xref: /freebsd/sys/dev/cxgbe/t4_l2t.c (revision 884a2a699669ec61e2366e3e358342dbc94be24a)
1 /*-
2  * Copyright (c) 2011 Chelsio Communications, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 #include "opt_inet.h"
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/module.h>
35 #include <sys/bus.h>
36 #include <sys/lock.h>
37 #include <sys/mutex.h>
38 #include <sys/rwlock.h>
39 #include <sys/socket.h>
40 #include <net/if.h>
41 #include <net/ethernet.h>
42 #include <net/if_vlan_var.h>
43 #include <net/if_dl.h>
44 #include <net/if_llatbl.h>
45 #include <net/route.h>
46 #include <netinet/in.h>
47 #include <netinet/in_var.h>
48 #include <netinet/if_ether.h>
49 
50 #include "common/common.h"
51 #include "common/jhash.h"
52 #include "common/t4_msg.h"
53 #include "offload.h"
54 #include "t4_l2t.h"
55 
56 /* identifies sync vs async L2T_WRITE_REQs */
57 #define S_SYNC_WR    12
58 #define V_SYNC_WR(x) ((x) << S_SYNC_WR)
59 #define F_SYNC_WR    V_SYNC_WR(1)
60 
61 enum {
62 	L2T_STATE_VALID,	/* entry is up to date */
63 	L2T_STATE_STALE,	/* entry may be used but needs revalidation */
64 	L2T_STATE_RESOLVING,	/* entry needs address resolution */
65 	L2T_STATE_SYNC_WRITE,	/* synchronous write of entry underway */
66 
67 	/* when state is one of the below the entry is not hashed */
68 	L2T_STATE_SWITCHING,	/* entry is being used by a switching filter */
69 	L2T_STATE_UNUSED	/* entry not in use */
70 };
71 
72 struct l2t_data {
73 	struct rwlock lock;
74 	volatile int nfree;	/* number of free entries */
75 	struct l2t_entry *rover;/* starting point for next allocation */
76 	struct l2t_entry l2tab[L2T_SIZE];
77 };
78 
79 /*
80  * Module locking notes:  There is a RW lock protecting the L2 table as a
81  * whole plus a spinlock per L2T entry.  Entry lookups and allocations happen
82  * under the protection of the table lock, individual entry changes happen
83  * while holding that entry's spinlock.  The table lock nests outside the
84  * entry locks.  Allocations of new entries take the table lock as writers so
85  * no other lookups can happen while allocating new entries.  Entry updates
86  * take the table lock as readers so multiple entries can be updated in
87  * parallel.  An L2T entry can be dropped by decrementing its reference count
88  * and therefore can happen in parallel with entry allocation but no entry
89  * can change state or increment its ref count during allocation as both of
90  * these perform lookups.
91  *
92  * Note: We do not take refereces to ifnets in this module because both
93  * the TOE and the sockets already hold references to the interfaces and the
94  * lifetime of an L2T entry is fully contained in the lifetime of the TOE.
95  */
96 static inline unsigned int
97 vlan_prio(const struct l2t_entry *e)
98 {
99 	return e->vlan >> 13;
100 }
101 
102 static inline void
103 l2t_hold(struct l2t_data *d, struct l2t_entry *e)
104 {
105 	if (atomic_fetchadd_int(&e->refcnt, 1) == 0)  /* 0 -> 1 transition */
106 		atomic_add_int(&d->nfree, -1);
107 }
108 
109 /*
110  * To avoid having to check address families we do not allow v4 and v6
111  * neighbors to be on the same hash chain.  We keep v4 entries in the first
112  * half of available hash buckets and v6 in the second.
113  */
114 enum {
115 	L2T_SZ_HALF = L2T_SIZE / 2,
116 	L2T_HASH_MASK = L2T_SZ_HALF - 1
117 };
118 
119 static inline unsigned int
120 arp_hash(const uint32_t *key, int ifindex)
121 {
122 	return jhash_2words(*key, ifindex, 0) & L2T_HASH_MASK;
123 }
124 
125 static inline unsigned int
126 ipv6_hash(const uint32_t *key, int ifindex)
127 {
128 	uint32_t xor = key[0] ^ key[1] ^ key[2] ^ key[3];
129 
130 	return L2T_SZ_HALF + (jhash_2words(xor, ifindex, 0) & L2T_HASH_MASK);
131 }
132 
133 static inline unsigned int
134 addr_hash(const uint32_t *addr, int addr_len, int ifindex)
135 {
136 	return addr_len == 4 ? arp_hash(addr, ifindex) :
137 			       ipv6_hash(addr, ifindex);
138 }
139 
140 /*
141  * Checks if an L2T entry is for the given IP/IPv6 address.  It does not check
142  * whether the L2T entry and the address are of the same address family.
143  * Callers ensure an address is only checked against L2T entries of the same
144  * family, something made trivial by the separation of IP and IPv6 hash chains
145  * mentioned above.  Returns 0 if there's a match,
146  */
147 static inline int
148 addreq(const struct l2t_entry *e, const uint32_t *addr)
149 {
150 	if (e->v6)
151 		return (e->addr[0] ^ addr[0]) | (e->addr[1] ^ addr[1]) |
152 		       (e->addr[2] ^ addr[2]) | (e->addr[3] ^ addr[3]);
153 	return e->addr[0] ^ addr[0];
154 }
155 
156 /*
157  * Write an L2T entry.  Must be called with the entry locked (XXX: really?).
158  * The write may be synchronous or asynchronous.
159  */
160 static int
161 write_l2e(struct adapter *sc, struct l2t_entry *e, int sync)
162 {
163 	struct mbuf *m;
164 	struct cpl_l2t_write_req *req;
165 
166 	if ((m = m_gethdr(M_NOWAIT, MT_DATA)) == NULL)
167 		return (ENOMEM);
168 
169 	req = mtod(m, struct cpl_l2t_write_req *);
170 	m->m_pkthdr.len = m->m_len = sizeof(*req);
171 
172 	INIT_TP_WR(req, 0);
173 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, e->idx |
174 	    V_SYNC_WR(sync) | V_TID_QID(sc->sge.fwq.abs_id)));
175 	req->params = htons(V_L2T_W_PORT(e->lport) | V_L2T_W_NOREPLY(!sync));
176 	req->l2t_idx = htons(e->idx);
177 	req->vlan = htons(e->vlan);
178 	memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac));
179 
180 	t4_mgmt_tx(sc, m);
181 
182 	if (sync && e->state != L2T_STATE_SWITCHING)
183 		e->state = L2T_STATE_SYNC_WRITE;
184 
185 	return (0);
186 }
187 
188 /*
189  * Add a packet to an L2T entry's queue of packets awaiting resolution.
190  * Must be called with the entry's lock held.
191  */
192 static inline void
193 arpq_enqueue(struct l2t_entry *e, struct mbuf *m)
194 {
195 	mtx_assert(&e->lock, MA_OWNED);
196 
197 	m->m_next = NULL;
198 	if (e->arpq_head)
199 		e->arpq_tail->m_next = m;
200 	else
201 		e->arpq_head = m;
202 	e->arpq_tail = m;
203 }
204 
205 /*
206  * Allocate a free L2T entry.  Must be called with l2t_data.lock held.
207  */
208 static struct l2t_entry *
209 alloc_l2e(struct l2t_data *d)
210 {
211 	struct l2t_entry *end, *e, **p;
212 
213 	rw_assert(&d->lock, RA_WLOCKED);
214 
215 	if (!atomic_load_acq_int(&d->nfree))
216 		return (NULL);
217 
218 	/* there's definitely a free entry */
219 	for (e = d->rover, end = &d->l2tab[L2T_SIZE]; e != end; ++e)
220 		if (atomic_load_acq_int(&e->refcnt) == 0)
221 			goto found;
222 
223 	for (e = d->l2tab; atomic_load_acq_int(&e->refcnt); ++e) ;
224 found:
225 	d->rover = e + 1;
226 	atomic_add_int(&d->nfree, -1);
227 
228 	/*
229 	 * The entry we found may be an inactive entry that is
230 	 * presently in the hash table.  We need to remove it.
231 	 */
232 	if (e->state < L2T_STATE_SWITCHING) {
233 		for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next) {
234 			if (*p == e) {
235 				*p = e->next;
236 				e->next = NULL;
237 				break;
238 			}
239 		}
240 	}
241 
242 	e->state = L2T_STATE_UNUSED;
243 	return e;
244 }
245 
246 /*
247  * Called when an L2T entry has no more users.  The entry is left in the hash
248  * table since it is likely to be reused but we also bump nfree to indicate
249  * that the entry can be reallocated for a different neighbor.  We also drop
250  * the existing neighbor reference in case the neighbor is going away and is
251  * waiting on our reference.
252  *
253  * Because entries can be reallocated to other neighbors once their ref count
254  * drops to 0 we need to take the entry's lock to avoid races with a new
255  * incarnation.
256  */
257 static void
258 t4_l2e_free(struct l2t_entry *e)
259 {
260 	struct llentry *lle = NULL;
261 	struct l2t_data *d;
262 
263 	mtx_lock(&e->lock);
264 	if (atomic_load_acq_int(&e->refcnt) == 0) {  /* hasn't been recycled */
265 		lle = e->lle;
266 		e->lle = NULL;
267 		/*
268 		 * Don't need to worry about the arpq, an L2T entry can't be
269 		 * released if any packets are waiting for resolution as we
270 		 * need to be able to communicate with the device to close a
271 		 * connection.
272 		 */
273 	}
274 	mtx_unlock(&e->lock);
275 
276 	d = container_of(e, struct l2t_data, l2tab[e->idx]);
277 	atomic_add_int(&d->nfree, 1);
278 
279 	if (lle)
280 		LLE_FREE(lle);
281 }
282 
283 void
284 t4_l2t_release(struct l2t_entry *e)
285 {
286 	if (atomic_fetchadd_int(&e->refcnt, -1) == 1)
287 		t4_l2e_free(e);
288 }
289 
290 /*
291  * Allocate an L2T entry for use by a switching rule.  Such need to be
292  * explicitly freed and while busy they are not on any hash chain, so normal
293  * address resolution updates do not see them.
294  */
295 struct l2t_entry *
296 t4_l2t_alloc_switching(struct l2t_data *d)
297 {
298 	struct l2t_entry *e;
299 
300 	rw_rlock(&d->lock);
301 	e = alloc_l2e(d);
302 	if (e) {
303 		mtx_lock(&e->lock);          /* avoid race with t4_l2t_free */
304 		e->state = L2T_STATE_SWITCHING;
305 		atomic_store_rel_int(&e->refcnt, 1);
306 		mtx_unlock(&e->lock);
307 	}
308 	rw_runlock(&d->lock);
309 	return e;
310 }
311 
312 /*
313  * Sets/updates the contents of a switching L2T entry that has been allocated
314  * with an earlier call to @t4_l2t_alloc_switching.
315  */
316 int
317 t4_l2t_set_switching(struct adapter *sc, struct l2t_entry *e, uint16_t vlan,
318     uint8_t port, uint8_t *eth_addr)
319 {
320 	e->vlan = vlan;
321 	e->lport = port;
322 	memcpy(e->dmac, eth_addr, ETHER_ADDR_LEN);
323 	return write_l2e(sc, e, 0);
324 }
325 
326 struct l2t_data *
327 t4_init_l2t(int flags)
328 {
329 	int i;
330 	struct l2t_data *d;
331 
332 	d = malloc(sizeof(*d), M_CXGBE, M_ZERO | flags);
333 	if (!d)
334 		return (NULL);
335 
336 	d->rover = d->l2tab;
337 	atomic_store_rel_int(&d->nfree, L2T_SIZE);
338 	rw_init(&d->lock, "L2T");
339 
340 	for (i = 0; i < L2T_SIZE; i++) {
341 		d->l2tab[i].idx = i;
342 		d->l2tab[i].state = L2T_STATE_UNUSED;
343 		mtx_init(&d->l2tab[i].lock, "L2T_E", NULL, MTX_DEF);
344 		atomic_store_rel_int(&d->l2tab[i].refcnt, 0);
345 	}
346 
347 	return (d);
348 }
349 
350 int
351 t4_free_l2t(struct l2t_data *d)
352 {
353 	int i;
354 
355 	for (i = 0; i < L2T_SIZE; i++)
356 		mtx_destroy(&d->l2tab[i].lock);
357 	rw_destroy(&d->lock);
358 	free(d, M_CXGBE);
359 
360 	return (0);
361 }
362