xref: /freebsd/sys/dev/cxgbe/crypto/t4_keyctx.c (revision 562894f0dc310f658284863ff329906e7737a0a0)
1 /*-
2  * Copyright (c) 2017-2019 Chelsio Communications, Inc.
3  * All rights reserved.
4  * Written by: John Baldwin <jhb@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include <sys/types.h>
32 #include <sys/malloc.h>
33 
34 #include <opencrypto/cryptodev.h>
35 #include <opencrypto/xform.h>
36 
37 #include "common/common.h"
38 #include "crypto/t4_crypto.h"
39 
40 /*
41  * Crypto operations use a key context to store cipher keys and
42  * partial hash digests.  They can either be passed inline as part of
43  * a work request using crypto or they can be stored in card RAM.  For
44  * the latter case, work requests must replace the inline key context
45  * with a request to read the context from card RAM.
46  *
47  * The format of a key context:
48  *
49  * +-------------------------------+
50  * | key context header            |
51  * +-------------------------------+
52  * | AES key                       |  ----- For requests with AES
53  * +-------------------------------+
54  * | Hash state                    |  ----- For hash-only requests
55  * +-------------------------------+ -
56  * | IPAD (16-byte aligned)        |  \
57  * +-------------------------------+  +---- For requests with HMAC
58  * | OPAD (16-byte aligned)        |  /
59  * +-------------------------------+ -
60  * | GMAC H                        |  ----- For AES-GCM
61  * +-------------------------------+ -
62  */
63 
64 /*
65  * Generate the initial GMAC hash state for a AES-GCM key.
66  *
67  * Borrowed from AES_GMAC_Setkey().
68  */
69 void
70 t4_init_gmac_hash(const char *key, int klen, char *ghash)
71 {
72 	static char zeroes[GMAC_BLOCK_LEN];
73 	uint32_t keysched[4 * (RIJNDAEL_MAXNR + 1)];
74 	int rounds;
75 
76 	rounds = rijndaelKeySetupEnc(keysched, key, klen * 8);
77 	rijndaelEncrypt(keysched, rounds, zeroes, ghash);
78 }
79 
80 /* Copy out the partial hash state from a software hash implementation. */
81 void
82 t4_copy_partial_hash(int alg, union authctx *auth_ctx, void *dst)
83 {
84 	uint32_t *u32;
85 	uint64_t *u64;
86 	u_int i;
87 
88 	u32 = (uint32_t *)dst;
89 	u64 = (uint64_t *)dst;
90 	switch (alg) {
91 	case CRYPTO_SHA1:
92 	case CRYPTO_SHA1_HMAC:
93 		for (i = 0; i < SHA1_HASH_LEN / 4; i++)
94 			u32[i] = htobe32(auth_ctx->sha1ctx.h.b32[i]);
95 		break;
96 	case CRYPTO_SHA2_224:
97 	case CRYPTO_SHA2_224_HMAC:
98 		for (i = 0; i < SHA2_256_HASH_LEN / 4; i++)
99 			u32[i] = htobe32(auth_ctx->sha224ctx.state[i]);
100 		break;
101 	case CRYPTO_SHA2_256:
102 	case CRYPTO_SHA2_256_HMAC:
103 		for (i = 0; i < SHA2_256_HASH_LEN / 4; i++)
104 			u32[i] = htobe32(auth_ctx->sha256ctx.state[i]);
105 		break;
106 	case CRYPTO_SHA2_384:
107 	case CRYPTO_SHA2_384_HMAC:
108 		for (i = 0; i < SHA2_512_HASH_LEN / 8; i++)
109 			u64[i] = htobe64(auth_ctx->sha384ctx.state[i]);
110 		break;
111 	case CRYPTO_SHA2_512:
112 	case CRYPTO_SHA2_512_HMAC:
113 		for (i = 0; i < SHA2_512_HASH_LEN / 8; i++)
114 			u64[i] = htobe64(auth_ctx->sha512ctx.state[i]);
115 		break;
116 	}
117 }
118 
119 void
120 t4_init_hmac_digest(struct auth_hash *axf, u_int partial_digest_len,
121     const char *key, int klen, char *dst)
122 {
123 	union authctx auth_ctx;
124 
125 	hmac_init_ipad(axf, key, klen, &auth_ctx);
126 	t4_copy_partial_hash(axf->type, &auth_ctx, dst);
127 
128 	dst += roundup2(partial_digest_len, 16);
129 
130 	hmac_init_opad(axf, key, klen, &auth_ctx);
131 	t4_copy_partial_hash(axf->type, &auth_ctx, dst);
132 
133 	explicit_bzero(&auth_ctx, sizeof(auth_ctx));
134 }
135 
136 /*
137  * Borrowed from cesa_prep_aes_key().
138  *
139  * NB: The crypto engine wants the words in the decryption key in reverse
140  * order.
141  */
142 void
143 t4_aes_getdeckey(void *dec_key, const void *enc_key, unsigned int kbits)
144 {
145 	uint32_t ek[4 * (RIJNDAEL_MAXNR + 1)];
146 	uint32_t *dkey;
147 	int i;
148 
149 	rijndaelKeySetupEnc(ek, enc_key, kbits);
150 	dkey = dec_key;
151 	dkey += (kbits / 8) / 4;
152 
153 	switch (kbits) {
154 	case 128:
155 		for (i = 0; i < 4; i++)
156 			*--dkey = htobe32(ek[4 * 10 + i]);
157 		break;
158 	case 192:
159 		for (i = 0; i < 2; i++)
160 			*--dkey = htobe32(ek[4 * 11 + 2 + i]);
161 		for (i = 0; i < 4; i++)
162 			*--dkey = htobe32(ek[4 * 12 + i]);
163 		break;
164 	case 256:
165 		for (i = 0; i < 4; i++)
166 			*--dkey = htobe32(ek[4 * 13 + i]);
167 		for (i = 0; i < 4; i++)
168 			*--dkey = htobe32(ek[4 * 14 + i]);
169 		break;
170 	}
171 	MPASS(dkey == dec_key);
172 }
173