165 pi->stats.rx_fcs_err = 0; 13166 } else { 13167 pi->fcs_reg = -1; 13168 } 13169 } else { 13170 MPASS(pi->fcs_reg != -1); 13171 MPASS(pi->fcs_base == 0); 13172 } 13173 13174 for_each_vi(pi, v, vi) { 13175 ifp = vi->ifp; 13176 if (ifp == NULL || IS_DETACHING(vi)) 13177 continue; 13178 13179 if (lc->link_ok) { 13180 if_setbaudrate(ifp, IF_Mbps(lc->speed)); 13181 if_link_state_change(ifp, LINK_STATE_UP); 13182 } else { 13183 if_link_state_change(ifp, LINK_STATE_DOWN); 13184 } 13185 } 13186 } 13187 13188 void 13189 t4_iterate(void (*func)(struct adapter *, void *), void *arg) 13190 { 13191 struct adapter *sc; 13192 13193 sx_slock(&t4_list_lock); 13194 SLIST_FOREACH(sc, &t4_list, link) { 13195 /* 13196 * func should not make any assumptions about what state sc is 13197 * in - the only guarantee is that sc->sc_lock is a valid lock. 13198 */ 13199 func(sc, arg); 13200 } 13201 sx_sunlock(&t4_list_lock); 13202 } 13203 13204 static int 13205 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 13206 struct thread *td) 13207 { 13208 int rc; 13209 struct adapter *sc = dev->si_drv1; 13210 13211 rc = priv_check(td, PRIV_DRIVER); 13212 if (rc != 0) 13213 return (rc); 13214 13215 switch (cmd) { 13216 case CHELSIO_T4_GETREG: { 13217 struct t4_reg *edata = (struct t4_reg *)data; 13218 13219 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 13220 return (EFAULT); 13221 13222 mtx_lock(&sc->reg_lock); 13223 if (hw_off_limits(sc)) 13224 rc = ENXIO; 13225 else if (edata->size == 4) 13226 edata->val = t4_read_reg(sc, edata->addr); 13227 else if (edata->size == 8) 13228 edata->val = t4_read_reg64(sc, edata->addr); 13229 else 13230 rc = EINVAL; 13231 mtx_unlock(&sc->reg_lock); 13232 13233 break; 13234 } 13235 case CHELSIO_T4_SETREG: { 13236 struct t4_reg *edata = (struct t4_reg *)data; 13237 13238 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 13239 return (EFAULT); 13240 13241 mtx_lock(&sc->reg_lock); 13242 if (hw_off_limits(sc)) 13243 rc = ENXIO; 13244 else if (edata->size == 4) { 13245 if (edata->val & 0xffffffff00000000) 13246 rc = EINVAL; 13247 t4_write_reg(sc, edata->addr, (uint32_t) edata->val); 13248 } else if (edata->size == 8) 13249 t4_write_reg64(sc, edata->addr, edata->val); 13250 else 13251 rc = EINVAL; 13252 mtx_unlock(&sc->reg_lock); 13253 13254 break; 13255 } 13256 case CHELSIO_T4_REGDUMP: { 13257 struct t4_regdump *regs = (struct t4_regdump *)data; 13258 int reglen = t4_get_regs_len(sc); 13259 uint8_t *buf; 13260 13261 if (regs->len < reglen) { 13262 regs->len = reglen; /* hint to the caller */ 13263 return (ENOBUFS); 13264 } 13265 13266 regs->len = reglen; 13267 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); 13268 mtx_lock(&sc->reg_lock); 13269 if (hw_off_limits(sc)) 13270 rc = ENXIO; 13271 else 13272 get_regs(sc, regs, buf); 13273 mtx_unlock(&sc->reg_lock); 13274 if (rc == 0) 13275 rc = copyout(buf, regs->data, reglen); 13276 free(buf, M_CXGBE); 13277 break; 13278 } 13279 case CHELSIO_T4_GET_FILTER_MODE: 13280 rc = get_filter_mode(sc, (uint32_t *)data); 13281 break; 13282 case CHELSIO_T4_SET_FILTER_MODE: 13283 rc = set_filter_mode(sc, *(uint32_t *)data); 13284 break; 13285 case CHELSIO_T4_SET_FILTER_MASK: 13286 rc = set_filter_mask(sc, *(uint32_t *)data); 13287 break; 13288 case CHELSIO_T4_GET_FILTER: 13289 rc = get_filter(sc, (struct t4_filter *)data); 13290 break; 13291 case CHELSIO_T4_SET_FILTER: 13292 rc = set_filter(sc, (struct t4_filter *)data); 13293 break; 13294 case CHELSIO_T4_DEL_FILTER: 13295 rc = del_filter(sc, (struct t4_filter *)data); 13296 break; 13297 case CHELSIO_T4_GET_SGE_CONTEXT: { 13298 struct t4_sge_context *ctxt = (struct t4_sge_context *)data; 13299 13300 rc = get_sge_context(sc, ctxt->mem_id, ctxt->cid, 13301 sizeof(ctxt->data), &ctxt->data[0]); 13302 break; 13303 } 13304 case CHELSIO_T4_LOAD_FW: 13305 rc = load_fw(sc, (struct t4_data *)data); 13306 break; 13307 case CHELSIO_T4_GET_MEM: 13308 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); 13309 break; 13310 case CHELSIO_T4_GET_I2C: 13311 rc = read_i2c(sc, (struct t4_i2c_data *)data); 13312 break; 13313 case CHELSIO_T4_CLEAR_STATS: 13314 rc = clear_stats(sc, *(uint32_t *)data); 13315 break; 13316 case CHELSIO_T4_SCHED_CLASS: 13317 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data); 13318 break; 13319 case CHELSIO_T4_SCHED_QUEUE: 13320 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data); 13321 break; 13322 case CHELSIO_T4_GET_TRACER: 13323 rc = t4_get_tracer(sc, (struct t4_tracer *)data); 13324 break; 13325 case CHELSIO_T4_SET_TRACER: 13326 rc = t4_set_tracer(sc, (struct t4_tracer *)data); 13327 break; 13328 case CHELSIO_T4_LOAD_CFG: 13329 rc = load_cfg(sc, (struct t4_data *)data); 13330 break; 13331 case CHELSIO_T4_LOAD_BOOT: 13332 rc = load_boot(sc, (struct t4_bootrom *)data); 13333 break; 13334 case CHELSIO_T4_LOAD_BOOTCFG: 13335 rc = load_bootcfg(sc, (struct t4_data *)data); 13336 break; 13337 case CHELSIO_T4_CUDBG_DUMP: 13338 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data); 13339 break; 13340 case CHELSIO_T4_SET_OFLD_POLICY: 13341 rc = set_offload_policy(sc, (struct t4_offload_policy *)data); 13342 break; 13343 case CHELSIO_T4_HOLD_CLIP_ADDR: 13344 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data); 13345 break; 13346 case CHELSIO_T4_RELEASE_CLIP_ADDR: 13347 rc = release_clip_addr(sc, (struct t4_clip_addr *)data); 13348 break; 13349 case CHELSIO_T4_GET_SGE_CTXT: { 13350 struct t4_sge_ctxt *ctxt = (struct t4_sge_ctxt *)data; 13351 13352 rc = get_sge_context(sc, ctxt->mem_id, ctxt->cid, 13353 sizeof(ctxt->data), &ctxt->data[0]); 13354 break; 13355 } 13356 default: 13357 rc = ENOTTY; 13358 } 13359 13360 return (rc); 13361 } 13362 13363 #ifdef TCP_OFFLOAD 13364 int 13365 toe_capability(struct vi_info *vi, bool enable) 13366 { 13367 int rc; 13368 struct port_info *pi = vi->pi; 13369 struct adapter *sc = pi->adapter; 13370 13371 ASSERT_SYNCHRONIZED_OP(sc); 13372 13373 if (!is_offload(sc)) 13374 return (ENODEV); 13375 if (!hw_all_ok(sc)) 13376 return (ENXIO); 13377 13378 if (enable) { 13379 #ifdef KERN_TLS 13380 if (sc->flags & KERN_TLS_ON && is_t6(sc)) { 13381 int i, j, n; 13382 struct port_info *p; 13383 struct vi_info *v; 13384 13385 /* 13386 * Reconfigure hardware for TOE if TXTLS is not enabled 13387 * on any ifnet. 13388 */ 13389 n = 0; 13390 for_each_port(sc, i) { 13391 p = sc->port[i]; 13392 for_each_vi(p, j, v) { 13393 if (if_getcapenable(v->ifp) & IFCAP_TXTLS) { 13394 CH_WARN(sc, 13395 "%s has NIC TLS enabled.\n", 13396 device_get_nameunit(v->dev)); 13397 n++; 13398 } 13399 } 13400 } 13401 if (n > 0) { 13402 CH_WARN(sc, "Disable NIC TLS on all interfaces " 13403 "associated with this adapter before " 13404 "trying to enable TOE.\n"); 13405 return (EAGAIN); 13406 } 13407 rc = t6_config_kern_tls(sc, false); 13408 if (rc) 13409 return (rc); 13410 } 13411 #endif 13412 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) != 0) { 13413 /* TOE is already enabled. */ 13414 return (0); 13415 } 13416 13417 /* 13418 * We need the port's queues around so that we're able to send 13419 * and receive CPLs to/from the TOE even if the ifnet for this 13420 * port has never been UP'd administratively. 13421 */ 13422 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 13423 return (rc); 13424 if (!(pi->vi[0].flags & VI_INIT_DONE) && 13425 ((rc = vi_init(&pi->vi[0])) != 0)) 13426 return (rc); 13427 13428 if (isset(&sc->offload_map, pi->port_id)) { 13429 /* TOE is enabled on another VI of this port. */ 13430 MPASS(pi->uld_vis > 0); 13431 pi->uld_vis++; 13432 return (0); 13433 } 13434 13435 if (!uld_active(sc, ULD_TOM)) { 13436 rc = t4_activate_uld(sc, ULD_TOM); 13437 if (rc == EAGAIN) { 13438 log(LOG_WARNING, 13439 "You must kldload t4_tom.ko before trying " 13440 "to enable TOE on a cxgbe interface.\n"); 13441 } 13442 if (rc != 0) 13443 return (rc); 13444 KASSERT(sc->tom_softc != NULL, 13445 ("%s: TOM activated but softc NULL", __func__)); 13446 KASSERT(uld_active(sc, ULD_TOM), 13447 ("%s: TOM activated but flag not set", __func__)); 13448 } 13449 13450 /* 13451 * Activate iWARP, iSCSI, and NVMe too, if the modules 13452 * are loaded. 13453 */ 13454 if (!uld_active(sc, ULD_IWARP)) 13455 (void) t4_activate_uld(sc, ULD_IWARP); 13456 if (!uld_active(sc, ULD_ISCSI)) 13457 (void) t4_activate_uld(sc, ULD_ISCSI); 13458 if (!uld_active(sc, ULD_NVME)) 13459 (void) t4_activate_uld(sc, ULD_NVME); 13460 13461 if (pi->uld_vis++ == 0) 13462 setbit(&sc->offload_map, pi->port_id); 13463 } else { 13464 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) == 0) { 13465 /* TOE is already disabled. */ 13466 return (0); 13467 } 13468 MPASS(isset(&sc->offload_map, pi->port_id)); 13469 MPASS(pi->uld_vis > 0); 13470 if (--pi->uld_vis == 0) 13471 clrbit(&sc->offload_map, pi->port_id); 13472 } 13473 13474 return (0); 13475 } 13476 13477 /* 13478 * Add an upper layer driver to the global list. 13479 */ 13480 int 13481 t4_register_uld(struct uld_info *ui, int id) 13482 { 13483 int rc; 13484 13485 if (id < 0 || id > ULD_MAX) 13486 return (EINVAL); 13487 sx_xlock(&t4_uld_list_lock); 13488 if (t4_uld_list[id] != NULL) 13489 rc = EEXIST; 13490 else { 13491 t4_uld_list[id] = ui; 13492 rc = 0; 13493 } 13494 sx_xunlock(&t4_uld_list_lock); 13495 return (rc); 13496 } 13497 13498 int 13499 t4_unregister_uld(struct uld_info *ui, int id) 13500 { 13501 13502 if (id < 0 || id > ULD_MAX) 13503 return (EINVAL); 13504 sx_xlock(&t4_uld_list_lock); 13505 MPASS(t4_uld_list[id] == ui); 13506 t4_uld_list[id] = NULL; 13507 sx_xunlock(&t4_uld_list_lock); 13508 return (0); 13509 } 13510 13511 int 13512 t4_activate_uld(struct adapter *sc, int id) 13513 { 13514 int rc; 13515 13516 ASSERT_SYNCHRONIZED_OP(sc); 13517 13518 if (id < 0 || id > ULD_MAX) 13519 return (EINVAL); 13520 13521 /* Adapter needs to be initialized before any ULD can be activated. */ 13522 if (!(sc->flags & FULL_INIT_DONE)) { 13523 rc = adapter_init(sc); 13524 if (rc != 0) 13525 return (rc); 13526 } 13527 13528 sx_slock(&t4_uld_list_lock); 13529 if (t4_uld_list[id] == NULL) 13530 rc = EAGAIN; /* load the KLD with this ULD and try again. */ 13531 else { 13532 rc = t4_uld_list[id]->uld_activate(sc); 13533 if (rc == 0) 13534 setbit(&sc->active_ulds, id); 13535 } 13536 sx_sunlock(&t4_uld_list_lock); 13537 13538 return (rc); 13539 } 13540 13541 int 13542 t4_deactivate_uld(struct adapter *sc, int id) 13543 { 13544 int rc; 13545 13546 ASSERT_SYNCHRONIZED_OP(sc); 13547 13548 if (id < 0 || id > ULD_MAX) 13549 return (EINVAL); 13550 13551 sx_slock(&t4_uld_list_lock); 13552 if (t4_uld_list[id] == NULL) 13553 rc = ENXIO; 13554 else { 13555 rc = t4_uld_list[id]->uld_deactivate(sc); 13556 if (rc == 0) 13557 clrbit(&sc->active_ulds, id); 13558 } 13559 sx_sunlock(&t4_uld_list_lock); 13560 13561 return (rc); 13562 } 13563 13564 static int 13565 deactivate_all_uld(struct adapter *sc) 13566 { 13567 int i, rc; 13568 13569 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld"); 13570 if (rc != 0) 13571 return (ENXIO); 13572 sx_slock(&t4_uld_list_lock); 13573 for (i = 0; i <= ULD_MAX; i++) { 13574 if (t4_uld_list[i] == NULL || !uld_active(sc, i)) 13575 continue; 13576 rc = t4_uld_list[i]->uld_deactivate(sc); 13577 if (rc != 0) 13578 break; 13579 clrbit(&sc->active_ulds, i); 13580 } 13581 sx_sunlock(&t4_uld_list_lock); 13582 end_synchronized_op(sc, 0); 13583 13584 return (rc); 13585 } 13586 13587 static void 13588 stop_all_uld(struct adapter *sc) 13589 { 13590 int i; 13591 13592 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldst") != 0) 13593 return; 13594 sx_slock(&t4_uld_list_lock); 13595 for (i = 0; i <= ULD_MAX; i++) { 13596 if (t4_uld_list[i] == NULL || !uld_active(sc, i) || 13597 t4_uld_list[i]->uld_stop == NULL) 13598 continue; 13599 (void) t4_uld_list[i]->uld_stop(sc); 13600 } 13601 sx_sunlock(&t4_uld_list_lock); 13602 end_synchronized_op(sc, 0); 13603 } 13604 13605 static void 13606 restart_all_uld(struct adapter *sc) 13607 { 13608 int i; 13609 13610 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldre") != 0) 13611 return; 13612 sx_slock(&t4_uld_list_lock); 13613 for (i = 0; i <= ULD_MAX; i++) { 13614 if (t4_uld_list[i] == NULL || !uld_active(sc, i) || 13615 t4_uld_list[i]->uld_restart == NULL) 13616 continue; 13617 (void) t4_uld_list[i]->uld_restart(sc); 13618 } 13619 sx_sunlock(&t4_uld_list_lock); 13620 end_synchronized_op(sc, 0); 13621 } 13622 13623 int 13624 uld_active(struct adapter *sc, int id) 13625 { 13626 13627 MPASS(id >= 0 && id <= ULD_MAX); 13628 13629 return (isset(&sc->active_ulds, id)); 13630 } 13631 #endif 13632 13633 #ifdef KERN_TLS 13634 static int 13635 ktls_capability(struct adapter *sc, bool enable) 13636 { 13637 ASSERT_SYNCHRONIZED_OP(sc); 13638 13639 if (!is_ktls(sc)) 13640 return (ENODEV); 13641 if (!is_t6(sc)) 13642 return (0); 13643 if (!hw_all_ok(sc)) 13644 return (ENXIO); 13645 13646 if (enable) { 13647 if (sc->flags & KERN_TLS_ON) 13648 return (0); /* already on */ 13649 if (sc->offload_map != 0) { 13650 CH_WARN(sc, 13651 "Disable TOE on all interfaces associated with " 13652 "this adapter before trying to enable NIC TLS.\n"); 13653 return (EAGAIN); 13654 } 13655 return (t6_config_kern_tls(sc, true)); 13656 } else { 13657 /* 13658 * Nothing to do for disable. If TOE is enabled sometime later 13659 * then toe_capability will reconfigure the hardware. 13660 */ 13661 return (0); 13662 } 13663 } 13664 #endif 13665 13666 /* 13667 * t = ptr to tunable. 13668 * nc = number of CPUs. 13669 * c = compiled in default for that tunable. 13670 */ 13671 static void 13672 calculate_nqueues(int *t, int nc, const int c) 13673 { 13674 int nq; 13675 13676 if (*t > 0) 13677 return; 13678 nq = *t < 0 ? -*t : c; 13679 *t = min(nc, nq); 13680 } 13681 13682 /* 13683 * Come up with reasonable defaults for some of the tunables, provided they're 13684 * not set by the user (in which case we'll use the values as is). 13685 */ 13686 static void 13687 tweak_tunables(void) 13688 { 13689 int nc = mp_ncpus; /* our snapshot of the number of CPUs */ 13690 13691 if (t4_ntxq < 1) { 13692 #ifdef RSS 13693 t4_ntxq = rss_getnumbuckets(); 13694 #else 13695 calculate_nqueues(&t4_ntxq, nc, NTXQ); 13696 #endif 13697 } 13698 13699 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI); 13700 13701 if (t4_nrxq < 1) { 13702 #ifdef RSS 13703 t4_nrxq = rss_getnumbuckets(); 13704 #else 13705 calculate_nqueues(&t4_nrxq, nc, NRXQ); 13706 #endif 13707 } 13708 13709 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI); 13710 13711 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 13712 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ); 13713 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI); 13714 #endif 13715 #ifdef TCP_OFFLOAD 13716 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ); 13717 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI); 13718 #endif 13719 13720 #if defined(TCP_OFFLOAD) || defined(KERN_TLS) 13721 if (t4_toecaps_allowed == -1) 13722 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; 13723 #else 13724 if (t4_toecaps_allowed == -1) 13725 t4_toecaps_allowed = 0; 13726 #endif 13727 13728 #ifdef TCP_OFFLOAD 13729 if (t4_rdmacaps_allowed == -1) { 13730 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP | 13731 FW_CAPS_CONFIG_RDMA_RDMAC; 13732 } 13733 13734 if (t4_iscsicaps_allowed == -1) { 13735 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU | 13736 FW_CAPS_CONFIG_ISCSI_TARGET_PDU | 13737 FW_CAPS_CONFIG_ISCSI_T10DIF; 13738 } 13739 13740 if (t4_nvmecaps_allowed == -1) 13741 t4_nvmecaps_allowed = FW_CAPS_CONFIG_NVME_TCP; 13742 13743 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS) 13744 t4_tmr_idx_ofld = TMR_IDX_OFLD; 13745 13746 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS) 13747 t4_pktc_idx_ofld = PKTC_IDX_OFLD; 13748 #else 13749 if (t4_rdmacaps_allowed == -1) 13750 t4_rdmacaps_allowed = 0; 13751 13752 if (t4_iscsicaps_allowed == -1) 13753 t4_iscsicaps_allowed = 0; 13754 13755 if (t4_nvmecaps_allowed == -1) 13756 t4_nvmecaps_allowed = 0; 13757 #endif 13758 13759 #ifdef DEV_NETMAP 13760 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ); 13761 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ); 13762 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI); 13763 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI); 13764 #endif 13765 13766 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS) 13767 t4_tmr_idx = TMR_IDX; 13768 13769 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS) 13770 t4_pktc_idx = PKTC_IDX; 13771 13772 if (t4_qsize_txq < 128) 13773 t4_qsize_txq = 128; 13774 13775 if (t4_qsize_rxq < 128) 13776 t4_qsize_rxq = 128; 13777 while (t4_qsize_rxq & 7) 13778 t4_qsize_rxq++; 13779 13780 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; 13781 13782 /* 13783 * Number of VIs to create per-port. The first VI is the "main" regular 13784 * VI for the port. The rest are additional virtual interfaces on the 13785 * same physical port. Note that the main VI does not have native 13786 * netmap support but the extra VIs do. 13787 * 13788 * Limit the number of VIs per port to the number of available 13789 * MAC addresses per port. 13790 */ 13791 if (t4_num_vis < 1) 13792 t4_num_vis = 1; 13793 if (t4_num_vis > nitems(vi_mac_funcs)) { 13794 t4_num_vis = nitems(vi_mac_funcs); 13795 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis); 13796 } 13797 13798 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) { 13799 pcie_relaxed_ordering = 1; 13800 #if defined(__i386__) || defined(__amd64__) 13801 if (cpu_vendor_id == CPU_VENDOR_INTEL) 13802 pcie_relaxed_ordering = 0; 13803 #endif 13804 } 13805 } 13806 13807 #ifdef DDB 13808 static void 13809 t4_dump_mem(struct adapter *sc, u_int addr, u_int len) 13810 { 13811 uint32_t base, j, off, pf, reg, save, win_pos; 13812 13813 reg = chip_id(sc) > CHELSIO_T6 ? 13814 PCIE_MEM_ACCESS_T7_REG(A_PCIE_MEM_ACCESS_OFFSET0, 2) : 13815 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2); 13816 save = t4_read_reg(sc, reg); 13817 base = sc->memwin[2].mw_base; 13818 13819 if (is_t4(sc)) { 13820 pf = 0; 13821 win_pos = addr & ~0xf; /* start must be 16B aligned */ 13822 } else { 13823 pf = V_PFNUM(sc->pf); 13824 win_pos = addr & ~0x7f; /* start must be 128B aligned */ 13825 } 13826 off = addr - win_pos; 13827 if (chip_id(sc) > CHELSIO_T6) 13828 win_pos >>= X_T7_MEMOFST_SHIFT; 13829 t4_write_reg(sc, reg, win_pos | pf); 13830 t4_read_reg(sc, reg); 13831 13832 while (len > 0 && !db_pager_quit) { 13833 uint32_t buf[8]; 13834 for (j = 0; j < 8; j++, off += 4) 13835 buf[j] = htonl(t4_read_reg(sc, base + off)); 13836 13837 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", 13838 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], 13839 buf[7]); 13840 if (len <= sizeof(buf)) 13841 len = 0; 13842 else 13843 len -= sizeof(buf); 13844 } 13845 13846 t4_write_reg(sc, reg, save); 13847 t4_read_reg(sc, reg); 13848 } 13849 13850 static void 13851 t4_dump_tcb(struct adapter *sc, int tid) 13852 { 13853 uint32_t tcb_addr; 13854 13855 /* Dump TCB for the tid */ 13856 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 13857 tcb_addr += tid * TCB_SIZE; 13858 t4_dump_mem(sc, tcb_addr, TCB_SIZE); 13859 } 13860 13861 static void 13862 t4_dump_devlog(struct adapter *sc) 13863 { 13864 struct devlog_params *dparams = &sc->params.devlog; 13865 struct fw_devlog_e e; 13866 int i, first, j, m, nentries, rc; 13867 uint64_t ftstamp = UINT64_MAX; 13868 13869 if (dparams->start == 0) { 13870 db_printf("devlog params not valid\n"); 13871 return; 13872 } 13873 13874 nentries = dparams->size / sizeof(struct fw_devlog_e); 13875 m = fwmtype_to_hwmtype(dparams->memtype); 13876 13877 /* Find the first entry. */ 13878 first = -1; 13879 for (i = 0; i < nentries && !db_pager_quit; i++) { 13880 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 13881 sizeof(e), (void *)&e); 13882 if (rc != 0) 13883 break; 13884 13885 if (e.timestamp == 0) 13886 break; 13887 13888 e.timestamp = be64toh(e.timestamp); 13889 if (e.timestamp < ftstamp) { 13890 ftstamp = e.timestamp; 13891 first = i; 13892 } 13893 } 13894 13895 if (first == -1) 13896 return; 13897 13898 i = first; 13899 do { 13900 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 13901 sizeof(e), (void *)&e); 13902 if (rc != 0) 13903 return; 13904 13905 if (e.timestamp == 0) 13906 return; 13907 13908 e.timestamp = be64toh(e.timestamp); 13909 e.seqno = be32toh(e.seqno); 13910 for (j = 0; j < 8; j++) 13911 e.params[j] = be32toh(e.params[j]); 13912 13913 db_printf("%10d %15ju %8s %8s ", 13914 e.seqno, e.timestamp, 13915 (e.level < nitems(devlog_level_strings) ? 13916 devlog_level_strings[e.level] : "UNKNOWN"), 13917 (e.facility < nitems(devlog_facility_strings) ? 13918 devlog_facility_strings[e.facility] : "UNKNOWN")); 13919 db_printf(e.fmt, e.params[0], e.params[1], e.params[2], 13920 e.params[3], e.params[4], e.params[5], e.params[6], 13921 e.params[7]); 13922 13923 if (++i == nentries) 13924 i = 0; 13925 } while (i != first && !db_pager_quit); 13926 } 13927 13928 static DB_DEFINE_TABLE(show, t4, show_t4); 13929 13930 DB_TABLE_COMMAND_FLAGS(show_t4, devlog, db_show_devlog, CS_OWN) 13931 { 13932 device_t dev; 13933 int t; 13934 bool valid; 13935 13936 valid = false; 13937 t = db_read_token(); 13938 if (t == tIDENT) { 13939 dev = device_lookup_by_name(db_tok_string); 13940 valid = true; 13941 } 13942 db_skip_to_eol(); 13943 if (!valid) { 13944 db_printf("usage: show t4 devlog <nexus>\n"); 13945 return; 13946 } 13947 13948 if (dev == NULL) { 13949 db_printf("device not found\n"); 13950 return; 13951 } 13952 13953 t4_dump_devlog(device_get_softc(dev)); 13954 } 13955 13956 DB_TABLE_COMMAND_FLAGS(show_t4, tcb, db_show_t4tcb, CS_OWN) 13957 { 13958 device_t dev; 13959 int radix, tid, t; 13960 bool valid; 13961 13962 valid = false; 13963 radix = db_radix; 13964 db_radix = 10; 13965 t = db_read_token(); 13966 if (t == tIDENT) { 13967 dev = device_lookup_by_name(db_tok_string); 13968 t = db_read_token(); 13969 if (t == tNUMBER) { 13970 tid = db_tok_number; 13971 valid = true; 13972 } 13973 } 13974 db_radix = radix; 13975 db_skip_to_eol(); 13976 if (!valid) { 13977 db_printf("usage: show t4 tcb <nexus> <tid>\n"); 13978 return; 13979 } 13980 13981 if (dev == NULL) { 13982 db_printf("device not found\n"); 13983 return; 13984 } 13985 if (tid < 0) { 13986 db_printf("invalid tid\n"); 13987 return; 13988 } 13989 13990 t4_dump_tcb(device_get_softc(dev), tid); 13991 } 13992 13993 DB_TABLE_COMMAND_FLAGS(show_t4, memdump, db_show_memdump, CS_OWN) 13994 { 13995 device_t dev; 13996 int radix, t; 13997 bool valid; 13998 13999 valid = false; 14000 radix = db_radix; 14001 db_radix = 10; 14002 t = db_read_token(); 14003 if (t == tIDENT) { 14004 dev = device_lookup_by_name(db_tok_string); 14005 t = db_read_token(); 14006 if (t == tNUMBER) { 14007 addr = db_tok_number; 14008 t = db_read_token(); 14009 if (t == tNUMBER) { 14010 count = db_tok_number; 14011 valid = true; 14012 } 14013 } 14014 } 14015 db_radix = radix; 14016 db_skip_to_eol(); 14017 if (!valid) { 14018 db_printf("usage: show t4 memdump <nexus> <addr> <len>\n"); 14019 return; 14020 } 14021 14022 if (dev == NULL) { 14023 db_printf("device not found\n"); 14024 return; 14025 } 14026 if (addr < 0) { 14027 db_printf("invalid address\n"); 14028 return; 14029 } 14030 if (count <= 0) { 14031 db_printf("invalid length\n"); 14032 return; 14033 } 14034 14035 t4_dump_mem(device_get_softc(dev), addr, count); 14036 } 14037 #endif 14038 14039 static eventhandler_tag vxlan_start_evtag; 14040 static eventhandler_tag vxlan_stop_evtag; 14041 14042 struct vxlan_evargs { 14043 if_t ifp; 14044 uint16_t port; 14045 }; 14046 14047 static void 14048 enable_vxlan_rx(struct adapter *sc) 14049 { 14050 int i, rc; 14051 struct port_info *pi; 14052 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 14053 14054 ASSERT_SYNCHRONIZED_OP(sc); 14055 14056 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) | 14057 F_VXLAN_EN); 14058 for_each_port(sc, i) { 14059 pi = sc->port[i]; 14060 if (pi->vxlan_tcam_entry == true) 14061 continue; 14062 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac, 14063 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 14064 true); 14065 if (rc < 0) { 14066 rc = -rc; 14067 CH_ERR(&pi->vi[0], 14068 "failed to add VXLAN TCAM entry: %d.\n", rc); 14069 } else { 14070 MPASS(rc == sc->rawf_base + pi->port_id); 14071 pi->vxlan_tcam_entry = true; 14072 } 14073 } 14074 } 14075 14076 static void 14077 t4_vxlan_start(struct adapter *sc, void *arg) 14078 { 14079 struct vxlan_evargs *v = arg; 14080 14081 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 14082 return; 14083 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0) 14084 return; 14085 14086 if (sc->vxlan_refcount == 0) { 14087 sc->vxlan_port = v->port; 14088 sc->vxlan_refcount = 1; 14089 if (!hw_off_limits(sc)) 14090 enable_vxlan_rx(sc); 14091 } else if (sc->vxlan_port == v->port) { 14092 sc->vxlan_refcount++; 14093 } else { 14094 CH_ERR(sc, "VXLAN already configured on port %d; " 14095 "ignoring attempt to configure it on port %d\n", 14096 sc->vxlan_port, v->port); 14097 } 14098 end_synchronized_op(sc, 0); 14099 } 14100 14101 static void 14102 t4_vxlan_stop(struct adapter *sc, void *arg) 14103 { 14104 struct vxlan_evargs *v = arg; 14105 14106 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 14107 return; 14108 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0) 14109 return; 14110 14111 /* 14112 * VXLANs may have been configured before the driver was loaded so we 14113 * may see more stops than starts. This is not handled cleanly but at 14114 * least we keep the refcount sane. 14115 */ 14116 if (sc->vxlan_port != v->port) 14117 goto done; 14118 if (sc->vxlan_refcount == 0) { 14119 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; " 14120 "ignoring attempt to stop it again.\n", sc->vxlan_port); 14121 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc)) 14122 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0); 14123 done: 14124 end_synchronized_op(sc, 0); 14125 } 14126 14127 static void 14128 t4_vxlan_start_handler(void *arg __unused, if_t ifp, 14129 sa_family_t family, u_int port) 14130 { 14131 struct vxlan_evargs v; 14132 14133 MPASS(family == AF_INET || family == AF_INET6); 14134 v.ifp = ifp; 14135 v.port = port; 14136 14137 t4_iterate(t4_vxlan_start, &v); 14138 } 14139 14140 static void 14141 t4_vxlan_stop_handler(void *arg __unused, if_t ifp, sa_family_t family, 14142 u_int port) 14143 { 14144 struct vxlan_evargs v; 14145 14146 MPASS(family == AF_INET || family == AF_INET6); 14147 v.ifp = ifp; 14148 v.port = port; 14149 14150 t4_iterate(t4_vxlan_stop, &v); 14151 } 14152 14153 14154 static struct sx mlu; /* mod load unload */ 14155 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload"); 14156 14157 static int 14158 mod_event(module_t mod, int cmd, void *arg) 14159 { 14160 int rc = 0; 14161 static int loaded = 0; 14162 14163 switch (cmd) { 14164 case MOD_LOAD: 14165 sx_xlock(&mlu); 14166 if (loaded++ == 0) { 14167 t4_sge_modload(); 14168 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 14169 t4_filter_rpl, CPL_COOKIE_FILTER); 14170 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, 14171 do_l2t_write_rpl, CPL_COOKIE_FILTER); 14172 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL, 14173 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER); 14174 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 14175 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER); 14176 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, 14177 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER); 14178 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt); 14179 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt); 14180 t4_register_cpl_handler(CPL_SMT_WRITE_RPL, 14181 do_smt_write_rpl); 14182 sx_init(&t4_list_lock, "T4/T5 adapters"); 14183 SLIST_INIT(&t4_list); 14184 callout_init(&fatal_callout, 1); 14185 #ifdef TCP_OFFLOAD 14186 sx_init(&t4_uld_list_lock, "T4/T5 ULDs"); 14187 #endif 14188 #ifdef INET6 14189 t4_clip_modload(); 14190 #endif 14191 #ifdef KERN_TLS 14192 t6_ktls_modload(); 14193 t7_ktls_modload(); 14194 #endif 14195 t4_tracer_modload(); 14196 tweak_tunables(); 14197 vxlan_start_evtag = 14198 EVENTHANDLER_REGISTER(vxlan_start, 14199 t4_vxlan_start_handler, NULL, 14200 EVENTHANDLER_PRI_ANY); 14201 vxlan_stop_evtag = 14202 EVENTHANDLER_REGISTER(vxlan_stop, 14203 t4_vxlan_stop_handler, NULL, 14204 EVENTHANDLER_PRI_ANY); 14205 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK, 14206 taskqueue_thread_enqueue, &reset_tq); 14207 taskqueue_start_threads(&reset_tq, 1, PI_SOFT, 14208 "t4_rst_thr"); 14209 } 14210 sx_xunlock(&mlu); 14211 break; 14212 14213 case MOD_UNLOAD: 14214 sx_xlock(&mlu); 14215 if (--loaded == 0) { 14216 #ifdef TCP_OFFLOAD 14217 int i; 14218 #endif 14219 int tries; 14220 14221 taskqueue_free(reset_tq); 14222 14223 tries = 0; 14224 while (tries++ < 5 && t4_sge_extfree_refs() != 0) { 14225 uprintf("%ju clusters with custom free routine " 14226 "still is use.\n", t4_sge_extfree_refs()); 14227 pause("t4unload", 2 * hz); 14228 } 14229 14230 sx_slock(&t4_list_lock); 14231 if (!SLIST_EMPTY(&t4_list)) { 14232 rc = EBUSY; 14233 sx_sunlock(&t4_list_lock); 14234 goto done_unload; 14235 } 14236 #ifdef TCP_OFFLOAD 14237 sx_slock(&t4_uld_list_lock); 14238 for (i = 0; i <= ULD_MAX; i++) { 14239 if (t4_uld_list[i] != NULL) { 14240 rc = EBUSY; 14241 sx_sunlock(&t4_uld_list_lock); 14242 sx_sunlock(&t4_list_lock); 14243 goto done_unload; 14244 } 14245 } 14246 sx_sunlock(&t4_uld_list_lock); 14247 #endif 14248 sx_sunlock(&t4_list_lock); 14249 14250 if (t4_sge_extfree_refs() == 0) { 14251 EVENTHANDLER_DEREGISTER(vxlan_start, 14252 vxlan_start_evtag); 14253 EVENTHANDLER_DEREGISTER(vxlan_stop, 14254 vxlan_stop_evtag); 14255 t4_tracer_modunload(); 14256 #ifdef KERN_TLS 14257 t7_ktls_modunload(); 14258 t6_ktls_modunload(); 14259 #endif 14260 #ifdef INET6 14261 t4_clip_modunload(); 14262 #endif 14263 #ifdef TCP_OFFLOAD 14264 sx_destroy(&t4_uld_list_lock); 14265 #endif 14266 sx_destroy(&t4_list_lock); 14267 t4_sge_modunload(); 14268 loaded = 0; 14269 } else { 14270 rc = EBUSY; 14271 loaded++; /* undo earlier decrement */ 14272 } 14273 } 14274 done_unload: 14275 sx_xunlock(&mlu); 14276 break; 14277 } 14278 14279 return (rc); 14280 } 14281 14282 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0); 14283 MODULE_VERSION(t4nex, 1); 14284 MODULE_DEPEND(t4nex, firmware, 1, 1, 1); 14285 #ifdef DEV_NETMAP 14286 MODULE_DEPEND(t4nex, netmap, 1, 1, 1); 14287 #endif /* DEV_NETMAP */ 14288 14289 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0); 14290 MODULE_VERSION(t5nex, 1); 14291 MODULE_DEPEND(t5nex, firmware, 1, 1, 1); 14292 #ifdef DEV_NETMAP 14293 MODULE_DEPEND(t5nex, netmap, 1, 1, 1); 14294 #endif /* DEV_NETMAP */ 14295 14296 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0); 14297 MODULE_VERSION(t6nex, 1); 14298 MODULE_DEPEND(t6nex, crypto, 1, 1, 1); 14299 MODULE_DEPEND(t6nex, firmware, 1, 1, 1); 14300 #ifdef DEV_NETMAP 14301 MODULE_DEPEND(t6nex, netmap, 1, 1, 1); 14302 #endif /* DEV_NETMAP */ 14303 14304 DRIVER_MODULE(chnex, pci, ch_driver, mod_event, 0); 14305 MODULE_VERSION(chnex, 1); 14306 MODULE_DEPEND(chnex, crypto, 1, 1, 1); 14307 MODULE_DEPEND(chnex, firmware, 1, 1, 1); 14308 #ifdef DEV_NETMAP 14309 MODULE_DEPEND(chnex, netmap, 1, 1, 1); 14310 #endif /* DEV_NETMAP */ 14311 14312 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0); 14313 MODULE_VERSION(cxgbe, 1); 14314 14315 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0); 14316 MODULE_VERSION(cxl, 1); 14317 14318 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0); 14319 MODULE_VERSION(cc, 1); 14320 14321 DRIVER_MODULE(che, chnex, che_driver, 0, 0); 14322 MODULE_VERSION(che, 1); 14323 14324 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0); 14325 MODULE_VERSION(vcxgbe, 1); 14326 14327 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0); 14328 MODULE_VERSION(vcxl, 1); 14329 14330 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0); 14331 MODULE_VERSION(vcc, 1); 14332 14333 DRIVER_MODULE(vche, che, vche_driver, 0, 0); 14334 MODULE_VERSION(vche, 1); 14335