1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2011, 2025 Chelsio Communications. 5 * Written by: Navdeep Parhar <np@FreeBSD.org> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_ddb.h" 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_kern_tls.h" 34 #include "opt_ratelimit.h" 35 #include "opt_rss.h" 36 37 #include <sys/param.h> 38 #include <sys/conf.h> 39 #include <sys/priv.h> 40 #include <sys/kernel.h> 41 #include <sys/bus.h> 42 #include <sys/eventhandler.h> 43 #include <sys/module.h> 44 #include <sys/malloc.h> 45 #include <sys/queue.h> 46 #include <sys/taskqueue.h> 47 #include <dev/pci/pcireg.h> 48 #include <dev/pci/pcivar.h> 49 #include <sys/firmware.h> 50 #include <sys/sbuf.h> 51 #include <sys/smp.h> 52 #include <sys/socket.h> 53 #include <sys/sockio.h> 54 #include <sys/sysctl.h> 55 #include <net/ethernet.h> 56 #include <net/if.h> 57 #include <net/if_types.h> 58 #include <net/if_dl.h> 59 #include <net/if_vlan_var.h> 60 #include <net/rss_config.h> 61 #include <netinet/in.h> 62 #include <netinet/ip.h> 63 #ifdef KERN_TLS 64 #include <netinet/tcp_seq.h> 65 #endif 66 #if defined(__i386__) || defined(__amd64__) 67 #include <machine/md_var.h> 68 #include <machine/cputypes.h> 69 #include <vm/vm.h> 70 #include <vm/pmap.h> 71 #endif 72 #ifdef DDB 73 #include <ddb/ddb.h> 74 #include <ddb/db_lex.h> 75 #endif 76 77 #include "common/common.h" 78 #include "common/t4_msg.h" 79 #include "common/t4_regs.h" 80 #include "common/t4_regs_values.h" 81 #include "cudbg/cudbg.h" 82 #include "t4_clip.h" 83 #include "t4_ioctl.h" 84 #include "t4_l2t.h" 85 #include "t4_mp_ring.h" 86 #include "t4_if.h" 87 #include "t4_smt.h" 88 89 /* T4 bus driver interface */ 90 static int t4_probe(device_t); 91 static int t4_attach(device_t); 92 static int t4_detach(device_t); 93 static int t4_child_location(device_t, device_t, struct sbuf *); 94 static int t4_ready(device_t); 95 static int t4_read_port_device(device_t, int, device_t *); 96 static int t4_suspend(device_t); 97 static int t4_resume(device_t); 98 static int t4_reset_prepare(device_t, device_t); 99 static int t4_reset_post(device_t, device_t); 100 static device_method_t t4_methods[] = { 101 DEVMETHOD(device_probe, t4_probe), 102 DEVMETHOD(device_attach, t4_attach), 103 DEVMETHOD(device_detach, t4_detach), 104 DEVMETHOD(device_suspend, t4_suspend), 105 DEVMETHOD(device_resume, t4_resume), 106 107 DEVMETHOD(bus_child_location, t4_child_location), 108 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 109 DEVMETHOD(bus_reset_post, t4_reset_post), 110 111 DEVMETHOD(t4_is_main_ready, t4_ready), 112 DEVMETHOD(t4_read_port_device, t4_read_port_device), 113 114 DEVMETHOD_END 115 }; 116 static driver_t t4_driver = { 117 "t4nex", 118 t4_methods, 119 sizeof(struct adapter) 120 }; 121 122 123 /* T4 port (cxgbe) interface */ 124 static int cxgbe_probe(device_t); 125 static int cxgbe_attach(device_t); 126 static int cxgbe_detach(device_t); 127 device_method_t cxgbe_methods[] = { 128 DEVMETHOD(device_probe, cxgbe_probe), 129 DEVMETHOD(device_attach, cxgbe_attach), 130 DEVMETHOD(device_detach, cxgbe_detach), 131 { 0, 0 } 132 }; 133 static driver_t cxgbe_driver = { 134 "cxgbe", 135 cxgbe_methods, 136 sizeof(struct port_info) 137 }; 138 139 /* T4 VI (vcxgbe) interface */ 140 static int vcxgbe_probe(device_t); 141 static int vcxgbe_attach(device_t); 142 static int vcxgbe_detach(device_t); 143 static device_method_t vcxgbe_methods[] = { 144 DEVMETHOD(device_probe, vcxgbe_probe), 145 DEVMETHOD(device_attach, vcxgbe_attach), 146 DEVMETHOD(device_detach, vcxgbe_detach), 147 { 0, 0 } 148 }; 149 static driver_t vcxgbe_driver = { 150 "vcxgbe", 151 vcxgbe_methods, 152 sizeof(struct vi_info) 153 }; 154 155 static d_ioctl_t t4_ioctl; 156 157 static struct cdevsw t4_cdevsw = { 158 .d_version = D_VERSION, 159 .d_ioctl = t4_ioctl, 160 .d_name = "t4nex", 161 }; 162 163 /* T5 bus driver interface */ 164 static int t5_probe(device_t); 165 static device_method_t t5_methods[] = { 166 DEVMETHOD(device_probe, t5_probe), 167 DEVMETHOD(device_attach, t4_attach), 168 DEVMETHOD(device_detach, t4_detach), 169 DEVMETHOD(device_suspend, t4_suspend), 170 DEVMETHOD(device_resume, t4_resume), 171 172 DEVMETHOD(bus_child_location, t4_child_location), 173 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 174 DEVMETHOD(bus_reset_post, t4_reset_post), 175 176 DEVMETHOD(t4_is_main_ready, t4_ready), 177 DEVMETHOD(t4_read_port_device, t4_read_port_device), 178 179 DEVMETHOD_END 180 }; 181 static driver_t t5_driver = { 182 "t5nex", 183 t5_methods, 184 sizeof(struct adapter) 185 }; 186 187 188 /* T5 port (cxl) interface */ 189 static driver_t cxl_driver = { 190 "cxl", 191 cxgbe_methods, 192 sizeof(struct port_info) 193 }; 194 195 /* T5 VI (vcxl) interface */ 196 static driver_t vcxl_driver = { 197 "vcxl", 198 vcxgbe_methods, 199 sizeof(struct vi_info) 200 }; 201 202 /* T6 bus driver interface */ 203 static int t6_probe(device_t); 204 static device_method_t t6_methods[] = { 205 DEVMETHOD(device_probe, t6_probe), 206 DEVMETHOD(device_attach, t4_attach), 207 DEVMETHOD(device_detach, t4_detach), 208 DEVMETHOD(device_suspend, t4_suspend), 209 DEVMETHOD(device_resume, t4_resume), 210 211 DEVMETHOD(bus_child_location, t4_child_location), 212 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 213 DEVMETHOD(bus_reset_post, t4_reset_post), 214 215 DEVMETHOD(t4_is_main_ready, t4_ready), 216 DEVMETHOD(t4_read_port_device, t4_read_port_device), 217 218 DEVMETHOD_END 219 }; 220 static driver_t t6_driver = { 221 "t6nex", 222 t6_methods, 223 sizeof(struct adapter) 224 }; 225 226 227 /* T6 port (cc) interface */ 228 static driver_t cc_driver = { 229 "cc", 230 cxgbe_methods, 231 sizeof(struct port_info) 232 }; 233 234 /* T6 VI (vcc) interface */ 235 static driver_t vcc_driver = { 236 "vcc", 237 vcxgbe_methods, 238 sizeof(struct vi_info) 239 }; 240 241 /* T7+ bus driver interface */ 242 static int ch_probe(device_t); 243 static device_method_t ch_methods[] = { 244 DEVMETHOD(device_probe, ch_probe), 245 DEVMETHOD(device_attach, t4_attach), 246 DEVMETHOD(device_detach, t4_detach), 247 DEVMETHOD(device_suspend, t4_suspend), 248 DEVMETHOD(device_resume, t4_resume), 249 250 DEVMETHOD(bus_child_location, t4_child_location), 251 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 252 DEVMETHOD(bus_reset_post, t4_reset_post), 253 254 DEVMETHOD(t4_is_main_ready, t4_ready), 255 DEVMETHOD(t4_read_port_device, t4_read_port_device), 256 257 DEVMETHOD_END 258 }; 259 static driver_t ch_driver = { 260 "chnex", 261 ch_methods, 262 sizeof(struct adapter) 263 }; 264 265 266 /* T7+ port (che) interface */ 267 static driver_t che_driver = { 268 "che", 269 cxgbe_methods, 270 sizeof(struct port_info) 271 }; 272 273 /* T7+ VI (vche) interface */ 274 static driver_t vche_driver = { 275 "vche", 276 vcxgbe_methods, 277 sizeof(struct vi_info) 278 }; 279 280 /* ifnet interface */ 281 static void cxgbe_init(void *); 282 static int cxgbe_ioctl(if_t, unsigned long, caddr_t); 283 static int cxgbe_transmit(if_t, struct mbuf *); 284 static void cxgbe_qflush(if_t); 285 #if defined(KERN_TLS) || defined(RATELIMIT) 286 static int cxgbe_snd_tag_alloc(if_t, union if_snd_tag_alloc_params *, 287 struct m_snd_tag **); 288 #endif 289 290 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); 291 292 /* 293 * Correct lock order when you need to acquire multiple locks is t4_list_lock, 294 * then ADAPTER_LOCK, then t4_uld_list_lock. 295 */ 296 static struct sx t4_list_lock; 297 SLIST_HEAD(, adapter) t4_list; 298 #ifdef TCP_OFFLOAD 299 static struct sx t4_uld_list_lock; 300 struct uld_info *t4_uld_list[ULD_MAX + 1]; 301 #endif 302 303 /* 304 * Tunables. See tweak_tunables() too. 305 * 306 * Each tunable is set to a default value here if it's known at compile-time. 307 * Otherwise it is set to -n as an indication to tweak_tunables() that it should 308 * provide a reasonable default (upto n) when the driver is loaded. 309 * 310 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to 311 * T5 are under hw.cxl. 312 */ 313 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 314 "cxgbe(4) parameters"); 315 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 316 "cxgbe(4) T5+ parameters"); 317 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 318 "cxgbe(4) TOE parameters"); 319 320 /* 321 * Number of queues for tx and rx, NIC and offload. 322 */ 323 #define NTXQ 16 324 int t4_ntxq = -NTXQ; 325 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0, 326 "Number of TX queues per port"); 327 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */ 328 329 #define NRXQ 8 330 int t4_nrxq = -NRXQ; 331 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0, 332 "Number of RX queues per port"); 333 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */ 334 335 #define NTXQ_VI 1 336 static int t4_ntxq_vi = -NTXQ_VI; 337 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0, 338 "Number of TX queues per VI"); 339 340 #define NRXQ_VI 1 341 static int t4_nrxq_vi = -NRXQ_VI; 342 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0, 343 "Number of RX queues per VI"); 344 345 static int t4_rsrv_noflowq = 0; 346 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq, 347 0, "Reserve TX queue 0 of each VI for non-flowid packets"); 348 349 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 350 #define NOFLDTXQ 8 351 static int t4_nofldtxq = -NOFLDTXQ; 352 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0, 353 "Number of offload TX queues per port"); 354 355 #define NOFLDTXQ_VI 1 356 static int t4_nofldtxq_vi = -NOFLDTXQ_VI; 357 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0, 358 "Number of offload TX queues per VI"); 359 #endif 360 361 #if defined(TCP_OFFLOAD) 362 #define NOFLDRXQ 2 363 static int t4_nofldrxq = -NOFLDRXQ; 364 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0, 365 "Number of offload RX queues per port"); 366 367 #define NOFLDRXQ_VI 1 368 static int t4_nofldrxq_vi = -NOFLDRXQ_VI; 369 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0, 370 "Number of offload RX queues per VI"); 371 372 #define TMR_IDX_OFLD 1 373 static int t4_tmr_idx_ofld = TMR_IDX_OFLD; 374 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN, 375 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues"); 376 377 #define PKTC_IDX_OFLD (-1) 378 static int t4_pktc_idx_ofld = PKTC_IDX_OFLD; 379 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN, 380 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues"); 381 382 /* 0 means chip/fw default, non-zero number is value in microseconds */ 383 static u_long t4_toe_keepalive_idle = 0; 384 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN, 385 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)"); 386 387 /* 0 means chip/fw default, non-zero number is value in microseconds */ 388 static u_long t4_toe_keepalive_interval = 0; 389 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN, 390 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)"); 391 392 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */ 393 static int t4_toe_keepalive_count = 0; 394 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN, 395 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort"); 396 397 /* 0 means chip/fw default, non-zero number is value in microseconds */ 398 static u_long t4_toe_rexmt_min = 0; 399 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN, 400 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)"); 401 402 /* 0 means chip/fw default, non-zero number is value in microseconds */ 403 static u_long t4_toe_rexmt_max = 0; 404 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN, 405 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)"); 406 407 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */ 408 static int t4_toe_rexmt_count = 0; 409 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN, 410 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort"); 411 412 /* -1 means chip/fw default, other values are raw backoff values to use */ 413 static int t4_toe_rexmt_backoff[16] = { 414 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 415 }; 416 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, 417 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 418 "cxgbe(4) TOE retransmit backoff values"); 419 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN, 420 &t4_toe_rexmt_backoff[0], 0, ""); 421 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN, 422 &t4_toe_rexmt_backoff[1], 0, ""); 423 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN, 424 &t4_toe_rexmt_backoff[2], 0, ""); 425 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN, 426 &t4_toe_rexmt_backoff[3], 0, ""); 427 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN, 428 &t4_toe_rexmt_backoff[4], 0, ""); 429 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN, 430 &t4_toe_rexmt_backoff[5], 0, ""); 431 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN, 432 &t4_toe_rexmt_backoff[6], 0, ""); 433 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN, 434 &t4_toe_rexmt_backoff[7], 0, ""); 435 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN, 436 &t4_toe_rexmt_backoff[8], 0, ""); 437 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN, 438 &t4_toe_rexmt_backoff[9], 0, ""); 439 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN, 440 &t4_toe_rexmt_backoff[10], 0, ""); 441 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN, 442 &t4_toe_rexmt_backoff[11], 0, ""); 443 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN, 444 &t4_toe_rexmt_backoff[12], 0, ""); 445 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN, 446 &t4_toe_rexmt_backoff[13], 0, ""); 447 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN, 448 &t4_toe_rexmt_backoff[14], 0, ""); 449 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN, 450 &t4_toe_rexmt_backoff[15], 0, ""); 451 452 int t4_ddp_rcvbuf_len = 256 * 1024; 453 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_len, CTLFLAG_RWTUN, 454 &t4_ddp_rcvbuf_len, 0, "length of each DDP RX buffer"); 455 456 unsigned int t4_ddp_rcvbuf_cache = 4; 457 SYSCTL_UINT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_cache, CTLFLAG_RWTUN, 458 &t4_ddp_rcvbuf_cache, 0, 459 "maximum number of free DDP RX buffers to cache per connection"); 460 #endif 461 462 #ifdef DEV_NETMAP 463 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */ 464 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */ 465 static int t4_native_netmap = NN_EXTRA_VI; 466 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap, 467 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs"); 468 469 #define NNMTXQ 8 470 static int t4_nnmtxq = -NNMTXQ; 471 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0, 472 "Number of netmap TX queues"); 473 474 #define NNMRXQ 8 475 static int t4_nnmrxq = -NNMRXQ; 476 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0, 477 "Number of netmap RX queues"); 478 479 #define NNMTXQ_VI 2 480 static int t4_nnmtxq_vi = -NNMTXQ_VI; 481 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0, 482 "Number of netmap TX queues per VI"); 483 484 #define NNMRXQ_VI 2 485 static int t4_nnmrxq_vi = -NNMRXQ_VI; 486 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0, 487 "Number of netmap RX queues per VI"); 488 #endif 489 490 /* 491 * Holdoff parameters for ports. 492 */ 493 #define TMR_IDX 1 494 int t4_tmr_idx = TMR_IDX; 495 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx, 496 0, "Holdoff timer index"); 497 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */ 498 499 #define PKTC_IDX (-1) 500 int t4_pktc_idx = PKTC_IDX; 501 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx, 502 0, "Holdoff packet counter index"); 503 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */ 504 505 /* 506 * Size (# of entries) of each tx and rx queue. 507 */ 508 unsigned int t4_qsize_txq = TX_EQ_QSIZE; 509 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0, 510 "Number of descriptors in each TX queue"); 511 512 unsigned int t4_qsize_rxq = RX_IQ_QSIZE; 513 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0, 514 "Number of descriptors in each RX queue"); 515 516 /* 517 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). 518 */ 519 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; 520 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types, 521 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)"); 522 523 /* 524 * Configuration file. All the _CF names here are special. 525 */ 526 #define DEFAULT_CF "default" 527 #define BUILTIN_CF "built-in" 528 #define FLASH_CF "flash" 529 #define UWIRE_CF "uwire" 530 #define FPGA_CF "fpga" 531 static char t4_cfg_file[32] = DEFAULT_CF; 532 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file, 533 sizeof(t4_cfg_file), "Firmware configuration file"); 534 535 /* 536 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively). 537 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them. 538 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water 539 * mark or when signalled to do so, 0 to never emit PAUSE. 540 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the 541 * negotiated settings will override rx_pause/tx_pause. 542 * Otherwise rx_pause/tx_pause are applied forcibly. 543 */ 544 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG; 545 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN, 546 &t4_pause_settings, 0, 547 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 548 549 /* 550 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively). 551 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5) 552 * 0 to disable FEC. 553 */ 554 static int t4_fec = -1; 555 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0, 556 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); 557 558 static const char * 559 t4_fec_bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2\6auto\7module"; 560 561 /* 562 * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it 563 * issues to the firmware. If the firmware doesn't support FORCE_FEC then the 564 * driver runs as if this is set to 0. 565 * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay. 566 * 0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the 567 * transceiver. Multiple FEC bits may not be okay but will be passed on to 568 * the firmware anyway (may result in l1cfg errors with old firmwares). 569 * 1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO 570 * means set all FEC bits that are valid for the speed. 571 */ 572 static int t4_force_fec = -1; 573 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0, 574 "Controls the use of FORCE_FEC bit in L1 configuration."); 575 576 /* 577 * Link autonegotiation. 578 * -1 to run with the firmware default. 579 * 0 to disable. 580 * 1 to enable. 581 */ 582 static int t4_autoneg = -1; 583 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0, 584 "Link autonegotiation"); 585 586 /* 587 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, 588 * encouraged respectively). '-n' is the same as 'n' except the firmware 589 * version used in the checks is read from the firmware bundled with the driver. 590 */ 591 static int t4_fw_install = 1; 592 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0, 593 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)"); 594 595 /* 596 * ASIC features that will be used. Disable the ones you don't want so that the 597 * chip resources aren't wasted on features that will not be used. 598 */ 599 static int t4_nbmcaps_allowed = 0; 600 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN, 601 &t4_nbmcaps_allowed, 0, "Default NBM capabilities"); 602 603 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ 604 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN, 605 &t4_linkcaps_allowed, 0, "Default link capabilities"); 606 607 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS | 608 FW_CAPS_CONFIG_SWITCH_EGRESS; 609 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN, 610 &t4_switchcaps_allowed, 0, "Default switch capabilities"); 611 612 static int t4_nvmecaps_allowed = -1; 613 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nvmecaps_allowed, CTLFLAG_RDTUN, 614 &t4_nvmecaps_allowed, 0, "Default NVMe capabilities"); 615 616 #ifdef RATELIMIT 617 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 618 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD; 619 #else 620 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 621 FW_CAPS_CONFIG_NIC_HASHFILTER; 622 #endif 623 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN, 624 &t4_niccaps_allowed, 0, "Default NIC capabilities"); 625 626 static int t4_toecaps_allowed = -1; 627 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN, 628 &t4_toecaps_allowed, 0, "Default TCP offload capabilities"); 629 630 static int t4_rdmacaps_allowed = -1; 631 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN, 632 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities"); 633 634 static int t4_cryptocaps_allowed = -1; 635 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN, 636 &t4_cryptocaps_allowed, 0, "Default crypto capabilities"); 637 638 static int t4_iscsicaps_allowed = -1; 639 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN, 640 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities"); 641 642 static int t4_fcoecaps_allowed = 0; 643 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN, 644 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities"); 645 646 static int t5_write_combine = 0; 647 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine, 648 0, "Use WC instead of UC for BAR2"); 649 650 /* From t4_sysctls: doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"} */ 651 static int t4_doorbells_allowed = 0xf; 652 SYSCTL_INT(_hw_cxgbe, OID_AUTO, doorbells_allowed, CTLFLAG_RDTUN, 653 &t4_doorbells_allowed, 0, "Limit tx queues to these doorbells"); 654 655 static int t4_num_vis = 1; 656 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0, 657 "Number of VIs per port"); 658 659 /* 660 * PCIe Relaxed Ordering. 661 * -1: driver should figure out a good value. 662 * 0: disable RO. 663 * 1: enable RO. 664 * 2: leave RO alone. 665 */ 666 static int pcie_relaxed_ordering = -1; 667 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN, 668 &pcie_relaxed_ordering, 0, 669 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone"); 670 671 static int t4_panic_on_fatal_err = 0; 672 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN, 673 &t4_panic_on_fatal_err, 0, "panic on fatal errors"); 674 675 static int t4_reset_on_fatal_err = 0; 676 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN, 677 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors"); 678 679 static int t4_reset_method = 1; 680 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_method, CTLFLAG_RWTUN, &t4_reset_method, 681 0, "reset method: 0 = PL_RST, 1 = PCIe secondary bus reset, 2 = PCIe link bounce"); 682 683 static int t4_clock_gate_on_suspend = 0; 684 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN, 685 &t4_clock_gate_on_suspend, 0, "gate the clock on suspend"); 686 687 static int t4_tx_vm_wr = 0; 688 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0, 689 "Use VM work requests to transmit packets."); 690 691 /* 692 * Set to non-zero to enable the attack filter. A packet that matches any of 693 * these conditions will get dropped on ingress: 694 * 1) IP && source address == destination address. 695 * 2) TCP/IP && source address is not a unicast address. 696 * 3) TCP/IP && destination address is not a unicast address. 697 * 4) IP && source address is loopback (127.x.y.z). 698 * 5) IP && destination address is loopback (127.x.y.z). 699 * 6) IPv6 && source address == destination address. 700 * 7) IPv6 && source address is not a unicast address. 701 * 8) IPv6 && source address is loopback (::1/128). 702 * 9) IPv6 && destination address is loopback (::1/128). 703 * 10) IPv6 && source address is unspecified (::/128). 704 * 11) IPv6 && destination address is unspecified (::/128). 705 * 12) TCP/IPv6 && source address is multicast (ff00::/8). 706 * 13) TCP/IPv6 && destination address is multicast (ff00::/8). 707 */ 708 static int t4_attack_filter = 0; 709 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN, 710 &t4_attack_filter, 0, "Drop suspicious traffic"); 711 712 static int t4_drop_ip_fragments = 0; 713 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN, 714 &t4_drop_ip_fragments, 0, "Drop IP fragments"); 715 716 static int t4_drop_pkts_with_l2_errors = 1; 717 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN, 718 &t4_drop_pkts_with_l2_errors, 0, 719 "Drop all frames with Layer 2 length or checksum errors"); 720 721 static int t4_drop_pkts_with_l3_errors = 0; 722 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN, 723 &t4_drop_pkts_with_l3_errors, 0, 724 "Drop all frames with IP version, length, or checksum errors"); 725 726 static int t4_drop_pkts_with_l4_errors = 0; 727 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN, 728 &t4_drop_pkts_with_l4_errors, 0, 729 "Drop all frames with Layer 4 length, checksum, or other errors"); 730 731 #ifdef TCP_OFFLOAD 732 /* 733 * TOE tunables. 734 */ 735 static int t4_cop_managed_offloading = 0; 736 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN, 737 &t4_cop_managed_offloading, 0, 738 "COP (Connection Offload Policy) controls all TOE offload"); 739 TUNABLE_INT("hw.cxgbe.cop_managed_offloading", &t4_cop_managed_offloading); 740 #endif 741 742 #ifdef KERN_TLS 743 /* 744 * This enables KERN_TLS for all adapters if set. 745 */ 746 static int t4_kern_tls = 0; 747 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0, 748 "Enable KERN_TLS mode for T6 adapters"); 749 750 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 751 "cxgbe(4) KERN_TLS parameters"); 752 753 static int t4_tls_inline_keys = 0; 754 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN, 755 &t4_tls_inline_keys, 0, 756 "Always pass TLS keys in work requests (1) or attempt to store TLS keys " 757 "in card memory."); 758 759 static int t4_tls_combo_wrs = 0; 760 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs, 761 0, "Attempt to combine TCB field updates with TLS record work requests."); 762 763 static int t4_tls_short_records = 1; 764 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, short_records, CTLFLAG_RDTUN, 765 &t4_tls_short_records, 0, "Use cipher-only mode for short records."); 766 767 static int t4_tls_partial_ghash = 1; 768 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, partial_ghash, CTLFLAG_RDTUN, 769 &t4_tls_partial_ghash, 0, "Use partial GHASH for AES-GCM records."); 770 #endif 771 772 /* Functions used by VIs to obtain unique MAC addresses for each VI. */ 773 static int vi_mac_funcs[] = { 774 FW_VI_FUNC_ETH, 775 FW_VI_FUNC_OFLD, 776 FW_VI_FUNC_IWARP, 777 FW_VI_FUNC_OPENISCSI, 778 FW_VI_FUNC_OPENFCOE, 779 FW_VI_FUNC_FOISCSI, 780 FW_VI_FUNC_FOFCOE, 781 }; 782 783 struct intrs_and_queues { 784 uint16_t intr_type; /* INTx, MSI, or MSI-X */ 785 uint16_t num_vis; /* number of VIs for each port */ 786 uint16_t nirq; /* Total # of vectors */ 787 uint16_t ntxq; /* # of NIC txq's for each port */ 788 uint16_t nrxq; /* # of NIC rxq's for each port */ 789 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */ 790 uint16_t nofldrxq; /* # of TOE rxq's for each port */ 791 uint16_t nnmtxq; /* # of netmap txq's */ 792 uint16_t nnmrxq; /* # of netmap rxq's */ 793 794 /* The vcxgbe/vcxl interfaces use these and not the ones above. */ 795 uint16_t ntxq_vi; /* # of NIC txq's */ 796 uint16_t nrxq_vi; /* # of NIC rxq's */ 797 uint16_t nofldtxq_vi; /* # of TOE txq's */ 798 uint16_t nofldrxq_vi; /* # of TOE rxq's */ 799 uint16_t nnmtxq_vi; /* # of netmap txq's */ 800 uint16_t nnmrxq_vi; /* # of netmap rxq's */ 801 }; 802 803 static void setup_memwin(struct adapter *); 804 static void position_memwin(struct adapter *, int, uint32_t); 805 static int validate_mem_range(struct adapter *, uint32_t, uint32_t); 806 static int fwmtype_to_hwmtype(int); 807 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t, 808 uint32_t *); 809 static int fixup_devlog_params(struct adapter *); 810 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *); 811 static int contact_firmware(struct adapter *); 812 static int partition_resources(struct adapter *); 813 static int get_params__pre_init(struct adapter *); 814 static int set_params__pre_init(struct adapter *); 815 static int get_params__post_init(struct adapter *); 816 static int set_params__post_init(struct adapter *); 817 static void t4_set_desc(struct adapter *); 818 static bool fixed_ifmedia(struct port_info *); 819 static void build_medialist(struct port_info *); 820 static void init_link_config(struct port_info *); 821 static int fixup_link_config(struct port_info *); 822 static int apply_link_config(struct port_info *); 823 static int cxgbe_init_synchronized(struct vi_info *); 824 static int cxgbe_uninit_synchronized(struct vi_info *); 825 static int adapter_full_init(struct adapter *); 826 static void adapter_full_uninit(struct adapter *); 827 static int vi_full_init(struct vi_info *); 828 static void vi_full_uninit(struct vi_info *); 829 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *); 830 static void quiesce_txq(struct sge_txq *); 831 static void quiesce_wrq(struct sge_wrq *); 832 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *); 833 static void quiesce_vi(struct vi_info *); 834 static int t4_alloc_irq(struct adapter *, struct irq *, int rid, 835 driver_intr_t *, void *, char *); 836 static int t4_free_irq(struct adapter *, struct irq *); 837 static void t4_init_atid_table(struct adapter *); 838 static void t4_free_atid_table(struct adapter *); 839 static void stop_atid_allocator(struct adapter *); 840 static void restart_atid_allocator(struct adapter *); 841 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *); 842 static void vi_refresh_stats(struct vi_info *); 843 static void cxgbe_refresh_stats(struct vi_info *); 844 static void cxgbe_tick(void *); 845 static void vi_tick(void *); 846 static void cxgbe_sysctls(struct port_info *); 847 static int sysctl_int_array(SYSCTL_HANDLER_ARGS); 848 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS); 849 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS); 850 static int sysctl_btphy(SYSCTL_HANDLER_ARGS); 851 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS); 852 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS); 853 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); 854 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); 855 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); 856 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); 857 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS); 858 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS); 859 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS); 860 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS); 861 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS); 862 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS); 863 static int sysctl_handle_t4_portstat64(SYSCTL_HANDLER_ARGS); 864 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); 865 static int sysctl_temperature(SYSCTL_HANDLER_ARGS); 866 static int sysctl_vdd(SYSCTL_HANDLER_ARGS); 867 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS); 868 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS); 869 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); 870 static int sysctl_cim_ibq(SYSCTL_HANDLER_ARGS); 871 static int sysctl_cim_obq(SYSCTL_HANDLER_ARGS); 872 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); 873 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); 874 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); 875 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); 876 static int sysctl_cim_qcfg_t7(SYSCTL_HANDLER_ARGS); 877 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); 878 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); 879 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS); 880 static int sysctl_devlog(SYSCTL_HANDLER_ARGS); 881 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); 882 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); 883 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); 884 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); 885 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); 886 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); 887 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS); 888 static int sysctl_mps_tcam_t7(SYSCTL_HANDLER_ARGS); 889 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); 890 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); 891 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); 892 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); 893 static int sysctl_tids(SYSCTL_HANDLER_ARGS); 894 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); 895 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS); 896 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS); 897 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); 898 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); 899 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); 900 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); 901 static int sysctl_cpus(SYSCTL_HANDLER_ARGS); 902 static int sysctl_reset(SYSCTL_HANDLER_ARGS); 903 #ifdef TCP_OFFLOAD 904 static int sysctl_tls(SYSCTL_HANDLER_ARGS); 905 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS); 906 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS); 907 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS); 908 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS); 909 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS); 910 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS); 911 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS); 912 #endif 913 static int get_sge_context(struct adapter *, int, uint32_t, int, uint32_t *); 914 static int load_fw(struct adapter *, struct t4_data *); 915 static int load_cfg(struct adapter *, struct t4_data *); 916 static int load_boot(struct adapter *, struct t4_bootrom *); 917 static int load_bootcfg(struct adapter *, struct t4_data *); 918 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *); 919 static void free_offload_policy(struct t4_offload_policy *); 920 static int set_offload_policy(struct adapter *, struct t4_offload_policy *); 921 static int read_card_mem(struct adapter *, int, struct t4_mem_range *); 922 static int read_i2c(struct adapter *, struct t4_i2c_data *); 923 static int clear_stats(struct adapter *, u_int); 924 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *); 925 static int release_clip_addr(struct adapter *, struct t4_clip_addr *); 926 static inline int stop_adapter(struct adapter *); 927 static inline void set_adapter_hwstatus(struct adapter *, const bool); 928 static int stop_lld(struct adapter *); 929 static inline int restart_adapter(struct adapter *); 930 static int restart_lld(struct adapter *); 931 #ifdef TCP_OFFLOAD 932 static int deactivate_all_uld(struct adapter *); 933 static void stop_all_uld(struct adapter *); 934 static void restart_all_uld(struct adapter *); 935 #endif 936 #ifdef KERN_TLS 937 static int ktls_capability(struct adapter *, bool); 938 #endif 939 static int mod_event(module_t, int, void *); 940 static int notify_siblings(device_t, int); 941 static uint64_t vi_get_counter(if_t, ift_counter); 942 static uint64_t cxgbe_get_counter(if_t, ift_counter); 943 static void enable_vxlan_rx(struct adapter *); 944 static void reset_adapter_task(void *, int); 945 static void fatal_error_task(void *, int); 946 static void dump_devlog(struct adapter *); 947 static void dump_cim_regs(struct adapter *); 948 static void dump_cimla(struct adapter *); 949 950 struct { 951 uint16_t device; 952 char *desc; 953 } t4_pciids[] = { 954 {0xa000, "Chelsio Terminator 4 FPGA"}, 955 {0x4400, "Chelsio T440-dbg"}, 956 {0x4401, "Chelsio T420-CR"}, 957 {0x4402, "Chelsio T422-CR"}, 958 {0x4403, "Chelsio T440-CR"}, 959 {0x4404, "Chelsio T420-BCH"}, 960 {0x4405, "Chelsio T440-BCH"}, 961 {0x4406, "Chelsio T440-CH"}, 962 {0x4407, "Chelsio T420-SO"}, 963 {0x4408, "Chelsio T420-CX"}, 964 {0x4409, "Chelsio T420-BT"}, 965 {0x440a, "Chelsio T404-BT"}, 966 {0x440e, "Chelsio T440-LP-CR"}, 967 }, t5_pciids[] = { 968 {0xb000, "Chelsio Terminator 5 FPGA"}, 969 {0x5400, "Chelsio T580-dbg"}, 970 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ 971 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ 972 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ 973 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ 974 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ 975 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ 976 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ 977 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ 978 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ 979 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ 980 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ 981 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ 982 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */ 983 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */ 984 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */ 985 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */ 986 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */ 987 988 /* Custom */ 989 {0x5483, "Custom T540-CR"}, 990 {0x5484, "Custom T540-BT"}, 991 }, t6_pciids[] = { 992 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */ 993 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */ 994 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */ 995 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */ 996 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */ 997 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */ 998 {0x6405, "Chelsio T6225-SO-OCP3"}, /* 2 x 10/25G, nomem */ 999 {0x6406, "Chelsio T6225-OCP3"}, /* 2 x 10/25G */ 1000 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */ 1001 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */ 1002 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */ 1003 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */ 1004 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */ 1005 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */ 1006 {0x6414, "Chelsio T62100-SO-OCP3"}, /* 2 x 40/50/100G, nomem */ 1007 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */ 1008 1009 /* Custom */ 1010 {0x6480, "Custom T6225-CR"}, 1011 {0x6481, "Custom T62100-CR"}, 1012 {0x6482, "Custom T6225-CR"}, 1013 {0x6483, "Custom T62100-CR"}, 1014 {0x6484, "Custom T64100-CR"}, 1015 {0x6485, "Custom T6240-SO"}, 1016 {0x6486, "Custom T6225-SO-CR"}, 1017 {0x6487, "Custom T6225-CR"}, 1018 }, t7_pciids[] = { 1019 {0xd000, "Chelsio Terminator 7 FPGA"}, /* T7 PE12K FPGA */ 1020 {0x7400, "Chelsio T72200-DBG"}, /* 2 x 200G, debug */ 1021 {0x7401, "Chelsio T7250"}, /* 2 x 10/25/50G, 1 mem */ 1022 {0x7402, "Chelsio S7250"}, /* 2 x 10/25/50G, nomem */ 1023 {0x7403, "Chelsio T7450"}, /* 4 x 10/25/50G, 1 mem */ 1024 {0x7404, "Chelsio S7450"}, /* 4 x 10/25/50G, nomem */ 1025 {0x7405, "Chelsio T72200"}, /* 2 x 40/100/200G, 1 mem */ 1026 {0x7406, "Chelsio S72200"}, /* 2 x 40/100/200G, nomem */ 1027 {0x7407, "Chelsio T72200-FH"}, /* 2 x 40/100/200G, 2 mem */ 1028 {0x7408, "Chelsio S71400"}, /* 1 x 400G, nomem */ 1029 {0x7409, "Chelsio S7210-BT"}, /* 2 x 10GBASE-T, nomem */ 1030 {0x740a, "Chelsio T7450-RC"}, /* 4 x 10/25/50G, 1 mem, RC */ 1031 {0x740b, "Chelsio T72200-RC"}, /* 2 x 40/100/200G, 1 mem, RC */ 1032 {0x740c, "Chelsio T72200-FH-RC"}, /* 2 x 40/100/200G, 2 mem, RC */ 1033 {0x740d, "Chelsio S72200-OCP3"}, /* 2 x 40/100/200G OCP3 */ 1034 {0x740e, "Chelsio S7450-OCP3"}, /* 4 x 1/20/25/50G OCP3 */ 1035 {0x740f, "Chelsio S7410-BT-OCP3"}, /* 4 x 10GBASE-T OCP3 */ 1036 {0x7410, "Chelsio S7210-BT-A"}, /* 2 x 10GBASE-T */ 1037 {0x7411, "Chelsio T7_MAYRA_7"}, /* Motherboard */ 1038 1039 /* Custom */ 1040 {0x7480, "Custom T7"}, 1041 }; 1042 1043 #ifdef TCP_OFFLOAD 1044 /* 1045 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should 1046 * be exactly the same for both rxq and ofld_rxq. 1047 */ 1048 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); 1049 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); 1050 #endif 1051 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE); 1052 1053 static int 1054 t4_probe(device_t dev) 1055 { 1056 int i; 1057 uint16_t v = pci_get_vendor(dev); 1058 uint16_t d = pci_get_device(dev); 1059 uint8_t f = pci_get_function(dev); 1060 1061 if (v != PCI_VENDOR_ID_CHELSIO) 1062 return (ENXIO); 1063 1064 /* Attach only to PF0 of the FPGA */ 1065 if (d == 0xa000 && f != 0) 1066 return (ENXIO); 1067 1068 for (i = 0; i < nitems(t4_pciids); i++) { 1069 if (d == t4_pciids[i].device) { 1070 device_set_desc(dev, t4_pciids[i].desc); 1071 return (BUS_PROBE_DEFAULT); 1072 } 1073 } 1074 1075 return (ENXIO); 1076 } 1077 1078 static int 1079 t5_probe(device_t dev) 1080 { 1081 int i; 1082 uint16_t v = pci_get_vendor(dev); 1083 uint16_t d = pci_get_device(dev); 1084 uint8_t f = pci_get_function(dev); 1085 1086 if (v != PCI_VENDOR_ID_CHELSIO) 1087 return (ENXIO); 1088 1089 /* Attach only to PF0 of the FPGA */ 1090 if (d == 0xb000 && f != 0) 1091 return (ENXIO); 1092 1093 for (i = 0; i < nitems(t5_pciids); i++) { 1094 if (d == t5_pciids[i].device) { 1095 device_set_desc(dev, t5_pciids[i].desc); 1096 return (BUS_PROBE_DEFAULT); 1097 } 1098 } 1099 1100 return (ENXIO); 1101 } 1102 1103 static int 1104 t6_probe(device_t dev) 1105 { 1106 int i; 1107 uint16_t v = pci_get_vendor(dev); 1108 uint16_t d = pci_get_device(dev); 1109 1110 if (v != PCI_VENDOR_ID_CHELSIO) 1111 return (ENXIO); 1112 1113 for (i = 0; i < nitems(t6_pciids); i++) { 1114 if (d == t6_pciids[i].device) { 1115 device_set_desc(dev, t6_pciids[i].desc); 1116 return (BUS_PROBE_DEFAULT); 1117 } 1118 } 1119 1120 return (ENXIO); 1121 } 1122 1123 static int 1124 ch_probe(device_t dev) 1125 { 1126 int i; 1127 uint16_t v = pci_get_vendor(dev); 1128 uint16_t d = pci_get_device(dev); 1129 uint8_t f = pci_get_function(dev); 1130 1131 if (v != PCI_VENDOR_ID_CHELSIO) 1132 return (ENXIO); 1133 1134 /* Attach only to PF0 of the FPGA */ 1135 if (d == 0xd000 && f != 0) 1136 return (ENXIO); 1137 1138 for (i = 0; i < nitems(t7_pciids); i++) { 1139 if (d == t7_pciids[i].device) { 1140 device_set_desc(dev, t7_pciids[i].desc); 1141 return (BUS_PROBE_DEFAULT); 1142 } 1143 } 1144 1145 return (ENXIO); 1146 } 1147 1148 static void 1149 t5_attribute_workaround(device_t dev) 1150 { 1151 device_t root_port; 1152 uint32_t v; 1153 1154 /* 1155 * The T5 chips do not properly echo the No Snoop and Relaxed 1156 * Ordering attributes when replying to a TLP from a Root 1157 * Port. As a workaround, find the parent Root Port and 1158 * disable No Snoop and Relaxed Ordering. Note that this 1159 * affects all devices under this root port. 1160 */ 1161 root_port = pci_find_pcie_root_port(dev); 1162 if (root_port == NULL) { 1163 device_printf(dev, "Unable to find parent root port\n"); 1164 return; 1165 } 1166 1167 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL, 1168 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2); 1169 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) != 1170 0) 1171 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n", 1172 device_get_nameunit(root_port)); 1173 } 1174 1175 static const struct devnames devnames[] = { 1176 { 1177 .nexus_name = "t4nex", 1178 .ifnet_name = "cxgbe", 1179 .vi_ifnet_name = "vcxgbe", 1180 .pf03_drv_name = "t4iov", 1181 .vf_nexus_name = "t4vf", 1182 .vf_ifnet_name = "cxgbev" 1183 }, { 1184 .nexus_name = "t5nex", 1185 .ifnet_name = "cxl", 1186 .vi_ifnet_name = "vcxl", 1187 .pf03_drv_name = "t5iov", 1188 .vf_nexus_name = "t5vf", 1189 .vf_ifnet_name = "cxlv" 1190 }, { 1191 .nexus_name = "t6nex", 1192 .ifnet_name = "cc", 1193 .vi_ifnet_name = "vcc", 1194 .pf03_drv_name = "t6iov", 1195 .vf_nexus_name = "t6vf", 1196 .vf_ifnet_name = "ccv" 1197 }, { 1198 .nexus_name = "chnex", 1199 .ifnet_name = "che", 1200 .vi_ifnet_name = "vche", 1201 .pf03_drv_name = "chiov", 1202 .vf_nexus_name = "chvf", 1203 .vf_ifnet_name = "chev" 1204 } 1205 }; 1206 1207 void 1208 t4_init_devnames(struct adapter *sc) 1209 { 1210 int id; 1211 1212 id = chip_id(sc); 1213 if (id < CHELSIO_T4) { 1214 device_printf(sc->dev, "chip id %d is not supported.\n", id); 1215 sc->names = NULL; 1216 } else if (id - CHELSIO_T4 < nitems(devnames)) 1217 sc->names = &devnames[id - CHELSIO_T4]; 1218 else 1219 sc->names = &devnames[nitems(devnames) - 1]; 1220 } 1221 1222 static int 1223 t4_ifnet_unit(struct adapter *sc, struct port_info *pi) 1224 { 1225 const char *parent, *name; 1226 long value; 1227 int line, unit; 1228 1229 line = 0; 1230 parent = device_get_nameunit(sc->dev); 1231 name = sc->names->ifnet_name; 1232 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) { 1233 if (resource_long_value(name, unit, "port", &value) == 0 && 1234 value == pi->port_id) 1235 return (unit); 1236 } 1237 return (-1); 1238 } 1239 1240 static void 1241 t4_calibration(void *arg) 1242 { 1243 struct adapter *sc; 1244 struct clock_sync *cur, *nex; 1245 uint64_t hw; 1246 sbintime_t sbt; 1247 int next_up; 1248 1249 sc = (struct adapter *)arg; 1250 1251 KASSERT(hw_all_ok(sc), ("!hw_all_ok at t4_calibration")); 1252 hw = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO); 1253 sbt = sbinuptime(); 1254 1255 cur = &sc->cal_info[sc->cal_current]; 1256 next_up = (sc->cal_current + 1) % CNT_CAL_INFO; 1257 nex = &sc->cal_info[next_up]; 1258 if (__predict_false(sc->cal_count == 0)) { 1259 /* First time in, just get the values in */ 1260 cur->hw_cur = hw; 1261 cur->sbt_cur = sbt; 1262 sc->cal_count++; 1263 goto done; 1264 } 1265 1266 if (cur->hw_cur == hw) { 1267 /* The clock is not advancing? */ 1268 sc->cal_count = 0; 1269 atomic_store_rel_int(&cur->gen, 0); 1270 goto done; 1271 } 1272 1273 seqc_write_begin(&nex->gen); 1274 nex->hw_prev = cur->hw_cur; 1275 nex->sbt_prev = cur->sbt_cur; 1276 nex->hw_cur = hw; 1277 nex->sbt_cur = sbt; 1278 seqc_write_end(&nex->gen); 1279 sc->cal_current = next_up; 1280 done: 1281 callout_reset_sbt_curcpu(&sc->cal_callout, SBT_1S, 0, t4_calibration, 1282 sc, C_DIRECT_EXEC); 1283 } 1284 1285 static void 1286 t4_calibration_start(struct adapter *sc) 1287 { 1288 /* 1289 * Here if we have not done a calibration 1290 * then do so otherwise start the appropriate 1291 * timer. 1292 */ 1293 int i; 1294 1295 for (i = 0; i < CNT_CAL_INFO; i++) { 1296 sc->cal_info[i].gen = 0; 1297 } 1298 sc->cal_current = 0; 1299 sc->cal_count = 0; 1300 sc->cal_gen = 0; 1301 t4_calibration(sc); 1302 } 1303 1304 static int 1305 t4_attach(device_t dev) 1306 { 1307 struct adapter *sc; 1308 int rc = 0, i, j, rqidx, tqidx, nports; 1309 struct make_dev_args mda; 1310 struct intrs_and_queues iaq; 1311 struct sge *s; 1312 uint32_t *buf; 1313 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1314 int ofld_tqidx; 1315 #endif 1316 #ifdef TCP_OFFLOAD 1317 int ofld_rqidx; 1318 #endif 1319 #ifdef DEV_NETMAP 1320 int nm_rqidx, nm_tqidx; 1321 #endif 1322 int num_vis; 1323 1324 sc = device_get_softc(dev); 1325 sc->dev = dev; 1326 sysctl_ctx_init(&sc->ctx); 1327 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags); 1328 if (TUNABLE_INT_FETCH("hw.cxgbe.iflags", &sc->intr_flags) == 0) 1329 sc->intr_flags = IHF_INTR_CLEAR_ON_INIT | IHF_CLR_ALL_UNIGNORED; 1330 1331 if ((pci_get_device(dev) & 0xff00) == 0x5400) 1332 t5_attribute_workaround(dev); 1333 pci_enable_busmaster(dev); 1334 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 1335 uint32_t v; 1336 1337 pci_set_max_read_req(dev, 4096); 1338 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); 1339 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5); 1340 if (pcie_relaxed_ordering == 0 && 1341 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) { 1342 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE; 1343 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1344 } else if (pcie_relaxed_ordering == 1 && 1345 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) { 1346 v |= PCIEM_CTL_RELAXED_ORD_ENABLE; 1347 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1348 } 1349 } 1350 1351 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS); 1352 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL); 1353 sc->traceq = -1; 1354 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); 1355 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", 1356 device_get_nameunit(dev)); 1357 1358 snprintf(sc->lockname, sizeof(sc->lockname), "%s", 1359 device_get_nameunit(dev)); 1360 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); 1361 t4_add_adapter(sc); 1362 1363 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); 1364 TAILQ_INIT(&sc->sfl); 1365 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0); 1366 1367 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF); 1368 1369 sc->policy = NULL; 1370 rw_init(&sc->policy_lock, "connection offload policy"); 1371 1372 callout_init(&sc->ktls_tick, 1); 1373 1374 callout_init(&sc->cal_callout, 1); 1375 1376 refcount_init(&sc->vxlan_refcount, 0); 1377 1378 TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc); 1379 TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc); 1380 1381 sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1382 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq", 1383 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues"); 1384 sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1385 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq", 1386 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue"); 1387 1388 rc = t4_map_bars_0_and_4(sc); 1389 if (rc != 0) 1390 goto done; /* error message displayed already */ 1391 1392 memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); 1393 memset(sc->port_map, 0xff, sizeof(sc->port_map)); 1394 1395 /* Prepare the adapter for operation. */ 1396 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK); 1397 rc = -t4_prep_adapter(sc, buf); 1398 free(buf, M_CXGBE); 1399 if (rc != 0) { 1400 device_printf(dev, "failed to prepare adapter: %d.\n", rc); 1401 goto done; 1402 } 1403 1404 /* 1405 * This is the real PF# to which we're attaching. Works from within PCI 1406 * passthrough environments too, where pci_get_function() could return a 1407 * different PF# depending on the passthrough configuration. We need to 1408 * use the real PF# in all our communication with the firmware. 1409 */ 1410 j = t4_read_reg(sc, A_PL_WHOAMI); 1411 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j); 1412 sc->mbox = sc->pf; 1413 1414 t4_init_devnames(sc); 1415 if (sc->names == NULL) { 1416 rc = ENOTSUP; 1417 goto done; /* error message displayed already */ 1418 } 1419 1420 /* 1421 * Do this really early, with the memory windows set up even before the 1422 * character device. The userland tool's register i/o and mem read 1423 * will work even in "recovery mode". 1424 */ 1425 setup_memwin(sc); 1426 if (t4_init_devlog_ncores_params(sc, 0) == 0) 1427 fixup_devlog_params(sc); 1428 make_dev_args_init(&mda); 1429 mda.mda_devsw = &t4_cdevsw; 1430 mda.mda_uid = UID_ROOT; 1431 mda.mda_gid = GID_WHEEL; 1432 mda.mda_mode = 0600; 1433 mda.mda_si_drv1 = sc; 1434 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev)); 1435 if (rc != 0) 1436 device_printf(dev, "failed to create nexus char device: %d.\n", 1437 rc); 1438 1439 /* Go no further if recovery mode has been requested. */ 1440 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 1441 device_printf(dev, "recovery mode.\n"); 1442 goto done; 1443 } 1444 1445 #if defined(__i386__) 1446 if ((cpu_feature & CPUID_CX8) == 0) { 1447 device_printf(dev, "64 bit atomics not available.\n"); 1448 rc = ENOTSUP; 1449 goto done; 1450 } 1451 #endif 1452 1453 /* Contact the firmware and try to become the master driver. */ 1454 rc = contact_firmware(sc); 1455 if (rc != 0) 1456 goto done; /* error message displayed already */ 1457 MPASS(sc->flags & FW_OK); 1458 1459 rc = get_params__pre_init(sc); 1460 if (rc != 0) 1461 goto done; /* error message displayed already */ 1462 1463 if (sc->flags & MASTER_PF) { 1464 rc = partition_resources(sc); 1465 if (rc != 0) 1466 goto done; /* error message displayed already */ 1467 } 1468 1469 rc = get_params__post_init(sc); 1470 if (rc != 0) 1471 goto done; /* error message displayed already */ 1472 1473 rc = set_params__post_init(sc); 1474 if (rc != 0) 1475 goto done; /* error message displayed already */ 1476 1477 rc = t4_map_bar_2(sc); 1478 if (rc != 0) 1479 goto done; /* error message displayed already */ 1480 1481 rc = t4_adj_doorbells(sc); 1482 if (rc != 0) 1483 goto done; /* error message displayed already */ 1484 1485 rc = t4_create_dma_tag(sc); 1486 if (rc != 0) 1487 goto done; /* error message displayed already */ 1488 1489 /* 1490 * First pass over all the ports - allocate VIs and initialize some 1491 * basic parameters like mac address, port type, etc. 1492 */ 1493 for_each_port(sc, i) { 1494 struct port_info *pi; 1495 1496 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); 1497 sc->port[i] = pi; 1498 1499 /* These must be set before t4_port_init */ 1500 pi->adapter = sc; 1501 pi->port_id = i; 1502 /* 1503 * XXX: vi[0] is special so we can't delay this allocation until 1504 * pi->nvi's final value is known. 1505 */ 1506 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE, 1507 M_ZERO | M_WAITOK); 1508 1509 /* 1510 * Allocate the "main" VI and initialize parameters 1511 * like mac addr. 1512 */ 1513 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 1514 if (rc != 0) { 1515 device_printf(dev, "unable to initialize port %d: %d\n", 1516 i, rc); 1517 free(pi->vi, M_CXGBE); 1518 free(pi, M_CXGBE); 1519 sc->port[i] = NULL; 1520 goto done; 1521 } 1522 1523 if (is_bt(pi->port_type)) 1524 setbit(&sc->bt_map, pi->hw_port); 1525 else 1526 MPASS(!isset(&sc->bt_map, pi->hw_port)); 1527 1528 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", 1529 device_get_nameunit(dev), i); 1530 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); 1531 for (j = 0; j < sc->params.tp.lb_nchan; j++) 1532 sc->chan_map[pi->tx_chan + j] = i; 1533 sc->port_map[pi->hw_port] = i; 1534 1535 /* 1536 * The MPS counter for FCS errors doesn't work correctly on the 1537 * T6 so we use the MAC counter here. Which MAC is in use 1538 * depends on the link settings which will be known when the 1539 * link comes up. 1540 */ 1541 if (is_t6(sc)) 1542 pi->fcs_reg = -1; 1543 else 1544 pi->fcs_reg = A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L; 1545 pi->fcs_base = 0; 1546 1547 /* All VIs on this port share this media. */ 1548 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, 1549 cxgbe_media_status); 1550 1551 PORT_LOCK(pi); 1552 init_link_config(pi); 1553 fixup_link_config(pi); 1554 build_medialist(pi); 1555 if (fixed_ifmedia(pi)) 1556 pi->flags |= FIXED_IFMEDIA; 1557 PORT_UNLOCK(pi); 1558 1559 pi->dev = device_add_child(dev, sc->names->ifnet_name, 1560 t4_ifnet_unit(sc, pi)); 1561 if (pi->dev == NULL) { 1562 device_printf(dev, 1563 "failed to add device for port %d.\n", i); 1564 rc = ENXIO; 1565 goto done; 1566 } 1567 pi->vi[0].dev = pi->dev; 1568 device_set_softc(pi->dev, pi); 1569 } 1570 1571 /* 1572 * Interrupt type, # of interrupts, # of rx/tx queues, etc. 1573 */ 1574 nports = sc->params.nports; 1575 rc = cfg_itype_and_nqueues(sc, &iaq); 1576 if (rc != 0) 1577 goto done; /* error message displayed already */ 1578 1579 num_vis = iaq.num_vis; 1580 sc->intr_type = iaq.intr_type; 1581 sc->intr_count = iaq.nirq; 1582 1583 s = &sc->sge; 1584 s->nctrlq = max(sc->params.nports, sc->params.ncores); 1585 s->nrxq = nports * iaq.nrxq; 1586 s->ntxq = nports * iaq.ntxq; 1587 if (num_vis > 1) { 1588 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi; 1589 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi; 1590 } 1591 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ 1592 s->neq += nports; /* ctrl queues: 1 per port */ 1593 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ 1594 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1595 if (is_offload(sc) || is_ethoffload(sc)) { 1596 s->nofldtxq = nports * iaq.nofldtxq; 1597 if (num_vis > 1) 1598 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi; 1599 s->neq += s->nofldtxq; 1600 1601 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq), 1602 M_CXGBE, M_ZERO | M_WAITOK); 1603 } 1604 #endif 1605 #ifdef TCP_OFFLOAD 1606 if (is_offload(sc)) { 1607 s->nofldrxq = nports * iaq.nofldrxq; 1608 if (num_vis > 1) 1609 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi; 1610 s->neq += s->nofldrxq; /* free list */ 1611 s->niq += s->nofldrxq; 1612 1613 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), 1614 M_CXGBE, M_ZERO | M_WAITOK); 1615 } 1616 #endif 1617 #ifdef DEV_NETMAP 1618 s->nnmrxq = 0; 1619 s->nnmtxq = 0; 1620 if (t4_native_netmap & NN_MAIN_VI) { 1621 s->nnmrxq += nports * iaq.nnmrxq; 1622 s->nnmtxq += nports * iaq.nnmtxq; 1623 } 1624 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) { 1625 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi; 1626 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi; 1627 } 1628 s->neq += s->nnmtxq + s->nnmrxq; 1629 s->niq += s->nnmrxq; 1630 1631 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq), 1632 M_CXGBE, M_ZERO | M_WAITOK); 1633 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq), 1634 M_CXGBE, M_ZERO | M_WAITOK); 1635 #endif 1636 MPASS(s->niq <= s->iqmap_sz); 1637 MPASS(s->neq <= s->eqmap_sz); 1638 1639 s->ctrlq = malloc(s->nctrlq * sizeof(struct sge_wrq), M_CXGBE, 1640 M_ZERO | M_WAITOK); 1641 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, 1642 M_ZERO | M_WAITOK); 1643 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, 1644 M_ZERO | M_WAITOK); 1645 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE, 1646 M_ZERO | M_WAITOK); 1647 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE, 1648 M_ZERO | M_WAITOK); 1649 1650 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, 1651 M_ZERO | M_WAITOK); 1652 1653 t4_init_l2t(sc, M_WAITOK); 1654 t4_init_smt(sc, M_WAITOK); 1655 t4_init_tx_sched(sc); 1656 t4_init_atid_table(sc); 1657 #ifdef RATELIMIT 1658 t4_init_etid_table(sc); 1659 #endif 1660 #ifdef INET6 1661 t4_init_clip_table(sc); 1662 #endif 1663 if (sc->vres.key.size != 0) 1664 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start, 1665 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK); 1666 t4_init_tpt(sc); 1667 1668 /* 1669 * Second pass over the ports. This time we know the number of rx and 1670 * tx queues that each port should get. 1671 */ 1672 rqidx = tqidx = 0; 1673 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1674 ofld_tqidx = 0; 1675 #endif 1676 #ifdef TCP_OFFLOAD 1677 ofld_rqidx = 0; 1678 #endif 1679 #ifdef DEV_NETMAP 1680 nm_rqidx = nm_tqidx = 0; 1681 #endif 1682 for_each_port(sc, i) { 1683 struct port_info *pi = sc->port[i]; 1684 struct vi_info *vi; 1685 1686 if (pi == NULL) 1687 continue; 1688 1689 pi->nvi = num_vis; 1690 for_each_vi(pi, j, vi) { 1691 vi->pi = pi; 1692 vi->adapter = sc; 1693 vi->first_intr = -1; 1694 vi->qsize_rxq = t4_qsize_rxq; 1695 vi->qsize_txq = t4_qsize_txq; 1696 1697 vi->first_rxq = rqidx; 1698 vi->first_txq = tqidx; 1699 vi->tmr_idx = t4_tmr_idx; 1700 vi->pktc_idx = t4_pktc_idx; 1701 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi; 1702 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi; 1703 1704 rqidx += vi->nrxq; 1705 tqidx += vi->ntxq; 1706 1707 if (j == 0 && vi->ntxq > 1) 1708 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0; 1709 else 1710 vi->rsrv_noflowq = 0; 1711 1712 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1713 vi->first_ofld_txq = ofld_tqidx; 1714 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi; 1715 ofld_tqidx += vi->nofldtxq; 1716 #endif 1717 #ifdef TCP_OFFLOAD 1718 vi->ofld_tmr_idx = t4_tmr_idx_ofld; 1719 vi->ofld_pktc_idx = t4_pktc_idx_ofld; 1720 vi->first_ofld_rxq = ofld_rqidx; 1721 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi; 1722 1723 ofld_rqidx += vi->nofldrxq; 1724 #endif 1725 #ifdef DEV_NETMAP 1726 vi->first_nm_rxq = nm_rqidx; 1727 vi->first_nm_txq = nm_tqidx; 1728 if (j == 0) { 1729 vi->nnmrxq = iaq.nnmrxq; 1730 vi->nnmtxq = iaq.nnmtxq; 1731 } else { 1732 vi->nnmrxq = iaq.nnmrxq_vi; 1733 vi->nnmtxq = iaq.nnmtxq_vi; 1734 } 1735 nm_rqidx += vi->nnmrxq; 1736 nm_tqidx += vi->nnmtxq; 1737 #endif 1738 } 1739 } 1740 1741 rc = t4_setup_intr_handlers(sc); 1742 if (rc != 0) { 1743 device_printf(dev, 1744 "failed to setup interrupt handlers: %d\n", rc); 1745 goto done; 1746 } 1747 1748 bus_identify_children(dev); 1749 1750 /* 1751 * Ensure thread-safe mailbox access (in debug builds). 1752 * 1753 * So far this was the only thread accessing the mailbox but various 1754 * ifnets and sysctls are about to be created and their handlers/ioctls 1755 * will access the mailbox from different threads. 1756 */ 1757 sc->flags |= CHK_MBOX_ACCESS; 1758 1759 bus_attach_children(dev); 1760 t4_calibration_start(sc); 1761 1762 device_printf(dev, 1763 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", 1764 sc->params.pci.speed, sc->params.pci.width, sc->params.nports, 1765 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : 1766 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), 1767 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); 1768 1769 t4_set_desc(sc); 1770 1771 notify_siblings(dev, 0); 1772 1773 done: 1774 if (rc != 0 && sc->cdev) { 1775 /* cdev was created and so cxgbetool works; recover that way. */ 1776 device_printf(dev, 1777 "error during attach, adapter is now in recovery mode.\n"); 1778 rc = 0; 1779 } 1780 1781 if (rc != 0) 1782 t4_detach_common(dev); 1783 else 1784 t4_sysctls(sc); 1785 1786 return (rc); 1787 } 1788 1789 static int 1790 t4_child_location(device_t bus, device_t dev, struct sbuf *sb) 1791 { 1792 struct adapter *sc; 1793 struct port_info *pi; 1794 int i; 1795 1796 sc = device_get_softc(bus); 1797 for_each_port(sc, i) { 1798 pi = sc->port[i]; 1799 if (pi != NULL && pi->dev == dev) { 1800 sbuf_printf(sb, "port=%d", pi->port_id); 1801 break; 1802 } 1803 } 1804 return (0); 1805 } 1806 1807 static int 1808 t4_ready(device_t dev) 1809 { 1810 struct adapter *sc; 1811 1812 sc = device_get_softc(dev); 1813 if (sc->flags & FW_OK) 1814 return (0); 1815 return (ENXIO); 1816 } 1817 1818 static int 1819 t4_read_port_device(device_t dev, int port, device_t *child) 1820 { 1821 struct adapter *sc; 1822 struct port_info *pi; 1823 1824 sc = device_get_softc(dev); 1825 if (port < 0 || port >= MAX_NPORTS) 1826 return (EINVAL); 1827 pi = sc->port[port]; 1828 if (pi == NULL || pi->dev == NULL) 1829 return (ENXIO); 1830 *child = pi->dev; 1831 return (0); 1832 } 1833 1834 static int 1835 notify_siblings(device_t dev, int detaching) 1836 { 1837 device_t sibling; 1838 int error, i; 1839 1840 error = 0; 1841 for (i = 0; i < PCI_FUNCMAX; i++) { 1842 if (i == pci_get_function(dev)) 1843 continue; 1844 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev), 1845 pci_get_slot(dev), i); 1846 if (sibling == NULL || !device_is_attached(sibling)) 1847 continue; 1848 if (detaching) 1849 error = T4_DETACH_CHILD(sibling); 1850 else 1851 (void)T4_ATTACH_CHILD(sibling); 1852 if (error) 1853 break; 1854 } 1855 return (error); 1856 } 1857 1858 /* 1859 * Idempotent 1860 */ 1861 static int 1862 t4_detach(device_t dev) 1863 { 1864 int rc; 1865 1866 rc = notify_siblings(dev, 1); 1867 if (rc) { 1868 device_printf(dev, 1869 "failed to detach sibling devices: %d\n", rc); 1870 return (rc); 1871 } 1872 1873 return (t4_detach_common(dev)); 1874 } 1875 1876 int 1877 t4_detach_common(device_t dev) 1878 { 1879 struct adapter *sc; 1880 struct port_info *pi; 1881 int i, rc; 1882 1883 sc = device_get_softc(dev); 1884 1885 #ifdef TCP_OFFLOAD 1886 rc = deactivate_all_uld(sc); 1887 if (rc) { 1888 device_printf(dev, 1889 "failed to detach upper layer drivers: %d\n", rc); 1890 return (rc); 1891 } 1892 #endif 1893 1894 if (sc->cdev) { 1895 destroy_dev(sc->cdev); 1896 sc->cdev = NULL; 1897 } 1898 1899 sx_xlock(&t4_list_lock); 1900 SLIST_REMOVE(&t4_list, sc, adapter, link); 1901 sx_xunlock(&t4_list_lock); 1902 1903 sc->flags &= ~CHK_MBOX_ACCESS; 1904 if (sc->flags & FULL_INIT_DONE) { 1905 if (!(sc->flags & IS_VF)) 1906 t4_intr_disable(sc); 1907 } 1908 1909 if (device_is_attached(dev)) { 1910 rc = bus_detach_children(dev); 1911 if (rc) { 1912 device_printf(dev, 1913 "failed to detach child devices: %d\n", rc); 1914 return (rc); 1915 } 1916 } 1917 1918 for (i = 0; i < sc->intr_count; i++) 1919 t4_free_irq(sc, &sc->irq[i]); 1920 1921 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1922 t4_free_tx_sched(sc); 1923 1924 for (i = 0; i < MAX_NPORTS; i++) { 1925 pi = sc->port[i]; 1926 if (pi) { 1927 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid); 1928 1929 mtx_destroy(&pi->pi_lock); 1930 free(pi->vi, M_CXGBE); 1931 free(pi, M_CXGBE); 1932 } 1933 } 1934 callout_stop(&sc->cal_callout); 1935 callout_drain(&sc->cal_callout); 1936 device_delete_children(dev); 1937 sysctl_ctx_free(&sc->ctx); 1938 adapter_full_uninit(sc); 1939 1940 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1941 t4_fw_bye(sc, sc->mbox); 1942 1943 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) 1944 pci_release_msi(dev); 1945 1946 if (sc->regs_res) 1947 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, 1948 sc->regs_res); 1949 1950 if (sc->udbs_res) 1951 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, 1952 sc->udbs_res); 1953 1954 if (sc->msix_res) 1955 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, 1956 sc->msix_res); 1957 1958 if (sc->l2t) 1959 t4_free_l2t(sc); 1960 if (sc->smt) 1961 t4_free_smt(sc->smt); 1962 t4_free_atid_table(sc); 1963 #ifdef RATELIMIT 1964 t4_free_etid_table(sc); 1965 #endif 1966 if (sc->key_map) 1967 vmem_destroy(sc->key_map); 1968 t4_free_tpt(sc); 1969 #ifdef INET6 1970 t4_destroy_clip_table(sc); 1971 #endif 1972 1973 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1974 free(sc->sge.ofld_txq, M_CXGBE); 1975 #endif 1976 #ifdef TCP_OFFLOAD 1977 free(sc->sge.ofld_rxq, M_CXGBE); 1978 #endif 1979 #ifdef DEV_NETMAP 1980 free(sc->sge.nm_rxq, M_CXGBE); 1981 free(sc->sge.nm_txq, M_CXGBE); 1982 #endif 1983 free(sc->irq, M_CXGBE); 1984 free(sc->sge.rxq, M_CXGBE); 1985 free(sc->sge.txq, M_CXGBE); 1986 free(sc->sge.ctrlq, M_CXGBE); 1987 free(sc->sge.iqmap, M_CXGBE); 1988 free(sc->sge.eqmap, M_CXGBE); 1989 free(sc->tids.ftid_tab, M_CXGBE); 1990 free(sc->tids.hpftid_tab, M_CXGBE); 1991 free_hftid_hash(&sc->tids); 1992 free(sc->tids.tid_tab, M_CXGBE); 1993 t4_destroy_dma_tag(sc); 1994 1995 callout_drain(&sc->ktls_tick); 1996 callout_drain(&sc->sfl_callout); 1997 if (mtx_initialized(&sc->tids.ftid_lock)) { 1998 mtx_destroy(&sc->tids.ftid_lock); 1999 cv_destroy(&sc->tids.ftid_cv); 2000 } 2001 if (mtx_initialized(&sc->tids.atid_lock)) 2002 mtx_destroy(&sc->tids.atid_lock); 2003 if (mtx_initialized(&sc->ifp_lock)) 2004 mtx_destroy(&sc->ifp_lock); 2005 2006 if (rw_initialized(&sc->policy_lock)) { 2007 rw_destroy(&sc->policy_lock); 2008 #ifdef TCP_OFFLOAD 2009 if (sc->policy != NULL) 2010 free_offload_policy(sc->policy); 2011 #endif 2012 } 2013 2014 for (i = 0; i < NUM_MEMWIN; i++) { 2015 struct memwin *mw = &sc->memwin[i]; 2016 2017 if (rw_initialized(&mw->mw_lock)) 2018 rw_destroy(&mw->mw_lock); 2019 } 2020 2021 mtx_destroy(&sc->sfl_lock); 2022 mtx_destroy(&sc->reg_lock); 2023 mtx_destroy(&sc->sc_lock); 2024 2025 bzero(sc, sizeof(*sc)); 2026 2027 return (0); 2028 } 2029 2030 static inline int 2031 stop_adapter(struct adapter *sc) 2032 { 2033 struct port_info *pi; 2034 int i; 2035 2036 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) { 2037 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n", 2038 __func__, curthread, sc->flags, sc->error_flags); 2039 return (EALREADY); 2040 } 2041 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread, 2042 sc->flags, sc->error_flags); 2043 t4_shutdown_adapter(sc); 2044 for_each_port(sc, i) { 2045 pi = sc->port[i]; 2046 if (pi == NULL) 2047 continue; 2048 PORT_LOCK(pi); 2049 if (pi->up_vis > 0 && pi->link_cfg.link_ok) { 2050 /* 2051 * t4_shutdown_adapter has already shut down all the 2052 * PHYs but it also disables interrupts and DMA so there 2053 * won't be a link interrupt. Update the state manually 2054 * if the link was up previously and inform the kernel. 2055 */ 2056 pi->link_cfg.link_ok = false; 2057 t4_os_link_changed(pi); 2058 } 2059 PORT_UNLOCK(pi); 2060 } 2061 2062 return (0); 2063 } 2064 2065 static inline int 2066 restart_adapter(struct adapter *sc) 2067 { 2068 uint32_t val; 2069 2070 if (!atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_STOPPED))) { 2071 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n", 2072 __func__, curthread, sc->flags, sc->error_flags); 2073 return (EALREADY); 2074 } 2075 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread, 2076 sc->flags, sc->error_flags); 2077 2078 MPASS(hw_off_limits(sc)); 2079 MPASS((sc->flags & FW_OK) == 0); 2080 MPASS((sc->flags & MASTER_PF) == 0); 2081 MPASS(sc->reset_thread == NULL); 2082 2083 /* 2084 * The adapter is supposed to be back on PCIE with its config space and 2085 * BARs restored to their state before reset. Register access via 2086 * t4_read_reg BAR0 should just work. 2087 */ 2088 sc->reset_thread = curthread; 2089 val = t4_read_reg(sc, A_PL_WHOAMI); 2090 if (val == 0xffffffff || val == 0xeeeeeeee) { 2091 CH_ERR(sc, "%s: device registers not readable.\n", __func__); 2092 sc->reset_thread = NULL; 2093 atomic_set_int(&sc->error_flags, ADAP_STOPPED); 2094 return (ENXIO); 2095 } 2096 atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR); 2097 atomic_add_int(&sc->incarnation, 1); 2098 atomic_add_int(&sc->num_resets, 1); 2099 2100 return (0); 2101 } 2102 2103 static inline void 2104 set_adapter_hwstatus(struct adapter *sc, const bool usable) 2105 { 2106 if (usable) { 2107 /* Must be marked reusable by the designated thread. */ 2108 ASSERT_SYNCHRONIZED_OP(sc); 2109 MPASS(sc->reset_thread == curthread); 2110 mtx_lock(&sc->reg_lock); 2111 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS); 2112 mtx_unlock(&sc->reg_lock); 2113 } else { 2114 /* Mark the adapter totally off limits. */ 2115 begin_synchronized_op(sc, NULL, SLEEP_OK, "t4hwsts"); 2116 mtx_lock(&sc->reg_lock); 2117 atomic_set_int(&sc->error_flags, HW_OFF_LIMITS); 2118 mtx_unlock(&sc->reg_lock); 2119 sc->flags &= ~(FW_OK | MASTER_PF); 2120 sc->reset_thread = NULL; 2121 end_synchronized_op(sc, 0); 2122 } 2123 } 2124 2125 static int 2126 stop_lld(struct adapter *sc) 2127 { 2128 struct port_info *pi; 2129 struct vi_info *vi; 2130 if_t ifp; 2131 struct sge_rxq *rxq; 2132 struct sge_txq *txq; 2133 struct sge_wrq *wrq; 2134 #ifdef TCP_OFFLOAD 2135 struct sge_ofld_rxq *ofld_rxq; 2136 #endif 2137 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2138 struct sge_ofld_txq *ofld_txq; 2139 #endif 2140 int rc, i, j, k; 2141 2142 /* 2143 * XXX: Can there be a synch_op in progress that will hang because 2144 * hardware has been stopped? We'll hang too and the solution will be 2145 * to use a version of begin_synch_op that wakes up existing synch_op 2146 * with errors. Maybe stop_adapter should do this wakeup? 2147 * 2148 * I don't think any synch_op could get stranded waiting for DMA or 2149 * interrupt so I think we're okay here. Remove this comment block 2150 * after testing. 2151 */ 2152 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4slld"); 2153 if (rc != 0) 2154 return (ENXIO); 2155 2156 /* Quiesce all activity. */ 2157 for_each_port(sc, i) { 2158 pi = sc->port[i]; 2159 if (pi == NULL) 2160 continue; 2161 pi->vxlan_tcam_entry = false; 2162 for_each_vi(pi, j, vi) { 2163 vi->xact_addr_filt = -1; 2164 mtx_lock(&vi->tick_mtx); 2165 vi->flags |= VI_SKIP_STATS; 2166 mtx_unlock(&vi->tick_mtx); 2167 if (!(vi->flags & VI_INIT_DONE)) 2168 continue; 2169 2170 ifp = vi->ifp; 2171 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2172 mtx_lock(&vi->tick_mtx); 2173 callout_stop(&vi->tick); 2174 mtx_unlock(&vi->tick_mtx); 2175 callout_drain(&vi->tick); 2176 } 2177 2178 /* 2179 * Note that the HW is not available. 2180 */ 2181 for_each_txq(vi, k, txq) { 2182 TXQ_LOCK(txq); 2183 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED); 2184 TXQ_UNLOCK(txq); 2185 } 2186 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2187 for_each_ofld_txq(vi, k, ofld_txq) { 2188 TXQ_LOCK(&ofld_txq->wrq); 2189 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED; 2190 TXQ_UNLOCK(&ofld_txq->wrq); 2191 } 2192 #endif 2193 for_each_rxq(vi, k, rxq) { 2194 rxq->iq.flags &= ~IQ_HW_ALLOCATED; 2195 } 2196 #if defined(TCP_OFFLOAD) 2197 for_each_ofld_rxq(vi, k, ofld_rxq) { 2198 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED; 2199 } 2200 #endif 2201 2202 quiesce_vi(vi); 2203 } 2204 2205 if (sc->flags & FULL_INIT_DONE) { 2206 /* Control queue */ 2207 wrq = &sc->sge.ctrlq[i]; 2208 TXQ_LOCK(wrq); 2209 wrq->eq.flags &= ~EQ_HW_ALLOCATED; 2210 TXQ_UNLOCK(wrq); 2211 quiesce_wrq(wrq); 2212 } 2213 2214 if (pi->flags & HAS_TRACEQ) { 2215 pi->flags &= ~HAS_TRACEQ; 2216 sc->traceq = -1; 2217 sc->tracer_valid = 0; 2218 sc->tracer_enabled = 0; 2219 } 2220 } 2221 if (sc->flags & FULL_INIT_DONE) { 2222 /* Firmware event queue */ 2223 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED; 2224 quiesce_iq_fl(sc, &sc->sge.fwq, NULL); 2225 } 2226 2227 /* Stop calibration */ 2228 callout_stop(&sc->cal_callout); 2229 callout_drain(&sc->cal_callout); 2230 2231 if (t4_clock_gate_on_suspend) { 2232 t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN | 2233 F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN | 2234 F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0); 2235 } 2236 2237 end_synchronized_op(sc, 0); 2238 2239 stop_atid_allocator(sc); 2240 t4_stop_l2t(sc); 2241 2242 return (rc); 2243 } 2244 2245 int 2246 suspend_adapter(struct adapter *sc) 2247 { 2248 stop_adapter(sc); 2249 stop_lld(sc); 2250 #ifdef TCP_OFFLOAD 2251 stop_all_uld(sc); 2252 #endif 2253 set_adapter_hwstatus(sc, false); 2254 2255 return (0); 2256 } 2257 2258 static int 2259 t4_suspend(device_t dev) 2260 { 2261 struct adapter *sc = device_get_softc(dev); 2262 int rc; 2263 2264 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2265 rc = suspend_adapter(sc); 2266 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread); 2267 2268 return (rc); 2269 } 2270 2271 struct adapter_pre_reset_state { 2272 u_int flags; 2273 uint16_t nbmcaps; 2274 uint16_t linkcaps; 2275 uint16_t switchcaps; 2276 uint16_t nvmecaps; 2277 uint16_t niccaps; 2278 uint16_t toecaps; 2279 uint16_t rdmacaps; 2280 uint16_t cryptocaps; 2281 uint16_t iscsicaps; 2282 uint16_t fcoecaps; 2283 2284 u_int cfcsum; 2285 char cfg_file[32]; 2286 2287 struct adapter_params params; 2288 struct t4_virt_res vres; 2289 struct tid_info tids; 2290 struct sge sge; 2291 2292 int rawf_base; 2293 int nrawf; 2294 2295 }; 2296 2297 static void 2298 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2299 { 2300 2301 ASSERT_SYNCHRONIZED_OP(sc); 2302 2303 o->flags = sc->flags; 2304 2305 o->nbmcaps = sc->nbmcaps; 2306 o->linkcaps = sc->linkcaps; 2307 o->switchcaps = sc->switchcaps; 2308 o->nvmecaps = sc->nvmecaps; 2309 o->niccaps = sc->niccaps; 2310 o->toecaps = sc->toecaps; 2311 o->rdmacaps = sc->rdmacaps; 2312 o->cryptocaps = sc->cryptocaps; 2313 o->iscsicaps = sc->iscsicaps; 2314 o->fcoecaps = sc->fcoecaps; 2315 2316 o->cfcsum = sc->cfcsum; 2317 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file)); 2318 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file)); 2319 2320 o->params = sc->params; 2321 o->vres = sc->vres; 2322 o->tids = sc->tids; 2323 o->sge = sc->sge; 2324 2325 o->rawf_base = sc->rawf_base; 2326 o->nrawf = sc->nrawf; 2327 } 2328 2329 static int 2330 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2331 { 2332 int rc = 0; 2333 2334 ASSERT_SYNCHRONIZED_OP(sc); 2335 2336 /* Capabilities */ 2337 #define COMPARE_CAPS(c) do { \ 2338 if (o->c##caps != sc->c##caps) { \ 2339 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \ 2340 sc->c##caps); \ 2341 rc = EINVAL; \ 2342 } \ 2343 } while (0) 2344 COMPARE_CAPS(nbm); 2345 COMPARE_CAPS(link); 2346 COMPARE_CAPS(switch); 2347 COMPARE_CAPS(nvme); 2348 COMPARE_CAPS(nic); 2349 COMPARE_CAPS(toe); 2350 COMPARE_CAPS(rdma); 2351 COMPARE_CAPS(crypto); 2352 COMPARE_CAPS(iscsi); 2353 COMPARE_CAPS(fcoe); 2354 #undef COMPARE_CAPS 2355 2356 /* Firmware config file */ 2357 if (o->cfcsum != sc->cfcsum) { 2358 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file, 2359 o->cfcsum, sc->cfg_file, sc->cfcsum); 2360 rc = EINVAL; 2361 } 2362 2363 #define COMPARE_PARAM(p, name) do { \ 2364 if (o->p != sc->p) { \ 2365 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \ 2366 rc = EINVAL; \ 2367 } \ 2368 } while (0) 2369 COMPARE_PARAM(sge.iq_start, iq_start); 2370 COMPARE_PARAM(sge.eq_start, eq_start); 2371 COMPARE_PARAM(tids.ftid_base, ftid_base); 2372 COMPARE_PARAM(tids.ftid_end, ftid_end); 2373 COMPARE_PARAM(tids.nftids, nftids); 2374 COMPARE_PARAM(vres.l2t.start, l2t_start); 2375 COMPARE_PARAM(vres.l2t.size, l2t_size); 2376 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz); 2377 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz); 2378 COMPARE_PARAM(tids.tid_base, tid_base); 2379 COMPARE_PARAM(tids.hpftid_base, hpftid_base); 2380 COMPARE_PARAM(tids.hpftid_end, hpftid_end); 2381 COMPARE_PARAM(tids.nhpftids, nhpftids); 2382 COMPARE_PARAM(rawf_base, rawf_base); 2383 COMPARE_PARAM(nrawf, nrawf); 2384 COMPARE_PARAM(params.mps_bg_map, mps_bg_map); 2385 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support); 2386 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl); 2387 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support); 2388 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr); 2389 COMPARE_PARAM(tids.ntids, ntids); 2390 COMPARE_PARAM(tids.etid_base, etid_base); 2391 COMPARE_PARAM(tids.etid_end, etid_end); 2392 COMPARE_PARAM(tids.netids, netids); 2393 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred); 2394 COMPARE_PARAM(params.ethoffload, ethoffload); 2395 COMPARE_PARAM(tids.natids, natids); 2396 COMPARE_PARAM(tids.stid_base, stid_base); 2397 COMPARE_PARAM(vres.ddp.start, ddp_start); 2398 COMPARE_PARAM(vres.ddp.size, ddp_size); 2399 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred); 2400 COMPARE_PARAM(vres.stag.start, stag_start); 2401 COMPARE_PARAM(vres.stag.size, stag_size); 2402 COMPARE_PARAM(vres.rq.start, rq_start); 2403 COMPARE_PARAM(vres.rq.size, rq_size); 2404 COMPARE_PARAM(vres.pbl.start, pbl_start); 2405 COMPARE_PARAM(vres.pbl.size, pbl_size); 2406 COMPARE_PARAM(vres.qp.start, qp_start); 2407 COMPARE_PARAM(vres.qp.size, qp_size); 2408 COMPARE_PARAM(vres.cq.start, cq_start); 2409 COMPARE_PARAM(vres.cq.size, cq_size); 2410 COMPARE_PARAM(vres.ocq.start, ocq_start); 2411 COMPARE_PARAM(vres.ocq.size, ocq_size); 2412 COMPARE_PARAM(vres.srq.start, srq_start); 2413 COMPARE_PARAM(vres.srq.size, srq_size); 2414 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp); 2415 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter); 2416 COMPARE_PARAM(vres.iscsi.start, iscsi_start); 2417 COMPARE_PARAM(vres.iscsi.size, iscsi_size); 2418 COMPARE_PARAM(vres.key.start, key_start); 2419 COMPARE_PARAM(vres.key.size, key_size); 2420 #undef COMPARE_PARAM 2421 2422 return (rc); 2423 } 2424 2425 static int 2426 restart_lld(struct adapter *sc) 2427 { 2428 struct adapter_pre_reset_state *old_state = NULL; 2429 struct port_info *pi; 2430 struct vi_info *vi; 2431 if_t ifp; 2432 struct sge_txq *txq; 2433 int rc, i, j, k; 2434 2435 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rlld"); 2436 if (rc != 0) 2437 return (ENXIO); 2438 2439 /* Restore memory window. */ 2440 setup_memwin(sc); 2441 2442 /* Go no further if recovery mode has been requested. */ 2443 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 2444 CH_ALERT(sc, "%s: recovery mode during restart.\n", __func__); 2445 rc = 0; 2446 set_adapter_hwstatus(sc, true); 2447 goto done; 2448 } 2449 2450 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK); 2451 save_caps_and_params(sc, old_state); 2452 2453 /* Reestablish contact with firmware and become the primary PF. */ 2454 rc = contact_firmware(sc); 2455 if (rc != 0) 2456 goto done; /* error message displayed already */ 2457 MPASS(sc->flags & FW_OK); 2458 2459 if (sc->flags & MASTER_PF) { 2460 rc = partition_resources(sc); 2461 if (rc != 0) 2462 goto done; /* error message displayed already */ 2463 } 2464 2465 rc = get_params__post_init(sc); 2466 if (rc != 0) 2467 goto done; /* error message displayed already */ 2468 2469 rc = set_params__post_init(sc); 2470 if (rc != 0) 2471 goto done; /* error message displayed already */ 2472 2473 rc = compare_caps_and_params(sc, old_state); 2474 if (rc != 0) 2475 goto done; /* error message displayed already */ 2476 2477 for_each_port(sc, i) { 2478 pi = sc->port[i]; 2479 MPASS(pi != NULL); 2480 MPASS(pi->vi != NULL); 2481 MPASS(pi->vi[0].dev == pi->dev); 2482 2483 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 2484 if (rc != 0) { 2485 CH_ERR(sc, 2486 "failed to re-initialize port %d: %d\n", i, rc); 2487 goto done; 2488 } 2489 MPASS(sc->chan_map[pi->tx_chan] == i); 2490 2491 PORT_LOCK(pi); 2492 fixup_link_config(pi); 2493 build_medialist(pi); 2494 PORT_UNLOCK(pi); 2495 for_each_vi(pi, j, vi) { 2496 if (IS_MAIN_VI(vi)) 2497 continue; 2498 rc = alloc_extra_vi(sc, pi, vi); 2499 if (rc != 0) { 2500 CH_ERR(vi, 2501 "failed to re-allocate extra VI: %d\n", rc); 2502 goto done; 2503 } 2504 } 2505 } 2506 2507 /* 2508 * Interrupts and queues are about to be enabled and other threads will 2509 * want to access the hardware too. It is safe to do so. Note that 2510 * this thread is still in the middle of a synchronized_op. 2511 */ 2512 set_adapter_hwstatus(sc, true); 2513 2514 if (sc->flags & FULL_INIT_DONE) { 2515 rc = adapter_full_init(sc); 2516 if (rc != 0) { 2517 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc); 2518 goto done; 2519 } 2520 2521 if (sc->vxlan_refcount > 0) 2522 enable_vxlan_rx(sc); 2523 2524 for_each_port(sc, i) { 2525 pi = sc->port[i]; 2526 for_each_vi(pi, j, vi) { 2527 mtx_lock(&vi->tick_mtx); 2528 vi->flags &= ~VI_SKIP_STATS; 2529 mtx_unlock(&vi->tick_mtx); 2530 if (!(vi->flags & VI_INIT_DONE)) 2531 continue; 2532 rc = vi_full_init(vi); 2533 if (rc != 0) { 2534 CH_ERR(vi, "failed to re-initialize " 2535 "interface: %d\n", rc); 2536 goto done; 2537 } 2538 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 2539 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 2540 t4_set_trace_rss_control(sc, pi->tx_chan, sc->traceq); 2541 pi->flags |= HAS_TRACEQ; 2542 } 2543 2544 ifp = vi->ifp; 2545 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 2546 continue; 2547 /* 2548 * Note that we do not setup multicast addresses 2549 * in the first pass. This ensures that the 2550 * unicast DMACs for all VIs on all ports get an 2551 * MPS TCAM entry. 2552 */ 2553 rc = update_mac_settings(ifp, XGMAC_ALL & 2554 ~XGMAC_MCADDRS); 2555 if (rc != 0) { 2556 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc); 2557 goto done; 2558 } 2559 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, 2560 true); 2561 if (rc != 0) { 2562 CH_ERR(vi, "failed to re-enable VI: %d\n", rc); 2563 goto done; 2564 } 2565 for_each_txq(vi, k, txq) { 2566 TXQ_LOCK(txq); 2567 txq->eq.flags |= EQ_ENABLED; 2568 TXQ_UNLOCK(txq); 2569 } 2570 mtx_lock(&vi->tick_mtx); 2571 callout_schedule(&vi->tick, hz); 2572 mtx_unlock(&vi->tick_mtx); 2573 } 2574 PORT_LOCK(pi); 2575 if (pi->up_vis > 0) { 2576 t4_update_port_info(pi); 2577 fixup_link_config(pi); 2578 build_medialist(pi); 2579 apply_link_config(pi); 2580 if (pi->link_cfg.link_ok) 2581 t4_os_link_changed(pi); 2582 } 2583 PORT_UNLOCK(pi); 2584 } 2585 2586 /* Now reprogram the L2 multicast addresses. */ 2587 for_each_port(sc, i) { 2588 pi = sc->port[i]; 2589 for_each_vi(pi, j, vi) { 2590 if (!(vi->flags & VI_INIT_DONE)) 2591 continue; 2592 ifp = vi->ifp; 2593 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 2594 continue; 2595 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2596 if (rc != 0) { 2597 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc); 2598 rc = 0; /* carry on */ 2599 } 2600 } 2601 } 2602 } 2603 2604 /* Reset all calibration */ 2605 t4_calibration_start(sc); 2606 done: 2607 end_synchronized_op(sc, 0); 2608 free(old_state, M_CXGBE); 2609 2610 restart_atid_allocator(sc); 2611 t4_restart_l2t(sc); 2612 2613 return (rc); 2614 } 2615 2616 int 2617 resume_adapter(struct adapter *sc) 2618 { 2619 restart_adapter(sc); 2620 restart_lld(sc); 2621 #ifdef TCP_OFFLOAD 2622 restart_all_uld(sc); 2623 #endif 2624 return (0); 2625 } 2626 2627 static int 2628 t4_resume(device_t dev) 2629 { 2630 struct adapter *sc = device_get_softc(dev); 2631 int rc; 2632 2633 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2634 rc = resume_adapter(sc); 2635 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread); 2636 2637 return (rc); 2638 } 2639 2640 static int 2641 t4_reset_prepare(device_t dev, device_t child) 2642 { 2643 struct adapter *sc = device_get_softc(dev); 2644 2645 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2646 return (0); 2647 } 2648 2649 static int 2650 t4_reset_post(device_t dev, device_t child) 2651 { 2652 struct adapter *sc = device_get_softc(dev); 2653 2654 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2655 return (0); 2656 } 2657 2658 static int 2659 reset_adapter_with_pl_rst(struct adapter *sc) 2660 { 2661 /* This is a t4_write_reg without the hw_off_limits check. */ 2662 MPASS(sc->error_flags & HW_OFF_LIMITS); 2663 bus_space_write_4(sc->bt, sc->bh, A_PL_RST, 2664 F_PIORSTMODE | F_PIORST | F_AUTOPCIEPAUSE); 2665 pause("pl_rst", 1 * hz); /* Wait 1s for reset */ 2666 return (0); 2667 } 2668 2669 static int 2670 reset_adapter_with_pcie_sbr(struct adapter *sc) 2671 { 2672 device_t pdev = device_get_parent(sc->dev); 2673 device_t gpdev = device_get_parent(pdev); 2674 device_t *children; 2675 int rc, i, lcap, lsta, nchildren; 2676 uint32_t v; 2677 2678 rc = pci_find_cap(gpdev, PCIY_EXPRESS, &v); 2679 if (rc != 0) { 2680 CH_ERR(sc, "%s: pci_find_cap(%s, pcie) failed: %d\n", __func__, 2681 device_get_nameunit(gpdev), rc); 2682 return (ENOTSUP); 2683 } 2684 lcap = v + PCIER_LINK_CAP; 2685 lsta = v + PCIER_LINK_STA; 2686 2687 nchildren = 0; 2688 device_get_children(pdev, &children, &nchildren); 2689 for (i = 0; i < nchildren; i++) 2690 pci_save_state(children[i]); 2691 v = pci_read_config(gpdev, PCIR_BRIDGECTL_1, 2); 2692 pci_write_config(gpdev, PCIR_BRIDGECTL_1, v | PCIB_BCR_SECBUS_RESET, 2); 2693 pause("pcie_sbr1", hz / 10); /* 100ms */ 2694 pci_write_config(gpdev, PCIR_BRIDGECTL_1, v, 2); 2695 pause("pcie_sbr2", hz); /* Wait 1s before restore_state. */ 2696 v = pci_read_config(gpdev, lsta, 2); 2697 if (pci_read_config(gpdev, lcap, 2) & PCIEM_LINK_CAP_DL_ACTIVE) 2698 rc = v & PCIEM_LINK_STA_DL_ACTIVE ? 0 : ETIMEDOUT; 2699 else if (v & (PCIEM_LINK_STA_TRAINING_ERROR | PCIEM_LINK_STA_TRAINING)) 2700 rc = ETIMEDOUT; 2701 else 2702 rc = 0; 2703 if (rc != 0) 2704 CH_ERR(sc, "%s: PCIe link is down after reset, LINK_STA 0x%x\n", 2705 __func__, v); 2706 else { 2707 for (i = 0; i < nchildren; i++) 2708 pci_restore_state(children[i]); 2709 } 2710 free(children, M_TEMP); 2711 2712 return (rc); 2713 } 2714 2715 static int 2716 reset_adapter_with_pcie_link_bounce(struct adapter *sc) 2717 { 2718 device_t pdev = device_get_parent(sc->dev); 2719 device_t gpdev = device_get_parent(pdev); 2720 device_t *children; 2721 int rc, i, lcap, lctl, lsta, nchildren; 2722 uint32_t v; 2723 2724 rc = pci_find_cap(gpdev, PCIY_EXPRESS, &v); 2725 if (rc != 0) { 2726 CH_ERR(sc, "%s: pci_find_cap(%s, pcie) failed: %d\n", __func__, 2727 device_get_nameunit(gpdev), rc); 2728 return (ENOTSUP); 2729 } 2730 lcap = v + PCIER_LINK_CAP; 2731 lctl = v + PCIER_LINK_CTL; 2732 lsta = v + PCIER_LINK_STA; 2733 2734 nchildren = 0; 2735 device_get_children(pdev, &children, &nchildren); 2736 for (i = 0; i < nchildren; i++) 2737 pci_save_state(children[i]); 2738 v = pci_read_config(gpdev, lctl, 2); 2739 pci_write_config(gpdev, lctl, v | PCIEM_LINK_CTL_LINK_DIS, 2); 2740 pause("pcie_lnk1", 100 * hz / 1000); /* 100ms */ 2741 pci_write_config(gpdev, lctl, v | PCIEM_LINK_CTL_RETRAIN_LINK, 2); 2742 pause("pcie_lnk2", hz); /* Wait 1s before restore_state. */ 2743 v = pci_read_config(gpdev, lsta, 2); 2744 if (pci_read_config(gpdev, lcap, 2) & PCIEM_LINK_CAP_DL_ACTIVE) 2745 rc = v & PCIEM_LINK_STA_DL_ACTIVE ? 0 : ETIMEDOUT; 2746 else if (v & (PCIEM_LINK_STA_TRAINING_ERROR | PCIEM_LINK_STA_TRAINING)) 2747 rc = ETIMEDOUT; 2748 else 2749 rc = 0; 2750 if (rc != 0) 2751 CH_ERR(sc, "%s: PCIe link is down after reset, LINK_STA 0x%x\n", 2752 __func__, v); 2753 else { 2754 for (i = 0; i < nchildren; i++) 2755 pci_restore_state(children[i]); 2756 } 2757 free(children, M_TEMP); 2758 2759 return (rc); 2760 } 2761 2762 static inline int 2763 reset_adapter(struct adapter *sc) 2764 { 2765 int rc; 2766 const int reset_method = vm_guest == VM_GUEST_NO ? t4_reset_method : 0; 2767 2768 rc = suspend_adapter(sc); 2769 if (rc != 0) 2770 return (rc); 2771 2772 switch (reset_method) { 2773 case 1: 2774 rc = reset_adapter_with_pcie_sbr(sc); 2775 break; 2776 case 2: 2777 rc = reset_adapter_with_pcie_link_bounce(sc); 2778 break; 2779 case 0: 2780 default: 2781 rc = reset_adapter_with_pl_rst(sc); 2782 break; 2783 } 2784 if (rc == 0) 2785 rc = resume_adapter(sc); 2786 return (rc); 2787 } 2788 2789 static void 2790 reset_adapter_task(void *arg, int pending) 2791 { 2792 struct adapter *sc = arg; 2793 const int flags = sc->flags; 2794 const int eflags = sc->error_flags; 2795 int rc; 2796 2797 if (pending > 1) 2798 CH_ALERT(sc, "%s: pending %d\n", __func__, pending); 2799 rc = reset_adapter(sc); 2800 if (rc != 0) { 2801 CH_ERR(sc, "adapter did not reset properly, rc = %d, " 2802 "flags 0x%08x -> 0x%08x, err_flags 0x%08x -> 0x%08x.\n", 2803 rc, flags, sc->flags, eflags, sc->error_flags); 2804 } 2805 } 2806 2807 static int 2808 cxgbe_probe(device_t dev) 2809 { 2810 struct port_info *pi = device_get_softc(dev); 2811 2812 device_set_descf(dev, "port %d", pi->port_id); 2813 2814 return (BUS_PROBE_DEFAULT); 2815 } 2816 2817 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ 2818 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ 2819 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \ 2820 IFCAP_HWRXTSTMP | IFCAP_MEXTPG) 2821 #define T4_CAP_ENABLE (T4_CAP) 2822 2823 static void 2824 cxgbe_vi_attach(device_t dev, struct vi_info *vi) 2825 { 2826 if_t ifp; 2827 struct sbuf *sb; 2828 struct sysctl_ctx_list *ctx = &vi->ctx; 2829 struct sysctl_oid_list *children; 2830 struct pfil_head_args pa; 2831 struct adapter *sc = vi->adapter; 2832 2833 sysctl_ctx_init(ctx); 2834 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev)); 2835 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq", 2836 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues"); 2837 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq", 2838 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues"); 2839 #ifdef DEV_NETMAP 2840 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq", 2841 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues"); 2842 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq", 2843 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues"); 2844 #endif 2845 #ifdef TCP_OFFLOAD 2846 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq", 2847 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues"); 2848 #endif 2849 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2850 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq", 2851 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues"); 2852 #endif 2853 2854 vi->xact_addr_filt = -1; 2855 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF); 2856 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0); 2857 if (sc->flags & IS_VF || t4_tx_vm_wr != 0) 2858 vi->flags |= TX_USES_VM_WR; 2859 2860 /* Allocate an ifnet and set it up */ 2861 ifp = if_alloc_dev(IFT_ETHER, dev); 2862 vi->ifp = ifp; 2863 if_setsoftc(ifp, vi); 2864 2865 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 2866 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 2867 2868 if_setinitfn(ifp, cxgbe_init); 2869 if_setioctlfn(ifp, cxgbe_ioctl); 2870 if_settransmitfn(ifp, cxgbe_transmit); 2871 if_setqflushfn(ifp, cxgbe_qflush); 2872 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 2873 if_setgetcounterfn(ifp, vi_get_counter); 2874 else 2875 if_setgetcounterfn(ifp, cxgbe_get_counter); 2876 #if defined(KERN_TLS) || defined(RATELIMIT) 2877 if_setsndtagallocfn(ifp, cxgbe_snd_tag_alloc); 2878 #endif 2879 #ifdef RATELIMIT 2880 if_setratelimitqueryfn(ifp, cxgbe_ratelimit_query); 2881 #endif 2882 2883 if_setcapabilities(ifp, T4_CAP); 2884 if_setcapenable(ifp, T4_CAP_ENABLE); 2885 if_sethwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | 2886 CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2887 if (chip_id(sc) >= CHELSIO_T6) { 2888 if_setcapabilitiesbit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0); 2889 if_setcapenablebit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0); 2890 if_sethwassistbits(ifp, CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | 2891 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP | 2892 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN, 0); 2893 } 2894 2895 #ifdef TCP_OFFLOAD 2896 if (vi->nofldrxq != 0) 2897 if_setcapabilitiesbit(ifp, IFCAP_TOE, 0); 2898 #endif 2899 #ifdef RATELIMIT 2900 if (is_ethoffload(sc) && vi->nofldtxq != 0) { 2901 if_setcapabilitiesbit(ifp, IFCAP_TXRTLMT, 0); 2902 if_setcapenablebit(ifp, IFCAP_TXRTLMT, 0); 2903 } 2904 #endif 2905 2906 if_sethwtsomax(ifp, IP_MAXPACKET); 2907 if (vi->flags & TX_USES_VM_WR) 2908 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_VM_TSO); 2909 else 2910 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_TSO); 2911 #ifdef RATELIMIT 2912 if (is_ethoffload(sc) && vi->nofldtxq != 0) 2913 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_EO_TSO); 2914 #endif 2915 if_sethwtsomaxsegsize(ifp, 65536); 2916 #ifdef KERN_TLS 2917 if (is_ktls(sc)) { 2918 if_setcapabilitiesbit(ifp, IFCAP_TXTLS, 0); 2919 if (sc->flags & KERN_TLS_ON || !is_t6(sc)) 2920 if_setcapenablebit(ifp, IFCAP_TXTLS, 0); 2921 } 2922 #endif 2923 2924 ether_ifattach(ifp, vi->hw_addr); 2925 #ifdef DEV_NETMAP 2926 if (vi->nnmrxq != 0) 2927 cxgbe_nm_attach(vi); 2928 #endif 2929 sb = sbuf_new_auto(); 2930 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq); 2931 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2932 switch (if_getcapabilities(ifp) & (IFCAP_TOE | IFCAP_TXRTLMT)) { 2933 case IFCAP_TOE: 2934 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq); 2935 break; 2936 case IFCAP_TOE | IFCAP_TXRTLMT: 2937 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq); 2938 break; 2939 case IFCAP_TXRTLMT: 2940 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq); 2941 break; 2942 } 2943 #endif 2944 #ifdef TCP_OFFLOAD 2945 if (if_getcapabilities(ifp) & IFCAP_TOE) 2946 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq); 2947 #endif 2948 #ifdef DEV_NETMAP 2949 if (if_getcapabilities(ifp) & IFCAP_NETMAP) 2950 sbuf_printf(sb, "; %d txq, %d rxq (netmap)", 2951 vi->nnmtxq, vi->nnmrxq); 2952 #endif 2953 sbuf_finish(sb); 2954 device_printf(dev, "%s\n", sbuf_data(sb)); 2955 sbuf_delete(sb); 2956 2957 vi_sysctls(vi); 2958 2959 pa.pa_version = PFIL_VERSION; 2960 pa.pa_flags = PFIL_IN; 2961 pa.pa_type = PFIL_TYPE_ETHERNET; 2962 pa.pa_headname = if_name(ifp); 2963 vi->pfil = pfil_head_register(&pa); 2964 } 2965 2966 static int 2967 cxgbe_attach(device_t dev) 2968 { 2969 struct port_info *pi = device_get_softc(dev); 2970 struct adapter *sc = pi->adapter; 2971 struct vi_info *vi; 2972 int i; 2973 2974 sysctl_ctx_init(&pi->ctx); 2975 2976 cxgbe_vi_attach(dev, &pi->vi[0]); 2977 2978 for_each_vi(pi, i, vi) { 2979 if (i == 0) 2980 continue; 2981 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, DEVICE_UNIT_ANY); 2982 if (vi->dev == NULL) { 2983 device_printf(dev, "failed to add VI %d\n", i); 2984 continue; 2985 } 2986 device_set_softc(vi->dev, vi); 2987 } 2988 2989 cxgbe_sysctls(pi); 2990 2991 bus_attach_children(dev); 2992 2993 return (0); 2994 } 2995 2996 static void 2997 cxgbe_vi_detach(struct vi_info *vi) 2998 { 2999 if_t ifp = vi->ifp; 3000 3001 if (vi->pfil != NULL) { 3002 pfil_head_unregister(vi->pfil); 3003 vi->pfil = NULL; 3004 } 3005 3006 ether_ifdetach(ifp); 3007 3008 /* Let detach proceed even if these fail. */ 3009 #ifdef DEV_NETMAP 3010 if (if_getcapabilities(ifp) & IFCAP_NETMAP) 3011 cxgbe_nm_detach(vi); 3012 #endif 3013 cxgbe_uninit_synchronized(vi); 3014 callout_drain(&vi->tick); 3015 mtx_destroy(&vi->tick_mtx); 3016 sysctl_ctx_free(&vi->ctx); 3017 vi_full_uninit(vi); 3018 3019 if_free(vi->ifp); 3020 vi->ifp = NULL; 3021 } 3022 3023 static int 3024 cxgbe_detach(device_t dev) 3025 { 3026 struct port_info *pi = device_get_softc(dev); 3027 struct adapter *sc = pi->adapter; 3028 int rc; 3029 3030 /* Detach the extra VIs first. */ 3031 rc = bus_generic_detach(dev); 3032 if (rc) 3033 return (rc); 3034 3035 sysctl_ctx_free(&pi->ctx); 3036 begin_vi_detach(sc, &pi->vi[0]); 3037 if (pi->flags & HAS_TRACEQ) { 3038 sc->traceq = -1; /* cloner should not create ifnet */ 3039 t4_tracer_port_detach(sc); 3040 } 3041 cxgbe_vi_detach(&pi->vi[0]); 3042 ifmedia_removeall(&pi->media); 3043 end_vi_detach(sc, &pi->vi[0]); 3044 3045 return (0); 3046 } 3047 3048 static void 3049 cxgbe_init(void *arg) 3050 { 3051 struct vi_info *vi = arg; 3052 struct adapter *sc = vi->adapter; 3053 3054 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0) 3055 return; 3056 cxgbe_init_synchronized(vi); 3057 end_synchronized_op(sc, 0); 3058 } 3059 3060 static int 3061 cxgbe_ioctl(if_t ifp, unsigned long cmd, caddr_t data) 3062 { 3063 int rc = 0, mtu, flags; 3064 struct vi_info *vi = if_getsoftc(ifp); 3065 struct port_info *pi = vi->pi; 3066 struct adapter *sc = pi->adapter; 3067 struct ifreq *ifr = (struct ifreq *)data; 3068 uint32_t mask; 3069 3070 switch (cmd) { 3071 case SIOCSIFMTU: 3072 mtu = ifr->ifr_mtu; 3073 if (mtu < ETHERMIN || mtu > MAX_MTU) 3074 return (EINVAL); 3075 3076 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu"); 3077 if (rc) 3078 return (rc); 3079 if_setmtu(ifp, mtu); 3080 if (vi->flags & VI_INIT_DONE) { 3081 t4_update_fl_bufsize(ifp); 3082 if (hw_all_ok(sc) && 3083 if_getdrvflags(ifp) & IFF_DRV_RUNNING) 3084 rc = update_mac_settings(ifp, XGMAC_MTU); 3085 } 3086 end_synchronized_op(sc, 0); 3087 break; 3088 3089 case SIOCSIFFLAGS: 3090 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg"); 3091 if (rc) 3092 return (rc); 3093 3094 if (!hw_all_ok(sc)) { 3095 rc = ENXIO; 3096 goto fail; 3097 } 3098 3099 if (if_getflags(ifp) & IFF_UP) { 3100 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 3101 flags = vi->if_flags; 3102 if ((if_getflags(ifp) ^ flags) & 3103 (IFF_PROMISC | IFF_ALLMULTI)) { 3104 rc = update_mac_settings(ifp, 3105 XGMAC_PROMISC | XGMAC_ALLMULTI); 3106 } 3107 } else { 3108 rc = cxgbe_init_synchronized(vi); 3109 } 3110 vi->if_flags = if_getflags(ifp); 3111 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 3112 rc = cxgbe_uninit_synchronized(vi); 3113 } 3114 end_synchronized_op(sc, 0); 3115 break; 3116 3117 case SIOCADDMULTI: 3118 case SIOCDELMULTI: 3119 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi"); 3120 if (rc) 3121 return (rc); 3122 if (hw_all_ok(sc) && if_getdrvflags(ifp) & IFF_DRV_RUNNING) 3123 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 3124 end_synchronized_op(sc, 0); 3125 break; 3126 3127 case SIOCSIFCAP: 3128 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap"); 3129 if (rc) 3130 return (rc); 3131 3132 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp); 3133 if (mask & IFCAP_TXCSUM) { 3134 if_togglecapenable(ifp, IFCAP_TXCSUM); 3135 if_togglehwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP); 3136 3137 if (IFCAP_TSO4 & if_getcapenable(ifp) && 3138 !(IFCAP_TXCSUM & if_getcapenable(ifp))) { 3139 mask &= ~IFCAP_TSO4; 3140 if_setcapenablebit(ifp, 0, IFCAP_TSO4); 3141 if_printf(ifp, 3142 "tso4 disabled due to -txcsum.\n"); 3143 } 3144 } 3145 if (mask & IFCAP_TXCSUM_IPV6) { 3146 if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6); 3147 if_togglehwassist(ifp, CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 3148 3149 if (IFCAP_TSO6 & if_getcapenable(ifp) && 3150 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) { 3151 mask &= ~IFCAP_TSO6; 3152 if_setcapenablebit(ifp, 0, IFCAP_TSO6); 3153 if_printf(ifp, 3154 "tso6 disabled due to -txcsum6.\n"); 3155 } 3156 } 3157 if (mask & IFCAP_RXCSUM) 3158 if_togglecapenable(ifp, IFCAP_RXCSUM); 3159 if (mask & IFCAP_RXCSUM_IPV6) 3160 if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6); 3161 3162 /* 3163 * Note that we leave CSUM_TSO alone (it is always set). The 3164 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before 3165 * sending a TSO request our way, so it's sufficient to toggle 3166 * IFCAP_TSOx only. 3167 */ 3168 if (mask & IFCAP_TSO4) { 3169 if (!(IFCAP_TSO4 & if_getcapenable(ifp)) && 3170 !(IFCAP_TXCSUM & if_getcapenable(ifp))) { 3171 if_printf(ifp, "enable txcsum first.\n"); 3172 rc = EAGAIN; 3173 goto fail; 3174 } 3175 if_togglecapenable(ifp, IFCAP_TSO4); 3176 } 3177 if (mask & IFCAP_TSO6) { 3178 if (!(IFCAP_TSO6 & if_getcapenable(ifp)) && 3179 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) { 3180 if_printf(ifp, "enable txcsum6 first.\n"); 3181 rc = EAGAIN; 3182 goto fail; 3183 } 3184 if_togglecapenable(ifp, IFCAP_TSO6); 3185 } 3186 if (mask & IFCAP_LRO) { 3187 #if defined(INET) || defined(INET6) 3188 int i; 3189 struct sge_rxq *rxq; 3190 3191 if_togglecapenable(ifp, IFCAP_LRO); 3192 for_each_rxq(vi, i, rxq) { 3193 if (if_getcapenable(ifp) & IFCAP_LRO) 3194 rxq->iq.flags |= IQ_LRO_ENABLED; 3195 else 3196 rxq->iq.flags &= ~IQ_LRO_ENABLED; 3197 } 3198 #endif 3199 } 3200 #ifdef TCP_OFFLOAD 3201 if (mask & IFCAP_TOE) { 3202 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TOE; 3203 3204 rc = toe_capability(vi, enable); 3205 if (rc != 0) 3206 goto fail; 3207 3208 if_togglecapenable(ifp, mask); 3209 } 3210 #endif 3211 if (mask & IFCAP_VLAN_HWTAGGING) { 3212 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING); 3213 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 3214 rc = update_mac_settings(ifp, XGMAC_VLANEX); 3215 } 3216 if (mask & IFCAP_VLAN_MTU) { 3217 if_togglecapenable(ifp, IFCAP_VLAN_MTU); 3218 3219 /* Need to find out how to disable auto-mtu-inflation */ 3220 } 3221 if (mask & IFCAP_VLAN_HWTSO) 3222 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 3223 if (mask & IFCAP_VLAN_HWCSUM) 3224 if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM); 3225 #ifdef RATELIMIT 3226 if (mask & IFCAP_TXRTLMT) 3227 if_togglecapenable(ifp, IFCAP_TXRTLMT); 3228 #endif 3229 if (mask & IFCAP_HWRXTSTMP) { 3230 int i; 3231 struct sge_rxq *rxq; 3232 3233 if_togglecapenable(ifp, IFCAP_HWRXTSTMP); 3234 for_each_rxq(vi, i, rxq) { 3235 if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP) 3236 rxq->iq.flags |= IQ_RX_TIMESTAMP; 3237 else 3238 rxq->iq.flags &= ~IQ_RX_TIMESTAMP; 3239 } 3240 } 3241 if (mask & IFCAP_MEXTPG) 3242 if_togglecapenable(ifp, IFCAP_MEXTPG); 3243 3244 #ifdef KERN_TLS 3245 if (mask & IFCAP_TXTLS) { 3246 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TXTLS; 3247 3248 rc = ktls_capability(sc, enable); 3249 if (rc != 0) 3250 goto fail; 3251 3252 if_togglecapenable(ifp, mask & IFCAP_TXTLS); 3253 } 3254 #endif 3255 if (mask & IFCAP_VXLAN_HWCSUM) { 3256 if_togglecapenable(ifp, IFCAP_VXLAN_HWCSUM); 3257 if_togglehwassist(ifp, CSUM_INNER_IP6_UDP | 3258 CSUM_INNER_IP6_TCP | CSUM_INNER_IP | 3259 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP); 3260 } 3261 if (mask & IFCAP_VXLAN_HWTSO) { 3262 if_togglecapenable(ifp, IFCAP_VXLAN_HWTSO); 3263 if_togglehwassist(ifp, CSUM_INNER_IP6_TSO | 3264 CSUM_INNER_IP_TSO); 3265 } 3266 3267 #ifdef VLAN_CAPABILITIES 3268 VLAN_CAPABILITIES(ifp); 3269 #endif 3270 fail: 3271 end_synchronized_op(sc, 0); 3272 break; 3273 3274 case SIOCSIFMEDIA: 3275 case SIOCGIFMEDIA: 3276 case SIOCGIFXMEDIA: 3277 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd); 3278 break; 3279 3280 case SIOCGI2C: { 3281 struct ifi2creq i2c; 3282 3283 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); 3284 if (rc != 0) 3285 break; 3286 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { 3287 rc = EPERM; 3288 break; 3289 } 3290 if (i2c.len > sizeof(i2c.data)) { 3291 rc = EINVAL; 3292 break; 3293 } 3294 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c"); 3295 if (rc) 3296 return (rc); 3297 if (!hw_all_ok(sc)) 3298 rc = ENXIO; 3299 else 3300 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr, 3301 i2c.offset, i2c.len, &i2c.data[0]); 3302 end_synchronized_op(sc, 0); 3303 if (rc == 0) 3304 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c)); 3305 break; 3306 } 3307 3308 default: 3309 rc = ether_ioctl(ifp, cmd, data); 3310 } 3311 3312 return (rc); 3313 } 3314 3315 static int 3316 cxgbe_transmit(if_t ifp, struct mbuf *m) 3317 { 3318 struct vi_info *vi = if_getsoftc(ifp); 3319 struct port_info *pi = vi->pi; 3320 struct adapter *sc; 3321 struct sge_txq *txq; 3322 void *items[1]; 3323 int rc; 3324 3325 M_ASSERTPKTHDR(m); 3326 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */ 3327 #if defined(KERN_TLS) || defined(RATELIMIT) 3328 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) 3329 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 3330 #endif 3331 3332 if (__predict_false(pi->link_cfg.link_ok == false)) { 3333 m_freem(m); 3334 return (ENETDOWN); 3335 } 3336 3337 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR); 3338 if (__predict_false(rc != 0)) { 3339 if (__predict_true(rc == EINPROGRESS)) { 3340 /* queued by parse_pkt */ 3341 MPASS(m != NULL); 3342 return (0); 3343 } 3344 3345 MPASS(m == NULL); /* was freed already */ 3346 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */ 3347 return (rc); 3348 } 3349 3350 /* Select a txq. */ 3351 sc = vi->adapter; 3352 txq = &sc->sge.txq[vi->first_txq]; 3353 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 3354 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) + 3355 vi->rsrv_noflowq); 3356 3357 items[0] = m; 3358 rc = mp_ring_enqueue(txq->r, items, 1, 256); 3359 if (__predict_false(rc != 0)) 3360 m_freem(m); 3361 3362 return (rc); 3363 } 3364 3365 static void 3366 cxgbe_qflush(if_t ifp) 3367 { 3368 struct vi_info *vi = if_getsoftc(ifp); 3369 struct sge_txq *txq; 3370 int i; 3371 3372 /* queues do not exist if !VI_INIT_DONE. */ 3373 if (vi->flags & VI_INIT_DONE) { 3374 for_each_txq(vi, i, txq) { 3375 TXQ_LOCK(txq); 3376 txq->eq.flags |= EQ_QFLUSH; 3377 TXQ_UNLOCK(txq); 3378 while (!mp_ring_is_idle(txq->r)) { 3379 mp_ring_check_drainage(txq->r, 4096); 3380 pause("qflush", 1); 3381 } 3382 TXQ_LOCK(txq); 3383 txq->eq.flags &= ~EQ_QFLUSH; 3384 TXQ_UNLOCK(txq); 3385 } 3386 } 3387 if_qflush(ifp); 3388 } 3389 3390 static uint64_t 3391 vi_get_counter(if_t ifp, ift_counter c) 3392 { 3393 struct vi_info *vi = if_getsoftc(ifp); 3394 struct fw_vi_stats_vf *s = &vi->stats; 3395 3396 mtx_lock(&vi->tick_mtx); 3397 vi_refresh_stats(vi); 3398 mtx_unlock(&vi->tick_mtx); 3399 3400 switch (c) { 3401 case IFCOUNTER_IPACKETS: 3402 return (s->rx_bcast_frames + s->rx_mcast_frames + 3403 s->rx_ucast_frames); 3404 case IFCOUNTER_IERRORS: 3405 return (s->rx_err_frames); 3406 case IFCOUNTER_OPACKETS: 3407 return (s->tx_bcast_frames + s->tx_mcast_frames + 3408 s->tx_ucast_frames + s->tx_offload_frames); 3409 case IFCOUNTER_OERRORS: 3410 return (s->tx_drop_frames); 3411 case IFCOUNTER_IBYTES: 3412 return (s->rx_bcast_bytes + s->rx_mcast_bytes + 3413 s->rx_ucast_bytes); 3414 case IFCOUNTER_OBYTES: 3415 return (s->tx_bcast_bytes + s->tx_mcast_bytes + 3416 s->tx_ucast_bytes + s->tx_offload_bytes); 3417 case IFCOUNTER_IMCASTS: 3418 return (s->rx_mcast_frames); 3419 case IFCOUNTER_OMCASTS: 3420 return (s->tx_mcast_frames); 3421 case IFCOUNTER_OQDROPS: { 3422 uint64_t drops; 3423 3424 drops = 0; 3425 if (vi->flags & VI_INIT_DONE) { 3426 int i; 3427 struct sge_txq *txq; 3428 3429 for_each_txq(vi, i, txq) 3430 drops += counter_u64_fetch(txq->r->dropped); 3431 } 3432 3433 return (drops); 3434 3435 } 3436 3437 default: 3438 return (if_get_counter_default(ifp, c)); 3439 } 3440 } 3441 3442 static uint64_t 3443 cxgbe_get_counter(if_t ifp, ift_counter c) 3444 { 3445 struct vi_info *vi = if_getsoftc(ifp); 3446 struct port_info *pi = vi->pi; 3447 struct port_stats *s = &pi->stats; 3448 3449 mtx_lock(&vi->tick_mtx); 3450 cxgbe_refresh_stats(vi); 3451 mtx_unlock(&vi->tick_mtx); 3452 3453 switch (c) { 3454 case IFCOUNTER_IPACKETS: 3455 return (s->rx_frames); 3456 3457 case IFCOUNTER_IERRORS: 3458 return (s->rx_jabber + s->rx_runt + s->rx_too_long + 3459 s->rx_fcs_err + s->rx_len_err); 3460 3461 case IFCOUNTER_OPACKETS: 3462 return (s->tx_frames); 3463 3464 case IFCOUNTER_OERRORS: 3465 return (s->tx_error_frames); 3466 3467 case IFCOUNTER_IBYTES: 3468 return (s->rx_octets); 3469 3470 case IFCOUNTER_OBYTES: 3471 return (s->tx_octets); 3472 3473 case IFCOUNTER_IMCASTS: 3474 return (s->rx_mcast_frames); 3475 3476 case IFCOUNTER_OMCASTS: 3477 return (s->tx_mcast_frames); 3478 3479 case IFCOUNTER_IQDROPS: 3480 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + 3481 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + 3482 s->rx_trunc3 + pi->tnl_cong_drops); 3483 3484 case IFCOUNTER_OQDROPS: { 3485 uint64_t drops; 3486 3487 drops = s->tx_drop; 3488 if (vi->flags & VI_INIT_DONE) { 3489 int i; 3490 struct sge_txq *txq; 3491 3492 for_each_txq(vi, i, txq) 3493 drops += counter_u64_fetch(txq->r->dropped); 3494 } 3495 3496 return (drops); 3497 3498 } 3499 3500 default: 3501 return (if_get_counter_default(ifp, c)); 3502 } 3503 } 3504 3505 #if defined(KERN_TLS) || defined(RATELIMIT) 3506 static int 3507 cxgbe_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params, 3508 struct m_snd_tag **pt) 3509 { 3510 int error; 3511 3512 switch (params->hdr.type) { 3513 #ifdef RATELIMIT 3514 case IF_SND_TAG_TYPE_RATE_LIMIT: 3515 error = cxgbe_rate_tag_alloc(ifp, params, pt); 3516 break; 3517 #endif 3518 #ifdef KERN_TLS 3519 case IF_SND_TAG_TYPE_TLS: 3520 { 3521 struct vi_info *vi = if_getsoftc(ifp); 3522 3523 if (is_t6(vi->pi->adapter)) 3524 error = t6_tls_tag_alloc(ifp, params, pt); 3525 else 3526 error = t7_tls_tag_alloc(ifp, params, pt); 3527 break; 3528 } 3529 #endif 3530 default: 3531 error = EOPNOTSUPP; 3532 } 3533 return (error); 3534 } 3535 #endif 3536 3537 /* 3538 * The kernel picks a media from the list we had provided but we still validate 3539 * the requeste. 3540 */ 3541 int 3542 cxgbe_media_change(if_t ifp) 3543 { 3544 struct vi_info *vi = if_getsoftc(ifp); 3545 struct port_info *pi = vi->pi; 3546 struct ifmedia *ifm = &pi->media; 3547 struct link_config *lc = &pi->link_cfg; 3548 struct adapter *sc = pi->adapter; 3549 int rc; 3550 3551 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec"); 3552 if (rc != 0) 3553 return (rc); 3554 PORT_LOCK(pi); 3555 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) { 3556 /* ifconfig .. media autoselect */ 3557 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 3558 rc = ENOTSUP; /* AN not supported by transceiver */ 3559 goto done; 3560 } 3561 lc->requested_aneg = AUTONEG_ENABLE; 3562 lc->requested_speed = 0; 3563 lc->requested_fc |= PAUSE_AUTONEG; 3564 } else { 3565 lc->requested_aneg = AUTONEG_DISABLE; 3566 lc->requested_speed = 3567 ifmedia_baudrate(ifm->ifm_media) / 1000000; 3568 lc->requested_fc = 0; 3569 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE) 3570 lc->requested_fc |= PAUSE_RX; 3571 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE) 3572 lc->requested_fc |= PAUSE_TX; 3573 } 3574 if (pi->up_vis > 0 && hw_all_ok(sc)) { 3575 fixup_link_config(pi); 3576 rc = apply_link_config(pi); 3577 } 3578 done: 3579 PORT_UNLOCK(pi); 3580 end_synchronized_op(sc, 0); 3581 return (rc); 3582 } 3583 3584 /* 3585 * Base media word (without ETHER, pause, link active, etc.) for the port at the 3586 * given speed. 3587 */ 3588 static int 3589 port_mword(struct port_info *pi, uint32_t speed) 3590 { 3591 3592 MPASS(speed & M_FW_PORT_CAP32_SPEED); 3593 MPASS(powerof2(speed)); 3594 3595 switch(pi->port_type) { 3596 case FW_PORT_TYPE_BT_SGMII: 3597 case FW_PORT_TYPE_BT_XFI: 3598 case FW_PORT_TYPE_BT_XAUI: 3599 /* BaseT */ 3600 switch (speed) { 3601 case FW_PORT_CAP32_SPEED_100M: 3602 return (IFM_100_T); 3603 case FW_PORT_CAP32_SPEED_1G: 3604 return (IFM_1000_T); 3605 case FW_PORT_CAP32_SPEED_10G: 3606 return (IFM_10G_T); 3607 } 3608 break; 3609 case FW_PORT_TYPE_KX4: 3610 if (speed == FW_PORT_CAP32_SPEED_10G) 3611 return (IFM_10G_KX4); 3612 break; 3613 case FW_PORT_TYPE_CX4: 3614 if (speed == FW_PORT_CAP32_SPEED_10G) 3615 return (IFM_10G_CX4); 3616 break; 3617 case FW_PORT_TYPE_KX: 3618 if (speed == FW_PORT_CAP32_SPEED_1G) 3619 return (IFM_1000_KX); 3620 break; 3621 case FW_PORT_TYPE_KR: 3622 case FW_PORT_TYPE_BP_AP: 3623 case FW_PORT_TYPE_BP4_AP: 3624 case FW_PORT_TYPE_BP40_BA: 3625 case FW_PORT_TYPE_KR4_100G: 3626 case FW_PORT_TYPE_KR_SFP28: 3627 case FW_PORT_TYPE_KR_XLAUI: 3628 switch (speed) { 3629 case FW_PORT_CAP32_SPEED_1G: 3630 return (IFM_1000_KX); 3631 case FW_PORT_CAP32_SPEED_10G: 3632 return (IFM_10G_KR); 3633 case FW_PORT_CAP32_SPEED_25G: 3634 return (IFM_25G_KR); 3635 case FW_PORT_CAP32_SPEED_40G: 3636 return (IFM_40G_KR4); 3637 case FW_PORT_CAP32_SPEED_50G: 3638 return (IFM_50G_KR2); 3639 case FW_PORT_CAP32_SPEED_100G: 3640 return (IFM_100G_KR4); 3641 } 3642 break; 3643 case FW_PORT_TYPE_FIBER_XFI: 3644 case FW_PORT_TYPE_FIBER_XAUI: 3645 case FW_PORT_TYPE_SFP: 3646 case FW_PORT_TYPE_QSFP_10G: 3647 case FW_PORT_TYPE_QSA: 3648 case FW_PORT_TYPE_QSFP: 3649 case FW_PORT_TYPE_CR4_QSFP: 3650 case FW_PORT_TYPE_CR_QSFP: 3651 case FW_PORT_TYPE_CR2_QSFP: 3652 case FW_PORT_TYPE_SFP28: 3653 case FW_PORT_TYPE_SFP56: 3654 case FW_PORT_TYPE_QSFP56: 3655 case FW_PORT_TYPE_QSFPDD: 3656 /* Pluggable transceiver */ 3657 switch (pi->mod_type) { 3658 case FW_PORT_MOD_TYPE_LR: 3659 case FW_PORT_MOD_TYPE_LR_SIMPLEX: 3660 switch (speed) { 3661 case FW_PORT_CAP32_SPEED_1G: 3662 return (IFM_1000_LX); 3663 case FW_PORT_CAP32_SPEED_10G: 3664 return (IFM_10G_LR); 3665 case FW_PORT_CAP32_SPEED_25G: 3666 return (IFM_25G_LR); 3667 case FW_PORT_CAP32_SPEED_40G: 3668 return (IFM_40G_LR4); 3669 case FW_PORT_CAP32_SPEED_50G: 3670 return (IFM_50G_LR2); 3671 case FW_PORT_CAP32_SPEED_100G: 3672 return (IFM_100G_LR4); 3673 case FW_PORT_CAP32_SPEED_200G: 3674 return (IFM_200G_LR4); 3675 case FW_PORT_CAP32_SPEED_400G: 3676 return (IFM_400G_LR8); 3677 } 3678 break; 3679 case FW_PORT_MOD_TYPE_SR: 3680 switch (speed) { 3681 case FW_PORT_CAP32_SPEED_1G: 3682 return (IFM_1000_SX); 3683 case FW_PORT_CAP32_SPEED_10G: 3684 return (IFM_10G_SR); 3685 case FW_PORT_CAP32_SPEED_25G: 3686 return (IFM_25G_SR); 3687 case FW_PORT_CAP32_SPEED_40G: 3688 return (IFM_40G_SR4); 3689 case FW_PORT_CAP32_SPEED_50G: 3690 return (IFM_50G_SR2); 3691 case FW_PORT_CAP32_SPEED_100G: 3692 return (IFM_100G_SR4); 3693 case FW_PORT_CAP32_SPEED_200G: 3694 return (IFM_200G_SR4); 3695 case FW_PORT_CAP32_SPEED_400G: 3696 return (IFM_400G_SR8); 3697 } 3698 break; 3699 case FW_PORT_MOD_TYPE_ER: 3700 if (speed == FW_PORT_CAP32_SPEED_10G) 3701 return (IFM_10G_ER); 3702 break; 3703 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3704 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3705 switch (speed) { 3706 case FW_PORT_CAP32_SPEED_1G: 3707 return (IFM_1000_CX); 3708 case FW_PORT_CAP32_SPEED_10G: 3709 return (IFM_10G_TWINAX); 3710 case FW_PORT_CAP32_SPEED_25G: 3711 return (IFM_25G_CR); 3712 case FW_PORT_CAP32_SPEED_40G: 3713 return (IFM_40G_CR4); 3714 case FW_PORT_CAP32_SPEED_50G: 3715 return (IFM_50G_CR2); 3716 case FW_PORT_CAP32_SPEED_100G: 3717 return (IFM_100G_CR4); 3718 case FW_PORT_CAP32_SPEED_200G: 3719 return (IFM_200G_CR4_PAM4); 3720 case FW_PORT_CAP32_SPEED_400G: 3721 return (IFM_400G_CR8); 3722 } 3723 break; 3724 case FW_PORT_MOD_TYPE_LRM: 3725 if (speed == FW_PORT_CAP32_SPEED_10G) 3726 return (IFM_10G_LRM); 3727 break; 3728 case FW_PORT_MOD_TYPE_DR: 3729 if (speed == FW_PORT_CAP32_SPEED_100G) 3730 return (IFM_100G_DR); 3731 if (speed == FW_PORT_CAP32_SPEED_200G) 3732 return (IFM_200G_DR4); 3733 if (speed == FW_PORT_CAP32_SPEED_400G) 3734 return (IFM_400G_DR4); 3735 break; 3736 case FW_PORT_MOD_TYPE_NA: 3737 MPASS(0); /* Not pluggable? */ 3738 /* fall through */ 3739 case FW_PORT_MOD_TYPE_ERROR: 3740 case FW_PORT_MOD_TYPE_UNKNOWN: 3741 case FW_PORT_MOD_TYPE_NOTSUPPORTED: 3742 break; 3743 case FW_PORT_MOD_TYPE_NONE: 3744 return (IFM_NONE); 3745 } 3746 break; 3747 case M_FW_PORT_CMD_PTYPE: /* FW_PORT_TYPE_NONE for old firmware */ 3748 if (chip_id(pi->adapter) >= CHELSIO_T7) 3749 return (IFM_UNKNOWN); 3750 /* fall through */ 3751 case FW_PORT_TYPE_NONE: 3752 return (IFM_NONE); 3753 } 3754 3755 return (IFM_UNKNOWN); 3756 } 3757 3758 void 3759 cxgbe_media_status(if_t ifp, struct ifmediareq *ifmr) 3760 { 3761 struct vi_info *vi = if_getsoftc(ifp); 3762 struct port_info *pi = vi->pi; 3763 struct adapter *sc = pi->adapter; 3764 struct link_config *lc = &pi->link_cfg; 3765 3766 if (begin_synchronized_op(sc, vi , SLEEP_OK | INTR_OK, "t4med") != 0) 3767 return; 3768 PORT_LOCK(pi); 3769 3770 if (pi->up_vis == 0 && hw_all_ok(sc)) { 3771 /* 3772 * If all the interfaces are administratively down the firmware 3773 * does not report transceiver changes. Refresh port info here 3774 * so that ifconfig displays accurate ifmedia at all times. 3775 * This is the only reason we have a synchronized op in this 3776 * function. Just PORT_LOCK would have been enough otherwise. 3777 */ 3778 t4_update_port_info(pi); 3779 build_medialist(pi); 3780 } 3781 3782 /* ifm_status */ 3783 ifmr->ifm_status = IFM_AVALID; 3784 if (lc->link_ok == false) 3785 goto done; 3786 ifmr->ifm_status |= IFM_ACTIVE; 3787 3788 /* ifm_active */ 3789 ifmr->ifm_active = IFM_ETHER | IFM_FDX; 3790 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE); 3791 if (lc->fc & PAUSE_RX) 3792 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 3793 if (lc->fc & PAUSE_TX) 3794 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 3795 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed)); 3796 done: 3797 PORT_UNLOCK(pi); 3798 end_synchronized_op(sc, 0); 3799 } 3800 3801 static int 3802 vcxgbe_probe(device_t dev) 3803 { 3804 struct vi_info *vi = device_get_softc(dev); 3805 3806 device_set_descf(dev, "port %d vi %td", vi->pi->port_id, 3807 vi - vi->pi->vi); 3808 3809 return (BUS_PROBE_DEFAULT); 3810 } 3811 3812 static int 3813 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi) 3814 { 3815 int func, index, rc; 3816 uint32_t param, val; 3817 3818 ASSERT_SYNCHRONIZED_OP(sc); 3819 3820 index = vi - pi->vi; 3821 MPASS(index > 0); /* This function deals with _extra_ VIs only */ 3822 KASSERT(index < nitems(vi_mac_funcs), 3823 ("%s: VI %s doesn't have a MAC func", __func__, 3824 device_get_nameunit(vi->dev))); 3825 func = vi_mac_funcs[index]; 3826 rc = t4_alloc_vi_func(sc, sc->mbox, pi->hw_port, sc->pf, 0, 1, 3827 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0); 3828 if (rc < 0) { 3829 CH_ERR(vi, "failed to allocate virtual interface %d" 3830 "for port %d: %d\n", index, pi->port_id, -rc); 3831 return (-rc); 3832 } 3833 vi->viid = rc; 3834 3835 if (vi->rss_size == 1) { 3836 /* 3837 * This VI didn't get a slice of the RSS table. Reduce the 3838 * number of VIs being created (hw.cxgbe.num_vis) or modify the 3839 * configuration file (nvi, rssnvi for this PF) if this is a 3840 * problem. 3841 */ 3842 device_printf(vi->dev, "RSS table not available.\n"); 3843 vi->rss_base = 0xffff; 3844 3845 return (0); 3846 } 3847 3848 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3849 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 3850 V_FW_PARAMS_PARAM_YZ(vi->viid); 3851 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3852 if (rc) 3853 vi->rss_base = 0xffff; 3854 else { 3855 MPASS((val >> 16) == vi->rss_size); 3856 vi->rss_base = val & 0xffff; 3857 } 3858 3859 return (0); 3860 } 3861 3862 static int 3863 vcxgbe_attach(device_t dev) 3864 { 3865 struct vi_info *vi; 3866 struct port_info *pi; 3867 struct adapter *sc; 3868 int rc; 3869 3870 vi = device_get_softc(dev); 3871 pi = vi->pi; 3872 sc = pi->adapter; 3873 3874 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via"); 3875 if (rc) 3876 return (rc); 3877 rc = alloc_extra_vi(sc, pi, vi); 3878 end_synchronized_op(sc, 0); 3879 if (rc) 3880 return (rc); 3881 3882 cxgbe_vi_attach(dev, vi); 3883 3884 return (0); 3885 } 3886 3887 static int 3888 vcxgbe_detach(device_t dev) 3889 { 3890 struct vi_info *vi; 3891 struct adapter *sc; 3892 3893 vi = device_get_softc(dev); 3894 sc = vi->adapter; 3895 3896 begin_vi_detach(sc, vi); 3897 cxgbe_vi_detach(vi); 3898 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3899 end_vi_detach(sc, vi); 3900 3901 return (0); 3902 } 3903 3904 static struct callout fatal_callout; 3905 static struct taskqueue *reset_tq; 3906 3907 static void 3908 delayed_panic(void *arg) 3909 { 3910 struct adapter *sc = arg; 3911 3912 panic("%s: panic on fatal error", device_get_nameunit(sc->dev)); 3913 } 3914 3915 static void 3916 fatal_error_task(void *arg, int pending) 3917 { 3918 struct adapter *sc = arg; 3919 int rc; 3920 3921 if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) { 3922 dump_cim_regs(sc); 3923 dump_cimla(sc); 3924 dump_devlog(sc); 3925 } 3926 3927 if (t4_reset_on_fatal_err) { 3928 CH_ALERT(sc, "resetting adapter after fatal error.\n"); 3929 rc = reset_adapter(sc); 3930 if (rc == 0 && t4_panic_on_fatal_err) { 3931 CH_ALERT(sc, "reset was successful, " 3932 "system will NOT panic.\n"); 3933 return; 3934 } 3935 } 3936 3937 if (t4_panic_on_fatal_err) { 3938 CH_ALERT(sc, "panicking on fatal error (after 30s).\n"); 3939 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc); 3940 } 3941 } 3942 3943 void 3944 t4_fatal_err(struct adapter *sc, bool fw_error) 3945 { 3946 stop_adapter(sc); 3947 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR))) 3948 return; 3949 if (fw_error) { 3950 /* 3951 * We are here because of a firmware error/timeout and not 3952 * because of a hardware interrupt. It is possible (although 3953 * not very likely) that an error interrupt was also raised but 3954 * this thread ran first and inhibited t4_intr_err. We walk the 3955 * main INT_CAUSE registers here to make sure we haven't missed 3956 * anything interesting. 3957 */ 3958 t4_slow_intr_handler(sc, sc->intr_flags); 3959 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 3960 } 3961 t4_report_fw_error(sc); 3962 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n", 3963 device_get_nameunit(sc->dev), fw_error); 3964 taskqueue_enqueue(reset_tq, &sc->fatal_error_task); 3965 } 3966 3967 void 3968 t4_add_adapter(struct adapter *sc) 3969 { 3970 sx_xlock(&t4_list_lock); 3971 SLIST_INSERT_HEAD(&t4_list, sc, link); 3972 sx_xunlock(&t4_list_lock); 3973 } 3974 3975 int 3976 t4_map_bars_0_and_4(struct adapter *sc) 3977 { 3978 sc->regs_rid = PCIR_BAR(0); 3979 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3980 &sc->regs_rid, RF_ACTIVE); 3981 if (sc->regs_res == NULL) { 3982 device_printf(sc->dev, "cannot map registers.\n"); 3983 return (ENXIO); 3984 } 3985 sc->bt = rman_get_bustag(sc->regs_res); 3986 sc->bh = rman_get_bushandle(sc->regs_res); 3987 sc->mmio_len = rman_get_size(sc->regs_res); 3988 setbit(&sc->doorbells, DOORBELL_KDB); 3989 3990 sc->msix_rid = PCIR_BAR(4); 3991 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3992 &sc->msix_rid, RF_ACTIVE); 3993 if (sc->msix_res == NULL) { 3994 device_printf(sc->dev, "cannot map MSI-X BAR.\n"); 3995 return (ENXIO); 3996 } 3997 3998 return (0); 3999 } 4000 4001 int 4002 t4_map_bar_2(struct adapter *sc) 4003 { 4004 4005 /* 4006 * T4: only iWARP driver uses the userspace doorbells. There is no need 4007 * to map it if RDMA is disabled. 4008 */ 4009 if (is_t4(sc) && sc->rdmacaps == 0) 4010 return (0); 4011 4012 sc->udbs_rid = PCIR_BAR(2); 4013 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 4014 &sc->udbs_rid, RF_ACTIVE); 4015 if (sc->udbs_res == NULL) { 4016 device_printf(sc->dev, "cannot map doorbell BAR.\n"); 4017 return (ENXIO); 4018 } 4019 sc->udbs_base = rman_get_virtual(sc->udbs_res); 4020 4021 if (chip_id(sc) >= CHELSIO_T5) { 4022 setbit(&sc->doorbells, DOORBELL_UDB); 4023 #if defined(__i386__) || defined(__amd64__) 4024 if (t5_write_combine) { 4025 int rc, mode; 4026 4027 /* 4028 * Enable write combining on BAR2. This is the 4029 * userspace doorbell BAR and is split into 128B 4030 * (UDBS_SEG_SIZE) doorbell regions, each associated 4031 * with an egress queue. The first 64B has the doorbell 4032 * and the second 64B can be used to submit a tx work 4033 * request with an implicit doorbell. 4034 */ 4035 4036 rc = pmap_change_attr((vm_offset_t)sc->udbs_base, 4037 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); 4038 if (rc == 0) { 4039 clrbit(&sc->doorbells, DOORBELL_UDB); 4040 setbit(&sc->doorbells, DOORBELL_WCWR); 4041 setbit(&sc->doorbells, DOORBELL_UDBWC); 4042 } else { 4043 device_printf(sc->dev, 4044 "couldn't enable write combining: %d\n", 4045 rc); 4046 } 4047 4048 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0); 4049 t4_write_reg(sc, A_SGE_STAT_CFG, 4050 V_STATSOURCE_T5(7) | mode); 4051 } 4052 #endif 4053 } 4054 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0; 4055 4056 return (0); 4057 } 4058 4059 int 4060 t4_adj_doorbells(struct adapter *sc) 4061 { 4062 if ((sc->doorbells & t4_doorbells_allowed) != 0) { 4063 sc->doorbells &= t4_doorbells_allowed; 4064 return (0); 4065 } 4066 CH_ERR(sc, "No usable doorbell (available = 0x%x, allowed = 0x%x).\n", 4067 sc->doorbells, t4_doorbells_allowed); 4068 return (EINVAL); 4069 } 4070 4071 struct memwin_init { 4072 uint32_t base; 4073 uint32_t aperture; 4074 }; 4075 4076 static const struct memwin_init t4_memwin[NUM_MEMWIN] = { 4077 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 4078 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 4079 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } 4080 }; 4081 4082 static const struct memwin_init t5_memwin[NUM_MEMWIN] = { 4083 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 4084 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 4085 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, 4086 }; 4087 4088 static void 4089 setup_memwin(struct adapter *sc) 4090 { 4091 const struct memwin_init *mw_init; 4092 struct memwin *mw; 4093 int i; 4094 uint32_t bar0, reg; 4095 4096 if (is_t4(sc)) { 4097 /* 4098 * Read low 32b of bar0 indirectly via the hardware backdoor 4099 * mechanism. Works from within PCI passthrough environments 4100 * too, where rman_get_start() can return a different value. We 4101 * need to program the T4 memory window decoders with the actual 4102 * addresses that will be coming across the PCIe link. 4103 */ 4104 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); 4105 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; 4106 4107 mw_init = &t4_memwin[0]; 4108 } else { 4109 /* T5+ use the relative offset inside the PCIe BAR */ 4110 bar0 = 0; 4111 4112 mw_init = &t5_memwin[0]; 4113 } 4114 4115 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) { 4116 if (!rw_initialized(&mw->mw_lock)) { 4117 rw_init(&mw->mw_lock, "memory window access"); 4118 mw->mw_base = mw_init->base; 4119 mw->mw_aperture = mw_init->aperture; 4120 mw->mw_curpos = 0; 4121 } 4122 reg = chip_id(sc) > CHELSIO_T6 ? 4123 PCIE_MEM_ACCESS_T7_REG(A_T7_PCIE_MEM_ACCESS_BASE_WIN, i) : 4124 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i); 4125 t4_write_reg(sc, reg, (mw->mw_base + bar0) | V_BIR(0) | 4126 V_WINDOW(ilog2(mw->mw_aperture) - 10)); 4127 rw_wlock(&mw->mw_lock); 4128 position_memwin(sc, i, mw->mw_curpos); 4129 rw_wunlock(&mw->mw_lock); 4130 } 4131 4132 /* flush */ 4133 t4_read_reg(sc, reg); 4134 } 4135 4136 /* 4137 * Positions the memory window at the given address in the card's address space. 4138 * There are some alignment requirements and the actual position may be at an 4139 * address prior to the requested address. mw->mw_curpos always has the actual 4140 * position of the window. 4141 */ 4142 static void 4143 position_memwin(struct adapter *sc, int idx, uint32_t addr) 4144 { 4145 struct memwin *mw; 4146 uint32_t pf, reg, val; 4147 4148 MPASS(idx >= 0 && idx < NUM_MEMWIN); 4149 mw = &sc->memwin[idx]; 4150 rw_assert(&mw->mw_lock, RA_WLOCKED); 4151 4152 if (is_t4(sc)) { 4153 pf = 0; 4154 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */ 4155 } else { 4156 pf = V_PFNUM(sc->pf); 4157 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */ 4158 } 4159 if (chip_id(sc) > CHELSIO_T6) { 4160 reg = PCIE_MEM_ACCESS_T7_REG(A_PCIE_MEM_ACCESS_OFFSET0, idx); 4161 val = (mw->mw_curpos >> X_T7_MEMOFST_SHIFT) | pf; 4162 } else { 4163 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx); 4164 val = mw->mw_curpos | pf; 4165 } 4166 t4_write_reg(sc, reg, val); 4167 t4_read_reg(sc, reg); /* flush */ 4168 } 4169 4170 int 4171 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 4172 int len, int rw) 4173 { 4174 struct memwin *mw; 4175 uint32_t mw_end, v; 4176 4177 MPASS(idx >= 0 && idx < NUM_MEMWIN); 4178 4179 /* Memory can only be accessed in naturally aligned 4 byte units */ 4180 if (addr & 3 || len & 3 || len <= 0) 4181 return (EINVAL); 4182 4183 mw = &sc->memwin[idx]; 4184 while (len > 0) { 4185 rw_rlock(&mw->mw_lock); 4186 mw_end = mw->mw_curpos + mw->mw_aperture; 4187 if (addr >= mw_end || addr < mw->mw_curpos) { 4188 /* Will need to reposition the window */ 4189 if (!rw_try_upgrade(&mw->mw_lock)) { 4190 rw_runlock(&mw->mw_lock); 4191 rw_wlock(&mw->mw_lock); 4192 } 4193 rw_assert(&mw->mw_lock, RA_WLOCKED); 4194 position_memwin(sc, idx, addr); 4195 rw_downgrade(&mw->mw_lock); 4196 mw_end = mw->mw_curpos + mw->mw_aperture; 4197 } 4198 rw_assert(&mw->mw_lock, RA_RLOCKED); 4199 while (addr < mw_end && len > 0) { 4200 if (rw == 0) { 4201 v = t4_read_reg(sc, mw->mw_base + addr - 4202 mw->mw_curpos); 4203 *val++ = le32toh(v); 4204 } else { 4205 v = *val++; 4206 t4_write_reg(sc, mw->mw_base + addr - 4207 mw->mw_curpos, htole32(v)); 4208 } 4209 addr += 4; 4210 len -= 4; 4211 } 4212 rw_runlock(&mw->mw_lock); 4213 } 4214 4215 return (0); 4216 } 4217 4218 CTASSERT(M_TID_COOKIE == M_COOKIE); 4219 CTASSERT(MAX_ATIDS <= (M_TID_TID + 1)); 4220 4221 static void 4222 t4_init_atid_table(struct adapter *sc) 4223 { 4224 struct tid_info *t; 4225 int i; 4226 4227 t = &sc->tids; 4228 if (t->natids == 0) 4229 return; 4230 4231 MPASS(t->atid_tab == NULL); 4232 4233 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE, 4234 M_ZERO | M_WAITOK); 4235 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF); 4236 t->afree = t->atid_tab; 4237 t->atids_in_use = 0; 4238 t->atid_alloc_stopped = false; 4239 for (i = 1; i < t->natids; i++) 4240 t->atid_tab[i - 1].next = &t->atid_tab[i]; 4241 t->atid_tab[t->natids - 1].next = NULL; 4242 } 4243 4244 static void 4245 t4_free_atid_table(struct adapter *sc) 4246 { 4247 struct tid_info *t; 4248 4249 t = &sc->tids; 4250 4251 KASSERT(t->atids_in_use == 0, 4252 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 4253 4254 if (mtx_initialized(&t->atid_lock)) 4255 mtx_destroy(&t->atid_lock); 4256 free(t->atid_tab, M_CXGBE); 4257 t->atid_tab = NULL; 4258 } 4259 4260 static void 4261 stop_atid_allocator(struct adapter *sc) 4262 { 4263 struct tid_info *t = &sc->tids; 4264 4265 if (t->natids == 0) 4266 return; 4267 mtx_lock(&t->atid_lock); 4268 t->atid_alloc_stopped = true; 4269 mtx_unlock(&t->atid_lock); 4270 } 4271 4272 static void 4273 restart_atid_allocator(struct adapter *sc) 4274 { 4275 struct tid_info *t = &sc->tids; 4276 4277 if (t->natids == 0) 4278 return; 4279 mtx_lock(&t->atid_lock); 4280 KASSERT(t->atids_in_use == 0, 4281 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 4282 t->atid_alloc_stopped = false; 4283 mtx_unlock(&t->atid_lock); 4284 } 4285 4286 int 4287 alloc_atid(struct adapter *sc, void *ctx) 4288 { 4289 struct tid_info *t = &sc->tids; 4290 int atid = -1; 4291 4292 mtx_lock(&t->atid_lock); 4293 if (t->afree && !t->atid_alloc_stopped) { 4294 union aopen_entry *p = t->afree; 4295 4296 atid = p - t->atid_tab; 4297 MPASS(atid <= M_TID_TID); 4298 t->afree = p->next; 4299 p->data = ctx; 4300 t->atids_in_use++; 4301 } 4302 mtx_unlock(&t->atid_lock); 4303 return (atid); 4304 } 4305 4306 void * 4307 lookup_atid(struct adapter *sc, int atid) 4308 { 4309 struct tid_info *t = &sc->tids; 4310 4311 return (t->atid_tab[atid].data); 4312 } 4313 4314 void 4315 free_atid(struct adapter *sc, int atid) 4316 { 4317 struct tid_info *t = &sc->tids; 4318 union aopen_entry *p = &t->atid_tab[atid]; 4319 4320 mtx_lock(&t->atid_lock); 4321 p->next = t->afree; 4322 t->afree = p; 4323 t->atids_in_use--; 4324 mtx_unlock(&t->atid_lock); 4325 } 4326 4327 static void 4328 queue_tid_release(struct adapter *sc, int tid) 4329 { 4330 4331 CXGBE_UNIMPLEMENTED("deferred tid release"); 4332 } 4333 4334 void 4335 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq) 4336 { 4337 struct wrqe *wr; 4338 struct cpl_tid_release *req; 4339 4340 wr = alloc_wrqe(sizeof(*req), ctrlq); 4341 if (wr == NULL) { 4342 queue_tid_release(sc, tid); /* defer */ 4343 return; 4344 } 4345 req = wrtod(wr); 4346 4347 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid); 4348 4349 t4_wrq_tx(sc, wr); 4350 } 4351 4352 static int 4353 t4_range_cmp(const void *a, const void *b) 4354 { 4355 return ((const struct t4_range *)a)->start - 4356 ((const struct t4_range *)b)->start; 4357 } 4358 4359 /* 4360 * Verify that the memory range specified by the addr/len pair is valid within 4361 * the card's address space. 4362 */ 4363 static int 4364 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len) 4365 { 4366 struct t4_range mem_ranges[4], *r, *next; 4367 uint32_t em, addr_len; 4368 int i, n, remaining; 4369 4370 /* Memory can only be accessed in naturally aligned 4 byte units */ 4371 if (addr & 3 || len & 3 || len == 0) 4372 return (EINVAL); 4373 4374 /* Enabled memories */ 4375 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4376 4377 r = &mem_ranges[0]; 4378 n = 0; 4379 bzero(r, sizeof(mem_ranges)); 4380 if (em & F_EDRAM0_ENABLE) { 4381 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4382 r->size = G_EDRAM0_SIZE(addr_len) << 20; 4383 if (r->size > 0) { 4384 r->start = G_EDRAM0_BASE(addr_len) << 20; 4385 if (addr >= r->start && 4386 addr + len <= r->start + r->size) 4387 return (0); 4388 r++; 4389 n++; 4390 } 4391 } 4392 if (em & F_EDRAM1_ENABLE) { 4393 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4394 r->size = G_EDRAM1_SIZE(addr_len) << 20; 4395 if (r->size > 0) { 4396 r->start = G_EDRAM1_BASE(addr_len) << 20; 4397 if (addr >= r->start && 4398 addr + len <= r->start + r->size) 4399 return (0); 4400 r++; 4401 n++; 4402 } 4403 } 4404 if (em & F_EXT_MEM_ENABLE) { 4405 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4406 r->size = G_EXT_MEM_SIZE(addr_len) << 20; 4407 if (r->size > 0) { 4408 r->start = G_EXT_MEM_BASE(addr_len) << 20; 4409 if (addr >= r->start && 4410 addr + len <= r->start + r->size) 4411 return (0); 4412 r++; 4413 n++; 4414 } 4415 } 4416 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) { 4417 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4418 r->size = G_EXT_MEM1_SIZE(addr_len) << 20; 4419 if (r->size > 0) { 4420 r->start = G_EXT_MEM1_BASE(addr_len) << 20; 4421 if (addr >= r->start && 4422 addr + len <= r->start + r->size) 4423 return (0); 4424 r++; 4425 n++; 4426 } 4427 } 4428 MPASS(n <= nitems(mem_ranges)); 4429 4430 if (n > 1) { 4431 /* Sort and merge the ranges. */ 4432 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp); 4433 4434 /* Start from index 0 and examine the next n - 1 entries. */ 4435 r = &mem_ranges[0]; 4436 for (remaining = n - 1; remaining > 0; remaining--, r++) { 4437 4438 MPASS(r->size > 0); /* r is a valid entry. */ 4439 next = r + 1; 4440 MPASS(next->size > 0); /* and so is the next one. */ 4441 4442 while (r->start + r->size >= next->start) { 4443 /* Merge the next one into the current entry. */ 4444 r->size = max(r->start + r->size, 4445 next->start + next->size) - r->start; 4446 n--; /* One fewer entry in total. */ 4447 if (--remaining == 0) 4448 goto done; /* short circuit */ 4449 next++; 4450 } 4451 if (next != r + 1) { 4452 /* 4453 * Some entries were merged into r and next 4454 * points to the first valid entry that couldn't 4455 * be merged. 4456 */ 4457 MPASS(next->size > 0); /* must be valid */ 4458 memcpy(r + 1, next, remaining * sizeof(*r)); 4459 #ifdef INVARIANTS 4460 /* 4461 * This so that the foo->size assertion in the 4462 * next iteration of the loop do the right 4463 * thing for entries that were pulled up and are 4464 * no longer valid. 4465 */ 4466 MPASS(n < nitems(mem_ranges)); 4467 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) * 4468 sizeof(struct t4_range)); 4469 #endif 4470 } 4471 } 4472 done: 4473 /* Done merging the ranges. */ 4474 MPASS(n > 0); 4475 r = &mem_ranges[0]; 4476 for (i = 0; i < n; i++, r++) { 4477 if (addr >= r->start && 4478 addr + len <= r->start + r->size) 4479 return (0); 4480 } 4481 } 4482 4483 return (EFAULT); 4484 } 4485 4486 static int 4487 fwmtype_to_hwmtype(int mtype) 4488 { 4489 4490 switch (mtype) { 4491 case FW_MEMTYPE_EDC0: 4492 return (MEM_EDC0); 4493 case FW_MEMTYPE_EDC1: 4494 return (MEM_EDC1); 4495 case FW_MEMTYPE_EXTMEM: 4496 return (MEM_MC0); 4497 case FW_MEMTYPE_EXTMEM1: 4498 return (MEM_MC1); 4499 default: 4500 panic("%s: cannot translate fw mtype %d.", __func__, mtype); 4501 } 4502 } 4503 4504 /* 4505 * Verify that the memory range specified by the memtype/offset/len pair is 4506 * valid and lies entirely within the memtype specified. The global address of 4507 * the start of the range is returned in addr. 4508 */ 4509 static int 4510 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len, 4511 uint32_t *addr) 4512 { 4513 uint32_t em, addr_len, maddr; 4514 4515 /* Memory can only be accessed in naturally aligned 4 byte units */ 4516 if (off & 3 || len & 3 || len == 0) 4517 return (EINVAL); 4518 4519 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4520 switch (fwmtype_to_hwmtype(mtype)) { 4521 case MEM_EDC0: 4522 if (!(em & F_EDRAM0_ENABLE)) 4523 return (EINVAL); 4524 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4525 maddr = G_EDRAM0_BASE(addr_len) << 20; 4526 break; 4527 case MEM_EDC1: 4528 if (!(em & F_EDRAM1_ENABLE)) 4529 return (EINVAL); 4530 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4531 maddr = G_EDRAM1_BASE(addr_len) << 20; 4532 break; 4533 case MEM_MC: 4534 if (!(em & F_EXT_MEM_ENABLE)) 4535 return (EINVAL); 4536 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4537 maddr = G_EXT_MEM_BASE(addr_len) << 20; 4538 break; 4539 case MEM_MC1: 4540 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE)) 4541 return (EINVAL); 4542 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4543 maddr = G_EXT_MEM1_BASE(addr_len) << 20; 4544 break; 4545 default: 4546 return (EINVAL); 4547 } 4548 4549 *addr = maddr + off; /* global address */ 4550 return (validate_mem_range(sc, *addr, len)); 4551 } 4552 4553 static int 4554 fixup_devlog_params(struct adapter *sc) 4555 { 4556 struct devlog_params *dparams = &sc->params.devlog; 4557 int rc; 4558 4559 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start, 4560 dparams->size, &dparams->addr); 4561 4562 return (rc); 4563 } 4564 4565 static void 4566 update_nirq(struct intrs_and_queues *iaq, int nports) 4567 { 4568 4569 iaq->nirq = T4_EXTRA_INTR; 4570 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq); 4571 iaq->nirq += nports * iaq->nofldrxq; 4572 iaq->nirq += nports * (iaq->num_vis - 1) * 4573 max(iaq->nrxq_vi, iaq->nnmrxq_vi); 4574 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi; 4575 } 4576 4577 /* 4578 * Adjust requirements to fit the number of interrupts available. 4579 */ 4580 static void 4581 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype, 4582 int navail) 4583 { 4584 int old_nirq; 4585 const int nports = sc->params.nports; 4586 4587 MPASS(nports > 0); 4588 MPASS(navail > 0); 4589 4590 bzero(iaq, sizeof(*iaq)); 4591 iaq->intr_type = itype; 4592 iaq->num_vis = t4_num_vis; 4593 iaq->ntxq = t4_ntxq; 4594 iaq->ntxq_vi = t4_ntxq_vi; 4595 iaq->nrxq = t4_nrxq; 4596 iaq->nrxq_vi = t4_nrxq_vi; 4597 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 4598 if (is_offload(sc) || is_ethoffload(sc)) { 4599 if (sc->params.tid_qid_sel_mask == 0) { 4600 iaq->nofldtxq = t4_nofldtxq; 4601 iaq->nofldtxq_vi = t4_nofldtxq_vi; 4602 } else { 4603 iaq->nofldtxq = roundup(t4_nofldtxq, sc->params.ncores); 4604 iaq->nofldtxq_vi = roundup(t4_nofldtxq_vi, 4605 sc->params.ncores); 4606 if (iaq->nofldtxq != t4_nofldtxq) 4607 device_printf(sc->dev, 4608 "nofldtxq updated (%d -> %d) for correct" 4609 " operation with %d firmware cores.\n", 4610 t4_nofldtxq, iaq->nofldtxq, 4611 sc->params.ncores); 4612 if (iaq->num_vis > 1 && 4613 iaq->nofldtxq_vi != t4_nofldtxq_vi) 4614 device_printf(sc->dev, 4615 "nofldtxq_vi updated (%d -> %d) for correct" 4616 " operation with %d firmware cores.\n", 4617 t4_nofldtxq_vi, iaq->nofldtxq_vi, 4618 sc->params.ncores); 4619 } 4620 } 4621 #endif 4622 #ifdef TCP_OFFLOAD 4623 if (is_offload(sc)) { 4624 iaq->nofldrxq = t4_nofldrxq; 4625 iaq->nofldrxq_vi = t4_nofldrxq_vi; 4626 } 4627 #endif 4628 #ifdef DEV_NETMAP 4629 if (t4_native_netmap & NN_MAIN_VI) { 4630 iaq->nnmtxq = t4_nnmtxq; 4631 iaq->nnmrxq = t4_nnmrxq; 4632 } 4633 if (t4_native_netmap & NN_EXTRA_VI) { 4634 iaq->nnmtxq_vi = t4_nnmtxq_vi; 4635 iaq->nnmrxq_vi = t4_nnmrxq_vi; 4636 } 4637 #endif 4638 4639 update_nirq(iaq, nports); 4640 if (iaq->nirq <= navail && 4641 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4642 /* 4643 * This is the normal case -- there are enough interrupts for 4644 * everything. 4645 */ 4646 goto done; 4647 } 4648 4649 /* 4650 * If extra VIs have been configured try reducing their count and see if 4651 * that works. 4652 */ 4653 while (iaq->num_vis > 1) { 4654 iaq->num_vis--; 4655 update_nirq(iaq, nports); 4656 if (iaq->nirq <= navail && 4657 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4658 device_printf(sc->dev, "virtual interfaces per port " 4659 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, " 4660 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. " 4661 "itype %d, navail %u, nirq %d.\n", 4662 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq, 4663 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi, 4664 itype, navail, iaq->nirq); 4665 goto done; 4666 } 4667 } 4668 4669 /* 4670 * Extra VIs will not be created. Log a message if they were requested. 4671 */ 4672 MPASS(iaq->num_vis == 1); 4673 iaq->ntxq_vi = iaq->nrxq_vi = 0; 4674 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0; 4675 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0; 4676 if (iaq->num_vis != t4_num_vis) { 4677 device_printf(sc->dev, "extra virtual interfaces disabled. " 4678 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, " 4679 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n", 4680 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi, 4681 iaq->nnmrxq_vi, itype, navail, iaq->nirq); 4682 } 4683 4684 /* 4685 * Keep reducing the number of NIC rx queues to the next lower power of 4686 * 2 (for even RSS distribution) and halving the TOE rx queues and see 4687 * if that works. 4688 */ 4689 do { 4690 if (iaq->nrxq > 1) { 4691 iaq->nrxq = rounddown_pow_of_two(iaq->nrxq - 1); 4692 if (iaq->nnmrxq > iaq->nrxq) 4693 iaq->nnmrxq = iaq->nrxq; 4694 } 4695 if (iaq->nofldrxq > 1) 4696 iaq->nofldrxq >>= 1; 4697 4698 old_nirq = iaq->nirq; 4699 update_nirq(iaq, nports); 4700 if (iaq->nirq <= navail && 4701 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4702 device_printf(sc->dev, "running with reduced number of " 4703 "rx queues because of shortage of interrupts. " 4704 "nrxq=%u, nofldrxq=%u. " 4705 "itype %d, navail %u, nirq %d.\n", iaq->nrxq, 4706 iaq->nofldrxq, itype, navail, iaq->nirq); 4707 goto done; 4708 } 4709 } while (old_nirq != iaq->nirq); 4710 4711 /* One interrupt for everything. Ugh. */ 4712 device_printf(sc->dev, "running with minimal number of queues. " 4713 "itype %d, navail %u.\n", itype, navail); 4714 iaq->nirq = 1; 4715 iaq->nrxq = 1; 4716 iaq->ntxq = 1; 4717 if (iaq->nofldrxq > 0) { 4718 iaq->nofldrxq = 1; 4719 iaq->nofldtxq = 1; 4720 if (sc->params.tid_qid_sel_mask == 0) 4721 iaq->nofldtxq = 1; 4722 else 4723 iaq->nofldtxq = sc->params.ncores; 4724 } 4725 iaq->nnmtxq = 0; 4726 iaq->nnmrxq = 0; 4727 done: 4728 MPASS(iaq->num_vis > 0); 4729 if (iaq->num_vis > 1) { 4730 MPASS(iaq->nrxq_vi > 0); 4731 MPASS(iaq->ntxq_vi > 0); 4732 } 4733 MPASS(iaq->nirq > 0); 4734 MPASS(iaq->nrxq > 0); 4735 MPASS(iaq->ntxq > 0); 4736 if (itype == INTR_MSI) 4737 MPASS(powerof2(iaq->nirq)); 4738 if (sc->params.tid_qid_sel_mask != 0) 4739 MPASS(iaq->nofldtxq % sc->params.ncores == 0); 4740 } 4741 4742 static int 4743 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq) 4744 { 4745 int rc, itype, navail, nalloc; 4746 4747 for (itype = INTR_MSIX; itype; itype >>= 1) { 4748 4749 if ((itype & t4_intr_types) == 0) 4750 continue; /* not allowed */ 4751 4752 if (itype == INTR_MSIX) 4753 navail = pci_msix_count(sc->dev); 4754 else if (itype == INTR_MSI) 4755 navail = pci_msi_count(sc->dev); 4756 else 4757 navail = 1; 4758 restart: 4759 if (navail == 0) 4760 continue; 4761 4762 calculate_iaq(sc, iaq, itype, navail); 4763 nalloc = iaq->nirq; 4764 rc = 0; 4765 if (itype == INTR_MSIX) 4766 rc = pci_alloc_msix(sc->dev, &nalloc); 4767 else if (itype == INTR_MSI) 4768 rc = pci_alloc_msi(sc->dev, &nalloc); 4769 4770 if (rc == 0 && nalloc > 0) { 4771 if (nalloc == iaq->nirq) 4772 return (0); 4773 4774 /* 4775 * Didn't get the number requested. Use whatever number 4776 * the kernel is willing to allocate. 4777 */ 4778 device_printf(sc->dev, "fewer vectors than requested, " 4779 "type=%d, req=%d, rcvd=%d; will downshift req.\n", 4780 itype, iaq->nirq, nalloc); 4781 pci_release_msi(sc->dev); 4782 navail = nalloc; 4783 goto restart; 4784 } 4785 4786 device_printf(sc->dev, 4787 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", 4788 itype, rc, iaq->nirq, nalloc); 4789 } 4790 4791 device_printf(sc->dev, 4792 "failed to find a usable interrupt type. " 4793 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, 4794 pci_msix_count(sc->dev), pci_msi_count(sc->dev)); 4795 4796 return (ENXIO); 4797 } 4798 4799 #define FW_VERSION(chip) ( \ 4800 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ 4801 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ 4802 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ 4803 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) 4804 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) 4805 4806 /* Just enough of fw_hdr to cover all version info. */ 4807 struct fw_h { 4808 __u8 ver; 4809 __u8 chip; 4810 __be16 len512; 4811 __be32 fw_ver; 4812 __be32 tp_microcode_ver; 4813 __u8 intfver_nic; 4814 __u8 intfver_vnic; 4815 __u8 intfver_ofld; 4816 __u8 intfver_ri; 4817 __u8 intfver_iscsipdu; 4818 __u8 intfver_iscsi; 4819 __u8 intfver_fcoepdu; 4820 __u8 intfver_fcoe; 4821 }; 4822 /* Spot check a couple of fields. */ 4823 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver)); 4824 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic)); 4825 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe)); 4826 4827 struct fw_info { 4828 uint8_t chip; 4829 char *kld_name; 4830 char *fw_mod_name; 4831 struct fw_h fw_h; 4832 } fw_info[] = { 4833 { 4834 .chip = CHELSIO_T4, 4835 .kld_name = "t4fw_cfg", 4836 .fw_mod_name = "t4fw", 4837 .fw_h = { 4838 .chip = FW_HDR_CHIP_T4, 4839 .fw_ver = htobe32(FW_VERSION(T4)), 4840 .intfver_nic = FW_INTFVER(T4, NIC), 4841 .intfver_vnic = FW_INTFVER(T4, VNIC), 4842 .intfver_ofld = FW_INTFVER(T4, OFLD), 4843 .intfver_ri = FW_INTFVER(T4, RI), 4844 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), 4845 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4846 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), 4847 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4848 }, 4849 }, { 4850 .chip = CHELSIO_T5, 4851 .kld_name = "t5fw_cfg", 4852 .fw_mod_name = "t5fw", 4853 .fw_h = { 4854 .chip = FW_HDR_CHIP_T5, 4855 .fw_ver = htobe32(FW_VERSION(T5)), 4856 .intfver_nic = FW_INTFVER(T5, NIC), 4857 .intfver_vnic = FW_INTFVER(T5, VNIC), 4858 .intfver_ofld = FW_INTFVER(T5, OFLD), 4859 .intfver_ri = FW_INTFVER(T5, RI), 4860 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), 4861 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4862 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), 4863 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4864 }, 4865 }, { 4866 .chip = CHELSIO_T6, 4867 .kld_name = "t6fw_cfg", 4868 .fw_mod_name = "t6fw", 4869 .fw_h = { 4870 .chip = FW_HDR_CHIP_T6, 4871 .fw_ver = htobe32(FW_VERSION(T6)), 4872 .intfver_nic = FW_INTFVER(T6, NIC), 4873 .intfver_vnic = FW_INTFVER(T6, VNIC), 4874 .intfver_ofld = FW_INTFVER(T6, OFLD), 4875 .intfver_ri = FW_INTFVER(T6, RI), 4876 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4877 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4878 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4879 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4880 }, 4881 }, { 4882 .chip = CHELSIO_T7, 4883 .kld_name = "t7fw_cfg", 4884 .fw_mod_name = "t7fw", 4885 .fw_h = { 4886 .chip = FW_HDR_CHIP_T7, 4887 .fw_ver = htobe32(FW_VERSION(T7)), 4888 .intfver_nic = FW_INTFVER(T7, NIC), 4889 .intfver_vnic = FW_INTFVER(T7, VNIC), 4890 .intfver_ofld = FW_INTFVER(T7, OFLD), 4891 .intfver_ri = FW_INTFVER(T7, RI), 4892 .intfver_iscsipdu = FW_INTFVER(T7, ISCSIPDU), 4893 .intfver_iscsi = FW_INTFVER(T7, ISCSI), 4894 .intfver_fcoepdu = FW_INTFVER(T7, FCOEPDU), 4895 .intfver_fcoe = FW_INTFVER(T7, FCOE), 4896 }, 4897 } 4898 }; 4899 4900 static struct fw_info * 4901 find_fw_info(int chip) 4902 { 4903 int i; 4904 4905 for (i = 0; i < nitems(fw_info); i++) { 4906 if (fw_info[i].chip == chip) 4907 return (&fw_info[i]); 4908 } 4909 return (NULL); 4910 } 4911 4912 /* 4913 * Is the given firmware API compatible with the one the driver was compiled 4914 * with? 4915 */ 4916 static int 4917 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2) 4918 { 4919 4920 /* short circuit if it's the exact same firmware version */ 4921 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 4922 return (1); 4923 4924 /* 4925 * XXX: Is this too conservative? Perhaps I should limit this to the 4926 * features that are supported in the driver. 4927 */ 4928 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 4929 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 4930 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && 4931 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) 4932 return (1); 4933 #undef SAME_INTF 4934 4935 return (0); 4936 } 4937 4938 static int 4939 load_fw_module(struct adapter *sc, const struct firmware **dcfg, 4940 const struct firmware **fw) 4941 { 4942 struct fw_info *fw_info; 4943 4944 *dcfg = NULL; 4945 if (fw != NULL) 4946 *fw = NULL; 4947 4948 fw_info = find_fw_info(chip_id(sc)); 4949 if (fw_info == NULL) { 4950 device_printf(sc->dev, 4951 "unable to look up firmware information for chip %d.\n", 4952 chip_id(sc)); 4953 return (EINVAL); 4954 } 4955 4956 *dcfg = firmware_get(fw_info->kld_name); 4957 if (*dcfg != NULL) { 4958 if (fw != NULL) 4959 *fw = firmware_get(fw_info->fw_mod_name); 4960 return (0); 4961 } 4962 4963 return (ENOENT); 4964 } 4965 4966 static void 4967 unload_fw_module(struct adapter *sc, const struct firmware *dcfg, 4968 const struct firmware *fw) 4969 { 4970 4971 if (fw != NULL) 4972 firmware_put(fw, FIRMWARE_UNLOAD); 4973 if (dcfg != NULL) 4974 firmware_put(dcfg, FIRMWARE_UNLOAD); 4975 } 4976 4977 /* 4978 * Return values: 4979 * 0 means no firmware install attempted. 4980 * ERESTART means a firmware install was attempted and was successful. 4981 * +ve errno means a firmware install was attempted but failed. 4982 */ 4983 static int 4984 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw, 4985 const struct fw_h *drv_fw, const char *reason, int *already) 4986 { 4987 const struct firmware *cfg, *fw; 4988 const uint32_t c = be32toh(card_fw->fw_ver); 4989 uint32_t d, k; 4990 int rc, fw_install; 4991 struct fw_h bundled_fw; 4992 bool load_attempted; 4993 4994 cfg = fw = NULL; 4995 load_attempted = false; 4996 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install; 4997 4998 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw)); 4999 if (t4_fw_install < 0) { 5000 rc = load_fw_module(sc, &cfg, &fw); 5001 if (rc != 0 || fw == NULL) { 5002 device_printf(sc->dev, 5003 "failed to load firmware module: %d. cfg %p, fw %p;" 5004 " will use compiled-in firmware version for" 5005 "hw.cxgbe.fw_install checks.\n", 5006 rc, cfg, fw); 5007 } else { 5008 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw)); 5009 } 5010 load_attempted = true; 5011 } 5012 d = be32toh(bundled_fw.fw_ver); 5013 5014 if (reason != NULL) 5015 goto install; 5016 5017 if ((sc->flags & FW_OK) == 0) { 5018 5019 if (c == 0xffffffff) { 5020 reason = "missing"; 5021 goto install; 5022 } 5023 5024 rc = 0; 5025 goto done; 5026 } 5027 5028 if (!fw_compatible(card_fw, &bundled_fw)) { 5029 reason = "incompatible or unusable"; 5030 goto install; 5031 } 5032 5033 if (d > c) { 5034 reason = "older than the version bundled with this driver"; 5035 goto install; 5036 } 5037 5038 if (fw_install == 2 && d != c) { 5039 reason = "different than the version bundled with this driver"; 5040 goto install; 5041 } 5042 5043 /* No reason to do anything to the firmware already on the card. */ 5044 rc = 0; 5045 goto done; 5046 5047 install: 5048 rc = 0; 5049 if ((*already)++) 5050 goto done; 5051 5052 if (fw_install == 0) { 5053 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 5054 "but the driver is prohibited from installing a firmware " 5055 "on the card.\n", 5056 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 5057 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 5058 5059 goto done; 5060 } 5061 5062 /* 5063 * We'll attempt to install a firmware. Load the module first (if it 5064 * hasn't been loaded already). 5065 */ 5066 if (!load_attempted) { 5067 rc = load_fw_module(sc, &cfg, &fw); 5068 if (rc != 0 || fw == NULL) { 5069 device_printf(sc->dev, 5070 "failed to load firmware module: %d. cfg %p, fw %p\n", 5071 rc, cfg, fw); 5072 /* carry on */ 5073 } 5074 } 5075 if (fw == NULL) { 5076 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 5077 "but the driver cannot take corrective action because it " 5078 "is unable to load the firmware module.\n", 5079 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 5080 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 5081 rc = sc->flags & FW_OK ? 0 : ENOENT; 5082 goto done; 5083 } 5084 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver); 5085 if (k != d) { 5086 MPASS(t4_fw_install > 0); 5087 device_printf(sc->dev, 5088 "firmware in KLD (%u.%u.%u.%u) is not what the driver was " 5089 "expecting (%u.%u.%u.%u) and will not be used.\n", 5090 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 5091 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k), 5092 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 5093 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 5094 rc = sc->flags & FW_OK ? 0 : EINVAL; 5095 goto done; 5096 } 5097 5098 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 5099 "installing firmware %u.%u.%u.%u on card.\n", 5100 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 5101 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, 5102 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 5103 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 5104 5105 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); 5106 if (rc != 0) { 5107 device_printf(sc->dev, "failed to install firmware: %d\n", rc); 5108 } else { 5109 /* Installed successfully, update the cached header too. */ 5110 rc = ERESTART; 5111 memcpy(card_fw, fw->data, sizeof(*card_fw)); 5112 } 5113 done: 5114 unload_fw_module(sc, cfg, fw); 5115 5116 return (rc); 5117 } 5118 5119 /* 5120 * Establish contact with the firmware and attempt to become the master driver. 5121 * 5122 * A firmware will be installed to the card if needed (if the driver is allowed 5123 * to do so). 5124 */ 5125 static int 5126 contact_firmware(struct adapter *sc) 5127 { 5128 int rc, already = 0; 5129 enum dev_state state; 5130 struct fw_info *fw_info; 5131 struct fw_hdr *card_fw; /* fw on the card */ 5132 const struct fw_h *drv_fw; 5133 5134 fw_info = find_fw_info(chip_id(sc)); 5135 if (fw_info == NULL) { 5136 device_printf(sc->dev, 5137 "unable to look up firmware information for chip %d.\n", 5138 chip_id(sc)); 5139 return (EINVAL); 5140 } 5141 drv_fw = &fw_info->fw_h; 5142 5143 /* Read the header of the firmware on the card */ 5144 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); 5145 restart: 5146 rc = -t4_get_fw_hdr(sc, card_fw); 5147 if (rc != 0) { 5148 device_printf(sc->dev, 5149 "unable to read firmware header from card's flash: %d\n", 5150 rc); 5151 goto done; 5152 } 5153 5154 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL, 5155 &already); 5156 if (rc == ERESTART) 5157 goto restart; 5158 if (rc != 0) 5159 goto done; 5160 5161 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); 5162 if (rc < 0 || state == DEV_STATE_ERR) { 5163 rc = -rc; 5164 device_printf(sc->dev, 5165 "failed to connect to the firmware: %d, %d. " 5166 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 5167 #if 0 5168 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 5169 "not responding properly to HELLO", &already) == ERESTART) 5170 goto restart; 5171 #endif 5172 goto done; 5173 } 5174 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT); 5175 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */ 5176 5177 if (rc == sc->pf) { 5178 sc->flags |= MASTER_PF; 5179 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 5180 NULL, &already); 5181 if (rc == ERESTART) 5182 rc = 0; 5183 else if (rc != 0) 5184 goto done; 5185 } else if (state == DEV_STATE_UNINIT) { 5186 /* 5187 * We didn't get to be the master so we definitely won't be 5188 * configuring the chip. It's a bug if someone else hasn't 5189 * configured it already. 5190 */ 5191 device_printf(sc->dev, "couldn't be master(%d), " 5192 "device not already initialized either(%d). " 5193 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 5194 rc = EPROTO; 5195 goto done; 5196 } else { 5197 /* 5198 * Some other PF is the master and has configured the chip. 5199 * This is allowed but untested. 5200 */ 5201 device_printf(sc->dev, "PF%d is master, device state %d. " 5202 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 5203 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc); 5204 sc->cfcsum = 0; 5205 rc = 0; 5206 } 5207 done: 5208 if (rc != 0 && sc->flags & FW_OK) { 5209 t4_fw_bye(sc, sc->mbox); 5210 sc->flags &= ~FW_OK; 5211 } 5212 free(card_fw, M_CXGBE); 5213 return (rc); 5214 } 5215 5216 static int 5217 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file, 5218 uint32_t mtype, uint32_t moff, u_int maxlen) 5219 { 5220 struct fw_info *fw_info; 5221 const struct firmware *dcfg, *rcfg = NULL; 5222 const uint32_t *cfdata; 5223 uint32_t cflen, addr; 5224 int rc; 5225 5226 load_fw_module(sc, &dcfg, NULL); 5227 5228 /* Card specific interpretation of "default". */ 5229 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 5230 if (pci_get_device(sc->dev) == 0x440a) 5231 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF); 5232 if (is_fpga(sc)) 5233 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF); 5234 } 5235 5236 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 5237 if (dcfg == NULL) { 5238 device_printf(sc->dev, 5239 "KLD with default config is not available.\n"); 5240 rc = ENOENT; 5241 goto done; 5242 } 5243 cfdata = dcfg->data; 5244 cflen = dcfg->datasize & ~3; 5245 } else { 5246 char s[32]; 5247 5248 fw_info = find_fw_info(chip_id(sc)); 5249 if (fw_info == NULL) { 5250 device_printf(sc->dev, 5251 "unable to look up firmware information for chip %d.\n", 5252 chip_id(sc)); 5253 rc = EINVAL; 5254 goto done; 5255 } 5256 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file); 5257 5258 rcfg = firmware_get(s); 5259 if (rcfg == NULL) { 5260 device_printf(sc->dev, 5261 "unable to load module \"%s\" for configuration " 5262 "profile \"%s\".\n", s, cfg_file); 5263 rc = ENOENT; 5264 goto done; 5265 } 5266 cfdata = rcfg->data; 5267 cflen = rcfg->datasize & ~3; 5268 } 5269 5270 if (cflen > maxlen) { 5271 device_printf(sc->dev, 5272 "config file too long (%d, max allowed is %d).\n", 5273 cflen, maxlen); 5274 rc = EINVAL; 5275 goto done; 5276 } 5277 5278 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); 5279 if (rc != 0) { 5280 device_printf(sc->dev, 5281 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n", 5282 __func__, mtype, moff, cflen, rc); 5283 rc = EINVAL; 5284 goto done; 5285 } 5286 write_via_memwin(sc, 2, addr, cfdata, cflen); 5287 done: 5288 if (rcfg != NULL) 5289 firmware_put(rcfg, FIRMWARE_UNLOAD); 5290 unload_fw_module(sc, dcfg, NULL); 5291 return (rc); 5292 } 5293 5294 struct caps_allowed { 5295 uint16_t nbmcaps; 5296 uint16_t linkcaps; 5297 uint16_t switchcaps; 5298 uint16_t nvmecaps; 5299 uint16_t niccaps; 5300 uint16_t toecaps; 5301 uint16_t rdmacaps; 5302 uint16_t cryptocaps; 5303 uint16_t iscsicaps; 5304 uint16_t fcoecaps; 5305 }; 5306 5307 #define FW_PARAM_DEV(param) \ 5308 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 5309 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 5310 #define FW_PARAM_PFVF(param) \ 5311 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 5312 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) 5313 5314 /* 5315 * Provide a configuration profile to the firmware and have it initialize the 5316 * chip accordingly. This may involve uploading a configuration file to the 5317 * card. 5318 */ 5319 static int 5320 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file, 5321 const struct caps_allowed *caps_allowed) 5322 { 5323 int rc; 5324 struct fw_caps_config_cmd caps; 5325 uint32_t mtype, moff, finicsum, cfcsum, param, val; 5326 unsigned int maxlen = 0; 5327 const int cfg_addr = t4_flash_cfg_addr(sc, &maxlen); 5328 5329 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST); 5330 if (rc != 0) { 5331 device_printf(sc->dev, "firmware reset failed: %d.\n", rc); 5332 return (rc); 5333 } 5334 5335 bzero(&caps, sizeof(caps)); 5336 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5337 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5338 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) { 5339 mtype = 0; 5340 moff = 0; 5341 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5342 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) { 5343 mtype = FW_MEMTYPE_FLASH; 5344 moff = cfg_addr; 5345 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 5346 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 5347 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 5348 FW_LEN16(caps)); 5349 } else { 5350 /* 5351 * Ask the firmware where it wants us to upload the config file. 5352 */ 5353 param = FW_PARAM_DEV(CF); 5354 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5355 if (rc != 0) { 5356 /* No support for config file? Shouldn't happen. */ 5357 device_printf(sc->dev, 5358 "failed to query config file location: %d.\n", rc); 5359 goto done; 5360 } 5361 mtype = G_FW_PARAMS_PARAM_Y(val); 5362 moff = G_FW_PARAMS_PARAM_Z(val) << 16; 5363 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 5364 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 5365 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 5366 FW_LEN16(caps)); 5367 5368 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff, maxlen); 5369 if (rc != 0) { 5370 device_printf(sc->dev, 5371 "failed to upload config file to card: %d.\n", rc); 5372 goto done; 5373 } 5374 } 5375 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5376 if (rc != 0) { 5377 device_printf(sc->dev, "failed to pre-process config file: %d " 5378 "(mtype %d, moff 0x%x).\n", rc, mtype, moff); 5379 goto done; 5380 } 5381 5382 finicsum = be32toh(caps.finicsum); 5383 cfcsum = be32toh(caps.cfcsum); /* actual */ 5384 if (finicsum != cfcsum) { 5385 device_printf(sc->dev, 5386 "WARNING: config file checksum mismatch: %08x %08x\n", 5387 finicsum, cfcsum); 5388 } 5389 sc->cfcsum = cfcsum; 5390 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file); 5391 5392 /* 5393 * Let the firmware know what features will (not) be used so it can tune 5394 * things accordingly. 5395 */ 5396 #define LIMIT_CAPS(x) do { \ 5397 caps.x##caps &= htobe16(caps_allowed->x##caps); \ 5398 } while (0) 5399 LIMIT_CAPS(nbm); 5400 LIMIT_CAPS(link); 5401 LIMIT_CAPS(switch); 5402 LIMIT_CAPS(nvme); 5403 LIMIT_CAPS(nic); 5404 LIMIT_CAPS(toe); 5405 LIMIT_CAPS(rdma); 5406 LIMIT_CAPS(crypto); 5407 LIMIT_CAPS(iscsi); 5408 LIMIT_CAPS(fcoe); 5409 #undef LIMIT_CAPS 5410 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 5411 /* 5412 * TOE and hashfilters are mutually exclusive. It is a config 5413 * file or firmware bug if both are reported as available. Try 5414 * to cope with the situation in non-debug builds by disabling 5415 * TOE. 5416 */ 5417 MPASS(caps.toecaps == 0); 5418 5419 caps.toecaps = 0; 5420 caps.rdmacaps = 0; 5421 caps.iscsicaps = 0; 5422 caps.nvmecaps = 0; 5423 } 5424 5425 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5426 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 5427 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5428 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); 5429 if (rc != 0) { 5430 device_printf(sc->dev, 5431 "failed to process config file: %d.\n", rc); 5432 goto done; 5433 } 5434 5435 t4_tweak_chip_settings(sc); 5436 set_params__pre_init(sc); 5437 5438 /* get basic stuff going */ 5439 rc = -t4_fw_initialize(sc, sc->mbox); 5440 if (rc != 0) { 5441 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc); 5442 goto done; 5443 } 5444 done: 5445 return (rc); 5446 } 5447 5448 /* 5449 * Partition chip resources for use between various PFs, VFs, etc. 5450 */ 5451 static int 5452 partition_resources(struct adapter *sc) 5453 { 5454 char cfg_file[sizeof(t4_cfg_file)]; 5455 struct caps_allowed caps_allowed; 5456 int rc; 5457 bool fallback; 5458 5459 /* Only the master driver gets to configure the chip resources. */ 5460 MPASS(sc->flags & MASTER_PF); 5461 5462 #define COPY_CAPS(x) do { \ 5463 caps_allowed.x##caps = t4_##x##caps_allowed; \ 5464 } while (0) 5465 bzero(&caps_allowed, sizeof(caps_allowed)); 5466 COPY_CAPS(nbm); 5467 COPY_CAPS(link); 5468 COPY_CAPS(switch); 5469 COPY_CAPS(nvme); 5470 COPY_CAPS(nic); 5471 COPY_CAPS(toe); 5472 COPY_CAPS(rdma); 5473 COPY_CAPS(crypto); 5474 COPY_CAPS(iscsi); 5475 COPY_CAPS(fcoe); 5476 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true; 5477 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file); 5478 retry: 5479 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed); 5480 if (rc != 0 && fallback) { 5481 dump_devlog(sc); 5482 device_printf(sc->dev, 5483 "failed (%d) to configure card with \"%s\" profile, " 5484 "will fall back to a basic configuration and retry.\n", 5485 rc, cfg_file); 5486 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF); 5487 bzero(&caps_allowed, sizeof(caps_allowed)); 5488 COPY_CAPS(switch); 5489 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC; 5490 fallback = false; 5491 goto retry; 5492 } 5493 #undef COPY_CAPS 5494 return (rc); 5495 } 5496 5497 /* 5498 * Retrieve parameters that are needed (or nice to have) very early. 5499 */ 5500 static int 5501 get_params__pre_init(struct adapter *sc) 5502 { 5503 int rc; 5504 uint32_t param[2], val[2]; 5505 5506 t4_get_version_info(sc); 5507 5508 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", 5509 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), 5510 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), 5511 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), 5512 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); 5513 5514 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u", 5515 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers), 5516 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers), 5517 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers), 5518 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers)); 5519 5520 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u", 5521 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers), 5522 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers), 5523 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers), 5524 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers)); 5525 5526 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u", 5527 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers), 5528 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers), 5529 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers), 5530 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers)); 5531 5532 param[0] = FW_PARAM_DEV(PORTVEC); 5533 param[1] = FW_PARAM_DEV(CCLK); 5534 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5535 if (rc != 0) { 5536 device_printf(sc->dev, 5537 "failed to query parameters (pre_init): %d.\n", rc); 5538 return (rc); 5539 } 5540 5541 sc->params.portvec = val[0]; 5542 sc->params.nports = bitcount32(val[0]); 5543 sc->params.vpd.cclk = val[1]; 5544 5545 /* Read device log parameters. */ 5546 rc = -t4_init_devlog_ncores_params(sc, 1); 5547 if (rc == 0) 5548 fixup_devlog_params(sc); 5549 else { 5550 device_printf(sc->dev, 5551 "failed to get devlog parameters: %d.\n", rc); 5552 rc = 0; /* devlog isn't critical for device operation */ 5553 } 5554 5555 return (rc); 5556 } 5557 5558 /* 5559 * Any params that need to be set before FW_INITIALIZE. 5560 */ 5561 static int 5562 set_params__pre_init(struct adapter *sc) 5563 { 5564 int rc = 0; 5565 uint32_t param, val; 5566 5567 if (chip_id(sc) >= CHELSIO_T6) { 5568 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 5569 val = 1; 5570 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5571 /* firmwares < 1.20.1.0 do not have this param. */ 5572 if (rc == FW_EINVAL && 5573 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) { 5574 rc = 0; 5575 } 5576 if (rc != 0) { 5577 device_printf(sc->dev, 5578 "failed to enable high priority filters :%d.\n", 5579 rc); 5580 } 5581 5582 param = FW_PARAM_DEV(PPOD_EDRAM); 5583 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5584 if (rc == 0 && val == 1) { 5585 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, 5586 &val); 5587 if (rc != 0) { 5588 device_printf(sc->dev, 5589 "failed to set PPOD_EDRAM: %d.\n", rc); 5590 } 5591 } 5592 } 5593 5594 /* Enable opaque VIIDs with firmwares that support it. */ 5595 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 5596 val = 1; 5597 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5598 if (rc == 0 && val == 1) 5599 sc->params.viid_smt_extn_support = true; 5600 else 5601 sc->params.viid_smt_extn_support = false; 5602 5603 return (rc); 5604 } 5605 5606 /* 5607 * Retrieve various parameters that are of interest to the driver. The device 5608 * has been initialized by the firmware at this point. 5609 */ 5610 static int 5611 get_params__post_init(struct adapter *sc) 5612 { 5613 int rc; 5614 uint32_t param[7], val[7]; 5615 struct fw_caps_config_cmd caps; 5616 5617 param[0] = FW_PARAM_PFVF(IQFLINT_START); 5618 param[1] = FW_PARAM_PFVF(EQ_START); 5619 param[2] = FW_PARAM_PFVF(FILTER_START); 5620 param[3] = FW_PARAM_PFVF(FILTER_END); 5621 param[4] = FW_PARAM_PFVF(L2T_START); 5622 param[5] = FW_PARAM_PFVF(L2T_END); 5623 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5624 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 5625 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 5626 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val); 5627 if (rc != 0) { 5628 device_printf(sc->dev, 5629 "failed to query parameters (post_init): %d.\n", rc); 5630 return (rc); 5631 } 5632 5633 sc->sge.iq_start = val[0]; 5634 sc->sge.eq_start = val[1]; 5635 if ((int)val[3] > (int)val[2]) { 5636 sc->tids.ftid_base = val[2]; 5637 sc->tids.ftid_end = val[3]; 5638 sc->tids.nftids = val[3] - val[2] + 1; 5639 } 5640 sc->vres.l2t.start = val[4]; 5641 sc->vres.l2t.size = val[5] - val[4] + 1; 5642 /* val[5] is the last hwidx and it must not collide with F_SYNC_WR */ 5643 if (sc->vres.l2t.size > 0) 5644 MPASS(fls(val[5]) <= S_SYNC_WR); 5645 sc->params.core_vdd = val[6]; 5646 5647 param[0] = FW_PARAM_PFVF(IQFLINT_END); 5648 param[1] = FW_PARAM_PFVF(EQ_END); 5649 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5650 if (rc != 0) { 5651 device_printf(sc->dev, 5652 "failed to query parameters (post_init2): %d.\n", rc); 5653 return (rc); 5654 } 5655 MPASS((int)val[0] >= sc->sge.iq_start); 5656 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1; 5657 MPASS((int)val[1] >= sc->sge.eq_start); 5658 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1; 5659 5660 if (chip_id(sc) >= CHELSIO_T6) { 5661 5662 sc->tids.tid_base = t4_read_reg(sc, 5663 A_LE_DB_ACTIVE_TABLE_START_INDEX); 5664 5665 param[0] = FW_PARAM_PFVF(HPFILTER_START); 5666 param[1] = FW_PARAM_PFVF(HPFILTER_END); 5667 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5668 if (rc != 0) { 5669 device_printf(sc->dev, 5670 "failed to query hpfilter parameters: %d.\n", rc); 5671 return (rc); 5672 } 5673 if ((int)val[1] > (int)val[0]) { 5674 sc->tids.hpftid_base = val[0]; 5675 sc->tids.hpftid_end = val[1]; 5676 sc->tids.nhpftids = val[1] - val[0] + 1; 5677 5678 /* 5679 * These should go off if the layout changes and the 5680 * driver needs to catch up. 5681 */ 5682 MPASS(sc->tids.hpftid_base == 0); 5683 MPASS(sc->tids.tid_base == sc->tids.nhpftids); 5684 } 5685 5686 param[0] = FW_PARAM_PFVF(RAWF_START); 5687 param[1] = FW_PARAM_PFVF(RAWF_END); 5688 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5689 if (rc != 0) { 5690 device_printf(sc->dev, 5691 "failed to query rawf parameters: %d.\n", rc); 5692 return (rc); 5693 } 5694 if ((int)val[1] > (int)val[0]) { 5695 sc->rawf_base = val[0]; 5696 sc->nrawf = val[1] - val[0] + 1; 5697 } 5698 } 5699 5700 if (sc->params.ncores > 1) { 5701 MPASS(chip_id(sc) >= CHELSIO_T7); 5702 5703 param[0] = FW_PARAM_DEV(TID_QID_SEL_MASK); 5704 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5705 sc->params.tid_qid_sel_mask = rc == 0 ? val[0] : 0; 5706 } 5707 5708 /* 5709 * The parameters that follow may not be available on all firmwares. We 5710 * query them individually rather than in a compound query because old 5711 * firmwares fail the entire query if an unknown parameter is queried. 5712 */ 5713 5714 /* 5715 * MPS buffer group configuration. 5716 */ 5717 param[0] = FW_PARAM_DEV(MPSBGMAP); 5718 val[0] = 0; 5719 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5720 if (rc == 0) 5721 sc->params.mps_bg_map = val[0]; 5722 else 5723 sc->params.mps_bg_map = UINT32_MAX; /* Not a legal value. */ 5724 5725 param[0] = FW_PARAM_DEV(TPCHMAP); 5726 val[0] = 0; 5727 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5728 if (rc == 0) 5729 sc->params.tp_ch_map = val[0]; 5730 else 5731 sc->params.tp_ch_map = UINT32_MAX; /* Not a legal value. */ 5732 5733 param[0] = FW_PARAM_DEV(TX_TPCHMAP); 5734 val[0] = 0; 5735 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5736 if (rc == 0) 5737 sc->params.tx_tp_ch_map = val[0]; 5738 else 5739 sc->params.tx_tp_ch_map = UINT32_MAX; /* Not a legal value. */ 5740 5741 /* 5742 * Determine whether the firmware supports the filter2 work request. 5743 */ 5744 param[0] = FW_PARAM_DEV(FILTER2_WR); 5745 val[0] = 0; 5746 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5747 if (rc == 0) 5748 sc->params.filter2_wr_support = val[0] != 0; 5749 else 5750 sc->params.filter2_wr_support = 0; 5751 5752 /* 5753 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL. 5754 */ 5755 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 5756 val[0] = 0; 5757 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5758 if (rc == 0) 5759 sc->params.ulptx_memwrite_dsgl = val[0] != 0; 5760 else 5761 sc->params.ulptx_memwrite_dsgl = false; 5762 5763 /* FW_RI_FR_NSMR_TPTE_WR support */ 5764 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 5765 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5766 if (rc == 0) 5767 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0; 5768 else 5769 sc->params.fr_nsmr_tpte_wr_support = false; 5770 5771 /* Support for 512 SGL entries per FR MR. */ 5772 param[0] = FW_PARAM_DEV(DEV_512SGL_MR); 5773 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5774 if (rc == 0) 5775 sc->params.dev_512sgl_mr = val[0] != 0; 5776 else 5777 sc->params.dev_512sgl_mr = false; 5778 5779 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR); 5780 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5781 if (rc == 0) 5782 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0]; 5783 else 5784 sc->params.max_pkts_per_eth_tx_pkts_wr = 15; 5785 5786 param[0] = FW_PARAM_DEV(NUM_TM_CLASS); 5787 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5788 if (rc == 0) { 5789 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */ 5790 sc->params.nsched_cls = val[0]; 5791 } else 5792 sc->params.nsched_cls = sc->chip_params->nsched_cls; 5793 5794 /* get capabilites */ 5795 bzero(&caps, sizeof(caps)); 5796 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5797 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5798 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5799 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5800 if (rc != 0) { 5801 device_printf(sc->dev, 5802 "failed to get card capabilities: %d.\n", rc); 5803 return (rc); 5804 } 5805 5806 #define READ_CAPS(x) do { \ 5807 sc->x = htobe16(caps.x); \ 5808 } while (0) 5809 READ_CAPS(nbmcaps); 5810 READ_CAPS(linkcaps); 5811 READ_CAPS(switchcaps); 5812 READ_CAPS(nvmecaps); 5813 READ_CAPS(niccaps); 5814 READ_CAPS(toecaps); 5815 READ_CAPS(rdmacaps); 5816 READ_CAPS(cryptocaps); 5817 READ_CAPS(iscsicaps); 5818 READ_CAPS(fcoecaps); 5819 5820 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) { 5821 MPASS(chip_id(sc) > CHELSIO_T4); 5822 MPASS(sc->toecaps == 0); 5823 sc->toecaps = 0; 5824 5825 param[0] = FW_PARAM_DEV(NTID); 5826 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5827 if (rc != 0) { 5828 device_printf(sc->dev, 5829 "failed to query HASHFILTER parameters: %d.\n", rc); 5830 return (rc); 5831 } 5832 sc->tids.ntids = val[0]; 5833 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5834 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5835 sc->tids.ntids -= sc->tids.nhpftids; 5836 } 5837 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5838 sc->params.hash_filter = 1; 5839 } 5840 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) { 5841 param[0] = FW_PARAM_PFVF(ETHOFLD_START); 5842 param[1] = FW_PARAM_PFVF(ETHOFLD_END); 5843 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5844 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val); 5845 if (rc != 0) { 5846 device_printf(sc->dev, 5847 "failed to query NIC parameters: %d.\n", rc); 5848 return (rc); 5849 } 5850 if ((int)val[1] > (int)val[0]) { 5851 sc->tids.etid_base = val[0]; 5852 sc->tids.etid_end = val[1]; 5853 sc->tids.netids = val[1] - val[0] + 1; 5854 sc->params.eo_wr_cred = val[2]; 5855 sc->params.ethoffload = 1; 5856 } 5857 } 5858 if (sc->toecaps) { 5859 /* query offload-related parameters */ 5860 param[0] = FW_PARAM_DEV(NTID); 5861 param[1] = FW_PARAM_PFVF(SERVER_START); 5862 param[2] = FW_PARAM_PFVF(SERVER_END); 5863 param[3] = FW_PARAM_PFVF(TDDP_START); 5864 param[4] = FW_PARAM_PFVF(TDDP_END); 5865 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5866 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5867 if (rc != 0) { 5868 device_printf(sc->dev, 5869 "failed to query TOE parameters: %d.\n", rc); 5870 return (rc); 5871 } 5872 sc->tids.ntids = val[0]; 5873 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5874 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5875 sc->tids.ntids -= sc->tids.nhpftids; 5876 } 5877 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5878 if ((int)val[2] > (int)val[1]) { 5879 sc->tids.stid_base = val[1]; 5880 sc->tids.nstids = val[2] - val[1] + 1; 5881 } 5882 sc->vres.ddp.start = val[3]; 5883 sc->vres.ddp.size = val[4] - val[3] + 1; 5884 sc->params.ofldq_wr_cred = val[5]; 5885 sc->params.offload = 1; 5886 } else { 5887 /* 5888 * The firmware attempts memfree TOE configuration for -SO cards 5889 * and will report toecaps=0 if it runs out of resources (this 5890 * depends on the config file). It may not report 0 for other 5891 * capabilities dependent on the TOE in this case. Set them to 5892 * 0 here so that the driver doesn't bother tracking resources 5893 * that will never be used. 5894 */ 5895 sc->iscsicaps = 0; 5896 sc->nvmecaps = 0; 5897 sc->rdmacaps = 0; 5898 } 5899 if (sc->nvmecaps || sc->rdmacaps) { 5900 param[0] = FW_PARAM_PFVF(STAG_START); 5901 param[1] = FW_PARAM_PFVF(STAG_END); 5902 param[2] = FW_PARAM_PFVF(PBL_START); 5903 param[3] = FW_PARAM_PFVF(PBL_END); 5904 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val); 5905 if (rc != 0) { 5906 device_printf(sc->dev, 5907 "failed to query NVMe/RDMA parameters: %d.\n", rc); 5908 return (rc); 5909 } 5910 sc->vres.stag.start = val[0]; 5911 sc->vres.stag.size = val[1] - val[0] + 1; 5912 sc->vres.pbl.start = val[2]; 5913 sc->vres.pbl.size = val[3] - val[2] + 1; 5914 } 5915 if (sc->rdmacaps) { 5916 param[0] = FW_PARAM_PFVF(RQ_START); 5917 param[1] = FW_PARAM_PFVF(RQ_END); 5918 param[2] = FW_PARAM_PFVF(SQRQ_START); 5919 param[3] = FW_PARAM_PFVF(SQRQ_END); 5920 param[4] = FW_PARAM_PFVF(CQ_START); 5921 param[5] = FW_PARAM_PFVF(CQ_END); 5922 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5923 if (rc != 0) { 5924 device_printf(sc->dev, 5925 "failed to query RDMA parameters(1): %d.\n", rc); 5926 return (rc); 5927 } 5928 sc->vres.rq.start = val[0]; 5929 sc->vres.rq.size = val[1] - val[0] + 1; 5930 sc->vres.qp.start = val[2]; 5931 sc->vres.qp.size = val[3] - val[2] + 1; 5932 sc->vres.cq.start = val[4]; 5933 sc->vres.cq.size = val[5] - val[4] + 1; 5934 5935 param[0] = FW_PARAM_PFVF(OCQ_START); 5936 param[1] = FW_PARAM_PFVF(OCQ_END); 5937 param[2] = FW_PARAM_PFVF(SRQ_START); 5938 param[3] = FW_PARAM_PFVF(SRQ_END); 5939 param[4] = FW_PARAM_DEV(MAXORDIRD_QP); 5940 param[5] = FW_PARAM_DEV(MAXIRD_ADAPTER); 5941 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5942 if (rc != 0) { 5943 device_printf(sc->dev, 5944 "failed to query RDMA parameters(2): %d.\n", rc); 5945 return (rc); 5946 } 5947 sc->vres.ocq.start = val[0]; 5948 sc->vres.ocq.size = val[1] - val[0] + 1; 5949 sc->vres.srq.start = val[2]; 5950 sc->vres.srq.size = val[3] - val[2] + 1; 5951 sc->params.max_ordird_qp = val[4]; 5952 sc->params.max_ird_adapter = val[5]; 5953 } 5954 if (sc->iscsicaps) { 5955 param[0] = FW_PARAM_PFVF(ISCSI_START); 5956 param[1] = FW_PARAM_PFVF(ISCSI_END); 5957 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5958 if (rc != 0) { 5959 device_printf(sc->dev, 5960 "failed to query iSCSI parameters: %d.\n", rc); 5961 return (rc); 5962 } 5963 sc->vres.iscsi.start = val[0]; 5964 sc->vres.iscsi.size = val[1] - val[0] + 1; 5965 } 5966 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 5967 param[0] = FW_PARAM_PFVF(TLS_START); 5968 param[1] = FW_PARAM_PFVF(TLS_END); 5969 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5970 if (rc != 0) { 5971 device_printf(sc->dev, 5972 "failed to query TLS parameters: %d.\n", rc); 5973 return (rc); 5974 } 5975 sc->vres.key.start = val[0]; 5976 sc->vres.key.size = val[1] - val[0] + 1; 5977 } 5978 5979 /* 5980 * We've got the params we wanted to query directly from the firmware. 5981 * Grab some others via other means. 5982 */ 5983 t4_init_sge_params(sc); 5984 t4_init_tp_params(sc); 5985 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 5986 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 5987 5988 rc = t4_verify_chip_settings(sc); 5989 if (rc != 0) 5990 return (rc); 5991 t4_init_rx_buf_info(sc); 5992 5993 return (rc); 5994 } 5995 5996 #ifdef KERN_TLS 5997 static void 5998 ktls_tick(void *arg) 5999 { 6000 struct adapter *sc; 6001 uint32_t tstamp; 6002 6003 sc = arg; 6004 tstamp = tcp_ts_getticks(); 6005 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1); 6006 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31); 6007 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK); 6008 } 6009 6010 static int 6011 t6_config_kern_tls(struct adapter *sc, bool enable) 6012 { 6013 int rc; 6014 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 6015 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) | 6016 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) | 6017 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE); 6018 6019 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m); 6020 if (rc != 0) { 6021 CH_ERR(sc, "failed to %s NIC TLS: %d\n", 6022 enable ? "enable" : "disable", rc); 6023 return (rc); 6024 } 6025 6026 if (enable) { 6027 sc->flags |= KERN_TLS_ON; 6028 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc, 6029 C_HARDCLOCK); 6030 } else { 6031 sc->flags &= ~KERN_TLS_ON; 6032 callout_stop(&sc->ktls_tick); 6033 } 6034 6035 return (rc); 6036 } 6037 #endif 6038 6039 static int 6040 set_params__post_init(struct adapter *sc) 6041 { 6042 uint32_t mask, param, val; 6043 #ifdef TCP_OFFLOAD 6044 int i, v, shift; 6045 #endif 6046 6047 /* ask for encapsulated CPLs */ 6048 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 6049 val = 1; 6050 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 6051 6052 /* Enable 32b port caps if the firmware supports it. */ 6053 param = FW_PARAM_PFVF(PORT_CAPS32); 6054 val = 1; 6055 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0) 6056 sc->params.port_caps32 = 1; 6057 6058 /* Let filter + maskhash steer to a part of the VI's RSS region. */ 6059 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1); 6060 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER), 6061 V_MASKFILTER(val - 1)); 6062 6063 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER | 6064 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN | 6065 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 6066 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM; 6067 val = 0; 6068 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) { 6069 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE, 6070 F_ATTACKFILTERENABLE); 6071 val |= F_DROPERRORATTACK; 6072 } 6073 if (t4_drop_ip_fragments != 0) { 6074 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP, 6075 F_FRAGMENTDROP); 6076 val |= F_DROPERRORFRAG; 6077 } 6078 if (t4_drop_pkts_with_l2_errors != 0) 6079 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN; 6080 if (t4_drop_pkts_with_l3_errors != 0) { 6081 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN | 6082 F_DROPERRORCSUMIP; 6083 } 6084 if (t4_drop_pkts_with_l4_errors != 0) { 6085 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 6086 F_DROPERRORTCPOPT | F_DROPERRORCSUM; 6087 } 6088 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val); 6089 6090 #ifdef TCP_OFFLOAD 6091 /* 6092 * Override the TOE timers with user provided tunables. This is not the 6093 * recommended way to change the timers (the firmware config file is) so 6094 * these tunables are not documented. 6095 * 6096 * All the timer tunables are in microseconds. 6097 */ 6098 if (t4_toe_keepalive_idle != 0) { 6099 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle); 6100 v &= M_KEEPALIVEIDLE; 6101 t4_set_reg_field(sc, A_TP_KEEP_IDLE, 6102 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v)); 6103 } 6104 if (t4_toe_keepalive_interval != 0) { 6105 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval); 6106 v &= M_KEEPALIVEINTVL; 6107 t4_set_reg_field(sc, A_TP_KEEP_INTVL, 6108 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v)); 6109 } 6110 if (t4_toe_keepalive_count != 0) { 6111 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2; 6112 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 6113 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) | 6114 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2), 6115 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v)); 6116 } 6117 if (t4_toe_rexmt_min != 0) { 6118 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min); 6119 v &= M_RXTMIN; 6120 t4_set_reg_field(sc, A_TP_RXT_MIN, 6121 V_RXTMIN(M_RXTMIN), V_RXTMIN(v)); 6122 } 6123 if (t4_toe_rexmt_max != 0) { 6124 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max); 6125 v &= M_RXTMAX; 6126 t4_set_reg_field(sc, A_TP_RXT_MAX, 6127 V_RXTMAX(M_RXTMAX), V_RXTMAX(v)); 6128 } 6129 if (t4_toe_rexmt_count != 0) { 6130 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2; 6131 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 6132 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) | 6133 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2), 6134 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v)); 6135 } 6136 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) { 6137 if (t4_toe_rexmt_backoff[i] != -1) { 6138 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0; 6139 shift = (i & 3) << 3; 6140 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3), 6141 M_TIMERBACKOFFINDEX0 << shift, v << shift); 6142 } 6143 } 6144 #endif 6145 6146 /* 6147 * Limit TOE connections to 2 reassembly "islands". This is 6148 * required to permit migrating TOE connections to either 6149 * ULP_MODE_TCPDDP or UPL_MODE_TLS. 6150 */ 6151 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, V_PASSMODE(M_PASSMODE), 6152 V_PASSMODE(2)); 6153 6154 #ifdef KERN_TLS 6155 if (is_ktls(sc)) { 6156 sc->tlst.inline_keys = t4_tls_inline_keys; 6157 if (t4_kern_tls != 0 && is_t6(sc)) { 6158 sc->tlst.combo_wrs = t4_tls_combo_wrs; 6159 t6_config_kern_tls(sc, true); 6160 } else { 6161 sc->tlst.short_records = t4_tls_short_records; 6162 sc->tlst.partial_ghash = t4_tls_partial_ghash; 6163 } 6164 } 6165 #endif 6166 return (0); 6167 } 6168 6169 #undef FW_PARAM_PFVF 6170 #undef FW_PARAM_DEV 6171 6172 static void 6173 t4_set_desc(struct adapter *sc) 6174 { 6175 struct adapter_params *p = &sc->params; 6176 6177 device_set_descf(sc->dev, "Chelsio %s", p->vpd.id); 6178 } 6179 6180 static inline void 6181 ifmedia_add4(struct ifmedia *ifm, int m) 6182 { 6183 6184 ifmedia_add(ifm, m, 0, NULL); 6185 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL); 6186 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL); 6187 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL); 6188 } 6189 6190 /* 6191 * This is the selected media, which is not quite the same as the active media. 6192 * The media line in ifconfig is "media: Ethernet selected (active)" if selected 6193 * and active are not the same, and "media: Ethernet selected" otherwise. 6194 */ 6195 static void 6196 set_current_media(struct port_info *pi) 6197 { 6198 struct link_config *lc; 6199 struct ifmedia *ifm; 6200 int mword; 6201 u_int speed; 6202 6203 PORT_LOCK_ASSERT_OWNED(pi); 6204 6205 /* Leave current media alone if it's already set to IFM_NONE. */ 6206 ifm = &pi->media; 6207 if (ifm->ifm_cur != NULL && 6208 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE) 6209 return; 6210 6211 lc = &pi->link_cfg; 6212 if (lc->requested_aneg != AUTONEG_DISABLE && 6213 lc->pcaps & FW_PORT_CAP32_ANEG) { 6214 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); 6215 return; 6216 } 6217 mword = IFM_ETHER | IFM_FDX; 6218 if (lc->requested_fc & PAUSE_TX) 6219 mword |= IFM_ETH_TXPAUSE; 6220 if (lc->requested_fc & PAUSE_RX) 6221 mword |= IFM_ETH_RXPAUSE; 6222 if (lc->requested_speed == 0) 6223 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */ 6224 else 6225 speed = lc->requested_speed; 6226 mword |= port_mword(pi, speed_to_fwcap(speed)); 6227 ifmedia_set(ifm, mword); 6228 } 6229 6230 /* 6231 * Returns true if the ifmedia list for the port cannot change. 6232 */ 6233 static bool 6234 fixed_ifmedia(struct port_info *pi) 6235 { 6236 6237 return (pi->port_type == FW_PORT_TYPE_BT_SGMII || 6238 pi->port_type == FW_PORT_TYPE_BT_XFI || 6239 pi->port_type == FW_PORT_TYPE_BT_XAUI || 6240 pi->port_type == FW_PORT_TYPE_KX4 || 6241 pi->port_type == FW_PORT_TYPE_KX || 6242 pi->port_type == FW_PORT_TYPE_KR || 6243 pi->port_type == FW_PORT_TYPE_BP_AP || 6244 pi->port_type == FW_PORT_TYPE_BP4_AP || 6245 pi->port_type == FW_PORT_TYPE_BP40_BA || 6246 pi->port_type == FW_PORT_TYPE_KR4_100G || 6247 pi->port_type == FW_PORT_TYPE_KR_SFP28 || 6248 pi->port_type == FW_PORT_TYPE_KR_XLAUI); 6249 } 6250 6251 static void 6252 build_medialist(struct port_info *pi) 6253 { 6254 uint32_t ss, speed; 6255 int unknown, mword, bit; 6256 struct link_config *lc; 6257 struct ifmedia *ifm; 6258 6259 PORT_LOCK_ASSERT_OWNED(pi); 6260 6261 if (pi->flags & FIXED_IFMEDIA) 6262 return; 6263 6264 /* 6265 * Rebuild the ifmedia list. 6266 */ 6267 ifm = &pi->media; 6268 ifmedia_removeall(ifm); 6269 lc = &pi->link_cfg; 6270 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */ 6271 if (__predict_false(ss == 0)) { /* not supposed to happen. */ 6272 MPASS(ss != 0); 6273 no_media: 6274 MPASS(LIST_EMPTY(&ifm->ifm_list)); 6275 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL); 6276 ifmedia_set(ifm, IFM_ETHER | IFM_NONE); 6277 return; 6278 } 6279 6280 unknown = 0; 6281 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) { 6282 speed = 1 << bit; 6283 MPASS(speed & M_FW_PORT_CAP32_SPEED); 6284 if (ss & speed) { 6285 mword = port_mword(pi, speed); 6286 if (mword == IFM_NONE) { 6287 goto no_media; 6288 } else if (mword == IFM_UNKNOWN) 6289 unknown++; 6290 else 6291 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword); 6292 } 6293 } 6294 if (unknown > 0) /* Add one unknown for all unknown media types. */ 6295 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN); 6296 if (lc->pcaps & FW_PORT_CAP32_ANEG) 6297 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL); 6298 6299 set_current_media(pi); 6300 } 6301 6302 /* 6303 * Initialize the requested fields in the link config based on driver tunables. 6304 */ 6305 static void 6306 init_link_config(struct port_info *pi) 6307 { 6308 struct link_config *lc = &pi->link_cfg; 6309 6310 PORT_LOCK_ASSERT_OWNED(pi); 6311 6312 lc->requested_caps = 0; 6313 lc->requested_speed = 0; 6314 6315 if (t4_autoneg == 0) 6316 lc->requested_aneg = AUTONEG_DISABLE; 6317 else if (t4_autoneg == 1) 6318 lc->requested_aneg = AUTONEG_ENABLE; 6319 else 6320 lc->requested_aneg = AUTONEG_AUTO; 6321 6322 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX | 6323 PAUSE_AUTONEG); 6324 6325 if (t4_fec & FEC_AUTO) 6326 lc->requested_fec = FEC_AUTO; 6327 else if (t4_fec == 0) 6328 lc->requested_fec = FEC_NONE; 6329 else { 6330 /* -1 is handled by the FEC_AUTO block above and not here. */ 6331 lc->requested_fec = t4_fec & 6332 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE); 6333 if (lc->requested_fec == 0) 6334 lc->requested_fec = FEC_AUTO; 6335 } 6336 if (t4_force_fec < 0) 6337 lc->force_fec = -1; 6338 else if (t4_force_fec > 0) 6339 lc->force_fec = 1; 6340 else 6341 lc->force_fec = 0; 6342 } 6343 6344 /* 6345 * Makes sure that all requested settings comply with what's supported by the 6346 * port. Returns the number of settings that were invalid and had to be fixed. 6347 */ 6348 static int 6349 fixup_link_config(struct port_info *pi) 6350 { 6351 int n = 0; 6352 struct link_config *lc = &pi->link_cfg; 6353 uint32_t fwspeed; 6354 6355 PORT_LOCK_ASSERT_OWNED(pi); 6356 6357 /* Speed (when not autonegotiating) */ 6358 if (lc->requested_speed != 0) { 6359 fwspeed = speed_to_fwcap(lc->requested_speed); 6360 if ((fwspeed & lc->pcaps) == 0) { 6361 n++; 6362 lc->requested_speed = 0; 6363 } 6364 } 6365 6366 /* Link autonegotiation */ 6367 MPASS(lc->requested_aneg == AUTONEG_ENABLE || 6368 lc->requested_aneg == AUTONEG_DISABLE || 6369 lc->requested_aneg == AUTONEG_AUTO); 6370 if (lc->requested_aneg == AUTONEG_ENABLE && 6371 !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 6372 n++; 6373 lc->requested_aneg = AUTONEG_AUTO; 6374 } 6375 6376 /* Flow control */ 6377 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0); 6378 if (lc->requested_fc & PAUSE_TX && 6379 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) { 6380 n++; 6381 lc->requested_fc &= ~PAUSE_TX; 6382 } 6383 if (lc->requested_fc & PAUSE_RX && 6384 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) { 6385 n++; 6386 lc->requested_fc &= ~PAUSE_RX; 6387 } 6388 if (!(lc->requested_fc & PAUSE_AUTONEG) && 6389 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) { 6390 n++; 6391 lc->requested_fc |= PAUSE_AUTONEG; 6392 } 6393 6394 /* FEC */ 6395 if ((lc->requested_fec & FEC_RS && 6396 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) || 6397 (lc->requested_fec & FEC_BASER_RS && 6398 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) { 6399 n++; 6400 lc->requested_fec = FEC_AUTO; 6401 } 6402 6403 return (n); 6404 } 6405 6406 /* 6407 * Apply the requested L1 settings, which are expected to be valid, to the 6408 * hardware. 6409 */ 6410 static int 6411 apply_link_config(struct port_info *pi) 6412 { 6413 struct adapter *sc = pi->adapter; 6414 struct link_config *lc = &pi->link_cfg; 6415 int rc; 6416 6417 #ifdef INVARIANTS 6418 ASSERT_SYNCHRONIZED_OP(sc); 6419 PORT_LOCK_ASSERT_OWNED(pi); 6420 6421 if (lc->requested_aneg == AUTONEG_ENABLE) 6422 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG); 6423 if (!(lc->requested_fc & PAUSE_AUTONEG)) 6424 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE); 6425 if (lc->requested_fc & PAUSE_TX) 6426 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX); 6427 if (lc->requested_fc & PAUSE_RX) 6428 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX); 6429 if (lc->requested_fec & FEC_RS) 6430 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS); 6431 if (lc->requested_fec & FEC_BASER_RS) 6432 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS); 6433 #endif 6434 if (!(sc->flags & IS_VF)) { 6435 rc = -t4_link_l1cfg(sc, sc->mbox, pi->hw_port, lc); 6436 if (rc != 0) { 6437 device_printf(pi->dev, "l1cfg failed: %d\n", rc); 6438 return (rc); 6439 } 6440 } 6441 6442 /* 6443 * An L1_CFG will almost always result in a link-change event if the 6444 * link is up, and the driver will refresh the actual fec/fc/etc. when 6445 * the notification is processed. If the link is down then the actual 6446 * settings are meaningless. 6447 * 6448 * This takes care of the case where a change in the L1 settings may not 6449 * result in a notification. 6450 */ 6451 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG)) 6452 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX); 6453 6454 return (0); 6455 } 6456 6457 #define FW_MAC_EXACT_CHUNK 7 6458 struct mcaddr_ctx { 6459 if_t ifp; 6460 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; 6461 uint64_t hash; 6462 int i; 6463 int del; 6464 int rc; 6465 }; 6466 6467 static u_int 6468 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 6469 { 6470 struct mcaddr_ctx *ctx = arg; 6471 struct vi_info *vi = if_getsoftc(ctx->ifp); 6472 struct port_info *pi = vi->pi; 6473 struct adapter *sc = pi->adapter; 6474 6475 if (ctx->rc < 0) 6476 return (0); 6477 6478 ctx->mcaddr[ctx->i] = LLADDR(sdl); 6479 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i])); 6480 ctx->i++; 6481 6482 if (ctx->i == FW_MAC_EXACT_CHUNK) { 6483 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del, 6484 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0); 6485 if (ctx->rc < 0) { 6486 int j; 6487 6488 for (j = 0; j < ctx->i; j++) { 6489 if_printf(ctx->ifp, 6490 "failed to add mc address" 6491 " %02x:%02x:%02x:" 6492 "%02x:%02x:%02x rc=%d\n", 6493 ctx->mcaddr[j][0], ctx->mcaddr[j][1], 6494 ctx->mcaddr[j][2], ctx->mcaddr[j][3], 6495 ctx->mcaddr[j][4], ctx->mcaddr[j][5], 6496 -ctx->rc); 6497 } 6498 return (0); 6499 } 6500 ctx->del = 0; 6501 ctx->i = 0; 6502 } 6503 6504 return (1); 6505 } 6506 6507 /* 6508 * Program the port's XGMAC based on parameters in ifnet. The caller also 6509 * indicates which parameters should be programmed (the rest are left alone). 6510 */ 6511 int 6512 update_mac_settings(if_t ifp, int flags) 6513 { 6514 int rc = 0; 6515 struct vi_info *vi = if_getsoftc(ifp); 6516 struct port_info *pi = vi->pi; 6517 struct adapter *sc = pi->adapter; 6518 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; 6519 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 6520 6521 ASSERT_SYNCHRONIZED_OP(sc); 6522 KASSERT(flags, ("%s: not told what to update.", __func__)); 6523 6524 if (flags & XGMAC_MTU) 6525 mtu = if_getmtu(ifp); 6526 6527 if (flags & XGMAC_PROMISC) 6528 promisc = if_getflags(ifp) & IFF_PROMISC ? 1 : 0; 6529 6530 if (flags & XGMAC_ALLMULTI) 6531 allmulti = if_getflags(ifp) & IFF_ALLMULTI ? 1 : 0; 6532 6533 if (flags & XGMAC_VLANEX) 6534 vlanex = if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING ? 1 : 0; 6535 6536 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) { 6537 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc, 6538 allmulti, 1, vlanex, false); 6539 if (rc) { 6540 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, 6541 rc); 6542 return (rc); 6543 } 6544 } 6545 6546 if (flags & XGMAC_UCADDR) { 6547 uint8_t ucaddr[ETHER_ADDR_LEN]; 6548 6549 bcopy(if_getlladdr(ifp), ucaddr, sizeof(ucaddr)); 6550 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt, 6551 ucaddr, true, &vi->smt_idx); 6552 if (rc < 0) { 6553 rc = -rc; 6554 if_printf(ifp, "change_mac failed: %d\n", rc); 6555 return (rc); 6556 } else { 6557 vi->xact_addr_filt = rc; 6558 rc = 0; 6559 } 6560 } 6561 6562 if (flags & XGMAC_MCADDRS) { 6563 struct epoch_tracker et; 6564 struct mcaddr_ctx ctx; 6565 int j; 6566 6567 ctx.ifp = ifp; 6568 ctx.hash = 0; 6569 ctx.i = 0; 6570 ctx.del = 1; 6571 ctx.rc = 0; 6572 /* 6573 * Unlike other drivers, we accumulate list of pointers into 6574 * interface address lists and we need to keep it safe even 6575 * after if_foreach_llmaddr() returns, thus we must enter the 6576 * network epoch. 6577 */ 6578 NET_EPOCH_ENTER(et); 6579 if_foreach_llmaddr(ifp, add_maddr, &ctx); 6580 if (ctx.rc < 0) { 6581 NET_EPOCH_EXIT(et); 6582 rc = -ctx.rc; 6583 return (rc); 6584 } 6585 if (ctx.i > 0) { 6586 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, 6587 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0); 6588 NET_EPOCH_EXIT(et); 6589 if (rc < 0) { 6590 rc = -rc; 6591 for (j = 0; j < ctx.i; j++) { 6592 if_printf(ifp, 6593 "failed to add mcast address" 6594 " %02x:%02x:%02x:" 6595 "%02x:%02x:%02x rc=%d\n", 6596 ctx.mcaddr[j][0], ctx.mcaddr[j][1], 6597 ctx.mcaddr[j][2], ctx.mcaddr[j][3], 6598 ctx.mcaddr[j][4], ctx.mcaddr[j][5], 6599 rc); 6600 } 6601 return (rc); 6602 } 6603 ctx.del = 0; 6604 } else 6605 NET_EPOCH_EXIT(et); 6606 6607 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0); 6608 if (rc != 0) 6609 if_printf(ifp, "failed to set mcast address hash: %d\n", 6610 rc); 6611 if (ctx.del == 0) { 6612 /* We clobbered the VXLAN entry if there was one. */ 6613 pi->vxlan_tcam_entry = false; 6614 } 6615 } 6616 6617 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 && 6618 pi->vxlan_tcam_entry == false) { 6619 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac, 6620 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 6621 true); 6622 if (rc < 0) { 6623 rc = -rc; 6624 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n", 6625 rc); 6626 } else { 6627 MPASS(rc == sc->rawf_base + pi->port_id); 6628 rc = 0; 6629 pi->vxlan_tcam_entry = true; 6630 } 6631 } 6632 6633 return (rc); 6634 } 6635 6636 /* 6637 * {begin|end}_synchronized_op must be called from the same thread. 6638 */ 6639 int 6640 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags, 6641 char *wmesg) 6642 { 6643 int rc; 6644 6645 #ifdef WITNESS 6646 /* the caller thinks it's ok to sleep, but is it really? */ 6647 if (flags & SLEEP_OK) 6648 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); 6649 #endif 6650 ADAPTER_LOCK(sc); 6651 for (;;) { 6652 6653 if (vi && IS_DETACHING(vi)) { 6654 rc = ENXIO; 6655 goto done; 6656 } 6657 6658 if (!IS_BUSY(sc)) { 6659 rc = 0; 6660 break; 6661 } 6662 6663 if (!(flags & SLEEP_OK)) { 6664 rc = EBUSY; 6665 goto done; 6666 } 6667 6668 if (mtx_sleep(&sc->flags, &sc->sc_lock, 6669 flags & INTR_OK ? PCATCH : 0, wmesg, 0)) { 6670 rc = EINTR; 6671 goto done; 6672 } 6673 } 6674 6675 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); 6676 SET_BUSY(sc); 6677 #ifdef INVARIANTS 6678 sc->last_op = wmesg; 6679 sc->last_op_thr = curthread; 6680 sc->last_op_flags = flags; 6681 #endif 6682 6683 done: 6684 if (!(flags & HOLD_LOCK) || rc) 6685 ADAPTER_UNLOCK(sc); 6686 6687 return (rc); 6688 } 6689 6690 /* 6691 * Tell if_ioctl and if_init that the VI is going away. This is 6692 * special variant of begin_synchronized_op and must be paired with a 6693 * call to end_vi_detach. 6694 */ 6695 void 6696 begin_vi_detach(struct adapter *sc, struct vi_info *vi) 6697 { 6698 ADAPTER_LOCK(sc); 6699 SET_DETACHING(vi); 6700 wakeup(&sc->flags); 6701 while (IS_BUSY(sc)) 6702 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); 6703 SET_BUSY(sc); 6704 #ifdef INVARIANTS 6705 sc->last_op = "t4detach"; 6706 sc->last_op_thr = curthread; 6707 sc->last_op_flags = 0; 6708 #endif 6709 ADAPTER_UNLOCK(sc); 6710 } 6711 6712 void 6713 end_vi_detach(struct adapter *sc, struct vi_info *vi) 6714 { 6715 ADAPTER_LOCK(sc); 6716 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6717 CLR_BUSY(sc); 6718 CLR_DETACHING(vi); 6719 wakeup(&sc->flags); 6720 ADAPTER_UNLOCK(sc); 6721 } 6722 6723 /* 6724 * {begin|end}_synchronized_op must be called from the same thread. 6725 */ 6726 void 6727 end_synchronized_op(struct adapter *sc, int flags) 6728 { 6729 6730 if (flags & LOCK_HELD) 6731 ADAPTER_LOCK_ASSERT_OWNED(sc); 6732 else 6733 ADAPTER_LOCK(sc); 6734 6735 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6736 CLR_BUSY(sc); 6737 wakeup(&sc->flags); 6738 ADAPTER_UNLOCK(sc); 6739 } 6740 6741 static int 6742 cxgbe_init_synchronized(struct vi_info *vi) 6743 { 6744 struct port_info *pi = vi->pi; 6745 struct adapter *sc = pi->adapter; 6746 if_t ifp = vi->ifp; 6747 int rc = 0, i; 6748 struct sge_txq *txq; 6749 6750 ASSERT_SYNCHRONIZED_OP(sc); 6751 6752 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 6753 return (0); /* already running */ 6754 6755 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0)) 6756 return (rc); /* error message displayed already */ 6757 6758 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 6759 return (rc); /* error message displayed already */ 6760 6761 rc = update_mac_settings(ifp, XGMAC_ALL); 6762 if (rc) 6763 goto done; /* error message displayed already */ 6764 6765 PORT_LOCK(pi); 6766 if (pi->up_vis == 0) { 6767 t4_update_port_info(pi); 6768 fixup_link_config(pi); 6769 build_medialist(pi); 6770 apply_link_config(pi); 6771 } 6772 6773 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true); 6774 if (rc != 0) { 6775 if_printf(ifp, "enable_vi failed: %d\n", rc); 6776 PORT_UNLOCK(pi); 6777 goto done; 6778 } 6779 6780 /* 6781 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized 6782 * if this changes. 6783 */ 6784 6785 for_each_txq(vi, i, txq) { 6786 TXQ_LOCK(txq); 6787 txq->eq.flags |= EQ_ENABLED; 6788 TXQ_UNLOCK(txq); 6789 } 6790 6791 /* 6792 * The first iq of the first port to come up is used for tracing. 6793 */ 6794 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 6795 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 6796 t4_set_trace_rss_control(sc, pi->tx_chan, sc->traceq); 6797 pi->flags |= HAS_TRACEQ; 6798 } 6799 6800 /* all ok */ 6801 pi->up_vis++; 6802 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 6803 if (pi->link_cfg.link_ok) 6804 t4_os_link_changed(pi); 6805 PORT_UNLOCK(pi); 6806 6807 mtx_lock(&vi->tick_mtx); 6808 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 6809 callout_reset(&vi->tick, hz, vi_tick, vi); 6810 else 6811 callout_reset(&vi->tick, hz, cxgbe_tick, vi); 6812 mtx_unlock(&vi->tick_mtx); 6813 done: 6814 if (rc != 0) 6815 cxgbe_uninit_synchronized(vi); 6816 6817 return (rc); 6818 } 6819 6820 /* 6821 * Idempotent. 6822 */ 6823 static int 6824 cxgbe_uninit_synchronized(struct vi_info *vi) 6825 { 6826 struct port_info *pi = vi->pi; 6827 struct adapter *sc = pi->adapter; 6828 if_t ifp = vi->ifp; 6829 int rc, i; 6830 struct sge_txq *txq; 6831 6832 ASSERT_SYNCHRONIZED_OP(sc); 6833 6834 if (!(vi->flags & VI_INIT_DONE)) { 6835 if (__predict_false(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6836 KASSERT(0, ("uninited VI is running")); 6837 if_printf(ifp, "uninited VI with running ifnet. " 6838 "vi->flags 0x%016lx, if_flags 0x%08x, " 6839 "if_drv_flags 0x%08x\n", vi->flags, if_getflags(ifp), 6840 if_getdrvflags(ifp)); 6841 } 6842 return (0); 6843 } 6844 6845 /* 6846 * Disable the VI so that all its data in either direction is discarded 6847 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz 6848 * tick) intact as the TP can deliver negative advice or data that it's 6849 * holding in its RAM (for an offloaded connection) even after the VI is 6850 * disabled. 6851 */ 6852 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false); 6853 if (rc) { 6854 if_printf(ifp, "disable_vi failed: %d\n", rc); 6855 return (rc); 6856 } 6857 6858 for_each_txq(vi, i, txq) { 6859 TXQ_LOCK(txq); 6860 txq->eq.flags &= ~EQ_ENABLED; 6861 TXQ_UNLOCK(txq); 6862 } 6863 6864 mtx_lock(&vi->tick_mtx); 6865 callout_stop(&vi->tick); 6866 mtx_unlock(&vi->tick_mtx); 6867 6868 PORT_LOCK(pi); 6869 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6870 PORT_UNLOCK(pi); 6871 return (0); 6872 } 6873 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 6874 pi->up_vis--; 6875 if (pi->up_vis > 0) { 6876 PORT_UNLOCK(pi); 6877 return (0); 6878 } 6879 6880 pi->link_cfg.link_ok = false; 6881 pi->link_cfg.speed = 0; 6882 pi->link_cfg.link_down_rc = 255; 6883 t4_os_link_changed(pi); 6884 PORT_UNLOCK(pi); 6885 6886 return (0); 6887 } 6888 6889 /* 6890 * It is ok for this function to fail midway and return right away. t4_detach 6891 * will walk the entire sc->irq list and clean up whatever is valid. 6892 */ 6893 int 6894 t4_setup_intr_handlers(struct adapter *sc) 6895 { 6896 int rc, rid, p, q, v; 6897 char s[8]; 6898 struct irq *irq; 6899 struct port_info *pi; 6900 struct vi_info *vi; 6901 struct sge *sge = &sc->sge; 6902 struct sge_rxq *rxq; 6903 #ifdef TCP_OFFLOAD 6904 struct sge_ofld_rxq *ofld_rxq; 6905 #endif 6906 #ifdef DEV_NETMAP 6907 struct sge_nm_rxq *nm_rxq; 6908 #endif 6909 #ifdef RSS 6910 int nbuckets = rss_getnumbuckets(); 6911 #endif 6912 6913 /* 6914 * Setup interrupts. 6915 */ 6916 irq = &sc->irq[0]; 6917 rid = sc->intr_type == INTR_INTX ? 0 : 1; 6918 if (forwarding_intr_to_fwq(sc)) 6919 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all")); 6920 6921 /* Multiple interrupts. */ 6922 if (sc->flags & IS_VF) 6923 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports, 6924 ("%s: too few intr.", __func__)); 6925 else 6926 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, 6927 ("%s: too few intr.", __func__)); 6928 6929 /* The first one is always error intr on PFs */ 6930 if (!(sc->flags & IS_VF)) { 6931 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); 6932 if (rc != 0) 6933 return (rc); 6934 irq++; 6935 rid++; 6936 } 6937 6938 /* The second one is always the firmware event queue (first on VFs) */ 6939 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt"); 6940 if (rc != 0) 6941 return (rc); 6942 irq++; 6943 rid++; 6944 6945 for_each_port(sc, p) { 6946 pi = sc->port[p]; 6947 for_each_vi(pi, v, vi) { 6948 vi->first_intr = rid - 1; 6949 6950 if (vi->nnmrxq > 0) { 6951 int n = max(vi->nrxq, vi->nnmrxq); 6952 6953 rxq = &sge->rxq[vi->first_rxq]; 6954 #ifdef DEV_NETMAP 6955 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq]; 6956 #endif 6957 for (q = 0; q < n; q++) { 6958 snprintf(s, sizeof(s), "%x%c%x", p, 6959 'a' + v, q); 6960 if (q < vi->nrxq) 6961 irq->rxq = rxq++; 6962 #ifdef DEV_NETMAP 6963 if (q < vi->nnmrxq) 6964 irq->nm_rxq = nm_rxq++; 6965 6966 if (irq->nm_rxq != NULL && 6967 irq->rxq == NULL) { 6968 /* Netmap rx only */ 6969 rc = t4_alloc_irq(sc, irq, rid, 6970 t4_nm_intr, irq->nm_rxq, s); 6971 } 6972 if (irq->nm_rxq != NULL && 6973 irq->rxq != NULL) { 6974 /* NIC and Netmap rx */ 6975 rc = t4_alloc_irq(sc, irq, rid, 6976 t4_vi_intr, irq, s); 6977 } 6978 #endif 6979 if (irq->rxq != NULL && 6980 irq->nm_rxq == NULL) { 6981 /* NIC rx only */ 6982 rc = t4_alloc_irq(sc, irq, rid, 6983 t4_intr, irq->rxq, s); 6984 } 6985 if (rc != 0) 6986 return (rc); 6987 #ifdef RSS 6988 if (q < vi->nrxq) { 6989 bus_bind_intr(sc->dev, irq->res, 6990 rss_getcpu(q % nbuckets)); 6991 } 6992 #endif 6993 irq++; 6994 rid++; 6995 vi->nintr++; 6996 } 6997 } else { 6998 for_each_rxq(vi, q, rxq) { 6999 snprintf(s, sizeof(s), "%x%c%x", p, 7000 'a' + v, q); 7001 rc = t4_alloc_irq(sc, irq, rid, 7002 t4_intr, rxq, s); 7003 if (rc != 0) 7004 return (rc); 7005 #ifdef RSS 7006 bus_bind_intr(sc->dev, irq->res, 7007 rss_getcpu(q % nbuckets)); 7008 #endif 7009 irq++; 7010 rid++; 7011 vi->nintr++; 7012 } 7013 } 7014 #ifdef TCP_OFFLOAD 7015 for_each_ofld_rxq(vi, q, ofld_rxq) { 7016 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q); 7017 rc = t4_alloc_irq(sc, irq, rid, t4_intr, 7018 ofld_rxq, s); 7019 if (rc != 0) 7020 return (rc); 7021 irq++; 7022 rid++; 7023 vi->nintr++; 7024 } 7025 #endif 7026 } 7027 } 7028 MPASS(irq == &sc->irq[sc->intr_count]); 7029 7030 return (0); 7031 } 7032 7033 static void 7034 write_global_rss_key(struct adapter *sc) 7035 { 7036 int i; 7037 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 7038 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 7039 7040 CTASSERT(RSS_KEYSIZE == 40); 7041 7042 rss_getkey((void *)&raw_rss_key[0]); 7043 for (i = 0; i < nitems(rss_key); i++) { 7044 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]); 7045 } 7046 t4_write_rss_key(sc, &rss_key[0], -1, 1); 7047 } 7048 7049 /* 7050 * Idempotent. 7051 */ 7052 static int 7053 adapter_full_init(struct adapter *sc) 7054 { 7055 int rc, i; 7056 7057 ASSERT_SYNCHRONIZED_OP(sc); 7058 7059 /* 7060 * queues that belong to the adapter (not any particular port). 7061 */ 7062 rc = t4_setup_adapter_queues(sc); 7063 if (rc != 0) 7064 return (rc); 7065 7066 MPASS(sc->params.nports <= nitems(sc->tq)); 7067 for (i = 0; i < sc->params.nports; i++) { 7068 if (sc->tq[i] != NULL) 7069 continue; 7070 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, 7071 taskqueue_thread_enqueue, &sc->tq[i]); 7072 if (sc->tq[i] == NULL) { 7073 CH_ERR(sc, "failed to allocate task queue %d\n", i); 7074 return (ENOMEM); 7075 } 7076 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", 7077 device_get_nameunit(sc->dev), i); 7078 } 7079 7080 if (!(sc->flags & IS_VF)) { 7081 write_global_rss_key(sc); 7082 t4_intr_enable(sc); 7083 } 7084 return (0); 7085 } 7086 7087 int 7088 adapter_init(struct adapter *sc) 7089 { 7090 int rc; 7091 7092 ASSERT_SYNCHRONIZED_OP(sc); 7093 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 7094 KASSERT((sc->flags & FULL_INIT_DONE) == 0, 7095 ("%s: FULL_INIT_DONE already", __func__)); 7096 7097 rc = adapter_full_init(sc); 7098 if (rc != 0) 7099 adapter_full_uninit(sc); 7100 else 7101 sc->flags |= FULL_INIT_DONE; 7102 7103 return (rc); 7104 } 7105 7106 /* 7107 * Idempotent. 7108 */ 7109 static void 7110 adapter_full_uninit(struct adapter *sc) 7111 { 7112 int i; 7113 7114 t4_teardown_adapter_queues(sc); 7115 7116 for (i = 0; i < nitems(sc->tq); i++) { 7117 if (sc->tq[i] == NULL) 7118 continue; 7119 taskqueue_free(sc->tq[i]); 7120 sc->tq[i] = NULL; 7121 } 7122 7123 sc->flags &= ~FULL_INIT_DONE; 7124 } 7125 7126 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \ 7127 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \ 7128 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \ 7129 RSS_HASHTYPE_RSS_UDP_IPV6) 7130 7131 /* Translates kernel hash types to hardware. */ 7132 static int 7133 hashconfig_to_hashen(int hashconfig) 7134 { 7135 int hashen = 0; 7136 7137 if (hashconfig & RSS_HASHTYPE_RSS_IPV4) 7138 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 7139 if (hashconfig & RSS_HASHTYPE_RSS_IPV6) 7140 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 7141 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) { 7142 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 7143 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 7144 } 7145 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) { 7146 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 7147 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 7148 } 7149 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4) 7150 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 7151 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6) 7152 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 7153 7154 return (hashen); 7155 } 7156 7157 /* Translates hardware hash types to kernel. */ 7158 static int 7159 hashen_to_hashconfig(int hashen) 7160 { 7161 int hashconfig = 0; 7162 7163 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) { 7164 /* 7165 * If UDP hashing was enabled it must have been enabled for 7166 * either IPv4 or IPv6 (inclusive or). Enabling UDP without 7167 * enabling any 4-tuple hash is nonsense configuration. 7168 */ 7169 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 7170 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)); 7171 7172 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 7173 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4; 7174 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 7175 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6; 7176 } 7177 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 7178 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4; 7179 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 7180 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6; 7181 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 7182 hashconfig |= RSS_HASHTYPE_RSS_IPV4; 7183 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 7184 hashconfig |= RSS_HASHTYPE_RSS_IPV6; 7185 7186 return (hashconfig); 7187 } 7188 7189 /* 7190 * Idempotent. 7191 */ 7192 static int 7193 vi_full_init(struct vi_info *vi) 7194 { 7195 struct adapter *sc = vi->adapter; 7196 struct sge_rxq *rxq; 7197 int rc, i, j; 7198 int hashconfig = rss_gethashconfig(); 7199 #ifdef RSS 7200 int nbuckets = rss_getnumbuckets(); 7201 int extra; 7202 #endif 7203 7204 ASSERT_SYNCHRONIZED_OP(sc); 7205 7206 /* 7207 * Allocate tx/rx/fl queues for this VI. 7208 */ 7209 rc = t4_setup_vi_queues(vi); 7210 if (rc != 0) 7211 return (rc); 7212 7213 /* 7214 * Setup RSS for this VI. Save a copy of the RSS table for later use. 7215 */ 7216 if (vi->nrxq > vi->rss_size) { 7217 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); " 7218 "some queues will never receive traffic.\n", vi->nrxq, 7219 vi->rss_size); 7220 } else if (vi->rss_size % vi->nrxq) { 7221 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); " 7222 "expect uneven traffic distribution.\n", vi->nrxq, 7223 vi->rss_size); 7224 } 7225 #ifdef RSS 7226 if (vi->nrxq != nbuckets) { 7227 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);" 7228 "performance will be impacted.\n", vi->nrxq, nbuckets); 7229 } 7230 #endif 7231 if (vi->rss == NULL) 7232 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE, 7233 M_ZERO | M_WAITOK); 7234 for (i = 0; i < vi->rss_size;) { 7235 #ifdef RSS 7236 j = rss_get_indirection_to_bucket(i); 7237 j %= vi->nrxq; 7238 rxq = &sc->sge.rxq[vi->first_rxq + j]; 7239 vi->rss[i++] = rxq->iq.abs_id; 7240 #else 7241 for_each_rxq(vi, j, rxq) { 7242 vi->rss[i++] = rxq->iq.abs_id; 7243 if (i == vi->rss_size) 7244 break; 7245 } 7246 #endif 7247 } 7248 7249 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, 7250 vi->rss, vi->rss_size); 7251 if (rc != 0) { 7252 CH_ERR(vi, "rss_config failed: %d\n", rc); 7253 return (rc); 7254 } 7255 7256 vi->hashen = hashconfig_to_hashen(hashconfig); 7257 7258 #ifdef RSS 7259 /* 7260 * We may have had to enable some hashes even though the global config 7261 * wants them disabled. This is a potential problem that must be 7262 * reported to the user. 7263 */ 7264 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig; 7265 7266 /* 7267 * If we consider only the supported hash types, then the enabled hashes 7268 * are a superset of the requested hashes. In other words, there cannot 7269 * be any supported hash that was requested but not enabled, but there 7270 * can be hashes that were not requested but had to be enabled. 7271 */ 7272 extra &= SUPPORTED_RSS_HASHTYPES; 7273 MPASS((extra & hashconfig) == 0); 7274 7275 if (extra) { 7276 CH_ALERT(vi, 7277 "global RSS config (0x%x) cannot be accommodated.\n", 7278 hashconfig); 7279 } 7280 if (extra & RSS_HASHTYPE_RSS_IPV4) 7281 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n"); 7282 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4) 7283 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n"); 7284 if (extra & RSS_HASHTYPE_RSS_IPV6) 7285 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n"); 7286 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6) 7287 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n"); 7288 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4) 7289 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n"); 7290 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6) 7291 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n"); 7292 #endif 7293 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0], 7294 0, 0); 7295 if (rc != 0) { 7296 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc); 7297 return (rc); 7298 } 7299 7300 return (0); 7301 } 7302 7303 int 7304 vi_init(struct vi_info *vi) 7305 { 7306 int rc; 7307 7308 ASSERT_SYNCHRONIZED_OP(vi->adapter); 7309 KASSERT((vi->flags & VI_INIT_DONE) == 0, 7310 ("%s: VI_INIT_DONE already", __func__)); 7311 7312 rc = vi_full_init(vi); 7313 if (rc != 0) 7314 vi_full_uninit(vi); 7315 else 7316 vi->flags |= VI_INIT_DONE; 7317 7318 return (rc); 7319 } 7320 7321 /* 7322 * Idempotent. 7323 */ 7324 static void 7325 vi_full_uninit(struct vi_info *vi) 7326 { 7327 7328 if (vi->flags & VI_INIT_DONE) { 7329 quiesce_vi(vi); 7330 free(vi->rss, M_CXGBE); 7331 free(vi->nm_rss, M_CXGBE); 7332 } 7333 7334 t4_teardown_vi_queues(vi); 7335 vi->flags &= ~VI_INIT_DONE; 7336 } 7337 7338 static void 7339 quiesce_txq(struct sge_txq *txq) 7340 { 7341 struct sge_eq *eq = &txq->eq; 7342 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 7343 7344 MPASS(eq->flags & EQ_SW_ALLOCATED); 7345 MPASS(!(eq->flags & EQ_ENABLED)); 7346 7347 /* Wait for the mp_ring to empty. */ 7348 while (!mp_ring_is_idle(txq->r)) { 7349 mp_ring_check_drainage(txq->r, 4096); 7350 pause("rquiesce", 1); 7351 } 7352 MPASS(txq->txp.npkt == 0); 7353 7354 if (eq->flags & EQ_HW_ALLOCATED) { 7355 /* 7356 * Hardware is alive and working normally. Wait for it to 7357 * finish and then wait for the driver to catch up and reclaim 7358 * all descriptors. 7359 */ 7360 while (spg->cidx != htobe16(eq->pidx)) 7361 pause("equiesce", 1); 7362 while (eq->cidx != eq->pidx) 7363 pause("dquiesce", 1); 7364 } else { 7365 /* 7366 * Hardware is unavailable. Discard all pending tx and reclaim 7367 * descriptors directly. 7368 */ 7369 TXQ_LOCK(txq); 7370 while (eq->cidx != eq->pidx) { 7371 struct mbuf *m, *nextpkt; 7372 struct tx_sdesc *txsd; 7373 7374 txsd = &txq->sdesc[eq->cidx]; 7375 for (m = txsd->m; m != NULL; m = nextpkt) { 7376 nextpkt = m->m_nextpkt; 7377 m->m_nextpkt = NULL; 7378 m_freem(m); 7379 } 7380 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx); 7381 } 7382 spg->pidx = spg->cidx = htobe16(eq->cidx); 7383 TXQ_UNLOCK(txq); 7384 } 7385 } 7386 7387 static void 7388 quiesce_wrq(struct sge_wrq *wrq) 7389 { 7390 struct wrqe *wr; 7391 7392 TXQ_LOCK(wrq); 7393 while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) { 7394 STAILQ_REMOVE_HEAD(&wrq->wr_list, link); 7395 #ifdef INVARIANTS 7396 wrq->nwr_pending--; 7397 wrq->ndesc_needed -= howmany(wr->wr_len, EQ_ESIZE); 7398 #endif 7399 free(wr, M_CXGBE); 7400 } 7401 MPASS(wrq->nwr_pending == 0); 7402 MPASS(wrq->ndesc_needed == 0); 7403 wrq->nwr_pending = 0; 7404 wrq->ndesc_needed = 0; 7405 TXQ_UNLOCK(wrq); 7406 } 7407 7408 static void 7409 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl) 7410 { 7411 /* Synchronize with the interrupt handler */ 7412 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) 7413 pause("iqfree", 1); 7414 7415 if (fl != NULL) { 7416 MPASS(iq->flags & IQ_HAS_FL); 7417 7418 mtx_lock(&sc->sfl_lock); 7419 FL_LOCK(fl); 7420 fl->flags |= FL_DOOMED; 7421 FL_UNLOCK(fl); 7422 callout_stop(&sc->sfl_callout); 7423 mtx_unlock(&sc->sfl_lock); 7424 7425 KASSERT((fl->flags & FL_STARVING) == 0, 7426 ("%s: still starving", __func__)); 7427 7428 /* Release all buffers if hardware is no longer available. */ 7429 if (!(iq->flags & IQ_HW_ALLOCATED)) 7430 free_fl_buffers(sc, fl); 7431 } 7432 } 7433 7434 /* 7435 * Wait for all activity on all the queues of the VI to complete. It is assumed 7436 * that no new work is being enqueued by the hardware or the driver. That part 7437 * should be arranged before calling this function. 7438 */ 7439 static void 7440 quiesce_vi(struct vi_info *vi) 7441 { 7442 int i; 7443 struct adapter *sc = vi->adapter; 7444 struct sge_rxq *rxq; 7445 struct sge_txq *txq; 7446 #ifdef TCP_OFFLOAD 7447 struct sge_ofld_rxq *ofld_rxq; 7448 #endif 7449 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7450 struct sge_ofld_txq *ofld_txq; 7451 #endif 7452 7453 if (!(vi->flags & VI_INIT_DONE)) 7454 return; 7455 7456 for_each_txq(vi, i, txq) { 7457 quiesce_txq(txq); 7458 } 7459 7460 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7461 for_each_ofld_txq(vi, i, ofld_txq) { 7462 quiesce_wrq(&ofld_txq->wrq); 7463 } 7464 #endif 7465 7466 for_each_rxq(vi, i, rxq) { 7467 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl); 7468 } 7469 7470 #ifdef TCP_OFFLOAD 7471 for_each_ofld_rxq(vi, i, ofld_rxq) { 7472 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl); 7473 } 7474 #endif 7475 } 7476 7477 static int 7478 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, 7479 driver_intr_t *handler, void *arg, char *name) 7480 { 7481 int rc; 7482 7483 irq->rid = rid; 7484 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, 7485 RF_SHAREABLE | RF_ACTIVE); 7486 if (irq->res == NULL) { 7487 device_printf(sc->dev, 7488 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 7489 return (ENOMEM); 7490 } 7491 7492 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, 7493 NULL, handler, arg, &irq->tag); 7494 if (rc != 0) { 7495 device_printf(sc->dev, 7496 "failed to setup interrupt for rid %d, name %s: %d\n", 7497 rid, name, rc); 7498 } else if (name) 7499 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name); 7500 7501 return (rc); 7502 } 7503 7504 static int 7505 t4_free_irq(struct adapter *sc, struct irq *irq) 7506 { 7507 if (irq->tag) 7508 bus_teardown_intr(sc->dev, irq->res, irq->tag); 7509 if (irq->res) 7510 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); 7511 7512 bzero(irq, sizeof(*irq)); 7513 7514 return (0); 7515 } 7516 7517 static void 7518 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) 7519 { 7520 7521 regs->version = chip_id(sc) | chip_rev(sc) << 10; 7522 t4_get_regs(sc, buf, regs->len); 7523 } 7524 7525 #define A_PL_INDIR_CMD 0x1f8 7526 7527 #define S_PL_AUTOINC 31 7528 #define M_PL_AUTOINC 0x1U 7529 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC) 7530 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC) 7531 7532 #define S_PL_VFID 20 7533 #define M_PL_VFID 0xffU 7534 #define V_PL_VFID(x) ((x) << S_PL_VFID) 7535 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID) 7536 7537 #define S_PL_ADDR 0 7538 #define M_PL_ADDR 0xfffffU 7539 #define V_PL_ADDR(x) ((x) << S_PL_ADDR) 7540 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR) 7541 7542 #define A_PL_INDIR_DATA 0x1fc 7543 7544 static uint64_t 7545 read_vf_stat(struct adapter *sc, u_int vin, int reg) 7546 { 7547 u32 stats[2]; 7548 7549 if (sc->flags & IS_VF) { 7550 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg)); 7551 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4)); 7552 } else { 7553 mtx_assert(&sc->reg_lock, MA_OWNED); 7554 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 7555 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg))); 7556 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA); 7557 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA); 7558 } 7559 return (((uint64_t)stats[1]) << 32 | stats[0]); 7560 } 7561 7562 static void 7563 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats) 7564 { 7565 7566 #define GET_STAT(name) \ 7567 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L) 7568 7569 if (!(sc->flags & IS_VF)) 7570 mtx_lock(&sc->reg_lock); 7571 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES); 7572 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); 7573 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES); 7574 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); 7575 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES); 7576 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); 7577 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES); 7578 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES); 7579 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES); 7580 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES); 7581 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); 7582 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES); 7583 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); 7584 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES); 7585 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); 7586 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES); 7587 if (!(sc->flags & IS_VF)) 7588 mtx_unlock(&sc->reg_lock); 7589 7590 #undef GET_STAT 7591 } 7592 7593 static void 7594 t4_clr_vi_stats(struct adapter *sc, u_int vin) 7595 { 7596 int reg; 7597 7598 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) | 7599 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L))); 7600 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L; 7601 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4) 7602 t4_write_reg(sc, A_PL_INDIR_DATA, 0); 7603 } 7604 7605 static void 7606 vi_refresh_stats(struct vi_info *vi) 7607 { 7608 struct timeval tv; 7609 const struct timeval interval = {0, 250000}; /* 250ms */ 7610 7611 mtx_assert(&vi->tick_mtx, MA_OWNED); 7612 7613 if (vi->flags & VI_SKIP_STATS) 7614 return; 7615 7616 getmicrotime(&tv); 7617 timevalsub(&tv, &interval); 7618 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7619 return; 7620 7621 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats); 7622 getmicrotime(&vi->last_refreshed); 7623 } 7624 7625 static void 7626 cxgbe_refresh_stats(struct vi_info *vi) 7627 { 7628 u_int i, v, tnl_cong_drops, chan_map; 7629 struct timeval tv; 7630 const struct timeval interval = {0, 250000}; /* 250ms */ 7631 struct port_info *pi; 7632 struct adapter *sc; 7633 7634 mtx_assert(&vi->tick_mtx, MA_OWNED); 7635 7636 if (vi->flags & VI_SKIP_STATS) 7637 return; 7638 7639 getmicrotime(&tv); 7640 timevalsub(&tv, &interval); 7641 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7642 return; 7643 7644 pi = vi->pi; 7645 sc = vi->adapter; 7646 tnl_cong_drops = 0; 7647 t4_get_port_stats(sc, pi->hw_port, &pi->stats); 7648 chan_map = pi->rx_e_chan_map; 7649 while (chan_map) { 7650 i = ffs(chan_map) - 1; 7651 mtx_lock(&sc->reg_lock); 7652 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1, 7653 A_TP_MIB_TNL_CNG_DROP_0 + i); 7654 mtx_unlock(&sc->reg_lock); 7655 tnl_cong_drops += v; 7656 chan_map &= ~(1 << i); 7657 } 7658 pi->tnl_cong_drops = tnl_cong_drops; 7659 getmicrotime(&vi->last_refreshed); 7660 } 7661 7662 static void 7663 cxgbe_tick(void *arg) 7664 { 7665 struct vi_info *vi = arg; 7666 7667 MPASS(IS_MAIN_VI(vi)); 7668 mtx_assert(&vi->tick_mtx, MA_OWNED); 7669 7670 cxgbe_refresh_stats(vi); 7671 callout_schedule(&vi->tick, hz); 7672 } 7673 7674 static void 7675 vi_tick(void *arg) 7676 { 7677 struct vi_info *vi = arg; 7678 7679 mtx_assert(&vi->tick_mtx, MA_OWNED); 7680 7681 vi_refresh_stats(vi); 7682 callout_schedule(&vi->tick, hz); 7683 } 7684 7685 /* CIM inbound queues */ 7686 static const char *t4_ibq[CIM_NUM_IBQ] = { 7687 "ibq_tp0", "ibq_tp1", "ibq_ulp", "ibq_sge0", "ibq_sge1", "ibq_ncsi" 7688 }; 7689 static const char *t7_ibq[CIM_NUM_IBQ_T7] = { 7690 "ibq_tp0", "ibq_tp1", "ibq_tp2", "ibq_tp3", "ibq_ulp", "ibq_sge0", 7691 "ibq_sge1", "ibq_ncsi", NULL, "ibq_ipc1", "ibq_ipc2", "ibq_ipc3", 7692 "ibq_ipc4", "ibq_ipc5", "ibq_ipc6", "ibq_ipc7" 7693 }; 7694 static const char *t7_ibq_sec[] = { 7695 "ibq_tp0", "ibq_tp1", "ibq_tp2", "ibq_tp3", "ibq_ulp", "ibq_sge0", 7696 NULL, NULL, NULL, "ibq_ipc0" 7697 }; 7698 7699 /* CIM outbound queues */ 7700 static const char *t4_obq[CIM_NUM_OBQ_T5] = { 7701 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", "obq_ncsi", 7702 "obq_sge_rx_q0", "obq_sge_rx_q1" /* These two are T5/T6 only */ 7703 }; 7704 static const char *t7_obq[CIM_NUM_OBQ_T7] = { 7705 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", "obq_ncsi", 7706 "obq_sge_rx_q0", NULL, NULL, "obq_ipc1", "obq_ipc2", "obq_ipc3", 7707 "obq_ipc4", "obq_ipc5", "obq_ipc6", "obq_ipc7" 7708 }; 7709 static const char *t7_obq_sec[] = { 7710 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", NULL, 7711 "obq_sge_rx_q0", NULL, NULL, "obq_ipc0" 7712 }; 7713 7714 static void 7715 cim_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx, 7716 struct sysctl_oid_list *c0) 7717 { 7718 struct sysctl_oid *oid; 7719 struct sysctl_oid_list *children1; 7720 int i, j, qcount; 7721 char s[16]; 7722 const char **qname; 7723 7724 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "cim", 7725 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CIM block"); 7726 c0 = SYSCTL_CHILDREN(oid); 7727 7728 SYSCTL_ADD_U8(ctx, c0, OID_AUTO, "ncores", CTLFLAG_RD, NULL, 7729 sc->params.ncores, "# of active CIM cores"); 7730 7731 for (i = 0; i < sc->params.ncores; i++) { 7732 snprintf(s, sizeof(s), "%u", i); 7733 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, s, 7734 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CIM core"); 7735 children1 = SYSCTL_CHILDREN(oid); 7736 7737 /* 7738 * CTLFLAG_SKIP because the misc.devlog sysctl already displays 7739 * the log for all cores. Use this sysctl to get the log for a 7740 * particular core only. 7741 */ 7742 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "devlog", 7743 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP, 7744 sc, i, sysctl_devlog, "A", "firmware's device log"); 7745 7746 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "loadavg", 7747 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i, 7748 sysctl_loadavg, "A", 7749 "microprocessor load averages (select firmwares only)"); 7750 7751 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "qcfg", 7752 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i, 7753 chip_id(sc) > CHELSIO_T6 ? sysctl_cim_qcfg_t7 : sysctl_cim_qcfg, 7754 "A", "Queue configuration"); 7755 7756 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "la", 7757 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i, 7758 sysctl_cim_la, "A", "Logic analyzer"); 7759 7760 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "ma_la", 7761 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i, 7762 sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); 7763 7764 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "pif_la", 7765 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i, 7766 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); 7767 7768 /* IBQs */ 7769 switch (chip_id(sc)) { 7770 case CHELSIO_T4: 7771 case CHELSIO_T5: 7772 case CHELSIO_T6: 7773 qname = &t4_ibq[0]; 7774 qcount = nitems(t4_ibq); 7775 break; 7776 case CHELSIO_T7: 7777 default: 7778 if (i == 0) { 7779 qname = &t7_ibq[0]; 7780 qcount = nitems(t7_ibq); 7781 } else { 7782 qname = &t7_ibq_sec[0]; 7783 qcount = nitems(t7_ibq_sec); 7784 } 7785 break; 7786 } 7787 MPASS(qcount <= sc->chip_params->cim_num_ibq); 7788 for (j = 0; j < qcount; j++) { 7789 if (qname[j] == NULL) 7790 continue; 7791 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, qname[j], 7792 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7793 (i << 16) | j, sysctl_cim_ibq, "A", NULL); 7794 } 7795 7796 /* OBQs */ 7797 switch (chip_id(sc)) { 7798 case CHELSIO_T4: 7799 qname = t4_obq; 7800 qcount = CIM_NUM_OBQ; 7801 break; 7802 case CHELSIO_T5: 7803 case CHELSIO_T6: 7804 qname = t4_obq; 7805 qcount = nitems(t4_obq); 7806 break; 7807 case CHELSIO_T7: 7808 default: 7809 if (i == 0) { 7810 qname = t7_obq; 7811 qcount = nitems(t7_obq); 7812 } else { 7813 qname = t7_obq_sec; 7814 qcount = nitems(t7_obq_sec); 7815 } 7816 break; 7817 } 7818 MPASS(qcount <= sc->chip_params->cim_num_obq); 7819 for (j = 0; j < qcount; j++) { 7820 if (qname[j] == NULL) 7821 continue; 7822 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, qname[j], 7823 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7824 (i << 16) | j, sysctl_cim_obq, "A", NULL); 7825 } 7826 } 7827 } 7828 7829 /* 7830 * Should match fw_caps_config_<foo> enums in t4fw_interface.h 7831 */ 7832 static char *caps_decoder[] = { 7833 "\20\001IPMI\002NCSI", /* 0: NBM */ 7834 "\20\001PPP\002QFC\003DCBX", /* 1: link */ 7835 "\20\001INGRESS\002EGRESS", /* 2: switch */ 7836 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */ 7837 "\006HASHFILTER\007ETHOFLD", 7838 "\20\001TOE\002SENDPATH", /* 4: TOE */ 7839 "\20\001RDDP\002RDMAC\003ROCEv2", /* 5: RDMA */ 7840 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */ 7841 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD" 7842 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD" 7843 "\007T10DIF" 7844 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD", 7845 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */ 7846 "\004TLS_HW,\005TOE_IPSEC", 7847 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */ 7848 "\004PO_INITIATOR\005PO_TARGET", 7849 "\20\001NVMe_TCP", /* 9: NVMe */ 7850 }; 7851 7852 void 7853 t4_sysctls(struct adapter *sc) 7854 { 7855 struct sysctl_ctx_list *ctx = &sc->ctx; 7856 struct sysctl_oid *oid; 7857 struct sysctl_oid_list *children, *c0; 7858 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; 7859 7860 /* 7861 * dev.t4nex.X. 7862 */ 7863 oid = device_get_sysctl_tree(sc->dev); 7864 c0 = children = SYSCTL_CHILDREN(oid); 7865 7866 sc->sc_do_rxcopy = 1; 7867 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW, 7868 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames"); 7869 7870 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, 7871 sc->params.nports, "# of ports"); 7872 7873 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", 7874 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells, 7875 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A", 7876 "available doorbells"); 7877 7878 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, 7879 sc->params.vpd.cclk, "core clock frequency (in KHz)"); 7880 7881 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", 7882 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7883 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val), 7884 sysctl_int_array, "A", "interrupt holdoff timer values (us)"); 7885 7886 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", 7887 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7888 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val), 7889 sysctl_int_array, "A", "interrupt holdoff packet counter values"); 7890 7891 t4_sge_sysctls(sc, ctx, children); 7892 7893 sc->lro_timeout = 100; 7894 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW, 7895 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)"); 7896 7897 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW, 7898 &sc->debug_flags, 0, "flags to enable runtime debugging"); 7899 7900 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iflags", CTLFLAG_RW, 7901 &sc->intr_flags, 0, "flags for the slow interrupt handler"); 7902 7903 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version", 7904 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version"); 7905 7906 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", 7907 CTLFLAG_RD, sc->fw_version, 0, "firmware version"); 7908 7909 if (sc->flags & IS_VF) 7910 return; 7911 7912 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, 7913 NULL, chip_rev(sc), "chip hardware revision"); 7914 7915 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn", 7916 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number"); 7917 7918 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn", 7919 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number"); 7920 7921 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec", 7922 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change"); 7923 7924 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version", 7925 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version"); 7926 7927 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na", 7928 CTLFLAG_RD, sc->params.vpd.na, 0, "network address"); 7929 7930 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD, 7931 sc->er_version, 0, "expansion ROM version"); 7932 7933 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD, 7934 sc->bs_version, 0, "bootstrap firmware version"); 7935 7936 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD, 7937 NULL, sc->params.scfg_vers, "serial config version"); 7938 7939 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD, 7940 NULL, sc->params.vpd_vers, "VPD version"); 7941 7942 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", 7943 CTLFLAG_RD, sc->cfg_file, 0, "configuration file"); 7944 7945 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, 7946 sc->cfcsum, "config file checksum"); 7947 7948 #define SYSCTL_CAP(name, n, text) \ 7949 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \ 7950 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \ 7951 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \ 7952 "available " text " capabilities") 7953 7954 SYSCTL_CAP(nbmcaps, 0, "NBM"); 7955 SYSCTL_CAP(linkcaps, 1, "link"); 7956 SYSCTL_CAP(switchcaps, 2, "switch"); 7957 SYSCTL_CAP(nvmecaps, 9, "NVMe"); 7958 SYSCTL_CAP(niccaps, 3, "NIC"); 7959 SYSCTL_CAP(toecaps, 4, "TCP offload"); 7960 SYSCTL_CAP(rdmacaps, 5, "RDMA"); 7961 SYSCTL_CAP(iscsicaps, 6, "iSCSI"); 7962 SYSCTL_CAP(cryptocaps, 7, "crypto"); 7963 SYSCTL_CAP(fcoecaps, 8, "FCoE"); 7964 #undef SYSCTL_CAP 7965 7966 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, 7967 NULL, sc->tids.nftids, "number of filters"); 7968 7969 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7970 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7971 sysctl_temperature, "I", "chip temperature (in Celsius)"); 7972 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor", 7973 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7974 sysctl_reset_sensor, "I", "reset the chip's temperature sensor."); 7975 7976 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd", 7977 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd, 7978 "I", "core Vdd (in mV)"); 7979 7980 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus", 7981 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS, 7982 sysctl_cpus, "A", "local CPUs"); 7983 7984 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus", 7985 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS, 7986 sysctl_cpus, "A", "preferred CPUs for interrupts"); 7987 7988 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW, 7989 &sc->swintr, 0, "software triggered interrupts"); 7990 7991 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset", 7992 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I", 7993 "1 = reset adapter, 0 = zero reset counter"); 7994 7995 /* 7996 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. 7997 */ 7998 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", 7999 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 8000 "logs and miscellaneous information"); 8001 children = SYSCTL_CHILDREN(oid); 8002 8003 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", 8004 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8005 sysctl_cctrl, "A", "congestion control"); 8006 8007 cim_sysctls(sc, ctx, children); 8008 8009 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", 8010 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8011 sysctl_cpl_stats, "A", "CPL statistics"); 8012 8013 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", 8014 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8015 sysctl_ddp_stats, "A", "non-TCP DDP statistics"); 8016 8017 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats", 8018 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8019 sysctl_tid_stats, "A", "tid stats"); 8020 8021 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", 8022 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, -1, 8023 sysctl_devlog, "A", "firmware's device log (all cores)"); 8024 8025 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", 8026 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8027 sysctl_fcoe_stats, "A", "FCoE statistics"); 8028 8029 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", 8030 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8031 sysctl_hw_sched, "A", "hardware scheduler "); 8032 8033 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", 8034 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8035 sysctl_l2t, "A", "hardware L2 table"); 8036 8037 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt", 8038 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8039 sysctl_smt, "A", "hardware source MAC table"); 8040 8041 #ifdef INET6 8042 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip", 8043 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8044 sysctl_clip, "A", "active CLIP table entries"); 8045 #endif 8046 8047 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", 8048 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8049 sysctl_lb_stats, "A", "loopback statistics"); 8050 8051 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", 8052 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8053 sysctl_meminfo, "A", "memory regions"); 8054 8055 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", 8056 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8057 chip_id(sc) >= CHELSIO_T7 ? sysctl_mps_tcam_t7 : 8058 (chip_id(sc) >= CHELSIO_T6 ? sysctl_mps_tcam_t6 : sysctl_mps_tcam), 8059 "A", "MPS TCAM entries"); 8060 8061 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", 8062 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8063 sysctl_path_mtus, "A", "path MTUs"); 8064 8065 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", 8066 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8067 sysctl_pm_stats, "A", "PM statistics"); 8068 8069 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", 8070 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8071 sysctl_rdma_stats, "A", "RDMA statistics"); 8072 8073 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", 8074 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8075 sysctl_tcp_stats, "A", "TCP statistics"); 8076 8077 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", 8078 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8079 sysctl_tids, "A", "TID information"); 8080 8081 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", 8082 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8083 sysctl_tp_err_stats, "A", "TP error statistics"); 8084 8085 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats", 8086 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8087 sysctl_tnl_stats, "A", "TP tunnel statistics"); 8088 8089 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask", 8090 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 8091 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask"); 8092 8093 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", 8094 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8095 sysctl_tp_la, "A", "TP logic analyzer"); 8096 8097 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", 8098 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8099 sysctl_tx_rate, "A", "Tx rate"); 8100 8101 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", 8102 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8103 sysctl_ulprx_la, "A", "ULPRX logic analyzer"); 8104 8105 if (chip_id(sc) >= CHELSIO_T5) { 8106 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", 8107 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8108 sysctl_wcwr_stats, "A", "write combined work requests"); 8109 } 8110 8111 #ifdef KERN_TLS 8112 if (is_ktls(sc)) { 8113 /* 8114 * dev.t4nex.0.tls. 8115 */ 8116 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls", 8117 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters"); 8118 children = SYSCTL_CHILDREN(oid); 8119 8120 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys", 8121 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS " 8122 "keys in work requests (1) or attempt to store TLS keys " 8123 "in card memory."); 8124 8125 if (is_t6(sc)) 8126 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs", 8127 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to " 8128 "combine TCB field updates with TLS record work " 8129 "requests."); 8130 else { 8131 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "short_records", 8132 CTLFLAG_RW, &sc->tlst.short_records, 0, 8133 "Use cipher-only mode for short records."); 8134 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "partial_ghash", 8135 CTLFLAG_RW, &sc->tlst.partial_ghash, 0, 8136 "Use partial GHASH for AES-GCM records."); 8137 } 8138 } 8139 #endif 8140 8141 #ifdef TCP_OFFLOAD 8142 if (is_offload(sc)) { 8143 int i; 8144 char s[4]; 8145 8146 /* 8147 * dev.t4nex.X.toe. 8148 */ 8149 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", 8150 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters"); 8151 children = SYSCTL_CHILDREN(oid); 8152 8153 sc->tt.cong_algorithm = -1; 8154 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm", 8155 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control " 8156 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, " 8157 "3 = highspeed)"); 8158 8159 sc->tt.sndbuf = -1; 8160 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, 8161 &sc->tt.sndbuf, 0, "hardware send buffer"); 8162 8163 sc->tt.ddp = 0; 8164 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", 8165 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, ""); 8166 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW, 8167 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)"); 8168 8169 sc->tt.rx_coalesce = -1; 8170 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", 8171 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); 8172 8173 sc->tt.tls = 1; 8174 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT | 8175 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I", 8176 "Inline TLS allowed"); 8177 8178 sc->tt.tx_align = -1; 8179 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align", 8180 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload"); 8181 8182 sc->tt.tx_zcopy = 0; 8183 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy", 8184 CTLFLAG_RW, &sc->tt.tx_zcopy, 0, 8185 "Enable zero-copy aio_write(2)"); 8186 8187 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading; 8188 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8189 "cop_managed_offloading", CTLFLAG_RW, 8190 &sc->tt.cop_managed_offloading, 0, 8191 "COP (Connection Offload Policy) controls all TOE offload"); 8192 8193 sc->tt.autorcvbuf_inc = 16 * 1024; 8194 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc", 8195 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0, 8196 "autorcvbuf increment"); 8197 8198 sc->tt.update_hc_on_pmtu_change = 1; 8199 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8200 "update_hc_on_pmtu_change", CTLFLAG_RW, 8201 &sc->tt.update_hc_on_pmtu_change, 0, 8202 "Update hostcache entry if the PMTU changes"); 8203 8204 sc->tt.iso = 1; 8205 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW, 8206 &sc->tt.iso, 0, "Enable iSCSI segmentation offload"); 8207 8208 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick", 8209 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8210 sysctl_tp_tick, "A", "TP timer tick (us)"); 8211 8212 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick", 8213 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 8214 sysctl_tp_tick, "A", "TCP timestamp tick (us)"); 8215 8216 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick", 8217 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 8218 sysctl_tp_tick, "A", "DACK tick (us)"); 8219 8220 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer", 8221 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8222 sysctl_tp_dack_timer, "IU", "DACK timer (us)"); 8223 8224 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min", 8225 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8226 A_TP_RXT_MIN, sysctl_tp_timer, "LU", 8227 "Minimum retransmit interval (us)"); 8228 8229 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max", 8230 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8231 A_TP_RXT_MAX, sysctl_tp_timer, "LU", 8232 "Maximum retransmit interval (us)"); 8233 8234 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min", 8235 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8236 A_TP_PERS_MIN, sysctl_tp_timer, "LU", 8237 "Persist timer min (us)"); 8238 8239 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max", 8240 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8241 A_TP_PERS_MAX, sysctl_tp_timer, "LU", 8242 "Persist timer max (us)"); 8243 8244 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle", 8245 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8246 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU", 8247 "Keepalive idle timer (us)"); 8248 8249 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval", 8250 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8251 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU", 8252 "Keepalive interval timer (us)"); 8253 8254 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt", 8255 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8256 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)"); 8257 8258 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer", 8259 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8260 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU", 8261 "FINWAIT2 timer (us)"); 8262 8263 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count", 8264 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8265 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU", 8266 "Number of SYN retransmissions before abort"); 8267 8268 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count", 8269 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8270 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU", 8271 "Number of retransmissions before abort"); 8272 8273 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count", 8274 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8275 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU", 8276 "Number of keepalive probes before abort"); 8277 8278 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff", 8279 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 8280 "TOE retransmit backoffs"); 8281 children = SYSCTL_CHILDREN(oid); 8282 for (i = 0; i < 16; i++) { 8283 snprintf(s, sizeof(s), "%u", i); 8284 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s, 8285 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8286 i, sysctl_tp_backoff, "IU", 8287 "TOE retransmit backoff"); 8288 } 8289 } 8290 #endif 8291 } 8292 8293 void 8294 vi_sysctls(struct vi_info *vi) 8295 { 8296 struct sysctl_ctx_list *ctx = &vi->ctx; 8297 struct sysctl_oid *oid; 8298 struct sysctl_oid_list *children; 8299 8300 /* 8301 * dev.v?(cxgbe|cxl).X. 8302 */ 8303 oid = device_get_sysctl_tree(vi->dev); 8304 children = SYSCTL_CHILDREN(oid); 8305 8306 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL, 8307 vi->viid, "VI identifer"); 8308 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, 8309 &vi->nrxq, 0, "# of rx queues"); 8310 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, 8311 &vi->ntxq, 0, "# of tx queues"); 8312 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, 8313 &vi->first_rxq, 0, "index of first rx queue"); 8314 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, 8315 &vi->first_txq, 0, "index of first tx queue"); 8316 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL, 8317 vi->rss_base, "start of RSS indirection table"); 8318 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL, 8319 vi->rss_size, "size of RSS indirection table"); 8320 8321 if (IS_MAIN_VI(vi)) { 8322 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq", 8323 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8324 sysctl_noflowq, "IU", 8325 "Reserve queue 0 for non-flowid packets"); 8326 } 8327 8328 if (vi->adapter->flags & IS_VF) { 8329 MPASS(vi->flags & TX_USES_VM_WR); 8330 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD, 8331 NULL, 1, "use VM work requests for transmit"); 8332 } else { 8333 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr", 8334 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8335 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit"); 8336 } 8337 8338 #ifdef TCP_OFFLOAD 8339 if (vi->nofldrxq != 0) { 8340 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, 8341 &vi->nofldrxq, 0, 8342 "# of rx queues for offloaded TCP connections"); 8343 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", 8344 CTLFLAG_RD, &vi->first_ofld_rxq, 0, 8345 "index of first TOE rx queue"); 8346 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld", 8347 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8348 sysctl_holdoff_tmr_idx_ofld, "I", 8349 "holdoff timer index for TOE queues"); 8350 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld", 8351 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8352 sysctl_holdoff_pktc_idx_ofld, "I", 8353 "holdoff packet counter index for TOE queues"); 8354 } 8355 #endif 8356 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 8357 if (vi->nofldtxq != 0) { 8358 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, 8359 &vi->nofldtxq, 0, 8360 "# of tx queues for TOE/ETHOFLD"); 8361 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", 8362 CTLFLAG_RD, &vi->first_ofld_txq, 0, 8363 "index of first TOE/ETHOFLD tx queue"); 8364 } 8365 #endif 8366 #ifdef DEV_NETMAP 8367 if (vi->nnmrxq != 0) { 8368 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD, 8369 &vi->nnmrxq, 0, "# of netmap rx queues"); 8370 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD, 8371 &vi->nnmtxq, 0, "# of netmap tx queues"); 8372 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq", 8373 CTLFLAG_RD, &vi->first_nm_rxq, 0, 8374 "index of first netmap rx queue"); 8375 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq", 8376 CTLFLAG_RD, &vi->first_nm_txq, 0, 8377 "index of first netmap tx queue"); 8378 } 8379 #endif 8380 8381 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", 8382 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8383 sysctl_holdoff_tmr_idx, "I", "holdoff timer index"); 8384 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", 8385 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8386 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index"); 8387 8388 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", 8389 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8390 sysctl_qsize_rxq, "I", "rx queue size"); 8391 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", 8392 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8393 sysctl_qsize_txq, "I", "tx queue size"); 8394 } 8395 8396 static void 8397 cxgbe_sysctls(struct port_info *pi) 8398 { 8399 struct sysctl_ctx_list *ctx = &pi->ctx; 8400 struct sysctl_oid *oid; 8401 struct sysctl_oid_list *children, *children2; 8402 struct adapter *sc = pi->adapter; 8403 int i; 8404 char name[16]; 8405 static char *tc_flags = {"\20\1USER"}; 8406 8407 /* 8408 * dev.cxgbe.X. 8409 */ 8410 oid = device_get_sysctl_tree(pi->dev); 8411 children = SYSCTL_CHILDREN(oid); 8412 8413 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", 8414 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 8415 sysctl_linkdnrc, "A", "reason why link is down"); 8416 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { 8417 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 8418 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 8419 sysctl_btphy, "I", "PHY temperature (in Celsius)"); 8420 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", 8421 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1, 8422 sysctl_btphy, "I", "PHY firmware version"); 8423 } 8424 8425 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings", 8426 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8427 sysctl_pause_settings, "A", 8428 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 8429 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec", 8430 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A", 8431 "FEC in use on the link"); 8432 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec", 8433 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8434 sysctl_requested_fec, "A", 8435 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)"); 8436 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec", 8437 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A", 8438 "FEC recommended by the cable/transceiver"); 8439 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg", 8440 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8441 sysctl_autoneg, "I", 8442 "autonegotiation (-1 = not supported)"); 8443 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec", 8444 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8445 sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config"); 8446 8447 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD, 8448 &pi->link_cfg.requested_caps, 0, "L1 config requested by driver"); 8449 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD, 8450 &pi->link_cfg.pcaps, 0, "port capabilities"); 8451 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD, 8452 &pi->link_cfg.acaps, 0, "advertised capabilities"); 8453 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD, 8454 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities"); 8455 8456 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL, 8457 port_top_speed(pi), "max speed (in Gbps)"); 8458 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL, 8459 pi->mps_bg_map, "MPS buffer group map"); 8460 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD, 8461 NULL, pi->rx_e_chan_map, "TP rx e-channel map"); 8462 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_chan", CTLFLAG_RD, NULL, 8463 pi->tx_chan, "TP tx c-channel"); 8464 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_chan", CTLFLAG_RD, NULL, 8465 pi->rx_chan, "TP rx c-channel"); 8466 8467 if (sc->flags & IS_VF) 8468 return; 8469 8470 /* 8471 * dev.(cxgbe|cxl).X.tc. 8472 */ 8473 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", 8474 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 8475 "Tx scheduler traffic classes (cl_rl)"); 8476 children2 = SYSCTL_CHILDREN(oid); 8477 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize", 8478 CTLFLAG_RW, &pi->sched_params->pktsize, 0, 8479 "pktsize for per-flow cl-rl (0 means up to the driver )"); 8480 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize", 8481 CTLFLAG_RW, &pi->sched_params->burstsize, 0, 8482 "burstsize for per-flow cl-rl (0 means up to the driver)"); 8483 for (i = 0; i < sc->params.nsched_cls; i++) { 8484 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i]; 8485 8486 snprintf(name, sizeof(name), "%d", i); 8487 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx, 8488 SYSCTL_CHILDREN(oid), OID_AUTO, name, 8489 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class")); 8490 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state", 8491 CTLFLAG_RD, &tc->state, 0, "current state"); 8492 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags", 8493 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags, 8494 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags"); 8495 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount", 8496 CTLFLAG_RD, &tc->refcount, 0, "references to this class"); 8497 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params", 8498 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8499 (pi->port_id << 16) | i, sysctl_tc_params, "A", 8500 "traffic class parameters"); 8501 } 8502 8503 /* 8504 * dev.cxgbe.X.stats. 8505 */ 8506 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", 8507 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics"); 8508 children = SYSCTL_CHILDREN(oid); 8509 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD, 8510 &pi->tx_parse_error, 0, 8511 "# of tx packets with invalid length or # of segments"); 8512 8513 #define T4_LBSTAT(name, stat, desc) do { \ 8514 if (sc->params.tp.lb_mode) { \ 8515 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 8516 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, \ 8517 A_MPS_PORT_STAT_##stat##_L, \ 8518 sysctl_handle_t4_portstat64, "QU", desc); \ 8519 } else { \ 8520 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 8521 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \ 8522 t4_port_reg(sc, pi->tx_chan, A_MPS_PORT_STAT_##stat##_L), \ 8523 sysctl_handle_t4_reg64, "QU", desc); \ 8524 } \ 8525 } while (0) 8526 8527 T4_LBSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames"); 8528 T4_LBSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames"); 8529 T4_LBSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames"); 8530 T4_LBSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames"); 8531 T4_LBSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames"); 8532 T4_LBSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames"); 8533 T4_LBSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range"); 8534 T4_LBSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range"); 8535 T4_LBSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range"); 8536 T4_LBSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range"); 8537 T4_LBSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range"); 8538 T4_LBSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range"); 8539 T4_LBSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range"); 8540 T4_LBSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames"); 8541 T4_LBSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted"); 8542 T4_LBSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted"); 8543 T4_LBSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted"); 8544 T4_LBSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted"); 8545 T4_LBSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted"); 8546 T4_LBSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted"); 8547 T4_LBSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted"); 8548 T4_LBSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted"); 8549 T4_LBSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted"); 8550 8551 T4_LBSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames"); 8552 T4_LBSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames"); 8553 T4_LBSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames"); 8554 T4_LBSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames"); 8555 T4_LBSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames"); 8556 T4_LBSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU"); 8557 T4_LBSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames"); 8558 if (is_t6(sc)) { 8559 /* Read from port_stats and may be stale by up to 1s */ 8560 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "rx_fcs_err", 8561 CTLFLAG_RD, &pi->stats.rx_fcs_err, 8562 "# of frames received with bad FCS since last link up"); 8563 } else { 8564 T4_LBSTAT(rx_fcs_err, RX_PORT_CRC_ERROR, 8565 "# of frames received with bad FCS"); 8566 } 8567 T4_LBSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error"); 8568 T4_LBSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors"); 8569 T4_LBSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received"); 8570 T4_LBSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range"); 8571 T4_LBSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range"); 8572 T4_LBSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range"); 8573 T4_LBSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range"); 8574 T4_LBSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range"); 8575 T4_LBSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range"); 8576 T4_LBSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range"); 8577 T4_LBSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received"); 8578 T4_LBSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received"); 8579 T4_LBSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received"); 8580 T4_LBSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received"); 8581 T4_LBSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received"); 8582 T4_LBSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received"); 8583 T4_LBSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received"); 8584 T4_LBSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received"); 8585 T4_LBSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received"); 8586 #undef T4_LBSTAT 8587 8588 #define T4_REGSTAT(name, stat, desc) do { \ 8589 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 8590 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \ 8591 A_MPS_STAT_##stat##_L, sysctl_handle_t4_reg64, "QU", desc); \ 8592 } while (0) 8593 8594 if (pi->mps_bg_map & 1) { 8595 T4_REGSTAT(rx_ovflow0, RX_BG_0_MAC_DROP_FRAME, 8596 "# drops due to buffer-group 0 overflows"); 8597 T4_REGSTAT(rx_trunc0, RX_BG_0_MAC_TRUNC_FRAME, 8598 "# of buffer-group 0 truncated packets"); 8599 } 8600 if (pi->mps_bg_map & 2) { 8601 T4_REGSTAT(rx_ovflow1, RX_BG_1_MAC_DROP_FRAME, 8602 "# drops due to buffer-group 1 overflows"); 8603 T4_REGSTAT(rx_trunc1, RX_BG_1_MAC_TRUNC_FRAME, 8604 "# of buffer-group 1 truncated packets"); 8605 } 8606 if (pi->mps_bg_map & 4) { 8607 T4_REGSTAT(rx_ovflow2, RX_BG_2_MAC_DROP_FRAME, 8608 "# drops due to buffer-group 2 overflows"); 8609 T4_REGSTAT(rx_trunc2, RX_BG_2_MAC_TRUNC_FRAME, 8610 "# of buffer-group 2 truncated packets"); 8611 } 8612 if (pi->mps_bg_map & 8) { 8613 T4_REGSTAT(rx_ovflow3, RX_BG_3_MAC_DROP_FRAME, 8614 "# drops due to buffer-group 3 overflows"); 8615 T4_REGSTAT(rx_trunc3, RX_BG_3_MAC_TRUNC_FRAME, 8616 "# of buffer-group 3 truncated packets"); 8617 } 8618 #undef T4_REGSTAT 8619 } 8620 8621 static int 8622 sysctl_int_array(SYSCTL_HANDLER_ARGS) 8623 { 8624 int rc, *i, space = 0; 8625 struct sbuf sb; 8626 8627 sbuf_new_for_sysctl(&sb, NULL, 64, req); 8628 for (i = arg1; arg2; arg2 -= sizeof(int), i++) { 8629 if (space) 8630 sbuf_printf(&sb, " "); 8631 sbuf_printf(&sb, "%d", *i); 8632 space = 1; 8633 } 8634 rc = sbuf_finish(&sb); 8635 sbuf_delete(&sb); 8636 return (rc); 8637 } 8638 8639 static int 8640 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS) 8641 { 8642 int rc; 8643 struct sbuf *sb; 8644 8645 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8646 if (sb == NULL) 8647 return (ENOMEM); 8648 8649 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1); 8650 rc = sbuf_finish(sb); 8651 sbuf_delete(sb); 8652 8653 return (rc); 8654 } 8655 8656 static int 8657 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS) 8658 { 8659 int rc; 8660 struct sbuf *sb; 8661 8662 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8663 if (sb == NULL) 8664 return (ENOMEM); 8665 8666 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1); 8667 rc = sbuf_finish(sb); 8668 sbuf_delete(sb); 8669 8670 return (rc); 8671 } 8672 8673 static int 8674 sysctl_btphy(SYSCTL_HANDLER_ARGS) 8675 { 8676 struct port_info *pi = arg1; 8677 int op = arg2; 8678 struct adapter *sc = pi->adapter; 8679 u_int v; 8680 int rc; 8681 8682 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt"); 8683 if (rc) 8684 return (rc); 8685 if (!hw_all_ok(sc)) 8686 rc = ENXIO; 8687 else { 8688 /* XXX: magic numbers */ 8689 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, 8690 op ? 0x20 : 0xc820, &v); 8691 } 8692 end_synchronized_op(sc, 0); 8693 if (rc) 8694 return (rc); 8695 if (op == 0) 8696 v /= 256; 8697 8698 rc = sysctl_handle_int(oidp, &v, 0, req); 8699 return (rc); 8700 } 8701 8702 static int 8703 sysctl_noflowq(SYSCTL_HANDLER_ARGS) 8704 { 8705 struct vi_info *vi = arg1; 8706 int rc, val; 8707 8708 val = vi->rsrv_noflowq; 8709 rc = sysctl_handle_int(oidp, &val, 0, req); 8710 if (rc != 0 || req->newptr == NULL) 8711 return (rc); 8712 8713 if ((val >= 1) && (vi->ntxq > 1)) 8714 vi->rsrv_noflowq = 1; 8715 else 8716 vi->rsrv_noflowq = 0; 8717 8718 return (rc); 8719 } 8720 8721 static int 8722 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS) 8723 { 8724 struct vi_info *vi = arg1; 8725 struct adapter *sc = vi->adapter; 8726 int rc, val, i; 8727 8728 MPASS(!(sc->flags & IS_VF)); 8729 8730 val = vi->flags & TX_USES_VM_WR ? 1 : 0; 8731 rc = sysctl_handle_int(oidp, &val, 0, req); 8732 if (rc != 0 || req->newptr == NULL) 8733 return (rc); 8734 8735 if (val != 0 && val != 1) 8736 return (EINVAL); 8737 8738 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8739 "t4txvm"); 8740 if (rc) 8741 return (rc); 8742 if (!hw_all_ok(sc)) 8743 rc = ENXIO; 8744 else if (if_getdrvflags(vi->ifp) & IFF_DRV_RUNNING) { 8745 /* 8746 * We don't want parse_pkt to run with one setting (VF or PF) 8747 * and then eth_tx to see a different setting but still use 8748 * stale information calculated by parse_pkt. 8749 */ 8750 rc = EBUSY; 8751 } else { 8752 struct port_info *pi = vi->pi; 8753 struct sge_txq *txq; 8754 uint32_t ctrl0; 8755 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr; 8756 8757 if (val) { 8758 vi->flags |= TX_USES_VM_WR; 8759 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_VM_TSO); 8760 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8761 V_TXPKT_INTF(pi->hw_port)); 8762 if (!(sc->flags & IS_VF)) 8763 npkt--; 8764 } else { 8765 vi->flags &= ~TX_USES_VM_WR; 8766 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_TSO); 8767 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8768 V_TXPKT_INTF(pi->hw_port) | V_TXPKT_PF(sc->pf) | 8769 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld)); 8770 } 8771 for_each_txq(vi, i, txq) { 8772 txq->cpl_ctrl0 = ctrl0; 8773 txq->txp.max_npkt = npkt; 8774 } 8775 } 8776 end_synchronized_op(sc, LOCK_HELD); 8777 return (rc); 8778 } 8779 8780 static int 8781 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) 8782 { 8783 struct vi_info *vi = arg1; 8784 struct adapter *sc = vi->adapter; 8785 int idx, rc, i; 8786 struct sge_rxq *rxq; 8787 uint8_t v; 8788 8789 idx = vi->tmr_idx; 8790 8791 rc = sysctl_handle_int(oidp, &idx, 0, req); 8792 if (rc != 0 || req->newptr == NULL) 8793 return (rc); 8794 8795 if (idx < 0 || idx >= SGE_NTIMERS) 8796 return (EINVAL); 8797 8798 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8799 "t4tmr"); 8800 if (rc) 8801 return (rc); 8802 8803 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1); 8804 for_each_rxq(vi, i, rxq) { 8805 #ifdef atomic_store_rel_8 8806 atomic_store_rel_8(&rxq->iq.intr_params, v); 8807 #else 8808 rxq->iq.intr_params = v; 8809 #endif 8810 } 8811 vi->tmr_idx = idx; 8812 8813 end_synchronized_op(sc, LOCK_HELD); 8814 return (0); 8815 } 8816 8817 static int 8818 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) 8819 { 8820 struct vi_info *vi = arg1; 8821 struct adapter *sc = vi->adapter; 8822 int idx, rc; 8823 8824 idx = vi->pktc_idx; 8825 8826 rc = sysctl_handle_int(oidp, &idx, 0, req); 8827 if (rc != 0 || req->newptr == NULL) 8828 return (rc); 8829 8830 if (idx < -1 || idx >= SGE_NCOUNTERS) 8831 return (EINVAL); 8832 8833 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8834 "t4pktc"); 8835 if (rc) 8836 return (rc); 8837 8838 if (vi->flags & VI_INIT_DONE) 8839 rc = EBUSY; /* cannot be changed once the queues are created */ 8840 else 8841 vi->pktc_idx = idx; 8842 8843 end_synchronized_op(sc, LOCK_HELD); 8844 return (rc); 8845 } 8846 8847 static int 8848 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) 8849 { 8850 struct vi_info *vi = arg1; 8851 struct adapter *sc = vi->adapter; 8852 int qsize, rc; 8853 8854 qsize = vi->qsize_rxq; 8855 8856 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8857 if (rc != 0 || req->newptr == NULL) 8858 return (rc); 8859 8860 if (qsize < 128 || (qsize & 7)) 8861 return (EINVAL); 8862 8863 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8864 "t4rxqs"); 8865 if (rc) 8866 return (rc); 8867 8868 if (vi->flags & VI_INIT_DONE) 8869 rc = EBUSY; /* cannot be changed once the queues are created */ 8870 else 8871 vi->qsize_rxq = qsize; 8872 8873 end_synchronized_op(sc, LOCK_HELD); 8874 return (rc); 8875 } 8876 8877 static int 8878 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) 8879 { 8880 struct vi_info *vi = arg1; 8881 struct adapter *sc = vi->adapter; 8882 int qsize, rc; 8883 8884 qsize = vi->qsize_txq; 8885 8886 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8887 if (rc != 0 || req->newptr == NULL) 8888 return (rc); 8889 8890 if (qsize < 128 || qsize > 65536) 8891 return (EINVAL); 8892 8893 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8894 "t4txqs"); 8895 if (rc) 8896 return (rc); 8897 8898 if (vi->flags & VI_INIT_DONE) 8899 rc = EBUSY; /* cannot be changed once the queues are created */ 8900 else 8901 vi->qsize_txq = qsize; 8902 8903 end_synchronized_op(sc, LOCK_HELD); 8904 return (rc); 8905 } 8906 8907 static int 8908 sysctl_pause_settings(SYSCTL_HANDLER_ARGS) 8909 { 8910 struct port_info *pi = arg1; 8911 struct adapter *sc = pi->adapter; 8912 struct link_config *lc = &pi->link_cfg; 8913 int rc; 8914 8915 if (req->newptr == NULL) { 8916 struct sbuf *sb; 8917 static char *bits = "\20\1RX\2TX\3AUTO"; 8918 8919 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8920 if (sb == NULL) 8921 return (ENOMEM); 8922 8923 if (lc->link_ok) { 8924 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) | 8925 (lc->requested_fc & PAUSE_AUTONEG), bits); 8926 } else { 8927 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX | 8928 PAUSE_RX | PAUSE_AUTONEG), bits); 8929 } 8930 rc = sbuf_finish(sb); 8931 sbuf_delete(sb); 8932 } else { 8933 char s[2]; 8934 int n; 8935 8936 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX | 8937 PAUSE_AUTONEG)); 8938 s[1] = 0; 8939 8940 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8941 if (rc != 0) 8942 return(rc); 8943 8944 if (s[1] != 0) 8945 return (EINVAL); 8946 if (s[0] < '0' || s[0] > '9') 8947 return (EINVAL); /* not a number */ 8948 n = s[0] - '0'; 8949 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) 8950 return (EINVAL); /* some other bit is set too */ 8951 8952 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8953 "t4PAUSE"); 8954 if (rc) 8955 return (rc); 8956 if (hw_all_ok(sc)) { 8957 PORT_LOCK(pi); 8958 lc->requested_fc = n; 8959 fixup_link_config(pi); 8960 if (pi->up_vis > 0) 8961 rc = apply_link_config(pi); 8962 set_current_media(pi); 8963 PORT_UNLOCK(pi); 8964 } 8965 end_synchronized_op(sc, 0); 8966 } 8967 8968 return (rc); 8969 } 8970 8971 static int 8972 sysctl_link_fec(SYSCTL_HANDLER_ARGS) 8973 { 8974 struct port_info *pi = arg1; 8975 struct link_config *lc = &pi->link_cfg; 8976 int rc; 8977 struct sbuf *sb; 8978 8979 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8980 if (sb == NULL) 8981 return (ENOMEM); 8982 if (lc->link_ok) 8983 sbuf_printf(sb, "%b", lc->fec, t4_fec_bits); 8984 else 8985 sbuf_printf(sb, "no link"); 8986 rc = sbuf_finish(sb); 8987 sbuf_delete(sb); 8988 8989 return (rc); 8990 } 8991 8992 static int 8993 sysctl_requested_fec(SYSCTL_HANDLER_ARGS) 8994 { 8995 struct port_info *pi = arg1; 8996 struct adapter *sc = pi->adapter; 8997 struct link_config *lc = &pi->link_cfg; 8998 int rc; 8999 int8_t old = lc->requested_fec; 9000 9001 if (req->newptr == NULL) { 9002 struct sbuf *sb; 9003 9004 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 9005 if (sb == NULL) 9006 return (ENOMEM); 9007 9008 sbuf_printf(sb, "%b", old, t4_fec_bits); 9009 rc = sbuf_finish(sb); 9010 sbuf_delete(sb); 9011 } else { 9012 char s[8]; 9013 int n; 9014 9015 snprintf(s, sizeof(s), "%d", old == FEC_AUTO ? -1 : 9016 old & (M_FW_PORT_CAP32_FEC | FEC_MODULE)); 9017 9018 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 9019 if (rc != 0) 9020 return(rc); 9021 9022 n = strtol(&s[0], NULL, 0); 9023 if (n < 0 || n & FEC_AUTO) 9024 n = FEC_AUTO; 9025 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE)) 9026 return (EINVAL);/* some other bit is set too */ 9027 9028 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 9029 "t4reqf"); 9030 if (rc) 9031 return (rc); 9032 PORT_LOCK(pi); 9033 if (lc->requested_fec != old) { 9034 rc = EBUSY; 9035 goto done; 9036 } 9037 if (n == FEC_AUTO) 9038 lc->requested_fec = FEC_AUTO; 9039 else if (n == 0 || n == FEC_NONE) 9040 lc->requested_fec = FEC_NONE; 9041 else { 9042 if ((lc->pcaps | 9043 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) != 9044 lc->pcaps) { 9045 rc = ENOTSUP; 9046 goto done; 9047 } 9048 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC | 9049 FEC_MODULE); 9050 } 9051 if (hw_all_ok(sc)) { 9052 fixup_link_config(pi); 9053 if (pi->up_vis > 0) { 9054 rc = apply_link_config(pi); 9055 if (rc != 0) { 9056 lc->requested_fec = old; 9057 if (rc == FW_EPROTO) 9058 rc = ENOTSUP; 9059 } 9060 } 9061 } 9062 done: 9063 PORT_UNLOCK(pi); 9064 end_synchronized_op(sc, 0); 9065 } 9066 9067 return (rc); 9068 } 9069 9070 static int 9071 sysctl_module_fec(SYSCTL_HANDLER_ARGS) 9072 { 9073 struct port_info *pi = arg1; 9074 struct adapter *sc = pi->adapter; 9075 struct link_config *lc = &pi->link_cfg; 9076 int rc; 9077 int8_t fec; 9078 struct sbuf *sb; 9079 9080 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 9081 if (sb == NULL) 9082 return (ENOMEM); 9083 9084 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) { 9085 rc = EBUSY; 9086 goto done; 9087 } 9088 if (!hw_all_ok(sc)) { 9089 rc = ENXIO; 9090 goto done; 9091 } 9092 PORT_LOCK(pi); 9093 if (pi->up_vis == 0) { 9094 /* 9095 * If all the interfaces are administratively down the firmware 9096 * does not report transceiver changes. Refresh port info here. 9097 * This is the only reason we have a synchronized op in this 9098 * function. Just PORT_LOCK would have been enough otherwise. 9099 */ 9100 t4_update_port_info(pi); 9101 } 9102 9103 fec = lc->fec_hint; 9104 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE || 9105 !fec_supported(lc->pcaps)) { 9106 PORT_UNLOCK(pi); 9107 sbuf_printf(sb, "n/a"); 9108 } else { 9109 if (fec == 0) 9110 fec = FEC_NONE; 9111 PORT_UNLOCK(pi); 9112 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, t4_fec_bits); 9113 } 9114 rc = sbuf_finish(sb); 9115 done: 9116 sbuf_delete(sb); 9117 end_synchronized_op(sc, 0); 9118 9119 return (rc); 9120 } 9121 9122 static int 9123 sysctl_autoneg(SYSCTL_HANDLER_ARGS) 9124 { 9125 struct port_info *pi = arg1; 9126 struct adapter *sc = pi->adapter; 9127 struct link_config *lc = &pi->link_cfg; 9128 int rc, val; 9129 9130 if (lc->pcaps & FW_PORT_CAP32_ANEG) 9131 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1; 9132 else 9133 val = -1; 9134 rc = sysctl_handle_int(oidp, &val, 0, req); 9135 if (rc != 0 || req->newptr == NULL) 9136 return (rc); 9137 if (val == 0) 9138 val = AUTONEG_DISABLE; 9139 else if (val == 1) 9140 val = AUTONEG_ENABLE; 9141 else 9142 val = AUTONEG_AUTO; 9143 9144 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 9145 "t4aneg"); 9146 if (rc) 9147 return (rc); 9148 PORT_LOCK(pi); 9149 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 9150 rc = ENOTSUP; 9151 goto done; 9152 } 9153 lc->requested_aneg = val; 9154 if (hw_all_ok(sc)) { 9155 fixup_link_config(pi); 9156 if (pi->up_vis > 0) 9157 rc = apply_link_config(pi); 9158 set_current_media(pi); 9159 } 9160 done: 9161 PORT_UNLOCK(pi); 9162 end_synchronized_op(sc, 0); 9163 return (rc); 9164 } 9165 9166 static int 9167 sysctl_force_fec(SYSCTL_HANDLER_ARGS) 9168 { 9169 struct port_info *pi = arg1; 9170 struct adapter *sc = pi->adapter; 9171 struct link_config *lc = &pi->link_cfg; 9172 int rc, val; 9173 9174 val = lc->force_fec; 9175 MPASS(val >= -1 && val <= 1); 9176 rc = sysctl_handle_int(oidp, &val, 0, req); 9177 if (rc != 0 || req->newptr == NULL) 9178 return (rc); 9179 if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC)) 9180 return (ENOTSUP); 9181 if (val < -1 || val > 1) 9182 return (EINVAL); 9183 9184 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff"); 9185 if (rc) 9186 return (rc); 9187 PORT_LOCK(pi); 9188 lc->force_fec = val; 9189 if (hw_all_ok(sc)) { 9190 fixup_link_config(pi); 9191 if (pi->up_vis > 0) 9192 rc = apply_link_config(pi); 9193 } 9194 PORT_UNLOCK(pi); 9195 end_synchronized_op(sc, 0); 9196 return (rc); 9197 } 9198 9199 static int 9200 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) 9201 { 9202 struct adapter *sc = arg1; 9203 int rc, reg = arg2; 9204 uint64_t val; 9205 9206 mtx_lock(&sc->reg_lock); 9207 if (hw_off_limits(sc)) 9208 rc = ENXIO; 9209 else { 9210 rc = 0; 9211 val = t4_read_reg64(sc, reg); 9212 } 9213 mtx_unlock(&sc->reg_lock); 9214 if (rc == 0) 9215 rc = sysctl_handle_64(oidp, &val, 0, req); 9216 return (rc); 9217 } 9218 9219 static int 9220 sysctl_handle_t4_portstat64(SYSCTL_HANDLER_ARGS) 9221 { 9222 struct port_info *pi = arg1; 9223 struct adapter *sc = pi->adapter; 9224 int rc, i, reg = arg2; 9225 uint64_t val; 9226 9227 mtx_lock(&sc->reg_lock); 9228 if (hw_off_limits(sc)) 9229 rc = ENXIO; 9230 else { 9231 val = 0; 9232 for (i = 0; i < sc->params.tp.lb_nchan; i++) { 9233 val += t4_read_reg64(sc, 9234 t4_port_reg(sc, pi->tx_chan + i, reg)); 9235 } 9236 rc = 0; 9237 } 9238 mtx_unlock(&sc->reg_lock); 9239 if (rc == 0) 9240 rc = sysctl_handle_64(oidp, &val, 0, req); 9241 return (rc); 9242 } 9243 9244 static int 9245 sysctl_temperature(SYSCTL_HANDLER_ARGS) 9246 { 9247 struct adapter *sc = arg1; 9248 int rc, t; 9249 uint32_t param, val; 9250 9251 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); 9252 if (rc) 9253 return (rc); 9254 if (!hw_all_ok(sc)) 9255 rc = ENXIO; 9256 else { 9257 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 9258 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 9259 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); 9260 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 9261 } 9262 end_synchronized_op(sc, 0); 9263 if (rc) 9264 return (rc); 9265 9266 /* unknown is returned as 0 but we display -1 in that case */ 9267 t = val == 0 ? -1 : val; 9268 9269 rc = sysctl_handle_int(oidp, &t, 0, req); 9270 return (rc); 9271 } 9272 9273 static int 9274 sysctl_vdd(SYSCTL_HANDLER_ARGS) 9275 { 9276 struct adapter *sc = arg1; 9277 int rc; 9278 uint32_t param, val; 9279 9280 if (sc->params.core_vdd == 0) { 9281 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 9282 "t4vdd"); 9283 if (rc) 9284 return (rc); 9285 if (!hw_all_ok(sc)) 9286 rc = ENXIO; 9287 else { 9288 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 9289 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 9290 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 9291 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, 9292 ¶m, &val); 9293 } 9294 end_synchronized_op(sc, 0); 9295 if (rc) 9296 return (rc); 9297 sc->params.core_vdd = val; 9298 } 9299 9300 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req)); 9301 } 9302 9303 static int 9304 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS) 9305 { 9306 struct adapter *sc = arg1; 9307 int rc, v; 9308 uint32_t param, val; 9309 9310 v = sc->sensor_resets; 9311 rc = sysctl_handle_int(oidp, &v, 0, req); 9312 if (rc != 0 || req->newptr == NULL || v <= 0) 9313 return (rc); 9314 9315 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) || 9316 chip_id(sc) < CHELSIO_T5) 9317 return (ENOTSUP); 9318 9319 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst"); 9320 if (rc) 9321 return (rc); 9322 if (!hw_all_ok(sc)) 9323 rc = ENXIO; 9324 else { 9325 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 9326 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 9327 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR)); 9328 val = 1; 9329 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 9330 } 9331 end_synchronized_op(sc, 0); 9332 if (rc == 0) 9333 sc->sensor_resets++; 9334 return (rc); 9335 } 9336 9337 static int 9338 sysctl_loadavg(SYSCTL_HANDLER_ARGS) 9339 { 9340 struct adapter *sc = arg1; 9341 struct sbuf *sb; 9342 int rc; 9343 uint32_t param, val; 9344 uint8_t coreid = (uint8_t)arg2; 9345 9346 KASSERT(coreid < sc->params.ncores, 9347 ("%s: bad coreid %u\n", __func__, coreid)); 9348 9349 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg"); 9350 if (rc) 9351 return (rc); 9352 if (!hw_all_ok(sc)) 9353 rc = ENXIO; 9354 else { 9355 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 9356 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD) | 9357 V_FW_PARAMS_PARAM_Y(coreid); 9358 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 9359 } 9360 end_synchronized_op(sc, 0); 9361 if (rc) 9362 return (rc); 9363 9364 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9365 if (sb == NULL) 9366 return (ENOMEM); 9367 9368 if (val == 0xffffffff) { 9369 /* Only debug and custom firmwares report load averages. */ 9370 sbuf_printf(sb, "not available"); 9371 } else { 9372 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff, 9373 (val >> 16) & 0xff); 9374 } 9375 rc = sbuf_finish(sb); 9376 sbuf_delete(sb); 9377 9378 return (rc); 9379 } 9380 9381 static int 9382 sysctl_cctrl(SYSCTL_HANDLER_ARGS) 9383 { 9384 struct adapter *sc = arg1; 9385 struct sbuf *sb; 9386 int rc, i; 9387 uint16_t incr[NMTUS][NCCTRL_WIN]; 9388 static const char *dec_fac[] = { 9389 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 9390 "0.9375" 9391 }; 9392 9393 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9394 if (sb == NULL) 9395 return (ENOMEM); 9396 9397 rc = 0; 9398 mtx_lock(&sc->reg_lock); 9399 if (hw_off_limits(sc)) 9400 rc = ENXIO; 9401 else 9402 t4_read_cong_tbl(sc, incr); 9403 mtx_unlock(&sc->reg_lock); 9404 if (rc) 9405 goto done; 9406 9407 for (i = 0; i < NCCTRL_WIN; ++i) { 9408 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 9409 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], 9410 incr[5][i], incr[6][i], incr[7][i]); 9411 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 9412 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 9413 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 9414 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); 9415 } 9416 9417 rc = sbuf_finish(sb); 9418 done: 9419 sbuf_delete(sb); 9420 return (rc); 9421 } 9422 9423 static int 9424 sysctl_cim_ibq(SYSCTL_HANDLER_ARGS) 9425 { 9426 struct adapter *sc = arg1; 9427 struct sbuf *sb; 9428 int rc, i, n, qid, coreid; 9429 uint32_t *buf, *p; 9430 9431 qid = arg2 & 0xffff; 9432 coreid = arg2 >> 16; 9433 9434 KASSERT(qid >= 0 && qid < sc->chip_params->cim_num_ibq, 9435 ("%s: bad ibq qid %d\n", __func__, qid)); 9436 KASSERT(coreid >= 0 && coreid < sc->params.ncores, 9437 ("%s: bad coreid %d\n", __func__, coreid)); 9438 9439 n = 4 * CIM_IBQ_SIZE; 9440 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 9441 mtx_lock(&sc->reg_lock); 9442 if (hw_off_limits(sc)) 9443 rc = -ENXIO; 9444 else 9445 rc = t4_read_cim_ibq_core(sc, coreid, qid, buf, n); 9446 mtx_unlock(&sc->reg_lock); 9447 if (rc < 0) { 9448 rc = -rc; 9449 goto done; 9450 } 9451 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 9452 9453 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9454 if (sb == NULL) { 9455 rc = ENOMEM; 9456 goto done; 9457 } 9458 for (i = 0, p = buf; i < n; i += 16, p += 4) 9459 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 9460 p[2], p[3]); 9461 rc = sbuf_finish(sb); 9462 sbuf_delete(sb); 9463 done: 9464 free(buf, M_CXGBE); 9465 return (rc); 9466 } 9467 9468 static int 9469 sysctl_cim_obq(SYSCTL_HANDLER_ARGS) 9470 { 9471 struct adapter *sc = arg1; 9472 struct sbuf *sb; 9473 int rc, i, n, qid, coreid; 9474 uint32_t *buf, *p; 9475 9476 qid = arg2 & 0xffff; 9477 coreid = arg2 >> 16; 9478 9479 KASSERT(qid >= 0 && qid < sc->chip_params->cim_num_obq, 9480 ("%s: bad obq qid %d\n", __func__, qid)); 9481 KASSERT(coreid >= 0 && coreid < sc->params.ncores, 9482 ("%s: bad coreid %d\n", __func__, coreid)); 9483 9484 n = 6 * CIM_OBQ_SIZE * 4; 9485 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 9486 mtx_lock(&sc->reg_lock); 9487 if (hw_off_limits(sc)) 9488 rc = -ENXIO; 9489 else 9490 rc = t4_read_cim_obq_core(sc, coreid, qid, buf, n); 9491 mtx_unlock(&sc->reg_lock); 9492 if (rc < 0) { 9493 rc = -rc; 9494 goto done; 9495 } 9496 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 9497 9498 rc = sysctl_wire_old_buffer(req, 0); 9499 if (rc != 0) 9500 goto done; 9501 9502 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9503 if (sb == NULL) { 9504 rc = ENOMEM; 9505 goto done; 9506 } 9507 for (i = 0, p = buf; i < n; i += 16, p += 4) 9508 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 9509 p[2], p[3]); 9510 rc = sbuf_finish(sb); 9511 sbuf_delete(sb); 9512 done: 9513 free(buf, M_CXGBE); 9514 return (rc); 9515 } 9516 9517 static void 9518 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 9519 { 9520 uint32_t *p; 9521 9522 sbuf_printf(sb, "Status Data PC%s", 9523 cfg & F_UPDBGLACAPTPCONLY ? "" : 9524 " LS0Stat LS0Addr LS0Data"); 9525 9526 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) { 9527 if (cfg & F_UPDBGLACAPTPCONLY) { 9528 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, 9529 p[6], p[7]); 9530 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", 9531 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 9532 p[4] & 0xff, p[5] >> 8); 9533 sbuf_printf(sb, "\n %02x %x%07x %x%07x", 9534 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 9535 p[1] & 0xf, p[2] >> 4); 9536 } else { 9537 sbuf_printf(sb, 9538 "\n %02x %x%07x %x%07x %08x %08x " 9539 "%08x%08x%08x%08x", 9540 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 9541 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 9542 p[6], p[7]); 9543 } 9544 } 9545 } 9546 9547 static void 9548 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 9549 { 9550 uint32_t *p; 9551 9552 sbuf_printf(sb, "Status Inst Data PC%s", 9553 cfg & F_UPDBGLACAPTPCONLY ? "" : 9554 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data"); 9555 9556 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) { 9557 if (cfg & F_UPDBGLACAPTPCONLY) { 9558 sbuf_printf(sb, "\n %02x %08x %08x %08x", 9559 p[3] & 0xff, p[2], p[1], p[0]); 9560 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x", 9561 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, 9562 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); 9563 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x", 9564 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, 9565 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, 9566 p[6] >> 16); 9567 } else { 9568 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x " 9569 "%08x %08x %08x %08x %08x %08x", 9570 (p[9] >> 16) & 0xff, 9571 p[9] & 0xffff, p[8] >> 16, 9572 p[8] & 0xffff, p[7] >> 16, 9573 p[7] & 0xffff, p[6] >> 16, 9574 p[2], p[1], p[0], p[5], p[4], p[3]); 9575 } 9576 } 9577 } 9578 9579 static int 9580 sbuf_cim_la(struct adapter *sc, int coreid, struct sbuf *sb, int flags) 9581 { 9582 uint32_t cfg, *buf; 9583 int rc; 9584 9585 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9586 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 9587 M_ZERO | flags); 9588 if (buf == NULL) 9589 return (ENOMEM); 9590 9591 mtx_lock(&sc->reg_lock); 9592 if (hw_off_limits(sc)) 9593 rc = ENXIO; 9594 else { 9595 rc = -t4_cim_read_core(sc, 1, coreid, A_UP_UP_DBG_LA_CFG, 1, 9596 &cfg); 9597 if (rc == 0) 9598 rc = -t4_cim_read_la_core(sc, coreid, buf, NULL); 9599 } 9600 mtx_unlock(&sc->reg_lock); 9601 if (rc == 0) { 9602 if (chip_id(sc) < CHELSIO_T6) 9603 sbuf_cim_la4(sc, sb, buf, cfg); 9604 else 9605 sbuf_cim_la6(sc, sb, buf, cfg); 9606 } 9607 free(buf, M_CXGBE); 9608 return (rc); 9609 } 9610 9611 static int 9612 sysctl_cim_la(SYSCTL_HANDLER_ARGS) 9613 { 9614 struct adapter *sc = arg1; 9615 int coreid = arg2; 9616 struct sbuf *sb; 9617 int rc; 9618 9619 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9620 if (sb == NULL) 9621 return (ENOMEM); 9622 9623 rc = sbuf_cim_la(sc, coreid, sb, M_WAITOK); 9624 if (rc == 0) 9625 rc = sbuf_finish(sb); 9626 sbuf_delete(sb); 9627 return (rc); 9628 } 9629 9630 static void 9631 dump_cim_regs(struct adapter *sc) 9632 { 9633 log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n", 9634 device_get_nameunit(sc->dev), 9635 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9636 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9637 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2), 9638 t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN), 9639 t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA)); 9640 log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n", 9641 device_get_nameunit(sc->dev), 9642 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9643 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9644 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800), 9645 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800), 9646 t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN)); 9647 } 9648 9649 static void 9650 dump_cimla(struct adapter *sc) 9651 { 9652 struct sbuf sb; 9653 int rc; 9654 9655 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9656 log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n", 9657 device_get_nameunit(sc->dev)); 9658 return; 9659 } 9660 rc = sbuf_cim_la(sc, 0, &sb, M_WAITOK); 9661 if (rc == 0) { 9662 rc = sbuf_finish(&sb); 9663 if (rc == 0) { 9664 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n", 9665 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9666 } 9667 } 9668 sbuf_delete(&sb); 9669 } 9670 9671 void 9672 t4_os_cim_err(struct adapter *sc) 9673 { 9674 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 9675 } 9676 9677 static int 9678 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) 9679 { 9680 struct adapter *sc = arg1; 9681 u_int i; 9682 struct sbuf *sb; 9683 uint32_t *buf, *p; 9684 int rc; 9685 9686 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9687 if (sb == NULL) 9688 return (ENOMEM); 9689 9690 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, 9691 M_ZERO | M_WAITOK); 9692 9693 rc = 0; 9694 mtx_lock(&sc->reg_lock); 9695 if (hw_off_limits(sc)) 9696 rc = ENXIO; 9697 else 9698 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); 9699 mtx_unlock(&sc->reg_lock); 9700 if (rc) 9701 goto done; 9702 9703 p = buf; 9704 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9705 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], 9706 p[1], p[0]); 9707 } 9708 9709 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); 9710 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9711 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", 9712 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 9713 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 9714 (p[1] >> 2) | ((p[2] & 3) << 30), 9715 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 9716 p[0] & 1); 9717 } 9718 rc = sbuf_finish(sb); 9719 done: 9720 sbuf_delete(sb); 9721 free(buf, M_CXGBE); 9722 return (rc); 9723 } 9724 9725 static int 9726 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) 9727 { 9728 struct adapter *sc = arg1; 9729 u_int i; 9730 struct sbuf *sb; 9731 uint32_t *buf, *p; 9732 int rc; 9733 9734 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9735 if (sb == NULL) 9736 return (ENOMEM); 9737 9738 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, 9739 M_ZERO | M_WAITOK); 9740 9741 rc = 0; 9742 mtx_lock(&sc->reg_lock); 9743 if (hw_off_limits(sc)) 9744 rc = ENXIO; 9745 else 9746 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); 9747 mtx_unlock(&sc->reg_lock); 9748 if (rc) 9749 goto done; 9750 9751 p = buf; 9752 sbuf_printf(sb, "Cntl ID DataBE Addr Data"); 9753 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9754 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", 9755 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, 9756 p[4], p[3], p[2], p[1], p[0]); 9757 } 9758 9759 sbuf_printf(sb, "\n\nCntl ID Data"); 9760 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9761 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", 9762 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); 9763 } 9764 9765 rc = sbuf_finish(sb); 9766 done: 9767 sbuf_delete(sb); 9768 free(buf, M_CXGBE); 9769 return (rc); 9770 } 9771 9772 static int 9773 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) 9774 { 9775 struct adapter *sc = arg1; 9776 struct sbuf *sb; 9777 int rc, i; 9778 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9779 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9780 uint16_t thres[CIM_NUM_IBQ]; 9781 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; 9782 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; 9783 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; 9784 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { 9785 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ 9786 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ 9787 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ 9788 }; 9789 9790 MPASS(chip_id(sc) < CHELSIO_T7); 9791 9792 cim_num_obq = sc->chip_params->cim_num_obq; 9793 if (is_t4(sc)) { 9794 ibq_rdaddr = A_UP_IBQ_0_RDADDR; 9795 obq_rdaddr = A_UP_OBQ_0_REALADDR; 9796 } else { 9797 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; 9798 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; 9799 } 9800 nq = CIM_NUM_IBQ + cim_num_obq; 9801 9802 mtx_lock(&sc->reg_lock); 9803 if (hw_off_limits(sc)) 9804 rc = ENXIO; 9805 else { 9806 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); 9807 if (rc == 0) { 9808 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, 9809 obq_wr); 9810 if (rc == 0) 9811 t4_read_cimq_cfg(sc, base, size, thres); 9812 } 9813 } 9814 mtx_unlock(&sc->reg_lock); 9815 if (rc) 9816 return (rc); 9817 9818 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9819 if (sb == NULL) 9820 return (ENOMEM); 9821 9822 sbuf_printf(sb, 9823 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 9824 9825 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 9826 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 9827 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), 9828 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9829 G_QUEREMFLITS(p[2]) * 16); 9830 for ( ; i < nq; i++, p += 4, wr += 2) 9831 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], 9832 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, 9833 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9834 G_QUEREMFLITS(p[2]) * 16); 9835 9836 rc = sbuf_finish(sb); 9837 sbuf_delete(sb); 9838 9839 return (rc); 9840 } 9841 9842 static int 9843 sysctl_cim_qcfg_t7(SYSCTL_HANDLER_ARGS) 9844 { 9845 struct adapter *sc = arg1; 9846 u_int coreid = arg2; 9847 struct sbuf *sb; 9848 int rc, i; 9849 u_int addr; 9850 uint16_t base[CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7]; 9851 uint16_t size[CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7]; 9852 uint16_t thres[CIM_NUM_IBQ_T7]; 9853 uint32_t obq_wr[2 * CIM_NUM_OBQ_T7], *wr = obq_wr; 9854 uint32_t stat[4 * (CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7)], *p = stat; 9855 static const char * const qname_ibq_t7[] = { 9856 "TP0", "TP1", "TP2", "TP3", "ULP", "SGE0", "SGE1", "NC-SI", 9857 "RSVD", "IPC1", "IPC2", "IPC3", "IPC4", "IPC5", "IPC6", "IPC7", 9858 }; 9859 static const char * const qname_obq_t7[] = { 9860 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", "SGE0-RX", 9861 "RSVD", "RSVD", "IPC1", "IPC2", "IPC3", "IPC4", "IPC5", 9862 "IPC6", "IPC7" 9863 }; 9864 static const char * const qname_ibq_sec_t7[] = { 9865 "TP0", "TP1", "TP2", "TP3", "ULP", "SGE0", "RSVD", "RSVD", 9866 "RSVD", "IPC0", "RSVD", "RSVD", "RSVD", "RSVD", "RSVD", "RSVD", 9867 }; 9868 static const char * const qname_obq_sec_t7[] = { 9869 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "RSVD", "SGE0-RX", 9870 "RSVD", "RSVD", "IPC0", "RSVD", "RSVD", "RSVD", "RSVD", 9871 "RSVD", "RSVD", 9872 }; 9873 9874 MPASS(chip_id(sc) >= CHELSIO_T7); 9875 9876 mtx_lock(&sc->reg_lock); 9877 if (hw_off_limits(sc)) 9878 rc = ENXIO; 9879 else { 9880 rc = -t4_cim_read_core(sc, 1, coreid, 9881 A_T7_UP_IBQ_0_SHADOW_RDADDR, 4 * CIM_NUM_IBQ_T7, stat); 9882 if (rc != 0) 9883 goto unlock; 9884 9885 rc = -t4_cim_read_core(sc, 1, coreid, 9886 A_T7_UP_OBQ_0_SHADOW_RDADDR, 4 * CIM_NUM_OBQ_T7, 9887 &stat[4 * CIM_NUM_IBQ_T7]); 9888 if (rc != 0) 9889 goto unlock; 9890 9891 addr = A_T7_UP_OBQ_0_SHADOW_REALADDR; 9892 for (i = 0; i < CIM_NUM_OBQ_T7 * 2; i++, addr += 8) { 9893 rc = -t4_cim_read_core(sc, 1, coreid, addr, 1, 9894 &obq_wr[i]); 9895 if (rc != 0) 9896 goto unlock; 9897 } 9898 t4_read_cimq_cfg_core(sc, coreid, base, size, thres); 9899 } 9900 unlock: 9901 mtx_unlock(&sc->reg_lock); 9902 if (rc) 9903 return (rc); 9904 9905 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9906 if (sb == NULL) 9907 return (ENOMEM); 9908 9909 sbuf_printf(sb, 9910 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 9911 9912 for (i = 0; i < CIM_NUM_IBQ_T7; i++, p += 4) { 9913 if (!size[i]) 9914 continue; 9915 9916 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 9917 coreid == 0 ? qname_ibq_t7[i] : qname_ibq_sec_t7[i], 9918 base[i], size[i], thres[i], G_IBQRDADDR(p[0]) & 0xfff, 9919 G_IBQWRADDR(p[1]) & 0xfff, G_QUESOPCNT(p[3]), 9920 G_QUEEOPCNT(p[3]), G_T7_QUEREMFLITS(p[2]) * 16); 9921 } 9922 9923 for ( ; i < CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7; i++, p += 4, wr += 2) { 9924 if (!size[i]) 9925 continue; 9926 9927 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", 9928 coreid == 0 ? qname_obq_t7[i - CIM_NUM_IBQ_T7] : 9929 qname_obq_sec_t7[i - CIM_NUM_IBQ_T7], 9930 base[i], size[i], G_QUERDADDR(p[0]) & 0xfff, 9931 wr[0] << 1, G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9932 G_T7_QUEREMFLITS(p[2]) * 16); 9933 } 9934 9935 rc = sbuf_finish(sb); 9936 sbuf_delete(sb); 9937 return (rc); 9938 } 9939 9940 static int 9941 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) 9942 { 9943 struct adapter *sc = arg1; 9944 struct sbuf *sb; 9945 int rc; 9946 struct tp_cpl_stats stats; 9947 9948 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9949 if (sb == NULL) 9950 return (ENOMEM); 9951 9952 rc = 0; 9953 mtx_lock(&sc->reg_lock); 9954 if (hw_off_limits(sc)) 9955 rc = ENXIO; 9956 else 9957 t4_tp_get_cpl_stats(sc, &stats, 0); 9958 mtx_unlock(&sc->reg_lock); 9959 if (rc) 9960 goto done; 9961 9962 if (sc->chip_params->nchan > 2) { 9963 sbuf_printf(sb, " channel 0 channel 1" 9964 " channel 2 channel 3"); 9965 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u", 9966 stats.req[0], stats.req[1], stats.req[2], stats.req[3]); 9967 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u", 9968 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); 9969 } else { 9970 sbuf_printf(sb, " channel 0 channel 1"); 9971 sbuf_printf(sb, "\nCPL requests: %10u %10u", 9972 stats.req[0], stats.req[1]); 9973 sbuf_printf(sb, "\nCPL responses: %10u %10u", 9974 stats.rsp[0], stats.rsp[1]); 9975 } 9976 9977 rc = sbuf_finish(sb); 9978 done: 9979 sbuf_delete(sb); 9980 return (rc); 9981 } 9982 9983 static int 9984 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) 9985 { 9986 struct adapter *sc = arg1; 9987 struct sbuf *sb; 9988 int rc; 9989 struct tp_usm_stats stats; 9990 9991 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9992 if (sb == NULL) 9993 return (ENOMEM); 9994 9995 rc = 0; 9996 mtx_lock(&sc->reg_lock); 9997 if (hw_off_limits(sc)) 9998 rc = ENXIO; 9999 else 10000 t4_get_usm_stats(sc, &stats, 1); 10001 mtx_unlock(&sc->reg_lock); 10002 if (rc == 0) { 10003 sbuf_printf(sb, "Frames: %u\n", stats.frames); 10004 sbuf_printf(sb, "Octets: %ju\n", stats.octets); 10005 sbuf_printf(sb, "Drops: %u", stats.drops); 10006 rc = sbuf_finish(sb); 10007 } 10008 sbuf_delete(sb); 10009 10010 return (rc); 10011 } 10012 10013 static int 10014 sysctl_tid_stats(SYSCTL_HANDLER_ARGS) 10015 { 10016 struct adapter *sc = arg1; 10017 struct sbuf *sb; 10018 int rc; 10019 struct tp_tid_stats stats; 10020 10021 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10022 if (sb == NULL) 10023 return (ENOMEM); 10024 10025 rc = 0; 10026 mtx_lock(&sc->reg_lock); 10027 if (hw_off_limits(sc)) 10028 rc = ENXIO; 10029 else 10030 t4_tp_get_tid_stats(sc, &stats, 1); 10031 mtx_unlock(&sc->reg_lock); 10032 if (rc == 0) { 10033 sbuf_printf(sb, "Delete: %u\n", stats.del); 10034 sbuf_printf(sb, "Invalidate: %u\n", stats.inv); 10035 sbuf_printf(sb, "Active: %u\n", stats.act); 10036 sbuf_printf(sb, "Passive: %u", stats.pas); 10037 rc = sbuf_finish(sb); 10038 } 10039 sbuf_delete(sb); 10040 10041 return (rc); 10042 } 10043 10044 static const char * const devlog_level_strings[] = { 10045 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 10046 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 10047 [FW_DEVLOG_LEVEL_ERR] = "ERR", 10048 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 10049 [FW_DEVLOG_LEVEL_INFO] = "INFO", 10050 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 10051 }; 10052 10053 static const char * const devlog_facility_strings[] = { 10054 [FW_DEVLOG_FACILITY_CORE] = "CORE", 10055 [FW_DEVLOG_FACILITY_CF] = "CF", 10056 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 10057 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 10058 [FW_DEVLOG_FACILITY_RES] = "RES", 10059 [FW_DEVLOG_FACILITY_HW] = "HW", 10060 [FW_DEVLOG_FACILITY_FLR] = "FLR", 10061 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 10062 [FW_DEVLOG_FACILITY_PHY] = "PHY", 10063 [FW_DEVLOG_FACILITY_MAC] = "MAC", 10064 [FW_DEVLOG_FACILITY_PORT] = "PORT", 10065 [FW_DEVLOG_FACILITY_VI] = "VI", 10066 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 10067 [FW_DEVLOG_FACILITY_ACL] = "ACL", 10068 [FW_DEVLOG_FACILITY_TM] = "TM", 10069 [FW_DEVLOG_FACILITY_QFC] = "QFC", 10070 [FW_DEVLOG_FACILITY_DCB] = "DCB", 10071 [FW_DEVLOG_FACILITY_ETH] = "ETH", 10072 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 10073 [FW_DEVLOG_FACILITY_RI] = "RI", 10074 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 10075 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 10076 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 10077 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE", 10078 [FW_DEVLOG_FACILITY_CHNET] = "CHNET", 10079 }; 10080 10081 static int 10082 sbuf_devlog(struct adapter *sc, int coreid, struct sbuf *sb, int flags) 10083 { 10084 int i, j, rc, nentries, first = 0; 10085 struct devlog_params *dparams = &sc->params.devlog; 10086 struct fw_devlog_e *buf, *e; 10087 uint32_t addr, size; 10088 uint64_t ftstamp = UINT64_MAX; 10089 10090 KASSERT(coreid >= 0 && coreid < sc->params.ncores, 10091 ("%s: bad coreid %d\n", __func__, coreid)); 10092 10093 if (dparams->addr == 0) 10094 return (ENXIO); 10095 10096 size = dparams->size / sc->params.ncores; 10097 addr = dparams->addr + coreid * size; 10098 10099 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 10100 buf = malloc(size, M_CXGBE, M_ZERO | flags); 10101 if (buf == NULL) 10102 return (ENOMEM); 10103 10104 mtx_lock(&sc->reg_lock); 10105 if (hw_off_limits(sc)) 10106 rc = ENXIO; 10107 else 10108 rc = read_via_memwin(sc, 1, addr, (void *)buf, size); 10109 mtx_unlock(&sc->reg_lock); 10110 if (rc != 0) 10111 goto done; 10112 10113 nentries = size / sizeof(struct fw_devlog_e); 10114 for (i = 0; i < nentries; i++) { 10115 e = &buf[i]; 10116 10117 if (e->timestamp == 0) 10118 break; /* end */ 10119 10120 e->timestamp = be64toh(e->timestamp); 10121 e->seqno = be32toh(e->seqno); 10122 for (j = 0; j < 8; j++) 10123 e->params[j] = be32toh(e->params[j]); 10124 10125 if (e->timestamp < ftstamp) { 10126 ftstamp = e->timestamp; 10127 first = i; 10128 } 10129 } 10130 10131 if (buf[first].timestamp == 0) 10132 goto done; /* nothing in the log */ 10133 10134 sbuf_printf(sb, "%10s %15s %8s %8s %s\n", 10135 "Seq#", "Tstamp", "Level", "Facility", "Message"); 10136 10137 i = first; 10138 do { 10139 e = &buf[i]; 10140 if (e->timestamp == 0) 10141 break; /* end */ 10142 10143 sbuf_printf(sb, "%10d %15ju %8s %8s ", 10144 e->seqno, e->timestamp, 10145 (e->level < nitems(devlog_level_strings) ? 10146 devlog_level_strings[e->level] : "UNKNOWN"), 10147 (e->facility < nitems(devlog_facility_strings) ? 10148 devlog_facility_strings[e->facility] : "UNKNOWN")); 10149 sbuf_printf(sb, e->fmt, e->params[0], e->params[1], 10150 e->params[2], e->params[3], e->params[4], 10151 e->params[5], e->params[6], e->params[7]); 10152 10153 if (++i == nentries) 10154 i = 0; 10155 } while (i != first); 10156 done: 10157 free(buf, M_CXGBE); 10158 return (rc); 10159 } 10160 10161 static int 10162 sysctl_devlog(SYSCTL_HANDLER_ARGS) 10163 { 10164 struct adapter *sc = arg1; 10165 int rc, i, coreid = arg2; 10166 struct sbuf *sb; 10167 10168 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10169 if (sb == NULL) 10170 return (ENOMEM); 10171 if (coreid == -1) { 10172 /* -1 means all cores */ 10173 for (i = rc = 0; i < sc->params.ncores && rc == 0; i++) { 10174 if (sc->params.ncores > 0) 10175 sbuf_printf(sb, "=== CIM core %u ===\n", i); 10176 rc = sbuf_devlog(sc, i, sb, M_WAITOK); 10177 } 10178 } else { 10179 KASSERT(coreid >= 0 && coreid < sc->params.ncores, 10180 ("%s: bad coreid %d\n", __func__, coreid)); 10181 rc = sbuf_devlog(sc, coreid, sb, M_WAITOK); 10182 } 10183 if (rc == 0) 10184 rc = sbuf_finish(sb); 10185 sbuf_delete(sb); 10186 return (rc); 10187 } 10188 10189 static void 10190 dump_devlog(struct adapter *sc) 10191 { 10192 int rc, i; 10193 struct sbuf sb; 10194 10195 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 10196 log(LOG_DEBUG, "%s: failed to generate devlog dump.\n", 10197 device_get_nameunit(sc->dev)); 10198 return; 10199 } 10200 for (i = rc = 0; i < sc->params.ncores && rc == 0; i++) { 10201 if (sc->params.ncores > 0) 10202 sbuf_printf(&sb, "=== CIM core %u ===\n", i); 10203 rc = sbuf_devlog(sc, i, &sb, M_WAITOK); 10204 } 10205 if (rc == 0) { 10206 sbuf_finish(&sb); 10207 log(LOG_DEBUG, "%s: device log follows.\n%s", 10208 device_get_nameunit(sc->dev), sbuf_data(&sb)); 10209 } 10210 sbuf_delete(&sb); 10211 } 10212 10213 static int 10214 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) 10215 { 10216 struct adapter *sc = arg1; 10217 struct sbuf *sb; 10218 int rc; 10219 struct tp_fcoe_stats stats[MAX_NCHAN]; 10220 int i, nchan = sc->chip_params->nchan; 10221 10222 rc = 0; 10223 mtx_lock(&sc->reg_lock); 10224 if (hw_off_limits(sc)) 10225 rc = ENXIO; 10226 else { 10227 for (i = 0; i < nchan; i++) 10228 t4_get_fcoe_stats(sc, i, &stats[i], 1); 10229 } 10230 mtx_unlock(&sc->reg_lock); 10231 if (rc != 0) 10232 return (rc); 10233 10234 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10235 if (sb == NULL) 10236 return (ENOMEM); 10237 10238 if (nchan > 2) { 10239 sbuf_printf(sb, " channel 0 channel 1" 10240 " channel 2 channel 3"); 10241 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju", 10242 stats[0].octets_ddp, stats[1].octets_ddp, 10243 stats[2].octets_ddp, stats[3].octets_ddp); 10244 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u", 10245 stats[0].frames_ddp, stats[1].frames_ddp, 10246 stats[2].frames_ddp, stats[3].frames_ddp); 10247 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u", 10248 stats[0].frames_drop, stats[1].frames_drop, 10249 stats[2].frames_drop, stats[3].frames_drop); 10250 } else { 10251 sbuf_printf(sb, " channel 0 channel 1"); 10252 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju", 10253 stats[0].octets_ddp, stats[1].octets_ddp); 10254 sbuf_printf(sb, "\nframesDDP: %16u %16u", 10255 stats[0].frames_ddp, stats[1].frames_ddp); 10256 sbuf_printf(sb, "\nframesDrop: %16u %16u", 10257 stats[0].frames_drop, stats[1].frames_drop); 10258 } 10259 10260 rc = sbuf_finish(sb); 10261 sbuf_delete(sb); 10262 10263 return (rc); 10264 } 10265 10266 static int 10267 sysctl_hw_sched(SYSCTL_HANDLER_ARGS) 10268 { 10269 struct adapter *sc = arg1; 10270 struct sbuf *sb; 10271 int rc, i; 10272 unsigned int map, kbps, ipg, mode; 10273 unsigned int pace_tab[NTX_SCHED]; 10274 10275 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req); 10276 if (sb == NULL) 10277 return (ENOMEM); 10278 10279 mtx_lock(&sc->reg_lock); 10280 if (hw_off_limits(sc)) { 10281 mtx_unlock(&sc->reg_lock); 10282 rc = ENXIO; 10283 goto done; 10284 } 10285 10286 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); 10287 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); 10288 t4_read_pace_tbl(sc, pace_tab); 10289 mtx_unlock(&sc->reg_lock); 10290 10291 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " 10292 "Class IPG (0.1 ns) Flow IPG (us)"); 10293 10294 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { 10295 t4_get_tx_sched(sc, i, &kbps, &ipg, 1); 10296 sbuf_printf(sb, "\n %u %-5s %u ", i, 10297 (mode & (1 << i)) ? "flow" : "class", map & 3); 10298 if (kbps) 10299 sbuf_printf(sb, "%9u ", kbps); 10300 else 10301 sbuf_printf(sb, " disabled "); 10302 10303 if (ipg) 10304 sbuf_printf(sb, "%13u ", ipg); 10305 else 10306 sbuf_printf(sb, " disabled "); 10307 10308 if (pace_tab[i]) 10309 sbuf_printf(sb, "%10u", pace_tab[i]); 10310 else 10311 sbuf_printf(sb, " disabled"); 10312 } 10313 rc = sbuf_finish(sb); 10314 done: 10315 sbuf_delete(sb); 10316 return (rc); 10317 } 10318 10319 static int 10320 sysctl_lb_stats(SYSCTL_HANDLER_ARGS) 10321 { 10322 struct adapter *sc = arg1; 10323 struct sbuf *sb; 10324 int rc, i, j; 10325 uint64_t *p0, *p1; 10326 struct lb_port_stats s[2]; 10327 static const char *stat_name[] = { 10328 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", 10329 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", 10330 "Frames128To255:", "Frames256To511:", "Frames512To1023:", 10331 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", 10332 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", 10333 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", 10334 "BG2FramesTrunc:", "BG3FramesTrunc:" 10335 }; 10336 10337 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10338 if (sb == NULL) 10339 return (ENOMEM); 10340 10341 memset(s, 0, sizeof(s)); 10342 10343 rc = 0; 10344 for (i = 0; i < sc->chip_params->nchan; i += 2) { 10345 mtx_lock(&sc->reg_lock); 10346 if (hw_off_limits(sc)) 10347 rc = ENXIO; 10348 else { 10349 t4_get_lb_stats(sc, i, &s[0]); 10350 t4_get_lb_stats(sc, i + 1, &s[1]); 10351 } 10352 mtx_unlock(&sc->reg_lock); 10353 if (rc != 0) 10354 break; 10355 10356 p0 = &s[0].octets; 10357 p1 = &s[1].octets; 10358 sbuf_printf(sb, "%s Loopback %u" 10359 " Loopback %u", i == 0 ? "" : "\n", i, i + 1); 10360 10361 for (j = 0; j < nitems(stat_name); j++) 10362 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], 10363 *p0++, *p1++); 10364 } 10365 10366 if (rc == 0) 10367 rc = sbuf_finish(sb); 10368 sbuf_delete(sb); 10369 10370 return (rc); 10371 } 10372 10373 static int 10374 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) 10375 { 10376 int rc = 0; 10377 struct port_info *pi = arg1; 10378 struct link_config *lc = &pi->link_cfg; 10379 struct sbuf *sb; 10380 10381 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); 10382 if (sb == NULL) 10383 return (ENOMEM); 10384 10385 if (lc->link_ok || lc->link_down_rc == 255) 10386 sbuf_printf(sb, "n/a"); 10387 else 10388 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc)); 10389 10390 rc = sbuf_finish(sb); 10391 sbuf_delete(sb); 10392 10393 return (rc); 10394 } 10395 10396 struct mem_desc { 10397 uint64_t base; 10398 uint64_t limit; 10399 u_int idx; 10400 }; 10401 10402 static int 10403 mem_desc_cmp(const void *a, const void *b) 10404 { 10405 const uint64_t v1 = ((const struct mem_desc *)a)->base; 10406 const uint64_t v2 = ((const struct mem_desc *)b)->base; 10407 10408 if (v1 < v2) 10409 return (-1); 10410 else if (v1 > v2) 10411 return (1); 10412 10413 return (0); 10414 } 10415 10416 static void 10417 mem_region_show(struct sbuf *sb, const char *name, uint64_t from, uint64_t to) 10418 { 10419 uintmax_t size; 10420 10421 if (from == to) 10422 return; 10423 10424 size = to - from + 1; 10425 if (size == 0) 10426 return; 10427 10428 if (from > UINT32_MAX || to > UINT32_MAX) 10429 sbuf_printf(sb, "%-18s 0x%012jx-0x%012jx [%ju]\n", name, 10430 (uintmax_t)from, (uintmax_t)to, size); 10431 else 10432 sbuf_printf(sb, "%-18s 0x%08jx-0x%08jx [%ju]\n", name, 10433 (uintmax_t)from, (uintmax_t)to, size); 10434 } 10435 10436 static int 10437 sysctl_meminfo(SYSCTL_HANDLER_ARGS) 10438 { 10439 struct adapter *sc = arg1; 10440 struct sbuf *sb; 10441 int rc, i, n, nchan; 10442 uint32_t lo, hi, used, free, alloc; 10443 static const char *memory[] = { 10444 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:" 10445 }; 10446 static const char *region[] = { 10447 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", 10448 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", 10449 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", 10450 "TDDP region:", "TPT region:", "STAG region:", "RQ region:", 10451 "RQUDP region:", "PBL region:", "TXPBL region:", 10452 "TLSKey region:", "RRQ region:", "NVMe STAG region:", 10453 "NVMe RQ region:", "NVMe RXPBL region:", "NVMe TPT region:", 10454 "NVMe TXPBL region:", "DBVFIFO region:", "ULPRX state:", 10455 "ULPTX state:", "RoCE RRQ region:", "On-chip queues:", 10456 }; 10457 struct mem_desc avail[4]; 10458 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ 10459 struct mem_desc *md; 10460 10461 rc = sysctl_wire_old_buffer(req, 0); 10462 if (rc != 0) 10463 return (rc); 10464 10465 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10466 if (sb == NULL) 10467 return (ENOMEM); 10468 10469 for (i = 0; i < nitems(mem); i++) { 10470 mem[i].limit = 0; 10471 mem[i].idx = i; 10472 } 10473 10474 mtx_lock(&sc->reg_lock); 10475 if (hw_off_limits(sc)) { 10476 rc = ENXIO; 10477 goto done; 10478 } 10479 10480 /* Find and sort the populated memory ranges */ 10481 i = 0; 10482 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 10483 if (lo & F_EDRAM0_ENABLE) { 10484 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); 10485 if (chip_id(sc) >= CHELSIO_T7) { 10486 avail[i].base = (uint64_t)G_T7_EDRAM0_BASE(hi) << 20; 10487 avail[i].limit = avail[i].base + 10488 (G_T7_EDRAM0_SIZE(hi) << 20); 10489 } else { 10490 avail[i].base = (uint64_t)G_EDRAM0_BASE(hi) << 20; 10491 avail[i].limit = avail[i].base + 10492 (G_EDRAM0_SIZE(hi) << 20); 10493 } 10494 avail[i].idx = 0; 10495 i++; 10496 } 10497 if (lo & F_EDRAM1_ENABLE) { 10498 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); 10499 if (chip_id(sc) >= CHELSIO_T7) { 10500 avail[i].base = (uint64_t)G_T7_EDRAM1_BASE(hi) << 20; 10501 avail[i].limit = avail[i].base + 10502 (G_T7_EDRAM1_SIZE(hi) << 20); 10503 } else { 10504 avail[i].base = (uint64_t)G_EDRAM1_BASE(hi) << 20; 10505 avail[i].limit = avail[i].base + 10506 (G_EDRAM1_SIZE(hi) << 20); 10507 } 10508 avail[i].idx = 1; 10509 i++; 10510 } 10511 if (lo & F_EXT_MEM_ENABLE) { 10512 switch (chip_id(sc)) { 10513 case CHELSIO_T4: 10514 case CHELSIO_T6: 10515 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 10516 avail[i].base = (uint64_t)G_EXT_MEM_BASE(hi) << 20; 10517 avail[i].limit = avail[i].base + 10518 (G_EXT_MEM_SIZE(hi) << 20); 10519 avail[i].idx = 2; 10520 break; 10521 case CHELSIO_T5: 10522 hi = t4_read_reg(sc, A_MA_EXT_MEMORY0_BAR); 10523 avail[i].base = (uint64_t)G_EXT_MEM0_BASE(hi) << 20; 10524 avail[i].limit = avail[i].base + 10525 (G_EXT_MEM0_SIZE(hi) << 20); 10526 avail[i].idx = 3; /* Call it MC0 for T5 */ 10527 break; 10528 default: 10529 hi = t4_read_reg(sc, A_MA_EXT_MEMORY0_BAR); 10530 avail[i].base = (uint64_t)G_T7_EXT_MEM0_BASE(hi) << 20; 10531 avail[i].limit = avail[i].base + 10532 (G_T7_EXT_MEM0_SIZE(hi) << 20); 10533 avail[i].idx = 3; /* Call it MC0 for T7+ */ 10534 break; 10535 } 10536 i++; 10537 } 10538 if (lo & F_EXT_MEM1_ENABLE && !(lo & F_MC_SPLIT)) { 10539 /* Only T5 and T7+ have 2 MCs. */ 10540 MPASS(is_t5(sc) || chip_id(sc) >= CHELSIO_T7); 10541 10542 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 10543 if (chip_id(sc) >= CHELSIO_T7) { 10544 avail[i].base = (uint64_t)G_T7_EXT_MEM1_BASE(hi) << 20; 10545 avail[i].limit = avail[i].base + 10546 (G_T7_EXT_MEM1_SIZE(hi) << 20); 10547 } else { 10548 avail[i].base = (uint64_t)G_EXT_MEM1_BASE(hi) << 20; 10549 avail[i].limit = avail[i].base + 10550 (G_EXT_MEM1_SIZE(hi) << 20); 10551 } 10552 avail[i].idx = 4; 10553 i++; 10554 } 10555 if (lo & F_HMA_MUX) { 10556 /* Only T6+ have HMA. */ 10557 MPASS(chip_id(sc) >= CHELSIO_T6); 10558 10559 if (chip_id(sc) >= CHELSIO_T7) { 10560 hi = t4_read_reg(sc, A_MA_HOST_MEMORY_BAR); 10561 avail[i].base = (uint64_t)G_HMATARGETBASE(hi) << 20; 10562 avail[i].limit = avail[i].base + 10563 (G_T7_HMA_SIZE(hi) << 20); 10564 } else { 10565 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 10566 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 10567 avail[i].limit = avail[i].base + 10568 (G_EXT_MEM1_SIZE(hi) << 20); 10569 } 10570 avail[i].idx = 5; 10571 i++; 10572 } 10573 MPASS(i <= nitems(avail)); 10574 if (!i) /* no memory available */ 10575 goto done; 10576 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); 10577 10578 md = &mem[0]; 10579 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); 10580 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); 10581 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); 10582 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 10583 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); 10584 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); 10585 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); 10586 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); 10587 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); 10588 10589 /* the next few have explicit upper bounds */ 10590 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); 10591 md->limit = md->base - 1 + 10592 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * 10593 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); 10594 md++; 10595 10596 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); 10597 md->limit = md->base - 1 + 10598 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * 10599 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); 10600 md++; 10601 10602 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 10603 if (chip_id(sc) <= CHELSIO_T5) 10604 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); 10605 else 10606 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR); 10607 md->limit = 0; 10608 } else { 10609 md->base = 0; 10610 md->idx = nitems(region); /* hide it */ 10611 } 10612 md++; 10613 10614 #define ulp_region(reg) do {\ 10615 const u_int shift = chip_id(sc) >= CHELSIO_T7 ? 4 : 0; \ 10616 md->base = (uint64_t)t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT) << shift; \ 10617 md->limit = (uint64_t)t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) << shift; \ 10618 md->limit += (1 << shift) - 1; \ 10619 md++; \ 10620 } while (0) 10621 10622 #define hide_ulp_region() do { \ 10623 md->base = 0; \ 10624 md->idx = nitems(region); \ 10625 md++; \ 10626 } while (0) 10627 10628 ulp_region(RX_ISCSI); 10629 ulp_region(RX_TDDP); 10630 ulp_region(TX_TPT); 10631 ulp_region(RX_STAG); 10632 ulp_region(RX_RQ); 10633 if (chip_id(sc) < CHELSIO_T7) 10634 ulp_region(RX_RQUDP); 10635 else 10636 hide_ulp_region(); 10637 ulp_region(RX_PBL); 10638 ulp_region(TX_PBL); 10639 if (chip_id(sc) >= CHELSIO_T6) 10640 ulp_region(RX_TLS_KEY); 10641 else 10642 hide_ulp_region(); 10643 if (chip_id(sc) >= CHELSIO_T7) { 10644 ulp_region(RX_RRQ); 10645 ulp_region(RX_NVME_TCP_STAG); 10646 ulp_region(RX_NVME_TCP_RQ); 10647 ulp_region(RX_NVME_TCP_PBL); 10648 ulp_region(TX_NVME_TCP_TPT); 10649 ulp_region(TX_NVME_TCP_PBL); 10650 } else { 10651 hide_ulp_region(); 10652 hide_ulp_region(); 10653 hide_ulp_region(); 10654 hide_ulp_region(); 10655 hide_ulp_region(); 10656 hide_ulp_region(); 10657 } 10658 #undef ulp_region 10659 #undef hide_ulp_region 10660 10661 md->base = 0; 10662 if (is_t4(sc)) 10663 md->idx = nitems(region); 10664 else { 10665 uint32_t size = 0; 10666 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2); 10667 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE); 10668 10669 if (is_t5(sc)) { 10670 if (sge_ctrl & F_VFIFO_ENABLE) 10671 size = fifo_size << 2; 10672 } else 10673 size = G_T6_DBVFIFO_SIZE(fifo_size) << 6; 10674 10675 if (size) { 10676 md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR); 10677 md->limit = md->base + size - 1; 10678 } else 10679 md->idx = nitems(region); 10680 } 10681 md++; 10682 10683 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); 10684 md->limit = 0; 10685 md++; 10686 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); 10687 md->limit = 0; 10688 md++; 10689 10690 if (chip_id(sc) >= CHELSIO_T7) { 10691 t4_tp_pio_read(sc, &lo, 1, A_TP_ROCE_RRQ_BASE, false); 10692 md->base = lo; 10693 } else { 10694 md->base = 0; 10695 md->idx = nitems(region); 10696 } 10697 md++; 10698 10699 md->base = sc->vres.ocq.start; 10700 if (sc->vres.ocq.size) 10701 md->limit = md->base + sc->vres.ocq.size - 1; 10702 else 10703 md->idx = nitems(region); /* hide it */ 10704 md++; 10705 10706 /* add any address-space holes, there can be up to 3 */ 10707 for (n = 0; n < i - 1; n++) 10708 if (avail[n].limit < avail[n + 1].base) 10709 (md++)->base = avail[n].limit; 10710 if (avail[n].limit) 10711 (md++)->base = avail[n].limit; 10712 10713 n = md - mem; 10714 MPASS(n <= nitems(mem)); 10715 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); 10716 10717 for (lo = 0; lo < i; lo++) 10718 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, 10719 avail[lo].limit - 1); 10720 10721 sbuf_printf(sb, "\n"); 10722 for (i = 0; i < n; i++) { 10723 if (mem[i].idx >= nitems(region)) 10724 continue; /* skip holes */ 10725 if (!mem[i].limit) 10726 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; 10727 mem_region_show(sb, region[mem[i].idx], mem[i].base, 10728 mem[i].limit); 10729 } 10730 10731 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); 10732 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; 10733 if (hi != lo - 1) { 10734 sbuf_printf(sb, "\n"); 10735 mem_region_show(sb, "uP RAM:", lo, hi); 10736 } 10737 10738 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); 10739 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; 10740 if (hi != lo - 1) 10741 mem_region_show(sb, "uP Extmem2:", lo, hi); 10742 10743 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); 10744 if (chip_id(sc) >= CHELSIO_T7) 10745 nchan = 1 << G_T7_PMRXNUMCHN(lo); 10746 else 10747 nchan = lo & F_PMRXNUMCHN ? 2 : 1; 10748 for (i = 0, free = 0; i < nchan; i++) 10749 free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT)); 10750 sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n", 10751 G_PMRXMAXPAGE(lo), free, 10752 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, nchan); 10753 10754 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); 10755 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); 10756 if (chip_id(sc) >= CHELSIO_T7) 10757 nchan = 1 << G_T7_PMTXNUMCHN(lo); 10758 else 10759 nchan = 1 << G_PMTXNUMCHN(lo); 10760 for (i = 0, free = 0; i < nchan; i++) 10761 free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT)); 10762 sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n", 10763 G_PMTXMAXPAGE(lo), free, 10764 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), 10765 hi >= (1 << 20) ? 'M' : 'K', nchan); 10766 sbuf_printf(sb, "%u p-structs (%u free)\n", 10767 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT), 10768 G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT))); 10769 10770 for (i = 0; i < 4; i++) { 10771 if (chip_id(sc) > CHELSIO_T5) 10772 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4); 10773 else 10774 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); 10775 if (is_t5(sc)) { 10776 used = G_T5_USED(lo); 10777 alloc = G_T5_ALLOC(lo); 10778 } else { 10779 used = G_USED(lo); 10780 alloc = G_ALLOC(lo); 10781 } 10782 /* For T6+ these are MAC buffer groups */ 10783 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", 10784 i, used, alloc); 10785 } 10786 for (i = 0; i < sc->chip_params->nchan; i++) { 10787 if (chip_id(sc) > CHELSIO_T5) 10788 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4); 10789 else 10790 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); 10791 if (is_t5(sc)) { 10792 used = G_T5_USED(lo); 10793 alloc = G_T5_ALLOC(lo); 10794 } else { 10795 used = G_USED(lo); 10796 alloc = G_ALLOC(lo); 10797 } 10798 /* For T6+ these are MAC buffer groups */ 10799 sbuf_printf(sb, 10800 "\nLoopback %d using %u pages out of %u allocated", 10801 i, used, alloc); 10802 } 10803 done: 10804 mtx_unlock(&sc->reg_lock); 10805 if (rc == 0) 10806 rc = sbuf_finish(sb); 10807 sbuf_delete(sb); 10808 return (rc); 10809 } 10810 10811 static inline void 10812 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) 10813 { 10814 *mask = x | y; 10815 y = htobe64(y); 10816 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); 10817 } 10818 10819 static int 10820 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) 10821 { 10822 struct adapter *sc = arg1; 10823 struct sbuf *sb; 10824 int rc, i; 10825 10826 MPASS(chip_id(sc) <= CHELSIO_T5); 10827 10828 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10829 if (sb == NULL) 10830 return (ENOMEM); 10831 10832 sbuf_printf(sb, 10833 "Idx Ethernet address Mask Vld Ports PF" 10834 " VF Replication P0 P1 P2 P3 ML"); 10835 rc = 0; 10836 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10837 uint64_t tcamx, tcamy, mask; 10838 uint32_t cls_lo, cls_hi; 10839 uint8_t addr[ETHER_ADDR_LEN]; 10840 10841 mtx_lock(&sc->reg_lock); 10842 if (hw_off_limits(sc)) 10843 rc = ENXIO; 10844 else { 10845 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); 10846 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); 10847 } 10848 mtx_unlock(&sc->reg_lock); 10849 if (rc != 0) 10850 break; 10851 if (tcamx & tcamy) 10852 continue; 10853 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10854 mtx_lock(&sc->reg_lock); 10855 if (hw_off_limits(sc)) 10856 rc = ENXIO; 10857 else { 10858 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10859 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10860 } 10861 mtx_unlock(&sc->reg_lock); 10862 if (rc != 0) 10863 break; 10864 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" 10865 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], 10866 addr[3], addr[4], addr[5], (uintmax_t)mask, 10867 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', 10868 G_PORTMAP(cls_hi), G_PF(cls_lo), 10869 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); 10870 10871 if (cls_lo & F_REPLICATE) { 10872 struct fw_ldst_cmd ldst_cmd; 10873 10874 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10875 ldst_cmd.op_to_addrspace = 10876 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10877 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10878 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10879 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10880 ldst_cmd.u.mps.rplc.fid_idx = 10881 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10882 V_FW_LDST_CMD_IDX(i)); 10883 10884 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10885 "t4mps"); 10886 if (rc) 10887 break; 10888 if (hw_off_limits(sc)) 10889 rc = ENXIO; 10890 else 10891 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10892 sizeof(ldst_cmd), &ldst_cmd); 10893 end_synchronized_op(sc, 0); 10894 if (rc != 0) 10895 break; 10896 else { 10897 sbuf_printf(sb, " %08x %08x %08x %08x", 10898 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10899 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10900 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10901 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10902 } 10903 } else 10904 sbuf_printf(sb, "%36s", ""); 10905 10906 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), 10907 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), 10908 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); 10909 } 10910 10911 if (rc) 10912 (void) sbuf_finish(sb); 10913 else 10914 rc = sbuf_finish(sb); 10915 sbuf_delete(sb); 10916 10917 return (rc); 10918 } 10919 10920 static int 10921 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS) 10922 { 10923 struct adapter *sc = arg1; 10924 struct sbuf *sb; 10925 int rc, i; 10926 10927 MPASS(chip_id(sc) == CHELSIO_T6); 10928 10929 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10930 if (sb == NULL) 10931 return (ENOMEM); 10932 10933 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 10934 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 10935 " Replication" 10936 " P0 P1 P2 P3 ML"); 10937 10938 rc = 0; 10939 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10940 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 10941 uint16_t ivlan; 10942 uint64_t tcamx, tcamy, val, mask; 10943 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 10944 uint8_t addr[ETHER_ADDR_LEN]; 10945 10946 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0); 10947 if (i < 256) 10948 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0); 10949 else 10950 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1); 10951 mtx_lock(&sc->reg_lock); 10952 if (hw_off_limits(sc)) 10953 rc = ENXIO; 10954 else { 10955 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10956 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10957 tcamy = G_DMACH(val) << 32; 10958 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10959 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10960 } 10961 mtx_unlock(&sc->reg_lock); 10962 if (rc != 0) 10963 break; 10964 10965 lookup_type = G_DATALKPTYPE(data2); 10966 port_num = G_DATAPORTNUM(data2); 10967 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10968 /* Inner header VNI */ 10969 vniy = ((data2 & F_DATAVIDH2) << 23) | 10970 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10971 dip_hit = data2 & F_DATADIPHIT; 10972 vlan_vld = 0; 10973 } else { 10974 vniy = 0; 10975 dip_hit = 0; 10976 vlan_vld = data2 & F_DATAVIDH2; 10977 ivlan = G_VIDL(val); 10978 } 10979 10980 ctl |= V_CTLXYBITSEL(1); 10981 mtx_lock(&sc->reg_lock); 10982 if (hw_off_limits(sc)) 10983 rc = ENXIO; 10984 else { 10985 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10986 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10987 tcamx = G_DMACH(val) << 32; 10988 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10989 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10990 } 10991 mtx_unlock(&sc->reg_lock); 10992 if (rc != 0) 10993 break; 10994 10995 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10996 /* Inner header VNI mask */ 10997 vnix = ((data2 & F_DATAVIDH2) << 23) | 10998 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10999 } else 11000 vnix = 0; 11001 11002 if (tcamx & tcamy) 11003 continue; 11004 tcamxy2valmask(tcamx, tcamy, addr, &mask); 11005 11006 mtx_lock(&sc->reg_lock); 11007 if (hw_off_limits(sc)) 11008 rc = ENXIO; 11009 else { 11010 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 11011 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 11012 } 11013 mtx_unlock(&sc->reg_lock); 11014 if (rc != 0) 11015 break; 11016 11017 if (lookup_type && lookup_type != M_DATALKPTYPE) { 11018 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 11019 "%012jx %06x %06x - - %3c" 11020 " I %4x %3c %#x%4u%4d", i, addr[0], 11021 addr[1], addr[2], addr[3], addr[4], addr[5], 11022 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 11023 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 11024 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 11025 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 11026 } else { 11027 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 11028 "%012jx - - ", i, addr[0], addr[1], 11029 addr[2], addr[3], addr[4], addr[5], 11030 (uintmax_t)mask); 11031 11032 if (vlan_vld) 11033 sbuf_printf(sb, "%4u Y ", ivlan); 11034 else 11035 sbuf_printf(sb, " - N "); 11036 11037 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 11038 lookup_type ? 'I' : 'O', port_num, 11039 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 11040 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 11041 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 11042 } 11043 11044 11045 if (cls_lo & F_T6_REPLICATE) { 11046 struct fw_ldst_cmd ldst_cmd; 11047 11048 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 11049 ldst_cmd.op_to_addrspace = 11050 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 11051 F_FW_CMD_REQUEST | F_FW_CMD_READ | 11052 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 11053 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 11054 ldst_cmd.u.mps.rplc.fid_idx = 11055 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 11056 V_FW_LDST_CMD_IDX(i)); 11057 11058 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 11059 "t6mps"); 11060 if (rc) 11061 break; 11062 if (hw_off_limits(sc)) 11063 rc = ENXIO; 11064 else 11065 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 11066 sizeof(ldst_cmd), &ldst_cmd); 11067 end_synchronized_op(sc, 0); 11068 if (rc != 0) 11069 break; 11070 else { 11071 sbuf_printf(sb, " %08x %08x %08x %08x" 11072 " %08x %08x %08x %08x", 11073 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 11074 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 11075 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 11076 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 11077 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 11078 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 11079 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 11080 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 11081 } 11082 } else 11083 sbuf_printf(sb, "%72s", ""); 11084 11085 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 11086 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 11087 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 11088 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 11089 } 11090 11091 if (rc) 11092 (void) sbuf_finish(sb); 11093 else 11094 rc = sbuf_finish(sb); 11095 sbuf_delete(sb); 11096 11097 return (rc); 11098 } 11099 11100 static int 11101 sysctl_mps_tcam_t7(SYSCTL_HANDLER_ARGS) 11102 { 11103 struct adapter *sc = arg1; 11104 struct sbuf *sb; 11105 int rc, i; 11106 11107 MPASS(chip_id(sc) >= CHELSIO_T7); 11108 11109 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11110 if (sb == NULL) 11111 return (ENOMEM); 11112 11113 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 11114 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 11115 " Replication" 11116 " P0 P1 P2 P3 ML"); 11117 11118 rc = 0; 11119 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 11120 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 11121 uint16_t ivlan; 11122 uint64_t tcamx, tcamy, val, mask; 11123 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 11124 uint8_t addr[ETHER_ADDR_LEN]; 11125 11126 /* Read tcamy */ 11127 ctl = (V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0)); 11128 if (chip_rev(sc) == 0) { 11129 if (i < 256) 11130 ctl |= V_CTLTCAMINDEX(i) | V_T7_CTLTCAMSEL(0); 11131 else 11132 ctl |= V_CTLTCAMINDEX(i - 256) | V_T7_CTLTCAMSEL(1); 11133 } else { 11134 #if 0 11135 ctl = (V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0)); 11136 #endif 11137 if (i < 512) 11138 ctl |= V_CTLTCAMINDEX(i) | V_T7_CTLTCAMSEL(0); 11139 else if (i < 1024) 11140 ctl |= V_CTLTCAMINDEX(i - 512) | V_T7_CTLTCAMSEL(1); 11141 else 11142 ctl |= V_CTLTCAMINDEX(i - 1024) | V_T7_CTLTCAMSEL(2); 11143 } 11144 11145 mtx_lock(&sc->reg_lock); 11146 if (hw_off_limits(sc)) 11147 rc = ENXIO; 11148 else { 11149 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 11150 val = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA1_REQ_ID1); 11151 tcamy = G_DMACH(val) << 32; 11152 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA0_REQ_ID1); 11153 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA2_REQ_ID1); 11154 } 11155 mtx_unlock(&sc->reg_lock); 11156 if (rc != 0) 11157 break; 11158 11159 lookup_type = G_DATALKPTYPE(data2); 11160 port_num = G_DATAPORTNUM(data2); 11161 if (lookup_type && lookup_type != M_DATALKPTYPE) { 11162 /* Inner header VNI */ 11163 vniy = (((data2 & F_DATAVIDH2) | 11164 G_DATAVIDH1(data2)) << 16) | G_VIDL(val); 11165 dip_hit = data2 & F_DATADIPHIT; 11166 vlan_vld = 0; 11167 } else { 11168 vniy = 0; 11169 dip_hit = 0; 11170 vlan_vld = data2 & F_DATAVIDH2; 11171 ivlan = G_VIDL(val); 11172 } 11173 11174 ctl |= V_CTLXYBITSEL(1); 11175 mtx_lock(&sc->reg_lock); 11176 if (hw_off_limits(sc)) 11177 rc = ENXIO; 11178 else { 11179 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 11180 val = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA1_REQ_ID1); 11181 tcamx = G_DMACH(val) << 32; 11182 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA0_REQ_ID1); 11183 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA2_REQ_ID1); 11184 } 11185 mtx_unlock(&sc->reg_lock); 11186 if (rc != 0) 11187 break; 11188 11189 if (lookup_type && lookup_type != M_DATALKPTYPE) { 11190 /* Inner header VNI mask */ 11191 vnix = (((data2 & F_DATAVIDH2) | 11192 G_DATAVIDH1(data2)) << 16) | G_VIDL(val); 11193 } else 11194 vnix = 0; 11195 11196 if (tcamx & tcamy) 11197 continue; 11198 tcamxy2valmask(tcamx, tcamy, addr, &mask); 11199 11200 mtx_lock(&sc->reg_lock); 11201 if (hw_off_limits(sc)) 11202 rc = ENXIO; 11203 else { 11204 if (chip_rev(sc) == 0) { 11205 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 11206 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 11207 } else { 11208 t4_write_reg(sc, A_MPS_CLS_SRAM_H, 11209 V_SRAMWRN(0) | V_SRAMINDEX(i)); 11210 cls_lo = t4_read_reg(sc, A_MPS_CLS_SRAM_L); 11211 cls_hi = t4_read_reg(sc, A_MPS_CLS_SRAM_H); 11212 } 11213 } 11214 mtx_unlock(&sc->reg_lock); 11215 if (rc != 0) 11216 break; 11217 11218 if (lookup_type && lookup_type != M_DATALKPTYPE) { 11219 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 11220 "%012jx %06x %06x - - %3c" 11221 " I %4x %3c %#x%4u%4d", i, addr[0], 11222 addr[1], addr[2], addr[3], addr[4], addr[5], 11223 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 11224 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 11225 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 11226 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 11227 } else { 11228 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 11229 "%012jx - - ", i, addr[0], addr[1], 11230 addr[2], addr[3], addr[4], addr[5], 11231 (uintmax_t)mask); 11232 11233 if (vlan_vld) 11234 sbuf_printf(sb, "%4u Y ", ivlan); 11235 else 11236 sbuf_printf(sb, " - N "); 11237 11238 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 11239 lookup_type ? 'I' : 'O', port_num, 11240 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 11241 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 11242 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 11243 } 11244 11245 if (cls_lo & F_T6_REPLICATE) { 11246 struct fw_ldst_cmd ldst_cmd; 11247 11248 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 11249 ldst_cmd.op_to_addrspace = 11250 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 11251 F_FW_CMD_REQUEST | F_FW_CMD_READ | 11252 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 11253 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 11254 ldst_cmd.u.mps.rplc.fid_idx = 11255 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 11256 V_FW_LDST_CMD_IDX(i)); 11257 11258 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 11259 "t6mps"); 11260 if (rc) 11261 break; 11262 if (hw_off_limits(sc)) 11263 rc = ENXIO; 11264 else 11265 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 11266 sizeof(ldst_cmd), &ldst_cmd); 11267 end_synchronized_op(sc, 0); 11268 if (rc != 0) 11269 break; 11270 else { 11271 sbuf_printf(sb, " %08x %08x %08x %08x" 11272 " %08x %08x %08x %08x", 11273 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 11274 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 11275 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 11276 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 11277 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 11278 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 11279 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 11280 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 11281 } 11282 } else 11283 sbuf_printf(sb, "%72s", ""); 11284 11285 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 11286 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 11287 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 11288 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 11289 } 11290 11291 if (rc) 11292 (void) sbuf_finish(sb); 11293 else 11294 rc = sbuf_finish(sb); 11295 sbuf_delete(sb); 11296 11297 return (rc); 11298 } 11299 11300 static int 11301 sysctl_path_mtus(SYSCTL_HANDLER_ARGS) 11302 { 11303 struct adapter *sc = arg1; 11304 struct sbuf *sb; 11305 int rc; 11306 uint16_t mtus[NMTUS]; 11307 11308 rc = 0; 11309 mtx_lock(&sc->reg_lock); 11310 if (hw_off_limits(sc)) 11311 rc = ENXIO; 11312 else 11313 t4_read_mtu_tbl(sc, mtus, NULL); 11314 mtx_unlock(&sc->reg_lock); 11315 if (rc != 0) 11316 return (rc); 11317 11318 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11319 if (sb == NULL) 11320 return (ENOMEM); 11321 11322 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", 11323 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], 11324 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], 11325 mtus[14], mtus[15]); 11326 11327 rc = sbuf_finish(sb); 11328 sbuf_delete(sb); 11329 11330 return (rc); 11331 } 11332 11333 static int 11334 sysctl_pm_stats(SYSCTL_HANDLER_ARGS) 11335 { 11336 struct adapter *sc = arg1; 11337 struct sbuf *sb; 11338 int rc, i; 11339 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS]; 11340 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS]; 11341 uint32_t stats[T7_PM_RX_CACHE_NSTATS]; 11342 static const char *tx_stats[MAX_PM_NSTATS] = { 11343 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:", 11344 "Tx FIFO wait", NULL, "Tx latency" 11345 }; 11346 static const char *rx_stats[MAX_PM_NSTATS] = { 11347 "Read:", "Write bypass:", "Write mem:", "Flush:", 11348 "Rx FIFO wait", NULL, "Rx latency" 11349 }; 11350 11351 rc = 0; 11352 mtx_lock(&sc->reg_lock); 11353 if (hw_off_limits(sc)) 11354 rc = ENXIO; 11355 else { 11356 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); 11357 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); 11358 if (chip_id(sc) >= CHELSIO_T7) 11359 t4_pmrx_cache_get_stats(sc, stats); 11360 } 11361 mtx_unlock(&sc->reg_lock); 11362 if (rc != 0) 11363 return (rc); 11364 11365 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11366 if (sb == NULL) 11367 return (ENOMEM); 11368 11369 sbuf_printf(sb, " Tx pcmds Tx bytes"); 11370 for (i = 0; i < 4; i++) { 11371 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 11372 tx_cyc[i]); 11373 } 11374 11375 sbuf_printf(sb, "\n Rx pcmds Rx bytes"); 11376 for (i = 0; i < 4; i++) { 11377 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 11378 rx_cyc[i]); 11379 } 11380 11381 if (chip_id(sc) > CHELSIO_T5) { 11382 sbuf_printf(sb, 11383 "\n Total wait Total occupancy"); 11384 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 11385 tx_cyc[i]); 11386 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 11387 rx_cyc[i]); 11388 11389 i += 2; 11390 MPASS(i < nitems(tx_stats)); 11391 11392 sbuf_printf(sb, 11393 "\n Reads Total wait"); 11394 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 11395 tx_cyc[i]); 11396 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 11397 rx_cyc[i]); 11398 } 11399 11400 if (chip_id(sc) >= CHELSIO_T7) { 11401 i = 0; 11402 sbuf_printf(sb, "\n\nPM RX Cache Stats\n"); 11403 sbuf_printf(sb, "%-40s %u\n", "ReqWrite", stats[i++]); 11404 sbuf_printf(sb, "%-40s %u\n", "ReqReadInv", stats[i++]); 11405 sbuf_printf(sb, "%-40s %u\n", "ReqReadNoInv", stats[i++]); 11406 sbuf_printf(sb, "%-40s %u\n", "Write Split Request", 11407 stats[i++]); 11408 sbuf_printf(sb, "%-40s %u\n", 11409 "Normal Read Split (Read Invalidate)", stats[i++]); 11410 sbuf_printf(sb, "%-40s %u\n", 11411 "Feedback Read Split (Read NoInvalidate)", 11412 stats[i++]); 11413 sbuf_printf(sb, "%-40s %u\n", "Write Hit", stats[i++]); 11414 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit", 11415 stats[i++]); 11416 sbuf_printf(sb, "%-40s %u\n", "Feedback Read Hit", 11417 stats[i++]); 11418 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit Full Avail", 11419 stats[i++]); 11420 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit Full UnAvail", 11421 stats[i++]); 11422 sbuf_printf(sb, "%-40s %u\n", 11423 "Normal Read Hit Partial Avail", 11424 stats[i++]); 11425 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Full Avail", 11426 stats[i++]); 11427 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Full UnAvail", 11428 stats[i++]); 11429 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Partial Avail", 11430 stats[i++]); 11431 sbuf_printf(sb, "%-40s %u\n", "Normal Read Full Free", 11432 stats[i++]); 11433 sbuf_printf(sb, "%-40s %u\n", 11434 "Normal Read Part-avail Mul-Regions", 11435 stats[i++]); 11436 sbuf_printf(sb, "%-40s %u\n", 11437 "FB Read Part-avail Mul-Regions", 11438 stats[i++]); 11439 sbuf_printf(sb, "%-40s %u\n", "Write Miss FL Used", 11440 stats[i++]); 11441 sbuf_printf(sb, "%-40s %u\n", "Write Miss LRU Used", 11442 stats[i++]); 11443 sbuf_printf(sb, "%-40s %u\n", 11444 "Write Miss LRU-Multiple Evict", stats[i++]); 11445 sbuf_printf(sb, "%-40s %u\n", 11446 "Write Hit Increasing Islands", stats[i++]); 11447 sbuf_printf(sb, "%-40s %u\n", 11448 "Normal Read Island Read split", stats[i++]); 11449 sbuf_printf(sb, "%-40s %u\n", "Write Overflow Eviction", 11450 stats[i++]); 11451 sbuf_printf(sb, "%-40s %u", "Read Overflow Eviction", 11452 stats[i++]); 11453 } 11454 11455 rc = sbuf_finish(sb); 11456 sbuf_delete(sb); 11457 11458 return (rc); 11459 } 11460 11461 static int 11462 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) 11463 { 11464 struct adapter *sc = arg1; 11465 struct sbuf *sb; 11466 int rc; 11467 struct tp_rdma_stats stats; 11468 11469 rc = 0; 11470 mtx_lock(&sc->reg_lock); 11471 if (hw_off_limits(sc)) 11472 rc = ENXIO; 11473 else 11474 t4_tp_get_rdma_stats(sc, &stats, 0); 11475 mtx_unlock(&sc->reg_lock); 11476 if (rc != 0) 11477 return (rc); 11478 11479 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11480 if (sb == NULL) 11481 return (ENOMEM); 11482 11483 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); 11484 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); 11485 11486 rc = sbuf_finish(sb); 11487 sbuf_delete(sb); 11488 11489 return (rc); 11490 } 11491 11492 static int 11493 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) 11494 { 11495 struct adapter *sc = arg1; 11496 struct sbuf *sb; 11497 int rc; 11498 struct tp_tcp_stats v4, v6; 11499 11500 rc = 0; 11501 mtx_lock(&sc->reg_lock); 11502 if (hw_off_limits(sc)) 11503 rc = ENXIO; 11504 else 11505 t4_tp_get_tcp_stats(sc, &v4, &v6, 0); 11506 mtx_unlock(&sc->reg_lock); 11507 if (rc != 0) 11508 return (rc); 11509 11510 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11511 if (sb == NULL) 11512 return (ENOMEM); 11513 11514 sbuf_printf(sb, 11515 " IP IPv6\n"); 11516 sbuf_printf(sb, "OutRsts: %20u %20u\n", 11517 v4.tcp_out_rsts, v6.tcp_out_rsts); 11518 sbuf_printf(sb, "InSegs: %20ju %20ju\n", 11519 v4.tcp_in_segs, v6.tcp_in_segs); 11520 sbuf_printf(sb, "OutSegs: %20ju %20ju\n", 11521 v4.tcp_out_segs, v6.tcp_out_segs); 11522 sbuf_printf(sb, "RetransSegs: %20ju %20ju", 11523 v4.tcp_retrans_segs, v6.tcp_retrans_segs); 11524 11525 rc = sbuf_finish(sb); 11526 sbuf_delete(sb); 11527 11528 return (rc); 11529 } 11530 11531 static int 11532 sysctl_tids(SYSCTL_HANDLER_ARGS) 11533 { 11534 struct adapter *sc = arg1; 11535 struct sbuf *sb; 11536 int rc; 11537 uint32_t x, y; 11538 struct tid_info *t = &sc->tids; 11539 11540 rc = 0; 11541 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11542 if (sb == NULL) 11543 return (ENOMEM); 11544 11545 if (t->natids) { 11546 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, 11547 t->atids_in_use); 11548 } 11549 11550 if (t->nhpftids) { 11551 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n", 11552 t->hpftid_base, t->hpftid_end, t->hpftids_in_use); 11553 } 11554 11555 if (t->ntids) { 11556 bool hashen = false; 11557 11558 mtx_lock(&sc->reg_lock); 11559 if (hw_off_limits(sc)) 11560 rc = ENXIO; 11561 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 11562 hashen = true; 11563 if (chip_id(sc) <= CHELSIO_T5) { 11564 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; 11565 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; 11566 } else { 11567 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX); 11568 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE); 11569 } 11570 } 11571 mtx_unlock(&sc->reg_lock); 11572 if (rc != 0) 11573 goto done; 11574 11575 sbuf_printf(sb, "TID range: "); 11576 if (hashen) { 11577 if (x) 11578 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1); 11579 sbuf_printf(sb, "%u-%u", y, t->ntids - 1); 11580 } else { 11581 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base + 11582 t->ntids - 1); 11583 } 11584 sbuf_printf(sb, ", in use: %u\n", 11585 atomic_load_acq_int(&t->tids_in_use)); 11586 } 11587 11588 if (t->nstids) { 11589 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, 11590 t->stid_base + t->nstids - 1, t->stids_in_use); 11591 } 11592 11593 if (t->nftids) { 11594 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base, 11595 t->ftid_end, t->ftids_in_use); 11596 } 11597 11598 if (t->netids) { 11599 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base, 11600 t->etid_base + t->netids - 1, t->etids_in_use); 11601 } 11602 11603 mtx_lock(&sc->reg_lock); 11604 if (hw_off_limits(sc)) 11605 rc = ENXIO; 11606 else { 11607 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4); 11608 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6); 11609 } 11610 mtx_unlock(&sc->reg_lock); 11611 if (rc != 0) 11612 goto done; 11613 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y); 11614 done: 11615 if (rc == 0) 11616 rc = sbuf_finish(sb); 11617 else 11618 (void)sbuf_finish(sb); 11619 sbuf_delete(sb); 11620 11621 return (rc); 11622 } 11623 11624 static int 11625 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) 11626 { 11627 struct adapter *sc = arg1; 11628 struct sbuf *sb; 11629 int rc; 11630 struct tp_err_stats stats; 11631 11632 rc = 0; 11633 mtx_lock(&sc->reg_lock); 11634 if (hw_off_limits(sc)) 11635 rc = ENXIO; 11636 else 11637 t4_tp_get_err_stats(sc, &stats, 0); 11638 mtx_unlock(&sc->reg_lock); 11639 if (rc != 0) 11640 return (rc); 11641 11642 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11643 if (sb == NULL) 11644 return (ENOMEM); 11645 11646 if (sc->chip_params->nchan > 2) { 11647 sbuf_printf(sb, " channel 0 channel 1" 11648 " channel 2 channel 3\n"); 11649 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", 11650 stats.mac_in_errs[0], stats.mac_in_errs[1], 11651 stats.mac_in_errs[2], stats.mac_in_errs[3]); 11652 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", 11653 stats.hdr_in_errs[0], stats.hdr_in_errs[1], 11654 stats.hdr_in_errs[2], stats.hdr_in_errs[3]); 11655 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", 11656 stats.tcp_in_errs[0], stats.tcp_in_errs[1], 11657 stats.tcp_in_errs[2], stats.tcp_in_errs[3]); 11658 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", 11659 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1], 11660 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]); 11661 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", 11662 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1], 11663 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]); 11664 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", 11665 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1], 11666 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]); 11667 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", 11668 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1], 11669 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]); 11670 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", 11671 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1], 11672 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]); 11673 } else { 11674 sbuf_printf(sb, " channel 0 channel 1\n"); 11675 sbuf_printf(sb, "macInErrs: %10u %10u\n", 11676 stats.mac_in_errs[0], stats.mac_in_errs[1]); 11677 sbuf_printf(sb, "hdrInErrs: %10u %10u\n", 11678 stats.hdr_in_errs[0], stats.hdr_in_errs[1]); 11679 sbuf_printf(sb, "tcpInErrs: %10u %10u\n", 11680 stats.tcp_in_errs[0], stats.tcp_in_errs[1]); 11681 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n", 11682 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]); 11683 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n", 11684 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]); 11685 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n", 11686 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]); 11687 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n", 11688 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]); 11689 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n", 11690 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]); 11691 } 11692 11693 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", 11694 stats.ofld_no_neigh, stats.ofld_cong_defer); 11695 11696 rc = sbuf_finish(sb); 11697 sbuf_delete(sb); 11698 11699 return (rc); 11700 } 11701 11702 static int 11703 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS) 11704 { 11705 struct adapter *sc = arg1; 11706 struct sbuf *sb; 11707 int rc; 11708 struct tp_tnl_stats stats; 11709 11710 rc = 0; 11711 mtx_lock(&sc->reg_lock); 11712 if (hw_off_limits(sc)) 11713 rc = ENXIO; 11714 else 11715 t4_tp_get_tnl_stats(sc, &stats, 1); 11716 mtx_unlock(&sc->reg_lock); 11717 if (rc != 0) 11718 return (rc); 11719 11720 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11721 if (sb == NULL) 11722 return (ENOMEM); 11723 11724 if (sc->chip_params->nchan > 2) { 11725 sbuf_printf(sb, " channel 0 channel 1" 11726 " channel 2 channel 3\n"); 11727 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n", 11728 stats.out_pkt[0], stats.out_pkt[1], 11729 stats.out_pkt[2], stats.out_pkt[3]); 11730 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u", 11731 stats.in_pkt[0], stats.in_pkt[1], 11732 stats.in_pkt[2], stats.in_pkt[3]); 11733 } else { 11734 sbuf_printf(sb, " channel 0 channel 1\n"); 11735 sbuf_printf(sb, "OutPkts: %10u %10u\n", 11736 stats.out_pkt[0], stats.out_pkt[1]); 11737 sbuf_printf(sb, "InPkts: %10u %10u", 11738 stats.in_pkt[0], stats.in_pkt[1]); 11739 } 11740 11741 rc = sbuf_finish(sb); 11742 sbuf_delete(sb); 11743 11744 return (rc); 11745 } 11746 11747 static int 11748 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS) 11749 { 11750 struct adapter *sc = arg1; 11751 struct tp_params *tpp = &sc->params.tp; 11752 u_int mask; 11753 int rc; 11754 11755 mask = tpp->la_mask >> 16; 11756 rc = sysctl_handle_int(oidp, &mask, 0, req); 11757 if (rc != 0 || req->newptr == NULL) 11758 return (rc); 11759 if (mask > 0xffff) 11760 return (EINVAL); 11761 mtx_lock(&sc->reg_lock); 11762 if (hw_off_limits(sc)) 11763 rc = ENXIO; 11764 else { 11765 tpp->la_mask = mask << 16; 11766 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, 11767 tpp->la_mask); 11768 } 11769 mtx_unlock(&sc->reg_lock); 11770 11771 return (rc); 11772 } 11773 11774 struct field_desc { 11775 const char *name; 11776 u_int start; 11777 u_int width; 11778 }; 11779 11780 static void 11781 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) 11782 { 11783 char buf[32]; 11784 int line_size = 0; 11785 11786 while (f->name) { 11787 uint64_t mask = (1ULL << f->width) - 1; 11788 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, 11789 ((uintmax_t)v >> f->start) & mask); 11790 11791 if (line_size + len >= 79) { 11792 line_size = 8; 11793 sbuf_printf(sb, "\n "); 11794 } 11795 sbuf_printf(sb, "%s ", buf); 11796 line_size += len + 1; 11797 f++; 11798 } 11799 sbuf_printf(sb, "\n"); 11800 } 11801 11802 static const struct field_desc tp_la0[] = { 11803 { "RcfOpCodeOut", 60, 4 }, 11804 { "State", 56, 4 }, 11805 { "WcfState", 52, 4 }, 11806 { "RcfOpcSrcOut", 50, 2 }, 11807 { "CRxError", 49, 1 }, 11808 { "ERxError", 48, 1 }, 11809 { "SanityFailed", 47, 1 }, 11810 { "SpuriousMsg", 46, 1 }, 11811 { "FlushInputMsg", 45, 1 }, 11812 { "FlushInputCpl", 44, 1 }, 11813 { "RssUpBit", 43, 1 }, 11814 { "RssFilterHit", 42, 1 }, 11815 { "Tid", 32, 10 }, 11816 { "InitTcb", 31, 1 }, 11817 { "LineNumber", 24, 7 }, 11818 { "Emsg", 23, 1 }, 11819 { "EdataOut", 22, 1 }, 11820 { "Cmsg", 21, 1 }, 11821 { "CdataOut", 20, 1 }, 11822 { "EreadPdu", 19, 1 }, 11823 { "CreadPdu", 18, 1 }, 11824 { "TunnelPkt", 17, 1 }, 11825 { "RcfPeerFin", 16, 1 }, 11826 { "RcfReasonOut", 12, 4 }, 11827 { "TxCchannel", 10, 2 }, 11828 { "RcfTxChannel", 8, 2 }, 11829 { "RxEchannel", 6, 2 }, 11830 { "RcfRxChannel", 5, 1 }, 11831 { "RcfDataOutSrdy", 4, 1 }, 11832 { "RxDvld", 3, 1 }, 11833 { "RxOoDvld", 2, 1 }, 11834 { "RxCongestion", 1, 1 }, 11835 { "TxCongestion", 0, 1 }, 11836 { NULL } 11837 }; 11838 11839 static const struct field_desc tp_la1[] = { 11840 { "CplCmdIn", 56, 8 }, 11841 { "CplCmdOut", 48, 8 }, 11842 { "ESynOut", 47, 1 }, 11843 { "EAckOut", 46, 1 }, 11844 { "EFinOut", 45, 1 }, 11845 { "ERstOut", 44, 1 }, 11846 { "SynIn", 43, 1 }, 11847 { "AckIn", 42, 1 }, 11848 { "FinIn", 41, 1 }, 11849 { "RstIn", 40, 1 }, 11850 { "DataIn", 39, 1 }, 11851 { "DataInVld", 38, 1 }, 11852 { "PadIn", 37, 1 }, 11853 { "RxBufEmpty", 36, 1 }, 11854 { "RxDdp", 35, 1 }, 11855 { "RxFbCongestion", 34, 1 }, 11856 { "TxFbCongestion", 33, 1 }, 11857 { "TxPktSumSrdy", 32, 1 }, 11858 { "RcfUlpType", 28, 4 }, 11859 { "Eread", 27, 1 }, 11860 { "Ebypass", 26, 1 }, 11861 { "Esave", 25, 1 }, 11862 { "Static0", 24, 1 }, 11863 { "Cread", 23, 1 }, 11864 { "Cbypass", 22, 1 }, 11865 { "Csave", 21, 1 }, 11866 { "CPktOut", 20, 1 }, 11867 { "RxPagePoolFull", 18, 2 }, 11868 { "RxLpbkPkt", 17, 1 }, 11869 { "TxLpbkPkt", 16, 1 }, 11870 { "RxVfValid", 15, 1 }, 11871 { "SynLearned", 14, 1 }, 11872 { "SetDelEntry", 13, 1 }, 11873 { "SetInvEntry", 12, 1 }, 11874 { "CpcmdDvld", 11, 1 }, 11875 { "CpcmdSave", 10, 1 }, 11876 { "RxPstructsFull", 8, 2 }, 11877 { "EpcmdDvld", 7, 1 }, 11878 { "EpcmdFlush", 6, 1 }, 11879 { "EpcmdTrimPrefix", 5, 1 }, 11880 { "EpcmdTrimPostfix", 4, 1 }, 11881 { "ERssIp4Pkt", 3, 1 }, 11882 { "ERssIp6Pkt", 2, 1 }, 11883 { "ERssTcpUdpPkt", 1, 1 }, 11884 { "ERssFceFipPkt", 0, 1 }, 11885 { NULL } 11886 }; 11887 11888 static const struct field_desc tp_la2[] = { 11889 { "CplCmdIn", 56, 8 }, 11890 { "MpsVfVld", 55, 1 }, 11891 { "MpsPf", 52, 3 }, 11892 { "MpsVf", 44, 8 }, 11893 { "SynIn", 43, 1 }, 11894 { "AckIn", 42, 1 }, 11895 { "FinIn", 41, 1 }, 11896 { "RstIn", 40, 1 }, 11897 { "DataIn", 39, 1 }, 11898 { "DataInVld", 38, 1 }, 11899 { "PadIn", 37, 1 }, 11900 { "RxBufEmpty", 36, 1 }, 11901 { "RxDdp", 35, 1 }, 11902 { "RxFbCongestion", 34, 1 }, 11903 { "TxFbCongestion", 33, 1 }, 11904 { "TxPktSumSrdy", 32, 1 }, 11905 { "RcfUlpType", 28, 4 }, 11906 { "Eread", 27, 1 }, 11907 { "Ebypass", 26, 1 }, 11908 { "Esave", 25, 1 }, 11909 { "Static0", 24, 1 }, 11910 { "Cread", 23, 1 }, 11911 { "Cbypass", 22, 1 }, 11912 { "Csave", 21, 1 }, 11913 { "CPktOut", 20, 1 }, 11914 { "RxPagePoolFull", 18, 2 }, 11915 { "RxLpbkPkt", 17, 1 }, 11916 { "TxLpbkPkt", 16, 1 }, 11917 { "RxVfValid", 15, 1 }, 11918 { "SynLearned", 14, 1 }, 11919 { "SetDelEntry", 13, 1 }, 11920 { "SetInvEntry", 12, 1 }, 11921 { "CpcmdDvld", 11, 1 }, 11922 { "CpcmdSave", 10, 1 }, 11923 { "RxPstructsFull", 8, 2 }, 11924 { "EpcmdDvld", 7, 1 }, 11925 { "EpcmdFlush", 6, 1 }, 11926 { "EpcmdTrimPrefix", 5, 1 }, 11927 { "EpcmdTrimPostfix", 4, 1 }, 11928 { "ERssIp4Pkt", 3, 1 }, 11929 { "ERssIp6Pkt", 2, 1 }, 11930 { "ERssTcpUdpPkt", 1, 1 }, 11931 { "ERssFceFipPkt", 0, 1 }, 11932 { NULL } 11933 }; 11934 11935 static void 11936 tp_la_show(struct sbuf *sb, uint64_t *p, int idx) 11937 { 11938 11939 field_desc_show(sb, *p, tp_la0); 11940 } 11941 11942 static void 11943 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) 11944 { 11945 11946 if (idx) 11947 sbuf_printf(sb, "\n"); 11948 field_desc_show(sb, p[0], tp_la0); 11949 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 11950 field_desc_show(sb, p[1], tp_la0); 11951 } 11952 11953 static void 11954 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) 11955 { 11956 11957 if (idx) 11958 sbuf_printf(sb, "\n"); 11959 field_desc_show(sb, p[0], tp_la0); 11960 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 11961 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); 11962 } 11963 11964 static int 11965 sysctl_tp_la(SYSCTL_HANDLER_ARGS) 11966 { 11967 struct adapter *sc = arg1; 11968 struct sbuf *sb; 11969 uint64_t *buf, *p; 11970 int rc; 11971 u_int i, inc; 11972 void (*show_func)(struct sbuf *, uint64_t *, int); 11973 11974 rc = 0; 11975 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11976 if (sb == NULL) 11977 return (ENOMEM); 11978 11979 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); 11980 11981 mtx_lock(&sc->reg_lock); 11982 if (hw_off_limits(sc)) 11983 rc = ENXIO; 11984 else { 11985 t4_tp_read_la(sc, buf, NULL); 11986 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { 11987 case 2: 11988 inc = 2; 11989 show_func = tp_la_show2; 11990 break; 11991 case 3: 11992 inc = 2; 11993 show_func = tp_la_show3; 11994 break; 11995 default: 11996 inc = 1; 11997 show_func = tp_la_show; 11998 } 11999 } 12000 mtx_unlock(&sc->reg_lock); 12001 if (rc != 0) 12002 goto done; 12003 12004 p = buf; 12005 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) 12006 (*show_func)(sb, p, i); 12007 rc = sbuf_finish(sb); 12008 done: 12009 sbuf_delete(sb); 12010 free(buf, M_CXGBE); 12011 return (rc); 12012 } 12013 12014 static int 12015 sysctl_tx_rate(SYSCTL_HANDLER_ARGS) 12016 { 12017 struct adapter *sc = arg1; 12018 struct sbuf *sb; 12019 int rc; 12020 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN]; 12021 12022 rc = 0; 12023 mtx_lock(&sc->reg_lock); 12024 if (hw_off_limits(sc)) 12025 rc = ENXIO; 12026 else 12027 t4_get_chan_txrate(sc, nrate, orate); 12028 mtx_unlock(&sc->reg_lock); 12029 if (rc != 0) 12030 return (rc); 12031 12032 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 12033 if (sb == NULL) 12034 return (ENOMEM); 12035 12036 if (sc->chip_params->nchan > 2) { 12037 sbuf_printf(sb, " channel 0 channel 1" 12038 " channel 2 channel 3\n"); 12039 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", 12040 nrate[0], nrate[1], nrate[2], nrate[3]); 12041 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", 12042 orate[0], orate[1], orate[2], orate[3]); 12043 } else { 12044 sbuf_printf(sb, " channel 0 channel 1\n"); 12045 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n", 12046 nrate[0], nrate[1]); 12047 sbuf_printf(sb, "Offload B/s: %10ju %10ju", 12048 orate[0], orate[1]); 12049 } 12050 12051 rc = sbuf_finish(sb); 12052 sbuf_delete(sb); 12053 12054 return (rc); 12055 } 12056 12057 static int 12058 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) 12059 { 12060 struct adapter *sc = arg1; 12061 struct sbuf *sb; 12062 uint32_t *buf, *p; 12063 int rc, i; 12064 12065 rc = 0; 12066 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 12067 if (sb == NULL) 12068 return (ENOMEM); 12069 12070 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, 12071 M_ZERO | M_WAITOK); 12072 12073 mtx_lock(&sc->reg_lock); 12074 if (hw_off_limits(sc)) 12075 rc = ENXIO; 12076 else 12077 t4_ulprx_read_la(sc, buf); 12078 mtx_unlock(&sc->reg_lock); 12079 if (rc != 0) 12080 goto done; 12081 12082 p = buf; 12083 sbuf_printf(sb, " Pcmd Type Message" 12084 " Data"); 12085 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { 12086 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", 12087 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 12088 } 12089 rc = sbuf_finish(sb); 12090 done: 12091 sbuf_delete(sb); 12092 free(buf, M_CXGBE); 12093 return (rc); 12094 } 12095 12096 static int 12097 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) 12098 { 12099 struct adapter *sc = arg1; 12100 struct sbuf *sb; 12101 int rc; 12102 uint32_t cfg, s1, s2; 12103 12104 MPASS(chip_id(sc) >= CHELSIO_T5); 12105 12106 rc = 0; 12107 mtx_lock(&sc->reg_lock); 12108 if (hw_off_limits(sc)) 12109 rc = ENXIO; 12110 else { 12111 cfg = t4_read_reg(sc, A_SGE_STAT_CFG); 12112 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL); 12113 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH); 12114 } 12115 mtx_unlock(&sc->reg_lock); 12116 if (rc != 0) 12117 return (rc); 12118 12119 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 12120 if (sb == NULL) 12121 return (ENOMEM); 12122 12123 if (G_STATSOURCE_T5(cfg) == 7) { 12124 int mode; 12125 12126 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg); 12127 if (mode == 0) 12128 sbuf_printf(sb, "total %d, incomplete %d", s1, s2); 12129 else if (mode == 1) 12130 sbuf_printf(sb, "total %d, data overflow %d", s1, s2); 12131 else 12132 sbuf_printf(sb, "unknown mode %d", mode); 12133 } 12134 rc = sbuf_finish(sb); 12135 sbuf_delete(sb); 12136 12137 return (rc); 12138 } 12139 12140 static int 12141 sysctl_cpus(SYSCTL_HANDLER_ARGS) 12142 { 12143 struct adapter *sc = arg1; 12144 enum cpu_sets op = arg2; 12145 cpuset_t cpuset; 12146 struct sbuf *sb; 12147 int i, rc; 12148 12149 MPASS(op == LOCAL_CPUS || op == INTR_CPUS); 12150 12151 CPU_ZERO(&cpuset); 12152 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset); 12153 if (rc != 0) 12154 return (rc); 12155 12156 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 12157 if (sb == NULL) 12158 return (ENOMEM); 12159 12160 CPU_FOREACH(i) 12161 sbuf_printf(sb, "%d ", i); 12162 rc = sbuf_finish(sb); 12163 sbuf_delete(sb); 12164 12165 return (rc); 12166 } 12167 12168 static int 12169 sysctl_reset(SYSCTL_HANDLER_ARGS) 12170 { 12171 struct adapter *sc = arg1; 12172 u_int val; 12173 int rc; 12174 12175 val = atomic_load_int(&sc->num_resets); 12176 rc = sysctl_handle_int(oidp, &val, 0, req); 12177 if (rc != 0 || req->newptr == NULL) 12178 return (rc); 12179 12180 if (val == 0) { 12181 /* Zero out the counter that tracks reset. */ 12182 atomic_store_int(&sc->num_resets, 0); 12183 return (0); 12184 } 12185 12186 if (val != 1) 12187 return (EINVAL); /* 0 or 1 are the only legal values */ 12188 12189 if (hw_off_limits(sc)) /* harmless race */ 12190 return (EALREADY); 12191 12192 taskqueue_enqueue(reset_tq, &sc->reset_task); 12193 return (0); 12194 } 12195 12196 #ifdef TCP_OFFLOAD 12197 static int 12198 sysctl_tls(SYSCTL_HANDLER_ARGS) 12199 { 12200 struct adapter *sc = arg1; 12201 int i, j, v, rc; 12202 struct vi_info *vi; 12203 12204 v = sc->tt.tls; 12205 rc = sysctl_handle_int(oidp, &v, 0, req); 12206 if (rc != 0 || req->newptr == NULL) 12207 return (rc); 12208 12209 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 12210 return (ENOTSUP); 12211 12212 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls"); 12213 if (rc) 12214 return (rc); 12215 if (hw_off_limits(sc)) 12216 rc = ENXIO; 12217 else { 12218 sc->tt.tls = !!v; 12219 for_each_port(sc, i) { 12220 for_each_vi(sc->port[i], j, vi) { 12221 if (vi->flags & VI_INIT_DONE) 12222 t4_update_fl_bufsize(vi->ifp); 12223 } 12224 } 12225 } 12226 end_synchronized_op(sc, 0); 12227 12228 return (rc); 12229 12230 } 12231 12232 static void 12233 unit_conv(char *buf, size_t len, u_int val, u_int factor) 12234 { 12235 u_int rem = val % factor; 12236 12237 if (rem == 0) 12238 snprintf(buf, len, "%u", val / factor); 12239 else { 12240 while (rem % 10 == 0) 12241 rem /= 10; 12242 snprintf(buf, len, "%u.%u", val / factor, rem); 12243 } 12244 } 12245 12246 static int 12247 sysctl_tp_tick(SYSCTL_HANDLER_ARGS) 12248 { 12249 struct adapter *sc = arg1; 12250 char buf[16]; 12251 u_int res, re; 12252 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 12253 12254 mtx_lock(&sc->reg_lock); 12255 if (hw_off_limits(sc)) 12256 res = (u_int)-1; 12257 else 12258 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 12259 mtx_unlock(&sc->reg_lock); 12260 if (res == (u_int)-1) 12261 return (ENXIO); 12262 12263 switch (arg2) { 12264 case 0: 12265 /* timer_tick */ 12266 re = G_TIMERRESOLUTION(res); 12267 break; 12268 case 1: 12269 /* TCP timestamp tick */ 12270 re = G_TIMESTAMPRESOLUTION(res); 12271 break; 12272 case 2: 12273 /* DACK tick */ 12274 re = G_DELAYEDACKRESOLUTION(res); 12275 break; 12276 default: 12277 return (EDOOFUS); 12278 } 12279 12280 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000); 12281 12282 return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); 12283 } 12284 12285 static int 12286 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS) 12287 { 12288 struct adapter *sc = arg1; 12289 int rc; 12290 u_int dack_tmr, dack_re, v; 12291 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 12292 12293 mtx_lock(&sc->reg_lock); 12294 if (hw_off_limits(sc)) 12295 rc = ENXIO; 12296 else { 12297 rc = 0; 12298 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc, 12299 A_TP_TIMER_RESOLUTION)); 12300 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER); 12301 } 12302 mtx_unlock(&sc->reg_lock); 12303 if (rc != 0) 12304 return (rc); 12305 12306 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr; 12307 12308 return (sysctl_handle_int(oidp, &v, 0, req)); 12309 } 12310 12311 static int 12312 sysctl_tp_timer(SYSCTL_HANDLER_ARGS) 12313 { 12314 struct adapter *sc = arg1; 12315 int rc, reg = arg2; 12316 u_int tre; 12317 u_long tp_tick_us, v; 12318 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 12319 12320 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX || 12321 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX || 12322 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL || 12323 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER); 12324 12325 mtx_lock(&sc->reg_lock); 12326 if (hw_off_limits(sc)) 12327 rc = ENXIO; 12328 else { 12329 rc = 0; 12330 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION)); 12331 tp_tick_us = (cclk_ps << tre) / 1000000; 12332 if (reg == A_TP_INIT_SRTT) 12333 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg)); 12334 else 12335 v = tp_tick_us * t4_read_reg(sc, reg); 12336 } 12337 mtx_unlock(&sc->reg_lock); 12338 if (rc != 0) 12339 return (rc); 12340 else 12341 return (sysctl_handle_long(oidp, &v, 0, req)); 12342 } 12343 12344 /* 12345 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is 12346 * passed to this function. 12347 */ 12348 static int 12349 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS) 12350 { 12351 struct adapter *sc = arg1; 12352 int rc, idx = arg2; 12353 u_int v; 12354 12355 MPASS(idx >= 0 && idx <= 24); 12356 12357 mtx_lock(&sc->reg_lock); 12358 if (hw_off_limits(sc)) 12359 rc = ENXIO; 12360 else { 12361 rc = 0; 12362 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf; 12363 } 12364 mtx_unlock(&sc->reg_lock); 12365 if (rc != 0) 12366 return (rc); 12367 else 12368 return (sysctl_handle_int(oidp, &v, 0, req)); 12369 } 12370 12371 static int 12372 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS) 12373 { 12374 struct adapter *sc = arg1; 12375 int rc, idx = arg2; 12376 u_int shift, v, r; 12377 12378 MPASS(idx >= 0 && idx < 16); 12379 12380 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3); 12381 shift = (idx & 3) << 3; 12382 mtx_lock(&sc->reg_lock); 12383 if (hw_off_limits(sc)) 12384 rc = ENXIO; 12385 else { 12386 rc = 0; 12387 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0; 12388 } 12389 mtx_unlock(&sc->reg_lock); 12390 if (rc != 0) 12391 return (rc); 12392 else 12393 return (sysctl_handle_int(oidp, &v, 0, req)); 12394 } 12395 12396 static int 12397 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS) 12398 { 12399 struct vi_info *vi = arg1; 12400 struct adapter *sc = vi->adapter; 12401 int idx, rc, i; 12402 struct sge_ofld_rxq *ofld_rxq; 12403 uint8_t v; 12404 12405 idx = vi->ofld_tmr_idx; 12406 12407 rc = sysctl_handle_int(oidp, &idx, 0, req); 12408 if (rc != 0 || req->newptr == NULL) 12409 return (rc); 12410 12411 if (idx < 0 || idx >= SGE_NTIMERS) 12412 return (EINVAL); 12413 12414 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 12415 "t4otmr"); 12416 if (rc) 12417 return (rc); 12418 12419 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1); 12420 for_each_ofld_rxq(vi, i, ofld_rxq) { 12421 #ifdef atomic_store_rel_8 12422 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); 12423 #else 12424 ofld_rxq->iq.intr_params = v; 12425 #endif 12426 } 12427 vi->ofld_tmr_idx = idx; 12428 12429 end_synchronized_op(sc, LOCK_HELD); 12430 return (0); 12431 } 12432 12433 static int 12434 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS) 12435 { 12436 struct vi_info *vi = arg1; 12437 struct adapter *sc = vi->adapter; 12438 int idx, rc; 12439 12440 idx = vi->ofld_pktc_idx; 12441 12442 rc = sysctl_handle_int(oidp, &idx, 0, req); 12443 if (rc != 0 || req->newptr == NULL) 12444 return (rc); 12445 12446 if (idx < -1 || idx >= SGE_NCOUNTERS) 12447 return (EINVAL); 12448 12449 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 12450 "t4opktc"); 12451 if (rc) 12452 return (rc); 12453 12454 if (vi->flags & VI_INIT_DONE) 12455 rc = EBUSY; /* cannot be changed once the queues are created */ 12456 else 12457 vi->ofld_pktc_idx = idx; 12458 12459 end_synchronized_op(sc, LOCK_HELD); 12460 return (rc); 12461 } 12462 #endif 12463 12464 static int 12465 get_sge_context(struct adapter *sc, int mem_id, uint32_t cid, int len, 12466 uint32_t *data) 12467 { 12468 int rc; 12469 12470 if (len < sc->chip_params->sge_ctxt_size) 12471 return (ENOBUFS); 12472 if (cid > M_CTXTQID) 12473 return (EINVAL); 12474 if (mem_id != CTXT_EGRESS && mem_id != CTXT_INGRESS && 12475 mem_id != CTXT_FLM && mem_id != CTXT_CNM) 12476 return (EINVAL); 12477 12478 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); 12479 if (rc) 12480 return (rc); 12481 12482 if (hw_off_limits(sc)) { 12483 rc = ENXIO; 12484 goto done; 12485 } 12486 12487 if (sc->flags & FW_OK) { 12488 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cid, mem_id, data); 12489 if (rc == 0) 12490 goto done; 12491 } 12492 12493 /* 12494 * Read via firmware failed or wasn't even attempted. Read directly via 12495 * the backdoor. 12496 */ 12497 rc = -t4_sge_ctxt_rd_bd(sc, cid, mem_id, data); 12498 done: 12499 end_synchronized_op(sc, 0); 12500 return (rc); 12501 } 12502 12503 static int 12504 load_fw(struct adapter *sc, struct t4_data *fw) 12505 { 12506 int rc; 12507 uint8_t *fw_data; 12508 12509 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); 12510 if (rc) 12511 return (rc); 12512 12513 if (hw_off_limits(sc)) { 12514 rc = ENXIO; 12515 goto done; 12516 } 12517 12518 /* 12519 * The firmware, with the sole exception of the memory parity error 12520 * handler, runs from memory and not flash. It is almost always safe to 12521 * install a new firmware on a running system. Just set bit 1 in 12522 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first. 12523 */ 12524 if (sc->flags & FULL_INIT_DONE && 12525 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) { 12526 rc = EBUSY; 12527 goto done; 12528 } 12529 12530 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); 12531 12532 rc = copyin(fw->data, fw_data, fw->len); 12533 if (rc == 0) 12534 rc = -t4_load_fw(sc, fw_data, fw->len); 12535 12536 free(fw_data, M_CXGBE); 12537 done: 12538 end_synchronized_op(sc, 0); 12539 return (rc); 12540 } 12541 12542 static int 12543 load_cfg(struct adapter *sc, struct t4_data *cfg) 12544 { 12545 int rc; 12546 uint8_t *cfg_data = NULL; 12547 12548 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 12549 if (rc) 12550 return (rc); 12551 12552 if (hw_off_limits(sc)) { 12553 rc = ENXIO; 12554 goto done; 12555 } 12556 12557 if (cfg->len == 0) { 12558 /* clear */ 12559 rc = -t4_load_cfg(sc, NULL, 0); 12560 goto done; 12561 } 12562 12563 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK); 12564 12565 rc = copyin(cfg->data, cfg_data, cfg->len); 12566 if (rc == 0) 12567 rc = -t4_load_cfg(sc, cfg_data, cfg->len); 12568 12569 free(cfg_data, M_CXGBE); 12570 done: 12571 end_synchronized_op(sc, 0); 12572 return (rc); 12573 } 12574 12575 static int 12576 load_boot(struct adapter *sc, struct t4_bootrom *br) 12577 { 12578 int rc; 12579 uint8_t *br_data = NULL; 12580 u_int offset; 12581 12582 if (br->len > 1024 * 1024) 12583 return (EFBIG); 12584 12585 if (br->pf_offset == 0) { 12586 /* pfidx */ 12587 if (br->pfidx_addr > 7) 12588 return (EINVAL); 12589 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr, 12590 A_PCIE_PF_EXPROM_OFST))); 12591 } else if (br->pf_offset == 1) { 12592 /* offset */ 12593 offset = G_OFFSET(br->pfidx_addr); 12594 } else { 12595 return (EINVAL); 12596 } 12597 12598 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr"); 12599 if (rc) 12600 return (rc); 12601 12602 if (hw_off_limits(sc)) { 12603 rc = ENXIO; 12604 goto done; 12605 } 12606 12607 if (br->len == 0) { 12608 /* clear */ 12609 rc = -t4_load_boot(sc, NULL, offset, 0); 12610 goto done; 12611 } 12612 12613 br_data = malloc(br->len, M_CXGBE, M_WAITOK); 12614 12615 rc = copyin(br->data, br_data, br->len); 12616 if (rc == 0) 12617 rc = -t4_load_boot(sc, br_data, offset, br->len); 12618 12619 free(br_data, M_CXGBE); 12620 done: 12621 end_synchronized_op(sc, 0); 12622 return (rc); 12623 } 12624 12625 static int 12626 load_bootcfg(struct adapter *sc, struct t4_data *bc) 12627 { 12628 int rc; 12629 uint8_t *bc_data = NULL; 12630 12631 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 12632 if (rc) 12633 return (rc); 12634 12635 if (hw_off_limits(sc)) { 12636 rc = ENXIO; 12637 goto done; 12638 } 12639 12640 if (bc->len == 0) { 12641 /* clear */ 12642 rc = -t4_load_bootcfg(sc, NULL, 0); 12643 goto done; 12644 } 12645 12646 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK); 12647 12648 rc = copyin(bc->data, bc_data, bc->len); 12649 if (rc == 0) 12650 rc = -t4_load_bootcfg(sc, bc_data, bc->len); 12651 12652 free(bc_data, M_CXGBE); 12653 done: 12654 end_synchronized_op(sc, 0); 12655 return (rc); 12656 } 12657 12658 static int 12659 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump) 12660 { 12661 int rc; 12662 struct cudbg_init *cudbg; 12663 void *handle, *buf; 12664 12665 /* buf is large, don't block if no memory is available */ 12666 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO); 12667 if (buf == NULL) 12668 return (ENOMEM); 12669 12670 handle = cudbg_alloc_handle(); 12671 if (handle == NULL) { 12672 rc = ENOMEM; 12673 goto done; 12674 } 12675 12676 cudbg = cudbg_get_init(handle); 12677 cudbg->adap = sc; 12678 cudbg->print = (cudbg_print_cb)printf; 12679 12680 #ifndef notyet 12681 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n", 12682 __func__, dump->wr_flash, dump->len, dump->data); 12683 #endif 12684 12685 if (dump->wr_flash) 12686 cudbg->use_flash = 1; 12687 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap)); 12688 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap)); 12689 12690 rc = cudbg_collect(handle, buf, &dump->len); 12691 if (rc != 0) 12692 goto done; 12693 12694 rc = copyout(buf, dump->data, dump->len); 12695 done: 12696 cudbg_free_handle(handle); 12697 free(buf, M_CXGBE); 12698 return (rc); 12699 } 12700 12701 static void 12702 free_offload_policy(struct t4_offload_policy *op) 12703 { 12704 struct offload_rule *r; 12705 int i; 12706 12707 if (op == NULL) 12708 return; 12709 12710 r = &op->rule[0]; 12711 for (i = 0; i < op->nrules; i++, r++) { 12712 free(r->bpf_prog.bf_insns, M_CXGBE); 12713 } 12714 free(op->rule, M_CXGBE); 12715 free(op, M_CXGBE); 12716 } 12717 12718 static int 12719 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop) 12720 { 12721 int i, rc, len; 12722 struct t4_offload_policy *op, *old; 12723 struct bpf_program *bf; 12724 const struct offload_settings *s; 12725 struct offload_rule *r; 12726 void *u; 12727 12728 if (!is_offload(sc)) 12729 return (ENODEV); 12730 12731 if (uop->nrules == 0) { 12732 /* Delete installed policies. */ 12733 op = NULL; 12734 goto set_policy; 12735 } else if (uop->nrules > 256) { /* arbitrary */ 12736 return (E2BIG); 12737 } 12738 12739 /* Copy userspace offload policy to kernel */ 12740 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK); 12741 op->nrules = uop->nrules; 12742 len = op->nrules * sizeof(struct offload_rule); 12743 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 12744 rc = copyin(uop->rule, op->rule, len); 12745 if (rc) { 12746 free(op->rule, M_CXGBE); 12747 free(op, M_CXGBE); 12748 return (rc); 12749 } 12750 12751 r = &op->rule[0]; 12752 for (i = 0; i < op->nrules; i++, r++) { 12753 12754 /* Validate open_type */ 12755 if (r->open_type != OPEN_TYPE_LISTEN && 12756 r->open_type != OPEN_TYPE_ACTIVE && 12757 r->open_type != OPEN_TYPE_PASSIVE && 12758 r->open_type != OPEN_TYPE_DONTCARE) { 12759 error: 12760 /* 12761 * Rules 0 to i have malloc'd filters that need to be 12762 * freed. Rules i+1 to nrules have userspace pointers 12763 * and should be left alone. 12764 */ 12765 op->nrules = i; 12766 free_offload_policy(op); 12767 return (rc); 12768 } 12769 12770 /* Validate settings */ 12771 s = &r->settings; 12772 if ((s->offload != 0 && s->offload != 1) || 12773 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED || 12774 s->sched_class < -1 || 12775 s->sched_class >= sc->params.nsched_cls) { 12776 rc = EINVAL; 12777 goto error; 12778 } 12779 12780 bf = &r->bpf_prog; 12781 u = bf->bf_insns; /* userspace ptr */ 12782 bf->bf_insns = NULL; 12783 if (bf->bf_len == 0) { 12784 /* legal, matches everything */ 12785 continue; 12786 } 12787 len = bf->bf_len * sizeof(*bf->bf_insns); 12788 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 12789 rc = copyin(u, bf->bf_insns, len); 12790 if (rc != 0) 12791 goto error; 12792 12793 if (!bpf_validate(bf->bf_insns, bf->bf_len)) { 12794 rc = EINVAL; 12795 goto error; 12796 } 12797 } 12798 set_policy: 12799 rw_wlock(&sc->policy_lock); 12800 old = sc->policy; 12801 sc->policy = op; 12802 rw_wunlock(&sc->policy_lock); 12803 free_offload_policy(old); 12804 12805 return (0); 12806 } 12807 12808 #define MAX_READ_BUF_SIZE (128 * 1024) 12809 static int 12810 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) 12811 { 12812 uint32_t addr, remaining, n; 12813 uint32_t *buf; 12814 int rc; 12815 uint8_t *dst; 12816 12817 mtx_lock(&sc->reg_lock); 12818 if (hw_off_limits(sc)) 12819 rc = ENXIO; 12820 else 12821 rc = validate_mem_range(sc, mr->addr, mr->len); 12822 mtx_unlock(&sc->reg_lock); 12823 if (rc != 0) 12824 return (rc); 12825 12826 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK); 12827 addr = mr->addr; 12828 remaining = mr->len; 12829 dst = (void *)mr->data; 12830 12831 while (remaining) { 12832 n = min(remaining, MAX_READ_BUF_SIZE); 12833 mtx_lock(&sc->reg_lock); 12834 if (hw_off_limits(sc)) 12835 rc = ENXIO; 12836 else 12837 read_via_memwin(sc, 2, addr, buf, n); 12838 mtx_unlock(&sc->reg_lock); 12839 if (rc != 0) 12840 break; 12841 12842 rc = copyout(buf, dst, n); 12843 if (rc != 0) 12844 break; 12845 12846 dst += n; 12847 remaining -= n; 12848 addr += n; 12849 } 12850 12851 free(buf, M_CXGBE); 12852 return (rc); 12853 } 12854 #undef MAX_READ_BUF_SIZE 12855 12856 static int 12857 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) 12858 { 12859 int rc; 12860 12861 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) 12862 return (EINVAL); 12863 12864 if (i2cd->len > sizeof(i2cd->data)) 12865 return (EFBIG); 12866 12867 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); 12868 if (rc) 12869 return (rc); 12870 if (hw_off_limits(sc)) 12871 rc = ENXIO; 12872 else 12873 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, 12874 i2cd->offset, i2cd->len, &i2cd->data[0]); 12875 end_synchronized_op(sc, 0); 12876 12877 return (rc); 12878 } 12879 12880 static int 12881 clear_stats(struct adapter *sc, u_int port_id) 12882 { 12883 int i, v, chan_map; 12884 struct port_info *pi; 12885 struct vi_info *vi; 12886 struct sge_rxq *rxq; 12887 struct sge_txq *txq; 12888 struct sge_wrq *wrq; 12889 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12890 struct sge_ofld_txq *ofld_txq; 12891 #endif 12892 #ifdef TCP_OFFLOAD 12893 struct sge_ofld_rxq *ofld_rxq; 12894 #endif 12895 12896 if (port_id >= sc->params.nports) 12897 return (EINVAL); 12898 pi = sc->port[port_id]; 12899 if (pi == NULL) 12900 return (EIO); 12901 12902 mtx_lock(&sc->reg_lock); 12903 if (!hw_off_limits(sc)) { 12904 /* MAC stats */ 12905 t4_clr_port_stats(sc, pi->hw_port); 12906 if (is_t6(sc)) { 12907 if (pi->fcs_reg != -1) 12908 pi->fcs_base = t4_read_reg64(sc, 12909 t4_port_reg(sc, pi->tx_chan, pi->fcs_reg)); 12910 else 12911 pi->stats.rx_fcs_err = 0; 12912 } 12913 for_each_vi(pi, v, vi) { 12914 if (vi->flags & VI_INIT_DONE) 12915 t4_clr_vi_stats(sc, vi->vin); 12916 } 12917 chan_map = pi->rx_e_chan_map; 12918 v = 0; /* reuse */ 12919 while (chan_map) { 12920 i = ffs(chan_map) - 1; 12921 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 12922 1, A_TP_MIB_TNL_CNG_DROP_0 + i); 12923 chan_map &= ~(1 << i); 12924 } 12925 } 12926 mtx_unlock(&sc->reg_lock); 12927 pi->tx_parse_error = 0; 12928 pi->tnl_cong_drops = 0; 12929 12930 /* 12931 * Since this command accepts a port, clear stats for 12932 * all VIs on this port. 12933 */ 12934 for_each_vi(pi, v, vi) { 12935 if (vi->flags & VI_INIT_DONE) { 12936 12937 for_each_rxq(vi, i, rxq) { 12938 #if defined(INET) || defined(INET6) 12939 rxq->lro.lro_queued = 0; 12940 rxq->lro.lro_flushed = 0; 12941 #endif 12942 rxq->rxcsum = 0; 12943 rxq->vlan_extraction = 0; 12944 rxq->vxlan_rxcsum = 0; 12945 12946 rxq->fl.cl_allocated = 0; 12947 rxq->fl.cl_recycled = 0; 12948 rxq->fl.cl_fast_recycled = 0; 12949 } 12950 12951 for_each_txq(vi, i, txq) { 12952 txq->txcsum = 0; 12953 txq->tso_wrs = 0; 12954 txq->vlan_insertion = 0; 12955 txq->imm_wrs = 0; 12956 txq->sgl_wrs = 0; 12957 txq->txpkt_wrs = 0; 12958 txq->txpkts0_wrs = 0; 12959 txq->txpkts1_wrs = 0; 12960 txq->txpkts0_pkts = 0; 12961 txq->txpkts1_pkts = 0; 12962 txq->txpkts_flush = 0; 12963 txq->raw_wrs = 0; 12964 txq->vxlan_tso_wrs = 0; 12965 txq->vxlan_txcsum = 0; 12966 txq->kern_tls_records = 0; 12967 txq->kern_tls_short = 0; 12968 txq->kern_tls_partial = 0; 12969 txq->kern_tls_full = 0; 12970 txq->kern_tls_octets = 0; 12971 txq->kern_tls_waste = 0; 12972 txq->kern_tls_header = 0; 12973 txq->kern_tls_fin_short = 0; 12974 txq->kern_tls_cbc = 0; 12975 txq->kern_tls_gcm = 0; 12976 if (is_t6(sc)) { 12977 txq->kern_tls_options = 0; 12978 txq->kern_tls_fin = 0; 12979 } else { 12980 txq->kern_tls_ghash_received = 0; 12981 txq->kern_tls_ghash_requested = 0; 12982 txq->kern_tls_lso = 0; 12983 txq->kern_tls_partial_ghash = 0; 12984 txq->kern_tls_splitmode = 0; 12985 txq->kern_tls_trailer = 0; 12986 } 12987 mp_ring_reset_stats(txq->r); 12988 } 12989 12990 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12991 for_each_ofld_txq(vi, i, ofld_txq) { 12992 ofld_txq->wrq.tx_wrs_direct = 0; 12993 ofld_txq->wrq.tx_wrs_copied = 0; 12994 counter_u64_zero(ofld_txq->tx_iscsi_pdus); 12995 counter_u64_zero(ofld_txq->tx_iscsi_octets); 12996 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs); 12997 counter_u64_zero(ofld_txq->tx_nvme_pdus); 12998 counter_u64_zero(ofld_txq->tx_nvme_octets); 12999 counter_u64_zero(ofld_txq->tx_nvme_iso_wrs); 13000 counter_u64_zero(ofld_txq->tx_aio_jobs); 13001 counter_u64_zero(ofld_txq->tx_aio_octets); 13002 counter_u64_zero(ofld_txq->tx_toe_tls_records); 13003 counter_u64_zero(ofld_txq->tx_toe_tls_octets); 13004 } 13005 #endif 13006 #ifdef TCP_OFFLOAD 13007 for_each_ofld_rxq(vi, i, ofld_rxq) { 13008 ofld_rxq->fl.cl_allocated = 0; 13009 ofld_rxq->fl.cl_recycled = 0; 13010 ofld_rxq->fl.cl_fast_recycled = 0; 13011 counter_u64_zero( 13012 ofld_rxq->rx_iscsi_ddp_setup_ok); 13013 counter_u64_zero( 13014 ofld_rxq->rx_iscsi_ddp_setup_error); 13015 ofld_rxq->rx_iscsi_ddp_pdus = 0; 13016 ofld_rxq->rx_iscsi_ddp_octets = 0; 13017 ofld_rxq->rx_iscsi_fl_pdus = 0; 13018 ofld_rxq->rx_iscsi_fl_octets = 0; 13019 counter_u64_zero( 13020 ofld_rxq->rx_nvme_ddp_setup_ok); 13021 counter_u64_zero( 13022 ofld_rxq->rx_nvme_ddp_setup_no_stag); 13023 counter_u64_zero( 13024 ofld_rxq->rx_nvme_ddp_setup_error); 13025 counter_u64_zero(ofld_rxq->rx_nvme_ddp_pdus); 13026 counter_u64_zero(ofld_rxq->rx_nvme_ddp_octets); 13027 counter_u64_zero(ofld_rxq->rx_nvme_fl_pdus); 13028 counter_u64_zero(ofld_rxq->rx_nvme_fl_octets); 13029 counter_u64_zero( 13030 ofld_rxq->rx_nvme_invalid_headers); 13031 counter_u64_zero( 13032 ofld_rxq->rx_nvme_header_digest_errors); 13033 counter_u64_zero( 13034 ofld_rxq->rx_nvme_data_digest_errors); 13035 ofld_rxq->rx_aio_ddp_jobs = 0; 13036 ofld_rxq->rx_aio_ddp_octets = 0; 13037 ofld_rxq->rx_toe_tls_records = 0; 13038 ofld_rxq->rx_toe_tls_octets = 0; 13039 ofld_rxq->rx_toe_ddp_octets = 0; 13040 counter_u64_zero(ofld_rxq->ddp_buffer_alloc); 13041 counter_u64_zero(ofld_rxq->ddp_buffer_reuse); 13042 counter_u64_zero(ofld_rxq->ddp_buffer_free); 13043 } 13044 #endif 13045 13046 if (IS_MAIN_VI(vi)) { 13047 wrq = &sc->sge.ctrlq[pi->port_id]; 13048 wrq->tx_wrs_direct = 0; 13049 wrq->tx_wrs_copied = 0; 13050 } 13051 } 13052 } 13053 13054 return (0); 13055 } 13056 13057 static int 13058 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 13059 { 13060 #ifdef INET6 13061 struct in6_addr in6; 13062 13063 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 13064 if (t4_get_clip_entry(sc, &in6, true) != NULL) 13065 return (0); 13066 else 13067 return (EIO); 13068 #else 13069 return (ENOTSUP); 13070 #endif 13071 } 13072 13073 static int 13074 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 13075 { 13076 #ifdef INET6 13077 struct in6_addr in6; 13078 13079 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 13080 return (t4_release_clip_addr(sc, &in6)); 13081 #else 13082 return (ENOTSUP); 13083 #endif 13084 } 13085 13086 int 13087 t4_os_find_pci_capability(struct adapter *sc, int cap) 13088 { 13089 int i; 13090 13091 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); 13092 } 13093 13094 void 13095 t4_os_portmod_changed(struct port_info *pi) 13096 { 13097 struct adapter *sc = pi->adapter; 13098 struct vi_info *vi; 13099 if_t ifp; 13100 static const char *mod_str[] = { 13101 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM", 13102 "LR_SIMPLEX", "DR" 13103 }; 13104 13105 KASSERT((pi->flags & FIXED_IFMEDIA) == 0, 13106 ("%s: port_type %u", __func__, pi->port_type)); 13107 13108 vi = &pi->vi[0]; 13109 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) { 13110 PORT_LOCK(pi); 13111 build_medialist(pi); 13112 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) { 13113 fixup_link_config(pi); 13114 apply_link_config(pi); 13115 } 13116 PORT_UNLOCK(pi); 13117 end_synchronized_op(sc, LOCK_HELD); 13118 } 13119 13120 ifp = vi->ifp; 13121 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 13122 if_printf(ifp, "transceiver unplugged.\n"); 13123 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 13124 if_printf(ifp, "unknown transceiver inserted.\n"); 13125 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 13126 if_printf(ifp, "unsupported transceiver inserted.\n"); 13127 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { 13128 if_printf(ifp, "%dGbps %s transceiver inserted.\n", 13129 port_top_speed(pi), mod_str[pi->mod_type]); 13130 } else { 13131 if_printf(ifp, "transceiver (type %d) inserted.\n", 13132 pi->mod_type); 13133 } 13134 } 13135 13136 void 13137 t4_os_link_changed(struct port_info *pi) 13138 { 13139 struct vi_info *vi; 13140 if_t ifp; 13141 struct link_config *lc = &pi->link_cfg; 13142 struct adapter *sc = pi->adapter; 13143 int v; 13144 13145 PORT_LOCK_ASSERT_OWNED(pi); 13146 13147 if (is_t6(sc)) { 13148 if (lc->link_ok) { 13149 if (lc->speed > 25000 || 13150 (lc->speed == 25000 && lc->fec == FEC_RS)) 13151 pi->fcs_reg = A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS; 13152 else 13153 pi->fcs_reg = A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS; 13154 pi->fcs_base = t4_read_reg64(sc, 13155 t4_port_reg(sc, pi->tx_chan, pi->fcs_reg)); 13156 pi->stats.rx_fcs_err = 0; 13157 } else { 13158 pi->fcs_reg = -1; 13159 } 13160 } else { 13161 MPASS(pi->fcs_reg != -1); 13162 MPASS(pi->fcs_base == 0); 13163 } 13164 13165 for_each_vi(pi, v, vi) { 13166 ifp = vi->ifp; 13167 if (ifp == NULL || IS_DETACHING(vi)) 13168 continue; 13169 13170 if (lc->link_ok) { 13171 if_setbaudrate(ifp, IF_Mbps(lc->speed)); 13172 if_link_state_change(ifp, LINK_STATE_UP); 13173 } else { 13174 if_link_state_change(ifp, LINK_STATE_DOWN); 13175 } 13176 } 13177 } 13178 13179 void 13180 t4_iterate(void (*func)(struct adapter *, void *), void *arg) 13181 { 13182 struct adapter *sc; 13183 13184 sx_slock(&t4_list_lock); 13185 SLIST_FOREACH(sc, &t4_list, link) { 13186 /* 13187 * func should not make any assumptions about what state sc is 13188 * in - the only guarantee is that sc->sc_lock is a valid lock. 13189 */ 13190 func(sc, arg); 13191 } 13192 sx_sunlock(&t4_list_lock); 13193 } 13194 13195 static int 13196 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 13197 struct thread *td) 13198 { 13199 int rc; 13200 struct adapter *sc = dev->si_drv1; 13201 13202 rc = priv_check(td, PRIV_DRIVER); 13203 if (rc != 0) 13204 return (rc); 13205 13206 switch (cmd) { 13207 case CHELSIO_T4_GETREG: { 13208 struct t4_reg *edata = (struct t4_reg *)data; 13209 13210 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 13211 return (EFAULT); 13212 13213 mtx_lock(&sc->reg_lock); 13214 if (hw_off_limits(sc)) 13215 rc = ENXIO; 13216 else if (edata->size == 4) 13217 edata->val = t4_read_reg(sc, edata->addr); 13218 else if (edata->size == 8) 13219 edata->val = t4_read_reg64(sc, edata->addr); 13220 else 13221 rc = EINVAL; 13222 mtx_unlock(&sc->reg_lock); 13223 13224 break; 13225 } 13226 case CHELSIO_T4_SETREG: { 13227 struct t4_reg *edata = (struct t4_reg *)data; 13228 13229 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 13230 return (EFAULT); 13231 13232 mtx_lock(&sc->reg_lock); 13233 if (hw_off_limits(sc)) 13234 rc = ENXIO; 13235 else if (edata->size == 4) { 13236 if (edata->val & 0xffffffff00000000) 13237 rc = EINVAL; 13238 t4_write_reg(sc, edata->addr, (uint32_t) edata->val); 13239 } else if (edata->size == 8) 13240 t4_write_reg64(sc, edata->addr, edata->val); 13241 else 13242 rc = EINVAL; 13243 mtx_unlock(&sc->reg_lock); 13244 13245 break; 13246 } 13247 case CHELSIO_T4_REGDUMP: { 13248 struct t4_regdump *regs = (struct t4_regdump *)data; 13249 int reglen = t4_get_regs_len(sc); 13250 uint8_t *buf; 13251 13252 if (regs->len < reglen) { 13253 regs->len = reglen; /* hint to the caller */ 13254 return (ENOBUFS); 13255 } 13256 13257 regs->len = reglen; 13258 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); 13259 mtx_lock(&sc->reg_lock); 13260 if (hw_off_limits(sc)) 13261 rc = ENXIO; 13262 else 13263 get_regs(sc, regs, buf); 13264 mtx_unlock(&sc->reg_lock); 13265 if (rc == 0) 13266 rc = copyout(buf, regs->data, reglen); 13267 free(buf, M_CXGBE); 13268 break; 13269 } 13270 case CHELSIO_T4_GET_FILTER_MODE: 13271 rc = get_filter_mode(sc, (uint32_t *)data); 13272 break; 13273 case CHELSIO_T4_SET_FILTER_MODE: 13274 rc = set_filter_mode(sc, *(uint32_t *)data); 13275 break; 13276 case CHELSIO_T4_SET_FILTER_MASK: 13277 rc = set_filter_mask(sc, *(uint32_t *)data); 13278 break; 13279 case CHELSIO_T4_GET_FILTER: 13280 rc = get_filter(sc, (struct t4_filter *)data); 13281 break; 13282 case CHELSIO_T4_SET_FILTER: 13283 rc = set_filter(sc, (struct t4_filter *)data); 13284 break; 13285 case CHELSIO_T4_DEL_FILTER: 13286 rc = del_filter(sc, (struct t4_filter *)data); 13287 break; 13288 case CHELSIO_T4_GET_SGE_CONTEXT: { 13289 struct t4_sge_context *ctxt = (struct t4_sge_context *)data; 13290 13291 rc = get_sge_context(sc, ctxt->mem_id, ctxt->cid, 13292 sizeof(ctxt->data), &ctxt->data[0]); 13293 break; 13294 } 13295 case CHELSIO_T4_LOAD_FW: 13296 rc = load_fw(sc, (struct t4_data *)data); 13297 break; 13298 case CHELSIO_T4_GET_MEM: 13299 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); 13300 break; 13301 case CHELSIO_T4_GET_I2C: 13302 rc = read_i2c(sc, (struct t4_i2c_data *)data); 13303 break; 13304 case CHELSIO_T4_CLEAR_STATS: 13305 rc = clear_stats(sc, *(uint32_t *)data); 13306 break; 13307 case CHELSIO_T4_SCHED_CLASS: 13308 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data); 13309 break; 13310 case CHELSIO_T4_SCHED_QUEUE: 13311 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data); 13312 break; 13313 case CHELSIO_T4_GET_TRACER: 13314 rc = t4_get_tracer(sc, (struct t4_tracer *)data); 13315 break; 13316 case CHELSIO_T4_SET_TRACER: 13317 rc = t4_set_tracer(sc, (struct t4_tracer *)data); 13318 break; 13319 case CHELSIO_T4_LOAD_CFG: 13320 rc = load_cfg(sc, (struct t4_data *)data); 13321 break; 13322 case CHELSIO_T4_LOAD_BOOT: 13323 rc = load_boot(sc, (struct t4_bootrom *)data); 13324 break; 13325 case CHELSIO_T4_LOAD_BOOTCFG: 13326 rc = load_bootcfg(sc, (struct t4_data *)data); 13327 break; 13328 case CHELSIO_T4_CUDBG_DUMP: 13329 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data); 13330 break; 13331 case CHELSIO_T4_SET_OFLD_POLICY: 13332 rc = set_offload_policy(sc, (struct t4_offload_policy *)data); 13333 break; 13334 case CHELSIO_T4_HOLD_CLIP_ADDR: 13335 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data); 13336 break; 13337 case CHELSIO_T4_RELEASE_CLIP_ADDR: 13338 rc = release_clip_addr(sc, (struct t4_clip_addr *)data); 13339 break; 13340 case CHELSIO_T4_GET_SGE_CTXT: { 13341 struct t4_sge_ctxt *ctxt = (struct t4_sge_ctxt *)data; 13342 13343 rc = get_sge_context(sc, ctxt->mem_id, ctxt->cid, 13344 sizeof(ctxt->data), &ctxt->data[0]); 13345 break; 13346 } 13347 default: 13348 rc = ENOTTY; 13349 } 13350 13351 return (rc); 13352 } 13353 13354 #ifdef TCP_OFFLOAD 13355 int 13356 toe_capability(struct vi_info *vi, bool enable) 13357 { 13358 int rc; 13359 struct port_info *pi = vi->pi; 13360 struct adapter *sc = pi->adapter; 13361 13362 ASSERT_SYNCHRONIZED_OP(sc); 13363 13364 if (!is_offload(sc)) 13365 return (ENODEV); 13366 if (!hw_all_ok(sc)) 13367 return (ENXIO); 13368 13369 if (enable) { 13370 #ifdef KERN_TLS 13371 if (sc->flags & KERN_TLS_ON && is_t6(sc)) { 13372 int i, j, n; 13373 struct port_info *p; 13374 struct vi_info *v; 13375 13376 /* 13377 * Reconfigure hardware for TOE if TXTLS is not enabled 13378 * on any ifnet. 13379 */ 13380 n = 0; 13381 for_each_port(sc, i) { 13382 p = sc->port[i]; 13383 for_each_vi(p, j, v) { 13384 if (if_getcapenable(v->ifp) & IFCAP_TXTLS) { 13385 CH_WARN(sc, 13386 "%s has NIC TLS enabled.\n", 13387 device_get_nameunit(v->dev)); 13388 n++; 13389 } 13390 } 13391 } 13392 if (n > 0) { 13393 CH_WARN(sc, "Disable NIC TLS on all interfaces " 13394 "associated with this adapter before " 13395 "trying to enable TOE.\n"); 13396 return (EAGAIN); 13397 } 13398 rc = t6_config_kern_tls(sc, false); 13399 if (rc) 13400 return (rc); 13401 } 13402 #endif 13403 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) != 0) { 13404 /* TOE is already enabled. */ 13405 return (0); 13406 } 13407 13408 /* 13409 * We need the port's queues around so that we're able to send 13410 * and receive CPLs to/from the TOE even if the ifnet for this 13411 * port has never been UP'd administratively. 13412 */ 13413 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 13414 return (rc); 13415 if (!(pi->vi[0].flags & VI_INIT_DONE) && 13416 ((rc = vi_init(&pi->vi[0])) != 0)) 13417 return (rc); 13418 13419 if (isset(&sc->offload_map, pi->port_id)) { 13420 /* TOE is enabled on another VI of this port. */ 13421 MPASS(pi->uld_vis > 0); 13422 pi->uld_vis++; 13423 return (0); 13424 } 13425 13426 if (!uld_active(sc, ULD_TOM)) { 13427 rc = t4_activate_uld(sc, ULD_TOM); 13428 if (rc == EAGAIN) { 13429 log(LOG_WARNING, 13430 "You must kldload t4_tom.ko before trying " 13431 "to enable TOE on a cxgbe interface.\n"); 13432 } 13433 if (rc != 0) 13434 return (rc); 13435 KASSERT(sc->tom_softc != NULL, 13436 ("%s: TOM activated but softc NULL", __func__)); 13437 KASSERT(uld_active(sc, ULD_TOM), 13438 ("%s: TOM activated but flag not set", __func__)); 13439 } 13440 13441 /* 13442 * Activate iWARP, iSCSI, and NVMe too, if the modules 13443 * are loaded. 13444 */ 13445 if (!uld_active(sc, ULD_IWARP)) 13446 (void) t4_activate_uld(sc, ULD_IWARP); 13447 if (!uld_active(sc, ULD_ISCSI)) 13448 (void) t4_activate_uld(sc, ULD_ISCSI); 13449 if (!uld_active(sc, ULD_NVME)) 13450 (void) t4_activate_uld(sc, ULD_NVME); 13451 13452 if (pi->uld_vis++ == 0) 13453 setbit(&sc->offload_map, pi->port_id); 13454 } else { 13455 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) == 0) { 13456 /* TOE is already disabled. */ 13457 return (0); 13458 } 13459 MPASS(isset(&sc->offload_map, pi->port_id)); 13460 MPASS(pi->uld_vis > 0); 13461 if (--pi->uld_vis == 0) 13462 clrbit(&sc->offload_map, pi->port_id); 13463 } 13464 13465 return (0); 13466 } 13467 13468 /* 13469 * Add an upper layer driver to the global list. 13470 */ 13471 int 13472 t4_register_uld(struct uld_info *ui, int id) 13473 { 13474 int rc; 13475 13476 if (id < 0 || id > ULD_MAX) 13477 return (EINVAL); 13478 sx_xlock(&t4_uld_list_lock); 13479 if (t4_uld_list[id] != NULL) 13480 rc = EEXIST; 13481 else { 13482 t4_uld_list[id] = ui; 13483 rc = 0; 13484 } 13485 sx_xunlock(&t4_uld_list_lock); 13486 return (rc); 13487 } 13488 13489 int 13490 t4_unregister_uld(struct uld_info *ui, int id) 13491 { 13492 13493 if (id < 0 || id > ULD_MAX) 13494 return (EINVAL); 13495 sx_xlock(&t4_uld_list_lock); 13496 MPASS(t4_uld_list[id] == ui); 13497 t4_uld_list[id] = NULL; 13498 sx_xunlock(&t4_uld_list_lock); 13499 return (0); 13500 } 13501 13502 int 13503 t4_activate_uld(struct adapter *sc, int id) 13504 { 13505 int rc; 13506 13507 ASSERT_SYNCHRONIZED_OP(sc); 13508 13509 if (id < 0 || id > ULD_MAX) 13510 return (EINVAL); 13511 13512 /* Adapter needs to be initialized before any ULD can be activated. */ 13513 if (!(sc->flags & FULL_INIT_DONE)) { 13514 rc = adapter_init(sc); 13515 if (rc != 0) 13516 return (rc); 13517 } 13518 13519 sx_slock(&t4_uld_list_lock); 13520 if (t4_uld_list[id] == NULL) 13521 rc = EAGAIN; /* load the KLD with this ULD and try again. */ 13522 else { 13523 rc = t4_uld_list[id]->uld_activate(sc); 13524 if (rc == 0) 13525 setbit(&sc->active_ulds, id); 13526 } 13527 sx_sunlock(&t4_uld_list_lock); 13528 13529 return (rc); 13530 } 13531 13532 int 13533 t4_deactivate_uld(struct adapter *sc, int id) 13534 { 13535 int rc; 13536 13537 ASSERT_SYNCHRONIZED_OP(sc); 13538 13539 if (id < 0 || id > ULD_MAX) 13540 return (EINVAL); 13541 13542 sx_slock(&t4_uld_list_lock); 13543 if (t4_uld_list[id] == NULL) 13544 rc = ENXIO; 13545 else { 13546 rc = t4_uld_list[id]->uld_deactivate(sc); 13547 if (rc == 0) 13548 clrbit(&sc->active_ulds, id); 13549 } 13550 sx_sunlock(&t4_uld_list_lock); 13551 13552 return (rc); 13553 } 13554 13555 static int 13556 deactivate_all_uld(struct adapter *sc) 13557 { 13558 int i, rc; 13559 13560 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld"); 13561 if (rc != 0) 13562 return (ENXIO); 13563 sx_slock(&t4_uld_list_lock); 13564 for (i = 0; i <= ULD_MAX; i++) { 13565 if (t4_uld_list[i] == NULL || !uld_active(sc, i)) 13566 continue; 13567 rc = t4_uld_list[i]->uld_deactivate(sc); 13568 if (rc != 0) 13569 break; 13570 clrbit(&sc->active_ulds, i); 13571 } 13572 sx_sunlock(&t4_uld_list_lock); 13573 end_synchronized_op(sc, 0); 13574 13575 return (rc); 13576 } 13577 13578 static void 13579 stop_all_uld(struct adapter *sc) 13580 { 13581 int i; 13582 13583 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldst") != 0) 13584 return; 13585 sx_slock(&t4_uld_list_lock); 13586 for (i = 0; i <= ULD_MAX; i++) { 13587 if (t4_uld_list[i] == NULL || !uld_active(sc, i) || 13588 t4_uld_list[i]->uld_stop == NULL) 13589 continue; 13590 (void) t4_uld_list[i]->uld_stop(sc); 13591 } 13592 sx_sunlock(&t4_uld_list_lock); 13593 end_synchronized_op(sc, 0); 13594 } 13595 13596 static void 13597 restart_all_uld(struct adapter *sc) 13598 { 13599 int i; 13600 13601 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldre") != 0) 13602 return; 13603 sx_slock(&t4_uld_list_lock); 13604 for (i = 0; i <= ULD_MAX; i++) { 13605 if (t4_uld_list[i] == NULL || !uld_active(sc, i) || 13606 t4_uld_list[i]->uld_restart == NULL) 13607 continue; 13608 (void) t4_uld_list[i]->uld_restart(sc); 13609 } 13610 sx_sunlock(&t4_uld_list_lock); 13611 end_synchronized_op(sc, 0); 13612 } 13613 13614 int 13615 uld_active(struct adapter *sc, int id) 13616 { 13617 13618 MPASS(id >= 0 && id <= ULD_MAX); 13619 13620 return (isset(&sc->active_ulds, id)); 13621 } 13622 #endif 13623 13624 #ifdef KERN_TLS 13625 static int 13626 ktls_capability(struct adapter *sc, bool enable) 13627 { 13628 ASSERT_SYNCHRONIZED_OP(sc); 13629 13630 if (!is_ktls(sc)) 13631 return (ENODEV); 13632 if (!is_t6(sc)) 13633 return (0); 13634 if (!hw_all_ok(sc)) 13635 return (ENXIO); 13636 13637 if (enable) { 13638 if (sc->flags & KERN_TLS_ON) 13639 return (0); /* already on */ 13640 if (sc->offload_map != 0) { 13641 CH_WARN(sc, 13642 "Disable TOE on all interfaces associated with " 13643 "this adapter before trying to enable NIC TLS.\n"); 13644 return (EAGAIN); 13645 } 13646 return (t6_config_kern_tls(sc, true)); 13647 } else { 13648 /* 13649 * Nothing to do for disable. If TOE is enabled sometime later 13650 * then toe_capability will reconfigure the hardware. 13651 */ 13652 return (0); 13653 } 13654 } 13655 #endif 13656 13657 /* 13658 * t = ptr to tunable. 13659 * nc = number of CPUs. 13660 * c = compiled in default for that tunable. 13661 */ 13662 static void 13663 calculate_nqueues(int *t, int nc, const int c) 13664 { 13665 int nq; 13666 13667 if (*t > 0) 13668 return; 13669 nq = *t < 0 ? -*t : c; 13670 *t = min(nc, nq); 13671 } 13672 13673 /* 13674 * Come up with reasonable defaults for some of the tunables, provided they're 13675 * not set by the user (in which case we'll use the values as is). 13676 */ 13677 static void 13678 tweak_tunables(void) 13679 { 13680 int nc = mp_ncpus; /* our snapshot of the number of CPUs */ 13681 13682 if (t4_ntxq < 1) { 13683 #ifdef RSS 13684 t4_ntxq = rss_getnumbuckets(); 13685 #else 13686 calculate_nqueues(&t4_ntxq, nc, NTXQ); 13687 #endif 13688 } 13689 13690 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI); 13691 13692 if (t4_nrxq < 1) { 13693 #ifdef RSS 13694 t4_nrxq = rss_getnumbuckets(); 13695 #else 13696 calculate_nqueues(&t4_nrxq, nc, NRXQ); 13697 #endif 13698 } 13699 13700 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI); 13701 13702 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 13703 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ); 13704 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI); 13705 #endif 13706 #ifdef TCP_OFFLOAD 13707 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ); 13708 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI); 13709 #endif 13710 13711 #if defined(TCP_OFFLOAD) || defined(KERN_TLS) 13712 if (t4_toecaps_allowed == -1) 13713 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; 13714 #else 13715 if (t4_toecaps_allowed == -1) 13716 t4_toecaps_allowed = 0; 13717 #endif 13718 13719 #ifdef TCP_OFFLOAD 13720 if (t4_rdmacaps_allowed == -1) { 13721 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP | 13722 FW_CAPS_CONFIG_RDMA_RDMAC; 13723 } 13724 13725 if (t4_iscsicaps_allowed == -1) { 13726 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU | 13727 FW_CAPS_CONFIG_ISCSI_TARGET_PDU | 13728 FW_CAPS_CONFIG_ISCSI_T10DIF; 13729 } 13730 13731 if (t4_nvmecaps_allowed == -1) 13732 t4_nvmecaps_allowed = FW_CAPS_CONFIG_NVME_TCP; 13733 13734 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS) 13735 t4_tmr_idx_ofld = TMR_IDX_OFLD; 13736 13737 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS) 13738 t4_pktc_idx_ofld = PKTC_IDX_OFLD; 13739 #else 13740 if (t4_rdmacaps_allowed == -1) 13741 t4_rdmacaps_allowed = 0; 13742 13743 if (t4_iscsicaps_allowed == -1) 13744 t4_iscsicaps_allowed = 0; 13745 13746 if (t4_nvmecaps_allowed == -1) 13747 t4_nvmecaps_allowed = 0; 13748 #endif 13749 13750 #ifdef DEV_NETMAP 13751 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ); 13752 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ); 13753 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI); 13754 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI); 13755 #endif 13756 13757 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS) 13758 t4_tmr_idx = TMR_IDX; 13759 13760 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS) 13761 t4_pktc_idx = PKTC_IDX; 13762 13763 if (t4_qsize_txq < 128) 13764 t4_qsize_txq = 128; 13765 13766 if (t4_qsize_rxq < 128) 13767 t4_qsize_rxq = 128; 13768 while (t4_qsize_rxq & 7) 13769 t4_qsize_rxq++; 13770 13771 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; 13772 13773 /* 13774 * Number of VIs to create per-port. The first VI is the "main" regular 13775 * VI for the port. The rest are additional virtual interfaces on the 13776 * same physical port. Note that the main VI does not have native 13777 * netmap support but the extra VIs do. 13778 * 13779 * Limit the number of VIs per port to the number of available 13780 * MAC addresses per port. 13781 */ 13782 if (t4_num_vis < 1) 13783 t4_num_vis = 1; 13784 if (t4_num_vis > nitems(vi_mac_funcs)) { 13785 t4_num_vis = nitems(vi_mac_funcs); 13786 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis); 13787 } 13788 13789 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) { 13790 pcie_relaxed_ordering = 1; 13791 #if defined(__i386__) || defined(__amd64__) 13792 if (cpu_vendor_id == CPU_VENDOR_INTEL) 13793 pcie_relaxed_ordering = 0; 13794 #endif 13795 } 13796 } 13797 13798 #ifdef DDB 13799 static void 13800 t4_dump_mem(struct adapter *sc, u_int addr, u_int len) 13801 { 13802 uint32_t base, j, off, pf, reg, save, win_pos; 13803 13804 reg = chip_id(sc) > CHELSIO_T6 ? 13805 PCIE_MEM_ACCESS_T7_REG(A_PCIE_MEM_ACCESS_OFFSET0, 2) : 13806 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2); 13807 save = t4_read_reg(sc, reg); 13808 base = sc->memwin[2].mw_base; 13809 13810 if (is_t4(sc)) { 13811 pf = 0; 13812 win_pos = addr & ~0xf; /* start must be 16B aligned */ 13813 } else { 13814 pf = V_PFNUM(sc->pf); 13815 win_pos = addr & ~0x7f; /* start must be 128B aligned */ 13816 } 13817 off = addr - win_pos; 13818 if (chip_id(sc) > CHELSIO_T6) 13819 win_pos >>= X_T7_MEMOFST_SHIFT; 13820 t4_write_reg(sc, reg, win_pos | pf); 13821 t4_read_reg(sc, reg); 13822 13823 while (len > 0 && !db_pager_quit) { 13824 uint32_t buf[8]; 13825 for (j = 0; j < 8; j++, off += 4) 13826 buf[j] = htonl(t4_read_reg(sc, base + off)); 13827 13828 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", 13829 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], 13830 buf[7]); 13831 if (len <= sizeof(buf)) 13832 len = 0; 13833 else 13834 len -= sizeof(buf); 13835 } 13836 13837 t4_write_reg(sc, reg, save); 13838 t4_read_reg(sc, reg); 13839 } 13840 13841 static void 13842 t4_dump_tcb(struct adapter *sc, int tid) 13843 { 13844 uint32_t tcb_addr; 13845 13846 /* Dump TCB for the tid */ 13847 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 13848 tcb_addr += tid * TCB_SIZE; 13849 t4_dump_mem(sc, tcb_addr, TCB_SIZE); 13850 } 13851 13852 static void 13853 t4_dump_devlog(struct adapter *sc) 13854 { 13855 struct devlog_params *dparams = &sc->params.devlog; 13856 struct fw_devlog_e e; 13857 int i, first, j, m, nentries, rc; 13858 uint64_t ftstamp = UINT64_MAX; 13859 13860 if (dparams->start == 0) { 13861 db_printf("devlog params not valid\n"); 13862 return; 13863 } 13864 13865 nentries = dparams->size / sizeof(struct fw_devlog_e); 13866 m = fwmtype_to_hwmtype(dparams->memtype); 13867 13868 /* Find the first entry. */ 13869 first = -1; 13870 for (i = 0; i < nentries && !db_pager_quit; i++) { 13871 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 13872 sizeof(e), (void *)&e); 13873 if (rc != 0) 13874 break; 13875 13876 if (e.timestamp == 0) 13877 break; 13878 13879 e.timestamp = be64toh(e.timestamp); 13880 if (e.timestamp < ftstamp) { 13881 ftstamp = e.timestamp; 13882 first = i; 13883 } 13884 } 13885 13886 if (first == -1) 13887 return; 13888 13889 i = first; 13890 do { 13891 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 13892 sizeof(e), (void *)&e); 13893 if (rc != 0) 13894 return; 13895 13896 if (e.timestamp == 0) 13897 return; 13898 13899 e.timestamp = be64toh(e.timestamp); 13900 e.seqno = be32toh(e.seqno); 13901 for (j = 0; j < 8; j++) 13902 e.params[j] = be32toh(e.params[j]); 13903 13904 db_printf("%10d %15ju %8s %8s ", 13905 e.seqno, e.timestamp, 13906 (e.level < nitems(devlog_level_strings) ? 13907 devlog_level_strings[e.level] : "UNKNOWN"), 13908 (e.facility < nitems(devlog_facility_strings) ? 13909 devlog_facility_strings[e.facility] : "UNKNOWN")); 13910 db_printf(e.fmt, e.params[0], e.params[1], e.params[2], 13911 e.params[3], e.params[4], e.params[5], e.params[6], 13912 e.params[7]); 13913 13914 if (++i == nentries) 13915 i = 0; 13916 } while (i != first && !db_pager_quit); 13917 } 13918 13919 static DB_DEFINE_TABLE(show, t4, show_t4); 13920 13921 DB_TABLE_COMMAND_FLAGS(show_t4, devlog, db_show_devlog, CS_OWN) 13922 { 13923 device_t dev; 13924 int t; 13925 bool valid; 13926 13927 valid = false; 13928 t = db_read_token(); 13929 if (t == tIDENT) { 13930 dev = device_lookup_by_name(db_tok_string); 13931 valid = true; 13932 } 13933 db_skip_to_eol(); 13934 if (!valid) { 13935 db_printf("usage: show t4 devlog <nexus>\n"); 13936 return; 13937 } 13938 13939 if (dev == NULL) { 13940 db_printf("device not found\n"); 13941 return; 13942 } 13943 13944 t4_dump_devlog(device_get_softc(dev)); 13945 } 13946 13947 DB_TABLE_COMMAND_FLAGS(show_t4, tcb, db_show_t4tcb, CS_OWN) 13948 { 13949 device_t dev; 13950 int radix, tid, t; 13951 bool valid; 13952 13953 valid = false; 13954 radix = db_radix; 13955 db_radix = 10; 13956 t = db_read_token(); 13957 if (t == tIDENT) { 13958 dev = device_lookup_by_name(db_tok_string); 13959 t = db_read_token(); 13960 if (t == tNUMBER) { 13961 tid = db_tok_number; 13962 valid = true; 13963 } 13964 } 13965 db_radix = radix; 13966 db_skip_to_eol(); 13967 if (!valid) { 13968 db_printf("usage: show t4 tcb <nexus> <tid>\n"); 13969 return; 13970 } 13971 13972 if (dev == NULL) { 13973 db_printf("device not found\n"); 13974 return; 13975 } 13976 if (tid < 0) { 13977 db_printf("invalid tid\n"); 13978 return; 13979 } 13980 13981 t4_dump_tcb(device_get_softc(dev), tid); 13982 } 13983 13984 DB_TABLE_COMMAND_FLAGS(show_t4, memdump, db_show_memdump, CS_OWN) 13985 { 13986 device_t dev; 13987 int radix, t; 13988 bool valid; 13989 13990 valid = false; 13991 radix = db_radix; 13992 db_radix = 10; 13993 t = db_read_token(); 13994 if (t == tIDENT) { 13995 dev = device_lookup_by_name(db_tok_string); 13996 t = db_read_token(); 13997 if (t == tNUMBER) { 13998 addr = db_tok_number; 13999 t = db_read_token(); 14000 if (t == tNUMBER) { 14001 count = db_tok_number; 14002 valid = true; 14003 } 14004 } 14005 } 14006 db_radix = radix; 14007 db_skip_to_eol(); 14008 if (!valid) { 14009 db_printf("usage: show t4 memdump <nexus> <addr> <len>\n"); 14010 return; 14011 } 14012 14013 if (dev == NULL) { 14014 db_printf("device not found\n"); 14015 return; 14016 } 14017 if (addr < 0) { 14018 db_printf("invalid address\n"); 14019 return; 14020 } 14021 if (count <= 0) { 14022 db_printf("invalid length\n"); 14023 return; 14024 } 14025 14026 t4_dump_mem(device_get_softc(dev), addr, count); 14027 } 14028 #endif 14029 14030 static eventhandler_tag vxlan_start_evtag; 14031 static eventhandler_tag vxlan_stop_evtag; 14032 14033 struct vxlan_evargs { 14034 if_t ifp; 14035 uint16_t port; 14036 }; 14037 14038 static void 14039 enable_vxlan_rx(struct adapter *sc) 14040 { 14041 int i, rc; 14042 struct port_info *pi; 14043 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 14044 14045 ASSERT_SYNCHRONIZED_OP(sc); 14046 14047 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) | 14048 F_VXLAN_EN); 14049 for_each_port(sc, i) { 14050 pi = sc->port[i]; 14051 if (pi->vxlan_tcam_entry == true) 14052 continue; 14053 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac, 14054 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 14055 true); 14056 if (rc < 0) { 14057 rc = -rc; 14058 CH_ERR(&pi->vi[0], 14059 "failed to add VXLAN TCAM entry: %d.\n", rc); 14060 } else { 14061 MPASS(rc == sc->rawf_base + pi->port_id); 14062 pi->vxlan_tcam_entry = true; 14063 } 14064 } 14065 } 14066 14067 static void 14068 t4_vxlan_start(struct adapter *sc, void *arg) 14069 { 14070 struct vxlan_evargs *v = arg; 14071 14072 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 14073 return; 14074 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0) 14075 return; 14076 14077 if (sc->vxlan_refcount == 0) { 14078 sc->vxlan_port = v->port; 14079 sc->vxlan_refcount = 1; 14080 if (!hw_off_limits(sc)) 14081 enable_vxlan_rx(sc); 14082 } else if (sc->vxlan_port == v->port) { 14083 sc->vxlan_refcount++; 14084 } else { 14085 CH_ERR(sc, "VXLAN already configured on port %d; " 14086 "ignoring attempt to configure it on port %d\n", 14087 sc->vxlan_port, v->port); 14088 } 14089 end_synchronized_op(sc, 0); 14090 } 14091 14092 static void 14093 t4_vxlan_stop(struct adapter *sc, void *arg) 14094 { 14095 struct vxlan_evargs *v = arg; 14096 14097 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 14098 return; 14099 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0) 14100 return; 14101 14102 /* 14103 * VXLANs may have been configured before the driver was loaded so we 14104 * may see more stops than starts. This is not handled cleanly but at 14105 * least we keep the refcount sane. 14106 */ 14107 if (sc->vxlan_port != v->port) 14108 goto done; 14109 if (sc->vxlan_refcount == 0) { 14110 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; " 14111 "ignoring attempt to stop it again.\n", sc->vxlan_port); 14112 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc)) 14113 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0); 14114 done: 14115 end_synchronized_op(sc, 0); 14116 } 14117 14118 static void 14119 t4_vxlan_start_handler(void *arg __unused, if_t ifp, 14120 sa_family_t family, u_int port) 14121 { 14122 struct vxlan_evargs v; 14123 14124 MPASS(family == AF_INET || family == AF_INET6); 14125 v.ifp = ifp; 14126 v.port = port; 14127 14128 t4_iterate(t4_vxlan_start, &v); 14129 } 14130 14131 static void 14132 t4_vxlan_stop_handler(void *arg __unused, if_t ifp, sa_family_t family, 14133 u_int port) 14134 { 14135 struct vxlan_evargs v; 14136 14137 MPASS(family == AF_INET || family == AF_INET6); 14138 v.ifp = ifp; 14139 v.port = port; 14140 14141 t4_iterate(t4_vxlan_stop, &v); 14142 } 14143 14144 14145 static struct sx mlu; /* mod load unload */ 14146 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload"); 14147 14148 static int 14149 mod_event(module_t mod, int cmd, void *arg) 14150 { 14151 int rc = 0; 14152 static int loaded = 0; 14153 14154 switch (cmd) { 14155 case MOD_LOAD: 14156 sx_xlock(&mlu); 14157 if (loaded++ == 0) { 14158 t4_sge_modload(); 14159 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 14160 t4_filter_rpl, CPL_COOKIE_FILTER); 14161 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, 14162 do_l2t_write_rpl, CPL_COOKIE_FILTER); 14163 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL, 14164 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER); 14165 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 14166 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER); 14167 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, 14168 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER); 14169 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt); 14170 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt); 14171 t4_register_cpl_handler(CPL_SMT_WRITE_RPL, 14172 do_smt_write_rpl); 14173 sx_init(&t4_list_lock, "T4/T5 adapters"); 14174 SLIST_INIT(&t4_list); 14175 callout_init(&fatal_callout, 1); 14176 #ifdef TCP_OFFLOAD 14177 sx_init(&t4_uld_list_lock, "T4/T5 ULDs"); 14178 #endif 14179 #ifdef INET6 14180 t4_clip_modload(); 14181 #endif 14182 #ifdef KERN_TLS 14183 t6_ktls_modload(); 14184 t7_ktls_modload(); 14185 #endif 14186 t4_tracer_modload(); 14187 tweak_tunables(); 14188 vxlan_start_evtag = 14189 EVENTHANDLER_REGISTER(vxlan_start, 14190 t4_vxlan_start_handler, NULL, 14191 EVENTHANDLER_PRI_ANY); 14192 vxlan_stop_evtag = 14193 EVENTHANDLER_REGISTER(vxlan_stop, 14194 t4_vxlan_stop_handler, NULL, 14195 EVENTHANDLER_PRI_ANY); 14196 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK, 14197 taskqueue_thread_enqueue, &reset_tq); 14198 taskqueue_start_threads(&reset_tq, 1, PI_SOFT, 14199 "t4_rst_thr"); 14200 } 14201 sx_xunlock(&mlu); 14202 break; 14203 14204 case MOD_UNLOAD: 14205 sx_xlock(&mlu); 14206 if (--loaded == 0) { 14207 #ifdef TCP_OFFLOAD 14208 int i; 14209 #endif 14210 int tries; 14211 14212 taskqueue_free(reset_tq); 14213 14214 tries = 0; 14215 while (tries++ < 5 && t4_sge_extfree_refs() != 0) { 14216 uprintf("%ju clusters with custom free routine " 14217 "still is use.\n", t4_sge_extfree_refs()); 14218 pause("t4unload", 2 * hz); 14219 } 14220 14221 sx_slock(&t4_list_lock); 14222 if (!SLIST_EMPTY(&t4_list)) { 14223 rc = EBUSY; 14224 sx_sunlock(&t4_list_lock); 14225 goto done_unload; 14226 } 14227 #ifdef TCP_OFFLOAD 14228 sx_slock(&t4_uld_list_lock); 14229 for (i = 0; i <= ULD_MAX; i++) { 14230 if (t4_uld_list[i] != NULL) { 14231 rc = EBUSY; 14232 sx_sunlock(&t4_uld_list_lock); 14233 sx_sunlock(&t4_list_lock); 14234 goto done_unload; 14235 } 14236 } 14237 sx_sunlock(&t4_uld_list_lock); 14238 #endif 14239 sx_sunlock(&t4_list_lock); 14240 14241 if (t4_sge_extfree_refs() == 0) { 14242 EVENTHANDLER_DEREGISTER(vxlan_start, 14243 vxlan_start_evtag); 14244 EVENTHANDLER_DEREGISTER(vxlan_stop, 14245 vxlan_stop_evtag); 14246 t4_tracer_modunload(); 14247 #ifdef KERN_TLS 14248 t7_ktls_modunload(); 14249 t6_ktls_modunload(); 14250 #endif 14251 #ifdef INET6 14252 t4_clip_modunload(); 14253 #endif 14254 #ifdef TCP_OFFLOAD 14255 sx_destroy(&t4_uld_list_lock); 14256 #endif 14257 sx_destroy(&t4_list_lock); 14258 t4_sge_modunload(); 14259 loaded = 0; 14260 } else { 14261 rc = EBUSY; 14262 loaded++; /* undo earlier decrement */ 14263 } 14264 } 14265 done_unload: 14266 sx_xunlock(&mlu); 14267 break; 14268 } 14269 14270 return (rc); 14271 } 14272 14273 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0); 14274 MODULE_VERSION(t4nex, 1); 14275 MODULE_DEPEND(t4nex, firmware, 1, 1, 1); 14276 #ifdef DEV_NETMAP 14277 MODULE_DEPEND(t4nex, netmap, 1, 1, 1); 14278 #endif /* DEV_NETMAP */ 14279 14280 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0); 14281 MODULE_VERSION(t5nex, 1); 14282 MODULE_DEPEND(t5nex, firmware, 1, 1, 1); 14283 #ifdef DEV_NETMAP 14284 MODULE_DEPEND(t5nex, netmap, 1, 1, 1); 14285 #endif /* DEV_NETMAP */ 14286 14287 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0); 14288 MODULE_VERSION(t6nex, 1); 14289 MODULE_DEPEND(t6nex, crypto, 1, 1, 1); 14290 MODULE_DEPEND(t6nex, firmware, 1, 1, 1); 14291 #ifdef DEV_NETMAP 14292 MODULE_DEPEND(t6nex, netmap, 1, 1, 1); 14293 #endif /* DEV_NETMAP */ 14294 14295 DRIVER_MODULE(chnex, pci, ch_driver, mod_event, 0); 14296 MODULE_VERSION(chnex, 1); 14297 MODULE_DEPEND(chnex, crypto, 1, 1, 1); 14298 MODULE_DEPEND(chnex, firmware, 1, 1, 1); 14299 #ifdef DEV_NETMAP 14300 MODULE_DEPEND(chnex, netmap, 1, 1, 1); 14301 #endif /* DEV_NETMAP */ 14302 14303 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0); 14304 MODULE_VERSION(cxgbe, 1); 14305 14306 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0); 14307 MODULE_VERSION(cxl, 1); 14308 14309 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0); 14310 MODULE_VERSION(cc, 1); 14311 14312 DRIVER_MODULE(che, chnex, che_driver, 0, 0); 14313 MODULE_VERSION(che, 1); 14314 14315 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0); 14316 MODULE_VERSION(vcxgbe, 1); 14317 14318 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0); 14319 MODULE_VERSION(vcxl, 1); 14320 14321 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0); 14322 MODULE_VERSION(vcc, 1); 14323 14324 DRIVER_MODULE(vche, che, vche_driver, 0, 0); 14325 MODULE_VERSION(vche, 1); 14326