1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2011, 2025 Chelsio Communications. 5 * Written by: Navdeep Parhar <np@FreeBSD.org> 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 #include "opt_ddb.h" 31 #include "opt_inet.h" 32 #include "opt_inet6.h" 33 #include "opt_kern_tls.h" 34 #include "opt_ratelimit.h" 35 #include "opt_rss.h" 36 37 #include <sys/param.h> 38 #include <sys/conf.h> 39 #include <sys/priv.h> 40 #include <sys/kernel.h> 41 #include <sys/bus.h> 42 #include <sys/eventhandler.h> 43 #include <sys/module.h> 44 #include <sys/malloc.h> 45 #include <sys/queue.h> 46 #include <sys/taskqueue.h> 47 #include <dev/pci/pcireg.h> 48 #include <dev/pci/pcivar.h> 49 #include <sys/firmware.h> 50 #include <sys/sbuf.h> 51 #include <sys/smp.h> 52 #include <sys/socket.h> 53 #include <sys/sockio.h> 54 #include <sys/sysctl.h> 55 #include <net/ethernet.h> 56 #include <net/if.h> 57 #include <net/if_types.h> 58 #include <net/if_dl.h> 59 #include <net/if_vlan_var.h> 60 #ifdef RSS 61 #include <net/rss_config.h> 62 #endif 63 #include <netinet/in.h> 64 #include <netinet/ip.h> 65 #ifdef KERN_TLS 66 #include <netinet/tcp_seq.h> 67 #endif 68 #if defined(__i386__) || defined(__amd64__) 69 #include <machine/md_var.h> 70 #include <machine/cputypes.h> 71 #include <vm/vm.h> 72 #include <vm/pmap.h> 73 #endif 74 #ifdef DDB 75 #include <ddb/ddb.h> 76 #include <ddb/db_lex.h> 77 #endif 78 79 #include "common/common.h" 80 #include "common/t4_msg.h" 81 #include "common/t4_regs.h" 82 #include "common/t4_regs_values.h" 83 #include "cudbg/cudbg.h" 84 #include "t4_clip.h" 85 #include "t4_ioctl.h" 86 #include "t4_l2t.h" 87 #include "t4_mp_ring.h" 88 #include "t4_if.h" 89 #include "t4_smt.h" 90 91 /* T4 bus driver interface */ 92 static int t4_probe(device_t); 93 static int t4_attach(device_t); 94 static int t4_detach(device_t); 95 static int t4_child_location(device_t, device_t, struct sbuf *); 96 static int t4_ready(device_t); 97 static int t4_read_port_device(device_t, int, device_t *); 98 static int t4_suspend(device_t); 99 static int t4_resume(device_t); 100 static int t4_reset_prepare(device_t, device_t); 101 static int t4_reset_post(device_t, device_t); 102 static device_method_t t4_methods[] = { 103 DEVMETHOD(device_probe, t4_probe), 104 DEVMETHOD(device_attach, t4_attach), 105 DEVMETHOD(device_detach, t4_detach), 106 DEVMETHOD(device_suspend, t4_suspend), 107 DEVMETHOD(device_resume, t4_resume), 108 109 DEVMETHOD(bus_child_location, t4_child_location), 110 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 111 DEVMETHOD(bus_reset_post, t4_reset_post), 112 113 DEVMETHOD(t4_is_main_ready, t4_ready), 114 DEVMETHOD(t4_read_port_device, t4_read_port_device), 115 116 DEVMETHOD_END 117 }; 118 static driver_t t4_driver = { 119 "t4nex", 120 t4_methods, 121 sizeof(struct adapter) 122 }; 123 124 125 /* T4 port (cxgbe) interface */ 126 static int cxgbe_probe(device_t); 127 static int cxgbe_attach(device_t); 128 static int cxgbe_detach(device_t); 129 device_method_t cxgbe_methods[] = { 130 DEVMETHOD(device_probe, cxgbe_probe), 131 DEVMETHOD(device_attach, cxgbe_attach), 132 DEVMETHOD(device_detach, cxgbe_detach), 133 { 0, 0 } 134 }; 135 static driver_t cxgbe_driver = { 136 "cxgbe", 137 cxgbe_methods, 138 sizeof(struct port_info) 139 }; 140 141 /* T4 VI (vcxgbe) interface */ 142 static int vcxgbe_probe(device_t); 143 static int vcxgbe_attach(device_t); 144 static int vcxgbe_detach(device_t); 145 static device_method_t vcxgbe_methods[] = { 146 DEVMETHOD(device_probe, vcxgbe_probe), 147 DEVMETHOD(device_attach, vcxgbe_attach), 148 DEVMETHOD(device_detach, vcxgbe_detach), 149 { 0, 0 } 150 }; 151 static driver_t vcxgbe_driver = { 152 "vcxgbe", 153 vcxgbe_methods, 154 sizeof(struct vi_info) 155 }; 156 157 static d_ioctl_t t4_ioctl; 158 159 static struct cdevsw t4_cdevsw = { 160 .d_version = D_VERSION, 161 .d_ioctl = t4_ioctl, 162 .d_name = "t4nex", 163 }; 164 165 /* T5 bus driver interface */ 166 static int t5_probe(device_t); 167 static device_method_t t5_methods[] = { 168 DEVMETHOD(device_probe, t5_probe), 169 DEVMETHOD(device_attach, t4_attach), 170 DEVMETHOD(device_detach, t4_detach), 171 DEVMETHOD(device_suspend, t4_suspend), 172 DEVMETHOD(device_resume, t4_resume), 173 174 DEVMETHOD(bus_child_location, t4_child_location), 175 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 176 DEVMETHOD(bus_reset_post, t4_reset_post), 177 178 DEVMETHOD(t4_is_main_ready, t4_ready), 179 DEVMETHOD(t4_read_port_device, t4_read_port_device), 180 181 DEVMETHOD_END 182 }; 183 static driver_t t5_driver = { 184 "t5nex", 185 t5_methods, 186 sizeof(struct adapter) 187 }; 188 189 190 /* T5 port (cxl) interface */ 191 static driver_t cxl_driver = { 192 "cxl", 193 cxgbe_methods, 194 sizeof(struct port_info) 195 }; 196 197 /* T5 VI (vcxl) interface */ 198 static driver_t vcxl_driver = { 199 "vcxl", 200 vcxgbe_methods, 201 sizeof(struct vi_info) 202 }; 203 204 /* T6 bus driver interface */ 205 static int t6_probe(device_t); 206 static device_method_t t6_methods[] = { 207 DEVMETHOD(device_probe, t6_probe), 208 DEVMETHOD(device_attach, t4_attach), 209 DEVMETHOD(device_detach, t4_detach), 210 DEVMETHOD(device_suspend, t4_suspend), 211 DEVMETHOD(device_resume, t4_resume), 212 213 DEVMETHOD(bus_child_location, t4_child_location), 214 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 215 DEVMETHOD(bus_reset_post, t4_reset_post), 216 217 DEVMETHOD(t4_is_main_ready, t4_ready), 218 DEVMETHOD(t4_read_port_device, t4_read_port_device), 219 220 DEVMETHOD_END 221 }; 222 static driver_t t6_driver = { 223 "t6nex", 224 t6_methods, 225 sizeof(struct adapter) 226 }; 227 228 229 /* T6 port (cc) interface */ 230 static driver_t cc_driver = { 231 "cc", 232 cxgbe_methods, 233 sizeof(struct port_info) 234 }; 235 236 /* T6 VI (vcc) interface */ 237 static driver_t vcc_driver = { 238 "vcc", 239 vcxgbe_methods, 240 sizeof(struct vi_info) 241 }; 242 243 /* T7+ bus driver interface */ 244 static int ch_probe(device_t); 245 static device_method_t ch_methods[] = { 246 DEVMETHOD(device_probe, ch_probe), 247 DEVMETHOD(device_attach, t4_attach), 248 DEVMETHOD(device_detach, t4_detach), 249 DEVMETHOD(device_suspend, t4_suspend), 250 DEVMETHOD(device_resume, t4_resume), 251 252 DEVMETHOD(bus_child_location, t4_child_location), 253 DEVMETHOD(bus_reset_prepare, t4_reset_prepare), 254 DEVMETHOD(bus_reset_post, t4_reset_post), 255 256 DEVMETHOD(t4_is_main_ready, t4_ready), 257 DEVMETHOD(t4_read_port_device, t4_read_port_device), 258 259 DEVMETHOD_END 260 }; 261 static driver_t ch_driver = { 262 "chnex", 263 ch_methods, 264 sizeof(struct adapter) 265 }; 266 267 268 /* T7+ port (che) interface */ 269 static driver_t che_driver = { 270 "che", 271 cxgbe_methods, 272 sizeof(struct port_info) 273 }; 274 275 /* T7+ VI (vche) interface */ 276 static driver_t vche_driver = { 277 "vche", 278 vcxgbe_methods, 279 sizeof(struct vi_info) 280 }; 281 282 /* ifnet interface */ 283 static void cxgbe_init(void *); 284 static int cxgbe_ioctl(if_t, unsigned long, caddr_t); 285 static int cxgbe_transmit(if_t, struct mbuf *); 286 static void cxgbe_qflush(if_t); 287 #if defined(KERN_TLS) || defined(RATELIMIT) 288 static int cxgbe_snd_tag_alloc(if_t, union if_snd_tag_alloc_params *, 289 struct m_snd_tag **); 290 #endif 291 292 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services"); 293 294 /* 295 * Correct lock order when you need to acquire multiple locks is t4_list_lock, 296 * then ADAPTER_LOCK, then t4_uld_list_lock. 297 */ 298 static struct sx t4_list_lock; 299 SLIST_HEAD(, adapter) t4_list; 300 #ifdef TCP_OFFLOAD 301 static struct sx t4_uld_list_lock; 302 struct uld_info *t4_uld_list[ULD_MAX + 1]; 303 #endif 304 305 /* 306 * Tunables. See tweak_tunables() too. 307 * 308 * Each tunable is set to a default value here if it's known at compile-time. 309 * Otherwise it is set to -n as an indication to tweak_tunables() that it should 310 * provide a reasonable default (upto n) when the driver is loaded. 311 * 312 * Tunables applicable to both T4 and T5 are under hw.cxgbe. Those specific to 313 * T5 are under hw.cxl. 314 */ 315 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 316 "cxgbe(4) parameters"); 317 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 318 "cxgbe(4) T5+ parameters"); 319 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 320 "cxgbe(4) TOE parameters"); 321 322 /* 323 * Number of queues for tx and rx, NIC and offload. 324 */ 325 #define NTXQ 16 326 int t4_ntxq = -NTXQ; 327 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0, 328 "Number of TX queues per port"); 329 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq); /* Old name, undocumented */ 330 331 #define NRXQ 8 332 int t4_nrxq = -NRXQ; 333 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0, 334 "Number of RX queues per port"); 335 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq); /* Old name, undocumented */ 336 337 #define NTXQ_VI 1 338 static int t4_ntxq_vi = -NTXQ_VI; 339 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0, 340 "Number of TX queues per VI"); 341 342 #define NRXQ_VI 1 343 static int t4_nrxq_vi = -NRXQ_VI; 344 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0, 345 "Number of RX queues per VI"); 346 347 static int t4_rsrv_noflowq = 0; 348 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq, 349 0, "Reserve TX queue 0 of each VI for non-flowid packets"); 350 351 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 352 #define NOFLDTXQ 8 353 static int t4_nofldtxq = -NOFLDTXQ; 354 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0, 355 "Number of offload TX queues per port"); 356 357 #define NOFLDTXQ_VI 1 358 static int t4_nofldtxq_vi = -NOFLDTXQ_VI; 359 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0, 360 "Number of offload TX queues per VI"); 361 #endif 362 363 #if defined(TCP_OFFLOAD) 364 #define NOFLDRXQ 2 365 static int t4_nofldrxq = -NOFLDRXQ; 366 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0, 367 "Number of offload RX queues per port"); 368 369 #define NOFLDRXQ_VI 1 370 static int t4_nofldrxq_vi = -NOFLDRXQ_VI; 371 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0, 372 "Number of offload RX queues per VI"); 373 374 #define TMR_IDX_OFLD 1 375 static int t4_tmr_idx_ofld = TMR_IDX_OFLD; 376 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN, 377 &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues"); 378 379 #define PKTC_IDX_OFLD (-1) 380 static int t4_pktc_idx_ofld = PKTC_IDX_OFLD; 381 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN, 382 &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues"); 383 384 /* 0 means chip/fw default, non-zero number is value in microseconds */ 385 static u_long t4_toe_keepalive_idle = 0; 386 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN, 387 &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)"); 388 389 /* 0 means chip/fw default, non-zero number is value in microseconds */ 390 static u_long t4_toe_keepalive_interval = 0; 391 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN, 392 &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)"); 393 394 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */ 395 static int t4_toe_keepalive_count = 0; 396 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN, 397 &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort"); 398 399 /* 0 means chip/fw default, non-zero number is value in microseconds */ 400 static u_long t4_toe_rexmt_min = 0; 401 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN, 402 &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)"); 403 404 /* 0 means chip/fw default, non-zero number is value in microseconds */ 405 static u_long t4_toe_rexmt_max = 0; 406 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN, 407 &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)"); 408 409 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */ 410 static int t4_toe_rexmt_count = 0; 411 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN, 412 &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort"); 413 414 /* -1 means chip/fw default, other values are raw backoff values to use */ 415 static int t4_toe_rexmt_backoff[16] = { 416 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 417 }; 418 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff, 419 CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 420 "cxgbe(4) TOE retransmit backoff values"); 421 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN, 422 &t4_toe_rexmt_backoff[0], 0, ""); 423 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN, 424 &t4_toe_rexmt_backoff[1], 0, ""); 425 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN, 426 &t4_toe_rexmt_backoff[2], 0, ""); 427 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN, 428 &t4_toe_rexmt_backoff[3], 0, ""); 429 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN, 430 &t4_toe_rexmt_backoff[4], 0, ""); 431 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN, 432 &t4_toe_rexmt_backoff[5], 0, ""); 433 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN, 434 &t4_toe_rexmt_backoff[6], 0, ""); 435 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN, 436 &t4_toe_rexmt_backoff[7], 0, ""); 437 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN, 438 &t4_toe_rexmt_backoff[8], 0, ""); 439 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN, 440 &t4_toe_rexmt_backoff[9], 0, ""); 441 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN, 442 &t4_toe_rexmt_backoff[10], 0, ""); 443 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN, 444 &t4_toe_rexmt_backoff[11], 0, ""); 445 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN, 446 &t4_toe_rexmt_backoff[12], 0, ""); 447 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN, 448 &t4_toe_rexmt_backoff[13], 0, ""); 449 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN, 450 &t4_toe_rexmt_backoff[14], 0, ""); 451 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN, 452 &t4_toe_rexmt_backoff[15], 0, ""); 453 454 int t4_ddp_rcvbuf_len = 256 * 1024; 455 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_len, CTLFLAG_RWTUN, 456 &t4_ddp_rcvbuf_len, 0, "length of each DDP RX buffer"); 457 458 unsigned int t4_ddp_rcvbuf_cache = 4; 459 SYSCTL_UINT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_cache, CTLFLAG_RWTUN, 460 &t4_ddp_rcvbuf_cache, 0, 461 "maximum number of free DDP RX buffers to cache per connection"); 462 #endif 463 464 #ifdef DEV_NETMAP 465 #define NN_MAIN_VI (1 << 0) /* Native netmap on the main VI */ 466 #define NN_EXTRA_VI (1 << 1) /* Native netmap on the extra VI(s) */ 467 static int t4_native_netmap = NN_EXTRA_VI; 468 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap, 469 0, "Native netmap support. bit 0 = main VI, bit 1 = extra VIs"); 470 471 #define NNMTXQ 8 472 static int t4_nnmtxq = -NNMTXQ; 473 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0, 474 "Number of netmap TX queues"); 475 476 #define NNMRXQ 8 477 static int t4_nnmrxq = -NNMRXQ; 478 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0, 479 "Number of netmap RX queues"); 480 481 #define NNMTXQ_VI 2 482 static int t4_nnmtxq_vi = -NNMTXQ_VI; 483 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0, 484 "Number of netmap TX queues per VI"); 485 486 #define NNMRXQ_VI 2 487 static int t4_nnmrxq_vi = -NNMRXQ_VI; 488 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0, 489 "Number of netmap RX queues per VI"); 490 #endif 491 492 /* 493 * Holdoff parameters for ports. 494 */ 495 #define TMR_IDX 1 496 int t4_tmr_idx = TMR_IDX; 497 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx, 498 0, "Holdoff timer index"); 499 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx); /* Old name */ 500 501 #define PKTC_IDX (-1) 502 int t4_pktc_idx = PKTC_IDX; 503 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx, 504 0, "Holdoff packet counter index"); 505 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx); /* Old name */ 506 507 /* 508 * Size (# of entries) of each tx and rx queue. 509 */ 510 unsigned int t4_qsize_txq = TX_EQ_QSIZE; 511 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0, 512 "Number of descriptors in each TX queue"); 513 514 unsigned int t4_qsize_rxq = RX_IQ_QSIZE; 515 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0, 516 "Number of descriptors in each RX queue"); 517 518 /* 519 * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively). 520 */ 521 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX; 522 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types, 523 0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)"); 524 525 /* 526 * Configuration file. All the _CF names here are special. 527 */ 528 #define DEFAULT_CF "default" 529 #define BUILTIN_CF "built-in" 530 #define FLASH_CF "flash" 531 #define UWIRE_CF "uwire" 532 #define FPGA_CF "fpga" 533 static char t4_cfg_file[32] = DEFAULT_CF; 534 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file, 535 sizeof(t4_cfg_file), "Firmware configuration file"); 536 537 /* 538 * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively). 539 * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them. 540 * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water 541 * mark or when signalled to do so, 0 to never emit PAUSE. 542 * pause_autoneg = 1 means PAUSE will be negotiated if possible and the 543 * negotiated settings will override rx_pause/tx_pause. 544 * Otherwise rx_pause/tx_pause are applied forcibly. 545 */ 546 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG; 547 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN, 548 &t4_pause_settings, 0, 549 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 550 551 /* 552 * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively). 553 * -1 to run with the firmware default. Same as FEC_AUTO (bit 5) 554 * 0 to disable FEC. 555 */ 556 static int t4_fec = -1; 557 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0, 558 "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)"); 559 560 static const char * 561 t4_fec_bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2\6auto\7module"; 562 563 /* 564 * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it 565 * issues to the firmware. If the firmware doesn't support FORCE_FEC then the 566 * driver runs as if this is set to 0. 567 * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay. 568 * 0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the 569 * transceiver. Multiple FEC bits may not be okay but will be passed on to 570 * the firmware anyway (may result in l1cfg errors with old firmwares). 571 * 1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO 572 * means set all FEC bits that are valid for the speed. 573 */ 574 static int t4_force_fec = -1; 575 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0, 576 "Controls the use of FORCE_FEC bit in L1 configuration."); 577 578 /* 579 * Link autonegotiation. 580 * -1 to run with the firmware default. 581 * 0 to disable. 582 * 1 to enable. 583 */ 584 static int t4_autoneg = -1; 585 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0, 586 "Link autonegotiation"); 587 588 /* 589 * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed, 590 * encouraged respectively). '-n' is the same as 'n' except the firmware 591 * version used in the checks is read from the firmware bundled with the driver. 592 */ 593 static int t4_fw_install = 1; 594 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0, 595 "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)"); 596 597 /* 598 * ASIC features that will be used. Disable the ones you don't want so that the 599 * chip resources aren't wasted on features that will not be used. 600 */ 601 static int t4_nbmcaps_allowed = 0; 602 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN, 603 &t4_nbmcaps_allowed, 0, "Default NBM capabilities"); 604 605 static int t4_linkcaps_allowed = 0; /* No DCBX, PPP, etc. by default */ 606 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN, 607 &t4_linkcaps_allowed, 0, "Default link capabilities"); 608 609 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS | 610 FW_CAPS_CONFIG_SWITCH_EGRESS; 611 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN, 612 &t4_switchcaps_allowed, 0, "Default switch capabilities"); 613 614 static int t4_nvmecaps_allowed = -1; 615 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nvmecaps_allowed, CTLFLAG_RDTUN, 616 &t4_nvmecaps_allowed, 0, "Default NVMe capabilities"); 617 618 #ifdef RATELIMIT 619 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 620 FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD; 621 #else 622 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC | 623 FW_CAPS_CONFIG_NIC_HASHFILTER; 624 #endif 625 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN, 626 &t4_niccaps_allowed, 0, "Default NIC capabilities"); 627 628 static int t4_toecaps_allowed = -1; 629 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN, 630 &t4_toecaps_allowed, 0, "Default TCP offload capabilities"); 631 632 static int t4_rdmacaps_allowed = -1; 633 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN, 634 &t4_rdmacaps_allowed, 0, "Default RDMA capabilities"); 635 636 static int t4_cryptocaps_allowed = -1; 637 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN, 638 &t4_cryptocaps_allowed, 0, "Default crypto capabilities"); 639 640 static int t4_iscsicaps_allowed = -1; 641 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN, 642 &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities"); 643 644 static int t4_fcoecaps_allowed = 0; 645 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN, 646 &t4_fcoecaps_allowed, 0, "Default FCoE capabilities"); 647 648 static int t5_write_combine = 0; 649 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine, 650 0, "Use WC instead of UC for BAR2"); 651 652 /* From t4_sysctls: doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"} */ 653 static int t4_doorbells_allowed = 0xf; 654 SYSCTL_INT(_hw_cxgbe, OID_AUTO, doorbells_allowed, CTLFLAG_RDTUN, 655 &t4_doorbells_allowed, 0, "Limit tx queues to these doorbells"); 656 657 static int t4_num_vis = 1; 658 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0, 659 "Number of VIs per port"); 660 661 /* 662 * PCIe Relaxed Ordering. 663 * -1: driver should figure out a good value. 664 * 0: disable RO. 665 * 1: enable RO. 666 * 2: leave RO alone. 667 */ 668 static int pcie_relaxed_ordering = -1; 669 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN, 670 &pcie_relaxed_ordering, 0, 671 "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone"); 672 673 static int t4_panic_on_fatal_err = 0; 674 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN, 675 &t4_panic_on_fatal_err, 0, "panic on fatal errors"); 676 677 static int t4_reset_on_fatal_err = 0; 678 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN, 679 &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors"); 680 681 static int t4_reset_method = 1; 682 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_method, CTLFLAG_RWTUN, &t4_reset_method, 683 0, "reset method: 0 = PL_RST, 1 = PCIe secondary bus reset, 2 = PCIe link bounce"); 684 685 static int t4_clock_gate_on_suspend = 0; 686 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN, 687 &t4_clock_gate_on_suspend, 0, "gate the clock on suspend"); 688 689 static int t4_tx_vm_wr = 0; 690 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0, 691 "Use VM work requests to transmit packets."); 692 693 /* 694 * Set to non-zero to enable the attack filter. A packet that matches any of 695 * these conditions will get dropped on ingress: 696 * 1) IP && source address == destination address. 697 * 2) TCP/IP && source address is not a unicast address. 698 * 3) TCP/IP && destination address is not a unicast address. 699 * 4) IP && source address is loopback (127.x.y.z). 700 * 5) IP && destination address is loopback (127.x.y.z). 701 * 6) IPv6 && source address == destination address. 702 * 7) IPv6 && source address is not a unicast address. 703 * 8) IPv6 && source address is loopback (::1/128). 704 * 9) IPv6 && destination address is loopback (::1/128). 705 * 10) IPv6 && source address is unspecified (::/128). 706 * 11) IPv6 && destination address is unspecified (::/128). 707 * 12) TCP/IPv6 && source address is multicast (ff00::/8). 708 * 13) TCP/IPv6 && destination address is multicast (ff00::/8). 709 */ 710 static int t4_attack_filter = 0; 711 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN, 712 &t4_attack_filter, 0, "Drop suspicious traffic"); 713 714 static int t4_drop_ip_fragments = 0; 715 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN, 716 &t4_drop_ip_fragments, 0, "Drop IP fragments"); 717 718 static int t4_drop_pkts_with_l2_errors = 1; 719 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN, 720 &t4_drop_pkts_with_l2_errors, 0, 721 "Drop all frames with Layer 2 length or checksum errors"); 722 723 static int t4_drop_pkts_with_l3_errors = 0; 724 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN, 725 &t4_drop_pkts_with_l3_errors, 0, 726 "Drop all frames with IP version, length, or checksum errors"); 727 728 static int t4_drop_pkts_with_l4_errors = 0; 729 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN, 730 &t4_drop_pkts_with_l4_errors, 0, 731 "Drop all frames with Layer 4 length, checksum, or other errors"); 732 733 #ifdef TCP_OFFLOAD 734 /* 735 * TOE tunables. 736 */ 737 static int t4_cop_managed_offloading = 0; 738 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN, 739 &t4_cop_managed_offloading, 0, 740 "COP (Connection Offload Policy) controls all TOE offload"); 741 TUNABLE_INT("hw.cxgbe.cop_managed_offloading", &t4_cop_managed_offloading); 742 #endif 743 744 #ifdef KERN_TLS 745 /* 746 * This enables KERN_TLS for all adapters if set. 747 */ 748 static int t4_kern_tls = 0; 749 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0, 750 "Enable KERN_TLS mode for T6 adapters"); 751 752 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 753 "cxgbe(4) KERN_TLS parameters"); 754 755 static int t4_tls_inline_keys = 0; 756 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN, 757 &t4_tls_inline_keys, 0, 758 "Always pass TLS keys in work requests (1) or attempt to store TLS keys " 759 "in card memory."); 760 761 static int t4_tls_combo_wrs = 0; 762 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs, 763 0, "Attempt to combine TCB field updates with TLS record work requests."); 764 765 static int t4_tls_short_records = 1; 766 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, short_records, CTLFLAG_RDTUN, 767 &t4_tls_short_records, 0, "Use cipher-only mode for short records."); 768 769 static int t4_tls_partial_ghash = 1; 770 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, partial_ghash, CTLFLAG_RDTUN, 771 &t4_tls_partial_ghash, 0, "Use partial GHASH for AES-GCM records."); 772 #endif 773 774 /* Functions used by VIs to obtain unique MAC addresses for each VI. */ 775 static int vi_mac_funcs[] = { 776 FW_VI_FUNC_ETH, 777 FW_VI_FUNC_OFLD, 778 FW_VI_FUNC_IWARP, 779 FW_VI_FUNC_OPENISCSI, 780 FW_VI_FUNC_OPENFCOE, 781 FW_VI_FUNC_FOISCSI, 782 FW_VI_FUNC_FOFCOE, 783 }; 784 785 struct intrs_and_queues { 786 uint16_t intr_type; /* INTx, MSI, or MSI-X */ 787 uint16_t num_vis; /* number of VIs for each port */ 788 uint16_t nirq; /* Total # of vectors */ 789 uint16_t ntxq; /* # of NIC txq's for each port */ 790 uint16_t nrxq; /* # of NIC rxq's for each port */ 791 uint16_t nofldtxq; /* # of TOE/ETHOFLD txq's for each port */ 792 uint16_t nofldrxq; /* # of TOE rxq's for each port */ 793 uint16_t nnmtxq; /* # of netmap txq's */ 794 uint16_t nnmrxq; /* # of netmap rxq's */ 795 796 /* The vcxgbe/vcxl interfaces use these and not the ones above. */ 797 uint16_t ntxq_vi; /* # of NIC txq's */ 798 uint16_t nrxq_vi; /* # of NIC rxq's */ 799 uint16_t nofldtxq_vi; /* # of TOE txq's */ 800 uint16_t nofldrxq_vi; /* # of TOE rxq's */ 801 uint16_t nnmtxq_vi; /* # of netmap txq's */ 802 uint16_t nnmrxq_vi; /* # of netmap rxq's */ 803 }; 804 805 static void setup_memwin(struct adapter *); 806 static void position_memwin(struct adapter *, int, uint32_t); 807 static int validate_mem_range(struct adapter *, uint32_t, uint32_t); 808 static int fwmtype_to_hwmtype(int); 809 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t, 810 uint32_t *); 811 static int fixup_devlog_params(struct adapter *); 812 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *); 813 static int contact_firmware(struct adapter *); 814 static int partition_resources(struct adapter *); 815 static int get_params__pre_init(struct adapter *); 816 static int set_params__pre_init(struct adapter *); 817 static int get_params__post_init(struct adapter *); 818 static int set_params__post_init(struct adapter *); 819 static void t4_set_desc(struct adapter *); 820 static bool fixed_ifmedia(struct port_info *); 821 static void build_medialist(struct port_info *); 822 static void init_link_config(struct port_info *); 823 static int fixup_link_config(struct port_info *); 824 static int apply_link_config(struct port_info *); 825 static int cxgbe_init_synchronized(struct vi_info *); 826 static int cxgbe_uninit_synchronized(struct vi_info *); 827 static int adapter_full_init(struct adapter *); 828 static void adapter_full_uninit(struct adapter *); 829 static int vi_full_init(struct vi_info *); 830 static void vi_full_uninit(struct vi_info *); 831 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *); 832 static void quiesce_txq(struct sge_txq *); 833 static void quiesce_wrq(struct sge_wrq *); 834 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *); 835 static void quiesce_vi(struct vi_info *); 836 static int t4_alloc_irq(struct adapter *, struct irq *, int rid, 837 driver_intr_t *, void *, char *); 838 static int t4_free_irq(struct adapter *, struct irq *); 839 static void t4_init_atid_table(struct adapter *); 840 static void t4_free_atid_table(struct adapter *); 841 static void stop_atid_allocator(struct adapter *); 842 static void restart_atid_allocator(struct adapter *); 843 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *); 844 static void vi_refresh_stats(struct vi_info *); 845 static void cxgbe_refresh_stats(struct vi_info *); 846 static void cxgbe_tick(void *); 847 static void vi_tick(void *); 848 static void cxgbe_sysctls(struct port_info *); 849 static int sysctl_int_array(SYSCTL_HANDLER_ARGS); 850 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS); 851 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS); 852 static int sysctl_btphy(SYSCTL_HANDLER_ARGS); 853 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS); 854 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS); 855 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS); 856 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS); 857 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS); 858 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS); 859 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS); 860 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS); 861 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS); 862 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS); 863 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS); 864 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS); 865 static int sysctl_handle_t4_portstat64(SYSCTL_HANDLER_ARGS); 866 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS); 867 static int sysctl_temperature(SYSCTL_HANDLER_ARGS); 868 static int sysctl_vdd(SYSCTL_HANDLER_ARGS); 869 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS); 870 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS); 871 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS); 872 static int sysctl_cim_ibq(SYSCTL_HANDLER_ARGS); 873 static int sysctl_cim_obq(SYSCTL_HANDLER_ARGS); 874 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS); 875 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS); 876 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS); 877 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS); 878 static int sysctl_cim_qcfg_t7(SYSCTL_HANDLER_ARGS); 879 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS); 880 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS); 881 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS); 882 static int sysctl_devlog(SYSCTL_HANDLER_ARGS); 883 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS); 884 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS); 885 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS); 886 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS); 887 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS); 888 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS); 889 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS); 890 static int sysctl_mps_tcam_t7(SYSCTL_HANDLER_ARGS); 891 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS); 892 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS); 893 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS); 894 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS); 895 static int sysctl_tids(SYSCTL_HANDLER_ARGS); 896 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS); 897 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS); 898 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS); 899 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS); 900 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS); 901 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS); 902 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS); 903 static int sysctl_cpus(SYSCTL_HANDLER_ARGS); 904 static int sysctl_reset(SYSCTL_HANDLER_ARGS); 905 #ifdef TCP_OFFLOAD 906 static int sysctl_tls(SYSCTL_HANDLER_ARGS); 907 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS); 908 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS); 909 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS); 910 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS); 911 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS); 912 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS); 913 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS); 914 #endif 915 static int get_sge_context(struct adapter *, int, uint32_t, int, uint32_t *); 916 static int load_fw(struct adapter *, struct t4_data *); 917 static int load_cfg(struct adapter *, struct t4_data *); 918 static int load_boot(struct adapter *, struct t4_bootrom *); 919 static int load_bootcfg(struct adapter *, struct t4_data *); 920 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *); 921 static void free_offload_policy(struct t4_offload_policy *); 922 static int set_offload_policy(struct adapter *, struct t4_offload_policy *); 923 static int read_card_mem(struct adapter *, int, struct t4_mem_range *); 924 static int read_i2c(struct adapter *, struct t4_i2c_data *); 925 static int clear_stats(struct adapter *, u_int); 926 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *); 927 static int release_clip_addr(struct adapter *, struct t4_clip_addr *); 928 static inline int stop_adapter(struct adapter *); 929 static inline void set_adapter_hwstatus(struct adapter *, const bool); 930 static int stop_lld(struct adapter *); 931 static inline int restart_adapter(struct adapter *); 932 static int restart_lld(struct adapter *); 933 #ifdef TCP_OFFLOAD 934 static int deactivate_all_uld(struct adapter *); 935 static void stop_all_uld(struct adapter *); 936 static void restart_all_uld(struct adapter *); 937 #endif 938 #ifdef KERN_TLS 939 static int ktls_capability(struct adapter *, bool); 940 #endif 941 static int mod_event(module_t, int, void *); 942 static int notify_siblings(device_t, int); 943 static uint64_t vi_get_counter(if_t, ift_counter); 944 static uint64_t cxgbe_get_counter(if_t, ift_counter); 945 static void enable_vxlan_rx(struct adapter *); 946 static void reset_adapter_task(void *, int); 947 static void fatal_error_task(void *, int); 948 static void dump_devlog(struct adapter *); 949 static void dump_cim_regs(struct adapter *); 950 static void dump_cimla(struct adapter *); 951 952 struct { 953 uint16_t device; 954 char *desc; 955 } t4_pciids[] = { 956 {0xa000, "Chelsio Terminator 4 FPGA"}, 957 {0x4400, "Chelsio T440-dbg"}, 958 {0x4401, "Chelsio T420-CR"}, 959 {0x4402, "Chelsio T422-CR"}, 960 {0x4403, "Chelsio T440-CR"}, 961 {0x4404, "Chelsio T420-BCH"}, 962 {0x4405, "Chelsio T440-BCH"}, 963 {0x4406, "Chelsio T440-CH"}, 964 {0x4407, "Chelsio T420-SO"}, 965 {0x4408, "Chelsio T420-CX"}, 966 {0x4409, "Chelsio T420-BT"}, 967 {0x440a, "Chelsio T404-BT"}, 968 {0x440e, "Chelsio T440-LP-CR"}, 969 }, t5_pciids[] = { 970 {0xb000, "Chelsio Terminator 5 FPGA"}, 971 {0x5400, "Chelsio T580-dbg"}, 972 {0x5401, "Chelsio T520-CR"}, /* 2 x 10G */ 973 {0x5402, "Chelsio T522-CR"}, /* 2 x 10G, 2 X 1G */ 974 {0x5403, "Chelsio T540-CR"}, /* 4 x 10G */ 975 {0x5407, "Chelsio T520-SO"}, /* 2 x 10G, nomem */ 976 {0x5409, "Chelsio T520-BT"}, /* 2 x 10GBaseT */ 977 {0x540a, "Chelsio T504-BT"}, /* 4 x 1G */ 978 {0x540d, "Chelsio T580-CR"}, /* 2 x 40G */ 979 {0x540e, "Chelsio T540-LP-CR"}, /* 4 x 10G */ 980 {0x5410, "Chelsio T580-LP-CR"}, /* 2 x 40G */ 981 {0x5411, "Chelsio T520-LL-CR"}, /* 2 x 10G */ 982 {0x5412, "Chelsio T560-CR"}, /* 1 x 40G, 2 x 10G */ 983 {0x5414, "Chelsio T580-LP-SO-CR"}, /* 2 x 40G, nomem */ 984 {0x5415, "Chelsio T502-BT"}, /* 2 x 1G */ 985 {0x5418, "Chelsio T540-BT"}, /* 4 x 10GBaseT */ 986 {0x5419, "Chelsio T540-LP-BT"}, /* 4 x 10GBaseT */ 987 {0x541a, "Chelsio T540-SO-BT"}, /* 4 x 10GBaseT, nomem */ 988 {0x541b, "Chelsio T540-SO-CR"}, /* 4 x 10G, nomem */ 989 990 /* Custom */ 991 {0x5483, "Custom T540-CR"}, 992 {0x5484, "Custom T540-BT"}, 993 }, t6_pciids[] = { 994 {0xc006, "Chelsio Terminator 6 FPGA"}, /* T6 PE10K6 FPGA (PF0) */ 995 {0x6400, "Chelsio T6-DBG-25"}, /* 2 x 10/25G, debug */ 996 {0x6401, "Chelsio T6225-CR"}, /* 2 x 10/25G */ 997 {0x6402, "Chelsio T6225-SO-CR"}, /* 2 x 10/25G, nomem */ 998 {0x6403, "Chelsio T6425-CR"}, /* 4 x 10/25G */ 999 {0x6404, "Chelsio T6425-SO-CR"}, /* 4 x 10/25G, nomem */ 1000 {0x6405, "Chelsio T6225-SO-OCP3"}, /* 2 x 10/25G, nomem */ 1001 {0x6406, "Chelsio T6225-OCP3"}, /* 2 x 10/25G */ 1002 {0x6407, "Chelsio T62100-LP-CR"}, /* 2 x 40/50/100G */ 1003 {0x6408, "Chelsio T62100-SO-CR"}, /* 2 x 40/50/100G, nomem */ 1004 {0x6409, "Chelsio T6210-BT"}, /* 2 x 10GBASE-T */ 1005 {0x640d, "Chelsio T62100-CR"}, /* 2 x 40/50/100G */ 1006 {0x6410, "Chelsio T6-DBG-100"}, /* 2 x 40/50/100G, debug */ 1007 {0x6411, "Chelsio T6225-LL-CR"}, /* 2 x 10/25G */ 1008 {0x6414, "Chelsio T62100-SO-OCP3"}, /* 2 x 40/50/100G, nomem */ 1009 {0x6415, "Chelsio T6201-BT"}, /* 2 x 1000BASE-T */ 1010 1011 /* Custom */ 1012 {0x6480, "Custom T6225-CR"}, 1013 {0x6481, "Custom T62100-CR"}, 1014 {0x6482, "Custom T6225-CR"}, 1015 {0x6483, "Custom T62100-CR"}, 1016 {0x6484, "Custom T64100-CR"}, 1017 {0x6485, "Custom T6240-SO"}, 1018 {0x6486, "Custom T6225-SO-CR"}, 1019 {0x6487, "Custom T6225-CR"}, 1020 }, t7_pciids[] = { 1021 {0xd000, "Chelsio Terminator 7 FPGA"}, /* T7 PE12K FPGA */ 1022 {0x7400, "Chelsio T72200-DBG"}, /* 2 x 200G, debug */ 1023 {0x7401, "Chelsio T7250"}, /* 2 x 10/25/50G, 1 mem */ 1024 {0x7402, "Chelsio S7250"}, /* 2 x 10/25/50G, nomem */ 1025 {0x7403, "Chelsio T7450"}, /* 4 x 10/25/50G, 1 mem */ 1026 {0x7404, "Chelsio S7450"}, /* 4 x 10/25/50G, nomem */ 1027 {0x7405, "Chelsio T72200"}, /* 2 x 40/100/200G, 1 mem */ 1028 {0x7406, "Chelsio S72200"}, /* 2 x 40/100/200G, nomem */ 1029 {0x7407, "Chelsio T72200-FH"}, /* 2 x 40/100/200G, 2 mem */ 1030 {0x7408, "Chelsio S71400"}, /* 1 x 400G, nomem */ 1031 {0x7409, "Chelsio S7210-BT"}, /* 2 x 10GBASE-T, nomem */ 1032 {0x740a, "Chelsio T7450-RC"}, /* 4 x 10/25/50G, 1 mem, RC */ 1033 {0x740b, "Chelsio T72200-RC"}, /* 2 x 40/100/200G, 1 mem, RC */ 1034 {0x740c, "Chelsio T72200-FH-RC"}, /* 2 x 40/100/200G, 2 mem, RC */ 1035 {0x740d, "Chelsio S72200-OCP3"}, /* 2 x 40/100/200G OCP3 */ 1036 {0x740e, "Chelsio S7450-OCP3"}, /* 4 x 1/20/25/50G OCP3 */ 1037 {0x740f, "Chelsio S7410-BT-OCP3"}, /* 4 x 10GBASE-T OCP3 */ 1038 {0x7410, "Chelsio S7210-BT-A"}, /* 2 x 10GBASE-T */ 1039 {0x7411, "Chelsio T7_MAYRA_7"}, /* Motherboard */ 1040 1041 /* Custom */ 1042 {0x7480, "Custom T7"}, 1043 }; 1044 1045 #ifdef TCP_OFFLOAD 1046 /* 1047 * service_iq_fl() has an iq and needs the fl. Offset of fl from the iq should 1048 * be exactly the same for both rxq and ofld_rxq. 1049 */ 1050 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq)); 1051 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl)); 1052 #endif 1053 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE); 1054 1055 static int 1056 t4_probe(device_t dev) 1057 { 1058 int i; 1059 uint16_t v = pci_get_vendor(dev); 1060 uint16_t d = pci_get_device(dev); 1061 uint8_t f = pci_get_function(dev); 1062 1063 if (v != PCI_VENDOR_ID_CHELSIO) 1064 return (ENXIO); 1065 1066 /* Attach only to PF0 of the FPGA */ 1067 if (d == 0xa000 && f != 0) 1068 return (ENXIO); 1069 1070 for (i = 0; i < nitems(t4_pciids); i++) { 1071 if (d == t4_pciids[i].device) { 1072 device_set_desc(dev, t4_pciids[i].desc); 1073 return (BUS_PROBE_DEFAULT); 1074 } 1075 } 1076 1077 return (ENXIO); 1078 } 1079 1080 static int 1081 t5_probe(device_t dev) 1082 { 1083 int i; 1084 uint16_t v = pci_get_vendor(dev); 1085 uint16_t d = pci_get_device(dev); 1086 uint8_t f = pci_get_function(dev); 1087 1088 if (v != PCI_VENDOR_ID_CHELSIO) 1089 return (ENXIO); 1090 1091 /* Attach only to PF0 of the FPGA */ 1092 if (d == 0xb000 && f != 0) 1093 return (ENXIO); 1094 1095 for (i = 0; i < nitems(t5_pciids); i++) { 1096 if (d == t5_pciids[i].device) { 1097 device_set_desc(dev, t5_pciids[i].desc); 1098 return (BUS_PROBE_DEFAULT); 1099 } 1100 } 1101 1102 return (ENXIO); 1103 } 1104 1105 static int 1106 t6_probe(device_t dev) 1107 { 1108 int i; 1109 uint16_t v = pci_get_vendor(dev); 1110 uint16_t d = pci_get_device(dev); 1111 1112 if (v != PCI_VENDOR_ID_CHELSIO) 1113 return (ENXIO); 1114 1115 for (i = 0; i < nitems(t6_pciids); i++) { 1116 if (d == t6_pciids[i].device) { 1117 device_set_desc(dev, t6_pciids[i].desc); 1118 return (BUS_PROBE_DEFAULT); 1119 } 1120 } 1121 1122 return (ENXIO); 1123 } 1124 1125 static int 1126 ch_probe(device_t dev) 1127 { 1128 int i; 1129 uint16_t v = pci_get_vendor(dev); 1130 uint16_t d = pci_get_device(dev); 1131 uint8_t f = pci_get_function(dev); 1132 1133 if (v != PCI_VENDOR_ID_CHELSIO) 1134 return (ENXIO); 1135 1136 /* Attach only to PF0 of the FPGA */ 1137 if (d == 0xd000 && f != 0) 1138 return (ENXIO); 1139 1140 for (i = 0; i < nitems(t7_pciids); i++) { 1141 if (d == t7_pciids[i].device) { 1142 device_set_desc(dev, t7_pciids[i].desc); 1143 return (BUS_PROBE_DEFAULT); 1144 } 1145 } 1146 1147 return (ENXIO); 1148 } 1149 1150 static void 1151 t5_attribute_workaround(device_t dev) 1152 { 1153 device_t root_port; 1154 uint32_t v; 1155 1156 /* 1157 * The T5 chips do not properly echo the No Snoop and Relaxed 1158 * Ordering attributes when replying to a TLP from a Root 1159 * Port. As a workaround, find the parent Root Port and 1160 * disable No Snoop and Relaxed Ordering. Note that this 1161 * affects all devices under this root port. 1162 */ 1163 root_port = pci_find_pcie_root_port(dev); 1164 if (root_port == NULL) { 1165 device_printf(dev, "Unable to find parent root port\n"); 1166 return; 1167 } 1168 1169 v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL, 1170 PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2); 1171 if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) != 1172 0) 1173 device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n", 1174 device_get_nameunit(root_port)); 1175 } 1176 1177 static const struct devnames devnames[] = { 1178 { 1179 .nexus_name = "t4nex", 1180 .ifnet_name = "cxgbe", 1181 .vi_ifnet_name = "vcxgbe", 1182 .pf03_drv_name = "t4iov", 1183 .vf_nexus_name = "t4vf", 1184 .vf_ifnet_name = "cxgbev" 1185 }, { 1186 .nexus_name = "t5nex", 1187 .ifnet_name = "cxl", 1188 .vi_ifnet_name = "vcxl", 1189 .pf03_drv_name = "t5iov", 1190 .vf_nexus_name = "t5vf", 1191 .vf_ifnet_name = "cxlv" 1192 }, { 1193 .nexus_name = "t6nex", 1194 .ifnet_name = "cc", 1195 .vi_ifnet_name = "vcc", 1196 .pf03_drv_name = "t6iov", 1197 .vf_nexus_name = "t6vf", 1198 .vf_ifnet_name = "ccv" 1199 }, { 1200 .nexus_name = "chnex", 1201 .ifnet_name = "che", 1202 .vi_ifnet_name = "vche", 1203 .pf03_drv_name = "chiov", 1204 .vf_nexus_name = "chvf", 1205 .vf_ifnet_name = "chev" 1206 } 1207 }; 1208 1209 void 1210 t4_init_devnames(struct adapter *sc) 1211 { 1212 int id; 1213 1214 id = chip_id(sc); 1215 if (id < CHELSIO_T4) { 1216 device_printf(sc->dev, "chip id %d is not supported.\n", id); 1217 sc->names = NULL; 1218 } else if (id - CHELSIO_T4 < nitems(devnames)) 1219 sc->names = &devnames[id - CHELSIO_T4]; 1220 else 1221 sc->names = &devnames[nitems(devnames) - 1]; 1222 } 1223 1224 static int 1225 t4_ifnet_unit(struct adapter *sc, struct port_info *pi) 1226 { 1227 const char *parent, *name; 1228 long value; 1229 int line, unit; 1230 1231 line = 0; 1232 parent = device_get_nameunit(sc->dev); 1233 name = sc->names->ifnet_name; 1234 while (resource_find_dev(&line, name, &unit, "at", parent) == 0) { 1235 if (resource_long_value(name, unit, "port", &value) == 0 && 1236 value == pi->port_id) 1237 return (unit); 1238 } 1239 return (-1); 1240 } 1241 1242 static void 1243 t4_calibration(void *arg) 1244 { 1245 struct adapter *sc; 1246 struct clock_sync *cur, *nex; 1247 uint64_t hw; 1248 sbintime_t sbt; 1249 int next_up; 1250 1251 sc = (struct adapter *)arg; 1252 1253 KASSERT(hw_all_ok(sc), ("!hw_all_ok at t4_calibration")); 1254 hw = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO); 1255 sbt = sbinuptime(); 1256 1257 cur = &sc->cal_info[sc->cal_current]; 1258 next_up = (sc->cal_current + 1) % CNT_CAL_INFO; 1259 nex = &sc->cal_info[next_up]; 1260 if (__predict_false(sc->cal_count == 0)) { 1261 /* First time in, just get the values in */ 1262 cur->hw_cur = hw; 1263 cur->sbt_cur = sbt; 1264 sc->cal_count++; 1265 goto done; 1266 } 1267 1268 if (cur->hw_cur == hw) { 1269 /* The clock is not advancing? */ 1270 sc->cal_count = 0; 1271 atomic_store_rel_int(&cur->gen, 0); 1272 goto done; 1273 } 1274 1275 seqc_write_begin(&nex->gen); 1276 nex->hw_prev = cur->hw_cur; 1277 nex->sbt_prev = cur->sbt_cur; 1278 nex->hw_cur = hw; 1279 nex->sbt_cur = sbt; 1280 seqc_write_end(&nex->gen); 1281 sc->cal_current = next_up; 1282 done: 1283 callout_reset_sbt_curcpu(&sc->cal_callout, SBT_1S, 0, t4_calibration, 1284 sc, C_DIRECT_EXEC); 1285 } 1286 1287 static void 1288 t4_calibration_start(struct adapter *sc) 1289 { 1290 /* 1291 * Here if we have not done a calibration 1292 * then do so otherwise start the appropriate 1293 * timer. 1294 */ 1295 int i; 1296 1297 for (i = 0; i < CNT_CAL_INFO; i++) { 1298 sc->cal_info[i].gen = 0; 1299 } 1300 sc->cal_current = 0; 1301 sc->cal_count = 0; 1302 sc->cal_gen = 0; 1303 t4_calibration(sc); 1304 } 1305 1306 static int 1307 t4_attach(device_t dev) 1308 { 1309 struct adapter *sc; 1310 int rc = 0, i, j, rqidx, tqidx, nports; 1311 struct make_dev_args mda; 1312 struct intrs_and_queues iaq; 1313 struct sge *s; 1314 uint32_t *buf; 1315 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1316 int ofld_tqidx; 1317 #endif 1318 #ifdef TCP_OFFLOAD 1319 int ofld_rqidx; 1320 #endif 1321 #ifdef DEV_NETMAP 1322 int nm_rqidx, nm_tqidx; 1323 #endif 1324 int num_vis; 1325 1326 sc = device_get_softc(dev); 1327 sc->dev = dev; 1328 sysctl_ctx_init(&sc->ctx); 1329 TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags); 1330 1331 if ((pci_get_device(dev) & 0xff00) == 0x5400) 1332 t5_attribute_workaround(dev); 1333 pci_enable_busmaster(dev); 1334 if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) { 1335 uint32_t v; 1336 1337 pci_set_max_read_req(dev, 4096); 1338 v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2); 1339 sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5); 1340 if (pcie_relaxed_ordering == 0 && 1341 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) { 1342 v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE; 1343 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1344 } else if (pcie_relaxed_ordering == 1 && 1345 (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) { 1346 v |= PCIEM_CTL_RELAXED_ORD_ENABLE; 1347 pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2); 1348 } 1349 } 1350 1351 sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS); 1352 sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL); 1353 sc->traceq = -1; 1354 mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF); 1355 snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer", 1356 device_get_nameunit(dev)); 1357 1358 snprintf(sc->lockname, sizeof(sc->lockname), "%s", 1359 device_get_nameunit(dev)); 1360 mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF); 1361 t4_add_adapter(sc); 1362 1363 mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF); 1364 TAILQ_INIT(&sc->sfl); 1365 callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0); 1366 1367 mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF); 1368 1369 sc->policy = NULL; 1370 rw_init(&sc->policy_lock, "connection offload policy"); 1371 1372 callout_init(&sc->ktls_tick, 1); 1373 1374 callout_init(&sc->cal_callout, 1); 1375 1376 refcount_init(&sc->vxlan_refcount, 0); 1377 1378 TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc); 1379 TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc); 1380 1381 sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1382 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq", 1383 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues"); 1384 sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx, 1385 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq", 1386 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue"); 1387 1388 rc = t4_map_bars_0_and_4(sc); 1389 if (rc != 0) 1390 goto done; /* error message displayed already */ 1391 1392 memset(sc->chan_map, 0xff, sizeof(sc->chan_map)); 1393 memset(sc->port_map, 0xff, sizeof(sc->port_map)); 1394 1395 /* Prepare the adapter for operation. */ 1396 buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK); 1397 rc = -t4_prep_adapter(sc, buf); 1398 free(buf, M_CXGBE); 1399 if (rc != 0) { 1400 device_printf(dev, "failed to prepare adapter: %d.\n", rc); 1401 goto done; 1402 } 1403 1404 /* 1405 * This is the real PF# to which we're attaching. Works from within PCI 1406 * passthrough environments too, where pci_get_function() could return a 1407 * different PF# depending on the passthrough configuration. We need to 1408 * use the real PF# in all our communication with the firmware. 1409 */ 1410 j = t4_read_reg(sc, A_PL_WHOAMI); 1411 sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j); 1412 sc->mbox = sc->pf; 1413 1414 t4_init_devnames(sc); 1415 if (sc->names == NULL) { 1416 rc = ENOTSUP; 1417 goto done; /* error message displayed already */ 1418 } 1419 1420 /* 1421 * Do this really early, with the memory windows set up even before the 1422 * character device. The userland tool's register i/o and mem read 1423 * will work even in "recovery mode". 1424 */ 1425 setup_memwin(sc); 1426 if (t4_init_devlog_ncores_params(sc, 0) == 0) 1427 fixup_devlog_params(sc); 1428 make_dev_args_init(&mda); 1429 mda.mda_devsw = &t4_cdevsw; 1430 mda.mda_uid = UID_ROOT; 1431 mda.mda_gid = GID_WHEEL; 1432 mda.mda_mode = 0600; 1433 mda.mda_si_drv1 = sc; 1434 rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev)); 1435 if (rc != 0) 1436 device_printf(dev, "failed to create nexus char device: %d.\n", 1437 rc); 1438 1439 /* Go no further if recovery mode has been requested. */ 1440 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 1441 device_printf(dev, "recovery mode.\n"); 1442 goto done; 1443 } 1444 1445 #if defined(__i386__) 1446 if ((cpu_feature & CPUID_CX8) == 0) { 1447 device_printf(dev, "64 bit atomics not available.\n"); 1448 rc = ENOTSUP; 1449 goto done; 1450 } 1451 #endif 1452 1453 /* Contact the firmware and try to become the master driver. */ 1454 rc = contact_firmware(sc); 1455 if (rc != 0) 1456 goto done; /* error message displayed already */ 1457 MPASS(sc->flags & FW_OK); 1458 1459 rc = get_params__pre_init(sc); 1460 if (rc != 0) 1461 goto done; /* error message displayed already */ 1462 1463 if (sc->flags & MASTER_PF) { 1464 rc = partition_resources(sc); 1465 if (rc != 0) 1466 goto done; /* error message displayed already */ 1467 } 1468 1469 rc = get_params__post_init(sc); 1470 if (rc != 0) 1471 goto done; /* error message displayed already */ 1472 1473 rc = set_params__post_init(sc); 1474 if (rc != 0) 1475 goto done; /* error message displayed already */ 1476 1477 rc = t4_map_bar_2(sc); 1478 if (rc != 0) 1479 goto done; /* error message displayed already */ 1480 1481 rc = t4_adj_doorbells(sc); 1482 if (rc != 0) 1483 goto done; /* error message displayed already */ 1484 1485 rc = t4_create_dma_tag(sc); 1486 if (rc != 0) 1487 goto done; /* error message displayed already */ 1488 1489 /* 1490 * First pass over all the ports - allocate VIs and initialize some 1491 * basic parameters like mac address, port type, etc. 1492 */ 1493 for_each_port(sc, i) { 1494 struct port_info *pi; 1495 1496 pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK); 1497 sc->port[i] = pi; 1498 1499 /* These must be set before t4_port_init */ 1500 pi->adapter = sc; 1501 pi->port_id = i; 1502 /* 1503 * XXX: vi[0] is special so we can't delay this allocation until 1504 * pi->nvi's final value is known. 1505 */ 1506 pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE, 1507 M_ZERO | M_WAITOK); 1508 1509 /* 1510 * Allocate the "main" VI and initialize parameters 1511 * like mac addr. 1512 */ 1513 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 1514 if (rc != 0) { 1515 device_printf(dev, "unable to initialize port %d: %d\n", 1516 i, rc); 1517 free(pi->vi, M_CXGBE); 1518 free(pi, M_CXGBE); 1519 sc->port[i] = NULL; 1520 goto done; 1521 } 1522 1523 if (is_bt(pi->port_type)) 1524 setbit(&sc->bt_map, pi->hw_port); 1525 else 1526 MPASS(!isset(&sc->bt_map, pi->hw_port)); 1527 1528 snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d", 1529 device_get_nameunit(dev), i); 1530 mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF); 1531 for (j = 0; j < sc->params.tp.lb_nchan; j++) 1532 sc->chan_map[pi->tx_chan + j] = i; 1533 sc->port_map[pi->hw_port] = i; 1534 1535 /* 1536 * The MPS counter for FCS errors doesn't work correctly on the 1537 * T6 so we use the MAC counter here. Which MAC is in use 1538 * depends on the link settings which will be known when the 1539 * link comes up. 1540 */ 1541 if (is_t6(sc)) 1542 pi->fcs_reg = -1; 1543 else 1544 pi->fcs_reg = A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L; 1545 pi->fcs_base = 0; 1546 1547 /* All VIs on this port share this media. */ 1548 ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change, 1549 cxgbe_media_status); 1550 1551 PORT_LOCK(pi); 1552 init_link_config(pi); 1553 fixup_link_config(pi); 1554 build_medialist(pi); 1555 if (fixed_ifmedia(pi)) 1556 pi->flags |= FIXED_IFMEDIA; 1557 PORT_UNLOCK(pi); 1558 1559 pi->dev = device_add_child(dev, sc->names->ifnet_name, 1560 t4_ifnet_unit(sc, pi)); 1561 if (pi->dev == NULL) { 1562 device_printf(dev, 1563 "failed to add device for port %d.\n", i); 1564 rc = ENXIO; 1565 goto done; 1566 } 1567 pi->vi[0].dev = pi->dev; 1568 device_set_softc(pi->dev, pi); 1569 } 1570 1571 /* 1572 * Interrupt type, # of interrupts, # of rx/tx queues, etc. 1573 */ 1574 nports = sc->params.nports; 1575 rc = cfg_itype_and_nqueues(sc, &iaq); 1576 if (rc != 0) 1577 goto done; /* error message displayed already */ 1578 1579 num_vis = iaq.num_vis; 1580 sc->intr_type = iaq.intr_type; 1581 sc->intr_count = iaq.nirq; 1582 1583 s = &sc->sge; 1584 s->nctrlq = max(sc->params.nports, sc->params.ncores); 1585 s->nrxq = nports * iaq.nrxq; 1586 s->ntxq = nports * iaq.ntxq; 1587 if (num_vis > 1) { 1588 s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi; 1589 s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi; 1590 } 1591 s->neq = s->ntxq + s->nrxq; /* the free list in an rxq is an eq */ 1592 s->neq += nports; /* ctrl queues: 1 per port */ 1593 s->niq = s->nrxq + 1; /* 1 extra for firmware event queue */ 1594 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1595 if (is_offload(sc) || is_ethoffload(sc)) { 1596 s->nofldtxq = nports * iaq.nofldtxq; 1597 if (num_vis > 1) 1598 s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi; 1599 s->neq += s->nofldtxq; 1600 1601 s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq), 1602 M_CXGBE, M_ZERO | M_WAITOK); 1603 } 1604 #endif 1605 #ifdef TCP_OFFLOAD 1606 if (is_offload(sc)) { 1607 s->nofldrxq = nports * iaq.nofldrxq; 1608 if (num_vis > 1) 1609 s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi; 1610 s->neq += s->nofldrxq; /* free list */ 1611 s->niq += s->nofldrxq; 1612 1613 s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq), 1614 M_CXGBE, M_ZERO | M_WAITOK); 1615 } 1616 #endif 1617 #ifdef DEV_NETMAP 1618 s->nnmrxq = 0; 1619 s->nnmtxq = 0; 1620 if (t4_native_netmap & NN_MAIN_VI) { 1621 s->nnmrxq += nports * iaq.nnmrxq; 1622 s->nnmtxq += nports * iaq.nnmtxq; 1623 } 1624 if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) { 1625 s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi; 1626 s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi; 1627 } 1628 s->neq += s->nnmtxq + s->nnmrxq; 1629 s->niq += s->nnmrxq; 1630 1631 s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq), 1632 M_CXGBE, M_ZERO | M_WAITOK); 1633 s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq), 1634 M_CXGBE, M_ZERO | M_WAITOK); 1635 #endif 1636 MPASS(s->niq <= s->iqmap_sz); 1637 MPASS(s->neq <= s->eqmap_sz); 1638 1639 s->ctrlq = malloc(s->nctrlq * sizeof(struct sge_wrq), M_CXGBE, 1640 M_ZERO | M_WAITOK); 1641 s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE, 1642 M_ZERO | M_WAITOK); 1643 s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE, 1644 M_ZERO | M_WAITOK); 1645 s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE, 1646 M_ZERO | M_WAITOK); 1647 s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE, 1648 M_ZERO | M_WAITOK); 1649 1650 sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE, 1651 M_ZERO | M_WAITOK); 1652 1653 t4_init_l2t(sc, M_WAITOK); 1654 t4_init_smt(sc, M_WAITOK); 1655 t4_init_tx_sched(sc); 1656 t4_init_atid_table(sc); 1657 #ifdef RATELIMIT 1658 t4_init_etid_table(sc); 1659 #endif 1660 #ifdef INET6 1661 t4_init_clip_table(sc); 1662 #endif 1663 if (sc->vres.key.size != 0) 1664 sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start, 1665 sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK); 1666 t4_init_tpt(sc); 1667 1668 /* 1669 * Second pass over the ports. This time we know the number of rx and 1670 * tx queues that each port should get. 1671 */ 1672 rqidx = tqidx = 0; 1673 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1674 ofld_tqidx = 0; 1675 #endif 1676 #ifdef TCP_OFFLOAD 1677 ofld_rqidx = 0; 1678 #endif 1679 #ifdef DEV_NETMAP 1680 nm_rqidx = nm_tqidx = 0; 1681 #endif 1682 for_each_port(sc, i) { 1683 struct port_info *pi = sc->port[i]; 1684 struct vi_info *vi; 1685 1686 if (pi == NULL) 1687 continue; 1688 1689 pi->nvi = num_vis; 1690 for_each_vi(pi, j, vi) { 1691 vi->pi = pi; 1692 vi->adapter = sc; 1693 vi->first_intr = -1; 1694 vi->qsize_rxq = t4_qsize_rxq; 1695 vi->qsize_txq = t4_qsize_txq; 1696 1697 vi->first_rxq = rqidx; 1698 vi->first_txq = tqidx; 1699 vi->tmr_idx = t4_tmr_idx; 1700 vi->pktc_idx = t4_pktc_idx; 1701 vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi; 1702 vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi; 1703 1704 rqidx += vi->nrxq; 1705 tqidx += vi->ntxq; 1706 1707 if (j == 0 && vi->ntxq > 1) 1708 vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0; 1709 else 1710 vi->rsrv_noflowq = 0; 1711 1712 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1713 vi->first_ofld_txq = ofld_tqidx; 1714 vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi; 1715 ofld_tqidx += vi->nofldtxq; 1716 #endif 1717 #ifdef TCP_OFFLOAD 1718 vi->ofld_tmr_idx = t4_tmr_idx_ofld; 1719 vi->ofld_pktc_idx = t4_pktc_idx_ofld; 1720 vi->first_ofld_rxq = ofld_rqidx; 1721 vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi; 1722 1723 ofld_rqidx += vi->nofldrxq; 1724 #endif 1725 #ifdef DEV_NETMAP 1726 vi->first_nm_rxq = nm_rqidx; 1727 vi->first_nm_txq = nm_tqidx; 1728 if (j == 0) { 1729 vi->nnmrxq = iaq.nnmrxq; 1730 vi->nnmtxq = iaq.nnmtxq; 1731 } else { 1732 vi->nnmrxq = iaq.nnmrxq_vi; 1733 vi->nnmtxq = iaq.nnmtxq_vi; 1734 } 1735 nm_rqidx += vi->nnmrxq; 1736 nm_tqidx += vi->nnmtxq; 1737 #endif 1738 } 1739 } 1740 1741 rc = t4_setup_intr_handlers(sc); 1742 if (rc != 0) { 1743 device_printf(dev, 1744 "failed to setup interrupt handlers: %d\n", rc); 1745 goto done; 1746 } 1747 1748 bus_identify_children(dev); 1749 1750 /* 1751 * Ensure thread-safe mailbox access (in debug builds). 1752 * 1753 * So far this was the only thread accessing the mailbox but various 1754 * ifnets and sysctls are about to be created and their handlers/ioctls 1755 * will access the mailbox from different threads. 1756 */ 1757 sc->flags |= CHK_MBOX_ACCESS; 1758 1759 bus_attach_children(dev); 1760 t4_calibration_start(sc); 1761 1762 device_printf(dev, 1763 "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n", 1764 sc->params.pci.speed, sc->params.pci.width, sc->params.nports, 1765 sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" : 1766 (sc->intr_type == INTR_MSI ? "MSI" : "INTx"), 1767 sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq); 1768 1769 t4_set_desc(sc); 1770 1771 notify_siblings(dev, 0); 1772 1773 done: 1774 if (rc != 0 && sc->cdev) { 1775 /* cdev was created and so cxgbetool works; recover that way. */ 1776 device_printf(dev, 1777 "error during attach, adapter is now in recovery mode.\n"); 1778 rc = 0; 1779 } 1780 1781 if (rc != 0) 1782 t4_detach_common(dev); 1783 else 1784 t4_sysctls(sc); 1785 1786 return (rc); 1787 } 1788 1789 static int 1790 t4_child_location(device_t bus, device_t dev, struct sbuf *sb) 1791 { 1792 struct adapter *sc; 1793 struct port_info *pi; 1794 int i; 1795 1796 sc = device_get_softc(bus); 1797 for_each_port(sc, i) { 1798 pi = sc->port[i]; 1799 if (pi != NULL && pi->dev == dev) { 1800 sbuf_printf(sb, "port=%d", pi->port_id); 1801 break; 1802 } 1803 } 1804 return (0); 1805 } 1806 1807 static int 1808 t4_ready(device_t dev) 1809 { 1810 struct adapter *sc; 1811 1812 sc = device_get_softc(dev); 1813 if (sc->flags & FW_OK) 1814 return (0); 1815 return (ENXIO); 1816 } 1817 1818 static int 1819 t4_read_port_device(device_t dev, int port, device_t *child) 1820 { 1821 struct adapter *sc; 1822 struct port_info *pi; 1823 1824 sc = device_get_softc(dev); 1825 if (port < 0 || port >= MAX_NPORTS) 1826 return (EINVAL); 1827 pi = sc->port[port]; 1828 if (pi == NULL || pi->dev == NULL) 1829 return (ENXIO); 1830 *child = pi->dev; 1831 return (0); 1832 } 1833 1834 static int 1835 notify_siblings(device_t dev, int detaching) 1836 { 1837 device_t sibling; 1838 int error, i; 1839 1840 error = 0; 1841 for (i = 0; i < PCI_FUNCMAX; i++) { 1842 if (i == pci_get_function(dev)) 1843 continue; 1844 sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev), 1845 pci_get_slot(dev), i); 1846 if (sibling == NULL || !device_is_attached(sibling)) 1847 continue; 1848 if (detaching) 1849 error = T4_DETACH_CHILD(sibling); 1850 else 1851 (void)T4_ATTACH_CHILD(sibling); 1852 if (error) 1853 break; 1854 } 1855 return (error); 1856 } 1857 1858 /* 1859 * Idempotent 1860 */ 1861 static int 1862 t4_detach(device_t dev) 1863 { 1864 int rc; 1865 1866 rc = notify_siblings(dev, 1); 1867 if (rc) { 1868 device_printf(dev, 1869 "failed to detach sibling devices: %d\n", rc); 1870 return (rc); 1871 } 1872 1873 return (t4_detach_common(dev)); 1874 } 1875 1876 int 1877 t4_detach_common(device_t dev) 1878 { 1879 struct adapter *sc; 1880 struct port_info *pi; 1881 int i, rc; 1882 1883 sc = device_get_softc(dev); 1884 1885 #ifdef TCP_OFFLOAD 1886 rc = deactivate_all_uld(sc); 1887 if (rc) { 1888 device_printf(dev, 1889 "failed to detach upper layer drivers: %d\n", rc); 1890 return (rc); 1891 } 1892 #endif 1893 1894 if (sc->cdev) { 1895 destroy_dev(sc->cdev); 1896 sc->cdev = NULL; 1897 } 1898 1899 sx_xlock(&t4_list_lock); 1900 SLIST_REMOVE(&t4_list, sc, adapter, link); 1901 sx_xunlock(&t4_list_lock); 1902 1903 sc->flags &= ~CHK_MBOX_ACCESS; 1904 if (sc->flags & FULL_INIT_DONE) { 1905 if (!(sc->flags & IS_VF)) 1906 t4_intr_disable(sc); 1907 } 1908 1909 if (device_is_attached(dev)) { 1910 rc = bus_detach_children(dev); 1911 if (rc) { 1912 device_printf(dev, 1913 "failed to detach child devices: %d\n", rc); 1914 return (rc); 1915 } 1916 } 1917 1918 for (i = 0; i < sc->intr_count; i++) 1919 t4_free_irq(sc, &sc->irq[i]); 1920 1921 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1922 t4_free_tx_sched(sc); 1923 1924 for (i = 0; i < MAX_NPORTS; i++) { 1925 pi = sc->port[i]; 1926 if (pi) { 1927 t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid); 1928 1929 mtx_destroy(&pi->pi_lock); 1930 free(pi->vi, M_CXGBE); 1931 free(pi, M_CXGBE); 1932 } 1933 } 1934 callout_stop(&sc->cal_callout); 1935 callout_drain(&sc->cal_callout); 1936 device_delete_children(dev); 1937 sysctl_ctx_free(&sc->ctx); 1938 adapter_full_uninit(sc); 1939 1940 if ((sc->flags & (IS_VF | FW_OK)) == FW_OK) 1941 t4_fw_bye(sc, sc->mbox); 1942 1943 if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX) 1944 pci_release_msi(dev); 1945 1946 if (sc->regs_res) 1947 bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid, 1948 sc->regs_res); 1949 1950 if (sc->udbs_res) 1951 bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid, 1952 sc->udbs_res); 1953 1954 if (sc->msix_res) 1955 bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid, 1956 sc->msix_res); 1957 1958 if (sc->l2t) 1959 t4_free_l2t(sc); 1960 if (sc->smt) 1961 t4_free_smt(sc->smt); 1962 t4_free_atid_table(sc); 1963 #ifdef RATELIMIT 1964 t4_free_etid_table(sc); 1965 #endif 1966 if (sc->key_map) 1967 vmem_destroy(sc->key_map); 1968 t4_free_tpt(sc); 1969 #ifdef INET6 1970 t4_destroy_clip_table(sc); 1971 #endif 1972 1973 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 1974 free(sc->sge.ofld_txq, M_CXGBE); 1975 #endif 1976 #ifdef TCP_OFFLOAD 1977 free(sc->sge.ofld_rxq, M_CXGBE); 1978 #endif 1979 #ifdef DEV_NETMAP 1980 free(sc->sge.nm_rxq, M_CXGBE); 1981 free(sc->sge.nm_txq, M_CXGBE); 1982 #endif 1983 free(sc->irq, M_CXGBE); 1984 free(sc->sge.rxq, M_CXGBE); 1985 free(sc->sge.txq, M_CXGBE); 1986 free(sc->sge.ctrlq, M_CXGBE); 1987 free(sc->sge.iqmap, M_CXGBE); 1988 free(sc->sge.eqmap, M_CXGBE); 1989 free(sc->tids.ftid_tab, M_CXGBE); 1990 free(sc->tids.hpftid_tab, M_CXGBE); 1991 free_hftid_hash(&sc->tids); 1992 free(sc->tids.tid_tab, M_CXGBE); 1993 t4_destroy_dma_tag(sc); 1994 1995 callout_drain(&sc->ktls_tick); 1996 callout_drain(&sc->sfl_callout); 1997 if (mtx_initialized(&sc->tids.ftid_lock)) { 1998 mtx_destroy(&sc->tids.ftid_lock); 1999 cv_destroy(&sc->tids.ftid_cv); 2000 } 2001 if (mtx_initialized(&sc->tids.atid_lock)) 2002 mtx_destroy(&sc->tids.atid_lock); 2003 if (mtx_initialized(&sc->ifp_lock)) 2004 mtx_destroy(&sc->ifp_lock); 2005 2006 if (rw_initialized(&sc->policy_lock)) { 2007 rw_destroy(&sc->policy_lock); 2008 #ifdef TCP_OFFLOAD 2009 if (sc->policy != NULL) 2010 free_offload_policy(sc->policy); 2011 #endif 2012 } 2013 2014 for (i = 0; i < NUM_MEMWIN; i++) { 2015 struct memwin *mw = &sc->memwin[i]; 2016 2017 if (rw_initialized(&mw->mw_lock)) 2018 rw_destroy(&mw->mw_lock); 2019 } 2020 2021 mtx_destroy(&sc->sfl_lock); 2022 mtx_destroy(&sc->reg_lock); 2023 mtx_destroy(&sc->sc_lock); 2024 2025 bzero(sc, sizeof(*sc)); 2026 2027 return (0); 2028 } 2029 2030 static inline int 2031 stop_adapter(struct adapter *sc) 2032 { 2033 struct port_info *pi; 2034 int i; 2035 2036 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED))) { 2037 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n", 2038 __func__, curthread, sc->flags, sc->error_flags); 2039 return (EALREADY); 2040 } 2041 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread, 2042 sc->flags, sc->error_flags); 2043 t4_shutdown_adapter(sc); 2044 for_each_port(sc, i) { 2045 pi = sc->port[i]; 2046 if (pi == NULL) 2047 continue; 2048 PORT_LOCK(pi); 2049 if (pi->up_vis > 0 && pi->link_cfg.link_ok) { 2050 /* 2051 * t4_shutdown_adapter has already shut down all the 2052 * PHYs but it also disables interrupts and DMA so there 2053 * won't be a link interrupt. Update the state manually 2054 * if the link was up previously and inform the kernel. 2055 */ 2056 pi->link_cfg.link_ok = false; 2057 t4_os_link_changed(pi); 2058 } 2059 PORT_UNLOCK(pi); 2060 } 2061 2062 return (0); 2063 } 2064 2065 static inline int 2066 restart_adapter(struct adapter *sc) 2067 { 2068 uint32_t val; 2069 2070 if (!atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_STOPPED))) { 2071 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x, EALREADY\n", 2072 __func__, curthread, sc->flags, sc->error_flags); 2073 return (EALREADY); 2074 } 2075 CH_ALERT(sc, "%s from %p, flags 0x%08x,0x%08x\n", __func__, curthread, 2076 sc->flags, sc->error_flags); 2077 2078 MPASS(hw_off_limits(sc)); 2079 MPASS((sc->flags & FW_OK) == 0); 2080 MPASS((sc->flags & MASTER_PF) == 0); 2081 MPASS(sc->reset_thread == NULL); 2082 2083 /* 2084 * The adapter is supposed to be back on PCIE with its config space and 2085 * BARs restored to their state before reset. Register access via 2086 * t4_read_reg BAR0 should just work. 2087 */ 2088 sc->reset_thread = curthread; 2089 val = t4_read_reg(sc, A_PL_WHOAMI); 2090 if (val == 0xffffffff || val == 0xeeeeeeee) { 2091 CH_ERR(sc, "%s: device registers not readable.\n", __func__); 2092 sc->reset_thread = NULL; 2093 atomic_set_int(&sc->error_flags, ADAP_STOPPED); 2094 return (ENXIO); 2095 } 2096 atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR); 2097 atomic_add_int(&sc->incarnation, 1); 2098 atomic_add_int(&sc->num_resets, 1); 2099 2100 return (0); 2101 } 2102 2103 static inline void 2104 set_adapter_hwstatus(struct adapter *sc, const bool usable) 2105 { 2106 if (usable) { 2107 /* Must be marked reusable by the designated thread. */ 2108 ASSERT_SYNCHRONIZED_OP(sc); 2109 MPASS(sc->reset_thread == curthread); 2110 mtx_lock(&sc->reg_lock); 2111 atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS); 2112 mtx_unlock(&sc->reg_lock); 2113 } else { 2114 /* Mark the adapter totally off limits. */ 2115 begin_synchronized_op(sc, NULL, SLEEP_OK, "t4hwsts"); 2116 mtx_lock(&sc->reg_lock); 2117 atomic_set_int(&sc->error_flags, HW_OFF_LIMITS); 2118 mtx_unlock(&sc->reg_lock); 2119 sc->flags &= ~(FW_OK | MASTER_PF); 2120 sc->reset_thread = NULL; 2121 end_synchronized_op(sc, 0); 2122 } 2123 } 2124 2125 static int 2126 stop_lld(struct adapter *sc) 2127 { 2128 struct port_info *pi; 2129 struct vi_info *vi; 2130 if_t ifp; 2131 struct sge_rxq *rxq; 2132 struct sge_txq *txq; 2133 struct sge_wrq *wrq; 2134 #ifdef TCP_OFFLOAD 2135 struct sge_ofld_rxq *ofld_rxq; 2136 #endif 2137 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2138 struct sge_ofld_txq *ofld_txq; 2139 #endif 2140 int rc, i, j, k; 2141 2142 /* 2143 * XXX: Can there be a synch_op in progress that will hang because 2144 * hardware has been stopped? We'll hang too and the solution will be 2145 * to use a version of begin_synch_op that wakes up existing synch_op 2146 * with errors. Maybe stop_adapter should do this wakeup? 2147 * 2148 * I don't think any synch_op could get stranded waiting for DMA or 2149 * interrupt so I think we're okay here. Remove this comment block 2150 * after testing. 2151 */ 2152 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4slld"); 2153 if (rc != 0) 2154 return (ENXIO); 2155 2156 /* Quiesce all activity. */ 2157 for_each_port(sc, i) { 2158 pi = sc->port[i]; 2159 if (pi == NULL) 2160 continue; 2161 pi->vxlan_tcam_entry = false; 2162 for_each_vi(pi, j, vi) { 2163 vi->xact_addr_filt = -1; 2164 mtx_lock(&vi->tick_mtx); 2165 vi->flags |= VI_SKIP_STATS; 2166 mtx_unlock(&vi->tick_mtx); 2167 if (!(vi->flags & VI_INIT_DONE)) 2168 continue; 2169 2170 ifp = vi->ifp; 2171 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 2172 mtx_lock(&vi->tick_mtx); 2173 callout_stop(&vi->tick); 2174 mtx_unlock(&vi->tick_mtx); 2175 callout_drain(&vi->tick); 2176 } 2177 2178 /* 2179 * Note that the HW is not available. 2180 */ 2181 for_each_txq(vi, k, txq) { 2182 TXQ_LOCK(txq); 2183 txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED); 2184 TXQ_UNLOCK(txq); 2185 } 2186 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2187 for_each_ofld_txq(vi, k, ofld_txq) { 2188 TXQ_LOCK(&ofld_txq->wrq); 2189 ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED; 2190 TXQ_UNLOCK(&ofld_txq->wrq); 2191 } 2192 #endif 2193 for_each_rxq(vi, k, rxq) { 2194 rxq->iq.flags &= ~IQ_HW_ALLOCATED; 2195 } 2196 #if defined(TCP_OFFLOAD) 2197 for_each_ofld_rxq(vi, k, ofld_rxq) { 2198 ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED; 2199 } 2200 #endif 2201 2202 quiesce_vi(vi); 2203 } 2204 2205 if (sc->flags & FULL_INIT_DONE) { 2206 /* Control queue */ 2207 wrq = &sc->sge.ctrlq[i]; 2208 TXQ_LOCK(wrq); 2209 wrq->eq.flags &= ~EQ_HW_ALLOCATED; 2210 TXQ_UNLOCK(wrq); 2211 quiesce_wrq(wrq); 2212 } 2213 2214 if (pi->flags & HAS_TRACEQ) { 2215 pi->flags &= ~HAS_TRACEQ; 2216 sc->traceq = -1; 2217 sc->tracer_valid = 0; 2218 sc->tracer_enabled = 0; 2219 } 2220 } 2221 if (sc->flags & FULL_INIT_DONE) { 2222 /* Firmware event queue */ 2223 sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED; 2224 quiesce_iq_fl(sc, &sc->sge.fwq, NULL); 2225 } 2226 2227 /* Stop calibration */ 2228 callout_stop(&sc->cal_callout); 2229 callout_drain(&sc->cal_callout); 2230 2231 if (t4_clock_gate_on_suspend) { 2232 t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN | 2233 F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN | 2234 F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0); 2235 } 2236 2237 end_synchronized_op(sc, 0); 2238 2239 stop_atid_allocator(sc); 2240 t4_stop_l2t(sc); 2241 2242 return (rc); 2243 } 2244 2245 int 2246 suspend_adapter(struct adapter *sc) 2247 { 2248 stop_adapter(sc); 2249 stop_lld(sc); 2250 #ifdef TCP_OFFLOAD 2251 stop_all_uld(sc); 2252 #endif 2253 set_adapter_hwstatus(sc, false); 2254 2255 return (0); 2256 } 2257 2258 static int 2259 t4_suspend(device_t dev) 2260 { 2261 struct adapter *sc = device_get_softc(dev); 2262 int rc; 2263 2264 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2265 rc = suspend_adapter(sc); 2266 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread); 2267 2268 return (rc); 2269 } 2270 2271 struct adapter_pre_reset_state { 2272 u_int flags; 2273 uint16_t nbmcaps; 2274 uint16_t linkcaps; 2275 uint16_t switchcaps; 2276 uint16_t nvmecaps; 2277 uint16_t niccaps; 2278 uint16_t toecaps; 2279 uint16_t rdmacaps; 2280 uint16_t cryptocaps; 2281 uint16_t iscsicaps; 2282 uint16_t fcoecaps; 2283 2284 u_int cfcsum; 2285 char cfg_file[32]; 2286 2287 struct adapter_params params; 2288 struct t4_virt_res vres; 2289 struct tid_info tids; 2290 struct sge sge; 2291 2292 int rawf_base; 2293 int nrawf; 2294 2295 }; 2296 2297 static void 2298 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2299 { 2300 2301 ASSERT_SYNCHRONIZED_OP(sc); 2302 2303 o->flags = sc->flags; 2304 2305 o->nbmcaps = sc->nbmcaps; 2306 o->linkcaps = sc->linkcaps; 2307 o->switchcaps = sc->switchcaps; 2308 o->nvmecaps = sc->nvmecaps; 2309 o->niccaps = sc->niccaps; 2310 o->toecaps = sc->toecaps; 2311 o->rdmacaps = sc->rdmacaps; 2312 o->cryptocaps = sc->cryptocaps; 2313 o->iscsicaps = sc->iscsicaps; 2314 o->fcoecaps = sc->fcoecaps; 2315 2316 o->cfcsum = sc->cfcsum; 2317 MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file)); 2318 memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file)); 2319 2320 o->params = sc->params; 2321 o->vres = sc->vres; 2322 o->tids = sc->tids; 2323 o->sge = sc->sge; 2324 2325 o->rawf_base = sc->rawf_base; 2326 o->nrawf = sc->nrawf; 2327 } 2328 2329 static int 2330 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o) 2331 { 2332 int rc = 0; 2333 2334 ASSERT_SYNCHRONIZED_OP(sc); 2335 2336 /* Capabilities */ 2337 #define COMPARE_CAPS(c) do { \ 2338 if (o->c##caps != sc->c##caps) { \ 2339 CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \ 2340 sc->c##caps); \ 2341 rc = EINVAL; \ 2342 } \ 2343 } while (0) 2344 COMPARE_CAPS(nbm); 2345 COMPARE_CAPS(link); 2346 COMPARE_CAPS(switch); 2347 COMPARE_CAPS(nvme); 2348 COMPARE_CAPS(nic); 2349 COMPARE_CAPS(toe); 2350 COMPARE_CAPS(rdma); 2351 COMPARE_CAPS(crypto); 2352 COMPARE_CAPS(iscsi); 2353 COMPARE_CAPS(fcoe); 2354 #undef COMPARE_CAPS 2355 2356 /* Firmware config file */ 2357 if (o->cfcsum != sc->cfcsum) { 2358 CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file, 2359 o->cfcsum, sc->cfg_file, sc->cfcsum); 2360 rc = EINVAL; 2361 } 2362 2363 #define COMPARE_PARAM(p, name) do { \ 2364 if (o->p != sc->p) { \ 2365 CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \ 2366 rc = EINVAL; \ 2367 } \ 2368 } while (0) 2369 COMPARE_PARAM(sge.iq_start, iq_start); 2370 COMPARE_PARAM(sge.eq_start, eq_start); 2371 COMPARE_PARAM(tids.ftid_base, ftid_base); 2372 COMPARE_PARAM(tids.ftid_end, ftid_end); 2373 COMPARE_PARAM(tids.nftids, nftids); 2374 COMPARE_PARAM(vres.l2t.start, l2t_start); 2375 COMPARE_PARAM(vres.l2t.size, l2t_size); 2376 COMPARE_PARAM(sge.iqmap_sz, iqmap_sz); 2377 COMPARE_PARAM(sge.eqmap_sz, eqmap_sz); 2378 COMPARE_PARAM(tids.tid_base, tid_base); 2379 COMPARE_PARAM(tids.hpftid_base, hpftid_base); 2380 COMPARE_PARAM(tids.hpftid_end, hpftid_end); 2381 COMPARE_PARAM(tids.nhpftids, nhpftids); 2382 COMPARE_PARAM(rawf_base, rawf_base); 2383 COMPARE_PARAM(nrawf, nrawf); 2384 COMPARE_PARAM(params.mps_bg_map, mps_bg_map); 2385 COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support); 2386 COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl); 2387 COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support); 2388 COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr); 2389 COMPARE_PARAM(tids.ntids, ntids); 2390 COMPARE_PARAM(tids.etid_base, etid_base); 2391 COMPARE_PARAM(tids.etid_end, etid_end); 2392 COMPARE_PARAM(tids.netids, netids); 2393 COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred); 2394 COMPARE_PARAM(params.ethoffload, ethoffload); 2395 COMPARE_PARAM(tids.natids, natids); 2396 COMPARE_PARAM(tids.stid_base, stid_base); 2397 COMPARE_PARAM(vres.ddp.start, ddp_start); 2398 COMPARE_PARAM(vres.ddp.size, ddp_size); 2399 COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred); 2400 COMPARE_PARAM(vres.stag.start, stag_start); 2401 COMPARE_PARAM(vres.stag.size, stag_size); 2402 COMPARE_PARAM(vres.rq.start, rq_start); 2403 COMPARE_PARAM(vres.rq.size, rq_size); 2404 COMPARE_PARAM(vres.pbl.start, pbl_start); 2405 COMPARE_PARAM(vres.pbl.size, pbl_size); 2406 COMPARE_PARAM(vres.qp.start, qp_start); 2407 COMPARE_PARAM(vres.qp.size, qp_size); 2408 COMPARE_PARAM(vres.cq.start, cq_start); 2409 COMPARE_PARAM(vres.cq.size, cq_size); 2410 COMPARE_PARAM(vres.ocq.start, ocq_start); 2411 COMPARE_PARAM(vres.ocq.size, ocq_size); 2412 COMPARE_PARAM(vres.srq.start, srq_start); 2413 COMPARE_PARAM(vres.srq.size, srq_size); 2414 COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp); 2415 COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter); 2416 COMPARE_PARAM(vres.iscsi.start, iscsi_start); 2417 COMPARE_PARAM(vres.iscsi.size, iscsi_size); 2418 COMPARE_PARAM(vres.key.start, key_start); 2419 COMPARE_PARAM(vres.key.size, key_size); 2420 #undef COMPARE_PARAM 2421 2422 return (rc); 2423 } 2424 2425 static int 2426 restart_lld(struct adapter *sc) 2427 { 2428 struct adapter_pre_reset_state *old_state = NULL; 2429 struct port_info *pi; 2430 struct vi_info *vi; 2431 if_t ifp; 2432 struct sge_txq *txq; 2433 int rc, i, j, k; 2434 2435 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rlld"); 2436 if (rc != 0) 2437 return (ENXIO); 2438 2439 /* Restore memory window. */ 2440 setup_memwin(sc); 2441 2442 /* Go no further if recovery mode has been requested. */ 2443 if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) { 2444 CH_ALERT(sc, "%s: recovery mode during restart.\n", __func__); 2445 rc = 0; 2446 set_adapter_hwstatus(sc, true); 2447 goto done; 2448 } 2449 2450 old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK); 2451 save_caps_and_params(sc, old_state); 2452 2453 /* Reestablish contact with firmware and become the primary PF. */ 2454 rc = contact_firmware(sc); 2455 if (rc != 0) 2456 goto done; /* error message displayed already */ 2457 MPASS(sc->flags & FW_OK); 2458 2459 if (sc->flags & MASTER_PF) { 2460 rc = partition_resources(sc); 2461 if (rc != 0) 2462 goto done; /* error message displayed already */ 2463 } 2464 2465 rc = get_params__post_init(sc); 2466 if (rc != 0) 2467 goto done; /* error message displayed already */ 2468 2469 rc = set_params__post_init(sc); 2470 if (rc != 0) 2471 goto done; /* error message displayed already */ 2472 2473 rc = compare_caps_and_params(sc, old_state); 2474 if (rc != 0) 2475 goto done; /* error message displayed already */ 2476 2477 for_each_port(sc, i) { 2478 pi = sc->port[i]; 2479 MPASS(pi != NULL); 2480 MPASS(pi->vi != NULL); 2481 MPASS(pi->vi[0].dev == pi->dev); 2482 2483 rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i); 2484 if (rc != 0) { 2485 CH_ERR(sc, 2486 "failed to re-initialize port %d: %d\n", i, rc); 2487 goto done; 2488 } 2489 MPASS(sc->chan_map[pi->tx_chan] == i); 2490 2491 PORT_LOCK(pi); 2492 fixup_link_config(pi); 2493 build_medialist(pi); 2494 PORT_UNLOCK(pi); 2495 for_each_vi(pi, j, vi) { 2496 if (IS_MAIN_VI(vi)) 2497 continue; 2498 rc = alloc_extra_vi(sc, pi, vi); 2499 if (rc != 0) { 2500 CH_ERR(vi, 2501 "failed to re-allocate extra VI: %d\n", rc); 2502 goto done; 2503 } 2504 } 2505 } 2506 2507 /* 2508 * Interrupts and queues are about to be enabled and other threads will 2509 * want to access the hardware too. It is safe to do so. Note that 2510 * this thread is still in the middle of a synchronized_op. 2511 */ 2512 set_adapter_hwstatus(sc, true); 2513 2514 if (sc->flags & FULL_INIT_DONE) { 2515 rc = adapter_full_init(sc); 2516 if (rc != 0) { 2517 CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc); 2518 goto done; 2519 } 2520 2521 if (sc->vxlan_refcount > 0) 2522 enable_vxlan_rx(sc); 2523 2524 for_each_port(sc, i) { 2525 pi = sc->port[i]; 2526 for_each_vi(pi, j, vi) { 2527 mtx_lock(&vi->tick_mtx); 2528 vi->flags &= ~VI_SKIP_STATS; 2529 mtx_unlock(&vi->tick_mtx); 2530 if (!(vi->flags & VI_INIT_DONE)) 2531 continue; 2532 rc = vi_full_init(vi); 2533 if (rc != 0) { 2534 CH_ERR(vi, "failed to re-initialize " 2535 "interface: %d\n", rc); 2536 goto done; 2537 } 2538 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 2539 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 2540 t4_set_trace_rss_control(sc, pi->tx_chan, sc->traceq); 2541 pi->flags |= HAS_TRACEQ; 2542 } 2543 2544 ifp = vi->ifp; 2545 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 2546 continue; 2547 /* 2548 * Note that we do not setup multicast addresses 2549 * in the first pass. This ensures that the 2550 * unicast DMACs for all VIs on all ports get an 2551 * MPS TCAM entry. 2552 */ 2553 rc = update_mac_settings(ifp, XGMAC_ALL & 2554 ~XGMAC_MCADDRS); 2555 if (rc != 0) { 2556 CH_ERR(vi, "failed to re-configure MAC: %d\n", rc); 2557 goto done; 2558 } 2559 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, 2560 true); 2561 if (rc != 0) { 2562 CH_ERR(vi, "failed to re-enable VI: %d\n", rc); 2563 goto done; 2564 } 2565 for_each_txq(vi, k, txq) { 2566 TXQ_LOCK(txq); 2567 txq->eq.flags |= EQ_ENABLED; 2568 TXQ_UNLOCK(txq); 2569 } 2570 mtx_lock(&vi->tick_mtx); 2571 callout_schedule(&vi->tick, hz); 2572 mtx_unlock(&vi->tick_mtx); 2573 } 2574 PORT_LOCK(pi); 2575 if (pi->up_vis > 0) { 2576 t4_update_port_info(pi); 2577 fixup_link_config(pi); 2578 build_medialist(pi); 2579 apply_link_config(pi); 2580 if (pi->link_cfg.link_ok) 2581 t4_os_link_changed(pi); 2582 } 2583 PORT_UNLOCK(pi); 2584 } 2585 2586 /* Now reprogram the L2 multicast addresses. */ 2587 for_each_port(sc, i) { 2588 pi = sc->port[i]; 2589 for_each_vi(pi, j, vi) { 2590 if (!(vi->flags & VI_INIT_DONE)) 2591 continue; 2592 ifp = vi->ifp; 2593 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) 2594 continue; 2595 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 2596 if (rc != 0) { 2597 CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc); 2598 rc = 0; /* carry on */ 2599 } 2600 } 2601 } 2602 } 2603 2604 /* Reset all calibration */ 2605 t4_calibration_start(sc); 2606 done: 2607 end_synchronized_op(sc, 0); 2608 free(old_state, M_CXGBE); 2609 2610 restart_atid_allocator(sc); 2611 t4_restart_l2t(sc); 2612 2613 return (rc); 2614 } 2615 2616 int 2617 resume_adapter(struct adapter *sc) 2618 { 2619 restart_adapter(sc); 2620 restart_lld(sc); 2621 #ifdef TCP_OFFLOAD 2622 restart_all_uld(sc); 2623 #endif 2624 return (0); 2625 } 2626 2627 static int 2628 t4_resume(device_t dev) 2629 { 2630 struct adapter *sc = device_get_softc(dev); 2631 int rc; 2632 2633 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2634 rc = resume_adapter(sc); 2635 CH_ALERT(sc, "%s end (thread %p).\n", __func__, curthread); 2636 2637 return (rc); 2638 } 2639 2640 static int 2641 t4_reset_prepare(device_t dev, device_t child) 2642 { 2643 struct adapter *sc = device_get_softc(dev); 2644 2645 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2646 return (0); 2647 } 2648 2649 static int 2650 t4_reset_post(device_t dev, device_t child) 2651 { 2652 struct adapter *sc = device_get_softc(dev); 2653 2654 CH_ALERT(sc, "%s from thread %p.\n", __func__, curthread); 2655 return (0); 2656 } 2657 2658 static int 2659 reset_adapter_with_pl_rst(struct adapter *sc) 2660 { 2661 /* This is a t4_write_reg without the hw_off_limits check. */ 2662 MPASS(sc->error_flags & HW_OFF_LIMITS); 2663 bus_space_write_4(sc->bt, sc->bh, A_PL_RST, 2664 F_PIORSTMODE | F_PIORST | F_AUTOPCIEPAUSE); 2665 pause("pl_rst", 1 * hz); /* Wait 1s for reset */ 2666 return (0); 2667 } 2668 2669 static int 2670 reset_adapter_with_pcie_sbr(struct adapter *sc) 2671 { 2672 device_t pdev = device_get_parent(sc->dev); 2673 device_t gpdev = device_get_parent(pdev); 2674 device_t *children; 2675 int rc, i, lcap, lsta, nchildren; 2676 uint32_t v; 2677 2678 rc = pci_find_cap(gpdev, PCIY_EXPRESS, &v); 2679 if (rc != 0) { 2680 CH_ERR(sc, "%s: pci_find_cap(%s, pcie) failed: %d\n", __func__, 2681 device_get_nameunit(gpdev), rc); 2682 return (ENOTSUP); 2683 } 2684 lcap = v + PCIER_LINK_CAP; 2685 lsta = v + PCIER_LINK_STA; 2686 2687 nchildren = 0; 2688 device_get_children(pdev, &children, &nchildren); 2689 for (i = 0; i < nchildren; i++) 2690 pci_save_state(children[i]); 2691 v = pci_read_config(gpdev, PCIR_BRIDGECTL_1, 2); 2692 pci_write_config(gpdev, PCIR_BRIDGECTL_1, v | PCIB_BCR_SECBUS_RESET, 2); 2693 pause("pcie_sbr1", hz / 10); /* 100ms */ 2694 pci_write_config(gpdev, PCIR_BRIDGECTL_1, v, 2); 2695 pause("pcie_sbr2", hz); /* Wait 1s before restore_state. */ 2696 v = pci_read_config(gpdev, lsta, 2); 2697 if (pci_read_config(gpdev, lcap, 2) & PCIEM_LINK_CAP_DL_ACTIVE) 2698 rc = v & PCIEM_LINK_STA_DL_ACTIVE ? 0 : ETIMEDOUT; 2699 else if (v & (PCIEM_LINK_STA_TRAINING_ERROR | PCIEM_LINK_STA_TRAINING)) 2700 rc = ETIMEDOUT; 2701 else 2702 rc = 0; 2703 if (rc != 0) 2704 CH_ERR(sc, "%s: PCIe link is down after reset, LINK_STA 0x%x\n", 2705 __func__, v); 2706 else { 2707 for (i = 0; i < nchildren; i++) 2708 pci_restore_state(children[i]); 2709 } 2710 free(children, M_TEMP); 2711 2712 return (rc); 2713 } 2714 2715 static int 2716 reset_adapter_with_pcie_link_bounce(struct adapter *sc) 2717 { 2718 device_t pdev = device_get_parent(sc->dev); 2719 device_t gpdev = device_get_parent(pdev); 2720 device_t *children; 2721 int rc, i, lcap, lctl, lsta, nchildren; 2722 uint32_t v; 2723 2724 rc = pci_find_cap(gpdev, PCIY_EXPRESS, &v); 2725 if (rc != 0) { 2726 CH_ERR(sc, "%s: pci_find_cap(%s, pcie) failed: %d\n", __func__, 2727 device_get_nameunit(gpdev), rc); 2728 return (ENOTSUP); 2729 } 2730 lcap = v + PCIER_LINK_CAP; 2731 lctl = v + PCIER_LINK_CTL; 2732 lsta = v + PCIER_LINK_STA; 2733 2734 nchildren = 0; 2735 device_get_children(pdev, &children, &nchildren); 2736 for (i = 0; i < nchildren; i++) 2737 pci_save_state(children[i]); 2738 v = pci_read_config(gpdev, lctl, 2); 2739 pci_write_config(gpdev, lctl, v | PCIEM_LINK_CTL_LINK_DIS, 2); 2740 pause("pcie_lnk1", 100 * hz / 1000); /* 100ms */ 2741 pci_write_config(gpdev, lctl, v | PCIEM_LINK_CTL_RETRAIN_LINK, 2); 2742 pause("pcie_lnk2", hz); /* Wait 1s before restore_state. */ 2743 v = pci_read_config(gpdev, lsta, 2); 2744 if (pci_read_config(gpdev, lcap, 2) & PCIEM_LINK_CAP_DL_ACTIVE) 2745 rc = v & PCIEM_LINK_STA_DL_ACTIVE ? 0 : ETIMEDOUT; 2746 else if (v & (PCIEM_LINK_STA_TRAINING_ERROR | PCIEM_LINK_STA_TRAINING)) 2747 rc = ETIMEDOUT; 2748 else 2749 rc = 0; 2750 if (rc != 0) 2751 CH_ERR(sc, "%s: PCIe link is down after reset, LINK_STA 0x%x\n", 2752 __func__, v); 2753 else { 2754 for (i = 0; i < nchildren; i++) 2755 pci_restore_state(children[i]); 2756 } 2757 free(children, M_TEMP); 2758 2759 return (rc); 2760 } 2761 2762 static inline int 2763 reset_adapter(struct adapter *sc) 2764 { 2765 int rc; 2766 const int reset_method = vm_guest == VM_GUEST_NO ? t4_reset_method : 0; 2767 2768 rc = suspend_adapter(sc); 2769 if (rc != 0) 2770 return (rc); 2771 2772 switch (reset_method) { 2773 case 1: 2774 rc = reset_adapter_with_pcie_sbr(sc); 2775 break; 2776 case 2: 2777 rc = reset_adapter_with_pcie_link_bounce(sc); 2778 break; 2779 case 0: 2780 default: 2781 rc = reset_adapter_with_pl_rst(sc); 2782 break; 2783 } 2784 if (rc == 0) 2785 rc = resume_adapter(sc); 2786 return (rc); 2787 } 2788 2789 static void 2790 reset_adapter_task(void *arg, int pending) 2791 { 2792 struct adapter *sc = arg; 2793 const int flags = sc->flags; 2794 const int eflags = sc->error_flags; 2795 int rc; 2796 2797 if (pending > 1) 2798 CH_ALERT(sc, "%s: pending %d\n", __func__, pending); 2799 rc = reset_adapter(sc); 2800 if (rc != 0) { 2801 CH_ERR(sc, "adapter did not reset properly, rc = %d, " 2802 "flags 0x%08x -> 0x%08x, err_flags 0x%08x -> 0x%08x.\n", 2803 rc, flags, sc->flags, eflags, sc->error_flags); 2804 } 2805 } 2806 2807 static int 2808 cxgbe_probe(device_t dev) 2809 { 2810 struct port_info *pi = device_get_softc(dev); 2811 2812 device_set_descf(dev, "port %d", pi->port_id); 2813 2814 return (BUS_PROBE_DEFAULT); 2815 } 2816 2817 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \ 2818 IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \ 2819 IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \ 2820 IFCAP_HWRXTSTMP | IFCAP_MEXTPG) 2821 #define T4_CAP_ENABLE (T4_CAP) 2822 2823 static void 2824 cxgbe_vi_attach(device_t dev, struct vi_info *vi) 2825 { 2826 if_t ifp; 2827 struct sbuf *sb; 2828 struct sysctl_ctx_list *ctx = &vi->ctx; 2829 struct sysctl_oid_list *children; 2830 struct pfil_head_args pa; 2831 struct adapter *sc = vi->adapter; 2832 2833 sysctl_ctx_init(ctx); 2834 children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev)); 2835 vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq", 2836 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues"); 2837 vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq", 2838 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues"); 2839 #ifdef DEV_NETMAP 2840 vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq", 2841 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues"); 2842 vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq", 2843 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues"); 2844 #endif 2845 #ifdef TCP_OFFLOAD 2846 vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq", 2847 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues"); 2848 #endif 2849 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2850 vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq", 2851 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues"); 2852 #endif 2853 2854 vi->xact_addr_filt = -1; 2855 mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF); 2856 callout_init_mtx(&vi->tick, &vi->tick_mtx, 0); 2857 if (sc->flags & IS_VF || t4_tx_vm_wr != 0) 2858 vi->flags |= TX_USES_VM_WR; 2859 2860 /* Allocate an ifnet and set it up */ 2861 ifp = if_alloc_dev(IFT_ETHER, dev); 2862 vi->ifp = ifp; 2863 if_setsoftc(ifp, vi); 2864 2865 if_initname(ifp, device_get_name(dev), device_get_unit(dev)); 2866 if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST); 2867 2868 if_setinitfn(ifp, cxgbe_init); 2869 if_setioctlfn(ifp, cxgbe_ioctl); 2870 if_settransmitfn(ifp, cxgbe_transmit); 2871 if_setqflushfn(ifp, cxgbe_qflush); 2872 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 2873 if_setgetcounterfn(ifp, vi_get_counter); 2874 else 2875 if_setgetcounterfn(ifp, cxgbe_get_counter); 2876 #if defined(KERN_TLS) || defined(RATELIMIT) 2877 if_setsndtagallocfn(ifp, cxgbe_snd_tag_alloc); 2878 #endif 2879 #ifdef RATELIMIT 2880 if_setratelimitqueryfn(ifp, cxgbe_ratelimit_query); 2881 #endif 2882 2883 if_setcapabilities(ifp, T4_CAP); 2884 if_setcapenable(ifp, T4_CAP_ENABLE); 2885 if_sethwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO | 2886 CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 2887 if (chip_id(sc) >= CHELSIO_T6) { 2888 if_setcapabilitiesbit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0); 2889 if_setcapenablebit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0); 2890 if_sethwassistbits(ifp, CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP | 2891 CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP | 2892 CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN, 0); 2893 } 2894 2895 #ifdef TCP_OFFLOAD 2896 if (vi->nofldrxq != 0) 2897 if_setcapabilitiesbit(ifp, IFCAP_TOE, 0); 2898 #endif 2899 #ifdef RATELIMIT 2900 if (is_ethoffload(sc) && vi->nofldtxq != 0) { 2901 if_setcapabilitiesbit(ifp, IFCAP_TXRTLMT, 0); 2902 if_setcapenablebit(ifp, IFCAP_TXRTLMT, 0); 2903 } 2904 #endif 2905 2906 if_sethwtsomax(ifp, IP_MAXPACKET); 2907 if (vi->flags & TX_USES_VM_WR) 2908 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_VM_TSO); 2909 else 2910 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_TSO); 2911 #ifdef RATELIMIT 2912 if (is_ethoffload(sc) && vi->nofldtxq != 0) 2913 if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_EO_TSO); 2914 #endif 2915 if_sethwtsomaxsegsize(ifp, 65536); 2916 #ifdef KERN_TLS 2917 if (is_ktls(sc)) { 2918 if_setcapabilitiesbit(ifp, IFCAP_TXTLS, 0); 2919 if (sc->flags & KERN_TLS_ON || !is_t6(sc)) 2920 if_setcapenablebit(ifp, IFCAP_TXTLS, 0); 2921 } 2922 #endif 2923 2924 ether_ifattach(ifp, vi->hw_addr); 2925 #ifdef DEV_NETMAP 2926 if (vi->nnmrxq != 0) 2927 cxgbe_nm_attach(vi); 2928 #endif 2929 sb = sbuf_new_auto(); 2930 sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq); 2931 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 2932 switch (if_getcapabilities(ifp) & (IFCAP_TOE | IFCAP_TXRTLMT)) { 2933 case IFCAP_TOE: 2934 sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq); 2935 break; 2936 case IFCAP_TOE | IFCAP_TXRTLMT: 2937 sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq); 2938 break; 2939 case IFCAP_TXRTLMT: 2940 sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq); 2941 break; 2942 } 2943 #endif 2944 #ifdef TCP_OFFLOAD 2945 if (if_getcapabilities(ifp) & IFCAP_TOE) 2946 sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq); 2947 #endif 2948 #ifdef DEV_NETMAP 2949 if (if_getcapabilities(ifp) & IFCAP_NETMAP) 2950 sbuf_printf(sb, "; %d txq, %d rxq (netmap)", 2951 vi->nnmtxq, vi->nnmrxq); 2952 #endif 2953 sbuf_finish(sb); 2954 device_printf(dev, "%s\n", sbuf_data(sb)); 2955 sbuf_delete(sb); 2956 2957 vi_sysctls(vi); 2958 2959 pa.pa_version = PFIL_VERSION; 2960 pa.pa_flags = PFIL_IN; 2961 pa.pa_type = PFIL_TYPE_ETHERNET; 2962 pa.pa_headname = if_name(ifp); 2963 vi->pfil = pfil_head_register(&pa); 2964 } 2965 2966 static int 2967 cxgbe_attach(device_t dev) 2968 { 2969 struct port_info *pi = device_get_softc(dev); 2970 struct adapter *sc = pi->adapter; 2971 struct vi_info *vi; 2972 int i; 2973 2974 sysctl_ctx_init(&pi->ctx); 2975 2976 cxgbe_vi_attach(dev, &pi->vi[0]); 2977 2978 for_each_vi(pi, i, vi) { 2979 if (i == 0) 2980 continue; 2981 vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, DEVICE_UNIT_ANY); 2982 if (vi->dev == NULL) { 2983 device_printf(dev, "failed to add VI %d\n", i); 2984 continue; 2985 } 2986 device_set_softc(vi->dev, vi); 2987 } 2988 2989 cxgbe_sysctls(pi); 2990 2991 bus_attach_children(dev); 2992 2993 return (0); 2994 } 2995 2996 static void 2997 cxgbe_vi_detach(struct vi_info *vi) 2998 { 2999 if_t ifp = vi->ifp; 3000 3001 if (vi->pfil != NULL) { 3002 pfil_head_unregister(vi->pfil); 3003 vi->pfil = NULL; 3004 } 3005 3006 ether_ifdetach(ifp); 3007 3008 /* Let detach proceed even if these fail. */ 3009 #ifdef DEV_NETMAP 3010 if (if_getcapabilities(ifp) & IFCAP_NETMAP) 3011 cxgbe_nm_detach(vi); 3012 #endif 3013 cxgbe_uninit_synchronized(vi); 3014 callout_drain(&vi->tick); 3015 mtx_destroy(&vi->tick_mtx); 3016 sysctl_ctx_free(&vi->ctx); 3017 vi_full_uninit(vi); 3018 3019 if_free(vi->ifp); 3020 vi->ifp = NULL; 3021 } 3022 3023 static int 3024 cxgbe_detach(device_t dev) 3025 { 3026 struct port_info *pi = device_get_softc(dev); 3027 struct adapter *sc = pi->adapter; 3028 int rc; 3029 3030 /* Detach the extra VIs first. */ 3031 rc = bus_generic_detach(dev); 3032 if (rc) 3033 return (rc); 3034 3035 sysctl_ctx_free(&pi->ctx); 3036 begin_vi_detach(sc, &pi->vi[0]); 3037 if (pi->flags & HAS_TRACEQ) { 3038 sc->traceq = -1; /* cloner should not create ifnet */ 3039 t4_tracer_port_detach(sc); 3040 } 3041 cxgbe_vi_detach(&pi->vi[0]); 3042 ifmedia_removeall(&pi->media); 3043 end_vi_detach(sc, &pi->vi[0]); 3044 3045 return (0); 3046 } 3047 3048 static void 3049 cxgbe_init(void *arg) 3050 { 3051 struct vi_info *vi = arg; 3052 struct adapter *sc = vi->adapter; 3053 3054 if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0) 3055 return; 3056 cxgbe_init_synchronized(vi); 3057 end_synchronized_op(sc, 0); 3058 } 3059 3060 static int 3061 cxgbe_ioctl(if_t ifp, unsigned long cmd, caddr_t data) 3062 { 3063 int rc = 0, mtu, flags; 3064 struct vi_info *vi = if_getsoftc(ifp); 3065 struct port_info *pi = vi->pi; 3066 struct adapter *sc = pi->adapter; 3067 struct ifreq *ifr = (struct ifreq *)data; 3068 uint32_t mask; 3069 3070 switch (cmd) { 3071 case SIOCSIFMTU: 3072 mtu = ifr->ifr_mtu; 3073 if (mtu < ETHERMIN || mtu > MAX_MTU) 3074 return (EINVAL); 3075 3076 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu"); 3077 if (rc) 3078 return (rc); 3079 if_setmtu(ifp, mtu); 3080 if (vi->flags & VI_INIT_DONE) { 3081 t4_update_fl_bufsize(ifp); 3082 if (hw_all_ok(sc) && 3083 if_getdrvflags(ifp) & IFF_DRV_RUNNING) 3084 rc = update_mac_settings(ifp, XGMAC_MTU); 3085 } 3086 end_synchronized_op(sc, 0); 3087 break; 3088 3089 case SIOCSIFFLAGS: 3090 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg"); 3091 if (rc) 3092 return (rc); 3093 3094 if (!hw_all_ok(sc)) { 3095 rc = ENXIO; 3096 goto fail; 3097 } 3098 3099 if (if_getflags(ifp) & IFF_UP) { 3100 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 3101 flags = vi->if_flags; 3102 if ((if_getflags(ifp) ^ flags) & 3103 (IFF_PROMISC | IFF_ALLMULTI)) { 3104 rc = update_mac_settings(ifp, 3105 XGMAC_PROMISC | XGMAC_ALLMULTI); 3106 } 3107 } else { 3108 rc = cxgbe_init_synchronized(vi); 3109 } 3110 vi->if_flags = if_getflags(ifp); 3111 } else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) { 3112 rc = cxgbe_uninit_synchronized(vi); 3113 } 3114 end_synchronized_op(sc, 0); 3115 break; 3116 3117 case SIOCADDMULTI: 3118 case SIOCDELMULTI: 3119 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi"); 3120 if (rc) 3121 return (rc); 3122 if (hw_all_ok(sc) && if_getdrvflags(ifp) & IFF_DRV_RUNNING) 3123 rc = update_mac_settings(ifp, XGMAC_MCADDRS); 3124 end_synchronized_op(sc, 0); 3125 break; 3126 3127 case SIOCSIFCAP: 3128 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap"); 3129 if (rc) 3130 return (rc); 3131 3132 mask = ifr->ifr_reqcap ^ if_getcapenable(ifp); 3133 if (mask & IFCAP_TXCSUM) { 3134 if_togglecapenable(ifp, IFCAP_TXCSUM); 3135 if_togglehwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP); 3136 3137 if (IFCAP_TSO4 & if_getcapenable(ifp) && 3138 !(IFCAP_TXCSUM & if_getcapenable(ifp))) { 3139 mask &= ~IFCAP_TSO4; 3140 if_setcapenablebit(ifp, 0, IFCAP_TSO4); 3141 if_printf(ifp, 3142 "tso4 disabled due to -txcsum.\n"); 3143 } 3144 } 3145 if (mask & IFCAP_TXCSUM_IPV6) { 3146 if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6); 3147 if_togglehwassist(ifp, CSUM_UDP_IPV6 | CSUM_TCP_IPV6); 3148 3149 if (IFCAP_TSO6 & if_getcapenable(ifp) && 3150 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) { 3151 mask &= ~IFCAP_TSO6; 3152 if_setcapenablebit(ifp, 0, IFCAP_TSO6); 3153 if_printf(ifp, 3154 "tso6 disabled due to -txcsum6.\n"); 3155 } 3156 } 3157 if (mask & IFCAP_RXCSUM) 3158 if_togglecapenable(ifp, IFCAP_RXCSUM); 3159 if (mask & IFCAP_RXCSUM_IPV6) 3160 if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6); 3161 3162 /* 3163 * Note that we leave CSUM_TSO alone (it is always set). The 3164 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before 3165 * sending a TSO request our way, so it's sufficient to toggle 3166 * IFCAP_TSOx only. 3167 */ 3168 if (mask & IFCAP_TSO4) { 3169 if (!(IFCAP_TSO4 & if_getcapenable(ifp)) && 3170 !(IFCAP_TXCSUM & if_getcapenable(ifp))) { 3171 if_printf(ifp, "enable txcsum first.\n"); 3172 rc = EAGAIN; 3173 goto fail; 3174 } 3175 if_togglecapenable(ifp, IFCAP_TSO4); 3176 } 3177 if (mask & IFCAP_TSO6) { 3178 if (!(IFCAP_TSO6 & if_getcapenable(ifp)) && 3179 !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) { 3180 if_printf(ifp, "enable txcsum6 first.\n"); 3181 rc = EAGAIN; 3182 goto fail; 3183 } 3184 if_togglecapenable(ifp, IFCAP_TSO6); 3185 } 3186 if (mask & IFCAP_LRO) { 3187 #if defined(INET) || defined(INET6) 3188 int i; 3189 struct sge_rxq *rxq; 3190 3191 if_togglecapenable(ifp, IFCAP_LRO); 3192 for_each_rxq(vi, i, rxq) { 3193 if (if_getcapenable(ifp) & IFCAP_LRO) 3194 rxq->iq.flags |= IQ_LRO_ENABLED; 3195 else 3196 rxq->iq.flags &= ~IQ_LRO_ENABLED; 3197 } 3198 #endif 3199 } 3200 #ifdef TCP_OFFLOAD 3201 if (mask & IFCAP_TOE) { 3202 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TOE; 3203 3204 rc = toe_capability(vi, enable); 3205 if (rc != 0) 3206 goto fail; 3207 3208 if_togglecapenable(ifp, mask); 3209 } 3210 #endif 3211 if (mask & IFCAP_VLAN_HWTAGGING) { 3212 if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING); 3213 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 3214 rc = update_mac_settings(ifp, XGMAC_VLANEX); 3215 } 3216 if (mask & IFCAP_VLAN_MTU) { 3217 if_togglecapenable(ifp, IFCAP_VLAN_MTU); 3218 3219 /* Need to find out how to disable auto-mtu-inflation */ 3220 } 3221 if (mask & IFCAP_VLAN_HWTSO) 3222 if_togglecapenable(ifp, IFCAP_VLAN_HWTSO); 3223 if (mask & IFCAP_VLAN_HWCSUM) 3224 if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM); 3225 #ifdef RATELIMIT 3226 if (mask & IFCAP_TXRTLMT) 3227 if_togglecapenable(ifp, IFCAP_TXRTLMT); 3228 #endif 3229 if (mask & IFCAP_HWRXTSTMP) { 3230 int i; 3231 struct sge_rxq *rxq; 3232 3233 if_togglecapenable(ifp, IFCAP_HWRXTSTMP); 3234 for_each_rxq(vi, i, rxq) { 3235 if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP) 3236 rxq->iq.flags |= IQ_RX_TIMESTAMP; 3237 else 3238 rxq->iq.flags &= ~IQ_RX_TIMESTAMP; 3239 } 3240 } 3241 if (mask & IFCAP_MEXTPG) 3242 if_togglecapenable(ifp, IFCAP_MEXTPG); 3243 3244 #ifdef KERN_TLS 3245 if (mask & IFCAP_TXTLS) { 3246 int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TXTLS; 3247 3248 rc = ktls_capability(sc, enable); 3249 if (rc != 0) 3250 goto fail; 3251 3252 if_togglecapenable(ifp, mask & IFCAP_TXTLS); 3253 } 3254 #endif 3255 if (mask & IFCAP_VXLAN_HWCSUM) { 3256 if_togglecapenable(ifp, IFCAP_VXLAN_HWCSUM); 3257 if_togglehwassist(ifp, CSUM_INNER_IP6_UDP | 3258 CSUM_INNER_IP6_TCP | CSUM_INNER_IP | 3259 CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP); 3260 } 3261 if (mask & IFCAP_VXLAN_HWTSO) { 3262 if_togglecapenable(ifp, IFCAP_VXLAN_HWTSO); 3263 if_togglehwassist(ifp, CSUM_INNER_IP6_TSO | 3264 CSUM_INNER_IP_TSO); 3265 } 3266 3267 #ifdef VLAN_CAPABILITIES 3268 VLAN_CAPABILITIES(ifp); 3269 #endif 3270 fail: 3271 end_synchronized_op(sc, 0); 3272 break; 3273 3274 case SIOCSIFMEDIA: 3275 case SIOCGIFMEDIA: 3276 case SIOCGIFXMEDIA: 3277 rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd); 3278 break; 3279 3280 case SIOCGI2C: { 3281 struct ifi2creq i2c; 3282 3283 rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c)); 3284 if (rc != 0) 3285 break; 3286 if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) { 3287 rc = EPERM; 3288 break; 3289 } 3290 if (i2c.len > sizeof(i2c.data)) { 3291 rc = EINVAL; 3292 break; 3293 } 3294 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c"); 3295 if (rc) 3296 return (rc); 3297 if (!hw_all_ok(sc)) 3298 rc = ENXIO; 3299 else 3300 rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr, 3301 i2c.offset, i2c.len, &i2c.data[0]); 3302 end_synchronized_op(sc, 0); 3303 if (rc == 0) 3304 rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c)); 3305 break; 3306 } 3307 3308 default: 3309 rc = ether_ioctl(ifp, cmd, data); 3310 } 3311 3312 return (rc); 3313 } 3314 3315 static int 3316 cxgbe_transmit(if_t ifp, struct mbuf *m) 3317 { 3318 struct vi_info *vi = if_getsoftc(ifp); 3319 struct port_info *pi = vi->pi; 3320 struct adapter *sc; 3321 struct sge_txq *txq; 3322 void *items[1]; 3323 int rc; 3324 3325 M_ASSERTPKTHDR(m); 3326 MPASS(m->m_nextpkt == NULL); /* not quite ready for this yet */ 3327 #if defined(KERN_TLS) || defined(RATELIMIT) 3328 if (m->m_pkthdr.csum_flags & CSUM_SND_TAG) 3329 MPASS(m->m_pkthdr.snd_tag->ifp == ifp); 3330 #endif 3331 3332 if (__predict_false(pi->link_cfg.link_ok == false)) { 3333 m_freem(m); 3334 return (ENETDOWN); 3335 } 3336 3337 rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR); 3338 if (__predict_false(rc != 0)) { 3339 if (__predict_true(rc == EINPROGRESS)) { 3340 /* queued by parse_pkt */ 3341 MPASS(m != NULL); 3342 return (0); 3343 } 3344 3345 MPASS(m == NULL); /* was freed already */ 3346 atomic_add_int(&pi->tx_parse_error, 1); /* rare, atomic is ok */ 3347 return (rc); 3348 } 3349 3350 /* Select a txq. */ 3351 sc = vi->adapter; 3352 txq = &sc->sge.txq[vi->first_txq]; 3353 if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE) 3354 txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) + 3355 vi->rsrv_noflowq); 3356 3357 items[0] = m; 3358 rc = mp_ring_enqueue(txq->r, items, 1, 256); 3359 if (__predict_false(rc != 0)) 3360 m_freem(m); 3361 3362 return (rc); 3363 } 3364 3365 static void 3366 cxgbe_qflush(if_t ifp) 3367 { 3368 struct vi_info *vi = if_getsoftc(ifp); 3369 struct sge_txq *txq; 3370 int i; 3371 3372 /* queues do not exist if !VI_INIT_DONE. */ 3373 if (vi->flags & VI_INIT_DONE) { 3374 for_each_txq(vi, i, txq) { 3375 TXQ_LOCK(txq); 3376 txq->eq.flags |= EQ_QFLUSH; 3377 TXQ_UNLOCK(txq); 3378 while (!mp_ring_is_idle(txq->r)) { 3379 mp_ring_check_drainage(txq->r, 4096); 3380 pause("qflush", 1); 3381 } 3382 TXQ_LOCK(txq); 3383 txq->eq.flags &= ~EQ_QFLUSH; 3384 TXQ_UNLOCK(txq); 3385 } 3386 } 3387 if_qflush(ifp); 3388 } 3389 3390 static uint64_t 3391 vi_get_counter(if_t ifp, ift_counter c) 3392 { 3393 struct vi_info *vi = if_getsoftc(ifp); 3394 struct fw_vi_stats_vf *s = &vi->stats; 3395 3396 mtx_lock(&vi->tick_mtx); 3397 vi_refresh_stats(vi); 3398 mtx_unlock(&vi->tick_mtx); 3399 3400 switch (c) { 3401 case IFCOUNTER_IPACKETS: 3402 return (s->rx_bcast_frames + s->rx_mcast_frames + 3403 s->rx_ucast_frames); 3404 case IFCOUNTER_IERRORS: 3405 return (s->rx_err_frames); 3406 case IFCOUNTER_OPACKETS: 3407 return (s->tx_bcast_frames + s->tx_mcast_frames + 3408 s->tx_ucast_frames + s->tx_offload_frames); 3409 case IFCOUNTER_OERRORS: 3410 return (s->tx_drop_frames); 3411 case IFCOUNTER_IBYTES: 3412 return (s->rx_bcast_bytes + s->rx_mcast_bytes + 3413 s->rx_ucast_bytes); 3414 case IFCOUNTER_OBYTES: 3415 return (s->tx_bcast_bytes + s->tx_mcast_bytes + 3416 s->tx_ucast_bytes + s->tx_offload_bytes); 3417 case IFCOUNTER_IMCASTS: 3418 return (s->rx_mcast_frames); 3419 case IFCOUNTER_OMCASTS: 3420 return (s->tx_mcast_frames); 3421 case IFCOUNTER_OQDROPS: { 3422 uint64_t drops; 3423 3424 drops = 0; 3425 if (vi->flags & VI_INIT_DONE) { 3426 int i; 3427 struct sge_txq *txq; 3428 3429 for_each_txq(vi, i, txq) 3430 drops += counter_u64_fetch(txq->r->dropped); 3431 } 3432 3433 return (drops); 3434 3435 } 3436 3437 default: 3438 return (if_get_counter_default(ifp, c)); 3439 } 3440 } 3441 3442 static uint64_t 3443 cxgbe_get_counter(if_t ifp, ift_counter c) 3444 { 3445 struct vi_info *vi = if_getsoftc(ifp); 3446 struct port_info *pi = vi->pi; 3447 struct port_stats *s = &pi->stats; 3448 3449 mtx_lock(&vi->tick_mtx); 3450 cxgbe_refresh_stats(vi); 3451 mtx_unlock(&vi->tick_mtx); 3452 3453 switch (c) { 3454 case IFCOUNTER_IPACKETS: 3455 return (s->rx_frames); 3456 3457 case IFCOUNTER_IERRORS: 3458 return (s->rx_jabber + s->rx_runt + s->rx_too_long + 3459 s->rx_fcs_err + s->rx_len_err); 3460 3461 case IFCOUNTER_OPACKETS: 3462 return (s->tx_frames); 3463 3464 case IFCOUNTER_OERRORS: 3465 return (s->tx_error_frames); 3466 3467 case IFCOUNTER_IBYTES: 3468 return (s->rx_octets); 3469 3470 case IFCOUNTER_OBYTES: 3471 return (s->tx_octets); 3472 3473 case IFCOUNTER_IMCASTS: 3474 return (s->rx_mcast_frames); 3475 3476 case IFCOUNTER_OMCASTS: 3477 return (s->tx_mcast_frames); 3478 3479 case IFCOUNTER_IQDROPS: 3480 return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 + 3481 s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 + 3482 s->rx_trunc3 + pi->tnl_cong_drops); 3483 3484 case IFCOUNTER_OQDROPS: { 3485 uint64_t drops; 3486 3487 drops = s->tx_drop; 3488 if (vi->flags & VI_INIT_DONE) { 3489 int i; 3490 struct sge_txq *txq; 3491 3492 for_each_txq(vi, i, txq) 3493 drops += counter_u64_fetch(txq->r->dropped); 3494 } 3495 3496 return (drops); 3497 3498 } 3499 3500 default: 3501 return (if_get_counter_default(ifp, c)); 3502 } 3503 } 3504 3505 #if defined(KERN_TLS) || defined(RATELIMIT) 3506 static int 3507 cxgbe_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params, 3508 struct m_snd_tag **pt) 3509 { 3510 int error; 3511 3512 switch (params->hdr.type) { 3513 #ifdef RATELIMIT 3514 case IF_SND_TAG_TYPE_RATE_LIMIT: 3515 error = cxgbe_rate_tag_alloc(ifp, params, pt); 3516 break; 3517 #endif 3518 #ifdef KERN_TLS 3519 case IF_SND_TAG_TYPE_TLS: 3520 { 3521 struct vi_info *vi = if_getsoftc(ifp); 3522 3523 if (is_t6(vi->pi->adapter)) 3524 error = t6_tls_tag_alloc(ifp, params, pt); 3525 else 3526 error = t7_tls_tag_alloc(ifp, params, pt); 3527 break; 3528 } 3529 #endif 3530 default: 3531 error = EOPNOTSUPP; 3532 } 3533 return (error); 3534 } 3535 #endif 3536 3537 /* 3538 * The kernel picks a media from the list we had provided but we still validate 3539 * the requeste. 3540 */ 3541 int 3542 cxgbe_media_change(if_t ifp) 3543 { 3544 struct vi_info *vi = if_getsoftc(ifp); 3545 struct port_info *pi = vi->pi; 3546 struct ifmedia *ifm = &pi->media; 3547 struct link_config *lc = &pi->link_cfg; 3548 struct adapter *sc = pi->adapter; 3549 int rc; 3550 3551 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec"); 3552 if (rc != 0) 3553 return (rc); 3554 PORT_LOCK(pi); 3555 if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) { 3556 /* ifconfig .. media autoselect */ 3557 if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { 3558 rc = ENOTSUP; /* AN not supported by transceiver */ 3559 goto done; 3560 } 3561 lc->requested_aneg = AUTONEG_ENABLE; 3562 lc->requested_speed = 0; 3563 lc->requested_fc |= PAUSE_AUTONEG; 3564 } else { 3565 lc->requested_aneg = AUTONEG_DISABLE; 3566 lc->requested_speed = 3567 ifmedia_baudrate(ifm->ifm_media) / 1000000; 3568 lc->requested_fc = 0; 3569 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE) 3570 lc->requested_fc |= PAUSE_RX; 3571 if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE) 3572 lc->requested_fc |= PAUSE_TX; 3573 } 3574 if (pi->up_vis > 0 && hw_all_ok(sc)) { 3575 fixup_link_config(pi); 3576 rc = apply_link_config(pi); 3577 } 3578 done: 3579 PORT_UNLOCK(pi); 3580 end_synchronized_op(sc, 0); 3581 return (rc); 3582 } 3583 3584 /* 3585 * Base media word (without ETHER, pause, link active, etc.) for the port at the 3586 * given speed. 3587 */ 3588 static int 3589 port_mword(struct port_info *pi, uint32_t speed) 3590 { 3591 3592 MPASS(speed & M_FW_PORT_CAP32_SPEED); 3593 MPASS(powerof2(speed)); 3594 3595 switch(pi->port_type) { 3596 case FW_PORT_TYPE_BT_SGMII: 3597 case FW_PORT_TYPE_BT_XFI: 3598 case FW_PORT_TYPE_BT_XAUI: 3599 /* BaseT */ 3600 switch (speed) { 3601 case FW_PORT_CAP32_SPEED_100M: 3602 return (IFM_100_T); 3603 case FW_PORT_CAP32_SPEED_1G: 3604 return (IFM_1000_T); 3605 case FW_PORT_CAP32_SPEED_10G: 3606 return (IFM_10G_T); 3607 } 3608 break; 3609 case FW_PORT_TYPE_KX4: 3610 if (speed == FW_PORT_CAP32_SPEED_10G) 3611 return (IFM_10G_KX4); 3612 break; 3613 case FW_PORT_TYPE_CX4: 3614 if (speed == FW_PORT_CAP32_SPEED_10G) 3615 return (IFM_10G_CX4); 3616 break; 3617 case FW_PORT_TYPE_KX: 3618 if (speed == FW_PORT_CAP32_SPEED_1G) 3619 return (IFM_1000_KX); 3620 break; 3621 case FW_PORT_TYPE_KR: 3622 case FW_PORT_TYPE_BP_AP: 3623 case FW_PORT_TYPE_BP4_AP: 3624 case FW_PORT_TYPE_BP40_BA: 3625 case FW_PORT_TYPE_KR4_100G: 3626 case FW_PORT_TYPE_KR_SFP28: 3627 case FW_PORT_TYPE_KR_XLAUI: 3628 switch (speed) { 3629 case FW_PORT_CAP32_SPEED_1G: 3630 return (IFM_1000_KX); 3631 case FW_PORT_CAP32_SPEED_10G: 3632 return (IFM_10G_KR); 3633 case FW_PORT_CAP32_SPEED_25G: 3634 return (IFM_25G_KR); 3635 case FW_PORT_CAP32_SPEED_40G: 3636 return (IFM_40G_KR4); 3637 case FW_PORT_CAP32_SPEED_50G: 3638 return (IFM_50G_KR2); 3639 case FW_PORT_CAP32_SPEED_100G: 3640 return (IFM_100G_KR4); 3641 } 3642 break; 3643 case FW_PORT_TYPE_FIBER_XFI: 3644 case FW_PORT_TYPE_FIBER_XAUI: 3645 case FW_PORT_TYPE_SFP: 3646 case FW_PORT_TYPE_QSFP_10G: 3647 case FW_PORT_TYPE_QSA: 3648 case FW_PORT_TYPE_QSFP: 3649 case FW_PORT_TYPE_CR4_QSFP: 3650 case FW_PORT_TYPE_CR_QSFP: 3651 case FW_PORT_TYPE_CR2_QSFP: 3652 case FW_PORT_TYPE_SFP28: 3653 case FW_PORT_TYPE_SFP56: 3654 case FW_PORT_TYPE_QSFP56: 3655 /* Pluggable transceiver */ 3656 switch (pi->mod_type) { 3657 case FW_PORT_MOD_TYPE_LR: 3658 case FW_PORT_MOD_TYPE_LR_SIMPLEX: 3659 switch (speed) { 3660 case FW_PORT_CAP32_SPEED_1G: 3661 return (IFM_1000_LX); 3662 case FW_PORT_CAP32_SPEED_10G: 3663 return (IFM_10G_LR); 3664 case FW_PORT_CAP32_SPEED_25G: 3665 return (IFM_25G_LR); 3666 case FW_PORT_CAP32_SPEED_40G: 3667 return (IFM_40G_LR4); 3668 case FW_PORT_CAP32_SPEED_50G: 3669 return (IFM_50G_LR2); 3670 case FW_PORT_CAP32_SPEED_100G: 3671 return (IFM_100G_LR4); 3672 case FW_PORT_CAP32_SPEED_200G: 3673 return (IFM_200G_LR4); 3674 } 3675 break; 3676 case FW_PORT_MOD_TYPE_SR: 3677 switch (speed) { 3678 case FW_PORT_CAP32_SPEED_1G: 3679 return (IFM_1000_SX); 3680 case FW_PORT_CAP32_SPEED_10G: 3681 return (IFM_10G_SR); 3682 case FW_PORT_CAP32_SPEED_25G: 3683 return (IFM_25G_SR); 3684 case FW_PORT_CAP32_SPEED_40G: 3685 return (IFM_40G_SR4); 3686 case FW_PORT_CAP32_SPEED_50G: 3687 return (IFM_50G_SR2); 3688 case FW_PORT_CAP32_SPEED_100G: 3689 return (IFM_100G_SR4); 3690 case FW_PORT_CAP32_SPEED_200G: 3691 return (IFM_200G_SR4); 3692 } 3693 break; 3694 case FW_PORT_MOD_TYPE_ER: 3695 if (speed == FW_PORT_CAP32_SPEED_10G) 3696 return (IFM_10G_ER); 3697 break; 3698 case FW_PORT_MOD_TYPE_TWINAX_PASSIVE: 3699 case FW_PORT_MOD_TYPE_TWINAX_ACTIVE: 3700 switch (speed) { 3701 case FW_PORT_CAP32_SPEED_1G: 3702 return (IFM_1000_CX); 3703 case FW_PORT_CAP32_SPEED_10G: 3704 return (IFM_10G_TWINAX); 3705 case FW_PORT_CAP32_SPEED_25G: 3706 return (IFM_25G_CR); 3707 case FW_PORT_CAP32_SPEED_40G: 3708 return (IFM_40G_CR4); 3709 case FW_PORT_CAP32_SPEED_50G: 3710 return (IFM_50G_CR2); 3711 case FW_PORT_CAP32_SPEED_100G: 3712 return (IFM_100G_CR4); 3713 case FW_PORT_CAP32_SPEED_200G: 3714 return (IFM_200G_CR4_PAM4); 3715 } 3716 break; 3717 case FW_PORT_MOD_TYPE_LRM: 3718 if (speed == FW_PORT_CAP32_SPEED_10G) 3719 return (IFM_10G_LRM); 3720 break; 3721 case FW_PORT_MOD_TYPE_DR: 3722 if (speed == FW_PORT_CAP32_SPEED_100G) 3723 return (IFM_100G_DR); 3724 if (speed == FW_PORT_CAP32_SPEED_200G) 3725 return (IFM_200G_DR4); 3726 break; 3727 case FW_PORT_MOD_TYPE_NA: 3728 MPASS(0); /* Not pluggable? */ 3729 /* fall throough */ 3730 case FW_PORT_MOD_TYPE_ERROR: 3731 case FW_PORT_MOD_TYPE_UNKNOWN: 3732 case FW_PORT_MOD_TYPE_NOTSUPPORTED: 3733 break; 3734 case FW_PORT_MOD_TYPE_NONE: 3735 return (IFM_NONE); 3736 } 3737 break; 3738 case FW_PORT_TYPE_NONE: 3739 return (IFM_NONE); 3740 } 3741 3742 return (IFM_UNKNOWN); 3743 } 3744 3745 void 3746 cxgbe_media_status(if_t ifp, struct ifmediareq *ifmr) 3747 { 3748 struct vi_info *vi = if_getsoftc(ifp); 3749 struct port_info *pi = vi->pi; 3750 struct adapter *sc = pi->adapter; 3751 struct link_config *lc = &pi->link_cfg; 3752 3753 if (begin_synchronized_op(sc, vi , SLEEP_OK | INTR_OK, "t4med") != 0) 3754 return; 3755 PORT_LOCK(pi); 3756 3757 if (pi->up_vis == 0 && hw_all_ok(sc)) { 3758 /* 3759 * If all the interfaces are administratively down the firmware 3760 * does not report transceiver changes. Refresh port info here 3761 * so that ifconfig displays accurate ifmedia at all times. 3762 * This is the only reason we have a synchronized op in this 3763 * function. Just PORT_LOCK would have been enough otherwise. 3764 */ 3765 t4_update_port_info(pi); 3766 build_medialist(pi); 3767 } 3768 3769 /* ifm_status */ 3770 ifmr->ifm_status = IFM_AVALID; 3771 if (lc->link_ok == false) 3772 goto done; 3773 ifmr->ifm_status |= IFM_ACTIVE; 3774 3775 /* ifm_active */ 3776 ifmr->ifm_active = IFM_ETHER | IFM_FDX; 3777 ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE); 3778 if (lc->fc & PAUSE_RX) 3779 ifmr->ifm_active |= IFM_ETH_RXPAUSE; 3780 if (lc->fc & PAUSE_TX) 3781 ifmr->ifm_active |= IFM_ETH_TXPAUSE; 3782 ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed)); 3783 done: 3784 PORT_UNLOCK(pi); 3785 end_synchronized_op(sc, 0); 3786 } 3787 3788 static int 3789 vcxgbe_probe(device_t dev) 3790 { 3791 struct vi_info *vi = device_get_softc(dev); 3792 3793 device_set_descf(dev, "port %d vi %td", vi->pi->port_id, 3794 vi - vi->pi->vi); 3795 3796 return (BUS_PROBE_DEFAULT); 3797 } 3798 3799 static int 3800 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi) 3801 { 3802 int func, index, rc; 3803 uint32_t param, val; 3804 3805 ASSERT_SYNCHRONIZED_OP(sc); 3806 3807 index = vi - pi->vi; 3808 MPASS(index > 0); /* This function deals with _extra_ VIs only */ 3809 KASSERT(index < nitems(vi_mac_funcs), 3810 ("%s: VI %s doesn't have a MAC func", __func__, 3811 device_get_nameunit(vi->dev))); 3812 func = vi_mac_funcs[index]; 3813 rc = t4_alloc_vi_func(sc, sc->mbox, pi->hw_port, sc->pf, 0, 1, 3814 vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0); 3815 if (rc < 0) { 3816 CH_ERR(vi, "failed to allocate virtual interface %d" 3817 "for port %d: %d\n", index, pi->port_id, -rc); 3818 return (-rc); 3819 } 3820 vi->viid = rc; 3821 3822 if (vi->rss_size == 1) { 3823 /* 3824 * This VI didn't get a slice of the RSS table. Reduce the 3825 * number of VIs being created (hw.cxgbe.num_vis) or modify the 3826 * configuration file (nvi, rssnvi for this PF) if this is a 3827 * problem. 3828 */ 3829 device_printf(vi->dev, "RSS table not available.\n"); 3830 vi->rss_base = 0xffff; 3831 3832 return (0); 3833 } 3834 3835 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3836 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 3837 V_FW_PARAMS_PARAM_YZ(vi->viid); 3838 rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 3839 if (rc) 3840 vi->rss_base = 0xffff; 3841 else { 3842 MPASS((val >> 16) == vi->rss_size); 3843 vi->rss_base = val & 0xffff; 3844 } 3845 3846 return (0); 3847 } 3848 3849 static int 3850 vcxgbe_attach(device_t dev) 3851 { 3852 struct vi_info *vi; 3853 struct port_info *pi; 3854 struct adapter *sc; 3855 int rc; 3856 3857 vi = device_get_softc(dev); 3858 pi = vi->pi; 3859 sc = pi->adapter; 3860 3861 rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via"); 3862 if (rc) 3863 return (rc); 3864 rc = alloc_extra_vi(sc, pi, vi); 3865 end_synchronized_op(sc, 0); 3866 if (rc) 3867 return (rc); 3868 3869 cxgbe_vi_attach(dev, vi); 3870 3871 return (0); 3872 } 3873 3874 static int 3875 vcxgbe_detach(device_t dev) 3876 { 3877 struct vi_info *vi; 3878 struct adapter *sc; 3879 3880 vi = device_get_softc(dev); 3881 sc = vi->adapter; 3882 3883 begin_vi_detach(sc, vi); 3884 cxgbe_vi_detach(vi); 3885 t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid); 3886 end_vi_detach(sc, vi); 3887 3888 return (0); 3889 } 3890 3891 static struct callout fatal_callout; 3892 static struct taskqueue *reset_tq; 3893 3894 static void 3895 delayed_panic(void *arg) 3896 { 3897 struct adapter *sc = arg; 3898 3899 panic("%s: panic on fatal error", device_get_nameunit(sc->dev)); 3900 } 3901 3902 static void 3903 fatal_error_task(void *arg, int pending) 3904 { 3905 struct adapter *sc = arg; 3906 int rc; 3907 3908 if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) { 3909 dump_cim_regs(sc); 3910 dump_cimla(sc); 3911 dump_devlog(sc); 3912 } 3913 3914 if (t4_reset_on_fatal_err) { 3915 CH_ALERT(sc, "resetting adapter after fatal error.\n"); 3916 rc = reset_adapter(sc); 3917 if (rc == 0 && t4_panic_on_fatal_err) { 3918 CH_ALERT(sc, "reset was successful, " 3919 "system will NOT panic.\n"); 3920 return; 3921 } 3922 } 3923 3924 if (t4_panic_on_fatal_err) { 3925 CH_ALERT(sc, "panicking on fatal error (after 30s).\n"); 3926 callout_reset(&fatal_callout, hz * 30, delayed_panic, sc); 3927 } 3928 } 3929 3930 void 3931 t4_fatal_err(struct adapter *sc, bool fw_error) 3932 { 3933 const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0; 3934 3935 stop_adapter(sc); 3936 if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR))) 3937 return; 3938 if (fw_error) { 3939 /* 3940 * We are here because of a firmware error/timeout and not 3941 * because of a hardware interrupt. It is possible (although 3942 * not very likely) that an error interrupt was also raised but 3943 * this thread ran first and inhibited t4_intr_err. We walk the 3944 * main INT_CAUSE registers here to make sure we haven't missed 3945 * anything interesting. 3946 */ 3947 t4_slow_intr_handler(sc, verbose); 3948 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 3949 } 3950 t4_report_fw_error(sc); 3951 log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n", 3952 device_get_nameunit(sc->dev), fw_error); 3953 taskqueue_enqueue(reset_tq, &sc->fatal_error_task); 3954 } 3955 3956 void 3957 t4_add_adapter(struct adapter *sc) 3958 { 3959 sx_xlock(&t4_list_lock); 3960 SLIST_INSERT_HEAD(&t4_list, sc, link); 3961 sx_xunlock(&t4_list_lock); 3962 } 3963 3964 int 3965 t4_map_bars_0_and_4(struct adapter *sc) 3966 { 3967 sc->regs_rid = PCIR_BAR(0); 3968 sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3969 &sc->regs_rid, RF_ACTIVE); 3970 if (sc->regs_res == NULL) { 3971 device_printf(sc->dev, "cannot map registers.\n"); 3972 return (ENXIO); 3973 } 3974 sc->bt = rman_get_bustag(sc->regs_res); 3975 sc->bh = rman_get_bushandle(sc->regs_res); 3976 sc->mmio_len = rman_get_size(sc->regs_res); 3977 setbit(&sc->doorbells, DOORBELL_KDB); 3978 3979 sc->msix_rid = PCIR_BAR(4); 3980 sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 3981 &sc->msix_rid, RF_ACTIVE); 3982 if (sc->msix_res == NULL) { 3983 device_printf(sc->dev, "cannot map MSI-X BAR.\n"); 3984 return (ENXIO); 3985 } 3986 3987 return (0); 3988 } 3989 3990 int 3991 t4_map_bar_2(struct adapter *sc) 3992 { 3993 3994 /* 3995 * T4: only iWARP driver uses the userspace doorbells. There is no need 3996 * to map it if RDMA is disabled. 3997 */ 3998 if (is_t4(sc) && sc->rdmacaps == 0) 3999 return (0); 4000 4001 sc->udbs_rid = PCIR_BAR(2); 4002 sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, 4003 &sc->udbs_rid, RF_ACTIVE); 4004 if (sc->udbs_res == NULL) { 4005 device_printf(sc->dev, "cannot map doorbell BAR.\n"); 4006 return (ENXIO); 4007 } 4008 sc->udbs_base = rman_get_virtual(sc->udbs_res); 4009 4010 if (chip_id(sc) >= CHELSIO_T5) { 4011 setbit(&sc->doorbells, DOORBELL_UDB); 4012 #if defined(__i386__) || defined(__amd64__) 4013 if (t5_write_combine) { 4014 int rc, mode; 4015 4016 /* 4017 * Enable write combining on BAR2. This is the 4018 * userspace doorbell BAR and is split into 128B 4019 * (UDBS_SEG_SIZE) doorbell regions, each associated 4020 * with an egress queue. The first 64B has the doorbell 4021 * and the second 64B can be used to submit a tx work 4022 * request with an implicit doorbell. 4023 */ 4024 4025 rc = pmap_change_attr((vm_offset_t)sc->udbs_base, 4026 rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING); 4027 if (rc == 0) { 4028 clrbit(&sc->doorbells, DOORBELL_UDB); 4029 setbit(&sc->doorbells, DOORBELL_WCWR); 4030 setbit(&sc->doorbells, DOORBELL_UDBWC); 4031 } else { 4032 device_printf(sc->dev, 4033 "couldn't enable write combining: %d\n", 4034 rc); 4035 } 4036 4037 mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0); 4038 t4_write_reg(sc, A_SGE_STAT_CFG, 4039 V_STATSOURCE_T5(7) | mode); 4040 } 4041 #endif 4042 } 4043 sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0; 4044 4045 return (0); 4046 } 4047 4048 int 4049 t4_adj_doorbells(struct adapter *sc) 4050 { 4051 if ((sc->doorbells & t4_doorbells_allowed) != 0) { 4052 sc->doorbells &= t4_doorbells_allowed; 4053 return (0); 4054 } 4055 CH_ERR(sc, "No usable doorbell (available = 0x%x, allowed = 0x%x).\n", 4056 sc->doorbells, t4_doorbells_allowed); 4057 return (EINVAL); 4058 } 4059 4060 struct memwin_init { 4061 uint32_t base; 4062 uint32_t aperture; 4063 }; 4064 4065 static const struct memwin_init t4_memwin[NUM_MEMWIN] = { 4066 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 4067 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 4068 { MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 } 4069 }; 4070 4071 static const struct memwin_init t5_memwin[NUM_MEMWIN] = { 4072 { MEMWIN0_BASE, MEMWIN0_APERTURE }, 4073 { MEMWIN1_BASE, MEMWIN1_APERTURE }, 4074 { MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 }, 4075 }; 4076 4077 static void 4078 setup_memwin(struct adapter *sc) 4079 { 4080 const struct memwin_init *mw_init; 4081 struct memwin *mw; 4082 int i; 4083 uint32_t bar0, reg; 4084 4085 if (is_t4(sc)) { 4086 /* 4087 * Read low 32b of bar0 indirectly via the hardware backdoor 4088 * mechanism. Works from within PCI passthrough environments 4089 * too, where rman_get_start() can return a different value. We 4090 * need to program the T4 memory window decoders with the actual 4091 * addresses that will be coming across the PCIe link. 4092 */ 4093 bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0)); 4094 bar0 &= (uint32_t) PCIM_BAR_MEM_BASE; 4095 4096 mw_init = &t4_memwin[0]; 4097 } else { 4098 /* T5+ use the relative offset inside the PCIe BAR */ 4099 bar0 = 0; 4100 4101 mw_init = &t5_memwin[0]; 4102 } 4103 4104 for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) { 4105 if (!rw_initialized(&mw->mw_lock)) { 4106 rw_init(&mw->mw_lock, "memory window access"); 4107 mw->mw_base = mw_init->base; 4108 mw->mw_aperture = mw_init->aperture; 4109 mw->mw_curpos = 0; 4110 } 4111 reg = chip_id(sc) > CHELSIO_T6 ? 4112 PCIE_MEM_ACCESS_T7_REG(A_T7_PCIE_MEM_ACCESS_BASE_WIN, i) : 4113 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i); 4114 t4_write_reg(sc, reg, (mw->mw_base + bar0) | V_BIR(0) | 4115 V_WINDOW(ilog2(mw->mw_aperture) - 10)); 4116 rw_wlock(&mw->mw_lock); 4117 position_memwin(sc, i, mw->mw_curpos); 4118 rw_wunlock(&mw->mw_lock); 4119 } 4120 4121 /* flush */ 4122 t4_read_reg(sc, reg); 4123 } 4124 4125 /* 4126 * Positions the memory window at the given address in the card's address space. 4127 * There are some alignment requirements and the actual position may be at an 4128 * address prior to the requested address. mw->mw_curpos always has the actual 4129 * position of the window. 4130 */ 4131 static void 4132 position_memwin(struct adapter *sc, int idx, uint32_t addr) 4133 { 4134 struct memwin *mw; 4135 uint32_t pf, reg, val; 4136 4137 MPASS(idx >= 0 && idx < NUM_MEMWIN); 4138 mw = &sc->memwin[idx]; 4139 rw_assert(&mw->mw_lock, RA_WLOCKED); 4140 4141 if (is_t4(sc)) { 4142 pf = 0; 4143 mw->mw_curpos = addr & ~0xf; /* start must be 16B aligned */ 4144 } else { 4145 pf = V_PFNUM(sc->pf); 4146 mw->mw_curpos = addr & ~0x7f; /* start must be 128B aligned */ 4147 } 4148 if (chip_id(sc) > CHELSIO_T6) { 4149 reg = PCIE_MEM_ACCESS_T7_REG(A_PCIE_MEM_ACCESS_OFFSET0, idx); 4150 val = (mw->mw_curpos >> X_T7_MEMOFST_SHIFT) | pf; 4151 } else { 4152 reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx); 4153 val = mw->mw_curpos | pf; 4154 } 4155 t4_write_reg(sc, reg, val); 4156 t4_read_reg(sc, reg); /* flush */ 4157 } 4158 4159 int 4160 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val, 4161 int len, int rw) 4162 { 4163 struct memwin *mw; 4164 uint32_t mw_end, v; 4165 4166 MPASS(idx >= 0 && idx < NUM_MEMWIN); 4167 4168 /* Memory can only be accessed in naturally aligned 4 byte units */ 4169 if (addr & 3 || len & 3 || len <= 0) 4170 return (EINVAL); 4171 4172 mw = &sc->memwin[idx]; 4173 while (len > 0) { 4174 rw_rlock(&mw->mw_lock); 4175 mw_end = mw->mw_curpos + mw->mw_aperture; 4176 if (addr >= mw_end || addr < mw->mw_curpos) { 4177 /* Will need to reposition the window */ 4178 if (!rw_try_upgrade(&mw->mw_lock)) { 4179 rw_runlock(&mw->mw_lock); 4180 rw_wlock(&mw->mw_lock); 4181 } 4182 rw_assert(&mw->mw_lock, RA_WLOCKED); 4183 position_memwin(sc, idx, addr); 4184 rw_downgrade(&mw->mw_lock); 4185 mw_end = mw->mw_curpos + mw->mw_aperture; 4186 } 4187 rw_assert(&mw->mw_lock, RA_RLOCKED); 4188 while (addr < mw_end && len > 0) { 4189 if (rw == 0) { 4190 v = t4_read_reg(sc, mw->mw_base + addr - 4191 mw->mw_curpos); 4192 *val++ = le32toh(v); 4193 } else { 4194 v = *val++; 4195 t4_write_reg(sc, mw->mw_base + addr - 4196 mw->mw_curpos, htole32(v)); 4197 } 4198 addr += 4; 4199 len -= 4; 4200 } 4201 rw_runlock(&mw->mw_lock); 4202 } 4203 4204 return (0); 4205 } 4206 4207 CTASSERT(M_TID_COOKIE == M_COOKIE); 4208 CTASSERT(MAX_ATIDS <= (M_TID_TID + 1)); 4209 4210 static void 4211 t4_init_atid_table(struct adapter *sc) 4212 { 4213 struct tid_info *t; 4214 int i; 4215 4216 t = &sc->tids; 4217 if (t->natids == 0) 4218 return; 4219 4220 MPASS(t->atid_tab == NULL); 4221 4222 t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE, 4223 M_ZERO | M_WAITOK); 4224 mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF); 4225 t->afree = t->atid_tab; 4226 t->atids_in_use = 0; 4227 t->atid_alloc_stopped = false; 4228 for (i = 1; i < t->natids; i++) 4229 t->atid_tab[i - 1].next = &t->atid_tab[i]; 4230 t->atid_tab[t->natids - 1].next = NULL; 4231 } 4232 4233 static void 4234 t4_free_atid_table(struct adapter *sc) 4235 { 4236 struct tid_info *t; 4237 4238 t = &sc->tids; 4239 4240 KASSERT(t->atids_in_use == 0, 4241 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 4242 4243 if (mtx_initialized(&t->atid_lock)) 4244 mtx_destroy(&t->atid_lock); 4245 free(t->atid_tab, M_CXGBE); 4246 t->atid_tab = NULL; 4247 } 4248 4249 static void 4250 stop_atid_allocator(struct adapter *sc) 4251 { 4252 struct tid_info *t = &sc->tids; 4253 4254 if (t->natids == 0) 4255 return; 4256 mtx_lock(&t->atid_lock); 4257 t->atid_alloc_stopped = true; 4258 mtx_unlock(&t->atid_lock); 4259 } 4260 4261 static void 4262 restart_atid_allocator(struct adapter *sc) 4263 { 4264 struct tid_info *t = &sc->tids; 4265 4266 if (t->natids == 0) 4267 return; 4268 mtx_lock(&t->atid_lock); 4269 KASSERT(t->atids_in_use == 0, 4270 ("%s: %d atids still in use.", __func__, t->atids_in_use)); 4271 t->atid_alloc_stopped = false; 4272 mtx_unlock(&t->atid_lock); 4273 } 4274 4275 int 4276 alloc_atid(struct adapter *sc, void *ctx) 4277 { 4278 struct tid_info *t = &sc->tids; 4279 int atid = -1; 4280 4281 mtx_lock(&t->atid_lock); 4282 if (t->afree && !t->atid_alloc_stopped) { 4283 union aopen_entry *p = t->afree; 4284 4285 atid = p - t->atid_tab; 4286 MPASS(atid <= M_TID_TID); 4287 t->afree = p->next; 4288 p->data = ctx; 4289 t->atids_in_use++; 4290 } 4291 mtx_unlock(&t->atid_lock); 4292 return (atid); 4293 } 4294 4295 void * 4296 lookup_atid(struct adapter *sc, int atid) 4297 { 4298 struct tid_info *t = &sc->tids; 4299 4300 return (t->atid_tab[atid].data); 4301 } 4302 4303 void 4304 free_atid(struct adapter *sc, int atid) 4305 { 4306 struct tid_info *t = &sc->tids; 4307 union aopen_entry *p = &t->atid_tab[atid]; 4308 4309 mtx_lock(&t->atid_lock); 4310 p->next = t->afree; 4311 t->afree = p; 4312 t->atids_in_use--; 4313 mtx_unlock(&t->atid_lock); 4314 } 4315 4316 static void 4317 queue_tid_release(struct adapter *sc, int tid) 4318 { 4319 4320 CXGBE_UNIMPLEMENTED("deferred tid release"); 4321 } 4322 4323 void 4324 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq) 4325 { 4326 struct wrqe *wr; 4327 struct cpl_tid_release *req; 4328 4329 wr = alloc_wrqe(sizeof(*req), ctrlq); 4330 if (wr == NULL) { 4331 queue_tid_release(sc, tid); /* defer */ 4332 return; 4333 } 4334 req = wrtod(wr); 4335 4336 INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid); 4337 4338 t4_wrq_tx(sc, wr); 4339 } 4340 4341 static int 4342 t4_range_cmp(const void *a, const void *b) 4343 { 4344 return ((const struct t4_range *)a)->start - 4345 ((const struct t4_range *)b)->start; 4346 } 4347 4348 /* 4349 * Verify that the memory range specified by the addr/len pair is valid within 4350 * the card's address space. 4351 */ 4352 static int 4353 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len) 4354 { 4355 struct t4_range mem_ranges[4], *r, *next; 4356 uint32_t em, addr_len; 4357 int i, n, remaining; 4358 4359 /* Memory can only be accessed in naturally aligned 4 byte units */ 4360 if (addr & 3 || len & 3 || len == 0) 4361 return (EINVAL); 4362 4363 /* Enabled memories */ 4364 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4365 4366 r = &mem_ranges[0]; 4367 n = 0; 4368 bzero(r, sizeof(mem_ranges)); 4369 if (em & F_EDRAM0_ENABLE) { 4370 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4371 r->size = G_EDRAM0_SIZE(addr_len) << 20; 4372 if (r->size > 0) { 4373 r->start = G_EDRAM0_BASE(addr_len) << 20; 4374 if (addr >= r->start && 4375 addr + len <= r->start + r->size) 4376 return (0); 4377 r++; 4378 n++; 4379 } 4380 } 4381 if (em & F_EDRAM1_ENABLE) { 4382 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4383 r->size = G_EDRAM1_SIZE(addr_len) << 20; 4384 if (r->size > 0) { 4385 r->start = G_EDRAM1_BASE(addr_len) << 20; 4386 if (addr >= r->start && 4387 addr + len <= r->start + r->size) 4388 return (0); 4389 r++; 4390 n++; 4391 } 4392 } 4393 if (em & F_EXT_MEM_ENABLE) { 4394 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4395 r->size = G_EXT_MEM_SIZE(addr_len) << 20; 4396 if (r->size > 0) { 4397 r->start = G_EXT_MEM_BASE(addr_len) << 20; 4398 if (addr >= r->start && 4399 addr + len <= r->start + r->size) 4400 return (0); 4401 r++; 4402 n++; 4403 } 4404 } 4405 if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) { 4406 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4407 r->size = G_EXT_MEM1_SIZE(addr_len) << 20; 4408 if (r->size > 0) { 4409 r->start = G_EXT_MEM1_BASE(addr_len) << 20; 4410 if (addr >= r->start && 4411 addr + len <= r->start + r->size) 4412 return (0); 4413 r++; 4414 n++; 4415 } 4416 } 4417 MPASS(n <= nitems(mem_ranges)); 4418 4419 if (n > 1) { 4420 /* Sort and merge the ranges. */ 4421 qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp); 4422 4423 /* Start from index 0 and examine the next n - 1 entries. */ 4424 r = &mem_ranges[0]; 4425 for (remaining = n - 1; remaining > 0; remaining--, r++) { 4426 4427 MPASS(r->size > 0); /* r is a valid entry. */ 4428 next = r + 1; 4429 MPASS(next->size > 0); /* and so is the next one. */ 4430 4431 while (r->start + r->size >= next->start) { 4432 /* Merge the next one into the current entry. */ 4433 r->size = max(r->start + r->size, 4434 next->start + next->size) - r->start; 4435 n--; /* One fewer entry in total. */ 4436 if (--remaining == 0) 4437 goto done; /* short circuit */ 4438 next++; 4439 } 4440 if (next != r + 1) { 4441 /* 4442 * Some entries were merged into r and next 4443 * points to the first valid entry that couldn't 4444 * be merged. 4445 */ 4446 MPASS(next->size > 0); /* must be valid */ 4447 memcpy(r + 1, next, remaining * sizeof(*r)); 4448 #ifdef INVARIANTS 4449 /* 4450 * This so that the foo->size assertion in the 4451 * next iteration of the loop do the right 4452 * thing for entries that were pulled up and are 4453 * no longer valid. 4454 */ 4455 MPASS(n < nitems(mem_ranges)); 4456 bzero(&mem_ranges[n], (nitems(mem_ranges) - n) * 4457 sizeof(struct t4_range)); 4458 #endif 4459 } 4460 } 4461 done: 4462 /* Done merging the ranges. */ 4463 MPASS(n > 0); 4464 r = &mem_ranges[0]; 4465 for (i = 0; i < n; i++, r++) { 4466 if (addr >= r->start && 4467 addr + len <= r->start + r->size) 4468 return (0); 4469 } 4470 } 4471 4472 return (EFAULT); 4473 } 4474 4475 static int 4476 fwmtype_to_hwmtype(int mtype) 4477 { 4478 4479 switch (mtype) { 4480 case FW_MEMTYPE_EDC0: 4481 return (MEM_EDC0); 4482 case FW_MEMTYPE_EDC1: 4483 return (MEM_EDC1); 4484 case FW_MEMTYPE_EXTMEM: 4485 return (MEM_MC0); 4486 case FW_MEMTYPE_EXTMEM1: 4487 return (MEM_MC1); 4488 default: 4489 panic("%s: cannot translate fw mtype %d.", __func__, mtype); 4490 } 4491 } 4492 4493 /* 4494 * Verify that the memory range specified by the memtype/offset/len pair is 4495 * valid and lies entirely within the memtype specified. The global address of 4496 * the start of the range is returned in addr. 4497 */ 4498 static int 4499 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len, 4500 uint32_t *addr) 4501 { 4502 uint32_t em, addr_len, maddr; 4503 4504 /* Memory can only be accessed in naturally aligned 4 byte units */ 4505 if (off & 3 || len & 3 || len == 0) 4506 return (EINVAL); 4507 4508 em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 4509 switch (fwmtype_to_hwmtype(mtype)) { 4510 case MEM_EDC0: 4511 if (!(em & F_EDRAM0_ENABLE)) 4512 return (EINVAL); 4513 addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR); 4514 maddr = G_EDRAM0_BASE(addr_len) << 20; 4515 break; 4516 case MEM_EDC1: 4517 if (!(em & F_EDRAM1_ENABLE)) 4518 return (EINVAL); 4519 addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR); 4520 maddr = G_EDRAM1_BASE(addr_len) << 20; 4521 break; 4522 case MEM_MC: 4523 if (!(em & F_EXT_MEM_ENABLE)) 4524 return (EINVAL); 4525 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 4526 maddr = G_EXT_MEM_BASE(addr_len) << 20; 4527 break; 4528 case MEM_MC1: 4529 if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE)) 4530 return (EINVAL); 4531 addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 4532 maddr = G_EXT_MEM1_BASE(addr_len) << 20; 4533 break; 4534 default: 4535 return (EINVAL); 4536 } 4537 4538 *addr = maddr + off; /* global address */ 4539 return (validate_mem_range(sc, *addr, len)); 4540 } 4541 4542 static int 4543 fixup_devlog_params(struct adapter *sc) 4544 { 4545 struct devlog_params *dparams = &sc->params.devlog; 4546 int rc; 4547 4548 rc = validate_mt_off_len(sc, dparams->memtype, dparams->start, 4549 dparams->size, &dparams->addr); 4550 4551 return (rc); 4552 } 4553 4554 static void 4555 update_nirq(struct intrs_and_queues *iaq, int nports) 4556 { 4557 4558 iaq->nirq = T4_EXTRA_INTR; 4559 iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq); 4560 iaq->nirq += nports * iaq->nofldrxq; 4561 iaq->nirq += nports * (iaq->num_vis - 1) * 4562 max(iaq->nrxq_vi, iaq->nnmrxq_vi); 4563 iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi; 4564 } 4565 4566 /* 4567 * Adjust requirements to fit the number of interrupts available. 4568 */ 4569 static void 4570 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype, 4571 int navail) 4572 { 4573 int old_nirq; 4574 const int nports = sc->params.nports; 4575 4576 MPASS(nports > 0); 4577 MPASS(navail > 0); 4578 4579 bzero(iaq, sizeof(*iaq)); 4580 iaq->intr_type = itype; 4581 iaq->num_vis = t4_num_vis; 4582 iaq->ntxq = t4_ntxq; 4583 iaq->ntxq_vi = t4_ntxq_vi; 4584 iaq->nrxq = t4_nrxq; 4585 iaq->nrxq_vi = t4_nrxq_vi; 4586 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 4587 if (is_offload(sc) || is_ethoffload(sc)) { 4588 if (sc->params.tid_qid_sel_mask == 0) { 4589 iaq->nofldtxq = t4_nofldtxq; 4590 iaq->nofldtxq_vi = t4_nofldtxq_vi; 4591 } else { 4592 iaq->nofldtxq = roundup(t4_nofldtxq, sc->params.ncores); 4593 iaq->nofldtxq_vi = roundup(t4_nofldtxq_vi, 4594 sc->params.ncores); 4595 if (iaq->nofldtxq != t4_nofldtxq) 4596 device_printf(sc->dev, 4597 "nofldtxq updated (%d -> %d) for correct" 4598 " operation with %d firmware cores.\n", 4599 t4_nofldtxq, iaq->nofldtxq, 4600 sc->params.ncores); 4601 if (iaq->num_vis > 1 && 4602 iaq->nofldtxq_vi != t4_nofldtxq_vi) 4603 device_printf(sc->dev, 4604 "nofldtxq_vi updated (%d -> %d) for correct" 4605 " operation with %d firmware cores.\n", 4606 t4_nofldtxq_vi, iaq->nofldtxq_vi, 4607 sc->params.ncores); 4608 } 4609 } 4610 #endif 4611 #ifdef TCP_OFFLOAD 4612 if (is_offload(sc)) { 4613 iaq->nofldrxq = t4_nofldrxq; 4614 iaq->nofldrxq_vi = t4_nofldrxq_vi; 4615 } 4616 #endif 4617 #ifdef DEV_NETMAP 4618 if (t4_native_netmap & NN_MAIN_VI) { 4619 iaq->nnmtxq = t4_nnmtxq; 4620 iaq->nnmrxq = t4_nnmrxq; 4621 } 4622 if (t4_native_netmap & NN_EXTRA_VI) { 4623 iaq->nnmtxq_vi = t4_nnmtxq_vi; 4624 iaq->nnmrxq_vi = t4_nnmrxq_vi; 4625 } 4626 #endif 4627 4628 update_nirq(iaq, nports); 4629 if (iaq->nirq <= navail && 4630 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4631 /* 4632 * This is the normal case -- there are enough interrupts for 4633 * everything. 4634 */ 4635 goto done; 4636 } 4637 4638 /* 4639 * If extra VIs have been configured try reducing their count and see if 4640 * that works. 4641 */ 4642 while (iaq->num_vis > 1) { 4643 iaq->num_vis--; 4644 update_nirq(iaq, nports); 4645 if (iaq->nirq <= navail && 4646 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4647 device_printf(sc->dev, "virtual interfaces per port " 4648 "reduced to %d from %d. nrxq=%u, nofldrxq=%u, " 4649 "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u. " 4650 "itype %d, navail %u, nirq %d.\n", 4651 iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq, 4652 iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi, 4653 itype, navail, iaq->nirq); 4654 goto done; 4655 } 4656 } 4657 4658 /* 4659 * Extra VIs will not be created. Log a message if they were requested. 4660 */ 4661 MPASS(iaq->num_vis == 1); 4662 iaq->ntxq_vi = iaq->nrxq_vi = 0; 4663 iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0; 4664 iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0; 4665 if (iaq->num_vis != t4_num_vis) { 4666 device_printf(sc->dev, "extra virtual interfaces disabled. " 4667 "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, " 4668 "nnmrxq_vi=%u. itype %d, navail %u, nirq %d.\n", 4669 iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi, 4670 iaq->nnmrxq_vi, itype, navail, iaq->nirq); 4671 } 4672 4673 /* 4674 * Keep reducing the number of NIC rx queues to the next lower power of 4675 * 2 (for even RSS distribution) and halving the TOE rx queues and see 4676 * if that works. 4677 */ 4678 do { 4679 if (iaq->nrxq > 1) { 4680 iaq->nrxq = rounddown_pow_of_two(iaq->nrxq - 1); 4681 if (iaq->nnmrxq > iaq->nrxq) 4682 iaq->nnmrxq = iaq->nrxq; 4683 } 4684 if (iaq->nofldrxq > 1) 4685 iaq->nofldrxq >>= 1; 4686 4687 old_nirq = iaq->nirq; 4688 update_nirq(iaq, nports); 4689 if (iaq->nirq <= navail && 4690 (itype != INTR_MSI || powerof2(iaq->nirq))) { 4691 device_printf(sc->dev, "running with reduced number of " 4692 "rx queues because of shortage of interrupts. " 4693 "nrxq=%u, nofldrxq=%u. " 4694 "itype %d, navail %u, nirq %d.\n", iaq->nrxq, 4695 iaq->nofldrxq, itype, navail, iaq->nirq); 4696 goto done; 4697 } 4698 } while (old_nirq != iaq->nirq); 4699 4700 /* One interrupt for everything. Ugh. */ 4701 device_printf(sc->dev, "running with minimal number of queues. " 4702 "itype %d, navail %u.\n", itype, navail); 4703 iaq->nirq = 1; 4704 iaq->nrxq = 1; 4705 iaq->ntxq = 1; 4706 if (iaq->nofldrxq > 0) { 4707 iaq->nofldrxq = 1; 4708 iaq->nofldtxq = 1; 4709 if (sc->params.tid_qid_sel_mask == 0) 4710 iaq->nofldtxq = 1; 4711 else 4712 iaq->nofldtxq = sc->params.ncores; 4713 } 4714 iaq->nnmtxq = 0; 4715 iaq->nnmrxq = 0; 4716 done: 4717 MPASS(iaq->num_vis > 0); 4718 if (iaq->num_vis > 1) { 4719 MPASS(iaq->nrxq_vi > 0); 4720 MPASS(iaq->ntxq_vi > 0); 4721 } 4722 MPASS(iaq->nirq > 0); 4723 MPASS(iaq->nrxq > 0); 4724 MPASS(iaq->ntxq > 0); 4725 if (itype == INTR_MSI) 4726 MPASS(powerof2(iaq->nirq)); 4727 if (sc->params.tid_qid_sel_mask != 0) 4728 MPASS(iaq->nofldtxq % sc->params.ncores == 0); 4729 } 4730 4731 static int 4732 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq) 4733 { 4734 int rc, itype, navail, nalloc; 4735 4736 for (itype = INTR_MSIX; itype; itype >>= 1) { 4737 4738 if ((itype & t4_intr_types) == 0) 4739 continue; /* not allowed */ 4740 4741 if (itype == INTR_MSIX) 4742 navail = pci_msix_count(sc->dev); 4743 else if (itype == INTR_MSI) 4744 navail = pci_msi_count(sc->dev); 4745 else 4746 navail = 1; 4747 restart: 4748 if (navail == 0) 4749 continue; 4750 4751 calculate_iaq(sc, iaq, itype, navail); 4752 nalloc = iaq->nirq; 4753 rc = 0; 4754 if (itype == INTR_MSIX) 4755 rc = pci_alloc_msix(sc->dev, &nalloc); 4756 else if (itype == INTR_MSI) 4757 rc = pci_alloc_msi(sc->dev, &nalloc); 4758 4759 if (rc == 0 && nalloc > 0) { 4760 if (nalloc == iaq->nirq) 4761 return (0); 4762 4763 /* 4764 * Didn't get the number requested. Use whatever number 4765 * the kernel is willing to allocate. 4766 */ 4767 device_printf(sc->dev, "fewer vectors than requested, " 4768 "type=%d, req=%d, rcvd=%d; will downshift req.\n", 4769 itype, iaq->nirq, nalloc); 4770 pci_release_msi(sc->dev); 4771 navail = nalloc; 4772 goto restart; 4773 } 4774 4775 device_printf(sc->dev, 4776 "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n", 4777 itype, rc, iaq->nirq, nalloc); 4778 } 4779 4780 device_printf(sc->dev, 4781 "failed to find a usable interrupt type. " 4782 "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types, 4783 pci_msix_count(sc->dev), pci_msi_count(sc->dev)); 4784 4785 return (ENXIO); 4786 } 4787 4788 #define FW_VERSION(chip) ( \ 4789 V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \ 4790 V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \ 4791 V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \ 4792 V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD)) 4793 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf) 4794 4795 /* Just enough of fw_hdr to cover all version info. */ 4796 struct fw_h { 4797 __u8 ver; 4798 __u8 chip; 4799 __be16 len512; 4800 __be32 fw_ver; 4801 __be32 tp_microcode_ver; 4802 __u8 intfver_nic; 4803 __u8 intfver_vnic; 4804 __u8 intfver_ofld; 4805 __u8 intfver_ri; 4806 __u8 intfver_iscsipdu; 4807 __u8 intfver_iscsi; 4808 __u8 intfver_fcoepdu; 4809 __u8 intfver_fcoe; 4810 }; 4811 /* Spot check a couple of fields. */ 4812 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver)); 4813 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic)); 4814 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe)); 4815 4816 struct fw_info { 4817 uint8_t chip; 4818 char *kld_name; 4819 char *fw_mod_name; 4820 struct fw_h fw_h; 4821 } fw_info[] = { 4822 { 4823 .chip = CHELSIO_T4, 4824 .kld_name = "t4fw_cfg", 4825 .fw_mod_name = "t4fw", 4826 .fw_h = { 4827 .chip = FW_HDR_CHIP_T4, 4828 .fw_ver = htobe32(FW_VERSION(T4)), 4829 .intfver_nic = FW_INTFVER(T4, NIC), 4830 .intfver_vnic = FW_INTFVER(T4, VNIC), 4831 .intfver_ofld = FW_INTFVER(T4, OFLD), 4832 .intfver_ri = FW_INTFVER(T4, RI), 4833 .intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU), 4834 .intfver_iscsi = FW_INTFVER(T4, ISCSI), 4835 .intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU), 4836 .intfver_fcoe = FW_INTFVER(T4, FCOE), 4837 }, 4838 }, { 4839 .chip = CHELSIO_T5, 4840 .kld_name = "t5fw_cfg", 4841 .fw_mod_name = "t5fw", 4842 .fw_h = { 4843 .chip = FW_HDR_CHIP_T5, 4844 .fw_ver = htobe32(FW_VERSION(T5)), 4845 .intfver_nic = FW_INTFVER(T5, NIC), 4846 .intfver_vnic = FW_INTFVER(T5, VNIC), 4847 .intfver_ofld = FW_INTFVER(T5, OFLD), 4848 .intfver_ri = FW_INTFVER(T5, RI), 4849 .intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU), 4850 .intfver_iscsi = FW_INTFVER(T5, ISCSI), 4851 .intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU), 4852 .intfver_fcoe = FW_INTFVER(T5, FCOE), 4853 }, 4854 }, { 4855 .chip = CHELSIO_T6, 4856 .kld_name = "t6fw_cfg", 4857 .fw_mod_name = "t6fw", 4858 .fw_h = { 4859 .chip = FW_HDR_CHIP_T6, 4860 .fw_ver = htobe32(FW_VERSION(T6)), 4861 .intfver_nic = FW_INTFVER(T6, NIC), 4862 .intfver_vnic = FW_INTFVER(T6, VNIC), 4863 .intfver_ofld = FW_INTFVER(T6, OFLD), 4864 .intfver_ri = FW_INTFVER(T6, RI), 4865 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU), 4866 .intfver_iscsi = FW_INTFVER(T6, ISCSI), 4867 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU), 4868 .intfver_fcoe = FW_INTFVER(T6, FCOE), 4869 }, 4870 }, { 4871 .chip = CHELSIO_T7, 4872 .kld_name = "t7fw_cfg", 4873 .fw_mod_name = "t7fw", 4874 .fw_h = { 4875 .chip = FW_HDR_CHIP_T7, 4876 .fw_ver = htobe32(FW_VERSION(T7)), 4877 .intfver_nic = FW_INTFVER(T7, NIC), 4878 .intfver_vnic = FW_INTFVER(T7, VNIC), 4879 .intfver_ofld = FW_INTFVER(T7, OFLD), 4880 .intfver_ri = FW_INTFVER(T7, RI), 4881 .intfver_iscsipdu = FW_INTFVER(T7, ISCSIPDU), 4882 .intfver_iscsi = FW_INTFVER(T7, ISCSI), 4883 .intfver_fcoepdu = FW_INTFVER(T7, FCOEPDU), 4884 .intfver_fcoe = FW_INTFVER(T7, FCOE), 4885 }, 4886 } 4887 }; 4888 4889 static struct fw_info * 4890 find_fw_info(int chip) 4891 { 4892 int i; 4893 4894 for (i = 0; i < nitems(fw_info); i++) { 4895 if (fw_info[i].chip == chip) 4896 return (&fw_info[i]); 4897 } 4898 return (NULL); 4899 } 4900 4901 /* 4902 * Is the given firmware API compatible with the one the driver was compiled 4903 * with? 4904 */ 4905 static int 4906 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2) 4907 { 4908 4909 /* short circuit if it's the exact same firmware version */ 4910 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) 4911 return (1); 4912 4913 /* 4914 * XXX: Is this too conservative? Perhaps I should limit this to the 4915 * features that are supported in the driver. 4916 */ 4917 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) 4918 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && 4919 SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) && 4920 SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe)) 4921 return (1); 4922 #undef SAME_INTF 4923 4924 return (0); 4925 } 4926 4927 static int 4928 load_fw_module(struct adapter *sc, const struct firmware **dcfg, 4929 const struct firmware **fw) 4930 { 4931 struct fw_info *fw_info; 4932 4933 *dcfg = NULL; 4934 if (fw != NULL) 4935 *fw = NULL; 4936 4937 fw_info = find_fw_info(chip_id(sc)); 4938 if (fw_info == NULL) { 4939 device_printf(sc->dev, 4940 "unable to look up firmware information for chip %d.\n", 4941 chip_id(sc)); 4942 return (EINVAL); 4943 } 4944 4945 *dcfg = firmware_get(fw_info->kld_name); 4946 if (*dcfg != NULL) { 4947 if (fw != NULL) 4948 *fw = firmware_get(fw_info->fw_mod_name); 4949 return (0); 4950 } 4951 4952 return (ENOENT); 4953 } 4954 4955 static void 4956 unload_fw_module(struct adapter *sc, const struct firmware *dcfg, 4957 const struct firmware *fw) 4958 { 4959 4960 if (fw != NULL) 4961 firmware_put(fw, FIRMWARE_UNLOAD); 4962 if (dcfg != NULL) 4963 firmware_put(dcfg, FIRMWARE_UNLOAD); 4964 } 4965 4966 /* 4967 * Return values: 4968 * 0 means no firmware install attempted. 4969 * ERESTART means a firmware install was attempted and was successful. 4970 * +ve errno means a firmware install was attempted but failed. 4971 */ 4972 static int 4973 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw, 4974 const struct fw_h *drv_fw, const char *reason, int *already) 4975 { 4976 const struct firmware *cfg, *fw; 4977 const uint32_t c = be32toh(card_fw->fw_ver); 4978 uint32_t d, k; 4979 int rc, fw_install; 4980 struct fw_h bundled_fw; 4981 bool load_attempted; 4982 4983 cfg = fw = NULL; 4984 load_attempted = false; 4985 fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install; 4986 4987 memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw)); 4988 if (t4_fw_install < 0) { 4989 rc = load_fw_module(sc, &cfg, &fw); 4990 if (rc != 0 || fw == NULL) { 4991 device_printf(sc->dev, 4992 "failed to load firmware module: %d. cfg %p, fw %p;" 4993 " will use compiled-in firmware version for" 4994 "hw.cxgbe.fw_install checks.\n", 4995 rc, cfg, fw); 4996 } else { 4997 memcpy(&bundled_fw, fw->data, sizeof(bundled_fw)); 4998 } 4999 load_attempted = true; 5000 } 5001 d = be32toh(bundled_fw.fw_ver); 5002 5003 if (reason != NULL) 5004 goto install; 5005 5006 if ((sc->flags & FW_OK) == 0) { 5007 5008 if (c == 0xffffffff) { 5009 reason = "missing"; 5010 goto install; 5011 } 5012 5013 rc = 0; 5014 goto done; 5015 } 5016 5017 if (!fw_compatible(card_fw, &bundled_fw)) { 5018 reason = "incompatible or unusable"; 5019 goto install; 5020 } 5021 5022 if (d > c) { 5023 reason = "older than the version bundled with this driver"; 5024 goto install; 5025 } 5026 5027 if (fw_install == 2 && d != c) { 5028 reason = "different than the version bundled with this driver"; 5029 goto install; 5030 } 5031 5032 /* No reason to do anything to the firmware already on the card. */ 5033 rc = 0; 5034 goto done; 5035 5036 install: 5037 rc = 0; 5038 if ((*already)++) 5039 goto done; 5040 5041 if (fw_install == 0) { 5042 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 5043 "but the driver is prohibited from installing a firmware " 5044 "on the card.\n", 5045 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 5046 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 5047 5048 goto done; 5049 } 5050 5051 /* 5052 * We'll attempt to install a firmware. Load the module first (if it 5053 * hasn't been loaded already). 5054 */ 5055 if (!load_attempted) { 5056 rc = load_fw_module(sc, &cfg, &fw); 5057 if (rc != 0 || fw == NULL) { 5058 device_printf(sc->dev, 5059 "failed to load firmware module: %d. cfg %p, fw %p\n", 5060 rc, cfg, fw); 5061 /* carry on */ 5062 } 5063 } 5064 if (fw == NULL) { 5065 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 5066 "but the driver cannot take corrective action because it " 5067 "is unable to load the firmware module.\n", 5068 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 5069 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason); 5070 rc = sc->flags & FW_OK ? 0 : ENOENT; 5071 goto done; 5072 } 5073 k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver); 5074 if (k != d) { 5075 MPASS(t4_fw_install > 0); 5076 device_printf(sc->dev, 5077 "firmware in KLD (%u.%u.%u.%u) is not what the driver was " 5078 "expecting (%u.%u.%u.%u) and will not be used.\n", 5079 G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k), 5080 G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k), 5081 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 5082 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 5083 rc = sc->flags & FW_OK ? 0 : EINVAL; 5084 goto done; 5085 } 5086 5087 device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, " 5088 "installing firmware %u.%u.%u.%u on card.\n", 5089 G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c), 5090 G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason, 5091 G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d), 5092 G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d)); 5093 5094 rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0); 5095 if (rc != 0) { 5096 device_printf(sc->dev, "failed to install firmware: %d\n", rc); 5097 } else { 5098 /* Installed successfully, update the cached header too. */ 5099 rc = ERESTART; 5100 memcpy(card_fw, fw->data, sizeof(*card_fw)); 5101 } 5102 done: 5103 unload_fw_module(sc, cfg, fw); 5104 5105 return (rc); 5106 } 5107 5108 /* 5109 * Establish contact with the firmware and attempt to become the master driver. 5110 * 5111 * A firmware will be installed to the card if needed (if the driver is allowed 5112 * to do so). 5113 */ 5114 static int 5115 contact_firmware(struct adapter *sc) 5116 { 5117 int rc, already = 0; 5118 enum dev_state state; 5119 struct fw_info *fw_info; 5120 struct fw_hdr *card_fw; /* fw on the card */ 5121 const struct fw_h *drv_fw; 5122 5123 fw_info = find_fw_info(chip_id(sc)); 5124 if (fw_info == NULL) { 5125 device_printf(sc->dev, 5126 "unable to look up firmware information for chip %d.\n", 5127 chip_id(sc)); 5128 return (EINVAL); 5129 } 5130 drv_fw = &fw_info->fw_h; 5131 5132 /* Read the header of the firmware on the card */ 5133 card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK); 5134 restart: 5135 rc = -t4_get_fw_hdr(sc, card_fw); 5136 if (rc != 0) { 5137 device_printf(sc->dev, 5138 "unable to read firmware header from card's flash: %d\n", 5139 rc); 5140 goto done; 5141 } 5142 5143 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL, 5144 &already); 5145 if (rc == ERESTART) 5146 goto restart; 5147 if (rc != 0) 5148 goto done; 5149 5150 rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state); 5151 if (rc < 0 || state == DEV_STATE_ERR) { 5152 rc = -rc; 5153 device_printf(sc->dev, 5154 "failed to connect to the firmware: %d, %d. " 5155 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 5156 #if 0 5157 if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 5158 "not responding properly to HELLO", &already) == ERESTART) 5159 goto restart; 5160 #endif 5161 goto done; 5162 } 5163 MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT); 5164 sc->flags |= FW_OK; /* The firmware responded to the FW_HELLO. */ 5165 5166 if (rc == sc->pf) { 5167 sc->flags |= MASTER_PF; 5168 rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, 5169 NULL, &already); 5170 if (rc == ERESTART) 5171 rc = 0; 5172 else if (rc != 0) 5173 goto done; 5174 } else if (state == DEV_STATE_UNINIT) { 5175 /* 5176 * We didn't get to be the master so we definitely won't be 5177 * configuring the chip. It's a bug if someone else hasn't 5178 * configured it already. 5179 */ 5180 device_printf(sc->dev, "couldn't be master(%d), " 5181 "device not already initialized either(%d). " 5182 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 5183 rc = EPROTO; 5184 goto done; 5185 } else { 5186 /* 5187 * Some other PF is the master and has configured the chip. 5188 * This is allowed but untested. 5189 */ 5190 device_printf(sc->dev, "PF%d is master, device state %d. " 5191 "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW)); 5192 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc); 5193 sc->cfcsum = 0; 5194 rc = 0; 5195 } 5196 done: 5197 if (rc != 0 && sc->flags & FW_OK) { 5198 t4_fw_bye(sc, sc->mbox); 5199 sc->flags &= ~FW_OK; 5200 } 5201 free(card_fw, M_CXGBE); 5202 return (rc); 5203 } 5204 5205 static int 5206 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file, 5207 uint32_t mtype, uint32_t moff, u_int maxlen) 5208 { 5209 struct fw_info *fw_info; 5210 const struct firmware *dcfg, *rcfg = NULL; 5211 const uint32_t *cfdata; 5212 uint32_t cflen, addr; 5213 int rc; 5214 5215 load_fw_module(sc, &dcfg, NULL); 5216 5217 /* Card specific interpretation of "default". */ 5218 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 5219 if (pci_get_device(sc->dev) == 0x440a) 5220 snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF); 5221 if (is_fpga(sc)) 5222 snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF); 5223 } 5224 5225 if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) { 5226 if (dcfg == NULL) { 5227 device_printf(sc->dev, 5228 "KLD with default config is not available.\n"); 5229 rc = ENOENT; 5230 goto done; 5231 } 5232 cfdata = dcfg->data; 5233 cflen = dcfg->datasize & ~3; 5234 } else { 5235 char s[32]; 5236 5237 fw_info = find_fw_info(chip_id(sc)); 5238 if (fw_info == NULL) { 5239 device_printf(sc->dev, 5240 "unable to look up firmware information for chip %d.\n", 5241 chip_id(sc)); 5242 rc = EINVAL; 5243 goto done; 5244 } 5245 snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file); 5246 5247 rcfg = firmware_get(s); 5248 if (rcfg == NULL) { 5249 device_printf(sc->dev, 5250 "unable to load module \"%s\" for configuration " 5251 "profile \"%s\".\n", s, cfg_file); 5252 rc = ENOENT; 5253 goto done; 5254 } 5255 cfdata = rcfg->data; 5256 cflen = rcfg->datasize & ~3; 5257 } 5258 5259 if (cflen > maxlen) { 5260 device_printf(sc->dev, 5261 "config file too long (%d, max allowed is %d).\n", 5262 cflen, maxlen); 5263 rc = EINVAL; 5264 goto done; 5265 } 5266 5267 rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr); 5268 if (rc != 0) { 5269 device_printf(sc->dev, 5270 "%s: addr (%d/0x%x) or len %d is not valid: %d.\n", 5271 __func__, mtype, moff, cflen, rc); 5272 rc = EINVAL; 5273 goto done; 5274 } 5275 write_via_memwin(sc, 2, addr, cfdata, cflen); 5276 done: 5277 if (rcfg != NULL) 5278 firmware_put(rcfg, FIRMWARE_UNLOAD); 5279 unload_fw_module(sc, dcfg, NULL); 5280 return (rc); 5281 } 5282 5283 struct caps_allowed { 5284 uint16_t nbmcaps; 5285 uint16_t linkcaps; 5286 uint16_t switchcaps; 5287 uint16_t nvmecaps; 5288 uint16_t niccaps; 5289 uint16_t toecaps; 5290 uint16_t rdmacaps; 5291 uint16_t cryptocaps; 5292 uint16_t iscsicaps; 5293 uint16_t fcoecaps; 5294 }; 5295 5296 #define FW_PARAM_DEV(param) \ 5297 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \ 5298 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param)) 5299 #define FW_PARAM_PFVF(param) \ 5300 (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \ 5301 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param)) 5302 5303 /* 5304 * Provide a configuration profile to the firmware and have it initialize the 5305 * chip accordingly. This may involve uploading a configuration file to the 5306 * card. 5307 */ 5308 static int 5309 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file, 5310 const struct caps_allowed *caps_allowed) 5311 { 5312 int rc; 5313 struct fw_caps_config_cmd caps; 5314 uint32_t mtype, moff, finicsum, cfcsum, param, val; 5315 unsigned int maxlen = 0; 5316 const int cfg_addr = t4_flash_cfg_addr(sc, &maxlen); 5317 5318 rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST); 5319 if (rc != 0) { 5320 device_printf(sc->dev, "firmware reset failed: %d.\n", rc); 5321 return (rc); 5322 } 5323 5324 bzero(&caps, sizeof(caps)); 5325 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5326 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5327 if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) { 5328 mtype = 0; 5329 moff = 0; 5330 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5331 } else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) { 5332 mtype = FW_MEMTYPE_FLASH; 5333 moff = cfg_addr; 5334 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 5335 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 5336 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 5337 FW_LEN16(caps)); 5338 } else { 5339 /* 5340 * Ask the firmware where it wants us to upload the config file. 5341 */ 5342 param = FW_PARAM_DEV(CF); 5343 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5344 if (rc != 0) { 5345 /* No support for config file? Shouldn't happen. */ 5346 device_printf(sc->dev, 5347 "failed to query config file location: %d.\n", rc); 5348 goto done; 5349 } 5350 mtype = G_FW_PARAMS_PARAM_Y(val); 5351 moff = G_FW_PARAMS_PARAM_Z(val) << 16; 5352 caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID | 5353 V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) | 5354 V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) | 5355 FW_LEN16(caps)); 5356 5357 rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff, maxlen); 5358 if (rc != 0) { 5359 device_printf(sc->dev, 5360 "failed to upload config file to card: %d.\n", rc); 5361 goto done; 5362 } 5363 } 5364 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5365 if (rc != 0) { 5366 device_printf(sc->dev, "failed to pre-process config file: %d " 5367 "(mtype %d, moff 0x%x).\n", rc, mtype, moff); 5368 goto done; 5369 } 5370 5371 finicsum = be32toh(caps.finicsum); 5372 cfcsum = be32toh(caps.cfcsum); /* actual */ 5373 if (finicsum != cfcsum) { 5374 device_printf(sc->dev, 5375 "WARNING: config file checksum mismatch: %08x %08x\n", 5376 finicsum, cfcsum); 5377 } 5378 sc->cfcsum = cfcsum; 5379 snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file); 5380 5381 /* 5382 * Let the firmware know what features will (not) be used so it can tune 5383 * things accordingly. 5384 */ 5385 #define LIMIT_CAPS(x) do { \ 5386 caps.x##caps &= htobe16(caps_allowed->x##caps); \ 5387 } while (0) 5388 LIMIT_CAPS(nbm); 5389 LIMIT_CAPS(link); 5390 LIMIT_CAPS(switch); 5391 LIMIT_CAPS(nvme); 5392 LIMIT_CAPS(nic); 5393 LIMIT_CAPS(toe); 5394 LIMIT_CAPS(rdma); 5395 LIMIT_CAPS(crypto); 5396 LIMIT_CAPS(iscsi); 5397 LIMIT_CAPS(fcoe); 5398 #undef LIMIT_CAPS 5399 if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) { 5400 /* 5401 * TOE and hashfilters are mutually exclusive. It is a config 5402 * file or firmware bug if both are reported as available. Try 5403 * to cope with the situation in non-debug builds by disabling 5404 * TOE. 5405 */ 5406 MPASS(caps.toecaps == 0); 5407 5408 caps.toecaps = 0; 5409 caps.rdmacaps = 0; 5410 caps.iscsicaps = 0; 5411 caps.nvmecaps = 0; 5412 } 5413 5414 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5415 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 5416 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5417 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL); 5418 if (rc != 0) { 5419 device_printf(sc->dev, 5420 "failed to process config file: %d.\n", rc); 5421 goto done; 5422 } 5423 5424 t4_tweak_chip_settings(sc); 5425 set_params__pre_init(sc); 5426 5427 /* get basic stuff going */ 5428 rc = -t4_fw_initialize(sc, sc->mbox); 5429 if (rc != 0) { 5430 device_printf(sc->dev, "fw_initialize failed: %d.\n", rc); 5431 goto done; 5432 } 5433 done: 5434 return (rc); 5435 } 5436 5437 /* 5438 * Partition chip resources for use between various PFs, VFs, etc. 5439 */ 5440 static int 5441 partition_resources(struct adapter *sc) 5442 { 5443 char cfg_file[sizeof(t4_cfg_file)]; 5444 struct caps_allowed caps_allowed; 5445 int rc; 5446 bool fallback; 5447 5448 /* Only the master driver gets to configure the chip resources. */ 5449 MPASS(sc->flags & MASTER_PF); 5450 5451 #define COPY_CAPS(x) do { \ 5452 caps_allowed.x##caps = t4_##x##caps_allowed; \ 5453 } while (0) 5454 bzero(&caps_allowed, sizeof(caps_allowed)); 5455 COPY_CAPS(nbm); 5456 COPY_CAPS(link); 5457 COPY_CAPS(switch); 5458 COPY_CAPS(nvme); 5459 COPY_CAPS(nic); 5460 COPY_CAPS(toe); 5461 COPY_CAPS(rdma); 5462 COPY_CAPS(crypto); 5463 COPY_CAPS(iscsi); 5464 COPY_CAPS(fcoe); 5465 fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true; 5466 snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file); 5467 retry: 5468 rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed); 5469 if (rc != 0 && fallback) { 5470 dump_devlog(sc); 5471 device_printf(sc->dev, 5472 "failed (%d) to configure card with \"%s\" profile, " 5473 "will fall back to a basic configuration and retry.\n", 5474 rc, cfg_file); 5475 snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF); 5476 bzero(&caps_allowed, sizeof(caps_allowed)); 5477 COPY_CAPS(switch); 5478 caps_allowed.niccaps = FW_CAPS_CONFIG_NIC; 5479 fallback = false; 5480 goto retry; 5481 } 5482 #undef COPY_CAPS 5483 return (rc); 5484 } 5485 5486 /* 5487 * Retrieve parameters that are needed (or nice to have) very early. 5488 */ 5489 static int 5490 get_params__pre_init(struct adapter *sc) 5491 { 5492 int rc; 5493 uint32_t param[2], val[2]; 5494 5495 t4_get_version_info(sc); 5496 5497 snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u", 5498 G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers), 5499 G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers), 5500 G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers), 5501 G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers)); 5502 5503 snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u", 5504 G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers), 5505 G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers), 5506 G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers), 5507 G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers)); 5508 5509 snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u", 5510 G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers), 5511 G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers), 5512 G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers), 5513 G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers)); 5514 5515 snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u", 5516 G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers), 5517 G_FW_HDR_FW_VER_MINOR(sc->params.er_vers), 5518 G_FW_HDR_FW_VER_MICRO(sc->params.er_vers), 5519 G_FW_HDR_FW_VER_BUILD(sc->params.er_vers)); 5520 5521 param[0] = FW_PARAM_DEV(PORTVEC); 5522 param[1] = FW_PARAM_DEV(CCLK); 5523 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5524 if (rc != 0) { 5525 device_printf(sc->dev, 5526 "failed to query parameters (pre_init): %d.\n", rc); 5527 return (rc); 5528 } 5529 5530 sc->params.portvec = val[0]; 5531 sc->params.nports = bitcount32(val[0]); 5532 sc->params.vpd.cclk = val[1]; 5533 5534 /* Read device log parameters. */ 5535 rc = -t4_init_devlog_ncores_params(sc, 1); 5536 if (rc == 0) 5537 fixup_devlog_params(sc); 5538 else { 5539 device_printf(sc->dev, 5540 "failed to get devlog parameters: %d.\n", rc); 5541 rc = 0; /* devlog isn't critical for device operation */ 5542 } 5543 5544 return (rc); 5545 } 5546 5547 /* 5548 * Any params that need to be set before FW_INITIALIZE. 5549 */ 5550 static int 5551 set_params__pre_init(struct adapter *sc) 5552 { 5553 int rc = 0; 5554 uint32_t param, val; 5555 5556 if (chip_id(sc) >= CHELSIO_T6) { 5557 param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT); 5558 val = 1; 5559 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5560 /* firmwares < 1.20.1.0 do not have this param. */ 5561 if (rc == FW_EINVAL && 5562 sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) { 5563 rc = 0; 5564 } 5565 if (rc != 0) { 5566 device_printf(sc->dev, 5567 "failed to enable high priority filters :%d.\n", 5568 rc); 5569 } 5570 5571 param = FW_PARAM_DEV(PPOD_EDRAM); 5572 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5573 if (rc == 0 && val == 1) { 5574 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, 5575 &val); 5576 if (rc != 0) { 5577 device_printf(sc->dev, 5578 "failed to set PPOD_EDRAM: %d.\n", rc); 5579 } 5580 } 5581 } 5582 5583 /* Enable opaque VIIDs with firmwares that support it. */ 5584 param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN); 5585 val = 1; 5586 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 5587 if (rc == 0 && val == 1) 5588 sc->params.viid_smt_extn_support = true; 5589 else 5590 sc->params.viid_smt_extn_support = false; 5591 5592 return (rc); 5593 } 5594 5595 /* 5596 * Retrieve various parameters that are of interest to the driver. The device 5597 * has been initialized by the firmware at this point. 5598 */ 5599 static int 5600 get_params__post_init(struct adapter *sc) 5601 { 5602 int rc; 5603 uint32_t param[7], val[7]; 5604 struct fw_caps_config_cmd caps; 5605 5606 param[0] = FW_PARAM_PFVF(IQFLINT_START); 5607 param[1] = FW_PARAM_PFVF(EQ_START); 5608 param[2] = FW_PARAM_PFVF(FILTER_START); 5609 param[3] = FW_PARAM_PFVF(FILTER_END); 5610 param[4] = FW_PARAM_PFVF(L2T_START); 5611 param[5] = FW_PARAM_PFVF(L2T_END); 5612 param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 5613 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 5614 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 5615 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val); 5616 if (rc != 0) { 5617 device_printf(sc->dev, 5618 "failed to query parameters (post_init): %d.\n", rc); 5619 return (rc); 5620 } 5621 5622 sc->sge.iq_start = val[0]; 5623 sc->sge.eq_start = val[1]; 5624 if ((int)val[3] > (int)val[2]) { 5625 sc->tids.ftid_base = val[2]; 5626 sc->tids.ftid_end = val[3]; 5627 sc->tids.nftids = val[3] - val[2] + 1; 5628 } 5629 sc->vres.l2t.start = val[4]; 5630 sc->vres.l2t.size = val[5] - val[4] + 1; 5631 /* val[5] is the last hwidx and it must not collide with F_SYNC_WR */ 5632 if (sc->vres.l2t.size > 0) 5633 MPASS(fls(val[5]) <= S_SYNC_WR); 5634 sc->params.core_vdd = val[6]; 5635 5636 param[0] = FW_PARAM_PFVF(IQFLINT_END); 5637 param[1] = FW_PARAM_PFVF(EQ_END); 5638 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5639 if (rc != 0) { 5640 device_printf(sc->dev, 5641 "failed to query parameters (post_init2): %d.\n", rc); 5642 return (rc); 5643 } 5644 MPASS((int)val[0] >= sc->sge.iq_start); 5645 sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1; 5646 MPASS((int)val[1] >= sc->sge.eq_start); 5647 sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1; 5648 5649 if (chip_id(sc) >= CHELSIO_T6) { 5650 5651 sc->tids.tid_base = t4_read_reg(sc, 5652 A_LE_DB_ACTIVE_TABLE_START_INDEX); 5653 5654 param[0] = FW_PARAM_PFVF(HPFILTER_START); 5655 param[1] = FW_PARAM_PFVF(HPFILTER_END); 5656 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5657 if (rc != 0) { 5658 device_printf(sc->dev, 5659 "failed to query hpfilter parameters: %d.\n", rc); 5660 return (rc); 5661 } 5662 if ((int)val[1] > (int)val[0]) { 5663 sc->tids.hpftid_base = val[0]; 5664 sc->tids.hpftid_end = val[1]; 5665 sc->tids.nhpftids = val[1] - val[0] + 1; 5666 5667 /* 5668 * These should go off if the layout changes and the 5669 * driver needs to catch up. 5670 */ 5671 MPASS(sc->tids.hpftid_base == 0); 5672 MPASS(sc->tids.tid_base == sc->tids.nhpftids); 5673 } 5674 5675 param[0] = FW_PARAM_PFVF(RAWF_START); 5676 param[1] = FW_PARAM_PFVF(RAWF_END); 5677 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5678 if (rc != 0) { 5679 device_printf(sc->dev, 5680 "failed to query rawf parameters: %d.\n", rc); 5681 return (rc); 5682 } 5683 if ((int)val[1] > (int)val[0]) { 5684 sc->rawf_base = val[0]; 5685 sc->nrawf = val[1] - val[0] + 1; 5686 } 5687 } 5688 5689 if (sc->params.ncores > 1) { 5690 MPASS(chip_id(sc) >= CHELSIO_T7); 5691 5692 param[0] = FW_PARAM_DEV(TID_QID_SEL_MASK); 5693 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5694 sc->params.tid_qid_sel_mask = rc == 0 ? val[0] : 0; 5695 } 5696 5697 /* 5698 * The parameters that follow may not be available on all firmwares. We 5699 * query them individually rather than in a compound query because old 5700 * firmwares fail the entire query if an unknown parameter is queried. 5701 */ 5702 5703 /* 5704 * MPS buffer group configuration. 5705 */ 5706 param[0] = FW_PARAM_DEV(MPSBGMAP); 5707 val[0] = 0; 5708 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5709 if (rc == 0) 5710 sc->params.mps_bg_map = val[0]; 5711 else 5712 sc->params.mps_bg_map = UINT32_MAX; /* Not a legal value. */ 5713 5714 param[0] = FW_PARAM_DEV(TPCHMAP); 5715 val[0] = 0; 5716 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5717 if (rc == 0) 5718 sc->params.tp_ch_map = val[0]; 5719 else 5720 sc->params.tp_ch_map = UINT32_MAX; /* Not a legal value. */ 5721 5722 param[0] = FW_PARAM_DEV(TX_TPCHMAP); 5723 val[0] = 0; 5724 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5725 if (rc == 0) 5726 sc->params.tx_tp_ch_map = val[0]; 5727 else 5728 sc->params.tx_tp_ch_map = UINT32_MAX; /* Not a legal value. */ 5729 5730 /* 5731 * Determine whether the firmware supports the filter2 work request. 5732 */ 5733 param[0] = FW_PARAM_DEV(FILTER2_WR); 5734 val[0] = 0; 5735 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5736 if (rc == 0) 5737 sc->params.filter2_wr_support = val[0] != 0; 5738 else 5739 sc->params.filter2_wr_support = 0; 5740 5741 /* 5742 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL. 5743 */ 5744 param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL); 5745 val[0] = 0; 5746 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5747 if (rc == 0) 5748 sc->params.ulptx_memwrite_dsgl = val[0] != 0; 5749 else 5750 sc->params.ulptx_memwrite_dsgl = false; 5751 5752 /* FW_RI_FR_NSMR_TPTE_WR support */ 5753 param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR); 5754 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5755 if (rc == 0) 5756 sc->params.fr_nsmr_tpte_wr_support = val[0] != 0; 5757 else 5758 sc->params.fr_nsmr_tpte_wr_support = false; 5759 5760 /* Support for 512 SGL entries per FR MR. */ 5761 param[0] = FW_PARAM_DEV(DEV_512SGL_MR); 5762 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5763 if (rc == 0) 5764 sc->params.dev_512sgl_mr = val[0] != 0; 5765 else 5766 sc->params.dev_512sgl_mr = false; 5767 5768 param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR); 5769 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5770 if (rc == 0) 5771 sc->params.max_pkts_per_eth_tx_pkts_wr = val[0]; 5772 else 5773 sc->params.max_pkts_per_eth_tx_pkts_wr = 15; 5774 5775 param[0] = FW_PARAM_DEV(NUM_TM_CLASS); 5776 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5777 if (rc == 0) { 5778 MPASS(val[0] > 0 && val[0] < 256); /* nsched_cls is 8b */ 5779 sc->params.nsched_cls = val[0]; 5780 } else 5781 sc->params.nsched_cls = sc->chip_params->nsched_cls; 5782 5783 /* get capabilites */ 5784 bzero(&caps, sizeof(caps)); 5785 caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) | 5786 F_FW_CMD_REQUEST | F_FW_CMD_READ); 5787 caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps)); 5788 rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps); 5789 if (rc != 0) { 5790 device_printf(sc->dev, 5791 "failed to get card capabilities: %d.\n", rc); 5792 return (rc); 5793 } 5794 5795 #define READ_CAPS(x) do { \ 5796 sc->x = htobe16(caps.x); \ 5797 } while (0) 5798 READ_CAPS(nbmcaps); 5799 READ_CAPS(linkcaps); 5800 READ_CAPS(switchcaps); 5801 READ_CAPS(nvmecaps); 5802 READ_CAPS(niccaps); 5803 READ_CAPS(toecaps); 5804 READ_CAPS(rdmacaps); 5805 READ_CAPS(cryptocaps); 5806 READ_CAPS(iscsicaps); 5807 READ_CAPS(fcoecaps); 5808 5809 if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) { 5810 MPASS(chip_id(sc) > CHELSIO_T4); 5811 MPASS(sc->toecaps == 0); 5812 sc->toecaps = 0; 5813 5814 param[0] = FW_PARAM_DEV(NTID); 5815 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val); 5816 if (rc != 0) { 5817 device_printf(sc->dev, 5818 "failed to query HASHFILTER parameters: %d.\n", rc); 5819 return (rc); 5820 } 5821 sc->tids.ntids = val[0]; 5822 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5823 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5824 sc->tids.ntids -= sc->tids.nhpftids; 5825 } 5826 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5827 sc->params.hash_filter = 1; 5828 } 5829 if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) { 5830 param[0] = FW_PARAM_PFVF(ETHOFLD_START); 5831 param[1] = FW_PARAM_PFVF(ETHOFLD_END); 5832 param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5833 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val); 5834 if (rc != 0) { 5835 device_printf(sc->dev, 5836 "failed to query NIC parameters: %d.\n", rc); 5837 return (rc); 5838 } 5839 if ((int)val[1] > (int)val[0]) { 5840 sc->tids.etid_base = val[0]; 5841 sc->tids.etid_end = val[1]; 5842 sc->tids.netids = val[1] - val[0] + 1; 5843 sc->params.eo_wr_cred = val[2]; 5844 sc->params.ethoffload = 1; 5845 } 5846 } 5847 if (sc->toecaps) { 5848 /* query offload-related parameters */ 5849 param[0] = FW_PARAM_DEV(NTID); 5850 param[1] = FW_PARAM_PFVF(SERVER_START); 5851 param[2] = FW_PARAM_PFVF(SERVER_END); 5852 param[3] = FW_PARAM_PFVF(TDDP_START); 5853 param[4] = FW_PARAM_PFVF(TDDP_END); 5854 param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ); 5855 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5856 if (rc != 0) { 5857 device_printf(sc->dev, 5858 "failed to query TOE parameters: %d.\n", rc); 5859 return (rc); 5860 } 5861 sc->tids.ntids = val[0]; 5862 if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) { 5863 MPASS(sc->tids.ntids >= sc->tids.nhpftids); 5864 sc->tids.ntids -= sc->tids.nhpftids; 5865 } 5866 sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS); 5867 if ((int)val[2] > (int)val[1]) { 5868 sc->tids.stid_base = val[1]; 5869 sc->tids.nstids = val[2] - val[1] + 1; 5870 } 5871 sc->vres.ddp.start = val[3]; 5872 sc->vres.ddp.size = val[4] - val[3] + 1; 5873 sc->params.ofldq_wr_cred = val[5]; 5874 sc->params.offload = 1; 5875 } else { 5876 /* 5877 * The firmware attempts memfree TOE configuration for -SO cards 5878 * and will report toecaps=0 if it runs out of resources (this 5879 * depends on the config file). It may not report 0 for other 5880 * capabilities dependent on the TOE in this case. Set them to 5881 * 0 here so that the driver doesn't bother tracking resources 5882 * that will never be used. 5883 */ 5884 sc->iscsicaps = 0; 5885 sc->nvmecaps = 0; 5886 sc->rdmacaps = 0; 5887 } 5888 if (sc->nvmecaps || sc->rdmacaps) { 5889 param[0] = FW_PARAM_PFVF(STAG_START); 5890 param[1] = FW_PARAM_PFVF(STAG_END); 5891 param[2] = FW_PARAM_PFVF(PBL_START); 5892 param[3] = FW_PARAM_PFVF(PBL_END); 5893 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val); 5894 if (rc != 0) { 5895 device_printf(sc->dev, 5896 "failed to query NVMe/RDMA parameters: %d.\n", rc); 5897 return (rc); 5898 } 5899 sc->vres.stag.start = val[0]; 5900 sc->vres.stag.size = val[1] - val[0] + 1; 5901 sc->vres.pbl.start = val[2]; 5902 sc->vres.pbl.size = val[3] - val[2] + 1; 5903 } 5904 if (sc->rdmacaps) { 5905 param[0] = FW_PARAM_PFVF(RQ_START); 5906 param[1] = FW_PARAM_PFVF(RQ_END); 5907 param[2] = FW_PARAM_PFVF(SQRQ_START); 5908 param[3] = FW_PARAM_PFVF(SQRQ_END); 5909 param[4] = FW_PARAM_PFVF(CQ_START); 5910 param[5] = FW_PARAM_PFVF(CQ_END); 5911 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5912 if (rc != 0) { 5913 device_printf(sc->dev, 5914 "failed to query RDMA parameters(1): %d.\n", rc); 5915 return (rc); 5916 } 5917 sc->vres.rq.start = val[0]; 5918 sc->vres.rq.size = val[1] - val[0] + 1; 5919 sc->vres.qp.start = val[2]; 5920 sc->vres.qp.size = val[3] - val[2] + 1; 5921 sc->vres.cq.start = val[4]; 5922 sc->vres.cq.size = val[5] - val[4] + 1; 5923 5924 param[0] = FW_PARAM_PFVF(OCQ_START); 5925 param[1] = FW_PARAM_PFVF(OCQ_END); 5926 param[2] = FW_PARAM_PFVF(SRQ_START); 5927 param[3] = FW_PARAM_PFVF(SRQ_END); 5928 param[4] = FW_PARAM_DEV(MAXORDIRD_QP); 5929 param[5] = FW_PARAM_DEV(MAXIRD_ADAPTER); 5930 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val); 5931 if (rc != 0) { 5932 device_printf(sc->dev, 5933 "failed to query RDMA parameters(2): %d.\n", rc); 5934 return (rc); 5935 } 5936 sc->vres.ocq.start = val[0]; 5937 sc->vres.ocq.size = val[1] - val[0] + 1; 5938 sc->vres.srq.start = val[2]; 5939 sc->vres.srq.size = val[3] - val[2] + 1; 5940 sc->params.max_ordird_qp = val[4]; 5941 sc->params.max_ird_adapter = val[5]; 5942 } 5943 if (sc->iscsicaps) { 5944 param[0] = FW_PARAM_PFVF(ISCSI_START); 5945 param[1] = FW_PARAM_PFVF(ISCSI_END); 5946 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5947 if (rc != 0) { 5948 device_printf(sc->dev, 5949 "failed to query iSCSI parameters: %d.\n", rc); 5950 return (rc); 5951 } 5952 sc->vres.iscsi.start = val[0]; 5953 sc->vres.iscsi.size = val[1] - val[0] + 1; 5954 } 5955 if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) { 5956 param[0] = FW_PARAM_PFVF(TLS_START); 5957 param[1] = FW_PARAM_PFVF(TLS_END); 5958 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val); 5959 if (rc != 0) { 5960 device_printf(sc->dev, 5961 "failed to query TLS parameters: %d.\n", rc); 5962 return (rc); 5963 } 5964 sc->vres.key.start = val[0]; 5965 sc->vres.key.size = val[1] - val[0] + 1; 5966 } 5967 5968 /* 5969 * We've got the params we wanted to query directly from the firmware. 5970 * Grab some others via other means. 5971 */ 5972 t4_init_sge_params(sc); 5973 t4_init_tp_params(sc); 5974 t4_read_mtu_tbl(sc, sc->params.mtus, NULL); 5975 t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd); 5976 5977 rc = t4_verify_chip_settings(sc); 5978 if (rc != 0) 5979 return (rc); 5980 t4_init_rx_buf_info(sc); 5981 5982 return (rc); 5983 } 5984 5985 #ifdef KERN_TLS 5986 static void 5987 ktls_tick(void *arg) 5988 { 5989 struct adapter *sc; 5990 uint32_t tstamp; 5991 5992 sc = arg; 5993 tstamp = tcp_ts_getticks(); 5994 t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1); 5995 t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31); 5996 callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK); 5997 } 5998 5999 static int 6000 t6_config_kern_tls(struct adapter *sc, bool enable) 6001 { 6002 int rc; 6003 uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 6004 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) | 6005 V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) | 6006 V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE); 6007 6008 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, ¶m); 6009 if (rc != 0) { 6010 CH_ERR(sc, "failed to %s NIC TLS: %d\n", 6011 enable ? "enable" : "disable", rc); 6012 return (rc); 6013 } 6014 6015 if (enable) { 6016 sc->flags |= KERN_TLS_ON; 6017 callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc, 6018 C_HARDCLOCK); 6019 } else { 6020 sc->flags &= ~KERN_TLS_ON; 6021 callout_stop(&sc->ktls_tick); 6022 } 6023 6024 return (rc); 6025 } 6026 #endif 6027 6028 static int 6029 set_params__post_init(struct adapter *sc) 6030 { 6031 uint32_t mask, param, val; 6032 #ifdef TCP_OFFLOAD 6033 int i, v, shift; 6034 #endif 6035 6036 /* ask for encapsulated CPLs */ 6037 param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP); 6038 val = 1; 6039 (void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 6040 6041 /* Enable 32b port caps if the firmware supports it. */ 6042 param = FW_PARAM_PFVF(PORT_CAPS32); 6043 val = 1; 6044 if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val) == 0) 6045 sc->params.port_caps32 = 1; 6046 6047 /* Let filter + maskhash steer to a part of the VI's RSS region. */ 6048 val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1); 6049 t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER), 6050 V_MASKFILTER(val - 1)); 6051 6052 mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER | 6053 F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN | 6054 F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 6055 F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM; 6056 val = 0; 6057 if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) { 6058 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE, 6059 F_ATTACKFILTERENABLE); 6060 val |= F_DROPERRORATTACK; 6061 } 6062 if (t4_drop_ip_fragments != 0) { 6063 t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP, 6064 F_FRAGMENTDROP); 6065 val |= F_DROPERRORFRAG; 6066 } 6067 if (t4_drop_pkts_with_l2_errors != 0) 6068 val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN; 6069 if (t4_drop_pkts_with_l3_errors != 0) { 6070 val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN | 6071 F_DROPERRORCSUMIP; 6072 } 6073 if (t4_drop_pkts_with_l4_errors != 0) { 6074 val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN | 6075 F_DROPERRORTCPOPT | F_DROPERRORCSUM; 6076 } 6077 t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val); 6078 6079 #ifdef TCP_OFFLOAD 6080 /* 6081 * Override the TOE timers with user provided tunables. This is not the 6082 * recommended way to change the timers (the firmware config file is) so 6083 * these tunables are not documented. 6084 * 6085 * All the timer tunables are in microseconds. 6086 */ 6087 if (t4_toe_keepalive_idle != 0) { 6088 v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle); 6089 v &= M_KEEPALIVEIDLE; 6090 t4_set_reg_field(sc, A_TP_KEEP_IDLE, 6091 V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v)); 6092 } 6093 if (t4_toe_keepalive_interval != 0) { 6094 v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval); 6095 v &= M_KEEPALIVEINTVL; 6096 t4_set_reg_field(sc, A_TP_KEEP_INTVL, 6097 V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v)); 6098 } 6099 if (t4_toe_keepalive_count != 0) { 6100 v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2; 6101 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 6102 V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) | 6103 V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2), 6104 V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v)); 6105 } 6106 if (t4_toe_rexmt_min != 0) { 6107 v = us_to_tcp_ticks(sc, t4_toe_rexmt_min); 6108 v &= M_RXTMIN; 6109 t4_set_reg_field(sc, A_TP_RXT_MIN, 6110 V_RXTMIN(M_RXTMIN), V_RXTMIN(v)); 6111 } 6112 if (t4_toe_rexmt_max != 0) { 6113 v = us_to_tcp_ticks(sc, t4_toe_rexmt_max); 6114 v &= M_RXTMAX; 6115 t4_set_reg_field(sc, A_TP_RXT_MAX, 6116 V_RXTMAX(M_RXTMAX), V_RXTMAX(v)); 6117 } 6118 if (t4_toe_rexmt_count != 0) { 6119 v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2; 6120 t4_set_reg_field(sc, A_TP_SHIFT_CNT, 6121 V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) | 6122 V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2), 6123 V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v)); 6124 } 6125 for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) { 6126 if (t4_toe_rexmt_backoff[i] != -1) { 6127 v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0; 6128 shift = (i & 3) << 3; 6129 t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3), 6130 M_TIMERBACKOFFINDEX0 << shift, v << shift); 6131 } 6132 } 6133 #endif 6134 6135 /* 6136 * Limit TOE connections to 2 reassembly "islands". This is 6137 * required to permit migrating TOE connections to either 6138 * ULP_MODE_TCPDDP or UPL_MODE_TLS. 6139 */ 6140 t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, V_PASSMODE(M_PASSMODE), 6141 V_PASSMODE(2)); 6142 6143 #ifdef KERN_TLS 6144 if (is_ktls(sc)) { 6145 sc->tlst.inline_keys = t4_tls_inline_keys; 6146 if (t4_kern_tls != 0 && is_t6(sc)) { 6147 sc->tlst.combo_wrs = t4_tls_combo_wrs; 6148 t6_config_kern_tls(sc, true); 6149 } else { 6150 sc->tlst.short_records = t4_tls_short_records; 6151 sc->tlst.partial_ghash = t4_tls_partial_ghash; 6152 } 6153 } 6154 #endif 6155 return (0); 6156 } 6157 6158 #undef FW_PARAM_PFVF 6159 #undef FW_PARAM_DEV 6160 6161 static void 6162 t4_set_desc(struct adapter *sc) 6163 { 6164 struct adapter_params *p = &sc->params; 6165 6166 device_set_descf(sc->dev, "Chelsio %s", p->vpd.id); 6167 } 6168 6169 static inline void 6170 ifmedia_add4(struct ifmedia *ifm, int m) 6171 { 6172 6173 ifmedia_add(ifm, m, 0, NULL); 6174 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL); 6175 ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL); 6176 ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL); 6177 } 6178 6179 /* 6180 * This is the selected media, which is not quite the same as the active media. 6181 * The media line in ifconfig is "media: Ethernet selected (active)" if selected 6182 * and active are not the same, and "media: Ethernet selected" otherwise. 6183 */ 6184 static void 6185 set_current_media(struct port_info *pi) 6186 { 6187 struct link_config *lc; 6188 struct ifmedia *ifm; 6189 int mword; 6190 u_int speed; 6191 6192 PORT_LOCK_ASSERT_OWNED(pi); 6193 6194 /* Leave current media alone if it's already set to IFM_NONE. */ 6195 ifm = &pi->media; 6196 if (ifm->ifm_cur != NULL && 6197 IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE) 6198 return; 6199 6200 lc = &pi->link_cfg; 6201 if (lc->requested_aneg != AUTONEG_DISABLE && 6202 lc->pcaps & FW_PORT_CAP32_ANEG) { 6203 ifmedia_set(ifm, IFM_ETHER | IFM_AUTO); 6204 return; 6205 } 6206 mword = IFM_ETHER | IFM_FDX; 6207 if (lc->requested_fc & PAUSE_TX) 6208 mword |= IFM_ETH_TXPAUSE; 6209 if (lc->requested_fc & PAUSE_RX) 6210 mword |= IFM_ETH_RXPAUSE; 6211 if (lc->requested_speed == 0) 6212 speed = port_top_speed(pi) * 1000; /* Gbps -> Mbps */ 6213 else 6214 speed = lc->requested_speed; 6215 mword |= port_mword(pi, speed_to_fwcap(speed)); 6216 ifmedia_set(ifm, mword); 6217 } 6218 6219 /* 6220 * Returns true if the ifmedia list for the port cannot change. 6221 */ 6222 static bool 6223 fixed_ifmedia(struct port_info *pi) 6224 { 6225 6226 return (pi->port_type == FW_PORT_TYPE_BT_SGMII || 6227 pi->port_type == FW_PORT_TYPE_BT_XFI || 6228 pi->port_type == FW_PORT_TYPE_BT_XAUI || 6229 pi->port_type == FW_PORT_TYPE_KX4 || 6230 pi->port_type == FW_PORT_TYPE_KX || 6231 pi->port_type == FW_PORT_TYPE_KR || 6232 pi->port_type == FW_PORT_TYPE_BP_AP || 6233 pi->port_type == FW_PORT_TYPE_BP4_AP || 6234 pi->port_type == FW_PORT_TYPE_BP40_BA || 6235 pi->port_type == FW_PORT_TYPE_KR4_100G || 6236 pi->port_type == FW_PORT_TYPE_KR_SFP28 || 6237 pi->port_type == FW_PORT_TYPE_KR_XLAUI); 6238 } 6239 6240 static void 6241 build_medialist(struct port_info *pi) 6242 { 6243 uint32_t ss, speed; 6244 int unknown, mword, bit; 6245 struct link_config *lc; 6246 struct ifmedia *ifm; 6247 6248 PORT_LOCK_ASSERT_OWNED(pi); 6249 6250 if (pi->flags & FIXED_IFMEDIA) 6251 return; 6252 6253 /* 6254 * Rebuild the ifmedia list. 6255 */ 6256 ifm = &pi->media; 6257 ifmedia_removeall(ifm); 6258 lc = &pi->link_cfg; 6259 ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */ 6260 if (__predict_false(ss == 0)) { /* not supposed to happen. */ 6261 MPASS(ss != 0); 6262 no_media: 6263 MPASS(LIST_EMPTY(&ifm->ifm_list)); 6264 ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL); 6265 ifmedia_set(ifm, IFM_ETHER | IFM_NONE); 6266 return; 6267 } 6268 6269 unknown = 0; 6270 for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) { 6271 speed = 1 << bit; 6272 MPASS(speed & M_FW_PORT_CAP32_SPEED); 6273 if (ss & speed) { 6274 mword = port_mword(pi, speed); 6275 if (mword == IFM_NONE) { 6276 goto no_media; 6277 } else if (mword == IFM_UNKNOWN) 6278 unknown++; 6279 else 6280 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword); 6281 } 6282 } 6283 if (unknown > 0) /* Add one unknown for all unknown media types. */ 6284 ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN); 6285 if (lc->pcaps & FW_PORT_CAP32_ANEG) 6286 ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL); 6287 6288 set_current_media(pi); 6289 } 6290 6291 /* 6292 * Initialize the requested fields in the link config based on driver tunables. 6293 */ 6294 static void 6295 init_link_config(struct port_info *pi) 6296 { 6297 struct link_config *lc = &pi->link_cfg; 6298 6299 PORT_LOCK_ASSERT_OWNED(pi); 6300 6301 lc->requested_caps = 0; 6302 lc->requested_speed = 0; 6303 6304 if (t4_autoneg == 0) 6305 lc->requested_aneg = AUTONEG_DISABLE; 6306 else if (t4_autoneg == 1) 6307 lc->requested_aneg = AUTONEG_ENABLE; 6308 else 6309 lc->requested_aneg = AUTONEG_AUTO; 6310 6311 lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX | 6312 PAUSE_AUTONEG); 6313 6314 if (t4_fec & FEC_AUTO) 6315 lc->requested_fec = FEC_AUTO; 6316 else if (t4_fec == 0) 6317 lc->requested_fec = FEC_NONE; 6318 else { 6319 /* -1 is handled by the FEC_AUTO block above and not here. */ 6320 lc->requested_fec = t4_fec & 6321 (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE); 6322 if (lc->requested_fec == 0) 6323 lc->requested_fec = FEC_AUTO; 6324 } 6325 if (t4_force_fec < 0) 6326 lc->force_fec = -1; 6327 else if (t4_force_fec > 0) 6328 lc->force_fec = 1; 6329 else 6330 lc->force_fec = 0; 6331 } 6332 6333 /* 6334 * Makes sure that all requested settings comply with what's supported by the 6335 * port. Returns the number of settings that were invalid and had to be fixed. 6336 */ 6337 static int 6338 fixup_link_config(struct port_info *pi) 6339 { 6340 int n = 0; 6341 struct link_config *lc = &pi->link_cfg; 6342 uint32_t fwspeed; 6343 6344 PORT_LOCK_ASSERT_OWNED(pi); 6345 6346 /* Speed (when not autonegotiating) */ 6347 if (lc->requested_speed != 0) { 6348 fwspeed = speed_to_fwcap(lc->requested_speed); 6349 if ((fwspeed & lc->pcaps) == 0) { 6350 n++; 6351 lc->requested_speed = 0; 6352 } 6353 } 6354 6355 /* Link autonegotiation */ 6356 MPASS(lc->requested_aneg == AUTONEG_ENABLE || 6357 lc->requested_aneg == AUTONEG_DISABLE || 6358 lc->requested_aneg == AUTONEG_AUTO); 6359 if (lc->requested_aneg == AUTONEG_ENABLE && 6360 !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 6361 n++; 6362 lc->requested_aneg = AUTONEG_AUTO; 6363 } 6364 6365 /* Flow control */ 6366 MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0); 6367 if (lc->requested_fc & PAUSE_TX && 6368 !(lc->pcaps & FW_PORT_CAP32_FC_TX)) { 6369 n++; 6370 lc->requested_fc &= ~PAUSE_TX; 6371 } 6372 if (lc->requested_fc & PAUSE_RX && 6373 !(lc->pcaps & FW_PORT_CAP32_FC_RX)) { 6374 n++; 6375 lc->requested_fc &= ~PAUSE_RX; 6376 } 6377 if (!(lc->requested_fc & PAUSE_AUTONEG) && 6378 !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) { 6379 n++; 6380 lc->requested_fc |= PAUSE_AUTONEG; 6381 } 6382 6383 /* FEC */ 6384 if ((lc->requested_fec & FEC_RS && 6385 !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) || 6386 (lc->requested_fec & FEC_BASER_RS && 6387 !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) { 6388 n++; 6389 lc->requested_fec = FEC_AUTO; 6390 } 6391 6392 return (n); 6393 } 6394 6395 /* 6396 * Apply the requested L1 settings, which are expected to be valid, to the 6397 * hardware. 6398 */ 6399 static int 6400 apply_link_config(struct port_info *pi) 6401 { 6402 struct adapter *sc = pi->adapter; 6403 struct link_config *lc = &pi->link_cfg; 6404 int rc; 6405 6406 #ifdef INVARIANTS 6407 ASSERT_SYNCHRONIZED_OP(sc); 6408 PORT_LOCK_ASSERT_OWNED(pi); 6409 6410 if (lc->requested_aneg == AUTONEG_ENABLE) 6411 MPASS(lc->pcaps & FW_PORT_CAP32_ANEG); 6412 if (!(lc->requested_fc & PAUSE_AUTONEG)) 6413 MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE); 6414 if (lc->requested_fc & PAUSE_TX) 6415 MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX); 6416 if (lc->requested_fc & PAUSE_RX) 6417 MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX); 6418 if (lc->requested_fec & FEC_RS) 6419 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS); 6420 if (lc->requested_fec & FEC_BASER_RS) 6421 MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS); 6422 #endif 6423 if (!(sc->flags & IS_VF)) { 6424 rc = -t4_link_l1cfg(sc, sc->mbox, pi->hw_port, lc); 6425 if (rc != 0) { 6426 device_printf(pi->dev, "l1cfg failed: %d\n", rc); 6427 return (rc); 6428 } 6429 } 6430 6431 /* 6432 * An L1_CFG will almost always result in a link-change event if the 6433 * link is up, and the driver will refresh the actual fec/fc/etc. when 6434 * the notification is processed. If the link is down then the actual 6435 * settings are meaningless. 6436 * 6437 * This takes care of the case where a change in the L1 settings may not 6438 * result in a notification. 6439 */ 6440 if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG)) 6441 lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX); 6442 6443 return (0); 6444 } 6445 6446 #define FW_MAC_EXACT_CHUNK 7 6447 struct mcaddr_ctx { 6448 if_t ifp; 6449 const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK]; 6450 uint64_t hash; 6451 int i; 6452 int del; 6453 int rc; 6454 }; 6455 6456 static u_int 6457 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt) 6458 { 6459 struct mcaddr_ctx *ctx = arg; 6460 struct vi_info *vi = if_getsoftc(ctx->ifp); 6461 struct port_info *pi = vi->pi; 6462 struct adapter *sc = pi->adapter; 6463 6464 if (ctx->rc < 0) 6465 return (0); 6466 6467 ctx->mcaddr[ctx->i] = LLADDR(sdl); 6468 MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i])); 6469 ctx->i++; 6470 6471 if (ctx->i == FW_MAC_EXACT_CHUNK) { 6472 ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del, 6473 ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0); 6474 if (ctx->rc < 0) { 6475 int j; 6476 6477 for (j = 0; j < ctx->i; j++) { 6478 if_printf(ctx->ifp, 6479 "failed to add mc address" 6480 " %02x:%02x:%02x:" 6481 "%02x:%02x:%02x rc=%d\n", 6482 ctx->mcaddr[j][0], ctx->mcaddr[j][1], 6483 ctx->mcaddr[j][2], ctx->mcaddr[j][3], 6484 ctx->mcaddr[j][4], ctx->mcaddr[j][5], 6485 -ctx->rc); 6486 } 6487 return (0); 6488 } 6489 ctx->del = 0; 6490 ctx->i = 0; 6491 } 6492 6493 return (1); 6494 } 6495 6496 /* 6497 * Program the port's XGMAC based on parameters in ifnet. The caller also 6498 * indicates which parameters should be programmed (the rest are left alone). 6499 */ 6500 int 6501 update_mac_settings(if_t ifp, int flags) 6502 { 6503 int rc = 0; 6504 struct vi_info *vi = if_getsoftc(ifp); 6505 struct port_info *pi = vi->pi; 6506 struct adapter *sc = pi->adapter; 6507 int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1; 6508 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 6509 6510 ASSERT_SYNCHRONIZED_OP(sc); 6511 KASSERT(flags, ("%s: not told what to update.", __func__)); 6512 6513 if (flags & XGMAC_MTU) 6514 mtu = if_getmtu(ifp); 6515 6516 if (flags & XGMAC_PROMISC) 6517 promisc = if_getflags(ifp) & IFF_PROMISC ? 1 : 0; 6518 6519 if (flags & XGMAC_ALLMULTI) 6520 allmulti = if_getflags(ifp) & IFF_ALLMULTI ? 1 : 0; 6521 6522 if (flags & XGMAC_VLANEX) 6523 vlanex = if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING ? 1 : 0; 6524 6525 if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) { 6526 rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc, 6527 allmulti, 1, vlanex, false); 6528 if (rc) { 6529 if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags, 6530 rc); 6531 return (rc); 6532 } 6533 } 6534 6535 if (flags & XGMAC_UCADDR) { 6536 uint8_t ucaddr[ETHER_ADDR_LEN]; 6537 6538 bcopy(if_getlladdr(ifp), ucaddr, sizeof(ucaddr)); 6539 rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt, 6540 ucaddr, true, &vi->smt_idx); 6541 if (rc < 0) { 6542 rc = -rc; 6543 if_printf(ifp, "change_mac failed: %d\n", rc); 6544 return (rc); 6545 } else { 6546 vi->xact_addr_filt = rc; 6547 rc = 0; 6548 } 6549 } 6550 6551 if (flags & XGMAC_MCADDRS) { 6552 struct epoch_tracker et; 6553 struct mcaddr_ctx ctx; 6554 int j; 6555 6556 ctx.ifp = ifp; 6557 ctx.hash = 0; 6558 ctx.i = 0; 6559 ctx.del = 1; 6560 ctx.rc = 0; 6561 /* 6562 * Unlike other drivers, we accumulate list of pointers into 6563 * interface address lists and we need to keep it safe even 6564 * after if_foreach_llmaddr() returns, thus we must enter the 6565 * network epoch. 6566 */ 6567 NET_EPOCH_ENTER(et); 6568 if_foreach_llmaddr(ifp, add_maddr, &ctx); 6569 if (ctx.rc < 0) { 6570 NET_EPOCH_EXIT(et); 6571 rc = -ctx.rc; 6572 return (rc); 6573 } 6574 if (ctx.i > 0) { 6575 rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, 6576 ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0); 6577 NET_EPOCH_EXIT(et); 6578 if (rc < 0) { 6579 rc = -rc; 6580 for (j = 0; j < ctx.i; j++) { 6581 if_printf(ifp, 6582 "failed to add mcast address" 6583 " %02x:%02x:%02x:" 6584 "%02x:%02x:%02x rc=%d\n", 6585 ctx.mcaddr[j][0], ctx.mcaddr[j][1], 6586 ctx.mcaddr[j][2], ctx.mcaddr[j][3], 6587 ctx.mcaddr[j][4], ctx.mcaddr[j][5], 6588 rc); 6589 } 6590 return (rc); 6591 } 6592 ctx.del = 0; 6593 } else 6594 NET_EPOCH_EXIT(et); 6595 6596 rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0); 6597 if (rc != 0) 6598 if_printf(ifp, "failed to set mcast address hash: %d\n", 6599 rc); 6600 if (ctx.del == 0) { 6601 /* We clobbered the VXLAN entry if there was one. */ 6602 pi->vxlan_tcam_entry = false; 6603 } 6604 } 6605 6606 if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 && 6607 pi->vxlan_tcam_entry == false) { 6608 rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac, 6609 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 6610 true); 6611 if (rc < 0) { 6612 rc = -rc; 6613 if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n", 6614 rc); 6615 } else { 6616 MPASS(rc == sc->rawf_base + pi->port_id); 6617 rc = 0; 6618 pi->vxlan_tcam_entry = true; 6619 } 6620 } 6621 6622 return (rc); 6623 } 6624 6625 /* 6626 * {begin|end}_synchronized_op must be called from the same thread. 6627 */ 6628 int 6629 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags, 6630 char *wmesg) 6631 { 6632 int rc; 6633 6634 #ifdef WITNESS 6635 /* the caller thinks it's ok to sleep, but is it really? */ 6636 if (flags & SLEEP_OK) 6637 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, __func__); 6638 #endif 6639 ADAPTER_LOCK(sc); 6640 for (;;) { 6641 6642 if (vi && IS_DETACHING(vi)) { 6643 rc = ENXIO; 6644 goto done; 6645 } 6646 6647 if (!IS_BUSY(sc)) { 6648 rc = 0; 6649 break; 6650 } 6651 6652 if (!(flags & SLEEP_OK)) { 6653 rc = EBUSY; 6654 goto done; 6655 } 6656 6657 if (mtx_sleep(&sc->flags, &sc->sc_lock, 6658 flags & INTR_OK ? PCATCH : 0, wmesg, 0)) { 6659 rc = EINTR; 6660 goto done; 6661 } 6662 } 6663 6664 KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__)); 6665 SET_BUSY(sc); 6666 #ifdef INVARIANTS 6667 sc->last_op = wmesg; 6668 sc->last_op_thr = curthread; 6669 sc->last_op_flags = flags; 6670 #endif 6671 6672 done: 6673 if (!(flags & HOLD_LOCK) || rc) 6674 ADAPTER_UNLOCK(sc); 6675 6676 return (rc); 6677 } 6678 6679 /* 6680 * Tell if_ioctl and if_init that the VI is going away. This is 6681 * special variant of begin_synchronized_op and must be paired with a 6682 * call to end_vi_detach. 6683 */ 6684 void 6685 begin_vi_detach(struct adapter *sc, struct vi_info *vi) 6686 { 6687 ADAPTER_LOCK(sc); 6688 SET_DETACHING(vi); 6689 wakeup(&sc->flags); 6690 while (IS_BUSY(sc)) 6691 mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0); 6692 SET_BUSY(sc); 6693 #ifdef INVARIANTS 6694 sc->last_op = "t4detach"; 6695 sc->last_op_thr = curthread; 6696 sc->last_op_flags = 0; 6697 #endif 6698 ADAPTER_UNLOCK(sc); 6699 } 6700 6701 void 6702 end_vi_detach(struct adapter *sc, struct vi_info *vi) 6703 { 6704 ADAPTER_LOCK(sc); 6705 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6706 CLR_BUSY(sc); 6707 CLR_DETACHING(vi); 6708 wakeup(&sc->flags); 6709 ADAPTER_UNLOCK(sc); 6710 } 6711 6712 /* 6713 * {begin|end}_synchronized_op must be called from the same thread. 6714 */ 6715 void 6716 end_synchronized_op(struct adapter *sc, int flags) 6717 { 6718 6719 if (flags & LOCK_HELD) 6720 ADAPTER_LOCK_ASSERT_OWNED(sc); 6721 else 6722 ADAPTER_LOCK(sc); 6723 6724 KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__)); 6725 CLR_BUSY(sc); 6726 wakeup(&sc->flags); 6727 ADAPTER_UNLOCK(sc); 6728 } 6729 6730 static int 6731 cxgbe_init_synchronized(struct vi_info *vi) 6732 { 6733 struct port_info *pi = vi->pi; 6734 struct adapter *sc = pi->adapter; 6735 if_t ifp = vi->ifp; 6736 int rc = 0, i; 6737 struct sge_txq *txq; 6738 6739 ASSERT_SYNCHRONIZED_OP(sc); 6740 6741 if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) 6742 return (0); /* already running */ 6743 6744 if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0)) 6745 return (rc); /* error message displayed already */ 6746 6747 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 6748 return (rc); /* error message displayed already */ 6749 6750 rc = update_mac_settings(ifp, XGMAC_ALL); 6751 if (rc) 6752 goto done; /* error message displayed already */ 6753 6754 PORT_LOCK(pi); 6755 if (pi->up_vis == 0) { 6756 t4_update_port_info(pi); 6757 fixup_link_config(pi); 6758 build_medialist(pi); 6759 apply_link_config(pi); 6760 } 6761 6762 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true); 6763 if (rc != 0) { 6764 if_printf(ifp, "enable_vi failed: %d\n", rc); 6765 PORT_UNLOCK(pi); 6766 goto done; 6767 } 6768 6769 /* 6770 * Can't fail from this point onwards. Review cxgbe_uninit_synchronized 6771 * if this changes. 6772 */ 6773 6774 for_each_txq(vi, i, txq) { 6775 TXQ_LOCK(txq); 6776 txq->eq.flags |= EQ_ENABLED; 6777 TXQ_UNLOCK(txq); 6778 } 6779 6780 /* 6781 * The first iq of the first port to come up is used for tracing. 6782 */ 6783 if (sc->traceq < 0 && IS_MAIN_VI(vi)) { 6784 sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id; 6785 t4_set_trace_rss_control(sc, pi->tx_chan, sc->traceq); 6786 pi->flags |= HAS_TRACEQ; 6787 } 6788 6789 /* all ok */ 6790 pi->up_vis++; 6791 if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0); 6792 if (pi->link_cfg.link_ok) 6793 t4_os_link_changed(pi); 6794 PORT_UNLOCK(pi); 6795 6796 mtx_lock(&vi->tick_mtx); 6797 if (vi->pi->nvi > 1 || sc->flags & IS_VF) 6798 callout_reset(&vi->tick, hz, vi_tick, vi); 6799 else 6800 callout_reset(&vi->tick, hz, cxgbe_tick, vi); 6801 mtx_unlock(&vi->tick_mtx); 6802 done: 6803 if (rc != 0) 6804 cxgbe_uninit_synchronized(vi); 6805 6806 return (rc); 6807 } 6808 6809 /* 6810 * Idempotent. 6811 */ 6812 static int 6813 cxgbe_uninit_synchronized(struct vi_info *vi) 6814 { 6815 struct port_info *pi = vi->pi; 6816 struct adapter *sc = pi->adapter; 6817 if_t ifp = vi->ifp; 6818 int rc, i; 6819 struct sge_txq *txq; 6820 6821 ASSERT_SYNCHRONIZED_OP(sc); 6822 6823 if (!(vi->flags & VI_INIT_DONE)) { 6824 if (__predict_false(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6825 KASSERT(0, ("uninited VI is running")); 6826 if_printf(ifp, "uninited VI with running ifnet. " 6827 "vi->flags 0x%016lx, if_flags 0x%08x, " 6828 "if_drv_flags 0x%08x\n", vi->flags, if_getflags(ifp), 6829 if_getdrvflags(ifp)); 6830 } 6831 return (0); 6832 } 6833 6834 /* 6835 * Disable the VI so that all its data in either direction is discarded 6836 * by the MPS. Leave everything else (the queues, interrupts, and 1Hz 6837 * tick) intact as the TP can deliver negative advice or data that it's 6838 * holding in its RAM (for an offloaded connection) even after the VI is 6839 * disabled. 6840 */ 6841 rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false); 6842 if (rc) { 6843 if_printf(ifp, "disable_vi failed: %d\n", rc); 6844 return (rc); 6845 } 6846 6847 for_each_txq(vi, i, txq) { 6848 TXQ_LOCK(txq); 6849 txq->eq.flags &= ~EQ_ENABLED; 6850 TXQ_UNLOCK(txq); 6851 } 6852 6853 mtx_lock(&vi->tick_mtx); 6854 callout_stop(&vi->tick); 6855 mtx_unlock(&vi->tick_mtx); 6856 6857 PORT_LOCK(pi); 6858 if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) { 6859 PORT_UNLOCK(pi); 6860 return (0); 6861 } 6862 if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING); 6863 pi->up_vis--; 6864 if (pi->up_vis > 0) { 6865 PORT_UNLOCK(pi); 6866 return (0); 6867 } 6868 6869 pi->link_cfg.link_ok = false; 6870 pi->link_cfg.speed = 0; 6871 pi->link_cfg.link_down_rc = 255; 6872 t4_os_link_changed(pi); 6873 PORT_UNLOCK(pi); 6874 6875 return (0); 6876 } 6877 6878 /* 6879 * It is ok for this function to fail midway and return right away. t4_detach 6880 * will walk the entire sc->irq list and clean up whatever is valid. 6881 */ 6882 int 6883 t4_setup_intr_handlers(struct adapter *sc) 6884 { 6885 int rc, rid, p, q, v; 6886 char s[8]; 6887 struct irq *irq; 6888 struct port_info *pi; 6889 struct vi_info *vi; 6890 struct sge *sge = &sc->sge; 6891 struct sge_rxq *rxq; 6892 #ifdef TCP_OFFLOAD 6893 struct sge_ofld_rxq *ofld_rxq; 6894 #endif 6895 #ifdef DEV_NETMAP 6896 struct sge_nm_rxq *nm_rxq; 6897 #endif 6898 #ifdef RSS 6899 int nbuckets = rss_getnumbuckets(); 6900 #endif 6901 6902 /* 6903 * Setup interrupts. 6904 */ 6905 irq = &sc->irq[0]; 6906 rid = sc->intr_type == INTR_INTX ? 0 : 1; 6907 if (forwarding_intr_to_fwq(sc)) 6908 return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all")); 6909 6910 /* Multiple interrupts. */ 6911 if (sc->flags & IS_VF) 6912 KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports, 6913 ("%s: too few intr.", __func__)); 6914 else 6915 KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports, 6916 ("%s: too few intr.", __func__)); 6917 6918 /* The first one is always error intr on PFs */ 6919 if (!(sc->flags & IS_VF)) { 6920 rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err"); 6921 if (rc != 0) 6922 return (rc); 6923 irq++; 6924 rid++; 6925 } 6926 6927 /* The second one is always the firmware event queue (first on VFs) */ 6928 rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt"); 6929 if (rc != 0) 6930 return (rc); 6931 irq++; 6932 rid++; 6933 6934 for_each_port(sc, p) { 6935 pi = sc->port[p]; 6936 for_each_vi(pi, v, vi) { 6937 vi->first_intr = rid - 1; 6938 6939 if (vi->nnmrxq > 0) { 6940 int n = max(vi->nrxq, vi->nnmrxq); 6941 6942 rxq = &sge->rxq[vi->first_rxq]; 6943 #ifdef DEV_NETMAP 6944 nm_rxq = &sge->nm_rxq[vi->first_nm_rxq]; 6945 #endif 6946 for (q = 0; q < n; q++) { 6947 snprintf(s, sizeof(s), "%x%c%x", p, 6948 'a' + v, q); 6949 if (q < vi->nrxq) 6950 irq->rxq = rxq++; 6951 #ifdef DEV_NETMAP 6952 if (q < vi->nnmrxq) 6953 irq->nm_rxq = nm_rxq++; 6954 6955 if (irq->nm_rxq != NULL && 6956 irq->rxq == NULL) { 6957 /* Netmap rx only */ 6958 rc = t4_alloc_irq(sc, irq, rid, 6959 t4_nm_intr, irq->nm_rxq, s); 6960 } 6961 if (irq->nm_rxq != NULL && 6962 irq->rxq != NULL) { 6963 /* NIC and Netmap rx */ 6964 rc = t4_alloc_irq(sc, irq, rid, 6965 t4_vi_intr, irq, s); 6966 } 6967 #endif 6968 if (irq->rxq != NULL && 6969 irq->nm_rxq == NULL) { 6970 /* NIC rx only */ 6971 rc = t4_alloc_irq(sc, irq, rid, 6972 t4_intr, irq->rxq, s); 6973 } 6974 if (rc != 0) 6975 return (rc); 6976 #ifdef RSS 6977 if (q < vi->nrxq) { 6978 bus_bind_intr(sc->dev, irq->res, 6979 rss_getcpu(q % nbuckets)); 6980 } 6981 #endif 6982 irq++; 6983 rid++; 6984 vi->nintr++; 6985 } 6986 } else { 6987 for_each_rxq(vi, q, rxq) { 6988 snprintf(s, sizeof(s), "%x%c%x", p, 6989 'a' + v, q); 6990 rc = t4_alloc_irq(sc, irq, rid, 6991 t4_intr, rxq, s); 6992 if (rc != 0) 6993 return (rc); 6994 #ifdef RSS 6995 bus_bind_intr(sc->dev, irq->res, 6996 rss_getcpu(q % nbuckets)); 6997 #endif 6998 irq++; 6999 rid++; 7000 vi->nintr++; 7001 } 7002 } 7003 #ifdef TCP_OFFLOAD 7004 for_each_ofld_rxq(vi, q, ofld_rxq) { 7005 snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q); 7006 rc = t4_alloc_irq(sc, irq, rid, t4_intr, 7007 ofld_rxq, s); 7008 if (rc != 0) 7009 return (rc); 7010 irq++; 7011 rid++; 7012 vi->nintr++; 7013 } 7014 #endif 7015 } 7016 } 7017 MPASS(irq == &sc->irq[sc->intr_count]); 7018 7019 return (0); 7020 } 7021 7022 static void 7023 write_global_rss_key(struct adapter *sc) 7024 { 7025 #ifdef RSS 7026 int i; 7027 uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 7028 uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)]; 7029 7030 CTASSERT(RSS_KEYSIZE == 40); 7031 7032 rss_getkey((void *)&raw_rss_key[0]); 7033 for (i = 0; i < nitems(rss_key); i++) { 7034 rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]); 7035 } 7036 t4_write_rss_key(sc, &rss_key[0], -1, 1); 7037 #endif 7038 } 7039 7040 /* 7041 * Idempotent. 7042 */ 7043 static int 7044 adapter_full_init(struct adapter *sc) 7045 { 7046 int rc, i; 7047 7048 ASSERT_SYNCHRONIZED_OP(sc); 7049 7050 /* 7051 * queues that belong to the adapter (not any particular port). 7052 */ 7053 rc = t4_setup_adapter_queues(sc); 7054 if (rc != 0) 7055 return (rc); 7056 7057 MPASS(sc->params.nports <= nitems(sc->tq)); 7058 for (i = 0; i < sc->params.nports; i++) { 7059 if (sc->tq[i] != NULL) 7060 continue; 7061 sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT, 7062 taskqueue_thread_enqueue, &sc->tq[i]); 7063 if (sc->tq[i] == NULL) { 7064 CH_ERR(sc, "failed to allocate task queue %d\n", i); 7065 return (ENOMEM); 7066 } 7067 taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d", 7068 device_get_nameunit(sc->dev), i); 7069 } 7070 7071 if (!(sc->flags & IS_VF)) { 7072 write_global_rss_key(sc); 7073 t4_intr_enable(sc); 7074 } 7075 return (0); 7076 } 7077 7078 int 7079 adapter_init(struct adapter *sc) 7080 { 7081 int rc; 7082 7083 ASSERT_SYNCHRONIZED_OP(sc); 7084 ADAPTER_LOCK_ASSERT_NOTOWNED(sc); 7085 KASSERT((sc->flags & FULL_INIT_DONE) == 0, 7086 ("%s: FULL_INIT_DONE already", __func__)); 7087 7088 rc = adapter_full_init(sc); 7089 if (rc != 0) 7090 adapter_full_uninit(sc); 7091 else 7092 sc->flags |= FULL_INIT_DONE; 7093 7094 return (rc); 7095 } 7096 7097 /* 7098 * Idempotent. 7099 */ 7100 static void 7101 adapter_full_uninit(struct adapter *sc) 7102 { 7103 int i; 7104 7105 t4_teardown_adapter_queues(sc); 7106 7107 for (i = 0; i < nitems(sc->tq); i++) { 7108 if (sc->tq[i] == NULL) 7109 continue; 7110 taskqueue_free(sc->tq[i]); 7111 sc->tq[i] = NULL; 7112 } 7113 7114 sc->flags &= ~FULL_INIT_DONE; 7115 } 7116 7117 #ifdef RSS 7118 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \ 7119 RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \ 7120 RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \ 7121 RSS_HASHTYPE_RSS_UDP_IPV6) 7122 7123 /* Translates kernel hash types to hardware. */ 7124 static int 7125 hashconfig_to_hashen(int hashconfig) 7126 { 7127 int hashen = 0; 7128 7129 if (hashconfig & RSS_HASHTYPE_RSS_IPV4) 7130 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN; 7131 if (hashconfig & RSS_HASHTYPE_RSS_IPV6) 7132 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN; 7133 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) { 7134 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 7135 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 7136 } 7137 if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) { 7138 hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN | 7139 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 7140 } 7141 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4) 7142 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN; 7143 if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6) 7144 hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN; 7145 7146 return (hashen); 7147 } 7148 7149 /* Translates hardware hash types to kernel. */ 7150 static int 7151 hashen_to_hashconfig(int hashen) 7152 { 7153 int hashconfig = 0; 7154 7155 if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) { 7156 /* 7157 * If UDP hashing was enabled it must have been enabled for 7158 * either IPv4 or IPv6 (inclusive or). Enabling UDP without 7159 * enabling any 4-tuple hash is nonsense configuration. 7160 */ 7161 MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 7162 F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)); 7163 7164 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 7165 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4; 7166 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 7167 hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6; 7168 } 7169 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN) 7170 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4; 7171 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN) 7172 hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6; 7173 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN) 7174 hashconfig |= RSS_HASHTYPE_RSS_IPV4; 7175 if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN) 7176 hashconfig |= RSS_HASHTYPE_RSS_IPV6; 7177 7178 return (hashconfig); 7179 } 7180 #endif 7181 7182 /* 7183 * Idempotent. 7184 */ 7185 static int 7186 vi_full_init(struct vi_info *vi) 7187 { 7188 struct adapter *sc = vi->adapter; 7189 struct sge_rxq *rxq; 7190 int rc, i, j; 7191 #ifdef RSS 7192 int nbuckets = rss_getnumbuckets(); 7193 int hashconfig = rss_gethashconfig(); 7194 int extra; 7195 #endif 7196 7197 ASSERT_SYNCHRONIZED_OP(sc); 7198 7199 /* 7200 * Allocate tx/rx/fl queues for this VI. 7201 */ 7202 rc = t4_setup_vi_queues(vi); 7203 if (rc != 0) 7204 return (rc); 7205 7206 /* 7207 * Setup RSS for this VI. Save a copy of the RSS table for later use. 7208 */ 7209 if (vi->nrxq > vi->rss_size) { 7210 CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); " 7211 "some queues will never receive traffic.\n", vi->nrxq, 7212 vi->rss_size); 7213 } else if (vi->rss_size % vi->nrxq) { 7214 CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); " 7215 "expect uneven traffic distribution.\n", vi->nrxq, 7216 vi->rss_size); 7217 } 7218 #ifdef RSS 7219 if (vi->nrxq != nbuckets) { 7220 CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);" 7221 "performance will be impacted.\n", vi->nrxq, nbuckets); 7222 } 7223 #endif 7224 if (vi->rss == NULL) 7225 vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE, 7226 M_ZERO | M_WAITOK); 7227 for (i = 0; i < vi->rss_size;) { 7228 #ifdef RSS 7229 j = rss_get_indirection_to_bucket(i); 7230 j %= vi->nrxq; 7231 rxq = &sc->sge.rxq[vi->first_rxq + j]; 7232 vi->rss[i++] = rxq->iq.abs_id; 7233 #else 7234 for_each_rxq(vi, j, rxq) { 7235 vi->rss[i++] = rxq->iq.abs_id; 7236 if (i == vi->rss_size) 7237 break; 7238 } 7239 #endif 7240 } 7241 7242 rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size, 7243 vi->rss, vi->rss_size); 7244 if (rc != 0) { 7245 CH_ERR(vi, "rss_config failed: %d\n", rc); 7246 return (rc); 7247 } 7248 7249 #ifdef RSS 7250 vi->hashen = hashconfig_to_hashen(hashconfig); 7251 7252 /* 7253 * We may have had to enable some hashes even though the global config 7254 * wants them disabled. This is a potential problem that must be 7255 * reported to the user. 7256 */ 7257 extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig; 7258 7259 /* 7260 * If we consider only the supported hash types, then the enabled hashes 7261 * are a superset of the requested hashes. In other words, there cannot 7262 * be any supported hash that was requested but not enabled, but there 7263 * can be hashes that were not requested but had to be enabled. 7264 */ 7265 extra &= SUPPORTED_RSS_HASHTYPES; 7266 MPASS((extra & hashconfig) == 0); 7267 7268 if (extra) { 7269 CH_ALERT(vi, 7270 "global RSS config (0x%x) cannot be accommodated.\n", 7271 hashconfig); 7272 } 7273 if (extra & RSS_HASHTYPE_RSS_IPV4) 7274 CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n"); 7275 if (extra & RSS_HASHTYPE_RSS_TCP_IPV4) 7276 CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n"); 7277 if (extra & RSS_HASHTYPE_RSS_IPV6) 7278 CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n"); 7279 if (extra & RSS_HASHTYPE_RSS_TCP_IPV6) 7280 CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n"); 7281 if (extra & RSS_HASHTYPE_RSS_UDP_IPV4) 7282 CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n"); 7283 if (extra & RSS_HASHTYPE_RSS_UDP_IPV6) 7284 CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n"); 7285 #else 7286 vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN | 7287 F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN | 7288 F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN | 7289 F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN; 7290 #endif 7291 rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0], 7292 0, 0); 7293 if (rc != 0) { 7294 CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc); 7295 return (rc); 7296 } 7297 7298 return (0); 7299 } 7300 7301 int 7302 vi_init(struct vi_info *vi) 7303 { 7304 int rc; 7305 7306 ASSERT_SYNCHRONIZED_OP(vi->adapter); 7307 KASSERT((vi->flags & VI_INIT_DONE) == 0, 7308 ("%s: VI_INIT_DONE already", __func__)); 7309 7310 rc = vi_full_init(vi); 7311 if (rc != 0) 7312 vi_full_uninit(vi); 7313 else 7314 vi->flags |= VI_INIT_DONE; 7315 7316 return (rc); 7317 } 7318 7319 /* 7320 * Idempotent. 7321 */ 7322 static void 7323 vi_full_uninit(struct vi_info *vi) 7324 { 7325 7326 if (vi->flags & VI_INIT_DONE) { 7327 quiesce_vi(vi); 7328 free(vi->rss, M_CXGBE); 7329 free(vi->nm_rss, M_CXGBE); 7330 } 7331 7332 t4_teardown_vi_queues(vi); 7333 vi->flags &= ~VI_INIT_DONE; 7334 } 7335 7336 static void 7337 quiesce_txq(struct sge_txq *txq) 7338 { 7339 struct sge_eq *eq = &txq->eq; 7340 struct sge_qstat *spg = (void *)&eq->desc[eq->sidx]; 7341 7342 MPASS(eq->flags & EQ_SW_ALLOCATED); 7343 MPASS(!(eq->flags & EQ_ENABLED)); 7344 7345 /* Wait for the mp_ring to empty. */ 7346 while (!mp_ring_is_idle(txq->r)) { 7347 mp_ring_check_drainage(txq->r, 4096); 7348 pause("rquiesce", 1); 7349 } 7350 MPASS(txq->txp.npkt == 0); 7351 7352 if (eq->flags & EQ_HW_ALLOCATED) { 7353 /* 7354 * Hardware is alive and working normally. Wait for it to 7355 * finish and then wait for the driver to catch up and reclaim 7356 * all descriptors. 7357 */ 7358 while (spg->cidx != htobe16(eq->pidx)) 7359 pause("equiesce", 1); 7360 while (eq->cidx != eq->pidx) 7361 pause("dquiesce", 1); 7362 } else { 7363 /* 7364 * Hardware is unavailable. Discard all pending tx and reclaim 7365 * descriptors directly. 7366 */ 7367 TXQ_LOCK(txq); 7368 while (eq->cidx != eq->pidx) { 7369 struct mbuf *m, *nextpkt; 7370 struct tx_sdesc *txsd; 7371 7372 txsd = &txq->sdesc[eq->cidx]; 7373 for (m = txsd->m; m != NULL; m = nextpkt) { 7374 nextpkt = m->m_nextpkt; 7375 m->m_nextpkt = NULL; 7376 m_freem(m); 7377 } 7378 IDXINCR(eq->cidx, txsd->desc_used, eq->sidx); 7379 } 7380 spg->pidx = spg->cidx = htobe16(eq->cidx); 7381 TXQ_UNLOCK(txq); 7382 } 7383 } 7384 7385 static void 7386 quiesce_wrq(struct sge_wrq *wrq) 7387 { 7388 struct wrqe *wr; 7389 7390 TXQ_LOCK(wrq); 7391 while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) { 7392 STAILQ_REMOVE_HEAD(&wrq->wr_list, link); 7393 #ifdef INVARIANTS 7394 wrq->nwr_pending--; 7395 wrq->ndesc_needed -= howmany(wr->wr_len, EQ_ESIZE); 7396 #endif 7397 free(wr, M_CXGBE); 7398 } 7399 MPASS(wrq->nwr_pending == 0); 7400 MPASS(wrq->ndesc_needed == 0); 7401 wrq->nwr_pending = 0; 7402 wrq->ndesc_needed = 0; 7403 TXQ_UNLOCK(wrq); 7404 } 7405 7406 static void 7407 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl) 7408 { 7409 /* Synchronize with the interrupt handler */ 7410 while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED)) 7411 pause("iqfree", 1); 7412 7413 if (fl != NULL) { 7414 MPASS(iq->flags & IQ_HAS_FL); 7415 7416 mtx_lock(&sc->sfl_lock); 7417 FL_LOCK(fl); 7418 fl->flags |= FL_DOOMED; 7419 FL_UNLOCK(fl); 7420 callout_stop(&sc->sfl_callout); 7421 mtx_unlock(&sc->sfl_lock); 7422 7423 KASSERT((fl->flags & FL_STARVING) == 0, 7424 ("%s: still starving", __func__)); 7425 7426 /* Release all buffers if hardware is no longer available. */ 7427 if (!(iq->flags & IQ_HW_ALLOCATED)) 7428 free_fl_buffers(sc, fl); 7429 } 7430 } 7431 7432 /* 7433 * Wait for all activity on all the queues of the VI to complete. It is assumed 7434 * that no new work is being enqueued by the hardware or the driver. That part 7435 * should be arranged before calling this function. 7436 */ 7437 static void 7438 quiesce_vi(struct vi_info *vi) 7439 { 7440 int i; 7441 struct adapter *sc = vi->adapter; 7442 struct sge_rxq *rxq; 7443 struct sge_txq *txq; 7444 #ifdef TCP_OFFLOAD 7445 struct sge_ofld_rxq *ofld_rxq; 7446 #endif 7447 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7448 struct sge_ofld_txq *ofld_txq; 7449 #endif 7450 7451 if (!(vi->flags & VI_INIT_DONE)) 7452 return; 7453 7454 for_each_txq(vi, i, txq) { 7455 quiesce_txq(txq); 7456 } 7457 7458 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 7459 for_each_ofld_txq(vi, i, ofld_txq) { 7460 quiesce_wrq(&ofld_txq->wrq); 7461 } 7462 #endif 7463 7464 for_each_rxq(vi, i, rxq) { 7465 quiesce_iq_fl(sc, &rxq->iq, &rxq->fl); 7466 } 7467 7468 #ifdef TCP_OFFLOAD 7469 for_each_ofld_rxq(vi, i, ofld_rxq) { 7470 quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl); 7471 } 7472 #endif 7473 } 7474 7475 static int 7476 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid, 7477 driver_intr_t *handler, void *arg, char *name) 7478 { 7479 int rc; 7480 7481 irq->rid = rid; 7482 irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid, 7483 RF_SHAREABLE | RF_ACTIVE); 7484 if (irq->res == NULL) { 7485 device_printf(sc->dev, 7486 "failed to allocate IRQ for rid %d, name %s.\n", rid, name); 7487 return (ENOMEM); 7488 } 7489 7490 rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET, 7491 NULL, handler, arg, &irq->tag); 7492 if (rc != 0) { 7493 device_printf(sc->dev, 7494 "failed to setup interrupt for rid %d, name %s: %d\n", 7495 rid, name, rc); 7496 } else if (name) 7497 bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name); 7498 7499 return (rc); 7500 } 7501 7502 static int 7503 t4_free_irq(struct adapter *sc, struct irq *irq) 7504 { 7505 if (irq->tag) 7506 bus_teardown_intr(sc->dev, irq->res, irq->tag); 7507 if (irq->res) 7508 bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res); 7509 7510 bzero(irq, sizeof(*irq)); 7511 7512 return (0); 7513 } 7514 7515 static void 7516 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf) 7517 { 7518 7519 regs->version = chip_id(sc) | chip_rev(sc) << 10; 7520 t4_get_regs(sc, buf, regs->len); 7521 } 7522 7523 #define A_PL_INDIR_CMD 0x1f8 7524 7525 #define S_PL_AUTOINC 31 7526 #define M_PL_AUTOINC 0x1U 7527 #define V_PL_AUTOINC(x) ((x) << S_PL_AUTOINC) 7528 #define G_PL_AUTOINC(x) (((x) >> S_PL_AUTOINC) & M_PL_AUTOINC) 7529 7530 #define S_PL_VFID 20 7531 #define M_PL_VFID 0xffU 7532 #define V_PL_VFID(x) ((x) << S_PL_VFID) 7533 #define G_PL_VFID(x) (((x) >> S_PL_VFID) & M_PL_VFID) 7534 7535 #define S_PL_ADDR 0 7536 #define M_PL_ADDR 0xfffffU 7537 #define V_PL_ADDR(x) ((x) << S_PL_ADDR) 7538 #define G_PL_ADDR(x) (((x) >> S_PL_ADDR) & M_PL_ADDR) 7539 7540 #define A_PL_INDIR_DATA 0x1fc 7541 7542 static uint64_t 7543 read_vf_stat(struct adapter *sc, u_int vin, int reg) 7544 { 7545 u32 stats[2]; 7546 7547 if (sc->flags & IS_VF) { 7548 stats[0] = t4_read_reg(sc, VF_MPS_REG(reg)); 7549 stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4)); 7550 } else { 7551 mtx_assert(&sc->reg_lock, MA_OWNED); 7552 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | 7553 V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg))); 7554 stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA); 7555 stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA); 7556 } 7557 return (((uint64_t)stats[1]) << 32 | stats[0]); 7558 } 7559 7560 static void 7561 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats) 7562 { 7563 7564 #define GET_STAT(name) \ 7565 read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L) 7566 7567 if (!(sc->flags & IS_VF)) 7568 mtx_lock(&sc->reg_lock); 7569 stats->tx_bcast_bytes = GET_STAT(TX_VF_BCAST_BYTES); 7570 stats->tx_bcast_frames = GET_STAT(TX_VF_BCAST_FRAMES); 7571 stats->tx_mcast_bytes = GET_STAT(TX_VF_MCAST_BYTES); 7572 stats->tx_mcast_frames = GET_STAT(TX_VF_MCAST_FRAMES); 7573 stats->tx_ucast_bytes = GET_STAT(TX_VF_UCAST_BYTES); 7574 stats->tx_ucast_frames = GET_STAT(TX_VF_UCAST_FRAMES); 7575 stats->tx_drop_frames = GET_STAT(TX_VF_DROP_FRAMES); 7576 stats->tx_offload_bytes = GET_STAT(TX_VF_OFFLOAD_BYTES); 7577 stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES); 7578 stats->rx_bcast_bytes = GET_STAT(RX_VF_BCAST_BYTES); 7579 stats->rx_bcast_frames = GET_STAT(RX_VF_BCAST_FRAMES); 7580 stats->rx_mcast_bytes = GET_STAT(RX_VF_MCAST_BYTES); 7581 stats->rx_mcast_frames = GET_STAT(RX_VF_MCAST_FRAMES); 7582 stats->rx_ucast_bytes = GET_STAT(RX_VF_UCAST_BYTES); 7583 stats->rx_ucast_frames = GET_STAT(RX_VF_UCAST_FRAMES); 7584 stats->rx_err_frames = GET_STAT(RX_VF_ERR_FRAMES); 7585 if (!(sc->flags & IS_VF)) 7586 mtx_unlock(&sc->reg_lock); 7587 7588 #undef GET_STAT 7589 } 7590 7591 static void 7592 t4_clr_vi_stats(struct adapter *sc, u_int vin) 7593 { 7594 int reg; 7595 7596 t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) | 7597 V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L))); 7598 for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L; 7599 reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4) 7600 t4_write_reg(sc, A_PL_INDIR_DATA, 0); 7601 } 7602 7603 static void 7604 vi_refresh_stats(struct vi_info *vi) 7605 { 7606 struct timeval tv; 7607 const struct timeval interval = {0, 250000}; /* 250ms */ 7608 7609 mtx_assert(&vi->tick_mtx, MA_OWNED); 7610 7611 if (vi->flags & VI_SKIP_STATS) 7612 return; 7613 7614 getmicrotime(&tv); 7615 timevalsub(&tv, &interval); 7616 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7617 return; 7618 7619 t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats); 7620 getmicrotime(&vi->last_refreshed); 7621 } 7622 7623 static void 7624 cxgbe_refresh_stats(struct vi_info *vi) 7625 { 7626 u_int i, v, tnl_cong_drops, chan_map; 7627 struct timeval tv; 7628 const struct timeval interval = {0, 250000}; /* 250ms */ 7629 struct port_info *pi; 7630 struct adapter *sc; 7631 7632 mtx_assert(&vi->tick_mtx, MA_OWNED); 7633 7634 if (vi->flags & VI_SKIP_STATS) 7635 return; 7636 7637 getmicrotime(&tv); 7638 timevalsub(&tv, &interval); 7639 if (timevalcmp(&tv, &vi->last_refreshed, <)) 7640 return; 7641 7642 pi = vi->pi; 7643 sc = vi->adapter; 7644 tnl_cong_drops = 0; 7645 t4_get_port_stats(sc, pi->hw_port, &pi->stats); 7646 chan_map = pi->rx_e_chan_map; 7647 while (chan_map) { 7648 i = ffs(chan_map) - 1; 7649 mtx_lock(&sc->reg_lock); 7650 t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1, 7651 A_TP_MIB_TNL_CNG_DROP_0 + i); 7652 mtx_unlock(&sc->reg_lock); 7653 tnl_cong_drops += v; 7654 chan_map &= ~(1 << i); 7655 } 7656 pi->tnl_cong_drops = tnl_cong_drops; 7657 getmicrotime(&vi->last_refreshed); 7658 } 7659 7660 static void 7661 cxgbe_tick(void *arg) 7662 { 7663 struct vi_info *vi = arg; 7664 7665 MPASS(IS_MAIN_VI(vi)); 7666 mtx_assert(&vi->tick_mtx, MA_OWNED); 7667 7668 cxgbe_refresh_stats(vi); 7669 callout_schedule(&vi->tick, hz); 7670 } 7671 7672 static void 7673 vi_tick(void *arg) 7674 { 7675 struct vi_info *vi = arg; 7676 7677 mtx_assert(&vi->tick_mtx, MA_OWNED); 7678 7679 vi_refresh_stats(vi); 7680 callout_schedule(&vi->tick, hz); 7681 } 7682 7683 /* CIM inbound queues */ 7684 static const char *t4_ibq[CIM_NUM_IBQ] = { 7685 "ibq_tp0", "ibq_tp1", "ibq_ulp", "ibq_sge0", "ibq_sge1", "ibq_ncsi" 7686 }; 7687 static const char *t7_ibq[CIM_NUM_IBQ_T7] = { 7688 "ibq_tp0", "ibq_tp1", "ibq_tp2", "ibq_tp3", "ibq_ulp", "ibq_sge0", 7689 "ibq_sge1", "ibq_ncsi", NULL, "ibq_ipc1", "ibq_ipc2", "ibq_ipc3", 7690 "ibq_ipc4", "ibq_ipc5", "ibq_ipc6", "ibq_ipc7" 7691 }; 7692 static const char *t7_ibq_sec[] = { 7693 "ibq_tp0", "ibq_tp1", "ibq_tp2", "ibq_tp3", "ibq_ulp", "ibq_sge0", 7694 NULL, NULL, NULL, "ibq_ipc0" 7695 }; 7696 7697 /* CIM outbound queues */ 7698 static const char *t4_obq[CIM_NUM_OBQ_T5] = { 7699 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", "obq_ncsi", 7700 "obq_sge_rx_q0", "obq_sge_rx_q1" /* These two are T5/T6 only */ 7701 }; 7702 static const char *t7_obq[CIM_NUM_OBQ_T7] = { 7703 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", "obq_ncsi", 7704 "obq_sge_rx_q0", NULL, NULL, "obq_ipc1", "obq_ipc2", "obq_ipc3", 7705 "obq_ipc4", "obq_ipc5", "obq_ipc6", "obq_ipc7" 7706 }; 7707 static const char *t7_obq_sec[] = { 7708 "obq_ulp0", "obq_ulp1", "obq_ulp2", "obq_ulp3", "obq_sge", NULL, 7709 "obq_sge_rx_q0", NULL, NULL, "obq_ipc0" 7710 }; 7711 7712 static void 7713 cim_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx, 7714 struct sysctl_oid_list *c0) 7715 { 7716 struct sysctl_oid *oid; 7717 struct sysctl_oid_list *children1; 7718 int i, j, qcount; 7719 char s[16]; 7720 const char **qname; 7721 7722 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "cim", 7723 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CIM block"); 7724 c0 = SYSCTL_CHILDREN(oid); 7725 7726 SYSCTL_ADD_U8(ctx, c0, OID_AUTO, "ncores", CTLFLAG_RD, NULL, 7727 sc->params.ncores, "# of active CIM cores"); 7728 7729 for (i = 0; i < sc->params.ncores; i++) { 7730 snprintf(s, sizeof(s), "%u", i); 7731 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, s, 7732 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "CIM core"); 7733 children1 = SYSCTL_CHILDREN(oid); 7734 7735 /* 7736 * CTLFLAG_SKIP because the misc.devlog sysctl already displays 7737 * the log for all cores. Use this sysctl to get the log for a 7738 * particular core only. 7739 */ 7740 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "devlog", 7741 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE | CTLFLAG_SKIP, 7742 sc, i, sysctl_devlog, "A", "firmware's device log"); 7743 7744 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "loadavg", 7745 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i, 7746 sysctl_loadavg, "A", 7747 "microprocessor load averages (select firmwares only)"); 7748 7749 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "qcfg", 7750 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i, 7751 chip_id(sc) > CHELSIO_T6 ? sysctl_cim_qcfg_t7 : sysctl_cim_qcfg, 7752 "A", "Queue configuration"); 7753 7754 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "la", 7755 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i, 7756 sysctl_cim_la, "A", "Logic analyzer"); 7757 7758 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "ma_la", 7759 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i, 7760 sysctl_cim_ma_la, "A", "CIM MA logic analyzer"); 7761 7762 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, "pif_la", 7763 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, i, 7764 sysctl_cim_pif_la, "A", "CIM PIF logic analyzer"); 7765 7766 /* IBQs */ 7767 switch (chip_id(sc)) { 7768 case CHELSIO_T4: 7769 case CHELSIO_T5: 7770 case CHELSIO_T6: 7771 qname = &t4_ibq[0]; 7772 qcount = nitems(t4_ibq); 7773 break; 7774 case CHELSIO_T7: 7775 default: 7776 if (i == 0) { 7777 qname = &t7_ibq[0]; 7778 qcount = nitems(t7_ibq); 7779 } else { 7780 qname = &t7_ibq_sec[0]; 7781 qcount = nitems(t7_ibq_sec); 7782 } 7783 break; 7784 } 7785 MPASS(qcount <= sc->chip_params->cim_num_ibq); 7786 for (j = 0; j < qcount; j++) { 7787 if (qname[j] == NULL) 7788 continue; 7789 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, qname[j], 7790 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7791 (i << 16) | j, sysctl_cim_ibq, "A", NULL); 7792 } 7793 7794 /* OBQs */ 7795 switch (chip_id(sc)) { 7796 case CHELSIO_T4: 7797 qname = t4_obq; 7798 qcount = CIM_NUM_OBQ; 7799 break; 7800 case CHELSIO_T5: 7801 case CHELSIO_T6: 7802 qname = t4_obq; 7803 qcount = nitems(t4_obq); 7804 break; 7805 case CHELSIO_T7: 7806 default: 7807 if (i == 0) { 7808 qname = t7_obq; 7809 qcount = nitems(t7_obq); 7810 } else { 7811 qname = t7_obq_sec; 7812 qcount = nitems(t7_obq_sec); 7813 } 7814 break; 7815 } 7816 MPASS(qcount <= sc->chip_params->cim_num_obq); 7817 for (j = 0; j < qcount; j++) { 7818 if (qname[j] == NULL) 7819 continue; 7820 SYSCTL_ADD_PROC(ctx, children1, OID_AUTO, qname[j], 7821 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 7822 (i << 16) | j, sysctl_cim_obq, "A", NULL); 7823 } 7824 } 7825 } 7826 7827 /* 7828 * Should match fw_caps_config_<foo> enums in t4fw_interface.h 7829 */ 7830 static char *caps_decoder[] = { 7831 "\20\001IPMI\002NCSI", /* 0: NBM */ 7832 "\20\001PPP\002QFC\003DCBX", /* 1: link */ 7833 "\20\001INGRESS\002EGRESS", /* 2: switch */ 7834 "\20\001NIC\002VM\003IDS\004UM\005UM_ISGL" /* 3: NIC */ 7835 "\006HASHFILTER\007ETHOFLD", 7836 "\20\001TOE\002SENDPATH", /* 4: TOE */ 7837 "\20\001RDDP\002RDMAC\003ROCEv2", /* 5: RDMA */ 7838 "\20\001INITIATOR_PDU\002TARGET_PDU" /* 6: iSCSI */ 7839 "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD" 7840 "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD" 7841 "\007T10DIF" 7842 "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD", 7843 "\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE" /* 7: Crypto */ 7844 "\004TLS_HW,\005TOE_IPSEC", 7845 "\20\001INITIATOR\002TARGET\003CTRL_OFLD" /* 8: FCoE */ 7846 "\004PO_INITIATOR\005PO_TARGET", 7847 "\20\001NVMe_TCP", /* 9: NVMe */ 7848 }; 7849 7850 void 7851 t4_sysctls(struct adapter *sc) 7852 { 7853 struct sysctl_ctx_list *ctx = &sc->ctx; 7854 struct sysctl_oid *oid; 7855 struct sysctl_oid_list *children, *c0; 7856 static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"}; 7857 7858 /* 7859 * dev.t4nex.X. 7860 */ 7861 oid = device_get_sysctl_tree(sc->dev); 7862 c0 = children = SYSCTL_CHILDREN(oid); 7863 7864 sc->sc_do_rxcopy = 1; 7865 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW, 7866 &sc->sc_do_rxcopy, 1, "Do RX copy of small frames"); 7867 7868 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL, 7869 sc->params.nports, "# of ports"); 7870 7871 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells", 7872 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells, 7873 (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A", 7874 "available doorbells"); 7875 7876 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL, 7877 sc->params.vpd.cclk, "core clock frequency (in KHz)"); 7878 7879 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers", 7880 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7881 sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val), 7882 sysctl_int_array, "A", "interrupt holdoff timer values (us)"); 7883 7884 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts", 7885 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 7886 sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val), 7887 sysctl_int_array, "A", "interrupt holdoff packet counter values"); 7888 7889 t4_sge_sysctls(sc, ctx, children); 7890 7891 sc->lro_timeout = 100; 7892 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW, 7893 &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)"); 7894 7895 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW, 7896 &sc->debug_flags, 0, "flags to enable runtime debugging"); 7897 7898 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version", 7899 CTLFLAG_RD, sc->tp_version, 0, "TP microcode version"); 7900 7901 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version", 7902 CTLFLAG_RD, sc->fw_version, 0, "firmware version"); 7903 7904 if (sc->flags & IS_VF) 7905 return; 7906 7907 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD, 7908 NULL, chip_rev(sc), "chip hardware revision"); 7909 7910 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn", 7911 CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number"); 7912 7913 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn", 7914 CTLFLAG_RD, sc->params.vpd.pn, 0, "part number"); 7915 7916 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec", 7917 CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change"); 7918 7919 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version", 7920 CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version"); 7921 7922 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na", 7923 CTLFLAG_RD, sc->params.vpd.na, 0, "network address"); 7924 7925 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD, 7926 sc->er_version, 0, "expansion ROM version"); 7927 7928 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD, 7929 sc->bs_version, 0, "bootstrap firmware version"); 7930 7931 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD, 7932 NULL, sc->params.scfg_vers, "serial config version"); 7933 7934 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD, 7935 NULL, sc->params.vpd_vers, "VPD version"); 7936 7937 SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf", 7938 CTLFLAG_RD, sc->cfg_file, 0, "configuration file"); 7939 7940 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL, 7941 sc->cfcsum, "config file checksum"); 7942 7943 #define SYSCTL_CAP(name, n, text) \ 7944 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \ 7945 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \ 7946 (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \ 7947 "available " text " capabilities") 7948 7949 SYSCTL_CAP(nbmcaps, 0, "NBM"); 7950 SYSCTL_CAP(linkcaps, 1, "link"); 7951 SYSCTL_CAP(switchcaps, 2, "switch"); 7952 SYSCTL_CAP(nvmecaps, 9, "NVMe"); 7953 SYSCTL_CAP(niccaps, 3, "NIC"); 7954 SYSCTL_CAP(toecaps, 4, "TCP offload"); 7955 SYSCTL_CAP(rdmacaps, 5, "RDMA"); 7956 SYSCTL_CAP(iscsicaps, 6, "iSCSI"); 7957 SYSCTL_CAP(cryptocaps, 7, "crypto"); 7958 SYSCTL_CAP(fcoecaps, 8, "FCoE"); 7959 #undef SYSCTL_CAP 7960 7961 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD, 7962 NULL, sc->tids.nftids, "number of filters"); 7963 7964 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 7965 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 7966 sysctl_temperature, "I", "chip temperature (in Celsius)"); 7967 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor", 7968 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 7969 sysctl_reset_sensor, "I", "reset the chip's temperature sensor."); 7970 7971 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd", 7972 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd, 7973 "I", "core Vdd (in mV)"); 7974 7975 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus", 7976 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS, 7977 sysctl_cpus, "A", "local CPUs"); 7978 7979 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus", 7980 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS, 7981 sysctl_cpus, "A", "preferred CPUs for interrupts"); 7982 7983 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW, 7984 &sc->swintr, 0, "software triggered interrupts"); 7985 7986 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset", 7987 CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I", 7988 "1 = reset adapter, 0 = zero reset counter"); 7989 7990 /* 7991 * dev.t4nex.X.misc. Marked CTLFLAG_SKIP to avoid information overload. 7992 */ 7993 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc", 7994 CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL, 7995 "logs and miscellaneous information"); 7996 children = SYSCTL_CHILDREN(oid); 7997 7998 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl", 7999 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8000 sysctl_cctrl, "A", "congestion control"); 8001 8002 cim_sysctls(sc, ctx, children); 8003 8004 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats", 8005 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8006 sysctl_cpl_stats, "A", "CPL statistics"); 8007 8008 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats", 8009 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8010 sysctl_ddp_stats, "A", "non-TCP DDP statistics"); 8011 8012 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats", 8013 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8014 sysctl_tid_stats, "A", "tid stats"); 8015 8016 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog", 8017 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, -1, 8018 sysctl_devlog, "A", "firmware's device log (all cores)"); 8019 8020 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats", 8021 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8022 sysctl_fcoe_stats, "A", "FCoE statistics"); 8023 8024 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched", 8025 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8026 sysctl_hw_sched, "A", "hardware scheduler "); 8027 8028 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t", 8029 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8030 sysctl_l2t, "A", "hardware L2 table"); 8031 8032 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt", 8033 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8034 sysctl_smt, "A", "hardware source MAC table"); 8035 8036 #ifdef INET6 8037 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip", 8038 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8039 sysctl_clip, "A", "active CLIP table entries"); 8040 #endif 8041 8042 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats", 8043 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8044 sysctl_lb_stats, "A", "loopback statistics"); 8045 8046 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo", 8047 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8048 sysctl_meminfo, "A", "memory regions"); 8049 8050 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam", 8051 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8052 chip_id(sc) >= CHELSIO_T7 ? sysctl_mps_tcam_t7 : 8053 (chip_id(sc) >= CHELSIO_T6 ? sysctl_mps_tcam_t6 : sysctl_mps_tcam), 8054 "A", "MPS TCAM entries"); 8055 8056 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus", 8057 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8058 sysctl_path_mtus, "A", "path MTUs"); 8059 8060 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats", 8061 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8062 sysctl_pm_stats, "A", "PM statistics"); 8063 8064 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats", 8065 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8066 sysctl_rdma_stats, "A", "RDMA statistics"); 8067 8068 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats", 8069 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8070 sysctl_tcp_stats, "A", "TCP statistics"); 8071 8072 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids", 8073 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8074 sysctl_tids, "A", "TID information"); 8075 8076 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats", 8077 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8078 sysctl_tp_err_stats, "A", "TP error statistics"); 8079 8080 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats", 8081 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8082 sysctl_tnl_stats, "A", "TP tunnel statistics"); 8083 8084 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask", 8085 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, 8086 sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask"); 8087 8088 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la", 8089 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8090 sysctl_tp_la, "A", "TP logic analyzer"); 8091 8092 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate", 8093 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8094 sysctl_tx_rate, "A", "Tx rate"); 8095 8096 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la", 8097 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8098 sysctl_ulprx_la, "A", "ULPRX logic analyzer"); 8099 8100 if (chip_id(sc) >= CHELSIO_T5) { 8101 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats", 8102 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8103 sysctl_wcwr_stats, "A", "write combined work requests"); 8104 } 8105 8106 #ifdef KERN_TLS 8107 if (is_ktls(sc)) { 8108 /* 8109 * dev.t4nex.0.tls. 8110 */ 8111 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls", 8112 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters"); 8113 children = SYSCTL_CHILDREN(oid); 8114 8115 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys", 8116 CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS " 8117 "keys in work requests (1) or attempt to store TLS keys " 8118 "in card memory."); 8119 8120 if (is_t6(sc)) 8121 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs", 8122 CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to " 8123 "combine TCB field updates with TLS record work " 8124 "requests."); 8125 else { 8126 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "short_records", 8127 CTLFLAG_RW, &sc->tlst.short_records, 0, 8128 "Use cipher-only mode for short records."); 8129 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "partial_ghash", 8130 CTLFLAG_RW, &sc->tlst.partial_ghash, 0, 8131 "Use partial GHASH for AES-GCM records."); 8132 } 8133 } 8134 #endif 8135 8136 #ifdef TCP_OFFLOAD 8137 if (is_offload(sc)) { 8138 int i; 8139 char s[4]; 8140 8141 /* 8142 * dev.t4nex.X.toe. 8143 */ 8144 oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe", 8145 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters"); 8146 children = SYSCTL_CHILDREN(oid); 8147 8148 sc->tt.cong_algorithm = -1; 8149 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm", 8150 CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control " 8151 "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, " 8152 "3 = highspeed)"); 8153 8154 sc->tt.sndbuf = -1; 8155 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW, 8156 &sc->tt.sndbuf, 0, "hardware send buffer"); 8157 8158 sc->tt.ddp = 0; 8159 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp", 8160 CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, ""); 8161 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW, 8162 &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)"); 8163 8164 sc->tt.rx_coalesce = -1; 8165 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce", 8166 CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing"); 8167 8168 sc->tt.tls = 1; 8169 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT | 8170 CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I", 8171 "Inline TLS allowed"); 8172 8173 sc->tt.tx_align = -1; 8174 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align", 8175 CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload"); 8176 8177 sc->tt.tx_zcopy = 0; 8178 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy", 8179 CTLFLAG_RW, &sc->tt.tx_zcopy, 0, 8180 "Enable zero-copy aio_write(2)"); 8181 8182 sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading; 8183 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8184 "cop_managed_offloading", CTLFLAG_RW, 8185 &sc->tt.cop_managed_offloading, 0, 8186 "COP (Connection Offload Policy) controls all TOE offload"); 8187 8188 sc->tt.autorcvbuf_inc = 16 * 1024; 8189 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc", 8190 CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0, 8191 "autorcvbuf increment"); 8192 8193 sc->tt.update_hc_on_pmtu_change = 1; 8194 SYSCTL_ADD_INT(ctx, children, OID_AUTO, 8195 "update_hc_on_pmtu_change", CTLFLAG_RW, 8196 &sc->tt.update_hc_on_pmtu_change, 0, 8197 "Update hostcache entry if the PMTU changes"); 8198 8199 sc->tt.iso = 1; 8200 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW, 8201 &sc->tt.iso, 0, "Enable iSCSI segmentation offload"); 8202 8203 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick", 8204 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8205 sysctl_tp_tick, "A", "TP timer tick (us)"); 8206 8207 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick", 8208 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1, 8209 sysctl_tp_tick, "A", "TCP timestamp tick (us)"); 8210 8211 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick", 8212 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2, 8213 sysctl_tp_tick, "A", "DACK tick (us)"); 8214 8215 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer", 8216 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, 8217 sysctl_tp_dack_timer, "IU", "DACK timer (us)"); 8218 8219 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min", 8220 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8221 A_TP_RXT_MIN, sysctl_tp_timer, "LU", 8222 "Minimum retransmit interval (us)"); 8223 8224 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max", 8225 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8226 A_TP_RXT_MAX, sysctl_tp_timer, "LU", 8227 "Maximum retransmit interval (us)"); 8228 8229 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min", 8230 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8231 A_TP_PERS_MIN, sysctl_tp_timer, "LU", 8232 "Persist timer min (us)"); 8233 8234 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max", 8235 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8236 A_TP_PERS_MAX, sysctl_tp_timer, "LU", 8237 "Persist timer max (us)"); 8238 8239 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle", 8240 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8241 A_TP_KEEP_IDLE, sysctl_tp_timer, "LU", 8242 "Keepalive idle timer (us)"); 8243 8244 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval", 8245 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8246 A_TP_KEEP_INTVL, sysctl_tp_timer, "LU", 8247 "Keepalive interval timer (us)"); 8248 8249 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt", 8250 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8251 A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)"); 8252 8253 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer", 8254 CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8255 A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU", 8256 "FINWAIT2 timer (us)"); 8257 8258 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count", 8259 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8260 S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU", 8261 "Number of SYN retransmissions before abort"); 8262 8263 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count", 8264 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8265 S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU", 8266 "Number of retransmissions before abort"); 8267 8268 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count", 8269 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8270 S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU", 8271 "Number of keepalive probes before abort"); 8272 8273 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff", 8274 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 8275 "TOE retransmit backoffs"); 8276 children = SYSCTL_CHILDREN(oid); 8277 for (i = 0; i < 16; i++) { 8278 snprintf(s, sizeof(s), "%u", i); 8279 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s, 8280 CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8281 i, sysctl_tp_backoff, "IU", 8282 "TOE retransmit backoff"); 8283 } 8284 } 8285 #endif 8286 } 8287 8288 void 8289 vi_sysctls(struct vi_info *vi) 8290 { 8291 struct sysctl_ctx_list *ctx = &vi->ctx; 8292 struct sysctl_oid *oid; 8293 struct sysctl_oid_list *children; 8294 8295 /* 8296 * dev.v?(cxgbe|cxl).X. 8297 */ 8298 oid = device_get_sysctl_tree(vi->dev); 8299 children = SYSCTL_CHILDREN(oid); 8300 8301 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL, 8302 vi->viid, "VI identifer"); 8303 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD, 8304 &vi->nrxq, 0, "# of rx queues"); 8305 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD, 8306 &vi->ntxq, 0, "# of tx queues"); 8307 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD, 8308 &vi->first_rxq, 0, "index of first rx queue"); 8309 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD, 8310 &vi->first_txq, 0, "index of first tx queue"); 8311 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL, 8312 vi->rss_base, "start of RSS indirection table"); 8313 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL, 8314 vi->rss_size, "size of RSS indirection table"); 8315 8316 if (IS_MAIN_VI(vi)) { 8317 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq", 8318 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8319 sysctl_noflowq, "IU", 8320 "Reserve queue 0 for non-flowid packets"); 8321 } 8322 8323 if (vi->adapter->flags & IS_VF) { 8324 MPASS(vi->flags & TX_USES_VM_WR); 8325 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD, 8326 NULL, 1, "use VM work requests for transmit"); 8327 } else { 8328 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr", 8329 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8330 sysctl_tx_vm_wr, "I", "use VM work requestes for transmit"); 8331 } 8332 8333 #ifdef TCP_OFFLOAD 8334 if (vi->nofldrxq != 0) { 8335 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD, 8336 &vi->nofldrxq, 0, 8337 "# of rx queues for offloaded TCP connections"); 8338 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq", 8339 CTLFLAG_RD, &vi->first_ofld_rxq, 0, 8340 "index of first TOE rx queue"); 8341 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld", 8342 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8343 sysctl_holdoff_tmr_idx_ofld, "I", 8344 "holdoff timer index for TOE queues"); 8345 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld", 8346 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8347 sysctl_holdoff_pktc_idx_ofld, "I", 8348 "holdoff packet counter index for TOE queues"); 8349 } 8350 #endif 8351 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 8352 if (vi->nofldtxq != 0) { 8353 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD, 8354 &vi->nofldtxq, 0, 8355 "# of tx queues for TOE/ETHOFLD"); 8356 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq", 8357 CTLFLAG_RD, &vi->first_ofld_txq, 0, 8358 "index of first TOE/ETHOFLD tx queue"); 8359 } 8360 #endif 8361 #ifdef DEV_NETMAP 8362 if (vi->nnmrxq != 0) { 8363 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD, 8364 &vi->nnmrxq, 0, "# of netmap rx queues"); 8365 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD, 8366 &vi->nnmtxq, 0, "# of netmap tx queues"); 8367 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq", 8368 CTLFLAG_RD, &vi->first_nm_rxq, 0, 8369 "index of first netmap rx queue"); 8370 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq", 8371 CTLFLAG_RD, &vi->first_nm_txq, 0, 8372 "index of first netmap tx queue"); 8373 } 8374 #endif 8375 8376 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx", 8377 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8378 sysctl_holdoff_tmr_idx, "I", "holdoff timer index"); 8379 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx", 8380 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8381 sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index"); 8382 8383 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq", 8384 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8385 sysctl_qsize_rxq, "I", "rx queue size"); 8386 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq", 8387 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0, 8388 sysctl_qsize_txq, "I", "tx queue size"); 8389 } 8390 8391 static void 8392 cxgbe_sysctls(struct port_info *pi) 8393 { 8394 struct sysctl_ctx_list *ctx = &pi->ctx; 8395 struct sysctl_oid *oid; 8396 struct sysctl_oid_list *children, *children2; 8397 struct adapter *sc = pi->adapter; 8398 int i; 8399 char name[16]; 8400 static char *tc_flags = {"\20\1USER"}; 8401 8402 /* 8403 * dev.cxgbe.X. 8404 */ 8405 oid = device_get_sysctl_tree(pi->dev); 8406 children = SYSCTL_CHILDREN(oid); 8407 8408 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc", 8409 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 8410 sysctl_linkdnrc, "A", "reason why link is down"); 8411 if (pi->port_type == FW_PORT_TYPE_BT_XAUI) { 8412 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature", 8413 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0, 8414 sysctl_btphy, "I", "PHY temperature (in Celsius)"); 8415 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version", 8416 CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1, 8417 sysctl_btphy, "I", "PHY firmware version"); 8418 } 8419 8420 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings", 8421 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8422 sysctl_pause_settings, "A", 8423 "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)"); 8424 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec", 8425 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A", 8426 "FEC in use on the link"); 8427 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec", 8428 CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8429 sysctl_requested_fec, "A", 8430 "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)"); 8431 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec", 8432 CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A", 8433 "FEC recommended by the cable/transceiver"); 8434 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg", 8435 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8436 sysctl_autoneg, "I", 8437 "autonegotiation (-1 = not supported)"); 8438 SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec", 8439 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0, 8440 sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config"); 8441 8442 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD, 8443 &pi->link_cfg.requested_caps, 0, "L1 config requested by driver"); 8444 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD, 8445 &pi->link_cfg.pcaps, 0, "port capabilities"); 8446 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD, 8447 &pi->link_cfg.acaps, 0, "advertised capabilities"); 8448 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD, 8449 &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities"); 8450 8451 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL, 8452 port_top_speed(pi), "max speed (in Gbps)"); 8453 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL, 8454 pi->mps_bg_map, "MPS buffer group map"); 8455 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD, 8456 NULL, pi->rx_e_chan_map, "TP rx e-channel map"); 8457 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_chan", CTLFLAG_RD, NULL, 8458 pi->tx_chan, "TP tx c-channel"); 8459 SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_chan", CTLFLAG_RD, NULL, 8460 pi->rx_chan, "TP rx c-channel"); 8461 8462 if (sc->flags & IS_VF) 8463 return; 8464 8465 /* 8466 * dev.(cxgbe|cxl).X.tc. 8467 */ 8468 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc", 8469 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 8470 "Tx scheduler traffic classes (cl_rl)"); 8471 children2 = SYSCTL_CHILDREN(oid); 8472 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize", 8473 CTLFLAG_RW, &pi->sched_params->pktsize, 0, 8474 "pktsize for per-flow cl-rl (0 means up to the driver )"); 8475 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize", 8476 CTLFLAG_RW, &pi->sched_params->burstsize, 0, 8477 "burstsize for per-flow cl-rl (0 means up to the driver)"); 8478 for (i = 0; i < sc->params.nsched_cls; i++) { 8479 struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i]; 8480 8481 snprintf(name, sizeof(name), "%d", i); 8482 children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx, 8483 SYSCTL_CHILDREN(oid), OID_AUTO, name, 8484 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class")); 8485 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state", 8486 CTLFLAG_RD, &tc->state, 0, "current state"); 8487 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags", 8488 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags, 8489 (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags"); 8490 SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount", 8491 CTLFLAG_RD, &tc->refcount, 0, "references to this class"); 8492 SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params", 8493 CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 8494 (pi->port_id << 16) | i, sysctl_tc_params, "A", 8495 "traffic class parameters"); 8496 } 8497 8498 /* 8499 * dev.cxgbe.X.stats. 8500 */ 8501 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", 8502 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics"); 8503 children = SYSCTL_CHILDREN(oid); 8504 SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD, 8505 &pi->tx_parse_error, 0, 8506 "# of tx packets with invalid length or # of segments"); 8507 8508 #define T4_LBSTAT(name, stat, desc) do { \ 8509 if (sc->params.tp.lb_mode) { \ 8510 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 8511 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, \ 8512 A_MPS_PORT_STAT_##stat##_L, \ 8513 sysctl_handle_t4_portstat64, "QU", desc); \ 8514 } else { \ 8515 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 8516 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \ 8517 t4_port_reg(sc, pi->tx_chan, A_MPS_PORT_STAT_##stat##_L), \ 8518 sysctl_handle_t4_reg64, "QU", desc); \ 8519 } \ 8520 } while (0) 8521 8522 T4_LBSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames"); 8523 T4_LBSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames"); 8524 T4_LBSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames"); 8525 T4_LBSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames"); 8526 T4_LBSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames"); 8527 T4_LBSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames"); 8528 T4_LBSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range"); 8529 T4_LBSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range"); 8530 T4_LBSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range"); 8531 T4_LBSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range"); 8532 T4_LBSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range"); 8533 T4_LBSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range"); 8534 T4_LBSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range"); 8535 T4_LBSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames"); 8536 T4_LBSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted"); 8537 T4_LBSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted"); 8538 T4_LBSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted"); 8539 T4_LBSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted"); 8540 T4_LBSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted"); 8541 T4_LBSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted"); 8542 T4_LBSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted"); 8543 T4_LBSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted"); 8544 T4_LBSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted"); 8545 8546 T4_LBSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames"); 8547 T4_LBSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames"); 8548 T4_LBSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames"); 8549 T4_LBSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames"); 8550 T4_LBSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames"); 8551 T4_LBSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU"); 8552 T4_LBSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames"); 8553 if (is_t6(sc)) { 8554 /* Read from port_stats and may be stale by up to 1s */ 8555 SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "rx_fcs_err", 8556 CTLFLAG_RD, &pi->stats.rx_fcs_err, 8557 "# of frames received with bad FCS since last link up"); 8558 } else { 8559 T4_LBSTAT(rx_fcs_err, RX_PORT_CRC_ERROR, 8560 "# of frames received with bad FCS"); 8561 } 8562 T4_LBSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error"); 8563 T4_LBSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors"); 8564 T4_LBSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received"); 8565 T4_LBSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range"); 8566 T4_LBSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range"); 8567 T4_LBSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range"); 8568 T4_LBSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range"); 8569 T4_LBSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range"); 8570 T4_LBSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range"); 8571 T4_LBSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range"); 8572 T4_LBSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received"); 8573 T4_LBSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received"); 8574 T4_LBSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received"); 8575 T4_LBSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received"); 8576 T4_LBSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received"); 8577 T4_LBSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received"); 8578 T4_LBSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received"); 8579 T4_LBSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received"); 8580 T4_LBSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received"); 8581 #undef T4_LBSTAT 8582 8583 #define T4_REGSTAT(name, stat, desc) do { \ 8584 SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \ 8585 CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \ 8586 A_MPS_STAT_##stat##_L, sysctl_handle_t4_reg64, "QU", desc); \ 8587 } while (0) 8588 8589 if (pi->mps_bg_map & 1) { 8590 T4_REGSTAT(rx_ovflow0, RX_BG_0_MAC_DROP_FRAME, 8591 "# drops due to buffer-group 0 overflows"); 8592 T4_REGSTAT(rx_trunc0, RX_BG_0_MAC_TRUNC_FRAME, 8593 "# of buffer-group 0 truncated packets"); 8594 } 8595 if (pi->mps_bg_map & 2) { 8596 T4_REGSTAT(rx_ovflow1, RX_BG_1_MAC_DROP_FRAME, 8597 "# drops due to buffer-group 1 overflows"); 8598 T4_REGSTAT(rx_trunc1, RX_BG_1_MAC_TRUNC_FRAME, 8599 "# of buffer-group 1 truncated packets"); 8600 } 8601 if (pi->mps_bg_map & 4) { 8602 T4_REGSTAT(rx_ovflow2, RX_BG_2_MAC_DROP_FRAME, 8603 "# drops due to buffer-group 2 overflows"); 8604 T4_REGSTAT(rx_trunc2, RX_BG_2_MAC_TRUNC_FRAME, 8605 "# of buffer-group 2 truncated packets"); 8606 } 8607 if (pi->mps_bg_map & 8) { 8608 T4_REGSTAT(rx_ovflow3, RX_BG_3_MAC_DROP_FRAME, 8609 "# drops due to buffer-group 3 overflows"); 8610 T4_REGSTAT(rx_trunc3, RX_BG_3_MAC_TRUNC_FRAME, 8611 "# of buffer-group 3 truncated packets"); 8612 } 8613 #undef T4_REGSTAT 8614 } 8615 8616 static int 8617 sysctl_int_array(SYSCTL_HANDLER_ARGS) 8618 { 8619 int rc, *i, space = 0; 8620 struct sbuf sb; 8621 8622 sbuf_new_for_sysctl(&sb, NULL, 64, req); 8623 for (i = arg1; arg2; arg2 -= sizeof(int), i++) { 8624 if (space) 8625 sbuf_printf(&sb, " "); 8626 sbuf_printf(&sb, "%d", *i); 8627 space = 1; 8628 } 8629 rc = sbuf_finish(&sb); 8630 sbuf_delete(&sb); 8631 return (rc); 8632 } 8633 8634 static int 8635 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS) 8636 { 8637 int rc; 8638 struct sbuf *sb; 8639 8640 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8641 if (sb == NULL) 8642 return (ENOMEM); 8643 8644 sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1); 8645 rc = sbuf_finish(sb); 8646 sbuf_delete(sb); 8647 8648 return (rc); 8649 } 8650 8651 static int 8652 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS) 8653 { 8654 int rc; 8655 struct sbuf *sb; 8656 8657 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8658 if (sb == NULL) 8659 return (ENOMEM); 8660 8661 sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1); 8662 rc = sbuf_finish(sb); 8663 sbuf_delete(sb); 8664 8665 return (rc); 8666 } 8667 8668 static int 8669 sysctl_btphy(SYSCTL_HANDLER_ARGS) 8670 { 8671 struct port_info *pi = arg1; 8672 int op = arg2; 8673 struct adapter *sc = pi->adapter; 8674 u_int v; 8675 int rc; 8676 8677 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt"); 8678 if (rc) 8679 return (rc); 8680 if (!hw_all_ok(sc)) 8681 rc = ENXIO; 8682 else { 8683 /* XXX: magic numbers */ 8684 rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e, 8685 op ? 0x20 : 0xc820, &v); 8686 } 8687 end_synchronized_op(sc, 0); 8688 if (rc) 8689 return (rc); 8690 if (op == 0) 8691 v /= 256; 8692 8693 rc = sysctl_handle_int(oidp, &v, 0, req); 8694 return (rc); 8695 } 8696 8697 static int 8698 sysctl_noflowq(SYSCTL_HANDLER_ARGS) 8699 { 8700 struct vi_info *vi = arg1; 8701 int rc, val; 8702 8703 val = vi->rsrv_noflowq; 8704 rc = sysctl_handle_int(oidp, &val, 0, req); 8705 if (rc != 0 || req->newptr == NULL) 8706 return (rc); 8707 8708 if ((val >= 1) && (vi->ntxq > 1)) 8709 vi->rsrv_noflowq = 1; 8710 else 8711 vi->rsrv_noflowq = 0; 8712 8713 return (rc); 8714 } 8715 8716 static int 8717 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS) 8718 { 8719 struct vi_info *vi = arg1; 8720 struct adapter *sc = vi->adapter; 8721 int rc, val, i; 8722 8723 MPASS(!(sc->flags & IS_VF)); 8724 8725 val = vi->flags & TX_USES_VM_WR ? 1 : 0; 8726 rc = sysctl_handle_int(oidp, &val, 0, req); 8727 if (rc != 0 || req->newptr == NULL) 8728 return (rc); 8729 8730 if (val != 0 && val != 1) 8731 return (EINVAL); 8732 8733 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8734 "t4txvm"); 8735 if (rc) 8736 return (rc); 8737 if (!hw_all_ok(sc)) 8738 rc = ENXIO; 8739 else if (if_getdrvflags(vi->ifp) & IFF_DRV_RUNNING) { 8740 /* 8741 * We don't want parse_pkt to run with one setting (VF or PF) 8742 * and then eth_tx to see a different setting but still use 8743 * stale information calculated by parse_pkt. 8744 */ 8745 rc = EBUSY; 8746 } else { 8747 struct port_info *pi = vi->pi; 8748 struct sge_txq *txq; 8749 uint32_t ctrl0; 8750 uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr; 8751 8752 if (val) { 8753 vi->flags |= TX_USES_VM_WR; 8754 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_VM_TSO); 8755 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8756 V_TXPKT_INTF(pi->hw_port)); 8757 if (!(sc->flags & IS_VF)) 8758 npkt--; 8759 } else { 8760 vi->flags &= ~TX_USES_VM_WR; 8761 if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_TSO); 8762 ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) | 8763 V_TXPKT_INTF(pi->hw_port) | V_TXPKT_PF(sc->pf) | 8764 V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld)); 8765 } 8766 for_each_txq(vi, i, txq) { 8767 txq->cpl_ctrl0 = ctrl0; 8768 txq->txp.max_npkt = npkt; 8769 } 8770 } 8771 end_synchronized_op(sc, LOCK_HELD); 8772 return (rc); 8773 } 8774 8775 static int 8776 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS) 8777 { 8778 struct vi_info *vi = arg1; 8779 struct adapter *sc = vi->adapter; 8780 int idx, rc, i; 8781 struct sge_rxq *rxq; 8782 uint8_t v; 8783 8784 idx = vi->tmr_idx; 8785 8786 rc = sysctl_handle_int(oidp, &idx, 0, req); 8787 if (rc != 0 || req->newptr == NULL) 8788 return (rc); 8789 8790 if (idx < 0 || idx >= SGE_NTIMERS) 8791 return (EINVAL); 8792 8793 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8794 "t4tmr"); 8795 if (rc) 8796 return (rc); 8797 8798 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1); 8799 for_each_rxq(vi, i, rxq) { 8800 #ifdef atomic_store_rel_8 8801 atomic_store_rel_8(&rxq->iq.intr_params, v); 8802 #else 8803 rxq->iq.intr_params = v; 8804 #endif 8805 } 8806 vi->tmr_idx = idx; 8807 8808 end_synchronized_op(sc, LOCK_HELD); 8809 return (0); 8810 } 8811 8812 static int 8813 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS) 8814 { 8815 struct vi_info *vi = arg1; 8816 struct adapter *sc = vi->adapter; 8817 int idx, rc; 8818 8819 idx = vi->pktc_idx; 8820 8821 rc = sysctl_handle_int(oidp, &idx, 0, req); 8822 if (rc != 0 || req->newptr == NULL) 8823 return (rc); 8824 8825 if (idx < -1 || idx >= SGE_NCOUNTERS) 8826 return (EINVAL); 8827 8828 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8829 "t4pktc"); 8830 if (rc) 8831 return (rc); 8832 8833 if (vi->flags & VI_INIT_DONE) 8834 rc = EBUSY; /* cannot be changed once the queues are created */ 8835 else 8836 vi->pktc_idx = idx; 8837 8838 end_synchronized_op(sc, LOCK_HELD); 8839 return (rc); 8840 } 8841 8842 static int 8843 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS) 8844 { 8845 struct vi_info *vi = arg1; 8846 struct adapter *sc = vi->adapter; 8847 int qsize, rc; 8848 8849 qsize = vi->qsize_rxq; 8850 8851 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8852 if (rc != 0 || req->newptr == NULL) 8853 return (rc); 8854 8855 if (qsize < 128 || (qsize & 7)) 8856 return (EINVAL); 8857 8858 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8859 "t4rxqs"); 8860 if (rc) 8861 return (rc); 8862 8863 if (vi->flags & VI_INIT_DONE) 8864 rc = EBUSY; /* cannot be changed once the queues are created */ 8865 else 8866 vi->qsize_rxq = qsize; 8867 8868 end_synchronized_op(sc, LOCK_HELD); 8869 return (rc); 8870 } 8871 8872 static int 8873 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS) 8874 { 8875 struct vi_info *vi = arg1; 8876 struct adapter *sc = vi->adapter; 8877 int qsize, rc; 8878 8879 qsize = vi->qsize_txq; 8880 8881 rc = sysctl_handle_int(oidp, &qsize, 0, req); 8882 if (rc != 0 || req->newptr == NULL) 8883 return (rc); 8884 8885 if (qsize < 128 || qsize > 65536) 8886 return (EINVAL); 8887 8888 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 8889 "t4txqs"); 8890 if (rc) 8891 return (rc); 8892 8893 if (vi->flags & VI_INIT_DONE) 8894 rc = EBUSY; /* cannot be changed once the queues are created */ 8895 else 8896 vi->qsize_txq = qsize; 8897 8898 end_synchronized_op(sc, LOCK_HELD); 8899 return (rc); 8900 } 8901 8902 static int 8903 sysctl_pause_settings(SYSCTL_HANDLER_ARGS) 8904 { 8905 struct port_info *pi = arg1; 8906 struct adapter *sc = pi->adapter; 8907 struct link_config *lc = &pi->link_cfg; 8908 int rc; 8909 8910 if (req->newptr == NULL) { 8911 struct sbuf *sb; 8912 static char *bits = "\20\1RX\2TX\3AUTO"; 8913 8914 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8915 if (sb == NULL) 8916 return (ENOMEM); 8917 8918 if (lc->link_ok) { 8919 sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) | 8920 (lc->requested_fc & PAUSE_AUTONEG), bits); 8921 } else { 8922 sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX | 8923 PAUSE_RX | PAUSE_AUTONEG), bits); 8924 } 8925 rc = sbuf_finish(sb); 8926 sbuf_delete(sb); 8927 } else { 8928 char s[2]; 8929 int n; 8930 8931 s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX | 8932 PAUSE_AUTONEG)); 8933 s[1] = 0; 8934 8935 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 8936 if (rc != 0) 8937 return(rc); 8938 8939 if (s[1] != 0) 8940 return (EINVAL); 8941 if (s[0] < '0' || s[0] > '9') 8942 return (EINVAL); /* not a number */ 8943 n = s[0] - '0'; 8944 if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) 8945 return (EINVAL); /* some other bit is set too */ 8946 8947 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 8948 "t4PAUSE"); 8949 if (rc) 8950 return (rc); 8951 if (hw_all_ok(sc)) { 8952 PORT_LOCK(pi); 8953 lc->requested_fc = n; 8954 fixup_link_config(pi); 8955 if (pi->up_vis > 0) 8956 rc = apply_link_config(pi); 8957 set_current_media(pi); 8958 PORT_UNLOCK(pi); 8959 } 8960 end_synchronized_op(sc, 0); 8961 } 8962 8963 return (rc); 8964 } 8965 8966 static int 8967 sysctl_link_fec(SYSCTL_HANDLER_ARGS) 8968 { 8969 struct port_info *pi = arg1; 8970 struct link_config *lc = &pi->link_cfg; 8971 int rc; 8972 struct sbuf *sb; 8973 8974 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 8975 if (sb == NULL) 8976 return (ENOMEM); 8977 if (lc->link_ok) 8978 sbuf_printf(sb, "%b", lc->fec, t4_fec_bits); 8979 else 8980 sbuf_printf(sb, "no link"); 8981 rc = sbuf_finish(sb); 8982 sbuf_delete(sb); 8983 8984 return (rc); 8985 } 8986 8987 static int 8988 sysctl_requested_fec(SYSCTL_HANDLER_ARGS) 8989 { 8990 struct port_info *pi = arg1; 8991 struct adapter *sc = pi->adapter; 8992 struct link_config *lc = &pi->link_cfg; 8993 int rc; 8994 int8_t old; 8995 8996 if (req->newptr == NULL) { 8997 struct sbuf *sb; 8998 8999 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 9000 if (sb == NULL) 9001 return (ENOMEM); 9002 9003 sbuf_printf(sb, "%b", lc->requested_fec, t4_fec_bits); 9004 rc = sbuf_finish(sb); 9005 sbuf_delete(sb); 9006 } else { 9007 char s[8]; 9008 int n; 9009 9010 snprintf(s, sizeof(s), "%d", 9011 lc->requested_fec == FEC_AUTO ? -1 : 9012 lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE)); 9013 9014 rc = sysctl_handle_string(oidp, s, sizeof(s), req); 9015 if (rc != 0) 9016 return(rc); 9017 9018 n = strtol(&s[0], NULL, 0); 9019 if (n < 0 || n & FEC_AUTO) 9020 n = FEC_AUTO; 9021 else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE)) 9022 return (EINVAL);/* some other bit is set too */ 9023 9024 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 9025 "t4reqf"); 9026 if (rc) 9027 return (rc); 9028 PORT_LOCK(pi); 9029 old = lc->requested_fec; 9030 if (n == FEC_AUTO) 9031 lc->requested_fec = FEC_AUTO; 9032 else if (n == 0 || n == FEC_NONE) 9033 lc->requested_fec = FEC_NONE; 9034 else { 9035 if ((lc->pcaps | 9036 V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) != 9037 lc->pcaps) { 9038 rc = ENOTSUP; 9039 goto done; 9040 } 9041 lc->requested_fec = n & (M_FW_PORT_CAP32_FEC | 9042 FEC_MODULE); 9043 } 9044 if (hw_all_ok(sc)) { 9045 fixup_link_config(pi); 9046 if (pi->up_vis > 0) { 9047 rc = apply_link_config(pi); 9048 if (rc != 0) { 9049 lc->requested_fec = old; 9050 if (rc == FW_EPROTO) 9051 rc = ENOTSUP; 9052 } 9053 } 9054 } 9055 done: 9056 PORT_UNLOCK(pi); 9057 end_synchronized_op(sc, 0); 9058 } 9059 9060 return (rc); 9061 } 9062 9063 static int 9064 sysctl_module_fec(SYSCTL_HANDLER_ARGS) 9065 { 9066 struct port_info *pi = arg1; 9067 struct adapter *sc = pi->adapter; 9068 struct link_config *lc = &pi->link_cfg; 9069 int rc; 9070 int8_t fec; 9071 struct sbuf *sb; 9072 9073 sb = sbuf_new_for_sysctl(NULL, NULL, 128, req); 9074 if (sb == NULL) 9075 return (ENOMEM); 9076 9077 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) { 9078 rc = EBUSY; 9079 goto done; 9080 } 9081 if (!hw_all_ok(sc)) { 9082 rc = ENXIO; 9083 goto done; 9084 } 9085 PORT_LOCK(pi); 9086 if (pi->up_vis == 0) { 9087 /* 9088 * If all the interfaces are administratively down the firmware 9089 * does not report transceiver changes. Refresh port info here. 9090 * This is the only reason we have a synchronized op in this 9091 * function. Just PORT_LOCK would have been enough otherwise. 9092 */ 9093 t4_update_port_info(pi); 9094 } 9095 9096 fec = lc->fec_hint; 9097 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE || 9098 !fec_supported(lc->pcaps)) { 9099 PORT_UNLOCK(pi); 9100 sbuf_printf(sb, "n/a"); 9101 } else { 9102 if (fec == 0) 9103 fec = FEC_NONE; 9104 PORT_UNLOCK(pi); 9105 sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, t4_fec_bits); 9106 } 9107 rc = sbuf_finish(sb); 9108 done: 9109 sbuf_delete(sb); 9110 end_synchronized_op(sc, 0); 9111 9112 return (rc); 9113 } 9114 9115 static int 9116 sysctl_autoneg(SYSCTL_HANDLER_ARGS) 9117 { 9118 struct port_info *pi = arg1; 9119 struct adapter *sc = pi->adapter; 9120 struct link_config *lc = &pi->link_cfg; 9121 int rc, val; 9122 9123 if (lc->pcaps & FW_PORT_CAP32_ANEG) 9124 val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1; 9125 else 9126 val = -1; 9127 rc = sysctl_handle_int(oidp, &val, 0, req); 9128 if (rc != 0 || req->newptr == NULL) 9129 return (rc); 9130 if (val == 0) 9131 val = AUTONEG_DISABLE; 9132 else if (val == 1) 9133 val = AUTONEG_ENABLE; 9134 else 9135 val = AUTONEG_AUTO; 9136 9137 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, 9138 "t4aneg"); 9139 if (rc) 9140 return (rc); 9141 PORT_LOCK(pi); 9142 if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) { 9143 rc = ENOTSUP; 9144 goto done; 9145 } 9146 lc->requested_aneg = val; 9147 if (hw_all_ok(sc)) { 9148 fixup_link_config(pi); 9149 if (pi->up_vis > 0) 9150 rc = apply_link_config(pi); 9151 set_current_media(pi); 9152 } 9153 done: 9154 PORT_UNLOCK(pi); 9155 end_synchronized_op(sc, 0); 9156 return (rc); 9157 } 9158 9159 static int 9160 sysctl_force_fec(SYSCTL_HANDLER_ARGS) 9161 { 9162 struct port_info *pi = arg1; 9163 struct adapter *sc = pi->adapter; 9164 struct link_config *lc = &pi->link_cfg; 9165 int rc, val; 9166 9167 val = lc->force_fec; 9168 MPASS(val >= -1 && val <= 1); 9169 rc = sysctl_handle_int(oidp, &val, 0, req); 9170 if (rc != 0 || req->newptr == NULL) 9171 return (rc); 9172 if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC)) 9173 return (ENOTSUP); 9174 if (val < -1 || val > 1) 9175 return (EINVAL); 9176 9177 rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff"); 9178 if (rc) 9179 return (rc); 9180 PORT_LOCK(pi); 9181 lc->force_fec = val; 9182 if (hw_all_ok(sc)) { 9183 fixup_link_config(pi); 9184 if (pi->up_vis > 0) 9185 rc = apply_link_config(pi); 9186 } 9187 PORT_UNLOCK(pi); 9188 end_synchronized_op(sc, 0); 9189 return (rc); 9190 } 9191 9192 static int 9193 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS) 9194 { 9195 struct adapter *sc = arg1; 9196 int rc, reg = arg2; 9197 uint64_t val; 9198 9199 mtx_lock(&sc->reg_lock); 9200 if (hw_off_limits(sc)) 9201 rc = ENXIO; 9202 else { 9203 rc = 0; 9204 val = t4_read_reg64(sc, reg); 9205 } 9206 mtx_unlock(&sc->reg_lock); 9207 if (rc == 0) 9208 rc = sysctl_handle_64(oidp, &val, 0, req); 9209 return (rc); 9210 } 9211 9212 static int 9213 sysctl_handle_t4_portstat64(SYSCTL_HANDLER_ARGS) 9214 { 9215 struct port_info *pi = arg1; 9216 struct adapter *sc = pi->adapter; 9217 int rc, i, reg = arg2; 9218 uint64_t val; 9219 9220 mtx_lock(&sc->reg_lock); 9221 if (hw_off_limits(sc)) 9222 rc = ENXIO; 9223 else { 9224 val = 0; 9225 for (i = 0; i < sc->params.tp.lb_nchan; i++) { 9226 val += t4_read_reg64(sc, 9227 t4_port_reg(sc, pi->tx_chan + i, reg)); 9228 } 9229 rc = 0; 9230 } 9231 mtx_unlock(&sc->reg_lock); 9232 if (rc == 0) 9233 rc = sysctl_handle_64(oidp, &val, 0, req); 9234 return (rc); 9235 } 9236 9237 static int 9238 sysctl_temperature(SYSCTL_HANDLER_ARGS) 9239 { 9240 struct adapter *sc = arg1; 9241 int rc, t; 9242 uint32_t param, val; 9243 9244 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp"); 9245 if (rc) 9246 return (rc); 9247 if (!hw_all_ok(sc)) 9248 rc = ENXIO; 9249 else { 9250 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 9251 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 9252 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP); 9253 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 9254 } 9255 end_synchronized_op(sc, 0); 9256 if (rc) 9257 return (rc); 9258 9259 /* unknown is returned as 0 but we display -1 in that case */ 9260 t = val == 0 ? -1 : val; 9261 9262 rc = sysctl_handle_int(oidp, &t, 0, req); 9263 return (rc); 9264 } 9265 9266 static int 9267 sysctl_vdd(SYSCTL_HANDLER_ARGS) 9268 { 9269 struct adapter *sc = arg1; 9270 int rc; 9271 uint32_t param, val; 9272 9273 if (sc->params.core_vdd == 0) { 9274 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 9275 "t4vdd"); 9276 if (rc) 9277 return (rc); 9278 if (!hw_all_ok(sc)) 9279 rc = ENXIO; 9280 else { 9281 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 9282 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 9283 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD); 9284 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, 9285 ¶m, &val); 9286 } 9287 end_synchronized_op(sc, 0); 9288 if (rc) 9289 return (rc); 9290 sc->params.core_vdd = val; 9291 } 9292 9293 return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req)); 9294 } 9295 9296 static int 9297 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS) 9298 { 9299 struct adapter *sc = arg1; 9300 int rc, v; 9301 uint32_t param, val; 9302 9303 v = sc->sensor_resets; 9304 rc = sysctl_handle_int(oidp, &v, 0, req); 9305 if (rc != 0 || req->newptr == NULL || v <= 0) 9306 return (rc); 9307 9308 if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) || 9309 chip_id(sc) < CHELSIO_T5) 9310 return (ENOTSUP); 9311 9312 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst"); 9313 if (rc) 9314 return (rc); 9315 if (!hw_all_ok(sc)) 9316 rc = ENXIO; 9317 else { 9318 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 9319 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) | 9320 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR)); 9321 val = 1; 9322 rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 9323 } 9324 end_synchronized_op(sc, 0); 9325 if (rc == 0) 9326 sc->sensor_resets++; 9327 return (rc); 9328 } 9329 9330 static int 9331 sysctl_loadavg(SYSCTL_HANDLER_ARGS) 9332 { 9333 struct adapter *sc = arg1; 9334 struct sbuf *sb; 9335 int rc; 9336 uint32_t param, val; 9337 uint8_t coreid = (uint8_t)arg2; 9338 9339 KASSERT(coreid < sc->params.ncores, 9340 ("%s: bad coreid %u\n", __func__, coreid)); 9341 9342 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg"); 9343 if (rc) 9344 return (rc); 9345 if (!hw_all_ok(sc)) 9346 rc = ENXIO; 9347 else { 9348 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 9349 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD) | 9350 V_FW_PARAMS_PARAM_Y(coreid); 9351 rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, ¶m, &val); 9352 } 9353 end_synchronized_op(sc, 0); 9354 if (rc) 9355 return (rc); 9356 9357 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9358 if (sb == NULL) 9359 return (ENOMEM); 9360 9361 if (val == 0xffffffff) { 9362 /* Only debug and custom firmwares report load averages. */ 9363 sbuf_printf(sb, "not available"); 9364 } else { 9365 sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff, 9366 (val >> 16) & 0xff); 9367 } 9368 rc = sbuf_finish(sb); 9369 sbuf_delete(sb); 9370 9371 return (rc); 9372 } 9373 9374 static int 9375 sysctl_cctrl(SYSCTL_HANDLER_ARGS) 9376 { 9377 struct adapter *sc = arg1; 9378 struct sbuf *sb; 9379 int rc, i; 9380 uint16_t incr[NMTUS][NCCTRL_WIN]; 9381 static const char *dec_fac[] = { 9382 "0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875", 9383 "0.9375" 9384 }; 9385 9386 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9387 if (sb == NULL) 9388 return (ENOMEM); 9389 9390 rc = 0; 9391 mtx_lock(&sc->reg_lock); 9392 if (hw_off_limits(sc)) 9393 rc = ENXIO; 9394 else 9395 t4_read_cong_tbl(sc, incr); 9396 mtx_unlock(&sc->reg_lock); 9397 if (rc) 9398 goto done; 9399 9400 for (i = 0; i < NCCTRL_WIN; ++i) { 9401 sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i, 9402 incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i], 9403 incr[5][i], incr[6][i], incr[7][i]); 9404 sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n", 9405 incr[8][i], incr[9][i], incr[10][i], incr[11][i], 9406 incr[12][i], incr[13][i], incr[14][i], incr[15][i], 9407 sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]); 9408 } 9409 9410 rc = sbuf_finish(sb); 9411 done: 9412 sbuf_delete(sb); 9413 return (rc); 9414 } 9415 9416 static int 9417 sysctl_cim_ibq(SYSCTL_HANDLER_ARGS) 9418 { 9419 struct adapter *sc = arg1; 9420 struct sbuf *sb; 9421 int rc, i, n, qid, coreid; 9422 uint32_t *buf, *p; 9423 9424 qid = arg2 & 0xffff; 9425 coreid = arg2 >> 16; 9426 9427 KASSERT(qid >= 0 && qid < sc->chip_params->cim_num_ibq, 9428 ("%s: bad ibq qid %d\n", __func__, qid)); 9429 KASSERT(coreid >= 0 && coreid < sc->params.ncores, 9430 ("%s: bad coreid %d\n", __func__, coreid)); 9431 9432 n = 4 * CIM_IBQ_SIZE; 9433 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 9434 mtx_lock(&sc->reg_lock); 9435 if (hw_off_limits(sc)) 9436 rc = -ENXIO; 9437 else 9438 rc = t4_read_cim_ibq_core(sc, coreid, qid, buf, n); 9439 mtx_unlock(&sc->reg_lock); 9440 if (rc < 0) { 9441 rc = -rc; 9442 goto done; 9443 } 9444 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 9445 9446 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9447 if (sb == NULL) { 9448 rc = ENOMEM; 9449 goto done; 9450 } 9451 for (i = 0, p = buf; i < n; i += 16, p += 4) 9452 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 9453 p[2], p[3]); 9454 rc = sbuf_finish(sb); 9455 sbuf_delete(sb); 9456 done: 9457 free(buf, M_CXGBE); 9458 return (rc); 9459 } 9460 9461 static int 9462 sysctl_cim_obq(SYSCTL_HANDLER_ARGS) 9463 { 9464 struct adapter *sc = arg1; 9465 struct sbuf *sb; 9466 int rc, i, n, qid, coreid; 9467 uint32_t *buf, *p; 9468 9469 qid = arg2 & 0xffff; 9470 coreid = arg2 >> 16; 9471 9472 KASSERT(qid >= 0 && qid < sc->chip_params->cim_num_obq, 9473 ("%s: bad obq qid %d\n", __func__, qid)); 9474 KASSERT(coreid >= 0 && coreid < sc->params.ncores, 9475 ("%s: bad coreid %d\n", __func__, coreid)); 9476 9477 n = 6 * CIM_OBQ_SIZE * 4; 9478 buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK); 9479 mtx_lock(&sc->reg_lock); 9480 if (hw_off_limits(sc)) 9481 rc = -ENXIO; 9482 else 9483 rc = t4_read_cim_obq_core(sc, coreid, qid, buf, n); 9484 mtx_unlock(&sc->reg_lock); 9485 if (rc < 0) { 9486 rc = -rc; 9487 goto done; 9488 } 9489 n = rc * sizeof(uint32_t); /* rc has # of words actually read */ 9490 9491 rc = sysctl_wire_old_buffer(req, 0); 9492 if (rc != 0) 9493 goto done; 9494 9495 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9496 if (sb == NULL) { 9497 rc = ENOMEM; 9498 goto done; 9499 } 9500 for (i = 0, p = buf; i < n; i += 16, p += 4) 9501 sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1], 9502 p[2], p[3]); 9503 rc = sbuf_finish(sb); 9504 sbuf_delete(sb); 9505 done: 9506 free(buf, M_CXGBE); 9507 return (rc); 9508 } 9509 9510 static void 9511 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 9512 { 9513 uint32_t *p; 9514 9515 sbuf_printf(sb, "Status Data PC%s", 9516 cfg & F_UPDBGLACAPTPCONLY ? "" : 9517 " LS0Stat LS0Addr LS0Data"); 9518 9519 for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) { 9520 if (cfg & F_UPDBGLACAPTPCONLY) { 9521 sbuf_printf(sb, "\n %02x %08x %08x", p[5] & 0xff, 9522 p[6], p[7]); 9523 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x", 9524 (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8, 9525 p[4] & 0xff, p[5] >> 8); 9526 sbuf_printf(sb, "\n %02x %x%07x %x%07x", 9527 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 9528 p[1] & 0xf, p[2] >> 4); 9529 } else { 9530 sbuf_printf(sb, 9531 "\n %02x %x%07x %x%07x %08x %08x " 9532 "%08x%08x%08x%08x", 9533 (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4, 9534 p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5], 9535 p[6], p[7]); 9536 } 9537 } 9538 } 9539 9540 static void 9541 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg) 9542 { 9543 uint32_t *p; 9544 9545 sbuf_printf(sb, "Status Inst Data PC%s", 9546 cfg & F_UPDBGLACAPTPCONLY ? "" : 9547 " LS0Stat LS0Addr LS0Data LS1Stat LS1Addr LS1Data"); 9548 9549 for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) { 9550 if (cfg & F_UPDBGLACAPTPCONLY) { 9551 sbuf_printf(sb, "\n %02x %08x %08x %08x", 9552 p[3] & 0xff, p[2], p[1], p[0]); 9553 sbuf_printf(sb, "\n %02x %02x%06x %02x%06x %02x%06x", 9554 (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8, 9555 p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8); 9556 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x", 9557 (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16, 9558 p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff, 9559 p[6] >> 16); 9560 } else { 9561 sbuf_printf(sb, "\n %02x %04x%04x %04x%04x %04x%04x " 9562 "%08x %08x %08x %08x %08x %08x", 9563 (p[9] >> 16) & 0xff, 9564 p[9] & 0xffff, p[8] >> 16, 9565 p[8] & 0xffff, p[7] >> 16, 9566 p[7] & 0xffff, p[6] >> 16, 9567 p[2], p[1], p[0], p[5], p[4], p[3]); 9568 } 9569 } 9570 } 9571 9572 static int 9573 sbuf_cim_la(struct adapter *sc, int coreid, struct sbuf *sb, int flags) 9574 { 9575 uint32_t cfg, *buf; 9576 int rc; 9577 9578 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 9579 buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE, 9580 M_ZERO | flags); 9581 if (buf == NULL) 9582 return (ENOMEM); 9583 9584 mtx_lock(&sc->reg_lock); 9585 if (hw_off_limits(sc)) 9586 rc = ENXIO; 9587 else { 9588 rc = -t4_cim_read_core(sc, 1, coreid, A_UP_UP_DBG_LA_CFG, 1, 9589 &cfg); 9590 if (rc == 0) 9591 rc = -t4_cim_read_la_core(sc, coreid, buf, NULL); 9592 } 9593 mtx_unlock(&sc->reg_lock); 9594 if (rc == 0) { 9595 if (chip_id(sc) < CHELSIO_T6) 9596 sbuf_cim_la4(sc, sb, buf, cfg); 9597 else 9598 sbuf_cim_la6(sc, sb, buf, cfg); 9599 } 9600 free(buf, M_CXGBE); 9601 return (rc); 9602 } 9603 9604 static int 9605 sysctl_cim_la(SYSCTL_HANDLER_ARGS) 9606 { 9607 struct adapter *sc = arg1; 9608 int coreid = arg2; 9609 struct sbuf *sb; 9610 int rc; 9611 9612 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9613 if (sb == NULL) 9614 return (ENOMEM); 9615 9616 rc = sbuf_cim_la(sc, coreid, sb, M_WAITOK); 9617 if (rc == 0) 9618 rc = sbuf_finish(sb); 9619 sbuf_delete(sb); 9620 return (rc); 9621 } 9622 9623 static void 9624 dump_cim_regs(struct adapter *sc) 9625 { 9626 log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n", 9627 device_get_nameunit(sc->dev), 9628 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9629 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9630 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2), 9631 t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN), 9632 t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA)); 9633 log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n", 9634 device_get_nameunit(sc->dev), 9635 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0), 9636 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1), 9637 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800), 9638 t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800), 9639 t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN)); 9640 } 9641 9642 static void 9643 dump_cimla(struct adapter *sc) 9644 { 9645 struct sbuf sb; 9646 int rc; 9647 9648 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 9649 log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n", 9650 device_get_nameunit(sc->dev)); 9651 return; 9652 } 9653 rc = sbuf_cim_la(sc, 0, &sb, M_WAITOK); 9654 if (rc == 0) { 9655 rc = sbuf_finish(&sb); 9656 if (rc == 0) { 9657 log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n", 9658 device_get_nameunit(sc->dev), sbuf_data(&sb)); 9659 } 9660 } 9661 sbuf_delete(&sb); 9662 } 9663 9664 void 9665 t4_os_cim_err(struct adapter *sc) 9666 { 9667 atomic_set_int(&sc->error_flags, ADAP_CIM_ERR); 9668 } 9669 9670 static int 9671 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS) 9672 { 9673 struct adapter *sc = arg1; 9674 u_int i; 9675 struct sbuf *sb; 9676 uint32_t *buf, *p; 9677 int rc; 9678 9679 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9680 if (sb == NULL) 9681 return (ENOMEM); 9682 9683 buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE, 9684 M_ZERO | M_WAITOK); 9685 9686 rc = 0; 9687 mtx_lock(&sc->reg_lock); 9688 if (hw_off_limits(sc)) 9689 rc = ENXIO; 9690 else 9691 t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE); 9692 mtx_unlock(&sc->reg_lock); 9693 if (rc) 9694 goto done; 9695 9696 p = buf; 9697 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9698 sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2], 9699 p[1], p[0]); 9700 } 9701 9702 sbuf_printf(sb, "\n\nCnt ID Tag UE Data RDY VLD"); 9703 for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) { 9704 sbuf_printf(sb, "\n%3u %2u %x %u %08x%08x %u %u", 9705 (p[2] >> 10) & 0xff, (p[2] >> 7) & 7, 9706 (p[2] >> 3) & 0xf, (p[2] >> 2) & 1, 9707 (p[1] >> 2) | ((p[2] & 3) << 30), 9708 (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1, 9709 p[0] & 1); 9710 } 9711 rc = sbuf_finish(sb); 9712 done: 9713 sbuf_delete(sb); 9714 free(buf, M_CXGBE); 9715 return (rc); 9716 } 9717 9718 static int 9719 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS) 9720 { 9721 struct adapter *sc = arg1; 9722 u_int i; 9723 struct sbuf *sb; 9724 uint32_t *buf, *p; 9725 int rc; 9726 9727 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 9728 if (sb == NULL) 9729 return (ENOMEM); 9730 9731 buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE, 9732 M_ZERO | M_WAITOK); 9733 9734 rc = 0; 9735 mtx_lock(&sc->reg_lock); 9736 if (hw_off_limits(sc)) 9737 rc = ENXIO; 9738 else 9739 t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL); 9740 mtx_unlock(&sc->reg_lock); 9741 if (rc) 9742 goto done; 9743 9744 p = buf; 9745 sbuf_printf(sb, "Cntl ID DataBE Addr Data"); 9746 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9747 sbuf_printf(sb, "\n %02x %02x %04x %08x %08x%08x%08x%08x", 9748 (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff, 9749 p[4], p[3], p[2], p[1], p[0]); 9750 } 9751 9752 sbuf_printf(sb, "\n\nCntl ID Data"); 9753 for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) { 9754 sbuf_printf(sb, "\n %02x %02x %08x%08x%08x%08x", 9755 (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]); 9756 } 9757 9758 rc = sbuf_finish(sb); 9759 done: 9760 sbuf_delete(sb); 9761 free(buf, M_CXGBE); 9762 return (rc); 9763 } 9764 9765 static int 9766 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS) 9767 { 9768 struct adapter *sc = arg1; 9769 struct sbuf *sb; 9770 int rc, i; 9771 uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9772 uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5]; 9773 uint16_t thres[CIM_NUM_IBQ]; 9774 uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr; 9775 uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat; 9776 u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq; 9777 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = { 9778 "TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI", /* ibq's */ 9779 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", /* obq's */ 9780 "SGE0-RX", "SGE1-RX" /* additional obq's (T5 onwards) */ 9781 }; 9782 9783 MPASS(chip_id(sc) < CHELSIO_T7); 9784 9785 cim_num_obq = sc->chip_params->cim_num_obq; 9786 if (is_t4(sc)) { 9787 ibq_rdaddr = A_UP_IBQ_0_RDADDR; 9788 obq_rdaddr = A_UP_OBQ_0_REALADDR; 9789 } else { 9790 ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR; 9791 obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR; 9792 } 9793 nq = CIM_NUM_IBQ + cim_num_obq; 9794 9795 mtx_lock(&sc->reg_lock); 9796 if (hw_off_limits(sc)) 9797 rc = ENXIO; 9798 else { 9799 rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat); 9800 if (rc == 0) { 9801 rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq, 9802 obq_wr); 9803 if (rc == 0) 9804 t4_read_cimq_cfg(sc, base, size, thres); 9805 } 9806 } 9807 mtx_unlock(&sc->reg_lock); 9808 if (rc) 9809 return (rc); 9810 9811 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9812 if (sb == NULL) 9813 return (ENOMEM); 9814 9815 sbuf_printf(sb, 9816 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 9817 9818 for (i = 0; i < CIM_NUM_IBQ; i++, p += 4) 9819 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 9820 qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]), 9821 G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9822 G_QUEREMFLITS(p[2]) * 16); 9823 for ( ; i < nq; i++, p += 4, wr += 2) 9824 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", qname[i], 9825 base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff, 9826 wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9827 G_QUEREMFLITS(p[2]) * 16); 9828 9829 rc = sbuf_finish(sb); 9830 sbuf_delete(sb); 9831 9832 return (rc); 9833 } 9834 9835 static int 9836 sysctl_cim_qcfg_t7(SYSCTL_HANDLER_ARGS) 9837 { 9838 struct adapter *sc = arg1; 9839 u_int coreid = arg2; 9840 struct sbuf *sb; 9841 int rc, i; 9842 u_int addr; 9843 uint16_t base[CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7]; 9844 uint16_t size[CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7]; 9845 uint16_t thres[CIM_NUM_IBQ_T7]; 9846 uint32_t obq_wr[2 * CIM_NUM_OBQ_T7], *wr = obq_wr; 9847 uint32_t stat[4 * (CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7)], *p = stat; 9848 static const char * const qname_ibq_t7[] = { 9849 "TP0", "TP1", "TP2", "TP3", "ULP", "SGE0", "SGE1", "NC-SI", 9850 "RSVD", "IPC1", "IPC2", "IPC3", "IPC4", "IPC5", "IPC6", "IPC7", 9851 }; 9852 static const char * const qname_obq_t7[] = { 9853 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI", "SGE0-RX", 9854 "RSVD", "RSVD", "IPC1", "IPC2", "IPC3", "IPC4", "IPC5", 9855 "IPC6", "IPC7" 9856 }; 9857 static const char * const qname_ibq_sec_t7[] = { 9858 "TP0", "TP1", "TP2", "TP3", "ULP", "SGE0", "RSVD", "RSVD", 9859 "RSVD", "IPC0", "RSVD", "RSVD", "RSVD", "RSVD", "RSVD", "RSVD", 9860 }; 9861 static const char * const qname_obq_sec_t7[] = { 9862 "ULP0", "ULP1", "ULP2", "ULP3", "SGE", "RSVD", "SGE0-RX", 9863 "RSVD", "RSVD", "IPC0", "RSVD", "RSVD", "RSVD", "RSVD", 9864 "RSVD", "RSVD", 9865 }; 9866 9867 MPASS(chip_id(sc) >= CHELSIO_T7); 9868 9869 mtx_lock(&sc->reg_lock); 9870 if (hw_off_limits(sc)) 9871 rc = ENXIO; 9872 else { 9873 rc = -t4_cim_read_core(sc, 1, coreid, 9874 A_T7_UP_IBQ_0_SHADOW_RDADDR, 4 * CIM_NUM_IBQ_T7, stat); 9875 if (rc != 0) 9876 goto unlock; 9877 9878 rc = -t4_cim_read_core(sc, 1, coreid, 9879 A_T7_UP_OBQ_0_SHADOW_RDADDR, 4 * CIM_NUM_OBQ_T7, 9880 &stat[4 * CIM_NUM_IBQ_T7]); 9881 if (rc != 0) 9882 goto unlock; 9883 9884 addr = A_T7_UP_OBQ_0_SHADOW_REALADDR; 9885 for (i = 0; i < CIM_NUM_OBQ_T7 * 2; i++, addr += 8) { 9886 rc = -t4_cim_read_core(sc, 1, coreid, addr, 1, 9887 &obq_wr[i]); 9888 if (rc != 0) 9889 goto unlock; 9890 } 9891 t4_read_cimq_cfg_core(sc, coreid, base, size, thres); 9892 } 9893 unlock: 9894 mtx_unlock(&sc->reg_lock); 9895 if (rc) 9896 return (rc); 9897 9898 sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req); 9899 if (sb == NULL) 9900 return (ENOMEM); 9901 9902 sbuf_printf(sb, 9903 " Queue Base Size Thres RdPtr WrPtr SOP EOP Avail"); 9904 9905 for (i = 0; i < CIM_NUM_IBQ_T7; i++, p += 4) { 9906 if (!size[i]) 9907 continue; 9908 9909 sbuf_printf(sb, "\n%7s %5x %5u %5u %6x %4x %4u %4u %5u", 9910 coreid == 0 ? qname_ibq_t7[i] : qname_ibq_sec_t7[i], 9911 base[i], size[i], thres[i], G_IBQRDADDR(p[0]) & 0xfff, 9912 G_IBQWRADDR(p[1]) & 0xfff, G_QUESOPCNT(p[3]), 9913 G_QUEEOPCNT(p[3]), G_T7_QUEREMFLITS(p[2]) * 16); 9914 } 9915 9916 for ( ; i < CIM_NUM_IBQ_T7 + CIM_NUM_OBQ_T7; i++, p += 4, wr += 2) { 9917 if (!size[i]) 9918 continue; 9919 9920 sbuf_printf(sb, "\n%7s %5x %5u %12x %4x %4u %4u %5u", 9921 coreid == 0 ? qname_obq_t7[i - CIM_NUM_IBQ_T7] : 9922 qname_obq_sec_t7[i - CIM_NUM_IBQ_T7], 9923 base[i], size[i], G_QUERDADDR(p[0]) & 0xfff, 9924 wr[0] << 1, G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]), 9925 G_T7_QUEREMFLITS(p[2]) * 16); 9926 } 9927 9928 rc = sbuf_finish(sb); 9929 sbuf_delete(sb); 9930 return (rc); 9931 } 9932 9933 static int 9934 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS) 9935 { 9936 struct adapter *sc = arg1; 9937 struct sbuf *sb; 9938 int rc; 9939 struct tp_cpl_stats stats; 9940 9941 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9942 if (sb == NULL) 9943 return (ENOMEM); 9944 9945 rc = 0; 9946 mtx_lock(&sc->reg_lock); 9947 if (hw_off_limits(sc)) 9948 rc = ENXIO; 9949 else 9950 t4_tp_get_cpl_stats(sc, &stats, 0); 9951 mtx_unlock(&sc->reg_lock); 9952 if (rc) 9953 goto done; 9954 9955 if (sc->chip_params->nchan > 2) { 9956 sbuf_printf(sb, " channel 0 channel 1" 9957 " channel 2 channel 3"); 9958 sbuf_printf(sb, "\nCPL requests: %10u %10u %10u %10u", 9959 stats.req[0], stats.req[1], stats.req[2], stats.req[3]); 9960 sbuf_printf(sb, "\nCPL responses: %10u %10u %10u %10u", 9961 stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]); 9962 } else { 9963 sbuf_printf(sb, " channel 0 channel 1"); 9964 sbuf_printf(sb, "\nCPL requests: %10u %10u", 9965 stats.req[0], stats.req[1]); 9966 sbuf_printf(sb, "\nCPL responses: %10u %10u", 9967 stats.rsp[0], stats.rsp[1]); 9968 } 9969 9970 rc = sbuf_finish(sb); 9971 done: 9972 sbuf_delete(sb); 9973 return (rc); 9974 } 9975 9976 static int 9977 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS) 9978 { 9979 struct adapter *sc = arg1; 9980 struct sbuf *sb; 9981 int rc; 9982 struct tp_usm_stats stats; 9983 9984 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 9985 if (sb == NULL) 9986 return (ENOMEM); 9987 9988 rc = 0; 9989 mtx_lock(&sc->reg_lock); 9990 if (hw_off_limits(sc)) 9991 rc = ENXIO; 9992 else 9993 t4_get_usm_stats(sc, &stats, 1); 9994 mtx_unlock(&sc->reg_lock); 9995 if (rc == 0) { 9996 sbuf_printf(sb, "Frames: %u\n", stats.frames); 9997 sbuf_printf(sb, "Octets: %ju\n", stats.octets); 9998 sbuf_printf(sb, "Drops: %u", stats.drops); 9999 rc = sbuf_finish(sb); 10000 } 10001 sbuf_delete(sb); 10002 10003 return (rc); 10004 } 10005 10006 static int 10007 sysctl_tid_stats(SYSCTL_HANDLER_ARGS) 10008 { 10009 struct adapter *sc = arg1; 10010 struct sbuf *sb; 10011 int rc; 10012 struct tp_tid_stats stats; 10013 10014 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10015 if (sb == NULL) 10016 return (ENOMEM); 10017 10018 rc = 0; 10019 mtx_lock(&sc->reg_lock); 10020 if (hw_off_limits(sc)) 10021 rc = ENXIO; 10022 else 10023 t4_tp_get_tid_stats(sc, &stats, 1); 10024 mtx_unlock(&sc->reg_lock); 10025 if (rc == 0) { 10026 sbuf_printf(sb, "Delete: %u\n", stats.del); 10027 sbuf_printf(sb, "Invalidate: %u\n", stats.inv); 10028 sbuf_printf(sb, "Active: %u\n", stats.act); 10029 sbuf_printf(sb, "Passive: %u", stats.pas); 10030 rc = sbuf_finish(sb); 10031 } 10032 sbuf_delete(sb); 10033 10034 return (rc); 10035 } 10036 10037 static const char * const devlog_level_strings[] = { 10038 [FW_DEVLOG_LEVEL_EMERG] = "EMERG", 10039 [FW_DEVLOG_LEVEL_CRIT] = "CRIT", 10040 [FW_DEVLOG_LEVEL_ERR] = "ERR", 10041 [FW_DEVLOG_LEVEL_NOTICE] = "NOTICE", 10042 [FW_DEVLOG_LEVEL_INFO] = "INFO", 10043 [FW_DEVLOG_LEVEL_DEBUG] = "DEBUG" 10044 }; 10045 10046 static const char * const devlog_facility_strings[] = { 10047 [FW_DEVLOG_FACILITY_CORE] = "CORE", 10048 [FW_DEVLOG_FACILITY_CF] = "CF", 10049 [FW_DEVLOG_FACILITY_SCHED] = "SCHED", 10050 [FW_DEVLOG_FACILITY_TIMER] = "TIMER", 10051 [FW_DEVLOG_FACILITY_RES] = "RES", 10052 [FW_DEVLOG_FACILITY_HW] = "HW", 10053 [FW_DEVLOG_FACILITY_FLR] = "FLR", 10054 [FW_DEVLOG_FACILITY_DMAQ] = "DMAQ", 10055 [FW_DEVLOG_FACILITY_PHY] = "PHY", 10056 [FW_DEVLOG_FACILITY_MAC] = "MAC", 10057 [FW_DEVLOG_FACILITY_PORT] = "PORT", 10058 [FW_DEVLOG_FACILITY_VI] = "VI", 10059 [FW_DEVLOG_FACILITY_FILTER] = "FILTER", 10060 [FW_DEVLOG_FACILITY_ACL] = "ACL", 10061 [FW_DEVLOG_FACILITY_TM] = "TM", 10062 [FW_DEVLOG_FACILITY_QFC] = "QFC", 10063 [FW_DEVLOG_FACILITY_DCB] = "DCB", 10064 [FW_DEVLOG_FACILITY_ETH] = "ETH", 10065 [FW_DEVLOG_FACILITY_OFLD] = "OFLD", 10066 [FW_DEVLOG_FACILITY_RI] = "RI", 10067 [FW_DEVLOG_FACILITY_ISCSI] = "ISCSI", 10068 [FW_DEVLOG_FACILITY_FCOE] = "FCOE", 10069 [FW_DEVLOG_FACILITY_FOISCSI] = "FOISCSI", 10070 [FW_DEVLOG_FACILITY_FOFCOE] = "FOFCOE", 10071 [FW_DEVLOG_FACILITY_CHNET] = "CHNET", 10072 }; 10073 10074 static int 10075 sbuf_devlog(struct adapter *sc, int coreid, struct sbuf *sb, int flags) 10076 { 10077 int i, j, rc, nentries, first = 0; 10078 struct devlog_params *dparams = &sc->params.devlog; 10079 struct fw_devlog_e *buf, *e; 10080 uint32_t addr, size; 10081 uint64_t ftstamp = UINT64_MAX; 10082 10083 KASSERT(coreid >= 0 && coreid < sc->params.ncores, 10084 ("%s: bad coreid %d\n", __func__, coreid)); 10085 10086 if (dparams->addr == 0) 10087 return (ENXIO); 10088 10089 size = dparams->size / sc->params.ncores; 10090 addr = dparams->addr + coreid * size; 10091 10092 MPASS(flags == M_WAITOK || flags == M_NOWAIT); 10093 buf = malloc(size, M_CXGBE, M_ZERO | flags); 10094 if (buf == NULL) 10095 return (ENOMEM); 10096 10097 mtx_lock(&sc->reg_lock); 10098 if (hw_off_limits(sc)) 10099 rc = ENXIO; 10100 else 10101 rc = read_via_memwin(sc, 1, addr, (void *)buf, size); 10102 mtx_unlock(&sc->reg_lock); 10103 if (rc != 0) 10104 goto done; 10105 10106 nentries = size / sizeof(struct fw_devlog_e); 10107 for (i = 0; i < nentries; i++) { 10108 e = &buf[i]; 10109 10110 if (e->timestamp == 0) 10111 break; /* end */ 10112 10113 e->timestamp = be64toh(e->timestamp); 10114 e->seqno = be32toh(e->seqno); 10115 for (j = 0; j < 8; j++) 10116 e->params[j] = be32toh(e->params[j]); 10117 10118 if (e->timestamp < ftstamp) { 10119 ftstamp = e->timestamp; 10120 first = i; 10121 } 10122 } 10123 10124 if (buf[first].timestamp == 0) 10125 goto done; /* nothing in the log */ 10126 10127 sbuf_printf(sb, "%10s %15s %8s %8s %s\n", 10128 "Seq#", "Tstamp", "Level", "Facility", "Message"); 10129 10130 i = first; 10131 do { 10132 e = &buf[i]; 10133 if (e->timestamp == 0) 10134 break; /* end */ 10135 10136 sbuf_printf(sb, "%10d %15ju %8s %8s ", 10137 e->seqno, e->timestamp, 10138 (e->level < nitems(devlog_level_strings) ? 10139 devlog_level_strings[e->level] : "UNKNOWN"), 10140 (e->facility < nitems(devlog_facility_strings) ? 10141 devlog_facility_strings[e->facility] : "UNKNOWN")); 10142 sbuf_printf(sb, e->fmt, e->params[0], e->params[1], 10143 e->params[2], e->params[3], e->params[4], 10144 e->params[5], e->params[6], e->params[7]); 10145 10146 if (++i == nentries) 10147 i = 0; 10148 } while (i != first); 10149 done: 10150 free(buf, M_CXGBE); 10151 return (rc); 10152 } 10153 10154 static int 10155 sysctl_devlog(SYSCTL_HANDLER_ARGS) 10156 { 10157 struct adapter *sc = arg1; 10158 int rc, i, coreid = arg2; 10159 struct sbuf *sb; 10160 10161 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10162 if (sb == NULL) 10163 return (ENOMEM); 10164 if (coreid == -1) { 10165 /* -1 means all cores */ 10166 for (i = rc = 0; i < sc->params.ncores && rc == 0; i++) { 10167 if (sc->params.ncores > 0) 10168 sbuf_printf(sb, "=== CIM core %u ===\n", i); 10169 rc = sbuf_devlog(sc, i, sb, M_WAITOK); 10170 } 10171 } else { 10172 KASSERT(coreid >= 0 && coreid < sc->params.ncores, 10173 ("%s: bad coreid %d\n", __func__, coreid)); 10174 rc = sbuf_devlog(sc, coreid, sb, M_WAITOK); 10175 } 10176 if (rc == 0) 10177 rc = sbuf_finish(sb); 10178 sbuf_delete(sb); 10179 return (rc); 10180 } 10181 10182 static void 10183 dump_devlog(struct adapter *sc) 10184 { 10185 int rc, i; 10186 struct sbuf sb; 10187 10188 if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) { 10189 log(LOG_DEBUG, "%s: failed to generate devlog dump.\n", 10190 device_get_nameunit(sc->dev)); 10191 return; 10192 } 10193 for (i = rc = 0; i < sc->params.ncores && rc == 0; i++) { 10194 if (sc->params.ncores > 0) 10195 sbuf_printf(&sb, "=== CIM core %u ===\n", i); 10196 rc = sbuf_devlog(sc, i, &sb, M_WAITOK); 10197 } 10198 if (rc == 0) { 10199 sbuf_finish(&sb); 10200 log(LOG_DEBUG, "%s: device log follows.\n%s", 10201 device_get_nameunit(sc->dev), sbuf_data(&sb)); 10202 } 10203 sbuf_delete(&sb); 10204 } 10205 10206 static int 10207 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS) 10208 { 10209 struct adapter *sc = arg1; 10210 struct sbuf *sb; 10211 int rc; 10212 struct tp_fcoe_stats stats[MAX_NCHAN]; 10213 int i, nchan = sc->chip_params->nchan; 10214 10215 rc = 0; 10216 mtx_lock(&sc->reg_lock); 10217 if (hw_off_limits(sc)) 10218 rc = ENXIO; 10219 else { 10220 for (i = 0; i < nchan; i++) 10221 t4_get_fcoe_stats(sc, i, &stats[i], 1); 10222 } 10223 mtx_unlock(&sc->reg_lock); 10224 if (rc != 0) 10225 return (rc); 10226 10227 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 10228 if (sb == NULL) 10229 return (ENOMEM); 10230 10231 if (nchan > 2) { 10232 sbuf_printf(sb, " channel 0 channel 1" 10233 " channel 2 channel 3"); 10234 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju %16ju %16ju", 10235 stats[0].octets_ddp, stats[1].octets_ddp, 10236 stats[2].octets_ddp, stats[3].octets_ddp); 10237 sbuf_printf(sb, "\nframesDDP: %16u %16u %16u %16u", 10238 stats[0].frames_ddp, stats[1].frames_ddp, 10239 stats[2].frames_ddp, stats[3].frames_ddp); 10240 sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u", 10241 stats[0].frames_drop, stats[1].frames_drop, 10242 stats[2].frames_drop, stats[3].frames_drop); 10243 } else { 10244 sbuf_printf(sb, " channel 0 channel 1"); 10245 sbuf_printf(sb, "\noctetsDDP: %16ju %16ju", 10246 stats[0].octets_ddp, stats[1].octets_ddp); 10247 sbuf_printf(sb, "\nframesDDP: %16u %16u", 10248 stats[0].frames_ddp, stats[1].frames_ddp); 10249 sbuf_printf(sb, "\nframesDrop: %16u %16u", 10250 stats[0].frames_drop, stats[1].frames_drop); 10251 } 10252 10253 rc = sbuf_finish(sb); 10254 sbuf_delete(sb); 10255 10256 return (rc); 10257 } 10258 10259 static int 10260 sysctl_hw_sched(SYSCTL_HANDLER_ARGS) 10261 { 10262 struct adapter *sc = arg1; 10263 struct sbuf *sb; 10264 int rc, i; 10265 unsigned int map, kbps, ipg, mode; 10266 unsigned int pace_tab[NTX_SCHED]; 10267 10268 sb = sbuf_new_for_sysctl(NULL, NULL, 512, req); 10269 if (sb == NULL) 10270 return (ENOMEM); 10271 10272 mtx_lock(&sc->reg_lock); 10273 if (hw_off_limits(sc)) { 10274 mtx_unlock(&sc->reg_lock); 10275 rc = ENXIO; 10276 goto done; 10277 } 10278 10279 map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP); 10280 mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG)); 10281 t4_read_pace_tbl(sc, pace_tab); 10282 mtx_unlock(&sc->reg_lock); 10283 10284 sbuf_printf(sb, "Scheduler Mode Channel Rate (Kbps) " 10285 "Class IPG (0.1 ns) Flow IPG (us)"); 10286 10287 for (i = 0; i < NTX_SCHED; ++i, map >>= 2) { 10288 t4_get_tx_sched(sc, i, &kbps, &ipg, 1); 10289 sbuf_printf(sb, "\n %u %-5s %u ", i, 10290 (mode & (1 << i)) ? "flow" : "class", map & 3); 10291 if (kbps) 10292 sbuf_printf(sb, "%9u ", kbps); 10293 else 10294 sbuf_printf(sb, " disabled "); 10295 10296 if (ipg) 10297 sbuf_printf(sb, "%13u ", ipg); 10298 else 10299 sbuf_printf(sb, " disabled "); 10300 10301 if (pace_tab[i]) 10302 sbuf_printf(sb, "%10u", pace_tab[i]); 10303 else 10304 sbuf_printf(sb, " disabled"); 10305 } 10306 rc = sbuf_finish(sb); 10307 done: 10308 sbuf_delete(sb); 10309 return (rc); 10310 } 10311 10312 static int 10313 sysctl_lb_stats(SYSCTL_HANDLER_ARGS) 10314 { 10315 struct adapter *sc = arg1; 10316 struct sbuf *sb; 10317 int rc, i, j; 10318 uint64_t *p0, *p1; 10319 struct lb_port_stats s[2]; 10320 static const char *stat_name[] = { 10321 "OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:", 10322 "UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:", 10323 "Frames128To255:", "Frames256To511:", "Frames512To1023:", 10324 "Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:", 10325 "BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:", 10326 "BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:", 10327 "BG2FramesTrunc:", "BG3FramesTrunc:" 10328 }; 10329 10330 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10331 if (sb == NULL) 10332 return (ENOMEM); 10333 10334 memset(s, 0, sizeof(s)); 10335 10336 rc = 0; 10337 for (i = 0; i < sc->chip_params->nchan; i += 2) { 10338 mtx_lock(&sc->reg_lock); 10339 if (hw_off_limits(sc)) 10340 rc = ENXIO; 10341 else { 10342 t4_get_lb_stats(sc, i, &s[0]); 10343 t4_get_lb_stats(sc, i + 1, &s[1]); 10344 } 10345 mtx_unlock(&sc->reg_lock); 10346 if (rc != 0) 10347 break; 10348 10349 p0 = &s[0].octets; 10350 p1 = &s[1].octets; 10351 sbuf_printf(sb, "%s Loopback %u" 10352 " Loopback %u", i == 0 ? "" : "\n", i, i + 1); 10353 10354 for (j = 0; j < nitems(stat_name); j++) 10355 sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j], 10356 *p0++, *p1++); 10357 } 10358 10359 if (rc == 0) 10360 rc = sbuf_finish(sb); 10361 sbuf_delete(sb); 10362 10363 return (rc); 10364 } 10365 10366 static int 10367 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS) 10368 { 10369 int rc = 0; 10370 struct port_info *pi = arg1; 10371 struct link_config *lc = &pi->link_cfg; 10372 struct sbuf *sb; 10373 10374 sb = sbuf_new_for_sysctl(NULL, NULL, 64, req); 10375 if (sb == NULL) 10376 return (ENOMEM); 10377 10378 if (lc->link_ok || lc->link_down_rc == 255) 10379 sbuf_printf(sb, "n/a"); 10380 else 10381 sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc)); 10382 10383 rc = sbuf_finish(sb); 10384 sbuf_delete(sb); 10385 10386 return (rc); 10387 } 10388 10389 struct mem_desc { 10390 uint64_t base; 10391 uint64_t limit; 10392 u_int idx; 10393 }; 10394 10395 static int 10396 mem_desc_cmp(const void *a, const void *b) 10397 { 10398 const uint64_t v1 = ((const struct mem_desc *)a)->base; 10399 const uint64_t v2 = ((const struct mem_desc *)b)->base; 10400 10401 if (v1 < v2) 10402 return (-1); 10403 else if (v1 > v2) 10404 return (1); 10405 10406 return (0); 10407 } 10408 10409 static void 10410 mem_region_show(struct sbuf *sb, const char *name, uint64_t from, uint64_t to) 10411 { 10412 uintmax_t size; 10413 10414 if (from == to) 10415 return; 10416 10417 size = to - from + 1; 10418 if (size == 0) 10419 return; 10420 10421 if (from > UINT32_MAX || to > UINT32_MAX) 10422 sbuf_printf(sb, "%-18s 0x%012jx-0x%012jx [%ju]\n", name, 10423 (uintmax_t)from, (uintmax_t)to, size); 10424 else 10425 sbuf_printf(sb, "%-18s 0x%08jx-0x%08jx [%ju]\n", name, 10426 (uintmax_t)from, (uintmax_t)to, size); 10427 } 10428 10429 static int 10430 sysctl_meminfo(SYSCTL_HANDLER_ARGS) 10431 { 10432 struct adapter *sc = arg1; 10433 struct sbuf *sb; 10434 int rc, i, n, nchan; 10435 uint32_t lo, hi, used, free, alloc; 10436 static const char *memory[] = { 10437 "EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:" 10438 }; 10439 static const char *region[] = { 10440 "DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:", 10441 "Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:", 10442 "Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:", 10443 "TDDP region:", "TPT region:", "STAG region:", "RQ region:", 10444 "RQUDP region:", "PBL region:", "TXPBL region:", 10445 "TLSKey region:", "RRQ region:", "NVMe STAG region:", 10446 "NVMe RQ region:", "NVMe RXPBL region:", "NVMe TPT region:", 10447 "NVMe TXPBL region:", "DBVFIFO region:", "ULPRX state:", 10448 "ULPTX state:", "RoCE RRQ region:", "On-chip queues:", 10449 }; 10450 struct mem_desc avail[4]; 10451 struct mem_desc mem[nitems(region) + 3]; /* up to 3 holes */ 10452 struct mem_desc *md; 10453 10454 rc = sysctl_wire_old_buffer(req, 0); 10455 if (rc != 0) 10456 return (rc); 10457 10458 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10459 if (sb == NULL) 10460 return (ENOMEM); 10461 10462 for (i = 0; i < nitems(mem); i++) { 10463 mem[i].limit = 0; 10464 mem[i].idx = i; 10465 } 10466 10467 mtx_lock(&sc->reg_lock); 10468 if (hw_off_limits(sc)) { 10469 rc = ENXIO; 10470 goto done; 10471 } 10472 10473 /* Find and sort the populated memory ranges */ 10474 i = 0; 10475 lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE); 10476 if (lo & F_EDRAM0_ENABLE) { 10477 hi = t4_read_reg(sc, A_MA_EDRAM0_BAR); 10478 if (chip_id(sc) >= CHELSIO_T7) { 10479 avail[i].base = (uint64_t)G_T7_EDRAM0_BASE(hi) << 20; 10480 avail[i].limit = avail[i].base + 10481 (G_T7_EDRAM0_SIZE(hi) << 20); 10482 } else { 10483 avail[i].base = (uint64_t)G_EDRAM0_BASE(hi) << 20; 10484 avail[i].limit = avail[i].base + 10485 (G_EDRAM0_SIZE(hi) << 20); 10486 } 10487 avail[i].idx = 0; 10488 i++; 10489 } 10490 if (lo & F_EDRAM1_ENABLE) { 10491 hi = t4_read_reg(sc, A_MA_EDRAM1_BAR); 10492 if (chip_id(sc) >= CHELSIO_T7) { 10493 avail[i].base = (uint64_t)G_T7_EDRAM1_BASE(hi) << 20; 10494 avail[i].limit = avail[i].base + 10495 (G_T7_EDRAM1_SIZE(hi) << 20); 10496 } else { 10497 avail[i].base = (uint64_t)G_EDRAM1_BASE(hi) << 20; 10498 avail[i].limit = avail[i].base + 10499 (G_EDRAM1_SIZE(hi) << 20); 10500 } 10501 avail[i].idx = 1; 10502 i++; 10503 } 10504 if (lo & F_EXT_MEM_ENABLE) { 10505 switch (chip_id(sc)) { 10506 case CHELSIO_T4: 10507 case CHELSIO_T6: 10508 hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR); 10509 avail[i].base = (uint64_t)G_EXT_MEM_BASE(hi) << 20; 10510 avail[i].limit = avail[i].base + 10511 (G_EXT_MEM_SIZE(hi) << 20); 10512 avail[i].idx = 2; 10513 break; 10514 case CHELSIO_T5: 10515 hi = t4_read_reg(sc, A_MA_EXT_MEMORY0_BAR); 10516 avail[i].base = (uint64_t)G_EXT_MEM0_BASE(hi) << 20; 10517 avail[i].limit = avail[i].base + 10518 (G_EXT_MEM0_SIZE(hi) << 20); 10519 avail[i].idx = 3; /* Call it MC0 for T5 */ 10520 break; 10521 default: 10522 hi = t4_read_reg(sc, A_MA_EXT_MEMORY0_BAR); 10523 avail[i].base = (uint64_t)G_T7_EXT_MEM0_BASE(hi) << 20; 10524 avail[i].limit = avail[i].base + 10525 (G_T7_EXT_MEM0_SIZE(hi) << 20); 10526 avail[i].idx = 3; /* Call it MC0 for T7+ */ 10527 break; 10528 } 10529 i++; 10530 } 10531 if (lo & F_EXT_MEM1_ENABLE && !(lo & F_MC_SPLIT)) { 10532 /* Only T5 and T7+ have 2 MCs. */ 10533 MPASS(is_t5(sc) || chip_id(sc) >= CHELSIO_T7); 10534 10535 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 10536 if (chip_id(sc) >= CHELSIO_T7) { 10537 avail[i].base = (uint64_t)G_T7_EXT_MEM1_BASE(hi) << 20; 10538 avail[i].limit = avail[i].base + 10539 (G_T7_EXT_MEM1_SIZE(hi) << 20); 10540 } else { 10541 avail[i].base = (uint64_t)G_EXT_MEM1_BASE(hi) << 20; 10542 avail[i].limit = avail[i].base + 10543 (G_EXT_MEM1_SIZE(hi) << 20); 10544 } 10545 avail[i].idx = 4; 10546 i++; 10547 } 10548 if (lo & F_HMA_MUX) { 10549 /* Only T6+ have HMA. */ 10550 MPASS(chip_id(sc) >= CHELSIO_T6); 10551 10552 if (chip_id(sc) >= CHELSIO_T7) { 10553 hi = t4_read_reg(sc, A_MA_HOST_MEMORY_BAR); 10554 avail[i].base = (uint64_t)G_HMATARGETBASE(hi) << 20; 10555 avail[i].limit = avail[i].base + 10556 (G_T7_HMA_SIZE(hi) << 20); 10557 } else { 10558 hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR); 10559 avail[i].base = G_EXT_MEM1_BASE(hi) << 20; 10560 avail[i].limit = avail[i].base + 10561 (G_EXT_MEM1_SIZE(hi) << 20); 10562 } 10563 avail[i].idx = 5; 10564 i++; 10565 } 10566 MPASS(i <= nitems(avail)); 10567 if (!i) /* no memory available */ 10568 goto done; 10569 qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp); 10570 10571 md = &mem[0]; 10572 (md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR); 10573 (md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR); 10574 (md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR); 10575 (md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 10576 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE); 10577 (md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE); 10578 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE); 10579 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE); 10580 (md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE); 10581 10582 /* the next few have explicit upper bounds */ 10583 md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE); 10584 md->limit = md->base - 1 + 10585 t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) * 10586 G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE)); 10587 md++; 10588 10589 md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE); 10590 md->limit = md->base - 1 + 10591 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) * 10592 G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE)); 10593 md++; 10594 10595 if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 10596 if (chip_id(sc) <= CHELSIO_T5) 10597 md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE); 10598 else 10599 md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR); 10600 md->limit = 0; 10601 } else { 10602 md->base = 0; 10603 md->idx = nitems(region); /* hide it */ 10604 } 10605 md++; 10606 10607 #define ulp_region(reg) do {\ 10608 const u_int shift = chip_id(sc) >= CHELSIO_T7 ? 4 : 0; \ 10609 md->base = (uint64_t)t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT) << shift; \ 10610 md->limit = (uint64_t)t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT) << shift; \ 10611 md->limit += (1 << shift) - 1; \ 10612 md++; \ 10613 } while (0) 10614 10615 #define hide_ulp_region() do { \ 10616 md->base = 0; \ 10617 md->idx = nitems(region); \ 10618 md++; \ 10619 } while (0) 10620 10621 ulp_region(RX_ISCSI); 10622 ulp_region(RX_TDDP); 10623 ulp_region(TX_TPT); 10624 ulp_region(RX_STAG); 10625 ulp_region(RX_RQ); 10626 if (chip_id(sc) < CHELSIO_T7) 10627 ulp_region(RX_RQUDP); 10628 else 10629 hide_ulp_region(); 10630 ulp_region(RX_PBL); 10631 ulp_region(TX_PBL); 10632 if (chip_id(sc) >= CHELSIO_T6) 10633 ulp_region(RX_TLS_KEY); 10634 else 10635 hide_ulp_region(); 10636 if (chip_id(sc) >= CHELSIO_T7) { 10637 ulp_region(RX_RRQ); 10638 ulp_region(RX_NVME_TCP_STAG); 10639 ulp_region(RX_NVME_TCP_RQ); 10640 ulp_region(RX_NVME_TCP_PBL); 10641 ulp_region(TX_NVME_TCP_TPT); 10642 ulp_region(TX_NVME_TCP_PBL); 10643 } else { 10644 hide_ulp_region(); 10645 hide_ulp_region(); 10646 hide_ulp_region(); 10647 hide_ulp_region(); 10648 hide_ulp_region(); 10649 hide_ulp_region(); 10650 } 10651 #undef ulp_region 10652 #undef hide_ulp_region 10653 10654 md->base = 0; 10655 if (is_t4(sc)) 10656 md->idx = nitems(region); 10657 else { 10658 uint32_t size = 0; 10659 uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2); 10660 uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE); 10661 10662 if (is_t5(sc)) { 10663 if (sge_ctrl & F_VFIFO_ENABLE) 10664 size = fifo_size << 2; 10665 } else 10666 size = G_T6_DBVFIFO_SIZE(fifo_size) << 6; 10667 10668 if (size) { 10669 md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR); 10670 md->limit = md->base + size - 1; 10671 } else 10672 md->idx = nitems(region); 10673 } 10674 md++; 10675 10676 md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE); 10677 md->limit = 0; 10678 md++; 10679 md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE); 10680 md->limit = 0; 10681 md++; 10682 10683 if (chip_id(sc) >= CHELSIO_T7) { 10684 t4_tp_pio_read(sc, &lo, 1, A_TP_ROCE_RRQ_BASE, false); 10685 md->base = lo; 10686 } else { 10687 md->base = 0; 10688 md->idx = nitems(region); 10689 } 10690 md++; 10691 10692 md->base = sc->vres.ocq.start; 10693 if (sc->vres.ocq.size) 10694 md->limit = md->base + sc->vres.ocq.size - 1; 10695 else 10696 md->idx = nitems(region); /* hide it */ 10697 md++; 10698 10699 /* add any address-space holes, there can be up to 3 */ 10700 for (n = 0; n < i - 1; n++) 10701 if (avail[n].limit < avail[n + 1].base) 10702 (md++)->base = avail[n].limit; 10703 if (avail[n].limit) 10704 (md++)->base = avail[n].limit; 10705 10706 n = md - mem; 10707 MPASS(n <= nitems(mem)); 10708 qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp); 10709 10710 for (lo = 0; lo < i; lo++) 10711 mem_region_show(sb, memory[avail[lo].idx], avail[lo].base, 10712 avail[lo].limit - 1); 10713 10714 sbuf_printf(sb, "\n"); 10715 for (i = 0; i < n; i++) { 10716 if (mem[i].idx >= nitems(region)) 10717 continue; /* skip holes */ 10718 if (!mem[i].limit) 10719 mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0; 10720 mem_region_show(sb, region[mem[i].idx], mem[i].base, 10721 mem[i].limit); 10722 } 10723 10724 lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR); 10725 hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1; 10726 if (hi != lo - 1) { 10727 sbuf_printf(sb, "\n"); 10728 mem_region_show(sb, "uP RAM:", lo, hi); 10729 } 10730 10731 lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR); 10732 hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1; 10733 if (hi != lo - 1) 10734 mem_region_show(sb, "uP Extmem2:", lo, hi); 10735 10736 lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE); 10737 if (chip_id(sc) >= CHELSIO_T7) 10738 nchan = 1 << G_T7_PMRXNUMCHN(lo); 10739 else 10740 nchan = lo & F_PMRXNUMCHN ? 2 : 1; 10741 for (i = 0, free = 0; i < nchan; i++) 10742 free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT)); 10743 sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n", 10744 G_PMRXMAXPAGE(lo), free, 10745 t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10, nchan); 10746 10747 lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE); 10748 hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE); 10749 if (chip_id(sc) >= CHELSIO_T7) 10750 nchan = 1 << G_T7_PMTXNUMCHN(lo); 10751 else 10752 nchan = 1 << G_PMTXNUMCHN(lo); 10753 for (i = 0, free = 0; i < nchan; i++) 10754 free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT)); 10755 sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n", 10756 G_PMTXMAXPAGE(lo), free, 10757 hi >= (1 << 20) ? (hi >> 20) : (hi >> 10), 10758 hi >= (1 << 20) ? 'M' : 'K', nchan); 10759 sbuf_printf(sb, "%u p-structs (%u free)\n", 10760 t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT), 10761 G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT))); 10762 10763 for (i = 0; i < 4; i++) { 10764 if (chip_id(sc) > CHELSIO_T5) 10765 lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4); 10766 else 10767 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4); 10768 if (is_t5(sc)) { 10769 used = G_T5_USED(lo); 10770 alloc = G_T5_ALLOC(lo); 10771 } else { 10772 used = G_USED(lo); 10773 alloc = G_ALLOC(lo); 10774 } 10775 /* For T6+ these are MAC buffer groups */ 10776 sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated", 10777 i, used, alloc); 10778 } 10779 for (i = 0; i < sc->chip_params->nchan; i++) { 10780 if (chip_id(sc) > CHELSIO_T5) 10781 lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4); 10782 else 10783 lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4); 10784 if (is_t5(sc)) { 10785 used = G_T5_USED(lo); 10786 alloc = G_T5_ALLOC(lo); 10787 } else { 10788 used = G_USED(lo); 10789 alloc = G_ALLOC(lo); 10790 } 10791 /* For T6+ these are MAC buffer groups */ 10792 sbuf_printf(sb, 10793 "\nLoopback %d using %u pages out of %u allocated", 10794 i, used, alloc); 10795 } 10796 done: 10797 mtx_unlock(&sc->reg_lock); 10798 if (rc == 0) 10799 rc = sbuf_finish(sb); 10800 sbuf_delete(sb); 10801 return (rc); 10802 } 10803 10804 static inline void 10805 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask) 10806 { 10807 *mask = x | y; 10808 y = htobe64(y); 10809 memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN); 10810 } 10811 10812 static int 10813 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS) 10814 { 10815 struct adapter *sc = arg1; 10816 struct sbuf *sb; 10817 int rc, i; 10818 10819 MPASS(chip_id(sc) <= CHELSIO_T5); 10820 10821 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10822 if (sb == NULL) 10823 return (ENOMEM); 10824 10825 sbuf_printf(sb, 10826 "Idx Ethernet address Mask Vld Ports PF" 10827 " VF Replication P0 P1 P2 P3 ML"); 10828 rc = 0; 10829 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10830 uint64_t tcamx, tcamy, mask; 10831 uint32_t cls_lo, cls_hi; 10832 uint8_t addr[ETHER_ADDR_LEN]; 10833 10834 mtx_lock(&sc->reg_lock); 10835 if (hw_off_limits(sc)) 10836 rc = ENXIO; 10837 else { 10838 tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i)); 10839 tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i)); 10840 } 10841 mtx_unlock(&sc->reg_lock); 10842 if (rc != 0) 10843 break; 10844 if (tcamx & tcamy) 10845 continue; 10846 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10847 mtx_lock(&sc->reg_lock); 10848 if (hw_off_limits(sc)) 10849 rc = ENXIO; 10850 else { 10851 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 10852 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 10853 } 10854 mtx_unlock(&sc->reg_lock); 10855 if (rc != 0) 10856 break; 10857 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx" 10858 " %c %#x%4u%4d", i, addr[0], addr[1], addr[2], 10859 addr[3], addr[4], addr[5], (uintmax_t)mask, 10860 (cls_lo & F_SRAM_VLD) ? 'Y' : 'N', 10861 G_PORTMAP(cls_hi), G_PF(cls_lo), 10862 (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1); 10863 10864 if (cls_lo & F_REPLICATE) { 10865 struct fw_ldst_cmd ldst_cmd; 10866 10867 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10868 ldst_cmd.op_to_addrspace = 10869 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 10870 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10871 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 10872 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 10873 ldst_cmd.u.mps.rplc.fid_idx = 10874 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 10875 V_FW_LDST_CMD_IDX(i)); 10876 10877 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 10878 "t4mps"); 10879 if (rc) 10880 break; 10881 if (hw_off_limits(sc)) 10882 rc = ENXIO; 10883 else 10884 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 10885 sizeof(ldst_cmd), &ldst_cmd); 10886 end_synchronized_op(sc, 0); 10887 if (rc != 0) 10888 break; 10889 else { 10890 sbuf_printf(sb, " %08x %08x %08x %08x", 10891 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 10892 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 10893 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 10894 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 10895 } 10896 } else 10897 sbuf_printf(sb, "%36s", ""); 10898 10899 sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo), 10900 G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo), 10901 G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf); 10902 } 10903 10904 if (rc) 10905 (void) sbuf_finish(sb); 10906 else 10907 rc = sbuf_finish(sb); 10908 sbuf_delete(sb); 10909 10910 return (rc); 10911 } 10912 10913 static int 10914 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS) 10915 { 10916 struct adapter *sc = arg1; 10917 struct sbuf *sb; 10918 int rc, i; 10919 10920 MPASS(chip_id(sc) == CHELSIO_T6); 10921 10922 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 10923 if (sb == NULL) 10924 return (ENOMEM); 10925 10926 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 10927 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 10928 " Replication" 10929 " P0 P1 P2 P3 ML"); 10930 10931 rc = 0; 10932 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 10933 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 10934 uint16_t ivlan; 10935 uint64_t tcamx, tcamy, val, mask; 10936 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 10937 uint8_t addr[ETHER_ADDR_LEN]; 10938 10939 ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0); 10940 if (i < 256) 10941 ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0); 10942 else 10943 ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1); 10944 mtx_lock(&sc->reg_lock); 10945 if (hw_off_limits(sc)) 10946 rc = ENXIO; 10947 else { 10948 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10949 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10950 tcamy = G_DMACH(val) << 32; 10951 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10952 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10953 } 10954 mtx_unlock(&sc->reg_lock); 10955 if (rc != 0) 10956 break; 10957 10958 lookup_type = G_DATALKPTYPE(data2); 10959 port_num = G_DATAPORTNUM(data2); 10960 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10961 /* Inner header VNI */ 10962 vniy = ((data2 & F_DATAVIDH2) << 23) | 10963 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10964 dip_hit = data2 & F_DATADIPHIT; 10965 vlan_vld = 0; 10966 } else { 10967 vniy = 0; 10968 dip_hit = 0; 10969 vlan_vld = data2 & F_DATAVIDH2; 10970 ivlan = G_VIDL(val); 10971 } 10972 10973 ctl |= V_CTLXYBITSEL(1); 10974 mtx_lock(&sc->reg_lock); 10975 if (hw_off_limits(sc)) 10976 rc = ENXIO; 10977 else { 10978 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 10979 val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1); 10980 tcamx = G_DMACH(val) << 32; 10981 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1); 10982 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1); 10983 } 10984 mtx_unlock(&sc->reg_lock); 10985 if (rc != 0) 10986 break; 10987 10988 if (lookup_type && lookup_type != M_DATALKPTYPE) { 10989 /* Inner header VNI mask */ 10990 vnix = ((data2 & F_DATAVIDH2) << 23) | 10991 (G_DATAVIDH1(data2) << 16) | G_VIDL(val); 10992 } else 10993 vnix = 0; 10994 10995 if (tcamx & tcamy) 10996 continue; 10997 tcamxy2valmask(tcamx, tcamy, addr, &mask); 10998 10999 mtx_lock(&sc->reg_lock); 11000 if (hw_off_limits(sc)) 11001 rc = ENXIO; 11002 else { 11003 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 11004 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 11005 } 11006 mtx_unlock(&sc->reg_lock); 11007 if (rc != 0) 11008 break; 11009 11010 if (lookup_type && lookup_type != M_DATALKPTYPE) { 11011 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 11012 "%012jx %06x %06x - - %3c" 11013 " I %4x %3c %#x%4u%4d", i, addr[0], 11014 addr[1], addr[2], addr[3], addr[4], addr[5], 11015 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 11016 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 11017 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 11018 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 11019 } else { 11020 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 11021 "%012jx - - ", i, addr[0], addr[1], 11022 addr[2], addr[3], addr[4], addr[5], 11023 (uintmax_t)mask); 11024 11025 if (vlan_vld) 11026 sbuf_printf(sb, "%4u Y ", ivlan); 11027 else 11028 sbuf_printf(sb, " - N "); 11029 11030 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 11031 lookup_type ? 'I' : 'O', port_num, 11032 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 11033 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 11034 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 11035 } 11036 11037 11038 if (cls_lo & F_T6_REPLICATE) { 11039 struct fw_ldst_cmd ldst_cmd; 11040 11041 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 11042 ldst_cmd.op_to_addrspace = 11043 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 11044 F_FW_CMD_REQUEST | F_FW_CMD_READ | 11045 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 11046 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 11047 ldst_cmd.u.mps.rplc.fid_idx = 11048 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 11049 V_FW_LDST_CMD_IDX(i)); 11050 11051 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 11052 "t6mps"); 11053 if (rc) 11054 break; 11055 if (hw_off_limits(sc)) 11056 rc = ENXIO; 11057 else 11058 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 11059 sizeof(ldst_cmd), &ldst_cmd); 11060 end_synchronized_op(sc, 0); 11061 if (rc != 0) 11062 break; 11063 else { 11064 sbuf_printf(sb, " %08x %08x %08x %08x" 11065 " %08x %08x %08x %08x", 11066 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 11067 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 11068 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 11069 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 11070 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 11071 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 11072 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 11073 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 11074 } 11075 } else 11076 sbuf_printf(sb, "%72s", ""); 11077 11078 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 11079 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 11080 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 11081 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 11082 } 11083 11084 if (rc) 11085 (void) sbuf_finish(sb); 11086 else 11087 rc = sbuf_finish(sb); 11088 sbuf_delete(sb); 11089 11090 return (rc); 11091 } 11092 11093 static int 11094 sysctl_mps_tcam_t7(SYSCTL_HANDLER_ARGS) 11095 { 11096 struct adapter *sc = arg1; 11097 struct sbuf *sb; 11098 int rc, i; 11099 11100 MPASS(chip_id(sc) >= CHELSIO_T7); 11101 11102 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11103 if (sb == NULL) 11104 return (ENOMEM); 11105 11106 sbuf_printf(sb, "Idx Ethernet address Mask VNI Mask" 11107 " IVLAN Vld DIP_Hit Lookup Port Vld Ports PF VF" 11108 " Replication" 11109 " P0 P1 P2 P3 ML"); 11110 11111 rc = 0; 11112 for (i = 0; i < sc->chip_params->mps_tcam_size; i++) { 11113 uint8_t dip_hit, vlan_vld, lookup_type, port_num; 11114 uint16_t ivlan; 11115 uint64_t tcamx, tcamy, val, mask; 11116 uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy; 11117 uint8_t addr[ETHER_ADDR_LEN]; 11118 11119 /* Read tcamy */ 11120 ctl = (V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0)); 11121 if (chip_rev(sc) == 0) { 11122 if (i < 256) 11123 ctl |= V_CTLTCAMINDEX(i) | V_T7_CTLTCAMSEL(0); 11124 else 11125 ctl |= V_CTLTCAMINDEX(i - 256) | V_T7_CTLTCAMSEL(1); 11126 } else { 11127 #if 0 11128 ctl = (V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0)); 11129 #endif 11130 if (i < 512) 11131 ctl |= V_CTLTCAMINDEX(i) | V_T7_CTLTCAMSEL(0); 11132 else if (i < 1024) 11133 ctl |= V_CTLTCAMINDEX(i - 512) | V_T7_CTLTCAMSEL(1); 11134 else 11135 ctl |= V_CTLTCAMINDEX(i - 1024) | V_T7_CTLTCAMSEL(2); 11136 } 11137 11138 mtx_lock(&sc->reg_lock); 11139 if (hw_off_limits(sc)) 11140 rc = ENXIO; 11141 else { 11142 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 11143 val = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA1_REQ_ID1); 11144 tcamy = G_DMACH(val) << 32; 11145 tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA0_REQ_ID1); 11146 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA2_REQ_ID1); 11147 } 11148 mtx_unlock(&sc->reg_lock); 11149 if (rc != 0) 11150 break; 11151 11152 lookup_type = G_DATALKPTYPE(data2); 11153 port_num = G_DATAPORTNUM(data2); 11154 if (lookup_type && lookup_type != M_DATALKPTYPE) { 11155 /* Inner header VNI */ 11156 vniy = (((data2 & F_DATAVIDH2) | 11157 G_DATAVIDH1(data2)) << 16) | G_VIDL(val); 11158 dip_hit = data2 & F_DATADIPHIT; 11159 vlan_vld = 0; 11160 } else { 11161 vniy = 0; 11162 dip_hit = 0; 11163 vlan_vld = data2 & F_DATAVIDH2; 11164 ivlan = G_VIDL(val); 11165 } 11166 11167 ctl |= V_CTLXYBITSEL(1); 11168 mtx_lock(&sc->reg_lock); 11169 if (hw_off_limits(sc)) 11170 rc = ENXIO; 11171 else { 11172 t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl); 11173 val = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA1_REQ_ID1); 11174 tcamx = G_DMACH(val) << 32; 11175 tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA0_REQ_ID1); 11176 data2 = t4_read_reg(sc, A_MPS_CLS_TCAM0_RDATA2_REQ_ID1); 11177 } 11178 mtx_unlock(&sc->reg_lock); 11179 if (rc != 0) 11180 break; 11181 11182 if (lookup_type && lookup_type != M_DATALKPTYPE) { 11183 /* Inner header VNI mask */ 11184 vnix = (((data2 & F_DATAVIDH2) | 11185 G_DATAVIDH1(data2)) << 16) | G_VIDL(val); 11186 } else 11187 vnix = 0; 11188 11189 if (tcamx & tcamy) 11190 continue; 11191 tcamxy2valmask(tcamx, tcamy, addr, &mask); 11192 11193 mtx_lock(&sc->reg_lock); 11194 if (hw_off_limits(sc)) 11195 rc = ENXIO; 11196 else { 11197 if (chip_rev(sc) == 0) { 11198 cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i)); 11199 cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i)); 11200 } else { 11201 t4_write_reg(sc, A_MPS_CLS_SRAM_H, 11202 V_SRAMWRN(0) | V_SRAMINDEX(i)); 11203 cls_lo = t4_read_reg(sc, A_MPS_CLS_SRAM_L); 11204 cls_hi = t4_read_reg(sc, A_MPS_CLS_SRAM_H); 11205 } 11206 } 11207 mtx_unlock(&sc->reg_lock); 11208 if (rc != 0) 11209 break; 11210 11211 if (lookup_type && lookup_type != M_DATALKPTYPE) { 11212 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 11213 "%012jx %06x %06x - - %3c" 11214 " I %4x %3c %#x%4u%4d", i, addr[0], 11215 addr[1], addr[2], addr[3], addr[4], addr[5], 11216 (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N', 11217 port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 11218 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 11219 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 11220 } else { 11221 sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x " 11222 "%012jx - - ", i, addr[0], addr[1], 11223 addr[2], addr[3], addr[4], addr[5], 11224 (uintmax_t)mask); 11225 11226 if (vlan_vld) 11227 sbuf_printf(sb, "%4u Y ", ivlan); 11228 else 11229 sbuf_printf(sb, " - N "); 11230 11231 sbuf_printf(sb, "- %3c %4x %3c %#x%4u%4d", 11232 lookup_type ? 'I' : 'O', port_num, 11233 cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N', 11234 G_PORTMAP(cls_hi), G_T6_PF(cls_lo), 11235 cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1); 11236 } 11237 11238 if (cls_lo & F_T6_REPLICATE) { 11239 struct fw_ldst_cmd ldst_cmd; 11240 11241 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 11242 ldst_cmd.op_to_addrspace = 11243 htobe32(V_FW_CMD_OP(FW_LDST_CMD) | 11244 F_FW_CMD_REQUEST | F_FW_CMD_READ | 11245 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS)); 11246 ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd)); 11247 ldst_cmd.u.mps.rplc.fid_idx = 11248 htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) | 11249 V_FW_LDST_CMD_IDX(i)); 11250 11251 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, 11252 "t6mps"); 11253 if (rc) 11254 break; 11255 if (hw_off_limits(sc)) 11256 rc = ENXIO; 11257 else 11258 rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd, 11259 sizeof(ldst_cmd), &ldst_cmd); 11260 end_synchronized_op(sc, 0); 11261 if (rc != 0) 11262 break; 11263 else { 11264 sbuf_printf(sb, " %08x %08x %08x %08x" 11265 " %08x %08x %08x %08x", 11266 be32toh(ldst_cmd.u.mps.rplc.rplc255_224), 11267 be32toh(ldst_cmd.u.mps.rplc.rplc223_192), 11268 be32toh(ldst_cmd.u.mps.rplc.rplc191_160), 11269 be32toh(ldst_cmd.u.mps.rplc.rplc159_128), 11270 be32toh(ldst_cmd.u.mps.rplc.rplc127_96), 11271 be32toh(ldst_cmd.u.mps.rplc.rplc95_64), 11272 be32toh(ldst_cmd.u.mps.rplc.rplc63_32), 11273 be32toh(ldst_cmd.u.mps.rplc.rplc31_0)); 11274 } 11275 } else 11276 sbuf_printf(sb, "%72s", ""); 11277 11278 sbuf_printf(sb, "%4u%3u%3u%3u %#x", 11279 G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo), 11280 G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo), 11281 (cls_lo >> S_T6_MULTILISTEN0) & 0xf); 11282 } 11283 11284 if (rc) 11285 (void) sbuf_finish(sb); 11286 else 11287 rc = sbuf_finish(sb); 11288 sbuf_delete(sb); 11289 11290 return (rc); 11291 } 11292 11293 static int 11294 sysctl_path_mtus(SYSCTL_HANDLER_ARGS) 11295 { 11296 struct adapter *sc = arg1; 11297 struct sbuf *sb; 11298 int rc; 11299 uint16_t mtus[NMTUS]; 11300 11301 rc = 0; 11302 mtx_lock(&sc->reg_lock); 11303 if (hw_off_limits(sc)) 11304 rc = ENXIO; 11305 else 11306 t4_read_mtu_tbl(sc, mtus, NULL); 11307 mtx_unlock(&sc->reg_lock); 11308 if (rc != 0) 11309 return (rc); 11310 11311 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11312 if (sb == NULL) 11313 return (ENOMEM); 11314 11315 sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u", 11316 mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6], 11317 mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13], 11318 mtus[14], mtus[15]); 11319 11320 rc = sbuf_finish(sb); 11321 sbuf_delete(sb); 11322 11323 return (rc); 11324 } 11325 11326 static int 11327 sysctl_pm_stats(SYSCTL_HANDLER_ARGS) 11328 { 11329 struct adapter *sc = arg1; 11330 struct sbuf *sb; 11331 int rc, i; 11332 uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS]; 11333 uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS]; 11334 uint32_t stats[T7_PM_RX_CACHE_NSTATS]; 11335 static const char *tx_stats[MAX_PM_NSTATS] = { 11336 "Read:", "Write bypass:", "Write mem:", "Bypass + mem:", 11337 "Tx FIFO wait", NULL, "Tx latency" 11338 }; 11339 static const char *rx_stats[MAX_PM_NSTATS] = { 11340 "Read:", "Write bypass:", "Write mem:", "Flush:", 11341 "Rx FIFO wait", NULL, "Rx latency" 11342 }; 11343 11344 rc = 0; 11345 mtx_lock(&sc->reg_lock); 11346 if (hw_off_limits(sc)) 11347 rc = ENXIO; 11348 else { 11349 t4_pmtx_get_stats(sc, tx_cnt, tx_cyc); 11350 t4_pmrx_get_stats(sc, rx_cnt, rx_cyc); 11351 if (chip_id(sc) >= CHELSIO_T7) 11352 t4_pmrx_cache_get_stats(sc, stats); 11353 } 11354 mtx_unlock(&sc->reg_lock); 11355 if (rc != 0) 11356 return (rc); 11357 11358 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11359 if (sb == NULL) 11360 return (ENOMEM); 11361 11362 sbuf_printf(sb, " Tx pcmds Tx bytes"); 11363 for (i = 0; i < 4; i++) { 11364 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 11365 tx_cyc[i]); 11366 } 11367 11368 sbuf_printf(sb, "\n Rx pcmds Rx bytes"); 11369 for (i = 0; i < 4; i++) { 11370 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 11371 rx_cyc[i]); 11372 } 11373 11374 if (chip_id(sc) > CHELSIO_T5) { 11375 sbuf_printf(sb, 11376 "\n Total wait Total occupancy"); 11377 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 11378 tx_cyc[i]); 11379 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 11380 rx_cyc[i]); 11381 11382 i += 2; 11383 MPASS(i < nitems(tx_stats)); 11384 11385 sbuf_printf(sb, 11386 "\n Reads Total wait"); 11387 sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i], 11388 tx_cyc[i]); 11389 sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i], 11390 rx_cyc[i]); 11391 } 11392 11393 if (chip_id(sc) >= CHELSIO_T7) { 11394 i = 0; 11395 sbuf_printf(sb, "\n\nPM RX Cache Stats\n"); 11396 sbuf_printf(sb, "%-40s %u\n", "ReqWrite", stats[i++]); 11397 sbuf_printf(sb, "%-40s %u\n", "ReqReadInv", stats[i++]); 11398 sbuf_printf(sb, "%-40s %u\n", "ReqReadNoInv", stats[i++]); 11399 sbuf_printf(sb, "%-40s %u\n", "Write Split Request", 11400 stats[i++]); 11401 sbuf_printf(sb, "%-40s %u\n", 11402 "Normal Read Split (Read Invalidate)", stats[i++]); 11403 sbuf_printf(sb, "%-40s %u\n", 11404 "Feedback Read Split (Read NoInvalidate)", 11405 stats[i++]); 11406 sbuf_printf(sb, "%-40s %u\n", "Write Hit", stats[i++]); 11407 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit", 11408 stats[i++]); 11409 sbuf_printf(sb, "%-40s %u\n", "Feedback Read Hit", 11410 stats[i++]); 11411 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit Full Avail", 11412 stats[i++]); 11413 sbuf_printf(sb, "%-40s %u\n", "Normal Read Hit Full UnAvail", 11414 stats[i++]); 11415 sbuf_printf(sb, "%-40s %u\n", 11416 "Normal Read Hit Partial Avail", 11417 stats[i++]); 11418 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Full Avail", 11419 stats[i++]); 11420 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Full UnAvail", 11421 stats[i++]); 11422 sbuf_printf(sb, "%-40s %u\n", "FB Read Hit Partial Avail", 11423 stats[i++]); 11424 sbuf_printf(sb, "%-40s %u\n", "Normal Read Full Free", 11425 stats[i++]); 11426 sbuf_printf(sb, "%-40s %u\n", 11427 "Normal Read Part-avail Mul-Regions", 11428 stats[i++]); 11429 sbuf_printf(sb, "%-40s %u\n", 11430 "FB Read Part-avail Mul-Regions", 11431 stats[i++]); 11432 sbuf_printf(sb, "%-40s %u\n", "Write Miss FL Used", 11433 stats[i++]); 11434 sbuf_printf(sb, "%-40s %u\n", "Write Miss LRU Used", 11435 stats[i++]); 11436 sbuf_printf(sb, "%-40s %u\n", 11437 "Write Miss LRU-Multiple Evict", stats[i++]); 11438 sbuf_printf(sb, "%-40s %u\n", 11439 "Write Hit Increasing Islands", stats[i++]); 11440 sbuf_printf(sb, "%-40s %u\n", 11441 "Normal Read Island Read split", stats[i++]); 11442 sbuf_printf(sb, "%-40s %u\n", "Write Overflow Eviction", 11443 stats[i++]); 11444 sbuf_printf(sb, "%-40s %u", "Read Overflow Eviction", 11445 stats[i++]); 11446 } 11447 11448 rc = sbuf_finish(sb); 11449 sbuf_delete(sb); 11450 11451 return (rc); 11452 } 11453 11454 static int 11455 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS) 11456 { 11457 struct adapter *sc = arg1; 11458 struct sbuf *sb; 11459 int rc; 11460 struct tp_rdma_stats stats; 11461 11462 rc = 0; 11463 mtx_lock(&sc->reg_lock); 11464 if (hw_off_limits(sc)) 11465 rc = ENXIO; 11466 else 11467 t4_tp_get_rdma_stats(sc, &stats, 0); 11468 mtx_unlock(&sc->reg_lock); 11469 if (rc != 0) 11470 return (rc); 11471 11472 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11473 if (sb == NULL) 11474 return (ENOMEM); 11475 11476 sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod); 11477 sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt); 11478 11479 rc = sbuf_finish(sb); 11480 sbuf_delete(sb); 11481 11482 return (rc); 11483 } 11484 11485 static int 11486 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS) 11487 { 11488 struct adapter *sc = arg1; 11489 struct sbuf *sb; 11490 int rc; 11491 struct tp_tcp_stats v4, v6; 11492 11493 rc = 0; 11494 mtx_lock(&sc->reg_lock); 11495 if (hw_off_limits(sc)) 11496 rc = ENXIO; 11497 else 11498 t4_tp_get_tcp_stats(sc, &v4, &v6, 0); 11499 mtx_unlock(&sc->reg_lock); 11500 if (rc != 0) 11501 return (rc); 11502 11503 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11504 if (sb == NULL) 11505 return (ENOMEM); 11506 11507 sbuf_printf(sb, 11508 " IP IPv6\n"); 11509 sbuf_printf(sb, "OutRsts: %20u %20u\n", 11510 v4.tcp_out_rsts, v6.tcp_out_rsts); 11511 sbuf_printf(sb, "InSegs: %20ju %20ju\n", 11512 v4.tcp_in_segs, v6.tcp_in_segs); 11513 sbuf_printf(sb, "OutSegs: %20ju %20ju\n", 11514 v4.tcp_out_segs, v6.tcp_out_segs); 11515 sbuf_printf(sb, "RetransSegs: %20ju %20ju", 11516 v4.tcp_retrans_segs, v6.tcp_retrans_segs); 11517 11518 rc = sbuf_finish(sb); 11519 sbuf_delete(sb); 11520 11521 return (rc); 11522 } 11523 11524 static int 11525 sysctl_tids(SYSCTL_HANDLER_ARGS) 11526 { 11527 struct adapter *sc = arg1; 11528 struct sbuf *sb; 11529 int rc; 11530 uint32_t x, y; 11531 struct tid_info *t = &sc->tids; 11532 11533 rc = 0; 11534 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11535 if (sb == NULL) 11536 return (ENOMEM); 11537 11538 if (t->natids) { 11539 sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1, 11540 t->atids_in_use); 11541 } 11542 11543 if (t->nhpftids) { 11544 sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n", 11545 t->hpftid_base, t->hpftid_end, t->hpftids_in_use); 11546 } 11547 11548 if (t->ntids) { 11549 bool hashen = false; 11550 11551 mtx_lock(&sc->reg_lock); 11552 if (hw_off_limits(sc)) 11553 rc = ENXIO; 11554 else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) { 11555 hashen = true; 11556 if (chip_id(sc) <= CHELSIO_T5) { 11557 x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4; 11558 y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4; 11559 } else { 11560 x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX); 11561 y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE); 11562 } 11563 } 11564 mtx_unlock(&sc->reg_lock); 11565 if (rc != 0) 11566 goto done; 11567 11568 sbuf_printf(sb, "TID range: "); 11569 if (hashen) { 11570 if (x) 11571 sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1); 11572 sbuf_printf(sb, "%u-%u", y, t->ntids - 1); 11573 } else { 11574 sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base + 11575 t->ntids - 1); 11576 } 11577 sbuf_printf(sb, ", in use: %u\n", 11578 atomic_load_acq_int(&t->tids_in_use)); 11579 } 11580 11581 if (t->nstids) { 11582 sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base, 11583 t->stid_base + t->nstids - 1, t->stids_in_use); 11584 } 11585 11586 if (t->nftids) { 11587 sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base, 11588 t->ftid_end, t->ftids_in_use); 11589 } 11590 11591 if (t->netids) { 11592 sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base, 11593 t->etid_base + t->netids - 1, t->etids_in_use); 11594 } 11595 11596 mtx_lock(&sc->reg_lock); 11597 if (hw_off_limits(sc)) 11598 rc = ENXIO; 11599 else { 11600 x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4); 11601 y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6); 11602 } 11603 mtx_unlock(&sc->reg_lock); 11604 if (rc != 0) 11605 goto done; 11606 sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y); 11607 done: 11608 if (rc == 0) 11609 rc = sbuf_finish(sb); 11610 else 11611 (void)sbuf_finish(sb); 11612 sbuf_delete(sb); 11613 11614 return (rc); 11615 } 11616 11617 static int 11618 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS) 11619 { 11620 struct adapter *sc = arg1; 11621 struct sbuf *sb; 11622 int rc; 11623 struct tp_err_stats stats; 11624 11625 rc = 0; 11626 mtx_lock(&sc->reg_lock); 11627 if (hw_off_limits(sc)) 11628 rc = ENXIO; 11629 else 11630 t4_tp_get_err_stats(sc, &stats, 0); 11631 mtx_unlock(&sc->reg_lock); 11632 if (rc != 0) 11633 return (rc); 11634 11635 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11636 if (sb == NULL) 11637 return (ENOMEM); 11638 11639 if (sc->chip_params->nchan > 2) { 11640 sbuf_printf(sb, " channel 0 channel 1" 11641 " channel 2 channel 3\n"); 11642 sbuf_printf(sb, "macInErrs: %10u %10u %10u %10u\n", 11643 stats.mac_in_errs[0], stats.mac_in_errs[1], 11644 stats.mac_in_errs[2], stats.mac_in_errs[3]); 11645 sbuf_printf(sb, "hdrInErrs: %10u %10u %10u %10u\n", 11646 stats.hdr_in_errs[0], stats.hdr_in_errs[1], 11647 stats.hdr_in_errs[2], stats.hdr_in_errs[3]); 11648 sbuf_printf(sb, "tcpInErrs: %10u %10u %10u %10u\n", 11649 stats.tcp_in_errs[0], stats.tcp_in_errs[1], 11650 stats.tcp_in_errs[2], stats.tcp_in_errs[3]); 11651 sbuf_printf(sb, "tcp6InErrs: %10u %10u %10u %10u\n", 11652 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1], 11653 stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]); 11654 sbuf_printf(sb, "tnlCongDrops: %10u %10u %10u %10u\n", 11655 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1], 11656 stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]); 11657 sbuf_printf(sb, "tnlTxDrops: %10u %10u %10u %10u\n", 11658 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1], 11659 stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]); 11660 sbuf_printf(sb, "ofldVlanDrops: %10u %10u %10u %10u\n", 11661 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1], 11662 stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]); 11663 sbuf_printf(sb, "ofldChanDrops: %10u %10u %10u %10u\n\n", 11664 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1], 11665 stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]); 11666 } else { 11667 sbuf_printf(sb, " channel 0 channel 1\n"); 11668 sbuf_printf(sb, "macInErrs: %10u %10u\n", 11669 stats.mac_in_errs[0], stats.mac_in_errs[1]); 11670 sbuf_printf(sb, "hdrInErrs: %10u %10u\n", 11671 stats.hdr_in_errs[0], stats.hdr_in_errs[1]); 11672 sbuf_printf(sb, "tcpInErrs: %10u %10u\n", 11673 stats.tcp_in_errs[0], stats.tcp_in_errs[1]); 11674 sbuf_printf(sb, "tcp6InErrs: %10u %10u\n", 11675 stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]); 11676 sbuf_printf(sb, "tnlCongDrops: %10u %10u\n", 11677 stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]); 11678 sbuf_printf(sb, "tnlTxDrops: %10u %10u\n", 11679 stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]); 11680 sbuf_printf(sb, "ofldVlanDrops: %10u %10u\n", 11681 stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]); 11682 sbuf_printf(sb, "ofldChanDrops: %10u %10u\n\n", 11683 stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]); 11684 } 11685 11686 sbuf_printf(sb, "ofldNoNeigh: %u\nofldCongDefer: %u", 11687 stats.ofld_no_neigh, stats.ofld_cong_defer); 11688 11689 rc = sbuf_finish(sb); 11690 sbuf_delete(sb); 11691 11692 return (rc); 11693 } 11694 11695 static int 11696 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS) 11697 { 11698 struct adapter *sc = arg1; 11699 struct sbuf *sb; 11700 int rc; 11701 struct tp_tnl_stats stats; 11702 11703 rc = 0; 11704 mtx_lock(&sc->reg_lock); 11705 if (hw_off_limits(sc)) 11706 rc = ENXIO; 11707 else 11708 t4_tp_get_tnl_stats(sc, &stats, 1); 11709 mtx_unlock(&sc->reg_lock); 11710 if (rc != 0) 11711 return (rc); 11712 11713 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 11714 if (sb == NULL) 11715 return (ENOMEM); 11716 11717 if (sc->chip_params->nchan > 2) { 11718 sbuf_printf(sb, " channel 0 channel 1" 11719 " channel 2 channel 3\n"); 11720 sbuf_printf(sb, "OutPkts: %10u %10u %10u %10u\n", 11721 stats.out_pkt[0], stats.out_pkt[1], 11722 stats.out_pkt[2], stats.out_pkt[3]); 11723 sbuf_printf(sb, "InPkts: %10u %10u %10u %10u", 11724 stats.in_pkt[0], stats.in_pkt[1], 11725 stats.in_pkt[2], stats.in_pkt[3]); 11726 } else { 11727 sbuf_printf(sb, " channel 0 channel 1\n"); 11728 sbuf_printf(sb, "OutPkts: %10u %10u\n", 11729 stats.out_pkt[0], stats.out_pkt[1]); 11730 sbuf_printf(sb, "InPkts: %10u %10u", 11731 stats.in_pkt[0], stats.in_pkt[1]); 11732 } 11733 11734 rc = sbuf_finish(sb); 11735 sbuf_delete(sb); 11736 11737 return (rc); 11738 } 11739 11740 static int 11741 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS) 11742 { 11743 struct adapter *sc = arg1; 11744 struct tp_params *tpp = &sc->params.tp; 11745 u_int mask; 11746 int rc; 11747 11748 mask = tpp->la_mask >> 16; 11749 rc = sysctl_handle_int(oidp, &mask, 0, req); 11750 if (rc != 0 || req->newptr == NULL) 11751 return (rc); 11752 if (mask > 0xffff) 11753 return (EINVAL); 11754 mtx_lock(&sc->reg_lock); 11755 if (hw_off_limits(sc)) 11756 rc = ENXIO; 11757 else { 11758 tpp->la_mask = mask << 16; 11759 t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U, 11760 tpp->la_mask); 11761 } 11762 mtx_unlock(&sc->reg_lock); 11763 11764 return (rc); 11765 } 11766 11767 struct field_desc { 11768 const char *name; 11769 u_int start; 11770 u_int width; 11771 }; 11772 11773 static void 11774 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f) 11775 { 11776 char buf[32]; 11777 int line_size = 0; 11778 11779 while (f->name) { 11780 uint64_t mask = (1ULL << f->width) - 1; 11781 int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name, 11782 ((uintmax_t)v >> f->start) & mask); 11783 11784 if (line_size + len >= 79) { 11785 line_size = 8; 11786 sbuf_printf(sb, "\n "); 11787 } 11788 sbuf_printf(sb, "%s ", buf); 11789 line_size += len + 1; 11790 f++; 11791 } 11792 sbuf_printf(sb, "\n"); 11793 } 11794 11795 static const struct field_desc tp_la0[] = { 11796 { "RcfOpCodeOut", 60, 4 }, 11797 { "State", 56, 4 }, 11798 { "WcfState", 52, 4 }, 11799 { "RcfOpcSrcOut", 50, 2 }, 11800 { "CRxError", 49, 1 }, 11801 { "ERxError", 48, 1 }, 11802 { "SanityFailed", 47, 1 }, 11803 { "SpuriousMsg", 46, 1 }, 11804 { "FlushInputMsg", 45, 1 }, 11805 { "FlushInputCpl", 44, 1 }, 11806 { "RssUpBit", 43, 1 }, 11807 { "RssFilterHit", 42, 1 }, 11808 { "Tid", 32, 10 }, 11809 { "InitTcb", 31, 1 }, 11810 { "LineNumber", 24, 7 }, 11811 { "Emsg", 23, 1 }, 11812 { "EdataOut", 22, 1 }, 11813 { "Cmsg", 21, 1 }, 11814 { "CdataOut", 20, 1 }, 11815 { "EreadPdu", 19, 1 }, 11816 { "CreadPdu", 18, 1 }, 11817 { "TunnelPkt", 17, 1 }, 11818 { "RcfPeerFin", 16, 1 }, 11819 { "RcfReasonOut", 12, 4 }, 11820 { "TxCchannel", 10, 2 }, 11821 { "RcfTxChannel", 8, 2 }, 11822 { "RxEchannel", 6, 2 }, 11823 { "RcfRxChannel", 5, 1 }, 11824 { "RcfDataOutSrdy", 4, 1 }, 11825 { "RxDvld", 3, 1 }, 11826 { "RxOoDvld", 2, 1 }, 11827 { "RxCongestion", 1, 1 }, 11828 { "TxCongestion", 0, 1 }, 11829 { NULL } 11830 }; 11831 11832 static const struct field_desc tp_la1[] = { 11833 { "CplCmdIn", 56, 8 }, 11834 { "CplCmdOut", 48, 8 }, 11835 { "ESynOut", 47, 1 }, 11836 { "EAckOut", 46, 1 }, 11837 { "EFinOut", 45, 1 }, 11838 { "ERstOut", 44, 1 }, 11839 { "SynIn", 43, 1 }, 11840 { "AckIn", 42, 1 }, 11841 { "FinIn", 41, 1 }, 11842 { "RstIn", 40, 1 }, 11843 { "DataIn", 39, 1 }, 11844 { "DataInVld", 38, 1 }, 11845 { "PadIn", 37, 1 }, 11846 { "RxBufEmpty", 36, 1 }, 11847 { "RxDdp", 35, 1 }, 11848 { "RxFbCongestion", 34, 1 }, 11849 { "TxFbCongestion", 33, 1 }, 11850 { "TxPktSumSrdy", 32, 1 }, 11851 { "RcfUlpType", 28, 4 }, 11852 { "Eread", 27, 1 }, 11853 { "Ebypass", 26, 1 }, 11854 { "Esave", 25, 1 }, 11855 { "Static0", 24, 1 }, 11856 { "Cread", 23, 1 }, 11857 { "Cbypass", 22, 1 }, 11858 { "Csave", 21, 1 }, 11859 { "CPktOut", 20, 1 }, 11860 { "RxPagePoolFull", 18, 2 }, 11861 { "RxLpbkPkt", 17, 1 }, 11862 { "TxLpbkPkt", 16, 1 }, 11863 { "RxVfValid", 15, 1 }, 11864 { "SynLearned", 14, 1 }, 11865 { "SetDelEntry", 13, 1 }, 11866 { "SetInvEntry", 12, 1 }, 11867 { "CpcmdDvld", 11, 1 }, 11868 { "CpcmdSave", 10, 1 }, 11869 { "RxPstructsFull", 8, 2 }, 11870 { "EpcmdDvld", 7, 1 }, 11871 { "EpcmdFlush", 6, 1 }, 11872 { "EpcmdTrimPrefix", 5, 1 }, 11873 { "EpcmdTrimPostfix", 4, 1 }, 11874 { "ERssIp4Pkt", 3, 1 }, 11875 { "ERssIp6Pkt", 2, 1 }, 11876 { "ERssTcpUdpPkt", 1, 1 }, 11877 { "ERssFceFipPkt", 0, 1 }, 11878 { NULL } 11879 }; 11880 11881 static const struct field_desc tp_la2[] = { 11882 { "CplCmdIn", 56, 8 }, 11883 { "MpsVfVld", 55, 1 }, 11884 { "MpsPf", 52, 3 }, 11885 { "MpsVf", 44, 8 }, 11886 { "SynIn", 43, 1 }, 11887 { "AckIn", 42, 1 }, 11888 { "FinIn", 41, 1 }, 11889 { "RstIn", 40, 1 }, 11890 { "DataIn", 39, 1 }, 11891 { "DataInVld", 38, 1 }, 11892 { "PadIn", 37, 1 }, 11893 { "RxBufEmpty", 36, 1 }, 11894 { "RxDdp", 35, 1 }, 11895 { "RxFbCongestion", 34, 1 }, 11896 { "TxFbCongestion", 33, 1 }, 11897 { "TxPktSumSrdy", 32, 1 }, 11898 { "RcfUlpType", 28, 4 }, 11899 { "Eread", 27, 1 }, 11900 { "Ebypass", 26, 1 }, 11901 { "Esave", 25, 1 }, 11902 { "Static0", 24, 1 }, 11903 { "Cread", 23, 1 }, 11904 { "Cbypass", 22, 1 }, 11905 { "Csave", 21, 1 }, 11906 { "CPktOut", 20, 1 }, 11907 { "RxPagePoolFull", 18, 2 }, 11908 { "RxLpbkPkt", 17, 1 }, 11909 { "TxLpbkPkt", 16, 1 }, 11910 { "RxVfValid", 15, 1 }, 11911 { "SynLearned", 14, 1 }, 11912 { "SetDelEntry", 13, 1 }, 11913 { "SetInvEntry", 12, 1 }, 11914 { "CpcmdDvld", 11, 1 }, 11915 { "CpcmdSave", 10, 1 }, 11916 { "RxPstructsFull", 8, 2 }, 11917 { "EpcmdDvld", 7, 1 }, 11918 { "EpcmdFlush", 6, 1 }, 11919 { "EpcmdTrimPrefix", 5, 1 }, 11920 { "EpcmdTrimPostfix", 4, 1 }, 11921 { "ERssIp4Pkt", 3, 1 }, 11922 { "ERssIp6Pkt", 2, 1 }, 11923 { "ERssTcpUdpPkt", 1, 1 }, 11924 { "ERssFceFipPkt", 0, 1 }, 11925 { NULL } 11926 }; 11927 11928 static void 11929 tp_la_show(struct sbuf *sb, uint64_t *p, int idx) 11930 { 11931 11932 field_desc_show(sb, *p, tp_la0); 11933 } 11934 11935 static void 11936 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx) 11937 { 11938 11939 if (idx) 11940 sbuf_printf(sb, "\n"); 11941 field_desc_show(sb, p[0], tp_la0); 11942 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 11943 field_desc_show(sb, p[1], tp_la0); 11944 } 11945 11946 static void 11947 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx) 11948 { 11949 11950 if (idx) 11951 sbuf_printf(sb, "\n"); 11952 field_desc_show(sb, p[0], tp_la0); 11953 if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL) 11954 field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1); 11955 } 11956 11957 static int 11958 sysctl_tp_la(SYSCTL_HANDLER_ARGS) 11959 { 11960 struct adapter *sc = arg1; 11961 struct sbuf *sb; 11962 uint64_t *buf, *p; 11963 int rc; 11964 u_int i, inc; 11965 void (*show_func)(struct sbuf *, uint64_t *, int); 11966 11967 rc = 0; 11968 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 11969 if (sb == NULL) 11970 return (ENOMEM); 11971 11972 buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK); 11973 11974 mtx_lock(&sc->reg_lock); 11975 if (hw_off_limits(sc)) 11976 rc = ENXIO; 11977 else { 11978 t4_tp_read_la(sc, buf, NULL); 11979 switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) { 11980 case 2: 11981 inc = 2; 11982 show_func = tp_la_show2; 11983 break; 11984 case 3: 11985 inc = 2; 11986 show_func = tp_la_show3; 11987 break; 11988 default: 11989 inc = 1; 11990 show_func = tp_la_show; 11991 } 11992 } 11993 mtx_unlock(&sc->reg_lock); 11994 if (rc != 0) 11995 goto done; 11996 11997 p = buf; 11998 for (i = 0; i < TPLA_SIZE / inc; i++, p += inc) 11999 (*show_func)(sb, p, i); 12000 rc = sbuf_finish(sb); 12001 done: 12002 sbuf_delete(sb); 12003 free(buf, M_CXGBE); 12004 return (rc); 12005 } 12006 12007 static int 12008 sysctl_tx_rate(SYSCTL_HANDLER_ARGS) 12009 { 12010 struct adapter *sc = arg1; 12011 struct sbuf *sb; 12012 int rc; 12013 u64 nrate[MAX_NCHAN], orate[MAX_NCHAN]; 12014 12015 rc = 0; 12016 mtx_lock(&sc->reg_lock); 12017 if (hw_off_limits(sc)) 12018 rc = ENXIO; 12019 else 12020 t4_get_chan_txrate(sc, nrate, orate); 12021 mtx_unlock(&sc->reg_lock); 12022 if (rc != 0) 12023 return (rc); 12024 12025 sb = sbuf_new_for_sysctl(NULL, NULL, 256, req); 12026 if (sb == NULL) 12027 return (ENOMEM); 12028 12029 if (sc->chip_params->nchan > 2) { 12030 sbuf_printf(sb, " channel 0 channel 1" 12031 " channel 2 channel 3\n"); 12032 sbuf_printf(sb, "NIC B/s: %10ju %10ju %10ju %10ju\n", 12033 nrate[0], nrate[1], nrate[2], nrate[3]); 12034 sbuf_printf(sb, "Offload B/s: %10ju %10ju %10ju %10ju", 12035 orate[0], orate[1], orate[2], orate[3]); 12036 } else { 12037 sbuf_printf(sb, " channel 0 channel 1\n"); 12038 sbuf_printf(sb, "NIC B/s: %10ju %10ju\n", 12039 nrate[0], nrate[1]); 12040 sbuf_printf(sb, "Offload B/s: %10ju %10ju", 12041 orate[0], orate[1]); 12042 } 12043 12044 rc = sbuf_finish(sb); 12045 sbuf_delete(sb); 12046 12047 return (rc); 12048 } 12049 12050 static int 12051 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS) 12052 { 12053 struct adapter *sc = arg1; 12054 struct sbuf *sb; 12055 uint32_t *buf, *p; 12056 int rc, i; 12057 12058 rc = 0; 12059 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 12060 if (sb == NULL) 12061 return (ENOMEM); 12062 12063 buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE, 12064 M_ZERO | M_WAITOK); 12065 12066 mtx_lock(&sc->reg_lock); 12067 if (hw_off_limits(sc)) 12068 rc = ENXIO; 12069 else 12070 t4_ulprx_read_la(sc, buf); 12071 mtx_unlock(&sc->reg_lock); 12072 if (rc != 0) 12073 goto done; 12074 12075 p = buf; 12076 sbuf_printf(sb, " Pcmd Type Message" 12077 " Data"); 12078 for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) { 12079 sbuf_printf(sb, "\n%08x%08x %4x %08x %08x%08x%08x%08x", 12080 p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]); 12081 } 12082 rc = sbuf_finish(sb); 12083 done: 12084 sbuf_delete(sb); 12085 free(buf, M_CXGBE); 12086 return (rc); 12087 } 12088 12089 static int 12090 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS) 12091 { 12092 struct adapter *sc = arg1; 12093 struct sbuf *sb; 12094 int rc; 12095 uint32_t cfg, s1, s2; 12096 12097 MPASS(chip_id(sc) >= CHELSIO_T5); 12098 12099 rc = 0; 12100 mtx_lock(&sc->reg_lock); 12101 if (hw_off_limits(sc)) 12102 rc = ENXIO; 12103 else { 12104 cfg = t4_read_reg(sc, A_SGE_STAT_CFG); 12105 s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL); 12106 s2 = t4_read_reg(sc, A_SGE_STAT_MATCH); 12107 } 12108 mtx_unlock(&sc->reg_lock); 12109 if (rc != 0) 12110 return (rc); 12111 12112 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 12113 if (sb == NULL) 12114 return (ENOMEM); 12115 12116 if (G_STATSOURCE_T5(cfg) == 7) { 12117 int mode; 12118 12119 mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg); 12120 if (mode == 0) 12121 sbuf_printf(sb, "total %d, incomplete %d", s1, s2); 12122 else if (mode == 1) 12123 sbuf_printf(sb, "total %d, data overflow %d", s1, s2); 12124 else 12125 sbuf_printf(sb, "unknown mode %d", mode); 12126 } 12127 rc = sbuf_finish(sb); 12128 sbuf_delete(sb); 12129 12130 return (rc); 12131 } 12132 12133 static int 12134 sysctl_cpus(SYSCTL_HANDLER_ARGS) 12135 { 12136 struct adapter *sc = arg1; 12137 enum cpu_sets op = arg2; 12138 cpuset_t cpuset; 12139 struct sbuf *sb; 12140 int i, rc; 12141 12142 MPASS(op == LOCAL_CPUS || op == INTR_CPUS); 12143 12144 CPU_ZERO(&cpuset); 12145 rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset); 12146 if (rc != 0) 12147 return (rc); 12148 12149 sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req); 12150 if (sb == NULL) 12151 return (ENOMEM); 12152 12153 CPU_FOREACH(i) 12154 sbuf_printf(sb, "%d ", i); 12155 rc = sbuf_finish(sb); 12156 sbuf_delete(sb); 12157 12158 return (rc); 12159 } 12160 12161 static int 12162 sysctl_reset(SYSCTL_HANDLER_ARGS) 12163 { 12164 struct adapter *sc = arg1; 12165 u_int val; 12166 int rc; 12167 12168 val = atomic_load_int(&sc->num_resets); 12169 rc = sysctl_handle_int(oidp, &val, 0, req); 12170 if (rc != 0 || req->newptr == NULL) 12171 return (rc); 12172 12173 if (val == 0) { 12174 /* Zero out the counter that tracks reset. */ 12175 atomic_store_int(&sc->num_resets, 0); 12176 return (0); 12177 } 12178 12179 if (val != 1) 12180 return (EINVAL); /* 0 or 1 are the only legal values */ 12181 12182 if (hw_off_limits(sc)) /* harmless race */ 12183 return (EALREADY); 12184 12185 taskqueue_enqueue(reset_tq, &sc->reset_task); 12186 return (0); 12187 } 12188 12189 #ifdef TCP_OFFLOAD 12190 static int 12191 sysctl_tls(SYSCTL_HANDLER_ARGS) 12192 { 12193 struct adapter *sc = arg1; 12194 int i, j, v, rc; 12195 struct vi_info *vi; 12196 12197 v = sc->tt.tls; 12198 rc = sysctl_handle_int(oidp, &v, 0, req); 12199 if (rc != 0 || req->newptr == NULL) 12200 return (rc); 12201 12202 if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS)) 12203 return (ENOTSUP); 12204 12205 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls"); 12206 if (rc) 12207 return (rc); 12208 if (hw_off_limits(sc)) 12209 rc = ENXIO; 12210 else { 12211 sc->tt.tls = !!v; 12212 for_each_port(sc, i) { 12213 for_each_vi(sc->port[i], j, vi) { 12214 if (vi->flags & VI_INIT_DONE) 12215 t4_update_fl_bufsize(vi->ifp); 12216 } 12217 } 12218 } 12219 end_synchronized_op(sc, 0); 12220 12221 return (rc); 12222 12223 } 12224 12225 static void 12226 unit_conv(char *buf, size_t len, u_int val, u_int factor) 12227 { 12228 u_int rem = val % factor; 12229 12230 if (rem == 0) 12231 snprintf(buf, len, "%u", val / factor); 12232 else { 12233 while (rem % 10 == 0) 12234 rem /= 10; 12235 snprintf(buf, len, "%u.%u", val / factor, rem); 12236 } 12237 } 12238 12239 static int 12240 sysctl_tp_tick(SYSCTL_HANDLER_ARGS) 12241 { 12242 struct adapter *sc = arg1; 12243 char buf[16]; 12244 u_int res, re; 12245 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 12246 12247 mtx_lock(&sc->reg_lock); 12248 if (hw_off_limits(sc)) 12249 res = (u_int)-1; 12250 else 12251 res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION); 12252 mtx_unlock(&sc->reg_lock); 12253 if (res == (u_int)-1) 12254 return (ENXIO); 12255 12256 switch (arg2) { 12257 case 0: 12258 /* timer_tick */ 12259 re = G_TIMERRESOLUTION(res); 12260 break; 12261 case 1: 12262 /* TCP timestamp tick */ 12263 re = G_TIMESTAMPRESOLUTION(res); 12264 break; 12265 case 2: 12266 /* DACK tick */ 12267 re = G_DELAYEDACKRESOLUTION(res); 12268 break; 12269 default: 12270 return (EDOOFUS); 12271 } 12272 12273 unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000); 12274 12275 return (sysctl_handle_string(oidp, buf, sizeof(buf), req)); 12276 } 12277 12278 static int 12279 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS) 12280 { 12281 struct adapter *sc = arg1; 12282 int rc; 12283 u_int dack_tmr, dack_re, v; 12284 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 12285 12286 mtx_lock(&sc->reg_lock); 12287 if (hw_off_limits(sc)) 12288 rc = ENXIO; 12289 else { 12290 rc = 0; 12291 dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc, 12292 A_TP_TIMER_RESOLUTION)); 12293 dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER); 12294 } 12295 mtx_unlock(&sc->reg_lock); 12296 if (rc != 0) 12297 return (rc); 12298 12299 v = ((cclk_ps << dack_re) / 1000000) * dack_tmr; 12300 12301 return (sysctl_handle_int(oidp, &v, 0, req)); 12302 } 12303 12304 static int 12305 sysctl_tp_timer(SYSCTL_HANDLER_ARGS) 12306 { 12307 struct adapter *sc = arg1; 12308 int rc, reg = arg2; 12309 u_int tre; 12310 u_long tp_tick_us, v; 12311 u_int cclk_ps = 1000000000 / sc->params.vpd.cclk; 12312 12313 MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX || 12314 reg == A_TP_PERS_MIN || reg == A_TP_PERS_MAX || 12315 reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL || 12316 reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER); 12317 12318 mtx_lock(&sc->reg_lock); 12319 if (hw_off_limits(sc)) 12320 rc = ENXIO; 12321 else { 12322 rc = 0; 12323 tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION)); 12324 tp_tick_us = (cclk_ps << tre) / 1000000; 12325 if (reg == A_TP_INIT_SRTT) 12326 v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg)); 12327 else 12328 v = tp_tick_us * t4_read_reg(sc, reg); 12329 } 12330 mtx_unlock(&sc->reg_lock); 12331 if (rc != 0) 12332 return (rc); 12333 else 12334 return (sysctl_handle_long(oidp, &v, 0, req)); 12335 } 12336 12337 /* 12338 * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is 12339 * passed to this function. 12340 */ 12341 static int 12342 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS) 12343 { 12344 struct adapter *sc = arg1; 12345 int rc, idx = arg2; 12346 u_int v; 12347 12348 MPASS(idx >= 0 && idx <= 24); 12349 12350 mtx_lock(&sc->reg_lock); 12351 if (hw_off_limits(sc)) 12352 rc = ENXIO; 12353 else { 12354 rc = 0; 12355 v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf; 12356 } 12357 mtx_unlock(&sc->reg_lock); 12358 if (rc != 0) 12359 return (rc); 12360 else 12361 return (sysctl_handle_int(oidp, &v, 0, req)); 12362 } 12363 12364 static int 12365 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS) 12366 { 12367 struct adapter *sc = arg1; 12368 int rc, idx = arg2; 12369 u_int shift, v, r; 12370 12371 MPASS(idx >= 0 && idx < 16); 12372 12373 r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3); 12374 shift = (idx & 3) << 3; 12375 mtx_lock(&sc->reg_lock); 12376 if (hw_off_limits(sc)) 12377 rc = ENXIO; 12378 else { 12379 rc = 0; 12380 v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0; 12381 } 12382 mtx_unlock(&sc->reg_lock); 12383 if (rc != 0) 12384 return (rc); 12385 else 12386 return (sysctl_handle_int(oidp, &v, 0, req)); 12387 } 12388 12389 static int 12390 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS) 12391 { 12392 struct vi_info *vi = arg1; 12393 struct adapter *sc = vi->adapter; 12394 int idx, rc, i; 12395 struct sge_ofld_rxq *ofld_rxq; 12396 uint8_t v; 12397 12398 idx = vi->ofld_tmr_idx; 12399 12400 rc = sysctl_handle_int(oidp, &idx, 0, req); 12401 if (rc != 0 || req->newptr == NULL) 12402 return (rc); 12403 12404 if (idx < 0 || idx >= SGE_NTIMERS) 12405 return (EINVAL); 12406 12407 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 12408 "t4otmr"); 12409 if (rc) 12410 return (rc); 12411 12412 v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1); 12413 for_each_ofld_rxq(vi, i, ofld_rxq) { 12414 #ifdef atomic_store_rel_8 12415 atomic_store_rel_8(&ofld_rxq->iq.intr_params, v); 12416 #else 12417 ofld_rxq->iq.intr_params = v; 12418 #endif 12419 } 12420 vi->ofld_tmr_idx = idx; 12421 12422 end_synchronized_op(sc, LOCK_HELD); 12423 return (0); 12424 } 12425 12426 static int 12427 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS) 12428 { 12429 struct vi_info *vi = arg1; 12430 struct adapter *sc = vi->adapter; 12431 int idx, rc; 12432 12433 idx = vi->ofld_pktc_idx; 12434 12435 rc = sysctl_handle_int(oidp, &idx, 0, req); 12436 if (rc != 0 || req->newptr == NULL) 12437 return (rc); 12438 12439 if (idx < -1 || idx >= SGE_NCOUNTERS) 12440 return (EINVAL); 12441 12442 rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK, 12443 "t4opktc"); 12444 if (rc) 12445 return (rc); 12446 12447 if (vi->flags & VI_INIT_DONE) 12448 rc = EBUSY; /* cannot be changed once the queues are created */ 12449 else 12450 vi->ofld_pktc_idx = idx; 12451 12452 end_synchronized_op(sc, LOCK_HELD); 12453 return (rc); 12454 } 12455 #endif 12456 12457 static int 12458 get_sge_context(struct adapter *sc, int mem_id, uint32_t cid, int len, 12459 uint32_t *data) 12460 { 12461 int rc; 12462 12463 if (len < sc->chip_params->sge_ctxt_size) 12464 return (ENOBUFS); 12465 if (cid > M_CTXTQID) 12466 return (EINVAL); 12467 if (mem_id != CTXT_EGRESS && mem_id != CTXT_INGRESS && 12468 mem_id != CTXT_FLM && mem_id != CTXT_CNM) 12469 return (EINVAL); 12470 12471 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt"); 12472 if (rc) 12473 return (rc); 12474 12475 if (hw_off_limits(sc)) { 12476 rc = ENXIO; 12477 goto done; 12478 } 12479 12480 if (sc->flags & FW_OK) { 12481 rc = -t4_sge_ctxt_rd(sc, sc->mbox, cid, mem_id, data); 12482 if (rc == 0) 12483 goto done; 12484 } 12485 12486 /* 12487 * Read via firmware failed or wasn't even attempted. Read directly via 12488 * the backdoor. 12489 */ 12490 rc = -t4_sge_ctxt_rd_bd(sc, cid, mem_id, data); 12491 done: 12492 end_synchronized_op(sc, 0); 12493 return (rc); 12494 } 12495 12496 static int 12497 load_fw(struct adapter *sc, struct t4_data *fw) 12498 { 12499 int rc; 12500 uint8_t *fw_data; 12501 12502 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw"); 12503 if (rc) 12504 return (rc); 12505 12506 if (hw_off_limits(sc)) { 12507 rc = ENXIO; 12508 goto done; 12509 } 12510 12511 /* 12512 * The firmware, with the sole exception of the memory parity error 12513 * handler, runs from memory and not flash. It is almost always safe to 12514 * install a new firmware on a running system. Just set bit 1 in 12515 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first. 12516 */ 12517 if (sc->flags & FULL_INIT_DONE && 12518 (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) { 12519 rc = EBUSY; 12520 goto done; 12521 } 12522 12523 fw_data = malloc(fw->len, M_CXGBE, M_WAITOK); 12524 12525 rc = copyin(fw->data, fw_data, fw->len); 12526 if (rc == 0) 12527 rc = -t4_load_fw(sc, fw_data, fw->len); 12528 12529 free(fw_data, M_CXGBE); 12530 done: 12531 end_synchronized_op(sc, 0); 12532 return (rc); 12533 } 12534 12535 static int 12536 load_cfg(struct adapter *sc, struct t4_data *cfg) 12537 { 12538 int rc; 12539 uint8_t *cfg_data = NULL; 12540 12541 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 12542 if (rc) 12543 return (rc); 12544 12545 if (hw_off_limits(sc)) { 12546 rc = ENXIO; 12547 goto done; 12548 } 12549 12550 if (cfg->len == 0) { 12551 /* clear */ 12552 rc = -t4_load_cfg(sc, NULL, 0); 12553 goto done; 12554 } 12555 12556 cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK); 12557 12558 rc = copyin(cfg->data, cfg_data, cfg->len); 12559 if (rc == 0) 12560 rc = -t4_load_cfg(sc, cfg_data, cfg->len); 12561 12562 free(cfg_data, M_CXGBE); 12563 done: 12564 end_synchronized_op(sc, 0); 12565 return (rc); 12566 } 12567 12568 static int 12569 load_boot(struct adapter *sc, struct t4_bootrom *br) 12570 { 12571 int rc; 12572 uint8_t *br_data = NULL; 12573 u_int offset; 12574 12575 if (br->len > 1024 * 1024) 12576 return (EFBIG); 12577 12578 if (br->pf_offset == 0) { 12579 /* pfidx */ 12580 if (br->pfidx_addr > 7) 12581 return (EINVAL); 12582 offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr, 12583 A_PCIE_PF_EXPROM_OFST))); 12584 } else if (br->pf_offset == 1) { 12585 /* offset */ 12586 offset = G_OFFSET(br->pfidx_addr); 12587 } else { 12588 return (EINVAL); 12589 } 12590 12591 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr"); 12592 if (rc) 12593 return (rc); 12594 12595 if (hw_off_limits(sc)) { 12596 rc = ENXIO; 12597 goto done; 12598 } 12599 12600 if (br->len == 0) { 12601 /* clear */ 12602 rc = -t4_load_boot(sc, NULL, offset, 0); 12603 goto done; 12604 } 12605 12606 br_data = malloc(br->len, M_CXGBE, M_WAITOK); 12607 12608 rc = copyin(br->data, br_data, br->len); 12609 if (rc == 0) 12610 rc = -t4_load_boot(sc, br_data, offset, br->len); 12611 12612 free(br_data, M_CXGBE); 12613 done: 12614 end_synchronized_op(sc, 0); 12615 return (rc); 12616 } 12617 12618 static int 12619 load_bootcfg(struct adapter *sc, struct t4_data *bc) 12620 { 12621 int rc; 12622 uint8_t *bc_data = NULL; 12623 12624 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf"); 12625 if (rc) 12626 return (rc); 12627 12628 if (hw_off_limits(sc)) { 12629 rc = ENXIO; 12630 goto done; 12631 } 12632 12633 if (bc->len == 0) { 12634 /* clear */ 12635 rc = -t4_load_bootcfg(sc, NULL, 0); 12636 goto done; 12637 } 12638 12639 bc_data = malloc(bc->len, M_CXGBE, M_WAITOK); 12640 12641 rc = copyin(bc->data, bc_data, bc->len); 12642 if (rc == 0) 12643 rc = -t4_load_bootcfg(sc, bc_data, bc->len); 12644 12645 free(bc_data, M_CXGBE); 12646 done: 12647 end_synchronized_op(sc, 0); 12648 return (rc); 12649 } 12650 12651 static int 12652 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump) 12653 { 12654 int rc; 12655 struct cudbg_init *cudbg; 12656 void *handle, *buf; 12657 12658 /* buf is large, don't block if no memory is available */ 12659 buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO); 12660 if (buf == NULL) 12661 return (ENOMEM); 12662 12663 handle = cudbg_alloc_handle(); 12664 if (handle == NULL) { 12665 rc = ENOMEM; 12666 goto done; 12667 } 12668 12669 cudbg = cudbg_get_init(handle); 12670 cudbg->adap = sc; 12671 cudbg->print = (cudbg_print_cb)printf; 12672 12673 #ifndef notyet 12674 device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n", 12675 __func__, dump->wr_flash, dump->len, dump->data); 12676 #endif 12677 12678 if (dump->wr_flash) 12679 cudbg->use_flash = 1; 12680 MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap)); 12681 memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap)); 12682 12683 rc = cudbg_collect(handle, buf, &dump->len); 12684 if (rc != 0) 12685 goto done; 12686 12687 rc = copyout(buf, dump->data, dump->len); 12688 done: 12689 cudbg_free_handle(handle); 12690 free(buf, M_CXGBE); 12691 return (rc); 12692 } 12693 12694 static void 12695 free_offload_policy(struct t4_offload_policy *op) 12696 { 12697 struct offload_rule *r; 12698 int i; 12699 12700 if (op == NULL) 12701 return; 12702 12703 r = &op->rule[0]; 12704 for (i = 0; i < op->nrules; i++, r++) { 12705 free(r->bpf_prog.bf_insns, M_CXGBE); 12706 } 12707 free(op->rule, M_CXGBE); 12708 free(op, M_CXGBE); 12709 } 12710 12711 static int 12712 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop) 12713 { 12714 int i, rc, len; 12715 struct t4_offload_policy *op, *old; 12716 struct bpf_program *bf; 12717 const struct offload_settings *s; 12718 struct offload_rule *r; 12719 void *u; 12720 12721 if (!is_offload(sc)) 12722 return (ENODEV); 12723 12724 if (uop->nrules == 0) { 12725 /* Delete installed policies. */ 12726 op = NULL; 12727 goto set_policy; 12728 } else if (uop->nrules > 256) { /* arbitrary */ 12729 return (E2BIG); 12730 } 12731 12732 /* Copy userspace offload policy to kernel */ 12733 op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK); 12734 op->nrules = uop->nrules; 12735 len = op->nrules * sizeof(struct offload_rule); 12736 op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 12737 rc = copyin(uop->rule, op->rule, len); 12738 if (rc) { 12739 free(op->rule, M_CXGBE); 12740 free(op, M_CXGBE); 12741 return (rc); 12742 } 12743 12744 r = &op->rule[0]; 12745 for (i = 0; i < op->nrules; i++, r++) { 12746 12747 /* Validate open_type */ 12748 if (r->open_type != OPEN_TYPE_LISTEN && 12749 r->open_type != OPEN_TYPE_ACTIVE && 12750 r->open_type != OPEN_TYPE_PASSIVE && 12751 r->open_type != OPEN_TYPE_DONTCARE) { 12752 error: 12753 /* 12754 * Rules 0 to i have malloc'd filters that need to be 12755 * freed. Rules i+1 to nrules have userspace pointers 12756 * and should be left alone. 12757 */ 12758 op->nrules = i; 12759 free_offload_policy(op); 12760 return (rc); 12761 } 12762 12763 /* Validate settings */ 12764 s = &r->settings; 12765 if ((s->offload != 0 && s->offload != 1) || 12766 s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED || 12767 s->sched_class < -1 || 12768 s->sched_class >= sc->params.nsched_cls) { 12769 rc = EINVAL; 12770 goto error; 12771 } 12772 12773 bf = &r->bpf_prog; 12774 u = bf->bf_insns; /* userspace ptr */ 12775 bf->bf_insns = NULL; 12776 if (bf->bf_len == 0) { 12777 /* legal, matches everything */ 12778 continue; 12779 } 12780 len = bf->bf_len * sizeof(*bf->bf_insns); 12781 bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK); 12782 rc = copyin(u, bf->bf_insns, len); 12783 if (rc != 0) 12784 goto error; 12785 12786 if (!bpf_validate(bf->bf_insns, bf->bf_len)) { 12787 rc = EINVAL; 12788 goto error; 12789 } 12790 } 12791 set_policy: 12792 rw_wlock(&sc->policy_lock); 12793 old = sc->policy; 12794 sc->policy = op; 12795 rw_wunlock(&sc->policy_lock); 12796 free_offload_policy(old); 12797 12798 return (0); 12799 } 12800 12801 #define MAX_READ_BUF_SIZE (128 * 1024) 12802 static int 12803 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr) 12804 { 12805 uint32_t addr, remaining, n; 12806 uint32_t *buf; 12807 int rc; 12808 uint8_t *dst; 12809 12810 mtx_lock(&sc->reg_lock); 12811 if (hw_off_limits(sc)) 12812 rc = ENXIO; 12813 else 12814 rc = validate_mem_range(sc, mr->addr, mr->len); 12815 mtx_unlock(&sc->reg_lock); 12816 if (rc != 0) 12817 return (rc); 12818 12819 buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK); 12820 addr = mr->addr; 12821 remaining = mr->len; 12822 dst = (void *)mr->data; 12823 12824 while (remaining) { 12825 n = min(remaining, MAX_READ_BUF_SIZE); 12826 mtx_lock(&sc->reg_lock); 12827 if (hw_off_limits(sc)) 12828 rc = ENXIO; 12829 else 12830 read_via_memwin(sc, 2, addr, buf, n); 12831 mtx_unlock(&sc->reg_lock); 12832 if (rc != 0) 12833 break; 12834 12835 rc = copyout(buf, dst, n); 12836 if (rc != 0) 12837 break; 12838 12839 dst += n; 12840 remaining -= n; 12841 addr += n; 12842 } 12843 12844 free(buf, M_CXGBE); 12845 return (rc); 12846 } 12847 #undef MAX_READ_BUF_SIZE 12848 12849 static int 12850 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd) 12851 { 12852 int rc; 12853 12854 if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports) 12855 return (EINVAL); 12856 12857 if (i2cd->len > sizeof(i2cd->data)) 12858 return (EFBIG); 12859 12860 rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd"); 12861 if (rc) 12862 return (rc); 12863 if (hw_off_limits(sc)) 12864 rc = ENXIO; 12865 else 12866 rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr, 12867 i2cd->offset, i2cd->len, &i2cd->data[0]); 12868 end_synchronized_op(sc, 0); 12869 12870 return (rc); 12871 } 12872 12873 static int 12874 clear_stats(struct adapter *sc, u_int port_id) 12875 { 12876 int i, v, chan_map; 12877 struct port_info *pi; 12878 struct vi_info *vi; 12879 struct sge_rxq *rxq; 12880 struct sge_txq *txq; 12881 struct sge_wrq *wrq; 12882 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12883 struct sge_ofld_txq *ofld_txq; 12884 #endif 12885 #ifdef TCP_OFFLOAD 12886 struct sge_ofld_rxq *ofld_rxq; 12887 #endif 12888 12889 if (port_id >= sc->params.nports) 12890 return (EINVAL); 12891 pi = sc->port[port_id]; 12892 if (pi == NULL) 12893 return (EIO); 12894 12895 mtx_lock(&sc->reg_lock); 12896 if (!hw_off_limits(sc)) { 12897 /* MAC stats */ 12898 t4_clr_port_stats(sc, pi->hw_port); 12899 if (is_t6(sc)) { 12900 if (pi->fcs_reg != -1) 12901 pi->fcs_base = t4_read_reg64(sc, 12902 t4_port_reg(sc, pi->tx_chan, pi->fcs_reg)); 12903 else 12904 pi->stats.rx_fcs_err = 0; 12905 } 12906 for_each_vi(pi, v, vi) { 12907 if (vi->flags & VI_INIT_DONE) 12908 t4_clr_vi_stats(sc, vi->vin); 12909 } 12910 chan_map = pi->rx_e_chan_map; 12911 v = 0; /* reuse */ 12912 while (chan_map) { 12913 i = ffs(chan_map) - 1; 12914 t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 12915 1, A_TP_MIB_TNL_CNG_DROP_0 + i); 12916 chan_map &= ~(1 << i); 12917 } 12918 } 12919 mtx_unlock(&sc->reg_lock); 12920 pi->tx_parse_error = 0; 12921 pi->tnl_cong_drops = 0; 12922 12923 /* 12924 * Since this command accepts a port, clear stats for 12925 * all VIs on this port. 12926 */ 12927 for_each_vi(pi, v, vi) { 12928 if (vi->flags & VI_INIT_DONE) { 12929 12930 for_each_rxq(vi, i, rxq) { 12931 #if defined(INET) || defined(INET6) 12932 rxq->lro.lro_queued = 0; 12933 rxq->lro.lro_flushed = 0; 12934 #endif 12935 rxq->rxcsum = 0; 12936 rxq->vlan_extraction = 0; 12937 rxq->vxlan_rxcsum = 0; 12938 12939 rxq->fl.cl_allocated = 0; 12940 rxq->fl.cl_recycled = 0; 12941 rxq->fl.cl_fast_recycled = 0; 12942 } 12943 12944 for_each_txq(vi, i, txq) { 12945 txq->txcsum = 0; 12946 txq->tso_wrs = 0; 12947 txq->vlan_insertion = 0; 12948 txq->imm_wrs = 0; 12949 txq->sgl_wrs = 0; 12950 txq->txpkt_wrs = 0; 12951 txq->txpkts0_wrs = 0; 12952 txq->txpkts1_wrs = 0; 12953 txq->txpkts0_pkts = 0; 12954 txq->txpkts1_pkts = 0; 12955 txq->txpkts_flush = 0; 12956 txq->raw_wrs = 0; 12957 txq->vxlan_tso_wrs = 0; 12958 txq->vxlan_txcsum = 0; 12959 txq->kern_tls_records = 0; 12960 txq->kern_tls_short = 0; 12961 txq->kern_tls_partial = 0; 12962 txq->kern_tls_full = 0; 12963 txq->kern_tls_octets = 0; 12964 txq->kern_tls_waste = 0; 12965 txq->kern_tls_header = 0; 12966 txq->kern_tls_fin_short = 0; 12967 txq->kern_tls_cbc = 0; 12968 txq->kern_tls_gcm = 0; 12969 if (is_t6(sc)) { 12970 txq->kern_tls_options = 0; 12971 txq->kern_tls_fin = 0; 12972 } else { 12973 txq->kern_tls_ghash_received = 0; 12974 txq->kern_tls_ghash_requested = 0; 12975 txq->kern_tls_lso = 0; 12976 txq->kern_tls_partial_ghash = 0; 12977 txq->kern_tls_splitmode = 0; 12978 txq->kern_tls_trailer = 0; 12979 } 12980 mp_ring_reset_stats(txq->r); 12981 } 12982 12983 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 12984 for_each_ofld_txq(vi, i, ofld_txq) { 12985 ofld_txq->wrq.tx_wrs_direct = 0; 12986 ofld_txq->wrq.tx_wrs_copied = 0; 12987 counter_u64_zero(ofld_txq->tx_iscsi_pdus); 12988 counter_u64_zero(ofld_txq->tx_iscsi_octets); 12989 counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs); 12990 counter_u64_zero(ofld_txq->tx_nvme_pdus); 12991 counter_u64_zero(ofld_txq->tx_nvme_octets); 12992 counter_u64_zero(ofld_txq->tx_nvme_iso_wrs); 12993 counter_u64_zero(ofld_txq->tx_aio_jobs); 12994 counter_u64_zero(ofld_txq->tx_aio_octets); 12995 counter_u64_zero(ofld_txq->tx_toe_tls_records); 12996 counter_u64_zero(ofld_txq->tx_toe_tls_octets); 12997 } 12998 #endif 12999 #ifdef TCP_OFFLOAD 13000 for_each_ofld_rxq(vi, i, ofld_rxq) { 13001 ofld_rxq->fl.cl_allocated = 0; 13002 ofld_rxq->fl.cl_recycled = 0; 13003 ofld_rxq->fl.cl_fast_recycled = 0; 13004 counter_u64_zero( 13005 ofld_rxq->rx_iscsi_ddp_setup_ok); 13006 counter_u64_zero( 13007 ofld_rxq->rx_iscsi_ddp_setup_error); 13008 ofld_rxq->rx_iscsi_ddp_pdus = 0; 13009 ofld_rxq->rx_iscsi_ddp_octets = 0; 13010 ofld_rxq->rx_iscsi_fl_pdus = 0; 13011 ofld_rxq->rx_iscsi_fl_octets = 0; 13012 counter_u64_zero( 13013 ofld_rxq->rx_nvme_ddp_setup_ok); 13014 counter_u64_zero( 13015 ofld_rxq->rx_nvme_ddp_setup_no_stag); 13016 counter_u64_zero( 13017 ofld_rxq->rx_nvme_ddp_setup_error); 13018 counter_u64_zero(ofld_rxq->rx_nvme_ddp_pdus); 13019 counter_u64_zero(ofld_rxq->rx_nvme_ddp_octets); 13020 counter_u64_zero(ofld_rxq->rx_nvme_fl_pdus); 13021 counter_u64_zero(ofld_rxq->rx_nvme_fl_octets); 13022 counter_u64_zero( 13023 ofld_rxq->rx_nvme_invalid_headers); 13024 counter_u64_zero( 13025 ofld_rxq->rx_nvme_header_digest_errors); 13026 counter_u64_zero( 13027 ofld_rxq->rx_nvme_data_digest_errors); 13028 ofld_rxq->rx_aio_ddp_jobs = 0; 13029 ofld_rxq->rx_aio_ddp_octets = 0; 13030 ofld_rxq->rx_toe_tls_records = 0; 13031 ofld_rxq->rx_toe_tls_octets = 0; 13032 ofld_rxq->rx_toe_ddp_octets = 0; 13033 counter_u64_zero(ofld_rxq->ddp_buffer_alloc); 13034 counter_u64_zero(ofld_rxq->ddp_buffer_reuse); 13035 counter_u64_zero(ofld_rxq->ddp_buffer_free); 13036 } 13037 #endif 13038 13039 if (IS_MAIN_VI(vi)) { 13040 wrq = &sc->sge.ctrlq[pi->port_id]; 13041 wrq->tx_wrs_direct = 0; 13042 wrq->tx_wrs_copied = 0; 13043 } 13044 } 13045 } 13046 13047 return (0); 13048 } 13049 13050 static int 13051 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 13052 { 13053 #ifdef INET6 13054 struct in6_addr in6; 13055 13056 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 13057 if (t4_get_clip_entry(sc, &in6, true) != NULL) 13058 return (0); 13059 else 13060 return (EIO); 13061 #else 13062 return (ENOTSUP); 13063 #endif 13064 } 13065 13066 static int 13067 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca) 13068 { 13069 #ifdef INET6 13070 struct in6_addr in6; 13071 13072 bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr)); 13073 return (t4_release_clip_addr(sc, &in6)); 13074 #else 13075 return (ENOTSUP); 13076 #endif 13077 } 13078 13079 int 13080 t4_os_find_pci_capability(struct adapter *sc, int cap) 13081 { 13082 int i; 13083 13084 return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0); 13085 } 13086 13087 void 13088 t4_os_portmod_changed(struct port_info *pi) 13089 { 13090 struct adapter *sc = pi->adapter; 13091 struct vi_info *vi; 13092 if_t ifp; 13093 static const char *mod_str[] = { 13094 NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM", 13095 "LR_SIMPLEX", "DR" 13096 }; 13097 13098 KASSERT((pi->flags & FIXED_IFMEDIA) == 0, 13099 ("%s: port_type %u", __func__, pi->port_type)); 13100 13101 vi = &pi->vi[0]; 13102 if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) { 13103 PORT_LOCK(pi); 13104 build_medialist(pi); 13105 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) { 13106 fixup_link_config(pi); 13107 apply_link_config(pi); 13108 } 13109 PORT_UNLOCK(pi); 13110 end_synchronized_op(sc, LOCK_HELD); 13111 } 13112 13113 ifp = vi->ifp; 13114 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE) 13115 if_printf(ifp, "transceiver unplugged.\n"); 13116 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN) 13117 if_printf(ifp, "unknown transceiver inserted.\n"); 13118 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED) 13119 if_printf(ifp, "unsupported transceiver inserted.\n"); 13120 else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) { 13121 if_printf(ifp, "%dGbps %s transceiver inserted.\n", 13122 port_top_speed(pi), mod_str[pi->mod_type]); 13123 } else { 13124 if_printf(ifp, "transceiver (type %d) inserted.\n", 13125 pi->mod_type); 13126 } 13127 } 13128 13129 void 13130 t4_os_link_changed(struct port_info *pi) 13131 { 13132 struct vi_info *vi; 13133 if_t ifp; 13134 struct link_config *lc = &pi->link_cfg; 13135 struct adapter *sc = pi->adapter; 13136 int v; 13137 13138 PORT_LOCK_ASSERT_OWNED(pi); 13139 13140 if (is_t6(sc)) { 13141 if (lc->link_ok) { 13142 if (lc->speed > 25000 || 13143 (lc->speed == 25000 && lc->fec == FEC_RS)) 13144 pi->fcs_reg = A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS; 13145 else 13146 pi->fcs_reg = A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS; 13147 pi->fcs_base = t4_read_reg64(sc, 13148 t4_port_reg(sc, pi->tx_chan, pi->fcs_reg)); 13149 pi->stats.rx_fcs_err = 0; 13150 } else { 13151 pi->fcs_reg = -1; 13152 } 13153 } else { 13154 MPASS(pi->fcs_reg != -1); 13155 MPASS(pi->fcs_base == 0); 13156 } 13157 13158 for_each_vi(pi, v, vi) { 13159 ifp = vi->ifp; 13160 if (ifp == NULL || IS_DETACHING(vi)) 13161 continue; 13162 13163 if (lc->link_ok) { 13164 if_setbaudrate(ifp, IF_Mbps(lc->speed)); 13165 if_link_state_change(ifp, LINK_STATE_UP); 13166 } else { 13167 if_link_state_change(ifp, LINK_STATE_DOWN); 13168 } 13169 } 13170 } 13171 13172 void 13173 t4_iterate(void (*func)(struct adapter *, void *), void *arg) 13174 { 13175 struct adapter *sc; 13176 13177 sx_slock(&t4_list_lock); 13178 SLIST_FOREACH(sc, &t4_list, link) { 13179 /* 13180 * func should not make any assumptions about what state sc is 13181 * in - the only guarantee is that sc->sc_lock is a valid lock. 13182 */ 13183 func(sc, arg); 13184 } 13185 sx_sunlock(&t4_list_lock); 13186 } 13187 13188 static int 13189 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag, 13190 struct thread *td) 13191 { 13192 int rc; 13193 struct adapter *sc = dev->si_drv1; 13194 13195 rc = priv_check(td, PRIV_DRIVER); 13196 if (rc != 0) 13197 return (rc); 13198 13199 switch (cmd) { 13200 case CHELSIO_T4_GETREG: { 13201 struct t4_reg *edata = (struct t4_reg *)data; 13202 13203 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 13204 return (EFAULT); 13205 13206 mtx_lock(&sc->reg_lock); 13207 if (hw_off_limits(sc)) 13208 rc = ENXIO; 13209 else if (edata->size == 4) 13210 edata->val = t4_read_reg(sc, edata->addr); 13211 else if (edata->size == 8) 13212 edata->val = t4_read_reg64(sc, edata->addr); 13213 else 13214 rc = EINVAL; 13215 mtx_unlock(&sc->reg_lock); 13216 13217 break; 13218 } 13219 case CHELSIO_T4_SETREG: { 13220 struct t4_reg *edata = (struct t4_reg *)data; 13221 13222 if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len) 13223 return (EFAULT); 13224 13225 mtx_lock(&sc->reg_lock); 13226 if (hw_off_limits(sc)) 13227 rc = ENXIO; 13228 else if (edata->size == 4) { 13229 if (edata->val & 0xffffffff00000000) 13230 rc = EINVAL; 13231 t4_write_reg(sc, edata->addr, (uint32_t) edata->val); 13232 } else if (edata->size == 8) 13233 t4_write_reg64(sc, edata->addr, edata->val); 13234 else 13235 rc = EINVAL; 13236 mtx_unlock(&sc->reg_lock); 13237 13238 break; 13239 } 13240 case CHELSIO_T4_REGDUMP: { 13241 struct t4_regdump *regs = (struct t4_regdump *)data; 13242 int reglen = t4_get_regs_len(sc); 13243 uint8_t *buf; 13244 13245 if (regs->len < reglen) { 13246 regs->len = reglen; /* hint to the caller */ 13247 return (ENOBUFS); 13248 } 13249 13250 regs->len = reglen; 13251 buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO); 13252 mtx_lock(&sc->reg_lock); 13253 if (hw_off_limits(sc)) 13254 rc = ENXIO; 13255 else 13256 get_regs(sc, regs, buf); 13257 mtx_unlock(&sc->reg_lock); 13258 if (rc == 0) 13259 rc = copyout(buf, regs->data, reglen); 13260 free(buf, M_CXGBE); 13261 break; 13262 } 13263 case CHELSIO_T4_GET_FILTER_MODE: 13264 rc = get_filter_mode(sc, (uint32_t *)data); 13265 break; 13266 case CHELSIO_T4_SET_FILTER_MODE: 13267 rc = set_filter_mode(sc, *(uint32_t *)data); 13268 break; 13269 case CHELSIO_T4_SET_FILTER_MASK: 13270 rc = set_filter_mask(sc, *(uint32_t *)data); 13271 break; 13272 case CHELSIO_T4_GET_FILTER: 13273 rc = get_filter(sc, (struct t4_filter *)data); 13274 break; 13275 case CHELSIO_T4_SET_FILTER: 13276 rc = set_filter(sc, (struct t4_filter *)data); 13277 break; 13278 case CHELSIO_T4_DEL_FILTER: 13279 rc = del_filter(sc, (struct t4_filter *)data); 13280 break; 13281 case CHELSIO_T4_GET_SGE_CONTEXT: { 13282 struct t4_sge_context *ctxt = (struct t4_sge_context *)data; 13283 13284 rc = get_sge_context(sc, ctxt->mem_id, ctxt->cid, 13285 sizeof(ctxt->data), &ctxt->data[0]); 13286 break; 13287 } 13288 case CHELSIO_T4_LOAD_FW: 13289 rc = load_fw(sc, (struct t4_data *)data); 13290 break; 13291 case CHELSIO_T4_GET_MEM: 13292 rc = read_card_mem(sc, 2, (struct t4_mem_range *)data); 13293 break; 13294 case CHELSIO_T4_GET_I2C: 13295 rc = read_i2c(sc, (struct t4_i2c_data *)data); 13296 break; 13297 case CHELSIO_T4_CLEAR_STATS: 13298 rc = clear_stats(sc, *(uint32_t *)data); 13299 break; 13300 case CHELSIO_T4_SCHED_CLASS: 13301 rc = t4_set_sched_class(sc, (struct t4_sched_params *)data); 13302 break; 13303 case CHELSIO_T4_SCHED_QUEUE: 13304 rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data); 13305 break; 13306 case CHELSIO_T4_GET_TRACER: 13307 rc = t4_get_tracer(sc, (struct t4_tracer *)data); 13308 break; 13309 case CHELSIO_T4_SET_TRACER: 13310 rc = t4_set_tracer(sc, (struct t4_tracer *)data); 13311 break; 13312 case CHELSIO_T4_LOAD_CFG: 13313 rc = load_cfg(sc, (struct t4_data *)data); 13314 break; 13315 case CHELSIO_T4_LOAD_BOOT: 13316 rc = load_boot(sc, (struct t4_bootrom *)data); 13317 break; 13318 case CHELSIO_T4_LOAD_BOOTCFG: 13319 rc = load_bootcfg(sc, (struct t4_data *)data); 13320 break; 13321 case CHELSIO_T4_CUDBG_DUMP: 13322 rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data); 13323 break; 13324 case CHELSIO_T4_SET_OFLD_POLICY: 13325 rc = set_offload_policy(sc, (struct t4_offload_policy *)data); 13326 break; 13327 case CHELSIO_T4_HOLD_CLIP_ADDR: 13328 rc = hold_clip_addr(sc, (struct t4_clip_addr *)data); 13329 break; 13330 case CHELSIO_T4_RELEASE_CLIP_ADDR: 13331 rc = release_clip_addr(sc, (struct t4_clip_addr *)data); 13332 break; 13333 case CHELSIO_T4_GET_SGE_CTXT: { 13334 struct t4_sge_ctxt *ctxt = (struct t4_sge_ctxt *)data; 13335 13336 rc = get_sge_context(sc, ctxt->mem_id, ctxt->cid, 13337 sizeof(ctxt->data), &ctxt->data[0]); 13338 break; 13339 } 13340 default: 13341 rc = ENOTTY; 13342 } 13343 13344 return (rc); 13345 } 13346 13347 #ifdef TCP_OFFLOAD 13348 int 13349 toe_capability(struct vi_info *vi, bool enable) 13350 { 13351 int rc; 13352 struct port_info *pi = vi->pi; 13353 struct adapter *sc = pi->adapter; 13354 13355 ASSERT_SYNCHRONIZED_OP(sc); 13356 13357 if (!is_offload(sc)) 13358 return (ENODEV); 13359 if (!hw_all_ok(sc)) 13360 return (ENXIO); 13361 13362 if (enable) { 13363 #ifdef KERN_TLS 13364 if (sc->flags & KERN_TLS_ON && is_t6(sc)) { 13365 int i, j, n; 13366 struct port_info *p; 13367 struct vi_info *v; 13368 13369 /* 13370 * Reconfigure hardware for TOE if TXTLS is not enabled 13371 * on any ifnet. 13372 */ 13373 n = 0; 13374 for_each_port(sc, i) { 13375 p = sc->port[i]; 13376 for_each_vi(p, j, v) { 13377 if (if_getcapenable(v->ifp) & IFCAP_TXTLS) { 13378 CH_WARN(sc, 13379 "%s has NIC TLS enabled.\n", 13380 device_get_nameunit(v->dev)); 13381 n++; 13382 } 13383 } 13384 } 13385 if (n > 0) { 13386 CH_WARN(sc, "Disable NIC TLS on all interfaces " 13387 "associated with this adapter before " 13388 "trying to enable TOE.\n"); 13389 return (EAGAIN); 13390 } 13391 rc = t6_config_kern_tls(sc, false); 13392 if (rc) 13393 return (rc); 13394 } 13395 #endif 13396 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) != 0) { 13397 /* TOE is already enabled. */ 13398 return (0); 13399 } 13400 13401 /* 13402 * We need the port's queues around so that we're able to send 13403 * and receive CPLs to/from the TOE even if the ifnet for this 13404 * port has never been UP'd administratively. 13405 */ 13406 if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0)) 13407 return (rc); 13408 if (!(pi->vi[0].flags & VI_INIT_DONE) && 13409 ((rc = vi_init(&pi->vi[0])) != 0)) 13410 return (rc); 13411 13412 if (isset(&sc->offload_map, pi->port_id)) { 13413 /* TOE is enabled on another VI of this port. */ 13414 MPASS(pi->uld_vis > 0); 13415 pi->uld_vis++; 13416 return (0); 13417 } 13418 13419 if (!uld_active(sc, ULD_TOM)) { 13420 rc = t4_activate_uld(sc, ULD_TOM); 13421 if (rc == EAGAIN) { 13422 log(LOG_WARNING, 13423 "You must kldload t4_tom.ko before trying " 13424 "to enable TOE on a cxgbe interface.\n"); 13425 } 13426 if (rc != 0) 13427 return (rc); 13428 KASSERT(sc->tom_softc != NULL, 13429 ("%s: TOM activated but softc NULL", __func__)); 13430 KASSERT(uld_active(sc, ULD_TOM), 13431 ("%s: TOM activated but flag not set", __func__)); 13432 } 13433 13434 /* 13435 * Activate iWARP, iSCSI, and NVMe too, if the modules 13436 * are loaded. 13437 */ 13438 if (!uld_active(sc, ULD_IWARP)) 13439 (void) t4_activate_uld(sc, ULD_IWARP); 13440 if (!uld_active(sc, ULD_ISCSI)) 13441 (void) t4_activate_uld(sc, ULD_ISCSI); 13442 if (!uld_active(sc, ULD_NVME)) 13443 (void) t4_activate_uld(sc, ULD_NVME); 13444 13445 if (pi->uld_vis++ == 0) 13446 setbit(&sc->offload_map, pi->port_id); 13447 } else { 13448 if ((if_getcapenable(vi->ifp) & IFCAP_TOE) == 0) { 13449 /* TOE is already disabled. */ 13450 return (0); 13451 } 13452 MPASS(isset(&sc->offload_map, pi->port_id)); 13453 MPASS(pi->uld_vis > 0); 13454 if (--pi->uld_vis == 0) 13455 clrbit(&sc->offload_map, pi->port_id); 13456 } 13457 13458 return (0); 13459 } 13460 13461 /* 13462 * Add an upper layer driver to the global list. 13463 */ 13464 int 13465 t4_register_uld(struct uld_info *ui, int id) 13466 { 13467 int rc; 13468 13469 if (id < 0 || id > ULD_MAX) 13470 return (EINVAL); 13471 sx_xlock(&t4_uld_list_lock); 13472 if (t4_uld_list[id] != NULL) 13473 rc = EEXIST; 13474 else { 13475 t4_uld_list[id] = ui; 13476 rc = 0; 13477 } 13478 sx_xunlock(&t4_uld_list_lock); 13479 return (rc); 13480 } 13481 13482 int 13483 t4_unregister_uld(struct uld_info *ui, int id) 13484 { 13485 13486 if (id < 0 || id > ULD_MAX) 13487 return (EINVAL); 13488 sx_xlock(&t4_uld_list_lock); 13489 MPASS(t4_uld_list[id] == ui); 13490 t4_uld_list[id] = NULL; 13491 sx_xunlock(&t4_uld_list_lock); 13492 return (0); 13493 } 13494 13495 int 13496 t4_activate_uld(struct adapter *sc, int id) 13497 { 13498 int rc; 13499 13500 ASSERT_SYNCHRONIZED_OP(sc); 13501 13502 if (id < 0 || id > ULD_MAX) 13503 return (EINVAL); 13504 13505 /* Adapter needs to be initialized before any ULD can be activated. */ 13506 if (!(sc->flags & FULL_INIT_DONE)) { 13507 rc = adapter_init(sc); 13508 if (rc != 0) 13509 return (rc); 13510 } 13511 13512 sx_slock(&t4_uld_list_lock); 13513 if (t4_uld_list[id] == NULL) 13514 rc = EAGAIN; /* load the KLD with this ULD and try again. */ 13515 else { 13516 rc = t4_uld_list[id]->uld_activate(sc); 13517 if (rc == 0) 13518 setbit(&sc->active_ulds, id); 13519 } 13520 sx_sunlock(&t4_uld_list_lock); 13521 13522 return (rc); 13523 } 13524 13525 int 13526 t4_deactivate_uld(struct adapter *sc, int id) 13527 { 13528 int rc; 13529 13530 ASSERT_SYNCHRONIZED_OP(sc); 13531 13532 if (id < 0 || id > ULD_MAX) 13533 return (EINVAL); 13534 13535 sx_slock(&t4_uld_list_lock); 13536 if (t4_uld_list[id] == NULL) 13537 rc = ENXIO; 13538 else { 13539 rc = t4_uld_list[id]->uld_deactivate(sc); 13540 if (rc == 0) 13541 clrbit(&sc->active_ulds, id); 13542 } 13543 sx_sunlock(&t4_uld_list_lock); 13544 13545 return (rc); 13546 } 13547 13548 static int 13549 deactivate_all_uld(struct adapter *sc) 13550 { 13551 int i, rc; 13552 13553 rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld"); 13554 if (rc != 0) 13555 return (ENXIO); 13556 sx_slock(&t4_uld_list_lock); 13557 for (i = 0; i <= ULD_MAX; i++) { 13558 if (t4_uld_list[i] == NULL || !uld_active(sc, i)) 13559 continue; 13560 rc = t4_uld_list[i]->uld_deactivate(sc); 13561 if (rc != 0) 13562 break; 13563 clrbit(&sc->active_ulds, i); 13564 } 13565 sx_sunlock(&t4_uld_list_lock); 13566 end_synchronized_op(sc, 0); 13567 13568 return (rc); 13569 } 13570 13571 static void 13572 stop_all_uld(struct adapter *sc) 13573 { 13574 int i; 13575 13576 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldst") != 0) 13577 return; 13578 sx_slock(&t4_uld_list_lock); 13579 for (i = 0; i <= ULD_MAX; i++) { 13580 if (t4_uld_list[i] == NULL || !uld_active(sc, i) || 13581 t4_uld_list[i]->uld_stop == NULL) 13582 continue; 13583 (void) t4_uld_list[i]->uld_stop(sc); 13584 } 13585 sx_sunlock(&t4_uld_list_lock); 13586 end_synchronized_op(sc, 0); 13587 } 13588 13589 static void 13590 restart_all_uld(struct adapter *sc) 13591 { 13592 int i; 13593 13594 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4uldre") != 0) 13595 return; 13596 sx_slock(&t4_uld_list_lock); 13597 for (i = 0; i <= ULD_MAX; i++) { 13598 if (t4_uld_list[i] == NULL || !uld_active(sc, i) || 13599 t4_uld_list[i]->uld_restart == NULL) 13600 continue; 13601 (void) t4_uld_list[i]->uld_restart(sc); 13602 } 13603 sx_sunlock(&t4_uld_list_lock); 13604 end_synchronized_op(sc, 0); 13605 } 13606 13607 int 13608 uld_active(struct adapter *sc, int id) 13609 { 13610 13611 MPASS(id >= 0 && id <= ULD_MAX); 13612 13613 return (isset(&sc->active_ulds, id)); 13614 } 13615 #endif 13616 13617 #ifdef KERN_TLS 13618 static int 13619 ktls_capability(struct adapter *sc, bool enable) 13620 { 13621 ASSERT_SYNCHRONIZED_OP(sc); 13622 13623 if (!is_ktls(sc)) 13624 return (ENODEV); 13625 if (!is_t6(sc)) 13626 return (0); 13627 if (!hw_all_ok(sc)) 13628 return (ENXIO); 13629 13630 if (enable) { 13631 if (sc->flags & KERN_TLS_ON) 13632 return (0); /* already on */ 13633 if (sc->offload_map != 0) { 13634 CH_WARN(sc, 13635 "Disable TOE on all interfaces associated with " 13636 "this adapter before trying to enable NIC TLS.\n"); 13637 return (EAGAIN); 13638 } 13639 return (t6_config_kern_tls(sc, true)); 13640 } else { 13641 /* 13642 * Nothing to do for disable. If TOE is enabled sometime later 13643 * then toe_capability will reconfigure the hardware. 13644 */ 13645 return (0); 13646 } 13647 } 13648 #endif 13649 13650 /* 13651 * t = ptr to tunable. 13652 * nc = number of CPUs. 13653 * c = compiled in default for that tunable. 13654 */ 13655 static void 13656 calculate_nqueues(int *t, int nc, const int c) 13657 { 13658 int nq; 13659 13660 if (*t > 0) 13661 return; 13662 nq = *t < 0 ? -*t : c; 13663 *t = min(nc, nq); 13664 } 13665 13666 /* 13667 * Come up with reasonable defaults for some of the tunables, provided they're 13668 * not set by the user (in which case we'll use the values as is). 13669 */ 13670 static void 13671 tweak_tunables(void) 13672 { 13673 int nc = mp_ncpus; /* our snapshot of the number of CPUs */ 13674 13675 if (t4_ntxq < 1) { 13676 #ifdef RSS 13677 t4_ntxq = rss_getnumbuckets(); 13678 #else 13679 calculate_nqueues(&t4_ntxq, nc, NTXQ); 13680 #endif 13681 } 13682 13683 calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI); 13684 13685 if (t4_nrxq < 1) { 13686 #ifdef RSS 13687 t4_nrxq = rss_getnumbuckets(); 13688 #else 13689 calculate_nqueues(&t4_nrxq, nc, NRXQ); 13690 #endif 13691 } 13692 13693 calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI); 13694 13695 #if defined(TCP_OFFLOAD) || defined(RATELIMIT) 13696 calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ); 13697 calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI); 13698 #endif 13699 #ifdef TCP_OFFLOAD 13700 calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ); 13701 calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI); 13702 #endif 13703 13704 #if defined(TCP_OFFLOAD) || defined(KERN_TLS) 13705 if (t4_toecaps_allowed == -1) 13706 t4_toecaps_allowed = FW_CAPS_CONFIG_TOE; 13707 #else 13708 if (t4_toecaps_allowed == -1) 13709 t4_toecaps_allowed = 0; 13710 #endif 13711 13712 #ifdef TCP_OFFLOAD 13713 if (t4_rdmacaps_allowed == -1) { 13714 t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP | 13715 FW_CAPS_CONFIG_RDMA_RDMAC; 13716 } 13717 13718 if (t4_iscsicaps_allowed == -1) { 13719 t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU | 13720 FW_CAPS_CONFIG_ISCSI_TARGET_PDU | 13721 FW_CAPS_CONFIG_ISCSI_T10DIF; 13722 } 13723 13724 if (t4_nvmecaps_allowed == -1) 13725 t4_nvmecaps_allowed = FW_CAPS_CONFIG_NVME_TCP; 13726 13727 if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS) 13728 t4_tmr_idx_ofld = TMR_IDX_OFLD; 13729 13730 if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS) 13731 t4_pktc_idx_ofld = PKTC_IDX_OFLD; 13732 #else 13733 if (t4_rdmacaps_allowed == -1) 13734 t4_rdmacaps_allowed = 0; 13735 13736 if (t4_iscsicaps_allowed == -1) 13737 t4_iscsicaps_allowed = 0; 13738 13739 if (t4_nvmecaps_allowed == -1) 13740 t4_nvmecaps_allowed = 0; 13741 #endif 13742 13743 #ifdef DEV_NETMAP 13744 calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ); 13745 calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ); 13746 calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI); 13747 calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI); 13748 #endif 13749 13750 if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS) 13751 t4_tmr_idx = TMR_IDX; 13752 13753 if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS) 13754 t4_pktc_idx = PKTC_IDX; 13755 13756 if (t4_qsize_txq < 128) 13757 t4_qsize_txq = 128; 13758 13759 if (t4_qsize_rxq < 128) 13760 t4_qsize_rxq = 128; 13761 while (t4_qsize_rxq & 7) 13762 t4_qsize_rxq++; 13763 13764 t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX; 13765 13766 /* 13767 * Number of VIs to create per-port. The first VI is the "main" regular 13768 * VI for the port. The rest are additional virtual interfaces on the 13769 * same physical port. Note that the main VI does not have native 13770 * netmap support but the extra VIs do. 13771 * 13772 * Limit the number of VIs per port to the number of available 13773 * MAC addresses per port. 13774 */ 13775 if (t4_num_vis < 1) 13776 t4_num_vis = 1; 13777 if (t4_num_vis > nitems(vi_mac_funcs)) { 13778 t4_num_vis = nitems(vi_mac_funcs); 13779 printf("cxgbe: number of VIs limited to %d\n", t4_num_vis); 13780 } 13781 13782 if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) { 13783 pcie_relaxed_ordering = 1; 13784 #if defined(__i386__) || defined(__amd64__) 13785 if (cpu_vendor_id == CPU_VENDOR_INTEL) 13786 pcie_relaxed_ordering = 0; 13787 #endif 13788 } 13789 } 13790 13791 #ifdef DDB 13792 static void 13793 t4_dump_mem(struct adapter *sc, u_int addr, u_int len) 13794 { 13795 uint32_t base, j, off, pf, reg, save, win_pos; 13796 13797 reg = chip_id(sc) > CHELSIO_T6 ? 13798 PCIE_MEM_ACCESS_T7_REG(A_PCIE_MEM_ACCESS_OFFSET0, 2) : 13799 PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2); 13800 save = t4_read_reg(sc, reg); 13801 base = sc->memwin[2].mw_base; 13802 13803 if (is_t4(sc)) { 13804 pf = 0; 13805 win_pos = addr & ~0xf; /* start must be 16B aligned */ 13806 } else { 13807 pf = V_PFNUM(sc->pf); 13808 win_pos = addr & ~0x7f; /* start must be 128B aligned */ 13809 } 13810 off = addr - win_pos; 13811 if (chip_id(sc) > CHELSIO_T6) 13812 win_pos >>= X_T7_MEMOFST_SHIFT; 13813 t4_write_reg(sc, reg, win_pos | pf); 13814 t4_read_reg(sc, reg); 13815 13816 while (len > 0 && !db_pager_quit) { 13817 uint32_t buf[8]; 13818 for (j = 0; j < 8; j++, off += 4) 13819 buf[j] = htonl(t4_read_reg(sc, base + off)); 13820 13821 db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n", 13822 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], 13823 buf[7]); 13824 if (len <= sizeof(buf)) 13825 len = 0; 13826 else 13827 len -= sizeof(buf); 13828 } 13829 13830 t4_write_reg(sc, reg, save); 13831 t4_read_reg(sc, reg); 13832 } 13833 13834 static void 13835 t4_dump_tcb(struct adapter *sc, int tid) 13836 { 13837 uint32_t tcb_addr; 13838 13839 /* Dump TCB for the tid */ 13840 tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE); 13841 tcb_addr += tid * TCB_SIZE; 13842 t4_dump_mem(sc, tcb_addr, TCB_SIZE); 13843 } 13844 13845 static void 13846 t4_dump_devlog(struct adapter *sc) 13847 { 13848 struct devlog_params *dparams = &sc->params.devlog; 13849 struct fw_devlog_e e; 13850 int i, first, j, m, nentries, rc; 13851 uint64_t ftstamp = UINT64_MAX; 13852 13853 if (dparams->start == 0) { 13854 db_printf("devlog params not valid\n"); 13855 return; 13856 } 13857 13858 nentries = dparams->size / sizeof(struct fw_devlog_e); 13859 m = fwmtype_to_hwmtype(dparams->memtype); 13860 13861 /* Find the first entry. */ 13862 first = -1; 13863 for (i = 0; i < nentries && !db_pager_quit; i++) { 13864 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 13865 sizeof(e), (void *)&e); 13866 if (rc != 0) 13867 break; 13868 13869 if (e.timestamp == 0) 13870 break; 13871 13872 e.timestamp = be64toh(e.timestamp); 13873 if (e.timestamp < ftstamp) { 13874 ftstamp = e.timestamp; 13875 first = i; 13876 } 13877 } 13878 13879 if (first == -1) 13880 return; 13881 13882 i = first; 13883 do { 13884 rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e), 13885 sizeof(e), (void *)&e); 13886 if (rc != 0) 13887 return; 13888 13889 if (e.timestamp == 0) 13890 return; 13891 13892 e.timestamp = be64toh(e.timestamp); 13893 e.seqno = be32toh(e.seqno); 13894 for (j = 0; j < 8; j++) 13895 e.params[j] = be32toh(e.params[j]); 13896 13897 db_printf("%10d %15ju %8s %8s ", 13898 e.seqno, e.timestamp, 13899 (e.level < nitems(devlog_level_strings) ? 13900 devlog_level_strings[e.level] : "UNKNOWN"), 13901 (e.facility < nitems(devlog_facility_strings) ? 13902 devlog_facility_strings[e.facility] : "UNKNOWN")); 13903 db_printf(e.fmt, e.params[0], e.params[1], e.params[2], 13904 e.params[3], e.params[4], e.params[5], e.params[6], 13905 e.params[7]); 13906 13907 if (++i == nentries) 13908 i = 0; 13909 } while (i != first && !db_pager_quit); 13910 } 13911 13912 static DB_DEFINE_TABLE(show, t4, show_t4); 13913 13914 DB_TABLE_COMMAND_FLAGS(show_t4, devlog, db_show_devlog, CS_OWN) 13915 { 13916 device_t dev; 13917 int t; 13918 bool valid; 13919 13920 valid = false; 13921 t = db_read_token(); 13922 if (t == tIDENT) { 13923 dev = device_lookup_by_name(db_tok_string); 13924 valid = true; 13925 } 13926 db_skip_to_eol(); 13927 if (!valid) { 13928 db_printf("usage: show t4 devlog <nexus>\n"); 13929 return; 13930 } 13931 13932 if (dev == NULL) { 13933 db_printf("device not found\n"); 13934 return; 13935 } 13936 13937 t4_dump_devlog(device_get_softc(dev)); 13938 } 13939 13940 DB_TABLE_COMMAND_FLAGS(show_t4, tcb, db_show_t4tcb, CS_OWN) 13941 { 13942 device_t dev; 13943 int radix, tid, t; 13944 bool valid; 13945 13946 valid = false; 13947 radix = db_radix; 13948 db_radix = 10; 13949 t = db_read_token(); 13950 if (t == tIDENT) { 13951 dev = device_lookup_by_name(db_tok_string); 13952 t = db_read_token(); 13953 if (t == tNUMBER) { 13954 tid = db_tok_number; 13955 valid = true; 13956 } 13957 } 13958 db_radix = radix; 13959 db_skip_to_eol(); 13960 if (!valid) { 13961 db_printf("usage: show t4 tcb <nexus> <tid>\n"); 13962 return; 13963 } 13964 13965 if (dev == NULL) { 13966 db_printf("device not found\n"); 13967 return; 13968 } 13969 if (tid < 0) { 13970 db_printf("invalid tid\n"); 13971 return; 13972 } 13973 13974 t4_dump_tcb(device_get_softc(dev), tid); 13975 } 13976 13977 DB_TABLE_COMMAND_FLAGS(show_t4, memdump, db_show_memdump, CS_OWN) 13978 { 13979 device_t dev; 13980 int radix, t; 13981 bool valid; 13982 13983 valid = false; 13984 radix = db_radix; 13985 db_radix = 10; 13986 t = db_read_token(); 13987 if (t == tIDENT) { 13988 dev = device_lookup_by_name(db_tok_string); 13989 t = db_read_token(); 13990 if (t == tNUMBER) { 13991 addr = db_tok_number; 13992 t = db_read_token(); 13993 if (t == tNUMBER) { 13994 count = db_tok_number; 13995 valid = true; 13996 } 13997 } 13998 } 13999 db_radix = radix; 14000 db_skip_to_eol(); 14001 if (!valid) { 14002 db_printf("usage: show t4 memdump <nexus> <addr> <len>\n"); 14003 return; 14004 } 14005 14006 if (dev == NULL) { 14007 db_printf("device not found\n"); 14008 return; 14009 } 14010 if (addr < 0) { 14011 db_printf("invalid address\n"); 14012 return; 14013 } 14014 if (count <= 0) { 14015 db_printf("invalid length\n"); 14016 return; 14017 } 14018 14019 t4_dump_mem(device_get_softc(dev), addr, count); 14020 } 14021 #endif 14022 14023 static eventhandler_tag vxlan_start_evtag; 14024 static eventhandler_tag vxlan_stop_evtag; 14025 14026 struct vxlan_evargs { 14027 if_t ifp; 14028 uint16_t port; 14029 }; 14030 14031 static void 14032 enable_vxlan_rx(struct adapter *sc) 14033 { 14034 int i, rc; 14035 struct port_info *pi; 14036 uint8_t match_all_mac[ETHER_ADDR_LEN] = {0}; 14037 14038 ASSERT_SYNCHRONIZED_OP(sc); 14039 14040 t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) | 14041 F_VXLAN_EN); 14042 for_each_port(sc, i) { 14043 pi = sc->port[i]; 14044 if (pi->vxlan_tcam_entry == true) 14045 continue; 14046 rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac, 14047 match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id, 14048 true); 14049 if (rc < 0) { 14050 rc = -rc; 14051 CH_ERR(&pi->vi[0], 14052 "failed to add VXLAN TCAM entry: %d.\n", rc); 14053 } else { 14054 MPASS(rc == sc->rawf_base + pi->port_id); 14055 pi->vxlan_tcam_entry = true; 14056 } 14057 } 14058 } 14059 14060 static void 14061 t4_vxlan_start(struct adapter *sc, void *arg) 14062 { 14063 struct vxlan_evargs *v = arg; 14064 14065 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 14066 return; 14067 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0) 14068 return; 14069 14070 if (sc->vxlan_refcount == 0) { 14071 sc->vxlan_port = v->port; 14072 sc->vxlan_refcount = 1; 14073 if (!hw_off_limits(sc)) 14074 enable_vxlan_rx(sc); 14075 } else if (sc->vxlan_port == v->port) { 14076 sc->vxlan_refcount++; 14077 } else { 14078 CH_ERR(sc, "VXLAN already configured on port %d; " 14079 "ignoring attempt to configure it on port %d\n", 14080 sc->vxlan_port, v->port); 14081 } 14082 end_synchronized_op(sc, 0); 14083 } 14084 14085 static void 14086 t4_vxlan_stop(struct adapter *sc, void *arg) 14087 { 14088 struct vxlan_evargs *v = arg; 14089 14090 if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5) 14091 return; 14092 if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0) 14093 return; 14094 14095 /* 14096 * VXLANs may have been configured before the driver was loaded so we 14097 * may see more stops than starts. This is not handled cleanly but at 14098 * least we keep the refcount sane. 14099 */ 14100 if (sc->vxlan_port != v->port) 14101 goto done; 14102 if (sc->vxlan_refcount == 0) { 14103 CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; " 14104 "ignoring attempt to stop it again.\n", sc->vxlan_port); 14105 } else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc)) 14106 t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0); 14107 done: 14108 end_synchronized_op(sc, 0); 14109 } 14110 14111 static void 14112 t4_vxlan_start_handler(void *arg __unused, if_t ifp, 14113 sa_family_t family, u_int port) 14114 { 14115 struct vxlan_evargs v; 14116 14117 MPASS(family == AF_INET || family == AF_INET6); 14118 v.ifp = ifp; 14119 v.port = port; 14120 14121 t4_iterate(t4_vxlan_start, &v); 14122 } 14123 14124 static void 14125 t4_vxlan_stop_handler(void *arg __unused, if_t ifp, sa_family_t family, 14126 u_int port) 14127 { 14128 struct vxlan_evargs v; 14129 14130 MPASS(family == AF_INET || family == AF_INET6); 14131 v.ifp = ifp; 14132 v.port = port; 14133 14134 t4_iterate(t4_vxlan_stop, &v); 14135 } 14136 14137 14138 static struct sx mlu; /* mod load unload */ 14139 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload"); 14140 14141 static int 14142 mod_event(module_t mod, int cmd, void *arg) 14143 { 14144 int rc = 0; 14145 static int loaded = 0; 14146 14147 switch (cmd) { 14148 case MOD_LOAD: 14149 sx_xlock(&mlu); 14150 if (loaded++ == 0) { 14151 t4_sge_modload(); 14152 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 14153 t4_filter_rpl, CPL_COOKIE_FILTER); 14154 t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL, 14155 do_l2t_write_rpl, CPL_COOKIE_FILTER); 14156 t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL, 14157 t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER); 14158 t4_register_shared_cpl_handler(CPL_SET_TCB_RPL, 14159 t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER); 14160 t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS, 14161 t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER); 14162 t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt); 14163 t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt); 14164 t4_register_cpl_handler(CPL_SMT_WRITE_RPL, 14165 do_smt_write_rpl); 14166 sx_init(&t4_list_lock, "T4/T5 adapters"); 14167 SLIST_INIT(&t4_list); 14168 callout_init(&fatal_callout, 1); 14169 #ifdef TCP_OFFLOAD 14170 sx_init(&t4_uld_list_lock, "T4/T5 ULDs"); 14171 #endif 14172 #ifdef INET6 14173 t4_clip_modload(); 14174 #endif 14175 #ifdef KERN_TLS 14176 t6_ktls_modload(); 14177 t7_ktls_modload(); 14178 #endif 14179 t4_tracer_modload(); 14180 tweak_tunables(); 14181 vxlan_start_evtag = 14182 EVENTHANDLER_REGISTER(vxlan_start, 14183 t4_vxlan_start_handler, NULL, 14184 EVENTHANDLER_PRI_ANY); 14185 vxlan_stop_evtag = 14186 EVENTHANDLER_REGISTER(vxlan_stop, 14187 t4_vxlan_stop_handler, NULL, 14188 EVENTHANDLER_PRI_ANY); 14189 reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK, 14190 taskqueue_thread_enqueue, &reset_tq); 14191 taskqueue_start_threads(&reset_tq, 1, PI_SOFT, 14192 "t4_rst_thr"); 14193 } 14194 sx_xunlock(&mlu); 14195 break; 14196 14197 case MOD_UNLOAD: 14198 sx_xlock(&mlu); 14199 if (--loaded == 0) { 14200 #ifdef TCP_OFFLOAD 14201 int i; 14202 #endif 14203 int tries; 14204 14205 taskqueue_free(reset_tq); 14206 14207 tries = 0; 14208 while (tries++ < 5 && t4_sge_extfree_refs() != 0) { 14209 uprintf("%ju clusters with custom free routine " 14210 "still is use.\n", t4_sge_extfree_refs()); 14211 pause("t4unload", 2 * hz); 14212 } 14213 14214 sx_slock(&t4_list_lock); 14215 if (!SLIST_EMPTY(&t4_list)) { 14216 rc = EBUSY; 14217 sx_sunlock(&t4_list_lock); 14218 goto done_unload; 14219 } 14220 #ifdef TCP_OFFLOAD 14221 sx_slock(&t4_uld_list_lock); 14222 for (i = 0; i <= ULD_MAX; i++) { 14223 if (t4_uld_list[i] != NULL) { 14224 rc = EBUSY; 14225 sx_sunlock(&t4_uld_list_lock); 14226 sx_sunlock(&t4_list_lock); 14227 goto done_unload; 14228 } 14229 } 14230 sx_sunlock(&t4_uld_list_lock); 14231 #endif 14232 sx_sunlock(&t4_list_lock); 14233 14234 if (t4_sge_extfree_refs() == 0) { 14235 EVENTHANDLER_DEREGISTER(vxlan_start, 14236 vxlan_start_evtag); 14237 EVENTHANDLER_DEREGISTER(vxlan_stop, 14238 vxlan_stop_evtag); 14239 t4_tracer_modunload(); 14240 #ifdef KERN_TLS 14241 t7_ktls_modunload(); 14242 t6_ktls_modunload(); 14243 #endif 14244 #ifdef INET6 14245 t4_clip_modunload(); 14246 #endif 14247 #ifdef TCP_OFFLOAD 14248 sx_destroy(&t4_uld_list_lock); 14249 #endif 14250 sx_destroy(&t4_list_lock); 14251 t4_sge_modunload(); 14252 loaded = 0; 14253 } else { 14254 rc = EBUSY; 14255 loaded++; /* undo earlier decrement */ 14256 } 14257 } 14258 done_unload: 14259 sx_xunlock(&mlu); 14260 break; 14261 } 14262 14263 return (rc); 14264 } 14265 14266 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0); 14267 MODULE_VERSION(t4nex, 1); 14268 MODULE_DEPEND(t4nex, firmware, 1, 1, 1); 14269 #ifdef DEV_NETMAP 14270 MODULE_DEPEND(t4nex, netmap, 1, 1, 1); 14271 #endif /* DEV_NETMAP */ 14272 14273 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0); 14274 MODULE_VERSION(t5nex, 1); 14275 MODULE_DEPEND(t5nex, firmware, 1, 1, 1); 14276 #ifdef DEV_NETMAP 14277 MODULE_DEPEND(t5nex, netmap, 1, 1, 1); 14278 #endif /* DEV_NETMAP */ 14279 14280 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0); 14281 MODULE_VERSION(t6nex, 1); 14282 MODULE_DEPEND(t6nex, crypto, 1, 1, 1); 14283 MODULE_DEPEND(t6nex, firmware, 1, 1, 1); 14284 #ifdef DEV_NETMAP 14285 MODULE_DEPEND(t6nex, netmap, 1, 1, 1); 14286 #endif /* DEV_NETMAP */ 14287 14288 DRIVER_MODULE(chnex, pci, ch_driver, mod_event, 0); 14289 MODULE_VERSION(chnex, 1); 14290 MODULE_DEPEND(chnex, crypto, 1, 1, 1); 14291 MODULE_DEPEND(chnex, firmware, 1, 1, 1); 14292 #ifdef DEV_NETMAP 14293 MODULE_DEPEND(chnex, netmap, 1, 1, 1); 14294 #endif /* DEV_NETMAP */ 14295 14296 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0); 14297 MODULE_VERSION(cxgbe, 1); 14298 14299 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0); 14300 MODULE_VERSION(cxl, 1); 14301 14302 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0); 14303 MODULE_VERSION(cc, 1); 14304 14305 DRIVER_MODULE(che, chnex, che_driver, 0, 0); 14306 MODULE_VERSION(che, 1); 14307 14308 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0); 14309 MODULE_VERSION(vcxgbe, 1); 14310 14311 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0); 14312 MODULE_VERSION(vcxl, 1); 14313 14314 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0); 14315 MODULE_VERSION(vcc, 1); 14316 14317 DRIVER_MODULE(vche, che, vche_driver, 0, 0); 14318 MODULE_VERSION(vche, 1); 14319