1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2012, 2016 Chelsio Communications, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_inet.h" 33 34 #include <sys/param.h> 35 #include <sys/eventhandler.h> 36 37 #include "common.h" 38 #include "t4_regs.h" 39 #include "t4_regs_values.h" 40 #include "firmware/t4fw_interface.h" 41 42 #undef msleep 43 #define msleep(x) do { \ 44 if (cold) \ 45 DELAY((x) * 1000); \ 46 else \ 47 pause("t4hw", (x) * hz / 1000); \ 48 } while (0) 49 50 /** 51 * t4_wait_op_done_val - wait until an operation is completed 52 * @adapter: the adapter performing the operation 53 * @reg: the register to check for completion 54 * @mask: a single-bit field within @reg that indicates completion 55 * @polarity: the value of the field when the operation is completed 56 * @attempts: number of check iterations 57 * @delay: delay in usecs between iterations 58 * @valp: where to store the value of the register at completion time 59 * 60 * Wait until an operation is completed by checking a bit in a register 61 * up to @attempts times. If @valp is not NULL the value of the register 62 * at the time it indicated completion is stored there. Returns 0 if the 63 * operation completes and -EAGAIN otherwise. 64 */ 65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 66 int polarity, int attempts, int delay, u32 *valp) 67 { 68 while (1) { 69 u32 val = t4_read_reg(adapter, reg); 70 71 if (!!(val & mask) == polarity) { 72 if (valp) 73 *valp = val; 74 return 0; 75 } 76 if (--attempts == 0) 77 return -EAGAIN; 78 if (delay) 79 udelay(delay); 80 } 81 } 82 83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 84 int polarity, int attempts, int delay) 85 { 86 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 87 delay, NULL); 88 } 89 90 /** 91 * t4_set_reg_field - set a register field to a value 92 * @adapter: the adapter to program 93 * @addr: the register address 94 * @mask: specifies the portion of the register to modify 95 * @val: the new value for the register field 96 * 97 * Sets a register field specified by the supplied mask to the 98 * given value. 99 */ 100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 101 u32 val) 102 { 103 u32 v = t4_read_reg(adapter, addr) & ~mask; 104 105 t4_write_reg(adapter, addr, v | val); 106 (void) t4_read_reg(adapter, addr); /* flush */ 107 } 108 109 /** 110 * t4_read_indirect - read indirectly addressed registers 111 * @adap: the adapter 112 * @addr_reg: register holding the indirect address 113 * @data_reg: register holding the value of the indirect register 114 * @vals: where the read register values are stored 115 * @nregs: how many indirect registers to read 116 * @start_idx: index of first indirect register to read 117 * 118 * Reads registers that are accessed indirectly through an address/data 119 * register pair. 120 */ 121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 122 unsigned int data_reg, u32 *vals, 123 unsigned int nregs, unsigned int start_idx) 124 { 125 while (nregs--) { 126 t4_write_reg(adap, addr_reg, start_idx); 127 *vals++ = t4_read_reg(adap, data_reg); 128 start_idx++; 129 } 130 } 131 132 /** 133 * t4_write_indirect - write indirectly addressed registers 134 * @adap: the adapter 135 * @addr_reg: register holding the indirect addresses 136 * @data_reg: register holding the value for the indirect registers 137 * @vals: values to write 138 * @nregs: how many indirect registers to write 139 * @start_idx: address of first indirect register to write 140 * 141 * Writes a sequential block of registers that are accessed indirectly 142 * through an address/data register pair. 143 */ 144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 145 unsigned int data_reg, const u32 *vals, 146 unsigned int nregs, unsigned int start_idx) 147 { 148 while (nregs--) { 149 t4_write_reg(adap, addr_reg, start_idx++); 150 t4_write_reg(adap, data_reg, *vals++); 151 } 152 } 153 154 /* 155 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 156 * mechanism. This guarantees that we get the real value even if we're 157 * operating within a Virtual Machine and the Hypervisor is trapping our 158 * Configuration Space accesses. 159 * 160 * N.B. This routine should only be used as a last resort: the firmware uses 161 * the backdoor registers on a regular basis and we can end up 162 * conflicting with it's uses! 163 */ 164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg) 165 { 166 u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg); 167 u32 val; 168 169 if (chip_id(adap) <= CHELSIO_T5) 170 req |= F_ENABLE; 171 else 172 req |= F_T6_ENABLE; 173 174 if (is_t4(adap)) 175 req |= F_LOCALCFG; 176 177 t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req); 178 val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA); 179 180 /* 181 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 182 * Configuration Space read. (None of the other fields matter when 183 * F_ENABLE is 0 so a simple register write is easier than a 184 * read-modify-write via t4_set_reg_field().) 185 */ 186 t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0); 187 188 return val; 189 } 190 191 /* 192 * t4_report_fw_error - report firmware error 193 * @adap: the adapter 194 * 195 * The adapter firmware can indicate error conditions to the host. 196 * If the firmware has indicated an error, print out the reason for 197 * the firmware error. 198 */ 199 static void t4_report_fw_error(struct adapter *adap) 200 { 201 static const char *const reason[] = { 202 "Crash", /* PCIE_FW_EVAL_CRASH */ 203 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 204 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 205 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 206 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 207 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 208 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 209 "Reserved", /* reserved */ 210 }; 211 u32 pcie_fw; 212 213 pcie_fw = t4_read_reg(adap, A_PCIE_FW); 214 if (pcie_fw & F_PCIE_FW_ERR) { 215 adap->flags &= ~FW_OK; 216 CH_ERR(adap, "firmware reports adapter error: %s (0x%08x)\n", 217 reason[G_PCIE_FW_EVAL(pcie_fw)], pcie_fw); 218 if (pcie_fw != 0xffffffff) 219 t4_os_dump_devlog(adap); 220 } 221 } 222 223 /* 224 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 225 */ 226 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 227 u32 mbox_addr) 228 { 229 for ( ; nflit; nflit--, mbox_addr += 8) 230 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 231 } 232 233 /* 234 * Handle a FW assertion reported in a mailbox. 235 */ 236 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt) 237 { 238 CH_ALERT(adap, 239 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 240 asrt->u.assert.filename_0_7, 241 be32_to_cpu(asrt->u.assert.line), 242 be32_to_cpu(asrt->u.assert.x), 243 be32_to_cpu(asrt->u.assert.y)); 244 } 245 246 struct port_tx_state { 247 uint64_t rx_pause; 248 uint64_t tx_frames; 249 }; 250 251 static void 252 read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state) 253 { 254 uint32_t rx_pause_reg, tx_frames_reg; 255 256 if (is_t4(sc)) { 257 tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L); 258 rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L); 259 } else { 260 tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L); 261 rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L); 262 } 263 264 tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg); 265 tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg); 266 } 267 268 static void 269 read_tx_state(struct adapter *sc, struct port_tx_state *tx_state) 270 { 271 int i; 272 273 for_each_port(sc, i) 274 read_tx_state_one(sc, i, &tx_state[i]); 275 } 276 277 static void 278 check_tx_state(struct adapter *sc, struct port_tx_state *tx_state) 279 { 280 uint32_t port_ctl_reg; 281 uint64_t tx_frames, rx_pause; 282 int i; 283 284 for_each_port(sc, i) { 285 rx_pause = tx_state[i].rx_pause; 286 tx_frames = tx_state[i].tx_frames; 287 read_tx_state_one(sc, i, &tx_state[i]); /* update */ 288 289 if (is_t4(sc)) 290 port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL); 291 else 292 port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL); 293 if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN && 294 rx_pause != tx_state[i].rx_pause && 295 tx_frames == tx_state[i].tx_frames) { 296 t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0); 297 mdelay(1); 298 t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN); 299 } 300 } 301 } 302 303 #define X_CIM_PF_NOACCESS 0xeeeeeeee 304 /** 305 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox 306 * @adap: the adapter 307 * @mbox: index of the mailbox to use 308 * @cmd: the command to write 309 * @size: command length in bytes 310 * @rpl: where to optionally store the reply 311 * @sleep_ok: if true we may sleep while awaiting command completion 312 * @timeout: time to wait for command to finish before timing out 313 * (negative implies @sleep_ok=false) 314 * 315 * Sends the given command to FW through the selected mailbox and waits 316 * for the FW to execute the command. If @rpl is not %NULL it is used to 317 * store the FW's reply to the command. The command and its optional 318 * reply are of the same length. Some FW commands like RESET and 319 * INITIALIZE can take a considerable amount of time to execute. 320 * @sleep_ok determines whether we may sleep while awaiting the response. 321 * If sleeping is allowed we use progressive backoff otherwise we spin. 322 * Note that passing in a negative @timeout is an alternate mechanism 323 * for specifying @sleep_ok=false. This is useful when a higher level 324 * interface allows for specification of @timeout but not @sleep_ok ... 325 * 326 * The return value is 0 on success or a negative errno on failure. A 327 * failure can happen either because we are not able to execute the 328 * command or FW executes it but signals an error. In the latter case 329 * the return value is the error code indicated by FW (negated). 330 */ 331 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, 332 int size, void *rpl, bool sleep_ok, int timeout) 333 { 334 /* 335 * We delay in small increments at first in an effort to maintain 336 * responsiveness for simple, fast executing commands but then back 337 * off to larger delays to a maximum retry delay. 338 */ 339 static const int delay[] = { 340 1, 1, 3, 5, 10, 10, 20, 50, 100 341 }; 342 u32 v; 343 u64 res; 344 int i, ms, delay_idx, ret, next_tx_check; 345 u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA); 346 u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL); 347 u32 ctl; 348 __be64 cmd_rpl[MBOX_LEN/8]; 349 u32 pcie_fw; 350 struct port_tx_state tx_state[MAX_NPORTS]; 351 352 if (adap->flags & CHK_MBOX_ACCESS) 353 ASSERT_SYNCHRONIZED_OP(adap); 354 355 if (size <= 0 || (size & 15) || size > MBOX_LEN) 356 return -EINVAL; 357 358 if (adap->flags & IS_VF) { 359 if (is_t6(adap)) 360 data_reg = FW_T6VF_MBDATA_BASE_ADDR; 361 else 362 data_reg = FW_T4VF_MBDATA_BASE_ADDR; 363 ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL); 364 } 365 366 /* 367 * If we have a negative timeout, that implies that we can't sleep. 368 */ 369 if (timeout < 0) { 370 sleep_ok = false; 371 timeout = -timeout; 372 } 373 374 /* 375 * Attempt to gain access to the mailbox. 376 */ 377 for (i = 0; i < 4; i++) { 378 ctl = t4_read_reg(adap, ctl_reg); 379 v = G_MBOWNER(ctl); 380 if (v != X_MBOWNER_NONE) 381 break; 382 } 383 384 /* 385 * If we were unable to gain access, report the error to our caller. 386 */ 387 if (v != X_MBOWNER_PL) { 388 t4_report_fw_error(adap); 389 ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT; 390 return ret; 391 } 392 393 /* 394 * If we gain ownership of the mailbox and there's a "valid" message 395 * in it, this is likely an asynchronous error message from the 396 * firmware. So we'll report that and then proceed on with attempting 397 * to issue our own command ... which may well fail if the error 398 * presaged the firmware crashing ... 399 */ 400 if (ctl & F_MBMSGVALID) { 401 CH_DUMP_MBOX(adap, mbox, data_reg, "VLD", NULL, true); 402 } 403 404 /* 405 * Copy in the new mailbox command and send it on its way ... 406 */ 407 memset(cmd_rpl, 0, sizeof(cmd_rpl)); 408 memcpy(cmd_rpl, cmd, size); 409 CH_DUMP_MBOX(adap, mbox, 0, "cmd", cmd_rpl, false); 410 for (i = 0; i < ARRAY_SIZE(cmd_rpl); i++) 411 t4_write_reg64(adap, data_reg + i * 8, be64_to_cpu(cmd_rpl[i])); 412 413 if (adap->flags & IS_VF) { 414 /* 415 * For the VFs, the Mailbox Data "registers" are 416 * actually backed by T4's "MA" interface rather than 417 * PL Registers (as is the case for the PFs). Because 418 * these are in different coherency domains, the write 419 * to the VF's PL-register-backed Mailbox Control can 420 * race in front of the writes to the MA-backed VF 421 * Mailbox Data "registers". So we need to do a 422 * read-back on at least one byte of the VF Mailbox 423 * Data registers before doing the write to the VF 424 * Mailbox Control register. 425 */ 426 t4_read_reg(adap, data_reg); 427 } 428 429 t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW)); 430 read_tx_state(adap, &tx_state[0]); /* also flushes the write_reg */ 431 next_tx_check = 1000; 432 delay_idx = 0; 433 ms = delay[0]; 434 435 /* 436 * Loop waiting for the reply; bail out if we time out or the firmware 437 * reports an error. 438 */ 439 pcie_fw = 0; 440 for (i = 0; i < timeout; i += ms) { 441 if (!(adap->flags & IS_VF)) { 442 pcie_fw = t4_read_reg(adap, A_PCIE_FW); 443 if (pcie_fw & F_PCIE_FW_ERR) 444 break; 445 } 446 447 if (i >= next_tx_check) { 448 check_tx_state(adap, &tx_state[0]); 449 next_tx_check = i + 1000; 450 } 451 452 if (sleep_ok) { 453 ms = delay[delay_idx]; /* last element may repeat */ 454 if (delay_idx < ARRAY_SIZE(delay) - 1) 455 delay_idx++; 456 msleep(ms); 457 } else { 458 mdelay(ms); 459 } 460 461 v = t4_read_reg(adap, ctl_reg); 462 if (v == X_CIM_PF_NOACCESS) 463 continue; 464 if (G_MBOWNER(v) == X_MBOWNER_PL) { 465 if (!(v & F_MBMSGVALID)) { 466 t4_write_reg(adap, ctl_reg, 467 V_MBOWNER(X_MBOWNER_NONE)); 468 continue; 469 } 470 471 /* 472 * Retrieve the command reply and release the mailbox. 473 */ 474 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg); 475 CH_DUMP_MBOX(adap, mbox, 0, "rpl", cmd_rpl, false); 476 t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE)); 477 478 res = be64_to_cpu(cmd_rpl[0]); 479 if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) { 480 fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl); 481 res = V_FW_CMD_RETVAL(EIO); 482 } else if (rpl) 483 memcpy(rpl, cmd_rpl, size); 484 return -G_FW_CMD_RETVAL((int)res); 485 } 486 } 487 488 /* 489 * We timed out waiting for a reply to our mailbox command. Report 490 * the error and also check to see if the firmware reported any 491 * errors ... 492 */ 493 CH_ERR(adap, "command %#x in mbox %d timed out (0x%08x).\n", 494 *(const u8 *)cmd, mbox, pcie_fw); 495 CH_DUMP_MBOX(adap, mbox, 0, "cmdsent", cmd_rpl, true); 496 CH_DUMP_MBOX(adap, mbox, data_reg, "current", NULL, true); 497 498 if (pcie_fw & F_PCIE_FW_ERR) { 499 ret = -ENXIO; 500 t4_report_fw_error(adap); 501 } else { 502 ret = -ETIMEDOUT; 503 t4_os_dump_devlog(adap); 504 } 505 506 t4_fatal_err(adap, true); 507 return ret; 508 } 509 510 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 511 void *rpl, bool sleep_ok) 512 { 513 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, 514 sleep_ok, FW_CMD_MAX_TIMEOUT); 515 516 } 517 518 static int t4_edc_err_read(struct adapter *adap, int idx) 519 { 520 u32 edc_ecc_err_addr_reg; 521 u32 edc_bist_status_rdata_reg; 522 523 if (is_t4(adap)) { 524 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); 525 return 0; 526 } 527 if (idx != MEM_EDC0 && idx != MEM_EDC1) { 528 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); 529 return 0; 530 } 531 532 edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx); 533 edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx); 534 535 CH_WARN(adap, 536 "edc%d err addr 0x%x: 0x%x.\n", 537 idx, edc_ecc_err_addr_reg, 538 t4_read_reg(adap, edc_ecc_err_addr_reg)); 539 CH_WARN(adap, 540 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", 541 edc_bist_status_rdata_reg, 542 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg), 543 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8), 544 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16), 545 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24), 546 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32), 547 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40), 548 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48), 549 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56), 550 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64)); 551 552 return 0; 553 } 554 555 /** 556 * t4_mc_read - read from MC through backdoor accesses 557 * @adap: the adapter 558 * @idx: which MC to access 559 * @addr: address of first byte requested 560 * @data: 64 bytes of data containing the requested address 561 * @ecc: where to store the corresponding 64-bit ECC word 562 * 563 * Read 64 bytes of data from MC starting at a 64-byte-aligned address 564 * that covers the requested address @addr. If @parity is not %NULL it 565 * is assigned the 64-bit ECC word for the read data. 566 */ 567 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc) 568 { 569 int i; 570 u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg; 571 u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg; 572 573 if (is_t4(adap)) { 574 mc_bist_cmd_reg = A_MC_BIST_CMD; 575 mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR; 576 mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN; 577 mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA; 578 mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN; 579 } else { 580 mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx); 581 mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx); 582 mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx); 583 mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA, 584 idx); 585 mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN, 586 idx); 587 } 588 589 if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST) 590 return -EBUSY; 591 t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU); 592 t4_write_reg(adap, mc_bist_cmd_len_reg, 64); 593 t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc); 594 t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) | 595 F_START_BIST | V_BIST_CMD_GAP(1)); 596 i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1); 597 if (i) 598 return i; 599 600 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i) 601 602 for (i = 15; i >= 0; i--) 603 *data++ = ntohl(t4_read_reg(adap, MC_DATA(i))); 604 if (ecc) 605 *ecc = t4_read_reg64(adap, MC_DATA(16)); 606 #undef MC_DATA 607 return 0; 608 } 609 610 /** 611 * t4_edc_read - read from EDC through backdoor accesses 612 * @adap: the adapter 613 * @idx: which EDC to access 614 * @addr: address of first byte requested 615 * @data: 64 bytes of data containing the requested address 616 * @ecc: where to store the corresponding 64-bit ECC word 617 * 618 * Read 64 bytes of data from EDC starting at a 64-byte-aligned address 619 * that covers the requested address @addr. If @parity is not %NULL it 620 * is assigned the 64-bit ECC word for the read data. 621 */ 622 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc) 623 { 624 int i; 625 u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg; 626 u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg; 627 628 if (is_t4(adap)) { 629 edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx); 630 edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx); 631 edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx); 632 edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN, 633 idx); 634 edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA, 635 idx); 636 } else { 637 /* 638 * These macro are missing in t4_regs.h file. 639 * Added temporarily for testing. 640 */ 641 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR) 642 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx) 643 edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx); 644 edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx); 645 edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx); 646 edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN, 647 idx); 648 edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA, 649 idx); 650 #undef EDC_REG_T5 651 #undef EDC_STRIDE_T5 652 } 653 654 if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST) 655 return -EBUSY; 656 t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU); 657 t4_write_reg(adap, edc_bist_cmd_len_reg, 64); 658 t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc); 659 t4_write_reg(adap, edc_bist_cmd_reg, 660 V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST); 661 i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1); 662 if (i) 663 return i; 664 665 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i) 666 667 for (i = 15; i >= 0; i--) 668 *data++ = ntohl(t4_read_reg(adap, EDC_DATA(i))); 669 if (ecc) 670 *ecc = t4_read_reg64(adap, EDC_DATA(16)); 671 #undef EDC_DATA 672 return 0; 673 } 674 675 /** 676 * t4_mem_read - read EDC 0, EDC 1 or MC into buffer 677 * @adap: the adapter 678 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 679 * @addr: address within indicated memory type 680 * @len: amount of memory to read 681 * @buf: host memory buffer 682 * 683 * Reads an [almost] arbitrary memory region in the firmware: the 684 * firmware memory address, length and host buffer must be aligned on 685 * 32-bit boudaries. The memory is returned as a raw byte sequence from 686 * the firmware's memory. If this memory contains data structures which 687 * contain multi-byte integers, it's the callers responsibility to 688 * perform appropriate byte order conversions. 689 */ 690 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len, 691 __be32 *buf) 692 { 693 u32 pos, start, end, offset; 694 int ret; 695 696 /* 697 * Argument sanity checks ... 698 */ 699 if ((addr & 0x3) || (len & 0x3)) 700 return -EINVAL; 701 702 /* 703 * The underlaying EDC/MC read routines read 64 bytes at a time so we 704 * need to round down the start and round up the end. We'll start 705 * copying out of the first line at (addr - start) a word at a time. 706 */ 707 start = rounddown2(addr, 64); 708 end = roundup2(addr + len, 64); 709 offset = (addr - start)/sizeof(__be32); 710 711 for (pos = start; pos < end; pos += 64, offset = 0) { 712 __be32 data[16]; 713 714 /* 715 * Read the chip's memory block and bail if there's an error. 716 */ 717 if ((mtype == MEM_MC) || (mtype == MEM_MC1)) 718 ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL); 719 else 720 ret = t4_edc_read(adap, mtype, pos, data, NULL); 721 if (ret) 722 return ret; 723 724 /* 725 * Copy the data into the caller's memory buffer. 726 */ 727 while (offset < 16 && len > 0) { 728 *buf++ = data[offset++]; 729 len -= sizeof(__be32); 730 } 731 } 732 733 return 0; 734 } 735 736 /* 737 * Return the specified PCI-E Configuration Space register from our Physical 738 * Function. We try first via a Firmware LDST Command (if fw_attach != 0) 739 * since we prefer to let the firmware own all of these registers, but if that 740 * fails we go for it directly ourselves. 741 */ 742 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach) 743 { 744 745 /* 746 * If fw_attach != 0, construct and send the Firmware LDST Command to 747 * retrieve the specified PCI-E Configuration Space register. 748 */ 749 if (drv_fw_attach != 0) { 750 struct fw_ldst_cmd ldst_cmd; 751 int ret; 752 753 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 754 ldst_cmd.op_to_addrspace = 755 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 756 F_FW_CMD_REQUEST | 757 F_FW_CMD_READ | 758 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE)); 759 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 760 ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1); 761 ldst_cmd.u.pcie.ctrl_to_fn = 762 (F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf)); 763 ldst_cmd.u.pcie.r = reg; 764 765 /* 766 * If the LDST Command succeeds, return the result, otherwise 767 * fall through to reading it directly ourselves ... 768 */ 769 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 770 &ldst_cmd); 771 if (ret == 0) 772 return be32_to_cpu(ldst_cmd.u.pcie.data[0]); 773 774 CH_WARN(adap, "Firmware failed to return " 775 "Configuration Space register %d, err = %d\n", 776 reg, -ret); 777 } 778 779 /* 780 * Read the desired Configuration Space register via the PCI-E 781 * Backdoor mechanism. 782 */ 783 return t4_hw_pci_read_cfg4(adap, reg); 784 } 785 786 /** 787 * t4_get_regs_len - return the size of the chips register set 788 * @adapter: the adapter 789 * 790 * Returns the size of the chip's BAR0 register space. 791 */ 792 unsigned int t4_get_regs_len(struct adapter *adapter) 793 { 794 unsigned int chip_version = chip_id(adapter); 795 796 switch (chip_version) { 797 case CHELSIO_T4: 798 if (adapter->flags & IS_VF) 799 return FW_T4VF_REGMAP_SIZE; 800 return T4_REGMAP_SIZE; 801 802 case CHELSIO_T5: 803 case CHELSIO_T6: 804 if (adapter->flags & IS_VF) 805 return FW_T4VF_REGMAP_SIZE; 806 return T5_REGMAP_SIZE; 807 } 808 809 CH_ERR(adapter, 810 "Unsupported chip version %d\n", chip_version); 811 return 0; 812 } 813 814 /** 815 * t4_get_regs - read chip registers into provided buffer 816 * @adap: the adapter 817 * @buf: register buffer 818 * @buf_size: size (in bytes) of register buffer 819 * 820 * If the provided register buffer isn't large enough for the chip's 821 * full register range, the register dump will be truncated to the 822 * register buffer's size. 823 */ 824 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size) 825 { 826 static const unsigned int t4_reg_ranges[] = { 827 0x1008, 0x1108, 828 0x1180, 0x1184, 829 0x1190, 0x1194, 830 0x11a0, 0x11a4, 831 0x11b0, 0x11b4, 832 0x11fc, 0x123c, 833 0x1300, 0x173c, 834 0x1800, 0x18fc, 835 0x3000, 0x30d8, 836 0x30e0, 0x30e4, 837 0x30ec, 0x5910, 838 0x5920, 0x5924, 839 0x5960, 0x5960, 840 0x5968, 0x5968, 841 0x5970, 0x5970, 842 0x5978, 0x5978, 843 0x5980, 0x5980, 844 0x5988, 0x5988, 845 0x5990, 0x5990, 846 0x5998, 0x5998, 847 0x59a0, 0x59d4, 848 0x5a00, 0x5ae0, 849 0x5ae8, 0x5ae8, 850 0x5af0, 0x5af0, 851 0x5af8, 0x5af8, 852 0x6000, 0x6098, 853 0x6100, 0x6150, 854 0x6200, 0x6208, 855 0x6240, 0x6248, 856 0x6280, 0x62b0, 857 0x62c0, 0x6338, 858 0x6370, 0x638c, 859 0x6400, 0x643c, 860 0x6500, 0x6524, 861 0x6a00, 0x6a04, 862 0x6a14, 0x6a38, 863 0x6a60, 0x6a70, 864 0x6a78, 0x6a78, 865 0x6b00, 0x6b0c, 866 0x6b1c, 0x6b84, 867 0x6bf0, 0x6bf8, 868 0x6c00, 0x6c0c, 869 0x6c1c, 0x6c84, 870 0x6cf0, 0x6cf8, 871 0x6d00, 0x6d0c, 872 0x6d1c, 0x6d84, 873 0x6df0, 0x6df8, 874 0x6e00, 0x6e0c, 875 0x6e1c, 0x6e84, 876 0x6ef0, 0x6ef8, 877 0x6f00, 0x6f0c, 878 0x6f1c, 0x6f84, 879 0x6ff0, 0x6ff8, 880 0x7000, 0x700c, 881 0x701c, 0x7084, 882 0x70f0, 0x70f8, 883 0x7100, 0x710c, 884 0x711c, 0x7184, 885 0x71f0, 0x71f8, 886 0x7200, 0x720c, 887 0x721c, 0x7284, 888 0x72f0, 0x72f8, 889 0x7300, 0x730c, 890 0x731c, 0x7384, 891 0x73f0, 0x73f8, 892 0x7400, 0x7450, 893 0x7500, 0x7530, 894 0x7600, 0x760c, 895 0x7614, 0x761c, 896 0x7680, 0x76cc, 897 0x7700, 0x7798, 898 0x77c0, 0x77fc, 899 0x7900, 0x79fc, 900 0x7b00, 0x7b58, 901 0x7b60, 0x7b84, 902 0x7b8c, 0x7c38, 903 0x7d00, 0x7d38, 904 0x7d40, 0x7d80, 905 0x7d8c, 0x7ddc, 906 0x7de4, 0x7e04, 907 0x7e10, 0x7e1c, 908 0x7e24, 0x7e38, 909 0x7e40, 0x7e44, 910 0x7e4c, 0x7e78, 911 0x7e80, 0x7ea4, 912 0x7eac, 0x7edc, 913 0x7ee8, 0x7efc, 914 0x8dc0, 0x8e04, 915 0x8e10, 0x8e1c, 916 0x8e30, 0x8e78, 917 0x8ea0, 0x8eb8, 918 0x8ec0, 0x8f6c, 919 0x8fc0, 0x9008, 920 0x9010, 0x9058, 921 0x9060, 0x9060, 922 0x9068, 0x9074, 923 0x90fc, 0x90fc, 924 0x9400, 0x9408, 925 0x9410, 0x9458, 926 0x9600, 0x9600, 927 0x9608, 0x9638, 928 0x9640, 0x96bc, 929 0x9800, 0x9808, 930 0x9820, 0x983c, 931 0x9850, 0x9864, 932 0x9c00, 0x9c6c, 933 0x9c80, 0x9cec, 934 0x9d00, 0x9d6c, 935 0x9d80, 0x9dec, 936 0x9e00, 0x9e6c, 937 0x9e80, 0x9eec, 938 0x9f00, 0x9f6c, 939 0x9f80, 0x9fec, 940 0xd004, 0xd004, 941 0xd010, 0xd03c, 942 0xdfc0, 0xdfe0, 943 0xe000, 0xea7c, 944 0xf000, 0x11110, 945 0x11118, 0x11190, 946 0x19040, 0x1906c, 947 0x19078, 0x19080, 948 0x1908c, 0x190e4, 949 0x190f0, 0x190f8, 950 0x19100, 0x19110, 951 0x19120, 0x19124, 952 0x19150, 0x19194, 953 0x1919c, 0x191b0, 954 0x191d0, 0x191e8, 955 0x19238, 0x1924c, 956 0x193f8, 0x1943c, 957 0x1944c, 0x19474, 958 0x19490, 0x194e0, 959 0x194f0, 0x194f8, 960 0x19800, 0x19c08, 961 0x19c10, 0x19c90, 962 0x19ca0, 0x19ce4, 963 0x19cf0, 0x19d40, 964 0x19d50, 0x19d94, 965 0x19da0, 0x19de8, 966 0x19df0, 0x19e40, 967 0x19e50, 0x19e90, 968 0x19ea0, 0x19f4c, 969 0x1a000, 0x1a004, 970 0x1a010, 0x1a06c, 971 0x1a0b0, 0x1a0e4, 972 0x1a0ec, 0x1a0f4, 973 0x1a100, 0x1a108, 974 0x1a114, 0x1a120, 975 0x1a128, 0x1a130, 976 0x1a138, 0x1a138, 977 0x1a190, 0x1a1c4, 978 0x1a1fc, 0x1a1fc, 979 0x1e040, 0x1e04c, 980 0x1e284, 0x1e28c, 981 0x1e2c0, 0x1e2c0, 982 0x1e2e0, 0x1e2e0, 983 0x1e300, 0x1e384, 984 0x1e3c0, 0x1e3c8, 985 0x1e440, 0x1e44c, 986 0x1e684, 0x1e68c, 987 0x1e6c0, 0x1e6c0, 988 0x1e6e0, 0x1e6e0, 989 0x1e700, 0x1e784, 990 0x1e7c0, 0x1e7c8, 991 0x1e840, 0x1e84c, 992 0x1ea84, 0x1ea8c, 993 0x1eac0, 0x1eac0, 994 0x1eae0, 0x1eae0, 995 0x1eb00, 0x1eb84, 996 0x1ebc0, 0x1ebc8, 997 0x1ec40, 0x1ec4c, 998 0x1ee84, 0x1ee8c, 999 0x1eec0, 0x1eec0, 1000 0x1eee0, 0x1eee0, 1001 0x1ef00, 0x1ef84, 1002 0x1efc0, 0x1efc8, 1003 0x1f040, 0x1f04c, 1004 0x1f284, 0x1f28c, 1005 0x1f2c0, 0x1f2c0, 1006 0x1f2e0, 0x1f2e0, 1007 0x1f300, 0x1f384, 1008 0x1f3c0, 0x1f3c8, 1009 0x1f440, 0x1f44c, 1010 0x1f684, 0x1f68c, 1011 0x1f6c0, 0x1f6c0, 1012 0x1f6e0, 0x1f6e0, 1013 0x1f700, 0x1f784, 1014 0x1f7c0, 0x1f7c8, 1015 0x1f840, 0x1f84c, 1016 0x1fa84, 0x1fa8c, 1017 0x1fac0, 0x1fac0, 1018 0x1fae0, 0x1fae0, 1019 0x1fb00, 0x1fb84, 1020 0x1fbc0, 0x1fbc8, 1021 0x1fc40, 0x1fc4c, 1022 0x1fe84, 0x1fe8c, 1023 0x1fec0, 0x1fec0, 1024 0x1fee0, 0x1fee0, 1025 0x1ff00, 0x1ff84, 1026 0x1ffc0, 0x1ffc8, 1027 0x20000, 0x2002c, 1028 0x20100, 0x2013c, 1029 0x20190, 0x201a0, 1030 0x201a8, 0x201b8, 1031 0x201c4, 0x201c8, 1032 0x20200, 0x20318, 1033 0x20400, 0x204b4, 1034 0x204c0, 0x20528, 1035 0x20540, 0x20614, 1036 0x21000, 0x21040, 1037 0x2104c, 0x21060, 1038 0x210c0, 0x210ec, 1039 0x21200, 0x21268, 1040 0x21270, 0x21284, 1041 0x212fc, 0x21388, 1042 0x21400, 0x21404, 1043 0x21500, 0x21500, 1044 0x21510, 0x21518, 1045 0x2152c, 0x21530, 1046 0x2153c, 0x2153c, 1047 0x21550, 0x21554, 1048 0x21600, 0x21600, 1049 0x21608, 0x2161c, 1050 0x21624, 0x21628, 1051 0x21630, 0x21634, 1052 0x2163c, 0x2163c, 1053 0x21700, 0x2171c, 1054 0x21780, 0x2178c, 1055 0x21800, 0x21818, 1056 0x21820, 0x21828, 1057 0x21830, 0x21848, 1058 0x21850, 0x21854, 1059 0x21860, 0x21868, 1060 0x21870, 0x21870, 1061 0x21878, 0x21898, 1062 0x218a0, 0x218a8, 1063 0x218b0, 0x218c8, 1064 0x218d0, 0x218d4, 1065 0x218e0, 0x218e8, 1066 0x218f0, 0x218f0, 1067 0x218f8, 0x21a18, 1068 0x21a20, 0x21a28, 1069 0x21a30, 0x21a48, 1070 0x21a50, 0x21a54, 1071 0x21a60, 0x21a68, 1072 0x21a70, 0x21a70, 1073 0x21a78, 0x21a98, 1074 0x21aa0, 0x21aa8, 1075 0x21ab0, 0x21ac8, 1076 0x21ad0, 0x21ad4, 1077 0x21ae0, 0x21ae8, 1078 0x21af0, 0x21af0, 1079 0x21af8, 0x21c18, 1080 0x21c20, 0x21c20, 1081 0x21c28, 0x21c30, 1082 0x21c38, 0x21c38, 1083 0x21c80, 0x21c98, 1084 0x21ca0, 0x21ca8, 1085 0x21cb0, 0x21cc8, 1086 0x21cd0, 0x21cd4, 1087 0x21ce0, 0x21ce8, 1088 0x21cf0, 0x21cf0, 1089 0x21cf8, 0x21d7c, 1090 0x21e00, 0x21e04, 1091 0x22000, 0x2202c, 1092 0x22100, 0x2213c, 1093 0x22190, 0x221a0, 1094 0x221a8, 0x221b8, 1095 0x221c4, 0x221c8, 1096 0x22200, 0x22318, 1097 0x22400, 0x224b4, 1098 0x224c0, 0x22528, 1099 0x22540, 0x22614, 1100 0x23000, 0x23040, 1101 0x2304c, 0x23060, 1102 0x230c0, 0x230ec, 1103 0x23200, 0x23268, 1104 0x23270, 0x23284, 1105 0x232fc, 0x23388, 1106 0x23400, 0x23404, 1107 0x23500, 0x23500, 1108 0x23510, 0x23518, 1109 0x2352c, 0x23530, 1110 0x2353c, 0x2353c, 1111 0x23550, 0x23554, 1112 0x23600, 0x23600, 1113 0x23608, 0x2361c, 1114 0x23624, 0x23628, 1115 0x23630, 0x23634, 1116 0x2363c, 0x2363c, 1117 0x23700, 0x2371c, 1118 0x23780, 0x2378c, 1119 0x23800, 0x23818, 1120 0x23820, 0x23828, 1121 0x23830, 0x23848, 1122 0x23850, 0x23854, 1123 0x23860, 0x23868, 1124 0x23870, 0x23870, 1125 0x23878, 0x23898, 1126 0x238a0, 0x238a8, 1127 0x238b0, 0x238c8, 1128 0x238d0, 0x238d4, 1129 0x238e0, 0x238e8, 1130 0x238f0, 0x238f0, 1131 0x238f8, 0x23a18, 1132 0x23a20, 0x23a28, 1133 0x23a30, 0x23a48, 1134 0x23a50, 0x23a54, 1135 0x23a60, 0x23a68, 1136 0x23a70, 0x23a70, 1137 0x23a78, 0x23a98, 1138 0x23aa0, 0x23aa8, 1139 0x23ab0, 0x23ac8, 1140 0x23ad0, 0x23ad4, 1141 0x23ae0, 0x23ae8, 1142 0x23af0, 0x23af0, 1143 0x23af8, 0x23c18, 1144 0x23c20, 0x23c20, 1145 0x23c28, 0x23c30, 1146 0x23c38, 0x23c38, 1147 0x23c80, 0x23c98, 1148 0x23ca0, 0x23ca8, 1149 0x23cb0, 0x23cc8, 1150 0x23cd0, 0x23cd4, 1151 0x23ce0, 0x23ce8, 1152 0x23cf0, 0x23cf0, 1153 0x23cf8, 0x23d7c, 1154 0x23e00, 0x23e04, 1155 0x24000, 0x2402c, 1156 0x24100, 0x2413c, 1157 0x24190, 0x241a0, 1158 0x241a8, 0x241b8, 1159 0x241c4, 0x241c8, 1160 0x24200, 0x24318, 1161 0x24400, 0x244b4, 1162 0x244c0, 0x24528, 1163 0x24540, 0x24614, 1164 0x25000, 0x25040, 1165 0x2504c, 0x25060, 1166 0x250c0, 0x250ec, 1167 0x25200, 0x25268, 1168 0x25270, 0x25284, 1169 0x252fc, 0x25388, 1170 0x25400, 0x25404, 1171 0x25500, 0x25500, 1172 0x25510, 0x25518, 1173 0x2552c, 0x25530, 1174 0x2553c, 0x2553c, 1175 0x25550, 0x25554, 1176 0x25600, 0x25600, 1177 0x25608, 0x2561c, 1178 0x25624, 0x25628, 1179 0x25630, 0x25634, 1180 0x2563c, 0x2563c, 1181 0x25700, 0x2571c, 1182 0x25780, 0x2578c, 1183 0x25800, 0x25818, 1184 0x25820, 0x25828, 1185 0x25830, 0x25848, 1186 0x25850, 0x25854, 1187 0x25860, 0x25868, 1188 0x25870, 0x25870, 1189 0x25878, 0x25898, 1190 0x258a0, 0x258a8, 1191 0x258b0, 0x258c8, 1192 0x258d0, 0x258d4, 1193 0x258e0, 0x258e8, 1194 0x258f0, 0x258f0, 1195 0x258f8, 0x25a18, 1196 0x25a20, 0x25a28, 1197 0x25a30, 0x25a48, 1198 0x25a50, 0x25a54, 1199 0x25a60, 0x25a68, 1200 0x25a70, 0x25a70, 1201 0x25a78, 0x25a98, 1202 0x25aa0, 0x25aa8, 1203 0x25ab0, 0x25ac8, 1204 0x25ad0, 0x25ad4, 1205 0x25ae0, 0x25ae8, 1206 0x25af0, 0x25af0, 1207 0x25af8, 0x25c18, 1208 0x25c20, 0x25c20, 1209 0x25c28, 0x25c30, 1210 0x25c38, 0x25c38, 1211 0x25c80, 0x25c98, 1212 0x25ca0, 0x25ca8, 1213 0x25cb0, 0x25cc8, 1214 0x25cd0, 0x25cd4, 1215 0x25ce0, 0x25ce8, 1216 0x25cf0, 0x25cf0, 1217 0x25cf8, 0x25d7c, 1218 0x25e00, 0x25e04, 1219 0x26000, 0x2602c, 1220 0x26100, 0x2613c, 1221 0x26190, 0x261a0, 1222 0x261a8, 0x261b8, 1223 0x261c4, 0x261c8, 1224 0x26200, 0x26318, 1225 0x26400, 0x264b4, 1226 0x264c0, 0x26528, 1227 0x26540, 0x26614, 1228 0x27000, 0x27040, 1229 0x2704c, 0x27060, 1230 0x270c0, 0x270ec, 1231 0x27200, 0x27268, 1232 0x27270, 0x27284, 1233 0x272fc, 0x27388, 1234 0x27400, 0x27404, 1235 0x27500, 0x27500, 1236 0x27510, 0x27518, 1237 0x2752c, 0x27530, 1238 0x2753c, 0x2753c, 1239 0x27550, 0x27554, 1240 0x27600, 0x27600, 1241 0x27608, 0x2761c, 1242 0x27624, 0x27628, 1243 0x27630, 0x27634, 1244 0x2763c, 0x2763c, 1245 0x27700, 0x2771c, 1246 0x27780, 0x2778c, 1247 0x27800, 0x27818, 1248 0x27820, 0x27828, 1249 0x27830, 0x27848, 1250 0x27850, 0x27854, 1251 0x27860, 0x27868, 1252 0x27870, 0x27870, 1253 0x27878, 0x27898, 1254 0x278a0, 0x278a8, 1255 0x278b0, 0x278c8, 1256 0x278d0, 0x278d4, 1257 0x278e0, 0x278e8, 1258 0x278f0, 0x278f0, 1259 0x278f8, 0x27a18, 1260 0x27a20, 0x27a28, 1261 0x27a30, 0x27a48, 1262 0x27a50, 0x27a54, 1263 0x27a60, 0x27a68, 1264 0x27a70, 0x27a70, 1265 0x27a78, 0x27a98, 1266 0x27aa0, 0x27aa8, 1267 0x27ab0, 0x27ac8, 1268 0x27ad0, 0x27ad4, 1269 0x27ae0, 0x27ae8, 1270 0x27af0, 0x27af0, 1271 0x27af8, 0x27c18, 1272 0x27c20, 0x27c20, 1273 0x27c28, 0x27c30, 1274 0x27c38, 0x27c38, 1275 0x27c80, 0x27c98, 1276 0x27ca0, 0x27ca8, 1277 0x27cb0, 0x27cc8, 1278 0x27cd0, 0x27cd4, 1279 0x27ce0, 0x27ce8, 1280 0x27cf0, 0x27cf0, 1281 0x27cf8, 0x27d7c, 1282 0x27e00, 0x27e04, 1283 }; 1284 1285 static const unsigned int t4vf_reg_ranges[] = { 1286 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS), 1287 VF_MPS_REG(A_MPS_VF_CTL), 1288 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H), 1289 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI), 1290 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL), 1291 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS), 1292 FW_T4VF_MBDATA_BASE_ADDR, 1293 FW_T4VF_MBDATA_BASE_ADDR + 1294 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4), 1295 }; 1296 1297 static const unsigned int t5_reg_ranges[] = { 1298 0x1008, 0x10c0, 1299 0x10cc, 0x10f8, 1300 0x1100, 0x1100, 1301 0x110c, 0x1148, 1302 0x1180, 0x1184, 1303 0x1190, 0x1194, 1304 0x11a0, 0x11a4, 1305 0x11b0, 0x11b4, 1306 0x11fc, 0x123c, 1307 0x1280, 0x173c, 1308 0x1800, 0x18fc, 1309 0x3000, 0x3028, 1310 0x3060, 0x30b0, 1311 0x30b8, 0x30d8, 1312 0x30e0, 0x30fc, 1313 0x3140, 0x357c, 1314 0x35a8, 0x35cc, 1315 0x35ec, 0x35ec, 1316 0x3600, 0x5624, 1317 0x56cc, 0x56ec, 1318 0x56f4, 0x5720, 1319 0x5728, 0x575c, 1320 0x580c, 0x5814, 1321 0x5890, 0x589c, 1322 0x58a4, 0x58ac, 1323 0x58b8, 0x58bc, 1324 0x5940, 0x59c8, 1325 0x59d0, 0x59dc, 1326 0x59fc, 0x5a18, 1327 0x5a60, 0x5a70, 1328 0x5a80, 0x5a9c, 1329 0x5b94, 0x5bfc, 1330 0x6000, 0x6020, 1331 0x6028, 0x6040, 1332 0x6058, 0x609c, 1333 0x60a8, 0x614c, 1334 0x7700, 0x7798, 1335 0x77c0, 0x78fc, 1336 0x7b00, 0x7b58, 1337 0x7b60, 0x7b84, 1338 0x7b8c, 0x7c54, 1339 0x7d00, 0x7d38, 1340 0x7d40, 0x7d80, 1341 0x7d8c, 0x7ddc, 1342 0x7de4, 0x7e04, 1343 0x7e10, 0x7e1c, 1344 0x7e24, 0x7e38, 1345 0x7e40, 0x7e44, 1346 0x7e4c, 0x7e78, 1347 0x7e80, 0x7edc, 1348 0x7ee8, 0x7efc, 1349 0x8dc0, 0x8de0, 1350 0x8df8, 0x8e04, 1351 0x8e10, 0x8e84, 1352 0x8ea0, 0x8f84, 1353 0x8fc0, 0x9058, 1354 0x9060, 0x9060, 1355 0x9068, 0x90f8, 1356 0x9400, 0x9408, 1357 0x9410, 0x9470, 1358 0x9600, 0x9600, 1359 0x9608, 0x9638, 1360 0x9640, 0x96f4, 1361 0x9800, 0x9808, 1362 0x9820, 0x983c, 1363 0x9850, 0x9864, 1364 0x9c00, 0x9c6c, 1365 0x9c80, 0x9cec, 1366 0x9d00, 0x9d6c, 1367 0x9d80, 0x9dec, 1368 0x9e00, 0x9e6c, 1369 0x9e80, 0x9eec, 1370 0x9f00, 0x9f6c, 1371 0x9f80, 0xa020, 1372 0xd004, 0xd004, 1373 0xd010, 0xd03c, 1374 0xdfc0, 0xdfe0, 1375 0xe000, 0x1106c, 1376 0x11074, 0x11088, 1377 0x1109c, 0x1117c, 1378 0x11190, 0x11204, 1379 0x19040, 0x1906c, 1380 0x19078, 0x19080, 1381 0x1908c, 0x190e8, 1382 0x190f0, 0x190f8, 1383 0x19100, 0x19110, 1384 0x19120, 0x19124, 1385 0x19150, 0x19194, 1386 0x1919c, 0x191b0, 1387 0x191d0, 0x191e8, 1388 0x19238, 0x19290, 1389 0x193f8, 0x19428, 1390 0x19430, 0x19444, 1391 0x1944c, 0x1946c, 1392 0x19474, 0x19474, 1393 0x19490, 0x194cc, 1394 0x194f0, 0x194f8, 1395 0x19c00, 0x19c08, 1396 0x19c10, 0x19c60, 1397 0x19c94, 0x19ce4, 1398 0x19cf0, 0x19d40, 1399 0x19d50, 0x19d94, 1400 0x19da0, 0x19de8, 1401 0x19df0, 0x19e10, 1402 0x19e50, 0x19e90, 1403 0x19ea0, 0x19f24, 1404 0x19f34, 0x19f34, 1405 0x19f40, 0x19f50, 1406 0x19f90, 0x19fb4, 1407 0x19fc4, 0x19fe4, 1408 0x1a000, 0x1a004, 1409 0x1a010, 0x1a06c, 1410 0x1a0b0, 0x1a0e4, 1411 0x1a0ec, 0x1a0f8, 1412 0x1a100, 0x1a108, 1413 0x1a114, 0x1a120, 1414 0x1a128, 0x1a130, 1415 0x1a138, 0x1a138, 1416 0x1a190, 0x1a1c4, 1417 0x1a1fc, 0x1a1fc, 1418 0x1e008, 0x1e00c, 1419 0x1e040, 0x1e044, 1420 0x1e04c, 0x1e04c, 1421 0x1e284, 0x1e290, 1422 0x1e2c0, 0x1e2c0, 1423 0x1e2e0, 0x1e2e0, 1424 0x1e300, 0x1e384, 1425 0x1e3c0, 0x1e3c8, 1426 0x1e408, 0x1e40c, 1427 0x1e440, 0x1e444, 1428 0x1e44c, 0x1e44c, 1429 0x1e684, 0x1e690, 1430 0x1e6c0, 0x1e6c0, 1431 0x1e6e0, 0x1e6e0, 1432 0x1e700, 0x1e784, 1433 0x1e7c0, 0x1e7c8, 1434 0x1e808, 0x1e80c, 1435 0x1e840, 0x1e844, 1436 0x1e84c, 0x1e84c, 1437 0x1ea84, 0x1ea90, 1438 0x1eac0, 0x1eac0, 1439 0x1eae0, 0x1eae0, 1440 0x1eb00, 0x1eb84, 1441 0x1ebc0, 0x1ebc8, 1442 0x1ec08, 0x1ec0c, 1443 0x1ec40, 0x1ec44, 1444 0x1ec4c, 0x1ec4c, 1445 0x1ee84, 0x1ee90, 1446 0x1eec0, 0x1eec0, 1447 0x1eee0, 0x1eee0, 1448 0x1ef00, 0x1ef84, 1449 0x1efc0, 0x1efc8, 1450 0x1f008, 0x1f00c, 1451 0x1f040, 0x1f044, 1452 0x1f04c, 0x1f04c, 1453 0x1f284, 0x1f290, 1454 0x1f2c0, 0x1f2c0, 1455 0x1f2e0, 0x1f2e0, 1456 0x1f300, 0x1f384, 1457 0x1f3c0, 0x1f3c8, 1458 0x1f408, 0x1f40c, 1459 0x1f440, 0x1f444, 1460 0x1f44c, 0x1f44c, 1461 0x1f684, 0x1f690, 1462 0x1f6c0, 0x1f6c0, 1463 0x1f6e0, 0x1f6e0, 1464 0x1f700, 0x1f784, 1465 0x1f7c0, 0x1f7c8, 1466 0x1f808, 0x1f80c, 1467 0x1f840, 0x1f844, 1468 0x1f84c, 0x1f84c, 1469 0x1fa84, 0x1fa90, 1470 0x1fac0, 0x1fac0, 1471 0x1fae0, 0x1fae0, 1472 0x1fb00, 0x1fb84, 1473 0x1fbc0, 0x1fbc8, 1474 0x1fc08, 0x1fc0c, 1475 0x1fc40, 0x1fc44, 1476 0x1fc4c, 0x1fc4c, 1477 0x1fe84, 0x1fe90, 1478 0x1fec0, 0x1fec0, 1479 0x1fee0, 0x1fee0, 1480 0x1ff00, 0x1ff84, 1481 0x1ffc0, 0x1ffc8, 1482 0x30000, 0x30030, 1483 0x30100, 0x30144, 1484 0x30190, 0x301a0, 1485 0x301a8, 0x301b8, 1486 0x301c4, 0x301c8, 1487 0x301d0, 0x301d0, 1488 0x30200, 0x30318, 1489 0x30400, 0x304b4, 1490 0x304c0, 0x3052c, 1491 0x30540, 0x3061c, 1492 0x30800, 0x30828, 1493 0x30834, 0x30834, 1494 0x308c0, 0x30908, 1495 0x30910, 0x309ac, 1496 0x30a00, 0x30a14, 1497 0x30a1c, 0x30a2c, 1498 0x30a44, 0x30a50, 1499 0x30a74, 0x30a74, 1500 0x30a7c, 0x30afc, 1501 0x30b08, 0x30c24, 1502 0x30d00, 0x30d00, 1503 0x30d08, 0x30d14, 1504 0x30d1c, 0x30d20, 1505 0x30d3c, 0x30d3c, 1506 0x30d48, 0x30d50, 1507 0x31200, 0x3120c, 1508 0x31220, 0x31220, 1509 0x31240, 0x31240, 1510 0x31600, 0x3160c, 1511 0x31a00, 0x31a1c, 1512 0x31e00, 0x31e20, 1513 0x31e38, 0x31e3c, 1514 0x31e80, 0x31e80, 1515 0x31e88, 0x31ea8, 1516 0x31eb0, 0x31eb4, 1517 0x31ec8, 0x31ed4, 1518 0x31fb8, 0x32004, 1519 0x32200, 0x32200, 1520 0x32208, 0x32240, 1521 0x32248, 0x32280, 1522 0x32288, 0x322c0, 1523 0x322c8, 0x322fc, 1524 0x32600, 0x32630, 1525 0x32a00, 0x32abc, 1526 0x32b00, 0x32b10, 1527 0x32b20, 0x32b30, 1528 0x32b40, 0x32b50, 1529 0x32b60, 0x32b70, 1530 0x33000, 0x33028, 1531 0x33030, 0x33048, 1532 0x33060, 0x33068, 1533 0x33070, 0x3309c, 1534 0x330f0, 0x33128, 1535 0x33130, 0x33148, 1536 0x33160, 0x33168, 1537 0x33170, 0x3319c, 1538 0x331f0, 0x33238, 1539 0x33240, 0x33240, 1540 0x33248, 0x33250, 1541 0x3325c, 0x33264, 1542 0x33270, 0x332b8, 1543 0x332c0, 0x332e4, 1544 0x332f8, 0x33338, 1545 0x33340, 0x33340, 1546 0x33348, 0x33350, 1547 0x3335c, 0x33364, 1548 0x33370, 0x333b8, 1549 0x333c0, 0x333e4, 1550 0x333f8, 0x33428, 1551 0x33430, 0x33448, 1552 0x33460, 0x33468, 1553 0x33470, 0x3349c, 1554 0x334f0, 0x33528, 1555 0x33530, 0x33548, 1556 0x33560, 0x33568, 1557 0x33570, 0x3359c, 1558 0x335f0, 0x33638, 1559 0x33640, 0x33640, 1560 0x33648, 0x33650, 1561 0x3365c, 0x33664, 1562 0x33670, 0x336b8, 1563 0x336c0, 0x336e4, 1564 0x336f8, 0x33738, 1565 0x33740, 0x33740, 1566 0x33748, 0x33750, 1567 0x3375c, 0x33764, 1568 0x33770, 0x337b8, 1569 0x337c0, 0x337e4, 1570 0x337f8, 0x337fc, 1571 0x33814, 0x33814, 1572 0x3382c, 0x3382c, 1573 0x33880, 0x3388c, 1574 0x338e8, 0x338ec, 1575 0x33900, 0x33928, 1576 0x33930, 0x33948, 1577 0x33960, 0x33968, 1578 0x33970, 0x3399c, 1579 0x339f0, 0x33a38, 1580 0x33a40, 0x33a40, 1581 0x33a48, 0x33a50, 1582 0x33a5c, 0x33a64, 1583 0x33a70, 0x33ab8, 1584 0x33ac0, 0x33ae4, 1585 0x33af8, 0x33b10, 1586 0x33b28, 0x33b28, 1587 0x33b3c, 0x33b50, 1588 0x33bf0, 0x33c10, 1589 0x33c28, 0x33c28, 1590 0x33c3c, 0x33c50, 1591 0x33cf0, 0x33cfc, 1592 0x34000, 0x34030, 1593 0x34100, 0x34144, 1594 0x34190, 0x341a0, 1595 0x341a8, 0x341b8, 1596 0x341c4, 0x341c8, 1597 0x341d0, 0x341d0, 1598 0x34200, 0x34318, 1599 0x34400, 0x344b4, 1600 0x344c0, 0x3452c, 1601 0x34540, 0x3461c, 1602 0x34800, 0x34828, 1603 0x34834, 0x34834, 1604 0x348c0, 0x34908, 1605 0x34910, 0x349ac, 1606 0x34a00, 0x34a14, 1607 0x34a1c, 0x34a2c, 1608 0x34a44, 0x34a50, 1609 0x34a74, 0x34a74, 1610 0x34a7c, 0x34afc, 1611 0x34b08, 0x34c24, 1612 0x34d00, 0x34d00, 1613 0x34d08, 0x34d14, 1614 0x34d1c, 0x34d20, 1615 0x34d3c, 0x34d3c, 1616 0x34d48, 0x34d50, 1617 0x35200, 0x3520c, 1618 0x35220, 0x35220, 1619 0x35240, 0x35240, 1620 0x35600, 0x3560c, 1621 0x35a00, 0x35a1c, 1622 0x35e00, 0x35e20, 1623 0x35e38, 0x35e3c, 1624 0x35e80, 0x35e80, 1625 0x35e88, 0x35ea8, 1626 0x35eb0, 0x35eb4, 1627 0x35ec8, 0x35ed4, 1628 0x35fb8, 0x36004, 1629 0x36200, 0x36200, 1630 0x36208, 0x36240, 1631 0x36248, 0x36280, 1632 0x36288, 0x362c0, 1633 0x362c8, 0x362fc, 1634 0x36600, 0x36630, 1635 0x36a00, 0x36abc, 1636 0x36b00, 0x36b10, 1637 0x36b20, 0x36b30, 1638 0x36b40, 0x36b50, 1639 0x36b60, 0x36b70, 1640 0x37000, 0x37028, 1641 0x37030, 0x37048, 1642 0x37060, 0x37068, 1643 0x37070, 0x3709c, 1644 0x370f0, 0x37128, 1645 0x37130, 0x37148, 1646 0x37160, 0x37168, 1647 0x37170, 0x3719c, 1648 0x371f0, 0x37238, 1649 0x37240, 0x37240, 1650 0x37248, 0x37250, 1651 0x3725c, 0x37264, 1652 0x37270, 0x372b8, 1653 0x372c0, 0x372e4, 1654 0x372f8, 0x37338, 1655 0x37340, 0x37340, 1656 0x37348, 0x37350, 1657 0x3735c, 0x37364, 1658 0x37370, 0x373b8, 1659 0x373c0, 0x373e4, 1660 0x373f8, 0x37428, 1661 0x37430, 0x37448, 1662 0x37460, 0x37468, 1663 0x37470, 0x3749c, 1664 0x374f0, 0x37528, 1665 0x37530, 0x37548, 1666 0x37560, 0x37568, 1667 0x37570, 0x3759c, 1668 0x375f0, 0x37638, 1669 0x37640, 0x37640, 1670 0x37648, 0x37650, 1671 0x3765c, 0x37664, 1672 0x37670, 0x376b8, 1673 0x376c0, 0x376e4, 1674 0x376f8, 0x37738, 1675 0x37740, 0x37740, 1676 0x37748, 0x37750, 1677 0x3775c, 0x37764, 1678 0x37770, 0x377b8, 1679 0x377c0, 0x377e4, 1680 0x377f8, 0x377fc, 1681 0x37814, 0x37814, 1682 0x3782c, 0x3782c, 1683 0x37880, 0x3788c, 1684 0x378e8, 0x378ec, 1685 0x37900, 0x37928, 1686 0x37930, 0x37948, 1687 0x37960, 0x37968, 1688 0x37970, 0x3799c, 1689 0x379f0, 0x37a38, 1690 0x37a40, 0x37a40, 1691 0x37a48, 0x37a50, 1692 0x37a5c, 0x37a64, 1693 0x37a70, 0x37ab8, 1694 0x37ac0, 0x37ae4, 1695 0x37af8, 0x37b10, 1696 0x37b28, 0x37b28, 1697 0x37b3c, 0x37b50, 1698 0x37bf0, 0x37c10, 1699 0x37c28, 0x37c28, 1700 0x37c3c, 0x37c50, 1701 0x37cf0, 0x37cfc, 1702 0x38000, 0x38030, 1703 0x38100, 0x38144, 1704 0x38190, 0x381a0, 1705 0x381a8, 0x381b8, 1706 0x381c4, 0x381c8, 1707 0x381d0, 0x381d0, 1708 0x38200, 0x38318, 1709 0x38400, 0x384b4, 1710 0x384c0, 0x3852c, 1711 0x38540, 0x3861c, 1712 0x38800, 0x38828, 1713 0x38834, 0x38834, 1714 0x388c0, 0x38908, 1715 0x38910, 0x389ac, 1716 0x38a00, 0x38a14, 1717 0x38a1c, 0x38a2c, 1718 0x38a44, 0x38a50, 1719 0x38a74, 0x38a74, 1720 0x38a7c, 0x38afc, 1721 0x38b08, 0x38c24, 1722 0x38d00, 0x38d00, 1723 0x38d08, 0x38d14, 1724 0x38d1c, 0x38d20, 1725 0x38d3c, 0x38d3c, 1726 0x38d48, 0x38d50, 1727 0x39200, 0x3920c, 1728 0x39220, 0x39220, 1729 0x39240, 0x39240, 1730 0x39600, 0x3960c, 1731 0x39a00, 0x39a1c, 1732 0x39e00, 0x39e20, 1733 0x39e38, 0x39e3c, 1734 0x39e80, 0x39e80, 1735 0x39e88, 0x39ea8, 1736 0x39eb0, 0x39eb4, 1737 0x39ec8, 0x39ed4, 1738 0x39fb8, 0x3a004, 1739 0x3a200, 0x3a200, 1740 0x3a208, 0x3a240, 1741 0x3a248, 0x3a280, 1742 0x3a288, 0x3a2c0, 1743 0x3a2c8, 0x3a2fc, 1744 0x3a600, 0x3a630, 1745 0x3aa00, 0x3aabc, 1746 0x3ab00, 0x3ab10, 1747 0x3ab20, 0x3ab30, 1748 0x3ab40, 0x3ab50, 1749 0x3ab60, 0x3ab70, 1750 0x3b000, 0x3b028, 1751 0x3b030, 0x3b048, 1752 0x3b060, 0x3b068, 1753 0x3b070, 0x3b09c, 1754 0x3b0f0, 0x3b128, 1755 0x3b130, 0x3b148, 1756 0x3b160, 0x3b168, 1757 0x3b170, 0x3b19c, 1758 0x3b1f0, 0x3b238, 1759 0x3b240, 0x3b240, 1760 0x3b248, 0x3b250, 1761 0x3b25c, 0x3b264, 1762 0x3b270, 0x3b2b8, 1763 0x3b2c0, 0x3b2e4, 1764 0x3b2f8, 0x3b338, 1765 0x3b340, 0x3b340, 1766 0x3b348, 0x3b350, 1767 0x3b35c, 0x3b364, 1768 0x3b370, 0x3b3b8, 1769 0x3b3c0, 0x3b3e4, 1770 0x3b3f8, 0x3b428, 1771 0x3b430, 0x3b448, 1772 0x3b460, 0x3b468, 1773 0x3b470, 0x3b49c, 1774 0x3b4f0, 0x3b528, 1775 0x3b530, 0x3b548, 1776 0x3b560, 0x3b568, 1777 0x3b570, 0x3b59c, 1778 0x3b5f0, 0x3b638, 1779 0x3b640, 0x3b640, 1780 0x3b648, 0x3b650, 1781 0x3b65c, 0x3b664, 1782 0x3b670, 0x3b6b8, 1783 0x3b6c0, 0x3b6e4, 1784 0x3b6f8, 0x3b738, 1785 0x3b740, 0x3b740, 1786 0x3b748, 0x3b750, 1787 0x3b75c, 0x3b764, 1788 0x3b770, 0x3b7b8, 1789 0x3b7c0, 0x3b7e4, 1790 0x3b7f8, 0x3b7fc, 1791 0x3b814, 0x3b814, 1792 0x3b82c, 0x3b82c, 1793 0x3b880, 0x3b88c, 1794 0x3b8e8, 0x3b8ec, 1795 0x3b900, 0x3b928, 1796 0x3b930, 0x3b948, 1797 0x3b960, 0x3b968, 1798 0x3b970, 0x3b99c, 1799 0x3b9f0, 0x3ba38, 1800 0x3ba40, 0x3ba40, 1801 0x3ba48, 0x3ba50, 1802 0x3ba5c, 0x3ba64, 1803 0x3ba70, 0x3bab8, 1804 0x3bac0, 0x3bae4, 1805 0x3baf8, 0x3bb10, 1806 0x3bb28, 0x3bb28, 1807 0x3bb3c, 0x3bb50, 1808 0x3bbf0, 0x3bc10, 1809 0x3bc28, 0x3bc28, 1810 0x3bc3c, 0x3bc50, 1811 0x3bcf0, 0x3bcfc, 1812 0x3c000, 0x3c030, 1813 0x3c100, 0x3c144, 1814 0x3c190, 0x3c1a0, 1815 0x3c1a8, 0x3c1b8, 1816 0x3c1c4, 0x3c1c8, 1817 0x3c1d0, 0x3c1d0, 1818 0x3c200, 0x3c318, 1819 0x3c400, 0x3c4b4, 1820 0x3c4c0, 0x3c52c, 1821 0x3c540, 0x3c61c, 1822 0x3c800, 0x3c828, 1823 0x3c834, 0x3c834, 1824 0x3c8c0, 0x3c908, 1825 0x3c910, 0x3c9ac, 1826 0x3ca00, 0x3ca14, 1827 0x3ca1c, 0x3ca2c, 1828 0x3ca44, 0x3ca50, 1829 0x3ca74, 0x3ca74, 1830 0x3ca7c, 0x3cafc, 1831 0x3cb08, 0x3cc24, 1832 0x3cd00, 0x3cd00, 1833 0x3cd08, 0x3cd14, 1834 0x3cd1c, 0x3cd20, 1835 0x3cd3c, 0x3cd3c, 1836 0x3cd48, 0x3cd50, 1837 0x3d200, 0x3d20c, 1838 0x3d220, 0x3d220, 1839 0x3d240, 0x3d240, 1840 0x3d600, 0x3d60c, 1841 0x3da00, 0x3da1c, 1842 0x3de00, 0x3de20, 1843 0x3de38, 0x3de3c, 1844 0x3de80, 0x3de80, 1845 0x3de88, 0x3dea8, 1846 0x3deb0, 0x3deb4, 1847 0x3dec8, 0x3ded4, 1848 0x3dfb8, 0x3e004, 1849 0x3e200, 0x3e200, 1850 0x3e208, 0x3e240, 1851 0x3e248, 0x3e280, 1852 0x3e288, 0x3e2c0, 1853 0x3e2c8, 0x3e2fc, 1854 0x3e600, 0x3e630, 1855 0x3ea00, 0x3eabc, 1856 0x3eb00, 0x3eb10, 1857 0x3eb20, 0x3eb30, 1858 0x3eb40, 0x3eb50, 1859 0x3eb60, 0x3eb70, 1860 0x3f000, 0x3f028, 1861 0x3f030, 0x3f048, 1862 0x3f060, 0x3f068, 1863 0x3f070, 0x3f09c, 1864 0x3f0f0, 0x3f128, 1865 0x3f130, 0x3f148, 1866 0x3f160, 0x3f168, 1867 0x3f170, 0x3f19c, 1868 0x3f1f0, 0x3f238, 1869 0x3f240, 0x3f240, 1870 0x3f248, 0x3f250, 1871 0x3f25c, 0x3f264, 1872 0x3f270, 0x3f2b8, 1873 0x3f2c0, 0x3f2e4, 1874 0x3f2f8, 0x3f338, 1875 0x3f340, 0x3f340, 1876 0x3f348, 0x3f350, 1877 0x3f35c, 0x3f364, 1878 0x3f370, 0x3f3b8, 1879 0x3f3c0, 0x3f3e4, 1880 0x3f3f8, 0x3f428, 1881 0x3f430, 0x3f448, 1882 0x3f460, 0x3f468, 1883 0x3f470, 0x3f49c, 1884 0x3f4f0, 0x3f528, 1885 0x3f530, 0x3f548, 1886 0x3f560, 0x3f568, 1887 0x3f570, 0x3f59c, 1888 0x3f5f0, 0x3f638, 1889 0x3f640, 0x3f640, 1890 0x3f648, 0x3f650, 1891 0x3f65c, 0x3f664, 1892 0x3f670, 0x3f6b8, 1893 0x3f6c0, 0x3f6e4, 1894 0x3f6f8, 0x3f738, 1895 0x3f740, 0x3f740, 1896 0x3f748, 0x3f750, 1897 0x3f75c, 0x3f764, 1898 0x3f770, 0x3f7b8, 1899 0x3f7c0, 0x3f7e4, 1900 0x3f7f8, 0x3f7fc, 1901 0x3f814, 0x3f814, 1902 0x3f82c, 0x3f82c, 1903 0x3f880, 0x3f88c, 1904 0x3f8e8, 0x3f8ec, 1905 0x3f900, 0x3f928, 1906 0x3f930, 0x3f948, 1907 0x3f960, 0x3f968, 1908 0x3f970, 0x3f99c, 1909 0x3f9f0, 0x3fa38, 1910 0x3fa40, 0x3fa40, 1911 0x3fa48, 0x3fa50, 1912 0x3fa5c, 0x3fa64, 1913 0x3fa70, 0x3fab8, 1914 0x3fac0, 0x3fae4, 1915 0x3faf8, 0x3fb10, 1916 0x3fb28, 0x3fb28, 1917 0x3fb3c, 0x3fb50, 1918 0x3fbf0, 0x3fc10, 1919 0x3fc28, 0x3fc28, 1920 0x3fc3c, 0x3fc50, 1921 0x3fcf0, 0x3fcfc, 1922 0x40000, 0x4000c, 1923 0x40040, 0x40050, 1924 0x40060, 0x40068, 1925 0x4007c, 0x4008c, 1926 0x40094, 0x400b0, 1927 0x400c0, 0x40144, 1928 0x40180, 0x4018c, 1929 0x40200, 0x40254, 1930 0x40260, 0x40264, 1931 0x40270, 0x40288, 1932 0x40290, 0x40298, 1933 0x402ac, 0x402c8, 1934 0x402d0, 0x402e0, 1935 0x402f0, 0x402f0, 1936 0x40300, 0x4033c, 1937 0x403f8, 0x403fc, 1938 0x41304, 0x413c4, 1939 0x41400, 0x4140c, 1940 0x41414, 0x4141c, 1941 0x41480, 0x414d0, 1942 0x44000, 0x44054, 1943 0x4405c, 0x44078, 1944 0x440c0, 0x44174, 1945 0x44180, 0x441ac, 1946 0x441b4, 0x441b8, 1947 0x441c0, 0x44254, 1948 0x4425c, 0x44278, 1949 0x442c0, 0x44374, 1950 0x44380, 0x443ac, 1951 0x443b4, 0x443b8, 1952 0x443c0, 0x44454, 1953 0x4445c, 0x44478, 1954 0x444c0, 0x44574, 1955 0x44580, 0x445ac, 1956 0x445b4, 0x445b8, 1957 0x445c0, 0x44654, 1958 0x4465c, 0x44678, 1959 0x446c0, 0x44774, 1960 0x44780, 0x447ac, 1961 0x447b4, 0x447b8, 1962 0x447c0, 0x44854, 1963 0x4485c, 0x44878, 1964 0x448c0, 0x44974, 1965 0x44980, 0x449ac, 1966 0x449b4, 0x449b8, 1967 0x449c0, 0x449fc, 1968 0x45000, 0x45004, 1969 0x45010, 0x45030, 1970 0x45040, 0x45060, 1971 0x45068, 0x45068, 1972 0x45080, 0x45084, 1973 0x450a0, 0x450b0, 1974 0x45200, 0x45204, 1975 0x45210, 0x45230, 1976 0x45240, 0x45260, 1977 0x45268, 0x45268, 1978 0x45280, 0x45284, 1979 0x452a0, 0x452b0, 1980 0x460c0, 0x460e4, 1981 0x47000, 0x4703c, 1982 0x47044, 0x4708c, 1983 0x47200, 0x47250, 1984 0x47400, 0x47408, 1985 0x47414, 0x47420, 1986 0x47600, 0x47618, 1987 0x47800, 0x47814, 1988 0x48000, 0x4800c, 1989 0x48040, 0x48050, 1990 0x48060, 0x48068, 1991 0x4807c, 0x4808c, 1992 0x48094, 0x480b0, 1993 0x480c0, 0x48144, 1994 0x48180, 0x4818c, 1995 0x48200, 0x48254, 1996 0x48260, 0x48264, 1997 0x48270, 0x48288, 1998 0x48290, 0x48298, 1999 0x482ac, 0x482c8, 2000 0x482d0, 0x482e0, 2001 0x482f0, 0x482f0, 2002 0x48300, 0x4833c, 2003 0x483f8, 0x483fc, 2004 0x49304, 0x493c4, 2005 0x49400, 0x4940c, 2006 0x49414, 0x4941c, 2007 0x49480, 0x494d0, 2008 0x4c000, 0x4c054, 2009 0x4c05c, 0x4c078, 2010 0x4c0c0, 0x4c174, 2011 0x4c180, 0x4c1ac, 2012 0x4c1b4, 0x4c1b8, 2013 0x4c1c0, 0x4c254, 2014 0x4c25c, 0x4c278, 2015 0x4c2c0, 0x4c374, 2016 0x4c380, 0x4c3ac, 2017 0x4c3b4, 0x4c3b8, 2018 0x4c3c0, 0x4c454, 2019 0x4c45c, 0x4c478, 2020 0x4c4c0, 0x4c574, 2021 0x4c580, 0x4c5ac, 2022 0x4c5b4, 0x4c5b8, 2023 0x4c5c0, 0x4c654, 2024 0x4c65c, 0x4c678, 2025 0x4c6c0, 0x4c774, 2026 0x4c780, 0x4c7ac, 2027 0x4c7b4, 0x4c7b8, 2028 0x4c7c0, 0x4c854, 2029 0x4c85c, 0x4c878, 2030 0x4c8c0, 0x4c974, 2031 0x4c980, 0x4c9ac, 2032 0x4c9b4, 0x4c9b8, 2033 0x4c9c0, 0x4c9fc, 2034 0x4d000, 0x4d004, 2035 0x4d010, 0x4d030, 2036 0x4d040, 0x4d060, 2037 0x4d068, 0x4d068, 2038 0x4d080, 0x4d084, 2039 0x4d0a0, 0x4d0b0, 2040 0x4d200, 0x4d204, 2041 0x4d210, 0x4d230, 2042 0x4d240, 0x4d260, 2043 0x4d268, 0x4d268, 2044 0x4d280, 0x4d284, 2045 0x4d2a0, 0x4d2b0, 2046 0x4e0c0, 0x4e0e4, 2047 0x4f000, 0x4f03c, 2048 0x4f044, 0x4f08c, 2049 0x4f200, 0x4f250, 2050 0x4f400, 0x4f408, 2051 0x4f414, 0x4f420, 2052 0x4f600, 0x4f618, 2053 0x4f800, 0x4f814, 2054 0x50000, 0x50084, 2055 0x50090, 0x500cc, 2056 0x50400, 0x50400, 2057 0x50800, 0x50884, 2058 0x50890, 0x508cc, 2059 0x50c00, 0x50c00, 2060 0x51000, 0x5101c, 2061 0x51300, 0x51308, 2062 }; 2063 2064 static const unsigned int t5vf_reg_ranges[] = { 2065 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS), 2066 VF_MPS_REG(A_MPS_VF_CTL), 2067 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H), 2068 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION), 2069 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL), 2070 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS), 2071 FW_T4VF_MBDATA_BASE_ADDR, 2072 FW_T4VF_MBDATA_BASE_ADDR + 2073 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4), 2074 }; 2075 2076 static const unsigned int t6_reg_ranges[] = { 2077 0x1008, 0x101c, 2078 0x1024, 0x10a8, 2079 0x10b4, 0x10f8, 2080 0x1100, 0x1114, 2081 0x111c, 0x112c, 2082 0x1138, 0x113c, 2083 0x1144, 0x114c, 2084 0x1180, 0x1184, 2085 0x1190, 0x1194, 2086 0x11a0, 0x11a4, 2087 0x11b0, 0x11b4, 2088 0x11fc, 0x1274, 2089 0x1280, 0x133c, 2090 0x1800, 0x18fc, 2091 0x3000, 0x302c, 2092 0x3060, 0x30b0, 2093 0x30b8, 0x30d8, 2094 0x30e0, 0x30fc, 2095 0x3140, 0x357c, 2096 0x35a8, 0x35cc, 2097 0x35ec, 0x35ec, 2098 0x3600, 0x5624, 2099 0x56cc, 0x56ec, 2100 0x56f4, 0x5720, 2101 0x5728, 0x575c, 2102 0x580c, 0x5814, 2103 0x5890, 0x589c, 2104 0x58a4, 0x58ac, 2105 0x58b8, 0x58bc, 2106 0x5940, 0x595c, 2107 0x5980, 0x598c, 2108 0x59b0, 0x59c8, 2109 0x59d0, 0x59dc, 2110 0x59fc, 0x5a18, 2111 0x5a60, 0x5a6c, 2112 0x5a80, 0x5a8c, 2113 0x5a94, 0x5a9c, 2114 0x5b94, 0x5bfc, 2115 0x5c10, 0x5e48, 2116 0x5e50, 0x5e94, 2117 0x5ea0, 0x5eb0, 2118 0x5ec0, 0x5ec0, 2119 0x5ec8, 0x5ed0, 2120 0x5ee0, 0x5ee0, 2121 0x5ef0, 0x5ef0, 2122 0x5f00, 0x5f00, 2123 0x6000, 0x6020, 2124 0x6028, 0x6040, 2125 0x6058, 0x609c, 2126 0x60a8, 0x619c, 2127 0x7700, 0x7798, 2128 0x77c0, 0x7880, 2129 0x78cc, 0x78fc, 2130 0x7b00, 0x7b58, 2131 0x7b60, 0x7b84, 2132 0x7b8c, 0x7c54, 2133 0x7d00, 0x7d38, 2134 0x7d40, 0x7d84, 2135 0x7d8c, 0x7ddc, 2136 0x7de4, 0x7e04, 2137 0x7e10, 0x7e1c, 2138 0x7e24, 0x7e38, 2139 0x7e40, 0x7e44, 2140 0x7e4c, 0x7e78, 2141 0x7e80, 0x7edc, 2142 0x7ee8, 0x7efc, 2143 0x8dc0, 0x8de4, 2144 0x8df8, 0x8e04, 2145 0x8e10, 0x8e84, 2146 0x8ea0, 0x8f88, 2147 0x8fb8, 0x9058, 2148 0x9060, 0x9060, 2149 0x9068, 0x90f8, 2150 0x9100, 0x9124, 2151 0x9400, 0x9470, 2152 0x9600, 0x9600, 2153 0x9608, 0x9638, 2154 0x9640, 0x9704, 2155 0x9710, 0x971c, 2156 0x9800, 0x9808, 2157 0x9820, 0x983c, 2158 0x9850, 0x9864, 2159 0x9c00, 0x9c6c, 2160 0x9c80, 0x9cec, 2161 0x9d00, 0x9d6c, 2162 0x9d80, 0x9dec, 2163 0x9e00, 0x9e6c, 2164 0x9e80, 0x9eec, 2165 0x9f00, 0x9f6c, 2166 0x9f80, 0xa020, 2167 0xd004, 0xd03c, 2168 0xd100, 0xd118, 2169 0xd200, 0xd214, 2170 0xd220, 0xd234, 2171 0xd240, 0xd254, 2172 0xd260, 0xd274, 2173 0xd280, 0xd294, 2174 0xd2a0, 0xd2b4, 2175 0xd2c0, 0xd2d4, 2176 0xd2e0, 0xd2f4, 2177 0xd300, 0xd31c, 2178 0xdfc0, 0xdfe0, 2179 0xe000, 0xf008, 2180 0xf010, 0xf018, 2181 0xf020, 0xf028, 2182 0x11000, 0x11014, 2183 0x11048, 0x1106c, 2184 0x11074, 0x11088, 2185 0x11098, 0x11120, 2186 0x1112c, 0x1117c, 2187 0x11190, 0x112e0, 2188 0x11300, 0x1130c, 2189 0x12000, 0x1206c, 2190 0x19040, 0x1906c, 2191 0x19078, 0x19080, 2192 0x1908c, 0x190e8, 2193 0x190f0, 0x190f8, 2194 0x19100, 0x19110, 2195 0x19120, 0x19124, 2196 0x19150, 0x19194, 2197 0x1919c, 0x191b0, 2198 0x191d0, 0x191e8, 2199 0x19238, 0x19290, 2200 0x192a4, 0x192b0, 2201 0x192bc, 0x192bc, 2202 0x19348, 0x1934c, 2203 0x193f8, 0x19418, 2204 0x19420, 0x19428, 2205 0x19430, 0x19444, 2206 0x1944c, 0x1946c, 2207 0x19474, 0x19474, 2208 0x19490, 0x194cc, 2209 0x194f0, 0x194f8, 2210 0x19c00, 0x19c48, 2211 0x19c50, 0x19c80, 2212 0x19c94, 0x19c98, 2213 0x19ca0, 0x19cbc, 2214 0x19ce4, 0x19ce4, 2215 0x19cf0, 0x19cf8, 2216 0x19d00, 0x19d28, 2217 0x19d50, 0x19d78, 2218 0x19d94, 0x19d98, 2219 0x19da0, 0x19dc8, 2220 0x19df0, 0x19e10, 2221 0x19e50, 0x19e6c, 2222 0x19ea0, 0x19ebc, 2223 0x19ec4, 0x19ef4, 2224 0x19f04, 0x19f2c, 2225 0x19f34, 0x19f34, 2226 0x19f40, 0x19f50, 2227 0x19f90, 0x19fac, 2228 0x19fc4, 0x19fc8, 2229 0x19fd0, 0x19fe4, 2230 0x1a000, 0x1a004, 2231 0x1a010, 0x1a06c, 2232 0x1a0b0, 0x1a0e4, 2233 0x1a0ec, 0x1a0f8, 2234 0x1a100, 0x1a108, 2235 0x1a114, 0x1a120, 2236 0x1a128, 0x1a130, 2237 0x1a138, 0x1a138, 2238 0x1a190, 0x1a1c4, 2239 0x1a1fc, 0x1a1fc, 2240 0x1e008, 0x1e00c, 2241 0x1e040, 0x1e044, 2242 0x1e04c, 0x1e04c, 2243 0x1e284, 0x1e290, 2244 0x1e2c0, 0x1e2c0, 2245 0x1e2e0, 0x1e2e0, 2246 0x1e300, 0x1e384, 2247 0x1e3c0, 0x1e3c8, 2248 0x1e408, 0x1e40c, 2249 0x1e440, 0x1e444, 2250 0x1e44c, 0x1e44c, 2251 0x1e684, 0x1e690, 2252 0x1e6c0, 0x1e6c0, 2253 0x1e6e0, 0x1e6e0, 2254 0x1e700, 0x1e784, 2255 0x1e7c0, 0x1e7c8, 2256 0x1e808, 0x1e80c, 2257 0x1e840, 0x1e844, 2258 0x1e84c, 0x1e84c, 2259 0x1ea84, 0x1ea90, 2260 0x1eac0, 0x1eac0, 2261 0x1eae0, 0x1eae0, 2262 0x1eb00, 0x1eb84, 2263 0x1ebc0, 0x1ebc8, 2264 0x1ec08, 0x1ec0c, 2265 0x1ec40, 0x1ec44, 2266 0x1ec4c, 0x1ec4c, 2267 0x1ee84, 0x1ee90, 2268 0x1eec0, 0x1eec0, 2269 0x1eee0, 0x1eee0, 2270 0x1ef00, 0x1ef84, 2271 0x1efc0, 0x1efc8, 2272 0x1f008, 0x1f00c, 2273 0x1f040, 0x1f044, 2274 0x1f04c, 0x1f04c, 2275 0x1f284, 0x1f290, 2276 0x1f2c0, 0x1f2c0, 2277 0x1f2e0, 0x1f2e0, 2278 0x1f300, 0x1f384, 2279 0x1f3c0, 0x1f3c8, 2280 0x1f408, 0x1f40c, 2281 0x1f440, 0x1f444, 2282 0x1f44c, 0x1f44c, 2283 0x1f684, 0x1f690, 2284 0x1f6c0, 0x1f6c0, 2285 0x1f6e0, 0x1f6e0, 2286 0x1f700, 0x1f784, 2287 0x1f7c0, 0x1f7c8, 2288 0x1f808, 0x1f80c, 2289 0x1f840, 0x1f844, 2290 0x1f84c, 0x1f84c, 2291 0x1fa84, 0x1fa90, 2292 0x1fac0, 0x1fac0, 2293 0x1fae0, 0x1fae0, 2294 0x1fb00, 0x1fb84, 2295 0x1fbc0, 0x1fbc8, 2296 0x1fc08, 0x1fc0c, 2297 0x1fc40, 0x1fc44, 2298 0x1fc4c, 0x1fc4c, 2299 0x1fe84, 0x1fe90, 2300 0x1fec0, 0x1fec0, 2301 0x1fee0, 0x1fee0, 2302 0x1ff00, 0x1ff84, 2303 0x1ffc0, 0x1ffc8, 2304 0x30000, 0x30030, 2305 0x30100, 0x30168, 2306 0x30190, 0x301a0, 2307 0x301a8, 0x301b8, 2308 0x301c4, 0x301c8, 2309 0x301d0, 0x301d0, 2310 0x30200, 0x30320, 2311 0x30400, 0x304b4, 2312 0x304c0, 0x3052c, 2313 0x30540, 0x3061c, 2314 0x30800, 0x308a0, 2315 0x308c0, 0x30908, 2316 0x30910, 0x309b8, 2317 0x30a00, 0x30a04, 2318 0x30a0c, 0x30a14, 2319 0x30a1c, 0x30a2c, 2320 0x30a44, 0x30a50, 2321 0x30a74, 0x30a74, 2322 0x30a7c, 0x30afc, 2323 0x30b08, 0x30c24, 2324 0x30d00, 0x30d14, 2325 0x30d1c, 0x30d3c, 2326 0x30d44, 0x30d4c, 2327 0x30d54, 0x30d74, 2328 0x30d7c, 0x30d7c, 2329 0x30de0, 0x30de0, 2330 0x30e00, 0x30ed4, 2331 0x30f00, 0x30fa4, 2332 0x30fc0, 0x30fc4, 2333 0x31000, 0x31004, 2334 0x31080, 0x310fc, 2335 0x31208, 0x31220, 2336 0x3123c, 0x31254, 2337 0x31300, 0x31300, 2338 0x31308, 0x3131c, 2339 0x31338, 0x3133c, 2340 0x31380, 0x31380, 2341 0x31388, 0x313a8, 2342 0x313b4, 0x313b4, 2343 0x31400, 0x31420, 2344 0x31438, 0x3143c, 2345 0x31480, 0x31480, 2346 0x314a8, 0x314a8, 2347 0x314b0, 0x314b4, 2348 0x314c8, 0x314d4, 2349 0x31a40, 0x31a4c, 2350 0x31af0, 0x31b20, 2351 0x31b38, 0x31b3c, 2352 0x31b80, 0x31b80, 2353 0x31ba8, 0x31ba8, 2354 0x31bb0, 0x31bb4, 2355 0x31bc8, 0x31bd4, 2356 0x32140, 0x3218c, 2357 0x321f0, 0x321f4, 2358 0x32200, 0x32200, 2359 0x32218, 0x32218, 2360 0x32400, 0x32400, 2361 0x32408, 0x3241c, 2362 0x32618, 0x32620, 2363 0x32664, 0x32664, 2364 0x326a8, 0x326a8, 2365 0x326ec, 0x326ec, 2366 0x32a00, 0x32abc, 2367 0x32b00, 0x32b18, 2368 0x32b20, 0x32b38, 2369 0x32b40, 0x32b58, 2370 0x32b60, 0x32b78, 2371 0x32c00, 0x32c00, 2372 0x32c08, 0x32c3c, 2373 0x33000, 0x3302c, 2374 0x33034, 0x33050, 2375 0x33058, 0x33058, 2376 0x33060, 0x3308c, 2377 0x3309c, 0x330ac, 2378 0x330c0, 0x330c0, 2379 0x330c8, 0x330d0, 2380 0x330d8, 0x330e0, 2381 0x330ec, 0x3312c, 2382 0x33134, 0x33150, 2383 0x33158, 0x33158, 2384 0x33160, 0x3318c, 2385 0x3319c, 0x331ac, 2386 0x331c0, 0x331c0, 2387 0x331c8, 0x331d0, 2388 0x331d8, 0x331e0, 2389 0x331ec, 0x33290, 2390 0x33298, 0x332c4, 2391 0x332e4, 0x33390, 2392 0x33398, 0x333c4, 2393 0x333e4, 0x3342c, 2394 0x33434, 0x33450, 2395 0x33458, 0x33458, 2396 0x33460, 0x3348c, 2397 0x3349c, 0x334ac, 2398 0x334c0, 0x334c0, 2399 0x334c8, 0x334d0, 2400 0x334d8, 0x334e0, 2401 0x334ec, 0x3352c, 2402 0x33534, 0x33550, 2403 0x33558, 0x33558, 2404 0x33560, 0x3358c, 2405 0x3359c, 0x335ac, 2406 0x335c0, 0x335c0, 2407 0x335c8, 0x335d0, 2408 0x335d8, 0x335e0, 2409 0x335ec, 0x33690, 2410 0x33698, 0x336c4, 2411 0x336e4, 0x33790, 2412 0x33798, 0x337c4, 2413 0x337e4, 0x337fc, 2414 0x33814, 0x33814, 2415 0x33854, 0x33868, 2416 0x33880, 0x3388c, 2417 0x338c0, 0x338d0, 2418 0x338e8, 0x338ec, 2419 0x33900, 0x3392c, 2420 0x33934, 0x33950, 2421 0x33958, 0x33958, 2422 0x33960, 0x3398c, 2423 0x3399c, 0x339ac, 2424 0x339c0, 0x339c0, 2425 0x339c8, 0x339d0, 2426 0x339d8, 0x339e0, 2427 0x339ec, 0x33a90, 2428 0x33a98, 0x33ac4, 2429 0x33ae4, 0x33b10, 2430 0x33b24, 0x33b28, 2431 0x33b38, 0x33b50, 2432 0x33bf0, 0x33c10, 2433 0x33c24, 0x33c28, 2434 0x33c38, 0x33c50, 2435 0x33cf0, 0x33cfc, 2436 0x34000, 0x34030, 2437 0x34100, 0x34168, 2438 0x34190, 0x341a0, 2439 0x341a8, 0x341b8, 2440 0x341c4, 0x341c8, 2441 0x341d0, 0x341d0, 2442 0x34200, 0x34320, 2443 0x34400, 0x344b4, 2444 0x344c0, 0x3452c, 2445 0x34540, 0x3461c, 2446 0x34800, 0x348a0, 2447 0x348c0, 0x34908, 2448 0x34910, 0x349b8, 2449 0x34a00, 0x34a04, 2450 0x34a0c, 0x34a14, 2451 0x34a1c, 0x34a2c, 2452 0x34a44, 0x34a50, 2453 0x34a74, 0x34a74, 2454 0x34a7c, 0x34afc, 2455 0x34b08, 0x34c24, 2456 0x34d00, 0x34d14, 2457 0x34d1c, 0x34d3c, 2458 0x34d44, 0x34d4c, 2459 0x34d54, 0x34d74, 2460 0x34d7c, 0x34d7c, 2461 0x34de0, 0x34de0, 2462 0x34e00, 0x34ed4, 2463 0x34f00, 0x34fa4, 2464 0x34fc0, 0x34fc4, 2465 0x35000, 0x35004, 2466 0x35080, 0x350fc, 2467 0x35208, 0x35220, 2468 0x3523c, 0x35254, 2469 0x35300, 0x35300, 2470 0x35308, 0x3531c, 2471 0x35338, 0x3533c, 2472 0x35380, 0x35380, 2473 0x35388, 0x353a8, 2474 0x353b4, 0x353b4, 2475 0x35400, 0x35420, 2476 0x35438, 0x3543c, 2477 0x35480, 0x35480, 2478 0x354a8, 0x354a8, 2479 0x354b0, 0x354b4, 2480 0x354c8, 0x354d4, 2481 0x35a40, 0x35a4c, 2482 0x35af0, 0x35b20, 2483 0x35b38, 0x35b3c, 2484 0x35b80, 0x35b80, 2485 0x35ba8, 0x35ba8, 2486 0x35bb0, 0x35bb4, 2487 0x35bc8, 0x35bd4, 2488 0x36140, 0x3618c, 2489 0x361f0, 0x361f4, 2490 0x36200, 0x36200, 2491 0x36218, 0x36218, 2492 0x36400, 0x36400, 2493 0x36408, 0x3641c, 2494 0x36618, 0x36620, 2495 0x36664, 0x36664, 2496 0x366a8, 0x366a8, 2497 0x366ec, 0x366ec, 2498 0x36a00, 0x36abc, 2499 0x36b00, 0x36b18, 2500 0x36b20, 0x36b38, 2501 0x36b40, 0x36b58, 2502 0x36b60, 0x36b78, 2503 0x36c00, 0x36c00, 2504 0x36c08, 0x36c3c, 2505 0x37000, 0x3702c, 2506 0x37034, 0x37050, 2507 0x37058, 0x37058, 2508 0x37060, 0x3708c, 2509 0x3709c, 0x370ac, 2510 0x370c0, 0x370c0, 2511 0x370c8, 0x370d0, 2512 0x370d8, 0x370e0, 2513 0x370ec, 0x3712c, 2514 0x37134, 0x37150, 2515 0x37158, 0x37158, 2516 0x37160, 0x3718c, 2517 0x3719c, 0x371ac, 2518 0x371c0, 0x371c0, 2519 0x371c8, 0x371d0, 2520 0x371d8, 0x371e0, 2521 0x371ec, 0x37290, 2522 0x37298, 0x372c4, 2523 0x372e4, 0x37390, 2524 0x37398, 0x373c4, 2525 0x373e4, 0x3742c, 2526 0x37434, 0x37450, 2527 0x37458, 0x37458, 2528 0x37460, 0x3748c, 2529 0x3749c, 0x374ac, 2530 0x374c0, 0x374c0, 2531 0x374c8, 0x374d0, 2532 0x374d8, 0x374e0, 2533 0x374ec, 0x3752c, 2534 0x37534, 0x37550, 2535 0x37558, 0x37558, 2536 0x37560, 0x3758c, 2537 0x3759c, 0x375ac, 2538 0x375c0, 0x375c0, 2539 0x375c8, 0x375d0, 2540 0x375d8, 0x375e0, 2541 0x375ec, 0x37690, 2542 0x37698, 0x376c4, 2543 0x376e4, 0x37790, 2544 0x37798, 0x377c4, 2545 0x377e4, 0x377fc, 2546 0x37814, 0x37814, 2547 0x37854, 0x37868, 2548 0x37880, 0x3788c, 2549 0x378c0, 0x378d0, 2550 0x378e8, 0x378ec, 2551 0x37900, 0x3792c, 2552 0x37934, 0x37950, 2553 0x37958, 0x37958, 2554 0x37960, 0x3798c, 2555 0x3799c, 0x379ac, 2556 0x379c0, 0x379c0, 2557 0x379c8, 0x379d0, 2558 0x379d8, 0x379e0, 2559 0x379ec, 0x37a90, 2560 0x37a98, 0x37ac4, 2561 0x37ae4, 0x37b10, 2562 0x37b24, 0x37b28, 2563 0x37b38, 0x37b50, 2564 0x37bf0, 0x37c10, 2565 0x37c24, 0x37c28, 2566 0x37c38, 0x37c50, 2567 0x37cf0, 0x37cfc, 2568 0x40040, 0x40040, 2569 0x40080, 0x40084, 2570 0x40100, 0x40100, 2571 0x40140, 0x401bc, 2572 0x40200, 0x40214, 2573 0x40228, 0x40228, 2574 0x40240, 0x40258, 2575 0x40280, 0x40280, 2576 0x40304, 0x40304, 2577 0x40330, 0x4033c, 2578 0x41304, 0x413c8, 2579 0x413d0, 0x413dc, 2580 0x413f0, 0x413f0, 2581 0x41400, 0x4140c, 2582 0x41414, 0x4141c, 2583 0x41480, 0x414d0, 2584 0x44000, 0x4407c, 2585 0x440c0, 0x441ac, 2586 0x441b4, 0x4427c, 2587 0x442c0, 0x443ac, 2588 0x443b4, 0x4447c, 2589 0x444c0, 0x445ac, 2590 0x445b4, 0x4467c, 2591 0x446c0, 0x447ac, 2592 0x447b4, 0x4487c, 2593 0x448c0, 0x449ac, 2594 0x449b4, 0x44a7c, 2595 0x44ac0, 0x44bac, 2596 0x44bb4, 0x44c7c, 2597 0x44cc0, 0x44dac, 2598 0x44db4, 0x44e7c, 2599 0x44ec0, 0x44fac, 2600 0x44fb4, 0x4507c, 2601 0x450c0, 0x451ac, 2602 0x451b4, 0x451fc, 2603 0x45800, 0x45804, 2604 0x45810, 0x45830, 2605 0x45840, 0x45860, 2606 0x45868, 0x45868, 2607 0x45880, 0x45884, 2608 0x458a0, 0x458b0, 2609 0x45a00, 0x45a04, 2610 0x45a10, 0x45a30, 2611 0x45a40, 0x45a60, 2612 0x45a68, 0x45a68, 2613 0x45a80, 0x45a84, 2614 0x45aa0, 0x45ab0, 2615 0x460c0, 0x460e4, 2616 0x47000, 0x4703c, 2617 0x47044, 0x4708c, 2618 0x47200, 0x47250, 2619 0x47400, 0x47408, 2620 0x47414, 0x47420, 2621 0x47600, 0x47618, 2622 0x47800, 0x47814, 2623 0x47820, 0x4782c, 2624 0x50000, 0x50084, 2625 0x50090, 0x500cc, 2626 0x50300, 0x50384, 2627 0x50400, 0x50400, 2628 0x50800, 0x50884, 2629 0x50890, 0x508cc, 2630 0x50b00, 0x50b84, 2631 0x50c00, 0x50c00, 2632 0x51000, 0x51020, 2633 0x51028, 0x510b0, 2634 0x51300, 0x51324, 2635 }; 2636 2637 static const unsigned int t6vf_reg_ranges[] = { 2638 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS), 2639 VF_MPS_REG(A_MPS_VF_CTL), 2640 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H), 2641 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION), 2642 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL), 2643 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS), 2644 FW_T6VF_MBDATA_BASE_ADDR, 2645 FW_T6VF_MBDATA_BASE_ADDR + 2646 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4), 2647 }; 2648 2649 u32 *buf_end = (u32 *)(buf + buf_size); 2650 const unsigned int *reg_ranges; 2651 int reg_ranges_size, range; 2652 unsigned int chip_version = chip_id(adap); 2653 2654 /* 2655 * Select the right set of register ranges to dump depending on the 2656 * adapter chip type. 2657 */ 2658 switch (chip_version) { 2659 case CHELSIO_T4: 2660 if (adap->flags & IS_VF) { 2661 reg_ranges = t4vf_reg_ranges; 2662 reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges); 2663 } else { 2664 reg_ranges = t4_reg_ranges; 2665 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 2666 } 2667 break; 2668 2669 case CHELSIO_T5: 2670 if (adap->flags & IS_VF) { 2671 reg_ranges = t5vf_reg_ranges; 2672 reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges); 2673 } else { 2674 reg_ranges = t5_reg_ranges; 2675 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 2676 } 2677 break; 2678 2679 case CHELSIO_T6: 2680 if (adap->flags & IS_VF) { 2681 reg_ranges = t6vf_reg_ranges; 2682 reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges); 2683 } else { 2684 reg_ranges = t6_reg_ranges; 2685 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); 2686 } 2687 break; 2688 2689 default: 2690 CH_ERR(adap, 2691 "Unsupported chip version %d\n", chip_version); 2692 return; 2693 } 2694 2695 /* 2696 * Clear the register buffer and insert the appropriate register 2697 * values selected by the above register ranges. 2698 */ 2699 memset(buf, 0, buf_size); 2700 for (range = 0; range < reg_ranges_size; range += 2) { 2701 unsigned int reg = reg_ranges[range]; 2702 unsigned int last_reg = reg_ranges[range + 1]; 2703 u32 *bufp = (u32 *)(buf + reg); 2704 2705 /* 2706 * Iterate across the register range filling in the register 2707 * buffer but don't write past the end of the register buffer. 2708 */ 2709 while (reg <= last_reg && bufp < buf_end) { 2710 *bufp++ = t4_read_reg(adap, reg); 2711 reg += sizeof(u32); 2712 } 2713 } 2714 } 2715 2716 /* 2717 * Partial EEPROM Vital Product Data structure. The VPD starts with one ID 2718 * header followed by one or more VPD-R sections, each with its own header. 2719 */ 2720 struct t4_vpd_hdr { 2721 u8 id_tag; 2722 u8 id_len[2]; 2723 u8 id_data[ID_LEN]; 2724 }; 2725 2726 struct t4_vpdr_hdr { 2727 u8 vpdr_tag; 2728 u8 vpdr_len[2]; 2729 }; 2730 2731 /* 2732 * EEPROM reads take a few tens of us while writes can take a bit over 5 ms. 2733 */ 2734 #define EEPROM_DELAY 10 /* 10us per poll spin */ 2735 #define EEPROM_MAX_POLL 5000 /* x 5000 == 50ms */ 2736 2737 #define EEPROM_STAT_ADDR 0x7bfc 2738 #define VPD_SIZE 0x800 2739 #define VPD_BASE 0x400 2740 #define VPD_BASE_OLD 0 2741 #define VPD_LEN 1024 2742 #define VPD_INFO_FLD_HDR_SIZE 3 2743 #define CHELSIO_VPD_UNIQUE_ID 0x82 2744 2745 /* 2746 * Small utility function to wait till any outstanding VPD Access is complete. 2747 * We have a per-adapter state variable "VPD Busy" to indicate when we have a 2748 * VPD Access in flight. This allows us to handle the problem of having a 2749 * previous VPD Access time out and prevent an attempt to inject a new VPD 2750 * Request before any in-flight VPD reguest has completed. 2751 */ 2752 static int t4_seeprom_wait(struct adapter *adapter) 2753 { 2754 unsigned int base = adapter->params.pci.vpd_cap_addr; 2755 int max_poll; 2756 2757 /* 2758 * If no VPD Access is in flight, we can just return success right 2759 * away. 2760 */ 2761 if (!adapter->vpd_busy) 2762 return 0; 2763 2764 /* 2765 * Poll the VPD Capability Address/Flag register waiting for it 2766 * to indicate that the operation is complete. 2767 */ 2768 max_poll = EEPROM_MAX_POLL; 2769 do { 2770 u16 val; 2771 2772 udelay(EEPROM_DELAY); 2773 t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val); 2774 2775 /* 2776 * If the operation is complete, mark the VPD as no longer 2777 * busy and return success. 2778 */ 2779 if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) { 2780 adapter->vpd_busy = 0; 2781 return 0; 2782 } 2783 } while (--max_poll); 2784 2785 /* 2786 * Failure! Note that we leave the VPD Busy status set in order to 2787 * avoid pushing a new VPD Access request into the VPD Capability till 2788 * the current operation eventually succeeds. It's a bug to issue a 2789 * new request when an existing request is in flight and will result 2790 * in corrupt hardware state. 2791 */ 2792 return -ETIMEDOUT; 2793 } 2794 2795 /** 2796 * t4_seeprom_read - read a serial EEPROM location 2797 * @adapter: adapter to read 2798 * @addr: EEPROM virtual address 2799 * @data: where to store the read data 2800 * 2801 * Read a 32-bit word from a location in serial EEPROM using the card's PCI 2802 * VPD capability. Note that this function must be called with a virtual 2803 * address. 2804 */ 2805 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data) 2806 { 2807 unsigned int base = adapter->params.pci.vpd_cap_addr; 2808 int ret; 2809 2810 /* 2811 * VPD Accesses must alway be 4-byte aligned! 2812 */ 2813 if (addr >= EEPROMVSIZE || (addr & 3)) 2814 return -EINVAL; 2815 2816 /* 2817 * Wait for any previous operation which may still be in flight to 2818 * complete. 2819 */ 2820 ret = t4_seeprom_wait(adapter); 2821 if (ret) { 2822 CH_ERR(adapter, "VPD still busy from previous operation\n"); 2823 return ret; 2824 } 2825 2826 /* 2827 * Issue our new VPD Read request, mark the VPD as being busy and wait 2828 * for our request to complete. If it doesn't complete, note the 2829 * error and return it to our caller. Note that we do not reset the 2830 * VPD Busy status! 2831 */ 2832 t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr); 2833 adapter->vpd_busy = 1; 2834 adapter->vpd_flag = PCI_VPD_ADDR_F; 2835 ret = t4_seeprom_wait(adapter); 2836 if (ret) { 2837 CH_ERR(adapter, "VPD read of address %#x failed\n", addr); 2838 return ret; 2839 } 2840 2841 /* 2842 * Grab the returned data, swizzle it into our endianness and 2843 * return success. 2844 */ 2845 t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data); 2846 *data = le32_to_cpu(*data); 2847 return 0; 2848 } 2849 2850 /** 2851 * t4_seeprom_write - write a serial EEPROM location 2852 * @adapter: adapter to write 2853 * @addr: virtual EEPROM address 2854 * @data: value to write 2855 * 2856 * Write a 32-bit word to a location in serial EEPROM using the card's PCI 2857 * VPD capability. Note that this function must be called with a virtual 2858 * address. 2859 */ 2860 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data) 2861 { 2862 unsigned int base = adapter->params.pci.vpd_cap_addr; 2863 int ret; 2864 u32 stats_reg; 2865 int max_poll; 2866 2867 /* 2868 * VPD Accesses must alway be 4-byte aligned! 2869 */ 2870 if (addr >= EEPROMVSIZE || (addr & 3)) 2871 return -EINVAL; 2872 2873 /* 2874 * Wait for any previous operation which may still be in flight to 2875 * complete. 2876 */ 2877 ret = t4_seeprom_wait(adapter); 2878 if (ret) { 2879 CH_ERR(adapter, "VPD still busy from previous operation\n"); 2880 return ret; 2881 } 2882 2883 /* 2884 * Issue our new VPD Read request, mark the VPD as being busy and wait 2885 * for our request to complete. If it doesn't complete, note the 2886 * error and return it to our caller. Note that we do not reset the 2887 * VPD Busy status! 2888 */ 2889 t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 2890 cpu_to_le32(data)); 2891 t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, 2892 (u16)addr | PCI_VPD_ADDR_F); 2893 adapter->vpd_busy = 1; 2894 adapter->vpd_flag = 0; 2895 ret = t4_seeprom_wait(adapter); 2896 if (ret) { 2897 CH_ERR(adapter, "VPD write of address %#x failed\n", addr); 2898 return ret; 2899 } 2900 2901 /* 2902 * Reset PCI_VPD_DATA register after a transaction and wait for our 2903 * request to complete. If it doesn't complete, return error. 2904 */ 2905 t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0); 2906 max_poll = EEPROM_MAX_POLL; 2907 do { 2908 udelay(EEPROM_DELAY); 2909 t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg); 2910 } while ((stats_reg & 0x1) && --max_poll); 2911 if (!max_poll) 2912 return -ETIMEDOUT; 2913 2914 /* Return success! */ 2915 return 0; 2916 } 2917 2918 /** 2919 * t4_eeprom_ptov - translate a physical EEPROM address to virtual 2920 * @phys_addr: the physical EEPROM address 2921 * @fn: the PCI function number 2922 * @sz: size of function-specific area 2923 * 2924 * Translate a physical EEPROM address to virtual. The first 1K is 2925 * accessed through virtual addresses starting at 31K, the rest is 2926 * accessed through virtual addresses starting at 0. 2927 * 2928 * The mapping is as follows: 2929 * [0..1K) -> [31K..32K) 2930 * [1K..1K+A) -> [ES-A..ES) 2931 * [1K+A..ES) -> [0..ES-A-1K) 2932 * 2933 * where A = @fn * @sz, and ES = EEPROM size. 2934 */ 2935 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) 2936 { 2937 fn *= sz; 2938 if (phys_addr < 1024) 2939 return phys_addr + (31 << 10); 2940 if (phys_addr < 1024 + fn) 2941 return EEPROMSIZE - fn + phys_addr - 1024; 2942 if (phys_addr < EEPROMSIZE) 2943 return phys_addr - 1024 - fn; 2944 return -EINVAL; 2945 } 2946 2947 /** 2948 * t4_seeprom_wp - enable/disable EEPROM write protection 2949 * @adapter: the adapter 2950 * @enable: whether to enable or disable write protection 2951 * 2952 * Enables or disables write protection on the serial EEPROM. 2953 */ 2954 int t4_seeprom_wp(struct adapter *adapter, int enable) 2955 { 2956 return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0); 2957 } 2958 2959 /** 2960 * get_vpd_keyword_val - Locates an information field keyword in the VPD 2961 * @vpd: Pointer to buffered vpd data structure 2962 * @kw: The keyword to search for 2963 * @region: VPD region to search (starting from 0) 2964 * 2965 * Returns the value of the information field keyword or 2966 * -ENOENT otherwise. 2967 */ 2968 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region) 2969 { 2970 int i, tag; 2971 unsigned int offset, len; 2972 const struct t4_vpdr_hdr *vpdr; 2973 2974 offset = sizeof(struct t4_vpd_hdr); 2975 vpdr = (const void *)(vpd + offset); 2976 tag = vpdr->vpdr_tag; 2977 len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8); 2978 while (region--) { 2979 offset += sizeof(struct t4_vpdr_hdr) + len; 2980 vpdr = (const void *)(vpd + offset); 2981 if (++tag != vpdr->vpdr_tag) 2982 return -ENOENT; 2983 len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8); 2984 } 2985 offset += sizeof(struct t4_vpdr_hdr); 2986 2987 if (offset + len > VPD_LEN) { 2988 return -ENOENT; 2989 } 2990 2991 for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) { 2992 if (memcmp(vpd + i , kw , 2) == 0){ 2993 i += VPD_INFO_FLD_HDR_SIZE; 2994 return i; 2995 } 2996 2997 i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2]; 2998 } 2999 3000 return -ENOENT; 3001 } 3002 3003 3004 /** 3005 * get_vpd_params - read VPD parameters from VPD EEPROM 3006 * @adapter: adapter to read 3007 * @p: where to store the parameters 3008 * @vpd: caller provided temporary space to read the VPD into 3009 * 3010 * Reads card parameters stored in VPD EEPROM. 3011 */ 3012 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p, 3013 uint16_t device_id, u32 *buf) 3014 { 3015 int i, ret, addr; 3016 int ec, sn, pn, na, md; 3017 u8 csum; 3018 const u8 *vpd = (const u8 *)buf; 3019 3020 /* 3021 * Card information normally starts at VPD_BASE but early cards had 3022 * it at 0. 3023 */ 3024 ret = t4_seeprom_read(adapter, VPD_BASE, buf); 3025 if (ret) 3026 return (ret); 3027 3028 /* 3029 * The VPD shall have a unique identifier specified by the PCI SIG. 3030 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD 3031 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software 3032 * is expected to automatically put this entry at the 3033 * beginning of the VPD. 3034 */ 3035 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD; 3036 3037 for (i = 0; i < VPD_LEN; i += 4) { 3038 ret = t4_seeprom_read(adapter, addr + i, buf++); 3039 if (ret) 3040 return ret; 3041 } 3042 3043 #define FIND_VPD_KW(var,name) do { \ 3044 var = get_vpd_keyword_val(vpd, name, 0); \ 3045 if (var < 0) { \ 3046 CH_ERR(adapter, "missing VPD keyword " name "\n"); \ 3047 return -EINVAL; \ 3048 } \ 3049 } while (0) 3050 3051 FIND_VPD_KW(i, "RV"); 3052 for (csum = 0; i >= 0; i--) 3053 csum += vpd[i]; 3054 3055 if (csum) { 3056 CH_ERR(adapter, 3057 "corrupted VPD EEPROM, actual csum %u\n", csum); 3058 return -EINVAL; 3059 } 3060 3061 FIND_VPD_KW(ec, "EC"); 3062 FIND_VPD_KW(sn, "SN"); 3063 FIND_VPD_KW(pn, "PN"); 3064 FIND_VPD_KW(na, "NA"); 3065 #undef FIND_VPD_KW 3066 3067 memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN); 3068 strstrip(p->id); 3069 memcpy(p->ec, vpd + ec, EC_LEN); 3070 strstrip(p->ec); 3071 i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2]; 3072 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 3073 strstrip(p->sn); 3074 i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2]; 3075 memcpy(p->pn, vpd + pn, min(i, PN_LEN)); 3076 strstrip((char *)p->pn); 3077 i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2]; 3078 memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); 3079 strstrip((char *)p->na); 3080 3081 if (device_id & 0x80) 3082 return 0; /* Custom card */ 3083 3084 md = get_vpd_keyword_val(vpd, "VF", 1); 3085 if (md < 0) { 3086 snprintf(p->md, sizeof(p->md), "unknown"); 3087 } else { 3088 i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2]; 3089 memcpy(p->md, vpd + md, min(i, MD_LEN)); 3090 strstrip((char *)p->md); 3091 } 3092 3093 return 0; 3094 } 3095 3096 /* serial flash and firmware constants and flash config file constants */ 3097 enum { 3098 SF_ATTEMPTS = 10, /* max retries for SF operations */ 3099 3100 /* flash command opcodes */ 3101 SF_PROG_PAGE = 2, /* program 256B page */ 3102 SF_WR_DISABLE = 4, /* disable writes */ 3103 SF_RD_STATUS = 5, /* read status register */ 3104 SF_WR_ENABLE = 6, /* enable writes */ 3105 SF_RD_DATA_FAST = 0xb, /* read flash */ 3106 SF_RD_ID = 0x9f, /* read ID */ 3107 SF_ERASE_SECTOR = 0xd8, /* erase 64KB sector */ 3108 }; 3109 3110 /** 3111 * sf1_read - read data from the serial flash 3112 * @adapter: the adapter 3113 * @byte_cnt: number of bytes to read 3114 * @cont: whether another operation will be chained 3115 * @lock: whether to lock SF for PL access only 3116 * @valp: where to store the read data 3117 * 3118 * Reads up to 4 bytes of data from the serial flash. The location of 3119 * the read needs to be specified prior to calling this by issuing the 3120 * appropriate commands to the serial flash. 3121 */ 3122 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 3123 int lock, u32 *valp) 3124 { 3125 int ret; 3126 3127 if (!byte_cnt || byte_cnt > 4) 3128 return -EINVAL; 3129 if (t4_read_reg(adapter, A_SF_OP) & F_BUSY) 3130 return -EBUSY; 3131 t4_write_reg(adapter, A_SF_OP, 3132 V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1)); 3133 ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5); 3134 if (!ret) 3135 *valp = t4_read_reg(adapter, A_SF_DATA); 3136 return ret; 3137 } 3138 3139 /** 3140 * sf1_write - write data to the serial flash 3141 * @adapter: the adapter 3142 * @byte_cnt: number of bytes to write 3143 * @cont: whether another operation will be chained 3144 * @lock: whether to lock SF for PL access only 3145 * @val: value to write 3146 * 3147 * Writes up to 4 bytes of data to the serial flash. The location of 3148 * the write needs to be specified prior to calling this by issuing the 3149 * appropriate commands to the serial flash. 3150 */ 3151 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 3152 int lock, u32 val) 3153 { 3154 if (!byte_cnt || byte_cnt > 4) 3155 return -EINVAL; 3156 if (t4_read_reg(adapter, A_SF_OP) & F_BUSY) 3157 return -EBUSY; 3158 t4_write_reg(adapter, A_SF_DATA, val); 3159 t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) | 3160 V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1)); 3161 return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5); 3162 } 3163 3164 /** 3165 * flash_wait_op - wait for a flash operation to complete 3166 * @adapter: the adapter 3167 * @attempts: max number of polls of the status register 3168 * @delay: delay between polls in ms 3169 * 3170 * Wait for a flash operation to complete by polling the status register. 3171 */ 3172 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 3173 { 3174 int ret; 3175 u32 status; 3176 3177 while (1) { 3178 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 3179 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 3180 return ret; 3181 if (!(status & 1)) 3182 return 0; 3183 if (--attempts == 0) 3184 return -EAGAIN; 3185 if (delay) 3186 msleep(delay); 3187 } 3188 } 3189 3190 /** 3191 * t4_read_flash - read words from serial flash 3192 * @adapter: the adapter 3193 * @addr: the start address for the read 3194 * @nwords: how many 32-bit words to read 3195 * @data: where to store the read data 3196 * @byte_oriented: whether to store data as bytes or as words 3197 * 3198 * Read the specified number of 32-bit words from the serial flash. 3199 * If @byte_oriented is set the read data is stored as a byte array 3200 * (i.e., big-endian), otherwise as 32-bit words in the platform's 3201 * natural endianness. 3202 */ 3203 int t4_read_flash(struct adapter *adapter, unsigned int addr, 3204 unsigned int nwords, u32 *data, int byte_oriented) 3205 { 3206 int ret; 3207 3208 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 3209 return -EINVAL; 3210 3211 addr = swab32(addr) | SF_RD_DATA_FAST; 3212 3213 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 3214 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 3215 return ret; 3216 3217 for ( ; nwords; nwords--, data++) { 3218 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 3219 if (nwords == 1) 3220 t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ 3221 if (ret) 3222 return ret; 3223 if (byte_oriented) 3224 *data = (__force __u32)(cpu_to_be32(*data)); 3225 } 3226 return 0; 3227 } 3228 3229 /** 3230 * t4_write_flash - write up to a page of data to the serial flash 3231 * @adapter: the adapter 3232 * @addr: the start address to write 3233 * @n: length of data to write in bytes 3234 * @data: the data to write 3235 * @byte_oriented: whether to store data as bytes or as words 3236 * 3237 * Writes up to a page of data (256 bytes) to the serial flash starting 3238 * at the given address. All the data must be written to the same page. 3239 * If @byte_oriented is set the write data is stored as byte stream 3240 * (i.e. matches what on disk), otherwise in big-endian. 3241 */ 3242 int t4_write_flash(struct adapter *adapter, unsigned int addr, 3243 unsigned int n, const u8 *data, int byte_oriented) 3244 { 3245 int ret; 3246 u32 buf[SF_PAGE_SIZE / 4]; 3247 unsigned int i, c, left, val, offset = addr & 0xff; 3248 3249 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 3250 return -EINVAL; 3251 3252 val = swab32(addr) | SF_PROG_PAGE; 3253 3254 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3255 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 3256 goto unlock; 3257 3258 for (left = n; left; left -= c) { 3259 c = min(left, 4U); 3260 for (val = 0, i = 0; i < c; ++i) 3261 val = (val << 8) + *data++; 3262 3263 if (!byte_oriented) 3264 val = cpu_to_be32(val); 3265 3266 ret = sf1_write(adapter, c, c != left, 1, val); 3267 if (ret) 3268 goto unlock; 3269 } 3270 ret = flash_wait_op(adapter, 8, 1); 3271 if (ret) 3272 goto unlock; 3273 3274 t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ 3275 3276 /* Read the page to verify the write succeeded */ 3277 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 3278 byte_oriented); 3279 if (ret) 3280 return ret; 3281 3282 if (memcmp(data - n, (u8 *)buf + offset, n)) { 3283 CH_ERR(adapter, 3284 "failed to correctly write the flash page at %#x\n", 3285 addr); 3286 return -EIO; 3287 } 3288 return 0; 3289 3290 unlock: 3291 t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ 3292 return ret; 3293 } 3294 3295 /** 3296 * t4_get_fw_version - read the firmware version 3297 * @adapter: the adapter 3298 * @vers: where to place the version 3299 * 3300 * Reads the FW version from flash. 3301 */ 3302 int t4_get_fw_version(struct adapter *adapter, u32 *vers) 3303 { 3304 return t4_read_flash(adapter, FLASH_FW_START + 3305 offsetof(struct fw_hdr, fw_ver), 1, 3306 vers, 0); 3307 } 3308 3309 /** 3310 * t4_get_fw_hdr - read the firmware header 3311 * @adapter: the adapter 3312 * @hdr: where to place the version 3313 * 3314 * Reads the FW header from flash into caller provided buffer. 3315 */ 3316 int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr) 3317 { 3318 return t4_read_flash(adapter, FLASH_FW_START, 3319 sizeof (*hdr) / sizeof (uint32_t), (uint32_t *)hdr, 1); 3320 } 3321 3322 /** 3323 * t4_get_bs_version - read the firmware bootstrap version 3324 * @adapter: the adapter 3325 * @vers: where to place the version 3326 * 3327 * Reads the FW Bootstrap version from flash. 3328 */ 3329 int t4_get_bs_version(struct adapter *adapter, u32 *vers) 3330 { 3331 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + 3332 offsetof(struct fw_hdr, fw_ver), 1, 3333 vers, 0); 3334 } 3335 3336 /** 3337 * t4_get_tp_version - read the TP microcode version 3338 * @adapter: the adapter 3339 * @vers: where to place the version 3340 * 3341 * Reads the TP microcode version from flash. 3342 */ 3343 int t4_get_tp_version(struct adapter *adapter, u32 *vers) 3344 { 3345 return t4_read_flash(adapter, FLASH_FW_START + 3346 offsetof(struct fw_hdr, tp_microcode_ver), 3347 1, vers, 0); 3348 } 3349 3350 /** 3351 * t4_get_exprom_version - return the Expansion ROM version (if any) 3352 * @adapter: the adapter 3353 * @vers: where to place the version 3354 * 3355 * Reads the Expansion ROM header from FLASH and returns the version 3356 * number (if present) through the @vers return value pointer. We return 3357 * this in the Firmware Version Format since it's convenient. Return 3358 * 0 on success, -ENOENT if no Expansion ROM is present. 3359 */ 3360 int t4_get_exprom_version(struct adapter *adap, u32 *vers) 3361 { 3362 struct exprom_header { 3363 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 3364 unsigned char hdr_ver[4]; /* Expansion ROM version */ 3365 } *hdr; 3366 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 3367 sizeof(u32))]; 3368 int ret; 3369 3370 ret = t4_read_flash(adap, FLASH_EXP_ROM_START, 3371 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 3372 0); 3373 if (ret) 3374 return ret; 3375 3376 hdr = (struct exprom_header *)exprom_header_buf; 3377 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 3378 return -ENOENT; 3379 3380 *vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) | 3381 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) | 3382 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) | 3383 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3])); 3384 return 0; 3385 } 3386 3387 /** 3388 * t4_get_scfg_version - return the Serial Configuration version 3389 * @adapter: the adapter 3390 * @vers: where to place the version 3391 * 3392 * Reads the Serial Configuration Version via the Firmware interface 3393 * (thus this can only be called once we're ready to issue Firmware 3394 * commands). The format of the Serial Configuration version is 3395 * adapter specific. Returns 0 on success, an error on failure. 3396 * 3397 * Note that early versions of the Firmware didn't include the ability 3398 * to retrieve the Serial Configuration version, so we zero-out the 3399 * return-value parameter in that case to avoid leaving it with 3400 * garbage in it. 3401 * 3402 * Also note that the Firmware will return its cached copy of the Serial 3403 * Initialization Revision ID, not the actual Revision ID as written in 3404 * the Serial EEPROM. This is only an issue if a new VPD has been written 3405 * and the Firmware/Chip haven't yet gone through a RESET sequence. So 3406 * it's best to defer calling this routine till after a FW_RESET_CMD has 3407 * been issued if the Host Driver will be performing a full adapter 3408 * initialization. 3409 */ 3410 int t4_get_scfg_version(struct adapter *adapter, u32 *vers) 3411 { 3412 u32 scfgrev_param; 3413 int ret; 3414 3415 scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3416 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV)); 3417 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3418 1, &scfgrev_param, vers); 3419 if (ret) 3420 *vers = 0; 3421 return ret; 3422 } 3423 3424 /** 3425 * t4_get_vpd_version - return the VPD version 3426 * @adapter: the adapter 3427 * @vers: where to place the version 3428 * 3429 * Reads the VPD via the Firmware interface (thus this can only be called 3430 * once we're ready to issue Firmware commands). The format of the 3431 * VPD version is adapter specific. Returns 0 on success, an error on 3432 * failure. 3433 * 3434 * Note that early versions of the Firmware didn't include the ability 3435 * to retrieve the VPD version, so we zero-out the return-value parameter 3436 * in that case to avoid leaving it with garbage in it. 3437 * 3438 * Also note that the Firmware will return its cached copy of the VPD 3439 * Revision ID, not the actual Revision ID as written in the Serial 3440 * EEPROM. This is only an issue if a new VPD has been written and the 3441 * Firmware/Chip haven't yet gone through a RESET sequence. So it's best 3442 * to defer calling this routine till after a FW_RESET_CMD has been issued 3443 * if the Host Driver will be performing a full adapter initialization. 3444 */ 3445 int t4_get_vpd_version(struct adapter *adapter, u32 *vers) 3446 { 3447 u32 vpdrev_param; 3448 int ret; 3449 3450 vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3451 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV)); 3452 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3453 1, &vpdrev_param, vers); 3454 if (ret) 3455 *vers = 0; 3456 return ret; 3457 } 3458 3459 /** 3460 * t4_get_version_info - extract various chip/firmware version information 3461 * @adapter: the adapter 3462 * 3463 * Reads various chip/firmware version numbers and stores them into the 3464 * adapter Adapter Parameters structure. If any of the efforts fails 3465 * the first failure will be returned, but all of the version numbers 3466 * will be read. 3467 */ 3468 int t4_get_version_info(struct adapter *adapter) 3469 { 3470 int ret = 0; 3471 3472 #define FIRST_RET(__getvinfo) \ 3473 do { \ 3474 int __ret = __getvinfo; \ 3475 if (__ret && !ret) \ 3476 ret = __ret; \ 3477 } while (0) 3478 3479 FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers)); 3480 FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers)); 3481 FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers)); 3482 FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers)); 3483 FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers)); 3484 FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers)); 3485 3486 #undef FIRST_RET 3487 3488 return ret; 3489 } 3490 3491 /** 3492 * t4_flash_erase_sectors - erase a range of flash sectors 3493 * @adapter: the adapter 3494 * @start: the first sector to erase 3495 * @end: the last sector to erase 3496 * 3497 * Erases the sectors in the given inclusive range. 3498 */ 3499 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 3500 { 3501 int ret = 0; 3502 3503 if (end >= adapter->params.sf_nsec) 3504 return -EINVAL; 3505 3506 while (start <= end) { 3507 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3508 (ret = sf1_write(adapter, 4, 0, 1, 3509 SF_ERASE_SECTOR | (start << 8))) != 0 || 3510 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 3511 CH_ERR(adapter, 3512 "erase of flash sector %d failed, error %d\n", 3513 start, ret); 3514 break; 3515 } 3516 start++; 3517 } 3518 t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ 3519 return ret; 3520 } 3521 3522 /** 3523 * t4_flash_cfg_addr - return the address of the flash configuration file 3524 * @adapter: the adapter 3525 * 3526 * Return the address within the flash where the Firmware Configuration 3527 * File is stored, or an error if the device FLASH is too small to contain 3528 * a Firmware Configuration File. 3529 */ 3530 int t4_flash_cfg_addr(struct adapter *adapter) 3531 { 3532 /* 3533 * If the device FLASH isn't large enough to hold a Firmware 3534 * Configuration File, return an error. 3535 */ 3536 if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE) 3537 return -ENOSPC; 3538 3539 return FLASH_CFG_START; 3540 } 3541 3542 /* 3543 * Return TRUE if the specified firmware matches the adapter. I.e. T4 3544 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 3545 * and emit an error message for mismatched firmware to save our caller the 3546 * effort ... 3547 */ 3548 static int t4_fw_matches_chip(struct adapter *adap, 3549 const struct fw_hdr *hdr) 3550 { 3551 /* 3552 * The expression below will return FALSE for any unsupported adapter 3553 * which will keep us "honest" in the future ... 3554 */ 3555 if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) || 3556 (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) || 3557 (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6)) 3558 return 1; 3559 3560 CH_ERR(adap, 3561 "FW image (%d) is not suitable for this adapter (%d)\n", 3562 hdr->chip, chip_id(adap)); 3563 return 0; 3564 } 3565 3566 /** 3567 * t4_load_fw - download firmware 3568 * @adap: the adapter 3569 * @fw_data: the firmware image to write 3570 * @size: image size 3571 * 3572 * Write the supplied firmware image to the card's serial flash. 3573 */ 3574 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 3575 { 3576 u32 csum; 3577 int ret, addr; 3578 unsigned int i; 3579 u8 first_page[SF_PAGE_SIZE]; 3580 const u32 *p = (const u32 *)fw_data; 3581 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 3582 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 3583 unsigned int fw_start_sec; 3584 unsigned int fw_start; 3585 unsigned int fw_size; 3586 3587 if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) { 3588 fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC; 3589 fw_start = FLASH_FWBOOTSTRAP_START; 3590 fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE; 3591 } else { 3592 fw_start_sec = FLASH_FW_START_SEC; 3593 fw_start = FLASH_FW_START; 3594 fw_size = FLASH_FW_MAX_SIZE; 3595 } 3596 3597 if (!size) { 3598 CH_ERR(adap, "FW image has no data\n"); 3599 return -EINVAL; 3600 } 3601 if (size & 511) { 3602 CH_ERR(adap, 3603 "FW image size not multiple of 512 bytes\n"); 3604 return -EINVAL; 3605 } 3606 if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) { 3607 CH_ERR(adap, 3608 "FW image size differs from size in FW header\n"); 3609 return -EINVAL; 3610 } 3611 if (size > fw_size) { 3612 CH_ERR(adap, "FW image too large, max is %u bytes\n", 3613 fw_size); 3614 return -EFBIG; 3615 } 3616 if (!t4_fw_matches_chip(adap, hdr)) 3617 return -EINVAL; 3618 3619 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 3620 csum += be32_to_cpu(p[i]); 3621 3622 if (csum != 0xffffffff) { 3623 CH_ERR(adap, 3624 "corrupted firmware image, checksum %#x\n", csum); 3625 return -EINVAL; 3626 } 3627 3628 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 3629 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 3630 if (ret) 3631 goto out; 3632 3633 /* 3634 * We write the correct version at the end so the driver can see a bad 3635 * version if the FW write fails. Start by writing a copy of the 3636 * first page with a bad version. 3637 */ 3638 memcpy(first_page, fw_data, SF_PAGE_SIZE); 3639 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); 3640 ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1); 3641 if (ret) 3642 goto out; 3643 3644 addr = fw_start; 3645 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 3646 addr += SF_PAGE_SIZE; 3647 fw_data += SF_PAGE_SIZE; 3648 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1); 3649 if (ret) 3650 goto out; 3651 } 3652 3653 ret = t4_write_flash(adap, 3654 fw_start + offsetof(struct fw_hdr, fw_ver), 3655 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1); 3656 out: 3657 if (ret) 3658 CH_ERR(adap, "firmware download failed, error %d\n", 3659 ret); 3660 return ret; 3661 } 3662 3663 /** 3664 * t4_fwcache - firmware cache operation 3665 * @adap: the adapter 3666 * @op : the operation (flush or flush and invalidate) 3667 */ 3668 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 3669 { 3670 struct fw_params_cmd c; 3671 3672 memset(&c, 0, sizeof(c)); 3673 c.op_to_vfn = 3674 cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) | 3675 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 3676 V_FW_PARAMS_CMD_PFN(adap->pf) | 3677 V_FW_PARAMS_CMD_VFN(0)); 3678 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 3679 c.param[0].mnem = 3680 cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3681 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE)); 3682 c.param[0].val = (__force __be32)op; 3683 3684 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 3685 } 3686 3687 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, 3688 unsigned int *pif_req_wrptr, 3689 unsigned int *pif_rsp_wrptr) 3690 { 3691 int i, j; 3692 u32 cfg, val, req, rsp; 3693 3694 cfg = t4_read_reg(adap, A_CIM_DEBUGCFG); 3695 if (cfg & F_LADBGEN) 3696 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN); 3697 3698 val = t4_read_reg(adap, A_CIM_DEBUGSTS); 3699 req = G_POLADBGWRPTR(val); 3700 rsp = G_PILADBGWRPTR(val); 3701 if (pif_req_wrptr) 3702 *pif_req_wrptr = req; 3703 if (pif_rsp_wrptr) 3704 *pif_rsp_wrptr = rsp; 3705 3706 for (i = 0; i < CIM_PIFLA_SIZE; i++) { 3707 for (j = 0; j < 6; j++) { 3708 t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) | 3709 V_PILADBGRDPTR(rsp)); 3710 *pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA); 3711 *pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA); 3712 req++; 3713 rsp++; 3714 } 3715 req = (req + 2) & M_POLADBGRDPTR; 3716 rsp = (rsp + 2) & M_PILADBGRDPTR; 3717 } 3718 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg); 3719 } 3720 3721 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) 3722 { 3723 u32 cfg; 3724 int i, j, idx; 3725 3726 cfg = t4_read_reg(adap, A_CIM_DEBUGCFG); 3727 if (cfg & F_LADBGEN) 3728 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN); 3729 3730 for (i = 0; i < CIM_MALA_SIZE; i++) { 3731 for (j = 0; j < 5; j++) { 3732 idx = 8 * i + j; 3733 t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) | 3734 V_PILADBGRDPTR(idx)); 3735 *ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA); 3736 *ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA); 3737 } 3738 } 3739 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg); 3740 } 3741 3742 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 3743 { 3744 unsigned int i, j; 3745 3746 for (i = 0; i < 8; i++) { 3747 u32 *p = la_buf + i; 3748 3749 t4_write_reg(adap, A_ULP_RX_LA_CTL, i); 3750 j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR); 3751 t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j); 3752 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 3753 *p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA); 3754 } 3755 } 3756 3757 /** 3758 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits 3759 * @caps16: a 16-bit Port Capabilities value 3760 * 3761 * Returns the equivalent 32-bit Port Capabilities value. 3762 */ 3763 static uint32_t fwcaps16_to_caps32(uint16_t caps16) 3764 { 3765 uint32_t caps32 = 0; 3766 3767 #define CAP16_TO_CAP32(__cap) \ 3768 do { \ 3769 if (caps16 & FW_PORT_CAP_##__cap) \ 3770 caps32 |= FW_PORT_CAP32_##__cap; \ 3771 } while (0) 3772 3773 CAP16_TO_CAP32(SPEED_100M); 3774 CAP16_TO_CAP32(SPEED_1G); 3775 CAP16_TO_CAP32(SPEED_25G); 3776 CAP16_TO_CAP32(SPEED_10G); 3777 CAP16_TO_CAP32(SPEED_40G); 3778 CAP16_TO_CAP32(SPEED_100G); 3779 CAP16_TO_CAP32(FC_RX); 3780 CAP16_TO_CAP32(FC_TX); 3781 CAP16_TO_CAP32(ANEG); 3782 CAP16_TO_CAP32(FORCE_PAUSE); 3783 CAP16_TO_CAP32(MDIAUTO); 3784 CAP16_TO_CAP32(MDISTRAIGHT); 3785 CAP16_TO_CAP32(FEC_RS); 3786 CAP16_TO_CAP32(FEC_BASER_RS); 3787 CAP16_TO_CAP32(802_3_PAUSE); 3788 CAP16_TO_CAP32(802_3_ASM_DIR); 3789 3790 #undef CAP16_TO_CAP32 3791 3792 return caps32; 3793 } 3794 3795 /** 3796 * fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits 3797 * @caps32: a 32-bit Port Capabilities value 3798 * 3799 * Returns the equivalent 16-bit Port Capabilities value. Note that 3800 * not all 32-bit Port Capabilities can be represented in the 16-bit 3801 * Port Capabilities and some fields/values may not make it. 3802 */ 3803 static uint16_t fwcaps32_to_caps16(uint32_t caps32) 3804 { 3805 uint16_t caps16 = 0; 3806 3807 #define CAP32_TO_CAP16(__cap) \ 3808 do { \ 3809 if (caps32 & FW_PORT_CAP32_##__cap) \ 3810 caps16 |= FW_PORT_CAP_##__cap; \ 3811 } while (0) 3812 3813 CAP32_TO_CAP16(SPEED_100M); 3814 CAP32_TO_CAP16(SPEED_1G); 3815 CAP32_TO_CAP16(SPEED_10G); 3816 CAP32_TO_CAP16(SPEED_25G); 3817 CAP32_TO_CAP16(SPEED_40G); 3818 CAP32_TO_CAP16(SPEED_100G); 3819 CAP32_TO_CAP16(FC_RX); 3820 CAP32_TO_CAP16(FC_TX); 3821 CAP32_TO_CAP16(802_3_PAUSE); 3822 CAP32_TO_CAP16(802_3_ASM_DIR); 3823 CAP32_TO_CAP16(ANEG); 3824 CAP32_TO_CAP16(FORCE_PAUSE); 3825 CAP32_TO_CAP16(MDIAUTO); 3826 CAP32_TO_CAP16(MDISTRAIGHT); 3827 CAP32_TO_CAP16(FEC_RS); 3828 CAP32_TO_CAP16(FEC_BASER_RS); 3829 3830 #undef CAP32_TO_CAP16 3831 3832 return caps16; 3833 } 3834 3835 static bool 3836 is_bt(struct port_info *pi) 3837 { 3838 3839 return (pi->port_type == FW_PORT_TYPE_BT_SGMII || 3840 pi->port_type == FW_PORT_TYPE_BT_XFI || 3841 pi->port_type == FW_PORT_TYPE_BT_XAUI); 3842 } 3843 3844 /** 3845 * t4_link_l1cfg - apply link configuration to MAC/PHY 3846 * @phy: the PHY to setup 3847 * @mac: the MAC to setup 3848 * @lc: the requested link configuration 3849 * 3850 * Set up a port's MAC and PHY according to a desired link configuration. 3851 * - If the PHY can auto-negotiate first decide what to advertise, then 3852 * enable/disable auto-negotiation as desired, and reset. 3853 * - If the PHY does not auto-negotiate just reset it. 3854 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 3855 * otherwise do it later based on the outcome of auto-negotiation. 3856 */ 3857 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port, 3858 struct link_config *lc) 3859 { 3860 struct fw_port_cmd c; 3861 unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO); 3862 unsigned int aneg, fc, fec, speed, rcap; 3863 3864 fc = 0; 3865 if (lc->requested_fc & PAUSE_RX) 3866 fc |= FW_PORT_CAP32_FC_RX; 3867 if (lc->requested_fc & PAUSE_TX) 3868 fc |= FW_PORT_CAP32_FC_TX; 3869 if (!(lc->requested_fc & PAUSE_AUTONEG)) 3870 fc |= FW_PORT_CAP32_FORCE_PAUSE; 3871 3872 fec = 0; 3873 if (lc->requested_fec == FEC_AUTO) 3874 fec = lc->fec_hint; 3875 else { 3876 if (lc->requested_fec & FEC_RS) 3877 fec |= FW_PORT_CAP32_FEC_RS; 3878 if (lc->requested_fec & FEC_BASER_RS) 3879 fec |= FW_PORT_CAP32_FEC_BASER_RS; 3880 } 3881 3882 if (lc->requested_aneg == AUTONEG_DISABLE) 3883 aneg = 0; 3884 else if (lc->requested_aneg == AUTONEG_ENABLE) 3885 aneg = FW_PORT_CAP32_ANEG; 3886 else 3887 aneg = lc->supported & FW_PORT_CAP32_ANEG; 3888 3889 if (aneg) { 3890 speed = lc->supported & V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED); 3891 } else if (lc->requested_speed != 0) 3892 speed = speed_to_fwcap(lc->requested_speed); 3893 else 3894 speed = fwcap_top_speed(lc->supported); 3895 3896 /* Force AN on for BT cards. */ 3897 if (is_bt(adap->port[adap->chan_map[port]])) 3898 aneg = lc->supported & FW_PORT_CAP32_ANEG; 3899 3900 rcap = aneg | speed | fc | fec; 3901 if ((rcap | lc->supported) != lc->supported) { 3902 #ifdef INVARIANTS 3903 CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x\n", rcap, 3904 lc->supported); 3905 #endif 3906 rcap &= lc->supported; 3907 } 3908 rcap |= mdi; 3909 3910 memset(&c, 0, sizeof(c)); 3911 c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) | 3912 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 3913 V_FW_PORT_CMD_PORTID(port)); 3914 if (adap->params.port_caps32) { 3915 c.action_to_len16 = 3916 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) | 3917 FW_LEN16(c)); 3918 c.u.l1cfg32.rcap32 = cpu_to_be32(rcap); 3919 } else { 3920 c.action_to_len16 = 3921 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) | 3922 FW_LEN16(c)); 3923 c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap)); 3924 } 3925 3926 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 3927 } 3928 3929 /** 3930 * t4_restart_aneg - restart autonegotiation 3931 * @adap: the adapter 3932 * @mbox: mbox to use for the FW command 3933 * @port: the port id 3934 * 3935 * Restarts autonegotiation for the selected port. 3936 */ 3937 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 3938 { 3939 struct fw_port_cmd c; 3940 3941 memset(&c, 0, sizeof(c)); 3942 c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) | 3943 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 3944 V_FW_PORT_CMD_PORTID(port)); 3945 c.action_to_len16 = 3946 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) | 3947 FW_LEN16(c)); 3948 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG); 3949 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 3950 } 3951 3952 struct intr_details { 3953 u32 mask; 3954 const char *msg; 3955 }; 3956 3957 struct intr_action { 3958 u32 mask; 3959 int arg; 3960 bool (*action)(struct adapter *, int, bool); 3961 }; 3962 3963 #define NONFATAL_IF_DISABLED 1 3964 struct intr_info { 3965 const char *name; /* name of the INT_CAUSE register */ 3966 int cause_reg; /* INT_CAUSE register */ 3967 int enable_reg; /* INT_ENABLE register */ 3968 u32 fatal; /* bits that are fatal */ 3969 int flags; /* hints */ 3970 const struct intr_details *details; 3971 const struct intr_action *actions; 3972 }; 3973 3974 static inline char 3975 intr_alert_char(u32 cause, u32 enable, u32 fatal) 3976 { 3977 3978 if (cause & fatal) 3979 return ('!'); 3980 if (cause & enable) 3981 return ('*'); 3982 return ('-'); 3983 } 3984 3985 static void 3986 t4_show_intr_info(struct adapter *adap, const struct intr_info *ii, u32 cause) 3987 { 3988 u32 enable, fatal, leftover; 3989 const struct intr_details *details; 3990 char alert; 3991 3992 enable = t4_read_reg(adap, ii->enable_reg); 3993 if (ii->flags & NONFATAL_IF_DISABLED) 3994 fatal = ii->fatal & t4_read_reg(adap, ii->enable_reg); 3995 else 3996 fatal = ii->fatal; 3997 alert = intr_alert_char(cause, enable, fatal); 3998 CH_ALERT(adap, "%c %s 0x%x = 0x%08x, E 0x%08x, F 0x%08x\n", 3999 alert, ii->name, ii->cause_reg, cause, enable, fatal); 4000 4001 leftover = cause; 4002 for (details = ii->details; details && details->mask != 0; details++) { 4003 u32 msgbits = details->mask & cause; 4004 if (msgbits == 0) 4005 continue; 4006 alert = intr_alert_char(msgbits, enable, ii->fatal); 4007 CH_ALERT(adap, " %c [0x%08x] %s\n", alert, msgbits, 4008 details->msg); 4009 leftover &= ~msgbits; 4010 } 4011 if (leftover != 0 && leftover != cause) 4012 CH_ALERT(adap, " ? [0x%08x]\n", leftover); 4013 } 4014 4015 /* 4016 * Returns true for fatal error. 4017 */ 4018 static bool 4019 t4_handle_intr(struct adapter *adap, const struct intr_info *ii, 4020 u32 additional_cause, bool verbose) 4021 { 4022 u32 cause, fatal; 4023 bool rc; 4024 const struct intr_action *action; 4025 4026 /* 4027 * Read and display cause. Note that the top level PL_INT_CAUSE is a 4028 * bit special and we need to completely ignore the bits that are not in 4029 * PL_INT_ENABLE. 4030 */ 4031 cause = t4_read_reg(adap, ii->cause_reg); 4032 if (ii->cause_reg == A_PL_INT_CAUSE) 4033 cause &= t4_read_reg(adap, ii->enable_reg); 4034 if (verbose || cause != 0) 4035 t4_show_intr_info(adap, ii, cause); 4036 fatal = cause & ii->fatal; 4037 if (fatal != 0 && ii->flags & NONFATAL_IF_DISABLED) 4038 fatal &= t4_read_reg(adap, ii->enable_reg); 4039 cause |= additional_cause; 4040 if (cause == 0) 4041 return (false); 4042 4043 rc = fatal != 0; 4044 for (action = ii->actions; action && action->mask != 0; action++) { 4045 if (!(action->mask & cause)) 4046 continue; 4047 rc |= (action->action)(adap, action->arg, verbose); 4048 } 4049 4050 /* clear */ 4051 t4_write_reg(adap, ii->cause_reg, cause); 4052 (void)t4_read_reg(adap, ii->cause_reg); 4053 4054 return (rc); 4055 } 4056 4057 /* 4058 * Interrupt handler for the PCIE module. 4059 */ 4060 static bool pcie_intr_handler(struct adapter *adap, int arg, bool verbose) 4061 { 4062 static const struct intr_details sysbus_intr_details[] = { 4063 { F_RNPP, "RXNP array parity error" }, 4064 { F_RPCP, "RXPC array parity error" }, 4065 { F_RCIP, "RXCIF array parity error" }, 4066 { F_RCCP, "Rx completions control array parity error" }, 4067 { F_RFTP, "RXFT array parity error" }, 4068 { 0 } 4069 }; 4070 static const struct intr_info sysbus_intr_info = { 4071 .name = "PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS", 4072 .cause_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS, 4073 .enable_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_INTERRUPT_ENABLE, 4074 .fatal = F_RFTP | F_RCCP | F_RCIP | F_RPCP | F_RNPP, 4075 .flags = 0, 4076 .details = sysbus_intr_details, 4077 .actions = NULL, 4078 }; 4079 static const struct intr_details pcie_port_intr_details[] = { 4080 { F_TPCP, "TXPC array parity error" }, 4081 { F_TNPP, "TXNP array parity error" }, 4082 { F_TFTP, "TXFT array parity error" }, 4083 { F_TCAP, "TXCA array parity error" }, 4084 { F_TCIP, "TXCIF array parity error" }, 4085 { F_RCAP, "RXCA array parity error" }, 4086 { F_OTDD, "outbound request TLP discarded" }, 4087 { F_RDPE, "Rx data parity error" }, 4088 { F_TDUE, "Tx uncorrectable data error" }, 4089 { 0 } 4090 }; 4091 static const struct intr_info pcie_port_intr_info = { 4092 .name = "PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS", 4093 .cause_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS, 4094 .enable_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_INTERRUPT_ENABLE, 4095 .fatal = F_TPCP | F_TNPP | F_TFTP | F_TCAP | F_TCIP | F_RCAP | 4096 F_OTDD | F_RDPE | F_TDUE, 4097 .flags = 0, 4098 .details = pcie_port_intr_details, 4099 .actions = NULL, 4100 }; 4101 static const struct intr_details pcie_intr_details[] = { 4102 { F_MSIADDRLPERR, "MSI AddrL parity error" }, 4103 { F_MSIADDRHPERR, "MSI AddrH parity error" }, 4104 { F_MSIDATAPERR, "MSI data parity error" }, 4105 { F_MSIXADDRLPERR, "MSI-X AddrL parity error" }, 4106 { F_MSIXADDRHPERR, "MSI-X AddrH parity error" }, 4107 { F_MSIXDATAPERR, "MSI-X data parity error" }, 4108 { F_MSIXDIPERR, "MSI-X DI parity error" }, 4109 { F_PIOCPLPERR, "PCIe PIO completion FIFO parity error" }, 4110 { F_PIOREQPERR, "PCIe PIO request FIFO parity error" }, 4111 { F_TARTAGPERR, "PCIe target tag FIFO parity error" }, 4112 { F_CCNTPERR, "PCIe CMD channel count parity error" }, 4113 { F_CREQPERR, "PCIe CMD channel request parity error" }, 4114 { F_CRSPPERR, "PCIe CMD channel response parity error" }, 4115 { F_DCNTPERR, "PCIe DMA channel count parity error" }, 4116 { F_DREQPERR, "PCIe DMA channel request parity error" }, 4117 { F_DRSPPERR, "PCIe DMA channel response parity error" }, 4118 { F_HCNTPERR, "PCIe HMA channel count parity error" }, 4119 { F_HREQPERR, "PCIe HMA channel request parity error" }, 4120 { F_HRSPPERR, "PCIe HMA channel response parity error" }, 4121 { F_CFGSNPPERR, "PCIe config snoop FIFO parity error" }, 4122 { F_FIDPERR, "PCIe FID parity error" }, 4123 { F_INTXCLRPERR, "PCIe INTx clear parity error" }, 4124 { F_MATAGPERR, "PCIe MA tag parity error" }, 4125 { F_PIOTAGPERR, "PCIe PIO tag parity error" }, 4126 { F_RXCPLPERR, "PCIe Rx completion parity error" }, 4127 { F_RXWRPERR, "PCIe Rx write parity error" }, 4128 { F_RPLPERR, "PCIe replay buffer parity error" }, 4129 { F_PCIESINT, "PCIe core secondary fault" }, 4130 { F_PCIEPINT, "PCIe core primary fault" }, 4131 { F_UNXSPLCPLERR, "PCIe unexpected split completion error" }, 4132 { 0 } 4133 }; 4134 static const struct intr_details t5_pcie_intr_details[] = { 4135 { F_IPGRPPERR, "Parity errors observed by IP" }, 4136 { F_NONFATALERR, "PCIe non-fatal error" }, 4137 { F_READRSPERR, "Outbound read error" }, 4138 { F_TRGT1GRPPERR, "PCIe TRGT1 group FIFOs parity error" }, 4139 { F_IPSOTPERR, "PCIe IP SOT buffer SRAM parity error" }, 4140 { F_IPRETRYPERR, "PCIe IP replay buffer parity error" }, 4141 { F_IPRXDATAGRPPERR, "PCIe IP Rx data group SRAMs parity error" }, 4142 { F_IPRXHDRGRPPERR, "PCIe IP Rx header group SRAMs parity error" }, 4143 { F_PIOTAGQPERR, "PIO tag queue FIFO parity error" }, 4144 { F_MAGRPPERR, "MA group FIFO parity error" }, 4145 { F_VFIDPERR, "VFID SRAM parity error" }, 4146 { F_FIDPERR, "FID SRAM parity error" }, 4147 { F_CFGSNPPERR, "config snoop FIFO parity error" }, 4148 { F_HRSPPERR, "HMA channel response data SRAM parity error" }, 4149 { F_HREQRDPERR, "HMA channel read request SRAM parity error" }, 4150 { F_HREQWRPERR, "HMA channel write request SRAM parity error" }, 4151 { F_DRSPPERR, "DMA channel response data SRAM parity error" }, 4152 { F_DREQRDPERR, "DMA channel write request SRAM parity error" }, 4153 { F_CRSPPERR, "CMD channel response data SRAM parity error" }, 4154 { F_CREQRDPERR, "CMD channel read request SRAM parity error" }, 4155 { F_MSTTAGQPERR, "PCIe master tag queue SRAM parity error" }, 4156 { F_TGTTAGQPERR, "PCIe target tag queue FIFO parity error" }, 4157 { F_PIOREQGRPPERR, "PIO request group FIFOs parity error" }, 4158 { F_PIOCPLGRPPERR, "PIO completion group FIFOs parity error" }, 4159 { F_MSIXDIPERR, "MSI-X DI SRAM parity error" }, 4160 { F_MSIXDATAPERR, "MSI-X data SRAM parity error" }, 4161 { F_MSIXADDRHPERR, "MSI-X AddrH SRAM parity error" }, 4162 { F_MSIXADDRLPERR, "MSI-X AddrL SRAM parity error" }, 4163 { F_MSIXSTIPERR, "MSI-X STI SRAM parity error" }, 4164 { F_MSTTIMEOUTPERR, "Master timeout FIFO parity error" }, 4165 { F_MSTGRPPERR, "Master response read queue SRAM parity error" }, 4166 { 0 } 4167 }; 4168 struct intr_info pcie_intr_info = { 4169 .name = "PCIE_INT_CAUSE", 4170 .cause_reg = A_PCIE_INT_CAUSE, 4171 .enable_reg = A_PCIE_INT_ENABLE, 4172 .fatal = 0xffffffff, 4173 .flags = NONFATAL_IF_DISABLED, 4174 .details = NULL, 4175 .actions = NULL, 4176 }; 4177 bool fatal = false; 4178 4179 if (is_t4(adap)) { 4180 fatal |= t4_handle_intr(adap, &sysbus_intr_info, 0, verbose); 4181 fatal |= t4_handle_intr(adap, &pcie_port_intr_info, 0, verbose); 4182 4183 pcie_intr_info.details = pcie_intr_details; 4184 } else { 4185 pcie_intr_info.details = t5_pcie_intr_details; 4186 } 4187 fatal |= t4_handle_intr(adap, &pcie_intr_info, 0, verbose); 4188 4189 return (fatal); 4190 } 4191 4192 /* 4193 * TP interrupt handler. 4194 */ 4195 static bool tp_intr_handler(struct adapter *adap, int arg, bool verbose) 4196 { 4197 static const struct intr_details tp_intr_details[] = { 4198 { 0x3fffffff, "TP parity error" }, 4199 { F_FLMTXFLSTEMPTY, "TP out of Tx pages" }, 4200 { 0 } 4201 }; 4202 static const struct intr_info tp_intr_info = { 4203 .name = "TP_INT_CAUSE", 4204 .cause_reg = A_TP_INT_CAUSE, 4205 .enable_reg = A_TP_INT_ENABLE, 4206 .fatal = 0x7fffffff, 4207 .flags = NONFATAL_IF_DISABLED, 4208 .details = tp_intr_details, 4209 .actions = NULL, 4210 }; 4211 4212 return (t4_handle_intr(adap, &tp_intr_info, 0, verbose)); 4213 } 4214 4215 /* 4216 * SGE interrupt handler. 4217 */ 4218 static bool sge_intr_handler(struct adapter *adap, int arg, bool verbose) 4219 { 4220 static const struct intr_info sge_int1_info = { 4221 .name = "SGE_INT_CAUSE1", 4222 .cause_reg = A_SGE_INT_CAUSE1, 4223 .enable_reg = A_SGE_INT_ENABLE1, 4224 .fatal = 0xffffffff, 4225 .flags = NONFATAL_IF_DISABLED, 4226 .details = NULL, 4227 .actions = NULL, 4228 }; 4229 static const struct intr_info sge_int2_info = { 4230 .name = "SGE_INT_CAUSE2", 4231 .cause_reg = A_SGE_INT_CAUSE2, 4232 .enable_reg = A_SGE_INT_ENABLE2, 4233 .fatal = 0xffffffff, 4234 .flags = NONFATAL_IF_DISABLED, 4235 .details = NULL, 4236 .actions = NULL, 4237 }; 4238 static const struct intr_details sge_int3_details[] = { 4239 { F_ERR_FLM_DBP, 4240 "DBP pointer delivery for invalid context or QID" }, 4241 { F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0, 4242 "Invalid QID or header request by IDMA" }, 4243 { F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" }, 4244 { F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" }, 4245 { F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" }, 4246 { F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" }, 4247 { F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" }, 4248 { F_ERR_TIMER_ABOVE_MAX_QID, 4249 "SGE GTS with timer 0-5 for IQID > 1023" }, 4250 { F_ERR_CPL_EXCEED_IQE_SIZE, 4251 "SGE received CPL exceeding IQE size" }, 4252 { F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" }, 4253 { F_ERR_ITP_TIME_PAUSED, "SGE ITP error" }, 4254 { F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" }, 4255 { F_ERR_DROPPED_DB, "SGE DB dropped" }, 4256 { F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0, 4257 "SGE IQID > 1023 received CPL for FL" }, 4258 { F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 | 4259 F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" }, 4260 { F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" }, 4261 { F_ERR_ING_CTXT_PRIO, 4262 "Ingress context manager priority user error" }, 4263 { F_ERR_EGR_CTXT_PRIO, 4264 "Egress context manager priority user error" }, 4265 { F_DBFIFO_HP_INT, "High priority DB FIFO threshold reached" }, 4266 { F_DBFIFO_LP_INT, "Low priority DB FIFO threshold reached" }, 4267 { F_REG_ADDRESS_ERR, "Undefined SGE register accessed" }, 4268 { F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" }, 4269 { F_EGRESS_SIZE_ERR, "SGE illegal egress QID" }, 4270 { 0x0000000f, "SGE context access for invalid queue" }, 4271 { 0 } 4272 }; 4273 static const struct intr_details t6_sge_int3_details[] = { 4274 { F_ERR_FLM_DBP, 4275 "DBP pointer delivery for invalid context or QID" }, 4276 { F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0, 4277 "Invalid QID or header request by IDMA" }, 4278 { F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" }, 4279 { F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" }, 4280 { F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" }, 4281 { F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" }, 4282 { F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" }, 4283 { F_ERR_TIMER_ABOVE_MAX_QID, 4284 "SGE GTS with timer 0-5 for IQID > 1023" }, 4285 { F_ERR_CPL_EXCEED_IQE_SIZE, 4286 "SGE received CPL exceeding IQE size" }, 4287 { F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" }, 4288 { F_ERR_ITP_TIME_PAUSED, "SGE ITP error" }, 4289 { F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" }, 4290 { F_ERR_DROPPED_DB, "SGE DB dropped" }, 4291 { F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0, 4292 "SGE IQID > 1023 received CPL for FL" }, 4293 { F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 | 4294 F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" }, 4295 { F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" }, 4296 { F_ERR_ING_CTXT_PRIO, 4297 "Ingress context manager priority user error" }, 4298 { F_ERR_EGR_CTXT_PRIO, 4299 "Egress context manager priority user error" }, 4300 { F_DBP_TBUF_FULL, "SGE DBP tbuf full" }, 4301 { F_FATAL_WRE_LEN, 4302 "SGE WRE packet less than advertized length" }, 4303 { F_REG_ADDRESS_ERR, "Undefined SGE register accessed" }, 4304 { F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" }, 4305 { F_EGRESS_SIZE_ERR, "SGE illegal egress QID" }, 4306 { 0x0000000f, "SGE context access for invalid queue" }, 4307 { 0 } 4308 }; 4309 struct intr_info sge_int3_info = { 4310 .name = "SGE_INT_CAUSE3", 4311 .cause_reg = A_SGE_INT_CAUSE3, 4312 .enable_reg = A_SGE_INT_ENABLE3, 4313 .fatal = F_ERR_CPL_EXCEED_IQE_SIZE, 4314 .flags = 0, 4315 .details = NULL, 4316 .actions = NULL, 4317 }; 4318 static const struct intr_info sge_int4_info = { 4319 .name = "SGE_INT_CAUSE4", 4320 .cause_reg = A_SGE_INT_CAUSE4, 4321 .enable_reg = A_SGE_INT_ENABLE4, 4322 .fatal = 0, 4323 .flags = 0, 4324 .details = NULL, 4325 .actions = NULL, 4326 }; 4327 static const struct intr_info sge_int5_info = { 4328 .name = "SGE_INT_CAUSE5", 4329 .cause_reg = A_SGE_INT_CAUSE5, 4330 .enable_reg = A_SGE_INT_ENABLE5, 4331 .fatal = 0xffffffff, 4332 .flags = NONFATAL_IF_DISABLED, 4333 .details = NULL, 4334 .actions = NULL, 4335 }; 4336 static const struct intr_info sge_int6_info = { 4337 .name = "SGE_INT_CAUSE6", 4338 .cause_reg = A_SGE_INT_CAUSE6, 4339 .enable_reg = A_SGE_INT_ENABLE6, 4340 .fatal = 0, 4341 .flags = 0, 4342 .details = NULL, 4343 .actions = NULL, 4344 }; 4345 4346 bool fatal; 4347 u32 v; 4348 4349 if (chip_id(adap) <= CHELSIO_T5) { 4350 sge_int3_info.details = sge_int3_details; 4351 } else { 4352 sge_int3_info.details = t6_sge_int3_details; 4353 } 4354 4355 fatal = false; 4356 fatal |= t4_handle_intr(adap, &sge_int1_info, 0, verbose); 4357 fatal |= t4_handle_intr(adap, &sge_int2_info, 0, verbose); 4358 fatal |= t4_handle_intr(adap, &sge_int3_info, 0, verbose); 4359 fatal |= t4_handle_intr(adap, &sge_int4_info, 0, verbose); 4360 if (chip_id(adap) >= CHELSIO_T5) 4361 fatal |= t4_handle_intr(adap, &sge_int5_info, 0, verbose); 4362 if (chip_id(adap) >= CHELSIO_T6) 4363 fatal |= t4_handle_intr(adap, &sge_int6_info, 0, verbose); 4364 4365 v = t4_read_reg(adap, A_SGE_ERROR_STATS); 4366 if (v & F_ERROR_QID_VALID) { 4367 CH_ERR(adap, "SGE error for QID %u\n", G_ERROR_QID(v)); 4368 if (v & F_UNCAPTURED_ERROR) 4369 CH_ERR(adap, "SGE UNCAPTURED_ERROR set (clearing)\n"); 4370 t4_write_reg(adap, A_SGE_ERROR_STATS, 4371 F_ERROR_QID_VALID | F_UNCAPTURED_ERROR); 4372 } 4373 4374 return (fatal); 4375 } 4376 4377 /* 4378 * CIM interrupt handler. 4379 */ 4380 static bool cim_intr_handler(struct adapter *adap, int arg, bool verbose) 4381 { 4382 static const struct intr_action cim_host_intr_actions[] = { 4383 { F_TIMER0INT, 0, t4_os_dump_cimla }, 4384 { 0 }, 4385 }; 4386 static const struct intr_details cim_host_intr_details[] = { 4387 /* T6+ */ 4388 { F_PCIE2CIMINTFPARERR, "CIM IBQ PCIe interface parity error" }, 4389 4390 /* T5+ */ 4391 { F_MA_CIM_INTFPERR, "MA2CIM interface parity error" }, 4392 { F_PLCIM_MSTRSPDATAPARERR, 4393 "PL2CIM master response data parity error" }, 4394 { F_NCSI2CIMINTFPARERR, "CIM IBQ NC-SI interface parity error" }, 4395 { F_SGE2CIMINTFPARERR, "CIM IBQ SGE interface parity error" }, 4396 { F_ULP2CIMINTFPARERR, "CIM IBQ ULP_TX interface parity error" }, 4397 { F_TP2CIMINTFPARERR, "CIM IBQ TP interface parity error" }, 4398 { F_OBQSGERX1PARERR, "CIM OBQ SGE1_RX parity error" }, 4399 { F_OBQSGERX0PARERR, "CIM OBQ SGE0_RX parity error" }, 4400 4401 /* T4+ */ 4402 { F_TIEQOUTPARERRINT, "CIM TIEQ outgoing FIFO parity error" }, 4403 { F_TIEQINPARERRINT, "CIM TIEQ incoming FIFO parity error" }, 4404 { F_MBHOSTPARERR, "CIM mailbox host read parity error" }, 4405 { F_MBUPPARERR, "CIM mailbox uP parity error" }, 4406 { F_IBQTP0PARERR, "CIM IBQ TP0 parity error" }, 4407 { F_IBQTP1PARERR, "CIM IBQ TP1 parity error" }, 4408 { F_IBQULPPARERR, "CIM IBQ ULP parity error" }, 4409 { F_IBQSGELOPARERR, "CIM IBQ SGE_LO parity error" }, 4410 { F_IBQSGEHIPARERR | F_IBQPCIEPARERR, /* same bit */ 4411 "CIM IBQ PCIe/SGE_HI parity error" }, 4412 { F_IBQNCSIPARERR, "CIM IBQ NC-SI parity error" }, 4413 { F_OBQULP0PARERR, "CIM OBQ ULP0 parity error" }, 4414 { F_OBQULP1PARERR, "CIM OBQ ULP1 parity error" }, 4415 { F_OBQULP2PARERR, "CIM OBQ ULP2 parity error" }, 4416 { F_OBQULP3PARERR, "CIM OBQ ULP3 parity error" }, 4417 { F_OBQSGEPARERR, "CIM OBQ SGE parity error" }, 4418 { F_OBQNCSIPARERR, "CIM OBQ NC-SI parity error" }, 4419 { F_TIMER1INT, "CIM TIMER0 interrupt" }, 4420 { F_TIMER0INT, "CIM TIMER0 interrupt" }, 4421 { F_PREFDROPINT, "CIM control register prefetch drop" }, 4422 { 0} 4423 }; 4424 static const struct intr_info cim_host_intr_info = { 4425 .name = "CIM_HOST_INT_CAUSE", 4426 .cause_reg = A_CIM_HOST_INT_CAUSE, 4427 .enable_reg = A_CIM_HOST_INT_ENABLE, 4428 .fatal = 0x007fffe6, 4429 .flags = NONFATAL_IF_DISABLED, 4430 .details = cim_host_intr_details, 4431 .actions = cim_host_intr_actions, 4432 }; 4433 static const struct intr_details cim_host_upacc_intr_details[] = { 4434 { F_EEPROMWRINT, "CIM EEPROM came out of busy state" }, 4435 { F_TIMEOUTMAINT, "CIM PIF MA timeout" }, 4436 { F_TIMEOUTINT, "CIM PIF timeout" }, 4437 { F_RSPOVRLOOKUPINT, "CIM response FIFO overwrite" }, 4438 { F_REQOVRLOOKUPINT, "CIM request FIFO overwrite" }, 4439 { F_BLKWRPLINT, "CIM block write to PL space" }, 4440 { F_BLKRDPLINT, "CIM block read from PL space" }, 4441 { F_SGLWRPLINT, 4442 "CIM single write to PL space with illegal BEs" }, 4443 { F_SGLRDPLINT, 4444 "CIM single read from PL space with illegal BEs" }, 4445 { F_BLKWRCTLINT, "CIM block write to CTL space" }, 4446 { F_BLKRDCTLINT, "CIM block read from CTL space" }, 4447 { F_SGLWRCTLINT, 4448 "CIM single write to CTL space with illegal BEs" }, 4449 { F_SGLRDCTLINT, 4450 "CIM single read from CTL space with illegal BEs" }, 4451 { F_BLKWREEPROMINT, "CIM block write to EEPROM space" }, 4452 { F_BLKRDEEPROMINT, "CIM block read from EEPROM space" }, 4453 { F_SGLWREEPROMINT, 4454 "CIM single write to EEPROM space with illegal BEs" }, 4455 { F_SGLRDEEPROMINT, 4456 "CIM single read from EEPROM space with illegal BEs" }, 4457 { F_BLKWRFLASHINT, "CIM block write to flash space" }, 4458 { F_BLKRDFLASHINT, "CIM block read from flash space" }, 4459 { F_SGLWRFLASHINT, "CIM single write to flash space" }, 4460 { F_SGLRDFLASHINT, 4461 "CIM single read from flash space with illegal BEs" }, 4462 { F_BLKWRBOOTINT, "CIM block write to boot space" }, 4463 { F_BLKRDBOOTINT, "CIM block read from boot space" }, 4464 { F_SGLWRBOOTINT, "CIM single write to boot space" }, 4465 { F_SGLRDBOOTINT, 4466 "CIM single read from boot space with illegal BEs" }, 4467 { F_ILLWRBEINT, "CIM illegal write BEs" }, 4468 { F_ILLRDBEINT, "CIM illegal read BEs" }, 4469 { F_ILLRDINT, "CIM illegal read" }, 4470 { F_ILLWRINT, "CIM illegal write" }, 4471 { F_ILLTRANSINT, "CIM illegal transaction" }, 4472 { F_RSVDSPACEINT, "CIM reserved space access" }, 4473 {0} 4474 }; 4475 static const struct intr_info cim_host_upacc_intr_info = { 4476 .name = "CIM_HOST_UPACC_INT_CAUSE", 4477 .cause_reg = A_CIM_HOST_UPACC_INT_CAUSE, 4478 .enable_reg = A_CIM_HOST_UPACC_INT_ENABLE, 4479 .fatal = 0x3fffeeff, 4480 .flags = NONFATAL_IF_DISABLED, 4481 .details = cim_host_upacc_intr_details, 4482 .actions = NULL, 4483 }; 4484 static const struct intr_info cim_pf_host_intr_info = { 4485 .name = "CIM_PF_HOST_INT_CAUSE", 4486 .cause_reg = MYPF_REG(A_CIM_PF_HOST_INT_CAUSE), 4487 .enable_reg = MYPF_REG(A_CIM_PF_HOST_INT_ENABLE), 4488 .fatal = 0, 4489 .flags = 0, 4490 .details = NULL, 4491 .actions = NULL, 4492 }; 4493 u32 val, fw_err; 4494 bool fatal; 4495 4496 fw_err = t4_read_reg(adap, A_PCIE_FW); 4497 if (fw_err & F_PCIE_FW_ERR) 4498 t4_report_fw_error(adap); 4499 4500 /* 4501 * When the Firmware detects an internal error which normally wouldn't 4502 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order 4503 * to make sure the Host sees the Firmware Crash. So if we have a 4504 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0 4505 * interrupt. 4506 */ 4507 val = t4_read_reg(adap, A_CIM_HOST_INT_CAUSE); 4508 if (val & F_TIMER0INT && (!(fw_err & F_PCIE_FW_ERR) || 4509 G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH)) { 4510 t4_write_reg(adap, A_CIM_HOST_INT_CAUSE, F_TIMER0INT); 4511 } 4512 4513 fatal = false; 4514 fatal |= t4_handle_intr(adap, &cim_host_intr_info, 0, verbose); 4515 fatal |= t4_handle_intr(adap, &cim_host_upacc_intr_info, 0, verbose); 4516 fatal |= t4_handle_intr(adap, &cim_pf_host_intr_info, 0, verbose); 4517 4518 return (fatal); 4519 } 4520 4521 /* 4522 * ULP RX interrupt handler. 4523 */ 4524 static bool ulprx_intr_handler(struct adapter *adap, int arg, bool verbose) 4525 { 4526 static const struct intr_details ulprx_intr_details[] = { 4527 /* T5+ */ 4528 { F_SE_CNT_MISMATCH_1, "ULPRX SE count mismatch in channel 1" }, 4529 { F_SE_CNT_MISMATCH_0, "ULPRX SE count mismatch in channel 0" }, 4530 4531 /* T4+ */ 4532 { F_CAUSE_CTX_1, "ULPRX channel 1 context error" }, 4533 { F_CAUSE_CTX_0, "ULPRX channel 0 context error" }, 4534 { 0x007fffff, "ULPRX parity error" }, 4535 { 0 } 4536 }; 4537 static const struct intr_info ulprx_intr_info = { 4538 .name = "ULP_RX_INT_CAUSE", 4539 .cause_reg = A_ULP_RX_INT_CAUSE, 4540 .enable_reg = A_ULP_RX_INT_ENABLE, 4541 .fatal = 0x07ffffff, 4542 .flags = NONFATAL_IF_DISABLED, 4543 .details = ulprx_intr_details, 4544 .actions = NULL, 4545 }; 4546 static const struct intr_info ulprx_intr2_info = { 4547 .name = "ULP_RX_INT_CAUSE_2", 4548 .cause_reg = A_ULP_RX_INT_CAUSE_2, 4549 .enable_reg = A_ULP_RX_INT_ENABLE_2, 4550 .fatal = 0, 4551 .flags = 0, 4552 .details = NULL, 4553 .actions = NULL, 4554 }; 4555 bool fatal = false; 4556 4557 fatal |= t4_handle_intr(adap, &ulprx_intr_info, 0, verbose); 4558 fatal |= t4_handle_intr(adap, &ulprx_intr2_info, 0, verbose); 4559 4560 return (fatal); 4561 } 4562 4563 /* 4564 * ULP TX interrupt handler. 4565 */ 4566 static bool ulptx_intr_handler(struct adapter *adap, int arg, bool verbose) 4567 { 4568 static const struct intr_details ulptx_intr_details[] = { 4569 { F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds" }, 4570 { F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds" }, 4571 { F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds" }, 4572 { F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds" }, 4573 { 0x0fffffff, "ULPTX parity error" }, 4574 { 0 } 4575 }; 4576 static const struct intr_info ulptx_intr_info = { 4577 .name = "ULP_TX_INT_CAUSE", 4578 .cause_reg = A_ULP_TX_INT_CAUSE, 4579 .enable_reg = A_ULP_TX_INT_ENABLE, 4580 .fatal = 0x0fffffff, 4581 .flags = NONFATAL_IF_DISABLED, 4582 .details = ulptx_intr_details, 4583 .actions = NULL, 4584 }; 4585 static const struct intr_info ulptx_intr2_info = { 4586 .name = "ULP_TX_INT_CAUSE_2", 4587 .cause_reg = A_ULP_TX_INT_CAUSE_2, 4588 .enable_reg = A_ULP_TX_INT_ENABLE_2, 4589 .fatal = 0xf0, 4590 .flags = NONFATAL_IF_DISABLED, 4591 .details = NULL, 4592 .actions = NULL, 4593 }; 4594 bool fatal = false; 4595 4596 fatal |= t4_handle_intr(adap, &ulptx_intr_info, 0, verbose); 4597 fatal |= t4_handle_intr(adap, &ulptx_intr2_info, 0, verbose); 4598 4599 return (fatal); 4600 } 4601 4602 static bool pmtx_dump_dbg_stats(struct adapter *adap, int arg, bool verbose) 4603 { 4604 int i; 4605 u32 data[17]; 4606 4607 t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, &data[0], 4608 ARRAY_SIZE(data), A_PM_TX_DBG_STAT0); 4609 for (i = 0; i < ARRAY_SIZE(data); i++) { 4610 CH_ALERT(adap, " - PM_TX_DBG_STAT%u (0x%x) = 0x%08x\n", i, 4611 A_PM_TX_DBG_STAT0 + i, data[i]); 4612 } 4613 4614 return (false); 4615 } 4616 4617 /* 4618 * PM TX interrupt handler. 4619 */ 4620 static bool pmtx_intr_handler(struct adapter *adap, int arg, bool verbose) 4621 { 4622 static const struct intr_action pmtx_intr_actions[] = { 4623 { 0xffffffff, 0, pmtx_dump_dbg_stats }, 4624 { 0 }, 4625 }; 4626 static const struct intr_details pmtx_intr_details[] = { 4627 { F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large" }, 4628 { F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large" }, 4629 { F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large" }, 4630 { F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd" }, 4631 { 0x0f000000, "PMTX icspi FIFO2X Rx framing error" }, 4632 { 0x00f00000, "PMTX icspi FIFO Rx framing error" }, 4633 { 0x000f0000, "PMTX icspi FIFO Tx framing error" }, 4634 { 0x0000f000, "PMTX oespi FIFO Rx framing error" }, 4635 { 0x00000f00, "PMTX oespi FIFO Tx framing error" }, 4636 { 0x000000f0, "PMTX oespi FIFO2X Tx framing error" }, 4637 { F_OESPI_PAR_ERROR, "PMTX oespi parity error" }, 4638 { F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error" }, 4639 { F_ICSPI_PAR_ERROR, "PMTX icspi parity error" }, 4640 { F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error" }, 4641 { 0 } 4642 }; 4643 static const struct intr_info pmtx_intr_info = { 4644 .name = "PM_TX_INT_CAUSE", 4645 .cause_reg = A_PM_TX_INT_CAUSE, 4646 .enable_reg = A_PM_TX_INT_ENABLE, 4647 .fatal = 0xffffffff, 4648 .flags = 0, 4649 .details = pmtx_intr_details, 4650 .actions = pmtx_intr_actions, 4651 }; 4652 4653 return (t4_handle_intr(adap, &pmtx_intr_info, 0, verbose)); 4654 } 4655 4656 /* 4657 * PM RX interrupt handler. 4658 */ 4659 static bool pmrx_intr_handler(struct adapter *adap, int arg, bool verbose) 4660 { 4661 static const struct intr_details pmrx_intr_details[] = { 4662 /* T6+ */ 4663 { 0x18000000, "PMRX ospi overflow" }, 4664 { F_MA_INTF_SDC_ERR, "PMRX MA interface SDC parity error" }, 4665 { F_BUNDLE_LEN_PARERR, "PMRX bundle len FIFO parity error" }, 4666 { F_BUNDLE_LEN_OVFL, "PMRX bundle len FIFO overflow" }, 4667 { F_SDC_ERR, "PMRX SDC error" }, 4668 4669 /* T4+ */ 4670 { F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd" }, 4671 { 0x003c0000, "PMRX iespi FIFO2X Rx framing error" }, 4672 { 0x0003c000, "PMRX iespi Rx framing error" }, 4673 { 0x00003c00, "PMRX iespi Tx framing error" }, 4674 { 0x00000300, "PMRX ocspi Rx framing error" }, 4675 { 0x000000c0, "PMRX ocspi Tx framing error" }, 4676 { 0x00000030, "PMRX ocspi FIFO2X Tx framing error" }, 4677 { F_OCSPI_PAR_ERROR, "PMRX ocspi parity error" }, 4678 { F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error" }, 4679 { F_IESPI_PAR_ERROR, "PMRX iespi parity error" }, 4680 { F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error"}, 4681 { 0 } 4682 }; 4683 static const struct intr_info pmrx_intr_info = { 4684 .name = "PM_RX_INT_CAUSE", 4685 .cause_reg = A_PM_RX_INT_CAUSE, 4686 .enable_reg = A_PM_RX_INT_ENABLE, 4687 .fatal = 0x1fffffff, 4688 .flags = NONFATAL_IF_DISABLED, 4689 .details = pmrx_intr_details, 4690 .actions = NULL, 4691 }; 4692 4693 return (t4_handle_intr(adap, &pmrx_intr_info, 0, verbose)); 4694 } 4695 4696 /* 4697 * CPL switch interrupt handler. 4698 */ 4699 static bool cplsw_intr_handler(struct adapter *adap, int arg, bool verbose) 4700 { 4701 static const struct intr_details cplsw_intr_details[] = { 4702 /* T5+ */ 4703 { F_PERR_CPL_128TO128_1, "CPLSW 128TO128 FIFO1 parity error" }, 4704 { F_PERR_CPL_128TO128_0, "CPLSW 128TO128 FIFO0 parity error" }, 4705 4706 /* T4+ */ 4707 { F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error" }, 4708 { F_CIM_OVFL_ERROR, "CPLSW CIM overflow" }, 4709 { F_TP_FRAMING_ERROR, "CPLSW TP framing error" }, 4710 { F_SGE_FRAMING_ERROR, "CPLSW SGE framing error" }, 4711 { F_CIM_FRAMING_ERROR, "CPLSW CIM framing error" }, 4712 { F_ZERO_SWITCH_ERROR, "CPLSW no-switch error" }, 4713 { 0 } 4714 }; 4715 static const struct intr_info cplsw_intr_info = { 4716 .name = "CPL_INTR_CAUSE", 4717 .cause_reg = A_CPL_INTR_CAUSE, 4718 .enable_reg = A_CPL_INTR_ENABLE, 4719 .fatal = 0xff, 4720 .flags = NONFATAL_IF_DISABLED, 4721 .details = cplsw_intr_details, 4722 .actions = NULL, 4723 }; 4724 4725 return (t4_handle_intr(adap, &cplsw_intr_info, 0, verbose)); 4726 } 4727 4728 #define T4_LE_FATAL_MASK (F_PARITYERR | F_UNKNOWNCMD | F_REQQPARERR) 4729 #define T5_LE_FATAL_MASK (T4_LE_FATAL_MASK | F_VFPARERR) 4730 #define T6_LE_PERRCRC_MASK (F_PIPELINEERR | F_CLIPTCAMACCFAIL | \ 4731 F_SRVSRAMACCFAIL | F_CLCAMCRCPARERR | F_CLCAMINTPERR | F_SSRAMINTPERR | \ 4732 F_SRVSRAMPERR | F_VFSRAMPERR | F_TCAMINTPERR | F_TCAMCRCERR | \ 4733 F_HASHTBLMEMACCERR | F_MAIFWRINTPERR | F_HASHTBLMEMCRCERR) 4734 #define T6_LE_FATAL_MASK (T6_LE_PERRCRC_MASK | F_T6_UNKNOWNCMD | \ 4735 F_TCAMACCFAIL | F_HASHTBLACCFAIL | F_CMDTIDERR | F_CMDPRSRINTERR | \ 4736 F_TOTCNTERR | F_CLCAMFIFOERR | F_CLIPSUBERR) 4737 4738 /* 4739 * LE interrupt handler. 4740 */ 4741 static bool le_intr_handler(struct adapter *adap, int arg, bool verbose) 4742 { 4743 static const struct intr_details le_intr_details[] = { 4744 { F_REQQPARERR, "LE request queue parity error" }, 4745 { F_UNKNOWNCMD, "LE unknown command" }, 4746 { F_ACTRGNFULL, "LE active region full" }, 4747 { F_PARITYERR, "LE parity error" }, 4748 { F_LIPMISS, "LE LIP miss" }, 4749 { F_LIP0, "LE 0 LIP error" }, 4750 { 0 } 4751 }; 4752 static const struct intr_details t6_le_intr_details[] = { 4753 { F_CLIPSUBERR, "LE CLIP CAM reverse substitution error" }, 4754 { F_CLCAMFIFOERR, "LE CLIP CAM internal FIFO error" }, 4755 { F_CTCAMINVLDENT, "Invalid IPv6 CLIP TCAM entry" }, 4756 { F_TCAMINVLDENT, "Invalid IPv6 TCAM entry" }, 4757 { F_TOTCNTERR, "LE total active < TCAM count" }, 4758 { F_CMDPRSRINTERR, "LE internal error in parser" }, 4759 { F_CMDTIDERR, "Incorrect tid in LE command" }, 4760 { F_T6_ACTRGNFULL, "LE active region full" }, 4761 { F_T6_ACTCNTIPV6TZERO, "LE IPv6 active open TCAM counter -ve" }, 4762 { F_T6_ACTCNTIPV4TZERO, "LE IPv4 active open TCAM counter -ve" }, 4763 { F_T6_ACTCNTIPV6ZERO, "LE IPv6 active open counter -ve" }, 4764 { F_T6_ACTCNTIPV4ZERO, "LE IPv4 active open counter -ve" }, 4765 { F_HASHTBLACCFAIL, "Hash table read error (proto conflict)" }, 4766 { F_TCAMACCFAIL, "LE TCAM access failure" }, 4767 { F_T6_UNKNOWNCMD, "LE unknown command" }, 4768 { F_T6_LIP0, "LE found 0 LIP during CLIP substitution" }, 4769 { F_T6_LIPMISS, "LE CLIP lookup miss" }, 4770 { T6_LE_PERRCRC_MASK, "LE parity/CRC error" }, 4771 { 0 } 4772 }; 4773 struct intr_info le_intr_info = { 4774 .name = "LE_DB_INT_CAUSE", 4775 .cause_reg = A_LE_DB_INT_CAUSE, 4776 .enable_reg = A_LE_DB_INT_ENABLE, 4777 .fatal = 0, 4778 .flags = NONFATAL_IF_DISABLED, 4779 .details = NULL, 4780 .actions = NULL, 4781 }; 4782 4783 if (chip_id(adap) <= CHELSIO_T5) { 4784 le_intr_info.details = le_intr_details; 4785 le_intr_info.fatal = T5_LE_FATAL_MASK; 4786 } else { 4787 le_intr_info.details = t6_le_intr_details; 4788 le_intr_info.fatal = T6_LE_FATAL_MASK; 4789 } 4790 4791 return (t4_handle_intr(adap, &le_intr_info, 0, verbose)); 4792 } 4793 4794 /* 4795 * MPS interrupt handler. 4796 */ 4797 static bool mps_intr_handler(struct adapter *adap, int arg, bool verbose) 4798 { 4799 static const struct intr_details mps_rx_perr_intr_details[] = { 4800 { 0xffffffff, "MPS Rx parity error" }, 4801 { 0 } 4802 }; 4803 static const struct intr_info mps_rx_perr_intr_info = { 4804 .name = "MPS_RX_PERR_INT_CAUSE", 4805 .cause_reg = A_MPS_RX_PERR_INT_CAUSE, 4806 .enable_reg = A_MPS_RX_PERR_INT_ENABLE, 4807 .fatal = 0xffffffff, 4808 .flags = NONFATAL_IF_DISABLED, 4809 .details = mps_rx_perr_intr_details, 4810 .actions = NULL, 4811 }; 4812 static const struct intr_details mps_tx_intr_details[] = { 4813 { F_PORTERR, "MPS Tx destination port is disabled" }, 4814 { F_FRMERR, "MPS Tx framing error" }, 4815 { F_SECNTERR, "MPS Tx SOP/EOP error" }, 4816 { F_BUBBLE, "MPS Tx underflow" }, 4817 { V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error" }, 4818 { V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error" }, 4819 { F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error" }, 4820 { V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error" }, 4821 { 0 } 4822 }; 4823 static const struct intr_info mps_tx_intr_info = { 4824 .name = "MPS_TX_INT_CAUSE", 4825 .cause_reg = A_MPS_TX_INT_CAUSE, 4826 .enable_reg = A_MPS_TX_INT_ENABLE, 4827 .fatal = 0x1ffff, 4828 .flags = NONFATAL_IF_DISABLED, 4829 .details = mps_tx_intr_details, 4830 .actions = NULL, 4831 }; 4832 static const struct intr_details mps_trc_intr_details[] = { 4833 { F_MISCPERR, "MPS TRC misc parity error" }, 4834 { V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error" }, 4835 { V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error" }, 4836 { 0 } 4837 }; 4838 static const struct intr_info mps_trc_intr_info = { 4839 .name = "MPS_TRC_INT_CAUSE", 4840 .cause_reg = A_MPS_TRC_INT_CAUSE, 4841 .enable_reg = A_MPS_TRC_INT_ENABLE, 4842 .fatal = F_MISCPERR | V_PKTFIFO(M_PKTFIFO) | V_FILTMEM(M_FILTMEM), 4843 .flags = 0, 4844 .details = mps_trc_intr_details, 4845 .actions = NULL, 4846 }; 4847 static const struct intr_details mps_stat_sram_intr_details[] = { 4848 { 0xffffffff, "MPS statistics SRAM parity error" }, 4849 { 0 } 4850 }; 4851 static const struct intr_info mps_stat_sram_intr_info = { 4852 .name = "MPS_STAT_PERR_INT_CAUSE_SRAM", 4853 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM, 4854 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM, 4855 .fatal = 0x1fffffff, 4856 .flags = NONFATAL_IF_DISABLED, 4857 .details = mps_stat_sram_intr_details, 4858 .actions = NULL, 4859 }; 4860 static const struct intr_details mps_stat_tx_intr_details[] = { 4861 { 0xffffff, "MPS statistics Tx FIFO parity error" }, 4862 { 0 } 4863 }; 4864 static const struct intr_info mps_stat_tx_intr_info = { 4865 .name = "MPS_STAT_PERR_INT_CAUSE_TX_FIFO", 4866 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO, 4867 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_TX_FIFO, 4868 .fatal = 0xffffff, 4869 .flags = NONFATAL_IF_DISABLED, 4870 .details = mps_stat_tx_intr_details, 4871 .actions = NULL, 4872 }; 4873 static const struct intr_details mps_stat_rx_intr_details[] = { 4874 { 0xffffff, "MPS statistics Rx FIFO parity error" }, 4875 { 0 } 4876 }; 4877 static const struct intr_info mps_stat_rx_intr_info = { 4878 .name = "MPS_STAT_PERR_INT_CAUSE_RX_FIFO", 4879 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO, 4880 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_RX_FIFO, 4881 .fatal = 0xffffff, 4882 .flags = 0, 4883 .details = mps_stat_rx_intr_details, 4884 .actions = NULL, 4885 }; 4886 static const struct intr_details mps_cls_intr_details[] = { 4887 { F_HASHSRAM, "MPS hash SRAM parity error" }, 4888 { F_MATCHTCAM, "MPS match TCAM parity error" }, 4889 { F_MATCHSRAM, "MPS match SRAM parity error" }, 4890 { 0 } 4891 }; 4892 static const struct intr_info mps_cls_intr_info = { 4893 .name = "MPS_CLS_INT_CAUSE", 4894 .cause_reg = A_MPS_CLS_INT_CAUSE, 4895 .enable_reg = A_MPS_CLS_INT_ENABLE, 4896 .fatal = F_MATCHSRAM | F_MATCHTCAM | F_HASHSRAM, 4897 .flags = 0, 4898 .details = mps_cls_intr_details, 4899 .actions = NULL, 4900 }; 4901 static const struct intr_details mps_stat_sram1_intr_details[] = { 4902 { 0xff, "MPS statistics SRAM1 parity error" }, 4903 { 0 } 4904 }; 4905 static const struct intr_info mps_stat_sram1_intr_info = { 4906 .name = "MPS_STAT_PERR_INT_CAUSE_SRAM1", 4907 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 4908 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM1, 4909 .fatal = 0xff, 4910 .flags = 0, 4911 .details = mps_stat_sram1_intr_details, 4912 .actions = NULL, 4913 }; 4914 4915 bool fatal; 4916 4917 fatal = false; 4918 fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info, 0, verbose); 4919 fatal |= t4_handle_intr(adap, &mps_tx_intr_info, 0, verbose); 4920 fatal |= t4_handle_intr(adap, &mps_trc_intr_info, 0, verbose); 4921 fatal |= t4_handle_intr(adap, &mps_stat_sram_intr_info, 0, verbose); 4922 fatal |= t4_handle_intr(adap, &mps_stat_tx_intr_info, 0, verbose); 4923 fatal |= t4_handle_intr(adap, &mps_stat_rx_intr_info, 0, verbose); 4924 fatal |= t4_handle_intr(adap, &mps_cls_intr_info, 0, verbose); 4925 if (chip_id(adap) > CHELSIO_T4) { 4926 fatal |= t4_handle_intr(adap, &mps_stat_sram1_intr_info, 0, 4927 verbose); 4928 } 4929 4930 t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff); 4931 t4_read_reg(adap, A_MPS_INT_CAUSE); /* flush */ 4932 4933 return (fatal); 4934 4935 } 4936 4937 /* 4938 * EDC/MC interrupt handler. 4939 */ 4940 static bool mem_intr_handler(struct adapter *adap, int idx, bool verbose) 4941 { 4942 static const char name[4][5] = { "EDC0", "EDC1", "MC0", "MC1" }; 4943 unsigned int count_reg, v; 4944 static const struct intr_details mem_intr_details[] = { 4945 { F_ECC_UE_INT_CAUSE, "Uncorrectable ECC data error(s)" }, 4946 { F_ECC_CE_INT_CAUSE, "Correctable ECC data error(s)" }, 4947 { F_PERR_INT_CAUSE, "FIFO parity error" }, 4948 { 0 } 4949 }; 4950 struct intr_info ii = { 4951 .fatal = F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE, 4952 .details = mem_intr_details, 4953 .flags = 0, 4954 .actions = NULL, 4955 }; 4956 bool fatal; 4957 4958 switch (idx) { 4959 case MEM_EDC0: 4960 ii.name = "EDC0_INT_CAUSE"; 4961 ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 0); 4962 ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 0); 4963 count_reg = EDC_REG(A_EDC_ECC_STATUS, 0); 4964 break; 4965 case MEM_EDC1: 4966 ii.name = "EDC1_INT_CAUSE"; 4967 ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 1); 4968 ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 1); 4969 count_reg = EDC_REG(A_EDC_ECC_STATUS, 1); 4970 break; 4971 case MEM_MC0: 4972 ii.name = "MC0_INT_CAUSE"; 4973 if (is_t4(adap)) { 4974 ii.cause_reg = A_MC_INT_CAUSE; 4975 ii.enable_reg = A_MC_INT_ENABLE; 4976 count_reg = A_MC_ECC_STATUS; 4977 } else { 4978 ii.cause_reg = A_MC_P_INT_CAUSE; 4979 ii.enable_reg = A_MC_P_INT_ENABLE; 4980 count_reg = A_MC_P_ECC_STATUS; 4981 } 4982 break; 4983 case MEM_MC1: 4984 ii.name = "MC1_INT_CAUSE"; 4985 ii.cause_reg = MC_REG(A_MC_P_INT_CAUSE, 1); 4986 ii.enable_reg = MC_REG(A_MC_P_INT_ENABLE, 1); 4987 count_reg = MC_REG(A_MC_P_ECC_STATUS, 1); 4988 break; 4989 } 4990 4991 fatal = t4_handle_intr(adap, &ii, 0, verbose); 4992 4993 v = t4_read_reg(adap, count_reg); 4994 if (v != 0) { 4995 if (G_ECC_UECNT(v) != 0) { 4996 CH_ALERT(adap, 4997 "%s: %u uncorrectable ECC data error(s)\n", 4998 name[idx], G_ECC_UECNT(v)); 4999 } 5000 if (G_ECC_CECNT(v) != 0) { 5001 if (idx <= MEM_EDC1) 5002 t4_edc_err_read(adap, idx); 5003 CH_WARN_RATELIMIT(adap, 5004 "%s: %u correctable ECC data error(s)\n", 5005 name[idx], G_ECC_CECNT(v)); 5006 } 5007 t4_write_reg(adap, count_reg, 0xffffffff); 5008 } 5009 5010 return (fatal); 5011 } 5012 5013 static bool ma_wrap_status(struct adapter *adap, int arg, bool verbose) 5014 { 5015 u32 v; 5016 5017 v = t4_read_reg(adap, A_MA_INT_WRAP_STATUS); 5018 CH_ALERT(adap, 5019 "MA address wrap-around error by client %u to address %#x\n", 5020 G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4); 5021 t4_write_reg(adap, A_MA_INT_WRAP_STATUS, v); 5022 5023 return (false); 5024 } 5025 5026 5027 /* 5028 * MA interrupt handler. 5029 */ 5030 static bool ma_intr_handler(struct adapter *adap, int arg, bool verbose) 5031 { 5032 static const struct intr_action ma_intr_actions[] = { 5033 { F_MEM_WRAP_INT_CAUSE, 0, ma_wrap_status }, 5034 { 0 }, 5035 }; 5036 static const struct intr_info ma_intr_info = { 5037 .name = "MA_INT_CAUSE", 5038 .cause_reg = A_MA_INT_CAUSE, 5039 .enable_reg = A_MA_INT_ENABLE, 5040 .fatal = F_MEM_PERR_INT_CAUSE | F_MEM_TO_INT_CAUSE, 5041 .flags = NONFATAL_IF_DISABLED, 5042 .details = NULL, 5043 .actions = ma_intr_actions, 5044 }; 5045 static const struct intr_info ma_perr_status1 = { 5046 .name = "MA_PARITY_ERROR_STATUS1", 5047 .cause_reg = A_MA_PARITY_ERROR_STATUS1, 5048 .enable_reg = A_MA_PARITY_ERROR_ENABLE1, 5049 .fatal = 0xffffffff, 5050 .flags = 0, 5051 .details = NULL, 5052 .actions = NULL, 5053 }; 5054 static const struct intr_info ma_perr_status2 = { 5055 .name = "MA_PARITY_ERROR_STATUS2", 5056 .cause_reg = A_MA_PARITY_ERROR_STATUS2, 5057 .enable_reg = A_MA_PARITY_ERROR_ENABLE2, 5058 .fatal = 0xffffffff, 5059 .flags = 0, 5060 .details = NULL, 5061 .actions = NULL, 5062 }; 5063 bool fatal; 5064 5065 fatal = false; 5066 fatal |= t4_handle_intr(adap, &ma_intr_info, 0, verbose); 5067 fatal |= t4_handle_intr(adap, &ma_perr_status1, 0, verbose); 5068 if (chip_id(adap) > CHELSIO_T4) 5069 fatal |= t4_handle_intr(adap, &ma_perr_status2, 0, verbose); 5070 5071 return (fatal); 5072 } 5073 5074 /* 5075 * SMB interrupt handler. 5076 */ 5077 static bool smb_intr_handler(struct adapter *adap, int arg, bool verbose) 5078 { 5079 static const struct intr_details smb_intr_details[] = { 5080 { F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error" }, 5081 { F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error" }, 5082 { F_SLVFIFOPARINT, "SMB slave FIFO parity error" }, 5083 { 0 } 5084 }; 5085 static const struct intr_info smb_intr_info = { 5086 .name = "SMB_INT_CAUSE", 5087 .cause_reg = A_SMB_INT_CAUSE, 5088 .enable_reg = A_SMB_INT_ENABLE, 5089 .fatal = F_SLVFIFOPARINT | F_MSTRXFIFOPARINT | F_MSTTXFIFOPARINT, 5090 .flags = 0, 5091 .details = smb_intr_details, 5092 .actions = NULL, 5093 }; 5094 5095 return (t4_handle_intr(adap, &smb_intr_info, 0, verbose)); 5096 } 5097 5098 /* 5099 * NC-SI interrupt handler. 5100 */ 5101 static bool ncsi_intr_handler(struct adapter *adap, int arg, bool verbose) 5102 { 5103 static const struct intr_details ncsi_intr_details[] = { 5104 { F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error" }, 5105 { F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error" }, 5106 { F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error" }, 5107 { F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error" }, 5108 { 0 } 5109 }; 5110 static const struct intr_info ncsi_intr_info = { 5111 .name = "NCSI_INT_CAUSE", 5112 .cause_reg = A_NCSI_INT_CAUSE, 5113 .enable_reg = A_NCSI_INT_ENABLE, 5114 .fatal = F_RXFIFO_PRTY_ERR | F_TXFIFO_PRTY_ERR | 5115 F_MPS_DM_PRTY_ERR | F_CIM_DM_PRTY_ERR, 5116 .flags = 0, 5117 .details = ncsi_intr_details, 5118 .actions = NULL, 5119 }; 5120 5121 return (t4_handle_intr(adap, &ncsi_intr_info, 0, verbose)); 5122 } 5123 5124 /* 5125 * MAC interrupt handler. 5126 */ 5127 static bool mac_intr_handler(struct adapter *adap, int port, bool verbose) 5128 { 5129 static const struct intr_details mac_intr_details[] = { 5130 { F_TXFIFO_PRTY_ERR, "MAC Tx FIFO parity error" }, 5131 { F_RXFIFO_PRTY_ERR, "MAC Rx FIFO parity error" }, 5132 { 0 } 5133 }; 5134 char name[32]; 5135 struct intr_info ii; 5136 bool fatal = false; 5137 5138 if (is_t4(adap)) { 5139 snprintf(name, sizeof(name), "XGMAC_PORT%u_INT_CAUSE", port); 5140 ii.name = &name[0]; 5141 ii.cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE); 5142 ii.enable_reg = PORT_REG(port, A_XGMAC_PORT_INT_EN); 5143 ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR; 5144 ii.flags = 0; 5145 ii.details = mac_intr_details; 5146 ii.actions = NULL; 5147 } else { 5148 snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port); 5149 ii.name = &name[0]; 5150 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE); 5151 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_INT_EN); 5152 ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR; 5153 ii.flags = 0; 5154 ii.details = mac_intr_details; 5155 ii.actions = NULL; 5156 } 5157 fatal |= t4_handle_intr(adap, &ii, 0, verbose); 5158 5159 if (chip_id(adap) >= CHELSIO_T5) { 5160 snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE", port); 5161 ii.name = &name[0]; 5162 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE); 5163 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN); 5164 ii.fatal = 0; 5165 ii.flags = 0; 5166 ii.details = NULL; 5167 ii.actions = NULL; 5168 fatal |= t4_handle_intr(adap, &ii, 0, verbose); 5169 } 5170 5171 if (chip_id(adap) >= CHELSIO_T6) { 5172 snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE_100G", port); 5173 ii.name = &name[0]; 5174 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE_100G); 5175 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN_100G); 5176 ii.fatal = 0; 5177 ii.flags = 0; 5178 ii.details = NULL; 5179 ii.actions = NULL; 5180 fatal |= t4_handle_intr(adap, &ii, 0, verbose); 5181 } 5182 5183 return (fatal); 5184 } 5185 5186 static bool plpl_intr_handler(struct adapter *adap, int arg, bool verbose) 5187 { 5188 static const struct intr_details plpl_intr_details[] = { 5189 { F_FATALPERR, "Fatal parity error" }, 5190 { F_PERRVFID, "VFID_MAP parity error" }, 5191 { 0 } 5192 }; 5193 static const struct intr_info plpl_intr_info = { 5194 .name = "PL_PL_INT_CAUSE", 5195 .cause_reg = A_PL_PL_INT_CAUSE, 5196 .enable_reg = A_PL_PL_INT_ENABLE, 5197 .fatal = F_FATALPERR | F_PERRVFID, 5198 .flags = NONFATAL_IF_DISABLED, 5199 .details = plpl_intr_details, 5200 .actions = NULL, 5201 }; 5202 5203 return (t4_handle_intr(adap, &plpl_intr_info, 0, verbose)); 5204 } 5205 5206 /** 5207 * t4_slow_intr_handler - control path interrupt handler 5208 * @adap: the adapter 5209 * @verbose: increased verbosity, for debug 5210 * 5211 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 5212 * The designation 'slow' is because it involves register reads, while 5213 * data interrupts typically don't involve any MMIOs. 5214 */ 5215 int t4_slow_intr_handler(struct adapter *adap, bool verbose) 5216 { 5217 static const struct intr_details pl_intr_details[] = { 5218 { F_MC1, "MC1" }, 5219 { F_UART, "UART" }, 5220 { F_ULP_TX, "ULP TX" }, 5221 { F_SGE, "SGE" }, 5222 { F_HMA, "HMA" }, 5223 { F_CPL_SWITCH, "CPL Switch" }, 5224 { F_ULP_RX, "ULP RX" }, 5225 { F_PM_RX, "PM RX" }, 5226 { F_PM_TX, "PM TX" }, 5227 { F_MA, "MA" }, 5228 { F_TP, "TP" }, 5229 { F_LE, "LE" }, 5230 { F_EDC1, "EDC1" }, 5231 { F_EDC0, "EDC0" }, 5232 { F_MC, "MC0" }, 5233 { F_PCIE, "PCIE" }, 5234 { F_PMU, "PMU" }, 5235 { F_MAC3, "MAC3" }, 5236 { F_MAC2, "MAC2" }, 5237 { F_MAC1, "MAC1" }, 5238 { F_MAC0, "MAC0" }, 5239 { F_SMB, "SMB" }, 5240 { F_SF, "SF" }, 5241 { F_PL, "PL" }, 5242 { F_NCSI, "NC-SI" }, 5243 { F_MPS, "MPS" }, 5244 { F_MI, "MI" }, 5245 { F_DBG, "DBG" }, 5246 { F_I2CM, "I2CM" }, 5247 { F_CIM, "CIM" }, 5248 { 0 } 5249 }; 5250 static const struct intr_info pl_perr_cause = { 5251 .name = "PL_PERR_CAUSE", 5252 .cause_reg = A_PL_PERR_CAUSE, 5253 .enable_reg = A_PL_PERR_ENABLE, 5254 .fatal = 0xffffffff, 5255 .flags = 0, 5256 .details = pl_intr_details, 5257 .actions = NULL, 5258 }; 5259 static const struct intr_action pl_intr_action[] = { 5260 { F_MC1, MEM_MC1, mem_intr_handler }, 5261 { F_ULP_TX, -1, ulptx_intr_handler }, 5262 { F_SGE, -1, sge_intr_handler }, 5263 { F_CPL_SWITCH, -1, cplsw_intr_handler }, 5264 { F_ULP_RX, -1, ulprx_intr_handler }, 5265 { F_PM_RX, -1, pmrx_intr_handler}, 5266 { F_PM_TX, -1, pmtx_intr_handler}, 5267 { F_MA, -1, ma_intr_handler }, 5268 { F_TP, -1, tp_intr_handler }, 5269 { F_LE, -1, le_intr_handler }, 5270 { F_EDC1, MEM_EDC1, mem_intr_handler }, 5271 { F_EDC0, MEM_EDC0, mem_intr_handler }, 5272 { F_MC0, MEM_MC0, mem_intr_handler }, 5273 { F_PCIE, -1, pcie_intr_handler }, 5274 { F_MAC3, 3, mac_intr_handler}, 5275 { F_MAC2, 2, mac_intr_handler}, 5276 { F_MAC1, 1, mac_intr_handler}, 5277 { F_MAC0, 0, mac_intr_handler}, 5278 { F_SMB, -1, smb_intr_handler}, 5279 { F_PL, -1, plpl_intr_handler }, 5280 { F_NCSI, -1, ncsi_intr_handler}, 5281 { F_MPS, -1, mps_intr_handler }, 5282 { F_CIM, -1, cim_intr_handler }, 5283 { 0 } 5284 }; 5285 static const struct intr_info pl_intr_info = { 5286 .name = "PL_INT_CAUSE", 5287 .cause_reg = A_PL_INT_CAUSE, 5288 .enable_reg = A_PL_INT_ENABLE, 5289 .fatal = 0, 5290 .flags = 0, 5291 .details = pl_intr_details, 5292 .actions = pl_intr_action, 5293 }; 5294 bool fatal; 5295 u32 perr; 5296 5297 perr = t4_read_reg(adap, pl_perr_cause.cause_reg); 5298 if (verbose || perr != 0) { 5299 t4_show_intr_info(adap, &pl_perr_cause, perr); 5300 if (perr != 0) 5301 t4_write_reg(adap, pl_perr_cause.cause_reg, perr); 5302 if (verbose) 5303 perr |= t4_read_reg(adap, pl_intr_info.enable_reg); 5304 } 5305 fatal = t4_handle_intr(adap, &pl_intr_info, perr, verbose); 5306 if (fatal) 5307 t4_fatal_err(adap, false); 5308 5309 return (0); 5310 } 5311 5312 #define PF_INTR_MASK (F_PFSW | F_PFCIM) 5313 5314 /** 5315 * t4_intr_enable - enable interrupts 5316 * @adapter: the adapter whose interrupts should be enabled 5317 * 5318 * Enable PF-specific interrupts for the calling function and the top-level 5319 * interrupt concentrator for global interrupts. Interrupts are already 5320 * enabled at each module, here we just enable the roots of the interrupt 5321 * hierarchies. 5322 * 5323 * Note: this function should be called only when the driver manages 5324 * non PF-specific interrupts from the various HW modules. Only one PCI 5325 * function at a time should be doing this. 5326 */ 5327 void t4_intr_enable(struct adapter *adap) 5328 { 5329 u32 val = 0; 5330 5331 if (chip_id(adap) <= CHELSIO_T5) 5332 val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT; 5333 else 5334 val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN; 5335 val |= F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC | 5336 F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 | 5337 F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 | 5338 F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 | 5339 F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_DBFIFO_LP_INT | 5340 F_EGRESS_SIZE_ERR; 5341 t4_set_reg_field(adap, A_SGE_INT_ENABLE3, val, val); 5342 t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK); 5343 t4_set_reg_field(adap, A_PL_INT_ENABLE, F_SF | F_I2CM, 0); 5344 t4_set_reg_field(adap, A_PL_INT_MAP0, 0, 1 << adap->pf); 5345 } 5346 5347 /** 5348 * t4_intr_disable - disable interrupts 5349 * @adap: the adapter whose interrupts should be disabled 5350 * 5351 * Disable interrupts. We only disable the top-level interrupt 5352 * concentrators. The caller must be a PCI function managing global 5353 * interrupts. 5354 */ 5355 void t4_intr_disable(struct adapter *adap) 5356 { 5357 5358 t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), 0); 5359 t4_set_reg_field(adap, A_PL_INT_MAP0, 1 << adap->pf, 0); 5360 } 5361 5362 /** 5363 * t4_intr_clear - clear all interrupts 5364 * @adap: the adapter whose interrupts should be cleared 5365 * 5366 * Clears all interrupts. The caller must be a PCI function managing 5367 * global interrupts. 5368 */ 5369 void t4_intr_clear(struct adapter *adap) 5370 { 5371 static const u32 cause_reg[] = { 5372 A_CIM_HOST_INT_CAUSE, 5373 A_CIM_HOST_UPACC_INT_CAUSE, 5374 MYPF_REG(A_CIM_PF_HOST_INT_CAUSE), 5375 A_CPL_INTR_CAUSE, 5376 EDC_REG(A_EDC_INT_CAUSE, 0), EDC_REG(A_EDC_INT_CAUSE, 1), 5377 A_LE_DB_INT_CAUSE, 5378 A_MA_INT_WRAP_STATUS, 5379 A_MA_PARITY_ERROR_STATUS1, 5380 A_MA_INT_CAUSE, 5381 A_MPS_CLS_INT_CAUSE, 5382 A_MPS_RX_PERR_INT_CAUSE, 5383 A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO, 5384 A_MPS_STAT_PERR_INT_CAUSE_SRAM, 5385 A_MPS_TRC_INT_CAUSE, 5386 A_MPS_TX_INT_CAUSE, 5387 A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO, 5388 A_NCSI_INT_CAUSE, 5389 A_PCIE_INT_CAUSE, 5390 A_PCIE_NONFAT_ERR, 5391 A_PL_PL_INT_CAUSE, 5392 A_PM_RX_INT_CAUSE, 5393 A_PM_TX_INT_CAUSE, 5394 A_SGE_INT_CAUSE1, 5395 A_SGE_INT_CAUSE2, 5396 A_SGE_INT_CAUSE3, 5397 A_SGE_INT_CAUSE4, 5398 A_SMB_INT_CAUSE, 5399 A_TP_INT_CAUSE, 5400 A_ULP_RX_INT_CAUSE, 5401 A_ULP_RX_INT_CAUSE_2, 5402 A_ULP_TX_INT_CAUSE, 5403 A_ULP_TX_INT_CAUSE_2, 5404 5405 MYPF_REG(A_PL_PF_INT_CAUSE), 5406 }; 5407 int i; 5408 const int nchan = adap->chip_params->nchan; 5409 5410 for (i = 0; i < ARRAY_SIZE(cause_reg); i++) 5411 t4_write_reg(adap, cause_reg[i], 0xffffffff); 5412 5413 if (is_t4(adap)) { 5414 t4_write_reg(adap, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS, 5415 0xffffffff); 5416 t4_write_reg(adap, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS, 5417 0xffffffff); 5418 t4_write_reg(adap, A_MC_INT_CAUSE, 0xffffffff); 5419 for (i = 0; i < nchan; i++) { 5420 t4_write_reg(adap, PORT_REG(i, A_XGMAC_PORT_INT_CAUSE), 5421 0xffffffff); 5422 } 5423 } 5424 if (chip_id(adap) >= CHELSIO_T5) { 5425 t4_write_reg(adap, A_MA_PARITY_ERROR_STATUS2, 0xffffffff); 5426 t4_write_reg(adap, A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 0xffffffff); 5427 t4_write_reg(adap, A_SGE_INT_CAUSE5, 0xffffffff); 5428 t4_write_reg(adap, A_MC_P_INT_CAUSE, 0xffffffff); 5429 if (is_t5(adap)) { 5430 t4_write_reg(adap, MC_REG(A_MC_P_INT_CAUSE, 1), 5431 0xffffffff); 5432 } 5433 for (i = 0; i < nchan; i++) { 5434 t4_write_reg(adap, T5_PORT_REG(i, 5435 A_MAC_PORT_PERR_INT_CAUSE), 0xffffffff); 5436 if (chip_id(adap) > CHELSIO_T5) { 5437 t4_write_reg(adap, T5_PORT_REG(i, 5438 A_MAC_PORT_PERR_INT_CAUSE_100G), 5439 0xffffffff); 5440 } 5441 t4_write_reg(adap, T5_PORT_REG(i, A_MAC_PORT_INT_CAUSE), 5442 0xffffffff); 5443 } 5444 } 5445 if (chip_id(adap) >= CHELSIO_T6) { 5446 t4_write_reg(adap, A_SGE_INT_CAUSE6, 0xffffffff); 5447 } 5448 5449 t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff); 5450 t4_write_reg(adap, A_PL_PERR_CAUSE, 0xffffffff); 5451 t4_write_reg(adap, A_PL_INT_CAUSE, 0xffffffff); 5452 (void) t4_read_reg(adap, A_PL_INT_CAUSE); /* flush */ 5453 } 5454 5455 /** 5456 * hash_mac_addr - return the hash value of a MAC address 5457 * @addr: the 48-bit Ethernet MAC address 5458 * 5459 * Hashes a MAC address according to the hash function used by HW inexact 5460 * (hash) address matching. 5461 */ 5462 static int hash_mac_addr(const u8 *addr) 5463 { 5464 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2]; 5465 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5]; 5466 a ^= b; 5467 a ^= (a >> 12); 5468 a ^= (a >> 6); 5469 return a & 0x3f; 5470 } 5471 5472 /** 5473 * t4_config_rss_range - configure a portion of the RSS mapping table 5474 * @adapter: the adapter 5475 * @mbox: mbox to use for the FW command 5476 * @viid: virtual interface whose RSS subtable is to be written 5477 * @start: start entry in the table to write 5478 * @n: how many table entries to write 5479 * @rspq: values for the "response queue" (Ingress Queue) lookup table 5480 * @nrspq: number of values in @rspq 5481 * 5482 * Programs the selected part of the VI's RSS mapping table with the 5483 * provided values. If @nrspq < @n the supplied values are used repeatedly 5484 * until the full table range is populated. 5485 * 5486 * The caller must ensure the values in @rspq are in the range allowed for 5487 * @viid. 5488 */ 5489 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 5490 int start, int n, const u16 *rspq, unsigned int nrspq) 5491 { 5492 int ret; 5493 const u16 *rsp = rspq; 5494 const u16 *rsp_end = rspq + nrspq; 5495 struct fw_rss_ind_tbl_cmd cmd; 5496 5497 memset(&cmd, 0, sizeof(cmd)); 5498 cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) | 5499 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 5500 V_FW_RSS_IND_TBL_CMD_VIID(viid)); 5501 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 5502 5503 /* 5504 * Each firmware RSS command can accommodate up to 32 RSS Ingress 5505 * Queue Identifiers. These Ingress Queue IDs are packed three to 5506 * a 32-bit word as 10-bit values with the upper remaining 2 bits 5507 * reserved. 5508 */ 5509 while (n > 0) { 5510 int nq = min(n, 32); 5511 int nq_packed = 0; 5512 __be32 *qp = &cmd.iq0_to_iq2; 5513 5514 /* 5515 * Set up the firmware RSS command header to send the next 5516 * "nq" Ingress Queue IDs to the firmware. 5517 */ 5518 cmd.niqid = cpu_to_be16(nq); 5519 cmd.startidx = cpu_to_be16(start); 5520 5521 /* 5522 * "nq" more done for the start of the next loop. 5523 */ 5524 start += nq; 5525 n -= nq; 5526 5527 /* 5528 * While there are still Ingress Queue IDs to stuff into the 5529 * current firmware RSS command, retrieve them from the 5530 * Ingress Queue ID array and insert them into the command. 5531 */ 5532 while (nq > 0) { 5533 /* 5534 * Grab up to the next 3 Ingress Queue IDs (wrapping 5535 * around the Ingress Queue ID array if necessary) and 5536 * insert them into the firmware RSS command at the 5537 * current 3-tuple position within the commad. 5538 */ 5539 u16 qbuf[3]; 5540 u16 *qbp = qbuf; 5541 int nqbuf = min(3, nq); 5542 5543 nq -= nqbuf; 5544 qbuf[0] = qbuf[1] = qbuf[2] = 0; 5545 while (nqbuf && nq_packed < 32) { 5546 nqbuf--; 5547 nq_packed++; 5548 *qbp++ = *rsp++; 5549 if (rsp >= rsp_end) 5550 rsp = rspq; 5551 } 5552 *qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) | 5553 V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) | 5554 V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2])); 5555 } 5556 5557 /* 5558 * Send this portion of the RRS table update to the firmware; 5559 * bail out on any errors. 5560 */ 5561 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 5562 if (ret) 5563 return ret; 5564 } 5565 return 0; 5566 } 5567 5568 /** 5569 * t4_config_glbl_rss - configure the global RSS mode 5570 * @adapter: the adapter 5571 * @mbox: mbox to use for the FW command 5572 * @mode: global RSS mode 5573 * @flags: mode-specific flags 5574 * 5575 * Sets the global RSS mode. 5576 */ 5577 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 5578 unsigned int flags) 5579 { 5580 struct fw_rss_glb_config_cmd c; 5581 5582 memset(&c, 0, sizeof(c)); 5583 c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) | 5584 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 5585 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5586 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 5587 c.u.manual.mode_pkd = 5588 cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode)); 5589 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 5590 c.u.basicvirtual.mode_keymode = 5591 cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode)); 5592 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); 5593 } else 5594 return -EINVAL; 5595 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5596 } 5597 5598 /** 5599 * t4_config_vi_rss - configure per VI RSS settings 5600 * @adapter: the adapter 5601 * @mbox: mbox to use for the FW command 5602 * @viid: the VI id 5603 * @flags: RSS flags 5604 * @defq: id of the default RSS queue for the VI. 5605 * @skeyidx: RSS secret key table index for non-global mode 5606 * @skey: RSS vf_scramble key for VI. 5607 * 5608 * Configures VI-specific RSS properties. 5609 */ 5610 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, 5611 unsigned int flags, unsigned int defq, unsigned int skeyidx, 5612 unsigned int skey) 5613 { 5614 struct fw_rss_vi_config_cmd c; 5615 5616 memset(&c, 0, sizeof(c)); 5617 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) | 5618 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 5619 V_FW_RSS_VI_CONFIG_CMD_VIID(viid)); 5620 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5621 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | 5622 V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq)); 5623 c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32( 5624 V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx)); 5625 c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey); 5626 5627 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5628 } 5629 5630 /* Read an RSS table row */ 5631 static int rd_rss_row(struct adapter *adap, int row, u32 *val) 5632 { 5633 t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row); 5634 return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1, 5635 5, 0, val); 5636 } 5637 5638 /** 5639 * t4_read_rss - read the contents of the RSS mapping table 5640 * @adapter: the adapter 5641 * @map: holds the contents of the RSS mapping table 5642 * 5643 * Reads the contents of the RSS hash->queue mapping table. 5644 */ 5645 int t4_read_rss(struct adapter *adapter, u16 *map) 5646 { 5647 u32 val; 5648 int i, ret; 5649 5650 for (i = 0; i < RSS_NENTRIES / 2; ++i) { 5651 ret = rd_rss_row(adapter, i, &val); 5652 if (ret) 5653 return ret; 5654 *map++ = G_LKPTBLQUEUE0(val); 5655 *map++ = G_LKPTBLQUEUE1(val); 5656 } 5657 return 0; 5658 } 5659 5660 /** 5661 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST 5662 * @adap: the adapter 5663 * @cmd: TP fw ldst address space type 5664 * @vals: where the indirect register values are stored/written 5665 * @nregs: how many indirect registers to read/write 5666 * @start_idx: index of first indirect register to read/write 5667 * @rw: Read (1) or Write (0) 5668 * @sleep_ok: if true we may sleep while awaiting command completion 5669 * 5670 * Access TP indirect registers through LDST 5671 **/ 5672 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals, 5673 unsigned int nregs, unsigned int start_index, 5674 unsigned int rw, bool sleep_ok) 5675 { 5676 int ret = 0; 5677 unsigned int i; 5678 struct fw_ldst_cmd c; 5679 5680 for (i = 0; i < nregs; i++) { 5681 memset(&c, 0, sizeof(c)); 5682 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 5683 F_FW_CMD_REQUEST | 5684 (rw ? F_FW_CMD_READ : 5685 F_FW_CMD_WRITE) | 5686 V_FW_LDST_CMD_ADDRSPACE(cmd)); 5687 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5688 5689 c.u.addrval.addr = cpu_to_be32(start_index + i); 5690 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); 5691 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, 5692 sleep_ok); 5693 if (ret) 5694 return ret; 5695 5696 if (rw) 5697 vals[i] = be32_to_cpu(c.u.addrval.val); 5698 } 5699 return 0; 5700 } 5701 5702 /** 5703 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor 5704 * @adap: the adapter 5705 * @reg_addr: Address Register 5706 * @reg_data: Data register 5707 * @buff: where the indirect register values are stored/written 5708 * @nregs: how many indirect registers to read/write 5709 * @start_index: index of first indirect register to read/write 5710 * @rw: READ(1) or WRITE(0) 5711 * @sleep_ok: if true we may sleep while awaiting command completion 5712 * 5713 * Read/Write TP indirect registers through LDST if possible. 5714 * Else, use backdoor access 5715 **/ 5716 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data, 5717 u32 *buff, u32 nregs, u32 start_index, int rw, 5718 bool sleep_ok) 5719 { 5720 int rc = -EINVAL; 5721 int cmd; 5722 5723 switch (reg_addr) { 5724 case A_TP_PIO_ADDR: 5725 cmd = FW_LDST_ADDRSPC_TP_PIO; 5726 break; 5727 case A_TP_TM_PIO_ADDR: 5728 cmd = FW_LDST_ADDRSPC_TP_TM_PIO; 5729 break; 5730 case A_TP_MIB_INDEX: 5731 cmd = FW_LDST_ADDRSPC_TP_MIB; 5732 break; 5733 default: 5734 goto indirect_access; 5735 } 5736 5737 if (t4_use_ldst(adap)) 5738 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw, 5739 sleep_ok); 5740 5741 indirect_access: 5742 5743 if (rc) { 5744 if (rw) 5745 t4_read_indirect(adap, reg_addr, reg_data, buff, nregs, 5746 start_index); 5747 else 5748 t4_write_indirect(adap, reg_addr, reg_data, buff, nregs, 5749 start_index); 5750 } 5751 } 5752 5753 /** 5754 * t4_tp_pio_read - Read TP PIO registers 5755 * @adap: the adapter 5756 * @buff: where the indirect register values are written 5757 * @nregs: how many indirect registers to read 5758 * @start_index: index of first indirect register to read 5759 * @sleep_ok: if true we may sleep while awaiting command completion 5760 * 5761 * Read TP PIO Registers 5762 **/ 5763 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5764 u32 start_index, bool sleep_ok) 5765 { 5766 t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs, 5767 start_index, 1, sleep_ok); 5768 } 5769 5770 /** 5771 * t4_tp_pio_write - Write TP PIO registers 5772 * @adap: the adapter 5773 * @buff: where the indirect register values are stored 5774 * @nregs: how many indirect registers to write 5775 * @start_index: index of first indirect register to write 5776 * @sleep_ok: if true we may sleep while awaiting command completion 5777 * 5778 * Write TP PIO Registers 5779 **/ 5780 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs, 5781 u32 start_index, bool sleep_ok) 5782 { 5783 t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, 5784 __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok); 5785 } 5786 5787 /** 5788 * t4_tp_tm_pio_read - Read TP TM PIO registers 5789 * @adap: the adapter 5790 * @buff: where the indirect register values are written 5791 * @nregs: how many indirect registers to read 5792 * @start_index: index of first indirect register to read 5793 * @sleep_ok: if true we may sleep while awaiting command completion 5794 * 5795 * Read TP TM PIO Registers 5796 **/ 5797 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5798 u32 start_index, bool sleep_ok) 5799 { 5800 t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff, 5801 nregs, start_index, 1, sleep_ok); 5802 } 5803 5804 /** 5805 * t4_tp_mib_read - Read TP MIB registers 5806 * @adap: the adapter 5807 * @buff: where the indirect register values are written 5808 * @nregs: how many indirect registers to read 5809 * @start_index: index of first indirect register to read 5810 * @sleep_ok: if true we may sleep while awaiting command completion 5811 * 5812 * Read TP MIB Registers 5813 **/ 5814 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, 5815 bool sleep_ok) 5816 { 5817 t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs, 5818 start_index, 1, sleep_ok); 5819 } 5820 5821 /** 5822 * t4_read_rss_key - read the global RSS key 5823 * @adap: the adapter 5824 * @key: 10-entry array holding the 320-bit RSS key 5825 * @sleep_ok: if true we may sleep while awaiting command completion 5826 * 5827 * Reads the global 320-bit RSS key. 5828 */ 5829 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok) 5830 { 5831 t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok); 5832 } 5833 5834 /** 5835 * t4_write_rss_key - program one of the RSS keys 5836 * @adap: the adapter 5837 * @key: 10-entry array holding the 320-bit RSS key 5838 * @idx: which RSS key to write 5839 * @sleep_ok: if true we may sleep while awaiting command completion 5840 * 5841 * Writes one of the RSS keys with the given 320-bit value. If @idx is 5842 * 0..15 the corresponding entry in the RSS key table is written, 5843 * otherwise the global RSS key is written. 5844 */ 5845 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx, 5846 bool sleep_ok) 5847 { 5848 u8 rss_key_addr_cnt = 16; 5849 u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT); 5850 5851 /* 5852 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble), 5853 * allows access to key addresses 16-63 by using KeyWrAddrX 5854 * as index[5:4](upper 2) into key table 5855 */ 5856 if ((chip_id(adap) > CHELSIO_T5) && 5857 (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3)) 5858 rss_key_addr_cnt = 32; 5859 5860 t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok); 5861 5862 if (idx >= 0 && idx < rss_key_addr_cnt) { 5863 if (rss_key_addr_cnt > 16) 5864 t4_write_reg(adap, A_TP_RSS_CONFIG_VRT, 5865 vrt | V_KEYWRADDRX(idx >> 4) | 5866 V_T6_VFWRADDR(idx) | F_KEYWREN); 5867 else 5868 t4_write_reg(adap, A_TP_RSS_CONFIG_VRT, 5869 vrt| V_KEYWRADDR(idx) | F_KEYWREN); 5870 } 5871 } 5872 5873 /** 5874 * t4_read_rss_pf_config - read PF RSS Configuration Table 5875 * @adapter: the adapter 5876 * @index: the entry in the PF RSS table to read 5877 * @valp: where to store the returned value 5878 * @sleep_ok: if true we may sleep while awaiting command completion 5879 * 5880 * Reads the PF RSS Configuration Table at the specified index and returns 5881 * the value found there. 5882 */ 5883 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 5884 u32 *valp, bool sleep_ok) 5885 { 5886 t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok); 5887 } 5888 5889 /** 5890 * t4_write_rss_pf_config - write PF RSS Configuration Table 5891 * @adapter: the adapter 5892 * @index: the entry in the VF RSS table to read 5893 * @val: the value to store 5894 * @sleep_ok: if true we may sleep while awaiting command completion 5895 * 5896 * Writes the PF RSS Configuration Table at the specified index with the 5897 * specified value. 5898 */ 5899 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index, 5900 u32 val, bool sleep_ok) 5901 { 5902 t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index, 5903 sleep_ok); 5904 } 5905 5906 /** 5907 * t4_read_rss_vf_config - read VF RSS Configuration Table 5908 * @adapter: the adapter 5909 * @index: the entry in the VF RSS table to read 5910 * @vfl: where to store the returned VFL 5911 * @vfh: where to store the returned VFH 5912 * @sleep_ok: if true we may sleep while awaiting command completion 5913 * 5914 * Reads the VF RSS Configuration Table at the specified index and returns 5915 * the (VFL, VFH) values found there. 5916 */ 5917 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 5918 u32 *vfl, u32 *vfh, bool sleep_ok) 5919 { 5920 u32 vrt, mask, data; 5921 5922 if (chip_id(adapter) <= CHELSIO_T5) { 5923 mask = V_VFWRADDR(M_VFWRADDR); 5924 data = V_VFWRADDR(index); 5925 } else { 5926 mask = V_T6_VFWRADDR(M_T6_VFWRADDR); 5927 data = V_T6_VFWRADDR(index); 5928 } 5929 /* 5930 * Request that the index'th VF Table values be read into VFL/VFH. 5931 */ 5932 vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT); 5933 vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask); 5934 vrt |= data | F_VFRDEN; 5935 t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt); 5936 5937 /* 5938 * Grab the VFL/VFH values ... 5939 */ 5940 t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok); 5941 t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok); 5942 } 5943 5944 /** 5945 * t4_write_rss_vf_config - write VF RSS Configuration Table 5946 * 5947 * @adapter: the adapter 5948 * @index: the entry in the VF RSS table to write 5949 * @vfl: the VFL to store 5950 * @vfh: the VFH to store 5951 * 5952 * Writes the VF RSS Configuration Table at the specified index with the 5953 * specified (VFL, VFH) values. 5954 */ 5955 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index, 5956 u32 vfl, u32 vfh, bool sleep_ok) 5957 { 5958 u32 vrt, mask, data; 5959 5960 if (chip_id(adapter) <= CHELSIO_T5) { 5961 mask = V_VFWRADDR(M_VFWRADDR); 5962 data = V_VFWRADDR(index); 5963 } else { 5964 mask = V_T6_VFWRADDR(M_T6_VFWRADDR); 5965 data = V_T6_VFWRADDR(index); 5966 } 5967 5968 /* 5969 * Load up VFL/VFH with the values to be written ... 5970 */ 5971 t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok); 5972 t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok); 5973 5974 /* 5975 * Write the VFL/VFH into the VF Table at index'th location. 5976 */ 5977 vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT); 5978 vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask); 5979 vrt |= data | F_VFRDEN; 5980 t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt); 5981 } 5982 5983 /** 5984 * t4_read_rss_pf_map - read PF RSS Map 5985 * @adapter: the adapter 5986 * @sleep_ok: if true we may sleep while awaiting command completion 5987 * 5988 * Reads the PF RSS Map register and returns its value. 5989 */ 5990 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok) 5991 { 5992 u32 pfmap; 5993 5994 t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok); 5995 5996 return pfmap; 5997 } 5998 5999 /** 6000 * t4_write_rss_pf_map - write PF RSS Map 6001 * @adapter: the adapter 6002 * @pfmap: PF RSS Map value 6003 * 6004 * Writes the specified value to the PF RSS Map register. 6005 */ 6006 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok) 6007 { 6008 t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok); 6009 } 6010 6011 /** 6012 * t4_read_rss_pf_mask - read PF RSS Mask 6013 * @adapter: the adapter 6014 * @sleep_ok: if true we may sleep while awaiting command completion 6015 * 6016 * Reads the PF RSS Mask register and returns its value. 6017 */ 6018 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok) 6019 { 6020 u32 pfmask; 6021 6022 t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok); 6023 6024 return pfmask; 6025 } 6026 6027 /** 6028 * t4_write_rss_pf_mask - write PF RSS Mask 6029 * @adapter: the adapter 6030 * @pfmask: PF RSS Mask value 6031 * 6032 * Writes the specified value to the PF RSS Mask register. 6033 */ 6034 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok) 6035 { 6036 t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok); 6037 } 6038 6039 /** 6040 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 6041 * @adap: the adapter 6042 * @v4: holds the TCP/IP counter values 6043 * @v6: holds the TCP/IPv6 counter values 6044 * @sleep_ok: if true we may sleep while awaiting command completion 6045 * 6046 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 6047 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 6048 */ 6049 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 6050 struct tp_tcp_stats *v6, bool sleep_ok) 6051 { 6052 u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1]; 6053 6054 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST) 6055 #define STAT(x) val[STAT_IDX(x)] 6056 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 6057 6058 if (v4) { 6059 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 6060 A_TP_MIB_TCP_OUT_RST, sleep_ok); 6061 v4->tcp_out_rsts = STAT(OUT_RST); 6062 v4->tcp_in_segs = STAT64(IN_SEG); 6063 v4->tcp_out_segs = STAT64(OUT_SEG); 6064 v4->tcp_retrans_segs = STAT64(RXT_SEG); 6065 } 6066 if (v6) { 6067 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 6068 A_TP_MIB_TCP_V6OUT_RST, sleep_ok); 6069 v6->tcp_out_rsts = STAT(OUT_RST); 6070 v6->tcp_in_segs = STAT64(IN_SEG); 6071 v6->tcp_out_segs = STAT64(OUT_SEG); 6072 v6->tcp_retrans_segs = STAT64(RXT_SEG); 6073 } 6074 #undef STAT64 6075 #undef STAT 6076 #undef STAT_IDX 6077 } 6078 6079 /** 6080 * t4_tp_get_err_stats - read TP's error MIB counters 6081 * @adap: the adapter 6082 * @st: holds the counter values 6083 * @sleep_ok: if true we may sleep while awaiting command completion 6084 * 6085 * Returns the values of TP's error counters. 6086 */ 6087 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st, 6088 bool sleep_ok) 6089 { 6090 int nchan = adap->chip_params->nchan; 6091 6092 t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0, 6093 sleep_ok); 6094 6095 t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0, 6096 sleep_ok); 6097 6098 t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0, 6099 sleep_ok); 6100 6101 t4_tp_mib_read(adap, st->tnl_cong_drops, nchan, 6102 A_TP_MIB_TNL_CNG_DROP_0, sleep_ok); 6103 6104 t4_tp_mib_read(adap, st->ofld_chan_drops, nchan, 6105 A_TP_MIB_OFD_CHN_DROP_0, sleep_ok); 6106 6107 t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0, 6108 sleep_ok); 6109 6110 t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan, 6111 A_TP_MIB_OFD_VLN_DROP_0, sleep_ok); 6112 6113 t4_tp_mib_read(adap, st->tcp6_in_errs, nchan, 6114 A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok); 6115 6116 t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP, 6117 sleep_ok); 6118 } 6119 6120 /** 6121 * t4_tp_get_proxy_stats - read TP's proxy MIB counters 6122 * @adap: the adapter 6123 * @st: holds the counter values 6124 * 6125 * Returns the values of TP's proxy counters. 6126 */ 6127 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st, 6128 bool sleep_ok) 6129 { 6130 int nchan = adap->chip_params->nchan; 6131 6132 t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok); 6133 } 6134 6135 /** 6136 * t4_tp_get_cpl_stats - read TP's CPL MIB counters 6137 * @adap: the adapter 6138 * @st: holds the counter values 6139 * @sleep_ok: if true we may sleep while awaiting command completion 6140 * 6141 * Returns the values of TP's CPL counters. 6142 */ 6143 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st, 6144 bool sleep_ok) 6145 { 6146 int nchan = adap->chip_params->nchan; 6147 6148 t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok); 6149 6150 t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok); 6151 } 6152 6153 /** 6154 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters 6155 * @adap: the adapter 6156 * @st: holds the counter values 6157 * 6158 * Returns the values of TP's RDMA counters. 6159 */ 6160 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st, 6161 bool sleep_ok) 6162 { 6163 t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT, 6164 sleep_ok); 6165 } 6166 6167 /** 6168 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port 6169 * @adap: the adapter 6170 * @idx: the port index 6171 * @st: holds the counter values 6172 * @sleep_ok: if true we may sleep while awaiting command completion 6173 * 6174 * Returns the values of TP's FCoE counters for the selected port. 6175 */ 6176 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, 6177 struct tp_fcoe_stats *st, bool sleep_ok) 6178 { 6179 u32 val[2]; 6180 6181 t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx, 6182 sleep_ok); 6183 6184 t4_tp_mib_read(adap, &st->frames_drop, 1, 6185 A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok); 6186 6187 t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx, 6188 sleep_ok); 6189 6190 st->octets_ddp = ((u64)val[0] << 32) | val[1]; 6191 } 6192 6193 /** 6194 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters 6195 * @adap: the adapter 6196 * @st: holds the counter values 6197 * @sleep_ok: if true we may sleep while awaiting command completion 6198 * 6199 * Returns the values of TP's counters for non-TCP directly-placed packets. 6200 */ 6201 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st, 6202 bool sleep_ok) 6203 { 6204 u32 val[4]; 6205 6206 t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok); 6207 6208 st->frames = val[0]; 6209 st->drops = val[1]; 6210 st->octets = ((u64)val[2] << 32) | val[3]; 6211 } 6212 6213 /** 6214 * t4_read_mtu_tbl - returns the values in the HW path MTU table 6215 * @adap: the adapter 6216 * @mtus: where to store the MTU values 6217 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 6218 * 6219 * Reads the HW path MTU table. 6220 */ 6221 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 6222 { 6223 u32 v; 6224 int i; 6225 6226 for (i = 0; i < NMTUS; ++i) { 6227 t4_write_reg(adap, A_TP_MTU_TABLE, 6228 V_MTUINDEX(0xff) | V_MTUVALUE(i)); 6229 v = t4_read_reg(adap, A_TP_MTU_TABLE); 6230 mtus[i] = G_MTUVALUE(v); 6231 if (mtu_log) 6232 mtu_log[i] = G_MTUWIDTH(v); 6233 } 6234 } 6235 6236 /** 6237 * t4_read_cong_tbl - reads the congestion control table 6238 * @adap: the adapter 6239 * @incr: where to store the alpha values 6240 * 6241 * Reads the additive increments programmed into the HW congestion 6242 * control table. 6243 */ 6244 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 6245 { 6246 unsigned int mtu, w; 6247 6248 for (mtu = 0; mtu < NMTUS; ++mtu) 6249 for (w = 0; w < NCCTRL_WIN; ++w) { 6250 t4_write_reg(adap, A_TP_CCTRL_TABLE, 6251 V_ROWINDEX(0xffff) | (mtu << 5) | w); 6252 incr[mtu][w] = (u16)t4_read_reg(adap, 6253 A_TP_CCTRL_TABLE) & 0x1fff; 6254 } 6255 } 6256 6257 /** 6258 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 6259 * @adap: the adapter 6260 * @addr: the indirect TP register address 6261 * @mask: specifies the field within the register to modify 6262 * @val: new value for the field 6263 * 6264 * Sets a field of an indirect TP register to the given value. 6265 */ 6266 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 6267 unsigned int mask, unsigned int val) 6268 { 6269 t4_write_reg(adap, A_TP_PIO_ADDR, addr); 6270 val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask; 6271 t4_write_reg(adap, A_TP_PIO_DATA, val); 6272 } 6273 6274 /** 6275 * init_cong_ctrl - initialize congestion control parameters 6276 * @a: the alpha values for congestion control 6277 * @b: the beta values for congestion control 6278 * 6279 * Initialize the congestion control parameters. 6280 */ 6281 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 6282 { 6283 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 6284 a[9] = 2; 6285 a[10] = 3; 6286 a[11] = 4; 6287 a[12] = 5; 6288 a[13] = 6; 6289 a[14] = 7; 6290 a[15] = 8; 6291 a[16] = 9; 6292 a[17] = 10; 6293 a[18] = 14; 6294 a[19] = 17; 6295 a[20] = 21; 6296 a[21] = 25; 6297 a[22] = 30; 6298 a[23] = 35; 6299 a[24] = 45; 6300 a[25] = 60; 6301 a[26] = 80; 6302 a[27] = 100; 6303 a[28] = 200; 6304 a[29] = 300; 6305 a[30] = 400; 6306 a[31] = 500; 6307 6308 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 6309 b[9] = b[10] = 1; 6310 b[11] = b[12] = 2; 6311 b[13] = b[14] = b[15] = b[16] = 3; 6312 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 6313 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 6314 b[28] = b[29] = 6; 6315 b[30] = b[31] = 7; 6316 } 6317 6318 /* The minimum additive increment value for the congestion control table */ 6319 #define CC_MIN_INCR 2U 6320 6321 /** 6322 * t4_load_mtus - write the MTU and congestion control HW tables 6323 * @adap: the adapter 6324 * @mtus: the values for the MTU table 6325 * @alpha: the values for the congestion control alpha parameter 6326 * @beta: the values for the congestion control beta parameter 6327 * 6328 * Write the HW MTU table with the supplied MTUs and the high-speed 6329 * congestion control table with the supplied alpha, beta, and MTUs. 6330 * We write the two tables together because the additive increments 6331 * depend on the MTUs. 6332 */ 6333 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 6334 const unsigned short *alpha, const unsigned short *beta) 6335 { 6336 static const unsigned int avg_pkts[NCCTRL_WIN] = { 6337 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 6338 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 6339 28672, 40960, 57344, 81920, 114688, 163840, 229376 6340 }; 6341 6342 unsigned int i, w; 6343 6344 for (i = 0; i < NMTUS; ++i) { 6345 unsigned int mtu = mtus[i]; 6346 unsigned int log2 = fls(mtu); 6347 6348 if (!(mtu & ((1 << log2) >> 2))) /* round */ 6349 log2--; 6350 t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) | 6351 V_MTUWIDTH(log2) | V_MTUVALUE(mtu)); 6352 6353 for (w = 0; w < NCCTRL_WIN; ++w) { 6354 unsigned int inc; 6355 6356 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 6357 CC_MIN_INCR); 6358 6359 t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) | 6360 (w << 16) | (beta[w] << 13) | inc); 6361 } 6362 } 6363 } 6364 6365 /** 6366 * t4_set_pace_tbl - set the pace table 6367 * @adap: the adapter 6368 * @pace_vals: the pace values in microseconds 6369 * @start: index of the first entry in the HW pace table to set 6370 * @n: how many entries to set 6371 * 6372 * Sets (a subset of the) HW pace table. 6373 */ 6374 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals, 6375 unsigned int start, unsigned int n) 6376 { 6377 unsigned int vals[NTX_SCHED], i; 6378 unsigned int tick_ns = dack_ticks_to_usec(adap, 1000); 6379 6380 if (n > NTX_SCHED) 6381 return -ERANGE; 6382 6383 /* convert values from us to dack ticks, rounding to closest value */ 6384 for (i = 0; i < n; i++, pace_vals++) { 6385 vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns; 6386 if (vals[i] > 0x7ff) 6387 return -ERANGE; 6388 if (*pace_vals && vals[i] == 0) 6389 return -ERANGE; 6390 } 6391 for (i = 0; i < n; i++, start++) 6392 t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]); 6393 return 0; 6394 } 6395 6396 /** 6397 * t4_set_sched_bps - set the bit rate for a HW traffic scheduler 6398 * @adap: the adapter 6399 * @kbps: target rate in Kbps 6400 * @sched: the scheduler index 6401 * 6402 * Configure a Tx HW scheduler for the target rate. 6403 */ 6404 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps) 6405 { 6406 unsigned int v, tps, cpt, bpt, delta, mindelta = ~0; 6407 unsigned int clk = adap->params.vpd.cclk * 1000; 6408 unsigned int selected_cpt = 0, selected_bpt = 0; 6409 6410 if (kbps > 0) { 6411 kbps *= 125; /* -> bytes */ 6412 for (cpt = 1; cpt <= 255; cpt++) { 6413 tps = clk / cpt; 6414 bpt = (kbps + tps / 2) / tps; 6415 if (bpt > 0 && bpt <= 255) { 6416 v = bpt * tps; 6417 delta = v >= kbps ? v - kbps : kbps - v; 6418 if (delta < mindelta) { 6419 mindelta = delta; 6420 selected_cpt = cpt; 6421 selected_bpt = bpt; 6422 } 6423 } else if (selected_cpt) 6424 break; 6425 } 6426 if (!selected_cpt) 6427 return -EINVAL; 6428 } 6429 t4_write_reg(adap, A_TP_TM_PIO_ADDR, 6430 A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2); 6431 v = t4_read_reg(adap, A_TP_TM_PIO_DATA); 6432 if (sched & 1) 6433 v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24); 6434 else 6435 v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8); 6436 t4_write_reg(adap, A_TP_TM_PIO_DATA, v); 6437 return 0; 6438 } 6439 6440 /** 6441 * t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler 6442 * @adap: the adapter 6443 * @sched: the scheduler index 6444 * @ipg: the interpacket delay in tenths of nanoseconds 6445 * 6446 * Set the interpacket delay for a HW packet rate scheduler. 6447 */ 6448 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg) 6449 { 6450 unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2; 6451 6452 /* convert ipg to nearest number of core clocks */ 6453 ipg *= core_ticks_per_usec(adap); 6454 ipg = (ipg + 5000) / 10000; 6455 if (ipg > M_TXTIMERSEPQ0) 6456 return -EINVAL; 6457 6458 t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr); 6459 v = t4_read_reg(adap, A_TP_TM_PIO_DATA); 6460 if (sched & 1) 6461 v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg); 6462 else 6463 v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg); 6464 t4_write_reg(adap, A_TP_TM_PIO_DATA, v); 6465 t4_read_reg(adap, A_TP_TM_PIO_DATA); 6466 return 0; 6467 } 6468 6469 /* 6470 * Calculates a rate in bytes/s given the number of 256-byte units per 4K core 6471 * clocks. The formula is 6472 * 6473 * bytes/s = bytes256 * 256 * ClkFreq / 4096 6474 * 6475 * which is equivalent to 6476 * 6477 * bytes/s = 62.5 * bytes256 * ClkFreq_ms 6478 */ 6479 static u64 chan_rate(struct adapter *adap, unsigned int bytes256) 6480 { 6481 u64 v = (u64)bytes256 * adap->params.vpd.cclk; 6482 6483 return v * 62 + v / 2; 6484 } 6485 6486 /** 6487 * t4_get_chan_txrate - get the current per channel Tx rates 6488 * @adap: the adapter 6489 * @nic_rate: rates for NIC traffic 6490 * @ofld_rate: rates for offloaded traffic 6491 * 6492 * Return the current Tx rates in bytes/s for NIC and offloaded traffic 6493 * for each channel. 6494 */ 6495 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) 6496 { 6497 u32 v; 6498 6499 v = t4_read_reg(adap, A_TP_TX_TRATE); 6500 nic_rate[0] = chan_rate(adap, G_TNLRATE0(v)); 6501 nic_rate[1] = chan_rate(adap, G_TNLRATE1(v)); 6502 if (adap->chip_params->nchan > 2) { 6503 nic_rate[2] = chan_rate(adap, G_TNLRATE2(v)); 6504 nic_rate[3] = chan_rate(adap, G_TNLRATE3(v)); 6505 } 6506 6507 v = t4_read_reg(adap, A_TP_TX_ORATE); 6508 ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v)); 6509 ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v)); 6510 if (adap->chip_params->nchan > 2) { 6511 ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v)); 6512 ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v)); 6513 } 6514 } 6515 6516 /** 6517 * t4_set_trace_filter - configure one of the tracing filters 6518 * @adap: the adapter 6519 * @tp: the desired trace filter parameters 6520 * @idx: which filter to configure 6521 * @enable: whether to enable or disable the filter 6522 * 6523 * Configures one of the tracing filters available in HW. If @tp is %NULL 6524 * it indicates that the filter is already written in the register and it 6525 * just needs to be enabled or disabled. 6526 */ 6527 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, 6528 int idx, int enable) 6529 { 6530 int i, ofst = idx * 4; 6531 u32 data_reg, mask_reg, cfg; 6532 u32 multitrc = F_TRCMULTIFILTER; 6533 u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN; 6534 6535 if (idx < 0 || idx >= NTRACE) 6536 return -EINVAL; 6537 6538 if (tp == NULL || !enable) { 6539 t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 6540 enable ? en : 0); 6541 return 0; 6542 } 6543 6544 /* 6545 * TODO - After T4 data book is updated, specify the exact 6546 * section below. 6547 * 6548 * See T4 data book - MPS section for a complete description 6549 * of the below if..else handling of A_MPS_TRC_CFG register 6550 * value. 6551 */ 6552 cfg = t4_read_reg(adap, A_MPS_TRC_CFG); 6553 if (cfg & F_TRCMULTIFILTER) { 6554 /* 6555 * If multiple tracers are enabled, then maximum 6556 * capture size is 2.5KB (FIFO size of a single channel) 6557 * minus 2 flits for CPL_TRACE_PKT header. 6558 */ 6559 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) 6560 return -EINVAL; 6561 } else { 6562 /* 6563 * If multiple tracers are disabled, to avoid deadlocks 6564 * maximum packet capture size of 9600 bytes is recommended. 6565 * Also in this mode, only trace0 can be enabled and running. 6566 */ 6567 multitrc = 0; 6568 if (tp->snap_len > 9600 || idx) 6569 return -EINVAL; 6570 } 6571 6572 if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 || 6573 tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET || 6574 tp->min_len > M_TFMINPKTSIZE) 6575 return -EINVAL; 6576 6577 /* stop the tracer we'll be changing */ 6578 t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0); 6579 6580 idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH); 6581 data_reg = A_MPS_TRC_FILTER0_MATCH + idx; 6582 mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx; 6583 6584 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 6585 t4_write_reg(adap, data_reg, tp->data[i]); 6586 t4_write_reg(adap, mask_reg, ~tp->mask[i]); 6587 } 6588 t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst, 6589 V_TFCAPTUREMAX(tp->snap_len) | 6590 V_TFMINPKTSIZE(tp->min_len)); 6591 t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, 6592 V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en | 6593 (is_t4(adap) ? 6594 V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) : 6595 V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert))); 6596 6597 return 0; 6598 } 6599 6600 /** 6601 * t4_get_trace_filter - query one of the tracing filters 6602 * @adap: the adapter 6603 * @tp: the current trace filter parameters 6604 * @idx: which trace filter to query 6605 * @enabled: non-zero if the filter is enabled 6606 * 6607 * Returns the current settings of one of the HW tracing filters. 6608 */ 6609 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, 6610 int *enabled) 6611 { 6612 u32 ctla, ctlb; 6613 int i, ofst = idx * 4; 6614 u32 data_reg, mask_reg; 6615 6616 ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst); 6617 ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst); 6618 6619 if (is_t4(adap)) { 6620 *enabled = !!(ctla & F_TFEN); 6621 tp->port = G_TFPORT(ctla); 6622 tp->invert = !!(ctla & F_TFINVERTMATCH); 6623 } else { 6624 *enabled = !!(ctla & F_T5_TFEN); 6625 tp->port = G_T5_TFPORT(ctla); 6626 tp->invert = !!(ctla & F_T5_TFINVERTMATCH); 6627 } 6628 tp->snap_len = G_TFCAPTUREMAX(ctlb); 6629 tp->min_len = G_TFMINPKTSIZE(ctlb); 6630 tp->skip_ofst = G_TFOFFSET(ctla); 6631 tp->skip_len = G_TFLENGTH(ctla); 6632 6633 ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx; 6634 data_reg = A_MPS_TRC_FILTER0_MATCH + ofst; 6635 mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst; 6636 6637 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 6638 tp->mask[i] = ~t4_read_reg(adap, mask_reg); 6639 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; 6640 } 6641 } 6642 6643 /** 6644 * t4_pmtx_get_stats - returns the HW stats from PMTX 6645 * @adap: the adapter 6646 * @cnt: where to store the count statistics 6647 * @cycles: where to store the cycle statistics 6648 * 6649 * Returns performance statistics from PMTX. 6650 */ 6651 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6652 { 6653 int i; 6654 u32 data[2]; 6655 6656 for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) { 6657 t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1); 6658 cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT); 6659 if (is_t4(adap)) 6660 cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB); 6661 else { 6662 t4_read_indirect(adap, A_PM_TX_DBG_CTRL, 6663 A_PM_TX_DBG_DATA, data, 2, 6664 A_PM_TX_DBG_STAT_MSB); 6665 cycles[i] = (((u64)data[0] << 32) | data[1]); 6666 } 6667 } 6668 } 6669 6670 /** 6671 * t4_pmrx_get_stats - returns the HW stats from PMRX 6672 * @adap: the adapter 6673 * @cnt: where to store the count statistics 6674 * @cycles: where to store the cycle statistics 6675 * 6676 * Returns performance statistics from PMRX. 6677 */ 6678 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6679 { 6680 int i; 6681 u32 data[2]; 6682 6683 for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) { 6684 t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1); 6685 cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT); 6686 if (is_t4(adap)) { 6687 cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB); 6688 } else { 6689 t4_read_indirect(adap, A_PM_RX_DBG_CTRL, 6690 A_PM_RX_DBG_DATA, data, 2, 6691 A_PM_RX_DBG_STAT_MSB); 6692 cycles[i] = (((u64)data[0] << 32) | data[1]); 6693 } 6694 } 6695 } 6696 6697 /** 6698 * t4_get_mps_bg_map - return the buffer groups associated with a port 6699 * @adap: the adapter 6700 * @idx: the port index 6701 * 6702 * Returns a bitmap indicating which MPS buffer groups are associated 6703 * with the given port. Bit i is set if buffer group i is used by the 6704 * port. 6705 */ 6706 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx) 6707 { 6708 u32 n; 6709 6710 if (adap->params.mps_bg_map) 6711 return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff); 6712 6713 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL)); 6714 if (n == 0) 6715 return idx == 0 ? 0xf : 0; 6716 if (n == 1 && chip_id(adap) <= CHELSIO_T5) 6717 return idx < 2 ? (3 << (2 * idx)) : 0; 6718 return 1 << idx; 6719 } 6720 6721 /* 6722 * TP RX e-channels associated with the port. 6723 */ 6724 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx) 6725 { 6726 u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL)); 6727 6728 if (n == 0) 6729 return idx == 0 ? 0xf : 0; 6730 if (n == 1 && chip_id(adap) <= CHELSIO_T5) 6731 return idx < 2 ? (3 << (2 * idx)) : 0; 6732 return 1 << idx; 6733 } 6734 6735 /** 6736 * t4_get_port_type_description - return Port Type string description 6737 * @port_type: firmware Port Type enumeration 6738 */ 6739 const char *t4_get_port_type_description(enum fw_port_type port_type) 6740 { 6741 static const char *const port_type_description[] = { 6742 "Fiber_XFI", 6743 "Fiber_XAUI", 6744 "BT_SGMII", 6745 "BT_XFI", 6746 "BT_XAUI", 6747 "KX4", 6748 "CX4", 6749 "KX", 6750 "KR", 6751 "SFP", 6752 "BP_AP", 6753 "BP4_AP", 6754 "QSFP_10G", 6755 "QSA", 6756 "QSFP", 6757 "BP40_BA", 6758 "KR4_100G", 6759 "CR4_QSFP", 6760 "CR_QSFP", 6761 "CR2_QSFP", 6762 "SFP28", 6763 "KR_SFP28", 6764 }; 6765 6766 if (port_type < ARRAY_SIZE(port_type_description)) 6767 return port_type_description[port_type]; 6768 return "UNKNOWN"; 6769 } 6770 6771 /** 6772 * t4_get_port_stats_offset - collect port stats relative to a previous 6773 * snapshot 6774 * @adap: The adapter 6775 * @idx: The port 6776 * @stats: Current stats to fill 6777 * @offset: Previous stats snapshot 6778 */ 6779 void t4_get_port_stats_offset(struct adapter *adap, int idx, 6780 struct port_stats *stats, 6781 struct port_stats *offset) 6782 { 6783 u64 *s, *o; 6784 int i; 6785 6786 t4_get_port_stats(adap, idx, stats); 6787 for (i = 0, s = (u64 *)stats, o = (u64 *)offset ; 6788 i < (sizeof(struct port_stats)/sizeof(u64)) ; 6789 i++, s++, o++) 6790 *s -= *o; 6791 } 6792 6793 /** 6794 * t4_get_port_stats - collect port statistics 6795 * @adap: the adapter 6796 * @idx: the port index 6797 * @p: the stats structure to fill 6798 * 6799 * Collect statistics related to the given port from HW. 6800 */ 6801 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 6802 { 6803 u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map; 6804 u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL); 6805 6806 #define GET_STAT(name) \ 6807 t4_read_reg64(adap, \ 6808 (is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \ 6809 T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L))) 6810 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L) 6811 6812 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 6813 p->tx_octets = GET_STAT(TX_PORT_BYTES); 6814 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 6815 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 6816 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 6817 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 6818 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 6819 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 6820 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 6821 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 6822 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 6823 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 6824 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 6825 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 6826 p->tx_drop = GET_STAT(TX_PORT_DROP); 6827 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 6828 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 6829 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 6830 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 6831 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 6832 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 6833 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 6834 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 6835 6836 if (chip_id(adap) >= CHELSIO_T5) { 6837 if (stat_ctl & F_COUNTPAUSESTATTX) { 6838 p->tx_frames -= p->tx_pause; 6839 p->tx_octets -= p->tx_pause * 64; 6840 } 6841 if (stat_ctl & F_COUNTPAUSEMCTX) 6842 p->tx_mcast_frames -= p->tx_pause; 6843 } 6844 6845 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 6846 p->rx_octets = GET_STAT(RX_PORT_BYTES); 6847 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 6848 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 6849 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 6850 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 6851 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 6852 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 6853 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 6854 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 6855 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 6856 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 6857 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 6858 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 6859 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 6860 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 6861 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 6862 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 6863 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 6864 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 6865 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 6866 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 6867 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 6868 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 6869 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 6870 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 6871 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 6872 6873 if (chip_id(adap) >= CHELSIO_T5) { 6874 if (stat_ctl & F_COUNTPAUSESTATRX) { 6875 p->rx_frames -= p->rx_pause; 6876 p->rx_octets -= p->rx_pause * 64; 6877 } 6878 if (stat_ctl & F_COUNTPAUSEMCRX) 6879 p->rx_mcast_frames -= p->rx_pause; 6880 } 6881 6882 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 6883 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 6884 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 6885 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 6886 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 6887 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 6888 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 6889 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 6890 6891 #undef GET_STAT 6892 #undef GET_STAT_COM 6893 } 6894 6895 /** 6896 * t4_get_lb_stats - collect loopback port statistics 6897 * @adap: the adapter 6898 * @idx: the loopback port index 6899 * @p: the stats structure to fill 6900 * 6901 * Return HW statistics for the given loopback port. 6902 */ 6903 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) 6904 { 6905 u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map; 6906 6907 #define GET_STAT(name) \ 6908 t4_read_reg64(adap, \ 6909 (is_t4(adap) ? \ 6910 PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \ 6911 T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L))) 6912 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L) 6913 6914 p->octets = GET_STAT(BYTES); 6915 p->frames = GET_STAT(FRAMES); 6916 p->bcast_frames = GET_STAT(BCAST); 6917 p->mcast_frames = GET_STAT(MCAST); 6918 p->ucast_frames = GET_STAT(UCAST); 6919 p->error_frames = GET_STAT(ERROR); 6920 6921 p->frames_64 = GET_STAT(64B); 6922 p->frames_65_127 = GET_STAT(65B_127B); 6923 p->frames_128_255 = GET_STAT(128B_255B); 6924 p->frames_256_511 = GET_STAT(256B_511B); 6925 p->frames_512_1023 = GET_STAT(512B_1023B); 6926 p->frames_1024_1518 = GET_STAT(1024B_1518B); 6927 p->frames_1519_max = GET_STAT(1519B_MAX); 6928 p->drop = GET_STAT(DROP_FRAMES); 6929 6930 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; 6931 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; 6932 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; 6933 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; 6934 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; 6935 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; 6936 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; 6937 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; 6938 6939 #undef GET_STAT 6940 #undef GET_STAT_COM 6941 } 6942 6943 /** 6944 * t4_wol_magic_enable - enable/disable magic packet WoL 6945 * @adap: the adapter 6946 * @port: the physical port index 6947 * @addr: MAC address expected in magic packets, %NULL to disable 6948 * 6949 * Enables/disables magic packet wake-on-LAN for the selected port. 6950 */ 6951 void t4_wol_magic_enable(struct adapter *adap, unsigned int port, 6952 const u8 *addr) 6953 { 6954 u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg; 6955 6956 if (is_t4(adap)) { 6957 mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO); 6958 mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI); 6959 port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2); 6960 } else { 6961 mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO); 6962 mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI); 6963 port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2); 6964 } 6965 6966 if (addr) { 6967 t4_write_reg(adap, mag_id_reg_l, 6968 (addr[2] << 24) | (addr[3] << 16) | 6969 (addr[4] << 8) | addr[5]); 6970 t4_write_reg(adap, mag_id_reg_h, 6971 (addr[0] << 8) | addr[1]); 6972 } 6973 t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN, 6974 V_MAGICEN(addr != NULL)); 6975 } 6976 6977 /** 6978 * t4_wol_pat_enable - enable/disable pattern-based WoL 6979 * @adap: the adapter 6980 * @port: the physical port index 6981 * @map: bitmap of which HW pattern filters to set 6982 * @mask0: byte mask for bytes 0-63 of a packet 6983 * @mask1: byte mask for bytes 64-127 of a packet 6984 * @crc: Ethernet CRC for selected bytes 6985 * @enable: enable/disable switch 6986 * 6987 * Sets the pattern filters indicated in @map to mask out the bytes 6988 * specified in @mask0/@mask1 in received packets and compare the CRC of 6989 * the resulting packet against @crc. If @enable is %true pattern-based 6990 * WoL is enabled, otherwise disabled. 6991 */ 6992 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map, 6993 u64 mask0, u64 mask1, unsigned int crc, bool enable) 6994 { 6995 int i; 6996 u32 port_cfg_reg; 6997 6998 if (is_t4(adap)) 6999 port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2); 7000 else 7001 port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2); 7002 7003 if (!enable) { 7004 t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0); 7005 return 0; 7006 } 7007 if (map > 0xff) 7008 return -EINVAL; 7009 7010 #define EPIO_REG(name) \ 7011 (is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \ 7012 T5_PORT_REG(port, A_MAC_PORT_EPIO_##name)) 7013 7014 t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32); 7015 t4_write_reg(adap, EPIO_REG(DATA2), mask1); 7016 t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32); 7017 7018 for (i = 0; i < NWOL_PAT; i++, map >>= 1) { 7019 if (!(map & 1)) 7020 continue; 7021 7022 /* write byte masks */ 7023 t4_write_reg(adap, EPIO_REG(DATA0), mask0); 7024 t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR); 7025 t4_read_reg(adap, EPIO_REG(OP)); /* flush */ 7026 if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY) 7027 return -ETIMEDOUT; 7028 7029 /* write CRC */ 7030 t4_write_reg(adap, EPIO_REG(DATA0), crc); 7031 t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR); 7032 t4_read_reg(adap, EPIO_REG(OP)); /* flush */ 7033 if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY) 7034 return -ETIMEDOUT; 7035 } 7036 #undef EPIO_REG 7037 7038 t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN); 7039 return 0; 7040 } 7041 7042 /* t4_mk_filtdelwr - create a delete filter WR 7043 * @ftid: the filter ID 7044 * @wr: the filter work request to populate 7045 * @qid: ingress queue to receive the delete notification 7046 * 7047 * Creates a filter work request to delete the supplied filter. If @qid is 7048 * negative the delete notification is suppressed. 7049 */ 7050 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 7051 { 7052 memset(wr, 0, sizeof(*wr)); 7053 wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR)); 7054 wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16)); 7055 wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) | 7056 V_FW_FILTER_WR_NOREPLY(qid < 0)); 7057 wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER); 7058 if (qid >= 0) 7059 wr->rx_chan_rx_rpl_iq = 7060 cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid)); 7061 } 7062 7063 #define INIT_CMD(var, cmd, rd_wr) do { \ 7064 (var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \ 7065 F_FW_CMD_REQUEST | \ 7066 F_FW_CMD_##rd_wr); \ 7067 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ 7068 } while (0) 7069 7070 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 7071 u32 addr, u32 val) 7072 { 7073 u32 ldst_addrspace; 7074 struct fw_ldst_cmd c; 7075 7076 memset(&c, 0, sizeof(c)); 7077 ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE); 7078 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 7079 F_FW_CMD_REQUEST | 7080 F_FW_CMD_WRITE | 7081 ldst_addrspace); 7082 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 7083 c.u.addrval.addr = cpu_to_be32(addr); 7084 c.u.addrval.val = cpu_to_be32(val); 7085 7086 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7087 } 7088 7089 /** 7090 * t4_mdio_rd - read a PHY register through MDIO 7091 * @adap: the adapter 7092 * @mbox: mailbox to use for the FW command 7093 * @phy_addr: the PHY address 7094 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 7095 * @reg: the register to read 7096 * @valp: where to store the value 7097 * 7098 * Issues a FW command through the given mailbox to read a PHY register. 7099 */ 7100 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 7101 unsigned int mmd, unsigned int reg, unsigned int *valp) 7102 { 7103 int ret; 7104 u32 ldst_addrspace; 7105 struct fw_ldst_cmd c; 7106 7107 memset(&c, 0, sizeof(c)); 7108 ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO); 7109 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 7110 F_FW_CMD_REQUEST | F_FW_CMD_READ | 7111 ldst_addrspace); 7112 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 7113 c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) | 7114 V_FW_LDST_CMD_MMD(mmd)); 7115 c.u.mdio.raddr = cpu_to_be16(reg); 7116 7117 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7118 if (ret == 0) 7119 *valp = be16_to_cpu(c.u.mdio.rval); 7120 return ret; 7121 } 7122 7123 /** 7124 * t4_mdio_wr - write a PHY register through MDIO 7125 * @adap: the adapter 7126 * @mbox: mailbox to use for the FW command 7127 * @phy_addr: the PHY address 7128 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 7129 * @reg: the register to write 7130 * @valp: value to write 7131 * 7132 * Issues a FW command through the given mailbox to write a PHY register. 7133 */ 7134 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 7135 unsigned int mmd, unsigned int reg, unsigned int val) 7136 { 7137 u32 ldst_addrspace; 7138 struct fw_ldst_cmd c; 7139 7140 memset(&c, 0, sizeof(c)); 7141 ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO); 7142 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 7143 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 7144 ldst_addrspace); 7145 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 7146 c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) | 7147 V_FW_LDST_CMD_MMD(mmd)); 7148 c.u.mdio.raddr = cpu_to_be16(reg); 7149 c.u.mdio.rval = cpu_to_be16(val); 7150 7151 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7152 } 7153 7154 /** 7155 * 7156 * t4_sge_decode_idma_state - decode the idma state 7157 * @adap: the adapter 7158 * @state: the state idma is stuck in 7159 */ 7160 void t4_sge_decode_idma_state(struct adapter *adapter, int state) 7161 { 7162 static const char * const t4_decode[] = { 7163 "IDMA_IDLE", 7164 "IDMA_PUSH_MORE_CPL_FIFO", 7165 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 7166 "Not used", 7167 "IDMA_PHYSADDR_SEND_PCIEHDR", 7168 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 7169 "IDMA_PHYSADDR_SEND_PAYLOAD", 7170 "IDMA_SEND_FIFO_TO_IMSG", 7171 "IDMA_FL_REQ_DATA_FL_PREP", 7172 "IDMA_FL_REQ_DATA_FL", 7173 "IDMA_FL_DROP", 7174 "IDMA_FL_H_REQ_HEADER_FL", 7175 "IDMA_FL_H_SEND_PCIEHDR", 7176 "IDMA_FL_H_PUSH_CPL_FIFO", 7177 "IDMA_FL_H_SEND_CPL", 7178 "IDMA_FL_H_SEND_IP_HDR_FIRST", 7179 "IDMA_FL_H_SEND_IP_HDR", 7180 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 7181 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 7182 "IDMA_FL_H_SEND_IP_HDR_PADDING", 7183 "IDMA_FL_D_SEND_PCIEHDR", 7184 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 7185 "IDMA_FL_D_REQ_NEXT_DATA_FL", 7186 "IDMA_FL_SEND_PCIEHDR", 7187 "IDMA_FL_PUSH_CPL_FIFO", 7188 "IDMA_FL_SEND_CPL", 7189 "IDMA_FL_SEND_PAYLOAD_FIRST", 7190 "IDMA_FL_SEND_PAYLOAD", 7191 "IDMA_FL_REQ_NEXT_DATA_FL", 7192 "IDMA_FL_SEND_NEXT_PCIEHDR", 7193 "IDMA_FL_SEND_PADDING", 7194 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 7195 "IDMA_FL_SEND_FIFO_TO_IMSG", 7196 "IDMA_FL_REQ_DATAFL_DONE", 7197 "IDMA_FL_REQ_HEADERFL_DONE", 7198 }; 7199 static const char * const t5_decode[] = { 7200 "IDMA_IDLE", 7201 "IDMA_ALMOST_IDLE", 7202 "IDMA_PUSH_MORE_CPL_FIFO", 7203 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 7204 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 7205 "IDMA_PHYSADDR_SEND_PCIEHDR", 7206 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 7207 "IDMA_PHYSADDR_SEND_PAYLOAD", 7208 "IDMA_SEND_FIFO_TO_IMSG", 7209 "IDMA_FL_REQ_DATA_FL", 7210 "IDMA_FL_DROP", 7211 "IDMA_FL_DROP_SEND_INC", 7212 "IDMA_FL_H_REQ_HEADER_FL", 7213 "IDMA_FL_H_SEND_PCIEHDR", 7214 "IDMA_FL_H_PUSH_CPL_FIFO", 7215 "IDMA_FL_H_SEND_CPL", 7216 "IDMA_FL_H_SEND_IP_HDR_FIRST", 7217 "IDMA_FL_H_SEND_IP_HDR", 7218 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 7219 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 7220 "IDMA_FL_H_SEND_IP_HDR_PADDING", 7221 "IDMA_FL_D_SEND_PCIEHDR", 7222 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 7223 "IDMA_FL_D_REQ_NEXT_DATA_FL", 7224 "IDMA_FL_SEND_PCIEHDR", 7225 "IDMA_FL_PUSH_CPL_FIFO", 7226 "IDMA_FL_SEND_CPL", 7227 "IDMA_FL_SEND_PAYLOAD_FIRST", 7228 "IDMA_FL_SEND_PAYLOAD", 7229 "IDMA_FL_REQ_NEXT_DATA_FL", 7230 "IDMA_FL_SEND_NEXT_PCIEHDR", 7231 "IDMA_FL_SEND_PADDING", 7232 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 7233 }; 7234 static const char * const t6_decode[] = { 7235 "IDMA_IDLE", 7236 "IDMA_PUSH_MORE_CPL_FIFO", 7237 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 7238 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 7239 "IDMA_PHYSADDR_SEND_PCIEHDR", 7240 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 7241 "IDMA_PHYSADDR_SEND_PAYLOAD", 7242 "IDMA_FL_REQ_DATA_FL", 7243 "IDMA_FL_DROP", 7244 "IDMA_FL_DROP_SEND_INC", 7245 "IDMA_FL_H_REQ_HEADER_FL", 7246 "IDMA_FL_H_SEND_PCIEHDR", 7247 "IDMA_FL_H_PUSH_CPL_FIFO", 7248 "IDMA_FL_H_SEND_CPL", 7249 "IDMA_FL_H_SEND_IP_HDR_FIRST", 7250 "IDMA_FL_H_SEND_IP_HDR", 7251 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 7252 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 7253 "IDMA_FL_H_SEND_IP_HDR_PADDING", 7254 "IDMA_FL_D_SEND_PCIEHDR", 7255 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 7256 "IDMA_FL_D_REQ_NEXT_DATA_FL", 7257 "IDMA_FL_SEND_PCIEHDR", 7258 "IDMA_FL_PUSH_CPL_FIFO", 7259 "IDMA_FL_SEND_CPL", 7260 "IDMA_FL_SEND_PAYLOAD_FIRST", 7261 "IDMA_FL_SEND_PAYLOAD", 7262 "IDMA_FL_REQ_NEXT_DATA_FL", 7263 "IDMA_FL_SEND_NEXT_PCIEHDR", 7264 "IDMA_FL_SEND_PADDING", 7265 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 7266 }; 7267 static const u32 sge_regs[] = { 7268 A_SGE_DEBUG_DATA_LOW_INDEX_2, 7269 A_SGE_DEBUG_DATA_LOW_INDEX_3, 7270 A_SGE_DEBUG_DATA_HIGH_INDEX_10, 7271 }; 7272 const char * const *sge_idma_decode; 7273 int sge_idma_decode_nstates; 7274 int i; 7275 unsigned int chip_version = chip_id(adapter); 7276 7277 /* Select the right set of decode strings to dump depending on the 7278 * adapter chip type. 7279 */ 7280 switch (chip_version) { 7281 case CHELSIO_T4: 7282 sge_idma_decode = (const char * const *)t4_decode; 7283 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 7284 break; 7285 7286 case CHELSIO_T5: 7287 sge_idma_decode = (const char * const *)t5_decode; 7288 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 7289 break; 7290 7291 case CHELSIO_T6: 7292 sge_idma_decode = (const char * const *)t6_decode; 7293 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); 7294 break; 7295 7296 default: 7297 CH_ERR(adapter, "Unsupported chip version %d\n", chip_version); 7298 return; 7299 } 7300 7301 if (state < sge_idma_decode_nstates) 7302 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 7303 else 7304 CH_WARN(adapter, "idma state %d unknown\n", state); 7305 7306 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 7307 CH_WARN(adapter, "SGE register %#x value %#x\n", 7308 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 7309 } 7310 7311 /** 7312 * t4_sge_ctxt_flush - flush the SGE context cache 7313 * @adap: the adapter 7314 * @mbox: mailbox to use for the FW command 7315 * 7316 * Issues a FW command through the given mailbox to flush the 7317 * SGE context cache. 7318 */ 7319 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox) 7320 { 7321 int ret; 7322 u32 ldst_addrspace; 7323 struct fw_ldst_cmd c; 7324 7325 memset(&c, 0, sizeof(c)); 7326 ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC); 7327 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 7328 F_FW_CMD_REQUEST | F_FW_CMD_READ | 7329 ldst_addrspace); 7330 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 7331 c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH); 7332 7333 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7334 return ret; 7335 } 7336 7337 /** 7338 * t4_fw_hello - establish communication with FW 7339 * @adap: the adapter 7340 * @mbox: mailbox to use for the FW command 7341 * @evt_mbox: mailbox to receive async FW events 7342 * @master: specifies the caller's willingness to be the device master 7343 * @state: returns the current device state (if non-NULL) 7344 * 7345 * Issues a command to establish communication with FW. Returns either 7346 * an error (negative integer) or the mailbox of the Master PF. 7347 */ 7348 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 7349 enum dev_master master, enum dev_state *state) 7350 { 7351 int ret; 7352 struct fw_hello_cmd c; 7353 u32 v; 7354 unsigned int master_mbox; 7355 int retries = FW_CMD_HELLO_RETRIES; 7356 7357 retry: 7358 memset(&c, 0, sizeof(c)); 7359 INIT_CMD(c, HELLO, WRITE); 7360 c.err_to_clearinit = cpu_to_be32( 7361 V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) | 7362 V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) | 7363 V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? 7364 mbox : M_FW_HELLO_CMD_MBMASTER) | 7365 V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) | 7366 V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) | 7367 F_FW_HELLO_CMD_CLEARINIT); 7368 7369 /* 7370 * Issue the HELLO command to the firmware. If it's not successful 7371 * but indicates that we got a "busy" or "timeout" condition, retry 7372 * the HELLO until we exhaust our retry limit. If we do exceed our 7373 * retry limit, check to see if the firmware left us any error 7374 * information and report that if so ... 7375 */ 7376 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7377 if (ret != FW_SUCCESS) { 7378 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 7379 goto retry; 7380 if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR) 7381 t4_report_fw_error(adap); 7382 return ret; 7383 } 7384 7385 v = be32_to_cpu(c.err_to_clearinit); 7386 master_mbox = G_FW_HELLO_CMD_MBMASTER(v); 7387 if (state) { 7388 if (v & F_FW_HELLO_CMD_ERR) 7389 *state = DEV_STATE_ERR; 7390 else if (v & F_FW_HELLO_CMD_INIT) 7391 *state = DEV_STATE_INIT; 7392 else 7393 *state = DEV_STATE_UNINIT; 7394 } 7395 7396 /* 7397 * If we're not the Master PF then we need to wait around for the 7398 * Master PF Driver to finish setting up the adapter. 7399 * 7400 * Note that we also do this wait if we're a non-Master-capable PF and 7401 * there is no current Master PF; a Master PF may show up momentarily 7402 * and we wouldn't want to fail pointlessly. (This can happen when an 7403 * OS loads lots of different drivers rapidly at the same time). In 7404 * this case, the Master PF returned by the firmware will be 7405 * M_PCIE_FW_MASTER so the test below will work ... 7406 */ 7407 if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 && 7408 master_mbox != mbox) { 7409 int waiting = FW_CMD_HELLO_TIMEOUT; 7410 7411 /* 7412 * Wait for the firmware to either indicate an error or 7413 * initialized state. If we see either of these we bail out 7414 * and report the issue to the caller. If we exhaust the 7415 * "hello timeout" and we haven't exhausted our retries, try 7416 * again. Otherwise bail with a timeout error. 7417 */ 7418 for (;;) { 7419 u32 pcie_fw; 7420 7421 msleep(50); 7422 waiting -= 50; 7423 7424 /* 7425 * If neither Error nor Initialialized are indicated 7426 * by the firmware keep waiting till we exhaust our 7427 * timeout ... and then retry if we haven't exhausted 7428 * our retries ... 7429 */ 7430 pcie_fw = t4_read_reg(adap, A_PCIE_FW); 7431 if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) { 7432 if (waiting <= 0) { 7433 if (retries-- > 0) 7434 goto retry; 7435 7436 return -ETIMEDOUT; 7437 } 7438 continue; 7439 } 7440 7441 /* 7442 * We either have an Error or Initialized condition 7443 * report errors preferentially. 7444 */ 7445 if (state) { 7446 if (pcie_fw & F_PCIE_FW_ERR) 7447 *state = DEV_STATE_ERR; 7448 else if (pcie_fw & F_PCIE_FW_INIT) 7449 *state = DEV_STATE_INIT; 7450 } 7451 7452 /* 7453 * If we arrived before a Master PF was selected and 7454 * there's not a valid Master PF, grab its identity 7455 * for our caller. 7456 */ 7457 if (master_mbox == M_PCIE_FW_MASTER && 7458 (pcie_fw & F_PCIE_FW_MASTER_VLD)) 7459 master_mbox = G_PCIE_FW_MASTER(pcie_fw); 7460 break; 7461 } 7462 } 7463 7464 return master_mbox; 7465 } 7466 7467 /** 7468 * t4_fw_bye - end communication with FW 7469 * @adap: the adapter 7470 * @mbox: mailbox to use for the FW command 7471 * 7472 * Issues a command to terminate communication with FW. 7473 */ 7474 int t4_fw_bye(struct adapter *adap, unsigned int mbox) 7475 { 7476 struct fw_bye_cmd c; 7477 7478 memset(&c, 0, sizeof(c)); 7479 INIT_CMD(c, BYE, WRITE); 7480 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7481 } 7482 7483 /** 7484 * t4_fw_reset - issue a reset to FW 7485 * @adap: the adapter 7486 * @mbox: mailbox to use for the FW command 7487 * @reset: specifies the type of reset to perform 7488 * 7489 * Issues a reset command of the specified type to FW. 7490 */ 7491 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 7492 { 7493 struct fw_reset_cmd c; 7494 7495 memset(&c, 0, sizeof(c)); 7496 INIT_CMD(c, RESET, WRITE); 7497 c.val = cpu_to_be32(reset); 7498 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7499 } 7500 7501 /** 7502 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 7503 * @adap: the adapter 7504 * @mbox: mailbox to use for the FW RESET command (if desired) 7505 * @force: force uP into RESET even if FW RESET command fails 7506 * 7507 * Issues a RESET command to firmware (if desired) with a HALT indication 7508 * and then puts the microprocessor into RESET state. The RESET command 7509 * will only be issued if a legitimate mailbox is provided (mbox <= 7510 * M_PCIE_FW_MASTER). 7511 * 7512 * This is generally used in order for the host to safely manipulate the 7513 * adapter without fear of conflicting with whatever the firmware might 7514 * be doing. The only way out of this state is to RESTART the firmware 7515 * ... 7516 */ 7517 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 7518 { 7519 int ret = 0; 7520 7521 /* 7522 * If a legitimate mailbox is provided, issue a RESET command 7523 * with a HALT indication. 7524 */ 7525 if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) { 7526 struct fw_reset_cmd c; 7527 7528 memset(&c, 0, sizeof(c)); 7529 INIT_CMD(c, RESET, WRITE); 7530 c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE); 7531 c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT); 7532 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7533 } 7534 7535 /* 7536 * Normally we won't complete the operation if the firmware RESET 7537 * command fails but if our caller insists we'll go ahead and put the 7538 * uP into RESET. This can be useful if the firmware is hung or even 7539 * missing ... We'll have to take the risk of putting the uP into 7540 * RESET without the cooperation of firmware in that case. 7541 * 7542 * We also force the firmware's HALT flag to be on in case we bypassed 7543 * the firmware RESET command above or we're dealing with old firmware 7544 * which doesn't have the HALT capability. This will serve as a flag 7545 * for the incoming firmware to know that it's coming out of a HALT 7546 * rather than a RESET ... if it's new enough to understand that ... 7547 */ 7548 if (ret == 0 || force) { 7549 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST); 7550 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 7551 F_PCIE_FW_HALT); 7552 } 7553 7554 /* 7555 * And we always return the result of the firmware RESET command 7556 * even when we force the uP into RESET ... 7557 */ 7558 return ret; 7559 } 7560 7561 /** 7562 * t4_fw_restart - restart the firmware by taking the uP out of RESET 7563 * @adap: the adapter 7564 * 7565 * Restart firmware previously halted by t4_fw_halt(). On successful 7566 * return the previous PF Master remains as the new PF Master and there 7567 * is no need to issue a new HELLO command, etc. 7568 */ 7569 int t4_fw_restart(struct adapter *adap, unsigned int mbox) 7570 { 7571 int ms; 7572 7573 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0); 7574 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 7575 if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT)) 7576 return FW_SUCCESS; 7577 msleep(100); 7578 ms += 100; 7579 } 7580 7581 return -ETIMEDOUT; 7582 } 7583 7584 /** 7585 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 7586 * @adap: the adapter 7587 * @mbox: mailbox to use for the FW RESET command (if desired) 7588 * @fw_data: the firmware image to write 7589 * @size: image size 7590 * @force: force upgrade even if firmware doesn't cooperate 7591 * 7592 * Perform all of the steps necessary for upgrading an adapter's 7593 * firmware image. Normally this requires the cooperation of the 7594 * existing firmware in order to halt all existing activities 7595 * but if an invalid mailbox token is passed in we skip that step 7596 * (though we'll still put the adapter microprocessor into RESET in 7597 * that case). 7598 * 7599 * On successful return the new firmware will have been loaded and 7600 * the adapter will have been fully RESET losing all previous setup 7601 * state. On unsuccessful return the adapter may be completely hosed ... 7602 * positive errno indicates that the adapter is ~probably~ intact, a 7603 * negative errno indicates that things are looking bad ... 7604 */ 7605 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 7606 const u8 *fw_data, unsigned int size, int force) 7607 { 7608 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 7609 unsigned int bootstrap = 7610 be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP; 7611 int ret; 7612 7613 if (!t4_fw_matches_chip(adap, fw_hdr)) 7614 return -EINVAL; 7615 7616 if (!bootstrap) { 7617 ret = t4_fw_halt(adap, mbox, force); 7618 if (ret < 0 && !force) 7619 return ret; 7620 } 7621 7622 ret = t4_load_fw(adap, fw_data, size); 7623 if (ret < 0 || bootstrap) 7624 return ret; 7625 7626 return t4_fw_restart(adap, mbox); 7627 } 7628 7629 /** 7630 * t4_fw_initialize - ask FW to initialize the device 7631 * @adap: the adapter 7632 * @mbox: mailbox to use for the FW command 7633 * 7634 * Issues a command to FW to partially initialize the device. This 7635 * performs initialization that generally doesn't depend on user input. 7636 */ 7637 int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 7638 { 7639 struct fw_initialize_cmd c; 7640 7641 memset(&c, 0, sizeof(c)); 7642 INIT_CMD(c, INITIALIZE, WRITE); 7643 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7644 } 7645 7646 /** 7647 * t4_query_params_rw - query FW or device parameters 7648 * @adap: the adapter 7649 * @mbox: mailbox to use for the FW command 7650 * @pf: the PF 7651 * @vf: the VF 7652 * @nparams: the number of parameters 7653 * @params: the parameter names 7654 * @val: the parameter values 7655 * @rw: Write and read flag 7656 * 7657 * Reads the value of FW or device parameters. Up to 7 parameters can be 7658 * queried at once. 7659 */ 7660 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, 7661 unsigned int vf, unsigned int nparams, const u32 *params, 7662 u32 *val, int rw) 7663 { 7664 int i, ret; 7665 struct fw_params_cmd c; 7666 __be32 *p = &c.param[0].mnem; 7667 7668 if (nparams > 7) 7669 return -EINVAL; 7670 7671 memset(&c, 0, sizeof(c)); 7672 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) | 7673 F_FW_CMD_REQUEST | F_FW_CMD_READ | 7674 V_FW_PARAMS_CMD_PFN(pf) | 7675 V_FW_PARAMS_CMD_VFN(vf)); 7676 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7677 7678 for (i = 0; i < nparams; i++) { 7679 *p++ = cpu_to_be32(*params++); 7680 if (rw) 7681 *p = cpu_to_be32(*(val + i)); 7682 p++; 7683 } 7684 7685 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7686 if (ret == 0) 7687 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 7688 *val++ = be32_to_cpu(*p); 7689 return ret; 7690 } 7691 7692 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7693 unsigned int vf, unsigned int nparams, const u32 *params, 7694 u32 *val) 7695 { 7696 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0); 7697 } 7698 7699 /** 7700 * t4_set_params_timeout - sets FW or device parameters 7701 * @adap: the adapter 7702 * @mbox: mailbox to use for the FW command 7703 * @pf: the PF 7704 * @vf: the VF 7705 * @nparams: the number of parameters 7706 * @params: the parameter names 7707 * @val: the parameter values 7708 * @timeout: the timeout time 7709 * 7710 * Sets the value of FW or device parameters. Up to 7 parameters can be 7711 * specified at once. 7712 */ 7713 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, 7714 unsigned int pf, unsigned int vf, 7715 unsigned int nparams, const u32 *params, 7716 const u32 *val, int timeout) 7717 { 7718 struct fw_params_cmd c; 7719 __be32 *p = &c.param[0].mnem; 7720 7721 if (nparams > 7) 7722 return -EINVAL; 7723 7724 memset(&c, 0, sizeof(c)); 7725 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) | 7726 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 7727 V_FW_PARAMS_CMD_PFN(pf) | 7728 V_FW_PARAMS_CMD_VFN(vf)); 7729 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7730 7731 while (nparams--) { 7732 *p++ = cpu_to_be32(*params++); 7733 *p++ = cpu_to_be32(*val++); 7734 } 7735 7736 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); 7737 } 7738 7739 /** 7740 * t4_set_params - sets FW or device parameters 7741 * @adap: the adapter 7742 * @mbox: mailbox to use for the FW command 7743 * @pf: the PF 7744 * @vf: the VF 7745 * @nparams: the number of parameters 7746 * @params: the parameter names 7747 * @val: the parameter values 7748 * 7749 * Sets the value of FW or device parameters. Up to 7 parameters can be 7750 * specified at once. 7751 */ 7752 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7753 unsigned int vf, unsigned int nparams, const u32 *params, 7754 const u32 *val) 7755 { 7756 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, 7757 FW_CMD_MAX_TIMEOUT); 7758 } 7759 7760 /** 7761 * t4_cfg_pfvf - configure PF/VF resource limits 7762 * @adap: the adapter 7763 * @mbox: mailbox to use for the FW command 7764 * @pf: the PF being configured 7765 * @vf: the VF being configured 7766 * @txq: the max number of egress queues 7767 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 7768 * @rxqi: the max number of interrupt-capable ingress queues 7769 * @rxq: the max number of interruptless ingress queues 7770 * @tc: the PCI traffic class 7771 * @vi: the max number of virtual interfaces 7772 * @cmask: the channel access rights mask for the PF/VF 7773 * @pmask: the port access rights mask for the PF/VF 7774 * @nexact: the maximum number of exact MPS filters 7775 * @rcaps: read capabilities 7776 * @wxcaps: write/execute capabilities 7777 * 7778 * Configures resource limits and capabilities for a physical or virtual 7779 * function. 7780 */ 7781 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 7782 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 7783 unsigned int rxqi, unsigned int rxq, unsigned int tc, 7784 unsigned int vi, unsigned int cmask, unsigned int pmask, 7785 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 7786 { 7787 struct fw_pfvf_cmd c; 7788 7789 memset(&c, 0, sizeof(c)); 7790 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST | 7791 F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) | 7792 V_FW_PFVF_CMD_VFN(vf)); 7793 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7794 c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) | 7795 V_FW_PFVF_CMD_NIQ(rxq)); 7796 c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) | 7797 V_FW_PFVF_CMD_PMASK(pmask) | 7798 V_FW_PFVF_CMD_NEQ(txq)); 7799 c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) | 7800 V_FW_PFVF_CMD_NVI(vi) | 7801 V_FW_PFVF_CMD_NEXACTF(nexact)); 7802 c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) | 7803 V_FW_PFVF_CMD_WX_CAPS(wxcaps) | 7804 V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl)); 7805 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7806 } 7807 7808 /** 7809 * t4_alloc_vi_func - allocate a virtual interface 7810 * @adap: the adapter 7811 * @mbox: mailbox to use for the FW command 7812 * @port: physical port associated with the VI 7813 * @pf: the PF owning the VI 7814 * @vf: the VF owning the VI 7815 * @nmac: number of MAC addresses needed (1 to 5) 7816 * @mac: the MAC addresses of the VI 7817 * @rss_size: size of RSS table slice associated with this VI 7818 * @portfunc: which Port Application Function MAC Address is desired 7819 * @idstype: Intrusion Detection Type 7820 * 7821 * Allocates a virtual interface for the given physical port. If @mac is 7822 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 7823 * If @rss_size is %NULL the VI is not assigned any RSS slice by FW. 7824 * @mac should be large enough to hold @nmac Ethernet addresses, they are 7825 * stored consecutively so the space needed is @nmac * 6 bytes. 7826 * Returns a negative error number or the non-negative VI id. 7827 */ 7828 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox, 7829 unsigned int port, unsigned int pf, unsigned int vf, 7830 unsigned int nmac, u8 *mac, u16 *rss_size, 7831 uint8_t *vfvld, uint16_t *vin, 7832 unsigned int portfunc, unsigned int idstype) 7833 { 7834 int ret; 7835 struct fw_vi_cmd c; 7836 7837 memset(&c, 0, sizeof(c)); 7838 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST | 7839 F_FW_CMD_WRITE | F_FW_CMD_EXEC | 7840 V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf)); 7841 c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c)); 7842 c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) | 7843 V_FW_VI_CMD_FUNC(portfunc)); 7844 c.portid_pkd = V_FW_VI_CMD_PORTID(port); 7845 c.nmac = nmac - 1; 7846 if(!rss_size) 7847 c.norss_rsssize = F_FW_VI_CMD_NORSS; 7848 7849 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7850 if (ret) 7851 return ret; 7852 ret = G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid)); 7853 7854 if (mac) { 7855 memcpy(mac, c.mac, sizeof(c.mac)); 7856 switch (nmac) { 7857 case 5: 7858 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 7859 case 4: 7860 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 7861 case 3: 7862 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 7863 case 2: 7864 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 7865 } 7866 } 7867 if (rss_size) 7868 *rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize)); 7869 if (vfvld) { 7870 *vfvld = adap->params.viid_smt_extn_support ? 7871 G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16)) : 7872 G_FW_VIID_VIVLD(ret); 7873 } 7874 if (vin) { 7875 *vin = adap->params.viid_smt_extn_support ? 7876 G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16)) : 7877 G_FW_VIID_VIN(ret); 7878 } 7879 7880 return ret; 7881 } 7882 7883 /** 7884 * t4_alloc_vi - allocate an [Ethernet Function] virtual interface 7885 * @adap: the adapter 7886 * @mbox: mailbox to use for the FW command 7887 * @port: physical port associated with the VI 7888 * @pf: the PF owning the VI 7889 * @vf: the VF owning the VI 7890 * @nmac: number of MAC addresses needed (1 to 5) 7891 * @mac: the MAC addresses of the VI 7892 * @rss_size: size of RSS table slice associated with this VI 7893 * 7894 * backwards compatible and convieniance routine to allocate a Virtual 7895 * Interface with a Ethernet Port Application Function and Intrustion 7896 * Detection System disabled. 7897 */ 7898 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 7899 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 7900 u16 *rss_size, uint8_t *vfvld, uint16_t *vin) 7901 { 7902 return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size, 7903 vfvld, vin, FW_VI_FUNC_ETH, 0); 7904 } 7905 7906 /** 7907 * t4_free_vi - free a virtual interface 7908 * @adap: the adapter 7909 * @mbox: mailbox to use for the FW command 7910 * @pf: the PF owning the VI 7911 * @vf: the VF owning the VI 7912 * @viid: virtual interface identifiler 7913 * 7914 * Free a previously allocated virtual interface. 7915 */ 7916 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, 7917 unsigned int vf, unsigned int viid) 7918 { 7919 struct fw_vi_cmd c; 7920 7921 memset(&c, 0, sizeof(c)); 7922 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | 7923 F_FW_CMD_REQUEST | 7924 F_FW_CMD_EXEC | 7925 V_FW_VI_CMD_PFN(pf) | 7926 V_FW_VI_CMD_VFN(vf)); 7927 c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c)); 7928 c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid)); 7929 7930 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7931 } 7932 7933 /** 7934 * t4_set_rxmode - set Rx properties of a virtual interface 7935 * @adap: the adapter 7936 * @mbox: mailbox to use for the FW command 7937 * @viid: the VI id 7938 * @mtu: the new MTU or -1 7939 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 7940 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 7941 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 7942 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 7943 * @sleep_ok: if true we may sleep while awaiting command completion 7944 * 7945 * Sets Rx properties of a virtual interface. 7946 */ 7947 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 7948 int mtu, int promisc, int all_multi, int bcast, int vlanex, 7949 bool sleep_ok) 7950 { 7951 struct fw_vi_rxmode_cmd c; 7952 7953 /* convert to FW values */ 7954 if (mtu < 0) 7955 mtu = M_FW_VI_RXMODE_CMD_MTU; 7956 if (promisc < 0) 7957 promisc = M_FW_VI_RXMODE_CMD_PROMISCEN; 7958 if (all_multi < 0) 7959 all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN; 7960 if (bcast < 0) 7961 bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN; 7962 if (vlanex < 0) 7963 vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN; 7964 7965 memset(&c, 0, sizeof(c)); 7966 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) | 7967 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 7968 V_FW_VI_RXMODE_CMD_VIID(viid)); 7969 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7970 c.mtu_to_vlanexen = 7971 cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) | 7972 V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) | 7973 V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) | 7974 V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) | 7975 V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex)); 7976 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 7977 } 7978 7979 /** 7980 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 7981 * @adap: the adapter 7982 * @mbox: mailbox to use for the FW command 7983 * @viid: the VI id 7984 * @free: if true any existing filters for this VI id are first removed 7985 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7986 * @addr: the MAC address(es) 7987 * @idx: where to store the index of each allocated filter 7988 * @hash: pointer to hash address filter bitmap 7989 * @sleep_ok: call is allowed to sleep 7990 * 7991 * Allocates an exact-match filter for each of the supplied addresses and 7992 * sets it to the corresponding address. If @idx is not %NULL it should 7993 * have at least @naddr entries, each of which will be set to the index of 7994 * the filter allocated for the corresponding MAC address. If a filter 7995 * could not be allocated for an address its index is set to 0xffff. 7996 * If @hash is not %NULL addresses that fail to allocate an exact filter 7997 * are hashed and update the hash filter bitmap pointed at by @hash. 7998 * 7999 * Returns a negative error number or the number of filters allocated. 8000 */ 8001 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 8002 unsigned int viid, bool free, unsigned int naddr, 8003 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 8004 { 8005 int offset, ret = 0; 8006 struct fw_vi_mac_cmd c; 8007 unsigned int nfilters = 0; 8008 unsigned int max_naddr = adap->chip_params->mps_tcam_size; 8009 unsigned int rem = naddr; 8010 8011 if (naddr > max_naddr) 8012 return -EINVAL; 8013 8014 for (offset = 0; offset < naddr ; /**/) { 8015 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) 8016 ? rem 8017 : ARRAY_SIZE(c.u.exact)); 8018 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 8019 u.exact[fw_naddr]), 16); 8020 struct fw_vi_mac_exact *p; 8021 int i; 8022 8023 memset(&c, 0, sizeof(c)); 8024 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | 8025 F_FW_CMD_REQUEST | 8026 F_FW_CMD_WRITE | 8027 V_FW_CMD_EXEC(free) | 8028 V_FW_VI_MAC_CMD_VIID(viid)); 8029 c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) | 8030 V_FW_CMD_LEN16(len16)); 8031 8032 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8033 p->valid_to_idx = 8034 cpu_to_be16(F_FW_VI_MAC_CMD_VALID | 8035 V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC)); 8036 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 8037 } 8038 8039 /* 8040 * It's okay if we run out of space in our MAC address arena. 8041 * Some of the addresses we submit may get stored so we need 8042 * to run through the reply to see what the results were ... 8043 */ 8044 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 8045 if (ret && ret != -FW_ENOMEM) 8046 break; 8047 8048 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8049 u16 index = G_FW_VI_MAC_CMD_IDX( 8050 be16_to_cpu(p->valid_to_idx)); 8051 8052 if (idx) 8053 idx[offset+i] = (index >= max_naddr 8054 ? 0xffff 8055 : index); 8056 if (index < max_naddr) 8057 nfilters++; 8058 else if (hash) 8059 *hash |= (1ULL << hash_mac_addr(addr[offset+i])); 8060 } 8061 8062 free = false; 8063 offset += fw_naddr; 8064 rem -= fw_naddr; 8065 } 8066 8067 if (ret == 0 || ret == -FW_ENOMEM) 8068 ret = nfilters; 8069 return ret; 8070 } 8071 8072 /** 8073 * t4_change_mac - modifies the exact-match filter for a MAC address 8074 * @adap: the adapter 8075 * @mbox: mailbox to use for the FW command 8076 * @viid: the VI id 8077 * @idx: index of existing filter for old value of MAC address, or -1 8078 * @addr: the new MAC address value 8079 * @persist: whether a new MAC allocation should be persistent 8080 * @smt_idx: add MAC to SMT and return its index, or NULL 8081 * 8082 * Modifies an exact-match filter and sets it to the new MAC address if 8083 * @idx >= 0, or adds the MAC address to a new filter if @idx < 0. In the 8084 * latter case the address is added persistently if @persist is %true. 8085 * 8086 * Note that in general it is not possible to modify the value of a given 8087 * filter so the generic way to modify an address filter is to free the one 8088 * being used by the old address value and allocate a new filter for the 8089 * new address value. 8090 * 8091 * Returns a negative error number or the index of the filter with the new 8092 * MAC value. Note that this index may differ from @idx. 8093 */ 8094 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 8095 int idx, const u8 *addr, bool persist, uint16_t *smt_idx) 8096 { 8097 int ret, mode; 8098 struct fw_vi_mac_cmd c; 8099 struct fw_vi_mac_exact *p = c.u.exact; 8100 unsigned int max_mac_addr = adap->chip_params->mps_tcam_size; 8101 8102 if (idx < 0) /* new allocation */ 8103 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 8104 mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 8105 8106 memset(&c, 0, sizeof(c)); 8107 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | 8108 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 8109 V_FW_VI_MAC_CMD_VIID(viid)); 8110 c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1)); 8111 p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID | 8112 V_FW_VI_MAC_CMD_SMAC_RESULT(mode) | 8113 V_FW_VI_MAC_CMD_IDX(idx)); 8114 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 8115 8116 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 8117 if (ret == 0) { 8118 ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx)); 8119 if (ret >= max_mac_addr) 8120 ret = -ENOMEM; 8121 if (smt_idx) { 8122 if (adap->params.viid_smt_extn_support) 8123 *smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid)); 8124 else { 8125 if (chip_id(adap) <= CHELSIO_T5) 8126 *smt_idx = (viid & M_FW_VIID_VIN) << 1; 8127 else 8128 *smt_idx = viid & M_FW_VIID_VIN; 8129 } 8130 } 8131 } 8132 return ret; 8133 } 8134 8135 /** 8136 * t4_set_addr_hash - program the MAC inexact-match hash filter 8137 * @adap: the adapter 8138 * @mbox: mailbox to use for the FW command 8139 * @viid: the VI id 8140 * @ucast: whether the hash filter should also match unicast addresses 8141 * @vec: the value to be written to the hash filter 8142 * @sleep_ok: call is allowed to sleep 8143 * 8144 * Sets the 64-bit inexact-match hash filter for a virtual interface. 8145 */ 8146 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 8147 bool ucast, u64 vec, bool sleep_ok) 8148 { 8149 struct fw_vi_mac_cmd c; 8150 u32 val; 8151 8152 memset(&c, 0, sizeof(c)); 8153 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | 8154 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 8155 V_FW_VI_ENABLE_CMD_VIID(viid)); 8156 val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) | 8157 V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1); 8158 c.freemacs_to_len16 = cpu_to_be32(val); 8159 c.u.hash.hashvec = cpu_to_be64(vec); 8160 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 8161 } 8162 8163 /** 8164 * t4_enable_vi_params - enable/disable a virtual interface 8165 * @adap: the adapter 8166 * @mbox: mailbox to use for the FW command 8167 * @viid: the VI id 8168 * @rx_en: 1=enable Rx, 0=disable Rx 8169 * @tx_en: 1=enable Tx, 0=disable Tx 8170 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8171 * 8172 * Enables/disables a virtual interface. Note that setting DCB Enable 8173 * only makes sense when enabling a Virtual Interface ... 8174 */ 8175 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 8176 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 8177 { 8178 struct fw_vi_enable_cmd c; 8179 8180 memset(&c, 0, sizeof(c)); 8181 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) | 8182 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 8183 V_FW_VI_ENABLE_CMD_VIID(viid)); 8184 c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) | 8185 V_FW_VI_ENABLE_CMD_EEN(tx_en) | 8186 V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) | 8187 FW_LEN16(c)); 8188 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 8189 } 8190 8191 /** 8192 * t4_enable_vi - enable/disable a virtual interface 8193 * @adap: the adapter 8194 * @mbox: mailbox to use for the FW command 8195 * @viid: the VI id 8196 * @rx_en: 1=enable Rx, 0=disable Rx 8197 * @tx_en: 1=enable Tx, 0=disable Tx 8198 * 8199 * Enables/disables a virtual interface. Note that setting DCB Enable 8200 * only makes sense when enabling a Virtual Interface ... 8201 */ 8202 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 8203 bool rx_en, bool tx_en) 8204 { 8205 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 8206 } 8207 8208 /** 8209 * t4_identify_port - identify a VI's port by blinking its LED 8210 * @adap: the adapter 8211 * @mbox: mailbox to use for the FW command 8212 * @viid: the VI id 8213 * @nblinks: how many times to blink LED at 2.5 Hz 8214 * 8215 * Identifies a VI's port by blinking its LED. 8216 */ 8217 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 8218 unsigned int nblinks) 8219 { 8220 struct fw_vi_enable_cmd c; 8221 8222 memset(&c, 0, sizeof(c)); 8223 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) | 8224 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 8225 V_FW_VI_ENABLE_CMD_VIID(viid)); 8226 c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c)); 8227 c.blinkdur = cpu_to_be16(nblinks); 8228 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8229 } 8230 8231 /** 8232 * t4_iq_stop - stop an ingress queue and its FLs 8233 * @adap: the adapter 8234 * @mbox: mailbox to use for the FW command 8235 * @pf: the PF owning the queues 8236 * @vf: the VF owning the queues 8237 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 8238 * @iqid: ingress queue id 8239 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8240 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8241 * 8242 * Stops an ingress queue and its associated FLs, if any. This causes 8243 * any current or future data/messages destined for these queues to be 8244 * tossed. 8245 */ 8246 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, 8247 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8248 unsigned int fl0id, unsigned int fl1id) 8249 { 8250 struct fw_iq_cmd c; 8251 8252 memset(&c, 0, sizeof(c)); 8253 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | 8254 F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) | 8255 V_FW_IQ_CMD_VFN(vf)); 8256 c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c)); 8257 c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype)); 8258 c.iqid = cpu_to_be16(iqid); 8259 c.fl0id = cpu_to_be16(fl0id); 8260 c.fl1id = cpu_to_be16(fl1id); 8261 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8262 } 8263 8264 /** 8265 * t4_iq_free - free an ingress queue and its FLs 8266 * @adap: the adapter 8267 * @mbox: mailbox to use for the FW command 8268 * @pf: the PF owning the queues 8269 * @vf: the VF owning the queues 8270 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 8271 * @iqid: ingress queue id 8272 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8273 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8274 * 8275 * Frees an ingress queue and its associated FLs, if any. 8276 */ 8277 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8278 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8279 unsigned int fl0id, unsigned int fl1id) 8280 { 8281 struct fw_iq_cmd c; 8282 8283 memset(&c, 0, sizeof(c)); 8284 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | 8285 F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) | 8286 V_FW_IQ_CMD_VFN(vf)); 8287 c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c)); 8288 c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype)); 8289 c.iqid = cpu_to_be16(iqid); 8290 c.fl0id = cpu_to_be16(fl0id); 8291 c.fl1id = cpu_to_be16(fl1id); 8292 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8293 } 8294 8295 /** 8296 * t4_eth_eq_free - free an Ethernet egress queue 8297 * @adap: the adapter 8298 * @mbox: mailbox to use for the FW command 8299 * @pf: the PF owning the queue 8300 * @vf: the VF owning the queue 8301 * @eqid: egress queue id 8302 * 8303 * Frees an Ethernet egress queue. 8304 */ 8305 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8306 unsigned int vf, unsigned int eqid) 8307 { 8308 struct fw_eq_eth_cmd c; 8309 8310 memset(&c, 0, sizeof(c)); 8311 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | 8312 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 8313 V_FW_EQ_ETH_CMD_PFN(pf) | 8314 V_FW_EQ_ETH_CMD_VFN(vf)); 8315 c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c)); 8316 c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid)); 8317 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8318 } 8319 8320 /** 8321 * t4_ctrl_eq_free - free a control egress queue 8322 * @adap: the adapter 8323 * @mbox: mailbox to use for the FW command 8324 * @pf: the PF owning the queue 8325 * @vf: the VF owning the queue 8326 * @eqid: egress queue id 8327 * 8328 * Frees a control egress queue. 8329 */ 8330 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8331 unsigned int vf, unsigned int eqid) 8332 { 8333 struct fw_eq_ctrl_cmd c; 8334 8335 memset(&c, 0, sizeof(c)); 8336 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | 8337 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 8338 V_FW_EQ_CTRL_CMD_PFN(pf) | 8339 V_FW_EQ_CTRL_CMD_VFN(vf)); 8340 c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c)); 8341 c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid)); 8342 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8343 } 8344 8345 /** 8346 * t4_ofld_eq_free - free an offload egress queue 8347 * @adap: the adapter 8348 * @mbox: mailbox to use for the FW command 8349 * @pf: the PF owning the queue 8350 * @vf: the VF owning the queue 8351 * @eqid: egress queue id 8352 * 8353 * Frees a control egress queue. 8354 */ 8355 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8356 unsigned int vf, unsigned int eqid) 8357 { 8358 struct fw_eq_ofld_cmd c; 8359 8360 memset(&c, 0, sizeof(c)); 8361 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | 8362 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 8363 V_FW_EQ_OFLD_CMD_PFN(pf) | 8364 V_FW_EQ_OFLD_CMD_VFN(vf)); 8365 c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c)); 8366 c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid)); 8367 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8368 } 8369 8370 /** 8371 * t4_link_down_rc_str - return a string for a Link Down Reason Code 8372 * @link_down_rc: Link Down Reason Code 8373 * 8374 * Returns a string representation of the Link Down Reason Code. 8375 */ 8376 const char *t4_link_down_rc_str(unsigned char link_down_rc) 8377 { 8378 static const char *reason[] = { 8379 "Link Down", 8380 "Remote Fault", 8381 "Auto-negotiation Failure", 8382 "Reserved3", 8383 "Insufficient Airflow", 8384 "Unable To Determine Reason", 8385 "No RX Signal Detected", 8386 "Reserved7", 8387 }; 8388 8389 if (link_down_rc >= ARRAY_SIZE(reason)) 8390 return "Bad Reason Code"; 8391 8392 return reason[link_down_rc]; 8393 } 8394 8395 /* 8396 * Return the highest speed set in the port capabilities, in Mb/s. 8397 */ 8398 unsigned int fwcap_to_speed(uint32_t caps) 8399 { 8400 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 8401 do { \ 8402 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8403 return __speed; \ 8404 } while (0) 8405 8406 TEST_SPEED_RETURN(400G, 400000); 8407 TEST_SPEED_RETURN(200G, 200000); 8408 TEST_SPEED_RETURN(100G, 100000); 8409 TEST_SPEED_RETURN(50G, 50000); 8410 TEST_SPEED_RETURN(40G, 40000); 8411 TEST_SPEED_RETURN(25G, 25000); 8412 TEST_SPEED_RETURN(10G, 10000); 8413 TEST_SPEED_RETURN(1G, 1000); 8414 TEST_SPEED_RETURN(100M, 100); 8415 8416 #undef TEST_SPEED_RETURN 8417 8418 return 0; 8419 } 8420 8421 /* 8422 * Return the port capabilities bit for the given speed, which is in Mb/s. 8423 */ 8424 uint32_t speed_to_fwcap(unsigned int speed) 8425 { 8426 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 8427 do { \ 8428 if (speed == __speed) \ 8429 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 8430 } while (0) 8431 8432 TEST_SPEED_RETURN(400G, 400000); 8433 TEST_SPEED_RETURN(200G, 200000); 8434 TEST_SPEED_RETURN(100G, 100000); 8435 TEST_SPEED_RETURN(50G, 50000); 8436 TEST_SPEED_RETURN(40G, 40000); 8437 TEST_SPEED_RETURN(25G, 25000); 8438 TEST_SPEED_RETURN(10G, 10000); 8439 TEST_SPEED_RETURN(1G, 1000); 8440 TEST_SPEED_RETURN(100M, 100); 8441 8442 #undef TEST_SPEED_RETURN 8443 8444 return 0; 8445 } 8446 8447 /* 8448 * Return the port capabilities bit for the highest speed in the capabilities. 8449 */ 8450 uint32_t fwcap_top_speed(uint32_t caps) 8451 { 8452 #define TEST_SPEED_RETURN(__caps_speed) \ 8453 do { \ 8454 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8455 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 8456 } while (0) 8457 8458 TEST_SPEED_RETURN(400G); 8459 TEST_SPEED_RETURN(200G); 8460 TEST_SPEED_RETURN(100G); 8461 TEST_SPEED_RETURN(50G); 8462 TEST_SPEED_RETURN(40G); 8463 TEST_SPEED_RETURN(25G); 8464 TEST_SPEED_RETURN(10G); 8465 TEST_SPEED_RETURN(1G); 8466 TEST_SPEED_RETURN(100M); 8467 8468 #undef TEST_SPEED_RETURN 8469 8470 return 0; 8471 } 8472 8473 8474 /** 8475 * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities 8476 * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value 8477 * 8478 * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new 8479 * 32-bit Port Capabilities value. 8480 */ 8481 static uint32_t lstatus_to_fwcap(u32 lstatus) 8482 { 8483 uint32_t linkattr = 0; 8484 8485 /* 8486 * Unfortunately the format of the Link Status in the old 8487 * 16-bit Port Information message isn't the same as the 8488 * 16-bit Port Capabilities bitfield used everywhere else ... 8489 */ 8490 if (lstatus & F_FW_PORT_CMD_RXPAUSE) 8491 linkattr |= FW_PORT_CAP32_FC_RX; 8492 if (lstatus & F_FW_PORT_CMD_TXPAUSE) 8493 linkattr |= FW_PORT_CAP32_FC_TX; 8494 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M)) 8495 linkattr |= FW_PORT_CAP32_SPEED_100M; 8496 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G)) 8497 linkattr |= FW_PORT_CAP32_SPEED_1G; 8498 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G)) 8499 linkattr |= FW_PORT_CAP32_SPEED_10G; 8500 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G)) 8501 linkattr |= FW_PORT_CAP32_SPEED_25G; 8502 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G)) 8503 linkattr |= FW_PORT_CAP32_SPEED_40G; 8504 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G)) 8505 linkattr |= FW_PORT_CAP32_SPEED_100G; 8506 8507 return linkattr; 8508 } 8509 8510 /* 8511 * Updates all fields owned by the common code in port_info and link_config 8512 * based on information provided by the firmware. Does not touch any 8513 * requested_* field. 8514 */ 8515 static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p, 8516 enum fw_port_action action, bool *mod_changed, bool *link_changed) 8517 { 8518 struct link_config old_lc, *lc = &pi->link_cfg; 8519 unsigned char fc, fec; 8520 u32 stat, linkattr; 8521 int old_ptype, old_mtype; 8522 8523 old_ptype = pi->port_type; 8524 old_mtype = pi->mod_type; 8525 old_lc = *lc; 8526 if (action == FW_PORT_ACTION_GET_PORT_INFO) { 8527 stat = be32_to_cpu(p->u.info.lstatus_to_modtype); 8528 8529 pi->port_type = G_FW_PORT_CMD_PTYPE(stat); 8530 pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat); 8531 pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ? 8532 G_FW_PORT_CMD_MDIOADDR(stat) : -1; 8533 8534 lc->supported = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap)); 8535 lc->advertising = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap)); 8536 lc->lp_advertising = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap)); 8537 lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0; 8538 lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat); 8539 8540 linkattr = lstatus_to_fwcap(stat); 8541 } else if (action == FW_PORT_ACTION_GET_PORT_INFO32) { 8542 stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32); 8543 8544 pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat); 8545 pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat); 8546 pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ? 8547 G_FW_PORT_CMD_MDIOADDR32(stat) : -1; 8548 8549 lc->supported = be32_to_cpu(p->u.info32.pcaps32); 8550 lc->advertising = be32_to_cpu(p->u.info32.acaps32); 8551 lc->lp_advertising = be16_to_cpu(p->u.info32.lpacaps32); 8552 lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0; 8553 lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat); 8554 8555 linkattr = be32_to_cpu(p->u.info32.linkattr32); 8556 } else { 8557 CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action); 8558 return; 8559 } 8560 8561 lc->speed = fwcap_to_speed(linkattr); 8562 8563 fc = 0; 8564 if (linkattr & FW_PORT_CAP32_FC_RX) 8565 fc |= PAUSE_RX; 8566 if (linkattr & FW_PORT_CAP32_FC_TX) 8567 fc |= PAUSE_TX; 8568 lc->fc = fc; 8569 8570 fec = FEC_NONE; 8571 if (linkattr & FW_PORT_CAP32_FEC_RS) 8572 fec |= FEC_RS; 8573 if (linkattr & FW_PORT_CAP32_FEC_BASER_RS) 8574 fec |= FEC_BASER_RS; 8575 lc->fec = fec; 8576 8577 if (mod_changed != NULL) 8578 *mod_changed = false; 8579 if (link_changed != NULL) 8580 *link_changed = false; 8581 if (old_ptype != pi->port_type || old_mtype != pi->mod_type || 8582 old_lc.supported != lc->supported) { 8583 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) { 8584 lc->fec_hint = lc->advertising & 8585 V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC); 8586 } 8587 if (mod_changed != NULL) 8588 *mod_changed = true; 8589 } 8590 if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed || 8591 old_lc.fec != lc->fec || old_lc.fc != lc->fc) { 8592 if (link_changed != NULL) 8593 *link_changed = true; 8594 } 8595 } 8596 8597 /** 8598 * t4_update_port_info - retrieve and update port information if changed 8599 * @pi: the port_info 8600 * 8601 * We issue a Get Port Information Command to the Firmware and, if 8602 * successful, we check to see if anything is different from what we 8603 * last recorded and update things accordingly. 8604 */ 8605 int t4_update_port_info(struct port_info *pi) 8606 { 8607 struct adapter *sc = pi->adapter; 8608 struct fw_port_cmd cmd; 8609 enum fw_port_action action; 8610 int ret; 8611 8612 memset(&cmd, 0, sizeof(cmd)); 8613 cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) | 8614 F_FW_CMD_REQUEST | F_FW_CMD_READ | 8615 V_FW_PORT_CMD_PORTID(pi->tx_chan)); 8616 action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 : 8617 FW_PORT_ACTION_GET_PORT_INFO; 8618 cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) | 8619 FW_LEN16(cmd)); 8620 ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd); 8621 if (ret) 8622 return ret; 8623 8624 handle_port_info(pi, &cmd, action, NULL, NULL); 8625 return 0; 8626 } 8627 8628 /** 8629 * t4_handle_fw_rpl - process a FW reply message 8630 * @adap: the adapter 8631 * @rpl: start of the FW message 8632 * 8633 * Processes a FW message, such as link state change messages. 8634 */ 8635 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 8636 { 8637 u8 opcode = *(const u8 *)rpl; 8638 const struct fw_port_cmd *p = (const void *)rpl; 8639 enum fw_port_action action = 8640 G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16)); 8641 bool mod_changed, link_changed; 8642 8643 if (opcode == FW_PORT_CMD && 8644 (action == FW_PORT_ACTION_GET_PORT_INFO || 8645 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 8646 /* link/module state change message */ 8647 int i; 8648 int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid)); 8649 struct port_info *pi = NULL; 8650 struct link_config *lc; 8651 8652 for_each_port(adap, i) { 8653 pi = adap2pinfo(adap, i); 8654 if (pi->tx_chan == chan) 8655 break; 8656 } 8657 8658 lc = &pi->link_cfg; 8659 PORT_LOCK(pi); 8660 handle_port_info(pi, p, action, &mod_changed, &link_changed); 8661 PORT_UNLOCK(pi); 8662 if (mod_changed) 8663 t4_os_portmod_changed(pi); 8664 if (link_changed) { 8665 PORT_LOCK(pi); 8666 t4_os_link_changed(pi); 8667 PORT_UNLOCK(pi); 8668 } 8669 } else { 8670 CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode); 8671 return -EINVAL; 8672 } 8673 return 0; 8674 } 8675 8676 /** 8677 * get_pci_mode - determine a card's PCI mode 8678 * @adapter: the adapter 8679 * @p: where to store the PCI settings 8680 * 8681 * Determines a card's PCI mode and associated parameters, such as speed 8682 * and width. 8683 */ 8684 static void get_pci_mode(struct adapter *adapter, 8685 struct pci_params *p) 8686 { 8687 u16 val; 8688 u32 pcie_cap; 8689 8690 pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP); 8691 if (pcie_cap) { 8692 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val); 8693 p->speed = val & PCI_EXP_LNKSTA_CLS; 8694 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 8695 } 8696 } 8697 8698 struct flash_desc { 8699 u32 vendor_and_model_id; 8700 u32 size_mb; 8701 }; 8702 8703 int t4_get_flash_params(struct adapter *adapter) 8704 { 8705 /* 8706 * Table for non-standard supported Flash parts. Note, all Flash 8707 * parts must have 64KB sectors. 8708 */ 8709 static struct flash_desc supported_flash[] = { 8710 { 0x00150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 8711 }; 8712 8713 int ret; 8714 u32 flashid = 0; 8715 unsigned int part, manufacturer; 8716 unsigned int density, size = 0; 8717 8718 8719 /* 8720 * Issue a Read ID Command to the Flash part. We decode supported 8721 * Flash parts and their sizes from this. There's a newer Query 8722 * Command which can retrieve detailed geometry information but many 8723 * Flash parts don't support it. 8724 */ 8725 ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID); 8726 if (!ret) 8727 ret = sf1_read(adapter, 3, 0, 1, &flashid); 8728 t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ 8729 if (ret < 0) 8730 return ret; 8731 8732 /* 8733 * Check to see if it's one of our non-standard supported Flash parts. 8734 */ 8735 for (part = 0; part < ARRAY_SIZE(supported_flash); part++) 8736 if (supported_flash[part].vendor_and_model_id == flashid) { 8737 adapter->params.sf_size = 8738 supported_flash[part].size_mb; 8739 adapter->params.sf_nsec = 8740 adapter->params.sf_size / SF_SEC_SIZE; 8741 goto found; 8742 } 8743 8744 /* 8745 * Decode Flash part size. The code below looks repetative with 8746 * common encodings, but that's not guaranteed in the JEDEC 8747 * specification for the Read JADEC ID command. The only thing that 8748 * we're guaranteed by the JADEC specification is where the 8749 * Manufacturer ID is in the returned result. After that each 8750 * Manufacturer ~could~ encode things completely differently. 8751 * Note, all Flash parts must have 64KB sectors. 8752 */ 8753 manufacturer = flashid & 0xff; 8754 switch (manufacturer) { 8755 case 0x20: /* Micron/Numonix */ 8756 /* 8757 * This Density -> Size decoding table is taken from Micron 8758 * Data Sheets. 8759 */ 8760 density = (flashid >> 16) & 0xff; 8761 switch (density) { 8762 case 0x14: size = 1 << 20; break; /* 1MB */ 8763 case 0x15: size = 1 << 21; break; /* 2MB */ 8764 case 0x16: size = 1 << 22; break; /* 4MB */ 8765 case 0x17: size = 1 << 23; break; /* 8MB */ 8766 case 0x18: size = 1 << 24; break; /* 16MB */ 8767 case 0x19: size = 1 << 25; break; /* 32MB */ 8768 case 0x20: size = 1 << 26; break; /* 64MB */ 8769 case 0x21: size = 1 << 27; break; /* 128MB */ 8770 case 0x22: size = 1 << 28; break; /* 256MB */ 8771 } 8772 break; 8773 8774 case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */ 8775 /* 8776 * This Density -> Size decoding table is taken from ISSI 8777 * Data Sheets. 8778 */ 8779 density = (flashid >> 16) & 0xff; 8780 switch (density) { 8781 case 0x16: size = 1 << 25; break; /* 32MB */ 8782 case 0x17: size = 1 << 26; break; /* 64MB */ 8783 } 8784 break; 8785 8786 case 0xc2: /* Macronix */ 8787 /* 8788 * This Density -> Size decoding table is taken from Macronix 8789 * Data Sheets. 8790 */ 8791 density = (flashid >> 16) & 0xff; 8792 switch (density) { 8793 case 0x17: size = 1 << 23; break; /* 8MB */ 8794 case 0x18: size = 1 << 24; break; /* 16MB */ 8795 } 8796 break; 8797 8798 case 0xef: /* Winbond */ 8799 /* 8800 * This Density -> Size decoding table is taken from Winbond 8801 * Data Sheets. 8802 */ 8803 density = (flashid >> 16) & 0xff; 8804 switch (density) { 8805 case 0x17: size = 1 << 23; break; /* 8MB */ 8806 case 0x18: size = 1 << 24; break; /* 16MB */ 8807 } 8808 break; 8809 } 8810 8811 /* If we didn't recognize the FLASH part, that's no real issue: the 8812 * Hardware/Software contract says that Hardware will _*ALWAYS*_ 8813 * use a FLASH part which is at least 4MB in size and has 64KB 8814 * sectors. The unrecognized FLASH part is likely to be much larger 8815 * than 4MB, but that's all we really need. 8816 */ 8817 if (size == 0) { 8818 CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid); 8819 size = 1 << 22; 8820 } 8821 8822 /* 8823 * Store decoded Flash size and fall through into vetting code. 8824 */ 8825 adapter->params.sf_size = size; 8826 adapter->params.sf_nsec = size / SF_SEC_SIZE; 8827 8828 found: 8829 /* 8830 * We should ~probably~ reject adapters with FLASHes which are too 8831 * small but we have some legacy FPGAs with small FLASHes that we'd 8832 * still like to use. So instead we emit a scary message ... 8833 */ 8834 if (adapter->params.sf_size < FLASH_MIN_SIZE) 8835 CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n", 8836 flashid, adapter->params.sf_size, FLASH_MIN_SIZE); 8837 8838 return 0; 8839 } 8840 8841 static void set_pcie_completion_timeout(struct adapter *adapter, 8842 u8 range) 8843 { 8844 u16 val; 8845 u32 pcie_cap; 8846 8847 pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP); 8848 if (pcie_cap) { 8849 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val); 8850 val &= 0xfff0; 8851 val |= range ; 8852 t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val); 8853 } 8854 } 8855 8856 const struct chip_params *t4_get_chip_params(int chipid) 8857 { 8858 static const struct chip_params chip_params[] = { 8859 { 8860 /* T4 */ 8861 .nchan = NCHAN, 8862 .pm_stats_cnt = PM_NSTATS, 8863 .cng_ch_bits_log = 2, 8864 .nsched_cls = 15, 8865 .cim_num_obq = CIM_NUM_OBQ, 8866 .mps_rplc_size = 128, 8867 .vfcount = 128, 8868 .sge_fl_db = F_DBPRIO, 8869 .mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES, 8870 }, 8871 { 8872 /* T5 */ 8873 .nchan = NCHAN, 8874 .pm_stats_cnt = PM_NSTATS, 8875 .cng_ch_bits_log = 2, 8876 .nsched_cls = 16, 8877 .cim_num_obq = CIM_NUM_OBQ_T5, 8878 .mps_rplc_size = 128, 8879 .vfcount = 128, 8880 .sge_fl_db = F_DBPRIO | F_DBTYPE, 8881 .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES, 8882 }, 8883 { 8884 /* T6 */ 8885 .nchan = T6_NCHAN, 8886 .pm_stats_cnt = T6_PM_NSTATS, 8887 .cng_ch_bits_log = 3, 8888 .nsched_cls = 16, 8889 .cim_num_obq = CIM_NUM_OBQ_T5, 8890 .mps_rplc_size = 256, 8891 .vfcount = 256, 8892 .sge_fl_db = 0, 8893 .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES, 8894 }, 8895 }; 8896 8897 chipid -= CHELSIO_T4; 8898 if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params)) 8899 return NULL; 8900 8901 return &chip_params[chipid]; 8902 } 8903 8904 /** 8905 * t4_prep_adapter - prepare SW and HW for operation 8906 * @adapter: the adapter 8907 * @buf: temporary space of at least VPD_LEN size provided by the caller. 8908 * 8909 * Initialize adapter SW state for the various HW modules, set initial 8910 * values for some adapter tunables, take PHYs out of reset, and 8911 * initialize the MDIO interface. 8912 */ 8913 int t4_prep_adapter(struct adapter *adapter, u32 *buf) 8914 { 8915 int ret; 8916 uint16_t device_id; 8917 uint32_t pl_rev; 8918 8919 get_pci_mode(adapter, &adapter->params.pci); 8920 8921 pl_rev = t4_read_reg(adapter, A_PL_REV); 8922 adapter->params.chipid = G_CHIPID(pl_rev); 8923 adapter->params.rev = G_REV(pl_rev); 8924 if (adapter->params.chipid == 0) { 8925 /* T4 did not have chipid in PL_REV (T5 onwards do) */ 8926 adapter->params.chipid = CHELSIO_T4; 8927 8928 /* T4A1 chip is not supported */ 8929 if (adapter->params.rev == 1) { 8930 CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n"); 8931 return -EINVAL; 8932 } 8933 } 8934 8935 adapter->chip_params = t4_get_chip_params(chip_id(adapter)); 8936 if (adapter->chip_params == NULL) 8937 return -EINVAL; 8938 8939 adapter->params.pci.vpd_cap_addr = 8940 t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD); 8941 8942 ret = t4_get_flash_params(adapter); 8943 if (ret < 0) 8944 return ret; 8945 8946 /* Cards with real ASICs have the chipid in the PCIe device id */ 8947 t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id); 8948 if (device_id >> 12 == chip_id(adapter)) 8949 adapter->params.cim_la_size = CIMLA_SIZE; 8950 else { 8951 /* FPGA */ 8952 adapter->params.fpga = 1; 8953 adapter->params.cim_la_size = 2 * CIMLA_SIZE; 8954 } 8955 8956 ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf); 8957 if (ret < 0) 8958 return ret; 8959 8960 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 8961 8962 /* 8963 * Default port and clock for debugging in case we can't reach FW. 8964 */ 8965 adapter->params.nports = 1; 8966 adapter->params.portvec = 1; 8967 adapter->params.vpd.cclk = 50000; 8968 8969 /* Set pci completion timeout value to 4 seconds. */ 8970 set_pcie_completion_timeout(adapter, 0xd); 8971 return 0; 8972 } 8973 8974 /** 8975 * t4_shutdown_adapter - shut down adapter, host & wire 8976 * @adapter: the adapter 8977 * 8978 * Perform an emergency shutdown of the adapter and stop it from 8979 * continuing any further communication on the ports or DMA to the 8980 * host. This is typically used when the adapter and/or firmware 8981 * have crashed and we want to prevent any further accidental 8982 * communication with the rest of the world. This will also force 8983 * the port Link Status to go down -- if register writes work -- 8984 * which should help our peers figure out that we're down. 8985 */ 8986 int t4_shutdown_adapter(struct adapter *adapter) 8987 { 8988 int port; 8989 8990 t4_intr_disable(adapter); 8991 t4_write_reg(adapter, A_DBG_GPIO_EN, 0); 8992 for_each_port(adapter, port) { 8993 u32 a_port_cfg = is_t4(adapter) ? 8994 PORT_REG(port, A_XGMAC_PORT_CFG) : 8995 T5_PORT_REG(port, A_MAC_PORT_CFG); 8996 8997 t4_write_reg(adapter, a_port_cfg, 8998 t4_read_reg(adapter, a_port_cfg) 8999 & ~V_SIGNAL_DET(1)); 9000 } 9001 t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0); 9002 9003 return 0; 9004 } 9005 9006 /** 9007 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 9008 * @adapter: the adapter 9009 * @qid: the Queue ID 9010 * @qtype: the Ingress or Egress type for @qid 9011 * @user: true if this request is for a user mode queue 9012 * @pbar2_qoffset: BAR2 Queue Offset 9013 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 9014 * 9015 * Returns the BAR2 SGE Queue Registers information associated with the 9016 * indicated Absolute Queue ID. These are passed back in return value 9017 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 9018 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 9019 * 9020 * This may return an error which indicates that BAR2 SGE Queue 9021 * registers aren't available. If an error is not returned, then the 9022 * following values are returned: 9023 * 9024 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 9025 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 9026 * 9027 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 9028 * require the "Inferred Queue ID" ability may be used. E.g. the 9029 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 9030 * then these "Inferred Queue ID" register may not be used. 9031 */ 9032 int t4_bar2_sge_qregs(struct adapter *adapter, 9033 unsigned int qid, 9034 enum t4_bar2_qtype qtype, 9035 int user, 9036 u64 *pbar2_qoffset, 9037 unsigned int *pbar2_qid) 9038 { 9039 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 9040 u64 bar2_page_offset, bar2_qoffset; 9041 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 9042 9043 /* T4 doesn't support BAR2 SGE Queue registers for kernel 9044 * mode queues. 9045 */ 9046 if (!user && is_t4(adapter)) 9047 return -EINVAL; 9048 9049 /* Get our SGE Page Size parameters. 9050 */ 9051 page_shift = adapter->params.sge.page_shift; 9052 page_size = 1 << page_shift; 9053 9054 /* Get the right Queues per Page parameters for our Queue. 9055 */ 9056 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 9057 ? adapter->params.sge.eq_s_qpp 9058 : adapter->params.sge.iq_s_qpp); 9059 qpp_mask = (1 << qpp_shift) - 1; 9060 9061 /* Calculate the basics of the BAR2 SGE Queue register area: 9062 * o The BAR2 page the Queue registers will be in. 9063 * o The BAR2 Queue ID. 9064 * o The BAR2 Queue ID Offset into the BAR2 page. 9065 */ 9066 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 9067 bar2_qid = qid & qpp_mask; 9068 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 9069 9070 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 9071 * hardware will infer the Absolute Queue ID simply from the writes to 9072 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 9073 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 9074 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 9075 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 9076 * from the BAR2 Page and BAR2 Queue ID. 9077 * 9078 * One important censequence of this is that some BAR2 SGE registers 9079 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 9080 * there. But other registers synthesize the SGE Queue ID purely 9081 * from the writes to the registers -- the Write Combined Doorbell 9082 * Buffer is a good example. These BAR2 SGE Registers are only 9083 * available for those BAR2 SGE Register areas where the SGE Absolute 9084 * Queue ID can be inferred from simple writes. 9085 */ 9086 bar2_qoffset = bar2_page_offset; 9087 bar2_qinferred = (bar2_qid_offset < page_size); 9088 if (bar2_qinferred) { 9089 bar2_qoffset += bar2_qid_offset; 9090 bar2_qid = 0; 9091 } 9092 9093 *pbar2_qoffset = bar2_qoffset; 9094 *pbar2_qid = bar2_qid; 9095 return 0; 9096 } 9097 9098 /** 9099 * t4_init_devlog_params - initialize adapter->params.devlog 9100 * @adap: the adapter 9101 * @fw_attach: whether we can talk to the firmware 9102 * 9103 * Initialize various fields of the adapter's Firmware Device Log 9104 * Parameters structure. 9105 */ 9106 int t4_init_devlog_params(struct adapter *adap, int fw_attach) 9107 { 9108 struct devlog_params *dparams = &adap->params.devlog; 9109 u32 pf_dparams; 9110 unsigned int devlog_meminfo; 9111 struct fw_devlog_cmd devlog_cmd; 9112 int ret; 9113 9114 /* If we're dealing with newer firmware, the Device Log Paramerters 9115 * are stored in a designated register which allows us to access the 9116 * Device Log even if we can't talk to the firmware. 9117 */ 9118 pf_dparams = 9119 t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG)); 9120 if (pf_dparams) { 9121 unsigned int nentries, nentries128; 9122 9123 dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams); 9124 dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4; 9125 9126 nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams); 9127 nentries = (nentries128 + 1) * 128; 9128 dparams->size = nentries * sizeof(struct fw_devlog_e); 9129 9130 return 0; 9131 } 9132 9133 /* 9134 * For any failing returns ... 9135 */ 9136 memset(dparams, 0, sizeof *dparams); 9137 9138 /* 9139 * If we can't talk to the firmware, there's really nothing we can do 9140 * at this point. 9141 */ 9142 if (!fw_attach) 9143 return -ENXIO; 9144 9145 /* Otherwise, ask the firmware for it's Device Log Parameters. 9146 */ 9147 memset(&devlog_cmd, 0, sizeof devlog_cmd); 9148 devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) | 9149 F_FW_CMD_REQUEST | F_FW_CMD_READ); 9150 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 9151 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 9152 &devlog_cmd); 9153 if (ret) 9154 return ret; 9155 9156 devlog_meminfo = 9157 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); 9158 dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo); 9159 dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4; 9160 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); 9161 9162 return 0; 9163 } 9164 9165 /** 9166 * t4_init_sge_params - initialize adap->params.sge 9167 * @adapter: the adapter 9168 * 9169 * Initialize various fields of the adapter's SGE Parameters structure. 9170 */ 9171 int t4_init_sge_params(struct adapter *adapter) 9172 { 9173 u32 r; 9174 struct sge_params *sp = &adapter->params.sge; 9175 unsigned i, tscale = 1; 9176 9177 r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD); 9178 sp->counter_val[0] = G_THRESHOLD_0(r); 9179 sp->counter_val[1] = G_THRESHOLD_1(r); 9180 sp->counter_val[2] = G_THRESHOLD_2(r); 9181 sp->counter_val[3] = G_THRESHOLD_3(r); 9182 9183 if (chip_id(adapter) >= CHELSIO_T6) { 9184 r = t4_read_reg(adapter, A_SGE_ITP_CONTROL); 9185 tscale = G_TSCALE(r); 9186 if (tscale == 0) 9187 tscale = 1; 9188 else 9189 tscale += 2; 9190 } 9191 9192 r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1); 9193 sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale; 9194 sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale; 9195 r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3); 9196 sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale; 9197 sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale; 9198 r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5); 9199 sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale; 9200 sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale; 9201 9202 r = t4_read_reg(adapter, A_SGE_CONM_CTRL); 9203 sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1; 9204 if (is_t4(adapter)) 9205 sp->fl_starve_threshold2 = sp->fl_starve_threshold; 9206 else if (is_t5(adapter)) 9207 sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1; 9208 else 9209 sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1; 9210 9211 /* egress queues: log2 of # of doorbells per BAR2 page */ 9212 r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF); 9213 r >>= S_QUEUESPERPAGEPF0 + 9214 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf; 9215 sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0; 9216 9217 /* ingress queues: log2 of # of doorbells per BAR2 page */ 9218 r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF); 9219 r >>= S_QUEUESPERPAGEPF0 + 9220 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf; 9221 sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0; 9222 9223 r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE); 9224 r >>= S_HOSTPAGESIZEPF0 + 9225 (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf; 9226 sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10; 9227 9228 r = t4_read_reg(adapter, A_SGE_CONTROL); 9229 sp->sge_control = r; 9230 sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64; 9231 sp->fl_pktshift = G_PKTSHIFT(r); 9232 if (chip_id(adapter) <= CHELSIO_T5) { 9233 sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) + 9234 X_INGPADBOUNDARY_SHIFT); 9235 } else { 9236 sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) + 9237 X_T6_INGPADBOUNDARY_SHIFT); 9238 } 9239 if (is_t4(adapter)) 9240 sp->pack_boundary = sp->pad_boundary; 9241 else { 9242 r = t4_read_reg(adapter, A_SGE_CONTROL2); 9243 if (G_INGPACKBOUNDARY(r) == 0) 9244 sp->pack_boundary = 16; 9245 else 9246 sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5); 9247 } 9248 for (i = 0; i < SGE_FLBUF_SIZES; i++) 9249 sp->sge_fl_buffer_size[i] = t4_read_reg(adapter, 9250 A_SGE_FL_BUFFER_SIZE0 + (4 * i)); 9251 9252 return 0; 9253 } 9254 9255 /* 9256 * Read and cache the adapter's compressed filter mode and ingress config. 9257 */ 9258 static void read_filter_mode_and_ingress_config(struct adapter *adap, 9259 bool sleep_ok) 9260 { 9261 uint32_t v; 9262 struct tp_params *tpp = &adap->params.tp; 9263 9264 t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP, 9265 sleep_ok); 9266 t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG, 9267 sleep_ok); 9268 9269 /* 9270 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 9271 * shift positions of several elements of the Compressed Filter Tuple 9272 * for this adapter which we need frequently ... 9273 */ 9274 tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE); 9275 tpp->port_shift = t4_filter_field_shift(adap, F_PORT); 9276 tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID); 9277 tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN); 9278 tpp->tos_shift = t4_filter_field_shift(adap, F_TOS); 9279 tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL); 9280 tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE); 9281 tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH); 9282 tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE); 9283 tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION); 9284 9285 if (chip_id(adap) > CHELSIO_T4) { 9286 v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3)); 9287 adap->params.tp.hash_filter_mask = v; 9288 v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4)); 9289 adap->params.tp.hash_filter_mask |= (u64)v << 32; 9290 } 9291 } 9292 9293 /** 9294 * t4_init_tp_params - initialize adap->params.tp 9295 * @adap: the adapter 9296 * 9297 * Initialize various fields of the adapter's TP Parameters structure. 9298 */ 9299 int t4_init_tp_params(struct adapter *adap, bool sleep_ok) 9300 { 9301 int chan; 9302 u32 v; 9303 struct tp_params *tpp = &adap->params.tp; 9304 9305 v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION); 9306 tpp->tre = G_TIMERRESOLUTION(v); 9307 tpp->dack_re = G_DELAYEDACKRESOLUTION(v); 9308 9309 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 9310 for (chan = 0; chan < MAX_NCHAN; chan++) 9311 tpp->tx_modq[chan] = chan; 9312 9313 read_filter_mode_and_ingress_config(adap, sleep_ok); 9314 9315 /* 9316 * Cache a mask of the bits that represent the error vector portion of 9317 * rx_pkt.err_vec. T6+ can use a compressed error vector to make room 9318 * for information about outer encapsulation (GENEVE/VXLAN/NVGRE). 9319 */ 9320 tpp->err_vec_mask = htobe16(0xffff); 9321 if (chip_id(adap) > CHELSIO_T5) { 9322 v = t4_read_reg(adap, A_TP_OUT_CONFIG); 9323 if (v & F_CRXPKTENC) { 9324 tpp->err_vec_mask = 9325 htobe16(V_T6_COMPR_RXERR_VEC(M_T6_COMPR_RXERR_VEC)); 9326 } 9327 } 9328 9329 return 0; 9330 } 9331 9332 /** 9333 * t4_filter_field_shift - calculate filter field shift 9334 * @adap: the adapter 9335 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 9336 * 9337 * Return the shift position of a filter field within the Compressed 9338 * Filter Tuple. The filter field is specified via its selection bit 9339 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 9340 */ 9341 int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 9342 { 9343 unsigned int filter_mode = adap->params.tp.vlan_pri_map; 9344 unsigned int sel; 9345 int field_shift; 9346 9347 if ((filter_mode & filter_sel) == 0) 9348 return -1; 9349 9350 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 9351 switch (filter_mode & sel) { 9352 case F_FCOE: 9353 field_shift += W_FT_FCOE; 9354 break; 9355 case F_PORT: 9356 field_shift += W_FT_PORT; 9357 break; 9358 case F_VNIC_ID: 9359 field_shift += W_FT_VNIC_ID; 9360 break; 9361 case F_VLAN: 9362 field_shift += W_FT_VLAN; 9363 break; 9364 case F_TOS: 9365 field_shift += W_FT_TOS; 9366 break; 9367 case F_PROTOCOL: 9368 field_shift += W_FT_PROTOCOL; 9369 break; 9370 case F_ETHERTYPE: 9371 field_shift += W_FT_ETHERTYPE; 9372 break; 9373 case F_MACMATCH: 9374 field_shift += W_FT_MACMATCH; 9375 break; 9376 case F_MPSHITTYPE: 9377 field_shift += W_FT_MPSHITTYPE; 9378 break; 9379 case F_FRAGMENTATION: 9380 field_shift += W_FT_FRAGMENTATION; 9381 break; 9382 } 9383 } 9384 return field_shift; 9385 } 9386 9387 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id) 9388 { 9389 u8 addr[6]; 9390 int ret, i, j; 9391 struct port_info *p = adap2pinfo(adap, port_id); 9392 u32 param, val; 9393 struct vi_info *vi = &p->vi[0]; 9394 9395 for (i = 0, j = -1; i <= p->port_id; i++) { 9396 do { 9397 j++; 9398 } while ((adap->params.portvec & (1 << j)) == 0); 9399 } 9400 9401 p->tx_chan = j; 9402 p->mps_bg_map = t4_get_mps_bg_map(adap, j); 9403 p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j); 9404 p->lport = j; 9405 9406 if (!(adap->flags & IS_VF) || 9407 adap->params.vfres.r_caps & FW_CMD_CAP_PORT) { 9408 t4_update_port_info(p); 9409 } 9410 9411 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &vi->rss_size, 9412 &vi->vfvld, &vi->vin); 9413 if (ret < 0) 9414 return ret; 9415 9416 vi->viid = ret; 9417 t4_os_set_hw_addr(p, addr); 9418 9419 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 9420 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 9421 V_FW_PARAMS_PARAM_YZ(vi->viid); 9422 ret = t4_query_params(adap, mbox, pf, vf, 1, ¶m, &val); 9423 if (ret) 9424 vi->rss_base = 0xffff; 9425 else { 9426 /* MPASS((val >> 16) == rss_size); */ 9427 vi->rss_base = val & 0xffff; 9428 } 9429 9430 return 0; 9431 } 9432 9433 /** 9434 * t4_read_cimq_cfg - read CIM queue configuration 9435 * @adap: the adapter 9436 * @base: holds the queue base addresses in bytes 9437 * @size: holds the queue sizes in bytes 9438 * @thres: holds the queue full thresholds in bytes 9439 * 9440 * Returns the current configuration of the CIM queues, starting with 9441 * the IBQs, then the OBQs. 9442 */ 9443 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 9444 { 9445 unsigned int i, v; 9446 int cim_num_obq = adap->chip_params->cim_num_obq; 9447 9448 for (i = 0; i < CIM_NUM_IBQ; i++) { 9449 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT | 9450 V_QUENUMSELECT(i)); 9451 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL); 9452 /* value is in 256-byte units */ 9453 *base++ = G_CIMQBASE(v) * 256; 9454 *size++ = G_CIMQSIZE(v) * 256; 9455 *thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */ 9456 } 9457 for (i = 0; i < cim_num_obq; i++) { 9458 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT | 9459 V_QUENUMSELECT(i)); 9460 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL); 9461 /* value is in 256-byte units */ 9462 *base++ = G_CIMQBASE(v) * 256; 9463 *size++ = G_CIMQSIZE(v) * 256; 9464 } 9465 } 9466 9467 /** 9468 * t4_read_cim_ibq - read the contents of a CIM inbound queue 9469 * @adap: the adapter 9470 * @qid: the queue index 9471 * @data: where to store the queue contents 9472 * @n: capacity of @data in 32-bit words 9473 * 9474 * Reads the contents of the selected CIM queue starting at address 0 up 9475 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9476 * error and the number of 32-bit words actually read on success. 9477 */ 9478 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9479 { 9480 int i, err, attempts; 9481 unsigned int addr; 9482 const unsigned int nwords = CIM_IBQ_SIZE * 4; 9483 9484 if (qid > 5 || (n & 3)) 9485 return -EINVAL; 9486 9487 addr = qid * nwords; 9488 if (n > nwords) 9489 n = nwords; 9490 9491 /* It might take 3-10ms before the IBQ debug read access is allowed. 9492 * Wait for 1 Sec with a delay of 1 usec. 9493 */ 9494 attempts = 1000000; 9495 9496 for (i = 0; i < n; i++, addr++) { 9497 t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) | 9498 F_IBQDBGEN); 9499 err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0, 9500 attempts, 1); 9501 if (err) 9502 return err; 9503 *data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA); 9504 } 9505 t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0); 9506 return i; 9507 } 9508 9509 /** 9510 * t4_read_cim_obq - read the contents of a CIM outbound queue 9511 * @adap: the adapter 9512 * @qid: the queue index 9513 * @data: where to store the queue contents 9514 * @n: capacity of @data in 32-bit words 9515 * 9516 * Reads the contents of the selected CIM queue starting at address 0 up 9517 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9518 * error and the number of 32-bit words actually read on success. 9519 */ 9520 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9521 { 9522 int i, err; 9523 unsigned int addr, v, nwords; 9524 int cim_num_obq = adap->chip_params->cim_num_obq; 9525 9526 if ((qid > (cim_num_obq - 1)) || (n & 3)) 9527 return -EINVAL; 9528 9529 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT | 9530 V_QUENUMSELECT(qid)); 9531 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL); 9532 9533 addr = G_CIMQBASE(v) * 64; /* muliple of 256 -> muliple of 4 */ 9534 nwords = G_CIMQSIZE(v) * 64; /* same */ 9535 if (n > nwords) 9536 n = nwords; 9537 9538 for (i = 0; i < n; i++, addr++) { 9539 t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) | 9540 F_OBQDBGEN); 9541 err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0, 9542 2, 1); 9543 if (err) 9544 return err; 9545 *data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA); 9546 } 9547 t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0); 9548 return i; 9549 } 9550 9551 enum { 9552 CIM_QCTL_BASE = 0, 9553 CIM_CTL_BASE = 0x2000, 9554 CIM_PBT_ADDR_BASE = 0x2800, 9555 CIM_PBT_LRF_BASE = 0x3000, 9556 CIM_PBT_DATA_BASE = 0x3800 9557 }; 9558 9559 /** 9560 * t4_cim_read - read a block from CIM internal address space 9561 * @adap: the adapter 9562 * @addr: the start address within the CIM address space 9563 * @n: number of words to read 9564 * @valp: where to store the result 9565 * 9566 * Reads a block of 4-byte words from the CIM intenal address space. 9567 */ 9568 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 9569 unsigned int *valp) 9570 { 9571 int ret = 0; 9572 9573 if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY) 9574 return -EBUSY; 9575 9576 for ( ; !ret && n--; addr += 4) { 9577 t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr); 9578 ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY, 9579 0, 5, 2); 9580 if (!ret) 9581 *valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA); 9582 } 9583 return ret; 9584 } 9585 9586 /** 9587 * t4_cim_write - write a block into CIM internal address space 9588 * @adap: the adapter 9589 * @addr: the start address within the CIM address space 9590 * @n: number of words to write 9591 * @valp: set of values to write 9592 * 9593 * Writes a block of 4-byte words into the CIM intenal address space. 9594 */ 9595 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 9596 const unsigned int *valp) 9597 { 9598 int ret = 0; 9599 9600 if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY) 9601 return -EBUSY; 9602 9603 for ( ; !ret && n--; addr += 4) { 9604 t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++); 9605 t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE); 9606 ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY, 9607 0, 5, 2); 9608 } 9609 return ret; 9610 } 9611 9612 static int t4_cim_write1(struct adapter *adap, unsigned int addr, 9613 unsigned int val) 9614 { 9615 return t4_cim_write(adap, addr, 1, &val); 9616 } 9617 9618 /** 9619 * t4_cim_ctl_read - read a block from CIM control region 9620 * @adap: the adapter 9621 * @addr: the start address within the CIM control region 9622 * @n: number of words to read 9623 * @valp: where to store the result 9624 * 9625 * Reads a block of 4-byte words from the CIM control region. 9626 */ 9627 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n, 9628 unsigned int *valp) 9629 { 9630 return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp); 9631 } 9632 9633 /** 9634 * t4_cim_read_la - read CIM LA capture buffer 9635 * @adap: the adapter 9636 * @la_buf: where to store the LA data 9637 * @wrptr: the HW write pointer within the capture buffer 9638 * 9639 * Reads the contents of the CIM LA buffer with the most recent entry at 9640 * the end of the returned data and with the entry at @wrptr first. 9641 * We try to leave the LA in the running state we find it in. 9642 */ 9643 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 9644 { 9645 int i, ret; 9646 unsigned int cfg, val, idx; 9647 9648 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg); 9649 if (ret) 9650 return ret; 9651 9652 if (cfg & F_UPDBGLAEN) { /* LA is running, freeze it */ 9653 ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0); 9654 if (ret) 9655 return ret; 9656 } 9657 9658 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val); 9659 if (ret) 9660 goto restart; 9661 9662 idx = G_UPDBGLAWRPTR(val); 9663 if (wrptr) 9664 *wrptr = idx; 9665 9666 for (i = 0; i < adap->params.cim_la_size; i++) { 9667 ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 9668 V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN); 9669 if (ret) 9670 break; 9671 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val); 9672 if (ret) 9673 break; 9674 if (val & F_UPDBGLARDEN) { 9675 ret = -ETIMEDOUT; 9676 break; 9677 } 9678 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]); 9679 if (ret) 9680 break; 9681 9682 /* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */ 9683 idx = (idx + 1) & M_UPDBGLARDPTR; 9684 /* 9685 * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to 9686 * identify the 32-bit portion of the full 312-bit data 9687 */ 9688 if (is_t6(adap)) 9689 while ((idx & 0xf) > 9) 9690 idx = (idx + 1) % M_UPDBGLARDPTR; 9691 } 9692 restart: 9693 if (cfg & F_UPDBGLAEN) { 9694 int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 9695 cfg & ~F_UPDBGLARDEN); 9696 if (!ret) 9697 ret = r; 9698 } 9699 return ret; 9700 } 9701 9702 /** 9703 * t4_tp_read_la - read TP LA capture buffer 9704 * @adap: the adapter 9705 * @la_buf: where to store the LA data 9706 * @wrptr: the HW write pointer within the capture buffer 9707 * 9708 * Reads the contents of the TP LA buffer with the most recent entry at 9709 * the end of the returned data and with the entry at @wrptr first. 9710 * We leave the LA in the running state we find it in. 9711 */ 9712 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 9713 { 9714 bool last_incomplete; 9715 unsigned int i, cfg, val, idx; 9716 9717 cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff; 9718 if (cfg & F_DBGLAENABLE) /* freeze LA */ 9719 t4_write_reg(adap, A_TP_DBG_LA_CONFIG, 9720 adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE)); 9721 9722 val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG); 9723 idx = G_DBGLAWPTR(val); 9724 last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0; 9725 if (last_incomplete) 9726 idx = (idx + 1) & M_DBGLARPTR; 9727 if (wrptr) 9728 *wrptr = idx; 9729 9730 val &= 0xffff; 9731 val &= ~V_DBGLARPTR(M_DBGLARPTR); 9732 val |= adap->params.tp.la_mask; 9733 9734 for (i = 0; i < TPLA_SIZE; i++) { 9735 t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val); 9736 la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL); 9737 idx = (idx + 1) & M_DBGLARPTR; 9738 } 9739 9740 /* Wipe out last entry if it isn't valid */ 9741 if (last_incomplete) 9742 la_buf[TPLA_SIZE - 1] = ~0ULL; 9743 9744 if (cfg & F_DBGLAENABLE) /* restore running state */ 9745 t4_write_reg(adap, A_TP_DBG_LA_CONFIG, 9746 cfg | adap->params.tp.la_mask); 9747 } 9748 9749 /* 9750 * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in 9751 * seconds). If we find one of the SGE Ingress DMA State Machines in the same 9752 * state for more than the Warning Threshold then we'll issue a warning about 9753 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel 9754 * appears to be hung every Warning Repeat second till the situation clears. 9755 * If the situation clears, we'll note that as well. 9756 */ 9757 #define SGE_IDMA_WARN_THRESH 1 9758 #define SGE_IDMA_WARN_REPEAT 300 9759 9760 /** 9761 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor 9762 * @adapter: the adapter 9763 * @idma: the adapter IDMA Monitor state 9764 * 9765 * Initialize the state of an SGE Ingress DMA Monitor. 9766 */ 9767 void t4_idma_monitor_init(struct adapter *adapter, 9768 struct sge_idma_monitor_state *idma) 9769 { 9770 /* Initialize the state variables for detecting an SGE Ingress DMA 9771 * hang. The SGE has internal counters which count up on each clock 9772 * tick whenever the SGE finds its Ingress DMA State Engines in the 9773 * same state they were on the previous clock tick. The clock used is 9774 * the Core Clock so we have a limit on the maximum "time" they can 9775 * record; typically a very small number of seconds. For instance, 9776 * with a 600MHz Core Clock, we can only count up to a bit more than 9777 * 7s. So we'll synthesize a larger counter in order to not run the 9778 * risk of having the "timers" overflow and give us the flexibility to 9779 * maintain a Hung SGE State Machine of our own which operates across 9780 * a longer time frame. 9781 */ 9782 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ 9783 idma->idma_stalled[0] = idma->idma_stalled[1] = 0; 9784 } 9785 9786 /** 9787 * t4_idma_monitor - monitor SGE Ingress DMA state 9788 * @adapter: the adapter 9789 * @idma: the adapter IDMA Monitor state 9790 * @hz: number of ticks/second 9791 * @ticks: number of ticks since the last IDMA Monitor call 9792 */ 9793 void t4_idma_monitor(struct adapter *adapter, 9794 struct sge_idma_monitor_state *idma, 9795 int hz, int ticks) 9796 { 9797 int i, idma_same_state_cnt[2]; 9798 9799 /* Read the SGE Debug Ingress DMA Same State Count registers. These 9800 * are counters inside the SGE which count up on each clock when the 9801 * SGE finds its Ingress DMA State Engines in the same states they 9802 * were in the previous clock. The counters will peg out at 9803 * 0xffffffff without wrapping around so once they pass the 1s 9804 * threshold they'll stay above that till the IDMA state changes. 9805 */ 9806 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13); 9807 idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH); 9808 idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW); 9809 9810 for (i = 0; i < 2; i++) { 9811 u32 debug0, debug11; 9812 9813 /* If the Ingress DMA Same State Counter ("timer") is less 9814 * than 1s, then we can reset our synthesized Stall Timer and 9815 * continue. If we have previously emitted warnings about a 9816 * potential stalled Ingress Queue, issue a note indicating 9817 * that the Ingress Queue has resumed forward progress. 9818 */ 9819 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { 9820 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz) 9821 CH_WARN(adapter, "SGE idma%d, queue %u, " 9822 "resumed after %d seconds\n", 9823 i, idma->idma_qid[i], 9824 idma->idma_stalled[i]/hz); 9825 idma->idma_stalled[i] = 0; 9826 continue; 9827 } 9828 9829 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 9830 * domain. The first time we get here it'll be because we 9831 * passed the 1s Threshold; each additional time it'll be 9832 * because the RX Timer Callback is being fired on its regular 9833 * schedule. 9834 * 9835 * If the stall is below our Potential Hung Ingress Queue 9836 * Warning Threshold, continue. 9837 */ 9838 if (idma->idma_stalled[i] == 0) { 9839 idma->idma_stalled[i] = hz; 9840 idma->idma_warn[i] = 0; 9841 } else { 9842 idma->idma_stalled[i] += ticks; 9843 idma->idma_warn[i] -= ticks; 9844 } 9845 9846 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz) 9847 continue; 9848 9849 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. 9850 */ 9851 if (idma->idma_warn[i] > 0) 9852 continue; 9853 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz; 9854 9855 /* Read and save the SGE IDMA State and Queue ID information. 9856 * We do this every time in case it changes across time ... 9857 * can't be too careful ... 9858 */ 9859 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0); 9860 debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW); 9861 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 9862 9863 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11); 9864 debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW); 9865 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 9866 9867 CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in " 9868 " state %u for %d seconds (debug0=%#x, debug11=%#x)\n", 9869 i, idma->idma_qid[i], idma->idma_state[i], 9870 idma->idma_stalled[i]/hz, 9871 debug0, debug11); 9872 t4_sge_decode_idma_state(adapter, idma->idma_state[i]); 9873 } 9874 } 9875 9876 /** 9877 * t4_read_pace_tbl - read the pace table 9878 * @adap: the adapter 9879 * @pace_vals: holds the returned values 9880 * 9881 * Returns the values of TP's pace table in microseconds. 9882 */ 9883 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED]) 9884 { 9885 unsigned int i, v; 9886 9887 for (i = 0; i < NTX_SCHED; i++) { 9888 t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i); 9889 v = t4_read_reg(adap, A_TP_PACE_TABLE); 9890 pace_vals[i] = dack_ticks_to_usec(adap, v); 9891 } 9892 } 9893 9894 /** 9895 * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler 9896 * @adap: the adapter 9897 * @sched: the scheduler index 9898 * @kbps: the byte rate in Kbps 9899 * @ipg: the interpacket delay in tenths of nanoseconds 9900 * 9901 * Return the current configuration of a HW Tx scheduler. 9902 */ 9903 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps, 9904 unsigned int *ipg, bool sleep_ok) 9905 { 9906 unsigned int v, addr, bpt, cpt; 9907 9908 if (kbps) { 9909 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2; 9910 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 9911 if (sched & 1) 9912 v >>= 16; 9913 bpt = (v >> 8) & 0xff; 9914 cpt = v & 0xff; 9915 if (!cpt) 9916 *kbps = 0; /* scheduler disabled */ 9917 else { 9918 v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */ 9919 *kbps = (v * bpt) / 125; 9920 } 9921 } 9922 if (ipg) { 9923 addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2; 9924 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 9925 if (sched & 1) 9926 v >>= 16; 9927 v &= 0xffff; 9928 *ipg = (10000 * v) / core_ticks_per_usec(adap); 9929 } 9930 } 9931 9932 /** 9933 * t4_load_cfg - download config file 9934 * @adap: the adapter 9935 * @cfg_data: the cfg text file to write 9936 * @size: text file size 9937 * 9938 * Write the supplied config text file to the card's serial flash. 9939 */ 9940 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 9941 { 9942 int ret, i, n, cfg_addr; 9943 unsigned int addr; 9944 unsigned int flash_cfg_start_sec; 9945 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 9946 9947 cfg_addr = t4_flash_cfg_addr(adap); 9948 if (cfg_addr < 0) 9949 return cfg_addr; 9950 9951 addr = cfg_addr; 9952 flash_cfg_start_sec = addr / SF_SEC_SIZE; 9953 9954 if (size > FLASH_CFG_MAX_SIZE) { 9955 CH_ERR(adap, "cfg file too large, max is %u bytes\n", 9956 FLASH_CFG_MAX_SIZE); 9957 return -EFBIG; 9958 } 9959 9960 i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ 9961 sf_sec_size); 9962 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 9963 flash_cfg_start_sec + i - 1); 9964 /* 9965 * If size == 0 then we're simply erasing the FLASH sectors associated 9966 * with the on-adapter Firmware Configuration File. 9967 */ 9968 if (ret || size == 0) 9969 goto out; 9970 9971 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 9972 for (i = 0; i< size; i+= SF_PAGE_SIZE) { 9973 if ( (size - i) < SF_PAGE_SIZE) 9974 n = size - i; 9975 else 9976 n = SF_PAGE_SIZE; 9977 ret = t4_write_flash(adap, addr, n, cfg_data, 1); 9978 if (ret) 9979 goto out; 9980 9981 addr += SF_PAGE_SIZE; 9982 cfg_data += SF_PAGE_SIZE; 9983 } 9984 9985 out: 9986 if (ret) 9987 CH_ERR(adap, "config file %s failed %d\n", 9988 (size == 0 ? "clear" : "download"), ret); 9989 return ret; 9990 } 9991 9992 /** 9993 * t5_fw_init_extern_mem - initialize the external memory 9994 * @adap: the adapter 9995 * 9996 * Initializes the external memory on T5. 9997 */ 9998 int t5_fw_init_extern_mem(struct adapter *adap) 9999 { 10000 u32 params[1], val[1]; 10001 int ret; 10002 10003 if (!is_t5(adap)) 10004 return 0; 10005 10006 val[0] = 0xff; /* Initialize all MCs */ 10007 params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 10008 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT)); 10009 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val, 10010 FW_CMD_MAX_TIMEOUT); 10011 10012 return ret; 10013 } 10014 10015 /* BIOS boot headers */ 10016 typedef struct pci_expansion_rom_header { 10017 u8 signature[2]; /* ROM Signature. Should be 0xaa55 */ 10018 u8 reserved[22]; /* Reserved per processor Architecture data */ 10019 u8 pcir_offset[2]; /* Offset to PCI Data Structure */ 10020 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */ 10021 10022 /* Legacy PCI Expansion ROM Header */ 10023 typedef struct legacy_pci_expansion_rom_header { 10024 u8 signature[2]; /* ROM Signature. Should be 0xaa55 */ 10025 u8 size512; /* Current Image Size in units of 512 bytes */ 10026 u8 initentry_point[4]; 10027 u8 cksum; /* Checksum computed on the entire Image */ 10028 u8 reserved[16]; /* Reserved */ 10029 u8 pcir_offset[2]; /* Offset to PCI Data Struture */ 10030 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */ 10031 10032 /* EFI PCI Expansion ROM Header */ 10033 typedef struct efi_pci_expansion_rom_header { 10034 u8 signature[2]; // ROM signature. The value 0xaa55 10035 u8 initialization_size[2]; /* Units 512. Includes this header */ 10036 u8 efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */ 10037 u8 efi_subsystem[2]; /* Subsystem value for EFI image header */ 10038 u8 efi_machine_type[2]; /* Machine type from EFI image header */ 10039 u8 compression_type[2]; /* Compression type. */ 10040 /* 10041 * Compression type definition 10042 * 0x0: uncompressed 10043 * 0x1: Compressed 10044 * 0x2-0xFFFF: Reserved 10045 */ 10046 u8 reserved[8]; /* Reserved */ 10047 u8 efi_image_header_offset[2]; /* Offset to EFI Image */ 10048 u8 pcir_offset[2]; /* Offset to PCI Data Structure */ 10049 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */ 10050 10051 /* PCI Data Structure Format */ 10052 typedef struct pcir_data_structure { /* PCI Data Structure */ 10053 u8 signature[4]; /* Signature. The string "PCIR" */ 10054 u8 vendor_id[2]; /* Vendor Identification */ 10055 u8 device_id[2]; /* Device Identification */ 10056 u8 vital_product[2]; /* Pointer to Vital Product Data */ 10057 u8 length[2]; /* PCIR Data Structure Length */ 10058 u8 revision; /* PCIR Data Structure Revision */ 10059 u8 class_code[3]; /* Class Code */ 10060 u8 image_length[2]; /* Image Length. Multiple of 512B */ 10061 u8 code_revision[2]; /* Revision Level of Code/Data */ 10062 u8 code_type; /* Code Type. */ 10063 /* 10064 * PCI Expansion ROM Code Types 10065 * 0x00: Intel IA-32, PC-AT compatible. Legacy 10066 * 0x01: Open Firmware standard for PCI. FCODE 10067 * 0x02: Hewlett-Packard PA RISC. HP reserved 10068 * 0x03: EFI Image. EFI 10069 * 0x04-0xFF: Reserved. 10070 */ 10071 u8 indicator; /* Indicator. Identifies the last image in the ROM */ 10072 u8 reserved[2]; /* Reserved */ 10073 } pcir_data_t; /* PCI__DATA_STRUCTURE */ 10074 10075 /* BOOT constants */ 10076 enum { 10077 BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */ 10078 BOOT_SIGNATURE = 0xaa55, /* signature of BIOS boot ROM */ 10079 BOOT_SIZE_INC = 512, /* image size measured in 512B chunks */ 10080 BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */ 10081 BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment */ 10082 VENDOR_ID = 0x1425, /* Vendor ID */ 10083 PCIR_SIGNATURE = 0x52494350 /* PCIR signature */ 10084 }; 10085 10086 /* 10087 * modify_device_id - Modifies the device ID of the Boot BIOS image 10088 * @adatper: the device ID to write. 10089 * @boot_data: the boot image to modify. 10090 * 10091 * Write the supplied device ID to the boot BIOS image. 10092 */ 10093 static void modify_device_id(int device_id, u8 *boot_data) 10094 { 10095 legacy_pci_exp_rom_header_t *header; 10096 pcir_data_t *pcir_header; 10097 u32 cur_header = 0; 10098 10099 /* 10100 * Loop through all chained images and change the device ID's 10101 */ 10102 while (1) { 10103 header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header]; 10104 pcir_header = (pcir_data_t *) &boot_data[cur_header + 10105 le16_to_cpu(*(u16*)header->pcir_offset)]; 10106 10107 /* 10108 * Only modify the Device ID if code type is Legacy or HP. 10109 * 0x00: Okay to modify 10110 * 0x01: FCODE. Do not be modify 10111 * 0x03: Okay to modify 10112 * 0x04-0xFF: Do not modify 10113 */ 10114 if (pcir_header->code_type == 0x00) { 10115 u8 csum = 0; 10116 int i; 10117 10118 /* 10119 * Modify Device ID to match current adatper 10120 */ 10121 *(u16*) pcir_header->device_id = device_id; 10122 10123 /* 10124 * Set checksum temporarily to 0. 10125 * We will recalculate it later. 10126 */ 10127 header->cksum = 0x0; 10128 10129 /* 10130 * Calculate and update checksum 10131 */ 10132 for (i = 0; i < (header->size512 * 512); i++) 10133 csum += (u8)boot_data[cur_header + i]; 10134 10135 /* 10136 * Invert summed value to create the checksum 10137 * Writing new checksum value directly to the boot data 10138 */ 10139 boot_data[cur_header + 7] = -csum; 10140 10141 } else if (pcir_header->code_type == 0x03) { 10142 10143 /* 10144 * Modify Device ID to match current adatper 10145 */ 10146 *(u16*) pcir_header->device_id = device_id; 10147 10148 } 10149 10150 10151 /* 10152 * Check indicator element to identify if this is the last 10153 * image in the ROM. 10154 */ 10155 if (pcir_header->indicator & 0x80) 10156 break; 10157 10158 /* 10159 * Move header pointer up to the next image in the ROM. 10160 */ 10161 cur_header += header->size512 * 512; 10162 } 10163 } 10164 10165 /* 10166 * t4_load_boot - download boot flash 10167 * @adapter: the adapter 10168 * @boot_data: the boot image to write 10169 * @boot_addr: offset in flash to write boot_data 10170 * @size: image size 10171 * 10172 * Write the supplied boot image to the card's serial flash. 10173 * The boot image has the following sections: a 28-byte header and the 10174 * boot image. 10175 */ 10176 int t4_load_boot(struct adapter *adap, u8 *boot_data, 10177 unsigned int boot_addr, unsigned int size) 10178 { 10179 pci_exp_rom_header_t *header; 10180 int pcir_offset ; 10181 pcir_data_t *pcir_header; 10182 int ret, addr; 10183 uint16_t device_id; 10184 unsigned int i; 10185 unsigned int boot_sector = (boot_addr * 1024 ); 10186 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10187 10188 /* 10189 * Make sure the boot image does not encroach on the firmware region 10190 */ 10191 if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) { 10192 CH_ERR(adap, "boot image encroaching on firmware region\n"); 10193 return -EFBIG; 10194 } 10195 10196 /* 10197 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot, 10198 * and Boot configuration data sections. These 3 boot sections span 10199 * sectors 0 to 7 in flash and live right before the FW image location. 10200 */ 10201 i = DIV_ROUND_UP(size ? size : FLASH_FW_START, 10202 sf_sec_size); 10203 ret = t4_flash_erase_sectors(adap, boot_sector >> 16, 10204 (boot_sector >> 16) + i - 1); 10205 10206 /* 10207 * If size == 0 then we're simply erasing the FLASH sectors associated 10208 * with the on-adapter option ROM file 10209 */ 10210 if (ret || (size == 0)) 10211 goto out; 10212 10213 /* Get boot header */ 10214 header = (pci_exp_rom_header_t *)boot_data; 10215 pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset); 10216 /* PCIR Data Structure */ 10217 pcir_header = (pcir_data_t *) &boot_data[pcir_offset]; 10218 10219 /* 10220 * Perform some primitive sanity testing to avoid accidentally 10221 * writing garbage over the boot sectors. We ought to check for 10222 * more but it's not worth it for now ... 10223 */ 10224 if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) { 10225 CH_ERR(adap, "boot image too small/large\n"); 10226 return -EFBIG; 10227 } 10228 10229 #ifndef CHELSIO_T4_DIAGS 10230 /* 10231 * Check BOOT ROM header signature 10232 */ 10233 if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) { 10234 CH_ERR(adap, "Boot image missing signature\n"); 10235 return -EINVAL; 10236 } 10237 10238 /* 10239 * Check PCI header signature 10240 */ 10241 if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) { 10242 CH_ERR(adap, "PCI header missing signature\n"); 10243 return -EINVAL; 10244 } 10245 10246 /* 10247 * Check Vendor ID matches Chelsio ID 10248 */ 10249 if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) { 10250 CH_ERR(adap, "Vendor ID missing signature\n"); 10251 return -EINVAL; 10252 } 10253 #endif 10254 10255 /* 10256 * Retrieve adapter's device ID 10257 */ 10258 t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id); 10259 /* Want to deal with PF 0 so I strip off PF 4 indicator */ 10260 device_id = device_id & 0xf0ff; 10261 10262 /* 10263 * Check PCIE Device ID 10264 */ 10265 if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) { 10266 /* 10267 * Change the device ID in the Boot BIOS image to match 10268 * the Device ID of the current adapter. 10269 */ 10270 modify_device_id(device_id, boot_data); 10271 } 10272 10273 /* 10274 * Skip over the first SF_PAGE_SIZE worth of data and write it after 10275 * we finish copying the rest of the boot image. This will ensure 10276 * that the BIOS boot header will only be written if the boot image 10277 * was written in full. 10278 */ 10279 addr = boot_sector; 10280 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 10281 addr += SF_PAGE_SIZE; 10282 boot_data += SF_PAGE_SIZE; 10283 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0); 10284 if (ret) 10285 goto out; 10286 } 10287 10288 ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE, 10289 (const u8 *)header, 0); 10290 10291 out: 10292 if (ret) 10293 CH_ERR(adap, "boot image download failed, error %d\n", ret); 10294 return ret; 10295 } 10296 10297 /* 10298 * t4_flash_bootcfg_addr - return the address of the flash optionrom configuration 10299 * @adapter: the adapter 10300 * 10301 * Return the address within the flash where the OptionROM Configuration 10302 * is stored, or an error if the device FLASH is too small to contain 10303 * a OptionROM Configuration. 10304 */ 10305 static int t4_flash_bootcfg_addr(struct adapter *adapter) 10306 { 10307 /* 10308 * If the device FLASH isn't large enough to hold a Firmware 10309 * Configuration File, return an error. 10310 */ 10311 if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE) 10312 return -ENOSPC; 10313 10314 return FLASH_BOOTCFG_START; 10315 } 10316 10317 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size) 10318 { 10319 int ret, i, n, cfg_addr; 10320 unsigned int addr; 10321 unsigned int flash_cfg_start_sec; 10322 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10323 10324 cfg_addr = t4_flash_bootcfg_addr(adap); 10325 if (cfg_addr < 0) 10326 return cfg_addr; 10327 10328 addr = cfg_addr; 10329 flash_cfg_start_sec = addr / SF_SEC_SIZE; 10330 10331 if (size > FLASH_BOOTCFG_MAX_SIZE) { 10332 CH_ERR(adap, "bootcfg file too large, max is %u bytes\n", 10333 FLASH_BOOTCFG_MAX_SIZE); 10334 return -EFBIG; 10335 } 10336 10337 i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */ 10338 sf_sec_size); 10339 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 10340 flash_cfg_start_sec + i - 1); 10341 10342 /* 10343 * If size == 0 then we're simply erasing the FLASH sectors associated 10344 * with the on-adapter OptionROM Configuration File. 10345 */ 10346 if (ret || size == 0) 10347 goto out; 10348 10349 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 10350 for (i = 0; i< size; i+= SF_PAGE_SIZE) { 10351 if ( (size - i) < SF_PAGE_SIZE) 10352 n = size - i; 10353 else 10354 n = SF_PAGE_SIZE; 10355 ret = t4_write_flash(adap, addr, n, cfg_data, 0); 10356 if (ret) 10357 goto out; 10358 10359 addr += SF_PAGE_SIZE; 10360 cfg_data += SF_PAGE_SIZE; 10361 } 10362 10363 out: 10364 if (ret) 10365 CH_ERR(adap, "boot config data %s failed %d\n", 10366 (size == 0 ? "clear" : "download"), ret); 10367 return ret; 10368 } 10369 10370 /** 10371 * t4_set_filter_mode - configure the optional components of filter tuples 10372 * @adap: the adapter 10373 * @mode_map: a bitmap selcting which optional filter components to enable 10374 * @sleep_ok: if true we may sleep while awaiting command completion 10375 * 10376 * Sets the filter mode by selecting the optional components to enable 10377 * in filter tuples. Returns 0 on success and a negative error if the 10378 * requested mode needs more bits than are available for optional 10379 * components. 10380 */ 10381 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map, 10382 bool sleep_ok) 10383 { 10384 static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 }; 10385 10386 int i, nbits = 0; 10387 10388 for (i = S_FCOE; i <= S_FRAGMENTATION; i++) 10389 if (mode_map & (1 << i)) 10390 nbits += width[i]; 10391 if (nbits > FILTER_OPT_LEN) 10392 return -EINVAL; 10393 t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok); 10394 read_filter_mode_and_ingress_config(adap, sleep_ok); 10395 10396 return 0; 10397 } 10398 10399 /** 10400 * t4_clr_port_stats - clear port statistics 10401 * @adap: the adapter 10402 * @idx: the port index 10403 * 10404 * Clear HW statistics for the given port. 10405 */ 10406 void t4_clr_port_stats(struct adapter *adap, int idx) 10407 { 10408 unsigned int i; 10409 u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map; 10410 u32 port_base_addr; 10411 10412 if (is_t4(adap)) 10413 port_base_addr = PORT_BASE(idx); 10414 else 10415 port_base_addr = T5_PORT_BASE(idx); 10416 10417 for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L; 10418 i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8) 10419 t4_write_reg(adap, port_base_addr + i, 0); 10420 for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L; 10421 i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8) 10422 t4_write_reg(adap, port_base_addr + i, 0); 10423 for (i = 0; i < 4; i++) 10424 if (bgmap & (1 << i)) { 10425 t4_write_reg(adap, 10426 A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0); 10427 t4_write_reg(adap, 10428 A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0); 10429 } 10430 } 10431 10432 /** 10433 * t4_i2c_rd - read I2C data from adapter 10434 * @adap: the adapter 10435 * @port: Port number if per-port device; <0 if not 10436 * @devid: per-port device ID or absolute device ID 10437 * @offset: byte offset into device I2C space 10438 * @len: byte length of I2C space data 10439 * @buf: buffer in which to return I2C data 10440 * 10441 * Reads the I2C data from the indicated device and location. 10442 */ 10443 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, 10444 int port, unsigned int devid, 10445 unsigned int offset, unsigned int len, 10446 u8 *buf) 10447 { 10448 u32 ldst_addrspace; 10449 struct fw_ldst_cmd ldst; 10450 int ret; 10451 10452 if (port >= 4 || 10453 devid >= 256 || 10454 offset >= 256 || 10455 len > sizeof ldst.u.i2c.data) 10456 return -EINVAL; 10457 10458 memset(&ldst, 0, sizeof ldst); 10459 ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C); 10460 ldst.op_to_addrspace = 10461 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 10462 F_FW_CMD_REQUEST | 10463 F_FW_CMD_READ | 10464 ldst_addrspace); 10465 ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst)); 10466 ldst.u.i2c.pid = (port < 0 ? 0xff : port); 10467 ldst.u.i2c.did = devid; 10468 ldst.u.i2c.boffset = offset; 10469 ldst.u.i2c.blen = len; 10470 ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst); 10471 if (!ret) 10472 memcpy(buf, ldst.u.i2c.data, len); 10473 return ret; 10474 } 10475 10476 /** 10477 * t4_i2c_wr - write I2C data to adapter 10478 * @adap: the adapter 10479 * @port: Port number if per-port device; <0 if not 10480 * @devid: per-port device ID or absolute device ID 10481 * @offset: byte offset into device I2C space 10482 * @len: byte length of I2C space data 10483 * @buf: buffer containing new I2C data 10484 * 10485 * Write the I2C data to the indicated device and location. 10486 */ 10487 int t4_i2c_wr(struct adapter *adap, unsigned int mbox, 10488 int port, unsigned int devid, 10489 unsigned int offset, unsigned int len, 10490 u8 *buf) 10491 { 10492 u32 ldst_addrspace; 10493 struct fw_ldst_cmd ldst; 10494 10495 if (port >= 4 || 10496 devid >= 256 || 10497 offset >= 256 || 10498 len > sizeof ldst.u.i2c.data) 10499 return -EINVAL; 10500 10501 memset(&ldst, 0, sizeof ldst); 10502 ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C); 10503 ldst.op_to_addrspace = 10504 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 10505 F_FW_CMD_REQUEST | 10506 F_FW_CMD_WRITE | 10507 ldst_addrspace); 10508 ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst)); 10509 ldst.u.i2c.pid = (port < 0 ? 0xff : port); 10510 ldst.u.i2c.did = devid; 10511 ldst.u.i2c.boffset = offset; 10512 ldst.u.i2c.blen = len; 10513 memcpy(ldst.u.i2c.data, buf, len); 10514 return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst); 10515 } 10516 10517 /** 10518 * t4_sge_ctxt_rd - read an SGE context through FW 10519 * @adap: the adapter 10520 * @mbox: mailbox to use for the FW command 10521 * @cid: the context id 10522 * @ctype: the context type 10523 * @data: where to store the context data 10524 * 10525 * Issues a FW command through the given mailbox to read an SGE context. 10526 */ 10527 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid, 10528 enum ctxt_type ctype, u32 *data) 10529 { 10530 int ret; 10531 struct fw_ldst_cmd c; 10532 10533 if (ctype == CTXT_EGRESS) 10534 ret = FW_LDST_ADDRSPC_SGE_EGRC; 10535 else if (ctype == CTXT_INGRESS) 10536 ret = FW_LDST_ADDRSPC_SGE_INGC; 10537 else if (ctype == CTXT_FLM) 10538 ret = FW_LDST_ADDRSPC_SGE_FLMC; 10539 else 10540 ret = FW_LDST_ADDRSPC_SGE_CONMC; 10541 10542 memset(&c, 0, sizeof(c)); 10543 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 10544 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10545 V_FW_LDST_CMD_ADDRSPACE(ret)); 10546 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 10547 c.u.idctxt.physid = cpu_to_be32(cid); 10548 10549 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 10550 if (ret == 0) { 10551 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0); 10552 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1); 10553 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2); 10554 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3); 10555 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4); 10556 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5); 10557 } 10558 return ret; 10559 } 10560 10561 /** 10562 * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW 10563 * @adap: the adapter 10564 * @cid: the context id 10565 * @ctype: the context type 10566 * @data: where to store the context data 10567 * 10568 * Reads an SGE context directly, bypassing FW. This is only for 10569 * debugging when FW is unavailable. 10570 */ 10571 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype, 10572 u32 *data) 10573 { 10574 int i, ret; 10575 10576 t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype)); 10577 ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1); 10578 if (!ret) 10579 for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4) 10580 *data++ = t4_read_reg(adap, i); 10581 return ret; 10582 } 10583 10584 int t4_sched_config(struct adapter *adapter, int type, int minmaxen, 10585 int sleep_ok) 10586 { 10587 struct fw_sched_cmd cmd; 10588 10589 memset(&cmd, 0, sizeof(cmd)); 10590 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | 10591 F_FW_CMD_REQUEST | 10592 F_FW_CMD_WRITE); 10593 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10594 10595 cmd.u.config.sc = FW_SCHED_SC_CONFIG; 10596 cmd.u.config.type = type; 10597 cmd.u.config.minmaxen = minmaxen; 10598 10599 return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), 10600 NULL, sleep_ok); 10601 } 10602 10603 int t4_sched_params(struct adapter *adapter, int type, int level, int mode, 10604 int rateunit, int ratemode, int channel, int cl, 10605 int minrate, int maxrate, int weight, int pktsize, 10606 int burstsize, int sleep_ok) 10607 { 10608 struct fw_sched_cmd cmd; 10609 10610 memset(&cmd, 0, sizeof(cmd)); 10611 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | 10612 F_FW_CMD_REQUEST | 10613 F_FW_CMD_WRITE); 10614 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10615 10616 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10617 cmd.u.params.type = type; 10618 cmd.u.params.level = level; 10619 cmd.u.params.mode = mode; 10620 cmd.u.params.ch = channel; 10621 cmd.u.params.cl = cl; 10622 cmd.u.params.unit = rateunit; 10623 cmd.u.params.rate = ratemode; 10624 cmd.u.params.min = cpu_to_be32(minrate); 10625 cmd.u.params.max = cpu_to_be32(maxrate); 10626 cmd.u.params.weight = cpu_to_be16(weight); 10627 cmd.u.params.pktsize = cpu_to_be16(pktsize); 10628 cmd.u.params.burstsize = cpu_to_be16(burstsize); 10629 10630 return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), 10631 NULL, sleep_ok); 10632 } 10633 10634 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode, 10635 unsigned int maxrate, int sleep_ok) 10636 { 10637 struct fw_sched_cmd cmd; 10638 10639 memset(&cmd, 0, sizeof(cmd)); 10640 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | 10641 F_FW_CMD_REQUEST | 10642 F_FW_CMD_WRITE); 10643 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10644 10645 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10646 cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED; 10647 cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL; 10648 cmd.u.params.ch = channel; 10649 cmd.u.params.rate = ratemode; /* REL or ABS */ 10650 cmd.u.params.max = cpu_to_be32(maxrate);/* % or kbps */ 10651 10652 return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), 10653 NULL, sleep_ok); 10654 } 10655 10656 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl, 10657 int weight, int sleep_ok) 10658 { 10659 struct fw_sched_cmd cmd; 10660 10661 if (weight < 0 || weight > 100) 10662 return -EINVAL; 10663 10664 memset(&cmd, 0, sizeof(cmd)); 10665 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | 10666 F_FW_CMD_REQUEST | 10667 F_FW_CMD_WRITE); 10668 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10669 10670 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10671 cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED; 10672 cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR; 10673 cmd.u.params.ch = channel; 10674 cmd.u.params.cl = cl; 10675 cmd.u.params.weight = cpu_to_be16(weight); 10676 10677 return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), 10678 NULL, sleep_ok); 10679 } 10680 10681 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl, 10682 int mode, unsigned int maxrate, int pktsize, int sleep_ok) 10683 { 10684 struct fw_sched_cmd cmd; 10685 10686 memset(&cmd, 0, sizeof(cmd)); 10687 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | 10688 F_FW_CMD_REQUEST | 10689 F_FW_CMD_WRITE); 10690 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10691 10692 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10693 cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED; 10694 cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL; 10695 cmd.u.params.mode = mode; 10696 cmd.u.params.ch = channel; 10697 cmd.u.params.cl = cl; 10698 cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE; 10699 cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS; 10700 cmd.u.params.max = cpu_to_be32(maxrate); 10701 cmd.u.params.pktsize = cpu_to_be16(pktsize); 10702 10703 return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), 10704 NULL, sleep_ok); 10705 } 10706 10707 /* 10708 * t4_config_watchdog - configure (enable/disable) a watchdog timer 10709 * @adapter: the adapter 10710 * @mbox: mailbox to use for the FW command 10711 * @pf: the PF owning the queue 10712 * @vf: the VF owning the queue 10713 * @timeout: watchdog timeout in ms 10714 * @action: watchdog timer / action 10715 * 10716 * There are separate watchdog timers for each possible watchdog 10717 * action. Configure one of the watchdog timers by setting a non-zero 10718 * timeout. Disable a watchdog timer by using a timeout of zero. 10719 */ 10720 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox, 10721 unsigned int pf, unsigned int vf, 10722 unsigned int timeout, unsigned int action) 10723 { 10724 struct fw_watchdog_cmd wdog; 10725 unsigned int ticks; 10726 10727 /* 10728 * The watchdog command expects a timeout in units of 10ms so we need 10729 * to convert it here (via rounding) and force a minimum of one 10ms 10730 * "tick" if the timeout is non-zero but the conversion results in 0 10731 * ticks. 10732 */ 10733 ticks = (timeout + 5)/10; 10734 if (timeout && !ticks) 10735 ticks = 1; 10736 10737 memset(&wdog, 0, sizeof wdog); 10738 wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) | 10739 F_FW_CMD_REQUEST | 10740 F_FW_CMD_WRITE | 10741 V_FW_PARAMS_CMD_PFN(pf) | 10742 V_FW_PARAMS_CMD_VFN(vf)); 10743 wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog)); 10744 wdog.timeout = cpu_to_be32(ticks); 10745 wdog.action = cpu_to_be32(action); 10746 10747 return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL); 10748 } 10749 10750 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level) 10751 { 10752 struct fw_devlog_cmd devlog_cmd; 10753 int ret; 10754 10755 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 10756 devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) | 10757 F_FW_CMD_REQUEST | F_FW_CMD_READ); 10758 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 10759 ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd, 10760 sizeof(devlog_cmd), &devlog_cmd); 10761 if (ret) 10762 return ret; 10763 10764 *level = devlog_cmd.level; 10765 return 0; 10766 } 10767 10768 int t4_set_devlog_level(struct adapter *adapter, unsigned int level) 10769 { 10770 struct fw_devlog_cmd devlog_cmd; 10771 10772 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 10773 devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) | 10774 F_FW_CMD_REQUEST | 10775 F_FW_CMD_WRITE); 10776 devlog_cmd.level = level; 10777 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 10778 return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd, 10779 sizeof(devlog_cmd), &devlog_cmd); 10780 } 10781