xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision e3d9ae4c56e15404846e4cb3360394a0a36cec23)
1 /*-
2  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 
32 #include <sys/param.h>
33 #include <sys/eventhandler.h>
34 
35 #include "common.h"
36 #include "t4_regs.h"
37 #include "t4_regs_values.h"
38 #include "firmware/t4fw_interface.h"
39 
40 #undef msleep
41 #define msleep(x) do { \
42 	if (cold) \
43 		DELAY((x) * 1000); \
44 	else \
45 		pause("t4hw", (x) * hz / 1000); \
46 } while (0)
47 
48 /**
49  *	t4_wait_op_done_val - wait until an operation is completed
50  *	@adapter: the adapter performing the operation
51  *	@reg: the register to check for completion
52  *	@mask: a single-bit field within @reg that indicates completion
53  *	@polarity: the value of the field when the operation is completed
54  *	@attempts: number of check iterations
55  *	@delay: delay in usecs between iterations
56  *	@valp: where to store the value of the register at completion time
57  *
58  *	Wait until an operation is completed by checking a bit in a register
59  *	up to @attempts times.  If @valp is not NULL the value of the register
60  *	at the time it indicated completion is stored there.  Returns 0 if the
61  *	operation completes and	-EAGAIN	otherwise.
62  */
63 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
64 			       int polarity, int attempts, int delay, u32 *valp)
65 {
66 	while (1) {
67 		u32 val = t4_read_reg(adapter, reg);
68 
69 		if (!!(val & mask) == polarity) {
70 			if (valp)
71 				*valp = val;
72 			return 0;
73 		}
74 		if (--attempts == 0)
75 			return -EAGAIN;
76 		if (delay)
77 			udelay(delay);
78 	}
79 }
80 
81 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
82 				  int polarity, int attempts, int delay)
83 {
84 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
85 				   delay, NULL);
86 }
87 
88 /**
89  *	t4_set_reg_field - set a register field to a value
90  *	@adapter: the adapter to program
91  *	@addr: the register address
92  *	@mask: specifies the portion of the register to modify
93  *	@val: the new value for the register field
94  *
95  *	Sets a register field specified by the supplied mask to the
96  *	given value.
97  */
98 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
99 		      u32 val)
100 {
101 	u32 v = t4_read_reg(adapter, addr) & ~mask;
102 
103 	t4_write_reg(adapter, addr, v | val);
104 	(void) t4_read_reg(adapter, addr);      /* flush */
105 }
106 
107 /**
108  *	t4_read_indirect - read indirectly addressed registers
109  *	@adap: the adapter
110  *	@addr_reg: register holding the indirect address
111  *	@data_reg: register holding the value of the indirect register
112  *	@vals: where the read register values are stored
113  *	@nregs: how many indirect registers to read
114  *	@start_idx: index of first indirect register to read
115  *
116  *	Reads registers that are accessed indirectly through an address/data
117  *	register pair.
118  */
119 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
120 			     unsigned int data_reg, u32 *vals,
121 			     unsigned int nregs, unsigned int start_idx)
122 {
123 	while (nregs--) {
124 		t4_write_reg(adap, addr_reg, start_idx);
125 		*vals++ = t4_read_reg(adap, data_reg);
126 		start_idx++;
127 	}
128 }
129 
130 /**
131  *	t4_write_indirect - write indirectly addressed registers
132  *	@adap: the adapter
133  *	@addr_reg: register holding the indirect addresses
134  *	@data_reg: register holding the value for the indirect registers
135  *	@vals: values to write
136  *	@nregs: how many indirect registers to write
137  *	@start_idx: address of first indirect register to write
138  *
139  *	Writes a sequential block of registers that are accessed indirectly
140  *	through an address/data register pair.
141  */
142 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
143 		       unsigned int data_reg, const u32 *vals,
144 		       unsigned int nregs, unsigned int start_idx)
145 {
146 	while (nregs--) {
147 		t4_write_reg(adap, addr_reg, start_idx++);
148 		t4_write_reg(adap, data_reg, *vals++);
149 	}
150 }
151 
152 /*
153  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
154  * mechanism.  This guarantees that we get the real value even if we're
155  * operating within a Virtual Machine and the Hypervisor is trapping our
156  * Configuration Space accesses.
157  *
158  * N.B. This routine should only be used as a last resort: the firmware uses
159  *      the backdoor registers on a regular basis and we can end up
160  *      conflicting with it's uses!
161  */
162 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
163 {
164 	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
165 	u32 val;
166 
167 	if (chip_id(adap) <= CHELSIO_T5)
168 		req |= F_ENABLE;
169 	else
170 		req |= F_T6_ENABLE;
171 
172 	if (is_t4(adap))
173 		req |= F_LOCALCFG;
174 
175 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
176 	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
177 
178 	/*
179 	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
180 	 * Configuration Space read.  (None of the other fields matter when
181 	 * F_ENABLE is 0 so a simple register write is easier than a
182 	 * read-modify-write via t4_set_reg_field().)
183 	 */
184 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
185 
186 	return val;
187 }
188 
189 /*
190  * t4_report_fw_error - report firmware error
191  * @adap: the adapter
192  *
193  * The adapter firmware can indicate error conditions to the host.
194  * If the firmware has indicated an error, print out the reason for
195  * the firmware error.
196  */
197 static void t4_report_fw_error(struct adapter *adap)
198 {
199 	static const char *const reason[] = {
200 		"Crash",			/* PCIE_FW_EVAL_CRASH */
201 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
202 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
203 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
204 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
205 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
206 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
207 		"Reserved",			/* reserved */
208 	};
209 	u32 pcie_fw;
210 
211 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
212 	if (pcie_fw & F_PCIE_FW_ERR)
213 		CH_ERR(adap, "Firmware reports adapter error: %s\n",
214 			reason[G_PCIE_FW_EVAL(pcie_fw)]);
215 }
216 
217 /*
218  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
219  */
220 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
221 			 u32 mbox_addr)
222 {
223 	for ( ; nflit; nflit--, mbox_addr += 8)
224 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
225 }
226 
227 /*
228  * Handle a FW assertion reported in a mailbox.
229  */
230 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
231 {
232 	CH_ALERT(adap,
233 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
234 		  asrt->u.assert.filename_0_7,
235 		  be32_to_cpu(asrt->u.assert.line),
236 		  be32_to_cpu(asrt->u.assert.x),
237 		  be32_to_cpu(asrt->u.assert.y));
238 }
239 
240 #define X_CIM_PF_NOACCESS 0xeeeeeeee
241 /**
242  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
243  *	@adap: the adapter
244  *	@mbox: index of the mailbox to use
245  *	@cmd: the command to write
246  *	@size: command length in bytes
247  *	@rpl: where to optionally store the reply
248  *	@sleep_ok: if true we may sleep while awaiting command completion
249  *	@timeout: time to wait for command to finish before timing out
250  *		(negative implies @sleep_ok=false)
251  *
252  *	Sends the given command to FW through the selected mailbox and waits
253  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
254  *	store the FW's reply to the command.  The command and its optional
255  *	reply are of the same length.  Some FW commands like RESET and
256  *	INITIALIZE can take a considerable amount of time to execute.
257  *	@sleep_ok determines whether we may sleep while awaiting the response.
258  *	If sleeping is allowed we use progressive backoff otherwise we spin.
259  *	Note that passing in a negative @timeout is an alternate mechanism
260  *	for specifying @sleep_ok=false.  This is useful when a higher level
261  *	interface allows for specification of @timeout but not @sleep_ok ...
262  *
263  *	The return value is 0 on success or a negative errno on failure.  A
264  *	failure can happen either because we are not able to execute the
265  *	command or FW executes it but signals an error.  In the latter case
266  *	the return value is the error code indicated by FW (negated).
267  */
268 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
269 			    int size, void *rpl, bool sleep_ok, int timeout)
270 {
271 	/*
272 	 * We delay in small increments at first in an effort to maintain
273 	 * responsiveness for simple, fast executing commands but then back
274 	 * off to larger delays to a maximum retry delay.
275 	 */
276 	static const int delay[] = {
277 		1, 1, 3, 5, 10, 10, 20, 50, 100
278 	};
279 	u32 v;
280 	u64 res;
281 	int i, ms, delay_idx, ret;
282 	const __be64 *p = cmd;
283 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
284 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
285 	u32 ctl;
286 	__be64 cmd_rpl[MBOX_LEN/8];
287 	u32 pcie_fw;
288 
289 	if ((size & 15) || size > MBOX_LEN)
290 		return -EINVAL;
291 
292 	if (adap->flags & IS_VF) {
293 		if (is_t6(adap))
294 			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
295 		else
296 			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
297 		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
298 	}
299 
300 	/*
301 	 * If we have a negative timeout, that implies that we can't sleep.
302 	 */
303 	if (timeout < 0) {
304 		sleep_ok = false;
305 		timeout = -timeout;
306 	}
307 
308 	/*
309 	 * Attempt to gain access to the mailbox.
310 	 */
311 	for (i = 0; i < 4; i++) {
312 		ctl = t4_read_reg(adap, ctl_reg);
313 		v = G_MBOWNER(ctl);
314 		if (v != X_MBOWNER_NONE)
315 			break;
316 	}
317 
318 	/*
319 	 * If we were unable to gain access, dequeue ourselves from the
320 	 * mailbox atomic access list and report the error to our caller.
321 	 */
322 	if (v != X_MBOWNER_PL) {
323 		t4_report_fw_error(adap);
324 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
325 		return ret;
326 	}
327 
328 	/*
329 	 * If we gain ownership of the mailbox and there's a "valid" message
330 	 * in it, this is likely an asynchronous error message from the
331 	 * firmware.  So we'll report that and then proceed on with attempting
332 	 * to issue our own command ... which may well fail if the error
333 	 * presaged the firmware crashing ...
334 	 */
335 	if (ctl & F_MBMSGVALID) {
336 		CH_ERR(adap, "found VALID command in mbox %u: "
337 		       "%llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
338 		       (unsigned long long)t4_read_reg64(adap, data_reg),
339 		       (unsigned long long)t4_read_reg64(adap, data_reg + 8),
340 		       (unsigned long long)t4_read_reg64(adap, data_reg + 16),
341 		       (unsigned long long)t4_read_reg64(adap, data_reg + 24),
342 		       (unsigned long long)t4_read_reg64(adap, data_reg + 32),
343 		       (unsigned long long)t4_read_reg64(adap, data_reg + 40),
344 		       (unsigned long long)t4_read_reg64(adap, data_reg + 48),
345 		       (unsigned long long)t4_read_reg64(adap, data_reg + 56));
346 	}
347 
348 	/*
349 	 * Copy in the new mailbox command and send it on its way ...
350 	 */
351 	for (i = 0; i < size; i += 8, p++)
352 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
353 
354 	if (adap->flags & IS_VF) {
355 		/*
356 		 * For the VFs, the Mailbox Data "registers" are
357 		 * actually backed by T4's "MA" interface rather than
358 		 * PL Registers (as is the case for the PFs).  Because
359 		 * these are in different coherency domains, the write
360 		 * to the VF's PL-register-backed Mailbox Control can
361 		 * race in front of the writes to the MA-backed VF
362 		 * Mailbox Data "registers".  So we need to do a
363 		 * read-back on at least one byte of the VF Mailbox
364 		 * Data registers before doing the write to the VF
365 		 * Mailbox Control register.
366 		 */
367 		t4_read_reg(adap, data_reg);
368 	}
369 
370 	CH_DUMP_MBOX(adap, mbox, data_reg);
371 
372 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
373 	t4_read_reg(adap, ctl_reg);	/* flush write */
374 
375 	delay_idx = 0;
376 	ms = delay[0];
377 
378 	/*
379 	 * Loop waiting for the reply; bail out if we time out or the firmware
380 	 * reports an error.
381 	 */
382 	pcie_fw = 0;
383 	for (i = 0; i < timeout; i += ms) {
384 		if (!(adap->flags & IS_VF)) {
385 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
386 			if (pcie_fw & F_PCIE_FW_ERR)
387 				break;
388 		}
389 		if (sleep_ok) {
390 			ms = delay[delay_idx];  /* last element may repeat */
391 			if (delay_idx < ARRAY_SIZE(delay) - 1)
392 				delay_idx++;
393 			msleep(ms);
394 		} else {
395 			mdelay(ms);
396 		}
397 
398 		v = t4_read_reg(adap, ctl_reg);
399 		if (v == X_CIM_PF_NOACCESS)
400 			continue;
401 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
402 			if (!(v & F_MBMSGVALID)) {
403 				t4_write_reg(adap, ctl_reg,
404 					     V_MBOWNER(X_MBOWNER_NONE));
405 				continue;
406 			}
407 
408 			/*
409 			 * Retrieve the command reply and release the mailbox.
410 			 */
411 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
412 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
413 
414 			CH_DUMP_MBOX(adap, mbox, data_reg);
415 
416 			res = be64_to_cpu(cmd_rpl[0]);
417 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
418 				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
419 				res = V_FW_CMD_RETVAL(EIO);
420 			} else if (rpl)
421 				memcpy(rpl, cmd_rpl, size);
422 			return -G_FW_CMD_RETVAL((int)res);
423 		}
424 	}
425 
426 	/*
427 	 * We timed out waiting for a reply to our mailbox command.  Report
428 	 * the error and also check to see if the firmware reported any
429 	 * errors ...
430 	 */
431 	ret = (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT;
432 	CH_ERR(adap, "command %#x in mailbox %d timed out\n",
433 	       *(const u8 *)cmd, mbox);
434 
435 	t4_report_fw_error(adap);
436 	t4_fatal_err(adap);
437 	return ret;
438 }
439 
440 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
441 		    void *rpl, bool sleep_ok)
442 {
443 		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
444 					       sleep_ok, FW_CMD_MAX_TIMEOUT);
445 
446 }
447 
448 static int t4_edc_err_read(struct adapter *adap, int idx)
449 {
450 	u32 edc_ecc_err_addr_reg;
451 	u32 edc_bist_status_rdata_reg;
452 
453 	if (is_t4(adap)) {
454 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
455 		return 0;
456 	}
457 	if (idx != 0 && idx != 1) {
458 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
459 		return 0;
460 	}
461 
462 	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
463 	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
464 
465 	CH_WARN(adap,
466 		"edc%d err addr 0x%x: 0x%x.\n",
467 		idx, edc_ecc_err_addr_reg,
468 		t4_read_reg(adap, edc_ecc_err_addr_reg));
469 	CH_WARN(adap,
470 	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
471 		edc_bist_status_rdata_reg,
472 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
473 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
474 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
475 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
476 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
477 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
478 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
479 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
480 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
481 
482 	return 0;
483 }
484 
485 /**
486  *	t4_mc_read - read from MC through backdoor accesses
487  *	@adap: the adapter
488  *	@idx: which MC to access
489  *	@addr: address of first byte requested
490  *	@data: 64 bytes of data containing the requested address
491  *	@ecc: where to store the corresponding 64-bit ECC word
492  *
493  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
494  *	that covers the requested address @addr.  If @parity is not %NULL it
495  *	is assigned the 64-bit ECC word for the read data.
496  */
497 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
498 {
499 	int i;
500 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
501 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
502 
503 	if (is_t4(adap)) {
504 		mc_bist_cmd_reg = A_MC_BIST_CMD;
505 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
506 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
507 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
508 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
509 	} else {
510 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
511 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
512 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
513 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
514 						  idx);
515 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
516 						  idx);
517 	}
518 
519 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
520 		return -EBUSY;
521 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
522 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
523 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
524 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
525 		     F_START_BIST | V_BIST_CMD_GAP(1));
526 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
527 	if (i)
528 		return i;
529 
530 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
531 
532 	for (i = 15; i >= 0; i--)
533 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
534 	if (ecc)
535 		*ecc = t4_read_reg64(adap, MC_DATA(16));
536 #undef MC_DATA
537 	return 0;
538 }
539 
540 /**
541  *	t4_edc_read - read from EDC through backdoor accesses
542  *	@adap: the adapter
543  *	@idx: which EDC to access
544  *	@addr: address of first byte requested
545  *	@data: 64 bytes of data containing the requested address
546  *	@ecc: where to store the corresponding 64-bit ECC word
547  *
548  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
549  *	that covers the requested address @addr.  If @parity is not %NULL it
550  *	is assigned the 64-bit ECC word for the read data.
551  */
552 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
553 {
554 	int i;
555 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
556 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
557 
558 	if (is_t4(adap)) {
559 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
560 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
561 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
562 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
563 						    idx);
564 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
565 						    idx);
566 	} else {
567 /*
568  * These macro are missing in t4_regs.h file.
569  * Added temporarily for testing.
570  */
571 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
572 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
573 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
574 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
575 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
576 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
577 						    idx);
578 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
579 						    idx);
580 #undef EDC_REG_T5
581 #undef EDC_STRIDE_T5
582 	}
583 
584 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
585 		return -EBUSY;
586 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
587 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
588 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
589 	t4_write_reg(adap, edc_bist_cmd_reg,
590 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
591 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
592 	if (i)
593 		return i;
594 
595 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
596 
597 	for (i = 15; i >= 0; i--)
598 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
599 	if (ecc)
600 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
601 #undef EDC_DATA
602 	return 0;
603 }
604 
605 /**
606  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
607  *	@adap: the adapter
608  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
609  *	@addr: address within indicated memory type
610  *	@len: amount of memory to read
611  *	@buf: host memory buffer
612  *
613  *	Reads an [almost] arbitrary memory region in the firmware: the
614  *	firmware memory address, length and host buffer must be aligned on
615  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
616  *	the firmware's memory.  If this memory contains data structures which
617  *	contain multi-byte integers, it's the callers responsibility to
618  *	perform appropriate byte order conversions.
619  */
620 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
621 		__be32 *buf)
622 {
623 	u32 pos, start, end, offset;
624 	int ret;
625 
626 	/*
627 	 * Argument sanity checks ...
628 	 */
629 	if ((addr & 0x3) || (len & 0x3))
630 		return -EINVAL;
631 
632 	/*
633 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
634 	 * need to round down the start and round up the end.  We'll start
635 	 * copying out of the first line at (addr - start) a word at a time.
636 	 */
637 	start = rounddown2(addr, 64);
638 	end = roundup2(addr + len, 64);
639 	offset = (addr - start)/sizeof(__be32);
640 
641 	for (pos = start; pos < end; pos += 64, offset = 0) {
642 		__be32 data[16];
643 
644 		/*
645 		 * Read the chip's memory block and bail if there's an error.
646 		 */
647 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
648 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
649 		else
650 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
651 		if (ret)
652 			return ret;
653 
654 		/*
655 		 * Copy the data into the caller's memory buffer.
656 		 */
657 		while (offset < 16 && len > 0) {
658 			*buf++ = data[offset++];
659 			len -= sizeof(__be32);
660 		}
661 	}
662 
663 	return 0;
664 }
665 
666 /*
667  * Return the specified PCI-E Configuration Space register from our Physical
668  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
669  * since we prefer to let the firmware own all of these registers, but if that
670  * fails we go for it directly ourselves.
671  */
672 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
673 {
674 
675 	/*
676 	 * If fw_attach != 0, construct and send the Firmware LDST Command to
677 	 * retrieve the specified PCI-E Configuration Space register.
678 	 */
679 	if (drv_fw_attach != 0) {
680 		struct fw_ldst_cmd ldst_cmd;
681 		int ret;
682 
683 		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
684 		ldst_cmd.op_to_addrspace =
685 			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
686 				    F_FW_CMD_REQUEST |
687 				    F_FW_CMD_READ |
688 				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
689 		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
690 		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
691 		ldst_cmd.u.pcie.ctrl_to_fn =
692 			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
693 		ldst_cmd.u.pcie.r = reg;
694 
695 		/*
696 		 * If the LDST Command succeeds, return the result, otherwise
697 		 * fall through to reading it directly ourselves ...
698 		 */
699 		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
700 				 &ldst_cmd);
701 		if (ret == 0)
702 			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
703 
704 		CH_WARN(adap, "Firmware failed to return "
705 			"Configuration Space register %d, err = %d\n",
706 			reg, -ret);
707 	}
708 
709 	/*
710 	 * Read the desired Configuration Space register via the PCI-E
711 	 * Backdoor mechanism.
712 	 */
713 	return t4_hw_pci_read_cfg4(adap, reg);
714 }
715 
716 /**
717  *	t4_get_regs_len - return the size of the chips register set
718  *	@adapter: the adapter
719  *
720  *	Returns the size of the chip's BAR0 register space.
721  */
722 unsigned int t4_get_regs_len(struct adapter *adapter)
723 {
724 	unsigned int chip_version = chip_id(adapter);
725 
726 	switch (chip_version) {
727 	case CHELSIO_T4:
728 		if (adapter->flags & IS_VF)
729 			return FW_T4VF_REGMAP_SIZE;
730 		return T4_REGMAP_SIZE;
731 
732 	case CHELSIO_T5:
733 	case CHELSIO_T6:
734 		if (adapter->flags & IS_VF)
735 			return FW_T4VF_REGMAP_SIZE;
736 		return T5_REGMAP_SIZE;
737 	}
738 
739 	CH_ERR(adapter,
740 		"Unsupported chip version %d\n", chip_version);
741 	return 0;
742 }
743 
744 /**
745  *	t4_get_regs - read chip registers into provided buffer
746  *	@adap: the adapter
747  *	@buf: register buffer
748  *	@buf_size: size (in bytes) of register buffer
749  *
750  *	If the provided register buffer isn't large enough for the chip's
751  *	full register range, the register dump will be truncated to the
752  *	register buffer's size.
753  */
754 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
755 {
756 	static const unsigned int t4_reg_ranges[] = {
757 		0x1008, 0x1108,
758 		0x1180, 0x1184,
759 		0x1190, 0x1194,
760 		0x11a0, 0x11a4,
761 		0x11b0, 0x11b4,
762 		0x11fc, 0x123c,
763 		0x1300, 0x173c,
764 		0x1800, 0x18fc,
765 		0x3000, 0x30d8,
766 		0x30e0, 0x30e4,
767 		0x30ec, 0x5910,
768 		0x5920, 0x5924,
769 		0x5960, 0x5960,
770 		0x5968, 0x5968,
771 		0x5970, 0x5970,
772 		0x5978, 0x5978,
773 		0x5980, 0x5980,
774 		0x5988, 0x5988,
775 		0x5990, 0x5990,
776 		0x5998, 0x5998,
777 		0x59a0, 0x59d4,
778 		0x5a00, 0x5ae0,
779 		0x5ae8, 0x5ae8,
780 		0x5af0, 0x5af0,
781 		0x5af8, 0x5af8,
782 		0x6000, 0x6098,
783 		0x6100, 0x6150,
784 		0x6200, 0x6208,
785 		0x6240, 0x6248,
786 		0x6280, 0x62b0,
787 		0x62c0, 0x6338,
788 		0x6370, 0x638c,
789 		0x6400, 0x643c,
790 		0x6500, 0x6524,
791 		0x6a00, 0x6a04,
792 		0x6a14, 0x6a38,
793 		0x6a60, 0x6a70,
794 		0x6a78, 0x6a78,
795 		0x6b00, 0x6b0c,
796 		0x6b1c, 0x6b84,
797 		0x6bf0, 0x6bf8,
798 		0x6c00, 0x6c0c,
799 		0x6c1c, 0x6c84,
800 		0x6cf0, 0x6cf8,
801 		0x6d00, 0x6d0c,
802 		0x6d1c, 0x6d84,
803 		0x6df0, 0x6df8,
804 		0x6e00, 0x6e0c,
805 		0x6e1c, 0x6e84,
806 		0x6ef0, 0x6ef8,
807 		0x6f00, 0x6f0c,
808 		0x6f1c, 0x6f84,
809 		0x6ff0, 0x6ff8,
810 		0x7000, 0x700c,
811 		0x701c, 0x7084,
812 		0x70f0, 0x70f8,
813 		0x7100, 0x710c,
814 		0x711c, 0x7184,
815 		0x71f0, 0x71f8,
816 		0x7200, 0x720c,
817 		0x721c, 0x7284,
818 		0x72f0, 0x72f8,
819 		0x7300, 0x730c,
820 		0x731c, 0x7384,
821 		0x73f0, 0x73f8,
822 		0x7400, 0x7450,
823 		0x7500, 0x7530,
824 		0x7600, 0x760c,
825 		0x7614, 0x761c,
826 		0x7680, 0x76cc,
827 		0x7700, 0x7798,
828 		0x77c0, 0x77fc,
829 		0x7900, 0x79fc,
830 		0x7b00, 0x7b58,
831 		0x7b60, 0x7b84,
832 		0x7b8c, 0x7c38,
833 		0x7d00, 0x7d38,
834 		0x7d40, 0x7d80,
835 		0x7d8c, 0x7ddc,
836 		0x7de4, 0x7e04,
837 		0x7e10, 0x7e1c,
838 		0x7e24, 0x7e38,
839 		0x7e40, 0x7e44,
840 		0x7e4c, 0x7e78,
841 		0x7e80, 0x7ea4,
842 		0x7eac, 0x7edc,
843 		0x7ee8, 0x7efc,
844 		0x8dc0, 0x8e04,
845 		0x8e10, 0x8e1c,
846 		0x8e30, 0x8e78,
847 		0x8ea0, 0x8eb8,
848 		0x8ec0, 0x8f6c,
849 		0x8fc0, 0x9008,
850 		0x9010, 0x9058,
851 		0x9060, 0x9060,
852 		0x9068, 0x9074,
853 		0x90fc, 0x90fc,
854 		0x9400, 0x9408,
855 		0x9410, 0x9458,
856 		0x9600, 0x9600,
857 		0x9608, 0x9638,
858 		0x9640, 0x96bc,
859 		0x9800, 0x9808,
860 		0x9820, 0x983c,
861 		0x9850, 0x9864,
862 		0x9c00, 0x9c6c,
863 		0x9c80, 0x9cec,
864 		0x9d00, 0x9d6c,
865 		0x9d80, 0x9dec,
866 		0x9e00, 0x9e6c,
867 		0x9e80, 0x9eec,
868 		0x9f00, 0x9f6c,
869 		0x9f80, 0x9fec,
870 		0xd004, 0xd004,
871 		0xd010, 0xd03c,
872 		0xdfc0, 0xdfe0,
873 		0xe000, 0xea7c,
874 		0xf000, 0x11190,
875 		0x19040, 0x1906c,
876 		0x19078, 0x19080,
877 		0x1908c, 0x190e4,
878 		0x190f0, 0x190f8,
879 		0x19100, 0x19110,
880 		0x19120, 0x19124,
881 		0x19150, 0x19194,
882 		0x1919c, 0x191b0,
883 		0x191d0, 0x191e8,
884 		0x19238, 0x1924c,
885 		0x193f8, 0x1943c,
886 		0x1944c, 0x19474,
887 		0x19490, 0x194e0,
888 		0x194f0, 0x194f8,
889 		0x19800, 0x19c08,
890 		0x19c10, 0x19c90,
891 		0x19ca0, 0x19ce4,
892 		0x19cf0, 0x19d40,
893 		0x19d50, 0x19d94,
894 		0x19da0, 0x19de8,
895 		0x19df0, 0x19e40,
896 		0x19e50, 0x19e90,
897 		0x19ea0, 0x19f4c,
898 		0x1a000, 0x1a004,
899 		0x1a010, 0x1a06c,
900 		0x1a0b0, 0x1a0e4,
901 		0x1a0ec, 0x1a0f4,
902 		0x1a100, 0x1a108,
903 		0x1a114, 0x1a120,
904 		0x1a128, 0x1a130,
905 		0x1a138, 0x1a138,
906 		0x1a190, 0x1a1c4,
907 		0x1a1fc, 0x1a1fc,
908 		0x1e040, 0x1e04c,
909 		0x1e284, 0x1e28c,
910 		0x1e2c0, 0x1e2c0,
911 		0x1e2e0, 0x1e2e0,
912 		0x1e300, 0x1e384,
913 		0x1e3c0, 0x1e3c8,
914 		0x1e440, 0x1e44c,
915 		0x1e684, 0x1e68c,
916 		0x1e6c0, 0x1e6c0,
917 		0x1e6e0, 0x1e6e0,
918 		0x1e700, 0x1e784,
919 		0x1e7c0, 0x1e7c8,
920 		0x1e840, 0x1e84c,
921 		0x1ea84, 0x1ea8c,
922 		0x1eac0, 0x1eac0,
923 		0x1eae0, 0x1eae0,
924 		0x1eb00, 0x1eb84,
925 		0x1ebc0, 0x1ebc8,
926 		0x1ec40, 0x1ec4c,
927 		0x1ee84, 0x1ee8c,
928 		0x1eec0, 0x1eec0,
929 		0x1eee0, 0x1eee0,
930 		0x1ef00, 0x1ef84,
931 		0x1efc0, 0x1efc8,
932 		0x1f040, 0x1f04c,
933 		0x1f284, 0x1f28c,
934 		0x1f2c0, 0x1f2c0,
935 		0x1f2e0, 0x1f2e0,
936 		0x1f300, 0x1f384,
937 		0x1f3c0, 0x1f3c8,
938 		0x1f440, 0x1f44c,
939 		0x1f684, 0x1f68c,
940 		0x1f6c0, 0x1f6c0,
941 		0x1f6e0, 0x1f6e0,
942 		0x1f700, 0x1f784,
943 		0x1f7c0, 0x1f7c8,
944 		0x1f840, 0x1f84c,
945 		0x1fa84, 0x1fa8c,
946 		0x1fac0, 0x1fac0,
947 		0x1fae0, 0x1fae0,
948 		0x1fb00, 0x1fb84,
949 		0x1fbc0, 0x1fbc8,
950 		0x1fc40, 0x1fc4c,
951 		0x1fe84, 0x1fe8c,
952 		0x1fec0, 0x1fec0,
953 		0x1fee0, 0x1fee0,
954 		0x1ff00, 0x1ff84,
955 		0x1ffc0, 0x1ffc8,
956 		0x20000, 0x2002c,
957 		0x20100, 0x2013c,
958 		0x20190, 0x201a0,
959 		0x201a8, 0x201b8,
960 		0x201c4, 0x201c8,
961 		0x20200, 0x20318,
962 		0x20400, 0x204b4,
963 		0x204c0, 0x20528,
964 		0x20540, 0x20614,
965 		0x21000, 0x21040,
966 		0x2104c, 0x21060,
967 		0x210c0, 0x210ec,
968 		0x21200, 0x21268,
969 		0x21270, 0x21284,
970 		0x212fc, 0x21388,
971 		0x21400, 0x21404,
972 		0x21500, 0x21500,
973 		0x21510, 0x21518,
974 		0x2152c, 0x21530,
975 		0x2153c, 0x2153c,
976 		0x21550, 0x21554,
977 		0x21600, 0x21600,
978 		0x21608, 0x2161c,
979 		0x21624, 0x21628,
980 		0x21630, 0x21634,
981 		0x2163c, 0x2163c,
982 		0x21700, 0x2171c,
983 		0x21780, 0x2178c,
984 		0x21800, 0x21818,
985 		0x21820, 0x21828,
986 		0x21830, 0x21848,
987 		0x21850, 0x21854,
988 		0x21860, 0x21868,
989 		0x21870, 0x21870,
990 		0x21878, 0x21898,
991 		0x218a0, 0x218a8,
992 		0x218b0, 0x218c8,
993 		0x218d0, 0x218d4,
994 		0x218e0, 0x218e8,
995 		0x218f0, 0x218f0,
996 		0x218f8, 0x21a18,
997 		0x21a20, 0x21a28,
998 		0x21a30, 0x21a48,
999 		0x21a50, 0x21a54,
1000 		0x21a60, 0x21a68,
1001 		0x21a70, 0x21a70,
1002 		0x21a78, 0x21a98,
1003 		0x21aa0, 0x21aa8,
1004 		0x21ab0, 0x21ac8,
1005 		0x21ad0, 0x21ad4,
1006 		0x21ae0, 0x21ae8,
1007 		0x21af0, 0x21af0,
1008 		0x21af8, 0x21c18,
1009 		0x21c20, 0x21c20,
1010 		0x21c28, 0x21c30,
1011 		0x21c38, 0x21c38,
1012 		0x21c80, 0x21c98,
1013 		0x21ca0, 0x21ca8,
1014 		0x21cb0, 0x21cc8,
1015 		0x21cd0, 0x21cd4,
1016 		0x21ce0, 0x21ce8,
1017 		0x21cf0, 0x21cf0,
1018 		0x21cf8, 0x21d7c,
1019 		0x21e00, 0x21e04,
1020 		0x22000, 0x2202c,
1021 		0x22100, 0x2213c,
1022 		0x22190, 0x221a0,
1023 		0x221a8, 0x221b8,
1024 		0x221c4, 0x221c8,
1025 		0x22200, 0x22318,
1026 		0x22400, 0x224b4,
1027 		0x224c0, 0x22528,
1028 		0x22540, 0x22614,
1029 		0x23000, 0x23040,
1030 		0x2304c, 0x23060,
1031 		0x230c0, 0x230ec,
1032 		0x23200, 0x23268,
1033 		0x23270, 0x23284,
1034 		0x232fc, 0x23388,
1035 		0x23400, 0x23404,
1036 		0x23500, 0x23500,
1037 		0x23510, 0x23518,
1038 		0x2352c, 0x23530,
1039 		0x2353c, 0x2353c,
1040 		0x23550, 0x23554,
1041 		0x23600, 0x23600,
1042 		0x23608, 0x2361c,
1043 		0x23624, 0x23628,
1044 		0x23630, 0x23634,
1045 		0x2363c, 0x2363c,
1046 		0x23700, 0x2371c,
1047 		0x23780, 0x2378c,
1048 		0x23800, 0x23818,
1049 		0x23820, 0x23828,
1050 		0x23830, 0x23848,
1051 		0x23850, 0x23854,
1052 		0x23860, 0x23868,
1053 		0x23870, 0x23870,
1054 		0x23878, 0x23898,
1055 		0x238a0, 0x238a8,
1056 		0x238b0, 0x238c8,
1057 		0x238d0, 0x238d4,
1058 		0x238e0, 0x238e8,
1059 		0x238f0, 0x238f0,
1060 		0x238f8, 0x23a18,
1061 		0x23a20, 0x23a28,
1062 		0x23a30, 0x23a48,
1063 		0x23a50, 0x23a54,
1064 		0x23a60, 0x23a68,
1065 		0x23a70, 0x23a70,
1066 		0x23a78, 0x23a98,
1067 		0x23aa0, 0x23aa8,
1068 		0x23ab0, 0x23ac8,
1069 		0x23ad0, 0x23ad4,
1070 		0x23ae0, 0x23ae8,
1071 		0x23af0, 0x23af0,
1072 		0x23af8, 0x23c18,
1073 		0x23c20, 0x23c20,
1074 		0x23c28, 0x23c30,
1075 		0x23c38, 0x23c38,
1076 		0x23c80, 0x23c98,
1077 		0x23ca0, 0x23ca8,
1078 		0x23cb0, 0x23cc8,
1079 		0x23cd0, 0x23cd4,
1080 		0x23ce0, 0x23ce8,
1081 		0x23cf0, 0x23cf0,
1082 		0x23cf8, 0x23d7c,
1083 		0x23e00, 0x23e04,
1084 		0x24000, 0x2402c,
1085 		0x24100, 0x2413c,
1086 		0x24190, 0x241a0,
1087 		0x241a8, 0x241b8,
1088 		0x241c4, 0x241c8,
1089 		0x24200, 0x24318,
1090 		0x24400, 0x244b4,
1091 		0x244c0, 0x24528,
1092 		0x24540, 0x24614,
1093 		0x25000, 0x25040,
1094 		0x2504c, 0x25060,
1095 		0x250c0, 0x250ec,
1096 		0x25200, 0x25268,
1097 		0x25270, 0x25284,
1098 		0x252fc, 0x25388,
1099 		0x25400, 0x25404,
1100 		0x25500, 0x25500,
1101 		0x25510, 0x25518,
1102 		0x2552c, 0x25530,
1103 		0x2553c, 0x2553c,
1104 		0x25550, 0x25554,
1105 		0x25600, 0x25600,
1106 		0x25608, 0x2561c,
1107 		0x25624, 0x25628,
1108 		0x25630, 0x25634,
1109 		0x2563c, 0x2563c,
1110 		0x25700, 0x2571c,
1111 		0x25780, 0x2578c,
1112 		0x25800, 0x25818,
1113 		0x25820, 0x25828,
1114 		0x25830, 0x25848,
1115 		0x25850, 0x25854,
1116 		0x25860, 0x25868,
1117 		0x25870, 0x25870,
1118 		0x25878, 0x25898,
1119 		0x258a0, 0x258a8,
1120 		0x258b0, 0x258c8,
1121 		0x258d0, 0x258d4,
1122 		0x258e0, 0x258e8,
1123 		0x258f0, 0x258f0,
1124 		0x258f8, 0x25a18,
1125 		0x25a20, 0x25a28,
1126 		0x25a30, 0x25a48,
1127 		0x25a50, 0x25a54,
1128 		0x25a60, 0x25a68,
1129 		0x25a70, 0x25a70,
1130 		0x25a78, 0x25a98,
1131 		0x25aa0, 0x25aa8,
1132 		0x25ab0, 0x25ac8,
1133 		0x25ad0, 0x25ad4,
1134 		0x25ae0, 0x25ae8,
1135 		0x25af0, 0x25af0,
1136 		0x25af8, 0x25c18,
1137 		0x25c20, 0x25c20,
1138 		0x25c28, 0x25c30,
1139 		0x25c38, 0x25c38,
1140 		0x25c80, 0x25c98,
1141 		0x25ca0, 0x25ca8,
1142 		0x25cb0, 0x25cc8,
1143 		0x25cd0, 0x25cd4,
1144 		0x25ce0, 0x25ce8,
1145 		0x25cf0, 0x25cf0,
1146 		0x25cf8, 0x25d7c,
1147 		0x25e00, 0x25e04,
1148 		0x26000, 0x2602c,
1149 		0x26100, 0x2613c,
1150 		0x26190, 0x261a0,
1151 		0x261a8, 0x261b8,
1152 		0x261c4, 0x261c8,
1153 		0x26200, 0x26318,
1154 		0x26400, 0x264b4,
1155 		0x264c0, 0x26528,
1156 		0x26540, 0x26614,
1157 		0x27000, 0x27040,
1158 		0x2704c, 0x27060,
1159 		0x270c0, 0x270ec,
1160 		0x27200, 0x27268,
1161 		0x27270, 0x27284,
1162 		0x272fc, 0x27388,
1163 		0x27400, 0x27404,
1164 		0x27500, 0x27500,
1165 		0x27510, 0x27518,
1166 		0x2752c, 0x27530,
1167 		0x2753c, 0x2753c,
1168 		0x27550, 0x27554,
1169 		0x27600, 0x27600,
1170 		0x27608, 0x2761c,
1171 		0x27624, 0x27628,
1172 		0x27630, 0x27634,
1173 		0x2763c, 0x2763c,
1174 		0x27700, 0x2771c,
1175 		0x27780, 0x2778c,
1176 		0x27800, 0x27818,
1177 		0x27820, 0x27828,
1178 		0x27830, 0x27848,
1179 		0x27850, 0x27854,
1180 		0x27860, 0x27868,
1181 		0x27870, 0x27870,
1182 		0x27878, 0x27898,
1183 		0x278a0, 0x278a8,
1184 		0x278b0, 0x278c8,
1185 		0x278d0, 0x278d4,
1186 		0x278e0, 0x278e8,
1187 		0x278f0, 0x278f0,
1188 		0x278f8, 0x27a18,
1189 		0x27a20, 0x27a28,
1190 		0x27a30, 0x27a48,
1191 		0x27a50, 0x27a54,
1192 		0x27a60, 0x27a68,
1193 		0x27a70, 0x27a70,
1194 		0x27a78, 0x27a98,
1195 		0x27aa0, 0x27aa8,
1196 		0x27ab0, 0x27ac8,
1197 		0x27ad0, 0x27ad4,
1198 		0x27ae0, 0x27ae8,
1199 		0x27af0, 0x27af0,
1200 		0x27af8, 0x27c18,
1201 		0x27c20, 0x27c20,
1202 		0x27c28, 0x27c30,
1203 		0x27c38, 0x27c38,
1204 		0x27c80, 0x27c98,
1205 		0x27ca0, 0x27ca8,
1206 		0x27cb0, 0x27cc8,
1207 		0x27cd0, 0x27cd4,
1208 		0x27ce0, 0x27ce8,
1209 		0x27cf0, 0x27cf0,
1210 		0x27cf8, 0x27d7c,
1211 		0x27e00, 0x27e04,
1212 	};
1213 
1214 	static const unsigned int t4vf_reg_ranges[] = {
1215 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1216 		VF_MPS_REG(A_MPS_VF_CTL),
1217 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1218 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1219 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1220 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1221 		FW_T4VF_MBDATA_BASE_ADDR,
1222 		FW_T4VF_MBDATA_BASE_ADDR +
1223 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1224 	};
1225 
1226 	static const unsigned int t5_reg_ranges[] = {
1227 		0x1008, 0x10c0,
1228 		0x10cc, 0x10f8,
1229 		0x1100, 0x1100,
1230 		0x110c, 0x1148,
1231 		0x1180, 0x1184,
1232 		0x1190, 0x1194,
1233 		0x11a0, 0x11a4,
1234 		0x11b0, 0x11b4,
1235 		0x11fc, 0x123c,
1236 		0x1280, 0x173c,
1237 		0x1800, 0x18fc,
1238 		0x3000, 0x3028,
1239 		0x3060, 0x30b0,
1240 		0x30b8, 0x30d8,
1241 		0x30e0, 0x30fc,
1242 		0x3140, 0x357c,
1243 		0x35a8, 0x35cc,
1244 		0x35ec, 0x35ec,
1245 		0x3600, 0x5624,
1246 		0x56cc, 0x56ec,
1247 		0x56f4, 0x5720,
1248 		0x5728, 0x575c,
1249 		0x580c, 0x5814,
1250 		0x5890, 0x589c,
1251 		0x58a4, 0x58ac,
1252 		0x58b8, 0x58bc,
1253 		0x5940, 0x59c8,
1254 		0x59d0, 0x59dc,
1255 		0x59fc, 0x5a18,
1256 		0x5a60, 0x5a70,
1257 		0x5a80, 0x5a9c,
1258 		0x5b94, 0x5bfc,
1259 		0x6000, 0x6020,
1260 		0x6028, 0x6040,
1261 		0x6058, 0x609c,
1262 		0x60a8, 0x614c,
1263 		0x7700, 0x7798,
1264 		0x77c0, 0x78fc,
1265 		0x7b00, 0x7b58,
1266 		0x7b60, 0x7b84,
1267 		0x7b8c, 0x7c54,
1268 		0x7d00, 0x7d38,
1269 		0x7d40, 0x7d80,
1270 		0x7d8c, 0x7ddc,
1271 		0x7de4, 0x7e04,
1272 		0x7e10, 0x7e1c,
1273 		0x7e24, 0x7e38,
1274 		0x7e40, 0x7e44,
1275 		0x7e4c, 0x7e78,
1276 		0x7e80, 0x7edc,
1277 		0x7ee8, 0x7efc,
1278 		0x8dc0, 0x8de0,
1279 		0x8df8, 0x8e04,
1280 		0x8e10, 0x8e84,
1281 		0x8ea0, 0x8f84,
1282 		0x8fc0, 0x9058,
1283 		0x9060, 0x9060,
1284 		0x9068, 0x90f8,
1285 		0x9400, 0x9408,
1286 		0x9410, 0x9470,
1287 		0x9600, 0x9600,
1288 		0x9608, 0x9638,
1289 		0x9640, 0x96f4,
1290 		0x9800, 0x9808,
1291 		0x9820, 0x983c,
1292 		0x9850, 0x9864,
1293 		0x9c00, 0x9c6c,
1294 		0x9c80, 0x9cec,
1295 		0x9d00, 0x9d6c,
1296 		0x9d80, 0x9dec,
1297 		0x9e00, 0x9e6c,
1298 		0x9e80, 0x9eec,
1299 		0x9f00, 0x9f6c,
1300 		0x9f80, 0xa020,
1301 		0xd004, 0xd004,
1302 		0xd010, 0xd03c,
1303 		0xdfc0, 0xdfe0,
1304 		0xe000, 0x1106c,
1305 		0x11074, 0x11088,
1306 		0x1109c, 0x1117c,
1307 		0x11190, 0x11204,
1308 		0x19040, 0x1906c,
1309 		0x19078, 0x19080,
1310 		0x1908c, 0x190e8,
1311 		0x190f0, 0x190f8,
1312 		0x19100, 0x19110,
1313 		0x19120, 0x19124,
1314 		0x19150, 0x19194,
1315 		0x1919c, 0x191b0,
1316 		0x191d0, 0x191e8,
1317 		0x19238, 0x19290,
1318 		0x193f8, 0x19428,
1319 		0x19430, 0x19444,
1320 		0x1944c, 0x1946c,
1321 		0x19474, 0x19474,
1322 		0x19490, 0x194cc,
1323 		0x194f0, 0x194f8,
1324 		0x19c00, 0x19c08,
1325 		0x19c10, 0x19c60,
1326 		0x19c94, 0x19ce4,
1327 		0x19cf0, 0x19d40,
1328 		0x19d50, 0x19d94,
1329 		0x19da0, 0x19de8,
1330 		0x19df0, 0x19e10,
1331 		0x19e50, 0x19e90,
1332 		0x19ea0, 0x19f24,
1333 		0x19f34, 0x19f34,
1334 		0x19f40, 0x19f50,
1335 		0x19f90, 0x19fb4,
1336 		0x19fc4, 0x19fe4,
1337 		0x1a000, 0x1a004,
1338 		0x1a010, 0x1a06c,
1339 		0x1a0b0, 0x1a0e4,
1340 		0x1a0ec, 0x1a0f8,
1341 		0x1a100, 0x1a108,
1342 		0x1a114, 0x1a120,
1343 		0x1a128, 0x1a130,
1344 		0x1a138, 0x1a138,
1345 		0x1a190, 0x1a1c4,
1346 		0x1a1fc, 0x1a1fc,
1347 		0x1e008, 0x1e00c,
1348 		0x1e040, 0x1e044,
1349 		0x1e04c, 0x1e04c,
1350 		0x1e284, 0x1e290,
1351 		0x1e2c0, 0x1e2c0,
1352 		0x1e2e0, 0x1e2e0,
1353 		0x1e300, 0x1e384,
1354 		0x1e3c0, 0x1e3c8,
1355 		0x1e408, 0x1e40c,
1356 		0x1e440, 0x1e444,
1357 		0x1e44c, 0x1e44c,
1358 		0x1e684, 0x1e690,
1359 		0x1e6c0, 0x1e6c0,
1360 		0x1e6e0, 0x1e6e0,
1361 		0x1e700, 0x1e784,
1362 		0x1e7c0, 0x1e7c8,
1363 		0x1e808, 0x1e80c,
1364 		0x1e840, 0x1e844,
1365 		0x1e84c, 0x1e84c,
1366 		0x1ea84, 0x1ea90,
1367 		0x1eac0, 0x1eac0,
1368 		0x1eae0, 0x1eae0,
1369 		0x1eb00, 0x1eb84,
1370 		0x1ebc0, 0x1ebc8,
1371 		0x1ec08, 0x1ec0c,
1372 		0x1ec40, 0x1ec44,
1373 		0x1ec4c, 0x1ec4c,
1374 		0x1ee84, 0x1ee90,
1375 		0x1eec0, 0x1eec0,
1376 		0x1eee0, 0x1eee0,
1377 		0x1ef00, 0x1ef84,
1378 		0x1efc0, 0x1efc8,
1379 		0x1f008, 0x1f00c,
1380 		0x1f040, 0x1f044,
1381 		0x1f04c, 0x1f04c,
1382 		0x1f284, 0x1f290,
1383 		0x1f2c0, 0x1f2c0,
1384 		0x1f2e0, 0x1f2e0,
1385 		0x1f300, 0x1f384,
1386 		0x1f3c0, 0x1f3c8,
1387 		0x1f408, 0x1f40c,
1388 		0x1f440, 0x1f444,
1389 		0x1f44c, 0x1f44c,
1390 		0x1f684, 0x1f690,
1391 		0x1f6c0, 0x1f6c0,
1392 		0x1f6e0, 0x1f6e0,
1393 		0x1f700, 0x1f784,
1394 		0x1f7c0, 0x1f7c8,
1395 		0x1f808, 0x1f80c,
1396 		0x1f840, 0x1f844,
1397 		0x1f84c, 0x1f84c,
1398 		0x1fa84, 0x1fa90,
1399 		0x1fac0, 0x1fac0,
1400 		0x1fae0, 0x1fae0,
1401 		0x1fb00, 0x1fb84,
1402 		0x1fbc0, 0x1fbc8,
1403 		0x1fc08, 0x1fc0c,
1404 		0x1fc40, 0x1fc44,
1405 		0x1fc4c, 0x1fc4c,
1406 		0x1fe84, 0x1fe90,
1407 		0x1fec0, 0x1fec0,
1408 		0x1fee0, 0x1fee0,
1409 		0x1ff00, 0x1ff84,
1410 		0x1ffc0, 0x1ffc8,
1411 		0x30000, 0x30030,
1412 		0x30038, 0x30038,
1413 		0x30040, 0x30040,
1414 		0x30100, 0x30144,
1415 		0x30190, 0x301a0,
1416 		0x301a8, 0x301b8,
1417 		0x301c4, 0x301c8,
1418 		0x301d0, 0x301d0,
1419 		0x30200, 0x30318,
1420 		0x30400, 0x304b4,
1421 		0x304c0, 0x3052c,
1422 		0x30540, 0x3061c,
1423 		0x30800, 0x30828,
1424 		0x30834, 0x30834,
1425 		0x308c0, 0x30908,
1426 		0x30910, 0x309ac,
1427 		0x30a00, 0x30a14,
1428 		0x30a1c, 0x30a2c,
1429 		0x30a44, 0x30a50,
1430 		0x30a74, 0x30a74,
1431 		0x30a7c, 0x30afc,
1432 		0x30b08, 0x30c24,
1433 		0x30d00, 0x30d00,
1434 		0x30d08, 0x30d14,
1435 		0x30d1c, 0x30d20,
1436 		0x30d3c, 0x30d3c,
1437 		0x30d48, 0x30d50,
1438 		0x31200, 0x3120c,
1439 		0x31220, 0x31220,
1440 		0x31240, 0x31240,
1441 		0x31600, 0x3160c,
1442 		0x31a00, 0x31a1c,
1443 		0x31e00, 0x31e20,
1444 		0x31e38, 0x31e3c,
1445 		0x31e80, 0x31e80,
1446 		0x31e88, 0x31ea8,
1447 		0x31eb0, 0x31eb4,
1448 		0x31ec8, 0x31ed4,
1449 		0x31fb8, 0x32004,
1450 		0x32200, 0x32200,
1451 		0x32208, 0x32240,
1452 		0x32248, 0x32280,
1453 		0x32288, 0x322c0,
1454 		0x322c8, 0x322fc,
1455 		0x32600, 0x32630,
1456 		0x32a00, 0x32abc,
1457 		0x32b00, 0x32b10,
1458 		0x32b20, 0x32b30,
1459 		0x32b40, 0x32b50,
1460 		0x32b60, 0x32b70,
1461 		0x33000, 0x33028,
1462 		0x33030, 0x33048,
1463 		0x33060, 0x33068,
1464 		0x33070, 0x3309c,
1465 		0x330f0, 0x33128,
1466 		0x33130, 0x33148,
1467 		0x33160, 0x33168,
1468 		0x33170, 0x3319c,
1469 		0x331f0, 0x33238,
1470 		0x33240, 0x33240,
1471 		0x33248, 0x33250,
1472 		0x3325c, 0x33264,
1473 		0x33270, 0x332b8,
1474 		0x332c0, 0x332e4,
1475 		0x332f8, 0x33338,
1476 		0x33340, 0x33340,
1477 		0x33348, 0x33350,
1478 		0x3335c, 0x33364,
1479 		0x33370, 0x333b8,
1480 		0x333c0, 0x333e4,
1481 		0x333f8, 0x33428,
1482 		0x33430, 0x33448,
1483 		0x33460, 0x33468,
1484 		0x33470, 0x3349c,
1485 		0x334f0, 0x33528,
1486 		0x33530, 0x33548,
1487 		0x33560, 0x33568,
1488 		0x33570, 0x3359c,
1489 		0x335f0, 0x33638,
1490 		0x33640, 0x33640,
1491 		0x33648, 0x33650,
1492 		0x3365c, 0x33664,
1493 		0x33670, 0x336b8,
1494 		0x336c0, 0x336e4,
1495 		0x336f8, 0x33738,
1496 		0x33740, 0x33740,
1497 		0x33748, 0x33750,
1498 		0x3375c, 0x33764,
1499 		0x33770, 0x337b8,
1500 		0x337c0, 0x337e4,
1501 		0x337f8, 0x337fc,
1502 		0x33814, 0x33814,
1503 		0x3382c, 0x3382c,
1504 		0x33880, 0x3388c,
1505 		0x338e8, 0x338ec,
1506 		0x33900, 0x33928,
1507 		0x33930, 0x33948,
1508 		0x33960, 0x33968,
1509 		0x33970, 0x3399c,
1510 		0x339f0, 0x33a38,
1511 		0x33a40, 0x33a40,
1512 		0x33a48, 0x33a50,
1513 		0x33a5c, 0x33a64,
1514 		0x33a70, 0x33ab8,
1515 		0x33ac0, 0x33ae4,
1516 		0x33af8, 0x33b10,
1517 		0x33b28, 0x33b28,
1518 		0x33b3c, 0x33b50,
1519 		0x33bf0, 0x33c10,
1520 		0x33c28, 0x33c28,
1521 		0x33c3c, 0x33c50,
1522 		0x33cf0, 0x33cfc,
1523 		0x34000, 0x34030,
1524 		0x34038, 0x34038,
1525 		0x34040, 0x34040,
1526 		0x34100, 0x34144,
1527 		0x34190, 0x341a0,
1528 		0x341a8, 0x341b8,
1529 		0x341c4, 0x341c8,
1530 		0x341d0, 0x341d0,
1531 		0x34200, 0x34318,
1532 		0x34400, 0x344b4,
1533 		0x344c0, 0x3452c,
1534 		0x34540, 0x3461c,
1535 		0x34800, 0x34828,
1536 		0x34834, 0x34834,
1537 		0x348c0, 0x34908,
1538 		0x34910, 0x349ac,
1539 		0x34a00, 0x34a14,
1540 		0x34a1c, 0x34a2c,
1541 		0x34a44, 0x34a50,
1542 		0x34a74, 0x34a74,
1543 		0x34a7c, 0x34afc,
1544 		0x34b08, 0x34c24,
1545 		0x34d00, 0x34d00,
1546 		0x34d08, 0x34d14,
1547 		0x34d1c, 0x34d20,
1548 		0x34d3c, 0x34d3c,
1549 		0x34d48, 0x34d50,
1550 		0x35200, 0x3520c,
1551 		0x35220, 0x35220,
1552 		0x35240, 0x35240,
1553 		0x35600, 0x3560c,
1554 		0x35a00, 0x35a1c,
1555 		0x35e00, 0x35e20,
1556 		0x35e38, 0x35e3c,
1557 		0x35e80, 0x35e80,
1558 		0x35e88, 0x35ea8,
1559 		0x35eb0, 0x35eb4,
1560 		0x35ec8, 0x35ed4,
1561 		0x35fb8, 0x36004,
1562 		0x36200, 0x36200,
1563 		0x36208, 0x36240,
1564 		0x36248, 0x36280,
1565 		0x36288, 0x362c0,
1566 		0x362c8, 0x362fc,
1567 		0x36600, 0x36630,
1568 		0x36a00, 0x36abc,
1569 		0x36b00, 0x36b10,
1570 		0x36b20, 0x36b30,
1571 		0x36b40, 0x36b50,
1572 		0x36b60, 0x36b70,
1573 		0x37000, 0x37028,
1574 		0x37030, 0x37048,
1575 		0x37060, 0x37068,
1576 		0x37070, 0x3709c,
1577 		0x370f0, 0x37128,
1578 		0x37130, 0x37148,
1579 		0x37160, 0x37168,
1580 		0x37170, 0x3719c,
1581 		0x371f0, 0x37238,
1582 		0x37240, 0x37240,
1583 		0x37248, 0x37250,
1584 		0x3725c, 0x37264,
1585 		0x37270, 0x372b8,
1586 		0x372c0, 0x372e4,
1587 		0x372f8, 0x37338,
1588 		0x37340, 0x37340,
1589 		0x37348, 0x37350,
1590 		0x3735c, 0x37364,
1591 		0x37370, 0x373b8,
1592 		0x373c0, 0x373e4,
1593 		0x373f8, 0x37428,
1594 		0x37430, 0x37448,
1595 		0x37460, 0x37468,
1596 		0x37470, 0x3749c,
1597 		0x374f0, 0x37528,
1598 		0x37530, 0x37548,
1599 		0x37560, 0x37568,
1600 		0x37570, 0x3759c,
1601 		0x375f0, 0x37638,
1602 		0x37640, 0x37640,
1603 		0x37648, 0x37650,
1604 		0x3765c, 0x37664,
1605 		0x37670, 0x376b8,
1606 		0x376c0, 0x376e4,
1607 		0x376f8, 0x37738,
1608 		0x37740, 0x37740,
1609 		0x37748, 0x37750,
1610 		0x3775c, 0x37764,
1611 		0x37770, 0x377b8,
1612 		0x377c0, 0x377e4,
1613 		0x377f8, 0x377fc,
1614 		0x37814, 0x37814,
1615 		0x3782c, 0x3782c,
1616 		0x37880, 0x3788c,
1617 		0x378e8, 0x378ec,
1618 		0x37900, 0x37928,
1619 		0x37930, 0x37948,
1620 		0x37960, 0x37968,
1621 		0x37970, 0x3799c,
1622 		0x379f0, 0x37a38,
1623 		0x37a40, 0x37a40,
1624 		0x37a48, 0x37a50,
1625 		0x37a5c, 0x37a64,
1626 		0x37a70, 0x37ab8,
1627 		0x37ac0, 0x37ae4,
1628 		0x37af8, 0x37b10,
1629 		0x37b28, 0x37b28,
1630 		0x37b3c, 0x37b50,
1631 		0x37bf0, 0x37c10,
1632 		0x37c28, 0x37c28,
1633 		0x37c3c, 0x37c50,
1634 		0x37cf0, 0x37cfc,
1635 		0x38000, 0x38030,
1636 		0x38038, 0x38038,
1637 		0x38040, 0x38040,
1638 		0x38100, 0x38144,
1639 		0x38190, 0x381a0,
1640 		0x381a8, 0x381b8,
1641 		0x381c4, 0x381c8,
1642 		0x381d0, 0x381d0,
1643 		0x38200, 0x38318,
1644 		0x38400, 0x384b4,
1645 		0x384c0, 0x3852c,
1646 		0x38540, 0x3861c,
1647 		0x38800, 0x38828,
1648 		0x38834, 0x38834,
1649 		0x388c0, 0x38908,
1650 		0x38910, 0x389ac,
1651 		0x38a00, 0x38a14,
1652 		0x38a1c, 0x38a2c,
1653 		0x38a44, 0x38a50,
1654 		0x38a74, 0x38a74,
1655 		0x38a7c, 0x38afc,
1656 		0x38b08, 0x38c24,
1657 		0x38d00, 0x38d00,
1658 		0x38d08, 0x38d14,
1659 		0x38d1c, 0x38d20,
1660 		0x38d3c, 0x38d3c,
1661 		0x38d48, 0x38d50,
1662 		0x39200, 0x3920c,
1663 		0x39220, 0x39220,
1664 		0x39240, 0x39240,
1665 		0x39600, 0x3960c,
1666 		0x39a00, 0x39a1c,
1667 		0x39e00, 0x39e20,
1668 		0x39e38, 0x39e3c,
1669 		0x39e80, 0x39e80,
1670 		0x39e88, 0x39ea8,
1671 		0x39eb0, 0x39eb4,
1672 		0x39ec8, 0x39ed4,
1673 		0x39fb8, 0x3a004,
1674 		0x3a200, 0x3a200,
1675 		0x3a208, 0x3a240,
1676 		0x3a248, 0x3a280,
1677 		0x3a288, 0x3a2c0,
1678 		0x3a2c8, 0x3a2fc,
1679 		0x3a600, 0x3a630,
1680 		0x3aa00, 0x3aabc,
1681 		0x3ab00, 0x3ab10,
1682 		0x3ab20, 0x3ab30,
1683 		0x3ab40, 0x3ab50,
1684 		0x3ab60, 0x3ab70,
1685 		0x3b000, 0x3b028,
1686 		0x3b030, 0x3b048,
1687 		0x3b060, 0x3b068,
1688 		0x3b070, 0x3b09c,
1689 		0x3b0f0, 0x3b128,
1690 		0x3b130, 0x3b148,
1691 		0x3b160, 0x3b168,
1692 		0x3b170, 0x3b19c,
1693 		0x3b1f0, 0x3b238,
1694 		0x3b240, 0x3b240,
1695 		0x3b248, 0x3b250,
1696 		0x3b25c, 0x3b264,
1697 		0x3b270, 0x3b2b8,
1698 		0x3b2c0, 0x3b2e4,
1699 		0x3b2f8, 0x3b338,
1700 		0x3b340, 0x3b340,
1701 		0x3b348, 0x3b350,
1702 		0x3b35c, 0x3b364,
1703 		0x3b370, 0x3b3b8,
1704 		0x3b3c0, 0x3b3e4,
1705 		0x3b3f8, 0x3b428,
1706 		0x3b430, 0x3b448,
1707 		0x3b460, 0x3b468,
1708 		0x3b470, 0x3b49c,
1709 		0x3b4f0, 0x3b528,
1710 		0x3b530, 0x3b548,
1711 		0x3b560, 0x3b568,
1712 		0x3b570, 0x3b59c,
1713 		0x3b5f0, 0x3b638,
1714 		0x3b640, 0x3b640,
1715 		0x3b648, 0x3b650,
1716 		0x3b65c, 0x3b664,
1717 		0x3b670, 0x3b6b8,
1718 		0x3b6c0, 0x3b6e4,
1719 		0x3b6f8, 0x3b738,
1720 		0x3b740, 0x3b740,
1721 		0x3b748, 0x3b750,
1722 		0x3b75c, 0x3b764,
1723 		0x3b770, 0x3b7b8,
1724 		0x3b7c0, 0x3b7e4,
1725 		0x3b7f8, 0x3b7fc,
1726 		0x3b814, 0x3b814,
1727 		0x3b82c, 0x3b82c,
1728 		0x3b880, 0x3b88c,
1729 		0x3b8e8, 0x3b8ec,
1730 		0x3b900, 0x3b928,
1731 		0x3b930, 0x3b948,
1732 		0x3b960, 0x3b968,
1733 		0x3b970, 0x3b99c,
1734 		0x3b9f0, 0x3ba38,
1735 		0x3ba40, 0x3ba40,
1736 		0x3ba48, 0x3ba50,
1737 		0x3ba5c, 0x3ba64,
1738 		0x3ba70, 0x3bab8,
1739 		0x3bac0, 0x3bae4,
1740 		0x3baf8, 0x3bb10,
1741 		0x3bb28, 0x3bb28,
1742 		0x3bb3c, 0x3bb50,
1743 		0x3bbf0, 0x3bc10,
1744 		0x3bc28, 0x3bc28,
1745 		0x3bc3c, 0x3bc50,
1746 		0x3bcf0, 0x3bcfc,
1747 		0x3c000, 0x3c030,
1748 		0x3c038, 0x3c038,
1749 		0x3c040, 0x3c040,
1750 		0x3c100, 0x3c144,
1751 		0x3c190, 0x3c1a0,
1752 		0x3c1a8, 0x3c1b8,
1753 		0x3c1c4, 0x3c1c8,
1754 		0x3c1d0, 0x3c1d0,
1755 		0x3c200, 0x3c318,
1756 		0x3c400, 0x3c4b4,
1757 		0x3c4c0, 0x3c52c,
1758 		0x3c540, 0x3c61c,
1759 		0x3c800, 0x3c828,
1760 		0x3c834, 0x3c834,
1761 		0x3c8c0, 0x3c908,
1762 		0x3c910, 0x3c9ac,
1763 		0x3ca00, 0x3ca14,
1764 		0x3ca1c, 0x3ca2c,
1765 		0x3ca44, 0x3ca50,
1766 		0x3ca74, 0x3ca74,
1767 		0x3ca7c, 0x3cafc,
1768 		0x3cb08, 0x3cc24,
1769 		0x3cd00, 0x3cd00,
1770 		0x3cd08, 0x3cd14,
1771 		0x3cd1c, 0x3cd20,
1772 		0x3cd3c, 0x3cd3c,
1773 		0x3cd48, 0x3cd50,
1774 		0x3d200, 0x3d20c,
1775 		0x3d220, 0x3d220,
1776 		0x3d240, 0x3d240,
1777 		0x3d600, 0x3d60c,
1778 		0x3da00, 0x3da1c,
1779 		0x3de00, 0x3de20,
1780 		0x3de38, 0x3de3c,
1781 		0x3de80, 0x3de80,
1782 		0x3de88, 0x3dea8,
1783 		0x3deb0, 0x3deb4,
1784 		0x3dec8, 0x3ded4,
1785 		0x3dfb8, 0x3e004,
1786 		0x3e200, 0x3e200,
1787 		0x3e208, 0x3e240,
1788 		0x3e248, 0x3e280,
1789 		0x3e288, 0x3e2c0,
1790 		0x3e2c8, 0x3e2fc,
1791 		0x3e600, 0x3e630,
1792 		0x3ea00, 0x3eabc,
1793 		0x3eb00, 0x3eb10,
1794 		0x3eb20, 0x3eb30,
1795 		0x3eb40, 0x3eb50,
1796 		0x3eb60, 0x3eb70,
1797 		0x3f000, 0x3f028,
1798 		0x3f030, 0x3f048,
1799 		0x3f060, 0x3f068,
1800 		0x3f070, 0x3f09c,
1801 		0x3f0f0, 0x3f128,
1802 		0x3f130, 0x3f148,
1803 		0x3f160, 0x3f168,
1804 		0x3f170, 0x3f19c,
1805 		0x3f1f0, 0x3f238,
1806 		0x3f240, 0x3f240,
1807 		0x3f248, 0x3f250,
1808 		0x3f25c, 0x3f264,
1809 		0x3f270, 0x3f2b8,
1810 		0x3f2c0, 0x3f2e4,
1811 		0x3f2f8, 0x3f338,
1812 		0x3f340, 0x3f340,
1813 		0x3f348, 0x3f350,
1814 		0x3f35c, 0x3f364,
1815 		0x3f370, 0x3f3b8,
1816 		0x3f3c0, 0x3f3e4,
1817 		0x3f3f8, 0x3f428,
1818 		0x3f430, 0x3f448,
1819 		0x3f460, 0x3f468,
1820 		0x3f470, 0x3f49c,
1821 		0x3f4f0, 0x3f528,
1822 		0x3f530, 0x3f548,
1823 		0x3f560, 0x3f568,
1824 		0x3f570, 0x3f59c,
1825 		0x3f5f0, 0x3f638,
1826 		0x3f640, 0x3f640,
1827 		0x3f648, 0x3f650,
1828 		0x3f65c, 0x3f664,
1829 		0x3f670, 0x3f6b8,
1830 		0x3f6c0, 0x3f6e4,
1831 		0x3f6f8, 0x3f738,
1832 		0x3f740, 0x3f740,
1833 		0x3f748, 0x3f750,
1834 		0x3f75c, 0x3f764,
1835 		0x3f770, 0x3f7b8,
1836 		0x3f7c0, 0x3f7e4,
1837 		0x3f7f8, 0x3f7fc,
1838 		0x3f814, 0x3f814,
1839 		0x3f82c, 0x3f82c,
1840 		0x3f880, 0x3f88c,
1841 		0x3f8e8, 0x3f8ec,
1842 		0x3f900, 0x3f928,
1843 		0x3f930, 0x3f948,
1844 		0x3f960, 0x3f968,
1845 		0x3f970, 0x3f99c,
1846 		0x3f9f0, 0x3fa38,
1847 		0x3fa40, 0x3fa40,
1848 		0x3fa48, 0x3fa50,
1849 		0x3fa5c, 0x3fa64,
1850 		0x3fa70, 0x3fab8,
1851 		0x3fac0, 0x3fae4,
1852 		0x3faf8, 0x3fb10,
1853 		0x3fb28, 0x3fb28,
1854 		0x3fb3c, 0x3fb50,
1855 		0x3fbf0, 0x3fc10,
1856 		0x3fc28, 0x3fc28,
1857 		0x3fc3c, 0x3fc50,
1858 		0x3fcf0, 0x3fcfc,
1859 		0x40000, 0x4000c,
1860 		0x40040, 0x40050,
1861 		0x40060, 0x40068,
1862 		0x4007c, 0x4008c,
1863 		0x40094, 0x400b0,
1864 		0x400c0, 0x40144,
1865 		0x40180, 0x4018c,
1866 		0x40200, 0x40254,
1867 		0x40260, 0x40264,
1868 		0x40270, 0x40288,
1869 		0x40290, 0x40298,
1870 		0x402ac, 0x402c8,
1871 		0x402d0, 0x402e0,
1872 		0x402f0, 0x402f0,
1873 		0x40300, 0x4033c,
1874 		0x403f8, 0x403fc,
1875 		0x41304, 0x413c4,
1876 		0x41400, 0x4140c,
1877 		0x41414, 0x4141c,
1878 		0x41480, 0x414d0,
1879 		0x44000, 0x44054,
1880 		0x4405c, 0x44078,
1881 		0x440c0, 0x44174,
1882 		0x44180, 0x441ac,
1883 		0x441b4, 0x441b8,
1884 		0x441c0, 0x44254,
1885 		0x4425c, 0x44278,
1886 		0x442c0, 0x44374,
1887 		0x44380, 0x443ac,
1888 		0x443b4, 0x443b8,
1889 		0x443c0, 0x44454,
1890 		0x4445c, 0x44478,
1891 		0x444c0, 0x44574,
1892 		0x44580, 0x445ac,
1893 		0x445b4, 0x445b8,
1894 		0x445c0, 0x44654,
1895 		0x4465c, 0x44678,
1896 		0x446c0, 0x44774,
1897 		0x44780, 0x447ac,
1898 		0x447b4, 0x447b8,
1899 		0x447c0, 0x44854,
1900 		0x4485c, 0x44878,
1901 		0x448c0, 0x44974,
1902 		0x44980, 0x449ac,
1903 		0x449b4, 0x449b8,
1904 		0x449c0, 0x449fc,
1905 		0x45000, 0x45004,
1906 		0x45010, 0x45030,
1907 		0x45040, 0x45060,
1908 		0x45068, 0x45068,
1909 		0x45080, 0x45084,
1910 		0x450a0, 0x450b0,
1911 		0x45200, 0x45204,
1912 		0x45210, 0x45230,
1913 		0x45240, 0x45260,
1914 		0x45268, 0x45268,
1915 		0x45280, 0x45284,
1916 		0x452a0, 0x452b0,
1917 		0x460c0, 0x460e4,
1918 		0x47000, 0x4703c,
1919 		0x47044, 0x4708c,
1920 		0x47200, 0x47250,
1921 		0x47400, 0x47408,
1922 		0x47414, 0x47420,
1923 		0x47600, 0x47618,
1924 		0x47800, 0x47814,
1925 		0x48000, 0x4800c,
1926 		0x48040, 0x48050,
1927 		0x48060, 0x48068,
1928 		0x4807c, 0x4808c,
1929 		0x48094, 0x480b0,
1930 		0x480c0, 0x48144,
1931 		0x48180, 0x4818c,
1932 		0x48200, 0x48254,
1933 		0x48260, 0x48264,
1934 		0x48270, 0x48288,
1935 		0x48290, 0x48298,
1936 		0x482ac, 0x482c8,
1937 		0x482d0, 0x482e0,
1938 		0x482f0, 0x482f0,
1939 		0x48300, 0x4833c,
1940 		0x483f8, 0x483fc,
1941 		0x49304, 0x493c4,
1942 		0x49400, 0x4940c,
1943 		0x49414, 0x4941c,
1944 		0x49480, 0x494d0,
1945 		0x4c000, 0x4c054,
1946 		0x4c05c, 0x4c078,
1947 		0x4c0c0, 0x4c174,
1948 		0x4c180, 0x4c1ac,
1949 		0x4c1b4, 0x4c1b8,
1950 		0x4c1c0, 0x4c254,
1951 		0x4c25c, 0x4c278,
1952 		0x4c2c0, 0x4c374,
1953 		0x4c380, 0x4c3ac,
1954 		0x4c3b4, 0x4c3b8,
1955 		0x4c3c0, 0x4c454,
1956 		0x4c45c, 0x4c478,
1957 		0x4c4c0, 0x4c574,
1958 		0x4c580, 0x4c5ac,
1959 		0x4c5b4, 0x4c5b8,
1960 		0x4c5c0, 0x4c654,
1961 		0x4c65c, 0x4c678,
1962 		0x4c6c0, 0x4c774,
1963 		0x4c780, 0x4c7ac,
1964 		0x4c7b4, 0x4c7b8,
1965 		0x4c7c0, 0x4c854,
1966 		0x4c85c, 0x4c878,
1967 		0x4c8c0, 0x4c974,
1968 		0x4c980, 0x4c9ac,
1969 		0x4c9b4, 0x4c9b8,
1970 		0x4c9c0, 0x4c9fc,
1971 		0x4d000, 0x4d004,
1972 		0x4d010, 0x4d030,
1973 		0x4d040, 0x4d060,
1974 		0x4d068, 0x4d068,
1975 		0x4d080, 0x4d084,
1976 		0x4d0a0, 0x4d0b0,
1977 		0x4d200, 0x4d204,
1978 		0x4d210, 0x4d230,
1979 		0x4d240, 0x4d260,
1980 		0x4d268, 0x4d268,
1981 		0x4d280, 0x4d284,
1982 		0x4d2a0, 0x4d2b0,
1983 		0x4e0c0, 0x4e0e4,
1984 		0x4f000, 0x4f03c,
1985 		0x4f044, 0x4f08c,
1986 		0x4f200, 0x4f250,
1987 		0x4f400, 0x4f408,
1988 		0x4f414, 0x4f420,
1989 		0x4f600, 0x4f618,
1990 		0x4f800, 0x4f814,
1991 		0x50000, 0x50084,
1992 		0x50090, 0x500cc,
1993 		0x50400, 0x50400,
1994 		0x50800, 0x50884,
1995 		0x50890, 0x508cc,
1996 		0x50c00, 0x50c00,
1997 		0x51000, 0x5101c,
1998 		0x51300, 0x51308,
1999 	};
2000 
2001 	static const unsigned int t5vf_reg_ranges[] = {
2002 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2003 		VF_MPS_REG(A_MPS_VF_CTL),
2004 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2005 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2006 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2007 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2008 		FW_T4VF_MBDATA_BASE_ADDR,
2009 		FW_T4VF_MBDATA_BASE_ADDR +
2010 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2011 	};
2012 
2013 	static const unsigned int t6_reg_ranges[] = {
2014 		0x1008, 0x101c,
2015 		0x1024, 0x10a8,
2016 		0x10b4, 0x10f8,
2017 		0x1100, 0x1114,
2018 		0x111c, 0x112c,
2019 		0x1138, 0x113c,
2020 		0x1144, 0x114c,
2021 		0x1180, 0x1184,
2022 		0x1190, 0x1194,
2023 		0x11a0, 0x11a4,
2024 		0x11b0, 0x11b4,
2025 		0x11fc, 0x1274,
2026 		0x1280, 0x133c,
2027 		0x1800, 0x18fc,
2028 		0x3000, 0x302c,
2029 		0x3060, 0x30b0,
2030 		0x30b8, 0x30d8,
2031 		0x30e0, 0x30fc,
2032 		0x3140, 0x357c,
2033 		0x35a8, 0x35cc,
2034 		0x35ec, 0x35ec,
2035 		0x3600, 0x5624,
2036 		0x56cc, 0x56ec,
2037 		0x56f4, 0x5720,
2038 		0x5728, 0x575c,
2039 		0x580c, 0x5814,
2040 		0x5890, 0x589c,
2041 		0x58a4, 0x58ac,
2042 		0x58b8, 0x58bc,
2043 		0x5940, 0x595c,
2044 		0x5980, 0x598c,
2045 		0x59b0, 0x59c8,
2046 		0x59d0, 0x59dc,
2047 		0x59fc, 0x5a18,
2048 		0x5a60, 0x5a6c,
2049 		0x5a80, 0x5a8c,
2050 		0x5a94, 0x5a9c,
2051 		0x5b94, 0x5bfc,
2052 		0x5c10, 0x5e48,
2053 		0x5e50, 0x5e94,
2054 		0x5ea0, 0x5eb0,
2055 		0x5ec0, 0x5ec0,
2056 		0x5ec8, 0x5ed0,
2057 		0x5ee0, 0x5ee0,
2058 		0x5ef0, 0x5ef0,
2059 		0x5f00, 0x5f00,
2060 		0x6000, 0x6020,
2061 		0x6028, 0x6040,
2062 		0x6058, 0x609c,
2063 		0x60a8, 0x619c,
2064 		0x7700, 0x7798,
2065 		0x77c0, 0x7880,
2066 		0x78cc, 0x78fc,
2067 		0x7b00, 0x7b58,
2068 		0x7b60, 0x7b84,
2069 		0x7b8c, 0x7c54,
2070 		0x7d00, 0x7d38,
2071 		0x7d40, 0x7d84,
2072 		0x7d8c, 0x7ddc,
2073 		0x7de4, 0x7e04,
2074 		0x7e10, 0x7e1c,
2075 		0x7e24, 0x7e38,
2076 		0x7e40, 0x7e44,
2077 		0x7e4c, 0x7e78,
2078 		0x7e80, 0x7edc,
2079 		0x7ee8, 0x7efc,
2080 		0x8dc0, 0x8de4,
2081 		0x8df8, 0x8e04,
2082 		0x8e10, 0x8e84,
2083 		0x8ea0, 0x8f88,
2084 		0x8fb8, 0x9058,
2085 		0x9060, 0x9060,
2086 		0x9068, 0x90f8,
2087 		0x9100, 0x9124,
2088 		0x9400, 0x9470,
2089 		0x9600, 0x9600,
2090 		0x9608, 0x9638,
2091 		0x9640, 0x9704,
2092 		0x9710, 0x971c,
2093 		0x9800, 0x9808,
2094 		0x9820, 0x983c,
2095 		0x9850, 0x9864,
2096 		0x9c00, 0x9c6c,
2097 		0x9c80, 0x9cec,
2098 		0x9d00, 0x9d6c,
2099 		0x9d80, 0x9dec,
2100 		0x9e00, 0x9e6c,
2101 		0x9e80, 0x9eec,
2102 		0x9f00, 0x9f6c,
2103 		0x9f80, 0xa020,
2104 		0xd004, 0xd03c,
2105 		0xd100, 0xd118,
2106 		0xd200, 0xd214,
2107 		0xd220, 0xd234,
2108 		0xd240, 0xd254,
2109 		0xd260, 0xd274,
2110 		0xd280, 0xd294,
2111 		0xd2a0, 0xd2b4,
2112 		0xd2c0, 0xd2d4,
2113 		0xd2e0, 0xd2f4,
2114 		0xd300, 0xd31c,
2115 		0xdfc0, 0xdfe0,
2116 		0xe000, 0xf008,
2117 		0xf010, 0xf018,
2118 		0xf020, 0xf028,
2119 		0x11000, 0x11014,
2120 		0x11048, 0x1106c,
2121 		0x11074, 0x11088,
2122 		0x11098, 0x11120,
2123 		0x1112c, 0x1117c,
2124 		0x11190, 0x112e0,
2125 		0x11300, 0x1130c,
2126 		0x12000, 0x1206c,
2127 		0x19040, 0x1906c,
2128 		0x19078, 0x19080,
2129 		0x1908c, 0x190e8,
2130 		0x190f0, 0x190f8,
2131 		0x19100, 0x19110,
2132 		0x19120, 0x19124,
2133 		0x19150, 0x19194,
2134 		0x1919c, 0x191b0,
2135 		0x191d0, 0x191e8,
2136 		0x19238, 0x19290,
2137 		0x192a4, 0x192b0,
2138 		0x192bc, 0x192bc,
2139 		0x19348, 0x1934c,
2140 		0x193f8, 0x19418,
2141 		0x19420, 0x19428,
2142 		0x19430, 0x19444,
2143 		0x1944c, 0x1946c,
2144 		0x19474, 0x19474,
2145 		0x19490, 0x194cc,
2146 		0x194f0, 0x194f8,
2147 		0x19c00, 0x19c48,
2148 		0x19c50, 0x19c80,
2149 		0x19c94, 0x19c98,
2150 		0x19ca0, 0x19cbc,
2151 		0x19ce4, 0x19ce4,
2152 		0x19cf0, 0x19cf8,
2153 		0x19d00, 0x19d28,
2154 		0x19d50, 0x19d78,
2155 		0x19d94, 0x19d98,
2156 		0x19da0, 0x19dc8,
2157 		0x19df0, 0x19e10,
2158 		0x19e50, 0x19e6c,
2159 		0x19ea0, 0x19ebc,
2160 		0x19ec4, 0x19ef4,
2161 		0x19f04, 0x19f2c,
2162 		0x19f34, 0x19f34,
2163 		0x19f40, 0x19f50,
2164 		0x19f90, 0x19fac,
2165 		0x19fc4, 0x19fc8,
2166 		0x19fd0, 0x19fe4,
2167 		0x1a000, 0x1a004,
2168 		0x1a010, 0x1a06c,
2169 		0x1a0b0, 0x1a0e4,
2170 		0x1a0ec, 0x1a0f8,
2171 		0x1a100, 0x1a108,
2172 		0x1a114, 0x1a120,
2173 		0x1a128, 0x1a130,
2174 		0x1a138, 0x1a138,
2175 		0x1a190, 0x1a1c4,
2176 		0x1a1fc, 0x1a1fc,
2177 		0x1e008, 0x1e00c,
2178 		0x1e040, 0x1e044,
2179 		0x1e04c, 0x1e04c,
2180 		0x1e284, 0x1e290,
2181 		0x1e2c0, 0x1e2c0,
2182 		0x1e2e0, 0x1e2e0,
2183 		0x1e300, 0x1e384,
2184 		0x1e3c0, 0x1e3c8,
2185 		0x1e408, 0x1e40c,
2186 		0x1e440, 0x1e444,
2187 		0x1e44c, 0x1e44c,
2188 		0x1e684, 0x1e690,
2189 		0x1e6c0, 0x1e6c0,
2190 		0x1e6e0, 0x1e6e0,
2191 		0x1e700, 0x1e784,
2192 		0x1e7c0, 0x1e7c8,
2193 		0x1e808, 0x1e80c,
2194 		0x1e840, 0x1e844,
2195 		0x1e84c, 0x1e84c,
2196 		0x1ea84, 0x1ea90,
2197 		0x1eac0, 0x1eac0,
2198 		0x1eae0, 0x1eae0,
2199 		0x1eb00, 0x1eb84,
2200 		0x1ebc0, 0x1ebc8,
2201 		0x1ec08, 0x1ec0c,
2202 		0x1ec40, 0x1ec44,
2203 		0x1ec4c, 0x1ec4c,
2204 		0x1ee84, 0x1ee90,
2205 		0x1eec0, 0x1eec0,
2206 		0x1eee0, 0x1eee0,
2207 		0x1ef00, 0x1ef84,
2208 		0x1efc0, 0x1efc8,
2209 		0x1f008, 0x1f00c,
2210 		0x1f040, 0x1f044,
2211 		0x1f04c, 0x1f04c,
2212 		0x1f284, 0x1f290,
2213 		0x1f2c0, 0x1f2c0,
2214 		0x1f2e0, 0x1f2e0,
2215 		0x1f300, 0x1f384,
2216 		0x1f3c0, 0x1f3c8,
2217 		0x1f408, 0x1f40c,
2218 		0x1f440, 0x1f444,
2219 		0x1f44c, 0x1f44c,
2220 		0x1f684, 0x1f690,
2221 		0x1f6c0, 0x1f6c0,
2222 		0x1f6e0, 0x1f6e0,
2223 		0x1f700, 0x1f784,
2224 		0x1f7c0, 0x1f7c8,
2225 		0x1f808, 0x1f80c,
2226 		0x1f840, 0x1f844,
2227 		0x1f84c, 0x1f84c,
2228 		0x1fa84, 0x1fa90,
2229 		0x1fac0, 0x1fac0,
2230 		0x1fae0, 0x1fae0,
2231 		0x1fb00, 0x1fb84,
2232 		0x1fbc0, 0x1fbc8,
2233 		0x1fc08, 0x1fc0c,
2234 		0x1fc40, 0x1fc44,
2235 		0x1fc4c, 0x1fc4c,
2236 		0x1fe84, 0x1fe90,
2237 		0x1fec0, 0x1fec0,
2238 		0x1fee0, 0x1fee0,
2239 		0x1ff00, 0x1ff84,
2240 		0x1ffc0, 0x1ffc8,
2241 		0x30000, 0x30030,
2242 		0x30038, 0x30038,
2243 		0x30040, 0x30040,
2244 		0x30048, 0x30048,
2245 		0x30050, 0x30050,
2246 		0x3005c, 0x30060,
2247 		0x30068, 0x30068,
2248 		0x30070, 0x30070,
2249 		0x30100, 0x30168,
2250 		0x30190, 0x301a0,
2251 		0x301a8, 0x301b8,
2252 		0x301c4, 0x301c8,
2253 		0x301d0, 0x301d0,
2254 		0x30200, 0x30320,
2255 		0x30400, 0x304b4,
2256 		0x304c0, 0x3052c,
2257 		0x30540, 0x3061c,
2258 		0x30800, 0x308a0,
2259 		0x308c0, 0x30908,
2260 		0x30910, 0x309b8,
2261 		0x30a00, 0x30a04,
2262 		0x30a0c, 0x30a14,
2263 		0x30a1c, 0x30a2c,
2264 		0x30a44, 0x30a50,
2265 		0x30a74, 0x30a74,
2266 		0x30a7c, 0x30afc,
2267 		0x30b08, 0x30c24,
2268 		0x30d00, 0x30d14,
2269 		0x30d1c, 0x30d3c,
2270 		0x30d44, 0x30d4c,
2271 		0x30d54, 0x30d74,
2272 		0x30d7c, 0x30d7c,
2273 		0x30de0, 0x30de0,
2274 		0x30e00, 0x30ed4,
2275 		0x30f00, 0x30fa4,
2276 		0x30fc0, 0x30fc4,
2277 		0x31000, 0x31004,
2278 		0x31080, 0x310fc,
2279 		0x31208, 0x31220,
2280 		0x3123c, 0x31254,
2281 		0x31300, 0x31300,
2282 		0x31308, 0x3131c,
2283 		0x31338, 0x3133c,
2284 		0x31380, 0x31380,
2285 		0x31388, 0x313a8,
2286 		0x313b4, 0x313b4,
2287 		0x31400, 0x31420,
2288 		0x31438, 0x3143c,
2289 		0x31480, 0x31480,
2290 		0x314a8, 0x314a8,
2291 		0x314b0, 0x314b4,
2292 		0x314c8, 0x314d4,
2293 		0x31a40, 0x31a4c,
2294 		0x31af0, 0x31b20,
2295 		0x31b38, 0x31b3c,
2296 		0x31b80, 0x31b80,
2297 		0x31ba8, 0x31ba8,
2298 		0x31bb0, 0x31bb4,
2299 		0x31bc8, 0x31bd4,
2300 		0x32140, 0x3218c,
2301 		0x321f0, 0x321f4,
2302 		0x32200, 0x32200,
2303 		0x32218, 0x32218,
2304 		0x32400, 0x32400,
2305 		0x32408, 0x3241c,
2306 		0x32618, 0x32620,
2307 		0x32664, 0x32664,
2308 		0x326a8, 0x326a8,
2309 		0x326ec, 0x326ec,
2310 		0x32a00, 0x32abc,
2311 		0x32b00, 0x32b38,
2312 		0x32b40, 0x32b58,
2313 		0x32b60, 0x32b78,
2314 		0x32c00, 0x32c00,
2315 		0x32c08, 0x32c3c,
2316 		0x32e00, 0x32e2c,
2317 		0x32f00, 0x32f2c,
2318 		0x33000, 0x3302c,
2319 		0x33034, 0x33050,
2320 		0x33058, 0x33058,
2321 		0x33060, 0x3308c,
2322 		0x3309c, 0x330ac,
2323 		0x330c0, 0x330c0,
2324 		0x330c8, 0x330d0,
2325 		0x330d8, 0x330e0,
2326 		0x330ec, 0x3312c,
2327 		0x33134, 0x33150,
2328 		0x33158, 0x33158,
2329 		0x33160, 0x3318c,
2330 		0x3319c, 0x331ac,
2331 		0x331c0, 0x331c0,
2332 		0x331c8, 0x331d0,
2333 		0x331d8, 0x331e0,
2334 		0x331ec, 0x33290,
2335 		0x33298, 0x332c4,
2336 		0x332e4, 0x33390,
2337 		0x33398, 0x333c4,
2338 		0x333e4, 0x3342c,
2339 		0x33434, 0x33450,
2340 		0x33458, 0x33458,
2341 		0x33460, 0x3348c,
2342 		0x3349c, 0x334ac,
2343 		0x334c0, 0x334c0,
2344 		0x334c8, 0x334d0,
2345 		0x334d8, 0x334e0,
2346 		0x334ec, 0x3352c,
2347 		0x33534, 0x33550,
2348 		0x33558, 0x33558,
2349 		0x33560, 0x3358c,
2350 		0x3359c, 0x335ac,
2351 		0x335c0, 0x335c0,
2352 		0x335c8, 0x335d0,
2353 		0x335d8, 0x335e0,
2354 		0x335ec, 0x33690,
2355 		0x33698, 0x336c4,
2356 		0x336e4, 0x33790,
2357 		0x33798, 0x337c4,
2358 		0x337e4, 0x337fc,
2359 		0x33814, 0x33814,
2360 		0x33854, 0x33868,
2361 		0x33880, 0x3388c,
2362 		0x338c0, 0x338d0,
2363 		0x338e8, 0x338ec,
2364 		0x33900, 0x3392c,
2365 		0x33934, 0x33950,
2366 		0x33958, 0x33958,
2367 		0x33960, 0x3398c,
2368 		0x3399c, 0x339ac,
2369 		0x339c0, 0x339c0,
2370 		0x339c8, 0x339d0,
2371 		0x339d8, 0x339e0,
2372 		0x339ec, 0x33a90,
2373 		0x33a98, 0x33ac4,
2374 		0x33ae4, 0x33b10,
2375 		0x33b24, 0x33b28,
2376 		0x33b38, 0x33b50,
2377 		0x33bf0, 0x33c10,
2378 		0x33c24, 0x33c28,
2379 		0x33c38, 0x33c50,
2380 		0x33cf0, 0x33cfc,
2381 		0x34000, 0x34030,
2382 		0x34038, 0x34038,
2383 		0x34040, 0x34040,
2384 		0x34048, 0x34048,
2385 		0x34050, 0x34050,
2386 		0x3405c, 0x34060,
2387 		0x34068, 0x34068,
2388 		0x34070, 0x34070,
2389 		0x34100, 0x34168,
2390 		0x34190, 0x341a0,
2391 		0x341a8, 0x341b8,
2392 		0x341c4, 0x341c8,
2393 		0x341d0, 0x341d0,
2394 		0x34200, 0x34320,
2395 		0x34400, 0x344b4,
2396 		0x344c0, 0x3452c,
2397 		0x34540, 0x3461c,
2398 		0x34800, 0x348a0,
2399 		0x348c0, 0x34908,
2400 		0x34910, 0x349b8,
2401 		0x34a00, 0x34a04,
2402 		0x34a0c, 0x34a14,
2403 		0x34a1c, 0x34a2c,
2404 		0x34a44, 0x34a50,
2405 		0x34a74, 0x34a74,
2406 		0x34a7c, 0x34afc,
2407 		0x34b08, 0x34c24,
2408 		0x34d00, 0x34d14,
2409 		0x34d1c, 0x34d3c,
2410 		0x34d44, 0x34d4c,
2411 		0x34d54, 0x34d74,
2412 		0x34d7c, 0x34d7c,
2413 		0x34de0, 0x34de0,
2414 		0x34e00, 0x34ed4,
2415 		0x34f00, 0x34fa4,
2416 		0x34fc0, 0x34fc4,
2417 		0x35000, 0x35004,
2418 		0x35080, 0x350fc,
2419 		0x35208, 0x35220,
2420 		0x3523c, 0x35254,
2421 		0x35300, 0x35300,
2422 		0x35308, 0x3531c,
2423 		0x35338, 0x3533c,
2424 		0x35380, 0x35380,
2425 		0x35388, 0x353a8,
2426 		0x353b4, 0x353b4,
2427 		0x35400, 0x35420,
2428 		0x35438, 0x3543c,
2429 		0x35480, 0x35480,
2430 		0x354a8, 0x354a8,
2431 		0x354b0, 0x354b4,
2432 		0x354c8, 0x354d4,
2433 		0x35a40, 0x35a4c,
2434 		0x35af0, 0x35b20,
2435 		0x35b38, 0x35b3c,
2436 		0x35b80, 0x35b80,
2437 		0x35ba8, 0x35ba8,
2438 		0x35bb0, 0x35bb4,
2439 		0x35bc8, 0x35bd4,
2440 		0x36140, 0x3618c,
2441 		0x361f0, 0x361f4,
2442 		0x36200, 0x36200,
2443 		0x36218, 0x36218,
2444 		0x36400, 0x36400,
2445 		0x36408, 0x3641c,
2446 		0x36618, 0x36620,
2447 		0x36664, 0x36664,
2448 		0x366a8, 0x366a8,
2449 		0x366ec, 0x366ec,
2450 		0x36a00, 0x36abc,
2451 		0x36b00, 0x36b38,
2452 		0x36b40, 0x36b58,
2453 		0x36b60, 0x36b78,
2454 		0x36c00, 0x36c00,
2455 		0x36c08, 0x36c3c,
2456 		0x36e00, 0x36e2c,
2457 		0x36f00, 0x36f2c,
2458 		0x37000, 0x3702c,
2459 		0x37034, 0x37050,
2460 		0x37058, 0x37058,
2461 		0x37060, 0x3708c,
2462 		0x3709c, 0x370ac,
2463 		0x370c0, 0x370c0,
2464 		0x370c8, 0x370d0,
2465 		0x370d8, 0x370e0,
2466 		0x370ec, 0x3712c,
2467 		0x37134, 0x37150,
2468 		0x37158, 0x37158,
2469 		0x37160, 0x3718c,
2470 		0x3719c, 0x371ac,
2471 		0x371c0, 0x371c0,
2472 		0x371c8, 0x371d0,
2473 		0x371d8, 0x371e0,
2474 		0x371ec, 0x37290,
2475 		0x37298, 0x372c4,
2476 		0x372e4, 0x37390,
2477 		0x37398, 0x373c4,
2478 		0x373e4, 0x3742c,
2479 		0x37434, 0x37450,
2480 		0x37458, 0x37458,
2481 		0x37460, 0x3748c,
2482 		0x3749c, 0x374ac,
2483 		0x374c0, 0x374c0,
2484 		0x374c8, 0x374d0,
2485 		0x374d8, 0x374e0,
2486 		0x374ec, 0x3752c,
2487 		0x37534, 0x37550,
2488 		0x37558, 0x37558,
2489 		0x37560, 0x3758c,
2490 		0x3759c, 0x375ac,
2491 		0x375c0, 0x375c0,
2492 		0x375c8, 0x375d0,
2493 		0x375d8, 0x375e0,
2494 		0x375ec, 0x37690,
2495 		0x37698, 0x376c4,
2496 		0x376e4, 0x37790,
2497 		0x37798, 0x377c4,
2498 		0x377e4, 0x377fc,
2499 		0x37814, 0x37814,
2500 		0x37854, 0x37868,
2501 		0x37880, 0x3788c,
2502 		0x378c0, 0x378d0,
2503 		0x378e8, 0x378ec,
2504 		0x37900, 0x3792c,
2505 		0x37934, 0x37950,
2506 		0x37958, 0x37958,
2507 		0x37960, 0x3798c,
2508 		0x3799c, 0x379ac,
2509 		0x379c0, 0x379c0,
2510 		0x379c8, 0x379d0,
2511 		0x379d8, 0x379e0,
2512 		0x379ec, 0x37a90,
2513 		0x37a98, 0x37ac4,
2514 		0x37ae4, 0x37b10,
2515 		0x37b24, 0x37b28,
2516 		0x37b38, 0x37b50,
2517 		0x37bf0, 0x37c10,
2518 		0x37c24, 0x37c28,
2519 		0x37c38, 0x37c50,
2520 		0x37cf0, 0x37cfc,
2521 		0x40040, 0x40040,
2522 		0x40080, 0x40084,
2523 		0x40100, 0x40100,
2524 		0x40140, 0x401bc,
2525 		0x40200, 0x40214,
2526 		0x40228, 0x40228,
2527 		0x40240, 0x40258,
2528 		0x40280, 0x40280,
2529 		0x40304, 0x40304,
2530 		0x40330, 0x4033c,
2531 		0x41304, 0x413c8,
2532 		0x413d0, 0x413dc,
2533 		0x413f0, 0x413f0,
2534 		0x41400, 0x4140c,
2535 		0x41414, 0x4141c,
2536 		0x41480, 0x414d0,
2537 		0x44000, 0x4407c,
2538 		0x440c0, 0x441ac,
2539 		0x441b4, 0x4427c,
2540 		0x442c0, 0x443ac,
2541 		0x443b4, 0x4447c,
2542 		0x444c0, 0x445ac,
2543 		0x445b4, 0x4467c,
2544 		0x446c0, 0x447ac,
2545 		0x447b4, 0x4487c,
2546 		0x448c0, 0x449ac,
2547 		0x449b4, 0x44a7c,
2548 		0x44ac0, 0x44bac,
2549 		0x44bb4, 0x44c7c,
2550 		0x44cc0, 0x44dac,
2551 		0x44db4, 0x44e7c,
2552 		0x44ec0, 0x44fac,
2553 		0x44fb4, 0x4507c,
2554 		0x450c0, 0x451ac,
2555 		0x451b4, 0x451fc,
2556 		0x45800, 0x45804,
2557 		0x45810, 0x45830,
2558 		0x45840, 0x45860,
2559 		0x45868, 0x45868,
2560 		0x45880, 0x45884,
2561 		0x458a0, 0x458b0,
2562 		0x45a00, 0x45a04,
2563 		0x45a10, 0x45a30,
2564 		0x45a40, 0x45a60,
2565 		0x45a68, 0x45a68,
2566 		0x45a80, 0x45a84,
2567 		0x45aa0, 0x45ab0,
2568 		0x460c0, 0x460e4,
2569 		0x47000, 0x4703c,
2570 		0x47044, 0x4708c,
2571 		0x47200, 0x47250,
2572 		0x47400, 0x47408,
2573 		0x47414, 0x47420,
2574 		0x47600, 0x47618,
2575 		0x47800, 0x47814,
2576 		0x47820, 0x4782c,
2577 		0x50000, 0x50084,
2578 		0x50090, 0x500cc,
2579 		0x50300, 0x50384,
2580 		0x50400, 0x50400,
2581 		0x50800, 0x50884,
2582 		0x50890, 0x508cc,
2583 		0x50b00, 0x50b84,
2584 		0x50c00, 0x50c00,
2585 		0x51000, 0x51020,
2586 		0x51028, 0x510b0,
2587 		0x51300, 0x51324,
2588 	};
2589 
2590 	static const unsigned int t6vf_reg_ranges[] = {
2591 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2592 		VF_MPS_REG(A_MPS_VF_CTL),
2593 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2594 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2595 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2596 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2597 		FW_T6VF_MBDATA_BASE_ADDR,
2598 		FW_T6VF_MBDATA_BASE_ADDR +
2599 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2600 	};
2601 
2602 	u32 *buf_end = (u32 *)(buf + buf_size);
2603 	const unsigned int *reg_ranges;
2604 	int reg_ranges_size, range;
2605 	unsigned int chip_version = chip_id(adap);
2606 
2607 	/*
2608 	 * Select the right set of register ranges to dump depending on the
2609 	 * adapter chip type.
2610 	 */
2611 	switch (chip_version) {
2612 	case CHELSIO_T4:
2613 		if (adap->flags & IS_VF) {
2614 			reg_ranges = t4vf_reg_ranges;
2615 			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2616 		} else {
2617 			reg_ranges = t4_reg_ranges;
2618 			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2619 		}
2620 		break;
2621 
2622 	case CHELSIO_T5:
2623 		if (adap->flags & IS_VF) {
2624 			reg_ranges = t5vf_reg_ranges;
2625 			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2626 		} else {
2627 			reg_ranges = t5_reg_ranges;
2628 			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2629 		}
2630 		break;
2631 
2632 	case CHELSIO_T6:
2633 		if (adap->flags & IS_VF) {
2634 			reg_ranges = t6vf_reg_ranges;
2635 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2636 		} else {
2637 			reg_ranges = t6_reg_ranges;
2638 			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2639 		}
2640 		break;
2641 
2642 	default:
2643 		CH_ERR(adap,
2644 			"Unsupported chip version %d\n", chip_version);
2645 		return;
2646 	}
2647 
2648 	/*
2649 	 * Clear the register buffer and insert the appropriate register
2650 	 * values selected by the above register ranges.
2651 	 */
2652 	memset(buf, 0, buf_size);
2653 	for (range = 0; range < reg_ranges_size; range += 2) {
2654 		unsigned int reg = reg_ranges[range];
2655 		unsigned int last_reg = reg_ranges[range + 1];
2656 		u32 *bufp = (u32 *)(buf + reg);
2657 
2658 		/*
2659 		 * Iterate across the register range filling in the register
2660 		 * buffer but don't write past the end of the register buffer.
2661 		 */
2662 		while (reg <= last_reg && bufp < buf_end) {
2663 			*bufp++ = t4_read_reg(adap, reg);
2664 			reg += sizeof(u32);
2665 		}
2666 	}
2667 }
2668 
2669 /*
2670  * Partial EEPROM Vital Product Data structure.  Includes only the ID and
2671  * VPD-R sections.
2672  */
2673 struct t4_vpd_hdr {
2674 	u8  id_tag;
2675 	u8  id_len[2];
2676 	u8  id_data[ID_LEN];
2677 	u8  vpdr_tag;
2678 	u8  vpdr_len[2];
2679 };
2680 
2681 /*
2682  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2683  */
2684 #define EEPROM_DELAY		10		/* 10us per poll spin */
2685 #define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2686 
2687 #define EEPROM_STAT_ADDR	0x7bfc
2688 #define VPD_BASE		0x400
2689 #define VPD_BASE_OLD		0
2690 #define VPD_LEN			1024
2691 #define VPD_INFO_FLD_HDR_SIZE	3
2692 #define CHELSIO_VPD_UNIQUE_ID	0x82
2693 
2694 /*
2695  * Small utility function to wait till any outstanding VPD Access is complete.
2696  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2697  * VPD Access in flight.  This allows us to handle the problem of having a
2698  * previous VPD Access time out and prevent an attempt to inject a new VPD
2699  * Request before any in-flight VPD reguest has completed.
2700  */
2701 static int t4_seeprom_wait(struct adapter *adapter)
2702 {
2703 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2704 	int max_poll;
2705 
2706 	/*
2707 	 * If no VPD Access is in flight, we can just return success right
2708 	 * away.
2709 	 */
2710 	if (!adapter->vpd_busy)
2711 		return 0;
2712 
2713 	/*
2714 	 * Poll the VPD Capability Address/Flag register waiting for it
2715 	 * to indicate that the operation is complete.
2716 	 */
2717 	max_poll = EEPROM_MAX_POLL;
2718 	do {
2719 		u16 val;
2720 
2721 		udelay(EEPROM_DELAY);
2722 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2723 
2724 		/*
2725 		 * If the operation is complete, mark the VPD as no longer
2726 		 * busy and return success.
2727 		 */
2728 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2729 			adapter->vpd_busy = 0;
2730 			return 0;
2731 		}
2732 	} while (--max_poll);
2733 
2734 	/*
2735 	 * Failure!  Note that we leave the VPD Busy status set in order to
2736 	 * avoid pushing a new VPD Access request into the VPD Capability till
2737 	 * the current operation eventually succeeds.  It's a bug to issue a
2738 	 * new request when an existing request is in flight and will result
2739 	 * in corrupt hardware state.
2740 	 */
2741 	return -ETIMEDOUT;
2742 }
2743 
2744 /**
2745  *	t4_seeprom_read - read a serial EEPROM location
2746  *	@adapter: adapter to read
2747  *	@addr: EEPROM virtual address
2748  *	@data: where to store the read data
2749  *
2750  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2751  *	VPD capability.  Note that this function must be called with a virtual
2752  *	address.
2753  */
2754 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2755 {
2756 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2757 	int ret;
2758 
2759 	/*
2760 	 * VPD Accesses must alway be 4-byte aligned!
2761 	 */
2762 	if (addr >= EEPROMVSIZE || (addr & 3))
2763 		return -EINVAL;
2764 
2765 	/*
2766 	 * Wait for any previous operation which may still be in flight to
2767 	 * complete.
2768 	 */
2769 	ret = t4_seeprom_wait(adapter);
2770 	if (ret) {
2771 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2772 		return ret;
2773 	}
2774 
2775 	/*
2776 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2777 	 * for our request to complete.  If it doesn't complete, note the
2778 	 * error and return it to our caller.  Note that we do not reset the
2779 	 * VPD Busy status!
2780 	 */
2781 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2782 	adapter->vpd_busy = 1;
2783 	adapter->vpd_flag = PCI_VPD_ADDR_F;
2784 	ret = t4_seeprom_wait(adapter);
2785 	if (ret) {
2786 		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2787 		return ret;
2788 	}
2789 
2790 	/*
2791 	 * Grab the returned data, swizzle it into our endianness and
2792 	 * return success.
2793 	 */
2794 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2795 	*data = le32_to_cpu(*data);
2796 	return 0;
2797 }
2798 
2799 /**
2800  *	t4_seeprom_write - write a serial EEPROM location
2801  *	@adapter: adapter to write
2802  *	@addr: virtual EEPROM address
2803  *	@data: value to write
2804  *
2805  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2806  *	VPD capability.  Note that this function must be called with a virtual
2807  *	address.
2808  */
2809 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2810 {
2811 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2812 	int ret;
2813 	u32 stats_reg;
2814 	int max_poll;
2815 
2816 	/*
2817 	 * VPD Accesses must alway be 4-byte aligned!
2818 	 */
2819 	if (addr >= EEPROMVSIZE || (addr & 3))
2820 		return -EINVAL;
2821 
2822 	/*
2823 	 * Wait for any previous operation which may still be in flight to
2824 	 * complete.
2825 	 */
2826 	ret = t4_seeprom_wait(adapter);
2827 	if (ret) {
2828 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2829 		return ret;
2830 	}
2831 
2832 	/*
2833 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2834 	 * for our request to complete.  If it doesn't complete, note the
2835 	 * error and return it to our caller.  Note that we do not reset the
2836 	 * VPD Busy status!
2837 	 */
2838 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2839 				 cpu_to_le32(data));
2840 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2841 				 (u16)addr | PCI_VPD_ADDR_F);
2842 	adapter->vpd_busy = 1;
2843 	adapter->vpd_flag = 0;
2844 	ret = t4_seeprom_wait(adapter);
2845 	if (ret) {
2846 		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2847 		return ret;
2848 	}
2849 
2850 	/*
2851 	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2852 	 * request to complete. If it doesn't complete, return error.
2853 	 */
2854 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2855 	max_poll = EEPROM_MAX_POLL;
2856 	do {
2857 		udelay(EEPROM_DELAY);
2858 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2859 	} while ((stats_reg & 0x1) && --max_poll);
2860 	if (!max_poll)
2861 		return -ETIMEDOUT;
2862 
2863 	/* Return success! */
2864 	return 0;
2865 }
2866 
2867 /**
2868  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2869  *	@phys_addr: the physical EEPROM address
2870  *	@fn: the PCI function number
2871  *	@sz: size of function-specific area
2872  *
2873  *	Translate a physical EEPROM address to virtual.  The first 1K is
2874  *	accessed through virtual addresses starting at 31K, the rest is
2875  *	accessed through virtual addresses starting at 0.
2876  *
2877  *	The mapping is as follows:
2878  *	[0..1K) -> [31K..32K)
2879  *	[1K..1K+A) -> [ES-A..ES)
2880  *	[1K+A..ES) -> [0..ES-A-1K)
2881  *
2882  *	where A = @fn * @sz, and ES = EEPROM size.
2883  */
2884 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2885 {
2886 	fn *= sz;
2887 	if (phys_addr < 1024)
2888 		return phys_addr + (31 << 10);
2889 	if (phys_addr < 1024 + fn)
2890 		return EEPROMSIZE - fn + phys_addr - 1024;
2891 	if (phys_addr < EEPROMSIZE)
2892 		return phys_addr - 1024 - fn;
2893 	return -EINVAL;
2894 }
2895 
2896 /**
2897  *	t4_seeprom_wp - enable/disable EEPROM write protection
2898  *	@adapter: the adapter
2899  *	@enable: whether to enable or disable write protection
2900  *
2901  *	Enables or disables write protection on the serial EEPROM.
2902  */
2903 int t4_seeprom_wp(struct adapter *adapter, int enable)
2904 {
2905 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2906 }
2907 
2908 /**
2909  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2910  *	@v: Pointer to buffered vpd data structure
2911  *	@kw: The keyword to search for
2912  *
2913  *	Returns the value of the information field keyword or
2914  *	-ENOENT otherwise.
2915  */
2916 static int get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
2917 {
2918 	int i;
2919 	unsigned int offset , len;
2920 	const u8 *buf = (const u8 *)v;
2921 	const u8 *vpdr_len = &v->vpdr_len[0];
2922 	offset = sizeof(struct t4_vpd_hdr);
2923 	len =  (u16)vpdr_len[0] + ((u16)vpdr_len[1] << 8);
2924 
2925 	if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN) {
2926 		return -ENOENT;
2927 	}
2928 
2929 	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2930 		if(memcmp(buf + i , kw , 2) == 0){
2931 			i += VPD_INFO_FLD_HDR_SIZE;
2932 			return i;
2933 		}
2934 
2935 		i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
2936 	}
2937 
2938 	return -ENOENT;
2939 }
2940 
2941 
2942 /**
2943  *	get_vpd_params - read VPD parameters from VPD EEPROM
2944  *	@adapter: adapter to read
2945  *	@p: where to store the parameters
2946  *	@vpd: caller provided temporary space to read the VPD into
2947  *
2948  *	Reads card parameters stored in VPD EEPROM.
2949  */
2950 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
2951     u8 *vpd)
2952 {
2953 	int i, ret, addr;
2954 	int ec, sn, pn, na;
2955 	u8 csum;
2956 	const struct t4_vpd_hdr *v;
2957 
2958 	/*
2959 	 * Card information normally starts at VPD_BASE but early cards had
2960 	 * it at 0.
2961 	 */
2962 	ret = t4_seeprom_read(adapter, VPD_BASE, (u32 *)(vpd));
2963 	if (ret)
2964 		return (ret);
2965 
2966 	/*
2967 	 * The VPD shall have a unique identifier specified by the PCI SIG.
2968 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2969 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2970 	 * is expected to automatically put this entry at the
2971 	 * beginning of the VPD.
2972 	 */
2973 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2974 
2975 	for (i = 0; i < VPD_LEN; i += 4) {
2976 		ret = t4_seeprom_read(adapter, addr + i, (u32 *)(vpd + i));
2977 		if (ret)
2978 			return ret;
2979 	}
2980  	v = (const struct t4_vpd_hdr *)vpd;
2981 
2982 #define FIND_VPD_KW(var,name) do { \
2983 	var = get_vpd_keyword_val(v , name); \
2984 	if (var < 0) { \
2985 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
2986 		return -EINVAL; \
2987 	} \
2988 } while (0)
2989 
2990 	FIND_VPD_KW(i, "RV");
2991 	for (csum = 0; i >= 0; i--)
2992 		csum += vpd[i];
2993 
2994 	if (csum) {
2995 		CH_ERR(adapter,
2996 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2997 		return -EINVAL;
2998 	}
2999 
3000 	FIND_VPD_KW(ec, "EC");
3001 	FIND_VPD_KW(sn, "SN");
3002 	FIND_VPD_KW(pn, "PN");
3003 	FIND_VPD_KW(na, "NA");
3004 #undef FIND_VPD_KW
3005 
3006 	memcpy(p->id, v->id_data, ID_LEN);
3007 	strstrip(p->id);
3008 	memcpy(p->ec, vpd + ec, EC_LEN);
3009 	strstrip(p->ec);
3010 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3011 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3012 	strstrip(p->sn);
3013 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3014 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3015 	strstrip((char *)p->pn);
3016 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3017 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3018 	strstrip((char *)p->na);
3019 
3020 	return 0;
3021 }
3022 
3023 /* serial flash and firmware constants and flash config file constants */
3024 enum {
3025 	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3026 
3027 	/* flash command opcodes */
3028 	SF_PROG_PAGE    = 2,	/* program page */
3029 	SF_WR_DISABLE   = 4,	/* disable writes */
3030 	SF_RD_STATUS    = 5,	/* read status register */
3031 	SF_WR_ENABLE    = 6,	/* enable writes */
3032 	SF_RD_DATA_FAST = 0xb,	/* read flash */
3033 	SF_RD_ID	= 0x9f,	/* read ID */
3034 	SF_ERASE_SECTOR = 0xd8,	/* erase sector */
3035 };
3036 
3037 /**
3038  *	sf1_read - read data from the serial flash
3039  *	@adapter: the adapter
3040  *	@byte_cnt: number of bytes to read
3041  *	@cont: whether another operation will be chained
3042  *	@lock: whether to lock SF for PL access only
3043  *	@valp: where to store the read data
3044  *
3045  *	Reads up to 4 bytes of data from the serial flash.  The location of
3046  *	the read needs to be specified prior to calling this by issuing the
3047  *	appropriate commands to the serial flash.
3048  */
3049 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3050 		    int lock, u32 *valp)
3051 {
3052 	int ret;
3053 
3054 	if (!byte_cnt || byte_cnt > 4)
3055 		return -EINVAL;
3056 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3057 		return -EBUSY;
3058 	t4_write_reg(adapter, A_SF_OP,
3059 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3060 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3061 	if (!ret)
3062 		*valp = t4_read_reg(adapter, A_SF_DATA);
3063 	return ret;
3064 }
3065 
3066 /**
3067  *	sf1_write - write data to the serial flash
3068  *	@adapter: the adapter
3069  *	@byte_cnt: number of bytes to write
3070  *	@cont: whether another operation will be chained
3071  *	@lock: whether to lock SF for PL access only
3072  *	@val: value to write
3073  *
3074  *	Writes up to 4 bytes of data to the serial flash.  The location of
3075  *	the write needs to be specified prior to calling this by issuing the
3076  *	appropriate commands to the serial flash.
3077  */
3078 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3079 		     int lock, u32 val)
3080 {
3081 	if (!byte_cnt || byte_cnt > 4)
3082 		return -EINVAL;
3083 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3084 		return -EBUSY;
3085 	t4_write_reg(adapter, A_SF_DATA, val);
3086 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3087 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3088 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3089 }
3090 
3091 /**
3092  *	flash_wait_op - wait for a flash operation to complete
3093  *	@adapter: the adapter
3094  *	@attempts: max number of polls of the status register
3095  *	@delay: delay between polls in ms
3096  *
3097  *	Wait for a flash operation to complete by polling the status register.
3098  */
3099 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3100 {
3101 	int ret;
3102 	u32 status;
3103 
3104 	while (1) {
3105 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3106 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3107 			return ret;
3108 		if (!(status & 1))
3109 			return 0;
3110 		if (--attempts == 0)
3111 			return -EAGAIN;
3112 		if (delay)
3113 			msleep(delay);
3114 	}
3115 }
3116 
3117 /**
3118  *	t4_read_flash - read words from serial flash
3119  *	@adapter: the adapter
3120  *	@addr: the start address for the read
3121  *	@nwords: how many 32-bit words to read
3122  *	@data: where to store the read data
3123  *	@byte_oriented: whether to store data as bytes or as words
3124  *
3125  *	Read the specified number of 32-bit words from the serial flash.
3126  *	If @byte_oriented is set the read data is stored as a byte array
3127  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3128  *	natural endianness.
3129  */
3130 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3131 		  unsigned int nwords, u32 *data, int byte_oriented)
3132 {
3133 	int ret;
3134 
3135 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3136 		return -EINVAL;
3137 
3138 	addr = swab32(addr) | SF_RD_DATA_FAST;
3139 
3140 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3141 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3142 		return ret;
3143 
3144 	for ( ; nwords; nwords--, data++) {
3145 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3146 		if (nwords == 1)
3147 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3148 		if (ret)
3149 			return ret;
3150 		if (byte_oriented)
3151 			*data = (__force __u32)(cpu_to_be32(*data));
3152 	}
3153 	return 0;
3154 }
3155 
3156 /**
3157  *	t4_write_flash - write up to a page of data to the serial flash
3158  *	@adapter: the adapter
3159  *	@addr: the start address to write
3160  *	@n: length of data to write in bytes
3161  *	@data: the data to write
3162  *	@byte_oriented: whether to store data as bytes or as words
3163  *
3164  *	Writes up to a page of data (256 bytes) to the serial flash starting
3165  *	at the given address.  All the data must be written to the same page.
3166  *	If @byte_oriented is set the write data is stored as byte stream
3167  *	(i.e. matches what on disk), otherwise in big-endian.
3168  */
3169 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3170 			  unsigned int n, const u8 *data, int byte_oriented)
3171 {
3172 	int ret;
3173 	u32 buf[SF_PAGE_SIZE / 4];
3174 	unsigned int i, c, left, val, offset = addr & 0xff;
3175 
3176 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3177 		return -EINVAL;
3178 
3179 	val = swab32(addr) | SF_PROG_PAGE;
3180 
3181 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3182 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3183 		goto unlock;
3184 
3185 	for (left = n; left; left -= c) {
3186 		c = min(left, 4U);
3187 		for (val = 0, i = 0; i < c; ++i)
3188 			val = (val << 8) + *data++;
3189 
3190 		if (!byte_oriented)
3191 			val = cpu_to_be32(val);
3192 
3193 		ret = sf1_write(adapter, c, c != left, 1, val);
3194 		if (ret)
3195 			goto unlock;
3196 	}
3197 	ret = flash_wait_op(adapter, 8, 1);
3198 	if (ret)
3199 		goto unlock;
3200 
3201 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3202 
3203 	/* Read the page to verify the write succeeded */
3204 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3205 			    byte_oriented);
3206 	if (ret)
3207 		return ret;
3208 
3209 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3210 		CH_ERR(adapter,
3211 			"failed to correctly write the flash page at %#x\n",
3212 			addr);
3213 		return -EIO;
3214 	}
3215 	return 0;
3216 
3217 unlock:
3218 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3219 	return ret;
3220 }
3221 
3222 /**
3223  *	t4_get_fw_version - read the firmware version
3224  *	@adapter: the adapter
3225  *	@vers: where to place the version
3226  *
3227  *	Reads the FW version from flash.
3228  */
3229 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3230 {
3231 	return t4_read_flash(adapter, FLASH_FW_START +
3232 			     offsetof(struct fw_hdr, fw_ver), 1,
3233 			     vers, 0);
3234 }
3235 
3236 /**
3237  *	t4_get_bs_version - read the firmware bootstrap version
3238  *	@adapter: the adapter
3239  *	@vers: where to place the version
3240  *
3241  *	Reads the FW Bootstrap version from flash.
3242  */
3243 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3244 {
3245 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3246 			     offsetof(struct fw_hdr, fw_ver), 1,
3247 			     vers, 0);
3248 }
3249 
3250 /**
3251  *	t4_get_tp_version - read the TP microcode version
3252  *	@adapter: the adapter
3253  *	@vers: where to place the version
3254  *
3255  *	Reads the TP microcode version from flash.
3256  */
3257 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3258 {
3259 	return t4_read_flash(adapter, FLASH_FW_START +
3260 			     offsetof(struct fw_hdr, tp_microcode_ver),
3261 			     1, vers, 0);
3262 }
3263 
3264 /**
3265  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3266  *	@adapter: the adapter
3267  *	@vers: where to place the version
3268  *
3269  *	Reads the Expansion ROM header from FLASH and returns the version
3270  *	number (if present) through the @vers return value pointer.  We return
3271  *	this in the Firmware Version Format since it's convenient.  Return
3272  *	0 on success, -ENOENT if no Expansion ROM is present.
3273  */
3274 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3275 {
3276 	struct exprom_header {
3277 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3278 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3279 	} *hdr;
3280 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3281 					   sizeof(u32))];
3282 	int ret;
3283 
3284 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3285 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3286 			    0);
3287 	if (ret)
3288 		return ret;
3289 
3290 	hdr = (struct exprom_header *)exprom_header_buf;
3291 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3292 		return -ENOENT;
3293 
3294 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3295 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3296 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3297 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3298 	return 0;
3299 }
3300 
3301 /**
3302  *	t4_get_scfg_version - return the Serial Configuration version
3303  *	@adapter: the adapter
3304  *	@vers: where to place the version
3305  *
3306  *	Reads the Serial Configuration Version via the Firmware interface
3307  *	(thus this can only be called once we're ready to issue Firmware
3308  *	commands).  The format of the Serial Configuration version is
3309  *	adapter specific.  Returns 0 on success, an error on failure.
3310  *
3311  *	Note that early versions of the Firmware didn't include the ability
3312  *	to retrieve the Serial Configuration version, so we zero-out the
3313  *	return-value parameter in that case to avoid leaving it with
3314  *	garbage in it.
3315  *
3316  *	Also note that the Firmware will return its cached copy of the Serial
3317  *	Initialization Revision ID, not the actual Revision ID as written in
3318  *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3319  *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3320  *	it's best to defer calling this routine till after a FW_RESET_CMD has
3321  *	been issued if the Host Driver will be performing a full adapter
3322  *	initialization.
3323  */
3324 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3325 {
3326 	u32 scfgrev_param;
3327 	int ret;
3328 
3329 	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3330 			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3331 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3332 			      1, &scfgrev_param, vers);
3333 	if (ret)
3334 		*vers = 0;
3335 	return ret;
3336 }
3337 
3338 /**
3339  *	t4_get_vpd_version - return the VPD version
3340  *	@adapter: the adapter
3341  *	@vers: where to place the version
3342  *
3343  *	Reads the VPD via the Firmware interface (thus this can only be called
3344  *	once we're ready to issue Firmware commands).  The format of the
3345  *	VPD version is adapter specific.  Returns 0 on success, an error on
3346  *	failure.
3347  *
3348  *	Note that early versions of the Firmware didn't include the ability
3349  *	to retrieve the VPD version, so we zero-out the return-value parameter
3350  *	in that case to avoid leaving it with garbage in it.
3351  *
3352  *	Also note that the Firmware will return its cached copy of the VPD
3353  *	Revision ID, not the actual Revision ID as written in the Serial
3354  *	EEPROM.  This is only an issue if a new VPD has been written and the
3355  *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3356  *	to defer calling this routine till after a FW_RESET_CMD has been issued
3357  *	if the Host Driver will be performing a full adapter initialization.
3358  */
3359 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3360 {
3361 	u32 vpdrev_param;
3362 	int ret;
3363 
3364 	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3365 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3366 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3367 			      1, &vpdrev_param, vers);
3368 	if (ret)
3369 		*vers = 0;
3370 	return ret;
3371 }
3372 
3373 /**
3374  *	t4_get_version_info - extract various chip/firmware version information
3375  *	@adapter: the adapter
3376  *
3377  *	Reads various chip/firmware version numbers and stores them into the
3378  *	adapter Adapter Parameters structure.  If any of the efforts fails
3379  *	the first failure will be returned, but all of the version numbers
3380  *	will be read.
3381  */
3382 int t4_get_version_info(struct adapter *adapter)
3383 {
3384 	int ret = 0;
3385 
3386 	#define FIRST_RET(__getvinfo) \
3387 	do { \
3388 		int __ret = __getvinfo; \
3389 		if (__ret && !ret) \
3390 			ret = __ret; \
3391 	} while (0)
3392 
3393 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3394 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3395 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3396 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3397 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3398 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3399 
3400 	#undef FIRST_RET
3401 
3402 	return ret;
3403 }
3404 
3405 /**
3406  *	t4_flash_erase_sectors - erase a range of flash sectors
3407  *	@adapter: the adapter
3408  *	@start: the first sector to erase
3409  *	@end: the last sector to erase
3410  *
3411  *	Erases the sectors in the given inclusive range.
3412  */
3413 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3414 {
3415 	int ret = 0;
3416 
3417 	if (end >= adapter->params.sf_nsec)
3418 		return -EINVAL;
3419 
3420 	while (start <= end) {
3421 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3422 		    (ret = sf1_write(adapter, 4, 0, 1,
3423 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3424 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3425 			CH_ERR(adapter,
3426 				"erase of flash sector %d failed, error %d\n",
3427 				start, ret);
3428 			break;
3429 		}
3430 		start++;
3431 	}
3432 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3433 	return ret;
3434 }
3435 
3436 /**
3437  *	t4_flash_cfg_addr - return the address of the flash configuration file
3438  *	@adapter: the adapter
3439  *
3440  *	Return the address within the flash where the Firmware Configuration
3441  *	File is stored, or an error if the device FLASH is too small to contain
3442  *	a Firmware Configuration File.
3443  */
3444 int t4_flash_cfg_addr(struct adapter *adapter)
3445 {
3446 	/*
3447 	 * If the device FLASH isn't large enough to hold a Firmware
3448 	 * Configuration File, return an error.
3449 	 */
3450 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3451 		return -ENOSPC;
3452 
3453 	return FLASH_CFG_START;
3454 }
3455 
3456 /*
3457  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3458  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3459  * and emit an error message for mismatched firmware to save our caller the
3460  * effort ...
3461  */
3462 static int t4_fw_matches_chip(struct adapter *adap,
3463 			      const struct fw_hdr *hdr)
3464 {
3465 	/*
3466 	 * The expression below will return FALSE for any unsupported adapter
3467 	 * which will keep us "honest" in the future ...
3468 	 */
3469 	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3470 	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3471 	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3472 		return 1;
3473 
3474 	CH_ERR(adap,
3475 		"FW image (%d) is not suitable for this adapter (%d)\n",
3476 		hdr->chip, chip_id(adap));
3477 	return 0;
3478 }
3479 
3480 /**
3481  *	t4_load_fw - download firmware
3482  *	@adap: the adapter
3483  *	@fw_data: the firmware image to write
3484  *	@size: image size
3485  *
3486  *	Write the supplied firmware image to the card's serial flash.
3487  */
3488 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3489 {
3490 	u32 csum;
3491 	int ret, addr;
3492 	unsigned int i;
3493 	u8 first_page[SF_PAGE_SIZE];
3494 	const u32 *p = (const u32 *)fw_data;
3495 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3496 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3497 	unsigned int fw_start_sec;
3498 	unsigned int fw_start;
3499 	unsigned int fw_size;
3500 
3501 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3502 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3503 		fw_start = FLASH_FWBOOTSTRAP_START;
3504 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3505 	} else {
3506 		fw_start_sec = FLASH_FW_START_SEC;
3507  		fw_start = FLASH_FW_START;
3508 		fw_size = FLASH_FW_MAX_SIZE;
3509 	}
3510 
3511 	if (!size) {
3512 		CH_ERR(adap, "FW image has no data\n");
3513 		return -EINVAL;
3514 	}
3515 	if (size & 511) {
3516 		CH_ERR(adap,
3517 			"FW image size not multiple of 512 bytes\n");
3518 		return -EINVAL;
3519 	}
3520 	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3521 		CH_ERR(adap,
3522 			"FW image size differs from size in FW header\n");
3523 		return -EINVAL;
3524 	}
3525 	if (size > fw_size) {
3526 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3527 			fw_size);
3528 		return -EFBIG;
3529 	}
3530 	if (!t4_fw_matches_chip(adap, hdr))
3531 		return -EINVAL;
3532 
3533 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3534 		csum += be32_to_cpu(p[i]);
3535 
3536 	if (csum != 0xffffffff) {
3537 		CH_ERR(adap,
3538 			"corrupted firmware image, checksum %#x\n", csum);
3539 		return -EINVAL;
3540 	}
3541 
3542 	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3543 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3544 	if (ret)
3545 		goto out;
3546 
3547 	/*
3548 	 * We write the correct version at the end so the driver can see a bad
3549 	 * version if the FW write fails.  Start by writing a copy of the
3550 	 * first page with a bad version.
3551 	 */
3552 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3553 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3554 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3555 	if (ret)
3556 		goto out;
3557 
3558 	addr = fw_start;
3559 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3560 		addr += SF_PAGE_SIZE;
3561 		fw_data += SF_PAGE_SIZE;
3562 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3563 		if (ret)
3564 			goto out;
3565 	}
3566 
3567 	ret = t4_write_flash(adap,
3568 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3569 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3570 out:
3571 	if (ret)
3572 		CH_ERR(adap, "firmware download failed, error %d\n",
3573 			ret);
3574 	return ret;
3575 }
3576 
3577 /**
3578  *	t4_fwcache - firmware cache operation
3579  *	@adap: the adapter
3580  *	@op  : the operation (flush or flush and invalidate)
3581  */
3582 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3583 {
3584 	struct fw_params_cmd c;
3585 
3586 	memset(&c, 0, sizeof(c));
3587 	c.op_to_vfn =
3588 	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3589 			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3590 				V_FW_PARAMS_CMD_PFN(adap->pf) |
3591 				V_FW_PARAMS_CMD_VFN(0));
3592 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3593 	c.param[0].mnem =
3594 	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3595 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3596 	c.param[0].val = (__force __be32)op;
3597 
3598 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3599 }
3600 
3601 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3602 			unsigned int *pif_req_wrptr,
3603 			unsigned int *pif_rsp_wrptr)
3604 {
3605 	int i, j;
3606 	u32 cfg, val, req, rsp;
3607 
3608 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3609 	if (cfg & F_LADBGEN)
3610 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3611 
3612 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3613 	req = G_POLADBGWRPTR(val);
3614 	rsp = G_PILADBGWRPTR(val);
3615 	if (pif_req_wrptr)
3616 		*pif_req_wrptr = req;
3617 	if (pif_rsp_wrptr)
3618 		*pif_rsp_wrptr = rsp;
3619 
3620 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3621 		for (j = 0; j < 6; j++) {
3622 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3623 				     V_PILADBGRDPTR(rsp));
3624 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3625 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3626 			req++;
3627 			rsp++;
3628 		}
3629 		req = (req + 2) & M_POLADBGRDPTR;
3630 		rsp = (rsp + 2) & M_PILADBGRDPTR;
3631 	}
3632 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3633 }
3634 
3635 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3636 {
3637 	u32 cfg;
3638 	int i, j, idx;
3639 
3640 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3641 	if (cfg & F_LADBGEN)
3642 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3643 
3644 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3645 		for (j = 0; j < 5; j++) {
3646 			idx = 8 * i + j;
3647 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3648 				     V_PILADBGRDPTR(idx));
3649 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3650 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3651 		}
3652 	}
3653 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3654 }
3655 
3656 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3657 {
3658 	unsigned int i, j;
3659 
3660 	for (i = 0; i < 8; i++) {
3661 		u32 *p = la_buf + i;
3662 
3663 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3664 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3665 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3666 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3667 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3668 	}
3669 }
3670 
3671 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
3672 		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
3673 		     FW_PORT_CAP_SPEED_100G | FW_PORT_CAP_ANEG)
3674 
3675 /**
3676  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3677  *	@phy: the PHY to setup
3678  *	@mac: the MAC to setup
3679  *	@lc: the requested link configuration
3680  *
3681  *	Set up a port's MAC and PHY according to a desired link configuration.
3682  *	- If the PHY can auto-negotiate first decide what to advertise, then
3683  *	  enable/disable auto-negotiation as desired, and reset.
3684  *	- If the PHY does not auto-negotiate just reset it.
3685  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3686  *	  otherwise do it later based on the outcome of auto-negotiation.
3687  */
3688 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3689 		  struct link_config *lc)
3690 {
3691 	struct fw_port_cmd c;
3692 	unsigned int fc = 0, mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO);
3693 
3694 	lc->link_ok = 0;
3695 	if (lc->requested_fc & PAUSE_RX)
3696 		fc |= FW_PORT_CAP_FC_RX;
3697 	if (lc->requested_fc & PAUSE_TX)
3698 		fc |= FW_PORT_CAP_FC_TX;
3699 
3700 	memset(&c, 0, sizeof(c));
3701 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3702 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3703 				     V_FW_PORT_CMD_PORTID(port));
3704 	c.action_to_len16 =
3705 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3706 			    FW_LEN16(c));
3707 
3708 	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
3709 		c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3710 					     fc);
3711 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3712 	} else if (lc->autoneg == AUTONEG_DISABLE) {
3713 		c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
3714 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3715 	} else
3716 		c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
3717 
3718 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3719 }
3720 
3721 /**
3722  *	t4_restart_aneg - restart autonegotiation
3723  *	@adap: the adapter
3724  *	@mbox: mbox to use for the FW command
3725  *	@port: the port id
3726  *
3727  *	Restarts autonegotiation for the selected port.
3728  */
3729 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3730 {
3731 	struct fw_port_cmd c;
3732 
3733 	memset(&c, 0, sizeof(c));
3734 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3735 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3736 				     V_FW_PORT_CMD_PORTID(port));
3737 	c.action_to_len16 =
3738 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3739 			    FW_LEN16(c));
3740 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3741 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3742 }
3743 
3744 typedef void (*int_handler_t)(struct adapter *adap);
3745 
3746 struct intr_info {
3747 	unsigned int mask;	/* bits to check in interrupt status */
3748 	const char *msg;	/* message to print or NULL */
3749 	short stat_idx;		/* stat counter to increment or -1 */
3750 	unsigned short fatal;	/* whether the condition reported is fatal */
3751 	int_handler_t int_handler;	/* platform-specific int handler */
3752 };
3753 
3754 /**
3755  *	t4_handle_intr_status - table driven interrupt handler
3756  *	@adapter: the adapter that generated the interrupt
3757  *	@reg: the interrupt status register to process
3758  *	@acts: table of interrupt actions
3759  *
3760  *	A table driven interrupt handler that applies a set of masks to an
3761  *	interrupt status word and performs the corresponding actions if the
3762  *	interrupts described by the mask have occurred.  The actions include
3763  *	optionally emitting a warning or alert message.  The table is terminated
3764  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
3765  *	conditions.
3766  */
3767 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3768 				 const struct intr_info *acts)
3769 {
3770 	int fatal = 0;
3771 	unsigned int mask = 0;
3772 	unsigned int status = t4_read_reg(adapter, reg);
3773 
3774 	for ( ; acts->mask; ++acts) {
3775 		if (!(status & acts->mask))
3776 			continue;
3777 		if (acts->fatal) {
3778 			fatal++;
3779 			CH_ALERT(adapter, "%s (0x%x)\n", acts->msg,
3780 				  status & acts->mask);
3781 		} else if (acts->msg)
3782 			CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n", acts->msg,
3783 				 status & acts->mask);
3784 		if (acts->int_handler)
3785 			acts->int_handler(adapter);
3786 		mask |= acts->mask;
3787 	}
3788 	status &= mask;
3789 	if (status)	/* clear processed interrupts */
3790 		t4_write_reg(adapter, reg, status);
3791 	return fatal;
3792 }
3793 
3794 /*
3795  * Interrupt handler for the PCIE module.
3796  */
3797 static void pcie_intr_handler(struct adapter *adapter)
3798 {
3799 	static const struct intr_info sysbus_intr_info[] = {
3800 		{ F_RNPP, "RXNP array parity error", -1, 1 },
3801 		{ F_RPCP, "RXPC array parity error", -1, 1 },
3802 		{ F_RCIP, "RXCIF array parity error", -1, 1 },
3803 		{ F_RCCP, "Rx completions control array parity error", -1, 1 },
3804 		{ F_RFTP, "RXFT array parity error", -1, 1 },
3805 		{ 0 }
3806 	};
3807 	static const struct intr_info pcie_port_intr_info[] = {
3808 		{ F_TPCP, "TXPC array parity error", -1, 1 },
3809 		{ F_TNPP, "TXNP array parity error", -1, 1 },
3810 		{ F_TFTP, "TXFT array parity error", -1, 1 },
3811 		{ F_TCAP, "TXCA array parity error", -1, 1 },
3812 		{ F_TCIP, "TXCIF array parity error", -1, 1 },
3813 		{ F_RCAP, "RXCA array parity error", -1, 1 },
3814 		{ F_OTDD, "outbound request TLP discarded", -1, 1 },
3815 		{ F_RDPE, "Rx data parity error", -1, 1 },
3816 		{ F_TDUE, "Tx uncorrectable data error", -1, 1 },
3817 		{ 0 }
3818 	};
3819 	static const struct intr_info pcie_intr_info[] = {
3820 		{ F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
3821 		{ F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
3822 		{ F_MSIDATAPERR, "MSI data parity error", -1, 1 },
3823 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3824 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3825 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3826 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3827 		{ F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
3828 		{ F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
3829 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3830 		{ F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
3831 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3832 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3833 		{ F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
3834 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3835 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3836 		{ F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
3837 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3838 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3839 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3840 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3841 		{ F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
3842 		{ F_MATAGPERR, "PCI MA tag parity error", -1, 1 },
3843 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3844 		{ F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
3845 		{ F_RXWRPERR, "PCI Rx write parity error", -1, 1 },
3846 		{ F_RPLPERR, "PCI replay buffer parity error", -1, 1 },
3847 		{ F_PCIESINT, "PCI core secondary fault", -1, 1 },
3848 		{ F_PCIEPINT, "PCI core primary fault", -1, 1 },
3849 		{ F_UNXSPLCPLERR, "PCI unexpected split completion error", -1,
3850 		  0 },
3851 		{ 0 }
3852 	};
3853 
3854 	static const struct intr_info t5_pcie_intr_info[] = {
3855 		{ F_MSTGRPPERR, "Master Response Read Queue parity error",
3856 		  -1, 1 },
3857 		{ F_MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
3858 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
3859 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3860 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3861 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3862 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3863 		{ F_PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
3864 		  -1, 1 },
3865 		{ F_PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
3866 		  -1, 1 },
3867 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3868 		{ F_MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
3869 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3870 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3871 		{ F_DREQWRPERR, "PCI DMA channel write request parity error",
3872 		  -1, 1 },
3873 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3874 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3875 		{ F_HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
3876 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3877 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3878 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3879 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3880 		{ F_VFIDPERR, "PCI INTx clear parity error", -1, 1 },
3881 		{ F_MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
3882 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3883 		{ F_IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
3884 		  -1, 1 },
3885 		{ F_IPRXDATAGRPPERR, "PCI IP Rx data group parity error",
3886 		  -1, 1 },
3887 		{ F_RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
3888 		{ F_IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
3889 		{ F_TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3890 		{ F_READRSPERR, "Outbound read error", -1,
3891 		  0 },
3892 		{ 0 }
3893 	};
3894 
3895 	int fat;
3896 
3897 	if (is_t4(adapter))
3898 		fat = t4_handle_intr_status(adapter,
3899 				A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
3900 				sysbus_intr_info) +
3901 			t4_handle_intr_status(adapter,
3902 					A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
3903 					pcie_port_intr_info) +
3904 			t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3905 					      pcie_intr_info);
3906 	else
3907 		fat = t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3908 					    t5_pcie_intr_info);
3909 	if (fat)
3910 		t4_fatal_err(adapter);
3911 }
3912 
3913 /*
3914  * TP interrupt handler.
3915  */
3916 static void tp_intr_handler(struct adapter *adapter)
3917 {
3918 	static const struct intr_info tp_intr_info[] = {
3919 		{ 0x3fffffff, "TP parity error", -1, 1 },
3920 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
3921 		{ 0 }
3922 	};
3923 
3924 	if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info))
3925 		t4_fatal_err(adapter);
3926 }
3927 
3928 /*
3929  * SGE interrupt handler.
3930  */
3931 static void sge_intr_handler(struct adapter *adapter)
3932 {
3933 	u64 v;
3934 	u32 err;
3935 
3936 	static const struct intr_info sge_intr_info[] = {
3937 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
3938 		  "SGE received CPL exceeding IQE size", -1, 1 },
3939 		{ F_ERR_INVALID_CIDX_INC,
3940 		  "SGE GTS CIDX increment too large", -1, 0 },
3941 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
3942 		{ F_DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
3943 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
3944 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
3945 		{ F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
3946 		  0 },
3947 		{ F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
3948 		  0 },
3949 		{ F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
3950 		  0 },
3951 		{ F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
3952 		  0 },
3953 		{ F_ERR_ING_CTXT_PRIO,
3954 		  "SGE too many priority ingress contexts", -1, 0 },
3955 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
3956 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
3957 		{ 0 }
3958 	};
3959 
3960 	static const struct intr_info t4t5_sge_intr_info[] = {
3961 		{ F_ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
3962 		{ F_DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
3963 		{ F_ERR_EGR_CTXT_PRIO,
3964 		  "SGE too many priority egress contexts", -1, 0 },
3965 		{ 0 }
3966 	};
3967 
3968 	/*
3969  	* For now, treat below interrupts as fatal so that we disable SGE and
3970  	* get better debug */
3971 	static const struct intr_info t6_sge_intr_info[] = {
3972 		{ F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1,
3973 		  "SGE PCIe error for a DBP thread", -1, 1 },
3974 		{ F_FATAL_WRE_LEN,
3975 		  "SGE Actual WRE packet is less than advertized length",
3976 		  -1, 1 },
3977 		{ 0 }
3978 	};
3979 
3980 	v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) |
3981 		((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32);
3982 	if (v) {
3983 		CH_ALERT(adapter, "SGE parity error (%#llx)\n",
3984 				(unsigned long long)v);
3985 		t4_write_reg(adapter, A_SGE_INT_CAUSE1, v);
3986 		t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32);
3987 	}
3988 
3989 	v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info);
3990 	if (chip_id(adapter) <= CHELSIO_T5)
3991 		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
3992 					   t4t5_sge_intr_info);
3993 	else
3994 		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
3995 					   t6_sge_intr_info);
3996 
3997 	err = t4_read_reg(adapter, A_SGE_ERROR_STATS);
3998 	if (err & F_ERROR_QID_VALID) {
3999 		CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err));
4000 		if (err & F_UNCAPTURED_ERROR)
4001 			CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n");
4002 		t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID |
4003 			     F_UNCAPTURED_ERROR);
4004 	}
4005 
4006 	if (v != 0)
4007 		t4_fatal_err(adapter);
4008 }
4009 
4010 #define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\
4011 		      F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR)
4012 #define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\
4013 		      F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR)
4014 
4015 /*
4016  * CIM interrupt handler.
4017  */
4018 static void cim_intr_handler(struct adapter *adapter)
4019 {
4020 	static const struct intr_info cim_intr_info[] = {
4021 		{ F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
4022 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4023 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4024 		{ F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
4025 		{ F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
4026 		{ F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
4027 		{ F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
4028 		{ 0 }
4029 	};
4030 	static const struct intr_info cim_upintr_info[] = {
4031 		{ F_RSVDSPACEINT, "CIM reserved space access", -1, 1 },
4032 		{ F_ILLTRANSINT, "CIM illegal transaction", -1, 1 },
4033 		{ F_ILLWRINT, "CIM illegal write", -1, 1 },
4034 		{ F_ILLRDINT, "CIM illegal read", -1, 1 },
4035 		{ F_ILLRDBEINT, "CIM illegal read BE", -1, 1 },
4036 		{ F_ILLWRBEINT, "CIM illegal write BE", -1, 1 },
4037 		{ F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
4038 		{ F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
4039 		{ F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
4040 		{ F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
4041 		{ F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
4042 		{ F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
4043 		{ F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
4044 		{ F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
4045 		{ F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
4046 		{ F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
4047 		{ F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
4048 		{ F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
4049 		{ F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
4050 		{ F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
4051 		{ F_SGLRDPLINT , "CIM single read from PL space", -1, 1 },
4052 		{ F_SGLWRPLINT , "CIM single write to PL space", -1, 1 },
4053 		{ F_BLKRDPLINT , "CIM block read from PL space", -1, 1 },
4054 		{ F_BLKWRPLINT , "CIM block write to PL space", -1, 1 },
4055 		{ F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
4056 		{ F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
4057 		{ F_TIMEOUTINT , "CIM PIF timeout", -1, 1 },
4058 		{ F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
4059 		{ 0 }
4060 	};
4061 	int fat;
4062 
4063 	if (t4_read_reg(adapter, A_PCIE_FW) & F_PCIE_FW_ERR)
4064 		t4_report_fw_error(adapter);
4065 
4066 	fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE,
4067 				    cim_intr_info) +
4068 	      t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE,
4069 				    cim_upintr_info);
4070 	if (fat)
4071 		t4_fatal_err(adapter);
4072 }
4073 
4074 /*
4075  * ULP RX interrupt handler.
4076  */
4077 static void ulprx_intr_handler(struct adapter *adapter)
4078 {
4079 	static const struct intr_info ulprx_intr_info[] = {
4080 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 },
4081 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 },
4082 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4083 		{ 0 }
4084 	};
4085 
4086 	if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info))
4087 		t4_fatal_err(adapter);
4088 }
4089 
4090 /*
4091  * ULP TX interrupt handler.
4092  */
4093 static void ulptx_intr_handler(struct adapter *adapter)
4094 {
4095 	static const struct intr_info ulptx_intr_info[] = {
4096 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
4097 		  0 },
4098 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
4099 		  0 },
4100 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
4101 		  0 },
4102 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
4103 		  0 },
4104 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4105 		{ 0 }
4106 	};
4107 
4108 	if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info))
4109 		t4_fatal_err(adapter);
4110 }
4111 
4112 /*
4113  * PM TX interrupt handler.
4114  */
4115 static void pmtx_intr_handler(struct adapter *adapter)
4116 {
4117 	static const struct intr_info pmtx_intr_info[] = {
4118 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
4119 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
4120 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
4121 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
4122 		{ 0xffffff0, "PMTX framing error", -1, 1 },
4123 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
4124 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
4125 		  1 },
4126 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
4127 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
4128 		{ 0 }
4129 	};
4130 
4131 	if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info))
4132 		t4_fatal_err(adapter);
4133 }
4134 
4135 /*
4136  * PM RX interrupt handler.
4137  */
4138 static void pmrx_intr_handler(struct adapter *adapter)
4139 {
4140 	static const struct intr_info pmrx_intr_info[] = {
4141 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
4142 		{ 0x3ffff0, "PMRX framing error", -1, 1 },
4143 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
4144 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
4145 		  1 },
4146 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
4147 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
4148 		{ 0 }
4149 	};
4150 
4151 	if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info))
4152 		t4_fatal_err(adapter);
4153 }
4154 
4155 /*
4156  * CPL switch interrupt handler.
4157  */
4158 static void cplsw_intr_handler(struct adapter *adapter)
4159 {
4160 	static const struct intr_info cplsw_intr_info[] = {
4161 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
4162 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
4163 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
4164 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
4165 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
4166 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
4167 		{ 0 }
4168 	};
4169 
4170 	if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info))
4171 		t4_fatal_err(adapter);
4172 }
4173 
4174 /*
4175  * LE interrupt handler.
4176  */
4177 static void le_intr_handler(struct adapter *adap)
4178 {
4179 	unsigned int chip_ver = chip_id(adap);
4180 	static const struct intr_info le_intr_info[] = {
4181 		{ F_LIPMISS, "LE LIP miss", -1, 0 },
4182 		{ F_LIP0, "LE 0 LIP error", -1, 0 },
4183 		{ F_PARITYERR, "LE parity error", -1, 1 },
4184 		{ F_UNKNOWNCMD, "LE unknown command", -1, 1 },
4185 		{ F_REQQPARERR, "LE request queue parity error", -1, 1 },
4186 		{ 0 }
4187 	};
4188 
4189 	static const struct intr_info t6_le_intr_info[] = {
4190 		{ F_T6_LIPMISS, "LE LIP miss", -1, 0 },
4191 		{ F_T6_LIP0, "LE 0 LIP error", -1, 0 },
4192 		{ F_TCAMINTPERR, "LE parity error", -1, 1 },
4193 		{ F_T6_UNKNOWNCMD, "LE unknown command", -1, 1 },
4194 		{ F_SSRAMINTPERR, "LE request queue parity error", -1, 1 },
4195 		{ 0 }
4196 	};
4197 
4198 	if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE,
4199 				  (chip_ver <= CHELSIO_T5) ?
4200 				  le_intr_info : t6_le_intr_info))
4201 		t4_fatal_err(adap);
4202 }
4203 
4204 /*
4205  * MPS interrupt handler.
4206  */
4207 static void mps_intr_handler(struct adapter *adapter)
4208 {
4209 	static const struct intr_info mps_rx_intr_info[] = {
4210 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4211 		{ 0 }
4212 	};
4213 	static const struct intr_info mps_tx_intr_info[] = {
4214 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 },
4215 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4216 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error",
4217 		  -1, 1 },
4218 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error",
4219 		  -1, 1 },
4220 		{ F_BUBBLE, "MPS Tx underflow", -1, 1 },
4221 		{ F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
4222 		{ F_FRMERR, "MPS Tx framing error", -1, 1 },
4223 		{ 0 }
4224 	};
4225 	static const struct intr_info mps_trc_intr_info[] = {
4226 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 },
4227 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1,
4228 		  1 },
4229 		{ F_MISCPERR, "MPS TRC misc parity error", -1, 1 },
4230 		{ 0 }
4231 	};
4232 	static const struct intr_info mps_stat_sram_intr_info[] = {
4233 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4234 		{ 0 }
4235 	};
4236 	static const struct intr_info mps_stat_tx_intr_info[] = {
4237 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4238 		{ 0 }
4239 	};
4240 	static const struct intr_info mps_stat_rx_intr_info[] = {
4241 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4242 		{ 0 }
4243 	};
4244 	static const struct intr_info mps_cls_intr_info[] = {
4245 		{ F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
4246 		{ F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
4247 		{ F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
4248 		{ 0 }
4249 	};
4250 
4251 	int fat;
4252 
4253 	fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE,
4254 				    mps_rx_intr_info) +
4255 	      t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE,
4256 				    mps_tx_intr_info) +
4257 	      t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE,
4258 				    mps_trc_intr_info) +
4259 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4260 				    mps_stat_sram_intr_info) +
4261 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4262 				    mps_stat_tx_intr_info) +
4263 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4264 				    mps_stat_rx_intr_info) +
4265 	      t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE,
4266 				    mps_cls_intr_info);
4267 
4268 	t4_write_reg(adapter, A_MPS_INT_CAUSE, 0);
4269 	t4_read_reg(adapter, A_MPS_INT_CAUSE);	/* flush */
4270 	if (fat)
4271 		t4_fatal_err(adapter);
4272 }
4273 
4274 #define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | \
4275 		      F_ECC_UE_INT_CAUSE)
4276 
4277 /*
4278  * EDC/MC interrupt handler.
4279  */
4280 static void mem_intr_handler(struct adapter *adapter, int idx)
4281 {
4282 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4283 
4284 	unsigned int addr, cnt_addr, v;
4285 
4286 	if (idx <= MEM_EDC1) {
4287 		addr = EDC_REG(A_EDC_INT_CAUSE, idx);
4288 		cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx);
4289 	} else if (idx == MEM_MC) {
4290 		if (is_t4(adapter)) {
4291 			addr = A_MC_INT_CAUSE;
4292 			cnt_addr = A_MC_ECC_STATUS;
4293 		} else {
4294 			addr = A_MC_P_INT_CAUSE;
4295 			cnt_addr = A_MC_P_ECC_STATUS;
4296 		}
4297 	} else {
4298 		addr = MC_REG(A_MC_P_INT_CAUSE, 1);
4299 		cnt_addr = MC_REG(A_MC_P_ECC_STATUS, 1);
4300 	}
4301 
4302 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4303 	if (v & F_PERR_INT_CAUSE)
4304 		CH_ALERT(adapter, "%s FIFO parity error\n",
4305 			  name[idx]);
4306 	if (v & F_ECC_CE_INT_CAUSE) {
4307 		u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr));
4308 
4309 		t4_edc_err_read(adapter, idx);
4310 
4311 		t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT));
4312 		CH_WARN_RATELIMIT(adapter,
4313 				  "%u %s correctable ECC data error%s\n",
4314 				  cnt, name[idx], cnt > 1 ? "s" : "");
4315 	}
4316 	if (v & F_ECC_UE_INT_CAUSE)
4317 		CH_ALERT(adapter,
4318 			 "%s uncorrectable ECC data error\n", name[idx]);
4319 
4320 	t4_write_reg(adapter, addr, v);
4321 	if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE))
4322 		t4_fatal_err(adapter);
4323 }
4324 
4325 /*
4326  * MA interrupt handler.
4327  */
4328 static void ma_intr_handler(struct adapter *adapter)
4329 {
4330 	u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE);
4331 
4332 	if (status & F_MEM_PERR_INT_CAUSE) {
4333 		CH_ALERT(adapter,
4334 			  "MA parity error, parity status %#x\n",
4335 			  t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS1));
4336 		if (is_t5(adapter))
4337 			CH_ALERT(adapter,
4338 				  "MA parity error, parity status %#x\n",
4339 				  t4_read_reg(adapter,
4340 					      A_MA_PARITY_ERROR_STATUS2));
4341 	}
4342 	if (status & F_MEM_WRAP_INT_CAUSE) {
4343 		v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS);
4344 		CH_ALERT(adapter, "MA address wrap-around error by "
4345 			  "client %u to address %#x\n",
4346 			  G_MEM_WRAP_CLIENT_NUM(v),
4347 			  G_MEM_WRAP_ADDRESS(v) << 4);
4348 	}
4349 	t4_write_reg(adapter, A_MA_INT_CAUSE, status);
4350 	t4_fatal_err(adapter);
4351 }
4352 
4353 /*
4354  * SMB interrupt handler.
4355  */
4356 static void smb_intr_handler(struct adapter *adap)
4357 {
4358 	static const struct intr_info smb_intr_info[] = {
4359 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
4360 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
4361 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
4362 		{ 0 }
4363 	};
4364 
4365 	if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info))
4366 		t4_fatal_err(adap);
4367 }
4368 
4369 /*
4370  * NC-SI interrupt handler.
4371  */
4372 static void ncsi_intr_handler(struct adapter *adap)
4373 {
4374 	static const struct intr_info ncsi_intr_info[] = {
4375 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
4376 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
4377 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
4378 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
4379 		{ 0 }
4380 	};
4381 
4382 	if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info))
4383 		t4_fatal_err(adap);
4384 }
4385 
4386 /*
4387  * XGMAC interrupt handler.
4388  */
4389 static void xgmac_intr_handler(struct adapter *adap, int port)
4390 {
4391 	u32 v, int_cause_reg;
4392 
4393 	if (is_t4(adap))
4394 		int_cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
4395 	else
4396 		int_cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
4397 
4398 	v = t4_read_reg(adap, int_cause_reg);
4399 
4400 	v &= (F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR);
4401 	if (!v)
4402 		return;
4403 
4404 	if (v & F_TXFIFO_PRTY_ERR)
4405 		CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n",
4406 			  port);
4407 	if (v & F_RXFIFO_PRTY_ERR)
4408 		CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n",
4409 			  port);
4410 	t4_write_reg(adap, int_cause_reg, v);
4411 	t4_fatal_err(adap);
4412 }
4413 
4414 /*
4415  * PL interrupt handler.
4416  */
4417 static void pl_intr_handler(struct adapter *adap)
4418 {
4419 	static const struct intr_info pl_intr_info[] = {
4420 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4421 		{ F_PERRVFID, "PL VFID_MAP parity error", -1, 1 },
4422 		{ 0 }
4423 	};
4424 
4425 	static const struct intr_info t5_pl_intr_info[] = {
4426 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4427 		{ 0 }
4428 	};
4429 
4430 	if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE,
4431 				  is_t4(adap) ?
4432 				  pl_intr_info : t5_pl_intr_info))
4433 		t4_fatal_err(adap);
4434 }
4435 
4436 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
4437 
4438 /**
4439  *	t4_slow_intr_handler - control path interrupt handler
4440  *	@adapter: the adapter
4441  *
4442  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4443  *	The designation 'slow' is because it involves register reads, while
4444  *	data interrupts typically don't involve any MMIOs.
4445  */
4446 int t4_slow_intr_handler(struct adapter *adapter)
4447 {
4448 	u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE);
4449 
4450 	if (!(cause & GLBL_INTR_MASK))
4451 		return 0;
4452 	if (cause & F_CIM)
4453 		cim_intr_handler(adapter);
4454 	if (cause & F_MPS)
4455 		mps_intr_handler(adapter);
4456 	if (cause & F_NCSI)
4457 		ncsi_intr_handler(adapter);
4458 	if (cause & F_PL)
4459 		pl_intr_handler(adapter);
4460 	if (cause & F_SMB)
4461 		smb_intr_handler(adapter);
4462 	if (cause & F_MAC0)
4463 		xgmac_intr_handler(adapter, 0);
4464 	if (cause & F_MAC1)
4465 		xgmac_intr_handler(adapter, 1);
4466 	if (cause & F_MAC2)
4467 		xgmac_intr_handler(adapter, 2);
4468 	if (cause & F_MAC3)
4469 		xgmac_intr_handler(adapter, 3);
4470 	if (cause & F_PCIE)
4471 		pcie_intr_handler(adapter);
4472 	if (cause & F_MC0)
4473 		mem_intr_handler(adapter, MEM_MC);
4474 	if (is_t5(adapter) && (cause & F_MC1))
4475 		mem_intr_handler(adapter, MEM_MC1);
4476 	if (cause & F_EDC0)
4477 		mem_intr_handler(adapter, MEM_EDC0);
4478 	if (cause & F_EDC1)
4479 		mem_intr_handler(adapter, MEM_EDC1);
4480 	if (cause & F_LE)
4481 		le_intr_handler(adapter);
4482 	if (cause & F_TP)
4483 		tp_intr_handler(adapter);
4484 	if (cause & F_MA)
4485 		ma_intr_handler(adapter);
4486 	if (cause & F_PM_TX)
4487 		pmtx_intr_handler(adapter);
4488 	if (cause & F_PM_RX)
4489 		pmrx_intr_handler(adapter);
4490 	if (cause & F_ULP_RX)
4491 		ulprx_intr_handler(adapter);
4492 	if (cause & F_CPL_SWITCH)
4493 		cplsw_intr_handler(adapter);
4494 	if (cause & F_SGE)
4495 		sge_intr_handler(adapter);
4496 	if (cause & F_ULP_TX)
4497 		ulptx_intr_handler(adapter);
4498 
4499 	/* Clear the interrupts just processed for which we are the master. */
4500 	t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK);
4501 	(void)t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */
4502 	return 1;
4503 }
4504 
4505 /**
4506  *	t4_intr_enable - enable interrupts
4507  *	@adapter: the adapter whose interrupts should be enabled
4508  *
4509  *	Enable PF-specific interrupts for the calling function and the top-level
4510  *	interrupt concentrator for global interrupts.  Interrupts are already
4511  *	enabled at each module,	here we just enable the roots of the interrupt
4512  *	hierarchies.
4513  *
4514  *	Note: this function should be called only when the driver manages
4515  *	non PF-specific interrupts from the various HW modules.  Only one PCI
4516  *	function at a time should be doing this.
4517  */
4518 void t4_intr_enable(struct adapter *adapter)
4519 {
4520 	u32 val = 0;
4521 	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4522 	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4523 		  ? G_SOURCEPF(whoami)
4524 		  : G_T6_SOURCEPF(whoami));
4525 
4526 	if (chip_id(adapter) <= CHELSIO_T5)
4527 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
4528 	else
4529 		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
4530 	t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
4531 		     F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
4532 		     F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
4533 		     F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
4534 		     F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4535 		     F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
4536 		     F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
4537 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
4538 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
4539 }
4540 
4541 /**
4542  *	t4_intr_disable - disable interrupts
4543  *	@adapter: the adapter whose interrupts should be disabled
4544  *
4545  *	Disable interrupts.  We only disable the top-level interrupt
4546  *	concentrators.  The caller must be a PCI function managing global
4547  *	interrupts.
4548  */
4549 void t4_intr_disable(struct adapter *adapter)
4550 {
4551 	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4552 	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4553 		  ? G_SOURCEPF(whoami)
4554 		  : G_T6_SOURCEPF(whoami));
4555 
4556 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
4557 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
4558 }
4559 
4560 /**
4561  *	t4_intr_clear - clear all interrupts
4562  *	@adapter: the adapter whose interrupts should be cleared
4563  *
4564  *	Clears all interrupts.  The caller must be a PCI function managing
4565  *	global interrupts.
4566  */
4567 void t4_intr_clear(struct adapter *adapter)
4568 {
4569 	static const unsigned int cause_reg[] = {
4570 		A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3,
4571 		A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE,
4572 		A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS1, A_MA_INT_CAUSE,
4573 		A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1),
4574 		A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE,
4575 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4576 		A_TP_INT_CAUSE,
4577 		A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE,
4578 		A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE,
4579 		A_MPS_RX_PERR_INT_CAUSE,
4580 		A_CPL_INTR_CAUSE,
4581 		MYPF_REG(A_PL_PF_INT_CAUSE),
4582 		A_PL_PL_INT_CAUSE,
4583 		A_LE_DB_INT_CAUSE,
4584 	};
4585 
4586 	unsigned int i;
4587 
4588 	for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
4589 		t4_write_reg(adapter, cause_reg[i], 0xffffffff);
4590 
4591 	t4_write_reg(adapter, is_t4(adapter) ? A_MC_INT_CAUSE :
4592 				A_MC_P_INT_CAUSE, 0xffffffff);
4593 
4594 	if (is_t4(adapter)) {
4595 		t4_write_reg(adapter, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4596 				0xffffffff);
4597 		t4_write_reg(adapter, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4598 				0xffffffff);
4599 	} else
4600 		t4_write_reg(adapter, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
4601 
4602 	t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK);
4603 	(void) t4_read_reg(adapter, A_PL_INT_CAUSE);          /* flush */
4604 }
4605 
4606 /**
4607  *	hash_mac_addr - return the hash value of a MAC address
4608  *	@addr: the 48-bit Ethernet MAC address
4609  *
4610  *	Hashes a MAC address according to the hash function used by HW inexact
4611  *	(hash) address matching.
4612  */
4613 static int hash_mac_addr(const u8 *addr)
4614 {
4615 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
4616 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
4617 	a ^= b;
4618 	a ^= (a >> 12);
4619 	a ^= (a >> 6);
4620 	return a & 0x3f;
4621 }
4622 
4623 /**
4624  *	t4_config_rss_range - configure a portion of the RSS mapping table
4625  *	@adapter: the adapter
4626  *	@mbox: mbox to use for the FW command
4627  *	@viid: virtual interface whose RSS subtable is to be written
4628  *	@start: start entry in the table to write
4629  *	@n: how many table entries to write
4630  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
4631  *	@nrspq: number of values in @rspq
4632  *
4633  *	Programs the selected part of the VI's RSS mapping table with the
4634  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4635  *	until the full table range is populated.
4636  *
4637  *	The caller must ensure the values in @rspq are in the range allowed for
4638  *	@viid.
4639  */
4640 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4641 			int start, int n, const u16 *rspq, unsigned int nrspq)
4642 {
4643 	int ret;
4644 	const u16 *rsp = rspq;
4645 	const u16 *rsp_end = rspq + nrspq;
4646 	struct fw_rss_ind_tbl_cmd cmd;
4647 
4648 	memset(&cmd, 0, sizeof(cmd));
4649 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
4650 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4651 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
4652 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4653 
4654 	/*
4655 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
4656 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
4657 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
4658 	 * reserved.
4659 	 */
4660 	while (n > 0) {
4661 		int nq = min(n, 32);
4662 		int nq_packed = 0;
4663 		__be32 *qp = &cmd.iq0_to_iq2;
4664 
4665 		/*
4666 		 * Set up the firmware RSS command header to send the next
4667 		 * "nq" Ingress Queue IDs to the firmware.
4668 		 */
4669 		cmd.niqid = cpu_to_be16(nq);
4670 		cmd.startidx = cpu_to_be16(start);
4671 
4672 		/*
4673 		 * "nq" more done for the start of the next loop.
4674 		 */
4675 		start += nq;
4676 		n -= nq;
4677 
4678 		/*
4679 		 * While there are still Ingress Queue IDs to stuff into the
4680 		 * current firmware RSS command, retrieve them from the
4681 		 * Ingress Queue ID array and insert them into the command.
4682 		 */
4683 		while (nq > 0) {
4684 			/*
4685 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
4686 			 * around the Ingress Queue ID array if necessary) and
4687 			 * insert them into the firmware RSS command at the
4688 			 * current 3-tuple position within the commad.
4689 			 */
4690 			u16 qbuf[3];
4691 			u16 *qbp = qbuf;
4692 			int nqbuf = min(3, nq);
4693 
4694 			nq -= nqbuf;
4695 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
4696 			while (nqbuf && nq_packed < 32) {
4697 				nqbuf--;
4698 				nq_packed++;
4699 				*qbp++ = *rsp++;
4700 				if (rsp >= rsp_end)
4701 					rsp = rspq;
4702 			}
4703 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
4704 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
4705 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
4706 		}
4707 
4708 		/*
4709 		 * Send this portion of the RRS table update to the firmware;
4710 		 * bail out on any errors.
4711 		 */
4712 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4713 		if (ret)
4714 			return ret;
4715 	}
4716 	return 0;
4717 }
4718 
4719 /**
4720  *	t4_config_glbl_rss - configure the global RSS mode
4721  *	@adapter: the adapter
4722  *	@mbox: mbox to use for the FW command
4723  *	@mode: global RSS mode
4724  *	@flags: mode-specific flags
4725  *
4726  *	Sets the global RSS mode.
4727  */
4728 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4729 		       unsigned int flags)
4730 {
4731 	struct fw_rss_glb_config_cmd c;
4732 
4733 	memset(&c, 0, sizeof(c));
4734 	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
4735 				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
4736 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4737 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4738 		c.u.manual.mode_pkd =
4739 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4740 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4741 		c.u.basicvirtual.mode_pkd =
4742 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4743 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4744 	} else
4745 		return -EINVAL;
4746 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4747 }
4748 
4749 /**
4750  *	t4_config_vi_rss - configure per VI RSS settings
4751  *	@adapter: the adapter
4752  *	@mbox: mbox to use for the FW command
4753  *	@viid: the VI id
4754  *	@flags: RSS flags
4755  *	@defq: id of the default RSS queue for the VI.
4756  *
4757  *	Configures VI-specific RSS properties.
4758  */
4759 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4760 		     unsigned int flags, unsigned int defq)
4761 {
4762 	struct fw_rss_vi_config_cmd c;
4763 
4764 	memset(&c, 0, sizeof(c));
4765 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
4766 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4767 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
4768 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4769 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4770 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
4771 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4772 }
4773 
4774 /* Read an RSS table row */
4775 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4776 {
4777 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
4778 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
4779 				   5, 0, val);
4780 }
4781 
4782 /**
4783  *	t4_read_rss - read the contents of the RSS mapping table
4784  *	@adapter: the adapter
4785  *	@map: holds the contents of the RSS mapping table
4786  *
4787  *	Reads the contents of the RSS hash->queue mapping table.
4788  */
4789 int t4_read_rss(struct adapter *adapter, u16 *map)
4790 {
4791 	u32 val;
4792 	int i, ret;
4793 
4794 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4795 		ret = rd_rss_row(adapter, i, &val);
4796 		if (ret)
4797 			return ret;
4798 		*map++ = G_LKPTBLQUEUE0(val);
4799 		*map++ = G_LKPTBLQUEUE1(val);
4800 	}
4801 	return 0;
4802 }
4803 
4804 /**
4805  *	t4_fw_tp_pio_rw - Access TP PIO through LDST
4806  *	@adap: the adapter
4807  *	@vals: where the indirect register values are stored/written
4808  *	@nregs: how many indirect registers to read/write
4809  *	@start_idx: index of first indirect register to read/write
4810  *	@rw: Read (1) or Write (0)
4811  *
4812  *	Access TP PIO registers through LDST
4813  */
4814 void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4815 		     unsigned int start_index, unsigned int rw)
4816 {
4817 	int ret, i;
4818 	int cmd = FW_LDST_ADDRSPC_TP_PIO;
4819 	struct fw_ldst_cmd c;
4820 
4821 	for (i = 0 ; i < nregs; i++) {
4822 		memset(&c, 0, sizeof(c));
4823 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
4824 						F_FW_CMD_REQUEST |
4825 						(rw ? F_FW_CMD_READ :
4826 						     F_FW_CMD_WRITE) |
4827 						V_FW_LDST_CMD_ADDRSPACE(cmd));
4828 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4829 
4830 		c.u.addrval.addr = cpu_to_be32(start_index + i);
4831 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4832 		ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4833 		if (ret == 0) {
4834 			if (rw)
4835 				vals[i] = be32_to_cpu(c.u.addrval.val);
4836 		}
4837 	}
4838 }
4839 
4840 /**
4841  *	t4_read_rss_key - read the global RSS key
4842  *	@adap: the adapter
4843  *	@key: 10-entry array holding the 320-bit RSS key
4844  *
4845  *	Reads the global 320-bit RSS key.
4846  */
4847 void t4_read_rss_key(struct adapter *adap, u32 *key)
4848 {
4849 	if (t4_use_ldst(adap))
4850 		t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 1);
4851 	else
4852 		t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
4853 				 A_TP_RSS_SECRET_KEY0);
4854 }
4855 
4856 /**
4857  *	t4_write_rss_key - program one of the RSS keys
4858  *	@adap: the adapter
4859  *	@key: 10-entry array holding the 320-bit RSS key
4860  *	@idx: which RSS key to write
4861  *
4862  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
4863  *	0..15 the corresponding entry in the RSS key table is written,
4864  *	otherwise the global RSS key is written.
4865  */
4866 void t4_write_rss_key(struct adapter *adap, u32 *key, int idx)
4867 {
4868 	u8 rss_key_addr_cnt = 16;
4869 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
4870 
4871 	/*
4872 	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4873 	 * allows access to key addresses 16-63 by using KeyWrAddrX
4874 	 * as index[5:4](upper 2) into key table
4875 	 */
4876 	if ((chip_id(adap) > CHELSIO_T5) &&
4877 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
4878 		rss_key_addr_cnt = 32;
4879 
4880 	if (t4_use_ldst(adap))
4881 		t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 0);
4882 	else
4883 		t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
4884 				  A_TP_RSS_SECRET_KEY0);
4885 
4886 	if (idx >= 0 && idx < rss_key_addr_cnt) {
4887 		if (rss_key_addr_cnt > 16)
4888 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
4889 				     V_KEYWRADDRX(idx >> 4) |
4890 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
4891 		else
4892 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
4893 				     V_KEYWRADDR(idx) | F_KEYWREN);
4894 	}
4895 }
4896 
4897 /**
4898  *	t4_read_rss_pf_config - read PF RSS Configuration Table
4899  *	@adapter: the adapter
4900  *	@index: the entry in the PF RSS table to read
4901  *	@valp: where to store the returned value
4902  *
4903  *	Reads the PF RSS Configuration Table at the specified index and returns
4904  *	the value found there.
4905  */
4906 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4907 			   u32 *valp)
4908 {
4909 	if (t4_use_ldst(adapter))
4910 		t4_fw_tp_pio_rw(adapter, valp, 1,
4911 				A_TP_RSS_PF0_CONFIG + index, 1);
4912 	else
4913 		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4914 				 valp, 1, A_TP_RSS_PF0_CONFIG + index);
4915 }
4916 
4917 /**
4918  *	t4_write_rss_pf_config - write PF RSS Configuration Table
4919  *	@adapter: the adapter
4920  *	@index: the entry in the VF RSS table to read
4921  *	@val: the value to store
4922  *
4923  *	Writes the PF RSS Configuration Table at the specified index with the
4924  *	specified value.
4925  */
4926 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
4927 			    u32 val)
4928 {
4929 	if (t4_use_ldst(adapter))
4930 		t4_fw_tp_pio_rw(adapter, &val, 1,
4931 				A_TP_RSS_PF0_CONFIG + index, 0);
4932 	else
4933 		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4934 				  &val, 1, A_TP_RSS_PF0_CONFIG + index);
4935 }
4936 
4937 /**
4938  *	t4_read_rss_vf_config - read VF RSS Configuration Table
4939  *	@adapter: the adapter
4940  *	@index: the entry in the VF RSS table to read
4941  *	@vfl: where to store the returned VFL
4942  *	@vfh: where to store the returned VFH
4943  *
4944  *	Reads the VF RSS Configuration Table at the specified index and returns
4945  *	the (VFL, VFH) values found there.
4946  */
4947 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4948 			   u32 *vfl, u32 *vfh)
4949 {
4950 	u32 vrt, mask, data;
4951 
4952 	if (chip_id(adapter) <= CHELSIO_T5) {
4953 		mask = V_VFWRADDR(M_VFWRADDR);
4954 		data = V_VFWRADDR(index);
4955 	} else {
4956 		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
4957 		 data = V_T6_VFWRADDR(index);
4958 	}
4959 	/*
4960 	 * Request that the index'th VF Table values be read into VFL/VFH.
4961 	 */
4962 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
4963 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
4964 	vrt |= data | F_VFRDEN;
4965 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
4966 
4967 	/*
4968 	 * Grab the VFL/VFH values ...
4969 	 */
4970 	if (t4_use_ldst(adapter)) {
4971 		t4_fw_tp_pio_rw(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, 1);
4972 		t4_fw_tp_pio_rw(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, 1);
4973 	} else {
4974 		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4975 				 vfl, 1, A_TP_RSS_VFL_CONFIG);
4976 		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4977 				 vfh, 1, A_TP_RSS_VFH_CONFIG);
4978 	}
4979 }
4980 
4981 /**
4982  *	t4_write_rss_vf_config - write VF RSS Configuration Table
4983  *
4984  *	@adapter: the adapter
4985  *	@index: the entry in the VF RSS table to write
4986  *	@vfl: the VFL to store
4987  *	@vfh: the VFH to store
4988  *
4989  *	Writes the VF RSS Configuration Table at the specified index with the
4990  *	specified (VFL, VFH) values.
4991  */
4992 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
4993 			    u32 vfl, u32 vfh)
4994 {
4995 	u32 vrt, mask, data;
4996 
4997 	if (chip_id(adapter) <= CHELSIO_T5) {
4998 		mask = V_VFWRADDR(M_VFWRADDR);
4999 		data = V_VFWRADDR(index);
5000 	} else {
5001 		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5002 		data = V_T6_VFWRADDR(index);
5003 	}
5004 
5005 	/*
5006 	 * Load up VFL/VFH with the values to be written ...
5007 	 */
5008 	if (t4_use_ldst(adapter)) {
5009 		t4_fw_tp_pio_rw(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, 0);
5010 		t4_fw_tp_pio_rw(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, 0);
5011 	} else {
5012 		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5013 				  &vfl, 1, A_TP_RSS_VFL_CONFIG);
5014 		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5015 				  &vfh, 1, A_TP_RSS_VFH_CONFIG);
5016 	}
5017 
5018 	/*
5019 	 * Write the VFL/VFH into the VF Table at index'th location.
5020 	 */
5021 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5022 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5023 	vrt |= data | F_VFRDEN;
5024 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5025 }
5026 
5027 /**
5028  *	t4_read_rss_pf_map - read PF RSS Map
5029  *	@adapter: the adapter
5030  *
5031  *	Reads the PF RSS Map register and returns its value.
5032  */
5033 u32 t4_read_rss_pf_map(struct adapter *adapter)
5034 {
5035 	u32 pfmap;
5036 
5037 	if (t4_use_ldst(adapter))
5038 		t4_fw_tp_pio_rw(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, 1);
5039 	else
5040 		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5041 				 &pfmap, 1, A_TP_RSS_PF_MAP);
5042 	return pfmap;
5043 }
5044 
5045 /**
5046  *	t4_write_rss_pf_map - write PF RSS Map
5047  *	@adapter: the adapter
5048  *	@pfmap: PF RSS Map value
5049  *
5050  *	Writes the specified value to the PF RSS Map register.
5051  */
5052 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap)
5053 {
5054 	if (t4_use_ldst(adapter))
5055 		t4_fw_tp_pio_rw(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, 0);
5056 	else
5057 		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5058 				  &pfmap, 1, A_TP_RSS_PF_MAP);
5059 }
5060 
5061 /**
5062  *	t4_read_rss_pf_mask - read PF RSS Mask
5063  *	@adapter: the adapter
5064  *
5065  *	Reads the PF RSS Mask register and returns its value.
5066  */
5067 u32 t4_read_rss_pf_mask(struct adapter *adapter)
5068 {
5069 	u32 pfmask;
5070 
5071 	if (t4_use_ldst(adapter))
5072 		t4_fw_tp_pio_rw(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, 1);
5073 	else
5074 		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5075 				 &pfmask, 1, A_TP_RSS_PF_MSK);
5076 	return pfmask;
5077 }
5078 
5079 /**
5080  *	t4_write_rss_pf_mask - write PF RSS Mask
5081  *	@adapter: the adapter
5082  *	@pfmask: PF RSS Mask value
5083  *
5084  *	Writes the specified value to the PF RSS Mask register.
5085  */
5086 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask)
5087 {
5088 	if (t4_use_ldst(adapter))
5089 		t4_fw_tp_pio_rw(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, 0);
5090 	else
5091 		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5092 				  &pfmask, 1, A_TP_RSS_PF_MSK);
5093 }
5094 
5095 /**
5096  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5097  *	@adap: the adapter
5098  *	@v4: holds the TCP/IP counter values
5099  *	@v6: holds the TCP/IPv6 counter values
5100  *
5101  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5102  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5103  */
5104 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5105 			 struct tp_tcp_stats *v6)
5106 {
5107 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
5108 
5109 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
5110 #define STAT(x)     val[STAT_IDX(x)]
5111 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5112 
5113 	if (v4) {
5114 		t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
5115 				 ARRAY_SIZE(val), A_TP_MIB_TCP_OUT_RST);
5116 		v4->tcp_out_rsts = STAT(OUT_RST);
5117 		v4->tcp_in_segs  = STAT64(IN_SEG);
5118 		v4->tcp_out_segs = STAT64(OUT_SEG);
5119 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5120 	}
5121 	if (v6) {
5122 		t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
5123 				 ARRAY_SIZE(val), A_TP_MIB_TCP_V6OUT_RST);
5124 		v6->tcp_out_rsts = STAT(OUT_RST);
5125 		v6->tcp_in_segs  = STAT64(IN_SEG);
5126 		v6->tcp_out_segs = STAT64(OUT_SEG);
5127 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5128 	}
5129 #undef STAT64
5130 #undef STAT
5131 #undef STAT_IDX
5132 }
5133 
5134 /**
5135  *	t4_tp_get_err_stats - read TP's error MIB counters
5136  *	@adap: the adapter
5137  *	@st: holds the counter values
5138  *
5139  *	Returns the values of TP's error counters.
5140  */
5141 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
5142 {
5143 	int nchan = adap->chip_params->nchan;
5144 
5145 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5146 			st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0);
5147 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5148 			st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0);
5149 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5150 			st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0);
5151 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5152 			st->tnl_cong_drops, nchan, A_TP_MIB_TNL_CNG_DROP_0);
5153 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5154 			st->ofld_chan_drops, nchan, A_TP_MIB_OFD_CHN_DROP_0);
5155 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5156 			st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0);
5157 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5158 			st->ofld_vlan_drops, nchan, A_TP_MIB_OFD_VLN_DROP_0);
5159 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5160 			st->tcp6_in_errs, nchan, A_TP_MIB_TCP_V6IN_ERR_0);
5161 
5162 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5163 			 &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP);
5164 }
5165 
5166 /**
5167  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
5168  *	@adap: the adapter
5169  *	@st: holds the counter values
5170  *
5171  *	Returns the values of TP's proxy counters.
5172  */
5173 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st)
5174 {
5175 	int nchan = adap->chip_params->nchan;
5176 
5177 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->proxy,
5178 			 nchan, A_TP_MIB_TNL_LPBK_0);
5179 }
5180 
5181 /**
5182  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5183  *	@adap: the adapter
5184  *	@st: holds the counter values
5185  *
5186  *	Returns the values of TP's CPL counters.
5187  */
5188 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
5189 {
5190 	int nchan = adap->chip_params->nchan;
5191 
5192 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->req,
5193 			 nchan, A_TP_MIB_CPL_IN_REQ_0);
5194 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->rsp,
5195 			 nchan, A_TP_MIB_CPL_OUT_RSP_0);
5196 }
5197 
5198 /**
5199  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5200  *	@adap: the adapter
5201  *	@st: holds the counter values
5202  *
5203  *	Returns the values of TP's RDMA counters.
5204  */
5205 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
5206 {
5207 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->rqe_dfr_pkt,
5208 			 2, A_TP_MIB_RQE_DFR_PKT);
5209 }
5210 
5211 /**
5212  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5213  *	@adap: the adapter
5214  *	@idx: the port index
5215  *	@st: holds the counter values
5216  *
5217  *	Returns the values of TP's FCoE counters for the selected port.
5218  */
5219 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5220 		       struct tp_fcoe_stats *st)
5221 {
5222 	u32 val[2];
5223 
5224 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->frames_ddp,
5225 			 1, A_TP_MIB_FCOE_DDP_0 + idx);
5226 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->frames_drop,
5227 			 1, A_TP_MIB_FCOE_DROP_0 + idx);
5228 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
5229 			 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx);
5230 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5231 }
5232 
5233 /**
5234  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5235  *	@adap: the adapter
5236  *	@st: holds the counter values
5237  *
5238  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5239  */
5240 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
5241 {
5242 	u32 val[4];
5243 
5244 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val, 4,
5245 			 A_TP_MIB_USM_PKTS);
5246 	st->frames = val[0];
5247 	st->drops = val[1];
5248 	st->octets = ((u64)val[2] << 32) | val[3];
5249 }
5250 
5251 /**
5252  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5253  *	@adap: the adapter
5254  *	@mtus: where to store the MTU values
5255  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5256  *
5257  *	Reads the HW path MTU table.
5258  */
5259 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5260 {
5261 	u32 v;
5262 	int i;
5263 
5264 	for (i = 0; i < NMTUS; ++i) {
5265 		t4_write_reg(adap, A_TP_MTU_TABLE,
5266 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
5267 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
5268 		mtus[i] = G_MTUVALUE(v);
5269 		if (mtu_log)
5270 			mtu_log[i] = G_MTUWIDTH(v);
5271 	}
5272 }
5273 
5274 /**
5275  *	t4_read_cong_tbl - reads the congestion control table
5276  *	@adap: the adapter
5277  *	@incr: where to store the alpha values
5278  *
5279  *	Reads the additive increments programmed into the HW congestion
5280  *	control table.
5281  */
5282 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5283 {
5284 	unsigned int mtu, w;
5285 
5286 	for (mtu = 0; mtu < NMTUS; ++mtu)
5287 		for (w = 0; w < NCCTRL_WIN; ++w) {
5288 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
5289 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
5290 			incr[mtu][w] = (u16)t4_read_reg(adap,
5291 						A_TP_CCTRL_TABLE) & 0x1fff;
5292 		}
5293 }
5294 
5295 /**
5296  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5297  *	@adap: the adapter
5298  *	@addr: the indirect TP register address
5299  *	@mask: specifies the field within the register to modify
5300  *	@val: new value for the field
5301  *
5302  *	Sets a field of an indirect TP register to the given value.
5303  */
5304 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5305 			    unsigned int mask, unsigned int val)
5306 {
5307 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
5308 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
5309 	t4_write_reg(adap, A_TP_PIO_DATA, val);
5310 }
5311 
5312 /**
5313  *	init_cong_ctrl - initialize congestion control parameters
5314  *	@a: the alpha values for congestion control
5315  *	@b: the beta values for congestion control
5316  *
5317  *	Initialize the congestion control parameters.
5318  */
5319 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5320 {
5321 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5322 	a[9] = 2;
5323 	a[10] = 3;
5324 	a[11] = 4;
5325 	a[12] = 5;
5326 	a[13] = 6;
5327 	a[14] = 7;
5328 	a[15] = 8;
5329 	a[16] = 9;
5330 	a[17] = 10;
5331 	a[18] = 14;
5332 	a[19] = 17;
5333 	a[20] = 21;
5334 	a[21] = 25;
5335 	a[22] = 30;
5336 	a[23] = 35;
5337 	a[24] = 45;
5338 	a[25] = 60;
5339 	a[26] = 80;
5340 	a[27] = 100;
5341 	a[28] = 200;
5342 	a[29] = 300;
5343 	a[30] = 400;
5344 	a[31] = 500;
5345 
5346 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5347 	b[9] = b[10] = 1;
5348 	b[11] = b[12] = 2;
5349 	b[13] = b[14] = b[15] = b[16] = 3;
5350 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5351 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5352 	b[28] = b[29] = 6;
5353 	b[30] = b[31] = 7;
5354 }
5355 
5356 /* The minimum additive increment value for the congestion control table */
5357 #define CC_MIN_INCR 2U
5358 
5359 /**
5360  *	t4_load_mtus - write the MTU and congestion control HW tables
5361  *	@adap: the adapter
5362  *	@mtus: the values for the MTU table
5363  *	@alpha: the values for the congestion control alpha parameter
5364  *	@beta: the values for the congestion control beta parameter
5365  *
5366  *	Write the HW MTU table with the supplied MTUs and the high-speed
5367  *	congestion control table with the supplied alpha, beta, and MTUs.
5368  *	We write the two tables together because the additive increments
5369  *	depend on the MTUs.
5370  */
5371 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5372 		  const unsigned short *alpha, const unsigned short *beta)
5373 {
5374 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5375 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5376 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5377 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5378 	};
5379 
5380 	unsigned int i, w;
5381 
5382 	for (i = 0; i < NMTUS; ++i) {
5383 		unsigned int mtu = mtus[i];
5384 		unsigned int log2 = fls(mtu);
5385 
5386 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5387 			log2--;
5388 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
5389 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
5390 
5391 		for (w = 0; w < NCCTRL_WIN; ++w) {
5392 			unsigned int inc;
5393 
5394 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5395 				  CC_MIN_INCR);
5396 
5397 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
5398 				     (w << 16) | (beta[w] << 13) | inc);
5399 		}
5400 	}
5401 }
5402 
5403 /**
5404  *	t4_set_pace_tbl - set the pace table
5405  *	@adap: the adapter
5406  *	@pace_vals: the pace values in microseconds
5407  *	@start: index of the first entry in the HW pace table to set
5408  *	@n: how many entries to set
5409  *
5410  *	Sets (a subset of the) HW pace table.
5411  */
5412 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
5413 		     unsigned int start, unsigned int n)
5414 {
5415 	unsigned int vals[NTX_SCHED], i;
5416 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
5417 
5418 	if (n > NTX_SCHED)
5419 	    return -ERANGE;
5420 
5421 	/* convert values from us to dack ticks, rounding to closest value */
5422 	for (i = 0; i < n; i++, pace_vals++) {
5423 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
5424 		if (vals[i] > 0x7ff)
5425 			return -ERANGE;
5426 		if (*pace_vals && vals[i] == 0)
5427 			return -ERANGE;
5428 	}
5429 	for (i = 0; i < n; i++, start++)
5430 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
5431 	return 0;
5432 }
5433 
5434 /**
5435  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
5436  *	@adap: the adapter
5437  *	@kbps: target rate in Kbps
5438  *	@sched: the scheduler index
5439  *
5440  *	Configure a Tx HW scheduler for the target rate.
5441  */
5442 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
5443 {
5444 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
5445 	unsigned int clk = adap->params.vpd.cclk * 1000;
5446 	unsigned int selected_cpt = 0, selected_bpt = 0;
5447 
5448 	if (kbps > 0) {
5449 		kbps *= 125;     /* -> bytes */
5450 		for (cpt = 1; cpt <= 255; cpt++) {
5451 			tps = clk / cpt;
5452 			bpt = (kbps + tps / 2) / tps;
5453 			if (bpt > 0 && bpt <= 255) {
5454 				v = bpt * tps;
5455 				delta = v >= kbps ? v - kbps : kbps - v;
5456 				if (delta < mindelta) {
5457 					mindelta = delta;
5458 					selected_cpt = cpt;
5459 					selected_bpt = bpt;
5460 				}
5461 			} else if (selected_cpt)
5462 				break;
5463 		}
5464 		if (!selected_cpt)
5465 			return -EINVAL;
5466 	}
5467 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
5468 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
5469 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5470 	if (sched & 1)
5471 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
5472 	else
5473 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
5474 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5475 	return 0;
5476 }
5477 
5478 /**
5479  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
5480  *	@adap: the adapter
5481  *	@sched: the scheduler index
5482  *	@ipg: the interpacket delay in tenths of nanoseconds
5483  *
5484  *	Set the interpacket delay for a HW packet rate scheduler.
5485  */
5486 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
5487 {
5488 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
5489 
5490 	/* convert ipg to nearest number of core clocks */
5491 	ipg *= core_ticks_per_usec(adap);
5492 	ipg = (ipg + 5000) / 10000;
5493 	if (ipg > M_TXTIMERSEPQ0)
5494 		return -EINVAL;
5495 
5496 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
5497 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5498 	if (sched & 1)
5499 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
5500 	else
5501 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
5502 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5503 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
5504 	return 0;
5505 }
5506 
5507 /*
5508  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5509  * clocks.  The formula is
5510  *
5511  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5512  *
5513  * which is equivalent to
5514  *
5515  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5516  */
5517 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5518 {
5519 	u64 v = bytes256 * adap->params.vpd.cclk;
5520 
5521 	return v * 62 + v / 2;
5522 }
5523 
5524 /**
5525  *	t4_get_chan_txrate - get the current per channel Tx rates
5526  *	@adap: the adapter
5527  *	@nic_rate: rates for NIC traffic
5528  *	@ofld_rate: rates for offloaded traffic
5529  *
5530  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5531  *	for each channel.
5532  */
5533 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5534 {
5535 	u32 v;
5536 
5537 	v = t4_read_reg(adap, A_TP_TX_TRATE);
5538 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
5539 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
5540 	if (adap->chip_params->nchan > 2) {
5541 		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
5542 		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
5543 	}
5544 
5545 	v = t4_read_reg(adap, A_TP_TX_ORATE);
5546 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
5547 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
5548 	if (adap->chip_params->nchan > 2) {
5549 		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
5550 		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
5551 	}
5552 }
5553 
5554 /**
5555  *	t4_set_trace_filter - configure one of the tracing filters
5556  *	@adap: the adapter
5557  *	@tp: the desired trace filter parameters
5558  *	@idx: which filter to configure
5559  *	@enable: whether to enable or disable the filter
5560  *
5561  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
5562  *	it indicates that the filter is already written in the register and it
5563  *	just needs to be enabled or disabled.
5564  */
5565 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5566     int idx, int enable)
5567 {
5568 	int i, ofst = idx * 4;
5569 	u32 data_reg, mask_reg, cfg;
5570 	u32 multitrc = F_TRCMULTIFILTER;
5571 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
5572 
5573 	if (idx < 0 || idx >= NTRACE)
5574 		return -EINVAL;
5575 
5576 	if (tp == NULL || !enable) {
5577 		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
5578 		    enable ? en : 0);
5579 		return 0;
5580 	}
5581 
5582 	/*
5583 	 * TODO - After T4 data book is updated, specify the exact
5584 	 * section below.
5585 	 *
5586 	 * See T4 data book - MPS section for a complete description
5587 	 * of the below if..else handling of A_MPS_TRC_CFG register
5588 	 * value.
5589 	 */
5590 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
5591 	if (cfg & F_TRCMULTIFILTER) {
5592 		/*
5593 		 * If multiple tracers are enabled, then maximum
5594 		 * capture size is 2.5KB (FIFO size of a single channel)
5595 		 * minus 2 flits for CPL_TRACE_PKT header.
5596 		 */
5597 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5598 			return -EINVAL;
5599 	} else {
5600 		/*
5601 		 * If multiple tracers are disabled, to avoid deadlocks
5602 		 * maximum packet capture size of 9600 bytes is recommended.
5603 		 * Also in this mode, only trace0 can be enabled and running.
5604 		 */
5605 		multitrc = 0;
5606 		if (tp->snap_len > 9600 || idx)
5607 			return -EINVAL;
5608 	}
5609 
5610 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
5611 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
5612 	    tp->min_len > M_TFMINPKTSIZE)
5613 		return -EINVAL;
5614 
5615 	/* stop the tracer we'll be changing */
5616 	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
5617 
5618 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
5619 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
5620 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
5621 
5622 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5623 		t4_write_reg(adap, data_reg, tp->data[i]);
5624 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5625 	}
5626 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
5627 		     V_TFCAPTUREMAX(tp->snap_len) |
5628 		     V_TFMINPKTSIZE(tp->min_len));
5629 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
5630 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
5631 		     (is_t4(adap) ?
5632 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
5633 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
5634 
5635 	return 0;
5636 }
5637 
5638 /**
5639  *	t4_get_trace_filter - query one of the tracing filters
5640  *	@adap: the adapter
5641  *	@tp: the current trace filter parameters
5642  *	@idx: which trace filter to query
5643  *	@enabled: non-zero if the filter is enabled
5644  *
5645  *	Returns the current settings of one of the HW tracing filters.
5646  */
5647 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5648 			 int *enabled)
5649 {
5650 	u32 ctla, ctlb;
5651 	int i, ofst = idx * 4;
5652 	u32 data_reg, mask_reg;
5653 
5654 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
5655 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
5656 
5657 	if (is_t4(adap)) {
5658 		*enabled = !!(ctla & F_TFEN);
5659 		tp->port =  G_TFPORT(ctla);
5660 		tp->invert = !!(ctla & F_TFINVERTMATCH);
5661 	} else {
5662 		*enabled = !!(ctla & F_T5_TFEN);
5663 		tp->port = G_T5_TFPORT(ctla);
5664 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
5665 	}
5666 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
5667 	tp->min_len = G_TFMINPKTSIZE(ctlb);
5668 	tp->skip_ofst = G_TFOFFSET(ctla);
5669 	tp->skip_len = G_TFLENGTH(ctla);
5670 
5671 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
5672 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
5673 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
5674 
5675 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5676 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5677 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5678 	}
5679 }
5680 
5681 /**
5682  *	t4_pmtx_get_stats - returns the HW stats from PMTX
5683  *	@adap: the adapter
5684  *	@cnt: where to store the count statistics
5685  *	@cycles: where to store the cycle statistics
5686  *
5687  *	Returns performance statistics from PMTX.
5688  */
5689 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5690 {
5691 	int i;
5692 	u32 data[2];
5693 
5694 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5695 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
5696 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
5697 		if (is_t4(adap))
5698 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
5699 		else {
5700 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
5701 					 A_PM_TX_DBG_DATA, data, 2,
5702 					 A_PM_TX_DBG_STAT_MSB);
5703 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5704 		}
5705 	}
5706 }
5707 
5708 /**
5709  *	t4_pmrx_get_stats - returns the HW stats from PMRX
5710  *	@adap: the adapter
5711  *	@cnt: where to store the count statistics
5712  *	@cycles: where to store the cycle statistics
5713  *
5714  *	Returns performance statistics from PMRX.
5715  */
5716 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5717 {
5718 	int i;
5719 	u32 data[2];
5720 
5721 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5722 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
5723 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
5724 		if (is_t4(adap)) {
5725 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
5726 		} else {
5727 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
5728 					 A_PM_RX_DBG_DATA, data, 2,
5729 					 A_PM_RX_DBG_STAT_MSB);
5730 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5731 		}
5732 	}
5733 }
5734 
5735 /**
5736  *	t4_get_mps_bg_map - return the buffer groups associated with a port
5737  *	@adap: the adapter
5738  *	@idx: the port index
5739  *
5740  *	Returns a bitmap indicating which MPS buffer groups are associated
5741  *	with the given port.  Bit i is set if buffer group i is used by the
5742  *	port.
5743  */
5744 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5745 {
5746 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
5747 
5748 	if (n == 0)
5749 		return idx == 0 ? 0xf : 0;
5750 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
5751 		return idx < 2 ? (3 << (2 * idx)) : 0;
5752 	return 1 << idx;
5753 }
5754 
5755 /**
5756  *      t4_get_port_type_description - return Port Type string description
5757  *      @port_type: firmware Port Type enumeration
5758  */
5759 const char *t4_get_port_type_description(enum fw_port_type port_type)
5760 {
5761 	static const char *const port_type_description[] = {
5762 		"Fiber_XFI",
5763 		"Fiber_XAUI",
5764 		"BT_SGMII",
5765 		"BT_XFI",
5766 		"BT_XAUI",
5767 		"KX4",
5768 		"CX4",
5769 		"KX",
5770 		"KR",
5771 		"SFP",
5772 		"BP_AP",
5773 		"BP4_AP",
5774 		"QSFP_10G",
5775 		"QSA",
5776 		"QSFP",
5777 		"BP40_BA",
5778 	};
5779 
5780 	if (port_type < ARRAY_SIZE(port_type_description))
5781 		return port_type_description[port_type];
5782 	return "UNKNOWN";
5783 }
5784 
5785 /**
5786  *      t4_get_port_stats_offset - collect port stats relative to a previous
5787  *				   snapshot
5788  *      @adap: The adapter
5789  *      @idx: The port
5790  *      @stats: Current stats to fill
5791  *      @offset: Previous stats snapshot
5792  */
5793 void t4_get_port_stats_offset(struct adapter *adap, int idx,
5794 		struct port_stats *stats,
5795 		struct port_stats *offset)
5796 {
5797 	u64 *s, *o;
5798 	int i;
5799 
5800 	t4_get_port_stats(adap, idx, stats);
5801 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
5802 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
5803 			i++, s++, o++)
5804 		*s -= *o;
5805 }
5806 
5807 /**
5808  *	t4_get_port_stats - collect port statistics
5809  *	@adap: the adapter
5810  *	@idx: the port index
5811  *	@p: the stats structure to fill
5812  *
5813  *	Collect statistics related to the given port from HW.
5814  */
5815 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5816 {
5817 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5818 	u32 stat_ctl;
5819 
5820 #define GET_STAT(name) \
5821 	t4_read_reg64(adap, \
5822 	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
5823 	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
5824 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
5825 
5826 	stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
5827 
5828 	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
5829 	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
5830 	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
5831 	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
5832 	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
5833 	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
5834 	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
5835 	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
5836 	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
5837 	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
5838 	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
5839 	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
5840 	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
5841 	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
5842 	p->tx_drop		= GET_STAT(TX_PORT_DROP);
5843 	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
5844 	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
5845 	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
5846 	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
5847 	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
5848 	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
5849 	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
5850 	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
5851 
5852 	if (stat_ctl & F_COUNTPAUSESTATTX) {
5853 		p->tx_frames -= p->tx_pause;
5854 		p->tx_octets -= p->tx_pause * 64;
5855 		p->tx_mcast_frames -= p->tx_pause;
5856 	}
5857 
5858 	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
5859 	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
5860 	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
5861 	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
5862 	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
5863 	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
5864 	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
5865 	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
5866 	p->rx_fcs_err		= GET_STAT(RX_PORT_CRC_ERROR);
5867 	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
5868 	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
5869 	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
5870 	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
5871 	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
5872 	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
5873 	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
5874 	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
5875 	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
5876 	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
5877 	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
5878 	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
5879 	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
5880 	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
5881 	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
5882 	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
5883 	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
5884 	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
5885 
5886 	if (stat_ctl & F_COUNTPAUSESTATRX) {
5887 		p->rx_frames -= p->rx_pause;
5888 		p->rx_octets -= p->rx_pause * 64;
5889 		p->rx_mcast_frames -= p->rx_pause;
5890 	}
5891 
5892 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5893 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5894 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5895 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5896 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5897 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5898 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5899 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5900 
5901 #undef GET_STAT
5902 #undef GET_STAT_COM
5903 }
5904 
5905 /**
5906  *	t4_get_lb_stats - collect loopback port statistics
5907  *	@adap: the adapter
5908  *	@idx: the loopback port index
5909  *	@p: the stats structure to fill
5910  *
5911  *	Return HW statistics for the given loopback port.
5912  */
5913 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
5914 {
5915 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5916 
5917 #define GET_STAT(name) \
5918 	t4_read_reg64(adap, \
5919 	(is_t4(adap) ? \
5920 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
5921 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
5922 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
5923 
5924 	p->octets	= GET_STAT(BYTES);
5925 	p->frames	= GET_STAT(FRAMES);
5926 	p->bcast_frames	= GET_STAT(BCAST);
5927 	p->mcast_frames	= GET_STAT(MCAST);
5928 	p->ucast_frames	= GET_STAT(UCAST);
5929 	p->error_frames	= GET_STAT(ERROR);
5930 
5931 	p->frames_64		= GET_STAT(64B);
5932 	p->frames_65_127	= GET_STAT(65B_127B);
5933 	p->frames_128_255	= GET_STAT(128B_255B);
5934 	p->frames_256_511	= GET_STAT(256B_511B);
5935 	p->frames_512_1023	= GET_STAT(512B_1023B);
5936 	p->frames_1024_1518	= GET_STAT(1024B_1518B);
5937 	p->frames_1519_max	= GET_STAT(1519B_MAX);
5938 	p->drop			= GET_STAT(DROP_FRAMES);
5939 
5940 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5941 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5942 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5943 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5944 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5945 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5946 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5947 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
5948 
5949 #undef GET_STAT
5950 #undef GET_STAT_COM
5951 }
5952 
5953 /**
5954  *	t4_wol_magic_enable - enable/disable magic packet WoL
5955  *	@adap: the adapter
5956  *	@port: the physical port index
5957  *	@addr: MAC address expected in magic packets, %NULL to disable
5958  *
5959  *	Enables/disables magic packet wake-on-LAN for the selected port.
5960  */
5961 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
5962 			 const u8 *addr)
5963 {
5964 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
5965 
5966 	if (is_t4(adap)) {
5967 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
5968 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
5969 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
5970 	} else {
5971 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
5972 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
5973 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
5974 	}
5975 
5976 	if (addr) {
5977 		t4_write_reg(adap, mag_id_reg_l,
5978 			     (addr[2] << 24) | (addr[3] << 16) |
5979 			     (addr[4] << 8) | addr[5]);
5980 		t4_write_reg(adap, mag_id_reg_h,
5981 			     (addr[0] << 8) | addr[1]);
5982 	}
5983 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
5984 			 V_MAGICEN(addr != NULL));
5985 }
5986 
5987 /**
5988  *	t4_wol_pat_enable - enable/disable pattern-based WoL
5989  *	@adap: the adapter
5990  *	@port: the physical port index
5991  *	@map: bitmap of which HW pattern filters to set
5992  *	@mask0: byte mask for bytes 0-63 of a packet
5993  *	@mask1: byte mask for bytes 64-127 of a packet
5994  *	@crc: Ethernet CRC for selected bytes
5995  *	@enable: enable/disable switch
5996  *
5997  *	Sets the pattern filters indicated in @map to mask out the bytes
5998  *	specified in @mask0/@mask1 in received packets and compare the CRC of
5999  *	the resulting packet against @crc.  If @enable is %true pattern-based
6000  *	WoL is enabled, otherwise disabled.
6001  */
6002 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
6003 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
6004 {
6005 	int i;
6006 	u32 port_cfg_reg;
6007 
6008 	if (is_t4(adap))
6009 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6010 	else
6011 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6012 
6013 	if (!enable) {
6014 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
6015 		return 0;
6016 	}
6017 	if (map > 0xff)
6018 		return -EINVAL;
6019 
6020 #define EPIO_REG(name) \
6021 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
6022 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
6023 
6024 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
6025 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
6026 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
6027 
6028 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
6029 		if (!(map & 1))
6030 			continue;
6031 
6032 		/* write byte masks */
6033 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
6034 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
6035 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6036 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6037 			return -ETIMEDOUT;
6038 
6039 		/* write CRC */
6040 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
6041 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
6042 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6043 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6044 			return -ETIMEDOUT;
6045 	}
6046 #undef EPIO_REG
6047 
6048 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
6049 	return 0;
6050 }
6051 
6052 /*     t4_mk_filtdelwr - create a delete filter WR
6053  *     @ftid: the filter ID
6054  *     @wr: the filter work request to populate
6055  *     @qid: ingress queue to receive the delete notification
6056  *
6057  *     Creates a filter work request to delete the supplied filter.  If @qid is
6058  *     negative the delete notification is suppressed.
6059  */
6060 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6061 {
6062 	memset(wr, 0, sizeof(*wr));
6063 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
6064 	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
6065 	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
6066 				    V_FW_FILTER_WR_NOREPLY(qid < 0));
6067 	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
6068 	if (qid >= 0)
6069 		wr->rx_chan_rx_rpl_iq =
6070 				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
6071 }
6072 
6073 #define INIT_CMD(var, cmd, rd_wr) do { \
6074 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
6075 					F_FW_CMD_REQUEST | \
6076 					F_FW_CMD_##rd_wr); \
6077 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6078 } while (0)
6079 
6080 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6081 			  u32 addr, u32 val)
6082 {
6083 	u32 ldst_addrspace;
6084 	struct fw_ldst_cmd c;
6085 
6086 	memset(&c, 0, sizeof(c));
6087 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
6088 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6089 					F_FW_CMD_REQUEST |
6090 					F_FW_CMD_WRITE |
6091 					ldst_addrspace);
6092 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6093 	c.u.addrval.addr = cpu_to_be32(addr);
6094 	c.u.addrval.val = cpu_to_be32(val);
6095 
6096 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6097 }
6098 
6099 /**
6100  *	t4_mdio_rd - read a PHY register through MDIO
6101  *	@adap: the adapter
6102  *	@mbox: mailbox to use for the FW command
6103  *	@phy_addr: the PHY address
6104  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6105  *	@reg: the register to read
6106  *	@valp: where to store the value
6107  *
6108  *	Issues a FW command through the given mailbox to read a PHY register.
6109  */
6110 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6111 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
6112 {
6113 	int ret;
6114 	u32 ldst_addrspace;
6115 	struct fw_ldst_cmd c;
6116 
6117 	memset(&c, 0, sizeof(c));
6118 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6119 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6120 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6121 					ldst_addrspace);
6122 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6123 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6124 					 V_FW_LDST_CMD_MMD(mmd));
6125 	c.u.mdio.raddr = cpu_to_be16(reg);
6126 
6127 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6128 	if (ret == 0)
6129 		*valp = be16_to_cpu(c.u.mdio.rval);
6130 	return ret;
6131 }
6132 
6133 /**
6134  *	t4_mdio_wr - write a PHY register through MDIO
6135  *	@adap: the adapter
6136  *	@mbox: mailbox to use for the FW command
6137  *	@phy_addr: the PHY address
6138  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6139  *	@reg: the register to write
6140  *	@valp: value to write
6141  *
6142  *	Issues a FW command through the given mailbox to write a PHY register.
6143  */
6144 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6145 	       unsigned int mmd, unsigned int reg, unsigned int val)
6146 {
6147 	u32 ldst_addrspace;
6148 	struct fw_ldst_cmd c;
6149 
6150 	memset(&c, 0, sizeof(c));
6151 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6152 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6153 					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6154 					ldst_addrspace);
6155 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6156 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6157 					 V_FW_LDST_CMD_MMD(mmd));
6158 	c.u.mdio.raddr = cpu_to_be16(reg);
6159 	c.u.mdio.rval = cpu_to_be16(val);
6160 
6161 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6162 }
6163 
6164 /**
6165  *
6166  *	t4_sge_decode_idma_state - decode the idma state
6167  *	@adap: the adapter
6168  *	@state: the state idma is stuck in
6169  */
6170 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6171 {
6172 	static const char * const t4_decode[] = {
6173 		"IDMA_IDLE",
6174 		"IDMA_PUSH_MORE_CPL_FIFO",
6175 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6176 		"Not used",
6177 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6178 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6179 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6180 		"IDMA_SEND_FIFO_TO_IMSG",
6181 		"IDMA_FL_REQ_DATA_FL_PREP",
6182 		"IDMA_FL_REQ_DATA_FL",
6183 		"IDMA_FL_DROP",
6184 		"IDMA_FL_H_REQ_HEADER_FL",
6185 		"IDMA_FL_H_SEND_PCIEHDR",
6186 		"IDMA_FL_H_PUSH_CPL_FIFO",
6187 		"IDMA_FL_H_SEND_CPL",
6188 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6189 		"IDMA_FL_H_SEND_IP_HDR",
6190 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6191 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6192 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6193 		"IDMA_FL_D_SEND_PCIEHDR",
6194 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6195 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6196 		"IDMA_FL_SEND_PCIEHDR",
6197 		"IDMA_FL_PUSH_CPL_FIFO",
6198 		"IDMA_FL_SEND_CPL",
6199 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6200 		"IDMA_FL_SEND_PAYLOAD",
6201 		"IDMA_FL_REQ_NEXT_DATA_FL",
6202 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6203 		"IDMA_FL_SEND_PADDING",
6204 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6205 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6206 		"IDMA_FL_REQ_DATAFL_DONE",
6207 		"IDMA_FL_REQ_HEADERFL_DONE",
6208 	};
6209 	static const char * const t5_decode[] = {
6210 		"IDMA_IDLE",
6211 		"IDMA_ALMOST_IDLE",
6212 		"IDMA_PUSH_MORE_CPL_FIFO",
6213 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6214 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6215 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6216 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6217 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6218 		"IDMA_SEND_FIFO_TO_IMSG",
6219 		"IDMA_FL_REQ_DATA_FL",
6220 		"IDMA_FL_DROP",
6221 		"IDMA_FL_DROP_SEND_INC",
6222 		"IDMA_FL_H_REQ_HEADER_FL",
6223 		"IDMA_FL_H_SEND_PCIEHDR",
6224 		"IDMA_FL_H_PUSH_CPL_FIFO",
6225 		"IDMA_FL_H_SEND_CPL",
6226 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6227 		"IDMA_FL_H_SEND_IP_HDR",
6228 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6229 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6230 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6231 		"IDMA_FL_D_SEND_PCIEHDR",
6232 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6233 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6234 		"IDMA_FL_SEND_PCIEHDR",
6235 		"IDMA_FL_PUSH_CPL_FIFO",
6236 		"IDMA_FL_SEND_CPL",
6237 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6238 		"IDMA_FL_SEND_PAYLOAD",
6239 		"IDMA_FL_REQ_NEXT_DATA_FL",
6240 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6241 		"IDMA_FL_SEND_PADDING",
6242 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6243 	};
6244 	static const char * const t6_decode[] = {
6245 		"IDMA_IDLE",
6246 		"IDMA_PUSH_MORE_CPL_FIFO",
6247 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6248 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6249 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6250 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6251 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6252 		"IDMA_FL_REQ_DATA_FL",
6253 		"IDMA_FL_DROP",
6254 		"IDMA_FL_DROP_SEND_INC",
6255 		"IDMA_FL_H_REQ_HEADER_FL",
6256 		"IDMA_FL_H_SEND_PCIEHDR",
6257 		"IDMA_FL_H_PUSH_CPL_FIFO",
6258 		"IDMA_FL_H_SEND_CPL",
6259 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6260 		"IDMA_FL_H_SEND_IP_HDR",
6261 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6262 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6263 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6264 		"IDMA_FL_D_SEND_PCIEHDR",
6265 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6266 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6267 		"IDMA_FL_SEND_PCIEHDR",
6268 		"IDMA_FL_PUSH_CPL_FIFO",
6269 		"IDMA_FL_SEND_CPL",
6270 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6271 		"IDMA_FL_SEND_PAYLOAD",
6272 		"IDMA_FL_REQ_NEXT_DATA_FL",
6273 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6274 		"IDMA_FL_SEND_PADDING",
6275 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6276 	};
6277 	static const u32 sge_regs[] = {
6278 		A_SGE_DEBUG_DATA_LOW_INDEX_2,
6279 		A_SGE_DEBUG_DATA_LOW_INDEX_3,
6280 		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
6281 	};
6282 	const char * const *sge_idma_decode;
6283 	int sge_idma_decode_nstates;
6284 	int i;
6285 	unsigned int chip_version = chip_id(adapter);
6286 
6287 	/* Select the right set of decode strings to dump depending on the
6288 	 * adapter chip type.
6289 	 */
6290 	switch (chip_version) {
6291 	case CHELSIO_T4:
6292 		sge_idma_decode = (const char * const *)t4_decode;
6293 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6294 		break;
6295 
6296 	case CHELSIO_T5:
6297 		sge_idma_decode = (const char * const *)t5_decode;
6298 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6299 		break;
6300 
6301 	case CHELSIO_T6:
6302 		sge_idma_decode = (const char * const *)t6_decode;
6303 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6304 		break;
6305 
6306 	default:
6307 		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
6308 		return;
6309 	}
6310 
6311 	if (state < sge_idma_decode_nstates)
6312 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6313 	else
6314 		CH_WARN(adapter, "idma state %d unknown\n", state);
6315 
6316 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6317 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6318 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6319 }
6320 
6321 /**
6322  *      t4_sge_ctxt_flush - flush the SGE context cache
6323  *      @adap: the adapter
6324  *      @mbox: mailbox to use for the FW command
6325  *
6326  *      Issues a FW command through the given mailbox to flush the
6327  *      SGE context cache.
6328  */
6329 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
6330 {
6331 	int ret;
6332 	u32 ldst_addrspace;
6333 	struct fw_ldst_cmd c;
6334 
6335 	memset(&c, 0, sizeof(c));
6336 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
6337 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6338 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6339 					ldst_addrspace);
6340 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6341 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
6342 
6343 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6344 	return ret;
6345 }
6346 
6347 /**
6348  *      t4_fw_hello - establish communication with FW
6349  *      @adap: the adapter
6350  *      @mbox: mailbox to use for the FW command
6351  *      @evt_mbox: mailbox to receive async FW events
6352  *      @master: specifies the caller's willingness to be the device master
6353  *	@state: returns the current device state (if non-NULL)
6354  *
6355  *	Issues a command to establish communication with FW.  Returns either
6356  *	an error (negative integer) or the mailbox of the Master PF.
6357  */
6358 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6359 		enum dev_master master, enum dev_state *state)
6360 {
6361 	int ret;
6362 	struct fw_hello_cmd c;
6363 	u32 v;
6364 	unsigned int master_mbox;
6365 	int retries = FW_CMD_HELLO_RETRIES;
6366 
6367 retry:
6368 	memset(&c, 0, sizeof(c));
6369 	INIT_CMD(c, HELLO, WRITE);
6370 	c.err_to_clearinit = cpu_to_be32(
6371 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
6372 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
6373 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
6374 					mbox : M_FW_HELLO_CMD_MBMASTER) |
6375 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
6376 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
6377 		F_FW_HELLO_CMD_CLEARINIT);
6378 
6379 	/*
6380 	 * Issue the HELLO command to the firmware.  If it's not successful
6381 	 * but indicates that we got a "busy" or "timeout" condition, retry
6382 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6383 	 * retry limit, check to see if the firmware left us any error
6384 	 * information and report that if so ...
6385 	 */
6386 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6387 	if (ret != FW_SUCCESS) {
6388 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6389 			goto retry;
6390 		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
6391 			t4_report_fw_error(adap);
6392 		return ret;
6393 	}
6394 
6395 	v = be32_to_cpu(c.err_to_clearinit);
6396 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
6397 	if (state) {
6398 		if (v & F_FW_HELLO_CMD_ERR)
6399 			*state = DEV_STATE_ERR;
6400 		else if (v & F_FW_HELLO_CMD_INIT)
6401 			*state = DEV_STATE_INIT;
6402 		else
6403 			*state = DEV_STATE_UNINIT;
6404 	}
6405 
6406 	/*
6407 	 * If we're not the Master PF then we need to wait around for the
6408 	 * Master PF Driver to finish setting up the adapter.
6409 	 *
6410 	 * Note that we also do this wait if we're a non-Master-capable PF and
6411 	 * there is no current Master PF; a Master PF may show up momentarily
6412 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6413 	 * OS loads lots of different drivers rapidly at the same time).  In
6414 	 * this case, the Master PF returned by the firmware will be
6415 	 * M_PCIE_FW_MASTER so the test below will work ...
6416 	 */
6417 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
6418 	    master_mbox != mbox) {
6419 		int waiting = FW_CMD_HELLO_TIMEOUT;
6420 
6421 		/*
6422 		 * Wait for the firmware to either indicate an error or
6423 		 * initialized state.  If we see either of these we bail out
6424 		 * and report the issue to the caller.  If we exhaust the
6425 		 * "hello timeout" and we haven't exhausted our retries, try
6426 		 * again.  Otherwise bail with a timeout error.
6427 		 */
6428 		for (;;) {
6429 			u32 pcie_fw;
6430 
6431 			msleep(50);
6432 			waiting -= 50;
6433 
6434 			/*
6435 			 * If neither Error nor Initialialized are indicated
6436 			 * by the firmware keep waiting till we exhaust our
6437 			 * timeout ... and then retry if we haven't exhausted
6438 			 * our retries ...
6439 			 */
6440 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
6441 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
6442 				if (waiting <= 0) {
6443 					if (retries-- > 0)
6444 						goto retry;
6445 
6446 					return -ETIMEDOUT;
6447 				}
6448 				continue;
6449 			}
6450 
6451 			/*
6452 			 * We either have an Error or Initialized condition
6453 			 * report errors preferentially.
6454 			 */
6455 			if (state) {
6456 				if (pcie_fw & F_PCIE_FW_ERR)
6457 					*state = DEV_STATE_ERR;
6458 				else if (pcie_fw & F_PCIE_FW_INIT)
6459 					*state = DEV_STATE_INIT;
6460 			}
6461 
6462 			/*
6463 			 * If we arrived before a Master PF was selected and
6464 			 * there's not a valid Master PF, grab its identity
6465 			 * for our caller.
6466 			 */
6467 			if (master_mbox == M_PCIE_FW_MASTER &&
6468 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
6469 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
6470 			break;
6471 		}
6472 	}
6473 
6474 	return master_mbox;
6475 }
6476 
6477 /**
6478  *	t4_fw_bye - end communication with FW
6479  *	@adap: the adapter
6480  *	@mbox: mailbox to use for the FW command
6481  *
6482  *	Issues a command to terminate communication with FW.
6483  */
6484 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6485 {
6486 	struct fw_bye_cmd c;
6487 
6488 	memset(&c, 0, sizeof(c));
6489 	INIT_CMD(c, BYE, WRITE);
6490 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6491 }
6492 
6493 /**
6494  *	t4_fw_reset - issue a reset to FW
6495  *	@adap: the adapter
6496  *	@mbox: mailbox to use for the FW command
6497  *	@reset: specifies the type of reset to perform
6498  *
6499  *	Issues a reset command of the specified type to FW.
6500  */
6501 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6502 {
6503 	struct fw_reset_cmd c;
6504 
6505 	memset(&c, 0, sizeof(c));
6506 	INIT_CMD(c, RESET, WRITE);
6507 	c.val = cpu_to_be32(reset);
6508 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6509 }
6510 
6511 /**
6512  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6513  *	@adap: the adapter
6514  *	@mbox: mailbox to use for the FW RESET command (if desired)
6515  *	@force: force uP into RESET even if FW RESET command fails
6516  *
6517  *	Issues a RESET command to firmware (if desired) with a HALT indication
6518  *	and then puts the microprocessor into RESET state.  The RESET command
6519  *	will only be issued if a legitimate mailbox is provided (mbox <=
6520  *	M_PCIE_FW_MASTER).
6521  *
6522  *	This is generally used in order for the host to safely manipulate the
6523  *	adapter without fear of conflicting with whatever the firmware might
6524  *	be doing.  The only way out of this state is to RESTART the firmware
6525  *	...
6526  */
6527 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6528 {
6529 	int ret = 0;
6530 
6531 	/*
6532 	 * If a legitimate mailbox is provided, issue a RESET command
6533 	 * with a HALT indication.
6534 	 */
6535 	if (mbox <= M_PCIE_FW_MASTER) {
6536 		struct fw_reset_cmd c;
6537 
6538 		memset(&c, 0, sizeof(c));
6539 		INIT_CMD(c, RESET, WRITE);
6540 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
6541 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
6542 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6543 	}
6544 
6545 	/*
6546 	 * Normally we won't complete the operation if the firmware RESET
6547 	 * command fails but if our caller insists we'll go ahead and put the
6548 	 * uP into RESET.  This can be useful if the firmware is hung or even
6549 	 * missing ...  We'll have to take the risk of putting the uP into
6550 	 * RESET without the cooperation of firmware in that case.
6551 	 *
6552 	 * We also force the firmware's HALT flag to be on in case we bypassed
6553 	 * the firmware RESET command above or we're dealing with old firmware
6554 	 * which doesn't have the HALT capability.  This will serve as a flag
6555 	 * for the incoming firmware to know that it's coming out of a HALT
6556 	 * rather than a RESET ... if it's new enough to understand that ...
6557 	 */
6558 	if (ret == 0 || force) {
6559 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6560 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
6561 				 F_PCIE_FW_HALT);
6562 	}
6563 
6564 	/*
6565 	 * And we always return the result of the firmware RESET command
6566 	 * even when we force the uP into RESET ...
6567 	 */
6568 	return ret;
6569 }
6570 
6571 /**
6572  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6573  *	@adap: the adapter
6574  *	@reset: if we want to do a RESET to restart things
6575  *
6576  *	Restart firmware previously halted by t4_fw_halt().  On successful
6577  *	return the previous PF Master remains as the new PF Master and there
6578  *	is no need to issue a new HELLO command, etc.
6579  *
6580  *	We do this in two ways:
6581  *
6582  *	 1. If we're dealing with newer firmware we'll simply want to take
6583  *	    the chip's microprocessor out of RESET.  This will cause the
6584  *	    firmware to start up from its start vector.  And then we'll loop
6585  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6586  *	    reset to 0) or we timeout.
6587  *
6588  *	 2. If we're dealing with older firmware then we'll need to RESET
6589  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6590  *	    flag and automatically RESET itself on startup.
6591  */
6592 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6593 {
6594 	if (reset) {
6595 		/*
6596 		 * Since we're directing the RESET instead of the firmware
6597 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6598 		 * bit.
6599 		 */
6600 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
6601 
6602 		/*
6603 		 * If we've been given a valid mailbox, first try to get the
6604 		 * firmware to do the RESET.  If that works, great and we can
6605 		 * return success.  Otherwise, if we haven't been given a
6606 		 * valid mailbox or the RESET command failed, fall back to
6607 		 * hitting the chip with a hammer.
6608 		 */
6609 		if (mbox <= M_PCIE_FW_MASTER) {
6610 			t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6611 			msleep(100);
6612 			if (t4_fw_reset(adap, mbox,
6613 					F_PIORST | F_PIORSTMODE) == 0)
6614 				return 0;
6615 		}
6616 
6617 		t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6618 		msleep(2000);
6619 	} else {
6620 		int ms;
6621 
6622 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6623 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6624 			if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
6625 				return FW_SUCCESS;
6626 			msleep(100);
6627 			ms += 100;
6628 		}
6629 		return -ETIMEDOUT;
6630 	}
6631 	return 0;
6632 }
6633 
6634 /**
6635  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6636  *	@adap: the adapter
6637  *	@mbox: mailbox to use for the FW RESET command (if desired)
6638  *	@fw_data: the firmware image to write
6639  *	@size: image size
6640  *	@force: force upgrade even if firmware doesn't cooperate
6641  *
6642  *	Perform all of the steps necessary for upgrading an adapter's
6643  *	firmware image.  Normally this requires the cooperation of the
6644  *	existing firmware in order to halt all existing activities
6645  *	but if an invalid mailbox token is passed in we skip that step
6646  *	(though we'll still put the adapter microprocessor into RESET in
6647  *	that case).
6648  *
6649  *	On successful return the new firmware will have been loaded and
6650  *	the adapter will have been fully RESET losing all previous setup
6651  *	state.  On unsuccessful return the adapter may be completely hosed ...
6652  *	positive errno indicates that the adapter is ~probably~ intact, a
6653  *	negative errno indicates that things are looking bad ...
6654  */
6655 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6656 		  const u8 *fw_data, unsigned int size, int force)
6657 {
6658 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6659 	unsigned int bootstrap =
6660 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
6661 	int reset, ret;
6662 
6663 	if (!t4_fw_matches_chip(adap, fw_hdr))
6664 		return -EINVAL;
6665 
6666 	if (!bootstrap) {
6667 		ret = t4_fw_halt(adap, mbox, force);
6668 		if (ret < 0 && !force)
6669 			return ret;
6670 	}
6671 
6672 	ret = t4_load_fw(adap, fw_data, size);
6673 	if (ret < 0 || bootstrap)
6674 		return ret;
6675 
6676 	/*
6677 	 * Older versions of the firmware don't understand the new
6678 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6679 	 * restart.  So for newly loaded older firmware we'll have to do the
6680 	 * RESET for it so it starts up on a clean slate.  We can tell if
6681 	 * the newly loaded firmware will handle this right by checking
6682 	 * its header flags to see if it advertises the capability.
6683 	 */
6684 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6685 	return t4_fw_restart(adap, mbox, reset);
6686 }
6687 
6688 /**
6689  *	t4_fw_initialize - ask FW to initialize the device
6690  *	@adap: the adapter
6691  *	@mbox: mailbox to use for the FW command
6692  *
6693  *	Issues a command to FW to partially initialize the device.  This
6694  *	performs initialization that generally doesn't depend on user input.
6695  */
6696 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6697 {
6698 	struct fw_initialize_cmd c;
6699 
6700 	memset(&c, 0, sizeof(c));
6701 	INIT_CMD(c, INITIALIZE, WRITE);
6702 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6703 }
6704 
6705 /**
6706  *	t4_query_params_rw - query FW or device parameters
6707  *	@adap: the adapter
6708  *	@mbox: mailbox to use for the FW command
6709  *	@pf: the PF
6710  *	@vf: the VF
6711  *	@nparams: the number of parameters
6712  *	@params: the parameter names
6713  *	@val: the parameter values
6714  *	@rw: Write and read flag
6715  *
6716  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
6717  *	queried at once.
6718  */
6719 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6720 		       unsigned int vf, unsigned int nparams, const u32 *params,
6721 		       u32 *val, int rw)
6722 {
6723 	int i, ret;
6724 	struct fw_params_cmd c;
6725 	__be32 *p = &c.param[0].mnem;
6726 
6727 	if (nparams > 7)
6728 		return -EINVAL;
6729 
6730 	memset(&c, 0, sizeof(c));
6731 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6732 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
6733 				  V_FW_PARAMS_CMD_PFN(pf) |
6734 				  V_FW_PARAMS_CMD_VFN(vf));
6735 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6736 
6737 	for (i = 0; i < nparams; i++) {
6738 		*p++ = cpu_to_be32(*params++);
6739 		if (rw)
6740 			*p = cpu_to_be32(*(val + i));
6741 		p++;
6742 	}
6743 
6744 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6745 	if (ret == 0)
6746 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6747 			*val++ = be32_to_cpu(*p);
6748 	return ret;
6749 }
6750 
6751 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6752 		    unsigned int vf, unsigned int nparams, const u32 *params,
6753 		    u32 *val)
6754 {
6755 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6756 }
6757 
6758 /**
6759  *      t4_set_params_timeout - sets FW or device parameters
6760  *      @adap: the adapter
6761  *      @mbox: mailbox to use for the FW command
6762  *      @pf: the PF
6763  *      @vf: the VF
6764  *      @nparams: the number of parameters
6765  *      @params: the parameter names
6766  *      @val: the parameter values
6767  *      @timeout: the timeout time
6768  *
6769  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6770  *      specified at once.
6771  */
6772 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6773 			  unsigned int pf, unsigned int vf,
6774 			  unsigned int nparams, const u32 *params,
6775 			  const u32 *val, int timeout)
6776 {
6777 	struct fw_params_cmd c;
6778 	__be32 *p = &c.param[0].mnem;
6779 
6780 	if (nparams > 7)
6781 		return -EINVAL;
6782 
6783 	memset(&c, 0, sizeof(c));
6784 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6785 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6786 				  V_FW_PARAMS_CMD_PFN(pf) |
6787 				  V_FW_PARAMS_CMD_VFN(vf));
6788 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6789 
6790 	while (nparams--) {
6791 		*p++ = cpu_to_be32(*params++);
6792 		*p++ = cpu_to_be32(*val++);
6793 	}
6794 
6795 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
6796 }
6797 
6798 /**
6799  *	t4_set_params - sets FW or device parameters
6800  *	@adap: the adapter
6801  *	@mbox: mailbox to use for the FW command
6802  *	@pf: the PF
6803  *	@vf: the VF
6804  *	@nparams: the number of parameters
6805  *	@params: the parameter names
6806  *	@val: the parameter values
6807  *
6808  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
6809  *	specified at once.
6810  */
6811 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6812 		  unsigned int vf, unsigned int nparams, const u32 *params,
6813 		  const u32 *val)
6814 {
6815 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6816 				     FW_CMD_MAX_TIMEOUT);
6817 }
6818 
6819 /**
6820  *	t4_cfg_pfvf - configure PF/VF resource limits
6821  *	@adap: the adapter
6822  *	@mbox: mailbox to use for the FW command
6823  *	@pf: the PF being configured
6824  *	@vf: the VF being configured
6825  *	@txq: the max number of egress queues
6826  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
6827  *	@rxqi: the max number of interrupt-capable ingress queues
6828  *	@rxq: the max number of interruptless ingress queues
6829  *	@tc: the PCI traffic class
6830  *	@vi: the max number of virtual interfaces
6831  *	@cmask: the channel access rights mask for the PF/VF
6832  *	@pmask: the port access rights mask for the PF/VF
6833  *	@nexact: the maximum number of exact MPS filters
6834  *	@rcaps: read capabilities
6835  *	@wxcaps: write/execute capabilities
6836  *
6837  *	Configures resource limits and capabilities for a physical or virtual
6838  *	function.
6839  */
6840 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6841 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6842 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
6843 		unsigned int vi, unsigned int cmask, unsigned int pmask,
6844 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6845 {
6846 	struct fw_pfvf_cmd c;
6847 
6848 	memset(&c, 0, sizeof(c));
6849 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
6850 				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
6851 				  V_FW_PFVF_CMD_VFN(vf));
6852 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6853 	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
6854 				     V_FW_PFVF_CMD_NIQ(rxq));
6855 	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
6856 				    V_FW_PFVF_CMD_PMASK(pmask) |
6857 				    V_FW_PFVF_CMD_NEQ(txq));
6858 	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
6859 				      V_FW_PFVF_CMD_NVI(vi) |
6860 				      V_FW_PFVF_CMD_NEXACTF(nexact));
6861 	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
6862 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
6863 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
6864 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6865 }
6866 
6867 /**
6868  *	t4_alloc_vi_func - allocate a virtual interface
6869  *	@adap: the adapter
6870  *	@mbox: mailbox to use for the FW command
6871  *	@port: physical port associated with the VI
6872  *	@pf: the PF owning the VI
6873  *	@vf: the VF owning the VI
6874  *	@nmac: number of MAC addresses needed (1 to 5)
6875  *	@mac: the MAC addresses of the VI
6876  *	@rss_size: size of RSS table slice associated with this VI
6877  *	@portfunc: which Port Application Function MAC Address is desired
6878  *	@idstype: Intrusion Detection Type
6879  *
6880  *	Allocates a virtual interface for the given physical port.  If @mac is
6881  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
6882  *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
6883  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
6884  *	stored consecutively so the space needed is @nmac * 6 bytes.
6885  *	Returns a negative error number or the non-negative VI id.
6886  */
6887 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
6888 		     unsigned int port, unsigned int pf, unsigned int vf,
6889 		     unsigned int nmac, u8 *mac, u16 *rss_size,
6890 		     unsigned int portfunc, unsigned int idstype)
6891 {
6892 	int ret;
6893 	struct fw_vi_cmd c;
6894 
6895 	memset(&c, 0, sizeof(c));
6896 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
6897 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
6898 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
6899 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
6900 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
6901 				     V_FW_VI_CMD_FUNC(portfunc));
6902 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
6903 	c.nmac = nmac - 1;
6904 	if(!rss_size)
6905 		c.norss_rsssize = F_FW_VI_CMD_NORSS;
6906 
6907 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6908 	if (ret)
6909 		return ret;
6910 
6911 	if (mac) {
6912 		memcpy(mac, c.mac, sizeof(c.mac));
6913 		switch (nmac) {
6914 		case 5:
6915 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6916 		case 4:
6917 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6918 		case 3:
6919 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6920 		case 2:
6921 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
6922 		}
6923 	}
6924 	if (rss_size)
6925 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
6926 	return G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
6927 }
6928 
6929 /**
6930  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
6931  *      @adap: the adapter
6932  *      @mbox: mailbox to use for the FW command
6933  *      @port: physical port associated with the VI
6934  *      @pf: the PF owning the VI
6935  *      @vf: the VF owning the VI
6936  *      @nmac: number of MAC addresses needed (1 to 5)
6937  *      @mac: the MAC addresses of the VI
6938  *      @rss_size: size of RSS table slice associated with this VI
6939  *
6940  *	backwards compatible and convieniance routine to allocate a Virtual
6941  *	Interface with a Ethernet Port Application Function and Intrustion
6942  *	Detection System disabled.
6943  */
6944 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6945 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6946 		u16 *rss_size)
6947 {
6948 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
6949 				FW_VI_FUNC_ETH, 0);
6950 }
6951 
6952 /**
6953  * 	t4_free_vi - free a virtual interface
6954  * 	@adap: the adapter
6955  * 	@mbox: mailbox to use for the FW command
6956  * 	@pf: the PF owning the VI
6957  * 	@vf: the VF owning the VI
6958  * 	@viid: virtual interface identifiler
6959  *
6960  * 	Free a previously allocated virtual interface.
6961  */
6962 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
6963 	       unsigned int vf, unsigned int viid)
6964 {
6965 	struct fw_vi_cmd c;
6966 
6967 	memset(&c, 0, sizeof(c));
6968 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
6969 				  F_FW_CMD_REQUEST |
6970 				  F_FW_CMD_EXEC |
6971 				  V_FW_VI_CMD_PFN(pf) |
6972 				  V_FW_VI_CMD_VFN(vf));
6973 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
6974 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
6975 
6976 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6977 }
6978 
6979 /**
6980  *	t4_set_rxmode - set Rx properties of a virtual interface
6981  *	@adap: the adapter
6982  *	@mbox: mailbox to use for the FW command
6983  *	@viid: the VI id
6984  *	@mtu: the new MTU or -1
6985  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
6986  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
6987  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
6988  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
6989  *	@sleep_ok: if true we may sleep while awaiting command completion
6990  *
6991  *	Sets Rx properties of a virtual interface.
6992  */
6993 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
6994 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
6995 		  bool sleep_ok)
6996 {
6997 	struct fw_vi_rxmode_cmd c;
6998 
6999 	/* convert to FW values */
7000 	if (mtu < 0)
7001 		mtu = M_FW_VI_RXMODE_CMD_MTU;
7002 	if (promisc < 0)
7003 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
7004 	if (all_multi < 0)
7005 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
7006 	if (bcast < 0)
7007 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
7008 	if (vlanex < 0)
7009 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
7010 
7011 	memset(&c, 0, sizeof(c));
7012 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
7013 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7014 				   V_FW_VI_RXMODE_CMD_VIID(viid));
7015 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7016 	c.mtu_to_vlanexen =
7017 		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
7018 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
7019 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
7020 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
7021 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
7022 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7023 }
7024 
7025 /**
7026  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7027  *	@adap: the adapter
7028  *	@mbox: mailbox to use for the FW command
7029  *	@viid: the VI id
7030  *	@free: if true any existing filters for this VI id are first removed
7031  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7032  *	@addr: the MAC address(es)
7033  *	@idx: where to store the index of each allocated filter
7034  *	@hash: pointer to hash address filter bitmap
7035  *	@sleep_ok: call is allowed to sleep
7036  *
7037  *	Allocates an exact-match filter for each of the supplied addresses and
7038  *	sets it to the corresponding address.  If @idx is not %NULL it should
7039  *	have at least @naddr entries, each of which will be set to the index of
7040  *	the filter allocated for the corresponding MAC address.  If a filter
7041  *	could not be allocated for an address its index is set to 0xffff.
7042  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7043  *	are hashed and update the hash filter bitmap pointed at by @hash.
7044  *
7045  *	Returns a negative error number or the number of filters allocated.
7046  */
7047 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7048 		      unsigned int viid, bool free, unsigned int naddr,
7049 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7050 {
7051 	int offset, ret = 0;
7052 	struct fw_vi_mac_cmd c;
7053 	unsigned int nfilters = 0;
7054 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
7055 	unsigned int rem = naddr;
7056 
7057 	if (naddr > max_naddr)
7058 		return -EINVAL;
7059 
7060 	for (offset = 0; offset < naddr ; /**/) {
7061 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7062 					 ? rem
7063 					 : ARRAY_SIZE(c.u.exact));
7064 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7065 						     u.exact[fw_naddr]), 16);
7066 		struct fw_vi_mac_exact *p;
7067 		int i;
7068 
7069 		memset(&c, 0, sizeof(c));
7070 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7071 					   F_FW_CMD_REQUEST |
7072 					   F_FW_CMD_WRITE |
7073 					   V_FW_CMD_EXEC(free) |
7074 					   V_FW_VI_MAC_CMD_VIID(viid));
7075 		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
7076 						  V_FW_CMD_LEN16(len16));
7077 
7078 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7079 			p->valid_to_idx =
7080 				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7081 					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
7082 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7083 		}
7084 
7085 		/*
7086 		 * It's okay if we run out of space in our MAC address arena.
7087 		 * Some of the addresses we submit may get stored so we need
7088 		 * to run through the reply to see what the results were ...
7089 		 */
7090 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7091 		if (ret && ret != -FW_ENOMEM)
7092 			break;
7093 
7094 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7095 			u16 index = G_FW_VI_MAC_CMD_IDX(
7096 						be16_to_cpu(p->valid_to_idx));
7097 
7098 			if (idx)
7099 				idx[offset+i] = (index >=  max_naddr
7100 						 ? 0xffff
7101 						 : index);
7102 			if (index < max_naddr)
7103 				nfilters++;
7104 			else if (hash)
7105 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
7106 		}
7107 
7108 		free = false;
7109 		offset += fw_naddr;
7110 		rem -= fw_naddr;
7111 	}
7112 
7113 	if (ret == 0 || ret == -FW_ENOMEM)
7114 		ret = nfilters;
7115 	return ret;
7116 }
7117 
7118 /**
7119  *	t4_change_mac - modifies the exact-match filter for a MAC address
7120  *	@adap: the adapter
7121  *	@mbox: mailbox to use for the FW command
7122  *	@viid: the VI id
7123  *	@idx: index of existing filter for old value of MAC address, or -1
7124  *	@addr: the new MAC address value
7125  *	@persist: whether a new MAC allocation should be persistent
7126  *	@add_smt: if true also add the address to the HW SMT
7127  *
7128  *	Modifies an exact-match filter and sets it to the new MAC address if
7129  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
7130  *	latter case the address is added persistently if @persist is %true.
7131  *
7132  *	Note that in general it is not possible to modify the value of a given
7133  *	filter so the generic way to modify an address filter is to free the one
7134  *	being used by the old address value and allocate a new filter for the
7135  *	new address value.
7136  *
7137  *	Returns a negative error number or the index of the filter with the new
7138  *	MAC value.  Note that this index may differ from @idx.
7139  */
7140 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7141 		  int idx, const u8 *addr, bool persist, bool add_smt)
7142 {
7143 	int ret, mode;
7144 	struct fw_vi_mac_cmd c;
7145 	struct fw_vi_mac_exact *p = c.u.exact;
7146 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
7147 
7148 	if (idx < 0)		/* new allocation */
7149 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7150 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7151 
7152 	memset(&c, 0, sizeof(c));
7153 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7154 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7155 				   V_FW_VI_MAC_CMD_VIID(viid));
7156 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
7157 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7158 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
7159 				      V_FW_VI_MAC_CMD_IDX(idx));
7160 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7161 
7162 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7163 	if (ret == 0) {
7164 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
7165 		if (ret >= max_mac_addr)
7166 			ret = -ENOMEM;
7167 	}
7168 	return ret;
7169 }
7170 
7171 /**
7172  *	t4_set_addr_hash - program the MAC inexact-match hash filter
7173  *	@adap: the adapter
7174  *	@mbox: mailbox to use for the FW command
7175  *	@viid: the VI id
7176  *	@ucast: whether the hash filter should also match unicast addresses
7177  *	@vec: the value to be written to the hash filter
7178  *	@sleep_ok: call is allowed to sleep
7179  *
7180  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
7181  */
7182 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7183 		     bool ucast, u64 vec, bool sleep_ok)
7184 {
7185 	struct fw_vi_mac_cmd c;
7186 	u32 val;
7187 
7188 	memset(&c, 0, sizeof(c));
7189 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7190 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7191 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7192 	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
7193 	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
7194 	c.freemacs_to_len16 = cpu_to_be32(val);
7195 	c.u.hash.hashvec = cpu_to_be64(vec);
7196 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7197 }
7198 
7199 /**
7200  *      t4_enable_vi_params - enable/disable a virtual interface
7201  *      @adap: the adapter
7202  *      @mbox: mailbox to use for the FW command
7203  *      @viid: the VI id
7204  *      @rx_en: 1=enable Rx, 0=disable Rx
7205  *      @tx_en: 1=enable Tx, 0=disable Tx
7206  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7207  *
7208  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7209  *      only makes sense when enabling a Virtual Interface ...
7210  */
7211 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7212 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7213 {
7214 	struct fw_vi_enable_cmd c;
7215 
7216 	memset(&c, 0, sizeof(c));
7217 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7218 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7219 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7220 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
7221 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
7222 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
7223 				     FW_LEN16(c));
7224 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7225 }
7226 
7227 /**
7228  *	t4_enable_vi - enable/disable a virtual interface
7229  *	@adap: the adapter
7230  *	@mbox: mailbox to use for the FW command
7231  *	@viid: the VI id
7232  *	@rx_en: 1=enable Rx, 0=disable Rx
7233  *	@tx_en: 1=enable Tx, 0=disable Tx
7234  *
7235  *	Enables/disables a virtual interface.  Note that setting DCB Enable
7236  *	only makes sense when enabling a Virtual Interface ...
7237  */
7238 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7239 		 bool rx_en, bool tx_en)
7240 {
7241 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7242 }
7243 
7244 /**
7245  *	t4_identify_port - identify a VI's port by blinking its LED
7246  *	@adap: the adapter
7247  *	@mbox: mailbox to use for the FW command
7248  *	@viid: the VI id
7249  *	@nblinks: how many times to blink LED at 2.5 Hz
7250  *
7251  *	Identifies a VI's port by blinking its LED.
7252  */
7253 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7254 		     unsigned int nblinks)
7255 {
7256 	struct fw_vi_enable_cmd c;
7257 
7258 	memset(&c, 0, sizeof(c));
7259 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7260 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7261 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7262 	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
7263 	c.blinkdur = cpu_to_be16(nblinks);
7264 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7265 }
7266 
7267 /**
7268  *	t4_iq_stop - stop an ingress queue and its FLs
7269  *	@adap: the adapter
7270  *	@mbox: mailbox to use for the FW command
7271  *	@pf: the PF owning the queues
7272  *	@vf: the VF owning the queues
7273  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7274  *	@iqid: ingress queue id
7275  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7276  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7277  *
7278  *	Stops an ingress queue and its associated FLs, if any.  This causes
7279  *	any current or future data/messages destined for these queues to be
7280  *	tossed.
7281  */
7282 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7283 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7284 	       unsigned int fl0id, unsigned int fl1id)
7285 {
7286 	struct fw_iq_cmd c;
7287 
7288 	memset(&c, 0, sizeof(c));
7289 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7290 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7291 				  V_FW_IQ_CMD_VFN(vf));
7292 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
7293 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7294 	c.iqid = cpu_to_be16(iqid);
7295 	c.fl0id = cpu_to_be16(fl0id);
7296 	c.fl1id = cpu_to_be16(fl1id);
7297 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7298 }
7299 
7300 /**
7301  *	t4_iq_free - free an ingress queue and its FLs
7302  *	@adap: the adapter
7303  *	@mbox: mailbox to use for the FW command
7304  *	@pf: the PF owning the queues
7305  *	@vf: the VF owning the queues
7306  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7307  *	@iqid: ingress queue id
7308  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7309  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7310  *
7311  *	Frees an ingress queue and its associated FLs, if any.
7312  */
7313 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7314 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7315 	       unsigned int fl0id, unsigned int fl1id)
7316 {
7317 	struct fw_iq_cmd c;
7318 
7319 	memset(&c, 0, sizeof(c));
7320 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7321 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7322 				  V_FW_IQ_CMD_VFN(vf));
7323 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
7324 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7325 	c.iqid = cpu_to_be16(iqid);
7326 	c.fl0id = cpu_to_be16(fl0id);
7327 	c.fl1id = cpu_to_be16(fl1id);
7328 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7329 }
7330 
7331 /**
7332  *	t4_eth_eq_free - free an Ethernet egress queue
7333  *	@adap: the adapter
7334  *	@mbox: mailbox to use for the FW command
7335  *	@pf: the PF owning the queue
7336  *	@vf: the VF owning the queue
7337  *	@eqid: egress queue id
7338  *
7339  *	Frees an Ethernet egress queue.
7340  */
7341 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7342 		   unsigned int vf, unsigned int eqid)
7343 {
7344 	struct fw_eq_eth_cmd c;
7345 
7346 	memset(&c, 0, sizeof(c));
7347 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
7348 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7349 				  V_FW_EQ_ETH_CMD_PFN(pf) |
7350 				  V_FW_EQ_ETH_CMD_VFN(vf));
7351 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
7352 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
7353 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7354 }
7355 
7356 /**
7357  *	t4_ctrl_eq_free - free a control egress queue
7358  *	@adap: the adapter
7359  *	@mbox: mailbox to use for the FW command
7360  *	@pf: the PF owning the queue
7361  *	@vf: the VF owning the queue
7362  *	@eqid: egress queue id
7363  *
7364  *	Frees a control egress queue.
7365  */
7366 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7367 		    unsigned int vf, unsigned int eqid)
7368 {
7369 	struct fw_eq_ctrl_cmd c;
7370 
7371 	memset(&c, 0, sizeof(c));
7372 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
7373 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7374 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
7375 				  V_FW_EQ_CTRL_CMD_VFN(vf));
7376 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
7377 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
7378 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7379 }
7380 
7381 /**
7382  *	t4_ofld_eq_free - free an offload egress queue
7383  *	@adap: the adapter
7384  *	@mbox: mailbox to use for the FW command
7385  *	@pf: the PF owning the queue
7386  *	@vf: the VF owning the queue
7387  *	@eqid: egress queue id
7388  *
7389  *	Frees a control egress queue.
7390  */
7391 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7392 		    unsigned int vf, unsigned int eqid)
7393 {
7394 	struct fw_eq_ofld_cmd c;
7395 
7396 	memset(&c, 0, sizeof(c));
7397 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
7398 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7399 				  V_FW_EQ_OFLD_CMD_PFN(pf) |
7400 				  V_FW_EQ_OFLD_CMD_VFN(vf));
7401 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
7402 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
7403 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7404 }
7405 
7406 /**
7407  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
7408  *	@link_down_rc: Link Down Reason Code
7409  *
7410  *	Returns a string representation of the Link Down Reason Code.
7411  */
7412 const char *t4_link_down_rc_str(unsigned char link_down_rc)
7413 {
7414 	static const char *reason[] = {
7415 		"Link Down",
7416 		"Remote Fault",
7417 		"Auto-negotiation Failure",
7418 		"Reserved3",
7419 		"Insufficient Airflow",
7420 		"Unable To Determine Reason",
7421 		"No RX Signal Detected",
7422 		"Reserved7",
7423 	};
7424 
7425 	if (link_down_rc >= ARRAY_SIZE(reason))
7426 		return "Bad Reason Code";
7427 
7428 	return reason[link_down_rc];
7429 }
7430 
7431 /**
7432  *	t4_handle_fw_rpl - process a FW reply message
7433  *	@adap: the adapter
7434  *	@rpl: start of the FW message
7435  *
7436  *	Processes a FW message, such as link state change messages.
7437  */
7438 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7439 {
7440 	u8 opcode = *(const u8 *)rpl;
7441 	const struct fw_port_cmd *p = (const void *)rpl;
7442 	unsigned int action =
7443 			G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
7444 
7445 	if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7446 		/* link/module state change message */
7447 		int speed = 0, fc = 0, i;
7448 		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
7449 		struct port_info *pi = NULL;
7450 		struct link_config *lc;
7451 		u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
7452 		int link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
7453 		u32 mod = G_FW_PORT_CMD_MODTYPE(stat);
7454 
7455 		if (stat & F_FW_PORT_CMD_RXPAUSE)
7456 			fc |= PAUSE_RX;
7457 		if (stat & F_FW_PORT_CMD_TXPAUSE)
7458 			fc |= PAUSE_TX;
7459 		if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
7460 			speed = 100;
7461 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
7462 			speed = 1000;
7463 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
7464 			speed = 10000;
7465 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
7466 			speed = 40000;
7467 
7468 		for_each_port(adap, i) {
7469 			pi = adap2pinfo(adap, i);
7470 			if (pi->tx_chan == chan)
7471 				break;
7472 		}
7473 		lc = &pi->link_cfg;
7474 
7475 		if (mod != pi->mod_type) {
7476 			pi->mod_type = mod;
7477 			t4_os_portmod_changed(adap, i);
7478 		}
7479 		if (link_ok != lc->link_ok || speed != lc->speed ||
7480 		    fc != lc->fc) {                    /* something changed */
7481 			int reason;
7482 
7483 			if (!link_ok && lc->link_ok)
7484 				reason = G_FW_PORT_CMD_LINKDNRC(stat);
7485 			else
7486 				reason = -1;
7487 
7488 			lc->link_ok = link_ok;
7489 			lc->speed = speed;
7490 			lc->fc = fc;
7491 			lc->supported = be16_to_cpu(p->u.info.pcap);
7492 			t4_os_link_changed(adap, i, link_ok, reason);
7493 		}
7494 	} else {
7495 		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
7496 		return -EINVAL;
7497 	}
7498 	return 0;
7499 }
7500 
7501 /**
7502  *	get_pci_mode - determine a card's PCI mode
7503  *	@adapter: the adapter
7504  *	@p: where to store the PCI settings
7505  *
7506  *	Determines a card's PCI mode and associated parameters, such as speed
7507  *	and width.
7508  */
7509 static void get_pci_mode(struct adapter *adapter,
7510 				   struct pci_params *p)
7511 {
7512 	u16 val;
7513 	u32 pcie_cap;
7514 
7515 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7516 	if (pcie_cap) {
7517 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
7518 		p->speed = val & PCI_EXP_LNKSTA_CLS;
7519 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7520 	}
7521 }
7522 
7523 /**
7524  *	init_link_config - initialize a link's SW state
7525  *	@lc: structure holding the link state
7526  *	@caps: link capabilities
7527  *
7528  *	Initializes the SW state maintained for each link, including the link's
7529  *	capabilities and default speed/flow-control/autonegotiation settings.
7530  */
7531 static void init_link_config(struct link_config *lc, unsigned int caps)
7532 {
7533 	lc->supported = caps;
7534 	lc->requested_speed = 0;
7535 	lc->speed = 0;
7536 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
7537 	if (lc->supported & FW_PORT_CAP_ANEG) {
7538 		lc->advertising = lc->supported & ADVERT_MASK;
7539 		lc->autoneg = AUTONEG_ENABLE;
7540 		lc->requested_fc |= PAUSE_AUTONEG;
7541 	} else {
7542 		lc->advertising = 0;
7543 		lc->autoneg = AUTONEG_DISABLE;
7544 	}
7545 }
7546 
7547 struct flash_desc {
7548 	u32 vendor_and_model_id;
7549 	u32 size_mb;
7550 };
7551 
7552 int t4_get_flash_params(struct adapter *adapter)
7553 {
7554 	/*
7555 	 * Table for non-Numonix supported flash parts.  Numonix parts are left
7556 	 * to the preexisting well-tested code.  All flash parts have 64KB
7557 	 * sectors.
7558 	 */
7559 	static struct flash_desc supported_flash[] = {
7560 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
7561 	};
7562 
7563 	int ret;
7564 	u32 info = 0;
7565 
7566 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
7567 	if (!ret)
7568 		ret = sf1_read(adapter, 3, 0, 1, &info);
7569 	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
7570 	if (ret < 0)
7571 		return ret;
7572 
7573 	for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
7574 		if (supported_flash[ret].vendor_and_model_id == info) {
7575 			adapter->params.sf_size = supported_flash[ret].size_mb;
7576 			adapter->params.sf_nsec =
7577 				adapter->params.sf_size / SF_SEC_SIZE;
7578 			return 0;
7579 		}
7580 
7581 	if ((info & 0xff) != 0x20)		/* not a Numonix flash */
7582 		return -EINVAL;
7583 	info >>= 16;				/* log2 of size */
7584 	if (info >= 0x14 && info < 0x18)
7585 		adapter->params.sf_nsec = 1 << (info - 16);
7586 	else if (info == 0x18)
7587 		adapter->params.sf_nsec = 64;
7588 	else
7589 		return -EINVAL;
7590 	adapter->params.sf_size = 1 << info;
7591 
7592 	/*
7593 	 * We should ~probably~ reject adapters with FLASHes which are too
7594 	 * small but we have some legacy FPGAs with small FLASHes that we'd
7595 	 * still like to use.  So instead we emit a scary message ...
7596 	 */
7597 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
7598 		CH_WARN(adapter, "WARNING!!! FLASH size %#x < %#x!!!\n",
7599 			adapter->params.sf_size, FLASH_MIN_SIZE);
7600 
7601 	return 0;
7602 }
7603 
7604 static void set_pcie_completion_timeout(struct adapter *adapter,
7605 						  u8 range)
7606 {
7607 	u16 val;
7608 	u32 pcie_cap;
7609 
7610 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7611 	if (pcie_cap) {
7612 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
7613 		val &= 0xfff0;
7614 		val |= range ;
7615 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
7616 	}
7617 }
7618 
7619 static const struct chip_params *get_chip_params(int chipid)
7620 {
7621 	static const struct chip_params chip_params[] = {
7622 		{
7623 			/* T4 */
7624 			.nchan = NCHAN,
7625 			.pm_stats_cnt = PM_NSTATS,
7626 			.cng_ch_bits_log = 2,
7627 			.nsched_cls = 15,
7628 			.cim_num_obq = CIM_NUM_OBQ,
7629 			.mps_rplc_size = 128,
7630 			.vfcount = 128,
7631 			.sge_fl_db = F_DBPRIO,
7632 			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
7633 		},
7634 		{
7635 			/* T5 */
7636 			.nchan = NCHAN,
7637 			.pm_stats_cnt = PM_NSTATS,
7638 			.cng_ch_bits_log = 2,
7639 			.nsched_cls = 16,
7640 			.cim_num_obq = CIM_NUM_OBQ_T5,
7641 			.mps_rplc_size = 128,
7642 			.vfcount = 128,
7643 			.sge_fl_db = F_DBPRIO | F_DBTYPE,
7644 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
7645 		},
7646 		{
7647 			/* T6 */
7648 			.nchan = T6_NCHAN,
7649 			.pm_stats_cnt = T6_PM_NSTATS,
7650 			.cng_ch_bits_log = 3,
7651 			.nsched_cls = 16,
7652 			.cim_num_obq = CIM_NUM_OBQ_T5,
7653 			.mps_rplc_size = 256,
7654 			.vfcount = 256,
7655 			.sge_fl_db = 0,
7656 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
7657 		},
7658 	};
7659 
7660 	chipid -= CHELSIO_T4;
7661 	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
7662 		return NULL;
7663 
7664 	return &chip_params[chipid];
7665 }
7666 
7667 /**
7668  *	t4_prep_adapter - prepare SW and HW for operation
7669  *	@adapter: the adapter
7670  *	@buf: temporary space of at least VPD_LEN size provided by the caller.
7671  *
7672  *	Initialize adapter SW state for the various HW modules, set initial
7673  *	values for some adapter tunables, take PHYs out of reset, and
7674  *	initialize the MDIO interface.
7675  */
7676 int t4_prep_adapter(struct adapter *adapter, u8 *buf)
7677 {
7678 	int ret;
7679 	uint16_t device_id;
7680 	uint32_t pl_rev;
7681 
7682 	get_pci_mode(adapter, &adapter->params.pci);
7683 
7684 	pl_rev = t4_read_reg(adapter, A_PL_REV);
7685 	adapter->params.chipid = G_CHIPID(pl_rev);
7686 	adapter->params.rev = G_REV(pl_rev);
7687 	if (adapter->params.chipid == 0) {
7688 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
7689 		adapter->params.chipid = CHELSIO_T4;
7690 
7691 		/* T4A1 chip is not supported */
7692 		if (adapter->params.rev == 1) {
7693 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
7694 			return -EINVAL;
7695 		}
7696 	}
7697 
7698 	adapter->chip_params = get_chip_params(chip_id(adapter));
7699 	if (adapter->chip_params == NULL)
7700 		return -EINVAL;
7701 
7702 	adapter->params.pci.vpd_cap_addr =
7703 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
7704 
7705 	ret = t4_get_flash_params(adapter);
7706 	if (ret < 0)
7707 		return ret;
7708 
7709 	ret = get_vpd_params(adapter, &adapter->params.vpd, buf);
7710 	if (ret < 0)
7711 		return ret;
7712 
7713 	/* Cards with real ASICs have the chipid in the PCIe device id */
7714 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
7715 	if (device_id >> 12 == chip_id(adapter))
7716 		adapter->params.cim_la_size = CIMLA_SIZE;
7717 	else {
7718 		/* FPGA */
7719 		adapter->params.fpga = 1;
7720 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
7721 	}
7722 
7723 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7724 
7725 	/*
7726 	 * Default port and clock for debugging in case we can't reach FW.
7727 	 */
7728 	adapter->params.nports = 1;
7729 	adapter->params.portvec = 1;
7730 	adapter->params.vpd.cclk = 50000;
7731 
7732 	/* Set pci completion timeout value to 4 seconds. */
7733 	set_pcie_completion_timeout(adapter, 0xd);
7734 	return 0;
7735 }
7736 
7737 /**
7738  *	t4_shutdown_adapter - shut down adapter, host & wire
7739  *	@adapter: the adapter
7740  *
7741  *	Perform an emergency shutdown of the adapter and stop it from
7742  *	continuing any further communication on the ports or DMA to the
7743  *	host.  This is typically used when the adapter and/or firmware
7744  *	have crashed and we want to prevent any further accidental
7745  *	communication with the rest of the world.  This will also force
7746  *	the port Link Status to go down -- if register writes work --
7747  *	which should help our peers figure out that we're down.
7748  */
7749 int t4_shutdown_adapter(struct adapter *adapter)
7750 {
7751 	int port;
7752 
7753 	t4_intr_disable(adapter);
7754 	t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
7755 	for_each_port(adapter, port) {
7756 		u32 a_port_cfg = PORT_REG(port,
7757 					  is_t4(adapter)
7758 					  ? A_XGMAC_PORT_CFG
7759 					  : A_MAC_PORT_CFG);
7760 
7761 		t4_write_reg(adapter, a_port_cfg,
7762 			     t4_read_reg(adapter, a_port_cfg)
7763 			     & ~V_SIGNAL_DET(1));
7764 	}
7765 	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
7766 
7767 	return 0;
7768 }
7769 
7770 /**
7771  *	t4_init_devlog_params - initialize adapter->params.devlog
7772  *	@adap: the adapter
7773  *	@fw_attach: whether we can talk to the firmware
7774  *
7775  *	Initialize various fields of the adapter's Firmware Device Log
7776  *	Parameters structure.
7777  */
7778 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
7779 {
7780 	struct devlog_params *dparams = &adap->params.devlog;
7781 	u32 pf_dparams;
7782 	unsigned int devlog_meminfo;
7783 	struct fw_devlog_cmd devlog_cmd;
7784 	int ret;
7785 
7786 	/* If we're dealing with newer firmware, the Device Log Paramerters
7787 	 * are stored in a designated register which allows us to access the
7788 	 * Device Log even if we can't talk to the firmware.
7789 	 */
7790 	pf_dparams =
7791 		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
7792 	if (pf_dparams) {
7793 		unsigned int nentries, nentries128;
7794 
7795 		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
7796 		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
7797 
7798 		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
7799 		nentries = (nentries128 + 1) * 128;
7800 		dparams->size = nentries * sizeof(struct fw_devlog_e);
7801 
7802 		return 0;
7803 	}
7804 
7805 	/*
7806 	 * For any failing returns ...
7807 	 */
7808 	memset(dparams, 0, sizeof *dparams);
7809 
7810 	/*
7811 	 * If we can't talk to the firmware, there's really nothing we can do
7812 	 * at this point.
7813 	 */
7814 	if (!fw_attach)
7815 		return -ENXIO;
7816 
7817 	/* Otherwise, ask the firmware for it's Device Log Parameters.
7818 	 */
7819 	memset(&devlog_cmd, 0, sizeof devlog_cmd);
7820 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
7821 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
7822 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
7823 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7824 			 &devlog_cmd);
7825 	if (ret)
7826 		return ret;
7827 
7828 	devlog_meminfo =
7829 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
7830 	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
7831 	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
7832 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
7833 
7834 	return 0;
7835 }
7836 
7837 /**
7838  *	t4_init_sge_params - initialize adap->params.sge
7839  *	@adapter: the adapter
7840  *
7841  *	Initialize various fields of the adapter's SGE Parameters structure.
7842  */
7843 int t4_init_sge_params(struct adapter *adapter)
7844 {
7845 	u32 r;
7846 	struct sge_params *sp = &adapter->params.sge;
7847 	unsigned i;
7848 
7849 	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
7850 	sp->counter_val[0] = G_THRESHOLD_0(r);
7851 	sp->counter_val[1] = G_THRESHOLD_1(r);
7852 	sp->counter_val[2] = G_THRESHOLD_2(r);
7853 	sp->counter_val[3] = G_THRESHOLD_3(r);
7854 
7855 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
7856 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r));
7857 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r));
7858 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
7859 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r));
7860 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r));
7861 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
7862 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r));
7863 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r));
7864 
7865 	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
7866 	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
7867 	if (is_t4(adapter))
7868 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
7869 	else
7870 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
7871 
7872 	/* egress queues: log2 of # of doorbells per BAR2 page */
7873 	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
7874 	r >>= S_QUEUESPERPAGEPF0 +
7875 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
7876 	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
7877 
7878 	/* ingress queues: log2 of # of doorbells per BAR2 page */
7879 	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
7880 	r >>= S_QUEUESPERPAGEPF0 +
7881 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
7882 	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
7883 
7884 	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
7885 	r >>= S_HOSTPAGESIZEPF0 +
7886 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
7887 	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
7888 
7889 	r = t4_read_reg(adapter, A_SGE_CONTROL);
7890 	sp->sge_control = r;
7891 	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
7892 	sp->fl_pktshift = G_PKTSHIFT(r);
7893 	sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) + 5);
7894 	if (is_t4(adapter))
7895 		sp->pack_boundary = sp->pad_boundary;
7896 	else {
7897 		r = t4_read_reg(adapter, A_SGE_CONTROL2);
7898 		if (G_INGPACKBOUNDARY(r) == 0)
7899 			sp->pack_boundary = 16;
7900 		else
7901 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
7902 	}
7903 	for (i = 0; i < SGE_FLBUF_SIZES; i++)
7904 		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
7905 		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
7906 
7907 	return 0;
7908 }
7909 
7910 /*
7911  * Read and cache the adapter's compressed filter mode and ingress config.
7912  */
7913 static void read_filter_mode_and_ingress_config(struct adapter *adap)
7914 {
7915 	struct tp_params *tpp = &adap->params.tp;
7916 
7917 	if (t4_use_ldst(adap)) {
7918 		t4_fw_tp_pio_rw(adap, &tpp->vlan_pri_map, 1,
7919 				A_TP_VLAN_PRI_MAP, 1);
7920 		t4_fw_tp_pio_rw(adap, &tpp->ingress_config, 1,
7921 				A_TP_INGRESS_CONFIG, 1);
7922 	} else {
7923 		t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
7924 				 &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP);
7925 		t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
7926 				 &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG);
7927 	}
7928 
7929 	/*
7930 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
7931 	 * shift positions of several elements of the Compressed Filter Tuple
7932 	 * for this adapter which we need frequently ...
7933 	 */
7934 	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
7935 	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
7936 	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
7937 	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
7938 	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
7939 	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
7940 	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
7941 	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
7942 	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
7943 	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
7944 
7945 	/*
7946 	 * If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
7947 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
7948 	 */
7949 	if ((tpp->ingress_config & F_VNIC) == 0)
7950 		tpp->vnic_shift = -1;
7951 }
7952 
7953 /**
7954  *      t4_init_tp_params - initialize adap->params.tp
7955  *      @adap: the adapter
7956  *
7957  *      Initialize various fields of the adapter's TP Parameters structure.
7958  */
7959 int t4_init_tp_params(struct adapter *adap)
7960 {
7961 	int chan;
7962 	u32 v;
7963 	struct tp_params *tpp = &adap->params.tp;
7964 
7965 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
7966 	tpp->tre = G_TIMERRESOLUTION(v);
7967 	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
7968 
7969 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
7970 	for (chan = 0; chan < MAX_NCHAN; chan++)
7971 		tpp->tx_modq[chan] = chan;
7972 
7973 	read_filter_mode_and_ingress_config(adap);
7974 
7975 	/*
7976 	 * For T6, cache the adapter's compressed error vector
7977 	 * and passing outer header info for encapsulated packets.
7978 	 */
7979 	if (chip_id(adap) > CHELSIO_T5) {
7980 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
7981 		tpp->rx_pkt_encap = (v & F_CRXPKTENC) ? 1 : 0;
7982 	}
7983 
7984 	return 0;
7985 }
7986 
7987 /**
7988  *      t4_filter_field_shift - calculate filter field shift
7989  *      @adap: the adapter
7990  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
7991  *
7992  *      Return the shift position of a filter field within the Compressed
7993  *      Filter Tuple.  The filter field is specified via its selection bit
7994  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
7995  */
7996 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
7997 {
7998 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
7999 	unsigned int sel;
8000 	int field_shift;
8001 
8002 	if ((filter_mode & filter_sel) == 0)
8003 		return -1;
8004 
8005 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
8006 		switch (filter_mode & sel) {
8007 		case F_FCOE:
8008 			field_shift += W_FT_FCOE;
8009 			break;
8010 		case F_PORT:
8011 			field_shift += W_FT_PORT;
8012 			break;
8013 		case F_VNIC_ID:
8014 			field_shift += W_FT_VNIC_ID;
8015 			break;
8016 		case F_VLAN:
8017 			field_shift += W_FT_VLAN;
8018 			break;
8019 		case F_TOS:
8020 			field_shift += W_FT_TOS;
8021 			break;
8022 		case F_PROTOCOL:
8023 			field_shift += W_FT_PROTOCOL;
8024 			break;
8025 		case F_ETHERTYPE:
8026 			field_shift += W_FT_ETHERTYPE;
8027 			break;
8028 		case F_MACMATCH:
8029 			field_shift += W_FT_MACMATCH;
8030 			break;
8031 		case F_MPSHITTYPE:
8032 			field_shift += W_FT_MPSHITTYPE;
8033 			break;
8034 		case F_FRAGMENTATION:
8035 			field_shift += W_FT_FRAGMENTATION;
8036 			break;
8037 		}
8038 	}
8039 	return field_shift;
8040 }
8041 
8042 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
8043 {
8044 	u8 addr[6];
8045 	int ret, i, j;
8046 	struct fw_port_cmd c;
8047 	u16 rss_size;
8048 	struct port_info *p = adap2pinfo(adap, port_id);
8049 	u32 param, val;
8050 
8051 	memset(&c, 0, sizeof(c));
8052 
8053 	for (i = 0, j = -1; i <= p->port_id; i++) {
8054 		do {
8055 			j++;
8056 		} while ((adap->params.portvec & (1 << j)) == 0);
8057 	}
8058 
8059 	if (!(adap->flags & IS_VF) ||
8060 	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
8061 		c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) |
8062 				       F_FW_CMD_REQUEST | F_FW_CMD_READ |
8063 				       V_FW_PORT_CMD_PORTID(j));
8064 		c.action_to_len16 = htonl(
8065 			V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
8066 			FW_LEN16(c));
8067 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8068 		if (ret)
8069 			return ret;
8070 
8071 		ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
8072 		p->mdio_addr = (ret & F_FW_PORT_CMD_MDIOCAP) ?
8073 			G_FW_PORT_CMD_MDIOADDR(ret) : -1;
8074 		p->port_type = G_FW_PORT_CMD_PTYPE(ret);
8075 		p->mod_type = G_FW_PORT_CMD_MODTYPE(ret);
8076 
8077 		init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
8078 	}
8079 
8080 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
8081 	if (ret < 0)
8082 		return ret;
8083 
8084 	p->vi[0].viid = ret;
8085 	p->tx_chan = j;
8086 	p->rx_chan_map = t4_get_mps_bg_map(adap, j);
8087 	p->lport = j;
8088 	p->vi[0].rss_size = rss_size;
8089 	t4_os_set_hw_addr(adap, p->port_id, addr);
8090 
8091 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8092 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
8093 	    V_FW_PARAMS_PARAM_YZ(p->vi[0].viid);
8094 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
8095 	if (ret)
8096 		p->vi[0].rss_base = 0xffff;
8097 	else {
8098 		/* MPASS((val >> 16) == rss_size); */
8099 		p->vi[0].rss_base = val & 0xffff;
8100 	}
8101 
8102 	return 0;
8103 }
8104 
8105 /**
8106  *	t4_read_cimq_cfg - read CIM queue configuration
8107  *	@adap: the adapter
8108  *	@base: holds the queue base addresses in bytes
8109  *	@size: holds the queue sizes in bytes
8110  *	@thres: holds the queue full thresholds in bytes
8111  *
8112  *	Returns the current configuration of the CIM queues, starting with
8113  *	the IBQs, then the OBQs.
8114  */
8115 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
8116 {
8117 	unsigned int i, v;
8118 	int cim_num_obq = adap->chip_params->cim_num_obq;
8119 
8120 	for (i = 0; i < CIM_NUM_IBQ; i++) {
8121 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
8122 			     V_QUENUMSELECT(i));
8123 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8124 		/* value is in 256-byte units */
8125 		*base++ = G_CIMQBASE(v) * 256;
8126 		*size++ = G_CIMQSIZE(v) * 256;
8127 		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
8128 	}
8129 	for (i = 0; i < cim_num_obq; i++) {
8130 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8131 			     V_QUENUMSELECT(i));
8132 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8133 		/* value is in 256-byte units */
8134 		*base++ = G_CIMQBASE(v) * 256;
8135 		*size++ = G_CIMQSIZE(v) * 256;
8136 	}
8137 }
8138 
8139 /**
8140  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
8141  *	@adap: the adapter
8142  *	@qid: the queue index
8143  *	@data: where to store the queue contents
8144  *	@n: capacity of @data in 32-bit words
8145  *
8146  *	Reads the contents of the selected CIM queue starting at address 0 up
8147  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8148  *	error and the number of 32-bit words actually read on success.
8149  */
8150 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8151 {
8152 	int i, err, attempts;
8153 	unsigned int addr;
8154 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
8155 
8156 	if (qid > 5 || (n & 3))
8157 		return -EINVAL;
8158 
8159 	addr = qid * nwords;
8160 	if (n > nwords)
8161 		n = nwords;
8162 
8163 	/* It might take 3-10ms before the IBQ debug read access is allowed.
8164 	 * Wait for 1 Sec with a delay of 1 usec.
8165 	 */
8166 	attempts = 1000000;
8167 
8168 	for (i = 0; i < n; i++, addr++) {
8169 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
8170 			     F_IBQDBGEN);
8171 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
8172 				      attempts, 1);
8173 		if (err)
8174 			return err;
8175 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
8176 	}
8177 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
8178 	return i;
8179 }
8180 
8181 /**
8182  *	t4_read_cim_obq - read the contents of a CIM outbound queue
8183  *	@adap: the adapter
8184  *	@qid: the queue index
8185  *	@data: where to store the queue contents
8186  *	@n: capacity of @data in 32-bit words
8187  *
8188  *	Reads the contents of the selected CIM queue starting at address 0 up
8189  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8190  *	error and the number of 32-bit words actually read on success.
8191  */
8192 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8193 {
8194 	int i, err;
8195 	unsigned int addr, v, nwords;
8196 	int cim_num_obq = adap->chip_params->cim_num_obq;
8197 
8198 	if ((qid > (cim_num_obq - 1)) || (n & 3))
8199 		return -EINVAL;
8200 
8201 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8202 		     V_QUENUMSELECT(qid));
8203 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8204 
8205 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
8206 	nwords = G_CIMQSIZE(v) * 64;  /* same */
8207 	if (n > nwords)
8208 		n = nwords;
8209 
8210 	for (i = 0; i < n; i++, addr++) {
8211 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
8212 			     F_OBQDBGEN);
8213 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
8214 				      2, 1);
8215 		if (err)
8216 			return err;
8217 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
8218 	}
8219 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
8220 	return i;
8221 }
8222 
8223 enum {
8224 	CIM_QCTL_BASE     = 0,
8225 	CIM_CTL_BASE      = 0x2000,
8226 	CIM_PBT_ADDR_BASE = 0x2800,
8227 	CIM_PBT_LRF_BASE  = 0x3000,
8228 	CIM_PBT_DATA_BASE = 0x3800
8229 };
8230 
8231 /**
8232  *	t4_cim_read - read a block from CIM internal address space
8233  *	@adap: the adapter
8234  *	@addr: the start address within the CIM address space
8235  *	@n: number of words to read
8236  *	@valp: where to store the result
8237  *
8238  *	Reads a block of 4-byte words from the CIM intenal address space.
8239  */
8240 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
8241 		unsigned int *valp)
8242 {
8243 	int ret = 0;
8244 
8245 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8246 		return -EBUSY;
8247 
8248 	for ( ; !ret && n--; addr += 4) {
8249 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
8250 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8251 				      0, 5, 2);
8252 		if (!ret)
8253 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
8254 	}
8255 	return ret;
8256 }
8257 
8258 /**
8259  *	t4_cim_write - write a block into CIM internal address space
8260  *	@adap: the adapter
8261  *	@addr: the start address within the CIM address space
8262  *	@n: number of words to write
8263  *	@valp: set of values to write
8264  *
8265  *	Writes a block of 4-byte words into the CIM intenal address space.
8266  */
8267 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8268 		 const unsigned int *valp)
8269 {
8270 	int ret = 0;
8271 
8272 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8273 		return -EBUSY;
8274 
8275 	for ( ; !ret && n--; addr += 4) {
8276 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
8277 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
8278 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8279 				      0, 5, 2);
8280 	}
8281 	return ret;
8282 }
8283 
8284 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8285 			 unsigned int val)
8286 {
8287 	return t4_cim_write(adap, addr, 1, &val);
8288 }
8289 
8290 /**
8291  *	t4_cim_ctl_read - read a block from CIM control region
8292  *	@adap: the adapter
8293  *	@addr: the start address within the CIM control region
8294  *	@n: number of words to read
8295  *	@valp: where to store the result
8296  *
8297  *	Reads a block of 4-byte words from the CIM control region.
8298  */
8299 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
8300 		    unsigned int *valp)
8301 {
8302 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
8303 }
8304 
8305 /**
8306  *	t4_cim_read_la - read CIM LA capture buffer
8307  *	@adap: the adapter
8308  *	@la_buf: where to store the LA data
8309  *	@wrptr: the HW write pointer within the capture buffer
8310  *
8311  *	Reads the contents of the CIM LA buffer with the most recent entry at
8312  *	the end	of the returned data and with the entry at @wrptr first.
8313  *	We try to leave the LA in the running state we find it in.
8314  */
8315 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8316 {
8317 	int i, ret;
8318 	unsigned int cfg, val, idx;
8319 
8320 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
8321 	if (ret)
8322 		return ret;
8323 
8324 	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
8325 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
8326 		if (ret)
8327 			return ret;
8328 	}
8329 
8330 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8331 	if (ret)
8332 		goto restart;
8333 
8334 	idx = G_UPDBGLAWRPTR(val);
8335 	if (wrptr)
8336 		*wrptr = idx;
8337 
8338 	for (i = 0; i < adap->params.cim_la_size; i++) {
8339 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8340 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
8341 		if (ret)
8342 			break;
8343 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8344 		if (ret)
8345 			break;
8346 		if (val & F_UPDBGLARDEN) {
8347 			ret = -ETIMEDOUT;
8348 			break;
8349 		}
8350 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
8351 		if (ret)
8352 			break;
8353 
8354 		/* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
8355 		idx = (idx + 1) & M_UPDBGLARDPTR;
8356 		/*
8357 		 * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
8358 		 * identify the 32-bit portion of the full 312-bit data
8359 		 */
8360 		if (is_t6(adap))
8361 			while ((idx & 0xf) > 9)
8362 				idx = (idx + 1) % M_UPDBGLARDPTR;
8363 	}
8364 restart:
8365 	if (cfg & F_UPDBGLAEN) {
8366 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8367 				      cfg & ~F_UPDBGLARDEN);
8368 		if (!ret)
8369 			ret = r;
8370 	}
8371 	return ret;
8372 }
8373 
8374 /**
8375  *	t4_tp_read_la - read TP LA capture buffer
8376  *	@adap: the adapter
8377  *	@la_buf: where to store the LA data
8378  *	@wrptr: the HW write pointer within the capture buffer
8379  *
8380  *	Reads the contents of the TP LA buffer with the most recent entry at
8381  *	the end	of the returned data and with the entry at @wrptr first.
8382  *	We leave the LA in the running state we find it in.
8383  */
8384 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8385 {
8386 	bool last_incomplete;
8387 	unsigned int i, cfg, val, idx;
8388 
8389 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
8390 	if (cfg & F_DBGLAENABLE)			/* freeze LA */
8391 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8392 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
8393 
8394 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
8395 	idx = G_DBGLAWPTR(val);
8396 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
8397 	if (last_incomplete)
8398 		idx = (idx + 1) & M_DBGLARPTR;
8399 	if (wrptr)
8400 		*wrptr = idx;
8401 
8402 	val &= 0xffff;
8403 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
8404 	val |= adap->params.tp.la_mask;
8405 
8406 	for (i = 0; i < TPLA_SIZE; i++) {
8407 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
8408 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
8409 		idx = (idx + 1) & M_DBGLARPTR;
8410 	}
8411 
8412 	/* Wipe out last entry if it isn't valid */
8413 	if (last_incomplete)
8414 		la_buf[TPLA_SIZE - 1] = ~0ULL;
8415 
8416 	if (cfg & F_DBGLAENABLE)		/* restore running state */
8417 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8418 			     cfg | adap->params.tp.la_mask);
8419 }
8420 
8421 /*
8422  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8423  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
8424  * state for more than the Warning Threshold then we'll issue a warning about
8425  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
8426  * appears to be hung every Warning Repeat second till the situation clears.
8427  * If the situation clears, we'll note that as well.
8428  */
8429 #define SGE_IDMA_WARN_THRESH 1
8430 #define SGE_IDMA_WARN_REPEAT 300
8431 
8432 /**
8433  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8434  *	@adapter: the adapter
8435  *	@idma: the adapter IDMA Monitor state
8436  *
8437  *	Initialize the state of an SGE Ingress DMA Monitor.
8438  */
8439 void t4_idma_monitor_init(struct adapter *adapter,
8440 			  struct sge_idma_monitor_state *idma)
8441 {
8442 	/* Initialize the state variables for detecting an SGE Ingress DMA
8443 	 * hang.  The SGE has internal counters which count up on each clock
8444 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
8445 	 * same state they were on the previous clock tick.  The clock used is
8446 	 * the Core Clock so we have a limit on the maximum "time" they can
8447 	 * record; typically a very small number of seconds.  For instance,
8448 	 * with a 600MHz Core Clock, we can only count up to a bit more than
8449 	 * 7s.  So we'll synthesize a larger counter in order to not run the
8450 	 * risk of having the "timers" overflow and give us the flexibility to
8451 	 * maintain a Hung SGE State Machine of our own which operates across
8452 	 * a longer time frame.
8453 	 */
8454 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8455 	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
8456 }
8457 
8458 /**
8459  *	t4_idma_monitor - monitor SGE Ingress DMA state
8460  *	@adapter: the adapter
8461  *	@idma: the adapter IDMA Monitor state
8462  *	@hz: number of ticks/second
8463  *	@ticks: number of ticks since the last IDMA Monitor call
8464  */
8465 void t4_idma_monitor(struct adapter *adapter,
8466 		     struct sge_idma_monitor_state *idma,
8467 		     int hz, int ticks)
8468 {
8469 	int i, idma_same_state_cnt[2];
8470 
8471 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
8472 	  * are counters inside the SGE which count up on each clock when the
8473 	  * SGE finds its Ingress DMA State Engines in the same states they
8474 	  * were in the previous clock.  The counters will peg out at
8475 	  * 0xffffffff without wrapping around so once they pass the 1s
8476 	  * threshold they'll stay above that till the IDMA state changes.
8477 	  */
8478 	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
8479 	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
8480 	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8481 
8482 	for (i = 0; i < 2; i++) {
8483 		u32 debug0, debug11;
8484 
8485 		/* If the Ingress DMA Same State Counter ("timer") is less
8486 		 * than 1s, then we can reset our synthesized Stall Timer and
8487 		 * continue.  If we have previously emitted warnings about a
8488 		 * potential stalled Ingress Queue, issue a note indicating
8489 		 * that the Ingress Queue has resumed forward progress.
8490 		 */
8491 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8492 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
8493 				CH_WARN(adapter, "SGE idma%d, queue %u, "
8494 					"resumed after %d seconds\n",
8495 					i, idma->idma_qid[i],
8496 					idma->idma_stalled[i]/hz);
8497 			idma->idma_stalled[i] = 0;
8498 			continue;
8499 		}
8500 
8501 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8502 		 * domain.  The first time we get here it'll be because we
8503 		 * passed the 1s Threshold; each additional time it'll be
8504 		 * because the RX Timer Callback is being fired on its regular
8505 		 * schedule.
8506 		 *
8507 		 * If the stall is below our Potential Hung Ingress Queue
8508 		 * Warning Threshold, continue.
8509 		 */
8510 		if (idma->idma_stalled[i] == 0) {
8511 			idma->idma_stalled[i] = hz;
8512 			idma->idma_warn[i] = 0;
8513 		} else {
8514 			idma->idma_stalled[i] += ticks;
8515 			idma->idma_warn[i] -= ticks;
8516 		}
8517 
8518 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
8519 			continue;
8520 
8521 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8522 		 */
8523 		if (idma->idma_warn[i] > 0)
8524 			continue;
8525 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
8526 
8527 		/* Read and save the SGE IDMA State and Queue ID information.
8528 		 * We do this every time in case it changes across time ...
8529 		 * can't be too careful ...
8530 		 */
8531 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
8532 		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8533 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8534 
8535 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
8536 		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8537 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8538 
8539 		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
8540 			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8541 			i, idma->idma_qid[i], idma->idma_state[i],
8542 			idma->idma_stalled[i]/hz,
8543 			debug0, debug11);
8544 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8545 	}
8546 }
8547 
8548 /**
8549  *	t4_read_pace_tbl - read the pace table
8550  *	@adap: the adapter
8551  *	@pace_vals: holds the returned values
8552  *
8553  *	Returns the values of TP's pace table in microseconds.
8554  */
8555 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
8556 {
8557 	unsigned int i, v;
8558 
8559 	for (i = 0; i < NTX_SCHED; i++) {
8560 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
8561 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
8562 		pace_vals[i] = dack_ticks_to_usec(adap, v);
8563 	}
8564 }
8565 
8566 /**
8567  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
8568  *	@adap: the adapter
8569  *	@sched: the scheduler index
8570  *	@kbps: the byte rate in Kbps
8571  *	@ipg: the interpacket delay in tenths of nanoseconds
8572  *
8573  *	Return the current configuration of a HW Tx scheduler.
8574  */
8575 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
8576 		     unsigned int *ipg)
8577 {
8578 	unsigned int v, addr, bpt, cpt;
8579 
8580 	if (kbps) {
8581 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
8582 		t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
8583 		v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
8584 		if (sched & 1)
8585 			v >>= 16;
8586 		bpt = (v >> 8) & 0xff;
8587 		cpt = v & 0xff;
8588 		if (!cpt)
8589 			*kbps = 0;	/* scheduler disabled */
8590 		else {
8591 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
8592 			*kbps = (v * bpt) / 125;
8593 		}
8594 	}
8595 	if (ipg) {
8596 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
8597 		t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
8598 		v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
8599 		if (sched & 1)
8600 			v >>= 16;
8601 		v &= 0xffff;
8602 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
8603 	}
8604 }
8605 
8606 /**
8607  *	t4_load_cfg - download config file
8608  *	@adap: the adapter
8609  *	@cfg_data: the cfg text file to write
8610  *	@size: text file size
8611  *
8612  *	Write the supplied config text file to the card's serial flash.
8613  */
8614 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
8615 {
8616 	int ret, i, n, cfg_addr;
8617 	unsigned int addr;
8618 	unsigned int flash_cfg_start_sec;
8619 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
8620 
8621 	cfg_addr = t4_flash_cfg_addr(adap);
8622 	if (cfg_addr < 0)
8623 		return cfg_addr;
8624 
8625 	addr = cfg_addr;
8626 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
8627 
8628 	if (size > FLASH_CFG_MAX_SIZE) {
8629 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
8630 		       FLASH_CFG_MAX_SIZE);
8631 		return -EFBIG;
8632 	}
8633 
8634 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
8635 			 sf_sec_size);
8636 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
8637 				     flash_cfg_start_sec + i - 1);
8638 	/*
8639 	 * If size == 0 then we're simply erasing the FLASH sectors associated
8640 	 * with the on-adapter Firmware Configuration File.
8641 	 */
8642 	if (ret || size == 0)
8643 		goto out;
8644 
8645 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
8646 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
8647 		if ( (size - i) <  SF_PAGE_SIZE)
8648 			n = size - i;
8649 		else
8650 			n = SF_PAGE_SIZE;
8651 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
8652 		if (ret)
8653 			goto out;
8654 
8655 		addr += SF_PAGE_SIZE;
8656 		cfg_data += SF_PAGE_SIZE;
8657 	}
8658 
8659 out:
8660 	if (ret)
8661 		CH_ERR(adap, "config file %s failed %d\n",
8662 		       (size == 0 ? "clear" : "download"), ret);
8663 	return ret;
8664 }
8665 
8666 /**
8667  *	t5_fw_init_extern_mem - initialize the external memory
8668  *	@adap: the adapter
8669  *
8670  *	Initializes the external memory on T5.
8671  */
8672 int t5_fw_init_extern_mem(struct adapter *adap)
8673 {
8674 	u32 params[1], val[1];
8675 	int ret;
8676 
8677 	if (!is_t5(adap))
8678 		return 0;
8679 
8680 	val[0] = 0xff; /* Initialize all MCs */
8681 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8682 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
8683 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
8684 			FW_CMD_MAX_TIMEOUT);
8685 
8686 	return ret;
8687 }
8688 
8689 /* BIOS boot headers */
8690 typedef struct pci_expansion_rom_header {
8691 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
8692 	u8	reserved[22]; /* Reserved per processor Architecture data */
8693 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
8694 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
8695 
8696 /* Legacy PCI Expansion ROM Header */
8697 typedef struct legacy_pci_expansion_rom_header {
8698 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
8699 	u8	size512; /* Current Image Size in units of 512 bytes */
8700 	u8	initentry_point[4];
8701 	u8	cksum; /* Checksum computed on the entire Image */
8702 	u8	reserved[16]; /* Reserved */
8703 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
8704 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
8705 
8706 /* EFI PCI Expansion ROM Header */
8707 typedef struct efi_pci_expansion_rom_header {
8708 	u8	signature[2]; // ROM signature. The value 0xaa55
8709 	u8	initialization_size[2]; /* Units 512. Includes this header */
8710 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
8711 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
8712 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
8713 	u8	compression_type[2]; /* Compression type. */
8714 		/*
8715 		 * Compression type definition
8716 		 * 0x0: uncompressed
8717 		 * 0x1: Compressed
8718 		 * 0x2-0xFFFF: Reserved
8719 		 */
8720 	u8	reserved[8]; /* Reserved */
8721 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
8722 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
8723 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
8724 
8725 /* PCI Data Structure Format */
8726 typedef struct pcir_data_structure { /* PCI Data Structure */
8727 	u8	signature[4]; /* Signature. The string "PCIR" */
8728 	u8	vendor_id[2]; /* Vendor Identification */
8729 	u8	device_id[2]; /* Device Identification */
8730 	u8	vital_product[2]; /* Pointer to Vital Product Data */
8731 	u8	length[2]; /* PCIR Data Structure Length */
8732 	u8	revision; /* PCIR Data Structure Revision */
8733 	u8	class_code[3]; /* Class Code */
8734 	u8	image_length[2]; /* Image Length. Multiple of 512B */
8735 	u8	code_revision[2]; /* Revision Level of Code/Data */
8736 	u8	code_type; /* Code Type. */
8737 		/*
8738 		 * PCI Expansion ROM Code Types
8739 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
8740 		 * 0x01: Open Firmware standard for PCI. FCODE
8741 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
8742 		 * 0x03: EFI Image. EFI
8743 		 * 0x04-0xFF: Reserved.
8744 		 */
8745 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
8746 	u8	reserved[2]; /* Reserved */
8747 } pcir_data_t; /* PCI__DATA_STRUCTURE */
8748 
8749 /* BOOT constants */
8750 enum {
8751 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
8752 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
8753 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
8754 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
8755 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
8756 	VENDOR_ID = 0x1425, /* Vendor ID */
8757 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
8758 };
8759 
8760 /*
8761  *	modify_device_id - Modifies the device ID of the Boot BIOS image
8762  *	@adatper: the device ID to write.
8763  *	@boot_data: the boot image to modify.
8764  *
8765  *	Write the supplied device ID to the boot BIOS image.
8766  */
8767 static void modify_device_id(int device_id, u8 *boot_data)
8768 {
8769 	legacy_pci_exp_rom_header_t *header;
8770 	pcir_data_t *pcir_header;
8771 	u32 cur_header = 0;
8772 
8773 	/*
8774 	 * Loop through all chained images and change the device ID's
8775 	 */
8776 	while (1) {
8777 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
8778 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
8779 			      le16_to_cpu(*(u16*)header->pcir_offset)];
8780 
8781 		/*
8782 		 * Only modify the Device ID if code type is Legacy or HP.
8783 		 * 0x00: Okay to modify
8784 		 * 0x01: FCODE. Do not be modify
8785 		 * 0x03: Okay to modify
8786 		 * 0x04-0xFF: Do not modify
8787 		 */
8788 		if (pcir_header->code_type == 0x00) {
8789 			u8 csum = 0;
8790 			int i;
8791 
8792 			/*
8793 			 * Modify Device ID to match current adatper
8794 			 */
8795 			*(u16*) pcir_header->device_id = device_id;
8796 
8797 			/*
8798 			 * Set checksum temporarily to 0.
8799 			 * We will recalculate it later.
8800 			 */
8801 			header->cksum = 0x0;
8802 
8803 			/*
8804 			 * Calculate and update checksum
8805 			 */
8806 			for (i = 0; i < (header->size512 * 512); i++)
8807 				csum += (u8)boot_data[cur_header + i];
8808 
8809 			/*
8810 			 * Invert summed value to create the checksum
8811 			 * Writing new checksum value directly to the boot data
8812 			 */
8813 			boot_data[cur_header + 7] = -csum;
8814 
8815 		} else if (pcir_header->code_type == 0x03) {
8816 
8817 			/*
8818 			 * Modify Device ID to match current adatper
8819 			 */
8820 			*(u16*) pcir_header->device_id = device_id;
8821 
8822 		}
8823 
8824 
8825 		/*
8826 		 * Check indicator element to identify if this is the last
8827 		 * image in the ROM.
8828 		 */
8829 		if (pcir_header->indicator & 0x80)
8830 			break;
8831 
8832 		/*
8833 		 * Move header pointer up to the next image in the ROM.
8834 		 */
8835 		cur_header += header->size512 * 512;
8836 	}
8837 }
8838 
8839 /*
8840  *	t4_load_boot - download boot flash
8841  *	@adapter: the adapter
8842  *	@boot_data: the boot image to write
8843  *	@boot_addr: offset in flash to write boot_data
8844  *	@size: image size
8845  *
8846  *	Write the supplied boot image to the card's serial flash.
8847  *	The boot image has the following sections: a 28-byte header and the
8848  *	boot image.
8849  */
8850 int t4_load_boot(struct adapter *adap, u8 *boot_data,
8851 		 unsigned int boot_addr, unsigned int size)
8852 {
8853 	pci_exp_rom_header_t *header;
8854 	int pcir_offset ;
8855 	pcir_data_t *pcir_header;
8856 	int ret, addr;
8857 	uint16_t device_id;
8858 	unsigned int i;
8859 	unsigned int boot_sector = (boot_addr * 1024 );
8860 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
8861 
8862 	/*
8863 	 * Make sure the boot image does not encroach on the firmware region
8864 	 */
8865 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
8866 		CH_ERR(adap, "boot image encroaching on firmware region\n");
8867 		return -EFBIG;
8868 	}
8869 
8870 	/*
8871 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
8872 	 * and Boot configuration data sections. These 3 boot sections span
8873 	 * sectors 0 to 7 in flash and live right before the FW image location.
8874 	 */
8875 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
8876 			sf_sec_size);
8877 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
8878 				     (boot_sector >> 16) + i - 1);
8879 
8880 	/*
8881 	 * If size == 0 then we're simply erasing the FLASH sectors associated
8882 	 * with the on-adapter option ROM file
8883 	 */
8884 	if (ret || (size == 0))
8885 		goto out;
8886 
8887 	/* Get boot header */
8888 	header = (pci_exp_rom_header_t *)boot_data;
8889 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
8890 	/* PCIR Data Structure */
8891 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
8892 
8893 	/*
8894 	 * Perform some primitive sanity testing to avoid accidentally
8895 	 * writing garbage over the boot sectors.  We ought to check for
8896 	 * more but it's not worth it for now ...
8897 	 */
8898 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
8899 		CH_ERR(adap, "boot image too small/large\n");
8900 		return -EFBIG;
8901 	}
8902 
8903 #ifndef CHELSIO_T4_DIAGS
8904 	/*
8905 	 * Check BOOT ROM header signature
8906 	 */
8907 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
8908 		CH_ERR(adap, "Boot image missing signature\n");
8909 		return -EINVAL;
8910 	}
8911 
8912 	/*
8913 	 * Check PCI header signature
8914 	 */
8915 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
8916 		CH_ERR(adap, "PCI header missing signature\n");
8917 		return -EINVAL;
8918 	}
8919 
8920 	/*
8921 	 * Check Vendor ID matches Chelsio ID
8922 	 */
8923 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
8924 		CH_ERR(adap, "Vendor ID missing signature\n");
8925 		return -EINVAL;
8926 	}
8927 #endif
8928 
8929 	/*
8930 	 * Retrieve adapter's device ID
8931 	 */
8932 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
8933 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
8934 	device_id = device_id & 0xf0ff;
8935 
8936 	/*
8937 	 * Check PCIE Device ID
8938 	 */
8939 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
8940 		/*
8941 		 * Change the device ID in the Boot BIOS image to match
8942 		 * the Device ID of the current adapter.
8943 		 */
8944 		modify_device_id(device_id, boot_data);
8945 	}
8946 
8947 	/*
8948 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
8949 	 * we finish copying the rest of the boot image. This will ensure
8950 	 * that the BIOS boot header will only be written if the boot image
8951 	 * was written in full.
8952 	 */
8953 	addr = boot_sector;
8954 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
8955 		addr += SF_PAGE_SIZE;
8956 		boot_data += SF_PAGE_SIZE;
8957 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
8958 		if (ret)
8959 			goto out;
8960 	}
8961 
8962 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
8963 			     (const u8 *)header, 0);
8964 
8965 out:
8966 	if (ret)
8967 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
8968 	return ret;
8969 }
8970 
8971 /*
8972  *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
8973  *	@adapter: the adapter
8974  *
8975  *	Return the address within the flash where the OptionROM Configuration
8976  *	is stored, or an error if the device FLASH is too small to contain
8977  *	a OptionROM Configuration.
8978  */
8979 static int t4_flash_bootcfg_addr(struct adapter *adapter)
8980 {
8981 	/*
8982 	 * If the device FLASH isn't large enough to hold a Firmware
8983 	 * Configuration File, return an error.
8984 	 */
8985 	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
8986 		return -ENOSPC;
8987 
8988 	return FLASH_BOOTCFG_START;
8989 }
8990 
8991 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
8992 {
8993 	int ret, i, n, cfg_addr;
8994 	unsigned int addr;
8995 	unsigned int flash_cfg_start_sec;
8996 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
8997 
8998 	cfg_addr = t4_flash_bootcfg_addr(adap);
8999 	if (cfg_addr < 0)
9000 		return cfg_addr;
9001 
9002 	addr = cfg_addr;
9003 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9004 
9005 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
9006 		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
9007 			FLASH_BOOTCFG_MAX_SIZE);
9008 		return -EFBIG;
9009 	}
9010 
9011 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
9012 			 sf_sec_size);
9013 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9014 					flash_cfg_start_sec + i - 1);
9015 
9016 	/*
9017 	 * If size == 0 then we're simply erasing the FLASH sectors associated
9018 	 * with the on-adapter OptionROM Configuration File.
9019 	 */
9020 	if (ret || size == 0)
9021 		goto out;
9022 
9023 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9024 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9025 		if ( (size - i) <  SF_PAGE_SIZE)
9026 			n = size - i;
9027 		else
9028 			n = SF_PAGE_SIZE;
9029 		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
9030 		if (ret)
9031 			goto out;
9032 
9033 		addr += SF_PAGE_SIZE;
9034 		cfg_data += SF_PAGE_SIZE;
9035 	}
9036 
9037 out:
9038 	if (ret)
9039 		CH_ERR(adap, "boot config data %s failed %d\n",
9040 				(size == 0 ? "clear" : "download"), ret);
9041 	return ret;
9042 }
9043 
9044 /**
9045  *	t4_set_filter_mode - configure the optional components of filter tuples
9046  *	@adap: the adapter
9047  *	@mode_map: a bitmap selcting which optional filter components to enable
9048  *
9049  *	Sets the filter mode by selecting the optional components to enable
9050  *	in filter tuples.  Returns 0 on success and a negative error if the
9051  *	requested mode needs more bits than are available for optional
9052  *	components.
9053  */
9054 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map)
9055 {
9056 	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
9057 
9058 	int i, nbits = 0;
9059 
9060 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
9061 		if (mode_map & (1 << i))
9062 			nbits += width[i];
9063 	if (nbits > FILTER_OPT_LEN)
9064 		return -EINVAL;
9065 	if (t4_use_ldst(adap))
9066 		t4_fw_tp_pio_rw(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, 0);
9067 	else
9068 		t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, &mode_map,
9069 				  1, A_TP_VLAN_PRI_MAP);
9070 	read_filter_mode_and_ingress_config(adap);
9071 
9072 	return 0;
9073 }
9074 
9075 /**
9076  *	t4_clr_port_stats - clear port statistics
9077  *	@adap: the adapter
9078  *	@idx: the port index
9079  *
9080  *	Clear HW statistics for the given port.
9081  */
9082 void t4_clr_port_stats(struct adapter *adap, int idx)
9083 {
9084 	unsigned int i;
9085 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
9086 	u32 port_base_addr;
9087 
9088 	if (is_t4(adap))
9089 		port_base_addr = PORT_BASE(idx);
9090 	else
9091 		port_base_addr = T5_PORT_BASE(idx);
9092 
9093 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
9094 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
9095 		t4_write_reg(adap, port_base_addr + i, 0);
9096 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
9097 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
9098 		t4_write_reg(adap, port_base_addr + i, 0);
9099 	for (i = 0; i < 4; i++)
9100 		if (bgmap & (1 << i)) {
9101 			t4_write_reg(adap,
9102 			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
9103 			t4_write_reg(adap,
9104 			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
9105 		}
9106 }
9107 
9108 /**
9109  *	t4_i2c_rd - read I2C data from adapter
9110  *	@adap: the adapter
9111  *	@port: Port number if per-port device; <0 if not
9112  *	@devid: per-port device ID or absolute device ID
9113  *	@offset: byte offset into device I2C space
9114  *	@len: byte length of I2C space data
9115  *	@buf: buffer in which to return I2C data
9116  *
9117  *	Reads the I2C data from the indicated device and location.
9118  */
9119 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
9120 	      int port, unsigned int devid,
9121 	      unsigned int offset, unsigned int len,
9122 	      u8 *buf)
9123 {
9124 	u32 ldst_addrspace;
9125 	struct fw_ldst_cmd ldst;
9126 	int ret;
9127 
9128 	if (port >= 4 ||
9129 	    devid >= 256 ||
9130 	    offset >= 256 ||
9131 	    len > sizeof ldst.u.i2c.data)
9132 		return -EINVAL;
9133 
9134 	memset(&ldst, 0, sizeof ldst);
9135 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9136 	ldst.op_to_addrspace =
9137 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9138 			    F_FW_CMD_REQUEST |
9139 			    F_FW_CMD_READ |
9140 			    ldst_addrspace);
9141 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9142 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9143 	ldst.u.i2c.did = devid;
9144 	ldst.u.i2c.boffset = offset;
9145 	ldst.u.i2c.blen = len;
9146 	ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9147 	if (!ret)
9148 		memcpy(buf, ldst.u.i2c.data, len);
9149 	return ret;
9150 }
9151 
9152 /**
9153  *	t4_i2c_wr - write I2C data to adapter
9154  *	@adap: the adapter
9155  *	@port: Port number if per-port device; <0 if not
9156  *	@devid: per-port device ID or absolute device ID
9157  *	@offset: byte offset into device I2C space
9158  *	@len: byte length of I2C space data
9159  *	@buf: buffer containing new I2C data
9160  *
9161  *	Write the I2C data to the indicated device and location.
9162  */
9163 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
9164 	      int port, unsigned int devid,
9165 	      unsigned int offset, unsigned int len,
9166 	      u8 *buf)
9167 {
9168 	u32 ldst_addrspace;
9169 	struct fw_ldst_cmd ldst;
9170 
9171 	if (port >= 4 ||
9172 	    devid >= 256 ||
9173 	    offset >= 256 ||
9174 	    len > sizeof ldst.u.i2c.data)
9175 		return -EINVAL;
9176 
9177 	memset(&ldst, 0, sizeof ldst);
9178 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9179 	ldst.op_to_addrspace =
9180 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9181 			    F_FW_CMD_REQUEST |
9182 			    F_FW_CMD_WRITE |
9183 			    ldst_addrspace);
9184 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9185 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9186 	ldst.u.i2c.did = devid;
9187 	ldst.u.i2c.boffset = offset;
9188 	ldst.u.i2c.blen = len;
9189 	memcpy(ldst.u.i2c.data, buf, len);
9190 	return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9191 }
9192 
9193 /**
9194  * 	t4_sge_ctxt_rd - read an SGE context through FW
9195  * 	@adap: the adapter
9196  * 	@mbox: mailbox to use for the FW command
9197  * 	@cid: the context id
9198  * 	@ctype: the context type
9199  * 	@data: where to store the context data
9200  *
9201  * 	Issues a FW command through the given mailbox to read an SGE context.
9202  */
9203 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
9204 		   enum ctxt_type ctype, u32 *data)
9205 {
9206 	int ret;
9207 	struct fw_ldst_cmd c;
9208 
9209 	if (ctype == CTXT_EGRESS)
9210 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
9211 	else if (ctype == CTXT_INGRESS)
9212 		ret = FW_LDST_ADDRSPC_SGE_INGC;
9213 	else if (ctype == CTXT_FLM)
9214 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
9215 	else
9216 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
9217 
9218 	memset(&c, 0, sizeof(c));
9219 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9220 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
9221 					V_FW_LDST_CMD_ADDRSPACE(ret));
9222 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9223 	c.u.idctxt.physid = cpu_to_be32(cid);
9224 
9225 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9226 	if (ret == 0) {
9227 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
9228 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
9229 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
9230 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
9231 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
9232 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
9233 	}
9234 	return ret;
9235 }
9236 
9237 /**
9238  * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
9239  * 	@adap: the adapter
9240  * 	@cid: the context id
9241  * 	@ctype: the context type
9242  * 	@data: where to store the context data
9243  *
9244  * 	Reads an SGE context directly, bypassing FW.  This is only for
9245  * 	debugging when FW is unavailable.
9246  */
9247 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
9248 		      u32 *data)
9249 {
9250 	int i, ret;
9251 
9252 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
9253 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
9254 	if (!ret)
9255 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
9256 			*data++ = t4_read_reg(adap, i);
9257 	return ret;
9258 }
9259 
9260 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
9261     		    int sleep_ok)
9262 {
9263 	struct fw_sched_cmd cmd;
9264 
9265 	memset(&cmd, 0, sizeof(cmd));
9266 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9267 				      F_FW_CMD_REQUEST |
9268 				      F_FW_CMD_WRITE);
9269 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9270 
9271 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
9272 	cmd.u.config.type = type;
9273 	cmd.u.config.minmaxen = minmaxen;
9274 
9275 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9276 			       NULL, sleep_ok);
9277 }
9278 
9279 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
9280 		    int rateunit, int ratemode, int channel, int cl,
9281 		    int minrate, int maxrate, int weight, int pktsize,
9282 		    int sleep_ok)
9283 {
9284 	struct fw_sched_cmd cmd;
9285 
9286 	memset(&cmd, 0, sizeof(cmd));
9287 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9288 				      F_FW_CMD_REQUEST |
9289 				      F_FW_CMD_WRITE);
9290 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9291 
9292 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9293 	cmd.u.params.type = type;
9294 	cmd.u.params.level = level;
9295 	cmd.u.params.mode = mode;
9296 	cmd.u.params.ch = channel;
9297 	cmd.u.params.cl = cl;
9298 	cmd.u.params.unit = rateunit;
9299 	cmd.u.params.rate = ratemode;
9300 	cmd.u.params.min = cpu_to_be32(minrate);
9301 	cmd.u.params.max = cpu_to_be32(maxrate);
9302 	cmd.u.params.weight = cpu_to_be16(weight);
9303 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9304 
9305 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9306 			       NULL, sleep_ok);
9307 }
9308 
9309 /*
9310  *	t4_config_watchdog - configure (enable/disable) a watchdog timer
9311  *	@adapter: the adapter
9312  * 	@mbox: mailbox to use for the FW command
9313  * 	@pf: the PF owning the queue
9314  * 	@vf: the VF owning the queue
9315  *	@timeout: watchdog timeout in ms
9316  *	@action: watchdog timer / action
9317  *
9318  *	There are separate watchdog timers for each possible watchdog
9319  *	action.  Configure one of the watchdog timers by setting a non-zero
9320  *	timeout.  Disable a watchdog timer by using a timeout of zero.
9321  */
9322 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
9323 		       unsigned int pf, unsigned int vf,
9324 		       unsigned int timeout, unsigned int action)
9325 {
9326 	struct fw_watchdog_cmd wdog;
9327 	unsigned int ticks;
9328 
9329 	/*
9330 	 * The watchdog command expects a timeout in units of 10ms so we need
9331 	 * to convert it here (via rounding) and force a minimum of one 10ms
9332 	 * "tick" if the timeout is non-zero but the conversion results in 0
9333 	 * ticks.
9334 	 */
9335 	ticks = (timeout + 5)/10;
9336 	if (timeout && !ticks)
9337 		ticks = 1;
9338 
9339 	memset(&wdog, 0, sizeof wdog);
9340 	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
9341 				     F_FW_CMD_REQUEST |
9342 				     F_FW_CMD_WRITE |
9343 				     V_FW_PARAMS_CMD_PFN(pf) |
9344 				     V_FW_PARAMS_CMD_VFN(vf));
9345 	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
9346 	wdog.timeout = cpu_to_be32(ticks);
9347 	wdog.action = cpu_to_be32(action);
9348 
9349 	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
9350 }
9351 
9352 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
9353 {
9354 	struct fw_devlog_cmd devlog_cmd;
9355 	int ret;
9356 
9357 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9358 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9359 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9360 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9361 	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9362 			 sizeof(devlog_cmd), &devlog_cmd);
9363 	if (ret)
9364 		return ret;
9365 
9366 	*level = devlog_cmd.level;
9367 	return 0;
9368 }
9369 
9370 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
9371 {
9372 	struct fw_devlog_cmd devlog_cmd;
9373 
9374 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9375 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9376 					     F_FW_CMD_REQUEST |
9377 					     F_FW_CMD_WRITE);
9378 	devlog_cmd.level = level;
9379 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9380 	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9381 			  sizeof(devlog_cmd), &devlog_cmd);
9382 }
9383