xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision eea7c61590ae8968b3f1f609cf0bc8633222a94f)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 
34 #include <sys/param.h>
35 #include <sys/eventhandler.h>
36 
37 #include "common.h"
38 #include "t4_regs.h"
39 #include "t4_regs_values.h"
40 #include "firmware/t4fw_interface.h"
41 
42 #undef msleep
43 #define msleep(x) do { \
44 	if (cold) \
45 		DELAY((x) * 1000); \
46 	else \
47 		pause("t4hw", (x) * hz / 1000); \
48 } while (0)
49 
50 /**
51  *	t4_wait_op_done_val - wait until an operation is completed
52  *	@adapter: the adapter performing the operation
53  *	@reg: the register to check for completion
54  *	@mask: a single-bit field within @reg that indicates completion
55  *	@polarity: the value of the field when the operation is completed
56  *	@attempts: number of check iterations
57  *	@delay: delay in usecs between iterations
58  *	@valp: where to store the value of the register at completion time
59  *
60  *	Wait until an operation is completed by checking a bit in a register
61  *	up to @attempts times.  If @valp is not NULL the value of the register
62  *	at the time it indicated completion is stored there.  Returns 0 if the
63  *	operation completes and	-EAGAIN	otherwise.
64  */
65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
66 			       int polarity, int attempts, int delay, u32 *valp)
67 {
68 	while (1) {
69 		u32 val = t4_read_reg(adapter, reg);
70 
71 		if (!!(val & mask) == polarity) {
72 			if (valp)
73 				*valp = val;
74 			return 0;
75 		}
76 		if (--attempts == 0)
77 			return -EAGAIN;
78 		if (delay)
79 			udelay(delay);
80 	}
81 }
82 
83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
84 				  int polarity, int attempts, int delay)
85 {
86 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
87 				   delay, NULL);
88 }
89 
90 /**
91  *	t4_set_reg_field - set a register field to a value
92  *	@adapter: the adapter to program
93  *	@addr: the register address
94  *	@mask: specifies the portion of the register to modify
95  *	@val: the new value for the register field
96  *
97  *	Sets a register field specified by the supplied mask to the
98  *	given value.
99  */
100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
101 		      u32 val)
102 {
103 	u32 v = t4_read_reg(adapter, addr) & ~mask;
104 
105 	t4_write_reg(adapter, addr, v | val);
106 	(void) t4_read_reg(adapter, addr);      /* flush */
107 }
108 
109 /**
110  *	t4_read_indirect - read indirectly addressed registers
111  *	@adap: the adapter
112  *	@addr_reg: register holding the indirect address
113  *	@data_reg: register holding the value of the indirect register
114  *	@vals: where the read register values are stored
115  *	@nregs: how many indirect registers to read
116  *	@start_idx: index of first indirect register to read
117  *
118  *	Reads registers that are accessed indirectly through an address/data
119  *	register pair.
120  */
121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
122 			     unsigned int data_reg, u32 *vals,
123 			     unsigned int nregs, unsigned int start_idx)
124 {
125 	while (nregs--) {
126 		t4_write_reg(adap, addr_reg, start_idx);
127 		*vals++ = t4_read_reg(adap, data_reg);
128 		start_idx++;
129 	}
130 }
131 
132 /**
133  *	t4_write_indirect - write indirectly addressed registers
134  *	@adap: the adapter
135  *	@addr_reg: register holding the indirect addresses
136  *	@data_reg: register holding the value for the indirect registers
137  *	@vals: values to write
138  *	@nregs: how many indirect registers to write
139  *	@start_idx: address of first indirect register to write
140  *
141  *	Writes a sequential block of registers that are accessed indirectly
142  *	through an address/data register pair.
143  */
144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
145 		       unsigned int data_reg, const u32 *vals,
146 		       unsigned int nregs, unsigned int start_idx)
147 {
148 	while (nregs--) {
149 		t4_write_reg(adap, addr_reg, start_idx++);
150 		t4_write_reg(adap, data_reg, *vals++);
151 	}
152 }
153 
154 /*
155  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
156  * mechanism.  This guarantees that we get the real value even if we're
157  * operating within a Virtual Machine and the Hypervisor is trapping our
158  * Configuration Space accesses.
159  *
160  * N.B. This routine should only be used as a last resort: the firmware uses
161  *      the backdoor registers on a regular basis and we can end up
162  *      conflicting with it's uses!
163  */
164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
165 {
166 	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
167 	u32 val;
168 
169 	if (chip_id(adap) <= CHELSIO_T5)
170 		req |= F_ENABLE;
171 	else
172 		req |= F_T6_ENABLE;
173 
174 	if (is_t4(adap))
175 		req |= F_LOCALCFG;
176 
177 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
178 	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
179 
180 	/*
181 	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
182 	 * Configuration Space read.  (None of the other fields matter when
183 	 * F_ENABLE is 0 so a simple register write is easier than a
184 	 * read-modify-write via t4_set_reg_field().)
185 	 */
186 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
187 
188 	return val;
189 }
190 
191 /*
192  * t4_report_fw_error - report firmware error
193  * @adap: the adapter
194  *
195  * The adapter firmware can indicate error conditions to the host.
196  * If the firmware has indicated an error, print out the reason for
197  * the firmware error.
198  */
199 static void t4_report_fw_error(struct adapter *adap)
200 {
201 	static const char *const reason[] = {
202 		"Crash",			/* PCIE_FW_EVAL_CRASH */
203 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
204 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
205 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
206 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
207 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
208 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
209 		"Reserved",			/* reserved */
210 	};
211 	u32 pcie_fw;
212 
213 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
214 	if (pcie_fw & F_PCIE_FW_ERR) {
215 		adap->flags &= ~FW_OK;
216 		CH_ERR(adap, "firmware reports adapter error: %s (0x%08x)\n",
217 		    reason[G_PCIE_FW_EVAL(pcie_fw)], pcie_fw);
218 		if (pcie_fw != 0xffffffff)
219 			t4_os_dump_devlog(adap);
220 	}
221 }
222 
223 /*
224  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
225  */
226 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
227 			 u32 mbox_addr)
228 {
229 	for ( ; nflit; nflit--, mbox_addr += 8)
230 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
231 }
232 
233 /*
234  * Handle a FW assertion reported in a mailbox.
235  */
236 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
237 {
238 	CH_ALERT(adap,
239 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
240 		  asrt->u.assert.filename_0_7,
241 		  be32_to_cpu(asrt->u.assert.line),
242 		  be32_to_cpu(asrt->u.assert.x),
243 		  be32_to_cpu(asrt->u.assert.y));
244 }
245 
246 struct port_tx_state {
247 	uint64_t rx_pause;
248 	uint64_t tx_frames;
249 };
250 
251 static void
252 read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state)
253 {
254 	uint32_t rx_pause_reg, tx_frames_reg;
255 
256 	if (is_t4(sc)) {
257 		tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
258 		rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
259 	} else {
260 		tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
261 		rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
262 	}
263 
264 	tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg);
265 	tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg);
266 }
267 
268 static void
269 read_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
270 {
271 	int i;
272 
273 	for_each_port(sc, i)
274 		read_tx_state_one(sc, i, &tx_state[i]);
275 }
276 
277 static void
278 check_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
279 {
280 	uint32_t port_ctl_reg;
281 	uint64_t tx_frames, rx_pause;
282 	int i;
283 
284 	for_each_port(sc, i) {
285 		rx_pause = tx_state[i].rx_pause;
286 		tx_frames = tx_state[i].tx_frames;
287 		read_tx_state_one(sc, i, &tx_state[i]);	/* update */
288 
289 		if (is_t4(sc))
290 			port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL);
291 		else
292 			port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL);
293 		if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN &&
294 		    rx_pause != tx_state[i].rx_pause &&
295 		    tx_frames == tx_state[i].tx_frames) {
296 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0);
297 			mdelay(1);
298 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN);
299 		}
300 	}
301 }
302 
303 #define X_CIM_PF_NOACCESS 0xeeeeeeee
304 /**
305  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
306  *	@adap: the adapter
307  *	@mbox: index of the mailbox to use
308  *	@cmd: the command to write
309  *	@size: command length in bytes
310  *	@rpl: where to optionally store the reply
311  *	@sleep_ok: if true we may sleep while awaiting command completion
312  *	@timeout: time to wait for command to finish before timing out
313  *		(negative implies @sleep_ok=false)
314  *
315  *	Sends the given command to FW through the selected mailbox and waits
316  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
317  *	store the FW's reply to the command.  The command and its optional
318  *	reply are of the same length.  Some FW commands like RESET and
319  *	INITIALIZE can take a considerable amount of time to execute.
320  *	@sleep_ok determines whether we may sleep while awaiting the response.
321  *	If sleeping is allowed we use progressive backoff otherwise we spin.
322  *	Note that passing in a negative @timeout is an alternate mechanism
323  *	for specifying @sleep_ok=false.  This is useful when a higher level
324  *	interface allows for specification of @timeout but not @sleep_ok ...
325  *
326  *	The return value is 0 on success or a negative errno on failure.  A
327  *	failure can happen either because we are not able to execute the
328  *	command or FW executes it but signals an error.  In the latter case
329  *	the return value is the error code indicated by FW (negated).
330  */
331 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
332 			    int size, void *rpl, bool sleep_ok, int timeout)
333 {
334 	/*
335 	 * We delay in small increments at first in an effort to maintain
336 	 * responsiveness for simple, fast executing commands but then back
337 	 * off to larger delays to a maximum retry delay.
338 	 */
339 	static const int delay[] = {
340 		1, 1, 3, 5, 10, 10, 20, 50, 100
341 	};
342 	u32 v;
343 	u64 res;
344 	int i, ms, delay_idx, ret, next_tx_check;
345 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
346 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
347 	u32 ctl;
348 	__be64 cmd_rpl[MBOX_LEN/8];
349 	u32 pcie_fw;
350 	struct port_tx_state tx_state[MAX_NPORTS];
351 
352 	if (adap->flags & CHK_MBOX_ACCESS)
353 		ASSERT_SYNCHRONIZED_OP(adap);
354 
355 	if (size <= 0 || (size & 15) || size > MBOX_LEN)
356 		return -EINVAL;
357 
358 	if (adap->flags & IS_VF) {
359 		if (is_t6(adap))
360 			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
361 		else
362 			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
363 		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
364 	}
365 
366 	/*
367 	 * If we have a negative timeout, that implies that we can't sleep.
368 	 */
369 	if (timeout < 0) {
370 		sleep_ok = false;
371 		timeout = -timeout;
372 	}
373 
374 	/*
375 	 * Attempt to gain access to the mailbox.
376 	 */
377 	for (i = 0; i < 4; i++) {
378 		ctl = t4_read_reg(adap, ctl_reg);
379 		v = G_MBOWNER(ctl);
380 		if (v != X_MBOWNER_NONE)
381 			break;
382 	}
383 
384 	/*
385 	 * If we were unable to gain access, report the error to our caller.
386 	 */
387 	if (v != X_MBOWNER_PL) {
388 		t4_report_fw_error(adap);
389 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
390 		return ret;
391 	}
392 
393 	/*
394 	 * If we gain ownership of the mailbox and there's a "valid" message
395 	 * in it, this is likely an asynchronous error message from the
396 	 * firmware.  So we'll report that and then proceed on with attempting
397 	 * to issue our own command ... which may well fail if the error
398 	 * presaged the firmware crashing ...
399 	 */
400 	if (ctl & F_MBMSGVALID) {
401 		CH_DUMP_MBOX(adap, mbox, data_reg, "VLD", NULL, true);
402 	}
403 
404 	/*
405 	 * Copy in the new mailbox command and send it on its way ...
406 	 */
407 	memset(cmd_rpl, 0, sizeof(cmd_rpl));
408 	memcpy(cmd_rpl, cmd, size);
409 	CH_DUMP_MBOX(adap, mbox, 0, "cmd", cmd_rpl, false);
410 	for (i = 0; i < ARRAY_SIZE(cmd_rpl); i++)
411 		t4_write_reg64(adap, data_reg + i * 8, be64_to_cpu(cmd_rpl[i]));
412 
413 	if (adap->flags & IS_VF) {
414 		/*
415 		 * For the VFs, the Mailbox Data "registers" are
416 		 * actually backed by T4's "MA" interface rather than
417 		 * PL Registers (as is the case for the PFs).  Because
418 		 * these are in different coherency domains, the write
419 		 * to the VF's PL-register-backed Mailbox Control can
420 		 * race in front of the writes to the MA-backed VF
421 		 * Mailbox Data "registers".  So we need to do a
422 		 * read-back on at least one byte of the VF Mailbox
423 		 * Data registers before doing the write to the VF
424 		 * Mailbox Control register.
425 		 */
426 		t4_read_reg(adap, data_reg);
427 	}
428 
429 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
430 	read_tx_state(adap, &tx_state[0]);	/* also flushes the write_reg */
431 	next_tx_check = 1000;
432 	delay_idx = 0;
433 	ms = delay[0];
434 
435 	/*
436 	 * Loop waiting for the reply; bail out if we time out or the firmware
437 	 * reports an error.
438 	 */
439 	pcie_fw = 0;
440 	for (i = 0; i < timeout; i += ms) {
441 		if (!(adap->flags & IS_VF)) {
442 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
443 			if (pcie_fw & F_PCIE_FW_ERR)
444 				break;
445 		}
446 
447 		if (i >= next_tx_check) {
448 			check_tx_state(adap, &tx_state[0]);
449 			next_tx_check = i + 1000;
450 		}
451 
452 		if (sleep_ok) {
453 			ms = delay[delay_idx];  /* last element may repeat */
454 			if (delay_idx < ARRAY_SIZE(delay) - 1)
455 				delay_idx++;
456 			msleep(ms);
457 		} else {
458 			mdelay(ms);
459 		}
460 
461 		v = t4_read_reg(adap, ctl_reg);
462 		if (v == X_CIM_PF_NOACCESS)
463 			continue;
464 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
465 			if (!(v & F_MBMSGVALID)) {
466 				t4_write_reg(adap, ctl_reg,
467 					     V_MBOWNER(X_MBOWNER_NONE));
468 				continue;
469 			}
470 
471 			/*
472 			 * Retrieve the command reply and release the mailbox.
473 			 */
474 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
475 			CH_DUMP_MBOX(adap, mbox, 0, "rpl", cmd_rpl, false);
476 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
477 
478 			res = be64_to_cpu(cmd_rpl[0]);
479 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
480 				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
481 				res = V_FW_CMD_RETVAL(EIO);
482 			} else if (rpl)
483 				memcpy(rpl, cmd_rpl, size);
484 			return -G_FW_CMD_RETVAL((int)res);
485 		}
486 	}
487 
488 	/*
489 	 * We timed out waiting for a reply to our mailbox command.  Report
490 	 * the error and also check to see if the firmware reported any
491 	 * errors ...
492 	 */
493 	CH_ERR(adap, "command %#x in mbox %d timed out (0x%08x).\n",
494 	    *(const u8 *)cmd, mbox, pcie_fw);
495 	CH_DUMP_MBOX(adap, mbox, 0, "cmdsent", cmd_rpl, true);
496 	CH_DUMP_MBOX(adap, mbox, data_reg, "current", NULL, true);
497 
498 	if (pcie_fw & F_PCIE_FW_ERR) {
499 		ret = -ENXIO;
500 		t4_report_fw_error(adap);
501 	} else {
502 		ret = -ETIMEDOUT;
503 		t4_os_dump_devlog(adap);
504 	}
505 
506 	t4_fatal_err(adap, true);
507 	return ret;
508 }
509 
510 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
511 		    void *rpl, bool sleep_ok)
512 {
513 		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
514 					       sleep_ok, FW_CMD_MAX_TIMEOUT);
515 
516 }
517 
518 static int t4_edc_err_read(struct adapter *adap, int idx)
519 {
520 	u32 edc_ecc_err_addr_reg;
521 	u32 edc_bist_status_rdata_reg;
522 
523 	if (is_t4(adap)) {
524 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
525 		return 0;
526 	}
527 	if (idx != MEM_EDC0 && idx != MEM_EDC1) {
528 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
529 		return 0;
530 	}
531 
532 	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
533 	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
534 
535 	CH_WARN(adap,
536 		"edc%d err addr 0x%x: 0x%x.\n",
537 		idx, edc_ecc_err_addr_reg,
538 		t4_read_reg(adap, edc_ecc_err_addr_reg));
539 	CH_WARN(adap,
540 	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
541 		edc_bist_status_rdata_reg,
542 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
543 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
544 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
545 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
546 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
547 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
548 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
549 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
550 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
551 
552 	return 0;
553 }
554 
555 /**
556  *	t4_mc_read - read from MC through backdoor accesses
557  *	@adap: the adapter
558  *	@idx: which MC to access
559  *	@addr: address of first byte requested
560  *	@data: 64 bytes of data containing the requested address
561  *	@ecc: where to store the corresponding 64-bit ECC word
562  *
563  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
564  *	that covers the requested address @addr.  If @parity is not %NULL it
565  *	is assigned the 64-bit ECC word for the read data.
566  */
567 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
568 {
569 	int i;
570 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
571 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
572 
573 	if (is_t4(adap)) {
574 		mc_bist_cmd_reg = A_MC_BIST_CMD;
575 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
576 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
577 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
578 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
579 	} else {
580 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
581 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
582 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
583 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
584 						  idx);
585 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
586 						  idx);
587 	}
588 
589 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
590 		return -EBUSY;
591 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
592 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
593 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
594 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
595 		     F_START_BIST | V_BIST_CMD_GAP(1));
596 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
597 	if (i)
598 		return i;
599 
600 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
601 
602 	for (i = 15; i >= 0; i--)
603 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
604 	if (ecc)
605 		*ecc = t4_read_reg64(adap, MC_DATA(16));
606 #undef MC_DATA
607 	return 0;
608 }
609 
610 /**
611  *	t4_edc_read - read from EDC through backdoor accesses
612  *	@adap: the adapter
613  *	@idx: which EDC to access
614  *	@addr: address of first byte requested
615  *	@data: 64 bytes of data containing the requested address
616  *	@ecc: where to store the corresponding 64-bit ECC word
617  *
618  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
619  *	that covers the requested address @addr.  If @parity is not %NULL it
620  *	is assigned the 64-bit ECC word for the read data.
621  */
622 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
623 {
624 	int i;
625 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
626 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
627 
628 	if (is_t4(adap)) {
629 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
630 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
631 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
632 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
633 						    idx);
634 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
635 						    idx);
636 	} else {
637 /*
638  * These macro are missing in t4_regs.h file.
639  * Added temporarily for testing.
640  */
641 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
642 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
643 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
644 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
645 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
646 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
647 						    idx);
648 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
649 						    idx);
650 #undef EDC_REG_T5
651 #undef EDC_STRIDE_T5
652 	}
653 
654 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
655 		return -EBUSY;
656 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
657 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
658 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
659 	t4_write_reg(adap, edc_bist_cmd_reg,
660 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
661 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
662 	if (i)
663 		return i;
664 
665 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
666 
667 	for (i = 15; i >= 0; i--)
668 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
669 	if (ecc)
670 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
671 #undef EDC_DATA
672 	return 0;
673 }
674 
675 /**
676  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
677  *	@adap: the adapter
678  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
679  *	@addr: address within indicated memory type
680  *	@len: amount of memory to read
681  *	@buf: host memory buffer
682  *
683  *	Reads an [almost] arbitrary memory region in the firmware: the
684  *	firmware memory address, length and host buffer must be aligned on
685  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
686  *	the firmware's memory.  If this memory contains data structures which
687  *	contain multi-byte integers, it's the callers responsibility to
688  *	perform appropriate byte order conversions.
689  */
690 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
691 		__be32 *buf)
692 {
693 	u32 pos, start, end, offset;
694 	int ret;
695 
696 	/*
697 	 * Argument sanity checks ...
698 	 */
699 	if ((addr & 0x3) || (len & 0x3))
700 		return -EINVAL;
701 
702 	/*
703 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
704 	 * need to round down the start and round up the end.  We'll start
705 	 * copying out of the first line at (addr - start) a word at a time.
706 	 */
707 	start = rounddown2(addr, 64);
708 	end = roundup2(addr + len, 64);
709 	offset = (addr - start)/sizeof(__be32);
710 
711 	for (pos = start; pos < end; pos += 64, offset = 0) {
712 		__be32 data[16];
713 
714 		/*
715 		 * Read the chip's memory block and bail if there's an error.
716 		 */
717 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
718 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
719 		else
720 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
721 		if (ret)
722 			return ret;
723 
724 		/*
725 		 * Copy the data into the caller's memory buffer.
726 		 */
727 		while (offset < 16 && len > 0) {
728 			*buf++ = data[offset++];
729 			len -= sizeof(__be32);
730 		}
731 	}
732 
733 	return 0;
734 }
735 
736 /*
737  * Return the specified PCI-E Configuration Space register from our Physical
738  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
739  * since we prefer to let the firmware own all of these registers, but if that
740  * fails we go for it directly ourselves.
741  */
742 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
743 {
744 
745 	/*
746 	 * If fw_attach != 0, construct and send the Firmware LDST Command to
747 	 * retrieve the specified PCI-E Configuration Space register.
748 	 */
749 	if (drv_fw_attach != 0) {
750 		struct fw_ldst_cmd ldst_cmd;
751 		int ret;
752 
753 		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
754 		ldst_cmd.op_to_addrspace =
755 			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
756 				    F_FW_CMD_REQUEST |
757 				    F_FW_CMD_READ |
758 				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
759 		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
760 		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
761 		ldst_cmd.u.pcie.ctrl_to_fn =
762 			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
763 		ldst_cmd.u.pcie.r = reg;
764 
765 		/*
766 		 * If the LDST Command succeeds, return the result, otherwise
767 		 * fall through to reading it directly ourselves ...
768 		 */
769 		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
770 				 &ldst_cmd);
771 		if (ret == 0)
772 			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
773 
774 		CH_WARN(adap, "Firmware failed to return "
775 			"Configuration Space register %d, err = %d\n",
776 			reg, -ret);
777 	}
778 
779 	/*
780 	 * Read the desired Configuration Space register via the PCI-E
781 	 * Backdoor mechanism.
782 	 */
783 	return t4_hw_pci_read_cfg4(adap, reg);
784 }
785 
786 /**
787  *	t4_get_regs_len - return the size of the chips register set
788  *	@adapter: the adapter
789  *
790  *	Returns the size of the chip's BAR0 register space.
791  */
792 unsigned int t4_get_regs_len(struct adapter *adapter)
793 {
794 	unsigned int chip_version = chip_id(adapter);
795 
796 	switch (chip_version) {
797 	case CHELSIO_T4:
798 		if (adapter->flags & IS_VF)
799 			return FW_T4VF_REGMAP_SIZE;
800 		return T4_REGMAP_SIZE;
801 
802 	case CHELSIO_T5:
803 	case CHELSIO_T6:
804 		if (adapter->flags & IS_VF)
805 			return FW_T4VF_REGMAP_SIZE;
806 		return T5_REGMAP_SIZE;
807 	}
808 
809 	CH_ERR(adapter,
810 		"Unsupported chip version %d\n", chip_version);
811 	return 0;
812 }
813 
814 /**
815  *	t4_get_regs - read chip registers into provided buffer
816  *	@adap: the adapter
817  *	@buf: register buffer
818  *	@buf_size: size (in bytes) of register buffer
819  *
820  *	If the provided register buffer isn't large enough for the chip's
821  *	full register range, the register dump will be truncated to the
822  *	register buffer's size.
823  */
824 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
825 {
826 	static const unsigned int t4_reg_ranges[] = {
827 		0x1008, 0x1108,
828 		0x1180, 0x1184,
829 		0x1190, 0x1194,
830 		0x11a0, 0x11a4,
831 		0x11b0, 0x11b4,
832 		0x11fc, 0x123c,
833 		0x1300, 0x173c,
834 		0x1800, 0x18fc,
835 		0x3000, 0x30d8,
836 		0x30e0, 0x30e4,
837 		0x30ec, 0x5910,
838 		0x5920, 0x5924,
839 		0x5960, 0x5960,
840 		0x5968, 0x5968,
841 		0x5970, 0x5970,
842 		0x5978, 0x5978,
843 		0x5980, 0x5980,
844 		0x5988, 0x5988,
845 		0x5990, 0x5990,
846 		0x5998, 0x5998,
847 		0x59a0, 0x59d4,
848 		0x5a00, 0x5ae0,
849 		0x5ae8, 0x5ae8,
850 		0x5af0, 0x5af0,
851 		0x5af8, 0x5af8,
852 		0x6000, 0x6098,
853 		0x6100, 0x6150,
854 		0x6200, 0x6208,
855 		0x6240, 0x6248,
856 		0x6280, 0x62b0,
857 		0x62c0, 0x6338,
858 		0x6370, 0x638c,
859 		0x6400, 0x643c,
860 		0x6500, 0x6524,
861 		0x6a00, 0x6a04,
862 		0x6a14, 0x6a38,
863 		0x6a60, 0x6a70,
864 		0x6a78, 0x6a78,
865 		0x6b00, 0x6b0c,
866 		0x6b1c, 0x6b84,
867 		0x6bf0, 0x6bf8,
868 		0x6c00, 0x6c0c,
869 		0x6c1c, 0x6c84,
870 		0x6cf0, 0x6cf8,
871 		0x6d00, 0x6d0c,
872 		0x6d1c, 0x6d84,
873 		0x6df0, 0x6df8,
874 		0x6e00, 0x6e0c,
875 		0x6e1c, 0x6e84,
876 		0x6ef0, 0x6ef8,
877 		0x6f00, 0x6f0c,
878 		0x6f1c, 0x6f84,
879 		0x6ff0, 0x6ff8,
880 		0x7000, 0x700c,
881 		0x701c, 0x7084,
882 		0x70f0, 0x70f8,
883 		0x7100, 0x710c,
884 		0x711c, 0x7184,
885 		0x71f0, 0x71f8,
886 		0x7200, 0x720c,
887 		0x721c, 0x7284,
888 		0x72f0, 0x72f8,
889 		0x7300, 0x730c,
890 		0x731c, 0x7384,
891 		0x73f0, 0x73f8,
892 		0x7400, 0x7450,
893 		0x7500, 0x7530,
894 		0x7600, 0x760c,
895 		0x7614, 0x761c,
896 		0x7680, 0x76cc,
897 		0x7700, 0x7798,
898 		0x77c0, 0x77fc,
899 		0x7900, 0x79fc,
900 		0x7b00, 0x7b58,
901 		0x7b60, 0x7b84,
902 		0x7b8c, 0x7c38,
903 		0x7d00, 0x7d38,
904 		0x7d40, 0x7d80,
905 		0x7d8c, 0x7ddc,
906 		0x7de4, 0x7e04,
907 		0x7e10, 0x7e1c,
908 		0x7e24, 0x7e38,
909 		0x7e40, 0x7e44,
910 		0x7e4c, 0x7e78,
911 		0x7e80, 0x7ea4,
912 		0x7eac, 0x7edc,
913 		0x7ee8, 0x7efc,
914 		0x8dc0, 0x8e04,
915 		0x8e10, 0x8e1c,
916 		0x8e30, 0x8e78,
917 		0x8ea0, 0x8eb8,
918 		0x8ec0, 0x8f6c,
919 		0x8fc0, 0x9008,
920 		0x9010, 0x9058,
921 		0x9060, 0x9060,
922 		0x9068, 0x9074,
923 		0x90fc, 0x90fc,
924 		0x9400, 0x9408,
925 		0x9410, 0x9458,
926 		0x9600, 0x9600,
927 		0x9608, 0x9638,
928 		0x9640, 0x96bc,
929 		0x9800, 0x9808,
930 		0x9820, 0x983c,
931 		0x9850, 0x9864,
932 		0x9c00, 0x9c6c,
933 		0x9c80, 0x9cec,
934 		0x9d00, 0x9d6c,
935 		0x9d80, 0x9dec,
936 		0x9e00, 0x9e6c,
937 		0x9e80, 0x9eec,
938 		0x9f00, 0x9f6c,
939 		0x9f80, 0x9fec,
940 		0xd004, 0xd004,
941 		0xd010, 0xd03c,
942 		0xdfc0, 0xdfe0,
943 		0xe000, 0xea7c,
944 		0xf000, 0x11110,
945 		0x11118, 0x11190,
946 		0x19040, 0x1906c,
947 		0x19078, 0x19080,
948 		0x1908c, 0x190e4,
949 		0x190f0, 0x190f8,
950 		0x19100, 0x19110,
951 		0x19120, 0x19124,
952 		0x19150, 0x19194,
953 		0x1919c, 0x191b0,
954 		0x191d0, 0x191e8,
955 		0x19238, 0x1924c,
956 		0x193f8, 0x1943c,
957 		0x1944c, 0x19474,
958 		0x19490, 0x194e0,
959 		0x194f0, 0x194f8,
960 		0x19800, 0x19c08,
961 		0x19c10, 0x19c90,
962 		0x19ca0, 0x19ce4,
963 		0x19cf0, 0x19d40,
964 		0x19d50, 0x19d94,
965 		0x19da0, 0x19de8,
966 		0x19df0, 0x19e40,
967 		0x19e50, 0x19e90,
968 		0x19ea0, 0x19f4c,
969 		0x1a000, 0x1a004,
970 		0x1a010, 0x1a06c,
971 		0x1a0b0, 0x1a0e4,
972 		0x1a0ec, 0x1a0f4,
973 		0x1a100, 0x1a108,
974 		0x1a114, 0x1a120,
975 		0x1a128, 0x1a130,
976 		0x1a138, 0x1a138,
977 		0x1a190, 0x1a1c4,
978 		0x1a1fc, 0x1a1fc,
979 		0x1e040, 0x1e04c,
980 		0x1e284, 0x1e28c,
981 		0x1e2c0, 0x1e2c0,
982 		0x1e2e0, 0x1e2e0,
983 		0x1e300, 0x1e384,
984 		0x1e3c0, 0x1e3c8,
985 		0x1e440, 0x1e44c,
986 		0x1e684, 0x1e68c,
987 		0x1e6c0, 0x1e6c0,
988 		0x1e6e0, 0x1e6e0,
989 		0x1e700, 0x1e784,
990 		0x1e7c0, 0x1e7c8,
991 		0x1e840, 0x1e84c,
992 		0x1ea84, 0x1ea8c,
993 		0x1eac0, 0x1eac0,
994 		0x1eae0, 0x1eae0,
995 		0x1eb00, 0x1eb84,
996 		0x1ebc0, 0x1ebc8,
997 		0x1ec40, 0x1ec4c,
998 		0x1ee84, 0x1ee8c,
999 		0x1eec0, 0x1eec0,
1000 		0x1eee0, 0x1eee0,
1001 		0x1ef00, 0x1ef84,
1002 		0x1efc0, 0x1efc8,
1003 		0x1f040, 0x1f04c,
1004 		0x1f284, 0x1f28c,
1005 		0x1f2c0, 0x1f2c0,
1006 		0x1f2e0, 0x1f2e0,
1007 		0x1f300, 0x1f384,
1008 		0x1f3c0, 0x1f3c8,
1009 		0x1f440, 0x1f44c,
1010 		0x1f684, 0x1f68c,
1011 		0x1f6c0, 0x1f6c0,
1012 		0x1f6e0, 0x1f6e0,
1013 		0x1f700, 0x1f784,
1014 		0x1f7c0, 0x1f7c8,
1015 		0x1f840, 0x1f84c,
1016 		0x1fa84, 0x1fa8c,
1017 		0x1fac0, 0x1fac0,
1018 		0x1fae0, 0x1fae0,
1019 		0x1fb00, 0x1fb84,
1020 		0x1fbc0, 0x1fbc8,
1021 		0x1fc40, 0x1fc4c,
1022 		0x1fe84, 0x1fe8c,
1023 		0x1fec0, 0x1fec0,
1024 		0x1fee0, 0x1fee0,
1025 		0x1ff00, 0x1ff84,
1026 		0x1ffc0, 0x1ffc8,
1027 		0x20000, 0x2002c,
1028 		0x20100, 0x2013c,
1029 		0x20190, 0x201a0,
1030 		0x201a8, 0x201b8,
1031 		0x201c4, 0x201c8,
1032 		0x20200, 0x20318,
1033 		0x20400, 0x204b4,
1034 		0x204c0, 0x20528,
1035 		0x20540, 0x20614,
1036 		0x21000, 0x21040,
1037 		0x2104c, 0x21060,
1038 		0x210c0, 0x210ec,
1039 		0x21200, 0x21268,
1040 		0x21270, 0x21284,
1041 		0x212fc, 0x21388,
1042 		0x21400, 0x21404,
1043 		0x21500, 0x21500,
1044 		0x21510, 0x21518,
1045 		0x2152c, 0x21530,
1046 		0x2153c, 0x2153c,
1047 		0x21550, 0x21554,
1048 		0x21600, 0x21600,
1049 		0x21608, 0x2161c,
1050 		0x21624, 0x21628,
1051 		0x21630, 0x21634,
1052 		0x2163c, 0x2163c,
1053 		0x21700, 0x2171c,
1054 		0x21780, 0x2178c,
1055 		0x21800, 0x21818,
1056 		0x21820, 0x21828,
1057 		0x21830, 0x21848,
1058 		0x21850, 0x21854,
1059 		0x21860, 0x21868,
1060 		0x21870, 0x21870,
1061 		0x21878, 0x21898,
1062 		0x218a0, 0x218a8,
1063 		0x218b0, 0x218c8,
1064 		0x218d0, 0x218d4,
1065 		0x218e0, 0x218e8,
1066 		0x218f0, 0x218f0,
1067 		0x218f8, 0x21a18,
1068 		0x21a20, 0x21a28,
1069 		0x21a30, 0x21a48,
1070 		0x21a50, 0x21a54,
1071 		0x21a60, 0x21a68,
1072 		0x21a70, 0x21a70,
1073 		0x21a78, 0x21a98,
1074 		0x21aa0, 0x21aa8,
1075 		0x21ab0, 0x21ac8,
1076 		0x21ad0, 0x21ad4,
1077 		0x21ae0, 0x21ae8,
1078 		0x21af0, 0x21af0,
1079 		0x21af8, 0x21c18,
1080 		0x21c20, 0x21c20,
1081 		0x21c28, 0x21c30,
1082 		0x21c38, 0x21c38,
1083 		0x21c80, 0x21c98,
1084 		0x21ca0, 0x21ca8,
1085 		0x21cb0, 0x21cc8,
1086 		0x21cd0, 0x21cd4,
1087 		0x21ce0, 0x21ce8,
1088 		0x21cf0, 0x21cf0,
1089 		0x21cf8, 0x21d7c,
1090 		0x21e00, 0x21e04,
1091 		0x22000, 0x2202c,
1092 		0x22100, 0x2213c,
1093 		0x22190, 0x221a0,
1094 		0x221a8, 0x221b8,
1095 		0x221c4, 0x221c8,
1096 		0x22200, 0x22318,
1097 		0x22400, 0x224b4,
1098 		0x224c0, 0x22528,
1099 		0x22540, 0x22614,
1100 		0x23000, 0x23040,
1101 		0x2304c, 0x23060,
1102 		0x230c0, 0x230ec,
1103 		0x23200, 0x23268,
1104 		0x23270, 0x23284,
1105 		0x232fc, 0x23388,
1106 		0x23400, 0x23404,
1107 		0x23500, 0x23500,
1108 		0x23510, 0x23518,
1109 		0x2352c, 0x23530,
1110 		0x2353c, 0x2353c,
1111 		0x23550, 0x23554,
1112 		0x23600, 0x23600,
1113 		0x23608, 0x2361c,
1114 		0x23624, 0x23628,
1115 		0x23630, 0x23634,
1116 		0x2363c, 0x2363c,
1117 		0x23700, 0x2371c,
1118 		0x23780, 0x2378c,
1119 		0x23800, 0x23818,
1120 		0x23820, 0x23828,
1121 		0x23830, 0x23848,
1122 		0x23850, 0x23854,
1123 		0x23860, 0x23868,
1124 		0x23870, 0x23870,
1125 		0x23878, 0x23898,
1126 		0x238a0, 0x238a8,
1127 		0x238b0, 0x238c8,
1128 		0x238d0, 0x238d4,
1129 		0x238e0, 0x238e8,
1130 		0x238f0, 0x238f0,
1131 		0x238f8, 0x23a18,
1132 		0x23a20, 0x23a28,
1133 		0x23a30, 0x23a48,
1134 		0x23a50, 0x23a54,
1135 		0x23a60, 0x23a68,
1136 		0x23a70, 0x23a70,
1137 		0x23a78, 0x23a98,
1138 		0x23aa0, 0x23aa8,
1139 		0x23ab0, 0x23ac8,
1140 		0x23ad0, 0x23ad4,
1141 		0x23ae0, 0x23ae8,
1142 		0x23af0, 0x23af0,
1143 		0x23af8, 0x23c18,
1144 		0x23c20, 0x23c20,
1145 		0x23c28, 0x23c30,
1146 		0x23c38, 0x23c38,
1147 		0x23c80, 0x23c98,
1148 		0x23ca0, 0x23ca8,
1149 		0x23cb0, 0x23cc8,
1150 		0x23cd0, 0x23cd4,
1151 		0x23ce0, 0x23ce8,
1152 		0x23cf0, 0x23cf0,
1153 		0x23cf8, 0x23d7c,
1154 		0x23e00, 0x23e04,
1155 		0x24000, 0x2402c,
1156 		0x24100, 0x2413c,
1157 		0x24190, 0x241a0,
1158 		0x241a8, 0x241b8,
1159 		0x241c4, 0x241c8,
1160 		0x24200, 0x24318,
1161 		0x24400, 0x244b4,
1162 		0x244c0, 0x24528,
1163 		0x24540, 0x24614,
1164 		0x25000, 0x25040,
1165 		0x2504c, 0x25060,
1166 		0x250c0, 0x250ec,
1167 		0x25200, 0x25268,
1168 		0x25270, 0x25284,
1169 		0x252fc, 0x25388,
1170 		0x25400, 0x25404,
1171 		0x25500, 0x25500,
1172 		0x25510, 0x25518,
1173 		0x2552c, 0x25530,
1174 		0x2553c, 0x2553c,
1175 		0x25550, 0x25554,
1176 		0x25600, 0x25600,
1177 		0x25608, 0x2561c,
1178 		0x25624, 0x25628,
1179 		0x25630, 0x25634,
1180 		0x2563c, 0x2563c,
1181 		0x25700, 0x2571c,
1182 		0x25780, 0x2578c,
1183 		0x25800, 0x25818,
1184 		0x25820, 0x25828,
1185 		0x25830, 0x25848,
1186 		0x25850, 0x25854,
1187 		0x25860, 0x25868,
1188 		0x25870, 0x25870,
1189 		0x25878, 0x25898,
1190 		0x258a0, 0x258a8,
1191 		0x258b0, 0x258c8,
1192 		0x258d0, 0x258d4,
1193 		0x258e0, 0x258e8,
1194 		0x258f0, 0x258f0,
1195 		0x258f8, 0x25a18,
1196 		0x25a20, 0x25a28,
1197 		0x25a30, 0x25a48,
1198 		0x25a50, 0x25a54,
1199 		0x25a60, 0x25a68,
1200 		0x25a70, 0x25a70,
1201 		0x25a78, 0x25a98,
1202 		0x25aa0, 0x25aa8,
1203 		0x25ab0, 0x25ac8,
1204 		0x25ad0, 0x25ad4,
1205 		0x25ae0, 0x25ae8,
1206 		0x25af0, 0x25af0,
1207 		0x25af8, 0x25c18,
1208 		0x25c20, 0x25c20,
1209 		0x25c28, 0x25c30,
1210 		0x25c38, 0x25c38,
1211 		0x25c80, 0x25c98,
1212 		0x25ca0, 0x25ca8,
1213 		0x25cb0, 0x25cc8,
1214 		0x25cd0, 0x25cd4,
1215 		0x25ce0, 0x25ce8,
1216 		0x25cf0, 0x25cf0,
1217 		0x25cf8, 0x25d7c,
1218 		0x25e00, 0x25e04,
1219 		0x26000, 0x2602c,
1220 		0x26100, 0x2613c,
1221 		0x26190, 0x261a0,
1222 		0x261a8, 0x261b8,
1223 		0x261c4, 0x261c8,
1224 		0x26200, 0x26318,
1225 		0x26400, 0x264b4,
1226 		0x264c0, 0x26528,
1227 		0x26540, 0x26614,
1228 		0x27000, 0x27040,
1229 		0x2704c, 0x27060,
1230 		0x270c0, 0x270ec,
1231 		0x27200, 0x27268,
1232 		0x27270, 0x27284,
1233 		0x272fc, 0x27388,
1234 		0x27400, 0x27404,
1235 		0x27500, 0x27500,
1236 		0x27510, 0x27518,
1237 		0x2752c, 0x27530,
1238 		0x2753c, 0x2753c,
1239 		0x27550, 0x27554,
1240 		0x27600, 0x27600,
1241 		0x27608, 0x2761c,
1242 		0x27624, 0x27628,
1243 		0x27630, 0x27634,
1244 		0x2763c, 0x2763c,
1245 		0x27700, 0x2771c,
1246 		0x27780, 0x2778c,
1247 		0x27800, 0x27818,
1248 		0x27820, 0x27828,
1249 		0x27830, 0x27848,
1250 		0x27850, 0x27854,
1251 		0x27860, 0x27868,
1252 		0x27870, 0x27870,
1253 		0x27878, 0x27898,
1254 		0x278a0, 0x278a8,
1255 		0x278b0, 0x278c8,
1256 		0x278d0, 0x278d4,
1257 		0x278e0, 0x278e8,
1258 		0x278f0, 0x278f0,
1259 		0x278f8, 0x27a18,
1260 		0x27a20, 0x27a28,
1261 		0x27a30, 0x27a48,
1262 		0x27a50, 0x27a54,
1263 		0x27a60, 0x27a68,
1264 		0x27a70, 0x27a70,
1265 		0x27a78, 0x27a98,
1266 		0x27aa0, 0x27aa8,
1267 		0x27ab0, 0x27ac8,
1268 		0x27ad0, 0x27ad4,
1269 		0x27ae0, 0x27ae8,
1270 		0x27af0, 0x27af0,
1271 		0x27af8, 0x27c18,
1272 		0x27c20, 0x27c20,
1273 		0x27c28, 0x27c30,
1274 		0x27c38, 0x27c38,
1275 		0x27c80, 0x27c98,
1276 		0x27ca0, 0x27ca8,
1277 		0x27cb0, 0x27cc8,
1278 		0x27cd0, 0x27cd4,
1279 		0x27ce0, 0x27ce8,
1280 		0x27cf0, 0x27cf0,
1281 		0x27cf8, 0x27d7c,
1282 		0x27e00, 0x27e04,
1283 	};
1284 
1285 	static const unsigned int t4vf_reg_ranges[] = {
1286 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1287 		VF_MPS_REG(A_MPS_VF_CTL),
1288 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1289 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1290 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1291 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1292 		FW_T4VF_MBDATA_BASE_ADDR,
1293 		FW_T4VF_MBDATA_BASE_ADDR +
1294 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1295 	};
1296 
1297 	static const unsigned int t5_reg_ranges[] = {
1298 		0x1008, 0x10c0,
1299 		0x10cc, 0x10f8,
1300 		0x1100, 0x1100,
1301 		0x110c, 0x1148,
1302 		0x1180, 0x1184,
1303 		0x1190, 0x1194,
1304 		0x11a0, 0x11a4,
1305 		0x11b0, 0x11b4,
1306 		0x11fc, 0x123c,
1307 		0x1280, 0x173c,
1308 		0x1800, 0x18fc,
1309 		0x3000, 0x3028,
1310 		0x3060, 0x30b0,
1311 		0x30b8, 0x30d8,
1312 		0x30e0, 0x30fc,
1313 		0x3140, 0x357c,
1314 		0x35a8, 0x35cc,
1315 		0x35ec, 0x35ec,
1316 		0x3600, 0x5624,
1317 		0x56cc, 0x56ec,
1318 		0x56f4, 0x5720,
1319 		0x5728, 0x575c,
1320 		0x580c, 0x5814,
1321 		0x5890, 0x589c,
1322 		0x58a4, 0x58ac,
1323 		0x58b8, 0x58bc,
1324 		0x5940, 0x59c8,
1325 		0x59d0, 0x59dc,
1326 		0x59fc, 0x5a18,
1327 		0x5a60, 0x5a70,
1328 		0x5a80, 0x5a9c,
1329 		0x5b94, 0x5bfc,
1330 		0x6000, 0x6020,
1331 		0x6028, 0x6040,
1332 		0x6058, 0x609c,
1333 		0x60a8, 0x614c,
1334 		0x7700, 0x7798,
1335 		0x77c0, 0x78fc,
1336 		0x7b00, 0x7b58,
1337 		0x7b60, 0x7b84,
1338 		0x7b8c, 0x7c54,
1339 		0x7d00, 0x7d38,
1340 		0x7d40, 0x7d80,
1341 		0x7d8c, 0x7ddc,
1342 		0x7de4, 0x7e04,
1343 		0x7e10, 0x7e1c,
1344 		0x7e24, 0x7e38,
1345 		0x7e40, 0x7e44,
1346 		0x7e4c, 0x7e78,
1347 		0x7e80, 0x7edc,
1348 		0x7ee8, 0x7efc,
1349 		0x8dc0, 0x8de0,
1350 		0x8df8, 0x8e04,
1351 		0x8e10, 0x8e84,
1352 		0x8ea0, 0x8f84,
1353 		0x8fc0, 0x9058,
1354 		0x9060, 0x9060,
1355 		0x9068, 0x90f8,
1356 		0x9400, 0x9408,
1357 		0x9410, 0x9470,
1358 		0x9600, 0x9600,
1359 		0x9608, 0x9638,
1360 		0x9640, 0x96f4,
1361 		0x9800, 0x9808,
1362 		0x9810, 0x9864,
1363 		0x9c00, 0x9c6c,
1364 		0x9c80, 0x9cec,
1365 		0x9d00, 0x9d6c,
1366 		0x9d80, 0x9dec,
1367 		0x9e00, 0x9e6c,
1368 		0x9e80, 0x9eec,
1369 		0x9f00, 0x9f6c,
1370 		0x9f80, 0xa020,
1371 		0xd000, 0xd004,
1372 		0xd010, 0xd03c,
1373 		0xdfc0, 0xdfe0,
1374 		0xe000, 0x1106c,
1375 		0x11074, 0x11088,
1376 		0x1109c, 0x11110,
1377 		0x11118, 0x1117c,
1378 		0x11190, 0x11204,
1379 		0x19040, 0x1906c,
1380 		0x19078, 0x19080,
1381 		0x1908c, 0x190e8,
1382 		0x190f0, 0x190f8,
1383 		0x19100, 0x19110,
1384 		0x19120, 0x19124,
1385 		0x19150, 0x19194,
1386 		0x1919c, 0x191b0,
1387 		0x191d0, 0x191e8,
1388 		0x19238, 0x19290,
1389 		0x193f8, 0x19428,
1390 		0x19430, 0x19444,
1391 		0x1944c, 0x1946c,
1392 		0x19474, 0x19474,
1393 		0x19490, 0x194cc,
1394 		0x194f0, 0x194f8,
1395 		0x19c00, 0x19c08,
1396 		0x19c10, 0x19c60,
1397 		0x19c94, 0x19ce4,
1398 		0x19cf0, 0x19d40,
1399 		0x19d50, 0x19d94,
1400 		0x19da0, 0x19de8,
1401 		0x19df0, 0x19e10,
1402 		0x19e50, 0x19e90,
1403 		0x19ea0, 0x19f24,
1404 		0x19f34, 0x19f34,
1405 		0x19f40, 0x19f50,
1406 		0x19f90, 0x19fb4,
1407 		0x19fc4, 0x19fe4,
1408 		0x1a000, 0x1a004,
1409 		0x1a010, 0x1a06c,
1410 		0x1a0b0, 0x1a0e4,
1411 		0x1a0ec, 0x1a0f8,
1412 		0x1a100, 0x1a108,
1413 		0x1a114, 0x1a130,
1414 		0x1a138, 0x1a1c4,
1415 		0x1a1fc, 0x1a1fc,
1416 		0x1e008, 0x1e00c,
1417 		0x1e040, 0x1e044,
1418 		0x1e04c, 0x1e04c,
1419 		0x1e284, 0x1e290,
1420 		0x1e2c0, 0x1e2c0,
1421 		0x1e2e0, 0x1e2e0,
1422 		0x1e300, 0x1e384,
1423 		0x1e3c0, 0x1e3c8,
1424 		0x1e408, 0x1e40c,
1425 		0x1e440, 0x1e444,
1426 		0x1e44c, 0x1e44c,
1427 		0x1e684, 0x1e690,
1428 		0x1e6c0, 0x1e6c0,
1429 		0x1e6e0, 0x1e6e0,
1430 		0x1e700, 0x1e784,
1431 		0x1e7c0, 0x1e7c8,
1432 		0x1e808, 0x1e80c,
1433 		0x1e840, 0x1e844,
1434 		0x1e84c, 0x1e84c,
1435 		0x1ea84, 0x1ea90,
1436 		0x1eac0, 0x1eac0,
1437 		0x1eae0, 0x1eae0,
1438 		0x1eb00, 0x1eb84,
1439 		0x1ebc0, 0x1ebc8,
1440 		0x1ec08, 0x1ec0c,
1441 		0x1ec40, 0x1ec44,
1442 		0x1ec4c, 0x1ec4c,
1443 		0x1ee84, 0x1ee90,
1444 		0x1eec0, 0x1eec0,
1445 		0x1eee0, 0x1eee0,
1446 		0x1ef00, 0x1ef84,
1447 		0x1efc0, 0x1efc8,
1448 		0x1f008, 0x1f00c,
1449 		0x1f040, 0x1f044,
1450 		0x1f04c, 0x1f04c,
1451 		0x1f284, 0x1f290,
1452 		0x1f2c0, 0x1f2c0,
1453 		0x1f2e0, 0x1f2e0,
1454 		0x1f300, 0x1f384,
1455 		0x1f3c0, 0x1f3c8,
1456 		0x1f408, 0x1f40c,
1457 		0x1f440, 0x1f444,
1458 		0x1f44c, 0x1f44c,
1459 		0x1f684, 0x1f690,
1460 		0x1f6c0, 0x1f6c0,
1461 		0x1f6e0, 0x1f6e0,
1462 		0x1f700, 0x1f784,
1463 		0x1f7c0, 0x1f7c8,
1464 		0x1f808, 0x1f80c,
1465 		0x1f840, 0x1f844,
1466 		0x1f84c, 0x1f84c,
1467 		0x1fa84, 0x1fa90,
1468 		0x1fac0, 0x1fac0,
1469 		0x1fae0, 0x1fae0,
1470 		0x1fb00, 0x1fb84,
1471 		0x1fbc0, 0x1fbc8,
1472 		0x1fc08, 0x1fc0c,
1473 		0x1fc40, 0x1fc44,
1474 		0x1fc4c, 0x1fc4c,
1475 		0x1fe84, 0x1fe90,
1476 		0x1fec0, 0x1fec0,
1477 		0x1fee0, 0x1fee0,
1478 		0x1ff00, 0x1ff84,
1479 		0x1ffc0, 0x1ffc8,
1480 		0x30000, 0x30030,
1481 		0x30100, 0x30144,
1482 		0x30190, 0x301a0,
1483 		0x301a8, 0x301b8,
1484 		0x301c4, 0x301c8,
1485 		0x301d0, 0x301d0,
1486 		0x30200, 0x30318,
1487 		0x30400, 0x304b4,
1488 		0x304c0, 0x3052c,
1489 		0x30540, 0x3061c,
1490 		0x30800, 0x30828,
1491 		0x30834, 0x30834,
1492 		0x308c0, 0x30908,
1493 		0x30910, 0x309ac,
1494 		0x30a00, 0x30a14,
1495 		0x30a1c, 0x30a2c,
1496 		0x30a44, 0x30a50,
1497 		0x30a74, 0x30a74,
1498 		0x30a7c, 0x30afc,
1499 		0x30b08, 0x30c24,
1500 		0x30d00, 0x30d00,
1501 		0x30d08, 0x30d14,
1502 		0x30d1c, 0x30d20,
1503 		0x30d3c, 0x30d3c,
1504 		0x30d48, 0x30d50,
1505 		0x31200, 0x3120c,
1506 		0x31220, 0x31220,
1507 		0x31240, 0x31240,
1508 		0x31600, 0x3160c,
1509 		0x31a00, 0x31a1c,
1510 		0x31e00, 0x31e20,
1511 		0x31e38, 0x31e3c,
1512 		0x31e80, 0x31e80,
1513 		0x31e88, 0x31ea8,
1514 		0x31eb0, 0x31eb4,
1515 		0x31ec8, 0x31ed4,
1516 		0x31fb8, 0x32004,
1517 		0x32200, 0x32200,
1518 		0x32208, 0x32240,
1519 		0x32248, 0x32280,
1520 		0x32288, 0x322c0,
1521 		0x322c8, 0x322fc,
1522 		0x32600, 0x32630,
1523 		0x32a00, 0x32abc,
1524 		0x32b00, 0x32b10,
1525 		0x32b20, 0x32b30,
1526 		0x32b40, 0x32b50,
1527 		0x32b60, 0x32b70,
1528 		0x33000, 0x33028,
1529 		0x33030, 0x33048,
1530 		0x33060, 0x33068,
1531 		0x33070, 0x3309c,
1532 		0x330f0, 0x33128,
1533 		0x33130, 0x33148,
1534 		0x33160, 0x33168,
1535 		0x33170, 0x3319c,
1536 		0x331f0, 0x33238,
1537 		0x33240, 0x33240,
1538 		0x33248, 0x33250,
1539 		0x3325c, 0x33264,
1540 		0x33270, 0x332b8,
1541 		0x332c0, 0x332e4,
1542 		0x332f8, 0x33338,
1543 		0x33340, 0x33340,
1544 		0x33348, 0x33350,
1545 		0x3335c, 0x33364,
1546 		0x33370, 0x333b8,
1547 		0x333c0, 0x333e4,
1548 		0x333f8, 0x33428,
1549 		0x33430, 0x33448,
1550 		0x33460, 0x33468,
1551 		0x33470, 0x3349c,
1552 		0x334f0, 0x33528,
1553 		0x33530, 0x33548,
1554 		0x33560, 0x33568,
1555 		0x33570, 0x3359c,
1556 		0x335f0, 0x33638,
1557 		0x33640, 0x33640,
1558 		0x33648, 0x33650,
1559 		0x3365c, 0x33664,
1560 		0x33670, 0x336b8,
1561 		0x336c0, 0x336e4,
1562 		0x336f8, 0x33738,
1563 		0x33740, 0x33740,
1564 		0x33748, 0x33750,
1565 		0x3375c, 0x33764,
1566 		0x33770, 0x337b8,
1567 		0x337c0, 0x337e4,
1568 		0x337f8, 0x337fc,
1569 		0x33814, 0x33814,
1570 		0x3382c, 0x3382c,
1571 		0x33880, 0x3388c,
1572 		0x338e8, 0x338ec,
1573 		0x33900, 0x33928,
1574 		0x33930, 0x33948,
1575 		0x33960, 0x33968,
1576 		0x33970, 0x3399c,
1577 		0x339f0, 0x33a38,
1578 		0x33a40, 0x33a40,
1579 		0x33a48, 0x33a50,
1580 		0x33a5c, 0x33a64,
1581 		0x33a70, 0x33ab8,
1582 		0x33ac0, 0x33ae4,
1583 		0x33af8, 0x33b10,
1584 		0x33b28, 0x33b28,
1585 		0x33b3c, 0x33b50,
1586 		0x33bf0, 0x33c10,
1587 		0x33c28, 0x33c28,
1588 		0x33c3c, 0x33c50,
1589 		0x33cf0, 0x33cfc,
1590 		0x34000, 0x34030,
1591 		0x34100, 0x34144,
1592 		0x34190, 0x341a0,
1593 		0x341a8, 0x341b8,
1594 		0x341c4, 0x341c8,
1595 		0x341d0, 0x341d0,
1596 		0x34200, 0x34318,
1597 		0x34400, 0x344b4,
1598 		0x344c0, 0x3452c,
1599 		0x34540, 0x3461c,
1600 		0x34800, 0x34828,
1601 		0x34834, 0x34834,
1602 		0x348c0, 0x34908,
1603 		0x34910, 0x349ac,
1604 		0x34a00, 0x34a14,
1605 		0x34a1c, 0x34a2c,
1606 		0x34a44, 0x34a50,
1607 		0x34a74, 0x34a74,
1608 		0x34a7c, 0x34afc,
1609 		0x34b08, 0x34c24,
1610 		0x34d00, 0x34d00,
1611 		0x34d08, 0x34d14,
1612 		0x34d1c, 0x34d20,
1613 		0x34d3c, 0x34d3c,
1614 		0x34d48, 0x34d50,
1615 		0x35200, 0x3520c,
1616 		0x35220, 0x35220,
1617 		0x35240, 0x35240,
1618 		0x35600, 0x3560c,
1619 		0x35a00, 0x35a1c,
1620 		0x35e00, 0x35e20,
1621 		0x35e38, 0x35e3c,
1622 		0x35e80, 0x35e80,
1623 		0x35e88, 0x35ea8,
1624 		0x35eb0, 0x35eb4,
1625 		0x35ec8, 0x35ed4,
1626 		0x35fb8, 0x36004,
1627 		0x36200, 0x36200,
1628 		0x36208, 0x36240,
1629 		0x36248, 0x36280,
1630 		0x36288, 0x362c0,
1631 		0x362c8, 0x362fc,
1632 		0x36600, 0x36630,
1633 		0x36a00, 0x36abc,
1634 		0x36b00, 0x36b10,
1635 		0x36b20, 0x36b30,
1636 		0x36b40, 0x36b50,
1637 		0x36b60, 0x36b70,
1638 		0x37000, 0x37028,
1639 		0x37030, 0x37048,
1640 		0x37060, 0x37068,
1641 		0x37070, 0x3709c,
1642 		0x370f0, 0x37128,
1643 		0x37130, 0x37148,
1644 		0x37160, 0x37168,
1645 		0x37170, 0x3719c,
1646 		0x371f0, 0x37238,
1647 		0x37240, 0x37240,
1648 		0x37248, 0x37250,
1649 		0x3725c, 0x37264,
1650 		0x37270, 0x372b8,
1651 		0x372c0, 0x372e4,
1652 		0x372f8, 0x37338,
1653 		0x37340, 0x37340,
1654 		0x37348, 0x37350,
1655 		0x3735c, 0x37364,
1656 		0x37370, 0x373b8,
1657 		0x373c0, 0x373e4,
1658 		0x373f8, 0x37428,
1659 		0x37430, 0x37448,
1660 		0x37460, 0x37468,
1661 		0x37470, 0x3749c,
1662 		0x374f0, 0x37528,
1663 		0x37530, 0x37548,
1664 		0x37560, 0x37568,
1665 		0x37570, 0x3759c,
1666 		0x375f0, 0x37638,
1667 		0x37640, 0x37640,
1668 		0x37648, 0x37650,
1669 		0x3765c, 0x37664,
1670 		0x37670, 0x376b8,
1671 		0x376c0, 0x376e4,
1672 		0x376f8, 0x37738,
1673 		0x37740, 0x37740,
1674 		0x37748, 0x37750,
1675 		0x3775c, 0x37764,
1676 		0x37770, 0x377b8,
1677 		0x377c0, 0x377e4,
1678 		0x377f8, 0x377fc,
1679 		0x37814, 0x37814,
1680 		0x3782c, 0x3782c,
1681 		0x37880, 0x3788c,
1682 		0x378e8, 0x378ec,
1683 		0x37900, 0x37928,
1684 		0x37930, 0x37948,
1685 		0x37960, 0x37968,
1686 		0x37970, 0x3799c,
1687 		0x379f0, 0x37a38,
1688 		0x37a40, 0x37a40,
1689 		0x37a48, 0x37a50,
1690 		0x37a5c, 0x37a64,
1691 		0x37a70, 0x37ab8,
1692 		0x37ac0, 0x37ae4,
1693 		0x37af8, 0x37b10,
1694 		0x37b28, 0x37b28,
1695 		0x37b3c, 0x37b50,
1696 		0x37bf0, 0x37c10,
1697 		0x37c28, 0x37c28,
1698 		0x37c3c, 0x37c50,
1699 		0x37cf0, 0x37cfc,
1700 		0x38000, 0x38030,
1701 		0x38100, 0x38144,
1702 		0x38190, 0x381a0,
1703 		0x381a8, 0x381b8,
1704 		0x381c4, 0x381c8,
1705 		0x381d0, 0x381d0,
1706 		0x38200, 0x38318,
1707 		0x38400, 0x384b4,
1708 		0x384c0, 0x3852c,
1709 		0x38540, 0x3861c,
1710 		0x38800, 0x38828,
1711 		0x38834, 0x38834,
1712 		0x388c0, 0x38908,
1713 		0x38910, 0x389ac,
1714 		0x38a00, 0x38a14,
1715 		0x38a1c, 0x38a2c,
1716 		0x38a44, 0x38a50,
1717 		0x38a74, 0x38a74,
1718 		0x38a7c, 0x38afc,
1719 		0x38b08, 0x38c24,
1720 		0x38d00, 0x38d00,
1721 		0x38d08, 0x38d14,
1722 		0x38d1c, 0x38d20,
1723 		0x38d3c, 0x38d3c,
1724 		0x38d48, 0x38d50,
1725 		0x39200, 0x3920c,
1726 		0x39220, 0x39220,
1727 		0x39240, 0x39240,
1728 		0x39600, 0x3960c,
1729 		0x39a00, 0x39a1c,
1730 		0x39e00, 0x39e20,
1731 		0x39e38, 0x39e3c,
1732 		0x39e80, 0x39e80,
1733 		0x39e88, 0x39ea8,
1734 		0x39eb0, 0x39eb4,
1735 		0x39ec8, 0x39ed4,
1736 		0x39fb8, 0x3a004,
1737 		0x3a200, 0x3a200,
1738 		0x3a208, 0x3a240,
1739 		0x3a248, 0x3a280,
1740 		0x3a288, 0x3a2c0,
1741 		0x3a2c8, 0x3a2fc,
1742 		0x3a600, 0x3a630,
1743 		0x3aa00, 0x3aabc,
1744 		0x3ab00, 0x3ab10,
1745 		0x3ab20, 0x3ab30,
1746 		0x3ab40, 0x3ab50,
1747 		0x3ab60, 0x3ab70,
1748 		0x3b000, 0x3b028,
1749 		0x3b030, 0x3b048,
1750 		0x3b060, 0x3b068,
1751 		0x3b070, 0x3b09c,
1752 		0x3b0f0, 0x3b128,
1753 		0x3b130, 0x3b148,
1754 		0x3b160, 0x3b168,
1755 		0x3b170, 0x3b19c,
1756 		0x3b1f0, 0x3b238,
1757 		0x3b240, 0x3b240,
1758 		0x3b248, 0x3b250,
1759 		0x3b25c, 0x3b264,
1760 		0x3b270, 0x3b2b8,
1761 		0x3b2c0, 0x3b2e4,
1762 		0x3b2f8, 0x3b338,
1763 		0x3b340, 0x3b340,
1764 		0x3b348, 0x3b350,
1765 		0x3b35c, 0x3b364,
1766 		0x3b370, 0x3b3b8,
1767 		0x3b3c0, 0x3b3e4,
1768 		0x3b3f8, 0x3b428,
1769 		0x3b430, 0x3b448,
1770 		0x3b460, 0x3b468,
1771 		0x3b470, 0x3b49c,
1772 		0x3b4f0, 0x3b528,
1773 		0x3b530, 0x3b548,
1774 		0x3b560, 0x3b568,
1775 		0x3b570, 0x3b59c,
1776 		0x3b5f0, 0x3b638,
1777 		0x3b640, 0x3b640,
1778 		0x3b648, 0x3b650,
1779 		0x3b65c, 0x3b664,
1780 		0x3b670, 0x3b6b8,
1781 		0x3b6c0, 0x3b6e4,
1782 		0x3b6f8, 0x3b738,
1783 		0x3b740, 0x3b740,
1784 		0x3b748, 0x3b750,
1785 		0x3b75c, 0x3b764,
1786 		0x3b770, 0x3b7b8,
1787 		0x3b7c0, 0x3b7e4,
1788 		0x3b7f8, 0x3b7fc,
1789 		0x3b814, 0x3b814,
1790 		0x3b82c, 0x3b82c,
1791 		0x3b880, 0x3b88c,
1792 		0x3b8e8, 0x3b8ec,
1793 		0x3b900, 0x3b928,
1794 		0x3b930, 0x3b948,
1795 		0x3b960, 0x3b968,
1796 		0x3b970, 0x3b99c,
1797 		0x3b9f0, 0x3ba38,
1798 		0x3ba40, 0x3ba40,
1799 		0x3ba48, 0x3ba50,
1800 		0x3ba5c, 0x3ba64,
1801 		0x3ba70, 0x3bab8,
1802 		0x3bac0, 0x3bae4,
1803 		0x3baf8, 0x3bb10,
1804 		0x3bb28, 0x3bb28,
1805 		0x3bb3c, 0x3bb50,
1806 		0x3bbf0, 0x3bc10,
1807 		0x3bc28, 0x3bc28,
1808 		0x3bc3c, 0x3bc50,
1809 		0x3bcf0, 0x3bcfc,
1810 		0x3c000, 0x3c030,
1811 		0x3c100, 0x3c144,
1812 		0x3c190, 0x3c1a0,
1813 		0x3c1a8, 0x3c1b8,
1814 		0x3c1c4, 0x3c1c8,
1815 		0x3c1d0, 0x3c1d0,
1816 		0x3c200, 0x3c318,
1817 		0x3c400, 0x3c4b4,
1818 		0x3c4c0, 0x3c52c,
1819 		0x3c540, 0x3c61c,
1820 		0x3c800, 0x3c828,
1821 		0x3c834, 0x3c834,
1822 		0x3c8c0, 0x3c908,
1823 		0x3c910, 0x3c9ac,
1824 		0x3ca00, 0x3ca14,
1825 		0x3ca1c, 0x3ca2c,
1826 		0x3ca44, 0x3ca50,
1827 		0x3ca74, 0x3ca74,
1828 		0x3ca7c, 0x3cafc,
1829 		0x3cb08, 0x3cc24,
1830 		0x3cd00, 0x3cd00,
1831 		0x3cd08, 0x3cd14,
1832 		0x3cd1c, 0x3cd20,
1833 		0x3cd3c, 0x3cd3c,
1834 		0x3cd48, 0x3cd50,
1835 		0x3d200, 0x3d20c,
1836 		0x3d220, 0x3d220,
1837 		0x3d240, 0x3d240,
1838 		0x3d600, 0x3d60c,
1839 		0x3da00, 0x3da1c,
1840 		0x3de00, 0x3de20,
1841 		0x3de38, 0x3de3c,
1842 		0x3de80, 0x3de80,
1843 		0x3de88, 0x3dea8,
1844 		0x3deb0, 0x3deb4,
1845 		0x3dec8, 0x3ded4,
1846 		0x3dfb8, 0x3e004,
1847 		0x3e200, 0x3e200,
1848 		0x3e208, 0x3e240,
1849 		0x3e248, 0x3e280,
1850 		0x3e288, 0x3e2c0,
1851 		0x3e2c8, 0x3e2fc,
1852 		0x3e600, 0x3e630,
1853 		0x3ea00, 0x3eabc,
1854 		0x3eb00, 0x3eb10,
1855 		0x3eb20, 0x3eb30,
1856 		0x3eb40, 0x3eb50,
1857 		0x3eb60, 0x3eb70,
1858 		0x3f000, 0x3f028,
1859 		0x3f030, 0x3f048,
1860 		0x3f060, 0x3f068,
1861 		0x3f070, 0x3f09c,
1862 		0x3f0f0, 0x3f128,
1863 		0x3f130, 0x3f148,
1864 		0x3f160, 0x3f168,
1865 		0x3f170, 0x3f19c,
1866 		0x3f1f0, 0x3f238,
1867 		0x3f240, 0x3f240,
1868 		0x3f248, 0x3f250,
1869 		0x3f25c, 0x3f264,
1870 		0x3f270, 0x3f2b8,
1871 		0x3f2c0, 0x3f2e4,
1872 		0x3f2f8, 0x3f338,
1873 		0x3f340, 0x3f340,
1874 		0x3f348, 0x3f350,
1875 		0x3f35c, 0x3f364,
1876 		0x3f370, 0x3f3b8,
1877 		0x3f3c0, 0x3f3e4,
1878 		0x3f3f8, 0x3f428,
1879 		0x3f430, 0x3f448,
1880 		0x3f460, 0x3f468,
1881 		0x3f470, 0x3f49c,
1882 		0x3f4f0, 0x3f528,
1883 		0x3f530, 0x3f548,
1884 		0x3f560, 0x3f568,
1885 		0x3f570, 0x3f59c,
1886 		0x3f5f0, 0x3f638,
1887 		0x3f640, 0x3f640,
1888 		0x3f648, 0x3f650,
1889 		0x3f65c, 0x3f664,
1890 		0x3f670, 0x3f6b8,
1891 		0x3f6c0, 0x3f6e4,
1892 		0x3f6f8, 0x3f738,
1893 		0x3f740, 0x3f740,
1894 		0x3f748, 0x3f750,
1895 		0x3f75c, 0x3f764,
1896 		0x3f770, 0x3f7b8,
1897 		0x3f7c0, 0x3f7e4,
1898 		0x3f7f8, 0x3f7fc,
1899 		0x3f814, 0x3f814,
1900 		0x3f82c, 0x3f82c,
1901 		0x3f880, 0x3f88c,
1902 		0x3f8e8, 0x3f8ec,
1903 		0x3f900, 0x3f928,
1904 		0x3f930, 0x3f948,
1905 		0x3f960, 0x3f968,
1906 		0x3f970, 0x3f99c,
1907 		0x3f9f0, 0x3fa38,
1908 		0x3fa40, 0x3fa40,
1909 		0x3fa48, 0x3fa50,
1910 		0x3fa5c, 0x3fa64,
1911 		0x3fa70, 0x3fab8,
1912 		0x3fac0, 0x3fae4,
1913 		0x3faf8, 0x3fb10,
1914 		0x3fb28, 0x3fb28,
1915 		0x3fb3c, 0x3fb50,
1916 		0x3fbf0, 0x3fc10,
1917 		0x3fc28, 0x3fc28,
1918 		0x3fc3c, 0x3fc50,
1919 		0x3fcf0, 0x3fcfc,
1920 		0x40000, 0x4000c,
1921 		0x40040, 0x40050,
1922 		0x40060, 0x40068,
1923 		0x4007c, 0x4008c,
1924 		0x40094, 0x400b0,
1925 		0x400c0, 0x40144,
1926 		0x40180, 0x4018c,
1927 		0x40200, 0x40254,
1928 		0x40260, 0x40264,
1929 		0x40270, 0x40288,
1930 		0x40290, 0x40298,
1931 		0x402ac, 0x402c8,
1932 		0x402d0, 0x402e0,
1933 		0x402f0, 0x402f0,
1934 		0x40300, 0x4033c,
1935 		0x403f8, 0x403fc,
1936 		0x41304, 0x413c4,
1937 		0x41400, 0x4140c,
1938 		0x41414, 0x4141c,
1939 		0x41480, 0x414d0,
1940 		0x44000, 0x44054,
1941 		0x4405c, 0x44078,
1942 		0x440c0, 0x44174,
1943 		0x44180, 0x441ac,
1944 		0x441b4, 0x441b8,
1945 		0x441c0, 0x44254,
1946 		0x4425c, 0x44278,
1947 		0x442c0, 0x44374,
1948 		0x44380, 0x443ac,
1949 		0x443b4, 0x443b8,
1950 		0x443c0, 0x44454,
1951 		0x4445c, 0x44478,
1952 		0x444c0, 0x44574,
1953 		0x44580, 0x445ac,
1954 		0x445b4, 0x445b8,
1955 		0x445c0, 0x44654,
1956 		0x4465c, 0x44678,
1957 		0x446c0, 0x44774,
1958 		0x44780, 0x447ac,
1959 		0x447b4, 0x447b8,
1960 		0x447c0, 0x44854,
1961 		0x4485c, 0x44878,
1962 		0x448c0, 0x44974,
1963 		0x44980, 0x449ac,
1964 		0x449b4, 0x449b8,
1965 		0x449c0, 0x449fc,
1966 		0x45000, 0x45004,
1967 		0x45010, 0x45030,
1968 		0x45040, 0x45060,
1969 		0x45068, 0x45068,
1970 		0x45080, 0x45084,
1971 		0x450a0, 0x450b0,
1972 		0x45200, 0x45204,
1973 		0x45210, 0x45230,
1974 		0x45240, 0x45260,
1975 		0x45268, 0x45268,
1976 		0x45280, 0x45284,
1977 		0x452a0, 0x452b0,
1978 		0x460c0, 0x460e4,
1979 		0x47000, 0x4703c,
1980 		0x47044, 0x4708c,
1981 		0x47200, 0x47250,
1982 		0x47400, 0x47408,
1983 		0x47414, 0x47420,
1984 		0x47600, 0x47618,
1985 		0x47800, 0x47814,
1986 		0x48000, 0x4800c,
1987 		0x48040, 0x48050,
1988 		0x48060, 0x48068,
1989 		0x4807c, 0x4808c,
1990 		0x48094, 0x480b0,
1991 		0x480c0, 0x48144,
1992 		0x48180, 0x4818c,
1993 		0x48200, 0x48254,
1994 		0x48260, 0x48264,
1995 		0x48270, 0x48288,
1996 		0x48290, 0x48298,
1997 		0x482ac, 0x482c8,
1998 		0x482d0, 0x482e0,
1999 		0x482f0, 0x482f0,
2000 		0x48300, 0x4833c,
2001 		0x483f8, 0x483fc,
2002 		0x49304, 0x493c4,
2003 		0x49400, 0x4940c,
2004 		0x49414, 0x4941c,
2005 		0x49480, 0x494d0,
2006 		0x4c000, 0x4c054,
2007 		0x4c05c, 0x4c078,
2008 		0x4c0c0, 0x4c174,
2009 		0x4c180, 0x4c1ac,
2010 		0x4c1b4, 0x4c1b8,
2011 		0x4c1c0, 0x4c254,
2012 		0x4c25c, 0x4c278,
2013 		0x4c2c0, 0x4c374,
2014 		0x4c380, 0x4c3ac,
2015 		0x4c3b4, 0x4c3b8,
2016 		0x4c3c0, 0x4c454,
2017 		0x4c45c, 0x4c478,
2018 		0x4c4c0, 0x4c574,
2019 		0x4c580, 0x4c5ac,
2020 		0x4c5b4, 0x4c5b8,
2021 		0x4c5c0, 0x4c654,
2022 		0x4c65c, 0x4c678,
2023 		0x4c6c0, 0x4c774,
2024 		0x4c780, 0x4c7ac,
2025 		0x4c7b4, 0x4c7b8,
2026 		0x4c7c0, 0x4c854,
2027 		0x4c85c, 0x4c878,
2028 		0x4c8c0, 0x4c974,
2029 		0x4c980, 0x4c9ac,
2030 		0x4c9b4, 0x4c9b8,
2031 		0x4c9c0, 0x4c9fc,
2032 		0x4d000, 0x4d004,
2033 		0x4d010, 0x4d030,
2034 		0x4d040, 0x4d060,
2035 		0x4d068, 0x4d068,
2036 		0x4d080, 0x4d084,
2037 		0x4d0a0, 0x4d0b0,
2038 		0x4d200, 0x4d204,
2039 		0x4d210, 0x4d230,
2040 		0x4d240, 0x4d260,
2041 		0x4d268, 0x4d268,
2042 		0x4d280, 0x4d284,
2043 		0x4d2a0, 0x4d2b0,
2044 		0x4e0c0, 0x4e0e4,
2045 		0x4f000, 0x4f03c,
2046 		0x4f044, 0x4f08c,
2047 		0x4f200, 0x4f250,
2048 		0x4f400, 0x4f408,
2049 		0x4f414, 0x4f420,
2050 		0x4f600, 0x4f618,
2051 		0x4f800, 0x4f814,
2052 		0x50000, 0x50084,
2053 		0x50090, 0x500cc,
2054 		0x50400, 0x50400,
2055 		0x50800, 0x50884,
2056 		0x50890, 0x508cc,
2057 		0x50c00, 0x50c00,
2058 		0x51000, 0x5101c,
2059 		0x51300, 0x51308,
2060 	};
2061 
2062 	static const unsigned int t5vf_reg_ranges[] = {
2063 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2064 		VF_MPS_REG(A_MPS_VF_CTL),
2065 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2066 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2067 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2068 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2069 		FW_T4VF_MBDATA_BASE_ADDR,
2070 		FW_T4VF_MBDATA_BASE_ADDR +
2071 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2072 	};
2073 
2074 	static const unsigned int t6_reg_ranges[] = {
2075 		0x1008, 0x101c,
2076 		0x1024, 0x10a8,
2077 		0x10b4, 0x10f8,
2078 		0x1100, 0x1114,
2079 		0x111c, 0x112c,
2080 		0x1138, 0x113c,
2081 		0x1144, 0x114c,
2082 		0x1180, 0x1184,
2083 		0x1190, 0x1194,
2084 		0x11a0, 0x11a4,
2085 		0x11b0, 0x11c4,
2086 		0x11fc, 0x123c,
2087 		0x1254, 0x1274,
2088 		0x1280, 0x133c,
2089 		0x1800, 0x18fc,
2090 		0x3000, 0x302c,
2091 		0x3060, 0x30b0,
2092 		0x30b8, 0x30d8,
2093 		0x30e0, 0x30fc,
2094 		0x3140, 0x357c,
2095 		0x35a8, 0x35cc,
2096 		0x35ec, 0x35ec,
2097 		0x3600, 0x5624,
2098 		0x56cc, 0x56ec,
2099 		0x56f4, 0x5720,
2100 		0x5728, 0x575c,
2101 		0x580c, 0x5814,
2102 		0x5890, 0x589c,
2103 		0x58a4, 0x58ac,
2104 		0x58b8, 0x58bc,
2105 		0x5940, 0x595c,
2106 		0x5980, 0x598c,
2107 		0x59b0, 0x59c8,
2108 		0x59d0, 0x59dc,
2109 		0x59fc, 0x5a18,
2110 		0x5a60, 0x5a6c,
2111 		0x5a80, 0x5a8c,
2112 		0x5a94, 0x5a9c,
2113 		0x5b94, 0x5bfc,
2114 		0x5c10, 0x5e48,
2115 		0x5e50, 0x5e94,
2116 		0x5ea0, 0x5eb0,
2117 		0x5ec0, 0x5ec0,
2118 		0x5ec8, 0x5ed0,
2119 		0x5ee0, 0x5ee0,
2120 		0x5ef0, 0x5ef0,
2121 		0x5f00, 0x5f00,
2122 		0x6000, 0x6020,
2123 		0x6028, 0x6040,
2124 		0x6058, 0x609c,
2125 		0x60a8, 0x619c,
2126 		0x7700, 0x7798,
2127 		0x77c0, 0x7880,
2128 		0x78cc, 0x78fc,
2129 		0x7b00, 0x7b58,
2130 		0x7b60, 0x7b84,
2131 		0x7b8c, 0x7c54,
2132 		0x7d00, 0x7d38,
2133 		0x7d40, 0x7d84,
2134 		0x7d8c, 0x7ddc,
2135 		0x7de4, 0x7e04,
2136 		0x7e10, 0x7e1c,
2137 		0x7e24, 0x7e38,
2138 		0x7e40, 0x7e44,
2139 		0x7e4c, 0x7e78,
2140 		0x7e80, 0x7edc,
2141 		0x7ee8, 0x7efc,
2142 		0x8dc0, 0x8de0,
2143 		0x8df8, 0x8e04,
2144 		0x8e10, 0x8e84,
2145 		0x8ea0, 0x8f88,
2146 		0x8fb8, 0x9058,
2147 		0x9060, 0x9060,
2148 		0x9068, 0x90f8,
2149 		0x9100, 0x9124,
2150 		0x9400, 0x9470,
2151 		0x9600, 0x9600,
2152 		0x9608, 0x9638,
2153 		0x9640, 0x9704,
2154 		0x9710, 0x971c,
2155 		0x9800, 0x9808,
2156 		0x9810, 0x9864,
2157 		0x9c00, 0x9c6c,
2158 		0x9c80, 0x9cec,
2159 		0x9d00, 0x9d6c,
2160 		0x9d80, 0x9dec,
2161 		0x9e00, 0x9e6c,
2162 		0x9e80, 0x9eec,
2163 		0x9f00, 0x9f6c,
2164 		0x9f80, 0xa020,
2165 		0xd000, 0xd03c,
2166 		0xd100, 0xd118,
2167 		0xd200, 0xd214,
2168 		0xd220, 0xd234,
2169 		0xd240, 0xd254,
2170 		0xd260, 0xd274,
2171 		0xd280, 0xd294,
2172 		0xd2a0, 0xd2b4,
2173 		0xd2c0, 0xd2d4,
2174 		0xd2e0, 0xd2f4,
2175 		0xd300, 0xd31c,
2176 		0xdfc0, 0xdfe0,
2177 		0xe000, 0xf008,
2178 		0xf010, 0xf018,
2179 		0xf020, 0xf028,
2180 		0x11000, 0x11014,
2181 		0x11048, 0x1106c,
2182 		0x11074, 0x11088,
2183 		0x11098, 0x11120,
2184 		0x1112c, 0x1117c,
2185 		0x11190, 0x112e0,
2186 		0x11300, 0x1130c,
2187 		0x12000, 0x1206c,
2188 		0x19040, 0x1906c,
2189 		0x19078, 0x19080,
2190 		0x1908c, 0x190e8,
2191 		0x190f0, 0x190f8,
2192 		0x19100, 0x19110,
2193 		0x19120, 0x19124,
2194 		0x19150, 0x19194,
2195 		0x1919c, 0x191b0,
2196 		0x191d0, 0x191e8,
2197 		0x19238, 0x19290,
2198 		0x192a4, 0x192b0,
2199 		0x19348, 0x1934c,
2200 		0x193f8, 0x19418,
2201 		0x19420, 0x19428,
2202 		0x19430, 0x19444,
2203 		0x1944c, 0x1946c,
2204 		0x19474, 0x19474,
2205 		0x19490, 0x194cc,
2206 		0x194f0, 0x194f8,
2207 		0x19c00, 0x19c48,
2208 		0x19c50, 0x19c80,
2209 		0x19c94, 0x19c98,
2210 		0x19ca0, 0x19cbc,
2211 		0x19ce4, 0x19ce4,
2212 		0x19cf0, 0x19cf8,
2213 		0x19d00, 0x19d28,
2214 		0x19d50, 0x19d78,
2215 		0x19d94, 0x19d98,
2216 		0x19da0, 0x19de0,
2217 		0x19df0, 0x19e10,
2218 		0x19e50, 0x19e6c,
2219 		0x19ea0, 0x19ebc,
2220 		0x19ec4, 0x19ef4,
2221 		0x19f04, 0x19f2c,
2222 		0x19f34, 0x19f34,
2223 		0x19f40, 0x19f50,
2224 		0x19f90, 0x19fac,
2225 		0x19fc4, 0x19fc8,
2226 		0x19fd0, 0x19fe4,
2227 		0x1a000, 0x1a004,
2228 		0x1a010, 0x1a06c,
2229 		0x1a0b0, 0x1a0e4,
2230 		0x1a0ec, 0x1a0f8,
2231 		0x1a100, 0x1a108,
2232 		0x1a114, 0x1a130,
2233 		0x1a138, 0x1a1c4,
2234 		0x1a1fc, 0x1a1fc,
2235 		0x1e008, 0x1e00c,
2236 		0x1e040, 0x1e044,
2237 		0x1e04c, 0x1e04c,
2238 		0x1e284, 0x1e290,
2239 		0x1e2c0, 0x1e2c0,
2240 		0x1e2e0, 0x1e2e0,
2241 		0x1e300, 0x1e384,
2242 		0x1e3c0, 0x1e3c8,
2243 		0x1e408, 0x1e40c,
2244 		0x1e440, 0x1e444,
2245 		0x1e44c, 0x1e44c,
2246 		0x1e684, 0x1e690,
2247 		0x1e6c0, 0x1e6c0,
2248 		0x1e6e0, 0x1e6e0,
2249 		0x1e700, 0x1e784,
2250 		0x1e7c0, 0x1e7c8,
2251 		0x1e808, 0x1e80c,
2252 		0x1e840, 0x1e844,
2253 		0x1e84c, 0x1e84c,
2254 		0x1ea84, 0x1ea90,
2255 		0x1eac0, 0x1eac0,
2256 		0x1eae0, 0x1eae0,
2257 		0x1eb00, 0x1eb84,
2258 		0x1ebc0, 0x1ebc8,
2259 		0x1ec08, 0x1ec0c,
2260 		0x1ec40, 0x1ec44,
2261 		0x1ec4c, 0x1ec4c,
2262 		0x1ee84, 0x1ee90,
2263 		0x1eec0, 0x1eec0,
2264 		0x1eee0, 0x1eee0,
2265 		0x1ef00, 0x1ef84,
2266 		0x1efc0, 0x1efc8,
2267 		0x1f008, 0x1f00c,
2268 		0x1f040, 0x1f044,
2269 		0x1f04c, 0x1f04c,
2270 		0x1f284, 0x1f290,
2271 		0x1f2c0, 0x1f2c0,
2272 		0x1f2e0, 0x1f2e0,
2273 		0x1f300, 0x1f384,
2274 		0x1f3c0, 0x1f3c8,
2275 		0x1f408, 0x1f40c,
2276 		0x1f440, 0x1f444,
2277 		0x1f44c, 0x1f44c,
2278 		0x1f684, 0x1f690,
2279 		0x1f6c0, 0x1f6c0,
2280 		0x1f6e0, 0x1f6e0,
2281 		0x1f700, 0x1f784,
2282 		0x1f7c0, 0x1f7c8,
2283 		0x1f808, 0x1f80c,
2284 		0x1f840, 0x1f844,
2285 		0x1f84c, 0x1f84c,
2286 		0x1fa84, 0x1fa90,
2287 		0x1fac0, 0x1fac0,
2288 		0x1fae0, 0x1fae0,
2289 		0x1fb00, 0x1fb84,
2290 		0x1fbc0, 0x1fbc8,
2291 		0x1fc08, 0x1fc0c,
2292 		0x1fc40, 0x1fc44,
2293 		0x1fc4c, 0x1fc4c,
2294 		0x1fe84, 0x1fe90,
2295 		0x1fec0, 0x1fec0,
2296 		0x1fee0, 0x1fee0,
2297 		0x1ff00, 0x1ff84,
2298 		0x1ffc0, 0x1ffc8,
2299 		0x30000, 0x30030,
2300 		0x30100, 0x30168,
2301 		0x30190, 0x301a0,
2302 		0x301a8, 0x301b8,
2303 		0x301c4, 0x301c8,
2304 		0x301d0, 0x301d0,
2305 		0x30200, 0x30320,
2306 		0x30400, 0x304b4,
2307 		0x304c0, 0x3052c,
2308 		0x30540, 0x3061c,
2309 		0x30800, 0x308a0,
2310 		0x308c0, 0x30908,
2311 		0x30910, 0x309b8,
2312 		0x30a00, 0x30a04,
2313 		0x30a0c, 0x30a14,
2314 		0x30a1c, 0x30a2c,
2315 		0x30a44, 0x30a50,
2316 		0x30a74, 0x30a74,
2317 		0x30a7c, 0x30afc,
2318 		0x30b08, 0x30c24,
2319 		0x30d00, 0x30d14,
2320 		0x30d1c, 0x30d3c,
2321 		0x30d44, 0x30d4c,
2322 		0x30d54, 0x30d74,
2323 		0x30d7c, 0x30d7c,
2324 		0x30de0, 0x30de0,
2325 		0x30e00, 0x30ed4,
2326 		0x30f00, 0x30fa4,
2327 		0x30fc0, 0x30fc4,
2328 		0x31000, 0x31004,
2329 		0x31080, 0x310fc,
2330 		0x31208, 0x31220,
2331 		0x3123c, 0x31254,
2332 		0x31300, 0x31300,
2333 		0x31308, 0x3131c,
2334 		0x31338, 0x3133c,
2335 		0x31380, 0x31380,
2336 		0x31388, 0x313a8,
2337 		0x313b4, 0x313b4,
2338 		0x31400, 0x31420,
2339 		0x31438, 0x3143c,
2340 		0x31480, 0x31480,
2341 		0x314a8, 0x314a8,
2342 		0x314b0, 0x314b4,
2343 		0x314c8, 0x314d4,
2344 		0x31a40, 0x31a4c,
2345 		0x31af0, 0x31b20,
2346 		0x31b38, 0x31b3c,
2347 		0x31b80, 0x31b80,
2348 		0x31ba8, 0x31ba8,
2349 		0x31bb0, 0x31bb4,
2350 		0x31bc8, 0x31bd4,
2351 		0x32140, 0x3218c,
2352 		0x321f0, 0x321f4,
2353 		0x32200, 0x32200,
2354 		0x32218, 0x32218,
2355 		0x32400, 0x32400,
2356 		0x32408, 0x3241c,
2357 		0x32618, 0x32620,
2358 		0x32664, 0x32664,
2359 		0x326a8, 0x326a8,
2360 		0x326ec, 0x326ec,
2361 		0x32a00, 0x32abc,
2362 		0x32b00, 0x32b18,
2363 		0x32b20, 0x32b38,
2364 		0x32b40, 0x32b58,
2365 		0x32b60, 0x32b78,
2366 		0x32c00, 0x32c00,
2367 		0x32c08, 0x32c3c,
2368 		0x33000, 0x3302c,
2369 		0x33034, 0x33050,
2370 		0x33058, 0x33058,
2371 		0x33060, 0x3308c,
2372 		0x3309c, 0x330ac,
2373 		0x330c0, 0x330c0,
2374 		0x330c8, 0x330d0,
2375 		0x330d8, 0x330e0,
2376 		0x330ec, 0x3312c,
2377 		0x33134, 0x33150,
2378 		0x33158, 0x33158,
2379 		0x33160, 0x3318c,
2380 		0x3319c, 0x331ac,
2381 		0x331c0, 0x331c0,
2382 		0x331c8, 0x331d0,
2383 		0x331d8, 0x331e0,
2384 		0x331ec, 0x33290,
2385 		0x33298, 0x332c4,
2386 		0x332e4, 0x33390,
2387 		0x33398, 0x333c4,
2388 		0x333e4, 0x3342c,
2389 		0x33434, 0x33450,
2390 		0x33458, 0x33458,
2391 		0x33460, 0x3348c,
2392 		0x3349c, 0x334ac,
2393 		0x334c0, 0x334c0,
2394 		0x334c8, 0x334d0,
2395 		0x334d8, 0x334e0,
2396 		0x334ec, 0x3352c,
2397 		0x33534, 0x33550,
2398 		0x33558, 0x33558,
2399 		0x33560, 0x3358c,
2400 		0x3359c, 0x335ac,
2401 		0x335c0, 0x335c0,
2402 		0x335c8, 0x335d0,
2403 		0x335d8, 0x335e0,
2404 		0x335ec, 0x33690,
2405 		0x33698, 0x336c4,
2406 		0x336e4, 0x33790,
2407 		0x33798, 0x337c4,
2408 		0x337e4, 0x337fc,
2409 		0x33814, 0x33814,
2410 		0x33854, 0x33868,
2411 		0x33880, 0x3388c,
2412 		0x338c0, 0x338d0,
2413 		0x338e8, 0x338ec,
2414 		0x33900, 0x3392c,
2415 		0x33934, 0x33950,
2416 		0x33958, 0x33958,
2417 		0x33960, 0x3398c,
2418 		0x3399c, 0x339ac,
2419 		0x339c0, 0x339c0,
2420 		0x339c8, 0x339d0,
2421 		0x339d8, 0x339e0,
2422 		0x339ec, 0x33a90,
2423 		0x33a98, 0x33ac4,
2424 		0x33ae4, 0x33b10,
2425 		0x33b24, 0x33b28,
2426 		0x33b38, 0x33b50,
2427 		0x33bf0, 0x33c10,
2428 		0x33c24, 0x33c28,
2429 		0x33c38, 0x33c50,
2430 		0x33cf0, 0x33cfc,
2431 		0x34000, 0x34030,
2432 		0x34100, 0x34168,
2433 		0x34190, 0x341a0,
2434 		0x341a8, 0x341b8,
2435 		0x341c4, 0x341c8,
2436 		0x341d0, 0x341d0,
2437 		0x34200, 0x34320,
2438 		0x34400, 0x344b4,
2439 		0x344c0, 0x3452c,
2440 		0x34540, 0x3461c,
2441 		0x34800, 0x348a0,
2442 		0x348c0, 0x34908,
2443 		0x34910, 0x349b8,
2444 		0x34a00, 0x34a04,
2445 		0x34a0c, 0x34a14,
2446 		0x34a1c, 0x34a2c,
2447 		0x34a44, 0x34a50,
2448 		0x34a74, 0x34a74,
2449 		0x34a7c, 0x34afc,
2450 		0x34b08, 0x34c24,
2451 		0x34d00, 0x34d14,
2452 		0x34d1c, 0x34d3c,
2453 		0x34d44, 0x34d4c,
2454 		0x34d54, 0x34d74,
2455 		0x34d7c, 0x34d7c,
2456 		0x34de0, 0x34de0,
2457 		0x34e00, 0x34ed4,
2458 		0x34f00, 0x34fa4,
2459 		0x34fc0, 0x34fc4,
2460 		0x35000, 0x35004,
2461 		0x35080, 0x350fc,
2462 		0x35208, 0x35220,
2463 		0x3523c, 0x35254,
2464 		0x35300, 0x35300,
2465 		0x35308, 0x3531c,
2466 		0x35338, 0x3533c,
2467 		0x35380, 0x35380,
2468 		0x35388, 0x353a8,
2469 		0x353b4, 0x353b4,
2470 		0x35400, 0x35420,
2471 		0x35438, 0x3543c,
2472 		0x35480, 0x35480,
2473 		0x354a8, 0x354a8,
2474 		0x354b0, 0x354b4,
2475 		0x354c8, 0x354d4,
2476 		0x35a40, 0x35a4c,
2477 		0x35af0, 0x35b20,
2478 		0x35b38, 0x35b3c,
2479 		0x35b80, 0x35b80,
2480 		0x35ba8, 0x35ba8,
2481 		0x35bb0, 0x35bb4,
2482 		0x35bc8, 0x35bd4,
2483 		0x36140, 0x3618c,
2484 		0x361f0, 0x361f4,
2485 		0x36200, 0x36200,
2486 		0x36218, 0x36218,
2487 		0x36400, 0x36400,
2488 		0x36408, 0x3641c,
2489 		0x36618, 0x36620,
2490 		0x36664, 0x36664,
2491 		0x366a8, 0x366a8,
2492 		0x366ec, 0x366ec,
2493 		0x36a00, 0x36abc,
2494 		0x36b00, 0x36b18,
2495 		0x36b20, 0x36b38,
2496 		0x36b40, 0x36b58,
2497 		0x36b60, 0x36b78,
2498 		0x36c00, 0x36c00,
2499 		0x36c08, 0x36c3c,
2500 		0x37000, 0x3702c,
2501 		0x37034, 0x37050,
2502 		0x37058, 0x37058,
2503 		0x37060, 0x3708c,
2504 		0x3709c, 0x370ac,
2505 		0x370c0, 0x370c0,
2506 		0x370c8, 0x370d0,
2507 		0x370d8, 0x370e0,
2508 		0x370ec, 0x3712c,
2509 		0x37134, 0x37150,
2510 		0x37158, 0x37158,
2511 		0x37160, 0x3718c,
2512 		0x3719c, 0x371ac,
2513 		0x371c0, 0x371c0,
2514 		0x371c8, 0x371d0,
2515 		0x371d8, 0x371e0,
2516 		0x371ec, 0x37290,
2517 		0x37298, 0x372c4,
2518 		0x372e4, 0x37390,
2519 		0x37398, 0x373c4,
2520 		0x373e4, 0x3742c,
2521 		0x37434, 0x37450,
2522 		0x37458, 0x37458,
2523 		0x37460, 0x3748c,
2524 		0x3749c, 0x374ac,
2525 		0x374c0, 0x374c0,
2526 		0x374c8, 0x374d0,
2527 		0x374d8, 0x374e0,
2528 		0x374ec, 0x3752c,
2529 		0x37534, 0x37550,
2530 		0x37558, 0x37558,
2531 		0x37560, 0x3758c,
2532 		0x3759c, 0x375ac,
2533 		0x375c0, 0x375c0,
2534 		0x375c8, 0x375d0,
2535 		0x375d8, 0x375e0,
2536 		0x375ec, 0x37690,
2537 		0x37698, 0x376c4,
2538 		0x376e4, 0x37790,
2539 		0x37798, 0x377c4,
2540 		0x377e4, 0x377fc,
2541 		0x37814, 0x37814,
2542 		0x37854, 0x37868,
2543 		0x37880, 0x3788c,
2544 		0x378c0, 0x378d0,
2545 		0x378e8, 0x378ec,
2546 		0x37900, 0x3792c,
2547 		0x37934, 0x37950,
2548 		0x37958, 0x37958,
2549 		0x37960, 0x3798c,
2550 		0x3799c, 0x379ac,
2551 		0x379c0, 0x379c0,
2552 		0x379c8, 0x379d0,
2553 		0x379d8, 0x379e0,
2554 		0x379ec, 0x37a90,
2555 		0x37a98, 0x37ac4,
2556 		0x37ae4, 0x37b10,
2557 		0x37b24, 0x37b28,
2558 		0x37b38, 0x37b50,
2559 		0x37bf0, 0x37c10,
2560 		0x37c24, 0x37c28,
2561 		0x37c38, 0x37c50,
2562 		0x37cf0, 0x37cfc,
2563 		0x40040, 0x40040,
2564 		0x40080, 0x40084,
2565 		0x40100, 0x40100,
2566 		0x40140, 0x401bc,
2567 		0x40200, 0x40214,
2568 		0x40228, 0x40228,
2569 		0x40240, 0x40258,
2570 		0x40280, 0x40280,
2571 		0x40304, 0x40304,
2572 		0x40330, 0x4033c,
2573 		0x41304, 0x413c8,
2574 		0x413d0, 0x413dc,
2575 		0x413f0, 0x413f0,
2576 		0x41400, 0x4140c,
2577 		0x41414, 0x4141c,
2578 		0x41480, 0x414d0,
2579 		0x44000, 0x4407c,
2580 		0x440c0, 0x441ac,
2581 		0x441b4, 0x4427c,
2582 		0x442c0, 0x443ac,
2583 		0x443b4, 0x4447c,
2584 		0x444c0, 0x445ac,
2585 		0x445b4, 0x4467c,
2586 		0x446c0, 0x447ac,
2587 		0x447b4, 0x4487c,
2588 		0x448c0, 0x449ac,
2589 		0x449b4, 0x44a7c,
2590 		0x44ac0, 0x44bac,
2591 		0x44bb4, 0x44c7c,
2592 		0x44cc0, 0x44dac,
2593 		0x44db4, 0x44e7c,
2594 		0x44ec0, 0x44fac,
2595 		0x44fb4, 0x4507c,
2596 		0x450c0, 0x451ac,
2597 		0x451b4, 0x451fc,
2598 		0x45800, 0x45804,
2599 		0x45810, 0x45830,
2600 		0x45840, 0x45860,
2601 		0x45868, 0x45868,
2602 		0x45880, 0x45884,
2603 		0x458a0, 0x458b0,
2604 		0x45a00, 0x45a04,
2605 		0x45a10, 0x45a30,
2606 		0x45a40, 0x45a60,
2607 		0x45a68, 0x45a68,
2608 		0x45a80, 0x45a84,
2609 		0x45aa0, 0x45ab0,
2610 		0x460c0, 0x460e4,
2611 		0x47000, 0x4703c,
2612 		0x47044, 0x4708c,
2613 		0x47200, 0x47250,
2614 		0x47400, 0x47408,
2615 		0x47414, 0x47420,
2616 		0x47600, 0x47618,
2617 		0x47800, 0x47814,
2618 		0x47820, 0x4782c,
2619 		0x50000, 0x50084,
2620 		0x50090, 0x500cc,
2621 		0x50300, 0x50384,
2622 		0x50400, 0x50400,
2623 		0x50800, 0x50884,
2624 		0x50890, 0x508cc,
2625 		0x50b00, 0x50b84,
2626 		0x50c00, 0x50c00,
2627 		0x51000, 0x51020,
2628 		0x51028, 0x510b0,
2629 		0x51300, 0x51324,
2630 	};
2631 
2632 	static const unsigned int t6vf_reg_ranges[] = {
2633 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2634 		VF_MPS_REG(A_MPS_VF_CTL),
2635 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2636 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2637 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2638 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2639 		FW_T6VF_MBDATA_BASE_ADDR,
2640 		FW_T6VF_MBDATA_BASE_ADDR +
2641 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2642 	};
2643 
2644 	u32 *buf_end = (u32 *)(buf + buf_size);
2645 	const unsigned int *reg_ranges;
2646 	int reg_ranges_size, range;
2647 	unsigned int chip_version = chip_id(adap);
2648 
2649 	/*
2650 	 * Select the right set of register ranges to dump depending on the
2651 	 * adapter chip type.
2652 	 */
2653 	switch (chip_version) {
2654 	case CHELSIO_T4:
2655 		if (adap->flags & IS_VF) {
2656 			reg_ranges = t4vf_reg_ranges;
2657 			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2658 		} else {
2659 			reg_ranges = t4_reg_ranges;
2660 			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2661 		}
2662 		break;
2663 
2664 	case CHELSIO_T5:
2665 		if (adap->flags & IS_VF) {
2666 			reg_ranges = t5vf_reg_ranges;
2667 			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2668 		} else {
2669 			reg_ranges = t5_reg_ranges;
2670 			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2671 		}
2672 		break;
2673 
2674 	case CHELSIO_T6:
2675 		if (adap->flags & IS_VF) {
2676 			reg_ranges = t6vf_reg_ranges;
2677 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2678 		} else {
2679 			reg_ranges = t6_reg_ranges;
2680 			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2681 		}
2682 		break;
2683 
2684 	default:
2685 		CH_ERR(adap,
2686 			"Unsupported chip version %d\n", chip_version);
2687 		return;
2688 	}
2689 
2690 	/*
2691 	 * Clear the register buffer and insert the appropriate register
2692 	 * values selected by the above register ranges.
2693 	 */
2694 	memset(buf, 0, buf_size);
2695 	for (range = 0; range < reg_ranges_size; range += 2) {
2696 		unsigned int reg = reg_ranges[range];
2697 		unsigned int last_reg = reg_ranges[range + 1];
2698 		u32 *bufp = (u32 *)(buf + reg);
2699 
2700 		/*
2701 		 * Iterate across the register range filling in the register
2702 		 * buffer but don't write past the end of the register buffer.
2703 		 */
2704 		while (reg <= last_reg && bufp < buf_end) {
2705 			*bufp++ = t4_read_reg(adap, reg);
2706 			reg += sizeof(u32);
2707 		}
2708 	}
2709 }
2710 
2711 /*
2712  * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2713  * header followed by one or more VPD-R sections, each with its own header.
2714  */
2715 struct t4_vpd_hdr {
2716 	u8  id_tag;
2717 	u8  id_len[2];
2718 	u8  id_data[ID_LEN];
2719 };
2720 
2721 struct t4_vpdr_hdr {
2722 	u8  vpdr_tag;
2723 	u8  vpdr_len[2];
2724 };
2725 
2726 /*
2727  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2728  */
2729 #define EEPROM_DELAY		10		/* 10us per poll spin */
2730 #define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2731 
2732 #define EEPROM_STAT_ADDR	0x7bfc
2733 #define VPD_SIZE		0x800
2734 #define VPD_BASE		0x400
2735 #define VPD_BASE_OLD		0
2736 #define VPD_LEN			1024
2737 #define VPD_INFO_FLD_HDR_SIZE	3
2738 #define CHELSIO_VPD_UNIQUE_ID	0x82
2739 
2740 /*
2741  * Small utility function to wait till any outstanding VPD Access is complete.
2742  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2743  * VPD Access in flight.  This allows us to handle the problem of having a
2744  * previous VPD Access time out and prevent an attempt to inject a new VPD
2745  * Request before any in-flight VPD reguest has completed.
2746  */
2747 static int t4_seeprom_wait(struct adapter *adapter)
2748 {
2749 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2750 	int max_poll;
2751 
2752 	/*
2753 	 * If no VPD Access is in flight, we can just return success right
2754 	 * away.
2755 	 */
2756 	if (!adapter->vpd_busy)
2757 		return 0;
2758 
2759 	/*
2760 	 * Poll the VPD Capability Address/Flag register waiting for it
2761 	 * to indicate that the operation is complete.
2762 	 */
2763 	max_poll = EEPROM_MAX_POLL;
2764 	do {
2765 		u16 val;
2766 
2767 		udelay(EEPROM_DELAY);
2768 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2769 
2770 		/*
2771 		 * If the operation is complete, mark the VPD as no longer
2772 		 * busy and return success.
2773 		 */
2774 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2775 			adapter->vpd_busy = 0;
2776 			return 0;
2777 		}
2778 	} while (--max_poll);
2779 
2780 	/*
2781 	 * Failure!  Note that we leave the VPD Busy status set in order to
2782 	 * avoid pushing a new VPD Access request into the VPD Capability till
2783 	 * the current operation eventually succeeds.  It's a bug to issue a
2784 	 * new request when an existing request is in flight and will result
2785 	 * in corrupt hardware state.
2786 	 */
2787 	return -ETIMEDOUT;
2788 }
2789 
2790 /**
2791  *	t4_seeprom_read - read a serial EEPROM location
2792  *	@adapter: adapter to read
2793  *	@addr: EEPROM virtual address
2794  *	@data: where to store the read data
2795  *
2796  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2797  *	VPD capability.  Note that this function must be called with a virtual
2798  *	address.
2799  */
2800 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2801 {
2802 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2803 	int ret;
2804 
2805 	/*
2806 	 * VPD Accesses must alway be 4-byte aligned!
2807 	 */
2808 	if (addr >= EEPROMVSIZE || (addr & 3))
2809 		return -EINVAL;
2810 
2811 	/*
2812 	 * Wait for any previous operation which may still be in flight to
2813 	 * complete.
2814 	 */
2815 	ret = t4_seeprom_wait(adapter);
2816 	if (ret) {
2817 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2818 		return ret;
2819 	}
2820 
2821 	/*
2822 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2823 	 * for our request to complete.  If it doesn't complete, note the
2824 	 * error and return it to our caller.  Note that we do not reset the
2825 	 * VPD Busy status!
2826 	 */
2827 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2828 	adapter->vpd_busy = 1;
2829 	adapter->vpd_flag = PCI_VPD_ADDR_F;
2830 	ret = t4_seeprom_wait(adapter);
2831 	if (ret) {
2832 		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2833 		return ret;
2834 	}
2835 
2836 	/*
2837 	 * Grab the returned data, swizzle it into our endianness and
2838 	 * return success.
2839 	 */
2840 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2841 	*data = le32_to_cpu(*data);
2842 	return 0;
2843 }
2844 
2845 /**
2846  *	t4_seeprom_write - write a serial EEPROM location
2847  *	@adapter: adapter to write
2848  *	@addr: virtual EEPROM address
2849  *	@data: value to write
2850  *
2851  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2852  *	VPD capability.  Note that this function must be called with a virtual
2853  *	address.
2854  */
2855 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2856 {
2857 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2858 	int ret;
2859 	u32 stats_reg;
2860 	int max_poll;
2861 
2862 	/*
2863 	 * VPD Accesses must alway be 4-byte aligned!
2864 	 */
2865 	if (addr >= EEPROMVSIZE || (addr & 3))
2866 		return -EINVAL;
2867 
2868 	/*
2869 	 * Wait for any previous operation which may still be in flight to
2870 	 * complete.
2871 	 */
2872 	ret = t4_seeprom_wait(adapter);
2873 	if (ret) {
2874 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2875 		return ret;
2876 	}
2877 
2878 	/*
2879 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2880 	 * for our request to complete.  If it doesn't complete, note the
2881 	 * error and return it to our caller.  Note that we do not reset the
2882 	 * VPD Busy status!
2883 	 */
2884 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2885 				 cpu_to_le32(data));
2886 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2887 				 (u16)addr | PCI_VPD_ADDR_F);
2888 	adapter->vpd_busy = 1;
2889 	adapter->vpd_flag = 0;
2890 	ret = t4_seeprom_wait(adapter);
2891 	if (ret) {
2892 		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2893 		return ret;
2894 	}
2895 
2896 	/*
2897 	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2898 	 * request to complete. If it doesn't complete, return error.
2899 	 */
2900 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2901 	max_poll = EEPROM_MAX_POLL;
2902 	do {
2903 		udelay(EEPROM_DELAY);
2904 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2905 	} while ((stats_reg & 0x1) && --max_poll);
2906 	if (!max_poll)
2907 		return -ETIMEDOUT;
2908 
2909 	/* Return success! */
2910 	return 0;
2911 }
2912 
2913 /**
2914  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2915  *	@phys_addr: the physical EEPROM address
2916  *	@fn: the PCI function number
2917  *	@sz: size of function-specific area
2918  *
2919  *	Translate a physical EEPROM address to virtual.  The first 1K is
2920  *	accessed through virtual addresses starting at 31K, the rest is
2921  *	accessed through virtual addresses starting at 0.
2922  *
2923  *	The mapping is as follows:
2924  *	[0..1K) -> [31K..32K)
2925  *	[1K..1K+A) -> [ES-A..ES)
2926  *	[1K+A..ES) -> [0..ES-A-1K)
2927  *
2928  *	where A = @fn * @sz, and ES = EEPROM size.
2929  */
2930 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2931 {
2932 	fn *= sz;
2933 	if (phys_addr < 1024)
2934 		return phys_addr + (31 << 10);
2935 	if (phys_addr < 1024 + fn)
2936 		return EEPROMSIZE - fn + phys_addr - 1024;
2937 	if (phys_addr < EEPROMSIZE)
2938 		return phys_addr - 1024 - fn;
2939 	return -EINVAL;
2940 }
2941 
2942 /**
2943  *	t4_seeprom_wp - enable/disable EEPROM write protection
2944  *	@adapter: the adapter
2945  *	@enable: whether to enable or disable write protection
2946  *
2947  *	Enables or disables write protection on the serial EEPROM.
2948  */
2949 int t4_seeprom_wp(struct adapter *adapter, int enable)
2950 {
2951 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2952 }
2953 
2954 /**
2955  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2956  *	@vpd: Pointer to buffered vpd data structure
2957  *	@kw: The keyword to search for
2958  *	@region: VPD region to search (starting from 0)
2959  *
2960  *	Returns the value of the information field keyword or
2961  *	-ENOENT otherwise.
2962  */
2963 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2964 {
2965 	int i, tag;
2966 	unsigned int offset, len;
2967 	const struct t4_vpdr_hdr *vpdr;
2968 
2969 	offset = sizeof(struct t4_vpd_hdr);
2970 	vpdr = (const void *)(vpd + offset);
2971 	tag = vpdr->vpdr_tag;
2972 	len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2973 	while (region--) {
2974 		offset += sizeof(struct t4_vpdr_hdr) + len;
2975 		vpdr = (const void *)(vpd + offset);
2976 		if (++tag != vpdr->vpdr_tag)
2977 			return -ENOENT;
2978 		len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2979 	}
2980 	offset += sizeof(struct t4_vpdr_hdr);
2981 
2982 	if (offset + len > VPD_LEN) {
2983 		return -ENOENT;
2984 	}
2985 
2986 	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2987 		if (memcmp(vpd + i , kw , 2) == 0){
2988 			i += VPD_INFO_FLD_HDR_SIZE;
2989 			return i;
2990 		}
2991 
2992 		i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
2993 	}
2994 
2995 	return -ENOENT;
2996 }
2997 
2998 
2999 /**
3000  *	get_vpd_params - read VPD parameters from VPD EEPROM
3001  *	@adapter: adapter to read
3002  *	@p: where to store the parameters
3003  *	@vpd: caller provided temporary space to read the VPD into
3004  *
3005  *	Reads card parameters stored in VPD EEPROM.
3006  */
3007 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
3008     uint16_t device_id, u32 *buf)
3009 {
3010 	int i, ret, addr;
3011 	int ec, sn, pn, na, md;
3012 	u8 csum;
3013 	const u8 *vpd = (const u8 *)buf;
3014 
3015 	/*
3016 	 * Card information normally starts at VPD_BASE but early cards had
3017 	 * it at 0.
3018 	 */
3019 	ret = t4_seeprom_read(adapter, VPD_BASE, buf);
3020 	if (ret)
3021 		return (ret);
3022 
3023 	/*
3024 	 * The VPD shall have a unique identifier specified by the PCI SIG.
3025 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
3026 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
3027 	 * is expected to automatically put this entry at the
3028 	 * beginning of the VPD.
3029 	 */
3030 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
3031 
3032 	for (i = 0; i < VPD_LEN; i += 4) {
3033 		ret = t4_seeprom_read(adapter, addr + i, buf++);
3034 		if (ret)
3035 			return ret;
3036 	}
3037 
3038 #define FIND_VPD_KW(var,name) do { \
3039 	var = get_vpd_keyword_val(vpd, name, 0); \
3040 	if (var < 0) { \
3041 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
3042 		return -EINVAL; \
3043 	} \
3044 } while (0)
3045 
3046 	FIND_VPD_KW(i, "RV");
3047 	for (csum = 0; i >= 0; i--)
3048 		csum += vpd[i];
3049 
3050 	if (csum) {
3051 		CH_ERR(adapter,
3052 			"corrupted VPD EEPROM, actual csum %u\n", csum);
3053 		return -EINVAL;
3054 	}
3055 
3056 	FIND_VPD_KW(ec, "EC");
3057 	FIND_VPD_KW(sn, "SN");
3058 	FIND_VPD_KW(pn, "PN");
3059 	FIND_VPD_KW(na, "NA");
3060 #undef FIND_VPD_KW
3061 
3062 	memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3063 	strstrip(p->id);
3064 	memcpy(p->ec, vpd + ec, EC_LEN);
3065 	strstrip(p->ec);
3066 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3067 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3068 	strstrip(p->sn);
3069 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3070 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3071 	strstrip((char *)p->pn);
3072 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3073 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3074 	strstrip((char *)p->na);
3075 
3076 	if (device_id & 0x80)
3077 		return 0;	/* Custom card */
3078 
3079 	md = get_vpd_keyword_val(vpd, "VF", 1);
3080 	if (md < 0) {
3081 		snprintf(p->md, sizeof(p->md), "unknown");
3082 	} else {
3083 		i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3084 		memcpy(p->md, vpd + md, min(i, MD_LEN));
3085 		strstrip((char *)p->md);
3086 	}
3087 
3088 	return 0;
3089 }
3090 
3091 /* serial flash and firmware constants and flash config file constants */
3092 enum {
3093 	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3094 
3095 	/* flash command opcodes */
3096 	SF_PROG_PAGE    = 2,	/* program 256B page */
3097 	SF_WR_DISABLE   = 4,	/* disable writes */
3098 	SF_RD_STATUS    = 5,	/* read status register */
3099 	SF_WR_ENABLE    = 6,	/* enable writes */
3100 	SF_RD_DATA_FAST = 0xb,	/* read flash */
3101 	SF_RD_ID	= 0x9f,	/* read ID */
3102 	SF_ERASE_SECTOR = 0xd8,	/* erase 64KB sector */
3103 };
3104 
3105 /**
3106  *	sf1_read - read data from the serial flash
3107  *	@adapter: the adapter
3108  *	@byte_cnt: number of bytes to read
3109  *	@cont: whether another operation will be chained
3110  *	@lock: whether to lock SF for PL access only
3111  *	@valp: where to store the read data
3112  *
3113  *	Reads up to 4 bytes of data from the serial flash.  The location of
3114  *	the read needs to be specified prior to calling this by issuing the
3115  *	appropriate commands to the serial flash.
3116  */
3117 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3118 		    int lock, u32 *valp)
3119 {
3120 	int ret;
3121 
3122 	if (!byte_cnt || byte_cnt > 4)
3123 		return -EINVAL;
3124 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3125 		return -EBUSY;
3126 	t4_write_reg(adapter, A_SF_OP,
3127 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3128 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3129 	if (!ret)
3130 		*valp = t4_read_reg(adapter, A_SF_DATA);
3131 	return ret;
3132 }
3133 
3134 /**
3135  *	sf1_write - write data to the serial flash
3136  *	@adapter: the adapter
3137  *	@byte_cnt: number of bytes to write
3138  *	@cont: whether another operation will be chained
3139  *	@lock: whether to lock SF for PL access only
3140  *	@val: value to write
3141  *
3142  *	Writes up to 4 bytes of data to the serial flash.  The location of
3143  *	the write needs to be specified prior to calling this by issuing the
3144  *	appropriate commands to the serial flash.
3145  */
3146 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3147 		     int lock, u32 val)
3148 {
3149 	if (!byte_cnt || byte_cnt > 4)
3150 		return -EINVAL;
3151 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3152 		return -EBUSY;
3153 	t4_write_reg(adapter, A_SF_DATA, val);
3154 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3155 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3156 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3157 }
3158 
3159 /**
3160  *	flash_wait_op - wait for a flash operation to complete
3161  *	@adapter: the adapter
3162  *	@attempts: max number of polls of the status register
3163  *	@delay: delay between polls in ms
3164  *
3165  *	Wait for a flash operation to complete by polling the status register.
3166  */
3167 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3168 {
3169 	int ret;
3170 	u32 status;
3171 
3172 	while (1) {
3173 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3174 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3175 			return ret;
3176 		if (!(status & 1))
3177 			return 0;
3178 		if (--attempts == 0)
3179 			return -EAGAIN;
3180 		if (delay)
3181 			msleep(delay);
3182 	}
3183 }
3184 
3185 /**
3186  *	t4_read_flash - read words from serial flash
3187  *	@adapter: the adapter
3188  *	@addr: the start address for the read
3189  *	@nwords: how many 32-bit words to read
3190  *	@data: where to store the read data
3191  *	@byte_oriented: whether to store data as bytes or as words
3192  *
3193  *	Read the specified number of 32-bit words from the serial flash.
3194  *	If @byte_oriented is set the read data is stored as a byte array
3195  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3196  *	natural endianness.
3197  */
3198 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3199 		  unsigned int nwords, u32 *data, int byte_oriented)
3200 {
3201 	int ret;
3202 
3203 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3204 		return -EINVAL;
3205 
3206 	addr = swab32(addr) | SF_RD_DATA_FAST;
3207 
3208 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3209 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3210 		return ret;
3211 
3212 	for ( ; nwords; nwords--, data++) {
3213 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3214 		if (nwords == 1)
3215 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3216 		if (ret)
3217 			return ret;
3218 		if (byte_oriented)
3219 			*data = (__force __u32)(cpu_to_be32(*data));
3220 	}
3221 	return 0;
3222 }
3223 
3224 /**
3225  *	t4_write_flash - write up to a page of data to the serial flash
3226  *	@adapter: the adapter
3227  *	@addr: the start address to write
3228  *	@n: length of data to write in bytes
3229  *	@data: the data to write
3230  *	@byte_oriented: whether to store data as bytes or as words
3231  *
3232  *	Writes up to a page of data (256 bytes) to the serial flash starting
3233  *	at the given address.  All the data must be written to the same page.
3234  *	If @byte_oriented is set the write data is stored as byte stream
3235  *	(i.e. matches what on disk), otherwise in big-endian.
3236  */
3237 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3238 			  unsigned int n, const u8 *data, int byte_oriented)
3239 {
3240 	int ret;
3241 	u32 buf[SF_PAGE_SIZE / 4];
3242 	unsigned int i, c, left, val, offset = addr & 0xff;
3243 
3244 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3245 		return -EINVAL;
3246 
3247 	val = swab32(addr) | SF_PROG_PAGE;
3248 
3249 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3250 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3251 		goto unlock;
3252 
3253 	for (left = n; left; left -= c) {
3254 		c = min(left, 4U);
3255 		for (val = 0, i = 0; i < c; ++i)
3256 			val = (val << 8) + *data++;
3257 
3258 		if (!byte_oriented)
3259 			val = cpu_to_be32(val);
3260 
3261 		ret = sf1_write(adapter, c, c != left, 1, val);
3262 		if (ret)
3263 			goto unlock;
3264 	}
3265 	ret = flash_wait_op(adapter, 8, 1);
3266 	if (ret)
3267 		goto unlock;
3268 
3269 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3270 
3271 	/* Read the page to verify the write succeeded */
3272 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3273 			    byte_oriented);
3274 	if (ret)
3275 		return ret;
3276 
3277 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3278 		CH_ERR(adapter,
3279 			"failed to correctly write the flash page at %#x\n",
3280 			addr);
3281 		return -EIO;
3282 	}
3283 	return 0;
3284 
3285 unlock:
3286 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3287 	return ret;
3288 }
3289 
3290 /**
3291  *	t4_get_fw_version - read the firmware version
3292  *	@adapter: the adapter
3293  *	@vers: where to place the version
3294  *
3295  *	Reads the FW version from flash.
3296  */
3297 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3298 {
3299 	return t4_read_flash(adapter, FLASH_FW_START +
3300 			     offsetof(struct fw_hdr, fw_ver), 1,
3301 			     vers, 0);
3302 }
3303 
3304 /**
3305  *	t4_get_fw_hdr - read the firmware header
3306  *	@adapter: the adapter
3307  *	@hdr: where to place the version
3308  *
3309  *	Reads the FW header from flash into caller provided buffer.
3310  */
3311 int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr)
3312 {
3313 	return t4_read_flash(adapter, FLASH_FW_START,
3314 	    sizeof (*hdr) / sizeof (uint32_t), (uint32_t *)hdr, 1);
3315 }
3316 
3317 /**
3318  *	t4_get_bs_version - read the firmware bootstrap version
3319  *	@adapter: the adapter
3320  *	@vers: where to place the version
3321  *
3322  *	Reads the FW Bootstrap version from flash.
3323  */
3324 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3325 {
3326 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3327 			     offsetof(struct fw_hdr, fw_ver), 1,
3328 			     vers, 0);
3329 }
3330 
3331 /**
3332  *	t4_get_tp_version - read the TP microcode version
3333  *	@adapter: the adapter
3334  *	@vers: where to place the version
3335  *
3336  *	Reads the TP microcode version from flash.
3337  */
3338 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3339 {
3340 	return t4_read_flash(adapter, FLASH_FW_START +
3341 			     offsetof(struct fw_hdr, tp_microcode_ver),
3342 			     1, vers, 0);
3343 }
3344 
3345 /**
3346  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3347  *	@adapter: the adapter
3348  *	@vers: where to place the version
3349  *
3350  *	Reads the Expansion ROM header from FLASH and returns the version
3351  *	number (if present) through the @vers return value pointer.  We return
3352  *	this in the Firmware Version Format since it's convenient.  Return
3353  *	0 on success, -ENOENT if no Expansion ROM is present.
3354  */
3355 int t4_get_exprom_version(struct adapter *adapter, u32 *vers)
3356 {
3357 	struct exprom_header {
3358 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3359 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3360 	} *hdr;
3361 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3362 					   sizeof(u32))];
3363 	int ret;
3364 
3365 	ret = t4_read_flash(adapter, FLASH_EXP_ROM_START,
3366 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3367 			    0);
3368 	if (ret)
3369 		return ret;
3370 
3371 	hdr = (struct exprom_header *)exprom_header_buf;
3372 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3373 		return -ENOENT;
3374 
3375 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3376 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3377 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3378 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3379 	return 0;
3380 }
3381 
3382 /**
3383  *	t4_get_scfg_version - return the Serial Configuration version
3384  *	@adapter: the adapter
3385  *	@vers: where to place the version
3386  *
3387  *	Reads the Serial Configuration Version via the Firmware interface
3388  *	(thus this can only be called once we're ready to issue Firmware
3389  *	commands).  The format of the Serial Configuration version is
3390  *	adapter specific.  Returns 0 on success, an error on failure.
3391  *
3392  *	Note that early versions of the Firmware didn't include the ability
3393  *	to retrieve the Serial Configuration version, so we zero-out the
3394  *	return-value parameter in that case to avoid leaving it with
3395  *	garbage in it.
3396  *
3397  *	Also note that the Firmware will return its cached copy of the Serial
3398  *	Initialization Revision ID, not the actual Revision ID as written in
3399  *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3400  *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3401  *	it's best to defer calling this routine till after a FW_RESET_CMD has
3402  *	been issued if the Host Driver will be performing a full adapter
3403  *	initialization.
3404  */
3405 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3406 {
3407 	u32 scfgrev_param;
3408 	int ret;
3409 
3410 	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3411 			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3412 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3413 			      1, &scfgrev_param, vers);
3414 	if (ret)
3415 		*vers = 0;
3416 	return ret;
3417 }
3418 
3419 /**
3420  *	t4_get_vpd_version - return the VPD version
3421  *	@adapter: the adapter
3422  *	@vers: where to place the version
3423  *
3424  *	Reads the VPD via the Firmware interface (thus this can only be called
3425  *	once we're ready to issue Firmware commands).  The format of the
3426  *	VPD version is adapter specific.  Returns 0 on success, an error on
3427  *	failure.
3428  *
3429  *	Note that early versions of the Firmware didn't include the ability
3430  *	to retrieve the VPD version, so we zero-out the return-value parameter
3431  *	in that case to avoid leaving it with garbage in it.
3432  *
3433  *	Also note that the Firmware will return its cached copy of the VPD
3434  *	Revision ID, not the actual Revision ID as written in the Serial
3435  *	EEPROM.  This is only an issue if a new VPD has been written and the
3436  *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3437  *	to defer calling this routine till after a FW_RESET_CMD has been issued
3438  *	if the Host Driver will be performing a full adapter initialization.
3439  */
3440 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3441 {
3442 	u32 vpdrev_param;
3443 	int ret;
3444 
3445 	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3446 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3447 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3448 			      1, &vpdrev_param, vers);
3449 	if (ret)
3450 		*vers = 0;
3451 	return ret;
3452 }
3453 
3454 /**
3455  *	t4_get_version_info - extract various chip/firmware version information
3456  *	@adapter: the adapter
3457  *
3458  *	Reads various chip/firmware version numbers and stores them into the
3459  *	adapter Adapter Parameters structure.  If any of the efforts fails
3460  *	the first failure will be returned, but all of the version numbers
3461  *	will be read.
3462  */
3463 int t4_get_version_info(struct adapter *adapter)
3464 {
3465 	int ret = 0;
3466 
3467 	#define FIRST_RET(__getvinfo) \
3468 	do { \
3469 		int __ret = __getvinfo; \
3470 		if (__ret && !ret) \
3471 			ret = __ret; \
3472 	} while (0)
3473 
3474 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3475 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3476 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3477 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3478 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3479 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3480 
3481 	#undef FIRST_RET
3482 
3483 	return ret;
3484 }
3485 
3486 /**
3487  *	t4_flash_erase_sectors - erase a range of flash sectors
3488  *	@adapter: the adapter
3489  *	@start: the first sector to erase
3490  *	@end: the last sector to erase
3491  *
3492  *	Erases the sectors in the given inclusive range.
3493  */
3494 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3495 {
3496 	int ret = 0;
3497 
3498 	if (end >= adapter->params.sf_nsec)
3499 		return -EINVAL;
3500 
3501 	while (start <= end) {
3502 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3503 		    (ret = sf1_write(adapter, 4, 0, 1,
3504 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3505 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3506 			CH_ERR(adapter,
3507 				"erase of flash sector %d failed, error %d\n",
3508 				start, ret);
3509 			break;
3510 		}
3511 		start++;
3512 	}
3513 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3514 	return ret;
3515 }
3516 
3517 /**
3518  *	t4_flash_cfg_addr - return the address of the flash configuration file
3519  *	@adapter: the adapter
3520  *
3521  *	Return the address within the flash where the Firmware Configuration
3522  *	File is stored, or an error if the device FLASH is too small to contain
3523  *	a Firmware Configuration File.
3524  */
3525 int t4_flash_cfg_addr(struct adapter *adapter)
3526 {
3527 	/*
3528 	 * If the device FLASH isn't large enough to hold a Firmware
3529 	 * Configuration File, return an error.
3530 	 */
3531 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3532 		return -ENOSPC;
3533 
3534 	return FLASH_CFG_START;
3535 }
3536 
3537 /*
3538  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3539  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3540  * and emit an error message for mismatched firmware to save our caller the
3541  * effort ...
3542  */
3543 static int t4_fw_matches_chip(struct adapter *adap,
3544 			      const struct fw_hdr *hdr)
3545 {
3546 	/*
3547 	 * The expression below will return FALSE for any unsupported adapter
3548 	 * which will keep us "honest" in the future ...
3549 	 */
3550 	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3551 	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3552 	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3553 		return 1;
3554 
3555 	CH_ERR(adap,
3556 		"FW image (%d) is not suitable for this adapter (%d)\n",
3557 		hdr->chip, chip_id(adap));
3558 	return 0;
3559 }
3560 
3561 /**
3562  *	t4_load_fw - download firmware
3563  *	@adap: the adapter
3564  *	@fw_data: the firmware image to write
3565  *	@size: image size
3566  *
3567  *	Write the supplied firmware image to the card's serial flash.
3568  */
3569 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3570 {
3571 	u32 csum;
3572 	int ret, addr;
3573 	unsigned int i;
3574 	u8 first_page[SF_PAGE_SIZE];
3575 	const u32 *p = (const u32 *)fw_data;
3576 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3577 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3578 	unsigned int fw_start_sec;
3579 	unsigned int fw_start;
3580 	unsigned int fw_size;
3581 
3582 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3583 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3584 		fw_start = FLASH_FWBOOTSTRAP_START;
3585 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3586 	} else {
3587 		fw_start_sec = FLASH_FW_START_SEC;
3588  		fw_start = FLASH_FW_START;
3589 		fw_size = FLASH_FW_MAX_SIZE;
3590 	}
3591 
3592 	if (!size) {
3593 		CH_ERR(adap, "FW image has no data\n");
3594 		return -EINVAL;
3595 	}
3596 	if (size & 511) {
3597 		CH_ERR(adap,
3598 			"FW image size not multiple of 512 bytes\n");
3599 		return -EINVAL;
3600 	}
3601 	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3602 		CH_ERR(adap,
3603 			"FW image size differs from size in FW header\n");
3604 		return -EINVAL;
3605 	}
3606 	if (size > fw_size) {
3607 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3608 			fw_size);
3609 		return -EFBIG;
3610 	}
3611 	if (!t4_fw_matches_chip(adap, hdr))
3612 		return -EINVAL;
3613 
3614 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3615 		csum += be32_to_cpu(p[i]);
3616 
3617 	if (csum != 0xffffffff) {
3618 		CH_ERR(adap,
3619 			"corrupted firmware image, checksum %#x\n", csum);
3620 		return -EINVAL;
3621 	}
3622 
3623 	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3624 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3625 	if (ret)
3626 		goto out;
3627 
3628 	/*
3629 	 * We write the correct version at the end so the driver can see a bad
3630 	 * version if the FW write fails.  Start by writing a copy of the
3631 	 * first page with a bad version.
3632 	 */
3633 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3634 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3635 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3636 	if (ret)
3637 		goto out;
3638 
3639 	addr = fw_start;
3640 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3641 		addr += SF_PAGE_SIZE;
3642 		fw_data += SF_PAGE_SIZE;
3643 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3644 		if (ret)
3645 			goto out;
3646 	}
3647 
3648 	ret = t4_write_flash(adap,
3649 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3650 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3651 out:
3652 	if (ret)
3653 		CH_ERR(adap, "firmware download failed, error %d\n",
3654 			ret);
3655 	return ret;
3656 }
3657 
3658 /**
3659  *	t4_fwcache - firmware cache operation
3660  *	@adap: the adapter
3661  *	@op  : the operation (flush or flush and invalidate)
3662  */
3663 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3664 {
3665 	struct fw_params_cmd c;
3666 
3667 	memset(&c, 0, sizeof(c));
3668 	c.op_to_vfn =
3669 	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3670 			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3671 				V_FW_PARAMS_CMD_PFN(adap->pf) |
3672 				V_FW_PARAMS_CMD_VFN(0));
3673 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3674 	c.param[0].mnem =
3675 	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3676 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3677 	c.param[0].val = (__force __be32)op;
3678 
3679 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3680 }
3681 
3682 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3683 			unsigned int *pif_req_wrptr,
3684 			unsigned int *pif_rsp_wrptr)
3685 {
3686 	int i, j;
3687 	u32 cfg, val, req, rsp;
3688 
3689 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3690 	if (cfg & F_LADBGEN)
3691 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3692 
3693 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3694 	req = G_POLADBGWRPTR(val);
3695 	rsp = G_PILADBGWRPTR(val);
3696 	if (pif_req_wrptr)
3697 		*pif_req_wrptr = req;
3698 	if (pif_rsp_wrptr)
3699 		*pif_rsp_wrptr = rsp;
3700 
3701 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3702 		for (j = 0; j < 6; j++) {
3703 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3704 				     V_PILADBGRDPTR(rsp));
3705 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3706 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3707 			req++;
3708 			rsp++;
3709 		}
3710 		req = (req + 2) & M_POLADBGRDPTR;
3711 		rsp = (rsp + 2) & M_PILADBGRDPTR;
3712 	}
3713 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3714 }
3715 
3716 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3717 {
3718 	u32 cfg;
3719 	int i, j, idx;
3720 
3721 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3722 	if (cfg & F_LADBGEN)
3723 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3724 
3725 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3726 		for (j = 0; j < 5; j++) {
3727 			idx = 8 * i + j;
3728 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3729 				     V_PILADBGRDPTR(idx));
3730 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3731 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3732 		}
3733 	}
3734 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3735 }
3736 
3737 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3738 {
3739 	unsigned int i, j;
3740 
3741 	for (i = 0; i < 8; i++) {
3742 		u32 *p = la_buf + i;
3743 
3744 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3745 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3746 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3747 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3748 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3749 	}
3750 }
3751 
3752 /**
3753  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3754  *	@caps16: a 16-bit Port Capabilities value
3755  *
3756  *	Returns the equivalent 32-bit Port Capabilities value.
3757  */
3758 static uint32_t fwcaps16_to_caps32(uint16_t caps16)
3759 {
3760 	uint32_t caps32 = 0;
3761 
3762 	#define CAP16_TO_CAP32(__cap) \
3763 		do { \
3764 			if (caps16 & FW_PORT_CAP_##__cap) \
3765 				caps32 |= FW_PORT_CAP32_##__cap; \
3766 		} while (0)
3767 
3768 	CAP16_TO_CAP32(SPEED_100M);
3769 	CAP16_TO_CAP32(SPEED_1G);
3770 	CAP16_TO_CAP32(SPEED_25G);
3771 	CAP16_TO_CAP32(SPEED_10G);
3772 	CAP16_TO_CAP32(SPEED_40G);
3773 	CAP16_TO_CAP32(SPEED_100G);
3774 	CAP16_TO_CAP32(FC_RX);
3775 	CAP16_TO_CAP32(FC_TX);
3776 	CAP16_TO_CAP32(ANEG);
3777 	CAP16_TO_CAP32(FORCE_PAUSE);
3778 	CAP16_TO_CAP32(MDIAUTO);
3779 	CAP16_TO_CAP32(MDISTRAIGHT);
3780 	CAP16_TO_CAP32(FEC_RS);
3781 	CAP16_TO_CAP32(FEC_BASER_RS);
3782 	CAP16_TO_CAP32(802_3_PAUSE);
3783 	CAP16_TO_CAP32(802_3_ASM_DIR);
3784 
3785 	#undef CAP16_TO_CAP32
3786 
3787 	return caps32;
3788 }
3789 
3790 /**
3791  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3792  *	@caps32: a 32-bit Port Capabilities value
3793  *
3794  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
3795  *	not all 32-bit Port Capabilities can be represented in the 16-bit
3796  *	Port Capabilities and some fields/values may not make it.
3797  */
3798 static uint16_t fwcaps32_to_caps16(uint32_t caps32)
3799 {
3800 	uint16_t caps16 = 0;
3801 
3802 	#define CAP32_TO_CAP16(__cap) \
3803 		do { \
3804 			if (caps32 & FW_PORT_CAP32_##__cap) \
3805 				caps16 |= FW_PORT_CAP_##__cap; \
3806 		} while (0)
3807 
3808 	CAP32_TO_CAP16(SPEED_100M);
3809 	CAP32_TO_CAP16(SPEED_1G);
3810 	CAP32_TO_CAP16(SPEED_10G);
3811 	CAP32_TO_CAP16(SPEED_25G);
3812 	CAP32_TO_CAP16(SPEED_40G);
3813 	CAP32_TO_CAP16(SPEED_100G);
3814 	CAP32_TO_CAP16(FC_RX);
3815 	CAP32_TO_CAP16(FC_TX);
3816 	CAP32_TO_CAP16(802_3_PAUSE);
3817 	CAP32_TO_CAP16(802_3_ASM_DIR);
3818 	CAP32_TO_CAP16(ANEG);
3819 	CAP32_TO_CAP16(FORCE_PAUSE);
3820 	CAP32_TO_CAP16(MDIAUTO);
3821 	CAP32_TO_CAP16(MDISTRAIGHT);
3822 	CAP32_TO_CAP16(FEC_RS);
3823 	CAP32_TO_CAP16(FEC_BASER_RS);
3824 
3825 	#undef CAP32_TO_CAP16
3826 
3827 	return caps16;
3828 }
3829 
3830 static int8_t fwcap_to_fec(uint32_t caps, bool unset_means_none)
3831 {
3832 	int8_t fec = 0;
3833 
3834 	if ((caps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC)) == 0)
3835 		return (unset_means_none ? FEC_NONE : 0);
3836 
3837 	if (caps & FW_PORT_CAP32_FEC_RS)
3838 		fec |= FEC_RS;
3839 	if (caps & FW_PORT_CAP32_FEC_BASER_RS)
3840 		fec |= FEC_BASER_RS;
3841 	if (caps & FW_PORT_CAP32_FEC_NO_FEC)
3842 		fec |= FEC_NONE;
3843 
3844 	return (fec);
3845 }
3846 
3847 /*
3848  * Note that 0 is not translated to NO_FEC.
3849  */
3850 static uint32_t fec_to_fwcap(int8_t fec)
3851 {
3852 	uint32_t caps = 0;
3853 
3854 	/* Only real FECs allowed. */
3855 	MPASS((fec & ~M_FW_PORT_CAP32_FEC) == 0);
3856 
3857 	if (fec & FEC_RS)
3858 		caps |= FW_PORT_CAP32_FEC_RS;
3859 	if (fec & FEC_BASER_RS)
3860 		caps |= FW_PORT_CAP32_FEC_BASER_RS;
3861 	if (fec & FEC_NONE)
3862 		caps |= FW_PORT_CAP32_FEC_NO_FEC;
3863 
3864 	return (caps);
3865 }
3866 
3867 /**
3868  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3869  *	@phy: the PHY to setup
3870  *	@mac: the MAC to setup
3871  *	@lc: the requested link configuration
3872  *
3873  *	Set up a port's MAC and PHY according to a desired link configuration.
3874  *	- If the PHY can auto-negotiate first decide what to advertise, then
3875  *	  enable/disable auto-negotiation as desired, and reset.
3876  *	- If the PHY does not auto-negotiate just reset it.
3877  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3878  *	  otherwise do it later based on the outcome of auto-negotiation.
3879  */
3880 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3881 		  struct link_config *lc)
3882 {
3883 	struct fw_port_cmd c;
3884 	unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
3885 	unsigned int aneg, fc, fec, speed, rcap;
3886 
3887 	fc = 0;
3888 	if (lc->requested_fc & PAUSE_RX)
3889 		fc |= FW_PORT_CAP32_FC_RX;
3890 	if (lc->requested_fc & PAUSE_TX)
3891 		fc |= FW_PORT_CAP32_FC_TX;
3892 	if (!(lc->requested_fc & PAUSE_AUTONEG))
3893 		fc |= FW_PORT_CAP32_FORCE_PAUSE;
3894 
3895 	if (lc->requested_aneg == AUTONEG_DISABLE)
3896 		aneg = 0;
3897 	else if (lc->requested_aneg == AUTONEG_ENABLE)
3898 		aneg = FW_PORT_CAP32_ANEG;
3899 	else
3900 		aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
3901 
3902 	if (aneg) {
3903 		speed = lc->pcaps &
3904 		    V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
3905 	} else if (lc->requested_speed != 0)
3906 		speed = speed_to_fwcap(lc->requested_speed);
3907 	else
3908 		speed = fwcap_top_speed(lc->pcaps);
3909 
3910 	fec = 0;
3911 #ifdef INVARIANTS
3912 	if (lc->force_fec != 0)
3913 		MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_FEC);
3914 #endif
3915 	if (fec_supported(speed)) {
3916 		if (lc->requested_fec == FEC_AUTO) {
3917 			if (lc->force_fec > 0) {
3918 				/*
3919 				 * Must use FORCE_FEC even though requested FEC
3920 				 * is AUTO. Set all the FEC bits valid for the
3921 				 * speed and let the firmware pick one.
3922 				 */
3923 				fec |= FW_PORT_CAP32_FORCE_FEC;
3924 				if (speed & FW_PORT_CAP32_SPEED_100G) {
3925 					fec |= FW_PORT_CAP32_FEC_RS;
3926 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3927 				} else if (speed & FW_PORT_CAP32_SPEED_50G) {
3928 					fec |= FW_PORT_CAP32_FEC_BASER_RS;
3929 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3930 				} else {
3931 					fec |= FW_PORT_CAP32_FEC_RS;
3932 					fec |= FW_PORT_CAP32_FEC_BASER_RS;
3933 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3934 				}
3935 			} else {
3936 				/*
3937 				 * Set only 1b. Old firmwares can't deal with
3938 				 * multiple bits and new firmwares are free to
3939 				 * ignore this and try whatever FECs they want
3940 				 * because we aren't setting FORCE_FEC here.
3941 				 */
3942 				fec |= fec_to_fwcap(lc->fec_hint);
3943 				MPASS(powerof2(fec));
3944 
3945 				/*
3946 				 * Override the hint if the FEC is not valid for
3947 				 * the potential top speed.  Request the best
3948 				 * FEC at that speed instead.
3949 				 */
3950 				if (speed & FW_PORT_CAP32_SPEED_100G) {
3951 					if (fec == FW_PORT_CAP32_FEC_BASER_RS)
3952 						fec = FW_PORT_CAP32_FEC_RS;
3953 				} else if (speed & FW_PORT_CAP32_SPEED_50G) {
3954 					if (fec == FW_PORT_CAP32_FEC_RS)
3955 						fec = FW_PORT_CAP32_FEC_BASER_RS;
3956 				}
3957 			}
3958 		} else {
3959 			/*
3960 			 * User has explicitly requested some FEC(s). Set
3961 			 * FORCE_FEC unless prohibited from using it.
3962 			 */
3963 			if (lc->force_fec != 0)
3964 				fec |= FW_PORT_CAP32_FORCE_FEC;
3965 			fec |= fec_to_fwcap(lc->requested_fec &
3966 			    M_FW_PORT_CAP32_FEC);
3967 			if (lc->requested_fec & FEC_MODULE)
3968 				fec |= fec_to_fwcap(lc->fec_hint);
3969 		}
3970 
3971 		/*
3972 		 * This is for compatibility with old firmwares. The original
3973 		 * way to request NO_FEC was to not set any of the FEC bits. New
3974 		 * firmwares understand this too.
3975 		 */
3976 		if (fec == FW_PORT_CAP32_FEC_NO_FEC)
3977 			fec = 0;
3978 	}
3979 
3980 	/* Force AN on for BT cards. */
3981 	if (isset(&adap->bt_map, port))
3982 		aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
3983 
3984 	rcap = aneg | speed | fc | fec;
3985 	if ((rcap | lc->pcaps) != lc->pcaps) {
3986 #ifdef INVARIANTS
3987 		CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x, removed 0x%x\n", rcap,
3988 		    lc->pcaps, rcap & (rcap ^ lc->pcaps));
3989 #endif
3990 		rcap &= lc->pcaps;
3991 	}
3992 	rcap |= mdi;
3993 
3994 	memset(&c, 0, sizeof(c));
3995 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3996 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3997 				     V_FW_PORT_CMD_PORTID(port));
3998 	if (adap->params.port_caps32) {
3999 		c.action_to_len16 =
4000 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
4001 			FW_LEN16(c));
4002 		c.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4003 	} else {
4004 		c.action_to_len16 =
4005 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
4006 			    FW_LEN16(c));
4007 		c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4008 	}
4009 
4010 	lc->requested_caps = rcap;
4011 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
4012 }
4013 
4014 /**
4015  *	t4_restart_aneg - restart autonegotiation
4016  *	@adap: the adapter
4017  *	@mbox: mbox to use for the FW command
4018  *	@port: the port id
4019  *
4020  *	Restarts autonegotiation for the selected port.
4021  */
4022 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4023 {
4024 	struct fw_port_cmd c;
4025 
4026 	memset(&c, 0, sizeof(c));
4027 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
4028 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
4029 				     V_FW_PORT_CMD_PORTID(port));
4030 	c.action_to_len16 =
4031 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
4032 			    FW_LEN16(c));
4033 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4034 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4035 }
4036 
4037 struct intr_details {
4038 	u32 mask;
4039 	const char *msg;
4040 };
4041 
4042 struct intr_action {
4043 	u32 mask;
4044 	int arg;
4045 	bool (*action)(struct adapter *, int, bool);
4046 };
4047 
4048 #define NONFATAL_IF_DISABLED 1
4049 struct intr_info {
4050 	const char *name;	/* name of the INT_CAUSE register */
4051 	int cause_reg;		/* INT_CAUSE register */
4052 	int enable_reg;		/* INT_ENABLE register */
4053 	u32 fatal;		/* bits that are fatal */
4054 	int flags;		/* hints */
4055 	const struct intr_details *details;
4056 	const struct intr_action *actions;
4057 };
4058 
4059 static inline char
4060 intr_alert_char(u32 cause, u32 enable, u32 fatal)
4061 {
4062 
4063 	if (cause & fatal)
4064 		return ('!');
4065 	if (cause & enable)
4066 		return ('*');
4067 	return ('-');
4068 }
4069 
4070 static void
4071 t4_show_intr_info(struct adapter *adap, const struct intr_info *ii, u32 cause)
4072 {
4073 	u32 enable, fatal, leftover;
4074 	const struct intr_details *details;
4075 	char alert;
4076 
4077 	enable = t4_read_reg(adap, ii->enable_reg);
4078 	if (ii->flags & NONFATAL_IF_DISABLED)
4079 		fatal = ii->fatal & t4_read_reg(adap, ii->enable_reg);
4080 	else
4081 		fatal = ii->fatal;
4082 	alert = intr_alert_char(cause, enable, fatal);
4083 	CH_ALERT(adap, "%c %s 0x%x = 0x%08x, E 0x%08x, F 0x%08x\n",
4084 	    alert, ii->name, ii->cause_reg, cause, enable, fatal);
4085 
4086 	leftover = cause;
4087 	for (details = ii->details; details && details->mask != 0; details++) {
4088 		u32 msgbits = details->mask & cause;
4089 		if (msgbits == 0)
4090 			continue;
4091 		alert = intr_alert_char(msgbits, enable, ii->fatal);
4092 		CH_ALERT(adap, "  %c [0x%08x] %s\n", alert, msgbits,
4093 		    details->msg);
4094 		leftover &= ~msgbits;
4095 	}
4096 	if (leftover != 0 && leftover != cause)
4097 		CH_ALERT(adap, "  ? [0x%08x]\n", leftover);
4098 }
4099 
4100 /*
4101  * Returns true for fatal error.
4102  */
4103 static bool
4104 t4_handle_intr(struct adapter *adap, const struct intr_info *ii,
4105     u32 additional_cause, bool verbose)
4106 {
4107 	u32 cause, fatal;
4108 	bool rc;
4109 	const struct intr_action *action;
4110 
4111 	/*
4112 	 * Read and display cause.  Note that the top level PL_INT_CAUSE is a
4113 	 * bit special and we need to completely ignore the bits that are not in
4114 	 * PL_INT_ENABLE.
4115 	 */
4116 	cause = t4_read_reg(adap, ii->cause_reg);
4117 	if (ii->cause_reg == A_PL_INT_CAUSE)
4118 		cause &= t4_read_reg(adap, ii->enable_reg);
4119 	if (verbose || cause != 0)
4120 		t4_show_intr_info(adap, ii, cause);
4121 	fatal = cause & ii->fatal;
4122 	if (fatal != 0 && ii->flags & NONFATAL_IF_DISABLED)
4123 		fatal &= t4_read_reg(adap, ii->enable_reg);
4124 	cause |= additional_cause;
4125 	if (cause == 0)
4126 		return (false);
4127 
4128 	rc = fatal != 0;
4129 	for (action = ii->actions; action && action->mask != 0; action++) {
4130 		if (!(action->mask & cause))
4131 			continue;
4132 		rc |= (action->action)(adap, action->arg, verbose);
4133 	}
4134 
4135 	/* clear */
4136 	t4_write_reg(adap, ii->cause_reg, cause);
4137 	(void)t4_read_reg(adap, ii->cause_reg);
4138 
4139 	return (rc);
4140 }
4141 
4142 /*
4143  * Interrupt handler for the PCIE module.
4144  */
4145 static bool pcie_intr_handler(struct adapter *adap, int arg, bool verbose)
4146 {
4147 	static const struct intr_details sysbus_intr_details[] = {
4148 		{ F_RNPP, "RXNP array parity error" },
4149 		{ F_RPCP, "RXPC array parity error" },
4150 		{ F_RCIP, "RXCIF array parity error" },
4151 		{ F_RCCP, "Rx completions control array parity error" },
4152 		{ F_RFTP, "RXFT array parity error" },
4153 		{ 0 }
4154 	};
4155 	static const struct intr_info sysbus_intr_info = {
4156 		.name = "PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS",
4157 		.cause_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4158 		.enable_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_INTERRUPT_ENABLE,
4159 		.fatal = F_RFTP | F_RCCP | F_RCIP | F_RPCP | F_RNPP,
4160 		.flags = 0,
4161 		.details = sysbus_intr_details,
4162 		.actions = NULL,
4163 	};
4164 	static const struct intr_details pcie_port_intr_details[] = {
4165 		{ F_TPCP, "TXPC array parity error" },
4166 		{ F_TNPP, "TXNP array parity error" },
4167 		{ F_TFTP, "TXFT array parity error" },
4168 		{ F_TCAP, "TXCA array parity error" },
4169 		{ F_TCIP, "TXCIF array parity error" },
4170 		{ F_RCAP, "RXCA array parity error" },
4171 		{ F_OTDD, "outbound request TLP discarded" },
4172 		{ F_RDPE, "Rx data parity error" },
4173 		{ F_TDUE, "Tx uncorrectable data error" },
4174 		{ 0 }
4175 	};
4176 	static const struct intr_info pcie_port_intr_info = {
4177 		.name = "PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS",
4178 		.cause_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4179 		.enable_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_INTERRUPT_ENABLE,
4180 		.fatal = F_TPCP | F_TNPP | F_TFTP | F_TCAP | F_TCIP | F_RCAP |
4181 		    F_OTDD | F_RDPE | F_TDUE,
4182 		.flags = 0,
4183 		.details = pcie_port_intr_details,
4184 		.actions = NULL,
4185 	};
4186 	static const struct intr_details pcie_intr_details[] = {
4187 		{ F_MSIADDRLPERR, "MSI AddrL parity error" },
4188 		{ F_MSIADDRHPERR, "MSI AddrH parity error" },
4189 		{ F_MSIDATAPERR, "MSI data parity error" },
4190 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error" },
4191 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error" },
4192 		{ F_MSIXDATAPERR, "MSI-X data parity error" },
4193 		{ F_MSIXDIPERR, "MSI-X DI parity error" },
4194 		{ F_PIOCPLPERR, "PCIe PIO completion FIFO parity error" },
4195 		{ F_PIOREQPERR, "PCIe PIO request FIFO parity error" },
4196 		{ F_TARTAGPERR, "PCIe target tag FIFO parity error" },
4197 		{ F_CCNTPERR, "PCIe CMD channel count parity error" },
4198 		{ F_CREQPERR, "PCIe CMD channel request parity error" },
4199 		{ F_CRSPPERR, "PCIe CMD channel response parity error" },
4200 		{ F_DCNTPERR, "PCIe DMA channel count parity error" },
4201 		{ F_DREQPERR, "PCIe DMA channel request parity error" },
4202 		{ F_DRSPPERR, "PCIe DMA channel response parity error" },
4203 		{ F_HCNTPERR, "PCIe HMA channel count parity error" },
4204 		{ F_HREQPERR, "PCIe HMA channel request parity error" },
4205 		{ F_HRSPPERR, "PCIe HMA channel response parity error" },
4206 		{ F_CFGSNPPERR, "PCIe config snoop FIFO parity error" },
4207 		{ F_FIDPERR, "PCIe FID parity error" },
4208 		{ F_INTXCLRPERR, "PCIe INTx clear parity error" },
4209 		{ F_MATAGPERR, "PCIe MA tag parity error" },
4210 		{ F_PIOTAGPERR, "PCIe PIO tag parity error" },
4211 		{ F_RXCPLPERR, "PCIe Rx completion parity error" },
4212 		{ F_RXWRPERR, "PCIe Rx write parity error" },
4213 		{ F_RPLPERR, "PCIe replay buffer parity error" },
4214 		{ F_PCIESINT, "PCIe core secondary fault" },
4215 		{ F_PCIEPINT, "PCIe core primary fault" },
4216 		{ F_UNXSPLCPLERR, "PCIe unexpected split completion error" },
4217 		{ 0 }
4218 	};
4219 	static const struct intr_details t5_pcie_intr_details[] = {
4220 		{ F_IPGRPPERR, "Parity errors observed by IP" },
4221 		{ F_NONFATALERR, "PCIe non-fatal error" },
4222 		{ F_READRSPERR, "Outbound read error" },
4223 		{ F_TRGT1GRPPERR, "PCIe TRGT1 group FIFOs parity error" },
4224 		{ F_IPSOTPERR, "PCIe IP SOT buffer SRAM parity error" },
4225 		{ F_IPRETRYPERR, "PCIe IP replay buffer parity error" },
4226 		{ F_IPRXDATAGRPPERR, "PCIe IP Rx data group SRAMs parity error" },
4227 		{ F_IPRXHDRGRPPERR, "PCIe IP Rx header group SRAMs parity error" },
4228 		{ F_PIOTAGQPERR, "PIO tag queue FIFO parity error" },
4229 		{ F_MAGRPPERR, "MA group FIFO parity error" },
4230 		{ F_VFIDPERR, "VFID SRAM parity error" },
4231 		{ F_FIDPERR, "FID SRAM parity error" },
4232 		{ F_CFGSNPPERR, "config snoop FIFO parity error" },
4233 		{ F_HRSPPERR, "HMA channel response data SRAM parity error" },
4234 		{ F_HREQRDPERR, "HMA channel read request SRAM parity error" },
4235 		{ F_HREQWRPERR, "HMA channel write request SRAM parity error" },
4236 		{ F_DRSPPERR, "DMA channel response data SRAM parity error" },
4237 		{ F_DREQRDPERR, "DMA channel write request SRAM parity error" },
4238 		{ F_CRSPPERR, "CMD channel response data SRAM parity error" },
4239 		{ F_CREQRDPERR, "CMD channel read request SRAM parity error" },
4240 		{ F_MSTTAGQPERR, "PCIe master tag queue SRAM parity error" },
4241 		{ F_TGTTAGQPERR, "PCIe target tag queue FIFO parity error" },
4242 		{ F_PIOREQGRPPERR, "PIO request group FIFOs parity error" },
4243 		{ F_PIOCPLGRPPERR, "PIO completion group FIFOs parity error" },
4244 		{ F_MSIXDIPERR, "MSI-X DI SRAM parity error" },
4245 		{ F_MSIXDATAPERR, "MSI-X data SRAM parity error" },
4246 		{ F_MSIXADDRHPERR, "MSI-X AddrH SRAM parity error" },
4247 		{ F_MSIXADDRLPERR, "MSI-X AddrL SRAM parity error" },
4248 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error" },
4249 		{ F_MSTTIMEOUTPERR, "Master timeout FIFO parity error" },
4250 		{ F_MSTGRPPERR, "Master response read queue SRAM parity error" },
4251 		{ 0 }
4252 	};
4253 	struct intr_info pcie_intr_info = {
4254 		.name = "PCIE_INT_CAUSE",
4255 		.cause_reg = A_PCIE_INT_CAUSE,
4256 		.enable_reg = A_PCIE_INT_ENABLE,
4257 		.fatal = 0xffffffff,
4258 		.flags = NONFATAL_IF_DISABLED,
4259 		.details = NULL,
4260 		.actions = NULL,
4261 	};
4262 	bool fatal = false;
4263 
4264 	if (is_t4(adap)) {
4265 		fatal |= t4_handle_intr(adap, &sysbus_intr_info, 0, verbose);
4266 		fatal |= t4_handle_intr(adap, &pcie_port_intr_info, 0, verbose);
4267 
4268 		pcie_intr_info.details = pcie_intr_details;
4269 	} else {
4270 		pcie_intr_info.details = t5_pcie_intr_details;
4271 	}
4272 	fatal |= t4_handle_intr(adap, &pcie_intr_info, 0, verbose);
4273 
4274 	return (fatal);
4275 }
4276 
4277 /*
4278  * TP interrupt handler.
4279  */
4280 static bool tp_intr_handler(struct adapter *adap, int arg, bool verbose)
4281 {
4282 	static const struct intr_details tp_intr_details[] = {
4283 		{ 0x3fffffff, "TP parity error" },
4284 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages" },
4285 		{ 0 }
4286 	};
4287 	static const struct intr_info tp_intr_info = {
4288 		.name = "TP_INT_CAUSE",
4289 		.cause_reg = A_TP_INT_CAUSE,
4290 		.enable_reg = A_TP_INT_ENABLE,
4291 		.fatal = 0x7fffffff,
4292 		.flags = NONFATAL_IF_DISABLED,
4293 		.details = tp_intr_details,
4294 		.actions = NULL,
4295 	};
4296 
4297 	return (t4_handle_intr(adap, &tp_intr_info, 0, verbose));
4298 }
4299 
4300 /*
4301  * SGE interrupt handler.
4302  */
4303 static bool sge_intr_handler(struct adapter *adap, int arg, bool verbose)
4304 {
4305 	static const struct intr_info sge_int1_info = {
4306 		.name = "SGE_INT_CAUSE1",
4307 		.cause_reg = A_SGE_INT_CAUSE1,
4308 		.enable_reg = A_SGE_INT_ENABLE1,
4309 		.fatal = 0xffffffff,
4310 		.flags = NONFATAL_IF_DISABLED,
4311 		.details = NULL,
4312 		.actions = NULL,
4313 	};
4314 	static const struct intr_info sge_int2_info = {
4315 		.name = "SGE_INT_CAUSE2",
4316 		.cause_reg = A_SGE_INT_CAUSE2,
4317 		.enable_reg = A_SGE_INT_ENABLE2,
4318 		.fatal = 0xffffffff,
4319 		.flags = NONFATAL_IF_DISABLED,
4320 		.details = NULL,
4321 		.actions = NULL,
4322 	};
4323 	static const struct intr_details sge_int3_details[] = {
4324 		{ F_ERR_FLM_DBP,
4325 			"DBP pointer delivery for invalid context or QID" },
4326 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4327 			"Invalid QID or header request by IDMA" },
4328 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4329 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4330 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4331 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4332 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4333 		{ F_ERR_TIMER_ABOVE_MAX_QID,
4334 			"SGE GTS with timer 0-5 for IQID > 1023" },
4335 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4336 			"SGE received CPL exceeding IQE size" },
4337 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4338 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4339 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4340 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4341 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4342 		  "SGE IQID > 1023 received CPL for FL" },
4343 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4344 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4345 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4346 		{ F_ERR_ING_CTXT_PRIO,
4347 			"Ingress context manager priority user error" },
4348 		{ F_ERR_EGR_CTXT_PRIO,
4349 			"Egress context manager priority user error" },
4350 		{ F_DBFIFO_HP_INT, "High priority DB FIFO threshold reached" },
4351 		{ F_DBFIFO_LP_INT, "Low priority DB FIFO threshold reached" },
4352 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4353 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4354 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4355 		{ 0x0000000f, "SGE context access for invalid queue" },
4356 		{ 0 }
4357 	};
4358 	static const struct intr_details t6_sge_int3_details[] = {
4359 		{ F_ERR_FLM_DBP,
4360 			"DBP pointer delivery for invalid context or QID" },
4361 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4362 			"Invalid QID or header request by IDMA" },
4363 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4364 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4365 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4366 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4367 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4368 		{ F_ERR_TIMER_ABOVE_MAX_QID,
4369 			"SGE GTS with timer 0-5 for IQID > 1023" },
4370 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4371 			"SGE received CPL exceeding IQE size" },
4372 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4373 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4374 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4375 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4376 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4377 			"SGE IQID > 1023 received CPL for FL" },
4378 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4379 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4380 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4381 		{ F_ERR_ING_CTXT_PRIO,
4382 			"Ingress context manager priority user error" },
4383 		{ F_ERR_EGR_CTXT_PRIO,
4384 			"Egress context manager priority user error" },
4385 		{ F_DBP_TBUF_FULL, "SGE DBP tbuf full" },
4386 		{ F_FATAL_WRE_LEN,
4387 			"SGE WRE packet less than advertized length" },
4388 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4389 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4390 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4391 		{ 0x0000000f, "SGE context access for invalid queue" },
4392 		{ 0 }
4393 	};
4394 	struct intr_info sge_int3_info = {
4395 		.name = "SGE_INT_CAUSE3",
4396 		.cause_reg = A_SGE_INT_CAUSE3,
4397 		.enable_reg = A_SGE_INT_ENABLE3,
4398 		.fatal = F_ERR_CPL_EXCEED_IQE_SIZE,
4399 		.flags = 0,
4400 		.details = NULL,
4401 		.actions = NULL,
4402 	};
4403 	static const struct intr_info sge_int4_info = {
4404 		.name = "SGE_INT_CAUSE4",
4405 		.cause_reg = A_SGE_INT_CAUSE4,
4406 		.enable_reg = A_SGE_INT_ENABLE4,
4407 		.fatal = 0,
4408 		.flags = 0,
4409 		.details = NULL,
4410 		.actions = NULL,
4411 	};
4412 	static const struct intr_info sge_int5_info = {
4413 		.name = "SGE_INT_CAUSE5",
4414 		.cause_reg = A_SGE_INT_CAUSE5,
4415 		.enable_reg = A_SGE_INT_ENABLE5,
4416 		.fatal = 0xffffffff,
4417 		.flags = NONFATAL_IF_DISABLED,
4418 		.details = NULL,
4419 		.actions = NULL,
4420 	};
4421 	static const struct intr_info sge_int6_info = {
4422 		.name = "SGE_INT_CAUSE6",
4423 		.cause_reg = A_SGE_INT_CAUSE6,
4424 		.enable_reg = A_SGE_INT_ENABLE6,
4425 		.fatal = 0,
4426 		.flags = 0,
4427 		.details = NULL,
4428 		.actions = NULL,
4429 	};
4430 
4431 	bool fatal;
4432 	u32 v;
4433 
4434 	if (chip_id(adap) <= CHELSIO_T5) {
4435 		sge_int3_info.details = sge_int3_details;
4436 	} else {
4437 		sge_int3_info.details = t6_sge_int3_details;
4438 	}
4439 
4440 	fatal = false;
4441 	fatal |= t4_handle_intr(adap, &sge_int1_info, 0, verbose);
4442 	fatal |= t4_handle_intr(adap, &sge_int2_info, 0, verbose);
4443 	fatal |= t4_handle_intr(adap, &sge_int3_info, 0, verbose);
4444 	fatal |= t4_handle_intr(adap, &sge_int4_info, 0, verbose);
4445 	if (chip_id(adap) >= CHELSIO_T5)
4446 		fatal |= t4_handle_intr(adap, &sge_int5_info, 0, verbose);
4447 	if (chip_id(adap) >= CHELSIO_T6)
4448 		fatal |= t4_handle_intr(adap, &sge_int6_info, 0, verbose);
4449 
4450 	v = t4_read_reg(adap, A_SGE_ERROR_STATS);
4451 	if (v & F_ERROR_QID_VALID) {
4452 		CH_ERR(adap, "SGE error for QID %u\n", G_ERROR_QID(v));
4453 		if (v & F_UNCAPTURED_ERROR)
4454 			CH_ERR(adap, "SGE UNCAPTURED_ERROR set (clearing)\n");
4455 		t4_write_reg(adap, A_SGE_ERROR_STATS,
4456 		    F_ERROR_QID_VALID | F_UNCAPTURED_ERROR);
4457 	}
4458 
4459 	return (fatal);
4460 }
4461 
4462 /*
4463  * CIM interrupt handler.
4464  */
4465 static bool cim_intr_handler(struct adapter *adap, int arg, bool verbose)
4466 {
4467 	static const struct intr_action cim_host_intr_actions[] = {
4468 		{ F_TIMER0INT, 0, t4_os_dump_cimla },
4469 		{ 0 },
4470 	};
4471 	static const struct intr_details cim_host_intr_details[] = {
4472 		/* T6+ */
4473 		{ F_PCIE2CIMINTFPARERR, "CIM IBQ PCIe interface parity error" },
4474 
4475 		/* T5+ */
4476 		{ F_MA_CIM_INTFPERR, "MA2CIM interface parity error" },
4477 		{ F_PLCIM_MSTRSPDATAPARERR,
4478 			"PL2CIM master response data parity error" },
4479 		{ F_NCSI2CIMINTFPARERR, "CIM IBQ NC-SI interface parity error" },
4480 		{ F_SGE2CIMINTFPARERR, "CIM IBQ SGE interface parity error" },
4481 		{ F_ULP2CIMINTFPARERR, "CIM IBQ ULP_TX interface parity error" },
4482 		{ F_TP2CIMINTFPARERR, "CIM IBQ TP interface parity error" },
4483 		{ F_OBQSGERX1PARERR, "CIM OBQ SGE1_RX parity error" },
4484 		{ F_OBQSGERX0PARERR, "CIM OBQ SGE0_RX parity error" },
4485 
4486 		/* T4+ */
4487 		{ F_TIEQOUTPARERRINT, "CIM TIEQ outgoing FIFO parity error" },
4488 		{ F_TIEQINPARERRINT, "CIM TIEQ incoming FIFO parity error" },
4489 		{ F_MBHOSTPARERR, "CIM mailbox host read parity error" },
4490 		{ F_MBUPPARERR, "CIM mailbox uP parity error" },
4491 		{ F_IBQTP0PARERR, "CIM IBQ TP0 parity error" },
4492 		{ F_IBQTP1PARERR, "CIM IBQ TP1 parity error" },
4493 		{ F_IBQULPPARERR, "CIM IBQ ULP parity error" },
4494 		{ F_IBQSGELOPARERR, "CIM IBQ SGE_LO parity error" },
4495 		{ F_IBQSGEHIPARERR | F_IBQPCIEPARERR,	/* same bit */
4496 			"CIM IBQ PCIe/SGE_HI parity error" },
4497 		{ F_IBQNCSIPARERR, "CIM IBQ NC-SI parity error" },
4498 		{ F_OBQULP0PARERR, "CIM OBQ ULP0 parity error" },
4499 		{ F_OBQULP1PARERR, "CIM OBQ ULP1 parity error" },
4500 		{ F_OBQULP2PARERR, "CIM OBQ ULP2 parity error" },
4501 		{ F_OBQULP3PARERR, "CIM OBQ ULP3 parity error" },
4502 		{ F_OBQSGEPARERR, "CIM OBQ SGE parity error" },
4503 		{ F_OBQNCSIPARERR, "CIM OBQ NC-SI parity error" },
4504 		{ F_TIMER1INT, "CIM TIMER0 interrupt" },
4505 		{ F_TIMER0INT, "CIM TIMER0 interrupt" },
4506 		{ F_PREFDROPINT, "CIM control register prefetch drop" },
4507 		{ 0}
4508 	};
4509 	static const struct intr_info cim_host_intr_info = {
4510 		.name = "CIM_HOST_INT_CAUSE",
4511 		.cause_reg = A_CIM_HOST_INT_CAUSE,
4512 		.enable_reg = A_CIM_HOST_INT_ENABLE,
4513 		.fatal = 0x007fffe6,
4514 		.flags = NONFATAL_IF_DISABLED,
4515 		.details = cim_host_intr_details,
4516 		.actions = cim_host_intr_actions,
4517 	};
4518 	static const struct intr_details cim_host_upacc_intr_details[] = {
4519 		{ F_EEPROMWRINT, "CIM EEPROM came out of busy state" },
4520 		{ F_TIMEOUTMAINT, "CIM PIF MA timeout" },
4521 		{ F_TIMEOUTINT, "CIM PIF timeout" },
4522 		{ F_RSPOVRLOOKUPINT, "CIM response FIFO overwrite" },
4523 		{ F_REQOVRLOOKUPINT, "CIM request FIFO overwrite" },
4524 		{ F_BLKWRPLINT, "CIM block write to PL space" },
4525 		{ F_BLKRDPLINT, "CIM block read from PL space" },
4526 		{ F_SGLWRPLINT,
4527 			"CIM single write to PL space with illegal BEs" },
4528 		{ F_SGLRDPLINT,
4529 			"CIM single read from PL space with illegal BEs" },
4530 		{ F_BLKWRCTLINT, "CIM block write to CTL space" },
4531 		{ F_BLKRDCTLINT, "CIM block read from CTL space" },
4532 		{ F_SGLWRCTLINT,
4533 			"CIM single write to CTL space with illegal BEs" },
4534 		{ F_SGLRDCTLINT,
4535 			"CIM single read from CTL space with illegal BEs" },
4536 		{ F_BLKWREEPROMINT, "CIM block write to EEPROM space" },
4537 		{ F_BLKRDEEPROMINT, "CIM block read from EEPROM space" },
4538 		{ F_SGLWREEPROMINT,
4539 			"CIM single write to EEPROM space with illegal BEs" },
4540 		{ F_SGLRDEEPROMINT,
4541 			"CIM single read from EEPROM space with illegal BEs" },
4542 		{ F_BLKWRFLASHINT, "CIM block write to flash space" },
4543 		{ F_BLKRDFLASHINT, "CIM block read from flash space" },
4544 		{ F_SGLWRFLASHINT, "CIM single write to flash space" },
4545 		{ F_SGLRDFLASHINT,
4546 			"CIM single read from flash space with illegal BEs" },
4547 		{ F_BLKWRBOOTINT, "CIM block write to boot space" },
4548 		{ F_BLKRDBOOTINT, "CIM block read from boot space" },
4549 		{ F_SGLWRBOOTINT, "CIM single write to boot space" },
4550 		{ F_SGLRDBOOTINT,
4551 			"CIM single read from boot space with illegal BEs" },
4552 		{ F_ILLWRBEINT, "CIM illegal write BEs" },
4553 		{ F_ILLRDBEINT, "CIM illegal read BEs" },
4554 		{ F_ILLRDINT, "CIM illegal read" },
4555 		{ F_ILLWRINT, "CIM illegal write" },
4556 		{ F_ILLTRANSINT, "CIM illegal transaction" },
4557 		{ F_RSVDSPACEINT, "CIM reserved space access" },
4558 		{0}
4559 	};
4560 	static const struct intr_info cim_host_upacc_intr_info = {
4561 		.name = "CIM_HOST_UPACC_INT_CAUSE",
4562 		.cause_reg = A_CIM_HOST_UPACC_INT_CAUSE,
4563 		.enable_reg = A_CIM_HOST_UPACC_INT_ENABLE,
4564 		.fatal = 0x3fffeeff,
4565 		.flags = NONFATAL_IF_DISABLED,
4566 		.details = cim_host_upacc_intr_details,
4567 		.actions = NULL,
4568 	};
4569 	static const struct intr_info cim_pf_host_intr_info = {
4570 		.name = "CIM_PF_HOST_INT_CAUSE",
4571 		.cause_reg = MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4572 		.enable_reg = MYPF_REG(A_CIM_PF_HOST_INT_ENABLE),
4573 		.fatal = 0,
4574 		.flags = 0,
4575 		.details = NULL,
4576 		.actions = NULL,
4577 	};
4578 	u32 val, fw_err;
4579 	bool fatal;
4580 
4581 	fw_err = t4_read_reg(adap, A_PCIE_FW);
4582 	if (fw_err & F_PCIE_FW_ERR)
4583 		t4_report_fw_error(adap);
4584 
4585 	/*
4586 	 * When the Firmware detects an internal error which normally wouldn't
4587 	 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4588 	 * to make sure the Host sees the Firmware Crash.  So if we have a
4589 	 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4590 	 * interrupt.
4591 	 */
4592 	val = t4_read_reg(adap, A_CIM_HOST_INT_CAUSE);
4593 	if (val & F_TIMER0INT && (!(fw_err & F_PCIE_FW_ERR) ||
4594 	    G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH)) {
4595 		t4_write_reg(adap, A_CIM_HOST_INT_CAUSE, F_TIMER0INT);
4596 	}
4597 
4598 	fatal = false;
4599 	fatal |= t4_handle_intr(adap, &cim_host_intr_info, 0, verbose);
4600 	fatal |= t4_handle_intr(adap, &cim_host_upacc_intr_info, 0, verbose);
4601 	fatal |= t4_handle_intr(adap, &cim_pf_host_intr_info, 0, verbose);
4602 
4603 	return (fatal);
4604 }
4605 
4606 /*
4607  * ULP RX interrupt handler.
4608  */
4609 static bool ulprx_intr_handler(struct adapter *adap, int arg, bool verbose)
4610 {
4611 	static const struct intr_details ulprx_intr_details[] = {
4612 		/* T5+ */
4613 		{ F_SE_CNT_MISMATCH_1, "ULPRX SE count mismatch in channel 1" },
4614 		{ F_SE_CNT_MISMATCH_0, "ULPRX SE count mismatch in channel 0" },
4615 
4616 		/* T4+ */
4617 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error" },
4618 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error" },
4619 		{ 0x007fffff, "ULPRX parity error" },
4620 		{ 0 }
4621 	};
4622 	static const struct intr_info ulprx_intr_info = {
4623 		.name = "ULP_RX_INT_CAUSE",
4624 		.cause_reg = A_ULP_RX_INT_CAUSE,
4625 		.enable_reg = A_ULP_RX_INT_ENABLE,
4626 		.fatal = 0x07ffffff,
4627 		.flags = NONFATAL_IF_DISABLED,
4628 		.details = ulprx_intr_details,
4629 		.actions = NULL,
4630 	};
4631 	static const struct intr_info ulprx_intr2_info = {
4632 		.name = "ULP_RX_INT_CAUSE_2",
4633 		.cause_reg = A_ULP_RX_INT_CAUSE_2,
4634 		.enable_reg = A_ULP_RX_INT_ENABLE_2,
4635 		.fatal = 0,
4636 		.flags = 0,
4637 		.details = NULL,
4638 		.actions = NULL,
4639 	};
4640 	bool fatal = false;
4641 
4642 	fatal |= t4_handle_intr(adap, &ulprx_intr_info, 0, verbose);
4643 	fatal |= t4_handle_intr(adap, &ulprx_intr2_info, 0, verbose);
4644 
4645 	return (fatal);
4646 }
4647 
4648 /*
4649  * ULP TX interrupt handler.
4650  */
4651 static bool ulptx_intr_handler(struct adapter *adap, int arg, bool verbose)
4652 {
4653 	static const struct intr_details ulptx_intr_details[] = {
4654 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds" },
4655 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds" },
4656 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds" },
4657 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds" },
4658 		{ 0x0fffffff, "ULPTX parity error" },
4659 		{ 0 }
4660 	};
4661 	static const struct intr_info ulptx_intr_info = {
4662 		.name = "ULP_TX_INT_CAUSE",
4663 		.cause_reg = A_ULP_TX_INT_CAUSE,
4664 		.enable_reg = A_ULP_TX_INT_ENABLE,
4665 		.fatal = 0x0fffffff,
4666 		.flags = NONFATAL_IF_DISABLED,
4667 		.details = ulptx_intr_details,
4668 		.actions = NULL,
4669 	};
4670 	static const struct intr_info ulptx_intr2_info = {
4671 		.name = "ULP_TX_INT_CAUSE_2",
4672 		.cause_reg = A_ULP_TX_INT_CAUSE_2,
4673 		.enable_reg = A_ULP_TX_INT_ENABLE_2,
4674 		.fatal = 0xf0,
4675 		.flags = NONFATAL_IF_DISABLED,
4676 		.details = NULL,
4677 		.actions = NULL,
4678 	};
4679 	bool fatal = false;
4680 
4681 	fatal |= t4_handle_intr(adap, &ulptx_intr_info, 0, verbose);
4682 	fatal |= t4_handle_intr(adap, &ulptx_intr2_info, 0, verbose);
4683 
4684 	return (fatal);
4685 }
4686 
4687 static bool pmtx_dump_dbg_stats(struct adapter *adap, int arg, bool verbose)
4688 {
4689 	int i;
4690 	u32 data[17];
4691 
4692 	t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, &data[0],
4693 	    ARRAY_SIZE(data), A_PM_TX_DBG_STAT0);
4694 	for (i = 0; i < ARRAY_SIZE(data); i++) {
4695 		CH_ALERT(adap, "  - PM_TX_DBG_STAT%u (0x%x) = 0x%08x\n", i,
4696 		    A_PM_TX_DBG_STAT0 + i, data[i]);
4697 	}
4698 
4699 	return (false);
4700 }
4701 
4702 /*
4703  * PM TX interrupt handler.
4704  */
4705 static bool pmtx_intr_handler(struct adapter *adap, int arg, bool verbose)
4706 {
4707 	static const struct intr_action pmtx_intr_actions[] = {
4708 		{ 0xffffffff, 0, pmtx_dump_dbg_stats },
4709 		{ 0 },
4710 	};
4711 	static const struct intr_details pmtx_intr_details[] = {
4712 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large" },
4713 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large" },
4714 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large" },
4715 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd" },
4716 		{ 0x0f000000, "PMTX icspi FIFO2X Rx framing error" },
4717 		{ 0x00f00000, "PMTX icspi FIFO Rx framing error" },
4718 		{ 0x000f0000, "PMTX icspi FIFO Tx framing error" },
4719 		{ 0x0000f000, "PMTX oespi FIFO Rx framing error" },
4720 		{ 0x00000f00, "PMTX oespi FIFO Tx framing error" },
4721 		{ 0x000000f0, "PMTX oespi FIFO2X Tx framing error" },
4722 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error" },
4723 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error" },
4724 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error" },
4725 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error" },
4726 		{ 0 }
4727 	};
4728 	static const struct intr_info pmtx_intr_info = {
4729 		.name = "PM_TX_INT_CAUSE",
4730 		.cause_reg = A_PM_TX_INT_CAUSE,
4731 		.enable_reg = A_PM_TX_INT_ENABLE,
4732 		.fatal = 0xffffffff,
4733 		.flags = 0,
4734 		.details = pmtx_intr_details,
4735 		.actions = pmtx_intr_actions,
4736 	};
4737 
4738 	return (t4_handle_intr(adap, &pmtx_intr_info, 0, verbose));
4739 }
4740 
4741 /*
4742  * PM RX interrupt handler.
4743  */
4744 static bool pmrx_intr_handler(struct adapter *adap, int arg, bool verbose)
4745 {
4746 	static const struct intr_details pmrx_intr_details[] = {
4747 		/* T6+ */
4748 		{ 0x18000000, "PMRX ospi overflow" },
4749 		{ F_MA_INTF_SDC_ERR, "PMRX MA interface SDC parity error" },
4750 		{ F_BUNDLE_LEN_PARERR, "PMRX bundle len FIFO parity error" },
4751 		{ F_BUNDLE_LEN_OVFL, "PMRX bundle len FIFO overflow" },
4752 		{ F_SDC_ERR, "PMRX SDC error" },
4753 
4754 		/* T4+ */
4755 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd" },
4756 		{ 0x003c0000, "PMRX iespi FIFO2X Rx framing error" },
4757 		{ 0x0003c000, "PMRX iespi Rx framing error" },
4758 		{ 0x00003c00, "PMRX iespi Tx framing error" },
4759 		{ 0x00000300, "PMRX ocspi Rx framing error" },
4760 		{ 0x000000c0, "PMRX ocspi Tx framing error" },
4761 		{ 0x00000030, "PMRX ocspi FIFO2X Tx framing error" },
4762 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error" },
4763 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error" },
4764 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error" },
4765 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error"},
4766 		{ 0 }
4767 	};
4768 	static const struct intr_info pmrx_intr_info = {
4769 		.name = "PM_RX_INT_CAUSE",
4770 		.cause_reg = A_PM_RX_INT_CAUSE,
4771 		.enable_reg = A_PM_RX_INT_ENABLE,
4772 		.fatal = 0x1fffffff,
4773 		.flags = NONFATAL_IF_DISABLED,
4774 		.details = pmrx_intr_details,
4775 		.actions = NULL,
4776 	};
4777 
4778 	return (t4_handle_intr(adap, &pmrx_intr_info, 0, verbose));
4779 }
4780 
4781 /*
4782  * CPL switch interrupt handler.
4783  */
4784 static bool cplsw_intr_handler(struct adapter *adap, int arg, bool verbose)
4785 {
4786 	static const struct intr_details cplsw_intr_details[] = {
4787 		/* T5+ */
4788 		{ F_PERR_CPL_128TO128_1, "CPLSW 128TO128 FIFO1 parity error" },
4789 		{ F_PERR_CPL_128TO128_0, "CPLSW 128TO128 FIFO0 parity error" },
4790 
4791 		/* T4+ */
4792 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error" },
4793 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow" },
4794 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error" },
4795 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error" },
4796 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error" },
4797 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error" },
4798 		{ 0 }
4799 	};
4800 	static const struct intr_info cplsw_intr_info = {
4801 		.name = "CPL_INTR_CAUSE",
4802 		.cause_reg = A_CPL_INTR_CAUSE,
4803 		.enable_reg = A_CPL_INTR_ENABLE,
4804 		.fatal = 0xff,
4805 		.flags = NONFATAL_IF_DISABLED,
4806 		.details = cplsw_intr_details,
4807 		.actions = NULL,
4808 	};
4809 
4810 	return (t4_handle_intr(adap, &cplsw_intr_info, 0, verbose));
4811 }
4812 
4813 #define T4_LE_FATAL_MASK (F_PARITYERR | F_UNKNOWNCMD | F_REQQPARERR)
4814 #define T5_LE_FATAL_MASK (T4_LE_FATAL_MASK | F_VFPARERR)
4815 #define T6_LE_PERRCRC_MASK (F_PIPELINEERR | F_CLIPTCAMACCFAIL | \
4816     F_SRVSRAMACCFAIL | F_CLCAMCRCPARERR | F_CLCAMINTPERR | F_SSRAMINTPERR | \
4817     F_SRVSRAMPERR | F_VFSRAMPERR | F_TCAMINTPERR | F_TCAMCRCERR | \
4818     F_HASHTBLMEMACCERR | F_MAIFWRINTPERR | F_HASHTBLMEMCRCERR)
4819 #define T6_LE_FATAL_MASK (T6_LE_PERRCRC_MASK | F_T6_UNKNOWNCMD | \
4820     F_TCAMACCFAIL | F_HASHTBLACCFAIL | F_CMDTIDERR | F_CMDPRSRINTERR | \
4821     F_TOTCNTERR | F_CLCAMFIFOERR | F_CLIPSUBERR)
4822 
4823 /*
4824  * LE interrupt handler.
4825  */
4826 static bool le_intr_handler(struct adapter *adap, int arg, bool verbose)
4827 {
4828 	static const struct intr_details le_intr_details[] = {
4829 		{ F_REQQPARERR, "LE request queue parity error" },
4830 		{ F_UNKNOWNCMD, "LE unknown command" },
4831 		{ F_ACTRGNFULL, "LE active region full" },
4832 		{ F_PARITYERR, "LE parity error" },
4833 		{ F_LIPMISS, "LE LIP miss" },
4834 		{ F_LIP0, "LE 0 LIP error" },
4835 		{ 0 }
4836 	};
4837 	static const struct intr_details t6_le_intr_details[] = {
4838 		{ F_CLIPSUBERR, "LE CLIP CAM reverse substitution error" },
4839 		{ F_CLCAMFIFOERR, "LE CLIP CAM internal FIFO error" },
4840 		{ F_CTCAMINVLDENT, "Invalid IPv6 CLIP TCAM entry" },
4841 		{ F_TCAMINVLDENT, "Invalid IPv6 TCAM entry" },
4842 		{ F_TOTCNTERR, "LE total active < TCAM count" },
4843 		{ F_CMDPRSRINTERR, "LE internal error in parser" },
4844 		{ F_CMDTIDERR, "Incorrect tid in LE command" },
4845 		{ F_T6_ACTRGNFULL, "LE active region full" },
4846 		{ F_T6_ACTCNTIPV6TZERO, "LE IPv6 active open TCAM counter -ve" },
4847 		{ F_T6_ACTCNTIPV4TZERO, "LE IPv4 active open TCAM counter -ve" },
4848 		{ F_T6_ACTCNTIPV6ZERO, "LE IPv6 active open counter -ve" },
4849 		{ F_T6_ACTCNTIPV4ZERO, "LE IPv4 active open counter -ve" },
4850 		{ F_HASHTBLACCFAIL, "Hash table read error (proto conflict)" },
4851 		{ F_TCAMACCFAIL, "LE TCAM access failure" },
4852 		{ F_T6_UNKNOWNCMD, "LE unknown command" },
4853 		{ F_T6_LIP0, "LE found 0 LIP during CLIP substitution" },
4854 		{ F_T6_LIPMISS, "LE CLIP lookup miss" },
4855 		{ T6_LE_PERRCRC_MASK, "LE parity/CRC error" },
4856 		{ 0 }
4857 	};
4858 	struct intr_info le_intr_info = {
4859 		.name = "LE_DB_INT_CAUSE",
4860 		.cause_reg = A_LE_DB_INT_CAUSE,
4861 		.enable_reg = A_LE_DB_INT_ENABLE,
4862 		.fatal = 0,
4863 		.flags = NONFATAL_IF_DISABLED,
4864 		.details = NULL,
4865 		.actions = NULL,
4866 	};
4867 
4868 	if (chip_id(adap) <= CHELSIO_T5) {
4869 		le_intr_info.details = le_intr_details;
4870 		le_intr_info.fatal = T5_LE_FATAL_MASK;
4871 	} else {
4872 		le_intr_info.details = t6_le_intr_details;
4873 		le_intr_info.fatal = T6_LE_FATAL_MASK;
4874 	}
4875 
4876 	return (t4_handle_intr(adap, &le_intr_info, 0, verbose));
4877 }
4878 
4879 /*
4880  * MPS interrupt handler.
4881  */
4882 static bool mps_intr_handler(struct adapter *adap, int arg, bool verbose)
4883 {
4884 	static const struct intr_details mps_rx_perr_intr_details[] = {
4885 		{ 0xffffffff, "MPS Rx parity error" },
4886 		{ 0 }
4887 	};
4888 	static const struct intr_info mps_rx_perr_intr_info = {
4889 		.name = "MPS_RX_PERR_INT_CAUSE",
4890 		.cause_reg = A_MPS_RX_PERR_INT_CAUSE,
4891 		.enable_reg = A_MPS_RX_PERR_INT_ENABLE,
4892 		.fatal = 0xffffffff,
4893 		.flags = NONFATAL_IF_DISABLED,
4894 		.details = mps_rx_perr_intr_details,
4895 		.actions = NULL,
4896 	};
4897 	static const struct intr_details mps_tx_intr_details[] = {
4898 		{ F_PORTERR, "MPS Tx destination port is disabled" },
4899 		{ F_FRMERR, "MPS Tx framing error" },
4900 		{ F_SECNTERR, "MPS Tx SOP/EOP error" },
4901 		{ F_BUBBLE, "MPS Tx underflow" },
4902 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error" },
4903 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error" },
4904 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error" },
4905 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error" },
4906 		{ 0 }
4907 	};
4908 	static const struct intr_info mps_tx_intr_info = {
4909 		.name = "MPS_TX_INT_CAUSE",
4910 		.cause_reg = A_MPS_TX_INT_CAUSE,
4911 		.enable_reg = A_MPS_TX_INT_ENABLE,
4912 		.fatal = 0x1ffff,
4913 		.flags = NONFATAL_IF_DISABLED,
4914 		.details = mps_tx_intr_details,
4915 		.actions = NULL,
4916 	};
4917 	static const struct intr_details mps_trc_intr_details[] = {
4918 		{ F_MISCPERR, "MPS TRC misc parity error" },
4919 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error" },
4920 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error" },
4921 		{ 0 }
4922 	};
4923 	static const struct intr_info mps_trc_intr_info = {
4924 		.name = "MPS_TRC_INT_CAUSE",
4925 		.cause_reg = A_MPS_TRC_INT_CAUSE,
4926 		.enable_reg = A_MPS_TRC_INT_ENABLE,
4927 		.fatal = F_MISCPERR | V_PKTFIFO(M_PKTFIFO) | V_FILTMEM(M_FILTMEM),
4928 		.flags = 0,
4929 		.details = mps_trc_intr_details,
4930 		.actions = NULL,
4931 	};
4932 	static const struct intr_details mps_stat_sram_intr_details[] = {
4933 		{ 0xffffffff, "MPS statistics SRAM parity error" },
4934 		{ 0 }
4935 	};
4936 	static const struct intr_info mps_stat_sram_intr_info = {
4937 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM",
4938 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4939 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM,
4940 		.fatal = 0x1fffffff,
4941 		.flags = NONFATAL_IF_DISABLED,
4942 		.details = mps_stat_sram_intr_details,
4943 		.actions = NULL,
4944 	};
4945 	static const struct intr_details mps_stat_tx_intr_details[] = {
4946 		{ 0xffffff, "MPS statistics Tx FIFO parity error" },
4947 		{ 0 }
4948 	};
4949 	static const struct intr_info mps_stat_tx_intr_info = {
4950 		.name = "MPS_STAT_PERR_INT_CAUSE_TX_FIFO",
4951 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4952 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_TX_FIFO,
4953 		.fatal =  0xffffff,
4954 		.flags = NONFATAL_IF_DISABLED,
4955 		.details = mps_stat_tx_intr_details,
4956 		.actions = NULL,
4957 	};
4958 	static const struct intr_details mps_stat_rx_intr_details[] = {
4959 		{ 0xffffff, "MPS statistics Rx FIFO parity error" },
4960 		{ 0 }
4961 	};
4962 	static const struct intr_info mps_stat_rx_intr_info = {
4963 		.name = "MPS_STAT_PERR_INT_CAUSE_RX_FIFO",
4964 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4965 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_RX_FIFO,
4966 		.fatal =  0xffffff,
4967 		.flags = 0,
4968 		.details = mps_stat_rx_intr_details,
4969 		.actions = NULL,
4970 	};
4971 	static const struct intr_details mps_cls_intr_details[] = {
4972 		{ F_HASHSRAM, "MPS hash SRAM parity error" },
4973 		{ F_MATCHTCAM, "MPS match TCAM parity error" },
4974 		{ F_MATCHSRAM, "MPS match SRAM parity error" },
4975 		{ 0 }
4976 	};
4977 	static const struct intr_info mps_cls_intr_info = {
4978 		.name = "MPS_CLS_INT_CAUSE",
4979 		.cause_reg = A_MPS_CLS_INT_CAUSE,
4980 		.enable_reg = A_MPS_CLS_INT_ENABLE,
4981 		.fatal =  F_MATCHSRAM | F_MATCHTCAM | F_HASHSRAM,
4982 		.flags = 0,
4983 		.details = mps_cls_intr_details,
4984 		.actions = NULL,
4985 	};
4986 	static const struct intr_details mps_stat_sram1_intr_details[] = {
4987 		{ 0xff, "MPS statistics SRAM1 parity error" },
4988 		{ 0 }
4989 	};
4990 	static const struct intr_info mps_stat_sram1_intr_info = {
4991 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM1",
4992 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM1,
4993 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM1,
4994 		.fatal = 0xff,
4995 		.flags = 0,
4996 		.details = mps_stat_sram1_intr_details,
4997 		.actions = NULL,
4998 	};
4999 
5000 	bool fatal;
5001 
5002 	fatal = false;
5003 	fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info, 0, verbose);
5004 	fatal |= t4_handle_intr(adap, &mps_tx_intr_info, 0, verbose);
5005 	fatal |= t4_handle_intr(adap, &mps_trc_intr_info, 0, verbose);
5006 	fatal |= t4_handle_intr(adap, &mps_stat_sram_intr_info, 0, verbose);
5007 	fatal |= t4_handle_intr(adap, &mps_stat_tx_intr_info, 0, verbose);
5008 	fatal |= t4_handle_intr(adap, &mps_stat_rx_intr_info, 0, verbose);
5009 	fatal |= t4_handle_intr(adap, &mps_cls_intr_info, 0, verbose);
5010 	if (chip_id(adap) > CHELSIO_T4) {
5011 		fatal |= t4_handle_intr(adap, &mps_stat_sram1_intr_info, 0,
5012 		    verbose);
5013 	}
5014 
5015 	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
5016 	t4_read_reg(adap, A_MPS_INT_CAUSE);	/* flush */
5017 
5018 	return (fatal);
5019 
5020 }
5021 
5022 /*
5023  * EDC/MC interrupt handler.
5024  */
5025 static bool mem_intr_handler(struct adapter *adap, int idx, bool verbose)
5026 {
5027 	static const char name[4][5] = { "EDC0", "EDC1", "MC0", "MC1" };
5028 	unsigned int count_reg, v;
5029 	static const struct intr_details mem_intr_details[] = {
5030 		{ F_ECC_UE_INT_CAUSE, "Uncorrectable ECC data error(s)" },
5031 		{ F_ECC_CE_INT_CAUSE, "Correctable ECC data error(s)" },
5032 		{ F_PERR_INT_CAUSE, "FIFO parity error" },
5033 		{ 0 }
5034 	};
5035 	struct intr_info ii = {
5036 		.fatal = F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE,
5037 		.details = mem_intr_details,
5038 		.flags = 0,
5039 		.actions = NULL,
5040 	};
5041 	bool fatal;
5042 
5043 	switch (idx) {
5044 	case MEM_EDC0:
5045 		ii.name = "EDC0_INT_CAUSE";
5046 		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 0);
5047 		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 0);
5048 		count_reg = EDC_REG(A_EDC_ECC_STATUS, 0);
5049 		break;
5050 	case MEM_EDC1:
5051 		ii.name = "EDC1_INT_CAUSE";
5052 		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 1);
5053 		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 1);
5054 		count_reg = EDC_REG(A_EDC_ECC_STATUS, 1);
5055 		break;
5056 	case MEM_MC0:
5057 		ii.name = "MC0_INT_CAUSE";
5058 		if (is_t4(adap)) {
5059 			ii.cause_reg = A_MC_INT_CAUSE;
5060 			ii.enable_reg = A_MC_INT_ENABLE;
5061 			count_reg = A_MC_ECC_STATUS;
5062 		} else {
5063 			ii.cause_reg = A_MC_P_INT_CAUSE;
5064 			ii.enable_reg = A_MC_P_INT_ENABLE;
5065 			count_reg = A_MC_P_ECC_STATUS;
5066 		}
5067 		break;
5068 	case MEM_MC1:
5069 		ii.name = "MC1_INT_CAUSE";
5070 		ii.cause_reg = MC_REG(A_MC_P_INT_CAUSE, 1);
5071 		ii.enable_reg = MC_REG(A_MC_P_INT_ENABLE, 1);
5072 		count_reg = MC_REG(A_MC_P_ECC_STATUS, 1);
5073 		break;
5074 	}
5075 
5076 	fatal = t4_handle_intr(adap, &ii, 0, verbose);
5077 
5078 	v = t4_read_reg(adap, count_reg);
5079 	if (v != 0) {
5080 		if (G_ECC_UECNT(v) != 0) {
5081 			CH_ALERT(adap,
5082 			    "%s: %u uncorrectable ECC data error(s)\n",
5083 			    name[idx], G_ECC_UECNT(v));
5084 		}
5085 		if (G_ECC_CECNT(v) != 0) {
5086 			if (idx <= MEM_EDC1)
5087 				t4_edc_err_read(adap, idx);
5088 			CH_WARN_RATELIMIT(adap,
5089 			    "%s: %u correctable ECC data error(s)\n",
5090 			    name[idx], G_ECC_CECNT(v));
5091 		}
5092 		t4_write_reg(adap, count_reg, 0xffffffff);
5093 	}
5094 
5095 	return (fatal);
5096 }
5097 
5098 static bool ma_wrap_status(struct adapter *adap, int arg, bool verbose)
5099 {
5100 	u32 v;
5101 
5102 	v = t4_read_reg(adap, A_MA_INT_WRAP_STATUS);
5103 	CH_ALERT(adap,
5104 	    "MA address wrap-around error by client %u to address %#x\n",
5105 	    G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4);
5106 	t4_write_reg(adap, A_MA_INT_WRAP_STATUS, v);
5107 
5108 	return (false);
5109 }
5110 
5111 
5112 /*
5113  * MA interrupt handler.
5114  */
5115 static bool ma_intr_handler(struct adapter *adap, int arg, bool verbose)
5116 {
5117 	static const struct intr_action ma_intr_actions[] = {
5118 		{ F_MEM_WRAP_INT_CAUSE, 0, ma_wrap_status },
5119 		{ 0 },
5120 	};
5121 	static const struct intr_info ma_intr_info = {
5122 		.name = "MA_INT_CAUSE",
5123 		.cause_reg = A_MA_INT_CAUSE,
5124 		.enable_reg = A_MA_INT_ENABLE,
5125 		.fatal = F_MEM_PERR_INT_CAUSE | F_MEM_TO_INT_CAUSE,
5126 		.flags = NONFATAL_IF_DISABLED,
5127 		.details = NULL,
5128 		.actions = ma_intr_actions,
5129 	};
5130 	static const struct intr_info ma_perr_status1 = {
5131 		.name = "MA_PARITY_ERROR_STATUS1",
5132 		.cause_reg = A_MA_PARITY_ERROR_STATUS1,
5133 		.enable_reg = A_MA_PARITY_ERROR_ENABLE1,
5134 		.fatal = 0xffffffff,
5135 		.flags = 0,
5136 		.details = NULL,
5137 		.actions = NULL,
5138 	};
5139 	static const struct intr_info ma_perr_status2 = {
5140 		.name = "MA_PARITY_ERROR_STATUS2",
5141 		.cause_reg = A_MA_PARITY_ERROR_STATUS2,
5142 		.enable_reg = A_MA_PARITY_ERROR_ENABLE2,
5143 		.fatal = 0xffffffff,
5144 		.flags = 0,
5145 		.details = NULL,
5146 		.actions = NULL,
5147 	};
5148 	bool fatal;
5149 
5150 	fatal = false;
5151 	fatal |= t4_handle_intr(adap, &ma_intr_info, 0, verbose);
5152 	fatal |= t4_handle_intr(adap, &ma_perr_status1, 0, verbose);
5153 	if (chip_id(adap) > CHELSIO_T4)
5154 		fatal |= t4_handle_intr(adap, &ma_perr_status2, 0, verbose);
5155 
5156 	return (fatal);
5157 }
5158 
5159 /*
5160  * SMB interrupt handler.
5161  */
5162 static bool smb_intr_handler(struct adapter *adap, int arg, bool verbose)
5163 {
5164 	static const struct intr_details smb_intr_details[] = {
5165 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error" },
5166 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error" },
5167 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error" },
5168 		{ 0 }
5169 	};
5170 	static const struct intr_info smb_intr_info = {
5171 		.name = "SMB_INT_CAUSE",
5172 		.cause_reg = A_SMB_INT_CAUSE,
5173 		.enable_reg = A_SMB_INT_ENABLE,
5174 		.fatal = F_SLVFIFOPARINT | F_MSTRXFIFOPARINT | F_MSTTXFIFOPARINT,
5175 		.flags = 0,
5176 		.details = smb_intr_details,
5177 		.actions = NULL,
5178 	};
5179 
5180 	return (t4_handle_intr(adap, &smb_intr_info, 0, verbose));
5181 }
5182 
5183 /*
5184  * NC-SI interrupt handler.
5185  */
5186 static bool ncsi_intr_handler(struct adapter *adap, int arg, bool verbose)
5187 {
5188 	static const struct intr_details ncsi_intr_details[] = {
5189 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error" },
5190 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error" },
5191 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error" },
5192 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error" },
5193 		{ 0 }
5194 	};
5195 	static const struct intr_info ncsi_intr_info = {
5196 		.name = "NCSI_INT_CAUSE",
5197 		.cause_reg = A_NCSI_INT_CAUSE,
5198 		.enable_reg = A_NCSI_INT_ENABLE,
5199 		.fatal = F_RXFIFO_PRTY_ERR | F_TXFIFO_PRTY_ERR |
5200 		    F_MPS_DM_PRTY_ERR | F_CIM_DM_PRTY_ERR,
5201 		.flags = 0,
5202 		.details = ncsi_intr_details,
5203 		.actions = NULL,
5204 	};
5205 
5206 	return (t4_handle_intr(adap, &ncsi_intr_info, 0, verbose));
5207 }
5208 
5209 /*
5210  * MAC interrupt handler.
5211  */
5212 static bool mac_intr_handler(struct adapter *adap, int port, bool verbose)
5213 {
5214 	static const struct intr_details mac_intr_details[] = {
5215 		{ F_TXFIFO_PRTY_ERR, "MAC Tx FIFO parity error" },
5216 		{ F_RXFIFO_PRTY_ERR, "MAC Rx FIFO parity error" },
5217 		{ 0 }
5218 	};
5219 	char name[32];
5220 	struct intr_info ii;
5221 	bool fatal = false;
5222 
5223 	if (is_t4(adap)) {
5224 		snprintf(name, sizeof(name), "XGMAC_PORT%u_INT_CAUSE", port);
5225 		ii.name = &name[0];
5226 		ii.cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
5227 		ii.enable_reg = PORT_REG(port, A_XGMAC_PORT_INT_EN);
5228 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5229 		ii.flags = 0;
5230 		ii.details = mac_intr_details;
5231 		ii.actions = NULL;
5232 	} else {
5233 		snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port);
5234 		ii.name = &name[0];
5235 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
5236 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_INT_EN);
5237 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5238 		ii.flags = 0;
5239 		ii.details = mac_intr_details;
5240 		ii.actions = NULL;
5241 	}
5242 	fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5243 
5244 	if (chip_id(adap) >= CHELSIO_T5) {
5245 		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE", port);
5246 		ii.name = &name[0];
5247 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE);
5248 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN);
5249 		ii.fatal = 0;
5250 		ii.flags = 0;
5251 		ii.details = NULL;
5252 		ii.actions = NULL;
5253 		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5254 	}
5255 
5256 	if (chip_id(adap) >= CHELSIO_T6) {
5257 		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE_100G", port);
5258 		ii.name = &name[0];
5259 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE_100G);
5260 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN_100G);
5261 		ii.fatal = 0;
5262 		ii.flags = 0;
5263 		ii.details = NULL;
5264 		ii.actions = NULL;
5265 		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5266 	}
5267 
5268 	return (fatal);
5269 }
5270 
5271 static bool plpl_intr_handler(struct adapter *adap, int arg, bool verbose)
5272 {
5273 	static const struct intr_details plpl_intr_details[] = {
5274 		{ F_FATALPERR, "Fatal parity error" },
5275 		{ F_PERRVFID, "VFID_MAP parity error" },
5276 		{ 0 }
5277 	};
5278 	static const struct intr_info plpl_intr_info = {
5279 		.name = "PL_PL_INT_CAUSE",
5280 		.cause_reg = A_PL_PL_INT_CAUSE,
5281 		.enable_reg = A_PL_PL_INT_ENABLE,
5282 		.fatal = F_FATALPERR | F_PERRVFID,
5283 		.flags = NONFATAL_IF_DISABLED,
5284 		.details = plpl_intr_details,
5285 		.actions = NULL,
5286 	};
5287 
5288 	return (t4_handle_intr(adap, &plpl_intr_info, 0, verbose));
5289 }
5290 
5291 /**
5292  *	t4_slow_intr_handler - control path interrupt handler
5293  *	@adap: the adapter
5294  *	@verbose: increased verbosity, for debug
5295  *
5296  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
5297  *	The designation 'slow' is because it involves register reads, while
5298  *	data interrupts typically don't involve any MMIOs.
5299  */
5300 int t4_slow_intr_handler(struct adapter *adap, bool verbose)
5301 {
5302 	static const struct intr_details pl_intr_details[] = {
5303 		{ F_MC1, "MC1" },
5304 		{ F_UART, "UART" },
5305 		{ F_ULP_TX, "ULP TX" },
5306 		{ F_SGE, "SGE" },
5307 		{ F_HMA, "HMA" },
5308 		{ F_CPL_SWITCH, "CPL Switch" },
5309 		{ F_ULP_RX, "ULP RX" },
5310 		{ F_PM_RX, "PM RX" },
5311 		{ F_PM_TX, "PM TX" },
5312 		{ F_MA, "MA" },
5313 		{ F_TP, "TP" },
5314 		{ F_LE, "LE" },
5315 		{ F_EDC1, "EDC1" },
5316 		{ F_EDC0, "EDC0" },
5317 		{ F_MC, "MC0" },
5318 		{ F_PCIE, "PCIE" },
5319 		{ F_PMU, "PMU" },
5320 		{ F_MAC3, "MAC3" },
5321 		{ F_MAC2, "MAC2" },
5322 		{ F_MAC1, "MAC1" },
5323 		{ F_MAC0, "MAC0" },
5324 		{ F_SMB, "SMB" },
5325 		{ F_SF, "SF" },
5326 		{ F_PL, "PL" },
5327 		{ F_NCSI, "NC-SI" },
5328 		{ F_MPS, "MPS" },
5329 		{ F_MI, "MI" },
5330 		{ F_DBG, "DBG" },
5331 		{ F_I2CM, "I2CM" },
5332 		{ F_CIM, "CIM" },
5333 		{ 0 }
5334 	};
5335 	static const struct intr_info pl_perr_cause = {
5336 		.name = "PL_PERR_CAUSE",
5337 		.cause_reg = A_PL_PERR_CAUSE,
5338 		.enable_reg = A_PL_PERR_ENABLE,
5339 		.fatal = 0xffffffff,
5340 		.flags = 0,
5341 		.details = pl_intr_details,
5342 		.actions = NULL,
5343 	};
5344 	static const struct intr_action pl_intr_action[] = {
5345 		{ F_MC1, MEM_MC1, mem_intr_handler },
5346 		{ F_ULP_TX, -1, ulptx_intr_handler },
5347 		{ F_SGE, -1, sge_intr_handler },
5348 		{ F_CPL_SWITCH, -1, cplsw_intr_handler },
5349 		{ F_ULP_RX, -1, ulprx_intr_handler },
5350 		{ F_PM_RX, -1, pmrx_intr_handler},
5351 		{ F_PM_TX, -1, pmtx_intr_handler},
5352 		{ F_MA, -1, ma_intr_handler },
5353 		{ F_TP, -1, tp_intr_handler },
5354 		{ F_LE, -1, le_intr_handler },
5355 		{ F_EDC1, MEM_EDC1, mem_intr_handler },
5356 		{ F_EDC0, MEM_EDC0, mem_intr_handler },
5357 		{ F_MC0, MEM_MC0, mem_intr_handler },
5358 		{ F_PCIE, -1, pcie_intr_handler },
5359 		{ F_MAC3, 3, mac_intr_handler},
5360 		{ F_MAC2, 2, mac_intr_handler},
5361 		{ F_MAC1, 1, mac_intr_handler},
5362 		{ F_MAC0, 0, mac_intr_handler},
5363 		{ F_SMB, -1, smb_intr_handler},
5364 		{ F_PL, -1, plpl_intr_handler },
5365 		{ F_NCSI, -1, ncsi_intr_handler},
5366 		{ F_MPS, -1, mps_intr_handler },
5367 		{ F_CIM, -1, cim_intr_handler },
5368 		{ 0 }
5369 	};
5370 	static const struct intr_info pl_intr_info = {
5371 		.name = "PL_INT_CAUSE",
5372 		.cause_reg = A_PL_INT_CAUSE,
5373 		.enable_reg = A_PL_INT_ENABLE,
5374 		.fatal = 0,
5375 		.flags = 0,
5376 		.details = pl_intr_details,
5377 		.actions = pl_intr_action,
5378 	};
5379 	bool fatal;
5380 	u32 perr;
5381 
5382 	perr = t4_read_reg(adap, pl_perr_cause.cause_reg);
5383 	if (verbose || perr != 0) {
5384 		t4_show_intr_info(adap, &pl_perr_cause, perr);
5385 		if (perr != 0)
5386 			t4_write_reg(adap, pl_perr_cause.cause_reg, perr);
5387 		if (verbose)
5388 			perr |= t4_read_reg(adap, pl_intr_info.enable_reg);
5389 	}
5390 	fatal = t4_handle_intr(adap, &pl_intr_info, perr, verbose);
5391 	if (fatal)
5392 		t4_fatal_err(adap, false);
5393 
5394 	return (0);
5395 }
5396 
5397 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
5398 
5399 /**
5400  *	t4_intr_enable - enable interrupts
5401  *	@adapter: the adapter whose interrupts should be enabled
5402  *
5403  *	Enable PF-specific interrupts for the calling function and the top-level
5404  *	interrupt concentrator for global interrupts.  Interrupts are already
5405  *	enabled at each module,	here we just enable the roots of the interrupt
5406  *	hierarchies.
5407  *
5408  *	Note: this function should be called only when the driver manages
5409  *	non PF-specific interrupts from the various HW modules.  Only one PCI
5410  *	function at a time should be doing this.
5411  */
5412 void t4_intr_enable(struct adapter *adap)
5413 {
5414 	u32 val = 0;
5415 
5416 	if (chip_id(adap) <= CHELSIO_T5)
5417 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
5418 	else
5419 		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
5420 	val |= F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC |
5421 	    F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 |
5422 	    F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 |
5423 	    F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
5424 	    F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_DBFIFO_LP_INT |
5425 	    F_EGRESS_SIZE_ERR;
5426 	t4_set_reg_field(adap, A_SGE_INT_ENABLE3, val, val);
5427 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
5428 	t4_set_reg_field(adap, A_PL_INT_ENABLE, F_SF | F_I2CM, 0);
5429 	t4_set_reg_field(adap, A_PL_INT_MAP0, 0, 1 << adap->pf);
5430 }
5431 
5432 /**
5433  *	t4_intr_disable - disable interrupts
5434  *	@adap: the adapter whose interrupts should be disabled
5435  *
5436  *	Disable interrupts.  We only disable the top-level interrupt
5437  *	concentrators.  The caller must be a PCI function managing global
5438  *	interrupts.
5439  */
5440 void t4_intr_disable(struct adapter *adap)
5441 {
5442 
5443 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
5444 	t4_set_reg_field(adap, A_PL_INT_MAP0, 1 << adap->pf, 0);
5445 }
5446 
5447 /**
5448  *	t4_intr_clear - clear all interrupts
5449  *	@adap: the adapter whose interrupts should be cleared
5450  *
5451  *	Clears all interrupts.  The caller must be a PCI function managing
5452  *	global interrupts.
5453  */
5454 void t4_intr_clear(struct adapter *adap)
5455 {
5456 	static const u32 cause_reg[] = {
5457 		A_CIM_HOST_INT_CAUSE,
5458 		A_CIM_HOST_UPACC_INT_CAUSE,
5459 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
5460 		A_CPL_INTR_CAUSE,
5461 		EDC_REG(A_EDC_INT_CAUSE, 0), EDC_REG(A_EDC_INT_CAUSE, 1),
5462 		A_LE_DB_INT_CAUSE,
5463 		A_MA_INT_WRAP_STATUS,
5464 		A_MA_PARITY_ERROR_STATUS1,
5465 		A_MA_INT_CAUSE,
5466 		A_MPS_CLS_INT_CAUSE,
5467 		A_MPS_RX_PERR_INT_CAUSE,
5468 		A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
5469 		A_MPS_STAT_PERR_INT_CAUSE_SRAM,
5470 		A_MPS_TRC_INT_CAUSE,
5471 		A_MPS_TX_INT_CAUSE,
5472 		A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
5473 		A_NCSI_INT_CAUSE,
5474 		A_PCIE_INT_CAUSE,
5475 		A_PCIE_NONFAT_ERR,
5476 		A_PL_PL_INT_CAUSE,
5477 		A_PM_RX_INT_CAUSE,
5478 		A_PM_TX_INT_CAUSE,
5479 		A_SGE_INT_CAUSE1,
5480 		A_SGE_INT_CAUSE2,
5481 		A_SGE_INT_CAUSE3,
5482 		A_SGE_INT_CAUSE4,
5483 		A_SMB_INT_CAUSE,
5484 		A_TP_INT_CAUSE,
5485 		A_ULP_RX_INT_CAUSE,
5486 		A_ULP_RX_INT_CAUSE_2,
5487 		A_ULP_TX_INT_CAUSE,
5488 		A_ULP_TX_INT_CAUSE_2,
5489 
5490 		MYPF_REG(A_PL_PF_INT_CAUSE),
5491 	};
5492 	int i;
5493 	const int nchan = adap->chip_params->nchan;
5494 
5495 	for (i = 0; i < ARRAY_SIZE(cause_reg); i++)
5496 		t4_write_reg(adap, cause_reg[i], 0xffffffff);
5497 
5498 	if (is_t4(adap)) {
5499 		t4_write_reg(adap, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
5500 		    0xffffffff);
5501 		t4_write_reg(adap, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
5502 		    0xffffffff);
5503 		t4_write_reg(adap, A_MC_INT_CAUSE, 0xffffffff);
5504 		for (i = 0; i < nchan; i++) {
5505 			t4_write_reg(adap, PORT_REG(i, A_XGMAC_PORT_INT_CAUSE),
5506 			    0xffffffff);
5507 		}
5508 	}
5509 	if (chip_id(adap) >= CHELSIO_T5) {
5510 		t4_write_reg(adap, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
5511 		t4_write_reg(adap, A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 0xffffffff);
5512 		t4_write_reg(adap, A_SGE_INT_CAUSE5, 0xffffffff);
5513 		t4_write_reg(adap, A_MC_P_INT_CAUSE, 0xffffffff);
5514 		if (is_t5(adap)) {
5515 			t4_write_reg(adap, MC_REG(A_MC_P_INT_CAUSE, 1),
5516 			    0xffffffff);
5517 		}
5518 		for (i = 0; i < nchan; i++) {
5519 			t4_write_reg(adap, T5_PORT_REG(i,
5520 			    A_MAC_PORT_PERR_INT_CAUSE), 0xffffffff);
5521 			if (chip_id(adap) > CHELSIO_T5) {
5522 				t4_write_reg(adap, T5_PORT_REG(i,
5523 				    A_MAC_PORT_PERR_INT_CAUSE_100G),
5524 				    0xffffffff);
5525 			}
5526 			t4_write_reg(adap, T5_PORT_REG(i, A_MAC_PORT_INT_CAUSE),
5527 			    0xffffffff);
5528 		}
5529 	}
5530 	if (chip_id(adap) >= CHELSIO_T6) {
5531 		t4_write_reg(adap, A_SGE_INT_CAUSE6, 0xffffffff);
5532 	}
5533 
5534 	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
5535 	t4_write_reg(adap, A_PL_PERR_CAUSE, 0xffffffff);
5536 	t4_write_reg(adap, A_PL_INT_CAUSE, 0xffffffff);
5537 	(void) t4_read_reg(adap, A_PL_INT_CAUSE);          /* flush */
5538 }
5539 
5540 /**
5541  *	hash_mac_addr - return the hash value of a MAC address
5542  *	@addr: the 48-bit Ethernet MAC address
5543  *
5544  *	Hashes a MAC address according to the hash function used by HW inexact
5545  *	(hash) address matching.
5546  */
5547 static int hash_mac_addr(const u8 *addr)
5548 {
5549 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
5550 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
5551 	a ^= b;
5552 	a ^= (a >> 12);
5553 	a ^= (a >> 6);
5554 	return a & 0x3f;
5555 }
5556 
5557 /**
5558  *	t4_config_rss_range - configure a portion of the RSS mapping table
5559  *	@adapter: the adapter
5560  *	@mbox: mbox to use for the FW command
5561  *	@viid: virtual interface whose RSS subtable is to be written
5562  *	@start: start entry in the table to write
5563  *	@n: how many table entries to write
5564  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
5565  *	@nrspq: number of values in @rspq
5566  *
5567  *	Programs the selected part of the VI's RSS mapping table with the
5568  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5569  *	until the full table range is populated.
5570  *
5571  *	The caller must ensure the values in @rspq are in the range allowed for
5572  *	@viid.
5573  */
5574 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5575 			int start, int n, const u16 *rspq, unsigned int nrspq)
5576 {
5577 	int ret;
5578 	const u16 *rsp = rspq;
5579 	const u16 *rsp_end = rspq + nrspq;
5580 	struct fw_rss_ind_tbl_cmd cmd;
5581 
5582 	memset(&cmd, 0, sizeof(cmd));
5583 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
5584 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5585 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
5586 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5587 
5588 	/*
5589 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
5590 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
5591 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
5592 	 * reserved.
5593 	 */
5594 	while (n > 0) {
5595 		int nq = min(n, 32);
5596 		int nq_packed = 0;
5597 		__be32 *qp = &cmd.iq0_to_iq2;
5598 
5599 		/*
5600 		 * Set up the firmware RSS command header to send the next
5601 		 * "nq" Ingress Queue IDs to the firmware.
5602 		 */
5603 		cmd.niqid = cpu_to_be16(nq);
5604 		cmd.startidx = cpu_to_be16(start);
5605 
5606 		/*
5607 		 * "nq" more done for the start of the next loop.
5608 		 */
5609 		start += nq;
5610 		n -= nq;
5611 
5612 		/*
5613 		 * While there are still Ingress Queue IDs to stuff into the
5614 		 * current firmware RSS command, retrieve them from the
5615 		 * Ingress Queue ID array and insert them into the command.
5616 		 */
5617 		while (nq > 0) {
5618 			/*
5619 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
5620 			 * around the Ingress Queue ID array if necessary) and
5621 			 * insert them into the firmware RSS command at the
5622 			 * current 3-tuple position within the commad.
5623 			 */
5624 			u16 qbuf[3];
5625 			u16 *qbp = qbuf;
5626 			int nqbuf = min(3, nq);
5627 
5628 			nq -= nqbuf;
5629 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
5630 			while (nqbuf && nq_packed < 32) {
5631 				nqbuf--;
5632 				nq_packed++;
5633 				*qbp++ = *rsp++;
5634 				if (rsp >= rsp_end)
5635 					rsp = rspq;
5636 			}
5637 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
5638 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
5639 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
5640 		}
5641 
5642 		/*
5643 		 * Send this portion of the RRS table update to the firmware;
5644 		 * bail out on any errors.
5645 		 */
5646 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5647 		if (ret)
5648 			return ret;
5649 	}
5650 	return 0;
5651 }
5652 
5653 /**
5654  *	t4_config_glbl_rss - configure the global RSS mode
5655  *	@adapter: the adapter
5656  *	@mbox: mbox to use for the FW command
5657  *	@mode: global RSS mode
5658  *	@flags: mode-specific flags
5659  *
5660  *	Sets the global RSS mode.
5661  */
5662 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5663 		       unsigned int flags)
5664 {
5665 	struct fw_rss_glb_config_cmd c;
5666 
5667 	memset(&c, 0, sizeof(c));
5668 	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
5669 				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5670 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5671 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5672 		c.u.manual.mode_pkd =
5673 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5674 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5675 		c.u.basicvirtual.mode_keymode =
5676 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5677 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5678 	} else
5679 		return -EINVAL;
5680 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5681 }
5682 
5683 /**
5684  *	t4_config_vi_rss - configure per VI RSS settings
5685  *	@adapter: the adapter
5686  *	@mbox: mbox to use for the FW command
5687  *	@viid: the VI id
5688  *	@flags: RSS flags
5689  *	@defq: id of the default RSS queue for the VI.
5690  *	@skeyidx: RSS secret key table index for non-global mode
5691  *	@skey: RSS vf_scramble key for VI.
5692  *
5693  *	Configures VI-specific RSS properties.
5694  */
5695 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5696 		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
5697 		     unsigned int skey)
5698 {
5699 	struct fw_rss_vi_config_cmd c;
5700 
5701 	memset(&c, 0, sizeof(c));
5702 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
5703 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5704 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
5705 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5706 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5707 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
5708 	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
5709 					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
5710 	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
5711 
5712 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5713 }
5714 
5715 /* Read an RSS table row */
5716 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5717 {
5718 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
5719 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
5720 				   5, 0, val);
5721 }
5722 
5723 /**
5724  *	t4_read_rss - read the contents of the RSS mapping table
5725  *	@adapter: the adapter
5726  *	@map: holds the contents of the RSS mapping table
5727  *
5728  *	Reads the contents of the RSS hash->queue mapping table.
5729  */
5730 int t4_read_rss(struct adapter *adapter, u16 *map)
5731 {
5732 	u32 val;
5733 	int i, ret;
5734 	int rss_nentries = adapter->chip_params->rss_nentries;
5735 
5736 	for (i = 0; i < rss_nentries / 2; ++i) {
5737 		ret = rd_rss_row(adapter, i, &val);
5738 		if (ret)
5739 			return ret;
5740 		*map++ = G_LKPTBLQUEUE0(val);
5741 		*map++ = G_LKPTBLQUEUE1(val);
5742 	}
5743 	return 0;
5744 }
5745 
5746 /**
5747  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5748  * @adap: the adapter
5749  * @cmd: TP fw ldst address space type
5750  * @vals: where the indirect register values are stored/written
5751  * @nregs: how many indirect registers to read/write
5752  * @start_idx: index of first indirect register to read/write
5753  * @rw: Read (1) or Write (0)
5754  * @sleep_ok: if true we may sleep while awaiting command completion
5755  *
5756  * Access TP indirect registers through LDST
5757  **/
5758 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5759 			    unsigned int nregs, unsigned int start_index,
5760 			    unsigned int rw, bool sleep_ok)
5761 {
5762 	int ret = 0;
5763 	unsigned int i;
5764 	struct fw_ldst_cmd c;
5765 
5766 	for (i = 0; i < nregs; i++) {
5767 		memset(&c, 0, sizeof(c));
5768 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5769 						F_FW_CMD_REQUEST |
5770 						(rw ? F_FW_CMD_READ :
5771 						      F_FW_CMD_WRITE) |
5772 						V_FW_LDST_CMD_ADDRSPACE(cmd));
5773 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5774 
5775 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5776 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5777 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5778 				      sleep_ok);
5779 		if (ret)
5780 			return ret;
5781 
5782 		if (rw)
5783 			vals[i] = be32_to_cpu(c.u.addrval.val);
5784 	}
5785 	return 0;
5786 }
5787 
5788 /**
5789  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5790  * @adap: the adapter
5791  * @reg_addr: Address Register
5792  * @reg_data: Data register
5793  * @buff: where the indirect register values are stored/written
5794  * @nregs: how many indirect registers to read/write
5795  * @start_index: index of first indirect register to read/write
5796  * @rw: READ(1) or WRITE(0)
5797  * @sleep_ok: if true we may sleep while awaiting command completion
5798  *
5799  * Read/Write TP indirect registers through LDST if possible.
5800  * Else, use backdoor access
5801  **/
5802 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5803 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5804 			      bool sleep_ok)
5805 {
5806 	int rc = -EINVAL;
5807 	int cmd;
5808 
5809 	switch (reg_addr) {
5810 	case A_TP_PIO_ADDR:
5811 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5812 		break;
5813 	case A_TP_TM_PIO_ADDR:
5814 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5815 		break;
5816 	case A_TP_MIB_INDEX:
5817 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5818 		break;
5819 	default:
5820 		goto indirect_access;
5821 	}
5822 
5823 	if (t4_use_ldst(adap))
5824 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5825 				      sleep_ok);
5826 
5827 indirect_access:
5828 
5829 	if (rc) {
5830 		if (rw)
5831 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5832 					 start_index);
5833 		else
5834 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5835 					  start_index);
5836 	}
5837 }
5838 
5839 /**
5840  * t4_tp_pio_read - Read TP PIO registers
5841  * @adap: the adapter
5842  * @buff: where the indirect register values are written
5843  * @nregs: how many indirect registers to read
5844  * @start_index: index of first indirect register to read
5845  * @sleep_ok: if true we may sleep while awaiting command completion
5846  *
5847  * Read TP PIO Registers
5848  **/
5849 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5850 		    u32 start_index, bool sleep_ok)
5851 {
5852 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
5853 			  start_index, 1, sleep_ok);
5854 }
5855 
5856 /**
5857  * t4_tp_pio_write - Write TP PIO registers
5858  * @adap: the adapter
5859  * @buff: where the indirect register values are stored
5860  * @nregs: how many indirect registers to write
5861  * @start_index: index of first indirect register to write
5862  * @sleep_ok: if true we may sleep while awaiting command completion
5863  *
5864  * Write TP PIO Registers
5865  **/
5866 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5867 		     u32 start_index, bool sleep_ok)
5868 {
5869 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5870 	    __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5871 }
5872 
5873 /**
5874  * t4_tp_tm_pio_read - Read TP TM PIO registers
5875  * @adap: the adapter
5876  * @buff: where the indirect register values are written
5877  * @nregs: how many indirect registers to read
5878  * @start_index: index of first indirect register to read
5879  * @sleep_ok: if true we may sleep while awaiting command completion
5880  *
5881  * Read TP TM PIO Registers
5882  **/
5883 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5884 		       u32 start_index, bool sleep_ok)
5885 {
5886 	t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5887 			  nregs, start_index, 1, sleep_ok);
5888 }
5889 
5890 /**
5891  * t4_tp_mib_read - Read TP MIB registers
5892  * @adap: the adapter
5893  * @buff: where the indirect register values are written
5894  * @nregs: how many indirect registers to read
5895  * @start_index: index of first indirect register to read
5896  * @sleep_ok: if true we may sleep while awaiting command completion
5897  *
5898  * Read TP MIB Registers
5899  **/
5900 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5901 		    bool sleep_ok)
5902 {
5903 	t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5904 			  start_index, 1, sleep_ok);
5905 }
5906 
5907 /**
5908  *	t4_read_rss_key - read the global RSS key
5909  *	@adap: the adapter
5910  *	@key: 10-entry array holding the 320-bit RSS key
5911  * 	@sleep_ok: if true we may sleep while awaiting command completion
5912  *
5913  *	Reads the global 320-bit RSS key.
5914  */
5915 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5916 {
5917 	t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5918 }
5919 
5920 /**
5921  *	t4_write_rss_key - program one of the RSS keys
5922  *	@adap: the adapter
5923  *	@key: 10-entry array holding the 320-bit RSS key
5924  *	@idx: which RSS key to write
5925  * 	@sleep_ok: if true we may sleep while awaiting command completion
5926  *
5927  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5928  *	0..15 the corresponding entry in the RSS key table is written,
5929  *	otherwise the global RSS key is written.
5930  */
5931 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5932 		      bool sleep_ok)
5933 {
5934 	u8 rss_key_addr_cnt = 16;
5935 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5936 
5937 	/*
5938 	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5939 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5940 	 * as index[5:4](upper 2) into key table
5941 	 */
5942 	if ((chip_id(adap) > CHELSIO_T5) &&
5943 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5944 		rss_key_addr_cnt = 32;
5945 
5946 	t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5947 
5948 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5949 		if (rss_key_addr_cnt > 16)
5950 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5951 				     vrt | V_KEYWRADDRX(idx >> 4) |
5952 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
5953 		else
5954 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5955 				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5956 	}
5957 }
5958 
5959 /**
5960  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5961  *	@adapter: the adapter
5962  *	@index: the entry in the PF RSS table to read
5963  *	@valp: where to store the returned value
5964  * 	@sleep_ok: if true we may sleep while awaiting command completion
5965  *
5966  *	Reads the PF RSS Configuration Table at the specified index and returns
5967  *	the value found there.
5968  */
5969 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5970 			   u32 *valp, bool sleep_ok)
5971 {
5972 	t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5973 }
5974 
5975 /**
5976  *	t4_write_rss_pf_config - write PF RSS Configuration Table
5977  *	@adapter: the adapter
5978  *	@index: the entry in the VF RSS table to read
5979  *	@val: the value to store
5980  * 	@sleep_ok: if true we may sleep while awaiting command completion
5981  *
5982  *	Writes the PF RSS Configuration Table at the specified index with the
5983  *	specified value.
5984  */
5985 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5986 			    u32 val, bool sleep_ok)
5987 {
5988 	t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5989 			sleep_ok);
5990 }
5991 
5992 /**
5993  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5994  *	@adapter: the adapter
5995  *	@index: the entry in the VF RSS table to read
5996  *	@vfl: where to store the returned VFL
5997  *	@vfh: where to store the returned VFH
5998  * 	@sleep_ok: if true we may sleep while awaiting command completion
5999  *
6000  *	Reads the VF RSS Configuration Table at the specified index and returns
6001  *	the (VFL, VFH) values found there.
6002  */
6003 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
6004 			   u32 *vfl, u32 *vfh, bool sleep_ok)
6005 {
6006 	u32 vrt, mask, data;
6007 
6008 	if (chip_id(adapter) <= CHELSIO_T5) {
6009 		mask = V_VFWRADDR(M_VFWRADDR);
6010 		data = V_VFWRADDR(index);
6011 	} else {
6012 		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
6013 		 data = V_T6_VFWRADDR(index);
6014 	}
6015 	/*
6016 	 * Request that the index'th VF Table values be read into VFL/VFH.
6017 	 */
6018 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
6019 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
6020 	vrt |= data | F_VFRDEN;
6021 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
6022 
6023 	/*
6024 	 * Grab the VFL/VFH values ...
6025 	 */
6026 	t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
6027 	t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
6028 }
6029 
6030 /**
6031  *	t4_write_rss_vf_config - write VF RSS Configuration Table
6032  *
6033  *	@adapter: the adapter
6034  *	@index: the entry in the VF RSS table to write
6035  *	@vfl: the VFL to store
6036  *	@vfh: the VFH to store
6037  *
6038  *	Writes the VF RSS Configuration Table at the specified index with the
6039  *	specified (VFL, VFH) values.
6040  */
6041 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
6042 			    u32 vfl, u32 vfh, bool sleep_ok)
6043 {
6044 	u32 vrt, mask, data;
6045 
6046 	if (chip_id(adapter) <= CHELSIO_T5) {
6047 		mask = V_VFWRADDR(M_VFWRADDR);
6048 		data = V_VFWRADDR(index);
6049 	} else {
6050 		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
6051 		data = V_T6_VFWRADDR(index);
6052 	}
6053 
6054 	/*
6055 	 * Load up VFL/VFH with the values to be written ...
6056 	 */
6057 	t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
6058 	t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
6059 
6060 	/*
6061 	 * Write the VFL/VFH into the VF Table at index'th location.
6062 	 */
6063 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
6064 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
6065 	vrt |= data | F_VFRDEN;
6066 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
6067 }
6068 
6069 /**
6070  *	t4_read_rss_pf_map - read PF RSS Map
6071  *	@adapter: the adapter
6072  * 	@sleep_ok: if true we may sleep while awaiting command completion
6073  *
6074  *	Reads the PF RSS Map register and returns its value.
6075  */
6076 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
6077 {
6078 	u32 pfmap;
6079 
6080 	t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6081 
6082 	return pfmap;
6083 }
6084 
6085 /**
6086  *	t4_write_rss_pf_map - write PF RSS Map
6087  *	@adapter: the adapter
6088  *	@pfmap: PF RSS Map value
6089  *
6090  *	Writes the specified value to the PF RSS Map register.
6091  */
6092 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
6093 {
6094 	t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6095 }
6096 
6097 /**
6098  *	t4_read_rss_pf_mask - read PF RSS Mask
6099  *	@adapter: the adapter
6100  * 	@sleep_ok: if true we may sleep while awaiting command completion
6101  *
6102  *	Reads the PF RSS Mask register and returns its value.
6103  */
6104 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
6105 {
6106 	u32 pfmask;
6107 
6108 	t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6109 
6110 	return pfmask;
6111 }
6112 
6113 /**
6114  *	t4_write_rss_pf_mask - write PF RSS Mask
6115  *	@adapter: the adapter
6116  *	@pfmask: PF RSS Mask value
6117  *
6118  *	Writes the specified value to the PF RSS Mask register.
6119  */
6120 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
6121 {
6122 	t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6123 }
6124 
6125 /**
6126  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
6127  *	@adap: the adapter
6128  *	@v4: holds the TCP/IP counter values
6129  *	@v6: holds the TCP/IPv6 counter values
6130  * 	@sleep_ok: if true we may sleep while awaiting command completion
6131  *
6132  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
6133  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
6134  */
6135 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
6136 			 struct tp_tcp_stats *v6, bool sleep_ok)
6137 {
6138 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
6139 
6140 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
6141 #define STAT(x)     val[STAT_IDX(x)]
6142 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
6143 
6144 	if (v4) {
6145 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6146 			       A_TP_MIB_TCP_OUT_RST, sleep_ok);
6147 		v4->tcp_out_rsts = STAT(OUT_RST);
6148 		v4->tcp_in_segs  = STAT64(IN_SEG);
6149 		v4->tcp_out_segs = STAT64(OUT_SEG);
6150 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
6151 	}
6152 	if (v6) {
6153 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6154 			       A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
6155 		v6->tcp_out_rsts = STAT(OUT_RST);
6156 		v6->tcp_in_segs  = STAT64(IN_SEG);
6157 		v6->tcp_out_segs = STAT64(OUT_SEG);
6158 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
6159 	}
6160 #undef STAT64
6161 #undef STAT
6162 #undef STAT_IDX
6163 }
6164 
6165 /**
6166  *	t4_tp_get_err_stats - read TP's error MIB counters
6167  *	@adap: the adapter
6168  *	@st: holds the counter values
6169  * 	@sleep_ok: if true we may sleep while awaiting command completion
6170  *
6171  *	Returns the values of TP's error counters.
6172  */
6173 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
6174 			 bool sleep_ok)
6175 {
6176 	int nchan = adap->chip_params->nchan;
6177 
6178 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
6179 		       sleep_ok);
6180 
6181 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
6182 		       sleep_ok);
6183 
6184 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
6185 		       sleep_ok);
6186 
6187 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
6188 		       A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
6189 
6190 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
6191 		       A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
6192 
6193 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
6194 		       sleep_ok);
6195 
6196 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
6197 		       A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
6198 
6199 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
6200 		       A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
6201 
6202 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
6203 		       sleep_ok);
6204 }
6205 
6206 /**
6207  *	t4_tp_get_err_stats - read TP's error MIB counters
6208  *	@adap: the adapter
6209  *	@st: holds the counter values
6210  * 	@sleep_ok: if true we may sleep while awaiting command completion
6211  *
6212  *	Returns the values of TP's error counters.
6213  */
6214 void t4_tp_get_tnl_stats(struct adapter *adap, struct tp_tnl_stats *st,
6215 			 bool sleep_ok)
6216 {
6217 	int nchan = adap->chip_params->nchan;
6218 
6219 	t4_tp_mib_read(adap, st->out_pkt, nchan, A_TP_MIB_TNL_OUT_PKT_0,
6220 		       sleep_ok);
6221 	t4_tp_mib_read(adap, st->in_pkt, nchan, A_TP_MIB_TNL_IN_PKT_0,
6222 		       sleep_ok);
6223 }
6224 
6225 /**
6226  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
6227  *	@adap: the adapter
6228  *	@st: holds the counter values
6229  *
6230  *	Returns the values of TP's proxy counters.
6231  */
6232 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
6233     bool sleep_ok)
6234 {
6235 	int nchan = adap->chip_params->nchan;
6236 
6237 	t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
6238 }
6239 
6240 /**
6241  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
6242  *	@adap: the adapter
6243  *	@st: holds the counter values
6244  * 	@sleep_ok: if true we may sleep while awaiting command completion
6245  *
6246  *	Returns the values of TP's CPL counters.
6247  */
6248 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
6249 			 bool sleep_ok)
6250 {
6251 	int nchan = adap->chip_params->nchan;
6252 
6253 	t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
6254 
6255 	t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
6256 }
6257 
6258 /**
6259  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
6260  *	@adap: the adapter
6261  *	@st: holds the counter values
6262  *
6263  *	Returns the values of TP's RDMA counters.
6264  */
6265 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
6266 			  bool sleep_ok)
6267 {
6268 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
6269 		       sleep_ok);
6270 }
6271 
6272 /**
6273  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
6274  *	@adap: the adapter
6275  *	@idx: the port index
6276  *	@st: holds the counter values
6277  * 	@sleep_ok: if true we may sleep while awaiting command completion
6278  *
6279  *	Returns the values of TP's FCoE counters for the selected port.
6280  */
6281 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
6282 		       struct tp_fcoe_stats *st, bool sleep_ok)
6283 {
6284 	u32 val[2];
6285 
6286 	t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
6287 		       sleep_ok);
6288 
6289 	t4_tp_mib_read(adap, &st->frames_drop, 1,
6290 		       A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
6291 
6292 	t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
6293 		       sleep_ok);
6294 
6295 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
6296 }
6297 
6298 /**
6299  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
6300  *	@adap: the adapter
6301  *	@st: holds the counter values
6302  * 	@sleep_ok: if true we may sleep while awaiting command completion
6303  *
6304  *	Returns the values of TP's counters for non-TCP directly-placed packets.
6305  */
6306 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
6307 		      bool sleep_ok)
6308 {
6309 	u32 val[4];
6310 
6311 	t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
6312 
6313 	st->frames = val[0];
6314 	st->drops = val[1];
6315 	st->octets = ((u64)val[2] << 32) | val[3];
6316 }
6317 
6318 /**
6319  *	t4_tp_get_tid_stats - read TP's tid MIB counters.
6320  *	@adap: the adapter
6321  *	@st: holds the counter values
6322  * 	@sleep_ok: if true we may sleep while awaiting command completion
6323  *
6324  *	Returns the values of TP's counters for tids.
6325  */
6326 void t4_tp_get_tid_stats(struct adapter *adap, struct tp_tid_stats *st,
6327 		      bool sleep_ok)
6328 {
6329 
6330 	t4_tp_mib_read(adap, &st->del, 4, A_TP_MIB_TID_DEL, sleep_ok);
6331 }
6332 
6333 /**
6334  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
6335  *	@adap: the adapter
6336  *	@mtus: where to store the MTU values
6337  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
6338  *
6339  *	Reads the HW path MTU table.
6340  */
6341 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
6342 {
6343 	u32 v;
6344 	int i;
6345 
6346 	for (i = 0; i < NMTUS; ++i) {
6347 		t4_write_reg(adap, A_TP_MTU_TABLE,
6348 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
6349 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
6350 		mtus[i] = G_MTUVALUE(v);
6351 		if (mtu_log)
6352 			mtu_log[i] = G_MTUWIDTH(v);
6353 	}
6354 }
6355 
6356 /**
6357  *	t4_read_cong_tbl - reads the congestion control table
6358  *	@adap: the adapter
6359  *	@incr: where to store the alpha values
6360  *
6361  *	Reads the additive increments programmed into the HW congestion
6362  *	control table.
6363  */
6364 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
6365 {
6366 	unsigned int mtu, w;
6367 
6368 	for (mtu = 0; mtu < NMTUS; ++mtu)
6369 		for (w = 0; w < NCCTRL_WIN; ++w) {
6370 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
6371 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
6372 			incr[mtu][w] = (u16)t4_read_reg(adap,
6373 						A_TP_CCTRL_TABLE) & 0x1fff;
6374 		}
6375 }
6376 
6377 /**
6378  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
6379  *	@adap: the adapter
6380  *	@addr: the indirect TP register address
6381  *	@mask: specifies the field within the register to modify
6382  *	@val: new value for the field
6383  *
6384  *	Sets a field of an indirect TP register to the given value.
6385  */
6386 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
6387 			    unsigned int mask, unsigned int val)
6388 {
6389 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
6390 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
6391 	t4_write_reg(adap, A_TP_PIO_DATA, val);
6392 }
6393 
6394 /**
6395  *	init_cong_ctrl - initialize congestion control parameters
6396  *	@a: the alpha values for congestion control
6397  *	@b: the beta values for congestion control
6398  *
6399  *	Initialize the congestion control parameters.
6400  */
6401 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
6402 {
6403 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
6404 	a[9] = 2;
6405 	a[10] = 3;
6406 	a[11] = 4;
6407 	a[12] = 5;
6408 	a[13] = 6;
6409 	a[14] = 7;
6410 	a[15] = 8;
6411 	a[16] = 9;
6412 	a[17] = 10;
6413 	a[18] = 14;
6414 	a[19] = 17;
6415 	a[20] = 21;
6416 	a[21] = 25;
6417 	a[22] = 30;
6418 	a[23] = 35;
6419 	a[24] = 45;
6420 	a[25] = 60;
6421 	a[26] = 80;
6422 	a[27] = 100;
6423 	a[28] = 200;
6424 	a[29] = 300;
6425 	a[30] = 400;
6426 	a[31] = 500;
6427 
6428 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
6429 	b[9] = b[10] = 1;
6430 	b[11] = b[12] = 2;
6431 	b[13] = b[14] = b[15] = b[16] = 3;
6432 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
6433 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
6434 	b[28] = b[29] = 6;
6435 	b[30] = b[31] = 7;
6436 }
6437 
6438 /* The minimum additive increment value for the congestion control table */
6439 #define CC_MIN_INCR 2U
6440 
6441 /**
6442  *	t4_load_mtus - write the MTU and congestion control HW tables
6443  *	@adap: the adapter
6444  *	@mtus: the values for the MTU table
6445  *	@alpha: the values for the congestion control alpha parameter
6446  *	@beta: the values for the congestion control beta parameter
6447  *
6448  *	Write the HW MTU table with the supplied MTUs and the high-speed
6449  *	congestion control table with the supplied alpha, beta, and MTUs.
6450  *	We write the two tables together because the additive increments
6451  *	depend on the MTUs.
6452  */
6453 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
6454 		  const unsigned short *alpha, const unsigned short *beta)
6455 {
6456 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
6457 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
6458 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
6459 		28672, 40960, 57344, 81920, 114688, 163840, 229376
6460 	};
6461 
6462 	unsigned int i, w;
6463 
6464 	for (i = 0; i < NMTUS; ++i) {
6465 		unsigned int mtu = mtus[i];
6466 		unsigned int log2 = fls(mtu);
6467 
6468 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
6469 			log2--;
6470 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
6471 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
6472 
6473 		for (w = 0; w < NCCTRL_WIN; ++w) {
6474 			unsigned int inc;
6475 
6476 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
6477 				  CC_MIN_INCR);
6478 
6479 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
6480 				     (w << 16) | (beta[w] << 13) | inc);
6481 		}
6482 	}
6483 }
6484 
6485 /**
6486  *	t4_set_pace_tbl - set the pace table
6487  *	@adap: the adapter
6488  *	@pace_vals: the pace values in microseconds
6489  *	@start: index of the first entry in the HW pace table to set
6490  *	@n: how many entries to set
6491  *
6492  *	Sets (a subset of the) HW pace table.
6493  */
6494 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
6495 		     unsigned int start, unsigned int n)
6496 {
6497 	unsigned int vals[NTX_SCHED], i;
6498 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
6499 
6500 	if (n > NTX_SCHED)
6501 	    return -ERANGE;
6502 
6503 	/* convert values from us to dack ticks, rounding to closest value */
6504 	for (i = 0; i < n; i++, pace_vals++) {
6505 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
6506 		if (vals[i] > 0x7ff)
6507 			return -ERANGE;
6508 		if (*pace_vals && vals[i] == 0)
6509 			return -ERANGE;
6510 	}
6511 	for (i = 0; i < n; i++, start++)
6512 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
6513 	return 0;
6514 }
6515 
6516 /**
6517  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
6518  *	@adap: the adapter
6519  *	@kbps: target rate in Kbps
6520  *	@sched: the scheduler index
6521  *
6522  *	Configure a Tx HW scheduler for the target rate.
6523  */
6524 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
6525 {
6526 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
6527 	unsigned int clk = adap->params.vpd.cclk * 1000;
6528 	unsigned int selected_cpt = 0, selected_bpt = 0;
6529 
6530 	if (kbps > 0) {
6531 		kbps *= 125;     /* -> bytes */
6532 		for (cpt = 1; cpt <= 255; cpt++) {
6533 			tps = clk / cpt;
6534 			bpt = (kbps + tps / 2) / tps;
6535 			if (bpt > 0 && bpt <= 255) {
6536 				v = bpt * tps;
6537 				delta = v >= kbps ? v - kbps : kbps - v;
6538 				if (delta < mindelta) {
6539 					mindelta = delta;
6540 					selected_cpt = cpt;
6541 					selected_bpt = bpt;
6542 				}
6543 			} else if (selected_cpt)
6544 				break;
6545 		}
6546 		if (!selected_cpt)
6547 			return -EINVAL;
6548 	}
6549 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
6550 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
6551 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6552 	if (sched & 1)
6553 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
6554 	else
6555 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
6556 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6557 	return 0;
6558 }
6559 
6560 /**
6561  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
6562  *	@adap: the adapter
6563  *	@sched: the scheduler index
6564  *	@ipg: the interpacket delay in tenths of nanoseconds
6565  *
6566  *	Set the interpacket delay for a HW packet rate scheduler.
6567  */
6568 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
6569 {
6570 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
6571 
6572 	/* convert ipg to nearest number of core clocks */
6573 	ipg *= core_ticks_per_usec(adap);
6574 	ipg = (ipg + 5000) / 10000;
6575 	if (ipg > M_TXTIMERSEPQ0)
6576 		return -EINVAL;
6577 
6578 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
6579 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6580 	if (sched & 1)
6581 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
6582 	else
6583 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
6584 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6585 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
6586 	return 0;
6587 }
6588 
6589 /*
6590  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
6591  * clocks.  The formula is
6592  *
6593  * bytes/s = bytes256 * 256 * ClkFreq / 4096
6594  *
6595  * which is equivalent to
6596  *
6597  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
6598  */
6599 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
6600 {
6601 	u64 v = (u64)bytes256 * adap->params.vpd.cclk;
6602 
6603 	return v * 62 + v / 2;
6604 }
6605 
6606 /**
6607  *	t4_get_chan_txrate - get the current per channel Tx rates
6608  *	@adap: the adapter
6609  *	@nic_rate: rates for NIC traffic
6610  *	@ofld_rate: rates for offloaded traffic
6611  *
6612  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
6613  *	for each channel.
6614  */
6615 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
6616 {
6617 	u32 v;
6618 
6619 	v = t4_read_reg(adap, A_TP_TX_TRATE);
6620 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
6621 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
6622 	if (adap->chip_params->nchan > 2) {
6623 		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
6624 		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
6625 	}
6626 
6627 	v = t4_read_reg(adap, A_TP_TX_ORATE);
6628 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
6629 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
6630 	if (adap->chip_params->nchan > 2) {
6631 		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
6632 		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
6633 	}
6634 }
6635 
6636 /**
6637  *	t4_set_trace_filter - configure one of the tracing filters
6638  *	@adap: the adapter
6639  *	@tp: the desired trace filter parameters
6640  *	@idx: which filter to configure
6641  *	@enable: whether to enable or disable the filter
6642  *
6643  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
6644  *	it indicates that the filter is already written in the register and it
6645  *	just needs to be enabled or disabled.
6646  */
6647 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
6648     int idx, int enable)
6649 {
6650 	int i, ofst = idx * 4;
6651 	u32 data_reg, mask_reg, cfg;
6652 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
6653 
6654 	if (idx < 0 || idx >= NTRACE)
6655 		return -EINVAL;
6656 
6657 	if (tp == NULL || !enable) {
6658 		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
6659 		    enable ? en : 0);
6660 		return 0;
6661 	}
6662 
6663 	/*
6664 	 * TODO - After T4 data book is updated, specify the exact
6665 	 * section below.
6666 	 *
6667 	 * See T4 data book - MPS section for a complete description
6668 	 * of the below if..else handling of A_MPS_TRC_CFG register
6669 	 * value.
6670 	 */
6671 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
6672 	if (cfg & F_TRCMULTIFILTER) {
6673 		/*
6674 		 * If multiple tracers are enabled, then maximum
6675 		 * capture size is 2.5KB (FIFO size of a single channel)
6676 		 * minus 2 flits for CPL_TRACE_PKT header.
6677 		 */
6678 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
6679 			return -EINVAL;
6680 	} else {
6681 		/*
6682 		 * If multiple tracers are disabled, to avoid deadlocks
6683 		 * maximum packet capture size of 9600 bytes is recommended.
6684 		 * Also in this mode, only trace0 can be enabled and running.
6685 		 */
6686 		if (tp->snap_len > 9600 || idx)
6687 			return -EINVAL;
6688 	}
6689 
6690 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
6691 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
6692 	    tp->min_len > M_TFMINPKTSIZE)
6693 		return -EINVAL;
6694 
6695 	/* stop the tracer we'll be changing */
6696 	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
6697 
6698 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
6699 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
6700 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
6701 
6702 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6703 		t4_write_reg(adap, data_reg, tp->data[i]);
6704 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
6705 	}
6706 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
6707 		     V_TFCAPTUREMAX(tp->snap_len) |
6708 		     V_TFMINPKTSIZE(tp->min_len));
6709 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
6710 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
6711 		     (is_t4(adap) ?
6712 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
6713 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
6714 
6715 	return 0;
6716 }
6717 
6718 /**
6719  *	t4_get_trace_filter - query one of the tracing filters
6720  *	@adap: the adapter
6721  *	@tp: the current trace filter parameters
6722  *	@idx: which trace filter to query
6723  *	@enabled: non-zero if the filter is enabled
6724  *
6725  *	Returns the current settings of one of the HW tracing filters.
6726  */
6727 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6728 			 int *enabled)
6729 {
6730 	u32 ctla, ctlb;
6731 	int i, ofst = idx * 4;
6732 	u32 data_reg, mask_reg;
6733 
6734 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
6735 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
6736 
6737 	if (is_t4(adap)) {
6738 		*enabled = !!(ctla & F_TFEN);
6739 		tp->port =  G_TFPORT(ctla);
6740 		tp->invert = !!(ctla & F_TFINVERTMATCH);
6741 	} else {
6742 		*enabled = !!(ctla & F_T5_TFEN);
6743 		tp->port = G_T5_TFPORT(ctla);
6744 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
6745 	}
6746 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
6747 	tp->min_len = G_TFMINPKTSIZE(ctlb);
6748 	tp->skip_ofst = G_TFOFFSET(ctla);
6749 	tp->skip_len = G_TFLENGTH(ctla);
6750 
6751 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
6752 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
6753 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
6754 
6755 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6756 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6757 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6758 	}
6759 }
6760 
6761 /**
6762  *	t4_pmtx_get_stats - returns the HW stats from PMTX
6763  *	@adap: the adapter
6764  *	@cnt: where to store the count statistics
6765  *	@cycles: where to store the cycle statistics
6766  *
6767  *	Returns performance statistics from PMTX.
6768  */
6769 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6770 {
6771 	int i;
6772 	u32 data[2];
6773 
6774 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6775 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
6776 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
6777 		if (is_t4(adap))
6778 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
6779 		else {
6780 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
6781 					 A_PM_TX_DBG_DATA, data, 2,
6782 					 A_PM_TX_DBG_STAT_MSB);
6783 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6784 		}
6785 	}
6786 }
6787 
6788 /**
6789  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6790  *	@adap: the adapter
6791  *	@cnt: where to store the count statistics
6792  *	@cycles: where to store the cycle statistics
6793  *
6794  *	Returns performance statistics from PMRX.
6795  */
6796 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6797 {
6798 	int i;
6799 	u32 data[2];
6800 
6801 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6802 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
6803 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
6804 		if (is_t4(adap)) {
6805 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
6806 		} else {
6807 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
6808 					 A_PM_RX_DBG_DATA, data, 2,
6809 					 A_PM_RX_DBG_STAT_MSB);
6810 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6811 		}
6812 	}
6813 }
6814 
6815 /**
6816  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6817  *	@adap: the adapter
6818  *	@idx: the port index
6819  *
6820  *	Returns a bitmap indicating which MPS buffer groups are associated
6821  *	with the given port.  Bit i is set if buffer group i is used by the
6822  *	port.
6823  */
6824 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
6825 {
6826 	u32 n;
6827 
6828 	if (adap->params.mps_bg_map)
6829 		return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
6830 
6831 	n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6832 	if (n == 0)
6833 		return idx == 0 ? 0xf : 0;
6834 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6835 		return idx < 2 ? (3 << (2 * idx)) : 0;
6836 	return 1 << idx;
6837 }
6838 
6839 /*
6840  * TP RX e-channels associated with the port.
6841  */
6842 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
6843 {
6844 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6845 	const u32 all_chan = (1 << adap->chip_params->nchan) - 1;
6846 
6847 	if (n == 0)
6848 		return idx == 0 ? all_chan : 0;
6849 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6850 		return idx < 2 ? (3 << (2 * idx)) : 0;
6851 	return 1 << idx;
6852 }
6853 
6854 /*
6855  * TP RX c-channel associated with the port.
6856  */
6857 static unsigned int t4_get_rx_c_chan(struct adapter *adap, int idx)
6858 {
6859 	u32 param, val;
6860 	int ret;
6861 
6862 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
6863 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPCHMAP));
6864 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
6865 	if (!ret)
6866 		return (val >> (8 * idx)) & 0xff;
6867 
6868         return 0;
6869 }
6870 
6871 /**
6872  *      t4_get_port_type_description - return Port Type string description
6873  *      @port_type: firmware Port Type enumeration
6874  */
6875 const char *t4_get_port_type_description(enum fw_port_type port_type)
6876 {
6877 	static const char *const port_type_description[] = {
6878 		"Fiber_XFI",
6879 		"Fiber_XAUI",
6880 		"BT_SGMII",
6881 		"BT_XFI",
6882 		"BT_XAUI",
6883 		"KX4",
6884 		"CX4",
6885 		"KX",
6886 		"KR",
6887 		"SFP",
6888 		"BP_AP",
6889 		"BP4_AP",
6890 		"QSFP_10G",
6891 		"QSA",
6892 		"QSFP",
6893 		"BP40_BA",
6894 		"KR4_100G",
6895 		"CR4_QSFP",
6896 		"CR_QSFP",
6897 		"CR2_QSFP",
6898 		"SFP28",
6899 		"KR_SFP28",
6900 	};
6901 
6902 	if (port_type < ARRAY_SIZE(port_type_description))
6903 		return port_type_description[port_type];
6904 	return "UNKNOWN";
6905 }
6906 
6907 /**
6908  *      t4_get_port_stats_offset - collect port stats relative to a previous
6909  *				   snapshot
6910  *      @adap: The adapter
6911  *      @idx: The port
6912  *      @stats: Current stats to fill
6913  *      @offset: Previous stats snapshot
6914  */
6915 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6916 		struct port_stats *stats,
6917 		struct port_stats *offset)
6918 {
6919 	u64 *s, *o;
6920 	int i;
6921 
6922 	t4_get_port_stats(adap, idx, stats);
6923 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6924 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
6925 			i++, s++, o++)
6926 		*s -= *o;
6927 }
6928 
6929 /**
6930  *	t4_get_port_stats - collect port statistics
6931  *	@adap: the adapter
6932  *	@idx: the port index
6933  *	@p: the stats structure to fill
6934  *
6935  *	Collect statistics related to the given port from HW.
6936  */
6937 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6938 {
6939 	struct port_info *pi = adap->port[idx];
6940 	u32 bgmap = pi->mps_bg_map;
6941 	u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6942 
6943 #define GET_STAT(name) \
6944 	t4_read_reg64(adap, \
6945 	(is_t4(adap) ? PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##name##_L) : \
6946 	T5_PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##name##_L)))
6947 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6948 
6949 	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
6950 	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
6951 	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
6952 	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
6953 	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
6954 	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
6955 	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
6956 	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
6957 	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
6958 	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
6959 	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
6960 	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
6961 	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
6962 	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
6963 	p->tx_drop		= GET_STAT(TX_PORT_DROP);
6964 	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
6965 	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
6966 	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
6967 	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
6968 	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
6969 	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
6970 	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
6971 	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
6972 
6973 	if (chip_id(adap) >= CHELSIO_T5) {
6974 		if (stat_ctl & F_COUNTPAUSESTATTX) {
6975 			p->tx_frames -= p->tx_pause;
6976 			p->tx_octets -= p->tx_pause * 64;
6977 		}
6978 		if (stat_ctl & F_COUNTPAUSEMCTX)
6979 			p->tx_mcast_frames -= p->tx_pause;
6980 	}
6981 
6982 	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
6983 	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
6984 	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
6985 	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
6986 	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
6987 	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
6988 	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
6989 	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
6990 	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
6991 	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
6992 	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
6993 	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
6994 	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
6995 	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
6996 	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
6997 	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
6998 	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
6999 	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
7000 	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
7001 	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
7002 	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
7003 	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
7004 	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
7005 	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
7006 	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
7007 	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
7008 
7009 	if (pi->fcs_reg != -1)
7010 		p->rx_fcs_err = t4_read_reg64(adap, pi->fcs_reg) - pi->fcs_base;
7011 
7012 	if (chip_id(adap) >= CHELSIO_T5) {
7013 		if (stat_ctl & F_COUNTPAUSESTATRX) {
7014 			p->rx_frames -= p->rx_pause;
7015 			p->rx_octets -= p->rx_pause * 64;
7016 		}
7017 		if (stat_ctl & F_COUNTPAUSEMCRX)
7018 			p->rx_mcast_frames -= p->rx_pause;
7019 	}
7020 
7021 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
7022 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
7023 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
7024 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
7025 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
7026 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
7027 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
7028 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
7029 
7030 #undef GET_STAT
7031 #undef GET_STAT_COM
7032 }
7033 
7034 /**
7035  *	t4_get_lb_stats - collect loopback port statistics
7036  *	@adap: the adapter
7037  *	@idx: the loopback port index
7038  *	@p: the stats structure to fill
7039  *
7040  *	Return HW statistics for the given loopback port.
7041  */
7042 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
7043 {
7044 
7045 #define GET_STAT(name) \
7046 	t4_read_reg64(adap, \
7047 	(is_t4(adap) ? \
7048 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
7049 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
7050 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
7051 
7052 	p->octets	= GET_STAT(BYTES);
7053 	p->frames	= GET_STAT(FRAMES);
7054 	p->bcast_frames	= GET_STAT(BCAST);
7055 	p->mcast_frames	= GET_STAT(MCAST);
7056 	p->ucast_frames	= GET_STAT(UCAST);
7057 	p->error_frames	= GET_STAT(ERROR);
7058 
7059 	p->frames_64		= GET_STAT(64B);
7060 	p->frames_65_127	= GET_STAT(65B_127B);
7061 	p->frames_128_255	= GET_STAT(128B_255B);
7062 	p->frames_256_511	= GET_STAT(256B_511B);
7063 	p->frames_512_1023	= GET_STAT(512B_1023B);
7064 	p->frames_1024_1518	= GET_STAT(1024B_1518B);
7065 	p->frames_1519_max	= GET_STAT(1519B_MAX);
7066 	p->drop			= GET_STAT(DROP_FRAMES);
7067 
7068 	if (idx < adap->params.nports) {
7069 		u32 bg = adap2pinfo(adap, idx)->mps_bg_map;
7070 
7071 		p->ovflow0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
7072 		p->ovflow1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
7073 		p->ovflow2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
7074 		p->ovflow3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
7075 		p->trunc0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
7076 		p->trunc1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
7077 		p->trunc2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
7078 		p->trunc3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
7079 	}
7080 
7081 #undef GET_STAT
7082 #undef GET_STAT_COM
7083 }
7084 
7085 /**
7086  *	t4_wol_magic_enable - enable/disable magic packet WoL
7087  *	@adap: the adapter
7088  *	@port: the physical port index
7089  *	@addr: MAC address expected in magic packets, %NULL to disable
7090  *
7091  *	Enables/disables magic packet wake-on-LAN for the selected port.
7092  */
7093 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
7094 			 const u8 *addr)
7095 {
7096 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
7097 
7098 	if (is_t4(adap)) {
7099 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
7100 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
7101 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7102 	} else {
7103 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
7104 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
7105 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7106 	}
7107 
7108 	if (addr) {
7109 		t4_write_reg(adap, mag_id_reg_l,
7110 			     (addr[2] << 24) | (addr[3] << 16) |
7111 			     (addr[4] << 8) | addr[5]);
7112 		t4_write_reg(adap, mag_id_reg_h,
7113 			     (addr[0] << 8) | addr[1]);
7114 	}
7115 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
7116 			 V_MAGICEN(addr != NULL));
7117 }
7118 
7119 /**
7120  *	t4_wol_pat_enable - enable/disable pattern-based WoL
7121  *	@adap: the adapter
7122  *	@port: the physical port index
7123  *	@map: bitmap of which HW pattern filters to set
7124  *	@mask0: byte mask for bytes 0-63 of a packet
7125  *	@mask1: byte mask for bytes 64-127 of a packet
7126  *	@crc: Ethernet CRC for selected bytes
7127  *	@enable: enable/disable switch
7128  *
7129  *	Sets the pattern filters indicated in @map to mask out the bytes
7130  *	specified in @mask0/@mask1 in received packets and compare the CRC of
7131  *	the resulting packet against @crc.  If @enable is %true pattern-based
7132  *	WoL is enabled, otherwise disabled.
7133  */
7134 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
7135 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
7136 {
7137 	int i;
7138 	u32 port_cfg_reg;
7139 
7140 	if (is_t4(adap))
7141 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7142 	else
7143 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7144 
7145 	if (!enable) {
7146 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
7147 		return 0;
7148 	}
7149 	if (map > 0xff)
7150 		return -EINVAL;
7151 
7152 #define EPIO_REG(name) \
7153 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
7154 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
7155 
7156 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
7157 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
7158 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
7159 
7160 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
7161 		if (!(map & 1))
7162 			continue;
7163 
7164 		/* write byte masks */
7165 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
7166 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
7167 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7168 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7169 			return -ETIMEDOUT;
7170 
7171 		/* write CRC */
7172 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
7173 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
7174 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7175 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7176 			return -ETIMEDOUT;
7177 	}
7178 #undef EPIO_REG
7179 
7180 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
7181 	return 0;
7182 }
7183 
7184 /*     t4_mk_filtdelwr - create a delete filter WR
7185  *     @ftid: the filter ID
7186  *     @wr: the filter work request to populate
7187  *     @qid: ingress queue to receive the delete notification
7188  *
7189  *     Creates a filter work request to delete the supplied filter.  If @qid is
7190  *     negative the delete notification is suppressed.
7191  */
7192 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
7193 {
7194 	memset(wr, 0, sizeof(*wr));
7195 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
7196 	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
7197 	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
7198 				    V_FW_FILTER_WR_NOREPLY(qid < 0));
7199 	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
7200 	if (qid >= 0)
7201 		wr->rx_chan_rx_rpl_iq =
7202 				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
7203 }
7204 
7205 #define INIT_CMD(var, cmd, rd_wr) do { \
7206 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
7207 					F_FW_CMD_REQUEST | \
7208 					F_FW_CMD_##rd_wr); \
7209 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
7210 } while (0)
7211 
7212 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
7213 			  u32 addr, u32 val)
7214 {
7215 	u32 ldst_addrspace;
7216 	struct fw_ldst_cmd c;
7217 
7218 	memset(&c, 0, sizeof(c));
7219 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
7220 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7221 					F_FW_CMD_REQUEST |
7222 					F_FW_CMD_WRITE |
7223 					ldst_addrspace);
7224 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7225 	c.u.addrval.addr = cpu_to_be32(addr);
7226 	c.u.addrval.val = cpu_to_be32(val);
7227 
7228 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7229 }
7230 
7231 /**
7232  *	t4_mdio_rd - read a PHY register through MDIO
7233  *	@adap: the adapter
7234  *	@mbox: mailbox to use for the FW command
7235  *	@phy_addr: the PHY address
7236  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7237  *	@reg: the register to read
7238  *	@valp: where to store the value
7239  *
7240  *	Issues a FW command through the given mailbox to read a PHY register.
7241  */
7242 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7243 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
7244 {
7245 	int ret;
7246 	u32 ldst_addrspace;
7247 	struct fw_ldst_cmd c;
7248 
7249 	memset(&c, 0, sizeof(c));
7250 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7251 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7252 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7253 					ldst_addrspace);
7254 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7255 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7256 					 V_FW_LDST_CMD_MMD(mmd));
7257 	c.u.mdio.raddr = cpu_to_be16(reg);
7258 
7259 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7260 	if (ret == 0)
7261 		*valp = be16_to_cpu(c.u.mdio.rval);
7262 	return ret;
7263 }
7264 
7265 /**
7266  *	t4_mdio_wr - write a PHY register through MDIO
7267  *	@adap: the adapter
7268  *	@mbox: mailbox to use for the FW command
7269  *	@phy_addr: the PHY address
7270  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7271  *	@reg: the register to write
7272  *	@valp: value to write
7273  *
7274  *	Issues a FW command through the given mailbox to write a PHY register.
7275  */
7276 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7277 	       unsigned int mmd, unsigned int reg, unsigned int val)
7278 {
7279 	u32 ldst_addrspace;
7280 	struct fw_ldst_cmd c;
7281 
7282 	memset(&c, 0, sizeof(c));
7283 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7284 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7285 					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7286 					ldst_addrspace);
7287 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7288 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7289 					 V_FW_LDST_CMD_MMD(mmd));
7290 	c.u.mdio.raddr = cpu_to_be16(reg);
7291 	c.u.mdio.rval = cpu_to_be16(val);
7292 
7293 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7294 }
7295 
7296 /**
7297  *
7298  *	t4_sge_decode_idma_state - decode the idma state
7299  *	@adap: the adapter
7300  *	@state: the state idma is stuck in
7301  */
7302 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
7303 {
7304 	static const char * const t4_decode[] = {
7305 		"IDMA_IDLE",
7306 		"IDMA_PUSH_MORE_CPL_FIFO",
7307 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7308 		"Not used",
7309 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7310 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7311 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7312 		"IDMA_SEND_FIFO_TO_IMSG",
7313 		"IDMA_FL_REQ_DATA_FL_PREP",
7314 		"IDMA_FL_REQ_DATA_FL",
7315 		"IDMA_FL_DROP",
7316 		"IDMA_FL_H_REQ_HEADER_FL",
7317 		"IDMA_FL_H_SEND_PCIEHDR",
7318 		"IDMA_FL_H_PUSH_CPL_FIFO",
7319 		"IDMA_FL_H_SEND_CPL",
7320 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7321 		"IDMA_FL_H_SEND_IP_HDR",
7322 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7323 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7324 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7325 		"IDMA_FL_D_SEND_PCIEHDR",
7326 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7327 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7328 		"IDMA_FL_SEND_PCIEHDR",
7329 		"IDMA_FL_PUSH_CPL_FIFO",
7330 		"IDMA_FL_SEND_CPL",
7331 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7332 		"IDMA_FL_SEND_PAYLOAD",
7333 		"IDMA_FL_REQ_NEXT_DATA_FL",
7334 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7335 		"IDMA_FL_SEND_PADDING",
7336 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7337 		"IDMA_FL_SEND_FIFO_TO_IMSG",
7338 		"IDMA_FL_REQ_DATAFL_DONE",
7339 		"IDMA_FL_REQ_HEADERFL_DONE",
7340 	};
7341 	static const char * const t5_decode[] = {
7342 		"IDMA_IDLE",
7343 		"IDMA_ALMOST_IDLE",
7344 		"IDMA_PUSH_MORE_CPL_FIFO",
7345 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7346 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7347 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7348 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7349 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7350 		"IDMA_SEND_FIFO_TO_IMSG",
7351 		"IDMA_FL_REQ_DATA_FL",
7352 		"IDMA_FL_DROP",
7353 		"IDMA_FL_DROP_SEND_INC",
7354 		"IDMA_FL_H_REQ_HEADER_FL",
7355 		"IDMA_FL_H_SEND_PCIEHDR",
7356 		"IDMA_FL_H_PUSH_CPL_FIFO",
7357 		"IDMA_FL_H_SEND_CPL",
7358 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7359 		"IDMA_FL_H_SEND_IP_HDR",
7360 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7361 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7362 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7363 		"IDMA_FL_D_SEND_PCIEHDR",
7364 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7365 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7366 		"IDMA_FL_SEND_PCIEHDR",
7367 		"IDMA_FL_PUSH_CPL_FIFO",
7368 		"IDMA_FL_SEND_CPL",
7369 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7370 		"IDMA_FL_SEND_PAYLOAD",
7371 		"IDMA_FL_REQ_NEXT_DATA_FL",
7372 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7373 		"IDMA_FL_SEND_PADDING",
7374 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7375 	};
7376 	static const char * const t6_decode[] = {
7377 		"IDMA_IDLE",
7378 		"IDMA_PUSH_MORE_CPL_FIFO",
7379 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7380 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7381 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7382 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7383 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7384 		"IDMA_FL_REQ_DATA_FL",
7385 		"IDMA_FL_DROP",
7386 		"IDMA_FL_DROP_SEND_INC",
7387 		"IDMA_FL_H_REQ_HEADER_FL",
7388 		"IDMA_FL_H_SEND_PCIEHDR",
7389 		"IDMA_FL_H_PUSH_CPL_FIFO",
7390 		"IDMA_FL_H_SEND_CPL",
7391 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7392 		"IDMA_FL_H_SEND_IP_HDR",
7393 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7394 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7395 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7396 		"IDMA_FL_D_SEND_PCIEHDR",
7397 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7398 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7399 		"IDMA_FL_SEND_PCIEHDR",
7400 		"IDMA_FL_PUSH_CPL_FIFO",
7401 		"IDMA_FL_SEND_CPL",
7402 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7403 		"IDMA_FL_SEND_PAYLOAD",
7404 		"IDMA_FL_REQ_NEXT_DATA_FL",
7405 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7406 		"IDMA_FL_SEND_PADDING",
7407 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7408 	};
7409 	static const u32 sge_regs[] = {
7410 		A_SGE_DEBUG_DATA_LOW_INDEX_2,
7411 		A_SGE_DEBUG_DATA_LOW_INDEX_3,
7412 		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
7413 	};
7414 	const char * const *sge_idma_decode;
7415 	int sge_idma_decode_nstates;
7416 	int i;
7417 	unsigned int chip_version = chip_id(adapter);
7418 
7419 	/* Select the right set of decode strings to dump depending on the
7420 	 * adapter chip type.
7421 	 */
7422 	switch (chip_version) {
7423 	case CHELSIO_T4:
7424 		sge_idma_decode = (const char * const *)t4_decode;
7425 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
7426 		break;
7427 
7428 	case CHELSIO_T5:
7429 		sge_idma_decode = (const char * const *)t5_decode;
7430 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
7431 		break;
7432 
7433 	case CHELSIO_T6:
7434 		sge_idma_decode = (const char * const *)t6_decode;
7435 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
7436 		break;
7437 
7438 	default:
7439 		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
7440 		return;
7441 	}
7442 
7443 	if (state < sge_idma_decode_nstates)
7444 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
7445 	else
7446 		CH_WARN(adapter, "idma state %d unknown\n", state);
7447 
7448 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
7449 		CH_WARN(adapter, "SGE register %#x value %#x\n",
7450 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
7451 }
7452 
7453 /**
7454  *      t4_sge_ctxt_flush - flush the SGE context cache
7455  *      @adap: the adapter
7456  *      @mbox: mailbox to use for the FW command
7457  *
7458  *      Issues a FW command through the given mailbox to flush the
7459  *      SGE context cache.
7460  */
7461 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
7462 {
7463 	int ret;
7464 	u32 ldst_addrspace;
7465 	struct fw_ldst_cmd c;
7466 
7467 	memset(&c, 0, sizeof(c));
7468 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(ctxt_type == CTXT_EGRESS ?
7469 						 FW_LDST_ADDRSPC_SGE_EGRC :
7470 						 FW_LDST_ADDRSPC_SGE_INGC);
7471 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7472 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7473 					ldst_addrspace);
7474 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7475 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
7476 
7477 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7478 	return ret;
7479 }
7480 
7481 /**
7482  *      t4_fw_hello - establish communication with FW
7483  *      @adap: the adapter
7484  *      @mbox: mailbox to use for the FW command
7485  *      @evt_mbox: mailbox to receive async FW events
7486  *      @master: specifies the caller's willingness to be the device master
7487  *	@state: returns the current device state (if non-NULL)
7488  *
7489  *	Issues a command to establish communication with FW.  Returns either
7490  *	an error (negative integer) or the mailbox of the Master PF.
7491  */
7492 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
7493 		enum dev_master master, enum dev_state *state)
7494 {
7495 	int ret;
7496 	struct fw_hello_cmd c;
7497 	u32 v;
7498 	unsigned int master_mbox;
7499 	int retries = FW_CMD_HELLO_RETRIES;
7500 
7501 retry:
7502 	memset(&c, 0, sizeof(c));
7503 	INIT_CMD(c, HELLO, WRITE);
7504 	c.err_to_clearinit = cpu_to_be32(
7505 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
7506 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
7507 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
7508 					mbox : M_FW_HELLO_CMD_MBMASTER) |
7509 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
7510 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
7511 		F_FW_HELLO_CMD_CLEARINIT);
7512 
7513 	/*
7514 	 * Issue the HELLO command to the firmware.  If it's not successful
7515 	 * but indicates that we got a "busy" or "timeout" condition, retry
7516 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
7517 	 * retry limit, check to see if the firmware left us any error
7518 	 * information and report that if so ...
7519 	 */
7520 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7521 	if (ret != FW_SUCCESS) {
7522 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
7523 			goto retry;
7524 		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
7525 			t4_report_fw_error(adap);
7526 		return ret;
7527 	}
7528 
7529 	v = be32_to_cpu(c.err_to_clearinit);
7530 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
7531 	if (state) {
7532 		if (v & F_FW_HELLO_CMD_ERR)
7533 			*state = DEV_STATE_ERR;
7534 		else if (v & F_FW_HELLO_CMD_INIT)
7535 			*state = DEV_STATE_INIT;
7536 		else
7537 			*state = DEV_STATE_UNINIT;
7538 	}
7539 
7540 	/*
7541 	 * If we're not the Master PF then we need to wait around for the
7542 	 * Master PF Driver to finish setting up the adapter.
7543 	 *
7544 	 * Note that we also do this wait if we're a non-Master-capable PF and
7545 	 * there is no current Master PF; a Master PF may show up momentarily
7546 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
7547 	 * OS loads lots of different drivers rapidly at the same time).  In
7548 	 * this case, the Master PF returned by the firmware will be
7549 	 * M_PCIE_FW_MASTER so the test below will work ...
7550 	 */
7551 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
7552 	    master_mbox != mbox) {
7553 		int waiting = FW_CMD_HELLO_TIMEOUT;
7554 
7555 		/*
7556 		 * Wait for the firmware to either indicate an error or
7557 		 * initialized state.  If we see either of these we bail out
7558 		 * and report the issue to the caller.  If we exhaust the
7559 		 * "hello timeout" and we haven't exhausted our retries, try
7560 		 * again.  Otherwise bail with a timeout error.
7561 		 */
7562 		for (;;) {
7563 			u32 pcie_fw;
7564 
7565 			msleep(50);
7566 			waiting -= 50;
7567 
7568 			/*
7569 			 * If neither Error nor Initialialized are indicated
7570 			 * by the firmware keep waiting till we exhaust our
7571 			 * timeout ... and then retry if we haven't exhausted
7572 			 * our retries ...
7573 			 */
7574 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
7575 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
7576 				if (waiting <= 0) {
7577 					if (retries-- > 0)
7578 						goto retry;
7579 
7580 					return -ETIMEDOUT;
7581 				}
7582 				continue;
7583 			}
7584 
7585 			/*
7586 			 * We either have an Error or Initialized condition
7587 			 * report errors preferentially.
7588 			 */
7589 			if (state) {
7590 				if (pcie_fw & F_PCIE_FW_ERR)
7591 					*state = DEV_STATE_ERR;
7592 				else if (pcie_fw & F_PCIE_FW_INIT)
7593 					*state = DEV_STATE_INIT;
7594 			}
7595 
7596 			/*
7597 			 * If we arrived before a Master PF was selected and
7598 			 * there's not a valid Master PF, grab its identity
7599 			 * for our caller.
7600 			 */
7601 			if (master_mbox == M_PCIE_FW_MASTER &&
7602 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
7603 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
7604 			break;
7605 		}
7606 	}
7607 
7608 	return master_mbox;
7609 }
7610 
7611 /**
7612  *	t4_fw_bye - end communication with FW
7613  *	@adap: the adapter
7614  *	@mbox: mailbox to use for the FW command
7615  *
7616  *	Issues a command to terminate communication with FW.
7617  */
7618 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
7619 {
7620 	struct fw_bye_cmd c;
7621 
7622 	memset(&c, 0, sizeof(c));
7623 	INIT_CMD(c, BYE, WRITE);
7624 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7625 }
7626 
7627 /**
7628  *	t4_fw_reset - issue a reset to FW
7629  *	@adap: the adapter
7630  *	@mbox: mailbox to use for the FW command
7631  *	@reset: specifies the type of reset to perform
7632  *
7633  *	Issues a reset command of the specified type to FW.
7634  */
7635 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7636 {
7637 	struct fw_reset_cmd c;
7638 
7639 	memset(&c, 0, sizeof(c));
7640 	INIT_CMD(c, RESET, WRITE);
7641 	c.val = cpu_to_be32(reset);
7642 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7643 }
7644 
7645 /**
7646  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7647  *	@adap: the adapter
7648  *	@mbox: mailbox to use for the FW RESET command (if desired)
7649  *	@force: force uP into RESET even if FW RESET command fails
7650  *
7651  *	Issues a RESET command to firmware (if desired) with a HALT indication
7652  *	and then puts the microprocessor into RESET state.  The RESET command
7653  *	will only be issued if a legitimate mailbox is provided (mbox <=
7654  *	M_PCIE_FW_MASTER).
7655  *
7656  *	This is generally used in order for the host to safely manipulate the
7657  *	adapter without fear of conflicting with whatever the firmware might
7658  *	be doing.  The only way out of this state is to RESTART the firmware
7659  *	...
7660  */
7661 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7662 {
7663 	int ret = 0;
7664 
7665 	/*
7666 	 * If a legitimate mailbox is provided, issue a RESET command
7667 	 * with a HALT indication.
7668 	 */
7669 	if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) {
7670 		struct fw_reset_cmd c;
7671 
7672 		memset(&c, 0, sizeof(c));
7673 		INIT_CMD(c, RESET, WRITE);
7674 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
7675 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
7676 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7677 	}
7678 
7679 	/*
7680 	 * Normally we won't complete the operation if the firmware RESET
7681 	 * command fails but if our caller insists we'll go ahead and put the
7682 	 * uP into RESET.  This can be useful if the firmware is hung or even
7683 	 * missing ...  We'll have to take the risk of putting the uP into
7684 	 * RESET without the cooperation of firmware in that case.
7685 	 *
7686 	 * We also force the firmware's HALT flag to be on in case we bypassed
7687 	 * the firmware RESET command above or we're dealing with old firmware
7688 	 * which doesn't have the HALT capability.  This will serve as a flag
7689 	 * for the incoming firmware to know that it's coming out of a HALT
7690 	 * rather than a RESET ... if it's new enough to understand that ...
7691 	 */
7692 	if (ret == 0 || force) {
7693 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
7694 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
7695 				 F_PCIE_FW_HALT);
7696 	}
7697 
7698 	/*
7699 	 * And we always return the result of the firmware RESET command
7700 	 * even when we force the uP into RESET ...
7701 	 */
7702 	return ret;
7703 }
7704 
7705 /**
7706  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
7707  *	@adap: the adapter
7708  *
7709  *	Restart firmware previously halted by t4_fw_halt().  On successful
7710  *	return the previous PF Master remains as the new PF Master and there
7711  *	is no need to issue a new HELLO command, etc.
7712  */
7713 int t4_fw_restart(struct adapter *adap, unsigned int mbox)
7714 {
7715 	int ms;
7716 
7717 	t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
7718 	for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7719 		if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
7720 			return FW_SUCCESS;
7721 		msleep(100);
7722 		ms += 100;
7723 	}
7724 
7725 	return -ETIMEDOUT;
7726 }
7727 
7728 /**
7729  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7730  *	@adap: the adapter
7731  *	@mbox: mailbox to use for the FW RESET command (if desired)
7732  *	@fw_data: the firmware image to write
7733  *	@size: image size
7734  *	@force: force upgrade even if firmware doesn't cooperate
7735  *
7736  *	Perform all of the steps necessary for upgrading an adapter's
7737  *	firmware image.  Normally this requires the cooperation of the
7738  *	existing firmware in order to halt all existing activities
7739  *	but if an invalid mailbox token is passed in we skip that step
7740  *	(though we'll still put the adapter microprocessor into RESET in
7741  *	that case).
7742  *
7743  *	On successful return the new firmware will have been loaded and
7744  *	the adapter will have been fully RESET losing all previous setup
7745  *	state.  On unsuccessful return the adapter may be completely hosed ...
7746  *	positive errno indicates that the adapter is ~probably~ intact, a
7747  *	negative errno indicates that things are looking bad ...
7748  */
7749 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7750 		  const u8 *fw_data, unsigned int size, int force)
7751 {
7752 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7753 	unsigned int bootstrap =
7754 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
7755 	int ret;
7756 
7757 	if (!t4_fw_matches_chip(adap, fw_hdr))
7758 		return -EINVAL;
7759 
7760 	if (!bootstrap) {
7761 		ret = t4_fw_halt(adap, mbox, force);
7762 		if (ret < 0 && !force)
7763 			return ret;
7764 	}
7765 
7766 	ret = t4_load_fw(adap, fw_data, size);
7767 	if (ret < 0 || bootstrap)
7768 		return ret;
7769 
7770 	return t4_fw_restart(adap, mbox);
7771 }
7772 
7773 /**
7774  *	t4_fw_initialize - ask FW to initialize the device
7775  *	@adap: the adapter
7776  *	@mbox: mailbox to use for the FW command
7777  *
7778  *	Issues a command to FW to partially initialize the device.  This
7779  *	performs initialization that generally doesn't depend on user input.
7780  */
7781 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7782 {
7783 	struct fw_initialize_cmd c;
7784 
7785 	memset(&c, 0, sizeof(c));
7786 	INIT_CMD(c, INITIALIZE, WRITE);
7787 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7788 }
7789 
7790 /**
7791  *	t4_query_params_rw - query FW or device parameters
7792  *	@adap: the adapter
7793  *	@mbox: mailbox to use for the FW command
7794  *	@pf: the PF
7795  *	@vf: the VF
7796  *	@nparams: the number of parameters
7797  *	@params: the parameter names
7798  *	@val: the parameter values
7799  *	@rw: Write and read flag
7800  *
7801  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7802  *	queried at once.
7803  */
7804 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7805 		       unsigned int vf, unsigned int nparams, const u32 *params,
7806 		       u32 *val, int rw)
7807 {
7808 	int i, ret;
7809 	struct fw_params_cmd c;
7810 	__be32 *p = &c.param[0].mnem;
7811 
7812 	if (nparams > 7)
7813 		return -EINVAL;
7814 
7815 	memset(&c, 0, sizeof(c));
7816 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7817 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
7818 				  V_FW_PARAMS_CMD_PFN(pf) |
7819 				  V_FW_PARAMS_CMD_VFN(vf));
7820 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7821 
7822 	for (i = 0; i < nparams; i++) {
7823 		*p++ = cpu_to_be32(*params++);
7824 		if (rw)
7825 			*p = cpu_to_be32(*(val + i));
7826 		p++;
7827 	}
7828 
7829 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7830 	if (ret == 0)
7831 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7832 			*val++ = be32_to_cpu(*p);
7833 	return ret;
7834 }
7835 
7836 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7837 		    unsigned int vf, unsigned int nparams, const u32 *params,
7838 		    u32 *val)
7839 {
7840 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
7841 }
7842 
7843 /**
7844  *      t4_set_params_timeout - sets FW or device parameters
7845  *      @adap: the adapter
7846  *      @mbox: mailbox to use for the FW command
7847  *      @pf: the PF
7848  *      @vf: the VF
7849  *      @nparams: the number of parameters
7850  *      @params: the parameter names
7851  *      @val: the parameter values
7852  *      @timeout: the timeout time
7853  *
7854  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7855  *      specified at once.
7856  */
7857 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7858 			  unsigned int pf, unsigned int vf,
7859 			  unsigned int nparams, const u32 *params,
7860 			  const u32 *val, int timeout)
7861 {
7862 	struct fw_params_cmd c;
7863 	__be32 *p = &c.param[0].mnem;
7864 
7865 	if (nparams > 7)
7866 		return -EINVAL;
7867 
7868 	memset(&c, 0, sizeof(c));
7869 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7870 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7871 				  V_FW_PARAMS_CMD_PFN(pf) |
7872 				  V_FW_PARAMS_CMD_VFN(vf));
7873 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7874 
7875 	while (nparams--) {
7876 		*p++ = cpu_to_be32(*params++);
7877 		*p++ = cpu_to_be32(*val++);
7878 	}
7879 
7880 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7881 }
7882 
7883 /**
7884  *	t4_set_params - sets FW or device parameters
7885  *	@adap: the adapter
7886  *	@mbox: mailbox to use for the FW command
7887  *	@pf: the PF
7888  *	@vf: the VF
7889  *	@nparams: the number of parameters
7890  *	@params: the parameter names
7891  *	@val: the parameter values
7892  *
7893  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7894  *	specified at once.
7895  */
7896 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7897 		  unsigned int vf, unsigned int nparams, const u32 *params,
7898 		  const u32 *val)
7899 {
7900 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7901 				     FW_CMD_MAX_TIMEOUT);
7902 }
7903 
7904 /**
7905  *	t4_cfg_pfvf - configure PF/VF resource limits
7906  *	@adap: the adapter
7907  *	@mbox: mailbox to use for the FW command
7908  *	@pf: the PF being configured
7909  *	@vf: the VF being configured
7910  *	@txq: the max number of egress queues
7911  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7912  *	@rxqi: the max number of interrupt-capable ingress queues
7913  *	@rxq: the max number of interruptless ingress queues
7914  *	@tc: the PCI traffic class
7915  *	@vi: the max number of virtual interfaces
7916  *	@cmask: the channel access rights mask for the PF/VF
7917  *	@pmask: the port access rights mask for the PF/VF
7918  *	@nexact: the maximum number of exact MPS filters
7919  *	@rcaps: read capabilities
7920  *	@wxcaps: write/execute capabilities
7921  *
7922  *	Configures resource limits and capabilities for a physical or virtual
7923  *	function.
7924  */
7925 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7926 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7927 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7928 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7929 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7930 {
7931 	struct fw_pfvf_cmd c;
7932 
7933 	memset(&c, 0, sizeof(c));
7934 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7935 				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7936 				  V_FW_PFVF_CMD_VFN(vf));
7937 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7938 	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7939 				     V_FW_PFVF_CMD_NIQ(rxq));
7940 	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7941 				    V_FW_PFVF_CMD_PMASK(pmask) |
7942 				    V_FW_PFVF_CMD_NEQ(txq));
7943 	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7944 				      V_FW_PFVF_CMD_NVI(vi) |
7945 				      V_FW_PFVF_CMD_NEXACTF(nexact));
7946 	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7947 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7948 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7949 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7950 }
7951 
7952 /**
7953  *	t4_alloc_vi_func - allocate a virtual interface
7954  *	@adap: the adapter
7955  *	@mbox: mailbox to use for the FW command
7956  *	@port: physical port associated with the VI
7957  *	@pf: the PF owning the VI
7958  *	@vf: the VF owning the VI
7959  *	@nmac: number of MAC addresses needed (1 to 5)
7960  *	@mac: the MAC addresses of the VI
7961  *	@rss_size: size of RSS table slice associated with this VI
7962  *	@portfunc: which Port Application Function MAC Address is desired
7963  *	@idstype: Intrusion Detection Type
7964  *
7965  *	Allocates a virtual interface for the given physical port.  If @mac is
7966  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7967  *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7968  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7969  *	stored consecutively so the space needed is @nmac * 6 bytes.
7970  *	Returns a negative error number or the non-negative VI id.
7971  */
7972 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7973 		     unsigned int port, unsigned int pf, unsigned int vf,
7974 		     unsigned int nmac, u8 *mac, u16 *rss_size,
7975 		     uint8_t *vfvld, uint16_t *vin,
7976 		     unsigned int portfunc, unsigned int idstype)
7977 {
7978 	int ret;
7979 	struct fw_vi_cmd c;
7980 
7981 	memset(&c, 0, sizeof(c));
7982 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7983 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7984 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7985 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7986 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7987 				     V_FW_VI_CMD_FUNC(portfunc));
7988 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7989 	c.nmac = nmac - 1;
7990 	if(!rss_size)
7991 		c.norss_rsssize = F_FW_VI_CMD_NORSS;
7992 
7993 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7994 	if (ret)
7995 		return ret;
7996 	ret = G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7997 
7998 	if (mac) {
7999 		memcpy(mac, c.mac, sizeof(c.mac));
8000 		switch (nmac) {
8001 		case 5:
8002 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
8003 		case 4:
8004 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
8005 		case 3:
8006 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
8007 		case 2:
8008 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
8009 		}
8010 	}
8011 	if (rss_size)
8012 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
8013 	if (vfvld) {
8014 		*vfvld = adap->params.viid_smt_extn_support ?
8015 		    G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16)) :
8016 		    G_FW_VIID_VIVLD(ret);
8017 	}
8018 	if (vin) {
8019 		*vin = adap->params.viid_smt_extn_support ?
8020 		    G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16)) :
8021 		    G_FW_VIID_VIN(ret);
8022 	}
8023 
8024 	return ret;
8025 }
8026 
8027 /**
8028  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
8029  *      @adap: the adapter
8030  *      @mbox: mailbox to use for the FW command
8031  *      @port: physical port associated with the VI
8032  *      @pf: the PF owning the VI
8033  *      @vf: the VF owning the VI
8034  *      @nmac: number of MAC addresses needed (1 to 5)
8035  *      @mac: the MAC addresses of the VI
8036  *      @rss_size: size of RSS table slice associated with this VI
8037  *
8038  *	backwards compatible and convieniance routine to allocate a Virtual
8039  *	Interface with a Ethernet Port Application Function and Intrustion
8040  *	Detection System disabled.
8041  */
8042 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
8043 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
8044 		u16 *rss_size, uint8_t *vfvld, uint16_t *vin)
8045 {
8046 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
8047 				vfvld, vin, FW_VI_FUNC_ETH, 0);
8048 }
8049 
8050 /**
8051  * 	t4_free_vi - free a virtual interface
8052  * 	@adap: the adapter
8053  * 	@mbox: mailbox to use for the FW command
8054  * 	@pf: the PF owning the VI
8055  * 	@vf: the VF owning the VI
8056  * 	@viid: virtual interface identifiler
8057  *
8058  * 	Free a previously allocated virtual interface.
8059  */
8060 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
8061 	       unsigned int vf, unsigned int viid)
8062 {
8063 	struct fw_vi_cmd c;
8064 
8065 	memset(&c, 0, sizeof(c));
8066 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
8067 				  F_FW_CMD_REQUEST |
8068 				  F_FW_CMD_EXEC |
8069 				  V_FW_VI_CMD_PFN(pf) |
8070 				  V_FW_VI_CMD_VFN(vf));
8071 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
8072 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
8073 
8074 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8075 }
8076 
8077 /**
8078  *	t4_set_rxmode - set Rx properties of a virtual interface
8079  *	@adap: the adapter
8080  *	@mbox: mailbox to use for the FW command
8081  *	@viid: the VI id
8082  *	@mtu: the new MTU or -1
8083  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
8084  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
8085  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
8086  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
8087  *	@sleep_ok: if true we may sleep while awaiting command completion
8088  *
8089  *	Sets Rx properties of a virtual interface.
8090  */
8091 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
8092 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
8093 		  bool sleep_ok)
8094 {
8095 	struct fw_vi_rxmode_cmd c;
8096 
8097 	/* convert to FW values */
8098 	if (mtu < 0)
8099 		mtu = M_FW_VI_RXMODE_CMD_MTU;
8100 	if (promisc < 0)
8101 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
8102 	if (all_multi < 0)
8103 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
8104 	if (bcast < 0)
8105 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
8106 	if (vlanex < 0)
8107 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
8108 
8109 	memset(&c, 0, sizeof(c));
8110 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
8111 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8112 				   V_FW_VI_RXMODE_CMD_VIID(viid));
8113 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
8114 	c.mtu_to_vlanexen =
8115 		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
8116 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
8117 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
8118 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
8119 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
8120 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8121 }
8122 
8123 /**
8124  *	t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
8125  *	@adap: the adapter
8126  *	@viid: the VI id
8127  *	@mac: the MAC address
8128  *	@mask: the mask
8129  *	@vni: the VNI id for the tunnel protocol
8130  *	@vni_mask: mask for the VNI id
8131  *	@dip_hit: to enable DIP match for the MPS entry
8132  *	@lookup_type: MAC address for inner (1) or outer (0) header
8133  *	@sleep_ok: call is allowed to sleep
8134  *
8135  *	Allocates an MPS entry with specified MAC address and VNI value.
8136  *
8137  *	Returns a negative error number or the allocated index for this mac.
8138  */
8139 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
8140 			    const u8 *addr, const u8 *mask, unsigned int vni,
8141 			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
8142 			    bool sleep_ok)
8143 {
8144 	struct fw_vi_mac_cmd c;
8145 	struct fw_vi_mac_vni *p = c.u.exact_vni;
8146 	int ret = 0;
8147 	u32 val;
8148 
8149 	memset(&c, 0, sizeof(c));
8150 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8151 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8152 				   V_FW_VI_MAC_CMD_VIID(viid));
8153 	val = V_FW_CMD_LEN16(1) |
8154 	      V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC_VNI);
8155 	c.freemacs_to_len16 = cpu_to_be32(val);
8156 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8157 				      V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8158 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8159 	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
8160 
8161 	p->lookup_type_to_vni = cpu_to_be32(V_FW_VI_MAC_CMD_VNI(vni) |
8162 					    V_FW_VI_MAC_CMD_DIP_HIT(dip_hit) |
8163 					    V_FW_VI_MAC_CMD_LOOKUP_TYPE(lookup_type));
8164 	p->vni_mask_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_VNI_MASK(vni_mask));
8165 
8166 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8167 	if (ret == 0)
8168 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8169 	return ret;
8170 }
8171 
8172 /**
8173  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
8174  *	@adap: the adapter
8175  *	@viid: the VI id
8176  *	@mac: the MAC address
8177  *	@mask: the mask
8178  *	@idx: index at which to add this entry
8179  *	@port_id: the port index
8180  *	@lookup_type: MAC address for inner (1) or outer (0) header
8181  *	@sleep_ok: call is allowed to sleep
8182  *
8183  *	Adds the mac entry at the specified index using raw mac interface.
8184  *
8185  *	Returns a negative error number or the allocated index for this mac.
8186  */
8187 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
8188 			  const u8 *addr, const u8 *mask, unsigned int idx,
8189 			  u8 lookup_type, u8 port_id, bool sleep_ok)
8190 {
8191 	int ret = 0;
8192 	struct fw_vi_mac_cmd c;
8193 	struct fw_vi_mac_raw *p = &c.u.raw;
8194 	u32 val;
8195 
8196 	memset(&c, 0, sizeof(c));
8197 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8198 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8199 				   V_FW_VI_MAC_CMD_VIID(viid));
8200 	val = V_FW_CMD_LEN16(1) |
8201 	      V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
8202 	c.freemacs_to_len16 = cpu_to_be32(val);
8203 
8204 	/* Specify that this is an inner mac address */
8205 	p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx));
8206 
8207 	/* Lookup Type. Outer header: 0, Inner header: 1 */
8208 	p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
8209 				   V_DATAPORTNUM(port_id));
8210 	/* Lookup mask and port mask */
8211 	p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
8212 				    V_DATAPORTNUM(M_DATAPORTNUM));
8213 
8214 	/* Copy the address and the mask */
8215 	memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
8216 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
8217 
8218 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8219 	if (ret == 0) {
8220 		ret = G_FW_VI_MAC_CMD_RAW_IDX(be32_to_cpu(p->raw_idx_pkd));
8221 		if (ret != idx)
8222 			ret = -ENOMEM;
8223 	}
8224 
8225 	return ret;
8226 }
8227 
8228 /**
8229  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
8230  *	@adap: the adapter
8231  *	@mbox: mailbox to use for the FW command
8232  *	@viid: the VI id
8233  *	@free: if true any existing filters for this VI id are first removed
8234  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8235  *	@addr: the MAC address(es)
8236  *	@idx: where to store the index of each allocated filter
8237  *	@hash: pointer to hash address filter bitmap
8238  *	@sleep_ok: call is allowed to sleep
8239  *
8240  *	Allocates an exact-match filter for each of the supplied addresses and
8241  *	sets it to the corresponding address.  If @idx is not %NULL it should
8242  *	have at least @naddr entries, each of which will be set to the index of
8243  *	the filter allocated for the corresponding MAC address.  If a filter
8244  *	could not be allocated for an address its index is set to 0xffff.
8245  *	If @hash is not %NULL addresses that fail to allocate an exact filter
8246  *	are hashed and update the hash filter bitmap pointed at by @hash.
8247  *
8248  *	Returns a negative error number or the number of filters allocated.
8249  */
8250 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
8251 		      unsigned int viid, bool free, unsigned int naddr,
8252 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
8253 {
8254 	int offset, ret = 0;
8255 	struct fw_vi_mac_cmd c;
8256 	unsigned int nfilters = 0;
8257 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8258 	unsigned int rem = naddr;
8259 
8260 	if (naddr > max_naddr)
8261 		return -EINVAL;
8262 
8263 	for (offset = 0; offset < naddr ; /**/) {
8264 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8265 					 ? rem
8266 					 : ARRAY_SIZE(c.u.exact));
8267 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8268 						     u.exact[fw_naddr]), 16);
8269 		struct fw_vi_mac_exact *p;
8270 		int i;
8271 
8272 		memset(&c, 0, sizeof(c));
8273 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8274 					   F_FW_CMD_REQUEST |
8275 					   F_FW_CMD_WRITE |
8276 					   V_FW_CMD_EXEC(free) |
8277 					   V_FW_VI_MAC_CMD_VIID(viid));
8278 		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
8279 						  V_FW_CMD_LEN16(len16));
8280 
8281 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8282 			p->valid_to_idx =
8283 				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8284 					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8285 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8286 		}
8287 
8288 		/*
8289 		 * It's okay if we run out of space in our MAC address arena.
8290 		 * Some of the addresses we submit may get stored so we need
8291 		 * to run through the reply to see what the results were ...
8292 		 */
8293 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8294 		if (ret && ret != -FW_ENOMEM)
8295 			break;
8296 
8297 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8298 			u16 index = G_FW_VI_MAC_CMD_IDX(
8299 						be16_to_cpu(p->valid_to_idx));
8300 
8301 			if (idx)
8302 				idx[offset+i] = (index >=  max_naddr
8303 						 ? 0xffff
8304 						 : index);
8305 			if (index < max_naddr)
8306 				nfilters++;
8307 			else if (hash)
8308 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
8309 		}
8310 
8311 		free = false;
8312 		offset += fw_naddr;
8313 		rem -= fw_naddr;
8314 	}
8315 
8316 	if (ret == 0 || ret == -FW_ENOMEM)
8317 		ret = nfilters;
8318 	return ret;
8319 }
8320 
8321 /**
8322  *	t4_free_encap_mac_filt - frees MPS entry at given index
8323  *	@adap: the adapter
8324  *	@viid: the VI id
8325  *	@idx: index of MPS entry to be freed
8326  *	@sleep_ok: call is allowed to sleep
8327  *
8328  *	Frees the MPS entry at supplied index
8329  *
8330  *	Returns a negative error number or zero on success
8331  */
8332 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
8333 			   int idx, bool sleep_ok)
8334 {
8335 	struct fw_vi_mac_exact *p;
8336 	struct fw_vi_mac_cmd c;
8337 	u8 addr[] = {0,0,0,0,0,0};
8338 	int ret = 0;
8339 	u32 exact;
8340 
8341 	memset(&c, 0, sizeof(c));
8342 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8343 				   F_FW_CMD_REQUEST |
8344 				   F_FW_CMD_WRITE |
8345 				   V_FW_CMD_EXEC(0) |
8346 				   V_FW_VI_MAC_CMD_VIID(viid));
8347 	exact = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC);
8348 	c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8349 					  exact |
8350 					  V_FW_CMD_LEN16(1));
8351 	p = c.u.exact;
8352 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8353 				      V_FW_VI_MAC_CMD_IDX(idx));
8354 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8355 
8356 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8357 	return ret;
8358 }
8359 
8360 /**
8361  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
8362  *	@adap: the adapter
8363  *	@viid: the VI id
8364  *	@addr: the MAC address
8365  *	@mask: the mask
8366  *	@idx: index of the entry in mps tcam
8367  *	@lookup_type: MAC address for inner (1) or outer (0) header
8368  *	@port_id: the port index
8369  *	@sleep_ok: call is allowed to sleep
8370  *
8371  *	Removes the mac entry at the specified index using raw mac interface.
8372  *
8373  *	Returns a negative error number on failure.
8374  */
8375 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
8376 			 const u8 *addr, const u8 *mask, unsigned int idx,
8377 			 u8 lookup_type, u8 port_id, bool sleep_ok)
8378 {
8379 	struct fw_vi_mac_cmd c;
8380 	struct fw_vi_mac_raw *p = &c.u.raw;
8381 	u32 raw;
8382 
8383 	memset(&c, 0, sizeof(c));
8384 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8385 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8386 				   V_FW_CMD_EXEC(0) |
8387 				   V_FW_VI_MAC_CMD_VIID(viid));
8388 	raw = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
8389 	c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8390 					  raw |
8391 					  V_FW_CMD_LEN16(1));
8392 
8393 	p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx) |
8394 				     FW_VI_MAC_ID_BASED_FREE);
8395 
8396 	/* Lookup Type. Outer header: 0, Inner header: 1 */
8397 	p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
8398 				   V_DATAPORTNUM(port_id));
8399 	/* Lookup mask and port mask */
8400 	p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
8401 				    V_DATAPORTNUM(M_DATAPORTNUM));
8402 
8403 	/* Copy the address and the mask */
8404 	memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
8405 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
8406 
8407 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8408 }
8409 
8410 /**
8411  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
8412  *	@adap: the adapter
8413  *	@mbox: mailbox to use for the FW command
8414  *	@viid: the VI id
8415  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8416  *	@addr: the MAC address(es)
8417  *	@sleep_ok: call is allowed to sleep
8418  *
8419  *	Frees the exact-match filter for each of the supplied addresses
8420  *
8421  *	Returns a negative error number or the number of filters freed.
8422  */
8423 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8424 		      unsigned int viid, unsigned int naddr,
8425 		      const u8 **addr, bool sleep_ok)
8426 {
8427 	int offset, ret = 0;
8428 	struct fw_vi_mac_cmd c;
8429 	unsigned int nfilters = 0;
8430 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8431 	unsigned int rem = naddr;
8432 
8433 	if (naddr > max_naddr)
8434 		return -EINVAL;
8435 
8436 	for (offset = 0; offset < (int)naddr ; /**/) {
8437 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8438 					 ? rem
8439 					 : ARRAY_SIZE(c.u.exact));
8440 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8441 						     u.exact[fw_naddr]), 16);
8442 		struct fw_vi_mac_exact *p;
8443 		int i;
8444 
8445 		memset(&c, 0, sizeof(c));
8446 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8447 				     F_FW_CMD_REQUEST |
8448 				     F_FW_CMD_WRITE |
8449 				     V_FW_CMD_EXEC(0) |
8450 				     V_FW_VI_MAC_CMD_VIID(viid));
8451 		c.freemacs_to_len16 =
8452 				cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8453 					    V_FW_CMD_LEN16(len16));
8454 
8455 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8456 			p->valid_to_idx = cpu_to_be16(
8457 				F_FW_VI_MAC_CMD_VALID |
8458 				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE));
8459 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8460 		}
8461 
8462 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8463 		if (ret)
8464 			break;
8465 
8466 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8467 			u16 index = G_FW_VI_MAC_CMD_IDX(
8468 						be16_to_cpu(p->valid_to_idx));
8469 
8470 			if (index < max_naddr)
8471 				nfilters++;
8472 		}
8473 
8474 		offset += fw_naddr;
8475 		rem -= fw_naddr;
8476 	}
8477 
8478 	if (ret == 0)
8479 		ret = nfilters;
8480 	return ret;
8481 }
8482 
8483 /**
8484  *	t4_change_mac - modifies the exact-match filter for a MAC address
8485  *	@adap: the adapter
8486  *	@mbox: mailbox to use for the FW command
8487  *	@viid: the VI id
8488  *	@idx: index of existing filter for old value of MAC address, or -1
8489  *	@addr: the new MAC address value
8490  *	@persist: whether a new MAC allocation should be persistent
8491  *	@smt_idx: add MAC to SMT and return its index, or NULL
8492  *
8493  *	Modifies an exact-match filter and sets it to the new MAC address if
8494  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
8495  *	latter case the address is added persistently if @persist is %true.
8496  *
8497  *	Note that in general it is not possible to modify the value of a given
8498  *	filter so the generic way to modify an address filter is to free the one
8499  *	being used by the old address value and allocate a new filter for the
8500  *	new address value.
8501  *
8502  *	Returns a negative error number or the index of the filter with the new
8503  *	MAC value.  Note that this index may differ from @idx.
8504  */
8505 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8506 		  int idx, const u8 *addr, bool persist, uint16_t *smt_idx)
8507 {
8508 	int ret, mode;
8509 	struct fw_vi_mac_cmd c;
8510 	struct fw_vi_mac_exact *p = c.u.exact;
8511 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
8512 
8513 	if (idx < 0)		/* new allocation */
8514 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8515 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8516 
8517 	memset(&c, 0, sizeof(c));
8518 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8519 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8520 				   V_FW_VI_MAC_CMD_VIID(viid));
8521 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
8522 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8523 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
8524 				      V_FW_VI_MAC_CMD_IDX(idx));
8525 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8526 
8527 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8528 	if (ret == 0) {
8529 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8530 		if (ret >= max_mac_addr)
8531 			ret = -ENOMEM;
8532 		if (smt_idx) {
8533 			if (adap->params.viid_smt_extn_support)
8534 				*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
8535 			else {
8536 				if (chip_id(adap) <= CHELSIO_T5)
8537 					*smt_idx = (viid & M_FW_VIID_VIN) << 1;
8538 				else
8539 					*smt_idx = viid & M_FW_VIID_VIN;
8540 			}
8541 		}
8542 	}
8543 	return ret;
8544 }
8545 
8546 /**
8547  *	t4_set_addr_hash - program the MAC inexact-match hash filter
8548  *	@adap: the adapter
8549  *	@mbox: mailbox to use for the FW command
8550  *	@viid: the VI id
8551  *	@ucast: whether the hash filter should also match unicast addresses
8552  *	@vec: the value to be written to the hash filter
8553  *	@sleep_ok: call is allowed to sleep
8554  *
8555  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8556  */
8557 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8558 		     bool ucast, u64 vec, bool sleep_ok)
8559 {
8560 	struct fw_vi_mac_cmd c;
8561 	u32 val;
8562 
8563 	memset(&c, 0, sizeof(c));
8564 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8565 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8566 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8567 	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
8568 	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
8569 	c.freemacs_to_len16 = cpu_to_be32(val);
8570 	c.u.hash.hashvec = cpu_to_be64(vec);
8571 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8572 }
8573 
8574 /**
8575  *      t4_enable_vi_params - enable/disable a virtual interface
8576  *      @adap: the adapter
8577  *      @mbox: mailbox to use for the FW command
8578  *      @viid: the VI id
8579  *      @rx_en: 1=enable Rx, 0=disable Rx
8580  *      @tx_en: 1=enable Tx, 0=disable Tx
8581  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8582  *
8583  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8584  *      only makes sense when enabling a Virtual Interface ...
8585  */
8586 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8587 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8588 {
8589 	struct fw_vi_enable_cmd c;
8590 
8591 	memset(&c, 0, sizeof(c));
8592 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8593 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8594 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8595 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
8596 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
8597 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
8598 				     FW_LEN16(c));
8599 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8600 }
8601 
8602 /**
8603  *	t4_enable_vi - enable/disable a virtual interface
8604  *	@adap: the adapter
8605  *	@mbox: mailbox to use for the FW command
8606  *	@viid: the VI id
8607  *	@rx_en: 1=enable Rx, 0=disable Rx
8608  *	@tx_en: 1=enable Tx, 0=disable Tx
8609  *
8610  *	Enables/disables a virtual interface.  Note that setting DCB Enable
8611  *	only makes sense when enabling a Virtual Interface ...
8612  */
8613 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8614 		 bool rx_en, bool tx_en)
8615 {
8616 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8617 }
8618 
8619 /**
8620  *	t4_identify_port - identify a VI's port by blinking its LED
8621  *	@adap: the adapter
8622  *	@mbox: mailbox to use for the FW command
8623  *	@viid: the VI id
8624  *	@nblinks: how many times to blink LED at 2.5 Hz
8625  *
8626  *	Identifies a VI's port by blinking its LED.
8627  */
8628 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8629 		     unsigned int nblinks)
8630 {
8631 	struct fw_vi_enable_cmd c;
8632 
8633 	memset(&c, 0, sizeof(c));
8634 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8635 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8636 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8637 	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
8638 	c.blinkdur = cpu_to_be16(nblinks);
8639 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8640 }
8641 
8642 /**
8643  *	t4_iq_stop - stop an ingress queue and its FLs
8644  *	@adap: the adapter
8645  *	@mbox: mailbox to use for the FW command
8646  *	@pf: the PF owning the queues
8647  *	@vf: the VF owning the queues
8648  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8649  *	@iqid: ingress queue id
8650  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8651  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8652  *
8653  *	Stops an ingress queue and its associated FLs, if any.  This causes
8654  *	any current or future data/messages destined for these queues to be
8655  *	tossed.
8656  */
8657 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8658 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8659 	       unsigned int fl0id, unsigned int fl1id)
8660 {
8661 	struct fw_iq_cmd c;
8662 
8663 	memset(&c, 0, sizeof(c));
8664 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8665 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8666 				  V_FW_IQ_CMD_VFN(vf));
8667 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
8668 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8669 	c.iqid = cpu_to_be16(iqid);
8670 	c.fl0id = cpu_to_be16(fl0id);
8671 	c.fl1id = cpu_to_be16(fl1id);
8672 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8673 }
8674 
8675 /**
8676  *	t4_iq_free - free an ingress queue and its FLs
8677  *	@adap: the adapter
8678  *	@mbox: mailbox to use for the FW command
8679  *	@pf: the PF owning the queues
8680  *	@vf: the VF owning the queues
8681  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8682  *	@iqid: ingress queue id
8683  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8684  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8685  *
8686  *	Frees an ingress queue and its associated FLs, if any.
8687  */
8688 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8689 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8690 	       unsigned int fl0id, unsigned int fl1id)
8691 {
8692 	struct fw_iq_cmd c;
8693 
8694 	memset(&c, 0, sizeof(c));
8695 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8696 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8697 				  V_FW_IQ_CMD_VFN(vf));
8698 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
8699 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8700 	c.iqid = cpu_to_be16(iqid);
8701 	c.fl0id = cpu_to_be16(fl0id);
8702 	c.fl1id = cpu_to_be16(fl1id);
8703 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8704 }
8705 
8706 /**
8707  *	t4_eth_eq_stop - stop an Ethernet egress queue
8708  *	@adap: the adapter
8709  *	@mbox: mailbox to use for the FW command
8710  *	@pf: the PF owning the queues
8711  *	@vf: the VF owning the queues
8712  *	@eqid: egress queue id
8713  *
8714  *	Stops an Ethernet egress queue.  The queue can be reinitialized or
8715  *	freed but is not otherwise functional after this call.
8716  */
8717 int t4_eth_eq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8718                    unsigned int vf, unsigned int eqid)
8719 {
8720 	struct fw_eq_eth_cmd c;
8721 
8722 	memset(&c, 0, sizeof(c));
8723 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8724 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8725 				  V_FW_EQ_ETH_CMD_PFN(pf) |
8726 				  V_FW_EQ_ETH_CMD_VFN(vf));
8727 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_EQSTOP | FW_LEN16(c));
8728 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8729 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8730 }
8731 
8732 /**
8733  *	t4_eth_eq_free - free an Ethernet egress queue
8734  *	@adap: the adapter
8735  *	@mbox: mailbox to use for the FW command
8736  *	@pf: the PF owning the queue
8737  *	@vf: the VF owning the queue
8738  *	@eqid: egress queue id
8739  *
8740  *	Frees an Ethernet egress queue.
8741  */
8742 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8743 		   unsigned int vf, unsigned int eqid)
8744 {
8745 	struct fw_eq_eth_cmd c;
8746 
8747 	memset(&c, 0, sizeof(c));
8748 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8749 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8750 				  V_FW_EQ_ETH_CMD_PFN(pf) |
8751 				  V_FW_EQ_ETH_CMD_VFN(vf));
8752 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
8753 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8754 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8755 }
8756 
8757 /**
8758  *	t4_ctrl_eq_free - free a control egress queue
8759  *	@adap: the adapter
8760  *	@mbox: mailbox to use for the FW command
8761  *	@pf: the PF owning the queue
8762  *	@vf: the VF owning the queue
8763  *	@eqid: egress queue id
8764  *
8765  *	Frees a control egress queue.
8766  */
8767 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8768 		    unsigned int vf, unsigned int eqid)
8769 {
8770 	struct fw_eq_ctrl_cmd c;
8771 
8772 	memset(&c, 0, sizeof(c));
8773 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
8774 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8775 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
8776 				  V_FW_EQ_CTRL_CMD_VFN(vf));
8777 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
8778 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
8779 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8780 }
8781 
8782 /**
8783  *	t4_ofld_eq_free - free an offload egress queue
8784  *	@adap: the adapter
8785  *	@mbox: mailbox to use for the FW command
8786  *	@pf: the PF owning the queue
8787  *	@vf: the VF owning the queue
8788  *	@eqid: egress queue id
8789  *
8790  *	Frees a control egress queue.
8791  */
8792 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8793 		    unsigned int vf, unsigned int eqid)
8794 {
8795 	struct fw_eq_ofld_cmd c;
8796 
8797 	memset(&c, 0, sizeof(c));
8798 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
8799 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8800 				  V_FW_EQ_OFLD_CMD_PFN(pf) |
8801 				  V_FW_EQ_OFLD_CMD_VFN(vf));
8802 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
8803 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
8804 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8805 }
8806 
8807 /**
8808  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8809  *	@link_down_rc: Link Down Reason Code
8810  *
8811  *	Returns a string representation of the Link Down Reason Code.
8812  */
8813 const char *t4_link_down_rc_str(unsigned char link_down_rc)
8814 {
8815 	static const char *reason[] = {
8816 		"Link Down",
8817 		"Remote Fault",
8818 		"Auto-negotiation Failure",
8819 		"Reserved3",
8820 		"Insufficient Airflow",
8821 		"Unable To Determine Reason",
8822 		"No RX Signal Detected",
8823 		"Reserved7",
8824 	};
8825 
8826 	if (link_down_rc >= ARRAY_SIZE(reason))
8827 		return "Bad Reason Code";
8828 
8829 	return reason[link_down_rc];
8830 }
8831 
8832 /*
8833  * Return the highest speed set in the port capabilities, in Mb/s.
8834  */
8835 unsigned int fwcap_to_speed(uint32_t caps)
8836 {
8837 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8838 		do { \
8839 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8840 				return __speed; \
8841 		} while (0)
8842 
8843 	TEST_SPEED_RETURN(400G, 400000);
8844 	TEST_SPEED_RETURN(200G, 200000);
8845 	TEST_SPEED_RETURN(100G, 100000);
8846 	TEST_SPEED_RETURN(50G,   50000);
8847 	TEST_SPEED_RETURN(40G,   40000);
8848 	TEST_SPEED_RETURN(25G,   25000);
8849 	TEST_SPEED_RETURN(10G,   10000);
8850 	TEST_SPEED_RETURN(1G,     1000);
8851 	TEST_SPEED_RETURN(100M,    100);
8852 
8853 	#undef TEST_SPEED_RETURN
8854 
8855 	return 0;
8856 }
8857 
8858 /*
8859  * Return the port capabilities bit for the given speed, which is in Mb/s.
8860  */
8861 uint32_t speed_to_fwcap(unsigned int speed)
8862 {
8863 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8864 		do { \
8865 			if (speed == __speed) \
8866 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8867 		} while (0)
8868 
8869 	TEST_SPEED_RETURN(400G, 400000);
8870 	TEST_SPEED_RETURN(200G, 200000);
8871 	TEST_SPEED_RETURN(100G, 100000);
8872 	TEST_SPEED_RETURN(50G,   50000);
8873 	TEST_SPEED_RETURN(40G,   40000);
8874 	TEST_SPEED_RETURN(25G,   25000);
8875 	TEST_SPEED_RETURN(10G,   10000);
8876 	TEST_SPEED_RETURN(1G,     1000);
8877 	TEST_SPEED_RETURN(100M,    100);
8878 
8879 	#undef TEST_SPEED_RETURN
8880 
8881 	return 0;
8882 }
8883 
8884 /*
8885  * Return the port capabilities bit for the highest speed in the capabilities.
8886  */
8887 uint32_t fwcap_top_speed(uint32_t caps)
8888 {
8889 	#define TEST_SPEED_RETURN(__caps_speed) \
8890 		do { \
8891 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8892 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8893 		} while (0)
8894 
8895 	TEST_SPEED_RETURN(400G);
8896 	TEST_SPEED_RETURN(200G);
8897 	TEST_SPEED_RETURN(100G);
8898 	TEST_SPEED_RETURN(50G);
8899 	TEST_SPEED_RETURN(40G);
8900 	TEST_SPEED_RETURN(25G);
8901 	TEST_SPEED_RETURN(10G);
8902 	TEST_SPEED_RETURN(1G);
8903 	TEST_SPEED_RETURN(100M);
8904 
8905 	#undef TEST_SPEED_RETURN
8906 
8907 	return 0;
8908 }
8909 
8910 /**
8911  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8912  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8913  *
8914  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8915  *	32-bit Port Capabilities value.
8916  */
8917 static uint32_t lstatus_to_fwcap(u32 lstatus)
8918 {
8919 	uint32_t linkattr = 0;
8920 
8921 	/*
8922 	 * Unfortunately the format of the Link Status in the old
8923 	 * 16-bit Port Information message isn't the same as the
8924 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8925 	 */
8926 	if (lstatus & F_FW_PORT_CMD_RXPAUSE)
8927 		linkattr |= FW_PORT_CAP32_FC_RX;
8928 	if (lstatus & F_FW_PORT_CMD_TXPAUSE)
8929 		linkattr |= FW_PORT_CAP32_FC_TX;
8930 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
8931 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8932 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
8933 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8934 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
8935 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8936 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
8937 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8938 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
8939 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8940 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
8941 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8942 
8943 	return linkattr;
8944 }
8945 
8946 /*
8947  * Updates all fields owned by the common code in port_info and link_config
8948  * based on information provided by the firmware.  Does not touch any
8949  * requested_* field.
8950  */
8951 static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p,
8952     enum fw_port_action action, bool *mod_changed, bool *link_changed)
8953 {
8954 	struct link_config old_lc, *lc = &pi->link_cfg;
8955 	unsigned char fc;
8956 	u32 stat, linkattr;
8957 	int old_ptype, old_mtype;
8958 
8959 	old_ptype = pi->port_type;
8960 	old_mtype = pi->mod_type;
8961 	old_lc = *lc;
8962 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8963 		stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
8964 
8965 		pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
8966 		pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
8967 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
8968 		    G_FW_PORT_CMD_MDIOADDR(stat) : -1;
8969 
8970 		lc->pcaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap));
8971 		lc->acaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap));
8972 		lc->lpacaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap));
8973 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
8974 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
8975 
8976 		linkattr = lstatus_to_fwcap(stat);
8977 	} else if (action == FW_PORT_ACTION_GET_PORT_INFO32) {
8978 		stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32);
8979 
8980 		pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat);
8981 		pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat);
8982 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ?
8983 		    G_FW_PORT_CMD_MDIOADDR32(stat) : -1;
8984 
8985 		lc->pcaps = be32_to_cpu(p->u.info32.pcaps32);
8986 		lc->acaps = be32_to_cpu(p->u.info32.acaps32);
8987 		lc->lpacaps = be32_to_cpu(p->u.info32.lpacaps32);
8988 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0;
8989 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat);
8990 
8991 		linkattr = be32_to_cpu(p->u.info32.linkattr32);
8992 	} else {
8993 		CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action);
8994 		return;
8995 	}
8996 
8997 	lc->speed = fwcap_to_speed(linkattr);
8998 	lc->fec = fwcap_to_fec(linkattr, true);
8999 
9000 	fc = 0;
9001 	if (linkattr & FW_PORT_CAP32_FC_RX)
9002 		fc |= PAUSE_RX;
9003 	if (linkattr & FW_PORT_CAP32_FC_TX)
9004 		fc |= PAUSE_TX;
9005 	lc->fc = fc;
9006 
9007 	if (mod_changed != NULL)
9008 		*mod_changed = false;
9009 	if (link_changed != NULL)
9010 		*link_changed = false;
9011 	if (old_ptype != pi->port_type || old_mtype != pi->mod_type ||
9012 	    old_lc.pcaps != lc->pcaps) {
9013 		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE)
9014 			lc->fec_hint = fwcap_to_fec(lc->acaps, true);
9015 		if (mod_changed != NULL)
9016 			*mod_changed = true;
9017 	}
9018 	if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed ||
9019 	    old_lc.fec != lc->fec || old_lc.fc != lc->fc) {
9020 		if (link_changed != NULL)
9021 			*link_changed = true;
9022 	}
9023 }
9024 
9025 /**
9026  *	t4_update_port_info - retrieve and update port information if changed
9027  *	@pi: the port_info
9028  *
9029  *	We issue a Get Port Information Command to the Firmware and, if
9030  *	successful, we check to see if anything is different from what we
9031  *	last recorded and update things accordingly.
9032  */
9033  int t4_update_port_info(struct port_info *pi)
9034  {
9035 	struct adapter *sc = pi->adapter;
9036 	struct fw_port_cmd cmd;
9037 	enum fw_port_action action;
9038 	int ret;
9039 
9040 	memset(&cmd, 0, sizeof(cmd));
9041 	cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
9042 	    F_FW_CMD_REQUEST | F_FW_CMD_READ |
9043 	    V_FW_PORT_CMD_PORTID(pi->tx_chan));
9044 	action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 :
9045 	    FW_PORT_ACTION_GET_PORT_INFO;
9046 	cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) |
9047 	    FW_LEN16(cmd));
9048 	ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd);
9049 	if (ret)
9050 		return ret;
9051 
9052 	handle_port_info(pi, &cmd, action, NULL, NULL);
9053 	return 0;
9054 }
9055 
9056 /**
9057  *	t4_handle_fw_rpl - process a FW reply message
9058  *	@adap: the adapter
9059  *	@rpl: start of the FW message
9060  *
9061  *	Processes a FW message, such as link state change messages.
9062  */
9063 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
9064 {
9065 	u8 opcode = *(const u8 *)rpl;
9066 	const struct fw_port_cmd *p = (const void *)rpl;
9067 	enum fw_port_action action =
9068 	    G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
9069 	bool mod_changed, link_changed;
9070 
9071 	if (opcode == FW_PORT_CMD &&
9072 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
9073 	    action == FW_PORT_ACTION_GET_PORT_INFO32)) {
9074 		/* link/module state change message */
9075 		int i;
9076 		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
9077 		struct port_info *pi = NULL;
9078 
9079 		for_each_port(adap, i) {
9080 			pi = adap2pinfo(adap, i);
9081 			if (pi->tx_chan == chan)
9082 				break;
9083 		}
9084 
9085 		PORT_LOCK(pi);
9086 		handle_port_info(pi, p, action, &mod_changed, &link_changed);
9087 		PORT_UNLOCK(pi);
9088 		if (mod_changed)
9089 			t4_os_portmod_changed(pi);
9090 		if (link_changed) {
9091 			PORT_LOCK(pi);
9092 			t4_os_link_changed(pi);
9093 			PORT_UNLOCK(pi);
9094 		}
9095 	} else {
9096 		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
9097 		return -EINVAL;
9098 	}
9099 	return 0;
9100 }
9101 
9102 /**
9103  *	get_pci_mode - determine a card's PCI mode
9104  *	@adapter: the adapter
9105  *	@p: where to store the PCI settings
9106  *
9107  *	Determines a card's PCI mode and associated parameters, such as speed
9108  *	and width.
9109  */
9110 static void get_pci_mode(struct adapter *adapter,
9111 				   struct pci_params *p)
9112 {
9113 	u16 val;
9114 	u32 pcie_cap;
9115 
9116 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
9117 	if (pcie_cap) {
9118 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
9119 		p->speed = val & PCI_EXP_LNKSTA_CLS;
9120 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
9121 	}
9122 }
9123 
9124 struct flash_desc {
9125 	u32 vendor_and_model_id;
9126 	u32 size_mb;
9127 };
9128 
9129 int t4_get_flash_params(struct adapter *adapter)
9130 {
9131 	/*
9132 	 * Table for non-standard supported Flash parts.  Note, all Flash
9133 	 * parts must have 64KB sectors.
9134 	 */
9135 	static struct flash_desc supported_flash[] = {
9136 		{ 0x00150201, 4 << 20 },	/* Spansion 4MB S25FL032P */
9137 	};
9138 
9139 	int ret;
9140 	u32 flashid = 0;
9141 	unsigned int part, manufacturer;
9142 	unsigned int density, size = 0;
9143 
9144 
9145 	/*
9146 	 * Issue a Read ID Command to the Flash part.  We decode supported
9147 	 * Flash parts and their sizes from this.  There's a newer Query
9148 	 * Command which can retrieve detailed geometry information but many
9149 	 * Flash parts don't support it.
9150 	 */
9151 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
9152 	if (!ret)
9153 		ret = sf1_read(adapter, 3, 0, 1, &flashid);
9154 	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
9155 	if (ret < 0)
9156 		return ret;
9157 
9158 	/*
9159 	 * Check to see if it's one of our non-standard supported Flash parts.
9160 	 */
9161 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
9162 		if (supported_flash[part].vendor_and_model_id == flashid) {
9163 			adapter->params.sf_size =
9164 				supported_flash[part].size_mb;
9165 			adapter->params.sf_nsec =
9166 				adapter->params.sf_size / SF_SEC_SIZE;
9167 			goto found;
9168 		}
9169 
9170 	/*
9171 	 * Decode Flash part size.  The code below looks repetative with
9172 	 * common encodings, but that's not guaranteed in the JEDEC
9173 	 * specification for the Read JADEC ID command.  The only thing that
9174 	 * we're guaranteed by the JADEC specification is where the
9175 	 * Manufacturer ID is in the returned result.  After that each
9176 	 * Manufacturer ~could~ encode things completely differently.
9177 	 * Note, all Flash parts must have 64KB sectors.
9178 	 */
9179 	manufacturer = flashid & 0xff;
9180 	switch (manufacturer) {
9181 	case 0x20: /* Micron/Numonix */
9182 		/*
9183 		 * This Density -> Size decoding table is taken from Micron
9184 		 * Data Sheets.
9185 		 */
9186 		density = (flashid >> 16) & 0xff;
9187 		switch (density) {
9188 		case 0x14: size = 1 << 20; break; /*   1MB */
9189 		case 0x15: size = 1 << 21; break; /*   2MB */
9190 		case 0x16: size = 1 << 22; break; /*   4MB */
9191 		case 0x17: size = 1 << 23; break; /*   8MB */
9192 		case 0x18: size = 1 << 24; break; /*  16MB */
9193 		case 0x19: size = 1 << 25; break; /*  32MB */
9194 		case 0x20: size = 1 << 26; break; /*  64MB */
9195 		case 0x21: size = 1 << 27; break; /* 128MB */
9196 		case 0x22: size = 1 << 28; break; /* 256MB */
9197 		}
9198 		break;
9199 
9200 	case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */
9201 		/*
9202 		 * This Density -> Size decoding table is taken from ISSI
9203 		 * Data Sheets.
9204 		 */
9205 		density = (flashid >> 16) & 0xff;
9206 		switch (density) {
9207 		case 0x16: size = 1 << 25; break; /*  32MB */
9208 		case 0x17: size = 1 << 26; break; /*  64MB */
9209 		}
9210 		break;
9211 
9212 	case 0xc2: /* Macronix */
9213 		/*
9214 		 * This Density -> Size decoding table is taken from Macronix
9215 		 * Data Sheets.
9216 		 */
9217 		density = (flashid >> 16) & 0xff;
9218 		switch (density) {
9219 		case 0x17: size = 1 << 23; break; /*   8MB */
9220 		case 0x18: size = 1 << 24; break; /*  16MB */
9221 		}
9222 		break;
9223 
9224 	case 0xef: /* Winbond */
9225 		/*
9226 		 * This Density -> Size decoding table is taken from Winbond
9227 		 * Data Sheets.
9228 		 */
9229 		density = (flashid >> 16) & 0xff;
9230 		switch (density) {
9231 		case 0x17: size = 1 << 23; break; /*   8MB */
9232 		case 0x18: size = 1 << 24; break; /*  16MB */
9233 		}
9234 		break;
9235 	}
9236 
9237 	/* If we didn't recognize the FLASH part, that's no real issue: the
9238 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
9239 	 * use a FLASH part which is at least 4MB in size and has 64KB
9240 	 * sectors.  The unrecognized FLASH part is likely to be much larger
9241 	 * than 4MB, but that's all we really need.
9242 	 */
9243 	if (size == 0) {
9244 		CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid);
9245 		size = 1 << 22;
9246 	}
9247 
9248 	/*
9249 	 * Store decoded Flash size and fall through into vetting code.
9250 	 */
9251 	adapter->params.sf_size = size;
9252 	adapter->params.sf_nsec = size / SF_SEC_SIZE;
9253 
9254  found:
9255 	/*
9256 	 * We should ~probably~ reject adapters with FLASHes which are too
9257 	 * small but we have some legacy FPGAs with small FLASHes that we'd
9258 	 * still like to use.  So instead we emit a scary message ...
9259 	 */
9260 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
9261 		CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9262 			flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
9263 
9264 	return 0;
9265 }
9266 
9267 static void set_pcie_completion_timeout(struct adapter *adapter,
9268 						  u8 range)
9269 {
9270 	u16 val;
9271 	u32 pcie_cap;
9272 
9273 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
9274 	if (pcie_cap) {
9275 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
9276 		val &= 0xfff0;
9277 		val |= range ;
9278 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
9279 	}
9280 }
9281 
9282 const struct chip_params *t4_get_chip_params(int chipid)
9283 {
9284 	static const struct chip_params chip_params[] = {
9285 		{
9286 			/* T4 */
9287 			.nchan = NCHAN,
9288 			.pm_stats_cnt = PM_NSTATS,
9289 			.cng_ch_bits_log = 2,
9290 			.nsched_cls = 15,
9291 			.cim_num_obq = CIM_NUM_OBQ,
9292 			.filter_opt_len = FILTER_OPT_LEN,
9293 			.mps_rplc_size = 128,
9294 			.vfcount = 128,
9295 			.sge_fl_db = F_DBPRIO,
9296 			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
9297 			.rss_nentries = RSS_NENTRIES,
9298 		},
9299 		{
9300 			/* T5 */
9301 			.nchan = NCHAN,
9302 			.pm_stats_cnt = PM_NSTATS,
9303 			.cng_ch_bits_log = 2,
9304 			.nsched_cls = 16,
9305 			.cim_num_obq = CIM_NUM_OBQ_T5,
9306 			.filter_opt_len = T5_FILTER_OPT_LEN,
9307 			.mps_rplc_size = 128,
9308 			.vfcount = 128,
9309 			.sge_fl_db = F_DBPRIO | F_DBTYPE,
9310 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
9311 			.rss_nentries = RSS_NENTRIES,
9312 		},
9313 		{
9314 			/* T6 */
9315 			.nchan = T6_NCHAN,
9316 			.pm_stats_cnt = T6_PM_NSTATS,
9317 			.cng_ch_bits_log = 3,
9318 			.nsched_cls = 16,
9319 			.cim_num_obq = CIM_NUM_OBQ_T5,
9320 			.filter_opt_len = T5_FILTER_OPT_LEN,
9321 			.mps_rplc_size = 256,
9322 			.vfcount = 256,
9323 			.sge_fl_db = 0,
9324 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
9325 			.rss_nentries = T6_RSS_NENTRIES,
9326 		},
9327 	};
9328 
9329 	chipid -= CHELSIO_T4;
9330 	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
9331 		return NULL;
9332 
9333 	return &chip_params[chipid];
9334 }
9335 
9336 /**
9337  *	t4_prep_adapter - prepare SW and HW for operation
9338  *	@adapter: the adapter
9339  *	@buf: temporary space of at least VPD_LEN size provided by the caller.
9340  *
9341  *	Initialize adapter SW state for the various HW modules, set initial
9342  *	values for some adapter tunables, take PHYs out of reset, and
9343  *	initialize the MDIO interface.
9344  */
9345 int t4_prep_adapter(struct adapter *adapter, u32 *buf)
9346 {
9347 	int ret;
9348 	uint16_t device_id;
9349 	uint32_t pl_rev;
9350 
9351 	get_pci_mode(adapter, &adapter->params.pci);
9352 
9353 	pl_rev = t4_read_reg(adapter, A_PL_REV);
9354 	adapter->params.chipid = G_CHIPID(pl_rev);
9355 	adapter->params.rev = G_REV(pl_rev);
9356 	if (adapter->params.chipid == 0) {
9357 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
9358 		adapter->params.chipid = CHELSIO_T4;
9359 
9360 		/* T4A1 chip is not supported */
9361 		if (adapter->params.rev == 1) {
9362 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
9363 			return -EINVAL;
9364 		}
9365 	}
9366 
9367 	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
9368 	if (adapter->chip_params == NULL)
9369 		return -EINVAL;
9370 
9371 	adapter->params.pci.vpd_cap_addr =
9372 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
9373 
9374 	ret = t4_get_flash_params(adapter);
9375 	if (ret < 0)
9376 		return ret;
9377 
9378 	/* Cards with real ASICs have the chipid in the PCIe device id */
9379 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
9380 	if (device_id >> 12 == chip_id(adapter))
9381 		adapter->params.cim_la_size = CIMLA_SIZE;
9382 	else {
9383 		/* FPGA */
9384 		adapter->params.fpga = 1;
9385 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
9386 	}
9387 
9388 	ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
9389 	if (ret < 0)
9390 		return ret;
9391 
9392 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9393 
9394 	/*
9395 	 * Default port and clock for debugging in case we can't reach FW.
9396 	 */
9397 	adapter->params.nports = 1;
9398 	adapter->params.portvec = 1;
9399 	adapter->params.vpd.cclk = 50000;
9400 
9401 	/* Set pci completion timeout value to 4 seconds. */
9402 	set_pcie_completion_timeout(adapter, 0xd);
9403 	return 0;
9404 }
9405 
9406 /**
9407  *	t4_shutdown_adapter - shut down adapter, host & wire
9408  *	@adapter: the adapter
9409  *
9410  *	Perform an emergency shutdown of the adapter and stop it from
9411  *	continuing any further communication on the ports or DMA to the
9412  *	host.  This is typically used when the adapter and/or firmware
9413  *	have crashed and we want to prevent any further accidental
9414  *	communication with the rest of the world.  This will also force
9415  *	the port Link Status to go down -- if register writes work --
9416  *	which should help our peers figure out that we're down.
9417  */
9418 int t4_shutdown_adapter(struct adapter *adapter)
9419 {
9420 	int port;
9421 	const bool bt = adapter->bt_map != 0;
9422 
9423 	t4_intr_disable(adapter);
9424 	if (bt)
9425 		t4_write_reg(adapter, A_DBG_GPIO_EN, 0xffff0000);
9426 	for_each_port(adapter, port) {
9427 		u32 a_port_cfg = is_t4(adapter) ?
9428 				 PORT_REG(port, A_XGMAC_PORT_CFG) :
9429 				 T5_PORT_REG(port, A_MAC_PORT_CFG);
9430 
9431 		t4_write_reg(adapter, a_port_cfg,
9432 			     t4_read_reg(adapter, a_port_cfg)
9433 			     & ~V_SIGNAL_DET(1));
9434 		if (!bt) {
9435 			u32 hss_cfg0 = is_t4(adapter) ?
9436 					 PORT_REG(port, A_XGMAC_PORT_HSS_CFG0) :
9437 					 T5_PORT_REG(port, A_MAC_PORT_HSS_CFG0);
9438 			t4_set_reg_field(adapter, hss_cfg0, F_HSSPDWNPLLB |
9439 			    F_HSSPDWNPLLA | F_HSSPLLBYPB | F_HSSPLLBYPA,
9440 			    F_HSSPDWNPLLB | F_HSSPDWNPLLA | F_HSSPLLBYPB |
9441 			    F_HSSPLLBYPA);
9442 		}
9443 	}
9444 	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
9445 
9446 	return 0;
9447 }
9448 
9449 /**
9450  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9451  *	@adapter: the adapter
9452  *	@qid: the Queue ID
9453  *	@qtype: the Ingress or Egress type for @qid
9454  *	@user: true if this request is for a user mode queue
9455  *	@pbar2_qoffset: BAR2 Queue Offset
9456  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9457  *
9458  *	Returns the BAR2 SGE Queue Registers information associated with the
9459  *	indicated Absolute Queue ID.  These are passed back in return value
9460  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9461  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9462  *
9463  *	This may return an error which indicates that BAR2 SGE Queue
9464  *	registers aren't available.  If an error is not returned, then the
9465  *	following values are returned:
9466  *
9467  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9468  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9469  *
9470  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9471  *	require the "Inferred Queue ID" ability may be used.  E.g. the
9472  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9473  *	then these "Inferred Queue ID" register may not be used.
9474  */
9475 int t4_bar2_sge_qregs(struct adapter *adapter,
9476 		      unsigned int qid,
9477 		      enum t4_bar2_qtype qtype,
9478 		      int user,
9479 		      u64 *pbar2_qoffset,
9480 		      unsigned int *pbar2_qid)
9481 {
9482 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9483 	u64 bar2_page_offset, bar2_qoffset;
9484 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9485 
9486 	/* T4 doesn't support BAR2 SGE Queue registers for kernel
9487 	 * mode queues.
9488 	 */
9489 	if (!user && is_t4(adapter))
9490 		return -EINVAL;
9491 
9492 	/* Get our SGE Page Size parameters.
9493 	 */
9494 	page_shift = adapter->params.sge.page_shift;
9495 	page_size = 1 << page_shift;
9496 
9497 	/* Get the right Queues per Page parameters for our Queue.
9498 	 */
9499 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9500 		     ? adapter->params.sge.eq_s_qpp
9501 		     : adapter->params.sge.iq_s_qpp);
9502 	qpp_mask = (1 << qpp_shift) - 1;
9503 
9504 	/* Calculate the basics of the BAR2 SGE Queue register area:
9505 	 *  o The BAR2 page the Queue registers will be in.
9506 	 *  o The BAR2 Queue ID.
9507 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9508 	 */
9509 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9510 	bar2_qid = qid & qpp_mask;
9511 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9512 
9513 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9514 	 * hardware will infer the Absolute Queue ID simply from the writes to
9515 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9516 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9517 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9518 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9519 	 * from the BAR2 Page and BAR2 Queue ID.
9520 	 *
9521 	 * One important censequence of this is that some BAR2 SGE registers
9522 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9523 	 * there.  But other registers synthesize the SGE Queue ID purely
9524 	 * from the writes to the registers -- the Write Combined Doorbell
9525 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9526 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9527 	 * Queue ID can be inferred from simple writes.
9528 	 */
9529 	bar2_qoffset = bar2_page_offset;
9530 	bar2_qinferred = (bar2_qid_offset < page_size);
9531 	if (bar2_qinferred) {
9532 		bar2_qoffset += bar2_qid_offset;
9533 		bar2_qid = 0;
9534 	}
9535 
9536 	*pbar2_qoffset = bar2_qoffset;
9537 	*pbar2_qid = bar2_qid;
9538 	return 0;
9539 }
9540 
9541 /**
9542  *	t4_init_devlog_params - initialize adapter->params.devlog
9543  *	@adap: the adapter
9544  *	@fw_attach: whether we can talk to the firmware
9545  *
9546  *	Initialize various fields of the adapter's Firmware Device Log
9547  *	Parameters structure.
9548  */
9549 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
9550 {
9551 	struct devlog_params *dparams = &adap->params.devlog;
9552 	u32 pf_dparams;
9553 	unsigned int devlog_meminfo;
9554 	struct fw_devlog_cmd devlog_cmd;
9555 	int ret;
9556 
9557 	/* If we're dealing with newer firmware, the Device Log Paramerters
9558 	 * are stored in a designated register which allows us to access the
9559 	 * Device Log even if we can't talk to the firmware.
9560 	 */
9561 	pf_dparams =
9562 		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
9563 	if (pf_dparams) {
9564 		unsigned int nentries, nentries128;
9565 
9566 		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
9567 		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
9568 
9569 		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
9570 		nentries = (nentries128 + 1) * 128;
9571 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9572 
9573 		return 0;
9574 	}
9575 
9576 	/*
9577 	 * For any failing returns ...
9578 	 */
9579 	memset(dparams, 0, sizeof *dparams);
9580 
9581 	/*
9582 	 * If we can't talk to the firmware, there's really nothing we can do
9583 	 * at this point.
9584 	 */
9585 	if (!fw_attach)
9586 		return -ENXIO;
9587 
9588 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9589 	 */
9590 	memset(&devlog_cmd, 0, sizeof devlog_cmd);
9591 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9592 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9593 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9594 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9595 			 &devlog_cmd);
9596 	if (ret)
9597 		return ret;
9598 
9599 	devlog_meminfo =
9600 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9601 	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
9602 	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
9603 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9604 
9605 	return 0;
9606 }
9607 
9608 /**
9609  *	t4_init_sge_params - initialize adap->params.sge
9610  *	@adapter: the adapter
9611  *
9612  *	Initialize various fields of the adapter's SGE Parameters structure.
9613  */
9614 int t4_init_sge_params(struct adapter *adapter)
9615 {
9616 	u32 r;
9617 	struct sge_params *sp = &adapter->params.sge;
9618 	unsigned i, tscale = 1;
9619 
9620 	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
9621 	sp->counter_val[0] = G_THRESHOLD_0(r);
9622 	sp->counter_val[1] = G_THRESHOLD_1(r);
9623 	sp->counter_val[2] = G_THRESHOLD_2(r);
9624 	sp->counter_val[3] = G_THRESHOLD_3(r);
9625 
9626 	if (chip_id(adapter) >= CHELSIO_T6) {
9627 		r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
9628 		tscale = G_TSCALE(r);
9629 		if (tscale == 0)
9630 			tscale = 1;
9631 		else
9632 			tscale += 2;
9633 	}
9634 
9635 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
9636 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
9637 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
9638 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
9639 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
9640 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
9641 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
9642 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
9643 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
9644 
9645 	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
9646 	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
9647 	if (is_t4(adapter))
9648 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
9649 	else if (is_t5(adapter))
9650 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
9651 	else
9652 		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
9653 
9654 	/* egress queues: log2 of # of doorbells per BAR2 page */
9655 	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
9656 	r >>= S_QUEUESPERPAGEPF0 +
9657 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9658 	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
9659 
9660 	/* ingress queues: log2 of # of doorbells per BAR2 page */
9661 	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
9662 	r >>= S_QUEUESPERPAGEPF0 +
9663 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9664 	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
9665 
9666 	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
9667 	r >>= S_HOSTPAGESIZEPF0 +
9668 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
9669 	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
9670 
9671 	r = t4_read_reg(adapter, A_SGE_CONTROL);
9672 	sp->sge_control = r;
9673 	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
9674 	sp->fl_pktshift = G_PKTSHIFT(r);
9675 	if (chip_id(adapter) <= CHELSIO_T5) {
9676 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9677 		    X_INGPADBOUNDARY_SHIFT);
9678 	} else {
9679 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9680 		    X_T6_INGPADBOUNDARY_SHIFT);
9681 	}
9682 	if (is_t4(adapter))
9683 		sp->pack_boundary = sp->pad_boundary;
9684 	else {
9685 		r = t4_read_reg(adapter, A_SGE_CONTROL2);
9686 		if (G_INGPACKBOUNDARY(r) == 0)
9687 			sp->pack_boundary = 16;
9688 		else
9689 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
9690 	}
9691 	for (i = 0; i < SGE_FLBUF_SIZES; i++)
9692 		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
9693 		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
9694 
9695 	return 0;
9696 }
9697 
9698 /* Convert the LE's hardware hash mask to a shorter filter mask. */
9699 static inline uint16_t
9700 hashmask_to_filtermask(uint64_t hashmask, uint16_t filter_mode)
9701 {
9702 	static const uint8_t width[] = {1, 3, 17, 17, 8, 8, 16, 9, 3, 1};
9703 	int i;
9704 	uint16_t filter_mask;
9705 	uint64_t mask;		/* field mask */
9706 
9707 	filter_mask = 0;
9708 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++) {
9709 		if ((filter_mode & (1 << i)) == 0)
9710 			continue;
9711 		mask = (1 << width[i]) - 1;
9712 		if ((hashmask & mask) == mask)
9713 			filter_mask |= 1 << i;
9714 		hashmask >>= width[i];
9715 	}
9716 
9717 	return (filter_mask);
9718 }
9719 
9720 /*
9721  * Read and cache the adapter's compressed filter mode and ingress config.
9722  */
9723 static void
9724 read_filter_mode_and_ingress_config(struct adapter *adap)
9725 {
9726 	int rc;
9727 	uint32_t v, param[2], val[2];
9728 	struct tp_params *tpp = &adap->params.tp;
9729 	uint64_t hash_mask;
9730 
9731 	param[0] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9732 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
9733 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
9734 	param[1] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9735 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
9736 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
9737 	rc = -t4_query_params(adap, adap->mbox, adap->pf, 0, 2, param, val);
9738 	if (rc == 0) {
9739 		tpp->filter_mode = G_FW_PARAMS_PARAM_FILTER_MODE(val[0]);
9740 		tpp->filter_mask = G_FW_PARAMS_PARAM_FILTER_MASK(val[0]);
9741 		tpp->vnic_mode = val[1];
9742 	} else {
9743 		/*
9744 		 * Old firmware.  Read filter mode/mask and ingress config
9745 		 * straight from the hardware.
9746 		 */
9747 		t4_tp_pio_read(adap, &v, 1, A_TP_VLAN_PRI_MAP, true);
9748 		tpp->filter_mode = v & 0xffff;
9749 
9750 		hash_mask = 0;
9751 		if (chip_id(adap) > CHELSIO_T4) {
9752 			v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3));
9753 			hash_mask = v;
9754 			v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4));
9755 			hash_mask |= (u64)v << 32;
9756 		}
9757 		tpp->filter_mask = hashmask_to_filtermask(hash_mask,
9758 		    tpp->filter_mode);
9759 
9760 		t4_tp_pio_read(adap, &v, 1, A_TP_INGRESS_CONFIG, true);
9761 		if (v & F_VNIC)
9762 			tpp->vnic_mode = FW_VNIC_MODE_PF_VF;
9763 		else
9764 			tpp->vnic_mode = FW_VNIC_MODE_OUTER_VLAN;
9765 	}
9766 
9767 	/*
9768 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9769 	 * shift positions of several elements of the Compressed Filter Tuple
9770 	 * for this adapter which we need frequently ...
9771 	 */
9772 	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
9773 	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
9774 	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
9775 	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
9776 	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
9777 	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
9778 	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
9779 	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
9780 	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
9781 	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
9782 }
9783 
9784 /**
9785  *      t4_init_tp_params - initialize adap->params.tp
9786  *      @adap: the adapter
9787  *
9788  *      Initialize various fields of the adapter's TP Parameters structure.
9789  */
9790 int t4_init_tp_params(struct adapter *adap)
9791 {
9792 	int chan;
9793 	u32 tx_len, rx_len, r, v;
9794 	struct tp_params *tpp = &adap->params.tp;
9795 
9796 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
9797 	tpp->tre = G_TIMERRESOLUTION(v);
9798 	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
9799 
9800 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9801 	for (chan = 0; chan < MAX_NCHAN; chan++)
9802 		tpp->tx_modq[chan] = chan;
9803 
9804 	read_filter_mode_and_ingress_config(adap);
9805 
9806 	if (chip_id(adap) > CHELSIO_T5) {
9807 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
9808 		tpp->rx_pkt_encap = v & F_CRXPKTENC;
9809 	} else
9810 		tpp->rx_pkt_encap = false;
9811 
9812 	rx_len = t4_read_reg(adap, A_TP_PMM_RX_PAGE_SIZE);
9813 	tx_len = t4_read_reg(adap, A_TP_PMM_TX_PAGE_SIZE);
9814 
9815 	r = t4_read_reg(adap, A_TP_PARA_REG2);
9816 	rx_len = min(rx_len, G_MAXRXDATA(r));
9817 	tx_len = min(tx_len, G_MAXRXDATA(r));
9818 
9819 	r = t4_read_reg(adap, A_TP_PARA_REG7);
9820 	v = min(G_PMMAXXFERLEN0(r), G_PMMAXXFERLEN1(r));
9821 	rx_len = min(rx_len, v);
9822 	tx_len = min(tx_len, v);
9823 
9824 	tpp->max_tx_pdu = tx_len;
9825 	tpp->max_rx_pdu = rx_len;
9826 
9827 	return 0;
9828 }
9829 
9830 /**
9831  *      t4_filter_field_shift - calculate filter field shift
9832  *      @adap: the adapter
9833  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9834  *
9835  *      Return the shift position of a filter field within the Compressed
9836  *      Filter Tuple.  The filter field is specified via its selection bit
9837  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9838  */
9839 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9840 {
9841 	const unsigned int filter_mode = adap->params.tp.filter_mode;
9842 	unsigned int sel;
9843 	int field_shift;
9844 
9845 	if ((filter_mode & filter_sel) == 0)
9846 		return -1;
9847 
9848 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9849 		switch (filter_mode & sel) {
9850 		case F_FCOE:
9851 			field_shift += W_FT_FCOE;
9852 			break;
9853 		case F_PORT:
9854 			field_shift += W_FT_PORT;
9855 			break;
9856 		case F_VNIC_ID:
9857 			field_shift += W_FT_VNIC_ID;
9858 			break;
9859 		case F_VLAN:
9860 			field_shift += W_FT_VLAN;
9861 			break;
9862 		case F_TOS:
9863 			field_shift += W_FT_TOS;
9864 			break;
9865 		case F_PROTOCOL:
9866 			field_shift += W_FT_PROTOCOL;
9867 			break;
9868 		case F_ETHERTYPE:
9869 			field_shift += W_FT_ETHERTYPE;
9870 			break;
9871 		case F_MACMATCH:
9872 			field_shift += W_FT_MACMATCH;
9873 			break;
9874 		case F_MPSHITTYPE:
9875 			field_shift += W_FT_MPSHITTYPE;
9876 			break;
9877 		case F_FRAGMENTATION:
9878 			field_shift += W_FT_FRAGMENTATION;
9879 			break;
9880 		}
9881 	}
9882 	return field_shift;
9883 }
9884 
9885 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
9886 {
9887 	u8 addr[6];
9888 	int ret, i, j;
9889 	struct port_info *p = adap2pinfo(adap, port_id);
9890 	u32 param, val;
9891 	struct vi_info *vi = &p->vi[0];
9892 
9893 	for (i = 0, j = -1; i <= p->port_id; i++) {
9894 		do {
9895 			j++;
9896 		} while ((adap->params.portvec & (1 << j)) == 0);
9897 	}
9898 
9899 	p->tx_chan = j;
9900 	p->mps_bg_map = t4_get_mps_bg_map(adap, j);
9901 	p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
9902 	p->rx_c_chan = t4_get_rx_c_chan(adap, j);
9903 	p->lport = j;
9904 
9905 	if (!(adap->flags & IS_VF) ||
9906 	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
9907  		t4_update_port_info(p);
9908 	}
9909 
9910 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &vi->rss_size,
9911 	    &vi->vfvld, &vi->vin);
9912 	if (ret < 0)
9913 		return ret;
9914 
9915 	vi->viid = ret;
9916 	t4_os_set_hw_addr(p, addr);
9917 
9918 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9919 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
9920 	    V_FW_PARAMS_PARAM_YZ(vi->viid);
9921 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
9922 	if (ret)
9923 		vi->rss_base = 0xffff;
9924 	else {
9925 		/* MPASS((val >> 16) == rss_size); */
9926 		vi->rss_base = val & 0xffff;
9927 	}
9928 
9929 	return 0;
9930 }
9931 
9932 /**
9933  *	t4_read_cimq_cfg - read CIM queue configuration
9934  *	@adap: the adapter
9935  *	@base: holds the queue base addresses in bytes
9936  *	@size: holds the queue sizes in bytes
9937  *	@thres: holds the queue full thresholds in bytes
9938  *
9939  *	Returns the current configuration of the CIM queues, starting with
9940  *	the IBQs, then the OBQs.
9941  */
9942 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9943 {
9944 	unsigned int i, v;
9945 	int cim_num_obq = adap->chip_params->cim_num_obq;
9946 
9947 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9948 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
9949 			     V_QUENUMSELECT(i));
9950 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9951 		/* value is in 256-byte units */
9952 		*base++ = G_CIMQBASE(v) * 256;
9953 		*size++ = G_CIMQSIZE(v) * 256;
9954 		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
9955 	}
9956 	for (i = 0; i < cim_num_obq; i++) {
9957 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9958 			     V_QUENUMSELECT(i));
9959 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9960 		/* value is in 256-byte units */
9961 		*base++ = G_CIMQBASE(v) * 256;
9962 		*size++ = G_CIMQSIZE(v) * 256;
9963 	}
9964 }
9965 
9966 /**
9967  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9968  *	@adap: the adapter
9969  *	@qid: the queue index
9970  *	@data: where to store the queue contents
9971  *	@n: capacity of @data in 32-bit words
9972  *
9973  *	Reads the contents of the selected CIM queue starting at address 0 up
9974  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9975  *	error and the number of 32-bit words actually read on success.
9976  */
9977 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9978 {
9979 	int i, err, attempts;
9980 	unsigned int addr;
9981 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9982 
9983 	if (qid > 5 || (n & 3))
9984 		return -EINVAL;
9985 
9986 	addr = qid * nwords;
9987 	if (n > nwords)
9988 		n = nwords;
9989 
9990 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9991 	 * Wait for 1 Sec with a delay of 1 usec.
9992 	 */
9993 	attempts = 1000000;
9994 
9995 	for (i = 0; i < n; i++, addr++) {
9996 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
9997 			     F_IBQDBGEN);
9998 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
9999 				      attempts, 1);
10000 		if (err)
10001 			return err;
10002 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
10003 	}
10004 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
10005 	return i;
10006 }
10007 
10008 /**
10009  *	t4_read_cim_obq - read the contents of a CIM outbound queue
10010  *	@adap: the adapter
10011  *	@qid: the queue index
10012  *	@data: where to store the queue contents
10013  *	@n: capacity of @data in 32-bit words
10014  *
10015  *	Reads the contents of the selected CIM queue starting at address 0 up
10016  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
10017  *	error and the number of 32-bit words actually read on success.
10018  */
10019 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
10020 {
10021 	int i, err;
10022 	unsigned int addr, v, nwords;
10023 	int cim_num_obq = adap->chip_params->cim_num_obq;
10024 
10025 	if ((qid > (cim_num_obq - 1)) || (n & 3))
10026 		return -EINVAL;
10027 
10028 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
10029 		     V_QUENUMSELECT(qid));
10030 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
10031 
10032 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
10033 	nwords = G_CIMQSIZE(v) * 64;  /* same */
10034 	if (n > nwords)
10035 		n = nwords;
10036 
10037 	for (i = 0; i < n; i++, addr++) {
10038 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
10039 			     F_OBQDBGEN);
10040 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
10041 				      2, 1);
10042 		if (err)
10043 			return err;
10044 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
10045 	}
10046 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
10047 	return i;
10048 }
10049 
10050 enum {
10051 	CIM_QCTL_BASE     = 0,
10052 	CIM_CTL_BASE      = 0x2000,
10053 	CIM_PBT_ADDR_BASE = 0x2800,
10054 	CIM_PBT_LRF_BASE  = 0x3000,
10055 	CIM_PBT_DATA_BASE = 0x3800
10056 };
10057 
10058 /**
10059  *	t4_cim_read - read a block from CIM internal address space
10060  *	@adap: the adapter
10061  *	@addr: the start address within the CIM address space
10062  *	@n: number of words to read
10063  *	@valp: where to store the result
10064  *
10065  *	Reads a block of 4-byte words from the CIM intenal address space.
10066  */
10067 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
10068 		unsigned int *valp)
10069 {
10070 	int ret = 0;
10071 
10072 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
10073 		return -EBUSY;
10074 
10075 	for ( ; !ret && n--; addr += 4) {
10076 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
10077 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
10078 				      0, 5, 2);
10079 		if (!ret)
10080 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
10081 	}
10082 	return ret;
10083 }
10084 
10085 /**
10086  *	t4_cim_write - write a block into CIM internal address space
10087  *	@adap: the adapter
10088  *	@addr: the start address within the CIM address space
10089  *	@n: number of words to write
10090  *	@valp: set of values to write
10091  *
10092  *	Writes a block of 4-byte words into the CIM intenal address space.
10093  */
10094 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
10095 		 const unsigned int *valp)
10096 {
10097 	int ret = 0;
10098 
10099 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
10100 		return -EBUSY;
10101 
10102 	for ( ; !ret && n--; addr += 4) {
10103 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
10104 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
10105 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
10106 				      0, 5, 2);
10107 	}
10108 	return ret;
10109 }
10110 
10111 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
10112 			 unsigned int val)
10113 {
10114 	return t4_cim_write(adap, addr, 1, &val);
10115 }
10116 
10117 /**
10118  *	t4_cim_ctl_read - read a block from CIM control region
10119  *	@adap: the adapter
10120  *	@addr: the start address within the CIM control region
10121  *	@n: number of words to read
10122  *	@valp: where to store the result
10123  *
10124  *	Reads a block of 4-byte words from the CIM control region.
10125  */
10126 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
10127 		    unsigned int *valp)
10128 {
10129 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
10130 }
10131 
10132 /**
10133  *	t4_cim_read_la - read CIM LA capture buffer
10134  *	@adap: the adapter
10135  *	@la_buf: where to store the LA data
10136  *	@wrptr: the HW write pointer within the capture buffer
10137  *
10138  *	Reads the contents of the CIM LA buffer with the most recent entry at
10139  *	the end	of the returned data and with the entry at @wrptr first.
10140  *	We try to leave the LA in the running state we find it in.
10141  */
10142 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
10143 {
10144 	int i, ret;
10145 	unsigned int cfg, val, idx;
10146 
10147 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
10148 	if (ret)
10149 		return ret;
10150 
10151 	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
10152 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
10153 		if (ret)
10154 			return ret;
10155 	}
10156 
10157 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
10158 	if (ret)
10159 		goto restart;
10160 
10161 	idx = G_UPDBGLAWRPTR(val);
10162 	if (wrptr)
10163 		*wrptr = idx;
10164 
10165 	for (i = 0; i < adap->params.cim_la_size; i++) {
10166 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
10167 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
10168 		if (ret)
10169 			break;
10170 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
10171 		if (ret)
10172 			break;
10173 		if (val & F_UPDBGLARDEN) {
10174 			ret = -ETIMEDOUT;
10175 			break;
10176 		}
10177 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
10178 		if (ret)
10179 			break;
10180 
10181 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
10182 		 * identify the 32-bit portion of the full 312-bit data
10183 		 */
10184 		if (is_t6(adap) && (idx & 0xf) >= 9)
10185 			idx = (idx & 0xff0) + 0x10;
10186 		else
10187 			idx++;
10188 		/* address can't exceed 0xfff */
10189 		idx &= M_UPDBGLARDPTR;
10190 	}
10191 restart:
10192 	if (cfg & F_UPDBGLAEN) {
10193 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
10194 				      cfg & ~F_UPDBGLARDEN);
10195 		if (!ret)
10196 			ret = r;
10197 	}
10198 	return ret;
10199 }
10200 
10201 /**
10202  *	t4_tp_read_la - read TP LA capture buffer
10203  *	@adap: the adapter
10204  *	@la_buf: where to store the LA data
10205  *	@wrptr: the HW write pointer within the capture buffer
10206  *
10207  *	Reads the contents of the TP LA buffer with the most recent entry at
10208  *	the end	of the returned data and with the entry at @wrptr first.
10209  *	We leave the LA in the running state we find it in.
10210  */
10211 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
10212 {
10213 	bool last_incomplete;
10214 	unsigned int i, cfg, val, idx;
10215 
10216 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
10217 	if (cfg & F_DBGLAENABLE)			/* freeze LA */
10218 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
10219 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
10220 
10221 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
10222 	idx = G_DBGLAWPTR(val);
10223 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
10224 	if (last_incomplete)
10225 		idx = (idx + 1) & M_DBGLARPTR;
10226 	if (wrptr)
10227 		*wrptr = idx;
10228 
10229 	val &= 0xffff;
10230 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
10231 	val |= adap->params.tp.la_mask;
10232 
10233 	for (i = 0; i < TPLA_SIZE; i++) {
10234 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
10235 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
10236 		idx = (idx + 1) & M_DBGLARPTR;
10237 	}
10238 
10239 	/* Wipe out last entry if it isn't valid */
10240 	if (last_incomplete)
10241 		la_buf[TPLA_SIZE - 1] = ~0ULL;
10242 
10243 	if (cfg & F_DBGLAENABLE)		/* restore running state */
10244 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
10245 			     cfg | adap->params.tp.la_mask);
10246 }
10247 
10248 /*
10249  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10250  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10251  * state for more than the Warning Threshold then we'll issue a warning about
10252  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10253  * appears to be hung every Warning Repeat second till the situation clears.
10254  * If the situation clears, we'll note that as well.
10255  */
10256 #define SGE_IDMA_WARN_THRESH 1
10257 #define SGE_IDMA_WARN_REPEAT 300
10258 
10259 /**
10260  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10261  *	@adapter: the adapter
10262  *	@idma: the adapter IDMA Monitor state
10263  *
10264  *	Initialize the state of an SGE Ingress DMA Monitor.
10265  */
10266 void t4_idma_monitor_init(struct adapter *adapter,
10267 			  struct sge_idma_monitor_state *idma)
10268 {
10269 	/* Initialize the state variables for detecting an SGE Ingress DMA
10270 	 * hang.  The SGE has internal counters which count up on each clock
10271 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
10272 	 * same state they were on the previous clock tick.  The clock used is
10273 	 * the Core Clock so we have a limit on the maximum "time" they can
10274 	 * record; typically a very small number of seconds.  For instance,
10275 	 * with a 600MHz Core Clock, we can only count up to a bit more than
10276 	 * 7s.  So we'll synthesize a larger counter in order to not run the
10277 	 * risk of having the "timers" overflow and give us the flexibility to
10278 	 * maintain a Hung SGE State Machine of our own which operates across
10279 	 * a longer time frame.
10280 	 */
10281 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10282 	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
10283 }
10284 
10285 /**
10286  *	t4_idma_monitor - monitor SGE Ingress DMA state
10287  *	@adapter: the adapter
10288  *	@idma: the adapter IDMA Monitor state
10289  *	@hz: number of ticks/second
10290  *	@ticks: number of ticks since the last IDMA Monitor call
10291  */
10292 void t4_idma_monitor(struct adapter *adapter,
10293 		     struct sge_idma_monitor_state *idma,
10294 		     int hz, int ticks)
10295 {
10296 	int i, idma_same_state_cnt[2];
10297 
10298 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10299 	  * are counters inside the SGE which count up on each clock when the
10300 	  * SGE finds its Ingress DMA State Engines in the same states they
10301 	  * were in the previous clock.  The counters will peg out at
10302 	  * 0xffffffff without wrapping around so once they pass the 1s
10303 	  * threshold they'll stay above that till the IDMA state changes.
10304 	  */
10305 	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
10306 	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
10307 	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10308 
10309 	for (i = 0; i < 2; i++) {
10310 		u32 debug0, debug11;
10311 
10312 		/* If the Ingress DMA Same State Counter ("timer") is less
10313 		 * than 1s, then we can reset our synthesized Stall Timer and
10314 		 * continue.  If we have previously emitted warnings about a
10315 		 * potential stalled Ingress Queue, issue a note indicating
10316 		 * that the Ingress Queue has resumed forward progress.
10317 		 */
10318 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10319 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
10320 				CH_WARN(adapter, "SGE idma%d, queue %u, "
10321 					"resumed after %d seconds\n",
10322 					i, idma->idma_qid[i],
10323 					idma->idma_stalled[i]/hz);
10324 			idma->idma_stalled[i] = 0;
10325 			continue;
10326 		}
10327 
10328 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10329 		 * domain.  The first time we get here it'll be because we
10330 		 * passed the 1s Threshold; each additional time it'll be
10331 		 * because the RX Timer Callback is being fired on its regular
10332 		 * schedule.
10333 		 *
10334 		 * If the stall is below our Potential Hung Ingress Queue
10335 		 * Warning Threshold, continue.
10336 		 */
10337 		if (idma->idma_stalled[i] == 0) {
10338 			idma->idma_stalled[i] = hz;
10339 			idma->idma_warn[i] = 0;
10340 		} else {
10341 			idma->idma_stalled[i] += ticks;
10342 			idma->idma_warn[i] -= ticks;
10343 		}
10344 
10345 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
10346 			continue;
10347 
10348 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10349 		 */
10350 		if (idma->idma_warn[i] > 0)
10351 			continue;
10352 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
10353 
10354 		/* Read and save the SGE IDMA State and Queue ID information.
10355 		 * We do this every time in case it changes across time ...
10356 		 * can't be too careful ...
10357 		 */
10358 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
10359 		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10360 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10361 
10362 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
10363 		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10364 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10365 
10366 		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
10367 			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10368 			i, idma->idma_qid[i], idma->idma_state[i],
10369 			idma->idma_stalled[i]/hz,
10370 			debug0, debug11);
10371 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10372 	}
10373 }
10374 
10375 /**
10376  *     t4_set_vf_mac - Set MAC address for the specified VF
10377  *     @adapter: The adapter
10378  *     @pf: the PF used to instantiate the VFs
10379  *     @vf: one of the VFs instantiated by the specified PF
10380  *     @naddr: the number of MAC addresses
10381  *     @addr: the MAC address(es) to be set to the specified VF
10382  */
10383 int t4_set_vf_mac(struct adapter *adapter, unsigned int pf, unsigned int vf,
10384 		  unsigned int naddr, u8 *addr)
10385 {
10386 	struct fw_acl_mac_cmd cmd;
10387 
10388 	memset(&cmd, 0, sizeof(cmd));
10389 	cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_MAC_CMD) |
10390 				    F_FW_CMD_REQUEST |
10391 				    F_FW_CMD_WRITE |
10392 				    V_FW_ACL_MAC_CMD_PFN(pf) |
10393 				    V_FW_ACL_MAC_CMD_VFN(vf));
10394 
10395 	/* Note: Do not enable the ACL */
10396 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10397 	cmd.nmac = naddr;
10398 
10399 	switch (pf) {
10400 	case 3:
10401 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10402 		break;
10403 	case 2:
10404 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10405 		break;
10406 	case 1:
10407 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10408 		break;
10409 	case 0:
10410 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10411 		break;
10412 	}
10413 
10414 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10415 }
10416 
10417 /**
10418  *	t4_read_pace_tbl - read the pace table
10419  *	@adap: the adapter
10420  *	@pace_vals: holds the returned values
10421  *
10422  *	Returns the values of TP's pace table in microseconds.
10423  */
10424 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10425 {
10426 	unsigned int i, v;
10427 
10428 	for (i = 0; i < NTX_SCHED; i++) {
10429 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
10430 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
10431 		pace_vals[i] = dack_ticks_to_usec(adap, v);
10432 	}
10433 }
10434 
10435 /**
10436  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10437  *	@adap: the adapter
10438  *	@sched: the scheduler index
10439  *	@kbps: the byte rate in Kbps
10440  *	@ipg: the interpacket delay in tenths of nanoseconds
10441  *
10442  *	Return the current configuration of a HW Tx scheduler.
10443  */
10444 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
10445 		     unsigned int *ipg, bool sleep_ok)
10446 {
10447 	unsigned int v, addr, bpt, cpt;
10448 
10449 	if (kbps) {
10450 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
10451 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10452 		if (sched & 1)
10453 			v >>= 16;
10454 		bpt = (v >> 8) & 0xff;
10455 		cpt = v & 0xff;
10456 		if (!cpt)
10457 			*kbps = 0;	/* scheduler disabled */
10458 		else {
10459 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10460 			*kbps = (v * bpt) / 125;
10461 		}
10462 	}
10463 	if (ipg) {
10464 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
10465 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10466 		if (sched & 1)
10467 			v >>= 16;
10468 		v &= 0xffff;
10469 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
10470 	}
10471 }
10472 
10473 /**
10474  *	t4_load_cfg - download config file
10475  *	@adap: the adapter
10476  *	@cfg_data: the cfg text file to write
10477  *	@size: text file size
10478  *
10479  *	Write the supplied config text file to the card's serial flash.
10480  */
10481 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10482 {
10483 	int ret, i, n, cfg_addr;
10484 	unsigned int addr;
10485 	unsigned int flash_cfg_start_sec;
10486 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10487 
10488 	cfg_addr = t4_flash_cfg_addr(adap);
10489 	if (cfg_addr < 0)
10490 		return cfg_addr;
10491 
10492 	addr = cfg_addr;
10493 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10494 
10495 	if (size > FLASH_CFG_MAX_SIZE) {
10496 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
10497 		       FLASH_CFG_MAX_SIZE);
10498 		return -EFBIG;
10499 	}
10500 
10501 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
10502 			 sf_sec_size);
10503 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10504 				     flash_cfg_start_sec + i - 1);
10505 	/*
10506 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10507 	 * with the on-adapter Firmware Configuration File.
10508 	 */
10509 	if (ret || size == 0)
10510 		goto out;
10511 
10512 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10513 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10514 		if ( (size - i) <  SF_PAGE_SIZE)
10515 			n = size - i;
10516 		else
10517 			n = SF_PAGE_SIZE;
10518 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
10519 		if (ret)
10520 			goto out;
10521 
10522 		addr += SF_PAGE_SIZE;
10523 		cfg_data += SF_PAGE_SIZE;
10524 	}
10525 
10526 out:
10527 	if (ret)
10528 		CH_ERR(adap, "config file %s failed %d\n",
10529 		       (size == 0 ? "clear" : "download"), ret);
10530 	return ret;
10531 }
10532 
10533 /**
10534  *	t5_fw_init_extern_mem - initialize the external memory
10535  *	@adap: the adapter
10536  *
10537  *	Initializes the external memory on T5.
10538  */
10539 int t5_fw_init_extern_mem(struct adapter *adap)
10540 {
10541 	u32 params[1], val[1];
10542 	int ret;
10543 
10544 	if (!is_t5(adap))
10545 		return 0;
10546 
10547 	val[0] = 0xff; /* Initialize all MCs */
10548 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10549 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
10550 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
10551 			FW_CMD_MAX_TIMEOUT);
10552 
10553 	return ret;
10554 }
10555 
10556 /* BIOS boot headers */
10557 typedef struct pci_expansion_rom_header {
10558 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
10559 	u8	reserved[22]; /* Reserved per processor Architecture data */
10560 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
10561 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
10562 
10563 /* Legacy PCI Expansion ROM Header */
10564 typedef struct legacy_pci_expansion_rom_header {
10565 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
10566 	u8	size512; /* Current Image Size in units of 512 bytes */
10567 	u8	initentry_point[4];
10568 	u8	cksum; /* Checksum computed on the entire Image */
10569 	u8	reserved[16]; /* Reserved */
10570 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
10571 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
10572 
10573 /* EFI PCI Expansion ROM Header */
10574 typedef struct efi_pci_expansion_rom_header {
10575 	u8	signature[2]; // ROM signature. The value 0xaa55
10576 	u8	initialization_size[2]; /* Units 512. Includes this header */
10577 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
10578 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
10579 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
10580 	u8	compression_type[2]; /* Compression type. */
10581 		/*
10582 		 * Compression type definition
10583 		 * 0x0: uncompressed
10584 		 * 0x1: Compressed
10585 		 * 0x2-0xFFFF: Reserved
10586 		 */
10587 	u8	reserved[8]; /* Reserved */
10588 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
10589 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
10590 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
10591 
10592 /* PCI Data Structure Format */
10593 typedef struct pcir_data_structure { /* PCI Data Structure */
10594 	u8	signature[4]; /* Signature. The string "PCIR" */
10595 	u8	vendor_id[2]; /* Vendor Identification */
10596 	u8	device_id[2]; /* Device Identification */
10597 	u8	vital_product[2]; /* Pointer to Vital Product Data */
10598 	u8	length[2]; /* PCIR Data Structure Length */
10599 	u8	revision; /* PCIR Data Structure Revision */
10600 	u8	class_code[3]; /* Class Code */
10601 	u8	image_length[2]; /* Image Length. Multiple of 512B */
10602 	u8	code_revision[2]; /* Revision Level of Code/Data */
10603 	u8	code_type; /* Code Type. */
10604 		/*
10605 		 * PCI Expansion ROM Code Types
10606 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
10607 		 * 0x01: Open Firmware standard for PCI. FCODE
10608 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
10609 		 * 0x03: EFI Image. EFI
10610 		 * 0x04-0xFF: Reserved.
10611 		 */
10612 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
10613 	u8	reserved[2]; /* Reserved */
10614 } pcir_data_t; /* PCI__DATA_STRUCTURE */
10615 
10616 /* BOOT constants */
10617 enum {
10618 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
10619 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
10620 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
10621 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
10622 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
10623 	VENDOR_ID = 0x1425, /* Vendor ID */
10624 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
10625 };
10626 
10627 /*
10628  *	modify_device_id - Modifies the device ID of the Boot BIOS image
10629  *	@adatper: the device ID to write.
10630  *	@boot_data: the boot image to modify.
10631  *
10632  *	Write the supplied device ID to the boot BIOS image.
10633  */
10634 static void modify_device_id(int device_id, u8 *boot_data)
10635 {
10636 	legacy_pci_exp_rom_header_t *header;
10637 	pcir_data_t *pcir_header;
10638 	u32 cur_header = 0;
10639 
10640 	/*
10641 	 * Loop through all chained images and change the device ID's
10642 	 */
10643 	while (1) {
10644 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
10645 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
10646 			      le16_to_cpu(*(u16*)header->pcir_offset)];
10647 
10648 		/*
10649 		 * Only modify the Device ID if code type is Legacy or HP.
10650 		 * 0x00: Okay to modify
10651 		 * 0x01: FCODE. Do not be modify
10652 		 * 0x03: Okay to modify
10653 		 * 0x04-0xFF: Do not modify
10654 		 */
10655 		if (pcir_header->code_type == 0x00) {
10656 			u8 csum = 0;
10657 			int i;
10658 
10659 			/*
10660 			 * Modify Device ID to match current adatper
10661 			 */
10662 			*(u16*) pcir_header->device_id = device_id;
10663 
10664 			/*
10665 			 * Set checksum temporarily to 0.
10666 			 * We will recalculate it later.
10667 			 */
10668 			header->cksum = 0x0;
10669 
10670 			/*
10671 			 * Calculate and update checksum
10672 			 */
10673 			for (i = 0; i < (header->size512 * 512); i++)
10674 				csum += (u8)boot_data[cur_header + i];
10675 
10676 			/*
10677 			 * Invert summed value to create the checksum
10678 			 * Writing new checksum value directly to the boot data
10679 			 */
10680 			boot_data[cur_header + 7] = -csum;
10681 
10682 		} else if (pcir_header->code_type == 0x03) {
10683 
10684 			/*
10685 			 * Modify Device ID to match current adatper
10686 			 */
10687 			*(u16*) pcir_header->device_id = device_id;
10688 
10689 		}
10690 
10691 
10692 		/*
10693 		 * Check indicator element to identify if this is the last
10694 		 * image in the ROM.
10695 		 */
10696 		if (pcir_header->indicator & 0x80)
10697 			break;
10698 
10699 		/*
10700 		 * Move header pointer up to the next image in the ROM.
10701 		 */
10702 		cur_header += header->size512 * 512;
10703 	}
10704 }
10705 
10706 /*
10707  *	t4_load_boot - download boot flash
10708  *	@adapter: the adapter
10709  *	@boot_data: the boot image to write
10710  *	@boot_addr: offset in flash to write boot_data
10711  *	@size: image size
10712  *
10713  *	Write the supplied boot image to the card's serial flash.
10714  *	The boot image has the following sections: a 28-byte header and the
10715  *	boot image.
10716  */
10717 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10718 		 unsigned int boot_addr, unsigned int size)
10719 {
10720 	pci_exp_rom_header_t *header;
10721 	int pcir_offset ;
10722 	pcir_data_t *pcir_header;
10723 	int ret, addr;
10724 	uint16_t device_id;
10725 	unsigned int i;
10726 	unsigned int boot_sector = (boot_addr * 1024 );
10727 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10728 
10729 	/*
10730 	 * Make sure the boot image does not encroach on the firmware region
10731 	 */
10732 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10733 		CH_ERR(adap, "boot image encroaching on firmware region\n");
10734 		return -EFBIG;
10735 	}
10736 
10737 	/*
10738 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10739 	 * and Boot configuration data sections. These 3 boot sections span
10740 	 * sectors 0 to 7 in flash and live right before the FW image location.
10741 	 */
10742 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
10743 			sf_sec_size);
10744 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10745 				     (boot_sector >> 16) + i - 1);
10746 
10747 	/*
10748 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10749 	 * with the on-adapter option ROM file
10750 	 */
10751 	if (ret || (size == 0))
10752 		goto out;
10753 
10754 	/* Get boot header */
10755 	header = (pci_exp_rom_header_t *)boot_data;
10756 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
10757 	/* PCIR Data Structure */
10758 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
10759 
10760 	/*
10761 	 * Perform some primitive sanity testing to avoid accidentally
10762 	 * writing garbage over the boot sectors.  We ought to check for
10763 	 * more but it's not worth it for now ...
10764 	 */
10765 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10766 		CH_ERR(adap, "boot image too small/large\n");
10767 		return -EFBIG;
10768 	}
10769 
10770 #ifndef CHELSIO_T4_DIAGS
10771 	/*
10772 	 * Check BOOT ROM header signature
10773 	 */
10774 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
10775 		CH_ERR(adap, "Boot image missing signature\n");
10776 		return -EINVAL;
10777 	}
10778 
10779 	/*
10780 	 * Check PCI header signature
10781 	 */
10782 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
10783 		CH_ERR(adap, "PCI header missing signature\n");
10784 		return -EINVAL;
10785 	}
10786 
10787 	/*
10788 	 * Check Vendor ID matches Chelsio ID
10789 	 */
10790 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
10791 		CH_ERR(adap, "Vendor ID missing signature\n");
10792 		return -EINVAL;
10793 	}
10794 #endif
10795 
10796 	/*
10797 	 * Retrieve adapter's device ID
10798 	 */
10799 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
10800 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
10801 	device_id = device_id & 0xf0ff;
10802 
10803 	/*
10804 	 * Check PCIE Device ID
10805 	 */
10806 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
10807 		/*
10808 		 * Change the device ID in the Boot BIOS image to match
10809 		 * the Device ID of the current adapter.
10810 		 */
10811 		modify_device_id(device_id, boot_data);
10812 	}
10813 
10814 	/*
10815 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
10816 	 * we finish copying the rest of the boot image. This will ensure
10817 	 * that the BIOS boot header will only be written if the boot image
10818 	 * was written in full.
10819 	 */
10820 	addr = boot_sector;
10821 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10822 		addr += SF_PAGE_SIZE;
10823 		boot_data += SF_PAGE_SIZE;
10824 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
10825 		if (ret)
10826 			goto out;
10827 	}
10828 
10829 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10830 			     (const u8 *)header, 0);
10831 
10832 out:
10833 	if (ret)
10834 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
10835 	return ret;
10836 }
10837 
10838 /*
10839  *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
10840  *	@adapter: the adapter
10841  *
10842  *	Return the address within the flash where the OptionROM Configuration
10843  *	is stored, or an error if the device FLASH is too small to contain
10844  *	a OptionROM Configuration.
10845  */
10846 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10847 {
10848 	/*
10849 	 * If the device FLASH isn't large enough to hold a Firmware
10850 	 * Configuration File, return an error.
10851 	 */
10852 	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10853 		return -ENOSPC;
10854 
10855 	return FLASH_BOOTCFG_START;
10856 }
10857 
10858 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
10859 {
10860 	int ret, i, n, cfg_addr;
10861 	unsigned int addr;
10862 	unsigned int flash_cfg_start_sec;
10863 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10864 
10865 	cfg_addr = t4_flash_bootcfg_addr(adap);
10866 	if (cfg_addr < 0)
10867 		return cfg_addr;
10868 
10869 	addr = cfg_addr;
10870 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10871 
10872 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
10873 		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
10874 			FLASH_BOOTCFG_MAX_SIZE);
10875 		return -EFBIG;
10876 	}
10877 
10878 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
10879 			 sf_sec_size);
10880 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10881 					flash_cfg_start_sec + i - 1);
10882 
10883 	/*
10884 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10885 	 * with the on-adapter OptionROM Configuration File.
10886 	 */
10887 	if (ret || size == 0)
10888 		goto out;
10889 
10890 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10891 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10892 		if ( (size - i) <  SF_PAGE_SIZE)
10893 			n = size - i;
10894 		else
10895 			n = SF_PAGE_SIZE;
10896 		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
10897 		if (ret)
10898 			goto out;
10899 
10900 		addr += SF_PAGE_SIZE;
10901 		cfg_data += SF_PAGE_SIZE;
10902 	}
10903 
10904 out:
10905 	if (ret)
10906 		CH_ERR(adap, "boot config data %s failed %d\n",
10907 				(size == 0 ? "clear" : "download"), ret);
10908 	return ret;
10909 }
10910 
10911 /**
10912  *	t4_set_filter_cfg - set up filter mode/mask and ingress config.
10913  *	@adap: the adapter
10914  *	@mode: a bitmap selecting which optional filter components to enable
10915  *	@mask: a bitmap selecting which components to enable in filter mask
10916  *	@vnic_mode: the ingress config/vnic mode setting
10917  *
10918  *	Sets the filter mode and mask by selecting the optional components to
10919  *	enable in filter tuples.  Returns 0 on success and a negative error if
10920  *	the requested mode needs more bits than are available for optional
10921  *	components.  The filter mask must be a subset of the filter mode.
10922  */
10923 int t4_set_filter_cfg(struct adapter *adap, int mode, int mask, int vnic_mode)
10924 {
10925 	static const uint8_t width[] = {1, 3, 17, 17, 8, 8, 16, 9, 3, 1};
10926 	int i, nbits, rc;
10927 	uint32_t param, val;
10928 	uint16_t fmode, fmask;
10929 	const int maxbits = adap->chip_params->filter_opt_len;
10930 
10931 	if (mode != -1 || mask != -1) {
10932 		if (mode != -1) {
10933 			fmode = mode;
10934 			nbits = 0;
10935 			for (i = S_FCOE; i <= S_FRAGMENTATION; i++) {
10936 				if (fmode & (1 << i))
10937 					nbits += width[i];
10938 			}
10939 			if (nbits > maxbits) {
10940 				CH_ERR(adap, "optional fields in the filter "
10941 				    "mode (0x%x) add up to %d bits "
10942 				    "(must be <= %db).  Remove some fields and "
10943 				    "try again.\n", fmode, nbits, maxbits);
10944 				return -E2BIG;
10945 			}
10946 
10947 			/*
10948 			 * Hardware wants the bits to be maxed out.  Keep
10949 			 * setting them until there's no room for more.
10950 			 */
10951 			for (i = S_FCOE; i <= S_FRAGMENTATION; i++) {
10952 				if (fmode & (1 << i))
10953 					continue;
10954 				if (nbits + width[i] <= maxbits) {
10955 					fmode |= 1 << i;
10956 					nbits += width[i];
10957 					if (nbits == maxbits)
10958 						break;
10959 				}
10960 			}
10961 
10962 			fmask = fmode & adap->params.tp.filter_mask;
10963 			if (fmask != adap->params.tp.filter_mask) {
10964 				CH_WARN(adap,
10965 				    "filter mask will be changed from 0x%x to "
10966 				    "0x%x to comply with the filter mode (0x%x).\n",
10967 				    adap->params.tp.filter_mask, fmask, fmode);
10968 			}
10969 		} else {
10970 			fmode = adap->params.tp.filter_mode;
10971 			fmask = mask;
10972 			if ((fmode | fmask) != fmode) {
10973 				CH_ERR(adap,
10974 				    "filter mask (0x%x) must be a subset of "
10975 				    "the filter mode (0x%x).\n", fmask, fmode);
10976 				return -EINVAL;
10977 			}
10978 		}
10979 
10980 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10981 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
10982 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
10983 		val = V_FW_PARAMS_PARAM_FILTER_MODE(fmode) |
10984 		    V_FW_PARAMS_PARAM_FILTER_MASK(fmask);
10985 		rc = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param,
10986 		    &val);
10987 		if (rc < 0)
10988 			return rc;
10989 	}
10990 
10991 	if (vnic_mode != -1) {
10992 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10993 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
10994 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
10995 		val = vnic_mode;
10996 		rc = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param,
10997 		    &val);
10998 		if (rc < 0)
10999 			return rc;
11000 	}
11001 
11002 	/* Refresh. */
11003 	read_filter_mode_and_ingress_config(adap);
11004 
11005 	return 0;
11006 }
11007 
11008 /**
11009  *	t4_clr_port_stats - clear port statistics
11010  *	@adap: the adapter
11011  *	@idx: the port index
11012  *
11013  *	Clear HW statistics for the given port.
11014  */
11015 void t4_clr_port_stats(struct adapter *adap, int idx)
11016 {
11017 	unsigned int i;
11018 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
11019 	u32 port_base_addr;
11020 
11021 	if (is_t4(adap))
11022 		port_base_addr = PORT_BASE(idx);
11023 	else
11024 		port_base_addr = T5_PORT_BASE(idx);
11025 
11026 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
11027 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
11028 		t4_write_reg(adap, port_base_addr + i, 0);
11029 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
11030 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
11031 		t4_write_reg(adap, port_base_addr + i, 0);
11032 	for (i = 0; i < 4; i++)
11033 		if (bgmap & (1 << i)) {
11034 			t4_write_reg(adap,
11035 			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
11036 			t4_write_reg(adap,
11037 			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
11038 		}
11039 }
11040 
11041 /**
11042  *	t4_i2c_io - read/write I2C data from adapter
11043  *	@adap: the adapter
11044  *	@port: Port number if per-port device; <0 if not
11045  *	@devid: per-port device ID or absolute device ID
11046  *	@offset: byte offset into device I2C space
11047  *	@len: byte length of I2C space data
11048  *	@buf: buffer in which to return I2C data for read
11049  *	      buffer which holds the I2C data for write
11050  *	@write: if true, do a write; else do a read
11051  *	Reads/Writes the I2C data from/to the indicated device and location.
11052  */
11053 int t4_i2c_io(struct adapter *adap, unsigned int mbox,
11054 	      int port, unsigned int devid,
11055 	      unsigned int offset, unsigned int len,
11056 	      u8 *buf, bool write)
11057 {
11058 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
11059 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
11060 	int ret = 0;
11061 
11062 	if (len > I2C_PAGE_SIZE)
11063 		return -EINVAL;
11064 
11065 	/* Dont allow reads that spans multiple pages */
11066 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
11067 		return -EINVAL;
11068 
11069 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
11070 	ldst_cmd.op_to_addrspace =
11071 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
11072 			    F_FW_CMD_REQUEST |
11073 			    (write ? F_FW_CMD_WRITE : F_FW_CMD_READ) |
11074 			    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C));
11075 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
11076 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
11077 	ldst_cmd.u.i2c.did = devid;
11078 
11079 	while (len > 0) {
11080 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
11081 
11082 		ldst_cmd.u.i2c.boffset = offset;
11083 		ldst_cmd.u.i2c.blen = i2c_len;
11084 
11085 		if (write)
11086 			memcpy(ldst_cmd.u.i2c.data, buf, i2c_len);
11087 
11088 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
11089 				 write ? NULL : &ldst_rpl);
11090 		if (ret)
11091 			break;
11092 
11093 		if (!write)
11094 			memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
11095 		offset += i2c_len;
11096 		buf += i2c_len;
11097 		len -= i2c_len;
11098 	}
11099 
11100 	return ret;
11101 }
11102 
11103 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
11104 	      int port, unsigned int devid,
11105 	      unsigned int offset, unsigned int len,
11106 	      u8 *buf)
11107 {
11108 	return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, false);
11109 }
11110 
11111 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
11112 	      int port, unsigned int devid,
11113 	      unsigned int offset, unsigned int len,
11114 	      u8 *buf)
11115 {
11116 	return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, true);
11117 }
11118 
11119 /**
11120  * 	t4_sge_ctxt_rd - read an SGE context through FW
11121  * 	@adap: the adapter
11122  * 	@mbox: mailbox to use for the FW command
11123  * 	@cid: the context id
11124  * 	@ctype: the context type
11125  * 	@data: where to store the context data
11126  *
11127  * 	Issues a FW command through the given mailbox to read an SGE context.
11128  */
11129 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
11130 		   enum ctxt_type ctype, u32 *data)
11131 {
11132 	int ret;
11133 	struct fw_ldst_cmd c;
11134 
11135 	if (ctype == CTXT_EGRESS)
11136 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
11137 	else if (ctype == CTXT_INGRESS)
11138 		ret = FW_LDST_ADDRSPC_SGE_INGC;
11139 	else if (ctype == CTXT_FLM)
11140 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
11141 	else
11142 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
11143 
11144 	memset(&c, 0, sizeof(c));
11145 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
11146 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
11147 					V_FW_LDST_CMD_ADDRSPACE(ret));
11148 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
11149 	c.u.idctxt.physid = cpu_to_be32(cid);
11150 
11151 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11152 	if (ret == 0) {
11153 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
11154 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
11155 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
11156 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
11157 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
11158 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
11159 	}
11160 	return ret;
11161 }
11162 
11163 /**
11164  * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
11165  * 	@adap: the adapter
11166  * 	@cid: the context id
11167  * 	@ctype: the context type
11168  * 	@data: where to store the context data
11169  *
11170  * 	Reads an SGE context directly, bypassing FW.  This is only for
11171  * 	debugging when FW is unavailable.
11172  */
11173 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
11174 		      u32 *data)
11175 {
11176 	int i, ret;
11177 
11178 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
11179 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
11180 	if (!ret)
11181 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
11182 			*data++ = t4_read_reg(adap, i);
11183 	return ret;
11184 }
11185 
11186 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
11187     int sleep_ok)
11188 {
11189 	struct fw_sched_cmd cmd;
11190 
11191 	memset(&cmd, 0, sizeof(cmd));
11192 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11193 				      F_FW_CMD_REQUEST |
11194 				      F_FW_CMD_WRITE);
11195 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11196 
11197 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
11198 	cmd.u.config.type = type;
11199 	cmd.u.config.minmaxen = minmaxen;
11200 
11201 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11202 			       NULL, sleep_ok);
11203 }
11204 
11205 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
11206 		    int rateunit, int ratemode, int channel, int cl,
11207 		    int minrate, int maxrate, int weight, int pktsize,
11208 		    int burstsize, int sleep_ok)
11209 {
11210 	struct fw_sched_cmd cmd;
11211 
11212 	memset(&cmd, 0, sizeof(cmd));
11213 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11214 				      F_FW_CMD_REQUEST |
11215 				      F_FW_CMD_WRITE);
11216 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11217 
11218 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11219 	cmd.u.params.type = type;
11220 	cmd.u.params.level = level;
11221 	cmd.u.params.mode = mode;
11222 	cmd.u.params.ch = channel;
11223 	cmd.u.params.cl = cl;
11224 	cmd.u.params.unit = rateunit;
11225 	cmd.u.params.rate = ratemode;
11226 	cmd.u.params.min = cpu_to_be32(minrate);
11227 	cmd.u.params.max = cpu_to_be32(maxrate);
11228 	cmd.u.params.weight = cpu_to_be16(weight);
11229 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
11230 	cmd.u.params.burstsize = cpu_to_be16(burstsize);
11231 
11232 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11233 			       NULL, sleep_ok);
11234 }
11235 
11236 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
11237     unsigned int maxrate, int sleep_ok)
11238 {
11239 	struct fw_sched_cmd cmd;
11240 
11241 	memset(&cmd, 0, sizeof(cmd));
11242 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11243 				      F_FW_CMD_REQUEST |
11244 				      F_FW_CMD_WRITE);
11245 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11246 
11247 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11248 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11249 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
11250 	cmd.u.params.ch = channel;
11251 	cmd.u.params.rate = ratemode;		/* REL or ABS */
11252 	cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
11253 
11254 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11255 			       NULL, sleep_ok);
11256 }
11257 
11258 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
11259     int weight, int sleep_ok)
11260 {
11261 	struct fw_sched_cmd cmd;
11262 
11263 	if (weight < 0 || weight > 100)
11264 		return -EINVAL;
11265 
11266 	memset(&cmd, 0, sizeof(cmd));
11267 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11268 				      F_FW_CMD_REQUEST |
11269 				      F_FW_CMD_WRITE);
11270 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11271 
11272 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11273 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11274 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
11275 	cmd.u.params.ch = channel;
11276 	cmd.u.params.cl = cl;
11277 	cmd.u.params.weight = cpu_to_be16(weight);
11278 
11279 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11280 			       NULL, sleep_ok);
11281 }
11282 
11283 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
11284     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
11285 {
11286 	struct fw_sched_cmd cmd;
11287 
11288 	memset(&cmd, 0, sizeof(cmd));
11289 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11290 				      F_FW_CMD_REQUEST |
11291 				      F_FW_CMD_WRITE);
11292 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11293 
11294 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11295 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11296 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
11297 	cmd.u.params.mode = mode;
11298 	cmd.u.params.ch = channel;
11299 	cmd.u.params.cl = cl;
11300 	cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
11301 	cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
11302 	cmd.u.params.max = cpu_to_be32(maxrate);
11303 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
11304 
11305 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11306 			       NULL, sleep_ok);
11307 }
11308 
11309 /*
11310  *	t4_config_watchdog - configure (enable/disable) a watchdog timer
11311  *	@adapter: the adapter
11312  * 	@mbox: mailbox to use for the FW command
11313  * 	@pf: the PF owning the queue
11314  * 	@vf: the VF owning the queue
11315  *	@timeout: watchdog timeout in ms
11316  *	@action: watchdog timer / action
11317  *
11318  *	There are separate watchdog timers for each possible watchdog
11319  *	action.  Configure one of the watchdog timers by setting a non-zero
11320  *	timeout.  Disable a watchdog timer by using a timeout of zero.
11321  */
11322 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
11323 		       unsigned int pf, unsigned int vf,
11324 		       unsigned int timeout, unsigned int action)
11325 {
11326 	struct fw_watchdog_cmd wdog;
11327 	unsigned int ticks;
11328 
11329 	/*
11330 	 * The watchdog command expects a timeout in units of 10ms so we need
11331 	 * to convert it here (via rounding) and force a minimum of one 10ms
11332 	 * "tick" if the timeout is non-zero but the conversion results in 0
11333 	 * ticks.
11334 	 */
11335 	ticks = (timeout + 5)/10;
11336 	if (timeout && !ticks)
11337 		ticks = 1;
11338 
11339 	memset(&wdog, 0, sizeof wdog);
11340 	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
11341 				     F_FW_CMD_REQUEST |
11342 				     F_FW_CMD_WRITE |
11343 				     V_FW_PARAMS_CMD_PFN(pf) |
11344 				     V_FW_PARAMS_CMD_VFN(vf));
11345 	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
11346 	wdog.timeout = cpu_to_be32(ticks);
11347 	wdog.action = cpu_to_be32(action);
11348 
11349 	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
11350 }
11351 
11352 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
11353 {
11354 	struct fw_devlog_cmd devlog_cmd;
11355 	int ret;
11356 
11357 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
11358 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
11359 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
11360 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
11361 	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
11362 			 sizeof(devlog_cmd), &devlog_cmd);
11363 	if (ret)
11364 		return ret;
11365 
11366 	*level = devlog_cmd.level;
11367 	return 0;
11368 }
11369 
11370 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
11371 {
11372 	struct fw_devlog_cmd devlog_cmd;
11373 
11374 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
11375 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
11376 					     F_FW_CMD_REQUEST |
11377 					     F_FW_CMD_WRITE);
11378 	devlog_cmd.level = level;
11379 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
11380 	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
11381 			  sizeof(devlog_cmd), &devlog_cmd);
11382 }
11383 
11384 int t4_configure_add_smac(struct adapter *adap)
11385 {
11386 	unsigned int param, val;
11387 	int ret = 0;
11388 
11389 	adap->params.smac_add_support = 0;
11390 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11391 		  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_ADD_SMAC));
11392 	/* Query FW to check if FW supports adding source mac address
11393 	 * to TCAM feature or not.
11394 	 * If FW returns 1, driver can use this feature and driver need to send
11395 	 * FW_PARAMS_PARAM_DEV_ADD_SMAC write command with value 1 to
11396 	 * enable adding smac to TCAM.
11397 	 */
11398 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11399 	if (ret)
11400 		return ret;
11401 
11402 	if (val == 1) {
11403 		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
11404 				    &param, &val);
11405 		if (!ret)
11406 			/* Firmware allows adding explicit TCAM entries.
11407 			 * Save this internally.
11408 			 */
11409 			adap->params.smac_add_support = 1;
11410 	}
11411 
11412 	return ret;
11413 }
11414 
11415 int t4_configure_ringbb(struct adapter *adap)
11416 {
11417 	unsigned int param, val;
11418 	int ret = 0;
11419 
11420 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11421 		  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RING_BACKBONE));
11422 	/* Query FW to check if FW supports ring switch feature or not.
11423 	 * If FW returns 1, driver can use this feature and driver need to send
11424 	 * FW_PARAMS_PARAM_DEV_RING_BACKBONE write command with value 1 to
11425 	 * enable the ring backbone configuration.
11426 	 */
11427 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11428 	if (ret < 0) {
11429 		CH_ERR(adap, "Querying FW using Ring backbone params command failed, err=%d\n",
11430 			ret);
11431 		goto out;
11432 	}
11433 
11434 	if (val != 1) {
11435 		CH_ERR(adap, "FW doesnot support ringbackbone features\n");
11436 		goto out;
11437 	}
11438 
11439 	ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11440 	if (ret < 0) {
11441 		CH_ERR(adap, "Could not set Ringbackbone, err= %d\n",
11442 			ret);
11443 		goto out;
11444 	}
11445 
11446 out:
11447 	return ret;
11448 }
11449 
11450 /*
11451  *	t4_set_vlan_acl - Set a VLAN id for the specified VF
11452  *	@adapter: the adapter
11453  *	@mbox: mailbox to use for the FW command
11454  *	@vf: one of the VFs instantiated by the specified PF
11455  *	@vlan: The vlanid to be set
11456  *
11457  */
11458 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
11459 		    u16 vlan)
11460 {
11461 	struct fw_acl_vlan_cmd vlan_cmd;
11462 	unsigned int enable;
11463 
11464 	enable = (vlan ? F_FW_ACL_VLAN_CMD_EN : 0);
11465 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
11466 	vlan_cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_VLAN_CMD) |
11467 					 F_FW_CMD_REQUEST |
11468 					 F_FW_CMD_WRITE |
11469 					 F_FW_CMD_EXEC |
11470 					 V_FW_ACL_VLAN_CMD_PFN(adap->pf) |
11471 					 V_FW_ACL_VLAN_CMD_VFN(vf));
11472 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
11473 	/* Drop all packets that donot match vlan id */
11474 	vlan_cmd.dropnovlan_fm = (enable
11475 				  ? (F_FW_ACL_VLAN_CMD_DROPNOVLAN |
11476 				     F_FW_ACL_VLAN_CMD_FM)
11477 				  : 0);
11478 	if (enable != 0) {
11479 		vlan_cmd.nvlan = 1;
11480 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
11481 	}
11482 
11483 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
11484 }
11485 
11486 /**
11487  *	t4_del_mac - Removes the exact-match filter for a MAC address
11488  *	@adap: the adapter
11489  *	@mbox: mailbox to use for the FW command
11490  *	@viid: the VI id
11491  *	@addr: the MAC address value
11492  *	@smac: if true, delete from only the smac region of MPS
11493  *
11494  *	Modifies an exact-match filter and sets it to the new MAC address if
11495  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
11496  *	latter case the address is added persistently if @persist is %true.
11497  *
11498  *	Returns a negative error number or the index of the filter with the new
11499  *	MAC value.  Note that this index may differ from @idx.
11500  */
11501 int t4_del_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
11502 	       const u8 *addr, bool smac)
11503 {
11504 	int ret;
11505 	struct fw_vi_mac_cmd c;
11506 	struct fw_vi_mac_exact *p = c.u.exact;
11507 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
11508 
11509 	memset(&c, 0, sizeof(c));
11510 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
11511 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
11512 				   V_FW_VI_MAC_CMD_VIID(viid));
11513 	c.freemacs_to_len16 = cpu_to_be32(
11514 					V_FW_CMD_LEN16(1) |
11515 					(smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0));
11516 
11517 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
11518 	p->valid_to_idx = cpu_to_be16(
11519 				F_FW_VI_MAC_CMD_VALID |
11520 				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE));
11521 
11522 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11523 	if (ret == 0) {
11524 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
11525 		if (ret < max_mac_addr)
11526 			return -ENOMEM;
11527 	}
11528 
11529 	return ret;
11530 }
11531 
11532 /**
11533  *	t4_add_mac - Adds an exact-match filter for a MAC address
11534  *	@adap: the adapter
11535  *	@mbox: mailbox to use for the FW command
11536  *	@viid: the VI id
11537  *	@idx: index of existing filter for old value of MAC address, or -1
11538  *	@addr: the new MAC address value
11539  *	@persist: whether a new MAC allocation should be persistent
11540  *	@add_smt: if true also add the address to the HW SMT
11541  *	@smac: if true, update only the smac region of MPS
11542  *
11543  *	Modifies an exact-match filter and sets it to the new MAC address if
11544  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
11545  *	latter case the address is added persistently if @persist is %true.
11546  *
11547  *	Returns a negative error number or the index of the filter with the new
11548  *	MAC value.  Note that this index may differ from @idx.
11549  */
11550 int t4_add_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
11551 	       int idx, const u8 *addr, bool persist, u8 *smt_idx, bool smac)
11552 {
11553 	int ret, mode;
11554 	struct fw_vi_mac_cmd c;
11555 	struct fw_vi_mac_exact *p = c.u.exact;
11556 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
11557 
11558 	if (idx < 0)		/* new allocation */
11559 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
11560 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
11561 
11562 	memset(&c, 0, sizeof(c));
11563 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
11564 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
11565 				   V_FW_VI_MAC_CMD_VIID(viid));
11566 	c.freemacs_to_len16 = cpu_to_be32(
11567 				V_FW_CMD_LEN16(1) |
11568 				(smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0));
11569 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
11570 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
11571 				      V_FW_VI_MAC_CMD_IDX(idx));
11572 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
11573 
11574 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11575 	if (ret == 0) {
11576 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
11577 		if (ret >= max_mac_addr)
11578 			return -ENOMEM;
11579 		if (smt_idx) {
11580 			/* Does fw supports returning smt_idx? */
11581 			if (adap->params.viid_smt_extn_support)
11582 				*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
11583 			else {
11584 				/* In T4/T5, SMT contains 256 SMAC entries
11585 				 * organized in 128 rows of 2 entries each.
11586 				 * In T6, SMT contains 256 SMAC entries in
11587 				 * 256 rows.
11588 				 */
11589 				if (chip_id(adap) <= CHELSIO_T5)
11590 					*smt_idx = ((viid & M_FW_VIID_VIN) << 1);
11591 				else
11592 					*smt_idx = (viid & M_FW_VIID_VIN);
11593 			}
11594 		}
11595 	}
11596 
11597 	return ret;
11598 }
11599