1 /*- 2 * Copyright (c) 2017 Chelsio Communications, Inc. 3 * All rights reserved. 4 * Written by: John Baldwin <jhb@FreeBSD.org> 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include <sys/types.h> 32 #include <sys/bus.h> 33 #include <sys/lock.h> 34 #include <sys/malloc.h> 35 #include <sys/mutex.h> 36 #include <sys/module.h> 37 #include <sys/sglist.h> 38 39 #include <opencrypto/cryptodev.h> 40 #include <opencrypto/xform.h> 41 42 #include "cryptodev_if.h" 43 44 #include "common/common.h" 45 #include "crypto/t4_crypto.h" 46 47 /* 48 * Requests consist of: 49 * 50 * +-------------------------------+ 51 * | struct fw_crypto_lookaside_wr | 52 * +-------------------------------+ 53 * | struct ulp_txpkt | 54 * +-------------------------------+ 55 * | struct ulptx_idata | 56 * +-------------------------------+ 57 * | struct cpl_tx_sec_pdu | 58 * +-------------------------------+ 59 * | struct cpl_tls_tx_scmd_fmt | 60 * +-------------------------------+ 61 * | key context header | 62 * +-------------------------------+ 63 * | AES key | ----- For requests with AES 64 * +-------------------------------+ - 65 * | IPAD (16-byte aligned) | \ 66 * +-------------------------------+ +---- For requests with HMAC 67 * | OPAD (16-byte aligned) | / 68 * +-------------------------------+ - 69 * | GMAC H | ----- For AES-GCM 70 * +-------------------------------+ - 71 * | struct cpl_rx_phys_dsgl | \ 72 * +-------------------------------+ +---- Destination buffer for 73 * | PHYS_DSGL entries | / non-hash-only requests 74 * +-------------------------------+ - 75 * | 16 dummy bytes | ----- Only for hash-only requests 76 * +-------------------------------+ 77 * | IV | ----- If immediate IV 78 * +-------------------------------+ 79 * | Payload | ----- If immediate Payload 80 * +-------------------------------+ - 81 * | struct ulptx_sgl | \ 82 * +-------------------------------+ +---- If payload via SGL 83 * | SGL entries | / 84 * +-------------------------------+ - 85 * 86 * Note that the key context must be padded to ensure 16-byte alignment. 87 * For HMAC requests, the key consists of the partial hash of the IPAD 88 * followed by the partial hash of the OPAD. 89 * 90 * Replies consist of: 91 * 92 * +-------------------------------+ 93 * | struct cpl_fw6_pld | 94 * +-------------------------------+ 95 * | hash digest | ----- For HMAC request with 96 * +-------------------------------+ 'hash_size' set in work request 97 * 98 * A 32-bit big-endian error status word is supplied in the last 4 99 * bytes of data[0] in the CPL_FW6_PLD message. bit 0 indicates a 100 * "MAC" error and bit 1 indicates a "PAD" error. 101 * 102 * The 64-bit 'cookie' field from the fw_crypto_lookaside_wr message 103 * in the request is returned in data[1] of the CPL_FW6_PLD message. 104 * 105 * For block cipher replies, the updated IV is supplied in data[2] and 106 * data[3] of the CPL_FW6_PLD message. 107 * 108 * For hash replies where the work request set 'hash_size' to request 109 * a copy of the hash in the reply, the hash digest is supplied 110 * immediately following the CPL_FW6_PLD message. 111 */ 112 113 /* 114 * The crypto engine supports a maximum AAD size of 511 bytes. 115 */ 116 #define MAX_AAD_LEN 511 117 118 /* 119 * The documentation for CPL_RX_PHYS_DSGL claims a maximum of 32 SG 120 * entries. While the CPL includes a 16-bit length field, the T6 can 121 * sometimes hang if an error occurs while processing a request with a 122 * single DSGL entry larger than 2k. 123 */ 124 #define MAX_RX_PHYS_DSGL_SGE 32 125 #define DSGL_SGE_MAXLEN 2048 126 127 /* 128 * The adapter only supports requests with a total input or output 129 * length of 64k-1 or smaller. Longer requests either result in hung 130 * requests or incorrect results. 131 */ 132 #define MAX_REQUEST_SIZE 65535 133 134 static MALLOC_DEFINE(M_CCR, "ccr", "Chelsio T6 crypto"); 135 136 struct ccr_session_hmac { 137 struct auth_hash *auth_hash; 138 int hash_len; 139 unsigned int partial_digest_len; 140 unsigned int auth_mode; 141 unsigned int mk_size; 142 char ipad[CHCR_HASH_MAX_BLOCK_SIZE_128]; 143 char opad[CHCR_HASH_MAX_BLOCK_SIZE_128]; 144 }; 145 146 struct ccr_session_gmac { 147 int hash_len; 148 char ghash_h[GMAC_BLOCK_LEN]; 149 }; 150 151 struct ccr_session_blkcipher { 152 unsigned int cipher_mode; 153 unsigned int key_len; 154 unsigned int iv_len; 155 __be32 key_ctx_hdr; 156 char enckey[CHCR_AES_MAX_KEY_LEN]; 157 char deckey[CHCR_AES_MAX_KEY_LEN]; 158 }; 159 160 struct ccr_session { 161 bool active; 162 int pending; 163 enum { HMAC, BLKCIPHER, AUTHENC, GCM } mode; 164 union { 165 struct ccr_session_hmac hmac; 166 struct ccr_session_gmac gmac; 167 }; 168 struct ccr_session_blkcipher blkcipher; 169 }; 170 171 struct ccr_softc { 172 struct adapter *adapter; 173 device_t dev; 174 uint32_t cid; 175 int tx_channel_id; 176 struct mtx lock; 177 bool detaching; 178 struct sge_wrq *txq; 179 struct sge_rxq *rxq; 180 181 /* 182 * Pre-allocate S/G lists used when preparing a work request. 183 * 'sg_crp' contains an sglist describing the entire buffer 184 * for a 'struct cryptop'. 'sg_ulptx' is used to describe 185 * the data the engine should DMA as input via ULPTX_SGL. 186 * 'sg_dsgl' is used to describe the destination that cipher 187 * text and a tag should be written to. 188 */ 189 struct sglist *sg_crp; 190 struct sglist *sg_ulptx; 191 struct sglist *sg_dsgl; 192 193 /* 194 * Pre-allocate a dummy output buffer for the IV and AAD for 195 * AEAD requests. 196 */ 197 char *iv_aad_buf; 198 struct sglist *sg_iv_aad; 199 200 /* Statistics. */ 201 uint64_t stats_blkcipher_encrypt; 202 uint64_t stats_blkcipher_decrypt; 203 uint64_t stats_hmac; 204 uint64_t stats_authenc_encrypt; 205 uint64_t stats_authenc_decrypt; 206 uint64_t stats_gcm_encrypt; 207 uint64_t stats_gcm_decrypt; 208 uint64_t stats_wr_nomem; 209 uint64_t stats_inflight; 210 uint64_t stats_mac_error; 211 uint64_t stats_pad_error; 212 uint64_t stats_bad_session; 213 uint64_t stats_sglist_error; 214 uint64_t stats_process_error; 215 uint64_t stats_sw_fallback; 216 }; 217 218 /* 219 * Crypto requests involve two kind of scatter/gather lists. 220 * 221 * Non-hash-only requests require a PHYS_DSGL that describes the 222 * location to store the results of the encryption or decryption 223 * operation. This SGL uses a different format (PHYS_DSGL) and should 224 * exclude the crd_skip bytes at the start of the data as well as 225 * any AAD or IV. For authenticated encryption requests it should 226 * cover include the destination of the hash or tag. 227 * 228 * The input payload may either be supplied inline as immediate data, 229 * or via a standard ULP_TX SGL. This SGL should include AAD, 230 * ciphertext, and the hash or tag for authenticated decryption 231 * requests. 232 * 233 * These scatter/gather lists can describe different subsets of the 234 * buffer described by the crypto operation. ccr_populate_sglist() 235 * generates a scatter/gather list that covers the entire crypto 236 * operation buffer that is then used to construct the other 237 * scatter/gather lists. 238 */ 239 static int 240 ccr_populate_sglist(struct sglist *sg, struct cryptop *crp) 241 { 242 int error; 243 244 sglist_reset(sg); 245 if (crp->crp_flags & CRYPTO_F_IMBUF) 246 error = sglist_append_mbuf(sg, (struct mbuf *)crp->crp_buf); 247 else if (crp->crp_flags & CRYPTO_F_IOV) 248 error = sglist_append_uio(sg, (struct uio *)crp->crp_buf); 249 else 250 error = sglist_append(sg, crp->crp_buf, crp->crp_ilen); 251 return (error); 252 } 253 254 /* 255 * Segments in 'sg' larger than 'maxsegsize' are counted as multiple 256 * segments. 257 */ 258 static int 259 ccr_count_sgl(struct sglist *sg, int maxsegsize) 260 { 261 int i, nsegs; 262 263 nsegs = 0; 264 for (i = 0; i < sg->sg_nseg; i++) 265 nsegs += howmany(sg->sg_segs[i].ss_len, maxsegsize); 266 return (nsegs); 267 } 268 269 /* These functions deal with PHYS_DSGL for the reply buffer. */ 270 static inline int 271 ccr_phys_dsgl_len(int nsegs) 272 { 273 int len; 274 275 len = (nsegs / 8) * sizeof(struct phys_sge_pairs); 276 if ((nsegs % 8) != 0) { 277 len += sizeof(uint16_t) * 8; 278 len += roundup2(nsegs % 8, 2) * sizeof(uint64_t); 279 } 280 return (len); 281 } 282 283 static void 284 ccr_write_phys_dsgl(struct ccr_softc *sc, void *dst, int nsegs) 285 { 286 struct sglist *sg; 287 struct cpl_rx_phys_dsgl *cpl; 288 struct phys_sge_pairs *sgl; 289 vm_paddr_t paddr; 290 size_t seglen; 291 u_int i, j; 292 293 sg = sc->sg_dsgl; 294 cpl = dst; 295 cpl->op_to_tid = htobe32(V_CPL_RX_PHYS_DSGL_OPCODE(CPL_RX_PHYS_DSGL) | 296 V_CPL_RX_PHYS_DSGL_ISRDMA(0)); 297 cpl->pcirlxorder_to_noofsgentr = htobe32( 298 V_CPL_RX_PHYS_DSGL_PCIRLXORDER(0) | 299 V_CPL_RX_PHYS_DSGL_PCINOSNOOP(0) | 300 V_CPL_RX_PHYS_DSGL_PCITPHNTENB(0) | V_CPL_RX_PHYS_DSGL_DCAID(0) | 301 V_CPL_RX_PHYS_DSGL_NOOFSGENTR(nsegs)); 302 cpl->rss_hdr_int.opcode = CPL_RX_PHYS_ADDR; 303 cpl->rss_hdr_int.qid = htobe16(sc->rxq->iq.abs_id); 304 cpl->rss_hdr_int.hash_val = 0; 305 sgl = (struct phys_sge_pairs *)(cpl + 1); 306 j = 0; 307 for (i = 0; i < sg->sg_nseg; i++) { 308 seglen = sg->sg_segs[i].ss_len; 309 paddr = sg->sg_segs[i].ss_paddr; 310 do { 311 sgl->addr[j] = htobe64(paddr); 312 if (seglen > DSGL_SGE_MAXLEN) { 313 sgl->len[j] = htobe16(DSGL_SGE_MAXLEN); 314 paddr += DSGL_SGE_MAXLEN; 315 seglen -= DSGL_SGE_MAXLEN; 316 } else { 317 sgl->len[j] = htobe16(seglen); 318 seglen = 0; 319 } 320 j++; 321 if (j == 8) { 322 sgl++; 323 j = 0; 324 } 325 } while (seglen != 0); 326 } 327 MPASS(j + 8 * (sgl - (struct phys_sge_pairs *)(cpl + 1)) == nsegs); 328 } 329 330 /* These functions deal with the ULPTX_SGL for input payload. */ 331 static inline int 332 ccr_ulptx_sgl_len(int nsegs) 333 { 334 u_int n; 335 336 nsegs--; /* first segment is part of ulptx_sgl */ 337 n = sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1)); 338 return (roundup2(n, 16)); 339 } 340 341 static void 342 ccr_write_ulptx_sgl(struct ccr_softc *sc, void *dst, int nsegs) 343 { 344 struct ulptx_sgl *usgl; 345 struct sglist *sg; 346 struct sglist_seg *ss; 347 int i; 348 349 sg = sc->sg_ulptx; 350 MPASS(nsegs == sg->sg_nseg); 351 ss = &sg->sg_segs[0]; 352 usgl = dst; 353 usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) | 354 V_ULPTX_NSGE(nsegs)); 355 usgl->len0 = htobe32(ss->ss_len); 356 usgl->addr0 = htobe64(ss->ss_paddr); 357 ss++; 358 for (i = 0; i < sg->sg_nseg - 1; i++) { 359 usgl->sge[i / 2].len[i & 1] = htobe32(ss->ss_len); 360 usgl->sge[i / 2].addr[i & 1] = htobe64(ss->ss_paddr); 361 ss++; 362 } 363 364 } 365 366 static bool 367 ccr_use_imm_data(u_int transhdr_len, u_int input_len) 368 { 369 370 if (input_len > CRYPTO_MAX_IMM_TX_PKT_LEN) 371 return (false); 372 if (roundup2(transhdr_len, 16) + roundup2(input_len, 16) > 373 SGE_MAX_WR_LEN) 374 return (false); 375 return (true); 376 } 377 378 static void 379 ccr_populate_wreq(struct ccr_softc *sc, struct chcr_wr *crwr, u_int kctx_len, 380 u_int wr_len, u_int imm_len, u_int sgl_len, u_int hash_size, 381 struct cryptop *crp) 382 { 383 u_int cctx_size; 384 385 cctx_size = sizeof(struct _key_ctx) + kctx_len; 386 crwr->wreq.op_to_cctx_size = htobe32( 387 V_FW_CRYPTO_LOOKASIDE_WR_OPCODE(FW_CRYPTO_LOOKASIDE_WR) | 388 V_FW_CRYPTO_LOOKASIDE_WR_COMPL(0) | 389 V_FW_CRYPTO_LOOKASIDE_WR_IMM_LEN(imm_len) | 390 V_FW_CRYPTO_LOOKASIDE_WR_CCTX_LOC(1) | 391 V_FW_CRYPTO_LOOKASIDE_WR_CCTX_SIZE(cctx_size >> 4)); 392 crwr->wreq.len16_pkd = htobe32( 393 V_FW_CRYPTO_LOOKASIDE_WR_LEN16(wr_len / 16)); 394 crwr->wreq.session_id = 0; 395 crwr->wreq.rx_chid_to_rx_q_id = htobe32( 396 V_FW_CRYPTO_LOOKASIDE_WR_RX_CHID(sc->tx_channel_id) | 397 V_FW_CRYPTO_LOOKASIDE_WR_LCB(0) | 398 V_FW_CRYPTO_LOOKASIDE_WR_PHASH(0) | 399 V_FW_CRYPTO_LOOKASIDE_WR_IV(IV_NOP) | 400 V_FW_CRYPTO_LOOKASIDE_WR_FQIDX(0) | 401 V_FW_CRYPTO_LOOKASIDE_WR_TX_CH(0) | 402 V_FW_CRYPTO_LOOKASIDE_WR_RX_Q_ID(sc->rxq->iq.abs_id)); 403 crwr->wreq.key_addr = 0; 404 crwr->wreq.pld_size_hash_size = htobe32( 405 V_FW_CRYPTO_LOOKASIDE_WR_PLD_SIZE(sgl_len) | 406 V_FW_CRYPTO_LOOKASIDE_WR_HASH_SIZE(hash_size)); 407 crwr->wreq.cookie = htobe64((uintptr_t)crp); 408 409 crwr->ulptx.cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) | 410 V_ULP_TXPKT_DATAMODIFY(0) | 411 V_ULP_TXPKT_CHANNELID(sc->tx_channel_id) | V_ULP_TXPKT_DEST(0) | 412 V_ULP_TXPKT_FID(0) | V_ULP_TXPKT_RO(1)); 413 crwr->ulptx.len = htobe32( 414 ((wr_len - sizeof(struct fw_crypto_lookaside_wr)) / 16)); 415 416 crwr->sc_imm.cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) | 417 V_ULP_TX_SC_MORE(imm_len != 0 ? 0 : 1)); 418 crwr->sc_imm.len = htobe32(wr_len - offsetof(struct chcr_wr, sec_cpl) - 419 sgl_len); 420 } 421 422 static int 423 ccr_hmac(struct ccr_softc *sc, struct ccr_session *s, struct cryptop *crp) 424 { 425 struct chcr_wr *crwr; 426 struct wrqe *wr; 427 struct auth_hash *axf; 428 struct cryptodesc *crd; 429 char *dst; 430 u_int hash_size_in_response, kctx_flits, kctx_len, transhdr_len, wr_len; 431 u_int imm_len, iopad_size; 432 int error, sgl_nsegs, sgl_len; 433 434 crd = crp->crp_desc; 435 436 /* Reject requests with too large of an input buffer. */ 437 if (crd->crd_len > MAX_REQUEST_SIZE) 438 return (EFBIG); 439 440 axf = s->hmac.auth_hash; 441 442 /* PADs must be 128-bit aligned. */ 443 iopad_size = roundup2(s->hmac.partial_digest_len, 16); 444 445 /* 446 * The 'key' part of the context includes the aligned IPAD and 447 * OPAD. 448 */ 449 kctx_len = iopad_size * 2; 450 hash_size_in_response = axf->hashsize; 451 transhdr_len = HASH_TRANSHDR_SIZE(kctx_len); 452 453 if (crd->crd_len == 0) { 454 imm_len = axf->blocksize; 455 sgl_nsegs = 0; 456 sgl_len = 0; 457 } else if (ccr_use_imm_data(transhdr_len, crd->crd_len)) { 458 imm_len = crd->crd_len; 459 sgl_nsegs = 0; 460 sgl_len = 0; 461 } else { 462 imm_len = 0; 463 sglist_reset(sc->sg_ulptx); 464 error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp, 465 crd->crd_skip, crd->crd_len); 466 if (error) 467 return (error); 468 sgl_nsegs = sc->sg_ulptx->sg_nseg; 469 sgl_len = ccr_ulptx_sgl_len(sgl_nsegs); 470 } 471 472 wr_len = roundup2(transhdr_len, 16) + roundup2(imm_len, 16) + sgl_len; 473 if (wr_len > SGE_MAX_WR_LEN) 474 return (EFBIG); 475 wr = alloc_wrqe(wr_len, sc->txq); 476 if (wr == NULL) { 477 sc->stats_wr_nomem++; 478 return (ENOMEM); 479 } 480 crwr = wrtod(wr); 481 memset(crwr, 0, wr_len); 482 483 ccr_populate_wreq(sc, crwr, kctx_len, wr_len, imm_len, sgl_len, 484 hash_size_in_response, crp); 485 486 /* XXX: Hardcodes SGE loopback channel of 0. */ 487 crwr->sec_cpl.op_ivinsrtofst = htobe32( 488 V_CPL_TX_SEC_PDU_OPCODE(CPL_TX_SEC_PDU) | 489 V_CPL_TX_SEC_PDU_RXCHID(sc->tx_channel_id) | 490 V_CPL_TX_SEC_PDU_ACKFOLLOWS(0) | V_CPL_TX_SEC_PDU_ULPTXLPBK(1) | 491 V_CPL_TX_SEC_PDU_CPLLEN(2) | V_CPL_TX_SEC_PDU_PLACEHOLDER(0) | 492 V_CPL_TX_SEC_PDU_IVINSRTOFST(0)); 493 494 crwr->sec_cpl.pldlen = htobe32(crd->crd_len == 0 ? axf->blocksize : 495 crd->crd_len); 496 497 crwr->sec_cpl.cipherstop_lo_authinsert = htobe32( 498 V_CPL_TX_SEC_PDU_AUTHSTART(1) | V_CPL_TX_SEC_PDU_AUTHSTOP(0)); 499 500 /* These two flits are actually a CPL_TLS_TX_SCMD_FMT. */ 501 crwr->sec_cpl.seqno_numivs = htobe32( 502 V_SCMD_SEQ_NO_CTRL(0) | 503 V_SCMD_PROTO_VERSION(CHCR_SCMD_PROTO_VERSION_GENERIC) | 504 V_SCMD_CIPH_MODE(CHCR_SCMD_CIPHER_MODE_NOP) | 505 V_SCMD_AUTH_MODE(s->hmac.auth_mode) | 506 V_SCMD_HMAC_CTRL(CHCR_SCMD_HMAC_CTRL_NO_TRUNC)); 507 crwr->sec_cpl.ivgen_hdrlen = htobe32( 508 V_SCMD_LAST_FRAG(0) | 509 V_SCMD_MORE_FRAGS(crd->crd_len == 0 ? 1 : 0) | V_SCMD_MAC_ONLY(1)); 510 511 memcpy(crwr->key_ctx.key, s->hmac.ipad, s->hmac.partial_digest_len); 512 memcpy(crwr->key_ctx.key + iopad_size, s->hmac.opad, 513 s->hmac.partial_digest_len); 514 515 /* XXX: F_KEY_CONTEXT_SALT_PRESENT set, but 'salt' not set. */ 516 kctx_flits = (sizeof(struct _key_ctx) + kctx_len) / 16; 517 crwr->key_ctx.ctx_hdr = htobe32(V_KEY_CONTEXT_CTX_LEN(kctx_flits) | 518 V_KEY_CONTEXT_OPAD_PRESENT(1) | V_KEY_CONTEXT_SALT_PRESENT(1) | 519 V_KEY_CONTEXT_CK_SIZE(CHCR_KEYCTX_NO_KEY) | 520 V_KEY_CONTEXT_MK_SIZE(s->hmac.mk_size) | V_KEY_CONTEXT_VALID(1)); 521 522 dst = (char *)(crwr + 1) + kctx_len + DUMMY_BYTES; 523 if (crd->crd_len == 0) { 524 dst[0] = 0x80; 525 *(uint64_t *)(dst + axf->blocksize - sizeof(uint64_t)) = 526 htobe64(axf->blocksize << 3); 527 } else if (imm_len != 0) 528 crypto_copydata(crp->crp_flags, crp->crp_buf, crd->crd_skip, 529 crd->crd_len, dst); 530 else 531 ccr_write_ulptx_sgl(sc, dst, sgl_nsegs); 532 533 /* XXX: TODO backpressure */ 534 t4_wrq_tx(sc->adapter, wr); 535 536 return (0); 537 } 538 539 static int 540 ccr_hmac_done(struct ccr_softc *sc, struct ccr_session *s, struct cryptop *crp, 541 const struct cpl_fw6_pld *cpl, int error) 542 { 543 struct cryptodesc *crd; 544 545 crd = crp->crp_desc; 546 if (error == 0) { 547 crypto_copyback(crp->crp_flags, crp->crp_buf, crd->crd_inject, 548 s->hmac.hash_len, (c_caddr_t)(cpl + 1)); 549 } 550 551 return (error); 552 } 553 554 static int 555 ccr_blkcipher(struct ccr_softc *sc, struct ccr_session *s, struct cryptop *crp) 556 { 557 char iv[CHCR_MAX_CRYPTO_IV_LEN]; 558 struct chcr_wr *crwr; 559 struct wrqe *wr; 560 struct cryptodesc *crd; 561 char *dst; 562 u_int kctx_len, key_half, op_type, transhdr_len, wr_len; 563 u_int imm_len; 564 int dsgl_nsegs, dsgl_len; 565 int sgl_nsegs, sgl_len; 566 int error; 567 568 crd = crp->crp_desc; 569 570 if (s->blkcipher.key_len == 0 || crd->crd_len == 0) 571 return (EINVAL); 572 if (crd->crd_alg == CRYPTO_AES_CBC && 573 (crd->crd_len % AES_BLOCK_LEN) != 0) 574 return (EINVAL); 575 576 /* Reject requests with too large of an input buffer. */ 577 if (crd->crd_len > MAX_REQUEST_SIZE) 578 return (EFBIG); 579 580 if (crd->crd_flags & CRD_F_ENCRYPT) 581 op_type = CHCR_ENCRYPT_OP; 582 else 583 op_type = CHCR_DECRYPT_OP; 584 585 sglist_reset(sc->sg_dsgl); 586 error = sglist_append_sglist(sc->sg_dsgl, sc->sg_crp, crd->crd_skip, 587 crd->crd_len); 588 if (error) 589 return (error); 590 dsgl_nsegs = ccr_count_sgl(sc->sg_dsgl, DSGL_SGE_MAXLEN); 591 if (dsgl_nsegs > MAX_RX_PHYS_DSGL_SGE) 592 return (EFBIG); 593 dsgl_len = ccr_phys_dsgl_len(dsgl_nsegs); 594 595 /* The 'key' must be 128-bit aligned. */ 596 kctx_len = roundup2(s->blkcipher.key_len, 16); 597 transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, dsgl_len); 598 599 if (ccr_use_imm_data(transhdr_len, crd->crd_len + 600 s->blkcipher.iv_len)) { 601 imm_len = crd->crd_len; 602 sgl_nsegs = 0; 603 sgl_len = 0; 604 } else { 605 imm_len = 0; 606 sglist_reset(sc->sg_ulptx); 607 error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp, 608 crd->crd_skip, crd->crd_len); 609 if (error) 610 return (error); 611 sgl_nsegs = sc->sg_ulptx->sg_nseg; 612 sgl_len = ccr_ulptx_sgl_len(sgl_nsegs); 613 } 614 615 wr_len = roundup2(transhdr_len, 16) + s->blkcipher.iv_len + 616 roundup2(imm_len, 16) + sgl_len; 617 if (wr_len > SGE_MAX_WR_LEN) 618 return (EFBIG); 619 wr = alloc_wrqe(wr_len, sc->txq); 620 if (wr == NULL) { 621 sc->stats_wr_nomem++; 622 return (ENOMEM); 623 } 624 crwr = wrtod(wr); 625 memset(crwr, 0, wr_len); 626 627 /* 628 * Read the existing IV from the request or generate a random 629 * one if none is provided. Optionally copy the generated IV 630 * into the output buffer if requested. 631 */ 632 if (op_type == CHCR_ENCRYPT_OP) { 633 if (crd->crd_flags & CRD_F_IV_EXPLICIT) 634 memcpy(iv, crd->crd_iv, s->blkcipher.iv_len); 635 else 636 arc4rand(iv, s->blkcipher.iv_len, 0); 637 if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0) 638 crypto_copyback(crp->crp_flags, crp->crp_buf, 639 crd->crd_inject, s->blkcipher.iv_len, iv); 640 } else { 641 if (crd->crd_flags & CRD_F_IV_EXPLICIT) 642 memcpy(iv, crd->crd_iv, s->blkcipher.iv_len); 643 else 644 crypto_copydata(crp->crp_flags, crp->crp_buf, 645 crd->crd_inject, s->blkcipher.iv_len, iv); 646 } 647 648 ccr_populate_wreq(sc, crwr, kctx_len, wr_len, imm_len, sgl_len, 0, 649 crp); 650 651 /* XXX: Hardcodes SGE loopback channel of 0. */ 652 crwr->sec_cpl.op_ivinsrtofst = htobe32( 653 V_CPL_TX_SEC_PDU_OPCODE(CPL_TX_SEC_PDU) | 654 V_CPL_TX_SEC_PDU_RXCHID(sc->tx_channel_id) | 655 V_CPL_TX_SEC_PDU_ACKFOLLOWS(0) | V_CPL_TX_SEC_PDU_ULPTXLPBK(1) | 656 V_CPL_TX_SEC_PDU_CPLLEN(2) | V_CPL_TX_SEC_PDU_PLACEHOLDER(0) | 657 V_CPL_TX_SEC_PDU_IVINSRTOFST(1)); 658 659 crwr->sec_cpl.pldlen = htobe32(s->blkcipher.iv_len + crd->crd_len); 660 661 crwr->sec_cpl.aadstart_cipherstop_hi = htobe32( 662 V_CPL_TX_SEC_PDU_CIPHERSTART(s->blkcipher.iv_len + 1) | 663 V_CPL_TX_SEC_PDU_CIPHERSTOP_HI(0)); 664 crwr->sec_cpl.cipherstop_lo_authinsert = htobe32( 665 V_CPL_TX_SEC_PDU_CIPHERSTOP_LO(0)); 666 667 /* These two flits are actually a CPL_TLS_TX_SCMD_FMT. */ 668 crwr->sec_cpl.seqno_numivs = htobe32( 669 V_SCMD_SEQ_NO_CTRL(0) | 670 V_SCMD_PROTO_VERSION(CHCR_SCMD_PROTO_VERSION_GENERIC) | 671 V_SCMD_ENC_DEC_CTRL(op_type) | 672 V_SCMD_CIPH_MODE(s->blkcipher.cipher_mode) | 673 V_SCMD_AUTH_MODE(CHCR_SCMD_AUTH_MODE_NOP) | 674 V_SCMD_HMAC_CTRL(CHCR_SCMD_HMAC_CTRL_NOP) | 675 V_SCMD_IV_SIZE(s->blkcipher.iv_len / 2) | 676 V_SCMD_NUM_IVS(0)); 677 crwr->sec_cpl.ivgen_hdrlen = htobe32( 678 V_SCMD_IV_GEN_CTRL(0) | 679 V_SCMD_MORE_FRAGS(0) | V_SCMD_LAST_FRAG(0) | V_SCMD_MAC_ONLY(0) | 680 V_SCMD_AADIVDROP(1) | V_SCMD_HDR_LEN(dsgl_len)); 681 682 crwr->key_ctx.ctx_hdr = s->blkcipher.key_ctx_hdr; 683 switch (crd->crd_alg) { 684 case CRYPTO_AES_CBC: 685 if (crd->crd_flags & CRD_F_ENCRYPT) 686 memcpy(crwr->key_ctx.key, s->blkcipher.enckey, 687 s->blkcipher.key_len); 688 else 689 memcpy(crwr->key_ctx.key, s->blkcipher.deckey, 690 s->blkcipher.key_len); 691 break; 692 case CRYPTO_AES_ICM: 693 memcpy(crwr->key_ctx.key, s->blkcipher.enckey, 694 s->blkcipher.key_len); 695 break; 696 case CRYPTO_AES_XTS: 697 key_half = s->blkcipher.key_len / 2; 698 memcpy(crwr->key_ctx.key, s->blkcipher.enckey + key_half, 699 key_half); 700 if (crd->crd_flags & CRD_F_ENCRYPT) 701 memcpy(crwr->key_ctx.key + key_half, 702 s->blkcipher.enckey, key_half); 703 else 704 memcpy(crwr->key_ctx.key + key_half, 705 s->blkcipher.deckey, key_half); 706 break; 707 } 708 709 dst = (char *)(crwr + 1) + kctx_len; 710 ccr_write_phys_dsgl(sc, dst, dsgl_nsegs); 711 dst += sizeof(struct cpl_rx_phys_dsgl) + dsgl_len; 712 memcpy(dst, iv, s->blkcipher.iv_len); 713 dst += s->blkcipher.iv_len; 714 if (imm_len != 0) 715 crypto_copydata(crp->crp_flags, crp->crp_buf, crd->crd_skip, 716 crd->crd_len, dst); 717 else 718 ccr_write_ulptx_sgl(sc, dst, sgl_nsegs); 719 720 /* XXX: TODO backpressure */ 721 t4_wrq_tx(sc->adapter, wr); 722 723 return (0); 724 } 725 726 static int 727 ccr_blkcipher_done(struct ccr_softc *sc, struct ccr_session *s, 728 struct cryptop *crp, const struct cpl_fw6_pld *cpl, int error) 729 { 730 731 /* 732 * The updated IV to permit chained requests is at 733 * cpl->data[2], but OCF doesn't permit chained requests. 734 */ 735 return (error); 736 } 737 738 /* 739 * 'hashsize' is the length of a full digest. 'authsize' is the 740 * requested digest length for this operation which may be less 741 * than 'hashsize'. 742 */ 743 static int 744 ccr_hmac_ctrl(unsigned int hashsize, unsigned int authsize) 745 { 746 747 if (authsize == 10) 748 return (CHCR_SCMD_HMAC_CTRL_TRUNC_RFC4366); 749 if (authsize == 12) 750 return (CHCR_SCMD_HMAC_CTRL_IPSEC_96BIT); 751 if (authsize == hashsize / 2) 752 return (CHCR_SCMD_HMAC_CTRL_DIV2); 753 return (CHCR_SCMD_HMAC_CTRL_NO_TRUNC); 754 } 755 756 static int 757 ccr_authenc(struct ccr_softc *sc, struct ccr_session *s, struct cryptop *crp, 758 struct cryptodesc *crda, struct cryptodesc *crde) 759 { 760 char iv[CHCR_MAX_CRYPTO_IV_LEN]; 761 struct chcr_wr *crwr; 762 struct wrqe *wr; 763 struct auth_hash *axf; 764 char *dst; 765 u_int kctx_len, key_half, op_type, transhdr_len, wr_len; 766 u_int hash_size_in_response, imm_len, iopad_size; 767 u_int aad_start, aad_len, aad_stop; 768 u_int auth_start, auth_stop, auth_insert; 769 u_int cipher_start, cipher_stop; 770 u_int hmac_ctrl, input_len; 771 int dsgl_nsegs, dsgl_len; 772 int sgl_nsegs, sgl_len; 773 int error; 774 775 /* 776 * If there is a need in the future, requests with an empty 777 * payload could be supported as HMAC-only requests. 778 */ 779 if (s->blkcipher.key_len == 0 || crde->crd_len == 0) 780 return (EINVAL); 781 if (crde->crd_alg == CRYPTO_AES_CBC && 782 (crde->crd_len % AES_BLOCK_LEN) != 0) 783 return (EINVAL); 784 785 /* 786 * Compute the length of the AAD (data covered by the 787 * authentication descriptor but not the encryption 788 * descriptor). To simplify the logic, AAD is only permitted 789 * before the cipher/plain text, not after. This is true of 790 * all currently-generated requests. 791 */ 792 if (crda->crd_len + crda->crd_skip > crde->crd_len + crde->crd_skip) 793 return (EINVAL); 794 if (crda->crd_skip < crde->crd_skip) { 795 if (crda->crd_skip + crda->crd_len > crde->crd_skip) 796 aad_len = (crde->crd_skip - crda->crd_skip); 797 else 798 aad_len = crda->crd_len; 799 } else 800 aad_len = 0; 801 if (aad_len + s->blkcipher.iv_len > MAX_AAD_LEN) 802 return (EINVAL); 803 804 axf = s->hmac.auth_hash; 805 hash_size_in_response = s->hmac.hash_len; 806 if (crde->crd_flags & CRD_F_ENCRYPT) 807 op_type = CHCR_ENCRYPT_OP; 808 else 809 op_type = CHCR_DECRYPT_OP; 810 811 /* 812 * The output buffer consists of the cipher text followed by 813 * the hash when encrypting. For decryption it only contains 814 * the plain text. 815 * 816 * Due to a firmware bug, the output buffer must include a 817 * dummy output buffer for the IV and AAD prior to the real 818 * output buffer. 819 */ 820 if (op_type == CHCR_ENCRYPT_OP) { 821 if (s->blkcipher.iv_len + aad_len + crde->crd_len + 822 hash_size_in_response > MAX_REQUEST_SIZE) 823 return (EFBIG); 824 } else { 825 if (s->blkcipher.iv_len + aad_len + crde->crd_len > 826 MAX_REQUEST_SIZE) 827 return (EFBIG); 828 } 829 sglist_reset(sc->sg_dsgl); 830 error = sglist_append_sglist(sc->sg_dsgl, sc->sg_iv_aad, 0, 831 s->blkcipher.iv_len + aad_len); 832 if (error) 833 return (error); 834 error = sglist_append_sglist(sc->sg_dsgl, sc->sg_crp, crde->crd_skip, 835 crde->crd_len); 836 if (error) 837 return (error); 838 if (op_type == CHCR_ENCRYPT_OP) { 839 error = sglist_append_sglist(sc->sg_dsgl, sc->sg_crp, 840 crda->crd_inject, hash_size_in_response); 841 if (error) 842 return (error); 843 } 844 dsgl_nsegs = ccr_count_sgl(sc->sg_dsgl, DSGL_SGE_MAXLEN); 845 if (dsgl_nsegs > MAX_RX_PHYS_DSGL_SGE) 846 return (EFBIG); 847 dsgl_len = ccr_phys_dsgl_len(dsgl_nsegs); 848 849 /* PADs must be 128-bit aligned. */ 850 iopad_size = roundup2(s->hmac.partial_digest_len, 16); 851 852 /* 853 * The 'key' part of the key context consists of the key followed 854 * by the IPAD and OPAD. 855 */ 856 kctx_len = roundup2(s->blkcipher.key_len, 16) + iopad_size * 2; 857 transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, dsgl_len); 858 859 /* 860 * The input buffer consists of the IV, any AAD, and then the 861 * cipher/plain text. For decryption requests the hash is 862 * appended after the cipher text. 863 * 864 * The IV is always stored at the start of the input buffer 865 * even though it may be duplicated in the payload. The 866 * crypto engine doesn't work properly if the IV offset points 867 * inside of the AAD region, so a second copy is always 868 * required. 869 */ 870 input_len = aad_len + crde->crd_len; 871 872 /* 873 * The firmware hangs if sent a request which is a 874 * bit smaller than MAX_REQUEST_SIZE. In particular, the 875 * firmware appears to require 512 - 16 bytes of spare room 876 * along with the size of the hash even if the hash isn't 877 * included in the input buffer. 878 */ 879 if (input_len + roundup2(axf->hashsize, 16) + (512 - 16) > 880 MAX_REQUEST_SIZE) 881 return (EFBIG); 882 if (op_type == CHCR_DECRYPT_OP) 883 input_len += hash_size_in_response; 884 if (ccr_use_imm_data(transhdr_len, s->blkcipher.iv_len + input_len)) { 885 imm_len = input_len; 886 sgl_nsegs = 0; 887 sgl_len = 0; 888 } else { 889 imm_len = 0; 890 sglist_reset(sc->sg_ulptx); 891 if (aad_len != 0) { 892 error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp, 893 crda->crd_skip, aad_len); 894 if (error) 895 return (error); 896 } 897 error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp, 898 crde->crd_skip, crde->crd_len); 899 if (error) 900 return (error); 901 if (op_type == CHCR_DECRYPT_OP) { 902 error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp, 903 crda->crd_inject, hash_size_in_response); 904 if (error) 905 return (error); 906 } 907 sgl_nsegs = sc->sg_ulptx->sg_nseg; 908 sgl_len = ccr_ulptx_sgl_len(sgl_nsegs); 909 } 910 911 /* 912 * Any auth-only data before the cipher region is marked as AAD. 913 * Auth-data that overlaps with the cipher region is placed in 914 * the auth section. 915 */ 916 if (aad_len != 0) { 917 aad_start = s->blkcipher.iv_len + 1; 918 aad_stop = aad_start + aad_len - 1; 919 } else { 920 aad_start = 0; 921 aad_stop = 0; 922 } 923 cipher_start = s->blkcipher.iv_len + aad_len + 1; 924 if (op_type == CHCR_DECRYPT_OP) 925 cipher_stop = hash_size_in_response; 926 else 927 cipher_stop = 0; 928 if (aad_len == crda->crd_len) { 929 auth_start = 0; 930 auth_stop = 0; 931 } else { 932 if (aad_len != 0) 933 auth_start = cipher_start; 934 else 935 auth_start = s->blkcipher.iv_len + crda->crd_skip - 936 crde->crd_skip + 1; 937 auth_stop = (crde->crd_skip + crde->crd_len) - 938 (crda->crd_skip + crda->crd_len) + cipher_stop; 939 } 940 if (op_type == CHCR_DECRYPT_OP) 941 auth_insert = hash_size_in_response; 942 else 943 auth_insert = 0; 944 945 wr_len = roundup2(transhdr_len, 16) + s->blkcipher.iv_len + 946 roundup2(imm_len, 16) + sgl_len; 947 if (wr_len > SGE_MAX_WR_LEN) 948 return (EFBIG); 949 wr = alloc_wrqe(wr_len, sc->txq); 950 if (wr == NULL) { 951 sc->stats_wr_nomem++; 952 return (ENOMEM); 953 } 954 crwr = wrtod(wr); 955 memset(crwr, 0, wr_len); 956 957 /* 958 * Read the existing IV from the request or generate a random 959 * one if none is provided. Optionally copy the generated IV 960 * into the output buffer if requested. 961 */ 962 if (op_type == CHCR_ENCRYPT_OP) { 963 if (crde->crd_flags & CRD_F_IV_EXPLICIT) 964 memcpy(iv, crde->crd_iv, s->blkcipher.iv_len); 965 else 966 arc4rand(iv, s->blkcipher.iv_len, 0); 967 if ((crde->crd_flags & CRD_F_IV_PRESENT) == 0) 968 crypto_copyback(crp->crp_flags, crp->crp_buf, 969 crde->crd_inject, s->blkcipher.iv_len, iv); 970 } else { 971 if (crde->crd_flags & CRD_F_IV_EXPLICIT) 972 memcpy(iv, crde->crd_iv, s->blkcipher.iv_len); 973 else 974 crypto_copydata(crp->crp_flags, crp->crp_buf, 975 crde->crd_inject, s->blkcipher.iv_len, iv); 976 } 977 978 ccr_populate_wreq(sc, crwr, kctx_len, wr_len, imm_len, sgl_len, 979 op_type == CHCR_DECRYPT_OP ? hash_size_in_response : 0, crp); 980 981 /* XXX: Hardcodes SGE loopback channel of 0. */ 982 crwr->sec_cpl.op_ivinsrtofst = htobe32( 983 V_CPL_TX_SEC_PDU_OPCODE(CPL_TX_SEC_PDU) | 984 V_CPL_TX_SEC_PDU_RXCHID(sc->tx_channel_id) | 985 V_CPL_TX_SEC_PDU_ACKFOLLOWS(0) | V_CPL_TX_SEC_PDU_ULPTXLPBK(1) | 986 V_CPL_TX_SEC_PDU_CPLLEN(2) | V_CPL_TX_SEC_PDU_PLACEHOLDER(0) | 987 V_CPL_TX_SEC_PDU_IVINSRTOFST(1)); 988 989 crwr->sec_cpl.pldlen = htobe32(s->blkcipher.iv_len + input_len); 990 991 crwr->sec_cpl.aadstart_cipherstop_hi = htobe32( 992 V_CPL_TX_SEC_PDU_AADSTART(aad_start) | 993 V_CPL_TX_SEC_PDU_AADSTOP(aad_stop) | 994 V_CPL_TX_SEC_PDU_CIPHERSTART(cipher_start) | 995 V_CPL_TX_SEC_PDU_CIPHERSTOP_HI(cipher_stop >> 4)); 996 crwr->sec_cpl.cipherstop_lo_authinsert = htobe32( 997 V_CPL_TX_SEC_PDU_CIPHERSTOP_LO(cipher_stop & 0xf) | 998 V_CPL_TX_SEC_PDU_AUTHSTART(auth_start) | 999 V_CPL_TX_SEC_PDU_AUTHSTOP(auth_stop) | 1000 V_CPL_TX_SEC_PDU_AUTHINSERT(auth_insert)); 1001 1002 /* These two flits are actually a CPL_TLS_TX_SCMD_FMT. */ 1003 hmac_ctrl = ccr_hmac_ctrl(axf->hashsize, hash_size_in_response); 1004 crwr->sec_cpl.seqno_numivs = htobe32( 1005 V_SCMD_SEQ_NO_CTRL(0) | 1006 V_SCMD_PROTO_VERSION(CHCR_SCMD_PROTO_VERSION_GENERIC) | 1007 V_SCMD_ENC_DEC_CTRL(op_type) | 1008 V_SCMD_CIPH_AUTH_SEQ_CTRL(op_type == CHCR_ENCRYPT_OP ? 1 : 0) | 1009 V_SCMD_CIPH_MODE(s->blkcipher.cipher_mode) | 1010 V_SCMD_AUTH_MODE(s->hmac.auth_mode) | 1011 V_SCMD_HMAC_CTRL(hmac_ctrl) | 1012 V_SCMD_IV_SIZE(s->blkcipher.iv_len / 2) | 1013 V_SCMD_NUM_IVS(0)); 1014 crwr->sec_cpl.ivgen_hdrlen = htobe32( 1015 V_SCMD_IV_GEN_CTRL(0) | 1016 V_SCMD_MORE_FRAGS(0) | V_SCMD_LAST_FRAG(0) | V_SCMD_MAC_ONLY(0) | 1017 V_SCMD_AADIVDROP(0) | V_SCMD_HDR_LEN(dsgl_len)); 1018 1019 crwr->key_ctx.ctx_hdr = s->blkcipher.key_ctx_hdr; 1020 switch (crde->crd_alg) { 1021 case CRYPTO_AES_CBC: 1022 if (crde->crd_flags & CRD_F_ENCRYPT) 1023 memcpy(crwr->key_ctx.key, s->blkcipher.enckey, 1024 s->blkcipher.key_len); 1025 else 1026 memcpy(crwr->key_ctx.key, s->blkcipher.deckey, 1027 s->blkcipher.key_len); 1028 break; 1029 case CRYPTO_AES_ICM: 1030 memcpy(crwr->key_ctx.key, s->blkcipher.enckey, 1031 s->blkcipher.key_len); 1032 break; 1033 case CRYPTO_AES_XTS: 1034 key_half = s->blkcipher.key_len / 2; 1035 memcpy(crwr->key_ctx.key, s->blkcipher.enckey + key_half, 1036 key_half); 1037 if (crde->crd_flags & CRD_F_ENCRYPT) 1038 memcpy(crwr->key_ctx.key + key_half, 1039 s->blkcipher.enckey, key_half); 1040 else 1041 memcpy(crwr->key_ctx.key + key_half, 1042 s->blkcipher.deckey, key_half); 1043 break; 1044 } 1045 1046 dst = crwr->key_ctx.key + roundup2(s->blkcipher.key_len, 16); 1047 memcpy(dst, s->hmac.ipad, s->hmac.partial_digest_len); 1048 memcpy(dst + iopad_size, s->hmac.opad, s->hmac.partial_digest_len); 1049 1050 dst = (char *)(crwr + 1) + kctx_len; 1051 ccr_write_phys_dsgl(sc, dst, dsgl_nsegs); 1052 dst += sizeof(struct cpl_rx_phys_dsgl) + dsgl_len; 1053 memcpy(dst, iv, s->blkcipher.iv_len); 1054 dst += s->blkcipher.iv_len; 1055 if (imm_len != 0) { 1056 if (aad_len != 0) { 1057 crypto_copydata(crp->crp_flags, crp->crp_buf, 1058 crda->crd_skip, aad_len, dst); 1059 dst += aad_len; 1060 } 1061 crypto_copydata(crp->crp_flags, crp->crp_buf, crde->crd_skip, 1062 crde->crd_len, dst); 1063 dst += crde->crd_len; 1064 if (op_type == CHCR_DECRYPT_OP) 1065 crypto_copydata(crp->crp_flags, crp->crp_buf, 1066 crda->crd_inject, hash_size_in_response, dst); 1067 } else 1068 ccr_write_ulptx_sgl(sc, dst, sgl_nsegs); 1069 1070 /* XXX: TODO backpressure */ 1071 t4_wrq_tx(sc->adapter, wr); 1072 1073 return (0); 1074 } 1075 1076 static int 1077 ccr_authenc_done(struct ccr_softc *sc, struct ccr_session *s, 1078 struct cryptop *crp, const struct cpl_fw6_pld *cpl, int error) 1079 { 1080 struct cryptodesc *crd; 1081 1082 /* 1083 * The updated IV to permit chained requests is at 1084 * cpl->data[2], but OCF doesn't permit chained requests. 1085 * 1086 * For a decryption request, the hardware may do a verification 1087 * of the HMAC which will fail if the existing HMAC isn't in the 1088 * buffer. If that happens, clear the error and copy the HMAC 1089 * from the CPL reply into the buffer. 1090 * 1091 * For encryption requests, crd should be the cipher request 1092 * which will have CRD_F_ENCRYPT set. For decryption 1093 * requests, crp_desc will be the HMAC request which should 1094 * not have this flag set. 1095 */ 1096 crd = crp->crp_desc; 1097 if (error == EBADMSG && !CHK_PAD_ERR_BIT(be64toh(cpl->data[0])) && 1098 !(crd->crd_flags & CRD_F_ENCRYPT)) { 1099 crypto_copyback(crp->crp_flags, crp->crp_buf, crd->crd_inject, 1100 s->hmac.hash_len, (c_caddr_t)(cpl + 1)); 1101 error = 0; 1102 } 1103 return (error); 1104 } 1105 1106 static int 1107 ccr_gcm(struct ccr_softc *sc, struct ccr_session *s, struct cryptop *crp, 1108 struct cryptodesc *crda, struct cryptodesc *crde) 1109 { 1110 char iv[CHCR_MAX_CRYPTO_IV_LEN]; 1111 struct chcr_wr *crwr; 1112 struct wrqe *wr; 1113 char *dst; 1114 u_int iv_len, kctx_len, op_type, transhdr_len, wr_len; 1115 u_int hash_size_in_response, imm_len; 1116 u_int aad_start, aad_stop, cipher_start, cipher_stop, auth_insert; 1117 u_int hmac_ctrl, input_len; 1118 int dsgl_nsegs, dsgl_len; 1119 int sgl_nsegs, sgl_len; 1120 int error; 1121 1122 if (s->blkcipher.key_len == 0) 1123 return (EINVAL); 1124 1125 /* 1126 * The crypto engine doesn't handle GCM requests with an empty 1127 * payload, so handle those in software instead. 1128 */ 1129 if (crde->crd_len == 0) 1130 return (EMSGSIZE); 1131 1132 /* 1133 * AAD is only permitted before the cipher/plain text, not 1134 * after. 1135 */ 1136 if (crda->crd_len + crda->crd_skip > crde->crd_len + crde->crd_skip) 1137 return (EMSGSIZE); 1138 1139 if (crda->crd_len + AES_BLOCK_LEN > MAX_AAD_LEN) 1140 return (EMSGSIZE); 1141 1142 hash_size_in_response = s->gmac.hash_len; 1143 if (crde->crd_flags & CRD_F_ENCRYPT) 1144 op_type = CHCR_ENCRYPT_OP; 1145 else 1146 op_type = CHCR_DECRYPT_OP; 1147 1148 /* 1149 * The IV handling for GCM in OCF is a bit more complicated in 1150 * that IPSec provides a full 16-byte IV (including the 1151 * counter), whereas the /dev/crypto interface sometimes 1152 * provides a full 16-byte IV (if no IV is provided in the 1153 * ioctl) and sometimes a 12-byte IV (if the IV was explicit). 1154 * 1155 * When provided a 12-byte IV, assume the IV is really 16 bytes 1156 * with a counter in the last 4 bytes initialized to 1. 1157 * 1158 * While iv_len is checked below, the value is currently 1159 * always set to 12 when creating a GCM session in this driver 1160 * due to limitations in OCF (there is no way to know what the 1161 * IV length of a given request will be). This means that the 1162 * driver always assumes as 12-byte IV for now. 1163 */ 1164 if (s->blkcipher.iv_len == 12) 1165 iv_len = AES_BLOCK_LEN; 1166 else 1167 iv_len = s->blkcipher.iv_len; 1168 1169 /* 1170 * The output buffer consists of the cipher text followed by 1171 * the tag when encrypting. For decryption it only contains 1172 * the plain text. 1173 * 1174 * Due to a firmware bug, the output buffer must include a 1175 * dummy output buffer for the IV and AAD prior to the real 1176 * output buffer. 1177 */ 1178 if (op_type == CHCR_ENCRYPT_OP) { 1179 if (iv_len + crda->crd_len + crde->crd_len + 1180 hash_size_in_response > MAX_REQUEST_SIZE) 1181 return (EFBIG); 1182 } else { 1183 if (iv_len + crda->crd_len + crde->crd_len > MAX_REQUEST_SIZE) 1184 return (EFBIG); 1185 } 1186 sglist_reset(sc->sg_dsgl); 1187 error = sglist_append_sglist(sc->sg_dsgl, sc->sg_iv_aad, 0, iv_len + 1188 crda->crd_len); 1189 if (error) 1190 return (error); 1191 error = sglist_append_sglist(sc->sg_dsgl, sc->sg_crp, crde->crd_skip, 1192 crde->crd_len); 1193 if (error) 1194 return (error); 1195 if (op_type == CHCR_ENCRYPT_OP) { 1196 error = sglist_append_sglist(sc->sg_dsgl, sc->sg_crp, 1197 crda->crd_inject, hash_size_in_response); 1198 if (error) 1199 return (error); 1200 } 1201 dsgl_nsegs = ccr_count_sgl(sc->sg_dsgl, DSGL_SGE_MAXLEN); 1202 if (dsgl_nsegs > MAX_RX_PHYS_DSGL_SGE) 1203 return (EFBIG); 1204 dsgl_len = ccr_phys_dsgl_len(dsgl_nsegs); 1205 1206 /* 1207 * The 'key' part of the key context consists of the key followed 1208 * by the Galois hash key. 1209 */ 1210 kctx_len = roundup2(s->blkcipher.key_len, 16) + GMAC_BLOCK_LEN; 1211 transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, dsgl_len); 1212 1213 /* 1214 * The input buffer consists of the IV, any AAD, and then the 1215 * cipher/plain text. For decryption requests the hash is 1216 * appended after the cipher text. 1217 * 1218 * The IV is always stored at the start of the input buffer 1219 * even though it may be duplicated in the payload. The 1220 * crypto engine doesn't work properly if the IV offset points 1221 * inside of the AAD region, so a second copy is always 1222 * required. 1223 */ 1224 input_len = crda->crd_len + crde->crd_len; 1225 if (op_type == CHCR_DECRYPT_OP) 1226 input_len += hash_size_in_response; 1227 if (input_len > MAX_REQUEST_SIZE) 1228 return (EFBIG); 1229 if (ccr_use_imm_data(transhdr_len, iv_len + input_len)) { 1230 imm_len = input_len; 1231 sgl_nsegs = 0; 1232 sgl_len = 0; 1233 } else { 1234 imm_len = 0; 1235 sglist_reset(sc->sg_ulptx); 1236 if (crda->crd_len != 0) { 1237 error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp, 1238 crda->crd_skip, crda->crd_len); 1239 if (error) 1240 return (error); 1241 } 1242 error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp, 1243 crde->crd_skip, crde->crd_len); 1244 if (error) 1245 return (error); 1246 if (op_type == CHCR_DECRYPT_OP) { 1247 error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp, 1248 crda->crd_inject, hash_size_in_response); 1249 if (error) 1250 return (error); 1251 } 1252 sgl_nsegs = sc->sg_ulptx->sg_nseg; 1253 sgl_len = ccr_ulptx_sgl_len(sgl_nsegs); 1254 } 1255 1256 if (crda->crd_len != 0) { 1257 aad_start = iv_len + 1; 1258 aad_stop = aad_start + crda->crd_len - 1; 1259 } else { 1260 aad_start = 0; 1261 aad_stop = 0; 1262 } 1263 cipher_start = iv_len + crda->crd_len + 1; 1264 if (op_type == CHCR_DECRYPT_OP) 1265 cipher_stop = hash_size_in_response; 1266 else 1267 cipher_stop = 0; 1268 if (op_type == CHCR_DECRYPT_OP) 1269 auth_insert = hash_size_in_response; 1270 else 1271 auth_insert = 0; 1272 1273 wr_len = roundup2(transhdr_len, 16) + iv_len + roundup2(imm_len, 16) + 1274 sgl_len; 1275 if (wr_len > SGE_MAX_WR_LEN) 1276 return (EFBIG); 1277 wr = alloc_wrqe(wr_len, sc->txq); 1278 if (wr == NULL) { 1279 sc->stats_wr_nomem++; 1280 return (ENOMEM); 1281 } 1282 crwr = wrtod(wr); 1283 memset(crwr, 0, wr_len); 1284 1285 /* 1286 * Read the existing IV from the request or generate a random 1287 * one if none is provided. Optionally copy the generated IV 1288 * into the output buffer if requested. 1289 * 1290 * If the input IV is 12 bytes, append an explicit 4-byte 1291 * counter of 1. 1292 */ 1293 if (op_type == CHCR_ENCRYPT_OP) { 1294 if (crde->crd_flags & CRD_F_IV_EXPLICIT) 1295 memcpy(iv, crde->crd_iv, s->blkcipher.iv_len); 1296 else 1297 arc4rand(iv, s->blkcipher.iv_len, 0); 1298 if ((crde->crd_flags & CRD_F_IV_PRESENT) == 0) 1299 crypto_copyback(crp->crp_flags, crp->crp_buf, 1300 crde->crd_inject, s->blkcipher.iv_len, iv); 1301 } else { 1302 if (crde->crd_flags & CRD_F_IV_EXPLICIT) 1303 memcpy(iv, crde->crd_iv, s->blkcipher.iv_len); 1304 else 1305 crypto_copydata(crp->crp_flags, crp->crp_buf, 1306 crde->crd_inject, s->blkcipher.iv_len, iv); 1307 } 1308 if (s->blkcipher.iv_len == 12) 1309 *(uint32_t *)&iv[12] = htobe32(1); 1310 1311 ccr_populate_wreq(sc, crwr, kctx_len, wr_len, imm_len, sgl_len, 0, 1312 crp); 1313 1314 /* XXX: Hardcodes SGE loopback channel of 0. */ 1315 crwr->sec_cpl.op_ivinsrtofst = htobe32( 1316 V_CPL_TX_SEC_PDU_OPCODE(CPL_TX_SEC_PDU) | 1317 V_CPL_TX_SEC_PDU_RXCHID(sc->tx_channel_id) | 1318 V_CPL_TX_SEC_PDU_ACKFOLLOWS(0) | V_CPL_TX_SEC_PDU_ULPTXLPBK(1) | 1319 V_CPL_TX_SEC_PDU_CPLLEN(2) | V_CPL_TX_SEC_PDU_PLACEHOLDER(0) | 1320 V_CPL_TX_SEC_PDU_IVINSRTOFST(1)); 1321 1322 crwr->sec_cpl.pldlen = htobe32(iv_len + input_len); 1323 1324 /* 1325 * NB: cipherstop is explicitly set to 0. On encrypt it 1326 * should normally be set to 0 anyway (as the encrypt crd ends 1327 * at the end of the input). However, for decrypt the cipher 1328 * ends before the tag in the AUTHENC case (and authstop is 1329 * set to stop before the tag), but for GCM the cipher still 1330 * runs to the end of the buffer. Not sure if this is 1331 * intentional or a firmware quirk, but it is required for 1332 * working tag validation with GCM decryption. 1333 */ 1334 crwr->sec_cpl.aadstart_cipherstop_hi = htobe32( 1335 V_CPL_TX_SEC_PDU_AADSTART(aad_start) | 1336 V_CPL_TX_SEC_PDU_AADSTOP(aad_stop) | 1337 V_CPL_TX_SEC_PDU_CIPHERSTART(cipher_start) | 1338 V_CPL_TX_SEC_PDU_CIPHERSTOP_HI(0)); 1339 crwr->sec_cpl.cipherstop_lo_authinsert = htobe32( 1340 V_CPL_TX_SEC_PDU_CIPHERSTOP_LO(0) | 1341 V_CPL_TX_SEC_PDU_AUTHSTART(cipher_start) | 1342 V_CPL_TX_SEC_PDU_AUTHSTOP(cipher_stop) | 1343 V_CPL_TX_SEC_PDU_AUTHINSERT(auth_insert)); 1344 1345 /* These two flits are actually a CPL_TLS_TX_SCMD_FMT. */ 1346 hmac_ctrl = ccr_hmac_ctrl(AES_GMAC_HASH_LEN, hash_size_in_response); 1347 crwr->sec_cpl.seqno_numivs = htobe32( 1348 V_SCMD_SEQ_NO_CTRL(0) | 1349 V_SCMD_PROTO_VERSION(CHCR_SCMD_PROTO_VERSION_GENERIC) | 1350 V_SCMD_ENC_DEC_CTRL(op_type) | 1351 V_SCMD_CIPH_AUTH_SEQ_CTRL(op_type == CHCR_ENCRYPT_OP ? 1 : 0) | 1352 V_SCMD_CIPH_MODE(CHCR_SCMD_CIPHER_MODE_AES_GCM) | 1353 V_SCMD_AUTH_MODE(CHCR_SCMD_AUTH_MODE_GHASH) | 1354 V_SCMD_HMAC_CTRL(hmac_ctrl) | 1355 V_SCMD_IV_SIZE(iv_len / 2) | 1356 V_SCMD_NUM_IVS(0)); 1357 crwr->sec_cpl.ivgen_hdrlen = htobe32( 1358 V_SCMD_IV_GEN_CTRL(0) | 1359 V_SCMD_MORE_FRAGS(0) | V_SCMD_LAST_FRAG(0) | V_SCMD_MAC_ONLY(0) | 1360 V_SCMD_AADIVDROP(0) | V_SCMD_HDR_LEN(dsgl_len)); 1361 1362 crwr->key_ctx.ctx_hdr = s->blkcipher.key_ctx_hdr; 1363 memcpy(crwr->key_ctx.key, s->blkcipher.enckey, s->blkcipher.key_len); 1364 dst = crwr->key_ctx.key + roundup2(s->blkcipher.key_len, 16); 1365 memcpy(dst, s->gmac.ghash_h, GMAC_BLOCK_LEN); 1366 1367 dst = (char *)(crwr + 1) + kctx_len; 1368 ccr_write_phys_dsgl(sc, dst, dsgl_nsegs); 1369 dst += sizeof(struct cpl_rx_phys_dsgl) + dsgl_len; 1370 memcpy(dst, iv, iv_len); 1371 dst += iv_len; 1372 if (imm_len != 0) { 1373 if (crda->crd_len != 0) { 1374 crypto_copydata(crp->crp_flags, crp->crp_buf, 1375 crda->crd_skip, crda->crd_len, dst); 1376 dst += crda->crd_len; 1377 } 1378 crypto_copydata(crp->crp_flags, crp->crp_buf, crde->crd_skip, 1379 crde->crd_len, dst); 1380 dst += crde->crd_len; 1381 if (op_type == CHCR_DECRYPT_OP) 1382 crypto_copydata(crp->crp_flags, crp->crp_buf, 1383 crda->crd_inject, hash_size_in_response, dst); 1384 } else 1385 ccr_write_ulptx_sgl(sc, dst, sgl_nsegs); 1386 1387 /* XXX: TODO backpressure */ 1388 t4_wrq_tx(sc->adapter, wr); 1389 1390 return (0); 1391 } 1392 1393 static int 1394 ccr_gcm_done(struct ccr_softc *sc, struct ccr_session *s, 1395 struct cryptop *crp, const struct cpl_fw6_pld *cpl, int error) 1396 { 1397 1398 /* 1399 * The updated IV to permit chained requests is at 1400 * cpl->data[2], but OCF doesn't permit chained requests. 1401 * 1402 * Note that the hardware should always verify the GMAC hash. 1403 */ 1404 return (error); 1405 } 1406 1407 /* 1408 * Handle a GCM request that is not supported by the crypto engine by 1409 * performing the operation in software. Derived from swcr_authenc(). 1410 */ 1411 static void 1412 ccr_gcm_soft(struct ccr_session *s, struct cryptop *crp, 1413 struct cryptodesc *crda, struct cryptodesc *crde) 1414 { 1415 struct auth_hash *axf; 1416 struct enc_xform *exf; 1417 void *auth_ctx; 1418 uint8_t *kschedule; 1419 char block[GMAC_BLOCK_LEN]; 1420 char digest[GMAC_DIGEST_LEN]; 1421 char iv[AES_BLOCK_LEN]; 1422 int error, i, len; 1423 1424 auth_ctx = NULL; 1425 kschedule = NULL; 1426 1427 /* Initialize the MAC. */ 1428 switch (s->blkcipher.key_len) { 1429 case 16: 1430 axf = &auth_hash_nist_gmac_aes_128; 1431 break; 1432 case 24: 1433 axf = &auth_hash_nist_gmac_aes_192; 1434 break; 1435 case 32: 1436 axf = &auth_hash_nist_gmac_aes_256; 1437 break; 1438 default: 1439 error = EINVAL; 1440 goto out; 1441 } 1442 auth_ctx = malloc(axf->ctxsize, M_CCR, M_NOWAIT); 1443 if (auth_ctx == NULL) { 1444 error = ENOMEM; 1445 goto out; 1446 } 1447 axf->Init(auth_ctx); 1448 axf->Setkey(auth_ctx, s->blkcipher.enckey, s->blkcipher.key_len); 1449 1450 /* Initialize the cipher. */ 1451 exf = &enc_xform_aes_nist_gcm; 1452 error = exf->setkey(&kschedule, s->blkcipher.enckey, 1453 s->blkcipher.key_len); 1454 if (error) 1455 goto out; 1456 1457 /* 1458 * This assumes a 12-byte IV from the crp. See longer comment 1459 * above in ccr_gcm() for more details. 1460 */ 1461 if (crde->crd_flags & CRD_F_ENCRYPT) { 1462 if (crde->crd_flags & CRD_F_IV_EXPLICIT) 1463 memcpy(iv, crde->crd_iv, 12); 1464 else 1465 arc4rand(iv, 12, 0); 1466 if ((crde->crd_flags & CRD_F_IV_PRESENT) == 0) 1467 crypto_copyback(crp->crp_flags, crp->crp_buf, 1468 crde->crd_inject, 12, iv); 1469 } else { 1470 if (crde->crd_flags & CRD_F_IV_EXPLICIT) 1471 memcpy(iv, crde->crd_iv, 12); 1472 else 1473 crypto_copydata(crp->crp_flags, crp->crp_buf, 1474 crde->crd_inject, 12, iv); 1475 } 1476 *(uint32_t *)&iv[12] = htobe32(1); 1477 1478 axf->Reinit(auth_ctx, iv, sizeof(iv)); 1479 1480 /* MAC the AAD. */ 1481 for (i = 0; i < crda->crd_len; i += sizeof(block)) { 1482 len = imin(crda->crd_len - i, sizeof(block)); 1483 crypto_copydata(crp->crp_flags, crp->crp_buf, crda->crd_skip + 1484 i, len, block); 1485 bzero(block + len, sizeof(block) - len); 1486 axf->Update(auth_ctx, block, sizeof(block)); 1487 } 1488 1489 exf->reinit(kschedule, iv); 1490 1491 /* Do encryption with MAC */ 1492 for (i = 0; i < crde->crd_len; i += sizeof(block)) { 1493 len = imin(crde->crd_len - i, sizeof(block)); 1494 crypto_copydata(crp->crp_flags, crp->crp_buf, crde->crd_skip + 1495 i, len, block); 1496 bzero(block + len, sizeof(block) - len); 1497 if (crde->crd_flags & CRD_F_ENCRYPT) { 1498 exf->encrypt(kschedule, block); 1499 axf->Update(auth_ctx, block, len); 1500 crypto_copyback(crp->crp_flags, crp->crp_buf, 1501 crde->crd_skip + i, len, block); 1502 } else { 1503 axf->Update(auth_ctx, block, len); 1504 } 1505 } 1506 1507 /* Length block. */ 1508 bzero(block, sizeof(block)); 1509 ((uint32_t *)block)[1] = htobe32(crda->crd_len * 8); 1510 ((uint32_t *)block)[3] = htobe32(crde->crd_len * 8); 1511 axf->Update(auth_ctx, block, sizeof(block)); 1512 1513 /* Finalize MAC. */ 1514 axf->Final(digest, auth_ctx); 1515 1516 /* Inject or validate tag. */ 1517 if (crde->crd_flags & CRD_F_ENCRYPT) { 1518 crypto_copyback(crp->crp_flags, crp->crp_buf, crda->crd_inject, 1519 sizeof(digest), digest); 1520 error = 0; 1521 } else { 1522 char digest2[GMAC_DIGEST_LEN]; 1523 1524 crypto_copydata(crp->crp_flags, crp->crp_buf, crda->crd_inject, 1525 sizeof(digest2), digest2); 1526 if (timingsafe_bcmp(digest, digest2, sizeof(digest)) == 0) { 1527 error = 0; 1528 1529 /* Tag matches, decrypt data. */ 1530 for (i = 0; i < crde->crd_len; i += sizeof(block)) { 1531 len = imin(crde->crd_len - i, sizeof(block)); 1532 crypto_copydata(crp->crp_flags, crp->crp_buf, 1533 crde->crd_skip + i, len, block); 1534 bzero(block + len, sizeof(block) - len); 1535 exf->decrypt(kschedule, block); 1536 crypto_copyback(crp->crp_flags, crp->crp_buf, 1537 crde->crd_skip + i, len, block); 1538 } 1539 } else 1540 error = EBADMSG; 1541 } 1542 1543 exf->zerokey(&kschedule); 1544 out: 1545 if (auth_ctx != NULL) { 1546 memset(auth_ctx, 0, axf->ctxsize); 1547 free(auth_ctx, M_CCR); 1548 } 1549 crp->crp_etype = error; 1550 crypto_done(crp); 1551 } 1552 1553 static void 1554 ccr_identify(driver_t *driver, device_t parent) 1555 { 1556 struct adapter *sc; 1557 1558 sc = device_get_softc(parent); 1559 if (sc->cryptocaps & FW_CAPS_CONFIG_CRYPTO_LOOKASIDE && 1560 device_find_child(parent, "ccr", -1) == NULL) 1561 device_add_child(parent, "ccr", -1); 1562 } 1563 1564 static int 1565 ccr_probe(device_t dev) 1566 { 1567 1568 device_set_desc(dev, "Chelsio Crypto Accelerator"); 1569 return (BUS_PROBE_DEFAULT); 1570 } 1571 1572 static void 1573 ccr_sysctls(struct ccr_softc *sc) 1574 { 1575 struct sysctl_ctx_list *ctx; 1576 struct sysctl_oid *oid; 1577 struct sysctl_oid_list *children; 1578 1579 ctx = device_get_sysctl_ctx(sc->dev); 1580 1581 /* 1582 * dev.ccr.X. 1583 */ 1584 oid = device_get_sysctl_tree(sc->dev); 1585 children = SYSCTL_CHILDREN(oid); 1586 1587 /* 1588 * dev.ccr.X.stats. 1589 */ 1590 oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD, 1591 NULL, "statistics"); 1592 children = SYSCTL_CHILDREN(oid); 1593 1594 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "hmac", CTLFLAG_RD, 1595 &sc->stats_hmac, 0, "HMAC requests submitted"); 1596 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "cipher_encrypt", CTLFLAG_RD, 1597 &sc->stats_blkcipher_encrypt, 0, 1598 "Cipher encryption requests submitted"); 1599 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "cipher_decrypt", CTLFLAG_RD, 1600 &sc->stats_blkcipher_decrypt, 0, 1601 "Cipher decryption requests submitted"); 1602 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "authenc_encrypt", CTLFLAG_RD, 1603 &sc->stats_authenc_encrypt, 0, 1604 "Combined AES+HMAC encryption requests submitted"); 1605 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "authenc_decrypt", CTLFLAG_RD, 1606 &sc->stats_authenc_decrypt, 0, 1607 "Combined AES+HMAC decryption requests submitted"); 1608 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "gcm_encrypt", CTLFLAG_RD, 1609 &sc->stats_gcm_encrypt, 0, "AES-GCM encryption requests submitted"); 1610 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "gcm_decrypt", CTLFLAG_RD, 1611 &sc->stats_gcm_decrypt, 0, "AES-GCM decryption requests submitted"); 1612 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "wr_nomem", CTLFLAG_RD, 1613 &sc->stats_wr_nomem, 0, "Work request memory allocation failures"); 1614 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "inflight", CTLFLAG_RD, 1615 &sc->stats_inflight, 0, "Requests currently pending"); 1616 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "mac_error", CTLFLAG_RD, 1617 &sc->stats_mac_error, 0, "MAC errors"); 1618 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "pad_error", CTLFLAG_RD, 1619 &sc->stats_pad_error, 0, "Padding errors"); 1620 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "bad_session", CTLFLAG_RD, 1621 &sc->stats_bad_session, 0, "Requests with invalid session ID"); 1622 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "sglist_error", CTLFLAG_RD, 1623 &sc->stats_sglist_error, 0, 1624 "Requests for which DMA mapping failed"); 1625 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "process_error", CTLFLAG_RD, 1626 &sc->stats_process_error, 0, "Requests failed during queueing"); 1627 SYSCTL_ADD_U64(ctx, children, OID_AUTO, "sw_fallback", CTLFLAG_RD, 1628 &sc->stats_sw_fallback, 0, 1629 "Requests processed by falling back to software"); 1630 } 1631 1632 static int 1633 ccr_attach(device_t dev) 1634 { 1635 struct ccr_softc *sc; 1636 int32_t cid; 1637 1638 /* 1639 * TODO: Crypto requests will panic if the parent device isn't 1640 * initialized so that the queues are up and running. Need to 1641 * figure out how to handle that correctly, maybe just reject 1642 * requests if the adapter isn't fully initialized? 1643 */ 1644 sc = device_get_softc(dev); 1645 sc->dev = dev; 1646 sc->adapter = device_get_softc(device_get_parent(dev)); 1647 sc->txq = &sc->adapter->sge.ctrlq[0]; 1648 sc->rxq = &sc->adapter->sge.rxq[0]; 1649 cid = crypto_get_driverid(dev, sizeof(struct ccr_session), 1650 CRYPTOCAP_F_HARDWARE); 1651 if (cid < 0) { 1652 device_printf(dev, "could not get crypto driver id\n"); 1653 return (ENXIO); 1654 } 1655 sc->cid = cid; 1656 sc->adapter->ccr_softc = sc; 1657 1658 /* XXX: TODO? */ 1659 sc->tx_channel_id = 0; 1660 1661 mtx_init(&sc->lock, "ccr", NULL, MTX_DEF); 1662 sc->sg_crp = sglist_alloc(TX_SGL_SEGS, M_WAITOK); 1663 sc->sg_ulptx = sglist_alloc(TX_SGL_SEGS, M_WAITOK); 1664 sc->sg_dsgl = sglist_alloc(MAX_RX_PHYS_DSGL_SGE, M_WAITOK); 1665 sc->iv_aad_buf = malloc(MAX_AAD_LEN, M_CCR, M_WAITOK); 1666 sc->sg_iv_aad = sglist_build(sc->iv_aad_buf, MAX_AAD_LEN, M_WAITOK); 1667 ccr_sysctls(sc); 1668 1669 crypto_register(cid, CRYPTO_SHA1_HMAC, 0, 0); 1670 crypto_register(cid, CRYPTO_SHA2_256_HMAC, 0, 0); 1671 crypto_register(cid, CRYPTO_SHA2_384_HMAC, 0, 0); 1672 crypto_register(cid, CRYPTO_SHA2_512_HMAC, 0, 0); 1673 crypto_register(cid, CRYPTO_AES_CBC, 0, 0); 1674 crypto_register(cid, CRYPTO_AES_ICM, 0, 0); 1675 crypto_register(cid, CRYPTO_AES_NIST_GCM_16, 0, 0); 1676 crypto_register(cid, CRYPTO_AES_128_NIST_GMAC, 0, 0); 1677 crypto_register(cid, CRYPTO_AES_192_NIST_GMAC, 0, 0); 1678 crypto_register(cid, CRYPTO_AES_256_NIST_GMAC, 0, 0); 1679 crypto_register(cid, CRYPTO_AES_XTS, 0, 0); 1680 return (0); 1681 } 1682 1683 static int 1684 ccr_detach(device_t dev) 1685 { 1686 struct ccr_softc *sc; 1687 1688 sc = device_get_softc(dev); 1689 1690 mtx_lock(&sc->lock); 1691 sc->detaching = true; 1692 mtx_unlock(&sc->lock); 1693 1694 crypto_unregister_all(sc->cid); 1695 1696 mtx_destroy(&sc->lock); 1697 sglist_free(sc->sg_iv_aad); 1698 free(sc->iv_aad_buf, M_CCR); 1699 sglist_free(sc->sg_dsgl); 1700 sglist_free(sc->sg_ulptx); 1701 sglist_free(sc->sg_crp); 1702 sc->adapter->ccr_softc = NULL; 1703 return (0); 1704 } 1705 1706 static void 1707 ccr_copy_partial_hash(void *dst, int cri_alg, union authctx *auth_ctx) 1708 { 1709 uint32_t *u32; 1710 uint64_t *u64; 1711 u_int i; 1712 1713 u32 = (uint32_t *)dst; 1714 u64 = (uint64_t *)dst; 1715 switch (cri_alg) { 1716 case CRYPTO_SHA1_HMAC: 1717 for (i = 0; i < SHA1_HASH_LEN / 4; i++) 1718 u32[i] = htobe32(auth_ctx->sha1ctx.h.b32[i]); 1719 break; 1720 case CRYPTO_SHA2_256_HMAC: 1721 for (i = 0; i < SHA2_256_HASH_LEN / 4; i++) 1722 u32[i] = htobe32(auth_ctx->sha256ctx.state[i]); 1723 break; 1724 case CRYPTO_SHA2_384_HMAC: 1725 for (i = 0; i < SHA2_512_HASH_LEN / 8; i++) 1726 u64[i] = htobe64(auth_ctx->sha384ctx.state[i]); 1727 break; 1728 case CRYPTO_SHA2_512_HMAC: 1729 for (i = 0; i < SHA2_512_HASH_LEN / 8; i++) 1730 u64[i] = htobe64(auth_ctx->sha512ctx.state[i]); 1731 break; 1732 } 1733 } 1734 1735 static void 1736 ccr_init_hmac_digest(struct ccr_session *s, int cri_alg, char *key, 1737 int klen) 1738 { 1739 union authctx auth_ctx; 1740 struct auth_hash *axf; 1741 u_int i; 1742 1743 /* 1744 * If the key is larger than the block size, use the digest of 1745 * the key as the key instead. 1746 */ 1747 axf = s->hmac.auth_hash; 1748 klen /= 8; 1749 if (klen > axf->blocksize) { 1750 axf->Init(&auth_ctx); 1751 axf->Update(&auth_ctx, key, klen); 1752 axf->Final(s->hmac.ipad, &auth_ctx); 1753 klen = axf->hashsize; 1754 } else 1755 memcpy(s->hmac.ipad, key, klen); 1756 1757 memset(s->hmac.ipad + klen, 0, axf->blocksize - klen); 1758 memcpy(s->hmac.opad, s->hmac.ipad, axf->blocksize); 1759 1760 for (i = 0; i < axf->blocksize; i++) { 1761 s->hmac.ipad[i] ^= HMAC_IPAD_VAL; 1762 s->hmac.opad[i] ^= HMAC_OPAD_VAL; 1763 } 1764 1765 /* 1766 * Hash the raw ipad and opad and store the partial result in 1767 * the same buffer. 1768 */ 1769 axf->Init(&auth_ctx); 1770 axf->Update(&auth_ctx, s->hmac.ipad, axf->blocksize); 1771 ccr_copy_partial_hash(s->hmac.ipad, cri_alg, &auth_ctx); 1772 1773 axf->Init(&auth_ctx); 1774 axf->Update(&auth_ctx, s->hmac.opad, axf->blocksize); 1775 ccr_copy_partial_hash(s->hmac.opad, cri_alg, &auth_ctx); 1776 } 1777 1778 /* 1779 * Borrowed from AES_GMAC_Setkey(). 1780 */ 1781 static void 1782 ccr_init_gmac_hash(struct ccr_session *s, char *key, int klen) 1783 { 1784 static char zeroes[GMAC_BLOCK_LEN]; 1785 uint32_t keysched[4 * (RIJNDAEL_MAXNR + 1)]; 1786 int rounds; 1787 1788 rounds = rijndaelKeySetupEnc(keysched, key, klen); 1789 rijndaelEncrypt(keysched, rounds, zeroes, s->gmac.ghash_h); 1790 } 1791 1792 static int 1793 ccr_aes_check_keylen(int alg, int klen) 1794 { 1795 1796 switch (klen) { 1797 case 128: 1798 case 192: 1799 if (alg == CRYPTO_AES_XTS) 1800 return (EINVAL); 1801 break; 1802 case 256: 1803 break; 1804 case 512: 1805 if (alg != CRYPTO_AES_XTS) 1806 return (EINVAL); 1807 break; 1808 default: 1809 return (EINVAL); 1810 } 1811 return (0); 1812 } 1813 1814 static void 1815 ccr_aes_setkey(struct ccr_session *s, int alg, const void *key, int klen) 1816 { 1817 unsigned int ck_size, iopad_size, kctx_flits, kctx_len, kbits, mk_size; 1818 unsigned int opad_present; 1819 1820 if (alg == CRYPTO_AES_XTS) 1821 kbits = klen / 2; 1822 else 1823 kbits = klen; 1824 switch (kbits) { 1825 case 128: 1826 ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128; 1827 break; 1828 case 192: 1829 ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_192; 1830 break; 1831 case 256: 1832 ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_256; 1833 break; 1834 default: 1835 panic("should not get here"); 1836 } 1837 1838 s->blkcipher.key_len = klen / 8; 1839 memcpy(s->blkcipher.enckey, key, s->blkcipher.key_len); 1840 switch (alg) { 1841 case CRYPTO_AES_CBC: 1842 case CRYPTO_AES_XTS: 1843 t4_aes_getdeckey(s->blkcipher.deckey, key, kbits); 1844 break; 1845 } 1846 1847 kctx_len = roundup2(s->blkcipher.key_len, 16); 1848 switch (s->mode) { 1849 case AUTHENC: 1850 mk_size = s->hmac.mk_size; 1851 opad_present = 1; 1852 iopad_size = roundup2(s->hmac.partial_digest_len, 16); 1853 kctx_len += iopad_size * 2; 1854 break; 1855 case GCM: 1856 mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_128; 1857 opad_present = 0; 1858 kctx_len += GMAC_BLOCK_LEN; 1859 break; 1860 default: 1861 mk_size = CHCR_KEYCTX_NO_KEY; 1862 opad_present = 0; 1863 break; 1864 } 1865 kctx_flits = (sizeof(struct _key_ctx) + kctx_len) / 16; 1866 s->blkcipher.key_ctx_hdr = htobe32(V_KEY_CONTEXT_CTX_LEN(kctx_flits) | 1867 V_KEY_CONTEXT_DUAL_CK(alg == CRYPTO_AES_XTS) | 1868 V_KEY_CONTEXT_OPAD_PRESENT(opad_present) | 1869 V_KEY_CONTEXT_SALT_PRESENT(1) | V_KEY_CONTEXT_CK_SIZE(ck_size) | 1870 V_KEY_CONTEXT_MK_SIZE(mk_size) | V_KEY_CONTEXT_VALID(1)); 1871 } 1872 1873 static int 1874 ccr_newsession(device_t dev, crypto_session_t cses, struct cryptoini *cri) 1875 { 1876 struct ccr_softc *sc; 1877 struct ccr_session *s; 1878 struct auth_hash *auth_hash; 1879 struct cryptoini *c, *hash, *cipher; 1880 unsigned int auth_mode, cipher_mode, iv_len, mk_size; 1881 unsigned int partial_digest_len; 1882 int error; 1883 bool gcm_hash; 1884 1885 if (cri == NULL) 1886 return (EINVAL); 1887 1888 gcm_hash = false; 1889 cipher = NULL; 1890 hash = NULL; 1891 auth_hash = NULL; 1892 auth_mode = CHCR_SCMD_AUTH_MODE_NOP; 1893 cipher_mode = CHCR_SCMD_CIPHER_MODE_NOP; 1894 iv_len = 0; 1895 mk_size = 0; 1896 partial_digest_len = 0; 1897 for (c = cri; c != NULL; c = c->cri_next) { 1898 switch (c->cri_alg) { 1899 case CRYPTO_SHA1_HMAC: 1900 case CRYPTO_SHA2_256_HMAC: 1901 case CRYPTO_SHA2_384_HMAC: 1902 case CRYPTO_SHA2_512_HMAC: 1903 case CRYPTO_AES_128_NIST_GMAC: 1904 case CRYPTO_AES_192_NIST_GMAC: 1905 case CRYPTO_AES_256_NIST_GMAC: 1906 if (hash) 1907 return (EINVAL); 1908 hash = c; 1909 switch (c->cri_alg) { 1910 case CRYPTO_SHA1_HMAC: 1911 auth_hash = &auth_hash_hmac_sha1; 1912 auth_mode = CHCR_SCMD_AUTH_MODE_SHA1; 1913 mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_160; 1914 partial_digest_len = SHA1_HASH_LEN; 1915 break; 1916 case CRYPTO_SHA2_256_HMAC: 1917 auth_hash = &auth_hash_hmac_sha2_256; 1918 auth_mode = CHCR_SCMD_AUTH_MODE_SHA256; 1919 mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_256; 1920 partial_digest_len = SHA2_256_HASH_LEN; 1921 break; 1922 case CRYPTO_SHA2_384_HMAC: 1923 auth_hash = &auth_hash_hmac_sha2_384; 1924 auth_mode = CHCR_SCMD_AUTH_MODE_SHA512_384; 1925 mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_512; 1926 partial_digest_len = SHA2_512_HASH_LEN; 1927 break; 1928 case CRYPTO_SHA2_512_HMAC: 1929 auth_hash = &auth_hash_hmac_sha2_512; 1930 auth_mode = CHCR_SCMD_AUTH_MODE_SHA512_512; 1931 mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_512; 1932 partial_digest_len = SHA2_512_HASH_LEN; 1933 break; 1934 case CRYPTO_AES_128_NIST_GMAC: 1935 case CRYPTO_AES_192_NIST_GMAC: 1936 case CRYPTO_AES_256_NIST_GMAC: 1937 gcm_hash = true; 1938 auth_mode = CHCR_SCMD_AUTH_MODE_GHASH; 1939 mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_128; 1940 break; 1941 } 1942 break; 1943 case CRYPTO_AES_CBC: 1944 case CRYPTO_AES_ICM: 1945 case CRYPTO_AES_NIST_GCM_16: 1946 case CRYPTO_AES_XTS: 1947 if (cipher) 1948 return (EINVAL); 1949 cipher = c; 1950 switch (c->cri_alg) { 1951 case CRYPTO_AES_CBC: 1952 cipher_mode = CHCR_SCMD_CIPHER_MODE_AES_CBC; 1953 iv_len = AES_BLOCK_LEN; 1954 break; 1955 case CRYPTO_AES_ICM: 1956 cipher_mode = CHCR_SCMD_CIPHER_MODE_AES_CTR; 1957 iv_len = AES_BLOCK_LEN; 1958 break; 1959 case CRYPTO_AES_NIST_GCM_16: 1960 cipher_mode = CHCR_SCMD_CIPHER_MODE_AES_GCM; 1961 iv_len = AES_GCM_IV_LEN; 1962 break; 1963 case CRYPTO_AES_XTS: 1964 cipher_mode = CHCR_SCMD_CIPHER_MODE_AES_XTS; 1965 iv_len = AES_BLOCK_LEN; 1966 break; 1967 } 1968 if (c->cri_key != NULL) { 1969 error = ccr_aes_check_keylen(c->cri_alg, 1970 c->cri_klen); 1971 if (error) 1972 return (error); 1973 } 1974 break; 1975 default: 1976 return (EINVAL); 1977 } 1978 } 1979 if (gcm_hash != (cipher_mode == CHCR_SCMD_CIPHER_MODE_AES_GCM)) 1980 return (EINVAL); 1981 if (hash == NULL && cipher == NULL) 1982 return (EINVAL); 1983 if (hash != NULL && hash->cri_key == NULL) 1984 return (EINVAL); 1985 1986 sc = device_get_softc(dev); 1987 mtx_lock(&sc->lock); 1988 if (sc->detaching) { 1989 mtx_unlock(&sc->lock); 1990 return (ENXIO); 1991 } 1992 1993 s = crypto_get_driver_session(cses); 1994 1995 if (gcm_hash) 1996 s->mode = GCM; 1997 else if (hash != NULL && cipher != NULL) 1998 s->mode = AUTHENC; 1999 else if (hash != NULL) 2000 s->mode = HMAC; 2001 else { 2002 MPASS(cipher != NULL); 2003 s->mode = BLKCIPHER; 2004 } 2005 if (gcm_hash) { 2006 if (hash->cri_mlen == 0) 2007 s->gmac.hash_len = AES_GMAC_HASH_LEN; 2008 else 2009 s->gmac.hash_len = hash->cri_mlen; 2010 ccr_init_gmac_hash(s, hash->cri_key, hash->cri_klen); 2011 } else if (hash != NULL) { 2012 s->hmac.auth_hash = auth_hash; 2013 s->hmac.auth_mode = auth_mode; 2014 s->hmac.mk_size = mk_size; 2015 s->hmac.partial_digest_len = partial_digest_len; 2016 if (hash->cri_mlen == 0) 2017 s->hmac.hash_len = auth_hash->hashsize; 2018 else 2019 s->hmac.hash_len = hash->cri_mlen; 2020 ccr_init_hmac_digest(s, hash->cri_alg, hash->cri_key, 2021 hash->cri_klen); 2022 } 2023 if (cipher != NULL) { 2024 s->blkcipher.cipher_mode = cipher_mode; 2025 s->blkcipher.iv_len = iv_len; 2026 if (cipher->cri_key != NULL) 2027 ccr_aes_setkey(s, cipher->cri_alg, cipher->cri_key, 2028 cipher->cri_klen); 2029 } 2030 2031 s->active = true; 2032 mtx_unlock(&sc->lock); 2033 return (0); 2034 } 2035 2036 static void 2037 ccr_freesession(device_t dev, crypto_session_t cses) 2038 { 2039 struct ccr_softc *sc; 2040 struct ccr_session *s; 2041 2042 sc = device_get_softc(dev); 2043 s = crypto_get_driver_session(cses); 2044 mtx_lock(&sc->lock); 2045 if (s->pending != 0) 2046 device_printf(dev, 2047 "session %p freed with %d pending requests\n", s, 2048 s->pending); 2049 s->active = false; 2050 mtx_unlock(&sc->lock); 2051 } 2052 2053 static int 2054 ccr_process(device_t dev, struct cryptop *crp, int hint) 2055 { 2056 struct ccr_softc *sc; 2057 struct ccr_session *s; 2058 struct cryptodesc *crd, *crda, *crde; 2059 int error; 2060 2061 if (crp == NULL) 2062 return (EINVAL); 2063 2064 crd = crp->crp_desc; 2065 s = crypto_get_driver_session(crp->crp_session); 2066 sc = device_get_softc(dev); 2067 2068 mtx_lock(&sc->lock); 2069 error = ccr_populate_sglist(sc->sg_crp, crp); 2070 if (error) { 2071 sc->stats_sglist_error++; 2072 goto out; 2073 } 2074 2075 switch (s->mode) { 2076 case HMAC: 2077 if (crd->crd_flags & CRD_F_KEY_EXPLICIT) 2078 ccr_init_hmac_digest(s, crd->crd_alg, crd->crd_key, 2079 crd->crd_klen); 2080 error = ccr_hmac(sc, s, crp); 2081 if (error == 0) 2082 sc->stats_hmac++; 2083 break; 2084 case BLKCIPHER: 2085 if (crd->crd_flags & CRD_F_KEY_EXPLICIT) { 2086 error = ccr_aes_check_keylen(crd->crd_alg, 2087 crd->crd_klen); 2088 if (error) 2089 break; 2090 ccr_aes_setkey(s, crd->crd_alg, crd->crd_key, 2091 crd->crd_klen); 2092 } 2093 error = ccr_blkcipher(sc, s, crp); 2094 if (error == 0) { 2095 if (crd->crd_flags & CRD_F_ENCRYPT) 2096 sc->stats_blkcipher_encrypt++; 2097 else 2098 sc->stats_blkcipher_decrypt++; 2099 } 2100 break; 2101 case AUTHENC: 2102 error = 0; 2103 switch (crd->crd_alg) { 2104 case CRYPTO_AES_CBC: 2105 case CRYPTO_AES_ICM: 2106 case CRYPTO_AES_XTS: 2107 /* Only encrypt-then-authenticate supported. */ 2108 crde = crd; 2109 crda = crd->crd_next; 2110 if (!(crde->crd_flags & CRD_F_ENCRYPT)) { 2111 error = EINVAL; 2112 break; 2113 } 2114 break; 2115 default: 2116 crda = crd; 2117 crde = crd->crd_next; 2118 if (crde->crd_flags & CRD_F_ENCRYPT) { 2119 error = EINVAL; 2120 break; 2121 } 2122 break; 2123 } 2124 if (error) 2125 break; 2126 if (crda->crd_flags & CRD_F_KEY_EXPLICIT) 2127 ccr_init_hmac_digest(s, crda->crd_alg, crda->crd_key, 2128 crda->crd_klen); 2129 if (crde->crd_flags & CRD_F_KEY_EXPLICIT) { 2130 error = ccr_aes_check_keylen(crde->crd_alg, 2131 crde->crd_klen); 2132 if (error) 2133 break; 2134 ccr_aes_setkey(s, crde->crd_alg, crde->crd_key, 2135 crde->crd_klen); 2136 } 2137 error = ccr_authenc(sc, s, crp, crda, crde); 2138 if (error == 0) { 2139 if (crde->crd_flags & CRD_F_ENCRYPT) 2140 sc->stats_authenc_encrypt++; 2141 else 2142 sc->stats_authenc_decrypt++; 2143 } 2144 break; 2145 case GCM: 2146 error = 0; 2147 if (crd->crd_alg == CRYPTO_AES_NIST_GCM_16) { 2148 crde = crd; 2149 crda = crd->crd_next; 2150 } else { 2151 crda = crd; 2152 crde = crd->crd_next; 2153 } 2154 if (crda->crd_flags & CRD_F_KEY_EXPLICIT) 2155 ccr_init_gmac_hash(s, crda->crd_key, crda->crd_klen); 2156 if (crde->crd_flags & CRD_F_KEY_EXPLICIT) { 2157 error = ccr_aes_check_keylen(crde->crd_alg, 2158 crde->crd_klen); 2159 if (error) 2160 break; 2161 ccr_aes_setkey(s, crde->crd_alg, crde->crd_key, 2162 crde->crd_klen); 2163 } 2164 if (crde->crd_len == 0) { 2165 mtx_unlock(&sc->lock); 2166 ccr_gcm_soft(s, crp, crda, crde); 2167 return (0); 2168 } 2169 error = ccr_gcm(sc, s, crp, crda, crde); 2170 if (error == EMSGSIZE) { 2171 sc->stats_sw_fallback++; 2172 mtx_unlock(&sc->lock); 2173 ccr_gcm_soft(s, crp, crda, crde); 2174 return (0); 2175 } 2176 if (error == 0) { 2177 if (crde->crd_flags & CRD_F_ENCRYPT) 2178 sc->stats_gcm_encrypt++; 2179 else 2180 sc->stats_gcm_decrypt++; 2181 } 2182 break; 2183 } 2184 2185 if (error == 0) { 2186 s->pending++; 2187 sc->stats_inflight++; 2188 } else 2189 sc->stats_process_error++; 2190 2191 out: 2192 mtx_unlock(&sc->lock); 2193 2194 if (error) { 2195 crp->crp_etype = error; 2196 crypto_done(crp); 2197 } 2198 2199 return (0); 2200 } 2201 2202 static int 2203 do_cpl6_fw_pld(struct sge_iq *iq, const struct rss_header *rss, 2204 struct mbuf *m) 2205 { 2206 struct ccr_softc *sc = iq->adapter->ccr_softc; 2207 struct ccr_session *s; 2208 const struct cpl_fw6_pld *cpl; 2209 struct cryptop *crp; 2210 uint32_t status; 2211 int error; 2212 2213 if (m != NULL) 2214 cpl = mtod(m, const void *); 2215 else 2216 cpl = (const void *)(rss + 1); 2217 2218 crp = (struct cryptop *)(uintptr_t)be64toh(cpl->data[1]); 2219 s = crypto_get_driver_session(crp->crp_session); 2220 status = be64toh(cpl->data[0]); 2221 if (CHK_MAC_ERR_BIT(status) || CHK_PAD_ERR_BIT(status)) 2222 error = EBADMSG; 2223 else 2224 error = 0; 2225 2226 mtx_lock(&sc->lock); 2227 s->pending--; 2228 sc->stats_inflight--; 2229 2230 switch (s->mode) { 2231 case HMAC: 2232 error = ccr_hmac_done(sc, s, crp, cpl, error); 2233 break; 2234 case BLKCIPHER: 2235 error = ccr_blkcipher_done(sc, s, crp, cpl, error); 2236 break; 2237 case AUTHENC: 2238 error = ccr_authenc_done(sc, s, crp, cpl, error); 2239 break; 2240 case GCM: 2241 error = ccr_gcm_done(sc, s, crp, cpl, error); 2242 break; 2243 } 2244 2245 if (error == EBADMSG) { 2246 if (CHK_MAC_ERR_BIT(status)) 2247 sc->stats_mac_error++; 2248 if (CHK_PAD_ERR_BIT(status)) 2249 sc->stats_pad_error++; 2250 } 2251 mtx_unlock(&sc->lock); 2252 crp->crp_etype = error; 2253 crypto_done(crp); 2254 m_freem(m); 2255 return (0); 2256 } 2257 2258 static int 2259 ccr_modevent(module_t mod, int cmd, void *arg) 2260 { 2261 2262 switch (cmd) { 2263 case MOD_LOAD: 2264 t4_register_cpl_handler(CPL_FW6_PLD, do_cpl6_fw_pld); 2265 return (0); 2266 case MOD_UNLOAD: 2267 t4_register_cpl_handler(CPL_FW6_PLD, NULL); 2268 return (0); 2269 default: 2270 return (EOPNOTSUPP); 2271 } 2272 } 2273 2274 static device_method_t ccr_methods[] = { 2275 DEVMETHOD(device_identify, ccr_identify), 2276 DEVMETHOD(device_probe, ccr_probe), 2277 DEVMETHOD(device_attach, ccr_attach), 2278 DEVMETHOD(device_detach, ccr_detach), 2279 2280 DEVMETHOD(cryptodev_newsession, ccr_newsession), 2281 DEVMETHOD(cryptodev_freesession, ccr_freesession), 2282 DEVMETHOD(cryptodev_process, ccr_process), 2283 2284 DEVMETHOD_END 2285 }; 2286 2287 static driver_t ccr_driver = { 2288 "ccr", 2289 ccr_methods, 2290 sizeof(struct ccr_softc) 2291 }; 2292 2293 static devclass_t ccr_devclass; 2294 2295 DRIVER_MODULE(ccr, t6nex, ccr_driver, ccr_devclass, ccr_modevent, NULL); 2296 MODULE_VERSION(ccr, 1); 2297 MODULE_DEPEND(ccr, crypto, 1, 1, 1); 2298 MODULE_DEPEND(ccr, t6nex, 1, 1, 1); 2299