xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision f0483545503a78e16e256d46d458a2faae2f07ea)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 
34 #include <sys/param.h>
35 #include <sys/eventhandler.h>
36 
37 #include "common.h"
38 #include "t4_regs.h"
39 #include "t4_regs_values.h"
40 #include "firmware/t4fw_interface.h"
41 
42 #undef msleep
43 #define msleep(x) do { \
44 	if (cold) \
45 		DELAY((x) * 1000); \
46 	else \
47 		pause("t4hw", (x) * hz / 1000); \
48 } while (0)
49 
50 /**
51  *	t4_wait_op_done_val - wait until an operation is completed
52  *	@adapter: the adapter performing the operation
53  *	@reg: the register to check for completion
54  *	@mask: a single-bit field within @reg that indicates completion
55  *	@polarity: the value of the field when the operation is completed
56  *	@attempts: number of check iterations
57  *	@delay: delay in usecs between iterations
58  *	@valp: where to store the value of the register at completion time
59  *
60  *	Wait until an operation is completed by checking a bit in a register
61  *	up to @attempts times.  If @valp is not NULL the value of the register
62  *	at the time it indicated completion is stored there.  Returns 0 if the
63  *	operation completes and	-EAGAIN	otherwise.
64  */
65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
66 			       int polarity, int attempts, int delay, u32 *valp)
67 {
68 	while (1) {
69 		u32 val = t4_read_reg(adapter, reg);
70 
71 		if (!!(val & mask) == polarity) {
72 			if (valp)
73 				*valp = val;
74 			return 0;
75 		}
76 		if (--attempts == 0)
77 			return -EAGAIN;
78 		if (delay)
79 			udelay(delay);
80 	}
81 }
82 
83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
84 				  int polarity, int attempts, int delay)
85 {
86 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
87 				   delay, NULL);
88 }
89 
90 /**
91  *	t4_set_reg_field - set a register field to a value
92  *	@adapter: the adapter to program
93  *	@addr: the register address
94  *	@mask: specifies the portion of the register to modify
95  *	@val: the new value for the register field
96  *
97  *	Sets a register field specified by the supplied mask to the
98  *	given value.
99  */
100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
101 		      u32 val)
102 {
103 	u32 v = t4_read_reg(adapter, addr) & ~mask;
104 
105 	t4_write_reg(adapter, addr, v | val);
106 	(void) t4_read_reg(adapter, addr);      /* flush */
107 }
108 
109 /**
110  *	t4_read_indirect - read indirectly addressed registers
111  *	@adap: the adapter
112  *	@addr_reg: register holding the indirect address
113  *	@data_reg: register holding the value of the indirect register
114  *	@vals: where the read register values are stored
115  *	@nregs: how many indirect registers to read
116  *	@start_idx: index of first indirect register to read
117  *
118  *	Reads registers that are accessed indirectly through an address/data
119  *	register pair.
120  */
121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
122 			     unsigned int data_reg, u32 *vals,
123 			     unsigned int nregs, unsigned int start_idx)
124 {
125 	while (nregs--) {
126 		t4_write_reg(adap, addr_reg, start_idx);
127 		*vals++ = t4_read_reg(adap, data_reg);
128 		start_idx++;
129 	}
130 }
131 
132 /**
133  *	t4_write_indirect - write indirectly addressed registers
134  *	@adap: the adapter
135  *	@addr_reg: register holding the indirect addresses
136  *	@data_reg: register holding the value for the indirect registers
137  *	@vals: values to write
138  *	@nregs: how many indirect registers to write
139  *	@start_idx: address of first indirect register to write
140  *
141  *	Writes a sequential block of registers that are accessed indirectly
142  *	through an address/data register pair.
143  */
144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
145 		       unsigned int data_reg, const u32 *vals,
146 		       unsigned int nregs, unsigned int start_idx)
147 {
148 	while (nregs--) {
149 		t4_write_reg(adap, addr_reg, start_idx++);
150 		t4_write_reg(adap, data_reg, *vals++);
151 	}
152 }
153 
154 /*
155  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
156  * mechanism.  This guarantees that we get the real value even if we're
157  * operating within a Virtual Machine and the Hypervisor is trapping our
158  * Configuration Space accesses.
159  *
160  * N.B. This routine should only be used as a last resort: the firmware uses
161  *      the backdoor registers on a regular basis and we can end up
162  *      conflicting with it's uses!
163  */
164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
165 {
166 	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
167 	u32 val;
168 
169 	if (chip_id(adap) <= CHELSIO_T5)
170 		req |= F_ENABLE;
171 	else
172 		req |= F_T6_ENABLE;
173 
174 	if (is_t4(adap))
175 		req |= F_LOCALCFG;
176 
177 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
178 	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
179 
180 	/*
181 	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
182 	 * Configuration Space read.  (None of the other fields matter when
183 	 * F_ENABLE is 0 so a simple register write is easier than a
184 	 * read-modify-write via t4_set_reg_field().)
185 	 */
186 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
187 
188 	return val;
189 }
190 
191 /*
192  * t4_report_fw_error - report firmware error
193  * @adap: the adapter
194  *
195  * The adapter firmware can indicate error conditions to the host.
196  * If the firmware has indicated an error, print out the reason for
197  * the firmware error.
198  */
199 static void t4_report_fw_error(struct adapter *adap)
200 {
201 	static const char *const reason[] = {
202 		"Crash",			/* PCIE_FW_EVAL_CRASH */
203 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
204 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
205 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
206 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
207 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
208 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
209 		"Reserved",			/* reserved */
210 	};
211 	u32 pcie_fw;
212 
213 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
214 	if (pcie_fw & F_PCIE_FW_ERR) {
215 		CH_ERR(adap, "firmware reports adapter error: %s (0x%08x)\n",
216 		    reason[G_PCIE_FW_EVAL(pcie_fw)], pcie_fw);
217 		adap->flags &= ~FW_OK;
218 	}
219 }
220 
221 /*
222  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
223  */
224 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
225 			 u32 mbox_addr)
226 {
227 	for ( ; nflit; nflit--, mbox_addr += 8)
228 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
229 }
230 
231 /*
232  * Handle a FW assertion reported in a mailbox.
233  */
234 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
235 {
236 	CH_ALERT(adap,
237 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
238 		  asrt->u.assert.filename_0_7,
239 		  be32_to_cpu(asrt->u.assert.line),
240 		  be32_to_cpu(asrt->u.assert.x),
241 		  be32_to_cpu(asrt->u.assert.y));
242 }
243 
244 struct port_tx_state {
245 	uint64_t rx_pause;
246 	uint64_t tx_frames;
247 };
248 
249 static void
250 read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state)
251 {
252 	uint32_t rx_pause_reg, tx_frames_reg;
253 
254 	if (is_t4(sc)) {
255 		tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
256 		rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
257 	} else {
258 		tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
259 		rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
260 	}
261 
262 	tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg);
263 	tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg);
264 }
265 
266 static void
267 read_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
268 {
269 	int i;
270 
271 	for_each_port(sc, i)
272 		read_tx_state_one(sc, i, &tx_state[i]);
273 }
274 
275 static void
276 check_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
277 {
278 	uint32_t port_ctl_reg;
279 	uint64_t tx_frames, rx_pause;
280 	int i;
281 
282 	for_each_port(sc, i) {
283 		rx_pause = tx_state[i].rx_pause;
284 		tx_frames = tx_state[i].tx_frames;
285 		read_tx_state_one(sc, i, &tx_state[i]);	/* update */
286 
287 		if (is_t4(sc))
288 			port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL);
289 		else
290 			port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL);
291 		if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN &&
292 		    rx_pause != tx_state[i].rx_pause &&
293 		    tx_frames == tx_state[i].tx_frames) {
294 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0);
295 			mdelay(1);
296 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN);
297 		}
298 	}
299 }
300 
301 #define X_CIM_PF_NOACCESS 0xeeeeeeee
302 /**
303  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
304  *	@adap: the adapter
305  *	@mbox: index of the mailbox to use
306  *	@cmd: the command to write
307  *	@size: command length in bytes
308  *	@rpl: where to optionally store the reply
309  *	@sleep_ok: if true we may sleep while awaiting command completion
310  *	@timeout: time to wait for command to finish before timing out
311  *		(negative implies @sleep_ok=false)
312  *
313  *	Sends the given command to FW through the selected mailbox and waits
314  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
315  *	store the FW's reply to the command.  The command and its optional
316  *	reply are of the same length.  Some FW commands like RESET and
317  *	INITIALIZE can take a considerable amount of time to execute.
318  *	@sleep_ok determines whether we may sleep while awaiting the response.
319  *	If sleeping is allowed we use progressive backoff otherwise we spin.
320  *	Note that passing in a negative @timeout is an alternate mechanism
321  *	for specifying @sleep_ok=false.  This is useful when a higher level
322  *	interface allows for specification of @timeout but not @sleep_ok ...
323  *
324  *	The return value is 0 on success or a negative errno on failure.  A
325  *	failure can happen either because we are not able to execute the
326  *	command or FW executes it but signals an error.  In the latter case
327  *	the return value is the error code indicated by FW (negated).
328  */
329 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
330 			    int size, void *rpl, bool sleep_ok, int timeout)
331 {
332 	/*
333 	 * We delay in small increments at first in an effort to maintain
334 	 * responsiveness for simple, fast executing commands but then back
335 	 * off to larger delays to a maximum retry delay.
336 	 */
337 	static const int delay[] = {
338 		1, 1, 3, 5, 10, 10, 20, 50, 100
339 	};
340 	u32 v;
341 	u64 res;
342 	int i, ms, delay_idx, ret, next_tx_check;
343 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
344 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
345 	u32 ctl;
346 	__be64 cmd_rpl[MBOX_LEN/8];
347 	u32 pcie_fw;
348 	struct port_tx_state tx_state[MAX_NPORTS];
349 
350 	if (adap->flags & CHK_MBOX_ACCESS)
351 		ASSERT_SYNCHRONIZED_OP(adap);
352 
353 	if (size <= 0 || (size & 15) || size > MBOX_LEN)
354 		return -EINVAL;
355 
356 	if (adap->flags & IS_VF) {
357 		if (is_t6(adap))
358 			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
359 		else
360 			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
361 		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
362 	}
363 
364 	/*
365 	 * If we have a negative timeout, that implies that we can't sleep.
366 	 */
367 	if (timeout < 0) {
368 		sleep_ok = false;
369 		timeout = -timeout;
370 	}
371 
372 	/*
373 	 * Attempt to gain access to the mailbox.
374 	 */
375 	for (i = 0; i < 4; i++) {
376 		ctl = t4_read_reg(adap, ctl_reg);
377 		v = G_MBOWNER(ctl);
378 		if (v != X_MBOWNER_NONE)
379 			break;
380 	}
381 
382 	/*
383 	 * If we were unable to gain access, report the error to our caller.
384 	 */
385 	if (v != X_MBOWNER_PL) {
386 		t4_report_fw_error(adap);
387 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
388 		return ret;
389 	}
390 
391 	/*
392 	 * If we gain ownership of the mailbox and there's a "valid" message
393 	 * in it, this is likely an asynchronous error message from the
394 	 * firmware.  So we'll report that and then proceed on with attempting
395 	 * to issue our own command ... which may well fail if the error
396 	 * presaged the firmware crashing ...
397 	 */
398 	if (ctl & F_MBMSGVALID) {
399 		CH_DUMP_MBOX(adap, mbox, data_reg, "VLD", NULL, true);
400 	}
401 
402 	/*
403 	 * Copy in the new mailbox command and send it on its way ...
404 	 */
405 	memset(cmd_rpl, 0, sizeof(cmd_rpl));
406 	memcpy(cmd_rpl, cmd, size);
407 	CH_DUMP_MBOX(adap, mbox, 0, "cmd", cmd_rpl, false);
408 	for (i = 0; i < ARRAY_SIZE(cmd_rpl); i++)
409 		t4_write_reg64(adap, data_reg + i * 8, be64_to_cpu(cmd_rpl[i]));
410 
411 	if (adap->flags & IS_VF) {
412 		/*
413 		 * For the VFs, the Mailbox Data "registers" are
414 		 * actually backed by T4's "MA" interface rather than
415 		 * PL Registers (as is the case for the PFs).  Because
416 		 * these are in different coherency domains, the write
417 		 * to the VF's PL-register-backed Mailbox Control can
418 		 * race in front of the writes to the MA-backed VF
419 		 * Mailbox Data "registers".  So we need to do a
420 		 * read-back on at least one byte of the VF Mailbox
421 		 * Data registers before doing the write to the VF
422 		 * Mailbox Control register.
423 		 */
424 		t4_read_reg(adap, data_reg);
425 	}
426 
427 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
428 	read_tx_state(adap, &tx_state[0]);	/* also flushes the write_reg */
429 	next_tx_check = 1000;
430 	delay_idx = 0;
431 	ms = delay[0];
432 
433 	/*
434 	 * Loop waiting for the reply; bail out if we time out or the firmware
435 	 * reports an error.
436 	 */
437 	pcie_fw = 0;
438 	for (i = 0; i < timeout; i += ms) {
439 		if (!(adap->flags & IS_VF)) {
440 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
441 			if (pcie_fw & F_PCIE_FW_ERR)
442 				break;
443 		}
444 
445 		if (i >= next_tx_check) {
446 			check_tx_state(adap, &tx_state[0]);
447 			next_tx_check = i + 1000;
448 		}
449 
450 		if (sleep_ok) {
451 			ms = delay[delay_idx];  /* last element may repeat */
452 			if (delay_idx < ARRAY_SIZE(delay) - 1)
453 				delay_idx++;
454 			msleep(ms);
455 		} else {
456 			mdelay(ms);
457 		}
458 
459 		v = t4_read_reg(adap, ctl_reg);
460 		if (v == X_CIM_PF_NOACCESS)
461 			continue;
462 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
463 			if (!(v & F_MBMSGVALID)) {
464 				t4_write_reg(adap, ctl_reg,
465 					     V_MBOWNER(X_MBOWNER_NONE));
466 				continue;
467 			}
468 
469 			/*
470 			 * Retrieve the command reply and release the mailbox.
471 			 */
472 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
473 			CH_DUMP_MBOX(adap, mbox, 0, "rpl", cmd_rpl, false);
474 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
475 
476 			res = be64_to_cpu(cmd_rpl[0]);
477 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
478 				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
479 				res = V_FW_CMD_RETVAL(EIO);
480 			} else if (rpl)
481 				memcpy(rpl, cmd_rpl, size);
482 			return -G_FW_CMD_RETVAL((int)res);
483 		}
484 	}
485 
486 	/*
487 	 * We timed out waiting for a reply to our mailbox command.  Report
488 	 * the error and also check to see if the firmware reported any
489 	 * errors ...
490 	 */
491 	ret = (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT;
492 	CH_ERR(adap, "command %#x in mbox %d timed out (0x%08x).\n",
493 	    *(const u8 *)cmd, mbox, pcie_fw);
494 	CH_DUMP_MBOX(adap, mbox, 0, "cmdsent", cmd_rpl, true);
495 	CH_DUMP_MBOX(adap, mbox, data_reg, "current", NULL, true);
496 
497 	t4_report_fw_error(adap);
498 	t4_fatal_err(adap, true);
499 	return ret;
500 }
501 
502 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
503 		    void *rpl, bool sleep_ok)
504 {
505 		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
506 					       sleep_ok, FW_CMD_MAX_TIMEOUT);
507 
508 }
509 
510 static int t4_edc_err_read(struct adapter *adap, int idx)
511 {
512 	u32 edc_ecc_err_addr_reg;
513 	u32 edc_bist_status_rdata_reg;
514 
515 	if (is_t4(adap)) {
516 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
517 		return 0;
518 	}
519 	if (idx != MEM_EDC0 && idx != MEM_EDC1) {
520 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
521 		return 0;
522 	}
523 
524 	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
525 	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
526 
527 	CH_WARN(adap,
528 		"edc%d err addr 0x%x: 0x%x.\n",
529 		idx, edc_ecc_err_addr_reg,
530 		t4_read_reg(adap, edc_ecc_err_addr_reg));
531 	CH_WARN(adap,
532 	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
533 		edc_bist_status_rdata_reg,
534 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
535 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
536 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
537 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
538 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
539 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
540 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
541 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
542 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
543 
544 	return 0;
545 }
546 
547 /**
548  *	t4_mc_read - read from MC through backdoor accesses
549  *	@adap: the adapter
550  *	@idx: which MC to access
551  *	@addr: address of first byte requested
552  *	@data: 64 bytes of data containing the requested address
553  *	@ecc: where to store the corresponding 64-bit ECC word
554  *
555  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
556  *	that covers the requested address @addr.  If @parity is not %NULL it
557  *	is assigned the 64-bit ECC word for the read data.
558  */
559 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
560 {
561 	int i;
562 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
563 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
564 
565 	if (is_t4(adap)) {
566 		mc_bist_cmd_reg = A_MC_BIST_CMD;
567 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
568 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
569 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
570 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
571 	} else {
572 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
573 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
574 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
575 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
576 						  idx);
577 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
578 						  idx);
579 	}
580 
581 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
582 		return -EBUSY;
583 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
584 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
585 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
586 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
587 		     F_START_BIST | V_BIST_CMD_GAP(1));
588 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
589 	if (i)
590 		return i;
591 
592 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
593 
594 	for (i = 15; i >= 0; i--)
595 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
596 	if (ecc)
597 		*ecc = t4_read_reg64(adap, MC_DATA(16));
598 #undef MC_DATA
599 	return 0;
600 }
601 
602 /**
603  *	t4_edc_read - read from EDC through backdoor accesses
604  *	@adap: the adapter
605  *	@idx: which EDC to access
606  *	@addr: address of first byte requested
607  *	@data: 64 bytes of data containing the requested address
608  *	@ecc: where to store the corresponding 64-bit ECC word
609  *
610  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
611  *	that covers the requested address @addr.  If @parity is not %NULL it
612  *	is assigned the 64-bit ECC word for the read data.
613  */
614 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
615 {
616 	int i;
617 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
618 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
619 
620 	if (is_t4(adap)) {
621 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
622 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
623 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
624 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
625 						    idx);
626 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
627 						    idx);
628 	} else {
629 /*
630  * These macro are missing in t4_regs.h file.
631  * Added temporarily for testing.
632  */
633 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
634 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
635 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
636 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
637 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
638 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
639 						    idx);
640 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
641 						    idx);
642 #undef EDC_REG_T5
643 #undef EDC_STRIDE_T5
644 	}
645 
646 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
647 		return -EBUSY;
648 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
649 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
650 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
651 	t4_write_reg(adap, edc_bist_cmd_reg,
652 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
653 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
654 	if (i)
655 		return i;
656 
657 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
658 
659 	for (i = 15; i >= 0; i--)
660 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
661 	if (ecc)
662 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
663 #undef EDC_DATA
664 	return 0;
665 }
666 
667 /**
668  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
669  *	@adap: the adapter
670  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
671  *	@addr: address within indicated memory type
672  *	@len: amount of memory to read
673  *	@buf: host memory buffer
674  *
675  *	Reads an [almost] arbitrary memory region in the firmware: the
676  *	firmware memory address, length and host buffer must be aligned on
677  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
678  *	the firmware's memory.  If this memory contains data structures which
679  *	contain multi-byte integers, it's the callers responsibility to
680  *	perform appropriate byte order conversions.
681  */
682 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
683 		__be32 *buf)
684 {
685 	u32 pos, start, end, offset;
686 	int ret;
687 
688 	/*
689 	 * Argument sanity checks ...
690 	 */
691 	if ((addr & 0x3) || (len & 0x3))
692 		return -EINVAL;
693 
694 	/*
695 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
696 	 * need to round down the start and round up the end.  We'll start
697 	 * copying out of the first line at (addr - start) a word at a time.
698 	 */
699 	start = rounddown2(addr, 64);
700 	end = roundup2(addr + len, 64);
701 	offset = (addr - start)/sizeof(__be32);
702 
703 	for (pos = start; pos < end; pos += 64, offset = 0) {
704 		__be32 data[16];
705 
706 		/*
707 		 * Read the chip's memory block and bail if there's an error.
708 		 */
709 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
710 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
711 		else
712 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
713 		if (ret)
714 			return ret;
715 
716 		/*
717 		 * Copy the data into the caller's memory buffer.
718 		 */
719 		while (offset < 16 && len > 0) {
720 			*buf++ = data[offset++];
721 			len -= sizeof(__be32);
722 		}
723 	}
724 
725 	return 0;
726 }
727 
728 /*
729  * Return the specified PCI-E Configuration Space register from our Physical
730  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
731  * since we prefer to let the firmware own all of these registers, but if that
732  * fails we go for it directly ourselves.
733  */
734 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
735 {
736 
737 	/*
738 	 * If fw_attach != 0, construct and send the Firmware LDST Command to
739 	 * retrieve the specified PCI-E Configuration Space register.
740 	 */
741 	if (drv_fw_attach != 0) {
742 		struct fw_ldst_cmd ldst_cmd;
743 		int ret;
744 
745 		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
746 		ldst_cmd.op_to_addrspace =
747 			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
748 				    F_FW_CMD_REQUEST |
749 				    F_FW_CMD_READ |
750 				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
751 		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
752 		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
753 		ldst_cmd.u.pcie.ctrl_to_fn =
754 			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
755 		ldst_cmd.u.pcie.r = reg;
756 
757 		/*
758 		 * If the LDST Command succeeds, return the result, otherwise
759 		 * fall through to reading it directly ourselves ...
760 		 */
761 		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
762 				 &ldst_cmd);
763 		if (ret == 0)
764 			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
765 
766 		CH_WARN(adap, "Firmware failed to return "
767 			"Configuration Space register %d, err = %d\n",
768 			reg, -ret);
769 	}
770 
771 	/*
772 	 * Read the desired Configuration Space register via the PCI-E
773 	 * Backdoor mechanism.
774 	 */
775 	return t4_hw_pci_read_cfg4(adap, reg);
776 }
777 
778 /**
779  *	t4_get_regs_len - return the size of the chips register set
780  *	@adapter: the adapter
781  *
782  *	Returns the size of the chip's BAR0 register space.
783  */
784 unsigned int t4_get_regs_len(struct adapter *adapter)
785 {
786 	unsigned int chip_version = chip_id(adapter);
787 
788 	switch (chip_version) {
789 	case CHELSIO_T4:
790 		if (adapter->flags & IS_VF)
791 			return FW_T4VF_REGMAP_SIZE;
792 		return T4_REGMAP_SIZE;
793 
794 	case CHELSIO_T5:
795 	case CHELSIO_T6:
796 		if (adapter->flags & IS_VF)
797 			return FW_T4VF_REGMAP_SIZE;
798 		return T5_REGMAP_SIZE;
799 	}
800 
801 	CH_ERR(adapter,
802 		"Unsupported chip version %d\n", chip_version);
803 	return 0;
804 }
805 
806 /**
807  *	t4_get_regs - read chip registers into provided buffer
808  *	@adap: the adapter
809  *	@buf: register buffer
810  *	@buf_size: size (in bytes) of register buffer
811  *
812  *	If the provided register buffer isn't large enough for the chip's
813  *	full register range, the register dump will be truncated to the
814  *	register buffer's size.
815  */
816 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
817 {
818 	static const unsigned int t4_reg_ranges[] = {
819 		0x1008, 0x1108,
820 		0x1180, 0x1184,
821 		0x1190, 0x1194,
822 		0x11a0, 0x11a4,
823 		0x11b0, 0x11b4,
824 		0x11fc, 0x123c,
825 		0x1300, 0x173c,
826 		0x1800, 0x18fc,
827 		0x3000, 0x30d8,
828 		0x30e0, 0x30e4,
829 		0x30ec, 0x5910,
830 		0x5920, 0x5924,
831 		0x5960, 0x5960,
832 		0x5968, 0x5968,
833 		0x5970, 0x5970,
834 		0x5978, 0x5978,
835 		0x5980, 0x5980,
836 		0x5988, 0x5988,
837 		0x5990, 0x5990,
838 		0x5998, 0x5998,
839 		0x59a0, 0x59d4,
840 		0x5a00, 0x5ae0,
841 		0x5ae8, 0x5ae8,
842 		0x5af0, 0x5af0,
843 		0x5af8, 0x5af8,
844 		0x6000, 0x6098,
845 		0x6100, 0x6150,
846 		0x6200, 0x6208,
847 		0x6240, 0x6248,
848 		0x6280, 0x62b0,
849 		0x62c0, 0x6338,
850 		0x6370, 0x638c,
851 		0x6400, 0x643c,
852 		0x6500, 0x6524,
853 		0x6a00, 0x6a04,
854 		0x6a14, 0x6a38,
855 		0x6a60, 0x6a70,
856 		0x6a78, 0x6a78,
857 		0x6b00, 0x6b0c,
858 		0x6b1c, 0x6b84,
859 		0x6bf0, 0x6bf8,
860 		0x6c00, 0x6c0c,
861 		0x6c1c, 0x6c84,
862 		0x6cf0, 0x6cf8,
863 		0x6d00, 0x6d0c,
864 		0x6d1c, 0x6d84,
865 		0x6df0, 0x6df8,
866 		0x6e00, 0x6e0c,
867 		0x6e1c, 0x6e84,
868 		0x6ef0, 0x6ef8,
869 		0x6f00, 0x6f0c,
870 		0x6f1c, 0x6f84,
871 		0x6ff0, 0x6ff8,
872 		0x7000, 0x700c,
873 		0x701c, 0x7084,
874 		0x70f0, 0x70f8,
875 		0x7100, 0x710c,
876 		0x711c, 0x7184,
877 		0x71f0, 0x71f8,
878 		0x7200, 0x720c,
879 		0x721c, 0x7284,
880 		0x72f0, 0x72f8,
881 		0x7300, 0x730c,
882 		0x731c, 0x7384,
883 		0x73f0, 0x73f8,
884 		0x7400, 0x7450,
885 		0x7500, 0x7530,
886 		0x7600, 0x760c,
887 		0x7614, 0x761c,
888 		0x7680, 0x76cc,
889 		0x7700, 0x7798,
890 		0x77c0, 0x77fc,
891 		0x7900, 0x79fc,
892 		0x7b00, 0x7b58,
893 		0x7b60, 0x7b84,
894 		0x7b8c, 0x7c38,
895 		0x7d00, 0x7d38,
896 		0x7d40, 0x7d80,
897 		0x7d8c, 0x7ddc,
898 		0x7de4, 0x7e04,
899 		0x7e10, 0x7e1c,
900 		0x7e24, 0x7e38,
901 		0x7e40, 0x7e44,
902 		0x7e4c, 0x7e78,
903 		0x7e80, 0x7ea4,
904 		0x7eac, 0x7edc,
905 		0x7ee8, 0x7efc,
906 		0x8dc0, 0x8e04,
907 		0x8e10, 0x8e1c,
908 		0x8e30, 0x8e78,
909 		0x8ea0, 0x8eb8,
910 		0x8ec0, 0x8f6c,
911 		0x8fc0, 0x9008,
912 		0x9010, 0x9058,
913 		0x9060, 0x9060,
914 		0x9068, 0x9074,
915 		0x90fc, 0x90fc,
916 		0x9400, 0x9408,
917 		0x9410, 0x9458,
918 		0x9600, 0x9600,
919 		0x9608, 0x9638,
920 		0x9640, 0x96bc,
921 		0x9800, 0x9808,
922 		0x9820, 0x983c,
923 		0x9850, 0x9864,
924 		0x9c00, 0x9c6c,
925 		0x9c80, 0x9cec,
926 		0x9d00, 0x9d6c,
927 		0x9d80, 0x9dec,
928 		0x9e00, 0x9e6c,
929 		0x9e80, 0x9eec,
930 		0x9f00, 0x9f6c,
931 		0x9f80, 0x9fec,
932 		0xd004, 0xd004,
933 		0xd010, 0xd03c,
934 		0xdfc0, 0xdfe0,
935 		0xe000, 0xea7c,
936 		0xf000, 0x11110,
937 		0x11118, 0x11190,
938 		0x19040, 0x1906c,
939 		0x19078, 0x19080,
940 		0x1908c, 0x190e4,
941 		0x190f0, 0x190f8,
942 		0x19100, 0x19110,
943 		0x19120, 0x19124,
944 		0x19150, 0x19194,
945 		0x1919c, 0x191b0,
946 		0x191d0, 0x191e8,
947 		0x19238, 0x1924c,
948 		0x193f8, 0x1943c,
949 		0x1944c, 0x19474,
950 		0x19490, 0x194e0,
951 		0x194f0, 0x194f8,
952 		0x19800, 0x19c08,
953 		0x19c10, 0x19c90,
954 		0x19ca0, 0x19ce4,
955 		0x19cf0, 0x19d40,
956 		0x19d50, 0x19d94,
957 		0x19da0, 0x19de8,
958 		0x19df0, 0x19e40,
959 		0x19e50, 0x19e90,
960 		0x19ea0, 0x19f4c,
961 		0x1a000, 0x1a004,
962 		0x1a010, 0x1a06c,
963 		0x1a0b0, 0x1a0e4,
964 		0x1a0ec, 0x1a0f4,
965 		0x1a100, 0x1a108,
966 		0x1a114, 0x1a120,
967 		0x1a128, 0x1a130,
968 		0x1a138, 0x1a138,
969 		0x1a190, 0x1a1c4,
970 		0x1a1fc, 0x1a1fc,
971 		0x1e040, 0x1e04c,
972 		0x1e284, 0x1e28c,
973 		0x1e2c0, 0x1e2c0,
974 		0x1e2e0, 0x1e2e0,
975 		0x1e300, 0x1e384,
976 		0x1e3c0, 0x1e3c8,
977 		0x1e440, 0x1e44c,
978 		0x1e684, 0x1e68c,
979 		0x1e6c0, 0x1e6c0,
980 		0x1e6e0, 0x1e6e0,
981 		0x1e700, 0x1e784,
982 		0x1e7c0, 0x1e7c8,
983 		0x1e840, 0x1e84c,
984 		0x1ea84, 0x1ea8c,
985 		0x1eac0, 0x1eac0,
986 		0x1eae0, 0x1eae0,
987 		0x1eb00, 0x1eb84,
988 		0x1ebc0, 0x1ebc8,
989 		0x1ec40, 0x1ec4c,
990 		0x1ee84, 0x1ee8c,
991 		0x1eec0, 0x1eec0,
992 		0x1eee0, 0x1eee0,
993 		0x1ef00, 0x1ef84,
994 		0x1efc0, 0x1efc8,
995 		0x1f040, 0x1f04c,
996 		0x1f284, 0x1f28c,
997 		0x1f2c0, 0x1f2c0,
998 		0x1f2e0, 0x1f2e0,
999 		0x1f300, 0x1f384,
1000 		0x1f3c0, 0x1f3c8,
1001 		0x1f440, 0x1f44c,
1002 		0x1f684, 0x1f68c,
1003 		0x1f6c0, 0x1f6c0,
1004 		0x1f6e0, 0x1f6e0,
1005 		0x1f700, 0x1f784,
1006 		0x1f7c0, 0x1f7c8,
1007 		0x1f840, 0x1f84c,
1008 		0x1fa84, 0x1fa8c,
1009 		0x1fac0, 0x1fac0,
1010 		0x1fae0, 0x1fae0,
1011 		0x1fb00, 0x1fb84,
1012 		0x1fbc0, 0x1fbc8,
1013 		0x1fc40, 0x1fc4c,
1014 		0x1fe84, 0x1fe8c,
1015 		0x1fec0, 0x1fec0,
1016 		0x1fee0, 0x1fee0,
1017 		0x1ff00, 0x1ff84,
1018 		0x1ffc0, 0x1ffc8,
1019 		0x20000, 0x2002c,
1020 		0x20100, 0x2013c,
1021 		0x20190, 0x201a0,
1022 		0x201a8, 0x201b8,
1023 		0x201c4, 0x201c8,
1024 		0x20200, 0x20318,
1025 		0x20400, 0x204b4,
1026 		0x204c0, 0x20528,
1027 		0x20540, 0x20614,
1028 		0x21000, 0x21040,
1029 		0x2104c, 0x21060,
1030 		0x210c0, 0x210ec,
1031 		0x21200, 0x21268,
1032 		0x21270, 0x21284,
1033 		0x212fc, 0x21388,
1034 		0x21400, 0x21404,
1035 		0x21500, 0x21500,
1036 		0x21510, 0x21518,
1037 		0x2152c, 0x21530,
1038 		0x2153c, 0x2153c,
1039 		0x21550, 0x21554,
1040 		0x21600, 0x21600,
1041 		0x21608, 0x2161c,
1042 		0x21624, 0x21628,
1043 		0x21630, 0x21634,
1044 		0x2163c, 0x2163c,
1045 		0x21700, 0x2171c,
1046 		0x21780, 0x2178c,
1047 		0x21800, 0x21818,
1048 		0x21820, 0x21828,
1049 		0x21830, 0x21848,
1050 		0x21850, 0x21854,
1051 		0x21860, 0x21868,
1052 		0x21870, 0x21870,
1053 		0x21878, 0x21898,
1054 		0x218a0, 0x218a8,
1055 		0x218b0, 0x218c8,
1056 		0x218d0, 0x218d4,
1057 		0x218e0, 0x218e8,
1058 		0x218f0, 0x218f0,
1059 		0x218f8, 0x21a18,
1060 		0x21a20, 0x21a28,
1061 		0x21a30, 0x21a48,
1062 		0x21a50, 0x21a54,
1063 		0x21a60, 0x21a68,
1064 		0x21a70, 0x21a70,
1065 		0x21a78, 0x21a98,
1066 		0x21aa0, 0x21aa8,
1067 		0x21ab0, 0x21ac8,
1068 		0x21ad0, 0x21ad4,
1069 		0x21ae0, 0x21ae8,
1070 		0x21af0, 0x21af0,
1071 		0x21af8, 0x21c18,
1072 		0x21c20, 0x21c20,
1073 		0x21c28, 0x21c30,
1074 		0x21c38, 0x21c38,
1075 		0x21c80, 0x21c98,
1076 		0x21ca0, 0x21ca8,
1077 		0x21cb0, 0x21cc8,
1078 		0x21cd0, 0x21cd4,
1079 		0x21ce0, 0x21ce8,
1080 		0x21cf0, 0x21cf0,
1081 		0x21cf8, 0x21d7c,
1082 		0x21e00, 0x21e04,
1083 		0x22000, 0x2202c,
1084 		0x22100, 0x2213c,
1085 		0x22190, 0x221a0,
1086 		0x221a8, 0x221b8,
1087 		0x221c4, 0x221c8,
1088 		0x22200, 0x22318,
1089 		0x22400, 0x224b4,
1090 		0x224c0, 0x22528,
1091 		0x22540, 0x22614,
1092 		0x23000, 0x23040,
1093 		0x2304c, 0x23060,
1094 		0x230c0, 0x230ec,
1095 		0x23200, 0x23268,
1096 		0x23270, 0x23284,
1097 		0x232fc, 0x23388,
1098 		0x23400, 0x23404,
1099 		0x23500, 0x23500,
1100 		0x23510, 0x23518,
1101 		0x2352c, 0x23530,
1102 		0x2353c, 0x2353c,
1103 		0x23550, 0x23554,
1104 		0x23600, 0x23600,
1105 		0x23608, 0x2361c,
1106 		0x23624, 0x23628,
1107 		0x23630, 0x23634,
1108 		0x2363c, 0x2363c,
1109 		0x23700, 0x2371c,
1110 		0x23780, 0x2378c,
1111 		0x23800, 0x23818,
1112 		0x23820, 0x23828,
1113 		0x23830, 0x23848,
1114 		0x23850, 0x23854,
1115 		0x23860, 0x23868,
1116 		0x23870, 0x23870,
1117 		0x23878, 0x23898,
1118 		0x238a0, 0x238a8,
1119 		0x238b0, 0x238c8,
1120 		0x238d0, 0x238d4,
1121 		0x238e0, 0x238e8,
1122 		0x238f0, 0x238f0,
1123 		0x238f8, 0x23a18,
1124 		0x23a20, 0x23a28,
1125 		0x23a30, 0x23a48,
1126 		0x23a50, 0x23a54,
1127 		0x23a60, 0x23a68,
1128 		0x23a70, 0x23a70,
1129 		0x23a78, 0x23a98,
1130 		0x23aa0, 0x23aa8,
1131 		0x23ab0, 0x23ac8,
1132 		0x23ad0, 0x23ad4,
1133 		0x23ae0, 0x23ae8,
1134 		0x23af0, 0x23af0,
1135 		0x23af8, 0x23c18,
1136 		0x23c20, 0x23c20,
1137 		0x23c28, 0x23c30,
1138 		0x23c38, 0x23c38,
1139 		0x23c80, 0x23c98,
1140 		0x23ca0, 0x23ca8,
1141 		0x23cb0, 0x23cc8,
1142 		0x23cd0, 0x23cd4,
1143 		0x23ce0, 0x23ce8,
1144 		0x23cf0, 0x23cf0,
1145 		0x23cf8, 0x23d7c,
1146 		0x23e00, 0x23e04,
1147 		0x24000, 0x2402c,
1148 		0x24100, 0x2413c,
1149 		0x24190, 0x241a0,
1150 		0x241a8, 0x241b8,
1151 		0x241c4, 0x241c8,
1152 		0x24200, 0x24318,
1153 		0x24400, 0x244b4,
1154 		0x244c0, 0x24528,
1155 		0x24540, 0x24614,
1156 		0x25000, 0x25040,
1157 		0x2504c, 0x25060,
1158 		0x250c0, 0x250ec,
1159 		0x25200, 0x25268,
1160 		0x25270, 0x25284,
1161 		0x252fc, 0x25388,
1162 		0x25400, 0x25404,
1163 		0x25500, 0x25500,
1164 		0x25510, 0x25518,
1165 		0x2552c, 0x25530,
1166 		0x2553c, 0x2553c,
1167 		0x25550, 0x25554,
1168 		0x25600, 0x25600,
1169 		0x25608, 0x2561c,
1170 		0x25624, 0x25628,
1171 		0x25630, 0x25634,
1172 		0x2563c, 0x2563c,
1173 		0x25700, 0x2571c,
1174 		0x25780, 0x2578c,
1175 		0x25800, 0x25818,
1176 		0x25820, 0x25828,
1177 		0x25830, 0x25848,
1178 		0x25850, 0x25854,
1179 		0x25860, 0x25868,
1180 		0x25870, 0x25870,
1181 		0x25878, 0x25898,
1182 		0x258a0, 0x258a8,
1183 		0x258b0, 0x258c8,
1184 		0x258d0, 0x258d4,
1185 		0x258e0, 0x258e8,
1186 		0x258f0, 0x258f0,
1187 		0x258f8, 0x25a18,
1188 		0x25a20, 0x25a28,
1189 		0x25a30, 0x25a48,
1190 		0x25a50, 0x25a54,
1191 		0x25a60, 0x25a68,
1192 		0x25a70, 0x25a70,
1193 		0x25a78, 0x25a98,
1194 		0x25aa0, 0x25aa8,
1195 		0x25ab0, 0x25ac8,
1196 		0x25ad0, 0x25ad4,
1197 		0x25ae0, 0x25ae8,
1198 		0x25af0, 0x25af0,
1199 		0x25af8, 0x25c18,
1200 		0x25c20, 0x25c20,
1201 		0x25c28, 0x25c30,
1202 		0x25c38, 0x25c38,
1203 		0x25c80, 0x25c98,
1204 		0x25ca0, 0x25ca8,
1205 		0x25cb0, 0x25cc8,
1206 		0x25cd0, 0x25cd4,
1207 		0x25ce0, 0x25ce8,
1208 		0x25cf0, 0x25cf0,
1209 		0x25cf8, 0x25d7c,
1210 		0x25e00, 0x25e04,
1211 		0x26000, 0x2602c,
1212 		0x26100, 0x2613c,
1213 		0x26190, 0x261a0,
1214 		0x261a8, 0x261b8,
1215 		0x261c4, 0x261c8,
1216 		0x26200, 0x26318,
1217 		0x26400, 0x264b4,
1218 		0x264c0, 0x26528,
1219 		0x26540, 0x26614,
1220 		0x27000, 0x27040,
1221 		0x2704c, 0x27060,
1222 		0x270c0, 0x270ec,
1223 		0x27200, 0x27268,
1224 		0x27270, 0x27284,
1225 		0x272fc, 0x27388,
1226 		0x27400, 0x27404,
1227 		0x27500, 0x27500,
1228 		0x27510, 0x27518,
1229 		0x2752c, 0x27530,
1230 		0x2753c, 0x2753c,
1231 		0x27550, 0x27554,
1232 		0x27600, 0x27600,
1233 		0x27608, 0x2761c,
1234 		0x27624, 0x27628,
1235 		0x27630, 0x27634,
1236 		0x2763c, 0x2763c,
1237 		0x27700, 0x2771c,
1238 		0x27780, 0x2778c,
1239 		0x27800, 0x27818,
1240 		0x27820, 0x27828,
1241 		0x27830, 0x27848,
1242 		0x27850, 0x27854,
1243 		0x27860, 0x27868,
1244 		0x27870, 0x27870,
1245 		0x27878, 0x27898,
1246 		0x278a0, 0x278a8,
1247 		0x278b0, 0x278c8,
1248 		0x278d0, 0x278d4,
1249 		0x278e0, 0x278e8,
1250 		0x278f0, 0x278f0,
1251 		0x278f8, 0x27a18,
1252 		0x27a20, 0x27a28,
1253 		0x27a30, 0x27a48,
1254 		0x27a50, 0x27a54,
1255 		0x27a60, 0x27a68,
1256 		0x27a70, 0x27a70,
1257 		0x27a78, 0x27a98,
1258 		0x27aa0, 0x27aa8,
1259 		0x27ab0, 0x27ac8,
1260 		0x27ad0, 0x27ad4,
1261 		0x27ae0, 0x27ae8,
1262 		0x27af0, 0x27af0,
1263 		0x27af8, 0x27c18,
1264 		0x27c20, 0x27c20,
1265 		0x27c28, 0x27c30,
1266 		0x27c38, 0x27c38,
1267 		0x27c80, 0x27c98,
1268 		0x27ca0, 0x27ca8,
1269 		0x27cb0, 0x27cc8,
1270 		0x27cd0, 0x27cd4,
1271 		0x27ce0, 0x27ce8,
1272 		0x27cf0, 0x27cf0,
1273 		0x27cf8, 0x27d7c,
1274 		0x27e00, 0x27e04,
1275 	};
1276 
1277 	static const unsigned int t4vf_reg_ranges[] = {
1278 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1279 		VF_MPS_REG(A_MPS_VF_CTL),
1280 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1281 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1282 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1283 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1284 		FW_T4VF_MBDATA_BASE_ADDR,
1285 		FW_T4VF_MBDATA_BASE_ADDR +
1286 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1287 	};
1288 
1289 	static const unsigned int t5_reg_ranges[] = {
1290 		0x1008, 0x10c0,
1291 		0x10cc, 0x10f8,
1292 		0x1100, 0x1100,
1293 		0x110c, 0x1148,
1294 		0x1180, 0x1184,
1295 		0x1190, 0x1194,
1296 		0x11a0, 0x11a4,
1297 		0x11b0, 0x11b4,
1298 		0x11fc, 0x123c,
1299 		0x1280, 0x173c,
1300 		0x1800, 0x18fc,
1301 		0x3000, 0x3028,
1302 		0x3060, 0x30b0,
1303 		0x30b8, 0x30d8,
1304 		0x30e0, 0x30fc,
1305 		0x3140, 0x357c,
1306 		0x35a8, 0x35cc,
1307 		0x35ec, 0x35ec,
1308 		0x3600, 0x5624,
1309 		0x56cc, 0x56ec,
1310 		0x56f4, 0x5720,
1311 		0x5728, 0x575c,
1312 		0x580c, 0x5814,
1313 		0x5890, 0x589c,
1314 		0x58a4, 0x58ac,
1315 		0x58b8, 0x58bc,
1316 		0x5940, 0x59c8,
1317 		0x59d0, 0x59dc,
1318 		0x59fc, 0x5a18,
1319 		0x5a60, 0x5a70,
1320 		0x5a80, 0x5a9c,
1321 		0x5b94, 0x5bfc,
1322 		0x6000, 0x6020,
1323 		0x6028, 0x6040,
1324 		0x6058, 0x609c,
1325 		0x60a8, 0x614c,
1326 		0x7700, 0x7798,
1327 		0x77c0, 0x78fc,
1328 		0x7b00, 0x7b58,
1329 		0x7b60, 0x7b84,
1330 		0x7b8c, 0x7c54,
1331 		0x7d00, 0x7d38,
1332 		0x7d40, 0x7d80,
1333 		0x7d8c, 0x7ddc,
1334 		0x7de4, 0x7e04,
1335 		0x7e10, 0x7e1c,
1336 		0x7e24, 0x7e38,
1337 		0x7e40, 0x7e44,
1338 		0x7e4c, 0x7e78,
1339 		0x7e80, 0x7edc,
1340 		0x7ee8, 0x7efc,
1341 		0x8dc0, 0x8de0,
1342 		0x8df8, 0x8e04,
1343 		0x8e10, 0x8e84,
1344 		0x8ea0, 0x8f84,
1345 		0x8fc0, 0x9058,
1346 		0x9060, 0x9060,
1347 		0x9068, 0x90f8,
1348 		0x9400, 0x9408,
1349 		0x9410, 0x9470,
1350 		0x9600, 0x9600,
1351 		0x9608, 0x9638,
1352 		0x9640, 0x96f4,
1353 		0x9800, 0x9808,
1354 		0x9820, 0x983c,
1355 		0x9850, 0x9864,
1356 		0x9c00, 0x9c6c,
1357 		0x9c80, 0x9cec,
1358 		0x9d00, 0x9d6c,
1359 		0x9d80, 0x9dec,
1360 		0x9e00, 0x9e6c,
1361 		0x9e80, 0x9eec,
1362 		0x9f00, 0x9f6c,
1363 		0x9f80, 0xa020,
1364 		0xd004, 0xd004,
1365 		0xd010, 0xd03c,
1366 		0xdfc0, 0xdfe0,
1367 		0xe000, 0x1106c,
1368 		0x11074, 0x11088,
1369 		0x1109c, 0x1117c,
1370 		0x11190, 0x11204,
1371 		0x19040, 0x1906c,
1372 		0x19078, 0x19080,
1373 		0x1908c, 0x190e8,
1374 		0x190f0, 0x190f8,
1375 		0x19100, 0x19110,
1376 		0x19120, 0x19124,
1377 		0x19150, 0x19194,
1378 		0x1919c, 0x191b0,
1379 		0x191d0, 0x191e8,
1380 		0x19238, 0x19290,
1381 		0x193f8, 0x19428,
1382 		0x19430, 0x19444,
1383 		0x1944c, 0x1946c,
1384 		0x19474, 0x19474,
1385 		0x19490, 0x194cc,
1386 		0x194f0, 0x194f8,
1387 		0x19c00, 0x19c08,
1388 		0x19c10, 0x19c60,
1389 		0x19c94, 0x19ce4,
1390 		0x19cf0, 0x19d40,
1391 		0x19d50, 0x19d94,
1392 		0x19da0, 0x19de8,
1393 		0x19df0, 0x19e10,
1394 		0x19e50, 0x19e90,
1395 		0x19ea0, 0x19f24,
1396 		0x19f34, 0x19f34,
1397 		0x19f40, 0x19f50,
1398 		0x19f90, 0x19fb4,
1399 		0x19fc4, 0x19fe4,
1400 		0x1a000, 0x1a004,
1401 		0x1a010, 0x1a06c,
1402 		0x1a0b0, 0x1a0e4,
1403 		0x1a0ec, 0x1a0f8,
1404 		0x1a100, 0x1a108,
1405 		0x1a114, 0x1a120,
1406 		0x1a128, 0x1a130,
1407 		0x1a138, 0x1a138,
1408 		0x1a190, 0x1a1c4,
1409 		0x1a1fc, 0x1a1fc,
1410 		0x1e008, 0x1e00c,
1411 		0x1e040, 0x1e044,
1412 		0x1e04c, 0x1e04c,
1413 		0x1e284, 0x1e290,
1414 		0x1e2c0, 0x1e2c0,
1415 		0x1e2e0, 0x1e2e0,
1416 		0x1e300, 0x1e384,
1417 		0x1e3c0, 0x1e3c8,
1418 		0x1e408, 0x1e40c,
1419 		0x1e440, 0x1e444,
1420 		0x1e44c, 0x1e44c,
1421 		0x1e684, 0x1e690,
1422 		0x1e6c0, 0x1e6c0,
1423 		0x1e6e0, 0x1e6e0,
1424 		0x1e700, 0x1e784,
1425 		0x1e7c0, 0x1e7c8,
1426 		0x1e808, 0x1e80c,
1427 		0x1e840, 0x1e844,
1428 		0x1e84c, 0x1e84c,
1429 		0x1ea84, 0x1ea90,
1430 		0x1eac0, 0x1eac0,
1431 		0x1eae0, 0x1eae0,
1432 		0x1eb00, 0x1eb84,
1433 		0x1ebc0, 0x1ebc8,
1434 		0x1ec08, 0x1ec0c,
1435 		0x1ec40, 0x1ec44,
1436 		0x1ec4c, 0x1ec4c,
1437 		0x1ee84, 0x1ee90,
1438 		0x1eec0, 0x1eec0,
1439 		0x1eee0, 0x1eee0,
1440 		0x1ef00, 0x1ef84,
1441 		0x1efc0, 0x1efc8,
1442 		0x1f008, 0x1f00c,
1443 		0x1f040, 0x1f044,
1444 		0x1f04c, 0x1f04c,
1445 		0x1f284, 0x1f290,
1446 		0x1f2c0, 0x1f2c0,
1447 		0x1f2e0, 0x1f2e0,
1448 		0x1f300, 0x1f384,
1449 		0x1f3c0, 0x1f3c8,
1450 		0x1f408, 0x1f40c,
1451 		0x1f440, 0x1f444,
1452 		0x1f44c, 0x1f44c,
1453 		0x1f684, 0x1f690,
1454 		0x1f6c0, 0x1f6c0,
1455 		0x1f6e0, 0x1f6e0,
1456 		0x1f700, 0x1f784,
1457 		0x1f7c0, 0x1f7c8,
1458 		0x1f808, 0x1f80c,
1459 		0x1f840, 0x1f844,
1460 		0x1f84c, 0x1f84c,
1461 		0x1fa84, 0x1fa90,
1462 		0x1fac0, 0x1fac0,
1463 		0x1fae0, 0x1fae0,
1464 		0x1fb00, 0x1fb84,
1465 		0x1fbc0, 0x1fbc8,
1466 		0x1fc08, 0x1fc0c,
1467 		0x1fc40, 0x1fc44,
1468 		0x1fc4c, 0x1fc4c,
1469 		0x1fe84, 0x1fe90,
1470 		0x1fec0, 0x1fec0,
1471 		0x1fee0, 0x1fee0,
1472 		0x1ff00, 0x1ff84,
1473 		0x1ffc0, 0x1ffc8,
1474 		0x30000, 0x30030,
1475 		0x30100, 0x30144,
1476 		0x30190, 0x301a0,
1477 		0x301a8, 0x301b8,
1478 		0x301c4, 0x301c8,
1479 		0x301d0, 0x301d0,
1480 		0x30200, 0x30318,
1481 		0x30400, 0x304b4,
1482 		0x304c0, 0x3052c,
1483 		0x30540, 0x3061c,
1484 		0x30800, 0x30828,
1485 		0x30834, 0x30834,
1486 		0x308c0, 0x30908,
1487 		0x30910, 0x309ac,
1488 		0x30a00, 0x30a14,
1489 		0x30a1c, 0x30a2c,
1490 		0x30a44, 0x30a50,
1491 		0x30a74, 0x30a74,
1492 		0x30a7c, 0x30afc,
1493 		0x30b08, 0x30c24,
1494 		0x30d00, 0x30d00,
1495 		0x30d08, 0x30d14,
1496 		0x30d1c, 0x30d20,
1497 		0x30d3c, 0x30d3c,
1498 		0x30d48, 0x30d50,
1499 		0x31200, 0x3120c,
1500 		0x31220, 0x31220,
1501 		0x31240, 0x31240,
1502 		0x31600, 0x3160c,
1503 		0x31a00, 0x31a1c,
1504 		0x31e00, 0x31e20,
1505 		0x31e38, 0x31e3c,
1506 		0x31e80, 0x31e80,
1507 		0x31e88, 0x31ea8,
1508 		0x31eb0, 0x31eb4,
1509 		0x31ec8, 0x31ed4,
1510 		0x31fb8, 0x32004,
1511 		0x32200, 0x32200,
1512 		0x32208, 0x32240,
1513 		0x32248, 0x32280,
1514 		0x32288, 0x322c0,
1515 		0x322c8, 0x322fc,
1516 		0x32600, 0x32630,
1517 		0x32a00, 0x32abc,
1518 		0x32b00, 0x32b10,
1519 		0x32b20, 0x32b30,
1520 		0x32b40, 0x32b50,
1521 		0x32b60, 0x32b70,
1522 		0x33000, 0x33028,
1523 		0x33030, 0x33048,
1524 		0x33060, 0x33068,
1525 		0x33070, 0x3309c,
1526 		0x330f0, 0x33128,
1527 		0x33130, 0x33148,
1528 		0x33160, 0x33168,
1529 		0x33170, 0x3319c,
1530 		0x331f0, 0x33238,
1531 		0x33240, 0x33240,
1532 		0x33248, 0x33250,
1533 		0x3325c, 0x33264,
1534 		0x33270, 0x332b8,
1535 		0x332c0, 0x332e4,
1536 		0x332f8, 0x33338,
1537 		0x33340, 0x33340,
1538 		0x33348, 0x33350,
1539 		0x3335c, 0x33364,
1540 		0x33370, 0x333b8,
1541 		0x333c0, 0x333e4,
1542 		0x333f8, 0x33428,
1543 		0x33430, 0x33448,
1544 		0x33460, 0x33468,
1545 		0x33470, 0x3349c,
1546 		0x334f0, 0x33528,
1547 		0x33530, 0x33548,
1548 		0x33560, 0x33568,
1549 		0x33570, 0x3359c,
1550 		0x335f0, 0x33638,
1551 		0x33640, 0x33640,
1552 		0x33648, 0x33650,
1553 		0x3365c, 0x33664,
1554 		0x33670, 0x336b8,
1555 		0x336c0, 0x336e4,
1556 		0x336f8, 0x33738,
1557 		0x33740, 0x33740,
1558 		0x33748, 0x33750,
1559 		0x3375c, 0x33764,
1560 		0x33770, 0x337b8,
1561 		0x337c0, 0x337e4,
1562 		0x337f8, 0x337fc,
1563 		0x33814, 0x33814,
1564 		0x3382c, 0x3382c,
1565 		0x33880, 0x3388c,
1566 		0x338e8, 0x338ec,
1567 		0x33900, 0x33928,
1568 		0x33930, 0x33948,
1569 		0x33960, 0x33968,
1570 		0x33970, 0x3399c,
1571 		0x339f0, 0x33a38,
1572 		0x33a40, 0x33a40,
1573 		0x33a48, 0x33a50,
1574 		0x33a5c, 0x33a64,
1575 		0x33a70, 0x33ab8,
1576 		0x33ac0, 0x33ae4,
1577 		0x33af8, 0x33b10,
1578 		0x33b28, 0x33b28,
1579 		0x33b3c, 0x33b50,
1580 		0x33bf0, 0x33c10,
1581 		0x33c28, 0x33c28,
1582 		0x33c3c, 0x33c50,
1583 		0x33cf0, 0x33cfc,
1584 		0x34000, 0x34030,
1585 		0x34100, 0x34144,
1586 		0x34190, 0x341a0,
1587 		0x341a8, 0x341b8,
1588 		0x341c4, 0x341c8,
1589 		0x341d0, 0x341d0,
1590 		0x34200, 0x34318,
1591 		0x34400, 0x344b4,
1592 		0x344c0, 0x3452c,
1593 		0x34540, 0x3461c,
1594 		0x34800, 0x34828,
1595 		0x34834, 0x34834,
1596 		0x348c0, 0x34908,
1597 		0x34910, 0x349ac,
1598 		0x34a00, 0x34a14,
1599 		0x34a1c, 0x34a2c,
1600 		0x34a44, 0x34a50,
1601 		0x34a74, 0x34a74,
1602 		0x34a7c, 0x34afc,
1603 		0x34b08, 0x34c24,
1604 		0x34d00, 0x34d00,
1605 		0x34d08, 0x34d14,
1606 		0x34d1c, 0x34d20,
1607 		0x34d3c, 0x34d3c,
1608 		0x34d48, 0x34d50,
1609 		0x35200, 0x3520c,
1610 		0x35220, 0x35220,
1611 		0x35240, 0x35240,
1612 		0x35600, 0x3560c,
1613 		0x35a00, 0x35a1c,
1614 		0x35e00, 0x35e20,
1615 		0x35e38, 0x35e3c,
1616 		0x35e80, 0x35e80,
1617 		0x35e88, 0x35ea8,
1618 		0x35eb0, 0x35eb4,
1619 		0x35ec8, 0x35ed4,
1620 		0x35fb8, 0x36004,
1621 		0x36200, 0x36200,
1622 		0x36208, 0x36240,
1623 		0x36248, 0x36280,
1624 		0x36288, 0x362c0,
1625 		0x362c8, 0x362fc,
1626 		0x36600, 0x36630,
1627 		0x36a00, 0x36abc,
1628 		0x36b00, 0x36b10,
1629 		0x36b20, 0x36b30,
1630 		0x36b40, 0x36b50,
1631 		0x36b60, 0x36b70,
1632 		0x37000, 0x37028,
1633 		0x37030, 0x37048,
1634 		0x37060, 0x37068,
1635 		0x37070, 0x3709c,
1636 		0x370f0, 0x37128,
1637 		0x37130, 0x37148,
1638 		0x37160, 0x37168,
1639 		0x37170, 0x3719c,
1640 		0x371f0, 0x37238,
1641 		0x37240, 0x37240,
1642 		0x37248, 0x37250,
1643 		0x3725c, 0x37264,
1644 		0x37270, 0x372b8,
1645 		0x372c0, 0x372e4,
1646 		0x372f8, 0x37338,
1647 		0x37340, 0x37340,
1648 		0x37348, 0x37350,
1649 		0x3735c, 0x37364,
1650 		0x37370, 0x373b8,
1651 		0x373c0, 0x373e4,
1652 		0x373f8, 0x37428,
1653 		0x37430, 0x37448,
1654 		0x37460, 0x37468,
1655 		0x37470, 0x3749c,
1656 		0x374f0, 0x37528,
1657 		0x37530, 0x37548,
1658 		0x37560, 0x37568,
1659 		0x37570, 0x3759c,
1660 		0x375f0, 0x37638,
1661 		0x37640, 0x37640,
1662 		0x37648, 0x37650,
1663 		0x3765c, 0x37664,
1664 		0x37670, 0x376b8,
1665 		0x376c0, 0x376e4,
1666 		0x376f8, 0x37738,
1667 		0x37740, 0x37740,
1668 		0x37748, 0x37750,
1669 		0x3775c, 0x37764,
1670 		0x37770, 0x377b8,
1671 		0x377c0, 0x377e4,
1672 		0x377f8, 0x377fc,
1673 		0x37814, 0x37814,
1674 		0x3782c, 0x3782c,
1675 		0x37880, 0x3788c,
1676 		0x378e8, 0x378ec,
1677 		0x37900, 0x37928,
1678 		0x37930, 0x37948,
1679 		0x37960, 0x37968,
1680 		0x37970, 0x3799c,
1681 		0x379f0, 0x37a38,
1682 		0x37a40, 0x37a40,
1683 		0x37a48, 0x37a50,
1684 		0x37a5c, 0x37a64,
1685 		0x37a70, 0x37ab8,
1686 		0x37ac0, 0x37ae4,
1687 		0x37af8, 0x37b10,
1688 		0x37b28, 0x37b28,
1689 		0x37b3c, 0x37b50,
1690 		0x37bf0, 0x37c10,
1691 		0x37c28, 0x37c28,
1692 		0x37c3c, 0x37c50,
1693 		0x37cf0, 0x37cfc,
1694 		0x38000, 0x38030,
1695 		0x38100, 0x38144,
1696 		0x38190, 0x381a0,
1697 		0x381a8, 0x381b8,
1698 		0x381c4, 0x381c8,
1699 		0x381d0, 0x381d0,
1700 		0x38200, 0x38318,
1701 		0x38400, 0x384b4,
1702 		0x384c0, 0x3852c,
1703 		0x38540, 0x3861c,
1704 		0x38800, 0x38828,
1705 		0x38834, 0x38834,
1706 		0x388c0, 0x38908,
1707 		0x38910, 0x389ac,
1708 		0x38a00, 0x38a14,
1709 		0x38a1c, 0x38a2c,
1710 		0x38a44, 0x38a50,
1711 		0x38a74, 0x38a74,
1712 		0x38a7c, 0x38afc,
1713 		0x38b08, 0x38c24,
1714 		0x38d00, 0x38d00,
1715 		0x38d08, 0x38d14,
1716 		0x38d1c, 0x38d20,
1717 		0x38d3c, 0x38d3c,
1718 		0x38d48, 0x38d50,
1719 		0x39200, 0x3920c,
1720 		0x39220, 0x39220,
1721 		0x39240, 0x39240,
1722 		0x39600, 0x3960c,
1723 		0x39a00, 0x39a1c,
1724 		0x39e00, 0x39e20,
1725 		0x39e38, 0x39e3c,
1726 		0x39e80, 0x39e80,
1727 		0x39e88, 0x39ea8,
1728 		0x39eb0, 0x39eb4,
1729 		0x39ec8, 0x39ed4,
1730 		0x39fb8, 0x3a004,
1731 		0x3a200, 0x3a200,
1732 		0x3a208, 0x3a240,
1733 		0x3a248, 0x3a280,
1734 		0x3a288, 0x3a2c0,
1735 		0x3a2c8, 0x3a2fc,
1736 		0x3a600, 0x3a630,
1737 		0x3aa00, 0x3aabc,
1738 		0x3ab00, 0x3ab10,
1739 		0x3ab20, 0x3ab30,
1740 		0x3ab40, 0x3ab50,
1741 		0x3ab60, 0x3ab70,
1742 		0x3b000, 0x3b028,
1743 		0x3b030, 0x3b048,
1744 		0x3b060, 0x3b068,
1745 		0x3b070, 0x3b09c,
1746 		0x3b0f0, 0x3b128,
1747 		0x3b130, 0x3b148,
1748 		0x3b160, 0x3b168,
1749 		0x3b170, 0x3b19c,
1750 		0x3b1f0, 0x3b238,
1751 		0x3b240, 0x3b240,
1752 		0x3b248, 0x3b250,
1753 		0x3b25c, 0x3b264,
1754 		0x3b270, 0x3b2b8,
1755 		0x3b2c0, 0x3b2e4,
1756 		0x3b2f8, 0x3b338,
1757 		0x3b340, 0x3b340,
1758 		0x3b348, 0x3b350,
1759 		0x3b35c, 0x3b364,
1760 		0x3b370, 0x3b3b8,
1761 		0x3b3c0, 0x3b3e4,
1762 		0x3b3f8, 0x3b428,
1763 		0x3b430, 0x3b448,
1764 		0x3b460, 0x3b468,
1765 		0x3b470, 0x3b49c,
1766 		0x3b4f0, 0x3b528,
1767 		0x3b530, 0x3b548,
1768 		0x3b560, 0x3b568,
1769 		0x3b570, 0x3b59c,
1770 		0x3b5f0, 0x3b638,
1771 		0x3b640, 0x3b640,
1772 		0x3b648, 0x3b650,
1773 		0x3b65c, 0x3b664,
1774 		0x3b670, 0x3b6b8,
1775 		0x3b6c0, 0x3b6e4,
1776 		0x3b6f8, 0x3b738,
1777 		0x3b740, 0x3b740,
1778 		0x3b748, 0x3b750,
1779 		0x3b75c, 0x3b764,
1780 		0x3b770, 0x3b7b8,
1781 		0x3b7c0, 0x3b7e4,
1782 		0x3b7f8, 0x3b7fc,
1783 		0x3b814, 0x3b814,
1784 		0x3b82c, 0x3b82c,
1785 		0x3b880, 0x3b88c,
1786 		0x3b8e8, 0x3b8ec,
1787 		0x3b900, 0x3b928,
1788 		0x3b930, 0x3b948,
1789 		0x3b960, 0x3b968,
1790 		0x3b970, 0x3b99c,
1791 		0x3b9f0, 0x3ba38,
1792 		0x3ba40, 0x3ba40,
1793 		0x3ba48, 0x3ba50,
1794 		0x3ba5c, 0x3ba64,
1795 		0x3ba70, 0x3bab8,
1796 		0x3bac0, 0x3bae4,
1797 		0x3baf8, 0x3bb10,
1798 		0x3bb28, 0x3bb28,
1799 		0x3bb3c, 0x3bb50,
1800 		0x3bbf0, 0x3bc10,
1801 		0x3bc28, 0x3bc28,
1802 		0x3bc3c, 0x3bc50,
1803 		0x3bcf0, 0x3bcfc,
1804 		0x3c000, 0x3c030,
1805 		0x3c100, 0x3c144,
1806 		0x3c190, 0x3c1a0,
1807 		0x3c1a8, 0x3c1b8,
1808 		0x3c1c4, 0x3c1c8,
1809 		0x3c1d0, 0x3c1d0,
1810 		0x3c200, 0x3c318,
1811 		0x3c400, 0x3c4b4,
1812 		0x3c4c0, 0x3c52c,
1813 		0x3c540, 0x3c61c,
1814 		0x3c800, 0x3c828,
1815 		0x3c834, 0x3c834,
1816 		0x3c8c0, 0x3c908,
1817 		0x3c910, 0x3c9ac,
1818 		0x3ca00, 0x3ca14,
1819 		0x3ca1c, 0x3ca2c,
1820 		0x3ca44, 0x3ca50,
1821 		0x3ca74, 0x3ca74,
1822 		0x3ca7c, 0x3cafc,
1823 		0x3cb08, 0x3cc24,
1824 		0x3cd00, 0x3cd00,
1825 		0x3cd08, 0x3cd14,
1826 		0x3cd1c, 0x3cd20,
1827 		0x3cd3c, 0x3cd3c,
1828 		0x3cd48, 0x3cd50,
1829 		0x3d200, 0x3d20c,
1830 		0x3d220, 0x3d220,
1831 		0x3d240, 0x3d240,
1832 		0x3d600, 0x3d60c,
1833 		0x3da00, 0x3da1c,
1834 		0x3de00, 0x3de20,
1835 		0x3de38, 0x3de3c,
1836 		0x3de80, 0x3de80,
1837 		0x3de88, 0x3dea8,
1838 		0x3deb0, 0x3deb4,
1839 		0x3dec8, 0x3ded4,
1840 		0x3dfb8, 0x3e004,
1841 		0x3e200, 0x3e200,
1842 		0x3e208, 0x3e240,
1843 		0x3e248, 0x3e280,
1844 		0x3e288, 0x3e2c0,
1845 		0x3e2c8, 0x3e2fc,
1846 		0x3e600, 0x3e630,
1847 		0x3ea00, 0x3eabc,
1848 		0x3eb00, 0x3eb10,
1849 		0x3eb20, 0x3eb30,
1850 		0x3eb40, 0x3eb50,
1851 		0x3eb60, 0x3eb70,
1852 		0x3f000, 0x3f028,
1853 		0x3f030, 0x3f048,
1854 		0x3f060, 0x3f068,
1855 		0x3f070, 0x3f09c,
1856 		0x3f0f0, 0x3f128,
1857 		0x3f130, 0x3f148,
1858 		0x3f160, 0x3f168,
1859 		0x3f170, 0x3f19c,
1860 		0x3f1f0, 0x3f238,
1861 		0x3f240, 0x3f240,
1862 		0x3f248, 0x3f250,
1863 		0x3f25c, 0x3f264,
1864 		0x3f270, 0x3f2b8,
1865 		0x3f2c0, 0x3f2e4,
1866 		0x3f2f8, 0x3f338,
1867 		0x3f340, 0x3f340,
1868 		0x3f348, 0x3f350,
1869 		0x3f35c, 0x3f364,
1870 		0x3f370, 0x3f3b8,
1871 		0x3f3c0, 0x3f3e4,
1872 		0x3f3f8, 0x3f428,
1873 		0x3f430, 0x3f448,
1874 		0x3f460, 0x3f468,
1875 		0x3f470, 0x3f49c,
1876 		0x3f4f0, 0x3f528,
1877 		0x3f530, 0x3f548,
1878 		0x3f560, 0x3f568,
1879 		0x3f570, 0x3f59c,
1880 		0x3f5f0, 0x3f638,
1881 		0x3f640, 0x3f640,
1882 		0x3f648, 0x3f650,
1883 		0x3f65c, 0x3f664,
1884 		0x3f670, 0x3f6b8,
1885 		0x3f6c0, 0x3f6e4,
1886 		0x3f6f8, 0x3f738,
1887 		0x3f740, 0x3f740,
1888 		0x3f748, 0x3f750,
1889 		0x3f75c, 0x3f764,
1890 		0x3f770, 0x3f7b8,
1891 		0x3f7c0, 0x3f7e4,
1892 		0x3f7f8, 0x3f7fc,
1893 		0x3f814, 0x3f814,
1894 		0x3f82c, 0x3f82c,
1895 		0x3f880, 0x3f88c,
1896 		0x3f8e8, 0x3f8ec,
1897 		0x3f900, 0x3f928,
1898 		0x3f930, 0x3f948,
1899 		0x3f960, 0x3f968,
1900 		0x3f970, 0x3f99c,
1901 		0x3f9f0, 0x3fa38,
1902 		0x3fa40, 0x3fa40,
1903 		0x3fa48, 0x3fa50,
1904 		0x3fa5c, 0x3fa64,
1905 		0x3fa70, 0x3fab8,
1906 		0x3fac0, 0x3fae4,
1907 		0x3faf8, 0x3fb10,
1908 		0x3fb28, 0x3fb28,
1909 		0x3fb3c, 0x3fb50,
1910 		0x3fbf0, 0x3fc10,
1911 		0x3fc28, 0x3fc28,
1912 		0x3fc3c, 0x3fc50,
1913 		0x3fcf0, 0x3fcfc,
1914 		0x40000, 0x4000c,
1915 		0x40040, 0x40050,
1916 		0x40060, 0x40068,
1917 		0x4007c, 0x4008c,
1918 		0x40094, 0x400b0,
1919 		0x400c0, 0x40144,
1920 		0x40180, 0x4018c,
1921 		0x40200, 0x40254,
1922 		0x40260, 0x40264,
1923 		0x40270, 0x40288,
1924 		0x40290, 0x40298,
1925 		0x402ac, 0x402c8,
1926 		0x402d0, 0x402e0,
1927 		0x402f0, 0x402f0,
1928 		0x40300, 0x4033c,
1929 		0x403f8, 0x403fc,
1930 		0x41304, 0x413c4,
1931 		0x41400, 0x4140c,
1932 		0x41414, 0x4141c,
1933 		0x41480, 0x414d0,
1934 		0x44000, 0x44054,
1935 		0x4405c, 0x44078,
1936 		0x440c0, 0x44174,
1937 		0x44180, 0x441ac,
1938 		0x441b4, 0x441b8,
1939 		0x441c0, 0x44254,
1940 		0x4425c, 0x44278,
1941 		0x442c0, 0x44374,
1942 		0x44380, 0x443ac,
1943 		0x443b4, 0x443b8,
1944 		0x443c0, 0x44454,
1945 		0x4445c, 0x44478,
1946 		0x444c0, 0x44574,
1947 		0x44580, 0x445ac,
1948 		0x445b4, 0x445b8,
1949 		0x445c0, 0x44654,
1950 		0x4465c, 0x44678,
1951 		0x446c0, 0x44774,
1952 		0x44780, 0x447ac,
1953 		0x447b4, 0x447b8,
1954 		0x447c0, 0x44854,
1955 		0x4485c, 0x44878,
1956 		0x448c0, 0x44974,
1957 		0x44980, 0x449ac,
1958 		0x449b4, 0x449b8,
1959 		0x449c0, 0x449fc,
1960 		0x45000, 0x45004,
1961 		0x45010, 0x45030,
1962 		0x45040, 0x45060,
1963 		0x45068, 0x45068,
1964 		0x45080, 0x45084,
1965 		0x450a0, 0x450b0,
1966 		0x45200, 0x45204,
1967 		0x45210, 0x45230,
1968 		0x45240, 0x45260,
1969 		0x45268, 0x45268,
1970 		0x45280, 0x45284,
1971 		0x452a0, 0x452b0,
1972 		0x460c0, 0x460e4,
1973 		0x47000, 0x4703c,
1974 		0x47044, 0x4708c,
1975 		0x47200, 0x47250,
1976 		0x47400, 0x47408,
1977 		0x47414, 0x47420,
1978 		0x47600, 0x47618,
1979 		0x47800, 0x47814,
1980 		0x48000, 0x4800c,
1981 		0x48040, 0x48050,
1982 		0x48060, 0x48068,
1983 		0x4807c, 0x4808c,
1984 		0x48094, 0x480b0,
1985 		0x480c0, 0x48144,
1986 		0x48180, 0x4818c,
1987 		0x48200, 0x48254,
1988 		0x48260, 0x48264,
1989 		0x48270, 0x48288,
1990 		0x48290, 0x48298,
1991 		0x482ac, 0x482c8,
1992 		0x482d0, 0x482e0,
1993 		0x482f0, 0x482f0,
1994 		0x48300, 0x4833c,
1995 		0x483f8, 0x483fc,
1996 		0x49304, 0x493c4,
1997 		0x49400, 0x4940c,
1998 		0x49414, 0x4941c,
1999 		0x49480, 0x494d0,
2000 		0x4c000, 0x4c054,
2001 		0x4c05c, 0x4c078,
2002 		0x4c0c0, 0x4c174,
2003 		0x4c180, 0x4c1ac,
2004 		0x4c1b4, 0x4c1b8,
2005 		0x4c1c0, 0x4c254,
2006 		0x4c25c, 0x4c278,
2007 		0x4c2c0, 0x4c374,
2008 		0x4c380, 0x4c3ac,
2009 		0x4c3b4, 0x4c3b8,
2010 		0x4c3c0, 0x4c454,
2011 		0x4c45c, 0x4c478,
2012 		0x4c4c0, 0x4c574,
2013 		0x4c580, 0x4c5ac,
2014 		0x4c5b4, 0x4c5b8,
2015 		0x4c5c0, 0x4c654,
2016 		0x4c65c, 0x4c678,
2017 		0x4c6c0, 0x4c774,
2018 		0x4c780, 0x4c7ac,
2019 		0x4c7b4, 0x4c7b8,
2020 		0x4c7c0, 0x4c854,
2021 		0x4c85c, 0x4c878,
2022 		0x4c8c0, 0x4c974,
2023 		0x4c980, 0x4c9ac,
2024 		0x4c9b4, 0x4c9b8,
2025 		0x4c9c0, 0x4c9fc,
2026 		0x4d000, 0x4d004,
2027 		0x4d010, 0x4d030,
2028 		0x4d040, 0x4d060,
2029 		0x4d068, 0x4d068,
2030 		0x4d080, 0x4d084,
2031 		0x4d0a0, 0x4d0b0,
2032 		0x4d200, 0x4d204,
2033 		0x4d210, 0x4d230,
2034 		0x4d240, 0x4d260,
2035 		0x4d268, 0x4d268,
2036 		0x4d280, 0x4d284,
2037 		0x4d2a0, 0x4d2b0,
2038 		0x4e0c0, 0x4e0e4,
2039 		0x4f000, 0x4f03c,
2040 		0x4f044, 0x4f08c,
2041 		0x4f200, 0x4f250,
2042 		0x4f400, 0x4f408,
2043 		0x4f414, 0x4f420,
2044 		0x4f600, 0x4f618,
2045 		0x4f800, 0x4f814,
2046 		0x50000, 0x50084,
2047 		0x50090, 0x500cc,
2048 		0x50400, 0x50400,
2049 		0x50800, 0x50884,
2050 		0x50890, 0x508cc,
2051 		0x50c00, 0x50c00,
2052 		0x51000, 0x5101c,
2053 		0x51300, 0x51308,
2054 	};
2055 
2056 	static const unsigned int t5vf_reg_ranges[] = {
2057 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2058 		VF_MPS_REG(A_MPS_VF_CTL),
2059 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2060 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2061 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2062 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2063 		FW_T4VF_MBDATA_BASE_ADDR,
2064 		FW_T4VF_MBDATA_BASE_ADDR +
2065 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2066 	};
2067 
2068 	static const unsigned int t6_reg_ranges[] = {
2069 		0x1008, 0x101c,
2070 		0x1024, 0x10a8,
2071 		0x10b4, 0x10f8,
2072 		0x1100, 0x1114,
2073 		0x111c, 0x112c,
2074 		0x1138, 0x113c,
2075 		0x1144, 0x114c,
2076 		0x1180, 0x1184,
2077 		0x1190, 0x1194,
2078 		0x11a0, 0x11a4,
2079 		0x11b0, 0x11b4,
2080 		0x11fc, 0x1274,
2081 		0x1280, 0x133c,
2082 		0x1800, 0x18fc,
2083 		0x3000, 0x302c,
2084 		0x3060, 0x30b0,
2085 		0x30b8, 0x30d8,
2086 		0x30e0, 0x30fc,
2087 		0x3140, 0x357c,
2088 		0x35a8, 0x35cc,
2089 		0x35ec, 0x35ec,
2090 		0x3600, 0x5624,
2091 		0x56cc, 0x56ec,
2092 		0x56f4, 0x5720,
2093 		0x5728, 0x575c,
2094 		0x580c, 0x5814,
2095 		0x5890, 0x589c,
2096 		0x58a4, 0x58ac,
2097 		0x58b8, 0x58bc,
2098 		0x5940, 0x595c,
2099 		0x5980, 0x598c,
2100 		0x59b0, 0x59c8,
2101 		0x59d0, 0x59dc,
2102 		0x59fc, 0x5a18,
2103 		0x5a60, 0x5a6c,
2104 		0x5a80, 0x5a8c,
2105 		0x5a94, 0x5a9c,
2106 		0x5b94, 0x5bfc,
2107 		0x5c10, 0x5e48,
2108 		0x5e50, 0x5e94,
2109 		0x5ea0, 0x5eb0,
2110 		0x5ec0, 0x5ec0,
2111 		0x5ec8, 0x5ed0,
2112 		0x5ee0, 0x5ee0,
2113 		0x5ef0, 0x5ef0,
2114 		0x5f00, 0x5f00,
2115 		0x6000, 0x6020,
2116 		0x6028, 0x6040,
2117 		0x6058, 0x609c,
2118 		0x60a8, 0x619c,
2119 		0x7700, 0x7798,
2120 		0x77c0, 0x7880,
2121 		0x78cc, 0x78fc,
2122 		0x7b00, 0x7b58,
2123 		0x7b60, 0x7b84,
2124 		0x7b8c, 0x7c54,
2125 		0x7d00, 0x7d38,
2126 		0x7d40, 0x7d84,
2127 		0x7d8c, 0x7ddc,
2128 		0x7de4, 0x7e04,
2129 		0x7e10, 0x7e1c,
2130 		0x7e24, 0x7e38,
2131 		0x7e40, 0x7e44,
2132 		0x7e4c, 0x7e78,
2133 		0x7e80, 0x7edc,
2134 		0x7ee8, 0x7efc,
2135 		0x8dc0, 0x8de4,
2136 		0x8df8, 0x8e04,
2137 		0x8e10, 0x8e84,
2138 		0x8ea0, 0x8f88,
2139 		0x8fb8, 0x9058,
2140 		0x9060, 0x9060,
2141 		0x9068, 0x90f8,
2142 		0x9100, 0x9124,
2143 		0x9400, 0x9470,
2144 		0x9600, 0x9600,
2145 		0x9608, 0x9638,
2146 		0x9640, 0x9704,
2147 		0x9710, 0x971c,
2148 		0x9800, 0x9808,
2149 		0x9820, 0x983c,
2150 		0x9850, 0x9864,
2151 		0x9c00, 0x9c6c,
2152 		0x9c80, 0x9cec,
2153 		0x9d00, 0x9d6c,
2154 		0x9d80, 0x9dec,
2155 		0x9e00, 0x9e6c,
2156 		0x9e80, 0x9eec,
2157 		0x9f00, 0x9f6c,
2158 		0x9f80, 0xa020,
2159 		0xd004, 0xd03c,
2160 		0xd100, 0xd118,
2161 		0xd200, 0xd214,
2162 		0xd220, 0xd234,
2163 		0xd240, 0xd254,
2164 		0xd260, 0xd274,
2165 		0xd280, 0xd294,
2166 		0xd2a0, 0xd2b4,
2167 		0xd2c0, 0xd2d4,
2168 		0xd2e0, 0xd2f4,
2169 		0xd300, 0xd31c,
2170 		0xdfc0, 0xdfe0,
2171 		0xe000, 0xf008,
2172 		0xf010, 0xf018,
2173 		0xf020, 0xf028,
2174 		0x11000, 0x11014,
2175 		0x11048, 0x1106c,
2176 		0x11074, 0x11088,
2177 		0x11098, 0x11120,
2178 		0x1112c, 0x1117c,
2179 		0x11190, 0x112e0,
2180 		0x11300, 0x1130c,
2181 		0x12000, 0x1206c,
2182 		0x19040, 0x1906c,
2183 		0x19078, 0x19080,
2184 		0x1908c, 0x190e8,
2185 		0x190f0, 0x190f8,
2186 		0x19100, 0x19110,
2187 		0x19120, 0x19124,
2188 		0x19150, 0x19194,
2189 		0x1919c, 0x191b0,
2190 		0x191d0, 0x191e8,
2191 		0x19238, 0x19290,
2192 		0x192a4, 0x192b0,
2193 		0x192bc, 0x192bc,
2194 		0x19348, 0x1934c,
2195 		0x193f8, 0x19418,
2196 		0x19420, 0x19428,
2197 		0x19430, 0x19444,
2198 		0x1944c, 0x1946c,
2199 		0x19474, 0x19474,
2200 		0x19490, 0x194cc,
2201 		0x194f0, 0x194f8,
2202 		0x19c00, 0x19c48,
2203 		0x19c50, 0x19c80,
2204 		0x19c94, 0x19c98,
2205 		0x19ca0, 0x19cbc,
2206 		0x19ce4, 0x19ce4,
2207 		0x19cf0, 0x19cf8,
2208 		0x19d00, 0x19d28,
2209 		0x19d50, 0x19d78,
2210 		0x19d94, 0x19d98,
2211 		0x19da0, 0x19dc8,
2212 		0x19df0, 0x19e10,
2213 		0x19e50, 0x19e6c,
2214 		0x19ea0, 0x19ebc,
2215 		0x19ec4, 0x19ef4,
2216 		0x19f04, 0x19f2c,
2217 		0x19f34, 0x19f34,
2218 		0x19f40, 0x19f50,
2219 		0x19f90, 0x19fac,
2220 		0x19fc4, 0x19fc8,
2221 		0x19fd0, 0x19fe4,
2222 		0x1a000, 0x1a004,
2223 		0x1a010, 0x1a06c,
2224 		0x1a0b0, 0x1a0e4,
2225 		0x1a0ec, 0x1a0f8,
2226 		0x1a100, 0x1a108,
2227 		0x1a114, 0x1a120,
2228 		0x1a128, 0x1a130,
2229 		0x1a138, 0x1a138,
2230 		0x1a190, 0x1a1c4,
2231 		0x1a1fc, 0x1a1fc,
2232 		0x1e008, 0x1e00c,
2233 		0x1e040, 0x1e044,
2234 		0x1e04c, 0x1e04c,
2235 		0x1e284, 0x1e290,
2236 		0x1e2c0, 0x1e2c0,
2237 		0x1e2e0, 0x1e2e0,
2238 		0x1e300, 0x1e384,
2239 		0x1e3c0, 0x1e3c8,
2240 		0x1e408, 0x1e40c,
2241 		0x1e440, 0x1e444,
2242 		0x1e44c, 0x1e44c,
2243 		0x1e684, 0x1e690,
2244 		0x1e6c0, 0x1e6c0,
2245 		0x1e6e0, 0x1e6e0,
2246 		0x1e700, 0x1e784,
2247 		0x1e7c0, 0x1e7c8,
2248 		0x1e808, 0x1e80c,
2249 		0x1e840, 0x1e844,
2250 		0x1e84c, 0x1e84c,
2251 		0x1ea84, 0x1ea90,
2252 		0x1eac0, 0x1eac0,
2253 		0x1eae0, 0x1eae0,
2254 		0x1eb00, 0x1eb84,
2255 		0x1ebc0, 0x1ebc8,
2256 		0x1ec08, 0x1ec0c,
2257 		0x1ec40, 0x1ec44,
2258 		0x1ec4c, 0x1ec4c,
2259 		0x1ee84, 0x1ee90,
2260 		0x1eec0, 0x1eec0,
2261 		0x1eee0, 0x1eee0,
2262 		0x1ef00, 0x1ef84,
2263 		0x1efc0, 0x1efc8,
2264 		0x1f008, 0x1f00c,
2265 		0x1f040, 0x1f044,
2266 		0x1f04c, 0x1f04c,
2267 		0x1f284, 0x1f290,
2268 		0x1f2c0, 0x1f2c0,
2269 		0x1f2e0, 0x1f2e0,
2270 		0x1f300, 0x1f384,
2271 		0x1f3c0, 0x1f3c8,
2272 		0x1f408, 0x1f40c,
2273 		0x1f440, 0x1f444,
2274 		0x1f44c, 0x1f44c,
2275 		0x1f684, 0x1f690,
2276 		0x1f6c0, 0x1f6c0,
2277 		0x1f6e0, 0x1f6e0,
2278 		0x1f700, 0x1f784,
2279 		0x1f7c0, 0x1f7c8,
2280 		0x1f808, 0x1f80c,
2281 		0x1f840, 0x1f844,
2282 		0x1f84c, 0x1f84c,
2283 		0x1fa84, 0x1fa90,
2284 		0x1fac0, 0x1fac0,
2285 		0x1fae0, 0x1fae0,
2286 		0x1fb00, 0x1fb84,
2287 		0x1fbc0, 0x1fbc8,
2288 		0x1fc08, 0x1fc0c,
2289 		0x1fc40, 0x1fc44,
2290 		0x1fc4c, 0x1fc4c,
2291 		0x1fe84, 0x1fe90,
2292 		0x1fec0, 0x1fec0,
2293 		0x1fee0, 0x1fee0,
2294 		0x1ff00, 0x1ff84,
2295 		0x1ffc0, 0x1ffc8,
2296 		0x30000, 0x30030,
2297 		0x30100, 0x30168,
2298 		0x30190, 0x301a0,
2299 		0x301a8, 0x301b8,
2300 		0x301c4, 0x301c8,
2301 		0x301d0, 0x301d0,
2302 		0x30200, 0x30320,
2303 		0x30400, 0x304b4,
2304 		0x304c0, 0x3052c,
2305 		0x30540, 0x3061c,
2306 		0x30800, 0x308a0,
2307 		0x308c0, 0x30908,
2308 		0x30910, 0x309b8,
2309 		0x30a00, 0x30a04,
2310 		0x30a0c, 0x30a14,
2311 		0x30a1c, 0x30a2c,
2312 		0x30a44, 0x30a50,
2313 		0x30a74, 0x30a74,
2314 		0x30a7c, 0x30afc,
2315 		0x30b08, 0x30c24,
2316 		0x30d00, 0x30d14,
2317 		0x30d1c, 0x30d3c,
2318 		0x30d44, 0x30d4c,
2319 		0x30d54, 0x30d74,
2320 		0x30d7c, 0x30d7c,
2321 		0x30de0, 0x30de0,
2322 		0x30e00, 0x30ed4,
2323 		0x30f00, 0x30fa4,
2324 		0x30fc0, 0x30fc4,
2325 		0x31000, 0x31004,
2326 		0x31080, 0x310fc,
2327 		0x31208, 0x31220,
2328 		0x3123c, 0x31254,
2329 		0x31300, 0x31300,
2330 		0x31308, 0x3131c,
2331 		0x31338, 0x3133c,
2332 		0x31380, 0x31380,
2333 		0x31388, 0x313a8,
2334 		0x313b4, 0x313b4,
2335 		0x31400, 0x31420,
2336 		0x31438, 0x3143c,
2337 		0x31480, 0x31480,
2338 		0x314a8, 0x314a8,
2339 		0x314b0, 0x314b4,
2340 		0x314c8, 0x314d4,
2341 		0x31a40, 0x31a4c,
2342 		0x31af0, 0x31b20,
2343 		0x31b38, 0x31b3c,
2344 		0x31b80, 0x31b80,
2345 		0x31ba8, 0x31ba8,
2346 		0x31bb0, 0x31bb4,
2347 		0x31bc8, 0x31bd4,
2348 		0x32140, 0x3218c,
2349 		0x321f0, 0x321f4,
2350 		0x32200, 0x32200,
2351 		0x32218, 0x32218,
2352 		0x32400, 0x32400,
2353 		0x32408, 0x3241c,
2354 		0x32618, 0x32620,
2355 		0x32664, 0x32664,
2356 		0x326a8, 0x326a8,
2357 		0x326ec, 0x326ec,
2358 		0x32a00, 0x32abc,
2359 		0x32b00, 0x32b18,
2360 		0x32b20, 0x32b38,
2361 		0x32b40, 0x32b58,
2362 		0x32b60, 0x32b78,
2363 		0x32c00, 0x32c00,
2364 		0x32c08, 0x32c3c,
2365 		0x33000, 0x3302c,
2366 		0x33034, 0x33050,
2367 		0x33058, 0x33058,
2368 		0x33060, 0x3308c,
2369 		0x3309c, 0x330ac,
2370 		0x330c0, 0x330c0,
2371 		0x330c8, 0x330d0,
2372 		0x330d8, 0x330e0,
2373 		0x330ec, 0x3312c,
2374 		0x33134, 0x33150,
2375 		0x33158, 0x33158,
2376 		0x33160, 0x3318c,
2377 		0x3319c, 0x331ac,
2378 		0x331c0, 0x331c0,
2379 		0x331c8, 0x331d0,
2380 		0x331d8, 0x331e0,
2381 		0x331ec, 0x33290,
2382 		0x33298, 0x332c4,
2383 		0x332e4, 0x33390,
2384 		0x33398, 0x333c4,
2385 		0x333e4, 0x3342c,
2386 		0x33434, 0x33450,
2387 		0x33458, 0x33458,
2388 		0x33460, 0x3348c,
2389 		0x3349c, 0x334ac,
2390 		0x334c0, 0x334c0,
2391 		0x334c8, 0x334d0,
2392 		0x334d8, 0x334e0,
2393 		0x334ec, 0x3352c,
2394 		0x33534, 0x33550,
2395 		0x33558, 0x33558,
2396 		0x33560, 0x3358c,
2397 		0x3359c, 0x335ac,
2398 		0x335c0, 0x335c0,
2399 		0x335c8, 0x335d0,
2400 		0x335d8, 0x335e0,
2401 		0x335ec, 0x33690,
2402 		0x33698, 0x336c4,
2403 		0x336e4, 0x33790,
2404 		0x33798, 0x337c4,
2405 		0x337e4, 0x337fc,
2406 		0x33814, 0x33814,
2407 		0x33854, 0x33868,
2408 		0x33880, 0x3388c,
2409 		0x338c0, 0x338d0,
2410 		0x338e8, 0x338ec,
2411 		0x33900, 0x3392c,
2412 		0x33934, 0x33950,
2413 		0x33958, 0x33958,
2414 		0x33960, 0x3398c,
2415 		0x3399c, 0x339ac,
2416 		0x339c0, 0x339c0,
2417 		0x339c8, 0x339d0,
2418 		0x339d8, 0x339e0,
2419 		0x339ec, 0x33a90,
2420 		0x33a98, 0x33ac4,
2421 		0x33ae4, 0x33b10,
2422 		0x33b24, 0x33b28,
2423 		0x33b38, 0x33b50,
2424 		0x33bf0, 0x33c10,
2425 		0x33c24, 0x33c28,
2426 		0x33c38, 0x33c50,
2427 		0x33cf0, 0x33cfc,
2428 		0x34000, 0x34030,
2429 		0x34100, 0x34168,
2430 		0x34190, 0x341a0,
2431 		0x341a8, 0x341b8,
2432 		0x341c4, 0x341c8,
2433 		0x341d0, 0x341d0,
2434 		0x34200, 0x34320,
2435 		0x34400, 0x344b4,
2436 		0x344c0, 0x3452c,
2437 		0x34540, 0x3461c,
2438 		0x34800, 0x348a0,
2439 		0x348c0, 0x34908,
2440 		0x34910, 0x349b8,
2441 		0x34a00, 0x34a04,
2442 		0x34a0c, 0x34a14,
2443 		0x34a1c, 0x34a2c,
2444 		0x34a44, 0x34a50,
2445 		0x34a74, 0x34a74,
2446 		0x34a7c, 0x34afc,
2447 		0x34b08, 0x34c24,
2448 		0x34d00, 0x34d14,
2449 		0x34d1c, 0x34d3c,
2450 		0x34d44, 0x34d4c,
2451 		0x34d54, 0x34d74,
2452 		0x34d7c, 0x34d7c,
2453 		0x34de0, 0x34de0,
2454 		0x34e00, 0x34ed4,
2455 		0x34f00, 0x34fa4,
2456 		0x34fc0, 0x34fc4,
2457 		0x35000, 0x35004,
2458 		0x35080, 0x350fc,
2459 		0x35208, 0x35220,
2460 		0x3523c, 0x35254,
2461 		0x35300, 0x35300,
2462 		0x35308, 0x3531c,
2463 		0x35338, 0x3533c,
2464 		0x35380, 0x35380,
2465 		0x35388, 0x353a8,
2466 		0x353b4, 0x353b4,
2467 		0x35400, 0x35420,
2468 		0x35438, 0x3543c,
2469 		0x35480, 0x35480,
2470 		0x354a8, 0x354a8,
2471 		0x354b0, 0x354b4,
2472 		0x354c8, 0x354d4,
2473 		0x35a40, 0x35a4c,
2474 		0x35af0, 0x35b20,
2475 		0x35b38, 0x35b3c,
2476 		0x35b80, 0x35b80,
2477 		0x35ba8, 0x35ba8,
2478 		0x35bb0, 0x35bb4,
2479 		0x35bc8, 0x35bd4,
2480 		0x36140, 0x3618c,
2481 		0x361f0, 0x361f4,
2482 		0x36200, 0x36200,
2483 		0x36218, 0x36218,
2484 		0x36400, 0x36400,
2485 		0x36408, 0x3641c,
2486 		0x36618, 0x36620,
2487 		0x36664, 0x36664,
2488 		0x366a8, 0x366a8,
2489 		0x366ec, 0x366ec,
2490 		0x36a00, 0x36abc,
2491 		0x36b00, 0x36b18,
2492 		0x36b20, 0x36b38,
2493 		0x36b40, 0x36b58,
2494 		0x36b60, 0x36b78,
2495 		0x36c00, 0x36c00,
2496 		0x36c08, 0x36c3c,
2497 		0x37000, 0x3702c,
2498 		0x37034, 0x37050,
2499 		0x37058, 0x37058,
2500 		0x37060, 0x3708c,
2501 		0x3709c, 0x370ac,
2502 		0x370c0, 0x370c0,
2503 		0x370c8, 0x370d0,
2504 		0x370d8, 0x370e0,
2505 		0x370ec, 0x3712c,
2506 		0x37134, 0x37150,
2507 		0x37158, 0x37158,
2508 		0x37160, 0x3718c,
2509 		0x3719c, 0x371ac,
2510 		0x371c0, 0x371c0,
2511 		0x371c8, 0x371d0,
2512 		0x371d8, 0x371e0,
2513 		0x371ec, 0x37290,
2514 		0x37298, 0x372c4,
2515 		0x372e4, 0x37390,
2516 		0x37398, 0x373c4,
2517 		0x373e4, 0x3742c,
2518 		0x37434, 0x37450,
2519 		0x37458, 0x37458,
2520 		0x37460, 0x3748c,
2521 		0x3749c, 0x374ac,
2522 		0x374c0, 0x374c0,
2523 		0x374c8, 0x374d0,
2524 		0x374d8, 0x374e0,
2525 		0x374ec, 0x3752c,
2526 		0x37534, 0x37550,
2527 		0x37558, 0x37558,
2528 		0x37560, 0x3758c,
2529 		0x3759c, 0x375ac,
2530 		0x375c0, 0x375c0,
2531 		0x375c8, 0x375d0,
2532 		0x375d8, 0x375e0,
2533 		0x375ec, 0x37690,
2534 		0x37698, 0x376c4,
2535 		0x376e4, 0x37790,
2536 		0x37798, 0x377c4,
2537 		0x377e4, 0x377fc,
2538 		0x37814, 0x37814,
2539 		0x37854, 0x37868,
2540 		0x37880, 0x3788c,
2541 		0x378c0, 0x378d0,
2542 		0x378e8, 0x378ec,
2543 		0x37900, 0x3792c,
2544 		0x37934, 0x37950,
2545 		0x37958, 0x37958,
2546 		0x37960, 0x3798c,
2547 		0x3799c, 0x379ac,
2548 		0x379c0, 0x379c0,
2549 		0x379c8, 0x379d0,
2550 		0x379d8, 0x379e0,
2551 		0x379ec, 0x37a90,
2552 		0x37a98, 0x37ac4,
2553 		0x37ae4, 0x37b10,
2554 		0x37b24, 0x37b28,
2555 		0x37b38, 0x37b50,
2556 		0x37bf0, 0x37c10,
2557 		0x37c24, 0x37c28,
2558 		0x37c38, 0x37c50,
2559 		0x37cf0, 0x37cfc,
2560 		0x40040, 0x40040,
2561 		0x40080, 0x40084,
2562 		0x40100, 0x40100,
2563 		0x40140, 0x401bc,
2564 		0x40200, 0x40214,
2565 		0x40228, 0x40228,
2566 		0x40240, 0x40258,
2567 		0x40280, 0x40280,
2568 		0x40304, 0x40304,
2569 		0x40330, 0x4033c,
2570 		0x41304, 0x413c8,
2571 		0x413d0, 0x413dc,
2572 		0x413f0, 0x413f0,
2573 		0x41400, 0x4140c,
2574 		0x41414, 0x4141c,
2575 		0x41480, 0x414d0,
2576 		0x44000, 0x4407c,
2577 		0x440c0, 0x441ac,
2578 		0x441b4, 0x4427c,
2579 		0x442c0, 0x443ac,
2580 		0x443b4, 0x4447c,
2581 		0x444c0, 0x445ac,
2582 		0x445b4, 0x4467c,
2583 		0x446c0, 0x447ac,
2584 		0x447b4, 0x4487c,
2585 		0x448c0, 0x449ac,
2586 		0x449b4, 0x44a7c,
2587 		0x44ac0, 0x44bac,
2588 		0x44bb4, 0x44c7c,
2589 		0x44cc0, 0x44dac,
2590 		0x44db4, 0x44e7c,
2591 		0x44ec0, 0x44fac,
2592 		0x44fb4, 0x4507c,
2593 		0x450c0, 0x451ac,
2594 		0x451b4, 0x451fc,
2595 		0x45800, 0x45804,
2596 		0x45810, 0x45830,
2597 		0x45840, 0x45860,
2598 		0x45868, 0x45868,
2599 		0x45880, 0x45884,
2600 		0x458a0, 0x458b0,
2601 		0x45a00, 0x45a04,
2602 		0x45a10, 0x45a30,
2603 		0x45a40, 0x45a60,
2604 		0x45a68, 0x45a68,
2605 		0x45a80, 0x45a84,
2606 		0x45aa0, 0x45ab0,
2607 		0x460c0, 0x460e4,
2608 		0x47000, 0x4703c,
2609 		0x47044, 0x4708c,
2610 		0x47200, 0x47250,
2611 		0x47400, 0x47408,
2612 		0x47414, 0x47420,
2613 		0x47600, 0x47618,
2614 		0x47800, 0x47814,
2615 		0x47820, 0x4782c,
2616 		0x50000, 0x50084,
2617 		0x50090, 0x500cc,
2618 		0x50300, 0x50384,
2619 		0x50400, 0x50400,
2620 		0x50800, 0x50884,
2621 		0x50890, 0x508cc,
2622 		0x50b00, 0x50b84,
2623 		0x50c00, 0x50c00,
2624 		0x51000, 0x51020,
2625 		0x51028, 0x510b0,
2626 		0x51300, 0x51324,
2627 	};
2628 
2629 	static const unsigned int t6vf_reg_ranges[] = {
2630 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2631 		VF_MPS_REG(A_MPS_VF_CTL),
2632 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2633 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2634 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2635 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2636 		FW_T6VF_MBDATA_BASE_ADDR,
2637 		FW_T6VF_MBDATA_BASE_ADDR +
2638 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2639 	};
2640 
2641 	u32 *buf_end = (u32 *)(buf + buf_size);
2642 	const unsigned int *reg_ranges;
2643 	int reg_ranges_size, range;
2644 	unsigned int chip_version = chip_id(adap);
2645 
2646 	/*
2647 	 * Select the right set of register ranges to dump depending on the
2648 	 * adapter chip type.
2649 	 */
2650 	switch (chip_version) {
2651 	case CHELSIO_T4:
2652 		if (adap->flags & IS_VF) {
2653 			reg_ranges = t4vf_reg_ranges;
2654 			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2655 		} else {
2656 			reg_ranges = t4_reg_ranges;
2657 			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2658 		}
2659 		break;
2660 
2661 	case CHELSIO_T5:
2662 		if (adap->flags & IS_VF) {
2663 			reg_ranges = t5vf_reg_ranges;
2664 			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2665 		} else {
2666 			reg_ranges = t5_reg_ranges;
2667 			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2668 		}
2669 		break;
2670 
2671 	case CHELSIO_T6:
2672 		if (adap->flags & IS_VF) {
2673 			reg_ranges = t6vf_reg_ranges;
2674 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2675 		} else {
2676 			reg_ranges = t6_reg_ranges;
2677 			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2678 		}
2679 		break;
2680 
2681 	default:
2682 		CH_ERR(adap,
2683 			"Unsupported chip version %d\n", chip_version);
2684 		return;
2685 	}
2686 
2687 	/*
2688 	 * Clear the register buffer and insert the appropriate register
2689 	 * values selected by the above register ranges.
2690 	 */
2691 	memset(buf, 0, buf_size);
2692 	for (range = 0; range < reg_ranges_size; range += 2) {
2693 		unsigned int reg = reg_ranges[range];
2694 		unsigned int last_reg = reg_ranges[range + 1];
2695 		u32 *bufp = (u32 *)(buf + reg);
2696 
2697 		/*
2698 		 * Iterate across the register range filling in the register
2699 		 * buffer but don't write past the end of the register buffer.
2700 		 */
2701 		while (reg <= last_reg && bufp < buf_end) {
2702 			*bufp++ = t4_read_reg(adap, reg);
2703 			reg += sizeof(u32);
2704 		}
2705 	}
2706 }
2707 
2708 /*
2709  * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2710  * header followed by one or more VPD-R sections, each with its own header.
2711  */
2712 struct t4_vpd_hdr {
2713 	u8  id_tag;
2714 	u8  id_len[2];
2715 	u8  id_data[ID_LEN];
2716 };
2717 
2718 struct t4_vpdr_hdr {
2719 	u8  vpdr_tag;
2720 	u8  vpdr_len[2];
2721 };
2722 
2723 /*
2724  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2725  */
2726 #define EEPROM_DELAY		10		/* 10us per poll spin */
2727 #define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2728 
2729 #define EEPROM_STAT_ADDR	0x7bfc
2730 #define VPD_SIZE		0x800
2731 #define VPD_BASE		0x400
2732 #define VPD_BASE_OLD		0
2733 #define VPD_LEN			1024
2734 #define VPD_INFO_FLD_HDR_SIZE	3
2735 #define CHELSIO_VPD_UNIQUE_ID	0x82
2736 
2737 /*
2738  * Small utility function to wait till any outstanding VPD Access is complete.
2739  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2740  * VPD Access in flight.  This allows us to handle the problem of having a
2741  * previous VPD Access time out and prevent an attempt to inject a new VPD
2742  * Request before any in-flight VPD reguest has completed.
2743  */
2744 static int t4_seeprom_wait(struct adapter *adapter)
2745 {
2746 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2747 	int max_poll;
2748 
2749 	/*
2750 	 * If no VPD Access is in flight, we can just return success right
2751 	 * away.
2752 	 */
2753 	if (!adapter->vpd_busy)
2754 		return 0;
2755 
2756 	/*
2757 	 * Poll the VPD Capability Address/Flag register waiting for it
2758 	 * to indicate that the operation is complete.
2759 	 */
2760 	max_poll = EEPROM_MAX_POLL;
2761 	do {
2762 		u16 val;
2763 
2764 		udelay(EEPROM_DELAY);
2765 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2766 
2767 		/*
2768 		 * If the operation is complete, mark the VPD as no longer
2769 		 * busy and return success.
2770 		 */
2771 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2772 			adapter->vpd_busy = 0;
2773 			return 0;
2774 		}
2775 	} while (--max_poll);
2776 
2777 	/*
2778 	 * Failure!  Note that we leave the VPD Busy status set in order to
2779 	 * avoid pushing a new VPD Access request into the VPD Capability till
2780 	 * the current operation eventually succeeds.  It's a bug to issue a
2781 	 * new request when an existing request is in flight and will result
2782 	 * in corrupt hardware state.
2783 	 */
2784 	return -ETIMEDOUT;
2785 }
2786 
2787 /**
2788  *	t4_seeprom_read - read a serial EEPROM location
2789  *	@adapter: adapter to read
2790  *	@addr: EEPROM virtual address
2791  *	@data: where to store the read data
2792  *
2793  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2794  *	VPD capability.  Note that this function must be called with a virtual
2795  *	address.
2796  */
2797 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2798 {
2799 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2800 	int ret;
2801 
2802 	/*
2803 	 * VPD Accesses must alway be 4-byte aligned!
2804 	 */
2805 	if (addr >= EEPROMVSIZE || (addr & 3))
2806 		return -EINVAL;
2807 
2808 	/*
2809 	 * Wait for any previous operation which may still be in flight to
2810 	 * complete.
2811 	 */
2812 	ret = t4_seeprom_wait(adapter);
2813 	if (ret) {
2814 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2815 		return ret;
2816 	}
2817 
2818 	/*
2819 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2820 	 * for our request to complete.  If it doesn't complete, note the
2821 	 * error and return it to our caller.  Note that we do not reset the
2822 	 * VPD Busy status!
2823 	 */
2824 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2825 	adapter->vpd_busy = 1;
2826 	adapter->vpd_flag = PCI_VPD_ADDR_F;
2827 	ret = t4_seeprom_wait(adapter);
2828 	if (ret) {
2829 		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2830 		return ret;
2831 	}
2832 
2833 	/*
2834 	 * Grab the returned data, swizzle it into our endianness and
2835 	 * return success.
2836 	 */
2837 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2838 	*data = le32_to_cpu(*data);
2839 	return 0;
2840 }
2841 
2842 /**
2843  *	t4_seeprom_write - write a serial EEPROM location
2844  *	@adapter: adapter to write
2845  *	@addr: virtual EEPROM address
2846  *	@data: value to write
2847  *
2848  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2849  *	VPD capability.  Note that this function must be called with a virtual
2850  *	address.
2851  */
2852 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2853 {
2854 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2855 	int ret;
2856 	u32 stats_reg;
2857 	int max_poll;
2858 
2859 	/*
2860 	 * VPD Accesses must alway be 4-byte aligned!
2861 	 */
2862 	if (addr >= EEPROMVSIZE || (addr & 3))
2863 		return -EINVAL;
2864 
2865 	/*
2866 	 * Wait for any previous operation which may still be in flight to
2867 	 * complete.
2868 	 */
2869 	ret = t4_seeprom_wait(adapter);
2870 	if (ret) {
2871 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2872 		return ret;
2873 	}
2874 
2875 	/*
2876 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2877 	 * for our request to complete.  If it doesn't complete, note the
2878 	 * error and return it to our caller.  Note that we do not reset the
2879 	 * VPD Busy status!
2880 	 */
2881 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2882 				 cpu_to_le32(data));
2883 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2884 				 (u16)addr | PCI_VPD_ADDR_F);
2885 	adapter->vpd_busy = 1;
2886 	adapter->vpd_flag = 0;
2887 	ret = t4_seeprom_wait(adapter);
2888 	if (ret) {
2889 		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2890 		return ret;
2891 	}
2892 
2893 	/*
2894 	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2895 	 * request to complete. If it doesn't complete, return error.
2896 	 */
2897 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2898 	max_poll = EEPROM_MAX_POLL;
2899 	do {
2900 		udelay(EEPROM_DELAY);
2901 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2902 	} while ((stats_reg & 0x1) && --max_poll);
2903 	if (!max_poll)
2904 		return -ETIMEDOUT;
2905 
2906 	/* Return success! */
2907 	return 0;
2908 }
2909 
2910 /**
2911  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2912  *	@phys_addr: the physical EEPROM address
2913  *	@fn: the PCI function number
2914  *	@sz: size of function-specific area
2915  *
2916  *	Translate a physical EEPROM address to virtual.  The first 1K is
2917  *	accessed through virtual addresses starting at 31K, the rest is
2918  *	accessed through virtual addresses starting at 0.
2919  *
2920  *	The mapping is as follows:
2921  *	[0..1K) -> [31K..32K)
2922  *	[1K..1K+A) -> [ES-A..ES)
2923  *	[1K+A..ES) -> [0..ES-A-1K)
2924  *
2925  *	where A = @fn * @sz, and ES = EEPROM size.
2926  */
2927 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2928 {
2929 	fn *= sz;
2930 	if (phys_addr < 1024)
2931 		return phys_addr + (31 << 10);
2932 	if (phys_addr < 1024 + fn)
2933 		return EEPROMSIZE - fn + phys_addr - 1024;
2934 	if (phys_addr < EEPROMSIZE)
2935 		return phys_addr - 1024 - fn;
2936 	return -EINVAL;
2937 }
2938 
2939 /**
2940  *	t4_seeprom_wp - enable/disable EEPROM write protection
2941  *	@adapter: the adapter
2942  *	@enable: whether to enable or disable write protection
2943  *
2944  *	Enables or disables write protection on the serial EEPROM.
2945  */
2946 int t4_seeprom_wp(struct adapter *adapter, int enable)
2947 {
2948 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2949 }
2950 
2951 /**
2952  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2953  *	@vpd: Pointer to buffered vpd data structure
2954  *	@kw: The keyword to search for
2955  *	@region: VPD region to search (starting from 0)
2956  *
2957  *	Returns the value of the information field keyword or
2958  *	-ENOENT otherwise.
2959  */
2960 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2961 {
2962 	int i, tag;
2963 	unsigned int offset, len;
2964 	const struct t4_vpdr_hdr *vpdr;
2965 
2966 	offset = sizeof(struct t4_vpd_hdr);
2967 	vpdr = (const void *)(vpd + offset);
2968 	tag = vpdr->vpdr_tag;
2969 	len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2970 	while (region--) {
2971 		offset += sizeof(struct t4_vpdr_hdr) + len;
2972 		vpdr = (const void *)(vpd + offset);
2973 		if (++tag != vpdr->vpdr_tag)
2974 			return -ENOENT;
2975 		len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2976 	}
2977 	offset += sizeof(struct t4_vpdr_hdr);
2978 
2979 	if (offset + len > VPD_LEN) {
2980 		return -ENOENT;
2981 	}
2982 
2983 	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2984 		if (memcmp(vpd + i , kw , 2) == 0){
2985 			i += VPD_INFO_FLD_HDR_SIZE;
2986 			return i;
2987 		}
2988 
2989 		i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
2990 	}
2991 
2992 	return -ENOENT;
2993 }
2994 
2995 
2996 /**
2997  *	get_vpd_params - read VPD parameters from VPD EEPROM
2998  *	@adapter: adapter to read
2999  *	@p: where to store the parameters
3000  *	@vpd: caller provided temporary space to read the VPD into
3001  *
3002  *	Reads card parameters stored in VPD EEPROM.
3003  */
3004 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
3005     uint16_t device_id, u32 *buf)
3006 {
3007 	int i, ret, addr;
3008 	int ec, sn, pn, na, md;
3009 	u8 csum;
3010 	const u8 *vpd = (const u8 *)buf;
3011 
3012 	/*
3013 	 * Card information normally starts at VPD_BASE but early cards had
3014 	 * it at 0.
3015 	 */
3016 	ret = t4_seeprom_read(adapter, VPD_BASE, buf);
3017 	if (ret)
3018 		return (ret);
3019 
3020 	/*
3021 	 * The VPD shall have a unique identifier specified by the PCI SIG.
3022 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
3023 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
3024 	 * is expected to automatically put this entry at the
3025 	 * beginning of the VPD.
3026 	 */
3027 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
3028 
3029 	for (i = 0; i < VPD_LEN; i += 4) {
3030 		ret = t4_seeprom_read(adapter, addr + i, buf++);
3031 		if (ret)
3032 			return ret;
3033 	}
3034 
3035 #define FIND_VPD_KW(var,name) do { \
3036 	var = get_vpd_keyword_val(vpd, name, 0); \
3037 	if (var < 0) { \
3038 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
3039 		return -EINVAL; \
3040 	} \
3041 } while (0)
3042 
3043 	FIND_VPD_KW(i, "RV");
3044 	for (csum = 0; i >= 0; i--)
3045 		csum += vpd[i];
3046 
3047 	if (csum) {
3048 		CH_ERR(adapter,
3049 			"corrupted VPD EEPROM, actual csum %u\n", csum);
3050 		return -EINVAL;
3051 	}
3052 
3053 	FIND_VPD_KW(ec, "EC");
3054 	FIND_VPD_KW(sn, "SN");
3055 	FIND_VPD_KW(pn, "PN");
3056 	FIND_VPD_KW(na, "NA");
3057 #undef FIND_VPD_KW
3058 
3059 	memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3060 	strstrip(p->id);
3061 	memcpy(p->ec, vpd + ec, EC_LEN);
3062 	strstrip(p->ec);
3063 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3064 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3065 	strstrip(p->sn);
3066 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3067 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3068 	strstrip((char *)p->pn);
3069 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3070 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3071 	strstrip((char *)p->na);
3072 
3073 	if (device_id & 0x80)
3074 		return 0;	/* Custom card */
3075 
3076 	md = get_vpd_keyword_val(vpd, "VF", 1);
3077 	if (md < 0) {
3078 		snprintf(p->md, sizeof(p->md), "unknown");
3079 	} else {
3080 		i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3081 		memcpy(p->md, vpd + md, min(i, MD_LEN));
3082 		strstrip((char *)p->md);
3083 	}
3084 
3085 	return 0;
3086 }
3087 
3088 /* serial flash and firmware constants and flash config file constants */
3089 enum {
3090 	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3091 
3092 	/* flash command opcodes */
3093 	SF_PROG_PAGE    = 2,	/* program 256B page */
3094 	SF_WR_DISABLE   = 4,	/* disable writes */
3095 	SF_RD_STATUS    = 5,	/* read status register */
3096 	SF_WR_ENABLE    = 6,	/* enable writes */
3097 	SF_RD_DATA_FAST = 0xb,	/* read flash */
3098 	SF_RD_ID	= 0x9f,	/* read ID */
3099 	SF_ERASE_SECTOR = 0xd8,	/* erase 64KB sector */
3100 };
3101 
3102 /**
3103  *	sf1_read - read data from the serial flash
3104  *	@adapter: the adapter
3105  *	@byte_cnt: number of bytes to read
3106  *	@cont: whether another operation will be chained
3107  *	@lock: whether to lock SF for PL access only
3108  *	@valp: where to store the read data
3109  *
3110  *	Reads up to 4 bytes of data from the serial flash.  The location of
3111  *	the read needs to be specified prior to calling this by issuing the
3112  *	appropriate commands to the serial flash.
3113  */
3114 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3115 		    int lock, u32 *valp)
3116 {
3117 	int ret;
3118 
3119 	if (!byte_cnt || byte_cnt > 4)
3120 		return -EINVAL;
3121 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3122 		return -EBUSY;
3123 	t4_write_reg(adapter, A_SF_OP,
3124 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3125 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3126 	if (!ret)
3127 		*valp = t4_read_reg(adapter, A_SF_DATA);
3128 	return ret;
3129 }
3130 
3131 /**
3132  *	sf1_write - write data to the serial flash
3133  *	@adapter: the adapter
3134  *	@byte_cnt: number of bytes to write
3135  *	@cont: whether another operation will be chained
3136  *	@lock: whether to lock SF for PL access only
3137  *	@val: value to write
3138  *
3139  *	Writes up to 4 bytes of data to the serial flash.  The location of
3140  *	the write needs to be specified prior to calling this by issuing the
3141  *	appropriate commands to the serial flash.
3142  */
3143 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3144 		     int lock, u32 val)
3145 {
3146 	if (!byte_cnt || byte_cnt > 4)
3147 		return -EINVAL;
3148 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3149 		return -EBUSY;
3150 	t4_write_reg(adapter, A_SF_DATA, val);
3151 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3152 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3153 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3154 }
3155 
3156 /**
3157  *	flash_wait_op - wait for a flash operation to complete
3158  *	@adapter: the adapter
3159  *	@attempts: max number of polls of the status register
3160  *	@delay: delay between polls in ms
3161  *
3162  *	Wait for a flash operation to complete by polling the status register.
3163  */
3164 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3165 {
3166 	int ret;
3167 	u32 status;
3168 
3169 	while (1) {
3170 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3171 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3172 			return ret;
3173 		if (!(status & 1))
3174 			return 0;
3175 		if (--attempts == 0)
3176 			return -EAGAIN;
3177 		if (delay)
3178 			msleep(delay);
3179 	}
3180 }
3181 
3182 /**
3183  *	t4_read_flash - read words from serial flash
3184  *	@adapter: the adapter
3185  *	@addr: the start address for the read
3186  *	@nwords: how many 32-bit words to read
3187  *	@data: where to store the read data
3188  *	@byte_oriented: whether to store data as bytes or as words
3189  *
3190  *	Read the specified number of 32-bit words from the serial flash.
3191  *	If @byte_oriented is set the read data is stored as a byte array
3192  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3193  *	natural endianness.
3194  */
3195 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3196 		  unsigned int nwords, u32 *data, int byte_oriented)
3197 {
3198 	int ret;
3199 
3200 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3201 		return -EINVAL;
3202 
3203 	addr = swab32(addr) | SF_RD_DATA_FAST;
3204 
3205 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3206 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3207 		return ret;
3208 
3209 	for ( ; nwords; nwords--, data++) {
3210 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3211 		if (nwords == 1)
3212 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3213 		if (ret)
3214 			return ret;
3215 		if (byte_oriented)
3216 			*data = (__force __u32)(cpu_to_be32(*data));
3217 	}
3218 	return 0;
3219 }
3220 
3221 /**
3222  *	t4_write_flash - write up to a page of data to the serial flash
3223  *	@adapter: the adapter
3224  *	@addr: the start address to write
3225  *	@n: length of data to write in bytes
3226  *	@data: the data to write
3227  *	@byte_oriented: whether to store data as bytes or as words
3228  *
3229  *	Writes up to a page of data (256 bytes) to the serial flash starting
3230  *	at the given address.  All the data must be written to the same page.
3231  *	If @byte_oriented is set the write data is stored as byte stream
3232  *	(i.e. matches what on disk), otherwise in big-endian.
3233  */
3234 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3235 			  unsigned int n, const u8 *data, int byte_oriented)
3236 {
3237 	int ret;
3238 	u32 buf[SF_PAGE_SIZE / 4];
3239 	unsigned int i, c, left, val, offset = addr & 0xff;
3240 
3241 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3242 		return -EINVAL;
3243 
3244 	val = swab32(addr) | SF_PROG_PAGE;
3245 
3246 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3247 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3248 		goto unlock;
3249 
3250 	for (left = n; left; left -= c) {
3251 		c = min(left, 4U);
3252 		for (val = 0, i = 0; i < c; ++i)
3253 			val = (val << 8) + *data++;
3254 
3255 		if (!byte_oriented)
3256 			val = cpu_to_be32(val);
3257 
3258 		ret = sf1_write(adapter, c, c != left, 1, val);
3259 		if (ret)
3260 			goto unlock;
3261 	}
3262 	ret = flash_wait_op(adapter, 8, 1);
3263 	if (ret)
3264 		goto unlock;
3265 
3266 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3267 
3268 	/* Read the page to verify the write succeeded */
3269 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3270 			    byte_oriented);
3271 	if (ret)
3272 		return ret;
3273 
3274 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3275 		CH_ERR(adapter,
3276 			"failed to correctly write the flash page at %#x\n",
3277 			addr);
3278 		return -EIO;
3279 	}
3280 	return 0;
3281 
3282 unlock:
3283 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3284 	return ret;
3285 }
3286 
3287 /**
3288  *	t4_get_fw_version - read the firmware version
3289  *	@adapter: the adapter
3290  *	@vers: where to place the version
3291  *
3292  *	Reads the FW version from flash.
3293  */
3294 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3295 {
3296 	return t4_read_flash(adapter, FLASH_FW_START +
3297 			     offsetof(struct fw_hdr, fw_ver), 1,
3298 			     vers, 0);
3299 }
3300 
3301 /**
3302  *	t4_get_fw_hdr - read the firmware header
3303  *	@adapter: the adapter
3304  *	@hdr: where to place the version
3305  *
3306  *	Reads the FW header from flash into caller provided buffer.
3307  */
3308 int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr)
3309 {
3310 	return t4_read_flash(adapter, FLASH_FW_START,
3311 	    sizeof (*hdr) / sizeof (uint32_t), (uint32_t *)hdr, 1);
3312 }
3313 
3314 /**
3315  *	t4_get_bs_version - read the firmware bootstrap version
3316  *	@adapter: the adapter
3317  *	@vers: where to place the version
3318  *
3319  *	Reads the FW Bootstrap version from flash.
3320  */
3321 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3322 {
3323 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3324 			     offsetof(struct fw_hdr, fw_ver), 1,
3325 			     vers, 0);
3326 }
3327 
3328 /**
3329  *	t4_get_tp_version - read the TP microcode version
3330  *	@adapter: the adapter
3331  *	@vers: where to place the version
3332  *
3333  *	Reads the TP microcode version from flash.
3334  */
3335 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3336 {
3337 	return t4_read_flash(adapter, FLASH_FW_START +
3338 			     offsetof(struct fw_hdr, tp_microcode_ver),
3339 			     1, vers, 0);
3340 }
3341 
3342 /**
3343  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3344  *	@adapter: the adapter
3345  *	@vers: where to place the version
3346  *
3347  *	Reads the Expansion ROM header from FLASH and returns the version
3348  *	number (if present) through the @vers return value pointer.  We return
3349  *	this in the Firmware Version Format since it's convenient.  Return
3350  *	0 on success, -ENOENT if no Expansion ROM is present.
3351  */
3352 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3353 {
3354 	struct exprom_header {
3355 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3356 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3357 	} *hdr;
3358 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3359 					   sizeof(u32))];
3360 	int ret;
3361 
3362 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3363 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3364 			    0);
3365 	if (ret)
3366 		return ret;
3367 
3368 	hdr = (struct exprom_header *)exprom_header_buf;
3369 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3370 		return -ENOENT;
3371 
3372 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3373 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3374 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3375 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3376 	return 0;
3377 }
3378 
3379 /**
3380  *	t4_get_scfg_version - return the Serial Configuration version
3381  *	@adapter: the adapter
3382  *	@vers: where to place the version
3383  *
3384  *	Reads the Serial Configuration Version via the Firmware interface
3385  *	(thus this can only be called once we're ready to issue Firmware
3386  *	commands).  The format of the Serial Configuration version is
3387  *	adapter specific.  Returns 0 on success, an error on failure.
3388  *
3389  *	Note that early versions of the Firmware didn't include the ability
3390  *	to retrieve the Serial Configuration version, so we zero-out the
3391  *	return-value parameter in that case to avoid leaving it with
3392  *	garbage in it.
3393  *
3394  *	Also note that the Firmware will return its cached copy of the Serial
3395  *	Initialization Revision ID, not the actual Revision ID as written in
3396  *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3397  *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3398  *	it's best to defer calling this routine till after a FW_RESET_CMD has
3399  *	been issued if the Host Driver will be performing a full adapter
3400  *	initialization.
3401  */
3402 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3403 {
3404 	u32 scfgrev_param;
3405 	int ret;
3406 
3407 	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3408 			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3409 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3410 			      1, &scfgrev_param, vers);
3411 	if (ret)
3412 		*vers = 0;
3413 	return ret;
3414 }
3415 
3416 /**
3417  *	t4_get_vpd_version - return the VPD version
3418  *	@adapter: the adapter
3419  *	@vers: where to place the version
3420  *
3421  *	Reads the VPD via the Firmware interface (thus this can only be called
3422  *	once we're ready to issue Firmware commands).  The format of the
3423  *	VPD version is adapter specific.  Returns 0 on success, an error on
3424  *	failure.
3425  *
3426  *	Note that early versions of the Firmware didn't include the ability
3427  *	to retrieve the VPD version, so we zero-out the return-value parameter
3428  *	in that case to avoid leaving it with garbage in it.
3429  *
3430  *	Also note that the Firmware will return its cached copy of the VPD
3431  *	Revision ID, not the actual Revision ID as written in the Serial
3432  *	EEPROM.  This is only an issue if a new VPD has been written and the
3433  *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3434  *	to defer calling this routine till after a FW_RESET_CMD has been issued
3435  *	if the Host Driver will be performing a full adapter initialization.
3436  */
3437 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3438 {
3439 	u32 vpdrev_param;
3440 	int ret;
3441 
3442 	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3443 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3444 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3445 			      1, &vpdrev_param, vers);
3446 	if (ret)
3447 		*vers = 0;
3448 	return ret;
3449 }
3450 
3451 /**
3452  *	t4_get_version_info - extract various chip/firmware version information
3453  *	@adapter: the adapter
3454  *
3455  *	Reads various chip/firmware version numbers and stores them into the
3456  *	adapter Adapter Parameters structure.  If any of the efforts fails
3457  *	the first failure will be returned, but all of the version numbers
3458  *	will be read.
3459  */
3460 int t4_get_version_info(struct adapter *adapter)
3461 {
3462 	int ret = 0;
3463 
3464 	#define FIRST_RET(__getvinfo) \
3465 	do { \
3466 		int __ret = __getvinfo; \
3467 		if (__ret && !ret) \
3468 			ret = __ret; \
3469 	} while (0)
3470 
3471 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3472 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3473 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3474 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3475 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3476 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3477 
3478 	#undef FIRST_RET
3479 
3480 	return ret;
3481 }
3482 
3483 /**
3484  *	t4_flash_erase_sectors - erase a range of flash sectors
3485  *	@adapter: the adapter
3486  *	@start: the first sector to erase
3487  *	@end: the last sector to erase
3488  *
3489  *	Erases the sectors in the given inclusive range.
3490  */
3491 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3492 {
3493 	int ret = 0;
3494 
3495 	if (end >= adapter->params.sf_nsec)
3496 		return -EINVAL;
3497 
3498 	while (start <= end) {
3499 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3500 		    (ret = sf1_write(adapter, 4, 0, 1,
3501 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3502 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3503 			CH_ERR(adapter,
3504 				"erase of flash sector %d failed, error %d\n",
3505 				start, ret);
3506 			break;
3507 		}
3508 		start++;
3509 	}
3510 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3511 	return ret;
3512 }
3513 
3514 /**
3515  *	t4_flash_cfg_addr - return the address of the flash configuration file
3516  *	@adapter: the adapter
3517  *
3518  *	Return the address within the flash where the Firmware Configuration
3519  *	File is stored, or an error if the device FLASH is too small to contain
3520  *	a Firmware Configuration File.
3521  */
3522 int t4_flash_cfg_addr(struct adapter *adapter)
3523 {
3524 	/*
3525 	 * If the device FLASH isn't large enough to hold a Firmware
3526 	 * Configuration File, return an error.
3527 	 */
3528 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3529 		return -ENOSPC;
3530 
3531 	return FLASH_CFG_START;
3532 }
3533 
3534 /*
3535  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3536  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3537  * and emit an error message for mismatched firmware to save our caller the
3538  * effort ...
3539  */
3540 static int t4_fw_matches_chip(struct adapter *adap,
3541 			      const struct fw_hdr *hdr)
3542 {
3543 	/*
3544 	 * The expression below will return FALSE for any unsupported adapter
3545 	 * which will keep us "honest" in the future ...
3546 	 */
3547 	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3548 	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3549 	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3550 		return 1;
3551 
3552 	CH_ERR(adap,
3553 		"FW image (%d) is not suitable for this adapter (%d)\n",
3554 		hdr->chip, chip_id(adap));
3555 	return 0;
3556 }
3557 
3558 /**
3559  *	t4_load_fw - download firmware
3560  *	@adap: the adapter
3561  *	@fw_data: the firmware image to write
3562  *	@size: image size
3563  *
3564  *	Write the supplied firmware image to the card's serial flash.
3565  */
3566 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3567 {
3568 	u32 csum;
3569 	int ret, addr;
3570 	unsigned int i;
3571 	u8 first_page[SF_PAGE_SIZE];
3572 	const u32 *p = (const u32 *)fw_data;
3573 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3574 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3575 	unsigned int fw_start_sec;
3576 	unsigned int fw_start;
3577 	unsigned int fw_size;
3578 
3579 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3580 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3581 		fw_start = FLASH_FWBOOTSTRAP_START;
3582 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3583 	} else {
3584 		fw_start_sec = FLASH_FW_START_SEC;
3585  		fw_start = FLASH_FW_START;
3586 		fw_size = FLASH_FW_MAX_SIZE;
3587 	}
3588 
3589 	if (!size) {
3590 		CH_ERR(adap, "FW image has no data\n");
3591 		return -EINVAL;
3592 	}
3593 	if (size & 511) {
3594 		CH_ERR(adap,
3595 			"FW image size not multiple of 512 bytes\n");
3596 		return -EINVAL;
3597 	}
3598 	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3599 		CH_ERR(adap,
3600 			"FW image size differs from size in FW header\n");
3601 		return -EINVAL;
3602 	}
3603 	if (size > fw_size) {
3604 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3605 			fw_size);
3606 		return -EFBIG;
3607 	}
3608 	if (!t4_fw_matches_chip(adap, hdr))
3609 		return -EINVAL;
3610 
3611 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3612 		csum += be32_to_cpu(p[i]);
3613 
3614 	if (csum != 0xffffffff) {
3615 		CH_ERR(adap,
3616 			"corrupted firmware image, checksum %#x\n", csum);
3617 		return -EINVAL;
3618 	}
3619 
3620 	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3621 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3622 	if (ret)
3623 		goto out;
3624 
3625 	/*
3626 	 * We write the correct version at the end so the driver can see a bad
3627 	 * version if the FW write fails.  Start by writing a copy of the
3628 	 * first page with a bad version.
3629 	 */
3630 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3631 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3632 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3633 	if (ret)
3634 		goto out;
3635 
3636 	addr = fw_start;
3637 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3638 		addr += SF_PAGE_SIZE;
3639 		fw_data += SF_PAGE_SIZE;
3640 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3641 		if (ret)
3642 			goto out;
3643 	}
3644 
3645 	ret = t4_write_flash(adap,
3646 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3647 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3648 out:
3649 	if (ret)
3650 		CH_ERR(adap, "firmware download failed, error %d\n",
3651 			ret);
3652 	return ret;
3653 }
3654 
3655 /**
3656  *	t4_fwcache - firmware cache operation
3657  *	@adap: the adapter
3658  *	@op  : the operation (flush or flush and invalidate)
3659  */
3660 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3661 {
3662 	struct fw_params_cmd c;
3663 
3664 	memset(&c, 0, sizeof(c));
3665 	c.op_to_vfn =
3666 	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3667 			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3668 				V_FW_PARAMS_CMD_PFN(adap->pf) |
3669 				V_FW_PARAMS_CMD_VFN(0));
3670 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3671 	c.param[0].mnem =
3672 	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3673 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3674 	c.param[0].val = (__force __be32)op;
3675 
3676 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3677 }
3678 
3679 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3680 			unsigned int *pif_req_wrptr,
3681 			unsigned int *pif_rsp_wrptr)
3682 {
3683 	int i, j;
3684 	u32 cfg, val, req, rsp;
3685 
3686 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3687 	if (cfg & F_LADBGEN)
3688 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3689 
3690 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3691 	req = G_POLADBGWRPTR(val);
3692 	rsp = G_PILADBGWRPTR(val);
3693 	if (pif_req_wrptr)
3694 		*pif_req_wrptr = req;
3695 	if (pif_rsp_wrptr)
3696 		*pif_rsp_wrptr = rsp;
3697 
3698 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3699 		for (j = 0; j < 6; j++) {
3700 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3701 				     V_PILADBGRDPTR(rsp));
3702 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3703 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3704 			req++;
3705 			rsp++;
3706 		}
3707 		req = (req + 2) & M_POLADBGRDPTR;
3708 		rsp = (rsp + 2) & M_PILADBGRDPTR;
3709 	}
3710 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3711 }
3712 
3713 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3714 {
3715 	u32 cfg;
3716 	int i, j, idx;
3717 
3718 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3719 	if (cfg & F_LADBGEN)
3720 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3721 
3722 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3723 		for (j = 0; j < 5; j++) {
3724 			idx = 8 * i + j;
3725 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3726 				     V_PILADBGRDPTR(idx));
3727 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3728 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3729 		}
3730 	}
3731 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3732 }
3733 
3734 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3735 {
3736 	unsigned int i, j;
3737 
3738 	for (i = 0; i < 8; i++) {
3739 		u32 *p = la_buf + i;
3740 
3741 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3742 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3743 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3744 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3745 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3746 	}
3747 }
3748 
3749 /**
3750  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3751  *	@caps16: a 16-bit Port Capabilities value
3752  *
3753  *	Returns the equivalent 32-bit Port Capabilities value.
3754  */
3755 static uint32_t fwcaps16_to_caps32(uint16_t caps16)
3756 {
3757 	uint32_t caps32 = 0;
3758 
3759 	#define CAP16_TO_CAP32(__cap) \
3760 		do { \
3761 			if (caps16 & FW_PORT_CAP_##__cap) \
3762 				caps32 |= FW_PORT_CAP32_##__cap; \
3763 		} while (0)
3764 
3765 	CAP16_TO_CAP32(SPEED_100M);
3766 	CAP16_TO_CAP32(SPEED_1G);
3767 	CAP16_TO_CAP32(SPEED_25G);
3768 	CAP16_TO_CAP32(SPEED_10G);
3769 	CAP16_TO_CAP32(SPEED_40G);
3770 	CAP16_TO_CAP32(SPEED_100G);
3771 	CAP16_TO_CAP32(FC_RX);
3772 	CAP16_TO_CAP32(FC_TX);
3773 	CAP16_TO_CAP32(ANEG);
3774 	CAP16_TO_CAP32(FORCE_PAUSE);
3775 	CAP16_TO_CAP32(MDIAUTO);
3776 	CAP16_TO_CAP32(MDISTRAIGHT);
3777 	CAP16_TO_CAP32(FEC_RS);
3778 	CAP16_TO_CAP32(FEC_BASER_RS);
3779 	CAP16_TO_CAP32(802_3_PAUSE);
3780 	CAP16_TO_CAP32(802_3_ASM_DIR);
3781 
3782 	#undef CAP16_TO_CAP32
3783 
3784 	return caps32;
3785 }
3786 
3787 /**
3788  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3789  *	@caps32: a 32-bit Port Capabilities value
3790  *
3791  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
3792  *	not all 32-bit Port Capabilities can be represented in the 16-bit
3793  *	Port Capabilities and some fields/values may not make it.
3794  */
3795 static uint16_t fwcaps32_to_caps16(uint32_t caps32)
3796 {
3797 	uint16_t caps16 = 0;
3798 
3799 	#define CAP32_TO_CAP16(__cap) \
3800 		do { \
3801 			if (caps32 & FW_PORT_CAP32_##__cap) \
3802 				caps16 |= FW_PORT_CAP_##__cap; \
3803 		} while (0)
3804 
3805 	CAP32_TO_CAP16(SPEED_100M);
3806 	CAP32_TO_CAP16(SPEED_1G);
3807 	CAP32_TO_CAP16(SPEED_10G);
3808 	CAP32_TO_CAP16(SPEED_25G);
3809 	CAP32_TO_CAP16(SPEED_40G);
3810 	CAP32_TO_CAP16(SPEED_100G);
3811 	CAP32_TO_CAP16(FC_RX);
3812 	CAP32_TO_CAP16(FC_TX);
3813 	CAP32_TO_CAP16(802_3_PAUSE);
3814 	CAP32_TO_CAP16(802_3_ASM_DIR);
3815 	CAP32_TO_CAP16(ANEG);
3816 	CAP32_TO_CAP16(FORCE_PAUSE);
3817 	CAP32_TO_CAP16(MDIAUTO);
3818 	CAP32_TO_CAP16(MDISTRAIGHT);
3819 	CAP32_TO_CAP16(FEC_RS);
3820 	CAP32_TO_CAP16(FEC_BASER_RS);
3821 
3822 	#undef CAP32_TO_CAP16
3823 
3824 	return caps16;
3825 }
3826 
3827 static bool
3828 is_bt(struct port_info *pi)
3829 {
3830 
3831 	return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
3832 	    pi->port_type == FW_PORT_TYPE_BT_XFI ||
3833 	    pi->port_type == FW_PORT_TYPE_BT_XAUI);
3834 }
3835 
3836 /**
3837  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3838  *	@phy: the PHY to setup
3839  *	@mac: the MAC to setup
3840  *	@lc: the requested link configuration
3841  *
3842  *	Set up a port's MAC and PHY according to a desired link configuration.
3843  *	- If the PHY can auto-negotiate first decide what to advertise, then
3844  *	  enable/disable auto-negotiation as desired, and reset.
3845  *	- If the PHY does not auto-negotiate just reset it.
3846  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3847  *	  otherwise do it later based on the outcome of auto-negotiation.
3848  */
3849 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3850 		  struct link_config *lc)
3851 {
3852 	struct fw_port_cmd c;
3853 	unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
3854 	unsigned int aneg, fc, fec, speed, rcap;
3855 
3856 	fc = 0;
3857 	if (lc->requested_fc & PAUSE_RX)
3858 		fc |= FW_PORT_CAP32_FC_RX;
3859 	if (lc->requested_fc & PAUSE_TX)
3860 		fc |= FW_PORT_CAP32_FC_TX;
3861 	if (!(lc->requested_fc & PAUSE_AUTONEG))
3862 		fc |= FW_PORT_CAP32_FORCE_PAUSE;
3863 
3864 	fec = 0;
3865 	if (lc->requested_fec == FEC_AUTO)
3866 		fec = lc->fec_hint;
3867 	else {
3868 		if (lc->requested_fec & FEC_RS)
3869 			fec |= FW_PORT_CAP32_FEC_RS;
3870 		if (lc->requested_fec & FEC_BASER_RS)
3871 			fec |= FW_PORT_CAP32_FEC_BASER_RS;
3872 	}
3873 
3874 	if (lc->requested_aneg == AUTONEG_DISABLE)
3875 		aneg = 0;
3876 	else if (lc->requested_aneg == AUTONEG_ENABLE)
3877 		aneg = FW_PORT_CAP32_ANEG;
3878 	else
3879 		aneg = lc->supported & FW_PORT_CAP32_ANEG;
3880 
3881 	if (aneg) {
3882 		speed = lc->supported & V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
3883 	} else if (lc->requested_speed != 0)
3884 		speed = speed_to_fwcap(lc->requested_speed);
3885 	else
3886 		speed = fwcap_top_speed(lc->supported);
3887 
3888 	/* Force AN on for BT cards. */
3889 	if (is_bt(adap->port[port]))
3890 		aneg = lc->supported & FW_PORT_CAP32_ANEG;
3891 
3892 	rcap = aneg | speed | fc | fec;
3893 	if ((rcap | lc->supported) != lc->supported) {
3894 #ifdef INVARIANTS
3895 		CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x\n", rcap,
3896 		    lc->supported);
3897 #endif
3898 		rcap &= lc->supported;
3899 	}
3900 	rcap |= mdi;
3901 
3902 	memset(&c, 0, sizeof(c));
3903 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3904 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3905 				     V_FW_PORT_CMD_PORTID(port));
3906 	if (adap->params.port_caps32) {
3907 		c.action_to_len16 =
3908 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
3909 			FW_LEN16(c));
3910 		c.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
3911 	} else {
3912 		c.action_to_len16 =
3913 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3914 			    FW_LEN16(c));
3915 		c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
3916 	}
3917 
3918 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3919 }
3920 
3921 /**
3922  *	t4_restart_aneg - restart autonegotiation
3923  *	@adap: the adapter
3924  *	@mbox: mbox to use for the FW command
3925  *	@port: the port id
3926  *
3927  *	Restarts autonegotiation for the selected port.
3928  */
3929 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3930 {
3931 	struct fw_port_cmd c;
3932 
3933 	memset(&c, 0, sizeof(c));
3934 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3935 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3936 				     V_FW_PORT_CMD_PORTID(port));
3937 	c.action_to_len16 =
3938 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3939 			    FW_LEN16(c));
3940 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3941 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3942 }
3943 
3944 struct intr_details {
3945 	u32 mask;
3946 	const char *msg;
3947 };
3948 
3949 struct intr_action {
3950 	u32 mask;
3951 	int arg;
3952 	bool (*action)(struct adapter *, int, bool);
3953 };
3954 
3955 struct intr_info {
3956 	const char *name;	/* name of the INT_CAUSE register */
3957 	int cause_reg;		/* INT_CAUSE register */
3958 	int enable_reg;		/* INT_ENABLE register */
3959 	u32 fatal;		/* bits that are fatal */
3960 	const struct intr_details *details;
3961 	const struct intr_action *actions;
3962 };
3963 
3964 static inline char
3965 intr_alert_char(u32 cause, u32 enable, u32 fatal)
3966 {
3967 
3968 	if (cause & fatal)
3969 		return ('!');
3970 	if (cause & enable)
3971 		return ('*');
3972 	return ('-');
3973 }
3974 
3975 static void
3976 t4_show_intr_info(struct adapter *adap, const struct intr_info *ii, u32 cause)
3977 {
3978 	u32 enable, leftover;
3979 	const struct intr_details *details;
3980 	char alert;
3981 
3982 	enable = t4_read_reg(adap, ii->enable_reg);
3983 	alert = intr_alert_char(cause, enable, ii->fatal);
3984 	CH_ALERT(adap, "%c %s 0x%x = 0x%08x, E 0x%08x, F 0x%08x\n",
3985 	    alert, ii->name, ii->cause_reg, cause, enable, ii->fatal);
3986 
3987 	leftover = cause;
3988 	for (details = ii->details; details && details->mask != 0; details++) {
3989 		u32 msgbits = details->mask & cause;
3990 		if (msgbits == 0)
3991 			continue;
3992 		alert = intr_alert_char(msgbits, enable, ii->fatal);
3993 		CH_ALERT(adap, "  %c [0x%08x] %s\n", alert, msgbits,
3994 		    details->msg);
3995 		leftover &= ~msgbits;
3996 	}
3997 	if (leftover != 0 && leftover != cause)
3998 		CH_ALERT(adap, "  ? [0x%08x]\n", leftover);
3999 }
4000 
4001 /*
4002  * Returns true for fatal error.
4003  */
4004 static bool
4005 t4_handle_intr(struct adapter *adap, const struct intr_info *ii,
4006     u32 additional_cause, bool verbose)
4007 {
4008 	u32 cause;
4009 	bool fatal;
4010 	const struct intr_action *action;
4011 
4012 	/* read and display cause. */
4013 	cause = t4_read_reg(adap, ii->cause_reg);
4014 	if (verbose || cause != 0)
4015 		t4_show_intr_info(adap, ii, cause);
4016 	fatal = (cause & ii->fatal) != 0;
4017 	cause |= additional_cause;
4018 	if (cause == 0)
4019 		return (false);
4020 
4021 	for (action = ii->actions; action && action->mask != 0; action++) {
4022 		if (!(action->mask & cause))
4023 			continue;
4024 		fatal |= (action->action)(adap, action->arg, verbose);
4025 	}
4026 
4027 	/* clear */
4028 	t4_write_reg(adap, ii->cause_reg, cause);
4029 	(void)t4_read_reg(adap, ii->cause_reg);
4030 
4031 	return (fatal);
4032 }
4033 
4034 /*
4035  * Interrupt handler for the PCIE module.
4036  */
4037 static bool pcie_intr_handler(struct adapter *adap, int arg, bool verbose)
4038 {
4039 	static const struct intr_details sysbus_intr_details[] = {
4040 		{ F_RNPP, "RXNP array parity error" },
4041 		{ F_RPCP, "RXPC array parity error" },
4042 		{ F_RCIP, "RXCIF array parity error" },
4043 		{ F_RCCP, "Rx completions control array parity error" },
4044 		{ F_RFTP, "RXFT array parity error" },
4045 		{ 0 }
4046 	};
4047 	static const struct intr_info sysbus_intr_info = {
4048 		.name = "PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS",
4049 		.cause_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4050 		.enable_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_INTERRUPT_ENABLE,
4051 		.fatal = F_RFTP | F_RCCP | F_RCIP | F_RPCP | F_RNPP,
4052 		.details = sysbus_intr_details,
4053 		.actions = NULL,
4054 	};
4055 	static const struct intr_details pcie_port_intr_details[] = {
4056 		{ F_TPCP, "TXPC array parity error" },
4057 		{ F_TNPP, "TXNP array parity error" },
4058 		{ F_TFTP, "TXFT array parity error" },
4059 		{ F_TCAP, "TXCA array parity error" },
4060 		{ F_TCIP, "TXCIF array parity error" },
4061 		{ F_RCAP, "RXCA array parity error" },
4062 		{ F_OTDD, "outbound request TLP discarded" },
4063 		{ F_RDPE, "Rx data parity error" },
4064 		{ F_TDUE, "Tx uncorrectable data error" },
4065 		{ 0 }
4066 	};
4067 	static const struct intr_info pcie_port_intr_info = {
4068 		.name = "PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS",
4069 		.cause_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4070 		.enable_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_INTERRUPT_ENABLE,
4071 		.fatal = F_TPCP | F_TNPP | F_TFTP | F_TCAP | F_TCIP | F_RCAP |
4072 		    F_OTDD | F_RDPE | F_TDUE,
4073 		.details = pcie_port_intr_details,
4074 		.actions = NULL,
4075 	};
4076 	static const struct intr_details pcie_intr_details[] = {
4077 		{ F_MSIADDRLPERR, "MSI AddrL parity error" },
4078 		{ F_MSIADDRHPERR, "MSI AddrH parity error" },
4079 		{ F_MSIDATAPERR, "MSI data parity error" },
4080 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error" },
4081 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error" },
4082 		{ F_MSIXDATAPERR, "MSI-X data parity error" },
4083 		{ F_MSIXDIPERR, "MSI-X DI parity error" },
4084 		{ F_PIOCPLPERR, "PCIe PIO completion FIFO parity error" },
4085 		{ F_PIOREQPERR, "PCIe PIO request FIFO parity error" },
4086 		{ F_TARTAGPERR, "PCIe target tag FIFO parity error" },
4087 		{ F_CCNTPERR, "PCIe CMD channel count parity error" },
4088 		{ F_CREQPERR, "PCIe CMD channel request parity error" },
4089 		{ F_CRSPPERR, "PCIe CMD channel response parity error" },
4090 		{ F_DCNTPERR, "PCIe DMA channel count parity error" },
4091 		{ F_DREQPERR, "PCIe DMA channel request parity error" },
4092 		{ F_DRSPPERR, "PCIe DMA channel response parity error" },
4093 		{ F_HCNTPERR, "PCIe HMA channel count parity error" },
4094 		{ F_HREQPERR, "PCIe HMA channel request parity error" },
4095 		{ F_HRSPPERR, "PCIe HMA channel response parity error" },
4096 		{ F_CFGSNPPERR, "PCIe config snoop FIFO parity error" },
4097 		{ F_FIDPERR, "PCIe FID parity error" },
4098 		{ F_INTXCLRPERR, "PCIe INTx clear parity error" },
4099 		{ F_MATAGPERR, "PCIe MA tag parity error" },
4100 		{ F_PIOTAGPERR, "PCIe PIO tag parity error" },
4101 		{ F_RXCPLPERR, "PCIe Rx completion parity error" },
4102 		{ F_RXWRPERR, "PCIe Rx write parity error" },
4103 		{ F_RPLPERR, "PCIe replay buffer parity error" },
4104 		{ F_PCIESINT, "PCIe core secondary fault" },
4105 		{ F_PCIEPINT, "PCIe core primary fault" },
4106 		{ F_UNXSPLCPLERR, "PCIe unexpected split completion error" },
4107 		{ 0 }
4108 	};
4109 	static const struct intr_details t5_pcie_intr_details[] = {
4110 		{ F_IPGRPPERR, "Parity errors observed by IP" },
4111 		{ F_NONFATALERR, "PCIe non-fatal error" },
4112 		{ F_READRSPERR, "Outbound read error" },
4113 		{ F_TRGT1GRPPERR, "PCIe TRGT1 group FIFOs parity error" },
4114 		{ F_IPSOTPERR, "PCIe IP SOT buffer SRAM parity error" },
4115 		{ F_IPRETRYPERR, "PCIe IP replay buffer parity error" },
4116 		{ F_IPRXDATAGRPPERR, "PCIe IP Rx data group SRAMs parity error" },
4117 		{ F_IPRXHDRGRPPERR, "PCIe IP Rx header group SRAMs parity error" },
4118 		{ F_PIOTAGQPERR, "PIO tag queue FIFO parity error" },
4119 		{ F_MAGRPPERR, "MA group FIFO parity error" },
4120 		{ F_VFIDPERR, "VFID SRAM parity error" },
4121 		{ F_FIDPERR, "FID SRAM parity error" },
4122 		{ F_CFGSNPPERR, "config snoop FIFO parity error" },
4123 		{ F_HRSPPERR, "HMA channel response data SRAM parity error" },
4124 		{ F_HREQRDPERR, "HMA channel read request SRAM parity error" },
4125 		{ F_HREQWRPERR, "HMA channel write request SRAM parity error" },
4126 		{ F_DRSPPERR, "DMA channel response data SRAM parity error" },
4127 		{ F_DREQRDPERR, "DMA channel write request SRAM parity error" },
4128 		{ F_CRSPPERR, "CMD channel response data SRAM parity error" },
4129 		{ F_CREQRDPERR, "CMD channel read request SRAM parity error" },
4130 		{ F_MSTTAGQPERR, "PCIe master tag queue SRAM parity error" },
4131 		{ F_TGTTAGQPERR, "PCIe target tag queue FIFO parity error" },
4132 		{ F_PIOREQGRPPERR, "PIO request group FIFOs parity error" },
4133 		{ F_PIOCPLGRPPERR, "PIO completion group FIFOs parity error" },
4134 		{ F_MSIXDIPERR, "MSI-X DI SRAM parity error" },
4135 		{ F_MSIXDATAPERR, "MSI-X data SRAM parity error" },
4136 		{ F_MSIXADDRHPERR, "MSI-X AddrH SRAM parity error" },
4137 		{ F_MSIXADDRLPERR, "MSI-X AddrL SRAM parity error" },
4138 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error" },
4139 		{ F_MSTTIMEOUTPERR, "Master timeout FIFO parity error" },
4140 		{ F_MSTGRPPERR, "Master response read queue SRAM parity error" },
4141 		{ 0 }
4142 	};
4143 	struct intr_info pcie_intr_info = {
4144 		.name = "PCIE_INT_CAUSE",
4145 		.cause_reg = A_PCIE_INT_CAUSE,
4146 		.enable_reg = A_PCIE_INT_ENABLE,
4147 		.fatal = 0,
4148 		.details = NULL,
4149 		.actions = NULL,
4150 	};
4151 	bool fatal = false;
4152 
4153 	if (is_t4(adap)) {
4154 		fatal |= t4_handle_intr(adap, &sysbus_intr_info, 0, verbose);
4155 		fatal |= t4_handle_intr(adap, &pcie_port_intr_info, 0, verbose);
4156 
4157 		pcie_intr_info.fatal =  0x3fffffc0;
4158 		pcie_intr_info.details = pcie_intr_details;
4159 	} else {
4160 		pcie_intr_info.fatal = is_t5(adap) ? 0xbfffff40 : 0x9fffff40;
4161 		pcie_intr_info.details = t5_pcie_intr_details;
4162 	}
4163 	fatal |= t4_handle_intr(adap, &pcie_intr_info, 0, verbose);
4164 
4165 	return (fatal);
4166 }
4167 
4168 /*
4169  * TP interrupt handler.
4170  */
4171 static bool tp_intr_handler(struct adapter *adap, int arg, bool verbose)
4172 {
4173 	static const struct intr_details tp_intr_details[] = {
4174 		{ 0x3fffffff, "TP parity error" },
4175 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages" },
4176 		{ 0 }
4177 	};
4178 	static const struct intr_info tp_intr_info = {
4179 		.name = "TP_INT_CAUSE",
4180 		.cause_reg = A_TP_INT_CAUSE,
4181 		.enable_reg = A_TP_INT_ENABLE,
4182 		.fatal = 0x7fffffff,
4183 		.details = tp_intr_details,
4184 		.actions = NULL,
4185 	};
4186 
4187 	return (t4_handle_intr(adap, &tp_intr_info, 0, verbose));
4188 }
4189 
4190 /*
4191  * SGE interrupt handler.
4192  */
4193 static bool sge_intr_handler(struct adapter *adap, int arg, bool verbose)
4194 {
4195 	static const struct intr_info sge_int1_info = {
4196 		.name = "SGE_INT_CAUSE1",
4197 		.cause_reg = A_SGE_INT_CAUSE1,
4198 		.enable_reg = A_SGE_INT_ENABLE1,
4199 		.fatal = 0xffffffff,
4200 		.details = NULL,
4201 		.actions = NULL,
4202 	};
4203 	static const struct intr_info sge_int2_info = {
4204 		.name = "SGE_INT_CAUSE2",
4205 		.cause_reg = A_SGE_INT_CAUSE2,
4206 		.enable_reg = A_SGE_INT_ENABLE2,
4207 		.fatal = 0xffffffff,
4208 		.details = NULL,
4209 		.actions = NULL,
4210 	};
4211 	static const struct intr_details sge_int3_details[] = {
4212 		{ F_ERR_FLM_DBP,
4213 			"DBP pointer delivery for invalid context or QID" },
4214 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4215 			"Invalid QID or header request by IDMA" },
4216 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4217 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4218 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4219 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4220 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4221 		{ F_ERR_TIMER_ABOVE_MAX_QID,
4222 			"SGE GTS with timer 0-5 for IQID > 1023" },
4223 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4224 			"SGE received CPL exceeding IQE size" },
4225 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4226 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4227 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4228 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4229 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4230 		  "SGE IQID > 1023 received CPL for FL" },
4231 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4232 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4233 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4234 		{ F_ERR_ING_CTXT_PRIO,
4235 			"Ingress context manager priority user error" },
4236 		{ F_ERR_EGR_CTXT_PRIO,
4237 			"Egress context manager priority user error" },
4238 		{ F_DBFIFO_HP_INT, "High priority DB FIFO threshold reached" },
4239 		{ F_DBFIFO_LP_INT, "Low priority DB FIFO threshold reached" },
4240 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4241 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4242 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4243 		{ 0x0000000f, "SGE context access for invalid queue" },
4244 		{ 0 }
4245 	};
4246 	static const struct intr_details t6_sge_int3_details[] = {
4247 		{ F_ERR_FLM_DBP,
4248 			"DBP pointer delivery for invalid context or QID" },
4249 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4250 			"Invalid QID or header request by IDMA" },
4251 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4252 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4253 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4254 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4255 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4256 		{ F_ERR_TIMER_ABOVE_MAX_QID,
4257 			"SGE GTS with timer 0-5 for IQID > 1023" },
4258 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4259 			"SGE received CPL exceeding IQE size" },
4260 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4261 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4262 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4263 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4264 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4265 			"SGE IQID > 1023 received CPL for FL" },
4266 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4267 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4268 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4269 		{ F_ERR_ING_CTXT_PRIO,
4270 			"Ingress context manager priority user error" },
4271 		{ F_ERR_EGR_CTXT_PRIO,
4272 			"Egress context manager priority user error" },
4273 		{ F_DBP_TBUF_FULL, "SGE DBP tbuf full" },
4274 		{ F_FATAL_WRE_LEN,
4275 			"SGE WRE packet less than advertized length" },
4276 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4277 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4278 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4279 		{ 0x0000000f, "SGE context access for invalid queue" },
4280 		{ 0 }
4281 	};
4282 	struct intr_info sge_int3_info = {
4283 		.name = "SGE_INT_CAUSE3",
4284 		.cause_reg = A_SGE_INT_CAUSE3,
4285 		.enable_reg = A_SGE_INT_ENABLE3,
4286 		.fatal = F_ERR_CPL_EXCEED_IQE_SIZE,
4287 		.details = NULL,
4288 		.actions = NULL,
4289 	};
4290 	static const struct intr_info sge_int4_info = {
4291 		.name = "SGE_INT_CAUSE4",
4292 		.cause_reg = A_SGE_INT_CAUSE4,
4293 		.enable_reg = A_SGE_INT_ENABLE4,
4294 		.fatal = 0,
4295 		.details = NULL,
4296 		.actions = NULL,
4297 	};
4298 	static const struct intr_info sge_int5_info = {
4299 		.name = "SGE_INT_CAUSE5",
4300 		.cause_reg = A_SGE_INT_CAUSE5,
4301 		.enable_reg = A_SGE_INT_ENABLE5,
4302 		.fatal = 0xffffffff,
4303 		.details = NULL,
4304 		.actions = NULL,
4305 	};
4306 	static const struct intr_info sge_int6_info = {
4307 		.name = "SGE_INT_CAUSE6",
4308 		.cause_reg = A_SGE_INT_CAUSE6,
4309 		.enable_reg = A_SGE_INT_ENABLE6,
4310 		.fatal = 0,
4311 		.details = NULL,
4312 		.actions = NULL,
4313 	};
4314 
4315 	bool fatal;
4316 	u32 v;
4317 
4318 	if (chip_id(adap) <= CHELSIO_T5) {
4319 		sge_int3_info.details = sge_int3_details;
4320 	} else {
4321 		sge_int3_info.details = t6_sge_int3_details;
4322 	}
4323 
4324 	fatal = false;
4325 	fatal |= t4_handle_intr(adap, &sge_int1_info, 0, verbose);
4326 	fatal |= t4_handle_intr(adap, &sge_int2_info, 0, verbose);
4327 	fatal |= t4_handle_intr(adap, &sge_int3_info, 0, verbose);
4328 	fatal |= t4_handle_intr(adap, &sge_int4_info, 0, verbose);
4329 	if (chip_id(adap) >= CHELSIO_T5)
4330 		fatal |= t4_handle_intr(adap, &sge_int5_info, 0, verbose);
4331 	if (chip_id(adap) >= CHELSIO_T6)
4332 		fatal |= t4_handle_intr(adap, &sge_int6_info, 0, verbose);
4333 
4334 	v = t4_read_reg(adap, A_SGE_ERROR_STATS);
4335 	if (v & F_ERROR_QID_VALID) {
4336 		CH_ERR(adap, "SGE error for QID %u\n", G_ERROR_QID(v));
4337 		if (v & F_UNCAPTURED_ERROR)
4338 			CH_ERR(adap, "SGE UNCAPTURED_ERROR set (clearing)\n");
4339 		t4_write_reg(adap, A_SGE_ERROR_STATS,
4340 		    F_ERROR_QID_VALID | F_UNCAPTURED_ERROR);
4341 	}
4342 
4343 	return (fatal);
4344 }
4345 
4346 /*
4347  * CIM interrupt handler.
4348  */
4349 static bool cim_intr_handler(struct adapter *adap, int arg, bool verbose)
4350 {
4351 	static const struct intr_details cim_host_intr_details[] = {
4352 		/* T6+ */
4353 		{ F_PCIE2CIMINTFPARERR, "CIM IBQ PCIe interface parity error" },
4354 
4355 		/* T5+ */
4356 		{ F_MA_CIM_INTFPERR, "MA2CIM interface parity error" },
4357 		{ F_PLCIM_MSTRSPDATAPARERR,
4358 			"PL2CIM master response data parity error" },
4359 		{ F_NCSI2CIMINTFPARERR, "CIM IBQ NC-SI interface parity error" },
4360 		{ F_SGE2CIMINTFPARERR, "CIM IBQ SGE interface parity error" },
4361 		{ F_ULP2CIMINTFPARERR, "CIM IBQ ULP_TX interface parity error" },
4362 		{ F_TP2CIMINTFPARERR, "CIM IBQ TP interface parity error" },
4363 		{ F_OBQSGERX1PARERR, "CIM OBQ SGE1_RX parity error" },
4364 		{ F_OBQSGERX0PARERR, "CIM OBQ SGE0_RX parity error" },
4365 
4366 		/* T4+ */
4367 		{ F_TIEQOUTPARERRINT, "CIM TIEQ outgoing FIFO parity error" },
4368 		{ F_TIEQINPARERRINT, "CIM TIEQ incoming FIFO parity error" },
4369 		{ F_MBHOSTPARERR, "CIM mailbox host read parity error" },
4370 		{ F_MBUPPARERR, "CIM mailbox uP parity error" },
4371 		{ F_IBQTP0PARERR, "CIM IBQ TP0 parity error" },
4372 		{ F_IBQTP1PARERR, "CIM IBQ TP1 parity error" },
4373 		{ F_IBQULPPARERR, "CIM IBQ ULP parity error" },
4374 		{ F_IBQSGELOPARERR, "CIM IBQ SGE_LO parity error" },
4375 		{ F_IBQSGEHIPARERR | F_IBQPCIEPARERR,	/* same bit */
4376 			"CIM IBQ PCIe/SGE_HI parity error" },
4377 		{ F_IBQNCSIPARERR, "CIM IBQ NC-SI parity error" },
4378 		{ F_OBQULP0PARERR, "CIM OBQ ULP0 parity error" },
4379 		{ F_OBQULP1PARERR, "CIM OBQ ULP1 parity error" },
4380 		{ F_OBQULP2PARERR, "CIM OBQ ULP2 parity error" },
4381 		{ F_OBQULP3PARERR, "CIM OBQ ULP3 parity error" },
4382 		{ F_OBQSGEPARERR, "CIM OBQ SGE parity error" },
4383 		{ F_OBQNCSIPARERR, "CIM OBQ NC-SI parity error" },
4384 		{ F_TIMER1INT, "CIM TIMER0 interrupt" },
4385 		{ F_TIMER0INT, "CIM TIMER0 interrupt" },
4386 		{ F_PREFDROPINT, "CIM control register prefetch drop" },
4387 		{ 0}
4388 	};
4389 	struct intr_info cim_host_intr_info = {
4390 		.name = "CIM_HOST_INT_CAUSE",
4391 		.cause_reg = A_CIM_HOST_INT_CAUSE,
4392 		.enable_reg = A_CIM_HOST_INT_ENABLE,
4393 		.fatal = 0,
4394 		.details = cim_host_intr_details,
4395 		.actions = NULL,
4396 	};
4397 	static const struct intr_details cim_host_upacc_intr_details[] = {
4398 		{ F_EEPROMWRINT, "CIM EEPROM came out of busy state" },
4399 		{ F_TIMEOUTMAINT, "CIM PIF MA timeout" },
4400 		{ F_TIMEOUTINT, "CIM PIF timeout" },
4401 		{ F_RSPOVRLOOKUPINT, "CIM response FIFO overwrite" },
4402 		{ F_REQOVRLOOKUPINT, "CIM request FIFO overwrite" },
4403 		{ F_BLKWRPLINT, "CIM block write to PL space" },
4404 		{ F_BLKRDPLINT, "CIM block read from PL space" },
4405 		{ F_SGLWRPLINT,
4406 			"CIM single write to PL space with illegal BEs" },
4407 		{ F_SGLRDPLINT,
4408 			"CIM single read from PL space with illegal BEs" },
4409 		{ F_BLKWRCTLINT, "CIM block write to CTL space" },
4410 		{ F_BLKRDCTLINT, "CIM block read from CTL space" },
4411 		{ F_SGLWRCTLINT,
4412 			"CIM single write to CTL space with illegal BEs" },
4413 		{ F_SGLRDCTLINT,
4414 			"CIM single read from CTL space with illegal BEs" },
4415 		{ F_BLKWREEPROMINT, "CIM block write to EEPROM space" },
4416 		{ F_BLKRDEEPROMINT, "CIM block read from EEPROM space" },
4417 		{ F_SGLWREEPROMINT,
4418 			"CIM single write to EEPROM space with illegal BEs" },
4419 		{ F_SGLRDEEPROMINT,
4420 			"CIM single read from EEPROM space with illegal BEs" },
4421 		{ F_BLKWRFLASHINT, "CIM block write to flash space" },
4422 		{ F_BLKRDFLASHINT, "CIM block read from flash space" },
4423 		{ F_SGLWRFLASHINT, "CIM single write to flash space" },
4424 		{ F_SGLRDFLASHINT,
4425 			"CIM single read from flash space with illegal BEs" },
4426 		{ F_BLKWRBOOTINT, "CIM block write to boot space" },
4427 		{ F_BLKRDBOOTINT, "CIM block read from boot space" },
4428 		{ F_SGLWRBOOTINT, "CIM single write to boot space" },
4429 		{ F_SGLRDBOOTINT,
4430 			"CIM single read from boot space with illegal BEs" },
4431 		{ F_ILLWRBEINT, "CIM illegal write BEs" },
4432 		{ F_ILLRDBEINT, "CIM illegal read BEs" },
4433 		{ F_ILLRDINT, "CIM illegal read" },
4434 		{ F_ILLWRINT, "CIM illegal write" },
4435 		{ F_ILLTRANSINT, "CIM illegal transaction" },
4436 		{ F_RSVDSPACEINT, "CIM reserved space access" },
4437 		{0}
4438 	};
4439 	static const struct intr_info cim_host_upacc_intr_info = {
4440 		.name = "CIM_HOST_UPACC_INT_CAUSE",
4441 		.cause_reg = A_CIM_HOST_UPACC_INT_CAUSE,
4442 		.enable_reg = A_CIM_HOST_UPACC_INT_ENABLE,
4443 		.fatal = 0x3fffeeff,
4444 		.details = cim_host_upacc_intr_details,
4445 		.actions = NULL,
4446 	};
4447 	static const struct intr_info cim_pf_host_intr_info = {
4448 		.name = "CIM_PF_HOST_INT_CAUSE",
4449 		.cause_reg = MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4450 		.enable_reg = MYPF_REG(A_CIM_PF_HOST_INT_ENABLE),
4451 		.fatal = 0,
4452 		.details = NULL,
4453 		.actions = NULL,
4454 	};
4455 	u32 val, fw_err;
4456 	bool fatal;
4457 
4458 	fw_err = t4_read_reg(adap, A_PCIE_FW);
4459 	if (fw_err & F_PCIE_FW_ERR)
4460 		t4_report_fw_error(adap);
4461 
4462 	/*
4463 	 * When the Firmware detects an internal error which normally wouldn't
4464 	 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4465 	 * to make sure the Host sees the Firmware Crash.  So if we have a
4466 	 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4467 	 * interrupt.
4468 	 */
4469 	val = t4_read_reg(adap, A_CIM_HOST_INT_CAUSE);
4470 	if (val & F_TIMER0INT && (!(fw_err & F_PCIE_FW_ERR) ||
4471 	    G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH)) {
4472 		t4_write_reg(adap, A_CIM_HOST_INT_CAUSE, F_TIMER0INT);
4473 	}
4474 
4475 	fatal = false;
4476 	if (is_t4(adap))
4477 		cim_host_intr_info.fatal = 0x001fffe2;
4478 	else if (is_t5(adap))
4479 		cim_host_intr_info.fatal = 0x007dffe2;
4480 	else
4481 		cim_host_intr_info.fatal = 0x007dffe6;
4482 	fatal |= t4_handle_intr(adap, &cim_host_intr_info, 0, verbose);
4483 	fatal |= t4_handle_intr(adap, &cim_host_upacc_intr_info, 0, verbose);
4484 	fatal |= t4_handle_intr(adap, &cim_pf_host_intr_info, 0, verbose);
4485 
4486 	return (fatal);
4487 }
4488 
4489 /*
4490  * ULP RX interrupt handler.
4491  */
4492 static bool ulprx_intr_handler(struct adapter *adap, int arg, bool verbose)
4493 {
4494 	static const struct intr_details ulprx_intr_details[] = {
4495 		/* T5+ */
4496 		{ F_SE_CNT_MISMATCH_1, "ULPRX SE count mismatch in channel 1" },
4497 		{ F_SE_CNT_MISMATCH_0, "ULPRX SE count mismatch in channel 0" },
4498 
4499 		/* T4+ */
4500 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error" },
4501 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error" },
4502 		{ 0x007fffff, "ULPRX parity error" },
4503 		{ 0 }
4504 	};
4505 	static const struct intr_info ulprx_intr_info = {
4506 		.name = "ULP_RX_INT_CAUSE",
4507 		.cause_reg = A_ULP_RX_INT_CAUSE,
4508 		.enable_reg = A_ULP_RX_INT_ENABLE,
4509 		.fatal = 0x07ffffff,
4510 		.details = ulprx_intr_details,
4511 		.actions = NULL,
4512 	};
4513 	static const struct intr_info ulprx_intr2_info = {
4514 		.name = "ULP_RX_INT_CAUSE_2",
4515 		.cause_reg = A_ULP_RX_INT_CAUSE_2,
4516 		.enable_reg = A_ULP_RX_INT_ENABLE_2,
4517 		.fatal = 0,
4518 		.details = NULL,
4519 		.actions = NULL,
4520 	};
4521 	bool fatal = false;
4522 
4523 	fatal |= t4_handle_intr(adap, &ulprx_intr_info, 0, verbose);
4524 	fatal |= t4_handle_intr(adap, &ulprx_intr2_info, 0, verbose);
4525 
4526 	return (fatal);
4527 }
4528 
4529 /*
4530  * ULP TX interrupt handler.
4531  */
4532 static bool ulptx_intr_handler(struct adapter *adap, int arg, bool verbose)
4533 {
4534 	static const struct intr_details ulptx_intr_details[] = {
4535 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds" },
4536 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds" },
4537 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds" },
4538 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds" },
4539 		{ 0x0fffffff, "ULPTX parity error" },
4540 		{ 0 }
4541 	};
4542 	static const struct intr_info ulptx_intr_info = {
4543 		.name = "ULP_TX_INT_CAUSE",
4544 		.cause_reg = A_ULP_TX_INT_CAUSE,
4545 		.enable_reg = A_ULP_TX_INT_ENABLE,
4546 		.fatal = 0x0fffffff,
4547 		.details = ulptx_intr_details,
4548 		.actions = NULL,
4549 	};
4550 	static const struct intr_info ulptx_intr2_info = {
4551 		.name = "ULP_TX_INT_CAUSE_2",
4552 		.cause_reg = A_ULP_TX_INT_CAUSE_2,
4553 		.enable_reg = A_ULP_TX_INT_ENABLE_2,
4554 		.fatal = 0,
4555 		.details = NULL,
4556 		.actions = NULL,
4557 	};
4558 	bool fatal = false;
4559 
4560 	fatal |= t4_handle_intr(adap, &ulptx_intr_info, 0, verbose);
4561 	fatal |= t4_handle_intr(adap, &ulptx_intr2_info, 0, verbose);
4562 
4563 	return (fatal);
4564 }
4565 
4566 static bool pmtx_dump_dbg_stats(struct adapter *adap, int arg, bool verbose)
4567 {
4568 	int i;
4569 	u32 data[17];
4570 
4571 	t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, &data[0],
4572 	    ARRAY_SIZE(data), A_PM_TX_DBG_STAT0);
4573 	for (i = 0; i < ARRAY_SIZE(data); i++) {
4574 		CH_ALERT(adap, "  - PM_TX_DBG_STAT%u (0x%x) = 0x%08x\n", i,
4575 		    A_PM_TX_DBG_STAT0 + i, data[i]);
4576 	}
4577 
4578 	return (false);
4579 }
4580 
4581 /*
4582  * PM TX interrupt handler.
4583  */
4584 static bool pmtx_intr_handler(struct adapter *adap, int arg, bool verbose)
4585 {
4586 	static const struct intr_action pmtx_intr_actions[] = {
4587 		{ 0xffffffff, 0, pmtx_dump_dbg_stats },
4588 		{ 0 },
4589 	};
4590 	static const struct intr_details pmtx_intr_details[] = {
4591 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large" },
4592 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large" },
4593 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large" },
4594 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd" },
4595 		{ 0x0f000000, "PMTX icspi FIFO2X Rx framing error" },
4596 		{ 0x00f00000, "PMTX icspi FIFO Rx framing error" },
4597 		{ 0x000f0000, "PMTX icspi FIFO Tx framing error" },
4598 		{ 0x0000f000, "PMTX oespi FIFO Rx framing error" },
4599 		{ 0x00000f00, "PMTX oespi FIFO Tx framing error" },
4600 		{ 0x000000f0, "PMTX oespi FIFO2X Tx framing error" },
4601 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error" },
4602 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error" },
4603 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error" },
4604 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error" },
4605 		{ 0 }
4606 	};
4607 	static const struct intr_info pmtx_intr_info = {
4608 		.name = "PM_TX_INT_CAUSE",
4609 		.cause_reg = A_PM_TX_INT_CAUSE,
4610 		.enable_reg = A_PM_TX_INT_ENABLE,
4611 		.fatal = 0xffffffff,
4612 		.details = pmtx_intr_details,
4613 		.actions = pmtx_intr_actions,
4614 	};
4615 
4616 	return (t4_handle_intr(adap, &pmtx_intr_info, 0, verbose));
4617 }
4618 
4619 /*
4620  * PM RX interrupt handler.
4621  */
4622 static bool pmrx_intr_handler(struct adapter *adap, int arg, bool verbose)
4623 {
4624 	static const struct intr_details pmrx_intr_details[] = {
4625 		/* T6+ */
4626 		{ 0x18000000, "PMRX ospi overflow" },
4627 		{ F_MA_INTF_SDC_ERR, "PMRX MA interface SDC parity error" },
4628 		{ F_BUNDLE_LEN_PARERR, "PMRX bundle len FIFO parity error" },
4629 		{ F_BUNDLE_LEN_OVFL, "PMRX bundle len FIFO overflow" },
4630 		{ F_SDC_ERR, "PMRX SDC error" },
4631 
4632 		/* T4+ */
4633 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd" },
4634 		{ 0x003c0000, "PMRX iespi FIFO2X Rx framing error" },
4635 		{ 0x0003c000, "PMRX iespi Rx framing error" },
4636 		{ 0x00003c00, "PMRX iespi Tx framing error" },
4637 		{ 0x00000300, "PMRX ocspi Rx framing error" },
4638 		{ 0x000000c0, "PMRX ocspi Tx framing error" },
4639 		{ 0x00000030, "PMRX ocspi FIFO2X Tx framing error" },
4640 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error" },
4641 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error" },
4642 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error" },
4643 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error"},
4644 		{ 0 }
4645 	};
4646 	static const struct intr_info pmrx_intr_info = {
4647 		.name = "PM_RX_INT_CAUSE",
4648 		.cause_reg = A_PM_RX_INT_CAUSE,
4649 		.enable_reg = A_PM_RX_INT_ENABLE,
4650 		.fatal = 0x1fffffff,
4651 		.details = pmrx_intr_details,
4652 		.actions = NULL,
4653 	};
4654 
4655 	return (t4_handle_intr(adap, &pmrx_intr_info, 0, verbose));
4656 }
4657 
4658 /*
4659  * CPL switch interrupt handler.
4660  */
4661 static bool cplsw_intr_handler(struct adapter *adap, int arg, bool verbose)
4662 {
4663 	static const struct intr_details cplsw_intr_details[] = {
4664 		/* T5+ */
4665 		{ F_PERR_CPL_128TO128_1, "CPLSW 128TO128 FIFO1 parity error" },
4666 		{ F_PERR_CPL_128TO128_0, "CPLSW 128TO128 FIFO0 parity error" },
4667 
4668 		/* T4+ */
4669 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error" },
4670 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow" },
4671 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error" },
4672 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error" },
4673 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error" },
4674 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error" },
4675 		{ 0 }
4676 	};
4677 	struct intr_info cplsw_intr_info = {
4678 		.name = "CPL_INTR_CAUSE",
4679 		.cause_reg = A_CPL_INTR_CAUSE,
4680 		.enable_reg = A_CPL_INTR_ENABLE,
4681 		.fatal = 0,
4682 		.details = cplsw_intr_details,
4683 		.actions = NULL,
4684 	};
4685 
4686 	if (is_t4(adap))
4687 		cplsw_intr_info.fatal = 0x2f;
4688 	else if (is_t5(adap))
4689 		cplsw_intr_info.fatal = 0xef;
4690 	else
4691 		cplsw_intr_info.fatal = 0xff;
4692 
4693 	return (t4_handle_intr(adap, &cplsw_intr_info, 0, verbose));
4694 }
4695 
4696 #define T4_LE_FATAL_MASK (F_PARITYERR | F_UNKNOWNCMD | F_REQQPARERR)
4697 #define T6_LE_PERRCRC_MASK (F_PIPELINEERR | F_CLIPTCAMACCFAIL | \
4698     F_SRVSRAMACCFAIL | F_CLCAMCRCPARERR | F_CLCAMINTPERR | F_SSRAMINTPERR | \
4699     F_SRVSRAMPERR | F_VFSRAMPERR | F_TCAMINTPERR | F_TCAMCRCERR | \
4700     F_HASHTBLMEMACCERR | F_MAIFWRINTPERR | F_HASHTBLMEMCRCERR)
4701 #define T6_LE_FATAL_MASK (T6_LE_PERRCRC_MASK | F_T6_UNKNOWNCMD | \
4702     F_TCAMACCFAIL | F_HASHTBLACCFAIL | F_CMDTIDERR | F_CMDPRSRINTERR | \
4703     F_TOTCNTERR | F_CLCAMFIFOERR | F_CLIPSUBERR)
4704 
4705 /*
4706  * LE interrupt handler.
4707  */
4708 static bool le_intr_handler(struct adapter *adap, int arg, bool verbose)
4709 {
4710 	static const struct intr_details le_intr_details[] = {
4711 		{ F_REQQPARERR, "LE request queue parity error" },
4712 		{ F_UNKNOWNCMD, "LE unknown command" },
4713 		{ F_ACTRGNFULL, "LE active region full" },
4714 		{ F_PARITYERR, "LE parity error" },
4715 		{ F_LIPMISS, "LE LIP miss" },
4716 		{ F_LIP0, "LE 0 LIP error" },
4717 		{ 0 }
4718 	};
4719 	static const struct intr_details t6_le_intr_details[] = {
4720 		{ F_CLIPSUBERR, "LE CLIP CAM reverse substitution error" },
4721 		{ F_CLCAMFIFOERR, "LE CLIP CAM internal FIFO error" },
4722 		{ F_CTCAMINVLDENT, "Invalid IPv6 CLIP TCAM entry" },
4723 		{ F_TCAMINVLDENT, "Invalid IPv6 TCAM entry" },
4724 		{ F_TOTCNTERR, "LE total active < TCAM count" },
4725 		{ F_CMDPRSRINTERR, "LE internal error in parser" },
4726 		{ F_CMDTIDERR, "Incorrect tid in LE command" },
4727 		{ F_T6_ACTRGNFULL, "LE active region full" },
4728 		{ F_T6_ACTCNTIPV6TZERO, "LE IPv6 active open TCAM counter -ve" },
4729 		{ F_T6_ACTCNTIPV4TZERO, "LE IPv4 active open TCAM counter -ve" },
4730 		{ F_T6_ACTCNTIPV6ZERO, "LE IPv6 active open counter -ve" },
4731 		{ F_T6_ACTCNTIPV4ZERO, "LE IPv4 active open counter -ve" },
4732 		{ F_HASHTBLACCFAIL, "Hash table read error (proto conflict)" },
4733 		{ F_TCAMACCFAIL, "LE TCAM access failure" },
4734 		{ F_T6_UNKNOWNCMD, "LE unknown command" },
4735 		{ F_T6_LIP0, "LE found 0 LIP during CLIP substitution" },
4736 		{ F_T6_LIPMISS, "LE CLIP lookup miss" },
4737 		{ T6_LE_PERRCRC_MASK, "LE parity/CRC error" },
4738 		{ 0 }
4739 	};
4740 	struct intr_info le_intr_info = {
4741 		.name = "LE_DB_INT_CAUSE",
4742 		.cause_reg = A_LE_DB_INT_CAUSE,
4743 		.enable_reg = A_LE_DB_INT_ENABLE,
4744 		.fatal = 0,
4745 		.details = NULL,
4746 		.actions = NULL,
4747 	};
4748 
4749 	if (chip_id(adap) <= CHELSIO_T5) {
4750 		le_intr_info.details = le_intr_details;
4751 		le_intr_info.fatal = T4_LE_FATAL_MASK;
4752 		if (is_t5(adap))
4753 			le_intr_info.fatal |= F_VFPARERR;
4754 	} else {
4755 		le_intr_info.details = t6_le_intr_details;
4756 		le_intr_info.fatal = T6_LE_FATAL_MASK;
4757 	}
4758 
4759 	return (t4_handle_intr(adap, &le_intr_info, 0, verbose));
4760 }
4761 
4762 /*
4763  * MPS interrupt handler.
4764  */
4765 static bool mps_intr_handler(struct adapter *adap, int arg, bool verbose)
4766 {
4767 	static const struct intr_details mps_rx_perr_intr_details[] = {
4768 		{ 0xffffffff, "MPS Rx parity error" },
4769 		{ 0 }
4770 	};
4771 	static const struct intr_info mps_rx_perr_intr_info = {
4772 		.name = "MPS_RX_PERR_INT_CAUSE",
4773 		.cause_reg = A_MPS_RX_PERR_INT_CAUSE,
4774 		.enable_reg = A_MPS_RX_PERR_INT_ENABLE,
4775 		.fatal = 0xffffffff,
4776 		.details = mps_rx_perr_intr_details,
4777 		.actions = NULL,
4778 	};
4779 	static const struct intr_details mps_tx_intr_details[] = {
4780 		{ F_PORTERR, "MPS Tx destination port is disabled" },
4781 		{ F_FRMERR, "MPS Tx framing error" },
4782 		{ F_SECNTERR, "MPS Tx SOP/EOP error" },
4783 		{ F_BUBBLE, "MPS Tx underflow" },
4784 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error" },
4785 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error" },
4786 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error" },
4787 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error" },
4788 		{ 0 }
4789 	};
4790 	struct intr_info mps_tx_intr_info = {
4791 		.name = "MPS_TX_INT_CAUSE",
4792 		.cause_reg = A_MPS_TX_INT_CAUSE,
4793 		.enable_reg = A_MPS_TX_INT_ENABLE,
4794 		.fatal = 0x1ffff,
4795 		.details = mps_tx_intr_details,
4796 		.actions = NULL,
4797 	};
4798 	static const struct intr_details mps_trc_intr_details[] = {
4799 		{ F_MISCPERR, "MPS TRC misc parity error" },
4800 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error" },
4801 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error" },
4802 		{ 0 }
4803 	};
4804 	static const struct intr_info mps_trc_intr_info = {
4805 		.name = "MPS_TRC_INT_CAUSE",
4806 		.cause_reg = A_MPS_TRC_INT_CAUSE,
4807 		.enable_reg = A_MPS_TRC_INT_ENABLE,
4808 		.fatal = F_MISCPERR | V_PKTFIFO(M_PKTFIFO) | V_FILTMEM(M_FILTMEM),
4809 		.details = mps_trc_intr_details,
4810 		.actions = NULL,
4811 	};
4812 	static const struct intr_details mps_stat_sram_intr_details[] = {
4813 		{ 0xffffffff, "MPS statistics SRAM parity error" },
4814 		{ 0 }
4815 	};
4816 	static const struct intr_info mps_stat_sram_intr_info = {
4817 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM",
4818 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4819 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM,
4820 		.fatal = 0x1fffffff,
4821 		.details = mps_stat_sram_intr_details,
4822 		.actions = NULL,
4823 	};
4824 	static const struct intr_details mps_stat_tx_intr_details[] = {
4825 		{ 0xffffff, "MPS statistics Tx FIFO parity error" },
4826 		{ 0 }
4827 	};
4828 	static const struct intr_info mps_stat_tx_intr_info = {
4829 		.name = "MPS_STAT_PERR_INT_CAUSE_TX_FIFO",
4830 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4831 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_TX_FIFO,
4832 		.fatal =  0xffffff,
4833 		.details = mps_stat_tx_intr_details,
4834 		.actions = NULL,
4835 	};
4836 	static const struct intr_details mps_stat_rx_intr_details[] = {
4837 		{ 0xffffff, "MPS statistics Rx FIFO parity error" },
4838 		{ 0 }
4839 	};
4840 	static const struct intr_info mps_stat_rx_intr_info = {
4841 		.name = "MPS_STAT_PERR_INT_CAUSE_RX_FIFO",
4842 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4843 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_RX_FIFO,
4844 		.fatal =  0xffffff,
4845 		.details = mps_stat_rx_intr_details,
4846 		.actions = NULL,
4847 	};
4848 	static const struct intr_details mps_cls_intr_details[] = {
4849 		{ F_HASHSRAM, "MPS hash SRAM parity error" },
4850 		{ F_MATCHTCAM, "MPS match TCAM parity error" },
4851 		{ F_MATCHSRAM, "MPS match SRAM parity error" },
4852 		{ 0 }
4853 	};
4854 	static const struct intr_info mps_cls_intr_info = {
4855 		.name = "MPS_CLS_INT_CAUSE",
4856 		.cause_reg = A_MPS_CLS_INT_CAUSE,
4857 		.enable_reg = A_MPS_CLS_INT_ENABLE,
4858 		.fatal =  F_MATCHSRAM | F_MATCHTCAM | F_HASHSRAM,
4859 		.details = mps_cls_intr_details,
4860 		.actions = NULL,
4861 	};
4862 	static const struct intr_details mps_stat_sram1_intr_details[] = {
4863 		{ 0xff, "MPS statistics SRAM1 parity error" },
4864 		{ 0 }
4865 	};
4866 	static const struct intr_info mps_stat_sram1_intr_info = {
4867 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM1",
4868 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM1,
4869 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM1,
4870 		.fatal = 0xff,
4871 		.details = mps_stat_sram1_intr_details,
4872 		.actions = NULL,
4873 	};
4874 
4875 	bool fatal;
4876 
4877 	if (chip_id(adap) == CHELSIO_T6)
4878 		mps_tx_intr_info.fatal &= ~F_BUBBLE;
4879 
4880 	fatal = false;
4881 	fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info, 0, verbose);
4882 	fatal |= t4_handle_intr(adap, &mps_tx_intr_info, 0, verbose);
4883 	fatal |= t4_handle_intr(adap, &mps_trc_intr_info, 0, verbose);
4884 	fatal |= t4_handle_intr(adap, &mps_stat_sram_intr_info, 0, verbose);
4885 	fatal |= t4_handle_intr(adap, &mps_stat_tx_intr_info, 0, verbose);
4886 	fatal |= t4_handle_intr(adap, &mps_stat_rx_intr_info, 0, verbose);
4887 	fatal |= t4_handle_intr(adap, &mps_cls_intr_info, 0, verbose);
4888 	if (chip_id(adap) > CHELSIO_T4) {
4889 		fatal |= t4_handle_intr(adap, &mps_stat_sram1_intr_info, 0,
4890 		    verbose);
4891 	}
4892 
4893 	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
4894 	t4_read_reg(adap, A_MPS_INT_CAUSE);	/* flush */
4895 
4896 	return (fatal);
4897 
4898 }
4899 
4900 /*
4901  * EDC/MC interrupt handler.
4902  */
4903 static bool mem_intr_handler(struct adapter *adap, int idx, bool verbose)
4904 {
4905 	static const char name[4][5] = { "EDC0", "EDC1", "MC0", "MC1" };
4906 	unsigned int count_reg, v;
4907 	static const struct intr_details mem_intr_details[] = {
4908 		{ F_ECC_UE_INT_CAUSE, "Uncorrectable ECC data error(s)" },
4909 		{ F_ECC_CE_INT_CAUSE, "Correctable ECC data error(s)" },
4910 		{ F_PERR_INT_CAUSE, "FIFO parity error" },
4911 		{ 0 }
4912 	};
4913 	struct intr_info ii = {
4914 		.fatal = F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE,
4915 		.details = mem_intr_details,
4916 		.actions = NULL,
4917 	};
4918 	bool fatal;
4919 
4920 	switch (idx) {
4921 	case MEM_EDC0:
4922 		ii.name = "EDC0_INT_CAUSE";
4923 		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 0);
4924 		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 0);
4925 		count_reg = EDC_REG(A_EDC_ECC_STATUS, 0);
4926 		break;
4927 	case MEM_EDC1:
4928 		ii.name = "EDC1_INT_CAUSE";
4929 		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 1);
4930 		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 1);
4931 		count_reg = EDC_REG(A_EDC_ECC_STATUS, 1);
4932 		break;
4933 	case MEM_MC0:
4934 		ii.name = "MC0_INT_CAUSE";
4935 		if (is_t4(adap)) {
4936 			ii.cause_reg = A_MC_INT_CAUSE;
4937 			ii.enable_reg = A_MC_INT_ENABLE;
4938 			count_reg = A_MC_ECC_STATUS;
4939 		} else {
4940 			ii.cause_reg = A_MC_P_INT_CAUSE;
4941 			ii.enable_reg = A_MC_P_INT_ENABLE;
4942 			count_reg = A_MC_P_ECC_STATUS;
4943 		}
4944 		break;
4945 	case MEM_MC1:
4946 		ii.name = "MC1_INT_CAUSE";
4947 		ii.cause_reg = MC_REG(A_MC_P_INT_CAUSE, 1);
4948 		ii.enable_reg = MC_REG(A_MC_P_INT_ENABLE, 1);
4949 		count_reg = MC_REG(A_MC_P_ECC_STATUS, 1);
4950 		break;
4951 	}
4952 
4953 	fatal = t4_handle_intr(adap, &ii, 0, verbose);
4954 
4955 	v = t4_read_reg(adap, count_reg);
4956 	if (v != 0) {
4957 		if (G_ECC_UECNT(v) != 0) {
4958 			CH_ALERT(adap,
4959 			    "%s: %u uncorrectable ECC data error(s)\n",
4960 			    name[idx], G_ECC_UECNT(v));
4961 		}
4962 		if (G_ECC_CECNT(v) != 0) {
4963 			if (idx <= MEM_EDC1)
4964 				t4_edc_err_read(adap, idx);
4965 			CH_WARN_RATELIMIT(adap,
4966 			    "%s: %u correctable ECC data error(s)\n",
4967 			    name[idx], G_ECC_CECNT(v));
4968 		}
4969 		t4_write_reg(adap, count_reg, 0xffffffff);
4970 	}
4971 
4972 	return (fatal);
4973 }
4974 
4975 static bool ma_wrap_status(struct adapter *adap, int arg, bool verbose)
4976 {
4977 	u32 v;
4978 
4979 	v = t4_read_reg(adap, A_MA_INT_WRAP_STATUS);
4980 	CH_ALERT(adap,
4981 	    "MA address wrap-around error by client %u to address %#x\n",
4982 	    G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4);
4983 	t4_write_reg(adap, A_MA_INT_WRAP_STATUS, v);
4984 
4985 	return (false);
4986 }
4987 
4988 
4989 /*
4990  * MA interrupt handler.
4991  */
4992 static bool ma_intr_handler(struct adapter *adap, int arg, bool verbose)
4993 {
4994 	static const struct intr_action ma_intr_actions[] = {
4995 		{ F_MEM_WRAP_INT_CAUSE, 0, ma_wrap_status },
4996 		{ 0 },
4997 	};
4998 	static const struct intr_info ma_intr_info = {
4999 		.name = "MA_INT_CAUSE",
5000 		.cause_reg = A_MA_INT_CAUSE,
5001 		.enable_reg = A_MA_INT_ENABLE,
5002 		.fatal = F_MEM_WRAP_INT_CAUSE | F_MEM_PERR_INT_CAUSE |
5003 		    F_MEM_TO_INT_CAUSE,
5004 		.details = NULL,
5005 		.actions = ma_intr_actions,
5006 	};
5007 	static const struct intr_info ma_perr_status1 = {
5008 		.name = "MA_PARITY_ERROR_STATUS1",
5009 		.cause_reg = A_MA_PARITY_ERROR_STATUS1,
5010 		.enable_reg = A_MA_PARITY_ERROR_ENABLE1,
5011 		.fatal = 0xffffffff,
5012 		.details = NULL,
5013 		.actions = NULL,
5014 	};
5015 	static const struct intr_info ma_perr_status2 = {
5016 		.name = "MA_PARITY_ERROR_STATUS2",
5017 		.cause_reg = A_MA_PARITY_ERROR_STATUS2,
5018 		.enable_reg = A_MA_PARITY_ERROR_ENABLE2,
5019 		.fatal = 0xffffffff,
5020 		.details = NULL,
5021 		.actions = NULL,
5022 	};
5023 	bool fatal;
5024 
5025 	fatal = false;
5026 	fatal |= t4_handle_intr(adap, &ma_intr_info, 0, verbose);
5027 	fatal |= t4_handle_intr(adap, &ma_perr_status1, 0, verbose);
5028 	if (chip_id(adap) > CHELSIO_T4)
5029 		fatal |= t4_handle_intr(adap, &ma_perr_status2, 0, verbose);
5030 
5031 	return (fatal);
5032 }
5033 
5034 /*
5035  * SMB interrupt handler.
5036  */
5037 static bool smb_intr_handler(struct adapter *adap, int arg, bool verbose)
5038 {
5039 	static const struct intr_details smb_intr_details[] = {
5040 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error" },
5041 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error" },
5042 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error" },
5043 		{ 0 }
5044 	};
5045 	static const struct intr_info smb_intr_info = {
5046 		.name = "SMB_INT_CAUSE",
5047 		.cause_reg = A_SMB_INT_CAUSE,
5048 		.enable_reg = A_SMB_INT_ENABLE,
5049 		.fatal = F_SLVFIFOPARINT | F_MSTRXFIFOPARINT | F_MSTTXFIFOPARINT,
5050 		.details = smb_intr_details,
5051 		.actions = NULL,
5052 	};
5053 
5054 	return (t4_handle_intr(adap, &smb_intr_info, 0, verbose));
5055 }
5056 
5057 /*
5058  * NC-SI interrupt handler.
5059  */
5060 static bool ncsi_intr_handler(struct adapter *adap, int arg, bool verbose)
5061 {
5062 	static const struct intr_details ncsi_intr_details[] = {
5063 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error" },
5064 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error" },
5065 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error" },
5066 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error" },
5067 		{ 0 }
5068 	};
5069 	static const struct intr_info ncsi_intr_info = {
5070 		.name = "NCSI_INT_CAUSE",
5071 		.cause_reg = A_NCSI_INT_CAUSE,
5072 		.enable_reg = A_NCSI_INT_ENABLE,
5073 		.fatal = F_RXFIFO_PRTY_ERR | F_TXFIFO_PRTY_ERR |
5074 		    F_MPS_DM_PRTY_ERR | F_CIM_DM_PRTY_ERR,
5075 		.details = ncsi_intr_details,
5076 		.actions = NULL,
5077 	};
5078 
5079 	return (t4_handle_intr(adap, &ncsi_intr_info, 0, verbose));
5080 }
5081 
5082 /*
5083  * MAC interrupt handler.
5084  */
5085 static bool mac_intr_handler(struct adapter *adap, int port, bool verbose)
5086 {
5087 	static const struct intr_details mac_intr_details[] = {
5088 		{ F_TXFIFO_PRTY_ERR, "MAC Tx FIFO parity error" },
5089 		{ F_RXFIFO_PRTY_ERR, "MAC Rx FIFO parity error" },
5090 		{ 0 }
5091 	};
5092 	char name[32];
5093 	struct intr_info ii;
5094 	bool fatal = false;
5095 
5096 	if (is_t4(adap)) {
5097 		snprintf(name, sizeof(name), "XGMAC_PORT%u_INT_CAUSE", port);
5098 		ii.name = &name[0];
5099 		ii.cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
5100 		ii.enable_reg = PORT_REG(port, A_XGMAC_PORT_INT_EN);
5101 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR,
5102 		ii.details = mac_intr_details,
5103 		ii.actions = NULL;
5104 	} else {
5105 		snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port);
5106 		ii.name = &name[0];
5107 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
5108 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_INT_EN);
5109 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR,
5110 		ii.details = mac_intr_details,
5111 		ii.actions = NULL;
5112 	}
5113 	fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5114 
5115 	if (chip_id(adap) >= CHELSIO_T5) {
5116 		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE", port);
5117 		ii.name = &name[0];
5118 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE);
5119 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN);
5120 		ii.fatal = 0;
5121 		ii.details = NULL;
5122 		ii.actions = NULL;
5123 		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5124 	}
5125 
5126 	if (chip_id(adap) >= CHELSIO_T6) {
5127 		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE_100G", port);
5128 		ii.name = &name[0];
5129 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE_100G);
5130 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN_100G);
5131 		ii.fatal = 0;
5132 		ii.details = NULL;
5133 		ii.actions = NULL;
5134 		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5135 	}
5136 
5137 	return (fatal);
5138 }
5139 
5140 static bool plpl_intr_handler(struct adapter *adap, int arg, bool verbose)
5141 {
5142 	static const struct intr_details plpl_intr_details[] = {
5143 		{ F_FATALPERR, "Fatal parity error" },
5144 		{ F_PERRVFID, "VFID_MAP parity error" },
5145 		{ 0 }
5146 	};
5147 	struct intr_info plpl_intr_info = {
5148 		.name = "PL_PL_INT_CAUSE",
5149 		.cause_reg = A_PL_PL_INT_CAUSE,
5150 		.enable_reg = A_PL_PL_INT_ENABLE,
5151 		.fatal = F_FATALPERR,
5152 		.details = plpl_intr_details,
5153 		.actions = NULL,
5154 	};
5155 
5156 	if (is_t4(adap))
5157 		plpl_intr_info.fatal |= F_PERRVFID;
5158 
5159 	return (t4_handle_intr(adap, &plpl_intr_info, 0, verbose));
5160 }
5161 
5162 /**
5163  *	t4_slow_intr_handler - control path interrupt handler
5164  *	@adap: the adapter
5165  *	@verbose: increased verbosity, for debug
5166  *
5167  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
5168  *	The designation 'slow' is because it involves register reads, while
5169  *	data interrupts typically don't involve any MMIOs.
5170  */
5171 int t4_slow_intr_handler(struct adapter *adap, bool verbose)
5172 {
5173 	static const struct intr_details pl_intr_details[] = {
5174 		{ F_MC1, "MC1" },
5175 		{ F_UART, "UART" },
5176 		{ F_ULP_TX, "ULP TX" },
5177 		{ F_SGE, "SGE" },
5178 		{ F_HMA, "HMA" },
5179 		{ F_CPL_SWITCH, "CPL Switch" },
5180 		{ F_ULP_RX, "ULP RX" },
5181 		{ F_PM_RX, "PM RX" },
5182 		{ F_PM_TX, "PM TX" },
5183 		{ F_MA, "MA" },
5184 		{ F_TP, "TP" },
5185 		{ F_LE, "LE" },
5186 		{ F_EDC1, "EDC1" },
5187 		{ F_EDC0, "EDC0" },
5188 		{ F_MC, "MC0" },
5189 		{ F_PCIE, "PCIE" },
5190 		{ F_PMU, "PMU" },
5191 		{ F_MAC3, "MAC3" },
5192 		{ F_MAC2, "MAC2" },
5193 		{ F_MAC1, "MAC1" },
5194 		{ F_MAC0, "MAC0" },
5195 		{ F_SMB, "SMB" },
5196 		{ F_SF, "SF" },
5197 		{ F_PL, "PL" },
5198 		{ F_NCSI, "NC-SI" },
5199 		{ F_MPS, "MPS" },
5200 		{ F_MI, "MI" },
5201 		{ F_DBG, "DBG" },
5202 		{ F_I2CM, "I2CM" },
5203 		{ F_CIM, "CIM" },
5204 		{ 0 }
5205 	};
5206 	static const struct intr_info pl_perr_cause = {
5207 		.name = "PL_PERR_CAUSE",
5208 		.cause_reg = A_PL_PERR_CAUSE,
5209 		.enable_reg = A_PL_PERR_ENABLE,
5210 		.fatal = 0xffffffff,
5211 		.details = pl_intr_details,
5212 		.actions = NULL,
5213 	};
5214 	static const struct intr_action pl_intr_action[] = {
5215 		{ F_MC1, MEM_MC1, mem_intr_handler },
5216 		{ F_ULP_TX, -1, ulptx_intr_handler },
5217 		{ F_SGE, -1, sge_intr_handler },
5218 		{ F_CPL_SWITCH, -1, cplsw_intr_handler },
5219 		{ F_ULP_RX, -1, ulprx_intr_handler },
5220 		{ F_PM_RX, -1, pmrx_intr_handler},
5221 		{ F_PM_TX, -1, pmtx_intr_handler},
5222 		{ F_MA, -1, ma_intr_handler },
5223 		{ F_TP, -1, tp_intr_handler },
5224 		{ F_LE, -1, le_intr_handler },
5225 		{ F_EDC1, MEM_EDC1, mem_intr_handler },
5226 		{ F_EDC0, MEM_EDC0, mem_intr_handler },
5227 		{ F_MC0, MEM_MC0, mem_intr_handler },
5228 		{ F_PCIE, -1, pcie_intr_handler },
5229 		{ F_MAC3, 3, mac_intr_handler},
5230 		{ F_MAC2, 2, mac_intr_handler},
5231 		{ F_MAC1, 1, mac_intr_handler},
5232 		{ F_MAC0, 0, mac_intr_handler},
5233 		{ F_SMB, -1, smb_intr_handler},
5234 		{ F_PL, -1, plpl_intr_handler },
5235 		{ F_NCSI, -1, ncsi_intr_handler},
5236 		{ F_MPS, -1, mps_intr_handler },
5237 		{ F_CIM, -1, cim_intr_handler },
5238 		{ 0 }
5239 	};
5240 	static const struct intr_info pl_intr_info = {
5241 		.name = "PL_INT_CAUSE",
5242 		.cause_reg = A_PL_INT_CAUSE,
5243 		.enable_reg = A_PL_INT_ENABLE,
5244 		.fatal = 0,
5245 		.details = pl_intr_details,
5246 		.actions = pl_intr_action,
5247 	};
5248 	bool fatal;
5249 	u32 perr;
5250 
5251 	perr = t4_read_reg(adap, pl_perr_cause.cause_reg);
5252 	if (verbose || perr != 0) {
5253 		t4_show_intr_info(adap, &pl_perr_cause, perr);
5254 		if (perr != 0)
5255 			t4_write_reg(adap, pl_perr_cause.cause_reg, perr);
5256 		if (verbose)
5257 			perr |= t4_read_reg(adap, pl_intr_info.enable_reg);
5258 	}
5259 	fatal = t4_handle_intr(adap, &pl_intr_info, perr, verbose);
5260 	if (fatal)
5261 		t4_fatal_err(adap, false);
5262 
5263 	return (0);
5264 }
5265 
5266 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
5267 
5268 /**
5269  *	t4_intr_enable - enable interrupts
5270  *	@adapter: the adapter whose interrupts should be enabled
5271  *
5272  *	Enable PF-specific interrupts for the calling function and the top-level
5273  *	interrupt concentrator for global interrupts.  Interrupts are already
5274  *	enabled at each module,	here we just enable the roots of the interrupt
5275  *	hierarchies.
5276  *
5277  *	Note: this function should be called only when the driver manages
5278  *	non PF-specific interrupts from the various HW modules.  Only one PCI
5279  *	function at a time should be doing this.
5280  */
5281 void t4_intr_enable(struct adapter *adap)
5282 {
5283 	u32 val = 0;
5284 
5285 	if (chip_id(adap) <= CHELSIO_T5)
5286 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
5287 	else
5288 		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
5289 	val |= F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC |
5290 	    F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 |
5291 	    F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 |
5292 	    F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
5293 	    F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_DBFIFO_LP_INT |
5294 	    F_EGRESS_SIZE_ERR;
5295 	t4_set_reg_field(adap, A_SGE_INT_ENABLE3, val, val);
5296 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
5297 	t4_set_reg_field(adap, A_PL_INT_MAP0, 0, 1 << adap->pf);
5298 }
5299 
5300 /**
5301  *	t4_intr_disable - disable interrupts
5302  *	@adap: the adapter whose interrupts should be disabled
5303  *
5304  *	Disable interrupts.  We only disable the top-level interrupt
5305  *	concentrators.  The caller must be a PCI function managing global
5306  *	interrupts.
5307  */
5308 void t4_intr_disable(struct adapter *adap)
5309 {
5310 
5311 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
5312 	t4_set_reg_field(adap, A_PL_INT_MAP0, 1 << adap->pf, 0);
5313 }
5314 
5315 /**
5316  *	t4_intr_clear - clear all interrupts
5317  *	@adap: the adapter whose interrupts should be cleared
5318  *
5319  *	Clears all interrupts.  The caller must be a PCI function managing
5320  *	global interrupts.
5321  */
5322 void t4_intr_clear(struct adapter *adap)
5323 {
5324 	static const u32 cause_reg[] = {
5325 		A_CIM_HOST_INT_CAUSE,
5326 		A_CIM_HOST_UPACC_INT_CAUSE,
5327 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
5328 		A_CPL_INTR_CAUSE,
5329 		EDC_REG(A_EDC_INT_CAUSE, 0), EDC_REG(A_EDC_INT_CAUSE, 1),
5330 		A_LE_DB_INT_CAUSE,
5331 		A_MA_INT_WRAP_STATUS,
5332 		A_MA_PARITY_ERROR_STATUS1,
5333 		A_MA_INT_CAUSE,
5334 		A_MPS_CLS_INT_CAUSE,
5335 		A_MPS_RX_PERR_INT_CAUSE,
5336 		A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
5337 		A_MPS_STAT_PERR_INT_CAUSE_SRAM,
5338 		A_MPS_TRC_INT_CAUSE,
5339 		A_MPS_TX_INT_CAUSE,
5340 		A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
5341 		A_NCSI_INT_CAUSE,
5342 		A_PCIE_INT_CAUSE,
5343 		A_PCIE_NONFAT_ERR,
5344 		A_PL_PL_INT_CAUSE,
5345 		A_PM_RX_INT_CAUSE,
5346 		A_PM_TX_INT_CAUSE,
5347 		A_SGE_INT_CAUSE1,
5348 		A_SGE_INT_CAUSE2,
5349 		A_SGE_INT_CAUSE3,
5350 		A_SGE_INT_CAUSE4,
5351 		A_SMB_INT_CAUSE,
5352 		A_TP_INT_CAUSE,
5353 		A_ULP_RX_INT_CAUSE,
5354 		A_ULP_RX_INT_CAUSE_2,
5355 		A_ULP_TX_INT_CAUSE,
5356 		A_ULP_TX_INT_CAUSE_2,
5357 
5358 		MYPF_REG(A_PL_PF_INT_CAUSE),
5359 	};
5360 	int i;
5361 	const int nchan = adap->chip_params->nchan;
5362 
5363 	for (i = 0; i < ARRAY_SIZE(cause_reg); i++)
5364 		t4_write_reg(adap, cause_reg[i], 0xffffffff);
5365 
5366 	if (is_t4(adap)) {
5367 		t4_write_reg(adap, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
5368 		    0xffffffff);
5369 		t4_write_reg(adap, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
5370 		    0xffffffff);
5371 		t4_write_reg(adap, A_MC_INT_CAUSE, 0xffffffff);
5372 		for (i = 0; i < nchan; i++) {
5373 			t4_write_reg(adap, PORT_REG(i, A_XGMAC_PORT_INT_CAUSE),
5374 			    0xffffffff);
5375 		}
5376 	}
5377 	if (chip_id(adap) >= CHELSIO_T5) {
5378 		t4_write_reg(adap, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
5379 		t4_write_reg(adap, A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 0xffffffff);
5380 		t4_write_reg(adap, A_SGE_INT_CAUSE5, 0xffffffff);
5381 		t4_write_reg(adap, A_MC_P_INT_CAUSE, 0xffffffff);
5382 		if (is_t5(adap)) {
5383 			t4_write_reg(adap, MC_REG(A_MC_P_INT_CAUSE, 1),
5384 			    0xffffffff);
5385 		}
5386 		for (i = 0; i < nchan; i++) {
5387 			t4_write_reg(adap, T5_PORT_REG(i,
5388 			    A_MAC_PORT_PERR_INT_CAUSE), 0xffffffff);
5389 			if (chip_id(adap) > CHELSIO_T5) {
5390 				t4_write_reg(adap, T5_PORT_REG(i,
5391 				    A_MAC_PORT_PERR_INT_CAUSE_100G),
5392 				    0xffffffff);
5393 			}
5394 			t4_write_reg(adap, T5_PORT_REG(i, A_MAC_PORT_INT_CAUSE),
5395 			    0xffffffff);
5396 		}
5397 	}
5398 	if (chip_id(adap) >= CHELSIO_T6) {
5399 		t4_write_reg(adap, A_SGE_INT_CAUSE6, 0xffffffff);
5400 	}
5401 
5402 	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
5403 	t4_write_reg(adap, A_PL_PERR_CAUSE, 0xffffffff);
5404 	t4_write_reg(adap, A_PL_INT_CAUSE, 0xffffffff);
5405 	(void) t4_read_reg(adap, A_PL_INT_CAUSE);          /* flush */
5406 }
5407 
5408 /**
5409  *	hash_mac_addr - return the hash value of a MAC address
5410  *	@addr: the 48-bit Ethernet MAC address
5411  *
5412  *	Hashes a MAC address according to the hash function used by HW inexact
5413  *	(hash) address matching.
5414  */
5415 static int hash_mac_addr(const u8 *addr)
5416 {
5417 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
5418 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
5419 	a ^= b;
5420 	a ^= (a >> 12);
5421 	a ^= (a >> 6);
5422 	return a & 0x3f;
5423 }
5424 
5425 /**
5426  *	t4_config_rss_range - configure a portion of the RSS mapping table
5427  *	@adapter: the adapter
5428  *	@mbox: mbox to use for the FW command
5429  *	@viid: virtual interface whose RSS subtable is to be written
5430  *	@start: start entry in the table to write
5431  *	@n: how many table entries to write
5432  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
5433  *	@nrspq: number of values in @rspq
5434  *
5435  *	Programs the selected part of the VI's RSS mapping table with the
5436  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5437  *	until the full table range is populated.
5438  *
5439  *	The caller must ensure the values in @rspq are in the range allowed for
5440  *	@viid.
5441  */
5442 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5443 			int start, int n, const u16 *rspq, unsigned int nrspq)
5444 {
5445 	int ret;
5446 	const u16 *rsp = rspq;
5447 	const u16 *rsp_end = rspq + nrspq;
5448 	struct fw_rss_ind_tbl_cmd cmd;
5449 
5450 	memset(&cmd, 0, sizeof(cmd));
5451 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
5452 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5453 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
5454 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5455 
5456 	/*
5457 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
5458 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
5459 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
5460 	 * reserved.
5461 	 */
5462 	while (n > 0) {
5463 		int nq = min(n, 32);
5464 		int nq_packed = 0;
5465 		__be32 *qp = &cmd.iq0_to_iq2;
5466 
5467 		/*
5468 		 * Set up the firmware RSS command header to send the next
5469 		 * "nq" Ingress Queue IDs to the firmware.
5470 		 */
5471 		cmd.niqid = cpu_to_be16(nq);
5472 		cmd.startidx = cpu_to_be16(start);
5473 
5474 		/*
5475 		 * "nq" more done for the start of the next loop.
5476 		 */
5477 		start += nq;
5478 		n -= nq;
5479 
5480 		/*
5481 		 * While there are still Ingress Queue IDs to stuff into the
5482 		 * current firmware RSS command, retrieve them from the
5483 		 * Ingress Queue ID array and insert them into the command.
5484 		 */
5485 		while (nq > 0) {
5486 			/*
5487 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
5488 			 * around the Ingress Queue ID array if necessary) and
5489 			 * insert them into the firmware RSS command at the
5490 			 * current 3-tuple position within the commad.
5491 			 */
5492 			u16 qbuf[3];
5493 			u16 *qbp = qbuf;
5494 			int nqbuf = min(3, nq);
5495 
5496 			nq -= nqbuf;
5497 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
5498 			while (nqbuf && nq_packed < 32) {
5499 				nqbuf--;
5500 				nq_packed++;
5501 				*qbp++ = *rsp++;
5502 				if (rsp >= rsp_end)
5503 					rsp = rspq;
5504 			}
5505 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
5506 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
5507 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
5508 		}
5509 
5510 		/*
5511 		 * Send this portion of the RRS table update to the firmware;
5512 		 * bail out on any errors.
5513 		 */
5514 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5515 		if (ret)
5516 			return ret;
5517 	}
5518 	return 0;
5519 }
5520 
5521 /**
5522  *	t4_config_glbl_rss - configure the global RSS mode
5523  *	@adapter: the adapter
5524  *	@mbox: mbox to use for the FW command
5525  *	@mode: global RSS mode
5526  *	@flags: mode-specific flags
5527  *
5528  *	Sets the global RSS mode.
5529  */
5530 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5531 		       unsigned int flags)
5532 {
5533 	struct fw_rss_glb_config_cmd c;
5534 
5535 	memset(&c, 0, sizeof(c));
5536 	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
5537 				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5538 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5539 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5540 		c.u.manual.mode_pkd =
5541 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5542 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5543 		c.u.basicvirtual.mode_keymode =
5544 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5545 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5546 	} else
5547 		return -EINVAL;
5548 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5549 }
5550 
5551 /**
5552  *	t4_config_vi_rss - configure per VI RSS settings
5553  *	@adapter: the adapter
5554  *	@mbox: mbox to use for the FW command
5555  *	@viid: the VI id
5556  *	@flags: RSS flags
5557  *	@defq: id of the default RSS queue for the VI.
5558  *	@skeyidx: RSS secret key table index for non-global mode
5559  *	@skey: RSS vf_scramble key for VI.
5560  *
5561  *	Configures VI-specific RSS properties.
5562  */
5563 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5564 		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
5565 		     unsigned int skey)
5566 {
5567 	struct fw_rss_vi_config_cmd c;
5568 
5569 	memset(&c, 0, sizeof(c));
5570 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
5571 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5572 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
5573 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5574 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5575 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
5576 	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
5577 					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
5578 	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
5579 
5580 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5581 }
5582 
5583 /* Read an RSS table row */
5584 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5585 {
5586 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
5587 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
5588 				   5, 0, val);
5589 }
5590 
5591 /**
5592  *	t4_read_rss - read the contents of the RSS mapping table
5593  *	@adapter: the adapter
5594  *	@map: holds the contents of the RSS mapping table
5595  *
5596  *	Reads the contents of the RSS hash->queue mapping table.
5597  */
5598 int t4_read_rss(struct adapter *adapter, u16 *map)
5599 {
5600 	u32 val;
5601 	int i, ret;
5602 
5603 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
5604 		ret = rd_rss_row(adapter, i, &val);
5605 		if (ret)
5606 			return ret;
5607 		*map++ = G_LKPTBLQUEUE0(val);
5608 		*map++ = G_LKPTBLQUEUE1(val);
5609 	}
5610 	return 0;
5611 }
5612 
5613 /**
5614  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5615  * @adap: the adapter
5616  * @cmd: TP fw ldst address space type
5617  * @vals: where the indirect register values are stored/written
5618  * @nregs: how many indirect registers to read/write
5619  * @start_idx: index of first indirect register to read/write
5620  * @rw: Read (1) or Write (0)
5621  * @sleep_ok: if true we may sleep while awaiting command completion
5622  *
5623  * Access TP indirect registers through LDST
5624  **/
5625 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5626 			    unsigned int nregs, unsigned int start_index,
5627 			    unsigned int rw, bool sleep_ok)
5628 {
5629 	int ret = 0;
5630 	unsigned int i;
5631 	struct fw_ldst_cmd c;
5632 
5633 	for (i = 0; i < nregs; i++) {
5634 		memset(&c, 0, sizeof(c));
5635 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5636 						F_FW_CMD_REQUEST |
5637 						(rw ? F_FW_CMD_READ :
5638 						      F_FW_CMD_WRITE) |
5639 						V_FW_LDST_CMD_ADDRSPACE(cmd));
5640 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5641 
5642 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5643 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5644 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5645 				      sleep_ok);
5646 		if (ret)
5647 			return ret;
5648 
5649 		if (rw)
5650 			vals[i] = be32_to_cpu(c.u.addrval.val);
5651 	}
5652 	return 0;
5653 }
5654 
5655 /**
5656  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5657  * @adap: the adapter
5658  * @reg_addr: Address Register
5659  * @reg_data: Data register
5660  * @buff: where the indirect register values are stored/written
5661  * @nregs: how many indirect registers to read/write
5662  * @start_index: index of first indirect register to read/write
5663  * @rw: READ(1) or WRITE(0)
5664  * @sleep_ok: if true we may sleep while awaiting command completion
5665  *
5666  * Read/Write TP indirect registers through LDST if possible.
5667  * Else, use backdoor access
5668  **/
5669 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5670 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5671 			      bool sleep_ok)
5672 {
5673 	int rc = -EINVAL;
5674 	int cmd;
5675 
5676 	switch (reg_addr) {
5677 	case A_TP_PIO_ADDR:
5678 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5679 		break;
5680 	case A_TP_TM_PIO_ADDR:
5681 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5682 		break;
5683 	case A_TP_MIB_INDEX:
5684 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5685 		break;
5686 	default:
5687 		goto indirect_access;
5688 	}
5689 
5690 	if (t4_use_ldst(adap))
5691 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5692 				      sleep_ok);
5693 
5694 indirect_access:
5695 
5696 	if (rc) {
5697 		if (rw)
5698 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5699 					 start_index);
5700 		else
5701 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5702 					  start_index);
5703 	}
5704 }
5705 
5706 /**
5707  * t4_tp_pio_read - Read TP PIO registers
5708  * @adap: the adapter
5709  * @buff: where the indirect register values are written
5710  * @nregs: how many indirect registers to read
5711  * @start_index: index of first indirect register to read
5712  * @sleep_ok: if true we may sleep while awaiting command completion
5713  *
5714  * Read TP PIO Registers
5715  **/
5716 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5717 		    u32 start_index, bool sleep_ok)
5718 {
5719 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
5720 			  start_index, 1, sleep_ok);
5721 }
5722 
5723 /**
5724  * t4_tp_pio_write - Write TP PIO registers
5725  * @adap: the adapter
5726  * @buff: where the indirect register values are stored
5727  * @nregs: how many indirect registers to write
5728  * @start_index: index of first indirect register to write
5729  * @sleep_ok: if true we may sleep while awaiting command completion
5730  *
5731  * Write TP PIO Registers
5732  **/
5733 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5734 		     u32 start_index, bool sleep_ok)
5735 {
5736 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5737 	    __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5738 }
5739 
5740 /**
5741  * t4_tp_tm_pio_read - Read TP TM PIO registers
5742  * @adap: the adapter
5743  * @buff: where the indirect register values are written
5744  * @nregs: how many indirect registers to read
5745  * @start_index: index of first indirect register to read
5746  * @sleep_ok: if true we may sleep while awaiting command completion
5747  *
5748  * Read TP TM PIO Registers
5749  **/
5750 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5751 		       u32 start_index, bool sleep_ok)
5752 {
5753 	t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5754 			  nregs, start_index, 1, sleep_ok);
5755 }
5756 
5757 /**
5758  * t4_tp_mib_read - Read TP MIB registers
5759  * @adap: the adapter
5760  * @buff: where the indirect register values are written
5761  * @nregs: how many indirect registers to read
5762  * @start_index: index of first indirect register to read
5763  * @sleep_ok: if true we may sleep while awaiting command completion
5764  *
5765  * Read TP MIB Registers
5766  **/
5767 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5768 		    bool sleep_ok)
5769 {
5770 	t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5771 			  start_index, 1, sleep_ok);
5772 }
5773 
5774 /**
5775  *	t4_read_rss_key - read the global RSS key
5776  *	@adap: the adapter
5777  *	@key: 10-entry array holding the 320-bit RSS key
5778  * 	@sleep_ok: if true we may sleep while awaiting command completion
5779  *
5780  *	Reads the global 320-bit RSS key.
5781  */
5782 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5783 {
5784 	t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5785 }
5786 
5787 /**
5788  *	t4_write_rss_key - program one of the RSS keys
5789  *	@adap: the adapter
5790  *	@key: 10-entry array holding the 320-bit RSS key
5791  *	@idx: which RSS key to write
5792  * 	@sleep_ok: if true we may sleep while awaiting command completion
5793  *
5794  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5795  *	0..15 the corresponding entry in the RSS key table is written,
5796  *	otherwise the global RSS key is written.
5797  */
5798 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5799 		      bool sleep_ok)
5800 {
5801 	u8 rss_key_addr_cnt = 16;
5802 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5803 
5804 	/*
5805 	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5806 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5807 	 * as index[5:4](upper 2) into key table
5808 	 */
5809 	if ((chip_id(adap) > CHELSIO_T5) &&
5810 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5811 		rss_key_addr_cnt = 32;
5812 
5813 	t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5814 
5815 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5816 		if (rss_key_addr_cnt > 16)
5817 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5818 				     vrt | V_KEYWRADDRX(idx >> 4) |
5819 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
5820 		else
5821 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5822 				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5823 	}
5824 }
5825 
5826 /**
5827  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5828  *	@adapter: the adapter
5829  *	@index: the entry in the PF RSS table to read
5830  *	@valp: where to store the returned value
5831  * 	@sleep_ok: if true we may sleep while awaiting command completion
5832  *
5833  *	Reads the PF RSS Configuration Table at the specified index and returns
5834  *	the value found there.
5835  */
5836 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5837 			   u32 *valp, bool sleep_ok)
5838 {
5839 	t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5840 }
5841 
5842 /**
5843  *	t4_write_rss_pf_config - write PF RSS Configuration Table
5844  *	@adapter: the adapter
5845  *	@index: the entry in the VF RSS table to read
5846  *	@val: the value to store
5847  * 	@sleep_ok: if true we may sleep while awaiting command completion
5848  *
5849  *	Writes the PF RSS Configuration Table at the specified index with the
5850  *	specified value.
5851  */
5852 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5853 			    u32 val, bool sleep_ok)
5854 {
5855 	t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5856 			sleep_ok);
5857 }
5858 
5859 /**
5860  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5861  *	@adapter: the adapter
5862  *	@index: the entry in the VF RSS table to read
5863  *	@vfl: where to store the returned VFL
5864  *	@vfh: where to store the returned VFH
5865  * 	@sleep_ok: if true we may sleep while awaiting command completion
5866  *
5867  *	Reads the VF RSS Configuration Table at the specified index and returns
5868  *	the (VFL, VFH) values found there.
5869  */
5870 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5871 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5872 {
5873 	u32 vrt, mask, data;
5874 
5875 	if (chip_id(adapter) <= CHELSIO_T5) {
5876 		mask = V_VFWRADDR(M_VFWRADDR);
5877 		data = V_VFWRADDR(index);
5878 	} else {
5879 		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5880 		 data = V_T6_VFWRADDR(index);
5881 	}
5882 	/*
5883 	 * Request that the index'th VF Table values be read into VFL/VFH.
5884 	 */
5885 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5886 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5887 	vrt |= data | F_VFRDEN;
5888 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5889 
5890 	/*
5891 	 * Grab the VFL/VFH values ...
5892 	 */
5893 	t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5894 	t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5895 }
5896 
5897 /**
5898  *	t4_write_rss_vf_config - write VF RSS Configuration Table
5899  *
5900  *	@adapter: the adapter
5901  *	@index: the entry in the VF RSS table to write
5902  *	@vfl: the VFL to store
5903  *	@vfh: the VFH to store
5904  *
5905  *	Writes the VF RSS Configuration Table at the specified index with the
5906  *	specified (VFL, VFH) values.
5907  */
5908 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
5909 			    u32 vfl, u32 vfh, bool sleep_ok)
5910 {
5911 	u32 vrt, mask, data;
5912 
5913 	if (chip_id(adapter) <= CHELSIO_T5) {
5914 		mask = V_VFWRADDR(M_VFWRADDR);
5915 		data = V_VFWRADDR(index);
5916 	} else {
5917 		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5918 		data = V_T6_VFWRADDR(index);
5919 	}
5920 
5921 	/*
5922 	 * Load up VFL/VFH with the values to be written ...
5923 	 */
5924 	t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5925 	t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5926 
5927 	/*
5928 	 * Write the VFL/VFH into the VF Table at index'th location.
5929 	 */
5930 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5931 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5932 	vrt |= data | F_VFRDEN;
5933 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5934 }
5935 
5936 /**
5937  *	t4_read_rss_pf_map - read PF RSS Map
5938  *	@adapter: the adapter
5939  * 	@sleep_ok: if true we may sleep while awaiting command completion
5940  *
5941  *	Reads the PF RSS Map register and returns its value.
5942  */
5943 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5944 {
5945 	u32 pfmap;
5946 
5947 	t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5948 
5949 	return pfmap;
5950 }
5951 
5952 /**
5953  *	t4_write_rss_pf_map - write PF RSS Map
5954  *	@adapter: the adapter
5955  *	@pfmap: PF RSS Map value
5956  *
5957  *	Writes the specified value to the PF RSS Map register.
5958  */
5959 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
5960 {
5961 	t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5962 }
5963 
5964 /**
5965  *	t4_read_rss_pf_mask - read PF RSS Mask
5966  *	@adapter: the adapter
5967  * 	@sleep_ok: if true we may sleep while awaiting command completion
5968  *
5969  *	Reads the PF RSS Mask register and returns its value.
5970  */
5971 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5972 {
5973 	u32 pfmask;
5974 
5975 	t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
5976 
5977 	return pfmask;
5978 }
5979 
5980 /**
5981  *	t4_write_rss_pf_mask - write PF RSS Mask
5982  *	@adapter: the adapter
5983  *	@pfmask: PF RSS Mask value
5984  *
5985  *	Writes the specified value to the PF RSS Mask register.
5986  */
5987 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
5988 {
5989 	t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
5990 }
5991 
5992 /**
5993  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5994  *	@adap: the adapter
5995  *	@v4: holds the TCP/IP counter values
5996  *	@v6: holds the TCP/IPv6 counter values
5997  * 	@sleep_ok: if true we may sleep while awaiting command completion
5998  *
5999  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
6000  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
6001  */
6002 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
6003 			 struct tp_tcp_stats *v6, bool sleep_ok)
6004 {
6005 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
6006 
6007 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
6008 #define STAT(x)     val[STAT_IDX(x)]
6009 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
6010 
6011 	if (v4) {
6012 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6013 			       A_TP_MIB_TCP_OUT_RST, sleep_ok);
6014 		v4->tcp_out_rsts = STAT(OUT_RST);
6015 		v4->tcp_in_segs  = STAT64(IN_SEG);
6016 		v4->tcp_out_segs = STAT64(OUT_SEG);
6017 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
6018 	}
6019 	if (v6) {
6020 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6021 			       A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
6022 		v6->tcp_out_rsts = STAT(OUT_RST);
6023 		v6->tcp_in_segs  = STAT64(IN_SEG);
6024 		v6->tcp_out_segs = STAT64(OUT_SEG);
6025 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
6026 	}
6027 #undef STAT64
6028 #undef STAT
6029 #undef STAT_IDX
6030 }
6031 
6032 /**
6033  *	t4_tp_get_err_stats - read TP's error MIB counters
6034  *	@adap: the adapter
6035  *	@st: holds the counter values
6036  * 	@sleep_ok: if true we may sleep while awaiting command completion
6037  *
6038  *	Returns the values of TP's error counters.
6039  */
6040 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
6041 			 bool sleep_ok)
6042 {
6043 	int nchan = adap->chip_params->nchan;
6044 
6045 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
6046 		       sleep_ok);
6047 
6048 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
6049 		       sleep_ok);
6050 
6051 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
6052 		       sleep_ok);
6053 
6054 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
6055 		       A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
6056 
6057 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
6058 		       A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
6059 
6060 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
6061 		       sleep_ok);
6062 
6063 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
6064 		       A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
6065 
6066 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
6067 		       A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
6068 
6069 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
6070 		       sleep_ok);
6071 }
6072 
6073 /**
6074  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
6075  *	@adap: the adapter
6076  *	@st: holds the counter values
6077  *
6078  *	Returns the values of TP's proxy counters.
6079  */
6080 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
6081     bool sleep_ok)
6082 {
6083 	int nchan = adap->chip_params->nchan;
6084 
6085 	t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
6086 }
6087 
6088 /**
6089  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
6090  *	@adap: the adapter
6091  *	@st: holds the counter values
6092  * 	@sleep_ok: if true we may sleep while awaiting command completion
6093  *
6094  *	Returns the values of TP's CPL counters.
6095  */
6096 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
6097 			 bool sleep_ok)
6098 {
6099 	int nchan = adap->chip_params->nchan;
6100 
6101 	t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
6102 
6103 	t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
6104 }
6105 
6106 /**
6107  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
6108  *	@adap: the adapter
6109  *	@st: holds the counter values
6110  *
6111  *	Returns the values of TP's RDMA counters.
6112  */
6113 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
6114 			  bool sleep_ok)
6115 {
6116 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
6117 		       sleep_ok);
6118 }
6119 
6120 /**
6121  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
6122  *	@adap: the adapter
6123  *	@idx: the port index
6124  *	@st: holds the counter values
6125  * 	@sleep_ok: if true we may sleep while awaiting command completion
6126  *
6127  *	Returns the values of TP's FCoE counters for the selected port.
6128  */
6129 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
6130 		       struct tp_fcoe_stats *st, bool sleep_ok)
6131 {
6132 	u32 val[2];
6133 
6134 	t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
6135 		       sleep_ok);
6136 
6137 	t4_tp_mib_read(adap, &st->frames_drop, 1,
6138 		       A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
6139 
6140 	t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
6141 		       sleep_ok);
6142 
6143 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
6144 }
6145 
6146 /**
6147  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
6148  *	@adap: the adapter
6149  *	@st: holds the counter values
6150  * 	@sleep_ok: if true we may sleep while awaiting command completion
6151  *
6152  *	Returns the values of TP's counters for non-TCP directly-placed packets.
6153  */
6154 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
6155 		      bool sleep_ok)
6156 {
6157 	u32 val[4];
6158 
6159 	t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
6160 
6161 	st->frames = val[0];
6162 	st->drops = val[1];
6163 	st->octets = ((u64)val[2] << 32) | val[3];
6164 }
6165 
6166 /**
6167  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
6168  *	@adap: the adapter
6169  *	@mtus: where to store the MTU values
6170  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
6171  *
6172  *	Reads the HW path MTU table.
6173  */
6174 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
6175 {
6176 	u32 v;
6177 	int i;
6178 
6179 	for (i = 0; i < NMTUS; ++i) {
6180 		t4_write_reg(adap, A_TP_MTU_TABLE,
6181 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
6182 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
6183 		mtus[i] = G_MTUVALUE(v);
6184 		if (mtu_log)
6185 			mtu_log[i] = G_MTUWIDTH(v);
6186 	}
6187 }
6188 
6189 /**
6190  *	t4_read_cong_tbl - reads the congestion control table
6191  *	@adap: the adapter
6192  *	@incr: where to store the alpha values
6193  *
6194  *	Reads the additive increments programmed into the HW congestion
6195  *	control table.
6196  */
6197 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
6198 {
6199 	unsigned int mtu, w;
6200 
6201 	for (mtu = 0; mtu < NMTUS; ++mtu)
6202 		for (w = 0; w < NCCTRL_WIN; ++w) {
6203 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
6204 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
6205 			incr[mtu][w] = (u16)t4_read_reg(adap,
6206 						A_TP_CCTRL_TABLE) & 0x1fff;
6207 		}
6208 }
6209 
6210 /**
6211  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
6212  *	@adap: the adapter
6213  *	@addr: the indirect TP register address
6214  *	@mask: specifies the field within the register to modify
6215  *	@val: new value for the field
6216  *
6217  *	Sets a field of an indirect TP register to the given value.
6218  */
6219 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
6220 			    unsigned int mask, unsigned int val)
6221 {
6222 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
6223 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
6224 	t4_write_reg(adap, A_TP_PIO_DATA, val);
6225 }
6226 
6227 /**
6228  *	init_cong_ctrl - initialize congestion control parameters
6229  *	@a: the alpha values for congestion control
6230  *	@b: the beta values for congestion control
6231  *
6232  *	Initialize the congestion control parameters.
6233  */
6234 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
6235 {
6236 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
6237 	a[9] = 2;
6238 	a[10] = 3;
6239 	a[11] = 4;
6240 	a[12] = 5;
6241 	a[13] = 6;
6242 	a[14] = 7;
6243 	a[15] = 8;
6244 	a[16] = 9;
6245 	a[17] = 10;
6246 	a[18] = 14;
6247 	a[19] = 17;
6248 	a[20] = 21;
6249 	a[21] = 25;
6250 	a[22] = 30;
6251 	a[23] = 35;
6252 	a[24] = 45;
6253 	a[25] = 60;
6254 	a[26] = 80;
6255 	a[27] = 100;
6256 	a[28] = 200;
6257 	a[29] = 300;
6258 	a[30] = 400;
6259 	a[31] = 500;
6260 
6261 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
6262 	b[9] = b[10] = 1;
6263 	b[11] = b[12] = 2;
6264 	b[13] = b[14] = b[15] = b[16] = 3;
6265 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
6266 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
6267 	b[28] = b[29] = 6;
6268 	b[30] = b[31] = 7;
6269 }
6270 
6271 /* The minimum additive increment value for the congestion control table */
6272 #define CC_MIN_INCR 2U
6273 
6274 /**
6275  *	t4_load_mtus - write the MTU and congestion control HW tables
6276  *	@adap: the adapter
6277  *	@mtus: the values for the MTU table
6278  *	@alpha: the values for the congestion control alpha parameter
6279  *	@beta: the values for the congestion control beta parameter
6280  *
6281  *	Write the HW MTU table with the supplied MTUs and the high-speed
6282  *	congestion control table with the supplied alpha, beta, and MTUs.
6283  *	We write the two tables together because the additive increments
6284  *	depend on the MTUs.
6285  */
6286 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
6287 		  const unsigned short *alpha, const unsigned short *beta)
6288 {
6289 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
6290 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
6291 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
6292 		28672, 40960, 57344, 81920, 114688, 163840, 229376
6293 	};
6294 
6295 	unsigned int i, w;
6296 
6297 	for (i = 0; i < NMTUS; ++i) {
6298 		unsigned int mtu = mtus[i];
6299 		unsigned int log2 = fls(mtu);
6300 
6301 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
6302 			log2--;
6303 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
6304 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
6305 
6306 		for (w = 0; w < NCCTRL_WIN; ++w) {
6307 			unsigned int inc;
6308 
6309 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
6310 				  CC_MIN_INCR);
6311 
6312 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
6313 				     (w << 16) | (beta[w] << 13) | inc);
6314 		}
6315 	}
6316 }
6317 
6318 /**
6319  *	t4_set_pace_tbl - set the pace table
6320  *	@adap: the adapter
6321  *	@pace_vals: the pace values in microseconds
6322  *	@start: index of the first entry in the HW pace table to set
6323  *	@n: how many entries to set
6324  *
6325  *	Sets (a subset of the) HW pace table.
6326  */
6327 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
6328 		     unsigned int start, unsigned int n)
6329 {
6330 	unsigned int vals[NTX_SCHED], i;
6331 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
6332 
6333 	if (n > NTX_SCHED)
6334 	    return -ERANGE;
6335 
6336 	/* convert values from us to dack ticks, rounding to closest value */
6337 	for (i = 0; i < n; i++, pace_vals++) {
6338 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
6339 		if (vals[i] > 0x7ff)
6340 			return -ERANGE;
6341 		if (*pace_vals && vals[i] == 0)
6342 			return -ERANGE;
6343 	}
6344 	for (i = 0; i < n; i++, start++)
6345 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
6346 	return 0;
6347 }
6348 
6349 /**
6350  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
6351  *	@adap: the adapter
6352  *	@kbps: target rate in Kbps
6353  *	@sched: the scheduler index
6354  *
6355  *	Configure a Tx HW scheduler for the target rate.
6356  */
6357 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
6358 {
6359 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
6360 	unsigned int clk = adap->params.vpd.cclk * 1000;
6361 	unsigned int selected_cpt = 0, selected_bpt = 0;
6362 
6363 	if (kbps > 0) {
6364 		kbps *= 125;     /* -> bytes */
6365 		for (cpt = 1; cpt <= 255; cpt++) {
6366 			tps = clk / cpt;
6367 			bpt = (kbps + tps / 2) / tps;
6368 			if (bpt > 0 && bpt <= 255) {
6369 				v = bpt * tps;
6370 				delta = v >= kbps ? v - kbps : kbps - v;
6371 				if (delta < mindelta) {
6372 					mindelta = delta;
6373 					selected_cpt = cpt;
6374 					selected_bpt = bpt;
6375 				}
6376 			} else if (selected_cpt)
6377 				break;
6378 		}
6379 		if (!selected_cpt)
6380 			return -EINVAL;
6381 	}
6382 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
6383 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
6384 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6385 	if (sched & 1)
6386 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
6387 	else
6388 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
6389 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6390 	return 0;
6391 }
6392 
6393 /**
6394  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
6395  *	@adap: the adapter
6396  *	@sched: the scheduler index
6397  *	@ipg: the interpacket delay in tenths of nanoseconds
6398  *
6399  *	Set the interpacket delay for a HW packet rate scheduler.
6400  */
6401 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
6402 {
6403 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
6404 
6405 	/* convert ipg to nearest number of core clocks */
6406 	ipg *= core_ticks_per_usec(adap);
6407 	ipg = (ipg + 5000) / 10000;
6408 	if (ipg > M_TXTIMERSEPQ0)
6409 		return -EINVAL;
6410 
6411 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
6412 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6413 	if (sched & 1)
6414 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
6415 	else
6416 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
6417 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6418 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
6419 	return 0;
6420 }
6421 
6422 /*
6423  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
6424  * clocks.  The formula is
6425  *
6426  * bytes/s = bytes256 * 256 * ClkFreq / 4096
6427  *
6428  * which is equivalent to
6429  *
6430  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
6431  */
6432 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
6433 {
6434 	u64 v = (u64)bytes256 * adap->params.vpd.cclk;
6435 
6436 	return v * 62 + v / 2;
6437 }
6438 
6439 /**
6440  *	t4_get_chan_txrate - get the current per channel Tx rates
6441  *	@adap: the adapter
6442  *	@nic_rate: rates for NIC traffic
6443  *	@ofld_rate: rates for offloaded traffic
6444  *
6445  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
6446  *	for each channel.
6447  */
6448 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
6449 {
6450 	u32 v;
6451 
6452 	v = t4_read_reg(adap, A_TP_TX_TRATE);
6453 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
6454 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
6455 	if (adap->chip_params->nchan > 2) {
6456 		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
6457 		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
6458 	}
6459 
6460 	v = t4_read_reg(adap, A_TP_TX_ORATE);
6461 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
6462 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
6463 	if (adap->chip_params->nchan > 2) {
6464 		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
6465 		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
6466 	}
6467 }
6468 
6469 /**
6470  *	t4_set_trace_filter - configure one of the tracing filters
6471  *	@adap: the adapter
6472  *	@tp: the desired trace filter parameters
6473  *	@idx: which filter to configure
6474  *	@enable: whether to enable or disable the filter
6475  *
6476  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
6477  *	it indicates that the filter is already written in the register and it
6478  *	just needs to be enabled or disabled.
6479  */
6480 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
6481     int idx, int enable)
6482 {
6483 	int i, ofst = idx * 4;
6484 	u32 data_reg, mask_reg, cfg;
6485 	u32 multitrc = F_TRCMULTIFILTER;
6486 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
6487 
6488 	if (idx < 0 || idx >= NTRACE)
6489 		return -EINVAL;
6490 
6491 	if (tp == NULL || !enable) {
6492 		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
6493 		    enable ? en : 0);
6494 		return 0;
6495 	}
6496 
6497 	/*
6498 	 * TODO - After T4 data book is updated, specify the exact
6499 	 * section below.
6500 	 *
6501 	 * See T4 data book - MPS section for a complete description
6502 	 * of the below if..else handling of A_MPS_TRC_CFG register
6503 	 * value.
6504 	 */
6505 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
6506 	if (cfg & F_TRCMULTIFILTER) {
6507 		/*
6508 		 * If multiple tracers are enabled, then maximum
6509 		 * capture size is 2.5KB (FIFO size of a single channel)
6510 		 * minus 2 flits for CPL_TRACE_PKT header.
6511 		 */
6512 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
6513 			return -EINVAL;
6514 	} else {
6515 		/*
6516 		 * If multiple tracers are disabled, to avoid deadlocks
6517 		 * maximum packet capture size of 9600 bytes is recommended.
6518 		 * Also in this mode, only trace0 can be enabled and running.
6519 		 */
6520 		multitrc = 0;
6521 		if (tp->snap_len > 9600 || idx)
6522 			return -EINVAL;
6523 	}
6524 
6525 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
6526 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
6527 	    tp->min_len > M_TFMINPKTSIZE)
6528 		return -EINVAL;
6529 
6530 	/* stop the tracer we'll be changing */
6531 	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
6532 
6533 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
6534 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
6535 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
6536 
6537 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6538 		t4_write_reg(adap, data_reg, tp->data[i]);
6539 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
6540 	}
6541 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
6542 		     V_TFCAPTUREMAX(tp->snap_len) |
6543 		     V_TFMINPKTSIZE(tp->min_len));
6544 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
6545 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
6546 		     (is_t4(adap) ?
6547 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
6548 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
6549 
6550 	return 0;
6551 }
6552 
6553 /**
6554  *	t4_get_trace_filter - query one of the tracing filters
6555  *	@adap: the adapter
6556  *	@tp: the current trace filter parameters
6557  *	@idx: which trace filter to query
6558  *	@enabled: non-zero if the filter is enabled
6559  *
6560  *	Returns the current settings of one of the HW tracing filters.
6561  */
6562 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6563 			 int *enabled)
6564 {
6565 	u32 ctla, ctlb;
6566 	int i, ofst = idx * 4;
6567 	u32 data_reg, mask_reg;
6568 
6569 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
6570 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
6571 
6572 	if (is_t4(adap)) {
6573 		*enabled = !!(ctla & F_TFEN);
6574 		tp->port =  G_TFPORT(ctla);
6575 		tp->invert = !!(ctla & F_TFINVERTMATCH);
6576 	} else {
6577 		*enabled = !!(ctla & F_T5_TFEN);
6578 		tp->port = G_T5_TFPORT(ctla);
6579 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
6580 	}
6581 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
6582 	tp->min_len = G_TFMINPKTSIZE(ctlb);
6583 	tp->skip_ofst = G_TFOFFSET(ctla);
6584 	tp->skip_len = G_TFLENGTH(ctla);
6585 
6586 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
6587 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
6588 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
6589 
6590 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6591 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6592 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6593 	}
6594 }
6595 
6596 /**
6597  *	t4_pmtx_get_stats - returns the HW stats from PMTX
6598  *	@adap: the adapter
6599  *	@cnt: where to store the count statistics
6600  *	@cycles: where to store the cycle statistics
6601  *
6602  *	Returns performance statistics from PMTX.
6603  */
6604 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6605 {
6606 	int i;
6607 	u32 data[2];
6608 
6609 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6610 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
6611 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
6612 		if (is_t4(adap))
6613 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
6614 		else {
6615 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
6616 					 A_PM_TX_DBG_DATA, data, 2,
6617 					 A_PM_TX_DBG_STAT_MSB);
6618 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6619 		}
6620 	}
6621 }
6622 
6623 /**
6624  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6625  *	@adap: the adapter
6626  *	@cnt: where to store the count statistics
6627  *	@cycles: where to store the cycle statistics
6628  *
6629  *	Returns performance statistics from PMRX.
6630  */
6631 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6632 {
6633 	int i;
6634 	u32 data[2];
6635 
6636 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6637 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
6638 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
6639 		if (is_t4(adap)) {
6640 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
6641 		} else {
6642 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
6643 					 A_PM_RX_DBG_DATA, data, 2,
6644 					 A_PM_RX_DBG_STAT_MSB);
6645 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6646 		}
6647 	}
6648 }
6649 
6650 /**
6651  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6652  *	@adap: the adapter
6653  *	@idx: the port index
6654  *
6655  *	Returns a bitmap indicating which MPS buffer groups are associated
6656  *	with the given port.  Bit i is set if buffer group i is used by the
6657  *	port.
6658  */
6659 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
6660 {
6661 	u32 n;
6662 
6663 	if (adap->params.mps_bg_map)
6664 		return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
6665 
6666 	n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6667 	if (n == 0)
6668 		return idx == 0 ? 0xf : 0;
6669 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6670 		return idx < 2 ? (3 << (2 * idx)) : 0;
6671 	return 1 << idx;
6672 }
6673 
6674 /*
6675  * TP RX e-channels associated with the port.
6676  */
6677 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
6678 {
6679 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6680 
6681 	if (n == 0)
6682 		return idx == 0 ? 0xf : 0;
6683 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6684 		return idx < 2 ? (3 << (2 * idx)) : 0;
6685 	return 1 << idx;
6686 }
6687 
6688 /**
6689  *      t4_get_port_type_description - return Port Type string description
6690  *      @port_type: firmware Port Type enumeration
6691  */
6692 const char *t4_get_port_type_description(enum fw_port_type port_type)
6693 {
6694 	static const char *const port_type_description[] = {
6695 		"Fiber_XFI",
6696 		"Fiber_XAUI",
6697 		"BT_SGMII",
6698 		"BT_XFI",
6699 		"BT_XAUI",
6700 		"KX4",
6701 		"CX4",
6702 		"KX",
6703 		"KR",
6704 		"SFP",
6705 		"BP_AP",
6706 		"BP4_AP",
6707 		"QSFP_10G",
6708 		"QSA",
6709 		"QSFP",
6710 		"BP40_BA",
6711 		"KR4_100G",
6712 		"CR4_QSFP",
6713 		"CR_QSFP",
6714 		"CR2_QSFP",
6715 		"SFP28",
6716 		"KR_SFP28",
6717 	};
6718 
6719 	if (port_type < ARRAY_SIZE(port_type_description))
6720 		return port_type_description[port_type];
6721 	return "UNKNOWN";
6722 }
6723 
6724 /**
6725  *      t4_get_port_stats_offset - collect port stats relative to a previous
6726  *				   snapshot
6727  *      @adap: The adapter
6728  *      @idx: The port
6729  *      @stats: Current stats to fill
6730  *      @offset: Previous stats snapshot
6731  */
6732 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6733 		struct port_stats *stats,
6734 		struct port_stats *offset)
6735 {
6736 	u64 *s, *o;
6737 	int i;
6738 
6739 	t4_get_port_stats(adap, idx, stats);
6740 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6741 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
6742 			i++, s++, o++)
6743 		*s -= *o;
6744 }
6745 
6746 /**
6747  *	t4_get_port_stats - collect port statistics
6748  *	@adap: the adapter
6749  *	@idx: the port index
6750  *	@p: the stats structure to fill
6751  *
6752  *	Collect statistics related to the given port from HW.
6753  */
6754 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6755 {
6756 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6757 	u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6758 
6759 #define GET_STAT(name) \
6760 	t4_read_reg64(adap, \
6761 	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
6762 	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
6763 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6764 
6765 	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
6766 	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
6767 	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
6768 	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
6769 	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
6770 	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
6771 	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
6772 	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
6773 	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
6774 	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
6775 	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
6776 	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
6777 	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
6778 	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
6779 	p->tx_drop		= GET_STAT(TX_PORT_DROP);
6780 	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
6781 	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
6782 	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
6783 	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
6784 	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
6785 	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
6786 	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
6787 	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
6788 
6789 	if (chip_id(adap) >= CHELSIO_T5) {
6790 		if (stat_ctl & F_COUNTPAUSESTATTX) {
6791 			p->tx_frames -= p->tx_pause;
6792 			p->tx_octets -= p->tx_pause * 64;
6793 		}
6794 		if (stat_ctl & F_COUNTPAUSEMCTX)
6795 			p->tx_mcast_frames -= p->tx_pause;
6796 	}
6797 
6798 	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
6799 	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
6800 	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
6801 	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
6802 	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
6803 	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
6804 	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
6805 	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
6806 	p->rx_fcs_err		= GET_STAT(RX_PORT_CRC_ERROR);
6807 	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
6808 	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
6809 	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
6810 	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
6811 	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
6812 	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
6813 	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
6814 	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
6815 	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
6816 	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
6817 	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
6818 	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
6819 	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
6820 	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
6821 	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
6822 	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
6823 	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
6824 	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
6825 
6826 	if (chip_id(adap) >= CHELSIO_T5) {
6827 		if (stat_ctl & F_COUNTPAUSESTATRX) {
6828 			p->rx_frames -= p->rx_pause;
6829 			p->rx_octets -= p->rx_pause * 64;
6830 		}
6831 		if (stat_ctl & F_COUNTPAUSEMCRX)
6832 			p->rx_mcast_frames -= p->rx_pause;
6833 	}
6834 
6835 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6836 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6837 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6838 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6839 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6840 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6841 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6842 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6843 
6844 #undef GET_STAT
6845 #undef GET_STAT_COM
6846 }
6847 
6848 /**
6849  *	t4_get_lb_stats - collect loopback port statistics
6850  *	@adap: the adapter
6851  *	@idx: the loopback port index
6852  *	@p: the stats structure to fill
6853  *
6854  *	Return HW statistics for the given loopback port.
6855  */
6856 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6857 {
6858 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6859 
6860 #define GET_STAT(name) \
6861 	t4_read_reg64(adap, \
6862 	(is_t4(adap) ? \
6863 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
6864 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
6865 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6866 
6867 	p->octets	= GET_STAT(BYTES);
6868 	p->frames	= GET_STAT(FRAMES);
6869 	p->bcast_frames	= GET_STAT(BCAST);
6870 	p->mcast_frames	= GET_STAT(MCAST);
6871 	p->ucast_frames	= GET_STAT(UCAST);
6872 	p->error_frames	= GET_STAT(ERROR);
6873 
6874 	p->frames_64		= GET_STAT(64B);
6875 	p->frames_65_127	= GET_STAT(65B_127B);
6876 	p->frames_128_255	= GET_STAT(128B_255B);
6877 	p->frames_256_511	= GET_STAT(256B_511B);
6878 	p->frames_512_1023	= GET_STAT(512B_1023B);
6879 	p->frames_1024_1518	= GET_STAT(1024B_1518B);
6880 	p->frames_1519_max	= GET_STAT(1519B_MAX);
6881 	p->drop			= GET_STAT(DROP_FRAMES);
6882 
6883 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6884 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6885 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6886 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6887 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6888 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6889 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6890 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6891 
6892 #undef GET_STAT
6893 #undef GET_STAT_COM
6894 }
6895 
6896 /**
6897  *	t4_wol_magic_enable - enable/disable magic packet WoL
6898  *	@adap: the adapter
6899  *	@port: the physical port index
6900  *	@addr: MAC address expected in magic packets, %NULL to disable
6901  *
6902  *	Enables/disables magic packet wake-on-LAN for the selected port.
6903  */
6904 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
6905 			 const u8 *addr)
6906 {
6907 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
6908 
6909 	if (is_t4(adap)) {
6910 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
6911 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
6912 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6913 	} else {
6914 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
6915 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
6916 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6917 	}
6918 
6919 	if (addr) {
6920 		t4_write_reg(adap, mag_id_reg_l,
6921 			     (addr[2] << 24) | (addr[3] << 16) |
6922 			     (addr[4] << 8) | addr[5]);
6923 		t4_write_reg(adap, mag_id_reg_h,
6924 			     (addr[0] << 8) | addr[1]);
6925 	}
6926 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
6927 			 V_MAGICEN(addr != NULL));
6928 }
6929 
6930 /**
6931  *	t4_wol_pat_enable - enable/disable pattern-based WoL
6932  *	@adap: the adapter
6933  *	@port: the physical port index
6934  *	@map: bitmap of which HW pattern filters to set
6935  *	@mask0: byte mask for bytes 0-63 of a packet
6936  *	@mask1: byte mask for bytes 64-127 of a packet
6937  *	@crc: Ethernet CRC for selected bytes
6938  *	@enable: enable/disable switch
6939  *
6940  *	Sets the pattern filters indicated in @map to mask out the bytes
6941  *	specified in @mask0/@mask1 in received packets and compare the CRC of
6942  *	the resulting packet against @crc.  If @enable is %true pattern-based
6943  *	WoL is enabled, otherwise disabled.
6944  */
6945 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
6946 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
6947 {
6948 	int i;
6949 	u32 port_cfg_reg;
6950 
6951 	if (is_t4(adap))
6952 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6953 	else
6954 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6955 
6956 	if (!enable) {
6957 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
6958 		return 0;
6959 	}
6960 	if (map > 0xff)
6961 		return -EINVAL;
6962 
6963 #define EPIO_REG(name) \
6964 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
6965 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
6966 
6967 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
6968 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
6969 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
6970 
6971 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
6972 		if (!(map & 1))
6973 			continue;
6974 
6975 		/* write byte masks */
6976 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
6977 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
6978 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6979 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6980 			return -ETIMEDOUT;
6981 
6982 		/* write CRC */
6983 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
6984 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
6985 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6986 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6987 			return -ETIMEDOUT;
6988 	}
6989 #undef EPIO_REG
6990 
6991 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
6992 	return 0;
6993 }
6994 
6995 /*     t4_mk_filtdelwr - create a delete filter WR
6996  *     @ftid: the filter ID
6997  *     @wr: the filter work request to populate
6998  *     @qid: ingress queue to receive the delete notification
6999  *
7000  *     Creates a filter work request to delete the supplied filter.  If @qid is
7001  *     negative the delete notification is suppressed.
7002  */
7003 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
7004 {
7005 	memset(wr, 0, sizeof(*wr));
7006 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
7007 	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
7008 	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
7009 				    V_FW_FILTER_WR_NOREPLY(qid < 0));
7010 	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
7011 	if (qid >= 0)
7012 		wr->rx_chan_rx_rpl_iq =
7013 				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
7014 }
7015 
7016 #define INIT_CMD(var, cmd, rd_wr) do { \
7017 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
7018 					F_FW_CMD_REQUEST | \
7019 					F_FW_CMD_##rd_wr); \
7020 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
7021 } while (0)
7022 
7023 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
7024 			  u32 addr, u32 val)
7025 {
7026 	u32 ldst_addrspace;
7027 	struct fw_ldst_cmd c;
7028 
7029 	memset(&c, 0, sizeof(c));
7030 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
7031 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7032 					F_FW_CMD_REQUEST |
7033 					F_FW_CMD_WRITE |
7034 					ldst_addrspace);
7035 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7036 	c.u.addrval.addr = cpu_to_be32(addr);
7037 	c.u.addrval.val = cpu_to_be32(val);
7038 
7039 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7040 }
7041 
7042 /**
7043  *	t4_mdio_rd - read a PHY register through MDIO
7044  *	@adap: the adapter
7045  *	@mbox: mailbox to use for the FW command
7046  *	@phy_addr: the PHY address
7047  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7048  *	@reg: the register to read
7049  *	@valp: where to store the value
7050  *
7051  *	Issues a FW command through the given mailbox to read a PHY register.
7052  */
7053 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7054 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
7055 {
7056 	int ret;
7057 	u32 ldst_addrspace;
7058 	struct fw_ldst_cmd c;
7059 
7060 	memset(&c, 0, sizeof(c));
7061 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7062 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7063 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7064 					ldst_addrspace);
7065 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7066 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7067 					 V_FW_LDST_CMD_MMD(mmd));
7068 	c.u.mdio.raddr = cpu_to_be16(reg);
7069 
7070 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7071 	if (ret == 0)
7072 		*valp = be16_to_cpu(c.u.mdio.rval);
7073 	return ret;
7074 }
7075 
7076 /**
7077  *	t4_mdio_wr - write a PHY register through MDIO
7078  *	@adap: the adapter
7079  *	@mbox: mailbox to use for the FW command
7080  *	@phy_addr: the PHY address
7081  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7082  *	@reg: the register to write
7083  *	@valp: value to write
7084  *
7085  *	Issues a FW command through the given mailbox to write a PHY register.
7086  */
7087 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7088 	       unsigned int mmd, unsigned int reg, unsigned int val)
7089 {
7090 	u32 ldst_addrspace;
7091 	struct fw_ldst_cmd c;
7092 
7093 	memset(&c, 0, sizeof(c));
7094 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7095 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7096 					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7097 					ldst_addrspace);
7098 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7099 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7100 					 V_FW_LDST_CMD_MMD(mmd));
7101 	c.u.mdio.raddr = cpu_to_be16(reg);
7102 	c.u.mdio.rval = cpu_to_be16(val);
7103 
7104 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7105 }
7106 
7107 /**
7108  *
7109  *	t4_sge_decode_idma_state - decode the idma state
7110  *	@adap: the adapter
7111  *	@state: the state idma is stuck in
7112  */
7113 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
7114 {
7115 	static const char * const t4_decode[] = {
7116 		"IDMA_IDLE",
7117 		"IDMA_PUSH_MORE_CPL_FIFO",
7118 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7119 		"Not used",
7120 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7121 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7122 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7123 		"IDMA_SEND_FIFO_TO_IMSG",
7124 		"IDMA_FL_REQ_DATA_FL_PREP",
7125 		"IDMA_FL_REQ_DATA_FL",
7126 		"IDMA_FL_DROP",
7127 		"IDMA_FL_H_REQ_HEADER_FL",
7128 		"IDMA_FL_H_SEND_PCIEHDR",
7129 		"IDMA_FL_H_PUSH_CPL_FIFO",
7130 		"IDMA_FL_H_SEND_CPL",
7131 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7132 		"IDMA_FL_H_SEND_IP_HDR",
7133 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7134 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7135 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7136 		"IDMA_FL_D_SEND_PCIEHDR",
7137 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7138 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7139 		"IDMA_FL_SEND_PCIEHDR",
7140 		"IDMA_FL_PUSH_CPL_FIFO",
7141 		"IDMA_FL_SEND_CPL",
7142 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7143 		"IDMA_FL_SEND_PAYLOAD",
7144 		"IDMA_FL_REQ_NEXT_DATA_FL",
7145 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7146 		"IDMA_FL_SEND_PADDING",
7147 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7148 		"IDMA_FL_SEND_FIFO_TO_IMSG",
7149 		"IDMA_FL_REQ_DATAFL_DONE",
7150 		"IDMA_FL_REQ_HEADERFL_DONE",
7151 	};
7152 	static const char * const t5_decode[] = {
7153 		"IDMA_IDLE",
7154 		"IDMA_ALMOST_IDLE",
7155 		"IDMA_PUSH_MORE_CPL_FIFO",
7156 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7157 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7158 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7159 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7160 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7161 		"IDMA_SEND_FIFO_TO_IMSG",
7162 		"IDMA_FL_REQ_DATA_FL",
7163 		"IDMA_FL_DROP",
7164 		"IDMA_FL_DROP_SEND_INC",
7165 		"IDMA_FL_H_REQ_HEADER_FL",
7166 		"IDMA_FL_H_SEND_PCIEHDR",
7167 		"IDMA_FL_H_PUSH_CPL_FIFO",
7168 		"IDMA_FL_H_SEND_CPL",
7169 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7170 		"IDMA_FL_H_SEND_IP_HDR",
7171 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7172 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7173 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7174 		"IDMA_FL_D_SEND_PCIEHDR",
7175 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7176 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7177 		"IDMA_FL_SEND_PCIEHDR",
7178 		"IDMA_FL_PUSH_CPL_FIFO",
7179 		"IDMA_FL_SEND_CPL",
7180 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7181 		"IDMA_FL_SEND_PAYLOAD",
7182 		"IDMA_FL_REQ_NEXT_DATA_FL",
7183 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7184 		"IDMA_FL_SEND_PADDING",
7185 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7186 	};
7187 	static const char * const t6_decode[] = {
7188 		"IDMA_IDLE",
7189 		"IDMA_PUSH_MORE_CPL_FIFO",
7190 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7191 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7192 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7193 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7194 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7195 		"IDMA_FL_REQ_DATA_FL",
7196 		"IDMA_FL_DROP",
7197 		"IDMA_FL_DROP_SEND_INC",
7198 		"IDMA_FL_H_REQ_HEADER_FL",
7199 		"IDMA_FL_H_SEND_PCIEHDR",
7200 		"IDMA_FL_H_PUSH_CPL_FIFO",
7201 		"IDMA_FL_H_SEND_CPL",
7202 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7203 		"IDMA_FL_H_SEND_IP_HDR",
7204 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7205 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7206 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7207 		"IDMA_FL_D_SEND_PCIEHDR",
7208 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7209 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7210 		"IDMA_FL_SEND_PCIEHDR",
7211 		"IDMA_FL_PUSH_CPL_FIFO",
7212 		"IDMA_FL_SEND_CPL",
7213 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7214 		"IDMA_FL_SEND_PAYLOAD",
7215 		"IDMA_FL_REQ_NEXT_DATA_FL",
7216 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7217 		"IDMA_FL_SEND_PADDING",
7218 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7219 	};
7220 	static const u32 sge_regs[] = {
7221 		A_SGE_DEBUG_DATA_LOW_INDEX_2,
7222 		A_SGE_DEBUG_DATA_LOW_INDEX_3,
7223 		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
7224 	};
7225 	const char * const *sge_idma_decode;
7226 	int sge_idma_decode_nstates;
7227 	int i;
7228 	unsigned int chip_version = chip_id(adapter);
7229 
7230 	/* Select the right set of decode strings to dump depending on the
7231 	 * adapter chip type.
7232 	 */
7233 	switch (chip_version) {
7234 	case CHELSIO_T4:
7235 		sge_idma_decode = (const char * const *)t4_decode;
7236 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
7237 		break;
7238 
7239 	case CHELSIO_T5:
7240 		sge_idma_decode = (const char * const *)t5_decode;
7241 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
7242 		break;
7243 
7244 	case CHELSIO_T6:
7245 		sge_idma_decode = (const char * const *)t6_decode;
7246 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
7247 		break;
7248 
7249 	default:
7250 		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
7251 		return;
7252 	}
7253 
7254 	if (state < sge_idma_decode_nstates)
7255 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
7256 	else
7257 		CH_WARN(adapter, "idma state %d unknown\n", state);
7258 
7259 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
7260 		CH_WARN(adapter, "SGE register %#x value %#x\n",
7261 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
7262 }
7263 
7264 /**
7265  *      t4_sge_ctxt_flush - flush the SGE context cache
7266  *      @adap: the adapter
7267  *      @mbox: mailbox to use for the FW command
7268  *
7269  *      Issues a FW command through the given mailbox to flush the
7270  *      SGE context cache.
7271  */
7272 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
7273 {
7274 	int ret;
7275 	u32 ldst_addrspace;
7276 	struct fw_ldst_cmd c;
7277 
7278 	memset(&c, 0, sizeof(c));
7279 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
7280 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7281 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7282 					ldst_addrspace);
7283 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7284 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
7285 
7286 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7287 	return ret;
7288 }
7289 
7290 /**
7291  *      t4_fw_hello - establish communication with FW
7292  *      @adap: the adapter
7293  *      @mbox: mailbox to use for the FW command
7294  *      @evt_mbox: mailbox to receive async FW events
7295  *      @master: specifies the caller's willingness to be the device master
7296  *	@state: returns the current device state (if non-NULL)
7297  *
7298  *	Issues a command to establish communication with FW.  Returns either
7299  *	an error (negative integer) or the mailbox of the Master PF.
7300  */
7301 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
7302 		enum dev_master master, enum dev_state *state)
7303 {
7304 	int ret;
7305 	struct fw_hello_cmd c;
7306 	u32 v;
7307 	unsigned int master_mbox;
7308 	int retries = FW_CMD_HELLO_RETRIES;
7309 
7310 retry:
7311 	memset(&c, 0, sizeof(c));
7312 	INIT_CMD(c, HELLO, WRITE);
7313 	c.err_to_clearinit = cpu_to_be32(
7314 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
7315 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
7316 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
7317 					mbox : M_FW_HELLO_CMD_MBMASTER) |
7318 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
7319 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
7320 		F_FW_HELLO_CMD_CLEARINIT);
7321 
7322 	/*
7323 	 * Issue the HELLO command to the firmware.  If it's not successful
7324 	 * but indicates that we got a "busy" or "timeout" condition, retry
7325 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
7326 	 * retry limit, check to see if the firmware left us any error
7327 	 * information and report that if so ...
7328 	 */
7329 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7330 	if (ret != FW_SUCCESS) {
7331 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
7332 			goto retry;
7333 		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
7334 			t4_report_fw_error(adap);
7335 		return ret;
7336 	}
7337 
7338 	v = be32_to_cpu(c.err_to_clearinit);
7339 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
7340 	if (state) {
7341 		if (v & F_FW_HELLO_CMD_ERR)
7342 			*state = DEV_STATE_ERR;
7343 		else if (v & F_FW_HELLO_CMD_INIT)
7344 			*state = DEV_STATE_INIT;
7345 		else
7346 			*state = DEV_STATE_UNINIT;
7347 	}
7348 
7349 	/*
7350 	 * If we're not the Master PF then we need to wait around for the
7351 	 * Master PF Driver to finish setting up the adapter.
7352 	 *
7353 	 * Note that we also do this wait if we're a non-Master-capable PF and
7354 	 * there is no current Master PF; a Master PF may show up momentarily
7355 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
7356 	 * OS loads lots of different drivers rapidly at the same time).  In
7357 	 * this case, the Master PF returned by the firmware will be
7358 	 * M_PCIE_FW_MASTER so the test below will work ...
7359 	 */
7360 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
7361 	    master_mbox != mbox) {
7362 		int waiting = FW_CMD_HELLO_TIMEOUT;
7363 
7364 		/*
7365 		 * Wait for the firmware to either indicate an error or
7366 		 * initialized state.  If we see either of these we bail out
7367 		 * and report the issue to the caller.  If we exhaust the
7368 		 * "hello timeout" and we haven't exhausted our retries, try
7369 		 * again.  Otherwise bail with a timeout error.
7370 		 */
7371 		for (;;) {
7372 			u32 pcie_fw;
7373 
7374 			msleep(50);
7375 			waiting -= 50;
7376 
7377 			/*
7378 			 * If neither Error nor Initialialized are indicated
7379 			 * by the firmware keep waiting till we exhaust our
7380 			 * timeout ... and then retry if we haven't exhausted
7381 			 * our retries ...
7382 			 */
7383 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
7384 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
7385 				if (waiting <= 0) {
7386 					if (retries-- > 0)
7387 						goto retry;
7388 
7389 					return -ETIMEDOUT;
7390 				}
7391 				continue;
7392 			}
7393 
7394 			/*
7395 			 * We either have an Error or Initialized condition
7396 			 * report errors preferentially.
7397 			 */
7398 			if (state) {
7399 				if (pcie_fw & F_PCIE_FW_ERR)
7400 					*state = DEV_STATE_ERR;
7401 				else if (pcie_fw & F_PCIE_FW_INIT)
7402 					*state = DEV_STATE_INIT;
7403 			}
7404 
7405 			/*
7406 			 * If we arrived before a Master PF was selected and
7407 			 * there's not a valid Master PF, grab its identity
7408 			 * for our caller.
7409 			 */
7410 			if (master_mbox == M_PCIE_FW_MASTER &&
7411 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
7412 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
7413 			break;
7414 		}
7415 	}
7416 
7417 	return master_mbox;
7418 }
7419 
7420 /**
7421  *	t4_fw_bye - end communication with FW
7422  *	@adap: the adapter
7423  *	@mbox: mailbox to use for the FW command
7424  *
7425  *	Issues a command to terminate communication with FW.
7426  */
7427 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
7428 {
7429 	struct fw_bye_cmd c;
7430 
7431 	memset(&c, 0, sizeof(c));
7432 	INIT_CMD(c, BYE, WRITE);
7433 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7434 }
7435 
7436 /**
7437  *	t4_fw_reset - issue a reset to FW
7438  *	@adap: the adapter
7439  *	@mbox: mailbox to use for the FW command
7440  *	@reset: specifies the type of reset to perform
7441  *
7442  *	Issues a reset command of the specified type to FW.
7443  */
7444 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7445 {
7446 	struct fw_reset_cmd c;
7447 
7448 	memset(&c, 0, sizeof(c));
7449 	INIT_CMD(c, RESET, WRITE);
7450 	c.val = cpu_to_be32(reset);
7451 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7452 }
7453 
7454 /**
7455  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7456  *	@adap: the adapter
7457  *	@mbox: mailbox to use for the FW RESET command (if desired)
7458  *	@force: force uP into RESET even if FW RESET command fails
7459  *
7460  *	Issues a RESET command to firmware (if desired) with a HALT indication
7461  *	and then puts the microprocessor into RESET state.  The RESET command
7462  *	will only be issued if a legitimate mailbox is provided (mbox <=
7463  *	M_PCIE_FW_MASTER).
7464  *
7465  *	This is generally used in order for the host to safely manipulate the
7466  *	adapter without fear of conflicting with whatever the firmware might
7467  *	be doing.  The only way out of this state is to RESTART the firmware
7468  *	...
7469  */
7470 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7471 {
7472 	int ret = 0;
7473 
7474 	/*
7475 	 * If a legitimate mailbox is provided, issue a RESET command
7476 	 * with a HALT indication.
7477 	 */
7478 	if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) {
7479 		struct fw_reset_cmd c;
7480 
7481 		memset(&c, 0, sizeof(c));
7482 		INIT_CMD(c, RESET, WRITE);
7483 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
7484 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
7485 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7486 	}
7487 
7488 	/*
7489 	 * Normally we won't complete the operation if the firmware RESET
7490 	 * command fails but if our caller insists we'll go ahead and put the
7491 	 * uP into RESET.  This can be useful if the firmware is hung or even
7492 	 * missing ...  We'll have to take the risk of putting the uP into
7493 	 * RESET without the cooperation of firmware in that case.
7494 	 *
7495 	 * We also force the firmware's HALT flag to be on in case we bypassed
7496 	 * the firmware RESET command above or we're dealing with old firmware
7497 	 * which doesn't have the HALT capability.  This will serve as a flag
7498 	 * for the incoming firmware to know that it's coming out of a HALT
7499 	 * rather than a RESET ... if it's new enough to understand that ...
7500 	 */
7501 	if (ret == 0 || force) {
7502 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
7503 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
7504 				 F_PCIE_FW_HALT);
7505 	}
7506 
7507 	/*
7508 	 * And we always return the result of the firmware RESET command
7509 	 * even when we force the uP into RESET ...
7510 	 */
7511 	return ret;
7512 }
7513 
7514 /**
7515  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
7516  *	@adap: the adapter
7517  *
7518  *	Restart firmware previously halted by t4_fw_halt().  On successful
7519  *	return the previous PF Master remains as the new PF Master and there
7520  *	is no need to issue a new HELLO command, etc.
7521  */
7522 int t4_fw_restart(struct adapter *adap, unsigned int mbox)
7523 {
7524 	int ms;
7525 
7526 	t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
7527 	for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7528 		if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
7529 			return FW_SUCCESS;
7530 		msleep(100);
7531 		ms += 100;
7532 	}
7533 
7534 	return -ETIMEDOUT;
7535 }
7536 
7537 /**
7538  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7539  *	@adap: the adapter
7540  *	@mbox: mailbox to use for the FW RESET command (if desired)
7541  *	@fw_data: the firmware image to write
7542  *	@size: image size
7543  *	@force: force upgrade even if firmware doesn't cooperate
7544  *
7545  *	Perform all of the steps necessary for upgrading an adapter's
7546  *	firmware image.  Normally this requires the cooperation of the
7547  *	existing firmware in order to halt all existing activities
7548  *	but if an invalid mailbox token is passed in we skip that step
7549  *	(though we'll still put the adapter microprocessor into RESET in
7550  *	that case).
7551  *
7552  *	On successful return the new firmware will have been loaded and
7553  *	the adapter will have been fully RESET losing all previous setup
7554  *	state.  On unsuccessful return the adapter may be completely hosed ...
7555  *	positive errno indicates that the adapter is ~probably~ intact, a
7556  *	negative errno indicates that things are looking bad ...
7557  */
7558 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7559 		  const u8 *fw_data, unsigned int size, int force)
7560 {
7561 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7562 	unsigned int bootstrap =
7563 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
7564 	int ret;
7565 
7566 	if (!t4_fw_matches_chip(adap, fw_hdr))
7567 		return -EINVAL;
7568 
7569 	if (!bootstrap) {
7570 		ret = t4_fw_halt(adap, mbox, force);
7571 		if (ret < 0 && !force)
7572 			return ret;
7573 	}
7574 
7575 	ret = t4_load_fw(adap, fw_data, size);
7576 	if (ret < 0 || bootstrap)
7577 		return ret;
7578 
7579 	return t4_fw_restart(adap, mbox);
7580 }
7581 
7582 /**
7583  *	t4_fw_initialize - ask FW to initialize the device
7584  *	@adap: the adapter
7585  *	@mbox: mailbox to use for the FW command
7586  *
7587  *	Issues a command to FW to partially initialize the device.  This
7588  *	performs initialization that generally doesn't depend on user input.
7589  */
7590 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7591 {
7592 	struct fw_initialize_cmd c;
7593 
7594 	memset(&c, 0, sizeof(c));
7595 	INIT_CMD(c, INITIALIZE, WRITE);
7596 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7597 }
7598 
7599 /**
7600  *	t4_query_params_rw - query FW or device parameters
7601  *	@adap: the adapter
7602  *	@mbox: mailbox to use for the FW command
7603  *	@pf: the PF
7604  *	@vf: the VF
7605  *	@nparams: the number of parameters
7606  *	@params: the parameter names
7607  *	@val: the parameter values
7608  *	@rw: Write and read flag
7609  *
7610  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7611  *	queried at once.
7612  */
7613 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7614 		       unsigned int vf, unsigned int nparams, const u32 *params,
7615 		       u32 *val, int rw)
7616 {
7617 	int i, ret;
7618 	struct fw_params_cmd c;
7619 	__be32 *p = &c.param[0].mnem;
7620 
7621 	if (nparams > 7)
7622 		return -EINVAL;
7623 
7624 	memset(&c, 0, sizeof(c));
7625 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7626 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
7627 				  V_FW_PARAMS_CMD_PFN(pf) |
7628 				  V_FW_PARAMS_CMD_VFN(vf));
7629 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7630 
7631 	for (i = 0; i < nparams; i++) {
7632 		*p++ = cpu_to_be32(*params++);
7633 		if (rw)
7634 			*p = cpu_to_be32(*(val + i));
7635 		p++;
7636 	}
7637 
7638 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7639 	if (ret == 0)
7640 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7641 			*val++ = be32_to_cpu(*p);
7642 	return ret;
7643 }
7644 
7645 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7646 		    unsigned int vf, unsigned int nparams, const u32 *params,
7647 		    u32 *val)
7648 {
7649 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
7650 }
7651 
7652 /**
7653  *      t4_set_params_timeout - sets FW or device parameters
7654  *      @adap: the adapter
7655  *      @mbox: mailbox to use for the FW command
7656  *      @pf: the PF
7657  *      @vf: the VF
7658  *      @nparams: the number of parameters
7659  *      @params: the parameter names
7660  *      @val: the parameter values
7661  *      @timeout: the timeout time
7662  *
7663  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7664  *      specified at once.
7665  */
7666 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7667 			  unsigned int pf, unsigned int vf,
7668 			  unsigned int nparams, const u32 *params,
7669 			  const u32 *val, int timeout)
7670 {
7671 	struct fw_params_cmd c;
7672 	__be32 *p = &c.param[0].mnem;
7673 
7674 	if (nparams > 7)
7675 		return -EINVAL;
7676 
7677 	memset(&c, 0, sizeof(c));
7678 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7679 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7680 				  V_FW_PARAMS_CMD_PFN(pf) |
7681 				  V_FW_PARAMS_CMD_VFN(vf));
7682 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7683 
7684 	while (nparams--) {
7685 		*p++ = cpu_to_be32(*params++);
7686 		*p++ = cpu_to_be32(*val++);
7687 	}
7688 
7689 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7690 }
7691 
7692 /**
7693  *	t4_set_params - sets FW or device parameters
7694  *	@adap: the adapter
7695  *	@mbox: mailbox to use for the FW command
7696  *	@pf: the PF
7697  *	@vf: the VF
7698  *	@nparams: the number of parameters
7699  *	@params: the parameter names
7700  *	@val: the parameter values
7701  *
7702  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7703  *	specified at once.
7704  */
7705 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7706 		  unsigned int vf, unsigned int nparams, const u32 *params,
7707 		  const u32 *val)
7708 {
7709 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7710 				     FW_CMD_MAX_TIMEOUT);
7711 }
7712 
7713 /**
7714  *	t4_cfg_pfvf - configure PF/VF resource limits
7715  *	@adap: the adapter
7716  *	@mbox: mailbox to use for the FW command
7717  *	@pf: the PF being configured
7718  *	@vf: the VF being configured
7719  *	@txq: the max number of egress queues
7720  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7721  *	@rxqi: the max number of interrupt-capable ingress queues
7722  *	@rxq: the max number of interruptless ingress queues
7723  *	@tc: the PCI traffic class
7724  *	@vi: the max number of virtual interfaces
7725  *	@cmask: the channel access rights mask for the PF/VF
7726  *	@pmask: the port access rights mask for the PF/VF
7727  *	@nexact: the maximum number of exact MPS filters
7728  *	@rcaps: read capabilities
7729  *	@wxcaps: write/execute capabilities
7730  *
7731  *	Configures resource limits and capabilities for a physical or virtual
7732  *	function.
7733  */
7734 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7735 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7736 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7737 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7738 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7739 {
7740 	struct fw_pfvf_cmd c;
7741 
7742 	memset(&c, 0, sizeof(c));
7743 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7744 				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7745 				  V_FW_PFVF_CMD_VFN(vf));
7746 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7747 	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7748 				     V_FW_PFVF_CMD_NIQ(rxq));
7749 	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7750 				    V_FW_PFVF_CMD_PMASK(pmask) |
7751 				    V_FW_PFVF_CMD_NEQ(txq));
7752 	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7753 				      V_FW_PFVF_CMD_NVI(vi) |
7754 				      V_FW_PFVF_CMD_NEXACTF(nexact));
7755 	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7756 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7757 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7758 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7759 }
7760 
7761 /**
7762  *	t4_alloc_vi_func - allocate a virtual interface
7763  *	@adap: the adapter
7764  *	@mbox: mailbox to use for the FW command
7765  *	@port: physical port associated with the VI
7766  *	@pf: the PF owning the VI
7767  *	@vf: the VF owning the VI
7768  *	@nmac: number of MAC addresses needed (1 to 5)
7769  *	@mac: the MAC addresses of the VI
7770  *	@rss_size: size of RSS table slice associated with this VI
7771  *	@portfunc: which Port Application Function MAC Address is desired
7772  *	@idstype: Intrusion Detection Type
7773  *
7774  *	Allocates a virtual interface for the given physical port.  If @mac is
7775  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7776  *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7777  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7778  *	stored consecutively so the space needed is @nmac * 6 bytes.
7779  *	Returns a negative error number or the non-negative VI id.
7780  */
7781 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7782 		     unsigned int port, unsigned int pf, unsigned int vf,
7783 		     unsigned int nmac, u8 *mac, u16 *rss_size,
7784 		     unsigned int portfunc, unsigned int idstype)
7785 {
7786 	int ret;
7787 	struct fw_vi_cmd c;
7788 
7789 	memset(&c, 0, sizeof(c));
7790 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7791 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7792 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7793 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7794 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7795 				     V_FW_VI_CMD_FUNC(portfunc));
7796 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7797 	c.nmac = nmac - 1;
7798 	if(!rss_size)
7799 		c.norss_rsssize = F_FW_VI_CMD_NORSS;
7800 
7801 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7802 	if (ret)
7803 		return ret;
7804 
7805 	if (mac) {
7806 		memcpy(mac, c.mac, sizeof(c.mac));
7807 		switch (nmac) {
7808 		case 5:
7809 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7810 		case 4:
7811 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7812 		case 3:
7813 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7814 		case 2:
7815 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7816 		}
7817 	}
7818 	if (rss_size)
7819 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
7820 	return G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7821 }
7822 
7823 /**
7824  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
7825  *      @adap: the adapter
7826  *      @mbox: mailbox to use for the FW command
7827  *      @port: physical port associated with the VI
7828  *      @pf: the PF owning the VI
7829  *      @vf: the VF owning the VI
7830  *      @nmac: number of MAC addresses needed (1 to 5)
7831  *      @mac: the MAC addresses of the VI
7832  *      @rss_size: size of RSS table slice associated with this VI
7833  *
7834  *	backwards compatible and convieniance routine to allocate a Virtual
7835  *	Interface with a Ethernet Port Application Function and Intrustion
7836  *	Detection System disabled.
7837  */
7838 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7839 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7840 		u16 *rss_size)
7841 {
7842 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
7843 				FW_VI_FUNC_ETH, 0);
7844 }
7845 
7846 /**
7847  * 	t4_free_vi - free a virtual interface
7848  * 	@adap: the adapter
7849  * 	@mbox: mailbox to use for the FW command
7850  * 	@pf: the PF owning the VI
7851  * 	@vf: the VF owning the VI
7852  * 	@viid: virtual interface identifiler
7853  *
7854  * 	Free a previously allocated virtual interface.
7855  */
7856 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7857 	       unsigned int vf, unsigned int viid)
7858 {
7859 	struct fw_vi_cmd c;
7860 
7861 	memset(&c, 0, sizeof(c));
7862 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
7863 				  F_FW_CMD_REQUEST |
7864 				  F_FW_CMD_EXEC |
7865 				  V_FW_VI_CMD_PFN(pf) |
7866 				  V_FW_VI_CMD_VFN(vf));
7867 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
7868 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
7869 
7870 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7871 }
7872 
7873 /**
7874  *	t4_set_rxmode - set Rx properties of a virtual interface
7875  *	@adap: the adapter
7876  *	@mbox: mailbox to use for the FW command
7877  *	@viid: the VI id
7878  *	@mtu: the new MTU or -1
7879  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7880  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7881  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7882  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7883  *	@sleep_ok: if true we may sleep while awaiting command completion
7884  *
7885  *	Sets Rx properties of a virtual interface.
7886  */
7887 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7888 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7889 		  bool sleep_ok)
7890 {
7891 	struct fw_vi_rxmode_cmd c;
7892 
7893 	/* convert to FW values */
7894 	if (mtu < 0)
7895 		mtu = M_FW_VI_RXMODE_CMD_MTU;
7896 	if (promisc < 0)
7897 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
7898 	if (all_multi < 0)
7899 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
7900 	if (bcast < 0)
7901 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
7902 	if (vlanex < 0)
7903 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
7904 
7905 	memset(&c, 0, sizeof(c));
7906 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
7907 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7908 				   V_FW_VI_RXMODE_CMD_VIID(viid));
7909 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7910 	c.mtu_to_vlanexen =
7911 		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
7912 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
7913 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
7914 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
7915 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
7916 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7917 }
7918 
7919 /**
7920  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7921  *	@adap: the adapter
7922  *	@mbox: mailbox to use for the FW command
7923  *	@viid: the VI id
7924  *	@free: if true any existing filters for this VI id are first removed
7925  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7926  *	@addr: the MAC address(es)
7927  *	@idx: where to store the index of each allocated filter
7928  *	@hash: pointer to hash address filter bitmap
7929  *	@sleep_ok: call is allowed to sleep
7930  *
7931  *	Allocates an exact-match filter for each of the supplied addresses and
7932  *	sets it to the corresponding address.  If @idx is not %NULL it should
7933  *	have at least @naddr entries, each of which will be set to the index of
7934  *	the filter allocated for the corresponding MAC address.  If a filter
7935  *	could not be allocated for an address its index is set to 0xffff.
7936  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7937  *	are hashed and update the hash filter bitmap pointed at by @hash.
7938  *
7939  *	Returns a negative error number or the number of filters allocated.
7940  */
7941 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7942 		      unsigned int viid, bool free, unsigned int naddr,
7943 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7944 {
7945 	int offset, ret = 0;
7946 	struct fw_vi_mac_cmd c;
7947 	unsigned int nfilters = 0;
7948 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
7949 	unsigned int rem = naddr;
7950 
7951 	if (naddr > max_naddr)
7952 		return -EINVAL;
7953 
7954 	for (offset = 0; offset < naddr ; /**/) {
7955 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7956 					 ? rem
7957 					 : ARRAY_SIZE(c.u.exact));
7958 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7959 						     u.exact[fw_naddr]), 16);
7960 		struct fw_vi_mac_exact *p;
7961 		int i;
7962 
7963 		memset(&c, 0, sizeof(c));
7964 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7965 					   F_FW_CMD_REQUEST |
7966 					   F_FW_CMD_WRITE |
7967 					   V_FW_CMD_EXEC(free) |
7968 					   V_FW_VI_MAC_CMD_VIID(viid));
7969 		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
7970 						  V_FW_CMD_LEN16(len16));
7971 
7972 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7973 			p->valid_to_idx =
7974 				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7975 					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
7976 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7977 		}
7978 
7979 		/*
7980 		 * It's okay if we run out of space in our MAC address arena.
7981 		 * Some of the addresses we submit may get stored so we need
7982 		 * to run through the reply to see what the results were ...
7983 		 */
7984 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7985 		if (ret && ret != -FW_ENOMEM)
7986 			break;
7987 
7988 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7989 			u16 index = G_FW_VI_MAC_CMD_IDX(
7990 						be16_to_cpu(p->valid_to_idx));
7991 
7992 			if (idx)
7993 				idx[offset+i] = (index >=  max_naddr
7994 						 ? 0xffff
7995 						 : index);
7996 			if (index < max_naddr)
7997 				nfilters++;
7998 			else if (hash)
7999 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
8000 		}
8001 
8002 		free = false;
8003 		offset += fw_naddr;
8004 		rem -= fw_naddr;
8005 	}
8006 
8007 	if (ret == 0 || ret == -FW_ENOMEM)
8008 		ret = nfilters;
8009 	return ret;
8010 }
8011 
8012 /**
8013  *	t4_change_mac - modifies the exact-match filter for a MAC address
8014  *	@adap: the adapter
8015  *	@mbox: mailbox to use for the FW command
8016  *	@viid: the VI id
8017  *	@idx: index of existing filter for old value of MAC address, or -1
8018  *	@addr: the new MAC address value
8019  *	@persist: whether a new MAC allocation should be persistent
8020  *	@add_smt: if true also add the address to the HW SMT
8021  *
8022  *	Modifies an exact-match filter and sets it to the new MAC address if
8023  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
8024  *	latter case the address is added persistently if @persist is %true.
8025  *
8026  *	Note that in general it is not possible to modify the value of a given
8027  *	filter so the generic way to modify an address filter is to free the one
8028  *	being used by the old address value and allocate a new filter for the
8029  *	new address value.
8030  *
8031  *	Returns a negative error number or the index of the filter with the new
8032  *	MAC value.  Note that this index may differ from @idx.
8033  */
8034 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8035 		  int idx, const u8 *addr, bool persist, bool add_smt)
8036 {
8037 	int ret, mode;
8038 	struct fw_vi_mac_cmd c;
8039 	struct fw_vi_mac_exact *p = c.u.exact;
8040 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
8041 
8042 	if (idx < 0)		/* new allocation */
8043 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8044 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8045 
8046 	memset(&c, 0, sizeof(c));
8047 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8048 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8049 				   V_FW_VI_MAC_CMD_VIID(viid));
8050 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
8051 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8052 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
8053 				      V_FW_VI_MAC_CMD_IDX(idx));
8054 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8055 
8056 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8057 	if (ret == 0) {
8058 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8059 		if (ret >= max_mac_addr)
8060 			ret = -ENOMEM;
8061 	}
8062 	return ret;
8063 }
8064 
8065 /**
8066  *	t4_set_addr_hash - program the MAC inexact-match hash filter
8067  *	@adap: the adapter
8068  *	@mbox: mailbox to use for the FW command
8069  *	@viid: the VI id
8070  *	@ucast: whether the hash filter should also match unicast addresses
8071  *	@vec: the value to be written to the hash filter
8072  *	@sleep_ok: call is allowed to sleep
8073  *
8074  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8075  */
8076 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8077 		     bool ucast, u64 vec, bool sleep_ok)
8078 {
8079 	struct fw_vi_mac_cmd c;
8080 	u32 val;
8081 
8082 	memset(&c, 0, sizeof(c));
8083 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8084 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8085 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8086 	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
8087 	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
8088 	c.freemacs_to_len16 = cpu_to_be32(val);
8089 	c.u.hash.hashvec = cpu_to_be64(vec);
8090 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8091 }
8092 
8093 /**
8094  *      t4_enable_vi_params - enable/disable a virtual interface
8095  *      @adap: the adapter
8096  *      @mbox: mailbox to use for the FW command
8097  *      @viid: the VI id
8098  *      @rx_en: 1=enable Rx, 0=disable Rx
8099  *      @tx_en: 1=enable Tx, 0=disable Tx
8100  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8101  *
8102  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8103  *      only makes sense when enabling a Virtual Interface ...
8104  */
8105 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8106 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8107 {
8108 	struct fw_vi_enable_cmd c;
8109 
8110 	memset(&c, 0, sizeof(c));
8111 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8112 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8113 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8114 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
8115 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
8116 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
8117 				     FW_LEN16(c));
8118 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8119 }
8120 
8121 /**
8122  *	t4_enable_vi - enable/disable a virtual interface
8123  *	@adap: the adapter
8124  *	@mbox: mailbox to use for the FW command
8125  *	@viid: the VI id
8126  *	@rx_en: 1=enable Rx, 0=disable Rx
8127  *	@tx_en: 1=enable Tx, 0=disable Tx
8128  *
8129  *	Enables/disables a virtual interface.  Note that setting DCB Enable
8130  *	only makes sense when enabling a Virtual Interface ...
8131  */
8132 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8133 		 bool rx_en, bool tx_en)
8134 {
8135 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8136 }
8137 
8138 /**
8139  *	t4_identify_port - identify a VI's port by blinking its LED
8140  *	@adap: the adapter
8141  *	@mbox: mailbox to use for the FW command
8142  *	@viid: the VI id
8143  *	@nblinks: how many times to blink LED at 2.5 Hz
8144  *
8145  *	Identifies a VI's port by blinking its LED.
8146  */
8147 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8148 		     unsigned int nblinks)
8149 {
8150 	struct fw_vi_enable_cmd c;
8151 
8152 	memset(&c, 0, sizeof(c));
8153 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8154 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8155 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8156 	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
8157 	c.blinkdur = cpu_to_be16(nblinks);
8158 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8159 }
8160 
8161 /**
8162  *	t4_iq_stop - stop an ingress queue and its FLs
8163  *	@adap: the adapter
8164  *	@mbox: mailbox to use for the FW command
8165  *	@pf: the PF owning the queues
8166  *	@vf: the VF owning the queues
8167  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8168  *	@iqid: ingress queue id
8169  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8170  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8171  *
8172  *	Stops an ingress queue and its associated FLs, if any.  This causes
8173  *	any current or future data/messages destined for these queues to be
8174  *	tossed.
8175  */
8176 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8177 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8178 	       unsigned int fl0id, unsigned int fl1id)
8179 {
8180 	struct fw_iq_cmd c;
8181 
8182 	memset(&c, 0, sizeof(c));
8183 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8184 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8185 				  V_FW_IQ_CMD_VFN(vf));
8186 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
8187 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8188 	c.iqid = cpu_to_be16(iqid);
8189 	c.fl0id = cpu_to_be16(fl0id);
8190 	c.fl1id = cpu_to_be16(fl1id);
8191 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8192 }
8193 
8194 /**
8195  *	t4_iq_free - free an ingress queue and its FLs
8196  *	@adap: the adapter
8197  *	@mbox: mailbox to use for the FW command
8198  *	@pf: the PF owning the queues
8199  *	@vf: the VF owning the queues
8200  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8201  *	@iqid: ingress queue id
8202  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8203  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8204  *
8205  *	Frees an ingress queue and its associated FLs, if any.
8206  */
8207 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8208 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8209 	       unsigned int fl0id, unsigned int fl1id)
8210 {
8211 	struct fw_iq_cmd c;
8212 
8213 	memset(&c, 0, sizeof(c));
8214 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8215 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8216 				  V_FW_IQ_CMD_VFN(vf));
8217 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
8218 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8219 	c.iqid = cpu_to_be16(iqid);
8220 	c.fl0id = cpu_to_be16(fl0id);
8221 	c.fl1id = cpu_to_be16(fl1id);
8222 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8223 }
8224 
8225 /**
8226  *	t4_eth_eq_free - free an Ethernet egress queue
8227  *	@adap: the adapter
8228  *	@mbox: mailbox to use for the FW command
8229  *	@pf: the PF owning the queue
8230  *	@vf: the VF owning the queue
8231  *	@eqid: egress queue id
8232  *
8233  *	Frees an Ethernet egress queue.
8234  */
8235 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8236 		   unsigned int vf, unsigned int eqid)
8237 {
8238 	struct fw_eq_eth_cmd c;
8239 
8240 	memset(&c, 0, sizeof(c));
8241 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8242 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8243 				  V_FW_EQ_ETH_CMD_PFN(pf) |
8244 				  V_FW_EQ_ETH_CMD_VFN(vf));
8245 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
8246 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8247 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8248 }
8249 
8250 /**
8251  *	t4_ctrl_eq_free - free a control egress queue
8252  *	@adap: the adapter
8253  *	@mbox: mailbox to use for the FW command
8254  *	@pf: the PF owning the queue
8255  *	@vf: the VF owning the queue
8256  *	@eqid: egress queue id
8257  *
8258  *	Frees a control egress queue.
8259  */
8260 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8261 		    unsigned int vf, unsigned int eqid)
8262 {
8263 	struct fw_eq_ctrl_cmd c;
8264 
8265 	memset(&c, 0, sizeof(c));
8266 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
8267 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8268 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
8269 				  V_FW_EQ_CTRL_CMD_VFN(vf));
8270 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
8271 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
8272 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8273 }
8274 
8275 /**
8276  *	t4_ofld_eq_free - free an offload egress queue
8277  *	@adap: the adapter
8278  *	@mbox: mailbox to use for the FW command
8279  *	@pf: the PF owning the queue
8280  *	@vf: the VF owning the queue
8281  *	@eqid: egress queue id
8282  *
8283  *	Frees a control egress queue.
8284  */
8285 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8286 		    unsigned int vf, unsigned int eqid)
8287 {
8288 	struct fw_eq_ofld_cmd c;
8289 
8290 	memset(&c, 0, sizeof(c));
8291 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
8292 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8293 				  V_FW_EQ_OFLD_CMD_PFN(pf) |
8294 				  V_FW_EQ_OFLD_CMD_VFN(vf));
8295 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
8296 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
8297 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8298 }
8299 
8300 /**
8301  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8302  *	@link_down_rc: Link Down Reason Code
8303  *
8304  *	Returns a string representation of the Link Down Reason Code.
8305  */
8306 const char *t4_link_down_rc_str(unsigned char link_down_rc)
8307 {
8308 	static const char *reason[] = {
8309 		"Link Down",
8310 		"Remote Fault",
8311 		"Auto-negotiation Failure",
8312 		"Reserved3",
8313 		"Insufficient Airflow",
8314 		"Unable To Determine Reason",
8315 		"No RX Signal Detected",
8316 		"Reserved7",
8317 	};
8318 
8319 	if (link_down_rc >= ARRAY_SIZE(reason))
8320 		return "Bad Reason Code";
8321 
8322 	return reason[link_down_rc];
8323 }
8324 
8325 /*
8326  * Return the highest speed set in the port capabilities, in Mb/s.
8327  */
8328 unsigned int fwcap_to_speed(uint32_t caps)
8329 {
8330 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8331 		do { \
8332 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8333 				return __speed; \
8334 		} while (0)
8335 
8336 	TEST_SPEED_RETURN(400G, 400000);
8337 	TEST_SPEED_RETURN(200G, 200000);
8338 	TEST_SPEED_RETURN(100G, 100000);
8339 	TEST_SPEED_RETURN(50G,   50000);
8340 	TEST_SPEED_RETURN(40G,   40000);
8341 	TEST_SPEED_RETURN(25G,   25000);
8342 	TEST_SPEED_RETURN(10G,   10000);
8343 	TEST_SPEED_RETURN(1G,     1000);
8344 	TEST_SPEED_RETURN(100M,    100);
8345 
8346 	#undef TEST_SPEED_RETURN
8347 
8348 	return 0;
8349 }
8350 
8351 /*
8352  * Return the port capabilities bit for the given speed, which is in Mb/s.
8353  */
8354 uint32_t speed_to_fwcap(unsigned int speed)
8355 {
8356 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8357 		do { \
8358 			if (speed == __speed) \
8359 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8360 		} while (0)
8361 
8362 	TEST_SPEED_RETURN(400G, 400000);
8363 	TEST_SPEED_RETURN(200G, 200000);
8364 	TEST_SPEED_RETURN(100G, 100000);
8365 	TEST_SPEED_RETURN(50G,   50000);
8366 	TEST_SPEED_RETURN(40G,   40000);
8367 	TEST_SPEED_RETURN(25G,   25000);
8368 	TEST_SPEED_RETURN(10G,   10000);
8369 	TEST_SPEED_RETURN(1G,     1000);
8370 	TEST_SPEED_RETURN(100M,    100);
8371 
8372 	#undef TEST_SPEED_RETURN
8373 
8374 	return 0;
8375 }
8376 
8377 /*
8378  * Return the port capabilities bit for the highest speed in the capabilities.
8379  */
8380 uint32_t fwcap_top_speed(uint32_t caps)
8381 {
8382 	#define TEST_SPEED_RETURN(__caps_speed) \
8383 		do { \
8384 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8385 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8386 		} while (0)
8387 
8388 	TEST_SPEED_RETURN(400G);
8389 	TEST_SPEED_RETURN(200G);
8390 	TEST_SPEED_RETURN(100G);
8391 	TEST_SPEED_RETURN(50G);
8392 	TEST_SPEED_RETURN(40G);
8393 	TEST_SPEED_RETURN(25G);
8394 	TEST_SPEED_RETURN(10G);
8395 	TEST_SPEED_RETURN(1G);
8396 	TEST_SPEED_RETURN(100M);
8397 
8398 	#undef TEST_SPEED_RETURN
8399 
8400 	return 0;
8401 }
8402 
8403 
8404 /**
8405  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8406  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8407  *
8408  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8409  *	32-bit Port Capabilities value.
8410  */
8411 static uint32_t lstatus_to_fwcap(u32 lstatus)
8412 {
8413 	uint32_t linkattr = 0;
8414 
8415 	/*
8416 	 * Unfortunately the format of the Link Status in the old
8417 	 * 16-bit Port Information message isn't the same as the
8418 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8419 	 */
8420 	if (lstatus & F_FW_PORT_CMD_RXPAUSE)
8421 		linkattr |= FW_PORT_CAP32_FC_RX;
8422 	if (lstatus & F_FW_PORT_CMD_TXPAUSE)
8423 		linkattr |= FW_PORT_CAP32_FC_TX;
8424 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
8425 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8426 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
8427 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8428 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
8429 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8430 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
8431 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8432 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
8433 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8434 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
8435 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8436 
8437 	return linkattr;
8438 }
8439 
8440 /*
8441  * Updates all fields owned by the common code in port_info and link_config
8442  * based on information provided by the firmware.  Does not touch any
8443  * requested_* field.
8444  */
8445 static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p,
8446     enum fw_port_action action, bool *mod_changed, bool *link_changed)
8447 {
8448 	struct link_config old_lc, *lc = &pi->link_cfg;
8449 	unsigned char fc, fec;
8450 	u32 stat, linkattr;
8451 	int old_ptype, old_mtype;
8452 
8453 	old_ptype = pi->port_type;
8454 	old_mtype = pi->mod_type;
8455 	old_lc = *lc;
8456 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8457 		stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
8458 
8459 		pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
8460 		pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
8461 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
8462 		    G_FW_PORT_CMD_MDIOADDR(stat) : -1;
8463 
8464 		lc->supported = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap));
8465 		lc->advertising = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap));
8466 		lc->lp_advertising = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap));
8467 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
8468 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
8469 
8470 		linkattr = lstatus_to_fwcap(stat);
8471 	} else if (action == FW_PORT_ACTION_GET_PORT_INFO32) {
8472 		stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32);
8473 
8474 		pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat);
8475 		pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat);
8476 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ?
8477 		    G_FW_PORT_CMD_MDIOADDR32(stat) : -1;
8478 
8479 		lc->supported = be32_to_cpu(p->u.info32.pcaps32);
8480 		lc->advertising = be32_to_cpu(p->u.info32.acaps32);
8481 		lc->lp_advertising = be16_to_cpu(p->u.info32.lpacaps32);
8482 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0;
8483 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat);
8484 
8485 		linkattr = be32_to_cpu(p->u.info32.linkattr32);
8486 	} else {
8487 		CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action);
8488 		return;
8489 	}
8490 
8491 	lc->speed = fwcap_to_speed(linkattr);
8492 
8493 	fc = 0;
8494 	if (linkattr & FW_PORT_CAP32_FC_RX)
8495 		fc |= PAUSE_RX;
8496 	if (linkattr & FW_PORT_CAP32_FC_TX)
8497 		fc |= PAUSE_TX;
8498 	lc->fc = fc;
8499 
8500 	fec = FEC_NONE;
8501 	if (linkattr & FW_PORT_CAP32_FEC_RS)
8502 		fec |= FEC_RS;
8503 	if (linkattr & FW_PORT_CAP32_FEC_BASER_RS)
8504 		fec |= FEC_BASER_RS;
8505 	lc->fec = fec;
8506 
8507 	if (mod_changed != NULL)
8508 		*mod_changed = false;
8509 	if (link_changed != NULL)
8510 		*link_changed = false;
8511 	if (old_ptype != pi->port_type || old_mtype != pi->mod_type ||
8512 	    old_lc.supported != lc->supported) {
8513 		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
8514 			lc->fec_hint = lc->advertising &
8515 			    V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC);
8516 		}
8517 		if (mod_changed != NULL)
8518 			*mod_changed = true;
8519 	}
8520 	if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed ||
8521 	    old_lc.fec != lc->fec || old_lc.fc != lc->fc) {
8522 		if (link_changed != NULL)
8523 			*link_changed = true;
8524 	}
8525 }
8526 
8527 /**
8528  *	t4_update_port_info - retrieve and update port information if changed
8529  *	@pi: the port_info
8530  *
8531  *	We issue a Get Port Information Command to the Firmware and, if
8532  *	successful, we check to see if anything is different from what we
8533  *	last recorded and update things accordingly.
8534  */
8535  int t4_update_port_info(struct port_info *pi)
8536  {
8537 	struct adapter *sc = pi->adapter;
8538 	struct fw_port_cmd cmd;
8539 	enum fw_port_action action;
8540 	int ret;
8541 
8542 	memset(&cmd, 0, sizeof(cmd));
8543 	cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
8544 	    F_FW_CMD_REQUEST | F_FW_CMD_READ |
8545 	    V_FW_PORT_CMD_PORTID(pi->tx_chan));
8546 	action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 :
8547 	    FW_PORT_ACTION_GET_PORT_INFO;
8548 	cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) |
8549 	    FW_LEN16(cmd));
8550 	ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd);
8551 	if (ret)
8552 		return ret;
8553 
8554 	handle_port_info(pi, &cmd, action, NULL, NULL);
8555 	return 0;
8556 }
8557 
8558 /**
8559  *	t4_handle_fw_rpl - process a FW reply message
8560  *	@adap: the adapter
8561  *	@rpl: start of the FW message
8562  *
8563  *	Processes a FW message, such as link state change messages.
8564  */
8565 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8566 {
8567 	u8 opcode = *(const u8 *)rpl;
8568 	const struct fw_port_cmd *p = (const void *)rpl;
8569 	enum fw_port_action action =
8570 	    G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
8571 	bool mod_changed, link_changed;
8572 
8573 	if (opcode == FW_PORT_CMD &&
8574 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8575 	    action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8576 		/* link/module state change message */
8577 		int i;
8578 		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
8579 		struct port_info *pi = NULL;
8580 		struct link_config *lc;
8581 
8582 		for_each_port(adap, i) {
8583 			pi = adap2pinfo(adap, i);
8584 			if (pi->tx_chan == chan)
8585 				break;
8586 		}
8587 
8588 		lc = &pi->link_cfg;
8589 		PORT_LOCK(pi);
8590 		handle_port_info(pi, p, action, &mod_changed, &link_changed);
8591 		PORT_UNLOCK(pi);
8592 		if (mod_changed)
8593 			t4_os_portmod_changed(pi);
8594 		if (link_changed) {
8595 			PORT_LOCK(pi);
8596 			t4_os_link_changed(pi);
8597 			PORT_UNLOCK(pi);
8598 		}
8599 	} else {
8600 		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
8601 		return -EINVAL;
8602 	}
8603 	return 0;
8604 }
8605 
8606 /**
8607  *	get_pci_mode - determine a card's PCI mode
8608  *	@adapter: the adapter
8609  *	@p: where to store the PCI settings
8610  *
8611  *	Determines a card's PCI mode and associated parameters, such as speed
8612  *	and width.
8613  */
8614 static void get_pci_mode(struct adapter *adapter,
8615 				   struct pci_params *p)
8616 {
8617 	u16 val;
8618 	u32 pcie_cap;
8619 
8620 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
8621 	if (pcie_cap) {
8622 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
8623 		p->speed = val & PCI_EXP_LNKSTA_CLS;
8624 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8625 	}
8626 }
8627 
8628 struct flash_desc {
8629 	u32 vendor_and_model_id;
8630 	u32 size_mb;
8631 };
8632 
8633 int t4_get_flash_params(struct adapter *adapter)
8634 {
8635 	/*
8636 	 * Table for non-standard supported Flash parts.  Note, all Flash
8637 	 * parts must have 64KB sectors.
8638 	 */
8639 	static struct flash_desc supported_flash[] = {
8640 		{ 0x00150201, 4 << 20 },	/* Spansion 4MB S25FL032P */
8641 	};
8642 
8643 	int ret;
8644 	u32 flashid = 0;
8645 	unsigned int part, manufacturer;
8646 	unsigned int density, size = 0;
8647 
8648 
8649 	/*
8650 	 * Issue a Read ID Command to the Flash part.  We decode supported
8651 	 * Flash parts and their sizes from this.  There's a newer Query
8652 	 * Command which can retrieve detailed geometry information but many
8653 	 * Flash parts don't support it.
8654 	 */
8655 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
8656 	if (!ret)
8657 		ret = sf1_read(adapter, 3, 0, 1, &flashid);
8658 	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
8659 	if (ret < 0)
8660 		return ret;
8661 
8662 	/*
8663 	 * Check to see if it's one of our non-standard supported Flash parts.
8664 	 */
8665 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8666 		if (supported_flash[part].vendor_and_model_id == flashid) {
8667 			adapter->params.sf_size =
8668 				supported_flash[part].size_mb;
8669 			adapter->params.sf_nsec =
8670 				adapter->params.sf_size / SF_SEC_SIZE;
8671 			goto found;
8672 		}
8673 
8674 	/*
8675 	 * Decode Flash part size.  The code below looks repetative with
8676 	 * common encodings, but that's not guaranteed in the JEDEC
8677 	 * specification for the Read JADEC ID command.  The only thing that
8678 	 * we're guaranteed by the JADEC specification is where the
8679 	 * Manufacturer ID is in the returned result.  After that each
8680 	 * Manufacturer ~could~ encode things completely differently.
8681 	 * Note, all Flash parts must have 64KB sectors.
8682 	 */
8683 	manufacturer = flashid & 0xff;
8684 	switch (manufacturer) {
8685 	case 0x20: /* Micron/Numonix */
8686 		/*
8687 		 * This Density -> Size decoding table is taken from Micron
8688 		 * Data Sheets.
8689 		 */
8690 		density = (flashid >> 16) & 0xff;
8691 		switch (density) {
8692 		case 0x14: size = 1 << 20; break; /*   1MB */
8693 		case 0x15: size = 1 << 21; break; /*   2MB */
8694 		case 0x16: size = 1 << 22; break; /*   4MB */
8695 		case 0x17: size = 1 << 23; break; /*   8MB */
8696 		case 0x18: size = 1 << 24; break; /*  16MB */
8697 		case 0x19: size = 1 << 25; break; /*  32MB */
8698 		case 0x20: size = 1 << 26; break; /*  64MB */
8699 		case 0x21: size = 1 << 27; break; /* 128MB */
8700 		case 0x22: size = 1 << 28; break; /* 256MB */
8701 		}
8702 		break;
8703 
8704 	case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */
8705 		/*
8706 		 * This Density -> Size decoding table is taken from ISSI
8707 		 * Data Sheets.
8708 		 */
8709 		density = (flashid >> 16) & 0xff;
8710 		switch (density) {
8711 		case 0x16: size = 1 << 25; break; /*  32MB */
8712 		case 0x17: size = 1 << 26; break; /*  64MB */
8713 		}
8714 		break;
8715 
8716 	case 0xc2: /* Macronix */
8717 		/*
8718 		 * This Density -> Size decoding table is taken from Macronix
8719 		 * Data Sheets.
8720 		 */
8721 		density = (flashid >> 16) & 0xff;
8722 		switch (density) {
8723 		case 0x17: size = 1 << 23; break; /*   8MB */
8724 		case 0x18: size = 1 << 24; break; /*  16MB */
8725 		}
8726 		break;
8727 
8728 	case 0xef: /* Winbond */
8729 		/*
8730 		 * This Density -> Size decoding table is taken from Winbond
8731 		 * Data Sheets.
8732 		 */
8733 		density = (flashid >> 16) & 0xff;
8734 		switch (density) {
8735 		case 0x17: size = 1 << 23; break; /*   8MB */
8736 		case 0x18: size = 1 << 24; break; /*  16MB */
8737 		}
8738 		break;
8739 	}
8740 
8741 	/* If we didn't recognize the FLASH part, that's no real issue: the
8742 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
8743 	 * use a FLASH part which is at least 4MB in size and has 64KB
8744 	 * sectors.  The unrecognized FLASH part is likely to be much larger
8745 	 * than 4MB, but that's all we really need.
8746 	 */
8747 	if (size == 0) {
8748 		CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid);
8749 		size = 1 << 22;
8750 	}
8751 
8752 	/*
8753 	 * Store decoded Flash size and fall through into vetting code.
8754 	 */
8755 	adapter->params.sf_size = size;
8756 	adapter->params.sf_nsec = size / SF_SEC_SIZE;
8757 
8758  found:
8759 	/*
8760 	 * We should ~probably~ reject adapters with FLASHes which are too
8761 	 * small but we have some legacy FPGAs with small FLASHes that we'd
8762 	 * still like to use.  So instead we emit a scary message ...
8763 	 */
8764 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
8765 		CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
8766 			flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
8767 
8768 	return 0;
8769 }
8770 
8771 static void set_pcie_completion_timeout(struct adapter *adapter,
8772 						  u8 range)
8773 {
8774 	u16 val;
8775 	u32 pcie_cap;
8776 
8777 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
8778 	if (pcie_cap) {
8779 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
8780 		val &= 0xfff0;
8781 		val |= range ;
8782 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
8783 	}
8784 }
8785 
8786 const struct chip_params *t4_get_chip_params(int chipid)
8787 {
8788 	static const struct chip_params chip_params[] = {
8789 		{
8790 			/* T4 */
8791 			.nchan = NCHAN,
8792 			.pm_stats_cnt = PM_NSTATS,
8793 			.cng_ch_bits_log = 2,
8794 			.nsched_cls = 15,
8795 			.cim_num_obq = CIM_NUM_OBQ,
8796 			.mps_rplc_size = 128,
8797 			.vfcount = 128,
8798 			.sge_fl_db = F_DBPRIO,
8799 			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
8800 		},
8801 		{
8802 			/* T5 */
8803 			.nchan = NCHAN,
8804 			.pm_stats_cnt = PM_NSTATS,
8805 			.cng_ch_bits_log = 2,
8806 			.nsched_cls = 16,
8807 			.cim_num_obq = CIM_NUM_OBQ_T5,
8808 			.mps_rplc_size = 128,
8809 			.vfcount = 128,
8810 			.sge_fl_db = F_DBPRIO | F_DBTYPE,
8811 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8812 		},
8813 		{
8814 			/* T6 */
8815 			.nchan = T6_NCHAN,
8816 			.pm_stats_cnt = T6_PM_NSTATS,
8817 			.cng_ch_bits_log = 3,
8818 			.nsched_cls = 16,
8819 			.cim_num_obq = CIM_NUM_OBQ_T5,
8820 			.mps_rplc_size = 256,
8821 			.vfcount = 256,
8822 			.sge_fl_db = 0,
8823 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8824 		},
8825 	};
8826 
8827 	chipid -= CHELSIO_T4;
8828 	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
8829 		return NULL;
8830 
8831 	return &chip_params[chipid];
8832 }
8833 
8834 /**
8835  *	t4_prep_adapter - prepare SW and HW for operation
8836  *	@adapter: the adapter
8837  *	@buf: temporary space of at least VPD_LEN size provided by the caller.
8838  *
8839  *	Initialize adapter SW state for the various HW modules, set initial
8840  *	values for some adapter tunables, take PHYs out of reset, and
8841  *	initialize the MDIO interface.
8842  */
8843 int t4_prep_adapter(struct adapter *adapter, u32 *buf)
8844 {
8845 	int ret;
8846 	uint16_t device_id;
8847 	uint32_t pl_rev;
8848 
8849 	get_pci_mode(adapter, &adapter->params.pci);
8850 
8851 	pl_rev = t4_read_reg(adapter, A_PL_REV);
8852 	adapter->params.chipid = G_CHIPID(pl_rev);
8853 	adapter->params.rev = G_REV(pl_rev);
8854 	if (adapter->params.chipid == 0) {
8855 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
8856 		adapter->params.chipid = CHELSIO_T4;
8857 
8858 		/* T4A1 chip is not supported */
8859 		if (adapter->params.rev == 1) {
8860 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
8861 			return -EINVAL;
8862 		}
8863 	}
8864 
8865 	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
8866 	if (adapter->chip_params == NULL)
8867 		return -EINVAL;
8868 
8869 	adapter->params.pci.vpd_cap_addr =
8870 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
8871 
8872 	ret = t4_get_flash_params(adapter);
8873 	if (ret < 0)
8874 		return ret;
8875 
8876 	/* Cards with real ASICs have the chipid in the PCIe device id */
8877 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
8878 	if (device_id >> 12 == chip_id(adapter))
8879 		adapter->params.cim_la_size = CIMLA_SIZE;
8880 	else {
8881 		/* FPGA */
8882 		adapter->params.fpga = 1;
8883 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
8884 	}
8885 
8886 	ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
8887 	if (ret < 0)
8888 		return ret;
8889 
8890 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8891 
8892 	/*
8893 	 * Default port and clock for debugging in case we can't reach FW.
8894 	 */
8895 	adapter->params.nports = 1;
8896 	adapter->params.portvec = 1;
8897 	adapter->params.vpd.cclk = 50000;
8898 
8899 	/* Set pci completion timeout value to 4 seconds. */
8900 	set_pcie_completion_timeout(adapter, 0xd);
8901 	return 0;
8902 }
8903 
8904 /**
8905  *	t4_shutdown_adapter - shut down adapter, host & wire
8906  *	@adapter: the adapter
8907  *
8908  *	Perform an emergency shutdown of the adapter and stop it from
8909  *	continuing any further communication on the ports or DMA to the
8910  *	host.  This is typically used when the adapter and/or firmware
8911  *	have crashed and we want to prevent any further accidental
8912  *	communication with the rest of the world.  This will also force
8913  *	the port Link Status to go down -- if register writes work --
8914  *	which should help our peers figure out that we're down.
8915  */
8916 int t4_shutdown_adapter(struct adapter *adapter)
8917 {
8918 	int port;
8919 
8920 	t4_intr_disable(adapter);
8921 	t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
8922 	for_each_port(adapter, port) {
8923 		u32 a_port_cfg = is_t4(adapter) ?
8924 				 PORT_REG(port, A_XGMAC_PORT_CFG) :
8925 				 T5_PORT_REG(port, A_MAC_PORT_CFG);
8926 
8927 		t4_write_reg(adapter, a_port_cfg,
8928 			     t4_read_reg(adapter, a_port_cfg)
8929 			     & ~V_SIGNAL_DET(1));
8930 	}
8931 	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
8932 
8933 	return 0;
8934 }
8935 
8936 /**
8937  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
8938  *	@adapter: the adapter
8939  *	@qid: the Queue ID
8940  *	@qtype: the Ingress or Egress type for @qid
8941  *	@user: true if this request is for a user mode queue
8942  *	@pbar2_qoffset: BAR2 Queue Offset
8943  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
8944  *
8945  *	Returns the BAR2 SGE Queue Registers information associated with the
8946  *	indicated Absolute Queue ID.  These are passed back in return value
8947  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
8948  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
8949  *
8950  *	This may return an error which indicates that BAR2 SGE Queue
8951  *	registers aren't available.  If an error is not returned, then the
8952  *	following values are returned:
8953  *
8954  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
8955  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
8956  *
8957  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
8958  *	require the "Inferred Queue ID" ability may be used.  E.g. the
8959  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
8960  *	then these "Inferred Queue ID" register may not be used.
8961  */
8962 int t4_bar2_sge_qregs(struct adapter *adapter,
8963 		      unsigned int qid,
8964 		      enum t4_bar2_qtype qtype,
8965 		      int user,
8966 		      u64 *pbar2_qoffset,
8967 		      unsigned int *pbar2_qid)
8968 {
8969 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
8970 	u64 bar2_page_offset, bar2_qoffset;
8971 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
8972 
8973 	/* T4 doesn't support BAR2 SGE Queue registers for kernel
8974 	 * mode queues.
8975 	 */
8976 	if (!user && is_t4(adapter))
8977 		return -EINVAL;
8978 
8979 	/* Get our SGE Page Size parameters.
8980 	 */
8981 	page_shift = adapter->params.sge.page_shift;
8982 	page_size = 1 << page_shift;
8983 
8984 	/* Get the right Queues per Page parameters for our Queue.
8985 	 */
8986 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
8987 		     ? adapter->params.sge.eq_s_qpp
8988 		     : adapter->params.sge.iq_s_qpp);
8989 	qpp_mask = (1 << qpp_shift) - 1;
8990 
8991 	/* Calculate the basics of the BAR2 SGE Queue register area:
8992 	 *  o The BAR2 page the Queue registers will be in.
8993 	 *  o The BAR2 Queue ID.
8994 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
8995 	 */
8996 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
8997 	bar2_qid = qid & qpp_mask;
8998 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
8999 
9000 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9001 	 * hardware will infer the Absolute Queue ID simply from the writes to
9002 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9003 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9004 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9005 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9006 	 * from the BAR2 Page and BAR2 Queue ID.
9007 	 *
9008 	 * One important censequence of this is that some BAR2 SGE registers
9009 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9010 	 * there.  But other registers synthesize the SGE Queue ID purely
9011 	 * from the writes to the registers -- the Write Combined Doorbell
9012 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9013 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9014 	 * Queue ID can be inferred from simple writes.
9015 	 */
9016 	bar2_qoffset = bar2_page_offset;
9017 	bar2_qinferred = (bar2_qid_offset < page_size);
9018 	if (bar2_qinferred) {
9019 		bar2_qoffset += bar2_qid_offset;
9020 		bar2_qid = 0;
9021 	}
9022 
9023 	*pbar2_qoffset = bar2_qoffset;
9024 	*pbar2_qid = bar2_qid;
9025 	return 0;
9026 }
9027 
9028 /**
9029  *	t4_init_devlog_params - initialize adapter->params.devlog
9030  *	@adap: the adapter
9031  *	@fw_attach: whether we can talk to the firmware
9032  *
9033  *	Initialize various fields of the adapter's Firmware Device Log
9034  *	Parameters structure.
9035  */
9036 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
9037 {
9038 	struct devlog_params *dparams = &adap->params.devlog;
9039 	u32 pf_dparams;
9040 	unsigned int devlog_meminfo;
9041 	struct fw_devlog_cmd devlog_cmd;
9042 	int ret;
9043 
9044 	/* If we're dealing with newer firmware, the Device Log Paramerters
9045 	 * are stored in a designated register which allows us to access the
9046 	 * Device Log even if we can't talk to the firmware.
9047 	 */
9048 	pf_dparams =
9049 		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
9050 	if (pf_dparams) {
9051 		unsigned int nentries, nentries128;
9052 
9053 		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
9054 		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
9055 
9056 		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
9057 		nentries = (nentries128 + 1) * 128;
9058 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9059 
9060 		return 0;
9061 	}
9062 
9063 	/*
9064 	 * For any failing returns ...
9065 	 */
9066 	memset(dparams, 0, sizeof *dparams);
9067 
9068 	/*
9069 	 * If we can't talk to the firmware, there's really nothing we can do
9070 	 * at this point.
9071 	 */
9072 	if (!fw_attach)
9073 		return -ENXIO;
9074 
9075 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9076 	 */
9077 	memset(&devlog_cmd, 0, sizeof devlog_cmd);
9078 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9079 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9080 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9081 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9082 			 &devlog_cmd);
9083 	if (ret)
9084 		return ret;
9085 
9086 	devlog_meminfo =
9087 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9088 	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
9089 	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
9090 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9091 
9092 	return 0;
9093 }
9094 
9095 /**
9096  *	t4_init_sge_params - initialize adap->params.sge
9097  *	@adapter: the adapter
9098  *
9099  *	Initialize various fields of the adapter's SGE Parameters structure.
9100  */
9101 int t4_init_sge_params(struct adapter *adapter)
9102 {
9103 	u32 r;
9104 	struct sge_params *sp = &adapter->params.sge;
9105 	unsigned i, tscale = 1;
9106 
9107 	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
9108 	sp->counter_val[0] = G_THRESHOLD_0(r);
9109 	sp->counter_val[1] = G_THRESHOLD_1(r);
9110 	sp->counter_val[2] = G_THRESHOLD_2(r);
9111 	sp->counter_val[3] = G_THRESHOLD_3(r);
9112 
9113 	if (chip_id(adapter) >= CHELSIO_T6) {
9114 		r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
9115 		tscale = G_TSCALE(r);
9116 		if (tscale == 0)
9117 			tscale = 1;
9118 		else
9119 			tscale += 2;
9120 	}
9121 
9122 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
9123 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
9124 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
9125 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
9126 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
9127 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
9128 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
9129 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
9130 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
9131 
9132 	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
9133 	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
9134 	if (is_t4(adapter))
9135 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
9136 	else if (is_t5(adapter))
9137 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
9138 	else
9139 		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
9140 
9141 	/* egress queues: log2 of # of doorbells per BAR2 page */
9142 	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
9143 	r >>= S_QUEUESPERPAGEPF0 +
9144 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9145 	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
9146 
9147 	/* ingress queues: log2 of # of doorbells per BAR2 page */
9148 	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
9149 	r >>= S_QUEUESPERPAGEPF0 +
9150 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9151 	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
9152 
9153 	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
9154 	r >>= S_HOSTPAGESIZEPF0 +
9155 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
9156 	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
9157 
9158 	r = t4_read_reg(adapter, A_SGE_CONTROL);
9159 	sp->sge_control = r;
9160 	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
9161 	sp->fl_pktshift = G_PKTSHIFT(r);
9162 	if (chip_id(adapter) <= CHELSIO_T5) {
9163 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9164 		    X_INGPADBOUNDARY_SHIFT);
9165 	} else {
9166 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9167 		    X_T6_INGPADBOUNDARY_SHIFT);
9168 	}
9169 	if (is_t4(adapter))
9170 		sp->pack_boundary = sp->pad_boundary;
9171 	else {
9172 		r = t4_read_reg(adapter, A_SGE_CONTROL2);
9173 		if (G_INGPACKBOUNDARY(r) == 0)
9174 			sp->pack_boundary = 16;
9175 		else
9176 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
9177 	}
9178 	for (i = 0; i < SGE_FLBUF_SIZES; i++)
9179 		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
9180 		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
9181 
9182 	return 0;
9183 }
9184 
9185 /*
9186  * Read and cache the adapter's compressed filter mode and ingress config.
9187  */
9188 static void read_filter_mode_and_ingress_config(struct adapter *adap,
9189     bool sleep_ok)
9190 {
9191 	uint32_t v;
9192 	struct tp_params *tpp = &adap->params.tp;
9193 
9194 	t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP,
9195 	    sleep_ok);
9196 	t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG,
9197 	    sleep_ok);
9198 
9199 	/*
9200 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9201 	 * shift positions of several elements of the Compressed Filter Tuple
9202 	 * for this adapter which we need frequently ...
9203 	 */
9204 	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
9205 	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
9206 	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
9207 	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
9208 	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
9209 	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
9210 	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
9211 	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
9212 	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
9213 	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
9214 
9215 	if (chip_id(adap) > CHELSIO_T4) {
9216 		v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3));
9217 		adap->params.tp.hash_filter_mask = v;
9218 		v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4));
9219 		adap->params.tp.hash_filter_mask |= (u64)v << 32;
9220 	}
9221 }
9222 
9223 /**
9224  *      t4_init_tp_params - initialize adap->params.tp
9225  *      @adap: the adapter
9226  *
9227  *      Initialize various fields of the adapter's TP Parameters structure.
9228  */
9229 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9230 {
9231 	int chan;
9232 	u32 v;
9233 	struct tp_params *tpp = &adap->params.tp;
9234 
9235 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
9236 	tpp->tre = G_TIMERRESOLUTION(v);
9237 	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
9238 
9239 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9240 	for (chan = 0; chan < MAX_NCHAN; chan++)
9241 		tpp->tx_modq[chan] = chan;
9242 
9243 	read_filter_mode_and_ingress_config(adap, sleep_ok);
9244 
9245 	/*
9246 	 * Cache a mask of the bits that represent the error vector portion of
9247 	 * rx_pkt.err_vec.  T6+ can use a compressed error vector to make room
9248 	 * for information about outer encapsulation (GENEVE/VXLAN/NVGRE).
9249 	 */
9250 	tpp->err_vec_mask = htobe16(0xffff);
9251 	if (chip_id(adap) > CHELSIO_T5) {
9252 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
9253 		if (v & F_CRXPKTENC) {
9254 			tpp->err_vec_mask =
9255 			    htobe16(V_T6_COMPR_RXERR_VEC(M_T6_COMPR_RXERR_VEC));
9256 		}
9257 	}
9258 
9259 	return 0;
9260 }
9261 
9262 /**
9263  *      t4_filter_field_shift - calculate filter field shift
9264  *      @adap: the adapter
9265  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9266  *
9267  *      Return the shift position of a filter field within the Compressed
9268  *      Filter Tuple.  The filter field is specified via its selection bit
9269  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9270  */
9271 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9272 {
9273 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9274 	unsigned int sel;
9275 	int field_shift;
9276 
9277 	if ((filter_mode & filter_sel) == 0)
9278 		return -1;
9279 
9280 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9281 		switch (filter_mode & sel) {
9282 		case F_FCOE:
9283 			field_shift += W_FT_FCOE;
9284 			break;
9285 		case F_PORT:
9286 			field_shift += W_FT_PORT;
9287 			break;
9288 		case F_VNIC_ID:
9289 			field_shift += W_FT_VNIC_ID;
9290 			break;
9291 		case F_VLAN:
9292 			field_shift += W_FT_VLAN;
9293 			break;
9294 		case F_TOS:
9295 			field_shift += W_FT_TOS;
9296 			break;
9297 		case F_PROTOCOL:
9298 			field_shift += W_FT_PROTOCOL;
9299 			break;
9300 		case F_ETHERTYPE:
9301 			field_shift += W_FT_ETHERTYPE;
9302 			break;
9303 		case F_MACMATCH:
9304 			field_shift += W_FT_MACMATCH;
9305 			break;
9306 		case F_MPSHITTYPE:
9307 			field_shift += W_FT_MPSHITTYPE;
9308 			break;
9309 		case F_FRAGMENTATION:
9310 			field_shift += W_FT_FRAGMENTATION;
9311 			break;
9312 		}
9313 	}
9314 	return field_shift;
9315 }
9316 
9317 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
9318 {
9319 	u8 addr[6];
9320 	int ret, i, j;
9321 	u16 rss_size;
9322 	struct port_info *p = adap2pinfo(adap, port_id);
9323 	u32 param, val;
9324 
9325 	for (i = 0, j = -1; i <= p->port_id; i++) {
9326 		do {
9327 			j++;
9328 		} while ((adap->params.portvec & (1 << j)) == 0);
9329 	}
9330 
9331 	p->tx_chan = j;
9332 	p->mps_bg_map = t4_get_mps_bg_map(adap, j);
9333 	p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
9334 	p->lport = j;
9335 
9336 	if (!(adap->flags & IS_VF) ||
9337 	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
9338  		t4_update_port_info(p);
9339 	}
9340 
9341 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
9342 	if (ret < 0)
9343 		return ret;
9344 
9345 	p->vi[0].viid = ret;
9346 	if (chip_id(adap) <= CHELSIO_T5)
9347 		p->vi[0].smt_idx = (ret & 0x7f) << 1;
9348 	else
9349 		p->vi[0].smt_idx = (ret & 0x7f);
9350 	p->vi[0].rss_size = rss_size;
9351 	t4_os_set_hw_addr(p, addr);
9352 
9353 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9354 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
9355 	    V_FW_PARAMS_PARAM_YZ(p->vi[0].viid);
9356 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
9357 	if (ret)
9358 		p->vi[0].rss_base = 0xffff;
9359 	else {
9360 		/* MPASS((val >> 16) == rss_size); */
9361 		p->vi[0].rss_base = val & 0xffff;
9362 	}
9363 
9364 	return 0;
9365 }
9366 
9367 /**
9368  *	t4_read_cimq_cfg - read CIM queue configuration
9369  *	@adap: the adapter
9370  *	@base: holds the queue base addresses in bytes
9371  *	@size: holds the queue sizes in bytes
9372  *	@thres: holds the queue full thresholds in bytes
9373  *
9374  *	Returns the current configuration of the CIM queues, starting with
9375  *	the IBQs, then the OBQs.
9376  */
9377 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9378 {
9379 	unsigned int i, v;
9380 	int cim_num_obq = adap->chip_params->cim_num_obq;
9381 
9382 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9383 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
9384 			     V_QUENUMSELECT(i));
9385 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9386 		/* value is in 256-byte units */
9387 		*base++ = G_CIMQBASE(v) * 256;
9388 		*size++ = G_CIMQSIZE(v) * 256;
9389 		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
9390 	}
9391 	for (i = 0; i < cim_num_obq; i++) {
9392 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9393 			     V_QUENUMSELECT(i));
9394 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9395 		/* value is in 256-byte units */
9396 		*base++ = G_CIMQBASE(v) * 256;
9397 		*size++ = G_CIMQSIZE(v) * 256;
9398 	}
9399 }
9400 
9401 /**
9402  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9403  *	@adap: the adapter
9404  *	@qid: the queue index
9405  *	@data: where to store the queue contents
9406  *	@n: capacity of @data in 32-bit words
9407  *
9408  *	Reads the contents of the selected CIM queue starting at address 0 up
9409  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9410  *	error and the number of 32-bit words actually read on success.
9411  */
9412 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9413 {
9414 	int i, err, attempts;
9415 	unsigned int addr;
9416 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9417 
9418 	if (qid > 5 || (n & 3))
9419 		return -EINVAL;
9420 
9421 	addr = qid * nwords;
9422 	if (n > nwords)
9423 		n = nwords;
9424 
9425 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9426 	 * Wait for 1 Sec with a delay of 1 usec.
9427 	 */
9428 	attempts = 1000000;
9429 
9430 	for (i = 0; i < n; i++, addr++) {
9431 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
9432 			     F_IBQDBGEN);
9433 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
9434 				      attempts, 1);
9435 		if (err)
9436 			return err;
9437 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
9438 	}
9439 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
9440 	return i;
9441 }
9442 
9443 /**
9444  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9445  *	@adap: the adapter
9446  *	@qid: the queue index
9447  *	@data: where to store the queue contents
9448  *	@n: capacity of @data in 32-bit words
9449  *
9450  *	Reads the contents of the selected CIM queue starting at address 0 up
9451  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9452  *	error and the number of 32-bit words actually read on success.
9453  */
9454 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9455 {
9456 	int i, err;
9457 	unsigned int addr, v, nwords;
9458 	int cim_num_obq = adap->chip_params->cim_num_obq;
9459 
9460 	if ((qid > (cim_num_obq - 1)) || (n & 3))
9461 		return -EINVAL;
9462 
9463 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9464 		     V_QUENUMSELECT(qid));
9465 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9466 
9467 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
9468 	nwords = G_CIMQSIZE(v) * 64;  /* same */
9469 	if (n > nwords)
9470 		n = nwords;
9471 
9472 	for (i = 0; i < n; i++, addr++) {
9473 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
9474 			     F_OBQDBGEN);
9475 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
9476 				      2, 1);
9477 		if (err)
9478 			return err;
9479 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
9480 	}
9481 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
9482 	return i;
9483 }
9484 
9485 enum {
9486 	CIM_QCTL_BASE     = 0,
9487 	CIM_CTL_BASE      = 0x2000,
9488 	CIM_PBT_ADDR_BASE = 0x2800,
9489 	CIM_PBT_LRF_BASE  = 0x3000,
9490 	CIM_PBT_DATA_BASE = 0x3800
9491 };
9492 
9493 /**
9494  *	t4_cim_read - read a block from CIM internal address space
9495  *	@adap: the adapter
9496  *	@addr: the start address within the CIM address space
9497  *	@n: number of words to read
9498  *	@valp: where to store the result
9499  *
9500  *	Reads a block of 4-byte words from the CIM intenal address space.
9501  */
9502 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9503 		unsigned int *valp)
9504 {
9505 	int ret = 0;
9506 
9507 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
9508 		return -EBUSY;
9509 
9510 	for ( ; !ret && n--; addr += 4) {
9511 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
9512 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
9513 				      0, 5, 2);
9514 		if (!ret)
9515 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
9516 	}
9517 	return ret;
9518 }
9519 
9520 /**
9521  *	t4_cim_write - write a block into CIM internal address space
9522  *	@adap: the adapter
9523  *	@addr: the start address within the CIM address space
9524  *	@n: number of words to write
9525  *	@valp: set of values to write
9526  *
9527  *	Writes a block of 4-byte words into the CIM intenal address space.
9528  */
9529 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9530 		 const unsigned int *valp)
9531 {
9532 	int ret = 0;
9533 
9534 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
9535 		return -EBUSY;
9536 
9537 	for ( ; !ret && n--; addr += 4) {
9538 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
9539 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
9540 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
9541 				      0, 5, 2);
9542 	}
9543 	return ret;
9544 }
9545 
9546 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9547 			 unsigned int val)
9548 {
9549 	return t4_cim_write(adap, addr, 1, &val);
9550 }
9551 
9552 /**
9553  *	t4_cim_ctl_read - read a block from CIM control region
9554  *	@adap: the adapter
9555  *	@addr: the start address within the CIM control region
9556  *	@n: number of words to read
9557  *	@valp: where to store the result
9558  *
9559  *	Reads a block of 4-byte words from the CIM control region.
9560  */
9561 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
9562 		    unsigned int *valp)
9563 {
9564 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
9565 }
9566 
9567 /**
9568  *	t4_cim_read_la - read CIM LA capture buffer
9569  *	@adap: the adapter
9570  *	@la_buf: where to store the LA data
9571  *	@wrptr: the HW write pointer within the capture buffer
9572  *
9573  *	Reads the contents of the CIM LA buffer with the most recent entry at
9574  *	the end	of the returned data and with the entry at @wrptr first.
9575  *	We try to leave the LA in the running state we find it in.
9576  */
9577 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9578 {
9579 	int i, ret;
9580 	unsigned int cfg, val, idx;
9581 
9582 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
9583 	if (ret)
9584 		return ret;
9585 
9586 	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
9587 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
9588 		if (ret)
9589 			return ret;
9590 	}
9591 
9592 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
9593 	if (ret)
9594 		goto restart;
9595 
9596 	idx = G_UPDBGLAWRPTR(val);
9597 	if (wrptr)
9598 		*wrptr = idx;
9599 
9600 	for (i = 0; i < adap->params.cim_la_size; i++) {
9601 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
9602 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
9603 		if (ret)
9604 			break;
9605 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
9606 		if (ret)
9607 			break;
9608 		if (val & F_UPDBGLARDEN) {
9609 			ret = -ETIMEDOUT;
9610 			break;
9611 		}
9612 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
9613 		if (ret)
9614 			break;
9615 
9616 		/* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
9617 		idx = (idx + 1) & M_UPDBGLARDPTR;
9618 		/*
9619 		 * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9620 		 * identify the 32-bit portion of the full 312-bit data
9621 		 */
9622 		if (is_t6(adap))
9623 			while ((idx & 0xf) > 9)
9624 				idx = (idx + 1) % M_UPDBGLARDPTR;
9625 	}
9626 restart:
9627 	if (cfg & F_UPDBGLAEN) {
9628 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
9629 				      cfg & ~F_UPDBGLARDEN);
9630 		if (!ret)
9631 			ret = r;
9632 	}
9633 	return ret;
9634 }
9635 
9636 /**
9637  *	t4_tp_read_la - read TP LA capture buffer
9638  *	@adap: the adapter
9639  *	@la_buf: where to store the LA data
9640  *	@wrptr: the HW write pointer within the capture buffer
9641  *
9642  *	Reads the contents of the TP LA buffer with the most recent entry at
9643  *	the end	of the returned data and with the entry at @wrptr first.
9644  *	We leave the LA in the running state we find it in.
9645  */
9646 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9647 {
9648 	bool last_incomplete;
9649 	unsigned int i, cfg, val, idx;
9650 
9651 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
9652 	if (cfg & F_DBGLAENABLE)			/* freeze LA */
9653 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
9654 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
9655 
9656 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
9657 	idx = G_DBGLAWPTR(val);
9658 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
9659 	if (last_incomplete)
9660 		idx = (idx + 1) & M_DBGLARPTR;
9661 	if (wrptr)
9662 		*wrptr = idx;
9663 
9664 	val &= 0xffff;
9665 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
9666 	val |= adap->params.tp.la_mask;
9667 
9668 	for (i = 0; i < TPLA_SIZE; i++) {
9669 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
9670 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
9671 		idx = (idx + 1) & M_DBGLARPTR;
9672 	}
9673 
9674 	/* Wipe out last entry if it isn't valid */
9675 	if (last_incomplete)
9676 		la_buf[TPLA_SIZE - 1] = ~0ULL;
9677 
9678 	if (cfg & F_DBGLAENABLE)		/* restore running state */
9679 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
9680 			     cfg | adap->params.tp.la_mask);
9681 }
9682 
9683 /*
9684  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
9685  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
9686  * state for more than the Warning Threshold then we'll issue a warning about
9687  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
9688  * appears to be hung every Warning Repeat second till the situation clears.
9689  * If the situation clears, we'll note that as well.
9690  */
9691 #define SGE_IDMA_WARN_THRESH 1
9692 #define SGE_IDMA_WARN_REPEAT 300
9693 
9694 /**
9695  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
9696  *	@adapter: the adapter
9697  *	@idma: the adapter IDMA Monitor state
9698  *
9699  *	Initialize the state of an SGE Ingress DMA Monitor.
9700  */
9701 void t4_idma_monitor_init(struct adapter *adapter,
9702 			  struct sge_idma_monitor_state *idma)
9703 {
9704 	/* Initialize the state variables for detecting an SGE Ingress DMA
9705 	 * hang.  The SGE has internal counters which count up on each clock
9706 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
9707 	 * same state they were on the previous clock tick.  The clock used is
9708 	 * the Core Clock so we have a limit on the maximum "time" they can
9709 	 * record; typically a very small number of seconds.  For instance,
9710 	 * with a 600MHz Core Clock, we can only count up to a bit more than
9711 	 * 7s.  So we'll synthesize a larger counter in order to not run the
9712 	 * risk of having the "timers" overflow and give us the flexibility to
9713 	 * maintain a Hung SGE State Machine of our own which operates across
9714 	 * a longer time frame.
9715 	 */
9716 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
9717 	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
9718 }
9719 
9720 /**
9721  *	t4_idma_monitor - monitor SGE Ingress DMA state
9722  *	@adapter: the adapter
9723  *	@idma: the adapter IDMA Monitor state
9724  *	@hz: number of ticks/second
9725  *	@ticks: number of ticks since the last IDMA Monitor call
9726  */
9727 void t4_idma_monitor(struct adapter *adapter,
9728 		     struct sge_idma_monitor_state *idma,
9729 		     int hz, int ticks)
9730 {
9731 	int i, idma_same_state_cnt[2];
9732 
9733 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
9734 	  * are counters inside the SGE which count up on each clock when the
9735 	  * SGE finds its Ingress DMA State Engines in the same states they
9736 	  * were in the previous clock.  The counters will peg out at
9737 	  * 0xffffffff without wrapping around so once they pass the 1s
9738 	  * threshold they'll stay above that till the IDMA state changes.
9739 	  */
9740 	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
9741 	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
9742 	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9743 
9744 	for (i = 0; i < 2; i++) {
9745 		u32 debug0, debug11;
9746 
9747 		/* If the Ingress DMA Same State Counter ("timer") is less
9748 		 * than 1s, then we can reset our synthesized Stall Timer and
9749 		 * continue.  If we have previously emitted warnings about a
9750 		 * potential stalled Ingress Queue, issue a note indicating
9751 		 * that the Ingress Queue has resumed forward progress.
9752 		 */
9753 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
9754 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
9755 				CH_WARN(adapter, "SGE idma%d, queue %u, "
9756 					"resumed after %d seconds\n",
9757 					i, idma->idma_qid[i],
9758 					idma->idma_stalled[i]/hz);
9759 			idma->idma_stalled[i] = 0;
9760 			continue;
9761 		}
9762 
9763 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
9764 		 * domain.  The first time we get here it'll be because we
9765 		 * passed the 1s Threshold; each additional time it'll be
9766 		 * because the RX Timer Callback is being fired on its regular
9767 		 * schedule.
9768 		 *
9769 		 * If the stall is below our Potential Hung Ingress Queue
9770 		 * Warning Threshold, continue.
9771 		 */
9772 		if (idma->idma_stalled[i] == 0) {
9773 			idma->idma_stalled[i] = hz;
9774 			idma->idma_warn[i] = 0;
9775 		} else {
9776 			idma->idma_stalled[i] += ticks;
9777 			idma->idma_warn[i] -= ticks;
9778 		}
9779 
9780 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
9781 			continue;
9782 
9783 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
9784 		 */
9785 		if (idma->idma_warn[i] > 0)
9786 			continue;
9787 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
9788 
9789 		/* Read and save the SGE IDMA State and Queue ID information.
9790 		 * We do this every time in case it changes across time ...
9791 		 * can't be too careful ...
9792 		 */
9793 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
9794 		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9795 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
9796 
9797 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
9798 		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9799 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
9800 
9801 		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
9802 			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
9803 			i, idma->idma_qid[i], idma->idma_state[i],
9804 			idma->idma_stalled[i]/hz,
9805 			debug0, debug11);
9806 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
9807 	}
9808 }
9809 
9810 /**
9811  *	t4_read_pace_tbl - read the pace table
9812  *	@adap: the adapter
9813  *	@pace_vals: holds the returned values
9814  *
9815  *	Returns the values of TP's pace table in microseconds.
9816  */
9817 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
9818 {
9819 	unsigned int i, v;
9820 
9821 	for (i = 0; i < NTX_SCHED; i++) {
9822 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
9823 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
9824 		pace_vals[i] = dack_ticks_to_usec(adap, v);
9825 	}
9826 }
9827 
9828 /**
9829  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
9830  *	@adap: the adapter
9831  *	@sched: the scheduler index
9832  *	@kbps: the byte rate in Kbps
9833  *	@ipg: the interpacket delay in tenths of nanoseconds
9834  *
9835  *	Return the current configuration of a HW Tx scheduler.
9836  */
9837 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
9838 		     unsigned int *ipg, bool sleep_ok)
9839 {
9840 	unsigned int v, addr, bpt, cpt;
9841 
9842 	if (kbps) {
9843 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
9844 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9845 		if (sched & 1)
9846 			v >>= 16;
9847 		bpt = (v >> 8) & 0xff;
9848 		cpt = v & 0xff;
9849 		if (!cpt)
9850 			*kbps = 0;	/* scheduler disabled */
9851 		else {
9852 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
9853 			*kbps = (v * bpt) / 125;
9854 		}
9855 	}
9856 	if (ipg) {
9857 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
9858 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9859 		if (sched & 1)
9860 			v >>= 16;
9861 		v &= 0xffff;
9862 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
9863 	}
9864 }
9865 
9866 /**
9867  *	t4_load_cfg - download config file
9868  *	@adap: the adapter
9869  *	@cfg_data: the cfg text file to write
9870  *	@size: text file size
9871  *
9872  *	Write the supplied config text file to the card's serial flash.
9873  */
9874 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9875 {
9876 	int ret, i, n, cfg_addr;
9877 	unsigned int addr;
9878 	unsigned int flash_cfg_start_sec;
9879 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9880 
9881 	cfg_addr = t4_flash_cfg_addr(adap);
9882 	if (cfg_addr < 0)
9883 		return cfg_addr;
9884 
9885 	addr = cfg_addr;
9886 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9887 
9888 	if (size > FLASH_CFG_MAX_SIZE) {
9889 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
9890 		       FLASH_CFG_MAX_SIZE);
9891 		return -EFBIG;
9892 	}
9893 
9894 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
9895 			 sf_sec_size);
9896 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9897 				     flash_cfg_start_sec + i - 1);
9898 	/*
9899 	 * If size == 0 then we're simply erasing the FLASH sectors associated
9900 	 * with the on-adapter Firmware Configuration File.
9901 	 */
9902 	if (ret || size == 0)
9903 		goto out;
9904 
9905 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9906 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9907 		if ( (size - i) <  SF_PAGE_SIZE)
9908 			n = size - i;
9909 		else
9910 			n = SF_PAGE_SIZE;
9911 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
9912 		if (ret)
9913 			goto out;
9914 
9915 		addr += SF_PAGE_SIZE;
9916 		cfg_data += SF_PAGE_SIZE;
9917 	}
9918 
9919 out:
9920 	if (ret)
9921 		CH_ERR(adap, "config file %s failed %d\n",
9922 		       (size == 0 ? "clear" : "download"), ret);
9923 	return ret;
9924 }
9925 
9926 /**
9927  *	t5_fw_init_extern_mem - initialize the external memory
9928  *	@adap: the adapter
9929  *
9930  *	Initializes the external memory on T5.
9931  */
9932 int t5_fw_init_extern_mem(struct adapter *adap)
9933 {
9934 	u32 params[1], val[1];
9935 	int ret;
9936 
9937 	if (!is_t5(adap))
9938 		return 0;
9939 
9940 	val[0] = 0xff; /* Initialize all MCs */
9941 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9942 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
9943 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
9944 			FW_CMD_MAX_TIMEOUT);
9945 
9946 	return ret;
9947 }
9948 
9949 /* BIOS boot headers */
9950 typedef struct pci_expansion_rom_header {
9951 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
9952 	u8	reserved[22]; /* Reserved per processor Architecture data */
9953 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
9954 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
9955 
9956 /* Legacy PCI Expansion ROM Header */
9957 typedef struct legacy_pci_expansion_rom_header {
9958 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
9959 	u8	size512; /* Current Image Size in units of 512 bytes */
9960 	u8	initentry_point[4];
9961 	u8	cksum; /* Checksum computed on the entire Image */
9962 	u8	reserved[16]; /* Reserved */
9963 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
9964 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
9965 
9966 /* EFI PCI Expansion ROM Header */
9967 typedef struct efi_pci_expansion_rom_header {
9968 	u8	signature[2]; // ROM signature. The value 0xaa55
9969 	u8	initialization_size[2]; /* Units 512. Includes this header */
9970 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
9971 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
9972 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
9973 	u8	compression_type[2]; /* Compression type. */
9974 		/*
9975 		 * Compression type definition
9976 		 * 0x0: uncompressed
9977 		 * 0x1: Compressed
9978 		 * 0x2-0xFFFF: Reserved
9979 		 */
9980 	u8	reserved[8]; /* Reserved */
9981 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
9982 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
9983 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
9984 
9985 /* PCI Data Structure Format */
9986 typedef struct pcir_data_structure { /* PCI Data Structure */
9987 	u8	signature[4]; /* Signature. The string "PCIR" */
9988 	u8	vendor_id[2]; /* Vendor Identification */
9989 	u8	device_id[2]; /* Device Identification */
9990 	u8	vital_product[2]; /* Pointer to Vital Product Data */
9991 	u8	length[2]; /* PCIR Data Structure Length */
9992 	u8	revision; /* PCIR Data Structure Revision */
9993 	u8	class_code[3]; /* Class Code */
9994 	u8	image_length[2]; /* Image Length. Multiple of 512B */
9995 	u8	code_revision[2]; /* Revision Level of Code/Data */
9996 	u8	code_type; /* Code Type. */
9997 		/*
9998 		 * PCI Expansion ROM Code Types
9999 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
10000 		 * 0x01: Open Firmware standard for PCI. FCODE
10001 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
10002 		 * 0x03: EFI Image. EFI
10003 		 * 0x04-0xFF: Reserved.
10004 		 */
10005 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
10006 	u8	reserved[2]; /* Reserved */
10007 } pcir_data_t; /* PCI__DATA_STRUCTURE */
10008 
10009 /* BOOT constants */
10010 enum {
10011 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
10012 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
10013 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
10014 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
10015 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
10016 	VENDOR_ID = 0x1425, /* Vendor ID */
10017 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
10018 };
10019 
10020 /*
10021  *	modify_device_id - Modifies the device ID of the Boot BIOS image
10022  *	@adatper: the device ID to write.
10023  *	@boot_data: the boot image to modify.
10024  *
10025  *	Write the supplied device ID to the boot BIOS image.
10026  */
10027 static void modify_device_id(int device_id, u8 *boot_data)
10028 {
10029 	legacy_pci_exp_rom_header_t *header;
10030 	pcir_data_t *pcir_header;
10031 	u32 cur_header = 0;
10032 
10033 	/*
10034 	 * Loop through all chained images and change the device ID's
10035 	 */
10036 	while (1) {
10037 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
10038 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
10039 			      le16_to_cpu(*(u16*)header->pcir_offset)];
10040 
10041 		/*
10042 		 * Only modify the Device ID if code type is Legacy or HP.
10043 		 * 0x00: Okay to modify
10044 		 * 0x01: FCODE. Do not be modify
10045 		 * 0x03: Okay to modify
10046 		 * 0x04-0xFF: Do not modify
10047 		 */
10048 		if (pcir_header->code_type == 0x00) {
10049 			u8 csum = 0;
10050 			int i;
10051 
10052 			/*
10053 			 * Modify Device ID to match current adatper
10054 			 */
10055 			*(u16*) pcir_header->device_id = device_id;
10056 
10057 			/*
10058 			 * Set checksum temporarily to 0.
10059 			 * We will recalculate it later.
10060 			 */
10061 			header->cksum = 0x0;
10062 
10063 			/*
10064 			 * Calculate and update checksum
10065 			 */
10066 			for (i = 0; i < (header->size512 * 512); i++)
10067 				csum += (u8)boot_data[cur_header + i];
10068 
10069 			/*
10070 			 * Invert summed value to create the checksum
10071 			 * Writing new checksum value directly to the boot data
10072 			 */
10073 			boot_data[cur_header + 7] = -csum;
10074 
10075 		} else if (pcir_header->code_type == 0x03) {
10076 
10077 			/*
10078 			 * Modify Device ID to match current adatper
10079 			 */
10080 			*(u16*) pcir_header->device_id = device_id;
10081 
10082 		}
10083 
10084 
10085 		/*
10086 		 * Check indicator element to identify if this is the last
10087 		 * image in the ROM.
10088 		 */
10089 		if (pcir_header->indicator & 0x80)
10090 			break;
10091 
10092 		/*
10093 		 * Move header pointer up to the next image in the ROM.
10094 		 */
10095 		cur_header += header->size512 * 512;
10096 	}
10097 }
10098 
10099 /*
10100  *	t4_load_boot - download boot flash
10101  *	@adapter: the adapter
10102  *	@boot_data: the boot image to write
10103  *	@boot_addr: offset in flash to write boot_data
10104  *	@size: image size
10105  *
10106  *	Write the supplied boot image to the card's serial flash.
10107  *	The boot image has the following sections: a 28-byte header and the
10108  *	boot image.
10109  */
10110 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10111 		 unsigned int boot_addr, unsigned int size)
10112 {
10113 	pci_exp_rom_header_t *header;
10114 	int pcir_offset ;
10115 	pcir_data_t *pcir_header;
10116 	int ret, addr;
10117 	uint16_t device_id;
10118 	unsigned int i;
10119 	unsigned int boot_sector = (boot_addr * 1024 );
10120 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10121 
10122 	/*
10123 	 * Make sure the boot image does not encroach on the firmware region
10124 	 */
10125 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10126 		CH_ERR(adap, "boot image encroaching on firmware region\n");
10127 		return -EFBIG;
10128 	}
10129 
10130 	/*
10131 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10132 	 * and Boot configuration data sections. These 3 boot sections span
10133 	 * sectors 0 to 7 in flash and live right before the FW image location.
10134 	 */
10135 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
10136 			sf_sec_size);
10137 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10138 				     (boot_sector >> 16) + i - 1);
10139 
10140 	/*
10141 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10142 	 * with the on-adapter option ROM file
10143 	 */
10144 	if (ret || (size == 0))
10145 		goto out;
10146 
10147 	/* Get boot header */
10148 	header = (pci_exp_rom_header_t *)boot_data;
10149 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
10150 	/* PCIR Data Structure */
10151 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
10152 
10153 	/*
10154 	 * Perform some primitive sanity testing to avoid accidentally
10155 	 * writing garbage over the boot sectors.  We ought to check for
10156 	 * more but it's not worth it for now ...
10157 	 */
10158 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10159 		CH_ERR(adap, "boot image too small/large\n");
10160 		return -EFBIG;
10161 	}
10162 
10163 #ifndef CHELSIO_T4_DIAGS
10164 	/*
10165 	 * Check BOOT ROM header signature
10166 	 */
10167 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
10168 		CH_ERR(adap, "Boot image missing signature\n");
10169 		return -EINVAL;
10170 	}
10171 
10172 	/*
10173 	 * Check PCI header signature
10174 	 */
10175 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
10176 		CH_ERR(adap, "PCI header missing signature\n");
10177 		return -EINVAL;
10178 	}
10179 
10180 	/*
10181 	 * Check Vendor ID matches Chelsio ID
10182 	 */
10183 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
10184 		CH_ERR(adap, "Vendor ID missing signature\n");
10185 		return -EINVAL;
10186 	}
10187 #endif
10188 
10189 	/*
10190 	 * Retrieve adapter's device ID
10191 	 */
10192 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
10193 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
10194 	device_id = device_id & 0xf0ff;
10195 
10196 	/*
10197 	 * Check PCIE Device ID
10198 	 */
10199 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
10200 		/*
10201 		 * Change the device ID in the Boot BIOS image to match
10202 		 * the Device ID of the current adapter.
10203 		 */
10204 		modify_device_id(device_id, boot_data);
10205 	}
10206 
10207 	/*
10208 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
10209 	 * we finish copying the rest of the boot image. This will ensure
10210 	 * that the BIOS boot header will only be written if the boot image
10211 	 * was written in full.
10212 	 */
10213 	addr = boot_sector;
10214 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10215 		addr += SF_PAGE_SIZE;
10216 		boot_data += SF_PAGE_SIZE;
10217 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
10218 		if (ret)
10219 			goto out;
10220 	}
10221 
10222 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10223 			     (const u8 *)header, 0);
10224 
10225 out:
10226 	if (ret)
10227 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
10228 	return ret;
10229 }
10230 
10231 /*
10232  *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
10233  *	@adapter: the adapter
10234  *
10235  *	Return the address within the flash where the OptionROM Configuration
10236  *	is stored, or an error if the device FLASH is too small to contain
10237  *	a OptionROM Configuration.
10238  */
10239 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10240 {
10241 	/*
10242 	 * If the device FLASH isn't large enough to hold a Firmware
10243 	 * Configuration File, return an error.
10244 	 */
10245 	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10246 		return -ENOSPC;
10247 
10248 	return FLASH_BOOTCFG_START;
10249 }
10250 
10251 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
10252 {
10253 	int ret, i, n, cfg_addr;
10254 	unsigned int addr;
10255 	unsigned int flash_cfg_start_sec;
10256 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10257 
10258 	cfg_addr = t4_flash_bootcfg_addr(adap);
10259 	if (cfg_addr < 0)
10260 		return cfg_addr;
10261 
10262 	addr = cfg_addr;
10263 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10264 
10265 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
10266 		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
10267 			FLASH_BOOTCFG_MAX_SIZE);
10268 		return -EFBIG;
10269 	}
10270 
10271 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
10272 			 sf_sec_size);
10273 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10274 					flash_cfg_start_sec + i - 1);
10275 
10276 	/*
10277 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10278 	 * with the on-adapter OptionROM Configuration File.
10279 	 */
10280 	if (ret || size == 0)
10281 		goto out;
10282 
10283 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10284 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10285 		if ( (size - i) <  SF_PAGE_SIZE)
10286 			n = size - i;
10287 		else
10288 			n = SF_PAGE_SIZE;
10289 		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
10290 		if (ret)
10291 			goto out;
10292 
10293 		addr += SF_PAGE_SIZE;
10294 		cfg_data += SF_PAGE_SIZE;
10295 	}
10296 
10297 out:
10298 	if (ret)
10299 		CH_ERR(adap, "boot config data %s failed %d\n",
10300 				(size == 0 ? "clear" : "download"), ret);
10301 	return ret;
10302 }
10303 
10304 /**
10305  *	t4_set_filter_mode - configure the optional components of filter tuples
10306  *	@adap: the adapter
10307  *	@mode_map: a bitmap selcting which optional filter components to enable
10308  * 	@sleep_ok: if true we may sleep while awaiting command completion
10309  *
10310  *	Sets the filter mode by selecting the optional components to enable
10311  *	in filter tuples.  Returns 0 on success and a negative error if the
10312  *	requested mode needs more bits than are available for optional
10313  *	components.
10314  */
10315 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map,
10316 		       bool sleep_ok)
10317 {
10318 	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
10319 
10320 	int i, nbits = 0;
10321 
10322 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
10323 		if (mode_map & (1 << i))
10324 			nbits += width[i];
10325 	if (nbits > FILTER_OPT_LEN)
10326 		return -EINVAL;
10327 	t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok);
10328 	read_filter_mode_and_ingress_config(adap, sleep_ok);
10329 
10330 	return 0;
10331 }
10332 
10333 /**
10334  *	t4_clr_port_stats - clear port statistics
10335  *	@adap: the adapter
10336  *	@idx: the port index
10337  *
10338  *	Clear HW statistics for the given port.
10339  */
10340 void t4_clr_port_stats(struct adapter *adap, int idx)
10341 {
10342 	unsigned int i;
10343 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
10344 	u32 port_base_addr;
10345 
10346 	if (is_t4(adap))
10347 		port_base_addr = PORT_BASE(idx);
10348 	else
10349 		port_base_addr = T5_PORT_BASE(idx);
10350 
10351 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
10352 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
10353 		t4_write_reg(adap, port_base_addr + i, 0);
10354 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
10355 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
10356 		t4_write_reg(adap, port_base_addr + i, 0);
10357 	for (i = 0; i < 4; i++)
10358 		if (bgmap & (1 << i)) {
10359 			t4_write_reg(adap,
10360 			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
10361 			t4_write_reg(adap,
10362 			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
10363 		}
10364 }
10365 
10366 /**
10367  *	t4_i2c_rd - read I2C data from adapter
10368  *	@adap: the adapter
10369  *	@port: Port number if per-port device; <0 if not
10370  *	@devid: per-port device ID or absolute device ID
10371  *	@offset: byte offset into device I2C space
10372  *	@len: byte length of I2C space data
10373  *	@buf: buffer in which to return I2C data
10374  *
10375  *	Reads the I2C data from the indicated device and location.
10376  */
10377 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
10378 	      int port, unsigned int devid,
10379 	      unsigned int offset, unsigned int len,
10380 	      u8 *buf)
10381 {
10382 	u32 ldst_addrspace;
10383 	struct fw_ldst_cmd ldst;
10384 	int ret;
10385 
10386 	if (port >= 4 ||
10387 	    devid >= 256 ||
10388 	    offset >= 256 ||
10389 	    len > sizeof ldst.u.i2c.data)
10390 		return -EINVAL;
10391 
10392 	memset(&ldst, 0, sizeof ldst);
10393 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
10394 	ldst.op_to_addrspace =
10395 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10396 			    F_FW_CMD_REQUEST |
10397 			    F_FW_CMD_READ |
10398 			    ldst_addrspace);
10399 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
10400 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
10401 	ldst.u.i2c.did = devid;
10402 	ldst.u.i2c.boffset = offset;
10403 	ldst.u.i2c.blen = len;
10404 	ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
10405 	if (!ret)
10406 		memcpy(buf, ldst.u.i2c.data, len);
10407 	return ret;
10408 }
10409 
10410 /**
10411  *	t4_i2c_wr - write I2C data to adapter
10412  *	@adap: the adapter
10413  *	@port: Port number if per-port device; <0 if not
10414  *	@devid: per-port device ID or absolute device ID
10415  *	@offset: byte offset into device I2C space
10416  *	@len: byte length of I2C space data
10417  *	@buf: buffer containing new I2C data
10418  *
10419  *	Write the I2C data to the indicated device and location.
10420  */
10421 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
10422 	      int port, unsigned int devid,
10423 	      unsigned int offset, unsigned int len,
10424 	      u8 *buf)
10425 {
10426 	u32 ldst_addrspace;
10427 	struct fw_ldst_cmd ldst;
10428 
10429 	if (port >= 4 ||
10430 	    devid >= 256 ||
10431 	    offset >= 256 ||
10432 	    len > sizeof ldst.u.i2c.data)
10433 		return -EINVAL;
10434 
10435 	memset(&ldst, 0, sizeof ldst);
10436 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
10437 	ldst.op_to_addrspace =
10438 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10439 			    F_FW_CMD_REQUEST |
10440 			    F_FW_CMD_WRITE |
10441 			    ldst_addrspace);
10442 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
10443 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
10444 	ldst.u.i2c.did = devid;
10445 	ldst.u.i2c.boffset = offset;
10446 	ldst.u.i2c.blen = len;
10447 	memcpy(ldst.u.i2c.data, buf, len);
10448 	return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
10449 }
10450 
10451 /**
10452  * 	t4_sge_ctxt_rd - read an SGE context through FW
10453  * 	@adap: the adapter
10454  * 	@mbox: mailbox to use for the FW command
10455  * 	@cid: the context id
10456  * 	@ctype: the context type
10457  * 	@data: where to store the context data
10458  *
10459  * 	Issues a FW command through the given mailbox to read an SGE context.
10460  */
10461 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10462 		   enum ctxt_type ctype, u32 *data)
10463 {
10464 	int ret;
10465 	struct fw_ldst_cmd c;
10466 
10467 	if (ctype == CTXT_EGRESS)
10468 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
10469 	else if (ctype == CTXT_INGRESS)
10470 		ret = FW_LDST_ADDRSPC_SGE_INGC;
10471 	else if (ctype == CTXT_FLM)
10472 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
10473 	else
10474 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
10475 
10476 	memset(&c, 0, sizeof(c));
10477 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10478 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
10479 					V_FW_LDST_CMD_ADDRSPACE(ret));
10480 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10481 	c.u.idctxt.physid = cpu_to_be32(cid);
10482 
10483 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10484 	if (ret == 0) {
10485 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10486 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10487 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10488 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10489 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10490 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10491 	}
10492 	return ret;
10493 }
10494 
10495 /**
10496  * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10497  * 	@adap: the adapter
10498  * 	@cid: the context id
10499  * 	@ctype: the context type
10500  * 	@data: where to store the context data
10501  *
10502  * 	Reads an SGE context directly, bypassing FW.  This is only for
10503  * 	debugging when FW is unavailable.
10504  */
10505 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
10506 		      u32 *data)
10507 {
10508 	int i, ret;
10509 
10510 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
10511 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
10512 	if (!ret)
10513 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
10514 			*data++ = t4_read_reg(adap, i);
10515 	return ret;
10516 }
10517 
10518 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
10519     int sleep_ok)
10520 {
10521 	struct fw_sched_cmd cmd;
10522 
10523 	memset(&cmd, 0, sizeof(cmd));
10524 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10525 				      F_FW_CMD_REQUEST |
10526 				      F_FW_CMD_WRITE);
10527 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10528 
10529 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
10530 	cmd.u.config.type = type;
10531 	cmd.u.config.minmaxen = minmaxen;
10532 
10533 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10534 			       NULL, sleep_ok);
10535 }
10536 
10537 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
10538 		    int rateunit, int ratemode, int channel, int cl,
10539 		    int minrate, int maxrate, int weight, int pktsize,
10540 		    int burstsize, int sleep_ok)
10541 {
10542 	struct fw_sched_cmd cmd;
10543 
10544 	memset(&cmd, 0, sizeof(cmd));
10545 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10546 				      F_FW_CMD_REQUEST |
10547 				      F_FW_CMD_WRITE);
10548 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10549 
10550 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10551 	cmd.u.params.type = type;
10552 	cmd.u.params.level = level;
10553 	cmd.u.params.mode = mode;
10554 	cmd.u.params.ch = channel;
10555 	cmd.u.params.cl = cl;
10556 	cmd.u.params.unit = rateunit;
10557 	cmd.u.params.rate = ratemode;
10558 	cmd.u.params.min = cpu_to_be32(minrate);
10559 	cmd.u.params.max = cpu_to_be32(maxrate);
10560 	cmd.u.params.weight = cpu_to_be16(weight);
10561 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10562 	cmd.u.params.burstsize = cpu_to_be16(burstsize);
10563 
10564 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10565 			       NULL, sleep_ok);
10566 }
10567 
10568 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
10569     unsigned int maxrate, int sleep_ok)
10570 {
10571 	struct fw_sched_cmd cmd;
10572 
10573 	memset(&cmd, 0, sizeof(cmd));
10574 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10575 				      F_FW_CMD_REQUEST |
10576 				      F_FW_CMD_WRITE);
10577 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10578 
10579 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10580 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10581 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
10582 	cmd.u.params.ch = channel;
10583 	cmd.u.params.rate = ratemode;		/* REL or ABS */
10584 	cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
10585 
10586 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10587 			       NULL, sleep_ok);
10588 }
10589 
10590 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
10591     int weight, int sleep_ok)
10592 {
10593 	struct fw_sched_cmd cmd;
10594 
10595 	if (weight < 0 || weight > 100)
10596 		return -EINVAL;
10597 
10598 	memset(&cmd, 0, sizeof(cmd));
10599 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10600 				      F_FW_CMD_REQUEST |
10601 				      F_FW_CMD_WRITE);
10602 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10603 
10604 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10605 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10606 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
10607 	cmd.u.params.ch = channel;
10608 	cmd.u.params.cl = cl;
10609 	cmd.u.params.weight = cpu_to_be16(weight);
10610 
10611 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10612 			       NULL, sleep_ok);
10613 }
10614 
10615 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
10616     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
10617 {
10618 	struct fw_sched_cmd cmd;
10619 
10620 	memset(&cmd, 0, sizeof(cmd));
10621 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10622 				      F_FW_CMD_REQUEST |
10623 				      F_FW_CMD_WRITE);
10624 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10625 
10626 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10627 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10628 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
10629 	cmd.u.params.mode = mode;
10630 	cmd.u.params.ch = channel;
10631 	cmd.u.params.cl = cl;
10632 	cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
10633 	cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
10634 	cmd.u.params.max = cpu_to_be32(maxrate);
10635 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10636 
10637 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10638 			       NULL, sleep_ok);
10639 }
10640 
10641 /*
10642  *	t4_config_watchdog - configure (enable/disable) a watchdog timer
10643  *	@adapter: the adapter
10644  * 	@mbox: mailbox to use for the FW command
10645  * 	@pf: the PF owning the queue
10646  * 	@vf: the VF owning the queue
10647  *	@timeout: watchdog timeout in ms
10648  *	@action: watchdog timer / action
10649  *
10650  *	There are separate watchdog timers for each possible watchdog
10651  *	action.  Configure one of the watchdog timers by setting a non-zero
10652  *	timeout.  Disable a watchdog timer by using a timeout of zero.
10653  */
10654 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
10655 		       unsigned int pf, unsigned int vf,
10656 		       unsigned int timeout, unsigned int action)
10657 {
10658 	struct fw_watchdog_cmd wdog;
10659 	unsigned int ticks;
10660 
10661 	/*
10662 	 * The watchdog command expects a timeout in units of 10ms so we need
10663 	 * to convert it here (via rounding) and force a minimum of one 10ms
10664 	 * "tick" if the timeout is non-zero but the conversion results in 0
10665 	 * ticks.
10666 	 */
10667 	ticks = (timeout + 5)/10;
10668 	if (timeout && !ticks)
10669 		ticks = 1;
10670 
10671 	memset(&wdog, 0, sizeof wdog);
10672 	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
10673 				     F_FW_CMD_REQUEST |
10674 				     F_FW_CMD_WRITE |
10675 				     V_FW_PARAMS_CMD_PFN(pf) |
10676 				     V_FW_PARAMS_CMD_VFN(vf));
10677 	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
10678 	wdog.timeout = cpu_to_be32(ticks);
10679 	wdog.action = cpu_to_be32(action);
10680 
10681 	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
10682 }
10683 
10684 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
10685 {
10686 	struct fw_devlog_cmd devlog_cmd;
10687 	int ret;
10688 
10689 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
10690 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
10691 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
10692 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
10693 	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
10694 			 sizeof(devlog_cmd), &devlog_cmd);
10695 	if (ret)
10696 		return ret;
10697 
10698 	*level = devlog_cmd.level;
10699 	return 0;
10700 }
10701 
10702 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
10703 {
10704 	struct fw_devlog_cmd devlog_cmd;
10705 
10706 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
10707 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
10708 					     F_FW_CMD_REQUEST |
10709 					     F_FW_CMD_WRITE);
10710 	devlog_cmd.level = level;
10711 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
10712 	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
10713 			  sizeof(devlog_cmd), &devlog_cmd);
10714 }
10715