xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision eda14cbc264d6969b02f2b1994cef11148e914f1)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 
34 #include <sys/param.h>
35 #include <sys/eventhandler.h>
36 
37 #include "common.h"
38 #include "t4_regs.h"
39 #include "t4_regs_values.h"
40 #include "firmware/t4fw_interface.h"
41 
42 #undef msleep
43 #define msleep(x) do { \
44 	if (cold) \
45 		DELAY((x) * 1000); \
46 	else \
47 		pause("t4hw", (x) * hz / 1000); \
48 } while (0)
49 
50 /**
51  *	t4_wait_op_done_val - wait until an operation is completed
52  *	@adapter: the adapter performing the operation
53  *	@reg: the register to check for completion
54  *	@mask: a single-bit field within @reg that indicates completion
55  *	@polarity: the value of the field when the operation is completed
56  *	@attempts: number of check iterations
57  *	@delay: delay in usecs between iterations
58  *	@valp: where to store the value of the register at completion time
59  *
60  *	Wait until an operation is completed by checking a bit in a register
61  *	up to @attempts times.  If @valp is not NULL the value of the register
62  *	at the time it indicated completion is stored there.  Returns 0 if the
63  *	operation completes and	-EAGAIN	otherwise.
64  */
65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
66 			       int polarity, int attempts, int delay, u32 *valp)
67 {
68 	while (1) {
69 		u32 val = t4_read_reg(adapter, reg);
70 
71 		if (!!(val & mask) == polarity) {
72 			if (valp)
73 				*valp = val;
74 			return 0;
75 		}
76 		if (--attempts == 0)
77 			return -EAGAIN;
78 		if (delay)
79 			udelay(delay);
80 	}
81 }
82 
83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
84 				  int polarity, int attempts, int delay)
85 {
86 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
87 				   delay, NULL);
88 }
89 
90 /**
91  *	t4_set_reg_field - set a register field to a value
92  *	@adapter: the adapter to program
93  *	@addr: the register address
94  *	@mask: specifies the portion of the register to modify
95  *	@val: the new value for the register field
96  *
97  *	Sets a register field specified by the supplied mask to the
98  *	given value.
99  */
100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
101 		      u32 val)
102 {
103 	u32 v = t4_read_reg(adapter, addr) & ~mask;
104 
105 	t4_write_reg(adapter, addr, v | val);
106 	(void) t4_read_reg(adapter, addr);      /* flush */
107 }
108 
109 /**
110  *	t4_read_indirect - read indirectly addressed registers
111  *	@adap: the adapter
112  *	@addr_reg: register holding the indirect address
113  *	@data_reg: register holding the value of the indirect register
114  *	@vals: where the read register values are stored
115  *	@nregs: how many indirect registers to read
116  *	@start_idx: index of first indirect register to read
117  *
118  *	Reads registers that are accessed indirectly through an address/data
119  *	register pair.
120  */
121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
122 			     unsigned int data_reg, u32 *vals,
123 			     unsigned int nregs, unsigned int start_idx)
124 {
125 	while (nregs--) {
126 		t4_write_reg(adap, addr_reg, start_idx);
127 		*vals++ = t4_read_reg(adap, data_reg);
128 		start_idx++;
129 	}
130 }
131 
132 /**
133  *	t4_write_indirect - write indirectly addressed registers
134  *	@adap: the adapter
135  *	@addr_reg: register holding the indirect addresses
136  *	@data_reg: register holding the value for the indirect registers
137  *	@vals: values to write
138  *	@nregs: how many indirect registers to write
139  *	@start_idx: address of first indirect register to write
140  *
141  *	Writes a sequential block of registers that are accessed indirectly
142  *	through an address/data register pair.
143  */
144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
145 		       unsigned int data_reg, const u32 *vals,
146 		       unsigned int nregs, unsigned int start_idx)
147 {
148 	while (nregs--) {
149 		t4_write_reg(adap, addr_reg, start_idx++);
150 		t4_write_reg(adap, data_reg, *vals++);
151 	}
152 }
153 
154 /*
155  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
156  * mechanism.  This guarantees that we get the real value even if we're
157  * operating within a Virtual Machine and the Hypervisor is trapping our
158  * Configuration Space accesses.
159  *
160  * N.B. This routine should only be used as a last resort: the firmware uses
161  *      the backdoor registers on a regular basis and we can end up
162  *      conflicting with it's uses!
163  */
164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
165 {
166 	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
167 	u32 val;
168 
169 	if (chip_id(adap) <= CHELSIO_T5)
170 		req |= F_ENABLE;
171 	else
172 		req |= F_T6_ENABLE;
173 
174 	if (is_t4(adap))
175 		req |= F_LOCALCFG;
176 
177 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
178 	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
179 
180 	/*
181 	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
182 	 * Configuration Space read.  (None of the other fields matter when
183 	 * F_ENABLE is 0 so a simple register write is easier than a
184 	 * read-modify-write via t4_set_reg_field().)
185 	 */
186 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
187 
188 	return val;
189 }
190 
191 /*
192  * t4_report_fw_error - report firmware error
193  * @adap: the adapter
194  *
195  * The adapter firmware can indicate error conditions to the host.
196  * If the firmware has indicated an error, print out the reason for
197  * the firmware error.
198  */
199 static void t4_report_fw_error(struct adapter *adap)
200 {
201 	static const char *const reason[] = {
202 		"Crash",			/* PCIE_FW_EVAL_CRASH */
203 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
204 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
205 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
206 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
207 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
208 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
209 		"Reserved",			/* reserved */
210 	};
211 	u32 pcie_fw;
212 
213 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
214 	if (pcie_fw & F_PCIE_FW_ERR) {
215 		adap->flags &= ~FW_OK;
216 		CH_ERR(adap, "firmware reports adapter error: %s (0x%08x)\n",
217 		    reason[G_PCIE_FW_EVAL(pcie_fw)], pcie_fw);
218 		if (pcie_fw != 0xffffffff)
219 			t4_os_dump_devlog(adap);
220 	}
221 }
222 
223 /*
224  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
225  */
226 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
227 			 u32 mbox_addr)
228 {
229 	for ( ; nflit; nflit--, mbox_addr += 8)
230 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
231 }
232 
233 /*
234  * Handle a FW assertion reported in a mailbox.
235  */
236 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
237 {
238 	CH_ALERT(adap,
239 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
240 		  asrt->u.assert.filename_0_7,
241 		  be32_to_cpu(asrt->u.assert.line),
242 		  be32_to_cpu(asrt->u.assert.x),
243 		  be32_to_cpu(asrt->u.assert.y));
244 }
245 
246 struct port_tx_state {
247 	uint64_t rx_pause;
248 	uint64_t tx_frames;
249 };
250 
251 static void
252 read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state)
253 {
254 	uint32_t rx_pause_reg, tx_frames_reg;
255 
256 	if (is_t4(sc)) {
257 		tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
258 		rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
259 	} else {
260 		tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
261 		rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
262 	}
263 
264 	tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg);
265 	tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg);
266 }
267 
268 static void
269 read_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
270 {
271 	int i;
272 
273 	for_each_port(sc, i)
274 		read_tx_state_one(sc, i, &tx_state[i]);
275 }
276 
277 static void
278 check_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
279 {
280 	uint32_t port_ctl_reg;
281 	uint64_t tx_frames, rx_pause;
282 	int i;
283 
284 	for_each_port(sc, i) {
285 		rx_pause = tx_state[i].rx_pause;
286 		tx_frames = tx_state[i].tx_frames;
287 		read_tx_state_one(sc, i, &tx_state[i]);	/* update */
288 
289 		if (is_t4(sc))
290 			port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL);
291 		else
292 			port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL);
293 		if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN &&
294 		    rx_pause != tx_state[i].rx_pause &&
295 		    tx_frames == tx_state[i].tx_frames) {
296 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0);
297 			mdelay(1);
298 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN);
299 		}
300 	}
301 }
302 
303 #define X_CIM_PF_NOACCESS 0xeeeeeeee
304 /**
305  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
306  *	@adap: the adapter
307  *	@mbox: index of the mailbox to use
308  *	@cmd: the command to write
309  *	@size: command length in bytes
310  *	@rpl: where to optionally store the reply
311  *	@sleep_ok: if true we may sleep while awaiting command completion
312  *	@timeout: time to wait for command to finish before timing out
313  *		(negative implies @sleep_ok=false)
314  *
315  *	Sends the given command to FW through the selected mailbox and waits
316  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
317  *	store the FW's reply to the command.  The command and its optional
318  *	reply are of the same length.  Some FW commands like RESET and
319  *	INITIALIZE can take a considerable amount of time to execute.
320  *	@sleep_ok determines whether we may sleep while awaiting the response.
321  *	If sleeping is allowed we use progressive backoff otherwise we spin.
322  *	Note that passing in a negative @timeout is an alternate mechanism
323  *	for specifying @sleep_ok=false.  This is useful when a higher level
324  *	interface allows for specification of @timeout but not @sleep_ok ...
325  *
326  *	The return value is 0 on success or a negative errno on failure.  A
327  *	failure can happen either because we are not able to execute the
328  *	command or FW executes it but signals an error.  In the latter case
329  *	the return value is the error code indicated by FW (negated).
330  */
331 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
332 			    int size, void *rpl, bool sleep_ok, int timeout)
333 {
334 	/*
335 	 * We delay in small increments at first in an effort to maintain
336 	 * responsiveness for simple, fast executing commands but then back
337 	 * off to larger delays to a maximum retry delay.
338 	 */
339 	static const int delay[] = {
340 		1, 1, 3, 5, 10, 10, 20, 50, 100
341 	};
342 	u32 v;
343 	u64 res;
344 	int i, ms, delay_idx, ret, next_tx_check;
345 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
346 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
347 	u32 ctl;
348 	__be64 cmd_rpl[MBOX_LEN/8];
349 	u32 pcie_fw;
350 	struct port_tx_state tx_state[MAX_NPORTS];
351 
352 	if (adap->flags & CHK_MBOX_ACCESS)
353 		ASSERT_SYNCHRONIZED_OP(adap);
354 
355 	if (size <= 0 || (size & 15) || size > MBOX_LEN)
356 		return -EINVAL;
357 
358 	if (adap->flags & IS_VF) {
359 		if (is_t6(adap))
360 			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
361 		else
362 			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
363 		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
364 	}
365 
366 	/*
367 	 * If we have a negative timeout, that implies that we can't sleep.
368 	 */
369 	if (timeout < 0) {
370 		sleep_ok = false;
371 		timeout = -timeout;
372 	}
373 
374 	/*
375 	 * Attempt to gain access to the mailbox.
376 	 */
377 	for (i = 0; i < 4; i++) {
378 		ctl = t4_read_reg(adap, ctl_reg);
379 		v = G_MBOWNER(ctl);
380 		if (v != X_MBOWNER_NONE)
381 			break;
382 	}
383 
384 	/*
385 	 * If we were unable to gain access, report the error to our caller.
386 	 */
387 	if (v != X_MBOWNER_PL) {
388 		t4_report_fw_error(adap);
389 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
390 		return ret;
391 	}
392 
393 	/*
394 	 * If we gain ownership of the mailbox and there's a "valid" message
395 	 * in it, this is likely an asynchronous error message from the
396 	 * firmware.  So we'll report that and then proceed on with attempting
397 	 * to issue our own command ... which may well fail if the error
398 	 * presaged the firmware crashing ...
399 	 */
400 	if (ctl & F_MBMSGVALID) {
401 		CH_DUMP_MBOX(adap, mbox, data_reg, "VLD", NULL, true);
402 	}
403 
404 	/*
405 	 * Copy in the new mailbox command and send it on its way ...
406 	 */
407 	memset(cmd_rpl, 0, sizeof(cmd_rpl));
408 	memcpy(cmd_rpl, cmd, size);
409 	CH_DUMP_MBOX(adap, mbox, 0, "cmd", cmd_rpl, false);
410 	for (i = 0; i < ARRAY_SIZE(cmd_rpl); i++)
411 		t4_write_reg64(adap, data_reg + i * 8, be64_to_cpu(cmd_rpl[i]));
412 
413 	if (adap->flags & IS_VF) {
414 		/*
415 		 * For the VFs, the Mailbox Data "registers" are
416 		 * actually backed by T4's "MA" interface rather than
417 		 * PL Registers (as is the case for the PFs).  Because
418 		 * these are in different coherency domains, the write
419 		 * to the VF's PL-register-backed Mailbox Control can
420 		 * race in front of the writes to the MA-backed VF
421 		 * Mailbox Data "registers".  So we need to do a
422 		 * read-back on at least one byte of the VF Mailbox
423 		 * Data registers before doing the write to the VF
424 		 * Mailbox Control register.
425 		 */
426 		t4_read_reg(adap, data_reg);
427 	}
428 
429 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
430 	read_tx_state(adap, &tx_state[0]);	/* also flushes the write_reg */
431 	next_tx_check = 1000;
432 	delay_idx = 0;
433 	ms = delay[0];
434 
435 	/*
436 	 * Loop waiting for the reply; bail out if we time out or the firmware
437 	 * reports an error.
438 	 */
439 	pcie_fw = 0;
440 	for (i = 0; i < timeout; i += ms) {
441 		if (!(adap->flags & IS_VF)) {
442 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
443 			if (pcie_fw & F_PCIE_FW_ERR)
444 				break;
445 		}
446 
447 		if (i >= next_tx_check) {
448 			check_tx_state(adap, &tx_state[0]);
449 			next_tx_check = i + 1000;
450 		}
451 
452 		if (sleep_ok) {
453 			ms = delay[delay_idx];  /* last element may repeat */
454 			if (delay_idx < ARRAY_SIZE(delay) - 1)
455 				delay_idx++;
456 			msleep(ms);
457 		} else {
458 			mdelay(ms);
459 		}
460 
461 		v = t4_read_reg(adap, ctl_reg);
462 		if (v == X_CIM_PF_NOACCESS)
463 			continue;
464 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
465 			if (!(v & F_MBMSGVALID)) {
466 				t4_write_reg(adap, ctl_reg,
467 					     V_MBOWNER(X_MBOWNER_NONE));
468 				continue;
469 			}
470 
471 			/*
472 			 * Retrieve the command reply and release the mailbox.
473 			 */
474 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
475 			CH_DUMP_MBOX(adap, mbox, 0, "rpl", cmd_rpl, false);
476 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
477 
478 			res = be64_to_cpu(cmd_rpl[0]);
479 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
480 				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
481 				res = V_FW_CMD_RETVAL(EIO);
482 			} else if (rpl)
483 				memcpy(rpl, cmd_rpl, size);
484 			return -G_FW_CMD_RETVAL((int)res);
485 		}
486 	}
487 
488 	/*
489 	 * We timed out waiting for a reply to our mailbox command.  Report
490 	 * the error and also check to see if the firmware reported any
491 	 * errors ...
492 	 */
493 	CH_ERR(adap, "command %#x in mbox %d timed out (0x%08x).\n",
494 	    *(const u8 *)cmd, mbox, pcie_fw);
495 	CH_DUMP_MBOX(adap, mbox, 0, "cmdsent", cmd_rpl, true);
496 	CH_DUMP_MBOX(adap, mbox, data_reg, "current", NULL, true);
497 
498 	if (pcie_fw & F_PCIE_FW_ERR) {
499 		ret = -ENXIO;
500 		t4_report_fw_error(adap);
501 	} else {
502 		ret = -ETIMEDOUT;
503 		t4_os_dump_devlog(adap);
504 	}
505 
506 	t4_fatal_err(adap, true);
507 	return ret;
508 }
509 
510 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
511 		    void *rpl, bool sleep_ok)
512 {
513 		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
514 					       sleep_ok, FW_CMD_MAX_TIMEOUT);
515 
516 }
517 
518 static int t4_edc_err_read(struct adapter *adap, int idx)
519 {
520 	u32 edc_ecc_err_addr_reg;
521 	u32 edc_bist_status_rdata_reg;
522 
523 	if (is_t4(adap)) {
524 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
525 		return 0;
526 	}
527 	if (idx != MEM_EDC0 && idx != MEM_EDC1) {
528 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
529 		return 0;
530 	}
531 
532 	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
533 	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
534 
535 	CH_WARN(adap,
536 		"edc%d err addr 0x%x: 0x%x.\n",
537 		idx, edc_ecc_err_addr_reg,
538 		t4_read_reg(adap, edc_ecc_err_addr_reg));
539 	CH_WARN(adap,
540 	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
541 		edc_bist_status_rdata_reg,
542 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
543 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
544 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
545 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
546 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
547 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
548 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
549 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
550 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
551 
552 	return 0;
553 }
554 
555 /**
556  *	t4_mc_read - read from MC through backdoor accesses
557  *	@adap: the adapter
558  *	@idx: which MC to access
559  *	@addr: address of first byte requested
560  *	@data: 64 bytes of data containing the requested address
561  *	@ecc: where to store the corresponding 64-bit ECC word
562  *
563  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
564  *	that covers the requested address @addr.  If @parity is not %NULL it
565  *	is assigned the 64-bit ECC word for the read data.
566  */
567 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
568 {
569 	int i;
570 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
571 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
572 
573 	if (is_t4(adap)) {
574 		mc_bist_cmd_reg = A_MC_BIST_CMD;
575 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
576 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
577 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
578 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
579 	} else {
580 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
581 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
582 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
583 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
584 						  idx);
585 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
586 						  idx);
587 	}
588 
589 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
590 		return -EBUSY;
591 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
592 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
593 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
594 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
595 		     F_START_BIST | V_BIST_CMD_GAP(1));
596 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
597 	if (i)
598 		return i;
599 
600 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
601 
602 	for (i = 15; i >= 0; i--)
603 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
604 	if (ecc)
605 		*ecc = t4_read_reg64(adap, MC_DATA(16));
606 #undef MC_DATA
607 	return 0;
608 }
609 
610 /**
611  *	t4_edc_read - read from EDC through backdoor accesses
612  *	@adap: the adapter
613  *	@idx: which EDC to access
614  *	@addr: address of first byte requested
615  *	@data: 64 bytes of data containing the requested address
616  *	@ecc: where to store the corresponding 64-bit ECC word
617  *
618  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
619  *	that covers the requested address @addr.  If @parity is not %NULL it
620  *	is assigned the 64-bit ECC word for the read data.
621  */
622 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
623 {
624 	int i;
625 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
626 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
627 
628 	if (is_t4(adap)) {
629 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
630 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
631 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
632 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
633 						    idx);
634 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
635 						    idx);
636 	} else {
637 /*
638  * These macro are missing in t4_regs.h file.
639  * Added temporarily for testing.
640  */
641 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
642 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
643 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
644 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
645 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
646 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
647 						    idx);
648 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
649 						    idx);
650 #undef EDC_REG_T5
651 #undef EDC_STRIDE_T5
652 	}
653 
654 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
655 		return -EBUSY;
656 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
657 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
658 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
659 	t4_write_reg(adap, edc_bist_cmd_reg,
660 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
661 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
662 	if (i)
663 		return i;
664 
665 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
666 
667 	for (i = 15; i >= 0; i--)
668 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
669 	if (ecc)
670 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
671 #undef EDC_DATA
672 	return 0;
673 }
674 
675 /**
676  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
677  *	@adap: the adapter
678  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
679  *	@addr: address within indicated memory type
680  *	@len: amount of memory to read
681  *	@buf: host memory buffer
682  *
683  *	Reads an [almost] arbitrary memory region in the firmware: the
684  *	firmware memory address, length and host buffer must be aligned on
685  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
686  *	the firmware's memory.  If this memory contains data structures which
687  *	contain multi-byte integers, it's the callers responsibility to
688  *	perform appropriate byte order conversions.
689  */
690 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
691 		__be32 *buf)
692 {
693 	u32 pos, start, end, offset;
694 	int ret;
695 
696 	/*
697 	 * Argument sanity checks ...
698 	 */
699 	if ((addr & 0x3) || (len & 0x3))
700 		return -EINVAL;
701 
702 	/*
703 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
704 	 * need to round down the start and round up the end.  We'll start
705 	 * copying out of the first line at (addr - start) a word at a time.
706 	 */
707 	start = rounddown2(addr, 64);
708 	end = roundup2(addr + len, 64);
709 	offset = (addr - start)/sizeof(__be32);
710 
711 	for (pos = start; pos < end; pos += 64, offset = 0) {
712 		__be32 data[16];
713 
714 		/*
715 		 * Read the chip's memory block and bail if there's an error.
716 		 */
717 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
718 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
719 		else
720 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
721 		if (ret)
722 			return ret;
723 
724 		/*
725 		 * Copy the data into the caller's memory buffer.
726 		 */
727 		while (offset < 16 && len > 0) {
728 			*buf++ = data[offset++];
729 			len -= sizeof(__be32);
730 		}
731 	}
732 
733 	return 0;
734 }
735 
736 /*
737  * Return the specified PCI-E Configuration Space register from our Physical
738  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
739  * since we prefer to let the firmware own all of these registers, but if that
740  * fails we go for it directly ourselves.
741  */
742 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
743 {
744 
745 	/*
746 	 * If fw_attach != 0, construct and send the Firmware LDST Command to
747 	 * retrieve the specified PCI-E Configuration Space register.
748 	 */
749 	if (drv_fw_attach != 0) {
750 		struct fw_ldst_cmd ldst_cmd;
751 		int ret;
752 
753 		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
754 		ldst_cmd.op_to_addrspace =
755 			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
756 				    F_FW_CMD_REQUEST |
757 				    F_FW_CMD_READ |
758 				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
759 		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
760 		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
761 		ldst_cmd.u.pcie.ctrl_to_fn =
762 			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
763 		ldst_cmd.u.pcie.r = reg;
764 
765 		/*
766 		 * If the LDST Command succeeds, return the result, otherwise
767 		 * fall through to reading it directly ourselves ...
768 		 */
769 		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
770 				 &ldst_cmd);
771 		if (ret == 0)
772 			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
773 
774 		CH_WARN(adap, "Firmware failed to return "
775 			"Configuration Space register %d, err = %d\n",
776 			reg, -ret);
777 	}
778 
779 	/*
780 	 * Read the desired Configuration Space register via the PCI-E
781 	 * Backdoor mechanism.
782 	 */
783 	return t4_hw_pci_read_cfg4(adap, reg);
784 }
785 
786 /**
787  *	t4_get_regs_len - return the size of the chips register set
788  *	@adapter: the adapter
789  *
790  *	Returns the size of the chip's BAR0 register space.
791  */
792 unsigned int t4_get_regs_len(struct adapter *adapter)
793 {
794 	unsigned int chip_version = chip_id(adapter);
795 
796 	switch (chip_version) {
797 	case CHELSIO_T4:
798 		if (adapter->flags & IS_VF)
799 			return FW_T4VF_REGMAP_SIZE;
800 		return T4_REGMAP_SIZE;
801 
802 	case CHELSIO_T5:
803 	case CHELSIO_T6:
804 		if (adapter->flags & IS_VF)
805 			return FW_T4VF_REGMAP_SIZE;
806 		return T5_REGMAP_SIZE;
807 	}
808 
809 	CH_ERR(adapter,
810 		"Unsupported chip version %d\n", chip_version);
811 	return 0;
812 }
813 
814 /**
815  *	t4_get_regs - read chip registers into provided buffer
816  *	@adap: the adapter
817  *	@buf: register buffer
818  *	@buf_size: size (in bytes) of register buffer
819  *
820  *	If the provided register buffer isn't large enough for the chip's
821  *	full register range, the register dump will be truncated to the
822  *	register buffer's size.
823  */
824 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
825 {
826 	static const unsigned int t4_reg_ranges[] = {
827 		0x1008, 0x1108,
828 		0x1180, 0x1184,
829 		0x1190, 0x1194,
830 		0x11a0, 0x11a4,
831 		0x11b0, 0x11b4,
832 		0x11fc, 0x123c,
833 		0x1300, 0x173c,
834 		0x1800, 0x18fc,
835 		0x3000, 0x30d8,
836 		0x30e0, 0x30e4,
837 		0x30ec, 0x5910,
838 		0x5920, 0x5924,
839 		0x5960, 0x5960,
840 		0x5968, 0x5968,
841 		0x5970, 0x5970,
842 		0x5978, 0x5978,
843 		0x5980, 0x5980,
844 		0x5988, 0x5988,
845 		0x5990, 0x5990,
846 		0x5998, 0x5998,
847 		0x59a0, 0x59d4,
848 		0x5a00, 0x5ae0,
849 		0x5ae8, 0x5ae8,
850 		0x5af0, 0x5af0,
851 		0x5af8, 0x5af8,
852 		0x6000, 0x6098,
853 		0x6100, 0x6150,
854 		0x6200, 0x6208,
855 		0x6240, 0x6248,
856 		0x6280, 0x62b0,
857 		0x62c0, 0x6338,
858 		0x6370, 0x638c,
859 		0x6400, 0x643c,
860 		0x6500, 0x6524,
861 		0x6a00, 0x6a04,
862 		0x6a14, 0x6a38,
863 		0x6a60, 0x6a70,
864 		0x6a78, 0x6a78,
865 		0x6b00, 0x6b0c,
866 		0x6b1c, 0x6b84,
867 		0x6bf0, 0x6bf8,
868 		0x6c00, 0x6c0c,
869 		0x6c1c, 0x6c84,
870 		0x6cf0, 0x6cf8,
871 		0x6d00, 0x6d0c,
872 		0x6d1c, 0x6d84,
873 		0x6df0, 0x6df8,
874 		0x6e00, 0x6e0c,
875 		0x6e1c, 0x6e84,
876 		0x6ef0, 0x6ef8,
877 		0x6f00, 0x6f0c,
878 		0x6f1c, 0x6f84,
879 		0x6ff0, 0x6ff8,
880 		0x7000, 0x700c,
881 		0x701c, 0x7084,
882 		0x70f0, 0x70f8,
883 		0x7100, 0x710c,
884 		0x711c, 0x7184,
885 		0x71f0, 0x71f8,
886 		0x7200, 0x720c,
887 		0x721c, 0x7284,
888 		0x72f0, 0x72f8,
889 		0x7300, 0x730c,
890 		0x731c, 0x7384,
891 		0x73f0, 0x73f8,
892 		0x7400, 0x7450,
893 		0x7500, 0x7530,
894 		0x7600, 0x760c,
895 		0x7614, 0x761c,
896 		0x7680, 0x76cc,
897 		0x7700, 0x7798,
898 		0x77c0, 0x77fc,
899 		0x7900, 0x79fc,
900 		0x7b00, 0x7b58,
901 		0x7b60, 0x7b84,
902 		0x7b8c, 0x7c38,
903 		0x7d00, 0x7d38,
904 		0x7d40, 0x7d80,
905 		0x7d8c, 0x7ddc,
906 		0x7de4, 0x7e04,
907 		0x7e10, 0x7e1c,
908 		0x7e24, 0x7e38,
909 		0x7e40, 0x7e44,
910 		0x7e4c, 0x7e78,
911 		0x7e80, 0x7ea4,
912 		0x7eac, 0x7edc,
913 		0x7ee8, 0x7efc,
914 		0x8dc0, 0x8e04,
915 		0x8e10, 0x8e1c,
916 		0x8e30, 0x8e78,
917 		0x8ea0, 0x8eb8,
918 		0x8ec0, 0x8f6c,
919 		0x8fc0, 0x9008,
920 		0x9010, 0x9058,
921 		0x9060, 0x9060,
922 		0x9068, 0x9074,
923 		0x90fc, 0x90fc,
924 		0x9400, 0x9408,
925 		0x9410, 0x9458,
926 		0x9600, 0x9600,
927 		0x9608, 0x9638,
928 		0x9640, 0x96bc,
929 		0x9800, 0x9808,
930 		0x9820, 0x983c,
931 		0x9850, 0x9864,
932 		0x9c00, 0x9c6c,
933 		0x9c80, 0x9cec,
934 		0x9d00, 0x9d6c,
935 		0x9d80, 0x9dec,
936 		0x9e00, 0x9e6c,
937 		0x9e80, 0x9eec,
938 		0x9f00, 0x9f6c,
939 		0x9f80, 0x9fec,
940 		0xd004, 0xd004,
941 		0xd010, 0xd03c,
942 		0xdfc0, 0xdfe0,
943 		0xe000, 0xea7c,
944 		0xf000, 0x11110,
945 		0x11118, 0x11190,
946 		0x19040, 0x1906c,
947 		0x19078, 0x19080,
948 		0x1908c, 0x190e4,
949 		0x190f0, 0x190f8,
950 		0x19100, 0x19110,
951 		0x19120, 0x19124,
952 		0x19150, 0x19194,
953 		0x1919c, 0x191b0,
954 		0x191d0, 0x191e8,
955 		0x19238, 0x1924c,
956 		0x193f8, 0x1943c,
957 		0x1944c, 0x19474,
958 		0x19490, 0x194e0,
959 		0x194f0, 0x194f8,
960 		0x19800, 0x19c08,
961 		0x19c10, 0x19c90,
962 		0x19ca0, 0x19ce4,
963 		0x19cf0, 0x19d40,
964 		0x19d50, 0x19d94,
965 		0x19da0, 0x19de8,
966 		0x19df0, 0x19e40,
967 		0x19e50, 0x19e90,
968 		0x19ea0, 0x19f4c,
969 		0x1a000, 0x1a004,
970 		0x1a010, 0x1a06c,
971 		0x1a0b0, 0x1a0e4,
972 		0x1a0ec, 0x1a0f4,
973 		0x1a100, 0x1a108,
974 		0x1a114, 0x1a120,
975 		0x1a128, 0x1a130,
976 		0x1a138, 0x1a138,
977 		0x1a190, 0x1a1c4,
978 		0x1a1fc, 0x1a1fc,
979 		0x1e040, 0x1e04c,
980 		0x1e284, 0x1e28c,
981 		0x1e2c0, 0x1e2c0,
982 		0x1e2e0, 0x1e2e0,
983 		0x1e300, 0x1e384,
984 		0x1e3c0, 0x1e3c8,
985 		0x1e440, 0x1e44c,
986 		0x1e684, 0x1e68c,
987 		0x1e6c0, 0x1e6c0,
988 		0x1e6e0, 0x1e6e0,
989 		0x1e700, 0x1e784,
990 		0x1e7c0, 0x1e7c8,
991 		0x1e840, 0x1e84c,
992 		0x1ea84, 0x1ea8c,
993 		0x1eac0, 0x1eac0,
994 		0x1eae0, 0x1eae0,
995 		0x1eb00, 0x1eb84,
996 		0x1ebc0, 0x1ebc8,
997 		0x1ec40, 0x1ec4c,
998 		0x1ee84, 0x1ee8c,
999 		0x1eec0, 0x1eec0,
1000 		0x1eee0, 0x1eee0,
1001 		0x1ef00, 0x1ef84,
1002 		0x1efc0, 0x1efc8,
1003 		0x1f040, 0x1f04c,
1004 		0x1f284, 0x1f28c,
1005 		0x1f2c0, 0x1f2c0,
1006 		0x1f2e0, 0x1f2e0,
1007 		0x1f300, 0x1f384,
1008 		0x1f3c0, 0x1f3c8,
1009 		0x1f440, 0x1f44c,
1010 		0x1f684, 0x1f68c,
1011 		0x1f6c0, 0x1f6c0,
1012 		0x1f6e0, 0x1f6e0,
1013 		0x1f700, 0x1f784,
1014 		0x1f7c0, 0x1f7c8,
1015 		0x1f840, 0x1f84c,
1016 		0x1fa84, 0x1fa8c,
1017 		0x1fac0, 0x1fac0,
1018 		0x1fae0, 0x1fae0,
1019 		0x1fb00, 0x1fb84,
1020 		0x1fbc0, 0x1fbc8,
1021 		0x1fc40, 0x1fc4c,
1022 		0x1fe84, 0x1fe8c,
1023 		0x1fec0, 0x1fec0,
1024 		0x1fee0, 0x1fee0,
1025 		0x1ff00, 0x1ff84,
1026 		0x1ffc0, 0x1ffc8,
1027 		0x20000, 0x2002c,
1028 		0x20100, 0x2013c,
1029 		0x20190, 0x201a0,
1030 		0x201a8, 0x201b8,
1031 		0x201c4, 0x201c8,
1032 		0x20200, 0x20318,
1033 		0x20400, 0x204b4,
1034 		0x204c0, 0x20528,
1035 		0x20540, 0x20614,
1036 		0x21000, 0x21040,
1037 		0x2104c, 0x21060,
1038 		0x210c0, 0x210ec,
1039 		0x21200, 0x21268,
1040 		0x21270, 0x21284,
1041 		0x212fc, 0x21388,
1042 		0x21400, 0x21404,
1043 		0x21500, 0x21500,
1044 		0x21510, 0x21518,
1045 		0x2152c, 0x21530,
1046 		0x2153c, 0x2153c,
1047 		0x21550, 0x21554,
1048 		0x21600, 0x21600,
1049 		0x21608, 0x2161c,
1050 		0x21624, 0x21628,
1051 		0x21630, 0x21634,
1052 		0x2163c, 0x2163c,
1053 		0x21700, 0x2171c,
1054 		0x21780, 0x2178c,
1055 		0x21800, 0x21818,
1056 		0x21820, 0x21828,
1057 		0x21830, 0x21848,
1058 		0x21850, 0x21854,
1059 		0x21860, 0x21868,
1060 		0x21870, 0x21870,
1061 		0x21878, 0x21898,
1062 		0x218a0, 0x218a8,
1063 		0x218b0, 0x218c8,
1064 		0x218d0, 0x218d4,
1065 		0x218e0, 0x218e8,
1066 		0x218f0, 0x218f0,
1067 		0x218f8, 0x21a18,
1068 		0x21a20, 0x21a28,
1069 		0x21a30, 0x21a48,
1070 		0x21a50, 0x21a54,
1071 		0x21a60, 0x21a68,
1072 		0x21a70, 0x21a70,
1073 		0x21a78, 0x21a98,
1074 		0x21aa0, 0x21aa8,
1075 		0x21ab0, 0x21ac8,
1076 		0x21ad0, 0x21ad4,
1077 		0x21ae0, 0x21ae8,
1078 		0x21af0, 0x21af0,
1079 		0x21af8, 0x21c18,
1080 		0x21c20, 0x21c20,
1081 		0x21c28, 0x21c30,
1082 		0x21c38, 0x21c38,
1083 		0x21c80, 0x21c98,
1084 		0x21ca0, 0x21ca8,
1085 		0x21cb0, 0x21cc8,
1086 		0x21cd0, 0x21cd4,
1087 		0x21ce0, 0x21ce8,
1088 		0x21cf0, 0x21cf0,
1089 		0x21cf8, 0x21d7c,
1090 		0x21e00, 0x21e04,
1091 		0x22000, 0x2202c,
1092 		0x22100, 0x2213c,
1093 		0x22190, 0x221a0,
1094 		0x221a8, 0x221b8,
1095 		0x221c4, 0x221c8,
1096 		0x22200, 0x22318,
1097 		0x22400, 0x224b4,
1098 		0x224c0, 0x22528,
1099 		0x22540, 0x22614,
1100 		0x23000, 0x23040,
1101 		0x2304c, 0x23060,
1102 		0x230c0, 0x230ec,
1103 		0x23200, 0x23268,
1104 		0x23270, 0x23284,
1105 		0x232fc, 0x23388,
1106 		0x23400, 0x23404,
1107 		0x23500, 0x23500,
1108 		0x23510, 0x23518,
1109 		0x2352c, 0x23530,
1110 		0x2353c, 0x2353c,
1111 		0x23550, 0x23554,
1112 		0x23600, 0x23600,
1113 		0x23608, 0x2361c,
1114 		0x23624, 0x23628,
1115 		0x23630, 0x23634,
1116 		0x2363c, 0x2363c,
1117 		0x23700, 0x2371c,
1118 		0x23780, 0x2378c,
1119 		0x23800, 0x23818,
1120 		0x23820, 0x23828,
1121 		0x23830, 0x23848,
1122 		0x23850, 0x23854,
1123 		0x23860, 0x23868,
1124 		0x23870, 0x23870,
1125 		0x23878, 0x23898,
1126 		0x238a0, 0x238a8,
1127 		0x238b0, 0x238c8,
1128 		0x238d0, 0x238d4,
1129 		0x238e0, 0x238e8,
1130 		0x238f0, 0x238f0,
1131 		0x238f8, 0x23a18,
1132 		0x23a20, 0x23a28,
1133 		0x23a30, 0x23a48,
1134 		0x23a50, 0x23a54,
1135 		0x23a60, 0x23a68,
1136 		0x23a70, 0x23a70,
1137 		0x23a78, 0x23a98,
1138 		0x23aa0, 0x23aa8,
1139 		0x23ab0, 0x23ac8,
1140 		0x23ad0, 0x23ad4,
1141 		0x23ae0, 0x23ae8,
1142 		0x23af0, 0x23af0,
1143 		0x23af8, 0x23c18,
1144 		0x23c20, 0x23c20,
1145 		0x23c28, 0x23c30,
1146 		0x23c38, 0x23c38,
1147 		0x23c80, 0x23c98,
1148 		0x23ca0, 0x23ca8,
1149 		0x23cb0, 0x23cc8,
1150 		0x23cd0, 0x23cd4,
1151 		0x23ce0, 0x23ce8,
1152 		0x23cf0, 0x23cf0,
1153 		0x23cf8, 0x23d7c,
1154 		0x23e00, 0x23e04,
1155 		0x24000, 0x2402c,
1156 		0x24100, 0x2413c,
1157 		0x24190, 0x241a0,
1158 		0x241a8, 0x241b8,
1159 		0x241c4, 0x241c8,
1160 		0x24200, 0x24318,
1161 		0x24400, 0x244b4,
1162 		0x244c0, 0x24528,
1163 		0x24540, 0x24614,
1164 		0x25000, 0x25040,
1165 		0x2504c, 0x25060,
1166 		0x250c0, 0x250ec,
1167 		0x25200, 0x25268,
1168 		0x25270, 0x25284,
1169 		0x252fc, 0x25388,
1170 		0x25400, 0x25404,
1171 		0x25500, 0x25500,
1172 		0x25510, 0x25518,
1173 		0x2552c, 0x25530,
1174 		0x2553c, 0x2553c,
1175 		0x25550, 0x25554,
1176 		0x25600, 0x25600,
1177 		0x25608, 0x2561c,
1178 		0x25624, 0x25628,
1179 		0x25630, 0x25634,
1180 		0x2563c, 0x2563c,
1181 		0x25700, 0x2571c,
1182 		0x25780, 0x2578c,
1183 		0x25800, 0x25818,
1184 		0x25820, 0x25828,
1185 		0x25830, 0x25848,
1186 		0x25850, 0x25854,
1187 		0x25860, 0x25868,
1188 		0x25870, 0x25870,
1189 		0x25878, 0x25898,
1190 		0x258a0, 0x258a8,
1191 		0x258b0, 0x258c8,
1192 		0x258d0, 0x258d4,
1193 		0x258e0, 0x258e8,
1194 		0x258f0, 0x258f0,
1195 		0x258f8, 0x25a18,
1196 		0x25a20, 0x25a28,
1197 		0x25a30, 0x25a48,
1198 		0x25a50, 0x25a54,
1199 		0x25a60, 0x25a68,
1200 		0x25a70, 0x25a70,
1201 		0x25a78, 0x25a98,
1202 		0x25aa0, 0x25aa8,
1203 		0x25ab0, 0x25ac8,
1204 		0x25ad0, 0x25ad4,
1205 		0x25ae0, 0x25ae8,
1206 		0x25af0, 0x25af0,
1207 		0x25af8, 0x25c18,
1208 		0x25c20, 0x25c20,
1209 		0x25c28, 0x25c30,
1210 		0x25c38, 0x25c38,
1211 		0x25c80, 0x25c98,
1212 		0x25ca0, 0x25ca8,
1213 		0x25cb0, 0x25cc8,
1214 		0x25cd0, 0x25cd4,
1215 		0x25ce0, 0x25ce8,
1216 		0x25cf0, 0x25cf0,
1217 		0x25cf8, 0x25d7c,
1218 		0x25e00, 0x25e04,
1219 		0x26000, 0x2602c,
1220 		0x26100, 0x2613c,
1221 		0x26190, 0x261a0,
1222 		0x261a8, 0x261b8,
1223 		0x261c4, 0x261c8,
1224 		0x26200, 0x26318,
1225 		0x26400, 0x264b4,
1226 		0x264c0, 0x26528,
1227 		0x26540, 0x26614,
1228 		0x27000, 0x27040,
1229 		0x2704c, 0x27060,
1230 		0x270c0, 0x270ec,
1231 		0x27200, 0x27268,
1232 		0x27270, 0x27284,
1233 		0x272fc, 0x27388,
1234 		0x27400, 0x27404,
1235 		0x27500, 0x27500,
1236 		0x27510, 0x27518,
1237 		0x2752c, 0x27530,
1238 		0x2753c, 0x2753c,
1239 		0x27550, 0x27554,
1240 		0x27600, 0x27600,
1241 		0x27608, 0x2761c,
1242 		0x27624, 0x27628,
1243 		0x27630, 0x27634,
1244 		0x2763c, 0x2763c,
1245 		0x27700, 0x2771c,
1246 		0x27780, 0x2778c,
1247 		0x27800, 0x27818,
1248 		0x27820, 0x27828,
1249 		0x27830, 0x27848,
1250 		0x27850, 0x27854,
1251 		0x27860, 0x27868,
1252 		0x27870, 0x27870,
1253 		0x27878, 0x27898,
1254 		0x278a0, 0x278a8,
1255 		0x278b0, 0x278c8,
1256 		0x278d0, 0x278d4,
1257 		0x278e0, 0x278e8,
1258 		0x278f0, 0x278f0,
1259 		0x278f8, 0x27a18,
1260 		0x27a20, 0x27a28,
1261 		0x27a30, 0x27a48,
1262 		0x27a50, 0x27a54,
1263 		0x27a60, 0x27a68,
1264 		0x27a70, 0x27a70,
1265 		0x27a78, 0x27a98,
1266 		0x27aa0, 0x27aa8,
1267 		0x27ab0, 0x27ac8,
1268 		0x27ad0, 0x27ad4,
1269 		0x27ae0, 0x27ae8,
1270 		0x27af0, 0x27af0,
1271 		0x27af8, 0x27c18,
1272 		0x27c20, 0x27c20,
1273 		0x27c28, 0x27c30,
1274 		0x27c38, 0x27c38,
1275 		0x27c80, 0x27c98,
1276 		0x27ca0, 0x27ca8,
1277 		0x27cb0, 0x27cc8,
1278 		0x27cd0, 0x27cd4,
1279 		0x27ce0, 0x27ce8,
1280 		0x27cf0, 0x27cf0,
1281 		0x27cf8, 0x27d7c,
1282 		0x27e00, 0x27e04,
1283 	};
1284 
1285 	static const unsigned int t4vf_reg_ranges[] = {
1286 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1287 		VF_MPS_REG(A_MPS_VF_CTL),
1288 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1289 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1290 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1291 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1292 		FW_T4VF_MBDATA_BASE_ADDR,
1293 		FW_T4VF_MBDATA_BASE_ADDR +
1294 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1295 	};
1296 
1297 	static const unsigned int t5_reg_ranges[] = {
1298 		0x1008, 0x10c0,
1299 		0x10cc, 0x10f8,
1300 		0x1100, 0x1100,
1301 		0x110c, 0x1148,
1302 		0x1180, 0x1184,
1303 		0x1190, 0x1194,
1304 		0x11a0, 0x11a4,
1305 		0x11b0, 0x11b4,
1306 		0x11fc, 0x123c,
1307 		0x1280, 0x173c,
1308 		0x1800, 0x18fc,
1309 		0x3000, 0x3028,
1310 		0x3060, 0x30b0,
1311 		0x30b8, 0x30d8,
1312 		0x30e0, 0x30fc,
1313 		0x3140, 0x357c,
1314 		0x35a8, 0x35cc,
1315 		0x35ec, 0x35ec,
1316 		0x3600, 0x5624,
1317 		0x56cc, 0x56ec,
1318 		0x56f4, 0x5720,
1319 		0x5728, 0x575c,
1320 		0x580c, 0x5814,
1321 		0x5890, 0x589c,
1322 		0x58a4, 0x58ac,
1323 		0x58b8, 0x58bc,
1324 		0x5940, 0x59c8,
1325 		0x59d0, 0x59dc,
1326 		0x59fc, 0x5a18,
1327 		0x5a60, 0x5a70,
1328 		0x5a80, 0x5a9c,
1329 		0x5b94, 0x5bfc,
1330 		0x6000, 0x6020,
1331 		0x6028, 0x6040,
1332 		0x6058, 0x609c,
1333 		0x60a8, 0x614c,
1334 		0x7700, 0x7798,
1335 		0x77c0, 0x78fc,
1336 		0x7b00, 0x7b58,
1337 		0x7b60, 0x7b84,
1338 		0x7b8c, 0x7c54,
1339 		0x7d00, 0x7d38,
1340 		0x7d40, 0x7d80,
1341 		0x7d8c, 0x7ddc,
1342 		0x7de4, 0x7e04,
1343 		0x7e10, 0x7e1c,
1344 		0x7e24, 0x7e38,
1345 		0x7e40, 0x7e44,
1346 		0x7e4c, 0x7e78,
1347 		0x7e80, 0x7edc,
1348 		0x7ee8, 0x7efc,
1349 		0x8dc0, 0x8de0,
1350 		0x8df8, 0x8e04,
1351 		0x8e10, 0x8e84,
1352 		0x8ea0, 0x8f84,
1353 		0x8fc0, 0x9058,
1354 		0x9060, 0x9060,
1355 		0x9068, 0x90f8,
1356 		0x9400, 0x9408,
1357 		0x9410, 0x9470,
1358 		0x9600, 0x9600,
1359 		0x9608, 0x9638,
1360 		0x9640, 0x96f4,
1361 		0x9800, 0x9808,
1362 		0x9810, 0x9864,
1363 		0x9c00, 0x9c6c,
1364 		0x9c80, 0x9cec,
1365 		0x9d00, 0x9d6c,
1366 		0x9d80, 0x9dec,
1367 		0x9e00, 0x9e6c,
1368 		0x9e80, 0x9eec,
1369 		0x9f00, 0x9f6c,
1370 		0x9f80, 0xa020,
1371 		0xd000, 0xd004,
1372 		0xd010, 0xd03c,
1373 		0xdfc0, 0xdfe0,
1374 		0xe000, 0x1106c,
1375 		0x11074, 0x11088,
1376 		0x1109c, 0x1117c,
1377 		0x11190, 0x11204,
1378 		0x19040, 0x1906c,
1379 		0x19078, 0x19080,
1380 		0x1908c, 0x190e8,
1381 		0x190f0, 0x190f8,
1382 		0x19100, 0x19110,
1383 		0x19120, 0x19124,
1384 		0x19150, 0x19194,
1385 		0x1919c, 0x191b0,
1386 		0x191d0, 0x191e8,
1387 		0x19238, 0x19290,
1388 		0x193f8, 0x19428,
1389 		0x19430, 0x19444,
1390 		0x1944c, 0x1946c,
1391 		0x19474, 0x19474,
1392 		0x19490, 0x194cc,
1393 		0x194f0, 0x194f8,
1394 		0x19c00, 0x19c08,
1395 		0x19c10, 0x19c60,
1396 		0x19c94, 0x19ce4,
1397 		0x19cf0, 0x19d40,
1398 		0x19d50, 0x19d94,
1399 		0x19da0, 0x19de8,
1400 		0x19df0, 0x19e10,
1401 		0x19e50, 0x19e90,
1402 		0x19ea0, 0x19f24,
1403 		0x19f34, 0x19f34,
1404 		0x19f40, 0x19f50,
1405 		0x19f90, 0x19fb4,
1406 		0x19fc4, 0x19fe4,
1407 		0x1a000, 0x1a004,
1408 		0x1a010, 0x1a06c,
1409 		0x1a0b0, 0x1a0e4,
1410 		0x1a0ec, 0x1a0f8,
1411 		0x1a100, 0x1a108,
1412 		0x1a114, 0x1a130,
1413 		0x1a138, 0x1a1c4,
1414 		0x1a1fc, 0x1a1fc,
1415 		0x1e008, 0x1e00c,
1416 		0x1e040, 0x1e044,
1417 		0x1e04c, 0x1e04c,
1418 		0x1e284, 0x1e290,
1419 		0x1e2c0, 0x1e2c0,
1420 		0x1e2e0, 0x1e2e0,
1421 		0x1e300, 0x1e384,
1422 		0x1e3c0, 0x1e3c8,
1423 		0x1e408, 0x1e40c,
1424 		0x1e440, 0x1e444,
1425 		0x1e44c, 0x1e44c,
1426 		0x1e684, 0x1e690,
1427 		0x1e6c0, 0x1e6c0,
1428 		0x1e6e0, 0x1e6e0,
1429 		0x1e700, 0x1e784,
1430 		0x1e7c0, 0x1e7c8,
1431 		0x1e808, 0x1e80c,
1432 		0x1e840, 0x1e844,
1433 		0x1e84c, 0x1e84c,
1434 		0x1ea84, 0x1ea90,
1435 		0x1eac0, 0x1eac0,
1436 		0x1eae0, 0x1eae0,
1437 		0x1eb00, 0x1eb84,
1438 		0x1ebc0, 0x1ebc8,
1439 		0x1ec08, 0x1ec0c,
1440 		0x1ec40, 0x1ec44,
1441 		0x1ec4c, 0x1ec4c,
1442 		0x1ee84, 0x1ee90,
1443 		0x1eec0, 0x1eec0,
1444 		0x1eee0, 0x1eee0,
1445 		0x1ef00, 0x1ef84,
1446 		0x1efc0, 0x1efc8,
1447 		0x1f008, 0x1f00c,
1448 		0x1f040, 0x1f044,
1449 		0x1f04c, 0x1f04c,
1450 		0x1f284, 0x1f290,
1451 		0x1f2c0, 0x1f2c0,
1452 		0x1f2e0, 0x1f2e0,
1453 		0x1f300, 0x1f384,
1454 		0x1f3c0, 0x1f3c8,
1455 		0x1f408, 0x1f40c,
1456 		0x1f440, 0x1f444,
1457 		0x1f44c, 0x1f44c,
1458 		0x1f684, 0x1f690,
1459 		0x1f6c0, 0x1f6c0,
1460 		0x1f6e0, 0x1f6e0,
1461 		0x1f700, 0x1f784,
1462 		0x1f7c0, 0x1f7c8,
1463 		0x1f808, 0x1f80c,
1464 		0x1f840, 0x1f844,
1465 		0x1f84c, 0x1f84c,
1466 		0x1fa84, 0x1fa90,
1467 		0x1fac0, 0x1fac0,
1468 		0x1fae0, 0x1fae0,
1469 		0x1fb00, 0x1fb84,
1470 		0x1fbc0, 0x1fbc8,
1471 		0x1fc08, 0x1fc0c,
1472 		0x1fc40, 0x1fc44,
1473 		0x1fc4c, 0x1fc4c,
1474 		0x1fe84, 0x1fe90,
1475 		0x1fec0, 0x1fec0,
1476 		0x1fee0, 0x1fee0,
1477 		0x1ff00, 0x1ff84,
1478 		0x1ffc0, 0x1ffc8,
1479 		0x30000, 0x30030,
1480 		0x30100, 0x30144,
1481 		0x30190, 0x301a0,
1482 		0x301a8, 0x301b8,
1483 		0x301c4, 0x301c8,
1484 		0x301d0, 0x301d0,
1485 		0x30200, 0x30318,
1486 		0x30400, 0x304b4,
1487 		0x304c0, 0x3052c,
1488 		0x30540, 0x3061c,
1489 		0x30800, 0x30828,
1490 		0x30834, 0x30834,
1491 		0x308c0, 0x30908,
1492 		0x30910, 0x309ac,
1493 		0x30a00, 0x30a14,
1494 		0x30a1c, 0x30a2c,
1495 		0x30a44, 0x30a50,
1496 		0x30a74, 0x30a74,
1497 		0x30a7c, 0x30afc,
1498 		0x30b08, 0x30c24,
1499 		0x30d00, 0x30d00,
1500 		0x30d08, 0x30d14,
1501 		0x30d1c, 0x30d20,
1502 		0x30d3c, 0x30d3c,
1503 		0x30d48, 0x30d50,
1504 		0x31200, 0x3120c,
1505 		0x31220, 0x31220,
1506 		0x31240, 0x31240,
1507 		0x31600, 0x3160c,
1508 		0x31a00, 0x31a1c,
1509 		0x31e00, 0x31e20,
1510 		0x31e38, 0x31e3c,
1511 		0x31e80, 0x31e80,
1512 		0x31e88, 0x31ea8,
1513 		0x31eb0, 0x31eb4,
1514 		0x31ec8, 0x31ed4,
1515 		0x31fb8, 0x32004,
1516 		0x32200, 0x32200,
1517 		0x32208, 0x32240,
1518 		0x32248, 0x32280,
1519 		0x32288, 0x322c0,
1520 		0x322c8, 0x322fc,
1521 		0x32600, 0x32630,
1522 		0x32a00, 0x32abc,
1523 		0x32b00, 0x32b10,
1524 		0x32b20, 0x32b30,
1525 		0x32b40, 0x32b50,
1526 		0x32b60, 0x32b70,
1527 		0x33000, 0x33028,
1528 		0x33030, 0x33048,
1529 		0x33060, 0x33068,
1530 		0x33070, 0x3309c,
1531 		0x330f0, 0x33128,
1532 		0x33130, 0x33148,
1533 		0x33160, 0x33168,
1534 		0x33170, 0x3319c,
1535 		0x331f0, 0x33238,
1536 		0x33240, 0x33240,
1537 		0x33248, 0x33250,
1538 		0x3325c, 0x33264,
1539 		0x33270, 0x332b8,
1540 		0x332c0, 0x332e4,
1541 		0x332f8, 0x33338,
1542 		0x33340, 0x33340,
1543 		0x33348, 0x33350,
1544 		0x3335c, 0x33364,
1545 		0x33370, 0x333b8,
1546 		0x333c0, 0x333e4,
1547 		0x333f8, 0x33428,
1548 		0x33430, 0x33448,
1549 		0x33460, 0x33468,
1550 		0x33470, 0x3349c,
1551 		0x334f0, 0x33528,
1552 		0x33530, 0x33548,
1553 		0x33560, 0x33568,
1554 		0x33570, 0x3359c,
1555 		0x335f0, 0x33638,
1556 		0x33640, 0x33640,
1557 		0x33648, 0x33650,
1558 		0x3365c, 0x33664,
1559 		0x33670, 0x336b8,
1560 		0x336c0, 0x336e4,
1561 		0x336f8, 0x33738,
1562 		0x33740, 0x33740,
1563 		0x33748, 0x33750,
1564 		0x3375c, 0x33764,
1565 		0x33770, 0x337b8,
1566 		0x337c0, 0x337e4,
1567 		0x337f8, 0x337fc,
1568 		0x33814, 0x33814,
1569 		0x3382c, 0x3382c,
1570 		0x33880, 0x3388c,
1571 		0x338e8, 0x338ec,
1572 		0x33900, 0x33928,
1573 		0x33930, 0x33948,
1574 		0x33960, 0x33968,
1575 		0x33970, 0x3399c,
1576 		0x339f0, 0x33a38,
1577 		0x33a40, 0x33a40,
1578 		0x33a48, 0x33a50,
1579 		0x33a5c, 0x33a64,
1580 		0x33a70, 0x33ab8,
1581 		0x33ac0, 0x33ae4,
1582 		0x33af8, 0x33b10,
1583 		0x33b28, 0x33b28,
1584 		0x33b3c, 0x33b50,
1585 		0x33bf0, 0x33c10,
1586 		0x33c28, 0x33c28,
1587 		0x33c3c, 0x33c50,
1588 		0x33cf0, 0x33cfc,
1589 		0x34000, 0x34030,
1590 		0x34100, 0x34144,
1591 		0x34190, 0x341a0,
1592 		0x341a8, 0x341b8,
1593 		0x341c4, 0x341c8,
1594 		0x341d0, 0x341d0,
1595 		0x34200, 0x34318,
1596 		0x34400, 0x344b4,
1597 		0x344c0, 0x3452c,
1598 		0x34540, 0x3461c,
1599 		0x34800, 0x34828,
1600 		0x34834, 0x34834,
1601 		0x348c0, 0x34908,
1602 		0x34910, 0x349ac,
1603 		0x34a00, 0x34a14,
1604 		0x34a1c, 0x34a2c,
1605 		0x34a44, 0x34a50,
1606 		0x34a74, 0x34a74,
1607 		0x34a7c, 0x34afc,
1608 		0x34b08, 0x34c24,
1609 		0x34d00, 0x34d00,
1610 		0x34d08, 0x34d14,
1611 		0x34d1c, 0x34d20,
1612 		0x34d3c, 0x34d3c,
1613 		0x34d48, 0x34d50,
1614 		0x35200, 0x3520c,
1615 		0x35220, 0x35220,
1616 		0x35240, 0x35240,
1617 		0x35600, 0x3560c,
1618 		0x35a00, 0x35a1c,
1619 		0x35e00, 0x35e20,
1620 		0x35e38, 0x35e3c,
1621 		0x35e80, 0x35e80,
1622 		0x35e88, 0x35ea8,
1623 		0x35eb0, 0x35eb4,
1624 		0x35ec8, 0x35ed4,
1625 		0x35fb8, 0x36004,
1626 		0x36200, 0x36200,
1627 		0x36208, 0x36240,
1628 		0x36248, 0x36280,
1629 		0x36288, 0x362c0,
1630 		0x362c8, 0x362fc,
1631 		0x36600, 0x36630,
1632 		0x36a00, 0x36abc,
1633 		0x36b00, 0x36b10,
1634 		0x36b20, 0x36b30,
1635 		0x36b40, 0x36b50,
1636 		0x36b60, 0x36b70,
1637 		0x37000, 0x37028,
1638 		0x37030, 0x37048,
1639 		0x37060, 0x37068,
1640 		0x37070, 0x3709c,
1641 		0x370f0, 0x37128,
1642 		0x37130, 0x37148,
1643 		0x37160, 0x37168,
1644 		0x37170, 0x3719c,
1645 		0x371f0, 0x37238,
1646 		0x37240, 0x37240,
1647 		0x37248, 0x37250,
1648 		0x3725c, 0x37264,
1649 		0x37270, 0x372b8,
1650 		0x372c0, 0x372e4,
1651 		0x372f8, 0x37338,
1652 		0x37340, 0x37340,
1653 		0x37348, 0x37350,
1654 		0x3735c, 0x37364,
1655 		0x37370, 0x373b8,
1656 		0x373c0, 0x373e4,
1657 		0x373f8, 0x37428,
1658 		0x37430, 0x37448,
1659 		0x37460, 0x37468,
1660 		0x37470, 0x3749c,
1661 		0x374f0, 0x37528,
1662 		0x37530, 0x37548,
1663 		0x37560, 0x37568,
1664 		0x37570, 0x3759c,
1665 		0x375f0, 0x37638,
1666 		0x37640, 0x37640,
1667 		0x37648, 0x37650,
1668 		0x3765c, 0x37664,
1669 		0x37670, 0x376b8,
1670 		0x376c0, 0x376e4,
1671 		0x376f8, 0x37738,
1672 		0x37740, 0x37740,
1673 		0x37748, 0x37750,
1674 		0x3775c, 0x37764,
1675 		0x37770, 0x377b8,
1676 		0x377c0, 0x377e4,
1677 		0x377f8, 0x377fc,
1678 		0x37814, 0x37814,
1679 		0x3782c, 0x3782c,
1680 		0x37880, 0x3788c,
1681 		0x378e8, 0x378ec,
1682 		0x37900, 0x37928,
1683 		0x37930, 0x37948,
1684 		0x37960, 0x37968,
1685 		0x37970, 0x3799c,
1686 		0x379f0, 0x37a38,
1687 		0x37a40, 0x37a40,
1688 		0x37a48, 0x37a50,
1689 		0x37a5c, 0x37a64,
1690 		0x37a70, 0x37ab8,
1691 		0x37ac0, 0x37ae4,
1692 		0x37af8, 0x37b10,
1693 		0x37b28, 0x37b28,
1694 		0x37b3c, 0x37b50,
1695 		0x37bf0, 0x37c10,
1696 		0x37c28, 0x37c28,
1697 		0x37c3c, 0x37c50,
1698 		0x37cf0, 0x37cfc,
1699 		0x38000, 0x38030,
1700 		0x38100, 0x38144,
1701 		0x38190, 0x381a0,
1702 		0x381a8, 0x381b8,
1703 		0x381c4, 0x381c8,
1704 		0x381d0, 0x381d0,
1705 		0x38200, 0x38318,
1706 		0x38400, 0x384b4,
1707 		0x384c0, 0x3852c,
1708 		0x38540, 0x3861c,
1709 		0x38800, 0x38828,
1710 		0x38834, 0x38834,
1711 		0x388c0, 0x38908,
1712 		0x38910, 0x389ac,
1713 		0x38a00, 0x38a14,
1714 		0x38a1c, 0x38a2c,
1715 		0x38a44, 0x38a50,
1716 		0x38a74, 0x38a74,
1717 		0x38a7c, 0x38afc,
1718 		0x38b08, 0x38c24,
1719 		0x38d00, 0x38d00,
1720 		0x38d08, 0x38d14,
1721 		0x38d1c, 0x38d20,
1722 		0x38d3c, 0x38d3c,
1723 		0x38d48, 0x38d50,
1724 		0x39200, 0x3920c,
1725 		0x39220, 0x39220,
1726 		0x39240, 0x39240,
1727 		0x39600, 0x3960c,
1728 		0x39a00, 0x39a1c,
1729 		0x39e00, 0x39e20,
1730 		0x39e38, 0x39e3c,
1731 		0x39e80, 0x39e80,
1732 		0x39e88, 0x39ea8,
1733 		0x39eb0, 0x39eb4,
1734 		0x39ec8, 0x39ed4,
1735 		0x39fb8, 0x3a004,
1736 		0x3a200, 0x3a200,
1737 		0x3a208, 0x3a240,
1738 		0x3a248, 0x3a280,
1739 		0x3a288, 0x3a2c0,
1740 		0x3a2c8, 0x3a2fc,
1741 		0x3a600, 0x3a630,
1742 		0x3aa00, 0x3aabc,
1743 		0x3ab00, 0x3ab10,
1744 		0x3ab20, 0x3ab30,
1745 		0x3ab40, 0x3ab50,
1746 		0x3ab60, 0x3ab70,
1747 		0x3b000, 0x3b028,
1748 		0x3b030, 0x3b048,
1749 		0x3b060, 0x3b068,
1750 		0x3b070, 0x3b09c,
1751 		0x3b0f0, 0x3b128,
1752 		0x3b130, 0x3b148,
1753 		0x3b160, 0x3b168,
1754 		0x3b170, 0x3b19c,
1755 		0x3b1f0, 0x3b238,
1756 		0x3b240, 0x3b240,
1757 		0x3b248, 0x3b250,
1758 		0x3b25c, 0x3b264,
1759 		0x3b270, 0x3b2b8,
1760 		0x3b2c0, 0x3b2e4,
1761 		0x3b2f8, 0x3b338,
1762 		0x3b340, 0x3b340,
1763 		0x3b348, 0x3b350,
1764 		0x3b35c, 0x3b364,
1765 		0x3b370, 0x3b3b8,
1766 		0x3b3c0, 0x3b3e4,
1767 		0x3b3f8, 0x3b428,
1768 		0x3b430, 0x3b448,
1769 		0x3b460, 0x3b468,
1770 		0x3b470, 0x3b49c,
1771 		0x3b4f0, 0x3b528,
1772 		0x3b530, 0x3b548,
1773 		0x3b560, 0x3b568,
1774 		0x3b570, 0x3b59c,
1775 		0x3b5f0, 0x3b638,
1776 		0x3b640, 0x3b640,
1777 		0x3b648, 0x3b650,
1778 		0x3b65c, 0x3b664,
1779 		0x3b670, 0x3b6b8,
1780 		0x3b6c0, 0x3b6e4,
1781 		0x3b6f8, 0x3b738,
1782 		0x3b740, 0x3b740,
1783 		0x3b748, 0x3b750,
1784 		0x3b75c, 0x3b764,
1785 		0x3b770, 0x3b7b8,
1786 		0x3b7c0, 0x3b7e4,
1787 		0x3b7f8, 0x3b7fc,
1788 		0x3b814, 0x3b814,
1789 		0x3b82c, 0x3b82c,
1790 		0x3b880, 0x3b88c,
1791 		0x3b8e8, 0x3b8ec,
1792 		0x3b900, 0x3b928,
1793 		0x3b930, 0x3b948,
1794 		0x3b960, 0x3b968,
1795 		0x3b970, 0x3b99c,
1796 		0x3b9f0, 0x3ba38,
1797 		0x3ba40, 0x3ba40,
1798 		0x3ba48, 0x3ba50,
1799 		0x3ba5c, 0x3ba64,
1800 		0x3ba70, 0x3bab8,
1801 		0x3bac0, 0x3bae4,
1802 		0x3baf8, 0x3bb10,
1803 		0x3bb28, 0x3bb28,
1804 		0x3bb3c, 0x3bb50,
1805 		0x3bbf0, 0x3bc10,
1806 		0x3bc28, 0x3bc28,
1807 		0x3bc3c, 0x3bc50,
1808 		0x3bcf0, 0x3bcfc,
1809 		0x3c000, 0x3c030,
1810 		0x3c100, 0x3c144,
1811 		0x3c190, 0x3c1a0,
1812 		0x3c1a8, 0x3c1b8,
1813 		0x3c1c4, 0x3c1c8,
1814 		0x3c1d0, 0x3c1d0,
1815 		0x3c200, 0x3c318,
1816 		0x3c400, 0x3c4b4,
1817 		0x3c4c0, 0x3c52c,
1818 		0x3c540, 0x3c61c,
1819 		0x3c800, 0x3c828,
1820 		0x3c834, 0x3c834,
1821 		0x3c8c0, 0x3c908,
1822 		0x3c910, 0x3c9ac,
1823 		0x3ca00, 0x3ca14,
1824 		0x3ca1c, 0x3ca2c,
1825 		0x3ca44, 0x3ca50,
1826 		0x3ca74, 0x3ca74,
1827 		0x3ca7c, 0x3cafc,
1828 		0x3cb08, 0x3cc24,
1829 		0x3cd00, 0x3cd00,
1830 		0x3cd08, 0x3cd14,
1831 		0x3cd1c, 0x3cd20,
1832 		0x3cd3c, 0x3cd3c,
1833 		0x3cd48, 0x3cd50,
1834 		0x3d200, 0x3d20c,
1835 		0x3d220, 0x3d220,
1836 		0x3d240, 0x3d240,
1837 		0x3d600, 0x3d60c,
1838 		0x3da00, 0x3da1c,
1839 		0x3de00, 0x3de20,
1840 		0x3de38, 0x3de3c,
1841 		0x3de80, 0x3de80,
1842 		0x3de88, 0x3dea8,
1843 		0x3deb0, 0x3deb4,
1844 		0x3dec8, 0x3ded4,
1845 		0x3dfb8, 0x3e004,
1846 		0x3e200, 0x3e200,
1847 		0x3e208, 0x3e240,
1848 		0x3e248, 0x3e280,
1849 		0x3e288, 0x3e2c0,
1850 		0x3e2c8, 0x3e2fc,
1851 		0x3e600, 0x3e630,
1852 		0x3ea00, 0x3eabc,
1853 		0x3eb00, 0x3eb10,
1854 		0x3eb20, 0x3eb30,
1855 		0x3eb40, 0x3eb50,
1856 		0x3eb60, 0x3eb70,
1857 		0x3f000, 0x3f028,
1858 		0x3f030, 0x3f048,
1859 		0x3f060, 0x3f068,
1860 		0x3f070, 0x3f09c,
1861 		0x3f0f0, 0x3f128,
1862 		0x3f130, 0x3f148,
1863 		0x3f160, 0x3f168,
1864 		0x3f170, 0x3f19c,
1865 		0x3f1f0, 0x3f238,
1866 		0x3f240, 0x3f240,
1867 		0x3f248, 0x3f250,
1868 		0x3f25c, 0x3f264,
1869 		0x3f270, 0x3f2b8,
1870 		0x3f2c0, 0x3f2e4,
1871 		0x3f2f8, 0x3f338,
1872 		0x3f340, 0x3f340,
1873 		0x3f348, 0x3f350,
1874 		0x3f35c, 0x3f364,
1875 		0x3f370, 0x3f3b8,
1876 		0x3f3c0, 0x3f3e4,
1877 		0x3f3f8, 0x3f428,
1878 		0x3f430, 0x3f448,
1879 		0x3f460, 0x3f468,
1880 		0x3f470, 0x3f49c,
1881 		0x3f4f0, 0x3f528,
1882 		0x3f530, 0x3f548,
1883 		0x3f560, 0x3f568,
1884 		0x3f570, 0x3f59c,
1885 		0x3f5f0, 0x3f638,
1886 		0x3f640, 0x3f640,
1887 		0x3f648, 0x3f650,
1888 		0x3f65c, 0x3f664,
1889 		0x3f670, 0x3f6b8,
1890 		0x3f6c0, 0x3f6e4,
1891 		0x3f6f8, 0x3f738,
1892 		0x3f740, 0x3f740,
1893 		0x3f748, 0x3f750,
1894 		0x3f75c, 0x3f764,
1895 		0x3f770, 0x3f7b8,
1896 		0x3f7c0, 0x3f7e4,
1897 		0x3f7f8, 0x3f7fc,
1898 		0x3f814, 0x3f814,
1899 		0x3f82c, 0x3f82c,
1900 		0x3f880, 0x3f88c,
1901 		0x3f8e8, 0x3f8ec,
1902 		0x3f900, 0x3f928,
1903 		0x3f930, 0x3f948,
1904 		0x3f960, 0x3f968,
1905 		0x3f970, 0x3f99c,
1906 		0x3f9f0, 0x3fa38,
1907 		0x3fa40, 0x3fa40,
1908 		0x3fa48, 0x3fa50,
1909 		0x3fa5c, 0x3fa64,
1910 		0x3fa70, 0x3fab8,
1911 		0x3fac0, 0x3fae4,
1912 		0x3faf8, 0x3fb10,
1913 		0x3fb28, 0x3fb28,
1914 		0x3fb3c, 0x3fb50,
1915 		0x3fbf0, 0x3fc10,
1916 		0x3fc28, 0x3fc28,
1917 		0x3fc3c, 0x3fc50,
1918 		0x3fcf0, 0x3fcfc,
1919 		0x40000, 0x4000c,
1920 		0x40040, 0x40050,
1921 		0x40060, 0x40068,
1922 		0x4007c, 0x4008c,
1923 		0x40094, 0x400b0,
1924 		0x400c0, 0x40144,
1925 		0x40180, 0x4018c,
1926 		0x40200, 0x40254,
1927 		0x40260, 0x40264,
1928 		0x40270, 0x40288,
1929 		0x40290, 0x40298,
1930 		0x402ac, 0x402c8,
1931 		0x402d0, 0x402e0,
1932 		0x402f0, 0x402f0,
1933 		0x40300, 0x4033c,
1934 		0x403f8, 0x403fc,
1935 		0x41304, 0x413c4,
1936 		0x41400, 0x4140c,
1937 		0x41414, 0x4141c,
1938 		0x41480, 0x414d0,
1939 		0x44000, 0x44054,
1940 		0x4405c, 0x44078,
1941 		0x440c0, 0x44174,
1942 		0x44180, 0x441ac,
1943 		0x441b4, 0x441b8,
1944 		0x441c0, 0x44254,
1945 		0x4425c, 0x44278,
1946 		0x442c0, 0x44374,
1947 		0x44380, 0x443ac,
1948 		0x443b4, 0x443b8,
1949 		0x443c0, 0x44454,
1950 		0x4445c, 0x44478,
1951 		0x444c0, 0x44574,
1952 		0x44580, 0x445ac,
1953 		0x445b4, 0x445b8,
1954 		0x445c0, 0x44654,
1955 		0x4465c, 0x44678,
1956 		0x446c0, 0x44774,
1957 		0x44780, 0x447ac,
1958 		0x447b4, 0x447b8,
1959 		0x447c0, 0x44854,
1960 		0x4485c, 0x44878,
1961 		0x448c0, 0x44974,
1962 		0x44980, 0x449ac,
1963 		0x449b4, 0x449b8,
1964 		0x449c0, 0x449fc,
1965 		0x45000, 0x45004,
1966 		0x45010, 0x45030,
1967 		0x45040, 0x45060,
1968 		0x45068, 0x45068,
1969 		0x45080, 0x45084,
1970 		0x450a0, 0x450b0,
1971 		0x45200, 0x45204,
1972 		0x45210, 0x45230,
1973 		0x45240, 0x45260,
1974 		0x45268, 0x45268,
1975 		0x45280, 0x45284,
1976 		0x452a0, 0x452b0,
1977 		0x460c0, 0x460e4,
1978 		0x47000, 0x4703c,
1979 		0x47044, 0x4708c,
1980 		0x47200, 0x47250,
1981 		0x47400, 0x47408,
1982 		0x47414, 0x47420,
1983 		0x47600, 0x47618,
1984 		0x47800, 0x47814,
1985 		0x48000, 0x4800c,
1986 		0x48040, 0x48050,
1987 		0x48060, 0x48068,
1988 		0x4807c, 0x4808c,
1989 		0x48094, 0x480b0,
1990 		0x480c0, 0x48144,
1991 		0x48180, 0x4818c,
1992 		0x48200, 0x48254,
1993 		0x48260, 0x48264,
1994 		0x48270, 0x48288,
1995 		0x48290, 0x48298,
1996 		0x482ac, 0x482c8,
1997 		0x482d0, 0x482e0,
1998 		0x482f0, 0x482f0,
1999 		0x48300, 0x4833c,
2000 		0x483f8, 0x483fc,
2001 		0x49304, 0x493c4,
2002 		0x49400, 0x4940c,
2003 		0x49414, 0x4941c,
2004 		0x49480, 0x494d0,
2005 		0x4c000, 0x4c054,
2006 		0x4c05c, 0x4c078,
2007 		0x4c0c0, 0x4c174,
2008 		0x4c180, 0x4c1ac,
2009 		0x4c1b4, 0x4c1b8,
2010 		0x4c1c0, 0x4c254,
2011 		0x4c25c, 0x4c278,
2012 		0x4c2c0, 0x4c374,
2013 		0x4c380, 0x4c3ac,
2014 		0x4c3b4, 0x4c3b8,
2015 		0x4c3c0, 0x4c454,
2016 		0x4c45c, 0x4c478,
2017 		0x4c4c0, 0x4c574,
2018 		0x4c580, 0x4c5ac,
2019 		0x4c5b4, 0x4c5b8,
2020 		0x4c5c0, 0x4c654,
2021 		0x4c65c, 0x4c678,
2022 		0x4c6c0, 0x4c774,
2023 		0x4c780, 0x4c7ac,
2024 		0x4c7b4, 0x4c7b8,
2025 		0x4c7c0, 0x4c854,
2026 		0x4c85c, 0x4c878,
2027 		0x4c8c0, 0x4c974,
2028 		0x4c980, 0x4c9ac,
2029 		0x4c9b4, 0x4c9b8,
2030 		0x4c9c0, 0x4c9fc,
2031 		0x4d000, 0x4d004,
2032 		0x4d010, 0x4d030,
2033 		0x4d040, 0x4d060,
2034 		0x4d068, 0x4d068,
2035 		0x4d080, 0x4d084,
2036 		0x4d0a0, 0x4d0b0,
2037 		0x4d200, 0x4d204,
2038 		0x4d210, 0x4d230,
2039 		0x4d240, 0x4d260,
2040 		0x4d268, 0x4d268,
2041 		0x4d280, 0x4d284,
2042 		0x4d2a0, 0x4d2b0,
2043 		0x4e0c0, 0x4e0e4,
2044 		0x4f000, 0x4f03c,
2045 		0x4f044, 0x4f08c,
2046 		0x4f200, 0x4f250,
2047 		0x4f400, 0x4f408,
2048 		0x4f414, 0x4f420,
2049 		0x4f600, 0x4f618,
2050 		0x4f800, 0x4f814,
2051 		0x50000, 0x50084,
2052 		0x50090, 0x500cc,
2053 		0x50400, 0x50400,
2054 		0x50800, 0x50884,
2055 		0x50890, 0x508cc,
2056 		0x50c00, 0x50c00,
2057 		0x51000, 0x5101c,
2058 		0x51300, 0x51308,
2059 	};
2060 
2061 	static const unsigned int t5vf_reg_ranges[] = {
2062 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2063 		VF_MPS_REG(A_MPS_VF_CTL),
2064 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2065 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2066 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2067 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2068 		FW_T4VF_MBDATA_BASE_ADDR,
2069 		FW_T4VF_MBDATA_BASE_ADDR +
2070 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2071 	};
2072 
2073 	static const unsigned int t6_reg_ranges[] = {
2074 		0x1008, 0x101c,
2075 		0x1024, 0x10a8,
2076 		0x10b4, 0x10f8,
2077 		0x1100, 0x1114,
2078 		0x111c, 0x112c,
2079 		0x1138, 0x113c,
2080 		0x1144, 0x114c,
2081 		0x1180, 0x1184,
2082 		0x1190, 0x1194,
2083 		0x11a0, 0x11a4,
2084 		0x11b0, 0x11c4,
2085 		0x11fc, 0x1274,
2086 		0x1280, 0x133c,
2087 		0x1800, 0x18fc,
2088 		0x3000, 0x302c,
2089 		0x3060, 0x30b0,
2090 		0x30b8, 0x30d8,
2091 		0x30e0, 0x30fc,
2092 		0x3140, 0x357c,
2093 		0x35a8, 0x35cc,
2094 		0x35ec, 0x35ec,
2095 		0x3600, 0x5624,
2096 		0x56cc, 0x56ec,
2097 		0x56f4, 0x5720,
2098 		0x5728, 0x575c,
2099 		0x580c, 0x5814,
2100 		0x5890, 0x589c,
2101 		0x58a4, 0x58ac,
2102 		0x58b8, 0x58bc,
2103 		0x5940, 0x595c,
2104 		0x5980, 0x598c,
2105 		0x59b0, 0x59c8,
2106 		0x59d0, 0x59dc,
2107 		0x59fc, 0x5a18,
2108 		0x5a60, 0x5a6c,
2109 		0x5a80, 0x5a8c,
2110 		0x5a94, 0x5a9c,
2111 		0x5b94, 0x5bfc,
2112 		0x5c10, 0x5e48,
2113 		0x5e50, 0x5e94,
2114 		0x5ea0, 0x5eb0,
2115 		0x5ec0, 0x5ec0,
2116 		0x5ec8, 0x5ed0,
2117 		0x5ee0, 0x5ee0,
2118 		0x5ef0, 0x5ef0,
2119 		0x5f00, 0x5f00,
2120 		0x6000, 0x6020,
2121 		0x6028, 0x6040,
2122 		0x6058, 0x609c,
2123 		0x60a8, 0x619c,
2124 		0x7700, 0x7798,
2125 		0x77c0, 0x7880,
2126 		0x78cc, 0x78fc,
2127 		0x7b00, 0x7b58,
2128 		0x7b60, 0x7b84,
2129 		0x7b8c, 0x7c54,
2130 		0x7d00, 0x7d38,
2131 		0x7d40, 0x7d84,
2132 		0x7d8c, 0x7ddc,
2133 		0x7de4, 0x7e04,
2134 		0x7e10, 0x7e1c,
2135 		0x7e24, 0x7e38,
2136 		0x7e40, 0x7e44,
2137 		0x7e4c, 0x7e78,
2138 		0x7e80, 0x7edc,
2139 		0x7ee8, 0x7efc,
2140 		0x8dc0, 0x8de0,
2141 		0x8df8, 0x8e04,
2142 		0x8e10, 0x8e84,
2143 		0x8ea0, 0x8f88,
2144 		0x8fb8, 0x9058,
2145 		0x9060, 0x9060,
2146 		0x9068, 0x90f8,
2147 		0x9100, 0x9124,
2148 		0x9400, 0x9470,
2149 		0x9600, 0x9600,
2150 		0x9608, 0x9638,
2151 		0x9640, 0x9704,
2152 		0x9710, 0x971c,
2153 		0x9800, 0x9808,
2154 		0x9810, 0x9864,
2155 		0x9c00, 0x9c6c,
2156 		0x9c80, 0x9cec,
2157 		0x9d00, 0x9d6c,
2158 		0x9d80, 0x9dec,
2159 		0x9e00, 0x9e6c,
2160 		0x9e80, 0x9eec,
2161 		0x9f00, 0x9f6c,
2162 		0x9f80, 0xa020,
2163 		0xd000, 0xd03c,
2164 		0xd100, 0xd118,
2165 		0xd200, 0xd214,
2166 		0xd220, 0xd234,
2167 		0xd240, 0xd254,
2168 		0xd260, 0xd274,
2169 		0xd280, 0xd294,
2170 		0xd2a0, 0xd2b4,
2171 		0xd2c0, 0xd2d4,
2172 		0xd2e0, 0xd2f4,
2173 		0xd300, 0xd31c,
2174 		0xdfc0, 0xdfe0,
2175 		0xe000, 0xf008,
2176 		0xf010, 0xf018,
2177 		0xf020, 0xf028,
2178 		0x11000, 0x11014,
2179 		0x11048, 0x1106c,
2180 		0x11074, 0x11088,
2181 		0x11098, 0x11120,
2182 		0x1112c, 0x1117c,
2183 		0x11190, 0x112e0,
2184 		0x11300, 0x1130c,
2185 		0x12000, 0x1206c,
2186 		0x19040, 0x1906c,
2187 		0x19078, 0x19080,
2188 		0x1908c, 0x190e8,
2189 		0x190f0, 0x190f8,
2190 		0x19100, 0x19110,
2191 		0x19120, 0x19124,
2192 		0x19150, 0x19194,
2193 		0x1919c, 0x191b0,
2194 		0x191d0, 0x191e8,
2195 		0x19238, 0x19290,
2196 		0x192a4, 0x192b0,
2197 		0x19348, 0x1934c,
2198 		0x193f8, 0x19418,
2199 		0x19420, 0x19428,
2200 		0x19430, 0x19444,
2201 		0x1944c, 0x1946c,
2202 		0x19474, 0x19474,
2203 		0x19490, 0x194cc,
2204 		0x194f0, 0x194f8,
2205 		0x19c00, 0x19c48,
2206 		0x19c50, 0x19c80,
2207 		0x19c94, 0x19c98,
2208 		0x19ca0, 0x19cbc,
2209 		0x19ce4, 0x19ce4,
2210 		0x19cf0, 0x19cf8,
2211 		0x19d00, 0x19d28,
2212 		0x19d50, 0x19d78,
2213 		0x19d94, 0x19d98,
2214 		0x19da0, 0x19de0,
2215 		0x19df0, 0x19e10,
2216 		0x19e50, 0x19e6c,
2217 		0x19ea0, 0x19ebc,
2218 		0x19ec4, 0x19ef4,
2219 		0x19f04, 0x19f2c,
2220 		0x19f34, 0x19f34,
2221 		0x19f40, 0x19f50,
2222 		0x19f90, 0x19fac,
2223 		0x19fc4, 0x19fc8,
2224 		0x19fd0, 0x19fe4,
2225 		0x1a000, 0x1a004,
2226 		0x1a010, 0x1a06c,
2227 		0x1a0b0, 0x1a0e4,
2228 		0x1a0ec, 0x1a0f8,
2229 		0x1a100, 0x1a108,
2230 		0x1a114, 0x1a130,
2231 		0x1a138, 0x1a1c4,
2232 		0x1a1fc, 0x1a1fc,
2233 		0x1e008, 0x1e00c,
2234 		0x1e040, 0x1e044,
2235 		0x1e04c, 0x1e04c,
2236 		0x1e284, 0x1e290,
2237 		0x1e2c0, 0x1e2c0,
2238 		0x1e2e0, 0x1e2e0,
2239 		0x1e300, 0x1e384,
2240 		0x1e3c0, 0x1e3c8,
2241 		0x1e408, 0x1e40c,
2242 		0x1e440, 0x1e444,
2243 		0x1e44c, 0x1e44c,
2244 		0x1e684, 0x1e690,
2245 		0x1e6c0, 0x1e6c0,
2246 		0x1e6e0, 0x1e6e0,
2247 		0x1e700, 0x1e784,
2248 		0x1e7c0, 0x1e7c8,
2249 		0x1e808, 0x1e80c,
2250 		0x1e840, 0x1e844,
2251 		0x1e84c, 0x1e84c,
2252 		0x1ea84, 0x1ea90,
2253 		0x1eac0, 0x1eac0,
2254 		0x1eae0, 0x1eae0,
2255 		0x1eb00, 0x1eb84,
2256 		0x1ebc0, 0x1ebc8,
2257 		0x1ec08, 0x1ec0c,
2258 		0x1ec40, 0x1ec44,
2259 		0x1ec4c, 0x1ec4c,
2260 		0x1ee84, 0x1ee90,
2261 		0x1eec0, 0x1eec0,
2262 		0x1eee0, 0x1eee0,
2263 		0x1ef00, 0x1ef84,
2264 		0x1efc0, 0x1efc8,
2265 		0x1f008, 0x1f00c,
2266 		0x1f040, 0x1f044,
2267 		0x1f04c, 0x1f04c,
2268 		0x1f284, 0x1f290,
2269 		0x1f2c0, 0x1f2c0,
2270 		0x1f2e0, 0x1f2e0,
2271 		0x1f300, 0x1f384,
2272 		0x1f3c0, 0x1f3c8,
2273 		0x1f408, 0x1f40c,
2274 		0x1f440, 0x1f444,
2275 		0x1f44c, 0x1f44c,
2276 		0x1f684, 0x1f690,
2277 		0x1f6c0, 0x1f6c0,
2278 		0x1f6e0, 0x1f6e0,
2279 		0x1f700, 0x1f784,
2280 		0x1f7c0, 0x1f7c8,
2281 		0x1f808, 0x1f80c,
2282 		0x1f840, 0x1f844,
2283 		0x1f84c, 0x1f84c,
2284 		0x1fa84, 0x1fa90,
2285 		0x1fac0, 0x1fac0,
2286 		0x1fae0, 0x1fae0,
2287 		0x1fb00, 0x1fb84,
2288 		0x1fbc0, 0x1fbc8,
2289 		0x1fc08, 0x1fc0c,
2290 		0x1fc40, 0x1fc44,
2291 		0x1fc4c, 0x1fc4c,
2292 		0x1fe84, 0x1fe90,
2293 		0x1fec0, 0x1fec0,
2294 		0x1fee0, 0x1fee0,
2295 		0x1ff00, 0x1ff84,
2296 		0x1ffc0, 0x1ffc8,
2297 		0x30000, 0x30030,
2298 		0x30100, 0x30168,
2299 		0x30190, 0x301a0,
2300 		0x301a8, 0x301b8,
2301 		0x301c4, 0x301c8,
2302 		0x301d0, 0x301d0,
2303 		0x30200, 0x30320,
2304 		0x30400, 0x304b4,
2305 		0x304c0, 0x3052c,
2306 		0x30540, 0x3061c,
2307 		0x30800, 0x308a0,
2308 		0x308c0, 0x30908,
2309 		0x30910, 0x309b8,
2310 		0x30a00, 0x30a04,
2311 		0x30a0c, 0x30a14,
2312 		0x30a1c, 0x30a2c,
2313 		0x30a44, 0x30a50,
2314 		0x30a74, 0x30a74,
2315 		0x30a7c, 0x30afc,
2316 		0x30b08, 0x30c24,
2317 		0x30d00, 0x30d14,
2318 		0x30d1c, 0x30d3c,
2319 		0x30d44, 0x30d4c,
2320 		0x30d54, 0x30d74,
2321 		0x30d7c, 0x30d7c,
2322 		0x30de0, 0x30de0,
2323 		0x30e00, 0x30ed4,
2324 		0x30f00, 0x30fa4,
2325 		0x30fc0, 0x30fc4,
2326 		0x31000, 0x31004,
2327 		0x31080, 0x310fc,
2328 		0x31208, 0x31220,
2329 		0x3123c, 0x31254,
2330 		0x31300, 0x31300,
2331 		0x31308, 0x3131c,
2332 		0x31338, 0x3133c,
2333 		0x31380, 0x31380,
2334 		0x31388, 0x313a8,
2335 		0x313b4, 0x313b4,
2336 		0x31400, 0x31420,
2337 		0x31438, 0x3143c,
2338 		0x31480, 0x31480,
2339 		0x314a8, 0x314a8,
2340 		0x314b0, 0x314b4,
2341 		0x314c8, 0x314d4,
2342 		0x31a40, 0x31a4c,
2343 		0x31af0, 0x31b20,
2344 		0x31b38, 0x31b3c,
2345 		0x31b80, 0x31b80,
2346 		0x31ba8, 0x31ba8,
2347 		0x31bb0, 0x31bb4,
2348 		0x31bc8, 0x31bd4,
2349 		0x32140, 0x3218c,
2350 		0x321f0, 0x321f4,
2351 		0x32200, 0x32200,
2352 		0x32218, 0x32218,
2353 		0x32400, 0x32400,
2354 		0x32408, 0x3241c,
2355 		0x32618, 0x32620,
2356 		0x32664, 0x32664,
2357 		0x326a8, 0x326a8,
2358 		0x326ec, 0x326ec,
2359 		0x32a00, 0x32abc,
2360 		0x32b00, 0x32b18,
2361 		0x32b20, 0x32b38,
2362 		0x32b40, 0x32b58,
2363 		0x32b60, 0x32b78,
2364 		0x32c00, 0x32c00,
2365 		0x32c08, 0x32c3c,
2366 		0x33000, 0x3302c,
2367 		0x33034, 0x33050,
2368 		0x33058, 0x33058,
2369 		0x33060, 0x3308c,
2370 		0x3309c, 0x330ac,
2371 		0x330c0, 0x330c0,
2372 		0x330c8, 0x330d0,
2373 		0x330d8, 0x330e0,
2374 		0x330ec, 0x3312c,
2375 		0x33134, 0x33150,
2376 		0x33158, 0x33158,
2377 		0x33160, 0x3318c,
2378 		0x3319c, 0x331ac,
2379 		0x331c0, 0x331c0,
2380 		0x331c8, 0x331d0,
2381 		0x331d8, 0x331e0,
2382 		0x331ec, 0x33290,
2383 		0x33298, 0x332c4,
2384 		0x332e4, 0x33390,
2385 		0x33398, 0x333c4,
2386 		0x333e4, 0x3342c,
2387 		0x33434, 0x33450,
2388 		0x33458, 0x33458,
2389 		0x33460, 0x3348c,
2390 		0x3349c, 0x334ac,
2391 		0x334c0, 0x334c0,
2392 		0x334c8, 0x334d0,
2393 		0x334d8, 0x334e0,
2394 		0x334ec, 0x3352c,
2395 		0x33534, 0x33550,
2396 		0x33558, 0x33558,
2397 		0x33560, 0x3358c,
2398 		0x3359c, 0x335ac,
2399 		0x335c0, 0x335c0,
2400 		0x335c8, 0x335d0,
2401 		0x335d8, 0x335e0,
2402 		0x335ec, 0x33690,
2403 		0x33698, 0x336c4,
2404 		0x336e4, 0x33790,
2405 		0x33798, 0x337c4,
2406 		0x337e4, 0x337fc,
2407 		0x33814, 0x33814,
2408 		0x33854, 0x33868,
2409 		0x33880, 0x3388c,
2410 		0x338c0, 0x338d0,
2411 		0x338e8, 0x338ec,
2412 		0x33900, 0x3392c,
2413 		0x33934, 0x33950,
2414 		0x33958, 0x33958,
2415 		0x33960, 0x3398c,
2416 		0x3399c, 0x339ac,
2417 		0x339c0, 0x339c0,
2418 		0x339c8, 0x339d0,
2419 		0x339d8, 0x339e0,
2420 		0x339ec, 0x33a90,
2421 		0x33a98, 0x33ac4,
2422 		0x33ae4, 0x33b10,
2423 		0x33b24, 0x33b28,
2424 		0x33b38, 0x33b50,
2425 		0x33bf0, 0x33c10,
2426 		0x33c24, 0x33c28,
2427 		0x33c38, 0x33c50,
2428 		0x33cf0, 0x33cfc,
2429 		0x34000, 0x34030,
2430 		0x34100, 0x34168,
2431 		0x34190, 0x341a0,
2432 		0x341a8, 0x341b8,
2433 		0x341c4, 0x341c8,
2434 		0x341d0, 0x341d0,
2435 		0x34200, 0x34320,
2436 		0x34400, 0x344b4,
2437 		0x344c0, 0x3452c,
2438 		0x34540, 0x3461c,
2439 		0x34800, 0x348a0,
2440 		0x348c0, 0x34908,
2441 		0x34910, 0x349b8,
2442 		0x34a00, 0x34a04,
2443 		0x34a0c, 0x34a14,
2444 		0x34a1c, 0x34a2c,
2445 		0x34a44, 0x34a50,
2446 		0x34a74, 0x34a74,
2447 		0x34a7c, 0x34afc,
2448 		0x34b08, 0x34c24,
2449 		0x34d00, 0x34d14,
2450 		0x34d1c, 0x34d3c,
2451 		0x34d44, 0x34d4c,
2452 		0x34d54, 0x34d74,
2453 		0x34d7c, 0x34d7c,
2454 		0x34de0, 0x34de0,
2455 		0x34e00, 0x34ed4,
2456 		0x34f00, 0x34fa4,
2457 		0x34fc0, 0x34fc4,
2458 		0x35000, 0x35004,
2459 		0x35080, 0x350fc,
2460 		0x35208, 0x35220,
2461 		0x3523c, 0x35254,
2462 		0x35300, 0x35300,
2463 		0x35308, 0x3531c,
2464 		0x35338, 0x3533c,
2465 		0x35380, 0x35380,
2466 		0x35388, 0x353a8,
2467 		0x353b4, 0x353b4,
2468 		0x35400, 0x35420,
2469 		0x35438, 0x3543c,
2470 		0x35480, 0x35480,
2471 		0x354a8, 0x354a8,
2472 		0x354b0, 0x354b4,
2473 		0x354c8, 0x354d4,
2474 		0x35a40, 0x35a4c,
2475 		0x35af0, 0x35b20,
2476 		0x35b38, 0x35b3c,
2477 		0x35b80, 0x35b80,
2478 		0x35ba8, 0x35ba8,
2479 		0x35bb0, 0x35bb4,
2480 		0x35bc8, 0x35bd4,
2481 		0x36140, 0x3618c,
2482 		0x361f0, 0x361f4,
2483 		0x36200, 0x36200,
2484 		0x36218, 0x36218,
2485 		0x36400, 0x36400,
2486 		0x36408, 0x3641c,
2487 		0x36618, 0x36620,
2488 		0x36664, 0x36664,
2489 		0x366a8, 0x366a8,
2490 		0x366ec, 0x366ec,
2491 		0x36a00, 0x36abc,
2492 		0x36b00, 0x36b18,
2493 		0x36b20, 0x36b38,
2494 		0x36b40, 0x36b58,
2495 		0x36b60, 0x36b78,
2496 		0x36c00, 0x36c00,
2497 		0x36c08, 0x36c3c,
2498 		0x37000, 0x3702c,
2499 		0x37034, 0x37050,
2500 		0x37058, 0x37058,
2501 		0x37060, 0x3708c,
2502 		0x3709c, 0x370ac,
2503 		0x370c0, 0x370c0,
2504 		0x370c8, 0x370d0,
2505 		0x370d8, 0x370e0,
2506 		0x370ec, 0x3712c,
2507 		0x37134, 0x37150,
2508 		0x37158, 0x37158,
2509 		0x37160, 0x3718c,
2510 		0x3719c, 0x371ac,
2511 		0x371c0, 0x371c0,
2512 		0x371c8, 0x371d0,
2513 		0x371d8, 0x371e0,
2514 		0x371ec, 0x37290,
2515 		0x37298, 0x372c4,
2516 		0x372e4, 0x37390,
2517 		0x37398, 0x373c4,
2518 		0x373e4, 0x3742c,
2519 		0x37434, 0x37450,
2520 		0x37458, 0x37458,
2521 		0x37460, 0x3748c,
2522 		0x3749c, 0x374ac,
2523 		0x374c0, 0x374c0,
2524 		0x374c8, 0x374d0,
2525 		0x374d8, 0x374e0,
2526 		0x374ec, 0x3752c,
2527 		0x37534, 0x37550,
2528 		0x37558, 0x37558,
2529 		0x37560, 0x3758c,
2530 		0x3759c, 0x375ac,
2531 		0x375c0, 0x375c0,
2532 		0x375c8, 0x375d0,
2533 		0x375d8, 0x375e0,
2534 		0x375ec, 0x37690,
2535 		0x37698, 0x376c4,
2536 		0x376e4, 0x37790,
2537 		0x37798, 0x377c4,
2538 		0x377e4, 0x377fc,
2539 		0x37814, 0x37814,
2540 		0x37854, 0x37868,
2541 		0x37880, 0x3788c,
2542 		0x378c0, 0x378d0,
2543 		0x378e8, 0x378ec,
2544 		0x37900, 0x3792c,
2545 		0x37934, 0x37950,
2546 		0x37958, 0x37958,
2547 		0x37960, 0x3798c,
2548 		0x3799c, 0x379ac,
2549 		0x379c0, 0x379c0,
2550 		0x379c8, 0x379d0,
2551 		0x379d8, 0x379e0,
2552 		0x379ec, 0x37a90,
2553 		0x37a98, 0x37ac4,
2554 		0x37ae4, 0x37b10,
2555 		0x37b24, 0x37b28,
2556 		0x37b38, 0x37b50,
2557 		0x37bf0, 0x37c10,
2558 		0x37c24, 0x37c28,
2559 		0x37c38, 0x37c50,
2560 		0x37cf0, 0x37cfc,
2561 		0x40040, 0x40040,
2562 		0x40080, 0x40084,
2563 		0x40100, 0x40100,
2564 		0x40140, 0x401bc,
2565 		0x40200, 0x40214,
2566 		0x40228, 0x40228,
2567 		0x40240, 0x40258,
2568 		0x40280, 0x40280,
2569 		0x40304, 0x40304,
2570 		0x40330, 0x4033c,
2571 		0x41304, 0x413c8,
2572 		0x413d0, 0x413dc,
2573 		0x413f0, 0x413f0,
2574 		0x41400, 0x4140c,
2575 		0x41414, 0x4141c,
2576 		0x41480, 0x414d0,
2577 		0x44000, 0x4407c,
2578 		0x440c0, 0x441ac,
2579 		0x441b4, 0x4427c,
2580 		0x442c0, 0x443ac,
2581 		0x443b4, 0x4447c,
2582 		0x444c0, 0x445ac,
2583 		0x445b4, 0x4467c,
2584 		0x446c0, 0x447ac,
2585 		0x447b4, 0x4487c,
2586 		0x448c0, 0x449ac,
2587 		0x449b4, 0x44a7c,
2588 		0x44ac0, 0x44bac,
2589 		0x44bb4, 0x44c7c,
2590 		0x44cc0, 0x44dac,
2591 		0x44db4, 0x44e7c,
2592 		0x44ec0, 0x44fac,
2593 		0x44fb4, 0x4507c,
2594 		0x450c0, 0x451ac,
2595 		0x451b4, 0x451fc,
2596 		0x45800, 0x45804,
2597 		0x45810, 0x45830,
2598 		0x45840, 0x45860,
2599 		0x45868, 0x45868,
2600 		0x45880, 0x45884,
2601 		0x458a0, 0x458b0,
2602 		0x45a00, 0x45a04,
2603 		0x45a10, 0x45a30,
2604 		0x45a40, 0x45a60,
2605 		0x45a68, 0x45a68,
2606 		0x45a80, 0x45a84,
2607 		0x45aa0, 0x45ab0,
2608 		0x460c0, 0x460e4,
2609 		0x47000, 0x4703c,
2610 		0x47044, 0x4708c,
2611 		0x47200, 0x47250,
2612 		0x47400, 0x47408,
2613 		0x47414, 0x47420,
2614 		0x47600, 0x47618,
2615 		0x47800, 0x47814,
2616 		0x47820, 0x4782c,
2617 		0x50000, 0x50084,
2618 		0x50090, 0x500cc,
2619 		0x50300, 0x50384,
2620 		0x50400, 0x50400,
2621 		0x50800, 0x50884,
2622 		0x50890, 0x508cc,
2623 		0x50b00, 0x50b84,
2624 		0x50c00, 0x50c00,
2625 		0x51000, 0x51020,
2626 		0x51028, 0x510b0,
2627 		0x51300, 0x51324,
2628 	};
2629 
2630 	static const unsigned int t6vf_reg_ranges[] = {
2631 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2632 		VF_MPS_REG(A_MPS_VF_CTL),
2633 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2634 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2635 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2636 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2637 		FW_T6VF_MBDATA_BASE_ADDR,
2638 		FW_T6VF_MBDATA_BASE_ADDR +
2639 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2640 	};
2641 
2642 	u32 *buf_end = (u32 *)(buf + buf_size);
2643 	const unsigned int *reg_ranges;
2644 	int reg_ranges_size, range;
2645 	unsigned int chip_version = chip_id(adap);
2646 
2647 	/*
2648 	 * Select the right set of register ranges to dump depending on the
2649 	 * adapter chip type.
2650 	 */
2651 	switch (chip_version) {
2652 	case CHELSIO_T4:
2653 		if (adap->flags & IS_VF) {
2654 			reg_ranges = t4vf_reg_ranges;
2655 			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2656 		} else {
2657 			reg_ranges = t4_reg_ranges;
2658 			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2659 		}
2660 		break;
2661 
2662 	case CHELSIO_T5:
2663 		if (adap->flags & IS_VF) {
2664 			reg_ranges = t5vf_reg_ranges;
2665 			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2666 		} else {
2667 			reg_ranges = t5_reg_ranges;
2668 			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2669 		}
2670 		break;
2671 
2672 	case CHELSIO_T6:
2673 		if (adap->flags & IS_VF) {
2674 			reg_ranges = t6vf_reg_ranges;
2675 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2676 		} else {
2677 			reg_ranges = t6_reg_ranges;
2678 			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2679 		}
2680 		break;
2681 
2682 	default:
2683 		CH_ERR(adap,
2684 			"Unsupported chip version %d\n", chip_version);
2685 		return;
2686 	}
2687 
2688 	/*
2689 	 * Clear the register buffer and insert the appropriate register
2690 	 * values selected by the above register ranges.
2691 	 */
2692 	memset(buf, 0, buf_size);
2693 	for (range = 0; range < reg_ranges_size; range += 2) {
2694 		unsigned int reg = reg_ranges[range];
2695 		unsigned int last_reg = reg_ranges[range + 1];
2696 		u32 *bufp = (u32 *)(buf + reg);
2697 
2698 		/*
2699 		 * Iterate across the register range filling in the register
2700 		 * buffer but don't write past the end of the register buffer.
2701 		 */
2702 		while (reg <= last_reg && bufp < buf_end) {
2703 			*bufp++ = t4_read_reg(adap, reg);
2704 			reg += sizeof(u32);
2705 		}
2706 	}
2707 }
2708 
2709 /*
2710  * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2711  * header followed by one or more VPD-R sections, each with its own header.
2712  */
2713 struct t4_vpd_hdr {
2714 	u8  id_tag;
2715 	u8  id_len[2];
2716 	u8  id_data[ID_LEN];
2717 };
2718 
2719 struct t4_vpdr_hdr {
2720 	u8  vpdr_tag;
2721 	u8  vpdr_len[2];
2722 };
2723 
2724 /*
2725  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2726  */
2727 #define EEPROM_DELAY		10		/* 10us per poll spin */
2728 #define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2729 
2730 #define EEPROM_STAT_ADDR	0x7bfc
2731 #define VPD_SIZE		0x800
2732 #define VPD_BASE		0x400
2733 #define VPD_BASE_OLD		0
2734 #define VPD_LEN			1024
2735 #define VPD_INFO_FLD_HDR_SIZE	3
2736 #define CHELSIO_VPD_UNIQUE_ID	0x82
2737 
2738 /*
2739  * Small utility function to wait till any outstanding VPD Access is complete.
2740  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2741  * VPD Access in flight.  This allows us to handle the problem of having a
2742  * previous VPD Access time out and prevent an attempt to inject a new VPD
2743  * Request before any in-flight VPD reguest has completed.
2744  */
2745 static int t4_seeprom_wait(struct adapter *adapter)
2746 {
2747 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2748 	int max_poll;
2749 
2750 	/*
2751 	 * If no VPD Access is in flight, we can just return success right
2752 	 * away.
2753 	 */
2754 	if (!adapter->vpd_busy)
2755 		return 0;
2756 
2757 	/*
2758 	 * Poll the VPD Capability Address/Flag register waiting for it
2759 	 * to indicate that the operation is complete.
2760 	 */
2761 	max_poll = EEPROM_MAX_POLL;
2762 	do {
2763 		u16 val;
2764 
2765 		udelay(EEPROM_DELAY);
2766 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2767 
2768 		/*
2769 		 * If the operation is complete, mark the VPD as no longer
2770 		 * busy and return success.
2771 		 */
2772 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2773 			adapter->vpd_busy = 0;
2774 			return 0;
2775 		}
2776 	} while (--max_poll);
2777 
2778 	/*
2779 	 * Failure!  Note that we leave the VPD Busy status set in order to
2780 	 * avoid pushing a new VPD Access request into the VPD Capability till
2781 	 * the current operation eventually succeeds.  It's a bug to issue a
2782 	 * new request when an existing request is in flight and will result
2783 	 * in corrupt hardware state.
2784 	 */
2785 	return -ETIMEDOUT;
2786 }
2787 
2788 /**
2789  *	t4_seeprom_read - read a serial EEPROM location
2790  *	@adapter: adapter to read
2791  *	@addr: EEPROM virtual address
2792  *	@data: where to store the read data
2793  *
2794  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2795  *	VPD capability.  Note that this function must be called with a virtual
2796  *	address.
2797  */
2798 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2799 {
2800 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2801 	int ret;
2802 
2803 	/*
2804 	 * VPD Accesses must alway be 4-byte aligned!
2805 	 */
2806 	if (addr >= EEPROMVSIZE || (addr & 3))
2807 		return -EINVAL;
2808 
2809 	/*
2810 	 * Wait for any previous operation which may still be in flight to
2811 	 * complete.
2812 	 */
2813 	ret = t4_seeprom_wait(adapter);
2814 	if (ret) {
2815 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2816 		return ret;
2817 	}
2818 
2819 	/*
2820 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2821 	 * for our request to complete.  If it doesn't complete, note the
2822 	 * error and return it to our caller.  Note that we do not reset the
2823 	 * VPD Busy status!
2824 	 */
2825 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2826 	adapter->vpd_busy = 1;
2827 	adapter->vpd_flag = PCI_VPD_ADDR_F;
2828 	ret = t4_seeprom_wait(adapter);
2829 	if (ret) {
2830 		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2831 		return ret;
2832 	}
2833 
2834 	/*
2835 	 * Grab the returned data, swizzle it into our endianness and
2836 	 * return success.
2837 	 */
2838 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2839 	*data = le32_to_cpu(*data);
2840 	return 0;
2841 }
2842 
2843 /**
2844  *	t4_seeprom_write - write a serial EEPROM location
2845  *	@adapter: adapter to write
2846  *	@addr: virtual EEPROM address
2847  *	@data: value to write
2848  *
2849  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2850  *	VPD capability.  Note that this function must be called with a virtual
2851  *	address.
2852  */
2853 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2854 {
2855 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2856 	int ret;
2857 	u32 stats_reg;
2858 	int max_poll;
2859 
2860 	/*
2861 	 * VPD Accesses must alway be 4-byte aligned!
2862 	 */
2863 	if (addr >= EEPROMVSIZE || (addr & 3))
2864 		return -EINVAL;
2865 
2866 	/*
2867 	 * Wait for any previous operation which may still be in flight to
2868 	 * complete.
2869 	 */
2870 	ret = t4_seeprom_wait(adapter);
2871 	if (ret) {
2872 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2873 		return ret;
2874 	}
2875 
2876 	/*
2877 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2878 	 * for our request to complete.  If it doesn't complete, note the
2879 	 * error and return it to our caller.  Note that we do not reset the
2880 	 * VPD Busy status!
2881 	 */
2882 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2883 				 cpu_to_le32(data));
2884 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2885 				 (u16)addr | PCI_VPD_ADDR_F);
2886 	adapter->vpd_busy = 1;
2887 	adapter->vpd_flag = 0;
2888 	ret = t4_seeprom_wait(adapter);
2889 	if (ret) {
2890 		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2891 		return ret;
2892 	}
2893 
2894 	/*
2895 	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2896 	 * request to complete. If it doesn't complete, return error.
2897 	 */
2898 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2899 	max_poll = EEPROM_MAX_POLL;
2900 	do {
2901 		udelay(EEPROM_DELAY);
2902 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2903 	} while ((stats_reg & 0x1) && --max_poll);
2904 	if (!max_poll)
2905 		return -ETIMEDOUT;
2906 
2907 	/* Return success! */
2908 	return 0;
2909 }
2910 
2911 /**
2912  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2913  *	@phys_addr: the physical EEPROM address
2914  *	@fn: the PCI function number
2915  *	@sz: size of function-specific area
2916  *
2917  *	Translate a physical EEPROM address to virtual.  The first 1K is
2918  *	accessed through virtual addresses starting at 31K, the rest is
2919  *	accessed through virtual addresses starting at 0.
2920  *
2921  *	The mapping is as follows:
2922  *	[0..1K) -> [31K..32K)
2923  *	[1K..1K+A) -> [ES-A..ES)
2924  *	[1K+A..ES) -> [0..ES-A-1K)
2925  *
2926  *	where A = @fn * @sz, and ES = EEPROM size.
2927  */
2928 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2929 {
2930 	fn *= sz;
2931 	if (phys_addr < 1024)
2932 		return phys_addr + (31 << 10);
2933 	if (phys_addr < 1024 + fn)
2934 		return EEPROMSIZE - fn + phys_addr - 1024;
2935 	if (phys_addr < EEPROMSIZE)
2936 		return phys_addr - 1024 - fn;
2937 	return -EINVAL;
2938 }
2939 
2940 /**
2941  *	t4_seeprom_wp - enable/disable EEPROM write protection
2942  *	@adapter: the adapter
2943  *	@enable: whether to enable or disable write protection
2944  *
2945  *	Enables or disables write protection on the serial EEPROM.
2946  */
2947 int t4_seeprom_wp(struct adapter *adapter, int enable)
2948 {
2949 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2950 }
2951 
2952 /**
2953  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2954  *	@vpd: Pointer to buffered vpd data structure
2955  *	@kw: The keyword to search for
2956  *	@region: VPD region to search (starting from 0)
2957  *
2958  *	Returns the value of the information field keyword or
2959  *	-ENOENT otherwise.
2960  */
2961 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2962 {
2963 	int i, tag;
2964 	unsigned int offset, len;
2965 	const struct t4_vpdr_hdr *vpdr;
2966 
2967 	offset = sizeof(struct t4_vpd_hdr);
2968 	vpdr = (const void *)(vpd + offset);
2969 	tag = vpdr->vpdr_tag;
2970 	len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2971 	while (region--) {
2972 		offset += sizeof(struct t4_vpdr_hdr) + len;
2973 		vpdr = (const void *)(vpd + offset);
2974 		if (++tag != vpdr->vpdr_tag)
2975 			return -ENOENT;
2976 		len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2977 	}
2978 	offset += sizeof(struct t4_vpdr_hdr);
2979 
2980 	if (offset + len > VPD_LEN) {
2981 		return -ENOENT;
2982 	}
2983 
2984 	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2985 		if (memcmp(vpd + i , kw , 2) == 0){
2986 			i += VPD_INFO_FLD_HDR_SIZE;
2987 			return i;
2988 		}
2989 
2990 		i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
2991 	}
2992 
2993 	return -ENOENT;
2994 }
2995 
2996 
2997 /**
2998  *	get_vpd_params - read VPD parameters from VPD EEPROM
2999  *	@adapter: adapter to read
3000  *	@p: where to store the parameters
3001  *	@vpd: caller provided temporary space to read the VPD into
3002  *
3003  *	Reads card parameters stored in VPD EEPROM.
3004  */
3005 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
3006     uint16_t device_id, u32 *buf)
3007 {
3008 	int i, ret, addr;
3009 	int ec, sn, pn, na, md;
3010 	u8 csum;
3011 	const u8 *vpd = (const u8 *)buf;
3012 
3013 	/*
3014 	 * Card information normally starts at VPD_BASE but early cards had
3015 	 * it at 0.
3016 	 */
3017 	ret = t4_seeprom_read(adapter, VPD_BASE, buf);
3018 	if (ret)
3019 		return (ret);
3020 
3021 	/*
3022 	 * The VPD shall have a unique identifier specified by the PCI SIG.
3023 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
3024 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
3025 	 * is expected to automatically put this entry at the
3026 	 * beginning of the VPD.
3027 	 */
3028 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
3029 
3030 	for (i = 0; i < VPD_LEN; i += 4) {
3031 		ret = t4_seeprom_read(adapter, addr + i, buf++);
3032 		if (ret)
3033 			return ret;
3034 	}
3035 
3036 #define FIND_VPD_KW(var,name) do { \
3037 	var = get_vpd_keyword_val(vpd, name, 0); \
3038 	if (var < 0) { \
3039 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
3040 		return -EINVAL; \
3041 	} \
3042 } while (0)
3043 
3044 	FIND_VPD_KW(i, "RV");
3045 	for (csum = 0; i >= 0; i--)
3046 		csum += vpd[i];
3047 
3048 	if (csum) {
3049 		CH_ERR(adapter,
3050 			"corrupted VPD EEPROM, actual csum %u\n", csum);
3051 		return -EINVAL;
3052 	}
3053 
3054 	FIND_VPD_KW(ec, "EC");
3055 	FIND_VPD_KW(sn, "SN");
3056 	FIND_VPD_KW(pn, "PN");
3057 	FIND_VPD_KW(na, "NA");
3058 #undef FIND_VPD_KW
3059 
3060 	memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3061 	strstrip(p->id);
3062 	memcpy(p->ec, vpd + ec, EC_LEN);
3063 	strstrip(p->ec);
3064 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3065 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3066 	strstrip(p->sn);
3067 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3068 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3069 	strstrip((char *)p->pn);
3070 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3071 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3072 	strstrip((char *)p->na);
3073 
3074 	if (device_id & 0x80)
3075 		return 0;	/* Custom card */
3076 
3077 	md = get_vpd_keyword_val(vpd, "VF", 1);
3078 	if (md < 0) {
3079 		snprintf(p->md, sizeof(p->md), "unknown");
3080 	} else {
3081 		i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3082 		memcpy(p->md, vpd + md, min(i, MD_LEN));
3083 		strstrip((char *)p->md);
3084 	}
3085 
3086 	return 0;
3087 }
3088 
3089 /* serial flash and firmware constants and flash config file constants */
3090 enum {
3091 	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3092 
3093 	/* flash command opcodes */
3094 	SF_PROG_PAGE    = 2,	/* program 256B page */
3095 	SF_WR_DISABLE   = 4,	/* disable writes */
3096 	SF_RD_STATUS    = 5,	/* read status register */
3097 	SF_WR_ENABLE    = 6,	/* enable writes */
3098 	SF_RD_DATA_FAST = 0xb,	/* read flash */
3099 	SF_RD_ID	= 0x9f,	/* read ID */
3100 	SF_ERASE_SECTOR = 0xd8,	/* erase 64KB sector */
3101 };
3102 
3103 /**
3104  *	sf1_read - read data from the serial flash
3105  *	@adapter: the adapter
3106  *	@byte_cnt: number of bytes to read
3107  *	@cont: whether another operation will be chained
3108  *	@lock: whether to lock SF for PL access only
3109  *	@valp: where to store the read data
3110  *
3111  *	Reads up to 4 bytes of data from the serial flash.  The location of
3112  *	the read needs to be specified prior to calling this by issuing the
3113  *	appropriate commands to the serial flash.
3114  */
3115 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3116 		    int lock, u32 *valp)
3117 {
3118 	int ret;
3119 
3120 	if (!byte_cnt || byte_cnt > 4)
3121 		return -EINVAL;
3122 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3123 		return -EBUSY;
3124 	t4_write_reg(adapter, A_SF_OP,
3125 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3126 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3127 	if (!ret)
3128 		*valp = t4_read_reg(adapter, A_SF_DATA);
3129 	return ret;
3130 }
3131 
3132 /**
3133  *	sf1_write - write data to the serial flash
3134  *	@adapter: the adapter
3135  *	@byte_cnt: number of bytes to write
3136  *	@cont: whether another operation will be chained
3137  *	@lock: whether to lock SF for PL access only
3138  *	@val: value to write
3139  *
3140  *	Writes up to 4 bytes of data to the serial flash.  The location of
3141  *	the write needs to be specified prior to calling this by issuing the
3142  *	appropriate commands to the serial flash.
3143  */
3144 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3145 		     int lock, u32 val)
3146 {
3147 	if (!byte_cnt || byte_cnt > 4)
3148 		return -EINVAL;
3149 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3150 		return -EBUSY;
3151 	t4_write_reg(adapter, A_SF_DATA, val);
3152 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3153 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3154 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3155 }
3156 
3157 /**
3158  *	flash_wait_op - wait for a flash operation to complete
3159  *	@adapter: the adapter
3160  *	@attempts: max number of polls of the status register
3161  *	@delay: delay between polls in ms
3162  *
3163  *	Wait for a flash operation to complete by polling the status register.
3164  */
3165 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3166 {
3167 	int ret;
3168 	u32 status;
3169 
3170 	while (1) {
3171 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3172 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3173 			return ret;
3174 		if (!(status & 1))
3175 			return 0;
3176 		if (--attempts == 0)
3177 			return -EAGAIN;
3178 		if (delay)
3179 			msleep(delay);
3180 	}
3181 }
3182 
3183 /**
3184  *	t4_read_flash - read words from serial flash
3185  *	@adapter: the adapter
3186  *	@addr: the start address for the read
3187  *	@nwords: how many 32-bit words to read
3188  *	@data: where to store the read data
3189  *	@byte_oriented: whether to store data as bytes or as words
3190  *
3191  *	Read the specified number of 32-bit words from the serial flash.
3192  *	If @byte_oriented is set the read data is stored as a byte array
3193  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3194  *	natural endianness.
3195  */
3196 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3197 		  unsigned int nwords, u32 *data, int byte_oriented)
3198 {
3199 	int ret;
3200 
3201 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3202 		return -EINVAL;
3203 
3204 	addr = swab32(addr) | SF_RD_DATA_FAST;
3205 
3206 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3207 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3208 		return ret;
3209 
3210 	for ( ; nwords; nwords--, data++) {
3211 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3212 		if (nwords == 1)
3213 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3214 		if (ret)
3215 			return ret;
3216 		if (byte_oriented)
3217 			*data = (__force __u32)(cpu_to_be32(*data));
3218 	}
3219 	return 0;
3220 }
3221 
3222 /**
3223  *	t4_write_flash - write up to a page of data to the serial flash
3224  *	@adapter: the adapter
3225  *	@addr: the start address to write
3226  *	@n: length of data to write in bytes
3227  *	@data: the data to write
3228  *	@byte_oriented: whether to store data as bytes or as words
3229  *
3230  *	Writes up to a page of data (256 bytes) to the serial flash starting
3231  *	at the given address.  All the data must be written to the same page.
3232  *	If @byte_oriented is set the write data is stored as byte stream
3233  *	(i.e. matches what on disk), otherwise in big-endian.
3234  */
3235 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3236 			  unsigned int n, const u8 *data, int byte_oriented)
3237 {
3238 	int ret;
3239 	u32 buf[SF_PAGE_SIZE / 4];
3240 	unsigned int i, c, left, val, offset = addr & 0xff;
3241 
3242 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3243 		return -EINVAL;
3244 
3245 	val = swab32(addr) | SF_PROG_PAGE;
3246 
3247 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3248 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3249 		goto unlock;
3250 
3251 	for (left = n; left; left -= c) {
3252 		c = min(left, 4U);
3253 		for (val = 0, i = 0; i < c; ++i)
3254 			val = (val << 8) + *data++;
3255 
3256 		if (!byte_oriented)
3257 			val = cpu_to_be32(val);
3258 
3259 		ret = sf1_write(adapter, c, c != left, 1, val);
3260 		if (ret)
3261 			goto unlock;
3262 	}
3263 	ret = flash_wait_op(adapter, 8, 1);
3264 	if (ret)
3265 		goto unlock;
3266 
3267 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3268 
3269 	/* Read the page to verify the write succeeded */
3270 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3271 			    byte_oriented);
3272 	if (ret)
3273 		return ret;
3274 
3275 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3276 		CH_ERR(adapter,
3277 			"failed to correctly write the flash page at %#x\n",
3278 			addr);
3279 		return -EIO;
3280 	}
3281 	return 0;
3282 
3283 unlock:
3284 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3285 	return ret;
3286 }
3287 
3288 /**
3289  *	t4_get_fw_version - read the firmware version
3290  *	@adapter: the adapter
3291  *	@vers: where to place the version
3292  *
3293  *	Reads the FW version from flash.
3294  */
3295 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3296 {
3297 	return t4_read_flash(adapter, FLASH_FW_START +
3298 			     offsetof(struct fw_hdr, fw_ver), 1,
3299 			     vers, 0);
3300 }
3301 
3302 /**
3303  *	t4_get_fw_hdr - read the firmware header
3304  *	@adapter: the adapter
3305  *	@hdr: where to place the version
3306  *
3307  *	Reads the FW header from flash into caller provided buffer.
3308  */
3309 int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr)
3310 {
3311 	return t4_read_flash(adapter, FLASH_FW_START,
3312 	    sizeof (*hdr) / sizeof (uint32_t), (uint32_t *)hdr, 1);
3313 }
3314 
3315 /**
3316  *	t4_get_bs_version - read the firmware bootstrap version
3317  *	@adapter: the adapter
3318  *	@vers: where to place the version
3319  *
3320  *	Reads the FW Bootstrap version from flash.
3321  */
3322 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3323 {
3324 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3325 			     offsetof(struct fw_hdr, fw_ver), 1,
3326 			     vers, 0);
3327 }
3328 
3329 /**
3330  *	t4_get_tp_version - read the TP microcode version
3331  *	@adapter: the adapter
3332  *	@vers: where to place the version
3333  *
3334  *	Reads the TP microcode version from flash.
3335  */
3336 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3337 {
3338 	return t4_read_flash(adapter, FLASH_FW_START +
3339 			     offsetof(struct fw_hdr, tp_microcode_ver),
3340 			     1, vers, 0);
3341 }
3342 
3343 /**
3344  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3345  *	@adapter: the adapter
3346  *	@vers: where to place the version
3347  *
3348  *	Reads the Expansion ROM header from FLASH and returns the version
3349  *	number (if present) through the @vers return value pointer.  We return
3350  *	this in the Firmware Version Format since it's convenient.  Return
3351  *	0 on success, -ENOENT if no Expansion ROM is present.
3352  */
3353 int t4_get_exprom_version(struct adapter *adapter, u32 *vers)
3354 {
3355 	struct exprom_header {
3356 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3357 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3358 	} *hdr;
3359 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3360 					   sizeof(u32))];
3361 	int ret;
3362 
3363 	ret = t4_read_flash(adapter, FLASH_EXP_ROM_START,
3364 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3365 			    0);
3366 	if (ret)
3367 		return ret;
3368 
3369 	hdr = (struct exprom_header *)exprom_header_buf;
3370 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3371 		return -ENOENT;
3372 
3373 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3374 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3375 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3376 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3377 	return 0;
3378 }
3379 
3380 /**
3381  *	t4_get_scfg_version - return the Serial Configuration version
3382  *	@adapter: the adapter
3383  *	@vers: where to place the version
3384  *
3385  *	Reads the Serial Configuration Version via the Firmware interface
3386  *	(thus this can only be called once we're ready to issue Firmware
3387  *	commands).  The format of the Serial Configuration version is
3388  *	adapter specific.  Returns 0 on success, an error on failure.
3389  *
3390  *	Note that early versions of the Firmware didn't include the ability
3391  *	to retrieve the Serial Configuration version, so we zero-out the
3392  *	return-value parameter in that case to avoid leaving it with
3393  *	garbage in it.
3394  *
3395  *	Also note that the Firmware will return its cached copy of the Serial
3396  *	Initialization Revision ID, not the actual Revision ID as written in
3397  *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3398  *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3399  *	it's best to defer calling this routine till after a FW_RESET_CMD has
3400  *	been issued if the Host Driver will be performing a full adapter
3401  *	initialization.
3402  */
3403 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3404 {
3405 	u32 scfgrev_param;
3406 	int ret;
3407 
3408 	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3409 			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3410 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3411 			      1, &scfgrev_param, vers);
3412 	if (ret)
3413 		*vers = 0;
3414 	return ret;
3415 }
3416 
3417 /**
3418  *	t4_get_vpd_version - return the VPD version
3419  *	@adapter: the adapter
3420  *	@vers: where to place the version
3421  *
3422  *	Reads the VPD via the Firmware interface (thus this can only be called
3423  *	once we're ready to issue Firmware commands).  The format of the
3424  *	VPD version is adapter specific.  Returns 0 on success, an error on
3425  *	failure.
3426  *
3427  *	Note that early versions of the Firmware didn't include the ability
3428  *	to retrieve the VPD version, so we zero-out the return-value parameter
3429  *	in that case to avoid leaving it with garbage in it.
3430  *
3431  *	Also note that the Firmware will return its cached copy of the VPD
3432  *	Revision ID, not the actual Revision ID as written in the Serial
3433  *	EEPROM.  This is only an issue if a new VPD has been written and the
3434  *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3435  *	to defer calling this routine till after a FW_RESET_CMD has been issued
3436  *	if the Host Driver will be performing a full adapter initialization.
3437  */
3438 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3439 {
3440 	u32 vpdrev_param;
3441 	int ret;
3442 
3443 	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3444 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3445 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3446 			      1, &vpdrev_param, vers);
3447 	if (ret)
3448 		*vers = 0;
3449 	return ret;
3450 }
3451 
3452 /**
3453  *	t4_get_version_info - extract various chip/firmware version information
3454  *	@adapter: the adapter
3455  *
3456  *	Reads various chip/firmware version numbers and stores them into the
3457  *	adapter Adapter Parameters structure.  If any of the efforts fails
3458  *	the first failure will be returned, but all of the version numbers
3459  *	will be read.
3460  */
3461 int t4_get_version_info(struct adapter *adapter)
3462 {
3463 	int ret = 0;
3464 
3465 	#define FIRST_RET(__getvinfo) \
3466 	do { \
3467 		int __ret = __getvinfo; \
3468 		if (__ret && !ret) \
3469 			ret = __ret; \
3470 	} while (0)
3471 
3472 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3473 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3474 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3475 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3476 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3477 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3478 
3479 	#undef FIRST_RET
3480 
3481 	return ret;
3482 }
3483 
3484 /**
3485  *	t4_flash_erase_sectors - erase a range of flash sectors
3486  *	@adapter: the adapter
3487  *	@start: the first sector to erase
3488  *	@end: the last sector to erase
3489  *
3490  *	Erases the sectors in the given inclusive range.
3491  */
3492 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3493 {
3494 	int ret = 0;
3495 
3496 	if (end >= adapter->params.sf_nsec)
3497 		return -EINVAL;
3498 
3499 	while (start <= end) {
3500 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3501 		    (ret = sf1_write(adapter, 4, 0, 1,
3502 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3503 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3504 			CH_ERR(adapter,
3505 				"erase of flash sector %d failed, error %d\n",
3506 				start, ret);
3507 			break;
3508 		}
3509 		start++;
3510 	}
3511 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3512 	return ret;
3513 }
3514 
3515 /**
3516  *	t4_flash_cfg_addr - return the address of the flash configuration file
3517  *	@adapter: the adapter
3518  *
3519  *	Return the address within the flash where the Firmware Configuration
3520  *	File is stored, or an error if the device FLASH is too small to contain
3521  *	a Firmware Configuration File.
3522  */
3523 int t4_flash_cfg_addr(struct adapter *adapter)
3524 {
3525 	/*
3526 	 * If the device FLASH isn't large enough to hold a Firmware
3527 	 * Configuration File, return an error.
3528 	 */
3529 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3530 		return -ENOSPC;
3531 
3532 	return FLASH_CFG_START;
3533 }
3534 
3535 /*
3536  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3537  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3538  * and emit an error message for mismatched firmware to save our caller the
3539  * effort ...
3540  */
3541 static int t4_fw_matches_chip(struct adapter *adap,
3542 			      const struct fw_hdr *hdr)
3543 {
3544 	/*
3545 	 * The expression below will return FALSE for any unsupported adapter
3546 	 * which will keep us "honest" in the future ...
3547 	 */
3548 	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3549 	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3550 	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3551 		return 1;
3552 
3553 	CH_ERR(adap,
3554 		"FW image (%d) is not suitable for this adapter (%d)\n",
3555 		hdr->chip, chip_id(adap));
3556 	return 0;
3557 }
3558 
3559 /**
3560  *	t4_load_fw - download firmware
3561  *	@adap: the adapter
3562  *	@fw_data: the firmware image to write
3563  *	@size: image size
3564  *
3565  *	Write the supplied firmware image to the card's serial flash.
3566  */
3567 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3568 {
3569 	u32 csum;
3570 	int ret, addr;
3571 	unsigned int i;
3572 	u8 first_page[SF_PAGE_SIZE];
3573 	const u32 *p = (const u32 *)fw_data;
3574 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3575 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3576 	unsigned int fw_start_sec;
3577 	unsigned int fw_start;
3578 	unsigned int fw_size;
3579 
3580 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3581 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3582 		fw_start = FLASH_FWBOOTSTRAP_START;
3583 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3584 	} else {
3585 		fw_start_sec = FLASH_FW_START_SEC;
3586  		fw_start = FLASH_FW_START;
3587 		fw_size = FLASH_FW_MAX_SIZE;
3588 	}
3589 
3590 	if (!size) {
3591 		CH_ERR(adap, "FW image has no data\n");
3592 		return -EINVAL;
3593 	}
3594 	if (size & 511) {
3595 		CH_ERR(adap,
3596 			"FW image size not multiple of 512 bytes\n");
3597 		return -EINVAL;
3598 	}
3599 	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3600 		CH_ERR(adap,
3601 			"FW image size differs from size in FW header\n");
3602 		return -EINVAL;
3603 	}
3604 	if (size > fw_size) {
3605 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3606 			fw_size);
3607 		return -EFBIG;
3608 	}
3609 	if (!t4_fw_matches_chip(adap, hdr))
3610 		return -EINVAL;
3611 
3612 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3613 		csum += be32_to_cpu(p[i]);
3614 
3615 	if (csum != 0xffffffff) {
3616 		CH_ERR(adap,
3617 			"corrupted firmware image, checksum %#x\n", csum);
3618 		return -EINVAL;
3619 	}
3620 
3621 	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3622 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3623 	if (ret)
3624 		goto out;
3625 
3626 	/*
3627 	 * We write the correct version at the end so the driver can see a bad
3628 	 * version if the FW write fails.  Start by writing a copy of the
3629 	 * first page with a bad version.
3630 	 */
3631 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3632 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3633 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3634 	if (ret)
3635 		goto out;
3636 
3637 	addr = fw_start;
3638 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3639 		addr += SF_PAGE_SIZE;
3640 		fw_data += SF_PAGE_SIZE;
3641 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3642 		if (ret)
3643 			goto out;
3644 	}
3645 
3646 	ret = t4_write_flash(adap,
3647 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3648 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3649 out:
3650 	if (ret)
3651 		CH_ERR(adap, "firmware download failed, error %d\n",
3652 			ret);
3653 	return ret;
3654 }
3655 
3656 /**
3657  *	t4_fwcache - firmware cache operation
3658  *	@adap: the adapter
3659  *	@op  : the operation (flush or flush and invalidate)
3660  */
3661 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3662 {
3663 	struct fw_params_cmd c;
3664 
3665 	memset(&c, 0, sizeof(c));
3666 	c.op_to_vfn =
3667 	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3668 			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3669 				V_FW_PARAMS_CMD_PFN(adap->pf) |
3670 				V_FW_PARAMS_CMD_VFN(0));
3671 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3672 	c.param[0].mnem =
3673 	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3674 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3675 	c.param[0].val = (__force __be32)op;
3676 
3677 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3678 }
3679 
3680 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3681 			unsigned int *pif_req_wrptr,
3682 			unsigned int *pif_rsp_wrptr)
3683 {
3684 	int i, j;
3685 	u32 cfg, val, req, rsp;
3686 
3687 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3688 	if (cfg & F_LADBGEN)
3689 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3690 
3691 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3692 	req = G_POLADBGWRPTR(val);
3693 	rsp = G_PILADBGWRPTR(val);
3694 	if (pif_req_wrptr)
3695 		*pif_req_wrptr = req;
3696 	if (pif_rsp_wrptr)
3697 		*pif_rsp_wrptr = rsp;
3698 
3699 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3700 		for (j = 0; j < 6; j++) {
3701 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3702 				     V_PILADBGRDPTR(rsp));
3703 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3704 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3705 			req++;
3706 			rsp++;
3707 		}
3708 		req = (req + 2) & M_POLADBGRDPTR;
3709 		rsp = (rsp + 2) & M_PILADBGRDPTR;
3710 	}
3711 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3712 }
3713 
3714 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3715 {
3716 	u32 cfg;
3717 	int i, j, idx;
3718 
3719 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3720 	if (cfg & F_LADBGEN)
3721 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3722 
3723 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3724 		for (j = 0; j < 5; j++) {
3725 			idx = 8 * i + j;
3726 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3727 				     V_PILADBGRDPTR(idx));
3728 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3729 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3730 		}
3731 	}
3732 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3733 }
3734 
3735 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3736 {
3737 	unsigned int i, j;
3738 
3739 	for (i = 0; i < 8; i++) {
3740 		u32 *p = la_buf + i;
3741 
3742 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3743 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3744 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3745 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3746 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3747 	}
3748 }
3749 
3750 /**
3751  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3752  *	@caps16: a 16-bit Port Capabilities value
3753  *
3754  *	Returns the equivalent 32-bit Port Capabilities value.
3755  */
3756 static uint32_t fwcaps16_to_caps32(uint16_t caps16)
3757 {
3758 	uint32_t caps32 = 0;
3759 
3760 	#define CAP16_TO_CAP32(__cap) \
3761 		do { \
3762 			if (caps16 & FW_PORT_CAP_##__cap) \
3763 				caps32 |= FW_PORT_CAP32_##__cap; \
3764 		} while (0)
3765 
3766 	CAP16_TO_CAP32(SPEED_100M);
3767 	CAP16_TO_CAP32(SPEED_1G);
3768 	CAP16_TO_CAP32(SPEED_25G);
3769 	CAP16_TO_CAP32(SPEED_10G);
3770 	CAP16_TO_CAP32(SPEED_40G);
3771 	CAP16_TO_CAP32(SPEED_100G);
3772 	CAP16_TO_CAP32(FC_RX);
3773 	CAP16_TO_CAP32(FC_TX);
3774 	CAP16_TO_CAP32(ANEG);
3775 	CAP16_TO_CAP32(FORCE_PAUSE);
3776 	CAP16_TO_CAP32(MDIAUTO);
3777 	CAP16_TO_CAP32(MDISTRAIGHT);
3778 	CAP16_TO_CAP32(FEC_RS);
3779 	CAP16_TO_CAP32(FEC_BASER_RS);
3780 	CAP16_TO_CAP32(802_3_PAUSE);
3781 	CAP16_TO_CAP32(802_3_ASM_DIR);
3782 
3783 	#undef CAP16_TO_CAP32
3784 
3785 	return caps32;
3786 }
3787 
3788 /**
3789  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3790  *	@caps32: a 32-bit Port Capabilities value
3791  *
3792  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
3793  *	not all 32-bit Port Capabilities can be represented in the 16-bit
3794  *	Port Capabilities and some fields/values may not make it.
3795  */
3796 static uint16_t fwcaps32_to_caps16(uint32_t caps32)
3797 {
3798 	uint16_t caps16 = 0;
3799 
3800 	#define CAP32_TO_CAP16(__cap) \
3801 		do { \
3802 			if (caps32 & FW_PORT_CAP32_##__cap) \
3803 				caps16 |= FW_PORT_CAP_##__cap; \
3804 		} while (0)
3805 
3806 	CAP32_TO_CAP16(SPEED_100M);
3807 	CAP32_TO_CAP16(SPEED_1G);
3808 	CAP32_TO_CAP16(SPEED_10G);
3809 	CAP32_TO_CAP16(SPEED_25G);
3810 	CAP32_TO_CAP16(SPEED_40G);
3811 	CAP32_TO_CAP16(SPEED_100G);
3812 	CAP32_TO_CAP16(FC_RX);
3813 	CAP32_TO_CAP16(FC_TX);
3814 	CAP32_TO_CAP16(802_3_PAUSE);
3815 	CAP32_TO_CAP16(802_3_ASM_DIR);
3816 	CAP32_TO_CAP16(ANEG);
3817 	CAP32_TO_CAP16(FORCE_PAUSE);
3818 	CAP32_TO_CAP16(MDIAUTO);
3819 	CAP32_TO_CAP16(MDISTRAIGHT);
3820 	CAP32_TO_CAP16(FEC_RS);
3821 	CAP32_TO_CAP16(FEC_BASER_RS);
3822 
3823 	#undef CAP32_TO_CAP16
3824 
3825 	return caps16;
3826 }
3827 
3828 static bool
3829 is_bt(struct port_info *pi)
3830 {
3831 
3832 	return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
3833 	    pi->port_type == FW_PORT_TYPE_BT_XFI ||
3834 	    pi->port_type == FW_PORT_TYPE_BT_XAUI);
3835 }
3836 
3837 static int8_t fwcap_to_fec(uint32_t caps, bool unset_means_none)
3838 {
3839 	int8_t fec = 0;
3840 
3841 	if ((caps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC)) == 0)
3842 		return (unset_means_none ? FEC_NONE : 0);
3843 
3844 	if (caps & FW_PORT_CAP32_FEC_RS)
3845 		fec |= FEC_RS;
3846 	if (caps & FW_PORT_CAP32_FEC_BASER_RS)
3847 		fec |= FEC_BASER_RS;
3848 	if (caps & FW_PORT_CAP32_FEC_NO_FEC)
3849 		fec |= FEC_NONE;
3850 
3851 	return (fec);
3852 }
3853 
3854 /*
3855  * Note that 0 is not translated to NO_FEC.
3856  */
3857 static uint32_t fec_to_fwcap(int8_t fec)
3858 {
3859 	uint32_t caps = 0;
3860 
3861 	/* Only real FECs allowed. */
3862 	MPASS((fec & ~M_FW_PORT_CAP32_FEC) == 0);
3863 
3864 	if (fec & FEC_RS)
3865 		caps |= FW_PORT_CAP32_FEC_RS;
3866 	if (fec & FEC_BASER_RS)
3867 		caps |= FW_PORT_CAP32_FEC_BASER_RS;
3868 	if (fec & FEC_NONE)
3869 		caps |= FW_PORT_CAP32_FEC_NO_FEC;
3870 
3871 	return (caps);
3872 }
3873 
3874 /**
3875  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3876  *	@phy: the PHY to setup
3877  *	@mac: the MAC to setup
3878  *	@lc: the requested link configuration
3879  *
3880  *	Set up a port's MAC and PHY according to a desired link configuration.
3881  *	- If the PHY can auto-negotiate first decide what to advertise, then
3882  *	  enable/disable auto-negotiation as desired, and reset.
3883  *	- If the PHY does not auto-negotiate just reset it.
3884  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3885  *	  otherwise do it later based on the outcome of auto-negotiation.
3886  */
3887 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3888 		  struct link_config *lc)
3889 {
3890 	struct fw_port_cmd c;
3891 	unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
3892 	unsigned int aneg, fc, fec, speed, rcap;
3893 
3894 	fc = 0;
3895 	if (lc->requested_fc & PAUSE_RX)
3896 		fc |= FW_PORT_CAP32_FC_RX;
3897 	if (lc->requested_fc & PAUSE_TX)
3898 		fc |= FW_PORT_CAP32_FC_TX;
3899 	if (!(lc->requested_fc & PAUSE_AUTONEG))
3900 		fc |= FW_PORT_CAP32_FORCE_PAUSE;
3901 
3902 	if (lc->requested_aneg == AUTONEG_DISABLE)
3903 		aneg = 0;
3904 	else if (lc->requested_aneg == AUTONEG_ENABLE)
3905 		aneg = FW_PORT_CAP32_ANEG;
3906 	else
3907 		aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
3908 
3909 	if (aneg) {
3910 		speed = lc->pcaps &
3911 		    V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
3912 	} else if (lc->requested_speed != 0)
3913 		speed = speed_to_fwcap(lc->requested_speed);
3914 	else
3915 		speed = fwcap_top_speed(lc->pcaps);
3916 
3917 	fec = 0;
3918 	if (fec_supported(lc->pcaps)) {
3919 		if (lc->requested_fec == FEC_AUTO) {
3920 			if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC) {
3921 				if (speed & FW_PORT_CAP32_SPEED_100G) {
3922 					fec |= FW_PORT_CAP32_FEC_RS;
3923 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3924 				} else {
3925 					fec |= FW_PORT_CAP32_FEC_RS;
3926 					fec |= FW_PORT_CAP32_FEC_BASER_RS;
3927 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3928 				}
3929 			} else {
3930 				/* Set only 1b with old firmwares. */
3931 				fec |= fec_to_fwcap(lc->fec_hint);
3932 			}
3933 		} else {
3934 			fec |= fec_to_fwcap(lc->requested_fec &
3935 			    M_FW_PORT_CAP32_FEC);
3936 			if (lc->requested_fec & FEC_MODULE)
3937 				fec |= fec_to_fwcap(lc->fec_hint);
3938 		}
3939 
3940 		if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC)
3941 			fec |= FW_PORT_CAP32_FORCE_FEC;
3942 		else if (fec == FW_PORT_CAP32_FEC_NO_FEC)
3943 			fec = 0;
3944 	}
3945 
3946 	/* Force AN on for BT cards. */
3947 	if (is_bt(adap->port[adap->chan_map[port]]))
3948 		aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
3949 
3950 	rcap = aneg | speed | fc | fec;
3951 	if ((rcap | lc->pcaps) != lc->pcaps) {
3952 #ifdef INVARIANTS
3953 		CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x, removed 0x%x\n", rcap,
3954 		    lc->pcaps, rcap & (rcap ^ lc->pcaps));
3955 #endif
3956 		rcap &= lc->pcaps;
3957 	}
3958 	rcap |= mdi;
3959 
3960 	memset(&c, 0, sizeof(c));
3961 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3962 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3963 				     V_FW_PORT_CMD_PORTID(port));
3964 	if (adap->params.port_caps32) {
3965 		c.action_to_len16 =
3966 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
3967 			FW_LEN16(c));
3968 		c.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
3969 	} else {
3970 		c.action_to_len16 =
3971 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3972 			    FW_LEN16(c));
3973 		c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
3974 	}
3975 
3976 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3977 }
3978 
3979 /**
3980  *	t4_restart_aneg - restart autonegotiation
3981  *	@adap: the adapter
3982  *	@mbox: mbox to use for the FW command
3983  *	@port: the port id
3984  *
3985  *	Restarts autonegotiation for the selected port.
3986  */
3987 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3988 {
3989 	struct fw_port_cmd c;
3990 
3991 	memset(&c, 0, sizeof(c));
3992 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3993 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3994 				     V_FW_PORT_CMD_PORTID(port));
3995 	c.action_to_len16 =
3996 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3997 			    FW_LEN16(c));
3998 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3999 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4000 }
4001 
4002 struct intr_details {
4003 	u32 mask;
4004 	const char *msg;
4005 };
4006 
4007 struct intr_action {
4008 	u32 mask;
4009 	int arg;
4010 	bool (*action)(struct adapter *, int, bool);
4011 };
4012 
4013 #define NONFATAL_IF_DISABLED 1
4014 struct intr_info {
4015 	const char *name;	/* name of the INT_CAUSE register */
4016 	int cause_reg;		/* INT_CAUSE register */
4017 	int enable_reg;		/* INT_ENABLE register */
4018 	u32 fatal;		/* bits that are fatal */
4019 	int flags;		/* hints */
4020 	const struct intr_details *details;
4021 	const struct intr_action *actions;
4022 };
4023 
4024 static inline char
4025 intr_alert_char(u32 cause, u32 enable, u32 fatal)
4026 {
4027 
4028 	if (cause & fatal)
4029 		return ('!');
4030 	if (cause & enable)
4031 		return ('*');
4032 	return ('-');
4033 }
4034 
4035 static void
4036 t4_show_intr_info(struct adapter *adap, const struct intr_info *ii, u32 cause)
4037 {
4038 	u32 enable, fatal, leftover;
4039 	const struct intr_details *details;
4040 	char alert;
4041 
4042 	enable = t4_read_reg(adap, ii->enable_reg);
4043 	if (ii->flags & NONFATAL_IF_DISABLED)
4044 		fatal = ii->fatal & t4_read_reg(adap, ii->enable_reg);
4045 	else
4046 		fatal = ii->fatal;
4047 	alert = intr_alert_char(cause, enable, fatal);
4048 	CH_ALERT(adap, "%c %s 0x%x = 0x%08x, E 0x%08x, F 0x%08x\n",
4049 	    alert, ii->name, ii->cause_reg, cause, enable, fatal);
4050 
4051 	leftover = cause;
4052 	for (details = ii->details; details && details->mask != 0; details++) {
4053 		u32 msgbits = details->mask & cause;
4054 		if (msgbits == 0)
4055 			continue;
4056 		alert = intr_alert_char(msgbits, enable, ii->fatal);
4057 		CH_ALERT(adap, "  %c [0x%08x] %s\n", alert, msgbits,
4058 		    details->msg);
4059 		leftover &= ~msgbits;
4060 	}
4061 	if (leftover != 0 && leftover != cause)
4062 		CH_ALERT(adap, "  ? [0x%08x]\n", leftover);
4063 }
4064 
4065 /*
4066  * Returns true for fatal error.
4067  */
4068 static bool
4069 t4_handle_intr(struct adapter *adap, const struct intr_info *ii,
4070     u32 additional_cause, bool verbose)
4071 {
4072 	u32 cause, fatal;
4073 	bool rc;
4074 	const struct intr_action *action;
4075 
4076 	/*
4077 	 * Read and display cause.  Note that the top level PL_INT_CAUSE is a
4078 	 * bit special and we need to completely ignore the bits that are not in
4079 	 * PL_INT_ENABLE.
4080 	 */
4081 	cause = t4_read_reg(adap, ii->cause_reg);
4082 	if (ii->cause_reg == A_PL_INT_CAUSE)
4083 		cause &= t4_read_reg(adap, ii->enable_reg);
4084 	if (verbose || cause != 0)
4085 		t4_show_intr_info(adap, ii, cause);
4086 	fatal = cause & ii->fatal;
4087 	if (fatal != 0 && ii->flags & NONFATAL_IF_DISABLED)
4088 		fatal &= t4_read_reg(adap, ii->enable_reg);
4089 	cause |= additional_cause;
4090 	if (cause == 0)
4091 		return (false);
4092 
4093 	rc = fatal != 0;
4094 	for (action = ii->actions; action && action->mask != 0; action++) {
4095 		if (!(action->mask & cause))
4096 			continue;
4097 		rc |= (action->action)(adap, action->arg, verbose);
4098 	}
4099 
4100 	/* clear */
4101 	t4_write_reg(adap, ii->cause_reg, cause);
4102 	(void)t4_read_reg(adap, ii->cause_reg);
4103 
4104 	return (rc);
4105 }
4106 
4107 /*
4108  * Interrupt handler for the PCIE module.
4109  */
4110 static bool pcie_intr_handler(struct adapter *adap, int arg, bool verbose)
4111 {
4112 	static const struct intr_details sysbus_intr_details[] = {
4113 		{ F_RNPP, "RXNP array parity error" },
4114 		{ F_RPCP, "RXPC array parity error" },
4115 		{ F_RCIP, "RXCIF array parity error" },
4116 		{ F_RCCP, "Rx completions control array parity error" },
4117 		{ F_RFTP, "RXFT array parity error" },
4118 		{ 0 }
4119 	};
4120 	static const struct intr_info sysbus_intr_info = {
4121 		.name = "PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS",
4122 		.cause_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4123 		.enable_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_INTERRUPT_ENABLE,
4124 		.fatal = F_RFTP | F_RCCP | F_RCIP | F_RPCP | F_RNPP,
4125 		.flags = 0,
4126 		.details = sysbus_intr_details,
4127 		.actions = NULL,
4128 	};
4129 	static const struct intr_details pcie_port_intr_details[] = {
4130 		{ F_TPCP, "TXPC array parity error" },
4131 		{ F_TNPP, "TXNP array parity error" },
4132 		{ F_TFTP, "TXFT array parity error" },
4133 		{ F_TCAP, "TXCA array parity error" },
4134 		{ F_TCIP, "TXCIF array parity error" },
4135 		{ F_RCAP, "RXCA array parity error" },
4136 		{ F_OTDD, "outbound request TLP discarded" },
4137 		{ F_RDPE, "Rx data parity error" },
4138 		{ F_TDUE, "Tx uncorrectable data error" },
4139 		{ 0 }
4140 	};
4141 	static const struct intr_info pcie_port_intr_info = {
4142 		.name = "PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS",
4143 		.cause_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4144 		.enable_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_INTERRUPT_ENABLE,
4145 		.fatal = F_TPCP | F_TNPP | F_TFTP | F_TCAP | F_TCIP | F_RCAP |
4146 		    F_OTDD | F_RDPE | F_TDUE,
4147 		.flags = 0,
4148 		.details = pcie_port_intr_details,
4149 		.actions = NULL,
4150 	};
4151 	static const struct intr_details pcie_intr_details[] = {
4152 		{ F_MSIADDRLPERR, "MSI AddrL parity error" },
4153 		{ F_MSIADDRHPERR, "MSI AddrH parity error" },
4154 		{ F_MSIDATAPERR, "MSI data parity error" },
4155 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error" },
4156 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error" },
4157 		{ F_MSIXDATAPERR, "MSI-X data parity error" },
4158 		{ F_MSIXDIPERR, "MSI-X DI parity error" },
4159 		{ F_PIOCPLPERR, "PCIe PIO completion FIFO parity error" },
4160 		{ F_PIOREQPERR, "PCIe PIO request FIFO parity error" },
4161 		{ F_TARTAGPERR, "PCIe target tag FIFO parity error" },
4162 		{ F_CCNTPERR, "PCIe CMD channel count parity error" },
4163 		{ F_CREQPERR, "PCIe CMD channel request parity error" },
4164 		{ F_CRSPPERR, "PCIe CMD channel response parity error" },
4165 		{ F_DCNTPERR, "PCIe DMA channel count parity error" },
4166 		{ F_DREQPERR, "PCIe DMA channel request parity error" },
4167 		{ F_DRSPPERR, "PCIe DMA channel response parity error" },
4168 		{ F_HCNTPERR, "PCIe HMA channel count parity error" },
4169 		{ F_HREQPERR, "PCIe HMA channel request parity error" },
4170 		{ F_HRSPPERR, "PCIe HMA channel response parity error" },
4171 		{ F_CFGSNPPERR, "PCIe config snoop FIFO parity error" },
4172 		{ F_FIDPERR, "PCIe FID parity error" },
4173 		{ F_INTXCLRPERR, "PCIe INTx clear parity error" },
4174 		{ F_MATAGPERR, "PCIe MA tag parity error" },
4175 		{ F_PIOTAGPERR, "PCIe PIO tag parity error" },
4176 		{ F_RXCPLPERR, "PCIe Rx completion parity error" },
4177 		{ F_RXWRPERR, "PCIe Rx write parity error" },
4178 		{ F_RPLPERR, "PCIe replay buffer parity error" },
4179 		{ F_PCIESINT, "PCIe core secondary fault" },
4180 		{ F_PCIEPINT, "PCIe core primary fault" },
4181 		{ F_UNXSPLCPLERR, "PCIe unexpected split completion error" },
4182 		{ 0 }
4183 	};
4184 	static const struct intr_details t5_pcie_intr_details[] = {
4185 		{ F_IPGRPPERR, "Parity errors observed by IP" },
4186 		{ F_NONFATALERR, "PCIe non-fatal error" },
4187 		{ F_READRSPERR, "Outbound read error" },
4188 		{ F_TRGT1GRPPERR, "PCIe TRGT1 group FIFOs parity error" },
4189 		{ F_IPSOTPERR, "PCIe IP SOT buffer SRAM parity error" },
4190 		{ F_IPRETRYPERR, "PCIe IP replay buffer parity error" },
4191 		{ F_IPRXDATAGRPPERR, "PCIe IP Rx data group SRAMs parity error" },
4192 		{ F_IPRXHDRGRPPERR, "PCIe IP Rx header group SRAMs parity error" },
4193 		{ F_PIOTAGQPERR, "PIO tag queue FIFO parity error" },
4194 		{ F_MAGRPPERR, "MA group FIFO parity error" },
4195 		{ F_VFIDPERR, "VFID SRAM parity error" },
4196 		{ F_FIDPERR, "FID SRAM parity error" },
4197 		{ F_CFGSNPPERR, "config snoop FIFO parity error" },
4198 		{ F_HRSPPERR, "HMA channel response data SRAM parity error" },
4199 		{ F_HREQRDPERR, "HMA channel read request SRAM parity error" },
4200 		{ F_HREQWRPERR, "HMA channel write request SRAM parity error" },
4201 		{ F_DRSPPERR, "DMA channel response data SRAM parity error" },
4202 		{ F_DREQRDPERR, "DMA channel write request SRAM parity error" },
4203 		{ F_CRSPPERR, "CMD channel response data SRAM parity error" },
4204 		{ F_CREQRDPERR, "CMD channel read request SRAM parity error" },
4205 		{ F_MSTTAGQPERR, "PCIe master tag queue SRAM parity error" },
4206 		{ F_TGTTAGQPERR, "PCIe target tag queue FIFO parity error" },
4207 		{ F_PIOREQGRPPERR, "PIO request group FIFOs parity error" },
4208 		{ F_PIOCPLGRPPERR, "PIO completion group FIFOs parity error" },
4209 		{ F_MSIXDIPERR, "MSI-X DI SRAM parity error" },
4210 		{ F_MSIXDATAPERR, "MSI-X data SRAM parity error" },
4211 		{ F_MSIXADDRHPERR, "MSI-X AddrH SRAM parity error" },
4212 		{ F_MSIXADDRLPERR, "MSI-X AddrL SRAM parity error" },
4213 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error" },
4214 		{ F_MSTTIMEOUTPERR, "Master timeout FIFO parity error" },
4215 		{ F_MSTGRPPERR, "Master response read queue SRAM parity error" },
4216 		{ 0 }
4217 	};
4218 	struct intr_info pcie_intr_info = {
4219 		.name = "PCIE_INT_CAUSE",
4220 		.cause_reg = A_PCIE_INT_CAUSE,
4221 		.enable_reg = A_PCIE_INT_ENABLE,
4222 		.fatal = 0xffffffff,
4223 		.flags = NONFATAL_IF_DISABLED,
4224 		.details = NULL,
4225 		.actions = NULL,
4226 	};
4227 	bool fatal = false;
4228 
4229 	if (is_t4(adap)) {
4230 		fatal |= t4_handle_intr(adap, &sysbus_intr_info, 0, verbose);
4231 		fatal |= t4_handle_intr(adap, &pcie_port_intr_info, 0, verbose);
4232 
4233 		pcie_intr_info.details = pcie_intr_details;
4234 	} else {
4235 		pcie_intr_info.details = t5_pcie_intr_details;
4236 	}
4237 	fatal |= t4_handle_intr(adap, &pcie_intr_info, 0, verbose);
4238 
4239 	return (fatal);
4240 }
4241 
4242 /*
4243  * TP interrupt handler.
4244  */
4245 static bool tp_intr_handler(struct adapter *adap, int arg, bool verbose)
4246 {
4247 	static const struct intr_details tp_intr_details[] = {
4248 		{ 0x3fffffff, "TP parity error" },
4249 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages" },
4250 		{ 0 }
4251 	};
4252 	static const struct intr_info tp_intr_info = {
4253 		.name = "TP_INT_CAUSE",
4254 		.cause_reg = A_TP_INT_CAUSE,
4255 		.enable_reg = A_TP_INT_ENABLE,
4256 		.fatal = 0x7fffffff,
4257 		.flags = NONFATAL_IF_DISABLED,
4258 		.details = tp_intr_details,
4259 		.actions = NULL,
4260 	};
4261 
4262 	return (t4_handle_intr(adap, &tp_intr_info, 0, verbose));
4263 }
4264 
4265 /*
4266  * SGE interrupt handler.
4267  */
4268 static bool sge_intr_handler(struct adapter *adap, int arg, bool verbose)
4269 {
4270 	static const struct intr_info sge_int1_info = {
4271 		.name = "SGE_INT_CAUSE1",
4272 		.cause_reg = A_SGE_INT_CAUSE1,
4273 		.enable_reg = A_SGE_INT_ENABLE1,
4274 		.fatal = 0xffffffff,
4275 		.flags = NONFATAL_IF_DISABLED,
4276 		.details = NULL,
4277 		.actions = NULL,
4278 	};
4279 	static const struct intr_info sge_int2_info = {
4280 		.name = "SGE_INT_CAUSE2",
4281 		.cause_reg = A_SGE_INT_CAUSE2,
4282 		.enable_reg = A_SGE_INT_ENABLE2,
4283 		.fatal = 0xffffffff,
4284 		.flags = NONFATAL_IF_DISABLED,
4285 		.details = NULL,
4286 		.actions = NULL,
4287 	};
4288 	static const struct intr_details sge_int3_details[] = {
4289 		{ F_ERR_FLM_DBP,
4290 			"DBP pointer delivery for invalid context or QID" },
4291 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4292 			"Invalid QID or header request by IDMA" },
4293 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4294 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4295 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4296 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4297 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4298 		{ F_ERR_TIMER_ABOVE_MAX_QID,
4299 			"SGE GTS with timer 0-5 for IQID > 1023" },
4300 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4301 			"SGE received CPL exceeding IQE size" },
4302 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4303 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4304 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4305 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4306 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4307 		  "SGE IQID > 1023 received CPL for FL" },
4308 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4309 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4310 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4311 		{ F_ERR_ING_CTXT_PRIO,
4312 			"Ingress context manager priority user error" },
4313 		{ F_ERR_EGR_CTXT_PRIO,
4314 			"Egress context manager priority user error" },
4315 		{ F_DBFIFO_HP_INT, "High priority DB FIFO threshold reached" },
4316 		{ F_DBFIFO_LP_INT, "Low priority DB FIFO threshold reached" },
4317 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4318 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4319 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4320 		{ 0x0000000f, "SGE context access for invalid queue" },
4321 		{ 0 }
4322 	};
4323 	static const struct intr_details t6_sge_int3_details[] = {
4324 		{ F_ERR_FLM_DBP,
4325 			"DBP pointer delivery for invalid context or QID" },
4326 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4327 			"Invalid QID or header request by IDMA" },
4328 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4329 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4330 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4331 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4332 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4333 		{ F_ERR_TIMER_ABOVE_MAX_QID,
4334 			"SGE GTS with timer 0-5 for IQID > 1023" },
4335 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4336 			"SGE received CPL exceeding IQE size" },
4337 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4338 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4339 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4340 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4341 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4342 			"SGE IQID > 1023 received CPL for FL" },
4343 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4344 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4345 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4346 		{ F_ERR_ING_CTXT_PRIO,
4347 			"Ingress context manager priority user error" },
4348 		{ F_ERR_EGR_CTXT_PRIO,
4349 			"Egress context manager priority user error" },
4350 		{ F_DBP_TBUF_FULL, "SGE DBP tbuf full" },
4351 		{ F_FATAL_WRE_LEN,
4352 			"SGE WRE packet less than advertized length" },
4353 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4354 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4355 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4356 		{ 0x0000000f, "SGE context access for invalid queue" },
4357 		{ 0 }
4358 	};
4359 	struct intr_info sge_int3_info = {
4360 		.name = "SGE_INT_CAUSE3",
4361 		.cause_reg = A_SGE_INT_CAUSE3,
4362 		.enable_reg = A_SGE_INT_ENABLE3,
4363 		.fatal = F_ERR_CPL_EXCEED_IQE_SIZE,
4364 		.flags = 0,
4365 		.details = NULL,
4366 		.actions = NULL,
4367 	};
4368 	static const struct intr_info sge_int4_info = {
4369 		.name = "SGE_INT_CAUSE4",
4370 		.cause_reg = A_SGE_INT_CAUSE4,
4371 		.enable_reg = A_SGE_INT_ENABLE4,
4372 		.fatal = 0,
4373 		.flags = 0,
4374 		.details = NULL,
4375 		.actions = NULL,
4376 	};
4377 	static const struct intr_info sge_int5_info = {
4378 		.name = "SGE_INT_CAUSE5",
4379 		.cause_reg = A_SGE_INT_CAUSE5,
4380 		.enable_reg = A_SGE_INT_ENABLE5,
4381 		.fatal = 0xffffffff,
4382 		.flags = NONFATAL_IF_DISABLED,
4383 		.details = NULL,
4384 		.actions = NULL,
4385 	};
4386 	static const struct intr_info sge_int6_info = {
4387 		.name = "SGE_INT_CAUSE6",
4388 		.cause_reg = A_SGE_INT_CAUSE6,
4389 		.enable_reg = A_SGE_INT_ENABLE6,
4390 		.fatal = 0,
4391 		.flags = 0,
4392 		.details = NULL,
4393 		.actions = NULL,
4394 	};
4395 
4396 	bool fatal;
4397 	u32 v;
4398 
4399 	if (chip_id(adap) <= CHELSIO_T5) {
4400 		sge_int3_info.details = sge_int3_details;
4401 	} else {
4402 		sge_int3_info.details = t6_sge_int3_details;
4403 	}
4404 
4405 	fatal = false;
4406 	fatal |= t4_handle_intr(adap, &sge_int1_info, 0, verbose);
4407 	fatal |= t4_handle_intr(adap, &sge_int2_info, 0, verbose);
4408 	fatal |= t4_handle_intr(adap, &sge_int3_info, 0, verbose);
4409 	fatal |= t4_handle_intr(adap, &sge_int4_info, 0, verbose);
4410 	if (chip_id(adap) >= CHELSIO_T5)
4411 		fatal |= t4_handle_intr(adap, &sge_int5_info, 0, verbose);
4412 	if (chip_id(adap) >= CHELSIO_T6)
4413 		fatal |= t4_handle_intr(adap, &sge_int6_info, 0, verbose);
4414 
4415 	v = t4_read_reg(adap, A_SGE_ERROR_STATS);
4416 	if (v & F_ERROR_QID_VALID) {
4417 		CH_ERR(adap, "SGE error for QID %u\n", G_ERROR_QID(v));
4418 		if (v & F_UNCAPTURED_ERROR)
4419 			CH_ERR(adap, "SGE UNCAPTURED_ERROR set (clearing)\n");
4420 		t4_write_reg(adap, A_SGE_ERROR_STATS,
4421 		    F_ERROR_QID_VALID | F_UNCAPTURED_ERROR);
4422 	}
4423 
4424 	return (fatal);
4425 }
4426 
4427 /*
4428  * CIM interrupt handler.
4429  */
4430 static bool cim_intr_handler(struct adapter *adap, int arg, bool verbose)
4431 {
4432 	static const struct intr_action cim_host_intr_actions[] = {
4433 		{ F_TIMER0INT, 0, t4_os_dump_cimla },
4434 		{ 0 },
4435 	};
4436 	static const struct intr_details cim_host_intr_details[] = {
4437 		/* T6+ */
4438 		{ F_PCIE2CIMINTFPARERR, "CIM IBQ PCIe interface parity error" },
4439 
4440 		/* T5+ */
4441 		{ F_MA_CIM_INTFPERR, "MA2CIM interface parity error" },
4442 		{ F_PLCIM_MSTRSPDATAPARERR,
4443 			"PL2CIM master response data parity error" },
4444 		{ F_NCSI2CIMINTFPARERR, "CIM IBQ NC-SI interface parity error" },
4445 		{ F_SGE2CIMINTFPARERR, "CIM IBQ SGE interface parity error" },
4446 		{ F_ULP2CIMINTFPARERR, "CIM IBQ ULP_TX interface parity error" },
4447 		{ F_TP2CIMINTFPARERR, "CIM IBQ TP interface parity error" },
4448 		{ F_OBQSGERX1PARERR, "CIM OBQ SGE1_RX parity error" },
4449 		{ F_OBQSGERX0PARERR, "CIM OBQ SGE0_RX parity error" },
4450 
4451 		/* T4+ */
4452 		{ F_TIEQOUTPARERRINT, "CIM TIEQ outgoing FIFO parity error" },
4453 		{ F_TIEQINPARERRINT, "CIM TIEQ incoming FIFO parity error" },
4454 		{ F_MBHOSTPARERR, "CIM mailbox host read parity error" },
4455 		{ F_MBUPPARERR, "CIM mailbox uP parity error" },
4456 		{ F_IBQTP0PARERR, "CIM IBQ TP0 parity error" },
4457 		{ F_IBQTP1PARERR, "CIM IBQ TP1 parity error" },
4458 		{ F_IBQULPPARERR, "CIM IBQ ULP parity error" },
4459 		{ F_IBQSGELOPARERR, "CIM IBQ SGE_LO parity error" },
4460 		{ F_IBQSGEHIPARERR | F_IBQPCIEPARERR,	/* same bit */
4461 			"CIM IBQ PCIe/SGE_HI parity error" },
4462 		{ F_IBQNCSIPARERR, "CIM IBQ NC-SI parity error" },
4463 		{ F_OBQULP0PARERR, "CIM OBQ ULP0 parity error" },
4464 		{ F_OBQULP1PARERR, "CIM OBQ ULP1 parity error" },
4465 		{ F_OBQULP2PARERR, "CIM OBQ ULP2 parity error" },
4466 		{ F_OBQULP3PARERR, "CIM OBQ ULP3 parity error" },
4467 		{ F_OBQSGEPARERR, "CIM OBQ SGE parity error" },
4468 		{ F_OBQNCSIPARERR, "CIM OBQ NC-SI parity error" },
4469 		{ F_TIMER1INT, "CIM TIMER0 interrupt" },
4470 		{ F_TIMER0INT, "CIM TIMER0 interrupt" },
4471 		{ F_PREFDROPINT, "CIM control register prefetch drop" },
4472 		{ 0}
4473 	};
4474 	static const struct intr_info cim_host_intr_info = {
4475 		.name = "CIM_HOST_INT_CAUSE",
4476 		.cause_reg = A_CIM_HOST_INT_CAUSE,
4477 		.enable_reg = A_CIM_HOST_INT_ENABLE,
4478 		.fatal = 0x007fffe6,
4479 		.flags = NONFATAL_IF_DISABLED,
4480 		.details = cim_host_intr_details,
4481 		.actions = cim_host_intr_actions,
4482 	};
4483 	static const struct intr_details cim_host_upacc_intr_details[] = {
4484 		{ F_EEPROMWRINT, "CIM EEPROM came out of busy state" },
4485 		{ F_TIMEOUTMAINT, "CIM PIF MA timeout" },
4486 		{ F_TIMEOUTINT, "CIM PIF timeout" },
4487 		{ F_RSPOVRLOOKUPINT, "CIM response FIFO overwrite" },
4488 		{ F_REQOVRLOOKUPINT, "CIM request FIFO overwrite" },
4489 		{ F_BLKWRPLINT, "CIM block write to PL space" },
4490 		{ F_BLKRDPLINT, "CIM block read from PL space" },
4491 		{ F_SGLWRPLINT,
4492 			"CIM single write to PL space with illegal BEs" },
4493 		{ F_SGLRDPLINT,
4494 			"CIM single read from PL space with illegal BEs" },
4495 		{ F_BLKWRCTLINT, "CIM block write to CTL space" },
4496 		{ F_BLKRDCTLINT, "CIM block read from CTL space" },
4497 		{ F_SGLWRCTLINT,
4498 			"CIM single write to CTL space with illegal BEs" },
4499 		{ F_SGLRDCTLINT,
4500 			"CIM single read from CTL space with illegal BEs" },
4501 		{ F_BLKWREEPROMINT, "CIM block write to EEPROM space" },
4502 		{ F_BLKRDEEPROMINT, "CIM block read from EEPROM space" },
4503 		{ F_SGLWREEPROMINT,
4504 			"CIM single write to EEPROM space with illegal BEs" },
4505 		{ F_SGLRDEEPROMINT,
4506 			"CIM single read from EEPROM space with illegal BEs" },
4507 		{ F_BLKWRFLASHINT, "CIM block write to flash space" },
4508 		{ F_BLKRDFLASHINT, "CIM block read from flash space" },
4509 		{ F_SGLWRFLASHINT, "CIM single write to flash space" },
4510 		{ F_SGLRDFLASHINT,
4511 			"CIM single read from flash space with illegal BEs" },
4512 		{ F_BLKWRBOOTINT, "CIM block write to boot space" },
4513 		{ F_BLKRDBOOTINT, "CIM block read from boot space" },
4514 		{ F_SGLWRBOOTINT, "CIM single write to boot space" },
4515 		{ F_SGLRDBOOTINT,
4516 			"CIM single read from boot space with illegal BEs" },
4517 		{ F_ILLWRBEINT, "CIM illegal write BEs" },
4518 		{ F_ILLRDBEINT, "CIM illegal read BEs" },
4519 		{ F_ILLRDINT, "CIM illegal read" },
4520 		{ F_ILLWRINT, "CIM illegal write" },
4521 		{ F_ILLTRANSINT, "CIM illegal transaction" },
4522 		{ F_RSVDSPACEINT, "CIM reserved space access" },
4523 		{0}
4524 	};
4525 	static const struct intr_info cim_host_upacc_intr_info = {
4526 		.name = "CIM_HOST_UPACC_INT_CAUSE",
4527 		.cause_reg = A_CIM_HOST_UPACC_INT_CAUSE,
4528 		.enable_reg = A_CIM_HOST_UPACC_INT_ENABLE,
4529 		.fatal = 0x3fffeeff,
4530 		.flags = NONFATAL_IF_DISABLED,
4531 		.details = cim_host_upacc_intr_details,
4532 		.actions = NULL,
4533 	};
4534 	static const struct intr_info cim_pf_host_intr_info = {
4535 		.name = "CIM_PF_HOST_INT_CAUSE",
4536 		.cause_reg = MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4537 		.enable_reg = MYPF_REG(A_CIM_PF_HOST_INT_ENABLE),
4538 		.fatal = 0,
4539 		.flags = 0,
4540 		.details = NULL,
4541 		.actions = NULL,
4542 	};
4543 	u32 val, fw_err;
4544 	bool fatal;
4545 
4546 	fw_err = t4_read_reg(adap, A_PCIE_FW);
4547 	if (fw_err & F_PCIE_FW_ERR)
4548 		t4_report_fw_error(adap);
4549 
4550 	/*
4551 	 * When the Firmware detects an internal error which normally wouldn't
4552 	 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4553 	 * to make sure the Host sees the Firmware Crash.  So if we have a
4554 	 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4555 	 * interrupt.
4556 	 */
4557 	val = t4_read_reg(adap, A_CIM_HOST_INT_CAUSE);
4558 	if (val & F_TIMER0INT && (!(fw_err & F_PCIE_FW_ERR) ||
4559 	    G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH)) {
4560 		t4_write_reg(adap, A_CIM_HOST_INT_CAUSE, F_TIMER0INT);
4561 	}
4562 
4563 	fatal = false;
4564 	fatal |= t4_handle_intr(adap, &cim_host_intr_info, 0, verbose);
4565 	fatal |= t4_handle_intr(adap, &cim_host_upacc_intr_info, 0, verbose);
4566 	fatal |= t4_handle_intr(adap, &cim_pf_host_intr_info, 0, verbose);
4567 
4568 	return (fatal);
4569 }
4570 
4571 /*
4572  * ULP RX interrupt handler.
4573  */
4574 static bool ulprx_intr_handler(struct adapter *adap, int arg, bool verbose)
4575 {
4576 	static const struct intr_details ulprx_intr_details[] = {
4577 		/* T5+ */
4578 		{ F_SE_CNT_MISMATCH_1, "ULPRX SE count mismatch in channel 1" },
4579 		{ F_SE_CNT_MISMATCH_0, "ULPRX SE count mismatch in channel 0" },
4580 
4581 		/* T4+ */
4582 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error" },
4583 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error" },
4584 		{ 0x007fffff, "ULPRX parity error" },
4585 		{ 0 }
4586 	};
4587 	static const struct intr_info ulprx_intr_info = {
4588 		.name = "ULP_RX_INT_CAUSE",
4589 		.cause_reg = A_ULP_RX_INT_CAUSE,
4590 		.enable_reg = A_ULP_RX_INT_ENABLE,
4591 		.fatal = 0x07ffffff,
4592 		.flags = NONFATAL_IF_DISABLED,
4593 		.details = ulprx_intr_details,
4594 		.actions = NULL,
4595 	};
4596 	static const struct intr_info ulprx_intr2_info = {
4597 		.name = "ULP_RX_INT_CAUSE_2",
4598 		.cause_reg = A_ULP_RX_INT_CAUSE_2,
4599 		.enable_reg = A_ULP_RX_INT_ENABLE_2,
4600 		.fatal = 0,
4601 		.flags = 0,
4602 		.details = NULL,
4603 		.actions = NULL,
4604 	};
4605 	bool fatal = false;
4606 
4607 	fatal |= t4_handle_intr(adap, &ulprx_intr_info, 0, verbose);
4608 	fatal |= t4_handle_intr(adap, &ulprx_intr2_info, 0, verbose);
4609 
4610 	return (fatal);
4611 }
4612 
4613 /*
4614  * ULP TX interrupt handler.
4615  */
4616 static bool ulptx_intr_handler(struct adapter *adap, int arg, bool verbose)
4617 {
4618 	static const struct intr_details ulptx_intr_details[] = {
4619 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds" },
4620 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds" },
4621 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds" },
4622 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds" },
4623 		{ 0x0fffffff, "ULPTX parity error" },
4624 		{ 0 }
4625 	};
4626 	static const struct intr_info ulptx_intr_info = {
4627 		.name = "ULP_TX_INT_CAUSE",
4628 		.cause_reg = A_ULP_TX_INT_CAUSE,
4629 		.enable_reg = A_ULP_TX_INT_ENABLE,
4630 		.fatal = 0x0fffffff,
4631 		.flags = NONFATAL_IF_DISABLED,
4632 		.details = ulptx_intr_details,
4633 		.actions = NULL,
4634 	};
4635 	static const struct intr_info ulptx_intr2_info = {
4636 		.name = "ULP_TX_INT_CAUSE_2",
4637 		.cause_reg = A_ULP_TX_INT_CAUSE_2,
4638 		.enable_reg = A_ULP_TX_INT_ENABLE_2,
4639 		.fatal = 0xf0,
4640 		.flags = NONFATAL_IF_DISABLED,
4641 		.details = NULL,
4642 		.actions = NULL,
4643 	};
4644 	bool fatal = false;
4645 
4646 	fatal |= t4_handle_intr(adap, &ulptx_intr_info, 0, verbose);
4647 	fatal |= t4_handle_intr(adap, &ulptx_intr2_info, 0, verbose);
4648 
4649 	return (fatal);
4650 }
4651 
4652 static bool pmtx_dump_dbg_stats(struct adapter *adap, int arg, bool verbose)
4653 {
4654 	int i;
4655 	u32 data[17];
4656 
4657 	t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, &data[0],
4658 	    ARRAY_SIZE(data), A_PM_TX_DBG_STAT0);
4659 	for (i = 0; i < ARRAY_SIZE(data); i++) {
4660 		CH_ALERT(adap, "  - PM_TX_DBG_STAT%u (0x%x) = 0x%08x\n", i,
4661 		    A_PM_TX_DBG_STAT0 + i, data[i]);
4662 	}
4663 
4664 	return (false);
4665 }
4666 
4667 /*
4668  * PM TX interrupt handler.
4669  */
4670 static bool pmtx_intr_handler(struct adapter *adap, int arg, bool verbose)
4671 {
4672 	static const struct intr_action pmtx_intr_actions[] = {
4673 		{ 0xffffffff, 0, pmtx_dump_dbg_stats },
4674 		{ 0 },
4675 	};
4676 	static const struct intr_details pmtx_intr_details[] = {
4677 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large" },
4678 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large" },
4679 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large" },
4680 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd" },
4681 		{ 0x0f000000, "PMTX icspi FIFO2X Rx framing error" },
4682 		{ 0x00f00000, "PMTX icspi FIFO Rx framing error" },
4683 		{ 0x000f0000, "PMTX icspi FIFO Tx framing error" },
4684 		{ 0x0000f000, "PMTX oespi FIFO Rx framing error" },
4685 		{ 0x00000f00, "PMTX oespi FIFO Tx framing error" },
4686 		{ 0x000000f0, "PMTX oespi FIFO2X Tx framing error" },
4687 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error" },
4688 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error" },
4689 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error" },
4690 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error" },
4691 		{ 0 }
4692 	};
4693 	static const struct intr_info pmtx_intr_info = {
4694 		.name = "PM_TX_INT_CAUSE",
4695 		.cause_reg = A_PM_TX_INT_CAUSE,
4696 		.enable_reg = A_PM_TX_INT_ENABLE,
4697 		.fatal = 0xffffffff,
4698 		.flags = 0,
4699 		.details = pmtx_intr_details,
4700 		.actions = pmtx_intr_actions,
4701 	};
4702 
4703 	return (t4_handle_intr(adap, &pmtx_intr_info, 0, verbose));
4704 }
4705 
4706 /*
4707  * PM RX interrupt handler.
4708  */
4709 static bool pmrx_intr_handler(struct adapter *adap, int arg, bool verbose)
4710 {
4711 	static const struct intr_details pmrx_intr_details[] = {
4712 		/* T6+ */
4713 		{ 0x18000000, "PMRX ospi overflow" },
4714 		{ F_MA_INTF_SDC_ERR, "PMRX MA interface SDC parity error" },
4715 		{ F_BUNDLE_LEN_PARERR, "PMRX bundle len FIFO parity error" },
4716 		{ F_BUNDLE_LEN_OVFL, "PMRX bundle len FIFO overflow" },
4717 		{ F_SDC_ERR, "PMRX SDC error" },
4718 
4719 		/* T4+ */
4720 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd" },
4721 		{ 0x003c0000, "PMRX iespi FIFO2X Rx framing error" },
4722 		{ 0x0003c000, "PMRX iespi Rx framing error" },
4723 		{ 0x00003c00, "PMRX iespi Tx framing error" },
4724 		{ 0x00000300, "PMRX ocspi Rx framing error" },
4725 		{ 0x000000c0, "PMRX ocspi Tx framing error" },
4726 		{ 0x00000030, "PMRX ocspi FIFO2X Tx framing error" },
4727 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error" },
4728 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error" },
4729 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error" },
4730 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error"},
4731 		{ 0 }
4732 	};
4733 	static const struct intr_info pmrx_intr_info = {
4734 		.name = "PM_RX_INT_CAUSE",
4735 		.cause_reg = A_PM_RX_INT_CAUSE,
4736 		.enable_reg = A_PM_RX_INT_ENABLE,
4737 		.fatal = 0x1fffffff,
4738 		.flags = NONFATAL_IF_DISABLED,
4739 		.details = pmrx_intr_details,
4740 		.actions = NULL,
4741 	};
4742 
4743 	return (t4_handle_intr(adap, &pmrx_intr_info, 0, verbose));
4744 }
4745 
4746 /*
4747  * CPL switch interrupt handler.
4748  */
4749 static bool cplsw_intr_handler(struct adapter *adap, int arg, bool verbose)
4750 {
4751 	static const struct intr_details cplsw_intr_details[] = {
4752 		/* T5+ */
4753 		{ F_PERR_CPL_128TO128_1, "CPLSW 128TO128 FIFO1 parity error" },
4754 		{ F_PERR_CPL_128TO128_0, "CPLSW 128TO128 FIFO0 parity error" },
4755 
4756 		/* T4+ */
4757 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error" },
4758 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow" },
4759 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error" },
4760 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error" },
4761 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error" },
4762 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error" },
4763 		{ 0 }
4764 	};
4765 	static const struct intr_info cplsw_intr_info = {
4766 		.name = "CPL_INTR_CAUSE",
4767 		.cause_reg = A_CPL_INTR_CAUSE,
4768 		.enable_reg = A_CPL_INTR_ENABLE,
4769 		.fatal = 0xff,
4770 		.flags = NONFATAL_IF_DISABLED,
4771 		.details = cplsw_intr_details,
4772 		.actions = NULL,
4773 	};
4774 
4775 	return (t4_handle_intr(adap, &cplsw_intr_info, 0, verbose));
4776 }
4777 
4778 #define T4_LE_FATAL_MASK (F_PARITYERR | F_UNKNOWNCMD | F_REQQPARERR)
4779 #define T5_LE_FATAL_MASK (T4_LE_FATAL_MASK | F_VFPARERR)
4780 #define T6_LE_PERRCRC_MASK (F_PIPELINEERR | F_CLIPTCAMACCFAIL | \
4781     F_SRVSRAMACCFAIL | F_CLCAMCRCPARERR | F_CLCAMINTPERR | F_SSRAMINTPERR | \
4782     F_SRVSRAMPERR | F_VFSRAMPERR | F_TCAMINTPERR | F_TCAMCRCERR | \
4783     F_HASHTBLMEMACCERR | F_MAIFWRINTPERR | F_HASHTBLMEMCRCERR)
4784 #define T6_LE_FATAL_MASK (T6_LE_PERRCRC_MASK | F_T6_UNKNOWNCMD | \
4785     F_TCAMACCFAIL | F_HASHTBLACCFAIL | F_CMDTIDERR | F_CMDPRSRINTERR | \
4786     F_TOTCNTERR | F_CLCAMFIFOERR | F_CLIPSUBERR)
4787 
4788 /*
4789  * LE interrupt handler.
4790  */
4791 static bool le_intr_handler(struct adapter *adap, int arg, bool verbose)
4792 {
4793 	static const struct intr_details le_intr_details[] = {
4794 		{ F_REQQPARERR, "LE request queue parity error" },
4795 		{ F_UNKNOWNCMD, "LE unknown command" },
4796 		{ F_ACTRGNFULL, "LE active region full" },
4797 		{ F_PARITYERR, "LE parity error" },
4798 		{ F_LIPMISS, "LE LIP miss" },
4799 		{ F_LIP0, "LE 0 LIP error" },
4800 		{ 0 }
4801 	};
4802 	static const struct intr_details t6_le_intr_details[] = {
4803 		{ F_CLIPSUBERR, "LE CLIP CAM reverse substitution error" },
4804 		{ F_CLCAMFIFOERR, "LE CLIP CAM internal FIFO error" },
4805 		{ F_CTCAMINVLDENT, "Invalid IPv6 CLIP TCAM entry" },
4806 		{ F_TCAMINVLDENT, "Invalid IPv6 TCAM entry" },
4807 		{ F_TOTCNTERR, "LE total active < TCAM count" },
4808 		{ F_CMDPRSRINTERR, "LE internal error in parser" },
4809 		{ F_CMDTIDERR, "Incorrect tid in LE command" },
4810 		{ F_T6_ACTRGNFULL, "LE active region full" },
4811 		{ F_T6_ACTCNTIPV6TZERO, "LE IPv6 active open TCAM counter -ve" },
4812 		{ F_T6_ACTCNTIPV4TZERO, "LE IPv4 active open TCAM counter -ve" },
4813 		{ F_T6_ACTCNTIPV6ZERO, "LE IPv6 active open counter -ve" },
4814 		{ F_T6_ACTCNTIPV4ZERO, "LE IPv4 active open counter -ve" },
4815 		{ F_HASHTBLACCFAIL, "Hash table read error (proto conflict)" },
4816 		{ F_TCAMACCFAIL, "LE TCAM access failure" },
4817 		{ F_T6_UNKNOWNCMD, "LE unknown command" },
4818 		{ F_T6_LIP0, "LE found 0 LIP during CLIP substitution" },
4819 		{ F_T6_LIPMISS, "LE CLIP lookup miss" },
4820 		{ T6_LE_PERRCRC_MASK, "LE parity/CRC error" },
4821 		{ 0 }
4822 	};
4823 	struct intr_info le_intr_info = {
4824 		.name = "LE_DB_INT_CAUSE",
4825 		.cause_reg = A_LE_DB_INT_CAUSE,
4826 		.enable_reg = A_LE_DB_INT_ENABLE,
4827 		.fatal = 0,
4828 		.flags = NONFATAL_IF_DISABLED,
4829 		.details = NULL,
4830 		.actions = NULL,
4831 	};
4832 
4833 	if (chip_id(adap) <= CHELSIO_T5) {
4834 		le_intr_info.details = le_intr_details;
4835 		le_intr_info.fatal = T5_LE_FATAL_MASK;
4836 	} else {
4837 		le_intr_info.details = t6_le_intr_details;
4838 		le_intr_info.fatal = T6_LE_FATAL_MASK;
4839 	}
4840 
4841 	return (t4_handle_intr(adap, &le_intr_info, 0, verbose));
4842 }
4843 
4844 /*
4845  * MPS interrupt handler.
4846  */
4847 static bool mps_intr_handler(struct adapter *adap, int arg, bool verbose)
4848 {
4849 	static const struct intr_details mps_rx_perr_intr_details[] = {
4850 		{ 0xffffffff, "MPS Rx parity error" },
4851 		{ 0 }
4852 	};
4853 	static const struct intr_info mps_rx_perr_intr_info = {
4854 		.name = "MPS_RX_PERR_INT_CAUSE",
4855 		.cause_reg = A_MPS_RX_PERR_INT_CAUSE,
4856 		.enable_reg = A_MPS_RX_PERR_INT_ENABLE,
4857 		.fatal = 0xffffffff,
4858 		.flags = NONFATAL_IF_DISABLED,
4859 		.details = mps_rx_perr_intr_details,
4860 		.actions = NULL,
4861 	};
4862 	static const struct intr_details mps_tx_intr_details[] = {
4863 		{ F_PORTERR, "MPS Tx destination port is disabled" },
4864 		{ F_FRMERR, "MPS Tx framing error" },
4865 		{ F_SECNTERR, "MPS Tx SOP/EOP error" },
4866 		{ F_BUBBLE, "MPS Tx underflow" },
4867 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error" },
4868 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error" },
4869 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error" },
4870 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error" },
4871 		{ 0 }
4872 	};
4873 	static const struct intr_info mps_tx_intr_info = {
4874 		.name = "MPS_TX_INT_CAUSE",
4875 		.cause_reg = A_MPS_TX_INT_CAUSE,
4876 		.enable_reg = A_MPS_TX_INT_ENABLE,
4877 		.fatal = 0x1ffff,
4878 		.flags = NONFATAL_IF_DISABLED,
4879 		.details = mps_tx_intr_details,
4880 		.actions = NULL,
4881 	};
4882 	static const struct intr_details mps_trc_intr_details[] = {
4883 		{ F_MISCPERR, "MPS TRC misc parity error" },
4884 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error" },
4885 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error" },
4886 		{ 0 }
4887 	};
4888 	static const struct intr_info mps_trc_intr_info = {
4889 		.name = "MPS_TRC_INT_CAUSE",
4890 		.cause_reg = A_MPS_TRC_INT_CAUSE,
4891 		.enable_reg = A_MPS_TRC_INT_ENABLE,
4892 		.fatal = F_MISCPERR | V_PKTFIFO(M_PKTFIFO) | V_FILTMEM(M_FILTMEM),
4893 		.flags = 0,
4894 		.details = mps_trc_intr_details,
4895 		.actions = NULL,
4896 	};
4897 	static const struct intr_details mps_stat_sram_intr_details[] = {
4898 		{ 0xffffffff, "MPS statistics SRAM parity error" },
4899 		{ 0 }
4900 	};
4901 	static const struct intr_info mps_stat_sram_intr_info = {
4902 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM",
4903 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4904 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM,
4905 		.fatal = 0x1fffffff,
4906 		.flags = NONFATAL_IF_DISABLED,
4907 		.details = mps_stat_sram_intr_details,
4908 		.actions = NULL,
4909 	};
4910 	static const struct intr_details mps_stat_tx_intr_details[] = {
4911 		{ 0xffffff, "MPS statistics Tx FIFO parity error" },
4912 		{ 0 }
4913 	};
4914 	static const struct intr_info mps_stat_tx_intr_info = {
4915 		.name = "MPS_STAT_PERR_INT_CAUSE_TX_FIFO",
4916 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4917 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_TX_FIFO,
4918 		.fatal =  0xffffff,
4919 		.flags = NONFATAL_IF_DISABLED,
4920 		.details = mps_stat_tx_intr_details,
4921 		.actions = NULL,
4922 	};
4923 	static const struct intr_details mps_stat_rx_intr_details[] = {
4924 		{ 0xffffff, "MPS statistics Rx FIFO parity error" },
4925 		{ 0 }
4926 	};
4927 	static const struct intr_info mps_stat_rx_intr_info = {
4928 		.name = "MPS_STAT_PERR_INT_CAUSE_RX_FIFO",
4929 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4930 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_RX_FIFO,
4931 		.fatal =  0xffffff,
4932 		.flags = 0,
4933 		.details = mps_stat_rx_intr_details,
4934 		.actions = NULL,
4935 	};
4936 	static const struct intr_details mps_cls_intr_details[] = {
4937 		{ F_HASHSRAM, "MPS hash SRAM parity error" },
4938 		{ F_MATCHTCAM, "MPS match TCAM parity error" },
4939 		{ F_MATCHSRAM, "MPS match SRAM parity error" },
4940 		{ 0 }
4941 	};
4942 	static const struct intr_info mps_cls_intr_info = {
4943 		.name = "MPS_CLS_INT_CAUSE",
4944 		.cause_reg = A_MPS_CLS_INT_CAUSE,
4945 		.enable_reg = A_MPS_CLS_INT_ENABLE,
4946 		.fatal =  F_MATCHSRAM | F_MATCHTCAM | F_HASHSRAM,
4947 		.flags = 0,
4948 		.details = mps_cls_intr_details,
4949 		.actions = NULL,
4950 	};
4951 	static const struct intr_details mps_stat_sram1_intr_details[] = {
4952 		{ 0xff, "MPS statistics SRAM1 parity error" },
4953 		{ 0 }
4954 	};
4955 	static const struct intr_info mps_stat_sram1_intr_info = {
4956 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM1",
4957 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM1,
4958 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM1,
4959 		.fatal = 0xff,
4960 		.flags = 0,
4961 		.details = mps_stat_sram1_intr_details,
4962 		.actions = NULL,
4963 	};
4964 
4965 	bool fatal;
4966 
4967 	fatal = false;
4968 	fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info, 0, verbose);
4969 	fatal |= t4_handle_intr(adap, &mps_tx_intr_info, 0, verbose);
4970 	fatal |= t4_handle_intr(adap, &mps_trc_intr_info, 0, verbose);
4971 	fatal |= t4_handle_intr(adap, &mps_stat_sram_intr_info, 0, verbose);
4972 	fatal |= t4_handle_intr(adap, &mps_stat_tx_intr_info, 0, verbose);
4973 	fatal |= t4_handle_intr(adap, &mps_stat_rx_intr_info, 0, verbose);
4974 	fatal |= t4_handle_intr(adap, &mps_cls_intr_info, 0, verbose);
4975 	if (chip_id(adap) > CHELSIO_T4) {
4976 		fatal |= t4_handle_intr(adap, &mps_stat_sram1_intr_info, 0,
4977 		    verbose);
4978 	}
4979 
4980 	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
4981 	t4_read_reg(adap, A_MPS_INT_CAUSE);	/* flush */
4982 
4983 	return (fatal);
4984 
4985 }
4986 
4987 /*
4988  * EDC/MC interrupt handler.
4989  */
4990 static bool mem_intr_handler(struct adapter *adap, int idx, bool verbose)
4991 {
4992 	static const char name[4][5] = { "EDC0", "EDC1", "MC0", "MC1" };
4993 	unsigned int count_reg, v;
4994 	static const struct intr_details mem_intr_details[] = {
4995 		{ F_ECC_UE_INT_CAUSE, "Uncorrectable ECC data error(s)" },
4996 		{ F_ECC_CE_INT_CAUSE, "Correctable ECC data error(s)" },
4997 		{ F_PERR_INT_CAUSE, "FIFO parity error" },
4998 		{ 0 }
4999 	};
5000 	struct intr_info ii = {
5001 		.fatal = F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE,
5002 		.details = mem_intr_details,
5003 		.flags = 0,
5004 		.actions = NULL,
5005 	};
5006 	bool fatal;
5007 
5008 	switch (idx) {
5009 	case MEM_EDC0:
5010 		ii.name = "EDC0_INT_CAUSE";
5011 		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 0);
5012 		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 0);
5013 		count_reg = EDC_REG(A_EDC_ECC_STATUS, 0);
5014 		break;
5015 	case MEM_EDC1:
5016 		ii.name = "EDC1_INT_CAUSE";
5017 		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 1);
5018 		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 1);
5019 		count_reg = EDC_REG(A_EDC_ECC_STATUS, 1);
5020 		break;
5021 	case MEM_MC0:
5022 		ii.name = "MC0_INT_CAUSE";
5023 		if (is_t4(adap)) {
5024 			ii.cause_reg = A_MC_INT_CAUSE;
5025 			ii.enable_reg = A_MC_INT_ENABLE;
5026 			count_reg = A_MC_ECC_STATUS;
5027 		} else {
5028 			ii.cause_reg = A_MC_P_INT_CAUSE;
5029 			ii.enable_reg = A_MC_P_INT_ENABLE;
5030 			count_reg = A_MC_P_ECC_STATUS;
5031 		}
5032 		break;
5033 	case MEM_MC1:
5034 		ii.name = "MC1_INT_CAUSE";
5035 		ii.cause_reg = MC_REG(A_MC_P_INT_CAUSE, 1);
5036 		ii.enable_reg = MC_REG(A_MC_P_INT_ENABLE, 1);
5037 		count_reg = MC_REG(A_MC_P_ECC_STATUS, 1);
5038 		break;
5039 	}
5040 
5041 	fatal = t4_handle_intr(adap, &ii, 0, verbose);
5042 
5043 	v = t4_read_reg(adap, count_reg);
5044 	if (v != 0) {
5045 		if (G_ECC_UECNT(v) != 0) {
5046 			CH_ALERT(adap,
5047 			    "%s: %u uncorrectable ECC data error(s)\n",
5048 			    name[idx], G_ECC_UECNT(v));
5049 		}
5050 		if (G_ECC_CECNT(v) != 0) {
5051 			if (idx <= MEM_EDC1)
5052 				t4_edc_err_read(adap, idx);
5053 			CH_WARN_RATELIMIT(adap,
5054 			    "%s: %u correctable ECC data error(s)\n",
5055 			    name[idx], G_ECC_CECNT(v));
5056 		}
5057 		t4_write_reg(adap, count_reg, 0xffffffff);
5058 	}
5059 
5060 	return (fatal);
5061 }
5062 
5063 static bool ma_wrap_status(struct adapter *adap, int arg, bool verbose)
5064 {
5065 	u32 v;
5066 
5067 	v = t4_read_reg(adap, A_MA_INT_WRAP_STATUS);
5068 	CH_ALERT(adap,
5069 	    "MA address wrap-around error by client %u to address %#x\n",
5070 	    G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4);
5071 	t4_write_reg(adap, A_MA_INT_WRAP_STATUS, v);
5072 
5073 	return (false);
5074 }
5075 
5076 
5077 /*
5078  * MA interrupt handler.
5079  */
5080 static bool ma_intr_handler(struct adapter *adap, int arg, bool verbose)
5081 {
5082 	static const struct intr_action ma_intr_actions[] = {
5083 		{ F_MEM_WRAP_INT_CAUSE, 0, ma_wrap_status },
5084 		{ 0 },
5085 	};
5086 	static const struct intr_info ma_intr_info = {
5087 		.name = "MA_INT_CAUSE",
5088 		.cause_reg = A_MA_INT_CAUSE,
5089 		.enable_reg = A_MA_INT_ENABLE,
5090 		.fatal = F_MEM_PERR_INT_CAUSE | F_MEM_TO_INT_CAUSE,
5091 		.flags = NONFATAL_IF_DISABLED,
5092 		.details = NULL,
5093 		.actions = ma_intr_actions,
5094 	};
5095 	static const struct intr_info ma_perr_status1 = {
5096 		.name = "MA_PARITY_ERROR_STATUS1",
5097 		.cause_reg = A_MA_PARITY_ERROR_STATUS1,
5098 		.enable_reg = A_MA_PARITY_ERROR_ENABLE1,
5099 		.fatal = 0xffffffff,
5100 		.flags = 0,
5101 		.details = NULL,
5102 		.actions = NULL,
5103 	};
5104 	static const struct intr_info ma_perr_status2 = {
5105 		.name = "MA_PARITY_ERROR_STATUS2",
5106 		.cause_reg = A_MA_PARITY_ERROR_STATUS2,
5107 		.enable_reg = A_MA_PARITY_ERROR_ENABLE2,
5108 		.fatal = 0xffffffff,
5109 		.flags = 0,
5110 		.details = NULL,
5111 		.actions = NULL,
5112 	};
5113 	bool fatal;
5114 
5115 	fatal = false;
5116 	fatal |= t4_handle_intr(adap, &ma_intr_info, 0, verbose);
5117 	fatal |= t4_handle_intr(adap, &ma_perr_status1, 0, verbose);
5118 	if (chip_id(adap) > CHELSIO_T4)
5119 		fatal |= t4_handle_intr(adap, &ma_perr_status2, 0, verbose);
5120 
5121 	return (fatal);
5122 }
5123 
5124 /*
5125  * SMB interrupt handler.
5126  */
5127 static bool smb_intr_handler(struct adapter *adap, int arg, bool verbose)
5128 {
5129 	static const struct intr_details smb_intr_details[] = {
5130 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error" },
5131 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error" },
5132 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error" },
5133 		{ 0 }
5134 	};
5135 	static const struct intr_info smb_intr_info = {
5136 		.name = "SMB_INT_CAUSE",
5137 		.cause_reg = A_SMB_INT_CAUSE,
5138 		.enable_reg = A_SMB_INT_ENABLE,
5139 		.fatal = F_SLVFIFOPARINT | F_MSTRXFIFOPARINT | F_MSTTXFIFOPARINT,
5140 		.flags = 0,
5141 		.details = smb_intr_details,
5142 		.actions = NULL,
5143 	};
5144 
5145 	return (t4_handle_intr(adap, &smb_intr_info, 0, verbose));
5146 }
5147 
5148 /*
5149  * NC-SI interrupt handler.
5150  */
5151 static bool ncsi_intr_handler(struct adapter *adap, int arg, bool verbose)
5152 {
5153 	static const struct intr_details ncsi_intr_details[] = {
5154 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error" },
5155 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error" },
5156 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error" },
5157 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error" },
5158 		{ 0 }
5159 	};
5160 	static const struct intr_info ncsi_intr_info = {
5161 		.name = "NCSI_INT_CAUSE",
5162 		.cause_reg = A_NCSI_INT_CAUSE,
5163 		.enable_reg = A_NCSI_INT_ENABLE,
5164 		.fatal = F_RXFIFO_PRTY_ERR | F_TXFIFO_PRTY_ERR |
5165 		    F_MPS_DM_PRTY_ERR | F_CIM_DM_PRTY_ERR,
5166 		.flags = 0,
5167 		.details = ncsi_intr_details,
5168 		.actions = NULL,
5169 	};
5170 
5171 	return (t4_handle_intr(adap, &ncsi_intr_info, 0, verbose));
5172 }
5173 
5174 /*
5175  * MAC interrupt handler.
5176  */
5177 static bool mac_intr_handler(struct adapter *adap, int port, bool verbose)
5178 {
5179 	static const struct intr_details mac_intr_details[] = {
5180 		{ F_TXFIFO_PRTY_ERR, "MAC Tx FIFO parity error" },
5181 		{ F_RXFIFO_PRTY_ERR, "MAC Rx FIFO parity error" },
5182 		{ 0 }
5183 	};
5184 	char name[32];
5185 	struct intr_info ii;
5186 	bool fatal = false;
5187 
5188 	if (is_t4(adap)) {
5189 		snprintf(name, sizeof(name), "XGMAC_PORT%u_INT_CAUSE", port);
5190 		ii.name = &name[0];
5191 		ii.cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
5192 		ii.enable_reg = PORT_REG(port, A_XGMAC_PORT_INT_EN);
5193 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5194 		ii.flags = 0;
5195 		ii.details = mac_intr_details;
5196 		ii.actions = NULL;
5197 	} else {
5198 		snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port);
5199 		ii.name = &name[0];
5200 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
5201 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_INT_EN);
5202 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5203 		ii.flags = 0;
5204 		ii.details = mac_intr_details;
5205 		ii.actions = NULL;
5206 	}
5207 	fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5208 
5209 	if (chip_id(adap) >= CHELSIO_T5) {
5210 		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE", port);
5211 		ii.name = &name[0];
5212 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE);
5213 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN);
5214 		ii.fatal = 0;
5215 		ii.flags = 0;
5216 		ii.details = NULL;
5217 		ii.actions = NULL;
5218 		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5219 	}
5220 
5221 	if (chip_id(adap) >= CHELSIO_T6) {
5222 		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE_100G", port);
5223 		ii.name = &name[0];
5224 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE_100G);
5225 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN_100G);
5226 		ii.fatal = 0;
5227 		ii.flags = 0;
5228 		ii.details = NULL;
5229 		ii.actions = NULL;
5230 		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5231 	}
5232 
5233 	return (fatal);
5234 }
5235 
5236 static bool plpl_intr_handler(struct adapter *adap, int arg, bool verbose)
5237 {
5238 	static const struct intr_details plpl_intr_details[] = {
5239 		{ F_FATALPERR, "Fatal parity error" },
5240 		{ F_PERRVFID, "VFID_MAP parity error" },
5241 		{ 0 }
5242 	};
5243 	static const struct intr_info plpl_intr_info = {
5244 		.name = "PL_PL_INT_CAUSE",
5245 		.cause_reg = A_PL_PL_INT_CAUSE,
5246 		.enable_reg = A_PL_PL_INT_ENABLE,
5247 		.fatal = F_FATALPERR | F_PERRVFID,
5248 		.flags = NONFATAL_IF_DISABLED,
5249 		.details = plpl_intr_details,
5250 		.actions = NULL,
5251 	};
5252 
5253 	return (t4_handle_intr(adap, &plpl_intr_info, 0, verbose));
5254 }
5255 
5256 /**
5257  *	t4_slow_intr_handler - control path interrupt handler
5258  *	@adap: the adapter
5259  *	@verbose: increased verbosity, for debug
5260  *
5261  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
5262  *	The designation 'slow' is because it involves register reads, while
5263  *	data interrupts typically don't involve any MMIOs.
5264  */
5265 int t4_slow_intr_handler(struct adapter *adap, bool verbose)
5266 {
5267 	static const struct intr_details pl_intr_details[] = {
5268 		{ F_MC1, "MC1" },
5269 		{ F_UART, "UART" },
5270 		{ F_ULP_TX, "ULP TX" },
5271 		{ F_SGE, "SGE" },
5272 		{ F_HMA, "HMA" },
5273 		{ F_CPL_SWITCH, "CPL Switch" },
5274 		{ F_ULP_RX, "ULP RX" },
5275 		{ F_PM_RX, "PM RX" },
5276 		{ F_PM_TX, "PM TX" },
5277 		{ F_MA, "MA" },
5278 		{ F_TP, "TP" },
5279 		{ F_LE, "LE" },
5280 		{ F_EDC1, "EDC1" },
5281 		{ F_EDC0, "EDC0" },
5282 		{ F_MC, "MC0" },
5283 		{ F_PCIE, "PCIE" },
5284 		{ F_PMU, "PMU" },
5285 		{ F_MAC3, "MAC3" },
5286 		{ F_MAC2, "MAC2" },
5287 		{ F_MAC1, "MAC1" },
5288 		{ F_MAC0, "MAC0" },
5289 		{ F_SMB, "SMB" },
5290 		{ F_SF, "SF" },
5291 		{ F_PL, "PL" },
5292 		{ F_NCSI, "NC-SI" },
5293 		{ F_MPS, "MPS" },
5294 		{ F_MI, "MI" },
5295 		{ F_DBG, "DBG" },
5296 		{ F_I2CM, "I2CM" },
5297 		{ F_CIM, "CIM" },
5298 		{ 0 }
5299 	};
5300 	static const struct intr_info pl_perr_cause = {
5301 		.name = "PL_PERR_CAUSE",
5302 		.cause_reg = A_PL_PERR_CAUSE,
5303 		.enable_reg = A_PL_PERR_ENABLE,
5304 		.fatal = 0xffffffff,
5305 		.flags = 0,
5306 		.details = pl_intr_details,
5307 		.actions = NULL,
5308 	};
5309 	static const struct intr_action pl_intr_action[] = {
5310 		{ F_MC1, MEM_MC1, mem_intr_handler },
5311 		{ F_ULP_TX, -1, ulptx_intr_handler },
5312 		{ F_SGE, -1, sge_intr_handler },
5313 		{ F_CPL_SWITCH, -1, cplsw_intr_handler },
5314 		{ F_ULP_RX, -1, ulprx_intr_handler },
5315 		{ F_PM_RX, -1, pmrx_intr_handler},
5316 		{ F_PM_TX, -1, pmtx_intr_handler},
5317 		{ F_MA, -1, ma_intr_handler },
5318 		{ F_TP, -1, tp_intr_handler },
5319 		{ F_LE, -1, le_intr_handler },
5320 		{ F_EDC1, MEM_EDC1, mem_intr_handler },
5321 		{ F_EDC0, MEM_EDC0, mem_intr_handler },
5322 		{ F_MC0, MEM_MC0, mem_intr_handler },
5323 		{ F_PCIE, -1, pcie_intr_handler },
5324 		{ F_MAC3, 3, mac_intr_handler},
5325 		{ F_MAC2, 2, mac_intr_handler},
5326 		{ F_MAC1, 1, mac_intr_handler},
5327 		{ F_MAC0, 0, mac_intr_handler},
5328 		{ F_SMB, -1, smb_intr_handler},
5329 		{ F_PL, -1, plpl_intr_handler },
5330 		{ F_NCSI, -1, ncsi_intr_handler},
5331 		{ F_MPS, -1, mps_intr_handler },
5332 		{ F_CIM, -1, cim_intr_handler },
5333 		{ 0 }
5334 	};
5335 	static const struct intr_info pl_intr_info = {
5336 		.name = "PL_INT_CAUSE",
5337 		.cause_reg = A_PL_INT_CAUSE,
5338 		.enable_reg = A_PL_INT_ENABLE,
5339 		.fatal = 0,
5340 		.flags = 0,
5341 		.details = pl_intr_details,
5342 		.actions = pl_intr_action,
5343 	};
5344 	bool fatal;
5345 	u32 perr;
5346 
5347 	perr = t4_read_reg(adap, pl_perr_cause.cause_reg);
5348 	if (verbose || perr != 0) {
5349 		t4_show_intr_info(adap, &pl_perr_cause, perr);
5350 		if (perr != 0)
5351 			t4_write_reg(adap, pl_perr_cause.cause_reg, perr);
5352 		if (verbose)
5353 			perr |= t4_read_reg(adap, pl_intr_info.enable_reg);
5354 	}
5355 	fatal = t4_handle_intr(adap, &pl_intr_info, perr, verbose);
5356 	if (fatal)
5357 		t4_fatal_err(adap, false);
5358 
5359 	return (0);
5360 }
5361 
5362 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
5363 
5364 /**
5365  *	t4_intr_enable - enable interrupts
5366  *	@adapter: the adapter whose interrupts should be enabled
5367  *
5368  *	Enable PF-specific interrupts for the calling function and the top-level
5369  *	interrupt concentrator for global interrupts.  Interrupts are already
5370  *	enabled at each module,	here we just enable the roots of the interrupt
5371  *	hierarchies.
5372  *
5373  *	Note: this function should be called only when the driver manages
5374  *	non PF-specific interrupts from the various HW modules.  Only one PCI
5375  *	function at a time should be doing this.
5376  */
5377 void t4_intr_enable(struct adapter *adap)
5378 {
5379 	u32 val = 0;
5380 
5381 	if (chip_id(adap) <= CHELSIO_T5)
5382 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
5383 	else
5384 		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
5385 	val |= F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC |
5386 	    F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 |
5387 	    F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 |
5388 	    F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
5389 	    F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_DBFIFO_LP_INT |
5390 	    F_EGRESS_SIZE_ERR;
5391 	t4_set_reg_field(adap, A_SGE_INT_ENABLE3, val, val);
5392 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
5393 	t4_set_reg_field(adap, A_PL_INT_ENABLE, F_SF | F_I2CM, 0);
5394 	t4_set_reg_field(adap, A_PL_INT_MAP0, 0, 1 << adap->pf);
5395 }
5396 
5397 /**
5398  *	t4_intr_disable - disable interrupts
5399  *	@adap: the adapter whose interrupts should be disabled
5400  *
5401  *	Disable interrupts.  We only disable the top-level interrupt
5402  *	concentrators.  The caller must be a PCI function managing global
5403  *	interrupts.
5404  */
5405 void t4_intr_disable(struct adapter *adap)
5406 {
5407 
5408 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
5409 	t4_set_reg_field(adap, A_PL_INT_MAP0, 1 << adap->pf, 0);
5410 }
5411 
5412 /**
5413  *	t4_intr_clear - clear all interrupts
5414  *	@adap: the adapter whose interrupts should be cleared
5415  *
5416  *	Clears all interrupts.  The caller must be a PCI function managing
5417  *	global interrupts.
5418  */
5419 void t4_intr_clear(struct adapter *adap)
5420 {
5421 	static const u32 cause_reg[] = {
5422 		A_CIM_HOST_INT_CAUSE,
5423 		A_CIM_HOST_UPACC_INT_CAUSE,
5424 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
5425 		A_CPL_INTR_CAUSE,
5426 		EDC_REG(A_EDC_INT_CAUSE, 0), EDC_REG(A_EDC_INT_CAUSE, 1),
5427 		A_LE_DB_INT_CAUSE,
5428 		A_MA_INT_WRAP_STATUS,
5429 		A_MA_PARITY_ERROR_STATUS1,
5430 		A_MA_INT_CAUSE,
5431 		A_MPS_CLS_INT_CAUSE,
5432 		A_MPS_RX_PERR_INT_CAUSE,
5433 		A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
5434 		A_MPS_STAT_PERR_INT_CAUSE_SRAM,
5435 		A_MPS_TRC_INT_CAUSE,
5436 		A_MPS_TX_INT_CAUSE,
5437 		A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
5438 		A_NCSI_INT_CAUSE,
5439 		A_PCIE_INT_CAUSE,
5440 		A_PCIE_NONFAT_ERR,
5441 		A_PL_PL_INT_CAUSE,
5442 		A_PM_RX_INT_CAUSE,
5443 		A_PM_TX_INT_CAUSE,
5444 		A_SGE_INT_CAUSE1,
5445 		A_SGE_INT_CAUSE2,
5446 		A_SGE_INT_CAUSE3,
5447 		A_SGE_INT_CAUSE4,
5448 		A_SMB_INT_CAUSE,
5449 		A_TP_INT_CAUSE,
5450 		A_ULP_RX_INT_CAUSE,
5451 		A_ULP_RX_INT_CAUSE_2,
5452 		A_ULP_TX_INT_CAUSE,
5453 		A_ULP_TX_INT_CAUSE_2,
5454 
5455 		MYPF_REG(A_PL_PF_INT_CAUSE),
5456 	};
5457 	int i;
5458 	const int nchan = adap->chip_params->nchan;
5459 
5460 	for (i = 0; i < ARRAY_SIZE(cause_reg); i++)
5461 		t4_write_reg(adap, cause_reg[i], 0xffffffff);
5462 
5463 	if (is_t4(adap)) {
5464 		t4_write_reg(adap, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
5465 		    0xffffffff);
5466 		t4_write_reg(adap, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
5467 		    0xffffffff);
5468 		t4_write_reg(adap, A_MC_INT_CAUSE, 0xffffffff);
5469 		for (i = 0; i < nchan; i++) {
5470 			t4_write_reg(adap, PORT_REG(i, A_XGMAC_PORT_INT_CAUSE),
5471 			    0xffffffff);
5472 		}
5473 	}
5474 	if (chip_id(adap) >= CHELSIO_T5) {
5475 		t4_write_reg(adap, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
5476 		t4_write_reg(adap, A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 0xffffffff);
5477 		t4_write_reg(adap, A_SGE_INT_CAUSE5, 0xffffffff);
5478 		t4_write_reg(adap, A_MC_P_INT_CAUSE, 0xffffffff);
5479 		if (is_t5(adap)) {
5480 			t4_write_reg(adap, MC_REG(A_MC_P_INT_CAUSE, 1),
5481 			    0xffffffff);
5482 		}
5483 		for (i = 0; i < nchan; i++) {
5484 			t4_write_reg(adap, T5_PORT_REG(i,
5485 			    A_MAC_PORT_PERR_INT_CAUSE), 0xffffffff);
5486 			if (chip_id(adap) > CHELSIO_T5) {
5487 				t4_write_reg(adap, T5_PORT_REG(i,
5488 				    A_MAC_PORT_PERR_INT_CAUSE_100G),
5489 				    0xffffffff);
5490 			}
5491 			t4_write_reg(adap, T5_PORT_REG(i, A_MAC_PORT_INT_CAUSE),
5492 			    0xffffffff);
5493 		}
5494 	}
5495 	if (chip_id(adap) >= CHELSIO_T6) {
5496 		t4_write_reg(adap, A_SGE_INT_CAUSE6, 0xffffffff);
5497 	}
5498 
5499 	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
5500 	t4_write_reg(adap, A_PL_PERR_CAUSE, 0xffffffff);
5501 	t4_write_reg(adap, A_PL_INT_CAUSE, 0xffffffff);
5502 	(void) t4_read_reg(adap, A_PL_INT_CAUSE);          /* flush */
5503 }
5504 
5505 /**
5506  *	hash_mac_addr - return the hash value of a MAC address
5507  *	@addr: the 48-bit Ethernet MAC address
5508  *
5509  *	Hashes a MAC address according to the hash function used by HW inexact
5510  *	(hash) address matching.
5511  */
5512 static int hash_mac_addr(const u8 *addr)
5513 {
5514 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
5515 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
5516 	a ^= b;
5517 	a ^= (a >> 12);
5518 	a ^= (a >> 6);
5519 	return a & 0x3f;
5520 }
5521 
5522 /**
5523  *	t4_config_rss_range - configure a portion of the RSS mapping table
5524  *	@adapter: the adapter
5525  *	@mbox: mbox to use for the FW command
5526  *	@viid: virtual interface whose RSS subtable is to be written
5527  *	@start: start entry in the table to write
5528  *	@n: how many table entries to write
5529  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
5530  *	@nrspq: number of values in @rspq
5531  *
5532  *	Programs the selected part of the VI's RSS mapping table with the
5533  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5534  *	until the full table range is populated.
5535  *
5536  *	The caller must ensure the values in @rspq are in the range allowed for
5537  *	@viid.
5538  */
5539 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5540 			int start, int n, const u16 *rspq, unsigned int nrspq)
5541 {
5542 	int ret;
5543 	const u16 *rsp = rspq;
5544 	const u16 *rsp_end = rspq + nrspq;
5545 	struct fw_rss_ind_tbl_cmd cmd;
5546 
5547 	memset(&cmd, 0, sizeof(cmd));
5548 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
5549 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5550 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
5551 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5552 
5553 	/*
5554 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
5555 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
5556 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
5557 	 * reserved.
5558 	 */
5559 	while (n > 0) {
5560 		int nq = min(n, 32);
5561 		int nq_packed = 0;
5562 		__be32 *qp = &cmd.iq0_to_iq2;
5563 
5564 		/*
5565 		 * Set up the firmware RSS command header to send the next
5566 		 * "nq" Ingress Queue IDs to the firmware.
5567 		 */
5568 		cmd.niqid = cpu_to_be16(nq);
5569 		cmd.startidx = cpu_to_be16(start);
5570 
5571 		/*
5572 		 * "nq" more done for the start of the next loop.
5573 		 */
5574 		start += nq;
5575 		n -= nq;
5576 
5577 		/*
5578 		 * While there are still Ingress Queue IDs to stuff into the
5579 		 * current firmware RSS command, retrieve them from the
5580 		 * Ingress Queue ID array and insert them into the command.
5581 		 */
5582 		while (nq > 0) {
5583 			/*
5584 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
5585 			 * around the Ingress Queue ID array if necessary) and
5586 			 * insert them into the firmware RSS command at the
5587 			 * current 3-tuple position within the commad.
5588 			 */
5589 			u16 qbuf[3];
5590 			u16 *qbp = qbuf;
5591 			int nqbuf = min(3, nq);
5592 
5593 			nq -= nqbuf;
5594 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
5595 			while (nqbuf && nq_packed < 32) {
5596 				nqbuf--;
5597 				nq_packed++;
5598 				*qbp++ = *rsp++;
5599 				if (rsp >= rsp_end)
5600 					rsp = rspq;
5601 			}
5602 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
5603 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
5604 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
5605 		}
5606 
5607 		/*
5608 		 * Send this portion of the RRS table update to the firmware;
5609 		 * bail out on any errors.
5610 		 */
5611 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5612 		if (ret)
5613 			return ret;
5614 	}
5615 	return 0;
5616 }
5617 
5618 /**
5619  *	t4_config_glbl_rss - configure the global RSS mode
5620  *	@adapter: the adapter
5621  *	@mbox: mbox to use for the FW command
5622  *	@mode: global RSS mode
5623  *	@flags: mode-specific flags
5624  *
5625  *	Sets the global RSS mode.
5626  */
5627 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5628 		       unsigned int flags)
5629 {
5630 	struct fw_rss_glb_config_cmd c;
5631 
5632 	memset(&c, 0, sizeof(c));
5633 	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
5634 				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5635 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5636 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5637 		c.u.manual.mode_pkd =
5638 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5639 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5640 		c.u.basicvirtual.mode_keymode =
5641 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5642 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5643 	} else
5644 		return -EINVAL;
5645 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5646 }
5647 
5648 /**
5649  *	t4_config_vi_rss - configure per VI RSS settings
5650  *	@adapter: the adapter
5651  *	@mbox: mbox to use for the FW command
5652  *	@viid: the VI id
5653  *	@flags: RSS flags
5654  *	@defq: id of the default RSS queue for the VI.
5655  *	@skeyidx: RSS secret key table index for non-global mode
5656  *	@skey: RSS vf_scramble key for VI.
5657  *
5658  *	Configures VI-specific RSS properties.
5659  */
5660 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5661 		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
5662 		     unsigned int skey)
5663 {
5664 	struct fw_rss_vi_config_cmd c;
5665 
5666 	memset(&c, 0, sizeof(c));
5667 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
5668 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5669 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
5670 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5671 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5672 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
5673 	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
5674 					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
5675 	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
5676 
5677 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5678 }
5679 
5680 /* Read an RSS table row */
5681 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5682 {
5683 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
5684 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
5685 				   5, 0, val);
5686 }
5687 
5688 /**
5689  *	t4_read_rss - read the contents of the RSS mapping table
5690  *	@adapter: the adapter
5691  *	@map: holds the contents of the RSS mapping table
5692  *
5693  *	Reads the contents of the RSS hash->queue mapping table.
5694  */
5695 int t4_read_rss(struct adapter *adapter, u16 *map)
5696 {
5697 	u32 val;
5698 	int i, ret;
5699 	int rss_nentries = adapter->chip_params->rss_nentries;
5700 
5701 	for (i = 0; i < rss_nentries / 2; ++i) {
5702 		ret = rd_rss_row(adapter, i, &val);
5703 		if (ret)
5704 			return ret;
5705 		*map++ = G_LKPTBLQUEUE0(val);
5706 		*map++ = G_LKPTBLQUEUE1(val);
5707 	}
5708 	return 0;
5709 }
5710 
5711 /**
5712  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5713  * @adap: the adapter
5714  * @cmd: TP fw ldst address space type
5715  * @vals: where the indirect register values are stored/written
5716  * @nregs: how many indirect registers to read/write
5717  * @start_idx: index of first indirect register to read/write
5718  * @rw: Read (1) or Write (0)
5719  * @sleep_ok: if true we may sleep while awaiting command completion
5720  *
5721  * Access TP indirect registers through LDST
5722  **/
5723 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5724 			    unsigned int nregs, unsigned int start_index,
5725 			    unsigned int rw, bool sleep_ok)
5726 {
5727 	int ret = 0;
5728 	unsigned int i;
5729 	struct fw_ldst_cmd c;
5730 
5731 	for (i = 0; i < nregs; i++) {
5732 		memset(&c, 0, sizeof(c));
5733 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5734 						F_FW_CMD_REQUEST |
5735 						(rw ? F_FW_CMD_READ :
5736 						      F_FW_CMD_WRITE) |
5737 						V_FW_LDST_CMD_ADDRSPACE(cmd));
5738 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5739 
5740 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5741 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5742 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5743 				      sleep_ok);
5744 		if (ret)
5745 			return ret;
5746 
5747 		if (rw)
5748 			vals[i] = be32_to_cpu(c.u.addrval.val);
5749 	}
5750 	return 0;
5751 }
5752 
5753 /**
5754  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5755  * @adap: the adapter
5756  * @reg_addr: Address Register
5757  * @reg_data: Data register
5758  * @buff: where the indirect register values are stored/written
5759  * @nregs: how many indirect registers to read/write
5760  * @start_index: index of first indirect register to read/write
5761  * @rw: READ(1) or WRITE(0)
5762  * @sleep_ok: if true we may sleep while awaiting command completion
5763  *
5764  * Read/Write TP indirect registers through LDST if possible.
5765  * Else, use backdoor access
5766  **/
5767 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5768 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5769 			      bool sleep_ok)
5770 {
5771 	int rc = -EINVAL;
5772 	int cmd;
5773 
5774 	switch (reg_addr) {
5775 	case A_TP_PIO_ADDR:
5776 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5777 		break;
5778 	case A_TP_TM_PIO_ADDR:
5779 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5780 		break;
5781 	case A_TP_MIB_INDEX:
5782 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5783 		break;
5784 	default:
5785 		goto indirect_access;
5786 	}
5787 
5788 	if (t4_use_ldst(adap))
5789 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5790 				      sleep_ok);
5791 
5792 indirect_access:
5793 
5794 	if (rc) {
5795 		if (rw)
5796 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5797 					 start_index);
5798 		else
5799 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5800 					  start_index);
5801 	}
5802 }
5803 
5804 /**
5805  * t4_tp_pio_read - Read TP PIO registers
5806  * @adap: the adapter
5807  * @buff: where the indirect register values are written
5808  * @nregs: how many indirect registers to read
5809  * @start_index: index of first indirect register to read
5810  * @sleep_ok: if true we may sleep while awaiting command completion
5811  *
5812  * Read TP PIO Registers
5813  **/
5814 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5815 		    u32 start_index, bool sleep_ok)
5816 {
5817 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
5818 			  start_index, 1, sleep_ok);
5819 }
5820 
5821 /**
5822  * t4_tp_pio_write - Write TP PIO registers
5823  * @adap: the adapter
5824  * @buff: where the indirect register values are stored
5825  * @nregs: how many indirect registers to write
5826  * @start_index: index of first indirect register to write
5827  * @sleep_ok: if true we may sleep while awaiting command completion
5828  *
5829  * Write TP PIO Registers
5830  **/
5831 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5832 		     u32 start_index, bool sleep_ok)
5833 {
5834 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5835 	    __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5836 }
5837 
5838 /**
5839  * t4_tp_tm_pio_read - Read TP TM PIO registers
5840  * @adap: the adapter
5841  * @buff: where the indirect register values are written
5842  * @nregs: how many indirect registers to read
5843  * @start_index: index of first indirect register to read
5844  * @sleep_ok: if true we may sleep while awaiting command completion
5845  *
5846  * Read TP TM PIO Registers
5847  **/
5848 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5849 		       u32 start_index, bool sleep_ok)
5850 {
5851 	t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5852 			  nregs, start_index, 1, sleep_ok);
5853 }
5854 
5855 /**
5856  * t4_tp_mib_read - Read TP MIB registers
5857  * @adap: the adapter
5858  * @buff: where the indirect register values are written
5859  * @nregs: how many indirect registers to read
5860  * @start_index: index of first indirect register to read
5861  * @sleep_ok: if true we may sleep while awaiting command completion
5862  *
5863  * Read TP MIB Registers
5864  **/
5865 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5866 		    bool sleep_ok)
5867 {
5868 	t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5869 			  start_index, 1, sleep_ok);
5870 }
5871 
5872 /**
5873  *	t4_read_rss_key - read the global RSS key
5874  *	@adap: the adapter
5875  *	@key: 10-entry array holding the 320-bit RSS key
5876  * 	@sleep_ok: if true we may sleep while awaiting command completion
5877  *
5878  *	Reads the global 320-bit RSS key.
5879  */
5880 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5881 {
5882 	t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5883 }
5884 
5885 /**
5886  *	t4_write_rss_key - program one of the RSS keys
5887  *	@adap: the adapter
5888  *	@key: 10-entry array holding the 320-bit RSS key
5889  *	@idx: which RSS key to write
5890  * 	@sleep_ok: if true we may sleep while awaiting command completion
5891  *
5892  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5893  *	0..15 the corresponding entry in the RSS key table is written,
5894  *	otherwise the global RSS key is written.
5895  */
5896 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5897 		      bool sleep_ok)
5898 {
5899 	u8 rss_key_addr_cnt = 16;
5900 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5901 
5902 	/*
5903 	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5904 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5905 	 * as index[5:4](upper 2) into key table
5906 	 */
5907 	if ((chip_id(adap) > CHELSIO_T5) &&
5908 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5909 		rss_key_addr_cnt = 32;
5910 
5911 	t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5912 
5913 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5914 		if (rss_key_addr_cnt > 16)
5915 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5916 				     vrt | V_KEYWRADDRX(idx >> 4) |
5917 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
5918 		else
5919 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5920 				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5921 	}
5922 }
5923 
5924 /**
5925  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5926  *	@adapter: the adapter
5927  *	@index: the entry in the PF RSS table to read
5928  *	@valp: where to store the returned value
5929  * 	@sleep_ok: if true we may sleep while awaiting command completion
5930  *
5931  *	Reads the PF RSS Configuration Table at the specified index and returns
5932  *	the value found there.
5933  */
5934 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5935 			   u32 *valp, bool sleep_ok)
5936 {
5937 	t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5938 }
5939 
5940 /**
5941  *	t4_write_rss_pf_config - write PF RSS Configuration Table
5942  *	@adapter: the adapter
5943  *	@index: the entry in the VF RSS table to read
5944  *	@val: the value to store
5945  * 	@sleep_ok: if true we may sleep while awaiting command completion
5946  *
5947  *	Writes the PF RSS Configuration Table at the specified index with the
5948  *	specified value.
5949  */
5950 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5951 			    u32 val, bool sleep_ok)
5952 {
5953 	t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5954 			sleep_ok);
5955 }
5956 
5957 /**
5958  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5959  *	@adapter: the adapter
5960  *	@index: the entry in the VF RSS table to read
5961  *	@vfl: where to store the returned VFL
5962  *	@vfh: where to store the returned VFH
5963  * 	@sleep_ok: if true we may sleep while awaiting command completion
5964  *
5965  *	Reads the VF RSS Configuration Table at the specified index and returns
5966  *	the (VFL, VFH) values found there.
5967  */
5968 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5969 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5970 {
5971 	u32 vrt, mask, data;
5972 
5973 	if (chip_id(adapter) <= CHELSIO_T5) {
5974 		mask = V_VFWRADDR(M_VFWRADDR);
5975 		data = V_VFWRADDR(index);
5976 	} else {
5977 		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5978 		 data = V_T6_VFWRADDR(index);
5979 	}
5980 	/*
5981 	 * Request that the index'th VF Table values be read into VFL/VFH.
5982 	 */
5983 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5984 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5985 	vrt |= data | F_VFRDEN;
5986 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5987 
5988 	/*
5989 	 * Grab the VFL/VFH values ...
5990 	 */
5991 	t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5992 	t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5993 }
5994 
5995 /**
5996  *	t4_write_rss_vf_config - write VF RSS Configuration Table
5997  *
5998  *	@adapter: the adapter
5999  *	@index: the entry in the VF RSS table to write
6000  *	@vfl: the VFL to store
6001  *	@vfh: the VFH to store
6002  *
6003  *	Writes the VF RSS Configuration Table at the specified index with the
6004  *	specified (VFL, VFH) values.
6005  */
6006 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
6007 			    u32 vfl, u32 vfh, bool sleep_ok)
6008 {
6009 	u32 vrt, mask, data;
6010 
6011 	if (chip_id(adapter) <= CHELSIO_T5) {
6012 		mask = V_VFWRADDR(M_VFWRADDR);
6013 		data = V_VFWRADDR(index);
6014 	} else {
6015 		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
6016 		data = V_T6_VFWRADDR(index);
6017 	}
6018 
6019 	/*
6020 	 * Load up VFL/VFH with the values to be written ...
6021 	 */
6022 	t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
6023 	t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
6024 
6025 	/*
6026 	 * Write the VFL/VFH into the VF Table at index'th location.
6027 	 */
6028 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
6029 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
6030 	vrt |= data | F_VFRDEN;
6031 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
6032 }
6033 
6034 /**
6035  *	t4_read_rss_pf_map - read PF RSS Map
6036  *	@adapter: the adapter
6037  * 	@sleep_ok: if true we may sleep while awaiting command completion
6038  *
6039  *	Reads the PF RSS Map register and returns its value.
6040  */
6041 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
6042 {
6043 	u32 pfmap;
6044 
6045 	t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6046 
6047 	return pfmap;
6048 }
6049 
6050 /**
6051  *	t4_write_rss_pf_map - write PF RSS Map
6052  *	@adapter: the adapter
6053  *	@pfmap: PF RSS Map value
6054  *
6055  *	Writes the specified value to the PF RSS Map register.
6056  */
6057 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
6058 {
6059 	t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6060 }
6061 
6062 /**
6063  *	t4_read_rss_pf_mask - read PF RSS Mask
6064  *	@adapter: the adapter
6065  * 	@sleep_ok: if true we may sleep while awaiting command completion
6066  *
6067  *	Reads the PF RSS Mask register and returns its value.
6068  */
6069 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
6070 {
6071 	u32 pfmask;
6072 
6073 	t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6074 
6075 	return pfmask;
6076 }
6077 
6078 /**
6079  *	t4_write_rss_pf_mask - write PF RSS Mask
6080  *	@adapter: the adapter
6081  *	@pfmask: PF RSS Mask value
6082  *
6083  *	Writes the specified value to the PF RSS Mask register.
6084  */
6085 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
6086 {
6087 	t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6088 }
6089 
6090 /**
6091  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
6092  *	@adap: the adapter
6093  *	@v4: holds the TCP/IP counter values
6094  *	@v6: holds the TCP/IPv6 counter values
6095  * 	@sleep_ok: if true we may sleep while awaiting command completion
6096  *
6097  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
6098  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
6099  */
6100 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
6101 			 struct tp_tcp_stats *v6, bool sleep_ok)
6102 {
6103 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
6104 
6105 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
6106 #define STAT(x)     val[STAT_IDX(x)]
6107 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
6108 
6109 	if (v4) {
6110 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6111 			       A_TP_MIB_TCP_OUT_RST, sleep_ok);
6112 		v4->tcp_out_rsts = STAT(OUT_RST);
6113 		v4->tcp_in_segs  = STAT64(IN_SEG);
6114 		v4->tcp_out_segs = STAT64(OUT_SEG);
6115 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
6116 	}
6117 	if (v6) {
6118 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6119 			       A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
6120 		v6->tcp_out_rsts = STAT(OUT_RST);
6121 		v6->tcp_in_segs  = STAT64(IN_SEG);
6122 		v6->tcp_out_segs = STAT64(OUT_SEG);
6123 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
6124 	}
6125 #undef STAT64
6126 #undef STAT
6127 #undef STAT_IDX
6128 }
6129 
6130 /**
6131  *	t4_tp_get_err_stats - read TP's error MIB counters
6132  *	@adap: the adapter
6133  *	@st: holds the counter values
6134  * 	@sleep_ok: if true we may sleep while awaiting command completion
6135  *
6136  *	Returns the values of TP's error counters.
6137  */
6138 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
6139 			 bool sleep_ok)
6140 {
6141 	int nchan = adap->chip_params->nchan;
6142 
6143 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
6144 		       sleep_ok);
6145 
6146 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
6147 		       sleep_ok);
6148 
6149 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
6150 		       sleep_ok);
6151 
6152 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
6153 		       A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
6154 
6155 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
6156 		       A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
6157 
6158 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
6159 		       sleep_ok);
6160 
6161 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
6162 		       A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
6163 
6164 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
6165 		       A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
6166 
6167 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
6168 		       sleep_ok);
6169 }
6170 
6171 /**
6172  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
6173  *	@adap: the adapter
6174  *	@st: holds the counter values
6175  *
6176  *	Returns the values of TP's proxy counters.
6177  */
6178 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
6179     bool sleep_ok)
6180 {
6181 	int nchan = adap->chip_params->nchan;
6182 
6183 	t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
6184 }
6185 
6186 /**
6187  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
6188  *	@adap: the adapter
6189  *	@st: holds the counter values
6190  * 	@sleep_ok: if true we may sleep while awaiting command completion
6191  *
6192  *	Returns the values of TP's CPL counters.
6193  */
6194 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
6195 			 bool sleep_ok)
6196 {
6197 	int nchan = adap->chip_params->nchan;
6198 
6199 	t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
6200 
6201 	t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
6202 }
6203 
6204 /**
6205  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
6206  *	@adap: the adapter
6207  *	@st: holds the counter values
6208  *
6209  *	Returns the values of TP's RDMA counters.
6210  */
6211 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
6212 			  bool sleep_ok)
6213 {
6214 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
6215 		       sleep_ok);
6216 }
6217 
6218 /**
6219  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
6220  *	@adap: the adapter
6221  *	@idx: the port index
6222  *	@st: holds the counter values
6223  * 	@sleep_ok: if true we may sleep while awaiting command completion
6224  *
6225  *	Returns the values of TP's FCoE counters for the selected port.
6226  */
6227 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
6228 		       struct tp_fcoe_stats *st, bool sleep_ok)
6229 {
6230 	u32 val[2];
6231 
6232 	t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
6233 		       sleep_ok);
6234 
6235 	t4_tp_mib_read(adap, &st->frames_drop, 1,
6236 		       A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
6237 
6238 	t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
6239 		       sleep_ok);
6240 
6241 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
6242 }
6243 
6244 /**
6245  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
6246  *	@adap: the adapter
6247  *	@st: holds the counter values
6248  * 	@sleep_ok: if true we may sleep while awaiting command completion
6249  *
6250  *	Returns the values of TP's counters for non-TCP directly-placed packets.
6251  */
6252 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
6253 		      bool sleep_ok)
6254 {
6255 	u32 val[4];
6256 
6257 	t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
6258 
6259 	st->frames = val[0];
6260 	st->drops = val[1];
6261 	st->octets = ((u64)val[2] << 32) | val[3];
6262 }
6263 
6264 /**
6265  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
6266  *	@adap: the adapter
6267  *	@mtus: where to store the MTU values
6268  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
6269  *
6270  *	Reads the HW path MTU table.
6271  */
6272 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
6273 {
6274 	u32 v;
6275 	int i;
6276 
6277 	for (i = 0; i < NMTUS; ++i) {
6278 		t4_write_reg(adap, A_TP_MTU_TABLE,
6279 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
6280 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
6281 		mtus[i] = G_MTUVALUE(v);
6282 		if (mtu_log)
6283 			mtu_log[i] = G_MTUWIDTH(v);
6284 	}
6285 }
6286 
6287 /**
6288  *	t4_read_cong_tbl - reads the congestion control table
6289  *	@adap: the adapter
6290  *	@incr: where to store the alpha values
6291  *
6292  *	Reads the additive increments programmed into the HW congestion
6293  *	control table.
6294  */
6295 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
6296 {
6297 	unsigned int mtu, w;
6298 
6299 	for (mtu = 0; mtu < NMTUS; ++mtu)
6300 		for (w = 0; w < NCCTRL_WIN; ++w) {
6301 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
6302 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
6303 			incr[mtu][w] = (u16)t4_read_reg(adap,
6304 						A_TP_CCTRL_TABLE) & 0x1fff;
6305 		}
6306 }
6307 
6308 /**
6309  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
6310  *	@adap: the adapter
6311  *	@addr: the indirect TP register address
6312  *	@mask: specifies the field within the register to modify
6313  *	@val: new value for the field
6314  *
6315  *	Sets a field of an indirect TP register to the given value.
6316  */
6317 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
6318 			    unsigned int mask, unsigned int val)
6319 {
6320 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
6321 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
6322 	t4_write_reg(adap, A_TP_PIO_DATA, val);
6323 }
6324 
6325 /**
6326  *	init_cong_ctrl - initialize congestion control parameters
6327  *	@a: the alpha values for congestion control
6328  *	@b: the beta values for congestion control
6329  *
6330  *	Initialize the congestion control parameters.
6331  */
6332 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
6333 {
6334 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
6335 	a[9] = 2;
6336 	a[10] = 3;
6337 	a[11] = 4;
6338 	a[12] = 5;
6339 	a[13] = 6;
6340 	a[14] = 7;
6341 	a[15] = 8;
6342 	a[16] = 9;
6343 	a[17] = 10;
6344 	a[18] = 14;
6345 	a[19] = 17;
6346 	a[20] = 21;
6347 	a[21] = 25;
6348 	a[22] = 30;
6349 	a[23] = 35;
6350 	a[24] = 45;
6351 	a[25] = 60;
6352 	a[26] = 80;
6353 	a[27] = 100;
6354 	a[28] = 200;
6355 	a[29] = 300;
6356 	a[30] = 400;
6357 	a[31] = 500;
6358 
6359 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
6360 	b[9] = b[10] = 1;
6361 	b[11] = b[12] = 2;
6362 	b[13] = b[14] = b[15] = b[16] = 3;
6363 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
6364 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
6365 	b[28] = b[29] = 6;
6366 	b[30] = b[31] = 7;
6367 }
6368 
6369 /* The minimum additive increment value for the congestion control table */
6370 #define CC_MIN_INCR 2U
6371 
6372 /**
6373  *	t4_load_mtus - write the MTU and congestion control HW tables
6374  *	@adap: the adapter
6375  *	@mtus: the values for the MTU table
6376  *	@alpha: the values for the congestion control alpha parameter
6377  *	@beta: the values for the congestion control beta parameter
6378  *
6379  *	Write the HW MTU table with the supplied MTUs and the high-speed
6380  *	congestion control table with the supplied alpha, beta, and MTUs.
6381  *	We write the two tables together because the additive increments
6382  *	depend on the MTUs.
6383  */
6384 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
6385 		  const unsigned short *alpha, const unsigned short *beta)
6386 {
6387 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
6388 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
6389 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
6390 		28672, 40960, 57344, 81920, 114688, 163840, 229376
6391 	};
6392 
6393 	unsigned int i, w;
6394 
6395 	for (i = 0; i < NMTUS; ++i) {
6396 		unsigned int mtu = mtus[i];
6397 		unsigned int log2 = fls(mtu);
6398 
6399 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
6400 			log2--;
6401 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
6402 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
6403 
6404 		for (w = 0; w < NCCTRL_WIN; ++w) {
6405 			unsigned int inc;
6406 
6407 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
6408 				  CC_MIN_INCR);
6409 
6410 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
6411 				     (w << 16) | (beta[w] << 13) | inc);
6412 		}
6413 	}
6414 }
6415 
6416 /**
6417  *	t4_set_pace_tbl - set the pace table
6418  *	@adap: the adapter
6419  *	@pace_vals: the pace values in microseconds
6420  *	@start: index of the first entry in the HW pace table to set
6421  *	@n: how many entries to set
6422  *
6423  *	Sets (a subset of the) HW pace table.
6424  */
6425 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
6426 		     unsigned int start, unsigned int n)
6427 {
6428 	unsigned int vals[NTX_SCHED], i;
6429 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
6430 
6431 	if (n > NTX_SCHED)
6432 	    return -ERANGE;
6433 
6434 	/* convert values from us to dack ticks, rounding to closest value */
6435 	for (i = 0; i < n; i++, pace_vals++) {
6436 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
6437 		if (vals[i] > 0x7ff)
6438 			return -ERANGE;
6439 		if (*pace_vals && vals[i] == 0)
6440 			return -ERANGE;
6441 	}
6442 	for (i = 0; i < n; i++, start++)
6443 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
6444 	return 0;
6445 }
6446 
6447 /**
6448  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
6449  *	@adap: the adapter
6450  *	@kbps: target rate in Kbps
6451  *	@sched: the scheduler index
6452  *
6453  *	Configure a Tx HW scheduler for the target rate.
6454  */
6455 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
6456 {
6457 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
6458 	unsigned int clk = adap->params.vpd.cclk * 1000;
6459 	unsigned int selected_cpt = 0, selected_bpt = 0;
6460 
6461 	if (kbps > 0) {
6462 		kbps *= 125;     /* -> bytes */
6463 		for (cpt = 1; cpt <= 255; cpt++) {
6464 			tps = clk / cpt;
6465 			bpt = (kbps + tps / 2) / tps;
6466 			if (bpt > 0 && bpt <= 255) {
6467 				v = bpt * tps;
6468 				delta = v >= kbps ? v - kbps : kbps - v;
6469 				if (delta < mindelta) {
6470 					mindelta = delta;
6471 					selected_cpt = cpt;
6472 					selected_bpt = bpt;
6473 				}
6474 			} else if (selected_cpt)
6475 				break;
6476 		}
6477 		if (!selected_cpt)
6478 			return -EINVAL;
6479 	}
6480 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
6481 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
6482 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6483 	if (sched & 1)
6484 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
6485 	else
6486 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
6487 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6488 	return 0;
6489 }
6490 
6491 /**
6492  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
6493  *	@adap: the adapter
6494  *	@sched: the scheduler index
6495  *	@ipg: the interpacket delay in tenths of nanoseconds
6496  *
6497  *	Set the interpacket delay for a HW packet rate scheduler.
6498  */
6499 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
6500 {
6501 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
6502 
6503 	/* convert ipg to nearest number of core clocks */
6504 	ipg *= core_ticks_per_usec(adap);
6505 	ipg = (ipg + 5000) / 10000;
6506 	if (ipg > M_TXTIMERSEPQ0)
6507 		return -EINVAL;
6508 
6509 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
6510 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6511 	if (sched & 1)
6512 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
6513 	else
6514 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
6515 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6516 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
6517 	return 0;
6518 }
6519 
6520 /*
6521  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
6522  * clocks.  The formula is
6523  *
6524  * bytes/s = bytes256 * 256 * ClkFreq / 4096
6525  *
6526  * which is equivalent to
6527  *
6528  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
6529  */
6530 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
6531 {
6532 	u64 v = (u64)bytes256 * adap->params.vpd.cclk;
6533 
6534 	return v * 62 + v / 2;
6535 }
6536 
6537 /**
6538  *	t4_get_chan_txrate - get the current per channel Tx rates
6539  *	@adap: the adapter
6540  *	@nic_rate: rates for NIC traffic
6541  *	@ofld_rate: rates for offloaded traffic
6542  *
6543  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
6544  *	for each channel.
6545  */
6546 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
6547 {
6548 	u32 v;
6549 
6550 	v = t4_read_reg(adap, A_TP_TX_TRATE);
6551 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
6552 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
6553 	if (adap->chip_params->nchan > 2) {
6554 		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
6555 		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
6556 	}
6557 
6558 	v = t4_read_reg(adap, A_TP_TX_ORATE);
6559 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
6560 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
6561 	if (adap->chip_params->nchan > 2) {
6562 		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
6563 		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
6564 	}
6565 }
6566 
6567 /**
6568  *	t4_set_trace_filter - configure one of the tracing filters
6569  *	@adap: the adapter
6570  *	@tp: the desired trace filter parameters
6571  *	@idx: which filter to configure
6572  *	@enable: whether to enable or disable the filter
6573  *
6574  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
6575  *	it indicates that the filter is already written in the register and it
6576  *	just needs to be enabled or disabled.
6577  */
6578 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
6579     int idx, int enable)
6580 {
6581 	int i, ofst = idx * 4;
6582 	u32 data_reg, mask_reg, cfg;
6583 	u32 multitrc = F_TRCMULTIFILTER;
6584 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
6585 
6586 	if (idx < 0 || idx >= NTRACE)
6587 		return -EINVAL;
6588 
6589 	if (tp == NULL || !enable) {
6590 		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
6591 		    enable ? en : 0);
6592 		return 0;
6593 	}
6594 
6595 	/*
6596 	 * TODO - After T4 data book is updated, specify the exact
6597 	 * section below.
6598 	 *
6599 	 * See T4 data book - MPS section for a complete description
6600 	 * of the below if..else handling of A_MPS_TRC_CFG register
6601 	 * value.
6602 	 */
6603 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
6604 	if (cfg & F_TRCMULTIFILTER) {
6605 		/*
6606 		 * If multiple tracers are enabled, then maximum
6607 		 * capture size is 2.5KB (FIFO size of a single channel)
6608 		 * minus 2 flits for CPL_TRACE_PKT header.
6609 		 */
6610 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
6611 			return -EINVAL;
6612 	} else {
6613 		/*
6614 		 * If multiple tracers are disabled, to avoid deadlocks
6615 		 * maximum packet capture size of 9600 bytes is recommended.
6616 		 * Also in this mode, only trace0 can be enabled and running.
6617 		 */
6618 		multitrc = 0;
6619 		if (tp->snap_len > 9600 || idx)
6620 			return -EINVAL;
6621 	}
6622 
6623 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
6624 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
6625 	    tp->min_len > M_TFMINPKTSIZE)
6626 		return -EINVAL;
6627 
6628 	/* stop the tracer we'll be changing */
6629 	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
6630 
6631 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
6632 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
6633 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
6634 
6635 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6636 		t4_write_reg(adap, data_reg, tp->data[i]);
6637 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
6638 	}
6639 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
6640 		     V_TFCAPTUREMAX(tp->snap_len) |
6641 		     V_TFMINPKTSIZE(tp->min_len));
6642 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
6643 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
6644 		     (is_t4(adap) ?
6645 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
6646 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
6647 
6648 	return 0;
6649 }
6650 
6651 /**
6652  *	t4_get_trace_filter - query one of the tracing filters
6653  *	@adap: the adapter
6654  *	@tp: the current trace filter parameters
6655  *	@idx: which trace filter to query
6656  *	@enabled: non-zero if the filter is enabled
6657  *
6658  *	Returns the current settings of one of the HW tracing filters.
6659  */
6660 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6661 			 int *enabled)
6662 {
6663 	u32 ctla, ctlb;
6664 	int i, ofst = idx * 4;
6665 	u32 data_reg, mask_reg;
6666 
6667 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
6668 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
6669 
6670 	if (is_t4(adap)) {
6671 		*enabled = !!(ctla & F_TFEN);
6672 		tp->port =  G_TFPORT(ctla);
6673 		tp->invert = !!(ctla & F_TFINVERTMATCH);
6674 	} else {
6675 		*enabled = !!(ctla & F_T5_TFEN);
6676 		tp->port = G_T5_TFPORT(ctla);
6677 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
6678 	}
6679 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
6680 	tp->min_len = G_TFMINPKTSIZE(ctlb);
6681 	tp->skip_ofst = G_TFOFFSET(ctla);
6682 	tp->skip_len = G_TFLENGTH(ctla);
6683 
6684 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
6685 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
6686 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
6687 
6688 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6689 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6690 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6691 	}
6692 }
6693 
6694 /**
6695  *	t4_pmtx_get_stats - returns the HW stats from PMTX
6696  *	@adap: the adapter
6697  *	@cnt: where to store the count statistics
6698  *	@cycles: where to store the cycle statistics
6699  *
6700  *	Returns performance statistics from PMTX.
6701  */
6702 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6703 {
6704 	int i;
6705 	u32 data[2];
6706 
6707 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6708 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
6709 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
6710 		if (is_t4(adap))
6711 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
6712 		else {
6713 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
6714 					 A_PM_TX_DBG_DATA, data, 2,
6715 					 A_PM_TX_DBG_STAT_MSB);
6716 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6717 		}
6718 	}
6719 }
6720 
6721 /**
6722  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6723  *	@adap: the adapter
6724  *	@cnt: where to store the count statistics
6725  *	@cycles: where to store the cycle statistics
6726  *
6727  *	Returns performance statistics from PMRX.
6728  */
6729 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6730 {
6731 	int i;
6732 	u32 data[2];
6733 
6734 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6735 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
6736 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
6737 		if (is_t4(adap)) {
6738 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
6739 		} else {
6740 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
6741 					 A_PM_RX_DBG_DATA, data, 2,
6742 					 A_PM_RX_DBG_STAT_MSB);
6743 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6744 		}
6745 	}
6746 }
6747 
6748 /**
6749  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6750  *	@adap: the adapter
6751  *	@idx: the port index
6752  *
6753  *	Returns a bitmap indicating which MPS buffer groups are associated
6754  *	with the given port.  Bit i is set if buffer group i is used by the
6755  *	port.
6756  */
6757 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
6758 {
6759 	u32 n;
6760 
6761 	if (adap->params.mps_bg_map)
6762 		return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
6763 
6764 	n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6765 	if (n == 0)
6766 		return idx == 0 ? 0xf : 0;
6767 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6768 		return idx < 2 ? (3 << (2 * idx)) : 0;
6769 	return 1 << idx;
6770 }
6771 
6772 /*
6773  * TP RX e-channels associated with the port.
6774  */
6775 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
6776 {
6777 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6778 	const u32 all_chan = (1 << adap->chip_params->nchan) - 1;
6779 
6780 	if (n == 0)
6781 		return idx == 0 ? all_chan : 0;
6782 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6783 		return idx < 2 ? (3 << (2 * idx)) : 0;
6784 	return 1 << idx;
6785 }
6786 
6787 /**
6788  *      t4_get_port_type_description - return Port Type string description
6789  *      @port_type: firmware Port Type enumeration
6790  */
6791 const char *t4_get_port_type_description(enum fw_port_type port_type)
6792 {
6793 	static const char *const port_type_description[] = {
6794 		"Fiber_XFI",
6795 		"Fiber_XAUI",
6796 		"BT_SGMII",
6797 		"BT_XFI",
6798 		"BT_XAUI",
6799 		"KX4",
6800 		"CX4",
6801 		"KX",
6802 		"KR",
6803 		"SFP",
6804 		"BP_AP",
6805 		"BP4_AP",
6806 		"QSFP_10G",
6807 		"QSA",
6808 		"QSFP",
6809 		"BP40_BA",
6810 		"KR4_100G",
6811 		"CR4_QSFP",
6812 		"CR_QSFP",
6813 		"CR2_QSFP",
6814 		"SFP28",
6815 		"KR_SFP28",
6816 	};
6817 
6818 	if (port_type < ARRAY_SIZE(port_type_description))
6819 		return port_type_description[port_type];
6820 	return "UNKNOWN";
6821 }
6822 
6823 /**
6824  *      t4_get_port_stats_offset - collect port stats relative to a previous
6825  *				   snapshot
6826  *      @adap: The adapter
6827  *      @idx: The port
6828  *      @stats: Current stats to fill
6829  *      @offset: Previous stats snapshot
6830  */
6831 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6832 		struct port_stats *stats,
6833 		struct port_stats *offset)
6834 {
6835 	u64 *s, *o;
6836 	int i;
6837 
6838 	t4_get_port_stats(adap, idx, stats);
6839 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6840 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
6841 			i++, s++, o++)
6842 		*s -= *o;
6843 }
6844 
6845 /**
6846  *	t4_get_port_stats - collect port statistics
6847  *	@adap: the adapter
6848  *	@idx: the port index
6849  *	@p: the stats structure to fill
6850  *
6851  *	Collect statistics related to the given port from HW.
6852  */
6853 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6854 {
6855 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6856 	u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6857 
6858 #define GET_STAT(name) \
6859 	t4_read_reg64(adap, \
6860 	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
6861 	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
6862 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6863 
6864 	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
6865 	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
6866 	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
6867 	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
6868 	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
6869 	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
6870 	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
6871 	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
6872 	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
6873 	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
6874 	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
6875 	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
6876 	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
6877 	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
6878 	p->tx_drop		= GET_STAT(TX_PORT_DROP);
6879 	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
6880 	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
6881 	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
6882 	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
6883 	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
6884 	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
6885 	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
6886 	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
6887 
6888 	if (chip_id(adap) >= CHELSIO_T5) {
6889 		if (stat_ctl & F_COUNTPAUSESTATTX) {
6890 			p->tx_frames -= p->tx_pause;
6891 			p->tx_octets -= p->tx_pause * 64;
6892 		}
6893 		if (stat_ctl & F_COUNTPAUSEMCTX)
6894 			p->tx_mcast_frames -= p->tx_pause;
6895 	}
6896 
6897 	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
6898 	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
6899 	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
6900 	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
6901 	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
6902 	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
6903 	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
6904 	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
6905 	p->rx_fcs_err		= GET_STAT(RX_PORT_CRC_ERROR);
6906 	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
6907 	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
6908 	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
6909 	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
6910 	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
6911 	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
6912 	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
6913 	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
6914 	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
6915 	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
6916 	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
6917 	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
6918 	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
6919 	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
6920 	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
6921 	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
6922 	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
6923 	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
6924 
6925 	if (chip_id(adap) >= CHELSIO_T5) {
6926 		if (stat_ctl & F_COUNTPAUSESTATRX) {
6927 			p->rx_frames -= p->rx_pause;
6928 			p->rx_octets -= p->rx_pause * 64;
6929 		}
6930 		if (stat_ctl & F_COUNTPAUSEMCRX)
6931 			p->rx_mcast_frames -= p->rx_pause;
6932 	}
6933 
6934 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6935 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6936 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6937 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6938 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6939 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6940 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6941 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6942 
6943 #undef GET_STAT
6944 #undef GET_STAT_COM
6945 }
6946 
6947 /**
6948  *	t4_get_lb_stats - collect loopback port statistics
6949  *	@adap: the adapter
6950  *	@idx: the loopback port index
6951  *	@p: the stats structure to fill
6952  *
6953  *	Return HW statistics for the given loopback port.
6954  */
6955 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6956 {
6957 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6958 
6959 #define GET_STAT(name) \
6960 	t4_read_reg64(adap, \
6961 	(is_t4(adap) ? \
6962 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
6963 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
6964 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6965 
6966 	p->octets	= GET_STAT(BYTES);
6967 	p->frames	= GET_STAT(FRAMES);
6968 	p->bcast_frames	= GET_STAT(BCAST);
6969 	p->mcast_frames	= GET_STAT(MCAST);
6970 	p->ucast_frames	= GET_STAT(UCAST);
6971 	p->error_frames	= GET_STAT(ERROR);
6972 
6973 	p->frames_64		= GET_STAT(64B);
6974 	p->frames_65_127	= GET_STAT(65B_127B);
6975 	p->frames_128_255	= GET_STAT(128B_255B);
6976 	p->frames_256_511	= GET_STAT(256B_511B);
6977 	p->frames_512_1023	= GET_STAT(512B_1023B);
6978 	p->frames_1024_1518	= GET_STAT(1024B_1518B);
6979 	p->frames_1519_max	= GET_STAT(1519B_MAX);
6980 	p->drop			= GET_STAT(DROP_FRAMES);
6981 
6982 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6983 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6984 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6985 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6986 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6987 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6988 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6989 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6990 
6991 #undef GET_STAT
6992 #undef GET_STAT_COM
6993 }
6994 
6995 /**
6996  *	t4_wol_magic_enable - enable/disable magic packet WoL
6997  *	@adap: the adapter
6998  *	@port: the physical port index
6999  *	@addr: MAC address expected in magic packets, %NULL to disable
7000  *
7001  *	Enables/disables magic packet wake-on-LAN for the selected port.
7002  */
7003 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
7004 			 const u8 *addr)
7005 {
7006 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
7007 
7008 	if (is_t4(adap)) {
7009 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
7010 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
7011 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7012 	} else {
7013 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
7014 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
7015 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7016 	}
7017 
7018 	if (addr) {
7019 		t4_write_reg(adap, mag_id_reg_l,
7020 			     (addr[2] << 24) | (addr[3] << 16) |
7021 			     (addr[4] << 8) | addr[5]);
7022 		t4_write_reg(adap, mag_id_reg_h,
7023 			     (addr[0] << 8) | addr[1]);
7024 	}
7025 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
7026 			 V_MAGICEN(addr != NULL));
7027 }
7028 
7029 /**
7030  *	t4_wol_pat_enable - enable/disable pattern-based WoL
7031  *	@adap: the adapter
7032  *	@port: the physical port index
7033  *	@map: bitmap of which HW pattern filters to set
7034  *	@mask0: byte mask for bytes 0-63 of a packet
7035  *	@mask1: byte mask for bytes 64-127 of a packet
7036  *	@crc: Ethernet CRC for selected bytes
7037  *	@enable: enable/disable switch
7038  *
7039  *	Sets the pattern filters indicated in @map to mask out the bytes
7040  *	specified in @mask0/@mask1 in received packets and compare the CRC of
7041  *	the resulting packet against @crc.  If @enable is %true pattern-based
7042  *	WoL is enabled, otherwise disabled.
7043  */
7044 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
7045 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
7046 {
7047 	int i;
7048 	u32 port_cfg_reg;
7049 
7050 	if (is_t4(adap))
7051 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7052 	else
7053 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7054 
7055 	if (!enable) {
7056 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
7057 		return 0;
7058 	}
7059 	if (map > 0xff)
7060 		return -EINVAL;
7061 
7062 #define EPIO_REG(name) \
7063 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
7064 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
7065 
7066 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
7067 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
7068 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
7069 
7070 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
7071 		if (!(map & 1))
7072 			continue;
7073 
7074 		/* write byte masks */
7075 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
7076 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
7077 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7078 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7079 			return -ETIMEDOUT;
7080 
7081 		/* write CRC */
7082 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
7083 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
7084 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7085 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7086 			return -ETIMEDOUT;
7087 	}
7088 #undef EPIO_REG
7089 
7090 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
7091 	return 0;
7092 }
7093 
7094 /*     t4_mk_filtdelwr - create a delete filter WR
7095  *     @ftid: the filter ID
7096  *     @wr: the filter work request to populate
7097  *     @qid: ingress queue to receive the delete notification
7098  *
7099  *     Creates a filter work request to delete the supplied filter.  If @qid is
7100  *     negative the delete notification is suppressed.
7101  */
7102 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
7103 {
7104 	memset(wr, 0, sizeof(*wr));
7105 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
7106 	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
7107 	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
7108 				    V_FW_FILTER_WR_NOREPLY(qid < 0));
7109 	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
7110 	if (qid >= 0)
7111 		wr->rx_chan_rx_rpl_iq =
7112 				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
7113 }
7114 
7115 #define INIT_CMD(var, cmd, rd_wr) do { \
7116 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
7117 					F_FW_CMD_REQUEST | \
7118 					F_FW_CMD_##rd_wr); \
7119 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
7120 } while (0)
7121 
7122 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
7123 			  u32 addr, u32 val)
7124 {
7125 	u32 ldst_addrspace;
7126 	struct fw_ldst_cmd c;
7127 
7128 	memset(&c, 0, sizeof(c));
7129 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
7130 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7131 					F_FW_CMD_REQUEST |
7132 					F_FW_CMD_WRITE |
7133 					ldst_addrspace);
7134 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7135 	c.u.addrval.addr = cpu_to_be32(addr);
7136 	c.u.addrval.val = cpu_to_be32(val);
7137 
7138 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7139 }
7140 
7141 /**
7142  *	t4_mdio_rd - read a PHY register through MDIO
7143  *	@adap: the adapter
7144  *	@mbox: mailbox to use for the FW command
7145  *	@phy_addr: the PHY address
7146  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7147  *	@reg: the register to read
7148  *	@valp: where to store the value
7149  *
7150  *	Issues a FW command through the given mailbox to read a PHY register.
7151  */
7152 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7153 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
7154 {
7155 	int ret;
7156 	u32 ldst_addrspace;
7157 	struct fw_ldst_cmd c;
7158 
7159 	memset(&c, 0, sizeof(c));
7160 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7161 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7162 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7163 					ldst_addrspace);
7164 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7165 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7166 					 V_FW_LDST_CMD_MMD(mmd));
7167 	c.u.mdio.raddr = cpu_to_be16(reg);
7168 
7169 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7170 	if (ret == 0)
7171 		*valp = be16_to_cpu(c.u.mdio.rval);
7172 	return ret;
7173 }
7174 
7175 /**
7176  *	t4_mdio_wr - write a PHY register through MDIO
7177  *	@adap: the adapter
7178  *	@mbox: mailbox to use for the FW command
7179  *	@phy_addr: the PHY address
7180  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7181  *	@reg: the register to write
7182  *	@valp: value to write
7183  *
7184  *	Issues a FW command through the given mailbox to write a PHY register.
7185  */
7186 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7187 	       unsigned int mmd, unsigned int reg, unsigned int val)
7188 {
7189 	u32 ldst_addrspace;
7190 	struct fw_ldst_cmd c;
7191 
7192 	memset(&c, 0, sizeof(c));
7193 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7194 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7195 					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7196 					ldst_addrspace);
7197 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7198 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7199 					 V_FW_LDST_CMD_MMD(mmd));
7200 	c.u.mdio.raddr = cpu_to_be16(reg);
7201 	c.u.mdio.rval = cpu_to_be16(val);
7202 
7203 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7204 }
7205 
7206 /**
7207  *
7208  *	t4_sge_decode_idma_state - decode the idma state
7209  *	@adap: the adapter
7210  *	@state: the state idma is stuck in
7211  */
7212 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
7213 {
7214 	static const char * const t4_decode[] = {
7215 		"IDMA_IDLE",
7216 		"IDMA_PUSH_MORE_CPL_FIFO",
7217 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7218 		"Not used",
7219 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7220 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7221 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7222 		"IDMA_SEND_FIFO_TO_IMSG",
7223 		"IDMA_FL_REQ_DATA_FL_PREP",
7224 		"IDMA_FL_REQ_DATA_FL",
7225 		"IDMA_FL_DROP",
7226 		"IDMA_FL_H_REQ_HEADER_FL",
7227 		"IDMA_FL_H_SEND_PCIEHDR",
7228 		"IDMA_FL_H_PUSH_CPL_FIFO",
7229 		"IDMA_FL_H_SEND_CPL",
7230 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7231 		"IDMA_FL_H_SEND_IP_HDR",
7232 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7233 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7234 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7235 		"IDMA_FL_D_SEND_PCIEHDR",
7236 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7237 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7238 		"IDMA_FL_SEND_PCIEHDR",
7239 		"IDMA_FL_PUSH_CPL_FIFO",
7240 		"IDMA_FL_SEND_CPL",
7241 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7242 		"IDMA_FL_SEND_PAYLOAD",
7243 		"IDMA_FL_REQ_NEXT_DATA_FL",
7244 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7245 		"IDMA_FL_SEND_PADDING",
7246 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7247 		"IDMA_FL_SEND_FIFO_TO_IMSG",
7248 		"IDMA_FL_REQ_DATAFL_DONE",
7249 		"IDMA_FL_REQ_HEADERFL_DONE",
7250 	};
7251 	static const char * const t5_decode[] = {
7252 		"IDMA_IDLE",
7253 		"IDMA_ALMOST_IDLE",
7254 		"IDMA_PUSH_MORE_CPL_FIFO",
7255 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7256 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7257 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7258 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7259 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7260 		"IDMA_SEND_FIFO_TO_IMSG",
7261 		"IDMA_FL_REQ_DATA_FL",
7262 		"IDMA_FL_DROP",
7263 		"IDMA_FL_DROP_SEND_INC",
7264 		"IDMA_FL_H_REQ_HEADER_FL",
7265 		"IDMA_FL_H_SEND_PCIEHDR",
7266 		"IDMA_FL_H_PUSH_CPL_FIFO",
7267 		"IDMA_FL_H_SEND_CPL",
7268 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7269 		"IDMA_FL_H_SEND_IP_HDR",
7270 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7271 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7272 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7273 		"IDMA_FL_D_SEND_PCIEHDR",
7274 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7275 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7276 		"IDMA_FL_SEND_PCIEHDR",
7277 		"IDMA_FL_PUSH_CPL_FIFO",
7278 		"IDMA_FL_SEND_CPL",
7279 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7280 		"IDMA_FL_SEND_PAYLOAD",
7281 		"IDMA_FL_REQ_NEXT_DATA_FL",
7282 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7283 		"IDMA_FL_SEND_PADDING",
7284 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7285 	};
7286 	static const char * const t6_decode[] = {
7287 		"IDMA_IDLE",
7288 		"IDMA_PUSH_MORE_CPL_FIFO",
7289 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7290 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7291 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7292 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7293 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7294 		"IDMA_FL_REQ_DATA_FL",
7295 		"IDMA_FL_DROP",
7296 		"IDMA_FL_DROP_SEND_INC",
7297 		"IDMA_FL_H_REQ_HEADER_FL",
7298 		"IDMA_FL_H_SEND_PCIEHDR",
7299 		"IDMA_FL_H_PUSH_CPL_FIFO",
7300 		"IDMA_FL_H_SEND_CPL",
7301 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7302 		"IDMA_FL_H_SEND_IP_HDR",
7303 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7304 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7305 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7306 		"IDMA_FL_D_SEND_PCIEHDR",
7307 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7308 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7309 		"IDMA_FL_SEND_PCIEHDR",
7310 		"IDMA_FL_PUSH_CPL_FIFO",
7311 		"IDMA_FL_SEND_CPL",
7312 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7313 		"IDMA_FL_SEND_PAYLOAD",
7314 		"IDMA_FL_REQ_NEXT_DATA_FL",
7315 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7316 		"IDMA_FL_SEND_PADDING",
7317 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7318 	};
7319 	static const u32 sge_regs[] = {
7320 		A_SGE_DEBUG_DATA_LOW_INDEX_2,
7321 		A_SGE_DEBUG_DATA_LOW_INDEX_3,
7322 		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
7323 	};
7324 	const char * const *sge_idma_decode;
7325 	int sge_idma_decode_nstates;
7326 	int i;
7327 	unsigned int chip_version = chip_id(adapter);
7328 
7329 	/* Select the right set of decode strings to dump depending on the
7330 	 * adapter chip type.
7331 	 */
7332 	switch (chip_version) {
7333 	case CHELSIO_T4:
7334 		sge_idma_decode = (const char * const *)t4_decode;
7335 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
7336 		break;
7337 
7338 	case CHELSIO_T5:
7339 		sge_idma_decode = (const char * const *)t5_decode;
7340 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
7341 		break;
7342 
7343 	case CHELSIO_T6:
7344 		sge_idma_decode = (const char * const *)t6_decode;
7345 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
7346 		break;
7347 
7348 	default:
7349 		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
7350 		return;
7351 	}
7352 
7353 	if (state < sge_idma_decode_nstates)
7354 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
7355 	else
7356 		CH_WARN(adapter, "idma state %d unknown\n", state);
7357 
7358 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
7359 		CH_WARN(adapter, "SGE register %#x value %#x\n",
7360 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
7361 }
7362 
7363 /**
7364  *      t4_sge_ctxt_flush - flush the SGE context cache
7365  *      @adap: the adapter
7366  *      @mbox: mailbox to use for the FW command
7367  *
7368  *      Issues a FW command through the given mailbox to flush the
7369  *      SGE context cache.
7370  */
7371 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
7372 {
7373 	int ret;
7374 	u32 ldst_addrspace;
7375 	struct fw_ldst_cmd c;
7376 
7377 	memset(&c, 0, sizeof(c));
7378 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(ctxt_type == CTXT_EGRESS ?
7379 						 FW_LDST_ADDRSPC_SGE_EGRC :
7380 						 FW_LDST_ADDRSPC_SGE_INGC);
7381 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7382 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7383 					ldst_addrspace);
7384 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7385 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
7386 
7387 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7388 	return ret;
7389 }
7390 
7391 /**
7392  *      t4_fw_hello - establish communication with FW
7393  *      @adap: the adapter
7394  *      @mbox: mailbox to use for the FW command
7395  *      @evt_mbox: mailbox to receive async FW events
7396  *      @master: specifies the caller's willingness to be the device master
7397  *	@state: returns the current device state (if non-NULL)
7398  *
7399  *	Issues a command to establish communication with FW.  Returns either
7400  *	an error (negative integer) or the mailbox of the Master PF.
7401  */
7402 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
7403 		enum dev_master master, enum dev_state *state)
7404 {
7405 	int ret;
7406 	struct fw_hello_cmd c;
7407 	u32 v;
7408 	unsigned int master_mbox;
7409 	int retries = FW_CMD_HELLO_RETRIES;
7410 
7411 retry:
7412 	memset(&c, 0, sizeof(c));
7413 	INIT_CMD(c, HELLO, WRITE);
7414 	c.err_to_clearinit = cpu_to_be32(
7415 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
7416 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
7417 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
7418 					mbox : M_FW_HELLO_CMD_MBMASTER) |
7419 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
7420 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
7421 		F_FW_HELLO_CMD_CLEARINIT);
7422 
7423 	/*
7424 	 * Issue the HELLO command to the firmware.  If it's not successful
7425 	 * but indicates that we got a "busy" or "timeout" condition, retry
7426 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
7427 	 * retry limit, check to see if the firmware left us any error
7428 	 * information and report that if so ...
7429 	 */
7430 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7431 	if (ret != FW_SUCCESS) {
7432 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
7433 			goto retry;
7434 		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
7435 			t4_report_fw_error(adap);
7436 		return ret;
7437 	}
7438 
7439 	v = be32_to_cpu(c.err_to_clearinit);
7440 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
7441 	if (state) {
7442 		if (v & F_FW_HELLO_CMD_ERR)
7443 			*state = DEV_STATE_ERR;
7444 		else if (v & F_FW_HELLO_CMD_INIT)
7445 			*state = DEV_STATE_INIT;
7446 		else
7447 			*state = DEV_STATE_UNINIT;
7448 	}
7449 
7450 	/*
7451 	 * If we're not the Master PF then we need to wait around for the
7452 	 * Master PF Driver to finish setting up the adapter.
7453 	 *
7454 	 * Note that we also do this wait if we're a non-Master-capable PF and
7455 	 * there is no current Master PF; a Master PF may show up momentarily
7456 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
7457 	 * OS loads lots of different drivers rapidly at the same time).  In
7458 	 * this case, the Master PF returned by the firmware will be
7459 	 * M_PCIE_FW_MASTER so the test below will work ...
7460 	 */
7461 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
7462 	    master_mbox != mbox) {
7463 		int waiting = FW_CMD_HELLO_TIMEOUT;
7464 
7465 		/*
7466 		 * Wait for the firmware to either indicate an error or
7467 		 * initialized state.  If we see either of these we bail out
7468 		 * and report the issue to the caller.  If we exhaust the
7469 		 * "hello timeout" and we haven't exhausted our retries, try
7470 		 * again.  Otherwise bail with a timeout error.
7471 		 */
7472 		for (;;) {
7473 			u32 pcie_fw;
7474 
7475 			msleep(50);
7476 			waiting -= 50;
7477 
7478 			/*
7479 			 * If neither Error nor Initialialized are indicated
7480 			 * by the firmware keep waiting till we exhaust our
7481 			 * timeout ... and then retry if we haven't exhausted
7482 			 * our retries ...
7483 			 */
7484 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
7485 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
7486 				if (waiting <= 0) {
7487 					if (retries-- > 0)
7488 						goto retry;
7489 
7490 					return -ETIMEDOUT;
7491 				}
7492 				continue;
7493 			}
7494 
7495 			/*
7496 			 * We either have an Error or Initialized condition
7497 			 * report errors preferentially.
7498 			 */
7499 			if (state) {
7500 				if (pcie_fw & F_PCIE_FW_ERR)
7501 					*state = DEV_STATE_ERR;
7502 				else if (pcie_fw & F_PCIE_FW_INIT)
7503 					*state = DEV_STATE_INIT;
7504 			}
7505 
7506 			/*
7507 			 * If we arrived before a Master PF was selected and
7508 			 * there's not a valid Master PF, grab its identity
7509 			 * for our caller.
7510 			 */
7511 			if (master_mbox == M_PCIE_FW_MASTER &&
7512 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
7513 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
7514 			break;
7515 		}
7516 	}
7517 
7518 	return master_mbox;
7519 }
7520 
7521 /**
7522  *	t4_fw_bye - end communication with FW
7523  *	@adap: the adapter
7524  *	@mbox: mailbox to use for the FW command
7525  *
7526  *	Issues a command to terminate communication with FW.
7527  */
7528 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
7529 {
7530 	struct fw_bye_cmd c;
7531 
7532 	memset(&c, 0, sizeof(c));
7533 	INIT_CMD(c, BYE, WRITE);
7534 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7535 }
7536 
7537 /**
7538  *	t4_fw_reset - issue a reset to FW
7539  *	@adap: the adapter
7540  *	@mbox: mailbox to use for the FW command
7541  *	@reset: specifies the type of reset to perform
7542  *
7543  *	Issues a reset command of the specified type to FW.
7544  */
7545 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7546 {
7547 	struct fw_reset_cmd c;
7548 
7549 	memset(&c, 0, sizeof(c));
7550 	INIT_CMD(c, RESET, WRITE);
7551 	c.val = cpu_to_be32(reset);
7552 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7553 }
7554 
7555 /**
7556  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7557  *	@adap: the adapter
7558  *	@mbox: mailbox to use for the FW RESET command (if desired)
7559  *	@force: force uP into RESET even if FW RESET command fails
7560  *
7561  *	Issues a RESET command to firmware (if desired) with a HALT indication
7562  *	and then puts the microprocessor into RESET state.  The RESET command
7563  *	will only be issued if a legitimate mailbox is provided (mbox <=
7564  *	M_PCIE_FW_MASTER).
7565  *
7566  *	This is generally used in order for the host to safely manipulate the
7567  *	adapter without fear of conflicting with whatever the firmware might
7568  *	be doing.  The only way out of this state is to RESTART the firmware
7569  *	...
7570  */
7571 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7572 {
7573 	int ret = 0;
7574 
7575 	/*
7576 	 * If a legitimate mailbox is provided, issue a RESET command
7577 	 * with a HALT indication.
7578 	 */
7579 	if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) {
7580 		struct fw_reset_cmd c;
7581 
7582 		memset(&c, 0, sizeof(c));
7583 		INIT_CMD(c, RESET, WRITE);
7584 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
7585 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
7586 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7587 	}
7588 
7589 	/*
7590 	 * Normally we won't complete the operation if the firmware RESET
7591 	 * command fails but if our caller insists we'll go ahead and put the
7592 	 * uP into RESET.  This can be useful if the firmware is hung or even
7593 	 * missing ...  We'll have to take the risk of putting the uP into
7594 	 * RESET without the cooperation of firmware in that case.
7595 	 *
7596 	 * We also force the firmware's HALT flag to be on in case we bypassed
7597 	 * the firmware RESET command above or we're dealing with old firmware
7598 	 * which doesn't have the HALT capability.  This will serve as a flag
7599 	 * for the incoming firmware to know that it's coming out of a HALT
7600 	 * rather than a RESET ... if it's new enough to understand that ...
7601 	 */
7602 	if (ret == 0 || force) {
7603 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
7604 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
7605 				 F_PCIE_FW_HALT);
7606 	}
7607 
7608 	/*
7609 	 * And we always return the result of the firmware RESET command
7610 	 * even when we force the uP into RESET ...
7611 	 */
7612 	return ret;
7613 }
7614 
7615 /**
7616  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
7617  *	@adap: the adapter
7618  *
7619  *	Restart firmware previously halted by t4_fw_halt().  On successful
7620  *	return the previous PF Master remains as the new PF Master and there
7621  *	is no need to issue a new HELLO command, etc.
7622  */
7623 int t4_fw_restart(struct adapter *adap, unsigned int mbox)
7624 {
7625 	int ms;
7626 
7627 	t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
7628 	for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7629 		if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
7630 			return FW_SUCCESS;
7631 		msleep(100);
7632 		ms += 100;
7633 	}
7634 
7635 	return -ETIMEDOUT;
7636 }
7637 
7638 /**
7639  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7640  *	@adap: the adapter
7641  *	@mbox: mailbox to use for the FW RESET command (if desired)
7642  *	@fw_data: the firmware image to write
7643  *	@size: image size
7644  *	@force: force upgrade even if firmware doesn't cooperate
7645  *
7646  *	Perform all of the steps necessary for upgrading an adapter's
7647  *	firmware image.  Normally this requires the cooperation of the
7648  *	existing firmware in order to halt all existing activities
7649  *	but if an invalid mailbox token is passed in we skip that step
7650  *	(though we'll still put the adapter microprocessor into RESET in
7651  *	that case).
7652  *
7653  *	On successful return the new firmware will have been loaded and
7654  *	the adapter will have been fully RESET losing all previous setup
7655  *	state.  On unsuccessful return the adapter may be completely hosed ...
7656  *	positive errno indicates that the adapter is ~probably~ intact, a
7657  *	negative errno indicates that things are looking bad ...
7658  */
7659 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7660 		  const u8 *fw_data, unsigned int size, int force)
7661 {
7662 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7663 	unsigned int bootstrap =
7664 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
7665 	int ret;
7666 
7667 	if (!t4_fw_matches_chip(adap, fw_hdr))
7668 		return -EINVAL;
7669 
7670 	if (!bootstrap) {
7671 		ret = t4_fw_halt(adap, mbox, force);
7672 		if (ret < 0 && !force)
7673 			return ret;
7674 	}
7675 
7676 	ret = t4_load_fw(adap, fw_data, size);
7677 	if (ret < 0 || bootstrap)
7678 		return ret;
7679 
7680 	return t4_fw_restart(adap, mbox);
7681 }
7682 
7683 /**
7684  *	t4_fw_initialize - ask FW to initialize the device
7685  *	@adap: the adapter
7686  *	@mbox: mailbox to use for the FW command
7687  *
7688  *	Issues a command to FW to partially initialize the device.  This
7689  *	performs initialization that generally doesn't depend on user input.
7690  */
7691 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7692 {
7693 	struct fw_initialize_cmd c;
7694 
7695 	memset(&c, 0, sizeof(c));
7696 	INIT_CMD(c, INITIALIZE, WRITE);
7697 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7698 }
7699 
7700 /**
7701  *	t4_query_params_rw - query FW or device parameters
7702  *	@adap: the adapter
7703  *	@mbox: mailbox to use for the FW command
7704  *	@pf: the PF
7705  *	@vf: the VF
7706  *	@nparams: the number of parameters
7707  *	@params: the parameter names
7708  *	@val: the parameter values
7709  *	@rw: Write and read flag
7710  *
7711  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7712  *	queried at once.
7713  */
7714 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7715 		       unsigned int vf, unsigned int nparams, const u32 *params,
7716 		       u32 *val, int rw)
7717 {
7718 	int i, ret;
7719 	struct fw_params_cmd c;
7720 	__be32 *p = &c.param[0].mnem;
7721 
7722 	if (nparams > 7)
7723 		return -EINVAL;
7724 
7725 	memset(&c, 0, sizeof(c));
7726 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7727 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
7728 				  V_FW_PARAMS_CMD_PFN(pf) |
7729 				  V_FW_PARAMS_CMD_VFN(vf));
7730 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7731 
7732 	for (i = 0; i < nparams; i++) {
7733 		*p++ = cpu_to_be32(*params++);
7734 		if (rw)
7735 			*p = cpu_to_be32(*(val + i));
7736 		p++;
7737 	}
7738 
7739 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7740 	if (ret == 0)
7741 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7742 			*val++ = be32_to_cpu(*p);
7743 	return ret;
7744 }
7745 
7746 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7747 		    unsigned int vf, unsigned int nparams, const u32 *params,
7748 		    u32 *val)
7749 {
7750 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
7751 }
7752 
7753 /**
7754  *      t4_set_params_timeout - sets FW or device parameters
7755  *      @adap: the adapter
7756  *      @mbox: mailbox to use for the FW command
7757  *      @pf: the PF
7758  *      @vf: the VF
7759  *      @nparams: the number of parameters
7760  *      @params: the parameter names
7761  *      @val: the parameter values
7762  *      @timeout: the timeout time
7763  *
7764  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7765  *      specified at once.
7766  */
7767 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7768 			  unsigned int pf, unsigned int vf,
7769 			  unsigned int nparams, const u32 *params,
7770 			  const u32 *val, int timeout)
7771 {
7772 	struct fw_params_cmd c;
7773 	__be32 *p = &c.param[0].mnem;
7774 
7775 	if (nparams > 7)
7776 		return -EINVAL;
7777 
7778 	memset(&c, 0, sizeof(c));
7779 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7780 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7781 				  V_FW_PARAMS_CMD_PFN(pf) |
7782 				  V_FW_PARAMS_CMD_VFN(vf));
7783 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7784 
7785 	while (nparams--) {
7786 		*p++ = cpu_to_be32(*params++);
7787 		*p++ = cpu_to_be32(*val++);
7788 	}
7789 
7790 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7791 }
7792 
7793 /**
7794  *	t4_set_params - sets FW or device parameters
7795  *	@adap: the adapter
7796  *	@mbox: mailbox to use for the FW command
7797  *	@pf: the PF
7798  *	@vf: the VF
7799  *	@nparams: the number of parameters
7800  *	@params: the parameter names
7801  *	@val: the parameter values
7802  *
7803  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7804  *	specified at once.
7805  */
7806 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7807 		  unsigned int vf, unsigned int nparams, const u32 *params,
7808 		  const u32 *val)
7809 {
7810 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7811 				     FW_CMD_MAX_TIMEOUT);
7812 }
7813 
7814 /**
7815  *	t4_cfg_pfvf - configure PF/VF resource limits
7816  *	@adap: the adapter
7817  *	@mbox: mailbox to use for the FW command
7818  *	@pf: the PF being configured
7819  *	@vf: the VF being configured
7820  *	@txq: the max number of egress queues
7821  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7822  *	@rxqi: the max number of interrupt-capable ingress queues
7823  *	@rxq: the max number of interruptless ingress queues
7824  *	@tc: the PCI traffic class
7825  *	@vi: the max number of virtual interfaces
7826  *	@cmask: the channel access rights mask for the PF/VF
7827  *	@pmask: the port access rights mask for the PF/VF
7828  *	@nexact: the maximum number of exact MPS filters
7829  *	@rcaps: read capabilities
7830  *	@wxcaps: write/execute capabilities
7831  *
7832  *	Configures resource limits and capabilities for a physical or virtual
7833  *	function.
7834  */
7835 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7836 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7837 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7838 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7839 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7840 {
7841 	struct fw_pfvf_cmd c;
7842 
7843 	memset(&c, 0, sizeof(c));
7844 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7845 				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7846 				  V_FW_PFVF_CMD_VFN(vf));
7847 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7848 	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7849 				     V_FW_PFVF_CMD_NIQ(rxq));
7850 	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7851 				    V_FW_PFVF_CMD_PMASK(pmask) |
7852 				    V_FW_PFVF_CMD_NEQ(txq));
7853 	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7854 				      V_FW_PFVF_CMD_NVI(vi) |
7855 				      V_FW_PFVF_CMD_NEXACTF(nexact));
7856 	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7857 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7858 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7859 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7860 }
7861 
7862 /**
7863  *	t4_alloc_vi_func - allocate a virtual interface
7864  *	@adap: the adapter
7865  *	@mbox: mailbox to use for the FW command
7866  *	@port: physical port associated with the VI
7867  *	@pf: the PF owning the VI
7868  *	@vf: the VF owning the VI
7869  *	@nmac: number of MAC addresses needed (1 to 5)
7870  *	@mac: the MAC addresses of the VI
7871  *	@rss_size: size of RSS table slice associated with this VI
7872  *	@portfunc: which Port Application Function MAC Address is desired
7873  *	@idstype: Intrusion Detection Type
7874  *
7875  *	Allocates a virtual interface for the given physical port.  If @mac is
7876  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7877  *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7878  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7879  *	stored consecutively so the space needed is @nmac * 6 bytes.
7880  *	Returns a negative error number or the non-negative VI id.
7881  */
7882 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7883 		     unsigned int port, unsigned int pf, unsigned int vf,
7884 		     unsigned int nmac, u8 *mac, u16 *rss_size,
7885 		     uint8_t *vfvld, uint16_t *vin,
7886 		     unsigned int portfunc, unsigned int idstype)
7887 {
7888 	int ret;
7889 	struct fw_vi_cmd c;
7890 
7891 	memset(&c, 0, sizeof(c));
7892 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7893 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7894 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7895 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7896 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7897 				     V_FW_VI_CMD_FUNC(portfunc));
7898 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7899 	c.nmac = nmac - 1;
7900 	if(!rss_size)
7901 		c.norss_rsssize = F_FW_VI_CMD_NORSS;
7902 
7903 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7904 	if (ret)
7905 		return ret;
7906 	ret = G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7907 
7908 	if (mac) {
7909 		memcpy(mac, c.mac, sizeof(c.mac));
7910 		switch (nmac) {
7911 		case 5:
7912 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7913 		case 4:
7914 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7915 		case 3:
7916 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7917 		case 2:
7918 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7919 		}
7920 	}
7921 	if (rss_size)
7922 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
7923 	if (vfvld) {
7924 		*vfvld = adap->params.viid_smt_extn_support ?
7925 		    G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16)) :
7926 		    G_FW_VIID_VIVLD(ret);
7927 	}
7928 	if (vin) {
7929 		*vin = adap->params.viid_smt_extn_support ?
7930 		    G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16)) :
7931 		    G_FW_VIID_VIN(ret);
7932 	}
7933 
7934 	return ret;
7935 }
7936 
7937 /**
7938  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
7939  *      @adap: the adapter
7940  *      @mbox: mailbox to use for the FW command
7941  *      @port: physical port associated with the VI
7942  *      @pf: the PF owning the VI
7943  *      @vf: the VF owning the VI
7944  *      @nmac: number of MAC addresses needed (1 to 5)
7945  *      @mac: the MAC addresses of the VI
7946  *      @rss_size: size of RSS table slice associated with this VI
7947  *
7948  *	backwards compatible and convieniance routine to allocate a Virtual
7949  *	Interface with a Ethernet Port Application Function and Intrustion
7950  *	Detection System disabled.
7951  */
7952 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7953 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7954 		u16 *rss_size, uint8_t *vfvld, uint16_t *vin)
7955 {
7956 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
7957 				vfvld, vin, FW_VI_FUNC_ETH, 0);
7958 }
7959 
7960 /**
7961  * 	t4_free_vi - free a virtual interface
7962  * 	@adap: the adapter
7963  * 	@mbox: mailbox to use for the FW command
7964  * 	@pf: the PF owning the VI
7965  * 	@vf: the VF owning the VI
7966  * 	@viid: virtual interface identifiler
7967  *
7968  * 	Free a previously allocated virtual interface.
7969  */
7970 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7971 	       unsigned int vf, unsigned int viid)
7972 {
7973 	struct fw_vi_cmd c;
7974 
7975 	memset(&c, 0, sizeof(c));
7976 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
7977 				  F_FW_CMD_REQUEST |
7978 				  F_FW_CMD_EXEC |
7979 				  V_FW_VI_CMD_PFN(pf) |
7980 				  V_FW_VI_CMD_VFN(vf));
7981 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
7982 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
7983 
7984 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7985 }
7986 
7987 /**
7988  *	t4_set_rxmode - set Rx properties of a virtual interface
7989  *	@adap: the adapter
7990  *	@mbox: mailbox to use for the FW command
7991  *	@viid: the VI id
7992  *	@mtu: the new MTU or -1
7993  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7994  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7995  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7996  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7997  *	@sleep_ok: if true we may sleep while awaiting command completion
7998  *
7999  *	Sets Rx properties of a virtual interface.
8000  */
8001 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
8002 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
8003 		  bool sleep_ok)
8004 {
8005 	struct fw_vi_rxmode_cmd c;
8006 
8007 	/* convert to FW values */
8008 	if (mtu < 0)
8009 		mtu = M_FW_VI_RXMODE_CMD_MTU;
8010 	if (promisc < 0)
8011 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
8012 	if (all_multi < 0)
8013 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
8014 	if (bcast < 0)
8015 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
8016 	if (vlanex < 0)
8017 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
8018 
8019 	memset(&c, 0, sizeof(c));
8020 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
8021 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8022 				   V_FW_VI_RXMODE_CMD_VIID(viid));
8023 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
8024 	c.mtu_to_vlanexen =
8025 		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
8026 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
8027 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
8028 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
8029 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
8030 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8031 }
8032 
8033 /**
8034  *	t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
8035  *	@adap: the adapter
8036  *	@viid: the VI id
8037  *	@mac: the MAC address
8038  *	@mask: the mask
8039  *	@vni: the VNI id for the tunnel protocol
8040  *	@vni_mask: mask for the VNI id
8041  *	@dip_hit: to enable DIP match for the MPS entry
8042  *	@lookup_type: MAC address for inner (1) or outer (0) header
8043  *	@sleep_ok: call is allowed to sleep
8044  *
8045  *	Allocates an MPS entry with specified MAC address and VNI value.
8046  *
8047  *	Returns a negative error number or the allocated index for this mac.
8048  */
8049 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
8050 			    const u8 *addr, const u8 *mask, unsigned int vni,
8051 			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
8052 			    bool sleep_ok)
8053 {
8054 	struct fw_vi_mac_cmd c;
8055 	struct fw_vi_mac_vni *p = c.u.exact_vni;
8056 	int ret = 0;
8057 	u32 val;
8058 
8059 	memset(&c, 0, sizeof(c));
8060 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8061 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8062 				   V_FW_VI_MAC_CMD_VIID(viid));
8063 	val = V_FW_CMD_LEN16(1) |
8064 	      V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC_VNI);
8065 	c.freemacs_to_len16 = cpu_to_be32(val);
8066 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8067 				      V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8068 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8069 	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
8070 
8071 	p->lookup_type_to_vni = cpu_to_be32(V_FW_VI_MAC_CMD_VNI(vni) |
8072 					    V_FW_VI_MAC_CMD_DIP_HIT(dip_hit) |
8073 					    V_FW_VI_MAC_CMD_LOOKUP_TYPE(lookup_type));
8074 	p->vni_mask_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_VNI_MASK(vni_mask));
8075 
8076 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8077 	if (ret == 0)
8078 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8079 	return ret;
8080 }
8081 
8082 /**
8083  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
8084  *	@adap: the adapter
8085  *	@viid: the VI id
8086  *	@mac: the MAC address
8087  *	@mask: the mask
8088  *	@idx: index at which to add this entry
8089  *	@port_id: the port index
8090  *	@lookup_type: MAC address for inner (1) or outer (0) header
8091  *	@sleep_ok: call is allowed to sleep
8092  *
8093  *	Adds the mac entry at the specified index using raw mac interface.
8094  *
8095  *	Returns a negative error number or the allocated index for this mac.
8096  */
8097 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
8098 			  const u8 *addr, const u8 *mask, unsigned int idx,
8099 			  u8 lookup_type, u8 port_id, bool sleep_ok)
8100 {
8101 	int ret = 0;
8102 	struct fw_vi_mac_cmd c;
8103 	struct fw_vi_mac_raw *p = &c.u.raw;
8104 	u32 val;
8105 
8106 	memset(&c, 0, sizeof(c));
8107 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8108 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8109 				   V_FW_VI_MAC_CMD_VIID(viid));
8110 	val = V_FW_CMD_LEN16(1) |
8111 	      V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
8112 	c.freemacs_to_len16 = cpu_to_be32(val);
8113 
8114 	/* Specify that this is an inner mac address */
8115 	p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx));
8116 
8117 	/* Lookup Type. Outer header: 0, Inner header: 1 */
8118 	p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
8119 				   V_DATAPORTNUM(port_id));
8120 	/* Lookup mask and port mask */
8121 	p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
8122 				    V_DATAPORTNUM(M_DATAPORTNUM));
8123 
8124 	/* Copy the address and the mask */
8125 	memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
8126 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
8127 
8128 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8129 	if (ret == 0) {
8130 		ret = G_FW_VI_MAC_CMD_RAW_IDX(be32_to_cpu(p->raw_idx_pkd));
8131 		if (ret != idx)
8132 			ret = -ENOMEM;
8133 	}
8134 
8135 	return ret;
8136 }
8137 
8138 /**
8139  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
8140  *	@adap: the adapter
8141  *	@mbox: mailbox to use for the FW command
8142  *	@viid: the VI id
8143  *	@free: if true any existing filters for this VI id are first removed
8144  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8145  *	@addr: the MAC address(es)
8146  *	@idx: where to store the index of each allocated filter
8147  *	@hash: pointer to hash address filter bitmap
8148  *	@sleep_ok: call is allowed to sleep
8149  *
8150  *	Allocates an exact-match filter for each of the supplied addresses and
8151  *	sets it to the corresponding address.  If @idx is not %NULL it should
8152  *	have at least @naddr entries, each of which will be set to the index of
8153  *	the filter allocated for the corresponding MAC address.  If a filter
8154  *	could not be allocated for an address its index is set to 0xffff.
8155  *	If @hash is not %NULL addresses that fail to allocate an exact filter
8156  *	are hashed and update the hash filter bitmap pointed at by @hash.
8157  *
8158  *	Returns a negative error number or the number of filters allocated.
8159  */
8160 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
8161 		      unsigned int viid, bool free, unsigned int naddr,
8162 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
8163 {
8164 	int offset, ret = 0;
8165 	struct fw_vi_mac_cmd c;
8166 	unsigned int nfilters = 0;
8167 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8168 	unsigned int rem = naddr;
8169 
8170 	if (naddr > max_naddr)
8171 		return -EINVAL;
8172 
8173 	for (offset = 0; offset < naddr ; /**/) {
8174 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8175 					 ? rem
8176 					 : ARRAY_SIZE(c.u.exact));
8177 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8178 						     u.exact[fw_naddr]), 16);
8179 		struct fw_vi_mac_exact *p;
8180 		int i;
8181 
8182 		memset(&c, 0, sizeof(c));
8183 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8184 					   F_FW_CMD_REQUEST |
8185 					   F_FW_CMD_WRITE |
8186 					   V_FW_CMD_EXEC(free) |
8187 					   V_FW_VI_MAC_CMD_VIID(viid));
8188 		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
8189 						  V_FW_CMD_LEN16(len16));
8190 
8191 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8192 			p->valid_to_idx =
8193 				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8194 					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8195 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8196 		}
8197 
8198 		/*
8199 		 * It's okay if we run out of space in our MAC address arena.
8200 		 * Some of the addresses we submit may get stored so we need
8201 		 * to run through the reply to see what the results were ...
8202 		 */
8203 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8204 		if (ret && ret != -FW_ENOMEM)
8205 			break;
8206 
8207 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8208 			u16 index = G_FW_VI_MAC_CMD_IDX(
8209 						be16_to_cpu(p->valid_to_idx));
8210 
8211 			if (idx)
8212 				idx[offset+i] = (index >=  max_naddr
8213 						 ? 0xffff
8214 						 : index);
8215 			if (index < max_naddr)
8216 				nfilters++;
8217 			else if (hash)
8218 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
8219 		}
8220 
8221 		free = false;
8222 		offset += fw_naddr;
8223 		rem -= fw_naddr;
8224 	}
8225 
8226 	if (ret == 0 || ret == -FW_ENOMEM)
8227 		ret = nfilters;
8228 	return ret;
8229 }
8230 
8231 /**
8232  *	t4_free_encap_mac_filt - frees MPS entry at given index
8233  *	@adap: the adapter
8234  *	@viid: the VI id
8235  *	@idx: index of MPS entry to be freed
8236  *	@sleep_ok: call is allowed to sleep
8237  *
8238  *	Frees the MPS entry at supplied index
8239  *
8240  *	Returns a negative error number or zero on success
8241  */
8242 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
8243 			   int idx, bool sleep_ok)
8244 {
8245 	struct fw_vi_mac_exact *p;
8246 	struct fw_vi_mac_cmd c;
8247 	u8 addr[] = {0,0,0,0,0,0};
8248 	int ret = 0;
8249 	u32 exact;
8250 
8251 	memset(&c, 0, sizeof(c));
8252 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8253 				   F_FW_CMD_REQUEST |
8254 				   F_FW_CMD_WRITE |
8255 				   V_FW_CMD_EXEC(0) |
8256 				   V_FW_VI_MAC_CMD_VIID(viid));
8257 	exact = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC);
8258 	c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8259 					  exact |
8260 					  V_FW_CMD_LEN16(1));
8261 	p = c.u.exact;
8262 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8263 				      V_FW_VI_MAC_CMD_IDX(idx));
8264 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8265 
8266 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8267 	return ret;
8268 }
8269 
8270 /**
8271  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
8272  *	@adap: the adapter
8273  *	@viid: the VI id
8274  *	@addr: the MAC address
8275  *	@mask: the mask
8276  *	@idx: index of the entry in mps tcam
8277  *	@lookup_type: MAC address for inner (1) or outer (0) header
8278  *	@port_id: the port index
8279  *	@sleep_ok: call is allowed to sleep
8280  *
8281  *	Removes the mac entry at the specified index using raw mac interface.
8282  *
8283  *	Returns a negative error number on failure.
8284  */
8285 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
8286 			 const u8 *addr, const u8 *mask, unsigned int idx,
8287 			 u8 lookup_type, u8 port_id, bool sleep_ok)
8288 {
8289 	struct fw_vi_mac_cmd c;
8290 	struct fw_vi_mac_raw *p = &c.u.raw;
8291 	u32 raw;
8292 
8293 	memset(&c, 0, sizeof(c));
8294 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8295 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8296 				   V_FW_CMD_EXEC(0) |
8297 				   V_FW_VI_MAC_CMD_VIID(viid));
8298 	raw = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
8299 	c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8300 					  raw |
8301 					  V_FW_CMD_LEN16(1));
8302 
8303 	p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx) |
8304 				     FW_VI_MAC_ID_BASED_FREE);
8305 
8306 	/* Lookup Type. Outer header: 0, Inner header: 1 */
8307 	p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
8308 				   V_DATAPORTNUM(port_id));
8309 	/* Lookup mask and port mask */
8310 	p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
8311 				    V_DATAPORTNUM(M_DATAPORTNUM));
8312 
8313 	/* Copy the address and the mask */
8314 	memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
8315 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
8316 
8317 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8318 }
8319 
8320 /**
8321  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
8322  *	@adap: the adapter
8323  *	@mbox: mailbox to use for the FW command
8324  *	@viid: the VI id
8325  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8326  *	@addr: the MAC address(es)
8327  *	@sleep_ok: call is allowed to sleep
8328  *
8329  *	Frees the exact-match filter for each of the supplied addresses
8330  *
8331  *	Returns a negative error number or the number of filters freed.
8332  */
8333 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8334 		      unsigned int viid, unsigned int naddr,
8335 		      const u8 **addr, bool sleep_ok)
8336 {
8337 	int offset, ret = 0;
8338 	struct fw_vi_mac_cmd c;
8339 	unsigned int nfilters = 0;
8340 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8341 	unsigned int rem = naddr;
8342 
8343 	if (naddr > max_naddr)
8344 		return -EINVAL;
8345 
8346 	for (offset = 0; offset < (int)naddr ; /**/) {
8347 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8348 					 ? rem
8349 					 : ARRAY_SIZE(c.u.exact));
8350 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8351 						     u.exact[fw_naddr]), 16);
8352 		struct fw_vi_mac_exact *p;
8353 		int i;
8354 
8355 		memset(&c, 0, sizeof(c));
8356 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8357 				     F_FW_CMD_REQUEST |
8358 				     F_FW_CMD_WRITE |
8359 				     V_FW_CMD_EXEC(0) |
8360 				     V_FW_VI_MAC_CMD_VIID(viid));
8361 		c.freemacs_to_len16 =
8362 				cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8363 					    V_FW_CMD_LEN16(len16));
8364 
8365 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8366 			p->valid_to_idx = cpu_to_be16(
8367 				F_FW_VI_MAC_CMD_VALID |
8368 				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE));
8369 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8370 		}
8371 
8372 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8373 		if (ret)
8374 			break;
8375 
8376 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8377 			u16 index = G_FW_VI_MAC_CMD_IDX(
8378 						be16_to_cpu(p->valid_to_idx));
8379 
8380 			if (index < max_naddr)
8381 				nfilters++;
8382 		}
8383 
8384 		offset += fw_naddr;
8385 		rem -= fw_naddr;
8386 	}
8387 
8388 	if (ret == 0)
8389 		ret = nfilters;
8390 	return ret;
8391 }
8392 
8393 /**
8394  *	t4_change_mac - modifies the exact-match filter for a MAC address
8395  *	@adap: the adapter
8396  *	@mbox: mailbox to use for the FW command
8397  *	@viid: the VI id
8398  *	@idx: index of existing filter for old value of MAC address, or -1
8399  *	@addr: the new MAC address value
8400  *	@persist: whether a new MAC allocation should be persistent
8401  *	@smt_idx: add MAC to SMT and return its index, or NULL
8402  *
8403  *	Modifies an exact-match filter and sets it to the new MAC address if
8404  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
8405  *	latter case the address is added persistently if @persist is %true.
8406  *
8407  *	Note that in general it is not possible to modify the value of a given
8408  *	filter so the generic way to modify an address filter is to free the one
8409  *	being used by the old address value and allocate a new filter for the
8410  *	new address value.
8411  *
8412  *	Returns a negative error number or the index of the filter with the new
8413  *	MAC value.  Note that this index may differ from @idx.
8414  */
8415 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8416 		  int idx, const u8 *addr, bool persist, uint16_t *smt_idx)
8417 {
8418 	int ret, mode;
8419 	struct fw_vi_mac_cmd c;
8420 	struct fw_vi_mac_exact *p = c.u.exact;
8421 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
8422 
8423 	if (idx < 0)		/* new allocation */
8424 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8425 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8426 
8427 	memset(&c, 0, sizeof(c));
8428 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8429 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8430 				   V_FW_VI_MAC_CMD_VIID(viid));
8431 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
8432 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8433 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
8434 				      V_FW_VI_MAC_CMD_IDX(idx));
8435 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8436 
8437 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8438 	if (ret == 0) {
8439 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8440 		if (ret >= max_mac_addr)
8441 			ret = -ENOMEM;
8442 		if (smt_idx) {
8443 			if (adap->params.viid_smt_extn_support)
8444 				*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
8445 			else {
8446 				if (chip_id(adap) <= CHELSIO_T5)
8447 					*smt_idx = (viid & M_FW_VIID_VIN) << 1;
8448 				else
8449 					*smt_idx = viid & M_FW_VIID_VIN;
8450 			}
8451 		}
8452 	}
8453 	return ret;
8454 }
8455 
8456 /**
8457  *	t4_set_addr_hash - program the MAC inexact-match hash filter
8458  *	@adap: the adapter
8459  *	@mbox: mailbox to use for the FW command
8460  *	@viid: the VI id
8461  *	@ucast: whether the hash filter should also match unicast addresses
8462  *	@vec: the value to be written to the hash filter
8463  *	@sleep_ok: call is allowed to sleep
8464  *
8465  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8466  */
8467 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8468 		     bool ucast, u64 vec, bool sleep_ok)
8469 {
8470 	struct fw_vi_mac_cmd c;
8471 	u32 val;
8472 
8473 	memset(&c, 0, sizeof(c));
8474 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8475 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8476 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8477 	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
8478 	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
8479 	c.freemacs_to_len16 = cpu_to_be32(val);
8480 	c.u.hash.hashvec = cpu_to_be64(vec);
8481 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8482 }
8483 
8484 /**
8485  *      t4_enable_vi_params - enable/disable a virtual interface
8486  *      @adap: the adapter
8487  *      @mbox: mailbox to use for the FW command
8488  *      @viid: the VI id
8489  *      @rx_en: 1=enable Rx, 0=disable Rx
8490  *      @tx_en: 1=enable Tx, 0=disable Tx
8491  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8492  *
8493  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8494  *      only makes sense when enabling a Virtual Interface ...
8495  */
8496 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8497 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8498 {
8499 	struct fw_vi_enable_cmd c;
8500 
8501 	memset(&c, 0, sizeof(c));
8502 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8503 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8504 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8505 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
8506 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
8507 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
8508 				     FW_LEN16(c));
8509 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8510 }
8511 
8512 /**
8513  *	t4_enable_vi - enable/disable a virtual interface
8514  *	@adap: the adapter
8515  *	@mbox: mailbox to use for the FW command
8516  *	@viid: the VI id
8517  *	@rx_en: 1=enable Rx, 0=disable Rx
8518  *	@tx_en: 1=enable Tx, 0=disable Tx
8519  *
8520  *	Enables/disables a virtual interface.  Note that setting DCB Enable
8521  *	only makes sense when enabling a Virtual Interface ...
8522  */
8523 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8524 		 bool rx_en, bool tx_en)
8525 {
8526 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8527 }
8528 
8529 /**
8530  *	t4_identify_port - identify a VI's port by blinking its LED
8531  *	@adap: the adapter
8532  *	@mbox: mailbox to use for the FW command
8533  *	@viid: the VI id
8534  *	@nblinks: how many times to blink LED at 2.5 Hz
8535  *
8536  *	Identifies a VI's port by blinking its LED.
8537  */
8538 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8539 		     unsigned int nblinks)
8540 {
8541 	struct fw_vi_enable_cmd c;
8542 
8543 	memset(&c, 0, sizeof(c));
8544 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8545 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8546 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8547 	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
8548 	c.blinkdur = cpu_to_be16(nblinks);
8549 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8550 }
8551 
8552 /**
8553  *	t4_iq_stop - stop an ingress queue and its FLs
8554  *	@adap: the adapter
8555  *	@mbox: mailbox to use for the FW command
8556  *	@pf: the PF owning the queues
8557  *	@vf: the VF owning the queues
8558  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8559  *	@iqid: ingress queue id
8560  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8561  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8562  *
8563  *	Stops an ingress queue and its associated FLs, if any.  This causes
8564  *	any current or future data/messages destined for these queues to be
8565  *	tossed.
8566  */
8567 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8568 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8569 	       unsigned int fl0id, unsigned int fl1id)
8570 {
8571 	struct fw_iq_cmd c;
8572 
8573 	memset(&c, 0, sizeof(c));
8574 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8575 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8576 				  V_FW_IQ_CMD_VFN(vf));
8577 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
8578 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8579 	c.iqid = cpu_to_be16(iqid);
8580 	c.fl0id = cpu_to_be16(fl0id);
8581 	c.fl1id = cpu_to_be16(fl1id);
8582 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8583 }
8584 
8585 /**
8586  *	t4_iq_free - free an ingress queue and its FLs
8587  *	@adap: the adapter
8588  *	@mbox: mailbox to use for the FW command
8589  *	@pf: the PF owning the queues
8590  *	@vf: the VF owning the queues
8591  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8592  *	@iqid: ingress queue id
8593  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8594  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8595  *
8596  *	Frees an ingress queue and its associated FLs, if any.
8597  */
8598 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8599 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8600 	       unsigned int fl0id, unsigned int fl1id)
8601 {
8602 	struct fw_iq_cmd c;
8603 
8604 	memset(&c, 0, sizeof(c));
8605 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8606 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8607 				  V_FW_IQ_CMD_VFN(vf));
8608 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
8609 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8610 	c.iqid = cpu_to_be16(iqid);
8611 	c.fl0id = cpu_to_be16(fl0id);
8612 	c.fl1id = cpu_to_be16(fl1id);
8613 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8614 }
8615 
8616 /**
8617  *	t4_eth_eq_free - free an Ethernet egress queue
8618  *	@adap: the adapter
8619  *	@mbox: mailbox to use for the FW command
8620  *	@pf: the PF owning the queue
8621  *	@vf: the VF owning the queue
8622  *	@eqid: egress queue id
8623  *
8624  *	Frees an Ethernet egress queue.
8625  */
8626 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8627 		   unsigned int vf, unsigned int eqid)
8628 {
8629 	struct fw_eq_eth_cmd c;
8630 
8631 	memset(&c, 0, sizeof(c));
8632 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8633 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8634 				  V_FW_EQ_ETH_CMD_PFN(pf) |
8635 				  V_FW_EQ_ETH_CMD_VFN(vf));
8636 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
8637 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8638 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8639 }
8640 
8641 /**
8642  *	t4_ctrl_eq_free - free a control egress queue
8643  *	@adap: the adapter
8644  *	@mbox: mailbox to use for the FW command
8645  *	@pf: the PF owning the queue
8646  *	@vf: the VF owning the queue
8647  *	@eqid: egress queue id
8648  *
8649  *	Frees a control egress queue.
8650  */
8651 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8652 		    unsigned int vf, unsigned int eqid)
8653 {
8654 	struct fw_eq_ctrl_cmd c;
8655 
8656 	memset(&c, 0, sizeof(c));
8657 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
8658 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8659 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
8660 				  V_FW_EQ_CTRL_CMD_VFN(vf));
8661 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
8662 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
8663 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8664 }
8665 
8666 /**
8667  *	t4_ofld_eq_free - free an offload egress queue
8668  *	@adap: the adapter
8669  *	@mbox: mailbox to use for the FW command
8670  *	@pf: the PF owning the queue
8671  *	@vf: the VF owning the queue
8672  *	@eqid: egress queue id
8673  *
8674  *	Frees a control egress queue.
8675  */
8676 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8677 		    unsigned int vf, unsigned int eqid)
8678 {
8679 	struct fw_eq_ofld_cmd c;
8680 
8681 	memset(&c, 0, sizeof(c));
8682 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
8683 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8684 				  V_FW_EQ_OFLD_CMD_PFN(pf) |
8685 				  V_FW_EQ_OFLD_CMD_VFN(vf));
8686 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
8687 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
8688 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8689 }
8690 
8691 /**
8692  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8693  *	@link_down_rc: Link Down Reason Code
8694  *
8695  *	Returns a string representation of the Link Down Reason Code.
8696  */
8697 const char *t4_link_down_rc_str(unsigned char link_down_rc)
8698 {
8699 	static const char *reason[] = {
8700 		"Link Down",
8701 		"Remote Fault",
8702 		"Auto-negotiation Failure",
8703 		"Reserved3",
8704 		"Insufficient Airflow",
8705 		"Unable To Determine Reason",
8706 		"No RX Signal Detected",
8707 		"Reserved7",
8708 	};
8709 
8710 	if (link_down_rc >= ARRAY_SIZE(reason))
8711 		return "Bad Reason Code";
8712 
8713 	return reason[link_down_rc];
8714 }
8715 
8716 /*
8717  * Return the highest speed set in the port capabilities, in Mb/s.
8718  */
8719 unsigned int fwcap_to_speed(uint32_t caps)
8720 {
8721 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8722 		do { \
8723 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8724 				return __speed; \
8725 		} while (0)
8726 
8727 	TEST_SPEED_RETURN(400G, 400000);
8728 	TEST_SPEED_RETURN(200G, 200000);
8729 	TEST_SPEED_RETURN(100G, 100000);
8730 	TEST_SPEED_RETURN(50G,   50000);
8731 	TEST_SPEED_RETURN(40G,   40000);
8732 	TEST_SPEED_RETURN(25G,   25000);
8733 	TEST_SPEED_RETURN(10G,   10000);
8734 	TEST_SPEED_RETURN(1G,     1000);
8735 	TEST_SPEED_RETURN(100M,    100);
8736 
8737 	#undef TEST_SPEED_RETURN
8738 
8739 	return 0;
8740 }
8741 
8742 /*
8743  * Return the port capabilities bit for the given speed, which is in Mb/s.
8744  */
8745 uint32_t speed_to_fwcap(unsigned int speed)
8746 {
8747 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8748 		do { \
8749 			if (speed == __speed) \
8750 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8751 		} while (0)
8752 
8753 	TEST_SPEED_RETURN(400G, 400000);
8754 	TEST_SPEED_RETURN(200G, 200000);
8755 	TEST_SPEED_RETURN(100G, 100000);
8756 	TEST_SPEED_RETURN(50G,   50000);
8757 	TEST_SPEED_RETURN(40G,   40000);
8758 	TEST_SPEED_RETURN(25G,   25000);
8759 	TEST_SPEED_RETURN(10G,   10000);
8760 	TEST_SPEED_RETURN(1G,     1000);
8761 	TEST_SPEED_RETURN(100M,    100);
8762 
8763 	#undef TEST_SPEED_RETURN
8764 
8765 	return 0;
8766 }
8767 
8768 /*
8769  * Return the port capabilities bit for the highest speed in the capabilities.
8770  */
8771 uint32_t fwcap_top_speed(uint32_t caps)
8772 {
8773 	#define TEST_SPEED_RETURN(__caps_speed) \
8774 		do { \
8775 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8776 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8777 		} while (0)
8778 
8779 	TEST_SPEED_RETURN(400G);
8780 	TEST_SPEED_RETURN(200G);
8781 	TEST_SPEED_RETURN(100G);
8782 	TEST_SPEED_RETURN(50G);
8783 	TEST_SPEED_RETURN(40G);
8784 	TEST_SPEED_RETURN(25G);
8785 	TEST_SPEED_RETURN(10G);
8786 	TEST_SPEED_RETURN(1G);
8787 	TEST_SPEED_RETURN(100M);
8788 
8789 	#undef TEST_SPEED_RETURN
8790 
8791 	return 0;
8792 }
8793 
8794 /**
8795  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8796  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8797  *
8798  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8799  *	32-bit Port Capabilities value.
8800  */
8801 static uint32_t lstatus_to_fwcap(u32 lstatus)
8802 {
8803 	uint32_t linkattr = 0;
8804 
8805 	/*
8806 	 * Unfortunately the format of the Link Status in the old
8807 	 * 16-bit Port Information message isn't the same as the
8808 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8809 	 */
8810 	if (lstatus & F_FW_PORT_CMD_RXPAUSE)
8811 		linkattr |= FW_PORT_CAP32_FC_RX;
8812 	if (lstatus & F_FW_PORT_CMD_TXPAUSE)
8813 		linkattr |= FW_PORT_CAP32_FC_TX;
8814 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
8815 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8816 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
8817 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8818 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
8819 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8820 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
8821 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8822 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
8823 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8824 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
8825 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8826 
8827 	return linkattr;
8828 }
8829 
8830 /*
8831  * Updates all fields owned by the common code in port_info and link_config
8832  * based on information provided by the firmware.  Does not touch any
8833  * requested_* field.
8834  */
8835 static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p,
8836     enum fw_port_action action, bool *mod_changed, bool *link_changed)
8837 {
8838 	struct link_config old_lc, *lc = &pi->link_cfg;
8839 	unsigned char fc;
8840 	u32 stat, linkattr;
8841 	int old_ptype, old_mtype;
8842 
8843 	old_ptype = pi->port_type;
8844 	old_mtype = pi->mod_type;
8845 	old_lc = *lc;
8846 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8847 		stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
8848 
8849 		pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
8850 		pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
8851 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
8852 		    G_FW_PORT_CMD_MDIOADDR(stat) : -1;
8853 
8854 		lc->pcaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap));
8855 		lc->acaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap));
8856 		lc->lpacaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap));
8857 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
8858 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
8859 
8860 		linkattr = lstatus_to_fwcap(stat);
8861 	} else if (action == FW_PORT_ACTION_GET_PORT_INFO32) {
8862 		stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32);
8863 
8864 		pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat);
8865 		pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat);
8866 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ?
8867 		    G_FW_PORT_CMD_MDIOADDR32(stat) : -1;
8868 
8869 		lc->pcaps = be32_to_cpu(p->u.info32.pcaps32);
8870 		lc->acaps = be32_to_cpu(p->u.info32.acaps32);
8871 		lc->lpacaps = be32_to_cpu(p->u.info32.lpacaps32);
8872 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0;
8873 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat);
8874 
8875 		linkattr = be32_to_cpu(p->u.info32.linkattr32);
8876 	} else {
8877 		CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action);
8878 		return;
8879 	}
8880 
8881 	lc->speed = fwcap_to_speed(linkattr);
8882 	lc->fec = fwcap_to_fec(linkattr, true);
8883 
8884 	fc = 0;
8885 	if (linkattr & FW_PORT_CAP32_FC_RX)
8886 		fc |= PAUSE_RX;
8887 	if (linkattr & FW_PORT_CAP32_FC_TX)
8888 		fc |= PAUSE_TX;
8889 	lc->fc = fc;
8890 
8891 	if (mod_changed != NULL)
8892 		*mod_changed = false;
8893 	if (link_changed != NULL)
8894 		*link_changed = false;
8895 	if (old_ptype != pi->port_type || old_mtype != pi->mod_type ||
8896 	    old_lc.pcaps != lc->pcaps) {
8897 		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE)
8898 			lc->fec_hint = fwcap_to_fec(lc->acaps, true);
8899 		if (mod_changed != NULL)
8900 			*mod_changed = true;
8901 	}
8902 	if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed ||
8903 	    old_lc.fec != lc->fec || old_lc.fc != lc->fc) {
8904 		if (link_changed != NULL)
8905 			*link_changed = true;
8906 	}
8907 }
8908 
8909 /**
8910  *	t4_update_port_info - retrieve and update port information if changed
8911  *	@pi: the port_info
8912  *
8913  *	We issue a Get Port Information Command to the Firmware and, if
8914  *	successful, we check to see if anything is different from what we
8915  *	last recorded and update things accordingly.
8916  */
8917  int t4_update_port_info(struct port_info *pi)
8918  {
8919 	struct adapter *sc = pi->adapter;
8920 	struct fw_port_cmd cmd;
8921 	enum fw_port_action action;
8922 	int ret;
8923 
8924 	memset(&cmd, 0, sizeof(cmd));
8925 	cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
8926 	    F_FW_CMD_REQUEST | F_FW_CMD_READ |
8927 	    V_FW_PORT_CMD_PORTID(pi->tx_chan));
8928 	action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 :
8929 	    FW_PORT_ACTION_GET_PORT_INFO;
8930 	cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) |
8931 	    FW_LEN16(cmd));
8932 	ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd);
8933 	if (ret)
8934 		return ret;
8935 
8936 	handle_port_info(pi, &cmd, action, NULL, NULL);
8937 	return 0;
8938 }
8939 
8940 /**
8941  *	t4_handle_fw_rpl - process a FW reply message
8942  *	@adap: the adapter
8943  *	@rpl: start of the FW message
8944  *
8945  *	Processes a FW message, such as link state change messages.
8946  */
8947 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8948 {
8949 	u8 opcode = *(const u8 *)rpl;
8950 	const struct fw_port_cmd *p = (const void *)rpl;
8951 	enum fw_port_action action =
8952 	    G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
8953 	bool mod_changed, link_changed;
8954 
8955 	if (opcode == FW_PORT_CMD &&
8956 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8957 	    action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8958 		/* link/module state change message */
8959 		int i;
8960 		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
8961 		struct port_info *pi = NULL;
8962 		struct link_config *lc;
8963 
8964 		for_each_port(adap, i) {
8965 			pi = adap2pinfo(adap, i);
8966 			if (pi->tx_chan == chan)
8967 				break;
8968 		}
8969 
8970 		lc = &pi->link_cfg;
8971 		PORT_LOCK(pi);
8972 		handle_port_info(pi, p, action, &mod_changed, &link_changed);
8973 		PORT_UNLOCK(pi);
8974 		if (mod_changed)
8975 			t4_os_portmod_changed(pi);
8976 		if (link_changed) {
8977 			PORT_LOCK(pi);
8978 			t4_os_link_changed(pi);
8979 			PORT_UNLOCK(pi);
8980 		}
8981 	} else {
8982 		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
8983 		return -EINVAL;
8984 	}
8985 	return 0;
8986 }
8987 
8988 /**
8989  *	get_pci_mode - determine a card's PCI mode
8990  *	@adapter: the adapter
8991  *	@p: where to store the PCI settings
8992  *
8993  *	Determines a card's PCI mode and associated parameters, such as speed
8994  *	and width.
8995  */
8996 static void get_pci_mode(struct adapter *adapter,
8997 				   struct pci_params *p)
8998 {
8999 	u16 val;
9000 	u32 pcie_cap;
9001 
9002 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
9003 	if (pcie_cap) {
9004 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
9005 		p->speed = val & PCI_EXP_LNKSTA_CLS;
9006 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
9007 	}
9008 }
9009 
9010 struct flash_desc {
9011 	u32 vendor_and_model_id;
9012 	u32 size_mb;
9013 };
9014 
9015 int t4_get_flash_params(struct adapter *adapter)
9016 {
9017 	/*
9018 	 * Table for non-standard supported Flash parts.  Note, all Flash
9019 	 * parts must have 64KB sectors.
9020 	 */
9021 	static struct flash_desc supported_flash[] = {
9022 		{ 0x00150201, 4 << 20 },	/* Spansion 4MB S25FL032P */
9023 	};
9024 
9025 	int ret;
9026 	u32 flashid = 0;
9027 	unsigned int part, manufacturer;
9028 	unsigned int density, size = 0;
9029 
9030 
9031 	/*
9032 	 * Issue a Read ID Command to the Flash part.  We decode supported
9033 	 * Flash parts and their sizes from this.  There's a newer Query
9034 	 * Command which can retrieve detailed geometry information but many
9035 	 * Flash parts don't support it.
9036 	 */
9037 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
9038 	if (!ret)
9039 		ret = sf1_read(adapter, 3, 0, 1, &flashid);
9040 	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
9041 	if (ret < 0)
9042 		return ret;
9043 
9044 	/*
9045 	 * Check to see if it's one of our non-standard supported Flash parts.
9046 	 */
9047 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
9048 		if (supported_flash[part].vendor_and_model_id == flashid) {
9049 			adapter->params.sf_size =
9050 				supported_flash[part].size_mb;
9051 			adapter->params.sf_nsec =
9052 				adapter->params.sf_size / SF_SEC_SIZE;
9053 			goto found;
9054 		}
9055 
9056 	/*
9057 	 * Decode Flash part size.  The code below looks repetative with
9058 	 * common encodings, but that's not guaranteed in the JEDEC
9059 	 * specification for the Read JADEC ID command.  The only thing that
9060 	 * we're guaranteed by the JADEC specification is where the
9061 	 * Manufacturer ID is in the returned result.  After that each
9062 	 * Manufacturer ~could~ encode things completely differently.
9063 	 * Note, all Flash parts must have 64KB sectors.
9064 	 */
9065 	manufacturer = flashid & 0xff;
9066 	switch (manufacturer) {
9067 	case 0x20: /* Micron/Numonix */
9068 		/*
9069 		 * This Density -> Size decoding table is taken from Micron
9070 		 * Data Sheets.
9071 		 */
9072 		density = (flashid >> 16) & 0xff;
9073 		switch (density) {
9074 		case 0x14: size = 1 << 20; break; /*   1MB */
9075 		case 0x15: size = 1 << 21; break; /*   2MB */
9076 		case 0x16: size = 1 << 22; break; /*   4MB */
9077 		case 0x17: size = 1 << 23; break; /*   8MB */
9078 		case 0x18: size = 1 << 24; break; /*  16MB */
9079 		case 0x19: size = 1 << 25; break; /*  32MB */
9080 		case 0x20: size = 1 << 26; break; /*  64MB */
9081 		case 0x21: size = 1 << 27; break; /* 128MB */
9082 		case 0x22: size = 1 << 28; break; /* 256MB */
9083 		}
9084 		break;
9085 
9086 	case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */
9087 		/*
9088 		 * This Density -> Size decoding table is taken from ISSI
9089 		 * Data Sheets.
9090 		 */
9091 		density = (flashid >> 16) & 0xff;
9092 		switch (density) {
9093 		case 0x16: size = 1 << 25; break; /*  32MB */
9094 		case 0x17: size = 1 << 26; break; /*  64MB */
9095 		}
9096 		break;
9097 
9098 	case 0xc2: /* Macronix */
9099 		/*
9100 		 * This Density -> Size decoding table is taken from Macronix
9101 		 * Data Sheets.
9102 		 */
9103 		density = (flashid >> 16) & 0xff;
9104 		switch (density) {
9105 		case 0x17: size = 1 << 23; break; /*   8MB */
9106 		case 0x18: size = 1 << 24; break; /*  16MB */
9107 		}
9108 		break;
9109 
9110 	case 0xef: /* Winbond */
9111 		/*
9112 		 * This Density -> Size decoding table is taken from Winbond
9113 		 * Data Sheets.
9114 		 */
9115 		density = (flashid >> 16) & 0xff;
9116 		switch (density) {
9117 		case 0x17: size = 1 << 23; break; /*   8MB */
9118 		case 0x18: size = 1 << 24; break; /*  16MB */
9119 		}
9120 		break;
9121 	}
9122 
9123 	/* If we didn't recognize the FLASH part, that's no real issue: the
9124 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
9125 	 * use a FLASH part which is at least 4MB in size and has 64KB
9126 	 * sectors.  The unrecognized FLASH part is likely to be much larger
9127 	 * than 4MB, but that's all we really need.
9128 	 */
9129 	if (size == 0) {
9130 		CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid);
9131 		size = 1 << 22;
9132 	}
9133 
9134 	/*
9135 	 * Store decoded Flash size and fall through into vetting code.
9136 	 */
9137 	adapter->params.sf_size = size;
9138 	adapter->params.sf_nsec = size / SF_SEC_SIZE;
9139 
9140  found:
9141 	/*
9142 	 * We should ~probably~ reject adapters with FLASHes which are too
9143 	 * small but we have some legacy FPGAs with small FLASHes that we'd
9144 	 * still like to use.  So instead we emit a scary message ...
9145 	 */
9146 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
9147 		CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9148 			flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
9149 
9150 	return 0;
9151 }
9152 
9153 static void set_pcie_completion_timeout(struct adapter *adapter,
9154 						  u8 range)
9155 {
9156 	u16 val;
9157 	u32 pcie_cap;
9158 
9159 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
9160 	if (pcie_cap) {
9161 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
9162 		val &= 0xfff0;
9163 		val |= range ;
9164 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
9165 	}
9166 }
9167 
9168 const struct chip_params *t4_get_chip_params(int chipid)
9169 {
9170 	static const struct chip_params chip_params[] = {
9171 		{
9172 			/* T4 */
9173 			.nchan = NCHAN,
9174 			.pm_stats_cnt = PM_NSTATS,
9175 			.cng_ch_bits_log = 2,
9176 			.nsched_cls = 15,
9177 			.cim_num_obq = CIM_NUM_OBQ,
9178 			.mps_rplc_size = 128,
9179 			.vfcount = 128,
9180 			.sge_fl_db = F_DBPRIO,
9181 			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
9182 			.rss_nentries = RSS_NENTRIES,
9183 		},
9184 		{
9185 			/* T5 */
9186 			.nchan = NCHAN,
9187 			.pm_stats_cnt = PM_NSTATS,
9188 			.cng_ch_bits_log = 2,
9189 			.nsched_cls = 16,
9190 			.cim_num_obq = CIM_NUM_OBQ_T5,
9191 			.mps_rplc_size = 128,
9192 			.vfcount = 128,
9193 			.sge_fl_db = F_DBPRIO | F_DBTYPE,
9194 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
9195 			.rss_nentries = RSS_NENTRIES,
9196 		},
9197 		{
9198 			/* T6 */
9199 			.nchan = T6_NCHAN,
9200 			.pm_stats_cnt = T6_PM_NSTATS,
9201 			.cng_ch_bits_log = 3,
9202 			.nsched_cls = 16,
9203 			.cim_num_obq = CIM_NUM_OBQ_T5,
9204 			.mps_rplc_size = 256,
9205 			.vfcount = 256,
9206 			.sge_fl_db = 0,
9207 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
9208 			.rss_nentries = T6_RSS_NENTRIES,
9209 		},
9210 	};
9211 
9212 	chipid -= CHELSIO_T4;
9213 	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
9214 		return NULL;
9215 
9216 	return &chip_params[chipid];
9217 }
9218 
9219 /**
9220  *	t4_prep_adapter - prepare SW and HW for operation
9221  *	@adapter: the adapter
9222  *	@buf: temporary space of at least VPD_LEN size provided by the caller.
9223  *
9224  *	Initialize adapter SW state for the various HW modules, set initial
9225  *	values for some adapter tunables, take PHYs out of reset, and
9226  *	initialize the MDIO interface.
9227  */
9228 int t4_prep_adapter(struct adapter *adapter, u32 *buf)
9229 {
9230 	int ret;
9231 	uint16_t device_id;
9232 	uint32_t pl_rev;
9233 
9234 	get_pci_mode(adapter, &adapter->params.pci);
9235 
9236 	pl_rev = t4_read_reg(adapter, A_PL_REV);
9237 	adapter->params.chipid = G_CHIPID(pl_rev);
9238 	adapter->params.rev = G_REV(pl_rev);
9239 	if (adapter->params.chipid == 0) {
9240 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
9241 		adapter->params.chipid = CHELSIO_T4;
9242 
9243 		/* T4A1 chip is not supported */
9244 		if (adapter->params.rev == 1) {
9245 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
9246 			return -EINVAL;
9247 		}
9248 	}
9249 
9250 	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
9251 	if (adapter->chip_params == NULL)
9252 		return -EINVAL;
9253 
9254 	adapter->params.pci.vpd_cap_addr =
9255 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
9256 
9257 	ret = t4_get_flash_params(adapter);
9258 	if (ret < 0)
9259 		return ret;
9260 
9261 	/* Cards with real ASICs have the chipid in the PCIe device id */
9262 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
9263 	if (device_id >> 12 == chip_id(adapter))
9264 		adapter->params.cim_la_size = CIMLA_SIZE;
9265 	else {
9266 		/* FPGA */
9267 		adapter->params.fpga = 1;
9268 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
9269 	}
9270 
9271 	ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
9272 	if (ret < 0)
9273 		return ret;
9274 
9275 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9276 
9277 	/*
9278 	 * Default port and clock for debugging in case we can't reach FW.
9279 	 */
9280 	adapter->params.nports = 1;
9281 	adapter->params.portvec = 1;
9282 	adapter->params.vpd.cclk = 50000;
9283 
9284 	/* Set pci completion timeout value to 4 seconds. */
9285 	set_pcie_completion_timeout(adapter, 0xd);
9286 	return 0;
9287 }
9288 
9289 /**
9290  *	t4_shutdown_adapter - shut down adapter, host & wire
9291  *	@adapter: the adapter
9292  *
9293  *	Perform an emergency shutdown of the adapter and stop it from
9294  *	continuing any further communication on the ports or DMA to the
9295  *	host.  This is typically used when the adapter and/or firmware
9296  *	have crashed and we want to prevent any further accidental
9297  *	communication with the rest of the world.  This will also force
9298  *	the port Link Status to go down -- if register writes work --
9299  *	which should help our peers figure out that we're down.
9300  */
9301 int t4_shutdown_adapter(struct adapter *adapter)
9302 {
9303 	int port;
9304 
9305 	t4_intr_disable(adapter);
9306 	t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
9307 	for_each_port(adapter, port) {
9308 		u32 a_port_cfg = is_t4(adapter) ?
9309 				 PORT_REG(port, A_XGMAC_PORT_CFG) :
9310 				 T5_PORT_REG(port, A_MAC_PORT_CFG);
9311 
9312 		t4_write_reg(adapter, a_port_cfg,
9313 			     t4_read_reg(adapter, a_port_cfg)
9314 			     & ~V_SIGNAL_DET(1));
9315 	}
9316 	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
9317 
9318 	return 0;
9319 }
9320 
9321 /**
9322  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9323  *	@adapter: the adapter
9324  *	@qid: the Queue ID
9325  *	@qtype: the Ingress or Egress type for @qid
9326  *	@user: true if this request is for a user mode queue
9327  *	@pbar2_qoffset: BAR2 Queue Offset
9328  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9329  *
9330  *	Returns the BAR2 SGE Queue Registers information associated with the
9331  *	indicated Absolute Queue ID.  These are passed back in return value
9332  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9333  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9334  *
9335  *	This may return an error which indicates that BAR2 SGE Queue
9336  *	registers aren't available.  If an error is not returned, then the
9337  *	following values are returned:
9338  *
9339  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9340  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9341  *
9342  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9343  *	require the "Inferred Queue ID" ability may be used.  E.g. the
9344  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9345  *	then these "Inferred Queue ID" register may not be used.
9346  */
9347 int t4_bar2_sge_qregs(struct adapter *adapter,
9348 		      unsigned int qid,
9349 		      enum t4_bar2_qtype qtype,
9350 		      int user,
9351 		      u64 *pbar2_qoffset,
9352 		      unsigned int *pbar2_qid)
9353 {
9354 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9355 	u64 bar2_page_offset, bar2_qoffset;
9356 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9357 
9358 	/* T4 doesn't support BAR2 SGE Queue registers for kernel
9359 	 * mode queues.
9360 	 */
9361 	if (!user && is_t4(adapter))
9362 		return -EINVAL;
9363 
9364 	/* Get our SGE Page Size parameters.
9365 	 */
9366 	page_shift = adapter->params.sge.page_shift;
9367 	page_size = 1 << page_shift;
9368 
9369 	/* Get the right Queues per Page parameters for our Queue.
9370 	 */
9371 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9372 		     ? adapter->params.sge.eq_s_qpp
9373 		     : adapter->params.sge.iq_s_qpp);
9374 	qpp_mask = (1 << qpp_shift) - 1;
9375 
9376 	/* Calculate the basics of the BAR2 SGE Queue register area:
9377 	 *  o The BAR2 page the Queue registers will be in.
9378 	 *  o The BAR2 Queue ID.
9379 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9380 	 */
9381 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9382 	bar2_qid = qid & qpp_mask;
9383 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9384 
9385 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9386 	 * hardware will infer the Absolute Queue ID simply from the writes to
9387 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9388 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9389 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9390 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9391 	 * from the BAR2 Page and BAR2 Queue ID.
9392 	 *
9393 	 * One important censequence of this is that some BAR2 SGE registers
9394 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9395 	 * there.  But other registers synthesize the SGE Queue ID purely
9396 	 * from the writes to the registers -- the Write Combined Doorbell
9397 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9398 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9399 	 * Queue ID can be inferred from simple writes.
9400 	 */
9401 	bar2_qoffset = bar2_page_offset;
9402 	bar2_qinferred = (bar2_qid_offset < page_size);
9403 	if (bar2_qinferred) {
9404 		bar2_qoffset += bar2_qid_offset;
9405 		bar2_qid = 0;
9406 	}
9407 
9408 	*pbar2_qoffset = bar2_qoffset;
9409 	*pbar2_qid = bar2_qid;
9410 	return 0;
9411 }
9412 
9413 /**
9414  *	t4_init_devlog_params - initialize adapter->params.devlog
9415  *	@adap: the adapter
9416  *	@fw_attach: whether we can talk to the firmware
9417  *
9418  *	Initialize various fields of the adapter's Firmware Device Log
9419  *	Parameters structure.
9420  */
9421 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
9422 {
9423 	struct devlog_params *dparams = &adap->params.devlog;
9424 	u32 pf_dparams;
9425 	unsigned int devlog_meminfo;
9426 	struct fw_devlog_cmd devlog_cmd;
9427 	int ret;
9428 
9429 	/* If we're dealing with newer firmware, the Device Log Paramerters
9430 	 * are stored in a designated register which allows us to access the
9431 	 * Device Log even if we can't talk to the firmware.
9432 	 */
9433 	pf_dparams =
9434 		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
9435 	if (pf_dparams) {
9436 		unsigned int nentries, nentries128;
9437 
9438 		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
9439 		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
9440 
9441 		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
9442 		nentries = (nentries128 + 1) * 128;
9443 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9444 
9445 		return 0;
9446 	}
9447 
9448 	/*
9449 	 * For any failing returns ...
9450 	 */
9451 	memset(dparams, 0, sizeof *dparams);
9452 
9453 	/*
9454 	 * If we can't talk to the firmware, there's really nothing we can do
9455 	 * at this point.
9456 	 */
9457 	if (!fw_attach)
9458 		return -ENXIO;
9459 
9460 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9461 	 */
9462 	memset(&devlog_cmd, 0, sizeof devlog_cmd);
9463 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9464 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9465 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9466 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9467 			 &devlog_cmd);
9468 	if (ret)
9469 		return ret;
9470 
9471 	devlog_meminfo =
9472 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9473 	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
9474 	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
9475 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9476 
9477 	return 0;
9478 }
9479 
9480 /**
9481  *	t4_init_sge_params - initialize adap->params.sge
9482  *	@adapter: the adapter
9483  *
9484  *	Initialize various fields of the adapter's SGE Parameters structure.
9485  */
9486 int t4_init_sge_params(struct adapter *adapter)
9487 {
9488 	u32 r;
9489 	struct sge_params *sp = &adapter->params.sge;
9490 	unsigned i, tscale = 1;
9491 
9492 	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
9493 	sp->counter_val[0] = G_THRESHOLD_0(r);
9494 	sp->counter_val[1] = G_THRESHOLD_1(r);
9495 	sp->counter_val[2] = G_THRESHOLD_2(r);
9496 	sp->counter_val[3] = G_THRESHOLD_3(r);
9497 
9498 	if (chip_id(adapter) >= CHELSIO_T6) {
9499 		r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
9500 		tscale = G_TSCALE(r);
9501 		if (tscale == 0)
9502 			tscale = 1;
9503 		else
9504 			tscale += 2;
9505 	}
9506 
9507 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
9508 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
9509 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
9510 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
9511 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
9512 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
9513 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
9514 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
9515 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
9516 
9517 	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
9518 	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
9519 	if (is_t4(adapter))
9520 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
9521 	else if (is_t5(adapter))
9522 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
9523 	else
9524 		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
9525 
9526 	/* egress queues: log2 of # of doorbells per BAR2 page */
9527 	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
9528 	r >>= S_QUEUESPERPAGEPF0 +
9529 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9530 	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
9531 
9532 	/* ingress queues: log2 of # of doorbells per BAR2 page */
9533 	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
9534 	r >>= S_QUEUESPERPAGEPF0 +
9535 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9536 	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
9537 
9538 	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
9539 	r >>= S_HOSTPAGESIZEPF0 +
9540 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
9541 	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
9542 
9543 	r = t4_read_reg(adapter, A_SGE_CONTROL);
9544 	sp->sge_control = r;
9545 	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
9546 	sp->fl_pktshift = G_PKTSHIFT(r);
9547 	if (chip_id(adapter) <= CHELSIO_T5) {
9548 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9549 		    X_INGPADBOUNDARY_SHIFT);
9550 	} else {
9551 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9552 		    X_T6_INGPADBOUNDARY_SHIFT);
9553 	}
9554 	if (is_t4(adapter))
9555 		sp->pack_boundary = sp->pad_boundary;
9556 	else {
9557 		r = t4_read_reg(adapter, A_SGE_CONTROL2);
9558 		if (G_INGPACKBOUNDARY(r) == 0)
9559 			sp->pack_boundary = 16;
9560 		else
9561 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
9562 	}
9563 	for (i = 0; i < SGE_FLBUF_SIZES; i++)
9564 		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
9565 		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
9566 
9567 	return 0;
9568 }
9569 
9570 /*
9571  * Read and cache the adapter's compressed filter mode and ingress config.
9572  */
9573 static void read_filter_mode_and_ingress_config(struct adapter *adap,
9574     bool sleep_ok)
9575 {
9576 	uint32_t v;
9577 	struct tp_params *tpp = &adap->params.tp;
9578 
9579 	t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP,
9580 	    sleep_ok);
9581 	t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG,
9582 	    sleep_ok);
9583 
9584 	/*
9585 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9586 	 * shift positions of several elements of the Compressed Filter Tuple
9587 	 * for this adapter which we need frequently ...
9588 	 */
9589 	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
9590 	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
9591 	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
9592 	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
9593 	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
9594 	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
9595 	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
9596 	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
9597 	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
9598 	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
9599 
9600 	if (chip_id(adap) > CHELSIO_T4) {
9601 		v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3));
9602 		adap->params.tp.hash_filter_mask = v;
9603 		v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4));
9604 		adap->params.tp.hash_filter_mask |= (u64)v << 32;
9605 	}
9606 }
9607 
9608 /**
9609  *      t4_init_tp_params - initialize adap->params.tp
9610  *      @adap: the adapter
9611  *
9612  *      Initialize various fields of the adapter's TP Parameters structure.
9613  */
9614 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9615 {
9616 	int chan;
9617 	u32 tx_len, rx_len, r, v;
9618 	struct tp_params *tpp = &adap->params.tp;
9619 
9620 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
9621 	tpp->tre = G_TIMERRESOLUTION(v);
9622 	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
9623 
9624 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9625 	for (chan = 0; chan < MAX_NCHAN; chan++)
9626 		tpp->tx_modq[chan] = chan;
9627 
9628 	read_filter_mode_and_ingress_config(adap, sleep_ok);
9629 
9630 	/*
9631 	 * Cache a mask of the bits that represent the error vector portion of
9632 	 * rx_pkt.err_vec.  T6+ can use a compressed error vector to make room
9633 	 * for information about outer encapsulation (GENEVE/VXLAN/NVGRE).
9634 	 */
9635 	tpp->err_vec_mask = htobe16(0xffff);
9636 	if (chip_id(adap) > CHELSIO_T5) {
9637 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
9638 		if (v & F_CRXPKTENC) {
9639 			tpp->err_vec_mask =
9640 			    htobe16(V_T6_COMPR_RXERR_VEC(M_T6_COMPR_RXERR_VEC));
9641 		}
9642 	}
9643 
9644 	rx_len = t4_read_reg(adap, A_TP_PMM_RX_PAGE_SIZE);
9645 	tx_len = t4_read_reg(adap, A_TP_PMM_TX_PAGE_SIZE);
9646 
9647 	r = t4_read_reg(adap, A_TP_PARA_REG2);
9648 	rx_len = min(rx_len, G_MAXRXDATA(r));
9649 	tx_len = min(tx_len, G_MAXRXDATA(r));
9650 
9651 	r = t4_read_reg(adap, A_TP_PARA_REG7);
9652 	v = min(G_PMMAXXFERLEN0(r), G_PMMAXXFERLEN1(r));
9653 	rx_len = min(rx_len, v);
9654 	tx_len = min(tx_len, v);
9655 
9656 	tpp->max_tx_pdu = tx_len;
9657 	tpp->max_rx_pdu = rx_len;
9658 
9659 	return 0;
9660 }
9661 
9662 /**
9663  *      t4_filter_field_shift - calculate filter field shift
9664  *      @adap: the adapter
9665  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9666  *
9667  *      Return the shift position of a filter field within the Compressed
9668  *      Filter Tuple.  The filter field is specified via its selection bit
9669  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9670  */
9671 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9672 {
9673 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9674 	unsigned int sel;
9675 	int field_shift;
9676 
9677 	if ((filter_mode & filter_sel) == 0)
9678 		return -1;
9679 
9680 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9681 		switch (filter_mode & sel) {
9682 		case F_FCOE:
9683 			field_shift += W_FT_FCOE;
9684 			break;
9685 		case F_PORT:
9686 			field_shift += W_FT_PORT;
9687 			break;
9688 		case F_VNIC_ID:
9689 			field_shift += W_FT_VNIC_ID;
9690 			break;
9691 		case F_VLAN:
9692 			field_shift += W_FT_VLAN;
9693 			break;
9694 		case F_TOS:
9695 			field_shift += W_FT_TOS;
9696 			break;
9697 		case F_PROTOCOL:
9698 			field_shift += W_FT_PROTOCOL;
9699 			break;
9700 		case F_ETHERTYPE:
9701 			field_shift += W_FT_ETHERTYPE;
9702 			break;
9703 		case F_MACMATCH:
9704 			field_shift += W_FT_MACMATCH;
9705 			break;
9706 		case F_MPSHITTYPE:
9707 			field_shift += W_FT_MPSHITTYPE;
9708 			break;
9709 		case F_FRAGMENTATION:
9710 			field_shift += W_FT_FRAGMENTATION;
9711 			break;
9712 		}
9713 	}
9714 	return field_shift;
9715 }
9716 
9717 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
9718 {
9719 	u8 addr[6];
9720 	int ret, i, j;
9721 	struct port_info *p = adap2pinfo(adap, port_id);
9722 	u32 param, val;
9723 	struct vi_info *vi = &p->vi[0];
9724 
9725 	for (i = 0, j = -1; i <= p->port_id; i++) {
9726 		do {
9727 			j++;
9728 		} while ((adap->params.portvec & (1 << j)) == 0);
9729 	}
9730 
9731 	p->tx_chan = j;
9732 	p->mps_bg_map = t4_get_mps_bg_map(adap, j);
9733 	p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
9734 	p->lport = j;
9735 
9736 	if (!(adap->flags & IS_VF) ||
9737 	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
9738  		t4_update_port_info(p);
9739 	}
9740 
9741 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &vi->rss_size,
9742 	    &vi->vfvld, &vi->vin);
9743 	if (ret < 0)
9744 		return ret;
9745 
9746 	vi->viid = ret;
9747 	t4_os_set_hw_addr(p, addr);
9748 
9749 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9750 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
9751 	    V_FW_PARAMS_PARAM_YZ(vi->viid);
9752 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
9753 	if (ret)
9754 		vi->rss_base = 0xffff;
9755 	else {
9756 		/* MPASS((val >> 16) == rss_size); */
9757 		vi->rss_base = val & 0xffff;
9758 	}
9759 
9760 	return 0;
9761 }
9762 
9763 /**
9764  *	t4_read_cimq_cfg - read CIM queue configuration
9765  *	@adap: the adapter
9766  *	@base: holds the queue base addresses in bytes
9767  *	@size: holds the queue sizes in bytes
9768  *	@thres: holds the queue full thresholds in bytes
9769  *
9770  *	Returns the current configuration of the CIM queues, starting with
9771  *	the IBQs, then the OBQs.
9772  */
9773 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9774 {
9775 	unsigned int i, v;
9776 	int cim_num_obq = adap->chip_params->cim_num_obq;
9777 
9778 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9779 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
9780 			     V_QUENUMSELECT(i));
9781 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9782 		/* value is in 256-byte units */
9783 		*base++ = G_CIMQBASE(v) * 256;
9784 		*size++ = G_CIMQSIZE(v) * 256;
9785 		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
9786 	}
9787 	for (i = 0; i < cim_num_obq; i++) {
9788 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9789 			     V_QUENUMSELECT(i));
9790 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9791 		/* value is in 256-byte units */
9792 		*base++ = G_CIMQBASE(v) * 256;
9793 		*size++ = G_CIMQSIZE(v) * 256;
9794 	}
9795 }
9796 
9797 /**
9798  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9799  *	@adap: the adapter
9800  *	@qid: the queue index
9801  *	@data: where to store the queue contents
9802  *	@n: capacity of @data in 32-bit words
9803  *
9804  *	Reads the contents of the selected CIM queue starting at address 0 up
9805  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9806  *	error and the number of 32-bit words actually read on success.
9807  */
9808 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9809 {
9810 	int i, err, attempts;
9811 	unsigned int addr;
9812 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9813 
9814 	if (qid > 5 || (n & 3))
9815 		return -EINVAL;
9816 
9817 	addr = qid * nwords;
9818 	if (n > nwords)
9819 		n = nwords;
9820 
9821 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9822 	 * Wait for 1 Sec with a delay of 1 usec.
9823 	 */
9824 	attempts = 1000000;
9825 
9826 	for (i = 0; i < n; i++, addr++) {
9827 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
9828 			     F_IBQDBGEN);
9829 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
9830 				      attempts, 1);
9831 		if (err)
9832 			return err;
9833 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
9834 	}
9835 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
9836 	return i;
9837 }
9838 
9839 /**
9840  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9841  *	@adap: the adapter
9842  *	@qid: the queue index
9843  *	@data: where to store the queue contents
9844  *	@n: capacity of @data in 32-bit words
9845  *
9846  *	Reads the contents of the selected CIM queue starting at address 0 up
9847  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9848  *	error and the number of 32-bit words actually read on success.
9849  */
9850 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9851 {
9852 	int i, err;
9853 	unsigned int addr, v, nwords;
9854 	int cim_num_obq = adap->chip_params->cim_num_obq;
9855 
9856 	if ((qid > (cim_num_obq - 1)) || (n & 3))
9857 		return -EINVAL;
9858 
9859 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9860 		     V_QUENUMSELECT(qid));
9861 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9862 
9863 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
9864 	nwords = G_CIMQSIZE(v) * 64;  /* same */
9865 	if (n > nwords)
9866 		n = nwords;
9867 
9868 	for (i = 0; i < n; i++, addr++) {
9869 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
9870 			     F_OBQDBGEN);
9871 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
9872 				      2, 1);
9873 		if (err)
9874 			return err;
9875 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
9876 	}
9877 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
9878 	return i;
9879 }
9880 
9881 enum {
9882 	CIM_QCTL_BASE     = 0,
9883 	CIM_CTL_BASE      = 0x2000,
9884 	CIM_PBT_ADDR_BASE = 0x2800,
9885 	CIM_PBT_LRF_BASE  = 0x3000,
9886 	CIM_PBT_DATA_BASE = 0x3800
9887 };
9888 
9889 /**
9890  *	t4_cim_read - read a block from CIM internal address space
9891  *	@adap: the adapter
9892  *	@addr: the start address within the CIM address space
9893  *	@n: number of words to read
9894  *	@valp: where to store the result
9895  *
9896  *	Reads a block of 4-byte words from the CIM intenal address space.
9897  */
9898 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9899 		unsigned int *valp)
9900 {
9901 	int ret = 0;
9902 
9903 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
9904 		return -EBUSY;
9905 
9906 	for ( ; !ret && n--; addr += 4) {
9907 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
9908 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
9909 				      0, 5, 2);
9910 		if (!ret)
9911 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
9912 	}
9913 	return ret;
9914 }
9915 
9916 /**
9917  *	t4_cim_write - write a block into CIM internal address space
9918  *	@adap: the adapter
9919  *	@addr: the start address within the CIM address space
9920  *	@n: number of words to write
9921  *	@valp: set of values to write
9922  *
9923  *	Writes a block of 4-byte words into the CIM intenal address space.
9924  */
9925 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9926 		 const unsigned int *valp)
9927 {
9928 	int ret = 0;
9929 
9930 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
9931 		return -EBUSY;
9932 
9933 	for ( ; !ret && n--; addr += 4) {
9934 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
9935 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
9936 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
9937 				      0, 5, 2);
9938 	}
9939 	return ret;
9940 }
9941 
9942 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9943 			 unsigned int val)
9944 {
9945 	return t4_cim_write(adap, addr, 1, &val);
9946 }
9947 
9948 /**
9949  *	t4_cim_ctl_read - read a block from CIM control region
9950  *	@adap: the adapter
9951  *	@addr: the start address within the CIM control region
9952  *	@n: number of words to read
9953  *	@valp: where to store the result
9954  *
9955  *	Reads a block of 4-byte words from the CIM control region.
9956  */
9957 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
9958 		    unsigned int *valp)
9959 {
9960 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
9961 }
9962 
9963 /**
9964  *	t4_cim_read_la - read CIM LA capture buffer
9965  *	@adap: the adapter
9966  *	@la_buf: where to store the LA data
9967  *	@wrptr: the HW write pointer within the capture buffer
9968  *
9969  *	Reads the contents of the CIM LA buffer with the most recent entry at
9970  *	the end	of the returned data and with the entry at @wrptr first.
9971  *	We try to leave the LA in the running state we find it in.
9972  */
9973 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9974 {
9975 	int i, ret;
9976 	unsigned int cfg, val, idx;
9977 
9978 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
9979 	if (ret)
9980 		return ret;
9981 
9982 	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
9983 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
9984 		if (ret)
9985 			return ret;
9986 	}
9987 
9988 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
9989 	if (ret)
9990 		goto restart;
9991 
9992 	idx = G_UPDBGLAWRPTR(val);
9993 	if (wrptr)
9994 		*wrptr = idx;
9995 
9996 	for (i = 0; i < adap->params.cim_la_size; i++) {
9997 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
9998 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
9999 		if (ret)
10000 			break;
10001 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
10002 		if (ret)
10003 			break;
10004 		if (val & F_UPDBGLARDEN) {
10005 			ret = -ETIMEDOUT;
10006 			break;
10007 		}
10008 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
10009 		if (ret)
10010 			break;
10011 
10012 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
10013 		 * identify the 32-bit portion of the full 312-bit data
10014 		 */
10015 		if (is_t6(adap) && (idx & 0xf) >= 9)
10016 			idx = (idx & 0xff0) + 0x10;
10017 		else
10018 			idx++;
10019 		/* address can't exceed 0xfff */
10020 		idx &= M_UPDBGLARDPTR;
10021 	}
10022 restart:
10023 	if (cfg & F_UPDBGLAEN) {
10024 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
10025 				      cfg & ~F_UPDBGLARDEN);
10026 		if (!ret)
10027 			ret = r;
10028 	}
10029 	return ret;
10030 }
10031 
10032 /**
10033  *	t4_tp_read_la - read TP LA capture buffer
10034  *	@adap: the adapter
10035  *	@la_buf: where to store the LA data
10036  *	@wrptr: the HW write pointer within the capture buffer
10037  *
10038  *	Reads the contents of the TP LA buffer with the most recent entry at
10039  *	the end	of the returned data and with the entry at @wrptr first.
10040  *	We leave the LA in the running state we find it in.
10041  */
10042 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
10043 {
10044 	bool last_incomplete;
10045 	unsigned int i, cfg, val, idx;
10046 
10047 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
10048 	if (cfg & F_DBGLAENABLE)			/* freeze LA */
10049 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
10050 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
10051 
10052 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
10053 	idx = G_DBGLAWPTR(val);
10054 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
10055 	if (last_incomplete)
10056 		idx = (idx + 1) & M_DBGLARPTR;
10057 	if (wrptr)
10058 		*wrptr = idx;
10059 
10060 	val &= 0xffff;
10061 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
10062 	val |= adap->params.tp.la_mask;
10063 
10064 	for (i = 0; i < TPLA_SIZE; i++) {
10065 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
10066 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
10067 		idx = (idx + 1) & M_DBGLARPTR;
10068 	}
10069 
10070 	/* Wipe out last entry if it isn't valid */
10071 	if (last_incomplete)
10072 		la_buf[TPLA_SIZE - 1] = ~0ULL;
10073 
10074 	if (cfg & F_DBGLAENABLE)		/* restore running state */
10075 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
10076 			     cfg | adap->params.tp.la_mask);
10077 }
10078 
10079 /*
10080  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10081  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10082  * state for more than the Warning Threshold then we'll issue a warning about
10083  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10084  * appears to be hung every Warning Repeat second till the situation clears.
10085  * If the situation clears, we'll note that as well.
10086  */
10087 #define SGE_IDMA_WARN_THRESH 1
10088 #define SGE_IDMA_WARN_REPEAT 300
10089 
10090 /**
10091  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10092  *	@adapter: the adapter
10093  *	@idma: the adapter IDMA Monitor state
10094  *
10095  *	Initialize the state of an SGE Ingress DMA Monitor.
10096  */
10097 void t4_idma_monitor_init(struct adapter *adapter,
10098 			  struct sge_idma_monitor_state *idma)
10099 {
10100 	/* Initialize the state variables for detecting an SGE Ingress DMA
10101 	 * hang.  The SGE has internal counters which count up on each clock
10102 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
10103 	 * same state they were on the previous clock tick.  The clock used is
10104 	 * the Core Clock so we have a limit on the maximum "time" they can
10105 	 * record; typically a very small number of seconds.  For instance,
10106 	 * with a 600MHz Core Clock, we can only count up to a bit more than
10107 	 * 7s.  So we'll synthesize a larger counter in order to not run the
10108 	 * risk of having the "timers" overflow and give us the flexibility to
10109 	 * maintain a Hung SGE State Machine of our own which operates across
10110 	 * a longer time frame.
10111 	 */
10112 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10113 	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
10114 }
10115 
10116 /**
10117  *	t4_idma_monitor - monitor SGE Ingress DMA state
10118  *	@adapter: the adapter
10119  *	@idma: the adapter IDMA Monitor state
10120  *	@hz: number of ticks/second
10121  *	@ticks: number of ticks since the last IDMA Monitor call
10122  */
10123 void t4_idma_monitor(struct adapter *adapter,
10124 		     struct sge_idma_monitor_state *idma,
10125 		     int hz, int ticks)
10126 {
10127 	int i, idma_same_state_cnt[2];
10128 
10129 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10130 	  * are counters inside the SGE which count up on each clock when the
10131 	  * SGE finds its Ingress DMA State Engines in the same states they
10132 	  * were in the previous clock.  The counters will peg out at
10133 	  * 0xffffffff without wrapping around so once they pass the 1s
10134 	  * threshold they'll stay above that till the IDMA state changes.
10135 	  */
10136 	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
10137 	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
10138 	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10139 
10140 	for (i = 0; i < 2; i++) {
10141 		u32 debug0, debug11;
10142 
10143 		/* If the Ingress DMA Same State Counter ("timer") is less
10144 		 * than 1s, then we can reset our synthesized Stall Timer and
10145 		 * continue.  If we have previously emitted warnings about a
10146 		 * potential stalled Ingress Queue, issue a note indicating
10147 		 * that the Ingress Queue has resumed forward progress.
10148 		 */
10149 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10150 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
10151 				CH_WARN(adapter, "SGE idma%d, queue %u, "
10152 					"resumed after %d seconds\n",
10153 					i, idma->idma_qid[i],
10154 					idma->idma_stalled[i]/hz);
10155 			idma->idma_stalled[i] = 0;
10156 			continue;
10157 		}
10158 
10159 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10160 		 * domain.  The first time we get here it'll be because we
10161 		 * passed the 1s Threshold; each additional time it'll be
10162 		 * because the RX Timer Callback is being fired on its regular
10163 		 * schedule.
10164 		 *
10165 		 * If the stall is below our Potential Hung Ingress Queue
10166 		 * Warning Threshold, continue.
10167 		 */
10168 		if (idma->idma_stalled[i] == 0) {
10169 			idma->idma_stalled[i] = hz;
10170 			idma->idma_warn[i] = 0;
10171 		} else {
10172 			idma->idma_stalled[i] += ticks;
10173 			idma->idma_warn[i] -= ticks;
10174 		}
10175 
10176 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
10177 			continue;
10178 
10179 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10180 		 */
10181 		if (idma->idma_warn[i] > 0)
10182 			continue;
10183 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
10184 
10185 		/* Read and save the SGE IDMA State and Queue ID information.
10186 		 * We do this every time in case it changes across time ...
10187 		 * can't be too careful ...
10188 		 */
10189 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
10190 		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10191 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10192 
10193 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
10194 		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10195 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10196 
10197 		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
10198 			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10199 			i, idma->idma_qid[i], idma->idma_state[i],
10200 			idma->idma_stalled[i]/hz,
10201 			debug0, debug11);
10202 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10203 	}
10204 }
10205 
10206 /**
10207  *	t4_read_pace_tbl - read the pace table
10208  *	@adap: the adapter
10209  *	@pace_vals: holds the returned values
10210  *
10211  *	Returns the values of TP's pace table in microseconds.
10212  */
10213 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10214 {
10215 	unsigned int i, v;
10216 
10217 	for (i = 0; i < NTX_SCHED; i++) {
10218 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
10219 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
10220 		pace_vals[i] = dack_ticks_to_usec(adap, v);
10221 	}
10222 }
10223 
10224 /**
10225  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10226  *	@adap: the adapter
10227  *	@sched: the scheduler index
10228  *	@kbps: the byte rate in Kbps
10229  *	@ipg: the interpacket delay in tenths of nanoseconds
10230  *
10231  *	Return the current configuration of a HW Tx scheduler.
10232  */
10233 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
10234 		     unsigned int *ipg, bool sleep_ok)
10235 {
10236 	unsigned int v, addr, bpt, cpt;
10237 
10238 	if (kbps) {
10239 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
10240 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10241 		if (sched & 1)
10242 			v >>= 16;
10243 		bpt = (v >> 8) & 0xff;
10244 		cpt = v & 0xff;
10245 		if (!cpt)
10246 			*kbps = 0;	/* scheduler disabled */
10247 		else {
10248 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10249 			*kbps = (v * bpt) / 125;
10250 		}
10251 	}
10252 	if (ipg) {
10253 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
10254 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10255 		if (sched & 1)
10256 			v >>= 16;
10257 		v &= 0xffff;
10258 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
10259 	}
10260 }
10261 
10262 /**
10263  *	t4_load_cfg - download config file
10264  *	@adap: the adapter
10265  *	@cfg_data: the cfg text file to write
10266  *	@size: text file size
10267  *
10268  *	Write the supplied config text file to the card's serial flash.
10269  */
10270 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10271 {
10272 	int ret, i, n, cfg_addr;
10273 	unsigned int addr;
10274 	unsigned int flash_cfg_start_sec;
10275 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10276 
10277 	cfg_addr = t4_flash_cfg_addr(adap);
10278 	if (cfg_addr < 0)
10279 		return cfg_addr;
10280 
10281 	addr = cfg_addr;
10282 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10283 
10284 	if (size > FLASH_CFG_MAX_SIZE) {
10285 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
10286 		       FLASH_CFG_MAX_SIZE);
10287 		return -EFBIG;
10288 	}
10289 
10290 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
10291 			 sf_sec_size);
10292 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10293 				     flash_cfg_start_sec + i - 1);
10294 	/*
10295 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10296 	 * with the on-adapter Firmware Configuration File.
10297 	 */
10298 	if (ret || size == 0)
10299 		goto out;
10300 
10301 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10302 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10303 		if ( (size - i) <  SF_PAGE_SIZE)
10304 			n = size - i;
10305 		else
10306 			n = SF_PAGE_SIZE;
10307 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
10308 		if (ret)
10309 			goto out;
10310 
10311 		addr += SF_PAGE_SIZE;
10312 		cfg_data += SF_PAGE_SIZE;
10313 	}
10314 
10315 out:
10316 	if (ret)
10317 		CH_ERR(adap, "config file %s failed %d\n",
10318 		       (size == 0 ? "clear" : "download"), ret);
10319 	return ret;
10320 }
10321 
10322 /**
10323  *	t5_fw_init_extern_mem - initialize the external memory
10324  *	@adap: the adapter
10325  *
10326  *	Initializes the external memory on T5.
10327  */
10328 int t5_fw_init_extern_mem(struct adapter *adap)
10329 {
10330 	u32 params[1], val[1];
10331 	int ret;
10332 
10333 	if (!is_t5(adap))
10334 		return 0;
10335 
10336 	val[0] = 0xff; /* Initialize all MCs */
10337 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10338 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
10339 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
10340 			FW_CMD_MAX_TIMEOUT);
10341 
10342 	return ret;
10343 }
10344 
10345 /* BIOS boot headers */
10346 typedef struct pci_expansion_rom_header {
10347 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
10348 	u8	reserved[22]; /* Reserved per processor Architecture data */
10349 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
10350 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
10351 
10352 /* Legacy PCI Expansion ROM Header */
10353 typedef struct legacy_pci_expansion_rom_header {
10354 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
10355 	u8	size512; /* Current Image Size in units of 512 bytes */
10356 	u8	initentry_point[4];
10357 	u8	cksum; /* Checksum computed on the entire Image */
10358 	u8	reserved[16]; /* Reserved */
10359 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
10360 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
10361 
10362 /* EFI PCI Expansion ROM Header */
10363 typedef struct efi_pci_expansion_rom_header {
10364 	u8	signature[2]; // ROM signature. The value 0xaa55
10365 	u8	initialization_size[2]; /* Units 512. Includes this header */
10366 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
10367 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
10368 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
10369 	u8	compression_type[2]; /* Compression type. */
10370 		/*
10371 		 * Compression type definition
10372 		 * 0x0: uncompressed
10373 		 * 0x1: Compressed
10374 		 * 0x2-0xFFFF: Reserved
10375 		 */
10376 	u8	reserved[8]; /* Reserved */
10377 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
10378 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
10379 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
10380 
10381 /* PCI Data Structure Format */
10382 typedef struct pcir_data_structure { /* PCI Data Structure */
10383 	u8	signature[4]; /* Signature. The string "PCIR" */
10384 	u8	vendor_id[2]; /* Vendor Identification */
10385 	u8	device_id[2]; /* Device Identification */
10386 	u8	vital_product[2]; /* Pointer to Vital Product Data */
10387 	u8	length[2]; /* PCIR Data Structure Length */
10388 	u8	revision; /* PCIR Data Structure Revision */
10389 	u8	class_code[3]; /* Class Code */
10390 	u8	image_length[2]; /* Image Length. Multiple of 512B */
10391 	u8	code_revision[2]; /* Revision Level of Code/Data */
10392 	u8	code_type; /* Code Type. */
10393 		/*
10394 		 * PCI Expansion ROM Code Types
10395 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
10396 		 * 0x01: Open Firmware standard for PCI. FCODE
10397 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
10398 		 * 0x03: EFI Image. EFI
10399 		 * 0x04-0xFF: Reserved.
10400 		 */
10401 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
10402 	u8	reserved[2]; /* Reserved */
10403 } pcir_data_t; /* PCI__DATA_STRUCTURE */
10404 
10405 /* BOOT constants */
10406 enum {
10407 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
10408 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
10409 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
10410 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
10411 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
10412 	VENDOR_ID = 0x1425, /* Vendor ID */
10413 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
10414 };
10415 
10416 /*
10417  *	modify_device_id - Modifies the device ID of the Boot BIOS image
10418  *	@adatper: the device ID to write.
10419  *	@boot_data: the boot image to modify.
10420  *
10421  *	Write the supplied device ID to the boot BIOS image.
10422  */
10423 static void modify_device_id(int device_id, u8 *boot_data)
10424 {
10425 	legacy_pci_exp_rom_header_t *header;
10426 	pcir_data_t *pcir_header;
10427 	u32 cur_header = 0;
10428 
10429 	/*
10430 	 * Loop through all chained images and change the device ID's
10431 	 */
10432 	while (1) {
10433 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
10434 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
10435 			      le16_to_cpu(*(u16*)header->pcir_offset)];
10436 
10437 		/*
10438 		 * Only modify the Device ID if code type is Legacy or HP.
10439 		 * 0x00: Okay to modify
10440 		 * 0x01: FCODE. Do not be modify
10441 		 * 0x03: Okay to modify
10442 		 * 0x04-0xFF: Do not modify
10443 		 */
10444 		if (pcir_header->code_type == 0x00) {
10445 			u8 csum = 0;
10446 			int i;
10447 
10448 			/*
10449 			 * Modify Device ID to match current adatper
10450 			 */
10451 			*(u16*) pcir_header->device_id = device_id;
10452 
10453 			/*
10454 			 * Set checksum temporarily to 0.
10455 			 * We will recalculate it later.
10456 			 */
10457 			header->cksum = 0x0;
10458 
10459 			/*
10460 			 * Calculate and update checksum
10461 			 */
10462 			for (i = 0; i < (header->size512 * 512); i++)
10463 				csum += (u8)boot_data[cur_header + i];
10464 
10465 			/*
10466 			 * Invert summed value to create the checksum
10467 			 * Writing new checksum value directly to the boot data
10468 			 */
10469 			boot_data[cur_header + 7] = -csum;
10470 
10471 		} else if (pcir_header->code_type == 0x03) {
10472 
10473 			/*
10474 			 * Modify Device ID to match current adatper
10475 			 */
10476 			*(u16*) pcir_header->device_id = device_id;
10477 
10478 		}
10479 
10480 
10481 		/*
10482 		 * Check indicator element to identify if this is the last
10483 		 * image in the ROM.
10484 		 */
10485 		if (pcir_header->indicator & 0x80)
10486 			break;
10487 
10488 		/*
10489 		 * Move header pointer up to the next image in the ROM.
10490 		 */
10491 		cur_header += header->size512 * 512;
10492 	}
10493 }
10494 
10495 /*
10496  *	t4_load_boot - download boot flash
10497  *	@adapter: the adapter
10498  *	@boot_data: the boot image to write
10499  *	@boot_addr: offset in flash to write boot_data
10500  *	@size: image size
10501  *
10502  *	Write the supplied boot image to the card's serial flash.
10503  *	The boot image has the following sections: a 28-byte header and the
10504  *	boot image.
10505  */
10506 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10507 		 unsigned int boot_addr, unsigned int size)
10508 {
10509 	pci_exp_rom_header_t *header;
10510 	int pcir_offset ;
10511 	pcir_data_t *pcir_header;
10512 	int ret, addr;
10513 	uint16_t device_id;
10514 	unsigned int i;
10515 	unsigned int boot_sector = (boot_addr * 1024 );
10516 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10517 
10518 	/*
10519 	 * Make sure the boot image does not encroach on the firmware region
10520 	 */
10521 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10522 		CH_ERR(adap, "boot image encroaching on firmware region\n");
10523 		return -EFBIG;
10524 	}
10525 
10526 	/*
10527 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10528 	 * and Boot configuration data sections. These 3 boot sections span
10529 	 * sectors 0 to 7 in flash and live right before the FW image location.
10530 	 */
10531 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
10532 			sf_sec_size);
10533 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10534 				     (boot_sector >> 16) + i - 1);
10535 
10536 	/*
10537 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10538 	 * with the on-adapter option ROM file
10539 	 */
10540 	if (ret || (size == 0))
10541 		goto out;
10542 
10543 	/* Get boot header */
10544 	header = (pci_exp_rom_header_t *)boot_data;
10545 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
10546 	/* PCIR Data Structure */
10547 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
10548 
10549 	/*
10550 	 * Perform some primitive sanity testing to avoid accidentally
10551 	 * writing garbage over the boot sectors.  We ought to check for
10552 	 * more but it's not worth it for now ...
10553 	 */
10554 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10555 		CH_ERR(adap, "boot image too small/large\n");
10556 		return -EFBIG;
10557 	}
10558 
10559 #ifndef CHELSIO_T4_DIAGS
10560 	/*
10561 	 * Check BOOT ROM header signature
10562 	 */
10563 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
10564 		CH_ERR(adap, "Boot image missing signature\n");
10565 		return -EINVAL;
10566 	}
10567 
10568 	/*
10569 	 * Check PCI header signature
10570 	 */
10571 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
10572 		CH_ERR(adap, "PCI header missing signature\n");
10573 		return -EINVAL;
10574 	}
10575 
10576 	/*
10577 	 * Check Vendor ID matches Chelsio ID
10578 	 */
10579 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
10580 		CH_ERR(adap, "Vendor ID missing signature\n");
10581 		return -EINVAL;
10582 	}
10583 #endif
10584 
10585 	/*
10586 	 * Retrieve adapter's device ID
10587 	 */
10588 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
10589 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
10590 	device_id = device_id & 0xf0ff;
10591 
10592 	/*
10593 	 * Check PCIE Device ID
10594 	 */
10595 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
10596 		/*
10597 		 * Change the device ID in the Boot BIOS image to match
10598 		 * the Device ID of the current adapter.
10599 		 */
10600 		modify_device_id(device_id, boot_data);
10601 	}
10602 
10603 	/*
10604 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
10605 	 * we finish copying the rest of the boot image. This will ensure
10606 	 * that the BIOS boot header will only be written if the boot image
10607 	 * was written in full.
10608 	 */
10609 	addr = boot_sector;
10610 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10611 		addr += SF_PAGE_SIZE;
10612 		boot_data += SF_PAGE_SIZE;
10613 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
10614 		if (ret)
10615 			goto out;
10616 	}
10617 
10618 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10619 			     (const u8 *)header, 0);
10620 
10621 out:
10622 	if (ret)
10623 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
10624 	return ret;
10625 }
10626 
10627 /*
10628  *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
10629  *	@adapter: the adapter
10630  *
10631  *	Return the address within the flash where the OptionROM Configuration
10632  *	is stored, or an error if the device FLASH is too small to contain
10633  *	a OptionROM Configuration.
10634  */
10635 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10636 {
10637 	/*
10638 	 * If the device FLASH isn't large enough to hold a Firmware
10639 	 * Configuration File, return an error.
10640 	 */
10641 	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10642 		return -ENOSPC;
10643 
10644 	return FLASH_BOOTCFG_START;
10645 }
10646 
10647 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
10648 {
10649 	int ret, i, n, cfg_addr;
10650 	unsigned int addr;
10651 	unsigned int flash_cfg_start_sec;
10652 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10653 
10654 	cfg_addr = t4_flash_bootcfg_addr(adap);
10655 	if (cfg_addr < 0)
10656 		return cfg_addr;
10657 
10658 	addr = cfg_addr;
10659 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10660 
10661 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
10662 		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
10663 			FLASH_BOOTCFG_MAX_SIZE);
10664 		return -EFBIG;
10665 	}
10666 
10667 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
10668 			 sf_sec_size);
10669 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10670 					flash_cfg_start_sec + i - 1);
10671 
10672 	/*
10673 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10674 	 * with the on-adapter OptionROM Configuration File.
10675 	 */
10676 	if (ret || size == 0)
10677 		goto out;
10678 
10679 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10680 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10681 		if ( (size - i) <  SF_PAGE_SIZE)
10682 			n = size - i;
10683 		else
10684 			n = SF_PAGE_SIZE;
10685 		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
10686 		if (ret)
10687 			goto out;
10688 
10689 		addr += SF_PAGE_SIZE;
10690 		cfg_data += SF_PAGE_SIZE;
10691 	}
10692 
10693 out:
10694 	if (ret)
10695 		CH_ERR(adap, "boot config data %s failed %d\n",
10696 				(size == 0 ? "clear" : "download"), ret);
10697 	return ret;
10698 }
10699 
10700 /**
10701  *	t4_set_filter_mode - configure the optional components of filter tuples
10702  *	@adap: the adapter
10703  *	@mode_map: a bitmap selcting which optional filter components to enable
10704  * 	@sleep_ok: if true we may sleep while awaiting command completion
10705  *
10706  *	Sets the filter mode by selecting the optional components to enable
10707  *	in filter tuples.  Returns 0 on success and a negative error if the
10708  *	requested mode needs more bits than are available for optional
10709  *	components.
10710  */
10711 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map,
10712 		       bool sleep_ok)
10713 {
10714 	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
10715 
10716 	int i, nbits = 0;
10717 
10718 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
10719 		if (mode_map & (1 << i))
10720 			nbits += width[i];
10721 	if (nbits > FILTER_OPT_LEN)
10722 		return -EINVAL;
10723 	t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok);
10724 	read_filter_mode_and_ingress_config(adap, sleep_ok);
10725 
10726 	return 0;
10727 }
10728 
10729 /**
10730  *	t4_clr_port_stats - clear port statistics
10731  *	@adap: the adapter
10732  *	@idx: the port index
10733  *
10734  *	Clear HW statistics for the given port.
10735  */
10736 void t4_clr_port_stats(struct adapter *adap, int idx)
10737 {
10738 	unsigned int i;
10739 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
10740 	u32 port_base_addr;
10741 
10742 	if (is_t4(adap))
10743 		port_base_addr = PORT_BASE(idx);
10744 	else
10745 		port_base_addr = T5_PORT_BASE(idx);
10746 
10747 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
10748 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
10749 		t4_write_reg(adap, port_base_addr + i, 0);
10750 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
10751 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
10752 		t4_write_reg(adap, port_base_addr + i, 0);
10753 	for (i = 0; i < 4; i++)
10754 		if (bgmap & (1 << i)) {
10755 			t4_write_reg(adap,
10756 			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
10757 			t4_write_reg(adap,
10758 			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
10759 		}
10760 }
10761 
10762 /**
10763  *	t4_i2c_io - read/write I2C data from adapter
10764  *	@adap: the adapter
10765  *	@port: Port number if per-port device; <0 if not
10766  *	@devid: per-port device ID or absolute device ID
10767  *	@offset: byte offset into device I2C space
10768  *	@len: byte length of I2C space data
10769  *	@buf: buffer in which to return I2C data for read
10770  *	      buffer which holds the I2C data for write
10771  *	@write: if true, do a write; else do a read
10772  *	Reads/Writes the I2C data from/to the indicated device and location.
10773  */
10774 int t4_i2c_io(struct adapter *adap, unsigned int mbox,
10775 	      int port, unsigned int devid,
10776 	      unsigned int offset, unsigned int len,
10777 	      u8 *buf, bool write)
10778 {
10779 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
10780 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
10781 	int ret = 0;
10782 
10783 	if (len > I2C_PAGE_SIZE)
10784 		return -EINVAL;
10785 
10786 	/* Dont allow reads that spans multiple pages */
10787 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
10788 		return -EINVAL;
10789 
10790 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10791 	ldst_cmd.op_to_addrspace =
10792 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10793 			    F_FW_CMD_REQUEST |
10794 			    (write ? F_FW_CMD_WRITE : F_FW_CMD_READ) |
10795 			    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C));
10796 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
10797 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
10798 	ldst_cmd.u.i2c.did = devid;
10799 
10800 	while (len > 0) {
10801 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
10802 
10803 		ldst_cmd.u.i2c.boffset = offset;
10804 		ldst_cmd.u.i2c.blen = i2c_len;
10805 
10806 		if (write)
10807 			memcpy(ldst_cmd.u.i2c.data, buf, i2c_len);
10808 
10809 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
10810 				 write ? NULL : &ldst_rpl);
10811 		if (ret)
10812 			break;
10813 
10814 		if (!write)
10815 			memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
10816 		offset += i2c_len;
10817 		buf += i2c_len;
10818 		len -= i2c_len;
10819 	}
10820 
10821 	return ret;
10822 }
10823 
10824 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
10825 	      int port, unsigned int devid,
10826 	      unsigned int offset, unsigned int len,
10827 	      u8 *buf)
10828 {
10829 	return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, false);
10830 }
10831 
10832 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
10833 	      int port, unsigned int devid,
10834 	      unsigned int offset, unsigned int len,
10835 	      u8 *buf)
10836 {
10837 	return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, true);
10838 }
10839 
10840 /**
10841  * 	t4_sge_ctxt_rd - read an SGE context through FW
10842  * 	@adap: the adapter
10843  * 	@mbox: mailbox to use for the FW command
10844  * 	@cid: the context id
10845  * 	@ctype: the context type
10846  * 	@data: where to store the context data
10847  *
10848  * 	Issues a FW command through the given mailbox to read an SGE context.
10849  */
10850 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10851 		   enum ctxt_type ctype, u32 *data)
10852 {
10853 	int ret;
10854 	struct fw_ldst_cmd c;
10855 
10856 	if (ctype == CTXT_EGRESS)
10857 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
10858 	else if (ctype == CTXT_INGRESS)
10859 		ret = FW_LDST_ADDRSPC_SGE_INGC;
10860 	else if (ctype == CTXT_FLM)
10861 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
10862 	else
10863 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
10864 
10865 	memset(&c, 0, sizeof(c));
10866 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10867 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
10868 					V_FW_LDST_CMD_ADDRSPACE(ret));
10869 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10870 	c.u.idctxt.physid = cpu_to_be32(cid);
10871 
10872 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10873 	if (ret == 0) {
10874 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10875 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10876 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10877 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10878 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10879 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10880 	}
10881 	return ret;
10882 }
10883 
10884 /**
10885  * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10886  * 	@adap: the adapter
10887  * 	@cid: the context id
10888  * 	@ctype: the context type
10889  * 	@data: where to store the context data
10890  *
10891  * 	Reads an SGE context directly, bypassing FW.  This is only for
10892  * 	debugging when FW is unavailable.
10893  */
10894 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
10895 		      u32 *data)
10896 {
10897 	int i, ret;
10898 
10899 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
10900 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
10901 	if (!ret)
10902 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
10903 			*data++ = t4_read_reg(adap, i);
10904 	return ret;
10905 }
10906 
10907 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
10908     int sleep_ok)
10909 {
10910 	struct fw_sched_cmd cmd;
10911 
10912 	memset(&cmd, 0, sizeof(cmd));
10913 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10914 				      F_FW_CMD_REQUEST |
10915 				      F_FW_CMD_WRITE);
10916 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10917 
10918 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
10919 	cmd.u.config.type = type;
10920 	cmd.u.config.minmaxen = minmaxen;
10921 
10922 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10923 			       NULL, sleep_ok);
10924 }
10925 
10926 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
10927 		    int rateunit, int ratemode, int channel, int cl,
10928 		    int minrate, int maxrate, int weight, int pktsize,
10929 		    int burstsize, int sleep_ok)
10930 {
10931 	struct fw_sched_cmd cmd;
10932 
10933 	memset(&cmd, 0, sizeof(cmd));
10934 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10935 				      F_FW_CMD_REQUEST |
10936 				      F_FW_CMD_WRITE);
10937 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10938 
10939 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10940 	cmd.u.params.type = type;
10941 	cmd.u.params.level = level;
10942 	cmd.u.params.mode = mode;
10943 	cmd.u.params.ch = channel;
10944 	cmd.u.params.cl = cl;
10945 	cmd.u.params.unit = rateunit;
10946 	cmd.u.params.rate = ratemode;
10947 	cmd.u.params.min = cpu_to_be32(minrate);
10948 	cmd.u.params.max = cpu_to_be32(maxrate);
10949 	cmd.u.params.weight = cpu_to_be16(weight);
10950 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10951 	cmd.u.params.burstsize = cpu_to_be16(burstsize);
10952 
10953 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10954 			       NULL, sleep_ok);
10955 }
10956 
10957 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
10958     unsigned int maxrate, int sleep_ok)
10959 {
10960 	struct fw_sched_cmd cmd;
10961 
10962 	memset(&cmd, 0, sizeof(cmd));
10963 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10964 				      F_FW_CMD_REQUEST |
10965 				      F_FW_CMD_WRITE);
10966 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10967 
10968 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10969 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10970 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
10971 	cmd.u.params.ch = channel;
10972 	cmd.u.params.rate = ratemode;		/* REL or ABS */
10973 	cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
10974 
10975 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10976 			       NULL, sleep_ok);
10977 }
10978 
10979 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
10980     int weight, int sleep_ok)
10981 {
10982 	struct fw_sched_cmd cmd;
10983 
10984 	if (weight < 0 || weight > 100)
10985 		return -EINVAL;
10986 
10987 	memset(&cmd, 0, sizeof(cmd));
10988 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10989 				      F_FW_CMD_REQUEST |
10990 				      F_FW_CMD_WRITE);
10991 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10992 
10993 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10994 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10995 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
10996 	cmd.u.params.ch = channel;
10997 	cmd.u.params.cl = cl;
10998 	cmd.u.params.weight = cpu_to_be16(weight);
10999 
11000 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11001 			       NULL, sleep_ok);
11002 }
11003 
11004 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
11005     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
11006 {
11007 	struct fw_sched_cmd cmd;
11008 
11009 	memset(&cmd, 0, sizeof(cmd));
11010 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11011 				      F_FW_CMD_REQUEST |
11012 				      F_FW_CMD_WRITE);
11013 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11014 
11015 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11016 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11017 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
11018 	cmd.u.params.mode = mode;
11019 	cmd.u.params.ch = channel;
11020 	cmd.u.params.cl = cl;
11021 	cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
11022 	cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
11023 	cmd.u.params.max = cpu_to_be32(maxrate);
11024 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
11025 
11026 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11027 			       NULL, sleep_ok);
11028 }
11029 
11030 /*
11031  *	t4_config_watchdog - configure (enable/disable) a watchdog timer
11032  *	@adapter: the adapter
11033  * 	@mbox: mailbox to use for the FW command
11034  * 	@pf: the PF owning the queue
11035  * 	@vf: the VF owning the queue
11036  *	@timeout: watchdog timeout in ms
11037  *	@action: watchdog timer / action
11038  *
11039  *	There are separate watchdog timers for each possible watchdog
11040  *	action.  Configure one of the watchdog timers by setting a non-zero
11041  *	timeout.  Disable a watchdog timer by using a timeout of zero.
11042  */
11043 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
11044 		       unsigned int pf, unsigned int vf,
11045 		       unsigned int timeout, unsigned int action)
11046 {
11047 	struct fw_watchdog_cmd wdog;
11048 	unsigned int ticks;
11049 
11050 	/*
11051 	 * The watchdog command expects a timeout in units of 10ms so we need
11052 	 * to convert it here (via rounding) and force a minimum of one 10ms
11053 	 * "tick" if the timeout is non-zero but the conversion results in 0
11054 	 * ticks.
11055 	 */
11056 	ticks = (timeout + 5)/10;
11057 	if (timeout && !ticks)
11058 		ticks = 1;
11059 
11060 	memset(&wdog, 0, sizeof wdog);
11061 	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
11062 				     F_FW_CMD_REQUEST |
11063 				     F_FW_CMD_WRITE |
11064 				     V_FW_PARAMS_CMD_PFN(pf) |
11065 				     V_FW_PARAMS_CMD_VFN(vf));
11066 	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
11067 	wdog.timeout = cpu_to_be32(ticks);
11068 	wdog.action = cpu_to_be32(action);
11069 
11070 	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
11071 }
11072 
11073 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
11074 {
11075 	struct fw_devlog_cmd devlog_cmd;
11076 	int ret;
11077 
11078 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
11079 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
11080 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
11081 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
11082 	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
11083 			 sizeof(devlog_cmd), &devlog_cmd);
11084 	if (ret)
11085 		return ret;
11086 
11087 	*level = devlog_cmd.level;
11088 	return 0;
11089 }
11090 
11091 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
11092 {
11093 	struct fw_devlog_cmd devlog_cmd;
11094 
11095 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
11096 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
11097 					     F_FW_CMD_REQUEST |
11098 					     F_FW_CMD_WRITE);
11099 	devlog_cmd.level = level;
11100 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
11101 	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
11102 			  sizeof(devlog_cmd), &devlog_cmd);
11103 }
11104 
11105 int t4_configure_add_smac(struct adapter *adap)
11106 {
11107 	unsigned int param, val;
11108 	int ret = 0;
11109 
11110 	adap->params.smac_add_support = 0;
11111 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11112 		  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_ADD_SMAC));
11113 	/* Query FW to check if FW supports adding source mac address
11114 	 * to TCAM feature or not.
11115 	 * If FW returns 1, driver can use this feature and driver need to send
11116 	 * FW_PARAMS_PARAM_DEV_ADD_SMAC write command with value 1 to
11117 	 * enable adding smac to TCAM.
11118 	 */
11119 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11120 	if (ret)
11121 		return ret;
11122 
11123 	if (val == 1) {
11124 		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
11125 				    &param, &val);
11126 		if (!ret)
11127 			/* Firmware allows adding explicit TCAM entries.
11128 			 * Save this internally.
11129 			 */
11130 			adap->params.smac_add_support = 1;
11131 	}
11132 
11133 	return ret;
11134 }
11135 
11136 int t4_configure_ringbb(struct adapter *adap)
11137 {
11138 	unsigned int param, val;
11139 	int ret = 0;
11140 
11141 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11142 		  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RING_BACKBONE));
11143 	/* Query FW to check if FW supports ring switch feature or not.
11144 	 * If FW returns 1, driver can use this feature and driver need to send
11145 	 * FW_PARAMS_PARAM_DEV_RING_BACKBONE write command with value 1 to
11146 	 * enable the ring backbone configuration.
11147 	 */
11148 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11149 	if (ret < 0) {
11150 		CH_ERR(adap, "Querying FW using Ring backbone params command failed, err=%d\n",
11151 			ret);
11152 		goto out;
11153 	}
11154 
11155 	if (val != 1) {
11156 		CH_ERR(adap, "FW doesnot support ringbackbone features\n");
11157 		goto out;
11158 	}
11159 
11160 	ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11161 	if (ret < 0) {
11162 		CH_ERR(adap, "Could not set Ringbackbone, err= %d\n",
11163 			ret);
11164 		goto out;
11165 	}
11166 
11167 out:
11168 	return ret;
11169 }
11170 
11171 /*
11172  *	t4_set_vlan_acl - Set a VLAN id for the specified VF
11173  *	@adapter: the adapter
11174  *	@mbox: mailbox to use for the FW command
11175  *	@vf: one of the VFs instantiated by the specified PF
11176  *	@vlan: The vlanid to be set
11177  *
11178  */
11179 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
11180 		    u16 vlan)
11181 {
11182 	struct fw_acl_vlan_cmd vlan_cmd;
11183 	unsigned int enable;
11184 
11185 	enable = (vlan ? F_FW_ACL_VLAN_CMD_EN : 0);
11186 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
11187 	vlan_cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_VLAN_CMD) |
11188 					 F_FW_CMD_REQUEST |
11189 					 F_FW_CMD_WRITE |
11190 					 F_FW_CMD_EXEC |
11191 					 V_FW_ACL_VLAN_CMD_PFN(adap->pf) |
11192 					 V_FW_ACL_VLAN_CMD_VFN(vf));
11193 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
11194 	/* Drop all packets that donot match vlan id */
11195 	vlan_cmd.dropnovlan_fm = (enable
11196 				  ? (F_FW_ACL_VLAN_CMD_DROPNOVLAN |
11197 				     F_FW_ACL_VLAN_CMD_FM)
11198 				  : 0);
11199 	if (enable != 0) {
11200 		vlan_cmd.nvlan = 1;
11201 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
11202 	}
11203 
11204 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
11205 }
11206 
11207 /**
11208  *	t4_del_mac - Removes the exact-match filter for a MAC address
11209  *	@adap: the adapter
11210  *	@mbox: mailbox to use for the FW command
11211  *	@viid: the VI id
11212  *	@addr: the MAC address value
11213  *	@smac: if true, delete from only the smac region of MPS
11214  *
11215  *	Modifies an exact-match filter and sets it to the new MAC address if
11216  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
11217  *	latter case the address is added persistently if @persist is %true.
11218  *
11219  *	Returns a negative error number or the index of the filter with the new
11220  *	MAC value.  Note that this index may differ from @idx.
11221  */
11222 int t4_del_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
11223 	       const u8 *addr, bool smac)
11224 {
11225 	int ret;
11226 	struct fw_vi_mac_cmd c;
11227 	struct fw_vi_mac_exact *p = c.u.exact;
11228 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
11229 
11230 	memset(&c, 0, sizeof(c));
11231 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
11232 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
11233 				   V_FW_VI_MAC_CMD_VIID(viid));
11234 	c.freemacs_to_len16 = cpu_to_be32(
11235 					V_FW_CMD_LEN16(1) |
11236 					(smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0));
11237 
11238 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
11239 	p->valid_to_idx = cpu_to_be16(
11240 				F_FW_VI_MAC_CMD_VALID |
11241 				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE));
11242 
11243 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11244 	if (ret == 0) {
11245 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
11246 		if (ret < max_mac_addr)
11247 			return -ENOMEM;
11248 	}
11249 
11250 	return ret;
11251 }
11252 
11253 /**
11254  *	t4_add_mac - Adds an exact-match filter for a MAC address
11255  *	@adap: the adapter
11256  *	@mbox: mailbox to use for the FW command
11257  *	@viid: the VI id
11258  *	@idx: index of existing filter for old value of MAC address, or -1
11259  *	@addr: the new MAC address value
11260  *	@persist: whether a new MAC allocation should be persistent
11261  *	@add_smt: if true also add the address to the HW SMT
11262  *	@smac: if true, update only the smac region of MPS
11263  *
11264  *	Modifies an exact-match filter and sets it to the new MAC address if
11265  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
11266  *	latter case the address is added persistently if @persist is %true.
11267  *
11268  *	Returns a negative error number or the index of the filter with the new
11269  *	MAC value.  Note that this index may differ from @idx.
11270  */
11271 int t4_add_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
11272 	       int idx, const u8 *addr, bool persist, u8 *smt_idx, bool smac)
11273 {
11274 	int ret, mode;
11275 	struct fw_vi_mac_cmd c;
11276 	struct fw_vi_mac_exact *p = c.u.exact;
11277 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
11278 
11279 	if (idx < 0)		/* new allocation */
11280 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
11281 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
11282 
11283 	memset(&c, 0, sizeof(c));
11284 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
11285 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
11286 				   V_FW_VI_MAC_CMD_VIID(viid));
11287 	c.freemacs_to_len16 = cpu_to_be32(
11288 				V_FW_CMD_LEN16(1) |
11289 				(smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0));
11290 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
11291 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
11292 				      V_FW_VI_MAC_CMD_IDX(idx));
11293 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
11294 
11295 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11296 	if (ret == 0) {
11297 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
11298 		if (ret >= max_mac_addr)
11299 			return -ENOMEM;
11300 		if (smt_idx) {
11301 			/* Does fw supports returning smt_idx? */
11302 			if (adap->params.viid_smt_extn_support)
11303 				*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
11304 			else {
11305 				/* In T4/T5, SMT contains 256 SMAC entries
11306 				 * organized in 128 rows of 2 entries each.
11307 				 * In T6, SMT contains 256 SMAC entries in
11308 				 * 256 rows.
11309 				 */
11310 				if (chip_id(adap) <= CHELSIO_T5)
11311 					*smt_idx = ((viid & M_FW_VIID_VIN) << 1);
11312 				else
11313 					*smt_idx = (viid & M_FW_VIID_VIN);
11314 			}
11315 		}
11316 	}
11317 
11318 	return ret;
11319 }
11320