xref: /freebsd/sys/dev/cxgbe/iw_cxgbe/t4.h (revision 448897d366c218f9fd6208427eef1e6dd51f78d0)
1 /*
2  * Copyright (c) 2009-2013 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  *
31  * $FreeBSD$
32  */
33 #ifndef __T4_H__
34 #define __T4_H__
35 
36 /*
37  * Fixme: Adding missing defines
38  */
39 #define SGE_PF_KDOORBELL 0x0
40 #define  QID_MASK    0xffff8000U
41 #define  QID_SHIFT   15
42 #define  QID(x)      ((x) << QID_SHIFT)
43 #define  DBPRIO      0x00004000U
44 #define  PIDX_MASK   0x00003fffU
45 #define  PIDX_SHIFT  0
46 #define  PIDX(x)     ((x) << PIDX_SHIFT)
47 
48 #define SGE_PF_GTS 0x4
49 #define  INGRESSQID_MASK   0xffff0000U
50 #define  INGRESSQID_SHIFT  16
51 #define  INGRESSQID(x)     ((x) << INGRESSQID_SHIFT)
52 #define  TIMERREG_MASK     0x0000e000U
53 #define  TIMERREG_SHIFT    13
54 #define  TIMERREG(x)       ((x) << TIMERREG_SHIFT)
55 #define  SEINTARM_MASK     0x00001000U
56 #define  SEINTARM_SHIFT    12
57 #define  SEINTARM(x)       ((x) << SEINTARM_SHIFT)
58 #define  CIDXINC_MASK      0x00000fffU
59 #define  CIDXINC_SHIFT     0
60 #define  CIDXINC(x)        ((x) << CIDXINC_SHIFT)
61 
62 #define T4_MAX_NUM_QP (1<<16)
63 #define T4_MAX_NUM_CQ (1<<15)
64 #define T4_MAX_NUM_PD (1<<15)
65 #define T4_EQ_STATUS_ENTRIES (L1_CACHE_BYTES > 64 ? 2 : 1)
66 #define T4_MAX_EQ_SIZE (65520 - T4_EQ_STATUS_ENTRIES)
67 #define T4_MAX_IQ_SIZE (65520 - 1)
68 #define T4_MAX_RQ_SIZE (8192 - T4_EQ_STATUS_ENTRIES)
69 #define T4_MAX_SQ_SIZE (T4_MAX_EQ_SIZE - 1)
70 #define T4_MAX_QP_DEPTH (T4_MAX_RQ_SIZE - 1)
71 #define T4_MAX_CQ_DEPTH (T4_MAX_IQ_SIZE - 1)
72 #define T4_MAX_MR_SIZE (~0ULL - 1)
73 #define T4_PAGESIZE_MASK 0xffff000  /* 4KB-128MB */
74 #define T4_STAG_UNSET 0xffffffff
75 #define T4_FW_MAJ 0
76 #define T4_EQ_STATUS_ENTRIES (L1_CACHE_BYTES > 64 ? 2 : 1)
77 #define A_PCIE_MA_SYNC 0x30b4
78 
79 struct t4_status_page {
80 	__be32 rsvd1;	/* flit 0 - hw owns */
81 	__be16 rsvd2;
82 	__be16 qid;
83 	__be16 cidx;
84 	__be16 pidx;
85 	u8 qp_err;	/* flit 1 - sw owns */
86 	u8 db_off;
87 	u8 pad;
88 	u16 host_wq_pidx;
89 	u16 host_cidx;
90 	u16 host_pidx;
91 };
92 
93 #define T4_EQ_ENTRY_SIZE 64
94 
95 #define T4_SQ_NUM_SLOTS 5
96 #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
97 #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
98 			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
99 #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
100 			sizeof(struct fw_ri_immd)))
101 #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
102 			sizeof(struct fw_ri_rdma_write_wr) - \
103 			sizeof(struct fw_ri_immd)))
104 #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
105 			sizeof(struct fw_ri_rdma_write_wr) - \
106 			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
107 #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
108 			sizeof(struct fw_ri_immd)) & ~31UL)
109 #define T4_MAX_FR_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
110 
111 #define T4_RQ_NUM_SLOTS 2
112 #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
113 #define T4_MAX_RECV_SGE 4
114 
115 union t4_wr {
116 	struct fw_ri_res_wr res;
117 	struct fw_ri_wr ri;
118 	struct fw_ri_rdma_write_wr write;
119 	struct fw_ri_send_wr send;
120 	struct fw_ri_rdma_read_wr read;
121 	struct fw_ri_bind_mw_wr bind;
122 	struct fw_ri_fr_nsmr_wr fr;
123 	struct fw_ri_inv_lstag_wr inv;
124 	struct t4_status_page status;
125 	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
126 };
127 
128 union t4_recv_wr {
129 	struct fw_ri_recv_wr recv;
130 	struct t4_status_page status;
131 	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
132 };
133 
134 static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
135 			       enum fw_wr_opcodes opcode, u8 flags, u8 len16)
136 {
137 	wqe->send.opcode = (u8)opcode;
138 	wqe->send.flags = flags;
139 	wqe->send.wrid = wrid;
140 	wqe->send.r1[0] = 0;
141 	wqe->send.r1[1] = 0;
142 	wqe->send.r1[2] = 0;
143 	wqe->send.len16 = len16;
144 }
145 
146 /* CQE/AE status codes */
147 #define T4_ERR_SUCCESS                     0x0
148 #define T4_ERR_STAG                        0x1	/* STAG invalid: either the */
149 						/* STAG is offlimt, being 0, */
150 						/* or STAG_key mismatch */
151 #define T4_ERR_PDID                        0x2	/* PDID mismatch */
152 #define T4_ERR_QPID                        0x3	/* QPID mismatch */
153 #define T4_ERR_ACCESS                      0x4	/* Invalid access right */
154 #define T4_ERR_WRAP                        0x5	/* Wrap error */
155 #define T4_ERR_BOUND                       0x6	/* base and bounds voilation */
156 #define T4_ERR_INVALIDATE_SHARED_MR        0x7	/* attempt to invalidate a  */
157 						/* shared memory region */
158 #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8	/* attempt to invalidate a  */
159 						/* shared memory region */
160 #define T4_ERR_ECC                         0x9	/* ECC error detected */
161 #define T4_ERR_ECC_PSTAG                   0xA	/* ECC error detected when  */
162 						/* reading PSTAG for a MW  */
163 						/* Invalidate */
164 #define T4_ERR_PBL_ADDR_BOUND              0xB	/* pbl addr out of bounds:  */
165 						/* software error */
166 #define T4_ERR_SWFLUSH			   0xC	/* SW FLUSHED */
167 #define T4_ERR_CRC                         0x10 /* CRC error */
168 #define T4_ERR_MARKER                      0x11 /* Marker error */
169 #define T4_ERR_PDU_LEN_ERR                 0x12 /* invalid PDU length */
170 #define T4_ERR_OUT_OF_RQE                  0x13 /* out of RQE */
171 #define T4_ERR_DDP_VERSION                 0x14 /* wrong DDP version */
172 #define T4_ERR_RDMA_VERSION                0x15 /* wrong RDMA version */
173 #define T4_ERR_OPCODE                      0x16 /* invalid rdma opcode */
174 #define T4_ERR_DDP_QUEUE_NUM               0x17 /* invalid ddp queue number */
175 #define T4_ERR_MSN                         0x18 /* MSN error */
176 #define T4_ERR_TBIT                        0x19 /* tag bit not set correctly */
177 #define T4_ERR_MO                          0x1A /* MO not 0 for TERMINATE  */
178 						/* or READ_REQ */
179 #define T4_ERR_MSN_GAP                     0x1B
180 #define T4_ERR_MSN_RANGE                   0x1C
181 #define T4_ERR_IRD_OVERFLOW                0x1D
182 #define T4_ERR_RQE_ADDR_BOUND              0x1E /* RQE addr out of bounds:  */
183 						/* software error */
184 #define T4_ERR_INTERNAL_ERR                0x1F /* internal error (opcode  */
185 						/* mismatch) */
186 /*
187  * CQE defs
188  */
189 struct t4_cqe {
190 	__be32 header;
191 	__be32 len;
192 	union {
193 		struct {
194 			__be32 stag;
195 			__be32 msn;
196 		} rcqe;
197 		struct {
198 			u32 nada1;
199 			u16 nada2;
200 			u16 cidx;
201 		} scqe;
202 		struct {
203 			__be32 wrid_hi;
204 			__be32 wrid_low;
205 		} gen;
206 	} u;
207 	__be64 reserved;
208 	__be64 bits_type_ts;
209 };
210 
211 /* macros for flit 0 of the cqe */
212 
213 #define S_CQE_QPID        12
214 #define M_CQE_QPID        0xFFFFF
215 #define G_CQE_QPID(x)     ((((x) >> S_CQE_QPID)) & M_CQE_QPID)
216 #define V_CQE_QPID(x)	  ((x)<<S_CQE_QPID)
217 
218 #define S_CQE_SWCQE       11
219 #define M_CQE_SWCQE       0x1
220 #define G_CQE_SWCQE(x)    ((((x) >> S_CQE_SWCQE)) & M_CQE_SWCQE)
221 #define V_CQE_SWCQE(x)	  ((x)<<S_CQE_SWCQE)
222 
223 #define S_CQE_STATUS      5
224 #define M_CQE_STATUS      0x1F
225 #define G_CQE_STATUS(x)   ((((x) >> S_CQE_STATUS)) & M_CQE_STATUS)
226 #define V_CQE_STATUS(x)   ((x)<<S_CQE_STATUS)
227 
228 #define S_CQE_TYPE        4
229 #define M_CQE_TYPE        0x1
230 #define G_CQE_TYPE(x)     ((((x) >> S_CQE_TYPE)) & M_CQE_TYPE)
231 #define V_CQE_TYPE(x)     ((x)<<S_CQE_TYPE)
232 
233 #define S_CQE_OPCODE      0
234 #define M_CQE_OPCODE      0xF
235 #define G_CQE_OPCODE(x)   ((((x) >> S_CQE_OPCODE)) & M_CQE_OPCODE)
236 #define V_CQE_OPCODE(x)   ((x)<<S_CQE_OPCODE)
237 
238 #define SW_CQE(x)         (G_CQE_SWCQE(be32_to_cpu((x)->header)))
239 #define CQE_QPID(x)       (G_CQE_QPID(be32_to_cpu((x)->header)))
240 #define CQE_TYPE(x)       (G_CQE_TYPE(be32_to_cpu((x)->header)))
241 #define SQ_TYPE(x)	  (CQE_TYPE((x)))
242 #define RQ_TYPE(x)	  (!CQE_TYPE((x)))
243 #define CQE_STATUS(x)     (G_CQE_STATUS(be32_to_cpu((x)->header)))
244 #define CQE_OPCODE(x)     (G_CQE_OPCODE(be32_to_cpu((x)->header)))
245 
246 #define CQE_SEND_OPCODE(x)(\
247 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
248 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
249 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
250 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
251 
252 #define CQE_LEN(x)        (be32_to_cpu((x)->len))
253 
254 /* used for RQ completion processing */
255 #define CQE_WRID_STAG(x)  (be32_to_cpu((x)->u.rcqe.stag))
256 #define CQE_WRID_MSN(x)   (be32_to_cpu((x)->u.rcqe.msn))
257 
258 /* used for SQ completion processing */
259 #define CQE_WRID_SQ_IDX(x)	((x)->u.scqe.cidx)
260 
261 /* generic accessor macros */
262 #define CQE_WRID_HI(x)		((x)->u.gen.wrid_hi)
263 #define CQE_WRID_LOW(x)		((x)->u.gen.wrid_low)
264 
265 /* macros for flit 3 of the cqe */
266 #define S_CQE_GENBIT	63
267 #define M_CQE_GENBIT	0x1
268 #define G_CQE_GENBIT(x)	(((x) >> S_CQE_GENBIT) & M_CQE_GENBIT)
269 #define V_CQE_GENBIT(x) ((x)<<S_CQE_GENBIT)
270 
271 #define S_CQE_OVFBIT	62
272 #define M_CQE_OVFBIT	0x1
273 #define G_CQE_OVFBIT(x)	((((x) >> S_CQE_OVFBIT)) & M_CQE_OVFBIT)
274 
275 #define S_CQE_IQTYPE	60
276 #define M_CQE_IQTYPE	0x3
277 #define G_CQE_IQTYPE(x)	((((x) >> S_CQE_IQTYPE)) & M_CQE_IQTYPE)
278 
279 #define M_CQE_TS	0x0fffffffffffffffULL
280 #define G_CQE_TS(x)	((x) & M_CQE_TS)
281 
282 #define CQE_OVFBIT(x)	((unsigned)G_CQE_OVFBIT(be64_to_cpu((x)->bits_type_ts)))
283 #define CQE_GENBIT(x)	((unsigned)G_CQE_GENBIT(be64_to_cpu((x)->bits_type_ts)))
284 #define CQE_TS(x)	(G_CQE_TS(be64_to_cpu((x)->bits_type_ts)))
285 
286 struct t4_swsqe {
287 	u64			wr_id;
288 	struct t4_cqe		cqe;
289 	int			read_len;
290 	int			opcode;
291 	int			complete;
292 	int			signaled;
293 	u16			idx;
294 };
295 
296 struct t4_sq {
297 	union t4_wr *queue;
298 	bus_addr_t dma_addr;
299 	DECLARE_PCI_UNMAP_ADDR(mapping);
300 	unsigned long phys_addr;
301 	struct t4_swsqe *sw_sq;
302 	struct t4_swsqe *oldest_read;
303 	u64 udb;
304 	size_t memsize;
305 	u32 qid;
306 	u16 in_use;
307 	u16 size;
308 	u16 cidx;
309 	u16 pidx;
310 	u16 wq_pidx;
311 	u16 flags;
312 };
313 
314 struct t4_swrqe {
315 	u64 wr_id;
316 };
317 
318 struct t4_rq {
319 	union  t4_recv_wr *queue;
320 	bus_addr_t dma_addr;
321 	DECLARE_PCI_UNMAP_ADDR(mapping);
322 	struct t4_swrqe *sw_rq;
323 	u64 udb;
324 	size_t memsize;
325 	u32 qid;
326 	u32 msn;
327 	u32 rqt_hwaddr;
328 	u16 rqt_size;
329 	u16 in_use;
330 	u16 size;
331 	u16 cidx;
332 	u16 pidx;
333 	u16 wq_pidx;
334 };
335 
336 struct t4_wq {
337 	struct t4_sq sq;
338 	struct t4_rq rq;
339 	void __iomem *db;
340 	void __iomem *gts;
341 	struct c4iw_rdev *rdev;
342 };
343 
344 static inline int t4_rqes_posted(struct t4_wq *wq)
345 {
346 	return wq->rq.in_use;
347 }
348 
349 static inline int t4_rq_empty(struct t4_wq *wq)
350 {
351 	return wq->rq.in_use == 0;
352 }
353 
354 static inline int t4_rq_full(struct t4_wq *wq)
355 {
356 	return wq->rq.in_use == (wq->rq.size - 1);
357 }
358 
359 static inline u32 t4_rq_avail(struct t4_wq *wq)
360 {
361 	return wq->rq.size - 1 - wq->rq.in_use;
362 }
363 
364 static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
365 {
366 	wq->rq.in_use++;
367 	if (++wq->rq.pidx == wq->rq.size)
368 		wq->rq.pidx = 0;
369 	wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
370 	if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
371 		wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
372 }
373 
374 static inline void t4_rq_consume(struct t4_wq *wq)
375 {
376 	wq->rq.in_use--;
377 	wq->rq.msn++;
378 	if (++wq->rq.cidx == wq->rq.size)
379 		wq->rq.cidx = 0;
380 }
381 
382 static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
383 {
384 	return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
385 }
386 
387 static inline u16 t4_rq_wq_size(struct t4_wq *wq)
388 {
389 		return wq->rq.size * T4_RQ_NUM_SLOTS;
390 }
391 
392 static inline int t4_sq_empty(struct t4_wq *wq)
393 {
394 	return wq->sq.in_use == 0;
395 }
396 
397 static inline int t4_sq_full(struct t4_wq *wq)
398 {
399 	return wq->sq.in_use == (wq->sq.size - 1);
400 }
401 
402 static inline u32 t4_sq_avail(struct t4_wq *wq)
403 {
404 	return wq->sq.size - 1 - wq->sq.in_use;
405 }
406 
407 static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
408 {
409 	wq->sq.in_use++;
410 	if (++wq->sq.pidx == wq->sq.size)
411 		wq->sq.pidx = 0;
412 	wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
413 	if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
414 		wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
415 }
416 
417 static inline void t4_sq_consume(struct t4_wq *wq)
418 {
419 	wq->sq.in_use--;
420 	if (++wq->sq.cidx == wq->sq.size)
421 		wq->sq.cidx = 0;
422 }
423 
424 static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
425 {
426 	return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
427 }
428 
429 static inline u16 t4_sq_wq_size(struct t4_wq *wq)
430 {
431 		return wq->sq.size * T4_SQ_NUM_SLOTS;
432 }
433 
434 static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc)
435 {
436 	wmb();
437 	writel(QID(wq->sq.qid) | PIDX(inc), wq->db);
438 }
439 
440 static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc)
441 {
442 	wmb();
443 	writel(QID(wq->rq.qid) | PIDX(inc), wq->db);
444 }
445 
446 static inline int t4_wq_in_error(struct t4_wq *wq)
447 {
448 	return wq->rq.queue[wq->rq.size].status.qp_err;
449 }
450 
451 static inline void t4_set_wq_in_error(struct t4_wq *wq)
452 {
453 	wq->rq.queue[wq->rq.size].status.qp_err = 1;
454 }
455 
456 struct t4_cq {
457 	struct t4_cqe *queue;
458 	bus_addr_t dma_addr;
459 	DECLARE_PCI_UNMAP_ADDR(mapping);
460 	struct t4_cqe *sw_queue;
461 	void __iomem *gts;
462 	struct c4iw_rdev *rdev;
463 	u64 ugts;
464 	size_t memsize;
465 	__be64 bits_type_ts;
466 	u32 cqid;
467 	u16 size; /* including status page */
468 	u16 cidx;
469 	u16 sw_pidx;
470 	u16 sw_cidx;
471 	u16 sw_in_use;
472 	u16 cidx_inc;
473 	u8 gen;
474 	u8 error;
475 };
476 
477 static inline int t4_arm_cq(struct t4_cq *cq, int se)
478 {
479 	u32 val;
480 
481 	while (cq->cidx_inc > CIDXINC_MASK) {
482 		val = SEINTARM(0) | CIDXINC(CIDXINC_MASK) | TIMERREG(7) |
483 		      INGRESSQID(cq->cqid);
484 		writel(val, cq->gts);
485 		cq->cidx_inc -= CIDXINC_MASK;
486 	}
487 	val = SEINTARM(se) | CIDXINC(cq->cidx_inc) | TIMERREG(6) |
488 	      INGRESSQID(cq->cqid);
489 	writel(val, cq->gts);
490 	cq->cidx_inc = 0;
491 	return 0;
492 }
493 
494 static inline void t4_swcq_produce(struct t4_cq *cq)
495 {
496 	cq->sw_in_use++;
497 	if (++cq->sw_pidx == cq->size)
498 		cq->sw_pidx = 0;
499 }
500 
501 static inline void t4_swcq_consume(struct t4_cq *cq)
502 {
503 	cq->sw_in_use--;
504 	if (++cq->sw_cidx == cq->size)
505 		cq->sw_cidx = 0;
506 }
507 
508 static inline void t4_hwcq_consume(struct t4_cq *cq)
509 {
510 	cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
511 	if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == M_CIDXINC) {
512 		u32 val;
513 
514 		val = SEINTARM(0) | CIDXINC(cq->cidx_inc) | TIMERREG(7) |
515 		      INGRESSQID(cq->cqid);
516 		writel(val, cq->gts);
517 		cq->cidx_inc = 0;
518 	}
519 	if (++cq->cidx == cq->size) {
520 		cq->cidx = 0;
521 		cq->gen ^= 1;
522 	}
523 }
524 
525 static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
526 {
527 	return (CQE_GENBIT(cqe) == cq->gen);
528 }
529 
530 static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
531 {
532 	int ret;
533 	u16 prev_cidx;
534 
535 	if (cq->cidx == 0)
536 		prev_cidx = cq->size - 1;
537 	else
538 		prev_cidx = cq->cidx - 1;
539 
540 	if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
541 		ret = -EOVERFLOW;
542 		cq->error = 1;
543 		printk(KERN_ERR MOD "cq overflow cqid %u\n", cq->cqid);
544 	} else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
545 		*cqe = &cq->queue[cq->cidx];
546 		ret = 0;
547 	} else
548 		ret = -ENODATA;
549 	return ret;
550 }
551 
552 static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
553 {
554 	if (cq->sw_in_use)
555 		return &cq->sw_queue[cq->sw_cidx];
556 	return NULL;
557 }
558 
559 static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
560 {
561 	int ret = 0;
562 
563 	if (cq->error)
564 		ret = -ENODATA;
565 	else if (cq->sw_in_use)
566 		*cqe = &cq->sw_queue[cq->sw_cidx];
567 	else
568 		ret = t4_next_hw_cqe(cq, cqe);
569 	return ret;
570 }
571 
572 static inline int t4_cq_in_error(struct t4_cq *cq)
573 {
574 	return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
575 }
576 
577 static inline void t4_set_cq_in_error(struct t4_cq *cq)
578 {
579 	((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
580 }
581 #endif
582