xref: /freebsd/sys/dev/cxgbe/crypto/t4_crypto.c (revision 036d2e814bf0f5d88ffb4b24c159320894541757)
1 /*-
2  * Copyright (c) 2017 Chelsio Communications, Inc.
3  * All rights reserved.
4  * Written by: John Baldwin <jhb@FreeBSD.org>
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include <sys/types.h>
32 #include <sys/bus.h>
33 #include <sys/lock.h>
34 #include <sys/malloc.h>
35 #include <sys/mutex.h>
36 #include <sys/module.h>
37 #include <sys/sglist.h>
38 
39 #include <opencrypto/cryptodev.h>
40 #include <opencrypto/xform.h>
41 
42 #include "cryptodev_if.h"
43 
44 #include "common/common.h"
45 #include "crypto/t4_crypto.h"
46 
47 /*
48  * Requests consist of:
49  *
50  * +-------------------------------+
51  * | struct fw_crypto_lookaside_wr |
52  * +-------------------------------+
53  * | struct ulp_txpkt              |
54  * +-------------------------------+
55  * | struct ulptx_idata            |
56  * +-------------------------------+
57  * | struct cpl_tx_sec_pdu         |
58  * +-------------------------------+
59  * | struct cpl_tls_tx_scmd_fmt    |
60  * +-------------------------------+
61  * | key context header            |
62  * +-------------------------------+
63  * | AES key                       |  ----- For requests with AES
64  * +-------------------------------+
65  * | Hash state                    |  ----- For hash-only requests
66  * +-------------------------------+ -
67  * | IPAD (16-byte aligned)        |  \
68  * +-------------------------------+  +---- For requests with HMAC
69  * | OPAD (16-byte aligned)        |  /
70  * +-------------------------------+ -
71  * | GMAC H                        |  ----- For AES-GCM
72  * +-------------------------------+ -
73  * | struct cpl_rx_phys_dsgl       |  \
74  * +-------------------------------+  +---- Destination buffer for
75  * | PHYS_DSGL entries             |  /     non-hash-only requests
76  * +-------------------------------+ -
77  * | 16 dummy bytes                |  ----- Only for HMAC/hash-only requests
78  * +-------------------------------+
79  * | IV                            |  ----- If immediate IV
80  * +-------------------------------+
81  * | Payload                       |  ----- If immediate Payload
82  * +-------------------------------+ -
83  * | struct ulptx_sgl              |  \
84  * +-------------------------------+  +---- If payload via SGL
85  * | SGL entries                   |  /
86  * +-------------------------------+ -
87  *
88  * Note that the key context must be padded to ensure 16-byte alignment.
89  * For HMAC requests, the key consists of the partial hash of the IPAD
90  * followed by the partial hash of the OPAD.
91  *
92  * Replies consist of:
93  *
94  * +-------------------------------+
95  * | struct cpl_fw6_pld            |
96  * +-------------------------------+
97  * | hash digest                   |  ----- For HMAC request with
98  * +-------------------------------+        'hash_size' set in work request
99  *
100  * A 32-bit big-endian error status word is supplied in the last 4
101  * bytes of data[0] in the CPL_FW6_PLD message.  bit 0 indicates a
102  * "MAC" error and bit 1 indicates a "PAD" error.
103  *
104  * The 64-bit 'cookie' field from the fw_crypto_lookaside_wr message
105  * in the request is returned in data[1] of the CPL_FW6_PLD message.
106  *
107  * For block cipher replies, the updated IV is supplied in data[2] and
108  * data[3] of the CPL_FW6_PLD message.
109  *
110  * For hash replies where the work request set 'hash_size' to request
111  * a copy of the hash in the reply, the hash digest is supplied
112  * immediately following the CPL_FW6_PLD message.
113  */
114 
115 /*
116  * The crypto engine supports a maximum AAD size of 511 bytes.
117  */
118 #define	MAX_AAD_LEN		511
119 
120 /*
121  * The documentation for CPL_RX_PHYS_DSGL claims a maximum of 32 SG
122  * entries.  While the CPL includes a 16-bit length field, the T6 can
123  * sometimes hang if an error occurs while processing a request with a
124  * single DSGL entry larger than 2k.
125  */
126 #define	MAX_RX_PHYS_DSGL_SGE	32
127 #define	DSGL_SGE_MAXLEN		2048
128 
129 /*
130  * The adapter only supports requests with a total input or output
131  * length of 64k-1 or smaller.  Longer requests either result in hung
132  * requests or incorrect results.
133  */
134 #define	MAX_REQUEST_SIZE	65535
135 
136 static MALLOC_DEFINE(M_CCR, "ccr", "Chelsio T6 crypto");
137 
138 struct ccr_session_hmac {
139 	struct auth_hash *auth_hash;
140 	int hash_len;
141 	unsigned int partial_digest_len;
142 	unsigned int auth_mode;
143 	unsigned int mk_size;
144 	char ipad[CHCR_HASH_MAX_BLOCK_SIZE_128];
145 	char opad[CHCR_HASH_MAX_BLOCK_SIZE_128];
146 };
147 
148 struct ccr_session_gmac {
149 	int hash_len;
150 	char ghash_h[GMAC_BLOCK_LEN];
151 };
152 
153 struct ccr_session_ccm_mac {
154 	int hash_len;
155 };
156 
157 struct ccr_session_blkcipher {
158 	unsigned int cipher_mode;
159 	unsigned int key_len;
160 	unsigned int iv_len;
161 	__be32 key_ctx_hdr;
162 	char enckey[CHCR_AES_MAX_KEY_LEN];
163 	char deckey[CHCR_AES_MAX_KEY_LEN];
164 };
165 
166 struct ccr_session {
167 	bool active;
168 	int pending;
169 	enum { HASH, HMAC, BLKCIPHER, AUTHENC, GCM, CCM } mode;
170 	union {
171 		struct ccr_session_hmac hmac;
172 		struct ccr_session_gmac gmac;
173 		struct ccr_session_ccm_mac ccm_mac;
174 	};
175 	struct ccr_session_blkcipher blkcipher;
176 };
177 
178 struct ccr_softc {
179 	struct adapter *adapter;
180 	device_t dev;
181 	uint32_t cid;
182 	int tx_channel_id;
183 	struct mtx lock;
184 	bool detaching;
185 	struct sge_wrq *txq;
186 	struct sge_rxq *rxq;
187 
188 	/*
189 	 * Pre-allocate S/G lists used when preparing a work request.
190 	 * 'sg_crp' contains an sglist describing the entire buffer
191 	 * for a 'struct cryptop'.  'sg_ulptx' is used to describe
192 	 * the data the engine should DMA as input via ULPTX_SGL.
193 	 * 'sg_dsgl' is used to describe the destination that cipher
194 	 * text and a tag should be written to.
195 	 */
196 	struct sglist *sg_crp;
197 	struct sglist *sg_ulptx;
198 	struct sglist *sg_dsgl;
199 
200 	/*
201 	 * Pre-allocate a dummy output buffer for the IV and AAD for
202 	 * AEAD requests.
203 	 */
204 	char *iv_aad_buf;
205 	struct sglist *sg_iv_aad;
206 
207 	/* Statistics. */
208 	uint64_t stats_blkcipher_encrypt;
209 	uint64_t stats_blkcipher_decrypt;
210 	uint64_t stats_hash;
211 	uint64_t stats_hmac;
212 	uint64_t stats_authenc_encrypt;
213 	uint64_t stats_authenc_decrypt;
214 	uint64_t stats_gcm_encrypt;
215 	uint64_t stats_gcm_decrypt;
216 	uint64_t stats_ccm_encrypt;
217 	uint64_t stats_ccm_decrypt;
218 	uint64_t stats_wr_nomem;
219 	uint64_t stats_inflight;
220 	uint64_t stats_mac_error;
221 	uint64_t stats_pad_error;
222 	uint64_t stats_bad_session;
223 	uint64_t stats_sglist_error;
224 	uint64_t stats_process_error;
225 	uint64_t stats_sw_fallback;
226 };
227 
228 /*
229  * Crypto requests involve two kind of scatter/gather lists.
230  *
231  * Non-hash-only requests require a PHYS_DSGL that describes the
232  * location to store the results of the encryption or decryption
233  * operation.  This SGL uses a different format (PHYS_DSGL) and should
234  * exclude the crd_skip bytes at the start of the data as well as
235  * any AAD or IV.  For authenticated encryption requests it should
236  * cover include the destination of the hash or tag.
237  *
238  * The input payload may either be supplied inline as immediate data,
239  * or via a standard ULP_TX SGL.  This SGL should include AAD,
240  * ciphertext, and the hash or tag for authenticated decryption
241  * requests.
242  *
243  * These scatter/gather lists can describe different subsets of the
244  * buffer described by the crypto operation.  ccr_populate_sglist()
245  * generates a scatter/gather list that covers the entire crypto
246  * operation buffer that is then used to construct the other
247  * scatter/gather lists.
248  */
249 static int
250 ccr_populate_sglist(struct sglist *sg, struct cryptop *crp)
251 {
252 	int error;
253 
254 	sglist_reset(sg);
255 	if (crp->crp_flags & CRYPTO_F_IMBUF)
256 		error = sglist_append_mbuf(sg, (struct mbuf *)crp->crp_buf);
257 	else if (crp->crp_flags & CRYPTO_F_IOV)
258 		error = sglist_append_uio(sg, (struct uio *)crp->crp_buf);
259 	else
260 		error = sglist_append(sg, crp->crp_buf, crp->crp_ilen);
261 	return (error);
262 }
263 
264 /*
265  * Segments in 'sg' larger than 'maxsegsize' are counted as multiple
266  * segments.
267  */
268 static int
269 ccr_count_sgl(struct sglist *sg, int maxsegsize)
270 {
271 	int i, nsegs;
272 
273 	nsegs = 0;
274 	for (i = 0; i < sg->sg_nseg; i++)
275 		nsegs += howmany(sg->sg_segs[i].ss_len, maxsegsize);
276 	return (nsegs);
277 }
278 
279 /* These functions deal with PHYS_DSGL for the reply buffer. */
280 static inline int
281 ccr_phys_dsgl_len(int nsegs)
282 {
283 	int len;
284 
285 	len = (nsegs / 8) * sizeof(struct phys_sge_pairs);
286 	if ((nsegs % 8) != 0) {
287 		len += sizeof(uint16_t) * 8;
288 		len += roundup2(nsegs % 8, 2) * sizeof(uint64_t);
289 	}
290 	return (len);
291 }
292 
293 static void
294 ccr_write_phys_dsgl(struct ccr_softc *sc, void *dst, int nsegs)
295 {
296 	struct sglist *sg;
297 	struct cpl_rx_phys_dsgl *cpl;
298 	struct phys_sge_pairs *sgl;
299 	vm_paddr_t paddr;
300 	size_t seglen;
301 	u_int i, j;
302 
303 	sg = sc->sg_dsgl;
304 	cpl = dst;
305 	cpl->op_to_tid = htobe32(V_CPL_RX_PHYS_DSGL_OPCODE(CPL_RX_PHYS_DSGL) |
306 	    V_CPL_RX_PHYS_DSGL_ISRDMA(0));
307 	cpl->pcirlxorder_to_noofsgentr = htobe32(
308 	    V_CPL_RX_PHYS_DSGL_PCIRLXORDER(0) |
309 	    V_CPL_RX_PHYS_DSGL_PCINOSNOOP(0) |
310 	    V_CPL_RX_PHYS_DSGL_PCITPHNTENB(0) | V_CPL_RX_PHYS_DSGL_DCAID(0) |
311 	    V_CPL_RX_PHYS_DSGL_NOOFSGENTR(nsegs));
312 	cpl->rss_hdr_int.opcode = CPL_RX_PHYS_ADDR;
313 	cpl->rss_hdr_int.qid = htobe16(sc->rxq->iq.abs_id);
314 	cpl->rss_hdr_int.hash_val = 0;
315 	sgl = (struct phys_sge_pairs *)(cpl + 1);
316 	j = 0;
317 	for (i = 0; i < sg->sg_nseg; i++) {
318 		seglen = sg->sg_segs[i].ss_len;
319 		paddr = sg->sg_segs[i].ss_paddr;
320 		do {
321 			sgl->addr[j] = htobe64(paddr);
322 			if (seglen > DSGL_SGE_MAXLEN) {
323 				sgl->len[j] = htobe16(DSGL_SGE_MAXLEN);
324 				paddr += DSGL_SGE_MAXLEN;
325 				seglen -= DSGL_SGE_MAXLEN;
326 			} else {
327 				sgl->len[j] = htobe16(seglen);
328 				seglen = 0;
329 			}
330 			j++;
331 			if (j == 8) {
332 				sgl++;
333 				j = 0;
334 			}
335 		} while (seglen != 0);
336 	}
337 	MPASS(j + 8 * (sgl - (struct phys_sge_pairs *)(cpl + 1)) == nsegs);
338 }
339 
340 /* These functions deal with the ULPTX_SGL for input payload. */
341 static inline int
342 ccr_ulptx_sgl_len(int nsegs)
343 {
344 	u_int n;
345 
346 	nsegs--; /* first segment is part of ulptx_sgl */
347 	n = sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
348 	return (roundup2(n, 16));
349 }
350 
351 static void
352 ccr_write_ulptx_sgl(struct ccr_softc *sc, void *dst, int nsegs)
353 {
354 	struct ulptx_sgl *usgl;
355 	struct sglist *sg;
356 	struct sglist_seg *ss;
357 	int i;
358 
359 	sg = sc->sg_ulptx;
360 	MPASS(nsegs == sg->sg_nseg);
361 	ss = &sg->sg_segs[0];
362 	usgl = dst;
363 	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
364 	    V_ULPTX_NSGE(nsegs));
365 	usgl->len0 = htobe32(ss->ss_len);
366 	usgl->addr0 = htobe64(ss->ss_paddr);
367 	ss++;
368 	for (i = 0; i < sg->sg_nseg - 1; i++) {
369 		usgl->sge[i / 2].len[i & 1] = htobe32(ss->ss_len);
370 		usgl->sge[i / 2].addr[i & 1] = htobe64(ss->ss_paddr);
371 		ss++;
372 	}
373 
374 }
375 
376 static bool
377 ccr_use_imm_data(u_int transhdr_len, u_int input_len)
378 {
379 
380 	if (input_len > CRYPTO_MAX_IMM_TX_PKT_LEN)
381 		return (false);
382 	if (roundup2(transhdr_len, 16) + roundup2(input_len, 16) >
383 	    SGE_MAX_WR_LEN)
384 		return (false);
385 	return (true);
386 }
387 
388 static void
389 ccr_populate_wreq(struct ccr_softc *sc, struct chcr_wr *crwr, u_int kctx_len,
390     u_int wr_len, u_int imm_len, u_int sgl_len, u_int hash_size,
391     struct cryptop *crp)
392 {
393 	u_int cctx_size, idata_len;
394 
395 	cctx_size = sizeof(struct _key_ctx) + kctx_len;
396 	crwr->wreq.op_to_cctx_size = htobe32(
397 	    V_FW_CRYPTO_LOOKASIDE_WR_OPCODE(FW_CRYPTO_LOOKASIDE_WR) |
398 	    V_FW_CRYPTO_LOOKASIDE_WR_COMPL(0) |
399 	    V_FW_CRYPTO_LOOKASIDE_WR_IMM_LEN(imm_len) |
400 	    V_FW_CRYPTO_LOOKASIDE_WR_CCTX_LOC(1) |
401 	    V_FW_CRYPTO_LOOKASIDE_WR_CCTX_SIZE(cctx_size >> 4));
402 	crwr->wreq.len16_pkd = htobe32(
403 	    V_FW_CRYPTO_LOOKASIDE_WR_LEN16(wr_len / 16));
404 	crwr->wreq.session_id = 0;
405 	crwr->wreq.rx_chid_to_rx_q_id = htobe32(
406 	    V_FW_CRYPTO_LOOKASIDE_WR_RX_CHID(sc->tx_channel_id) |
407 	    V_FW_CRYPTO_LOOKASIDE_WR_LCB(0) |
408 	    V_FW_CRYPTO_LOOKASIDE_WR_PHASH(0) |
409 	    V_FW_CRYPTO_LOOKASIDE_WR_IV(IV_NOP) |
410 	    V_FW_CRYPTO_LOOKASIDE_WR_FQIDX(0) |
411 	    V_FW_CRYPTO_LOOKASIDE_WR_TX_CH(0) |
412 	    V_FW_CRYPTO_LOOKASIDE_WR_RX_Q_ID(sc->rxq->iq.abs_id));
413 	crwr->wreq.key_addr = 0;
414 	crwr->wreq.pld_size_hash_size = htobe32(
415 	    V_FW_CRYPTO_LOOKASIDE_WR_PLD_SIZE(sgl_len) |
416 	    V_FW_CRYPTO_LOOKASIDE_WR_HASH_SIZE(hash_size));
417 	crwr->wreq.cookie = htobe64((uintptr_t)crp);
418 
419 	crwr->ulptx.cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
420 	    V_ULP_TXPKT_DATAMODIFY(0) |
421 	    V_ULP_TXPKT_CHANNELID(sc->tx_channel_id) | V_ULP_TXPKT_DEST(0) |
422 	    V_ULP_TXPKT_FID(0) | V_ULP_TXPKT_RO(1));
423 	crwr->ulptx.len = htobe32(
424 	    ((wr_len - sizeof(struct fw_crypto_lookaside_wr)) / 16));
425 
426 	crwr->sc_imm.cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
427 	    V_ULP_TX_SC_MORE(sgl_len != 0 ? 1 : 0));
428 	idata_len = wr_len - offsetof(struct chcr_wr, sec_cpl) - sgl_len;
429 	if (imm_len % 16 != 0)
430 		idata_len -= 16 - imm_len % 16;
431 	crwr->sc_imm.len = htobe32(idata_len);
432 }
433 
434 static int
435 ccr_hash(struct ccr_softc *sc, struct ccr_session *s, struct cryptop *crp)
436 {
437 	struct chcr_wr *crwr;
438 	struct wrqe *wr;
439 	struct auth_hash *axf;
440 	struct cryptodesc *crd;
441 	char *dst;
442 	u_int hash_size_in_response, kctx_flits, kctx_len, transhdr_len, wr_len;
443 	u_int hmac_ctrl, imm_len, iopad_size;
444 	int error, sgl_nsegs, sgl_len, use_opad;
445 
446 	crd = crp->crp_desc;
447 
448 	/* Reject requests with too large of an input buffer. */
449 	if (crd->crd_len > MAX_REQUEST_SIZE)
450 		return (EFBIG);
451 
452 	axf = s->hmac.auth_hash;
453 
454 	if (s->mode == HMAC) {
455 		use_opad = 1;
456 		hmac_ctrl = SCMD_HMAC_CTRL_NO_TRUNC;
457 	} else {
458 		use_opad = 0;
459 		hmac_ctrl = SCMD_HMAC_CTRL_NOP;
460 	}
461 
462 	/* PADs must be 128-bit aligned. */
463 	iopad_size = roundup2(s->hmac.partial_digest_len, 16);
464 
465 	/*
466 	 * The 'key' part of the context includes the aligned IPAD and
467 	 * OPAD.
468 	 */
469 	kctx_len = iopad_size;
470 	if (use_opad)
471 		kctx_len += iopad_size;
472 	hash_size_in_response = axf->hashsize;
473 	transhdr_len = HASH_TRANSHDR_SIZE(kctx_len);
474 
475 	if (crd->crd_len == 0) {
476 		imm_len = axf->blocksize;
477 		sgl_nsegs = 0;
478 		sgl_len = 0;
479 	} else if (ccr_use_imm_data(transhdr_len, crd->crd_len)) {
480 		imm_len = crd->crd_len;
481 		sgl_nsegs = 0;
482 		sgl_len = 0;
483 	} else {
484 		imm_len = 0;
485 		sglist_reset(sc->sg_ulptx);
486 		error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp,
487 		    crd->crd_skip, crd->crd_len);
488 		if (error)
489 			return (error);
490 		sgl_nsegs = sc->sg_ulptx->sg_nseg;
491 		sgl_len = ccr_ulptx_sgl_len(sgl_nsegs);
492 	}
493 
494 	wr_len = roundup2(transhdr_len, 16) + roundup2(imm_len, 16) + sgl_len;
495 	if (wr_len > SGE_MAX_WR_LEN)
496 		return (EFBIG);
497 	wr = alloc_wrqe(wr_len, sc->txq);
498 	if (wr == NULL) {
499 		sc->stats_wr_nomem++;
500 		return (ENOMEM);
501 	}
502 	crwr = wrtod(wr);
503 	memset(crwr, 0, wr_len);
504 
505 	ccr_populate_wreq(sc, crwr, kctx_len, wr_len, imm_len, sgl_len,
506 	    hash_size_in_response, crp);
507 
508 	/* XXX: Hardcodes SGE loopback channel of 0. */
509 	crwr->sec_cpl.op_ivinsrtofst = htobe32(
510 	    V_CPL_TX_SEC_PDU_OPCODE(CPL_TX_SEC_PDU) |
511 	    V_CPL_TX_SEC_PDU_RXCHID(sc->tx_channel_id) |
512 	    V_CPL_TX_SEC_PDU_ACKFOLLOWS(0) | V_CPL_TX_SEC_PDU_ULPTXLPBK(1) |
513 	    V_CPL_TX_SEC_PDU_CPLLEN(2) | V_CPL_TX_SEC_PDU_PLACEHOLDER(0) |
514 	    V_CPL_TX_SEC_PDU_IVINSRTOFST(0));
515 
516 	crwr->sec_cpl.pldlen = htobe32(crd->crd_len == 0 ? axf->blocksize :
517 	    crd->crd_len);
518 
519 	crwr->sec_cpl.cipherstop_lo_authinsert = htobe32(
520 	    V_CPL_TX_SEC_PDU_AUTHSTART(1) | V_CPL_TX_SEC_PDU_AUTHSTOP(0));
521 
522 	/* These two flits are actually a CPL_TLS_TX_SCMD_FMT. */
523 	crwr->sec_cpl.seqno_numivs = htobe32(
524 	    V_SCMD_SEQ_NO_CTRL(0) |
525 	    V_SCMD_PROTO_VERSION(SCMD_PROTO_VERSION_GENERIC) |
526 	    V_SCMD_CIPH_MODE(SCMD_CIPH_MODE_NOP) |
527 	    V_SCMD_AUTH_MODE(s->hmac.auth_mode) |
528 	    V_SCMD_HMAC_CTRL(hmac_ctrl));
529 	crwr->sec_cpl.ivgen_hdrlen = htobe32(
530 	    V_SCMD_LAST_FRAG(0) |
531 	    V_SCMD_MORE_FRAGS(crd->crd_len == 0 ? 1 : 0) | V_SCMD_MAC_ONLY(1));
532 
533 	memcpy(crwr->key_ctx.key, s->hmac.ipad, s->hmac.partial_digest_len);
534 	if (use_opad)
535 		memcpy(crwr->key_ctx.key + iopad_size, s->hmac.opad,
536 		    s->hmac.partial_digest_len);
537 
538 	/* XXX: F_KEY_CONTEXT_SALT_PRESENT set, but 'salt' not set. */
539 	kctx_flits = (sizeof(struct _key_ctx) + kctx_len) / 16;
540 	crwr->key_ctx.ctx_hdr = htobe32(V_KEY_CONTEXT_CTX_LEN(kctx_flits) |
541 	    V_KEY_CONTEXT_OPAD_PRESENT(use_opad) |
542 	    V_KEY_CONTEXT_SALT_PRESENT(1) |
543 	    V_KEY_CONTEXT_CK_SIZE(CHCR_KEYCTX_NO_KEY) |
544 	    V_KEY_CONTEXT_MK_SIZE(s->hmac.mk_size) | V_KEY_CONTEXT_VALID(1));
545 
546 	dst = (char *)(crwr + 1) + kctx_len + DUMMY_BYTES;
547 	if (crd->crd_len == 0) {
548 		dst[0] = 0x80;
549 		if (s->mode == HMAC)
550 			*(uint64_t *)(dst + axf->blocksize - sizeof(uint64_t)) =
551 			    htobe64(axf->blocksize << 3);
552 	} else if (imm_len != 0)
553 		crypto_copydata(crp->crp_flags, crp->crp_buf, crd->crd_skip,
554 		    crd->crd_len, dst);
555 	else
556 		ccr_write_ulptx_sgl(sc, dst, sgl_nsegs);
557 
558 	/* XXX: TODO backpressure */
559 	t4_wrq_tx(sc->adapter, wr);
560 
561 	return (0);
562 }
563 
564 static int
565 ccr_hash_done(struct ccr_softc *sc, struct ccr_session *s, struct cryptop *crp,
566     const struct cpl_fw6_pld *cpl, int error)
567 {
568 	struct cryptodesc *crd;
569 
570 	crd = crp->crp_desc;
571 	if (error == 0) {
572 		crypto_copyback(crp->crp_flags, crp->crp_buf, crd->crd_inject,
573 		    s->hmac.hash_len, (c_caddr_t)(cpl + 1));
574 	}
575 
576 	return (error);
577 }
578 
579 static int
580 ccr_blkcipher(struct ccr_softc *sc, struct ccr_session *s, struct cryptop *crp)
581 {
582 	char iv[CHCR_MAX_CRYPTO_IV_LEN];
583 	struct chcr_wr *crwr;
584 	struct wrqe *wr;
585 	struct cryptodesc *crd;
586 	char *dst;
587 	u_int kctx_len, key_half, op_type, transhdr_len, wr_len;
588 	u_int imm_len;
589 	int dsgl_nsegs, dsgl_len;
590 	int sgl_nsegs, sgl_len;
591 	int error;
592 
593 	crd = crp->crp_desc;
594 
595 	if (s->blkcipher.key_len == 0 || crd->crd_len == 0)
596 		return (EINVAL);
597 	if (crd->crd_alg == CRYPTO_AES_CBC &&
598 	    (crd->crd_len % AES_BLOCK_LEN) != 0)
599 		return (EINVAL);
600 
601 	/* Reject requests with too large of an input buffer. */
602 	if (crd->crd_len > MAX_REQUEST_SIZE)
603 		return (EFBIG);
604 
605 	if (crd->crd_flags & CRD_F_ENCRYPT)
606 		op_type = CHCR_ENCRYPT_OP;
607 	else
608 		op_type = CHCR_DECRYPT_OP;
609 
610 	sglist_reset(sc->sg_dsgl);
611 	error = sglist_append_sglist(sc->sg_dsgl, sc->sg_crp, crd->crd_skip,
612 	    crd->crd_len);
613 	if (error)
614 		return (error);
615 	dsgl_nsegs = ccr_count_sgl(sc->sg_dsgl, DSGL_SGE_MAXLEN);
616 	if (dsgl_nsegs > MAX_RX_PHYS_DSGL_SGE)
617 		return (EFBIG);
618 	dsgl_len = ccr_phys_dsgl_len(dsgl_nsegs);
619 
620 	/* The 'key' must be 128-bit aligned. */
621 	kctx_len = roundup2(s->blkcipher.key_len, 16);
622 	transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, dsgl_len);
623 
624 	if (ccr_use_imm_data(transhdr_len, crd->crd_len +
625 	    s->blkcipher.iv_len)) {
626 		imm_len = crd->crd_len;
627 		sgl_nsegs = 0;
628 		sgl_len = 0;
629 	} else {
630 		imm_len = 0;
631 		sglist_reset(sc->sg_ulptx);
632 		error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp,
633 		    crd->crd_skip, crd->crd_len);
634 		if (error)
635 			return (error);
636 		sgl_nsegs = sc->sg_ulptx->sg_nseg;
637 		sgl_len = ccr_ulptx_sgl_len(sgl_nsegs);
638 	}
639 
640 	wr_len = roundup2(transhdr_len, 16) + s->blkcipher.iv_len +
641 	    roundup2(imm_len, 16) + sgl_len;
642 	if (wr_len > SGE_MAX_WR_LEN)
643 		return (EFBIG);
644 	wr = alloc_wrqe(wr_len, sc->txq);
645 	if (wr == NULL) {
646 		sc->stats_wr_nomem++;
647 		return (ENOMEM);
648 	}
649 	crwr = wrtod(wr);
650 	memset(crwr, 0, wr_len);
651 
652 	/*
653 	 * Read the existing IV from the request or generate a random
654 	 * one if none is provided.  Optionally copy the generated IV
655 	 * into the output buffer if requested.
656 	 */
657 	if (op_type == CHCR_ENCRYPT_OP) {
658 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
659 			memcpy(iv, crd->crd_iv, s->blkcipher.iv_len);
660 		else
661 			arc4rand(iv, s->blkcipher.iv_len, 0);
662 		if ((crd->crd_flags & CRD_F_IV_PRESENT) == 0)
663 			crypto_copyback(crp->crp_flags, crp->crp_buf,
664 			    crd->crd_inject, s->blkcipher.iv_len, iv);
665 	} else {
666 		if (crd->crd_flags & CRD_F_IV_EXPLICIT)
667 			memcpy(iv, crd->crd_iv, s->blkcipher.iv_len);
668 		else
669 			crypto_copydata(crp->crp_flags, crp->crp_buf,
670 			    crd->crd_inject, s->blkcipher.iv_len, iv);
671 	}
672 
673 	ccr_populate_wreq(sc, crwr, kctx_len, wr_len, imm_len, sgl_len, 0,
674 	    crp);
675 
676 	/* XXX: Hardcodes SGE loopback channel of 0. */
677 	crwr->sec_cpl.op_ivinsrtofst = htobe32(
678 	    V_CPL_TX_SEC_PDU_OPCODE(CPL_TX_SEC_PDU) |
679 	    V_CPL_TX_SEC_PDU_RXCHID(sc->tx_channel_id) |
680 	    V_CPL_TX_SEC_PDU_ACKFOLLOWS(0) | V_CPL_TX_SEC_PDU_ULPTXLPBK(1) |
681 	    V_CPL_TX_SEC_PDU_CPLLEN(2) | V_CPL_TX_SEC_PDU_PLACEHOLDER(0) |
682 	    V_CPL_TX_SEC_PDU_IVINSRTOFST(1));
683 
684 	crwr->sec_cpl.pldlen = htobe32(s->blkcipher.iv_len + crd->crd_len);
685 
686 	crwr->sec_cpl.aadstart_cipherstop_hi = htobe32(
687 	    V_CPL_TX_SEC_PDU_CIPHERSTART(s->blkcipher.iv_len + 1) |
688 	    V_CPL_TX_SEC_PDU_CIPHERSTOP_HI(0));
689 	crwr->sec_cpl.cipherstop_lo_authinsert = htobe32(
690 	    V_CPL_TX_SEC_PDU_CIPHERSTOP_LO(0));
691 
692 	/* These two flits are actually a CPL_TLS_TX_SCMD_FMT. */
693 	crwr->sec_cpl.seqno_numivs = htobe32(
694 	    V_SCMD_SEQ_NO_CTRL(0) |
695 	    V_SCMD_PROTO_VERSION(SCMD_PROTO_VERSION_GENERIC) |
696 	    V_SCMD_ENC_DEC_CTRL(op_type) |
697 	    V_SCMD_CIPH_MODE(s->blkcipher.cipher_mode) |
698 	    V_SCMD_AUTH_MODE(SCMD_AUTH_MODE_NOP) |
699 	    V_SCMD_HMAC_CTRL(SCMD_HMAC_CTRL_NOP) |
700 	    V_SCMD_IV_SIZE(s->blkcipher.iv_len / 2) |
701 	    V_SCMD_NUM_IVS(0));
702 	crwr->sec_cpl.ivgen_hdrlen = htobe32(
703 	    V_SCMD_IV_GEN_CTRL(0) |
704 	    V_SCMD_MORE_FRAGS(0) | V_SCMD_LAST_FRAG(0) | V_SCMD_MAC_ONLY(0) |
705 	    V_SCMD_AADIVDROP(1) | V_SCMD_HDR_LEN(dsgl_len));
706 
707 	crwr->key_ctx.ctx_hdr = s->blkcipher.key_ctx_hdr;
708 	switch (crd->crd_alg) {
709 	case CRYPTO_AES_CBC:
710 		if (crd->crd_flags & CRD_F_ENCRYPT)
711 			memcpy(crwr->key_ctx.key, s->blkcipher.enckey,
712 			    s->blkcipher.key_len);
713 		else
714 			memcpy(crwr->key_ctx.key, s->blkcipher.deckey,
715 			    s->blkcipher.key_len);
716 		break;
717 	case CRYPTO_AES_ICM:
718 		memcpy(crwr->key_ctx.key, s->blkcipher.enckey,
719 		    s->blkcipher.key_len);
720 		break;
721 	case CRYPTO_AES_XTS:
722 		key_half = s->blkcipher.key_len / 2;
723 		memcpy(crwr->key_ctx.key, s->blkcipher.enckey + key_half,
724 		    key_half);
725 		if (crd->crd_flags & CRD_F_ENCRYPT)
726 			memcpy(crwr->key_ctx.key + key_half,
727 			    s->blkcipher.enckey, key_half);
728 		else
729 			memcpy(crwr->key_ctx.key + key_half,
730 			    s->blkcipher.deckey, key_half);
731 		break;
732 	}
733 
734 	dst = (char *)(crwr + 1) + kctx_len;
735 	ccr_write_phys_dsgl(sc, dst, dsgl_nsegs);
736 	dst += sizeof(struct cpl_rx_phys_dsgl) + dsgl_len;
737 	memcpy(dst, iv, s->blkcipher.iv_len);
738 	dst += s->blkcipher.iv_len;
739 	if (imm_len != 0)
740 		crypto_copydata(crp->crp_flags, crp->crp_buf, crd->crd_skip,
741 		    crd->crd_len, dst);
742 	else
743 		ccr_write_ulptx_sgl(sc, dst, sgl_nsegs);
744 
745 	/* XXX: TODO backpressure */
746 	t4_wrq_tx(sc->adapter, wr);
747 
748 	return (0);
749 }
750 
751 static int
752 ccr_blkcipher_done(struct ccr_softc *sc, struct ccr_session *s,
753     struct cryptop *crp, const struct cpl_fw6_pld *cpl, int error)
754 {
755 
756 	/*
757 	 * The updated IV to permit chained requests is at
758 	 * cpl->data[2], but OCF doesn't permit chained requests.
759 	 */
760 	return (error);
761 }
762 
763 /*
764  * 'hashsize' is the length of a full digest.  'authsize' is the
765  * requested digest length for this operation which may be less
766  * than 'hashsize'.
767  */
768 static int
769 ccr_hmac_ctrl(unsigned int hashsize, unsigned int authsize)
770 {
771 
772 	if (authsize == 10)
773 		return (SCMD_HMAC_CTRL_TRUNC_RFC4366);
774 	if (authsize == 12)
775 		return (SCMD_HMAC_CTRL_IPSEC_96BIT);
776 	if (authsize == hashsize / 2)
777 		return (SCMD_HMAC_CTRL_DIV2);
778 	return (SCMD_HMAC_CTRL_NO_TRUNC);
779 }
780 
781 static int
782 ccr_authenc(struct ccr_softc *sc, struct ccr_session *s, struct cryptop *crp,
783     struct cryptodesc *crda, struct cryptodesc *crde)
784 {
785 	char iv[CHCR_MAX_CRYPTO_IV_LEN];
786 	struct chcr_wr *crwr;
787 	struct wrqe *wr;
788 	struct auth_hash *axf;
789 	char *dst;
790 	u_int kctx_len, key_half, op_type, transhdr_len, wr_len;
791 	u_int hash_size_in_response, imm_len, iopad_size;
792 	u_int aad_start, aad_len, aad_stop;
793 	u_int auth_start, auth_stop, auth_insert;
794 	u_int cipher_start, cipher_stop;
795 	u_int hmac_ctrl, input_len;
796 	int dsgl_nsegs, dsgl_len;
797 	int sgl_nsegs, sgl_len;
798 	int error;
799 
800 	/*
801 	 * If there is a need in the future, requests with an empty
802 	 * payload could be supported as HMAC-only requests.
803 	 */
804 	if (s->blkcipher.key_len == 0 || crde->crd_len == 0)
805 		return (EINVAL);
806 	if (crde->crd_alg == CRYPTO_AES_CBC &&
807 	    (crde->crd_len % AES_BLOCK_LEN) != 0)
808 		return (EINVAL);
809 
810 	/*
811 	 * Compute the length of the AAD (data covered by the
812 	 * authentication descriptor but not the encryption
813 	 * descriptor).  To simplify the logic, AAD is only permitted
814 	 * before the cipher/plain text, not after.  This is true of
815 	 * all currently-generated requests.
816 	 */
817 	if (crda->crd_len + crda->crd_skip > crde->crd_len + crde->crd_skip)
818 		return (EINVAL);
819 	if (crda->crd_skip < crde->crd_skip) {
820 		if (crda->crd_skip + crda->crd_len > crde->crd_skip)
821 			aad_len = (crde->crd_skip - crda->crd_skip);
822 		else
823 			aad_len = crda->crd_len;
824 	} else
825 		aad_len = 0;
826 	if (aad_len + s->blkcipher.iv_len > MAX_AAD_LEN)
827 		return (EINVAL);
828 
829 	axf = s->hmac.auth_hash;
830 	hash_size_in_response = s->hmac.hash_len;
831 	if (crde->crd_flags & CRD_F_ENCRYPT)
832 		op_type = CHCR_ENCRYPT_OP;
833 	else
834 		op_type = CHCR_DECRYPT_OP;
835 
836 	/*
837 	 * The output buffer consists of the cipher text followed by
838 	 * the hash when encrypting.  For decryption it only contains
839 	 * the plain text.
840 	 *
841 	 * Due to a firmware bug, the output buffer must include a
842 	 * dummy output buffer for the IV and AAD prior to the real
843 	 * output buffer.
844 	 */
845 	if (op_type == CHCR_ENCRYPT_OP) {
846 		if (s->blkcipher.iv_len + aad_len + crde->crd_len +
847 		    hash_size_in_response > MAX_REQUEST_SIZE)
848 			return (EFBIG);
849 	} else {
850 		if (s->blkcipher.iv_len + aad_len + crde->crd_len >
851 		    MAX_REQUEST_SIZE)
852 			return (EFBIG);
853 	}
854 	sglist_reset(sc->sg_dsgl);
855 	error = sglist_append_sglist(sc->sg_dsgl, sc->sg_iv_aad, 0,
856 	    s->blkcipher.iv_len + aad_len);
857 	if (error)
858 		return (error);
859 	error = sglist_append_sglist(sc->sg_dsgl, sc->sg_crp, crde->crd_skip,
860 	    crde->crd_len);
861 	if (error)
862 		return (error);
863 	if (op_type == CHCR_ENCRYPT_OP) {
864 		error = sglist_append_sglist(sc->sg_dsgl, sc->sg_crp,
865 		    crda->crd_inject, hash_size_in_response);
866 		if (error)
867 			return (error);
868 	}
869 	dsgl_nsegs = ccr_count_sgl(sc->sg_dsgl, DSGL_SGE_MAXLEN);
870 	if (dsgl_nsegs > MAX_RX_PHYS_DSGL_SGE)
871 		return (EFBIG);
872 	dsgl_len = ccr_phys_dsgl_len(dsgl_nsegs);
873 
874 	/* PADs must be 128-bit aligned. */
875 	iopad_size = roundup2(s->hmac.partial_digest_len, 16);
876 
877 	/*
878 	 * The 'key' part of the key context consists of the key followed
879 	 * by the IPAD and OPAD.
880 	 */
881 	kctx_len = roundup2(s->blkcipher.key_len, 16) + iopad_size * 2;
882 	transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, dsgl_len);
883 
884 	/*
885 	 * The input buffer consists of the IV, any AAD, and then the
886 	 * cipher/plain text.  For decryption requests the hash is
887 	 * appended after the cipher text.
888 	 *
889 	 * The IV is always stored at the start of the input buffer
890 	 * even though it may be duplicated in the payload.  The
891 	 * crypto engine doesn't work properly if the IV offset points
892 	 * inside of the AAD region, so a second copy is always
893 	 * required.
894 	 */
895 	input_len = aad_len + crde->crd_len;
896 
897 	/*
898 	 * The firmware hangs if sent a request which is a
899 	 * bit smaller than MAX_REQUEST_SIZE.  In particular, the
900 	 * firmware appears to require 512 - 16 bytes of spare room
901 	 * along with the size of the hash even if the hash isn't
902 	 * included in the input buffer.
903 	 */
904 	if (input_len + roundup2(axf->hashsize, 16) + (512 - 16) >
905 	    MAX_REQUEST_SIZE)
906 		return (EFBIG);
907 	if (op_type == CHCR_DECRYPT_OP)
908 		input_len += hash_size_in_response;
909 	if (ccr_use_imm_data(transhdr_len, s->blkcipher.iv_len + input_len)) {
910 		imm_len = input_len;
911 		sgl_nsegs = 0;
912 		sgl_len = 0;
913 	} else {
914 		imm_len = 0;
915 		sglist_reset(sc->sg_ulptx);
916 		if (aad_len != 0) {
917 			error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp,
918 			    crda->crd_skip, aad_len);
919 			if (error)
920 				return (error);
921 		}
922 		error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp,
923 		    crde->crd_skip, crde->crd_len);
924 		if (error)
925 			return (error);
926 		if (op_type == CHCR_DECRYPT_OP) {
927 			error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp,
928 			    crda->crd_inject, hash_size_in_response);
929 			if (error)
930 				return (error);
931 		}
932 		sgl_nsegs = sc->sg_ulptx->sg_nseg;
933 		sgl_len = ccr_ulptx_sgl_len(sgl_nsegs);
934 	}
935 
936 	/*
937 	 * Any auth-only data before the cipher region is marked as AAD.
938 	 * Auth-data that overlaps with the cipher region is placed in
939 	 * the auth section.
940 	 */
941 	if (aad_len != 0) {
942 		aad_start = s->blkcipher.iv_len + 1;
943 		aad_stop = aad_start + aad_len - 1;
944 	} else {
945 		aad_start = 0;
946 		aad_stop = 0;
947 	}
948 	cipher_start = s->blkcipher.iv_len + aad_len + 1;
949 	if (op_type == CHCR_DECRYPT_OP)
950 		cipher_stop = hash_size_in_response;
951 	else
952 		cipher_stop = 0;
953 	if (aad_len == crda->crd_len) {
954 		auth_start = 0;
955 		auth_stop = 0;
956 	} else {
957 		if (aad_len != 0)
958 			auth_start = cipher_start;
959 		else
960 			auth_start = s->blkcipher.iv_len + crda->crd_skip -
961 			    crde->crd_skip + 1;
962 		auth_stop = (crde->crd_skip + crde->crd_len) -
963 		    (crda->crd_skip + crda->crd_len) + cipher_stop;
964 	}
965 	if (op_type == CHCR_DECRYPT_OP)
966 		auth_insert = hash_size_in_response;
967 	else
968 		auth_insert = 0;
969 
970 	wr_len = roundup2(transhdr_len, 16) + s->blkcipher.iv_len +
971 	    roundup2(imm_len, 16) + sgl_len;
972 	if (wr_len > SGE_MAX_WR_LEN)
973 		return (EFBIG);
974 	wr = alloc_wrqe(wr_len, sc->txq);
975 	if (wr == NULL) {
976 		sc->stats_wr_nomem++;
977 		return (ENOMEM);
978 	}
979 	crwr = wrtod(wr);
980 	memset(crwr, 0, wr_len);
981 
982 	/*
983 	 * Read the existing IV from the request or generate a random
984 	 * one if none is provided.  Optionally copy the generated IV
985 	 * into the output buffer if requested.
986 	 */
987 	if (op_type == CHCR_ENCRYPT_OP) {
988 		if (crde->crd_flags & CRD_F_IV_EXPLICIT)
989 			memcpy(iv, crde->crd_iv, s->blkcipher.iv_len);
990 		else
991 			arc4rand(iv, s->blkcipher.iv_len, 0);
992 		if ((crde->crd_flags & CRD_F_IV_PRESENT) == 0)
993 			crypto_copyback(crp->crp_flags, crp->crp_buf,
994 			    crde->crd_inject, s->blkcipher.iv_len, iv);
995 	} else {
996 		if (crde->crd_flags & CRD_F_IV_EXPLICIT)
997 			memcpy(iv, crde->crd_iv, s->blkcipher.iv_len);
998 		else
999 			crypto_copydata(crp->crp_flags, crp->crp_buf,
1000 			    crde->crd_inject, s->blkcipher.iv_len, iv);
1001 	}
1002 
1003 	ccr_populate_wreq(sc, crwr, kctx_len, wr_len, imm_len, sgl_len,
1004 	    op_type == CHCR_DECRYPT_OP ? hash_size_in_response : 0, crp);
1005 
1006 	/* XXX: Hardcodes SGE loopback channel of 0. */
1007 	crwr->sec_cpl.op_ivinsrtofst = htobe32(
1008 	    V_CPL_TX_SEC_PDU_OPCODE(CPL_TX_SEC_PDU) |
1009 	    V_CPL_TX_SEC_PDU_RXCHID(sc->tx_channel_id) |
1010 	    V_CPL_TX_SEC_PDU_ACKFOLLOWS(0) | V_CPL_TX_SEC_PDU_ULPTXLPBK(1) |
1011 	    V_CPL_TX_SEC_PDU_CPLLEN(2) | V_CPL_TX_SEC_PDU_PLACEHOLDER(0) |
1012 	    V_CPL_TX_SEC_PDU_IVINSRTOFST(1));
1013 
1014 	crwr->sec_cpl.pldlen = htobe32(s->blkcipher.iv_len + input_len);
1015 
1016 	crwr->sec_cpl.aadstart_cipherstop_hi = htobe32(
1017 	    V_CPL_TX_SEC_PDU_AADSTART(aad_start) |
1018 	    V_CPL_TX_SEC_PDU_AADSTOP(aad_stop) |
1019 	    V_CPL_TX_SEC_PDU_CIPHERSTART(cipher_start) |
1020 	    V_CPL_TX_SEC_PDU_CIPHERSTOP_HI(cipher_stop >> 4));
1021 	crwr->sec_cpl.cipherstop_lo_authinsert = htobe32(
1022 	    V_CPL_TX_SEC_PDU_CIPHERSTOP_LO(cipher_stop & 0xf) |
1023 	    V_CPL_TX_SEC_PDU_AUTHSTART(auth_start) |
1024 	    V_CPL_TX_SEC_PDU_AUTHSTOP(auth_stop) |
1025 	    V_CPL_TX_SEC_PDU_AUTHINSERT(auth_insert));
1026 
1027 	/* These two flits are actually a CPL_TLS_TX_SCMD_FMT. */
1028 	hmac_ctrl = ccr_hmac_ctrl(axf->hashsize, hash_size_in_response);
1029 	crwr->sec_cpl.seqno_numivs = htobe32(
1030 	    V_SCMD_SEQ_NO_CTRL(0) |
1031 	    V_SCMD_PROTO_VERSION(SCMD_PROTO_VERSION_GENERIC) |
1032 	    V_SCMD_ENC_DEC_CTRL(op_type) |
1033 	    V_SCMD_CIPH_AUTH_SEQ_CTRL(op_type == CHCR_ENCRYPT_OP ? 1 : 0) |
1034 	    V_SCMD_CIPH_MODE(s->blkcipher.cipher_mode) |
1035 	    V_SCMD_AUTH_MODE(s->hmac.auth_mode) |
1036 	    V_SCMD_HMAC_CTRL(hmac_ctrl) |
1037 	    V_SCMD_IV_SIZE(s->blkcipher.iv_len / 2) |
1038 	    V_SCMD_NUM_IVS(0));
1039 	crwr->sec_cpl.ivgen_hdrlen = htobe32(
1040 	    V_SCMD_IV_GEN_CTRL(0) |
1041 	    V_SCMD_MORE_FRAGS(0) | V_SCMD_LAST_FRAG(0) | V_SCMD_MAC_ONLY(0) |
1042 	    V_SCMD_AADIVDROP(0) | V_SCMD_HDR_LEN(dsgl_len));
1043 
1044 	crwr->key_ctx.ctx_hdr = s->blkcipher.key_ctx_hdr;
1045 	switch (crde->crd_alg) {
1046 	case CRYPTO_AES_CBC:
1047 		if (crde->crd_flags & CRD_F_ENCRYPT)
1048 			memcpy(crwr->key_ctx.key, s->blkcipher.enckey,
1049 			    s->blkcipher.key_len);
1050 		else
1051 			memcpy(crwr->key_ctx.key, s->blkcipher.deckey,
1052 			    s->blkcipher.key_len);
1053 		break;
1054 	case CRYPTO_AES_ICM:
1055 		memcpy(crwr->key_ctx.key, s->blkcipher.enckey,
1056 		    s->blkcipher.key_len);
1057 		break;
1058 	case CRYPTO_AES_XTS:
1059 		key_half = s->blkcipher.key_len / 2;
1060 		memcpy(crwr->key_ctx.key, s->blkcipher.enckey + key_half,
1061 		    key_half);
1062 		if (crde->crd_flags & CRD_F_ENCRYPT)
1063 			memcpy(crwr->key_ctx.key + key_half,
1064 			    s->blkcipher.enckey, key_half);
1065 		else
1066 			memcpy(crwr->key_ctx.key + key_half,
1067 			    s->blkcipher.deckey, key_half);
1068 		break;
1069 	}
1070 
1071 	dst = crwr->key_ctx.key + roundup2(s->blkcipher.key_len, 16);
1072 	memcpy(dst, s->hmac.ipad, s->hmac.partial_digest_len);
1073 	memcpy(dst + iopad_size, s->hmac.opad, s->hmac.partial_digest_len);
1074 
1075 	dst = (char *)(crwr + 1) + kctx_len;
1076 	ccr_write_phys_dsgl(sc, dst, dsgl_nsegs);
1077 	dst += sizeof(struct cpl_rx_phys_dsgl) + dsgl_len;
1078 	memcpy(dst, iv, s->blkcipher.iv_len);
1079 	dst += s->blkcipher.iv_len;
1080 	if (imm_len != 0) {
1081 		if (aad_len != 0) {
1082 			crypto_copydata(crp->crp_flags, crp->crp_buf,
1083 			    crda->crd_skip, aad_len, dst);
1084 			dst += aad_len;
1085 		}
1086 		crypto_copydata(crp->crp_flags, crp->crp_buf, crde->crd_skip,
1087 		    crde->crd_len, dst);
1088 		dst += crde->crd_len;
1089 		if (op_type == CHCR_DECRYPT_OP)
1090 			crypto_copydata(crp->crp_flags, crp->crp_buf,
1091 			    crda->crd_inject, hash_size_in_response, dst);
1092 	} else
1093 		ccr_write_ulptx_sgl(sc, dst, sgl_nsegs);
1094 
1095 	/* XXX: TODO backpressure */
1096 	t4_wrq_tx(sc->adapter, wr);
1097 
1098 	return (0);
1099 }
1100 
1101 static int
1102 ccr_authenc_done(struct ccr_softc *sc, struct ccr_session *s,
1103     struct cryptop *crp, const struct cpl_fw6_pld *cpl, int error)
1104 {
1105 	struct cryptodesc *crd;
1106 
1107 	/*
1108 	 * The updated IV to permit chained requests is at
1109 	 * cpl->data[2], but OCF doesn't permit chained requests.
1110 	 *
1111 	 * For a decryption request, the hardware may do a verification
1112 	 * of the HMAC which will fail if the existing HMAC isn't in the
1113 	 * buffer.  If that happens, clear the error and copy the HMAC
1114 	 * from the CPL reply into the buffer.
1115 	 *
1116 	 * For encryption requests, crd should be the cipher request
1117 	 * which will have CRD_F_ENCRYPT set.  For decryption
1118 	 * requests, crp_desc will be the HMAC request which should
1119 	 * not have this flag set.
1120 	 */
1121 	crd = crp->crp_desc;
1122 	if (error == EBADMSG && !CHK_PAD_ERR_BIT(be64toh(cpl->data[0])) &&
1123 	    !(crd->crd_flags & CRD_F_ENCRYPT)) {
1124 		crypto_copyback(crp->crp_flags, crp->crp_buf, crd->crd_inject,
1125 		    s->hmac.hash_len, (c_caddr_t)(cpl + 1));
1126 		error = 0;
1127 	}
1128 	return (error);
1129 }
1130 
1131 static int
1132 ccr_gcm(struct ccr_softc *sc, struct ccr_session *s, struct cryptop *crp,
1133     struct cryptodesc *crda, struct cryptodesc *crde)
1134 {
1135 	char iv[CHCR_MAX_CRYPTO_IV_LEN];
1136 	struct chcr_wr *crwr;
1137 	struct wrqe *wr;
1138 	char *dst;
1139 	u_int iv_len, kctx_len, op_type, transhdr_len, wr_len;
1140 	u_int hash_size_in_response, imm_len;
1141 	u_int aad_start, aad_stop, cipher_start, cipher_stop, auth_insert;
1142 	u_int hmac_ctrl, input_len;
1143 	int dsgl_nsegs, dsgl_len;
1144 	int sgl_nsegs, sgl_len;
1145 	int error;
1146 
1147 	if (s->blkcipher.key_len == 0)
1148 		return (EINVAL);
1149 
1150 	/*
1151 	 * The crypto engine doesn't handle GCM requests with an empty
1152 	 * payload, so handle those in software instead.
1153 	 */
1154 	if (crde->crd_len == 0)
1155 		return (EMSGSIZE);
1156 
1157 	/*
1158 	 * AAD is only permitted before the cipher/plain text, not
1159 	 * after.
1160 	 */
1161 	if (crda->crd_len + crda->crd_skip > crde->crd_len + crde->crd_skip)
1162 		return (EMSGSIZE);
1163 
1164 	if (crda->crd_len + AES_BLOCK_LEN > MAX_AAD_LEN)
1165 		return (EMSGSIZE);
1166 
1167 	hash_size_in_response = s->gmac.hash_len;
1168 	if (crde->crd_flags & CRD_F_ENCRYPT)
1169 		op_type = CHCR_ENCRYPT_OP;
1170 	else
1171 		op_type = CHCR_DECRYPT_OP;
1172 
1173 	/*
1174 	 * The IV handling for GCM in OCF is a bit more complicated in
1175 	 * that IPSec provides a full 16-byte IV (including the
1176 	 * counter), whereas the /dev/crypto interface sometimes
1177 	 * provides a full 16-byte IV (if no IV is provided in the
1178 	 * ioctl) and sometimes a 12-byte IV (if the IV was explicit).
1179 	 *
1180 	 * When provided a 12-byte IV, assume the IV is really 16 bytes
1181 	 * with a counter in the last 4 bytes initialized to 1.
1182 	 *
1183 	 * While iv_len is checked below, the value is currently
1184 	 * always set to 12 when creating a GCM session in this driver
1185 	 * due to limitations in OCF (there is no way to know what the
1186 	 * IV length of a given request will be).  This means that the
1187 	 * driver always assumes as 12-byte IV for now.
1188 	 */
1189 	if (s->blkcipher.iv_len == 12)
1190 		iv_len = AES_BLOCK_LEN;
1191 	else
1192 		iv_len = s->blkcipher.iv_len;
1193 
1194 	/*
1195 	 * The output buffer consists of the cipher text followed by
1196 	 * the tag when encrypting.  For decryption it only contains
1197 	 * the plain text.
1198 	 *
1199 	 * Due to a firmware bug, the output buffer must include a
1200 	 * dummy output buffer for the IV and AAD prior to the real
1201 	 * output buffer.
1202 	 */
1203 	if (op_type == CHCR_ENCRYPT_OP) {
1204 		if (iv_len + crda->crd_len + crde->crd_len +
1205 		    hash_size_in_response > MAX_REQUEST_SIZE)
1206 			return (EFBIG);
1207 	} else {
1208 		if (iv_len + crda->crd_len + crde->crd_len > MAX_REQUEST_SIZE)
1209 			return (EFBIG);
1210 	}
1211 	sglist_reset(sc->sg_dsgl);
1212 	error = sglist_append_sglist(sc->sg_dsgl, sc->sg_iv_aad, 0, iv_len +
1213 	    crda->crd_len);
1214 	if (error)
1215 		return (error);
1216 	error = sglist_append_sglist(sc->sg_dsgl, sc->sg_crp, crde->crd_skip,
1217 	    crde->crd_len);
1218 	if (error)
1219 		return (error);
1220 	if (op_type == CHCR_ENCRYPT_OP) {
1221 		error = sglist_append_sglist(sc->sg_dsgl, sc->sg_crp,
1222 		    crda->crd_inject, hash_size_in_response);
1223 		if (error)
1224 			return (error);
1225 	}
1226 	dsgl_nsegs = ccr_count_sgl(sc->sg_dsgl, DSGL_SGE_MAXLEN);
1227 	if (dsgl_nsegs > MAX_RX_PHYS_DSGL_SGE)
1228 		return (EFBIG);
1229 	dsgl_len = ccr_phys_dsgl_len(dsgl_nsegs);
1230 
1231 	/*
1232 	 * The 'key' part of the key context consists of the key followed
1233 	 * by the Galois hash key.
1234 	 */
1235 	kctx_len = roundup2(s->blkcipher.key_len, 16) + GMAC_BLOCK_LEN;
1236 	transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, dsgl_len);
1237 
1238 	/*
1239 	 * The input buffer consists of the IV, any AAD, and then the
1240 	 * cipher/plain text.  For decryption requests the hash is
1241 	 * appended after the cipher text.
1242 	 *
1243 	 * The IV is always stored at the start of the input buffer
1244 	 * even though it may be duplicated in the payload.  The
1245 	 * crypto engine doesn't work properly if the IV offset points
1246 	 * inside of the AAD region, so a second copy is always
1247 	 * required.
1248 	 */
1249 	input_len = crda->crd_len + crde->crd_len;
1250 	if (op_type == CHCR_DECRYPT_OP)
1251 		input_len += hash_size_in_response;
1252 	if (input_len > MAX_REQUEST_SIZE)
1253 		return (EFBIG);
1254 	if (ccr_use_imm_data(transhdr_len, iv_len + input_len)) {
1255 		imm_len = input_len;
1256 		sgl_nsegs = 0;
1257 		sgl_len = 0;
1258 	} else {
1259 		imm_len = 0;
1260 		sglist_reset(sc->sg_ulptx);
1261 		if (crda->crd_len != 0) {
1262 			error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp,
1263 			    crda->crd_skip, crda->crd_len);
1264 			if (error)
1265 				return (error);
1266 		}
1267 		error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp,
1268 		    crde->crd_skip, crde->crd_len);
1269 		if (error)
1270 			return (error);
1271 		if (op_type == CHCR_DECRYPT_OP) {
1272 			error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp,
1273 			    crda->crd_inject, hash_size_in_response);
1274 			if (error)
1275 				return (error);
1276 		}
1277 		sgl_nsegs = sc->sg_ulptx->sg_nseg;
1278 		sgl_len = ccr_ulptx_sgl_len(sgl_nsegs);
1279 	}
1280 
1281 	if (crda->crd_len != 0) {
1282 		aad_start = iv_len + 1;
1283 		aad_stop = aad_start + crda->crd_len - 1;
1284 	} else {
1285 		aad_start = 0;
1286 		aad_stop = 0;
1287 	}
1288 	cipher_start = iv_len + crda->crd_len + 1;
1289 	if (op_type == CHCR_DECRYPT_OP)
1290 		cipher_stop = hash_size_in_response;
1291 	else
1292 		cipher_stop = 0;
1293 	if (op_type == CHCR_DECRYPT_OP)
1294 		auth_insert = hash_size_in_response;
1295 	else
1296 		auth_insert = 0;
1297 
1298 	wr_len = roundup2(transhdr_len, 16) + iv_len + roundup2(imm_len, 16) +
1299 	    sgl_len;
1300 	if (wr_len > SGE_MAX_WR_LEN)
1301 		return (EFBIG);
1302 	wr = alloc_wrqe(wr_len, sc->txq);
1303 	if (wr == NULL) {
1304 		sc->stats_wr_nomem++;
1305 		return (ENOMEM);
1306 	}
1307 	crwr = wrtod(wr);
1308 	memset(crwr, 0, wr_len);
1309 
1310 	/*
1311 	 * Read the existing IV from the request or generate a random
1312 	 * one if none is provided.  Optionally copy the generated IV
1313 	 * into the output buffer if requested.
1314 	 *
1315 	 * If the input IV is 12 bytes, append an explicit 4-byte
1316 	 * counter of 1.
1317 	 */
1318 	if (op_type == CHCR_ENCRYPT_OP) {
1319 		if (crde->crd_flags & CRD_F_IV_EXPLICIT)
1320 			memcpy(iv, crde->crd_iv, s->blkcipher.iv_len);
1321 		else
1322 			arc4rand(iv, s->blkcipher.iv_len, 0);
1323 		if ((crde->crd_flags & CRD_F_IV_PRESENT) == 0)
1324 			crypto_copyback(crp->crp_flags, crp->crp_buf,
1325 			    crde->crd_inject, s->blkcipher.iv_len, iv);
1326 	} else {
1327 		if (crde->crd_flags & CRD_F_IV_EXPLICIT)
1328 			memcpy(iv, crde->crd_iv, s->blkcipher.iv_len);
1329 		else
1330 			crypto_copydata(crp->crp_flags, crp->crp_buf,
1331 			    crde->crd_inject, s->blkcipher.iv_len, iv);
1332 	}
1333 	if (s->blkcipher.iv_len == 12)
1334 		*(uint32_t *)&iv[12] = htobe32(1);
1335 
1336 	ccr_populate_wreq(sc, crwr, kctx_len, wr_len, imm_len, sgl_len, 0,
1337 	    crp);
1338 
1339 	/* XXX: Hardcodes SGE loopback channel of 0. */
1340 	crwr->sec_cpl.op_ivinsrtofst = htobe32(
1341 	    V_CPL_TX_SEC_PDU_OPCODE(CPL_TX_SEC_PDU) |
1342 	    V_CPL_TX_SEC_PDU_RXCHID(sc->tx_channel_id) |
1343 	    V_CPL_TX_SEC_PDU_ACKFOLLOWS(0) | V_CPL_TX_SEC_PDU_ULPTXLPBK(1) |
1344 	    V_CPL_TX_SEC_PDU_CPLLEN(2) | V_CPL_TX_SEC_PDU_PLACEHOLDER(0) |
1345 	    V_CPL_TX_SEC_PDU_IVINSRTOFST(1));
1346 
1347 	crwr->sec_cpl.pldlen = htobe32(iv_len + input_len);
1348 
1349 	/*
1350 	 * NB: cipherstop is explicitly set to 0.  On encrypt it
1351 	 * should normally be set to 0 anyway (as the encrypt crd ends
1352 	 * at the end of the input).  However, for decrypt the cipher
1353 	 * ends before the tag in the AUTHENC case (and authstop is
1354 	 * set to stop before the tag), but for GCM the cipher still
1355 	 * runs to the end of the buffer.  Not sure if this is
1356 	 * intentional or a firmware quirk, but it is required for
1357 	 * working tag validation with GCM decryption.
1358 	 */
1359 	crwr->sec_cpl.aadstart_cipherstop_hi = htobe32(
1360 	    V_CPL_TX_SEC_PDU_AADSTART(aad_start) |
1361 	    V_CPL_TX_SEC_PDU_AADSTOP(aad_stop) |
1362 	    V_CPL_TX_SEC_PDU_CIPHERSTART(cipher_start) |
1363 	    V_CPL_TX_SEC_PDU_CIPHERSTOP_HI(0));
1364 	crwr->sec_cpl.cipherstop_lo_authinsert = htobe32(
1365 	    V_CPL_TX_SEC_PDU_CIPHERSTOP_LO(0) |
1366 	    V_CPL_TX_SEC_PDU_AUTHSTART(cipher_start) |
1367 	    V_CPL_TX_SEC_PDU_AUTHSTOP(cipher_stop) |
1368 	    V_CPL_TX_SEC_PDU_AUTHINSERT(auth_insert));
1369 
1370 	/* These two flits are actually a CPL_TLS_TX_SCMD_FMT. */
1371 	hmac_ctrl = ccr_hmac_ctrl(AES_GMAC_HASH_LEN, hash_size_in_response);
1372 	crwr->sec_cpl.seqno_numivs = htobe32(
1373 	    V_SCMD_SEQ_NO_CTRL(0) |
1374 	    V_SCMD_PROTO_VERSION(SCMD_PROTO_VERSION_GENERIC) |
1375 	    V_SCMD_ENC_DEC_CTRL(op_type) |
1376 	    V_SCMD_CIPH_AUTH_SEQ_CTRL(op_type == CHCR_ENCRYPT_OP ? 1 : 0) |
1377 	    V_SCMD_CIPH_MODE(SCMD_CIPH_MODE_AES_GCM) |
1378 	    V_SCMD_AUTH_MODE(SCMD_AUTH_MODE_GHASH) |
1379 	    V_SCMD_HMAC_CTRL(hmac_ctrl) |
1380 	    V_SCMD_IV_SIZE(iv_len / 2) |
1381 	    V_SCMD_NUM_IVS(0));
1382 	crwr->sec_cpl.ivgen_hdrlen = htobe32(
1383 	    V_SCMD_IV_GEN_CTRL(0) |
1384 	    V_SCMD_MORE_FRAGS(0) | V_SCMD_LAST_FRAG(0) | V_SCMD_MAC_ONLY(0) |
1385 	    V_SCMD_AADIVDROP(0) | V_SCMD_HDR_LEN(dsgl_len));
1386 
1387 	crwr->key_ctx.ctx_hdr = s->blkcipher.key_ctx_hdr;
1388 	memcpy(crwr->key_ctx.key, s->blkcipher.enckey, s->blkcipher.key_len);
1389 	dst = crwr->key_ctx.key + roundup2(s->blkcipher.key_len, 16);
1390 	memcpy(dst, s->gmac.ghash_h, GMAC_BLOCK_LEN);
1391 
1392 	dst = (char *)(crwr + 1) + kctx_len;
1393 	ccr_write_phys_dsgl(sc, dst, dsgl_nsegs);
1394 	dst += sizeof(struct cpl_rx_phys_dsgl) + dsgl_len;
1395 	memcpy(dst, iv, iv_len);
1396 	dst += iv_len;
1397 	if (imm_len != 0) {
1398 		if (crda->crd_len != 0) {
1399 			crypto_copydata(crp->crp_flags, crp->crp_buf,
1400 			    crda->crd_skip, crda->crd_len, dst);
1401 			dst += crda->crd_len;
1402 		}
1403 		crypto_copydata(crp->crp_flags, crp->crp_buf, crde->crd_skip,
1404 		    crde->crd_len, dst);
1405 		dst += crde->crd_len;
1406 		if (op_type == CHCR_DECRYPT_OP)
1407 			crypto_copydata(crp->crp_flags, crp->crp_buf,
1408 			    crda->crd_inject, hash_size_in_response, dst);
1409 	} else
1410 		ccr_write_ulptx_sgl(sc, dst, sgl_nsegs);
1411 
1412 	/* XXX: TODO backpressure */
1413 	t4_wrq_tx(sc->adapter, wr);
1414 
1415 	return (0);
1416 }
1417 
1418 static int
1419 ccr_gcm_done(struct ccr_softc *sc, struct ccr_session *s,
1420     struct cryptop *crp, const struct cpl_fw6_pld *cpl, int error)
1421 {
1422 
1423 	/*
1424 	 * The updated IV to permit chained requests is at
1425 	 * cpl->data[2], but OCF doesn't permit chained requests.
1426 	 *
1427 	 * Note that the hardware should always verify the GMAC hash.
1428 	 */
1429 	return (error);
1430 }
1431 
1432 /*
1433  * Handle a GCM request that is not supported by the crypto engine by
1434  * performing the operation in software.  Derived from swcr_authenc().
1435  */
1436 static void
1437 ccr_gcm_soft(struct ccr_session *s, struct cryptop *crp,
1438     struct cryptodesc *crda, struct cryptodesc *crde)
1439 {
1440 	struct auth_hash *axf;
1441 	struct enc_xform *exf;
1442 	void *auth_ctx;
1443 	uint8_t *kschedule;
1444 	char block[GMAC_BLOCK_LEN];
1445 	char digest[GMAC_DIGEST_LEN];
1446 	char iv[AES_BLOCK_LEN];
1447 	int error, i, len;
1448 
1449 	auth_ctx = NULL;
1450 	kschedule = NULL;
1451 
1452 	/* Initialize the MAC. */
1453 	switch (s->blkcipher.key_len) {
1454 	case 16:
1455 		axf = &auth_hash_nist_gmac_aes_128;
1456 		break;
1457 	case 24:
1458 		axf = &auth_hash_nist_gmac_aes_192;
1459 		break;
1460 	case 32:
1461 		axf = &auth_hash_nist_gmac_aes_256;
1462 		break;
1463 	default:
1464 		error = EINVAL;
1465 		goto out;
1466 	}
1467 	auth_ctx = malloc(axf->ctxsize, M_CCR, M_NOWAIT);
1468 	if (auth_ctx == NULL) {
1469 		error = ENOMEM;
1470 		goto out;
1471 	}
1472 	axf->Init(auth_ctx);
1473 	axf->Setkey(auth_ctx, s->blkcipher.enckey, s->blkcipher.key_len);
1474 
1475 	/* Initialize the cipher. */
1476 	exf = &enc_xform_aes_nist_gcm;
1477 	error = exf->setkey(&kschedule, s->blkcipher.enckey,
1478 	    s->blkcipher.key_len);
1479 	if (error)
1480 		goto out;
1481 
1482 	/*
1483 	 * This assumes a 12-byte IV from the crp.  See longer comment
1484 	 * above in ccr_gcm() for more details.
1485 	 */
1486 	if (crde->crd_flags & CRD_F_ENCRYPT) {
1487 		if (crde->crd_flags & CRD_F_IV_EXPLICIT)
1488 			memcpy(iv, crde->crd_iv, 12);
1489 		else
1490 			arc4rand(iv, 12, 0);
1491 		if ((crde->crd_flags & CRD_F_IV_PRESENT) == 0)
1492 			crypto_copyback(crp->crp_flags, crp->crp_buf,
1493 			    crde->crd_inject, 12, iv);
1494 	} else {
1495 		if (crde->crd_flags & CRD_F_IV_EXPLICIT)
1496 			memcpy(iv, crde->crd_iv, 12);
1497 		else
1498 			crypto_copydata(crp->crp_flags, crp->crp_buf,
1499 			    crde->crd_inject, 12, iv);
1500 	}
1501 	*(uint32_t *)&iv[12] = htobe32(1);
1502 
1503 	axf->Reinit(auth_ctx, iv, sizeof(iv));
1504 
1505 	/* MAC the AAD. */
1506 	for (i = 0; i < crda->crd_len; i += sizeof(block)) {
1507 		len = imin(crda->crd_len - i, sizeof(block));
1508 		crypto_copydata(crp->crp_flags, crp->crp_buf, crda->crd_skip +
1509 		    i, len, block);
1510 		bzero(block + len, sizeof(block) - len);
1511 		axf->Update(auth_ctx, block, sizeof(block));
1512 	}
1513 
1514 	exf->reinit(kschedule, iv);
1515 
1516 	/* Do encryption with MAC */
1517 	for (i = 0; i < crde->crd_len; i += sizeof(block)) {
1518 		len = imin(crde->crd_len - i, sizeof(block));
1519 		crypto_copydata(crp->crp_flags, crp->crp_buf, crde->crd_skip +
1520 		    i, len, block);
1521 		bzero(block + len, sizeof(block) - len);
1522 		if (crde->crd_flags & CRD_F_ENCRYPT) {
1523 			exf->encrypt(kschedule, block);
1524 			axf->Update(auth_ctx, block, len);
1525 			crypto_copyback(crp->crp_flags, crp->crp_buf,
1526 			    crde->crd_skip + i, len, block);
1527 		} else {
1528 			axf->Update(auth_ctx, block, len);
1529 		}
1530 	}
1531 
1532 	/* Length block. */
1533 	bzero(block, sizeof(block));
1534 	((uint32_t *)block)[1] = htobe32(crda->crd_len * 8);
1535 	((uint32_t *)block)[3] = htobe32(crde->crd_len * 8);
1536 	axf->Update(auth_ctx, block, sizeof(block));
1537 
1538 	/* Finalize MAC. */
1539 	axf->Final(digest, auth_ctx);
1540 
1541 	/* Inject or validate tag. */
1542 	if (crde->crd_flags & CRD_F_ENCRYPT) {
1543 		crypto_copyback(crp->crp_flags, crp->crp_buf, crda->crd_inject,
1544 		    sizeof(digest), digest);
1545 		error = 0;
1546 	} else {
1547 		char digest2[GMAC_DIGEST_LEN];
1548 
1549 		crypto_copydata(crp->crp_flags, crp->crp_buf, crda->crd_inject,
1550 		    sizeof(digest2), digest2);
1551 		if (timingsafe_bcmp(digest, digest2, sizeof(digest)) == 0) {
1552 			error = 0;
1553 
1554 			/* Tag matches, decrypt data. */
1555 			for (i = 0; i < crde->crd_len; i += sizeof(block)) {
1556 				len = imin(crde->crd_len - i, sizeof(block));
1557 				crypto_copydata(crp->crp_flags, crp->crp_buf,
1558 				    crde->crd_skip + i, len, block);
1559 				bzero(block + len, sizeof(block) - len);
1560 				exf->decrypt(kschedule, block);
1561 				crypto_copyback(crp->crp_flags, crp->crp_buf,
1562 				    crde->crd_skip + i, len, block);
1563 			}
1564 		} else
1565 			error = EBADMSG;
1566 	}
1567 
1568 	exf->zerokey(&kschedule);
1569 out:
1570 	if (auth_ctx != NULL) {
1571 		memset(auth_ctx, 0, axf->ctxsize);
1572 		free(auth_ctx, M_CCR);
1573 	}
1574 	crp->crp_etype = error;
1575 	crypto_done(crp);
1576 }
1577 
1578 static void
1579 generate_ccm_b0(struct cryptodesc *crda, struct cryptodesc *crde,
1580     u_int hash_size_in_response, const char *iv, char *b0)
1581 {
1582 	u_int i, payload_len;
1583 
1584 	/* NB: L is already set in the first byte of the IV. */
1585 	memcpy(b0, iv, CCM_B0_SIZE);
1586 
1587 	/* Set length of hash in bits 3 - 5. */
1588 	b0[0] |= (((hash_size_in_response - 2) / 2) << 3);
1589 
1590 	/* Store the payload length as a big-endian value. */
1591 	payload_len = crde->crd_len;
1592 	for (i = 0; i < iv[0]; i++) {
1593 		b0[CCM_CBC_BLOCK_LEN - 1 - i] = payload_len;
1594 		payload_len >>= 8;
1595 	}
1596 
1597 	/*
1598 	 * If there is AAD in the request, set bit 6 in the flags
1599 	 * field and store the AAD length as a big-endian value at the
1600 	 * start of block 1.  This only assumes a 16-bit AAD length
1601 	 * since T6 doesn't support large AAD sizes.
1602 	 */
1603 	if (crda->crd_len != 0) {
1604 		b0[0] |= (1 << 6);
1605 		*(uint16_t *)(b0 + CCM_B0_SIZE) = htobe16(crda->crd_len);
1606 	}
1607 }
1608 
1609 static int
1610 ccr_ccm(struct ccr_softc *sc, struct ccr_session *s, struct cryptop *crp,
1611     struct cryptodesc *crda, struct cryptodesc *crde)
1612 {
1613 	char iv[CHCR_MAX_CRYPTO_IV_LEN];
1614 	struct ulptx_idata *idata;
1615 	struct chcr_wr *crwr;
1616 	struct wrqe *wr;
1617 	char *dst;
1618 	u_int iv_len, kctx_len, op_type, transhdr_len, wr_len;
1619 	u_int aad_len, b0_len, hash_size_in_response, imm_len;
1620 	u_int aad_start, aad_stop, cipher_start, cipher_stop, auth_insert;
1621 	u_int hmac_ctrl, input_len;
1622 	int dsgl_nsegs, dsgl_len;
1623 	int sgl_nsegs, sgl_len;
1624 	int error;
1625 
1626 	if (s->blkcipher.key_len == 0)
1627 		return (EINVAL);
1628 
1629 	/*
1630 	 * The crypto engine doesn't handle CCM requests with an empty
1631 	 * payload, so handle those in software instead.
1632 	 */
1633 	if (crde->crd_len == 0)
1634 		return (EMSGSIZE);
1635 
1636 	/*
1637 	 * AAD is only permitted before the cipher/plain text, not
1638 	 * after.
1639 	 */
1640 	if (crda->crd_len + crda->crd_skip > crde->crd_len + crde->crd_skip)
1641 		return (EMSGSIZE);
1642 
1643 	/*
1644 	 * CCM always includes block 0 in the AAD before AAD from the
1645 	 * request.
1646 	 */
1647 	b0_len = CCM_B0_SIZE;
1648 	if (crda->crd_len != 0)
1649 		b0_len += CCM_AAD_FIELD_SIZE;
1650 	aad_len = b0_len + crda->crd_len;
1651 
1652 	/*
1653 	 * Always assume a 12 byte input IV for now since that is what
1654 	 * OCF always generates.  The full IV in the work request is
1655 	 * 16 bytes.
1656 	 */
1657 	iv_len = AES_BLOCK_LEN;
1658 
1659 	if (iv_len + aad_len > MAX_AAD_LEN)
1660 		return (EMSGSIZE);
1661 
1662 	hash_size_in_response = s->ccm_mac.hash_len;
1663 	if (crde->crd_flags & CRD_F_ENCRYPT)
1664 		op_type = CHCR_ENCRYPT_OP;
1665 	else
1666 		op_type = CHCR_DECRYPT_OP;
1667 
1668 	/*
1669 	 * The output buffer consists of the cipher text followed by
1670 	 * the tag when encrypting.  For decryption it only contains
1671 	 * the plain text.
1672 	 *
1673 	 * Due to a firmware bug, the output buffer must include a
1674 	 * dummy output buffer for the IV and AAD prior to the real
1675 	 * output buffer.
1676 	 */
1677 	if (op_type == CHCR_ENCRYPT_OP) {
1678 		if (iv_len + aad_len + crde->crd_len + hash_size_in_response >
1679 		    MAX_REQUEST_SIZE)
1680 			return (EFBIG);
1681 	} else {
1682 		if (iv_len + aad_len + crde->crd_len > MAX_REQUEST_SIZE)
1683 			return (EFBIG);
1684 	}
1685 	sglist_reset(sc->sg_dsgl);
1686 	error = sglist_append_sglist(sc->sg_dsgl, sc->sg_iv_aad, 0, iv_len +
1687 	    aad_len);
1688 	if (error)
1689 		return (error);
1690 	error = sglist_append_sglist(sc->sg_dsgl, sc->sg_crp, crde->crd_skip,
1691 	    crde->crd_len);
1692 	if (error)
1693 		return (error);
1694 	if (op_type == CHCR_ENCRYPT_OP) {
1695 		error = sglist_append_sglist(sc->sg_dsgl, sc->sg_crp,
1696 		    crda->crd_inject, hash_size_in_response);
1697 		if (error)
1698 			return (error);
1699 	}
1700 	dsgl_nsegs = ccr_count_sgl(sc->sg_dsgl, DSGL_SGE_MAXLEN);
1701 	if (dsgl_nsegs > MAX_RX_PHYS_DSGL_SGE)
1702 		return (EFBIG);
1703 	dsgl_len = ccr_phys_dsgl_len(dsgl_nsegs);
1704 
1705 	/*
1706 	 * The 'key' part of the key context consists of two copies of
1707 	 * the AES key.
1708 	 */
1709 	kctx_len = roundup2(s->blkcipher.key_len, 16) * 2;
1710 	transhdr_len = CIPHER_TRANSHDR_SIZE(kctx_len, dsgl_len);
1711 
1712 	/*
1713 	 * The input buffer consists of the IV, AAD (including block
1714 	 * 0), and then the cipher/plain text.  For decryption
1715 	 * requests the hash is appended after the cipher text.
1716 	 *
1717 	 * The IV is always stored at the start of the input buffer
1718 	 * even though it may be duplicated in the payload.  The
1719 	 * crypto engine doesn't work properly if the IV offset points
1720 	 * inside of the AAD region, so a second copy is always
1721 	 * required.
1722 	 */
1723 	input_len = aad_len + crde->crd_len;
1724 	if (op_type == CHCR_DECRYPT_OP)
1725 		input_len += hash_size_in_response;
1726 	if (input_len > MAX_REQUEST_SIZE)
1727 		return (EFBIG);
1728 	if (ccr_use_imm_data(transhdr_len, iv_len + input_len)) {
1729 		imm_len = input_len;
1730 		sgl_nsegs = 0;
1731 		sgl_len = 0;
1732 	} else {
1733 		/* Block 0 is passed as immediate data. */
1734 		imm_len = b0_len;
1735 
1736 		sglist_reset(sc->sg_ulptx);
1737 		if (crda->crd_len != 0) {
1738 			error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp,
1739 			    crda->crd_skip, crda->crd_len);
1740 			if (error)
1741 				return (error);
1742 		}
1743 		error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp,
1744 		    crde->crd_skip, crde->crd_len);
1745 		if (error)
1746 			return (error);
1747 		if (op_type == CHCR_DECRYPT_OP) {
1748 			error = sglist_append_sglist(sc->sg_ulptx, sc->sg_crp,
1749 			    crda->crd_inject, hash_size_in_response);
1750 			if (error)
1751 				return (error);
1752 		}
1753 		sgl_nsegs = sc->sg_ulptx->sg_nseg;
1754 		sgl_len = ccr_ulptx_sgl_len(sgl_nsegs);
1755 	}
1756 
1757 	aad_start = iv_len + 1;
1758 	aad_stop = aad_start + aad_len - 1;
1759 	cipher_start = aad_stop + 1;
1760 	if (op_type == CHCR_DECRYPT_OP)
1761 		cipher_stop = hash_size_in_response;
1762 	else
1763 		cipher_stop = 0;
1764 	if (op_type == CHCR_DECRYPT_OP)
1765 		auth_insert = hash_size_in_response;
1766 	else
1767 		auth_insert = 0;
1768 
1769 	wr_len = roundup2(transhdr_len, 16) + iv_len + roundup2(imm_len, 16) +
1770 	    sgl_len;
1771 	if (wr_len > SGE_MAX_WR_LEN)
1772 		return (EFBIG);
1773 	wr = alloc_wrqe(wr_len, sc->txq);
1774 	if (wr == NULL) {
1775 		sc->stats_wr_nomem++;
1776 		return (ENOMEM);
1777 	}
1778 	crwr = wrtod(wr);
1779 	memset(crwr, 0, wr_len);
1780 
1781 	/*
1782 	 * Read the nonce from the request or generate a random one if
1783 	 * none is provided.  Use the nonce to generate the full IV
1784 	 * with the counter set to 0.
1785 	 */
1786 	memset(iv, 0, iv_len);
1787 	iv[0] = (15 - AES_CCM_IV_LEN) - 1;
1788 	if (op_type == CHCR_ENCRYPT_OP) {
1789 		if (crde->crd_flags & CRD_F_IV_EXPLICIT)
1790 			memcpy(iv + 1, crde->crd_iv, AES_CCM_IV_LEN);
1791 		else
1792 			arc4rand(iv + 1, AES_CCM_IV_LEN, 0);
1793 		if ((crde->crd_flags & CRD_F_IV_PRESENT) == 0)
1794 			crypto_copyback(crp->crp_flags, crp->crp_buf,
1795 			    crde->crd_inject, AES_CCM_IV_LEN, iv + 1);
1796 	} else {
1797 		if (crde->crd_flags & CRD_F_IV_EXPLICIT)
1798 			memcpy(iv + 1, crde->crd_iv, AES_CCM_IV_LEN);
1799 		else
1800 			crypto_copydata(crp->crp_flags, crp->crp_buf,
1801 			    crde->crd_inject, AES_CCM_IV_LEN, iv + 1);
1802 	}
1803 
1804 	ccr_populate_wreq(sc, crwr, kctx_len, wr_len, imm_len, sgl_len, 0,
1805 	    crp);
1806 
1807 	/* XXX: Hardcodes SGE loopback channel of 0. */
1808 	crwr->sec_cpl.op_ivinsrtofst = htobe32(
1809 	    V_CPL_TX_SEC_PDU_OPCODE(CPL_TX_SEC_PDU) |
1810 	    V_CPL_TX_SEC_PDU_RXCHID(sc->tx_channel_id) |
1811 	    V_CPL_TX_SEC_PDU_ACKFOLLOWS(0) | V_CPL_TX_SEC_PDU_ULPTXLPBK(1) |
1812 	    V_CPL_TX_SEC_PDU_CPLLEN(2) | V_CPL_TX_SEC_PDU_PLACEHOLDER(0) |
1813 	    V_CPL_TX_SEC_PDU_IVINSRTOFST(1));
1814 
1815 	crwr->sec_cpl.pldlen = htobe32(iv_len + input_len);
1816 
1817 	/*
1818 	 * NB: cipherstop is explicitly set to 0.  See comments above
1819 	 * in ccr_gcm().
1820 	 */
1821 	crwr->sec_cpl.aadstart_cipherstop_hi = htobe32(
1822 	    V_CPL_TX_SEC_PDU_AADSTART(aad_start) |
1823 	    V_CPL_TX_SEC_PDU_AADSTOP(aad_stop) |
1824 	    V_CPL_TX_SEC_PDU_CIPHERSTART(cipher_start) |
1825 	    V_CPL_TX_SEC_PDU_CIPHERSTOP_HI(0));
1826 	crwr->sec_cpl.cipherstop_lo_authinsert = htobe32(
1827 	    V_CPL_TX_SEC_PDU_CIPHERSTOP_LO(0) |
1828 	    V_CPL_TX_SEC_PDU_AUTHSTART(cipher_start) |
1829 	    V_CPL_TX_SEC_PDU_AUTHSTOP(cipher_stop) |
1830 	    V_CPL_TX_SEC_PDU_AUTHINSERT(auth_insert));
1831 
1832 	/* These two flits are actually a CPL_TLS_TX_SCMD_FMT. */
1833 	hmac_ctrl = ccr_hmac_ctrl(AES_CBC_MAC_HASH_LEN, hash_size_in_response);
1834 	crwr->sec_cpl.seqno_numivs = htobe32(
1835 	    V_SCMD_SEQ_NO_CTRL(0) |
1836 	    V_SCMD_PROTO_VERSION(SCMD_PROTO_VERSION_GENERIC) |
1837 	    V_SCMD_ENC_DEC_CTRL(op_type) |
1838 	    V_SCMD_CIPH_AUTH_SEQ_CTRL(op_type == CHCR_ENCRYPT_OP ? 0 : 1) |
1839 	    V_SCMD_CIPH_MODE(SCMD_CIPH_MODE_AES_CCM) |
1840 	    V_SCMD_AUTH_MODE(SCMD_AUTH_MODE_CBCMAC) |
1841 	    V_SCMD_HMAC_CTRL(hmac_ctrl) |
1842 	    V_SCMD_IV_SIZE(iv_len / 2) |
1843 	    V_SCMD_NUM_IVS(0));
1844 	crwr->sec_cpl.ivgen_hdrlen = htobe32(
1845 	    V_SCMD_IV_GEN_CTRL(0) |
1846 	    V_SCMD_MORE_FRAGS(0) | V_SCMD_LAST_FRAG(0) | V_SCMD_MAC_ONLY(0) |
1847 	    V_SCMD_AADIVDROP(0) | V_SCMD_HDR_LEN(dsgl_len));
1848 
1849 	crwr->key_ctx.ctx_hdr = s->blkcipher.key_ctx_hdr;
1850 	memcpy(crwr->key_ctx.key, s->blkcipher.enckey, s->blkcipher.key_len);
1851 	memcpy(crwr->key_ctx.key + roundup(s->blkcipher.key_len, 16),
1852 	    s->blkcipher.enckey, s->blkcipher.key_len);
1853 
1854 	dst = (char *)(crwr + 1) + kctx_len;
1855 	ccr_write_phys_dsgl(sc, dst, dsgl_nsegs);
1856 	dst += sizeof(struct cpl_rx_phys_dsgl) + dsgl_len;
1857 	memcpy(dst, iv, iv_len);
1858 	dst += iv_len;
1859 	generate_ccm_b0(crda, crde, hash_size_in_response, iv, dst);
1860 	if (sgl_nsegs == 0) {
1861 		dst += b0_len;
1862 		if (crda->crd_len != 0) {
1863 			crypto_copydata(crp->crp_flags, crp->crp_buf,
1864 			    crda->crd_skip, crda->crd_len, dst);
1865 			dst += crda->crd_len;
1866 		}
1867 		crypto_copydata(crp->crp_flags, crp->crp_buf, crde->crd_skip,
1868 		    crde->crd_len, dst);
1869 		dst += crde->crd_len;
1870 		if (op_type == CHCR_DECRYPT_OP)
1871 			crypto_copydata(crp->crp_flags, crp->crp_buf,
1872 			    crda->crd_inject, hash_size_in_response, dst);
1873 	} else {
1874 		dst += CCM_B0_SIZE;
1875 		if (b0_len > CCM_B0_SIZE) {
1876 			/*
1877 			 * If there is AAD, insert padding including a
1878 			 * ULP_TX_SC_NOOP so that the ULP_TX_SC_DSGL
1879 			 * is 16-byte aligned.
1880 			 */
1881 			KASSERT(b0_len - CCM_B0_SIZE == CCM_AAD_FIELD_SIZE,
1882 			    ("b0_len mismatch"));
1883 			memset(dst + CCM_AAD_FIELD_SIZE, 0,
1884 			    8 - CCM_AAD_FIELD_SIZE);
1885 			idata = (void *)(dst + 8);
1886 			idata->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_NOOP));
1887 			idata->len = htobe32(0);
1888 			dst = (void *)(idata + 1);
1889 		}
1890 		ccr_write_ulptx_sgl(sc, dst, sgl_nsegs);
1891 	}
1892 
1893 	/* XXX: TODO backpressure */
1894 	t4_wrq_tx(sc->adapter, wr);
1895 
1896 	return (0);
1897 }
1898 
1899 static int
1900 ccr_ccm_done(struct ccr_softc *sc, struct ccr_session *s,
1901     struct cryptop *crp, const struct cpl_fw6_pld *cpl, int error)
1902 {
1903 
1904 	/*
1905 	 * The updated IV to permit chained requests is at
1906 	 * cpl->data[2], but OCF doesn't permit chained requests.
1907 	 *
1908 	 * Note that the hardware should always verify the CBC MAC
1909 	 * hash.
1910 	 */
1911 	return (error);
1912 }
1913 
1914 /*
1915  * Handle a CCM request that is not supported by the crypto engine by
1916  * performing the operation in software.  Derived from swcr_authenc().
1917  */
1918 static void
1919 ccr_ccm_soft(struct ccr_session *s, struct cryptop *crp,
1920     struct cryptodesc *crda, struct cryptodesc *crde)
1921 {
1922 	struct auth_hash *axf;
1923 	struct enc_xform *exf;
1924 	union authctx *auth_ctx;
1925 	uint8_t *kschedule;
1926 	char block[CCM_CBC_BLOCK_LEN];
1927 	char digest[AES_CBC_MAC_HASH_LEN];
1928 	char iv[AES_CCM_IV_LEN];
1929 	int error, i, len;
1930 
1931 	auth_ctx = NULL;
1932 	kschedule = NULL;
1933 
1934 	/* Initialize the MAC. */
1935 	switch (s->blkcipher.key_len) {
1936 	case 16:
1937 		axf = &auth_hash_ccm_cbc_mac_128;
1938 		break;
1939 	case 24:
1940 		axf = &auth_hash_ccm_cbc_mac_192;
1941 		break;
1942 	case 32:
1943 		axf = &auth_hash_ccm_cbc_mac_256;
1944 		break;
1945 	default:
1946 		error = EINVAL;
1947 		goto out;
1948 	}
1949 	auth_ctx = malloc(axf->ctxsize, M_CCR, M_NOWAIT);
1950 	if (auth_ctx == NULL) {
1951 		error = ENOMEM;
1952 		goto out;
1953 	}
1954 	axf->Init(auth_ctx);
1955 	axf->Setkey(auth_ctx, s->blkcipher.enckey, s->blkcipher.key_len);
1956 
1957 	/* Initialize the cipher. */
1958 	exf = &enc_xform_ccm;
1959 	error = exf->setkey(&kschedule, s->blkcipher.enckey,
1960 	    s->blkcipher.key_len);
1961 	if (error)
1962 		goto out;
1963 
1964 	if (crde->crd_flags & CRD_F_ENCRYPT) {
1965 		if (crde->crd_flags & CRD_F_IV_EXPLICIT)
1966 			memcpy(iv, crde->crd_iv, AES_CCM_IV_LEN);
1967 		else
1968 			arc4rand(iv, AES_CCM_IV_LEN, 0);
1969 		if ((crde->crd_flags & CRD_F_IV_PRESENT) == 0)
1970 			crypto_copyback(crp->crp_flags, crp->crp_buf,
1971 			    crde->crd_inject, AES_CCM_IV_LEN, iv);
1972 	} else {
1973 		if (crde->crd_flags & CRD_F_IV_EXPLICIT)
1974 			memcpy(iv, crde->crd_iv, AES_CCM_IV_LEN);
1975 		else
1976 			crypto_copydata(crp->crp_flags, crp->crp_buf,
1977 			    crde->crd_inject, AES_CCM_IV_LEN, iv);
1978 	}
1979 
1980 	auth_ctx->aes_cbc_mac_ctx.authDataLength = crda->crd_len;
1981 	auth_ctx->aes_cbc_mac_ctx.cryptDataLength = crde->crd_len;
1982 	axf->Reinit(auth_ctx, iv, sizeof(iv));
1983 
1984 	/* MAC the AAD. */
1985 	for (i = 0; i < crda->crd_len; i += sizeof(block)) {
1986 		len = imin(crda->crd_len - i, sizeof(block));
1987 		crypto_copydata(crp->crp_flags, crp->crp_buf, crda->crd_skip +
1988 		    i, len, block);
1989 		bzero(block + len, sizeof(block) - len);
1990 		axf->Update(auth_ctx, block, sizeof(block));
1991 	}
1992 
1993 	exf->reinit(kschedule, iv);
1994 
1995 	/* Do encryption/decryption with MAC */
1996 	for (i = 0; i < crde->crd_len; i += sizeof(block)) {
1997 		len = imin(crde->crd_len - i, sizeof(block));
1998 		crypto_copydata(crp->crp_flags, crp->crp_buf, crde->crd_skip +
1999 		    i, len, block);
2000 		bzero(block + len, sizeof(block) - len);
2001 		if (crde->crd_flags & CRD_F_ENCRYPT) {
2002 			axf->Update(auth_ctx, block, len);
2003 			exf->encrypt(kschedule, block);
2004 			crypto_copyback(crp->crp_flags, crp->crp_buf,
2005 			    crde->crd_skip + i, len, block);
2006 		} else {
2007 			exf->decrypt(kschedule, block);
2008 			axf->Update(auth_ctx, block, len);
2009 		}
2010 	}
2011 
2012 	/* Finalize MAC. */
2013 	axf->Final(digest, auth_ctx);
2014 
2015 	/* Inject or validate tag. */
2016 	if (crde->crd_flags & CRD_F_ENCRYPT) {
2017 		crypto_copyback(crp->crp_flags, crp->crp_buf, crda->crd_inject,
2018 		    sizeof(digest), digest);
2019 		error = 0;
2020 	} else {
2021 		char digest2[GMAC_DIGEST_LEN];
2022 
2023 		crypto_copydata(crp->crp_flags, crp->crp_buf, crda->crd_inject,
2024 		    sizeof(digest2), digest2);
2025 		if (timingsafe_bcmp(digest, digest2, sizeof(digest)) == 0) {
2026 			error = 0;
2027 
2028 			/* Tag matches, decrypt data. */
2029 			exf->reinit(kschedule, iv);
2030 			for (i = 0; i < crde->crd_len; i += sizeof(block)) {
2031 				len = imin(crde->crd_len - i, sizeof(block));
2032 				crypto_copydata(crp->crp_flags, crp->crp_buf,
2033 				    crde->crd_skip + i, len, block);
2034 				bzero(block + len, sizeof(block) - len);
2035 				exf->decrypt(kschedule, block);
2036 				crypto_copyback(crp->crp_flags, crp->crp_buf,
2037 				    crde->crd_skip + i, len, block);
2038 			}
2039 		} else
2040 			error = EBADMSG;
2041 	}
2042 
2043 	exf->zerokey(&kschedule);
2044 out:
2045 	if (auth_ctx != NULL) {
2046 		memset(auth_ctx, 0, axf->ctxsize);
2047 		free(auth_ctx, M_CCR);
2048 	}
2049 	crp->crp_etype = error;
2050 	crypto_done(crp);
2051 }
2052 
2053 static void
2054 ccr_identify(driver_t *driver, device_t parent)
2055 {
2056 	struct adapter *sc;
2057 
2058 	sc = device_get_softc(parent);
2059 	if (sc->cryptocaps & FW_CAPS_CONFIG_CRYPTO_LOOKASIDE &&
2060 	    device_find_child(parent, "ccr", -1) == NULL)
2061 		device_add_child(parent, "ccr", -1);
2062 }
2063 
2064 static int
2065 ccr_probe(device_t dev)
2066 {
2067 
2068 	device_set_desc(dev, "Chelsio Crypto Accelerator");
2069 	return (BUS_PROBE_DEFAULT);
2070 }
2071 
2072 static void
2073 ccr_sysctls(struct ccr_softc *sc)
2074 {
2075 	struct sysctl_ctx_list *ctx;
2076 	struct sysctl_oid *oid;
2077 	struct sysctl_oid_list *children;
2078 
2079 	ctx = device_get_sysctl_ctx(sc->dev);
2080 
2081 	/*
2082 	 * dev.ccr.X.
2083 	 */
2084 	oid = device_get_sysctl_tree(sc->dev);
2085 	children = SYSCTL_CHILDREN(oid);
2086 
2087 	/*
2088 	 * dev.ccr.X.stats.
2089 	 */
2090 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats", CTLFLAG_RD,
2091 	    NULL, "statistics");
2092 	children = SYSCTL_CHILDREN(oid);
2093 
2094 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "hash", CTLFLAG_RD,
2095 	    &sc->stats_hash, 0, "Hash requests submitted");
2096 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "hmac", CTLFLAG_RD,
2097 	    &sc->stats_hmac, 0, "HMAC requests submitted");
2098 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "cipher_encrypt", CTLFLAG_RD,
2099 	    &sc->stats_blkcipher_encrypt, 0,
2100 	    "Cipher encryption requests submitted");
2101 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "cipher_decrypt", CTLFLAG_RD,
2102 	    &sc->stats_blkcipher_decrypt, 0,
2103 	    "Cipher decryption requests submitted");
2104 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "authenc_encrypt", CTLFLAG_RD,
2105 	    &sc->stats_authenc_encrypt, 0,
2106 	    "Combined AES+HMAC encryption requests submitted");
2107 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "authenc_decrypt", CTLFLAG_RD,
2108 	    &sc->stats_authenc_decrypt, 0,
2109 	    "Combined AES+HMAC decryption requests submitted");
2110 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "gcm_encrypt", CTLFLAG_RD,
2111 	    &sc->stats_gcm_encrypt, 0, "AES-GCM encryption requests submitted");
2112 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "gcm_decrypt", CTLFLAG_RD,
2113 	    &sc->stats_gcm_decrypt, 0, "AES-GCM decryption requests submitted");
2114 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "ccm_encrypt", CTLFLAG_RD,
2115 	    &sc->stats_ccm_encrypt, 0, "AES-CCM encryption requests submitted");
2116 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "ccm_decrypt", CTLFLAG_RD,
2117 	    &sc->stats_ccm_decrypt, 0, "AES-CCM decryption requests submitted");
2118 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "wr_nomem", CTLFLAG_RD,
2119 	    &sc->stats_wr_nomem, 0, "Work request memory allocation failures");
2120 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "inflight", CTLFLAG_RD,
2121 	    &sc->stats_inflight, 0, "Requests currently pending");
2122 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "mac_error", CTLFLAG_RD,
2123 	    &sc->stats_mac_error, 0, "MAC errors");
2124 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "pad_error", CTLFLAG_RD,
2125 	    &sc->stats_pad_error, 0, "Padding errors");
2126 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "bad_session", CTLFLAG_RD,
2127 	    &sc->stats_bad_session, 0, "Requests with invalid session ID");
2128 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "sglist_error", CTLFLAG_RD,
2129 	    &sc->stats_sglist_error, 0,
2130 	    "Requests for which DMA mapping failed");
2131 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "process_error", CTLFLAG_RD,
2132 	    &sc->stats_process_error, 0, "Requests failed during queueing");
2133 	SYSCTL_ADD_U64(ctx, children, OID_AUTO, "sw_fallback", CTLFLAG_RD,
2134 	    &sc->stats_sw_fallback, 0,
2135 	    "Requests processed by falling back to software");
2136 }
2137 
2138 static int
2139 ccr_attach(device_t dev)
2140 {
2141 	struct ccr_softc *sc;
2142 	int32_t cid;
2143 
2144 	sc = device_get_softc(dev);
2145 	sc->dev = dev;
2146 	sc->adapter = device_get_softc(device_get_parent(dev));
2147 	sc->txq = &sc->adapter->sge.ctrlq[0];
2148 	sc->rxq = &sc->adapter->sge.rxq[0];
2149 	cid = crypto_get_driverid(dev, sizeof(struct ccr_session),
2150 	    CRYPTOCAP_F_HARDWARE);
2151 	if (cid < 0) {
2152 		device_printf(dev, "could not get crypto driver id\n");
2153 		return (ENXIO);
2154 	}
2155 	sc->cid = cid;
2156 	sc->adapter->ccr_softc = sc;
2157 
2158 	/* XXX: TODO? */
2159 	sc->tx_channel_id = 0;
2160 
2161 	mtx_init(&sc->lock, "ccr", NULL, MTX_DEF);
2162 	sc->sg_crp = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
2163 	sc->sg_ulptx = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
2164 	sc->sg_dsgl = sglist_alloc(MAX_RX_PHYS_DSGL_SGE, M_WAITOK);
2165 	sc->iv_aad_buf = malloc(MAX_AAD_LEN, M_CCR, M_WAITOK);
2166 	sc->sg_iv_aad = sglist_build(sc->iv_aad_buf, MAX_AAD_LEN, M_WAITOK);
2167 	ccr_sysctls(sc);
2168 
2169 	crypto_register(cid, CRYPTO_SHA1, 0, 0);
2170 	crypto_register(cid, CRYPTO_SHA2_224, 0, 0);
2171 	crypto_register(cid, CRYPTO_SHA2_256, 0, 0);
2172 	crypto_register(cid, CRYPTO_SHA2_384, 0, 0);
2173 	crypto_register(cid, CRYPTO_SHA2_512, 0, 0);
2174 	crypto_register(cid, CRYPTO_SHA1_HMAC, 0, 0);
2175 	crypto_register(cid, CRYPTO_SHA2_224_HMAC, 0, 0);
2176 	crypto_register(cid, CRYPTO_SHA2_256_HMAC, 0, 0);
2177 	crypto_register(cid, CRYPTO_SHA2_384_HMAC, 0, 0);
2178 	crypto_register(cid, CRYPTO_SHA2_512_HMAC, 0, 0);
2179 	crypto_register(cid, CRYPTO_AES_CBC, 0, 0);
2180 	crypto_register(cid, CRYPTO_AES_ICM, 0, 0);
2181 	crypto_register(cid, CRYPTO_AES_NIST_GCM_16, 0, 0);
2182 	crypto_register(cid, CRYPTO_AES_128_NIST_GMAC, 0, 0);
2183 	crypto_register(cid, CRYPTO_AES_192_NIST_GMAC, 0, 0);
2184 	crypto_register(cid, CRYPTO_AES_256_NIST_GMAC, 0, 0);
2185 	crypto_register(cid, CRYPTO_AES_XTS, 0, 0);
2186 	crypto_register(cid, CRYPTO_AES_CCM_16, 0, 0);
2187 	crypto_register(cid, CRYPTO_AES_CCM_CBC_MAC, 0, 0);
2188 	return (0);
2189 }
2190 
2191 static int
2192 ccr_detach(device_t dev)
2193 {
2194 	struct ccr_softc *sc;
2195 
2196 	sc = device_get_softc(dev);
2197 
2198 	mtx_lock(&sc->lock);
2199 	sc->detaching = true;
2200 	mtx_unlock(&sc->lock);
2201 
2202 	crypto_unregister_all(sc->cid);
2203 
2204 	mtx_destroy(&sc->lock);
2205 	sglist_free(sc->sg_iv_aad);
2206 	free(sc->iv_aad_buf, M_CCR);
2207 	sglist_free(sc->sg_dsgl);
2208 	sglist_free(sc->sg_ulptx);
2209 	sglist_free(sc->sg_crp);
2210 	sc->adapter->ccr_softc = NULL;
2211 	return (0);
2212 }
2213 
2214 static void
2215 ccr_copy_partial_hash(void *dst, int cri_alg, union authctx *auth_ctx)
2216 {
2217 	uint32_t *u32;
2218 	uint64_t *u64;
2219 	u_int i;
2220 
2221 	u32 = (uint32_t *)dst;
2222 	u64 = (uint64_t *)dst;
2223 	switch (cri_alg) {
2224 	case CRYPTO_SHA1:
2225 	case CRYPTO_SHA1_HMAC:
2226 		for (i = 0; i < SHA1_HASH_LEN / 4; i++)
2227 			u32[i] = htobe32(auth_ctx->sha1ctx.h.b32[i]);
2228 		break;
2229 	case CRYPTO_SHA2_224:
2230 	case CRYPTO_SHA2_224_HMAC:
2231 		for (i = 0; i < SHA2_256_HASH_LEN / 4; i++)
2232 			u32[i] = htobe32(auth_ctx->sha224ctx.state[i]);
2233 		break;
2234 	case CRYPTO_SHA2_256:
2235 	case CRYPTO_SHA2_256_HMAC:
2236 		for (i = 0; i < SHA2_256_HASH_LEN / 4; i++)
2237 			u32[i] = htobe32(auth_ctx->sha256ctx.state[i]);
2238 		break;
2239 	case CRYPTO_SHA2_384:
2240 	case CRYPTO_SHA2_384_HMAC:
2241 		for (i = 0; i < SHA2_512_HASH_LEN / 8; i++)
2242 			u64[i] = htobe64(auth_ctx->sha384ctx.state[i]);
2243 		break;
2244 	case CRYPTO_SHA2_512:
2245 	case CRYPTO_SHA2_512_HMAC:
2246 		for (i = 0; i < SHA2_512_HASH_LEN / 8; i++)
2247 			u64[i] = htobe64(auth_ctx->sha512ctx.state[i]);
2248 		break;
2249 	}
2250 }
2251 
2252 static void
2253 ccr_init_hash_digest(struct ccr_session *s, int cri_alg)
2254 {
2255 	union authctx auth_ctx;
2256 	struct auth_hash *axf;
2257 
2258 	axf = s->hmac.auth_hash;
2259 	axf->Init(&auth_ctx);
2260 	ccr_copy_partial_hash(s->hmac.ipad, cri_alg, &auth_ctx);
2261 }
2262 
2263 static void
2264 ccr_init_hmac_digest(struct ccr_session *s, int cri_alg, char *key,
2265     int klen)
2266 {
2267 	union authctx auth_ctx;
2268 	struct auth_hash *axf;
2269 	u_int i;
2270 
2271 	/*
2272 	 * If the key is larger than the block size, use the digest of
2273 	 * the key as the key instead.
2274 	 */
2275 	axf = s->hmac.auth_hash;
2276 	klen /= 8;
2277 	if (klen > axf->blocksize) {
2278 		axf->Init(&auth_ctx);
2279 		axf->Update(&auth_ctx, key, klen);
2280 		axf->Final(s->hmac.ipad, &auth_ctx);
2281 		klen = axf->hashsize;
2282 	} else
2283 		memcpy(s->hmac.ipad, key, klen);
2284 
2285 	memset(s->hmac.ipad + klen, 0, axf->blocksize - klen);
2286 	memcpy(s->hmac.opad, s->hmac.ipad, axf->blocksize);
2287 
2288 	for (i = 0; i < axf->blocksize; i++) {
2289 		s->hmac.ipad[i] ^= HMAC_IPAD_VAL;
2290 		s->hmac.opad[i] ^= HMAC_OPAD_VAL;
2291 	}
2292 
2293 	/*
2294 	 * Hash the raw ipad and opad and store the partial result in
2295 	 * the same buffer.
2296 	 */
2297 	axf->Init(&auth_ctx);
2298 	axf->Update(&auth_ctx, s->hmac.ipad, axf->blocksize);
2299 	ccr_copy_partial_hash(s->hmac.ipad, cri_alg, &auth_ctx);
2300 
2301 	axf->Init(&auth_ctx);
2302 	axf->Update(&auth_ctx, s->hmac.opad, axf->blocksize);
2303 	ccr_copy_partial_hash(s->hmac.opad, cri_alg, &auth_ctx);
2304 }
2305 
2306 /*
2307  * Borrowed from AES_GMAC_Setkey().
2308  */
2309 static void
2310 ccr_init_gmac_hash(struct ccr_session *s, char *key, int klen)
2311 {
2312 	static char zeroes[GMAC_BLOCK_LEN];
2313 	uint32_t keysched[4 * (RIJNDAEL_MAXNR + 1)];
2314 	int rounds;
2315 
2316 	rounds = rijndaelKeySetupEnc(keysched, key, klen);
2317 	rijndaelEncrypt(keysched, rounds, zeroes, s->gmac.ghash_h);
2318 }
2319 
2320 static int
2321 ccr_aes_check_keylen(int alg, int klen)
2322 {
2323 
2324 	switch (klen) {
2325 	case 128:
2326 	case 192:
2327 		if (alg == CRYPTO_AES_XTS)
2328 			return (EINVAL);
2329 		break;
2330 	case 256:
2331 		break;
2332 	case 512:
2333 		if (alg != CRYPTO_AES_XTS)
2334 			return (EINVAL);
2335 		break;
2336 	default:
2337 		return (EINVAL);
2338 	}
2339 	return (0);
2340 }
2341 
2342 static void
2343 ccr_aes_setkey(struct ccr_session *s, int alg, const void *key, int klen)
2344 {
2345 	unsigned int ck_size, iopad_size, kctx_flits, kctx_len, kbits, mk_size;
2346 	unsigned int opad_present;
2347 
2348 	if (alg == CRYPTO_AES_XTS)
2349 		kbits = klen / 2;
2350 	else
2351 		kbits = klen;
2352 	switch (kbits) {
2353 	case 128:
2354 		ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128;
2355 		break;
2356 	case 192:
2357 		ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_192;
2358 		break;
2359 	case 256:
2360 		ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_256;
2361 		break;
2362 	default:
2363 		panic("should not get here");
2364 	}
2365 
2366 	s->blkcipher.key_len = klen / 8;
2367 	memcpy(s->blkcipher.enckey, key, s->blkcipher.key_len);
2368 	switch (alg) {
2369 	case CRYPTO_AES_CBC:
2370 	case CRYPTO_AES_XTS:
2371 		t4_aes_getdeckey(s->blkcipher.deckey, key, kbits);
2372 		break;
2373 	}
2374 
2375 	kctx_len = roundup2(s->blkcipher.key_len, 16);
2376 	switch (s->mode) {
2377 	case AUTHENC:
2378 		mk_size = s->hmac.mk_size;
2379 		opad_present = 1;
2380 		iopad_size = roundup2(s->hmac.partial_digest_len, 16);
2381 		kctx_len += iopad_size * 2;
2382 		break;
2383 	case GCM:
2384 		mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_128;
2385 		opad_present = 0;
2386 		kctx_len += GMAC_BLOCK_LEN;
2387 		break;
2388 	case CCM:
2389 		switch (kbits) {
2390 		case 128:
2391 			mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_128;
2392 			break;
2393 		case 192:
2394 			mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_192;
2395 			break;
2396 		case 256:
2397 			mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_256;
2398 			break;
2399 		default:
2400 			panic("should not get here");
2401 		}
2402 		opad_present = 0;
2403 		kctx_len *= 2;
2404 		break;
2405 	default:
2406 		mk_size = CHCR_KEYCTX_NO_KEY;
2407 		opad_present = 0;
2408 		break;
2409 	}
2410 	kctx_flits = (sizeof(struct _key_ctx) + kctx_len) / 16;
2411 	s->blkcipher.key_ctx_hdr = htobe32(V_KEY_CONTEXT_CTX_LEN(kctx_flits) |
2412 	    V_KEY_CONTEXT_DUAL_CK(alg == CRYPTO_AES_XTS) |
2413 	    V_KEY_CONTEXT_OPAD_PRESENT(opad_present) |
2414 	    V_KEY_CONTEXT_SALT_PRESENT(1) | V_KEY_CONTEXT_CK_SIZE(ck_size) |
2415 	    V_KEY_CONTEXT_MK_SIZE(mk_size) | V_KEY_CONTEXT_VALID(1));
2416 }
2417 
2418 static int
2419 ccr_newsession(device_t dev, crypto_session_t cses, struct cryptoini *cri)
2420 {
2421 	struct ccr_softc *sc;
2422 	struct ccr_session *s;
2423 	struct auth_hash *auth_hash;
2424 	struct cryptoini *c, *hash, *cipher;
2425 	unsigned int auth_mode, cipher_mode, iv_len, mk_size;
2426 	unsigned int partial_digest_len;
2427 	int error;
2428 	bool gcm_hash, hmac;
2429 
2430 	if (cri == NULL)
2431 		return (EINVAL);
2432 
2433 	gcm_hash = false;
2434 	hmac = false;
2435 	cipher = NULL;
2436 	hash = NULL;
2437 	auth_hash = NULL;
2438 	auth_mode = SCMD_AUTH_MODE_NOP;
2439 	cipher_mode = SCMD_CIPH_MODE_NOP;
2440 	iv_len = 0;
2441 	mk_size = 0;
2442 	partial_digest_len = 0;
2443 	for (c = cri; c != NULL; c = c->cri_next) {
2444 		switch (c->cri_alg) {
2445 		case CRYPTO_SHA1:
2446 		case CRYPTO_SHA2_224:
2447 		case CRYPTO_SHA2_256:
2448 		case CRYPTO_SHA2_384:
2449 		case CRYPTO_SHA2_512:
2450 		case CRYPTO_SHA1_HMAC:
2451 		case CRYPTO_SHA2_224_HMAC:
2452 		case CRYPTO_SHA2_256_HMAC:
2453 		case CRYPTO_SHA2_384_HMAC:
2454 		case CRYPTO_SHA2_512_HMAC:
2455 		case CRYPTO_AES_128_NIST_GMAC:
2456 		case CRYPTO_AES_192_NIST_GMAC:
2457 		case CRYPTO_AES_256_NIST_GMAC:
2458 		case CRYPTO_AES_CCM_CBC_MAC:
2459 			if (hash)
2460 				return (EINVAL);
2461 			hash = c;
2462 			switch (c->cri_alg) {
2463 			case CRYPTO_SHA1:
2464 			case CRYPTO_SHA1_HMAC:
2465 				auth_hash = &auth_hash_hmac_sha1;
2466 				auth_mode = SCMD_AUTH_MODE_SHA1;
2467 				mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_160;
2468 				partial_digest_len = SHA1_HASH_LEN;
2469 				break;
2470 			case CRYPTO_SHA2_224:
2471 			case CRYPTO_SHA2_224_HMAC:
2472 				auth_hash = &auth_hash_hmac_sha2_224;
2473 				auth_mode = SCMD_AUTH_MODE_SHA224;
2474 				mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_256;
2475 				partial_digest_len = SHA2_256_HASH_LEN;
2476 				break;
2477 			case CRYPTO_SHA2_256:
2478 			case CRYPTO_SHA2_256_HMAC:
2479 				auth_hash = &auth_hash_hmac_sha2_256;
2480 				auth_mode = SCMD_AUTH_MODE_SHA256;
2481 				mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_256;
2482 				partial_digest_len = SHA2_256_HASH_LEN;
2483 				break;
2484 			case CRYPTO_SHA2_384:
2485 			case CRYPTO_SHA2_384_HMAC:
2486 				auth_hash = &auth_hash_hmac_sha2_384;
2487 				auth_mode = SCMD_AUTH_MODE_SHA512_384;
2488 				mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_512;
2489 				partial_digest_len = SHA2_512_HASH_LEN;
2490 				break;
2491 			case CRYPTO_SHA2_512:
2492 			case CRYPTO_SHA2_512_HMAC:
2493 				auth_hash = &auth_hash_hmac_sha2_512;
2494 				auth_mode = SCMD_AUTH_MODE_SHA512_512;
2495 				mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_512;
2496 				partial_digest_len = SHA2_512_HASH_LEN;
2497 				break;
2498 			case CRYPTO_AES_128_NIST_GMAC:
2499 			case CRYPTO_AES_192_NIST_GMAC:
2500 			case CRYPTO_AES_256_NIST_GMAC:
2501 				gcm_hash = true;
2502 				auth_mode = SCMD_AUTH_MODE_GHASH;
2503 				mk_size = CHCR_KEYCTX_MAC_KEY_SIZE_128;
2504 				break;
2505 			case CRYPTO_AES_CCM_CBC_MAC:
2506 				auth_mode = SCMD_AUTH_MODE_CBCMAC;
2507 				break;
2508 			}
2509 			switch (c->cri_alg) {
2510 			case CRYPTO_SHA1_HMAC:
2511 			case CRYPTO_SHA2_224_HMAC:
2512 			case CRYPTO_SHA2_256_HMAC:
2513 			case CRYPTO_SHA2_384_HMAC:
2514 			case CRYPTO_SHA2_512_HMAC:
2515 				hmac = true;
2516 				break;
2517 			}
2518 			break;
2519 		case CRYPTO_AES_CBC:
2520 		case CRYPTO_AES_ICM:
2521 		case CRYPTO_AES_NIST_GCM_16:
2522 		case CRYPTO_AES_XTS:
2523 		case CRYPTO_AES_CCM_16:
2524 			if (cipher)
2525 				return (EINVAL);
2526 			cipher = c;
2527 			switch (c->cri_alg) {
2528 			case CRYPTO_AES_CBC:
2529 				cipher_mode = SCMD_CIPH_MODE_AES_CBC;
2530 				iv_len = AES_BLOCK_LEN;
2531 				break;
2532 			case CRYPTO_AES_ICM:
2533 				cipher_mode = SCMD_CIPH_MODE_AES_CTR;
2534 				iv_len = AES_BLOCK_LEN;
2535 				break;
2536 			case CRYPTO_AES_NIST_GCM_16:
2537 				cipher_mode = SCMD_CIPH_MODE_AES_GCM;
2538 				iv_len = AES_GCM_IV_LEN;
2539 				break;
2540 			case CRYPTO_AES_XTS:
2541 				cipher_mode = SCMD_CIPH_MODE_AES_XTS;
2542 				iv_len = AES_BLOCK_LEN;
2543 				break;
2544 			case CRYPTO_AES_CCM_16:
2545 				cipher_mode = SCMD_CIPH_MODE_AES_CCM;
2546 				iv_len = AES_CCM_IV_LEN;
2547 				break;
2548 			}
2549 			if (c->cri_key != NULL) {
2550 				error = ccr_aes_check_keylen(c->cri_alg,
2551 				    c->cri_klen);
2552 				if (error)
2553 					return (error);
2554 			}
2555 			break;
2556 		default:
2557 			return (EINVAL);
2558 		}
2559 	}
2560 	if (gcm_hash != (cipher_mode == SCMD_CIPH_MODE_AES_GCM))
2561 		return (EINVAL);
2562 	if ((auth_mode == SCMD_AUTH_MODE_CBCMAC) !=
2563 	    (cipher_mode == SCMD_CIPH_MODE_AES_CCM))
2564 		return (EINVAL);
2565 	if (hash == NULL && cipher == NULL)
2566 		return (EINVAL);
2567 	if (hash != NULL) {
2568 		if (hmac || gcm_hash || auth_mode == SCMD_AUTH_MODE_CBCMAC) {
2569 			if (hash->cri_key == NULL)
2570 				return (EINVAL);
2571 		} else {
2572 			if (hash->cri_key != NULL)
2573 				return (EINVAL);
2574 		}
2575 	}
2576 
2577 	sc = device_get_softc(dev);
2578 
2579 	/*
2580 	 * XXX: Don't create a session if the queues aren't
2581 	 * initialized.  This is racy as the rxq can be destroyed by
2582 	 * the associated VI detaching.  Eventually ccr should use
2583 	 * dedicated queues.
2584 	 */
2585 	if (sc->rxq->iq.adapter == NULL || sc->txq->adapter == NULL)
2586 		return (ENXIO);
2587 
2588 	mtx_lock(&sc->lock);
2589 	if (sc->detaching) {
2590 		mtx_unlock(&sc->lock);
2591 		return (ENXIO);
2592 	}
2593 
2594 	s = crypto_get_driver_session(cses);
2595 
2596 	if (gcm_hash)
2597 		s->mode = GCM;
2598 	else if (cipher_mode == SCMD_CIPH_MODE_AES_CCM)
2599 		s->mode = CCM;
2600 	else if (hash != NULL && cipher != NULL)
2601 		s->mode = AUTHENC;
2602 	else if (hash != NULL) {
2603 		if (hmac)
2604 			s->mode = HMAC;
2605 		else
2606 			s->mode = HASH;
2607 	} else {
2608 		MPASS(cipher != NULL);
2609 		s->mode = BLKCIPHER;
2610 	}
2611 	if (gcm_hash) {
2612 		if (hash->cri_mlen == 0)
2613 			s->gmac.hash_len = AES_GMAC_HASH_LEN;
2614 		else
2615 			s->gmac.hash_len = hash->cri_mlen;
2616 		ccr_init_gmac_hash(s, hash->cri_key, hash->cri_klen);
2617 	} else if (auth_mode == SCMD_AUTH_MODE_CBCMAC) {
2618 		if (hash->cri_mlen == 0)
2619 			s->ccm_mac.hash_len = AES_CBC_MAC_HASH_LEN;
2620 		else
2621 			s->ccm_mac.hash_len = hash->cri_mlen;
2622 	} else if (hash != NULL) {
2623 		s->hmac.auth_hash = auth_hash;
2624 		s->hmac.auth_mode = auth_mode;
2625 		s->hmac.mk_size = mk_size;
2626 		s->hmac.partial_digest_len = partial_digest_len;
2627 		if (hash->cri_mlen == 0)
2628 			s->hmac.hash_len = auth_hash->hashsize;
2629 		else
2630 			s->hmac.hash_len = hash->cri_mlen;
2631 		if (hmac)
2632 			ccr_init_hmac_digest(s, hash->cri_alg, hash->cri_key,
2633 			    hash->cri_klen);
2634 		else
2635 			ccr_init_hash_digest(s, hash->cri_alg);
2636 	}
2637 	if (cipher != NULL) {
2638 		s->blkcipher.cipher_mode = cipher_mode;
2639 		s->blkcipher.iv_len = iv_len;
2640 		if (cipher->cri_key != NULL)
2641 			ccr_aes_setkey(s, cipher->cri_alg, cipher->cri_key,
2642 			    cipher->cri_klen);
2643 	}
2644 
2645 	s->active = true;
2646 	mtx_unlock(&sc->lock);
2647 	return (0);
2648 }
2649 
2650 static void
2651 ccr_freesession(device_t dev, crypto_session_t cses)
2652 {
2653 	struct ccr_softc *sc;
2654 	struct ccr_session *s;
2655 
2656 	sc = device_get_softc(dev);
2657 	s = crypto_get_driver_session(cses);
2658 	mtx_lock(&sc->lock);
2659 	if (s->pending != 0)
2660 		device_printf(dev,
2661 		    "session %p freed with %d pending requests\n", s,
2662 		    s->pending);
2663 	s->active = false;
2664 	mtx_unlock(&sc->lock);
2665 }
2666 
2667 static int
2668 ccr_process(device_t dev, struct cryptop *crp, int hint)
2669 {
2670 	struct ccr_softc *sc;
2671 	struct ccr_session *s;
2672 	struct cryptodesc *crd, *crda, *crde;
2673 	int error;
2674 
2675 	if (crp == NULL)
2676 		return (EINVAL);
2677 
2678 	crd = crp->crp_desc;
2679 	s = crypto_get_driver_session(crp->crp_session);
2680 	sc = device_get_softc(dev);
2681 
2682 	mtx_lock(&sc->lock);
2683 	error = ccr_populate_sglist(sc->sg_crp, crp);
2684 	if (error) {
2685 		sc->stats_sglist_error++;
2686 		goto out;
2687 	}
2688 
2689 	switch (s->mode) {
2690 	case HASH:
2691 		error = ccr_hash(sc, s, crp);
2692 		if (error == 0)
2693 			sc->stats_hash++;
2694 		break;
2695 	case HMAC:
2696 		if (crd->crd_flags & CRD_F_KEY_EXPLICIT)
2697 			ccr_init_hmac_digest(s, crd->crd_alg, crd->crd_key,
2698 			    crd->crd_klen);
2699 		error = ccr_hash(sc, s, crp);
2700 		if (error == 0)
2701 			sc->stats_hmac++;
2702 		break;
2703 	case BLKCIPHER:
2704 		if (crd->crd_flags & CRD_F_KEY_EXPLICIT) {
2705 			error = ccr_aes_check_keylen(crd->crd_alg,
2706 			    crd->crd_klen);
2707 			if (error)
2708 				break;
2709 			ccr_aes_setkey(s, crd->crd_alg, crd->crd_key,
2710 			    crd->crd_klen);
2711 		}
2712 		error = ccr_blkcipher(sc, s, crp);
2713 		if (error == 0) {
2714 			if (crd->crd_flags & CRD_F_ENCRYPT)
2715 				sc->stats_blkcipher_encrypt++;
2716 			else
2717 				sc->stats_blkcipher_decrypt++;
2718 		}
2719 		break;
2720 	case AUTHENC:
2721 		error = 0;
2722 		switch (crd->crd_alg) {
2723 		case CRYPTO_AES_CBC:
2724 		case CRYPTO_AES_ICM:
2725 		case CRYPTO_AES_XTS:
2726 			/* Only encrypt-then-authenticate supported. */
2727 			crde = crd;
2728 			crda = crd->crd_next;
2729 			if (!(crde->crd_flags & CRD_F_ENCRYPT)) {
2730 				error = EINVAL;
2731 				break;
2732 			}
2733 			break;
2734 		default:
2735 			crda = crd;
2736 			crde = crd->crd_next;
2737 			if (crde->crd_flags & CRD_F_ENCRYPT) {
2738 				error = EINVAL;
2739 				break;
2740 			}
2741 			break;
2742 		}
2743 		if (error)
2744 			break;
2745 		if (crda->crd_flags & CRD_F_KEY_EXPLICIT)
2746 			ccr_init_hmac_digest(s, crda->crd_alg, crda->crd_key,
2747 			    crda->crd_klen);
2748 		if (crde->crd_flags & CRD_F_KEY_EXPLICIT) {
2749 			error = ccr_aes_check_keylen(crde->crd_alg,
2750 			    crde->crd_klen);
2751 			if (error)
2752 				break;
2753 			ccr_aes_setkey(s, crde->crd_alg, crde->crd_key,
2754 			    crde->crd_klen);
2755 		}
2756 		error = ccr_authenc(sc, s, crp, crda, crde);
2757 		if (error == 0) {
2758 			if (crde->crd_flags & CRD_F_ENCRYPT)
2759 				sc->stats_authenc_encrypt++;
2760 			else
2761 				sc->stats_authenc_decrypt++;
2762 		}
2763 		break;
2764 	case GCM:
2765 		error = 0;
2766 		if (crd->crd_alg == CRYPTO_AES_NIST_GCM_16) {
2767 			crde = crd;
2768 			crda = crd->crd_next;
2769 		} else {
2770 			crda = crd;
2771 			crde = crd->crd_next;
2772 		}
2773 		if (crda->crd_flags & CRD_F_KEY_EXPLICIT)
2774 			ccr_init_gmac_hash(s, crda->crd_key, crda->crd_klen);
2775 		if (crde->crd_flags & CRD_F_KEY_EXPLICIT) {
2776 			error = ccr_aes_check_keylen(crde->crd_alg,
2777 			    crde->crd_klen);
2778 			if (error)
2779 				break;
2780 			ccr_aes_setkey(s, crde->crd_alg, crde->crd_key,
2781 			    crde->crd_klen);
2782 		}
2783 		if (crde->crd_len == 0) {
2784 			mtx_unlock(&sc->lock);
2785 			ccr_gcm_soft(s, crp, crda, crde);
2786 			return (0);
2787 		}
2788 		error = ccr_gcm(sc, s, crp, crda, crde);
2789 		if (error == EMSGSIZE) {
2790 			sc->stats_sw_fallback++;
2791 			mtx_unlock(&sc->lock);
2792 			ccr_gcm_soft(s, crp, crda, crde);
2793 			return (0);
2794 		}
2795 		if (error == 0) {
2796 			if (crde->crd_flags & CRD_F_ENCRYPT)
2797 				sc->stats_gcm_encrypt++;
2798 			else
2799 				sc->stats_gcm_decrypt++;
2800 		}
2801 		break;
2802 	case CCM:
2803 		error = 0;
2804 		if (crd->crd_alg == CRYPTO_AES_CCM_16) {
2805 			crde = crd;
2806 			crda = crd->crd_next;
2807 		} else {
2808 			crda = crd;
2809 			crde = crd->crd_next;
2810 		}
2811 		if (crde->crd_flags & CRD_F_KEY_EXPLICIT) {
2812 			error = ccr_aes_check_keylen(crde->crd_alg,
2813 			    crde->crd_klen);
2814 			if (error)
2815 				break;
2816 			ccr_aes_setkey(s, crde->crd_alg, crde->crd_key,
2817 			    crde->crd_klen);
2818 		}
2819 		error = ccr_ccm(sc, s, crp, crda, crde);
2820 		if (error == EMSGSIZE) {
2821 			sc->stats_sw_fallback++;
2822 			mtx_unlock(&sc->lock);
2823 			ccr_ccm_soft(s, crp, crda, crde);
2824 			return (0);
2825 		}
2826 		if (error == 0) {
2827 			if (crde->crd_flags & CRD_F_ENCRYPT)
2828 				sc->stats_ccm_encrypt++;
2829 			else
2830 				sc->stats_ccm_decrypt++;
2831 		}
2832 		break;
2833 	}
2834 
2835 	if (error == 0) {
2836 		s->pending++;
2837 		sc->stats_inflight++;
2838 	} else
2839 		sc->stats_process_error++;
2840 
2841 out:
2842 	mtx_unlock(&sc->lock);
2843 
2844 	if (error) {
2845 		crp->crp_etype = error;
2846 		crypto_done(crp);
2847 	}
2848 
2849 	return (0);
2850 }
2851 
2852 static int
2853 do_cpl6_fw_pld(struct sge_iq *iq, const struct rss_header *rss,
2854     struct mbuf *m)
2855 {
2856 	struct ccr_softc *sc = iq->adapter->ccr_softc;
2857 	struct ccr_session *s;
2858 	const struct cpl_fw6_pld *cpl;
2859 	struct cryptop *crp;
2860 	uint32_t status;
2861 	int error;
2862 
2863 	if (m != NULL)
2864 		cpl = mtod(m, const void *);
2865 	else
2866 		cpl = (const void *)(rss + 1);
2867 
2868 	crp = (struct cryptop *)(uintptr_t)be64toh(cpl->data[1]);
2869 	s = crypto_get_driver_session(crp->crp_session);
2870 	status = be64toh(cpl->data[0]);
2871 	if (CHK_MAC_ERR_BIT(status) || CHK_PAD_ERR_BIT(status))
2872 		error = EBADMSG;
2873 	else
2874 		error = 0;
2875 
2876 	mtx_lock(&sc->lock);
2877 	s->pending--;
2878 	sc->stats_inflight--;
2879 
2880 	switch (s->mode) {
2881 	case HASH:
2882 	case HMAC:
2883 		error = ccr_hash_done(sc, s, crp, cpl, error);
2884 		break;
2885 	case BLKCIPHER:
2886 		error = ccr_blkcipher_done(sc, s, crp, cpl, error);
2887 		break;
2888 	case AUTHENC:
2889 		error = ccr_authenc_done(sc, s, crp, cpl, error);
2890 		break;
2891 	case GCM:
2892 		error = ccr_gcm_done(sc, s, crp, cpl, error);
2893 		break;
2894 	case CCM:
2895 		error = ccr_ccm_done(sc, s, crp, cpl, error);
2896 		break;
2897 	}
2898 
2899 	if (error == EBADMSG) {
2900 		if (CHK_MAC_ERR_BIT(status))
2901 			sc->stats_mac_error++;
2902 		if (CHK_PAD_ERR_BIT(status))
2903 			sc->stats_pad_error++;
2904 	}
2905 	mtx_unlock(&sc->lock);
2906 	crp->crp_etype = error;
2907 	crypto_done(crp);
2908 	m_freem(m);
2909 	return (0);
2910 }
2911 
2912 static int
2913 ccr_modevent(module_t mod, int cmd, void *arg)
2914 {
2915 
2916 	switch (cmd) {
2917 	case MOD_LOAD:
2918 		t4_register_cpl_handler(CPL_FW6_PLD, do_cpl6_fw_pld);
2919 		return (0);
2920 	case MOD_UNLOAD:
2921 		t4_register_cpl_handler(CPL_FW6_PLD, NULL);
2922 		return (0);
2923 	default:
2924 		return (EOPNOTSUPP);
2925 	}
2926 }
2927 
2928 static device_method_t ccr_methods[] = {
2929 	DEVMETHOD(device_identify,	ccr_identify),
2930 	DEVMETHOD(device_probe,		ccr_probe),
2931 	DEVMETHOD(device_attach,	ccr_attach),
2932 	DEVMETHOD(device_detach,	ccr_detach),
2933 
2934 	DEVMETHOD(cryptodev_newsession,	ccr_newsession),
2935 	DEVMETHOD(cryptodev_freesession, ccr_freesession),
2936 	DEVMETHOD(cryptodev_process,	ccr_process),
2937 
2938 	DEVMETHOD_END
2939 };
2940 
2941 static driver_t ccr_driver = {
2942 	"ccr",
2943 	ccr_methods,
2944 	sizeof(struct ccr_softc)
2945 };
2946 
2947 static devclass_t ccr_devclass;
2948 
2949 DRIVER_MODULE(ccr, t6nex, ccr_driver, ccr_devclass, ccr_modevent, NULL);
2950 MODULE_VERSION(ccr, 1);
2951 MODULE_DEPEND(ccr, crypto, 1, 1, 1);
2952 MODULE_DEPEND(ccr, t6nex, 1, 1, 1);
2953