xref: /freebsd/sys/dev/cxgbe/iw_cxgbe/mem.c (revision d59a76183470685bdf0b88013d2baad1f04f030f)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2009-2013 Chelsio, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 #include <sys/cdefs.h>
35 #include "opt_inet.h"
36 
37 #ifdef TCP_OFFLOAD
38 #include <linux/types.h>
39 #include <linux/kref.h>
40 #include <rdma/ib_umem.h>
41 #include <asm/atomic.h>
42 
43 #include <common/t4_msg.h>
44 #include "iw_cxgbe.h"
45 
46 #define T4_ULPTX_MIN_IO 32
47 #define C4IW_MAX_INLINE_SIZE 96
48 #define T4_ULPTX_MAX_DMA 1024
49 
50 static int
51 mr_exceeds_hw_limits(struct c4iw_dev *dev, u64 length)
52 {
53 
54 	return (is_t5(dev->rdev.adap) && length >= 8*1024*1024*1024ULL);
55 }
56 
57 static int
58 _c4iw_write_mem_dma_aligned(struct c4iw_rdev *rdev, u32 addr, u32 len,
59 				void *data, int wait)
60 {
61 	struct adapter *sc = rdev->adap;
62 	struct ulp_mem_io *ulpmc;
63 	struct ulptx_sgl *sgl;
64 	u8 wr_len;
65 	int ret = 0;
66 	struct c4iw_wr_wait wr_wait;
67 	struct wrqe *wr;
68 
69 	addr &= 0x7FFFFFF;
70 
71 	if (wait)
72 		c4iw_init_wr_wait(&wr_wait);
73 	wr_len = roundup(sizeof *ulpmc + sizeof *sgl, 16);
74 
75 	wr = alloc_wrqe(wr_len, &sc->sge.ctrlq[0]);
76 	if (wr == NULL)
77 		return -ENOMEM;
78 	ulpmc = wrtod(wr);
79 
80 	memset(ulpmc, 0, wr_len);
81 	INIT_ULPTX_WR(ulpmc, wr_len, 0, 0);
82 	ulpmc->wr.wr_hi = cpu_to_be32(V_FW_WR_OP(FW_ULPTX_WR) |
83 				    (wait ? F_FW_WR_COMPL : 0));
84 	ulpmc->wr.wr_lo = wait ? (u64)(unsigned long)&wr_wait : 0;
85 	ulpmc->wr.wr_mid = cpu_to_be32(V_FW_WR_LEN16(DIV_ROUND_UP(wr_len, 16)));
86 	ulpmc->cmd = cpu_to_be32(V_ULPTX_CMD(ULP_TX_MEM_WRITE) |
87 			       V_T5_ULP_MEMIO_ORDER(1) |
88 			V_T5_ULP_MEMIO_FID(sc->sge.ofld_rxq[0].iq.abs_id));
89 	ulpmc->dlen = cpu_to_be32(V_ULP_MEMIO_DATA_LEN(len>>5));
90 	ulpmc->len16 = cpu_to_be32(DIV_ROUND_UP(wr_len-sizeof(ulpmc->wr), 16));
91 	ulpmc->lock_addr = cpu_to_be32(V_ULP_MEMIO_ADDR(addr));
92 
93 	sgl = (struct ulptx_sgl *)(ulpmc + 1);
94 	sgl->cmd_nsge = cpu_to_be32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
95 				    V_ULPTX_NSGE(1));
96 	sgl->len0 = cpu_to_be32(len);
97 	sgl->addr0 = cpu_to_be64((u64)data);
98 
99 	t4_wrq_tx(sc, wr);
100 
101 	if (wait)
102 		ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, NULL, __func__);
103 	return ret;
104 }
105 
106 
107 static int
108 _c4iw_write_mem_inline(struct c4iw_rdev *rdev, u32 addr, u32 len, void *data)
109 {
110 	struct adapter *sc = rdev->adap;
111 	struct ulp_mem_io *ulpmc;
112 	struct ulptx_idata *ulpsc;
113 	u8 wr_len, *to_dp, *from_dp;
114 	int copy_len, num_wqe, i, ret = 0;
115 	struct c4iw_wr_wait wr_wait;
116 	struct wrqe *wr;
117 	u32 cmd;
118 
119 	cmd = cpu_to_be32(V_ULPTX_CMD(ULP_TX_MEM_WRITE));
120 
121 	cmd |= cpu_to_be32(F_T5_ULP_MEMIO_IMM);
122 
123 	addr &= 0x7FFFFFF;
124 	CTR3(KTR_IW_CXGBE, "%s addr 0x%x len %u", __func__, addr, len);
125 	num_wqe = DIV_ROUND_UP(len, C4IW_MAX_INLINE_SIZE);
126 	c4iw_init_wr_wait(&wr_wait);
127 	for (i = 0; i < num_wqe; i++) {
128 
129 		copy_len = min(len, C4IW_MAX_INLINE_SIZE);
130 		wr_len = roundup(sizeof *ulpmc + sizeof *ulpsc +
131 				 roundup(copy_len, T4_ULPTX_MIN_IO), 16);
132 
133 		wr = alloc_wrqe(wr_len, &sc->sge.ctrlq[0]);
134 		if (wr == NULL)
135 			return -ENOMEM;
136 		ulpmc = wrtod(wr);
137 
138 		memset(ulpmc, 0, wr_len);
139 		INIT_ULPTX_WR(ulpmc, wr_len, 0, 0);
140 
141 		if (i == (num_wqe-1)) {
142 			ulpmc->wr.wr_hi = cpu_to_be32(V_FW_WR_OP(FW_ULPTX_WR) |
143 						    F_FW_WR_COMPL);
144 			ulpmc->wr.wr_lo =
145 				       (__force __be64)(unsigned long) &wr_wait;
146 		} else
147 			ulpmc->wr.wr_hi = cpu_to_be32(V_FW_WR_OP(FW_ULPTX_WR));
148 		ulpmc->wr.wr_mid = cpu_to_be32(
149 				       V_FW_WR_LEN16(DIV_ROUND_UP(wr_len, 16)));
150 
151 		ulpmc->cmd = cmd;
152 		ulpmc->dlen = cpu_to_be32(V_ULP_MEMIO_DATA_LEN(
153 		    DIV_ROUND_UP(copy_len, T4_ULPTX_MIN_IO)));
154 		ulpmc->len16 = cpu_to_be32(DIV_ROUND_UP(wr_len-sizeof(ulpmc->wr),
155 						      16));
156 		ulpmc->lock_addr = cpu_to_be32(V_ULP_MEMIO_ADDR(addr + i * 3));
157 
158 		ulpsc = (struct ulptx_idata *)(ulpmc + 1);
159 		ulpsc->cmd_more = cpu_to_be32(V_ULPTX_CMD(ULP_TX_SC_IMM));
160 		ulpsc->len = cpu_to_be32(roundup(copy_len, T4_ULPTX_MIN_IO));
161 
162 		to_dp = (u8 *)(ulpsc + 1);
163 		from_dp = (u8 *)data + i * C4IW_MAX_INLINE_SIZE;
164 		if (data)
165 			memcpy(to_dp, from_dp, copy_len);
166 		else
167 			memset(to_dp, 0, copy_len);
168 		if (copy_len % T4_ULPTX_MIN_IO)
169 			memset(to_dp + copy_len, 0, T4_ULPTX_MIN_IO -
170 			       (copy_len % T4_ULPTX_MIN_IO));
171 		t4_wrq_tx(sc, wr);
172 		len -= C4IW_MAX_INLINE_SIZE;
173 	}
174 
175 	ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, NULL, __func__);
176 	return ret;
177 }
178 
179 static int
180 _c4iw_write_mem_dma(struct c4iw_rdev *rdev, u32 addr, u32 len, void *data)
181 {
182 	struct c4iw_dev *rhp = rdev_to_c4iw_dev(rdev);
183 	u32 remain = len;
184 	u32 dmalen;
185 	int ret = 0;
186 	dma_addr_t daddr;
187 	dma_addr_t save;
188 
189 	daddr = dma_map_single(rhp->ibdev.dma_device, data, len, DMA_TO_DEVICE);
190 	if (dma_mapping_error(rhp->ibdev.dma_device, daddr))
191 		return -1;
192 	save = daddr;
193 
194 	while (remain > inline_threshold) {
195 		if (remain < T4_ULPTX_MAX_DMA) {
196 			if (remain & ~T4_ULPTX_MIN_IO)
197 				dmalen = remain & ~(T4_ULPTX_MIN_IO-1);
198 			else
199 				dmalen = remain;
200 		} else
201 			dmalen = T4_ULPTX_MAX_DMA;
202 		remain -= dmalen;
203 		ret = _c4iw_write_mem_dma_aligned(rdev, addr, dmalen,
204 				(void *)daddr, !remain);
205 		if (ret)
206 			goto out;
207 		addr += dmalen >> 5;
208 		data = (u8 *)data + dmalen;
209 		daddr = daddr + dmalen;
210 	}
211 	if (remain)
212 		ret = _c4iw_write_mem_inline(rdev, addr, remain, data);
213 out:
214 	dma_unmap_single(rhp->ibdev.dma_device, save, len, DMA_TO_DEVICE);
215 	return ret;
216 }
217 
218 /*
219  * write len bytes of data into addr (32B aligned address)
220  * If data is NULL, clear len byte of memory to zero.
221  */
222 static int
223 write_adapter_mem(struct c4iw_rdev *rdev, u32 addr, u32 len,
224 			     void *data)
225 {
226 	if (rdev->adap->params.ulptx_memwrite_dsgl && use_dsgl) {
227 		if (len > inline_threshold) {
228 			if (_c4iw_write_mem_dma(rdev, addr, len, data)) {
229 				log(LOG_ERR, "%s: dma map "
230 				       "failure (non fatal)\n", __func__);
231 				return _c4iw_write_mem_inline(rdev, addr, len,
232 							      data);
233 			} else
234 				return 0;
235 		} else
236 			return _c4iw_write_mem_inline(rdev, addr, len, data);
237 	} else
238 		return _c4iw_write_mem_inline(rdev, addr, len, data);
239 }
240 
241 
242 /*
243  * Build and write a TPT entry.
244  * IN: stag key, pdid, perm, bind_enabled, zbva, to, len, page_size,
245  *     pbl_size and pbl_addr
246  * OUT: stag index
247  */
248 static int write_tpt_entry(struct c4iw_rdev *rdev, u32 reset_tpt_entry,
249 			   u32 *stag, u8 stag_state, u32 pdid,
250 			   enum fw_ri_stag_type type, enum fw_ri_mem_perms perm,
251 			   int bind_enabled, u32 zbva, u64 to,
252 			   u64 len, u8 page_size, u32 pbl_size, u32 pbl_addr)
253 {
254 	int err;
255 	struct fw_ri_tpte tpt;
256 	u32 stag_idx;
257 	static atomic_t key;
258 
259 	if (c4iw_stopped(rdev))
260 		return -EIO;
261 
262 	stag_state = stag_state > 0;
263 	stag_idx = (*stag) >> 8;
264 
265 	if ((!reset_tpt_entry) && (*stag == T4_STAG_UNSET)) {
266 		stag_idx = c4iw_get_resource(&rdev->resource.tpt_table);
267 		if (!stag_idx) {
268 			mutex_lock(&rdev->stats.lock);
269 			rdev->stats.stag.fail++;
270 			mutex_unlock(&rdev->stats.lock);
271 			return -ENOMEM;
272 		}
273 		mutex_lock(&rdev->stats.lock);
274 		rdev->stats.stag.cur += 32;
275 		if (rdev->stats.stag.cur > rdev->stats.stag.max)
276 			rdev->stats.stag.max = rdev->stats.stag.cur;
277 		mutex_unlock(&rdev->stats.lock);
278 		*stag = (stag_idx << 8) | (atomic_inc_return(&key) & 0xff);
279 	}
280 	CTR5(KTR_IW_CXGBE,
281 	    "%s stag_state 0x%0x type 0x%0x pdid 0x%0x, stag_idx 0x%x",
282 	    __func__, stag_state, type, pdid, stag_idx);
283 
284 	/* write TPT entry */
285 	if (reset_tpt_entry)
286 		memset(&tpt, 0, sizeof(tpt));
287 	else {
288 		if (page_size > ilog2(C4IW_MAX_PAGE_SIZE) - 12)
289 			return -EINVAL;
290 		tpt.valid_to_pdid = cpu_to_be32(F_FW_RI_TPTE_VALID |
291 			V_FW_RI_TPTE_STAGKEY((*stag & M_FW_RI_TPTE_STAGKEY)) |
292 			V_FW_RI_TPTE_STAGSTATE(stag_state) |
293 			V_FW_RI_TPTE_STAGTYPE(type) | V_FW_RI_TPTE_PDID(pdid));
294 		tpt.locread_to_qpid = cpu_to_be32(V_FW_RI_TPTE_PERM(perm) |
295 			(bind_enabled ? F_FW_RI_TPTE_MWBINDEN : 0) |
296 			V_FW_RI_TPTE_ADDRTYPE((zbva ? FW_RI_ZERO_BASED_TO :
297 						      FW_RI_VA_BASED_TO))|
298 			V_FW_RI_TPTE_PS(page_size));
299 		tpt.nosnoop_pbladdr = !pbl_size ? 0 : cpu_to_be32(
300 			V_FW_RI_TPTE_PBLADDR(PBL_OFF(rdev, pbl_addr)>>3));
301 		tpt.len_lo = cpu_to_be32((u32)(len & 0xffffffffUL));
302 		tpt.va_hi = cpu_to_be32((u32)(to >> 32));
303 		tpt.va_lo_fbo = cpu_to_be32((u32)(to & 0xffffffffUL));
304 		tpt.dca_mwbcnt_pstag = cpu_to_be32(0);
305 		tpt.len_hi = cpu_to_be32((u32)(len >> 32));
306 	}
307 	err = write_adapter_mem(rdev, stag_idx +
308 				(rdev->adap->vres.stag.start >> 5),
309 				sizeof(tpt), &tpt);
310 
311 	if (reset_tpt_entry) {
312 		c4iw_put_resource(&rdev->resource.tpt_table, stag_idx);
313 		mutex_lock(&rdev->stats.lock);
314 		rdev->stats.stag.cur -= 32;
315 		mutex_unlock(&rdev->stats.lock);
316 	}
317 	return err;
318 }
319 
320 static int write_pbl(struct c4iw_rdev *rdev, __be64 *pbl,
321 		     u32 pbl_addr, u32 pbl_size)
322 {
323 	int err;
324 
325 	CTR4(KTR_IW_CXGBE, "%s *pdb_addr 0x%x, pbl_base 0x%x, pbl_size %d",
326 	     __func__, pbl_addr, rdev->adap->vres.pbl.start, pbl_size);
327 
328 	err = write_adapter_mem(rdev, pbl_addr >> 5, pbl_size << 3, pbl);
329 	return err;
330 }
331 
332 static int dereg_mem(struct c4iw_rdev *rdev, u32 stag, u32 pbl_size,
333 		     u32 pbl_addr)
334 {
335 	return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0,
336 			       pbl_size, pbl_addr);
337 }
338 
339 static int allocate_window(struct c4iw_rdev *rdev, u32 * stag, u32 pdid)
340 {
341 	*stag = T4_STAG_UNSET;
342 	return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_MW, 0, 0, 0,
343 			       0UL, 0, 0, 0, 0);
344 }
345 
346 static int deallocate_window(struct c4iw_rdev *rdev, u32 stag)
347 {
348 	return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0, 0,
349 			       0);
350 }
351 
352 static int allocate_stag(struct c4iw_rdev *rdev, u32 *stag, u32 pdid,
353 			 u32 pbl_size, u32 pbl_addr)
354 {
355 	*stag = T4_STAG_UNSET;
356 	return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_NSMR, 0, 0, 0,
357 			       0UL, 0, 0, pbl_size, pbl_addr);
358 }
359 
360 static int finish_mem_reg(struct c4iw_mr *mhp, u32 stag)
361 {
362 	u32 mmid;
363 
364 	mhp->attr.state = 1;
365 	mhp->attr.stag = stag;
366 	mmid = stag >> 8;
367 	mhp->ibmr.rkey = mhp->ibmr.lkey = stag;
368 	CTR3(KTR_IW_CXGBE, "%s mmid 0x%x mhp %p", __func__, mmid, mhp);
369 	return insert_handle(mhp->rhp, &mhp->rhp->mmidr, mhp, mmid);
370 }
371 
372 static int register_mem(struct c4iw_dev *rhp, struct c4iw_pd *php,
373 		      struct c4iw_mr *mhp, int shift)
374 {
375 	u32 stag = T4_STAG_UNSET;
376 	int ret;
377 
378 	ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, mhp->attr.pdid,
379 			      FW_RI_STAG_NSMR, mhp->attr.len ? mhp->attr.perms : 0,
380 			      mhp->attr.mw_bind_enable, mhp->attr.zbva,
381 			      mhp->attr.va_fbo, mhp->attr.len ? mhp->attr.len : -1, shift - 12,
382 			      mhp->attr.pbl_size, mhp->attr.pbl_addr);
383 	if (ret)
384 		return ret;
385 
386 	ret = finish_mem_reg(mhp, stag);
387 	if (ret)
388 		dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
389 		       mhp->attr.pbl_addr);
390 	return ret;
391 }
392 
393 static int alloc_pbl(struct c4iw_mr *mhp, int npages)
394 {
395 	mhp->attr.pbl_addr = c4iw_pblpool_alloc(&mhp->rhp->rdev,
396 						    npages << 3);
397 
398 	if (!mhp->attr.pbl_addr)
399 		return -ENOMEM;
400 
401 	mhp->attr.pbl_size = npages;
402 
403 	return 0;
404 }
405 
406 struct ib_mr *c4iw_get_dma_mr(struct ib_pd *pd, int acc)
407 {
408 	struct c4iw_dev *rhp;
409 	struct c4iw_pd *php;
410 	struct c4iw_mr *mhp;
411 	int ret;
412 	u32 stag = T4_STAG_UNSET;
413 
414 	CTR2(KTR_IW_CXGBE, "%s ib_pd %p", __func__, pd);
415 	php = to_c4iw_pd(pd);
416 	rhp = php->rhp;
417 
418 	mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
419 	if (!mhp)
420 		return ERR_PTR(-ENOMEM);
421 
422 	mhp->rhp = rhp;
423 	mhp->attr.pdid = php->pdid;
424 	mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
425 	mhp->attr.mw_bind_enable = (acc&IB_ACCESS_MW_BIND) == IB_ACCESS_MW_BIND;
426 	mhp->attr.zbva = 0;
427 	mhp->attr.va_fbo = 0;
428 	mhp->attr.page_size = 0;
429 	mhp->attr.len = ~0ULL;
430 	mhp->attr.pbl_size = 0;
431 
432 	ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, php->pdid,
433 			      FW_RI_STAG_NSMR, mhp->attr.perms,
434 			      mhp->attr.mw_bind_enable, 0, 0, ~0ULL, 0, 0, 0);
435 	if (ret)
436 		goto err1;
437 
438 	ret = finish_mem_reg(mhp, stag);
439 	if (ret)
440 		goto err2;
441 	return &mhp->ibmr;
442 err2:
443 	dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
444 		  mhp->attr.pbl_addr);
445 err1:
446 	kfree(mhp);
447 	return ERR_PTR(ret);
448 }
449 
450 struct ib_mr *c4iw_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
451 		u64 virt, int acc, struct ib_udata *udata)
452 {
453 	__be64 *pages;
454 	int shift, n, len;
455 	int i, k, entry;
456 	int err = 0;
457 	struct scatterlist *sg;
458 	struct c4iw_dev *rhp;
459 	struct c4iw_pd *php;
460 	struct c4iw_mr *mhp;
461 
462 	CTR2(KTR_IW_CXGBE, "%s ib_pd %p", __func__, pd);
463 
464 	if (length == ~0ULL)
465 		return ERR_PTR(-EINVAL);
466 
467 	if ((length + start) < start)
468 		return ERR_PTR(-EINVAL);
469 
470 	php = to_c4iw_pd(pd);
471 	rhp = php->rhp;
472 
473 	if (mr_exceeds_hw_limits(rhp, length))
474 		return ERR_PTR(-EINVAL);
475 
476 	mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
477 	if (!mhp)
478 		return ERR_PTR(-ENOMEM);
479 
480 	mhp->rhp = rhp;
481 
482 	mhp->umem = ib_umem_get(pd->uobject->context, start, length, acc, 0);
483 	if (IS_ERR(mhp->umem)) {
484 		err = PTR_ERR(mhp->umem);
485 		kfree(mhp);
486 		return ERR_PTR(err);
487 	}
488 
489 	shift = ffs(mhp->umem->page_size) - 1;
490 
491 	n = mhp->umem->nmap;
492 	err = alloc_pbl(mhp, n);
493 	if (err)
494 		goto err;
495 
496 	pages = (__be64 *) __get_free_page(GFP_KERNEL);
497 	if (!pages) {
498 		err = -ENOMEM;
499 		goto err_pbl;
500 	}
501 
502 	i = n = 0;
503 	for_each_sg(mhp->umem->sg_head.sgl, sg, mhp->umem->nmap, entry) {
504 		len = sg_dma_len(sg) >> shift;
505 		for (k = 0; k < len; ++k) {
506 			pages[i++] = cpu_to_be64(sg_dma_address(sg) +
507 					mhp->umem->page_size * k);
508 			if (i == PAGE_SIZE / sizeof *pages) {
509 				err = write_pbl(&mhp->rhp->rdev,
510 						pages,
511 						mhp->attr.pbl_addr + (n << 3), i);
512 				if (err)
513 					goto pbl_done;
514 				n += i;
515 				i = 0;
516 
517 			}
518 		}
519 	}
520 
521 	if (i)
522 		err = write_pbl(&mhp->rhp->rdev, pages,
523 				     mhp->attr.pbl_addr + (n << 3), i);
524 
525 pbl_done:
526 	free_page((unsigned long) pages);
527 	if (err)
528 		goto err_pbl;
529 
530 	mhp->attr.pdid = php->pdid;
531 	mhp->attr.zbva = 0;
532 	mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
533 	mhp->attr.va_fbo = virt;
534 	mhp->attr.page_size = shift - 12;
535 	mhp->attr.len = length;
536 
537 	err = register_mem(rhp, php, mhp, shift);
538 	if (err)
539 		goto err_pbl;
540 
541 	return &mhp->ibmr;
542 
543 err_pbl:
544 	c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
545 			      mhp->attr.pbl_size << 3);
546 
547 err:
548 	ib_umem_release(mhp->umem);
549 	kfree(mhp);
550 	return ERR_PTR(err);
551 }
552 
553 struct ib_mw *c4iw_alloc_mw(struct ib_pd *pd, enum ib_mw_type type,
554 	struct ib_udata *udata)
555 {
556 	struct c4iw_dev *rhp;
557 	struct c4iw_pd *php;
558 	struct c4iw_mw *mhp;
559 	u32 mmid;
560 	u32 stag = 0;
561 	int ret;
562 
563 	if (type != IB_MW_TYPE_1)
564 		return ERR_PTR(-EINVAL);
565 
566 	php = to_c4iw_pd(pd);
567 	rhp = php->rhp;
568 	mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
569 	if (!mhp)
570 		return ERR_PTR(-ENOMEM);
571 	ret = allocate_window(&rhp->rdev, &stag, php->pdid);
572 	if (ret) {
573 		kfree(mhp);
574 		return ERR_PTR(ret);
575 	}
576 	mhp->rhp = rhp;
577 	mhp->attr.pdid = php->pdid;
578 	mhp->attr.type = FW_RI_STAG_MW;
579 	mhp->attr.stag = stag;
580 	mmid = (stag) >> 8;
581 	mhp->ibmw.rkey = stag;
582 	if (insert_handle(rhp, &rhp->mmidr, mhp, mmid)) {
583 		deallocate_window(&rhp->rdev, mhp->attr.stag);
584 		kfree(mhp);
585 		return ERR_PTR(-ENOMEM);
586 	}
587 	CTR4(KTR_IW_CXGBE, "%s mmid 0x%x mhp %p stag 0x%x", __func__, mmid, mhp,
588 	    stag);
589 	return &(mhp->ibmw);
590 }
591 
592 int c4iw_dealloc_mw(struct ib_mw *mw)
593 {
594 	struct c4iw_dev *rhp;
595 	struct c4iw_mw *mhp;
596 	u32 mmid;
597 
598 	mhp = to_c4iw_mw(mw);
599 	rhp = mhp->rhp;
600 	mmid = (mw->rkey) >> 8;
601 	remove_handle(rhp, &rhp->mmidr, mmid);
602 	deallocate_window(&rhp->rdev, mhp->attr.stag);
603 	kfree(mhp);
604 	CTR4(KTR_IW_CXGBE, "%s ib_mw %p mmid 0x%x ptr %p", __func__, mw, mmid,
605 	    mhp);
606 	return 0;
607 }
608 
609 struct ib_mr *c4iw_alloc_mr(struct ib_pd *pd,
610 			    enum ib_mr_type mr_type,
611 			    u32 max_num_sg, struct ib_udata *udata)
612 {
613 	struct c4iw_dev *rhp;
614 	struct c4iw_pd *php;
615 	struct c4iw_mr *mhp;
616 	u32 mmid;
617 	u32 stag = 0;
618 	int ret = 0;
619 	int length = roundup(max_num_sg * sizeof(u64), 32);
620 
621 	php = to_c4iw_pd(pd);
622 	rhp = php->rhp;
623 
624 	if (__predict_false(c4iw_stopped(&rhp->rdev)))
625 		return ERR_PTR(-EIO);
626 
627 	if (mr_type != IB_MR_TYPE_MEM_REG ||
628 	    max_num_sg > t4_max_fr_depth(&rhp->rdev, use_dsgl))
629 		return ERR_PTR(-EINVAL);
630 
631 	mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
632 	if (!mhp) {
633 		ret = -ENOMEM;
634 		goto err;
635 	}
636 
637 	mhp->mpl = dma_alloc_coherent(rhp->ibdev.dma_device,
638 				      length, &mhp->mpl_addr, GFP_KERNEL);
639 	if (!mhp->mpl) {
640 		ret = -ENOMEM;
641 		goto err_mpl;
642 	}
643 	mhp->max_mpl_len = length;
644 
645 	mhp->rhp = rhp;
646 	ret = alloc_pbl(mhp, max_num_sg);
647 	if (ret)
648 		goto err1;
649 	mhp->attr.pbl_size = max_num_sg;
650 	ret = allocate_stag(&rhp->rdev, &stag, php->pdid,
651 			    mhp->attr.pbl_size, mhp->attr.pbl_addr);
652 	if (ret)
653 		goto err2;
654 	mhp->attr.pdid = php->pdid;
655 	mhp->attr.type = FW_RI_STAG_NSMR;
656 	mhp->attr.stag = stag;
657 	mhp->attr.state = 0;
658 	mmid = (stag) >> 8;
659 	mhp->ibmr.rkey = mhp->ibmr.lkey = stag;
660 	if (insert_handle(rhp, &rhp->mmidr, mhp, mmid)) {
661 		ret = -ENOMEM;
662 		goto err3;
663 	}
664 
665 	PDBG("%s mmid 0x%x mhp %p stag 0x%x\n", __func__, mmid, mhp, stag);
666 	return &(mhp->ibmr);
667 err3:
668 	dereg_mem(&rhp->rdev, stag, mhp->attr.pbl_size,
669 		       mhp->attr.pbl_addr);
670 err2:
671 	c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
672 			      mhp->attr.pbl_size << 3);
673 err1:
674 	dma_free_coherent(rhp->ibdev.dma_device,
675 			  mhp->max_mpl_len, mhp->mpl, mhp->mpl_addr);
676 err_mpl:
677 	kfree(mhp);
678 err:
679 	return ERR_PTR(ret);
680 }
681 static int c4iw_set_page(struct ib_mr *ibmr, u64 addr)
682 {
683 	struct c4iw_mr *mhp = to_c4iw_mr(ibmr);
684 
685 	if (unlikely(mhp->mpl_len == mhp->attr.pbl_size))
686 		return -ENOMEM;
687 
688 	mhp->mpl[mhp->mpl_len++] = addr;
689 
690 	return 0;
691 }
692 
693 int c4iw_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg,
694 		   int sg_nents, unsigned int *sg_offset)
695 {
696 	struct c4iw_mr *mhp = to_c4iw_mr(ibmr);
697 
698 	mhp->mpl_len = 0;
699 
700 	return ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, c4iw_set_page);
701 }
702 
703 
704 int c4iw_dereg_mr(struct ib_mr *ib_mr, struct ib_udata *udata)
705 {
706 	struct c4iw_dev *rhp;
707 	struct c4iw_mr *mhp;
708 	u32 mmid;
709 
710 	CTR2(KTR_IW_CXGBE, "%s ib_mr %p", __func__, ib_mr);
711 
712 	mhp = to_c4iw_mr(ib_mr);
713 	rhp = mhp->rhp;
714 	mmid = mhp->attr.stag >> 8;
715 	remove_handle(rhp, &rhp->mmidr, mmid);
716 	dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
717 		       mhp->attr.pbl_addr);
718 	if (mhp->attr.pbl_size)
719 		c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
720 				  mhp->attr.pbl_size << 3);
721 	if (mhp->kva)
722 		kfree((void *) (unsigned long) mhp->kva);
723 	if (mhp->umem)
724 		ib_umem_release(mhp->umem);
725 	CTR3(KTR_IW_CXGBE, "%s mmid 0x%x ptr %p", __func__, mmid, mhp);
726 	kfree(mhp);
727 	return 0;
728 }
729 
730 void c4iw_invalidate_mr(struct c4iw_dev *rhp, u32 rkey)
731 {
732 	struct c4iw_mr *mhp;
733 	unsigned long flags;
734 
735 	spin_lock_irqsave(&rhp->lock, flags);
736 	mhp = get_mhp(rhp, rkey >> 8);
737 	if (mhp)
738 		mhp->attr.state = 0;
739 	spin_unlock_irqrestore(&rhp->lock, flags);
740 }
741 #endif
742