1 /* 2 * Copyright (c) 2009-2013 Chelsio, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * - Redistributions in binary form must reproduce the above 18 * copyright notice, this list of conditions and the following 19 * disclaimer in the documentation and/or other materials 20 * provided with the distribution. 21 * 22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 29 * SOFTWARE. 30 * 31 * $FreeBSD$ 32 */ 33 #ifndef __T4_H__ 34 #define __T4_H__ 35 36 /* 37 * Fixme: Adding missing defines 38 */ 39 #define SGE_PF_KDOORBELL 0x0 40 #define QID_MASK 0xffff8000U 41 #define QID_SHIFT 15 42 #define QID(x) ((x) << QID_SHIFT) 43 #define DBPRIO 0x00004000U 44 #define PIDX_MASK 0x00003fffU 45 #define PIDX_SHIFT 0 46 #define PIDX(x) ((x) << PIDX_SHIFT) 47 48 #define SGE_PF_GTS 0x4 49 #define INGRESSQID_MASK 0xffff0000U 50 #define INGRESSQID_SHIFT 16 51 #define INGRESSQID(x) ((x) << INGRESSQID_SHIFT) 52 #define TIMERREG_MASK 0x0000e000U 53 #define TIMERREG_SHIFT 13 54 #define TIMERREG(x) ((x) << TIMERREG_SHIFT) 55 #define SEINTARM_MASK 0x00001000U 56 #define SEINTARM_SHIFT 12 57 #define SEINTARM(x) ((x) << SEINTARM_SHIFT) 58 #define CIDXINC_MASK 0x00000fffU 59 #define CIDXINC_SHIFT 0 60 #define CIDXINC(x) ((x) << CIDXINC_SHIFT) 61 62 #define T4_MAX_NUM_QP (1<<16) 63 #define T4_MAX_NUM_CQ (1<<15) 64 #define T4_MAX_NUM_PD (1<<15) 65 #define T4_EQ_STATUS_ENTRIES (L1_CACHE_BYTES > 64 ? 2 : 1) 66 #define T4_MAX_EQ_SIZE (65520 - T4_EQ_STATUS_ENTRIES) 67 #define T4_MAX_IQ_SIZE (65520 - 1) 68 #define T4_MAX_RQ_SIZE (8192 - T4_EQ_STATUS_ENTRIES) 69 #define T4_MAX_SQ_SIZE (T4_MAX_EQ_SIZE - 1) 70 #define T4_MAX_QP_DEPTH (T4_MAX_RQ_SIZE - 1) 71 #define T4_MAX_CQ_DEPTH (T4_MAX_IQ_SIZE - 1) 72 #define T4_MAX_MR_SIZE (~0ULL - 1) 73 #define T4_PAGESIZE_MASK 0xffff000 /* 4KB-128MB */ 74 #define T4_STAG_UNSET 0xffffffff 75 #define T4_FW_MAJ 0 76 #define T4_EQ_STATUS_ENTRIES (L1_CACHE_BYTES > 64 ? 2 : 1) 77 #define A_PCIE_MA_SYNC 0x30b4 78 79 struct t4_status_page { 80 __be32 rsvd1; /* flit 0 - hw owns */ 81 __be16 rsvd2; 82 __be16 qid; 83 __be16 cidx; 84 __be16 pidx; 85 u8 qp_err; /* flit 1 - sw owns */ 86 u8 db_off; 87 u8 pad; 88 u16 host_wq_pidx; 89 u16 host_cidx; 90 u16 host_pidx; 91 }; 92 93 #define T4_EQ_ENTRY_SIZE 64 94 95 #define T4_SQ_NUM_SLOTS 5 96 #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS) 97 #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \ 98 sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge)) 99 #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \ 100 sizeof(struct fw_ri_immd))) 101 #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \ 102 sizeof(struct fw_ri_rdma_write_wr) - \ 103 sizeof(struct fw_ri_immd))) 104 #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \ 105 sizeof(struct fw_ri_rdma_write_wr) - \ 106 sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge)) 107 #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \ 108 sizeof(struct fw_ri_immd)) & ~31UL) 109 #define T4_MAX_FR_DEPTH (T4_MAX_FR_IMMD / sizeof(u64)) 110 111 #define T4_RQ_NUM_SLOTS 2 112 #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS) 113 #define T4_MAX_RECV_SGE 4 114 115 union t4_wr { 116 struct fw_ri_res_wr res; 117 struct fw_ri_wr ri; 118 struct fw_ri_rdma_write_wr write; 119 struct fw_ri_send_wr send; 120 struct fw_ri_rdma_read_wr read; 121 struct fw_ri_bind_mw_wr bind; 122 struct fw_ri_fr_nsmr_wr fr; 123 struct fw_ri_inv_lstag_wr inv; 124 struct t4_status_page status; 125 __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS]; 126 }; 127 128 union t4_recv_wr { 129 struct fw_ri_recv_wr recv; 130 struct t4_status_page status; 131 __be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS]; 132 }; 133 134 static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid, 135 enum fw_wr_opcodes opcode, u8 flags, u8 len16) 136 { 137 wqe->send.opcode = (u8)opcode; 138 wqe->send.flags = flags; 139 wqe->send.wrid = wrid; 140 wqe->send.r1[0] = 0; 141 wqe->send.r1[1] = 0; 142 wqe->send.r1[2] = 0; 143 wqe->send.len16 = len16; 144 } 145 146 /* CQE/AE status codes */ 147 #define T4_ERR_SUCCESS 0x0 148 #define T4_ERR_STAG 0x1 /* STAG invalid: either the */ 149 /* STAG is offlimt, being 0, */ 150 /* or STAG_key mismatch */ 151 #define T4_ERR_PDID 0x2 /* PDID mismatch */ 152 #define T4_ERR_QPID 0x3 /* QPID mismatch */ 153 #define T4_ERR_ACCESS 0x4 /* Invalid access right */ 154 #define T4_ERR_WRAP 0x5 /* Wrap error */ 155 #define T4_ERR_BOUND 0x6 /* base and bounds voilation */ 156 #define T4_ERR_INVALIDATE_SHARED_MR 0x7 /* attempt to invalidate a */ 157 /* shared memory region */ 158 #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8 /* attempt to invalidate a */ 159 /* shared memory region */ 160 #define T4_ERR_ECC 0x9 /* ECC error detected */ 161 #define T4_ERR_ECC_PSTAG 0xA /* ECC error detected when */ 162 /* reading PSTAG for a MW */ 163 /* Invalidate */ 164 #define T4_ERR_PBL_ADDR_BOUND 0xB /* pbl addr out of bounds: */ 165 /* software error */ 166 #define T4_ERR_SWFLUSH 0xC /* SW FLUSHED */ 167 #define T4_ERR_CRC 0x10 /* CRC error */ 168 #define T4_ERR_MARKER 0x11 /* Marker error */ 169 #define T4_ERR_PDU_LEN_ERR 0x12 /* invalid PDU length */ 170 #define T4_ERR_OUT_OF_RQE 0x13 /* out of RQE */ 171 #define T4_ERR_DDP_VERSION 0x14 /* wrong DDP version */ 172 #define T4_ERR_RDMA_VERSION 0x15 /* wrong RDMA version */ 173 #define T4_ERR_OPCODE 0x16 /* invalid rdma opcode */ 174 #define T4_ERR_DDP_QUEUE_NUM 0x17 /* invalid ddp queue number */ 175 #define T4_ERR_MSN 0x18 /* MSN error */ 176 #define T4_ERR_TBIT 0x19 /* tag bit not set correctly */ 177 #define T4_ERR_MO 0x1A /* MO not 0 for TERMINATE */ 178 /* or READ_REQ */ 179 #define T4_ERR_MSN_GAP 0x1B 180 #define T4_ERR_MSN_RANGE 0x1C 181 #define T4_ERR_IRD_OVERFLOW 0x1D 182 #define T4_ERR_RQE_ADDR_BOUND 0x1E /* RQE addr out of bounds: */ 183 /* software error */ 184 #define T4_ERR_INTERNAL_ERR 0x1F /* internal error (opcode */ 185 /* mismatch) */ 186 /* 187 * CQE defs 188 */ 189 struct t4_cqe { 190 __be32 header; 191 __be32 len; 192 union { 193 struct { 194 __be32 stag; 195 __be32 msn; 196 } rcqe; 197 struct { 198 u32 nada1; 199 u16 nada2; 200 u16 cidx; 201 } scqe; 202 struct { 203 __be32 wrid_hi; 204 __be32 wrid_low; 205 } gen; 206 } u; 207 __be64 reserved; 208 __be64 bits_type_ts; 209 }; 210 211 /* macros for flit 0 of the cqe */ 212 213 #define S_CQE_QPID 12 214 #define M_CQE_QPID 0xFFFFF 215 #define G_CQE_QPID(x) ((((x) >> S_CQE_QPID)) & M_CQE_QPID) 216 #define V_CQE_QPID(x) ((x)<<S_CQE_QPID) 217 218 #define S_CQE_SWCQE 11 219 #define M_CQE_SWCQE 0x1 220 #define G_CQE_SWCQE(x) ((((x) >> S_CQE_SWCQE)) & M_CQE_SWCQE) 221 #define V_CQE_SWCQE(x) ((x)<<S_CQE_SWCQE) 222 223 #define S_CQE_STATUS 5 224 #define M_CQE_STATUS 0x1F 225 #define G_CQE_STATUS(x) ((((x) >> S_CQE_STATUS)) & M_CQE_STATUS) 226 #define V_CQE_STATUS(x) ((x)<<S_CQE_STATUS) 227 228 #define S_CQE_TYPE 4 229 #define M_CQE_TYPE 0x1 230 #define G_CQE_TYPE(x) ((((x) >> S_CQE_TYPE)) & M_CQE_TYPE) 231 #define V_CQE_TYPE(x) ((x)<<S_CQE_TYPE) 232 233 #define S_CQE_OPCODE 0 234 #define M_CQE_OPCODE 0xF 235 #define G_CQE_OPCODE(x) ((((x) >> S_CQE_OPCODE)) & M_CQE_OPCODE) 236 #define V_CQE_OPCODE(x) ((x)<<S_CQE_OPCODE) 237 238 #define SW_CQE(x) (G_CQE_SWCQE(be32_to_cpu((x)->header))) 239 #define CQE_QPID(x) (G_CQE_QPID(be32_to_cpu((x)->header))) 240 #define CQE_TYPE(x) (G_CQE_TYPE(be32_to_cpu((x)->header))) 241 #define SQ_TYPE(x) (CQE_TYPE((x))) 242 #define RQ_TYPE(x) (!CQE_TYPE((x))) 243 #define CQE_STATUS(x) (G_CQE_STATUS(be32_to_cpu((x)->header))) 244 #define CQE_OPCODE(x) (G_CQE_OPCODE(be32_to_cpu((x)->header))) 245 246 #define CQE_SEND_OPCODE(x)(\ 247 (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND) || \ 248 (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \ 249 (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \ 250 (G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV)) 251 252 #define CQE_LEN(x) (be32_to_cpu((x)->len)) 253 254 /* used for RQ completion processing */ 255 #define CQE_WRID_STAG(x) (be32_to_cpu((x)->u.rcqe.stag)) 256 #define CQE_WRID_MSN(x) (be32_to_cpu((x)->u.rcqe.msn)) 257 258 /* used for SQ completion processing */ 259 #define CQE_WRID_SQ_IDX(x) ((x)->u.scqe.cidx) 260 261 /* generic accessor macros */ 262 #define CQE_WRID_HI(x) ((x)->u.gen.wrid_hi) 263 #define CQE_WRID_LOW(x) ((x)->u.gen.wrid_low) 264 265 /* macros for flit 3 of the cqe */ 266 #define S_CQE_GENBIT 63 267 #define M_CQE_GENBIT 0x1 268 #define G_CQE_GENBIT(x) (((x) >> S_CQE_GENBIT) & M_CQE_GENBIT) 269 #define V_CQE_GENBIT(x) ((x)<<S_CQE_GENBIT) 270 271 #define S_CQE_OVFBIT 62 272 #define M_CQE_OVFBIT 0x1 273 #define G_CQE_OVFBIT(x) ((((x) >> S_CQE_OVFBIT)) & M_CQE_OVFBIT) 274 275 #define S_CQE_IQTYPE 60 276 #define M_CQE_IQTYPE 0x3 277 #define G_CQE_IQTYPE(x) ((((x) >> S_CQE_IQTYPE)) & M_CQE_IQTYPE) 278 279 #define M_CQE_TS 0x0fffffffffffffffULL 280 #define G_CQE_TS(x) ((x) & M_CQE_TS) 281 282 #define CQE_OVFBIT(x) ((unsigned)G_CQE_OVFBIT(be64_to_cpu((x)->bits_type_ts))) 283 #define CQE_GENBIT(x) ((unsigned)G_CQE_GENBIT(be64_to_cpu((x)->bits_type_ts))) 284 #define CQE_TS(x) (G_CQE_TS(be64_to_cpu((x)->bits_type_ts))) 285 286 struct t4_swsqe { 287 u64 wr_id; 288 struct t4_cqe cqe; 289 int read_len; 290 int opcode; 291 int complete; 292 int signaled; 293 u16 idx; 294 }; 295 296 struct t4_sq { 297 union t4_wr *queue; 298 bus_addr_t dma_addr; 299 DECLARE_PCI_UNMAP_ADDR(mapping); 300 unsigned long phys_addr; 301 struct t4_swsqe *sw_sq; 302 struct t4_swsqe *oldest_read; 303 u64 udb; 304 size_t memsize; 305 u32 qid; 306 u16 in_use; 307 u16 size; 308 u16 cidx; 309 u16 pidx; 310 u16 wq_pidx; 311 u16 flags; 312 }; 313 314 struct t4_swrqe { 315 u64 wr_id; 316 }; 317 318 struct t4_rq { 319 union t4_recv_wr *queue; 320 bus_addr_t dma_addr; 321 DECLARE_PCI_UNMAP_ADDR(mapping); 322 struct t4_swrqe *sw_rq; 323 u64 udb; 324 size_t memsize; 325 u32 qid; 326 u32 msn; 327 u32 rqt_hwaddr; 328 u16 rqt_size; 329 u16 in_use; 330 u16 size; 331 u16 cidx; 332 u16 pidx; 333 u16 wq_pidx; 334 }; 335 336 struct t4_wq { 337 struct t4_sq sq; 338 struct t4_rq rq; 339 void __iomem *db; 340 void __iomem *gts; 341 struct c4iw_rdev *rdev; 342 }; 343 344 static inline int t4_rqes_posted(struct t4_wq *wq) 345 { 346 return wq->rq.in_use; 347 } 348 349 static inline int t4_rq_empty(struct t4_wq *wq) 350 { 351 return wq->rq.in_use == 0; 352 } 353 354 static inline int t4_rq_full(struct t4_wq *wq) 355 { 356 return wq->rq.in_use == (wq->rq.size - 1); 357 } 358 359 static inline u32 t4_rq_avail(struct t4_wq *wq) 360 { 361 return wq->rq.size - 1 - wq->rq.in_use; 362 } 363 364 static inline void t4_rq_produce(struct t4_wq *wq, u8 len16) 365 { 366 wq->rq.in_use++; 367 if (++wq->rq.pidx == wq->rq.size) 368 wq->rq.pidx = 0; 369 wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE); 370 if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS) 371 wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS; 372 } 373 374 static inline void t4_rq_consume(struct t4_wq *wq) 375 { 376 wq->rq.in_use--; 377 wq->rq.msn++; 378 if (++wq->rq.cidx == wq->rq.size) 379 wq->rq.cidx = 0; 380 } 381 382 static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq) 383 { 384 return wq->rq.queue[wq->rq.size].status.host_wq_pidx; 385 } 386 387 static inline u16 t4_rq_wq_size(struct t4_wq *wq) 388 { 389 return wq->rq.size * T4_RQ_NUM_SLOTS; 390 } 391 392 static inline int t4_sq_empty(struct t4_wq *wq) 393 { 394 return wq->sq.in_use == 0; 395 } 396 397 static inline int t4_sq_full(struct t4_wq *wq) 398 { 399 return wq->sq.in_use == (wq->sq.size - 1); 400 } 401 402 static inline u32 t4_sq_avail(struct t4_wq *wq) 403 { 404 return wq->sq.size - 1 - wq->sq.in_use; 405 } 406 407 static inline void t4_sq_produce(struct t4_wq *wq, u8 len16) 408 { 409 wq->sq.in_use++; 410 if (++wq->sq.pidx == wq->sq.size) 411 wq->sq.pidx = 0; 412 wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE); 413 if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS) 414 wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS; 415 } 416 417 static inline void t4_sq_consume(struct t4_wq *wq) 418 { 419 wq->sq.in_use--; 420 if (++wq->sq.cidx == wq->sq.size) 421 wq->sq.cidx = 0; 422 } 423 424 static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq) 425 { 426 return wq->sq.queue[wq->sq.size].status.host_wq_pidx; 427 } 428 429 static inline u16 t4_sq_wq_size(struct t4_wq *wq) 430 { 431 return wq->sq.size * T4_SQ_NUM_SLOTS; 432 } 433 434 static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc) 435 { 436 wmb(); 437 writel(QID(wq->sq.qid) | PIDX(inc), wq->db); 438 } 439 440 static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc) 441 { 442 wmb(); 443 writel(QID(wq->rq.qid) | PIDX(inc), wq->db); 444 } 445 446 static inline int t4_wq_in_error(struct t4_wq *wq) 447 { 448 return wq->rq.queue[wq->rq.size].status.qp_err; 449 } 450 451 static inline void t4_set_wq_in_error(struct t4_wq *wq) 452 { 453 wq->rq.queue[wq->rq.size].status.qp_err = 1; 454 } 455 456 static inline void t4_disable_wq_db(struct t4_wq *wq) 457 { 458 wq->rq.queue[wq->rq.size].status.db_off = 1; 459 } 460 461 static inline void t4_enable_wq_db(struct t4_wq *wq) 462 { 463 wq->rq.queue[wq->rq.size].status.db_off = 0; 464 } 465 466 static inline int t4_wq_db_enabled(struct t4_wq *wq) 467 { 468 return !wq->rq.queue[wq->rq.size].status.db_off; 469 } 470 471 struct t4_cq { 472 struct t4_cqe *queue; 473 bus_addr_t dma_addr; 474 DECLARE_PCI_UNMAP_ADDR(mapping); 475 struct t4_cqe *sw_queue; 476 void __iomem *gts; 477 struct c4iw_rdev *rdev; 478 u64 ugts; 479 size_t memsize; 480 __be64 bits_type_ts; 481 u32 cqid; 482 u16 size; /* including status page */ 483 u16 cidx; 484 u16 sw_pidx; 485 u16 sw_cidx; 486 u16 sw_in_use; 487 u16 cidx_inc; 488 u8 gen; 489 u8 error; 490 }; 491 492 static inline int t4_arm_cq(struct t4_cq *cq, int se) 493 { 494 u32 val; 495 496 while (cq->cidx_inc > CIDXINC_MASK) { 497 val = SEINTARM(0) | CIDXINC(CIDXINC_MASK) | TIMERREG(7) | 498 INGRESSQID(cq->cqid); 499 writel(val, cq->gts); 500 cq->cidx_inc -= CIDXINC_MASK; 501 } 502 val = SEINTARM(se) | CIDXINC(cq->cidx_inc) | TIMERREG(6) | 503 INGRESSQID(cq->cqid); 504 writel(val, cq->gts); 505 cq->cidx_inc = 0; 506 return 0; 507 } 508 509 static inline void t4_swcq_produce(struct t4_cq *cq) 510 { 511 cq->sw_in_use++; 512 if (++cq->sw_pidx == cq->size) 513 cq->sw_pidx = 0; 514 } 515 516 static inline void t4_swcq_consume(struct t4_cq *cq) 517 { 518 cq->sw_in_use--; 519 if (++cq->sw_cidx == cq->size) 520 cq->sw_cidx = 0; 521 } 522 523 static inline void t4_hwcq_consume(struct t4_cq *cq) 524 { 525 cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts; 526 if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == M_CIDXINC) { 527 u32 val; 528 529 val = SEINTARM(0) | CIDXINC(cq->cidx_inc) | TIMERREG(7) | 530 INGRESSQID(cq->cqid); 531 writel(val, cq->gts); 532 cq->cidx_inc = 0; 533 } 534 if (++cq->cidx == cq->size) { 535 cq->cidx = 0; 536 cq->gen ^= 1; 537 } 538 } 539 540 static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe) 541 { 542 return (CQE_GENBIT(cqe) == cq->gen); 543 } 544 545 static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe) 546 { 547 int ret; 548 u16 prev_cidx; 549 550 if (cq->cidx == 0) 551 prev_cidx = cq->size - 1; 552 else 553 prev_cidx = cq->cidx - 1; 554 555 if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) { 556 ret = -EOVERFLOW; 557 cq->error = 1; 558 printk(KERN_ERR MOD "cq overflow cqid %u\n", cq->cqid); 559 } else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) { 560 *cqe = &cq->queue[cq->cidx]; 561 ret = 0; 562 } else 563 ret = -ENODATA; 564 return ret; 565 } 566 567 static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq) 568 { 569 if (cq->sw_in_use) 570 return &cq->sw_queue[cq->sw_cidx]; 571 return NULL; 572 } 573 574 static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe) 575 { 576 int ret = 0; 577 578 if (cq->error) 579 ret = -ENODATA; 580 else if (cq->sw_in_use) 581 *cqe = &cq->sw_queue[cq->sw_cidx]; 582 else 583 ret = t4_next_hw_cqe(cq, cqe); 584 return ret; 585 } 586 587 static inline int t4_cq_in_error(struct t4_cq *cq) 588 { 589 return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err; 590 } 591 592 static inline void t4_set_cq_in_error(struct t4_cq *cq) 593 { 594 ((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1; 595 } 596 #endif 597