xref: /freebsd/sys/dev/cxgbe/iw_cxgbe/t4.h (revision 5ae59dec60e3815b621ae87f74a377cf3449ca55)
1 /*
2  * Copyright (c) 2009-2013 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  *
31  * $FreeBSD$
32  */
33 #ifndef __T4_H__
34 #define __T4_H__
35 
36 /*
37  * Fixme: Adding missing defines
38  */
39 #define SGE_PF_KDOORBELL 0x0
40 #define  QID_MASK    0xffff8000U
41 #define  QID_SHIFT   15
42 #define  QID(x)      ((x) << QID_SHIFT)
43 #define  DBPRIO      0x00004000U
44 #define  PIDX_MASK   0x00003fffU
45 #define  PIDX_SHIFT  0
46 #define  PIDX(x)     ((x) << PIDX_SHIFT)
47 
48 #define SGE_PF_GTS 0x4
49 #define  INGRESSQID_MASK   0xffff0000U
50 #define  INGRESSQID_SHIFT  16
51 #define  INGRESSQID(x)     ((x) << INGRESSQID_SHIFT)
52 #define  TIMERREG_MASK     0x0000e000U
53 #define  TIMERREG_SHIFT    13
54 #define  TIMERREG(x)       ((x) << TIMERREG_SHIFT)
55 #define  SEINTARM_MASK     0x00001000U
56 #define  SEINTARM_SHIFT    12
57 #define  SEINTARM(x)       ((x) << SEINTARM_SHIFT)
58 #define  CIDXINC_MASK      0x00000fffU
59 #define  CIDXINC_SHIFT     0
60 #define  CIDXINC(x)        ((x) << CIDXINC_SHIFT)
61 
62 #define T4_MAX_NUM_QP (1<<16)
63 #define T4_MAX_NUM_CQ (1<<15)
64 #define T4_MAX_NUM_PD (1<<15)
65 #define T4_EQ_STATUS_ENTRIES (L1_CACHE_BYTES > 64 ? 2 : 1)
66 #define T4_MAX_EQ_SIZE (65520 - T4_EQ_STATUS_ENTRIES)
67 #define T4_MAX_IQ_SIZE (65520 - 1)
68 #define T4_MAX_RQ_SIZE (8192 - T4_EQ_STATUS_ENTRIES)
69 #define T4_MAX_SQ_SIZE (T4_MAX_EQ_SIZE - 1)
70 #define T4_MAX_QP_DEPTH (T4_MAX_RQ_SIZE - 1)
71 #define T4_MAX_CQ_DEPTH (T4_MAX_IQ_SIZE - 1)
72 #define T4_MAX_NUM_STAG (1<<15)
73 #define T4_MAX_MR_SIZE (~0ULL - 1)
74 #define T4_PAGESIZE_MASK 0xffff000  /* 4KB-128MB */
75 #define T4_STAG_UNSET 0xffffffff
76 #define T4_FW_MAJ 0
77 #define T4_EQ_STATUS_ENTRIES (L1_CACHE_BYTES > 64 ? 2 : 1)
78 #define A_PCIE_MA_SYNC 0x30b4
79 
80 struct t4_status_page {
81 	__be32 rsvd1;	/* flit 0 - hw owns */
82 	__be16 rsvd2;
83 	__be16 qid;
84 	__be16 cidx;
85 	__be16 pidx;
86 	u8 qp_err;	/* flit 1 - sw owns */
87 	u8 db_off;
88 	u8 pad;
89 	u16 host_wq_pidx;
90 	u16 host_cidx;
91 	u16 host_pidx;
92 };
93 
94 #define T4_EQ_ENTRY_SIZE 64
95 
96 #define T4_SQ_NUM_SLOTS 5
97 #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
98 #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
99 			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
100 #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
101 			sizeof(struct fw_ri_immd)))
102 #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
103 			sizeof(struct fw_ri_rdma_write_wr) - \
104 			sizeof(struct fw_ri_immd)))
105 #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
106 			sizeof(struct fw_ri_rdma_write_wr) - \
107 			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
108 #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
109 			sizeof(struct fw_ri_immd)) & ~31UL)
110 #define T4_MAX_FR_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
111 
112 #define T4_RQ_NUM_SLOTS 2
113 #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
114 #define T4_MAX_RECV_SGE 4
115 
116 union t4_wr {
117 	struct fw_ri_res_wr res;
118 	struct fw_ri_wr ri;
119 	struct fw_ri_rdma_write_wr write;
120 	struct fw_ri_send_wr send;
121 	struct fw_ri_rdma_read_wr read;
122 	struct fw_ri_bind_mw_wr bind;
123 	struct fw_ri_fr_nsmr_wr fr;
124 	struct fw_ri_inv_lstag_wr inv;
125 	struct t4_status_page status;
126 	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
127 };
128 
129 union t4_recv_wr {
130 	struct fw_ri_recv_wr recv;
131 	struct t4_status_page status;
132 	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
133 };
134 
135 static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
136 			       enum fw_wr_opcodes opcode, u8 flags, u8 len16)
137 {
138 	wqe->send.opcode = (u8)opcode;
139 	wqe->send.flags = flags;
140 	wqe->send.wrid = wrid;
141 	wqe->send.r1[0] = 0;
142 	wqe->send.r1[1] = 0;
143 	wqe->send.r1[2] = 0;
144 	wqe->send.len16 = len16;
145 }
146 
147 /* CQE/AE status codes */
148 #define T4_ERR_SUCCESS                     0x0
149 #define T4_ERR_STAG                        0x1	/* STAG invalid: either the */
150 						/* STAG is offlimt, being 0, */
151 						/* or STAG_key mismatch */
152 #define T4_ERR_PDID                        0x2	/* PDID mismatch */
153 #define T4_ERR_QPID                        0x3	/* QPID mismatch */
154 #define T4_ERR_ACCESS                      0x4	/* Invalid access right */
155 #define T4_ERR_WRAP                        0x5	/* Wrap error */
156 #define T4_ERR_BOUND                       0x6	/* base and bounds voilation */
157 #define T4_ERR_INVALIDATE_SHARED_MR        0x7	/* attempt to invalidate a  */
158 						/* shared memory region */
159 #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8	/* attempt to invalidate a  */
160 						/* shared memory region */
161 #define T4_ERR_ECC                         0x9	/* ECC error detected */
162 #define T4_ERR_ECC_PSTAG                   0xA	/* ECC error detected when  */
163 						/* reading PSTAG for a MW  */
164 						/* Invalidate */
165 #define T4_ERR_PBL_ADDR_BOUND              0xB	/* pbl addr out of bounds:  */
166 						/* software error */
167 #define T4_ERR_SWFLUSH			   0xC	/* SW FLUSHED */
168 #define T4_ERR_CRC                         0x10 /* CRC error */
169 #define T4_ERR_MARKER                      0x11 /* Marker error */
170 #define T4_ERR_PDU_LEN_ERR                 0x12 /* invalid PDU length */
171 #define T4_ERR_OUT_OF_RQE                  0x13 /* out of RQE */
172 #define T4_ERR_DDP_VERSION                 0x14 /* wrong DDP version */
173 #define T4_ERR_RDMA_VERSION                0x15 /* wrong RDMA version */
174 #define T4_ERR_OPCODE                      0x16 /* invalid rdma opcode */
175 #define T4_ERR_DDP_QUEUE_NUM               0x17 /* invalid ddp queue number */
176 #define T4_ERR_MSN                         0x18 /* MSN error */
177 #define T4_ERR_TBIT                        0x19 /* tag bit not set correctly */
178 #define T4_ERR_MO                          0x1A /* MO not 0 for TERMINATE  */
179 						/* or READ_REQ */
180 #define T4_ERR_MSN_GAP                     0x1B
181 #define T4_ERR_MSN_RANGE                   0x1C
182 #define T4_ERR_IRD_OVERFLOW                0x1D
183 #define T4_ERR_RQE_ADDR_BOUND              0x1E /* RQE addr out of bounds:  */
184 						/* software error */
185 #define T4_ERR_INTERNAL_ERR                0x1F /* internal error (opcode  */
186 						/* mismatch) */
187 /*
188  * CQE defs
189  */
190 struct t4_cqe {
191 	__be32 header;
192 	__be32 len;
193 	union {
194 		struct {
195 			__be32 stag;
196 			__be32 msn;
197 		} rcqe;
198 		struct {
199 			u32 nada1;
200 			u16 nada2;
201 			u16 cidx;
202 		} scqe;
203 		struct {
204 			__be32 wrid_hi;
205 			__be32 wrid_low;
206 		} gen;
207 	} u;
208 	__be64 reserved;
209 	__be64 bits_type_ts;
210 };
211 
212 /* macros for flit 0 of the cqe */
213 
214 #define S_CQE_QPID        12
215 #define M_CQE_QPID        0xFFFFF
216 #define G_CQE_QPID(x)     ((((x) >> S_CQE_QPID)) & M_CQE_QPID)
217 #define V_CQE_QPID(x)	  ((x)<<S_CQE_QPID)
218 
219 #define S_CQE_SWCQE       11
220 #define M_CQE_SWCQE       0x1
221 #define G_CQE_SWCQE(x)    ((((x) >> S_CQE_SWCQE)) & M_CQE_SWCQE)
222 #define V_CQE_SWCQE(x)	  ((x)<<S_CQE_SWCQE)
223 
224 #define S_CQE_STATUS      5
225 #define M_CQE_STATUS      0x1F
226 #define G_CQE_STATUS(x)   ((((x) >> S_CQE_STATUS)) & M_CQE_STATUS)
227 #define V_CQE_STATUS(x)   ((x)<<S_CQE_STATUS)
228 
229 #define S_CQE_TYPE        4
230 #define M_CQE_TYPE        0x1
231 #define G_CQE_TYPE(x)     ((((x) >> S_CQE_TYPE)) & M_CQE_TYPE)
232 #define V_CQE_TYPE(x)     ((x)<<S_CQE_TYPE)
233 
234 #define S_CQE_OPCODE      0
235 #define M_CQE_OPCODE      0xF
236 #define G_CQE_OPCODE(x)   ((((x) >> S_CQE_OPCODE)) & M_CQE_OPCODE)
237 #define V_CQE_OPCODE(x)   ((x)<<S_CQE_OPCODE)
238 
239 #define SW_CQE(x)         (G_CQE_SWCQE(be32_to_cpu((x)->header)))
240 #define CQE_QPID(x)       (G_CQE_QPID(be32_to_cpu((x)->header)))
241 #define CQE_TYPE(x)       (G_CQE_TYPE(be32_to_cpu((x)->header)))
242 #define SQ_TYPE(x)	  (CQE_TYPE((x)))
243 #define RQ_TYPE(x)	  (!CQE_TYPE((x)))
244 #define CQE_STATUS(x)     (G_CQE_STATUS(be32_to_cpu((x)->header)))
245 #define CQE_OPCODE(x)     (G_CQE_OPCODE(be32_to_cpu((x)->header)))
246 
247 #define CQE_SEND_OPCODE(x)(\
248 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
249 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
250 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
251 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
252 
253 #define CQE_LEN(x)        (be32_to_cpu((x)->len))
254 
255 /* used for RQ completion processing */
256 #define CQE_WRID_STAG(x)  (be32_to_cpu((x)->u.rcqe.stag))
257 #define CQE_WRID_MSN(x)   (be32_to_cpu((x)->u.rcqe.msn))
258 
259 /* used for SQ completion processing */
260 #define CQE_WRID_SQ_IDX(x)	((x)->u.scqe.cidx)
261 
262 /* generic accessor macros */
263 #define CQE_WRID_HI(x)		((x)->u.gen.wrid_hi)
264 #define CQE_WRID_LOW(x)		((x)->u.gen.wrid_low)
265 
266 /* macros for flit 3 of the cqe */
267 #define S_CQE_GENBIT	63
268 #define M_CQE_GENBIT	0x1
269 #define G_CQE_GENBIT(x)	(((x) >> S_CQE_GENBIT) & M_CQE_GENBIT)
270 #define V_CQE_GENBIT(x) ((x)<<S_CQE_GENBIT)
271 
272 #define S_CQE_OVFBIT	62
273 #define M_CQE_OVFBIT	0x1
274 #define G_CQE_OVFBIT(x)	((((x) >> S_CQE_OVFBIT)) & M_CQE_OVFBIT)
275 
276 #define S_CQE_IQTYPE	60
277 #define M_CQE_IQTYPE	0x3
278 #define G_CQE_IQTYPE(x)	((((x) >> S_CQE_IQTYPE)) & M_CQE_IQTYPE)
279 
280 #define M_CQE_TS	0x0fffffffffffffffULL
281 #define G_CQE_TS(x)	((x) & M_CQE_TS)
282 
283 #define CQE_OVFBIT(x)	((unsigned)G_CQE_OVFBIT(be64_to_cpu((x)->bits_type_ts)))
284 #define CQE_GENBIT(x)	((unsigned)G_CQE_GENBIT(be64_to_cpu((x)->bits_type_ts)))
285 #define CQE_TS(x)	(G_CQE_TS(be64_to_cpu((x)->bits_type_ts)))
286 
287 struct t4_swsqe {
288 	u64			wr_id;
289 	struct t4_cqe		cqe;
290 	int			read_len;
291 	int			opcode;
292 	int			complete;
293 	int			signaled;
294 	u16			idx;
295 };
296 
297 struct t4_sq {
298 	union t4_wr *queue;
299 	bus_addr_t dma_addr;
300 	DECLARE_PCI_UNMAP_ADDR(mapping);
301 	unsigned long phys_addr;
302 	struct t4_swsqe *sw_sq;
303 	struct t4_swsqe *oldest_read;
304 	u64 udb;
305 	size_t memsize;
306 	u32 qid;
307 	u16 in_use;
308 	u16 size;
309 	u16 cidx;
310 	u16 pidx;
311 	u16 wq_pidx;
312 	u16 flags;
313 };
314 
315 struct t4_swrqe {
316 	u64 wr_id;
317 };
318 
319 struct t4_rq {
320 	union  t4_recv_wr *queue;
321 	bus_addr_t dma_addr;
322 	DECLARE_PCI_UNMAP_ADDR(mapping);
323 	struct t4_swrqe *sw_rq;
324 	u64 udb;
325 	size_t memsize;
326 	u32 qid;
327 	u32 msn;
328 	u32 rqt_hwaddr;
329 	u16 rqt_size;
330 	u16 in_use;
331 	u16 size;
332 	u16 cidx;
333 	u16 pidx;
334 	u16 wq_pidx;
335 };
336 
337 struct t4_wq {
338 	struct t4_sq sq;
339 	struct t4_rq rq;
340 	void __iomem *db;
341 	void __iomem *gts;
342 	struct c4iw_rdev *rdev;
343 };
344 
345 static inline int t4_rqes_posted(struct t4_wq *wq)
346 {
347 	return wq->rq.in_use;
348 }
349 
350 static inline int t4_rq_empty(struct t4_wq *wq)
351 {
352 	return wq->rq.in_use == 0;
353 }
354 
355 static inline int t4_rq_full(struct t4_wq *wq)
356 {
357 	return wq->rq.in_use == (wq->rq.size - 1);
358 }
359 
360 static inline u32 t4_rq_avail(struct t4_wq *wq)
361 {
362 	return wq->rq.size - 1 - wq->rq.in_use;
363 }
364 
365 static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
366 {
367 	wq->rq.in_use++;
368 	if (++wq->rq.pidx == wq->rq.size)
369 		wq->rq.pidx = 0;
370 	wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
371 	if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
372 		wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
373 }
374 
375 static inline void t4_rq_consume(struct t4_wq *wq)
376 {
377 	wq->rq.in_use--;
378 	wq->rq.msn++;
379 	if (++wq->rq.cidx == wq->rq.size)
380 		wq->rq.cidx = 0;
381 }
382 
383 static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
384 {
385 	return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
386 }
387 
388 static inline u16 t4_rq_wq_size(struct t4_wq *wq)
389 {
390 		return wq->rq.size * T4_RQ_NUM_SLOTS;
391 }
392 
393 static inline int t4_sq_empty(struct t4_wq *wq)
394 {
395 	return wq->sq.in_use == 0;
396 }
397 
398 static inline int t4_sq_full(struct t4_wq *wq)
399 {
400 	return wq->sq.in_use == (wq->sq.size - 1);
401 }
402 
403 static inline u32 t4_sq_avail(struct t4_wq *wq)
404 {
405 	return wq->sq.size - 1 - wq->sq.in_use;
406 }
407 
408 static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
409 {
410 	wq->sq.in_use++;
411 	if (++wq->sq.pidx == wq->sq.size)
412 		wq->sq.pidx = 0;
413 	wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
414 	if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
415 		wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
416 }
417 
418 static inline void t4_sq_consume(struct t4_wq *wq)
419 {
420 	wq->sq.in_use--;
421 	if (++wq->sq.cidx == wq->sq.size)
422 		wq->sq.cidx = 0;
423 }
424 
425 static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
426 {
427 	return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
428 }
429 
430 static inline u16 t4_sq_wq_size(struct t4_wq *wq)
431 {
432 		return wq->sq.size * T4_SQ_NUM_SLOTS;
433 }
434 
435 static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc)
436 {
437 	wmb();
438 	writel(QID(wq->sq.qid) | PIDX(inc), wq->db);
439 }
440 
441 static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc)
442 {
443 	wmb();
444 	writel(QID(wq->rq.qid) | PIDX(inc), wq->db);
445 }
446 
447 static inline int t4_wq_in_error(struct t4_wq *wq)
448 {
449 	return wq->rq.queue[wq->rq.size].status.qp_err;
450 }
451 
452 static inline void t4_set_wq_in_error(struct t4_wq *wq)
453 {
454 	wq->rq.queue[wq->rq.size].status.qp_err = 1;
455 }
456 
457 static inline void t4_disable_wq_db(struct t4_wq *wq)
458 {
459 	wq->rq.queue[wq->rq.size].status.db_off = 1;
460 }
461 
462 static inline void t4_enable_wq_db(struct t4_wq *wq)
463 {
464 	wq->rq.queue[wq->rq.size].status.db_off = 0;
465 }
466 
467 static inline int t4_wq_db_enabled(struct t4_wq *wq)
468 {
469 	return !wq->rq.queue[wq->rq.size].status.db_off;
470 }
471 
472 struct t4_cq {
473 	struct t4_cqe *queue;
474 	bus_addr_t dma_addr;
475 	DECLARE_PCI_UNMAP_ADDR(mapping);
476 	struct t4_cqe *sw_queue;
477 	void __iomem *gts;
478 	struct c4iw_rdev *rdev;
479 	u64 ugts;
480 	size_t memsize;
481 	__be64 bits_type_ts;
482 	u32 cqid;
483 	u16 size; /* including status page */
484 	u16 cidx;
485 	u16 sw_pidx;
486 	u16 sw_cidx;
487 	u16 sw_in_use;
488 	u16 cidx_inc;
489 	u8 gen;
490 	u8 error;
491 };
492 
493 static inline int t4_arm_cq(struct t4_cq *cq, int se)
494 {
495 	u32 val;
496 
497 	while (cq->cidx_inc > CIDXINC_MASK) {
498 		val = SEINTARM(0) | CIDXINC(CIDXINC_MASK) | TIMERREG(7) |
499 		      INGRESSQID(cq->cqid);
500 		writel(val, cq->gts);
501 		cq->cidx_inc -= CIDXINC_MASK;
502 	}
503 	val = SEINTARM(se) | CIDXINC(cq->cidx_inc) | TIMERREG(6) |
504 	      INGRESSQID(cq->cqid);
505 	writel(val, cq->gts);
506 	cq->cidx_inc = 0;
507 	return 0;
508 }
509 
510 static inline void t4_swcq_produce(struct t4_cq *cq)
511 {
512 	cq->sw_in_use++;
513 	if (++cq->sw_pidx == cq->size)
514 		cq->sw_pidx = 0;
515 }
516 
517 static inline void t4_swcq_consume(struct t4_cq *cq)
518 {
519 	cq->sw_in_use--;
520 	if (++cq->sw_cidx == cq->size)
521 		cq->sw_cidx = 0;
522 }
523 
524 static inline void t4_hwcq_consume(struct t4_cq *cq)
525 {
526 	cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
527 	if (++cq->cidx_inc == (cq->size >> 4)) {
528 		u32 val;
529 
530 		val = SEINTARM(0) | CIDXINC(cq->cidx_inc) | TIMERREG(7) |
531 		      INGRESSQID(cq->cqid);
532 		writel(val, cq->gts);
533 		cq->cidx_inc = 0;
534 	}
535 	if (++cq->cidx == cq->size) {
536 		cq->cidx = 0;
537 		cq->gen ^= 1;
538 	}
539 }
540 
541 static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
542 {
543 	return (CQE_GENBIT(cqe) == cq->gen);
544 }
545 
546 static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
547 {
548 	int ret;
549 	u16 prev_cidx;
550 
551 	if (cq->cidx == 0)
552 		prev_cidx = cq->size - 1;
553 	else
554 		prev_cidx = cq->cidx - 1;
555 
556 	if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
557 		ret = -EOVERFLOW;
558 		cq->error = 1;
559 		printk(KERN_ERR MOD "cq overflow cqid %u\n", cq->cqid);
560 	} else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
561 		*cqe = &cq->queue[cq->cidx];
562 		ret = 0;
563 	} else
564 		ret = -ENODATA;
565 	return ret;
566 }
567 
568 static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
569 {
570 	if (cq->sw_in_use)
571 		return &cq->sw_queue[cq->sw_cidx];
572 	return NULL;
573 }
574 
575 static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
576 {
577 	int ret = 0;
578 
579 	if (cq->error)
580 		ret = -ENODATA;
581 	else if (cq->sw_in_use)
582 		*cqe = &cq->sw_queue[cq->sw_cidx];
583 	else
584 		ret = t4_next_hw_cqe(cq, cqe);
585 	return ret;
586 }
587 
588 static inline int t4_cq_in_error(struct t4_cq *cq)
589 {
590 	return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
591 }
592 
593 static inline void t4_set_cq_in_error(struct t4_cq *cq)
594 {
595 	((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
596 }
597 #endif
598