xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision f0157ce528a128e2abb181a5c766033a2ce49a5f)
1 /*-
2  * Copyright (c) 2012 Chelsio Communications, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 
32 #include "common.h"
33 #include "t4_regs.h"
34 #include "t4_regs_values.h"
35 #include "firmware/t4fw_interface.h"
36 
37 #undef msleep
38 #define msleep(x) do { \
39 	if (cold) \
40 		DELAY((x) * 1000); \
41 	else \
42 		pause("t4hw", (x) * hz / 1000); \
43 } while (0)
44 
45 /**
46  *	t4_wait_op_done_val - wait until an operation is completed
47  *	@adapter: the adapter performing the operation
48  *	@reg: the register to check for completion
49  *	@mask: a single-bit field within @reg that indicates completion
50  *	@polarity: the value of the field when the operation is completed
51  *	@attempts: number of check iterations
52  *	@delay: delay in usecs between iterations
53  *	@valp: where to store the value of the register at completion time
54  *
55  *	Wait until an operation is completed by checking a bit in a register
56  *	up to @attempts times.  If @valp is not NULL the value of the register
57  *	at the time it indicated completion is stored there.  Returns 0 if the
58  *	operation completes and	-EAGAIN	otherwise.
59  */
60 int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
61 		        int polarity, int attempts, int delay, u32 *valp)
62 {
63 	while (1) {
64 		u32 val = t4_read_reg(adapter, reg);
65 
66 		if (!!(val & mask) == polarity) {
67 			if (valp)
68 				*valp = val;
69 			return 0;
70 		}
71 		if (--attempts == 0)
72 			return -EAGAIN;
73 		if (delay)
74 			udelay(delay);
75 	}
76 }
77 
78 /**
79  *	t4_set_reg_field - set a register field to a value
80  *	@adapter: the adapter to program
81  *	@addr: the register address
82  *	@mask: specifies the portion of the register to modify
83  *	@val: the new value for the register field
84  *
85  *	Sets a register field specified by the supplied mask to the
86  *	given value.
87  */
88 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
89 		      u32 val)
90 {
91 	u32 v = t4_read_reg(adapter, addr) & ~mask;
92 
93 	t4_write_reg(adapter, addr, v | val);
94 	(void) t4_read_reg(adapter, addr);      /* flush */
95 }
96 
97 /**
98  *	t4_read_indirect - read indirectly addressed registers
99  *	@adap: the adapter
100  *	@addr_reg: register holding the indirect address
101  *	@data_reg: register holding the value of the indirect register
102  *	@vals: where the read register values are stored
103  *	@nregs: how many indirect registers to read
104  *	@start_idx: index of first indirect register to read
105  *
106  *	Reads registers that are accessed indirectly through an address/data
107  *	register pair.
108  */
109 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
110 		      unsigned int data_reg, u32 *vals, unsigned int nregs,
111 		      unsigned int start_idx)
112 {
113 	while (nregs--) {
114 		t4_write_reg(adap, addr_reg, start_idx);
115 		*vals++ = t4_read_reg(adap, data_reg);
116 		start_idx++;
117 	}
118 }
119 
120 /**
121  *	t4_write_indirect - write indirectly addressed registers
122  *	@adap: the adapter
123  *	@addr_reg: register holding the indirect addresses
124  *	@data_reg: register holding the value for the indirect registers
125  *	@vals: values to write
126  *	@nregs: how many indirect registers to write
127  *	@start_idx: address of first indirect register to write
128  *
129  *	Writes a sequential block of registers that are accessed indirectly
130  *	through an address/data register pair.
131  */
132 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
133 		       unsigned int data_reg, const u32 *vals,
134 		       unsigned int nregs, unsigned int start_idx)
135 {
136 	while (nregs--) {
137 		t4_write_reg(adap, addr_reg, start_idx++);
138 		t4_write_reg(adap, data_reg, *vals++);
139 	}
140 }
141 
142 /*
143  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
144  * mechanism.  This guarantees that we get the real value even if we're
145  * operating within a Virtual Machine and the Hypervisor is trapping our
146  * Configuration Space accesses.
147  */
148 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
149 {
150 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ,
151 		     F_ENABLE | F_LOCALCFG | V_FUNCTION(adap->pf) |
152 		     V_REGISTER(reg));
153 	return t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
154 }
155 
156 /*
157  *	t4_report_fw_error - report firmware error
158  *	@adap: the adapter
159  *
160  *	The adapter firmware can indicate error conditions to the host.
161  *	This routine prints out the reason for the firmware error (as
162  *	reported by the firmware).
163  */
164 static void t4_report_fw_error(struct adapter *adap)
165 {
166 	static const char *reason[] = {
167 		"Crash",			/* PCIE_FW_EVAL_CRASH */
168 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
169 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
170 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
171 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
172 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
173 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
174 		"Reserved",			/* reserved */
175 	};
176 	u32 pcie_fw;
177 
178 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
179 	if (pcie_fw & F_PCIE_FW_ERR)
180 		CH_ERR(adap, "Firmware reports adapter error: %s\n",
181 		       reason[G_PCIE_FW_EVAL(pcie_fw)]);
182 }
183 
184 /*
185  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
186  */
187 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
188 			 u32 mbox_addr)
189 {
190 	for ( ; nflit; nflit--, mbox_addr += 8)
191 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
192 }
193 
194 /*
195  * Handle a FW assertion reported in a mailbox.
196  */
197 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
198 {
199 	struct fw_debug_cmd asrt;
200 
201 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
202 	CH_ALERT(adap, "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
203 		 asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line),
204 		 ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y));
205 }
206 
207 #define X_CIM_PF_NOACCESS 0xeeeeeeee
208 /**
209  *	t4_wr_mbox_meat - send a command to FW through the given mailbox
210  *	@adap: the adapter
211  *	@mbox: index of the mailbox to use
212  *	@cmd: the command to write
213  *	@size: command length in bytes
214  *	@rpl: where to optionally store the reply
215  *	@sleep_ok: if true we may sleep while awaiting command completion
216  *
217  *	Sends the given command to FW through the selected mailbox and waits
218  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
219  *	store the FW's reply to the command.  The command and its optional
220  *	reply are of the same length.  Some FW commands like RESET and
221  *	INITIALIZE can take a considerable amount of time to execute.
222  *	@sleep_ok determines whether we may sleep while awaiting the response.
223  *	If sleeping is allowed we use progressive backoff otherwise we spin.
224  *
225  *	The return value is 0 on success or a negative errno on failure.  A
226  *	failure can happen either because we are not able to execute the
227  *	command or FW executes it but signals an error.  In the latter case
228  *	the return value is the error code indicated by FW (negated).
229  */
230 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
231 		    void *rpl, bool sleep_ok)
232 {
233 	/*
234 	 * We delay in small increments at first in an effort to maintain
235 	 * responsiveness for simple, fast executing commands but then back
236 	 * off to larger delays to a maximum retry delay.
237 	 */
238 	static const int delay[] = {
239 		1, 1, 3, 5, 10, 10, 20, 50, 100
240 	};
241 
242 	u32 v;
243 	u64 res;
244 	int i, ms, delay_idx;
245 	const __be64 *p = cmd;
246 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
247 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
248 
249 	if ((size & 15) || size > MBOX_LEN)
250 		return -EINVAL;
251 
252 	v = G_MBOWNER(t4_read_reg(adap, ctl_reg));
253 	for (i = 0; v == X_MBOWNER_NONE && i < 3; i++)
254 		v = G_MBOWNER(t4_read_reg(adap, ctl_reg));
255 
256 	if (v != X_MBOWNER_PL)
257 		return v ? -EBUSY : -ETIMEDOUT;
258 
259 	for (i = 0; i < size; i += 8, p++)
260 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
261 
262 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
263 	t4_read_reg(adap, ctl_reg);          /* flush write */
264 
265 	delay_idx = 0;
266 	ms = delay[0];
267 
268 	for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
269 		if (sleep_ok) {
270 			ms = delay[delay_idx];  /* last element may repeat */
271 			if (delay_idx < ARRAY_SIZE(delay) - 1)
272 				delay_idx++;
273 			msleep(ms);
274 		} else
275 			mdelay(ms);
276 
277 		v = t4_read_reg(adap, ctl_reg);
278 		if (v == X_CIM_PF_NOACCESS)
279 			continue;
280 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
281 			if (!(v & F_MBMSGVALID)) {
282 				t4_write_reg(adap, ctl_reg,
283 					     V_MBOWNER(X_MBOWNER_NONE));
284 				continue;
285 			}
286 
287 			res = t4_read_reg64(adap, data_reg);
288 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
289 				fw_asrt(adap, data_reg);
290 				res = V_FW_CMD_RETVAL(EIO);
291 			} else if (rpl)
292 				get_mbox_rpl(adap, rpl, size / 8, data_reg);
293 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
294 			return -G_FW_CMD_RETVAL((int)res);
295 		}
296 	}
297 
298 	/*
299 	 * We timed out waiting for a reply to our mailbox command.  Report
300 	 * the error and also check to see if the firmware reported any
301 	 * errors ...
302 	 */
303 	CH_ERR(adap, "command %#x in mailbox %d timed out\n",
304 	       *(const u8 *)cmd, mbox);
305 	if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
306 		t4_report_fw_error(adap);
307 	return -ETIMEDOUT;
308 }
309 
310 /**
311  *	t4_mc_read - read from MC through backdoor accesses
312  *	@adap: the adapter
313  *	@idx: which MC to access
314  *	@addr: address of first byte requested
315  *	@data: 64 bytes of data containing the requested address
316  *	@ecc: where to store the corresponding 64-bit ECC word
317  *
318  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
319  *	that covers the requested address @addr.  If @parity is not %NULL it
320  *	is assigned the 64-bit ECC word for the read data.
321  */
322 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
323 {
324 	int i;
325 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
326 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
327 
328 	if (is_t4(adap)) {
329 		mc_bist_cmd_reg = A_MC_BIST_CMD;
330 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
331 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
332 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
333 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
334 	} else {
335 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
336 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
337 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
338 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
339 						  idx);
340 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
341 						  idx);
342 	}
343 
344 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
345 		return -EBUSY;
346 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
347 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
348 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
349 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
350 		     F_START_BIST | V_BIST_CMD_GAP(1));
351 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
352 	if (i)
353 		return i;
354 
355 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
356 
357 	for (i = 15; i >= 0; i--)
358 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
359 	if (ecc)
360 		*ecc = t4_read_reg64(adap, MC_DATA(16));
361 #undef MC_DATA
362 	return 0;
363 }
364 
365 /**
366  *	t4_edc_read - read from EDC through backdoor accesses
367  *	@adap: the adapter
368  *	@idx: which EDC to access
369  *	@addr: address of first byte requested
370  *	@data: 64 bytes of data containing the requested address
371  *	@ecc: where to store the corresponding 64-bit ECC word
372  *
373  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
374  *	that covers the requested address @addr.  If @parity is not %NULL it
375  *	is assigned the 64-bit ECC word for the read data.
376  */
377 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
378 {
379 	int i;
380 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
381 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
382 
383 	if (is_t4(adap)) {
384 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
385 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
386 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
387 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
388 						    idx);
389 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
390 						    idx);
391 	} else {
392 /*
393  * These macro are missing in t4_regs.h file.
394  * Added temporarily for testing.
395  */
396 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
397 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
398 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
399 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
400 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
401 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
402 						    idx);
403 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
404 						    idx);
405 #undef EDC_REG_T5
406 #undef EDC_STRIDE_T5
407 	}
408 
409 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
410 		return -EBUSY;
411 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
412 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
413 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
414 	t4_write_reg(adap, edc_bist_cmd_reg,
415 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
416 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
417 	if (i)
418 		return i;
419 
420 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
421 
422 	for (i = 15; i >= 0; i--)
423 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
424 	if (ecc)
425 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
426 #undef EDC_DATA
427 	return 0;
428 }
429 
430 /**
431  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
432  *	@adap: the adapter
433  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
434  *	@addr: address within indicated memory type
435  *	@len: amount of memory to read
436  *	@buf: host memory buffer
437  *
438  *	Reads an [almost] arbitrary memory region in the firmware: the
439  *	firmware memory address, length and host buffer must be aligned on
440  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
441  *	the firmware's memory.  If this memory contains data structures which
442  *	contain multi-byte integers, it's the callers responsibility to
443  *	perform appropriate byte order conversions.
444  */
445 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
446 		__be32 *buf)
447 {
448 	u32 pos, start, end, offset;
449 	int ret;
450 
451 	/*
452 	 * Argument sanity checks ...
453 	 */
454 	if ((addr & 0x3) || (len & 0x3))
455 		return -EINVAL;
456 
457 	/*
458 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
459 	 * need to round down the start and round up the end.  We'll start
460 	 * copying out of the first line at (addr - start) a word at a time.
461 	 */
462 	start = addr & ~(64-1);
463 	end = (addr + len + 64-1) & ~(64-1);
464 	offset = (addr - start)/sizeof(__be32);
465 
466 	for (pos = start; pos < end; pos += 64, offset = 0) {
467 		__be32 data[16];
468 
469 		/*
470 		 * Read the chip's memory block and bail if there's an error.
471 		 */
472 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
473 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
474 		else
475 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
476 		if (ret)
477 			return ret;
478 
479 		/*
480 		 * Copy the data into the caller's memory buffer.
481 		 */
482 		while (offset < 16 && len > 0) {
483 			*buf++ = data[offset++];
484 			len -= sizeof(__be32);
485 		}
486 	}
487 
488 	return 0;
489 }
490 
491 /*
492  * Partial EEPROM Vital Product Data structure.  Includes only the ID and
493  * VPD-R header.
494  */
495 struct t4_vpd_hdr {
496 	u8  id_tag;
497 	u8  id_len[2];
498 	u8  id_data[ID_LEN];
499 	u8  vpdr_tag;
500 	u8  vpdr_len[2];
501 };
502 
503 /*
504  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
505  */
506 #define EEPROM_MAX_RD_POLL 40
507 #define EEPROM_MAX_WR_POLL 6
508 #define EEPROM_STAT_ADDR   0x7bfc
509 #define VPD_BASE           0x400
510 #define VPD_BASE_OLD       0
511 #define VPD_LEN            1024
512 #define VPD_INFO_FLD_HDR_SIZE	3
513 #define CHELSIO_VPD_UNIQUE_ID 0x82
514 
515 /**
516  *	t4_seeprom_read - read a serial EEPROM location
517  *	@adapter: adapter to read
518  *	@addr: EEPROM virtual address
519  *	@data: where to store the read data
520  *
521  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
522  *	VPD capability.  Note that this function must be called with a virtual
523  *	address.
524  */
525 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
526 {
527 	u16 val;
528 	int attempts = EEPROM_MAX_RD_POLL;
529 	unsigned int base = adapter->params.pci.vpd_cap_addr;
530 
531 	if (addr >= EEPROMVSIZE || (addr & 3))
532 		return -EINVAL;
533 
534 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
535 	do {
536 		udelay(10);
537 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
538 	} while (!(val & PCI_VPD_ADDR_F) && --attempts);
539 
540 	if (!(val & PCI_VPD_ADDR_F)) {
541 		CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
542 		return -EIO;
543 	}
544 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
545 	*data = le32_to_cpu(*data);
546 	return 0;
547 }
548 
549 /**
550  *	t4_seeprom_write - write a serial EEPROM location
551  *	@adapter: adapter to write
552  *	@addr: virtual EEPROM address
553  *	@data: value to write
554  *
555  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
556  *	VPD capability.  Note that this function must be called with a virtual
557  *	address.
558  */
559 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
560 {
561 	u16 val;
562 	int attempts = EEPROM_MAX_WR_POLL;
563 	unsigned int base = adapter->params.pci.vpd_cap_addr;
564 
565 	if (addr >= EEPROMVSIZE || (addr & 3))
566 		return -EINVAL;
567 
568 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
569 				 cpu_to_le32(data));
570 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
571 				 (u16)addr | PCI_VPD_ADDR_F);
572 	do {
573 		msleep(1);
574 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
575 	} while ((val & PCI_VPD_ADDR_F) && --attempts);
576 
577 	if (val & PCI_VPD_ADDR_F) {
578 		CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
579 		return -EIO;
580 	}
581 	return 0;
582 }
583 
584 /**
585  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
586  *	@phys_addr: the physical EEPROM address
587  *	@fn: the PCI function number
588  *	@sz: size of function-specific area
589  *
590  *	Translate a physical EEPROM address to virtual.  The first 1K is
591  *	accessed through virtual addresses starting at 31K, the rest is
592  *	accessed through virtual addresses starting at 0.
593  *
594  *	The mapping is as follows:
595  *	[0..1K) -> [31K..32K)
596  *	[1K..1K+A) -> [ES-A..ES)
597  *	[1K+A..ES) -> [0..ES-A-1K)
598  *
599  *	where A = @fn * @sz, and ES = EEPROM size.
600  */
601 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
602 {
603 	fn *= sz;
604 	if (phys_addr < 1024)
605 		return phys_addr + (31 << 10);
606 	if (phys_addr < 1024 + fn)
607 		return EEPROMSIZE - fn + phys_addr - 1024;
608 	if (phys_addr < EEPROMSIZE)
609 		return phys_addr - 1024 - fn;
610 	return -EINVAL;
611 }
612 
613 /**
614  *	t4_seeprom_wp - enable/disable EEPROM write protection
615  *	@adapter: the adapter
616  *	@enable: whether to enable or disable write protection
617  *
618  *	Enables or disables write protection on the serial EEPROM.
619  */
620 int t4_seeprom_wp(struct adapter *adapter, int enable)
621 {
622 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
623 }
624 
625 /**
626  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
627  *	@v: Pointer to buffered vpd data structure
628  *	@kw: The keyword to search for
629  *
630  *	Returns the value of the information field keyword or
631  *	-ENOENT otherwise.
632  */
633 static int get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
634 {
635          int i;
636 	 unsigned int offset , len;
637 	 const u8 *buf = &v->id_tag;
638 	 const u8 *vpdr_len = &v->vpdr_tag;
639 	 offset = sizeof(struct t4_vpd_hdr);
640 	 len =  (u16)vpdr_len[1] + ((u16)vpdr_len[2] << 8);
641 
642 	 if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN) {
643 		 return -ENOENT;
644 	 }
645 
646          for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
647 		 if(memcmp(buf + i , kw , 2) == 0){
648 			 i += VPD_INFO_FLD_HDR_SIZE;
649                          return i;
650 		  }
651 
652                  i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
653          }
654 
655          return -ENOENT;
656 }
657 
658 
659 /**
660  *	get_vpd_params - read VPD parameters from VPD EEPROM
661  *	@adapter: adapter to read
662  *	@p: where to store the parameters
663  *
664  *	Reads card parameters stored in VPD EEPROM.
665  */
666 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
667 {
668 	int i, ret, addr;
669 	int ec, sn, pn, na;
670 	u8 vpd[VPD_LEN], csum;
671 	const struct t4_vpd_hdr *v;
672 
673 	/*
674 	 * Card information normally starts at VPD_BASE but early cards had
675 	 * it at 0.
676 	 */
677 	ret = t4_seeprom_read(adapter, VPD_BASE, (u32 *)(vpd));
678 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
679 
680 	for (i = 0; i < sizeof(vpd); i += 4) {
681 		ret = t4_seeprom_read(adapter, addr + i, (u32 *)(vpd + i));
682 		if (ret)
683 			return ret;
684 	}
685  	v = (const struct t4_vpd_hdr *)vpd;
686 
687 #define FIND_VPD_KW(var,name) do { \
688 	var = get_vpd_keyword_val(v , name); \
689 	if (var < 0) { \
690 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
691 		return -EINVAL; \
692 	} \
693 } while (0)
694 
695 	FIND_VPD_KW(i, "RV");
696 	for (csum = 0; i >= 0; i--)
697 		csum += vpd[i];
698 
699 	if (csum) {
700 		CH_ERR(adapter, "corrupted VPD EEPROM, actual csum %u\n", csum);
701 		return -EINVAL;
702 	}
703 	FIND_VPD_KW(ec, "EC");
704 	FIND_VPD_KW(sn, "SN");
705 	FIND_VPD_KW(pn, "PN");
706 	FIND_VPD_KW(na, "NA");
707 #undef FIND_VPD_KW
708 
709 	memcpy(p->id, v->id_data, ID_LEN);
710 	strstrip(p->id);
711 	memcpy(p->ec, vpd + ec, EC_LEN);
712 	strstrip(p->ec);
713 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
714 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
715 	strstrip(p->sn);
716 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
717 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
718 	strstrip((char *)p->pn);
719 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
720 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
721 	strstrip((char *)p->na);
722 
723 	return 0;
724 }
725 
726 /* serial flash and firmware constants and flash config file constants */
727 enum {
728 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
729 
730 	/* flash command opcodes */
731 	SF_PROG_PAGE    = 2,          /* program page */
732 	SF_WR_DISABLE   = 4,          /* disable writes */
733 	SF_RD_STATUS    = 5,          /* read status register */
734 	SF_WR_ENABLE    = 6,          /* enable writes */
735 	SF_RD_DATA_FAST = 0xb,        /* read flash */
736 	SF_RD_ID        = 0x9f,       /* read ID */
737 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
738 };
739 
740 /**
741  *	sf1_read - read data from the serial flash
742  *	@adapter: the adapter
743  *	@byte_cnt: number of bytes to read
744  *	@cont: whether another operation will be chained
745  *	@lock: whether to lock SF for PL access only
746  *	@valp: where to store the read data
747  *
748  *	Reads up to 4 bytes of data from the serial flash.  The location of
749  *	the read needs to be specified prior to calling this by issuing the
750  *	appropriate commands to the serial flash.
751  */
752 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
753 		    int lock, u32 *valp)
754 {
755 	int ret;
756 
757 	if (!byte_cnt || byte_cnt > 4)
758 		return -EINVAL;
759 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
760 		return -EBUSY;
761 	t4_write_reg(adapter, A_SF_OP,
762 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
763 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
764 	if (!ret)
765 		*valp = t4_read_reg(adapter, A_SF_DATA);
766 	return ret;
767 }
768 
769 /**
770  *	sf1_write - write data to the serial flash
771  *	@adapter: the adapter
772  *	@byte_cnt: number of bytes to write
773  *	@cont: whether another operation will be chained
774  *	@lock: whether to lock SF for PL access only
775  *	@val: value to write
776  *
777  *	Writes up to 4 bytes of data to the serial flash.  The location of
778  *	the write needs to be specified prior to calling this by issuing the
779  *	appropriate commands to the serial flash.
780  */
781 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
782 		     int lock, u32 val)
783 {
784 	if (!byte_cnt || byte_cnt > 4)
785 		return -EINVAL;
786 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
787 		return -EBUSY;
788 	t4_write_reg(adapter, A_SF_DATA, val);
789 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
790 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
791 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
792 }
793 
794 /**
795  *	flash_wait_op - wait for a flash operation to complete
796  *	@adapter: the adapter
797  *	@attempts: max number of polls of the status register
798  *	@delay: delay between polls in ms
799  *
800  *	Wait for a flash operation to complete by polling the status register.
801  */
802 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
803 {
804 	int ret;
805 	u32 status;
806 
807 	while (1) {
808 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
809 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
810 			return ret;
811 		if (!(status & 1))
812 			return 0;
813 		if (--attempts == 0)
814 			return -EAGAIN;
815 		if (delay)
816 			msleep(delay);
817 	}
818 }
819 
820 /**
821  *	t4_read_flash - read words from serial flash
822  *	@adapter: the adapter
823  *	@addr: the start address for the read
824  *	@nwords: how many 32-bit words to read
825  *	@data: where to store the read data
826  *	@byte_oriented: whether to store data as bytes or as words
827  *
828  *	Read the specified number of 32-bit words from the serial flash.
829  *	If @byte_oriented is set the read data is stored as a byte array
830  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
831  *	natural endianess.
832  */
833 int t4_read_flash(struct adapter *adapter, unsigned int addr,
834 		  unsigned int nwords, u32 *data, int byte_oriented)
835 {
836 	int ret;
837 
838 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
839 		return -EINVAL;
840 
841 	addr = swab32(addr) | SF_RD_DATA_FAST;
842 
843 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
844 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
845 		return ret;
846 
847 	for ( ; nwords; nwords--, data++) {
848 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
849 		if (nwords == 1)
850 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
851 		if (ret)
852 			return ret;
853 		if (byte_oriented)
854 			*data = htonl(*data);
855 	}
856 	return 0;
857 }
858 
859 /**
860  *	t4_write_flash - write up to a page of data to the serial flash
861  *	@adapter: the adapter
862  *	@addr: the start address to write
863  *	@n: length of data to write in bytes
864  *	@data: the data to write
865  *	@byte_oriented: whether to store data as bytes or as words
866  *
867  *	Writes up to a page of data (256 bytes) to the serial flash starting
868  *	at the given address.  All the data must be written to the same page.
869  *	If @byte_oriented is set the write data is stored as byte stream
870  *	(i.e. matches what on disk), otherwise in big-endian.
871  */
872 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
873 			  unsigned int n, const u8 *data, int byte_oriented)
874 {
875 	int ret;
876 	u32 buf[SF_PAGE_SIZE / 4];
877 	unsigned int i, c, left, val, offset = addr & 0xff;
878 
879 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
880 		return -EINVAL;
881 
882 	val = swab32(addr) | SF_PROG_PAGE;
883 
884 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
885 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
886 		goto unlock;
887 
888 	for (left = n; left; left -= c) {
889 		c = min(left, 4U);
890 		for (val = 0, i = 0; i < c; ++i)
891 			val = (val << 8) + *data++;
892 
893 		if (!byte_oriented)
894 			val = htonl(val);
895 
896 		ret = sf1_write(adapter, c, c != left, 1, val);
897 		if (ret)
898 			goto unlock;
899 	}
900 	ret = flash_wait_op(adapter, 8, 1);
901 	if (ret)
902 		goto unlock;
903 
904 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
905 
906 	/* Read the page to verify the write succeeded */
907 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
908 			    byte_oriented);
909 	if (ret)
910 		return ret;
911 
912 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
913 		CH_ERR(adapter, "failed to correctly write the flash page "
914 		       "at %#x\n", addr);
915 		return -EIO;
916 	}
917 	return 0;
918 
919 unlock:
920 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
921 	return ret;
922 }
923 
924 /**
925  *	t4_get_fw_version - read the firmware version
926  *	@adapter: the adapter
927  *	@vers: where to place the version
928  *
929  *	Reads the FW version from flash.
930  */
931 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
932 {
933 	return t4_read_flash(adapter,
934 			     FLASH_FW_START + offsetof(struct fw_hdr, fw_ver), 1,
935 			     vers, 0);
936 }
937 
938 /**
939  *	t4_get_tp_version - read the TP microcode version
940  *	@adapter: the adapter
941  *	@vers: where to place the version
942  *
943  *	Reads the TP microcode version from flash.
944  */
945 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
946 {
947 	return t4_read_flash(adapter, FLASH_FW_START + offsetof(struct fw_hdr,
948 							      tp_microcode_ver),
949 			     1, vers, 0);
950 }
951 
952 /**
953  *	t4_check_fw_version - check if the FW is compatible with this driver
954  *	@adapter: the adapter
955  *
956  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
957  *	if there's exact match, a negative error if the version could not be
958  *	read or there's a major version mismatch, and a positive value if the
959  *	expected major version is found but there's a minor version mismatch.
960  */
961 int t4_check_fw_version(struct adapter *adapter)
962 {
963 	int ret, major, minor, micro;
964 	int exp_major, exp_minor, exp_micro;
965 
966 	ret = t4_get_fw_version(adapter, &adapter->params.fw_vers);
967 	if (!ret)
968 		ret = t4_get_tp_version(adapter, &adapter->params.tp_vers);
969 	if (ret)
970 		return ret;
971 
972 	major = G_FW_HDR_FW_VER_MAJOR(adapter->params.fw_vers);
973 	minor = G_FW_HDR_FW_VER_MINOR(adapter->params.fw_vers);
974 	micro = G_FW_HDR_FW_VER_MICRO(adapter->params.fw_vers);
975 
976 	switch (chip_id(adapter)) {
977 	case CHELSIO_T4:
978 		exp_major = T4FW_VERSION_MAJOR;
979 		exp_minor = T4FW_VERSION_MINOR;
980 		exp_micro = T4FW_VERSION_MICRO;
981 		break;
982 	case CHELSIO_T5:
983 		exp_major = T5FW_VERSION_MAJOR;
984 		exp_minor = T5FW_VERSION_MINOR;
985 		exp_micro = T5FW_VERSION_MICRO;
986 		break;
987 	default:
988 		CH_ERR(adapter, "Unsupported chip type, %x\n",
989 		    chip_id(adapter));
990 		return -EINVAL;
991 	}
992 
993 	if (major != exp_major) {            /* major mismatch - fail */
994 		CH_ERR(adapter, "card FW has major version %u, driver wants "
995 		       "%u\n", major, exp_major);
996 		return -EINVAL;
997 	}
998 
999 	if (minor == exp_minor && micro == exp_micro)
1000 		return 0;                                   /* perfect match */
1001 
1002 	/* Minor/micro version mismatch.  Report it but often it's OK. */
1003 	return 1;
1004 }
1005 
1006 /**
1007  *	t4_flash_erase_sectors - erase a range of flash sectors
1008  *	@adapter: the adapter
1009  *	@start: the first sector to erase
1010  *	@end: the last sector to erase
1011  *
1012  *	Erases the sectors in the given inclusive range.
1013  */
1014 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
1015 {
1016 	int ret = 0;
1017 
1018 	while (start <= end) {
1019 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
1020 		    (ret = sf1_write(adapter, 4, 0, 1,
1021 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
1022 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
1023 			CH_ERR(adapter, "erase of flash sector %d failed, "
1024 			       "error %d\n", start, ret);
1025 			break;
1026 		}
1027 		start++;
1028 	}
1029 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
1030 	return ret;
1031 }
1032 
1033 /**
1034  *	t4_flash_cfg_addr - return the address of the flash configuration file
1035  *	@adapter: the adapter
1036  *
1037  *	Return the address within the flash where the Firmware Configuration
1038  *	File is stored, or an error if the device FLASH is too small to contain
1039  *	a Firmware Configuration File.
1040  */
1041 int t4_flash_cfg_addr(struct adapter *adapter)
1042 {
1043 	/*
1044 	 * If the device FLASH isn't large enough to hold a Firmware
1045 	 * Configuration File, return an error.
1046 	 */
1047 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
1048 		return -ENOSPC;
1049 
1050 	return FLASH_CFG_START;
1051 }
1052 
1053 /**
1054  *	t4_load_cfg - download config file
1055  *	@adap: the adapter
1056  *	@cfg_data: the cfg text file to write
1057  *	@size: text file size
1058  *
1059  *	Write the supplied config text file to the card's serial flash.
1060  */
1061 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
1062 {
1063 	int ret, i, n, cfg_addr;
1064 	unsigned int addr;
1065 	unsigned int flash_cfg_start_sec;
1066 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
1067 
1068 	cfg_addr = t4_flash_cfg_addr(adap);
1069 	if (cfg_addr < 0)
1070 		return cfg_addr;
1071 
1072 	addr = cfg_addr;
1073 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
1074 
1075 	if (size > FLASH_CFG_MAX_SIZE) {
1076 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
1077 		       FLASH_CFG_MAX_SIZE);
1078 		return -EFBIG;
1079 	}
1080 
1081 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
1082 			 sf_sec_size);
1083 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
1084 				     flash_cfg_start_sec + i - 1);
1085 	/*
1086 	 * If size == 0 then we're simply erasing the FLASH sectors associated
1087 	 * with the on-adapter Firmware Configuration File.
1088 	 */
1089 	if (ret || size == 0)
1090 		goto out;
1091 
1092 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
1093 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
1094 		if ( (size - i) <  SF_PAGE_SIZE)
1095 			n = size - i;
1096 		else
1097 			n = SF_PAGE_SIZE;
1098 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
1099 		if (ret)
1100 			goto out;
1101 
1102 		addr += SF_PAGE_SIZE;
1103 		cfg_data += SF_PAGE_SIZE;
1104 	}
1105 
1106 out:
1107 	if (ret)
1108 		CH_ERR(adap, "config file %s failed %d\n",
1109 		       (size == 0 ? "clear" : "download"), ret);
1110 	return ret;
1111 }
1112 
1113 
1114 /**
1115  *	t4_load_fw - download firmware
1116  *	@adap: the adapter
1117  *	@fw_data: the firmware image to write
1118  *	@size: image size
1119  *
1120  *	Write the supplied firmware image to the card's serial flash.
1121  */
1122 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
1123 {
1124 	u32 csum;
1125 	int ret, addr;
1126 	unsigned int i;
1127 	u8 first_page[SF_PAGE_SIZE];
1128 	const u32 *p = (const u32 *)fw_data;
1129 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
1130 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
1131 	unsigned int fw_start_sec;
1132 	unsigned int fw_start;
1133 	unsigned int fw_size;
1134 
1135 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
1136 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
1137 		fw_start = FLASH_FWBOOTSTRAP_START;
1138 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
1139 	} else {
1140 		fw_start_sec = FLASH_FW_START_SEC;
1141  		fw_start = FLASH_FW_START;
1142 		fw_size = FLASH_FW_MAX_SIZE;
1143 	}
1144 	if (!size) {
1145 		CH_ERR(adap, "FW image has no data\n");
1146 		return -EINVAL;
1147 	}
1148 	if (size & 511) {
1149 		CH_ERR(adap, "FW image size not multiple of 512 bytes\n");
1150 		return -EINVAL;
1151 	}
1152 	if (ntohs(hdr->len512) * 512 != size) {
1153 		CH_ERR(adap, "FW image size differs from size in FW header\n");
1154 		return -EINVAL;
1155 	}
1156 	if (size > fw_size) {
1157 		CH_ERR(adap, "FW image too large, max is %u bytes\n", fw_size);
1158 		return -EFBIG;
1159 	}
1160 	if ((is_t4(adap) && hdr->chip != FW_HDR_CHIP_T4) ||
1161 	    (is_t5(adap) && hdr->chip != FW_HDR_CHIP_T5)) {
1162 		CH_ERR(adap,
1163 		    "FW image (%d) is not suitable for this adapter (%d)\n",
1164 		    hdr->chip, chip_id(adap));
1165 		return -EINVAL;
1166 	}
1167 
1168 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
1169 		csum += ntohl(p[i]);
1170 
1171 	if (csum != 0xffffffff) {
1172 		CH_ERR(adap, "corrupted firmware image, checksum %#x\n",
1173 		       csum);
1174 		return -EINVAL;
1175 	}
1176 
1177 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
1178 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
1179 	if (ret)
1180 		goto out;
1181 
1182 	/*
1183 	 * We write the correct version at the end so the driver can see a bad
1184 	 * version if the FW write fails.  Start by writing a copy of the
1185 	 * first page with a bad version.
1186 	 */
1187 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
1188 	((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
1189 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
1190 	if (ret)
1191 		goto out;
1192 
1193 	addr = fw_start;
1194 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
1195 		addr += SF_PAGE_SIZE;
1196 		fw_data += SF_PAGE_SIZE;
1197 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
1198 		if (ret)
1199 			goto out;
1200 	}
1201 
1202 	ret = t4_write_flash(adap,
1203 			     fw_start + offsetof(struct fw_hdr, fw_ver),
1204 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
1205 out:
1206 	if (ret)
1207 		CH_ERR(adap, "firmware download failed, error %d\n", ret);
1208 	return ret;
1209 }
1210 
1211 /* BIOS boot headers */
1212 typedef struct pci_expansion_rom_header {
1213 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
1214 	u8	reserved[22]; /* Reserved per processor Architecture data */
1215 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
1216 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
1217 
1218 /* Legacy PCI Expansion ROM Header */
1219 typedef struct legacy_pci_expansion_rom_header {
1220 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
1221 	u8	size512; /* Current Image Size in units of 512 bytes */
1222 	u8	initentry_point[4];
1223 	u8	cksum; /* Checksum computed on the entire Image */
1224 	u8	reserved[16]; /* Reserved */
1225 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
1226 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
1227 
1228 /* EFI PCI Expansion ROM Header */
1229 typedef struct efi_pci_expansion_rom_header {
1230 	u8	signature[2]; // ROM signature. The value 0xaa55
1231 	u8	initialization_size[2]; /* Units 512. Includes this header */
1232 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
1233 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
1234 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
1235 	u8	compression_type[2]; /* Compression type. */
1236 		/*
1237 		 * Compression type definition
1238 		 * 0x0: uncompressed
1239 		 * 0x1: Compressed
1240 		 * 0x2-0xFFFF: Reserved
1241 		 */
1242 	u8	reserved[8]; /* Reserved */
1243 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
1244 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
1245 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
1246 
1247 /* PCI Data Structure Format */
1248 typedef struct pcir_data_structure { /* PCI Data Structure */
1249 	u8	signature[4]; /* Signature. The string "PCIR" */
1250 	u8	vendor_id[2]; /* Vendor Identification */
1251 	u8	device_id[2]; /* Device Identification */
1252 	u8	vital_product[2]; /* Pointer to Vital Product Data */
1253 	u8	length[2]; /* PCIR Data Structure Length */
1254 	u8	revision; /* PCIR Data Structure Revision */
1255 	u8	class_code[3]; /* Class Code */
1256 	u8	image_length[2]; /* Image Length. Multiple of 512B */
1257 	u8	code_revision[2]; /* Revision Level of Code/Data */
1258 	u8	code_type; /* Code Type. */
1259 		/*
1260 		 * PCI Expansion ROM Code Types
1261 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
1262 		 * 0x01: Open Firmware standard for PCI. FCODE
1263 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
1264 		 * 0x03: EFI Image. EFI
1265 		 * 0x04-0xFF: Reserved.
1266 		 */
1267 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
1268 	u8	reserved[2]; /* Reserved */
1269 } pcir_data_t; /* PCI__DATA_STRUCTURE */
1270 
1271 /* BOOT constants */
1272 enum {
1273 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
1274 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
1275 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
1276 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
1277 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
1278 	VENDOR_ID = 0x1425, /* Vendor ID */
1279 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
1280 };
1281 
1282 /*
1283  *	modify_device_id - Modifies the device ID of the Boot BIOS image
1284  *	@adatper: the device ID to write.
1285  *	@boot_data: the boot image to modify.
1286  *
1287  *	Write the supplied device ID to the boot BIOS image.
1288  */
1289 static void modify_device_id(int device_id, u8 *boot_data)
1290 {
1291 	legacy_pci_exp_rom_header_t *header;
1292 	pcir_data_t *pcir_header;
1293 	u32 cur_header = 0;
1294 
1295 	/*
1296 	 * Loop through all chained images and change the device ID's
1297 	 */
1298 	while (1) {
1299 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
1300 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
1301 		    le16_to_cpu(*(u16*)header->pcir_offset)];
1302 
1303 		/*
1304 		 * Only modify the Device ID if code type is Legacy or HP.
1305 		 * 0x00: Okay to modify
1306 		 * 0x01: FCODE. Do not be modify
1307 		 * 0x03: Okay to modify
1308 		 * 0x04-0xFF: Do not modify
1309 		 */
1310 		if (pcir_header->code_type == 0x00) {
1311 			u8 csum = 0;
1312 			int i;
1313 
1314 			/*
1315 			 * Modify Device ID to match current adatper
1316 			 */
1317 			*(u16*) pcir_header->device_id = device_id;
1318 
1319 			/*
1320 			 * Set checksum temporarily to 0.
1321 			 * We will recalculate it later.
1322 			 */
1323 			header->cksum = 0x0;
1324 
1325 			/*
1326 			 * Calculate and update checksum
1327 			 */
1328 			for (i = 0; i < (header->size512 * 512); i++)
1329 				csum += (u8)boot_data[cur_header + i];
1330 
1331 			/*
1332 			 * Invert summed value to create the checksum
1333 			 * Writing new checksum value directly to the boot data
1334 			 */
1335 			boot_data[cur_header + 7] = -csum;
1336 
1337 		} else if (pcir_header->code_type == 0x03) {
1338 
1339 			/*
1340 			 * Modify Device ID to match current adatper
1341 			 */
1342 			*(u16*) pcir_header->device_id = device_id;
1343 
1344 		}
1345 
1346 
1347 		/*
1348 		 * Check indicator element to identify if this is the last
1349 		 * image in the ROM.
1350 		 */
1351 		if (pcir_header->indicator & 0x80)
1352 			break;
1353 
1354 		/*
1355 		 * Move header pointer up to the next image in the ROM.
1356 		 */
1357 		cur_header += header->size512 * 512;
1358 	}
1359 }
1360 
1361 /*
1362  *	t4_load_boot - download boot flash
1363  *	@adapter: the adapter
1364  *	@boot_data: the boot image to write
1365  *	@boot_addr: offset in flash to write boot_data
1366  *	@size: image size
1367  *
1368  *	Write the supplied boot image to the card's serial flash.
1369  *	The boot image has the following sections: a 28-byte header and the
1370  *	boot image.
1371  */
1372 int t4_load_boot(struct adapter *adap, u8 *boot_data,
1373 		 unsigned int boot_addr, unsigned int size)
1374 {
1375 	pci_exp_rom_header_t *header;
1376 	int pcir_offset ;
1377 	pcir_data_t *pcir_header;
1378 	int ret, addr;
1379 	uint16_t device_id;
1380 	unsigned int i;
1381 	unsigned int boot_sector = boot_addr * 1024;
1382 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
1383 
1384 	/*
1385 	 * Make sure the boot image does not encroach on the firmware region
1386 	 */
1387 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
1388 		CH_ERR(adap, "boot image encroaching on firmware region\n");
1389 		return -EFBIG;
1390 	}
1391 
1392 	/*
1393 	 * Number of sectors spanned
1394 	 */
1395 	i = DIV_ROUND_UP(size ? size : FLASH_BOOTCFG_MAX_SIZE,
1396 			sf_sec_size);
1397 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
1398 				     (boot_sector >> 16) + i - 1);
1399 
1400 	/*
1401 	 * If size == 0 then we're simply erasing the FLASH sectors associated
1402 	 * with the on-adapter option ROM file
1403 	 */
1404 	if (ret || (size == 0))
1405 		goto out;
1406 
1407 	/* Get boot header */
1408 	header = (pci_exp_rom_header_t *)boot_data;
1409 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
1410 	/* PCIR Data Structure */
1411 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
1412 
1413 	/*
1414 	 * Perform some primitive sanity testing to avoid accidentally
1415 	 * writing garbage over the boot sectors.  We ought to check for
1416 	 * more but it's not worth it for now ...
1417 	 */
1418 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
1419 		CH_ERR(adap, "boot image too small/large\n");
1420 		return -EFBIG;
1421 	}
1422 
1423 	/*
1424 	 * Check BOOT ROM header signature
1425 	 */
1426 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
1427 		CH_ERR(adap, "Boot image missing signature\n");
1428 		return -EINVAL;
1429 	}
1430 
1431 	/*
1432 	 * Check PCI header signature
1433 	 */
1434 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
1435 		CH_ERR(adap, "PCI header missing signature\n");
1436 		return -EINVAL;
1437 	}
1438 
1439 	/*
1440 	 * Check Vendor ID matches Chelsio ID
1441 	 */
1442 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
1443 		CH_ERR(adap, "Vendor ID missing signature\n");
1444 		return -EINVAL;
1445 	}
1446 
1447 	/*
1448 	 * Retrieve adapter's device ID
1449 	 */
1450 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
1451 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
1452 	device_id = (device_id & 0xff) | 0x4000;
1453 
1454 	/*
1455 	 * Check PCIE Device ID
1456 	 */
1457 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
1458 		/*
1459 		 * Change the device ID in the Boot BIOS image to match
1460 		 * the Device ID of the current adapter.
1461 		 */
1462 		modify_device_id(device_id, boot_data);
1463 	}
1464 
1465 	/*
1466 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
1467 	 * we finish copying the rest of the boot image. This will ensure
1468 	 * that the BIOS boot header will only be written if the boot image
1469 	 * was written in full.
1470 	 */
1471 	addr = boot_sector;
1472 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
1473 		addr += SF_PAGE_SIZE;
1474 		boot_data += SF_PAGE_SIZE;
1475 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
1476 		if (ret)
1477 			goto out;
1478 	}
1479 
1480 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE, boot_data, 0);
1481 
1482 out:
1483 	if (ret)
1484 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
1485 	return ret;
1486 }
1487 
1488 /**
1489  *	t4_read_cimq_cfg - read CIM queue configuration
1490  *	@adap: the adapter
1491  *	@base: holds the queue base addresses in bytes
1492  *	@size: holds the queue sizes in bytes
1493  *	@thres: holds the queue full thresholds in bytes
1494  *
1495  *	Returns the current configuration of the CIM queues, starting with
1496  *	the IBQs, then the OBQs.
1497  */
1498 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
1499 {
1500 	unsigned int i, v;
1501 	int cim_num_obq = is_t4(adap) ? CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
1502 
1503 	for (i = 0; i < CIM_NUM_IBQ; i++) {
1504 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
1505 			     V_QUENUMSELECT(i));
1506 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
1507 		*base++ = G_CIMQBASE(v) * 256; /* value is in 256-byte units */
1508 		*size++ = G_CIMQSIZE(v) * 256; /* value is in 256-byte units */
1509 		*thres++ = G_QUEFULLTHRSH(v) * 8;   /* 8-byte unit */
1510 	}
1511 	for (i = 0; i < cim_num_obq; i++) {
1512 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
1513 			     V_QUENUMSELECT(i));
1514 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
1515 		*base++ = G_CIMQBASE(v) * 256; /* value is in 256-byte units */
1516 		*size++ = G_CIMQSIZE(v) * 256; /* value is in 256-byte units */
1517 	}
1518 }
1519 
1520 /**
1521  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
1522  *	@adap: the adapter
1523  *	@qid: the queue index
1524  *	@data: where to store the queue contents
1525  *	@n: capacity of @data in 32-bit words
1526  *
1527  *	Reads the contents of the selected CIM queue starting at address 0 up
1528  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
1529  *	error and the number of 32-bit words actually read on success.
1530  */
1531 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
1532 {
1533 	int i, err;
1534 	unsigned int addr;
1535 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
1536 
1537 	if (qid > 5 || (n & 3))
1538 		return -EINVAL;
1539 
1540 	addr = qid * nwords;
1541 	if (n > nwords)
1542 		n = nwords;
1543 
1544 	for (i = 0; i < n; i++, addr++) {
1545 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
1546 			     F_IBQDBGEN);
1547 		/*
1548 		 * It might take 3-10ms before the IBQ debug read access is
1549 		 * allowed.  Wait for 1 Sec with a delay of 1 usec.
1550 		 */
1551 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
1552 				      1000000, 1);
1553 		if (err)
1554 			return err;
1555 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
1556 	}
1557 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
1558 	return i;
1559 }
1560 
1561 /**
1562  *	t4_read_cim_obq - read the contents of a CIM outbound queue
1563  *	@adap: the adapter
1564  *	@qid: the queue index
1565  *	@data: where to store the queue contents
1566  *	@n: capacity of @data in 32-bit words
1567  *
1568  *	Reads the contents of the selected CIM queue starting at address 0 up
1569  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
1570  *	error and the number of 32-bit words actually read on success.
1571  */
1572 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
1573 {
1574 	int i, err;
1575 	unsigned int addr, v, nwords;
1576 	int cim_num_obq = is_t4(adap) ? CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
1577 
1578 	if (qid >= cim_num_obq || (n & 3))
1579 		return -EINVAL;
1580 
1581 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
1582 		     V_QUENUMSELECT(qid));
1583 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
1584 
1585 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
1586 	nwords = G_CIMQSIZE(v) * 64;  /* same */
1587 	if (n > nwords)
1588 		n = nwords;
1589 
1590 	for (i = 0; i < n; i++, addr++) {
1591 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
1592 			     F_OBQDBGEN);
1593 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
1594 				      2, 1);
1595 		if (err)
1596 			return err;
1597 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
1598 	}
1599 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
1600 	return i;
1601 }
1602 
1603 enum {
1604 	CIM_QCTL_BASE     = 0,
1605 	CIM_CTL_BASE      = 0x2000,
1606 	CIM_PBT_ADDR_BASE = 0x2800,
1607 	CIM_PBT_LRF_BASE  = 0x3000,
1608 	CIM_PBT_DATA_BASE = 0x3800
1609 };
1610 
1611 /**
1612  *	t4_cim_read - read a block from CIM internal address space
1613  *	@adap: the adapter
1614  *	@addr: the start address within the CIM address space
1615  *	@n: number of words to read
1616  *	@valp: where to store the result
1617  *
1618  *	Reads a block of 4-byte words from the CIM intenal address space.
1619  */
1620 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
1621 		unsigned int *valp)
1622 {
1623 	int ret = 0;
1624 
1625 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
1626 		return -EBUSY;
1627 
1628 	for ( ; !ret && n--; addr += 4) {
1629 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
1630 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
1631 				      0, 5, 2);
1632 		if (!ret)
1633 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
1634 	}
1635 	return ret;
1636 }
1637 
1638 /**
1639  *	t4_cim_write - write a block into CIM internal address space
1640  *	@adap: the adapter
1641  *	@addr: the start address within the CIM address space
1642  *	@n: number of words to write
1643  *	@valp: set of values to write
1644  *
1645  *	Writes a block of 4-byte words into the CIM intenal address space.
1646  */
1647 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
1648 		 const unsigned int *valp)
1649 {
1650 	int ret = 0;
1651 
1652 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
1653 		return -EBUSY;
1654 
1655 	for ( ; !ret && n--; addr += 4) {
1656 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
1657 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
1658 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
1659 				      0, 5, 2);
1660 	}
1661 	return ret;
1662 }
1663 
1664 static int t4_cim_write1(struct adapter *adap, unsigned int addr, unsigned int val)
1665 {
1666 	return t4_cim_write(adap, addr, 1, &val);
1667 }
1668 
1669 /**
1670  *	t4_cim_ctl_read - read a block from CIM control region
1671  *	@adap: the adapter
1672  *	@addr: the start address within the CIM control region
1673  *	@n: number of words to read
1674  *	@valp: where to store the result
1675  *
1676  *	Reads a block of 4-byte words from the CIM control region.
1677  */
1678 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
1679 		    unsigned int *valp)
1680 {
1681 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
1682 }
1683 
1684 /**
1685  *	t4_cim_read_la - read CIM LA capture buffer
1686  *	@adap: the adapter
1687  *	@la_buf: where to store the LA data
1688  *	@wrptr: the HW write pointer within the capture buffer
1689  *
1690  *	Reads the contents of the CIM LA buffer with the most recent entry at
1691  *	the end	of the returned data and with the entry at @wrptr first.
1692  *	We try to leave the LA in the running state we find it in.
1693  */
1694 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
1695 {
1696 	int i, ret;
1697 	unsigned int cfg, val, idx;
1698 
1699 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
1700 	if (ret)
1701 		return ret;
1702 
1703 	if (cfg & F_UPDBGLAEN) {                /* LA is running, freeze it */
1704 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
1705 		if (ret)
1706 			return ret;
1707 	}
1708 
1709 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
1710 	if (ret)
1711 		goto restart;
1712 
1713 	idx = G_UPDBGLAWRPTR(val);
1714 	if (wrptr)
1715 		*wrptr = idx;
1716 
1717 	for (i = 0; i < adap->params.cim_la_size; i++) {
1718 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
1719 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
1720 		if (ret)
1721 			break;
1722 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
1723 		if (ret)
1724 			break;
1725 		if (val & F_UPDBGLARDEN) {
1726 			ret = -ETIMEDOUT;
1727 			break;
1728 		}
1729 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
1730 		if (ret)
1731 			break;
1732 		idx = (idx + 1) & M_UPDBGLARDPTR;
1733 	}
1734 restart:
1735 	if (cfg & F_UPDBGLAEN) {
1736 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
1737 				      cfg & ~F_UPDBGLARDEN);
1738 		if (!ret)
1739 			ret = r;
1740 	}
1741 	return ret;
1742 }
1743 
1744 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
1745 			unsigned int *pif_req_wrptr,
1746 			unsigned int *pif_rsp_wrptr)
1747 {
1748 	int i, j;
1749 	u32 cfg, val, req, rsp;
1750 
1751 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
1752 	if (cfg & F_LADBGEN)
1753 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
1754 
1755 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
1756 	req = G_POLADBGWRPTR(val);
1757 	rsp = G_PILADBGWRPTR(val);
1758 	if (pif_req_wrptr)
1759 		*pif_req_wrptr = req;
1760 	if (pif_rsp_wrptr)
1761 		*pif_rsp_wrptr = rsp;
1762 
1763 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
1764 		for (j = 0; j < 6; j++) {
1765 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
1766 				     V_PILADBGRDPTR(rsp));
1767 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
1768 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
1769 			req++;
1770 			rsp++;
1771 		}
1772 		req = (req + 2) & M_POLADBGRDPTR;
1773 		rsp = (rsp + 2) & M_PILADBGRDPTR;
1774 	}
1775 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
1776 }
1777 
1778 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
1779 {
1780 	u32 cfg;
1781 	int i, j, idx;
1782 
1783 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
1784 	if (cfg & F_LADBGEN)
1785 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
1786 
1787 	for (i = 0; i < CIM_MALA_SIZE; i++) {
1788 		for (j = 0; j < 5; j++) {
1789 			idx = 8 * i + j;
1790 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
1791 				     V_PILADBGRDPTR(idx));
1792 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
1793 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
1794 		}
1795 	}
1796 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
1797 }
1798 
1799 /**
1800  *	t4_tp_read_la - read TP LA capture buffer
1801  *	@adap: the adapter
1802  *	@la_buf: where to store the LA data
1803  *	@wrptr: the HW write pointer within the capture buffer
1804  *
1805  *	Reads the contents of the TP LA buffer with the most recent entry at
1806  *	the end	of the returned data and with the entry at @wrptr first.
1807  *	We leave the LA in the running state we find it in.
1808  */
1809 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
1810 {
1811 	bool last_incomplete;
1812 	unsigned int i, cfg, val, idx;
1813 
1814 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
1815 	if (cfg & F_DBGLAENABLE)                    /* freeze LA */
1816 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
1817 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
1818 
1819 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
1820 	idx = G_DBGLAWPTR(val);
1821 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
1822 	if (last_incomplete)
1823 		idx = (idx + 1) & M_DBGLARPTR;
1824 	if (wrptr)
1825 		*wrptr = idx;
1826 
1827 	val &= 0xffff;
1828 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
1829 	val |= adap->params.tp.la_mask;
1830 
1831 	for (i = 0; i < TPLA_SIZE; i++) {
1832 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
1833 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
1834 		idx = (idx + 1) & M_DBGLARPTR;
1835 	}
1836 
1837 	/* Wipe out last entry if it isn't valid */
1838 	if (last_incomplete)
1839 		la_buf[TPLA_SIZE - 1] = ~0ULL;
1840 
1841 	if (cfg & F_DBGLAENABLE)                    /* restore running state */
1842 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
1843 			     cfg | adap->params.tp.la_mask);
1844 }
1845 
1846 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
1847 {
1848 	unsigned int i, j;
1849 
1850 	for (i = 0; i < 8; i++) {
1851 		u32 *p = la_buf + i;
1852 
1853 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
1854 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
1855 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
1856 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
1857 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
1858 	}
1859 }
1860 
1861 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
1862 		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
1863 		     FW_PORT_CAP_SPEED_100G | FW_PORT_CAP_ANEG)
1864 
1865 /**
1866  *	t4_link_start - apply link configuration to MAC/PHY
1867  *	@phy: the PHY to setup
1868  *	@mac: the MAC to setup
1869  *	@lc: the requested link configuration
1870  *
1871  *	Set up a port's MAC and PHY according to a desired link configuration.
1872  *	- If the PHY can auto-negotiate first decide what to advertise, then
1873  *	  enable/disable auto-negotiation as desired, and reset.
1874  *	- If the PHY does not auto-negotiate just reset it.
1875  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
1876  *	  otherwise do it later based on the outcome of auto-negotiation.
1877  */
1878 int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
1879 		  struct link_config *lc)
1880 {
1881 	struct fw_port_cmd c;
1882 	unsigned int fc = 0, mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO);
1883 
1884 	lc->link_ok = 0;
1885 	if (lc->requested_fc & PAUSE_RX)
1886 		fc |= FW_PORT_CAP_FC_RX;
1887 	if (lc->requested_fc & PAUSE_TX)
1888 		fc |= FW_PORT_CAP_FC_TX;
1889 
1890 	memset(&c, 0, sizeof(c));
1891 	c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) | F_FW_CMD_REQUEST |
1892 			       F_FW_CMD_EXEC | V_FW_PORT_CMD_PORTID(port));
1893 	c.action_to_len16 = htonl(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
1894 				  FW_LEN16(c));
1895 
1896 	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
1897 		c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc);
1898 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1899 	} else if (lc->autoneg == AUTONEG_DISABLE) {
1900 		c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi);
1901 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1902 	} else
1903 		c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi);
1904 
1905 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
1906 }
1907 
1908 /**
1909  *	t4_restart_aneg - restart autonegotiation
1910  *	@adap: the adapter
1911  *	@mbox: mbox to use for the FW command
1912  *	@port: the port id
1913  *
1914  *	Restarts autonegotiation for the selected port.
1915  */
1916 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
1917 {
1918 	struct fw_port_cmd c;
1919 
1920 	memset(&c, 0, sizeof(c));
1921 	c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) | F_FW_CMD_REQUEST |
1922 			       F_FW_CMD_EXEC | V_FW_PORT_CMD_PORTID(port));
1923 	c.action_to_len16 = htonl(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
1924 				  FW_LEN16(c));
1925 	c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG);
1926 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
1927 }
1928 
1929 struct intr_info {
1930 	unsigned int mask;       /* bits to check in interrupt status */
1931 	const char *msg;         /* message to print or NULL */
1932 	short stat_idx;          /* stat counter to increment or -1 */
1933 	unsigned short fatal;    /* whether the condition reported is fatal */
1934 };
1935 
1936 /**
1937  *	t4_handle_intr_status - table driven interrupt handler
1938  *	@adapter: the adapter that generated the interrupt
1939  *	@reg: the interrupt status register to process
1940  *	@acts: table of interrupt actions
1941  *
1942  *	A table driven interrupt handler that applies a set of masks to an
1943  *	interrupt status word and performs the corresponding actions if the
1944  *	interrupts described by the mask have occured.  The actions include
1945  *	optionally emitting a warning or alert message.  The table is terminated
1946  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
1947  *	conditions.
1948  */
1949 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
1950 				 const struct intr_info *acts)
1951 {
1952 	int fatal = 0;
1953 	unsigned int mask = 0;
1954 	unsigned int status = t4_read_reg(adapter, reg);
1955 
1956 	for ( ; acts->mask; ++acts) {
1957 		if (!(status & acts->mask))
1958 			continue;
1959 		if (acts->fatal) {
1960 			fatal++;
1961 			CH_ALERT(adapter, "%s (0x%x)\n",
1962 				 acts->msg, status & acts->mask);
1963 		} else if (acts->msg)
1964 			CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n",
1965 					  acts->msg, status & acts->mask);
1966 		mask |= acts->mask;
1967 	}
1968 	status &= mask;
1969 	if (status)                           /* clear processed interrupts */
1970 		t4_write_reg(adapter, reg, status);
1971 	return fatal;
1972 }
1973 
1974 /*
1975  * Interrupt handler for the PCIE module.
1976  */
1977 static void pcie_intr_handler(struct adapter *adapter)
1978 {
1979 	static struct intr_info sysbus_intr_info[] = {
1980 		{ F_RNPP, "RXNP array parity error", -1, 1 },
1981 		{ F_RPCP, "RXPC array parity error", -1, 1 },
1982 		{ F_RCIP, "RXCIF array parity error", -1, 1 },
1983 		{ F_RCCP, "Rx completions control array parity error", -1, 1 },
1984 		{ F_RFTP, "RXFT array parity error", -1, 1 },
1985 		{ 0 }
1986 	};
1987 	static struct intr_info pcie_port_intr_info[] = {
1988 		{ F_TPCP, "TXPC array parity error", -1, 1 },
1989 		{ F_TNPP, "TXNP array parity error", -1, 1 },
1990 		{ F_TFTP, "TXFT array parity error", -1, 1 },
1991 		{ F_TCAP, "TXCA array parity error", -1, 1 },
1992 		{ F_TCIP, "TXCIF array parity error", -1, 1 },
1993 		{ F_RCAP, "RXCA array parity error", -1, 1 },
1994 		{ F_OTDD, "outbound request TLP discarded", -1, 1 },
1995 		{ F_RDPE, "Rx data parity error", -1, 1 },
1996 		{ F_TDUE, "Tx uncorrectable data error", -1, 1 },
1997 		{ 0 }
1998 	};
1999 	static struct intr_info pcie_intr_info[] = {
2000 		{ F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
2001 		{ F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
2002 		{ F_MSIDATAPERR, "MSI data parity error", -1, 1 },
2003 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
2004 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
2005 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
2006 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
2007 		{ F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
2008 		{ F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
2009 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
2010 		{ F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
2011 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
2012 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
2013 		{ F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
2014 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
2015 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
2016 		{ F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
2017 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
2018 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
2019 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
2020 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
2021 		{ F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
2022 		{ F_MATAGPERR, "PCI MA tag parity error", -1, 1 },
2023 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
2024 		{ F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
2025 		{ F_RXWRPERR, "PCI Rx write parity error", -1, 1 },
2026 		{ F_RPLPERR, "PCI replay buffer parity error", -1, 1 },
2027 		{ F_PCIESINT, "PCI core secondary fault", -1, 1 },
2028 		{ F_PCIEPINT, "PCI core primary fault", -1, 1 },
2029 		{ F_UNXSPLCPLERR, "PCI unexpected split completion error", -1,
2030 		  0 },
2031 		{ 0 }
2032 	};
2033 
2034 	static struct intr_info t5_pcie_intr_info[] = {
2035 		{ F_MSTGRPPERR, "Master Response Read Queue parity error",
2036 		  -1, 1 },
2037 		{ F_MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
2038 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
2039 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
2040 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
2041 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
2042 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
2043 		{ F_PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
2044 		  -1, 1 },
2045 		{ F_PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
2046 		  -1, 1 },
2047 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
2048 		{ F_MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
2049 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
2050 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
2051 		{ F_DREQWRPERR, "PCI DMA channel write request parity error",
2052 		  -1, 1 },
2053 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
2054 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
2055 		{ F_HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
2056 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
2057 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
2058 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
2059 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
2060 		{ F_VFIDPERR, "PCI INTx clear parity error", -1, 1 },
2061 		{ F_MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
2062 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
2063 		{ F_IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
2064 		  -1, 1 },
2065 		{ F_IPRXDATAGRPPERR, "PCI IP Rx data group parity error",
2066 		  -1, 1 },
2067 		{ F_RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
2068 		{ F_IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
2069 		{ F_TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
2070 		{ F_READRSPERR, "Outbound read error", -1,
2071 		  0 },
2072 		{ 0 }
2073 	};
2074 
2075 	int fat;
2076 
2077 	fat = t4_handle_intr_status(adapter,
2078 				    A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
2079 				    sysbus_intr_info) +
2080 	      t4_handle_intr_status(adapter,
2081 				    A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
2082 				    pcie_port_intr_info) +
2083 	      t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
2084 				    is_t4(adapter) ?
2085 				    pcie_intr_info : t5_pcie_intr_info);
2086 	if (fat)
2087 		t4_fatal_err(adapter);
2088 }
2089 
2090 /*
2091  * TP interrupt handler.
2092  */
2093 static void tp_intr_handler(struct adapter *adapter)
2094 {
2095 	static struct intr_info tp_intr_info[] = {
2096 		{ 0x3fffffff, "TP parity error", -1, 1 },
2097 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
2098 		{ 0 }
2099 	};
2100 
2101 	if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info))
2102 		t4_fatal_err(adapter);
2103 }
2104 
2105 /*
2106  * SGE interrupt handler.
2107  */
2108 static void sge_intr_handler(struct adapter *adapter)
2109 {
2110 	u64 v;
2111 	u32 err;
2112 
2113 	static struct intr_info sge_intr_info[] = {
2114 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
2115 		  "SGE received CPL exceeding IQE size", -1, 1 },
2116 		{ F_ERR_INVALID_CIDX_INC,
2117 		  "SGE GTS CIDX increment too large", -1, 0 },
2118 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
2119 		{ F_ERR_DROPPED_DB, "SGE doorbell dropped", -1, 0 },
2120 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
2121 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
2122 		{ F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
2123 		  0 },
2124 		{ F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
2125 		  0 },
2126 		{ F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
2127 		  0 },
2128 		{ F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
2129 		  0 },
2130 		{ F_ERR_ING_CTXT_PRIO,
2131 		  "SGE too many priority ingress contexts", -1, 0 },
2132 		{ F_ERR_EGR_CTXT_PRIO,
2133 		  "SGE too many priority egress contexts", -1, 0 },
2134 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
2135 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
2136 		{ 0 }
2137 	};
2138 
2139 	v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) |
2140 	    ((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32);
2141 	if (v) {
2142 		CH_ALERT(adapter, "SGE parity error (%#llx)\n",
2143 			 (unsigned long long)v);
2144 		t4_write_reg(adapter, A_SGE_INT_CAUSE1, v);
2145 		t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32);
2146 	}
2147 
2148 	v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info);
2149 
2150 	err = t4_read_reg(adapter, A_SGE_ERROR_STATS);
2151 	if (err & F_ERROR_QID_VALID) {
2152 		CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err));
2153 		if (err & F_UNCAPTURED_ERROR)
2154 			CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n");
2155 		t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID |
2156 			     F_UNCAPTURED_ERROR);
2157 	}
2158 
2159 	if (v != 0)
2160 		t4_fatal_err(adapter);
2161 }
2162 
2163 #define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\
2164 		      F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR)
2165 #define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\
2166 		      F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR)
2167 
2168 /*
2169  * CIM interrupt handler.
2170  */
2171 static void cim_intr_handler(struct adapter *adapter)
2172 {
2173 	static struct intr_info cim_intr_info[] = {
2174 		{ F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
2175 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
2176 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
2177 		{ F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
2178 		{ F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
2179 		{ F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
2180 		{ F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
2181 		{ 0 }
2182 	};
2183 	static struct intr_info cim_upintr_info[] = {
2184 		{ F_RSVDSPACEINT, "CIM reserved space access", -1, 1 },
2185 		{ F_ILLTRANSINT, "CIM illegal transaction", -1, 1 },
2186 		{ F_ILLWRINT, "CIM illegal write", -1, 1 },
2187 		{ F_ILLRDINT, "CIM illegal read", -1, 1 },
2188 		{ F_ILLRDBEINT, "CIM illegal read BE", -1, 1 },
2189 		{ F_ILLWRBEINT, "CIM illegal write BE", -1, 1 },
2190 		{ F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
2191 		{ F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
2192 		{ F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
2193 		{ F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
2194 		{ F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
2195 		{ F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
2196 		{ F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
2197 		{ F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
2198 		{ F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
2199 		{ F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
2200 		{ F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
2201 		{ F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
2202 		{ F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
2203 		{ F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
2204 		{ F_SGLRDPLINT , "CIM single read from PL space", -1, 1 },
2205 		{ F_SGLWRPLINT , "CIM single write to PL space", -1, 1 },
2206 		{ F_BLKRDPLINT , "CIM block read from PL space", -1, 1 },
2207 		{ F_BLKWRPLINT , "CIM block write to PL space", -1, 1 },
2208 		{ F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
2209 		{ F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
2210 		{ F_TIMEOUTINT , "CIM PIF timeout", -1, 1 },
2211 		{ F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
2212 		{ 0 }
2213 	};
2214 	int fat;
2215 
2216 	if (t4_read_reg(adapter, A_PCIE_FW) & F_PCIE_FW_ERR)
2217 		t4_report_fw_error(adapter);
2218 
2219 	fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE,
2220 				    cim_intr_info) +
2221 	      t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE,
2222 				    cim_upintr_info);
2223 	if (fat)
2224 		t4_fatal_err(adapter);
2225 }
2226 
2227 /*
2228  * ULP RX interrupt handler.
2229  */
2230 static void ulprx_intr_handler(struct adapter *adapter)
2231 {
2232 	static struct intr_info ulprx_intr_info[] = {
2233 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 },
2234 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 },
2235 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
2236 		{ 0 }
2237 	};
2238 
2239 	if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info))
2240 		t4_fatal_err(adapter);
2241 }
2242 
2243 /*
2244  * ULP TX interrupt handler.
2245  */
2246 static void ulptx_intr_handler(struct adapter *adapter)
2247 {
2248 	static struct intr_info ulptx_intr_info[] = {
2249 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
2250 		  0 },
2251 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
2252 		  0 },
2253 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
2254 		  0 },
2255 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
2256 		  0 },
2257 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
2258 		{ 0 }
2259 	};
2260 
2261 	if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info))
2262 		t4_fatal_err(adapter);
2263 }
2264 
2265 /*
2266  * PM TX interrupt handler.
2267  */
2268 static void pmtx_intr_handler(struct adapter *adapter)
2269 {
2270 	static struct intr_info pmtx_intr_info[] = {
2271 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
2272 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
2273 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
2274 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
2275 		{ 0xffffff0, "PMTX framing error", -1, 1 },
2276 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
2277 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
2278 		  1 },
2279 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
2280 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
2281 		{ 0 }
2282 	};
2283 
2284 	if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info))
2285 		t4_fatal_err(adapter);
2286 }
2287 
2288 /*
2289  * PM RX interrupt handler.
2290  */
2291 static void pmrx_intr_handler(struct adapter *adapter)
2292 {
2293 	static struct intr_info pmrx_intr_info[] = {
2294 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
2295 		{ 0x3ffff0, "PMRX framing error", -1, 1 },
2296 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
2297 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
2298 		  1 },
2299 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
2300 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
2301 		{ 0 }
2302 	};
2303 
2304 	if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info))
2305 		t4_fatal_err(adapter);
2306 }
2307 
2308 /*
2309  * CPL switch interrupt handler.
2310  */
2311 static void cplsw_intr_handler(struct adapter *adapter)
2312 {
2313 	static struct intr_info cplsw_intr_info[] = {
2314 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
2315 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
2316 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
2317 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
2318 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
2319 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
2320 		{ 0 }
2321 	};
2322 
2323 	if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info))
2324 		t4_fatal_err(adapter);
2325 }
2326 
2327 /*
2328  * LE interrupt handler.
2329  */
2330 static void le_intr_handler(struct adapter *adap)
2331 {
2332 	static struct intr_info le_intr_info[] = {
2333 		{ F_LIPMISS, "LE LIP miss", -1, 0 },
2334 		{ F_LIP0, "LE 0 LIP error", -1, 0 },
2335 		{ F_PARITYERR, "LE parity error", -1, 1 },
2336 		{ F_UNKNOWNCMD, "LE unknown command", -1, 1 },
2337 		{ F_REQQPARERR, "LE request queue parity error", -1, 1 },
2338 		{ 0 }
2339 	};
2340 
2341 	if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE, le_intr_info))
2342 		t4_fatal_err(adap);
2343 }
2344 
2345 /*
2346  * MPS interrupt handler.
2347  */
2348 static void mps_intr_handler(struct adapter *adapter)
2349 {
2350 	static struct intr_info mps_rx_intr_info[] = {
2351 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
2352 		{ 0 }
2353 	};
2354 	static struct intr_info mps_tx_intr_info[] = {
2355 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 },
2356 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
2357 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error",
2358 		  -1, 1 },
2359 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error",
2360 		  -1, 1 },
2361 		{ F_BUBBLE, "MPS Tx underflow", -1, 1 },
2362 		{ F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
2363 		{ F_FRMERR, "MPS Tx framing error", -1, 1 },
2364 		{ 0 }
2365 	};
2366 	static struct intr_info mps_trc_intr_info[] = {
2367 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 },
2368 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1,
2369 		  1 },
2370 		{ F_MISCPERR, "MPS TRC misc parity error", -1, 1 },
2371 		{ 0 }
2372 	};
2373 	static struct intr_info mps_stat_sram_intr_info[] = {
2374 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
2375 		{ 0 }
2376 	};
2377 	static struct intr_info mps_stat_tx_intr_info[] = {
2378 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
2379 		{ 0 }
2380 	};
2381 	static struct intr_info mps_stat_rx_intr_info[] = {
2382 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
2383 		{ 0 }
2384 	};
2385 	static struct intr_info mps_cls_intr_info[] = {
2386 		{ F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
2387 		{ F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
2388 		{ F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
2389 		{ 0 }
2390 	};
2391 
2392 	int fat;
2393 
2394 	fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE,
2395 				    mps_rx_intr_info) +
2396 	      t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE,
2397 				    mps_tx_intr_info) +
2398 	      t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE,
2399 				    mps_trc_intr_info) +
2400 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM,
2401 				    mps_stat_sram_intr_info) +
2402 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
2403 				    mps_stat_tx_intr_info) +
2404 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
2405 				    mps_stat_rx_intr_info) +
2406 	      t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE,
2407 				    mps_cls_intr_info);
2408 
2409 	t4_write_reg(adapter, A_MPS_INT_CAUSE, 0);
2410 	t4_read_reg(adapter, A_MPS_INT_CAUSE);                    /* flush */
2411 	if (fat)
2412 		t4_fatal_err(adapter);
2413 }
2414 
2415 #define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | F_ECC_UE_INT_CAUSE)
2416 
2417 /*
2418  * EDC/MC interrupt handler.
2419  */
2420 static void mem_intr_handler(struct adapter *adapter, int idx)
2421 {
2422 	static const char name[3][5] = { "EDC0", "EDC1", "MC" };
2423 
2424 	unsigned int addr, cnt_addr, v;
2425 
2426 	if (idx <= MEM_EDC1) {
2427 		addr = EDC_REG(A_EDC_INT_CAUSE, idx);
2428 		cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx);
2429 	} else {
2430 		if (is_t4(adapter)) {
2431 			addr = A_MC_INT_CAUSE;
2432 			cnt_addr = A_MC_ECC_STATUS;
2433 		} else {
2434 			addr = A_MC_P_INT_CAUSE;
2435 			cnt_addr = A_MC_P_ECC_STATUS;
2436 		}
2437 	}
2438 
2439 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
2440 	if (v & F_PERR_INT_CAUSE)
2441 		CH_ALERT(adapter, "%s FIFO parity error\n", name[idx]);
2442 	if (v & F_ECC_CE_INT_CAUSE) {
2443 		u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr));
2444 
2445 		t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT));
2446 		CH_WARN_RATELIMIT(adapter,
2447 				  "%u %s correctable ECC data error%s\n",
2448 				  cnt, name[idx], cnt > 1 ? "s" : "");
2449 	}
2450 	if (v & F_ECC_UE_INT_CAUSE)
2451 		CH_ALERT(adapter, "%s uncorrectable ECC data error\n",
2452 			 name[idx]);
2453 
2454 	t4_write_reg(adapter, addr, v);
2455 	if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE))
2456 		t4_fatal_err(adapter);
2457 }
2458 
2459 /*
2460  * MA interrupt handler.
2461  */
2462 static void ma_intr_handler(struct adapter *adapter)
2463 {
2464 	u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE);
2465 
2466 	if (status & F_MEM_PERR_INT_CAUSE)
2467 		CH_ALERT(adapter, "MA parity error, parity status %#x\n",
2468 			 t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS));
2469 	if (status & F_MEM_WRAP_INT_CAUSE) {
2470 		v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS);
2471 		CH_ALERT(adapter, "MA address wrap-around error by client %u to"
2472 			 " address %#x\n", G_MEM_WRAP_CLIENT_NUM(v),
2473 			 G_MEM_WRAP_ADDRESS(v) << 4);
2474 	}
2475 	t4_write_reg(adapter, A_MA_INT_CAUSE, status);
2476 	t4_fatal_err(adapter);
2477 }
2478 
2479 /*
2480  * SMB interrupt handler.
2481  */
2482 static void smb_intr_handler(struct adapter *adap)
2483 {
2484 	static struct intr_info smb_intr_info[] = {
2485 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
2486 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
2487 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
2488 		{ 0 }
2489 	};
2490 
2491 	if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info))
2492 		t4_fatal_err(adap);
2493 }
2494 
2495 /*
2496  * NC-SI interrupt handler.
2497  */
2498 static void ncsi_intr_handler(struct adapter *adap)
2499 {
2500 	static struct intr_info ncsi_intr_info[] = {
2501 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
2502 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
2503 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
2504 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
2505 		{ 0 }
2506 	};
2507 
2508 	if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info))
2509 		t4_fatal_err(adap);
2510 }
2511 
2512 /*
2513  * XGMAC interrupt handler.
2514  */
2515 static void xgmac_intr_handler(struct adapter *adap, int port)
2516 {
2517 	u32 v, int_cause_reg;
2518 
2519 	if (is_t4(adap))
2520 		int_cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
2521 	else
2522 		int_cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
2523 
2524 	v = t4_read_reg(adap, int_cause_reg);
2525 	v &= (F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR);
2526 	if (!v)
2527 		return;
2528 
2529 	if (v & F_TXFIFO_PRTY_ERR)
2530 		CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n", port);
2531 	if (v & F_RXFIFO_PRTY_ERR)
2532 		CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n", port);
2533 	t4_write_reg(adap, int_cause_reg, v);
2534 	t4_fatal_err(adap);
2535 }
2536 
2537 /*
2538  * PL interrupt handler.
2539  */
2540 static void pl_intr_handler(struct adapter *adap)
2541 {
2542 	static struct intr_info pl_intr_info[] = {
2543 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
2544 		{ F_PERRVFID, "PL VFID_MAP parity error", -1, 1 },
2545 		{ 0 }
2546 	};
2547 
2548 	static struct intr_info t5_pl_intr_info[] = {
2549 		{ F_PL_BUSPERR, "PL bus parity error", -1, 1 },
2550 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
2551 		{ 0 }
2552 	};
2553 
2554 	if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE,
2555 	    is_t4(adap) ?  pl_intr_info : t5_pl_intr_info))
2556 		t4_fatal_err(adap);
2557 }
2558 
2559 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
2560 #define GLBL_INTR_MASK (F_CIM | F_MPS | F_PL | F_PCIE | F_MC | F_EDC0 | \
2561 		F_EDC1 | F_LE | F_TP | F_MA | F_PM_TX | F_PM_RX | F_ULP_RX | \
2562 		F_CPL_SWITCH | F_SGE | F_ULP_TX)
2563 
2564 /**
2565  *	t4_slow_intr_handler - control path interrupt handler
2566  *	@adapter: the adapter
2567  *
2568  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
2569  *	The designation 'slow' is because it involves register reads, while
2570  *	data interrupts typically don't involve any MMIOs.
2571  */
2572 int t4_slow_intr_handler(struct adapter *adapter)
2573 {
2574 	u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE);
2575 
2576 	if (!(cause & GLBL_INTR_MASK))
2577 		return 0;
2578 	if (cause & F_CIM)
2579 		cim_intr_handler(adapter);
2580 	if (cause & F_MPS)
2581 		mps_intr_handler(adapter);
2582 	if (cause & F_NCSI)
2583 		ncsi_intr_handler(adapter);
2584 	if (cause & F_PL)
2585 		pl_intr_handler(adapter);
2586 	if (cause & F_SMB)
2587 		smb_intr_handler(adapter);
2588 	if (cause & F_XGMAC0)
2589 		xgmac_intr_handler(adapter, 0);
2590 	if (cause & F_XGMAC1)
2591 		xgmac_intr_handler(adapter, 1);
2592 	if (cause & F_XGMAC_KR0)
2593 		xgmac_intr_handler(adapter, 2);
2594 	if (cause & F_XGMAC_KR1)
2595 		xgmac_intr_handler(adapter, 3);
2596 	if (cause & F_PCIE)
2597 		pcie_intr_handler(adapter);
2598 	if (cause & F_MC)
2599 		mem_intr_handler(adapter, MEM_MC);
2600 	if (cause & F_EDC0)
2601 		mem_intr_handler(adapter, MEM_EDC0);
2602 	if (cause & F_EDC1)
2603 		mem_intr_handler(adapter, MEM_EDC1);
2604 	if (cause & F_LE)
2605 		le_intr_handler(adapter);
2606 	if (cause & F_TP)
2607 		tp_intr_handler(adapter);
2608 	if (cause & F_MA)
2609 		ma_intr_handler(adapter);
2610 	if (cause & F_PM_TX)
2611 		pmtx_intr_handler(adapter);
2612 	if (cause & F_PM_RX)
2613 		pmrx_intr_handler(adapter);
2614 	if (cause & F_ULP_RX)
2615 		ulprx_intr_handler(adapter);
2616 	if (cause & F_CPL_SWITCH)
2617 		cplsw_intr_handler(adapter);
2618 	if (cause & F_SGE)
2619 		sge_intr_handler(adapter);
2620 	if (cause & F_ULP_TX)
2621 		ulptx_intr_handler(adapter);
2622 
2623 	/* Clear the interrupts just processed for which we are the master. */
2624 	t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK);
2625 	(void) t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */
2626 	return 1;
2627 }
2628 
2629 /**
2630  *	t4_intr_enable - enable interrupts
2631  *	@adapter: the adapter whose interrupts should be enabled
2632  *
2633  *	Enable PF-specific interrupts for the calling function and the top-level
2634  *	interrupt concentrator for global interrupts.  Interrupts are already
2635  *	enabled at each module,	here we just enable the roots of the interrupt
2636  *	hierarchies.
2637  *
2638  *	Note: this function should be called only when the driver manages
2639  *	non PF-specific interrupts from the various HW modules.  Only one PCI
2640  *	function at a time should be doing this.
2641  */
2642 void t4_intr_enable(struct adapter *adapter)
2643 {
2644 	u32 pf = G_SOURCEPF(t4_read_reg(adapter, A_PL_WHOAMI));
2645 
2646 	t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
2647 		     F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
2648 		     F_ERR_DROPPED_DB | F_ERR_DATA_CPL_ON_HIGH_QID1 |
2649 		     F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
2650 		     F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
2651 		     F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
2652 		     F_ERR_EGR_CTXT_PRIO | F_INGRESS_SIZE_ERR |
2653 		     F_EGRESS_SIZE_ERR);
2654 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
2655 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
2656 }
2657 
2658 /**
2659  *	t4_intr_disable - disable interrupts
2660  *	@adapter: the adapter whose interrupts should be disabled
2661  *
2662  *	Disable interrupts.  We only disable the top-level interrupt
2663  *	concentrators.  The caller must be a PCI function managing global
2664  *	interrupts.
2665  */
2666 void t4_intr_disable(struct adapter *adapter)
2667 {
2668 	u32 pf = G_SOURCEPF(t4_read_reg(adapter, A_PL_WHOAMI));
2669 
2670 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
2671 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
2672 }
2673 
2674 /**
2675  *	t4_intr_clear - clear all interrupts
2676  *	@adapter: the adapter whose interrupts should be cleared
2677  *
2678  *	Clears all interrupts.  The caller must be a PCI function managing
2679  *	global interrupts.
2680  */
2681 void t4_intr_clear(struct adapter *adapter)
2682 {
2683 	static const unsigned int cause_reg[] = {
2684 		A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3,
2685 		A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
2686 		A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
2687 		A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE,
2688 		A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS, A_MA_INT_CAUSE,
2689 		A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1),
2690 		A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE,
2691 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
2692 		A_TP_INT_CAUSE,
2693 		A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE,
2694 		A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE,
2695 		A_MPS_RX_PERR_INT_CAUSE,
2696 		A_CPL_INTR_CAUSE,
2697 		MYPF_REG(A_PL_PF_INT_CAUSE),
2698 		A_PL_PL_INT_CAUSE,
2699 		A_LE_DB_INT_CAUSE,
2700 	};
2701 
2702 	unsigned int i;
2703 
2704 	for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
2705 		t4_write_reg(adapter, cause_reg[i], 0xffffffff);
2706 
2707 	t4_write_reg(adapter, is_t4(adapter) ? A_MC_INT_CAUSE :
2708 				A_MC_P_INT_CAUSE, 0xffffffff);
2709 
2710 	t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK);
2711 	(void) t4_read_reg(adapter, A_PL_INT_CAUSE);          /* flush */
2712 }
2713 
2714 /**
2715  *	hash_mac_addr - return the hash value of a MAC address
2716  *	@addr: the 48-bit Ethernet MAC address
2717  *
2718  *	Hashes a MAC address according to the hash function used by HW inexact
2719  *	(hash) address matching.
2720  */
2721 static int hash_mac_addr(const u8 *addr)
2722 {
2723 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
2724 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
2725 	a ^= b;
2726 	a ^= (a >> 12);
2727 	a ^= (a >> 6);
2728 	return a & 0x3f;
2729 }
2730 
2731 /**
2732  *	t4_config_rss_range - configure a portion of the RSS mapping table
2733  *	@adapter: the adapter
2734  *	@mbox: mbox to use for the FW command
2735  *	@viid: virtual interface whose RSS subtable is to be written
2736  *	@start: start entry in the table to write
2737  *	@n: how many table entries to write
2738  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
2739  *	@nrspq: number of values in @rspq
2740  *
2741  *	Programs the selected part of the VI's RSS mapping table with the
2742  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
2743  *	until the full table range is populated.
2744  *
2745  *	The caller must ensure the values in @rspq are in the range allowed for
2746  *	@viid.
2747  */
2748 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
2749 			int start, int n, const u16 *rspq, unsigned int nrspq)
2750 {
2751 	int ret;
2752 	const u16 *rsp = rspq;
2753 	const u16 *rsp_end = rspq + nrspq;
2754 	struct fw_rss_ind_tbl_cmd cmd;
2755 
2756 	memset(&cmd, 0, sizeof(cmd));
2757 	cmd.op_to_viid = htonl(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
2758 			       F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
2759 			       V_FW_RSS_IND_TBL_CMD_VIID(viid));
2760 	cmd.retval_len16 = htonl(FW_LEN16(cmd));
2761 
2762 
2763 	/*
2764 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
2765 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
2766 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
2767 	 * reserved.
2768 	 */
2769 	while (n > 0) {
2770 		int nq = min(n, 32);
2771 		int nq_packed = 0;
2772 		__be32 *qp = &cmd.iq0_to_iq2;
2773 
2774 		/*
2775 		 * Set up the firmware RSS command header to send the next
2776 		 * "nq" Ingress Queue IDs to the firmware.
2777 		 */
2778 		cmd.niqid = htons(nq);
2779 		cmd.startidx = htons(start);
2780 
2781 		/*
2782 		 * "nq" more done for the start of the next loop.
2783 		 */
2784 		start += nq;
2785 		n -= nq;
2786 
2787 		/*
2788 		 * While there are still Ingress Queue IDs to stuff into the
2789 		 * current firmware RSS command, retrieve them from the
2790 		 * Ingress Queue ID array and insert them into the command.
2791 		 */
2792 		while (nq > 0) {
2793 			/*
2794 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
2795 			 * around the Ingress Queue ID array if necessary) and
2796 			 * insert them into the firmware RSS command at the
2797 			 * current 3-tuple position within the commad.
2798 			 */
2799 			u16 qbuf[3];
2800 			u16 *qbp = qbuf;
2801 			int nqbuf = min(3, nq);
2802 
2803 			nq -= nqbuf;
2804 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
2805 			while (nqbuf && nq_packed < 32) {
2806 				nqbuf--;
2807 				nq_packed++;
2808 				*qbp++ = *rsp++;
2809 				if (rsp >= rsp_end)
2810 					rsp = rspq;
2811 			}
2812 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
2813 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
2814 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
2815 		}
2816 
2817 		/*
2818 		 * Send this portion of the RRS table update to the firmware;
2819 		 * bail out on any errors.
2820 		 */
2821 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
2822 		if (ret)
2823 			return ret;
2824 	}
2825 
2826 	return 0;
2827 }
2828 
2829 /**
2830  *	t4_config_glbl_rss - configure the global RSS mode
2831  *	@adapter: the adapter
2832  *	@mbox: mbox to use for the FW command
2833  *	@mode: global RSS mode
2834  *	@flags: mode-specific flags
2835  *
2836  *	Sets the global RSS mode.
2837  */
2838 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
2839 		       unsigned int flags)
2840 {
2841 	struct fw_rss_glb_config_cmd c;
2842 
2843 	memset(&c, 0, sizeof(c));
2844 	c.op_to_write = htonl(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
2845 			      F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
2846 	c.retval_len16 = htonl(FW_LEN16(c));
2847 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
2848 		c.u.manual.mode_pkd = htonl(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
2849 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2850 		c.u.basicvirtual.mode_pkd =
2851 			htonl(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
2852 		c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags);
2853 	} else
2854 		return -EINVAL;
2855 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
2856 }
2857 
2858 /**
2859  *	t4_config_vi_rss - configure per VI RSS settings
2860  *	@adapter: the adapter
2861  *	@mbox: mbox to use for the FW command
2862  *	@viid: the VI id
2863  *	@flags: RSS flags
2864  *	@defq: id of the default RSS queue for the VI.
2865  *
2866  *	Configures VI-specific RSS properties.
2867  */
2868 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
2869 		     unsigned int flags, unsigned int defq)
2870 {
2871 	struct fw_rss_vi_config_cmd c;
2872 
2873 	memset(&c, 0, sizeof(c));
2874 	c.op_to_viid = htonl(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
2875 			     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
2876 			     V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
2877 	c.retval_len16 = htonl(FW_LEN16(c));
2878 	c.u.basicvirtual.defaultq_to_udpen = htonl(flags |
2879 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
2880 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
2881 }
2882 
2883 /* Read an RSS table row */
2884 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
2885 {
2886 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
2887 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
2888 				   5, 0, val);
2889 }
2890 
2891 /**
2892  *	t4_read_rss - read the contents of the RSS mapping table
2893  *	@adapter: the adapter
2894  *	@map: holds the contents of the RSS mapping table
2895  *
2896  *	Reads the contents of the RSS hash->queue mapping table.
2897  */
2898 int t4_read_rss(struct adapter *adapter, u16 *map)
2899 {
2900 	u32 val;
2901 	int i, ret;
2902 
2903 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
2904 		ret = rd_rss_row(adapter, i, &val);
2905 		if (ret)
2906 			return ret;
2907 		*map++ = G_LKPTBLQUEUE0(val);
2908 		*map++ = G_LKPTBLQUEUE1(val);
2909 	}
2910 	return 0;
2911 }
2912 
2913 /**
2914  *	t4_read_rss_key - read the global RSS key
2915  *	@adap: the adapter
2916  *	@key: 10-entry array holding the 320-bit RSS key
2917  *
2918  *	Reads the global 320-bit RSS key.
2919  */
2920 void t4_read_rss_key(struct adapter *adap, u32 *key)
2921 {
2922 	t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
2923 			 A_TP_RSS_SECRET_KEY0);
2924 }
2925 
2926 /**
2927  *	t4_write_rss_key - program one of the RSS keys
2928  *	@adap: the adapter
2929  *	@key: 10-entry array holding the 320-bit RSS key
2930  *	@idx: which RSS key to write
2931  *
2932  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
2933  *	0..15 the corresponding entry in the RSS key table is written,
2934  *	otherwise the global RSS key is written.
2935  */
2936 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
2937 {
2938 	t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
2939 			  A_TP_RSS_SECRET_KEY0);
2940 	if (idx >= 0 && idx < 16)
2941 		t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
2942 			     V_KEYWRADDR(idx) | F_KEYWREN);
2943 }
2944 
2945 /**
2946  *	t4_read_rss_pf_config - read PF RSS Configuration Table
2947  *	@adapter: the adapter
2948  *	@index: the entry in the PF RSS table to read
2949  *	@valp: where to store the returned value
2950  *
2951  *	Reads the PF RSS Configuration Table at the specified index and returns
2952  *	the value found there.
2953  */
2954 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, u32 *valp)
2955 {
2956 	t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
2957 			 valp, 1, A_TP_RSS_PF0_CONFIG + index);
2958 }
2959 
2960 /**
2961  *	t4_write_rss_pf_config - write PF RSS Configuration Table
2962  *	@adapter: the adapter
2963  *	@index: the entry in the VF RSS table to read
2964  *	@val: the value to store
2965  *
2966  *	Writes the PF RSS Configuration Table at the specified index with the
2967  *	specified value.
2968  */
2969 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index, u32 val)
2970 {
2971 	t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
2972 			  &val, 1, A_TP_RSS_PF0_CONFIG + index);
2973 }
2974 
2975 /**
2976  *	t4_read_rss_vf_config - read VF RSS Configuration Table
2977  *	@adapter: the adapter
2978  *	@index: the entry in the VF RSS table to read
2979  *	@vfl: where to store the returned VFL
2980  *	@vfh: where to store the returned VFH
2981  *
2982  *	Reads the VF RSS Configuration Table at the specified index and returns
2983  *	the (VFL, VFH) values found there.
2984  */
2985 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
2986 			   u32 *vfl, u32 *vfh)
2987 {
2988 	u32 vrt;
2989 
2990 	/*
2991 	 * Request that the index'th VF Table values be read into VFL/VFH.
2992 	 */
2993 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
2994 	vrt &= ~(F_VFRDRG | V_VFWRADDR(M_VFWRADDR) | F_VFWREN | F_KEYWREN);
2995 	vrt |= V_VFWRADDR(index) | F_VFRDEN;
2996 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
2997 
2998 	/*
2999 	 * Grab the VFL/VFH values ...
3000 	 */
3001 	t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3002 			 vfl, 1, A_TP_RSS_VFL_CONFIG);
3003 	t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3004 			 vfh, 1, A_TP_RSS_VFH_CONFIG);
3005 }
3006 
3007 /**
3008  *	t4_write_rss_vf_config - write VF RSS Configuration Table
3009  *
3010  *	@adapter: the adapter
3011  *	@index: the entry in the VF RSS table to write
3012  *	@vfl: the VFL to store
3013  *	@vfh: the VFH to store
3014  *
3015  *	Writes the VF RSS Configuration Table at the specified index with the
3016  *	specified (VFL, VFH) values.
3017  */
3018 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
3019 			    u32 vfl, u32 vfh)
3020 {
3021 	u32 vrt;
3022 
3023 	/*
3024 	 * Load up VFL/VFH with the values to be written ...
3025 	 */
3026 	t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3027 			  &vfl, 1, A_TP_RSS_VFL_CONFIG);
3028 	t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3029 			  &vfh, 1, A_TP_RSS_VFH_CONFIG);
3030 
3031 	/*
3032 	 * Write the VFL/VFH into the VF Table at index'th location.
3033 	 */
3034 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
3035 	vrt &= ~(F_VFRDRG | F_VFRDEN | V_VFWRADDR(M_VFWRADDR) | F_KEYWREN);
3036 	vrt |= V_VFWRADDR(index) | F_VFWREN;
3037 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
3038 }
3039 
3040 /**
3041  *	t4_read_rss_pf_map - read PF RSS Map
3042  *	@adapter: the adapter
3043  *
3044  *	Reads the PF RSS Map register and returns its value.
3045  */
3046 u32 t4_read_rss_pf_map(struct adapter *adapter)
3047 {
3048 	u32 pfmap;
3049 
3050 	t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3051 			 &pfmap, 1, A_TP_RSS_PF_MAP);
3052 	return pfmap;
3053 }
3054 
3055 /**
3056  *	t4_write_rss_pf_map - write PF RSS Map
3057  *	@adapter: the adapter
3058  *	@pfmap: PF RSS Map value
3059  *
3060  *	Writes the specified value to the PF RSS Map register.
3061  */
3062 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap)
3063 {
3064 	t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3065 			  &pfmap, 1, A_TP_RSS_PF_MAP);
3066 }
3067 
3068 /**
3069  *	t4_read_rss_pf_mask - read PF RSS Mask
3070  *	@adapter: the adapter
3071  *
3072  *	Reads the PF RSS Mask register and returns its value.
3073  */
3074 u32 t4_read_rss_pf_mask(struct adapter *adapter)
3075 {
3076 	u32 pfmask;
3077 
3078 	t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3079 			 &pfmask, 1, A_TP_RSS_PF_MSK);
3080 	return pfmask;
3081 }
3082 
3083 /**
3084  *	t4_write_rss_pf_mask - write PF RSS Mask
3085  *	@adapter: the adapter
3086  *	@pfmask: PF RSS Mask value
3087  *
3088  *	Writes the specified value to the PF RSS Mask register.
3089  */
3090 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask)
3091 {
3092 	t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
3093 			  &pfmask, 1, A_TP_RSS_PF_MSK);
3094 }
3095 
3096 /**
3097  *	t4_set_filter_mode - configure the optional components of filter tuples
3098  *	@adap: the adapter
3099  *	@mode_map: a bitmap selcting which optional filter components to enable
3100  *
3101  *	Sets the filter mode by selecting the optional components to enable
3102  *	in filter tuples.  Returns 0 on success and a negative error if the
3103  *	requested mode needs more bits than are available for optional
3104  *	components.
3105  */
3106 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map)
3107 {
3108 	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
3109 
3110 	int i, nbits = 0;
3111 
3112 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
3113 		if (mode_map & (1 << i))
3114 			nbits += width[i];
3115 	if (nbits > FILTER_OPT_LEN)
3116 		return -EINVAL;
3117 	t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, &mode_map, 1,
3118 			  A_TP_VLAN_PRI_MAP);
3119 	return 0;
3120 }
3121 
3122 /**
3123  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
3124  *	@adap: the adapter
3125  *	@v4: holds the TCP/IP counter values
3126  *	@v6: holds the TCP/IPv6 counter values
3127  *
3128  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
3129  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
3130  */
3131 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
3132 			 struct tp_tcp_stats *v6)
3133 {
3134 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
3135 
3136 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
3137 #define STAT(x)     val[STAT_IDX(x)]
3138 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
3139 
3140 	if (v4) {
3141 		t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
3142 				 ARRAY_SIZE(val), A_TP_MIB_TCP_OUT_RST);
3143 		v4->tcpOutRsts = STAT(OUT_RST);
3144 		v4->tcpInSegs  = STAT64(IN_SEG);
3145 		v4->tcpOutSegs = STAT64(OUT_SEG);
3146 		v4->tcpRetransSegs = STAT64(RXT_SEG);
3147 	}
3148 	if (v6) {
3149 		t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
3150 				 ARRAY_SIZE(val), A_TP_MIB_TCP_V6OUT_RST);
3151 		v6->tcpOutRsts = STAT(OUT_RST);
3152 		v6->tcpInSegs  = STAT64(IN_SEG);
3153 		v6->tcpOutSegs = STAT64(OUT_SEG);
3154 		v6->tcpRetransSegs = STAT64(RXT_SEG);
3155 	}
3156 #undef STAT64
3157 #undef STAT
3158 #undef STAT_IDX
3159 }
3160 
3161 /**
3162  *	t4_tp_get_err_stats - read TP's error MIB counters
3163  *	@adap: the adapter
3164  *	@st: holds the counter values
3165  *
3166  *	Returns the values of TP's error counters.
3167  */
3168 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
3169 {
3170 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->macInErrs,
3171 			 12, A_TP_MIB_MAC_IN_ERR_0);
3172 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->tnlCongDrops,
3173 			 8, A_TP_MIB_TNL_CNG_DROP_0);
3174 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->tnlTxDrops,
3175 			 4, A_TP_MIB_TNL_DROP_0);
3176 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->ofldVlanDrops,
3177 			 4, A_TP_MIB_OFD_VLN_DROP_0);
3178 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->tcp6InErrs,
3179 			 4, A_TP_MIB_TCP_V6IN_ERR_0);
3180 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->ofldNoNeigh,
3181 			 2, A_TP_MIB_OFD_ARP_DROP);
3182 }
3183 
3184 /**
3185  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
3186  *	@adap: the adapter
3187  *	@st: holds the counter values
3188  *
3189  *	Returns the values of TP's proxy counters.
3190  */
3191 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st)
3192 {
3193 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->proxy,
3194 			 4, A_TP_MIB_TNL_LPBK_0);
3195 }
3196 
3197 /**
3198  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
3199  *	@adap: the adapter
3200  *	@st: holds the counter values
3201  *
3202  *	Returns the values of TP's CPL counters.
3203  */
3204 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
3205 {
3206 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->req,
3207 			 8, A_TP_MIB_CPL_IN_REQ_0);
3208 }
3209 
3210 /**
3211  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
3212  *	@adap: the adapter
3213  *	@st: holds the counter values
3214  *
3215  *	Returns the values of TP's RDMA counters.
3216  */
3217 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
3218 {
3219 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->rqe_dfr_mod,
3220 			 2, A_TP_MIB_RQE_DFR_MOD);
3221 }
3222 
3223 /**
3224  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
3225  *	@adap: the adapter
3226  *	@idx: the port index
3227  *	@st: holds the counter values
3228  *
3229  *	Returns the values of TP's FCoE counters for the selected port.
3230  */
3231 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
3232 		       struct tp_fcoe_stats *st)
3233 {
3234 	u32 val[2];
3235 
3236 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->framesDDP,
3237 			 1, A_TP_MIB_FCOE_DDP_0 + idx);
3238 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->framesDrop,
3239 			 1, A_TP_MIB_FCOE_DROP_0 + idx);
3240 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
3241 			 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx);
3242 	st->octetsDDP = ((u64)val[0] << 32) | val[1];
3243 }
3244 
3245 /**
3246  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
3247  *	@adap: the adapter
3248  *	@st: holds the counter values
3249  *
3250  *	Returns the values of TP's counters for non-TCP directly-placed packets.
3251  */
3252 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
3253 {
3254 	u32 val[4];
3255 
3256 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val, 4,
3257 			 A_TP_MIB_USM_PKTS);
3258 	st->frames = val[0];
3259 	st->drops = val[1];
3260 	st->octets = ((u64)val[2] << 32) | val[3];
3261 }
3262 
3263 /**
3264  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
3265  *	@adap: the adapter
3266  *	@mtus: where to store the MTU values
3267  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
3268  *
3269  *	Reads the HW path MTU table.
3270  */
3271 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
3272 {
3273 	u32 v;
3274 	int i;
3275 
3276 	for (i = 0; i < NMTUS; ++i) {
3277 		t4_write_reg(adap, A_TP_MTU_TABLE,
3278 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
3279 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
3280 		mtus[i] = G_MTUVALUE(v);
3281 		if (mtu_log)
3282 			mtu_log[i] = G_MTUWIDTH(v);
3283 	}
3284 }
3285 
3286 /**
3287  *	t4_read_cong_tbl - reads the congestion control table
3288  *	@adap: the adapter
3289  *	@incr: where to store the alpha values
3290  *
3291  *	Reads the additive increments programmed into the HW congestion
3292  *	control table.
3293  */
3294 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
3295 {
3296 	unsigned int mtu, w;
3297 
3298 	for (mtu = 0; mtu < NMTUS; ++mtu)
3299 		for (w = 0; w < NCCTRL_WIN; ++w) {
3300 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
3301 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
3302 			incr[mtu][w] = (u16)t4_read_reg(adap,
3303 						A_TP_CCTRL_TABLE) & 0x1fff;
3304 		}
3305 }
3306 
3307 /**
3308  *	t4_read_pace_tbl - read the pace table
3309  *	@adap: the adapter
3310  *	@pace_vals: holds the returned values
3311  *
3312  *	Returns the values of TP's pace table in microseconds.
3313  */
3314 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
3315 {
3316 	unsigned int i, v;
3317 
3318 	for (i = 0; i < NTX_SCHED; i++) {
3319 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
3320 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
3321 		pace_vals[i] = dack_ticks_to_usec(adap, v);
3322 	}
3323 }
3324 
3325 /**
3326  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
3327  *	@adap: the adapter
3328  *	@addr: the indirect TP register address
3329  *	@mask: specifies the field within the register to modify
3330  *	@val: new value for the field
3331  *
3332  *	Sets a field of an indirect TP register to the given value.
3333  */
3334 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
3335 			    unsigned int mask, unsigned int val)
3336 {
3337 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
3338 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
3339 	t4_write_reg(adap, A_TP_PIO_DATA, val);
3340 }
3341 
3342 /**
3343  *	init_cong_ctrl - initialize congestion control parameters
3344  *	@a: the alpha values for congestion control
3345  *	@b: the beta values for congestion control
3346  *
3347  *	Initialize the congestion control parameters.
3348  */
3349 static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b)
3350 {
3351 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
3352 	a[9] = 2;
3353 	a[10] = 3;
3354 	a[11] = 4;
3355 	a[12] = 5;
3356 	a[13] = 6;
3357 	a[14] = 7;
3358 	a[15] = 8;
3359 	a[16] = 9;
3360 	a[17] = 10;
3361 	a[18] = 14;
3362 	a[19] = 17;
3363 	a[20] = 21;
3364 	a[21] = 25;
3365 	a[22] = 30;
3366 	a[23] = 35;
3367 	a[24] = 45;
3368 	a[25] = 60;
3369 	a[26] = 80;
3370 	a[27] = 100;
3371 	a[28] = 200;
3372 	a[29] = 300;
3373 	a[30] = 400;
3374 	a[31] = 500;
3375 
3376 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
3377 	b[9] = b[10] = 1;
3378 	b[11] = b[12] = 2;
3379 	b[13] = b[14] = b[15] = b[16] = 3;
3380 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
3381 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
3382 	b[28] = b[29] = 6;
3383 	b[30] = b[31] = 7;
3384 }
3385 
3386 /* The minimum additive increment value for the congestion control table */
3387 #define CC_MIN_INCR 2U
3388 
3389 /**
3390  *	t4_load_mtus - write the MTU and congestion control HW tables
3391  *	@adap: the adapter
3392  *	@mtus: the values for the MTU table
3393  *	@alpha: the values for the congestion control alpha parameter
3394  *	@beta: the values for the congestion control beta parameter
3395  *
3396  *	Write the HW MTU table with the supplied MTUs and the high-speed
3397  *	congestion control table with the supplied alpha, beta, and MTUs.
3398  *	We write the two tables together because the additive increments
3399  *	depend on the MTUs.
3400  */
3401 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
3402 		  const unsigned short *alpha, const unsigned short *beta)
3403 {
3404 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
3405 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
3406 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
3407 		28672, 40960, 57344, 81920, 114688, 163840, 229376
3408 	};
3409 
3410 	unsigned int i, w;
3411 
3412 	for (i = 0; i < NMTUS; ++i) {
3413 		unsigned int mtu = mtus[i];
3414 		unsigned int log2 = fls(mtu);
3415 
3416 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
3417 			log2--;
3418 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
3419 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
3420 
3421 		for (w = 0; w < NCCTRL_WIN; ++w) {
3422 			unsigned int inc;
3423 
3424 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
3425 				  CC_MIN_INCR);
3426 
3427 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
3428 				     (w << 16) | (beta[w] << 13) | inc);
3429 		}
3430 	}
3431 }
3432 
3433 /**
3434  *	t4_set_pace_tbl - set the pace table
3435  *	@adap: the adapter
3436  *	@pace_vals: the pace values in microseconds
3437  *	@start: index of the first entry in the HW pace table to set
3438  *	@n: how many entries to set
3439  *
3440  *	Sets (a subset of the) HW pace table.
3441  */
3442 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
3443 		     unsigned int start, unsigned int n)
3444 {
3445 	unsigned int vals[NTX_SCHED], i;
3446 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
3447 
3448 	if (n > NTX_SCHED)
3449 	    return -ERANGE;
3450 
3451 	/* convert values from us to dack ticks, rounding to closest value */
3452 	for (i = 0; i < n; i++, pace_vals++) {
3453 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
3454 		if (vals[i] > 0x7ff)
3455 			return -ERANGE;
3456 		if (*pace_vals && vals[i] == 0)
3457 			return -ERANGE;
3458 	}
3459 	for (i = 0; i < n; i++, start++)
3460 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
3461 	return 0;
3462 }
3463 
3464 /**
3465  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
3466  *	@adap: the adapter
3467  *	@kbps: target rate in Kbps
3468  *	@sched: the scheduler index
3469  *
3470  *	Configure a Tx HW scheduler for the target rate.
3471  */
3472 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
3473 {
3474 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
3475 	unsigned int clk = adap->params.vpd.cclk * 1000;
3476 	unsigned int selected_cpt = 0, selected_bpt = 0;
3477 
3478 	if (kbps > 0) {
3479 		kbps *= 125;     /* -> bytes */
3480 		for (cpt = 1; cpt <= 255; cpt++) {
3481 			tps = clk / cpt;
3482 			bpt = (kbps + tps / 2) / tps;
3483 			if (bpt > 0 && bpt <= 255) {
3484 				v = bpt * tps;
3485 				delta = v >= kbps ? v - kbps : kbps - v;
3486 				if (delta < mindelta) {
3487 					mindelta = delta;
3488 					selected_cpt = cpt;
3489 					selected_bpt = bpt;
3490 				}
3491 			} else if (selected_cpt)
3492 				break;
3493 		}
3494 		if (!selected_cpt)
3495 			return -EINVAL;
3496 	}
3497 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
3498 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
3499 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
3500 	if (sched & 1)
3501 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
3502 	else
3503 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
3504 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
3505 	return 0;
3506 }
3507 
3508 /**
3509  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
3510  *	@adap: the adapter
3511  *	@sched: the scheduler index
3512  *	@ipg: the interpacket delay in tenths of nanoseconds
3513  *
3514  *	Set the interpacket delay for a HW packet rate scheduler.
3515  */
3516 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
3517 {
3518 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
3519 
3520 	/* convert ipg to nearest number of core clocks */
3521 	ipg *= core_ticks_per_usec(adap);
3522 	ipg = (ipg + 5000) / 10000;
3523 	if (ipg > M_TXTIMERSEPQ0)
3524 		return -EINVAL;
3525 
3526 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
3527 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
3528 	if (sched & 1)
3529 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
3530 	else
3531 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
3532 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
3533 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
3534 	return 0;
3535 }
3536 
3537 /**
3538  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
3539  *	@adap: the adapter
3540  *	@sched: the scheduler index
3541  *	@kbps: the byte rate in Kbps
3542  *	@ipg: the interpacket delay in tenths of nanoseconds
3543  *
3544  *	Return the current configuration of a HW Tx scheduler.
3545  */
3546 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
3547 		     unsigned int *ipg)
3548 {
3549 	unsigned int v, addr, bpt, cpt;
3550 
3551 	if (kbps) {
3552 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
3553 		t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
3554 		v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
3555 		if (sched & 1)
3556 			v >>= 16;
3557 		bpt = (v >> 8) & 0xff;
3558 		cpt = v & 0xff;
3559 		if (!cpt)
3560 			*kbps = 0;        /* scheduler disabled */
3561 		else {
3562 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
3563 			*kbps = (v * bpt) / 125;
3564 		}
3565 	}
3566 	if (ipg) {
3567 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
3568 		t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
3569 		v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
3570 		if (sched & 1)
3571 			v >>= 16;
3572 		v &= 0xffff;
3573 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
3574 	}
3575 }
3576 
3577 /*
3578  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
3579  * clocks.  The formula is
3580  *
3581  * bytes/s = bytes256 * 256 * ClkFreq / 4096
3582  *
3583  * which is equivalent to
3584  *
3585  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
3586  */
3587 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
3588 {
3589 	u64 v = bytes256 * adap->params.vpd.cclk;
3590 
3591 	return v * 62 + v / 2;
3592 }
3593 
3594 /**
3595  *	t4_get_chan_txrate - get the current per channel Tx rates
3596  *	@adap: the adapter
3597  *	@nic_rate: rates for NIC traffic
3598  *	@ofld_rate: rates for offloaded traffic
3599  *
3600  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
3601  *	for each channel.
3602  */
3603 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
3604 {
3605 	u32 v;
3606 
3607 	v = t4_read_reg(adap, A_TP_TX_TRATE);
3608 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
3609 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
3610 	nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
3611 	nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
3612 
3613 	v = t4_read_reg(adap, A_TP_TX_ORATE);
3614 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
3615 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
3616 	ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
3617 	ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
3618 }
3619 
3620 /**
3621  *	t4_set_trace_filter - configure one of the tracing filters
3622  *	@adap: the adapter
3623  *	@tp: the desired trace filter parameters
3624  *	@idx: which filter to configure
3625  *	@enable: whether to enable or disable the filter
3626  *
3627  *	Configures one of the tracing filters available in HW.  If @enable is
3628  *	%0 @tp is not examined and may be %NULL. The user is responsible to
3629  *	set the single/multiple trace mode by writing to A_MPS_TRC_CFG register
3630  *	by using "cxgbtool iface reg reg_addr=val" command. See t4_sniffer/
3631  *	docs/readme.txt for a complete description of how to setup traceing on
3632  *	T4.
3633  */
3634 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, int idx,
3635 			int enable)
3636 {
3637 	int i, ofst = idx * 4;
3638 	u32 data_reg, mask_reg, cfg;
3639 	u32 multitrc = F_TRCMULTIFILTER;
3640 
3641 	if (!enable) {
3642 		t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, 0);
3643 		return 0;
3644 	}
3645 
3646 	/*
3647 	 * TODO - After T4 data book is updated, specify the exact
3648 	 * section below.
3649 	 *
3650 	 * See T4 data book - MPS section for a complete description
3651 	 * of the below if..else handling of A_MPS_TRC_CFG register
3652 	 * value.
3653 	 */
3654 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
3655 	if (cfg & F_TRCMULTIFILTER) {
3656 		/*
3657 		 * If multiple tracers are enabled, then maximum
3658 		 * capture size is 2.5KB (FIFO size of a single channel)
3659 		 * minus 2 flits for CPL_TRACE_PKT header.
3660 		 */
3661 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
3662 			return -EINVAL;
3663 	}
3664 	else {
3665 		/*
3666 		 * If multiple tracers are disabled, to avoid deadlocks
3667 		 * maximum packet capture size of 9600 bytes is recommended.
3668 		 * Also in this mode, only trace0 can be enabled and running.
3669 		 */
3670 		multitrc = 0;
3671 		if (tp->snap_len > 9600 || idx)
3672 			return -EINVAL;
3673 	}
3674 
3675 	if (tp->port > 11 || tp->invert > 1 || tp->skip_len > M_TFLENGTH ||
3676 	    tp->skip_ofst > M_TFOFFSET || tp->min_len > M_TFMINPKTSIZE)
3677 		return -EINVAL;
3678 
3679 	/* stop the tracer we'll be changing */
3680 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, 0);
3681 
3682 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
3683 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
3684 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
3685 
3686 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
3687 		t4_write_reg(adap, data_reg, tp->data[i]);
3688 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
3689 	}
3690 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
3691 		     V_TFCAPTUREMAX(tp->snap_len) |
3692 		     V_TFMINPKTSIZE(tp->min_len));
3693 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
3694 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) |
3695 		     is_t4(adap) ?
3696 		     V_TFPORT(tp->port) | F_TFEN | V_TFINVERTMATCH(tp->invert) :
3697 		     V_T5_TFPORT(tp->port) | F_T5_TFEN |
3698 		     V_T5_TFINVERTMATCH(tp->invert));
3699 
3700 	return 0;
3701 }
3702 
3703 /**
3704  *	t4_get_trace_filter - query one of the tracing filters
3705  *	@adap: the adapter
3706  *	@tp: the current trace filter parameters
3707  *	@idx: which trace filter to query
3708  *	@enabled: non-zero if the filter is enabled
3709  *
3710  *	Returns the current settings of one of the HW tracing filters.
3711  */
3712 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
3713 			 int *enabled)
3714 {
3715 	u32 ctla, ctlb;
3716 	int i, ofst = idx * 4;
3717 	u32 data_reg, mask_reg;
3718 
3719 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
3720 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
3721 
3722 	if (is_t4(adap)) {
3723 		*enabled = !!(ctla & F_TFEN);
3724 		tp->port =  G_TFPORT(ctla);
3725 	} else {
3726 		*enabled = !!(ctla & F_T5_TFEN);
3727 		tp->port = G_T5_TFPORT(ctla);
3728 	}
3729 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
3730 	tp->min_len = G_TFMINPKTSIZE(ctlb);
3731 	tp->skip_ofst = G_TFOFFSET(ctla);
3732 	tp->skip_len = G_TFLENGTH(ctla);
3733 	tp->invert = !!(ctla & F_TFINVERTMATCH);
3734 
3735 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
3736 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
3737 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
3738 
3739 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
3740 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
3741 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
3742 	}
3743 }
3744 
3745 /**
3746  *	t4_pmtx_get_stats - returns the HW stats from PMTX
3747  *	@adap: the adapter
3748  *	@cnt: where to store the count statistics
3749  *	@cycles: where to store the cycle statistics
3750  *
3751  *	Returns performance statistics from PMTX.
3752  */
3753 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
3754 {
3755 	int i;
3756 	u32 data[2];
3757 
3758 	for (i = 0; i < PM_NSTATS; i++) {
3759 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
3760 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
3761 		if (is_t4(adap))
3762 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
3763 		else {
3764 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
3765 					 A_PM_TX_DBG_DATA, data, 2,
3766 					 A_PM_TX_DBG_STAT_MSB);
3767 			cycles[i] = (((u64)data[0] << 32) | data[1]);
3768 		}
3769 	}
3770 }
3771 
3772 /**
3773  *	t4_pmrx_get_stats - returns the HW stats from PMRX
3774  *	@adap: the adapter
3775  *	@cnt: where to store the count statistics
3776  *	@cycles: where to store the cycle statistics
3777  *
3778  *	Returns performance statistics from PMRX.
3779  */
3780 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
3781 {
3782 	int i;
3783 	u32 data[2];
3784 
3785 	for (i = 0; i < PM_NSTATS; i++) {
3786 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
3787 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
3788 		if (is_t4(adap))
3789 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
3790 		else {
3791 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
3792 					 A_PM_RX_DBG_DATA, data, 2,
3793 					 A_PM_RX_DBG_STAT_MSB);
3794 			cycles[i] = (((u64)data[0] << 32) | data[1]);
3795 		}
3796 	}
3797 }
3798 
3799 /**
3800  *	get_mps_bg_map - return the buffer groups associated with a port
3801  *	@adap: the adapter
3802  *	@idx: the port index
3803  *
3804  *	Returns a bitmap indicating which MPS buffer groups are associated
3805  *	with the given port.  Bit i is set if buffer group i is used by the
3806  *	port.
3807  */
3808 static unsigned int get_mps_bg_map(struct adapter *adap, int idx)
3809 {
3810 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
3811 
3812 	if (n == 0)
3813 		return idx == 0 ? 0xf : 0;
3814 	if (n == 1)
3815 		return idx < 2 ? (3 << (2 * idx)) : 0;
3816 	return 1 << idx;
3817 }
3818 
3819 /**
3820  *      t4_get_port_stats_offset - collect port stats relative to a previous
3821  *                                 snapshot
3822  *      @adap: The adapter
3823  *      @idx: The port
3824  *      @stats: Current stats to fill
3825  *      @offset: Previous stats snapshot
3826  */
3827 void t4_get_port_stats_offset(struct adapter *adap, int idx,
3828 		struct port_stats *stats,
3829 		struct port_stats *offset)
3830 {
3831 	u64 *s, *o;
3832 	int i;
3833 
3834 	t4_get_port_stats(adap, idx, stats);
3835 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
3836 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
3837 			i++, s++, o++)
3838 		*s -= *o;
3839 }
3840 
3841 /**
3842  *	t4_get_port_stats - collect port statistics
3843  *	@adap: the adapter
3844  *	@idx: the port index
3845  *	@p: the stats structure to fill
3846  *
3847  *	Collect statistics related to the given port from HW.
3848  */
3849 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
3850 {
3851 	u32 bgmap = get_mps_bg_map(adap, idx);
3852 
3853 #define GET_STAT(name) \
3854 	t4_read_reg64(adap, \
3855 	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
3856 	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
3857 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
3858 
3859 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
3860 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
3861 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
3862 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
3863 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
3864 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
3865 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
3866 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
3867 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
3868 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
3869 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
3870 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
3871 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
3872 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
3873 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
3874 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
3875 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
3876 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
3877 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
3878 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
3879 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
3880 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
3881 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
3882 
3883 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
3884 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
3885 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
3886 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
3887 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
3888 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
3889 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
3890 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
3891 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
3892 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
3893 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
3894 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
3895 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
3896 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
3897 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
3898 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
3899 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
3900 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
3901 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
3902 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
3903 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
3904 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
3905 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
3906 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
3907 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
3908 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
3909 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
3910 
3911 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
3912 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
3913 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
3914 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
3915 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
3916 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
3917 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
3918 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
3919 
3920 #undef GET_STAT
3921 #undef GET_STAT_COM
3922 }
3923 
3924 /**
3925  *	t4_clr_port_stats - clear port statistics
3926  *	@adap: the adapter
3927  *	@idx: the port index
3928  *
3929  *	Clear HW statistics for the given port.
3930  */
3931 void t4_clr_port_stats(struct adapter *adap, int idx)
3932 {
3933 	unsigned int i;
3934 	u32 bgmap = get_mps_bg_map(adap, idx);
3935 	u32 port_base_addr;
3936 
3937 	if (is_t4(adap))
3938 		port_base_addr = PORT_BASE(idx);
3939 	else
3940 		port_base_addr = T5_PORT_BASE(idx);
3941 
3942 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
3943 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
3944 		t4_write_reg(adap, port_base_addr + i, 0);
3945 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
3946 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
3947 		t4_write_reg(adap, port_base_addr + i, 0);
3948 	for (i = 0; i < 4; i++)
3949 		if (bgmap & (1 << i)) {
3950 			t4_write_reg(adap,
3951 				A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
3952 			t4_write_reg(adap,
3953 				A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
3954 		}
3955 }
3956 
3957 /**
3958  *	t4_get_lb_stats - collect loopback port statistics
3959  *	@adap: the adapter
3960  *	@idx: the loopback port index
3961  *	@p: the stats structure to fill
3962  *
3963  *	Return HW statistics for the given loopback port.
3964  */
3965 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
3966 {
3967 	u32 bgmap = get_mps_bg_map(adap, idx);
3968 
3969 #define GET_STAT(name) \
3970 	t4_read_reg64(adap, \
3971 	(is_t4(adap) ? \
3972 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
3973 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
3974 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
3975 
3976 	p->octets           = GET_STAT(BYTES);
3977 	p->frames           = GET_STAT(FRAMES);
3978 	p->bcast_frames     = GET_STAT(BCAST);
3979 	p->mcast_frames     = GET_STAT(MCAST);
3980 	p->ucast_frames     = GET_STAT(UCAST);
3981 	p->error_frames     = GET_STAT(ERROR);
3982 
3983 	p->frames_64        = GET_STAT(64B);
3984 	p->frames_65_127    = GET_STAT(65B_127B);
3985 	p->frames_128_255   = GET_STAT(128B_255B);
3986 	p->frames_256_511   = GET_STAT(256B_511B);
3987 	p->frames_512_1023  = GET_STAT(512B_1023B);
3988 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
3989 	p->frames_1519_max  = GET_STAT(1519B_MAX);
3990 	p->drop             = GET_STAT(DROP_FRAMES);
3991 
3992 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
3993 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
3994 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
3995 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
3996 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
3997 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
3998 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
3999 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
4000 
4001 #undef GET_STAT
4002 #undef GET_STAT_COM
4003 }
4004 
4005 /**
4006  *	t4_wol_magic_enable - enable/disable magic packet WoL
4007  *	@adap: the adapter
4008  *	@port: the physical port index
4009  *	@addr: MAC address expected in magic packets, %NULL to disable
4010  *
4011  *	Enables/disables magic packet wake-on-LAN for the selected port.
4012  */
4013 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
4014 			 const u8 *addr)
4015 {
4016 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
4017 
4018 	if (is_t4(adap)) {
4019 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
4020 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
4021 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
4022 	} else {
4023 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
4024 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
4025 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
4026 	}
4027 
4028 	if (addr) {
4029 		t4_write_reg(adap, mag_id_reg_l,
4030 			     (addr[2] << 24) | (addr[3] << 16) |
4031 			     (addr[4] << 8) | addr[5]);
4032 		t4_write_reg(adap, mag_id_reg_h,
4033 			     (addr[0] << 8) | addr[1]);
4034 	}
4035 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
4036 			 V_MAGICEN(addr != NULL));
4037 }
4038 
4039 /**
4040  *	t4_wol_pat_enable - enable/disable pattern-based WoL
4041  *	@adap: the adapter
4042  *	@port: the physical port index
4043  *	@map: bitmap of which HW pattern filters to set
4044  *	@mask0: byte mask for bytes 0-63 of a packet
4045  *	@mask1: byte mask for bytes 64-127 of a packet
4046  *	@crc: Ethernet CRC for selected bytes
4047  *	@enable: enable/disable switch
4048  *
4049  *	Sets the pattern filters indicated in @map to mask out the bytes
4050  *	specified in @mask0/@mask1 in received packets and compare the CRC of
4051  *	the resulting packet against @crc.  If @enable is %true pattern-based
4052  *	WoL is enabled, otherwise disabled.
4053  */
4054 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
4055 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
4056 {
4057 	int i;
4058 	u32 port_cfg_reg;
4059 
4060 	if (is_t4(adap))
4061 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
4062 	else
4063 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
4064 
4065 	if (!enable) {
4066 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
4067 		return 0;
4068 	}
4069 	if (map > 0xff)
4070 		return -EINVAL;
4071 
4072 #define EPIO_REG(name) \
4073 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
4074 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
4075 
4076 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
4077 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
4078 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
4079 
4080 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
4081 		if (!(map & 1))
4082 			continue;
4083 
4084 		/* write byte masks */
4085 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
4086 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
4087 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
4088 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
4089 			return -ETIMEDOUT;
4090 
4091 		/* write CRC */
4092 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
4093 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
4094 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
4095 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
4096 			return -ETIMEDOUT;
4097 	}
4098 #undef EPIO_REG
4099 
4100 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
4101 	return 0;
4102 }
4103 
4104 /**
4105  *	t4_mk_filtdelwr - create a delete filter WR
4106  *	@ftid: the filter ID
4107  *	@wr: the filter work request to populate
4108  *	@qid: ingress queue to receive the delete notification
4109  *
4110  *	Creates a filter work request to delete the supplied filter.  If @qid is
4111  *	negative the delete notification is suppressed.
4112  */
4113 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
4114 {
4115 	memset(wr, 0, sizeof(*wr));
4116 	wr->op_pkd = htonl(V_FW_WR_OP(FW_FILTER_WR));
4117 	wr->len16_pkd = htonl(V_FW_WR_LEN16(sizeof(*wr) / 16));
4118 	wr->tid_to_iq = htonl(V_FW_FILTER_WR_TID(ftid) |
4119 			      V_FW_FILTER_WR_NOREPLY(qid < 0));
4120 	wr->del_filter_to_l2tix = htonl(F_FW_FILTER_WR_DEL_FILTER);
4121 	if (qid >= 0)
4122 		wr->rx_chan_rx_rpl_iq = htons(V_FW_FILTER_WR_RX_RPL_IQ(qid));
4123 }
4124 
4125 #define INIT_CMD(var, cmd, rd_wr) do { \
4126 	(var).op_to_write = htonl(V_FW_CMD_OP(FW_##cmd##_CMD) | \
4127 				  F_FW_CMD_REQUEST | F_FW_CMD_##rd_wr); \
4128 	(var).retval_len16 = htonl(FW_LEN16(var)); \
4129 } while (0)
4130 
4131 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, u32 addr, u32 val)
4132 {
4133 	struct fw_ldst_cmd c;
4134 
4135 	memset(&c, 0, sizeof(c));
4136 	c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
4137 		F_FW_CMD_WRITE | V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE));
4138 	c.cycles_to_len16 = htonl(FW_LEN16(c));
4139 	c.u.addrval.addr = htonl(addr);
4140 	c.u.addrval.val = htonl(val);
4141 
4142 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4143 }
4144 
4145 /**
4146  *	t4_i2c_rd - read a byte from an i2c addressable device
4147  *	@adap: the adapter
4148  *	@mbox: mailbox to use for the FW command
4149  *	@port_id: the port id
4150  *	@dev_addr: the i2c device address
4151  *	@offset: the byte offset to read from
4152  *	@valp: where to store the value
4153  */
4154 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, unsigned int port_id,
4155 	       u8 dev_addr, u8 offset, u8 *valp)
4156 {
4157 	int ret;
4158 	struct fw_ldst_cmd c;
4159 
4160 	memset(&c, 0, sizeof(c));
4161 	c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
4162 		F_FW_CMD_READ |
4163 		V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_I2C));
4164 	c.cycles_to_len16 = htonl(FW_LEN16(c));
4165 	c.u.i2c_deprecated.pid_pkd = V_FW_LDST_CMD_PID(port_id);
4166 	c.u.i2c_deprecated.base = dev_addr;
4167 	c.u.i2c_deprecated.boffset = offset;
4168 
4169 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4170 	if (ret == 0)
4171 		*valp = c.u.i2c_deprecated.data;
4172 	return ret;
4173 }
4174 
4175 /**
4176  *	t4_mdio_rd - read a PHY register through MDIO
4177  *	@adap: the adapter
4178  *	@mbox: mailbox to use for the FW command
4179  *	@phy_addr: the PHY address
4180  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
4181  *	@reg: the register to read
4182  *	@valp: where to store the value
4183  *
4184  *	Issues a FW command through the given mailbox to read a PHY register.
4185  */
4186 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
4187 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
4188 {
4189 	int ret;
4190 	struct fw_ldst_cmd c;
4191 
4192 	memset(&c, 0, sizeof(c));
4193 	c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
4194 		F_FW_CMD_READ | V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
4195 	c.cycles_to_len16 = htonl(FW_LEN16(c));
4196 	c.u.mdio.paddr_mmd = htons(V_FW_LDST_CMD_PADDR(phy_addr) |
4197 				   V_FW_LDST_CMD_MMD(mmd));
4198 	c.u.mdio.raddr = htons(reg);
4199 
4200 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4201 	if (ret == 0)
4202 		*valp = ntohs(c.u.mdio.rval);
4203 	return ret;
4204 }
4205 
4206 /**
4207  *	t4_mdio_wr - write a PHY register through MDIO
4208  *	@adap: the adapter
4209  *	@mbox: mailbox to use for the FW command
4210  *	@phy_addr: the PHY address
4211  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
4212  *	@reg: the register to write
4213  *	@valp: value to write
4214  *
4215  *	Issues a FW command through the given mailbox to write a PHY register.
4216  */
4217 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
4218 	       unsigned int mmd, unsigned int reg, unsigned int val)
4219 {
4220 	struct fw_ldst_cmd c;
4221 
4222 	memset(&c, 0, sizeof(c));
4223 	c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
4224 		F_FW_CMD_WRITE | V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
4225 	c.cycles_to_len16 = htonl(FW_LEN16(c));
4226 	c.u.mdio.paddr_mmd = htons(V_FW_LDST_CMD_PADDR(phy_addr) |
4227 				   V_FW_LDST_CMD_MMD(mmd));
4228 	c.u.mdio.raddr = htons(reg);
4229 	c.u.mdio.rval = htons(val);
4230 
4231 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4232 }
4233 
4234 /**
4235  *	t4_sge_ctxt_flush - flush the SGE context cache
4236  *	@adap: the adapter
4237  *	@mbox: mailbox to use for the FW command
4238  *
4239  *	Issues a FW command through the given mailbox to flush the
4240  *	SGE context cache.
4241  */
4242 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
4243 {
4244 	int ret;
4245 	struct fw_ldst_cmd c;
4246 
4247 	memset(&c, 0, sizeof(c));
4248 	c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
4249 			F_FW_CMD_READ |
4250 			V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC));
4251 	c.cycles_to_len16 = htonl(FW_LEN16(c));
4252 	c.u.idctxt.msg_ctxtflush = htonl(F_FW_LDST_CMD_CTXTFLUSH);
4253 
4254 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4255 	return ret;
4256 }
4257 
4258 /**
4259  *	t4_sge_ctxt_rd - read an SGE context through FW
4260  *	@adap: the adapter
4261  *	@mbox: mailbox to use for the FW command
4262  *	@cid: the context id
4263  *	@ctype: the context type
4264  *	@data: where to store the context data
4265  *
4266  *	Issues a FW command through the given mailbox to read an SGE context.
4267  */
4268 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
4269 		   enum ctxt_type ctype, u32 *data)
4270 {
4271 	int ret;
4272 	struct fw_ldst_cmd c;
4273 
4274 	if (ctype == CTXT_EGRESS)
4275 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
4276 	else if (ctype == CTXT_INGRESS)
4277 		ret = FW_LDST_ADDRSPC_SGE_INGC;
4278 	else if (ctype == CTXT_FLM)
4279 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
4280 	else
4281 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
4282 
4283 	memset(&c, 0, sizeof(c));
4284 	c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
4285 				  F_FW_CMD_READ | V_FW_LDST_CMD_ADDRSPACE(ret));
4286 	c.cycles_to_len16 = htonl(FW_LEN16(c));
4287 	c.u.idctxt.physid = htonl(cid);
4288 
4289 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4290 	if (ret == 0) {
4291 		data[0] = ntohl(c.u.idctxt.ctxt_data0);
4292 		data[1] = ntohl(c.u.idctxt.ctxt_data1);
4293 		data[2] = ntohl(c.u.idctxt.ctxt_data2);
4294 		data[3] = ntohl(c.u.idctxt.ctxt_data3);
4295 		data[4] = ntohl(c.u.idctxt.ctxt_data4);
4296 		data[5] = ntohl(c.u.idctxt.ctxt_data5);
4297 	}
4298 	return ret;
4299 }
4300 
4301 /**
4302  *	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
4303  *	@adap: the adapter
4304  *	@cid: the context id
4305  *	@ctype: the context type
4306  *	@data: where to store the context data
4307  *
4308  *	Reads an SGE context directly, bypassing FW.  This is only for
4309  *	debugging when FW is unavailable.
4310  */
4311 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
4312 		      u32 *data)
4313 {
4314 	int i, ret;
4315 
4316 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
4317 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
4318 	if (!ret)
4319 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
4320 			*data++ = t4_read_reg(adap, i);
4321 	return ret;
4322 }
4323 
4324 /**
4325  *	t4_fw_hello - establish communication with FW
4326  *	@adap: the adapter
4327  *	@mbox: mailbox to use for the FW command
4328  *	@evt_mbox: mailbox to receive async FW events
4329  *	@master: specifies the caller's willingness to be the device master
4330  *	@state: returns the current device state (if non-NULL)
4331  *
4332  *	Issues a command to establish communication with FW.  Returns either
4333  *	an error (negative integer) or the mailbox of the Master PF.
4334  */
4335 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
4336 		enum dev_master master, enum dev_state *state)
4337 {
4338 	int ret;
4339 	struct fw_hello_cmd c;
4340 	u32 v;
4341 	unsigned int master_mbox;
4342 	int retries = FW_CMD_HELLO_RETRIES;
4343 
4344 retry:
4345 	memset(&c, 0, sizeof(c));
4346 	INIT_CMD(c, HELLO, WRITE);
4347 	c.err_to_clearinit = htonl(
4348 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
4349 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
4350 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox :
4351 			M_FW_HELLO_CMD_MBMASTER) |
4352 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
4353 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
4354 		F_FW_HELLO_CMD_CLEARINIT);
4355 
4356 	/*
4357 	 * Issue the HELLO command to the firmware.  If it's not successful
4358 	 * but indicates that we got a "busy" or "timeout" condition, retry
4359 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
4360 	 * retry limit, check to see if the firmware left us any error
4361 	 * information and report that if so ...
4362 	 */
4363 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4364 	if (ret != FW_SUCCESS) {
4365 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
4366 			goto retry;
4367 		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
4368 			t4_report_fw_error(adap);
4369 		return ret;
4370 	}
4371 
4372 	v = ntohl(c.err_to_clearinit);
4373 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
4374 	if (state) {
4375 		if (v & F_FW_HELLO_CMD_ERR)
4376 			*state = DEV_STATE_ERR;
4377 		else if (v & F_FW_HELLO_CMD_INIT)
4378 			*state = DEV_STATE_INIT;
4379 		else
4380 			*state = DEV_STATE_UNINIT;
4381 	}
4382 
4383 	/*
4384 	 * If we're not the Master PF then we need to wait around for the
4385 	 * Master PF Driver to finish setting up the adapter.
4386 	 *
4387 	 * Note that we also do this wait if we're a non-Master-capable PF and
4388 	 * there is no current Master PF; a Master PF may show up momentarily
4389 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
4390 	 * OS loads lots of different drivers rapidly at the same time).  In
4391 	 * this case, the Master PF returned by the firmware will be
4392 	 * M_PCIE_FW_MASTER so the test below will work ...
4393 	 */
4394 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
4395 	    master_mbox != mbox) {
4396 		int waiting = FW_CMD_HELLO_TIMEOUT;
4397 
4398 		/*
4399 		 * Wait for the firmware to either indicate an error or
4400 		 * initialized state.  If we see either of these we bail out
4401 		 * and report the issue to the caller.  If we exhaust the
4402 		 * "hello timeout" and we haven't exhausted our retries, try
4403 		 * again.  Otherwise bail with a timeout error.
4404 		 */
4405 		for (;;) {
4406 			u32 pcie_fw;
4407 
4408 			msleep(50);
4409 			waiting -= 50;
4410 
4411 			/*
4412 			 * If neither Error nor Initialialized are indicated
4413 			 * by the firmware keep waiting till we exhaust our
4414 			 * timeout ... and then retry if we haven't exhausted
4415 			 * our retries ...
4416 			 */
4417 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
4418 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
4419 				if (waiting <= 0) {
4420 					if (retries-- > 0)
4421 						goto retry;
4422 
4423 					return -ETIMEDOUT;
4424 				}
4425 				continue;
4426 			}
4427 
4428 			/*
4429 			 * We either have an Error or Initialized condition
4430 			 * report errors preferentially.
4431 			 */
4432 			if (state) {
4433 				if (pcie_fw & F_PCIE_FW_ERR)
4434 					*state = DEV_STATE_ERR;
4435 				else if (pcie_fw & F_PCIE_FW_INIT)
4436 					*state = DEV_STATE_INIT;
4437 			}
4438 
4439 			/*
4440 			 * If we arrived before a Master PF was selected and
4441 			 * there's not a valid Master PF, grab its identity
4442 			 * for our caller.
4443 			 */
4444 			if (master_mbox == M_PCIE_FW_MASTER &&
4445 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
4446 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
4447 			break;
4448 		}
4449 	}
4450 
4451 	return master_mbox;
4452 }
4453 
4454 /**
4455  *	t4_fw_bye - end communication with FW
4456  *	@adap: the adapter
4457  *	@mbox: mailbox to use for the FW command
4458  *
4459  *	Issues a command to terminate communication with FW.
4460  */
4461 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
4462 {
4463 	struct fw_bye_cmd c;
4464 
4465 	memset(&c, 0, sizeof(c));
4466 	INIT_CMD(c, BYE, WRITE);
4467 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4468 }
4469 
4470 /**
4471  *	t4_fw_reset - issue a reset to FW
4472  *	@adap: the adapter
4473  *	@mbox: mailbox to use for the FW command
4474  *	@reset: specifies the type of reset to perform
4475  *
4476  *	Issues a reset command of the specified type to FW.
4477  */
4478 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
4479 {
4480 	struct fw_reset_cmd c;
4481 
4482 	memset(&c, 0, sizeof(c));
4483 	INIT_CMD(c, RESET, WRITE);
4484 	c.val = htonl(reset);
4485 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4486 }
4487 
4488 /**
4489  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
4490  *	@adap: the adapter
4491  *	@mbox: mailbox to use for the FW RESET command (if desired)
4492  *	@force: force uP into RESET even if FW RESET command fails
4493  *
4494  *	Issues a RESET command to firmware (if desired) with a HALT indication
4495  *	and then puts the microprocessor into RESET state.  The RESET command
4496  *	will only be issued if a legitimate mailbox is provided (mbox <=
4497  *	M_PCIE_FW_MASTER).
4498  *
4499  *	This is generally used in order for the host to safely manipulate the
4500  *	adapter without fear of conflicting with whatever the firmware might
4501  *	be doing.  The only way out of this state is to RESTART the firmware
4502  *	...
4503  */
4504 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
4505 {
4506 	int ret = 0;
4507 
4508 	/*
4509 	 * If a legitimate mailbox is provided, issue a RESET command
4510 	 * with a HALT indication.
4511 	 */
4512 	if (mbox <= M_PCIE_FW_MASTER) {
4513 		struct fw_reset_cmd c;
4514 
4515 		memset(&c, 0, sizeof(c));
4516 		INIT_CMD(c, RESET, WRITE);
4517 		c.val = htonl(F_PIORST | F_PIORSTMODE);
4518 		c.halt_pkd = htonl(F_FW_RESET_CMD_HALT);
4519 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4520 	}
4521 
4522 	/*
4523 	 * Normally we won't complete the operation if the firmware RESET
4524 	 * command fails but if our caller insists we'll go ahead and put the
4525 	 * uP into RESET.  This can be useful if the firmware is hung or even
4526 	 * missing ...  We'll have to take the risk of putting the uP into
4527 	 * RESET without the cooperation of firmware in that case.
4528 	 *
4529 	 * We also force the firmware's HALT flag to be on in case we bypassed
4530 	 * the firmware RESET command above or we're dealing with old firmware
4531 	 * which doesn't have the HALT capability.  This will serve as a flag
4532 	 * for the incoming firmware to know that it's coming out of a HALT
4533 	 * rather than a RESET ... if it's new enough to understand that ...
4534 	 */
4535 	if (ret == 0 || force) {
4536 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
4537 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, F_PCIE_FW_HALT);
4538 	}
4539 
4540 	/*
4541 	 * And we always return the result of the firmware RESET command
4542 	 * even when we force the uP into RESET ...
4543 	 */
4544 	return ret;
4545 }
4546 
4547 /**
4548  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
4549  *	@adap: the adapter
4550  *	@reset: if we want to do a RESET to restart things
4551  *
4552  *	Restart firmware previously halted by t4_fw_halt().  On successful
4553  *	return the previous PF Master remains as the new PF Master and there
4554  *	is no need to issue a new HELLO command, etc.
4555  *
4556  *	We do this in two ways:
4557  *
4558  *	 1. If we're dealing with newer firmware we'll simply want to take
4559  *	    the chip's microprocessor out of RESET.  This will cause the
4560  *	    firmware to start up from its start vector.  And then we'll loop
4561  *	    until the firmware indicates it's started again (PCIE_FW.HALT
4562  *	    reset to 0) or we timeout.
4563  *
4564  *	 2. If we're dealing with older firmware then we'll need to RESET
4565  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
4566  *	    flag and automatically RESET itself on startup.
4567  */
4568 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
4569 {
4570 	if (reset) {
4571 		/*
4572 		 * Since we're directing the RESET instead of the firmware
4573 		 * doing it automatically, we need to clear the PCIE_FW.HALT
4574 		 * bit.
4575 		 */
4576 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
4577 
4578 		/*
4579 		 * If we've been given a valid mailbox, first try to get the
4580 		 * firmware to do the RESET.  If that works, great and we can
4581 		 * return success.  Otherwise, if we haven't been given a
4582 		 * valid mailbox or the RESET command failed, fall back to
4583 		 * hitting the chip with a hammer.
4584 		 */
4585 		if (mbox <= M_PCIE_FW_MASTER) {
4586 			t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
4587 			msleep(100);
4588 			if (t4_fw_reset(adap, mbox,
4589 					F_PIORST | F_PIORSTMODE) == 0)
4590 				return 0;
4591 		}
4592 
4593 		t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
4594 		msleep(2000);
4595 	} else {
4596 		int ms;
4597 
4598 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
4599 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
4600 			if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
4601 				return FW_SUCCESS;
4602 			msleep(100);
4603 			ms += 100;
4604 		}
4605 		return -ETIMEDOUT;
4606 	}
4607 	return 0;
4608 }
4609 
4610 /**
4611  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
4612  *	@adap: the adapter
4613  *	@mbox: mailbox to use for the FW RESET command (if desired)
4614  *	@fw_data: the firmware image to write
4615  *	@size: image size
4616  *	@force: force upgrade even if firmware doesn't cooperate
4617  *
4618  *	Perform all of the steps necessary for upgrading an adapter's
4619  *	firmware image.  Normally this requires the cooperation of the
4620  *	existing firmware in order to halt all existing activities
4621  *	but if an invalid mailbox token is passed in we skip that step
4622  *	(though we'll still put the adapter microprocessor into RESET in
4623  *	that case).
4624  *
4625  *	On successful return the new firmware will have been loaded and
4626  *	the adapter will have been fully RESET losing all previous setup
4627  *	state.  On unsuccessful return the adapter may be completely hosed ...
4628  *	positive errno indicates that the adapter is ~probably~ intact, a
4629  *	negative errno indicates that things are looking bad ...
4630  */
4631 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
4632 		  const u8 *fw_data, unsigned int size, int force)
4633 {
4634 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
4635 	unsigned int bootstrap = ntohl(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
4636 	int reset, ret;
4637 
4638 	if (!bootstrap) {
4639 		ret = t4_fw_halt(adap, mbox, force);
4640 		if (ret < 0 && !force)
4641 			return ret;
4642 	}
4643 
4644 	ret = t4_load_fw(adap, fw_data, size);
4645 	if (ret < 0 || bootstrap)
4646 		return ret;
4647 
4648 	/*
4649 	 * Older versions of the firmware don't understand the new
4650 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
4651 	 * restart.  So for newly loaded older firmware we'll have to do the
4652 	 * RESET for it so it starts up on a clean slate.  We can tell if
4653 	 * the newly loaded firmware will handle this right by checking
4654 	 * its header flags to see if it advertises the capability.
4655 	 */
4656 	reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
4657 	return t4_fw_restart(adap, mbox, reset);
4658 }
4659 
4660 /**
4661  *	t4_fw_initialize - ask FW to initialize the device
4662  *	@adap: the adapter
4663  *	@mbox: mailbox to use for the FW command
4664  *
4665  *	Issues a command to FW to partially initialize the device.  This
4666  *	performs initialization that generally doesn't depend on user input.
4667  */
4668 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
4669 {
4670 	struct fw_initialize_cmd c;
4671 
4672 	memset(&c, 0, sizeof(c));
4673 	INIT_CMD(c, INITIALIZE, WRITE);
4674 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4675 }
4676 
4677 /**
4678  *	t4_query_params - query FW or device parameters
4679  *	@adap: the adapter
4680  *	@mbox: mailbox to use for the FW command
4681  *	@pf: the PF
4682  *	@vf: the VF
4683  *	@nparams: the number of parameters
4684  *	@params: the parameter names
4685  *	@val: the parameter values
4686  *
4687  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
4688  *	queried at once.
4689  */
4690 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
4691 		    unsigned int vf, unsigned int nparams, const u32 *params,
4692 		    u32 *val)
4693 {
4694 	int i, ret;
4695 	struct fw_params_cmd c;
4696 	__be32 *p = &c.param[0].mnem;
4697 
4698 	if (nparams > 7)
4699 		return -EINVAL;
4700 
4701 	memset(&c, 0, sizeof(c));
4702 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_PARAMS_CMD) | F_FW_CMD_REQUEST |
4703 			    F_FW_CMD_READ | V_FW_PARAMS_CMD_PFN(pf) |
4704 			    V_FW_PARAMS_CMD_VFN(vf));
4705 	c.retval_len16 = htonl(FW_LEN16(c));
4706 
4707 	for (i = 0; i < nparams; i++, p += 2, params++)
4708 		*p = htonl(*params);
4709 
4710 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4711 	if (ret == 0)
4712 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
4713 			*val++ = ntohl(*p);
4714 	return ret;
4715 }
4716 
4717 /**
4718  *	t4_set_params - sets FW or device parameters
4719  *	@adap: the adapter
4720  *	@mbox: mailbox to use for the FW command
4721  *	@pf: the PF
4722  *	@vf: the VF
4723  *	@nparams: the number of parameters
4724  *	@params: the parameter names
4725  *	@val: the parameter values
4726  *
4727  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
4728  *	specified at once.
4729  */
4730 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
4731 		  unsigned int vf, unsigned int nparams, const u32 *params,
4732 		  const u32 *val)
4733 {
4734 	struct fw_params_cmd c;
4735 	__be32 *p = &c.param[0].mnem;
4736 
4737 	if (nparams > 7)
4738 		return -EINVAL;
4739 
4740 	memset(&c, 0, sizeof(c));
4741 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_PARAMS_CMD) | F_FW_CMD_REQUEST |
4742 			    F_FW_CMD_WRITE | V_FW_PARAMS_CMD_PFN(pf) |
4743 			    V_FW_PARAMS_CMD_VFN(vf));
4744 	c.retval_len16 = htonl(FW_LEN16(c));
4745 
4746 	while (nparams--) {
4747 		*p++ = htonl(*params);
4748 		params++;
4749 		*p++ = htonl(*val);
4750 		val++;
4751 	}
4752 
4753 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4754 }
4755 
4756 /**
4757  *	t4_cfg_pfvf - configure PF/VF resource limits
4758  *	@adap: the adapter
4759  *	@mbox: mailbox to use for the FW command
4760  *	@pf: the PF being configured
4761  *	@vf: the VF being configured
4762  *	@txq: the max number of egress queues
4763  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
4764  *	@rxqi: the max number of interrupt-capable ingress queues
4765  *	@rxq: the max number of interruptless ingress queues
4766  *	@tc: the PCI traffic class
4767  *	@vi: the max number of virtual interfaces
4768  *	@cmask: the channel access rights mask for the PF/VF
4769  *	@pmask: the port access rights mask for the PF/VF
4770  *	@nexact: the maximum number of exact MPS filters
4771  *	@rcaps: read capabilities
4772  *	@wxcaps: write/execute capabilities
4773  *
4774  *	Configures resource limits and capabilities for a physical or virtual
4775  *	function.
4776  */
4777 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
4778 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
4779 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
4780 		unsigned int vi, unsigned int cmask, unsigned int pmask,
4781 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
4782 {
4783 	struct fw_pfvf_cmd c;
4784 
4785 	memset(&c, 0, sizeof(c));
4786 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
4787 			    F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
4788 			    V_FW_PFVF_CMD_VFN(vf));
4789 	c.retval_len16 = htonl(FW_LEN16(c));
4790 	c.niqflint_niq = htonl(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
4791 			       V_FW_PFVF_CMD_NIQ(rxq));
4792 	c.type_to_neq = htonl(V_FW_PFVF_CMD_CMASK(cmask) |
4793 			      V_FW_PFVF_CMD_PMASK(pmask) |
4794 			      V_FW_PFVF_CMD_NEQ(txq));
4795 	c.tc_to_nexactf = htonl(V_FW_PFVF_CMD_TC(tc) | V_FW_PFVF_CMD_NVI(vi) |
4796 				V_FW_PFVF_CMD_NEXACTF(nexact));
4797 	c.r_caps_to_nethctrl = htonl(V_FW_PFVF_CMD_R_CAPS(rcaps) |
4798 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
4799 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
4800 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4801 }
4802 
4803 /**
4804  *	t4_alloc_vi_func - allocate a virtual interface
4805  *	@adap: the adapter
4806  *	@mbox: mailbox to use for the FW command
4807  *	@port: physical port associated with the VI
4808  *	@pf: the PF owning the VI
4809  *	@vf: the VF owning the VI
4810  *	@nmac: number of MAC addresses needed (1 to 5)
4811  *	@mac: the MAC addresses of the VI
4812  *	@rss_size: size of RSS table slice associated with this VI
4813  *	@portfunc: which Port Application Function MAC Address is desired
4814  *	@idstype: Intrusion Detection Type
4815  *
4816  *	Allocates a virtual interface for the given physical port.  If @mac is
4817  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
4818  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
4819  *	stored consecutively so the space needed is @nmac * 6 bytes.
4820  *	Returns a negative error number or the non-negative VI id.
4821  */
4822 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
4823 		     unsigned int port, unsigned int pf, unsigned int vf,
4824 		     unsigned int nmac, u8 *mac, unsigned int *rss_size,
4825 		     unsigned int portfunc, unsigned int idstype)
4826 {
4827 	int ret;
4828 	struct fw_vi_cmd c;
4829 
4830 	memset(&c, 0, sizeof(c));
4831 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
4832 			    F_FW_CMD_WRITE | F_FW_CMD_EXEC |
4833 			    V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
4834 	c.alloc_to_len16 = htonl(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
4835 	c.type_to_viid = htons(V_FW_VI_CMD_TYPE(idstype) |
4836 			       V_FW_VI_CMD_FUNC(portfunc));
4837 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
4838 	c.nmac = nmac - 1;
4839 
4840 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4841 	if (ret)
4842 		return ret;
4843 
4844 	if (mac) {
4845 		memcpy(mac, c.mac, sizeof(c.mac));
4846 		switch (nmac) {
4847 		case 5:
4848 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
4849 		case 4:
4850 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
4851 		case 3:
4852 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
4853 		case 2:
4854 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
4855 		}
4856 	}
4857 	if (rss_size)
4858 		*rss_size = G_FW_VI_CMD_RSSSIZE(ntohs(c.norss_rsssize));
4859 	return G_FW_VI_CMD_VIID(htons(c.type_to_viid));
4860 }
4861 
4862 /**
4863  *	t4_alloc_vi - allocate an [Ethernet Function] virtual interface
4864  *	@adap: the adapter
4865  *	@mbox: mailbox to use for the FW command
4866  *	@port: physical port associated with the VI
4867  *	@pf: the PF owning the VI
4868  *	@vf: the VF owning the VI
4869  *	@nmac: number of MAC addresses needed (1 to 5)
4870  *	@mac: the MAC addresses of the VI
4871  *	@rss_size: size of RSS table slice associated with this VI
4872  *
4873  *	backwards compatible and convieniance routine to allocate a Virtual
4874  *	Interface with a Ethernet Port Application Function and Intrustion
4875  *	Detection System disabled.
4876  */
4877 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
4878 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
4879 		unsigned int *rss_size)
4880 {
4881 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
4882 				FW_VI_FUNC_ETH, 0);
4883 }
4884 
4885 /**
4886  *	t4_free_vi - free a virtual interface
4887  *	@adap: the adapter
4888  *	@mbox: mailbox to use for the FW command
4889  *	@pf: the PF owning the VI
4890  *	@vf: the VF owning the VI
4891  *	@viid: virtual interface identifiler
4892  *
4893  *	Free a previously allocated virtual interface.
4894  */
4895 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
4896 	       unsigned int vf, unsigned int viid)
4897 {
4898 	struct fw_vi_cmd c;
4899 
4900 	memset(&c, 0, sizeof(c));
4901 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_VI_CMD) |
4902 			    F_FW_CMD_REQUEST |
4903 			    F_FW_CMD_EXEC |
4904 			    V_FW_VI_CMD_PFN(pf) |
4905 			    V_FW_VI_CMD_VFN(vf));
4906 	c.alloc_to_len16 = htonl(F_FW_VI_CMD_FREE | FW_LEN16(c));
4907 	c.type_to_viid = htons(V_FW_VI_CMD_VIID(viid));
4908 
4909 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4910 }
4911 
4912 /**
4913  *	t4_set_rxmode - set Rx properties of a virtual interface
4914  *	@adap: the adapter
4915  *	@mbox: mailbox to use for the FW command
4916  *	@viid: the VI id
4917  *	@mtu: the new MTU or -1
4918  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
4919  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
4920  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
4921  *	@vlanex: 1 to enable HVLAN extraction, 0 to disable it, -1 no change
4922  *	@sleep_ok: if true we may sleep while awaiting command completion
4923  *
4924  *	Sets Rx properties of a virtual interface.
4925  */
4926 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
4927 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
4928 		  bool sleep_ok)
4929 {
4930 	struct fw_vi_rxmode_cmd c;
4931 
4932 	/* convert to FW values */
4933 	if (mtu < 0)
4934 		mtu = M_FW_VI_RXMODE_CMD_MTU;
4935 	if (promisc < 0)
4936 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
4937 	if (all_multi < 0)
4938 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
4939 	if (bcast < 0)
4940 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
4941 	if (vlanex < 0)
4942 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
4943 
4944 	memset(&c, 0, sizeof(c));
4945 	c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_RXMODE_CMD) | F_FW_CMD_REQUEST |
4946 			     F_FW_CMD_WRITE | V_FW_VI_RXMODE_CMD_VIID(viid));
4947 	c.retval_len16 = htonl(FW_LEN16(c));
4948 	c.mtu_to_vlanexen = htonl(V_FW_VI_RXMODE_CMD_MTU(mtu) |
4949 				  V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
4950 				  V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
4951 				  V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
4952 				  V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
4953 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
4954 }
4955 
4956 /**
4957  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
4958  *	@adap: the adapter
4959  *	@mbox: mailbox to use for the FW command
4960  *	@viid: the VI id
4961  *	@free: if true any existing filters for this VI id are first removed
4962  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
4963  *	@addr: the MAC address(es)
4964  *	@idx: where to store the index of each allocated filter
4965  *	@hash: pointer to hash address filter bitmap
4966  *	@sleep_ok: call is allowed to sleep
4967  *
4968  *	Allocates an exact-match filter for each of the supplied addresses and
4969  *	sets it to the corresponding address.  If @idx is not %NULL it should
4970  *	have at least @naddr entries, each of which will be set to the index of
4971  *	the filter allocated for the corresponding MAC address.  If a filter
4972  *	could not be allocated for an address its index is set to 0xffff.
4973  *	If @hash is not %NULL addresses that fail to allocate an exact filter
4974  *	are hashed and update the hash filter bitmap pointed at by @hash.
4975  *
4976  *	Returns a negative error number or the number of filters allocated.
4977  */
4978 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
4979 		      unsigned int viid, bool free, unsigned int naddr,
4980 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
4981 {
4982 	int offset, ret = 0;
4983 	struct fw_vi_mac_cmd c;
4984 	unsigned int nfilters = 0;
4985 	unsigned int max_naddr = is_t4(adap) ?
4986 				       NUM_MPS_CLS_SRAM_L_INSTANCES :
4987 				       NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
4988 	unsigned int rem = naddr;
4989 
4990 	if (naddr > max_naddr)
4991 		return -EINVAL;
4992 
4993 	for (offset = 0; offset < naddr ; /**/) {
4994 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
4995 					 ? rem
4996 					 : ARRAY_SIZE(c.u.exact));
4997 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
4998 						     u.exact[fw_naddr]), 16);
4999 		struct fw_vi_mac_exact *p;
5000 		int i;
5001 
5002 		memset(&c, 0, sizeof(c));
5003 		c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_MAC_CMD) |
5004 				     F_FW_CMD_REQUEST |
5005 				     F_FW_CMD_WRITE |
5006 				     V_FW_CMD_EXEC(free) |
5007 				     V_FW_VI_MAC_CMD_VIID(viid));
5008 		c.freemacs_to_len16 = htonl(V_FW_VI_MAC_CMD_FREEMACS(free) |
5009 					    V_FW_CMD_LEN16(len16));
5010 
5011 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
5012 			p->valid_to_idx = htons(
5013 				F_FW_VI_MAC_CMD_VALID |
5014 				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
5015 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
5016 		}
5017 
5018 		/*
5019 		 * It's okay if we run out of space in our MAC address arena.
5020 		 * Some of the addresses we submit may get stored so we need
5021 		 * to run through the reply to see what the results were ...
5022 		 */
5023 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
5024 		if (ret && ret != -FW_ENOMEM)
5025 			break;
5026 
5027 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
5028 			u16 index = G_FW_VI_MAC_CMD_IDX(ntohs(p->valid_to_idx));
5029 
5030 			if (idx)
5031 				idx[offset+i] = (index >=  max_naddr
5032 						 ? 0xffff
5033 						 : index);
5034 			if (index < max_naddr)
5035 				nfilters++;
5036 			else if (hash)
5037 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
5038 		}
5039 
5040 		free = false;
5041 		offset += fw_naddr;
5042 		rem -= fw_naddr;
5043 	}
5044 
5045 	if (ret == 0 || ret == -FW_ENOMEM)
5046 		ret = nfilters;
5047 	return ret;
5048 }
5049 
5050 /**
5051  *	t4_change_mac - modifies the exact-match filter for a MAC address
5052  *	@adap: the adapter
5053  *	@mbox: mailbox to use for the FW command
5054  *	@viid: the VI id
5055  *	@idx: index of existing filter for old value of MAC address, or -1
5056  *	@addr: the new MAC address value
5057  *	@persist: whether a new MAC allocation should be persistent
5058  *	@add_smt: if true also add the address to the HW SMT
5059  *
5060  *	Modifies an exact-match filter and sets it to the new MAC address if
5061  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
5062  *	latter case the address is added persistently if @persist is %true.
5063  *
5064  *	Note that in general it is not possible to modify the value of a given
5065  *	filter so the generic way to modify an address filter is to free the one
5066  *	being used by the old address value and allocate a new filter for the
5067  *	new address value.
5068  *
5069  *	Returns a negative error number or the index of the filter with the new
5070  *	MAC value.  Note that this index may differ from @idx.
5071  */
5072 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
5073 		  int idx, const u8 *addr, bool persist, bool add_smt)
5074 {
5075 	int ret, mode;
5076 	struct fw_vi_mac_cmd c;
5077 	struct fw_vi_mac_exact *p = c.u.exact;
5078 	unsigned int max_mac_addr = is_t4(adap) ?
5079 				    NUM_MPS_CLS_SRAM_L_INSTANCES :
5080 				    NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
5081 
5082 	if (idx < 0)                             /* new allocation */
5083 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
5084 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
5085 
5086 	memset(&c, 0, sizeof(c));
5087 	c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_MAC_CMD) | F_FW_CMD_REQUEST |
5088 			     F_FW_CMD_WRITE | V_FW_VI_MAC_CMD_VIID(viid));
5089 	c.freemacs_to_len16 = htonl(V_FW_CMD_LEN16(1));
5090 	p->valid_to_idx = htons(F_FW_VI_MAC_CMD_VALID |
5091 				V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
5092 				V_FW_VI_MAC_CMD_IDX(idx));
5093 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
5094 
5095 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5096 	if (ret == 0) {
5097 		ret = G_FW_VI_MAC_CMD_IDX(ntohs(p->valid_to_idx));
5098 		if (ret >= max_mac_addr)
5099 			ret = -ENOMEM;
5100 	}
5101 	return ret;
5102 }
5103 
5104 /**
5105  *	t4_set_addr_hash - program the MAC inexact-match hash filter
5106  *	@adap: the adapter
5107  *	@mbox: mailbox to use for the FW command
5108  *	@viid: the VI id
5109  *	@ucast: whether the hash filter should also match unicast addresses
5110  *	@vec: the value to be written to the hash filter
5111  *	@sleep_ok: call is allowed to sleep
5112  *
5113  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
5114  */
5115 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
5116 		     bool ucast, u64 vec, bool sleep_ok)
5117 {
5118 	struct fw_vi_mac_cmd c;
5119 
5120 	memset(&c, 0, sizeof(c));
5121 	c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_MAC_CMD) | F_FW_CMD_REQUEST |
5122 			     F_FW_CMD_WRITE | V_FW_VI_ENABLE_CMD_VIID(viid));
5123 	c.freemacs_to_len16 = htonl(F_FW_VI_MAC_CMD_HASHVECEN |
5124 				    V_FW_VI_MAC_CMD_HASHUNIEN(ucast) |
5125 				    V_FW_CMD_LEN16(1));
5126 	c.u.hash.hashvec = cpu_to_be64(vec);
5127 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
5128 }
5129 
5130 /**
5131  *	t4_enable_vi - enable/disable a virtual interface
5132  *	@adap: the adapter
5133  *	@mbox: mailbox to use for the FW command
5134  *	@viid: the VI id
5135  *	@rx_en: 1=enable Rx, 0=disable Rx
5136  *	@tx_en: 1=enable Tx, 0=disable Tx
5137  *
5138  *	Enables/disables a virtual interface.
5139  */
5140 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
5141 		 bool rx_en, bool tx_en)
5142 {
5143 	struct fw_vi_enable_cmd c;
5144 
5145 	memset(&c, 0, sizeof(c));
5146 	c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_ENABLE_CMD) | F_FW_CMD_REQUEST |
5147 			     F_FW_CMD_EXEC | V_FW_VI_ENABLE_CMD_VIID(viid));
5148 	c.ien_to_len16 = htonl(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
5149 			       V_FW_VI_ENABLE_CMD_EEN(tx_en) | FW_LEN16(c));
5150 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5151 }
5152 
5153 /**
5154  *	t4_identify_port - identify a VI's port by blinking its LED
5155  *	@adap: the adapter
5156  *	@mbox: mailbox to use for the FW command
5157  *	@viid: the VI id
5158  *	@nblinks: how many times to blink LED at 2.5 Hz
5159  *
5160  *	Identifies a VI's port by blinking its LED.
5161  */
5162 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
5163 		     unsigned int nblinks)
5164 {
5165 	struct fw_vi_enable_cmd c;
5166 
5167 	memset(&c, 0, sizeof(c));
5168 	c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_ENABLE_CMD) | F_FW_CMD_REQUEST |
5169 			     F_FW_CMD_EXEC | V_FW_VI_ENABLE_CMD_VIID(viid));
5170 	c.ien_to_len16 = htonl(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
5171 	c.blinkdur = htons(nblinks);
5172 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5173 }
5174 
5175 /**
5176  *	t4_iq_start_stop - enable/disable an ingress queue and its FLs
5177  *	@adap: the adapter
5178  *	@mbox: mailbox to use for the FW command
5179  *	@start: %true to enable the queues, %false to disable them
5180  *	@pf: the PF owning the queues
5181  *	@vf: the VF owning the queues
5182  *	@iqid: ingress queue id
5183  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
5184  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
5185  *
5186  *	Starts or stops an ingress queue and its associated FLs, if any.
5187  */
5188 int t4_iq_start_stop(struct adapter *adap, unsigned int mbox, bool start,
5189 		     unsigned int pf, unsigned int vf, unsigned int iqid,
5190 		     unsigned int fl0id, unsigned int fl1id)
5191 {
5192 	struct fw_iq_cmd c;
5193 
5194 	memset(&c, 0, sizeof(c));
5195 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
5196 			    F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
5197 			    V_FW_IQ_CMD_VFN(vf));
5198 	c.alloc_to_len16 = htonl(V_FW_IQ_CMD_IQSTART(start) |
5199 				 V_FW_IQ_CMD_IQSTOP(!start) | FW_LEN16(c));
5200 	c.iqid = htons(iqid);
5201 	c.fl0id = htons(fl0id);
5202 	c.fl1id = htons(fl1id);
5203 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5204 }
5205 
5206 /**
5207  *	t4_iq_free - free an ingress queue and its FLs
5208  *	@adap: the adapter
5209  *	@mbox: mailbox to use for the FW command
5210  *	@pf: the PF owning the queues
5211  *	@vf: the VF owning the queues
5212  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
5213  *	@iqid: ingress queue id
5214  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
5215  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
5216  *
5217  *	Frees an ingress queue and its associated FLs, if any.
5218  */
5219 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5220 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
5221 	       unsigned int fl0id, unsigned int fl1id)
5222 {
5223 	struct fw_iq_cmd c;
5224 
5225 	memset(&c, 0, sizeof(c));
5226 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
5227 			    F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
5228 			    V_FW_IQ_CMD_VFN(vf));
5229 	c.alloc_to_len16 = htonl(F_FW_IQ_CMD_FREE | FW_LEN16(c));
5230 	c.type_to_iqandstindex = htonl(V_FW_IQ_CMD_TYPE(iqtype));
5231 	c.iqid = htons(iqid);
5232 	c.fl0id = htons(fl0id);
5233 	c.fl1id = htons(fl1id);
5234 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5235 }
5236 
5237 /**
5238  *	t4_eth_eq_free - free an Ethernet egress queue
5239  *	@adap: the adapter
5240  *	@mbox: mailbox to use for the FW command
5241  *	@pf: the PF owning the queue
5242  *	@vf: the VF owning the queue
5243  *	@eqid: egress queue id
5244  *
5245  *	Frees an Ethernet egress queue.
5246  */
5247 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5248 		   unsigned int vf, unsigned int eqid)
5249 {
5250 	struct fw_eq_eth_cmd c;
5251 
5252 	memset(&c, 0, sizeof(c));
5253 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
5254 			    F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(pf) |
5255 			    V_FW_EQ_ETH_CMD_VFN(vf));
5256 	c.alloc_to_len16 = htonl(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
5257 	c.eqid_pkd = htonl(V_FW_EQ_ETH_CMD_EQID(eqid));
5258 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5259 }
5260 
5261 /**
5262  *	t4_ctrl_eq_free - free a control egress queue
5263  *	@adap: the adapter
5264  *	@mbox: mailbox to use for the FW command
5265  *	@pf: the PF owning the queue
5266  *	@vf: the VF owning the queue
5267  *	@eqid: egress queue id
5268  *
5269  *	Frees a control egress queue.
5270  */
5271 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5272 		    unsigned int vf, unsigned int eqid)
5273 {
5274 	struct fw_eq_ctrl_cmd c;
5275 
5276 	memset(&c, 0, sizeof(c));
5277 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
5278 			    F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(pf) |
5279 			    V_FW_EQ_CTRL_CMD_VFN(vf));
5280 	c.alloc_to_len16 = htonl(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
5281 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_EQID(eqid));
5282 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5283 }
5284 
5285 /**
5286  *	t4_ofld_eq_free - free an offload egress queue
5287  *	@adap: the adapter
5288  *	@mbox: mailbox to use for the FW command
5289  *	@pf: the PF owning the queue
5290  *	@vf: the VF owning the queue
5291  *	@eqid: egress queue id
5292  *
5293  *	Frees a control egress queue.
5294  */
5295 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5296 		    unsigned int vf, unsigned int eqid)
5297 {
5298 	struct fw_eq_ofld_cmd c;
5299 
5300 	memset(&c, 0, sizeof(c));
5301 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
5302 			    F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(pf) |
5303 			    V_FW_EQ_OFLD_CMD_VFN(vf));
5304 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
5305 	c.eqid_pkd = htonl(V_FW_EQ_OFLD_CMD_EQID(eqid));
5306 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5307 }
5308 
5309 /**
5310  *	t4_handle_fw_rpl - process a FW reply message
5311  *	@adap: the adapter
5312  *	@rpl: start of the FW message
5313  *
5314  *	Processes a FW message, such as link state change messages.
5315  */
5316 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
5317 {
5318 	u8 opcode = *(const u8 *)rpl;
5319 	const struct fw_port_cmd *p = (const void *)rpl;
5320 	unsigned int action = G_FW_PORT_CMD_ACTION(ntohl(p->action_to_len16));
5321 
5322 	if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
5323 		/* link/module state change message */
5324 		int speed = 0, fc = 0, i;
5325 		int chan = G_FW_PORT_CMD_PORTID(ntohl(p->op_to_portid));
5326 		struct port_info *pi = NULL;
5327 		struct link_config *lc;
5328 		u32 stat = ntohl(p->u.info.lstatus_to_modtype);
5329 		int link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
5330 		u32 mod = G_FW_PORT_CMD_MODTYPE(stat);
5331 
5332 		if (stat & F_FW_PORT_CMD_RXPAUSE)
5333 			fc |= PAUSE_RX;
5334 		if (stat & F_FW_PORT_CMD_TXPAUSE)
5335 			fc |= PAUSE_TX;
5336 		if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
5337 			speed = SPEED_100;
5338 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
5339 			speed = SPEED_1000;
5340 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
5341 			speed = SPEED_10000;
5342 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
5343 			speed = SPEED_40000;
5344 
5345 		for_each_port(adap, i) {
5346 			pi = adap2pinfo(adap, i);
5347 			if (pi->tx_chan == chan)
5348 				break;
5349 		}
5350 		lc = &pi->link_cfg;
5351 
5352 		if (link_ok != lc->link_ok || speed != lc->speed ||
5353 		    fc != lc->fc) {                    /* something changed */
5354 			int reason;
5355 
5356 			if (!link_ok && lc->link_ok)
5357 				reason = G_FW_PORT_CMD_LINKDNRC(stat);
5358 			else
5359 				reason = -1;
5360 
5361 			lc->link_ok = link_ok;
5362 			lc->speed = speed;
5363 			lc->fc = fc;
5364 			lc->supported = ntohs(p->u.info.pcap);
5365 			t4_os_link_changed(adap, i, link_ok, reason);
5366 		}
5367 		if (mod != pi->mod_type) {
5368 			pi->mod_type = mod;
5369 			t4_os_portmod_changed(adap, i);
5370 		}
5371 	} else {
5372 		CH_WARN_RATELIMIT(adap,
5373 		    "Unknown firmware reply 0x%x (0x%x)\n", opcode, action);
5374 		return -EINVAL;
5375 	}
5376 	return 0;
5377 }
5378 
5379 /**
5380  *	get_pci_mode - determine a card's PCI mode
5381  *	@adapter: the adapter
5382  *	@p: where to store the PCI settings
5383  *
5384  *	Determines a card's PCI mode and associated parameters, such as speed
5385  *	and width.
5386  */
5387 static void __devinit get_pci_mode(struct adapter *adapter,
5388 				   struct pci_params *p)
5389 {
5390 	u16 val;
5391 	u32 pcie_cap;
5392 
5393 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
5394 	if (pcie_cap) {
5395 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
5396 		p->speed = val & PCI_EXP_LNKSTA_CLS;
5397 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
5398 	}
5399 }
5400 
5401 /**
5402  *	init_link_config - initialize a link's SW state
5403  *	@lc: structure holding the link state
5404  *	@caps: link capabilities
5405  *
5406  *	Initializes the SW state maintained for each link, including the link's
5407  *	capabilities and default speed/flow-control/autonegotiation settings.
5408  */
5409 static void __devinit init_link_config(struct link_config *lc,
5410 				       unsigned int caps)
5411 {
5412 	lc->supported = caps;
5413 	lc->requested_speed = 0;
5414 	lc->speed = 0;
5415 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
5416 	if (lc->supported & FW_PORT_CAP_ANEG) {
5417 		lc->advertising = lc->supported & ADVERT_MASK;
5418 		lc->autoneg = AUTONEG_ENABLE;
5419 		lc->requested_fc |= PAUSE_AUTONEG;
5420 	} else {
5421 		lc->advertising = 0;
5422 		lc->autoneg = AUTONEG_DISABLE;
5423 	}
5424 }
5425 
5426 static int __devinit get_flash_params(struct adapter *adapter)
5427 {
5428 	int ret;
5429 	u32 info = 0;
5430 
5431 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
5432 	if (!ret)
5433 		ret = sf1_read(adapter, 3, 0, 1, &info);
5434 	t4_write_reg(adapter, A_SF_OP, 0);               /* unlock SF */
5435 	if (ret < 0)
5436 		return ret;
5437 
5438 	if ((info & 0xff) != 0x20)             /* not a Numonix flash */
5439 		return -EINVAL;
5440 	info >>= 16;                           /* log2 of size */
5441 	if (info >= 0x14 && info < 0x18)
5442 		adapter->params.sf_nsec = 1 << (info - 16);
5443 	else if (info == 0x18)
5444 		adapter->params.sf_nsec = 64;
5445 	else
5446 		return -EINVAL;
5447 	adapter->params.sf_size = 1 << info;
5448 	return 0;
5449 }
5450 
5451 static void __devinit set_pcie_completion_timeout(struct adapter *adapter,
5452 						  u8 range)
5453 {
5454 	u16 val;
5455 	u32 pcie_cap;
5456 
5457 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
5458 	if (pcie_cap) {
5459 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
5460 		val &= 0xfff0;
5461 		val |= range ;
5462 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
5463 	}
5464 }
5465 
5466 /**
5467  *	t4_prep_adapter - prepare SW and HW for operation
5468  *	@adapter: the adapter
5469  *	@reset: if true perform a HW reset
5470  *
5471  *	Initialize adapter SW state for the various HW modules, set initial
5472  *	values for some adapter tunables, take PHYs out of reset, and
5473  *	initialize the MDIO interface.
5474  */
5475 int __devinit t4_prep_adapter(struct adapter *adapter)
5476 {
5477 	int ret;
5478 	uint16_t device_id;
5479 	uint32_t pl_rev;
5480 
5481 	get_pci_mode(adapter, &adapter->params.pci);
5482 
5483 	pl_rev = t4_read_reg(adapter, A_PL_REV);
5484 	adapter->params.chipid = G_CHIPID(pl_rev);
5485 	adapter->params.rev = G_REV(pl_rev);
5486 	if (adapter->params.chipid == 0) {
5487 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
5488 		adapter->params.chipid = CHELSIO_T4;
5489 
5490 		/* T4A1 chip is not supported */
5491 		if (adapter->params.rev == 1) {
5492 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
5493 			return -EINVAL;
5494 		}
5495 	}
5496 	adapter->params.pci.vpd_cap_addr =
5497 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
5498 
5499 	ret = get_flash_params(adapter);
5500 	if (ret < 0)
5501 		return ret;
5502 
5503 	ret = get_vpd_params(adapter, &adapter->params.vpd);
5504 	if (ret < 0)
5505 		return ret;
5506 
5507 	/* Cards with real ASICs have the chipid in the PCIe device id */
5508 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
5509 	if (device_id >> 12 == adapter->params.chipid)
5510 		adapter->params.cim_la_size = CIMLA_SIZE;
5511 	else {
5512 		/* FPGA */
5513 		adapter->params.fpga = 1;
5514 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
5515 	}
5516 
5517 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
5518 
5519 	/*
5520 	 * Default port and clock for debugging in case we can't reach FW.
5521 	 */
5522 	adapter->params.nports = 1;
5523 	adapter->params.portvec = 1;
5524 	adapter->params.vpd.cclk = 50000;
5525 
5526 	/* Set pci completion timeout value to 4 seconds. */
5527 	set_pcie_completion_timeout(adapter, 0xd);
5528 	return 0;
5529 }
5530 
5531 /**
5532  *	t4_init_tp_params - initialize adap->params.tp
5533  *	@adap: the adapter
5534  *
5535  *	Initialize various fields of the adapter's TP Parameters structure.
5536  */
5537 int __devinit t4_init_tp_params(struct adapter *adap)
5538 {
5539 	int chan;
5540 	u32 v;
5541 
5542 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
5543 	adap->params.tp.tre = G_TIMERRESOLUTION(v);
5544 	adap->params.tp.dack_re = G_DELAYEDACKRESOLUTION(v);
5545 
5546 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
5547 	for (chan = 0; chan < NCHAN; chan++)
5548 		adap->params.tp.tx_modq[chan] = chan;
5549 
5550 	/*
5551 	 * Cache the adapter's Compressed Filter Mode and global Incress
5552 	 * Configuration.
5553 	 */
5554         t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5555                          &adap->params.tp.vlan_pri_map, 1,
5556                          A_TP_VLAN_PRI_MAP);
5557 	t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5558 			 &adap->params.tp.ingress_config, 1,
5559 			 A_TP_INGRESS_CONFIG);
5560 
5561 	/*
5562 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
5563 	 * shift positions of several elements of the Compressed Filter Tuple
5564 	 * for this adapter which we need frequently ...
5565 	 */
5566 	adap->params.tp.vlan_shift = t4_filter_field_shift(adap, F_VLAN);
5567 	adap->params.tp.vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
5568 	adap->params.tp.port_shift = t4_filter_field_shift(adap, F_PORT);
5569 	adap->params.tp.protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
5570 
5571 	/*
5572 	 * If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
5573 	 * represents the presense of an Outer VLAN instead of a VNIC ID.
5574 	 */
5575 	if ((adap->params.tp.ingress_config & F_VNIC) == 0)
5576 		adap->params.tp.vnic_shift = -1;
5577 
5578 	return 0;
5579 }
5580 
5581 /**
5582  *	t4_filter_field_shift - calculate filter field shift
5583  *	@adap: the adapter
5584  *	@filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
5585  *
5586  *	Return the shift position of a filter field within the Compressed
5587  *	Filter Tuple.  The filter field is specified via its selection bit
5588  *	within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
5589  */
5590 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
5591 {
5592 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
5593 	unsigned int sel;
5594 	int field_shift;
5595 
5596 	if ((filter_mode & filter_sel) == 0)
5597 		return -1;
5598 
5599 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
5600 	    switch (filter_mode & sel) {
5601 		case F_FCOE:          field_shift += W_FT_FCOE;          break;
5602 		case F_PORT:          field_shift += W_FT_PORT;          break;
5603 		case F_VNIC_ID:       field_shift += W_FT_VNIC_ID;       break;
5604 		case F_VLAN:          field_shift += W_FT_VLAN;          break;
5605 		case F_TOS:           field_shift += W_FT_TOS;           break;
5606 		case F_PROTOCOL:      field_shift += W_FT_PROTOCOL;      break;
5607 		case F_ETHERTYPE:     field_shift += W_FT_ETHERTYPE;     break;
5608 		case F_MACMATCH:      field_shift += W_FT_MACMATCH;      break;
5609 		case F_MPSHITTYPE:    field_shift += W_FT_MPSHITTYPE;    break;
5610 		case F_FRAGMENTATION: field_shift += W_FT_FRAGMENTATION; break;
5611 	    }
5612 	}
5613 	return field_shift;
5614 }
5615 
5616 int __devinit t4_port_init(struct port_info *p, int mbox, int pf, int vf)
5617 {
5618 	u8 addr[6];
5619 	int ret, i, j;
5620 	struct fw_port_cmd c;
5621 	unsigned int rss_size;
5622 	adapter_t *adap = p->adapter;
5623 
5624 	memset(&c, 0, sizeof(c));
5625 
5626 	for (i = 0, j = -1; i <= p->port_id; i++) {
5627 		do {
5628 			j++;
5629 		} while ((adap->params.portvec & (1 << j)) == 0);
5630 	}
5631 
5632 	c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) |
5633 			       F_FW_CMD_REQUEST | F_FW_CMD_READ |
5634 			       V_FW_PORT_CMD_PORTID(j));
5635 	c.action_to_len16 = htonl(
5636 		V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
5637 		FW_LEN16(c));
5638 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5639 	if (ret)
5640 		return ret;
5641 
5642 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
5643 	if (ret < 0)
5644 		return ret;
5645 
5646 	p->viid = ret;
5647 	p->tx_chan = j;
5648 	p->lport = j;
5649 	p->rss_size = rss_size;
5650 	t4_os_set_hw_addr(adap, p->port_id, addr);
5651 
5652 	ret = ntohl(c.u.info.lstatus_to_modtype);
5653 	p->mdio_addr = (ret & F_FW_PORT_CMD_MDIOCAP) ?
5654 		G_FW_PORT_CMD_MDIOADDR(ret) : -1;
5655 	p->port_type = G_FW_PORT_CMD_PTYPE(ret);
5656 	p->mod_type = G_FW_PORT_CMD_MODTYPE(ret);
5657 
5658 	init_link_config(&p->link_cfg, ntohs(c.u.info.pcap));
5659 
5660 	return 0;
5661 }
5662