xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision f1ed5c000c688cf9781b486134baf4ba25415efd)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 
34 #include <sys/param.h>
35 #include <sys/eventhandler.h>
36 
37 #include "common.h"
38 #include "t4_regs.h"
39 #include "t4_regs_values.h"
40 #include "firmware/t4fw_interface.h"
41 
42 #undef msleep
43 #define msleep(x) do { \
44 	if (cold) \
45 		DELAY((x) * 1000); \
46 	else \
47 		pause("t4hw", (x) * hz / 1000); \
48 } while (0)
49 
50 /**
51  *	t4_wait_op_done_val - wait until an operation is completed
52  *	@adapter: the adapter performing the operation
53  *	@reg: the register to check for completion
54  *	@mask: a single-bit field within @reg that indicates completion
55  *	@polarity: the value of the field when the operation is completed
56  *	@attempts: number of check iterations
57  *	@delay: delay in usecs between iterations
58  *	@valp: where to store the value of the register at completion time
59  *
60  *	Wait until an operation is completed by checking a bit in a register
61  *	up to @attempts times.  If @valp is not NULL the value of the register
62  *	at the time it indicated completion is stored there.  Returns 0 if the
63  *	operation completes and	-EAGAIN	otherwise.
64  */
65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
66 			       int polarity, int attempts, int delay, u32 *valp)
67 {
68 	while (1) {
69 		u32 val = t4_read_reg(adapter, reg);
70 
71 		if (!!(val & mask) == polarity) {
72 			if (valp)
73 				*valp = val;
74 			return 0;
75 		}
76 		if (--attempts == 0)
77 			return -EAGAIN;
78 		if (delay)
79 			udelay(delay);
80 	}
81 }
82 
83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
84 				  int polarity, int attempts, int delay)
85 {
86 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
87 				   delay, NULL);
88 }
89 
90 /**
91  *	t4_set_reg_field - set a register field to a value
92  *	@adapter: the adapter to program
93  *	@addr: the register address
94  *	@mask: specifies the portion of the register to modify
95  *	@val: the new value for the register field
96  *
97  *	Sets a register field specified by the supplied mask to the
98  *	given value.
99  */
100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
101 		      u32 val)
102 {
103 	u32 v = t4_read_reg(adapter, addr) & ~mask;
104 
105 	t4_write_reg(adapter, addr, v | val);
106 	(void) t4_read_reg(adapter, addr);      /* flush */
107 }
108 
109 /**
110  *	t4_read_indirect - read indirectly addressed registers
111  *	@adap: the adapter
112  *	@addr_reg: register holding the indirect address
113  *	@data_reg: register holding the value of the indirect register
114  *	@vals: where the read register values are stored
115  *	@nregs: how many indirect registers to read
116  *	@start_idx: index of first indirect register to read
117  *
118  *	Reads registers that are accessed indirectly through an address/data
119  *	register pair.
120  */
121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
122 			     unsigned int data_reg, u32 *vals,
123 			     unsigned int nregs, unsigned int start_idx)
124 {
125 	while (nregs--) {
126 		t4_write_reg(adap, addr_reg, start_idx);
127 		*vals++ = t4_read_reg(adap, data_reg);
128 		start_idx++;
129 	}
130 }
131 
132 /**
133  *	t4_write_indirect - write indirectly addressed registers
134  *	@adap: the adapter
135  *	@addr_reg: register holding the indirect addresses
136  *	@data_reg: register holding the value for the indirect registers
137  *	@vals: values to write
138  *	@nregs: how many indirect registers to write
139  *	@start_idx: address of first indirect register to write
140  *
141  *	Writes a sequential block of registers that are accessed indirectly
142  *	through an address/data register pair.
143  */
144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
145 		       unsigned int data_reg, const u32 *vals,
146 		       unsigned int nregs, unsigned int start_idx)
147 {
148 	while (nregs--) {
149 		t4_write_reg(adap, addr_reg, start_idx++);
150 		t4_write_reg(adap, data_reg, *vals++);
151 	}
152 }
153 
154 /*
155  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
156  * mechanism.  This guarantees that we get the real value even if we're
157  * operating within a Virtual Machine and the Hypervisor is trapping our
158  * Configuration Space accesses.
159  *
160  * N.B. This routine should only be used as a last resort: the firmware uses
161  *      the backdoor registers on a regular basis and we can end up
162  *      conflicting with it's uses!
163  */
164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
165 {
166 	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
167 	u32 val;
168 
169 	if (chip_id(adap) <= CHELSIO_T5)
170 		req |= F_ENABLE;
171 	else
172 		req |= F_T6_ENABLE;
173 
174 	if (is_t4(adap))
175 		req |= F_LOCALCFG;
176 
177 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
178 	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
179 
180 	/*
181 	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
182 	 * Configuration Space read.  (None of the other fields matter when
183 	 * F_ENABLE is 0 so a simple register write is easier than a
184 	 * read-modify-write via t4_set_reg_field().)
185 	 */
186 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
187 
188 	return val;
189 }
190 
191 /*
192  * t4_report_fw_error - report firmware error
193  * @adap: the adapter
194  *
195  * The adapter firmware can indicate error conditions to the host.
196  * If the firmware has indicated an error, print out the reason for
197  * the firmware error.
198  */
199 static void t4_report_fw_error(struct adapter *adap)
200 {
201 	static const char *const reason[] = {
202 		"Crash",			/* PCIE_FW_EVAL_CRASH */
203 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
204 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
205 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
206 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
207 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
208 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
209 		"Reserved",			/* reserved */
210 	};
211 	u32 pcie_fw;
212 
213 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
214 	if (pcie_fw & F_PCIE_FW_ERR)
215 		CH_ERR(adap, "Firmware reports adapter error: %s\n",
216 			reason[G_PCIE_FW_EVAL(pcie_fw)]);
217 }
218 
219 /*
220  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
221  */
222 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
223 			 u32 mbox_addr)
224 {
225 	for ( ; nflit; nflit--, mbox_addr += 8)
226 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
227 }
228 
229 /*
230  * Handle a FW assertion reported in a mailbox.
231  */
232 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
233 {
234 	CH_ALERT(adap,
235 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
236 		  asrt->u.assert.filename_0_7,
237 		  be32_to_cpu(asrt->u.assert.line),
238 		  be32_to_cpu(asrt->u.assert.x),
239 		  be32_to_cpu(asrt->u.assert.y));
240 }
241 
242 #define X_CIM_PF_NOACCESS 0xeeeeeeee
243 /**
244  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
245  *	@adap: the adapter
246  *	@mbox: index of the mailbox to use
247  *	@cmd: the command to write
248  *	@size: command length in bytes
249  *	@rpl: where to optionally store the reply
250  *	@sleep_ok: if true we may sleep while awaiting command completion
251  *	@timeout: time to wait for command to finish before timing out
252  *		(negative implies @sleep_ok=false)
253  *
254  *	Sends the given command to FW through the selected mailbox and waits
255  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
256  *	store the FW's reply to the command.  The command and its optional
257  *	reply are of the same length.  Some FW commands like RESET and
258  *	INITIALIZE can take a considerable amount of time to execute.
259  *	@sleep_ok determines whether we may sleep while awaiting the response.
260  *	If sleeping is allowed we use progressive backoff otherwise we spin.
261  *	Note that passing in a negative @timeout is an alternate mechanism
262  *	for specifying @sleep_ok=false.  This is useful when a higher level
263  *	interface allows for specification of @timeout but not @sleep_ok ...
264  *
265  *	The return value is 0 on success or a negative errno on failure.  A
266  *	failure can happen either because we are not able to execute the
267  *	command or FW executes it but signals an error.  In the latter case
268  *	the return value is the error code indicated by FW (negated).
269  */
270 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
271 			    int size, void *rpl, bool sleep_ok, int timeout)
272 {
273 	/*
274 	 * We delay in small increments at first in an effort to maintain
275 	 * responsiveness for simple, fast executing commands but then back
276 	 * off to larger delays to a maximum retry delay.
277 	 */
278 	static const int delay[] = {
279 		1, 1, 3, 5, 10, 10, 20, 50, 100
280 	};
281 	u32 v;
282 	u64 res;
283 	int i, ms, delay_idx, ret;
284 	const __be64 *p = cmd;
285 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
286 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
287 	u32 ctl;
288 	__be64 cmd_rpl[MBOX_LEN/8];
289 	u32 pcie_fw;
290 
291 	if (adap->flags & CHK_MBOX_ACCESS)
292 		ASSERT_SYNCHRONIZED_OP(adap);
293 
294 	if ((size & 15) || size > MBOX_LEN)
295 		return -EINVAL;
296 
297 	if (adap->flags & IS_VF) {
298 		if (is_t6(adap))
299 			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
300 		else
301 			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
302 		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
303 	}
304 
305 	/*
306 	 * If we have a negative timeout, that implies that we can't sleep.
307 	 */
308 	if (timeout < 0) {
309 		sleep_ok = false;
310 		timeout = -timeout;
311 	}
312 
313 	/*
314 	 * Attempt to gain access to the mailbox.
315 	 */
316 	for (i = 0; i < 4; i++) {
317 		ctl = t4_read_reg(adap, ctl_reg);
318 		v = G_MBOWNER(ctl);
319 		if (v != X_MBOWNER_NONE)
320 			break;
321 	}
322 
323 	/*
324 	 * If we were unable to gain access, dequeue ourselves from the
325 	 * mailbox atomic access list and report the error to our caller.
326 	 */
327 	if (v != X_MBOWNER_PL) {
328 		t4_report_fw_error(adap);
329 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
330 		return ret;
331 	}
332 
333 	/*
334 	 * If we gain ownership of the mailbox and there's a "valid" message
335 	 * in it, this is likely an asynchronous error message from the
336 	 * firmware.  So we'll report that and then proceed on with attempting
337 	 * to issue our own command ... which may well fail if the error
338 	 * presaged the firmware crashing ...
339 	 */
340 	if (ctl & F_MBMSGVALID) {
341 		CH_ERR(adap, "found VALID command in mbox %u: %016llx %016llx "
342 		       "%016llx %016llx %016llx %016llx %016llx %016llx\n",
343 		       mbox, (unsigned long long)t4_read_reg64(adap, data_reg),
344 		       (unsigned long long)t4_read_reg64(adap, data_reg + 8),
345 		       (unsigned long long)t4_read_reg64(adap, data_reg + 16),
346 		       (unsigned long long)t4_read_reg64(adap, data_reg + 24),
347 		       (unsigned long long)t4_read_reg64(adap, data_reg + 32),
348 		       (unsigned long long)t4_read_reg64(adap, data_reg + 40),
349 		       (unsigned long long)t4_read_reg64(adap, data_reg + 48),
350 		       (unsigned long long)t4_read_reg64(adap, data_reg + 56));
351 	}
352 
353 	/*
354 	 * Copy in the new mailbox command and send it on its way ...
355 	 */
356 	for (i = 0; i < size; i += 8, p++)
357 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
358 
359 	if (adap->flags & IS_VF) {
360 		/*
361 		 * For the VFs, the Mailbox Data "registers" are
362 		 * actually backed by T4's "MA" interface rather than
363 		 * PL Registers (as is the case for the PFs).  Because
364 		 * these are in different coherency domains, the write
365 		 * to the VF's PL-register-backed Mailbox Control can
366 		 * race in front of the writes to the MA-backed VF
367 		 * Mailbox Data "registers".  So we need to do a
368 		 * read-back on at least one byte of the VF Mailbox
369 		 * Data registers before doing the write to the VF
370 		 * Mailbox Control register.
371 		 */
372 		t4_read_reg(adap, data_reg);
373 	}
374 
375 	CH_DUMP_MBOX(adap, mbox, data_reg);
376 
377 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
378 	t4_read_reg(adap, ctl_reg);	/* flush write */
379 
380 	delay_idx = 0;
381 	ms = delay[0];
382 
383 	/*
384 	 * Loop waiting for the reply; bail out if we time out or the firmware
385 	 * reports an error.
386 	 */
387 	pcie_fw = 0;
388 	for (i = 0; i < timeout; i += ms) {
389 		if (!(adap->flags & IS_VF)) {
390 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
391 			if (pcie_fw & F_PCIE_FW_ERR)
392 				break;
393 		}
394 		if (sleep_ok) {
395 			ms = delay[delay_idx];  /* last element may repeat */
396 			if (delay_idx < ARRAY_SIZE(delay) - 1)
397 				delay_idx++;
398 			msleep(ms);
399 		} else {
400 			mdelay(ms);
401 		}
402 
403 		v = t4_read_reg(adap, ctl_reg);
404 		if (v == X_CIM_PF_NOACCESS)
405 			continue;
406 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
407 			if (!(v & F_MBMSGVALID)) {
408 				t4_write_reg(adap, ctl_reg,
409 					     V_MBOWNER(X_MBOWNER_NONE));
410 				continue;
411 			}
412 
413 			/*
414 			 * Retrieve the command reply and release the mailbox.
415 			 */
416 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
417 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
418 
419 			CH_DUMP_MBOX(adap, mbox, data_reg);
420 
421 			res = be64_to_cpu(cmd_rpl[0]);
422 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
423 				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
424 				res = V_FW_CMD_RETVAL(EIO);
425 			} else if (rpl)
426 				memcpy(rpl, cmd_rpl, size);
427 			return -G_FW_CMD_RETVAL((int)res);
428 		}
429 	}
430 
431 	/*
432 	 * We timed out waiting for a reply to our mailbox command.  Report
433 	 * the error and also check to see if the firmware reported any
434 	 * errors ...
435 	 */
436 	ret = (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT;
437 	CH_ERR(adap, "command %#x in mailbox %d timed out\n",
438 	       *(const u8 *)cmd, mbox);
439 
440 	/* If DUMP_MBOX is set the mbox has already been dumped */
441 	if ((adap->debug_flags & DF_DUMP_MBOX) == 0) {
442 		p = cmd;
443 		CH_ERR(adap, "mbox: %016llx %016llx %016llx %016llx "
444 		    "%016llx %016llx %016llx %016llx\n",
445 		    (unsigned long long)be64_to_cpu(p[0]),
446 		    (unsigned long long)be64_to_cpu(p[1]),
447 		    (unsigned long long)be64_to_cpu(p[2]),
448 		    (unsigned long long)be64_to_cpu(p[3]),
449 		    (unsigned long long)be64_to_cpu(p[4]),
450 		    (unsigned long long)be64_to_cpu(p[5]),
451 		    (unsigned long long)be64_to_cpu(p[6]),
452 		    (unsigned long long)be64_to_cpu(p[7]));
453 	}
454 
455 	t4_report_fw_error(adap);
456 	t4_fatal_err(adap);
457 	return ret;
458 }
459 
460 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
461 		    void *rpl, bool sleep_ok)
462 {
463 		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
464 					       sleep_ok, FW_CMD_MAX_TIMEOUT);
465 
466 }
467 
468 static int t4_edc_err_read(struct adapter *adap, int idx)
469 {
470 	u32 edc_ecc_err_addr_reg;
471 	u32 edc_bist_status_rdata_reg;
472 
473 	if (is_t4(adap)) {
474 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
475 		return 0;
476 	}
477 	if (idx != MEM_EDC0 && idx != MEM_EDC1) {
478 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
479 		return 0;
480 	}
481 
482 	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
483 	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
484 
485 	CH_WARN(adap,
486 		"edc%d err addr 0x%x: 0x%x.\n",
487 		idx, edc_ecc_err_addr_reg,
488 		t4_read_reg(adap, edc_ecc_err_addr_reg));
489 	CH_WARN(adap,
490 	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
491 		edc_bist_status_rdata_reg,
492 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
493 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
494 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
495 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
496 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
497 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
498 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
499 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
500 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
501 
502 	return 0;
503 }
504 
505 /**
506  *	t4_mc_read - read from MC through backdoor accesses
507  *	@adap: the adapter
508  *	@idx: which MC to access
509  *	@addr: address of first byte requested
510  *	@data: 64 bytes of data containing the requested address
511  *	@ecc: where to store the corresponding 64-bit ECC word
512  *
513  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
514  *	that covers the requested address @addr.  If @parity is not %NULL it
515  *	is assigned the 64-bit ECC word for the read data.
516  */
517 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
518 {
519 	int i;
520 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
521 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
522 
523 	if (is_t4(adap)) {
524 		mc_bist_cmd_reg = A_MC_BIST_CMD;
525 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
526 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
527 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
528 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
529 	} else {
530 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
531 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
532 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
533 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
534 						  idx);
535 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
536 						  idx);
537 	}
538 
539 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
540 		return -EBUSY;
541 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
542 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
543 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
544 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
545 		     F_START_BIST | V_BIST_CMD_GAP(1));
546 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
547 	if (i)
548 		return i;
549 
550 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
551 
552 	for (i = 15; i >= 0; i--)
553 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
554 	if (ecc)
555 		*ecc = t4_read_reg64(adap, MC_DATA(16));
556 #undef MC_DATA
557 	return 0;
558 }
559 
560 /**
561  *	t4_edc_read - read from EDC through backdoor accesses
562  *	@adap: the adapter
563  *	@idx: which EDC to access
564  *	@addr: address of first byte requested
565  *	@data: 64 bytes of data containing the requested address
566  *	@ecc: where to store the corresponding 64-bit ECC word
567  *
568  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
569  *	that covers the requested address @addr.  If @parity is not %NULL it
570  *	is assigned the 64-bit ECC word for the read data.
571  */
572 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
573 {
574 	int i;
575 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
576 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
577 
578 	if (is_t4(adap)) {
579 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
580 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
581 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
582 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
583 						    idx);
584 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
585 						    idx);
586 	} else {
587 /*
588  * These macro are missing in t4_regs.h file.
589  * Added temporarily for testing.
590  */
591 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
592 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
593 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
594 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
595 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
596 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
597 						    idx);
598 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
599 						    idx);
600 #undef EDC_REG_T5
601 #undef EDC_STRIDE_T5
602 	}
603 
604 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
605 		return -EBUSY;
606 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
607 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
608 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
609 	t4_write_reg(adap, edc_bist_cmd_reg,
610 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
611 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
612 	if (i)
613 		return i;
614 
615 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
616 
617 	for (i = 15; i >= 0; i--)
618 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
619 	if (ecc)
620 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
621 #undef EDC_DATA
622 	return 0;
623 }
624 
625 /**
626  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
627  *	@adap: the adapter
628  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
629  *	@addr: address within indicated memory type
630  *	@len: amount of memory to read
631  *	@buf: host memory buffer
632  *
633  *	Reads an [almost] arbitrary memory region in the firmware: the
634  *	firmware memory address, length and host buffer must be aligned on
635  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
636  *	the firmware's memory.  If this memory contains data structures which
637  *	contain multi-byte integers, it's the callers responsibility to
638  *	perform appropriate byte order conversions.
639  */
640 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
641 		__be32 *buf)
642 {
643 	u32 pos, start, end, offset;
644 	int ret;
645 
646 	/*
647 	 * Argument sanity checks ...
648 	 */
649 	if ((addr & 0x3) || (len & 0x3))
650 		return -EINVAL;
651 
652 	/*
653 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
654 	 * need to round down the start and round up the end.  We'll start
655 	 * copying out of the first line at (addr - start) a word at a time.
656 	 */
657 	start = rounddown2(addr, 64);
658 	end = roundup2(addr + len, 64);
659 	offset = (addr - start)/sizeof(__be32);
660 
661 	for (pos = start; pos < end; pos += 64, offset = 0) {
662 		__be32 data[16];
663 
664 		/*
665 		 * Read the chip's memory block and bail if there's an error.
666 		 */
667 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
668 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
669 		else
670 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
671 		if (ret)
672 			return ret;
673 
674 		/*
675 		 * Copy the data into the caller's memory buffer.
676 		 */
677 		while (offset < 16 && len > 0) {
678 			*buf++ = data[offset++];
679 			len -= sizeof(__be32);
680 		}
681 	}
682 
683 	return 0;
684 }
685 
686 /*
687  * Return the specified PCI-E Configuration Space register from our Physical
688  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
689  * since we prefer to let the firmware own all of these registers, but if that
690  * fails we go for it directly ourselves.
691  */
692 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
693 {
694 
695 	/*
696 	 * If fw_attach != 0, construct and send the Firmware LDST Command to
697 	 * retrieve the specified PCI-E Configuration Space register.
698 	 */
699 	if (drv_fw_attach != 0) {
700 		struct fw_ldst_cmd ldst_cmd;
701 		int ret;
702 
703 		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
704 		ldst_cmd.op_to_addrspace =
705 			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
706 				    F_FW_CMD_REQUEST |
707 				    F_FW_CMD_READ |
708 				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
709 		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
710 		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
711 		ldst_cmd.u.pcie.ctrl_to_fn =
712 			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
713 		ldst_cmd.u.pcie.r = reg;
714 
715 		/*
716 		 * If the LDST Command succeeds, return the result, otherwise
717 		 * fall through to reading it directly ourselves ...
718 		 */
719 		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
720 				 &ldst_cmd);
721 		if (ret == 0)
722 			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
723 
724 		CH_WARN(adap, "Firmware failed to return "
725 			"Configuration Space register %d, err = %d\n",
726 			reg, -ret);
727 	}
728 
729 	/*
730 	 * Read the desired Configuration Space register via the PCI-E
731 	 * Backdoor mechanism.
732 	 */
733 	return t4_hw_pci_read_cfg4(adap, reg);
734 }
735 
736 /**
737  *	t4_get_regs_len - return the size of the chips register set
738  *	@adapter: the adapter
739  *
740  *	Returns the size of the chip's BAR0 register space.
741  */
742 unsigned int t4_get_regs_len(struct adapter *adapter)
743 {
744 	unsigned int chip_version = chip_id(adapter);
745 
746 	switch (chip_version) {
747 	case CHELSIO_T4:
748 		if (adapter->flags & IS_VF)
749 			return FW_T4VF_REGMAP_SIZE;
750 		return T4_REGMAP_SIZE;
751 
752 	case CHELSIO_T5:
753 	case CHELSIO_T6:
754 		if (adapter->flags & IS_VF)
755 			return FW_T4VF_REGMAP_SIZE;
756 		return T5_REGMAP_SIZE;
757 	}
758 
759 	CH_ERR(adapter,
760 		"Unsupported chip version %d\n", chip_version);
761 	return 0;
762 }
763 
764 /**
765  *	t4_get_regs - read chip registers into provided buffer
766  *	@adap: the adapter
767  *	@buf: register buffer
768  *	@buf_size: size (in bytes) of register buffer
769  *
770  *	If the provided register buffer isn't large enough for the chip's
771  *	full register range, the register dump will be truncated to the
772  *	register buffer's size.
773  */
774 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
775 {
776 	static const unsigned int t4_reg_ranges[] = {
777 		0x1008, 0x1108,
778 		0x1180, 0x1184,
779 		0x1190, 0x1194,
780 		0x11a0, 0x11a4,
781 		0x11b0, 0x11b4,
782 		0x11fc, 0x123c,
783 		0x1300, 0x173c,
784 		0x1800, 0x18fc,
785 		0x3000, 0x30d8,
786 		0x30e0, 0x30e4,
787 		0x30ec, 0x5910,
788 		0x5920, 0x5924,
789 		0x5960, 0x5960,
790 		0x5968, 0x5968,
791 		0x5970, 0x5970,
792 		0x5978, 0x5978,
793 		0x5980, 0x5980,
794 		0x5988, 0x5988,
795 		0x5990, 0x5990,
796 		0x5998, 0x5998,
797 		0x59a0, 0x59d4,
798 		0x5a00, 0x5ae0,
799 		0x5ae8, 0x5ae8,
800 		0x5af0, 0x5af0,
801 		0x5af8, 0x5af8,
802 		0x6000, 0x6098,
803 		0x6100, 0x6150,
804 		0x6200, 0x6208,
805 		0x6240, 0x6248,
806 		0x6280, 0x62b0,
807 		0x62c0, 0x6338,
808 		0x6370, 0x638c,
809 		0x6400, 0x643c,
810 		0x6500, 0x6524,
811 		0x6a00, 0x6a04,
812 		0x6a14, 0x6a38,
813 		0x6a60, 0x6a70,
814 		0x6a78, 0x6a78,
815 		0x6b00, 0x6b0c,
816 		0x6b1c, 0x6b84,
817 		0x6bf0, 0x6bf8,
818 		0x6c00, 0x6c0c,
819 		0x6c1c, 0x6c84,
820 		0x6cf0, 0x6cf8,
821 		0x6d00, 0x6d0c,
822 		0x6d1c, 0x6d84,
823 		0x6df0, 0x6df8,
824 		0x6e00, 0x6e0c,
825 		0x6e1c, 0x6e84,
826 		0x6ef0, 0x6ef8,
827 		0x6f00, 0x6f0c,
828 		0x6f1c, 0x6f84,
829 		0x6ff0, 0x6ff8,
830 		0x7000, 0x700c,
831 		0x701c, 0x7084,
832 		0x70f0, 0x70f8,
833 		0x7100, 0x710c,
834 		0x711c, 0x7184,
835 		0x71f0, 0x71f8,
836 		0x7200, 0x720c,
837 		0x721c, 0x7284,
838 		0x72f0, 0x72f8,
839 		0x7300, 0x730c,
840 		0x731c, 0x7384,
841 		0x73f0, 0x73f8,
842 		0x7400, 0x7450,
843 		0x7500, 0x7530,
844 		0x7600, 0x760c,
845 		0x7614, 0x761c,
846 		0x7680, 0x76cc,
847 		0x7700, 0x7798,
848 		0x77c0, 0x77fc,
849 		0x7900, 0x79fc,
850 		0x7b00, 0x7b58,
851 		0x7b60, 0x7b84,
852 		0x7b8c, 0x7c38,
853 		0x7d00, 0x7d38,
854 		0x7d40, 0x7d80,
855 		0x7d8c, 0x7ddc,
856 		0x7de4, 0x7e04,
857 		0x7e10, 0x7e1c,
858 		0x7e24, 0x7e38,
859 		0x7e40, 0x7e44,
860 		0x7e4c, 0x7e78,
861 		0x7e80, 0x7ea4,
862 		0x7eac, 0x7edc,
863 		0x7ee8, 0x7efc,
864 		0x8dc0, 0x8e04,
865 		0x8e10, 0x8e1c,
866 		0x8e30, 0x8e78,
867 		0x8ea0, 0x8eb8,
868 		0x8ec0, 0x8f6c,
869 		0x8fc0, 0x9008,
870 		0x9010, 0x9058,
871 		0x9060, 0x9060,
872 		0x9068, 0x9074,
873 		0x90fc, 0x90fc,
874 		0x9400, 0x9408,
875 		0x9410, 0x9458,
876 		0x9600, 0x9600,
877 		0x9608, 0x9638,
878 		0x9640, 0x96bc,
879 		0x9800, 0x9808,
880 		0x9820, 0x983c,
881 		0x9850, 0x9864,
882 		0x9c00, 0x9c6c,
883 		0x9c80, 0x9cec,
884 		0x9d00, 0x9d6c,
885 		0x9d80, 0x9dec,
886 		0x9e00, 0x9e6c,
887 		0x9e80, 0x9eec,
888 		0x9f00, 0x9f6c,
889 		0x9f80, 0x9fec,
890 		0xd004, 0xd004,
891 		0xd010, 0xd03c,
892 		0xdfc0, 0xdfe0,
893 		0xe000, 0xea7c,
894 		0xf000, 0x11110,
895 		0x11118, 0x11190,
896 		0x19040, 0x1906c,
897 		0x19078, 0x19080,
898 		0x1908c, 0x190e4,
899 		0x190f0, 0x190f8,
900 		0x19100, 0x19110,
901 		0x19120, 0x19124,
902 		0x19150, 0x19194,
903 		0x1919c, 0x191b0,
904 		0x191d0, 0x191e8,
905 		0x19238, 0x1924c,
906 		0x193f8, 0x1943c,
907 		0x1944c, 0x19474,
908 		0x19490, 0x194e0,
909 		0x194f0, 0x194f8,
910 		0x19800, 0x19c08,
911 		0x19c10, 0x19c90,
912 		0x19ca0, 0x19ce4,
913 		0x19cf0, 0x19d40,
914 		0x19d50, 0x19d94,
915 		0x19da0, 0x19de8,
916 		0x19df0, 0x19e40,
917 		0x19e50, 0x19e90,
918 		0x19ea0, 0x19f4c,
919 		0x1a000, 0x1a004,
920 		0x1a010, 0x1a06c,
921 		0x1a0b0, 0x1a0e4,
922 		0x1a0ec, 0x1a0f4,
923 		0x1a100, 0x1a108,
924 		0x1a114, 0x1a120,
925 		0x1a128, 0x1a130,
926 		0x1a138, 0x1a138,
927 		0x1a190, 0x1a1c4,
928 		0x1a1fc, 0x1a1fc,
929 		0x1e040, 0x1e04c,
930 		0x1e284, 0x1e28c,
931 		0x1e2c0, 0x1e2c0,
932 		0x1e2e0, 0x1e2e0,
933 		0x1e300, 0x1e384,
934 		0x1e3c0, 0x1e3c8,
935 		0x1e440, 0x1e44c,
936 		0x1e684, 0x1e68c,
937 		0x1e6c0, 0x1e6c0,
938 		0x1e6e0, 0x1e6e0,
939 		0x1e700, 0x1e784,
940 		0x1e7c0, 0x1e7c8,
941 		0x1e840, 0x1e84c,
942 		0x1ea84, 0x1ea8c,
943 		0x1eac0, 0x1eac0,
944 		0x1eae0, 0x1eae0,
945 		0x1eb00, 0x1eb84,
946 		0x1ebc0, 0x1ebc8,
947 		0x1ec40, 0x1ec4c,
948 		0x1ee84, 0x1ee8c,
949 		0x1eec0, 0x1eec0,
950 		0x1eee0, 0x1eee0,
951 		0x1ef00, 0x1ef84,
952 		0x1efc0, 0x1efc8,
953 		0x1f040, 0x1f04c,
954 		0x1f284, 0x1f28c,
955 		0x1f2c0, 0x1f2c0,
956 		0x1f2e0, 0x1f2e0,
957 		0x1f300, 0x1f384,
958 		0x1f3c0, 0x1f3c8,
959 		0x1f440, 0x1f44c,
960 		0x1f684, 0x1f68c,
961 		0x1f6c0, 0x1f6c0,
962 		0x1f6e0, 0x1f6e0,
963 		0x1f700, 0x1f784,
964 		0x1f7c0, 0x1f7c8,
965 		0x1f840, 0x1f84c,
966 		0x1fa84, 0x1fa8c,
967 		0x1fac0, 0x1fac0,
968 		0x1fae0, 0x1fae0,
969 		0x1fb00, 0x1fb84,
970 		0x1fbc0, 0x1fbc8,
971 		0x1fc40, 0x1fc4c,
972 		0x1fe84, 0x1fe8c,
973 		0x1fec0, 0x1fec0,
974 		0x1fee0, 0x1fee0,
975 		0x1ff00, 0x1ff84,
976 		0x1ffc0, 0x1ffc8,
977 		0x20000, 0x2002c,
978 		0x20100, 0x2013c,
979 		0x20190, 0x201a0,
980 		0x201a8, 0x201b8,
981 		0x201c4, 0x201c8,
982 		0x20200, 0x20318,
983 		0x20400, 0x204b4,
984 		0x204c0, 0x20528,
985 		0x20540, 0x20614,
986 		0x21000, 0x21040,
987 		0x2104c, 0x21060,
988 		0x210c0, 0x210ec,
989 		0x21200, 0x21268,
990 		0x21270, 0x21284,
991 		0x212fc, 0x21388,
992 		0x21400, 0x21404,
993 		0x21500, 0x21500,
994 		0x21510, 0x21518,
995 		0x2152c, 0x21530,
996 		0x2153c, 0x2153c,
997 		0x21550, 0x21554,
998 		0x21600, 0x21600,
999 		0x21608, 0x2161c,
1000 		0x21624, 0x21628,
1001 		0x21630, 0x21634,
1002 		0x2163c, 0x2163c,
1003 		0x21700, 0x2171c,
1004 		0x21780, 0x2178c,
1005 		0x21800, 0x21818,
1006 		0x21820, 0x21828,
1007 		0x21830, 0x21848,
1008 		0x21850, 0x21854,
1009 		0x21860, 0x21868,
1010 		0x21870, 0x21870,
1011 		0x21878, 0x21898,
1012 		0x218a0, 0x218a8,
1013 		0x218b0, 0x218c8,
1014 		0x218d0, 0x218d4,
1015 		0x218e0, 0x218e8,
1016 		0x218f0, 0x218f0,
1017 		0x218f8, 0x21a18,
1018 		0x21a20, 0x21a28,
1019 		0x21a30, 0x21a48,
1020 		0x21a50, 0x21a54,
1021 		0x21a60, 0x21a68,
1022 		0x21a70, 0x21a70,
1023 		0x21a78, 0x21a98,
1024 		0x21aa0, 0x21aa8,
1025 		0x21ab0, 0x21ac8,
1026 		0x21ad0, 0x21ad4,
1027 		0x21ae0, 0x21ae8,
1028 		0x21af0, 0x21af0,
1029 		0x21af8, 0x21c18,
1030 		0x21c20, 0x21c20,
1031 		0x21c28, 0x21c30,
1032 		0x21c38, 0x21c38,
1033 		0x21c80, 0x21c98,
1034 		0x21ca0, 0x21ca8,
1035 		0x21cb0, 0x21cc8,
1036 		0x21cd0, 0x21cd4,
1037 		0x21ce0, 0x21ce8,
1038 		0x21cf0, 0x21cf0,
1039 		0x21cf8, 0x21d7c,
1040 		0x21e00, 0x21e04,
1041 		0x22000, 0x2202c,
1042 		0x22100, 0x2213c,
1043 		0x22190, 0x221a0,
1044 		0x221a8, 0x221b8,
1045 		0x221c4, 0x221c8,
1046 		0x22200, 0x22318,
1047 		0x22400, 0x224b4,
1048 		0x224c0, 0x22528,
1049 		0x22540, 0x22614,
1050 		0x23000, 0x23040,
1051 		0x2304c, 0x23060,
1052 		0x230c0, 0x230ec,
1053 		0x23200, 0x23268,
1054 		0x23270, 0x23284,
1055 		0x232fc, 0x23388,
1056 		0x23400, 0x23404,
1057 		0x23500, 0x23500,
1058 		0x23510, 0x23518,
1059 		0x2352c, 0x23530,
1060 		0x2353c, 0x2353c,
1061 		0x23550, 0x23554,
1062 		0x23600, 0x23600,
1063 		0x23608, 0x2361c,
1064 		0x23624, 0x23628,
1065 		0x23630, 0x23634,
1066 		0x2363c, 0x2363c,
1067 		0x23700, 0x2371c,
1068 		0x23780, 0x2378c,
1069 		0x23800, 0x23818,
1070 		0x23820, 0x23828,
1071 		0x23830, 0x23848,
1072 		0x23850, 0x23854,
1073 		0x23860, 0x23868,
1074 		0x23870, 0x23870,
1075 		0x23878, 0x23898,
1076 		0x238a0, 0x238a8,
1077 		0x238b0, 0x238c8,
1078 		0x238d0, 0x238d4,
1079 		0x238e0, 0x238e8,
1080 		0x238f0, 0x238f0,
1081 		0x238f8, 0x23a18,
1082 		0x23a20, 0x23a28,
1083 		0x23a30, 0x23a48,
1084 		0x23a50, 0x23a54,
1085 		0x23a60, 0x23a68,
1086 		0x23a70, 0x23a70,
1087 		0x23a78, 0x23a98,
1088 		0x23aa0, 0x23aa8,
1089 		0x23ab0, 0x23ac8,
1090 		0x23ad0, 0x23ad4,
1091 		0x23ae0, 0x23ae8,
1092 		0x23af0, 0x23af0,
1093 		0x23af8, 0x23c18,
1094 		0x23c20, 0x23c20,
1095 		0x23c28, 0x23c30,
1096 		0x23c38, 0x23c38,
1097 		0x23c80, 0x23c98,
1098 		0x23ca0, 0x23ca8,
1099 		0x23cb0, 0x23cc8,
1100 		0x23cd0, 0x23cd4,
1101 		0x23ce0, 0x23ce8,
1102 		0x23cf0, 0x23cf0,
1103 		0x23cf8, 0x23d7c,
1104 		0x23e00, 0x23e04,
1105 		0x24000, 0x2402c,
1106 		0x24100, 0x2413c,
1107 		0x24190, 0x241a0,
1108 		0x241a8, 0x241b8,
1109 		0x241c4, 0x241c8,
1110 		0x24200, 0x24318,
1111 		0x24400, 0x244b4,
1112 		0x244c0, 0x24528,
1113 		0x24540, 0x24614,
1114 		0x25000, 0x25040,
1115 		0x2504c, 0x25060,
1116 		0x250c0, 0x250ec,
1117 		0x25200, 0x25268,
1118 		0x25270, 0x25284,
1119 		0x252fc, 0x25388,
1120 		0x25400, 0x25404,
1121 		0x25500, 0x25500,
1122 		0x25510, 0x25518,
1123 		0x2552c, 0x25530,
1124 		0x2553c, 0x2553c,
1125 		0x25550, 0x25554,
1126 		0x25600, 0x25600,
1127 		0x25608, 0x2561c,
1128 		0x25624, 0x25628,
1129 		0x25630, 0x25634,
1130 		0x2563c, 0x2563c,
1131 		0x25700, 0x2571c,
1132 		0x25780, 0x2578c,
1133 		0x25800, 0x25818,
1134 		0x25820, 0x25828,
1135 		0x25830, 0x25848,
1136 		0x25850, 0x25854,
1137 		0x25860, 0x25868,
1138 		0x25870, 0x25870,
1139 		0x25878, 0x25898,
1140 		0x258a0, 0x258a8,
1141 		0x258b0, 0x258c8,
1142 		0x258d0, 0x258d4,
1143 		0x258e0, 0x258e8,
1144 		0x258f0, 0x258f0,
1145 		0x258f8, 0x25a18,
1146 		0x25a20, 0x25a28,
1147 		0x25a30, 0x25a48,
1148 		0x25a50, 0x25a54,
1149 		0x25a60, 0x25a68,
1150 		0x25a70, 0x25a70,
1151 		0x25a78, 0x25a98,
1152 		0x25aa0, 0x25aa8,
1153 		0x25ab0, 0x25ac8,
1154 		0x25ad0, 0x25ad4,
1155 		0x25ae0, 0x25ae8,
1156 		0x25af0, 0x25af0,
1157 		0x25af8, 0x25c18,
1158 		0x25c20, 0x25c20,
1159 		0x25c28, 0x25c30,
1160 		0x25c38, 0x25c38,
1161 		0x25c80, 0x25c98,
1162 		0x25ca0, 0x25ca8,
1163 		0x25cb0, 0x25cc8,
1164 		0x25cd0, 0x25cd4,
1165 		0x25ce0, 0x25ce8,
1166 		0x25cf0, 0x25cf0,
1167 		0x25cf8, 0x25d7c,
1168 		0x25e00, 0x25e04,
1169 		0x26000, 0x2602c,
1170 		0x26100, 0x2613c,
1171 		0x26190, 0x261a0,
1172 		0x261a8, 0x261b8,
1173 		0x261c4, 0x261c8,
1174 		0x26200, 0x26318,
1175 		0x26400, 0x264b4,
1176 		0x264c0, 0x26528,
1177 		0x26540, 0x26614,
1178 		0x27000, 0x27040,
1179 		0x2704c, 0x27060,
1180 		0x270c0, 0x270ec,
1181 		0x27200, 0x27268,
1182 		0x27270, 0x27284,
1183 		0x272fc, 0x27388,
1184 		0x27400, 0x27404,
1185 		0x27500, 0x27500,
1186 		0x27510, 0x27518,
1187 		0x2752c, 0x27530,
1188 		0x2753c, 0x2753c,
1189 		0x27550, 0x27554,
1190 		0x27600, 0x27600,
1191 		0x27608, 0x2761c,
1192 		0x27624, 0x27628,
1193 		0x27630, 0x27634,
1194 		0x2763c, 0x2763c,
1195 		0x27700, 0x2771c,
1196 		0x27780, 0x2778c,
1197 		0x27800, 0x27818,
1198 		0x27820, 0x27828,
1199 		0x27830, 0x27848,
1200 		0x27850, 0x27854,
1201 		0x27860, 0x27868,
1202 		0x27870, 0x27870,
1203 		0x27878, 0x27898,
1204 		0x278a0, 0x278a8,
1205 		0x278b0, 0x278c8,
1206 		0x278d0, 0x278d4,
1207 		0x278e0, 0x278e8,
1208 		0x278f0, 0x278f0,
1209 		0x278f8, 0x27a18,
1210 		0x27a20, 0x27a28,
1211 		0x27a30, 0x27a48,
1212 		0x27a50, 0x27a54,
1213 		0x27a60, 0x27a68,
1214 		0x27a70, 0x27a70,
1215 		0x27a78, 0x27a98,
1216 		0x27aa0, 0x27aa8,
1217 		0x27ab0, 0x27ac8,
1218 		0x27ad0, 0x27ad4,
1219 		0x27ae0, 0x27ae8,
1220 		0x27af0, 0x27af0,
1221 		0x27af8, 0x27c18,
1222 		0x27c20, 0x27c20,
1223 		0x27c28, 0x27c30,
1224 		0x27c38, 0x27c38,
1225 		0x27c80, 0x27c98,
1226 		0x27ca0, 0x27ca8,
1227 		0x27cb0, 0x27cc8,
1228 		0x27cd0, 0x27cd4,
1229 		0x27ce0, 0x27ce8,
1230 		0x27cf0, 0x27cf0,
1231 		0x27cf8, 0x27d7c,
1232 		0x27e00, 0x27e04,
1233 	};
1234 
1235 	static const unsigned int t4vf_reg_ranges[] = {
1236 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1237 		VF_MPS_REG(A_MPS_VF_CTL),
1238 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1239 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1240 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1241 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1242 		FW_T4VF_MBDATA_BASE_ADDR,
1243 		FW_T4VF_MBDATA_BASE_ADDR +
1244 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1245 	};
1246 
1247 	static const unsigned int t5_reg_ranges[] = {
1248 		0x1008, 0x10c0,
1249 		0x10cc, 0x10f8,
1250 		0x1100, 0x1100,
1251 		0x110c, 0x1148,
1252 		0x1180, 0x1184,
1253 		0x1190, 0x1194,
1254 		0x11a0, 0x11a4,
1255 		0x11b0, 0x11b4,
1256 		0x11fc, 0x123c,
1257 		0x1280, 0x173c,
1258 		0x1800, 0x18fc,
1259 		0x3000, 0x3028,
1260 		0x3060, 0x30b0,
1261 		0x30b8, 0x30d8,
1262 		0x30e0, 0x30fc,
1263 		0x3140, 0x357c,
1264 		0x35a8, 0x35cc,
1265 		0x35ec, 0x35ec,
1266 		0x3600, 0x5624,
1267 		0x56cc, 0x56ec,
1268 		0x56f4, 0x5720,
1269 		0x5728, 0x575c,
1270 		0x580c, 0x5814,
1271 		0x5890, 0x589c,
1272 		0x58a4, 0x58ac,
1273 		0x58b8, 0x58bc,
1274 		0x5940, 0x59c8,
1275 		0x59d0, 0x59dc,
1276 		0x59fc, 0x5a18,
1277 		0x5a60, 0x5a70,
1278 		0x5a80, 0x5a9c,
1279 		0x5b94, 0x5bfc,
1280 		0x6000, 0x6020,
1281 		0x6028, 0x6040,
1282 		0x6058, 0x609c,
1283 		0x60a8, 0x614c,
1284 		0x7700, 0x7798,
1285 		0x77c0, 0x78fc,
1286 		0x7b00, 0x7b58,
1287 		0x7b60, 0x7b84,
1288 		0x7b8c, 0x7c54,
1289 		0x7d00, 0x7d38,
1290 		0x7d40, 0x7d80,
1291 		0x7d8c, 0x7ddc,
1292 		0x7de4, 0x7e04,
1293 		0x7e10, 0x7e1c,
1294 		0x7e24, 0x7e38,
1295 		0x7e40, 0x7e44,
1296 		0x7e4c, 0x7e78,
1297 		0x7e80, 0x7edc,
1298 		0x7ee8, 0x7efc,
1299 		0x8dc0, 0x8de0,
1300 		0x8df8, 0x8e04,
1301 		0x8e10, 0x8e84,
1302 		0x8ea0, 0x8f84,
1303 		0x8fc0, 0x9058,
1304 		0x9060, 0x9060,
1305 		0x9068, 0x90f8,
1306 		0x9400, 0x9408,
1307 		0x9410, 0x9470,
1308 		0x9600, 0x9600,
1309 		0x9608, 0x9638,
1310 		0x9640, 0x96f4,
1311 		0x9800, 0x9808,
1312 		0x9820, 0x983c,
1313 		0x9850, 0x9864,
1314 		0x9c00, 0x9c6c,
1315 		0x9c80, 0x9cec,
1316 		0x9d00, 0x9d6c,
1317 		0x9d80, 0x9dec,
1318 		0x9e00, 0x9e6c,
1319 		0x9e80, 0x9eec,
1320 		0x9f00, 0x9f6c,
1321 		0x9f80, 0xa020,
1322 		0xd004, 0xd004,
1323 		0xd010, 0xd03c,
1324 		0xdfc0, 0xdfe0,
1325 		0xe000, 0x1106c,
1326 		0x11074, 0x11088,
1327 		0x1109c, 0x1117c,
1328 		0x11190, 0x11204,
1329 		0x19040, 0x1906c,
1330 		0x19078, 0x19080,
1331 		0x1908c, 0x190e8,
1332 		0x190f0, 0x190f8,
1333 		0x19100, 0x19110,
1334 		0x19120, 0x19124,
1335 		0x19150, 0x19194,
1336 		0x1919c, 0x191b0,
1337 		0x191d0, 0x191e8,
1338 		0x19238, 0x19290,
1339 		0x193f8, 0x19428,
1340 		0x19430, 0x19444,
1341 		0x1944c, 0x1946c,
1342 		0x19474, 0x19474,
1343 		0x19490, 0x194cc,
1344 		0x194f0, 0x194f8,
1345 		0x19c00, 0x19c08,
1346 		0x19c10, 0x19c60,
1347 		0x19c94, 0x19ce4,
1348 		0x19cf0, 0x19d40,
1349 		0x19d50, 0x19d94,
1350 		0x19da0, 0x19de8,
1351 		0x19df0, 0x19e10,
1352 		0x19e50, 0x19e90,
1353 		0x19ea0, 0x19f24,
1354 		0x19f34, 0x19f34,
1355 		0x19f40, 0x19f50,
1356 		0x19f90, 0x19fb4,
1357 		0x19fc4, 0x19fe4,
1358 		0x1a000, 0x1a004,
1359 		0x1a010, 0x1a06c,
1360 		0x1a0b0, 0x1a0e4,
1361 		0x1a0ec, 0x1a0f8,
1362 		0x1a100, 0x1a108,
1363 		0x1a114, 0x1a120,
1364 		0x1a128, 0x1a130,
1365 		0x1a138, 0x1a138,
1366 		0x1a190, 0x1a1c4,
1367 		0x1a1fc, 0x1a1fc,
1368 		0x1e008, 0x1e00c,
1369 		0x1e040, 0x1e044,
1370 		0x1e04c, 0x1e04c,
1371 		0x1e284, 0x1e290,
1372 		0x1e2c0, 0x1e2c0,
1373 		0x1e2e0, 0x1e2e0,
1374 		0x1e300, 0x1e384,
1375 		0x1e3c0, 0x1e3c8,
1376 		0x1e408, 0x1e40c,
1377 		0x1e440, 0x1e444,
1378 		0x1e44c, 0x1e44c,
1379 		0x1e684, 0x1e690,
1380 		0x1e6c0, 0x1e6c0,
1381 		0x1e6e0, 0x1e6e0,
1382 		0x1e700, 0x1e784,
1383 		0x1e7c0, 0x1e7c8,
1384 		0x1e808, 0x1e80c,
1385 		0x1e840, 0x1e844,
1386 		0x1e84c, 0x1e84c,
1387 		0x1ea84, 0x1ea90,
1388 		0x1eac0, 0x1eac0,
1389 		0x1eae0, 0x1eae0,
1390 		0x1eb00, 0x1eb84,
1391 		0x1ebc0, 0x1ebc8,
1392 		0x1ec08, 0x1ec0c,
1393 		0x1ec40, 0x1ec44,
1394 		0x1ec4c, 0x1ec4c,
1395 		0x1ee84, 0x1ee90,
1396 		0x1eec0, 0x1eec0,
1397 		0x1eee0, 0x1eee0,
1398 		0x1ef00, 0x1ef84,
1399 		0x1efc0, 0x1efc8,
1400 		0x1f008, 0x1f00c,
1401 		0x1f040, 0x1f044,
1402 		0x1f04c, 0x1f04c,
1403 		0x1f284, 0x1f290,
1404 		0x1f2c0, 0x1f2c0,
1405 		0x1f2e0, 0x1f2e0,
1406 		0x1f300, 0x1f384,
1407 		0x1f3c0, 0x1f3c8,
1408 		0x1f408, 0x1f40c,
1409 		0x1f440, 0x1f444,
1410 		0x1f44c, 0x1f44c,
1411 		0x1f684, 0x1f690,
1412 		0x1f6c0, 0x1f6c0,
1413 		0x1f6e0, 0x1f6e0,
1414 		0x1f700, 0x1f784,
1415 		0x1f7c0, 0x1f7c8,
1416 		0x1f808, 0x1f80c,
1417 		0x1f840, 0x1f844,
1418 		0x1f84c, 0x1f84c,
1419 		0x1fa84, 0x1fa90,
1420 		0x1fac0, 0x1fac0,
1421 		0x1fae0, 0x1fae0,
1422 		0x1fb00, 0x1fb84,
1423 		0x1fbc0, 0x1fbc8,
1424 		0x1fc08, 0x1fc0c,
1425 		0x1fc40, 0x1fc44,
1426 		0x1fc4c, 0x1fc4c,
1427 		0x1fe84, 0x1fe90,
1428 		0x1fec0, 0x1fec0,
1429 		0x1fee0, 0x1fee0,
1430 		0x1ff00, 0x1ff84,
1431 		0x1ffc0, 0x1ffc8,
1432 		0x30000, 0x30030,
1433 		0x30100, 0x30144,
1434 		0x30190, 0x301a0,
1435 		0x301a8, 0x301b8,
1436 		0x301c4, 0x301c8,
1437 		0x301d0, 0x301d0,
1438 		0x30200, 0x30318,
1439 		0x30400, 0x304b4,
1440 		0x304c0, 0x3052c,
1441 		0x30540, 0x3061c,
1442 		0x30800, 0x30828,
1443 		0x30834, 0x30834,
1444 		0x308c0, 0x30908,
1445 		0x30910, 0x309ac,
1446 		0x30a00, 0x30a14,
1447 		0x30a1c, 0x30a2c,
1448 		0x30a44, 0x30a50,
1449 		0x30a74, 0x30a74,
1450 		0x30a7c, 0x30afc,
1451 		0x30b08, 0x30c24,
1452 		0x30d00, 0x30d00,
1453 		0x30d08, 0x30d14,
1454 		0x30d1c, 0x30d20,
1455 		0x30d3c, 0x30d3c,
1456 		0x30d48, 0x30d50,
1457 		0x31200, 0x3120c,
1458 		0x31220, 0x31220,
1459 		0x31240, 0x31240,
1460 		0x31600, 0x3160c,
1461 		0x31a00, 0x31a1c,
1462 		0x31e00, 0x31e20,
1463 		0x31e38, 0x31e3c,
1464 		0x31e80, 0x31e80,
1465 		0x31e88, 0x31ea8,
1466 		0x31eb0, 0x31eb4,
1467 		0x31ec8, 0x31ed4,
1468 		0x31fb8, 0x32004,
1469 		0x32200, 0x32200,
1470 		0x32208, 0x32240,
1471 		0x32248, 0x32280,
1472 		0x32288, 0x322c0,
1473 		0x322c8, 0x322fc,
1474 		0x32600, 0x32630,
1475 		0x32a00, 0x32abc,
1476 		0x32b00, 0x32b10,
1477 		0x32b20, 0x32b30,
1478 		0x32b40, 0x32b50,
1479 		0x32b60, 0x32b70,
1480 		0x33000, 0x33028,
1481 		0x33030, 0x33048,
1482 		0x33060, 0x33068,
1483 		0x33070, 0x3309c,
1484 		0x330f0, 0x33128,
1485 		0x33130, 0x33148,
1486 		0x33160, 0x33168,
1487 		0x33170, 0x3319c,
1488 		0x331f0, 0x33238,
1489 		0x33240, 0x33240,
1490 		0x33248, 0x33250,
1491 		0x3325c, 0x33264,
1492 		0x33270, 0x332b8,
1493 		0x332c0, 0x332e4,
1494 		0x332f8, 0x33338,
1495 		0x33340, 0x33340,
1496 		0x33348, 0x33350,
1497 		0x3335c, 0x33364,
1498 		0x33370, 0x333b8,
1499 		0x333c0, 0x333e4,
1500 		0x333f8, 0x33428,
1501 		0x33430, 0x33448,
1502 		0x33460, 0x33468,
1503 		0x33470, 0x3349c,
1504 		0x334f0, 0x33528,
1505 		0x33530, 0x33548,
1506 		0x33560, 0x33568,
1507 		0x33570, 0x3359c,
1508 		0x335f0, 0x33638,
1509 		0x33640, 0x33640,
1510 		0x33648, 0x33650,
1511 		0x3365c, 0x33664,
1512 		0x33670, 0x336b8,
1513 		0x336c0, 0x336e4,
1514 		0x336f8, 0x33738,
1515 		0x33740, 0x33740,
1516 		0x33748, 0x33750,
1517 		0x3375c, 0x33764,
1518 		0x33770, 0x337b8,
1519 		0x337c0, 0x337e4,
1520 		0x337f8, 0x337fc,
1521 		0x33814, 0x33814,
1522 		0x3382c, 0x3382c,
1523 		0x33880, 0x3388c,
1524 		0x338e8, 0x338ec,
1525 		0x33900, 0x33928,
1526 		0x33930, 0x33948,
1527 		0x33960, 0x33968,
1528 		0x33970, 0x3399c,
1529 		0x339f0, 0x33a38,
1530 		0x33a40, 0x33a40,
1531 		0x33a48, 0x33a50,
1532 		0x33a5c, 0x33a64,
1533 		0x33a70, 0x33ab8,
1534 		0x33ac0, 0x33ae4,
1535 		0x33af8, 0x33b10,
1536 		0x33b28, 0x33b28,
1537 		0x33b3c, 0x33b50,
1538 		0x33bf0, 0x33c10,
1539 		0x33c28, 0x33c28,
1540 		0x33c3c, 0x33c50,
1541 		0x33cf0, 0x33cfc,
1542 		0x34000, 0x34030,
1543 		0x34100, 0x34144,
1544 		0x34190, 0x341a0,
1545 		0x341a8, 0x341b8,
1546 		0x341c4, 0x341c8,
1547 		0x341d0, 0x341d0,
1548 		0x34200, 0x34318,
1549 		0x34400, 0x344b4,
1550 		0x344c0, 0x3452c,
1551 		0x34540, 0x3461c,
1552 		0x34800, 0x34828,
1553 		0x34834, 0x34834,
1554 		0x348c0, 0x34908,
1555 		0x34910, 0x349ac,
1556 		0x34a00, 0x34a14,
1557 		0x34a1c, 0x34a2c,
1558 		0x34a44, 0x34a50,
1559 		0x34a74, 0x34a74,
1560 		0x34a7c, 0x34afc,
1561 		0x34b08, 0x34c24,
1562 		0x34d00, 0x34d00,
1563 		0x34d08, 0x34d14,
1564 		0x34d1c, 0x34d20,
1565 		0x34d3c, 0x34d3c,
1566 		0x34d48, 0x34d50,
1567 		0x35200, 0x3520c,
1568 		0x35220, 0x35220,
1569 		0x35240, 0x35240,
1570 		0x35600, 0x3560c,
1571 		0x35a00, 0x35a1c,
1572 		0x35e00, 0x35e20,
1573 		0x35e38, 0x35e3c,
1574 		0x35e80, 0x35e80,
1575 		0x35e88, 0x35ea8,
1576 		0x35eb0, 0x35eb4,
1577 		0x35ec8, 0x35ed4,
1578 		0x35fb8, 0x36004,
1579 		0x36200, 0x36200,
1580 		0x36208, 0x36240,
1581 		0x36248, 0x36280,
1582 		0x36288, 0x362c0,
1583 		0x362c8, 0x362fc,
1584 		0x36600, 0x36630,
1585 		0x36a00, 0x36abc,
1586 		0x36b00, 0x36b10,
1587 		0x36b20, 0x36b30,
1588 		0x36b40, 0x36b50,
1589 		0x36b60, 0x36b70,
1590 		0x37000, 0x37028,
1591 		0x37030, 0x37048,
1592 		0x37060, 0x37068,
1593 		0x37070, 0x3709c,
1594 		0x370f0, 0x37128,
1595 		0x37130, 0x37148,
1596 		0x37160, 0x37168,
1597 		0x37170, 0x3719c,
1598 		0x371f0, 0x37238,
1599 		0x37240, 0x37240,
1600 		0x37248, 0x37250,
1601 		0x3725c, 0x37264,
1602 		0x37270, 0x372b8,
1603 		0x372c0, 0x372e4,
1604 		0x372f8, 0x37338,
1605 		0x37340, 0x37340,
1606 		0x37348, 0x37350,
1607 		0x3735c, 0x37364,
1608 		0x37370, 0x373b8,
1609 		0x373c0, 0x373e4,
1610 		0x373f8, 0x37428,
1611 		0x37430, 0x37448,
1612 		0x37460, 0x37468,
1613 		0x37470, 0x3749c,
1614 		0x374f0, 0x37528,
1615 		0x37530, 0x37548,
1616 		0x37560, 0x37568,
1617 		0x37570, 0x3759c,
1618 		0x375f0, 0x37638,
1619 		0x37640, 0x37640,
1620 		0x37648, 0x37650,
1621 		0x3765c, 0x37664,
1622 		0x37670, 0x376b8,
1623 		0x376c0, 0x376e4,
1624 		0x376f8, 0x37738,
1625 		0x37740, 0x37740,
1626 		0x37748, 0x37750,
1627 		0x3775c, 0x37764,
1628 		0x37770, 0x377b8,
1629 		0x377c0, 0x377e4,
1630 		0x377f8, 0x377fc,
1631 		0x37814, 0x37814,
1632 		0x3782c, 0x3782c,
1633 		0x37880, 0x3788c,
1634 		0x378e8, 0x378ec,
1635 		0x37900, 0x37928,
1636 		0x37930, 0x37948,
1637 		0x37960, 0x37968,
1638 		0x37970, 0x3799c,
1639 		0x379f0, 0x37a38,
1640 		0x37a40, 0x37a40,
1641 		0x37a48, 0x37a50,
1642 		0x37a5c, 0x37a64,
1643 		0x37a70, 0x37ab8,
1644 		0x37ac0, 0x37ae4,
1645 		0x37af8, 0x37b10,
1646 		0x37b28, 0x37b28,
1647 		0x37b3c, 0x37b50,
1648 		0x37bf0, 0x37c10,
1649 		0x37c28, 0x37c28,
1650 		0x37c3c, 0x37c50,
1651 		0x37cf0, 0x37cfc,
1652 		0x38000, 0x38030,
1653 		0x38100, 0x38144,
1654 		0x38190, 0x381a0,
1655 		0x381a8, 0x381b8,
1656 		0x381c4, 0x381c8,
1657 		0x381d0, 0x381d0,
1658 		0x38200, 0x38318,
1659 		0x38400, 0x384b4,
1660 		0x384c0, 0x3852c,
1661 		0x38540, 0x3861c,
1662 		0x38800, 0x38828,
1663 		0x38834, 0x38834,
1664 		0x388c0, 0x38908,
1665 		0x38910, 0x389ac,
1666 		0x38a00, 0x38a14,
1667 		0x38a1c, 0x38a2c,
1668 		0x38a44, 0x38a50,
1669 		0x38a74, 0x38a74,
1670 		0x38a7c, 0x38afc,
1671 		0x38b08, 0x38c24,
1672 		0x38d00, 0x38d00,
1673 		0x38d08, 0x38d14,
1674 		0x38d1c, 0x38d20,
1675 		0x38d3c, 0x38d3c,
1676 		0x38d48, 0x38d50,
1677 		0x39200, 0x3920c,
1678 		0x39220, 0x39220,
1679 		0x39240, 0x39240,
1680 		0x39600, 0x3960c,
1681 		0x39a00, 0x39a1c,
1682 		0x39e00, 0x39e20,
1683 		0x39e38, 0x39e3c,
1684 		0x39e80, 0x39e80,
1685 		0x39e88, 0x39ea8,
1686 		0x39eb0, 0x39eb4,
1687 		0x39ec8, 0x39ed4,
1688 		0x39fb8, 0x3a004,
1689 		0x3a200, 0x3a200,
1690 		0x3a208, 0x3a240,
1691 		0x3a248, 0x3a280,
1692 		0x3a288, 0x3a2c0,
1693 		0x3a2c8, 0x3a2fc,
1694 		0x3a600, 0x3a630,
1695 		0x3aa00, 0x3aabc,
1696 		0x3ab00, 0x3ab10,
1697 		0x3ab20, 0x3ab30,
1698 		0x3ab40, 0x3ab50,
1699 		0x3ab60, 0x3ab70,
1700 		0x3b000, 0x3b028,
1701 		0x3b030, 0x3b048,
1702 		0x3b060, 0x3b068,
1703 		0x3b070, 0x3b09c,
1704 		0x3b0f0, 0x3b128,
1705 		0x3b130, 0x3b148,
1706 		0x3b160, 0x3b168,
1707 		0x3b170, 0x3b19c,
1708 		0x3b1f0, 0x3b238,
1709 		0x3b240, 0x3b240,
1710 		0x3b248, 0x3b250,
1711 		0x3b25c, 0x3b264,
1712 		0x3b270, 0x3b2b8,
1713 		0x3b2c0, 0x3b2e4,
1714 		0x3b2f8, 0x3b338,
1715 		0x3b340, 0x3b340,
1716 		0x3b348, 0x3b350,
1717 		0x3b35c, 0x3b364,
1718 		0x3b370, 0x3b3b8,
1719 		0x3b3c0, 0x3b3e4,
1720 		0x3b3f8, 0x3b428,
1721 		0x3b430, 0x3b448,
1722 		0x3b460, 0x3b468,
1723 		0x3b470, 0x3b49c,
1724 		0x3b4f0, 0x3b528,
1725 		0x3b530, 0x3b548,
1726 		0x3b560, 0x3b568,
1727 		0x3b570, 0x3b59c,
1728 		0x3b5f0, 0x3b638,
1729 		0x3b640, 0x3b640,
1730 		0x3b648, 0x3b650,
1731 		0x3b65c, 0x3b664,
1732 		0x3b670, 0x3b6b8,
1733 		0x3b6c0, 0x3b6e4,
1734 		0x3b6f8, 0x3b738,
1735 		0x3b740, 0x3b740,
1736 		0x3b748, 0x3b750,
1737 		0x3b75c, 0x3b764,
1738 		0x3b770, 0x3b7b8,
1739 		0x3b7c0, 0x3b7e4,
1740 		0x3b7f8, 0x3b7fc,
1741 		0x3b814, 0x3b814,
1742 		0x3b82c, 0x3b82c,
1743 		0x3b880, 0x3b88c,
1744 		0x3b8e8, 0x3b8ec,
1745 		0x3b900, 0x3b928,
1746 		0x3b930, 0x3b948,
1747 		0x3b960, 0x3b968,
1748 		0x3b970, 0x3b99c,
1749 		0x3b9f0, 0x3ba38,
1750 		0x3ba40, 0x3ba40,
1751 		0x3ba48, 0x3ba50,
1752 		0x3ba5c, 0x3ba64,
1753 		0x3ba70, 0x3bab8,
1754 		0x3bac0, 0x3bae4,
1755 		0x3baf8, 0x3bb10,
1756 		0x3bb28, 0x3bb28,
1757 		0x3bb3c, 0x3bb50,
1758 		0x3bbf0, 0x3bc10,
1759 		0x3bc28, 0x3bc28,
1760 		0x3bc3c, 0x3bc50,
1761 		0x3bcf0, 0x3bcfc,
1762 		0x3c000, 0x3c030,
1763 		0x3c100, 0x3c144,
1764 		0x3c190, 0x3c1a0,
1765 		0x3c1a8, 0x3c1b8,
1766 		0x3c1c4, 0x3c1c8,
1767 		0x3c1d0, 0x3c1d0,
1768 		0x3c200, 0x3c318,
1769 		0x3c400, 0x3c4b4,
1770 		0x3c4c0, 0x3c52c,
1771 		0x3c540, 0x3c61c,
1772 		0x3c800, 0x3c828,
1773 		0x3c834, 0x3c834,
1774 		0x3c8c0, 0x3c908,
1775 		0x3c910, 0x3c9ac,
1776 		0x3ca00, 0x3ca14,
1777 		0x3ca1c, 0x3ca2c,
1778 		0x3ca44, 0x3ca50,
1779 		0x3ca74, 0x3ca74,
1780 		0x3ca7c, 0x3cafc,
1781 		0x3cb08, 0x3cc24,
1782 		0x3cd00, 0x3cd00,
1783 		0x3cd08, 0x3cd14,
1784 		0x3cd1c, 0x3cd20,
1785 		0x3cd3c, 0x3cd3c,
1786 		0x3cd48, 0x3cd50,
1787 		0x3d200, 0x3d20c,
1788 		0x3d220, 0x3d220,
1789 		0x3d240, 0x3d240,
1790 		0x3d600, 0x3d60c,
1791 		0x3da00, 0x3da1c,
1792 		0x3de00, 0x3de20,
1793 		0x3de38, 0x3de3c,
1794 		0x3de80, 0x3de80,
1795 		0x3de88, 0x3dea8,
1796 		0x3deb0, 0x3deb4,
1797 		0x3dec8, 0x3ded4,
1798 		0x3dfb8, 0x3e004,
1799 		0x3e200, 0x3e200,
1800 		0x3e208, 0x3e240,
1801 		0x3e248, 0x3e280,
1802 		0x3e288, 0x3e2c0,
1803 		0x3e2c8, 0x3e2fc,
1804 		0x3e600, 0x3e630,
1805 		0x3ea00, 0x3eabc,
1806 		0x3eb00, 0x3eb10,
1807 		0x3eb20, 0x3eb30,
1808 		0x3eb40, 0x3eb50,
1809 		0x3eb60, 0x3eb70,
1810 		0x3f000, 0x3f028,
1811 		0x3f030, 0x3f048,
1812 		0x3f060, 0x3f068,
1813 		0x3f070, 0x3f09c,
1814 		0x3f0f0, 0x3f128,
1815 		0x3f130, 0x3f148,
1816 		0x3f160, 0x3f168,
1817 		0x3f170, 0x3f19c,
1818 		0x3f1f0, 0x3f238,
1819 		0x3f240, 0x3f240,
1820 		0x3f248, 0x3f250,
1821 		0x3f25c, 0x3f264,
1822 		0x3f270, 0x3f2b8,
1823 		0x3f2c0, 0x3f2e4,
1824 		0x3f2f8, 0x3f338,
1825 		0x3f340, 0x3f340,
1826 		0x3f348, 0x3f350,
1827 		0x3f35c, 0x3f364,
1828 		0x3f370, 0x3f3b8,
1829 		0x3f3c0, 0x3f3e4,
1830 		0x3f3f8, 0x3f428,
1831 		0x3f430, 0x3f448,
1832 		0x3f460, 0x3f468,
1833 		0x3f470, 0x3f49c,
1834 		0x3f4f0, 0x3f528,
1835 		0x3f530, 0x3f548,
1836 		0x3f560, 0x3f568,
1837 		0x3f570, 0x3f59c,
1838 		0x3f5f0, 0x3f638,
1839 		0x3f640, 0x3f640,
1840 		0x3f648, 0x3f650,
1841 		0x3f65c, 0x3f664,
1842 		0x3f670, 0x3f6b8,
1843 		0x3f6c0, 0x3f6e4,
1844 		0x3f6f8, 0x3f738,
1845 		0x3f740, 0x3f740,
1846 		0x3f748, 0x3f750,
1847 		0x3f75c, 0x3f764,
1848 		0x3f770, 0x3f7b8,
1849 		0x3f7c0, 0x3f7e4,
1850 		0x3f7f8, 0x3f7fc,
1851 		0x3f814, 0x3f814,
1852 		0x3f82c, 0x3f82c,
1853 		0x3f880, 0x3f88c,
1854 		0x3f8e8, 0x3f8ec,
1855 		0x3f900, 0x3f928,
1856 		0x3f930, 0x3f948,
1857 		0x3f960, 0x3f968,
1858 		0x3f970, 0x3f99c,
1859 		0x3f9f0, 0x3fa38,
1860 		0x3fa40, 0x3fa40,
1861 		0x3fa48, 0x3fa50,
1862 		0x3fa5c, 0x3fa64,
1863 		0x3fa70, 0x3fab8,
1864 		0x3fac0, 0x3fae4,
1865 		0x3faf8, 0x3fb10,
1866 		0x3fb28, 0x3fb28,
1867 		0x3fb3c, 0x3fb50,
1868 		0x3fbf0, 0x3fc10,
1869 		0x3fc28, 0x3fc28,
1870 		0x3fc3c, 0x3fc50,
1871 		0x3fcf0, 0x3fcfc,
1872 		0x40000, 0x4000c,
1873 		0x40040, 0x40050,
1874 		0x40060, 0x40068,
1875 		0x4007c, 0x4008c,
1876 		0x40094, 0x400b0,
1877 		0x400c0, 0x40144,
1878 		0x40180, 0x4018c,
1879 		0x40200, 0x40254,
1880 		0x40260, 0x40264,
1881 		0x40270, 0x40288,
1882 		0x40290, 0x40298,
1883 		0x402ac, 0x402c8,
1884 		0x402d0, 0x402e0,
1885 		0x402f0, 0x402f0,
1886 		0x40300, 0x4033c,
1887 		0x403f8, 0x403fc,
1888 		0x41304, 0x413c4,
1889 		0x41400, 0x4140c,
1890 		0x41414, 0x4141c,
1891 		0x41480, 0x414d0,
1892 		0x44000, 0x44054,
1893 		0x4405c, 0x44078,
1894 		0x440c0, 0x44174,
1895 		0x44180, 0x441ac,
1896 		0x441b4, 0x441b8,
1897 		0x441c0, 0x44254,
1898 		0x4425c, 0x44278,
1899 		0x442c0, 0x44374,
1900 		0x44380, 0x443ac,
1901 		0x443b4, 0x443b8,
1902 		0x443c0, 0x44454,
1903 		0x4445c, 0x44478,
1904 		0x444c0, 0x44574,
1905 		0x44580, 0x445ac,
1906 		0x445b4, 0x445b8,
1907 		0x445c0, 0x44654,
1908 		0x4465c, 0x44678,
1909 		0x446c0, 0x44774,
1910 		0x44780, 0x447ac,
1911 		0x447b4, 0x447b8,
1912 		0x447c0, 0x44854,
1913 		0x4485c, 0x44878,
1914 		0x448c0, 0x44974,
1915 		0x44980, 0x449ac,
1916 		0x449b4, 0x449b8,
1917 		0x449c0, 0x449fc,
1918 		0x45000, 0x45004,
1919 		0x45010, 0x45030,
1920 		0x45040, 0x45060,
1921 		0x45068, 0x45068,
1922 		0x45080, 0x45084,
1923 		0x450a0, 0x450b0,
1924 		0x45200, 0x45204,
1925 		0x45210, 0x45230,
1926 		0x45240, 0x45260,
1927 		0x45268, 0x45268,
1928 		0x45280, 0x45284,
1929 		0x452a0, 0x452b0,
1930 		0x460c0, 0x460e4,
1931 		0x47000, 0x4703c,
1932 		0x47044, 0x4708c,
1933 		0x47200, 0x47250,
1934 		0x47400, 0x47408,
1935 		0x47414, 0x47420,
1936 		0x47600, 0x47618,
1937 		0x47800, 0x47814,
1938 		0x48000, 0x4800c,
1939 		0x48040, 0x48050,
1940 		0x48060, 0x48068,
1941 		0x4807c, 0x4808c,
1942 		0x48094, 0x480b0,
1943 		0x480c0, 0x48144,
1944 		0x48180, 0x4818c,
1945 		0x48200, 0x48254,
1946 		0x48260, 0x48264,
1947 		0x48270, 0x48288,
1948 		0x48290, 0x48298,
1949 		0x482ac, 0x482c8,
1950 		0x482d0, 0x482e0,
1951 		0x482f0, 0x482f0,
1952 		0x48300, 0x4833c,
1953 		0x483f8, 0x483fc,
1954 		0x49304, 0x493c4,
1955 		0x49400, 0x4940c,
1956 		0x49414, 0x4941c,
1957 		0x49480, 0x494d0,
1958 		0x4c000, 0x4c054,
1959 		0x4c05c, 0x4c078,
1960 		0x4c0c0, 0x4c174,
1961 		0x4c180, 0x4c1ac,
1962 		0x4c1b4, 0x4c1b8,
1963 		0x4c1c0, 0x4c254,
1964 		0x4c25c, 0x4c278,
1965 		0x4c2c0, 0x4c374,
1966 		0x4c380, 0x4c3ac,
1967 		0x4c3b4, 0x4c3b8,
1968 		0x4c3c0, 0x4c454,
1969 		0x4c45c, 0x4c478,
1970 		0x4c4c0, 0x4c574,
1971 		0x4c580, 0x4c5ac,
1972 		0x4c5b4, 0x4c5b8,
1973 		0x4c5c0, 0x4c654,
1974 		0x4c65c, 0x4c678,
1975 		0x4c6c0, 0x4c774,
1976 		0x4c780, 0x4c7ac,
1977 		0x4c7b4, 0x4c7b8,
1978 		0x4c7c0, 0x4c854,
1979 		0x4c85c, 0x4c878,
1980 		0x4c8c0, 0x4c974,
1981 		0x4c980, 0x4c9ac,
1982 		0x4c9b4, 0x4c9b8,
1983 		0x4c9c0, 0x4c9fc,
1984 		0x4d000, 0x4d004,
1985 		0x4d010, 0x4d030,
1986 		0x4d040, 0x4d060,
1987 		0x4d068, 0x4d068,
1988 		0x4d080, 0x4d084,
1989 		0x4d0a0, 0x4d0b0,
1990 		0x4d200, 0x4d204,
1991 		0x4d210, 0x4d230,
1992 		0x4d240, 0x4d260,
1993 		0x4d268, 0x4d268,
1994 		0x4d280, 0x4d284,
1995 		0x4d2a0, 0x4d2b0,
1996 		0x4e0c0, 0x4e0e4,
1997 		0x4f000, 0x4f03c,
1998 		0x4f044, 0x4f08c,
1999 		0x4f200, 0x4f250,
2000 		0x4f400, 0x4f408,
2001 		0x4f414, 0x4f420,
2002 		0x4f600, 0x4f618,
2003 		0x4f800, 0x4f814,
2004 		0x50000, 0x50084,
2005 		0x50090, 0x500cc,
2006 		0x50400, 0x50400,
2007 		0x50800, 0x50884,
2008 		0x50890, 0x508cc,
2009 		0x50c00, 0x50c00,
2010 		0x51000, 0x5101c,
2011 		0x51300, 0x51308,
2012 	};
2013 
2014 	static const unsigned int t5vf_reg_ranges[] = {
2015 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2016 		VF_MPS_REG(A_MPS_VF_CTL),
2017 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2018 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2019 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2020 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2021 		FW_T4VF_MBDATA_BASE_ADDR,
2022 		FW_T4VF_MBDATA_BASE_ADDR +
2023 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2024 	};
2025 
2026 	static const unsigned int t6_reg_ranges[] = {
2027 		0x1008, 0x101c,
2028 		0x1024, 0x10a8,
2029 		0x10b4, 0x10f8,
2030 		0x1100, 0x1114,
2031 		0x111c, 0x112c,
2032 		0x1138, 0x113c,
2033 		0x1144, 0x114c,
2034 		0x1180, 0x1184,
2035 		0x1190, 0x1194,
2036 		0x11a0, 0x11a4,
2037 		0x11b0, 0x11b4,
2038 		0x11fc, 0x1274,
2039 		0x1280, 0x133c,
2040 		0x1800, 0x18fc,
2041 		0x3000, 0x302c,
2042 		0x3060, 0x30b0,
2043 		0x30b8, 0x30d8,
2044 		0x30e0, 0x30fc,
2045 		0x3140, 0x357c,
2046 		0x35a8, 0x35cc,
2047 		0x35ec, 0x35ec,
2048 		0x3600, 0x5624,
2049 		0x56cc, 0x56ec,
2050 		0x56f4, 0x5720,
2051 		0x5728, 0x575c,
2052 		0x580c, 0x5814,
2053 		0x5890, 0x589c,
2054 		0x58a4, 0x58ac,
2055 		0x58b8, 0x58bc,
2056 		0x5940, 0x595c,
2057 		0x5980, 0x598c,
2058 		0x59b0, 0x59c8,
2059 		0x59d0, 0x59dc,
2060 		0x59fc, 0x5a18,
2061 		0x5a60, 0x5a6c,
2062 		0x5a80, 0x5a8c,
2063 		0x5a94, 0x5a9c,
2064 		0x5b94, 0x5bfc,
2065 		0x5c10, 0x5e48,
2066 		0x5e50, 0x5e94,
2067 		0x5ea0, 0x5eb0,
2068 		0x5ec0, 0x5ec0,
2069 		0x5ec8, 0x5ed0,
2070 		0x5ee0, 0x5ee0,
2071 		0x5ef0, 0x5ef0,
2072 		0x5f00, 0x5f00,
2073 		0x6000, 0x6020,
2074 		0x6028, 0x6040,
2075 		0x6058, 0x609c,
2076 		0x60a8, 0x619c,
2077 		0x7700, 0x7798,
2078 		0x77c0, 0x7880,
2079 		0x78cc, 0x78fc,
2080 		0x7b00, 0x7b58,
2081 		0x7b60, 0x7b84,
2082 		0x7b8c, 0x7c54,
2083 		0x7d00, 0x7d38,
2084 		0x7d40, 0x7d84,
2085 		0x7d8c, 0x7ddc,
2086 		0x7de4, 0x7e04,
2087 		0x7e10, 0x7e1c,
2088 		0x7e24, 0x7e38,
2089 		0x7e40, 0x7e44,
2090 		0x7e4c, 0x7e78,
2091 		0x7e80, 0x7edc,
2092 		0x7ee8, 0x7efc,
2093 		0x8dc0, 0x8de4,
2094 		0x8df8, 0x8e04,
2095 		0x8e10, 0x8e84,
2096 		0x8ea0, 0x8f88,
2097 		0x8fb8, 0x9058,
2098 		0x9060, 0x9060,
2099 		0x9068, 0x90f8,
2100 		0x9100, 0x9124,
2101 		0x9400, 0x9470,
2102 		0x9600, 0x9600,
2103 		0x9608, 0x9638,
2104 		0x9640, 0x9704,
2105 		0x9710, 0x971c,
2106 		0x9800, 0x9808,
2107 		0x9820, 0x983c,
2108 		0x9850, 0x9864,
2109 		0x9c00, 0x9c6c,
2110 		0x9c80, 0x9cec,
2111 		0x9d00, 0x9d6c,
2112 		0x9d80, 0x9dec,
2113 		0x9e00, 0x9e6c,
2114 		0x9e80, 0x9eec,
2115 		0x9f00, 0x9f6c,
2116 		0x9f80, 0xa020,
2117 		0xd004, 0xd03c,
2118 		0xd100, 0xd118,
2119 		0xd200, 0xd214,
2120 		0xd220, 0xd234,
2121 		0xd240, 0xd254,
2122 		0xd260, 0xd274,
2123 		0xd280, 0xd294,
2124 		0xd2a0, 0xd2b4,
2125 		0xd2c0, 0xd2d4,
2126 		0xd2e0, 0xd2f4,
2127 		0xd300, 0xd31c,
2128 		0xdfc0, 0xdfe0,
2129 		0xe000, 0xf008,
2130 		0xf010, 0xf018,
2131 		0xf020, 0xf028,
2132 		0x11000, 0x11014,
2133 		0x11048, 0x1106c,
2134 		0x11074, 0x11088,
2135 		0x11098, 0x11120,
2136 		0x1112c, 0x1117c,
2137 		0x11190, 0x112e0,
2138 		0x11300, 0x1130c,
2139 		0x12000, 0x1206c,
2140 		0x19040, 0x1906c,
2141 		0x19078, 0x19080,
2142 		0x1908c, 0x190e8,
2143 		0x190f0, 0x190f8,
2144 		0x19100, 0x19110,
2145 		0x19120, 0x19124,
2146 		0x19150, 0x19194,
2147 		0x1919c, 0x191b0,
2148 		0x191d0, 0x191e8,
2149 		0x19238, 0x19290,
2150 		0x192a4, 0x192b0,
2151 		0x192bc, 0x192bc,
2152 		0x19348, 0x1934c,
2153 		0x193f8, 0x19418,
2154 		0x19420, 0x19428,
2155 		0x19430, 0x19444,
2156 		0x1944c, 0x1946c,
2157 		0x19474, 0x19474,
2158 		0x19490, 0x194cc,
2159 		0x194f0, 0x194f8,
2160 		0x19c00, 0x19c48,
2161 		0x19c50, 0x19c80,
2162 		0x19c94, 0x19c98,
2163 		0x19ca0, 0x19cbc,
2164 		0x19ce4, 0x19ce4,
2165 		0x19cf0, 0x19cf8,
2166 		0x19d00, 0x19d28,
2167 		0x19d50, 0x19d78,
2168 		0x19d94, 0x19d98,
2169 		0x19da0, 0x19dc8,
2170 		0x19df0, 0x19e10,
2171 		0x19e50, 0x19e6c,
2172 		0x19ea0, 0x19ebc,
2173 		0x19ec4, 0x19ef4,
2174 		0x19f04, 0x19f2c,
2175 		0x19f34, 0x19f34,
2176 		0x19f40, 0x19f50,
2177 		0x19f90, 0x19fac,
2178 		0x19fc4, 0x19fc8,
2179 		0x19fd0, 0x19fe4,
2180 		0x1a000, 0x1a004,
2181 		0x1a010, 0x1a06c,
2182 		0x1a0b0, 0x1a0e4,
2183 		0x1a0ec, 0x1a0f8,
2184 		0x1a100, 0x1a108,
2185 		0x1a114, 0x1a120,
2186 		0x1a128, 0x1a130,
2187 		0x1a138, 0x1a138,
2188 		0x1a190, 0x1a1c4,
2189 		0x1a1fc, 0x1a1fc,
2190 		0x1e008, 0x1e00c,
2191 		0x1e040, 0x1e044,
2192 		0x1e04c, 0x1e04c,
2193 		0x1e284, 0x1e290,
2194 		0x1e2c0, 0x1e2c0,
2195 		0x1e2e0, 0x1e2e0,
2196 		0x1e300, 0x1e384,
2197 		0x1e3c0, 0x1e3c8,
2198 		0x1e408, 0x1e40c,
2199 		0x1e440, 0x1e444,
2200 		0x1e44c, 0x1e44c,
2201 		0x1e684, 0x1e690,
2202 		0x1e6c0, 0x1e6c0,
2203 		0x1e6e0, 0x1e6e0,
2204 		0x1e700, 0x1e784,
2205 		0x1e7c0, 0x1e7c8,
2206 		0x1e808, 0x1e80c,
2207 		0x1e840, 0x1e844,
2208 		0x1e84c, 0x1e84c,
2209 		0x1ea84, 0x1ea90,
2210 		0x1eac0, 0x1eac0,
2211 		0x1eae0, 0x1eae0,
2212 		0x1eb00, 0x1eb84,
2213 		0x1ebc0, 0x1ebc8,
2214 		0x1ec08, 0x1ec0c,
2215 		0x1ec40, 0x1ec44,
2216 		0x1ec4c, 0x1ec4c,
2217 		0x1ee84, 0x1ee90,
2218 		0x1eec0, 0x1eec0,
2219 		0x1eee0, 0x1eee0,
2220 		0x1ef00, 0x1ef84,
2221 		0x1efc0, 0x1efc8,
2222 		0x1f008, 0x1f00c,
2223 		0x1f040, 0x1f044,
2224 		0x1f04c, 0x1f04c,
2225 		0x1f284, 0x1f290,
2226 		0x1f2c0, 0x1f2c0,
2227 		0x1f2e0, 0x1f2e0,
2228 		0x1f300, 0x1f384,
2229 		0x1f3c0, 0x1f3c8,
2230 		0x1f408, 0x1f40c,
2231 		0x1f440, 0x1f444,
2232 		0x1f44c, 0x1f44c,
2233 		0x1f684, 0x1f690,
2234 		0x1f6c0, 0x1f6c0,
2235 		0x1f6e0, 0x1f6e0,
2236 		0x1f700, 0x1f784,
2237 		0x1f7c0, 0x1f7c8,
2238 		0x1f808, 0x1f80c,
2239 		0x1f840, 0x1f844,
2240 		0x1f84c, 0x1f84c,
2241 		0x1fa84, 0x1fa90,
2242 		0x1fac0, 0x1fac0,
2243 		0x1fae0, 0x1fae0,
2244 		0x1fb00, 0x1fb84,
2245 		0x1fbc0, 0x1fbc8,
2246 		0x1fc08, 0x1fc0c,
2247 		0x1fc40, 0x1fc44,
2248 		0x1fc4c, 0x1fc4c,
2249 		0x1fe84, 0x1fe90,
2250 		0x1fec0, 0x1fec0,
2251 		0x1fee0, 0x1fee0,
2252 		0x1ff00, 0x1ff84,
2253 		0x1ffc0, 0x1ffc8,
2254 		0x30000, 0x30030,
2255 		0x30100, 0x30168,
2256 		0x30190, 0x301a0,
2257 		0x301a8, 0x301b8,
2258 		0x301c4, 0x301c8,
2259 		0x301d0, 0x301d0,
2260 		0x30200, 0x30320,
2261 		0x30400, 0x304b4,
2262 		0x304c0, 0x3052c,
2263 		0x30540, 0x3061c,
2264 		0x30800, 0x308a0,
2265 		0x308c0, 0x30908,
2266 		0x30910, 0x309b8,
2267 		0x30a00, 0x30a04,
2268 		0x30a0c, 0x30a14,
2269 		0x30a1c, 0x30a2c,
2270 		0x30a44, 0x30a50,
2271 		0x30a74, 0x30a74,
2272 		0x30a7c, 0x30afc,
2273 		0x30b08, 0x30c24,
2274 		0x30d00, 0x30d14,
2275 		0x30d1c, 0x30d3c,
2276 		0x30d44, 0x30d4c,
2277 		0x30d54, 0x30d74,
2278 		0x30d7c, 0x30d7c,
2279 		0x30de0, 0x30de0,
2280 		0x30e00, 0x30ed4,
2281 		0x30f00, 0x30fa4,
2282 		0x30fc0, 0x30fc4,
2283 		0x31000, 0x31004,
2284 		0x31080, 0x310fc,
2285 		0x31208, 0x31220,
2286 		0x3123c, 0x31254,
2287 		0x31300, 0x31300,
2288 		0x31308, 0x3131c,
2289 		0x31338, 0x3133c,
2290 		0x31380, 0x31380,
2291 		0x31388, 0x313a8,
2292 		0x313b4, 0x313b4,
2293 		0x31400, 0x31420,
2294 		0x31438, 0x3143c,
2295 		0x31480, 0x31480,
2296 		0x314a8, 0x314a8,
2297 		0x314b0, 0x314b4,
2298 		0x314c8, 0x314d4,
2299 		0x31a40, 0x31a4c,
2300 		0x31af0, 0x31b20,
2301 		0x31b38, 0x31b3c,
2302 		0x31b80, 0x31b80,
2303 		0x31ba8, 0x31ba8,
2304 		0x31bb0, 0x31bb4,
2305 		0x31bc8, 0x31bd4,
2306 		0x32140, 0x3218c,
2307 		0x321f0, 0x321f4,
2308 		0x32200, 0x32200,
2309 		0x32218, 0x32218,
2310 		0x32400, 0x32400,
2311 		0x32408, 0x3241c,
2312 		0x32618, 0x32620,
2313 		0x32664, 0x32664,
2314 		0x326a8, 0x326a8,
2315 		0x326ec, 0x326ec,
2316 		0x32a00, 0x32abc,
2317 		0x32b00, 0x32b18,
2318 		0x32b20, 0x32b38,
2319 		0x32b40, 0x32b58,
2320 		0x32b60, 0x32b78,
2321 		0x32c00, 0x32c00,
2322 		0x32c08, 0x32c3c,
2323 		0x33000, 0x3302c,
2324 		0x33034, 0x33050,
2325 		0x33058, 0x33058,
2326 		0x33060, 0x3308c,
2327 		0x3309c, 0x330ac,
2328 		0x330c0, 0x330c0,
2329 		0x330c8, 0x330d0,
2330 		0x330d8, 0x330e0,
2331 		0x330ec, 0x3312c,
2332 		0x33134, 0x33150,
2333 		0x33158, 0x33158,
2334 		0x33160, 0x3318c,
2335 		0x3319c, 0x331ac,
2336 		0x331c0, 0x331c0,
2337 		0x331c8, 0x331d0,
2338 		0x331d8, 0x331e0,
2339 		0x331ec, 0x33290,
2340 		0x33298, 0x332c4,
2341 		0x332e4, 0x33390,
2342 		0x33398, 0x333c4,
2343 		0x333e4, 0x3342c,
2344 		0x33434, 0x33450,
2345 		0x33458, 0x33458,
2346 		0x33460, 0x3348c,
2347 		0x3349c, 0x334ac,
2348 		0x334c0, 0x334c0,
2349 		0x334c8, 0x334d0,
2350 		0x334d8, 0x334e0,
2351 		0x334ec, 0x3352c,
2352 		0x33534, 0x33550,
2353 		0x33558, 0x33558,
2354 		0x33560, 0x3358c,
2355 		0x3359c, 0x335ac,
2356 		0x335c0, 0x335c0,
2357 		0x335c8, 0x335d0,
2358 		0x335d8, 0x335e0,
2359 		0x335ec, 0x33690,
2360 		0x33698, 0x336c4,
2361 		0x336e4, 0x33790,
2362 		0x33798, 0x337c4,
2363 		0x337e4, 0x337fc,
2364 		0x33814, 0x33814,
2365 		0x33854, 0x33868,
2366 		0x33880, 0x3388c,
2367 		0x338c0, 0x338d0,
2368 		0x338e8, 0x338ec,
2369 		0x33900, 0x3392c,
2370 		0x33934, 0x33950,
2371 		0x33958, 0x33958,
2372 		0x33960, 0x3398c,
2373 		0x3399c, 0x339ac,
2374 		0x339c0, 0x339c0,
2375 		0x339c8, 0x339d0,
2376 		0x339d8, 0x339e0,
2377 		0x339ec, 0x33a90,
2378 		0x33a98, 0x33ac4,
2379 		0x33ae4, 0x33b10,
2380 		0x33b24, 0x33b28,
2381 		0x33b38, 0x33b50,
2382 		0x33bf0, 0x33c10,
2383 		0x33c24, 0x33c28,
2384 		0x33c38, 0x33c50,
2385 		0x33cf0, 0x33cfc,
2386 		0x34000, 0x34030,
2387 		0x34100, 0x34168,
2388 		0x34190, 0x341a0,
2389 		0x341a8, 0x341b8,
2390 		0x341c4, 0x341c8,
2391 		0x341d0, 0x341d0,
2392 		0x34200, 0x34320,
2393 		0x34400, 0x344b4,
2394 		0x344c0, 0x3452c,
2395 		0x34540, 0x3461c,
2396 		0x34800, 0x348a0,
2397 		0x348c0, 0x34908,
2398 		0x34910, 0x349b8,
2399 		0x34a00, 0x34a04,
2400 		0x34a0c, 0x34a14,
2401 		0x34a1c, 0x34a2c,
2402 		0x34a44, 0x34a50,
2403 		0x34a74, 0x34a74,
2404 		0x34a7c, 0x34afc,
2405 		0x34b08, 0x34c24,
2406 		0x34d00, 0x34d14,
2407 		0x34d1c, 0x34d3c,
2408 		0x34d44, 0x34d4c,
2409 		0x34d54, 0x34d74,
2410 		0x34d7c, 0x34d7c,
2411 		0x34de0, 0x34de0,
2412 		0x34e00, 0x34ed4,
2413 		0x34f00, 0x34fa4,
2414 		0x34fc0, 0x34fc4,
2415 		0x35000, 0x35004,
2416 		0x35080, 0x350fc,
2417 		0x35208, 0x35220,
2418 		0x3523c, 0x35254,
2419 		0x35300, 0x35300,
2420 		0x35308, 0x3531c,
2421 		0x35338, 0x3533c,
2422 		0x35380, 0x35380,
2423 		0x35388, 0x353a8,
2424 		0x353b4, 0x353b4,
2425 		0x35400, 0x35420,
2426 		0x35438, 0x3543c,
2427 		0x35480, 0x35480,
2428 		0x354a8, 0x354a8,
2429 		0x354b0, 0x354b4,
2430 		0x354c8, 0x354d4,
2431 		0x35a40, 0x35a4c,
2432 		0x35af0, 0x35b20,
2433 		0x35b38, 0x35b3c,
2434 		0x35b80, 0x35b80,
2435 		0x35ba8, 0x35ba8,
2436 		0x35bb0, 0x35bb4,
2437 		0x35bc8, 0x35bd4,
2438 		0x36140, 0x3618c,
2439 		0x361f0, 0x361f4,
2440 		0x36200, 0x36200,
2441 		0x36218, 0x36218,
2442 		0x36400, 0x36400,
2443 		0x36408, 0x3641c,
2444 		0x36618, 0x36620,
2445 		0x36664, 0x36664,
2446 		0x366a8, 0x366a8,
2447 		0x366ec, 0x366ec,
2448 		0x36a00, 0x36abc,
2449 		0x36b00, 0x36b18,
2450 		0x36b20, 0x36b38,
2451 		0x36b40, 0x36b58,
2452 		0x36b60, 0x36b78,
2453 		0x36c00, 0x36c00,
2454 		0x36c08, 0x36c3c,
2455 		0x37000, 0x3702c,
2456 		0x37034, 0x37050,
2457 		0x37058, 0x37058,
2458 		0x37060, 0x3708c,
2459 		0x3709c, 0x370ac,
2460 		0x370c0, 0x370c0,
2461 		0x370c8, 0x370d0,
2462 		0x370d8, 0x370e0,
2463 		0x370ec, 0x3712c,
2464 		0x37134, 0x37150,
2465 		0x37158, 0x37158,
2466 		0x37160, 0x3718c,
2467 		0x3719c, 0x371ac,
2468 		0x371c0, 0x371c0,
2469 		0x371c8, 0x371d0,
2470 		0x371d8, 0x371e0,
2471 		0x371ec, 0x37290,
2472 		0x37298, 0x372c4,
2473 		0x372e4, 0x37390,
2474 		0x37398, 0x373c4,
2475 		0x373e4, 0x3742c,
2476 		0x37434, 0x37450,
2477 		0x37458, 0x37458,
2478 		0x37460, 0x3748c,
2479 		0x3749c, 0x374ac,
2480 		0x374c0, 0x374c0,
2481 		0x374c8, 0x374d0,
2482 		0x374d8, 0x374e0,
2483 		0x374ec, 0x3752c,
2484 		0x37534, 0x37550,
2485 		0x37558, 0x37558,
2486 		0x37560, 0x3758c,
2487 		0x3759c, 0x375ac,
2488 		0x375c0, 0x375c0,
2489 		0x375c8, 0x375d0,
2490 		0x375d8, 0x375e0,
2491 		0x375ec, 0x37690,
2492 		0x37698, 0x376c4,
2493 		0x376e4, 0x37790,
2494 		0x37798, 0x377c4,
2495 		0x377e4, 0x377fc,
2496 		0x37814, 0x37814,
2497 		0x37854, 0x37868,
2498 		0x37880, 0x3788c,
2499 		0x378c0, 0x378d0,
2500 		0x378e8, 0x378ec,
2501 		0x37900, 0x3792c,
2502 		0x37934, 0x37950,
2503 		0x37958, 0x37958,
2504 		0x37960, 0x3798c,
2505 		0x3799c, 0x379ac,
2506 		0x379c0, 0x379c0,
2507 		0x379c8, 0x379d0,
2508 		0x379d8, 0x379e0,
2509 		0x379ec, 0x37a90,
2510 		0x37a98, 0x37ac4,
2511 		0x37ae4, 0x37b10,
2512 		0x37b24, 0x37b28,
2513 		0x37b38, 0x37b50,
2514 		0x37bf0, 0x37c10,
2515 		0x37c24, 0x37c28,
2516 		0x37c38, 0x37c50,
2517 		0x37cf0, 0x37cfc,
2518 		0x40040, 0x40040,
2519 		0x40080, 0x40084,
2520 		0x40100, 0x40100,
2521 		0x40140, 0x401bc,
2522 		0x40200, 0x40214,
2523 		0x40228, 0x40228,
2524 		0x40240, 0x40258,
2525 		0x40280, 0x40280,
2526 		0x40304, 0x40304,
2527 		0x40330, 0x4033c,
2528 		0x41304, 0x413c8,
2529 		0x413d0, 0x413dc,
2530 		0x413f0, 0x413f0,
2531 		0x41400, 0x4140c,
2532 		0x41414, 0x4141c,
2533 		0x41480, 0x414d0,
2534 		0x44000, 0x4407c,
2535 		0x440c0, 0x441ac,
2536 		0x441b4, 0x4427c,
2537 		0x442c0, 0x443ac,
2538 		0x443b4, 0x4447c,
2539 		0x444c0, 0x445ac,
2540 		0x445b4, 0x4467c,
2541 		0x446c0, 0x447ac,
2542 		0x447b4, 0x4487c,
2543 		0x448c0, 0x449ac,
2544 		0x449b4, 0x44a7c,
2545 		0x44ac0, 0x44bac,
2546 		0x44bb4, 0x44c7c,
2547 		0x44cc0, 0x44dac,
2548 		0x44db4, 0x44e7c,
2549 		0x44ec0, 0x44fac,
2550 		0x44fb4, 0x4507c,
2551 		0x450c0, 0x451ac,
2552 		0x451b4, 0x451fc,
2553 		0x45800, 0x45804,
2554 		0x45810, 0x45830,
2555 		0x45840, 0x45860,
2556 		0x45868, 0x45868,
2557 		0x45880, 0x45884,
2558 		0x458a0, 0x458b0,
2559 		0x45a00, 0x45a04,
2560 		0x45a10, 0x45a30,
2561 		0x45a40, 0x45a60,
2562 		0x45a68, 0x45a68,
2563 		0x45a80, 0x45a84,
2564 		0x45aa0, 0x45ab0,
2565 		0x460c0, 0x460e4,
2566 		0x47000, 0x4703c,
2567 		0x47044, 0x4708c,
2568 		0x47200, 0x47250,
2569 		0x47400, 0x47408,
2570 		0x47414, 0x47420,
2571 		0x47600, 0x47618,
2572 		0x47800, 0x47814,
2573 		0x47820, 0x4782c,
2574 		0x50000, 0x50084,
2575 		0x50090, 0x500cc,
2576 		0x50300, 0x50384,
2577 		0x50400, 0x50400,
2578 		0x50800, 0x50884,
2579 		0x50890, 0x508cc,
2580 		0x50b00, 0x50b84,
2581 		0x50c00, 0x50c00,
2582 		0x51000, 0x51020,
2583 		0x51028, 0x510b0,
2584 		0x51300, 0x51324,
2585 	};
2586 
2587 	static const unsigned int t6vf_reg_ranges[] = {
2588 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2589 		VF_MPS_REG(A_MPS_VF_CTL),
2590 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2591 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2592 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2593 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2594 		FW_T6VF_MBDATA_BASE_ADDR,
2595 		FW_T6VF_MBDATA_BASE_ADDR +
2596 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2597 	};
2598 
2599 	u32 *buf_end = (u32 *)(buf + buf_size);
2600 	const unsigned int *reg_ranges;
2601 	int reg_ranges_size, range;
2602 	unsigned int chip_version = chip_id(adap);
2603 
2604 	/*
2605 	 * Select the right set of register ranges to dump depending on the
2606 	 * adapter chip type.
2607 	 */
2608 	switch (chip_version) {
2609 	case CHELSIO_T4:
2610 		if (adap->flags & IS_VF) {
2611 			reg_ranges = t4vf_reg_ranges;
2612 			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2613 		} else {
2614 			reg_ranges = t4_reg_ranges;
2615 			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2616 		}
2617 		break;
2618 
2619 	case CHELSIO_T5:
2620 		if (adap->flags & IS_VF) {
2621 			reg_ranges = t5vf_reg_ranges;
2622 			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2623 		} else {
2624 			reg_ranges = t5_reg_ranges;
2625 			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2626 		}
2627 		break;
2628 
2629 	case CHELSIO_T6:
2630 		if (adap->flags & IS_VF) {
2631 			reg_ranges = t6vf_reg_ranges;
2632 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2633 		} else {
2634 			reg_ranges = t6_reg_ranges;
2635 			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2636 		}
2637 		break;
2638 
2639 	default:
2640 		CH_ERR(adap,
2641 			"Unsupported chip version %d\n", chip_version);
2642 		return;
2643 	}
2644 
2645 	/*
2646 	 * Clear the register buffer and insert the appropriate register
2647 	 * values selected by the above register ranges.
2648 	 */
2649 	memset(buf, 0, buf_size);
2650 	for (range = 0; range < reg_ranges_size; range += 2) {
2651 		unsigned int reg = reg_ranges[range];
2652 		unsigned int last_reg = reg_ranges[range + 1];
2653 		u32 *bufp = (u32 *)(buf + reg);
2654 
2655 		/*
2656 		 * Iterate across the register range filling in the register
2657 		 * buffer but don't write past the end of the register buffer.
2658 		 */
2659 		while (reg <= last_reg && bufp < buf_end) {
2660 			*bufp++ = t4_read_reg(adap, reg);
2661 			reg += sizeof(u32);
2662 		}
2663 	}
2664 }
2665 
2666 /*
2667  * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2668  * header followed by one or more VPD-R sections, each with its own header.
2669  */
2670 struct t4_vpd_hdr {
2671 	u8  id_tag;
2672 	u8  id_len[2];
2673 	u8  id_data[ID_LEN];
2674 };
2675 
2676 struct t4_vpdr_hdr {
2677 	u8  vpdr_tag;
2678 	u8  vpdr_len[2];
2679 };
2680 
2681 /*
2682  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2683  */
2684 #define EEPROM_DELAY		10		/* 10us per poll spin */
2685 #define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2686 
2687 #define EEPROM_STAT_ADDR	0x7bfc
2688 #define VPD_SIZE		0x800
2689 #define VPD_BASE		0x400
2690 #define VPD_BASE_OLD		0
2691 #define VPD_LEN			1024
2692 #define VPD_INFO_FLD_HDR_SIZE	3
2693 #define CHELSIO_VPD_UNIQUE_ID	0x82
2694 
2695 /*
2696  * Small utility function to wait till any outstanding VPD Access is complete.
2697  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2698  * VPD Access in flight.  This allows us to handle the problem of having a
2699  * previous VPD Access time out and prevent an attempt to inject a new VPD
2700  * Request before any in-flight VPD reguest has completed.
2701  */
2702 static int t4_seeprom_wait(struct adapter *adapter)
2703 {
2704 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2705 	int max_poll;
2706 
2707 	/*
2708 	 * If no VPD Access is in flight, we can just return success right
2709 	 * away.
2710 	 */
2711 	if (!adapter->vpd_busy)
2712 		return 0;
2713 
2714 	/*
2715 	 * Poll the VPD Capability Address/Flag register waiting for it
2716 	 * to indicate that the operation is complete.
2717 	 */
2718 	max_poll = EEPROM_MAX_POLL;
2719 	do {
2720 		u16 val;
2721 
2722 		udelay(EEPROM_DELAY);
2723 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2724 
2725 		/*
2726 		 * If the operation is complete, mark the VPD as no longer
2727 		 * busy and return success.
2728 		 */
2729 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2730 			adapter->vpd_busy = 0;
2731 			return 0;
2732 		}
2733 	} while (--max_poll);
2734 
2735 	/*
2736 	 * Failure!  Note that we leave the VPD Busy status set in order to
2737 	 * avoid pushing a new VPD Access request into the VPD Capability till
2738 	 * the current operation eventually succeeds.  It's a bug to issue a
2739 	 * new request when an existing request is in flight and will result
2740 	 * in corrupt hardware state.
2741 	 */
2742 	return -ETIMEDOUT;
2743 }
2744 
2745 /**
2746  *	t4_seeprom_read - read a serial EEPROM location
2747  *	@adapter: adapter to read
2748  *	@addr: EEPROM virtual address
2749  *	@data: where to store the read data
2750  *
2751  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2752  *	VPD capability.  Note that this function must be called with a virtual
2753  *	address.
2754  */
2755 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2756 {
2757 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2758 	int ret;
2759 
2760 	/*
2761 	 * VPD Accesses must alway be 4-byte aligned!
2762 	 */
2763 	if (addr >= EEPROMVSIZE || (addr & 3))
2764 		return -EINVAL;
2765 
2766 	/*
2767 	 * Wait for any previous operation which may still be in flight to
2768 	 * complete.
2769 	 */
2770 	ret = t4_seeprom_wait(adapter);
2771 	if (ret) {
2772 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2773 		return ret;
2774 	}
2775 
2776 	/*
2777 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2778 	 * for our request to complete.  If it doesn't complete, note the
2779 	 * error and return it to our caller.  Note that we do not reset the
2780 	 * VPD Busy status!
2781 	 */
2782 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2783 	adapter->vpd_busy = 1;
2784 	adapter->vpd_flag = PCI_VPD_ADDR_F;
2785 	ret = t4_seeprom_wait(adapter);
2786 	if (ret) {
2787 		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2788 		return ret;
2789 	}
2790 
2791 	/*
2792 	 * Grab the returned data, swizzle it into our endianness and
2793 	 * return success.
2794 	 */
2795 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2796 	*data = le32_to_cpu(*data);
2797 	return 0;
2798 }
2799 
2800 /**
2801  *	t4_seeprom_write - write a serial EEPROM location
2802  *	@adapter: adapter to write
2803  *	@addr: virtual EEPROM address
2804  *	@data: value to write
2805  *
2806  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2807  *	VPD capability.  Note that this function must be called with a virtual
2808  *	address.
2809  */
2810 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2811 {
2812 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2813 	int ret;
2814 	u32 stats_reg;
2815 	int max_poll;
2816 
2817 	/*
2818 	 * VPD Accesses must alway be 4-byte aligned!
2819 	 */
2820 	if (addr >= EEPROMVSIZE || (addr & 3))
2821 		return -EINVAL;
2822 
2823 	/*
2824 	 * Wait for any previous operation which may still be in flight to
2825 	 * complete.
2826 	 */
2827 	ret = t4_seeprom_wait(adapter);
2828 	if (ret) {
2829 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2830 		return ret;
2831 	}
2832 
2833 	/*
2834 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2835 	 * for our request to complete.  If it doesn't complete, note the
2836 	 * error and return it to our caller.  Note that we do not reset the
2837 	 * VPD Busy status!
2838 	 */
2839 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2840 				 cpu_to_le32(data));
2841 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2842 				 (u16)addr | PCI_VPD_ADDR_F);
2843 	adapter->vpd_busy = 1;
2844 	adapter->vpd_flag = 0;
2845 	ret = t4_seeprom_wait(adapter);
2846 	if (ret) {
2847 		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2848 		return ret;
2849 	}
2850 
2851 	/*
2852 	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2853 	 * request to complete. If it doesn't complete, return error.
2854 	 */
2855 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2856 	max_poll = EEPROM_MAX_POLL;
2857 	do {
2858 		udelay(EEPROM_DELAY);
2859 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2860 	} while ((stats_reg & 0x1) && --max_poll);
2861 	if (!max_poll)
2862 		return -ETIMEDOUT;
2863 
2864 	/* Return success! */
2865 	return 0;
2866 }
2867 
2868 /**
2869  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2870  *	@phys_addr: the physical EEPROM address
2871  *	@fn: the PCI function number
2872  *	@sz: size of function-specific area
2873  *
2874  *	Translate a physical EEPROM address to virtual.  The first 1K is
2875  *	accessed through virtual addresses starting at 31K, the rest is
2876  *	accessed through virtual addresses starting at 0.
2877  *
2878  *	The mapping is as follows:
2879  *	[0..1K) -> [31K..32K)
2880  *	[1K..1K+A) -> [ES-A..ES)
2881  *	[1K+A..ES) -> [0..ES-A-1K)
2882  *
2883  *	where A = @fn * @sz, and ES = EEPROM size.
2884  */
2885 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2886 {
2887 	fn *= sz;
2888 	if (phys_addr < 1024)
2889 		return phys_addr + (31 << 10);
2890 	if (phys_addr < 1024 + fn)
2891 		return EEPROMSIZE - fn + phys_addr - 1024;
2892 	if (phys_addr < EEPROMSIZE)
2893 		return phys_addr - 1024 - fn;
2894 	return -EINVAL;
2895 }
2896 
2897 /**
2898  *	t4_seeprom_wp - enable/disable EEPROM write protection
2899  *	@adapter: the adapter
2900  *	@enable: whether to enable or disable write protection
2901  *
2902  *	Enables or disables write protection on the serial EEPROM.
2903  */
2904 int t4_seeprom_wp(struct adapter *adapter, int enable)
2905 {
2906 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2907 }
2908 
2909 /**
2910  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2911  *	@vpd: Pointer to buffered vpd data structure
2912  *	@kw: The keyword to search for
2913  *	@region: VPD region to search (starting from 0)
2914  *
2915  *	Returns the value of the information field keyword or
2916  *	-ENOENT otherwise.
2917  */
2918 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2919 {
2920 	int i, tag;
2921 	unsigned int offset, len;
2922 	const struct t4_vpdr_hdr *vpdr;
2923 
2924 	offset = sizeof(struct t4_vpd_hdr);
2925 	vpdr = (const void *)(vpd + offset);
2926 	tag = vpdr->vpdr_tag;
2927 	len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2928 	while (region--) {
2929 		offset += sizeof(struct t4_vpdr_hdr) + len;
2930 		vpdr = (const void *)(vpd + offset);
2931 		if (++tag != vpdr->vpdr_tag)
2932 			return -ENOENT;
2933 		len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2934 	}
2935 	offset += sizeof(struct t4_vpdr_hdr);
2936 
2937 	if (offset + len > VPD_LEN) {
2938 		return -ENOENT;
2939 	}
2940 
2941 	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2942 		if (memcmp(vpd + i , kw , 2) == 0){
2943 			i += VPD_INFO_FLD_HDR_SIZE;
2944 			return i;
2945 		}
2946 
2947 		i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
2948 	}
2949 
2950 	return -ENOENT;
2951 }
2952 
2953 
2954 /**
2955  *	get_vpd_params - read VPD parameters from VPD EEPROM
2956  *	@adapter: adapter to read
2957  *	@p: where to store the parameters
2958  *	@vpd: caller provided temporary space to read the VPD into
2959  *
2960  *	Reads card parameters stored in VPD EEPROM.
2961  */
2962 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
2963     uint16_t device_id, u32 *buf)
2964 {
2965 	int i, ret, addr;
2966 	int ec, sn, pn, na, md;
2967 	u8 csum;
2968 	const u8 *vpd = (const u8 *)buf;
2969 
2970 	/*
2971 	 * Card information normally starts at VPD_BASE but early cards had
2972 	 * it at 0.
2973 	 */
2974 	ret = t4_seeprom_read(adapter, VPD_BASE, buf);
2975 	if (ret)
2976 		return (ret);
2977 
2978 	/*
2979 	 * The VPD shall have a unique identifier specified by the PCI SIG.
2980 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2981 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2982 	 * is expected to automatically put this entry at the
2983 	 * beginning of the VPD.
2984 	 */
2985 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2986 
2987 	for (i = 0; i < VPD_LEN; i += 4) {
2988 		ret = t4_seeprom_read(adapter, addr + i, buf++);
2989 		if (ret)
2990 			return ret;
2991 	}
2992 
2993 #define FIND_VPD_KW(var,name) do { \
2994 	var = get_vpd_keyword_val(vpd, name, 0); \
2995 	if (var < 0) { \
2996 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
2997 		return -EINVAL; \
2998 	} \
2999 } while (0)
3000 
3001 	FIND_VPD_KW(i, "RV");
3002 	for (csum = 0; i >= 0; i--)
3003 		csum += vpd[i];
3004 
3005 	if (csum) {
3006 		CH_ERR(adapter,
3007 			"corrupted VPD EEPROM, actual csum %u\n", csum);
3008 		return -EINVAL;
3009 	}
3010 
3011 	FIND_VPD_KW(ec, "EC");
3012 	FIND_VPD_KW(sn, "SN");
3013 	FIND_VPD_KW(pn, "PN");
3014 	FIND_VPD_KW(na, "NA");
3015 #undef FIND_VPD_KW
3016 
3017 	memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3018 	strstrip(p->id);
3019 	memcpy(p->ec, vpd + ec, EC_LEN);
3020 	strstrip(p->ec);
3021 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3022 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3023 	strstrip(p->sn);
3024 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3025 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3026 	strstrip((char *)p->pn);
3027 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3028 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3029 	strstrip((char *)p->na);
3030 
3031 	if (device_id & 0x80)
3032 		return 0;	/* Custom card */
3033 
3034 	md = get_vpd_keyword_val(vpd, "VF", 1);
3035 	if (md < 0) {
3036 		snprintf(p->md, sizeof(p->md), "unknown");
3037 	} else {
3038 		i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3039 		memcpy(p->md, vpd + md, min(i, MD_LEN));
3040 		strstrip((char *)p->md);
3041 	}
3042 
3043 	return 0;
3044 }
3045 
3046 /* serial flash and firmware constants and flash config file constants */
3047 enum {
3048 	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3049 
3050 	/* flash command opcodes */
3051 	SF_PROG_PAGE    = 2,	/* program 256B page */
3052 	SF_WR_DISABLE   = 4,	/* disable writes */
3053 	SF_RD_STATUS    = 5,	/* read status register */
3054 	SF_WR_ENABLE    = 6,	/* enable writes */
3055 	SF_RD_DATA_FAST = 0xb,	/* read flash */
3056 	SF_RD_ID	= 0x9f,	/* read ID */
3057 	SF_ERASE_SECTOR = 0xd8,	/* erase 64KB sector */
3058 };
3059 
3060 /**
3061  *	sf1_read - read data from the serial flash
3062  *	@adapter: the adapter
3063  *	@byte_cnt: number of bytes to read
3064  *	@cont: whether another operation will be chained
3065  *	@lock: whether to lock SF for PL access only
3066  *	@valp: where to store the read data
3067  *
3068  *	Reads up to 4 bytes of data from the serial flash.  The location of
3069  *	the read needs to be specified prior to calling this by issuing the
3070  *	appropriate commands to the serial flash.
3071  */
3072 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3073 		    int lock, u32 *valp)
3074 {
3075 	int ret;
3076 
3077 	if (!byte_cnt || byte_cnt > 4)
3078 		return -EINVAL;
3079 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3080 		return -EBUSY;
3081 	t4_write_reg(adapter, A_SF_OP,
3082 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3083 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3084 	if (!ret)
3085 		*valp = t4_read_reg(adapter, A_SF_DATA);
3086 	return ret;
3087 }
3088 
3089 /**
3090  *	sf1_write - write data to the serial flash
3091  *	@adapter: the adapter
3092  *	@byte_cnt: number of bytes to write
3093  *	@cont: whether another operation will be chained
3094  *	@lock: whether to lock SF for PL access only
3095  *	@val: value to write
3096  *
3097  *	Writes up to 4 bytes of data to the serial flash.  The location of
3098  *	the write needs to be specified prior to calling this by issuing the
3099  *	appropriate commands to the serial flash.
3100  */
3101 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3102 		     int lock, u32 val)
3103 {
3104 	if (!byte_cnt || byte_cnt > 4)
3105 		return -EINVAL;
3106 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3107 		return -EBUSY;
3108 	t4_write_reg(adapter, A_SF_DATA, val);
3109 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3110 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3111 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3112 }
3113 
3114 /**
3115  *	flash_wait_op - wait for a flash operation to complete
3116  *	@adapter: the adapter
3117  *	@attempts: max number of polls of the status register
3118  *	@delay: delay between polls in ms
3119  *
3120  *	Wait for a flash operation to complete by polling the status register.
3121  */
3122 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3123 {
3124 	int ret;
3125 	u32 status;
3126 
3127 	while (1) {
3128 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3129 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3130 			return ret;
3131 		if (!(status & 1))
3132 			return 0;
3133 		if (--attempts == 0)
3134 			return -EAGAIN;
3135 		if (delay)
3136 			msleep(delay);
3137 	}
3138 }
3139 
3140 /**
3141  *	t4_read_flash - read words from serial flash
3142  *	@adapter: the adapter
3143  *	@addr: the start address for the read
3144  *	@nwords: how many 32-bit words to read
3145  *	@data: where to store the read data
3146  *	@byte_oriented: whether to store data as bytes or as words
3147  *
3148  *	Read the specified number of 32-bit words from the serial flash.
3149  *	If @byte_oriented is set the read data is stored as a byte array
3150  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3151  *	natural endianness.
3152  */
3153 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3154 		  unsigned int nwords, u32 *data, int byte_oriented)
3155 {
3156 	int ret;
3157 
3158 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3159 		return -EINVAL;
3160 
3161 	addr = swab32(addr) | SF_RD_DATA_FAST;
3162 
3163 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3164 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3165 		return ret;
3166 
3167 	for ( ; nwords; nwords--, data++) {
3168 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3169 		if (nwords == 1)
3170 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3171 		if (ret)
3172 			return ret;
3173 		if (byte_oriented)
3174 			*data = (__force __u32)(cpu_to_be32(*data));
3175 	}
3176 	return 0;
3177 }
3178 
3179 /**
3180  *	t4_write_flash - write up to a page of data to the serial flash
3181  *	@adapter: the adapter
3182  *	@addr: the start address to write
3183  *	@n: length of data to write in bytes
3184  *	@data: the data to write
3185  *	@byte_oriented: whether to store data as bytes or as words
3186  *
3187  *	Writes up to a page of data (256 bytes) to the serial flash starting
3188  *	at the given address.  All the data must be written to the same page.
3189  *	If @byte_oriented is set the write data is stored as byte stream
3190  *	(i.e. matches what on disk), otherwise in big-endian.
3191  */
3192 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3193 			  unsigned int n, const u8 *data, int byte_oriented)
3194 {
3195 	int ret;
3196 	u32 buf[SF_PAGE_SIZE / 4];
3197 	unsigned int i, c, left, val, offset = addr & 0xff;
3198 
3199 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3200 		return -EINVAL;
3201 
3202 	val = swab32(addr) | SF_PROG_PAGE;
3203 
3204 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3205 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3206 		goto unlock;
3207 
3208 	for (left = n; left; left -= c) {
3209 		c = min(left, 4U);
3210 		for (val = 0, i = 0; i < c; ++i)
3211 			val = (val << 8) + *data++;
3212 
3213 		if (!byte_oriented)
3214 			val = cpu_to_be32(val);
3215 
3216 		ret = sf1_write(adapter, c, c != left, 1, val);
3217 		if (ret)
3218 			goto unlock;
3219 	}
3220 	ret = flash_wait_op(adapter, 8, 1);
3221 	if (ret)
3222 		goto unlock;
3223 
3224 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3225 
3226 	/* Read the page to verify the write succeeded */
3227 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3228 			    byte_oriented);
3229 	if (ret)
3230 		return ret;
3231 
3232 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3233 		CH_ERR(adapter,
3234 			"failed to correctly write the flash page at %#x\n",
3235 			addr);
3236 		return -EIO;
3237 	}
3238 	return 0;
3239 
3240 unlock:
3241 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3242 	return ret;
3243 }
3244 
3245 /**
3246  *	t4_get_fw_version - read the firmware version
3247  *	@adapter: the adapter
3248  *	@vers: where to place the version
3249  *
3250  *	Reads the FW version from flash.
3251  */
3252 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3253 {
3254 	return t4_read_flash(adapter, FLASH_FW_START +
3255 			     offsetof(struct fw_hdr, fw_ver), 1,
3256 			     vers, 0);
3257 }
3258 
3259 /**
3260  *	t4_get_bs_version - read the firmware bootstrap version
3261  *	@adapter: the adapter
3262  *	@vers: where to place the version
3263  *
3264  *	Reads the FW Bootstrap version from flash.
3265  */
3266 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3267 {
3268 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3269 			     offsetof(struct fw_hdr, fw_ver), 1,
3270 			     vers, 0);
3271 }
3272 
3273 /**
3274  *	t4_get_tp_version - read the TP microcode version
3275  *	@adapter: the adapter
3276  *	@vers: where to place the version
3277  *
3278  *	Reads the TP microcode version from flash.
3279  */
3280 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3281 {
3282 	return t4_read_flash(adapter, FLASH_FW_START +
3283 			     offsetof(struct fw_hdr, tp_microcode_ver),
3284 			     1, vers, 0);
3285 }
3286 
3287 /**
3288  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3289  *	@adapter: the adapter
3290  *	@vers: where to place the version
3291  *
3292  *	Reads the Expansion ROM header from FLASH and returns the version
3293  *	number (if present) through the @vers return value pointer.  We return
3294  *	this in the Firmware Version Format since it's convenient.  Return
3295  *	0 on success, -ENOENT if no Expansion ROM is present.
3296  */
3297 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3298 {
3299 	struct exprom_header {
3300 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3301 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3302 	} *hdr;
3303 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3304 					   sizeof(u32))];
3305 	int ret;
3306 
3307 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3308 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3309 			    0);
3310 	if (ret)
3311 		return ret;
3312 
3313 	hdr = (struct exprom_header *)exprom_header_buf;
3314 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3315 		return -ENOENT;
3316 
3317 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3318 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3319 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3320 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3321 	return 0;
3322 }
3323 
3324 /**
3325  *	t4_get_scfg_version - return the Serial Configuration version
3326  *	@adapter: the adapter
3327  *	@vers: where to place the version
3328  *
3329  *	Reads the Serial Configuration Version via the Firmware interface
3330  *	(thus this can only be called once we're ready to issue Firmware
3331  *	commands).  The format of the Serial Configuration version is
3332  *	adapter specific.  Returns 0 on success, an error on failure.
3333  *
3334  *	Note that early versions of the Firmware didn't include the ability
3335  *	to retrieve the Serial Configuration version, so we zero-out the
3336  *	return-value parameter in that case to avoid leaving it with
3337  *	garbage in it.
3338  *
3339  *	Also note that the Firmware will return its cached copy of the Serial
3340  *	Initialization Revision ID, not the actual Revision ID as written in
3341  *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3342  *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3343  *	it's best to defer calling this routine till after a FW_RESET_CMD has
3344  *	been issued if the Host Driver will be performing a full adapter
3345  *	initialization.
3346  */
3347 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3348 {
3349 	u32 scfgrev_param;
3350 	int ret;
3351 
3352 	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3353 			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3354 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3355 			      1, &scfgrev_param, vers);
3356 	if (ret)
3357 		*vers = 0;
3358 	return ret;
3359 }
3360 
3361 /**
3362  *	t4_get_vpd_version - return the VPD version
3363  *	@adapter: the adapter
3364  *	@vers: where to place the version
3365  *
3366  *	Reads the VPD via the Firmware interface (thus this can only be called
3367  *	once we're ready to issue Firmware commands).  The format of the
3368  *	VPD version is adapter specific.  Returns 0 on success, an error on
3369  *	failure.
3370  *
3371  *	Note that early versions of the Firmware didn't include the ability
3372  *	to retrieve the VPD version, so we zero-out the return-value parameter
3373  *	in that case to avoid leaving it with garbage in it.
3374  *
3375  *	Also note that the Firmware will return its cached copy of the VPD
3376  *	Revision ID, not the actual Revision ID as written in the Serial
3377  *	EEPROM.  This is only an issue if a new VPD has been written and the
3378  *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3379  *	to defer calling this routine till after a FW_RESET_CMD has been issued
3380  *	if the Host Driver will be performing a full adapter initialization.
3381  */
3382 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3383 {
3384 	u32 vpdrev_param;
3385 	int ret;
3386 
3387 	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3388 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3389 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3390 			      1, &vpdrev_param, vers);
3391 	if (ret)
3392 		*vers = 0;
3393 	return ret;
3394 }
3395 
3396 /**
3397  *	t4_get_version_info - extract various chip/firmware version information
3398  *	@adapter: the adapter
3399  *
3400  *	Reads various chip/firmware version numbers and stores them into the
3401  *	adapter Adapter Parameters structure.  If any of the efforts fails
3402  *	the first failure will be returned, but all of the version numbers
3403  *	will be read.
3404  */
3405 int t4_get_version_info(struct adapter *adapter)
3406 {
3407 	int ret = 0;
3408 
3409 	#define FIRST_RET(__getvinfo) \
3410 	do { \
3411 		int __ret = __getvinfo; \
3412 		if (__ret && !ret) \
3413 			ret = __ret; \
3414 	} while (0)
3415 
3416 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3417 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3418 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3419 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3420 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3421 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3422 
3423 	#undef FIRST_RET
3424 
3425 	return ret;
3426 }
3427 
3428 /**
3429  *	t4_flash_erase_sectors - erase a range of flash sectors
3430  *	@adapter: the adapter
3431  *	@start: the first sector to erase
3432  *	@end: the last sector to erase
3433  *
3434  *	Erases the sectors in the given inclusive range.
3435  */
3436 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3437 {
3438 	int ret = 0;
3439 
3440 	if (end >= adapter->params.sf_nsec)
3441 		return -EINVAL;
3442 
3443 	while (start <= end) {
3444 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3445 		    (ret = sf1_write(adapter, 4, 0, 1,
3446 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3447 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3448 			CH_ERR(adapter,
3449 				"erase of flash sector %d failed, error %d\n",
3450 				start, ret);
3451 			break;
3452 		}
3453 		start++;
3454 	}
3455 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3456 	return ret;
3457 }
3458 
3459 /**
3460  *	t4_flash_cfg_addr - return the address of the flash configuration file
3461  *	@adapter: the adapter
3462  *
3463  *	Return the address within the flash where the Firmware Configuration
3464  *	File is stored, or an error if the device FLASH is too small to contain
3465  *	a Firmware Configuration File.
3466  */
3467 int t4_flash_cfg_addr(struct adapter *adapter)
3468 {
3469 	/*
3470 	 * If the device FLASH isn't large enough to hold a Firmware
3471 	 * Configuration File, return an error.
3472 	 */
3473 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3474 		return -ENOSPC;
3475 
3476 	return FLASH_CFG_START;
3477 }
3478 
3479 /*
3480  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3481  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3482  * and emit an error message for mismatched firmware to save our caller the
3483  * effort ...
3484  */
3485 static int t4_fw_matches_chip(struct adapter *adap,
3486 			      const struct fw_hdr *hdr)
3487 {
3488 	/*
3489 	 * The expression below will return FALSE for any unsupported adapter
3490 	 * which will keep us "honest" in the future ...
3491 	 */
3492 	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3493 	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3494 	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3495 		return 1;
3496 
3497 	CH_ERR(adap,
3498 		"FW image (%d) is not suitable for this adapter (%d)\n",
3499 		hdr->chip, chip_id(adap));
3500 	return 0;
3501 }
3502 
3503 /**
3504  *	t4_load_fw - download firmware
3505  *	@adap: the adapter
3506  *	@fw_data: the firmware image to write
3507  *	@size: image size
3508  *
3509  *	Write the supplied firmware image to the card's serial flash.
3510  */
3511 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3512 {
3513 	u32 csum;
3514 	int ret, addr;
3515 	unsigned int i;
3516 	u8 first_page[SF_PAGE_SIZE];
3517 	const u32 *p = (const u32 *)fw_data;
3518 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3519 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3520 	unsigned int fw_start_sec;
3521 	unsigned int fw_start;
3522 	unsigned int fw_size;
3523 
3524 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3525 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3526 		fw_start = FLASH_FWBOOTSTRAP_START;
3527 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3528 	} else {
3529 		fw_start_sec = FLASH_FW_START_SEC;
3530  		fw_start = FLASH_FW_START;
3531 		fw_size = FLASH_FW_MAX_SIZE;
3532 	}
3533 
3534 	if (!size) {
3535 		CH_ERR(adap, "FW image has no data\n");
3536 		return -EINVAL;
3537 	}
3538 	if (size & 511) {
3539 		CH_ERR(adap,
3540 			"FW image size not multiple of 512 bytes\n");
3541 		return -EINVAL;
3542 	}
3543 	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3544 		CH_ERR(adap,
3545 			"FW image size differs from size in FW header\n");
3546 		return -EINVAL;
3547 	}
3548 	if (size > fw_size) {
3549 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3550 			fw_size);
3551 		return -EFBIG;
3552 	}
3553 	if (!t4_fw_matches_chip(adap, hdr))
3554 		return -EINVAL;
3555 
3556 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3557 		csum += be32_to_cpu(p[i]);
3558 
3559 	if (csum != 0xffffffff) {
3560 		CH_ERR(adap,
3561 			"corrupted firmware image, checksum %#x\n", csum);
3562 		return -EINVAL;
3563 	}
3564 
3565 	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3566 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3567 	if (ret)
3568 		goto out;
3569 
3570 	/*
3571 	 * We write the correct version at the end so the driver can see a bad
3572 	 * version if the FW write fails.  Start by writing a copy of the
3573 	 * first page with a bad version.
3574 	 */
3575 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3576 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3577 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3578 	if (ret)
3579 		goto out;
3580 
3581 	addr = fw_start;
3582 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3583 		addr += SF_PAGE_SIZE;
3584 		fw_data += SF_PAGE_SIZE;
3585 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3586 		if (ret)
3587 			goto out;
3588 	}
3589 
3590 	ret = t4_write_flash(adap,
3591 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3592 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3593 out:
3594 	if (ret)
3595 		CH_ERR(adap, "firmware download failed, error %d\n",
3596 			ret);
3597 	return ret;
3598 }
3599 
3600 /**
3601  *	t4_fwcache - firmware cache operation
3602  *	@adap: the adapter
3603  *	@op  : the operation (flush or flush and invalidate)
3604  */
3605 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3606 {
3607 	struct fw_params_cmd c;
3608 
3609 	memset(&c, 0, sizeof(c));
3610 	c.op_to_vfn =
3611 	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3612 			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3613 				V_FW_PARAMS_CMD_PFN(adap->pf) |
3614 				V_FW_PARAMS_CMD_VFN(0));
3615 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3616 	c.param[0].mnem =
3617 	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3618 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3619 	c.param[0].val = (__force __be32)op;
3620 
3621 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3622 }
3623 
3624 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3625 			unsigned int *pif_req_wrptr,
3626 			unsigned int *pif_rsp_wrptr)
3627 {
3628 	int i, j;
3629 	u32 cfg, val, req, rsp;
3630 
3631 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3632 	if (cfg & F_LADBGEN)
3633 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3634 
3635 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3636 	req = G_POLADBGWRPTR(val);
3637 	rsp = G_PILADBGWRPTR(val);
3638 	if (pif_req_wrptr)
3639 		*pif_req_wrptr = req;
3640 	if (pif_rsp_wrptr)
3641 		*pif_rsp_wrptr = rsp;
3642 
3643 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3644 		for (j = 0; j < 6; j++) {
3645 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3646 				     V_PILADBGRDPTR(rsp));
3647 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3648 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3649 			req++;
3650 			rsp++;
3651 		}
3652 		req = (req + 2) & M_POLADBGRDPTR;
3653 		rsp = (rsp + 2) & M_PILADBGRDPTR;
3654 	}
3655 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3656 }
3657 
3658 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3659 {
3660 	u32 cfg;
3661 	int i, j, idx;
3662 
3663 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3664 	if (cfg & F_LADBGEN)
3665 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3666 
3667 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3668 		for (j = 0; j < 5; j++) {
3669 			idx = 8 * i + j;
3670 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3671 				     V_PILADBGRDPTR(idx));
3672 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3673 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3674 		}
3675 	}
3676 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3677 }
3678 
3679 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3680 {
3681 	unsigned int i, j;
3682 
3683 	for (i = 0; i < 8; i++) {
3684 		u32 *p = la_buf + i;
3685 
3686 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3687 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3688 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3689 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3690 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3691 	}
3692 }
3693 
3694 /**
3695  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3696  *	@phy: the PHY to setup
3697  *	@mac: the MAC to setup
3698  *	@lc: the requested link configuration
3699  *
3700  *	Set up a port's MAC and PHY according to a desired link configuration.
3701  *	- If the PHY can auto-negotiate first decide what to advertise, then
3702  *	  enable/disable auto-negotiation as desired, and reset.
3703  *	- If the PHY does not auto-negotiate just reset it.
3704  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3705  *	  otherwise do it later based on the outcome of auto-negotiation.
3706  */
3707 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3708 		  struct link_config *lc)
3709 {
3710 	struct fw_port_cmd c;
3711 	unsigned int mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO);
3712 	unsigned int aneg, fc, fec, speed, rcap;
3713 
3714 	fc = 0;
3715 	if (lc->requested_fc & PAUSE_RX)
3716 		fc |= FW_PORT_CAP_FC_RX;
3717 	if (lc->requested_fc & PAUSE_TX)
3718 		fc |= FW_PORT_CAP_FC_TX;
3719 
3720 	fec = 0;
3721 	if (lc->requested_fec & FEC_RS)
3722 		fec = FW_PORT_CAP_FEC_RS;
3723 	else if (lc->requested_fec & FEC_BASER_RS)
3724 		fec = FW_PORT_CAP_FEC_BASER_RS;
3725 
3726 	if (!(lc->supported & FW_PORT_CAP_ANEG) ||
3727 	    lc->requested_aneg == AUTONEG_DISABLE) {
3728 		aneg = 0;
3729 		switch (lc->requested_speed) {
3730 		case 100000:
3731 			speed = FW_PORT_CAP_SPEED_100G;
3732 			break;
3733 		case 40000:
3734 			speed = FW_PORT_CAP_SPEED_40G;
3735 			break;
3736 		case 25000:
3737 			speed = FW_PORT_CAP_SPEED_25G;
3738 			break;
3739 		case 10000:
3740 			speed = FW_PORT_CAP_SPEED_10G;
3741 			break;
3742 		case 1000:
3743 			speed = FW_PORT_CAP_SPEED_1G;
3744 			break;
3745 		case 100:
3746 			speed = FW_PORT_CAP_SPEED_100M;
3747 			break;
3748 		default:
3749 			return -EINVAL;
3750 			break;
3751 		}
3752 	} else {
3753 		aneg = FW_PORT_CAP_ANEG;
3754 		speed = lc->supported &
3755 		    V_FW_PORT_CAP_SPEED(M_FW_PORT_CAP_SPEED);
3756 	}
3757 
3758 	rcap = aneg | speed | fc | fec;
3759 	if ((rcap | lc->supported) != lc->supported) {
3760 #ifdef INVARIANTS
3761 		CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x\n", rcap,
3762 		    lc->supported);
3763 #endif
3764 		rcap &= lc->supported;
3765 	}
3766 	rcap |= mdi;
3767 
3768 	memset(&c, 0, sizeof(c));
3769 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3770 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3771 				     V_FW_PORT_CMD_PORTID(port));
3772 	c.action_to_len16 =
3773 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3774 			    FW_LEN16(c));
3775 	c.u.l1cfg.rcap = cpu_to_be32(rcap);
3776 
3777 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3778 }
3779 
3780 /**
3781  *	t4_restart_aneg - restart autonegotiation
3782  *	@adap: the adapter
3783  *	@mbox: mbox to use for the FW command
3784  *	@port: the port id
3785  *
3786  *	Restarts autonegotiation for the selected port.
3787  */
3788 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3789 {
3790 	struct fw_port_cmd c;
3791 
3792 	memset(&c, 0, sizeof(c));
3793 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3794 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3795 				     V_FW_PORT_CMD_PORTID(port));
3796 	c.action_to_len16 =
3797 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3798 			    FW_LEN16(c));
3799 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3800 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3801 }
3802 
3803 typedef void (*int_handler_t)(struct adapter *adap);
3804 
3805 struct intr_info {
3806 	unsigned int mask;	/* bits to check in interrupt status */
3807 	const char *msg;	/* message to print or NULL */
3808 	short stat_idx;		/* stat counter to increment or -1 */
3809 	unsigned short fatal;	/* whether the condition reported is fatal */
3810 	int_handler_t int_handler;	/* platform-specific int handler */
3811 };
3812 
3813 /**
3814  *	t4_handle_intr_status - table driven interrupt handler
3815  *	@adapter: the adapter that generated the interrupt
3816  *	@reg: the interrupt status register to process
3817  *	@acts: table of interrupt actions
3818  *
3819  *	A table driven interrupt handler that applies a set of masks to an
3820  *	interrupt status word and performs the corresponding actions if the
3821  *	interrupts described by the mask have occurred.  The actions include
3822  *	optionally emitting a warning or alert message.  The table is terminated
3823  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
3824  *	conditions.
3825  */
3826 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3827 				 const struct intr_info *acts)
3828 {
3829 	int fatal = 0;
3830 	unsigned int mask = 0;
3831 	unsigned int status = t4_read_reg(adapter, reg);
3832 
3833 	for ( ; acts->mask; ++acts) {
3834 		if (!(status & acts->mask))
3835 			continue;
3836 		if (acts->fatal) {
3837 			fatal++;
3838 			CH_ALERT(adapter, "%s (0x%x)\n", acts->msg,
3839 				  status & acts->mask);
3840 		} else if (acts->msg)
3841 			CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n", acts->msg,
3842 				 status & acts->mask);
3843 		if (acts->int_handler)
3844 			acts->int_handler(adapter);
3845 		mask |= acts->mask;
3846 	}
3847 	status &= mask;
3848 	if (status)	/* clear processed interrupts */
3849 		t4_write_reg(adapter, reg, status);
3850 	return fatal;
3851 }
3852 
3853 /*
3854  * Interrupt handler for the PCIE module.
3855  */
3856 static void pcie_intr_handler(struct adapter *adapter)
3857 {
3858 	static const struct intr_info sysbus_intr_info[] = {
3859 		{ F_RNPP, "RXNP array parity error", -1, 1 },
3860 		{ F_RPCP, "RXPC array parity error", -1, 1 },
3861 		{ F_RCIP, "RXCIF array parity error", -1, 1 },
3862 		{ F_RCCP, "Rx completions control array parity error", -1, 1 },
3863 		{ F_RFTP, "RXFT array parity error", -1, 1 },
3864 		{ 0 }
3865 	};
3866 	static const struct intr_info pcie_port_intr_info[] = {
3867 		{ F_TPCP, "TXPC array parity error", -1, 1 },
3868 		{ F_TNPP, "TXNP array parity error", -1, 1 },
3869 		{ F_TFTP, "TXFT array parity error", -1, 1 },
3870 		{ F_TCAP, "TXCA array parity error", -1, 1 },
3871 		{ F_TCIP, "TXCIF array parity error", -1, 1 },
3872 		{ F_RCAP, "RXCA array parity error", -1, 1 },
3873 		{ F_OTDD, "outbound request TLP discarded", -1, 1 },
3874 		{ F_RDPE, "Rx data parity error", -1, 1 },
3875 		{ F_TDUE, "Tx uncorrectable data error", -1, 1 },
3876 		{ 0 }
3877 	};
3878 	static const struct intr_info pcie_intr_info[] = {
3879 		{ F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
3880 		{ F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
3881 		{ F_MSIDATAPERR, "MSI data parity error", -1, 1 },
3882 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3883 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3884 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3885 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3886 		{ F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
3887 		{ F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
3888 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3889 		{ F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
3890 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3891 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3892 		{ F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
3893 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3894 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3895 		{ F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
3896 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3897 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3898 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3899 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3900 		{ F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
3901 		{ F_MATAGPERR, "PCI MA tag parity error", -1, 1 },
3902 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3903 		{ F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
3904 		{ F_RXWRPERR, "PCI Rx write parity error", -1, 1 },
3905 		{ F_RPLPERR, "PCI replay buffer parity error", -1, 1 },
3906 		{ F_PCIESINT, "PCI core secondary fault", -1, 1 },
3907 		{ F_PCIEPINT, "PCI core primary fault", -1, 1 },
3908 		{ F_UNXSPLCPLERR, "PCI unexpected split completion error", -1,
3909 		  0 },
3910 		{ 0 }
3911 	};
3912 
3913 	static const struct intr_info t5_pcie_intr_info[] = {
3914 		{ F_MSTGRPPERR, "Master Response Read Queue parity error",
3915 		  -1, 1 },
3916 		{ F_MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
3917 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
3918 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3919 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3920 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3921 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3922 		{ F_PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
3923 		  -1, 1 },
3924 		{ F_PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
3925 		  -1, 1 },
3926 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3927 		{ F_MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
3928 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3929 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3930 		{ F_DREQWRPERR, "PCI DMA channel write request parity error",
3931 		  -1, 1 },
3932 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3933 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3934 		{ F_HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
3935 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3936 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3937 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3938 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3939 		{ F_VFIDPERR, "PCI INTx clear parity error", -1, 1 },
3940 		{ F_MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
3941 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3942 		{ F_IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
3943 		  -1, 1 },
3944 		{ F_IPRXDATAGRPPERR, "PCI IP Rx data group parity error",
3945 		  -1, 1 },
3946 		{ F_RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
3947 		{ F_IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
3948 		{ F_TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3949 		{ F_READRSPERR, "Outbound read error", -1,
3950 		  0 },
3951 		{ 0 }
3952 	};
3953 
3954 	int fat;
3955 
3956 	if (is_t4(adapter))
3957 		fat = t4_handle_intr_status(adapter,
3958 				A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
3959 				sysbus_intr_info) +
3960 			t4_handle_intr_status(adapter,
3961 					A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
3962 					pcie_port_intr_info) +
3963 			t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3964 					      pcie_intr_info);
3965 	else
3966 		fat = t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3967 					    t5_pcie_intr_info);
3968 	if (fat)
3969 		t4_fatal_err(adapter);
3970 }
3971 
3972 /*
3973  * TP interrupt handler.
3974  */
3975 static void tp_intr_handler(struct adapter *adapter)
3976 {
3977 	static const struct intr_info tp_intr_info[] = {
3978 		{ 0x3fffffff, "TP parity error", -1, 1 },
3979 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
3980 		{ 0 }
3981 	};
3982 
3983 	if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info))
3984 		t4_fatal_err(adapter);
3985 }
3986 
3987 /*
3988  * SGE interrupt handler.
3989  */
3990 static void sge_intr_handler(struct adapter *adapter)
3991 {
3992 	u64 v;
3993 	u32 err;
3994 
3995 	static const struct intr_info sge_intr_info[] = {
3996 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
3997 		  "SGE received CPL exceeding IQE size", -1, 1 },
3998 		{ F_ERR_INVALID_CIDX_INC,
3999 		  "SGE GTS CIDX increment too large", -1, 0 },
4000 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
4001 		{ F_DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
4002 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4003 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4004 		{ F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
4005 		  0 },
4006 		{ F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
4007 		  0 },
4008 		{ F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
4009 		  0 },
4010 		{ F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
4011 		  0 },
4012 		{ F_ERR_ING_CTXT_PRIO,
4013 		  "SGE too many priority ingress contexts", -1, 0 },
4014 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
4015 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
4016 		{ F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 |
4017 		  F_ERR_PCIE_ERROR2 | F_ERR_PCIE_ERROR3,
4018 		  "SGE PCIe error for a DBP thread", -1, 0 },
4019 		{ 0 }
4020 	};
4021 
4022 	static const struct intr_info t4t5_sge_intr_info[] = {
4023 		{ F_ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
4024 		{ F_DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
4025 		{ F_ERR_EGR_CTXT_PRIO,
4026 		  "SGE too many priority egress contexts", -1, 0 },
4027 		{ 0 }
4028 	};
4029 
4030 	/*
4031  	* For now, treat below interrupts as fatal so that we disable SGE and
4032  	* get better debug */
4033 	static const struct intr_info t6_sge_intr_info[] = {
4034 		{ F_FATAL_WRE_LEN,
4035 		  "SGE Actual WRE packet is less than advertized length",
4036 		  -1, 1 },
4037 		{ 0 }
4038 	};
4039 
4040 	v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) |
4041 		((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32);
4042 	if (v) {
4043 		CH_ALERT(adapter, "SGE parity error (%#llx)\n",
4044 				(unsigned long long)v);
4045 		t4_write_reg(adapter, A_SGE_INT_CAUSE1, v);
4046 		t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32);
4047 	}
4048 
4049 	v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info);
4050 	if (chip_id(adapter) <= CHELSIO_T5)
4051 		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4052 					   t4t5_sge_intr_info);
4053 	else
4054 		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4055 					   t6_sge_intr_info);
4056 
4057 	err = t4_read_reg(adapter, A_SGE_ERROR_STATS);
4058 	if (err & F_ERROR_QID_VALID) {
4059 		CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err));
4060 		if (err & F_UNCAPTURED_ERROR)
4061 			CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n");
4062 		t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID |
4063 			     F_UNCAPTURED_ERROR);
4064 	}
4065 
4066 	if (v != 0)
4067 		t4_fatal_err(adapter);
4068 }
4069 
4070 #define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\
4071 		      F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR)
4072 #define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\
4073 		      F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR)
4074 
4075 /*
4076  * CIM interrupt handler.
4077  */
4078 static void cim_intr_handler(struct adapter *adapter)
4079 {
4080 	static const struct intr_info cim_intr_info[] = {
4081 		{ F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
4082 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4083 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4084 		{ F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
4085 		{ F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
4086 		{ F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
4087 		{ F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
4088 		{ F_TIMER0INT, "CIM TIMER0 interrupt", -1, 1 },
4089 		{ 0 }
4090 	};
4091 	static const struct intr_info cim_upintr_info[] = {
4092 		{ F_RSVDSPACEINT, "CIM reserved space access", -1, 1 },
4093 		{ F_ILLTRANSINT, "CIM illegal transaction", -1, 1 },
4094 		{ F_ILLWRINT, "CIM illegal write", -1, 1 },
4095 		{ F_ILLRDINT, "CIM illegal read", -1, 1 },
4096 		{ F_ILLRDBEINT, "CIM illegal read BE", -1, 1 },
4097 		{ F_ILLWRBEINT, "CIM illegal write BE", -1, 1 },
4098 		{ F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
4099 		{ F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
4100 		{ F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
4101 		{ F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
4102 		{ F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
4103 		{ F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
4104 		{ F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
4105 		{ F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
4106 		{ F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
4107 		{ F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
4108 		{ F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
4109 		{ F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
4110 		{ F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
4111 		{ F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
4112 		{ F_SGLRDPLINT , "CIM single read from PL space", -1, 1 },
4113 		{ F_SGLWRPLINT , "CIM single write to PL space", -1, 1 },
4114 		{ F_BLKRDPLINT , "CIM block read from PL space", -1, 1 },
4115 		{ F_BLKWRPLINT , "CIM block write to PL space", -1, 1 },
4116 		{ F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
4117 		{ F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
4118 		{ F_TIMEOUTINT , "CIM PIF timeout", -1, 1 },
4119 		{ F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
4120 		{ 0 }
4121 	};
4122 	u32 val, fw_err;
4123 	int fat;
4124 
4125 	fw_err = t4_read_reg(adapter, A_PCIE_FW);
4126 	if (fw_err & F_PCIE_FW_ERR)
4127 		t4_report_fw_error(adapter);
4128 
4129 	/* When the Firmware detects an internal error which normally wouldn't
4130 	 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4131 	 * to make sure the Host sees the Firmware Crash.  So if we have a
4132 	 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4133 	 * interrupt.
4134 	 */
4135 	val = t4_read_reg(adapter, A_CIM_HOST_INT_CAUSE);
4136 	if (val & F_TIMER0INT)
4137 		if (!(fw_err & F_PCIE_FW_ERR) ||
4138 		    (G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH))
4139 			t4_write_reg(adapter, A_CIM_HOST_INT_CAUSE,
4140 				     F_TIMER0INT);
4141 
4142 	fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE,
4143 				    cim_intr_info) +
4144 	      t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE,
4145 				    cim_upintr_info);
4146 	if (fat)
4147 		t4_fatal_err(adapter);
4148 }
4149 
4150 /*
4151  * ULP RX interrupt handler.
4152  */
4153 static void ulprx_intr_handler(struct adapter *adapter)
4154 {
4155 	static const struct intr_info ulprx_intr_info[] = {
4156 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 },
4157 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 },
4158 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4159 		{ 0 }
4160 	};
4161 
4162 	if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info))
4163 		t4_fatal_err(adapter);
4164 }
4165 
4166 /*
4167  * ULP TX interrupt handler.
4168  */
4169 static void ulptx_intr_handler(struct adapter *adapter)
4170 {
4171 	static const struct intr_info ulptx_intr_info[] = {
4172 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
4173 		  0 },
4174 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
4175 		  0 },
4176 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
4177 		  0 },
4178 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
4179 		  0 },
4180 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4181 		{ 0 }
4182 	};
4183 
4184 	if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info))
4185 		t4_fatal_err(adapter);
4186 }
4187 
4188 /*
4189  * PM TX interrupt handler.
4190  */
4191 static void pmtx_intr_handler(struct adapter *adapter)
4192 {
4193 	static const struct intr_info pmtx_intr_info[] = {
4194 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
4195 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
4196 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
4197 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
4198 		{ 0xffffff0, "PMTX framing error", -1, 1 },
4199 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
4200 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
4201 		  1 },
4202 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
4203 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
4204 		{ 0 }
4205 	};
4206 
4207 	if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info))
4208 		t4_fatal_err(adapter);
4209 }
4210 
4211 /*
4212  * PM RX interrupt handler.
4213  */
4214 static void pmrx_intr_handler(struct adapter *adapter)
4215 {
4216 	static const struct intr_info pmrx_intr_info[] = {
4217 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
4218 		{ 0x3ffff0, "PMRX framing error", -1, 1 },
4219 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
4220 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
4221 		  1 },
4222 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
4223 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
4224 		{ 0 }
4225 	};
4226 
4227 	if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info))
4228 		t4_fatal_err(adapter);
4229 }
4230 
4231 /*
4232  * CPL switch interrupt handler.
4233  */
4234 static void cplsw_intr_handler(struct adapter *adapter)
4235 {
4236 	static const struct intr_info cplsw_intr_info[] = {
4237 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
4238 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
4239 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
4240 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
4241 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
4242 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
4243 		{ 0 }
4244 	};
4245 
4246 	if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info))
4247 		t4_fatal_err(adapter);
4248 }
4249 
4250 /*
4251  * LE interrupt handler.
4252  */
4253 static void le_intr_handler(struct adapter *adap)
4254 {
4255 	unsigned int chip_ver = chip_id(adap);
4256 	static const struct intr_info le_intr_info[] = {
4257 		{ F_LIPMISS, "LE LIP miss", -1, 0 },
4258 		{ F_LIP0, "LE 0 LIP error", -1, 0 },
4259 		{ F_PARITYERR, "LE parity error", -1, 1 },
4260 		{ F_UNKNOWNCMD, "LE unknown command", -1, 1 },
4261 		{ F_REQQPARERR, "LE request queue parity error", -1, 1 },
4262 		{ 0 }
4263 	};
4264 
4265 	static const struct intr_info t6_le_intr_info[] = {
4266 		{ F_T6_LIPMISS, "LE LIP miss", -1, 0 },
4267 		{ F_T6_LIP0, "LE 0 LIP error", -1, 0 },
4268 		{ F_TCAMINTPERR, "LE parity error", -1, 1 },
4269 		{ F_T6_UNKNOWNCMD, "LE unknown command", -1, 1 },
4270 		{ F_SSRAMINTPERR, "LE request queue parity error", -1, 1 },
4271 		{ 0 }
4272 	};
4273 
4274 	if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE,
4275 				  (chip_ver <= CHELSIO_T5) ?
4276 				  le_intr_info : t6_le_intr_info))
4277 		t4_fatal_err(adap);
4278 }
4279 
4280 /*
4281  * MPS interrupt handler.
4282  */
4283 static void mps_intr_handler(struct adapter *adapter)
4284 {
4285 	static const struct intr_info mps_rx_intr_info[] = {
4286 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4287 		{ 0 }
4288 	};
4289 	static const struct intr_info mps_tx_intr_info[] = {
4290 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 },
4291 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4292 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error",
4293 		  -1, 1 },
4294 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error",
4295 		  -1, 1 },
4296 		{ F_BUBBLE, "MPS Tx underflow", -1, 1 },
4297 		{ F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
4298 		{ F_FRMERR, "MPS Tx framing error", -1, 1 },
4299 		{ 0 }
4300 	};
4301 	static const struct intr_info mps_trc_intr_info[] = {
4302 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 },
4303 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1,
4304 		  1 },
4305 		{ F_MISCPERR, "MPS TRC misc parity error", -1, 1 },
4306 		{ 0 }
4307 	};
4308 	static const struct intr_info mps_stat_sram_intr_info[] = {
4309 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4310 		{ 0 }
4311 	};
4312 	static const struct intr_info mps_stat_tx_intr_info[] = {
4313 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4314 		{ 0 }
4315 	};
4316 	static const struct intr_info mps_stat_rx_intr_info[] = {
4317 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4318 		{ 0 }
4319 	};
4320 	static const struct intr_info mps_cls_intr_info[] = {
4321 		{ F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
4322 		{ F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
4323 		{ F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
4324 		{ 0 }
4325 	};
4326 
4327 	int fat;
4328 
4329 	fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE,
4330 				    mps_rx_intr_info) +
4331 	      t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE,
4332 				    mps_tx_intr_info) +
4333 	      t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE,
4334 				    mps_trc_intr_info) +
4335 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4336 				    mps_stat_sram_intr_info) +
4337 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4338 				    mps_stat_tx_intr_info) +
4339 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4340 				    mps_stat_rx_intr_info) +
4341 	      t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE,
4342 				    mps_cls_intr_info);
4343 
4344 	t4_write_reg(adapter, A_MPS_INT_CAUSE, 0);
4345 	t4_read_reg(adapter, A_MPS_INT_CAUSE);	/* flush */
4346 	if (fat)
4347 		t4_fatal_err(adapter);
4348 }
4349 
4350 #define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | \
4351 		      F_ECC_UE_INT_CAUSE)
4352 
4353 /*
4354  * EDC/MC interrupt handler.
4355  */
4356 static void mem_intr_handler(struct adapter *adapter, int idx)
4357 {
4358 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4359 
4360 	unsigned int addr, cnt_addr, v;
4361 
4362 	if (idx <= MEM_EDC1) {
4363 		addr = EDC_REG(A_EDC_INT_CAUSE, idx);
4364 		cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx);
4365 	} else if (idx == MEM_MC) {
4366 		if (is_t4(adapter)) {
4367 			addr = A_MC_INT_CAUSE;
4368 			cnt_addr = A_MC_ECC_STATUS;
4369 		} else {
4370 			addr = A_MC_P_INT_CAUSE;
4371 			cnt_addr = A_MC_P_ECC_STATUS;
4372 		}
4373 	} else {
4374 		addr = MC_REG(A_MC_P_INT_CAUSE, 1);
4375 		cnt_addr = MC_REG(A_MC_P_ECC_STATUS, 1);
4376 	}
4377 
4378 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4379 	if (v & F_PERR_INT_CAUSE)
4380 		CH_ALERT(adapter, "%s FIFO parity error\n",
4381 			  name[idx]);
4382 	if (v & F_ECC_CE_INT_CAUSE) {
4383 		u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr));
4384 
4385 		if (idx <= MEM_EDC1)
4386 			t4_edc_err_read(adapter, idx);
4387 
4388 		t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT));
4389 		CH_WARN_RATELIMIT(adapter,
4390 				  "%u %s correctable ECC data error%s\n",
4391 				  cnt, name[idx], cnt > 1 ? "s" : "");
4392 	}
4393 	if (v & F_ECC_UE_INT_CAUSE)
4394 		CH_ALERT(adapter,
4395 			 "%s uncorrectable ECC data error\n", name[idx]);
4396 
4397 	t4_write_reg(adapter, addr, v);
4398 	if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE))
4399 		t4_fatal_err(adapter);
4400 }
4401 
4402 /*
4403  * MA interrupt handler.
4404  */
4405 static void ma_intr_handler(struct adapter *adapter)
4406 {
4407 	u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE);
4408 
4409 	if (status & F_MEM_PERR_INT_CAUSE) {
4410 		CH_ALERT(adapter,
4411 			  "MA parity error, parity status %#x\n",
4412 			  t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS1));
4413 		if (is_t5(adapter))
4414 			CH_ALERT(adapter,
4415 				  "MA parity error, parity status %#x\n",
4416 				  t4_read_reg(adapter,
4417 					      A_MA_PARITY_ERROR_STATUS2));
4418 	}
4419 	if (status & F_MEM_WRAP_INT_CAUSE) {
4420 		v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS);
4421 		CH_ALERT(adapter, "MA address wrap-around error by "
4422 			  "client %u to address %#x\n",
4423 			  G_MEM_WRAP_CLIENT_NUM(v),
4424 			  G_MEM_WRAP_ADDRESS(v) << 4);
4425 	}
4426 	t4_write_reg(adapter, A_MA_INT_CAUSE, status);
4427 	t4_fatal_err(adapter);
4428 }
4429 
4430 /*
4431  * SMB interrupt handler.
4432  */
4433 static void smb_intr_handler(struct adapter *adap)
4434 {
4435 	static const struct intr_info smb_intr_info[] = {
4436 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
4437 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
4438 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
4439 		{ 0 }
4440 	};
4441 
4442 	if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info))
4443 		t4_fatal_err(adap);
4444 }
4445 
4446 /*
4447  * NC-SI interrupt handler.
4448  */
4449 static void ncsi_intr_handler(struct adapter *adap)
4450 {
4451 	static const struct intr_info ncsi_intr_info[] = {
4452 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
4453 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
4454 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
4455 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
4456 		{ 0 }
4457 	};
4458 
4459 	if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info))
4460 		t4_fatal_err(adap);
4461 }
4462 
4463 /*
4464  * XGMAC interrupt handler.
4465  */
4466 static void xgmac_intr_handler(struct adapter *adap, int port)
4467 {
4468 	u32 v, int_cause_reg;
4469 
4470 	if (is_t4(adap))
4471 		int_cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
4472 	else
4473 		int_cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
4474 
4475 	v = t4_read_reg(adap, int_cause_reg);
4476 
4477 	v &= (F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR);
4478 	if (!v)
4479 		return;
4480 
4481 	if (v & F_TXFIFO_PRTY_ERR)
4482 		CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n",
4483 			  port);
4484 	if (v & F_RXFIFO_PRTY_ERR)
4485 		CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n",
4486 			  port);
4487 	t4_write_reg(adap, int_cause_reg, v);
4488 	t4_fatal_err(adap);
4489 }
4490 
4491 /*
4492  * PL interrupt handler.
4493  */
4494 static void pl_intr_handler(struct adapter *adap)
4495 {
4496 	static const struct intr_info pl_intr_info[] = {
4497 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4498 		{ F_PERRVFID, "PL VFID_MAP parity error", -1, 1 },
4499 		{ 0 }
4500 	};
4501 
4502 	static const struct intr_info t5_pl_intr_info[] = {
4503 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4504 		{ 0 }
4505 	};
4506 
4507 	if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE,
4508 				  is_t4(adap) ?
4509 				  pl_intr_info : t5_pl_intr_info))
4510 		t4_fatal_err(adap);
4511 }
4512 
4513 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
4514 
4515 /**
4516  *	t4_slow_intr_handler - control path interrupt handler
4517  *	@adapter: the adapter
4518  *
4519  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4520  *	The designation 'slow' is because it involves register reads, while
4521  *	data interrupts typically don't involve any MMIOs.
4522  */
4523 int t4_slow_intr_handler(struct adapter *adapter)
4524 {
4525 	u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE);
4526 
4527 	if (!(cause & GLBL_INTR_MASK))
4528 		return 0;
4529 	if (cause & F_CIM)
4530 		cim_intr_handler(adapter);
4531 	if (cause & F_MPS)
4532 		mps_intr_handler(adapter);
4533 	if (cause & F_NCSI)
4534 		ncsi_intr_handler(adapter);
4535 	if (cause & F_PL)
4536 		pl_intr_handler(adapter);
4537 	if (cause & F_SMB)
4538 		smb_intr_handler(adapter);
4539 	if (cause & F_MAC0)
4540 		xgmac_intr_handler(adapter, 0);
4541 	if (cause & F_MAC1)
4542 		xgmac_intr_handler(adapter, 1);
4543 	if (cause & F_MAC2)
4544 		xgmac_intr_handler(adapter, 2);
4545 	if (cause & F_MAC3)
4546 		xgmac_intr_handler(adapter, 3);
4547 	if (cause & F_PCIE)
4548 		pcie_intr_handler(adapter);
4549 	if (cause & F_MC0)
4550 		mem_intr_handler(adapter, MEM_MC);
4551 	if (is_t5(adapter) && (cause & F_MC1))
4552 		mem_intr_handler(adapter, MEM_MC1);
4553 	if (cause & F_EDC0)
4554 		mem_intr_handler(adapter, MEM_EDC0);
4555 	if (cause & F_EDC1)
4556 		mem_intr_handler(adapter, MEM_EDC1);
4557 	if (cause & F_LE)
4558 		le_intr_handler(adapter);
4559 	if (cause & F_TP)
4560 		tp_intr_handler(adapter);
4561 	if (cause & F_MA)
4562 		ma_intr_handler(adapter);
4563 	if (cause & F_PM_TX)
4564 		pmtx_intr_handler(adapter);
4565 	if (cause & F_PM_RX)
4566 		pmrx_intr_handler(adapter);
4567 	if (cause & F_ULP_RX)
4568 		ulprx_intr_handler(adapter);
4569 	if (cause & F_CPL_SWITCH)
4570 		cplsw_intr_handler(adapter);
4571 	if (cause & F_SGE)
4572 		sge_intr_handler(adapter);
4573 	if (cause & F_ULP_TX)
4574 		ulptx_intr_handler(adapter);
4575 
4576 	/* Clear the interrupts just processed for which we are the master. */
4577 	t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK);
4578 	(void)t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */
4579 	return 1;
4580 }
4581 
4582 /**
4583  *	t4_intr_enable - enable interrupts
4584  *	@adapter: the adapter whose interrupts should be enabled
4585  *
4586  *	Enable PF-specific interrupts for the calling function and the top-level
4587  *	interrupt concentrator for global interrupts.  Interrupts are already
4588  *	enabled at each module,	here we just enable the roots of the interrupt
4589  *	hierarchies.
4590  *
4591  *	Note: this function should be called only when the driver manages
4592  *	non PF-specific interrupts from the various HW modules.  Only one PCI
4593  *	function at a time should be doing this.
4594  */
4595 void t4_intr_enable(struct adapter *adapter)
4596 {
4597 	u32 val = 0;
4598 	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4599 	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4600 		  ? G_SOURCEPF(whoami)
4601 		  : G_T6_SOURCEPF(whoami));
4602 
4603 	if (chip_id(adapter) <= CHELSIO_T5)
4604 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
4605 	else
4606 		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
4607 	t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
4608 		     F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
4609 		     F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
4610 		     F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
4611 		     F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4612 		     F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
4613 		     F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
4614 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
4615 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
4616 }
4617 
4618 /**
4619  *	t4_intr_disable - disable interrupts
4620  *	@adapter: the adapter whose interrupts should be disabled
4621  *
4622  *	Disable interrupts.  We only disable the top-level interrupt
4623  *	concentrators.  The caller must be a PCI function managing global
4624  *	interrupts.
4625  */
4626 void t4_intr_disable(struct adapter *adapter)
4627 {
4628 	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4629 	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4630 		  ? G_SOURCEPF(whoami)
4631 		  : G_T6_SOURCEPF(whoami));
4632 
4633 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
4634 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
4635 }
4636 
4637 /**
4638  *	t4_intr_clear - clear all interrupts
4639  *	@adapter: the adapter whose interrupts should be cleared
4640  *
4641  *	Clears all interrupts.  The caller must be a PCI function managing
4642  *	global interrupts.
4643  */
4644 void t4_intr_clear(struct adapter *adapter)
4645 {
4646 	static const unsigned int cause_reg[] = {
4647 		A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3,
4648 		A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE,
4649 		A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS1, A_MA_INT_CAUSE,
4650 		A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1),
4651 		A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE,
4652 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4653 		A_TP_INT_CAUSE,
4654 		A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE,
4655 		A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE,
4656 		A_MPS_RX_PERR_INT_CAUSE,
4657 		A_CPL_INTR_CAUSE,
4658 		MYPF_REG(A_PL_PF_INT_CAUSE),
4659 		A_PL_PL_INT_CAUSE,
4660 		A_LE_DB_INT_CAUSE,
4661 	};
4662 
4663 	unsigned int i;
4664 
4665 	for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
4666 		t4_write_reg(adapter, cause_reg[i], 0xffffffff);
4667 
4668 	t4_write_reg(adapter, is_t4(adapter) ? A_MC_INT_CAUSE :
4669 				A_MC_P_INT_CAUSE, 0xffffffff);
4670 
4671 	if (is_t4(adapter)) {
4672 		t4_write_reg(adapter, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4673 				0xffffffff);
4674 		t4_write_reg(adapter, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4675 				0xffffffff);
4676 	} else
4677 		t4_write_reg(adapter, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
4678 
4679 	t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK);
4680 	(void) t4_read_reg(adapter, A_PL_INT_CAUSE);          /* flush */
4681 }
4682 
4683 /**
4684  *	hash_mac_addr - return the hash value of a MAC address
4685  *	@addr: the 48-bit Ethernet MAC address
4686  *
4687  *	Hashes a MAC address according to the hash function used by HW inexact
4688  *	(hash) address matching.
4689  */
4690 static int hash_mac_addr(const u8 *addr)
4691 {
4692 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
4693 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
4694 	a ^= b;
4695 	a ^= (a >> 12);
4696 	a ^= (a >> 6);
4697 	return a & 0x3f;
4698 }
4699 
4700 /**
4701  *	t4_config_rss_range - configure a portion of the RSS mapping table
4702  *	@adapter: the adapter
4703  *	@mbox: mbox to use for the FW command
4704  *	@viid: virtual interface whose RSS subtable is to be written
4705  *	@start: start entry in the table to write
4706  *	@n: how many table entries to write
4707  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
4708  *	@nrspq: number of values in @rspq
4709  *
4710  *	Programs the selected part of the VI's RSS mapping table with the
4711  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4712  *	until the full table range is populated.
4713  *
4714  *	The caller must ensure the values in @rspq are in the range allowed for
4715  *	@viid.
4716  */
4717 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4718 			int start, int n, const u16 *rspq, unsigned int nrspq)
4719 {
4720 	int ret;
4721 	const u16 *rsp = rspq;
4722 	const u16 *rsp_end = rspq + nrspq;
4723 	struct fw_rss_ind_tbl_cmd cmd;
4724 
4725 	memset(&cmd, 0, sizeof(cmd));
4726 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
4727 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4728 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
4729 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4730 
4731 	/*
4732 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
4733 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
4734 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
4735 	 * reserved.
4736 	 */
4737 	while (n > 0) {
4738 		int nq = min(n, 32);
4739 		int nq_packed = 0;
4740 		__be32 *qp = &cmd.iq0_to_iq2;
4741 
4742 		/*
4743 		 * Set up the firmware RSS command header to send the next
4744 		 * "nq" Ingress Queue IDs to the firmware.
4745 		 */
4746 		cmd.niqid = cpu_to_be16(nq);
4747 		cmd.startidx = cpu_to_be16(start);
4748 
4749 		/*
4750 		 * "nq" more done for the start of the next loop.
4751 		 */
4752 		start += nq;
4753 		n -= nq;
4754 
4755 		/*
4756 		 * While there are still Ingress Queue IDs to stuff into the
4757 		 * current firmware RSS command, retrieve them from the
4758 		 * Ingress Queue ID array and insert them into the command.
4759 		 */
4760 		while (nq > 0) {
4761 			/*
4762 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
4763 			 * around the Ingress Queue ID array if necessary) and
4764 			 * insert them into the firmware RSS command at the
4765 			 * current 3-tuple position within the commad.
4766 			 */
4767 			u16 qbuf[3];
4768 			u16 *qbp = qbuf;
4769 			int nqbuf = min(3, nq);
4770 
4771 			nq -= nqbuf;
4772 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
4773 			while (nqbuf && nq_packed < 32) {
4774 				nqbuf--;
4775 				nq_packed++;
4776 				*qbp++ = *rsp++;
4777 				if (rsp >= rsp_end)
4778 					rsp = rspq;
4779 			}
4780 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
4781 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
4782 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
4783 		}
4784 
4785 		/*
4786 		 * Send this portion of the RRS table update to the firmware;
4787 		 * bail out on any errors.
4788 		 */
4789 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4790 		if (ret)
4791 			return ret;
4792 	}
4793 	return 0;
4794 }
4795 
4796 /**
4797  *	t4_config_glbl_rss - configure the global RSS mode
4798  *	@adapter: the adapter
4799  *	@mbox: mbox to use for the FW command
4800  *	@mode: global RSS mode
4801  *	@flags: mode-specific flags
4802  *
4803  *	Sets the global RSS mode.
4804  */
4805 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4806 		       unsigned int flags)
4807 {
4808 	struct fw_rss_glb_config_cmd c;
4809 
4810 	memset(&c, 0, sizeof(c));
4811 	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
4812 				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
4813 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4814 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4815 		c.u.manual.mode_pkd =
4816 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4817 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4818 		c.u.basicvirtual.mode_keymode =
4819 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4820 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4821 	} else
4822 		return -EINVAL;
4823 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4824 }
4825 
4826 /**
4827  *	t4_config_vi_rss - configure per VI RSS settings
4828  *	@adapter: the adapter
4829  *	@mbox: mbox to use for the FW command
4830  *	@viid: the VI id
4831  *	@flags: RSS flags
4832  *	@defq: id of the default RSS queue for the VI.
4833  *	@skeyidx: RSS secret key table index for non-global mode
4834  *	@skey: RSS vf_scramble key for VI.
4835  *
4836  *	Configures VI-specific RSS properties.
4837  */
4838 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4839 		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
4840 		     unsigned int skey)
4841 {
4842 	struct fw_rss_vi_config_cmd c;
4843 
4844 	memset(&c, 0, sizeof(c));
4845 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
4846 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4847 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
4848 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4849 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4850 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
4851 	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
4852 					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
4853 	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
4854 
4855 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4856 }
4857 
4858 /* Read an RSS table row */
4859 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4860 {
4861 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
4862 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
4863 				   5, 0, val);
4864 }
4865 
4866 /**
4867  *	t4_read_rss - read the contents of the RSS mapping table
4868  *	@adapter: the adapter
4869  *	@map: holds the contents of the RSS mapping table
4870  *
4871  *	Reads the contents of the RSS hash->queue mapping table.
4872  */
4873 int t4_read_rss(struct adapter *adapter, u16 *map)
4874 {
4875 	u32 val;
4876 	int i, ret;
4877 
4878 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4879 		ret = rd_rss_row(adapter, i, &val);
4880 		if (ret)
4881 			return ret;
4882 		*map++ = G_LKPTBLQUEUE0(val);
4883 		*map++ = G_LKPTBLQUEUE1(val);
4884 	}
4885 	return 0;
4886 }
4887 
4888 /**
4889  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
4890  * @adap: the adapter
4891  * @cmd: TP fw ldst address space type
4892  * @vals: where the indirect register values are stored/written
4893  * @nregs: how many indirect registers to read/write
4894  * @start_idx: index of first indirect register to read/write
4895  * @rw: Read (1) or Write (0)
4896  * @sleep_ok: if true we may sleep while awaiting command completion
4897  *
4898  * Access TP indirect registers through LDST
4899  **/
4900 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
4901 			    unsigned int nregs, unsigned int start_index,
4902 			    unsigned int rw, bool sleep_ok)
4903 {
4904 	int ret = 0;
4905 	unsigned int i;
4906 	struct fw_ldst_cmd c;
4907 
4908 	for (i = 0; i < nregs; i++) {
4909 		memset(&c, 0, sizeof(c));
4910 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
4911 						F_FW_CMD_REQUEST |
4912 						(rw ? F_FW_CMD_READ :
4913 						      F_FW_CMD_WRITE) |
4914 						V_FW_LDST_CMD_ADDRSPACE(cmd));
4915 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4916 
4917 		c.u.addrval.addr = cpu_to_be32(start_index + i);
4918 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4919 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
4920 				      sleep_ok);
4921 		if (ret)
4922 			return ret;
4923 
4924 		if (rw)
4925 			vals[i] = be32_to_cpu(c.u.addrval.val);
4926 	}
4927 	return 0;
4928 }
4929 
4930 /**
4931  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
4932  * @adap: the adapter
4933  * @reg_addr: Address Register
4934  * @reg_data: Data register
4935  * @buff: where the indirect register values are stored/written
4936  * @nregs: how many indirect registers to read/write
4937  * @start_index: index of first indirect register to read/write
4938  * @rw: READ(1) or WRITE(0)
4939  * @sleep_ok: if true we may sleep while awaiting command completion
4940  *
4941  * Read/Write TP indirect registers through LDST if possible.
4942  * Else, use backdoor access
4943  **/
4944 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
4945 			      u32 *buff, u32 nregs, u32 start_index, int rw,
4946 			      bool sleep_ok)
4947 {
4948 	int rc = -EINVAL;
4949 	int cmd;
4950 
4951 	switch (reg_addr) {
4952 	case A_TP_PIO_ADDR:
4953 		cmd = FW_LDST_ADDRSPC_TP_PIO;
4954 		break;
4955 	case A_TP_TM_PIO_ADDR:
4956 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
4957 		break;
4958 	case A_TP_MIB_INDEX:
4959 		cmd = FW_LDST_ADDRSPC_TP_MIB;
4960 		break;
4961 	default:
4962 		goto indirect_access;
4963 	}
4964 
4965 	if (t4_use_ldst(adap))
4966 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
4967 				      sleep_ok);
4968 
4969 indirect_access:
4970 
4971 	if (rc) {
4972 		if (rw)
4973 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
4974 					 start_index);
4975 		else
4976 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
4977 					  start_index);
4978 	}
4979 }
4980 
4981 /**
4982  * t4_tp_pio_read - Read TP PIO registers
4983  * @adap: the adapter
4984  * @buff: where the indirect register values are written
4985  * @nregs: how many indirect registers to read
4986  * @start_index: index of first indirect register to read
4987  * @sleep_ok: if true we may sleep while awaiting command completion
4988  *
4989  * Read TP PIO Registers
4990  **/
4991 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
4992 		    u32 start_index, bool sleep_ok)
4993 {
4994 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
4995 			  start_index, 1, sleep_ok);
4996 }
4997 
4998 /**
4999  * t4_tp_pio_write - Write TP PIO registers
5000  * @adap: the adapter
5001  * @buff: where the indirect register values are stored
5002  * @nregs: how many indirect registers to write
5003  * @start_index: index of first indirect register to write
5004  * @sleep_ok: if true we may sleep while awaiting command completion
5005  *
5006  * Write TP PIO Registers
5007  **/
5008 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5009 		     u32 start_index, bool sleep_ok)
5010 {
5011 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5012 	    __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5013 }
5014 
5015 /**
5016  * t4_tp_tm_pio_read - Read TP TM PIO registers
5017  * @adap: the adapter
5018  * @buff: where the indirect register values are written
5019  * @nregs: how many indirect registers to read
5020  * @start_index: index of first indirect register to read
5021  * @sleep_ok: if true we may sleep while awaiting command completion
5022  *
5023  * Read TP TM PIO Registers
5024  **/
5025 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5026 		       u32 start_index, bool sleep_ok)
5027 {
5028 	t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5029 			  nregs, start_index, 1, sleep_ok);
5030 }
5031 
5032 /**
5033  * t4_tp_mib_read - Read TP MIB registers
5034  * @adap: the adapter
5035  * @buff: where the indirect register values are written
5036  * @nregs: how many indirect registers to read
5037  * @start_index: index of first indirect register to read
5038  * @sleep_ok: if true we may sleep while awaiting command completion
5039  *
5040  * Read TP MIB Registers
5041  **/
5042 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5043 		    bool sleep_ok)
5044 {
5045 	t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5046 			  start_index, 1, sleep_ok);
5047 }
5048 
5049 /**
5050  *	t4_read_rss_key - read the global RSS key
5051  *	@adap: the adapter
5052  *	@key: 10-entry array holding the 320-bit RSS key
5053  * 	@sleep_ok: if true we may sleep while awaiting command completion
5054  *
5055  *	Reads the global 320-bit RSS key.
5056  */
5057 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5058 {
5059 	t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5060 }
5061 
5062 /**
5063  *	t4_write_rss_key - program one of the RSS keys
5064  *	@adap: the adapter
5065  *	@key: 10-entry array holding the 320-bit RSS key
5066  *	@idx: which RSS key to write
5067  * 	@sleep_ok: if true we may sleep while awaiting command completion
5068  *
5069  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5070  *	0..15 the corresponding entry in the RSS key table is written,
5071  *	otherwise the global RSS key is written.
5072  */
5073 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5074 		      bool sleep_ok)
5075 {
5076 	u8 rss_key_addr_cnt = 16;
5077 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5078 
5079 	/*
5080 	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5081 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5082 	 * as index[5:4](upper 2) into key table
5083 	 */
5084 	if ((chip_id(adap) > CHELSIO_T5) &&
5085 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5086 		rss_key_addr_cnt = 32;
5087 
5088 	t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5089 
5090 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5091 		if (rss_key_addr_cnt > 16)
5092 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5093 				     vrt | V_KEYWRADDRX(idx >> 4) |
5094 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
5095 		else
5096 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5097 				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5098 	}
5099 }
5100 
5101 /**
5102  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5103  *	@adapter: the adapter
5104  *	@index: the entry in the PF RSS table to read
5105  *	@valp: where to store the returned value
5106  * 	@sleep_ok: if true we may sleep while awaiting command completion
5107  *
5108  *	Reads the PF RSS Configuration Table at the specified index and returns
5109  *	the value found there.
5110  */
5111 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5112 			   u32 *valp, bool sleep_ok)
5113 {
5114 	t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5115 }
5116 
5117 /**
5118  *	t4_write_rss_pf_config - write PF RSS Configuration Table
5119  *	@adapter: the adapter
5120  *	@index: the entry in the VF RSS table to read
5121  *	@val: the value to store
5122  * 	@sleep_ok: if true we may sleep while awaiting command completion
5123  *
5124  *	Writes the PF RSS Configuration Table at the specified index with the
5125  *	specified value.
5126  */
5127 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5128 			    u32 val, bool sleep_ok)
5129 {
5130 	t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5131 			sleep_ok);
5132 }
5133 
5134 /**
5135  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5136  *	@adapter: the adapter
5137  *	@index: the entry in the VF RSS table to read
5138  *	@vfl: where to store the returned VFL
5139  *	@vfh: where to store the returned VFH
5140  * 	@sleep_ok: if true we may sleep while awaiting command completion
5141  *
5142  *	Reads the VF RSS Configuration Table at the specified index and returns
5143  *	the (VFL, VFH) values found there.
5144  */
5145 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5146 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5147 {
5148 	u32 vrt, mask, data;
5149 
5150 	if (chip_id(adapter) <= CHELSIO_T5) {
5151 		mask = V_VFWRADDR(M_VFWRADDR);
5152 		data = V_VFWRADDR(index);
5153 	} else {
5154 		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5155 		 data = V_T6_VFWRADDR(index);
5156 	}
5157 	/*
5158 	 * Request that the index'th VF Table values be read into VFL/VFH.
5159 	 */
5160 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5161 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5162 	vrt |= data | F_VFRDEN;
5163 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5164 
5165 	/*
5166 	 * Grab the VFL/VFH values ...
5167 	 */
5168 	t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5169 	t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5170 }
5171 
5172 /**
5173  *	t4_write_rss_vf_config - write VF RSS Configuration Table
5174  *
5175  *	@adapter: the adapter
5176  *	@index: the entry in the VF RSS table to write
5177  *	@vfl: the VFL to store
5178  *	@vfh: the VFH to store
5179  *
5180  *	Writes the VF RSS Configuration Table at the specified index with the
5181  *	specified (VFL, VFH) values.
5182  */
5183 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
5184 			    u32 vfl, u32 vfh, bool sleep_ok)
5185 {
5186 	u32 vrt, mask, data;
5187 
5188 	if (chip_id(adapter) <= CHELSIO_T5) {
5189 		mask = V_VFWRADDR(M_VFWRADDR);
5190 		data = V_VFWRADDR(index);
5191 	} else {
5192 		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5193 		data = V_T6_VFWRADDR(index);
5194 	}
5195 
5196 	/*
5197 	 * Load up VFL/VFH with the values to be written ...
5198 	 */
5199 	t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5200 	t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5201 
5202 	/*
5203 	 * Write the VFL/VFH into the VF Table at index'th location.
5204 	 */
5205 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5206 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5207 	vrt |= data | F_VFRDEN;
5208 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5209 }
5210 
5211 /**
5212  *	t4_read_rss_pf_map - read PF RSS Map
5213  *	@adapter: the adapter
5214  * 	@sleep_ok: if true we may sleep while awaiting command completion
5215  *
5216  *	Reads the PF RSS Map register and returns its value.
5217  */
5218 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5219 {
5220 	u32 pfmap;
5221 
5222 	t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5223 
5224 	return pfmap;
5225 }
5226 
5227 /**
5228  *	t4_write_rss_pf_map - write PF RSS Map
5229  *	@adapter: the adapter
5230  *	@pfmap: PF RSS Map value
5231  *
5232  *	Writes the specified value to the PF RSS Map register.
5233  */
5234 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
5235 {
5236 	t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5237 }
5238 
5239 /**
5240  *	t4_read_rss_pf_mask - read PF RSS Mask
5241  *	@adapter: the adapter
5242  * 	@sleep_ok: if true we may sleep while awaiting command completion
5243  *
5244  *	Reads the PF RSS Mask register and returns its value.
5245  */
5246 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5247 {
5248 	u32 pfmask;
5249 
5250 	t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
5251 
5252 	return pfmask;
5253 }
5254 
5255 /**
5256  *	t4_write_rss_pf_mask - write PF RSS Mask
5257  *	@adapter: the adapter
5258  *	@pfmask: PF RSS Mask value
5259  *
5260  *	Writes the specified value to the PF RSS Mask register.
5261  */
5262 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
5263 {
5264 	t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
5265 }
5266 
5267 /**
5268  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5269  *	@adap: the adapter
5270  *	@v4: holds the TCP/IP counter values
5271  *	@v6: holds the TCP/IPv6 counter values
5272  * 	@sleep_ok: if true we may sleep while awaiting command completion
5273  *
5274  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5275  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5276  */
5277 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5278 			 struct tp_tcp_stats *v6, bool sleep_ok)
5279 {
5280 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
5281 
5282 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
5283 #define STAT(x)     val[STAT_IDX(x)]
5284 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5285 
5286 	if (v4) {
5287 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5288 			       A_TP_MIB_TCP_OUT_RST, sleep_ok);
5289 		v4->tcp_out_rsts = STAT(OUT_RST);
5290 		v4->tcp_in_segs  = STAT64(IN_SEG);
5291 		v4->tcp_out_segs = STAT64(OUT_SEG);
5292 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5293 	}
5294 	if (v6) {
5295 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5296 			       A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
5297 		v6->tcp_out_rsts = STAT(OUT_RST);
5298 		v6->tcp_in_segs  = STAT64(IN_SEG);
5299 		v6->tcp_out_segs = STAT64(OUT_SEG);
5300 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5301 	}
5302 #undef STAT64
5303 #undef STAT
5304 #undef STAT_IDX
5305 }
5306 
5307 /**
5308  *	t4_tp_get_err_stats - read TP's error MIB counters
5309  *	@adap: the adapter
5310  *	@st: holds the counter values
5311  * 	@sleep_ok: if true we may sleep while awaiting command completion
5312  *
5313  *	Returns the values of TP's error counters.
5314  */
5315 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5316 			 bool sleep_ok)
5317 {
5318 	int nchan = adap->chip_params->nchan;
5319 
5320 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
5321 		       sleep_ok);
5322 
5323 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
5324 		       sleep_ok);
5325 
5326 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
5327 		       sleep_ok);
5328 
5329 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5330 		       A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
5331 
5332 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5333 		       A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
5334 
5335 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
5336 		       sleep_ok);
5337 
5338 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5339 		       A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
5340 
5341 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5342 		       A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
5343 
5344 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
5345 		       sleep_ok);
5346 }
5347 
5348 /**
5349  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
5350  *	@adap: the adapter
5351  *	@st: holds the counter values
5352  *
5353  *	Returns the values of TP's proxy counters.
5354  */
5355 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
5356     bool sleep_ok)
5357 {
5358 	int nchan = adap->chip_params->nchan;
5359 
5360 	t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
5361 }
5362 
5363 /**
5364  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5365  *	@adap: the adapter
5366  *	@st: holds the counter values
5367  * 	@sleep_ok: if true we may sleep while awaiting command completion
5368  *
5369  *	Returns the values of TP's CPL counters.
5370  */
5371 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5372 			 bool sleep_ok)
5373 {
5374 	int nchan = adap->chip_params->nchan;
5375 
5376 	t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
5377 
5378 	t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
5379 }
5380 
5381 /**
5382  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5383  *	@adap: the adapter
5384  *	@st: holds the counter values
5385  *
5386  *	Returns the values of TP's RDMA counters.
5387  */
5388 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5389 			  bool sleep_ok)
5390 {
5391 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
5392 		       sleep_ok);
5393 }
5394 
5395 /**
5396  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5397  *	@adap: the adapter
5398  *	@idx: the port index
5399  *	@st: holds the counter values
5400  * 	@sleep_ok: if true we may sleep while awaiting command completion
5401  *
5402  *	Returns the values of TP's FCoE counters for the selected port.
5403  */
5404 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5405 		       struct tp_fcoe_stats *st, bool sleep_ok)
5406 {
5407 	u32 val[2];
5408 
5409 	t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
5410 		       sleep_ok);
5411 
5412 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5413 		       A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
5414 
5415 	t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
5416 		       sleep_ok);
5417 
5418 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5419 }
5420 
5421 /**
5422  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5423  *	@adap: the adapter
5424  *	@st: holds the counter values
5425  * 	@sleep_ok: if true we may sleep while awaiting command completion
5426  *
5427  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5428  */
5429 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5430 		      bool sleep_ok)
5431 {
5432 	u32 val[4];
5433 
5434 	t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
5435 
5436 	st->frames = val[0];
5437 	st->drops = val[1];
5438 	st->octets = ((u64)val[2] << 32) | val[3];
5439 }
5440 
5441 /**
5442  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5443  *	@adap: the adapter
5444  *	@mtus: where to store the MTU values
5445  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5446  *
5447  *	Reads the HW path MTU table.
5448  */
5449 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5450 {
5451 	u32 v;
5452 	int i;
5453 
5454 	for (i = 0; i < NMTUS; ++i) {
5455 		t4_write_reg(adap, A_TP_MTU_TABLE,
5456 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
5457 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
5458 		mtus[i] = G_MTUVALUE(v);
5459 		if (mtu_log)
5460 			mtu_log[i] = G_MTUWIDTH(v);
5461 	}
5462 }
5463 
5464 /**
5465  *	t4_read_cong_tbl - reads the congestion control table
5466  *	@adap: the adapter
5467  *	@incr: where to store the alpha values
5468  *
5469  *	Reads the additive increments programmed into the HW congestion
5470  *	control table.
5471  */
5472 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5473 {
5474 	unsigned int mtu, w;
5475 
5476 	for (mtu = 0; mtu < NMTUS; ++mtu)
5477 		for (w = 0; w < NCCTRL_WIN; ++w) {
5478 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
5479 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
5480 			incr[mtu][w] = (u16)t4_read_reg(adap,
5481 						A_TP_CCTRL_TABLE) & 0x1fff;
5482 		}
5483 }
5484 
5485 /**
5486  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5487  *	@adap: the adapter
5488  *	@addr: the indirect TP register address
5489  *	@mask: specifies the field within the register to modify
5490  *	@val: new value for the field
5491  *
5492  *	Sets a field of an indirect TP register to the given value.
5493  */
5494 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5495 			    unsigned int mask, unsigned int val)
5496 {
5497 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
5498 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
5499 	t4_write_reg(adap, A_TP_PIO_DATA, val);
5500 }
5501 
5502 /**
5503  *	init_cong_ctrl - initialize congestion control parameters
5504  *	@a: the alpha values for congestion control
5505  *	@b: the beta values for congestion control
5506  *
5507  *	Initialize the congestion control parameters.
5508  */
5509 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5510 {
5511 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5512 	a[9] = 2;
5513 	a[10] = 3;
5514 	a[11] = 4;
5515 	a[12] = 5;
5516 	a[13] = 6;
5517 	a[14] = 7;
5518 	a[15] = 8;
5519 	a[16] = 9;
5520 	a[17] = 10;
5521 	a[18] = 14;
5522 	a[19] = 17;
5523 	a[20] = 21;
5524 	a[21] = 25;
5525 	a[22] = 30;
5526 	a[23] = 35;
5527 	a[24] = 45;
5528 	a[25] = 60;
5529 	a[26] = 80;
5530 	a[27] = 100;
5531 	a[28] = 200;
5532 	a[29] = 300;
5533 	a[30] = 400;
5534 	a[31] = 500;
5535 
5536 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5537 	b[9] = b[10] = 1;
5538 	b[11] = b[12] = 2;
5539 	b[13] = b[14] = b[15] = b[16] = 3;
5540 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5541 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5542 	b[28] = b[29] = 6;
5543 	b[30] = b[31] = 7;
5544 }
5545 
5546 /* The minimum additive increment value for the congestion control table */
5547 #define CC_MIN_INCR 2U
5548 
5549 /**
5550  *	t4_load_mtus - write the MTU and congestion control HW tables
5551  *	@adap: the adapter
5552  *	@mtus: the values for the MTU table
5553  *	@alpha: the values for the congestion control alpha parameter
5554  *	@beta: the values for the congestion control beta parameter
5555  *
5556  *	Write the HW MTU table with the supplied MTUs and the high-speed
5557  *	congestion control table with the supplied alpha, beta, and MTUs.
5558  *	We write the two tables together because the additive increments
5559  *	depend on the MTUs.
5560  */
5561 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5562 		  const unsigned short *alpha, const unsigned short *beta)
5563 {
5564 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5565 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5566 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5567 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5568 	};
5569 
5570 	unsigned int i, w;
5571 
5572 	for (i = 0; i < NMTUS; ++i) {
5573 		unsigned int mtu = mtus[i];
5574 		unsigned int log2 = fls(mtu);
5575 
5576 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5577 			log2--;
5578 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
5579 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
5580 
5581 		for (w = 0; w < NCCTRL_WIN; ++w) {
5582 			unsigned int inc;
5583 
5584 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5585 				  CC_MIN_INCR);
5586 
5587 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
5588 				     (w << 16) | (beta[w] << 13) | inc);
5589 		}
5590 	}
5591 }
5592 
5593 /**
5594  *	t4_set_pace_tbl - set the pace table
5595  *	@adap: the adapter
5596  *	@pace_vals: the pace values in microseconds
5597  *	@start: index of the first entry in the HW pace table to set
5598  *	@n: how many entries to set
5599  *
5600  *	Sets (a subset of the) HW pace table.
5601  */
5602 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
5603 		     unsigned int start, unsigned int n)
5604 {
5605 	unsigned int vals[NTX_SCHED], i;
5606 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
5607 
5608 	if (n > NTX_SCHED)
5609 	    return -ERANGE;
5610 
5611 	/* convert values from us to dack ticks, rounding to closest value */
5612 	for (i = 0; i < n; i++, pace_vals++) {
5613 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
5614 		if (vals[i] > 0x7ff)
5615 			return -ERANGE;
5616 		if (*pace_vals && vals[i] == 0)
5617 			return -ERANGE;
5618 	}
5619 	for (i = 0; i < n; i++, start++)
5620 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
5621 	return 0;
5622 }
5623 
5624 /**
5625  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
5626  *	@adap: the adapter
5627  *	@kbps: target rate in Kbps
5628  *	@sched: the scheduler index
5629  *
5630  *	Configure a Tx HW scheduler for the target rate.
5631  */
5632 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
5633 {
5634 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
5635 	unsigned int clk = adap->params.vpd.cclk * 1000;
5636 	unsigned int selected_cpt = 0, selected_bpt = 0;
5637 
5638 	if (kbps > 0) {
5639 		kbps *= 125;     /* -> bytes */
5640 		for (cpt = 1; cpt <= 255; cpt++) {
5641 			tps = clk / cpt;
5642 			bpt = (kbps + tps / 2) / tps;
5643 			if (bpt > 0 && bpt <= 255) {
5644 				v = bpt * tps;
5645 				delta = v >= kbps ? v - kbps : kbps - v;
5646 				if (delta < mindelta) {
5647 					mindelta = delta;
5648 					selected_cpt = cpt;
5649 					selected_bpt = bpt;
5650 				}
5651 			} else if (selected_cpt)
5652 				break;
5653 		}
5654 		if (!selected_cpt)
5655 			return -EINVAL;
5656 	}
5657 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
5658 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
5659 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5660 	if (sched & 1)
5661 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
5662 	else
5663 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
5664 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5665 	return 0;
5666 }
5667 
5668 /**
5669  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
5670  *	@adap: the adapter
5671  *	@sched: the scheduler index
5672  *	@ipg: the interpacket delay in tenths of nanoseconds
5673  *
5674  *	Set the interpacket delay for a HW packet rate scheduler.
5675  */
5676 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
5677 {
5678 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
5679 
5680 	/* convert ipg to nearest number of core clocks */
5681 	ipg *= core_ticks_per_usec(adap);
5682 	ipg = (ipg + 5000) / 10000;
5683 	if (ipg > M_TXTIMERSEPQ0)
5684 		return -EINVAL;
5685 
5686 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
5687 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5688 	if (sched & 1)
5689 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
5690 	else
5691 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
5692 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5693 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
5694 	return 0;
5695 }
5696 
5697 /*
5698  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5699  * clocks.  The formula is
5700  *
5701  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5702  *
5703  * which is equivalent to
5704  *
5705  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5706  */
5707 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5708 {
5709 	u64 v = bytes256 * adap->params.vpd.cclk;
5710 
5711 	return v * 62 + v / 2;
5712 }
5713 
5714 /**
5715  *	t4_get_chan_txrate - get the current per channel Tx rates
5716  *	@adap: the adapter
5717  *	@nic_rate: rates for NIC traffic
5718  *	@ofld_rate: rates for offloaded traffic
5719  *
5720  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5721  *	for each channel.
5722  */
5723 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5724 {
5725 	u32 v;
5726 
5727 	v = t4_read_reg(adap, A_TP_TX_TRATE);
5728 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
5729 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
5730 	if (adap->chip_params->nchan > 2) {
5731 		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
5732 		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
5733 	}
5734 
5735 	v = t4_read_reg(adap, A_TP_TX_ORATE);
5736 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
5737 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
5738 	if (adap->chip_params->nchan > 2) {
5739 		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
5740 		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
5741 	}
5742 }
5743 
5744 /**
5745  *	t4_set_trace_filter - configure one of the tracing filters
5746  *	@adap: the adapter
5747  *	@tp: the desired trace filter parameters
5748  *	@idx: which filter to configure
5749  *	@enable: whether to enable or disable the filter
5750  *
5751  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
5752  *	it indicates that the filter is already written in the register and it
5753  *	just needs to be enabled or disabled.
5754  */
5755 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5756     int idx, int enable)
5757 {
5758 	int i, ofst = idx * 4;
5759 	u32 data_reg, mask_reg, cfg;
5760 	u32 multitrc = F_TRCMULTIFILTER;
5761 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
5762 
5763 	if (idx < 0 || idx >= NTRACE)
5764 		return -EINVAL;
5765 
5766 	if (tp == NULL || !enable) {
5767 		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
5768 		    enable ? en : 0);
5769 		return 0;
5770 	}
5771 
5772 	/*
5773 	 * TODO - After T4 data book is updated, specify the exact
5774 	 * section below.
5775 	 *
5776 	 * See T4 data book - MPS section for a complete description
5777 	 * of the below if..else handling of A_MPS_TRC_CFG register
5778 	 * value.
5779 	 */
5780 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
5781 	if (cfg & F_TRCMULTIFILTER) {
5782 		/*
5783 		 * If multiple tracers are enabled, then maximum
5784 		 * capture size is 2.5KB (FIFO size of a single channel)
5785 		 * minus 2 flits for CPL_TRACE_PKT header.
5786 		 */
5787 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5788 			return -EINVAL;
5789 	} else {
5790 		/*
5791 		 * If multiple tracers are disabled, to avoid deadlocks
5792 		 * maximum packet capture size of 9600 bytes is recommended.
5793 		 * Also in this mode, only trace0 can be enabled and running.
5794 		 */
5795 		multitrc = 0;
5796 		if (tp->snap_len > 9600 || idx)
5797 			return -EINVAL;
5798 	}
5799 
5800 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
5801 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
5802 	    tp->min_len > M_TFMINPKTSIZE)
5803 		return -EINVAL;
5804 
5805 	/* stop the tracer we'll be changing */
5806 	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
5807 
5808 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
5809 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
5810 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
5811 
5812 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5813 		t4_write_reg(adap, data_reg, tp->data[i]);
5814 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5815 	}
5816 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
5817 		     V_TFCAPTUREMAX(tp->snap_len) |
5818 		     V_TFMINPKTSIZE(tp->min_len));
5819 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
5820 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
5821 		     (is_t4(adap) ?
5822 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
5823 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
5824 
5825 	return 0;
5826 }
5827 
5828 /**
5829  *	t4_get_trace_filter - query one of the tracing filters
5830  *	@adap: the adapter
5831  *	@tp: the current trace filter parameters
5832  *	@idx: which trace filter to query
5833  *	@enabled: non-zero if the filter is enabled
5834  *
5835  *	Returns the current settings of one of the HW tracing filters.
5836  */
5837 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5838 			 int *enabled)
5839 {
5840 	u32 ctla, ctlb;
5841 	int i, ofst = idx * 4;
5842 	u32 data_reg, mask_reg;
5843 
5844 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
5845 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
5846 
5847 	if (is_t4(adap)) {
5848 		*enabled = !!(ctla & F_TFEN);
5849 		tp->port =  G_TFPORT(ctla);
5850 		tp->invert = !!(ctla & F_TFINVERTMATCH);
5851 	} else {
5852 		*enabled = !!(ctla & F_T5_TFEN);
5853 		tp->port = G_T5_TFPORT(ctla);
5854 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
5855 	}
5856 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
5857 	tp->min_len = G_TFMINPKTSIZE(ctlb);
5858 	tp->skip_ofst = G_TFOFFSET(ctla);
5859 	tp->skip_len = G_TFLENGTH(ctla);
5860 
5861 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
5862 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
5863 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
5864 
5865 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5866 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5867 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5868 	}
5869 }
5870 
5871 /**
5872  *	t4_pmtx_get_stats - returns the HW stats from PMTX
5873  *	@adap: the adapter
5874  *	@cnt: where to store the count statistics
5875  *	@cycles: where to store the cycle statistics
5876  *
5877  *	Returns performance statistics from PMTX.
5878  */
5879 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5880 {
5881 	int i;
5882 	u32 data[2];
5883 
5884 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5885 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
5886 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
5887 		if (is_t4(adap))
5888 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
5889 		else {
5890 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
5891 					 A_PM_TX_DBG_DATA, data, 2,
5892 					 A_PM_TX_DBG_STAT_MSB);
5893 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5894 		}
5895 	}
5896 }
5897 
5898 /**
5899  *	t4_pmrx_get_stats - returns the HW stats from PMRX
5900  *	@adap: the adapter
5901  *	@cnt: where to store the count statistics
5902  *	@cycles: where to store the cycle statistics
5903  *
5904  *	Returns performance statistics from PMRX.
5905  */
5906 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5907 {
5908 	int i;
5909 	u32 data[2];
5910 
5911 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5912 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
5913 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
5914 		if (is_t4(adap)) {
5915 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
5916 		} else {
5917 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
5918 					 A_PM_RX_DBG_DATA, data, 2,
5919 					 A_PM_RX_DBG_STAT_MSB);
5920 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5921 		}
5922 	}
5923 }
5924 
5925 /**
5926  *	t4_get_mps_bg_map - return the buffer groups associated with a port
5927  *	@adap: the adapter
5928  *	@idx: the port index
5929  *
5930  *	Returns a bitmap indicating which MPS buffer groups are associated
5931  *	with the given port.  Bit i is set if buffer group i is used by the
5932  *	port.
5933  */
5934 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5935 {
5936 	u32 n;
5937 
5938 	if (adap->params.mps_bg_map)
5939 		return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
5940 
5941 	n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
5942 	if (n == 0)
5943 		return idx == 0 ? 0xf : 0;
5944 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
5945 		return idx < 2 ? (3 << (2 * idx)) : 0;
5946 	return 1 << idx;
5947 }
5948 
5949 /*
5950  * TP RX e-channels associated with the port.
5951  */
5952 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
5953 {
5954 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
5955 
5956 	if (n == 0)
5957 		return idx == 0 ? 0xf : 0;
5958 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
5959 		return idx < 2 ? (3 << (2 * idx)) : 0;
5960 	return 1 << idx;
5961 }
5962 
5963 /**
5964  *      t4_get_port_type_description - return Port Type string description
5965  *      @port_type: firmware Port Type enumeration
5966  */
5967 const char *t4_get_port_type_description(enum fw_port_type port_type)
5968 {
5969 	static const char *const port_type_description[] = {
5970 		"Fiber_XFI",
5971 		"Fiber_XAUI",
5972 		"BT_SGMII",
5973 		"BT_XFI",
5974 		"BT_XAUI",
5975 		"KX4",
5976 		"CX4",
5977 		"KX",
5978 		"KR",
5979 		"SFP",
5980 		"BP_AP",
5981 		"BP4_AP",
5982 		"QSFP_10G",
5983 		"QSA",
5984 		"QSFP",
5985 		"BP40_BA",
5986 		"KR4_100G",
5987 		"CR4_QSFP",
5988 		"CR_QSFP",
5989 		"CR2_QSFP",
5990 		"SFP28",
5991 		"KR_SFP28",
5992 	};
5993 
5994 	if (port_type < ARRAY_SIZE(port_type_description))
5995 		return port_type_description[port_type];
5996 	return "UNKNOWN";
5997 }
5998 
5999 /**
6000  *      t4_get_port_stats_offset - collect port stats relative to a previous
6001  *				   snapshot
6002  *      @adap: The adapter
6003  *      @idx: The port
6004  *      @stats: Current stats to fill
6005  *      @offset: Previous stats snapshot
6006  */
6007 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6008 		struct port_stats *stats,
6009 		struct port_stats *offset)
6010 {
6011 	u64 *s, *o;
6012 	int i;
6013 
6014 	t4_get_port_stats(adap, idx, stats);
6015 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6016 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
6017 			i++, s++, o++)
6018 		*s -= *o;
6019 }
6020 
6021 /**
6022  *	t4_get_port_stats - collect port statistics
6023  *	@adap: the adapter
6024  *	@idx: the port index
6025  *	@p: the stats structure to fill
6026  *
6027  *	Collect statistics related to the given port from HW.
6028  */
6029 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6030 {
6031 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6032 	u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6033 
6034 #define GET_STAT(name) \
6035 	t4_read_reg64(adap, \
6036 	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
6037 	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
6038 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6039 
6040 	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
6041 	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
6042 	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
6043 	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
6044 	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
6045 	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
6046 	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
6047 	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
6048 	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
6049 	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
6050 	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
6051 	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
6052 	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
6053 	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
6054 	p->tx_drop		= GET_STAT(TX_PORT_DROP);
6055 	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
6056 	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
6057 	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
6058 	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
6059 	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
6060 	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
6061 	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
6062 	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
6063 
6064 	if (chip_id(adap) >= CHELSIO_T5) {
6065 		if (stat_ctl & F_COUNTPAUSESTATTX) {
6066 			p->tx_frames -= p->tx_pause;
6067 			p->tx_octets -= p->tx_pause * 64;
6068 		}
6069 		if (stat_ctl & F_COUNTPAUSEMCTX)
6070 			p->tx_mcast_frames -= p->tx_pause;
6071 	}
6072 
6073 	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
6074 	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
6075 	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
6076 	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
6077 	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
6078 	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
6079 	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
6080 	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
6081 	p->rx_fcs_err		= GET_STAT(RX_PORT_CRC_ERROR);
6082 	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
6083 	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
6084 	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
6085 	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
6086 	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
6087 	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
6088 	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
6089 	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
6090 	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
6091 	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
6092 	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
6093 	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
6094 	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
6095 	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
6096 	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
6097 	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
6098 	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
6099 	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
6100 
6101 	if (chip_id(adap) >= CHELSIO_T5) {
6102 		if (stat_ctl & F_COUNTPAUSESTATRX) {
6103 			p->rx_frames -= p->rx_pause;
6104 			p->rx_octets -= p->rx_pause * 64;
6105 		}
6106 		if (stat_ctl & F_COUNTPAUSEMCRX)
6107 			p->rx_mcast_frames -= p->rx_pause;
6108 	}
6109 
6110 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6111 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6112 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6113 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6114 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6115 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6116 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6117 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6118 
6119 #undef GET_STAT
6120 #undef GET_STAT_COM
6121 }
6122 
6123 /**
6124  *	t4_get_lb_stats - collect loopback port statistics
6125  *	@adap: the adapter
6126  *	@idx: the loopback port index
6127  *	@p: the stats structure to fill
6128  *
6129  *	Return HW statistics for the given loopback port.
6130  */
6131 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6132 {
6133 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6134 
6135 #define GET_STAT(name) \
6136 	t4_read_reg64(adap, \
6137 	(is_t4(adap) ? \
6138 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
6139 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
6140 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6141 
6142 	p->octets	= GET_STAT(BYTES);
6143 	p->frames	= GET_STAT(FRAMES);
6144 	p->bcast_frames	= GET_STAT(BCAST);
6145 	p->mcast_frames	= GET_STAT(MCAST);
6146 	p->ucast_frames	= GET_STAT(UCAST);
6147 	p->error_frames	= GET_STAT(ERROR);
6148 
6149 	p->frames_64		= GET_STAT(64B);
6150 	p->frames_65_127	= GET_STAT(65B_127B);
6151 	p->frames_128_255	= GET_STAT(128B_255B);
6152 	p->frames_256_511	= GET_STAT(256B_511B);
6153 	p->frames_512_1023	= GET_STAT(512B_1023B);
6154 	p->frames_1024_1518	= GET_STAT(1024B_1518B);
6155 	p->frames_1519_max	= GET_STAT(1519B_MAX);
6156 	p->drop			= GET_STAT(DROP_FRAMES);
6157 
6158 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6159 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6160 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6161 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6162 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6163 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6164 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6165 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6166 
6167 #undef GET_STAT
6168 #undef GET_STAT_COM
6169 }
6170 
6171 /**
6172  *	t4_wol_magic_enable - enable/disable magic packet WoL
6173  *	@adap: the adapter
6174  *	@port: the physical port index
6175  *	@addr: MAC address expected in magic packets, %NULL to disable
6176  *
6177  *	Enables/disables magic packet wake-on-LAN for the selected port.
6178  */
6179 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
6180 			 const u8 *addr)
6181 {
6182 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
6183 
6184 	if (is_t4(adap)) {
6185 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
6186 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
6187 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6188 	} else {
6189 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
6190 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
6191 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6192 	}
6193 
6194 	if (addr) {
6195 		t4_write_reg(adap, mag_id_reg_l,
6196 			     (addr[2] << 24) | (addr[3] << 16) |
6197 			     (addr[4] << 8) | addr[5]);
6198 		t4_write_reg(adap, mag_id_reg_h,
6199 			     (addr[0] << 8) | addr[1]);
6200 	}
6201 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
6202 			 V_MAGICEN(addr != NULL));
6203 }
6204 
6205 /**
6206  *	t4_wol_pat_enable - enable/disable pattern-based WoL
6207  *	@adap: the adapter
6208  *	@port: the physical port index
6209  *	@map: bitmap of which HW pattern filters to set
6210  *	@mask0: byte mask for bytes 0-63 of a packet
6211  *	@mask1: byte mask for bytes 64-127 of a packet
6212  *	@crc: Ethernet CRC for selected bytes
6213  *	@enable: enable/disable switch
6214  *
6215  *	Sets the pattern filters indicated in @map to mask out the bytes
6216  *	specified in @mask0/@mask1 in received packets and compare the CRC of
6217  *	the resulting packet against @crc.  If @enable is %true pattern-based
6218  *	WoL is enabled, otherwise disabled.
6219  */
6220 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
6221 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
6222 {
6223 	int i;
6224 	u32 port_cfg_reg;
6225 
6226 	if (is_t4(adap))
6227 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6228 	else
6229 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6230 
6231 	if (!enable) {
6232 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
6233 		return 0;
6234 	}
6235 	if (map > 0xff)
6236 		return -EINVAL;
6237 
6238 #define EPIO_REG(name) \
6239 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
6240 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
6241 
6242 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
6243 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
6244 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
6245 
6246 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
6247 		if (!(map & 1))
6248 			continue;
6249 
6250 		/* write byte masks */
6251 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
6252 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
6253 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6254 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6255 			return -ETIMEDOUT;
6256 
6257 		/* write CRC */
6258 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
6259 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
6260 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6261 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6262 			return -ETIMEDOUT;
6263 	}
6264 #undef EPIO_REG
6265 
6266 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
6267 	return 0;
6268 }
6269 
6270 /*     t4_mk_filtdelwr - create a delete filter WR
6271  *     @ftid: the filter ID
6272  *     @wr: the filter work request to populate
6273  *     @qid: ingress queue to receive the delete notification
6274  *
6275  *     Creates a filter work request to delete the supplied filter.  If @qid is
6276  *     negative the delete notification is suppressed.
6277  */
6278 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6279 {
6280 	memset(wr, 0, sizeof(*wr));
6281 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
6282 	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
6283 	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
6284 				    V_FW_FILTER_WR_NOREPLY(qid < 0));
6285 	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
6286 	if (qid >= 0)
6287 		wr->rx_chan_rx_rpl_iq =
6288 				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
6289 }
6290 
6291 #define INIT_CMD(var, cmd, rd_wr) do { \
6292 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
6293 					F_FW_CMD_REQUEST | \
6294 					F_FW_CMD_##rd_wr); \
6295 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6296 } while (0)
6297 
6298 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6299 			  u32 addr, u32 val)
6300 {
6301 	u32 ldst_addrspace;
6302 	struct fw_ldst_cmd c;
6303 
6304 	memset(&c, 0, sizeof(c));
6305 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
6306 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6307 					F_FW_CMD_REQUEST |
6308 					F_FW_CMD_WRITE |
6309 					ldst_addrspace);
6310 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6311 	c.u.addrval.addr = cpu_to_be32(addr);
6312 	c.u.addrval.val = cpu_to_be32(val);
6313 
6314 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6315 }
6316 
6317 /**
6318  *	t4_mdio_rd - read a PHY register through MDIO
6319  *	@adap: the adapter
6320  *	@mbox: mailbox to use for the FW command
6321  *	@phy_addr: the PHY address
6322  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6323  *	@reg: the register to read
6324  *	@valp: where to store the value
6325  *
6326  *	Issues a FW command through the given mailbox to read a PHY register.
6327  */
6328 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6329 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
6330 {
6331 	int ret;
6332 	u32 ldst_addrspace;
6333 	struct fw_ldst_cmd c;
6334 
6335 	memset(&c, 0, sizeof(c));
6336 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6337 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6338 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6339 					ldst_addrspace);
6340 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6341 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6342 					 V_FW_LDST_CMD_MMD(mmd));
6343 	c.u.mdio.raddr = cpu_to_be16(reg);
6344 
6345 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6346 	if (ret == 0)
6347 		*valp = be16_to_cpu(c.u.mdio.rval);
6348 	return ret;
6349 }
6350 
6351 /**
6352  *	t4_mdio_wr - write a PHY register through MDIO
6353  *	@adap: the adapter
6354  *	@mbox: mailbox to use for the FW command
6355  *	@phy_addr: the PHY address
6356  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6357  *	@reg: the register to write
6358  *	@valp: value to write
6359  *
6360  *	Issues a FW command through the given mailbox to write a PHY register.
6361  */
6362 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6363 	       unsigned int mmd, unsigned int reg, unsigned int val)
6364 {
6365 	u32 ldst_addrspace;
6366 	struct fw_ldst_cmd c;
6367 
6368 	memset(&c, 0, sizeof(c));
6369 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6370 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6371 					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6372 					ldst_addrspace);
6373 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6374 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6375 					 V_FW_LDST_CMD_MMD(mmd));
6376 	c.u.mdio.raddr = cpu_to_be16(reg);
6377 	c.u.mdio.rval = cpu_to_be16(val);
6378 
6379 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6380 }
6381 
6382 /**
6383  *
6384  *	t4_sge_decode_idma_state - decode the idma state
6385  *	@adap: the adapter
6386  *	@state: the state idma is stuck in
6387  */
6388 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6389 {
6390 	static const char * const t4_decode[] = {
6391 		"IDMA_IDLE",
6392 		"IDMA_PUSH_MORE_CPL_FIFO",
6393 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6394 		"Not used",
6395 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6396 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6397 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6398 		"IDMA_SEND_FIFO_TO_IMSG",
6399 		"IDMA_FL_REQ_DATA_FL_PREP",
6400 		"IDMA_FL_REQ_DATA_FL",
6401 		"IDMA_FL_DROP",
6402 		"IDMA_FL_H_REQ_HEADER_FL",
6403 		"IDMA_FL_H_SEND_PCIEHDR",
6404 		"IDMA_FL_H_PUSH_CPL_FIFO",
6405 		"IDMA_FL_H_SEND_CPL",
6406 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6407 		"IDMA_FL_H_SEND_IP_HDR",
6408 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6409 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6410 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6411 		"IDMA_FL_D_SEND_PCIEHDR",
6412 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6413 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6414 		"IDMA_FL_SEND_PCIEHDR",
6415 		"IDMA_FL_PUSH_CPL_FIFO",
6416 		"IDMA_FL_SEND_CPL",
6417 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6418 		"IDMA_FL_SEND_PAYLOAD",
6419 		"IDMA_FL_REQ_NEXT_DATA_FL",
6420 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6421 		"IDMA_FL_SEND_PADDING",
6422 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6423 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6424 		"IDMA_FL_REQ_DATAFL_DONE",
6425 		"IDMA_FL_REQ_HEADERFL_DONE",
6426 	};
6427 	static const char * const t5_decode[] = {
6428 		"IDMA_IDLE",
6429 		"IDMA_ALMOST_IDLE",
6430 		"IDMA_PUSH_MORE_CPL_FIFO",
6431 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6432 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6433 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6434 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6435 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6436 		"IDMA_SEND_FIFO_TO_IMSG",
6437 		"IDMA_FL_REQ_DATA_FL",
6438 		"IDMA_FL_DROP",
6439 		"IDMA_FL_DROP_SEND_INC",
6440 		"IDMA_FL_H_REQ_HEADER_FL",
6441 		"IDMA_FL_H_SEND_PCIEHDR",
6442 		"IDMA_FL_H_PUSH_CPL_FIFO",
6443 		"IDMA_FL_H_SEND_CPL",
6444 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6445 		"IDMA_FL_H_SEND_IP_HDR",
6446 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6447 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6448 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6449 		"IDMA_FL_D_SEND_PCIEHDR",
6450 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6451 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6452 		"IDMA_FL_SEND_PCIEHDR",
6453 		"IDMA_FL_PUSH_CPL_FIFO",
6454 		"IDMA_FL_SEND_CPL",
6455 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6456 		"IDMA_FL_SEND_PAYLOAD",
6457 		"IDMA_FL_REQ_NEXT_DATA_FL",
6458 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6459 		"IDMA_FL_SEND_PADDING",
6460 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6461 	};
6462 	static const char * const t6_decode[] = {
6463 		"IDMA_IDLE",
6464 		"IDMA_PUSH_MORE_CPL_FIFO",
6465 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6466 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6467 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6468 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6469 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6470 		"IDMA_FL_REQ_DATA_FL",
6471 		"IDMA_FL_DROP",
6472 		"IDMA_FL_DROP_SEND_INC",
6473 		"IDMA_FL_H_REQ_HEADER_FL",
6474 		"IDMA_FL_H_SEND_PCIEHDR",
6475 		"IDMA_FL_H_PUSH_CPL_FIFO",
6476 		"IDMA_FL_H_SEND_CPL",
6477 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6478 		"IDMA_FL_H_SEND_IP_HDR",
6479 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6480 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6481 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6482 		"IDMA_FL_D_SEND_PCIEHDR",
6483 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6484 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6485 		"IDMA_FL_SEND_PCIEHDR",
6486 		"IDMA_FL_PUSH_CPL_FIFO",
6487 		"IDMA_FL_SEND_CPL",
6488 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6489 		"IDMA_FL_SEND_PAYLOAD",
6490 		"IDMA_FL_REQ_NEXT_DATA_FL",
6491 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6492 		"IDMA_FL_SEND_PADDING",
6493 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6494 	};
6495 	static const u32 sge_regs[] = {
6496 		A_SGE_DEBUG_DATA_LOW_INDEX_2,
6497 		A_SGE_DEBUG_DATA_LOW_INDEX_3,
6498 		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
6499 	};
6500 	const char * const *sge_idma_decode;
6501 	int sge_idma_decode_nstates;
6502 	int i;
6503 	unsigned int chip_version = chip_id(adapter);
6504 
6505 	/* Select the right set of decode strings to dump depending on the
6506 	 * adapter chip type.
6507 	 */
6508 	switch (chip_version) {
6509 	case CHELSIO_T4:
6510 		sge_idma_decode = (const char * const *)t4_decode;
6511 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6512 		break;
6513 
6514 	case CHELSIO_T5:
6515 		sge_idma_decode = (const char * const *)t5_decode;
6516 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6517 		break;
6518 
6519 	case CHELSIO_T6:
6520 		sge_idma_decode = (const char * const *)t6_decode;
6521 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6522 		break;
6523 
6524 	default:
6525 		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
6526 		return;
6527 	}
6528 
6529 	if (state < sge_idma_decode_nstates)
6530 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6531 	else
6532 		CH_WARN(adapter, "idma state %d unknown\n", state);
6533 
6534 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6535 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6536 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6537 }
6538 
6539 /**
6540  *      t4_sge_ctxt_flush - flush the SGE context cache
6541  *      @adap: the adapter
6542  *      @mbox: mailbox to use for the FW command
6543  *
6544  *      Issues a FW command through the given mailbox to flush the
6545  *      SGE context cache.
6546  */
6547 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
6548 {
6549 	int ret;
6550 	u32 ldst_addrspace;
6551 	struct fw_ldst_cmd c;
6552 
6553 	memset(&c, 0, sizeof(c));
6554 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
6555 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6556 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6557 					ldst_addrspace);
6558 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6559 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
6560 
6561 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6562 	return ret;
6563 }
6564 
6565 /**
6566  *      t4_fw_hello - establish communication with FW
6567  *      @adap: the adapter
6568  *      @mbox: mailbox to use for the FW command
6569  *      @evt_mbox: mailbox to receive async FW events
6570  *      @master: specifies the caller's willingness to be the device master
6571  *	@state: returns the current device state (if non-NULL)
6572  *
6573  *	Issues a command to establish communication with FW.  Returns either
6574  *	an error (negative integer) or the mailbox of the Master PF.
6575  */
6576 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6577 		enum dev_master master, enum dev_state *state)
6578 {
6579 	int ret;
6580 	struct fw_hello_cmd c;
6581 	u32 v;
6582 	unsigned int master_mbox;
6583 	int retries = FW_CMD_HELLO_RETRIES;
6584 
6585 retry:
6586 	memset(&c, 0, sizeof(c));
6587 	INIT_CMD(c, HELLO, WRITE);
6588 	c.err_to_clearinit = cpu_to_be32(
6589 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
6590 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
6591 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
6592 					mbox : M_FW_HELLO_CMD_MBMASTER) |
6593 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
6594 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
6595 		F_FW_HELLO_CMD_CLEARINIT);
6596 
6597 	/*
6598 	 * Issue the HELLO command to the firmware.  If it's not successful
6599 	 * but indicates that we got a "busy" or "timeout" condition, retry
6600 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6601 	 * retry limit, check to see if the firmware left us any error
6602 	 * information and report that if so ...
6603 	 */
6604 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6605 	if (ret != FW_SUCCESS) {
6606 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6607 			goto retry;
6608 		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
6609 			t4_report_fw_error(adap);
6610 		return ret;
6611 	}
6612 
6613 	v = be32_to_cpu(c.err_to_clearinit);
6614 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
6615 	if (state) {
6616 		if (v & F_FW_HELLO_CMD_ERR)
6617 			*state = DEV_STATE_ERR;
6618 		else if (v & F_FW_HELLO_CMD_INIT)
6619 			*state = DEV_STATE_INIT;
6620 		else
6621 			*state = DEV_STATE_UNINIT;
6622 	}
6623 
6624 	/*
6625 	 * If we're not the Master PF then we need to wait around for the
6626 	 * Master PF Driver to finish setting up the adapter.
6627 	 *
6628 	 * Note that we also do this wait if we're a non-Master-capable PF and
6629 	 * there is no current Master PF; a Master PF may show up momentarily
6630 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6631 	 * OS loads lots of different drivers rapidly at the same time).  In
6632 	 * this case, the Master PF returned by the firmware will be
6633 	 * M_PCIE_FW_MASTER so the test below will work ...
6634 	 */
6635 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
6636 	    master_mbox != mbox) {
6637 		int waiting = FW_CMD_HELLO_TIMEOUT;
6638 
6639 		/*
6640 		 * Wait for the firmware to either indicate an error or
6641 		 * initialized state.  If we see either of these we bail out
6642 		 * and report the issue to the caller.  If we exhaust the
6643 		 * "hello timeout" and we haven't exhausted our retries, try
6644 		 * again.  Otherwise bail with a timeout error.
6645 		 */
6646 		for (;;) {
6647 			u32 pcie_fw;
6648 
6649 			msleep(50);
6650 			waiting -= 50;
6651 
6652 			/*
6653 			 * If neither Error nor Initialialized are indicated
6654 			 * by the firmware keep waiting till we exhaust our
6655 			 * timeout ... and then retry if we haven't exhausted
6656 			 * our retries ...
6657 			 */
6658 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
6659 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
6660 				if (waiting <= 0) {
6661 					if (retries-- > 0)
6662 						goto retry;
6663 
6664 					return -ETIMEDOUT;
6665 				}
6666 				continue;
6667 			}
6668 
6669 			/*
6670 			 * We either have an Error or Initialized condition
6671 			 * report errors preferentially.
6672 			 */
6673 			if (state) {
6674 				if (pcie_fw & F_PCIE_FW_ERR)
6675 					*state = DEV_STATE_ERR;
6676 				else if (pcie_fw & F_PCIE_FW_INIT)
6677 					*state = DEV_STATE_INIT;
6678 			}
6679 
6680 			/*
6681 			 * If we arrived before a Master PF was selected and
6682 			 * there's not a valid Master PF, grab its identity
6683 			 * for our caller.
6684 			 */
6685 			if (master_mbox == M_PCIE_FW_MASTER &&
6686 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
6687 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
6688 			break;
6689 		}
6690 	}
6691 
6692 	return master_mbox;
6693 }
6694 
6695 /**
6696  *	t4_fw_bye - end communication with FW
6697  *	@adap: the adapter
6698  *	@mbox: mailbox to use for the FW command
6699  *
6700  *	Issues a command to terminate communication with FW.
6701  */
6702 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6703 {
6704 	struct fw_bye_cmd c;
6705 
6706 	memset(&c, 0, sizeof(c));
6707 	INIT_CMD(c, BYE, WRITE);
6708 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6709 }
6710 
6711 /**
6712  *	t4_fw_reset - issue a reset to FW
6713  *	@adap: the adapter
6714  *	@mbox: mailbox to use for the FW command
6715  *	@reset: specifies the type of reset to perform
6716  *
6717  *	Issues a reset command of the specified type to FW.
6718  */
6719 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6720 {
6721 	struct fw_reset_cmd c;
6722 
6723 	memset(&c, 0, sizeof(c));
6724 	INIT_CMD(c, RESET, WRITE);
6725 	c.val = cpu_to_be32(reset);
6726 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6727 }
6728 
6729 /**
6730  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6731  *	@adap: the adapter
6732  *	@mbox: mailbox to use for the FW RESET command (if desired)
6733  *	@force: force uP into RESET even if FW RESET command fails
6734  *
6735  *	Issues a RESET command to firmware (if desired) with a HALT indication
6736  *	and then puts the microprocessor into RESET state.  The RESET command
6737  *	will only be issued if a legitimate mailbox is provided (mbox <=
6738  *	M_PCIE_FW_MASTER).
6739  *
6740  *	This is generally used in order for the host to safely manipulate the
6741  *	adapter without fear of conflicting with whatever the firmware might
6742  *	be doing.  The only way out of this state is to RESTART the firmware
6743  *	...
6744  */
6745 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6746 {
6747 	int ret = 0;
6748 
6749 	/*
6750 	 * If a legitimate mailbox is provided, issue a RESET command
6751 	 * with a HALT indication.
6752 	 */
6753 	if (mbox <= M_PCIE_FW_MASTER) {
6754 		struct fw_reset_cmd c;
6755 
6756 		memset(&c, 0, sizeof(c));
6757 		INIT_CMD(c, RESET, WRITE);
6758 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
6759 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
6760 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6761 	}
6762 
6763 	/*
6764 	 * Normally we won't complete the operation if the firmware RESET
6765 	 * command fails but if our caller insists we'll go ahead and put the
6766 	 * uP into RESET.  This can be useful if the firmware is hung or even
6767 	 * missing ...  We'll have to take the risk of putting the uP into
6768 	 * RESET without the cooperation of firmware in that case.
6769 	 *
6770 	 * We also force the firmware's HALT flag to be on in case we bypassed
6771 	 * the firmware RESET command above or we're dealing with old firmware
6772 	 * which doesn't have the HALT capability.  This will serve as a flag
6773 	 * for the incoming firmware to know that it's coming out of a HALT
6774 	 * rather than a RESET ... if it's new enough to understand that ...
6775 	 */
6776 	if (ret == 0 || force) {
6777 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6778 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
6779 				 F_PCIE_FW_HALT);
6780 	}
6781 
6782 	/*
6783 	 * And we always return the result of the firmware RESET command
6784 	 * even when we force the uP into RESET ...
6785 	 */
6786 	return ret;
6787 }
6788 
6789 /**
6790  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6791  *	@adap: the adapter
6792  *	@reset: if we want to do a RESET to restart things
6793  *
6794  *	Restart firmware previously halted by t4_fw_halt().  On successful
6795  *	return the previous PF Master remains as the new PF Master and there
6796  *	is no need to issue a new HELLO command, etc.
6797  *
6798  *	We do this in two ways:
6799  *
6800  *	 1. If we're dealing with newer firmware we'll simply want to take
6801  *	    the chip's microprocessor out of RESET.  This will cause the
6802  *	    firmware to start up from its start vector.  And then we'll loop
6803  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6804  *	    reset to 0) or we timeout.
6805  *
6806  *	 2. If we're dealing with older firmware then we'll need to RESET
6807  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6808  *	    flag and automatically RESET itself on startup.
6809  */
6810 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6811 {
6812 	if (reset) {
6813 		/*
6814 		 * Since we're directing the RESET instead of the firmware
6815 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6816 		 * bit.
6817 		 */
6818 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
6819 
6820 		/*
6821 		 * If we've been given a valid mailbox, first try to get the
6822 		 * firmware to do the RESET.  If that works, great and we can
6823 		 * return success.  Otherwise, if we haven't been given a
6824 		 * valid mailbox or the RESET command failed, fall back to
6825 		 * hitting the chip with a hammer.
6826 		 */
6827 		if (mbox <= M_PCIE_FW_MASTER) {
6828 			t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6829 			msleep(100);
6830 			if (t4_fw_reset(adap, mbox,
6831 					F_PIORST | F_PIORSTMODE) == 0)
6832 				return 0;
6833 		}
6834 
6835 		t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6836 		msleep(2000);
6837 	} else {
6838 		int ms;
6839 
6840 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6841 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6842 			if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
6843 				return FW_SUCCESS;
6844 			msleep(100);
6845 			ms += 100;
6846 		}
6847 		return -ETIMEDOUT;
6848 	}
6849 	return 0;
6850 }
6851 
6852 /**
6853  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6854  *	@adap: the adapter
6855  *	@mbox: mailbox to use for the FW RESET command (if desired)
6856  *	@fw_data: the firmware image to write
6857  *	@size: image size
6858  *	@force: force upgrade even if firmware doesn't cooperate
6859  *
6860  *	Perform all of the steps necessary for upgrading an adapter's
6861  *	firmware image.  Normally this requires the cooperation of the
6862  *	existing firmware in order to halt all existing activities
6863  *	but if an invalid mailbox token is passed in we skip that step
6864  *	(though we'll still put the adapter microprocessor into RESET in
6865  *	that case).
6866  *
6867  *	On successful return the new firmware will have been loaded and
6868  *	the adapter will have been fully RESET losing all previous setup
6869  *	state.  On unsuccessful return the adapter may be completely hosed ...
6870  *	positive errno indicates that the adapter is ~probably~ intact, a
6871  *	negative errno indicates that things are looking bad ...
6872  */
6873 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6874 		  const u8 *fw_data, unsigned int size, int force)
6875 {
6876 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6877 	unsigned int bootstrap =
6878 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
6879 	int reset, ret;
6880 
6881 	if (!t4_fw_matches_chip(adap, fw_hdr))
6882 		return -EINVAL;
6883 
6884 	if (!bootstrap) {
6885 		ret = t4_fw_halt(adap, mbox, force);
6886 		if (ret < 0 && !force)
6887 			return ret;
6888 	}
6889 
6890 	ret = t4_load_fw(adap, fw_data, size);
6891 	if (ret < 0 || bootstrap)
6892 		return ret;
6893 
6894 	/*
6895 	 * Older versions of the firmware don't understand the new
6896 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6897 	 * restart.  So for newly loaded older firmware we'll have to do the
6898 	 * RESET for it so it starts up on a clean slate.  We can tell if
6899 	 * the newly loaded firmware will handle this right by checking
6900 	 * its header flags to see if it advertises the capability.
6901 	 */
6902 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6903 	return t4_fw_restart(adap, mbox, reset);
6904 }
6905 
6906 /*
6907  * Card doesn't have a firmware, install one.
6908  */
6909 int t4_fw_forceinstall(struct adapter *adap, const u8 *fw_data,
6910     unsigned int size)
6911 {
6912 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6913 	unsigned int bootstrap =
6914 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
6915 	int ret;
6916 
6917 	if (!t4_fw_matches_chip(adap, fw_hdr) || bootstrap)
6918 		return -EINVAL;
6919 
6920 	t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6921 	t4_write_reg(adap, A_PCIE_FW, 0);	/* Clobber internal state */
6922 	ret = t4_load_fw(adap, fw_data, size);
6923 	if (ret < 0)
6924 		return ret;
6925 	t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6926 	msleep(1000);
6927 
6928 	return (0);
6929 }
6930 
6931 /**
6932  *	t4_fw_initialize - ask FW to initialize the device
6933  *	@adap: the adapter
6934  *	@mbox: mailbox to use for the FW command
6935  *
6936  *	Issues a command to FW to partially initialize the device.  This
6937  *	performs initialization that generally doesn't depend on user input.
6938  */
6939 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6940 {
6941 	struct fw_initialize_cmd c;
6942 
6943 	memset(&c, 0, sizeof(c));
6944 	INIT_CMD(c, INITIALIZE, WRITE);
6945 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6946 }
6947 
6948 /**
6949  *	t4_query_params_rw - query FW or device parameters
6950  *	@adap: the adapter
6951  *	@mbox: mailbox to use for the FW command
6952  *	@pf: the PF
6953  *	@vf: the VF
6954  *	@nparams: the number of parameters
6955  *	@params: the parameter names
6956  *	@val: the parameter values
6957  *	@rw: Write and read flag
6958  *
6959  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
6960  *	queried at once.
6961  */
6962 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6963 		       unsigned int vf, unsigned int nparams, const u32 *params,
6964 		       u32 *val, int rw)
6965 {
6966 	int i, ret;
6967 	struct fw_params_cmd c;
6968 	__be32 *p = &c.param[0].mnem;
6969 
6970 	if (nparams > 7)
6971 		return -EINVAL;
6972 
6973 	memset(&c, 0, sizeof(c));
6974 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6975 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
6976 				  V_FW_PARAMS_CMD_PFN(pf) |
6977 				  V_FW_PARAMS_CMD_VFN(vf));
6978 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6979 
6980 	for (i = 0; i < nparams; i++) {
6981 		*p++ = cpu_to_be32(*params++);
6982 		if (rw)
6983 			*p = cpu_to_be32(*(val + i));
6984 		p++;
6985 	}
6986 
6987 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6988 	if (ret == 0)
6989 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6990 			*val++ = be32_to_cpu(*p);
6991 	return ret;
6992 }
6993 
6994 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6995 		    unsigned int vf, unsigned int nparams, const u32 *params,
6996 		    u32 *val)
6997 {
6998 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6999 }
7000 
7001 /**
7002  *      t4_set_params_timeout - sets FW or device parameters
7003  *      @adap: the adapter
7004  *      @mbox: mailbox to use for the FW command
7005  *      @pf: the PF
7006  *      @vf: the VF
7007  *      @nparams: the number of parameters
7008  *      @params: the parameter names
7009  *      @val: the parameter values
7010  *      @timeout: the timeout time
7011  *
7012  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7013  *      specified at once.
7014  */
7015 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7016 			  unsigned int pf, unsigned int vf,
7017 			  unsigned int nparams, const u32 *params,
7018 			  const u32 *val, int timeout)
7019 {
7020 	struct fw_params_cmd c;
7021 	__be32 *p = &c.param[0].mnem;
7022 
7023 	if (nparams > 7)
7024 		return -EINVAL;
7025 
7026 	memset(&c, 0, sizeof(c));
7027 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7028 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7029 				  V_FW_PARAMS_CMD_PFN(pf) |
7030 				  V_FW_PARAMS_CMD_VFN(vf));
7031 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7032 
7033 	while (nparams--) {
7034 		*p++ = cpu_to_be32(*params++);
7035 		*p++ = cpu_to_be32(*val++);
7036 	}
7037 
7038 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7039 }
7040 
7041 /**
7042  *	t4_set_params - sets FW or device parameters
7043  *	@adap: the adapter
7044  *	@mbox: mailbox to use for the FW command
7045  *	@pf: the PF
7046  *	@vf: the VF
7047  *	@nparams: the number of parameters
7048  *	@params: the parameter names
7049  *	@val: the parameter values
7050  *
7051  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7052  *	specified at once.
7053  */
7054 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7055 		  unsigned int vf, unsigned int nparams, const u32 *params,
7056 		  const u32 *val)
7057 {
7058 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7059 				     FW_CMD_MAX_TIMEOUT);
7060 }
7061 
7062 /**
7063  *	t4_cfg_pfvf - configure PF/VF resource limits
7064  *	@adap: the adapter
7065  *	@mbox: mailbox to use for the FW command
7066  *	@pf: the PF being configured
7067  *	@vf: the VF being configured
7068  *	@txq: the max number of egress queues
7069  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7070  *	@rxqi: the max number of interrupt-capable ingress queues
7071  *	@rxq: the max number of interruptless ingress queues
7072  *	@tc: the PCI traffic class
7073  *	@vi: the max number of virtual interfaces
7074  *	@cmask: the channel access rights mask for the PF/VF
7075  *	@pmask: the port access rights mask for the PF/VF
7076  *	@nexact: the maximum number of exact MPS filters
7077  *	@rcaps: read capabilities
7078  *	@wxcaps: write/execute capabilities
7079  *
7080  *	Configures resource limits and capabilities for a physical or virtual
7081  *	function.
7082  */
7083 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7084 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7085 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7086 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7087 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7088 {
7089 	struct fw_pfvf_cmd c;
7090 
7091 	memset(&c, 0, sizeof(c));
7092 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7093 				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7094 				  V_FW_PFVF_CMD_VFN(vf));
7095 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7096 	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7097 				     V_FW_PFVF_CMD_NIQ(rxq));
7098 	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7099 				    V_FW_PFVF_CMD_PMASK(pmask) |
7100 				    V_FW_PFVF_CMD_NEQ(txq));
7101 	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7102 				      V_FW_PFVF_CMD_NVI(vi) |
7103 				      V_FW_PFVF_CMD_NEXACTF(nexact));
7104 	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7105 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7106 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7107 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7108 }
7109 
7110 /**
7111  *	t4_alloc_vi_func - allocate a virtual interface
7112  *	@adap: the adapter
7113  *	@mbox: mailbox to use for the FW command
7114  *	@port: physical port associated with the VI
7115  *	@pf: the PF owning the VI
7116  *	@vf: the VF owning the VI
7117  *	@nmac: number of MAC addresses needed (1 to 5)
7118  *	@mac: the MAC addresses of the VI
7119  *	@rss_size: size of RSS table slice associated with this VI
7120  *	@portfunc: which Port Application Function MAC Address is desired
7121  *	@idstype: Intrusion Detection Type
7122  *
7123  *	Allocates a virtual interface for the given physical port.  If @mac is
7124  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7125  *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7126  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7127  *	stored consecutively so the space needed is @nmac * 6 bytes.
7128  *	Returns a negative error number or the non-negative VI id.
7129  */
7130 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7131 		     unsigned int port, unsigned int pf, unsigned int vf,
7132 		     unsigned int nmac, u8 *mac, u16 *rss_size,
7133 		     unsigned int portfunc, unsigned int idstype)
7134 {
7135 	int ret;
7136 	struct fw_vi_cmd c;
7137 
7138 	memset(&c, 0, sizeof(c));
7139 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7140 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7141 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7142 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7143 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7144 				     V_FW_VI_CMD_FUNC(portfunc));
7145 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7146 	c.nmac = nmac - 1;
7147 	if(!rss_size)
7148 		c.norss_rsssize = F_FW_VI_CMD_NORSS;
7149 
7150 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7151 	if (ret)
7152 		return ret;
7153 
7154 	if (mac) {
7155 		memcpy(mac, c.mac, sizeof(c.mac));
7156 		switch (nmac) {
7157 		case 5:
7158 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7159 		case 4:
7160 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7161 		case 3:
7162 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7163 		case 2:
7164 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7165 		}
7166 	}
7167 	if (rss_size)
7168 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
7169 	return G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7170 }
7171 
7172 /**
7173  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
7174  *      @adap: the adapter
7175  *      @mbox: mailbox to use for the FW command
7176  *      @port: physical port associated with the VI
7177  *      @pf: the PF owning the VI
7178  *      @vf: the VF owning the VI
7179  *      @nmac: number of MAC addresses needed (1 to 5)
7180  *      @mac: the MAC addresses of the VI
7181  *      @rss_size: size of RSS table slice associated with this VI
7182  *
7183  *	backwards compatible and convieniance routine to allocate a Virtual
7184  *	Interface with a Ethernet Port Application Function and Intrustion
7185  *	Detection System disabled.
7186  */
7187 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7188 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7189 		u16 *rss_size)
7190 {
7191 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
7192 				FW_VI_FUNC_ETH, 0);
7193 }
7194 
7195 /**
7196  * 	t4_free_vi - free a virtual interface
7197  * 	@adap: the adapter
7198  * 	@mbox: mailbox to use for the FW command
7199  * 	@pf: the PF owning the VI
7200  * 	@vf: the VF owning the VI
7201  * 	@viid: virtual interface identifiler
7202  *
7203  * 	Free a previously allocated virtual interface.
7204  */
7205 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7206 	       unsigned int vf, unsigned int viid)
7207 {
7208 	struct fw_vi_cmd c;
7209 
7210 	memset(&c, 0, sizeof(c));
7211 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
7212 				  F_FW_CMD_REQUEST |
7213 				  F_FW_CMD_EXEC |
7214 				  V_FW_VI_CMD_PFN(pf) |
7215 				  V_FW_VI_CMD_VFN(vf));
7216 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
7217 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
7218 
7219 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7220 }
7221 
7222 /**
7223  *	t4_set_rxmode - set Rx properties of a virtual interface
7224  *	@adap: the adapter
7225  *	@mbox: mailbox to use for the FW command
7226  *	@viid: the VI id
7227  *	@mtu: the new MTU or -1
7228  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7229  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7230  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7231  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7232  *	@sleep_ok: if true we may sleep while awaiting command completion
7233  *
7234  *	Sets Rx properties of a virtual interface.
7235  */
7236 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7237 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7238 		  bool sleep_ok)
7239 {
7240 	struct fw_vi_rxmode_cmd c;
7241 
7242 	/* convert to FW values */
7243 	if (mtu < 0)
7244 		mtu = M_FW_VI_RXMODE_CMD_MTU;
7245 	if (promisc < 0)
7246 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
7247 	if (all_multi < 0)
7248 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
7249 	if (bcast < 0)
7250 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
7251 	if (vlanex < 0)
7252 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
7253 
7254 	memset(&c, 0, sizeof(c));
7255 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
7256 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7257 				   V_FW_VI_RXMODE_CMD_VIID(viid));
7258 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7259 	c.mtu_to_vlanexen =
7260 		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
7261 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
7262 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
7263 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
7264 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
7265 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7266 }
7267 
7268 /**
7269  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7270  *	@adap: the adapter
7271  *	@mbox: mailbox to use for the FW command
7272  *	@viid: the VI id
7273  *	@free: if true any existing filters for this VI id are first removed
7274  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7275  *	@addr: the MAC address(es)
7276  *	@idx: where to store the index of each allocated filter
7277  *	@hash: pointer to hash address filter bitmap
7278  *	@sleep_ok: call is allowed to sleep
7279  *
7280  *	Allocates an exact-match filter for each of the supplied addresses and
7281  *	sets it to the corresponding address.  If @idx is not %NULL it should
7282  *	have at least @naddr entries, each of which will be set to the index of
7283  *	the filter allocated for the corresponding MAC address.  If a filter
7284  *	could not be allocated for an address its index is set to 0xffff.
7285  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7286  *	are hashed and update the hash filter bitmap pointed at by @hash.
7287  *
7288  *	Returns a negative error number or the number of filters allocated.
7289  */
7290 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7291 		      unsigned int viid, bool free, unsigned int naddr,
7292 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7293 {
7294 	int offset, ret = 0;
7295 	struct fw_vi_mac_cmd c;
7296 	unsigned int nfilters = 0;
7297 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
7298 	unsigned int rem = naddr;
7299 
7300 	if (naddr > max_naddr)
7301 		return -EINVAL;
7302 
7303 	for (offset = 0; offset < naddr ; /**/) {
7304 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7305 					 ? rem
7306 					 : ARRAY_SIZE(c.u.exact));
7307 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7308 						     u.exact[fw_naddr]), 16);
7309 		struct fw_vi_mac_exact *p;
7310 		int i;
7311 
7312 		memset(&c, 0, sizeof(c));
7313 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7314 					   F_FW_CMD_REQUEST |
7315 					   F_FW_CMD_WRITE |
7316 					   V_FW_CMD_EXEC(free) |
7317 					   V_FW_VI_MAC_CMD_VIID(viid));
7318 		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
7319 						  V_FW_CMD_LEN16(len16));
7320 
7321 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7322 			p->valid_to_idx =
7323 				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7324 					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
7325 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7326 		}
7327 
7328 		/*
7329 		 * It's okay if we run out of space in our MAC address arena.
7330 		 * Some of the addresses we submit may get stored so we need
7331 		 * to run through the reply to see what the results were ...
7332 		 */
7333 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7334 		if (ret && ret != -FW_ENOMEM)
7335 			break;
7336 
7337 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7338 			u16 index = G_FW_VI_MAC_CMD_IDX(
7339 						be16_to_cpu(p->valid_to_idx));
7340 
7341 			if (idx)
7342 				idx[offset+i] = (index >=  max_naddr
7343 						 ? 0xffff
7344 						 : index);
7345 			if (index < max_naddr)
7346 				nfilters++;
7347 			else if (hash)
7348 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
7349 		}
7350 
7351 		free = false;
7352 		offset += fw_naddr;
7353 		rem -= fw_naddr;
7354 	}
7355 
7356 	if (ret == 0 || ret == -FW_ENOMEM)
7357 		ret = nfilters;
7358 	return ret;
7359 }
7360 
7361 /**
7362  *	t4_change_mac - modifies the exact-match filter for a MAC address
7363  *	@adap: the adapter
7364  *	@mbox: mailbox to use for the FW command
7365  *	@viid: the VI id
7366  *	@idx: index of existing filter for old value of MAC address, or -1
7367  *	@addr: the new MAC address value
7368  *	@persist: whether a new MAC allocation should be persistent
7369  *	@add_smt: if true also add the address to the HW SMT
7370  *
7371  *	Modifies an exact-match filter and sets it to the new MAC address if
7372  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
7373  *	latter case the address is added persistently if @persist is %true.
7374  *
7375  *	Note that in general it is not possible to modify the value of a given
7376  *	filter so the generic way to modify an address filter is to free the one
7377  *	being used by the old address value and allocate a new filter for the
7378  *	new address value.
7379  *
7380  *	Returns a negative error number or the index of the filter with the new
7381  *	MAC value.  Note that this index may differ from @idx.
7382  */
7383 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7384 		  int idx, const u8 *addr, bool persist, bool add_smt)
7385 {
7386 	int ret, mode;
7387 	struct fw_vi_mac_cmd c;
7388 	struct fw_vi_mac_exact *p = c.u.exact;
7389 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
7390 
7391 	if (idx < 0)		/* new allocation */
7392 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7393 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7394 
7395 	memset(&c, 0, sizeof(c));
7396 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7397 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7398 				   V_FW_VI_MAC_CMD_VIID(viid));
7399 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
7400 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7401 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
7402 				      V_FW_VI_MAC_CMD_IDX(idx));
7403 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7404 
7405 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7406 	if (ret == 0) {
7407 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
7408 		if (ret >= max_mac_addr)
7409 			ret = -ENOMEM;
7410 	}
7411 	return ret;
7412 }
7413 
7414 /**
7415  *	t4_set_addr_hash - program the MAC inexact-match hash filter
7416  *	@adap: the adapter
7417  *	@mbox: mailbox to use for the FW command
7418  *	@viid: the VI id
7419  *	@ucast: whether the hash filter should also match unicast addresses
7420  *	@vec: the value to be written to the hash filter
7421  *	@sleep_ok: call is allowed to sleep
7422  *
7423  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
7424  */
7425 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7426 		     bool ucast, u64 vec, bool sleep_ok)
7427 {
7428 	struct fw_vi_mac_cmd c;
7429 	u32 val;
7430 
7431 	memset(&c, 0, sizeof(c));
7432 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7433 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7434 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7435 	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
7436 	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
7437 	c.freemacs_to_len16 = cpu_to_be32(val);
7438 	c.u.hash.hashvec = cpu_to_be64(vec);
7439 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7440 }
7441 
7442 /**
7443  *      t4_enable_vi_params - enable/disable a virtual interface
7444  *      @adap: the adapter
7445  *      @mbox: mailbox to use for the FW command
7446  *      @viid: the VI id
7447  *      @rx_en: 1=enable Rx, 0=disable Rx
7448  *      @tx_en: 1=enable Tx, 0=disable Tx
7449  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7450  *
7451  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7452  *      only makes sense when enabling a Virtual Interface ...
7453  */
7454 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7455 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7456 {
7457 	struct fw_vi_enable_cmd c;
7458 
7459 	memset(&c, 0, sizeof(c));
7460 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7461 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7462 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7463 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
7464 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
7465 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
7466 				     FW_LEN16(c));
7467 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7468 }
7469 
7470 /**
7471  *	t4_enable_vi - enable/disable a virtual interface
7472  *	@adap: the adapter
7473  *	@mbox: mailbox to use for the FW command
7474  *	@viid: the VI id
7475  *	@rx_en: 1=enable Rx, 0=disable Rx
7476  *	@tx_en: 1=enable Tx, 0=disable Tx
7477  *
7478  *	Enables/disables a virtual interface.  Note that setting DCB Enable
7479  *	only makes sense when enabling a Virtual Interface ...
7480  */
7481 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7482 		 bool rx_en, bool tx_en)
7483 {
7484 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7485 }
7486 
7487 /**
7488  *	t4_identify_port - identify a VI's port by blinking its LED
7489  *	@adap: the adapter
7490  *	@mbox: mailbox to use for the FW command
7491  *	@viid: the VI id
7492  *	@nblinks: how many times to blink LED at 2.5 Hz
7493  *
7494  *	Identifies a VI's port by blinking its LED.
7495  */
7496 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7497 		     unsigned int nblinks)
7498 {
7499 	struct fw_vi_enable_cmd c;
7500 
7501 	memset(&c, 0, sizeof(c));
7502 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7503 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7504 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7505 	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
7506 	c.blinkdur = cpu_to_be16(nblinks);
7507 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7508 }
7509 
7510 /**
7511  *	t4_iq_stop - stop an ingress queue and its FLs
7512  *	@adap: the adapter
7513  *	@mbox: mailbox to use for the FW command
7514  *	@pf: the PF owning the queues
7515  *	@vf: the VF owning the queues
7516  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7517  *	@iqid: ingress queue id
7518  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7519  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7520  *
7521  *	Stops an ingress queue and its associated FLs, if any.  This causes
7522  *	any current or future data/messages destined for these queues to be
7523  *	tossed.
7524  */
7525 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7526 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7527 	       unsigned int fl0id, unsigned int fl1id)
7528 {
7529 	struct fw_iq_cmd c;
7530 
7531 	memset(&c, 0, sizeof(c));
7532 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7533 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7534 				  V_FW_IQ_CMD_VFN(vf));
7535 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
7536 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7537 	c.iqid = cpu_to_be16(iqid);
7538 	c.fl0id = cpu_to_be16(fl0id);
7539 	c.fl1id = cpu_to_be16(fl1id);
7540 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7541 }
7542 
7543 /**
7544  *	t4_iq_free - free an ingress queue and its FLs
7545  *	@adap: the adapter
7546  *	@mbox: mailbox to use for the FW command
7547  *	@pf: the PF owning the queues
7548  *	@vf: the VF owning the queues
7549  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7550  *	@iqid: ingress queue id
7551  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7552  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7553  *
7554  *	Frees an ingress queue and its associated FLs, if any.
7555  */
7556 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7557 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7558 	       unsigned int fl0id, unsigned int fl1id)
7559 {
7560 	struct fw_iq_cmd c;
7561 
7562 	memset(&c, 0, sizeof(c));
7563 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7564 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7565 				  V_FW_IQ_CMD_VFN(vf));
7566 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
7567 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7568 	c.iqid = cpu_to_be16(iqid);
7569 	c.fl0id = cpu_to_be16(fl0id);
7570 	c.fl1id = cpu_to_be16(fl1id);
7571 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7572 }
7573 
7574 /**
7575  *	t4_eth_eq_free - free an Ethernet egress queue
7576  *	@adap: the adapter
7577  *	@mbox: mailbox to use for the FW command
7578  *	@pf: the PF owning the queue
7579  *	@vf: the VF owning the queue
7580  *	@eqid: egress queue id
7581  *
7582  *	Frees an Ethernet egress queue.
7583  */
7584 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7585 		   unsigned int vf, unsigned int eqid)
7586 {
7587 	struct fw_eq_eth_cmd c;
7588 
7589 	memset(&c, 0, sizeof(c));
7590 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
7591 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7592 				  V_FW_EQ_ETH_CMD_PFN(pf) |
7593 				  V_FW_EQ_ETH_CMD_VFN(vf));
7594 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
7595 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
7596 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7597 }
7598 
7599 /**
7600  *	t4_ctrl_eq_free - free a control egress queue
7601  *	@adap: the adapter
7602  *	@mbox: mailbox to use for the FW command
7603  *	@pf: the PF owning the queue
7604  *	@vf: the VF owning the queue
7605  *	@eqid: egress queue id
7606  *
7607  *	Frees a control egress queue.
7608  */
7609 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7610 		    unsigned int vf, unsigned int eqid)
7611 {
7612 	struct fw_eq_ctrl_cmd c;
7613 
7614 	memset(&c, 0, sizeof(c));
7615 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
7616 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7617 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
7618 				  V_FW_EQ_CTRL_CMD_VFN(vf));
7619 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
7620 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
7621 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7622 }
7623 
7624 /**
7625  *	t4_ofld_eq_free - free an offload egress queue
7626  *	@adap: the adapter
7627  *	@mbox: mailbox to use for the FW command
7628  *	@pf: the PF owning the queue
7629  *	@vf: the VF owning the queue
7630  *	@eqid: egress queue id
7631  *
7632  *	Frees a control egress queue.
7633  */
7634 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7635 		    unsigned int vf, unsigned int eqid)
7636 {
7637 	struct fw_eq_ofld_cmd c;
7638 
7639 	memset(&c, 0, sizeof(c));
7640 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
7641 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7642 				  V_FW_EQ_OFLD_CMD_PFN(pf) |
7643 				  V_FW_EQ_OFLD_CMD_VFN(vf));
7644 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
7645 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
7646 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7647 }
7648 
7649 /**
7650  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
7651  *	@link_down_rc: Link Down Reason Code
7652  *
7653  *	Returns a string representation of the Link Down Reason Code.
7654  */
7655 const char *t4_link_down_rc_str(unsigned char link_down_rc)
7656 {
7657 	static const char *reason[] = {
7658 		"Link Down",
7659 		"Remote Fault",
7660 		"Auto-negotiation Failure",
7661 		"Reserved3",
7662 		"Insufficient Airflow",
7663 		"Unable To Determine Reason",
7664 		"No RX Signal Detected",
7665 		"Reserved7",
7666 	};
7667 
7668 	if (link_down_rc >= ARRAY_SIZE(reason))
7669 		return "Bad Reason Code";
7670 
7671 	return reason[link_down_rc];
7672 }
7673 
7674 /*
7675  * Updates all fields owned by the common code in port_info and link_config
7676  * based on information provided by the firmware.  Does not touch any
7677  * requested_* field.
7678  */
7679 static void handle_port_info(struct port_info *pi, const struct fw_port_info *p)
7680 {
7681 	struct link_config *lc = &pi->link_cfg;
7682 	int speed;
7683 	unsigned char fc, fec;
7684 	u32 stat = be32_to_cpu(p->lstatus_to_modtype);
7685 
7686 	pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
7687 	pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
7688 	pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
7689 	    G_FW_PORT_CMD_MDIOADDR(stat) : -1;
7690 
7691 	lc->supported = be16_to_cpu(p->pcap);
7692 	lc->advertising = be16_to_cpu(p->acap);
7693 	lc->lp_advertising = be16_to_cpu(p->lpacap);
7694 	lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
7695 	lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
7696 
7697 	speed = 0;
7698 	if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
7699 		speed = 100;
7700 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
7701 		speed = 1000;
7702 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
7703 		speed = 10000;
7704 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
7705 		speed = 25000;
7706 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
7707 		speed = 40000;
7708 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
7709 		speed = 100000;
7710 	lc->speed = speed;
7711 
7712 	fc = 0;
7713 	if (stat & F_FW_PORT_CMD_RXPAUSE)
7714 		fc |= PAUSE_RX;
7715 	if (stat & F_FW_PORT_CMD_TXPAUSE)
7716 		fc |= PAUSE_TX;
7717 	lc->fc = fc;
7718 
7719 	fec = 0;
7720 	if (lc->advertising & FW_PORT_CAP_FEC_RS)
7721 		fec = FEC_RS;
7722 	else if (lc->advertising & FW_PORT_CAP_FEC_BASER_RS)
7723 		fec = FEC_BASER_RS;
7724 	lc->fec = fec;
7725 }
7726 
7727 /**
7728  *	t4_update_port_info - retrieve and update port information if changed
7729  *	@pi: the port_info
7730  *
7731  *	We issue a Get Port Information Command to the Firmware and, if
7732  *	successful, we check to see if anything is different from what we
7733  *	last recorded and update things accordingly.
7734  */
7735  int t4_update_port_info(struct port_info *pi)
7736  {
7737 	struct fw_port_cmd port_cmd;
7738 	int ret;
7739 
7740 	memset(&port_cmd, 0, sizeof port_cmd);
7741 	port_cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
7742 					    F_FW_CMD_REQUEST | F_FW_CMD_READ |
7743 					    V_FW_PORT_CMD_PORTID(pi->tx_chan));
7744 	port_cmd.action_to_len16 = cpu_to_be32(
7745 		V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
7746 		FW_LEN16(port_cmd));
7747 	ret = t4_wr_mbox_ns(pi->adapter, pi->adapter->mbox,
7748 			 &port_cmd, sizeof(port_cmd), &port_cmd);
7749 	if (ret)
7750 		return ret;
7751 
7752 	handle_port_info(pi, &port_cmd.u.info);
7753 	return 0;
7754 }
7755 
7756 /**
7757  *	t4_handle_fw_rpl - process a FW reply message
7758  *	@adap: the adapter
7759  *	@rpl: start of the FW message
7760  *
7761  *	Processes a FW message, such as link state change messages.
7762  */
7763 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7764 {
7765 	u8 opcode = *(const u8 *)rpl;
7766 	const struct fw_port_cmd *p = (const void *)rpl;
7767 	unsigned int action =
7768 			G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
7769 
7770 	if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7771 		/* link/module state change message */
7772 		int i, old_ptype, old_mtype;
7773 		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
7774 		struct port_info *pi = NULL;
7775 		struct link_config *lc, *old_lc;
7776 
7777 		for_each_port(adap, i) {
7778 			pi = adap2pinfo(adap, i);
7779 			if (pi->tx_chan == chan)
7780 				break;
7781 		}
7782 
7783 		lc = &pi->link_cfg;
7784 		PORT_LOCK(pi);
7785 		old_lc = &pi->old_link_cfg;
7786 		old_ptype = pi->port_type;
7787 		old_mtype = pi->mod_type;
7788 		handle_port_info(pi, &p->u.info);
7789 		PORT_UNLOCK(pi);
7790 		if (old_ptype != pi->port_type || old_mtype != pi->mod_type) {
7791 			t4_os_portmod_changed(pi);
7792 		}
7793 		PORT_LOCK(pi);
7794 		if (old_lc->link_ok != lc->link_ok ||
7795 		    old_lc->speed != lc->speed ||
7796 		    old_lc->fec != lc->fec ||
7797 		    old_lc->fc != lc->fc) {
7798 			t4_os_link_changed(pi);
7799 			*old_lc = *lc;
7800 		}
7801 		PORT_UNLOCK(pi);
7802 	} else {
7803 		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
7804 		return -EINVAL;
7805 	}
7806 	return 0;
7807 }
7808 
7809 /**
7810  *	get_pci_mode - determine a card's PCI mode
7811  *	@adapter: the adapter
7812  *	@p: where to store the PCI settings
7813  *
7814  *	Determines a card's PCI mode and associated parameters, such as speed
7815  *	and width.
7816  */
7817 static void get_pci_mode(struct adapter *adapter,
7818 				   struct pci_params *p)
7819 {
7820 	u16 val;
7821 	u32 pcie_cap;
7822 
7823 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7824 	if (pcie_cap) {
7825 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
7826 		p->speed = val & PCI_EXP_LNKSTA_CLS;
7827 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7828 	}
7829 }
7830 
7831 struct flash_desc {
7832 	u32 vendor_and_model_id;
7833 	u32 size_mb;
7834 };
7835 
7836 int t4_get_flash_params(struct adapter *adapter)
7837 {
7838 	/*
7839 	 * Table for non-standard supported Flash parts.  Note, all Flash
7840 	 * parts must have 64KB sectors.
7841 	 */
7842 	static struct flash_desc supported_flash[] = {
7843 		{ 0x00150201, 4 << 20 },	/* Spansion 4MB S25FL032P */
7844 	};
7845 
7846 	int ret;
7847 	u32 flashid = 0;
7848 	unsigned int part, manufacturer;
7849 	unsigned int density, size;
7850 
7851 
7852 	/*
7853 	 * Issue a Read ID Command to the Flash part.  We decode supported
7854 	 * Flash parts and their sizes from this.  There's a newer Query
7855 	 * Command which can retrieve detailed geometry information but many
7856 	 * Flash parts don't support it.
7857 	 */
7858 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
7859 	if (!ret)
7860 		ret = sf1_read(adapter, 3, 0, 1, &flashid);
7861 	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
7862 	if (ret < 0)
7863 		return ret;
7864 
7865 	/*
7866 	 * Check to see if it's one of our non-standard supported Flash parts.
7867 	 */
7868 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
7869 		if (supported_flash[part].vendor_and_model_id == flashid) {
7870 			adapter->params.sf_size =
7871 				supported_flash[part].size_mb;
7872 			adapter->params.sf_nsec =
7873 				adapter->params.sf_size / SF_SEC_SIZE;
7874 			goto found;
7875 		}
7876 
7877 	/*
7878 	 * Decode Flash part size.  The code below looks repetative with
7879 	 * common encodings, but that's not guaranteed in the JEDEC
7880 	 * specification for the Read JADEC ID command.  The only thing that
7881 	 * we're guaranteed by the JADEC specification is where the
7882 	 * Manufacturer ID is in the returned result.  After that each
7883 	 * Manufacturer ~could~ encode things completely differently.
7884 	 * Note, all Flash parts must have 64KB sectors.
7885 	 */
7886 	manufacturer = flashid & 0xff;
7887 	switch (manufacturer) {
7888 	case 0x20: { /* Micron/Numonix */
7889 		/*
7890 		 * This Density -> Size decoding table is taken from Micron
7891 		 * Data Sheets.
7892 		 */
7893 		density = (flashid >> 16) & 0xff;
7894 		switch (density) {
7895 		case 0x14: size = 1 << 20; break; /*   1MB */
7896 		case 0x15: size = 1 << 21; break; /*   2MB */
7897 		case 0x16: size = 1 << 22; break; /*   4MB */
7898 		case 0x17: size = 1 << 23; break; /*   8MB */
7899 		case 0x18: size = 1 << 24; break; /*  16MB */
7900 		case 0x19: size = 1 << 25; break; /*  32MB */
7901 		case 0x20: size = 1 << 26; break; /*  64MB */
7902 		case 0x21: size = 1 << 27; break; /* 128MB */
7903 		case 0x22: size = 1 << 28; break; /* 256MB */
7904 
7905 		default:
7906 			CH_ERR(adapter, "Micron Flash Part has bad size, "
7907 			       "ID = %#x, Density code = %#x\n",
7908 			       flashid, density);
7909 			return -EINVAL;
7910 		}
7911 		break;
7912 	}
7913 
7914 	case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
7915 		/*
7916 		 * This Density -> Size decoding table is taken from ISSI
7917 		 * Data Sheets.
7918 		 */
7919 		density = (flashid >> 16) & 0xff;
7920 		switch (density) {
7921 		case 0x16: size = 1 << 25; break; /*  32MB */
7922 		case 0x17: size = 1 << 26; break; /*  64MB */
7923 
7924 		default:
7925 			CH_ERR(adapter, "ISSI Flash Part has bad size, "
7926 			       "ID = %#x, Density code = %#x\n",
7927 			       flashid, density);
7928 			return -EINVAL;
7929 		}
7930 		break;
7931 	}
7932 
7933 	case 0xc2: { /* Macronix */
7934 		/*
7935 		 * This Density -> Size decoding table is taken from Macronix
7936 		 * Data Sheets.
7937 		 */
7938 		density = (flashid >> 16) & 0xff;
7939 		switch (density) {
7940 		case 0x17: size = 1 << 23; break; /*   8MB */
7941 		case 0x18: size = 1 << 24; break; /*  16MB */
7942 
7943 		default:
7944 			CH_ERR(adapter, "Macronix Flash Part has bad size, "
7945 			       "ID = %#x, Density code = %#x\n",
7946 			       flashid, density);
7947 			return -EINVAL;
7948 		}
7949 		break;
7950 	}
7951 
7952 	case 0xef: { /* Winbond */
7953 		/*
7954 		 * This Density -> Size decoding table is taken from Winbond
7955 		 * Data Sheets.
7956 		 */
7957 		density = (flashid >> 16) & 0xff;
7958 		switch (density) {
7959 		case 0x17: size = 1 << 23; break; /*   8MB */
7960 		case 0x18: size = 1 << 24; break; /*  16MB */
7961 
7962 		default:
7963 			CH_ERR(adapter, "Winbond Flash Part has bad size, "
7964 			       "ID = %#x, Density code = %#x\n",
7965 			       flashid, density);
7966 			return -EINVAL;
7967 		}
7968 		break;
7969 	}
7970 
7971 	default:
7972 		CH_ERR(adapter, "Unsupported Flash Part, ID = %#x\n", flashid);
7973 		return -EINVAL;
7974 	}
7975 
7976 	/*
7977 	 * Store decoded Flash size and fall through into vetting code.
7978 	 */
7979 	adapter->params.sf_size = size;
7980 	adapter->params.sf_nsec = size / SF_SEC_SIZE;
7981 
7982  found:
7983 	/*
7984 	 * We should ~probably~ reject adapters with FLASHes which are too
7985 	 * small but we have some legacy FPGAs with small FLASHes that we'd
7986 	 * still like to use.  So instead we emit a scary message ...
7987 	 */
7988 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
7989 		CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
7990 			flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
7991 
7992 	return 0;
7993 }
7994 
7995 static void set_pcie_completion_timeout(struct adapter *adapter,
7996 						  u8 range)
7997 {
7998 	u16 val;
7999 	u32 pcie_cap;
8000 
8001 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
8002 	if (pcie_cap) {
8003 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
8004 		val &= 0xfff0;
8005 		val |= range ;
8006 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
8007 	}
8008 }
8009 
8010 const struct chip_params *t4_get_chip_params(int chipid)
8011 {
8012 	static const struct chip_params chip_params[] = {
8013 		{
8014 			/* T4 */
8015 			.nchan = NCHAN,
8016 			.pm_stats_cnt = PM_NSTATS,
8017 			.cng_ch_bits_log = 2,
8018 			.nsched_cls = 15,
8019 			.cim_num_obq = CIM_NUM_OBQ,
8020 			.mps_rplc_size = 128,
8021 			.vfcount = 128,
8022 			.sge_fl_db = F_DBPRIO,
8023 			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
8024 		},
8025 		{
8026 			/* T5 */
8027 			.nchan = NCHAN,
8028 			.pm_stats_cnt = PM_NSTATS,
8029 			.cng_ch_bits_log = 2,
8030 			.nsched_cls = 16,
8031 			.cim_num_obq = CIM_NUM_OBQ_T5,
8032 			.mps_rplc_size = 128,
8033 			.vfcount = 128,
8034 			.sge_fl_db = F_DBPRIO | F_DBTYPE,
8035 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8036 		},
8037 		{
8038 			/* T6 */
8039 			.nchan = T6_NCHAN,
8040 			.pm_stats_cnt = T6_PM_NSTATS,
8041 			.cng_ch_bits_log = 3,
8042 			.nsched_cls = 16,
8043 			.cim_num_obq = CIM_NUM_OBQ_T5,
8044 			.mps_rplc_size = 256,
8045 			.vfcount = 256,
8046 			.sge_fl_db = 0,
8047 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8048 		},
8049 	};
8050 
8051 	chipid -= CHELSIO_T4;
8052 	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
8053 		return NULL;
8054 
8055 	return &chip_params[chipid];
8056 }
8057 
8058 /**
8059  *	t4_prep_adapter - prepare SW and HW for operation
8060  *	@adapter: the adapter
8061  *	@buf: temporary space of at least VPD_LEN size provided by the caller.
8062  *
8063  *	Initialize adapter SW state for the various HW modules, set initial
8064  *	values for some adapter tunables, take PHYs out of reset, and
8065  *	initialize the MDIO interface.
8066  */
8067 int t4_prep_adapter(struct adapter *adapter, u32 *buf)
8068 {
8069 	int ret;
8070 	uint16_t device_id;
8071 	uint32_t pl_rev;
8072 
8073 	get_pci_mode(adapter, &adapter->params.pci);
8074 
8075 	pl_rev = t4_read_reg(adapter, A_PL_REV);
8076 	adapter->params.chipid = G_CHIPID(pl_rev);
8077 	adapter->params.rev = G_REV(pl_rev);
8078 	if (adapter->params.chipid == 0) {
8079 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
8080 		adapter->params.chipid = CHELSIO_T4;
8081 
8082 		/* T4A1 chip is not supported */
8083 		if (adapter->params.rev == 1) {
8084 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
8085 			return -EINVAL;
8086 		}
8087 	}
8088 
8089 	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
8090 	if (adapter->chip_params == NULL)
8091 		return -EINVAL;
8092 
8093 	adapter->params.pci.vpd_cap_addr =
8094 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
8095 
8096 	ret = t4_get_flash_params(adapter);
8097 	if (ret < 0)
8098 		return ret;
8099 
8100 	/* Cards with real ASICs have the chipid in the PCIe device id */
8101 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
8102 	if (device_id >> 12 == chip_id(adapter))
8103 		adapter->params.cim_la_size = CIMLA_SIZE;
8104 	else {
8105 		/* FPGA */
8106 		adapter->params.fpga = 1;
8107 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
8108 	}
8109 
8110 	ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
8111 	if (ret < 0)
8112 		return ret;
8113 
8114 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8115 
8116 	/*
8117 	 * Default port and clock for debugging in case we can't reach FW.
8118 	 */
8119 	adapter->params.nports = 1;
8120 	adapter->params.portvec = 1;
8121 	adapter->params.vpd.cclk = 50000;
8122 
8123 	/* Set pci completion timeout value to 4 seconds. */
8124 	set_pcie_completion_timeout(adapter, 0xd);
8125 	return 0;
8126 }
8127 
8128 /**
8129  *	t4_shutdown_adapter - shut down adapter, host & wire
8130  *	@adapter: the adapter
8131  *
8132  *	Perform an emergency shutdown of the adapter and stop it from
8133  *	continuing any further communication on the ports or DMA to the
8134  *	host.  This is typically used when the adapter and/or firmware
8135  *	have crashed and we want to prevent any further accidental
8136  *	communication with the rest of the world.  This will also force
8137  *	the port Link Status to go down -- if register writes work --
8138  *	which should help our peers figure out that we're down.
8139  */
8140 int t4_shutdown_adapter(struct adapter *adapter)
8141 {
8142 	int port;
8143 
8144 	t4_intr_disable(adapter);
8145 	t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
8146 	for_each_port(adapter, port) {
8147 		u32 a_port_cfg = is_t4(adapter) ?
8148 				 PORT_REG(port, A_XGMAC_PORT_CFG) :
8149 				 T5_PORT_REG(port, A_MAC_PORT_CFG);
8150 
8151 		t4_write_reg(adapter, a_port_cfg,
8152 			     t4_read_reg(adapter, a_port_cfg)
8153 			     & ~V_SIGNAL_DET(1));
8154 	}
8155 	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
8156 
8157 	return 0;
8158 }
8159 
8160 /**
8161  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
8162  *	@adapter: the adapter
8163  *	@qid: the Queue ID
8164  *	@qtype: the Ingress or Egress type for @qid
8165  *	@user: true if this request is for a user mode queue
8166  *	@pbar2_qoffset: BAR2 Queue Offset
8167  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
8168  *
8169  *	Returns the BAR2 SGE Queue Registers information associated with the
8170  *	indicated Absolute Queue ID.  These are passed back in return value
8171  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
8172  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
8173  *
8174  *	This may return an error which indicates that BAR2 SGE Queue
8175  *	registers aren't available.  If an error is not returned, then the
8176  *	following values are returned:
8177  *
8178  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
8179  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
8180  *
8181  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
8182  *	require the "Inferred Queue ID" ability may be used.  E.g. the
8183  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
8184  *	then these "Inferred Queue ID" register may not be used.
8185  */
8186 int t4_bar2_sge_qregs(struct adapter *adapter,
8187 		      unsigned int qid,
8188 		      enum t4_bar2_qtype qtype,
8189 		      int user,
8190 		      u64 *pbar2_qoffset,
8191 		      unsigned int *pbar2_qid)
8192 {
8193 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
8194 	u64 bar2_page_offset, bar2_qoffset;
8195 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
8196 
8197 	/* T4 doesn't support BAR2 SGE Queue registers for kernel
8198 	 * mode queues.
8199 	 */
8200 	if (!user && is_t4(adapter))
8201 		return -EINVAL;
8202 
8203 	/* Get our SGE Page Size parameters.
8204 	 */
8205 	page_shift = adapter->params.sge.page_shift;
8206 	page_size = 1 << page_shift;
8207 
8208 	/* Get the right Queues per Page parameters for our Queue.
8209 	 */
8210 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
8211 		     ? adapter->params.sge.eq_s_qpp
8212 		     : adapter->params.sge.iq_s_qpp);
8213 	qpp_mask = (1 << qpp_shift) - 1;
8214 
8215 	/* Calculate the basics of the BAR2 SGE Queue register area:
8216 	 *  o The BAR2 page the Queue registers will be in.
8217 	 *  o The BAR2 Queue ID.
8218 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
8219 	 */
8220 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
8221 	bar2_qid = qid & qpp_mask;
8222 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
8223 
8224 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
8225 	 * hardware will infer the Absolute Queue ID simply from the writes to
8226 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
8227 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
8228 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
8229 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
8230 	 * from the BAR2 Page and BAR2 Queue ID.
8231 	 *
8232 	 * One important censequence of this is that some BAR2 SGE registers
8233 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
8234 	 * there.  But other registers synthesize the SGE Queue ID purely
8235 	 * from the writes to the registers -- the Write Combined Doorbell
8236 	 * Buffer is a good example.  These BAR2 SGE Registers are only
8237 	 * available for those BAR2 SGE Register areas where the SGE Absolute
8238 	 * Queue ID can be inferred from simple writes.
8239 	 */
8240 	bar2_qoffset = bar2_page_offset;
8241 	bar2_qinferred = (bar2_qid_offset < page_size);
8242 	if (bar2_qinferred) {
8243 		bar2_qoffset += bar2_qid_offset;
8244 		bar2_qid = 0;
8245 	}
8246 
8247 	*pbar2_qoffset = bar2_qoffset;
8248 	*pbar2_qid = bar2_qid;
8249 	return 0;
8250 }
8251 
8252 /**
8253  *	t4_init_devlog_params - initialize adapter->params.devlog
8254  *	@adap: the adapter
8255  *	@fw_attach: whether we can talk to the firmware
8256  *
8257  *	Initialize various fields of the adapter's Firmware Device Log
8258  *	Parameters structure.
8259  */
8260 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
8261 {
8262 	struct devlog_params *dparams = &adap->params.devlog;
8263 	u32 pf_dparams;
8264 	unsigned int devlog_meminfo;
8265 	struct fw_devlog_cmd devlog_cmd;
8266 	int ret;
8267 
8268 	/* If we're dealing with newer firmware, the Device Log Paramerters
8269 	 * are stored in a designated register which allows us to access the
8270 	 * Device Log even if we can't talk to the firmware.
8271 	 */
8272 	pf_dparams =
8273 		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
8274 	if (pf_dparams) {
8275 		unsigned int nentries, nentries128;
8276 
8277 		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
8278 		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
8279 
8280 		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
8281 		nentries = (nentries128 + 1) * 128;
8282 		dparams->size = nentries * sizeof(struct fw_devlog_e);
8283 
8284 		return 0;
8285 	}
8286 
8287 	/*
8288 	 * For any failing returns ...
8289 	 */
8290 	memset(dparams, 0, sizeof *dparams);
8291 
8292 	/*
8293 	 * If we can't talk to the firmware, there's really nothing we can do
8294 	 * at this point.
8295 	 */
8296 	if (!fw_attach)
8297 		return -ENXIO;
8298 
8299 	/* Otherwise, ask the firmware for it's Device Log Parameters.
8300 	 */
8301 	memset(&devlog_cmd, 0, sizeof devlog_cmd);
8302 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
8303 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
8304 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
8305 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
8306 			 &devlog_cmd);
8307 	if (ret)
8308 		return ret;
8309 
8310 	devlog_meminfo =
8311 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
8312 	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
8313 	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
8314 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
8315 
8316 	return 0;
8317 }
8318 
8319 /**
8320  *	t4_init_sge_params - initialize adap->params.sge
8321  *	@adapter: the adapter
8322  *
8323  *	Initialize various fields of the adapter's SGE Parameters structure.
8324  */
8325 int t4_init_sge_params(struct adapter *adapter)
8326 {
8327 	u32 r;
8328 	struct sge_params *sp = &adapter->params.sge;
8329 	unsigned i, tscale = 1;
8330 
8331 	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
8332 	sp->counter_val[0] = G_THRESHOLD_0(r);
8333 	sp->counter_val[1] = G_THRESHOLD_1(r);
8334 	sp->counter_val[2] = G_THRESHOLD_2(r);
8335 	sp->counter_val[3] = G_THRESHOLD_3(r);
8336 
8337 	if (chip_id(adapter) >= CHELSIO_T6) {
8338 		r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
8339 		tscale = G_TSCALE(r);
8340 		if (tscale == 0)
8341 			tscale = 1;
8342 		else
8343 			tscale += 2;
8344 	}
8345 
8346 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
8347 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
8348 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
8349 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
8350 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
8351 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
8352 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
8353 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
8354 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
8355 
8356 	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
8357 	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
8358 	if (is_t4(adapter))
8359 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
8360 	else if (is_t5(adapter))
8361 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
8362 	else
8363 		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
8364 
8365 	/* egress queues: log2 of # of doorbells per BAR2 page */
8366 	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
8367 	r >>= S_QUEUESPERPAGEPF0 +
8368 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
8369 	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
8370 
8371 	/* ingress queues: log2 of # of doorbells per BAR2 page */
8372 	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
8373 	r >>= S_QUEUESPERPAGEPF0 +
8374 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
8375 	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
8376 
8377 	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
8378 	r >>= S_HOSTPAGESIZEPF0 +
8379 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
8380 	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
8381 
8382 	r = t4_read_reg(adapter, A_SGE_CONTROL);
8383 	sp->sge_control = r;
8384 	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
8385 	sp->fl_pktshift = G_PKTSHIFT(r);
8386 	if (chip_id(adapter) <= CHELSIO_T5) {
8387 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
8388 		    X_INGPADBOUNDARY_SHIFT);
8389 	} else {
8390 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
8391 		    X_T6_INGPADBOUNDARY_SHIFT);
8392 	}
8393 	if (is_t4(adapter))
8394 		sp->pack_boundary = sp->pad_boundary;
8395 	else {
8396 		r = t4_read_reg(adapter, A_SGE_CONTROL2);
8397 		if (G_INGPACKBOUNDARY(r) == 0)
8398 			sp->pack_boundary = 16;
8399 		else
8400 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
8401 	}
8402 	for (i = 0; i < SGE_FLBUF_SIZES; i++)
8403 		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
8404 		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
8405 
8406 	return 0;
8407 }
8408 
8409 /*
8410  * Read and cache the adapter's compressed filter mode and ingress config.
8411  */
8412 static void read_filter_mode_and_ingress_config(struct adapter *adap,
8413     bool sleep_ok)
8414 {
8415 	uint32_t v;
8416 	struct tp_params *tpp = &adap->params.tp;
8417 
8418 	t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP,
8419 	    sleep_ok);
8420 	t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG,
8421 	    sleep_ok);
8422 
8423 	/*
8424 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
8425 	 * shift positions of several elements of the Compressed Filter Tuple
8426 	 * for this adapter which we need frequently ...
8427 	 */
8428 	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
8429 	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
8430 	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
8431 	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
8432 	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
8433 	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
8434 	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
8435 	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
8436 	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
8437 	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
8438 
8439 	if (chip_id(adap) > CHELSIO_T4) {
8440 		v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3));
8441 		adap->params.tp.hash_filter_mask = v;
8442 		v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4));
8443 		adap->params.tp.hash_filter_mask |= (u64)v << 32;
8444 	}
8445 }
8446 
8447 /**
8448  *      t4_init_tp_params - initialize adap->params.tp
8449  *      @adap: the adapter
8450  *
8451  *      Initialize various fields of the adapter's TP Parameters structure.
8452  */
8453 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
8454 {
8455 	int chan;
8456 	u32 v;
8457 	struct tp_params *tpp = &adap->params.tp;
8458 
8459 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
8460 	tpp->tre = G_TIMERRESOLUTION(v);
8461 	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
8462 
8463 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
8464 	for (chan = 0; chan < MAX_NCHAN; chan++)
8465 		tpp->tx_modq[chan] = chan;
8466 
8467 	read_filter_mode_and_ingress_config(adap, sleep_ok);
8468 
8469 	/*
8470 	 * Cache a mask of the bits that represent the error vector portion of
8471 	 * rx_pkt.err_vec.  T6+ can use a compressed error vector to make room
8472 	 * for information about outer encapsulation (GENEVE/VXLAN/NVGRE).
8473 	 */
8474 	tpp->err_vec_mask = htobe16(0xffff);
8475 	if (chip_id(adap) > CHELSIO_T5) {
8476 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
8477 		if (v & F_CRXPKTENC) {
8478 			tpp->err_vec_mask =
8479 			    htobe16(V_T6_COMPR_RXERR_VEC(M_T6_COMPR_RXERR_VEC));
8480 		}
8481 	}
8482 
8483 	return 0;
8484 }
8485 
8486 /**
8487  *      t4_filter_field_shift - calculate filter field shift
8488  *      @adap: the adapter
8489  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
8490  *
8491  *      Return the shift position of a filter field within the Compressed
8492  *      Filter Tuple.  The filter field is specified via its selection bit
8493  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
8494  */
8495 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
8496 {
8497 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
8498 	unsigned int sel;
8499 	int field_shift;
8500 
8501 	if ((filter_mode & filter_sel) == 0)
8502 		return -1;
8503 
8504 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
8505 		switch (filter_mode & sel) {
8506 		case F_FCOE:
8507 			field_shift += W_FT_FCOE;
8508 			break;
8509 		case F_PORT:
8510 			field_shift += W_FT_PORT;
8511 			break;
8512 		case F_VNIC_ID:
8513 			field_shift += W_FT_VNIC_ID;
8514 			break;
8515 		case F_VLAN:
8516 			field_shift += W_FT_VLAN;
8517 			break;
8518 		case F_TOS:
8519 			field_shift += W_FT_TOS;
8520 			break;
8521 		case F_PROTOCOL:
8522 			field_shift += W_FT_PROTOCOL;
8523 			break;
8524 		case F_ETHERTYPE:
8525 			field_shift += W_FT_ETHERTYPE;
8526 			break;
8527 		case F_MACMATCH:
8528 			field_shift += W_FT_MACMATCH;
8529 			break;
8530 		case F_MPSHITTYPE:
8531 			field_shift += W_FT_MPSHITTYPE;
8532 			break;
8533 		case F_FRAGMENTATION:
8534 			field_shift += W_FT_FRAGMENTATION;
8535 			break;
8536 		}
8537 	}
8538 	return field_shift;
8539 }
8540 
8541 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
8542 {
8543 	u8 addr[6];
8544 	int ret, i, j;
8545 	u16 rss_size;
8546 	struct port_info *p = adap2pinfo(adap, port_id);
8547 	u32 param, val;
8548 
8549 	for (i = 0, j = -1; i <= p->port_id; i++) {
8550 		do {
8551 			j++;
8552 		} while ((adap->params.portvec & (1 << j)) == 0);
8553 	}
8554 
8555 	if (!(adap->flags & IS_VF) ||
8556 	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
8557  		t4_update_port_info(p);
8558 	}
8559 
8560 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
8561 	if (ret < 0)
8562 		return ret;
8563 
8564 	p->vi[0].viid = ret;
8565 	if (chip_id(adap) <= CHELSIO_T5)
8566 		p->vi[0].smt_idx = (ret & 0x7f) << 1;
8567 	else
8568 		p->vi[0].smt_idx = (ret & 0x7f);
8569 	p->tx_chan = j;
8570 	p->mps_bg_map = t4_get_mps_bg_map(adap, j);
8571 	p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
8572 	p->lport = j;
8573 	p->vi[0].rss_size = rss_size;
8574 	t4_os_set_hw_addr(p, addr);
8575 
8576 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8577 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
8578 	    V_FW_PARAMS_PARAM_YZ(p->vi[0].viid);
8579 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
8580 	if (ret)
8581 		p->vi[0].rss_base = 0xffff;
8582 	else {
8583 		/* MPASS((val >> 16) == rss_size); */
8584 		p->vi[0].rss_base = val & 0xffff;
8585 	}
8586 
8587 	return 0;
8588 }
8589 
8590 /**
8591  *	t4_read_cimq_cfg - read CIM queue configuration
8592  *	@adap: the adapter
8593  *	@base: holds the queue base addresses in bytes
8594  *	@size: holds the queue sizes in bytes
8595  *	@thres: holds the queue full thresholds in bytes
8596  *
8597  *	Returns the current configuration of the CIM queues, starting with
8598  *	the IBQs, then the OBQs.
8599  */
8600 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
8601 {
8602 	unsigned int i, v;
8603 	int cim_num_obq = adap->chip_params->cim_num_obq;
8604 
8605 	for (i = 0; i < CIM_NUM_IBQ; i++) {
8606 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
8607 			     V_QUENUMSELECT(i));
8608 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8609 		/* value is in 256-byte units */
8610 		*base++ = G_CIMQBASE(v) * 256;
8611 		*size++ = G_CIMQSIZE(v) * 256;
8612 		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
8613 	}
8614 	for (i = 0; i < cim_num_obq; i++) {
8615 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8616 			     V_QUENUMSELECT(i));
8617 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8618 		/* value is in 256-byte units */
8619 		*base++ = G_CIMQBASE(v) * 256;
8620 		*size++ = G_CIMQSIZE(v) * 256;
8621 	}
8622 }
8623 
8624 /**
8625  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
8626  *	@adap: the adapter
8627  *	@qid: the queue index
8628  *	@data: where to store the queue contents
8629  *	@n: capacity of @data in 32-bit words
8630  *
8631  *	Reads the contents of the selected CIM queue starting at address 0 up
8632  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8633  *	error and the number of 32-bit words actually read on success.
8634  */
8635 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8636 {
8637 	int i, err, attempts;
8638 	unsigned int addr;
8639 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
8640 
8641 	if (qid > 5 || (n & 3))
8642 		return -EINVAL;
8643 
8644 	addr = qid * nwords;
8645 	if (n > nwords)
8646 		n = nwords;
8647 
8648 	/* It might take 3-10ms before the IBQ debug read access is allowed.
8649 	 * Wait for 1 Sec with a delay of 1 usec.
8650 	 */
8651 	attempts = 1000000;
8652 
8653 	for (i = 0; i < n; i++, addr++) {
8654 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
8655 			     F_IBQDBGEN);
8656 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
8657 				      attempts, 1);
8658 		if (err)
8659 			return err;
8660 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
8661 	}
8662 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
8663 	return i;
8664 }
8665 
8666 /**
8667  *	t4_read_cim_obq - read the contents of a CIM outbound queue
8668  *	@adap: the adapter
8669  *	@qid: the queue index
8670  *	@data: where to store the queue contents
8671  *	@n: capacity of @data in 32-bit words
8672  *
8673  *	Reads the contents of the selected CIM queue starting at address 0 up
8674  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8675  *	error and the number of 32-bit words actually read on success.
8676  */
8677 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8678 {
8679 	int i, err;
8680 	unsigned int addr, v, nwords;
8681 	int cim_num_obq = adap->chip_params->cim_num_obq;
8682 
8683 	if ((qid > (cim_num_obq - 1)) || (n & 3))
8684 		return -EINVAL;
8685 
8686 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8687 		     V_QUENUMSELECT(qid));
8688 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8689 
8690 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
8691 	nwords = G_CIMQSIZE(v) * 64;  /* same */
8692 	if (n > nwords)
8693 		n = nwords;
8694 
8695 	for (i = 0; i < n; i++, addr++) {
8696 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
8697 			     F_OBQDBGEN);
8698 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
8699 				      2, 1);
8700 		if (err)
8701 			return err;
8702 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
8703 	}
8704 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
8705 	return i;
8706 }
8707 
8708 enum {
8709 	CIM_QCTL_BASE     = 0,
8710 	CIM_CTL_BASE      = 0x2000,
8711 	CIM_PBT_ADDR_BASE = 0x2800,
8712 	CIM_PBT_LRF_BASE  = 0x3000,
8713 	CIM_PBT_DATA_BASE = 0x3800
8714 };
8715 
8716 /**
8717  *	t4_cim_read - read a block from CIM internal address space
8718  *	@adap: the adapter
8719  *	@addr: the start address within the CIM address space
8720  *	@n: number of words to read
8721  *	@valp: where to store the result
8722  *
8723  *	Reads a block of 4-byte words from the CIM intenal address space.
8724  */
8725 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
8726 		unsigned int *valp)
8727 {
8728 	int ret = 0;
8729 
8730 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8731 		return -EBUSY;
8732 
8733 	for ( ; !ret && n--; addr += 4) {
8734 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
8735 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8736 				      0, 5, 2);
8737 		if (!ret)
8738 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
8739 	}
8740 	return ret;
8741 }
8742 
8743 /**
8744  *	t4_cim_write - write a block into CIM internal address space
8745  *	@adap: the adapter
8746  *	@addr: the start address within the CIM address space
8747  *	@n: number of words to write
8748  *	@valp: set of values to write
8749  *
8750  *	Writes a block of 4-byte words into the CIM intenal address space.
8751  */
8752 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8753 		 const unsigned int *valp)
8754 {
8755 	int ret = 0;
8756 
8757 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8758 		return -EBUSY;
8759 
8760 	for ( ; !ret && n--; addr += 4) {
8761 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
8762 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
8763 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8764 				      0, 5, 2);
8765 	}
8766 	return ret;
8767 }
8768 
8769 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8770 			 unsigned int val)
8771 {
8772 	return t4_cim_write(adap, addr, 1, &val);
8773 }
8774 
8775 /**
8776  *	t4_cim_ctl_read - read a block from CIM control region
8777  *	@adap: the adapter
8778  *	@addr: the start address within the CIM control region
8779  *	@n: number of words to read
8780  *	@valp: where to store the result
8781  *
8782  *	Reads a block of 4-byte words from the CIM control region.
8783  */
8784 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
8785 		    unsigned int *valp)
8786 {
8787 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
8788 }
8789 
8790 /**
8791  *	t4_cim_read_la - read CIM LA capture buffer
8792  *	@adap: the adapter
8793  *	@la_buf: where to store the LA data
8794  *	@wrptr: the HW write pointer within the capture buffer
8795  *
8796  *	Reads the contents of the CIM LA buffer with the most recent entry at
8797  *	the end	of the returned data and with the entry at @wrptr first.
8798  *	We try to leave the LA in the running state we find it in.
8799  */
8800 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8801 {
8802 	int i, ret;
8803 	unsigned int cfg, val, idx;
8804 
8805 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
8806 	if (ret)
8807 		return ret;
8808 
8809 	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
8810 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
8811 		if (ret)
8812 			return ret;
8813 	}
8814 
8815 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8816 	if (ret)
8817 		goto restart;
8818 
8819 	idx = G_UPDBGLAWRPTR(val);
8820 	if (wrptr)
8821 		*wrptr = idx;
8822 
8823 	for (i = 0; i < adap->params.cim_la_size; i++) {
8824 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8825 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
8826 		if (ret)
8827 			break;
8828 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8829 		if (ret)
8830 			break;
8831 		if (val & F_UPDBGLARDEN) {
8832 			ret = -ETIMEDOUT;
8833 			break;
8834 		}
8835 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
8836 		if (ret)
8837 			break;
8838 
8839 		/* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
8840 		idx = (idx + 1) & M_UPDBGLARDPTR;
8841 		/*
8842 		 * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
8843 		 * identify the 32-bit portion of the full 312-bit data
8844 		 */
8845 		if (is_t6(adap))
8846 			while ((idx & 0xf) > 9)
8847 				idx = (idx + 1) % M_UPDBGLARDPTR;
8848 	}
8849 restart:
8850 	if (cfg & F_UPDBGLAEN) {
8851 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8852 				      cfg & ~F_UPDBGLARDEN);
8853 		if (!ret)
8854 			ret = r;
8855 	}
8856 	return ret;
8857 }
8858 
8859 /**
8860  *	t4_tp_read_la - read TP LA capture buffer
8861  *	@adap: the adapter
8862  *	@la_buf: where to store the LA data
8863  *	@wrptr: the HW write pointer within the capture buffer
8864  *
8865  *	Reads the contents of the TP LA buffer with the most recent entry at
8866  *	the end	of the returned data and with the entry at @wrptr first.
8867  *	We leave the LA in the running state we find it in.
8868  */
8869 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8870 {
8871 	bool last_incomplete;
8872 	unsigned int i, cfg, val, idx;
8873 
8874 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
8875 	if (cfg & F_DBGLAENABLE)			/* freeze LA */
8876 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8877 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
8878 
8879 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
8880 	idx = G_DBGLAWPTR(val);
8881 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
8882 	if (last_incomplete)
8883 		idx = (idx + 1) & M_DBGLARPTR;
8884 	if (wrptr)
8885 		*wrptr = idx;
8886 
8887 	val &= 0xffff;
8888 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
8889 	val |= adap->params.tp.la_mask;
8890 
8891 	for (i = 0; i < TPLA_SIZE; i++) {
8892 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
8893 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
8894 		idx = (idx + 1) & M_DBGLARPTR;
8895 	}
8896 
8897 	/* Wipe out last entry if it isn't valid */
8898 	if (last_incomplete)
8899 		la_buf[TPLA_SIZE - 1] = ~0ULL;
8900 
8901 	if (cfg & F_DBGLAENABLE)		/* restore running state */
8902 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8903 			     cfg | adap->params.tp.la_mask);
8904 }
8905 
8906 /*
8907  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8908  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
8909  * state for more than the Warning Threshold then we'll issue a warning about
8910  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
8911  * appears to be hung every Warning Repeat second till the situation clears.
8912  * If the situation clears, we'll note that as well.
8913  */
8914 #define SGE_IDMA_WARN_THRESH 1
8915 #define SGE_IDMA_WARN_REPEAT 300
8916 
8917 /**
8918  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8919  *	@adapter: the adapter
8920  *	@idma: the adapter IDMA Monitor state
8921  *
8922  *	Initialize the state of an SGE Ingress DMA Monitor.
8923  */
8924 void t4_idma_monitor_init(struct adapter *adapter,
8925 			  struct sge_idma_monitor_state *idma)
8926 {
8927 	/* Initialize the state variables for detecting an SGE Ingress DMA
8928 	 * hang.  The SGE has internal counters which count up on each clock
8929 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
8930 	 * same state they were on the previous clock tick.  The clock used is
8931 	 * the Core Clock so we have a limit on the maximum "time" they can
8932 	 * record; typically a very small number of seconds.  For instance,
8933 	 * with a 600MHz Core Clock, we can only count up to a bit more than
8934 	 * 7s.  So we'll synthesize a larger counter in order to not run the
8935 	 * risk of having the "timers" overflow and give us the flexibility to
8936 	 * maintain a Hung SGE State Machine of our own which operates across
8937 	 * a longer time frame.
8938 	 */
8939 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8940 	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
8941 }
8942 
8943 /**
8944  *	t4_idma_monitor - monitor SGE Ingress DMA state
8945  *	@adapter: the adapter
8946  *	@idma: the adapter IDMA Monitor state
8947  *	@hz: number of ticks/second
8948  *	@ticks: number of ticks since the last IDMA Monitor call
8949  */
8950 void t4_idma_monitor(struct adapter *adapter,
8951 		     struct sge_idma_monitor_state *idma,
8952 		     int hz, int ticks)
8953 {
8954 	int i, idma_same_state_cnt[2];
8955 
8956 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
8957 	  * are counters inside the SGE which count up on each clock when the
8958 	  * SGE finds its Ingress DMA State Engines in the same states they
8959 	  * were in the previous clock.  The counters will peg out at
8960 	  * 0xffffffff without wrapping around so once they pass the 1s
8961 	  * threshold they'll stay above that till the IDMA state changes.
8962 	  */
8963 	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
8964 	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
8965 	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8966 
8967 	for (i = 0; i < 2; i++) {
8968 		u32 debug0, debug11;
8969 
8970 		/* If the Ingress DMA Same State Counter ("timer") is less
8971 		 * than 1s, then we can reset our synthesized Stall Timer and
8972 		 * continue.  If we have previously emitted warnings about a
8973 		 * potential stalled Ingress Queue, issue a note indicating
8974 		 * that the Ingress Queue has resumed forward progress.
8975 		 */
8976 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8977 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
8978 				CH_WARN(adapter, "SGE idma%d, queue %u, "
8979 					"resumed after %d seconds\n",
8980 					i, idma->idma_qid[i],
8981 					idma->idma_stalled[i]/hz);
8982 			idma->idma_stalled[i] = 0;
8983 			continue;
8984 		}
8985 
8986 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8987 		 * domain.  The first time we get here it'll be because we
8988 		 * passed the 1s Threshold; each additional time it'll be
8989 		 * because the RX Timer Callback is being fired on its regular
8990 		 * schedule.
8991 		 *
8992 		 * If the stall is below our Potential Hung Ingress Queue
8993 		 * Warning Threshold, continue.
8994 		 */
8995 		if (idma->idma_stalled[i] == 0) {
8996 			idma->idma_stalled[i] = hz;
8997 			idma->idma_warn[i] = 0;
8998 		} else {
8999 			idma->idma_stalled[i] += ticks;
9000 			idma->idma_warn[i] -= ticks;
9001 		}
9002 
9003 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
9004 			continue;
9005 
9006 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
9007 		 */
9008 		if (idma->idma_warn[i] > 0)
9009 			continue;
9010 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
9011 
9012 		/* Read and save the SGE IDMA State and Queue ID information.
9013 		 * We do this every time in case it changes across time ...
9014 		 * can't be too careful ...
9015 		 */
9016 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
9017 		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9018 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
9019 
9020 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
9021 		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9022 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
9023 
9024 		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
9025 			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
9026 			i, idma->idma_qid[i], idma->idma_state[i],
9027 			idma->idma_stalled[i]/hz,
9028 			debug0, debug11);
9029 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
9030 	}
9031 }
9032 
9033 /**
9034  *	t4_read_pace_tbl - read the pace table
9035  *	@adap: the adapter
9036  *	@pace_vals: holds the returned values
9037  *
9038  *	Returns the values of TP's pace table in microseconds.
9039  */
9040 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
9041 {
9042 	unsigned int i, v;
9043 
9044 	for (i = 0; i < NTX_SCHED; i++) {
9045 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
9046 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
9047 		pace_vals[i] = dack_ticks_to_usec(adap, v);
9048 	}
9049 }
9050 
9051 /**
9052  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
9053  *	@adap: the adapter
9054  *	@sched: the scheduler index
9055  *	@kbps: the byte rate in Kbps
9056  *	@ipg: the interpacket delay in tenths of nanoseconds
9057  *
9058  *	Return the current configuration of a HW Tx scheduler.
9059  */
9060 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
9061 		     unsigned int *ipg, bool sleep_ok)
9062 {
9063 	unsigned int v, addr, bpt, cpt;
9064 
9065 	if (kbps) {
9066 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
9067 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9068 		if (sched & 1)
9069 			v >>= 16;
9070 		bpt = (v >> 8) & 0xff;
9071 		cpt = v & 0xff;
9072 		if (!cpt)
9073 			*kbps = 0;	/* scheduler disabled */
9074 		else {
9075 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
9076 			*kbps = (v * bpt) / 125;
9077 		}
9078 	}
9079 	if (ipg) {
9080 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
9081 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9082 		if (sched & 1)
9083 			v >>= 16;
9084 		v &= 0xffff;
9085 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
9086 	}
9087 }
9088 
9089 /**
9090  *	t4_load_cfg - download config file
9091  *	@adap: the adapter
9092  *	@cfg_data: the cfg text file to write
9093  *	@size: text file size
9094  *
9095  *	Write the supplied config text file to the card's serial flash.
9096  */
9097 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9098 {
9099 	int ret, i, n, cfg_addr;
9100 	unsigned int addr;
9101 	unsigned int flash_cfg_start_sec;
9102 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9103 
9104 	cfg_addr = t4_flash_cfg_addr(adap);
9105 	if (cfg_addr < 0)
9106 		return cfg_addr;
9107 
9108 	addr = cfg_addr;
9109 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9110 
9111 	if (size > FLASH_CFG_MAX_SIZE) {
9112 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
9113 		       FLASH_CFG_MAX_SIZE);
9114 		return -EFBIG;
9115 	}
9116 
9117 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
9118 			 sf_sec_size);
9119 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9120 				     flash_cfg_start_sec + i - 1);
9121 	/*
9122 	 * If size == 0 then we're simply erasing the FLASH sectors associated
9123 	 * with the on-adapter Firmware Configuration File.
9124 	 */
9125 	if (ret || size == 0)
9126 		goto out;
9127 
9128 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9129 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9130 		if ( (size - i) <  SF_PAGE_SIZE)
9131 			n = size - i;
9132 		else
9133 			n = SF_PAGE_SIZE;
9134 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
9135 		if (ret)
9136 			goto out;
9137 
9138 		addr += SF_PAGE_SIZE;
9139 		cfg_data += SF_PAGE_SIZE;
9140 	}
9141 
9142 out:
9143 	if (ret)
9144 		CH_ERR(adap, "config file %s failed %d\n",
9145 		       (size == 0 ? "clear" : "download"), ret);
9146 	return ret;
9147 }
9148 
9149 /**
9150  *	t5_fw_init_extern_mem - initialize the external memory
9151  *	@adap: the adapter
9152  *
9153  *	Initializes the external memory on T5.
9154  */
9155 int t5_fw_init_extern_mem(struct adapter *adap)
9156 {
9157 	u32 params[1], val[1];
9158 	int ret;
9159 
9160 	if (!is_t5(adap))
9161 		return 0;
9162 
9163 	val[0] = 0xff; /* Initialize all MCs */
9164 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9165 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
9166 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
9167 			FW_CMD_MAX_TIMEOUT);
9168 
9169 	return ret;
9170 }
9171 
9172 /* BIOS boot headers */
9173 typedef struct pci_expansion_rom_header {
9174 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
9175 	u8	reserved[22]; /* Reserved per processor Architecture data */
9176 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
9177 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
9178 
9179 /* Legacy PCI Expansion ROM Header */
9180 typedef struct legacy_pci_expansion_rom_header {
9181 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
9182 	u8	size512; /* Current Image Size in units of 512 bytes */
9183 	u8	initentry_point[4];
9184 	u8	cksum; /* Checksum computed on the entire Image */
9185 	u8	reserved[16]; /* Reserved */
9186 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
9187 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
9188 
9189 /* EFI PCI Expansion ROM Header */
9190 typedef struct efi_pci_expansion_rom_header {
9191 	u8	signature[2]; // ROM signature. The value 0xaa55
9192 	u8	initialization_size[2]; /* Units 512. Includes this header */
9193 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
9194 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
9195 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
9196 	u8	compression_type[2]; /* Compression type. */
9197 		/*
9198 		 * Compression type definition
9199 		 * 0x0: uncompressed
9200 		 * 0x1: Compressed
9201 		 * 0x2-0xFFFF: Reserved
9202 		 */
9203 	u8	reserved[8]; /* Reserved */
9204 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
9205 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
9206 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
9207 
9208 /* PCI Data Structure Format */
9209 typedef struct pcir_data_structure { /* PCI Data Structure */
9210 	u8	signature[4]; /* Signature. The string "PCIR" */
9211 	u8	vendor_id[2]; /* Vendor Identification */
9212 	u8	device_id[2]; /* Device Identification */
9213 	u8	vital_product[2]; /* Pointer to Vital Product Data */
9214 	u8	length[2]; /* PCIR Data Structure Length */
9215 	u8	revision; /* PCIR Data Structure Revision */
9216 	u8	class_code[3]; /* Class Code */
9217 	u8	image_length[2]; /* Image Length. Multiple of 512B */
9218 	u8	code_revision[2]; /* Revision Level of Code/Data */
9219 	u8	code_type; /* Code Type. */
9220 		/*
9221 		 * PCI Expansion ROM Code Types
9222 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
9223 		 * 0x01: Open Firmware standard for PCI. FCODE
9224 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
9225 		 * 0x03: EFI Image. EFI
9226 		 * 0x04-0xFF: Reserved.
9227 		 */
9228 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
9229 	u8	reserved[2]; /* Reserved */
9230 } pcir_data_t; /* PCI__DATA_STRUCTURE */
9231 
9232 /* BOOT constants */
9233 enum {
9234 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
9235 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
9236 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
9237 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
9238 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
9239 	VENDOR_ID = 0x1425, /* Vendor ID */
9240 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
9241 };
9242 
9243 /*
9244  *	modify_device_id - Modifies the device ID of the Boot BIOS image
9245  *	@adatper: the device ID to write.
9246  *	@boot_data: the boot image to modify.
9247  *
9248  *	Write the supplied device ID to the boot BIOS image.
9249  */
9250 static void modify_device_id(int device_id, u8 *boot_data)
9251 {
9252 	legacy_pci_exp_rom_header_t *header;
9253 	pcir_data_t *pcir_header;
9254 	u32 cur_header = 0;
9255 
9256 	/*
9257 	 * Loop through all chained images and change the device ID's
9258 	 */
9259 	while (1) {
9260 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
9261 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
9262 			      le16_to_cpu(*(u16*)header->pcir_offset)];
9263 
9264 		/*
9265 		 * Only modify the Device ID if code type is Legacy or HP.
9266 		 * 0x00: Okay to modify
9267 		 * 0x01: FCODE. Do not be modify
9268 		 * 0x03: Okay to modify
9269 		 * 0x04-0xFF: Do not modify
9270 		 */
9271 		if (pcir_header->code_type == 0x00) {
9272 			u8 csum = 0;
9273 			int i;
9274 
9275 			/*
9276 			 * Modify Device ID to match current adatper
9277 			 */
9278 			*(u16*) pcir_header->device_id = device_id;
9279 
9280 			/*
9281 			 * Set checksum temporarily to 0.
9282 			 * We will recalculate it later.
9283 			 */
9284 			header->cksum = 0x0;
9285 
9286 			/*
9287 			 * Calculate and update checksum
9288 			 */
9289 			for (i = 0; i < (header->size512 * 512); i++)
9290 				csum += (u8)boot_data[cur_header + i];
9291 
9292 			/*
9293 			 * Invert summed value to create the checksum
9294 			 * Writing new checksum value directly to the boot data
9295 			 */
9296 			boot_data[cur_header + 7] = -csum;
9297 
9298 		} else if (pcir_header->code_type == 0x03) {
9299 
9300 			/*
9301 			 * Modify Device ID to match current adatper
9302 			 */
9303 			*(u16*) pcir_header->device_id = device_id;
9304 
9305 		}
9306 
9307 
9308 		/*
9309 		 * Check indicator element to identify if this is the last
9310 		 * image in the ROM.
9311 		 */
9312 		if (pcir_header->indicator & 0x80)
9313 			break;
9314 
9315 		/*
9316 		 * Move header pointer up to the next image in the ROM.
9317 		 */
9318 		cur_header += header->size512 * 512;
9319 	}
9320 }
9321 
9322 /*
9323  *	t4_load_boot - download boot flash
9324  *	@adapter: the adapter
9325  *	@boot_data: the boot image to write
9326  *	@boot_addr: offset in flash to write boot_data
9327  *	@size: image size
9328  *
9329  *	Write the supplied boot image to the card's serial flash.
9330  *	The boot image has the following sections: a 28-byte header and the
9331  *	boot image.
9332  */
9333 int t4_load_boot(struct adapter *adap, u8 *boot_data,
9334 		 unsigned int boot_addr, unsigned int size)
9335 {
9336 	pci_exp_rom_header_t *header;
9337 	int pcir_offset ;
9338 	pcir_data_t *pcir_header;
9339 	int ret, addr;
9340 	uint16_t device_id;
9341 	unsigned int i;
9342 	unsigned int boot_sector = (boot_addr * 1024 );
9343 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9344 
9345 	/*
9346 	 * Make sure the boot image does not encroach on the firmware region
9347 	 */
9348 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
9349 		CH_ERR(adap, "boot image encroaching on firmware region\n");
9350 		return -EFBIG;
9351 	}
9352 
9353 	/*
9354 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
9355 	 * and Boot configuration data sections. These 3 boot sections span
9356 	 * sectors 0 to 7 in flash and live right before the FW image location.
9357 	 */
9358 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
9359 			sf_sec_size);
9360 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
9361 				     (boot_sector >> 16) + i - 1);
9362 
9363 	/*
9364 	 * If size == 0 then we're simply erasing the FLASH sectors associated
9365 	 * with the on-adapter option ROM file
9366 	 */
9367 	if (ret || (size == 0))
9368 		goto out;
9369 
9370 	/* Get boot header */
9371 	header = (pci_exp_rom_header_t *)boot_data;
9372 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
9373 	/* PCIR Data Structure */
9374 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
9375 
9376 	/*
9377 	 * Perform some primitive sanity testing to avoid accidentally
9378 	 * writing garbage over the boot sectors.  We ought to check for
9379 	 * more but it's not worth it for now ...
9380 	 */
9381 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
9382 		CH_ERR(adap, "boot image too small/large\n");
9383 		return -EFBIG;
9384 	}
9385 
9386 #ifndef CHELSIO_T4_DIAGS
9387 	/*
9388 	 * Check BOOT ROM header signature
9389 	 */
9390 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
9391 		CH_ERR(adap, "Boot image missing signature\n");
9392 		return -EINVAL;
9393 	}
9394 
9395 	/*
9396 	 * Check PCI header signature
9397 	 */
9398 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
9399 		CH_ERR(adap, "PCI header missing signature\n");
9400 		return -EINVAL;
9401 	}
9402 
9403 	/*
9404 	 * Check Vendor ID matches Chelsio ID
9405 	 */
9406 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
9407 		CH_ERR(adap, "Vendor ID missing signature\n");
9408 		return -EINVAL;
9409 	}
9410 #endif
9411 
9412 	/*
9413 	 * Retrieve adapter's device ID
9414 	 */
9415 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
9416 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
9417 	device_id = device_id & 0xf0ff;
9418 
9419 	/*
9420 	 * Check PCIE Device ID
9421 	 */
9422 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
9423 		/*
9424 		 * Change the device ID in the Boot BIOS image to match
9425 		 * the Device ID of the current adapter.
9426 		 */
9427 		modify_device_id(device_id, boot_data);
9428 	}
9429 
9430 	/*
9431 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
9432 	 * we finish copying the rest of the boot image. This will ensure
9433 	 * that the BIOS boot header will only be written if the boot image
9434 	 * was written in full.
9435 	 */
9436 	addr = boot_sector;
9437 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
9438 		addr += SF_PAGE_SIZE;
9439 		boot_data += SF_PAGE_SIZE;
9440 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
9441 		if (ret)
9442 			goto out;
9443 	}
9444 
9445 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
9446 			     (const u8 *)header, 0);
9447 
9448 out:
9449 	if (ret)
9450 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
9451 	return ret;
9452 }
9453 
9454 /*
9455  *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
9456  *	@adapter: the adapter
9457  *
9458  *	Return the address within the flash where the OptionROM Configuration
9459  *	is stored, or an error if the device FLASH is too small to contain
9460  *	a OptionROM Configuration.
9461  */
9462 static int t4_flash_bootcfg_addr(struct adapter *adapter)
9463 {
9464 	/*
9465 	 * If the device FLASH isn't large enough to hold a Firmware
9466 	 * Configuration File, return an error.
9467 	 */
9468 	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
9469 		return -ENOSPC;
9470 
9471 	return FLASH_BOOTCFG_START;
9472 }
9473 
9474 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
9475 {
9476 	int ret, i, n, cfg_addr;
9477 	unsigned int addr;
9478 	unsigned int flash_cfg_start_sec;
9479 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9480 
9481 	cfg_addr = t4_flash_bootcfg_addr(adap);
9482 	if (cfg_addr < 0)
9483 		return cfg_addr;
9484 
9485 	addr = cfg_addr;
9486 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9487 
9488 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
9489 		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
9490 			FLASH_BOOTCFG_MAX_SIZE);
9491 		return -EFBIG;
9492 	}
9493 
9494 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
9495 			 sf_sec_size);
9496 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9497 					flash_cfg_start_sec + i - 1);
9498 
9499 	/*
9500 	 * If size == 0 then we're simply erasing the FLASH sectors associated
9501 	 * with the on-adapter OptionROM Configuration File.
9502 	 */
9503 	if (ret || size == 0)
9504 		goto out;
9505 
9506 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9507 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9508 		if ( (size - i) <  SF_PAGE_SIZE)
9509 			n = size - i;
9510 		else
9511 			n = SF_PAGE_SIZE;
9512 		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
9513 		if (ret)
9514 			goto out;
9515 
9516 		addr += SF_PAGE_SIZE;
9517 		cfg_data += SF_PAGE_SIZE;
9518 	}
9519 
9520 out:
9521 	if (ret)
9522 		CH_ERR(adap, "boot config data %s failed %d\n",
9523 				(size == 0 ? "clear" : "download"), ret);
9524 	return ret;
9525 }
9526 
9527 /**
9528  *	t4_set_filter_mode - configure the optional components of filter tuples
9529  *	@adap: the adapter
9530  *	@mode_map: a bitmap selcting which optional filter components to enable
9531  * 	@sleep_ok: if true we may sleep while awaiting command completion
9532  *
9533  *	Sets the filter mode by selecting the optional components to enable
9534  *	in filter tuples.  Returns 0 on success and a negative error if the
9535  *	requested mode needs more bits than are available for optional
9536  *	components.
9537  */
9538 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map,
9539 		       bool sleep_ok)
9540 {
9541 	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
9542 
9543 	int i, nbits = 0;
9544 
9545 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
9546 		if (mode_map & (1 << i))
9547 			nbits += width[i];
9548 	if (nbits > FILTER_OPT_LEN)
9549 		return -EINVAL;
9550 	t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok);
9551 	read_filter_mode_and_ingress_config(adap, sleep_ok);
9552 
9553 	return 0;
9554 }
9555 
9556 /**
9557  *	t4_clr_port_stats - clear port statistics
9558  *	@adap: the adapter
9559  *	@idx: the port index
9560  *
9561  *	Clear HW statistics for the given port.
9562  */
9563 void t4_clr_port_stats(struct adapter *adap, int idx)
9564 {
9565 	unsigned int i;
9566 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
9567 	u32 port_base_addr;
9568 
9569 	if (is_t4(adap))
9570 		port_base_addr = PORT_BASE(idx);
9571 	else
9572 		port_base_addr = T5_PORT_BASE(idx);
9573 
9574 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
9575 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
9576 		t4_write_reg(adap, port_base_addr + i, 0);
9577 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
9578 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
9579 		t4_write_reg(adap, port_base_addr + i, 0);
9580 	for (i = 0; i < 4; i++)
9581 		if (bgmap & (1 << i)) {
9582 			t4_write_reg(adap,
9583 			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
9584 			t4_write_reg(adap,
9585 			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
9586 		}
9587 }
9588 
9589 /**
9590  *	t4_i2c_rd - read I2C data from adapter
9591  *	@adap: the adapter
9592  *	@port: Port number if per-port device; <0 if not
9593  *	@devid: per-port device ID or absolute device ID
9594  *	@offset: byte offset into device I2C space
9595  *	@len: byte length of I2C space data
9596  *	@buf: buffer in which to return I2C data
9597  *
9598  *	Reads the I2C data from the indicated device and location.
9599  */
9600 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
9601 	      int port, unsigned int devid,
9602 	      unsigned int offset, unsigned int len,
9603 	      u8 *buf)
9604 {
9605 	u32 ldst_addrspace;
9606 	struct fw_ldst_cmd ldst;
9607 	int ret;
9608 
9609 	if (port >= 4 ||
9610 	    devid >= 256 ||
9611 	    offset >= 256 ||
9612 	    len > sizeof ldst.u.i2c.data)
9613 		return -EINVAL;
9614 
9615 	memset(&ldst, 0, sizeof ldst);
9616 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9617 	ldst.op_to_addrspace =
9618 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9619 			    F_FW_CMD_REQUEST |
9620 			    F_FW_CMD_READ |
9621 			    ldst_addrspace);
9622 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9623 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9624 	ldst.u.i2c.did = devid;
9625 	ldst.u.i2c.boffset = offset;
9626 	ldst.u.i2c.blen = len;
9627 	ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9628 	if (!ret)
9629 		memcpy(buf, ldst.u.i2c.data, len);
9630 	return ret;
9631 }
9632 
9633 /**
9634  *	t4_i2c_wr - write I2C data to adapter
9635  *	@adap: the adapter
9636  *	@port: Port number if per-port device; <0 if not
9637  *	@devid: per-port device ID or absolute device ID
9638  *	@offset: byte offset into device I2C space
9639  *	@len: byte length of I2C space data
9640  *	@buf: buffer containing new I2C data
9641  *
9642  *	Write the I2C data to the indicated device and location.
9643  */
9644 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
9645 	      int port, unsigned int devid,
9646 	      unsigned int offset, unsigned int len,
9647 	      u8 *buf)
9648 {
9649 	u32 ldst_addrspace;
9650 	struct fw_ldst_cmd ldst;
9651 
9652 	if (port >= 4 ||
9653 	    devid >= 256 ||
9654 	    offset >= 256 ||
9655 	    len > sizeof ldst.u.i2c.data)
9656 		return -EINVAL;
9657 
9658 	memset(&ldst, 0, sizeof ldst);
9659 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9660 	ldst.op_to_addrspace =
9661 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9662 			    F_FW_CMD_REQUEST |
9663 			    F_FW_CMD_WRITE |
9664 			    ldst_addrspace);
9665 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9666 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9667 	ldst.u.i2c.did = devid;
9668 	ldst.u.i2c.boffset = offset;
9669 	ldst.u.i2c.blen = len;
9670 	memcpy(ldst.u.i2c.data, buf, len);
9671 	return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9672 }
9673 
9674 /**
9675  * 	t4_sge_ctxt_rd - read an SGE context through FW
9676  * 	@adap: the adapter
9677  * 	@mbox: mailbox to use for the FW command
9678  * 	@cid: the context id
9679  * 	@ctype: the context type
9680  * 	@data: where to store the context data
9681  *
9682  * 	Issues a FW command through the given mailbox to read an SGE context.
9683  */
9684 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
9685 		   enum ctxt_type ctype, u32 *data)
9686 {
9687 	int ret;
9688 	struct fw_ldst_cmd c;
9689 
9690 	if (ctype == CTXT_EGRESS)
9691 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
9692 	else if (ctype == CTXT_INGRESS)
9693 		ret = FW_LDST_ADDRSPC_SGE_INGC;
9694 	else if (ctype == CTXT_FLM)
9695 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
9696 	else
9697 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
9698 
9699 	memset(&c, 0, sizeof(c));
9700 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9701 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
9702 					V_FW_LDST_CMD_ADDRSPACE(ret));
9703 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9704 	c.u.idctxt.physid = cpu_to_be32(cid);
9705 
9706 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9707 	if (ret == 0) {
9708 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
9709 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
9710 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
9711 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
9712 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
9713 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
9714 	}
9715 	return ret;
9716 }
9717 
9718 /**
9719  * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
9720  * 	@adap: the adapter
9721  * 	@cid: the context id
9722  * 	@ctype: the context type
9723  * 	@data: where to store the context data
9724  *
9725  * 	Reads an SGE context directly, bypassing FW.  This is only for
9726  * 	debugging when FW is unavailable.
9727  */
9728 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
9729 		      u32 *data)
9730 {
9731 	int i, ret;
9732 
9733 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
9734 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
9735 	if (!ret)
9736 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
9737 			*data++ = t4_read_reg(adap, i);
9738 	return ret;
9739 }
9740 
9741 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
9742     int sleep_ok)
9743 {
9744 	struct fw_sched_cmd cmd;
9745 
9746 	memset(&cmd, 0, sizeof(cmd));
9747 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9748 				      F_FW_CMD_REQUEST |
9749 				      F_FW_CMD_WRITE);
9750 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9751 
9752 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
9753 	cmd.u.config.type = type;
9754 	cmd.u.config.minmaxen = minmaxen;
9755 
9756 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9757 			       NULL, sleep_ok);
9758 }
9759 
9760 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
9761 		    int rateunit, int ratemode, int channel, int cl,
9762 		    int minrate, int maxrate, int weight, int pktsize,
9763 		    int sleep_ok)
9764 {
9765 	struct fw_sched_cmd cmd;
9766 
9767 	memset(&cmd, 0, sizeof(cmd));
9768 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9769 				      F_FW_CMD_REQUEST |
9770 				      F_FW_CMD_WRITE);
9771 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9772 
9773 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9774 	cmd.u.params.type = type;
9775 	cmd.u.params.level = level;
9776 	cmd.u.params.mode = mode;
9777 	cmd.u.params.ch = channel;
9778 	cmd.u.params.cl = cl;
9779 	cmd.u.params.unit = rateunit;
9780 	cmd.u.params.rate = ratemode;
9781 	cmd.u.params.min = cpu_to_be32(minrate);
9782 	cmd.u.params.max = cpu_to_be32(maxrate);
9783 	cmd.u.params.weight = cpu_to_be16(weight);
9784 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9785 
9786 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9787 			       NULL, sleep_ok);
9788 }
9789 
9790 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
9791     unsigned int maxrate, int sleep_ok)
9792 {
9793 	struct fw_sched_cmd cmd;
9794 
9795 	memset(&cmd, 0, sizeof(cmd));
9796 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9797 				      F_FW_CMD_REQUEST |
9798 				      F_FW_CMD_WRITE);
9799 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9800 
9801 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9802 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9803 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
9804 	cmd.u.params.ch = channel;
9805 	cmd.u.params.rate = ratemode;		/* REL or ABS */
9806 	cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
9807 
9808 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9809 			       NULL, sleep_ok);
9810 }
9811 
9812 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
9813     int weight, int sleep_ok)
9814 {
9815 	struct fw_sched_cmd cmd;
9816 
9817 	if (weight < 0 || weight > 100)
9818 		return -EINVAL;
9819 
9820 	memset(&cmd, 0, sizeof(cmd));
9821 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9822 				      F_FW_CMD_REQUEST |
9823 				      F_FW_CMD_WRITE);
9824 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9825 
9826 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9827 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9828 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
9829 	cmd.u.params.ch = channel;
9830 	cmd.u.params.cl = cl;
9831 	cmd.u.params.weight = cpu_to_be16(weight);
9832 
9833 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9834 			       NULL, sleep_ok);
9835 }
9836 
9837 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
9838     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
9839 {
9840 	struct fw_sched_cmd cmd;
9841 
9842 	memset(&cmd, 0, sizeof(cmd));
9843 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9844 				      F_FW_CMD_REQUEST |
9845 				      F_FW_CMD_WRITE);
9846 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9847 
9848 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9849 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9850 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
9851 	cmd.u.params.mode = mode;
9852 	cmd.u.params.ch = channel;
9853 	cmd.u.params.cl = cl;
9854 	cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
9855 	cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
9856 	cmd.u.params.max = cpu_to_be32(maxrate);
9857 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9858 
9859 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9860 			       NULL, sleep_ok);
9861 }
9862 
9863 /*
9864  *	t4_config_watchdog - configure (enable/disable) a watchdog timer
9865  *	@adapter: the adapter
9866  * 	@mbox: mailbox to use for the FW command
9867  * 	@pf: the PF owning the queue
9868  * 	@vf: the VF owning the queue
9869  *	@timeout: watchdog timeout in ms
9870  *	@action: watchdog timer / action
9871  *
9872  *	There are separate watchdog timers for each possible watchdog
9873  *	action.  Configure one of the watchdog timers by setting a non-zero
9874  *	timeout.  Disable a watchdog timer by using a timeout of zero.
9875  */
9876 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
9877 		       unsigned int pf, unsigned int vf,
9878 		       unsigned int timeout, unsigned int action)
9879 {
9880 	struct fw_watchdog_cmd wdog;
9881 	unsigned int ticks;
9882 
9883 	/*
9884 	 * The watchdog command expects a timeout in units of 10ms so we need
9885 	 * to convert it here (via rounding) and force a minimum of one 10ms
9886 	 * "tick" if the timeout is non-zero but the conversion results in 0
9887 	 * ticks.
9888 	 */
9889 	ticks = (timeout + 5)/10;
9890 	if (timeout && !ticks)
9891 		ticks = 1;
9892 
9893 	memset(&wdog, 0, sizeof wdog);
9894 	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
9895 				     F_FW_CMD_REQUEST |
9896 				     F_FW_CMD_WRITE |
9897 				     V_FW_PARAMS_CMD_PFN(pf) |
9898 				     V_FW_PARAMS_CMD_VFN(vf));
9899 	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
9900 	wdog.timeout = cpu_to_be32(ticks);
9901 	wdog.action = cpu_to_be32(action);
9902 
9903 	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
9904 }
9905 
9906 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
9907 {
9908 	struct fw_devlog_cmd devlog_cmd;
9909 	int ret;
9910 
9911 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9912 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9913 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9914 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9915 	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9916 			 sizeof(devlog_cmd), &devlog_cmd);
9917 	if (ret)
9918 		return ret;
9919 
9920 	*level = devlog_cmd.level;
9921 	return 0;
9922 }
9923 
9924 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
9925 {
9926 	struct fw_devlog_cmd devlog_cmd;
9927 
9928 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9929 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9930 					     F_FW_CMD_REQUEST |
9931 					     F_FW_CMD_WRITE);
9932 	devlog_cmd.level = level;
9933 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9934 	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9935 			  sizeof(devlog_cmd), &devlog_cmd);
9936 }
9937