xref: /freebsd/sys/dev/cxgbe/iw_cxgbe/t4.h (revision d388615314424811289d408c81c527af404d8e82)
1 /*
2  * Copyright (c) 2009-2013 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  *
31  * $FreeBSD$
32  */
33 #ifndef __T4_H__
34 #define __T4_H__
35 
36 #include "common/t4_regs_values.h"
37 #include "common/t4_regs.h"
38 /*
39  * Fixme: Adding missing defines
40  */
41 #define SGE_PF_KDOORBELL 0x0
42 #define  QID_MASK    0xffff8000U
43 #define  QID_SHIFT   15
44 #define  QID(x)      ((x) << QID_SHIFT)
45 #define  DBPRIO      0x00004000U
46 #define  PIDX_MASK   0x00003fffU
47 #define  PIDX_SHIFT  0
48 #define  PIDX(x)     ((x) << PIDX_SHIFT)
49 
50 #define SGE_PF_GTS 0x4
51 #define  INGRESSQID_MASK   0xffff0000U
52 #define  INGRESSQID_SHIFT  16
53 #define  INGRESSQID(x)     ((x) << INGRESSQID_SHIFT)
54 #define  TIMERREG_MASK     0x0000e000U
55 #define  TIMERREG_SHIFT    13
56 #define  TIMERREG(x)       ((x) << TIMERREG_SHIFT)
57 #define  SEINTARM_MASK     0x00001000U
58 #define  SEINTARM_SHIFT    12
59 #define  SEINTARM(x)       ((x) << SEINTARM_SHIFT)
60 #define  CIDXINC_MASK      0x00000fffU
61 #define  CIDXINC_SHIFT     0
62 #define  CIDXINC(x)        ((x) << CIDXINC_SHIFT)
63 
64 #define T4_MAX_NUM_PD 65536
65 #define T4_MAX_MR_SIZE (~0ULL)
66 #define T4_PAGESIZE_MASK 0xffffffff000 /* 4KB-8TB */
67 #define T4_STAG_UNSET 0xffffffff
68 #define T4_FW_MAJ 0
69 #define A_PCIE_MA_SYNC 0x30b4
70 
71 struct t4_status_page {
72 	__be32 rsvd1;	/* flit 0 - hw owns */
73 	__be16 rsvd2;
74 	__be16 qid;
75 	__be16 cidx;
76 	__be16 pidx;
77 	u8 qp_err;	/* flit 1 - sw owns */
78 	u8 db_off;
79 	u8 pad;
80 	u16 host_wq_pidx;
81 	u16 host_cidx;
82 	u16 host_pidx;
83 };
84 
85 #define T4_EQ_ENTRY_SIZE 64
86 
87 #define T4_SQ_NUM_SLOTS 5
88 #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
89 #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
90 			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
91 #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
92 			sizeof(struct fw_ri_immd)))
93 #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
94 			sizeof(struct fw_ri_rdma_write_wr) - \
95 			sizeof(struct fw_ri_immd)))
96 #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
97 			sizeof(struct fw_ri_rdma_write_wr) - \
98 			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
99 #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
100 			sizeof(struct fw_ri_immd)) & ~31UL)
101 #define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
102 #define T4_MAX_FR_DSGL 1024
103 #define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
104 
105 static inline int t4_max_fr_depth(int use_dsgl)
106 {
107 	return use_dsgl ? T4_MAX_FR_DSGL_DEPTH : T4_MAX_FR_IMMD_DEPTH;
108 }
109 
110 #define T4_RQ_NUM_SLOTS 2
111 #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
112 #define T4_MAX_RECV_SGE 4
113 
114 union t4_wr {
115 	struct fw_ri_res_wr res;
116 	struct fw_ri_wr ri;
117 	struct fw_ri_rdma_write_wr write;
118 	struct fw_ri_send_wr send;
119 	struct fw_ri_rdma_read_wr read;
120 	struct fw_ri_bind_mw_wr bind;
121 	struct fw_ri_fr_nsmr_wr fr;
122 	struct fw_ri_fr_nsmr_tpte_wr fr_tpte;
123 	struct fw_ri_inv_lstag_wr inv;
124 	struct t4_status_page status;
125 	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
126 };
127 
128 union t4_recv_wr {
129 	struct fw_ri_recv_wr recv;
130 	struct t4_status_page status;
131 	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
132 };
133 
134 static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
135 			       enum fw_wr_opcodes opcode, u8 flags, u8 len16)
136 {
137 	wqe->send.opcode = (u8)opcode;
138 	wqe->send.flags = flags;
139 	wqe->send.wrid = wrid;
140 	wqe->send.r1[0] = 0;
141 	wqe->send.r1[1] = 0;
142 	wqe->send.r1[2] = 0;
143 	wqe->send.len16 = len16;
144 }
145 
146 /* CQE/AE status codes */
147 #define T4_ERR_SUCCESS                     0x0
148 #define T4_ERR_STAG                        0x1	/* STAG invalid: either the */
149 						/* STAG is offlimt, being 0, */
150 						/* or STAG_key mismatch */
151 #define T4_ERR_PDID                        0x2	/* PDID mismatch */
152 #define T4_ERR_QPID                        0x3	/* QPID mismatch */
153 #define T4_ERR_ACCESS                      0x4	/* Invalid access right */
154 #define T4_ERR_WRAP                        0x5	/* Wrap error */
155 #define T4_ERR_BOUND                       0x6	/* base and bounds voilation */
156 #define T4_ERR_INVALIDATE_SHARED_MR        0x7	/* attempt to invalidate a  */
157 						/* shared memory region */
158 #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8	/* attempt to invalidate a  */
159 						/* shared memory region */
160 #define T4_ERR_ECC                         0x9	/* ECC error detected */
161 #define T4_ERR_ECC_PSTAG                   0xA	/* ECC error detected when  */
162 						/* reading PSTAG for a MW  */
163 						/* Invalidate */
164 #define T4_ERR_PBL_ADDR_BOUND              0xB	/* pbl addr out of bounds:  */
165 						/* software error */
166 #define T4_ERR_SWFLUSH			   0xC	/* SW FLUSHED */
167 #define T4_ERR_CRC                         0x10 /* CRC error */
168 #define T4_ERR_MARKER                      0x11 /* Marker error */
169 #define T4_ERR_PDU_LEN_ERR                 0x12 /* invalid PDU length */
170 #define T4_ERR_OUT_OF_RQE                  0x13 /* out of RQE */
171 #define T4_ERR_DDP_VERSION                 0x14 /* wrong DDP version */
172 #define T4_ERR_RDMA_VERSION                0x15 /* wrong RDMA version */
173 #define T4_ERR_OPCODE                      0x16 /* invalid rdma opcode */
174 #define T4_ERR_DDP_QUEUE_NUM               0x17 /* invalid ddp queue number */
175 #define T4_ERR_MSN                         0x18 /* MSN error */
176 #define T4_ERR_TBIT                        0x19 /* tag bit not set correctly */
177 #define T4_ERR_MO                          0x1A /* MO not 0 for TERMINATE  */
178 						/* or READ_REQ */
179 #define T4_ERR_MSN_GAP                     0x1B
180 #define T4_ERR_MSN_RANGE                   0x1C
181 #define T4_ERR_IRD_OVERFLOW                0x1D
182 #define T4_ERR_RQE_ADDR_BOUND              0x1E /* RQE addr out of bounds:  */
183 						/* software error */
184 #define T4_ERR_INTERNAL_ERR                0x1F /* internal error (opcode  */
185 						/* mismatch) */
186 /*
187  * CQE defs
188  */
189 struct t4_cqe {
190 	__be32 header;
191 	__be32 len;
192 	union {
193 		struct {
194 			__be32 stag;
195 			__be32 msn;
196 		} rcqe;
197 		struct {
198 			u32 stag;
199 			u16 nada2;
200 			u16 cidx;
201 		} scqe;
202 		struct {
203 			__be32 wrid_hi;
204 			__be32 wrid_low;
205 		} gen;
206 		u64 drain_cookie;
207 	} u;
208 	__be64 reserved;
209 	__be64 bits_type_ts;
210 };
211 
212 /* macros for flit 0 of the cqe */
213 
214 #define S_CQE_QPID        12
215 #define M_CQE_QPID        0xFFFFF
216 #define G_CQE_QPID(x)     ((((x) >> S_CQE_QPID)) & M_CQE_QPID)
217 #define V_CQE_QPID(x)	  ((x)<<S_CQE_QPID)
218 
219 #define S_CQE_SWCQE       11
220 #define M_CQE_SWCQE       0x1
221 #define G_CQE_SWCQE(x)    ((((x) >> S_CQE_SWCQE)) & M_CQE_SWCQE)
222 #define V_CQE_SWCQE(x)	  ((x)<<S_CQE_SWCQE)
223 
224 #define S_CQE_STATUS      5
225 #define M_CQE_STATUS      0x1F
226 #define G_CQE_STATUS(x)   ((((x) >> S_CQE_STATUS)) & M_CQE_STATUS)
227 #define V_CQE_STATUS(x)   ((x)<<S_CQE_STATUS)
228 
229 #define S_CQE_TYPE        4
230 #define M_CQE_TYPE        0x1
231 #define G_CQE_TYPE(x)     ((((x) >> S_CQE_TYPE)) & M_CQE_TYPE)
232 #define V_CQE_TYPE(x)     ((x)<<S_CQE_TYPE)
233 
234 #define S_CQE_OPCODE      0
235 #define M_CQE_OPCODE      0xF
236 #define G_CQE_OPCODE(x)   ((((x) >> S_CQE_OPCODE)) & M_CQE_OPCODE)
237 #define V_CQE_OPCODE(x)   ((x)<<S_CQE_OPCODE)
238 
239 #define SW_CQE(x)         (G_CQE_SWCQE(be32_to_cpu((x)->header)))
240 #define CQE_QPID(x)       (G_CQE_QPID(be32_to_cpu((x)->header)))
241 #define CQE_TYPE(x)       (G_CQE_TYPE(be32_to_cpu((x)->header)))
242 #define SQ_TYPE(x)	  (CQE_TYPE((x)))
243 #define RQ_TYPE(x)	  (!CQE_TYPE((x)))
244 #define CQE_STATUS(x)     (G_CQE_STATUS(be32_to_cpu((x)->header)))
245 #define CQE_OPCODE(x)     (G_CQE_OPCODE(be32_to_cpu((x)->header)))
246 
247 #define CQE_SEND_OPCODE(x)(\
248 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
249 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
250 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
251 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
252 
253 #define CQE_LEN(x)        (be32_to_cpu((x)->len))
254 
255 /* used for RQ completion processing */
256 #define CQE_WRID_STAG(x)  (be32_to_cpu((x)->u.rcqe.stag))
257 #define CQE_WRID_MSN(x)   (be32_to_cpu((x)->u.rcqe.msn))
258 
259 /* used for SQ completion processing */
260 #define CQE_WRID_SQ_IDX(x)	((x)->u.scqe.cidx)
261 #define CQE_WRID_FR_STAG(x)     (be32_to_cpu((x)->u.scqe.stag))
262 
263 /* generic accessor macros */
264 #define CQE_WRID_HI(x)		((x)->u.gen.wrid_hi)
265 #define CQE_WRID_LOW(x)		((x)->u.gen.wrid_low)
266 #define CQE_DRAIN_COOKIE(x)	(x)->u.drain_cookie;
267 
268 /* macros for flit 3 of the cqe */
269 #define S_CQE_GENBIT	63
270 #define M_CQE_GENBIT	0x1
271 #define G_CQE_GENBIT(x)	(((x) >> S_CQE_GENBIT) & M_CQE_GENBIT)
272 #define V_CQE_GENBIT(x) ((x)<<S_CQE_GENBIT)
273 
274 #define S_CQE_OVFBIT	62
275 #define M_CQE_OVFBIT	0x1
276 #define G_CQE_OVFBIT(x)	((((x) >> S_CQE_OVFBIT)) & M_CQE_OVFBIT)
277 
278 #define S_CQE_IQTYPE	60
279 #define M_CQE_IQTYPE	0x3
280 #define G_CQE_IQTYPE(x)	((((x) >> S_CQE_IQTYPE)) & M_CQE_IQTYPE)
281 
282 #define M_CQE_TS	0x0fffffffffffffffULL
283 #define G_CQE_TS(x)	((x) & M_CQE_TS)
284 
285 #define CQE_OVFBIT(x)	((unsigned)G_CQE_OVFBIT(be64_to_cpu((x)->bits_type_ts)))
286 #define CQE_GENBIT(x)	((unsigned)G_CQE_GENBIT(be64_to_cpu((x)->bits_type_ts)))
287 #define CQE_TS(x)	(G_CQE_TS(be64_to_cpu((x)->bits_type_ts)))
288 
289 struct t4_swsqe {
290 	u64			wr_id;
291 	struct t4_cqe		cqe;
292 	int			read_len;
293 	int			opcode;
294 	int			complete;
295 	int			signaled;
296 	u16			idx;
297 	int                     flushed;
298 	struct timespec         host_ts;
299 	u64                     sge_ts;
300 };
301 
302 static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
303 {
304 #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
305 	return pgprot_writecombine(prot);
306 #else
307 	return pgprot_noncached(prot);
308 #endif
309 }
310 
311 enum {
312 	T4_SQ_ONCHIP = (1<<0),
313 };
314 
315 struct t4_sq {
316 	union t4_wr *queue;
317 	bus_addr_t dma_addr;
318 	DEFINE_DMA_UNMAP_ADDR(mapping);
319 	unsigned long phys_addr;
320 	struct t4_swsqe *sw_sq;
321 	struct t4_swsqe *oldest_read;
322 	void __iomem *bar2_va;
323 	u64 bar2_pa;
324 	size_t memsize;
325 	u32 bar2_qid;
326 	u32 qid;
327 	u16 in_use;
328 	u16 size;
329 	u16 cidx;
330 	u16 pidx;
331 	u16 wq_pidx;
332 	u16 wq_pidx_inc;
333 	u16 flags;
334 	short flush_cidx;
335 };
336 
337 struct t4_swrqe {
338 	u64 wr_id;
339 };
340 
341 struct t4_rq {
342 	union  t4_recv_wr *queue;
343 	bus_addr_t dma_addr;
344 	DEFINE_DMA_UNMAP_ADDR(mapping);
345 	unsigned long phys_addr;
346 	struct t4_swrqe *sw_rq;
347 	void __iomem *bar2_va;
348 	u64 bar2_pa;
349 	size_t memsize;
350 	u32 bar2_qid;
351 	u32 qid;
352 	u32 msn;
353 	u32 rqt_hwaddr;
354 	u16 rqt_size;
355 	u16 in_use;
356 	u16 size;
357 	u16 cidx;
358 	u16 pidx;
359 	u16 wq_pidx;
360 	u16 wq_pidx_inc;
361 };
362 
363 struct t4_wq {
364 	struct t4_sq sq;
365 	struct t4_rq rq;
366 	struct c4iw_rdev *rdev;
367 	int flushed;
368 };
369 
370 static inline int t4_rqes_posted(struct t4_wq *wq)
371 {
372 	return wq->rq.in_use;
373 }
374 
375 static inline int t4_rq_empty(struct t4_wq *wq)
376 {
377 	return wq->rq.in_use == 0;
378 }
379 
380 static inline int t4_rq_full(struct t4_wq *wq)
381 {
382 	return wq->rq.in_use == (wq->rq.size - 1);
383 }
384 
385 static inline u32 t4_rq_avail(struct t4_wq *wq)
386 {
387 	return wq->rq.size - 1 - wq->rq.in_use;
388 }
389 
390 static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
391 {
392 	wq->rq.in_use++;
393 	if (++wq->rq.pidx == wq->rq.size)
394 		wq->rq.pidx = 0;
395 	wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
396 	if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
397 		wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
398 }
399 
400 static inline void t4_rq_consume(struct t4_wq *wq)
401 {
402 	wq->rq.in_use--;
403 	wq->rq.msn++;
404 	if (++wq->rq.cidx == wq->rq.size)
405 		wq->rq.cidx = 0;
406 }
407 
408 static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
409 {
410 	return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
411 }
412 
413 static inline u16 t4_rq_wq_size(struct t4_wq *wq)
414 {
415 	return wq->rq.size * T4_RQ_NUM_SLOTS;
416 }
417 
418 static inline int t4_sq_onchip(struct t4_sq *sq)
419 {
420 	return sq->flags & T4_SQ_ONCHIP;
421 }
422 
423 static inline int t4_sq_empty(struct t4_wq *wq)
424 {
425 	return wq->sq.in_use == 0;
426 }
427 
428 static inline int t4_sq_full(struct t4_wq *wq)
429 {
430 	return wq->sq.in_use == (wq->sq.size - 1);
431 }
432 
433 static inline u32 t4_sq_avail(struct t4_wq *wq)
434 {
435 	return wq->sq.size - 1 - wq->sq.in_use;
436 }
437 
438 static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
439 {
440 	wq->sq.in_use++;
441 	if (++wq->sq.pidx == wq->sq.size)
442 		wq->sq.pidx = 0;
443 	wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
444 	if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
445 		wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
446 }
447 
448 static inline void t4_sq_consume(struct t4_wq *wq)
449 {
450 	BUG_ON(wq->sq.in_use < 1);
451 	if (wq->sq.cidx == wq->sq.flush_cidx)
452 		wq->sq.flush_cidx = -1;
453 	wq->sq.in_use--;
454 	if (++wq->sq.cidx == wq->sq.size)
455 		wq->sq.cidx = 0;
456 }
457 
458 static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
459 {
460 	return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
461 }
462 
463 static inline u16 t4_sq_wq_size(struct t4_wq *wq)
464 {
465 		return wq->sq.size * T4_SQ_NUM_SLOTS;
466 }
467 
468 /* This function copies 64 byte coalesced work request to memory
469  * mapped BAR2 space. For coalesced WRs, the SGE fetches data
470  * from the FIFO instead of from Host.
471  */
472 static inline void pio_copy(u64 __iomem *dst, u64 *src)
473 {
474 	int count = 8;
475 
476 	while (count) {
477 		writeq(*src, dst);
478 		src++;
479 		dst++;
480 		count--;
481 	}
482 }
483 
484 static inline void
485 t4_ring_sq_db(struct t4_wq *wq, u16 inc, union t4_wr *wqe, u8 wc)
486 {
487 
488 	/* Flush host queue memory writes. */
489 	wmb();
490 	if (wc && inc == 1 && wq->sq.bar2_qid == 0 && wqe) {
491 		CTR2(KTR_IW_CXGBE, "%s: WC wq->sq.pidx = %d\n",
492 				__func__, wq->sq.pidx);
493 		pio_copy((u64 __iomem *)
494 				((u64)wq->sq.bar2_va + SGE_UDB_WCDOORBELL),
495 				(u64 *)wqe);
496 	} else {
497 		CTR2(KTR_IW_CXGBE, "%s: DB wq->sq.pidx = %d\n",
498 				__func__, wq->sq.pidx);
499 		writel(V_PIDX_T5(inc) | V_QID(wq->sq.bar2_qid),
500 				(void __iomem *)((u64)wq->sq.bar2_va +
501 					SGE_UDB_KDOORBELL));
502 	}
503 
504 	/* Flush user doorbell area writes. */
505 	wmb();
506 	return;
507 }
508 
509 static inline void
510 t4_ring_rq_db(struct t4_wq *wq, u16 inc, union t4_recv_wr *wqe, u8 wc)
511 {
512 
513 	/* Flush host queue memory writes. */
514 	wmb();
515 	if (wc && inc == 1 && wq->rq.bar2_qid == 0 && wqe) {
516 		CTR2(KTR_IW_CXGBE, "%s: WC wq->rq.pidx = %d\n",
517 				__func__, wq->rq.pidx);
518 		pio_copy((u64 __iomem *)((u64)wq->rq.bar2_va +
519 					SGE_UDB_WCDOORBELL), (u64 *)wqe);
520 	} else {
521 		CTR2(KTR_IW_CXGBE, "%s: DB wq->rq.pidx = %d\n",
522 				__func__, wq->rq.pidx);
523 		writel(V_PIDX_T5(inc) | V_QID(wq->rq.bar2_qid),
524 				(void __iomem *)((u64)wq->rq.bar2_va +
525 					SGE_UDB_KDOORBELL));
526 	}
527 
528 	/* Flush user doorbell area writes. */
529 	wmb();
530 	return;
531 }
532 
533 static inline int t4_wq_in_error(struct t4_wq *wq)
534 {
535 	return wq->rq.queue[wq->rq.size].status.qp_err;
536 }
537 
538 static inline void t4_set_wq_in_error(struct t4_wq *wq)
539 {
540 	wq->rq.queue[wq->rq.size].status.qp_err = 1;
541 }
542 
543 enum t4_cq_flags {
544 	CQ_ARMED	= 1,
545 };
546 
547 struct t4_cq {
548 	struct t4_cqe *queue;
549 	bus_addr_t dma_addr;
550 	DEFINE_DMA_UNMAP_ADDR(mapping);
551 	struct t4_cqe *sw_queue;
552 	void __iomem *bar2_va;
553 	u64 bar2_pa;
554 	u32 bar2_qid;
555 	struct c4iw_rdev *rdev;
556 	size_t memsize;
557 	__be64 bits_type_ts;
558 	u32 cqid;
559 	u32 qid_mask;
560 	int vector;
561 	u16 size; /* including status page */
562 	u16 cidx;
563 	u16 sw_pidx;
564 	u16 sw_cidx;
565 	u16 sw_in_use;
566 	u16 cidx_inc;
567 	u8 gen;
568 	u8 error;
569 	unsigned long flags;
570 };
571 
572 static inline void write_gts(struct t4_cq *cq, u32 val)
573 {
574 	writel(val | V_INGRESSQID(cq->bar2_qid),
575 		       (void __iomem *)((u64)cq->bar2_va + SGE_UDB_GTS));
576 }
577 
578 static inline int t4_clear_cq_armed(struct t4_cq *cq)
579 {
580 	return test_and_clear_bit(CQ_ARMED, &cq->flags);
581 }
582 
583 static inline int t4_arm_cq(struct t4_cq *cq, int se)
584 {
585 	u32 val;
586 
587 	set_bit(CQ_ARMED, &cq->flags);
588 	while (cq->cidx_inc > CIDXINC_MASK) {
589 		val = SEINTARM(0) | CIDXINC(CIDXINC_MASK) | TIMERREG(7);
590 		writel(val | V_INGRESSQID(cq->bar2_qid),
591 		       (void __iomem *)((u64)cq->bar2_va + SGE_UDB_GTS));
592 		cq->cidx_inc -= CIDXINC_MASK;
593 	}
594 	val = SEINTARM(se) | CIDXINC(cq->cidx_inc) | TIMERREG(6);
595 	writel(val | V_INGRESSQID(cq->bar2_qid),
596 		       (void __iomem *)((u64)cq->bar2_va + SGE_UDB_GTS));
597 	cq->cidx_inc = 0;
598 	return 0;
599 }
600 
601 static inline void t4_swcq_produce(struct t4_cq *cq)
602 {
603 	cq->sw_in_use++;
604 	if (cq->sw_in_use == cq->size) {
605 		CTR2(KTR_IW_CXGBE, "%s cxgb4 sw cq overflow cqid %u\n",
606 			 __func__, cq->cqid);
607 		cq->error = 1;
608 		BUG_ON(1);
609 	}
610 	if (++cq->sw_pidx == cq->size)
611 		cq->sw_pidx = 0;
612 }
613 
614 static inline void t4_swcq_consume(struct t4_cq *cq)
615 {
616 	BUG_ON(cq->sw_in_use < 1);
617 	cq->sw_in_use--;
618 	if (++cq->sw_cidx == cq->size)
619 		cq->sw_cidx = 0;
620 }
621 
622 static inline void t4_hwcq_consume(struct t4_cq *cq)
623 {
624 	cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
625 	if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == M_CIDXINC) {
626 		u32 val;
627 
628 		val = SEINTARM(0) | CIDXINC(cq->cidx_inc) | TIMERREG(7);
629 		write_gts(cq, val);
630 		cq->cidx_inc = 0;
631 	}
632 	if (++cq->cidx == cq->size) {
633 		cq->cidx = 0;
634 		cq->gen ^= 1;
635 	}
636 }
637 
638 static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
639 {
640 	return (CQE_GENBIT(cqe) == cq->gen);
641 }
642 
643 static inline int t4_cq_notempty(struct t4_cq *cq)
644 {
645 	return cq->sw_in_use || t4_valid_cqe(cq, &cq->queue[cq->cidx]);
646 }
647 
648 static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
649 {
650 	int ret;
651 	u16 prev_cidx;
652 
653 	if (cq->cidx == 0)
654 		prev_cidx = cq->size - 1;
655 	else
656 		prev_cidx = cq->cidx - 1;
657 
658 	if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
659 		ret = -EOVERFLOW;
660 		cq->error = 1;
661 		printk(KERN_ERR MOD "cq overflow cqid %u\n", cq->cqid);
662 		BUG_ON(1);
663 	} else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
664 
665 		/* Ensure CQE is flushed to memory */
666 		rmb();
667 		*cqe = &cq->queue[cq->cidx];
668 		ret = 0;
669 	} else
670 		ret = -ENODATA;
671 	return ret;
672 }
673 
674 static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
675 {
676 	if (cq->sw_in_use == cq->size) {
677 		CTR2(KTR_IW_CXGBE, "%s cxgb4 sw cq overflow cqid %u\n",
678 			 __func__, cq->cqid);
679 		cq->error = 1;
680 		BUG_ON(1);
681 		return NULL;
682 	}
683 	if (cq->sw_in_use)
684 		return &cq->sw_queue[cq->sw_cidx];
685 	return NULL;
686 }
687 
688 static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
689 {
690 	int ret = 0;
691 
692 	if (cq->error)
693 		ret = -ENODATA;
694 	else if (cq->sw_in_use)
695 		*cqe = &cq->sw_queue[cq->sw_cidx];
696 	else
697 		ret = t4_next_hw_cqe(cq, cqe);
698 	return ret;
699 }
700 
701 static inline int t4_cq_in_error(struct t4_cq *cq)
702 {
703 	return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
704 }
705 
706 static inline void t4_set_cq_in_error(struct t4_cq *cq)
707 {
708 	((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
709 }
710 struct t4_dev_status_page {
711 	u8 db_off;
712 	u8 wc_supported;
713 	u16 pad2;
714 	u32 pad3;
715 	u64 qp_start;
716 	u64 qp_size;
717 	u64 cq_start;
718 	u64 cq_size;
719 };
720 #endif
721