1 /*- 2 * Copyright (c) 2017 Chelsio Communications, Inc. 3 * All rights reserved. 4 * Written by: John Baldwin <jhb@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include <sys/types.h> 32 #include <sys/bus.h> 33 #include <sys/lock.h> 34 #include <sys/malloc.h> 35 #include <sys/mutex.h> 36 #include <sys/module.h> 37 #include <sys/sglist.h> 38 39 #include <opencrypto/cryptodev.h> 40 #include <opencrypto/xform.h> 41 42 #include "cryptodev_if.h" 43 44 #include "common/common.h" 45 #include "crypto/t4_crypto.h" 46 47 /* 48 * Requests consist of: 49 * 50 * +-------------------------------+ 51 * | struct fw_crypto_lookaside_wr | 52 * +-------------------------------+ 53 * | struct ulp_txpkt | 54 * +-------------------------------+ 55 * | struct ulptx_idata | 56 * +-------------------------------+ 57 * | struct cpl_tx_sec_pdu | 58 * +-------------------------------+ 59 * | struct cpl_tls_tx_scmd_fmt | 60 * +-------------------------------+ 61 * | key context header | 62 * +-------------------------------+ 63 * | AES key | ----- For requests with AES 64 * +-------------------------------+ 65 * | Hash state | ----- For hash-only requests 66 * +-------------------------------+ - 67 * | IPAD (16-byte aligned) | \ 68 * +-------------------------------+ +---- For requests with HMAC 69 * | OPAD (16-byte aligned) | / 70 * +-------------------------------+ - 71 * | GMAC H | ----- For AES-GCM 72 * +-------------------------------+ - 73 * | struct cpl_rx_phys_dsgl | \ 74 * +-------------------------------+ +---- Destination buffer for 75 * | PHYS_DSGL entries | / non-hash-only requests 76 * +-------------------------------+ - 77 * | 16 dummy bytes | ----- Only for HMAC/hash-only requests 78 * +-------------------------------+ 79 * | IV | ----- If immediate IV 80 * +-------------------------------+ 81 * | Payload | ----- If immediate Payload 82 * +-------------------------------+ - 83 * | struct ulptx_sgl | \ 84 * +-------------------------------+ +---- If payload via SGL 85 * | SGL entries | / 86 * +-------------------------------+ - 87 * 88 * Note that the key context must be padded to ensure 16-byte alignment. 89 * For HMAC requests, the key consists of the partial hash of the IPAD 90 * followed by the partial hash of the OPAD. 91 * 92 * Replies consist of: 93 * 94 * +-------------------------------+ 95 * | struct cpl_fw6_pld | 96 * +-------------------------------+ 97 * | hash digest | ----- For HMAC request with 98 * +-------------------------------+ 'hash_size' set in work request 99 * 100 * A 32-bit big-endian error status word is supplied in the last 4 101 * bytes of data[0] in the CPL_FW6_PLD message. bit 0 indicates a 102 * "MAC" error and bit 1 indicates a "PAD" error. 103 * 104 * The 64-bit 'cookie' field from the fw_crypto_lookaside_wr message 105 * in the request is returned in data[1] of the CPL_FW6_PLD message. 106 * 107 * For block cipher replies, the updated IV is supplied in data[2] and 108 * data[3] of the CPL_FW6_PLD message. 109 * 110 * For hash replies where the work request set 'hash_size' to request 111 * a copy of the hash in the reply, the hash digest is supplied 112 * immediately following the CPL_FW6_PLD message. 113 */ 114 115 /* 116 * The crypto engine supports a maximum AAD size of 511 bytes. 117 */ 118 #define MAX_AAD_LEN 511 119 120 /* 121 * The documentation for CPL_RX_PHYS_DSGL claims a maximum of 32 SG 122 * entries. While the CPL includes a 16-bit length field, the T6 can 123 * sometimes hang if an error occurs while processing a request with a 124 * single DSGL entry larger than 2k. 125 */ 126 #define MAX_RX_PHYS_DSGL_SGE 32 127 #define DSGL_SGE_MAXLEN 2048 128 129 /* 130 * The adapter only supports requests with a total input or output 131 * length of 64k-1 or smaller. Longer requests either result in hung 132 * requests or incorrect results. 133 */ 134 #define MAX_REQUEST_SIZE 65535 135 136 static MALLOC_DEFINE(M_CCR, "ccr", "Chelsio T6 crypto"); 137 138 struct ccr_session_hmac { 139 struct auth_hash *auth_hash; 140 int hash_len; 141 unsigned int partial_digest_len; 142 unsigned int auth_mode; 143 unsigned int mk_size; 144 char ipad[CHCR_HASH_MAX_BLOCK_SIZE_128]; 145 char opad[CHCR_HASH_MAX_BLOCK_SIZE_128]; 146 }; 147 148 struct ccr_session_gmac { 149 int hash_len; 150 char ghash_h[GMAC_BLOCK_LEN]; 151 }; 152 153 struct ccr_session_blkcipher { 154 unsigned int cipher_mode; 155 unsigned int key_len; 156 unsigned int iv_len; 157 __be32 key_ctx_hdr; 158 char enckey[CHCR_AES_MAX_KEY_LEN]; 159 char deckey[CHCR_AES_MAX_KEY_LEN]; 160 }; 161 162 struct ccr_session { 163 bool active; 164 int pending; 165 enum { HASH, HMAC, BLKCIPHER, AUTHENC, GCM } mode; 166 union { 167 struct ccr_session_hmac hmac; 168 struct ccr_session_gmac gmac; 169 }; 170 struct ccr_session_blkcipher blkcipher; 171 }; 172 173 struct ccr_softc { 174 struct adapter *adapter; 175 device_t dev; 176 uint32_t cid; 177 int tx_channel_id; 178 struct mtx lock; 179 bool detaching; 180 struct sge_wrq *txq; 181 struct sge_rxq *rxq; 182 183 /* 184 * Pre-allocate S/G lists used when preparing a work request. 185 * 'sg_crp' contains an sglist describing the entire buffer 186 * for a 'struct cryptop'. 'sg_ulptx' is used to describe 187 * the data the engine should DMA as input via ULPTX_SGL. 188 * 'sg_dsgl' is used to describe the destination that cipher 189 * text and a tag should be written to. 190 */ 191 struct sglist *sg_crp; 192 struct sglist *sg_ulptx; 193 struct sglist *sg_dsgl; 194 195 /* 196 * Pre-allocate a dummy output buffer for the IV and AAD for 197 * AEAD requests. 198 */ 199 char *iv_aad_buf; 200 struct sglist *sg_iv_aad; 201 202 /* Statistics. */ 203 uint64_t stats_blkcipher_encrypt; 204 uint64_t stats_blkcipher_decrypt; 205 uint64_t stats_hash; 206 uint64_t stats_hmac; 207 uint64_t stats_authenc_encrypt; 208 uint64_t stats_authenc_decrypt; 209 uint64_t stats_gcm_encrypt; 210 uint64_t stats_gcm_decrypt; 211 uint64_t stats_wr_nomem; 212 uint64_t stats_inflight; 213 uint64_t stats_mac_error; 214 uint64_t stats_pad_error; 215 uint64_t stats_bad_session; 216 uint64_t stats_sglist_error; 217 uint64_t stats_process_error; 218 uint64_t stats_sw_fallback; 219 }; 220 221 /* 222 * Crypto requests involve two kind of scatter/gather lists. 223 * 224 * Non-hash-only requests require a PHYS_DSGL that describes the 225 * location to store the results of the encryption or decryption 226 * operation. This SGL uses a different format (PHYS_DSGL) and should 227 * exclude the crd_skip bytes at the start of the data as well as 228 * any AAD or IV. For authenticated encryption requests it should 229 * cover include the destination of the hash or tag. 230 * 231 * The input payload may either be supplied inline as immediate data, 232 * or via a standard ULP_TX SGL. This SGL should include AAD, 233 * ciphertext, and the hash or tag for authenticated decryption 234 * requests. 235 * 236 * These scatter/gather lists can describe different subsets of the 237 * buffer described by the crypto operation. ccr_populate_sglist() 238 * generates a scatter/gather list that covers the entire crypto 239 * operation buffer that is then used to construct the other 240 * scatter/gather lists. 241 */ 242 static int 243 ccr_populate_sglist(struct sglist *sg, struct cryptop *crp) 244 { 245 int error; 246 247 sglist_reset(sg); 248 if (crp->crp_flags & CRYPTO_F_IMBUF) 249 error = sglist_append_mbuf(sg, (struct mbuf *)crp->crp_buf); 250 else if (crp->crp_flags & CRYPTO_F_IOV) 251 error = sglist_append_uio(sg, (struct uio *)crp->crp_buf); 252 else 253 error = sglist_append(sg, crp->crp_buf, crp->crp_ilen); 254 return (error); 255 } 256 257 /* 258 * Segments in 'sg' larger than 'maxsegsize' are counted as multiple 259 * segments. 260 */ 261 static int 262 ccr_count_sgl(struct sglist *sg, int maxsegsize) 263 { 264 int i, nsegs; 265 266 nsegs = 0; 267 for (i = 0; i < sg->sg_nseg; i++) 268 nsegs += howmany(sg->sg_segs[i].ss_len, maxsegsize); 269 return (nsegs); 270 } 271 272 /* These functions deal with PHYS_DSGL for the reply buffer. */ 273 static inline int 274 ccr_phys_dsgl_len(int nsegs) 275 { 276 int len; 277 278 len = (nsegs / 8) * sizeof(struct phys_sge_pairs); 279 if ((nsegs % 8) != 0) { 280 len += sizeof(uint16_t) * 8; 281 len += roundup2(nsegs % 8, 2) * sizeof(uint64_t); 282 } 283 return (len); 284 } 285 286 static void 287 ccr_write_phys_dsgl(struct ccr_softc *sc, void *dst, int nsegs) 288 { 289 struct sglist *sg; 290 struct cpl_rx_phys_dsgl *cpl; 291 struct phys_sge_pairs *sgl; 292 vm_paddr_t paddr; 293 size_t seglen; 294 u_int i, j; 295 296 sg = sc->sg_dsgl; 297 cpl = dst; 298 cpl->op_to_tid = htobe32(V_CPL_RX_PHYS_DSGL_OPCODE(CPL_RX_PHYS_DSGL) | 299 V_CPL_RX_PHYS_DSGL_ISRDMA(0)); 300 cpl->pcirlxorder_to_noofsgentr = htobe32( 301 V_CPL_RX_PHYS_DSGL_PCIRLXORDER(0) | 302 V_CPL_RX_PHYS_DSGL_PCINOSNOOP(0) | 303 V_CPL_RX_PHYS_DSGL_PCITPHNTENB(0) | V_CPL_RX_PHYS_DSGL_DCAID(0) | 304 V_CPL_RX_PHYS_DSGL_NOOFSGENTR(nsegs)); 305 cpl->rss_hdr_int.opcode = CPL_RX_PHYS_ADDR; 306 cpl->rss_hdr_int.qid = htobe16(sc->rxq->iq.abs_id); 307 cpl->rss_hdr_int.hash_val = 0; 308 sgl = (struct phys_sge_pairs *)(cpl + 1); 309 j = 0; 310 for (i = 0; i < sg->sg_nseg; i++) { 311 seglen = sg->sg_segs[i].ss_len; 312 paddr = sg->sg_segs[i].ss_paddr; 313 do { 314 sgl->addr[j] = htobe64(paddr); 315 if (seglen > DSGL_SGE_MAXLEN) { 316 sgl->len[j] = htobe16(DSGL_SGE_MAXLEN); 317 paddr += DSGL_SGE_MAXLEN; 318 seglen -= DSGL_SGE_MAXLEN; 319 } else { 320 sgl->len[j] = htobe16(seglen); 321 seglen = 0; 322 } 323 j++; 324 if (j == 8) { 325 sgl++; 326 j = 0; 327 } 328 } while (seglen != 0); 329 } 330 MPASS(j + 8 * (sgl - (struct phys_sge_pairs *)(cpl + 1)) == nsegs); 331 } 332 333 /* These functions deal with the ULPTX_SGL for input payload. */ 334 static inline int 335 ccr_ulptx_sgl_len(int nsegs) 336 { 337 u_int n; 338 339 nsegs--; /* first segment is part of ulptx_sgl */ 340 n = sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1)); 341 return (roundup2(n, 16)); 342 } 343 344 static void 345 ccr_write_ulptx_sgl(struct ccr_softc *sc, void *dst, int nsegs) 346 { 347 struct ulptx_sgl *usgl; 348 struct sglist *sg; 349 struct sglist_seg *ss; 350 int i; 351 352 sg = sc->sg_ulptx; 353 MPASS(nsegs == sg->sg_nseg); 354 ss = &sg->sg_segs[0]; 355 usgl = dst; 356 usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | 357 V_ULPTX_NSGE(nsegs)); 358 usgl->len0 = htobe32(ss->ss_len); 359 usgl->addr0 = htobe64(ss->ss_paddr); 360 ss++; 361 for (i = 0; i < sg->sg_nseg - 1; i++) { 362 usgl->sge[i / 2].len[i & 1] = htobe32(ss->ss_len); 363 usgl->sge[i / 2].addr[i & 1] = htobe64(ss->ss_paddr); 364 ss++; 365 } 366 367 } 368 369 static bool 370 ccr_use_imm_data(u_int transhdr_len, u_int input_len) 371 { 372 373 if (input_len > CRYPTO_MAX_IMM_TX_PKT_LEN) 374 return (false); 375 if (roundup2(transhdr_len, 16) + roundup2(input_len, 16) > 376 SGE_MAX_WR_LEN) 377 return (false); 378 return (true); 379 } 380 381 static void 382 ccr_populate_wreq(struct ccr_softc *sc, struct chcr_wr *crwr, u_int kctx_len, 383 u_int wr_len, u_int imm_len, u_int sgl_len, u_int hash_size, 384 struct cryptop *crp) 385 { 386 u_int cctx_size; 387 388 cctx_size = sizeof(struct _key_ctx) + kctx_len; 389 crwr->wreq.op_to_cctx_size = htobe32( 390 V_FW_CRYPTO_LOOKASIDE_WR_OPCODE(FW_CRYPTO_LOOKASIDE_WR) | 391 V_FW_CRYPTO_LOOKASIDE_WR_COMPL(0) | 392 V_FW_CRYPTO_LOOKASIDE_WR_IMM_LEN(imm_len) | 393 V_FW_CRYPTO_LOOKASIDE_WR_CCTX_LOC(1) | 394 V_FW_CRYPTO_LOOKASIDE_WR_CCTX_SIZE(cctx_size >> 4)); 395 crwr->wreq.len16_pkd = htobe32( 396 V_FW_CRYPTO_LOOKASIDE_WR_LEN16(wr_len / 16)); 397 crwr->wreq.session_id = 0; 398 crwr->wreq.rx_chid_to_rx_q_id = htobe32( 399 V_FW_CRYPTO_LOOKASIDE_WR_RX_CHID(sc->tx_channel_id) | 400 V_FW_CRYPTO_LOOKASIDE_WR_LCB(0) | 401 V_FW_CRYPTO_LOOKASIDE_WR_PHASH(0) | 402 V_FW_CRYPTO_LOOKASIDE_WR_IV(IV_NOP) | 403 V_FW_CRYPTO_LOOKASIDE_WR_FQIDX(0) | 404 V_FW_CRYPTO_LOOKASIDE_WR_TX_CH(0) | 405 V_FW_CRYPTO_LOOKASIDE_WR_RX_Q_ID(sc->rxq->iq.abs_id)); 406 crwr->wreq.key_addr = 0; 407 crwr->wreq.pld_size_hash_size = htobe32( 408 V_FW_CRYPTO_LOOKASIDE_WR_PLD_SIZE(sgl_len) | 409 V_FW_CRYPTO_LOOKASIDE_WR_HASH_SIZE(hash_size)); 410 crwr->wreq.cookie = htobe64((uintptr_t)crp); 411 412 crwr->ulptx.cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) | 413 V_ULP_TXPKT_DATAMODIFY(0) | 414 V_ULP_TXPKT_CHANNELID(sc->tx_channel_id) | V_ULP_TXPKT_DEST(0) | 415 V_ULP_TXPKT_FID(0) | V_ULP_TXPKT_RO(1)); 416 crwr->ulptx.len = htobe32( 417 ((wr_len - sizeof(struct fw_crypto_lookaside_wr)) / 16)); 418 419 crwr->sc_imm.cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) | 420 V_ULP_TX_SC_MORE(imm_len != 0 ? 0 : 1)); 421 crwr->sc_imm.len = htobe32(wr_len - offsetof(struct chcr_wr, sec_cpl) - 422 sgl_len); 423 } 424 425 static int 426 ccr_hash(struct ccr_softc *sc, struct ccr_session *s, struct cryptop *crp) 427 { 428 struct chcr_wr *crwr; 429 struct wrqe *wr; 430 struct auth_hash *axf; 431 struct cryptodesc *crd; 432 char *dst; 433 u_int hash_size_in_response, kctx_flits, kctx_len, transhdr_len, wr_len; 434 u_int hmac_ctrl, imm_len, iopad_size; 435 int error, sgl_nsegs, sgl_len, use_opad; 436 437 crd = crp->crp_desc; 438 439 /* Reject requests with too large of an input buffer. */ 440 if (crd->crd_len > MAX_REQUEST_SIZE) 441 return (EFBIG); 442 443 axf = s->hmac.auth_hash; 444 445 if (s->mode == HMAC) { 446 use_opad = 1; 447 hmac_ctrl = SCMD_HMAC_CTRL_NO_TRUNC; 448 } else { 449 use_opad = 0; 450 hmac_ctrl = SCMD_HMAC_CTRL_NOP; 451 } 452 453 /* PADs must be 128-bit aligned. */ 454 iopad_size = roundup2(s->hmac.partial_digest_len, 16); 455 456 /* 457 * The 'key' part of the context includes the aligned IPAD and 458 * OPAD. 459 */ 460 kctx_len = iopad_size; 461 if (use_opad) 462 kctx_len += iopad_size; 463 hash_size_in_response = axf->hashsize; 464 transhdr_len = HASH_TRANSHDR_SIZE(kctx_len); 465 466 if (crd->crd_len == 0) { 467 imm_len = axf->blocksize; 468 sgl_nsegs = 0; 469 sgl_len = 0; 470 } else if (ccr_use_imm_data(transhdr_len, crd->crd_len)) { 471 imm_len = crd->crd_len; 472 sgl_nsegs = 0; 473 sgl_len = 0; 474 } else { 475 imm_len = 0; 476 sglist_reset(sc->sg_ulptx); 477 error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp, 478 crd->crd_skip, crd->crd_len); 479 if (error) 480 return (error); 481 sgl_nsegs = sc->sg_ulptx->sg_nseg; 482 sgl_len = ccr_ulptx_sgl_len(sgl_nsegs); 483 } 484 485 wr_len = roundup2(transhdr_len, 16) + roundup2(imm_len, 16) + sgl_len; 486 if (wr_len > SGE_MAX_WR_LEN) 487 return (EFBIG); 488 wr = alloc_wrqe(wr_len, sc->txq); 489 if (wr == NULL) { 490 sc->stats_wr_nomem++; 491 return (ENOMEM); 492 } 493 crwr = wrtod(wr); 494 memset(crwr, 0, wr_len); 495 496 ccr_populate_wreq(sc, crwr, kctx_len, wr_len, imm_len, sgl_len, 497 hash_size_in_response, crp); 498 499 /* XXX: Hardcodes SGE loopback channel of 0. */ 500 crwr->sec_cpl.op_ivinsrtofst = htobe32( 501 V_CPL_TX_SEC_PDU_OPCODE(CPL_TX_SEC_PDU) | 502 V_CPL_TX_SEC_PDU_RXCHID(sc->tx_channel_id) | 503 V_CPL_TX_SEC_PDU_ACKFOLLOWS(0) | V_CPL_TX_SEC_PDU_ULPTXLPBK(1) | 504 V_CPL_TX_SEC_PDU_CPLLEN(2) | V_CPL_TX_SEC_PDU_PLACEHOLDER(0) | 505 V_CPL_TX_SEC_PDU_IVINSRTOFST(0)); 506 507 crwr->sec_cpl.pldlen = htobe32(crd->crd_len == 0 ? axf->blocksize : 508 crd->crd_len); 509 510 crwr->sec_cpl.cipherstop_lo_authinsert = htobe32( 511 V_CPL_TX_SEC_PDU_AUTHSTART(1) | V_CPL_TX_SEC_PDU_AUTHSTOP(0)); 512 513 /* These two flits are actually a CPL_TLS_TX_SCMD_FMT. */ 514 crwr->sec_cpl.seqno_numivs = htobe32( 515 V_SCMD_SEQ_NO_CTRL(0) | 516 V_SCMD_PROTO_VERSION(SCMD_PROTO_VERSION_GENERIC) | 517 V_SCMD_CIPH_MODE(SCMD_CIPH_MODE_NOP) | 518 V_SCMD_AUTH_MODE(s->hmac.auth_mode) | 519 V_SCMD_HMAC_CTRL(hmac_ctrl)); 520 crwr->sec_cpl.ivgen_hdrlen = htobe32( 521 V_SCMD_LAST_FRAG(0) | 522 V_SCMD_MORE_FRAGS(crd->crd_len == 0 ? 1 : 0) | V_SCMD_MAC_ONLY(1)); 523 524 memcpy(crwr->key_ctx.key, s->hmac.ipad, s->hmac.partial_digest_len); 525 if (use_opad) 526 memcpy(crwr->key_ctx.key + iopad_size, s->hmac.opad, 527 s->hmac.partial_digest_len); 528 529 /* XXX: F_KEY_CONTEXT_SALT_PRESENT set, but 'salt' not set. */ 530 kctx_flits = (sizeof(struct _key_ctx) + kctx_len) / 16; 531 crwr->key_ctx.ctx_hdr = htobe32(V_KEY_CONTEXT_CTX_LEN(kctx_flits) | 532 V_KEY_CONTEXT_OPAD_PRESENT(use_opad) | 533 V_KEY_CONTEXT_SALT_PRESENT(1) | 534 V_KEY_CONTEXT_CK_SIZE(CHCR_KEYCTX_NO_KEY) | 535 V_KEY_CONTEXT_MK_SIZE(s->hmac.mk_size) | V_KEY_CONTEXT_VALID(1)); 536 537 dst = (char *)(crwr + 1) + kctx_len + DUMMY_BYTES; 538 if (crd->crd_len == 0) { 539 dst[0] = 0x80; 540 *(uint64_t *)(dst + axf->blocksize - sizeof(uint64_t)) = 541 htobe64(axf->blocksize << 3); 542 } else if (imm_len != 0) 543 crypto_copydata(crp->crp_flags, crp->crp_buf, crd->crd_skip, 544 crd->crd_len, dst); 545 else 546 ccr_write_ulptx_sgl(sc, dst, sgl_nsegs); 547 548 /* XXX: TODO backpressure */ 549 t4_wrq_tx(sc->adapter, wr); 550 551 return (0); 552 } 553 554 static int 555 ccr_hash_done(struct ccr_softc *sc, struct ccr_session *s, struct cryptop *crp, 556 const struct cpl_fw6_pld *cpl, int error) 557 { 558 struct cryptodesc *crd; 559 560 crd = crp->crp_desc; 561 if (error == 0) { 562 crypto_copyback(crp->crp_flags, crp->crp_buf, crd->crd_inject, 563 s->hmac.hash_len, (c_caddr_t)(cpl + 1)); 564 } 565 566 return (error); 567 } 568 569 static int 570 ccr_blkcipher(struct ccr_softc *sc, struct ccr_session *s, struct cryptop *crp) 571 { 572 char iv[CHCR_MAX_CRYPTO_IV_LEN]; 573 struct chcr_wr *crwr; 574 struct wrqe *wr; 575 struct cryptodesc *crd; 576 char *dst; 577 u_int kctx_len, key_half, op_type, transhdr_len, wr_len; 578 u_int imm_len; 579 int dsgl_nsegs, dsgl_len; 580 int sgl_nsegs, sgl_len; 581 int error; 582 583 crd = crp->crp_desc; 584 585 if (s->blkcipher.key_len == 0 || crd->crd_len == 0) 586 return (EINVAL); 587 if (crd->crd_alg == CRYPTO_AES_CBC && 588 (crd->crd_len % AES_BLOCK_LEN) != 0) 589 return (EINVAL); 590 591 /* Reject requests with too large of an input buffer. */ 592 if (crd->crd_len > MAX_REQUEST_SIZE) 593 return (EFBIG); 594 595 if (crd->crd_flags & CRD_F_ENCRYPT) 596 op_type = CHCR_ENCRYPT_OP; 597 else 598 op_type = CHCR_DECRYPT_OP; 599 600 sglist_reset(sc->sg_dsgl); 601 error = sglist_append_sglist(sc->sg_dsgl, sc->sg_crp, crd->crd_skip, 602 crd->crd_len); 603 if (error) 604 return (error); 605 dsgl_nsegs = ccr_count_sgl(sc->sg_dsgl, DSGL_SGE_MAXLEN); 606 if (dsgl_nsegs > MAX_RX_PHYS_DSGL_SGE) 607 return (EFBIG); 608 dsgl_len = ccr_phys_dsgl_len(dsgl_nsegs); 609 610 /* The 'key' must be 128-bit aligned. */ 611 kctx_len = roundup2(s->blkcipher.key_len, 16); 612 transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, dsgl_len); 613 614 if (ccr_use_imm_data(transhdr_len, crd->crd_len + 615 s->blkcipher.iv_len)) { 616 imm_len = crd->crd_len; 617 sgl_nsegs = 0; 618 sgl_len = 0; 619 } else { 620 imm_len = 0; 621 sglist_reset(sc->sg_ulptx); 622 error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp, 623 crd->crd_skip, crd->crd_len); 624 if (error) 625 return (error); 626 sgl_nsegs = sc->sg_ulptx->sg_nseg; 627 sgl_len = ccr_ulptx_sgl_len(sgl_nsegs); 628 } 629 630 wr_len = roundup2(transhdr_len, 16) + s->blkcipher.iv_len + 631 roundup2(imm_len, 16) + sgl_len; 632 if (wr_len > SGE_MAX_WR_LEN) 633 return (EFBIG); 634 wr = alloc_wrqe(wr_len, sc->txq); 635 if (wr == NULL) { 636 sc->stats_wr_nomem++; 637 return (ENOMEM); 638 } 639 crwr = wrtod(wr); 640 memset(crwr, 0, wr_len); 641 642 /* 643 * Read the existing IV from the request or generate a random 644 * one if none is provided. Optionally copy the generated IV 645 * into the output buffer if requested. 646 */ 647 if (op_type == CHCR_ENCRYPT_OP) { 648 if (crd->crd_flags & CRD_F_IV_EXPLICIT) 649 memcpy(iv, crd->crd_iv, s->blkcipher.iv_len); 650 else 651 arc4rand(iv, s->blkcipher.iv_len, 0); 652 if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) 653 crypto_copyback(crp->crp_flags, crp->crp_buf, 654 crd->crd_inject, s->blkcipher.iv_len, iv); 655 } else { 656 if (crd->crd_flags & CRD_F_IV_EXPLICIT) 657 memcpy(iv, crd->crd_iv, s->blkcipher.iv_len); 658 else 659 crypto_copydata(crp->crp_flags, crp->crp_buf, 660 crd->crd_inject, s->blkcipher.iv_len, iv); 661 } 662 663 ccr_populate_wreq(sc, crwr, kctx_len, wr_len, imm_len, sgl_len, 0, 664 crp); 665 666 /* XXX: Hardcodes SGE loopback channel of 0. */ 667 crwr->sec_cpl.op_ivinsrtofst = htobe32( 668 V_CPL_TX_SEC_PDU_OPCODE(CPL_TX_SEC_PDU) | 669 V_CPL_TX_SEC_PDU_RXCHID(sc->tx_channel_id) | 670 V_CPL_TX_SEC_PDU_ACKFOLLOWS(0) | V_CPL_TX_SEC_PDU_ULPTXLPBK(1) | 671 V_CPL_TX_SEC_PDU_CPLLEN(2) | V_CPL_TX_SEC_PDU_PLACEHOLDER(0) | 672 V_CPL_TX_SEC_PDU_IVINSRTOFST(1)); 673 674 crwr->sec_cpl.pldlen = htobe32(s->blkcipher.iv_len + crd->crd_len); 675 676 crwr->sec_cpl.aadstart_cipherstop_hi = htobe32( 677 V_CPL_TX_SEC_PDU_CIPHERSTART(s->blkcipher.iv_len + 1) | 678 V_CPL_TX_SEC_PDU_CIPHERSTOP_HI(0)); 679 crwr->sec_cpl.cipherstop_lo_authinsert = htobe32( 680 V_CPL_TX_SEC_PDU_CIPHERSTOP_LO(0)); 681 682 /* These two flits are actually a CPL_TLS_TX_SCMD_FMT. */ 683 crwr->sec_cpl.seqno_numivs = htobe32( 684 V_SCMD_SEQ_NO_CTRL(0) | 685 V_SCMD_PROTO_VERSION(SCMD_PROTO_VERSION_GENERIC) | 686 V_SCMD_ENC_DEC_CTRL(op_type) | 687 V_SCMD_CIPH_MODE(s->blkcipher.cipher_mode) | 688 V_SCMD_AUTH_MODE(SCMD_AUTH_MODE_NOP) | 689 V_SCMD_HMAC_CTRL(SCMD_HMAC_CTRL_NOP) | 690 V_SCMD_IV_SIZE(s->blkcipher.iv_len / 2) | 691 V_SCMD_NUM_IVS(0)); 692 crwr->sec_cpl.ivgen_hdrlen = htobe32( 693 V_SCMD_IV_GEN_CTRL(0) | 694 V_SCMD_MORE_FRAGS(0) | V_SCMD_LAST_FRAG(0) | V_SCMD_MAC_ONLY(0) | 695 V_SCMD_AADIVDROP(1) | V_SCMD_HDR_LEN(dsgl_len)); 696 697 crwr->key_ctx.ctx_hdr = s->blkcipher.key_ctx_hdr; 698 switch (crd->crd_alg) { 699 case CRYPTO_AES_CBC: 700 if (crd->crd_flags & CRD_F_ENCRYPT) 701 memcpy(crwr->key_ctx.key, s->blkcipher.enckey, 702 s->blkcipher.key_len); 703 else 704 memcpy(crwr->key_ctx.key, s->blkcipher.deckey, 705 s->blkcipher.key_len); 706 break; 707 case CRYPTO_AES_ICM: 708 memcpy(crwr->key_ctx.key, s->blkcipher.enckey, 709 s->blkcipher.key_len); 710 break; 711 case CRYPTO_AES_XTS: 712 key_half = s->blkcipher.key_len / 2; 713 memcpy(crwr->key_ctx.key, s->blkcipher.enckey + key_half, 714 key_half); 715 if (crd->crd_flags & CRD_F_ENCRYPT) 716 memcpy(crwr->key_ctx.key + key_half, 717 s->blkcipher.enckey, key_half); 718 else 719 memcpy(crwr->key_ctx.key + key_half, 720 s->blkcipher.deckey, key_half); 721 break; 722 } 723 724 dst = (char *)(crwr + 1) + kctx_len; 725 ccr_write_phys_dsgl(sc, dst, dsgl_nsegs); 726 dst += sizeof(struct cpl_rx_phys_dsgl) + dsgl_len; 727 memcpy(dst, iv, s->blkcipher.iv_len); 728 dst += s->blkcipher.iv_len; 729 if (imm_len != 0) 730 crypto_copydata(crp->crp_flags, crp->crp_buf, crd->crd_skip, 731 crd->crd_len, dst); 732 else 733 ccr_write_ulptx_sgl(sc, dst, sgl_nsegs); 734 735 /* XXX: TODO backpressure */ 736 t4_wrq_tx(sc->adapter, wr); 737 738 return (0); 739 } 740 741 static int 742 ccr_blkcipher_done(struct ccr_softc *sc, struct ccr_session *s, 743 struct cryptop *crp, const struct cpl_fw6_pld *cpl, int error) 744 { 745 746 /* 747 * The updated IV to permit chained requests is at 748 * cpl->data[2], but OCF doesn't permit chained requests. 749 */ 750 return (error); 751 } 752 753 /* 754 * 'hashsize' is the length of a full digest. 'authsize' is the 755 * requested digest length for this operation which may be less 756 * than 'hashsize'. 757 */ 758 static int 759 ccr_hmac_ctrl(unsigned int hashsize, unsigned int authsize) 760 { 761 762 if (authsize == 10) 763 return (SCMD_HMAC_CTRL_TRUNC_RFC4366); 764 if (authsize == 12) 765 return (SCMD_HMAC_CTRL_IPSEC_96BIT); 766 if (authsize == hashsize / 2) 767 return (SCMD_HMAC_CTRL_DIV2); 768 return (SCMD_HMAC_CTRL_NO_TRUNC); 769 } 770 771 static int 772 ccr_authenc(struct ccr_softc *sc, struct ccr_session *s, struct cryptop *crp, 773 struct cryptodesc *crda, struct cryptodesc *crde) 774 { 775 char iv[CHCR_MAX_CRYPTO_IV_LEN]; 776 struct chcr_wr *crwr; 777 struct wrqe *wr; 778 struct auth_hash *axf; 779 char *dst; 780 u_int kctx_len, key_half, op_type, transhdr_len, wr_len; 781 u_int hash_size_in_response, imm_len, iopad_size; 782 u_int aad_start, aad_len, aad_stop; 783 u_int auth_start, auth_stop, auth_insert; 784 u_int cipher_start, cipher_stop; 785 u_int hmac_ctrl, input_len; 786 int dsgl_nsegs, dsgl_len; 787 int sgl_nsegs, sgl_len; 788 int error; 789 790 /* 791 * If there is a need in the future, requests with an empty 792 * payload could be supported as HMAC-only requests. 793 */ 794 if (s->blkcipher.key_len == 0 || crde->crd_len == 0) 795 return (EINVAL); 796 if (crde->crd_alg == CRYPTO_AES_CBC && 797 (crde->crd_len % AES_BLOCK_LEN) != 0) 798 return (EINVAL); 799 800 /* 801 * Compute the length of the AAD (data covered by the 802 * authentication descriptor but not the encryption 803 * descriptor). To simplify the logic, AAD is only permitted 804 * before the cipher/plain text, not after. This is true of 805 * all currently-generated requests. 806 */ 807 if (crda->crd_len + crda->crd_skip > crde->crd_len + crde->crd_skip) 808 return (EINVAL); 809 if (crda->crd_skip < crde->crd_skip) { 810 if (crda->crd_skip + crda->crd_len > crde->crd_skip) 811 aad_len = (crde->crd_skip - crda->crd_skip); 812 else 813 aad_len = crda->crd_len; 814 } else 815 aad_len = 0; 816 if (aad_len + s->blkcipher.iv_len > MAX_AAD_LEN) 817 return (EINVAL); 818 819 axf = s->hmac.auth_hash; 820 hash_size_in_response = s->hmac.hash_len; 821 if (crde->crd_flags & CRD_F_ENCRYPT) 822 op_type = CHCR_ENCRYPT_OP; 823 else 824 op_type = CHCR_DECRYPT_OP; 825 826 /* 827 * The output buffer consists of the cipher text followed by 828 * the hash when encrypting. For decryption it only contains 829 * the plain text. 830 * 831 * Due to a firmware bug, the output buffer must include a 832 * dummy output buffer for the IV and AAD prior to the real 833 * output buffer. 834 */ 835 if (op_type == CHCR_ENCRYPT_OP) { 836 if (s->blkcipher.iv_len + aad_len + crde->crd_len + 837 hash_size_in_response > MAX_REQUEST_SIZE) 838 return (EFBIG); 839 } else { 840 if (s->blkcipher.iv_len + aad_len + crde->crd_len > 841 MAX_REQUEST_SIZE) 842 return (EFBIG); 843 } 844 sglist_reset(sc->sg_dsgl); 845 error = sglist_append_sglist(sc->sg_dsgl, sc->sg_iv_aad, 0, 846 s->blkcipher.iv_len + aad_len); 847 if (error) 848 return (error); 849 error = sglist_append_sglist(sc->sg_dsgl, sc->sg_crp, crde->crd_skip, 850 crde->crd_len); 851 if (error) 852 return (error); 853 if (op_type == CHCR_ENCRYPT_OP) { 854 error = sglist_append_sglist(sc->sg_dsgl, sc->sg_crp, 855 crda->crd_inject, hash_size_in_response); 856 if (error) 857 return (error); 858 } 859 dsgl_nsegs = ccr_count_sgl(sc->sg_dsgl, DSGL_SGE_MAXLEN); 860 if (dsgl_nsegs > MAX_RX_PHYS_DSGL_SGE) 861 return (EFBIG); 862 dsgl_len = ccr_phys_dsgl_len(dsgl_nsegs); 863 864 /* PADs must be 128-bit aligned. */ 865 iopad_size = roundup2(s->hmac.partial_digest_len, 16); 866 867 /* 868 * The 'key' part of the key context consists of the key followed 869 * by the IPAD and OPAD. 870 */ 871 kctx_len = roundup2(s->blkcipher.key_len, 16) + iopad_size * 2; 872 transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, dsgl_len); 873 874 /* 875 * The input buffer consists of the IV, any AAD, and then the 876 * cipher/plain text. For decryption requests the hash is 877 * appended after the cipher text. 878 * 879 * The IV is always stored at the start of the input buffer 880 * even though it may be duplicated in the payload. The 881 * crypto engine doesn't work properly if the IV offset points 882 * inside of the AAD region, so a second copy is always 883 * required. 884 */ 885 input_len = aad_len + crde->crd_len; 886 887 /* 888 * The firmware hangs if sent a request which is a 889 * bit smaller than MAX_REQUEST_SIZE. In particular, the 890 * firmware appears to require 512 - 16 bytes of spare room 891 * along with the size of the hash even if the hash isn't 892 * included in the input buffer. 893 */ 894 if (input_len + roundup2(axf->hashsize, 16) + (512 - 16) > 895 MAX_REQUEST_SIZE) 896 return (EFBIG); 897 if (op_type == CHCR_DECRYPT_OP) 898 input_len += hash_size_in_response; 899 if (ccr_use_imm_data(transhdr_len, s->blkcipher.iv_len + input_len)) { 900 imm_len = input_len; 901 sgl_nsegs = 0; 902 sgl_len = 0; 903 } else { 904 imm_len = 0; 905 sglist_reset(sc->sg_ulptx); 906 if (aad_len != 0) { 907 error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp, 908 crda->crd_skip, aad_len); 909 if (error) 910 return (error); 911 } 912 error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp, 913 crde->crd_skip, crde->crd_len); 914 if (error) 915 return (error); 916 if (op_type == CHCR_DECRYPT_OP) { 917 error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp, 918 crda->crd_inject, hash_size_in_response); 919 if (error) 920 return (error); 921 } 922 sgl_nsegs = sc->sg_ulptx->sg_nseg; 923 sgl_len = ccr_ulptx_sgl_len(sgl_nsegs); 924 } 925 926 /* 927 * Any auth-only data before the cipher region is marked as AAD. 928 * Auth-data that overlaps with the cipher region is placed in 929 * the auth section. 930 */ 931 if (aad_len != 0) { 932 aad_start = s->blkcipher.iv_len + 1; 933 aad_stop = aad_start + aad_len - 1; 934 } else { 935 aad_start = 0; 936 aad_stop = 0; 937 } 938 cipher_start = s->blkcipher.iv_len + aad_len + 1; 939 if (op_type == CHCR_DECRYPT_OP) 940 cipher_stop = hash_size_in_response; 941 else 942 cipher_stop = 0; 943 if (aad_len == crda->crd_len) { 944 auth_start = 0; 945 auth_stop = 0; 946 } else { 947 if (aad_len != 0) 948 auth_start = cipher_start; 949 else 950 auth_start = s->blkcipher.iv_len + crda->crd_skip - 951 crde->crd_skip + 1; 952 auth_stop = (crde->crd_skip + crde->crd_len) - 953 (crda->crd_skip + crda->crd_len) + cipher_stop; 954 } 955 if (op_type == CHCR_DECRYPT_OP) 956 auth_insert = hash_size_in_response; 957 else 958 auth_insert = 0; 959 960 wr_len = roundup2(transhdr_len, 16) + s->blkcipher.iv_len + 961 roundup2(imm_len, 16) + sgl_len; 962 if (wr_len > SGE_MAX_WR_LEN) 963 return (EFBIG); 964 wr = alloc_wrqe(wr_len, sc->txq); 965 if (wr == NULL) { 966 sc->stats_wr_nomem++; 967 return (ENOMEM); 968 } 969 crwr = wrtod(wr); 970 memset(crwr, 0, wr_len); 971 972 /* 973 * Read the existing IV from the request or generate a random 974 * one if none is provided. Optionally copy the generated IV 975 * into the output buffer if requested. 976 */ 977 if (op_type == CHCR_ENCRYPT_OP) { 978 if (crde->crd_flags & CRD_F_IV_EXPLICIT) 979 memcpy(iv, crde->crd_iv, s->blkcipher.iv_len); 980 else 981 arc4rand(iv, s->blkcipher.iv_len, 0); 982 if ((crde->crd_flags & CRD_F_IV_PRESENT) == 0) 983 crypto_copyback(crp->crp_flags, crp->crp_buf, 984 crde->crd_inject, s->blkcipher.iv_len, iv); 985 } else { 986 if (crde->crd_flags & CRD_F_IV_EXPLICIT) 987 memcpy(iv, crde->crd_iv, s->blkcipher.iv_len); 988 else 989 crypto_copydata(crp->crp_flags, crp->crp_buf, 990 crde->crd_inject, s->blkcipher.iv_len, iv); 991 } 992 993 ccr_populate_wreq(sc, crwr, kctx_len, wr_len, imm_len, sgl_len, 994 op_type == CHCR_DECRYPT_OP ? hash_size_in_response : 0, crp); 995 996 /* XXX: Hardcodes SGE loopback channel of 0. */ 997 crwr->sec_cpl.op_ivinsrtofst = htobe32( 998 V_CPL_TX_SEC_PDU_OPCODE(CPL_TX_SEC_PDU) | 999 V_CPL_TX_SEC_PDU_RXCHID(sc->tx_channel_id) | 1000 V_CPL_TX_SEC_PDU_ACKFOLLOWS(0) | V_CPL_TX_SEC_PDU_ULPTXLPBK(1) | 1001 V_CPL_TX_SEC_PDU_CPLLEN(2) | V_CPL_TX_SEC_PDU_PLACEHOLDER(0) | 1002 V_CPL_TX_SEC_PDU_IVINSRTOFST(1)); 1003 1004 crwr->sec_cpl.pldlen = htobe32(s->blkcipher.iv_len + input_len); 1005 1006 crwr->sec_cpl.aadstart_cipherstop_hi = htobe32( 1007 V_CPL_TX_SEC_PDU_AADSTART(aad_start) | 1008 V_CPL_TX_SEC_PDU_AADSTOP(aad_stop) | 1009 V_CPL_TX_SEC_PDU_CIPHERSTART(cipher_start) | 1010 V_CPL_TX_SEC_PDU_CIPHERSTOP_HI(cipher_stop >> 4)); 1011 crwr->sec_cpl.cipherstop_lo_authinsert = htobe32( 1012 V_CPL_TX_SEC_PDU_CIPHERSTOP_LO(cipher_stop & 0xf) | 1013 V_CPL_TX_SEC_PDU_AUTHSTART(auth_start) | 1014 V_CPL_TX_SEC_PDU_AUTHSTOP(auth_stop) | 1015 V_CPL_TX_SEC_PDU_AUTHINSERT(auth_insert)); 1016 1017 /* These two flits are actually a CPL_TLS_TX_SCMD_FMT. */ 1018 hmac_ctrl = ccr_hmac_ctrl(axf->hashsize, hash_size_in_response); 1019 crwr->sec_cpl.seqno_numivs = htobe32( 1020 V_SCMD_SEQ_NO_CTRL(0) | 1021 V_SCMD_PROTO_VERSION(SCMD_PROTO_VERSION_GENERIC) | 1022 V_SCMD_ENC_DEC_CTRL(op_type) | 1023 V_SCMD_CIPH_AUTH_SEQ_CTRL(op_type == CHCR_ENCRYPT_OP ? 1 : 0) | 1024 V_SCMD_CIPH_MODE(s->blkcipher.cipher_mode) | 1025 V_SCMD_AUTH_MODE(s->hmac.auth_mode) | 1026 V_SCMD_HMAC_CTRL(hmac_ctrl) | 1027 V_SCMD_IV_SIZE(s->blkcipher.iv_len / 2) | 1028 V_SCMD_NUM_IVS(0)); 1029 crwr->sec_cpl.ivgen_hdrlen = htobe32( 1030 V_SCMD_IV_GEN_CTRL(0) | 1031 V_SCMD_MORE_FRAGS(0) | V_SCMD_LAST_FRAG(0) | V_SCMD_MAC_ONLY(0) | 1032 V_SCMD_AADIVDROP(0) | V_SCMD_HDR_LEN(dsgl_len)); 1033 1034 crwr->key_ctx.ctx_hdr = s->blkcipher.key_ctx_hdr; 1035 switch (crde->crd_alg) { 1036 case CRYPTO_AES_CBC: 1037 if (crde->crd_flags & CRD_F_ENCRYPT) 1038 memcpy(crwr->key_ctx.key, s->blkcipher.enckey, 1039 s->blkcipher.key_len); 1040 else 1041 memcpy(crwr->key_ctx.key, s->blkcipher.deckey, 1042 s->blkcipher.key_len); 1043 break; 1044 case CRYPTO_AES_ICM: 1045 memcpy(crwr->key_ctx.key, s->blkcipher.enckey, 1046 s->blkcipher.key_len); 1047 break; 1048 case CRYPTO_AES_XTS: 1049 key_half = s->blkcipher.key_len / 2; 1050 memcpy(crwr->key_ctx.key, s->blkcipher.enckey + key_half, 1051 key_half); 1052 if (crde->crd_flags & CRD_F_ENCRYPT) 1053 memcpy(crwr->key_ctx.key + key_half, 1054 s->blkcipher.enckey, key_half); 1055 else 1056 memcpy(crwr->key_ctx.key + key_half, 1057 s->blkcipher.deckey, key_half); 1058 break; 1059 } 1060 1061 dst = crwr->key_ctx.key + roundup2(s->blkcipher.key_len, 16); 1062 memcpy(dst, s->hmac.ipad, s->hmac.partial_digest_len); 1063 memcpy(dst + iopad_size, s->hmac.opad, s->hmac.partial_digest_len); 1064 1065 dst = (char *)(crwr + 1) + kctx_len; 1066 ccr_write_phys_dsgl(sc, dst, dsgl_nsegs); 1067 dst += sizeof(struct cpl_rx_phys_dsgl) + dsgl_len; 1068 memcpy(dst, iv, s->blkcipher.iv_len); 1069 dst += s->blkcipher.iv_len; 1070 if (imm_len != 0) { 1071 if (aad_len != 0) { 1072 crypto_copydata(crp->crp_flags, crp->crp_buf, 1073 crda->crd_skip, aad_len, dst); 1074 dst += aad_len; 1075 } 1076 crypto_copydata(crp->crp_flags, crp->crp_buf, crde->crd_skip, 1077 crde->crd_len, dst); 1078 dst += crde->crd_len; 1079 if (op_type == CHCR_DECRYPT_OP) 1080 crypto_copydata(crp->crp_flags, crp->crp_buf, 1081 crda->crd_inject, hash_size_in_response, dst); 1082 } else 1083 ccr_write_ulptx_sgl(sc, dst, sgl_nsegs); 1084 1085 /* XXX: TODO backpressure */ 1086 t4_wrq_tx(sc->adapter, wr); 1087 1088 return (0); 1089 } 1090 1091 static int 1092 ccr_authenc_done(struct ccr_softc *sc, struct ccr_session *s, 1093 struct cryptop *crp, const struct cpl_fw6_pld *cpl, int error) 1094 { 1095 struct cryptodesc *crd; 1096 1097 /* 1098 * The updated IV to permit chained requests is at 1099 * cpl->data[2], but OCF doesn't permit chained requests. 1100 * 1101 * For a decryption request, the hardware may do a verification 1102 * of the HMAC which will fail if the existing HMAC isn't in the 1103 * buffer. If that happens, clear the error and copy the HMAC 1104 * from the CPL reply into the buffer. 1105 * 1106 * For encryption requests, crd should be the cipher request 1107 * which will have CRD_F_ENCRYPT set. For decryption 1108 * requests, crp_desc will be the HMAC request which should 1109 * not have this flag set. 1110 */ 1111 crd = crp->crp_desc; 1112 if (error == EBADMSG && !CHK_PAD_ERR_BIT(be64toh(cpl->data[0])) && 1113 !(crd->crd_flags & CRD_F_ENCRYPT)) { 1114 crypto_copyback(crp->crp_flags, crp->crp_buf, crd->crd_inject, 1115 s->hmac.hash_len, (c_caddr_t)(cpl + 1)); 1116 error = 0; 1117 } 1118 return (error); 1119 } 1120 1121 static int 1122 ccr_gcm(struct ccr_softc *sc, struct ccr_session *s, struct cryptop *crp, 1123 struct cryptodesc *crda, struct cryptodesc *crde) 1124 { 1125 char iv[CHCR_MAX_CRYPTO_IV_LEN]; 1126 struct chcr_wr *crwr; 1127 struct wrqe *wr; 1128 char *dst; 1129 u_int iv_len, kctx_len, op_type, transhdr_len, wr_len; 1130 u_int hash_size_in_response, imm_len; 1131 u_int aad_start, aad_stop, cipher_start, cipher_stop, auth_insert; 1132 u_int hmac_ctrl, input_len; 1133 int dsgl_nsegs, dsgl_len; 1134 int sgl_nsegs, sgl_len; 1135 int error; 1136 1137 if (s->blkcipher.key_len == 0) 1138 return (EINVAL); 1139 1140 /* 1141 * The crypto engine doesn't handle GCM requests with an empty 1142 * payload, so handle those in software instead. 1143 */ 1144 if (crde->crd_len == 0) 1145 return (EMSGSIZE); 1146 1147 /* 1148 * AAD is only permitted before the cipher/plain text, not 1149 * after. 1150 */ 1151 if (crda->crd_len + crda->crd_skip > crde->crd_len + crde->crd_skip) 1152 return (EMSGSIZE); 1153 1154 if (crda->crd_len + AES_BLOCK_LEN > MAX_AAD_LEN) 1155 return (EMSGSIZE); 1156 1157 hash_size_in_response = s->gmac.hash_len; 1158 if (crde->crd_flags & CRD_F_ENCRYPT) 1159 op_type = CHCR_ENCRYPT_OP; 1160 else 1161 op_type = CHCR_DECRYPT_OP; 1162 1163 /* 1164 * The IV handling for GCM in OCF is a bit more complicated in 1165 * that IPSec provides a full 16-byte IV (including the 1166 * counter), whereas the /dev/crypto interface sometimes 1167 * provides a full 16-byte IV (if no IV is provided in the 1168 * ioctl) and sometimes a 12-byte IV (if the IV was explicit). 1169 * 1170 * When provided a 12-byte IV, assume the IV is really 16 bytes 1171 * with a counter in the last 4 bytes initialized to 1. 1172 * 1173 * While iv_len is checked below, the value is currently 1174 * always set to 12 when creating a GCM session in this driver 1175 * due to limitations in OCF (there is no way to know what the 1176 * IV length of a given request will be). This means that the 1177 * driver always assumes as 12-byte IV for now. 1178 */ 1179 if (s->blkcipher.iv_len == 12) 1180 iv_len = AES_BLOCK_LEN; 1181 else 1182 iv_len = s->blkcipher.iv_len; 1183 1184 /* 1185 * The output buffer consists of the cipher text followed by 1186 * the tag when encrypting. For decryption it only contains 1187 * the plain text. 1188 * 1189 * Due to a firmware bug, the output buffer must include a 1190 * dummy output buffer for the IV and AAD prior to the real 1191 * output buffer. 1192 */ 1193 if (op_type == CHCR_ENCRYPT_OP) { 1194 if (iv_len + crda->crd_len + crde->crd_len + 1195 hash_size_in_response > MAX_REQUEST_SIZE) 1196 return (EFBIG); 1197 } else { 1198 if (iv_len + crda->crd_len + crde->crd_len > MAX_REQUEST_SIZE) 1199 return (EFBIG); 1200 } 1201 sglist_reset(sc->sg_dsgl); 1202 error = sglist_append_sglist(sc->sg_dsgl, sc->sg_iv_aad, 0, iv_len + 1203 crda->crd_len); 1204 if (error) 1205 return (error); 1206 error = sglist_append_sglist(sc->sg_dsgl, sc->sg_crp, crde->crd_skip, 1207 crde->crd_len); 1208 if (error) 1209 return (error); 1210 if (op_type == CHCR_ENCRYPT_OP) { 1211 error = sglist_append_sglist(sc->sg_dsgl, sc->sg_crp, 1212 crda->crd_inject, hash_size_in_response); 1213 if (error) 1214 return (error); 1215 } 1216 dsgl_nsegs = ccr_count_sgl(sc->sg_dsgl, DSGL_SGE_MAXLEN); 1217 if (dsgl_nsegs > MAX_RX_PHYS_DSGL_SGE) 1218 return (EFBIG); 1219 dsgl_len = ccr_phys_dsgl_len(dsgl_nsegs); 1220 1221 /* 1222 * The 'key' part of the key context consists of the key followed 1223 * by the Galois hash key. 1224 */ 1225 kctx_len = roundup2(s->blkcipher.key_len, 16) + GMAC_BLOCK_LEN; 1226 transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, dsgl_len); 1227 1228 /* 1229 * The input buffer consists of the IV, any AAD, and then the 1230 * cipher/plain text. For decryption requests the hash is 1231 * appended after the cipher text. 1232 * 1233 * The IV is always stored at the start of the input buffer 1234 * even though it may be duplicated in the payload. The 1235 * crypto engine doesn't work properly if the IV offset points 1236 * inside of the AAD region, so a second copy is always 1237 * required. 1238 */ 1239 input_len = crda->crd_len + crde->crd_len; 1240 if (op_type == CHCR_DECRYPT_OP) 1241 input_len += hash_size_in_response; 1242 if (input_len > MAX_REQUEST_SIZE) 1243 return (EFBIG); 1244 if (ccr_use_imm_data(transhdr_len, iv_len + input_len)) { 1245 imm_len = input_len; 1246 sgl_nsegs = 0; 1247 sgl_len = 0; 1248 } else { 1249 imm_len = 0; 1250 sglist_reset(sc->sg_ulptx); 1251 if (crda->crd_len != 0) { 1252 error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp, 1253 crda->crd_skip, crda->crd_len); 1254 if (error) 1255 return (error); 1256 } 1257 error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp, 1258 crde->crd_skip, crde->crd_len); 1259 if (error) 1260 return (error); 1261 if (op_type == CHCR_DECRYPT_OP) { 1262 error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp, 1263 crda->crd_inject, hash_size_in_response); 1264 if (error) 1265 return (error); 1266 } 1267 sgl_nsegs = sc->sg_ulptx->sg_nseg; 1268 sgl_len = ccr_ulptx_sgl_len(sgl_nsegs); 1269 } 1270 1271 if (crda->crd_len != 0) { 1272 aad_start = iv_len + 1; 1273 aad_stop = aad_start + crda->crd_len - 1; 1274 } else { 1275 aad_start = 0; 1276 aad_stop = 0; 1277 } 1278 cipher_start = iv_len + crda->crd_len + 1; 1279 if (op_type == CHCR_DECRYPT_OP) 1280 cipher_stop = hash_size_in_response; 1281 else 1282 cipher_stop = 0; 1283 if (op_type == CHCR_DECRYPT_OP) 1284 auth_insert = hash_size_in_response; 1285 else 1286 auth_insert = 0; 1287 1288 wr_len = roundup2(transhdr_len, 16) + iv_len + roundup2(imm_len, 16) + 1289 sgl_len; 1290 if (wr_len > SGE_MAX_WR_LEN) 1291 return (EFBIG); 1292 wr = alloc_wrqe(wr_len, sc->txq); 1293 if (wr == NULL) { 1294 sc->stats_wr_nomem++; 1295 return (ENOMEM); 1296 } 1297 crwr = wrtod(wr); 1298 memset(crwr, 0, wr_len); 1299 1300 /* 1301 * Read the existing IV from the request or generate a random 1302 * one if none is provided. Optionally copy the generated IV 1303 * into the output buffer if requested. 1304 * 1305 * If the input IV is 12 bytes, append an explicit 4-byte 1306 * counter of 1. 1307 */ 1308 if (op_type == CHCR_ENCRYPT_OP) { 1309 if (crde->crd_flags & CRD_F_IV_EXPLICIT) 1310 memcpy(iv, crde->crd_iv, s->blkcipher.iv_len); 1311 else 1312 arc4rand(iv, s->blkcipher.iv_len, 0); 1313 if ((crde->crd_flags & CRD_F_IV_PRESENT) == 0) 1314 crypto_copyback(crp->crp_flags, crp->crp_buf, 1315 crde->crd_inject, s->blkcipher.iv_len, iv); 1316 } else { 1317 if (crde->crd_flags & CRD_F_IV_EXPLICIT) 1318 memcpy(iv, crde->crd_iv, s->blkcipher.iv_len); 1319 else 1320 crypto_copydata(crp->crp_flags, crp->crp_buf, 1321 crde->crd_inject, s->blkcipher.iv_len, iv); 1322 } 1323 if (s->blkcipher.iv_len == 12) 1324 *(uint32_t *)&iv[12] = htobe32(1); 1325 1326 ccr_populate_wreq(sc, crwr, kctx_len, wr_len, imm_len, sgl_len, 0, 1327 crp); 1328 1329 /* XXX: Hardcodes SGE loopback channel of 0. */ 1330 crwr->sec_cpl.op_ivinsrtofst = htobe32( 1331 V_CPL_TX_SEC_PDU_OPCODE(CPL_TX_SEC_PDU) | 1332 V_CPL_TX_SEC_PDU_RXCHID(sc->tx_channel_id) | 1333 V_CPL_TX_SEC_PDU_ACKFOLLOWS(0) | V_CPL_TX_SEC_PDU_ULPTXLPBK(1) | 1334 V_CPL_TX_SEC_PDU_CPLLEN(2) | V_CPL_TX_SEC_PDU_PLACEHOLDER(0) | 1335 V_CPL_TX_SEC_PDU_IVINSRTOFST(1)); 1336 1337 crwr->sec_cpl.pldlen = htobe32(iv_len + input_len); 1338 1339 /* 1340 * NB: cipherstop is explicitly set to 0. On encrypt it 1341 * should normally be set to 0 anyway (as the encrypt crd ends 1342 * at the end of the input). However, for decrypt the cipher 1343 * ends before the tag in the AUTHENC case (and authstop is 1344 * set to stop before the tag), but for GCM the cipher still 1345 * runs to the end of the buffer. Not sure if this is 1346 * intentional or a firmware quirk, but it is required for 1347 * working tag validation with GCM decryption. 1348 */ 1349 crwr->sec_cpl.aadstart_cipherstop_hi = htobe32( 1350 V_CPL_TX_SEC_PDU_AADSTART(aad_start) | 1351 V_CPL_TX_SEC_PDU_AADSTOP(aad_stop) | 1352 V_CPL_TX_SEC_PDU_CIPHERSTART(cipher_start) | 1353 V_CPL_TX_SEC_PDU_CIPHERSTOP_HI(0)); 1354 crwr->sec_cpl.cipherstop_lo_authinsert = htobe32( 1355 V_CPL_TX_SEC_PDU_CIPHERSTOP_LO(0) | 1356 V_CPL_TX_SEC_PDU_AUTHSTART(cipher_start) | 1357 V_CPL_TX_SEC_PDU_AUTHSTOP(cipher_stop) | 1358 V_CPL_TX_SEC_PDU_AUTHINSERT(auth_insert)); 1359 1360 /* These two flits are actually a CPL_TLS_TX_SCMD_FMT. */ 1361 hmac_ctrl = ccr_hmac_ctrl(AES_GMAC_HASH_LEN, hash_size_in_response); 1362 crwr->sec_cpl.seqno_numivs = htobe32( 1363 V_SCMD_SEQ_NO_CTRL(0) | 1364 V_SCMD_PROTO_VERSION(SCMD_PROTO_VERSION_GENERIC) | 1365 V_SCMD_ENC_DEC_CTRL(op_type) | 1366 V_SCMD_CIPH_AUTH_SEQ_CTRL(op_type == CHCR_ENCRYPT_OP ? 1 : 0) | 1367 V_SCMD_CIPH_MODE(SCMD_CIPH_MODE_AES_GCM) | 1368 V_SCMD_AUTH_MODE(SCMD_AUTH_MODE_GHASH) | 1369 V_SCMD_HMAC_CTRL(hmac_ctrl) | 1370 V_SCMD_IV_SIZE(iv_len / 2) | 1371 V_SCMD_NUM_IVS(0)); 1372 crwr->sec_cpl.ivgen_hdrlen = htobe32( 1373 V_SCMD_IV_GEN_CTRL(0) | 1374 V_SCMD_MORE_FRAGS(0) | V_SCMD_LAST_FRAG(0) | V_SCMD_MAC_ONLY(0) | 1375 V_SCMD_AADIVDROP(0) | V_SCMD_HDR_LEN(dsgl_len)); 1376 1377 crwr->key_ctx.ctx_hdr = s->blkcipher.key_ctx_hdr; 1378 memcpy(crwr->key_ctx.key, s->blkcipher.enckey, s->blkcipher.key_len); 1379 dst = crwr->key_ctx.key + roundup2(s->blkcipher.key_len, 16); 1380 memcpy(dst, s->gmac.ghash_h, GMAC_BLOCK_LEN); 1381 1382 dst = (char *)(crwr + 1) + kctx_len; 1383 ccr_write_phys_dsgl(sc, dst, dsgl_nsegs); 1384 dst += sizeof(struct cpl_rx_phys_dsgl) + dsgl_len; 1385 memcpy(dst, iv, iv_len); 1386 dst += iv_len; 1387 if (imm_len != 0) { 1388 if (crda->crd_len != 0) { 1389 crypto_copydata(crp->crp_flags, crp->crp_buf, 1390 crda->crd_skip, crda->crd_len, dst); 1391 dst += crda->crd_len; 1392 } 1393 crypto_copydata(crp->crp_flags, crp->crp_buf, crde->crd_skip, 1394 crde->crd_len, dst); 1395 dst += crde->crd_len; 1396 if (op_type == CHCR_DECRYPT_OP) 1397 crypto_copydata(crp->crp_flags, crp->crp_buf, 1398 crda->crd_inject, hash_size_in_response, dst); 1399 } else 1400 ccr_write_ulptx_sgl(sc, dst, sgl_nsegs); 1401 1402 /* XXX: TODO backpressure */ 1403 t4_wrq_tx(sc->adapter, wr); 1404 1405 return (0); 1406 } 1407 1408 static int 1409 ccr_gcm_done(struct ccr_softc *sc, struct ccr_session *s, 1410 struct cryptop *crp, const struct cpl_fw6_pld *cpl, int error) 1411 { 1412 1413 /* 1414 * The updated IV to permit chained requests is at 1415 * cpl->data[2], but OCF doesn't permit chained requests. 1416 * 1417 * Note that the hardware should always verify the GMAC hash. 1418 */ 1419 return (error); 1420 } 1421 1422 /* 1423 * Handle a GCM request that is not supported by the crypto engine by 1424 * performing the operation in software. Derived from swcr_authenc(). 1425 */ 1426 static void 1427 ccr_gcm_soft(struct ccr_session *s, struct cryptop *crp, 1428 struct cryptodesc *crda, struct cryptodesc *crde) 1429 { 1430 struct auth_hash *axf; 1431 struct enc_xform *exf; 1432 void *auth_ctx; 1433 uint8_t *kschedule; 1434 char block[GMAC_BLOCK_LEN]; 1435 char digest[GMAC_DIGEST_LEN]; 1436 char iv[AES_BLOCK_LEN]; 1437 int error, i, len; 1438 1439 auth_ctx = NULL; 1440 kschedule = NULL; 1441 1442 /* Initialize the MAC. */ 1443 switch (s->blkcipher.key_len) { 1444 case 16: 1445 axf = &auth_hash_nist_gmac_aes_128; 1446 break; 1447 case 24: 1448 axf = &auth_hash_nist_gmac_aes_192; 1449 break; 1450 case 32: 1451 axf = &auth_hash_nist_gmac_aes_256; 1452 break; 1453 default: 1454 error = EINVAL; 1455 goto out; 1456 } 1457 auth_ctx = malloc(axf->ctxsize, M_CCR, M_NOWAIT); 1458 if (auth_ctx == NULL) { 1459 error = ENOMEM; 1460 goto out; 1461 } 1462 axf->Init(auth_ctx); 1463 axf->Setkey(auth_ctx, s->blkcipher.enckey, s->blkcipher.key_len); 1464 1465 /* Initialize the cipher. */ 1466 exf = &enc_xform_aes_nist_gcm; 1467 error = exf->setkey(&kschedule, s->blkcipher.enckey, 1468 s->blkcipher.key_len); 1469 if (error) 1470 goto out; 1471 1472 /* 1473 * This assumes a 12-byte IV from the crp. See longer comment 1474 * above in ccr_gcm() for more details. 1475 */ 1476 if (crde->crd_flags & CRD_F_ENCRYPT) { 1477 if (crde->crd_flags & CRD_F_IV_EXPLICIT) 1478 memcpy(iv, crde->crd_iv, 12); 1479 else 1480 arc4rand(iv, 12, 0); 1481 if ((crde->crd_flags & CRD_F_IV_PRESENT) == 0) 1482 crypto_copyback(crp->crp_flags, crp->crp_buf, 1483 crde->crd_inject, 12, iv); 1484 } else { 1485 if (crde->crd_flags & CRD_F_IV_EXPLICIT) 1486 memcpy(iv, crde->crd_iv, 12); 1487 else 1488 crypto_copydata(crp->crp_flags, crp->crp_buf, 1489 crde->crd_inject, 12, iv); 1490 } 1491 *(uint32_t *)&iv[12] = htobe32(1); 1492 1493 axf->Reinit(auth_ctx, iv, sizeof(iv)); 1494 1495 /* MAC the AAD. */ 1496 for (i = 0; i < crda->crd_len; i += sizeof(block)) { 1497 len = imin(crda->crd_len - i, sizeof(block)); 1498 crypto_copydata(crp->crp_flags, crp->crp_buf, crda->crd_skip + 1499 i, len, block); 1500 bzero(block + len, sizeof(block) - len); 1501 axf->Update(auth_ctx, block, sizeof(block)); 1502 } 1503 1504 exf->reinit(kschedule, iv); 1505 1506 /* Do encryption with MAC */ 1507 for (i = 0; i < crde->crd_len; i += sizeof(block)) { 1508 len = imin(crde->crd_len - i, sizeof(block)); 1509 crypto_copydata(crp->crp_flags, crp->crp_buf, crde->crd_skip + 1510 i, len, block); 1511 bzero(block + len, sizeof(block) - len); 1512 if (crde->crd_flags & CRD_F_ENCRYPT) { 1513 exf->encrypt(kschedule, block); 1514 axf->Update(auth_ctx, block, len); 1515 crypto_copyback(crp->crp_flags, crp->crp_buf, 1516 crde->crd_skip + i, len, block); 1517 } else { 1518 axf->Update(auth_ctx, block, len); 1519 } 1520 } 1521 1522 /* Length block. */ 1523 bzero(block, sizeof(block)); 1524 ((uint32_t *)block)[1] = htobe32(crda->crd_len * 8); 1525 ((uint32_t *)block)[3] = htobe32(crde->crd_len * 8); 1526 axf->Update(auth_ctx, block, sizeof(block)); 1527 1528 /* Finalize MAC. */ 1529 axf->Final(digest, auth_ctx); 1530 1531 /* Inject or validate tag. */ 1532 if (crde->crd_flags & CRD_F_ENCRYPT) { 1533 crypto_copyback(crp->crp_flags, crp->crp_buf, crda->crd_inject, 1534 sizeof(digest), digest); 1535 error = 0; 1536 } else { 1537 char digest2[GMAC_DIGEST_LEN]; 1538 1539 crypto_copydata(crp->crp_flags, crp->crp_buf, crda->crd_inject, 1540 sizeof(digest2), digest2); 1541 if (timingsafe_bcmp(digest, digest2, sizeof(digest)) == 0) { 1542 error = 0; 1543 1544 /* Tag matches, decrypt data. */ 1545 for (i = 0; i < crde->crd_len; i += sizeof(block)) { 1546 len = imin(crde->crd_len - i, sizeof(block)); 1547 crypto_copydata(crp->crp_flags, crp->crp_buf, 1548 crde->crd_skip + i, len, block); 1549 bzero(block + len, sizeof(block) - len); 1550 exf->decrypt(kschedule, block); 1551 crypto_copyback(crp->crp_flags, crp->crp_buf, 1552 crde->crd_skip + i, len, block); 1553 } 1554 } else 1555 error = EBADMSG; 1556 } 1557 1558 exf->zerokey(&kschedule); 1559 out: 1560 if (auth_ctx != NULL) { 1561 memset(auth_ctx, 0, axf->ctxsize); 1562 free(auth_ctx, M_CCR); 1563 } 1564 crp->crp_etype = error; 1565 crypto_done(crp); 1566 } 1567 1568 static void 1569 ccr_identify(driver_t *driver, device_t parent) 1570 { 1571 struct adapter *sc; 1572 1573 sc = device_get_softc(parent); 1574 if (sc->cryptocaps & FW_CAPS_CONFIG_CRYPTO_LOOKASIDE && 1575 device_find_child(parent, "ccr", -1) == NULL) 1576 device_add_child(parent, "ccr", -1); 1577 } 1578 1579 static int 1580 ccr_probe(device_t dev) 1581 { 1582 1583 device_set_desc(dev, "Chelsio Crypto Accelerator"); 1584 return (BUS_PROBE_DEFAULT); 1585 } 1586 1587 static void 1588 ccr_sysctls(struct ccr_softc *sc) 1589 { 1590 struct sysctl_ctx_list *ctx; 1591 struct sysctl_oid *oid; 1592 struct sysctl_oid_list *children; 1593 1594 ctx = device_get_sysctl_ctx(sc->dev); 1595 1596 /* 1597 * dev.ccr.X. 1598 */ 1599 oid = device_get_sysctl_tree(sc->dev); 1600 children = SYSCTL_CHILDREN(oid); 1601 1602 /* 1603 * dev.ccr.X.stats. 1604 */ 1605 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD, 1606 NULL, "statistics"); 1607 children = SYSCTL_CHILDREN(oid); 1608 1609 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "hash", CTLFLAG_RD, 1610 &sc->stats_hash, 0, "Hash requests submitted"); 1611 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "hmac", CTLFLAG_RD, 1612 &sc->stats_hmac, 0, "HMAC requests submitted"); 1613 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "cipher_encrypt", CTLFLAG_RD, 1614 &sc->stats_blkcipher_encrypt, 0, 1615 "Cipher encryption requests submitted"); 1616 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "cipher_decrypt", CTLFLAG_RD, 1617 &sc->stats_blkcipher_decrypt, 0, 1618 "Cipher decryption requests submitted"); 1619 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "authenc_encrypt", CTLFLAG_RD, 1620 &sc->stats_authenc_encrypt, 0, 1621 "Combined AES+HMAC encryption requests submitted"); 1622 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "authenc_decrypt", CTLFLAG_RD, 1623 &sc->stats_authenc_decrypt, 0, 1624 "Combined AES+HMAC decryption requests submitted"); 1625 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "gcm_encrypt", CTLFLAG_RD, 1626 &sc->stats_gcm_encrypt, 0, "AES-GCM encryption requests submitted"); 1627 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "gcm_decrypt", CTLFLAG_RD, 1628 &sc->stats_gcm_decrypt, 0, "AES-GCM decryption requests submitted"); 1629 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "wr_nomem", CTLFLAG_RD, 1630 &sc->stats_wr_nomem, 0, "Work request memory allocation failures"); 1631 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "inflight", CTLFLAG_RD, 1632 &sc->stats_inflight, 0, "Requests currently pending"); 1633 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "mac_error", CTLFLAG_RD, 1634 &sc->stats_mac_error, 0, "MAC errors"); 1635 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "pad_error", CTLFLAG_RD, 1636 &sc->stats_pad_error, 0, "Padding errors"); 1637 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "bad_session", CTLFLAG_RD, 1638 &sc->stats_bad_session, 0, "Requests with invalid session ID"); 1639 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "sglist_error", CTLFLAG_RD, 1640 &sc->stats_sglist_error, 0, 1641 "Requests for which DMA mapping failed"); 1642 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "process_error", CTLFLAG_RD, 1643 &sc->stats_process_error, 0, "Requests failed during queueing"); 1644 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "sw_fallback", CTLFLAG_RD, 1645 &sc->stats_sw_fallback, 0, 1646 "Requests processed by falling back to software"); 1647 } 1648 1649 static int 1650 ccr_attach(device_t dev) 1651 { 1652 struct ccr_softc *sc; 1653 int32_t cid; 1654 1655 /* 1656 * TODO: Crypto requests will panic if the parent device isn't 1657 * initialized so that the queues are up and running. Need to 1658 * figure out how to handle that correctly, maybe just reject 1659 * requests if the adapter isn't fully initialized? 1660 */ 1661 sc = device_get_softc(dev); 1662 sc->dev = dev; 1663 sc->adapter = device_get_softc(device_get_parent(dev)); 1664 sc->txq = &sc->adapter->sge.ctrlq[0]; 1665 sc->rxq = &sc->adapter->sge.rxq[0]; 1666 cid = crypto_get_driverid(dev, sizeof(struct ccr_session), 1667 CRYPTOCAP_F_HARDWARE); 1668 if (cid < 0) { 1669 device_printf(dev, "could not get crypto driver id\n"); 1670 return (ENXIO); 1671 } 1672 sc->cid = cid; 1673 sc->adapter->ccr_softc = sc; 1674 1675 /* XXX: TODO? */ 1676 sc->tx_channel_id = 0; 1677 1678 mtx_init(&sc->lock, "ccr", NULL, MTX_DEF); 1679 sc->sg_crp = sglist_alloc(TX_SGL_SEGS, M_WAITOK); 1680 sc->sg_ulptx = sglist_alloc(TX_SGL_SEGS, M_WAITOK); 1681 sc->sg_dsgl = sglist_alloc(MAX_RX_PHYS_DSGL_SGE, M_WAITOK); 1682 sc->iv_aad_buf = malloc(MAX_AAD_LEN, M_CCR, M_WAITOK); 1683 sc->sg_iv_aad = sglist_build(sc->iv_aad_buf, MAX_AAD_LEN, M_WAITOK); 1684 ccr_sysctls(sc); 1685 1686 crypto_register(cid, CRYPTO_SHA1, 0, 0); 1687 crypto_register(cid, CRYPTO_SHA2_224, 0, 0); 1688 crypto_register(cid, CRYPTO_SHA2_256, 0, 0); 1689 crypto_register(cid, CRYPTO_SHA2_384, 0, 0); 1690 crypto_register(cid, CRYPTO_SHA2_512, 0, 0); 1691 crypto_register(cid, CRYPTO_SHA1_HMAC, 0, 0); 1692 crypto_register(cid, CRYPTO_SHA2_224_HMAC, 0, 0); 1693 crypto_register(cid, CRYPTO_SHA2_256_HMAC, 0, 0); 1694 crypto_register(cid, CRYPTO_SHA2_384_HMAC, 0, 0); 1695 crypto_register(cid, CRYPTO_SHA2_512_HMAC, 0, 0); 1696 crypto_register(cid, CRYPTO_AES_CBC, 0, 0); 1697 crypto_register(cid, CRYPTO_AES_ICM, 0, 0); 1698 crypto_register(cid, CRYPTO_AES_NIST_GCM_16, 0, 0); 1699 crypto_register(cid, CRYPTO_AES_128_NIST_GMAC, 0, 0); 1700 crypto_register(cid, CRYPTO_AES_192_NIST_GMAC, 0, 0); 1701 crypto_register(cid, CRYPTO_AES_256_NIST_GMAC, 0, 0); 1702 crypto_register(cid, CRYPTO_AES_XTS, 0, 0); 1703 return (0); 1704 } 1705 1706 static int 1707 ccr_detach(device_t dev) 1708 { 1709 struct ccr_softc *sc; 1710 1711 sc = device_get_softc(dev); 1712 1713 mtx_lock(&sc->lock); 1714 sc->detaching = true; 1715 mtx_unlock(&sc->lock); 1716 1717 crypto_unregister_all(sc->cid); 1718 1719 mtx_destroy(&sc->lock); 1720 sglist_free(sc->sg_iv_aad); 1721 free(sc->iv_aad_buf, M_CCR); 1722 sglist_free(sc->sg_dsgl); 1723 sglist_free(sc->sg_ulptx); 1724 sglist_free(sc->sg_crp); 1725 sc->adapter->ccr_softc = NULL; 1726 return (0); 1727 } 1728 1729 static void 1730 ccr_copy_partial_hash(void *dst, int cri_alg, union authctx *auth_ctx) 1731 { 1732 uint32_t *u32; 1733 uint64_t *u64; 1734 u_int i; 1735 1736 u32 = (uint32_t *)dst; 1737 u64 = (uint64_t *)dst; 1738 switch (cri_alg) { 1739 case CRYPTO_SHA1: 1740 case CRYPTO_SHA1_HMAC: 1741 for (i = 0; i < SHA1_HASH_LEN / 4; i++) 1742 u32[i] = htobe32(auth_ctx->sha1ctx.h.b32[i]); 1743 break; 1744 case CRYPTO_SHA2_224: 1745 case CRYPTO_SHA2_224_HMAC: 1746 for (i = 0; i < SHA2_256_HASH_LEN / 4; i++) 1747 u32[i] = htobe32(auth_ctx->sha224ctx.state[i]); 1748 break; 1749 case CRYPTO_SHA2_256: 1750 case CRYPTO_SHA2_256_HMAC: 1751 for (i = 0; i < SHA2_256_HASH_LEN / 4; i++) 1752 u32[i] = htobe32(auth_ctx->sha256ctx.state[i]); 1753 break; 1754 case CRYPTO_SHA2_384: 1755 case CRYPTO_SHA2_384_HMAC: 1756 for (i = 0; i < SHA2_512_HASH_LEN / 8; i++) 1757 u64[i] = htobe64(auth_ctx->sha384ctx.state[i]); 1758 break; 1759 case CRYPTO_SHA2_512: 1760 case CRYPTO_SHA2_512_HMAC: 1761 for (i = 0; i < SHA2_512_HASH_LEN / 8; i++) 1762 u64[i] = htobe64(auth_ctx->sha512ctx.state[i]); 1763 break; 1764 } 1765 } 1766 1767 static void 1768 ccr_init_hash_digest(struct ccr_session *s, int cri_alg) 1769 { 1770 union authctx auth_ctx; 1771 struct auth_hash *axf; 1772 1773 axf = s->hmac.auth_hash; 1774 axf->Init(&auth_ctx); 1775 ccr_copy_partial_hash(s->hmac.ipad, cri_alg, &auth_ctx); 1776 } 1777 1778 static void 1779 ccr_init_hmac_digest(struct ccr_session *s, int cri_alg, char *key, 1780 int klen) 1781 { 1782 union authctx auth_ctx; 1783 struct auth_hash *axf; 1784 u_int i; 1785 1786 /* 1787 * If the key is larger than the block size, use the digest of 1788 * the key as the key instead. 1789 */ 1790 axf = s->hmac.auth_hash; 1791 klen /= 8; 1792 if (klen > axf->blocksize) { 1793 axf->Init(&auth_ctx); 1794 axf->Update(&auth_ctx, key, klen); 1795 axf->Final(s->hmac.ipad, &auth_ctx); 1796 klen = axf->hashsize; 1797 } else 1798 memcpy(s->hmac.ipad, key, klen); 1799 1800 memset(s->hmac.ipad + klen, 0, axf->blocksize - klen); 1801 memcpy(s->hmac.opad, s->hmac.ipad, axf->blocksize); 1802 1803 for (i = 0; i < axf->blocksize; i++) { 1804 s->hmac.ipad[i] ^= HMAC_IPAD_VAL; 1805 s->hmac.opad[i] ^= HMAC_OPAD_VAL; 1806 } 1807 1808 /* 1809 * Hash the raw ipad and opad and store the partial result in 1810 * the same buffer. 1811 */ 1812 axf->Init(&auth_ctx); 1813 axf->Update(&auth_ctx, s->hmac.ipad, axf->blocksize); 1814 ccr_copy_partial_hash(s->hmac.ipad, cri_alg, &auth_ctx); 1815 1816 axf->Init(&auth_ctx); 1817 axf->Update(&auth_ctx, s->hmac.opad, axf->blocksize); 1818 ccr_copy_partial_hash(s->hmac.opad, cri_alg, &auth_ctx); 1819 } 1820 1821 /* 1822 * Borrowed from AES_GMAC_Setkey(). 1823 */ 1824 static void 1825 ccr_init_gmac_hash(struct ccr_session *s, char *key, int klen) 1826 { 1827 static char zeroes[GMAC_BLOCK_LEN]; 1828 uint32_t keysched[4 * (RIJNDAEL_MAXNR + 1)]; 1829 int rounds; 1830 1831 rounds = rijndaelKeySetupEnc(keysched, key, klen); 1832 rijndaelEncrypt(keysched, rounds, zeroes, s->gmac.ghash_h); 1833 } 1834 1835 static int 1836 ccr_aes_check_keylen(int alg, int klen) 1837 { 1838 1839 switch (klen) { 1840 case 128: 1841 case 192: 1842 if (alg == CRYPTO_AES_XTS) 1843 return (EINVAL); 1844 break; 1845 case 256: 1846 break; 1847 case 512: 1848 if (alg != CRYPTO_AES_XTS) 1849 return (EINVAL); 1850 break; 1851 default: 1852 return (EINVAL); 1853 } 1854 return (0); 1855 } 1856 1857 static void 1858 ccr_aes_setkey(struct ccr_session *s, int alg, const void *key, int klen) 1859 { 1860 unsigned int ck_size, iopad_size, kctx_flits, kctx_len, kbits, mk_size; 1861 unsigned int opad_present; 1862 1863 if (alg == CRYPTO_AES_XTS) 1864 kbits = klen / 2; 1865 else 1866 kbits = klen; 1867 switch (kbits) { 1868 case 128: 1869 ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128; 1870 break; 1871 case 192: 1872 ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_192; 1873 break; 1874 case 256: 1875 ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_256; 1876 break; 1877 default: 1878 panic("should not get here"); 1879 } 1880 1881 s->blkcipher.key_len = klen / 8; 1882 memcpy(s->blkcipher.enckey, key, s->blkcipher.key_len); 1883 switch (alg) { 1884 case CRYPTO_AES_CBC: 1885 case CRYPTO_AES_XTS: 1886 t4_aes_getdeckey(s->blkcipher.deckey, key, kbits); 1887 break; 1888 } 1889 1890 kctx_len = roundup2(s->blkcipher.key_len, 16); 1891 switch (s->mode) { 1892 case AUTHENC: 1893 mk_size = s->hmac.mk_size; 1894 opad_present = 1; 1895 iopad_size = roundup2(s->hmac.partial_digest_len, 16); 1896 kctx_len += iopad_size * 2; 1897 break; 1898 case GCM: 1899 mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_128; 1900 opad_present = 0; 1901 kctx_len += GMAC_BLOCK_LEN; 1902 break; 1903 default: 1904 mk_size = CHCR_KEYCTX_NO_KEY; 1905 opad_present = 0; 1906 break; 1907 } 1908 kctx_flits = (sizeof(struct _key_ctx) + kctx_len) / 16; 1909 s->blkcipher.key_ctx_hdr = htobe32(V_KEY_CONTEXT_CTX_LEN(kctx_flits) | 1910 V_KEY_CONTEXT_DUAL_CK(alg == CRYPTO_AES_XTS) | 1911 V_KEY_CONTEXT_OPAD_PRESENT(opad_present) | 1912 V_KEY_CONTEXT_SALT_PRESENT(1) | V_KEY_CONTEXT_CK_SIZE(ck_size) | 1913 V_KEY_CONTEXT_MK_SIZE(mk_size) | V_KEY_CONTEXT_VALID(1)); 1914 } 1915 1916 static int 1917 ccr_newsession(device_t dev, crypto_session_t cses, struct cryptoini *cri) 1918 { 1919 struct ccr_softc *sc; 1920 struct ccr_session *s; 1921 struct auth_hash *auth_hash; 1922 struct cryptoini *c, *hash, *cipher; 1923 unsigned int auth_mode, cipher_mode, iv_len, mk_size; 1924 unsigned int partial_digest_len; 1925 int error; 1926 bool gcm_hash, hmac; 1927 1928 if (cri == NULL) 1929 return (EINVAL); 1930 1931 gcm_hash = false; 1932 hmac = false; 1933 cipher = NULL; 1934 hash = NULL; 1935 auth_hash = NULL; 1936 auth_mode = SCMD_AUTH_MODE_NOP; 1937 cipher_mode = SCMD_CIPH_MODE_NOP; 1938 iv_len = 0; 1939 mk_size = 0; 1940 partial_digest_len = 0; 1941 for (c = cri; c != NULL; c = c->cri_next) { 1942 switch (c->cri_alg) { 1943 case CRYPTO_SHA1: 1944 case CRYPTO_SHA2_224: 1945 case CRYPTO_SHA2_256: 1946 case CRYPTO_SHA2_384: 1947 case CRYPTO_SHA2_512: 1948 case CRYPTO_SHA1_HMAC: 1949 case CRYPTO_SHA2_224_HMAC: 1950 case CRYPTO_SHA2_256_HMAC: 1951 case CRYPTO_SHA2_384_HMAC: 1952 case CRYPTO_SHA2_512_HMAC: 1953 case CRYPTO_AES_128_NIST_GMAC: 1954 case CRYPTO_AES_192_NIST_GMAC: 1955 case CRYPTO_AES_256_NIST_GMAC: 1956 if (hash) 1957 return (EINVAL); 1958 hash = c; 1959 switch (c->cri_alg) { 1960 case CRYPTO_SHA1: 1961 case CRYPTO_SHA1_HMAC: 1962 auth_hash = &auth_hash_hmac_sha1; 1963 auth_mode = SCMD_AUTH_MODE_SHA1; 1964 mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_160; 1965 partial_digest_len = SHA1_HASH_LEN; 1966 break; 1967 case CRYPTO_SHA2_224: 1968 case CRYPTO_SHA2_224_HMAC: 1969 auth_hash = &auth_hash_hmac_sha2_224; 1970 auth_mode = SCMD_AUTH_MODE_SHA224; 1971 mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_256; 1972 partial_digest_len = SHA2_256_HASH_LEN; 1973 break; 1974 case CRYPTO_SHA2_256: 1975 case CRYPTO_SHA2_256_HMAC: 1976 auth_hash = &auth_hash_hmac_sha2_256; 1977 auth_mode = SCMD_AUTH_MODE_SHA256; 1978 mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_256; 1979 partial_digest_len = SHA2_256_HASH_LEN; 1980 break; 1981 case CRYPTO_SHA2_384: 1982 case CRYPTO_SHA2_384_HMAC: 1983 auth_hash = &auth_hash_hmac_sha2_384; 1984 auth_mode = SCMD_AUTH_MODE_SHA512_384; 1985 mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_512; 1986 partial_digest_len = SHA2_512_HASH_LEN; 1987 break; 1988 case CRYPTO_SHA2_512: 1989 case CRYPTO_SHA2_512_HMAC: 1990 auth_hash = &auth_hash_hmac_sha2_512; 1991 auth_mode = SCMD_AUTH_MODE_SHA512_512; 1992 mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_512; 1993 partial_digest_len = SHA2_512_HASH_LEN; 1994 break; 1995 case CRYPTO_AES_128_NIST_GMAC: 1996 case CRYPTO_AES_192_NIST_GMAC: 1997 case CRYPTO_AES_256_NIST_GMAC: 1998 gcm_hash = true; 1999 auth_mode = SCMD_AUTH_MODE_GHASH; 2000 mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_128; 2001 break; 2002 } 2003 switch (c->cri_alg) { 2004 case CRYPTO_SHA1_HMAC: 2005 case CRYPTO_SHA2_224_HMAC: 2006 case CRYPTO_SHA2_256_HMAC: 2007 case CRYPTO_SHA2_384_HMAC: 2008 case CRYPTO_SHA2_512_HMAC: 2009 hmac = true; 2010 break; 2011 } 2012 break; 2013 case CRYPTO_AES_CBC: 2014 case CRYPTO_AES_ICM: 2015 case CRYPTO_AES_NIST_GCM_16: 2016 case CRYPTO_AES_XTS: 2017 if (cipher) 2018 return (EINVAL); 2019 cipher = c; 2020 switch (c->cri_alg) { 2021 case CRYPTO_AES_CBC: 2022 cipher_mode = SCMD_CIPH_MODE_AES_CBC; 2023 iv_len = AES_BLOCK_LEN; 2024 break; 2025 case CRYPTO_AES_ICM: 2026 cipher_mode = SCMD_CIPH_MODE_AES_CTR; 2027 iv_len = AES_BLOCK_LEN; 2028 break; 2029 case CRYPTO_AES_NIST_GCM_16: 2030 cipher_mode = SCMD_CIPH_MODE_AES_GCM; 2031 iv_len = AES_GCM_IV_LEN; 2032 break; 2033 case CRYPTO_AES_XTS: 2034 cipher_mode = SCMD_CIPH_MODE_AES_XTS; 2035 iv_len = AES_BLOCK_LEN; 2036 break; 2037 } 2038 if (c->cri_key != NULL) { 2039 error = ccr_aes_check_keylen(c->cri_alg, 2040 c->cri_klen); 2041 if (error) 2042 return (error); 2043 } 2044 break; 2045 default: 2046 return (EINVAL); 2047 } 2048 } 2049 if (gcm_hash != (cipher_mode == SCMD_CIPH_MODE_AES_GCM)) 2050 return (EINVAL); 2051 if (hash == NULL && cipher == NULL) 2052 return (EINVAL); 2053 if (hash != NULL) { 2054 if ((hmac || gcm_hash) && hash->cri_key == NULL) 2055 return (EINVAL); 2056 if (!(hmac || gcm_hash) && hash->cri_key != NULL) 2057 return (EINVAL); 2058 } 2059 2060 sc = device_get_softc(dev); 2061 mtx_lock(&sc->lock); 2062 if (sc->detaching) { 2063 mtx_unlock(&sc->lock); 2064 return (ENXIO); 2065 } 2066 2067 s = crypto_get_driver_session(cses); 2068 2069 if (gcm_hash) 2070 s->mode = GCM; 2071 else if (hash != NULL && cipher != NULL) 2072 s->mode = AUTHENC; 2073 else if (hash != NULL) { 2074 if (hmac) 2075 s->mode = HMAC; 2076 else 2077 s->mode = HASH; 2078 } else { 2079 MPASS(cipher != NULL); 2080 s->mode = BLKCIPHER; 2081 } 2082 if (gcm_hash) { 2083 if (hash->cri_mlen == 0) 2084 s->gmac.hash_len = AES_GMAC_HASH_LEN; 2085 else 2086 s->gmac.hash_len = hash->cri_mlen; 2087 ccr_init_gmac_hash(s, hash->cri_key, hash->cri_klen); 2088 } else if (hash != NULL) { 2089 s->hmac.auth_hash = auth_hash; 2090 s->hmac.auth_mode = auth_mode; 2091 s->hmac.mk_size = mk_size; 2092 s->hmac.partial_digest_len = partial_digest_len; 2093 if (hash->cri_mlen == 0) 2094 s->hmac.hash_len = auth_hash->hashsize; 2095 else 2096 s->hmac.hash_len = hash->cri_mlen; 2097 if (hmac) 2098 ccr_init_hmac_digest(s, hash->cri_alg, hash->cri_key, 2099 hash->cri_klen); 2100 else 2101 ccr_init_hash_digest(s, hash->cri_alg); 2102 } 2103 if (cipher != NULL) { 2104 s->blkcipher.cipher_mode = cipher_mode; 2105 s->blkcipher.iv_len = iv_len; 2106 if (cipher->cri_key != NULL) 2107 ccr_aes_setkey(s, cipher->cri_alg, cipher->cri_key, 2108 cipher->cri_klen); 2109 } 2110 2111 s->active = true; 2112 mtx_unlock(&sc->lock); 2113 return (0); 2114 } 2115 2116 static void 2117 ccr_freesession(device_t dev, crypto_session_t cses) 2118 { 2119 struct ccr_softc *sc; 2120 struct ccr_session *s; 2121 2122 sc = device_get_softc(dev); 2123 s = crypto_get_driver_session(cses); 2124 mtx_lock(&sc->lock); 2125 if (s->pending != 0) 2126 device_printf(dev, 2127 "session %p freed with %d pending requests\n", s, 2128 s->pending); 2129 s->active = false; 2130 mtx_unlock(&sc->lock); 2131 } 2132 2133 static int 2134 ccr_process(device_t dev, struct cryptop *crp, int hint) 2135 { 2136 struct ccr_softc *sc; 2137 struct ccr_session *s; 2138 struct cryptodesc *crd, *crda, *crde; 2139 int error; 2140 2141 if (crp == NULL) 2142 return (EINVAL); 2143 2144 crd = crp->crp_desc; 2145 s = crypto_get_driver_session(crp->crp_session); 2146 sc = device_get_softc(dev); 2147 2148 mtx_lock(&sc->lock); 2149 error = ccr_populate_sglist(sc->sg_crp, crp); 2150 if (error) { 2151 sc->stats_sglist_error++; 2152 goto out; 2153 } 2154 2155 switch (s->mode) { 2156 case HASH: 2157 error = ccr_hash(sc, s, crp); 2158 if (error == 0) 2159 sc->stats_hash++; 2160 break; 2161 case HMAC: 2162 if (crd->crd_flags & CRD_F_KEY_EXPLICIT) 2163 ccr_init_hmac_digest(s, crd->crd_alg, crd->crd_key, 2164 crd->crd_klen); 2165 error = ccr_hash(sc, s, crp); 2166 if (error == 0) 2167 sc->stats_hmac++; 2168 break; 2169 case BLKCIPHER: 2170 if (crd->crd_flags & CRD_F_KEY_EXPLICIT) { 2171 error = ccr_aes_check_keylen(crd->crd_alg, 2172 crd->crd_klen); 2173 if (error) 2174 break; 2175 ccr_aes_setkey(s, crd->crd_alg, crd->crd_key, 2176 crd->crd_klen); 2177 } 2178 error = ccr_blkcipher(sc, s, crp); 2179 if (error == 0) { 2180 if (crd->crd_flags & CRD_F_ENCRYPT) 2181 sc->stats_blkcipher_encrypt++; 2182 else 2183 sc->stats_blkcipher_decrypt++; 2184 } 2185 break; 2186 case AUTHENC: 2187 error = 0; 2188 switch (crd->crd_alg) { 2189 case CRYPTO_AES_CBC: 2190 case CRYPTO_AES_ICM: 2191 case CRYPTO_AES_XTS: 2192 /* Only encrypt-then-authenticate supported. */ 2193 crde = crd; 2194 crda = crd->crd_next; 2195 if (!(crde->crd_flags & CRD_F_ENCRYPT)) { 2196 error = EINVAL; 2197 break; 2198 } 2199 break; 2200 default: 2201 crda = crd; 2202 crde = crd->crd_next; 2203 if (crde->crd_flags & CRD_F_ENCRYPT) { 2204 error = EINVAL; 2205 break; 2206 } 2207 break; 2208 } 2209 if (error) 2210 break; 2211 if (crda->crd_flags & CRD_F_KEY_EXPLICIT) 2212 ccr_init_hmac_digest(s, crda->crd_alg, crda->crd_key, 2213 crda->crd_klen); 2214 if (crde->crd_flags & CRD_F_KEY_EXPLICIT) { 2215 error = ccr_aes_check_keylen(crde->crd_alg, 2216 crde->crd_klen); 2217 if (error) 2218 break; 2219 ccr_aes_setkey(s, crde->crd_alg, crde->crd_key, 2220 crde->crd_klen); 2221 } 2222 error = ccr_authenc(sc, s, crp, crda, crde); 2223 if (error == 0) { 2224 if (crde->crd_flags & CRD_F_ENCRYPT) 2225 sc->stats_authenc_encrypt++; 2226 else 2227 sc->stats_authenc_decrypt++; 2228 } 2229 break; 2230 case GCM: 2231 error = 0; 2232 if (crd->crd_alg == CRYPTO_AES_NIST_GCM_16) { 2233 crde = crd; 2234 crda = crd->crd_next; 2235 } else { 2236 crda = crd; 2237 crde = crd->crd_next; 2238 } 2239 if (crda->crd_flags & CRD_F_KEY_EXPLICIT) 2240 ccr_init_gmac_hash(s, crda->crd_key, crda->crd_klen); 2241 if (crde->crd_flags & CRD_F_KEY_EXPLICIT) { 2242 error = ccr_aes_check_keylen(crde->crd_alg, 2243 crde->crd_klen); 2244 if (error) 2245 break; 2246 ccr_aes_setkey(s, crde->crd_alg, crde->crd_key, 2247 crde->crd_klen); 2248 } 2249 if (crde->crd_len == 0) { 2250 mtx_unlock(&sc->lock); 2251 ccr_gcm_soft(s, crp, crda, crde); 2252 return (0); 2253 } 2254 error = ccr_gcm(sc, s, crp, crda, crde); 2255 if (error == EMSGSIZE) { 2256 sc->stats_sw_fallback++; 2257 mtx_unlock(&sc->lock); 2258 ccr_gcm_soft(s, crp, crda, crde); 2259 return (0); 2260 } 2261 if (error == 0) { 2262 if (crde->crd_flags & CRD_F_ENCRYPT) 2263 sc->stats_gcm_encrypt++; 2264 else 2265 sc->stats_gcm_decrypt++; 2266 } 2267 break; 2268 } 2269 2270 if (error == 0) { 2271 s->pending++; 2272 sc->stats_inflight++; 2273 } else 2274 sc->stats_process_error++; 2275 2276 out: 2277 mtx_unlock(&sc->lock); 2278 2279 if (error) { 2280 crp->crp_etype = error; 2281 crypto_done(crp); 2282 } 2283 2284 return (0); 2285 } 2286 2287 static int 2288 do_cpl6_fw_pld(struct sge_iq *iq, const struct rss_header *rss, 2289 struct mbuf *m) 2290 { 2291 struct ccr_softc *sc = iq->adapter->ccr_softc; 2292 struct ccr_session *s; 2293 const struct cpl_fw6_pld *cpl; 2294 struct cryptop *crp; 2295 uint32_t status; 2296 int error; 2297 2298 if (m != NULL) 2299 cpl = mtod(m, const void *); 2300 else 2301 cpl = (const void *)(rss + 1); 2302 2303 crp = (struct cryptop *)(uintptr_t)be64toh(cpl->data[1]); 2304 s = crypto_get_driver_session(crp->crp_session); 2305 status = be64toh(cpl->data[0]); 2306 if (CHK_MAC_ERR_BIT(status) || CHK_PAD_ERR_BIT(status)) 2307 error = EBADMSG; 2308 else 2309 error = 0; 2310 2311 mtx_lock(&sc->lock); 2312 s->pending--; 2313 sc->stats_inflight--; 2314 2315 switch (s->mode) { 2316 case HASH: 2317 case HMAC: 2318 error = ccr_hash_done(sc, s, crp, cpl, error); 2319 break; 2320 case BLKCIPHER: 2321 error = ccr_blkcipher_done(sc, s, crp, cpl, error); 2322 break; 2323 case AUTHENC: 2324 error = ccr_authenc_done(sc, s, crp, cpl, error); 2325 break; 2326 case GCM: 2327 error = ccr_gcm_done(sc, s, crp, cpl, error); 2328 break; 2329 } 2330 2331 if (error == EBADMSG) { 2332 if (CHK_MAC_ERR_BIT(status)) 2333 sc->stats_mac_error++; 2334 if (CHK_PAD_ERR_BIT(status)) 2335 sc->stats_pad_error++; 2336 } 2337 mtx_unlock(&sc->lock); 2338 crp->crp_etype = error; 2339 crypto_done(crp); 2340 m_freem(m); 2341 return (0); 2342 } 2343 2344 static int 2345 ccr_modevent(module_t mod, int cmd, void *arg) 2346 { 2347 2348 switch (cmd) { 2349 case MOD_LOAD: 2350 t4_register_cpl_handler(CPL_FW6_PLD, do_cpl6_fw_pld); 2351 return (0); 2352 case MOD_UNLOAD: 2353 t4_register_cpl_handler(CPL_FW6_PLD, NULL); 2354 return (0); 2355 default: 2356 return (EOPNOTSUPP); 2357 } 2358 } 2359 2360 static device_method_t ccr_methods[] = { 2361 DEVMETHOD(device_identify, ccr_identify), 2362 DEVMETHOD(device_probe, ccr_probe), 2363 DEVMETHOD(device_attach, ccr_attach), 2364 DEVMETHOD(device_detach, ccr_detach), 2365 2366 DEVMETHOD(cryptodev_newsession, ccr_newsession), 2367 DEVMETHOD(cryptodev_freesession, ccr_freesession), 2368 DEVMETHOD(cryptodev_process, ccr_process), 2369 2370 DEVMETHOD_END 2371 }; 2372 2373 static driver_t ccr_driver = { 2374 "ccr", 2375 ccr_methods, 2376 sizeof(struct ccr_softc) 2377 }; 2378 2379 static devclass_t ccr_devclass; 2380 2381 DRIVER_MODULE(ccr, t6nex, ccr_driver, ccr_devclass, ccr_modevent, NULL); 2382 MODULE_VERSION(ccr, 1); 2383 MODULE_DEPEND(ccr, crypto, 1, 1, 1); 2384 MODULE_DEPEND(ccr, t6nex, 1, 1, 1); 2385