xref: /freebsd/sys/dev/cxgbe/iw_cxgbe/t4.h (revision 258a0d760aa8b42899a000e30f610f900a402556)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2009-2013 Chelsio, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *      - Redistributions in binary form must reproduce the above
20  *        copyright notice, this list of conditions and the following
21  *        disclaimer in the documentation and/or other materials
22  *        provided with the distribution.
23  *
24  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31  * SOFTWARE.
32  *
33  * $FreeBSD$
34  */
35 #ifndef __T4_H__
36 #define __T4_H__
37 
38 #include "common/t4_regs_values.h"
39 #include "common/t4_regs.h"
40 /*
41  * Fixme: Adding missing defines
42  */
43 #define SGE_PF_KDOORBELL 0x0
44 #define  QID_MASK    0xffff8000U
45 #define  QID_SHIFT   15
46 #define  QID(x)      ((x) << QID_SHIFT)
47 #define  DBPRIO      0x00004000U
48 #define  PIDX_MASK   0x00003fffU
49 #define  PIDX_SHIFT  0
50 #define  PIDX(x)     ((x) << PIDX_SHIFT)
51 
52 #define SGE_PF_GTS 0x4
53 #define  INGRESSQID_MASK   0xffff0000U
54 #define  INGRESSQID_SHIFT  16
55 #define  INGRESSQID(x)     ((x) << INGRESSQID_SHIFT)
56 #define  TIMERREG_MASK     0x0000e000U
57 #define  TIMERREG_SHIFT    13
58 #define  TIMERREG(x)       ((x) << TIMERREG_SHIFT)
59 #define  SEINTARM_MASK     0x00001000U
60 #define  SEINTARM_SHIFT    12
61 #define  SEINTARM(x)       ((x) << SEINTARM_SHIFT)
62 #define  CIDXINC_MASK      0x00000fffU
63 #define  CIDXINC_SHIFT     0
64 #define  CIDXINC(x)        ((x) << CIDXINC_SHIFT)
65 
66 #define T4_MAX_NUM_PD 65536
67 #define T4_MAX_MR_SIZE (~0ULL)
68 #define T4_PAGESIZE_MASK 0xffffffff000 /* 4KB-8TB */
69 #define T4_STAG_UNSET 0xffffffff
70 #define T4_FW_MAJ 0
71 #define A_PCIE_MA_SYNC 0x30b4
72 
73 struct t4_status_page {
74 	__be32 rsvd1;	/* flit 0 - hw owns */
75 	__be16 rsvd2;
76 	__be16 qid;
77 	__be16 cidx;
78 	__be16 pidx;
79 	u8 qp_err;	/* flit 1 - sw owns */
80 	u8 db_off;
81 	u8 pad;
82 	u16 host_wq_pidx;
83 	u16 host_cidx;
84 	u16 host_pidx;
85 };
86 
87 #define T4_EQ_ENTRY_SIZE 64
88 
89 #define T4_SQ_NUM_SLOTS 5
90 #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
91 #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
92 			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
93 #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
94 			sizeof(struct fw_ri_immd)))
95 #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
96 			sizeof(struct fw_ri_rdma_write_wr) - \
97 			sizeof(struct fw_ri_immd)))
98 #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
99 			sizeof(struct fw_ri_rdma_write_wr) - \
100 			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
101 #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
102 			sizeof(struct fw_ri_immd)) & ~31UL)
103 #define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
104 #define T4_MAX_FR_DSGL 1024
105 #define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
106 #define T4_MAX_FR_FW_DSGL 4096
107 #define T4_MAX_FR_FW_DSGL_DEPTH (T4_MAX_FR_FW_DSGL / sizeof(u64))
108 
109 #define T4_RQ_NUM_SLOTS 2
110 #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
111 #define T4_MAX_RECV_SGE 4
112 
113 union t4_wr {
114 	struct fw_ri_res_wr res;
115 	struct fw_ri_wr ri;
116 	struct fw_ri_rdma_write_wr write;
117 	struct fw_ri_send_wr send;
118 	struct fw_ri_rdma_read_wr read;
119 	struct fw_ri_bind_mw_wr bind;
120 	struct fw_ri_fr_nsmr_wr fr;
121 	struct fw_ri_fr_nsmr_tpte_wr fr_tpte;
122 	struct fw_ri_inv_lstag_wr inv;
123 	struct t4_status_page status;
124 	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
125 };
126 
127 union t4_recv_wr {
128 	struct fw_ri_recv_wr recv;
129 	struct t4_status_page status;
130 	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
131 };
132 
133 static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
134 			       enum fw_wr_opcodes opcode, u8 flags, u8 len16)
135 {
136 	wqe->send.opcode = (u8)opcode;
137 	wqe->send.flags = flags;
138 	wqe->send.wrid = wrid;
139 	wqe->send.r1[0] = 0;
140 	wqe->send.r1[1] = 0;
141 	wqe->send.r1[2] = 0;
142 	wqe->send.len16 = len16;
143 }
144 
145 /* CQE/AE status codes */
146 #define T4_ERR_SUCCESS                     0x0
147 #define T4_ERR_STAG                        0x1	/* STAG invalid: either the */
148 						/* STAG is offlimt, being 0, */
149 						/* or STAG_key mismatch */
150 #define T4_ERR_PDID                        0x2	/* PDID mismatch */
151 #define T4_ERR_QPID                        0x3	/* QPID mismatch */
152 #define T4_ERR_ACCESS                      0x4	/* Invalid access right */
153 #define T4_ERR_WRAP                        0x5	/* Wrap error */
154 #define T4_ERR_BOUND                       0x6	/* base and bounds voilation */
155 #define T4_ERR_INVALIDATE_SHARED_MR        0x7	/* attempt to invalidate a  */
156 						/* shared memory region */
157 #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8	/* attempt to invalidate a  */
158 						/* shared memory region */
159 #define T4_ERR_ECC                         0x9	/* ECC error detected */
160 #define T4_ERR_ECC_PSTAG                   0xA	/* ECC error detected when  */
161 						/* reading PSTAG for a MW  */
162 						/* Invalidate */
163 #define T4_ERR_PBL_ADDR_BOUND              0xB	/* pbl addr out of bounds:  */
164 						/* software error */
165 #define T4_ERR_SWFLUSH			   0xC	/* SW FLUSHED */
166 #define T4_ERR_CRC                         0x10 /* CRC error */
167 #define T4_ERR_MARKER                      0x11 /* Marker error */
168 #define T4_ERR_PDU_LEN_ERR                 0x12 /* invalid PDU length */
169 #define T4_ERR_OUT_OF_RQE                  0x13 /* out of RQE */
170 #define T4_ERR_DDP_VERSION                 0x14 /* wrong DDP version */
171 #define T4_ERR_RDMA_VERSION                0x15 /* wrong RDMA version */
172 #define T4_ERR_OPCODE                      0x16 /* invalid rdma opcode */
173 #define T4_ERR_DDP_QUEUE_NUM               0x17 /* invalid ddp queue number */
174 #define T4_ERR_MSN                         0x18 /* MSN error */
175 #define T4_ERR_TBIT                        0x19 /* tag bit not set correctly */
176 #define T4_ERR_MO                          0x1A /* MO not 0 for TERMINATE  */
177 						/* or READ_REQ */
178 #define T4_ERR_MSN_GAP                     0x1B
179 #define T4_ERR_MSN_RANGE                   0x1C
180 #define T4_ERR_IRD_OVERFLOW                0x1D
181 #define T4_ERR_RQE_ADDR_BOUND              0x1E /* RQE addr out of bounds:  */
182 						/* software error */
183 #define T4_ERR_INTERNAL_ERR                0x1F /* internal error (opcode  */
184 						/* mismatch) */
185 /*
186  * CQE defs
187  */
188 struct t4_cqe {
189 	__be32 header;
190 	__be32 len;
191 	union {
192 		struct {
193 			__be32 stag;
194 			__be32 msn;
195 		} rcqe;
196 		struct {
197 			u32 stag;
198 			u16 nada2;
199 			u16 cidx;
200 		} scqe;
201 		struct {
202 			__be32 wrid_hi;
203 			__be32 wrid_low;
204 		} gen;
205 		u64 drain_cookie;
206 	} u;
207 	__be64 reserved;
208 	__be64 bits_type_ts;
209 };
210 
211 /* macros for flit 0 of the cqe */
212 
213 #define S_CQE_QPID        12
214 #define M_CQE_QPID        0xFFFFF
215 #define G_CQE_QPID(x)     ((((x) >> S_CQE_QPID)) & M_CQE_QPID)
216 #define V_CQE_QPID(x)	  ((x)<<S_CQE_QPID)
217 
218 #define S_CQE_SWCQE       11
219 #define M_CQE_SWCQE       0x1
220 #define G_CQE_SWCQE(x)    ((((x) >> S_CQE_SWCQE)) & M_CQE_SWCQE)
221 #define V_CQE_SWCQE(x)	  ((x)<<S_CQE_SWCQE)
222 
223 #define S_CQE_STATUS      5
224 #define M_CQE_STATUS      0x1F
225 #define G_CQE_STATUS(x)   ((((x) >> S_CQE_STATUS)) & M_CQE_STATUS)
226 #define V_CQE_STATUS(x)   ((x)<<S_CQE_STATUS)
227 
228 #define S_CQE_TYPE        4
229 #define M_CQE_TYPE        0x1
230 #define G_CQE_TYPE(x)     ((((x) >> S_CQE_TYPE)) & M_CQE_TYPE)
231 #define V_CQE_TYPE(x)     ((x)<<S_CQE_TYPE)
232 
233 #define S_CQE_OPCODE      0
234 #define M_CQE_OPCODE      0xF
235 #define G_CQE_OPCODE(x)   ((((x) >> S_CQE_OPCODE)) & M_CQE_OPCODE)
236 #define V_CQE_OPCODE(x)   ((x)<<S_CQE_OPCODE)
237 
238 #define SW_CQE(x)         (G_CQE_SWCQE(be32_to_cpu((x)->header)))
239 #define CQE_QPID(x)       (G_CQE_QPID(be32_to_cpu((x)->header)))
240 #define CQE_TYPE(x)       (G_CQE_TYPE(be32_to_cpu((x)->header)))
241 #define SQ_TYPE(x)	  (CQE_TYPE((x)))
242 #define RQ_TYPE(x)	  (!CQE_TYPE((x)))
243 #define CQE_STATUS(x)     (G_CQE_STATUS(be32_to_cpu((x)->header)))
244 #define CQE_OPCODE(x)     (G_CQE_OPCODE(be32_to_cpu((x)->header)))
245 
246 #define CQE_SEND_OPCODE(x)(\
247 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
248 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
249 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
250 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
251 
252 #define CQE_LEN(x)        (be32_to_cpu((x)->len))
253 
254 /* used for RQ completion processing */
255 #define CQE_WRID_STAG(x)  (be32_to_cpu((x)->u.rcqe.stag))
256 #define CQE_WRID_MSN(x)   (be32_to_cpu((x)->u.rcqe.msn))
257 
258 /* used for SQ completion processing */
259 #define CQE_WRID_SQ_IDX(x)	((x)->u.scqe.cidx)
260 #define CQE_WRID_FR_STAG(x)     (be32_to_cpu((x)->u.scqe.stag))
261 
262 /* generic accessor macros */
263 #define CQE_WRID_HI(x)		((x)->u.gen.wrid_hi)
264 #define CQE_WRID_LOW(x)		((x)->u.gen.wrid_low)
265 #define CQE_DRAIN_COOKIE(x)	(x)->u.drain_cookie;
266 
267 /* macros for flit 3 of the cqe */
268 #define S_CQE_GENBIT	63
269 #define M_CQE_GENBIT	0x1
270 #define G_CQE_GENBIT(x)	(((x) >> S_CQE_GENBIT) & M_CQE_GENBIT)
271 #define V_CQE_GENBIT(x) ((x)<<S_CQE_GENBIT)
272 
273 #define S_CQE_OVFBIT	62
274 #define M_CQE_OVFBIT	0x1
275 #define G_CQE_OVFBIT(x)	((((x) >> S_CQE_OVFBIT)) & M_CQE_OVFBIT)
276 
277 #define S_CQE_IQTYPE	60
278 #define M_CQE_IQTYPE	0x3
279 #define G_CQE_IQTYPE(x)	((((x) >> S_CQE_IQTYPE)) & M_CQE_IQTYPE)
280 
281 #define M_CQE_TS	0x0fffffffffffffffULL
282 #define G_CQE_TS(x)	((x) & M_CQE_TS)
283 
284 #define CQE_OVFBIT(x)	((unsigned)G_CQE_OVFBIT(be64_to_cpu((x)->bits_type_ts)))
285 #define CQE_GENBIT(x)	((unsigned)G_CQE_GENBIT(be64_to_cpu((x)->bits_type_ts)))
286 #define CQE_TS(x)	(G_CQE_TS(be64_to_cpu((x)->bits_type_ts)))
287 
288 struct t4_swsqe {
289 	u64			wr_id;
290 	struct t4_cqe		cqe;
291 	int			read_len;
292 	int			opcode;
293 	int			complete;
294 	int			signaled;
295 	u16			idx;
296 	int                     flushed;
297 	struct timespec         host_ts;
298 	u64                     sge_ts;
299 };
300 
301 static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
302 {
303 #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
304 	return pgprot_writecombine(prot);
305 #else
306 	return pgprot_noncached(prot);
307 #endif
308 }
309 
310 enum {
311 	T4_SQ_ONCHIP = (1<<0),
312 };
313 
314 struct t4_sq {
315 	union t4_wr *queue;
316 	bus_addr_t dma_addr;
317 	DEFINE_DMA_UNMAP_ADDR(mapping);
318 	unsigned long phys_addr;
319 	struct t4_swsqe *sw_sq;
320 	struct t4_swsqe *oldest_read;
321 	void __iomem *bar2_va;
322 	u64 bar2_pa;
323 	size_t memsize;
324 	u32 bar2_qid;
325 	u32 qid;
326 	u16 in_use;
327 	u16 size;
328 	u16 cidx;
329 	u16 pidx;
330 	u16 wq_pidx;
331 	u16 wq_pidx_inc;
332 	u16 flags;
333 	short flush_cidx;
334 };
335 
336 struct t4_swrqe {
337 	u64 wr_id;
338 };
339 
340 struct t4_rq {
341 	union  t4_recv_wr *queue;
342 	bus_addr_t dma_addr;
343 	DEFINE_DMA_UNMAP_ADDR(mapping);
344 	unsigned long phys_addr;
345 	struct t4_swrqe *sw_rq;
346 	void __iomem *bar2_va;
347 	u64 bar2_pa;
348 	size_t memsize;
349 	u32 bar2_qid;
350 	u32 qid;
351 	u32 msn;
352 	u32 rqt_hwaddr;
353 	u16 rqt_size;
354 	u16 in_use;
355 	u16 size;
356 	u16 cidx;
357 	u16 pidx;
358 	u16 wq_pidx;
359 	u16 wq_pidx_inc;
360 };
361 
362 struct t4_wq {
363 	struct t4_sq sq;
364 	struct t4_rq rq;
365 	struct c4iw_rdev *rdev;
366 	int flushed;
367 };
368 
369 static inline int t4_rqes_posted(struct t4_wq *wq)
370 {
371 	return wq->rq.in_use;
372 }
373 
374 static inline int t4_rq_empty(struct t4_wq *wq)
375 {
376 	return wq->rq.in_use == 0;
377 }
378 
379 static inline int t4_rq_full(struct t4_wq *wq)
380 {
381 	return wq->rq.in_use == (wq->rq.size - 1);
382 }
383 
384 static inline u32 t4_rq_avail(struct t4_wq *wq)
385 {
386 	return wq->rq.size - 1 - wq->rq.in_use;
387 }
388 
389 static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
390 {
391 	wq->rq.in_use++;
392 	if (++wq->rq.pidx == wq->rq.size)
393 		wq->rq.pidx = 0;
394 	wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
395 	if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
396 		wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
397 }
398 
399 static inline void t4_rq_consume(struct t4_wq *wq)
400 {
401 	wq->rq.in_use--;
402 	wq->rq.msn++;
403 	if (++wq->rq.cidx == wq->rq.size)
404 		wq->rq.cidx = 0;
405 }
406 
407 static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
408 {
409 	return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
410 }
411 
412 static inline u16 t4_rq_wq_size(struct t4_wq *wq)
413 {
414 	return wq->rq.size * T4_RQ_NUM_SLOTS;
415 }
416 
417 static inline int t4_sq_onchip(struct t4_sq *sq)
418 {
419 	return sq->flags & T4_SQ_ONCHIP;
420 }
421 
422 static inline int t4_sq_empty(struct t4_wq *wq)
423 {
424 	return wq->sq.in_use == 0;
425 }
426 
427 static inline int t4_sq_full(struct t4_wq *wq)
428 {
429 	return wq->sq.in_use == (wq->sq.size - 1);
430 }
431 
432 static inline u32 t4_sq_avail(struct t4_wq *wq)
433 {
434 	return wq->sq.size - 1 - wq->sq.in_use;
435 }
436 
437 static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
438 {
439 	wq->sq.in_use++;
440 	if (++wq->sq.pidx == wq->sq.size)
441 		wq->sq.pidx = 0;
442 	wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
443 	if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
444 		wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
445 }
446 
447 static inline void t4_sq_consume(struct t4_wq *wq)
448 {
449 	BUG_ON(wq->sq.in_use < 1);
450 	if (wq->sq.cidx == wq->sq.flush_cidx)
451 		wq->sq.flush_cidx = -1;
452 	wq->sq.in_use--;
453 	if (++wq->sq.cidx == wq->sq.size)
454 		wq->sq.cidx = 0;
455 }
456 
457 static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
458 {
459 	return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
460 }
461 
462 static inline u16 t4_sq_wq_size(struct t4_wq *wq)
463 {
464 		return wq->sq.size * T4_SQ_NUM_SLOTS;
465 }
466 
467 /* This function copies 64 byte coalesced work request to memory
468  * mapped BAR2 space. For coalesced WRs, the SGE fetches data
469  * from the FIFO instead of from Host.
470  */
471 static inline void pio_copy(u64 __iomem *dst, u64 *src)
472 {
473 	int count = 8;
474 
475 	while (count) {
476 		writeq(*src, dst);
477 		src++;
478 		dst++;
479 		count--;
480 	}
481 }
482 
483 static inline void
484 t4_ring_sq_db(struct t4_wq *wq, u16 inc, union t4_wr *wqe, u8 wc)
485 {
486 
487 	/* Flush host queue memory writes. */
488 	wmb();
489 	if (wc && inc == 1 && wq->sq.bar2_qid == 0 && wqe) {
490 		CTR2(KTR_IW_CXGBE, "%s: WC wq->sq.pidx = %d",
491 				__func__, wq->sq.pidx);
492 		pio_copy((u64 __iomem *)
493 				((u64)wq->sq.bar2_va + SGE_UDB_WCDOORBELL),
494 				(u64 *)wqe);
495 	} else {
496 		CTR2(KTR_IW_CXGBE, "%s: DB wq->sq.pidx = %d",
497 				__func__, wq->sq.pidx);
498 		writel(V_PIDX_T5(inc) | V_QID(wq->sq.bar2_qid),
499 				(void __iomem *)((u64)wq->sq.bar2_va +
500 					SGE_UDB_KDOORBELL));
501 	}
502 
503 	/* Flush user doorbell area writes. */
504 	wmb();
505 	return;
506 }
507 
508 static inline void
509 t4_ring_rq_db(struct t4_wq *wq, u16 inc, union t4_recv_wr *wqe, u8 wc)
510 {
511 
512 	/* Flush host queue memory writes. */
513 	wmb();
514 	if (wc && inc == 1 && wq->rq.bar2_qid == 0 && wqe) {
515 		CTR2(KTR_IW_CXGBE, "%s: WC wq->rq.pidx = %d",
516 				__func__, wq->rq.pidx);
517 		pio_copy((u64 __iomem *)((u64)wq->rq.bar2_va +
518 					SGE_UDB_WCDOORBELL), (u64 *)wqe);
519 	} else {
520 		CTR2(KTR_IW_CXGBE, "%s: DB wq->rq.pidx = %d",
521 				__func__, wq->rq.pidx);
522 		writel(V_PIDX_T5(inc) | V_QID(wq->rq.bar2_qid),
523 				(void __iomem *)((u64)wq->rq.bar2_va +
524 					SGE_UDB_KDOORBELL));
525 	}
526 
527 	/* Flush user doorbell area writes. */
528 	wmb();
529 	return;
530 }
531 
532 static inline int t4_wq_in_error(struct t4_wq *wq)
533 {
534 	return wq->rq.queue[wq->rq.size].status.qp_err;
535 }
536 
537 static inline void t4_set_wq_in_error(struct t4_wq *wq)
538 {
539 	wq->rq.queue[wq->rq.size].status.qp_err = 1;
540 }
541 
542 enum t4_cq_flags {
543 	CQ_ARMED	= 1,
544 };
545 
546 struct t4_cq {
547 	struct t4_cqe *queue;
548 	bus_addr_t dma_addr;
549 	DEFINE_DMA_UNMAP_ADDR(mapping);
550 	struct t4_cqe *sw_queue;
551 	void __iomem *bar2_va;
552 	u64 bar2_pa;
553 	u32 bar2_qid;
554 	struct c4iw_rdev *rdev;
555 	size_t memsize;
556 	__be64 bits_type_ts;
557 	u32 cqid;
558 	u32 qid_mask;
559 	int vector;
560 	u16 size; /* including status page */
561 	u16 cidx;
562 	u16 sw_pidx;
563 	u16 sw_cidx;
564 	u16 sw_in_use;
565 	u16 cidx_inc;
566 	u8 gen;
567 	u8 error;
568 	unsigned long flags;
569 };
570 
571 static inline void write_gts(struct t4_cq *cq, u32 val)
572 {
573 	writel(val | V_INGRESSQID(cq->bar2_qid),
574 		       (void __iomem *)((u64)cq->bar2_va + SGE_UDB_GTS));
575 }
576 
577 static inline int t4_clear_cq_armed(struct t4_cq *cq)
578 {
579 	return test_and_clear_bit(CQ_ARMED, &cq->flags);
580 }
581 
582 static inline int t4_arm_cq(struct t4_cq *cq, int se)
583 {
584 	u32 val;
585 
586 	set_bit(CQ_ARMED, &cq->flags);
587 	while (cq->cidx_inc > CIDXINC_MASK) {
588 		val = SEINTARM(0) | CIDXINC(CIDXINC_MASK) | TIMERREG(7);
589 		writel(val | V_INGRESSQID(cq->bar2_qid),
590 		       (void __iomem *)((u64)cq->bar2_va + SGE_UDB_GTS));
591 		cq->cidx_inc -= CIDXINC_MASK;
592 	}
593 	val = SEINTARM(se) | CIDXINC(cq->cidx_inc) | TIMERREG(6);
594 	writel(val | V_INGRESSQID(cq->bar2_qid),
595 		       (void __iomem *)((u64)cq->bar2_va + SGE_UDB_GTS));
596 	cq->cidx_inc = 0;
597 	return 0;
598 }
599 
600 static inline void t4_swcq_produce(struct t4_cq *cq)
601 {
602 	cq->sw_in_use++;
603 	if (cq->sw_in_use == cq->size) {
604 		CTR2(KTR_IW_CXGBE, "%s cxgb4 sw cq overflow cqid %u",
605 			 __func__, cq->cqid);
606 		cq->error = 1;
607 		BUG_ON(1);
608 	}
609 	if (++cq->sw_pidx == cq->size)
610 		cq->sw_pidx = 0;
611 }
612 
613 static inline void t4_swcq_consume(struct t4_cq *cq)
614 {
615 	BUG_ON(cq->sw_in_use < 1);
616 	cq->sw_in_use--;
617 	if (++cq->sw_cidx == cq->size)
618 		cq->sw_cidx = 0;
619 }
620 
621 static inline void t4_hwcq_consume(struct t4_cq *cq)
622 {
623 	cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
624 	if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == M_CIDXINC) {
625 		u32 val;
626 
627 		val = SEINTARM(0) | CIDXINC(cq->cidx_inc) | TIMERREG(7);
628 		write_gts(cq, val);
629 		cq->cidx_inc = 0;
630 	}
631 	if (++cq->cidx == cq->size) {
632 		cq->cidx = 0;
633 		cq->gen ^= 1;
634 	}
635 }
636 
637 static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
638 {
639 	return (CQE_GENBIT(cqe) == cq->gen);
640 }
641 
642 static inline int t4_cq_notempty(struct t4_cq *cq)
643 {
644 	return cq->sw_in_use || t4_valid_cqe(cq, &cq->queue[cq->cidx]);
645 }
646 
647 static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
648 {
649 	int ret;
650 	u16 prev_cidx;
651 
652 	if (cq->cidx == 0)
653 		prev_cidx = cq->size - 1;
654 	else
655 		prev_cidx = cq->cidx - 1;
656 
657 	if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
658 		ret = -EOVERFLOW;
659 		cq->error = 1;
660 		printk(KERN_ERR MOD "cq overflow cqid %u\n", cq->cqid);
661 		BUG_ON(1);
662 	} else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
663 
664 		/* Ensure CQE is flushed to memory */
665 		rmb();
666 		*cqe = &cq->queue[cq->cidx];
667 		ret = 0;
668 	} else
669 		ret = -ENODATA;
670 	return ret;
671 }
672 
673 static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
674 {
675 	if (cq->sw_in_use == cq->size) {
676 		CTR2(KTR_IW_CXGBE, "%s cxgb4 sw cq overflow cqid %u",
677 			 __func__, cq->cqid);
678 		cq->error = 1;
679 		BUG_ON(1);
680 		return NULL;
681 	}
682 	if (cq->sw_in_use)
683 		return &cq->sw_queue[cq->sw_cidx];
684 	return NULL;
685 }
686 
687 static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
688 {
689 	int ret = 0;
690 
691 	if (cq->error)
692 		ret = -ENODATA;
693 	else if (cq->sw_in_use)
694 		*cqe = &cq->sw_queue[cq->sw_cidx];
695 	else
696 		ret = t4_next_hw_cqe(cq, cqe);
697 	return ret;
698 }
699 
700 static inline int t4_cq_in_error(struct t4_cq *cq)
701 {
702 	return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
703 }
704 
705 static inline void t4_set_cq_in_error(struct t4_cq *cq)
706 {
707 	((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
708 }
709 struct t4_dev_status_page {
710 	u8 db_off;
711 	u8 wc_supported;
712 	u16 pad2;
713 	u32 pad3;
714 	u64 qp_start;
715 	u64 qp_size;
716 	u64 cq_start;
717 	u64 cq_size;
718 };
719 #endif
720