1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2012, 2016 Chelsio Communications, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_inet.h" 33 34 #include <sys/param.h> 35 #include <sys/eventhandler.h> 36 37 #include "common.h" 38 #include "t4_regs.h" 39 #include "t4_regs_values.h" 40 #include "firmware/t4fw_interface.h" 41 42 #undef msleep 43 #define msleep(x) do { \ 44 if (cold) \ 45 DELAY((x) * 1000); \ 46 else \ 47 pause("t4hw", (x) * hz / 1000); \ 48 } while (0) 49 50 /** 51 * t4_wait_op_done_val - wait until an operation is completed 52 * @adapter: the adapter performing the operation 53 * @reg: the register to check for completion 54 * @mask: a single-bit field within @reg that indicates completion 55 * @polarity: the value of the field when the operation is completed 56 * @attempts: number of check iterations 57 * @delay: delay in usecs between iterations 58 * @valp: where to store the value of the register at completion time 59 * 60 * Wait until an operation is completed by checking a bit in a register 61 * up to @attempts times. If @valp is not NULL the value of the register 62 * at the time it indicated completion is stored there. Returns 0 if the 63 * operation completes and -EAGAIN otherwise. 64 */ 65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 66 int polarity, int attempts, int delay, u32 *valp) 67 { 68 while (1) { 69 u32 val = t4_read_reg(adapter, reg); 70 71 if (!!(val & mask) == polarity) { 72 if (valp) 73 *valp = val; 74 return 0; 75 } 76 if (--attempts == 0) 77 return -EAGAIN; 78 if (delay) 79 udelay(delay); 80 } 81 } 82 83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 84 int polarity, int attempts, int delay) 85 { 86 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 87 delay, NULL); 88 } 89 90 /** 91 * t4_set_reg_field - set a register field to a value 92 * @adapter: the adapter to program 93 * @addr: the register address 94 * @mask: specifies the portion of the register to modify 95 * @val: the new value for the register field 96 * 97 * Sets a register field specified by the supplied mask to the 98 * given value. 99 */ 100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 101 u32 val) 102 { 103 u32 v = t4_read_reg(adapter, addr) & ~mask; 104 105 t4_write_reg(adapter, addr, v | val); 106 (void) t4_read_reg(adapter, addr); /* flush */ 107 } 108 109 /** 110 * t4_read_indirect - read indirectly addressed registers 111 * @adap: the adapter 112 * @addr_reg: register holding the indirect address 113 * @data_reg: register holding the value of the indirect register 114 * @vals: where the read register values are stored 115 * @nregs: how many indirect registers to read 116 * @start_idx: index of first indirect register to read 117 * 118 * Reads registers that are accessed indirectly through an address/data 119 * register pair. 120 */ 121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 122 unsigned int data_reg, u32 *vals, 123 unsigned int nregs, unsigned int start_idx) 124 { 125 while (nregs--) { 126 t4_write_reg(adap, addr_reg, start_idx); 127 *vals++ = t4_read_reg(adap, data_reg); 128 start_idx++; 129 } 130 } 131 132 /** 133 * t4_write_indirect - write indirectly addressed registers 134 * @adap: the adapter 135 * @addr_reg: register holding the indirect addresses 136 * @data_reg: register holding the value for the indirect registers 137 * @vals: values to write 138 * @nregs: how many indirect registers to write 139 * @start_idx: address of first indirect register to write 140 * 141 * Writes a sequential block of registers that are accessed indirectly 142 * through an address/data register pair. 143 */ 144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 145 unsigned int data_reg, const u32 *vals, 146 unsigned int nregs, unsigned int start_idx) 147 { 148 while (nregs--) { 149 t4_write_reg(adap, addr_reg, start_idx++); 150 t4_write_reg(adap, data_reg, *vals++); 151 } 152 } 153 154 /* 155 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 156 * mechanism. This guarantees that we get the real value even if we're 157 * operating within a Virtual Machine and the Hypervisor is trapping our 158 * Configuration Space accesses. 159 * 160 * N.B. This routine should only be used as a last resort: the firmware uses 161 * the backdoor registers on a regular basis and we can end up 162 * conflicting with it's uses! 163 */ 164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg) 165 { 166 u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg); 167 u32 val; 168 169 if (chip_id(adap) <= CHELSIO_T5) 170 req |= F_ENABLE; 171 else 172 req |= F_T6_ENABLE; 173 174 if (is_t4(adap)) 175 req |= F_LOCALCFG; 176 177 t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req); 178 val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA); 179 180 /* 181 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 182 * Configuration Space read. (None of the other fields matter when 183 * F_ENABLE is 0 so a simple register write is easier than a 184 * read-modify-write via t4_set_reg_field().) 185 */ 186 t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0); 187 188 return val; 189 } 190 191 /* 192 * t4_report_fw_error - report firmware error 193 * @adap: the adapter 194 * 195 * The adapter firmware can indicate error conditions to the host. 196 * If the firmware has indicated an error, print out the reason for 197 * the firmware error. 198 */ 199 static void t4_report_fw_error(struct adapter *adap) 200 { 201 static const char *const reason[] = { 202 "Crash", /* PCIE_FW_EVAL_CRASH */ 203 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 204 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 205 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 206 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 207 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 208 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 209 "Reserved", /* reserved */ 210 }; 211 u32 pcie_fw; 212 213 pcie_fw = t4_read_reg(adap, A_PCIE_FW); 214 if (pcie_fw & F_PCIE_FW_ERR) { 215 adap->flags &= ~FW_OK; 216 CH_ERR(adap, "firmware reports adapter error: %s (0x%08x)\n", 217 reason[G_PCIE_FW_EVAL(pcie_fw)], pcie_fw); 218 if (pcie_fw != 0xffffffff) 219 t4_os_dump_devlog(adap); 220 } 221 } 222 223 /* 224 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 225 */ 226 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 227 u32 mbox_addr) 228 { 229 for ( ; nflit; nflit--, mbox_addr += 8) 230 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 231 } 232 233 /* 234 * Handle a FW assertion reported in a mailbox. 235 */ 236 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt) 237 { 238 CH_ALERT(adap, 239 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 240 asrt->u.assert.filename_0_7, 241 be32_to_cpu(asrt->u.assert.line), 242 be32_to_cpu(asrt->u.assert.x), 243 be32_to_cpu(asrt->u.assert.y)); 244 } 245 246 struct port_tx_state { 247 uint64_t rx_pause; 248 uint64_t tx_frames; 249 }; 250 251 static void 252 read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state) 253 { 254 uint32_t rx_pause_reg, tx_frames_reg; 255 256 if (is_t4(sc)) { 257 tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L); 258 rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L); 259 } else { 260 tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L); 261 rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L); 262 } 263 264 tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg); 265 tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg); 266 } 267 268 static void 269 read_tx_state(struct adapter *sc, struct port_tx_state *tx_state) 270 { 271 int i; 272 273 for_each_port(sc, i) 274 read_tx_state_one(sc, i, &tx_state[i]); 275 } 276 277 static void 278 check_tx_state(struct adapter *sc, struct port_tx_state *tx_state) 279 { 280 uint32_t port_ctl_reg; 281 uint64_t tx_frames, rx_pause; 282 int i; 283 284 for_each_port(sc, i) { 285 rx_pause = tx_state[i].rx_pause; 286 tx_frames = tx_state[i].tx_frames; 287 read_tx_state_one(sc, i, &tx_state[i]); /* update */ 288 289 if (is_t4(sc)) 290 port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL); 291 else 292 port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL); 293 if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN && 294 rx_pause != tx_state[i].rx_pause && 295 tx_frames == tx_state[i].tx_frames) { 296 t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0); 297 mdelay(1); 298 t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN); 299 } 300 } 301 } 302 303 #define X_CIM_PF_NOACCESS 0xeeeeeeee 304 /** 305 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox 306 * @adap: the adapter 307 * @mbox: index of the mailbox to use 308 * @cmd: the command to write 309 * @size: command length in bytes 310 * @rpl: where to optionally store the reply 311 * @sleep_ok: if true we may sleep while awaiting command completion 312 * @timeout: time to wait for command to finish before timing out 313 * (negative implies @sleep_ok=false) 314 * 315 * Sends the given command to FW through the selected mailbox and waits 316 * for the FW to execute the command. If @rpl is not %NULL it is used to 317 * store the FW's reply to the command. The command and its optional 318 * reply are of the same length. Some FW commands like RESET and 319 * INITIALIZE can take a considerable amount of time to execute. 320 * @sleep_ok determines whether we may sleep while awaiting the response. 321 * If sleeping is allowed we use progressive backoff otherwise we spin. 322 * Note that passing in a negative @timeout is an alternate mechanism 323 * for specifying @sleep_ok=false. This is useful when a higher level 324 * interface allows for specification of @timeout but not @sleep_ok ... 325 * 326 * The return value is 0 on success or a negative errno on failure. A 327 * failure can happen either because we are not able to execute the 328 * command or FW executes it but signals an error. In the latter case 329 * the return value is the error code indicated by FW (negated). 330 */ 331 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, 332 int size, void *rpl, bool sleep_ok, int timeout) 333 { 334 /* 335 * We delay in small increments at first in an effort to maintain 336 * responsiveness for simple, fast executing commands but then back 337 * off to larger delays to a maximum retry delay. 338 */ 339 static const int delay[] = { 340 1, 1, 3, 5, 10, 10, 20, 50, 100 341 }; 342 u32 v; 343 u64 res; 344 int i, ms, delay_idx, ret, next_tx_check; 345 u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA); 346 u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL); 347 u32 ctl; 348 __be64 cmd_rpl[MBOX_LEN/8]; 349 u32 pcie_fw; 350 struct port_tx_state tx_state[MAX_NPORTS]; 351 352 if (adap->flags & CHK_MBOX_ACCESS) 353 ASSERT_SYNCHRONIZED_OP(adap); 354 355 if (size <= 0 || (size & 15) || size > MBOX_LEN) 356 return -EINVAL; 357 358 if (adap->flags & IS_VF) { 359 if (is_t6(adap)) 360 data_reg = FW_T6VF_MBDATA_BASE_ADDR; 361 else 362 data_reg = FW_T4VF_MBDATA_BASE_ADDR; 363 ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL); 364 } 365 366 /* 367 * If we have a negative timeout, that implies that we can't sleep. 368 */ 369 if (timeout < 0) { 370 sleep_ok = false; 371 timeout = -timeout; 372 } 373 374 /* 375 * Attempt to gain access to the mailbox. 376 */ 377 for (i = 0; i < 4; i++) { 378 ctl = t4_read_reg(adap, ctl_reg); 379 v = G_MBOWNER(ctl); 380 if (v != X_MBOWNER_NONE) 381 break; 382 } 383 384 /* 385 * If we were unable to gain access, report the error to our caller. 386 */ 387 if (v != X_MBOWNER_PL) { 388 t4_report_fw_error(adap); 389 ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT; 390 return ret; 391 } 392 393 /* 394 * If we gain ownership of the mailbox and there's a "valid" message 395 * in it, this is likely an asynchronous error message from the 396 * firmware. So we'll report that and then proceed on with attempting 397 * to issue our own command ... which may well fail if the error 398 * presaged the firmware crashing ... 399 */ 400 if (ctl & F_MBMSGVALID) { 401 CH_DUMP_MBOX(adap, mbox, data_reg, "VLD", NULL, true); 402 } 403 404 /* 405 * Copy in the new mailbox command and send it on its way ... 406 */ 407 memset(cmd_rpl, 0, sizeof(cmd_rpl)); 408 memcpy(cmd_rpl, cmd, size); 409 CH_DUMP_MBOX(adap, mbox, 0, "cmd", cmd_rpl, false); 410 for (i = 0; i < ARRAY_SIZE(cmd_rpl); i++) 411 t4_write_reg64(adap, data_reg + i * 8, be64_to_cpu(cmd_rpl[i])); 412 413 if (adap->flags & IS_VF) { 414 /* 415 * For the VFs, the Mailbox Data "registers" are 416 * actually backed by T4's "MA" interface rather than 417 * PL Registers (as is the case for the PFs). Because 418 * these are in different coherency domains, the write 419 * to the VF's PL-register-backed Mailbox Control can 420 * race in front of the writes to the MA-backed VF 421 * Mailbox Data "registers". So we need to do a 422 * read-back on at least one byte of the VF Mailbox 423 * Data registers before doing the write to the VF 424 * Mailbox Control register. 425 */ 426 t4_read_reg(adap, data_reg); 427 } 428 429 t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW)); 430 read_tx_state(adap, &tx_state[0]); /* also flushes the write_reg */ 431 next_tx_check = 1000; 432 delay_idx = 0; 433 ms = delay[0]; 434 435 /* 436 * Loop waiting for the reply; bail out if we time out or the firmware 437 * reports an error. 438 */ 439 pcie_fw = 0; 440 for (i = 0; i < timeout; i += ms) { 441 if (!(adap->flags & IS_VF)) { 442 pcie_fw = t4_read_reg(adap, A_PCIE_FW); 443 if (pcie_fw & F_PCIE_FW_ERR) 444 break; 445 } 446 447 if (i >= next_tx_check) { 448 check_tx_state(adap, &tx_state[0]); 449 next_tx_check = i + 1000; 450 } 451 452 if (sleep_ok) { 453 ms = delay[delay_idx]; /* last element may repeat */ 454 if (delay_idx < ARRAY_SIZE(delay) - 1) 455 delay_idx++; 456 msleep(ms); 457 } else { 458 mdelay(ms); 459 } 460 461 v = t4_read_reg(adap, ctl_reg); 462 if (v == X_CIM_PF_NOACCESS) 463 continue; 464 if (G_MBOWNER(v) == X_MBOWNER_PL) { 465 if (!(v & F_MBMSGVALID)) { 466 t4_write_reg(adap, ctl_reg, 467 V_MBOWNER(X_MBOWNER_NONE)); 468 continue; 469 } 470 471 /* 472 * Retrieve the command reply and release the mailbox. 473 */ 474 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg); 475 CH_DUMP_MBOX(adap, mbox, 0, "rpl", cmd_rpl, false); 476 t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE)); 477 478 res = be64_to_cpu(cmd_rpl[0]); 479 if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) { 480 fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl); 481 res = V_FW_CMD_RETVAL(EIO); 482 } else if (rpl) 483 memcpy(rpl, cmd_rpl, size); 484 return -G_FW_CMD_RETVAL((int)res); 485 } 486 } 487 488 /* 489 * We timed out waiting for a reply to our mailbox command. Report 490 * the error and also check to see if the firmware reported any 491 * errors ... 492 */ 493 CH_ERR(adap, "command %#x in mbox %d timed out (0x%08x).\n", 494 *(const u8 *)cmd, mbox, pcie_fw); 495 CH_DUMP_MBOX(adap, mbox, 0, "cmdsent", cmd_rpl, true); 496 CH_DUMP_MBOX(adap, mbox, data_reg, "current", NULL, true); 497 498 if (pcie_fw & F_PCIE_FW_ERR) { 499 ret = -ENXIO; 500 t4_report_fw_error(adap); 501 } else { 502 ret = -ETIMEDOUT; 503 t4_os_dump_devlog(adap); 504 } 505 506 t4_fatal_err(adap, true); 507 return ret; 508 } 509 510 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 511 void *rpl, bool sleep_ok) 512 { 513 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, 514 sleep_ok, FW_CMD_MAX_TIMEOUT); 515 516 } 517 518 static int t4_edc_err_read(struct adapter *adap, int idx) 519 { 520 u32 edc_ecc_err_addr_reg; 521 u32 edc_bist_status_rdata_reg; 522 523 if (is_t4(adap)) { 524 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); 525 return 0; 526 } 527 if (idx != MEM_EDC0 && idx != MEM_EDC1) { 528 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); 529 return 0; 530 } 531 532 edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx); 533 edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx); 534 535 CH_WARN(adap, 536 "edc%d err addr 0x%x: 0x%x.\n", 537 idx, edc_ecc_err_addr_reg, 538 t4_read_reg(adap, edc_ecc_err_addr_reg)); 539 CH_WARN(adap, 540 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", 541 edc_bist_status_rdata_reg, 542 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg), 543 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8), 544 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16), 545 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24), 546 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32), 547 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40), 548 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48), 549 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56), 550 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64)); 551 552 return 0; 553 } 554 555 /** 556 * t4_mc_read - read from MC through backdoor accesses 557 * @adap: the adapter 558 * @idx: which MC to access 559 * @addr: address of first byte requested 560 * @data: 64 bytes of data containing the requested address 561 * @ecc: where to store the corresponding 64-bit ECC word 562 * 563 * Read 64 bytes of data from MC starting at a 64-byte-aligned address 564 * that covers the requested address @addr. If @parity is not %NULL it 565 * is assigned the 64-bit ECC word for the read data. 566 */ 567 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc) 568 { 569 int i; 570 u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg; 571 u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg; 572 573 if (is_t4(adap)) { 574 mc_bist_cmd_reg = A_MC_BIST_CMD; 575 mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR; 576 mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN; 577 mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA; 578 mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN; 579 } else { 580 mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx); 581 mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx); 582 mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx); 583 mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA, 584 idx); 585 mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN, 586 idx); 587 } 588 589 if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST) 590 return -EBUSY; 591 t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU); 592 t4_write_reg(adap, mc_bist_cmd_len_reg, 64); 593 t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc); 594 t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) | 595 F_START_BIST | V_BIST_CMD_GAP(1)); 596 i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1); 597 if (i) 598 return i; 599 600 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i) 601 602 for (i = 15; i >= 0; i--) 603 *data++ = ntohl(t4_read_reg(adap, MC_DATA(i))); 604 if (ecc) 605 *ecc = t4_read_reg64(adap, MC_DATA(16)); 606 #undef MC_DATA 607 return 0; 608 } 609 610 /** 611 * t4_edc_read - read from EDC through backdoor accesses 612 * @adap: the adapter 613 * @idx: which EDC to access 614 * @addr: address of first byte requested 615 * @data: 64 bytes of data containing the requested address 616 * @ecc: where to store the corresponding 64-bit ECC word 617 * 618 * Read 64 bytes of data from EDC starting at a 64-byte-aligned address 619 * that covers the requested address @addr. If @parity is not %NULL it 620 * is assigned the 64-bit ECC word for the read data. 621 */ 622 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc) 623 { 624 int i; 625 u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg; 626 u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg; 627 628 if (is_t4(adap)) { 629 edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx); 630 edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx); 631 edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx); 632 edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN, 633 idx); 634 edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA, 635 idx); 636 } else { 637 /* 638 * These macro are missing in t4_regs.h file. 639 * Added temporarily for testing. 640 */ 641 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR) 642 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx) 643 edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx); 644 edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx); 645 edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx); 646 edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN, 647 idx); 648 edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA, 649 idx); 650 #undef EDC_REG_T5 651 #undef EDC_STRIDE_T5 652 } 653 654 if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST) 655 return -EBUSY; 656 t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU); 657 t4_write_reg(adap, edc_bist_cmd_len_reg, 64); 658 t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc); 659 t4_write_reg(adap, edc_bist_cmd_reg, 660 V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST); 661 i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1); 662 if (i) 663 return i; 664 665 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i) 666 667 for (i = 15; i >= 0; i--) 668 *data++ = ntohl(t4_read_reg(adap, EDC_DATA(i))); 669 if (ecc) 670 *ecc = t4_read_reg64(adap, EDC_DATA(16)); 671 #undef EDC_DATA 672 return 0; 673 } 674 675 /** 676 * t4_mem_read - read EDC 0, EDC 1 or MC into buffer 677 * @adap: the adapter 678 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 679 * @addr: address within indicated memory type 680 * @len: amount of memory to read 681 * @buf: host memory buffer 682 * 683 * Reads an [almost] arbitrary memory region in the firmware: the 684 * firmware memory address, length and host buffer must be aligned on 685 * 32-bit boudaries. The memory is returned as a raw byte sequence from 686 * the firmware's memory. If this memory contains data structures which 687 * contain multi-byte integers, it's the callers responsibility to 688 * perform appropriate byte order conversions. 689 */ 690 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len, 691 __be32 *buf) 692 { 693 u32 pos, start, end, offset; 694 int ret; 695 696 /* 697 * Argument sanity checks ... 698 */ 699 if ((addr & 0x3) || (len & 0x3)) 700 return -EINVAL; 701 702 /* 703 * The underlaying EDC/MC read routines read 64 bytes at a time so we 704 * need to round down the start and round up the end. We'll start 705 * copying out of the first line at (addr - start) a word at a time. 706 */ 707 start = rounddown2(addr, 64); 708 end = roundup2(addr + len, 64); 709 offset = (addr - start)/sizeof(__be32); 710 711 for (pos = start; pos < end; pos += 64, offset = 0) { 712 __be32 data[16]; 713 714 /* 715 * Read the chip's memory block and bail if there's an error. 716 */ 717 if ((mtype == MEM_MC) || (mtype == MEM_MC1)) 718 ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL); 719 else 720 ret = t4_edc_read(adap, mtype, pos, data, NULL); 721 if (ret) 722 return ret; 723 724 /* 725 * Copy the data into the caller's memory buffer. 726 */ 727 while (offset < 16 && len > 0) { 728 *buf++ = data[offset++]; 729 len -= sizeof(__be32); 730 } 731 } 732 733 return 0; 734 } 735 736 /* 737 * Return the specified PCI-E Configuration Space register from our Physical 738 * Function. We try first via a Firmware LDST Command (if fw_attach != 0) 739 * since we prefer to let the firmware own all of these registers, but if that 740 * fails we go for it directly ourselves. 741 */ 742 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach) 743 { 744 745 /* 746 * If fw_attach != 0, construct and send the Firmware LDST Command to 747 * retrieve the specified PCI-E Configuration Space register. 748 */ 749 if (drv_fw_attach != 0) { 750 struct fw_ldst_cmd ldst_cmd; 751 int ret; 752 753 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 754 ldst_cmd.op_to_addrspace = 755 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 756 F_FW_CMD_REQUEST | 757 F_FW_CMD_READ | 758 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE)); 759 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 760 ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1); 761 ldst_cmd.u.pcie.ctrl_to_fn = 762 (F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf)); 763 ldst_cmd.u.pcie.r = reg; 764 765 /* 766 * If the LDST Command succeeds, return the result, otherwise 767 * fall through to reading it directly ourselves ... 768 */ 769 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 770 &ldst_cmd); 771 if (ret == 0) 772 return be32_to_cpu(ldst_cmd.u.pcie.data[0]); 773 774 CH_WARN(adap, "Firmware failed to return " 775 "Configuration Space register %d, err = %d\n", 776 reg, -ret); 777 } 778 779 /* 780 * Read the desired Configuration Space register via the PCI-E 781 * Backdoor mechanism. 782 */ 783 return t4_hw_pci_read_cfg4(adap, reg); 784 } 785 786 /** 787 * t4_get_regs_len - return the size of the chips register set 788 * @adapter: the adapter 789 * 790 * Returns the size of the chip's BAR0 register space. 791 */ 792 unsigned int t4_get_regs_len(struct adapter *adapter) 793 { 794 unsigned int chip_version = chip_id(adapter); 795 796 switch (chip_version) { 797 case CHELSIO_T4: 798 if (adapter->flags & IS_VF) 799 return FW_T4VF_REGMAP_SIZE; 800 return T4_REGMAP_SIZE; 801 802 case CHELSIO_T5: 803 case CHELSIO_T6: 804 if (adapter->flags & IS_VF) 805 return FW_T4VF_REGMAP_SIZE; 806 return T5_REGMAP_SIZE; 807 } 808 809 CH_ERR(adapter, 810 "Unsupported chip version %d\n", chip_version); 811 return 0; 812 } 813 814 /** 815 * t4_get_regs - read chip registers into provided buffer 816 * @adap: the adapter 817 * @buf: register buffer 818 * @buf_size: size (in bytes) of register buffer 819 * 820 * If the provided register buffer isn't large enough for the chip's 821 * full register range, the register dump will be truncated to the 822 * register buffer's size. 823 */ 824 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size) 825 { 826 static const unsigned int t4_reg_ranges[] = { 827 0x1008, 0x1108, 828 0x1180, 0x1184, 829 0x1190, 0x1194, 830 0x11a0, 0x11a4, 831 0x11b0, 0x11b4, 832 0x11fc, 0x123c, 833 0x1300, 0x173c, 834 0x1800, 0x18fc, 835 0x3000, 0x30d8, 836 0x30e0, 0x30e4, 837 0x30ec, 0x5910, 838 0x5920, 0x5924, 839 0x5960, 0x5960, 840 0x5968, 0x5968, 841 0x5970, 0x5970, 842 0x5978, 0x5978, 843 0x5980, 0x5980, 844 0x5988, 0x5988, 845 0x5990, 0x5990, 846 0x5998, 0x5998, 847 0x59a0, 0x59d4, 848 0x5a00, 0x5ae0, 849 0x5ae8, 0x5ae8, 850 0x5af0, 0x5af0, 851 0x5af8, 0x5af8, 852 0x6000, 0x6098, 853 0x6100, 0x6150, 854 0x6200, 0x6208, 855 0x6240, 0x6248, 856 0x6280, 0x62b0, 857 0x62c0, 0x6338, 858 0x6370, 0x638c, 859 0x6400, 0x643c, 860 0x6500, 0x6524, 861 0x6a00, 0x6a04, 862 0x6a14, 0x6a38, 863 0x6a60, 0x6a70, 864 0x6a78, 0x6a78, 865 0x6b00, 0x6b0c, 866 0x6b1c, 0x6b84, 867 0x6bf0, 0x6bf8, 868 0x6c00, 0x6c0c, 869 0x6c1c, 0x6c84, 870 0x6cf0, 0x6cf8, 871 0x6d00, 0x6d0c, 872 0x6d1c, 0x6d84, 873 0x6df0, 0x6df8, 874 0x6e00, 0x6e0c, 875 0x6e1c, 0x6e84, 876 0x6ef0, 0x6ef8, 877 0x6f00, 0x6f0c, 878 0x6f1c, 0x6f84, 879 0x6ff0, 0x6ff8, 880 0x7000, 0x700c, 881 0x701c, 0x7084, 882 0x70f0, 0x70f8, 883 0x7100, 0x710c, 884 0x711c, 0x7184, 885 0x71f0, 0x71f8, 886 0x7200, 0x720c, 887 0x721c, 0x7284, 888 0x72f0, 0x72f8, 889 0x7300, 0x730c, 890 0x731c, 0x7384, 891 0x73f0, 0x73f8, 892 0x7400, 0x7450, 893 0x7500, 0x7530, 894 0x7600, 0x760c, 895 0x7614, 0x761c, 896 0x7680, 0x76cc, 897 0x7700, 0x7798, 898 0x77c0, 0x77fc, 899 0x7900, 0x79fc, 900 0x7b00, 0x7b58, 901 0x7b60, 0x7b84, 902 0x7b8c, 0x7c38, 903 0x7d00, 0x7d38, 904 0x7d40, 0x7d80, 905 0x7d8c, 0x7ddc, 906 0x7de4, 0x7e04, 907 0x7e10, 0x7e1c, 908 0x7e24, 0x7e38, 909 0x7e40, 0x7e44, 910 0x7e4c, 0x7e78, 911 0x7e80, 0x7ea4, 912 0x7eac, 0x7edc, 913 0x7ee8, 0x7efc, 914 0x8dc0, 0x8e04, 915 0x8e10, 0x8e1c, 916 0x8e30, 0x8e78, 917 0x8ea0, 0x8eb8, 918 0x8ec0, 0x8f6c, 919 0x8fc0, 0x9008, 920 0x9010, 0x9058, 921 0x9060, 0x9060, 922 0x9068, 0x9074, 923 0x90fc, 0x90fc, 924 0x9400, 0x9408, 925 0x9410, 0x9458, 926 0x9600, 0x9600, 927 0x9608, 0x9638, 928 0x9640, 0x96bc, 929 0x9800, 0x9808, 930 0x9820, 0x983c, 931 0x9850, 0x9864, 932 0x9c00, 0x9c6c, 933 0x9c80, 0x9cec, 934 0x9d00, 0x9d6c, 935 0x9d80, 0x9dec, 936 0x9e00, 0x9e6c, 937 0x9e80, 0x9eec, 938 0x9f00, 0x9f6c, 939 0x9f80, 0x9fec, 940 0xd004, 0xd004, 941 0xd010, 0xd03c, 942 0xdfc0, 0xdfe0, 943 0xe000, 0xea7c, 944 0xf000, 0x11110, 945 0x11118, 0x11190, 946 0x19040, 0x1906c, 947 0x19078, 0x19080, 948 0x1908c, 0x190e4, 949 0x190f0, 0x190f8, 950 0x19100, 0x19110, 951 0x19120, 0x19124, 952 0x19150, 0x19194, 953 0x1919c, 0x191b0, 954 0x191d0, 0x191e8, 955 0x19238, 0x1924c, 956 0x193f8, 0x1943c, 957 0x1944c, 0x19474, 958 0x19490, 0x194e0, 959 0x194f0, 0x194f8, 960 0x19800, 0x19c08, 961 0x19c10, 0x19c90, 962 0x19ca0, 0x19ce4, 963 0x19cf0, 0x19d40, 964 0x19d50, 0x19d94, 965 0x19da0, 0x19de8, 966 0x19df0, 0x19e40, 967 0x19e50, 0x19e90, 968 0x19ea0, 0x19f4c, 969 0x1a000, 0x1a004, 970 0x1a010, 0x1a06c, 971 0x1a0b0, 0x1a0e4, 972 0x1a0ec, 0x1a0f4, 973 0x1a100, 0x1a108, 974 0x1a114, 0x1a120, 975 0x1a128, 0x1a130, 976 0x1a138, 0x1a138, 977 0x1a190, 0x1a1c4, 978 0x1a1fc, 0x1a1fc, 979 0x1e040, 0x1e04c, 980 0x1e284, 0x1e28c, 981 0x1e2c0, 0x1e2c0, 982 0x1e2e0, 0x1e2e0, 983 0x1e300, 0x1e384, 984 0x1e3c0, 0x1e3c8, 985 0x1e440, 0x1e44c, 986 0x1e684, 0x1e68c, 987 0x1e6c0, 0x1e6c0, 988 0x1e6e0, 0x1e6e0, 989 0x1e700, 0x1e784, 990 0x1e7c0, 0x1e7c8, 991 0x1e840, 0x1e84c, 992 0x1ea84, 0x1ea8c, 993 0x1eac0, 0x1eac0, 994 0x1eae0, 0x1eae0, 995 0x1eb00, 0x1eb84, 996 0x1ebc0, 0x1ebc8, 997 0x1ec40, 0x1ec4c, 998 0x1ee84, 0x1ee8c, 999 0x1eec0, 0x1eec0, 1000 0x1eee0, 0x1eee0, 1001 0x1ef00, 0x1ef84, 1002 0x1efc0, 0x1efc8, 1003 0x1f040, 0x1f04c, 1004 0x1f284, 0x1f28c, 1005 0x1f2c0, 0x1f2c0, 1006 0x1f2e0, 0x1f2e0, 1007 0x1f300, 0x1f384, 1008 0x1f3c0, 0x1f3c8, 1009 0x1f440, 0x1f44c, 1010 0x1f684, 0x1f68c, 1011 0x1f6c0, 0x1f6c0, 1012 0x1f6e0, 0x1f6e0, 1013 0x1f700, 0x1f784, 1014 0x1f7c0, 0x1f7c8, 1015 0x1f840, 0x1f84c, 1016 0x1fa84, 0x1fa8c, 1017 0x1fac0, 0x1fac0, 1018 0x1fae0, 0x1fae0, 1019 0x1fb00, 0x1fb84, 1020 0x1fbc0, 0x1fbc8, 1021 0x1fc40, 0x1fc4c, 1022 0x1fe84, 0x1fe8c, 1023 0x1fec0, 0x1fec0, 1024 0x1fee0, 0x1fee0, 1025 0x1ff00, 0x1ff84, 1026 0x1ffc0, 0x1ffc8, 1027 0x20000, 0x2002c, 1028 0x20100, 0x2013c, 1029 0x20190, 0x201a0, 1030 0x201a8, 0x201b8, 1031 0x201c4, 0x201c8, 1032 0x20200, 0x20318, 1033 0x20400, 0x204b4, 1034 0x204c0, 0x20528, 1035 0x20540, 0x20614, 1036 0x21000, 0x21040, 1037 0x2104c, 0x21060, 1038 0x210c0, 0x210ec, 1039 0x21200, 0x21268, 1040 0x21270, 0x21284, 1041 0x212fc, 0x21388, 1042 0x21400, 0x21404, 1043 0x21500, 0x21500, 1044 0x21510, 0x21518, 1045 0x2152c, 0x21530, 1046 0x2153c, 0x2153c, 1047 0x21550, 0x21554, 1048 0x21600, 0x21600, 1049 0x21608, 0x2161c, 1050 0x21624, 0x21628, 1051 0x21630, 0x21634, 1052 0x2163c, 0x2163c, 1053 0x21700, 0x2171c, 1054 0x21780, 0x2178c, 1055 0x21800, 0x21818, 1056 0x21820, 0x21828, 1057 0x21830, 0x21848, 1058 0x21850, 0x21854, 1059 0x21860, 0x21868, 1060 0x21870, 0x21870, 1061 0x21878, 0x21898, 1062 0x218a0, 0x218a8, 1063 0x218b0, 0x218c8, 1064 0x218d0, 0x218d4, 1065 0x218e0, 0x218e8, 1066 0x218f0, 0x218f0, 1067 0x218f8, 0x21a18, 1068 0x21a20, 0x21a28, 1069 0x21a30, 0x21a48, 1070 0x21a50, 0x21a54, 1071 0x21a60, 0x21a68, 1072 0x21a70, 0x21a70, 1073 0x21a78, 0x21a98, 1074 0x21aa0, 0x21aa8, 1075 0x21ab0, 0x21ac8, 1076 0x21ad0, 0x21ad4, 1077 0x21ae0, 0x21ae8, 1078 0x21af0, 0x21af0, 1079 0x21af8, 0x21c18, 1080 0x21c20, 0x21c20, 1081 0x21c28, 0x21c30, 1082 0x21c38, 0x21c38, 1083 0x21c80, 0x21c98, 1084 0x21ca0, 0x21ca8, 1085 0x21cb0, 0x21cc8, 1086 0x21cd0, 0x21cd4, 1087 0x21ce0, 0x21ce8, 1088 0x21cf0, 0x21cf0, 1089 0x21cf8, 0x21d7c, 1090 0x21e00, 0x21e04, 1091 0x22000, 0x2202c, 1092 0x22100, 0x2213c, 1093 0x22190, 0x221a0, 1094 0x221a8, 0x221b8, 1095 0x221c4, 0x221c8, 1096 0x22200, 0x22318, 1097 0x22400, 0x224b4, 1098 0x224c0, 0x22528, 1099 0x22540, 0x22614, 1100 0x23000, 0x23040, 1101 0x2304c, 0x23060, 1102 0x230c0, 0x230ec, 1103 0x23200, 0x23268, 1104 0x23270, 0x23284, 1105 0x232fc, 0x23388, 1106 0x23400, 0x23404, 1107 0x23500, 0x23500, 1108 0x23510, 0x23518, 1109 0x2352c, 0x23530, 1110 0x2353c, 0x2353c, 1111 0x23550, 0x23554, 1112 0x23600, 0x23600, 1113 0x23608, 0x2361c, 1114 0x23624, 0x23628, 1115 0x23630, 0x23634, 1116 0x2363c, 0x2363c, 1117 0x23700, 0x2371c, 1118 0x23780, 0x2378c, 1119 0x23800, 0x23818, 1120 0x23820, 0x23828, 1121 0x23830, 0x23848, 1122 0x23850, 0x23854, 1123 0x23860, 0x23868, 1124 0x23870, 0x23870, 1125 0x23878, 0x23898, 1126 0x238a0, 0x238a8, 1127 0x238b0, 0x238c8, 1128 0x238d0, 0x238d4, 1129 0x238e0, 0x238e8, 1130 0x238f0, 0x238f0, 1131 0x238f8, 0x23a18, 1132 0x23a20, 0x23a28, 1133 0x23a30, 0x23a48, 1134 0x23a50, 0x23a54, 1135 0x23a60, 0x23a68, 1136 0x23a70, 0x23a70, 1137 0x23a78, 0x23a98, 1138 0x23aa0, 0x23aa8, 1139 0x23ab0, 0x23ac8, 1140 0x23ad0, 0x23ad4, 1141 0x23ae0, 0x23ae8, 1142 0x23af0, 0x23af0, 1143 0x23af8, 0x23c18, 1144 0x23c20, 0x23c20, 1145 0x23c28, 0x23c30, 1146 0x23c38, 0x23c38, 1147 0x23c80, 0x23c98, 1148 0x23ca0, 0x23ca8, 1149 0x23cb0, 0x23cc8, 1150 0x23cd0, 0x23cd4, 1151 0x23ce0, 0x23ce8, 1152 0x23cf0, 0x23cf0, 1153 0x23cf8, 0x23d7c, 1154 0x23e00, 0x23e04, 1155 0x24000, 0x2402c, 1156 0x24100, 0x2413c, 1157 0x24190, 0x241a0, 1158 0x241a8, 0x241b8, 1159 0x241c4, 0x241c8, 1160 0x24200, 0x24318, 1161 0x24400, 0x244b4, 1162 0x244c0, 0x24528, 1163 0x24540, 0x24614, 1164 0x25000, 0x25040, 1165 0x2504c, 0x25060, 1166 0x250c0, 0x250ec, 1167 0x25200, 0x25268, 1168 0x25270, 0x25284, 1169 0x252fc, 0x25388, 1170 0x25400, 0x25404, 1171 0x25500, 0x25500, 1172 0x25510, 0x25518, 1173 0x2552c, 0x25530, 1174 0x2553c, 0x2553c, 1175 0x25550, 0x25554, 1176 0x25600, 0x25600, 1177 0x25608, 0x2561c, 1178 0x25624, 0x25628, 1179 0x25630, 0x25634, 1180 0x2563c, 0x2563c, 1181 0x25700, 0x2571c, 1182 0x25780, 0x2578c, 1183 0x25800, 0x25818, 1184 0x25820, 0x25828, 1185 0x25830, 0x25848, 1186 0x25850, 0x25854, 1187 0x25860, 0x25868, 1188 0x25870, 0x25870, 1189 0x25878, 0x25898, 1190 0x258a0, 0x258a8, 1191 0x258b0, 0x258c8, 1192 0x258d0, 0x258d4, 1193 0x258e0, 0x258e8, 1194 0x258f0, 0x258f0, 1195 0x258f8, 0x25a18, 1196 0x25a20, 0x25a28, 1197 0x25a30, 0x25a48, 1198 0x25a50, 0x25a54, 1199 0x25a60, 0x25a68, 1200 0x25a70, 0x25a70, 1201 0x25a78, 0x25a98, 1202 0x25aa0, 0x25aa8, 1203 0x25ab0, 0x25ac8, 1204 0x25ad0, 0x25ad4, 1205 0x25ae0, 0x25ae8, 1206 0x25af0, 0x25af0, 1207 0x25af8, 0x25c18, 1208 0x25c20, 0x25c20, 1209 0x25c28, 0x25c30, 1210 0x25c38, 0x25c38, 1211 0x25c80, 0x25c98, 1212 0x25ca0, 0x25ca8, 1213 0x25cb0, 0x25cc8, 1214 0x25cd0, 0x25cd4, 1215 0x25ce0, 0x25ce8, 1216 0x25cf0, 0x25cf0, 1217 0x25cf8, 0x25d7c, 1218 0x25e00, 0x25e04, 1219 0x26000, 0x2602c, 1220 0x26100, 0x2613c, 1221 0x26190, 0x261a0, 1222 0x261a8, 0x261b8, 1223 0x261c4, 0x261c8, 1224 0x26200, 0x26318, 1225 0x26400, 0x264b4, 1226 0x264c0, 0x26528, 1227 0x26540, 0x26614, 1228 0x27000, 0x27040, 1229 0x2704c, 0x27060, 1230 0x270c0, 0x270ec, 1231 0x27200, 0x27268, 1232 0x27270, 0x27284, 1233 0x272fc, 0x27388, 1234 0x27400, 0x27404, 1235 0x27500, 0x27500, 1236 0x27510, 0x27518, 1237 0x2752c, 0x27530, 1238 0x2753c, 0x2753c, 1239 0x27550, 0x27554, 1240 0x27600, 0x27600, 1241 0x27608, 0x2761c, 1242 0x27624, 0x27628, 1243 0x27630, 0x27634, 1244 0x2763c, 0x2763c, 1245 0x27700, 0x2771c, 1246 0x27780, 0x2778c, 1247 0x27800, 0x27818, 1248 0x27820, 0x27828, 1249 0x27830, 0x27848, 1250 0x27850, 0x27854, 1251 0x27860, 0x27868, 1252 0x27870, 0x27870, 1253 0x27878, 0x27898, 1254 0x278a0, 0x278a8, 1255 0x278b0, 0x278c8, 1256 0x278d0, 0x278d4, 1257 0x278e0, 0x278e8, 1258 0x278f0, 0x278f0, 1259 0x278f8, 0x27a18, 1260 0x27a20, 0x27a28, 1261 0x27a30, 0x27a48, 1262 0x27a50, 0x27a54, 1263 0x27a60, 0x27a68, 1264 0x27a70, 0x27a70, 1265 0x27a78, 0x27a98, 1266 0x27aa0, 0x27aa8, 1267 0x27ab0, 0x27ac8, 1268 0x27ad0, 0x27ad4, 1269 0x27ae0, 0x27ae8, 1270 0x27af0, 0x27af0, 1271 0x27af8, 0x27c18, 1272 0x27c20, 0x27c20, 1273 0x27c28, 0x27c30, 1274 0x27c38, 0x27c38, 1275 0x27c80, 0x27c98, 1276 0x27ca0, 0x27ca8, 1277 0x27cb0, 0x27cc8, 1278 0x27cd0, 0x27cd4, 1279 0x27ce0, 0x27ce8, 1280 0x27cf0, 0x27cf0, 1281 0x27cf8, 0x27d7c, 1282 0x27e00, 0x27e04, 1283 }; 1284 1285 static const unsigned int t4vf_reg_ranges[] = { 1286 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS), 1287 VF_MPS_REG(A_MPS_VF_CTL), 1288 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H), 1289 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI), 1290 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL), 1291 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS), 1292 FW_T4VF_MBDATA_BASE_ADDR, 1293 FW_T4VF_MBDATA_BASE_ADDR + 1294 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4), 1295 }; 1296 1297 static const unsigned int t5_reg_ranges[] = { 1298 0x1008, 0x10c0, 1299 0x10cc, 0x10f8, 1300 0x1100, 0x1100, 1301 0x110c, 0x1148, 1302 0x1180, 0x1184, 1303 0x1190, 0x1194, 1304 0x11a0, 0x11a4, 1305 0x11b0, 0x11b4, 1306 0x11fc, 0x123c, 1307 0x1280, 0x173c, 1308 0x1800, 0x18fc, 1309 0x3000, 0x3028, 1310 0x3060, 0x30b0, 1311 0x30b8, 0x30d8, 1312 0x30e0, 0x30fc, 1313 0x3140, 0x357c, 1314 0x35a8, 0x35cc, 1315 0x35ec, 0x35ec, 1316 0x3600, 0x5624, 1317 0x56cc, 0x56ec, 1318 0x56f4, 0x5720, 1319 0x5728, 0x575c, 1320 0x580c, 0x5814, 1321 0x5890, 0x589c, 1322 0x58a4, 0x58ac, 1323 0x58b8, 0x58bc, 1324 0x5940, 0x59c8, 1325 0x59d0, 0x59dc, 1326 0x59fc, 0x5a18, 1327 0x5a60, 0x5a70, 1328 0x5a80, 0x5a9c, 1329 0x5b94, 0x5bfc, 1330 0x6000, 0x6020, 1331 0x6028, 0x6040, 1332 0x6058, 0x609c, 1333 0x60a8, 0x614c, 1334 0x7700, 0x7798, 1335 0x77c0, 0x78fc, 1336 0x7b00, 0x7b58, 1337 0x7b60, 0x7b84, 1338 0x7b8c, 0x7c54, 1339 0x7d00, 0x7d38, 1340 0x7d40, 0x7d80, 1341 0x7d8c, 0x7ddc, 1342 0x7de4, 0x7e04, 1343 0x7e10, 0x7e1c, 1344 0x7e24, 0x7e38, 1345 0x7e40, 0x7e44, 1346 0x7e4c, 0x7e78, 1347 0x7e80, 0x7edc, 1348 0x7ee8, 0x7efc, 1349 0x8dc0, 0x8de0, 1350 0x8df8, 0x8e04, 1351 0x8e10, 0x8e84, 1352 0x8ea0, 0x8f84, 1353 0x8fc0, 0x9058, 1354 0x9060, 0x9060, 1355 0x9068, 0x90f8, 1356 0x9400, 0x9408, 1357 0x9410, 0x9470, 1358 0x9600, 0x9600, 1359 0x9608, 0x9638, 1360 0x9640, 0x96f4, 1361 0x9800, 0x9808, 1362 0x9820, 0x983c, 1363 0x9850, 0x9864, 1364 0x9c00, 0x9c6c, 1365 0x9c80, 0x9cec, 1366 0x9d00, 0x9d6c, 1367 0x9d80, 0x9dec, 1368 0x9e00, 0x9e6c, 1369 0x9e80, 0x9eec, 1370 0x9f00, 0x9f6c, 1371 0x9f80, 0xa020, 1372 0xd004, 0xd004, 1373 0xd010, 0xd03c, 1374 0xdfc0, 0xdfe0, 1375 0xe000, 0x1106c, 1376 0x11074, 0x11088, 1377 0x1109c, 0x1117c, 1378 0x11190, 0x11204, 1379 0x19040, 0x1906c, 1380 0x19078, 0x19080, 1381 0x1908c, 0x190e8, 1382 0x190f0, 0x190f8, 1383 0x19100, 0x19110, 1384 0x19120, 0x19124, 1385 0x19150, 0x19194, 1386 0x1919c, 0x191b0, 1387 0x191d0, 0x191e8, 1388 0x19238, 0x19290, 1389 0x193f8, 0x19428, 1390 0x19430, 0x19444, 1391 0x1944c, 0x1946c, 1392 0x19474, 0x19474, 1393 0x19490, 0x194cc, 1394 0x194f0, 0x194f8, 1395 0x19c00, 0x19c08, 1396 0x19c10, 0x19c60, 1397 0x19c94, 0x19ce4, 1398 0x19cf0, 0x19d40, 1399 0x19d50, 0x19d94, 1400 0x19da0, 0x19de8, 1401 0x19df0, 0x19e10, 1402 0x19e50, 0x19e90, 1403 0x19ea0, 0x19f24, 1404 0x19f34, 0x19f34, 1405 0x19f40, 0x19f50, 1406 0x19f90, 0x19fb4, 1407 0x19fc4, 0x19fe4, 1408 0x1a000, 0x1a004, 1409 0x1a010, 0x1a06c, 1410 0x1a0b0, 0x1a0e4, 1411 0x1a0ec, 0x1a0f8, 1412 0x1a100, 0x1a108, 1413 0x1a114, 0x1a120, 1414 0x1a128, 0x1a130, 1415 0x1a138, 0x1a138, 1416 0x1a190, 0x1a1c4, 1417 0x1a1fc, 0x1a1fc, 1418 0x1e008, 0x1e00c, 1419 0x1e040, 0x1e044, 1420 0x1e04c, 0x1e04c, 1421 0x1e284, 0x1e290, 1422 0x1e2c0, 0x1e2c0, 1423 0x1e2e0, 0x1e2e0, 1424 0x1e300, 0x1e384, 1425 0x1e3c0, 0x1e3c8, 1426 0x1e408, 0x1e40c, 1427 0x1e440, 0x1e444, 1428 0x1e44c, 0x1e44c, 1429 0x1e684, 0x1e690, 1430 0x1e6c0, 0x1e6c0, 1431 0x1e6e0, 0x1e6e0, 1432 0x1e700, 0x1e784, 1433 0x1e7c0, 0x1e7c8, 1434 0x1e808, 0x1e80c, 1435 0x1e840, 0x1e844, 1436 0x1e84c, 0x1e84c, 1437 0x1ea84, 0x1ea90, 1438 0x1eac0, 0x1eac0, 1439 0x1eae0, 0x1eae0, 1440 0x1eb00, 0x1eb84, 1441 0x1ebc0, 0x1ebc8, 1442 0x1ec08, 0x1ec0c, 1443 0x1ec40, 0x1ec44, 1444 0x1ec4c, 0x1ec4c, 1445 0x1ee84, 0x1ee90, 1446 0x1eec0, 0x1eec0, 1447 0x1eee0, 0x1eee0, 1448 0x1ef00, 0x1ef84, 1449 0x1efc0, 0x1efc8, 1450 0x1f008, 0x1f00c, 1451 0x1f040, 0x1f044, 1452 0x1f04c, 0x1f04c, 1453 0x1f284, 0x1f290, 1454 0x1f2c0, 0x1f2c0, 1455 0x1f2e0, 0x1f2e0, 1456 0x1f300, 0x1f384, 1457 0x1f3c0, 0x1f3c8, 1458 0x1f408, 0x1f40c, 1459 0x1f440, 0x1f444, 1460 0x1f44c, 0x1f44c, 1461 0x1f684, 0x1f690, 1462 0x1f6c0, 0x1f6c0, 1463 0x1f6e0, 0x1f6e0, 1464 0x1f700, 0x1f784, 1465 0x1f7c0, 0x1f7c8, 1466 0x1f808, 0x1f80c, 1467 0x1f840, 0x1f844, 1468 0x1f84c, 0x1f84c, 1469 0x1fa84, 0x1fa90, 1470 0x1fac0, 0x1fac0, 1471 0x1fae0, 0x1fae0, 1472 0x1fb00, 0x1fb84, 1473 0x1fbc0, 0x1fbc8, 1474 0x1fc08, 0x1fc0c, 1475 0x1fc40, 0x1fc44, 1476 0x1fc4c, 0x1fc4c, 1477 0x1fe84, 0x1fe90, 1478 0x1fec0, 0x1fec0, 1479 0x1fee0, 0x1fee0, 1480 0x1ff00, 0x1ff84, 1481 0x1ffc0, 0x1ffc8, 1482 0x30000, 0x30030, 1483 0x30100, 0x30144, 1484 0x30190, 0x301a0, 1485 0x301a8, 0x301b8, 1486 0x301c4, 0x301c8, 1487 0x301d0, 0x301d0, 1488 0x30200, 0x30318, 1489 0x30400, 0x304b4, 1490 0x304c0, 0x3052c, 1491 0x30540, 0x3061c, 1492 0x30800, 0x30828, 1493 0x30834, 0x30834, 1494 0x308c0, 0x30908, 1495 0x30910, 0x309ac, 1496 0x30a00, 0x30a14, 1497 0x30a1c, 0x30a2c, 1498 0x30a44, 0x30a50, 1499 0x30a74, 0x30a74, 1500 0x30a7c, 0x30afc, 1501 0x30b08, 0x30c24, 1502 0x30d00, 0x30d00, 1503 0x30d08, 0x30d14, 1504 0x30d1c, 0x30d20, 1505 0x30d3c, 0x30d3c, 1506 0x30d48, 0x30d50, 1507 0x31200, 0x3120c, 1508 0x31220, 0x31220, 1509 0x31240, 0x31240, 1510 0x31600, 0x3160c, 1511 0x31a00, 0x31a1c, 1512 0x31e00, 0x31e20, 1513 0x31e38, 0x31e3c, 1514 0x31e80, 0x31e80, 1515 0x31e88, 0x31ea8, 1516 0x31eb0, 0x31eb4, 1517 0x31ec8, 0x31ed4, 1518 0x31fb8, 0x32004, 1519 0x32200, 0x32200, 1520 0x32208, 0x32240, 1521 0x32248, 0x32280, 1522 0x32288, 0x322c0, 1523 0x322c8, 0x322fc, 1524 0x32600, 0x32630, 1525 0x32a00, 0x32abc, 1526 0x32b00, 0x32b10, 1527 0x32b20, 0x32b30, 1528 0x32b40, 0x32b50, 1529 0x32b60, 0x32b70, 1530 0x33000, 0x33028, 1531 0x33030, 0x33048, 1532 0x33060, 0x33068, 1533 0x33070, 0x3309c, 1534 0x330f0, 0x33128, 1535 0x33130, 0x33148, 1536 0x33160, 0x33168, 1537 0x33170, 0x3319c, 1538 0x331f0, 0x33238, 1539 0x33240, 0x33240, 1540 0x33248, 0x33250, 1541 0x3325c, 0x33264, 1542 0x33270, 0x332b8, 1543 0x332c0, 0x332e4, 1544 0x332f8, 0x33338, 1545 0x33340, 0x33340, 1546 0x33348, 0x33350, 1547 0x3335c, 0x33364, 1548 0x33370, 0x333b8, 1549 0x333c0, 0x333e4, 1550 0x333f8, 0x33428, 1551 0x33430, 0x33448, 1552 0x33460, 0x33468, 1553 0x33470, 0x3349c, 1554 0x334f0, 0x33528, 1555 0x33530, 0x33548, 1556 0x33560, 0x33568, 1557 0x33570, 0x3359c, 1558 0x335f0, 0x33638, 1559 0x33640, 0x33640, 1560 0x33648, 0x33650, 1561 0x3365c, 0x33664, 1562 0x33670, 0x336b8, 1563 0x336c0, 0x336e4, 1564 0x336f8, 0x33738, 1565 0x33740, 0x33740, 1566 0x33748, 0x33750, 1567 0x3375c, 0x33764, 1568 0x33770, 0x337b8, 1569 0x337c0, 0x337e4, 1570 0x337f8, 0x337fc, 1571 0x33814, 0x33814, 1572 0x3382c, 0x3382c, 1573 0x33880, 0x3388c, 1574 0x338e8, 0x338ec, 1575 0x33900, 0x33928, 1576 0x33930, 0x33948, 1577 0x33960, 0x33968, 1578 0x33970, 0x3399c, 1579 0x339f0, 0x33a38, 1580 0x33a40, 0x33a40, 1581 0x33a48, 0x33a50, 1582 0x33a5c, 0x33a64, 1583 0x33a70, 0x33ab8, 1584 0x33ac0, 0x33ae4, 1585 0x33af8, 0x33b10, 1586 0x33b28, 0x33b28, 1587 0x33b3c, 0x33b50, 1588 0x33bf0, 0x33c10, 1589 0x33c28, 0x33c28, 1590 0x33c3c, 0x33c50, 1591 0x33cf0, 0x33cfc, 1592 0x34000, 0x34030, 1593 0x34100, 0x34144, 1594 0x34190, 0x341a0, 1595 0x341a8, 0x341b8, 1596 0x341c4, 0x341c8, 1597 0x341d0, 0x341d0, 1598 0x34200, 0x34318, 1599 0x34400, 0x344b4, 1600 0x344c0, 0x3452c, 1601 0x34540, 0x3461c, 1602 0x34800, 0x34828, 1603 0x34834, 0x34834, 1604 0x348c0, 0x34908, 1605 0x34910, 0x349ac, 1606 0x34a00, 0x34a14, 1607 0x34a1c, 0x34a2c, 1608 0x34a44, 0x34a50, 1609 0x34a74, 0x34a74, 1610 0x34a7c, 0x34afc, 1611 0x34b08, 0x34c24, 1612 0x34d00, 0x34d00, 1613 0x34d08, 0x34d14, 1614 0x34d1c, 0x34d20, 1615 0x34d3c, 0x34d3c, 1616 0x34d48, 0x34d50, 1617 0x35200, 0x3520c, 1618 0x35220, 0x35220, 1619 0x35240, 0x35240, 1620 0x35600, 0x3560c, 1621 0x35a00, 0x35a1c, 1622 0x35e00, 0x35e20, 1623 0x35e38, 0x35e3c, 1624 0x35e80, 0x35e80, 1625 0x35e88, 0x35ea8, 1626 0x35eb0, 0x35eb4, 1627 0x35ec8, 0x35ed4, 1628 0x35fb8, 0x36004, 1629 0x36200, 0x36200, 1630 0x36208, 0x36240, 1631 0x36248, 0x36280, 1632 0x36288, 0x362c0, 1633 0x362c8, 0x362fc, 1634 0x36600, 0x36630, 1635 0x36a00, 0x36abc, 1636 0x36b00, 0x36b10, 1637 0x36b20, 0x36b30, 1638 0x36b40, 0x36b50, 1639 0x36b60, 0x36b70, 1640 0x37000, 0x37028, 1641 0x37030, 0x37048, 1642 0x37060, 0x37068, 1643 0x37070, 0x3709c, 1644 0x370f0, 0x37128, 1645 0x37130, 0x37148, 1646 0x37160, 0x37168, 1647 0x37170, 0x3719c, 1648 0x371f0, 0x37238, 1649 0x37240, 0x37240, 1650 0x37248, 0x37250, 1651 0x3725c, 0x37264, 1652 0x37270, 0x372b8, 1653 0x372c0, 0x372e4, 1654 0x372f8, 0x37338, 1655 0x37340, 0x37340, 1656 0x37348, 0x37350, 1657 0x3735c, 0x37364, 1658 0x37370, 0x373b8, 1659 0x373c0, 0x373e4, 1660 0x373f8, 0x37428, 1661 0x37430, 0x37448, 1662 0x37460, 0x37468, 1663 0x37470, 0x3749c, 1664 0x374f0, 0x37528, 1665 0x37530, 0x37548, 1666 0x37560, 0x37568, 1667 0x37570, 0x3759c, 1668 0x375f0, 0x37638, 1669 0x37640, 0x37640, 1670 0x37648, 0x37650, 1671 0x3765c, 0x37664, 1672 0x37670, 0x376b8, 1673 0x376c0, 0x376e4, 1674 0x376f8, 0x37738, 1675 0x37740, 0x37740, 1676 0x37748, 0x37750, 1677 0x3775c, 0x37764, 1678 0x37770, 0x377b8, 1679 0x377c0, 0x377e4, 1680 0x377f8, 0x377fc, 1681 0x37814, 0x37814, 1682 0x3782c, 0x3782c, 1683 0x37880, 0x3788c, 1684 0x378e8, 0x378ec, 1685 0x37900, 0x37928, 1686 0x37930, 0x37948, 1687 0x37960, 0x37968, 1688 0x37970, 0x3799c, 1689 0x379f0, 0x37a38, 1690 0x37a40, 0x37a40, 1691 0x37a48, 0x37a50, 1692 0x37a5c, 0x37a64, 1693 0x37a70, 0x37ab8, 1694 0x37ac0, 0x37ae4, 1695 0x37af8, 0x37b10, 1696 0x37b28, 0x37b28, 1697 0x37b3c, 0x37b50, 1698 0x37bf0, 0x37c10, 1699 0x37c28, 0x37c28, 1700 0x37c3c, 0x37c50, 1701 0x37cf0, 0x37cfc, 1702 0x38000, 0x38030, 1703 0x38100, 0x38144, 1704 0x38190, 0x381a0, 1705 0x381a8, 0x381b8, 1706 0x381c4, 0x381c8, 1707 0x381d0, 0x381d0, 1708 0x38200, 0x38318, 1709 0x38400, 0x384b4, 1710 0x384c0, 0x3852c, 1711 0x38540, 0x3861c, 1712 0x38800, 0x38828, 1713 0x38834, 0x38834, 1714 0x388c0, 0x38908, 1715 0x38910, 0x389ac, 1716 0x38a00, 0x38a14, 1717 0x38a1c, 0x38a2c, 1718 0x38a44, 0x38a50, 1719 0x38a74, 0x38a74, 1720 0x38a7c, 0x38afc, 1721 0x38b08, 0x38c24, 1722 0x38d00, 0x38d00, 1723 0x38d08, 0x38d14, 1724 0x38d1c, 0x38d20, 1725 0x38d3c, 0x38d3c, 1726 0x38d48, 0x38d50, 1727 0x39200, 0x3920c, 1728 0x39220, 0x39220, 1729 0x39240, 0x39240, 1730 0x39600, 0x3960c, 1731 0x39a00, 0x39a1c, 1732 0x39e00, 0x39e20, 1733 0x39e38, 0x39e3c, 1734 0x39e80, 0x39e80, 1735 0x39e88, 0x39ea8, 1736 0x39eb0, 0x39eb4, 1737 0x39ec8, 0x39ed4, 1738 0x39fb8, 0x3a004, 1739 0x3a200, 0x3a200, 1740 0x3a208, 0x3a240, 1741 0x3a248, 0x3a280, 1742 0x3a288, 0x3a2c0, 1743 0x3a2c8, 0x3a2fc, 1744 0x3a600, 0x3a630, 1745 0x3aa00, 0x3aabc, 1746 0x3ab00, 0x3ab10, 1747 0x3ab20, 0x3ab30, 1748 0x3ab40, 0x3ab50, 1749 0x3ab60, 0x3ab70, 1750 0x3b000, 0x3b028, 1751 0x3b030, 0x3b048, 1752 0x3b060, 0x3b068, 1753 0x3b070, 0x3b09c, 1754 0x3b0f0, 0x3b128, 1755 0x3b130, 0x3b148, 1756 0x3b160, 0x3b168, 1757 0x3b170, 0x3b19c, 1758 0x3b1f0, 0x3b238, 1759 0x3b240, 0x3b240, 1760 0x3b248, 0x3b250, 1761 0x3b25c, 0x3b264, 1762 0x3b270, 0x3b2b8, 1763 0x3b2c0, 0x3b2e4, 1764 0x3b2f8, 0x3b338, 1765 0x3b340, 0x3b340, 1766 0x3b348, 0x3b350, 1767 0x3b35c, 0x3b364, 1768 0x3b370, 0x3b3b8, 1769 0x3b3c0, 0x3b3e4, 1770 0x3b3f8, 0x3b428, 1771 0x3b430, 0x3b448, 1772 0x3b460, 0x3b468, 1773 0x3b470, 0x3b49c, 1774 0x3b4f0, 0x3b528, 1775 0x3b530, 0x3b548, 1776 0x3b560, 0x3b568, 1777 0x3b570, 0x3b59c, 1778 0x3b5f0, 0x3b638, 1779 0x3b640, 0x3b640, 1780 0x3b648, 0x3b650, 1781 0x3b65c, 0x3b664, 1782 0x3b670, 0x3b6b8, 1783 0x3b6c0, 0x3b6e4, 1784 0x3b6f8, 0x3b738, 1785 0x3b740, 0x3b740, 1786 0x3b748, 0x3b750, 1787 0x3b75c, 0x3b764, 1788 0x3b770, 0x3b7b8, 1789 0x3b7c0, 0x3b7e4, 1790 0x3b7f8, 0x3b7fc, 1791 0x3b814, 0x3b814, 1792 0x3b82c, 0x3b82c, 1793 0x3b880, 0x3b88c, 1794 0x3b8e8, 0x3b8ec, 1795 0x3b900, 0x3b928, 1796 0x3b930, 0x3b948, 1797 0x3b960, 0x3b968, 1798 0x3b970, 0x3b99c, 1799 0x3b9f0, 0x3ba38, 1800 0x3ba40, 0x3ba40, 1801 0x3ba48, 0x3ba50, 1802 0x3ba5c, 0x3ba64, 1803 0x3ba70, 0x3bab8, 1804 0x3bac0, 0x3bae4, 1805 0x3baf8, 0x3bb10, 1806 0x3bb28, 0x3bb28, 1807 0x3bb3c, 0x3bb50, 1808 0x3bbf0, 0x3bc10, 1809 0x3bc28, 0x3bc28, 1810 0x3bc3c, 0x3bc50, 1811 0x3bcf0, 0x3bcfc, 1812 0x3c000, 0x3c030, 1813 0x3c100, 0x3c144, 1814 0x3c190, 0x3c1a0, 1815 0x3c1a8, 0x3c1b8, 1816 0x3c1c4, 0x3c1c8, 1817 0x3c1d0, 0x3c1d0, 1818 0x3c200, 0x3c318, 1819 0x3c400, 0x3c4b4, 1820 0x3c4c0, 0x3c52c, 1821 0x3c540, 0x3c61c, 1822 0x3c800, 0x3c828, 1823 0x3c834, 0x3c834, 1824 0x3c8c0, 0x3c908, 1825 0x3c910, 0x3c9ac, 1826 0x3ca00, 0x3ca14, 1827 0x3ca1c, 0x3ca2c, 1828 0x3ca44, 0x3ca50, 1829 0x3ca74, 0x3ca74, 1830 0x3ca7c, 0x3cafc, 1831 0x3cb08, 0x3cc24, 1832 0x3cd00, 0x3cd00, 1833 0x3cd08, 0x3cd14, 1834 0x3cd1c, 0x3cd20, 1835 0x3cd3c, 0x3cd3c, 1836 0x3cd48, 0x3cd50, 1837 0x3d200, 0x3d20c, 1838 0x3d220, 0x3d220, 1839 0x3d240, 0x3d240, 1840 0x3d600, 0x3d60c, 1841 0x3da00, 0x3da1c, 1842 0x3de00, 0x3de20, 1843 0x3de38, 0x3de3c, 1844 0x3de80, 0x3de80, 1845 0x3de88, 0x3dea8, 1846 0x3deb0, 0x3deb4, 1847 0x3dec8, 0x3ded4, 1848 0x3dfb8, 0x3e004, 1849 0x3e200, 0x3e200, 1850 0x3e208, 0x3e240, 1851 0x3e248, 0x3e280, 1852 0x3e288, 0x3e2c0, 1853 0x3e2c8, 0x3e2fc, 1854 0x3e600, 0x3e630, 1855 0x3ea00, 0x3eabc, 1856 0x3eb00, 0x3eb10, 1857 0x3eb20, 0x3eb30, 1858 0x3eb40, 0x3eb50, 1859 0x3eb60, 0x3eb70, 1860 0x3f000, 0x3f028, 1861 0x3f030, 0x3f048, 1862 0x3f060, 0x3f068, 1863 0x3f070, 0x3f09c, 1864 0x3f0f0, 0x3f128, 1865 0x3f130, 0x3f148, 1866 0x3f160, 0x3f168, 1867 0x3f170, 0x3f19c, 1868 0x3f1f0, 0x3f238, 1869 0x3f240, 0x3f240, 1870 0x3f248, 0x3f250, 1871 0x3f25c, 0x3f264, 1872 0x3f270, 0x3f2b8, 1873 0x3f2c0, 0x3f2e4, 1874 0x3f2f8, 0x3f338, 1875 0x3f340, 0x3f340, 1876 0x3f348, 0x3f350, 1877 0x3f35c, 0x3f364, 1878 0x3f370, 0x3f3b8, 1879 0x3f3c0, 0x3f3e4, 1880 0x3f3f8, 0x3f428, 1881 0x3f430, 0x3f448, 1882 0x3f460, 0x3f468, 1883 0x3f470, 0x3f49c, 1884 0x3f4f0, 0x3f528, 1885 0x3f530, 0x3f548, 1886 0x3f560, 0x3f568, 1887 0x3f570, 0x3f59c, 1888 0x3f5f0, 0x3f638, 1889 0x3f640, 0x3f640, 1890 0x3f648, 0x3f650, 1891 0x3f65c, 0x3f664, 1892 0x3f670, 0x3f6b8, 1893 0x3f6c0, 0x3f6e4, 1894 0x3f6f8, 0x3f738, 1895 0x3f740, 0x3f740, 1896 0x3f748, 0x3f750, 1897 0x3f75c, 0x3f764, 1898 0x3f770, 0x3f7b8, 1899 0x3f7c0, 0x3f7e4, 1900 0x3f7f8, 0x3f7fc, 1901 0x3f814, 0x3f814, 1902 0x3f82c, 0x3f82c, 1903 0x3f880, 0x3f88c, 1904 0x3f8e8, 0x3f8ec, 1905 0x3f900, 0x3f928, 1906 0x3f930, 0x3f948, 1907 0x3f960, 0x3f968, 1908 0x3f970, 0x3f99c, 1909 0x3f9f0, 0x3fa38, 1910 0x3fa40, 0x3fa40, 1911 0x3fa48, 0x3fa50, 1912 0x3fa5c, 0x3fa64, 1913 0x3fa70, 0x3fab8, 1914 0x3fac0, 0x3fae4, 1915 0x3faf8, 0x3fb10, 1916 0x3fb28, 0x3fb28, 1917 0x3fb3c, 0x3fb50, 1918 0x3fbf0, 0x3fc10, 1919 0x3fc28, 0x3fc28, 1920 0x3fc3c, 0x3fc50, 1921 0x3fcf0, 0x3fcfc, 1922 0x40000, 0x4000c, 1923 0x40040, 0x40050, 1924 0x40060, 0x40068, 1925 0x4007c, 0x4008c, 1926 0x40094, 0x400b0, 1927 0x400c0, 0x40144, 1928 0x40180, 0x4018c, 1929 0x40200, 0x40254, 1930 0x40260, 0x40264, 1931 0x40270, 0x40288, 1932 0x40290, 0x40298, 1933 0x402ac, 0x402c8, 1934 0x402d0, 0x402e0, 1935 0x402f0, 0x402f0, 1936 0x40300, 0x4033c, 1937 0x403f8, 0x403fc, 1938 0x41304, 0x413c4, 1939 0x41400, 0x4140c, 1940 0x41414, 0x4141c, 1941 0x41480, 0x414d0, 1942 0x44000, 0x44054, 1943 0x4405c, 0x44078, 1944 0x440c0, 0x44174, 1945 0x44180, 0x441ac, 1946 0x441b4, 0x441b8, 1947 0x441c0, 0x44254, 1948 0x4425c, 0x44278, 1949 0x442c0, 0x44374, 1950 0x44380, 0x443ac, 1951 0x443b4, 0x443b8, 1952 0x443c0, 0x44454, 1953 0x4445c, 0x44478, 1954 0x444c0, 0x44574, 1955 0x44580, 0x445ac, 1956 0x445b4, 0x445b8, 1957 0x445c0, 0x44654, 1958 0x4465c, 0x44678, 1959 0x446c0, 0x44774, 1960 0x44780, 0x447ac, 1961 0x447b4, 0x447b8, 1962 0x447c0, 0x44854, 1963 0x4485c, 0x44878, 1964 0x448c0, 0x44974, 1965 0x44980, 0x449ac, 1966 0x449b4, 0x449b8, 1967 0x449c0, 0x449fc, 1968 0x45000, 0x45004, 1969 0x45010, 0x45030, 1970 0x45040, 0x45060, 1971 0x45068, 0x45068, 1972 0x45080, 0x45084, 1973 0x450a0, 0x450b0, 1974 0x45200, 0x45204, 1975 0x45210, 0x45230, 1976 0x45240, 0x45260, 1977 0x45268, 0x45268, 1978 0x45280, 0x45284, 1979 0x452a0, 0x452b0, 1980 0x460c0, 0x460e4, 1981 0x47000, 0x4703c, 1982 0x47044, 0x4708c, 1983 0x47200, 0x47250, 1984 0x47400, 0x47408, 1985 0x47414, 0x47420, 1986 0x47600, 0x47618, 1987 0x47800, 0x47814, 1988 0x48000, 0x4800c, 1989 0x48040, 0x48050, 1990 0x48060, 0x48068, 1991 0x4807c, 0x4808c, 1992 0x48094, 0x480b0, 1993 0x480c0, 0x48144, 1994 0x48180, 0x4818c, 1995 0x48200, 0x48254, 1996 0x48260, 0x48264, 1997 0x48270, 0x48288, 1998 0x48290, 0x48298, 1999 0x482ac, 0x482c8, 2000 0x482d0, 0x482e0, 2001 0x482f0, 0x482f0, 2002 0x48300, 0x4833c, 2003 0x483f8, 0x483fc, 2004 0x49304, 0x493c4, 2005 0x49400, 0x4940c, 2006 0x49414, 0x4941c, 2007 0x49480, 0x494d0, 2008 0x4c000, 0x4c054, 2009 0x4c05c, 0x4c078, 2010 0x4c0c0, 0x4c174, 2011 0x4c180, 0x4c1ac, 2012 0x4c1b4, 0x4c1b8, 2013 0x4c1c0, 0x4c254, 2014 0x4c25c, 0x4c278, 2015 0x4c2c0, 0x4c374, 2016 0x4c380, 0x4c3ac, 2017 0x4c3b4, 0x4c3b8, 2018 0x4c3c0, 0x4c454, 2019 0x4c45c, 0x4c478, 2020 0x4c4c0, 0x4c574, 2021 0x4c580, 0x4c5ac, 2022 0x4c5b4, 0x4c5b8, 2023 0x4c5c0, 0x4c654, 2024 0x4c65c, 0x4c678, 2025 0x4c6c0, 0x4c774, 2026 0x4c780, 0x4c7ac, 2027 0x4c7b4, 0x4c7b8, 2028 0x4c7c0, 0x4c854, 2029 0x4c85c, 0x4c878, 2030 0x4c8c0, 0x4c974, 2031 0x4c980, 0x4c9ac, 2032 0x4c9b4, 0x4c9b8, 2033 0x4c9c0, 0x4c9fc, 2034 0x4d000, 0x4d004, 2035 0x4d010, 0x4d030, 2036 0x4d040, 0x4d060, 2037 0x4d068, 0x4d068, 2038 0x4d080, 0x4d084, 2039 0x4d0a0, 0x4d0b0, 2040 0x4d200, 0x4d204, 2041 0x4d210, 0x4d230, 2042 0x4d240, 0x4d260, 2043 0x4d268, 0x4d268, 2044 0x4d280, 0x4d284, 2045 0x4d2a0, 0x4d2b0, 2046 0x4e0c0, 0x4e0e4, 2047 0x4f000, 0x4f03c, 2048 0x4f044, 0x4f08c, 2049 0x4f200, 0x4f250, 2050 0x4f400, 0x4f408, 2051 0x4f414, 0x4f420, 2052 0x4f600, 0x4f618, 2053 0x4f800, 0x4f814, 2054 0x50000, 0x50084, 2055 0x50090, 0x500cc, 2056 0x50400, 0x50400, 2057 0x50800, 0x50884, 2058 0x50890, 0x508cc, 2059 0x50c00, 0x50c00, 2060 0x51000, 0x5101c, 2061 0x51300, 0x51308, 2062 }; 2063 2064 static const unsigned int t5vf_reg_ranges[] = { 2065 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS), 2066 VF_MPS_REG(A_MPS_VF_CTL), 2067 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H), 2068 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION), 2069 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL), 2070 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS), 2071 FW_T4VF_MBDATA_BASE_ADDR, 2072 FW_T4VF_MBDATA_BASE_ADDR + 2073 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4), 2074 }; 2075 2076 static const unsigned int t6_reg_ranges[] = { 2077 0x1008, 0x101c, 2078 0x1024, 0x10a8, 2079 0x10b4, 0x10f8, 2080 0x1100, 0x1114, 2081 0x111c, 0x112c, 2082 0x1138, 0x113c, 2083 0x1144, 0x114c, 2084 0x1180, 0x1184, 2085 0x1190, 0x1194, 2086 0x11a0, 0x11a4, 2087 0x11b0, 0x11b4, 2088 0x11fc, 0x1274, 2089 0x1280, 0x133c, 2090 0x1800, 0x18fc, 2091 0x3000, 0x302c, 2092 0x3060, 0x30b0, 2093 0x30b8, 0x30d8, 2094 0x30e0, 0x30fc, 2095 0x3140, 0x357c, 2096 0x35a8, 0x35cc, 2097 0x35ec, 0x35ec, 2098 0x3600, 0x5624, 2099 0x56cc, 0x56ec, 2100 0x56f4, 0x5720, 2101 0x5728, 0x575c, 2102 0x580c, 0x5814, 2103 0x5890, 0x589c, 2104 0x58a4, 0x58ac, 2105 0x58b8, 0x58bc, 2106 0x5940, 0x595c, 2107 0x5980, 0x598c, 2108 0x59b0, 0x59c8, 2109 0x59d0, 0x59dc, 2110 0x59fc, 0x5a18, 2111 0x5a60, 0x5a6c, 2112 0x5a80, 0x5a8c, 2113 0x5a94, 0x5a9c, 2114 0x5b94, 0x5bfc, 2115 0x5c10, 0x5e48, 2116 0x5e50, 0x5e94, 2117 0x5ea0, 0x5eb0, 2118 0x5ec0, 0x5ec0, 2119 0x5ec8, 0x5ed0, 2120 0x5ee0, 0x5ee0, 2121 0x5ef0, 0x5ef0, 2122 0x5f00, 0x5f00, 2123 0x6000, 0x6020, 2124 0x6028, 0x6040, 2125 0x6058, 0x609c, 2126 0x60a8, 0x619c, 2127 0x7700, 0x7798, 2128 0x77c0, 0x7880, 2129 0x78cc, 0x78fc, 2130 0x7b00, 0x7b58, 2131 0x7b60, 0x7b84, 2132 0x7b8c, 0x7c54, 2133 0x7d00, 0x7d38, 2134 0x7d40, 0x7d84, 2135 0x7d8c, 0x7ddc, 2136 0x7de4, 0x7e04, 2137 0x7e10, 0x7e1c, 2138 0x7e24, 0x7e38, 2139 0x7e40, 0x7e44, 2140 0x7e4c, 0x7e78, 2141 0x7e80, 0x7edc, 2142 0x7ee8, 0x7efc, 2143 0x8dc0, 0x8de4, 2144 0x8df8, 0x8e04, 2145 0x8e10, 0x8e84, 2146 0x8ea0, 0x8f88, 2147 0x8fb8, 0x9058, 2148 0x9060, 0x9060, 2149 0x9068, 0x90f8, 2150 0x9100, 0x9124, 2151 0x9400, 0x9470, 2152 0x9600, 0x9600, 2153 0x9608, 0x9638, 2154 0x9640, 0x9704, 2155 0x9710, 0x971c, 2156 0x9800, 0x9808, 2157 0x9820, 0x983c, 2158 0x9850, 0x9864, 2159 0x9c00, 0x9c6c, 2160 0x9c80, 0x9cec, 2161 0x9d00, 0x9d6c, 2162 0x9d80, 0x9dec, 2163 0x9e00, 0x9e6c, 2164 0x9e80, 0x9eec, 2165 0x9f00, 0x9f6c, 2166 0x9f80, 0xa020, 2167 0xd004, 0xd03c, 2168 0xd100, 0xd118, 2169 0xd200, 0xd214, 2170 0xd220, 0xd234, 2171 0xd240, 0xd254, 2172 0xd260, 0xd274, 2173 0xd280, 0xd294, 2174 0xd2a0, 0xd2b4, 2175 0xd2c0, 0xd2d4, 2176 0xd2e0, 0xd2f4, 2177 0xd300, 0xd31c, 2178 0xdfc0, 0xdfe0, 2179 0xe000, 0xf008, 2180 0xf010, 0xf018, 2181 0xf020, 0xf028, 2182 0x11000, 0x11014, 2183 0x11048, 0x1106c, 2184 0x11074, 0x11088, 2185 0x11098, 0x11120, 2186 0x1112c, 0x1117c, 2187 0x11190, 0x112e0, 2188 0x11300, 0x1130c, 2189 0x12000, 0x1206c, 2190 0x19040, 0x1906c, 2191 0x19078, 0x19080, 2192 0x1908c, 0x190e8, 2193 0x190f0, 0x190f8, 2194 0x19100, 0x19110, 2195 0x19120, 0x19124, 2196 0x19150, 0x19194, 2197 0x1919c, 0x191b0, 2198 0x191d0, 0x191e8, 2199 0x19238, 0x19290, 2200 0x192a4, 0x192b0, 2201 0x192bc, 0x192bc, 2202 0x19348, 0x1934c, 2203 0x193f8, 0x19418, 2204 0x19420, 0x19428, 2205 0x19430, 0x19444, 2206 0x1944c, 0x1946c, 2207 0x19474, 0x19474, 2208 0x19490, 0x194cc, 2209 0x194f0, 0x194f8, 2210 0x19c00, 0x19c48, 2211 0x19c50, 0x19c80, 2212 0x19c94, 0x19c98, 2213 0x19ca0, 0x19cbc, 2214 0x19ce4, 0x19ce4, 2215 0x19cf0, 0x19cf8, 2216 0x19d00, 0x19d28, 2217 0x19d50, 0x19d78, 2218 0x19d94, 0x19d98, 2219 0x19da0, 0x19dc8, 2220 0x19df0, 0x19e10, 2221 0x19e50, 0x19e6c, 2222 0x19ea0, 0x19ebc, 2223 0x19ec4, 0x19ef4, 2224 0x19f04, 0x19f2c, 2225 0x19f34, 0x19f34, 2226 0x19f40, 0x19f50, 2227 0x19f90, 0x19fac, 2228 0x19fc4, 0x19fc8, 2229 0x19fd0, 0x19fe4, 2230 0x1a000, 0x1a004, 2231 0x1a010, 0x1a06c, 2232 0x1a0b0, 0x1a0e4, 2233 0x1a0ec, 0x1a0f8, 2234 0x1a100, 0x1a108, 2235 0x1a114, 0x1a120, 2236 0x1a128, 0x1a130, 2237 0x1a138, 0x1a138, 2238 0x1a190, 0x1a1c4, 2239 0x1a1fc, 0x1a1fc, 2240 0x1e008, 0x1e00c, 2241 0x1e040, 0x1e044, 2242 0x1e04c, 0x1e04c, 2243 0x1e284, 0x1e290, 2244 0x1e2c0, 0x1e2c0, 2245 0x1e2e0, 0x1e2e0, 2246 0x1e300, 0x1e384, 2247 0x1e3c0, 0x1e3c8, 2248 0x1e408, 0x1e40c, 2249 0x1e440, 0x1e444, 2250 0x1e44c, 0x1e44c, 2251 0x1e684, 0x1e690, 2252 0x1e6c0, 0x1e6c0, 2253 0x1e6e0, 0x1e6e0, 2254 0x1e700, 0x1e784, 2255 0x1e7c0, 0x1e7c8, 2256 0x1e808, 0x1e80c, 2257 0x1e840, 0x1e844, 2258 0x1e84c, 0x1e84c, 2259 0x1ea84, 0x1ea90, 2260 0x1eac0, 0x1eac0, 2261 0x1eae0, 0x1eae0, 2262 0x1eb00, 0x1eb84, 2263 0x1ebc0, 0x1ebc8, 2264 0x1ec08, 0x1ec0c, 2265 0x1ec40, 0x1ec44, 2266 0x1ec4c, 0x1ec4c, 2267 0x1ee84, 0x1ee90, 2268 0x1eec0, 0x1eec0, 2269 0x1eee0, 0x1eee0, 2270 0x1ef00, 0x1ef84, 2271 0x1efc0, 0x1efc8, 2272 0x1f008, 0x1f00c, 2273 0x1f040, 0x1f044, 2274 0x1f04c, 0x1f04c, 2275 0x1f284, 0x1f290, 2276 0x1f2c0, 0x1f2c0, 2277 0x1f2e0, 0x1f2e0, 2278 0x1f300, 0x1f384, 2279 0x1f3c0, 0x1f3c8, 2280 0x1f408, 0x1f40c, 2281 0x1f440, 0x1f444, 2282 0x1f44c, 0x1f44c, 2283 0x1f684, 0x1f690, 2284 0x1f6c0, 0x1f6c0, 2285 0x1f6e0, 0x1f6e0, 2286 0x1f700, 0x1f784, 2287 0x1f7c0, 0x1f7c8, 2288 0x1f808, 0x1f80c, 2289 0x1f840, 0x1f844, 2290 0x1f84c, 0x1f84c, 2291 0x1fa84, 0x1fa90, 2292 0x1fac0, 0x1fac0, 2293 0x1fae0, 0x1fae0, 2294 0x1fb00, 0x1fb84, 2295 0x1fbc0, 0x1fbc8, 2296 0x1fc08, 0x1fc0c, 2297 0x1fc40, 0x1fc44, 2298 0x1fc4c, 0x1fc4c, 2299 0x1fe84, 0x1fe90, 2300 0x1fec0, 0x1fec0, 2301 0x1fee0, 0x1fee0, 2302 0x1ff00, 0x1ff84, 2303 0x1ffc0, 0x1ffc8, 2304 0x30000, 0x30030, 2305 0x30100, 0x30168, 2306 0x30190, 0x301a0, 2307 0x301a8, 0x301b8, 2308 0x301c4, 0x301c8, 2309 0x301d0, 0x301d0, 2310 0x30200, 0x30320, 2311 0x30400, 0x304b4, 2312 0x304c0, 0x3052c, 2313 0x30540, 0x3061c, 2314 0x30800, 0x308a0, 2315 0x308c0, 0x30908, 2316 0x30910, 0x309b8, 2317 0x30a00, 0x30a04, 2318 0x30a0c, 0x30a14, 2319 0x30a1c, 0x30a2c, 2320 0x30a44, 0x30a50, 2321 0x30a74, 0x30a74, 2322 0x30a7c, 0x30afc, 2323 0x30b08, 0x30c24, 2324 0x30d00, 0x30d14, 2325 0x30d1c, 0x30d3c, 2326 0x30d44, 0x30d4c, 2327 0x30d54, 0x30d74, 2328 0x30d7c, 0x30d7c, 2329 0x30de0, 0x30de0, 2330 0x30e00, 0x30ed4, 2331 0x30f00, 0x30fa4, 2332 0x30fc0, 0x30fc4, 2333 0x31000, 0x31004, 2334 0x31080, 0x310fc, 2335 0x31208, 0x31220, 2336 0x3123c, 0x31254, 2337 0x31300, 0x31300, 2338 0x31308, 0x3131c, 2339 0x31338, 0x3133c, 2340 0x31380, 0x31380, 2341 0x31388, 0x313a8, 2342 0x313b4, 0x313b4, 2343 0x31400, 0x31420, 2344 0x31438, 0x3143c, 2345 0x31480, 0x31480, 2346 0x314a8, 0x314a8, 2347 0x314b0, 0x314b4, 2348 0x314c8, 0x314d4, 2349 0x31a40, 0x31a4c, 2350 0x31af0, 0x31b20, 2351 0x31b38, 0x31b3c, 2352 0x31b80, 0x31b80, 2353 0x31ba8, 0x31ba8, 2354 0x31bb0, 0x31bb4, 2355 0x31bc8, 0x31bd4, 2356 0x32140, 0x3218c, 2357 0x321f0, 0x321f4, 2358 0x32200, 0x32200, 2359 0x32218, 0x32218, 2360 0x32400, 0x32400, 2361 0x32408, 0x3241c, 2362 0x32618, 0x32620, 2363 0x32664, 0x32664, 2364 0x326a8, 0x326a8, 2365 0x326ec, 0x326ec, 2366 0x32a00, 0x32abc, 2367 0x32b00, 0x32b18, 2368 0x32b20, 0x32b38, 2369 0x32b40, 0x32b58, 2370 0x32b60, 0x32b78, 2371 0x32c00, 0x32c00, 2372 0x32c08, 0x32c3c, 2373 0x33000, 0x3302c, 2374 0x33034, 0x33050, 2375 0x33058, 0x33058, 2376 0x33060, 0x3308c, 2377 0x3309c, 0x330ac, 2378 0x330c0, 0x330c0, 2379 0x330c8, 0x330d0, 2380 0x330d8, 0x330e0, 2381 0x330ec, 0x3312c, 2382 0x33134, 0x33150, 2383 0x33158, 0x33158, 2384 0x33160, 0x3318c, 2385 0x3319c, 0x331ac, 2386 0x331c0, 0x331c0, 2387 0x331c8, 0x331d0, 2388 0x331d8, 0x331e0, 2389 0x331ec, 0x33290, 2390 0x33298, 0x332c4, 2391 0x332e4, 0x33390, 2392 0x33398, 0x333c4, 2393 0x333e4, 0x3342c, 2394 0x33434, 0x33450, 2395 0x33458, 0x33458, 2396 0x33460, 0x3348c, 2397 0x3349c, 0x334ac, 2398 0x334c0, 0x334c0, 2399 0x334c8, 0x334d0, 2400 0x334d8, 0x334e0, 2401 0x334ec, 0x3352c, 2402 0x33534, 0x33550, 2403 0x33558, 0x33558, 2404 0x33560, 0x3358c, 2405 0x3359c, 0x335ac, 2406 0x335c0, 0x335c0, 2407 0x335c8, 0x335d0, 2408 0x335d8, 0x335e0, 2409 0x335ec, 0x33690, 2410 0x33698, 0x336c4, 2411 0x336e4, 0x33790, 2412 0x33798, 0x337c4, 2413 0x337e4, 0x337fc, 2414 0x33814, 0x33814, 2415 0x33854, 0x33868, 2416 0x33880, 0x3388c, 2417 0x338c0, 0x338d0, 2418 0x338e8, 0x338ec, 2419 0x33900, 0x3392c, 2420 0x33934, 0x33950, 2421 0x33958, 0x33958, 2422 0x33960, 0x3398c, 2423 0x3399c, 0x339ac, 2424 0x339c0, 0x339c0, 2425 0x339c8, 0x339d0, 2426 0x339d8, 0x339e0, 2427 0x339ec, 0x33a90, 2428 0x33a98, 0x33ac4, 2429 0x33ae4, 0x33b10, 2430 0x33b24, 0x33b28, 2431 0x33b38, 0x33b50, 2432 0x33bf0, 0x33c10, 2433 0x33c24, 0x33c28, 2434 0x33c38, 0x33c50, 2435 0x33cf0, 0x33cfc, 2436 0x34000, 0x34030, 2437 0x34100, 0x34168, 2438 0x34190, 0x341a0, 2439 0x341a8, 0x341b8, 2440 0x341c4, 0x341c8, 2441 0x341d0, 0x341d0, 2442 0x34200, 0x34320, 2443 0x34400, 0x344b4, 2444 0x344c0, 0x3452c, 2445 0x34540, 0x3461c, 2446 0x34800, 0x348a0, 2447 0x348c0, 0x34908, 2448 0x34910, 0x349b8, 2449 0x34a00, 0x34a04, 2450 0x34a0c, 0x34a14, 2451 0x34a1c, 0x34a2c, 2452 0x34a44, 0x34a50, 2453 0x34a74, 0x34a74, 2454 0x34a7c, 0x34afc, 2455 0x34b08, 0x34c24, 2456 0x34d00, 0x34d14, 2457 0x34d1c, 0x34d3c, 2458 0x34d44, 0x34d4c, 2459 0x34d54, 0x34d74, 2460 0x34d7c, 0x34d7c, 2461 0x34de0, 0x34de0, 2462 0x34e00, 0x34ed4, 2463 0x34f00, 0x34fa4, 2464 0x34fc0, 0x34fc4, 2465 0x35000, 0x35004, 2466 0x35080, 0x350fc, 2467 0x35208, 0x35220, 2468 0x3523c, 0x35254, 2469 0x35300, 0x35300, 2470 0x35308, 0x3531c, 2471 0x35338, 0x3533c, 2472 0x35380, 0x35380, 2473 0x35388, 0x353a8, 2474 0x353b4, 0x353b4, 2475 0x35400, 0x35420, 2476 0x35438, 0x3543c, 2477 0x35480, 0x35480, 2478 0x354a8, 0x354a8, 2479 0x354b0, 0x354b4, 2480 0x354c8, 0x354d4, 2481 0x35a40, 0x35a4c, 2482 0x35af0, 0x35b20, 2483 0x35b38, 0x35b3c, 2484 0x35b80, 0x35b80, 2485 0x35ba8, 0x35ba8, 2486 0x35bb0, 0x35bb4, 2487 0x35bc8, 0x35bd4, 2488 0x36140, 0x3618c, 2489 0x361f0, 0x361f4, 2490 0x36200, 0x36200, 2491 0x36218, 0x36218, 2492 0x36400, 0x36400, 2493 0x36408, 0x3641c, 2494 0x36618, 0x36620, 2495 0x36664, 0x36664, 2496 0x366a8, 0x366a8, 2497 0x366ec, 0x366ec, 2498 0x36a00, 0x36abc, 2499 0x36b00, 0x36b18, 2500 0x36b20, 0x36b38, 2501 0x36b40, 0x36b58, 2502 0x36b60, 0x36b78, 2503 0x36c00, 0x36c00, 2504 0x36c08, 0x36c3c, 2505 0x37000, 0x3702c, 2506 0x37034, 0x37050, 2507 0x37058, 0x37058, 2508 0x37060, 0x3708c, 2509 0x3709c, 0x370ac, 2510 0x370c0, 0x370c0, 2511 0x370c8, 0x370d0, 2512 0x370d8, 0x370e0, 2513 0x370ec, 0x3712c, 2514 0x37134, 0x37150, 2515 0x37158, 0x37158, 2516 0x37160, 0x3718c, 2517 0x3719c, 0x371ac, 2518 0x371c0, 0x371c0, 2519 0x371c8, 0x371d0, 2520 0x371d8, 0x371e0, 2521 0x371ec, 0x37290, 2522 0x37298, 0x372c4, 2523 0x372e4, 0x37390, 2524 0x37398, 0x373c4, 2525 0x373e4, 0x3742c, 2526 0x37434, 0x37450, 2527 0x37458, 0x37458, 2528 0x37460, 0x3748c, 2529 0x3749c, 0x374ac, 2530 0x374c0, 0x374c0, 2531 0x374c8, 0x374d0, 2532 0x374d8, 0x374e0, 2533 0x374ec, 0x3752c, 2534 0x37534, 0x37550, 2535 0x37558, 0x37558, 2536 0x37560, 0x3758c, 2537 0x3759c, 0x375ac, 2538 0x375c0, 0x375c0, 2539 0x375c8, 0x375d0, 2540 0x375d8, 0x375e0, 2541 0x375ec, 0x37690, 2542 0x37698, 0x376c4, 2543 0x376e4, 0x37790, 2544 0x37798, 0x377c4, 2545 0x377e4, 0x377fc, 2546 0x37814, 0x37814, 2547 0x37854, 0x37868, 2548 0x37880, 0x3788c, 2549 0x378c0, 0x378d0, 2550 0x378e8, 0x378ec, 2551 0x37900, 0x3792c, 2552 0x37934, 0x37950, 2553 0x37958, 0x37958, 2554 0x37960, 0x3798c, 2555 0x3799c, 0x379ac, 2556 0x379c0, 0x379c0, 2557 0x379c8, 0x379d0, 2558 0x379d8, 0x379e0, 2559 0x379ec, 0x37a90, 2560 0x37a98, 0x37ac4, 2561 0x37ae4, 0x37b10, 2562 0x37b24, 0x37b28, 2563 0x37b38, 0x37b50, 2564 0x37bf0, 0x37c10, 2565 0x37c24, 0x37c28, 2566 0x37c38, 0x37c50, 2567 0x37cf0, 0x37cfc, 2568 0x40040, 0x40040, 2569 0x40080, 0x40084, 2570 0x40100, 0x40100, 2571 0x40140, 0x401bc, 2572 0x40200, 0x40214, 2573 0x40228, 0x40228, 2574 0x40240, 0x40258, 2575 0x40280, 0x40280, 2576 0x40304, 0x40304, 2577 0x40330, 0x4033c, 2578 0x41304, 0x413c8, 2579 0x413d0, 0x413dc, 2580 0x413f0, 0x413f0, 2581 0x41400, 0x4140c, 2582 0x41414, 0x4141c, 2583 0x41480, 0x414d0, 2584 0x44000, 0x4407c, 2585 0x440c0, 0x441ac, 2586 0x441b4, 0x4427c, 2587 0x442c0, 0x443ac, 2588 0x443b4, 0x4447c, 2589 0x444c0, 0x445ac, 2590 0x445b4, 0x4467c, 2591 0x446c0, 0x447ac, 2592 0x447b4, 0x4487c, 2593 0x448c0, 0x449ac, 2594 0x449b4, 0x44a7c, 2595 0x44ac0, 0x44bac, 2596 0x44bb4, 0x44c7c, 2597 0x44cc0, 0x44dac, 2598 0x44db4, 0x44e7c, 2599 0x44ec0, 0x44fac, 2600 0x44fb4, 0x4507c, 2601 0x450c0, 0x451ac, 2602 0x451b4, 0x451fc, 2603 0x45800, 0x45804, 2604 0x45810, 0x45830, 2605 0x45840, 0x45860, 2606 0x45868, 0x45868, 2607 0x45880, 0x45884, 2608 0x458a0, 0x458b0, 2609 0x45a00, 0x45a04, 2610 0x45a10, 0x45a30, 2611 0x45a40, 0x45a60, 2612 0x45a68, 0x45a68, 2613 0x45a80, 0x45a84, 2614 0x45aa0, 0x45ab0, 2615 0x460c0, 0x460e4, 2616 0x47000, 0x4703c, 2617 0x47044, 0x4708c, 2618 0x47200, 0x47250, 2619 0x47400, 0x47408, 2620 0x47414, 0x47420, 2621 0x47600, 0x47618, 2622 0x47800, 0x47814, 2623 0x47820, 0x4782c, 2624 0x50000, 0x50084, 2625 0x50090, 0x500cc, 2626 0x50300, 0x50384, 2627 0x50400, 0x50400, 2628 0x50800, 0x50884, 2629 0x50890, 0x508cc, 2630 0x50b00, 0x50b84, 2631 0x50c00, 0x50c00, 2632 0x51000, 0x51020, 2633 0x51028, 0x510b0, 2634 0x51300, 0x51324, 2635 }; 2636 2637 static const unsigned int t6vf_reg_ranges[] = { 2638 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS), 2639 VF_MPS_REG(A_MPS_VF_CTL), 2640 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H), 2641 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION), 2642 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL), 2643 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS), 2644 FW_T6VF_MBDATA_BASE_ADDR, 2645 FW_T6VF_MBDATA_BASE_ADDR + 2646 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4), 2647 }; 2648 2649 u32 *buf_end = (u32 *)(buf + buf_size); 2650 const unsigned int *reg_ranges; 2651 int reg_ranges_size, range; 2652 unsigned int chip_version = chip_id(adap); 2653 2654 /* 2655 * Select the right set of register ranges to dump depending on the 2656 * adapter chip type. 2657 */ 2658 switch (chip_version) { 2659 case CHELSIO_T4: 2660 if (adap->flags & IS_VF) { 2661 reg_ranges = t4vf_reg_ranges; 2662 reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges); 2663 } else { 2664 reg_ranges = t4_reg_ranges; 2665 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 2666 } 2667 break; 2668 2669 case CHELSIO_T5: 2670 if (adap->flags & IS_VF) { 2671 reg_ranges = t5vf_reg_ranges; 2672 reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges); 2673 } else { 2674 reg_ranges = t5_reg_ranges; 2675 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 2676 } 2677 break; 2678 2679 case CHELSIO_T6: 2680 if (adap->flags & IS_VF) { 2681 reg_ranges = t6vf_reg_ranges; 2682 reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges); 2683 } else { 2684 reg_ranges = t6_reg_ranges; 2685 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); 2686 } 2687 break; 2688 2689 default: 2690 CH_ERR(adap, 2691 "Unsupported chip version %d\n", chip_version); 2692 return; 2693 } 2694 2695 /* 2696 * Clear the register buffer and insert the appropriate register 2697 * values selected by the above register ranges. 2698 */ 2699 memset(buf, 0, buf_size); 2700 for (range = 0; range < reg_ranges_size; range += 2) { 2701 unsigned int reg = reg_ranges[range]; 2702 unsigned int last_reg = reg_ranges[range + 1]; 2703 u32 *bufp = (u32 *)(buf + reg); 2704 2705 /* 2706 * Iterate across the register range filling in the register 2707 * buffer but don't write past the end of the register buffer. 2708 */ 2709 while (reg <= last_reg && bufp < buf_end) { 2710 *bufp++ = t4_read_reg(adap, reg); 2711 reg += sizeof(u32); 2712 } 2713 } 2714 } 2715 2716 /* 2717 * Partial EEPROM Vital Product Data structure. The VPD starts with one ID 2718 * header followed by one or more VPD-R sections, each with its own header. 2719 */ 2720 struct t4_vpd_hdr { 2721 u8 id_tag; 2722 u8 id_len[2]; 2723 u8 id_data[ID_LEN]; 2724 }; 2725 2726 struct t4_vpdr_hdr { 2727 u8 vpdr_tag; 2728 u8 vpdr_len[2]; 2729 }; 2730 2731 /* 2732 * EEPROM reads take a few tens of us while writes can take a bit over 5 ms. 2733 */ 2734 #define EEPROM_DELAY 10 /* 10us per poll spin */ 2735 #define EEPROM_MAX_POLL 5000 /* x 5000 == 50ms */ 2736 2737 #define EEPROM_STAT_ADDR 0x7bfc 2738 #define VPD_SIZE 0x800 2739 #define VPD_BASE 0x400 2740 #define VPD_BASE_OLD 0 2741 #define VPD_LEN 1024 2742 #define VPD_INFO_FLD_HDR_SIZE 3 2743 #define CHELSIO_VPD_UNIQUE_ID 0x82 2744 2745 /* 2746 * Small utility function to wait till any outstanding VPD Access is complete. 2747 * We have a per-adapter state variable "VPD Busy" to indicate when we have a 2748 * VPD Access in flight. This allows us to handle the problem of having a 2749 * previous VPD Access time out and prevent an attempt to inject a new VPD 2750 * Request before any in-flight VPD reguest has completed. 2751 */ 2752 static int t4_seeprom_wait(struct adapter *adapter) 2753 { 2754 unsigned int base = adapter->params.pci.vpd_cap_addr; 2755 int max_poll; 2756 2757 /* 2758 * If no VPD Access is in flight, we can just return success right 2759 * away. 2760 */ 2761 if (!adapter->vpd_busy) 2762 return 0; 2763 2764 /* 2765 * Poll the VPD Capability Address/Flag register waiting for it 2766 * to indicate that the operation is complete. 2767 */ 2768 max_poll = EEPROM_MAX_POLL; 2769 do { 2770 u16 val; 2771 2772 udelay(EEPROM_DELAY); 2773 t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val); 2774 2775 /* 2776 * If the operation is complete, mark the VPD as no longer 2777 * busy and return success. 2778 */ 2779 if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) { 2780 adapter->vpd_busy = 0; 2781 return 0; 2782 } 2783 } while (--max_poll); 2784 2785 /* 2786 * Failure! Note that we leave the VPD Busy status set in order to 2787 * avoid pushing a new VPD Access request into the VPD Capability till 2788 * the current operation eventually succeeds. It's a bug to issue a 2789 * new request when an existing request is in flight and will result 2790 * in corrupt hardware state. 2791 */ 2792 return -ETIMEDOUT; 2793 } 2794 2795 /** 2796 * t4_seeprom_read - read a serial EEPROM location 2797 * @adapter: adapter to read 2798 * @addr: EEPROM virtual address 2799 * @data: where to store the read data 2800 * 2801 * Read a 32-bit word from a location in serial EEPROM using the card's PCI 2802 * VPD capability. Note that this function must be called with a virtual 2803 * address. 2804 */ 2805 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data) 2806 { 2807 unsigned int base = adapter->params.pci.vpd_cap_addr; 2808 int ret; 2809 2810 /* 2811 * VPD Accesses must alway be 4-byte aligned! 2812 */ 2813 if (addr >= EEPROMVSIZE || (addr & 3)) 2814 return -EINVAL; 2815 2816 /* 2817 * Wait for any previous operation which may still be in flight to 2818 * complete. 2819 */ 2820 ret = t4_seeprom_wait(adapter); 2821 if (ret) { 2822 CH_ERR(adapter, "VPD still busy from previous operation\n"); 2823 return ret; 2824 } 2825 2826 /* 2827 * Issue our new VPD Read request, mark the VPD as being busy and wait 2828 * for our request to complete. If it doesn't complete, note the 2829 * error and return it to our caller. Note that we do not reset the 2830 * VPD Busy status! 2831 */ 2832 t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr); 2833 adapter->vpd_busy = 1; 2834 adapter->vpd_flag = PCI_VPD_ADDR_F; 2835 ret = t4_seeprom_wait(adapter); 2836 if (ret) { 2837 CH_ERR(adapter, "VPD read of address %#x failed\n", addr); 2838 return ret; 2839 } 2840 2841 /* 2842 * Grab the returned data, swizzle it into our endianness and 2843 * return success. 2844 */ 2845 t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data); 2846 *data = le32_to_cpu(*data); 2847 return 0; 2848 } 2849 2850 /** 2851 * t4_seeprom_write - write a serial EEPROM location 2852 * @adapter: adapter to write 2853 * @addr: virtual EEPROM address 2854 * @data: value to write 2855 * 2856 * Write a 32-bit word to a location in serial EEPROM using the card's PCI 2857 * VPD capability. Note that this function must be called with a virtual 2858 * address. 2859 */ 2860 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data) 2861 { 2862 unsigned int base = adapter->params.pci.vpd_cap_addr; 2863 int ret; 2864 u32 stats_reg; 2865 int max_poll; 2866 2867 /* 2868 * VPD Accesses must alway be 4-byte aligned! 2869 */ 2870 if (addr >= EEPROMVSIZE || (addr & 3)) 2871 return -EINVAL; 2872 2873 /* 2874 * Wait for any previous operation which may still be in flight to 2875 * complete. 2876 */ 2877 ret = t4_seeprom_wait(adapter); 2878 if (ret) { 2879 CH_ERR(adapter, "VPD still busy from previous operation\n"); 2880 return ret; 2881 } 2882 2883 /* 2884 * Issue our new VPD Read request, mark the VPD as being busy and wait 2885 * for our request to complete. If it doesn't complete, note the 2886 * error and return it to our caller. Note that we do not reset the 2887 * VPD Busy status! 2888 */ 2889 t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 2890 cpu_to_le32(data)); 2891 t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, 2892 (u16)addr | PCI_VPD_ADDR_F); 2893 adapter->vpd_busy = 1; 2894 adapter->vpd_flag = 0; 2895 ret = t4_seeprom_wait(adapter); 2896 if (ret) { 2897 CH_ERR(adapter, "VPD write of address %#x failed\n", addr); 2898 return ret; 2899 } 2900 2901 /* 2902 * Reset PCI_VPD_DATA register after a transaction and wait for our 2903 * request to complete. If it doesn't complete, return error. 2904 */ 2905 t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0); 2906 max_poll = EEPROM_MAX_POLL; 2907 do { 2908 udelay(EEPROM_DELAY); 2909 t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg); 2910 } while ((stats_reg & 0x1) && --max_poll); 2911 if (!max_poll) 2912 return -ETIMEDOUT; 2913 2914 /* Return success! */ 2915 return 0; 2916 } 2917 2918 /** 2919 * t4_eeprom_ptov - translate a physical EEPROM address to virtual 2920 * @phys_addr: the physical EEPROM address 2921 * @fn: the PCI function number 2922 * @sz: size of function-specific area 2923 * 2924 * Translate a physical EEPROM address to virtual. The first 1K is 2925 * accessed through virtual addresses starting at 31K, the rest is 2926 * accessed through virtual addresses starting at 0. 2927 * 2928 * The mapping is as follows: 2929 * [0..1K) -> [31K..32K) 2930 * [1K..1K+A) -> [ES-A..ES) 2931 * [1K+A..ES) -> [0..ES-A-1K) 2932 * 2933 * where A = @fn * @sz, and ES = EEPROM size. 2934 */ 2935 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) 2936 { 2937 fn *= sz; 2938 if (phys_addr < 1024) 2939 return phys_addr + (31 << 10); 2940 if (phys_addr < 1024 + fn) 2941 return EEPROMSIZE - fn + phys_addr - 1024; 2942 if (phys_addr < EEPROMSIZE) 2943 return phys_addr - 1024 - fn; 2944 return -EINVAL; 2945 } 2946 2947 /** 2948 * t4_seeprom_wp - enable/disable EEPROM write protection 2949 * @adapter: the adapter 2950 * @enable: whether to enable or disable write protection 2951 * 2952 * Enables or disables write protection on the serial EEPROM. 2953 */ 2954 int t4_seeprom_wp(struct adapter *adapter, int enable) 2955 { 2956 return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0); 2957 } 2958 2959 /** 2960 * get_vpd_keyword_val - Locates an information field keyword in the VPD 2961 * @vpd: Pointer to buffered vpd data structure 2962 * @kw: The keyword to search for 2963 * @region: VPD region to search (starting from 0) 2964 * 2965 * Returns the value of the information field keyword or 2966 * -ENOENT otherwise. 2967 */ 2968 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region) 2969 { 2970 int i, tag; 2971 unsigned int offset, len; 2972 const struct t4_vpdr_hdr *vpdr; 2973 2974 offset = sizeof(struct t4_vpd_hdr); 2975 vpdr = (const void *)(vpd + offset); 2976 tag = vpdr->vpdr_tag; 2977 len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8); 2978 while (region--) { 2979 offset += sizeof(struct t4_vpdr_hdr) + len; 2980 vpdr = (const void *)(vpd + offset); 2981 if (++tag != vpdr->vpdr_tag) 2982 return -ENOENT; 2983 len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8); 2984 } 2985 offset += sizeof(struct t4_vpdr_hdr); 2986 2987 if (offset + len > VPD_LEN) { 2988 return -ENOENT; 2989 } 2990 2991 for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) { 2992 if (memcmp(vpd + i , kw , 2) == 0){ 2993 i += VPD_INFO_FLD_HDR_SIZE; 2994 return i; 2995 } 2996 2997 i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2]; 2998 } 2999 3000 return -ENOENT; 3001 } 3002 3003 3004 /** 3005 * get_vpd_params - read VPD parameters from VPD EEPROM 3006 * @adapter: adapter to read 3007 * @p: where to store the parameters 3008 * @vpd: caller provided temporary space to read the VPD into 3009 * 3010 * Reads card parameters stored in VPD EEPROM. 3011 */ 3012 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p, 3013 uint16_t device_id, u32 *buf) 3014 { 3015 int i, ret, addr; 3016 int ec, sn, pn, na, md; 3017 u8 csum; 3018 const u8 *vpd = (const u8 *)buf; 3019 3020 /* 3021 * Card information normally starts at VPD_BASE but early cards had 3022 * it at 0. 3023 */ 3024 ret = t4_seeprom_read(adapter, VPD_BASE, buf); 3025 if (ret) 3026 return (ret); 3027 3028 /* 3029 * The VPD shall have a unique identifier specified by the PCI SIG. 3030 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD 3031 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software 3032 * is expected to automatically put this entry at the 3033 * beginning of the VPD. 3034 */ 3035 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD; 3036 3037 for (i = 0; i < VPD_LEN; i += 4) { 3038 ret = t4_seeprom_read(adapter, addr + i, buf++); 3039 if (ret) 3040 return ret; 3041 } 3042 3043 #define FIND_VPD_KW(var,name) do { \ 3044 var = get_vpd_keyword_val(vpd, name, 0); \ 3045 if (var < 0) { \ 3046 CH_ERR(adapter, "missing VPD keyword " name "\n"); \ 3047 return -EINVAL; \ 3048 } \ 3049 } while (0) 3050 3051 FIND_VPD_KW(i, "RV"); 3052 for (csum = 0; i >= 0; i--) 3053 csum += vpd[i]; 3054 3055 if (csum) { 3056 CH_ERR(adapter, 3057 "corrupted VPD EEPROM, actual csum %u\n", csum); 3058 return -EINVAL; 3059 } 3060 3061 FIND_VPD_KW(ec, "EC"); 3062 FIND_VPD_KW(sn, "SN"); 3063 FIND_VPD_KW(pn, "PN"); 3064 FIND_VPD_KW(na, "NA"); 3065 #undef FIND_VPD_KW 3066 3067 memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN); 3068 strstrip(p->id); 3069 memcpy(p->ec, vpd + ec, EC_LEN); 3070 strstrip(p->ec); 3071 i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2]; 3072 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 3073 strstrip(p->sn); 3074 i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2]; 3075 memcpy(p->pn, vpd + pn, min(i, PN_LEN)); 3076 strstrip((char *)p->pn); 3077 i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2]; 3078 memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); 3079 strstrip((char *)p->na); 3080 3081 if (device_id & 0x80) 3082 return 0; /* Custom card */ 3083 3084 md = get_vpd_keyword_val(vpd, "VF", 1); 3085 if (md < 0) { 3086 snprintf(p->md, sizeof(p->md), "unknown"); 3087 } else { 3088 i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2]; 3089 memcpy(p->md, vpd + md, min(i, MD_LEN)); 3090 strstrip((char *)p->md); 3091 } 3092 3093 return 0; 3094 } 3095 3096 /* serial flash and firmware constants and flash config file constants */ 3097 enum { 3098 SF_ATTEMPTS = 10, /* max retries for SF operations */ 3099 3100 /* flash command opcodes */ 3101 SF_PROG_PAGE = 2, /* program 256B page */ 3102 SF_WR_DISABLE = 4, /* disable writes */ 3103 SF_RD_STATUS = 5, /* read status register */ 3104 SF_WR_ENABLE = 6, /* enable writes */ 3105 SF_RD_DATA_FAST = 0xb, /* read flash */ 3106 SF_RD_ID = 0x9f, /* read ID */ 3107 SF_ERASE_SECTOR = 0xd8, /* erase 64KB sector */ 3108 }; 3109 3110 /** 3111 * sf1_read - read data from the serial flash 3112 * @adapter: the adapter 3113 * @byte_cnt: number of bytes to read 3114 * @cont: whether another operation will be chained 3115 * @lock: whether to lock SF for PL access only 3116 * @valp: where to store the read data 3117 * 3118 * Reads up to 4 bytes of data from the serial flash. The location of 3119 * the read needs to be specified prior to calling this by issuing the 3120 * appropriate commands to the serial flash. 3121 */ 3122 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 3123 int lock, u32 *valp) 3124 { 3125 int ret; 3126 3127 if (!byte_cnt || byte_cnt > 4) 3128 return -EINVAL; 3129 if (t4_read_reg(adapter, A_SF_OP) & F_BUSY) 3130 return -EBUSY; 3131 t4_write_reg(adapter, A_SF_OP, 3132 V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1)); 3133 ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5); 3134 if (!ret) 3135 *valp = t4_read_reg(adapter, A_SF_DATA); 3136 return ret; 3137 } 3138 3139 /** 3140 * sf1_write - write data to the serial flash 3141 * @adapter: the adapter 3142 * @byte_cnt: number of bytes to write 3143 * @cont: whether another operation will be chained 3144 * @lock: whether to lock SF for PL access only 3145 * @val: value to write 3146 * 3147 * Writes up to 4 bytes of data to the serial flash. The location of 3148 * the write needs to be specified prior to calling this by issuing the 3149 * appropriate commands to the serial flash. 3150 */ 3151 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 3152 int lock, u32 val) 3153 { 3154 if (!byte_cnt || byte_cnt > 4) 3155 return -EINVAL; 3156 if (t4_read_reg(adapter, A_SF_OP) & F_BUSY) 3157 return -EBUSY; 3158 t4_write_reg(adapter, A_SF_DATA, val); 3159 t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) | 3160 V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1)); 3161 return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5); 3162 } 3163 3164 /** 3165 * flash_wait_op - wait for a flash operation to complete 3166 * @adapter: the adapter 3167 * @attempts: max number of polls of the status register 3168 * @delay: delay between polls in ms 3169 * 3170 * Wait for a flash operation to complete by polling the status register. 3171 */ 3172 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 3173 { 3174 int ret; 3175 u32 status; 3176 3177 while (1) { 3178 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 3179 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 3180 return ret; 3181 if (!(status & 1)) 3182 return 0; 3183 if (--attempts == 0) 3184 return -EAGAIN; 3185 if (delay) 3186 msleep(delay); 3187 } 3188 } 3189 3190 /** 3191 * t4_read_flash - read words from serial flash 3192 * @adapter: the adapter 3193 * @addr: the start address for the read 3194 * @nwords: how many 32-bit words to read 3195 * @data: where to store the read data 3196 * @byte_oriented: whether to store data as bytes or as words 3197 * 3198 * Read the specified number of 32-bit words from the serial flash. 3199 * If @byte_oriented is set the read data is stored as a byte array 3200 * (i.e., big-endian), otherwise as 32-bit words in the platform's 3201 * natural endianness. 3202 */ 3203 int t4_read_flash(struct adapter *adapter, unsigned int addr, 3204 unsigned int nwords, u32 *data, int byte_oriented) 3205 { 3206 int ret; 3207 3208 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 3209 return -EINVAL; 3210 3211 addr = swab32(addr) | SF_RD_DATA_FAST; 3212 3213 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 3214 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 3215 return ret; 3216 3217 for ( ; nwords; nwords--, data++) { 3218 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 3219 if (nwords == 1) 3220 t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ 3221 if (ret) 3222 return ret; 3223 if (byte_oriented) 3224 *data = (__force __u32)(cpu_to_be32(*data)); 3225 } 3226 return 0; 3227 } 3228 3229 /** 3230 * t4_write_flash - write up to a page of data to the serial flash 3231 * @adapter: the adapter 3232 * @addr: the start address to write 3233 * @n: length of data to write in bytes 3234 * @data: the data to write 3235 * @byte_oriented: whether to store data as bytes or as words 3236 * 3237 * Writes up to a page of data (256 bytes) to the serial flash starting 3238 * at the given address. All the data must be written to the same page. 3239 * If @byte_oriented is set the write data is stored as byte stream 3240 * (i.e. matches what on disk), otherwise in big-endian. 3241 */ 3242 int t4_write_flash(struct adapter *adapter, unsigned int addr, 3243 unsigned int n, const u8 *data, int byte_oriented) 3244 { 3245 int ret; 3246 u32 buf[SF_PAGE_SIZE / 4]; 3247 unsigned int i, c, left, val, offset = addr & 0xff; 3248 3249 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 3250 return -EINVAL; 3251 3252 val = swab32(addr) | SF_PROG_PAGE; 3253 3254 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3255 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 3256 goto unlock; 3257 3258 for (left = n; left; left -= c) { 3259 c = min(left, 4U); 3260 for (val = 0, i = 0; i < c; ++i) 3261 val = (val << 8) + *data++; 3262 3263 if (!byte_oriented) 3264 val = cpu_to_be32(val); 3265 3266 ret = sf1_write(adapter, c, c != left, 1, val); 3267 if (ret) 3268 goto unlock; 3269 } 3270 ret = flash_wait_op(adapter, 8, 1); 3271 if (ret) 3272 goto unlock; 3273 3274 t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ 3275 3276 /* Read the page to verify the write succeeded */ 3277 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 3278 byte_oriented); 3279 if (ret) 3280 return ret; 3281 3282 if (memcmp(data - n, (u8 *)buf + offset, n)) { 3283 CH_ERR(adapter, 3284 "failed to correctly write the flash page at %#x\n", 3285 addr); 3286 return -EIO; 3287 } 3288 return 0; 3289 3290 unlock: 3291 t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ 3292 return ret; 3293 } 3294 3295 /** 3296 * t4_get_fw_version - read the firmware version 3297 * @adapter: the adapter 3298 * @vers: where to place the version 3299 * 3300 * Reads the FW version from flash. 3301 */ 3302 int t4_get_fw_version(struct adapter *adapter, u32 *vers) 3303 { 3304 return t4_read_flash(adapter, FLASH_FW_START + 3305 offsetof(struct fw_hdr, fw_ver), 1, 3306 vers, 0); 3307 } 3308 3309 /** 3310 * t4_get_fw_hdr - read the firmware header 3311 * @adapter: the adapter 3312 * @hdr: where to place the version 3313 * 3314 * Reads the FW header from flash into caller provided buffer. 3315 */ 3316 int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr) 3317 { 3318 return t4_read_flash(adapter, FLASH_FW_START, 3319 sizeof (*hdr) / sizeof (uint32_t), (uint32_t *)hdr, 1); 3320 } 3321 3322 /** 3323 * t4_get_bs_version - read the firmware bootstrap version 3324 * @adapter: the adapter 3325 * @vers: where to place the version 3326 * 3327 * Reads the FW Bootstrap version from flash. 3328 */ 3329 int t4_get_bs_version(struct adapter *adapter, u32 *vers) 3330 { 3331 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + 3332 offsetof(struct fw_hdr, fw_ver), 1, 3333 vers, 0); 3334 } 3335 3336 /** 3337 * t4_get_tp_version - read the TP microcode version 3338 * @adapter: the adapter 3339 * @vers: where to place the version 3340 * 3341 * Reads the TP microcode version from flash. 3342 */ 3343 int t4_get_tp_version(struct adapter *adapter, u32 *vers) 3344 { 3345 return t4_read_flash(adapter, FLASH_FW_START + 3346 offsetof(struct fw_hdr, tp_microcode_ver), 3347 1, vers, 0); 3348 } 3349 3350 /** 3351 * t4_get_exprom_version - return the Expansion ROM version (if any) 3352 * @adapter: the adapter 3353 * @vers: where to place the version 3354 * 3355 * Reads the Expansion ROM header from FLASH and returns the version 3356 * number (if present) through the @vers return value pointer. We return 3357 * this in the Firmware Version Format since it's convenient. Return 3358 * 0 on success, -ENOENT if no Expansion ROM is present. 3359 */ 3360 int t4_get_exprom_version(struct adapter *adap, u32 *vers) 3361 { 3362 struct exprom_header { 3363 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 3364 unsigned char hdr_ver[4]; /* Expansion ROM version */ 3365 } *hdr; 3366 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 3367 sizeof(u32))]; 3368 int ret; 3369 3370 ret = t4_read_flash(adap, FLASH_EXP_ROM_START, 3371 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 3372 0); 3373 if (ret) 3374 return ret; 3375 3376 hdr = (struct exprom_header *)exprom_header_buf; 3377 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 3378 return -ENOENT; 3379 3380 *vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) | 3381 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) | 3382 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) | 3383 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3])); 3384 return 0; 3385 } 3386 3387 /** 3388 * t4_get_scfg_version - return the Serial Configuration version 3389 * @adapter: the adapter 3390 * @vers: where to place the version 3391 * 3392 * Reads the Serial Configuration Version via the Firmware interface 3393 * (thus this can only be called once we're ready to issue Firmware 3394 * commands). The format of the Serial Configuration version is 3395 * adapter specific. Returns 0 on success, an error on failure. 3396 * 3397 * Note that early versions of the Firmware didn't include the ability 3398 * to retrieve the Serial Configuration version, so we zero-out the 3399 * return-value parameter in that case to avoid leaving it with 3400 * garbage in it. 3401 * 3402 * Also note that the Firmware will return its cached copy of the Serial 3403 * Initialization Revision ID, not the actual Revision ID as written in 3404 * the Serial EEPROM. This is only an issue if a new VPD has been written 3405 * and the Firmware/Chip haven't yet gone through a RESET sequence. So 3406 * it's best to defer calling this routine till after a FW_RESET_CMD has 3407 * been issued if the Host Driver will be performing a full adapter 3408 * initialization. 3409 */ 3410 int t4_get_scfg_version(struct adapter *adapter, u32 *vers) 3411 { 3412 u32 scfgrev_param; 3413 int ret; 3414 3415 scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3416 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV)); 3417 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3418 1, &scfgrev_param, vers); 3419 if (ret) 3420 *vers = 0; 3421 return ret; 3422 } 3423 3424 /** 3425 * t4_get_vpd_version - return the VPD version 3426 * @adapter: the adapter 3427 * @vers: where to place the version 3428 * 3429 * Reads the VPD via the Firmware interface (thus this can only be called 3430 * once we're ready to issue Firmware commands). The format of the 3431 * VPD version is adapter specific. Returns 0 on success, an error on 3432 * failure. 3433 * 3434 * Note that early versions of the Firmware didn't include the ability 3435 * to retrieve the VPD version, so we zero-out the return-value parameter 3436 * in that case to avoid leaving it with garbage in it. 3437 * 3438 * Also note that the Firmware will return its cached copy of the VPD 3439 * Revision ID, not the actual Revision ID as written in the Serial 3440 * EEPROM. This is only an issue if a new VPD has been written and the 3441 * Firmware/Chip haven't yet gone through a RESET sequence. So it's best 3442 * to defer calling this routine till after a FW_RESET_CMD has been issued 3443 * if the Host Driver will be performing a full adapter initialization. 3444 */ 3445 int t4_get_vpd_version(struct adapter *adapter, u32 *vers) 3446 { 3447 u32 vpdrev_param; 3448 int ret; 3449 3450 vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3451 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV)); 3452 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3453 1, &vpdrev_param, vers); 3454 if (ret) 3455 *vers = 0; 3456 return ret; 3457 } 3458 3459 /** 3460 * t4_get_version_info - extract various chip/firmware version information 3461 * @adapter: the adapter 3462 * 3463 * Reads various chip/firmware version numbers and stores them into the 3464 * adapter Adapter Parameters structure. If any of the efforts fails 3465 * the first failure will be returned, but all of the version numbers 3466 * will be read. 3467 */ 3468 int t4_get_version_info(struct adapter *adapter) 3469 { 3470 int ret = 0; 3471 3472 #define FIRST_RET(__getvinfo) \ 3473 do { \ 3474 int __ret = __getvinfo; \ 3475 if (__ret && !ret) \ 3476 ret = __ret; \ 3477 } while (0) 3478 3479 FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers)); 3480 FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers)); 3481 FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers)); 3482 FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers)); 3483 FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers)); 3484 FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers)); 3485 3486 #undef FIRST_RET 3487 3488 return ret; 3489 } 3490 3491 /** 3492 * t4_flash_erase_sectors - erase a range of flash sectors 3493 * @adapter: the adapter 3494 * @start: the first sector to erase 3495 * @end: the last sector to erase 3496 * 3497 * Erases the sectors in the given inclusive range. 3498 */ 3499 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 3500 { 3501 int ret = 0; 3502 3503 if (end >= adapter->params.sf_nsec) 3504 return -EINVAL; 3505 3506 while (start <= end) { 3507 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3508 (ret = sf1_write(adapter, 4, 0, 1, 3509 SF_ERASE_SECTOR | (start << 8))) != 0 || 3510 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 3511 CH_ERR(adapter, 3512 "erase of flash sector %d failed, error %d\n", 3513 start, ret); 3514 break; 3515 } 3516 start++; 3517 } 3518 t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ 3519 return ret; 3520 } 3521 3522 /** 3523 * t4_flash_cfg_addr - return the address of the flash configuration file 3524 * @adapter: the adapter 3525 * 3526 * Return the address within the flash where the Firmware Configuration 3527 * File is stored, or an error if the device FLASH is too small to contain 3528 * a Firmware Configuration File. 3529 */ 3530 int t4_flash_cfg_addr(struct adapter *adapter) 3531 { 3532 /* 3533 * If the device FLASH isn't large enough to hold a Firmware 3534 * Configuration File, return an error. 3535 */ 3536 if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE) 3537 return -ENOSPC; 3538 3539 return FLASH_CFG_START; 3540 } 3541 3542 /* 3543 * Return TRUE if the specified firmware matches the adapter. I.e. T4 3544 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 3545 * and emit an error message for mismatched firmware to save our caller the 3546 * effort ... 3547 */ 3548 static int t4_fw_matches_chip(struct adapter *adap, 3549 const struct fw_hdr *hdr) 3550 { 3551 /* 3552 * The expression below will return FALSE for any unsupported adapter 3553 * which will keep us "honest" in the future ... 3554 */ 3555 if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) || 3556 (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) || 3557 (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6)) 3558 return 1; 3559 3560 CH_ERR(adap, 3561 "FW image (%d) is not suitable for this adapter (%d)\n", 3562 hdr->chip, chip_id(adap)); 3563 return 0; 3564 } 3565 3566 /** 3567 * t4_load_fw - download firmware 3568 * @adap: the adapter 3569 * @fw_data: the firmware image to write 3570 * @size: image size 3571 * 3572 * Write the supplied firmware image to the card's serial flash. 3573 */ 3574 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 3575 { 3576 u32 csum; 3577 int ret, addr; 3578 unsigned int i; 3579 u8 first_page[SF_PAGE_SIZE]; 3580 const u32 *p = (const u32 *)fw_data; 3581 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 3582 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 3583 unsigned int fw_start_sec; 3584 unsigned int fw_start; 3585 unsigned int fw_size; 3586 3587 if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) { 3588 fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC; 3589 fw_start = FLASH_FWBOOTSTRAP_START; 3590 fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE; 3591 } else { 3592 fw_start_sec = FLASH_FW_START_SEC; 3593 fw_start = FLASH_FW_START; 3594 fw_size = FLASH_FW_MAX_SIZE; 3595 } 3596 3597 if (!size) { 3598 CH_ERR(adap, "FW image has no data\n"); 3599 return -EINVAL; 3600 } 3601 if (size & 511) { 3602 CH_ERR(adap, 3603 "FW image size not multiple of 512 bytes\n"); 3604 return -EINVAL; 3605 } 3606 if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) { 3607 CH_ERR(adap, 3608 "FW image size differs from size in FW header\n"); 3609 return -EINVAL; 3610 } 3611 if (size > fw_size) { 3612 CH_ERR(adap, "FW image too large, max is %u bytes\n", 3613 fw_size); 3614 return -EFBIG; 3615 } 3616 if (!t4_fw_matches_chip(adap, hdr)) 3617 return -EINVAL; 3618 3619 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 3620 csum += be32_to_cpu(p[i]); 3621 3622 if (csum != 0xffffffff) { 3623 CH_ERR(adap, 3624 "corrupted firmware image, checksum %#x\n", csum); 3625 return -EINVAL; 3626 } 3627 3628 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 3629 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 3630 if (ret) 3631 goto out; 3632 3633 /* 3634 * We write the correct version at the end so the driver can see a bad 3635 * version if the FW write fails. Start by writing a copy of the 3636 * first page with a bad version. 3637 */ 3638 memcpy(first_page, fw_data, SF_PAGE_SIZE); 3639 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); 3640 ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1); 3641 if (ret) 3642 goto out; 3643 3644 addr = fw_start; 3645 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 3646 addr += SF_PAGE_SIZE; 3647 fw_data += SF_PAGE_SIZE; 3648 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1); 3649 if (ret) 3650 goto out; 3651 } 3652 3653 ret = t4_write_flash(adap, 3654 fw_start + offsetof(struct fw_hdr, fw_ver), 3655 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1); 3656 out: 3657 if (ret) 3658 CH_ERR(adap, "firmware download failed, error %d\n", 3659 ret); 3660 return ret; 3661 } 3662 3663 /** 3664 * t4_fwcache - firmware cache operation 3665 * @adap: the adapter 3666 * @op : the operation (flush or flush and invalidate) 3667 */ 3668 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 3669 { 3670 struct fw_params_cmd c; 3671 3672 memset(&c, 0, sizeof(c)); 3673 c.op_to_vfn = 3674 cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) | 3675 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 3676 V_FW_PARAMS_CMD_PFN(adap->pf) | 3677 V_FW_PARAMS_CMD_VFN(0)); 3678 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 3679 c.param[0].mnem = 3680 cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3681 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE)); 3682 c.param[0].val = (__force __be32)op; 3683 3684 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 3685 } 3686 3687 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, 3688 unsigned int *pif_req_wrptr, 3689 unsigned int *pif_rsp_wrptr) 3690 { 3691 int i, j; 3692 u32 cfg, val, req, rsp; 3693 3694 cfg = t4_read_reg(adap, A_CIM_DEBUGCFG); 3695 if (cfg & F_LADBGEN) 3696 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN); 3697 3698 val = t4_read_reg(adap, A_CIM_DEBUGSTS); 3699 req = G_POLADBGWRPTR(val); 3700 rsp = G_PILADBGWRPTR(val); 3701 if (pif_req_wrptr) 3702 *pif_req_wrptr = req; 3703 if (pif_rsp_wrptr) 3704 *pif_rsp_wrptr = rsp; 3705 3706 for (i = 0; i < CIM_PIFLA_SIZE; i++) { 3707 for (j = 0; j < 6; j++) { 3708 t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) | 3709 V_PILADBGRDPTR(rsp)); 3710 *pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA); 3711 *pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA); 3712 req++; 3713 rsp++; 3714 } 3715 req = (req + 2) & M_POLADBGRDPTR; 3716 rsp = (rsp + 2) & M_PILADBGRDPTR; 3717 } 3718 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg); 3719 } 3720 3721 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) 3722 { 3723 u32 cfg; 3724 int i, j, idx; 3725 3726 cfg = t4_read_reg(adap, A_CIM_DEBUGCFG); 3727 if (cfg & F_LADBGEN) 3728 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN); 3729 3730 for (i = 0; i < CIM_MALA_SIZE; i++) { 3731 for (j = 0; j < 5; j++) { 3732 idx = 8 * i + j; 3733 t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) | 3734 V_PILADBGRDPTR(idx)); 3735 *ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA); 3736 *ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA); 3737 } 3738 } 3739 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg); 3740 } 3741 3742 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 3743 { 3744 unsigned int i, j; 3745 3746 for (i = 0; i < 8; i++) { 3747 u32 *p = la_buf + i; 3748 3749 t4_write_reg(adap, A_ULP_RX_LA_CTL, i); 3750 j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR); 3751 t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j); 3752 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 3753 *p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA); 3754 } 3755 } 3756 3757 /** 3758 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits 3759 * @caps16: a 16-bit Port Capabilities value 3760 * 3761 * Returns the equivalent 32-bit Port Capabilities value. 3762 */ 3763 static uint32_t fwcaps16_to_caps32(uint16_t caps16) 3764 { 3765 uint32_t caps32 = 0; 3766 3767 #define CAP16_TO_CAP32(__cap) \ 3768 do { \ 3769 if (caps16 & FW_PORT_CAP_##__cap) \ 3770 caps32 |= FW_PORT_CAP32_##__cap; \ 3771 } while (0) 3772 3773 CAP16_TO_CAP32(SPEED_100M); 3774 CAP16_TO_CAP32(SPEED_1G); 3775 CAP16_TO_CAP32(SPEED_25G); 3776 CAP16_TO_CAP32(SPEED_10G); 3777 CAP16_TO_CAP32(SPEED_40G); 3778 CAP16_TO_CAP32(SPEED_100G); 3779 CAP16_TO_CAP32(FC_RX); 3780 CAP16_TO_CAP32(FC_TX); 3781 CAP16_TO_CAP32(ANEG); 3782 CAP16_TO_CAP32(FORCE_PAUSE); 3783 CAP16_TO_CAP32(MDIAUTO); 3784 CAP16_TO_CAP32(MDISTRAIGHT); 3785 CAP16_TO_CAP32(FEC_RS); 3786 CAP16_TO_CAP32(FEC_BASER_RS); 3787 CAP16_TO_CAP32(802_3_PAUSE); 3788 CAP16_TO_CAP32(802_3_ASM_DIR); 3789 3790 #undef CAP16_TO_CAP32 3791 3792 return caps32; 3793 } 3794 3795 /** 3796 * fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits 3797 * @caps32: a 32-bit Port Capabilities value 3798 * 3799 * Returns the equivalent 16-bit Port Capabilities value. Note that 3800 * not all 32-bit Port Capabilities can be represented in the 16-bit 3801 * Port Capabilities and some fields/values may not make it. 3802 */ 3803 static uint16_t fwcaps32_to_caps16(uint32_t caps32) 3804 { 3805 uint16_t caps16 = 0; 3806 3807 #define CAP32_TO_CAP16(__cap) \ 3808 do { \ 3809 if (caps32 & FW_PORT_CAP32_##__cap) \ 3810 caps16 |= FW_PORT_CAP_##__cap; \ 3811 } while (0) 3812 3813 CAP32_TO_CAP16(SPEED_100M); 3814 CAP32_TO_CAP16(SPEED_1G); 3815 CAP32_TO_CAP16(SPEED_10G); 3816 CAP32_TO_CAP16(SPEED_25G); 3817 CAP32_TO_CAP16(SPEED_40G); 3818 CAP32_TO_CAP16(SPEED_100G); 3819 CAP32_TO_CAP16(FC_RX); 3820 CAP32_TO_CAP16(FC_TX); 3821 CAP32_TO_CAP16(802_3_PAUSE); 3822 CAP32_TO_CAP16(802_3_ASM_DIR); 3823 CAP32_TO_CAP16(ANEG); 3824 CAP32_TO_CAP16(FORCE_PAUSE); 3825 CAP32_TO_CAP16(MDIAUTO); 3826 CAP32_TO_CAP16(MDISTRAIGHT); 3827 CAP32_TO_CAP16(FEC_RS); 3828 CAP32_TO_CAP16(FEC_BASER_RS); 3829 3830 #undef CAP32_TO_CAP16 3831 3832 return caps16; 3833 } 3834 3835 static bool 3836 is_bt(struct port_info *pi) 3837 { 3838 3839 return (pi->port_type == FW_PORT_TYPE_BT_SGMII || 3840 pi->port_type == FW_PORT_TYPE_BT_XFI || 3841 pi->port_type == FW_PORT_TYPE_BT_XAUI); 3842 } 3843 3844 static int8_t fwcap_to_fec(uint32_t caps, bool unset_means_none) 3845 { 3846 int8_t fec = 0; 3847 3848 if ((caps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC)) == 0) 3849 return (unset_means_none ? FEC_NONE : 0); 3850 3851 if (caps & FW_PORT_CAP32_FEC_RS) 3852 fec |= FEC_RS; 3853 if (caps & FW_PORT_CAP32_FEC_BASER_RS) 3854 fec |= FEC_BASER_RS; 3855 if (caps & FW_PORT_CAP32_FEC_NO_FEC) 3856 fec |= FEC_NONE; 3857 3858 return (fec); 3859 } 3860 3861 /* 3862 * Note that 0 is not translated to NO_FEC. 3863 */ 3864 static uint32_t fec_to_fwcap(int8_t fec) 3865 { 3866 uint32_t caps = 0; 3867 3868 /* Only real FECs allowed. */ 3869 MPASS((fec & ~M_FW_PORT_CAP32_FEC) == 0); 3870 3871 if (fec & FEC_RS) 3872 caps |= FW_PORT_CAP32_FEC_RS; 3873 if (fec & FEC_BASER_RS) 3874 caps |= FW_PORT_CAP32_FEC_BASER_RS; 3875 if (fec & FEC_NONE) 3876 caps |= FW_PORT_CAP32_FEC_NO_FEC; 3877 3878 return (caps); 3879 } 3880 3881 /** 3882 * t4_link_l1cfg - apply link configuration to MAC/PHY 3883 * @phy: the PHY to setup 3884 * @mac: the MAC to setup 3885 * @lc: the requested link configuration 3886 * 3887 * Set up a port's MAC and PHY according to a desired link configuration. 3888 * - If the PHY can auto-negotiate first decide what to advertise, then 3889 * enable/disable auto-negotiation as desired, and reset. 3890 * - If the PHY does not auto-negotiate just reset it. 3891 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 3892 * otherwise do it later based on the outcome of auto-negotiation. 3893 */ 3894 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port, 3895 struct link_config *lc) 3896 { 3897 struct fw_port_cmd c; 3898 unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO); 3899 unsigned int aneg, fc, fec, speed, rcap; 3900 3901 fc = 0; 3902 if (lc->requested_fc & PAUSE_RX) 3903 fc |= FW_PORT_CAP32_FC_RX; 3904 if (lc->requested_fc & PAUSE_TX) 3905 fc |= FW_PORT_CAP32_FC_TX; 3906 if (!(lc->requested_fc & PAUSE_AUTONEG)) 3907 fc |= FW_PORT_CAP32_FORCE_PAUSE; 3908 3909 if (lc->requested_aneg == AUTONEG_DISABLE) 3910 aneg = 0; 3911 else if (lc->requested_aneg == AUTONEG_ENABLE) 3912 aneg = FW_PORT_CAP32_ANEG; 3913 else 3914 aneg = lc->pcaps & FW_PORT_CAP32_ANEG; 3915 3916 if (aneg) { 3917 speed = lc->pcaps & 3918 V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED); 3919 } else if (lc->requested_speed != 0) 3920 speed = speed_to_fwcap(lc->requested_speed); 3921 else 3922 speed = fwcap_top_speed(lc->pcaps); 3923 3924 fec = 0; 3925 if (fec_supported(lc->pcaps)) { 3926 if (lc->requested_fec == FEC_AUTO) { 3927 if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC) { 3928 if (speed & FW_PORT_CAP32_SPEED_100G) { 3929 fec |= FW_PORT_CAP32_FEC_RS; 3930 fec |= FW_PORT_CAP32_FEC_NO_FEC; 3931 } else { 3932 fec |= FW_PORT_CAP32_FEC_RS; 3933 fec |= FW_PORT_CAP32_FEC_BASER_RS; 3934 fec |= FW_PORT_CAP32_FEC_NO_FEC; 3935 } 3936 } else { 3937 /* Set only 1b with old firmwares. */ 3938 fec |= fec_to_fwcap(lc->fec_hint); 3939 } 3940 } else { 3941 fec |= fec_to_fwcap(lc->requested_fec & 3942 M_FW_PORT_CAP32_FEC); 3943 if (lc->requested_fec & FEC_MODULE) 3944 fec |= fec_to_fwcap(lc->fec_hint); 3945 } 3946 3947 if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC) 3948 fec |= FW_PORT_CAP32_FORCE_FEC; 3949 else if (fec == FW_PORT_CAP32_FEC_NO_FEC) 3950 fec = 0; 3951 } 3952 3953 /* Force AN on for BT cards. */ 3954 if (is_bt(adap->port[adap->chan_map[port]])) 3955 aneg = lc->pcaps & FW_PORT_CAP32_ANEG; 3956 3957 rcap = aneg | speed | fc | fec; 3958 if ((rcap | lc->pcaps) != lc->pcaps) { 3959 #ifdef INVARIANTS 3960 CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x, removed 0x%x\n", rcap, 3961 lc->pcaps, rcap & (rcap ^ lc->pcaps)); 3962 #endif 3963 rcap &= lc->pcaps; 3964 } 3965 rcap |= mdi; 3966 3967 memset(&c, 0, sizeof(c)); 3968 c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) | 3969 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 3970 V_FW_PORT_CMD_PORTID(port)); 3971 if (adap->params.port_caps32) { 3972 c.action_to_len16 = 3973 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) | 3974 FW_LEN16(c)); 3975 c.u.l1cfg32.rcap32 = cpu_to_be32(rcap); 3976 } else { 3977 c.action_to_len16 = 3978 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) | 3979 FW_LEN16(c)); 3980 c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap)); 3981 } 3982 3983 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 3984 } 3985 3986 /** 3987 * t4_restart_aneg - restart autonegotiation 3988 * @adap: the adapter 3989 * @mbox: mbox to use for the FW command 3990 * @port: the port id 3991 * 3992 * Restarts autonegotiation for the selected port. 3993 */ 3994 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 3995 { 3996 struct fw_port_cmd c; 3997 3998 memset(&c, 0, sizeof(c)); 3999 c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) | 4000 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 4001 V_FW_PORT_CMD_PORTID(port)); 4002 c.action_to_len16 = 4003 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) | 4004 FW_LEN16(c)); 4005 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG); 4006 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4007 } 4008 4009 struct intr_details { 4010 u32 mask; 4011 const char *msg; 4012 }; 4013 4014 struct intr_action { 4015 u32 mask; 4016 int arg; 4017 bool (*action)(struct adapter *, int, bool); 4018 }; 4019 4020 #define NONFATAL_IF_DISABLED 1 4021 struct intr_info { 4022 const char *name; /* name of the INT_CAUSE register */ 4023 int cause_reg; /* INT_CAUSE register */ 4024 int enable_reg; /* INT_ENABLE register */ 4025 u32 fatal; /* bits that are fatal */ 4026 int flags; /* hints */ 4027 const struct intr_details *details; 4028 const struct intr_action *actions; 4029 }; 4030 4031 static inline char 4032 intr_alert_char(u32 cause, u32 enable, u32 fatal) 4033 { 4034 4035 if (cause & fatal) 4036 return ('!'); 4037 if (cause & enable) 4038 return ('*'); 4039 return ('-'); 4040 } 4041 4042 static void 4043 t4_show_intr_info(struct adapter *adap, const struct intr_info *ii, u32 cause) 4044 { 4045 u32 enable, fatal, leftover; 4046 const struct intr_details *details; 4047 char alert; 4048 4049 enable = t4_read_reg(adap, ii->enable_reg); 4050 if (ii->flags & NONFATAL_IF_DISABLED) 4051 fatal = ii->fatal & t4_read_reg(adap, ii->enable_reg); 4052 else 4053 fatal = ii->fatal; 4054 alert = intr_alert_char(cause, enable, fatal); 4055 CH_ALERT(adap, "%c %s 0x%x = 0x%08x, E 0x%08x, F 0x%08x\n", 4056 alert, ii->name, ii->cause_reg, cause, enable, fatal); 4057 4058 leftover = cause; 4059 for (details = ii->details; details && details->mask != 0; details++) { 4060 u32 msgbits = details->mask & cause; 4061 if (msgbits == 0) 4062 continue; 4063 alert = intr_alert_char(msgbits, enable, ii->fatal); 4064 CH_ALERT(adap, " %c [0x%08x] %s\n", alert, msgbits, 4065 details->msg); 4066 leftover &= ~msgbits; 4067 } 4068 if (leftover != 0 && leftover != cause) 4069 CH_ALERT(adap, " ? [0x%08x]\n", leftover); 4070 } 4071 4072 /* 4073 * Returns true for fatal error. 4074 */ 4075 static bool 4076 t4_handle_intr(struct adapter *adap, const struct intr_info *ii, 4077 u32 additional_cause, bool verbose) 4078 { 4079 u32 cause, fatal; 4080 bool rc; 4081 const struct intr_action *action; 4082 4083 /* 4084 * Read and display cause. Note that the top level PL_INT_CAUSE is a 4085 * bit special and we need to completely ignore the bits that are not in 4086 * PL_INT_ENABLE. 4087 */ 4088 cause = t4_read_reg(adap, ii->cause_reg); 4089 if (ii->cause_reg == A_PL_INT_CAUSE) 4090 cause &= t4_read_reg(adap, ii->enable_reg); 4091 if (verbose || cause != 0) 4092 t4_show_intr_info(adap, ii, cause); 4093 fatal = cause & ii->fatal; 4094 if (fatal != 0 && ii->flags & NONFATAL_IF_DISABLED) 4095 fatal &= t4_read_reg(adap, ii->enable_reg); 4096 cause |= additional_cause; 4097 if (cause == 0) 4098 return (false); 4099 4100 rc = fatal != 0; 4101 for (action = ii->actions; action && action->mask != 0; action++) { 4102 if (!(action->mask & cause)) 4103 continue; 4104 rc |= (action->action)(adap, action->arg, verbose); 4105 } 4106 4107 /* clear */ 4108 t4_write_reg(adap, ii->cause_reg, cause); 4109 (void)t4_read_reg(adap, ii->cause_reg); 4110 4111 return (rc); 4112 } 4113 4114 /* 4115 * Interrupt handler for the PCIE module. 4116 */ 4117 static bool pcie_intr_handler(struct adapter *adap, int arg, bool verbose) 4118 { 4119 static const struct intr_details sysbus_intr_details[] = { 4120 { F_RNPP, "RXNP array parity error" }, 4121 { F_RPCP, "RXPC array parity error" }, 4122 { F_RCIP, "RXCIF array parity error" }, 4123 { F_RCCP, "Rx completions control array parity error" }, 4124 { F_RFTP, "RXFT array parity error" }, 4125 { 0 } 4126 }; 4127 static const struct intr_info sysbus_intr_info = { 4128 .name = "PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS", 4129 .cause_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS, 4130 .enable_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_INTERRUPT_ENABLE, 4131 .fatal = F_RFTP | F_RCCP | F_RCIP | F_RPCP | F_RNPP, 4132 .flags = 0, 4133 .details = sysbus_intr_details, 4134 .actions = NULL, 4135 }; 4136 static const struct intr_details pcie_port_intr_details[] = { 4137 { F_TPCP, "TXPC array parity error" }, 4138 { F_TNPP, "TXNP array parity error" }, 4139 { F_TFTP, "TXFT array parity error" }, 4140 { F_TCAP, "TXCA array parity error" }, 4141 { F_TCIP, "TXCIF array parity error" }, 4142 { F_RCAP, "RXCA array parity error" }, 4143 { F_OTDD, "outbound request TLP discarded" }, 4144 { F_RDPE, "Rx data parity error" }, 4145 { F_TDUE, "Tx uncorrectable data error" }, 4146 { 0 } 4147 }; 4148 static const struct intr_info pcie_port_intr_info = { 4149 .name = "PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS", 4150 .cause_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS, 4151 .enable_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_INTERRUPT_ENABLE, 4152 .fatal = F_TPCP | F_TNPP | F_TFTP | F_TCAP | F_TCIP | F_RCAP | 4153 F_OTDD | F_RDPE | F_TDUE, 4154 .flags = 0, 4155 .details = pcie_port_intr_details, 4156 .actions = NULL, 4157 }; 4158 static const struct intr_details pcie_intr_details[] = { 4159 { F_MSIADDRLPERR, "MSI AddrL parity error" }, 4160 { F_MSIADDRHPERR, "MSI AddrH parity error" }, 4161 { F_MSIDATAPERR, "MSI data parity error" }, 4162 { F_MSIXADDRLPERR, "MSI-X AddrL parity error" }, 4163 { F_MSIXADDRHPERR, "MSI-X AddrH parity error" }, 4164 { F_MSIXDATAPERR, "MSI-X data parity error" }, 4165 { F_MSIXDIPERR, "MSI-X DI parity error" }, 4166 { F_PIOCPLPERR, "PCIe PIO completion FIFO parity error" }, 4167 { F_PIOREQPERR, "PCIe PIO request FIFO parity error" }, 4168 { F_TARTAGPERR, "PCIe target tag FIFO parity error" }, 4169 { F_CCNTPERR, "PCIe CMD channel count parity error" }, 4170 { F_CREQPERR, "PCIe CMD channel request parity error" }, 4171 { F_CRSPPERR, "PCIe CMD channel response parity error" }, 4172 { F_DCNTPERR, "PCIe DMA channel count parity error" }, 4173 { F_DREQPERR, "PCIe DMA channel request parity error" }, 4174 { F_DRSPPERR, "PCIe DMA channel response parity error" }, 4175 { F_HCNTPERR, "PCIe HMA channel count parity error" }, 4176 { F_HREQPERR, "PCIe HMA channel request parity error" }, 4177 { F_HRSPPERR, "PCIe HMA channel response parity error" }, 4178 { F_CFGSNPPERR, "PCIe config snoop FIFO parity error" }, 4179 { F_FIDPERR, "PCIe FID parity error" }, 4180 { F_INTXCLRPERR, "PCIe INTx clear parity error" }, 4181 { F_MATAGPERR, "PCIe MA tag parity error" }, 4182 { F_PIOTAGPERR, "PCIe PIO tag parity error" }, 4183 { F_RXCPLPERR, "PCIe Rx completion parity error" }, 4184 { F_RXWRPERR, "PCIe Rx write parity error" }, 4185 { F_RPLPERR, "PCIe replay buffer parity error" }, 4186 { F_PCIESINT, "PCIe core secondary fault" }, 4187 { F_PCIEPINT, "PCIe core primary fault" }, 4188 { F_UNXSPLCPLERR, "PCIe unexpected split completion error" }, 4189 { 0 } 4190 }; 4191 static const struct intr_details t5_pcie_intr_details[] = { 4192 { F_IPGRPPERR, "Parity errors observed by IP" }, 4193 { F_NONFATALERR, "PCIe non-fatal error" }, 4194 { F_READRSPERR, "Outbound read error" }, 4195 { F_TRGT1GRPPERR, "PCIe TRGT1 group FIFOs parity error" }, 4196 { F_IPSOTPERR, "PCIe IP SOT buffer SRAM parity error" }, 4197 { F_IPRETRYPERR, "PCIe IP replay buffer parity error" }, 4198 { F_IPRXDATAGRPPERR, "PCIe IP Rx data group SRAMs parity error" }, 4199 { F_IPRXHDRGRPPERR, "PCIe IP Rx header group SRAMs parity error" }, 4200 { F_PIOTAGQPERR, "PIO tag queue FIFO parity error" }, 4201 { F_MAGRPPERR, "MA group FIFO parity error" }, 4202 { F_VFIDPERR, "VFID SRAM parity error" }, 4203 { F_FIDPERR, "FID SRAM parity error" }, 4204 { F_CFGSNPPERR, "config snoop FIFO parity error" }, 4205 { F_HRSPPERR, "HMA channel response data SRAM parity error" }, 4206 { F_HREQRDPERR, "HMA channel read request SRAM parity error" }, 4207 { F_HREQWRPERR, "HMA channel write request SRAM parity error" }, 4208 { F_DRSPPERR, "DMA channel response data SRAM parity error" }, 4209 { F_DREQRDPERR, "DMA channel write request SRAM parity error" }, 4210 { F_CRSPPERR, "CMD channel response data SRAM parity error" }, 4211 { F_CREQRDPERR, "CMD channel read request SRAM parity error" }, 4212 { F_MSTTAGQPERR, "PCIe master tag queue SRAM parity error" }, 4213 { F_TGTTAGQPERR, "PCIe target tag queue FIFO parity error" }, 4214 { F_PIOREQGRPPERR, "PIO request group FIFOs parity error" }, 4215 { F_PIOCPLGRPPERR, "PIO completion group FIFOs parity error" }, 4216 { F_MSIXDIPERR, "MSI-X DI SRAM parity error" }, 4217 { F_MSIXDATAPERR, "MSI-X data SRAM parity error" }, 4218 { F_MSIXADDRHPERR, "MSI-X AddrH SRAM parity error" }, 4219 { F_MSIXADDRLPERR, "MSI-X AddrL SRAM parity error" }, 4220 { F_MSIXSTIPERR, "MSI-X STI SRAM parity error" }, 4221 { F_MSTTIMEOUTPERR, "Master timeout FIFO parity error" }, 4222 { F_MSTGRPPERR, "Master response read queue SRAM parity error" }, 4223 { 0 } 4224 }; 4225 struct intr_info pcie_intr_info = { 4226 .name = "PCIE_INT_CAUSE", 4227 .cause_reg = A_PCIE_INT_CAUSE, 4228 .enable_reg = A_PCIE_INT_ENABLE, 4229 .fatal = 0xffffffff, 4230 .flags = NONFATAL_IF_DISABLED, 4231 .details = NULL, 4232 .actions = NULL, 4233 }; 4234 bool fatal = false; 4235 4236 if (is_t4(adap)) { 4237 fatal |= t4_handle_intr(adap, &sysbus_intr_info, 0, verbose); 4238 fatal |= t4_handle_intr(adap, &pcie_port_intr_info, 0, verbose); 4239 4240 pcie_intr_info.details = pcie_intr_details; 4241 } else { 4242 pcie_intr_info.details = t5_pcie_intr_details; 4243 } 4244 fatal |= t4_handle_intr(adap, &pcie_intr_info, 0, verbose); 4245 4246 return (fatal); 4247 } 4248 4249 /* 4250 * TP interrupt handler. 4251 */ 4252 static bool tp_intr_handler(struct adapter *adap, int arg, bool verbose) 4253 { 4254 static const struct intr_details tp_intr_details[] = { 4255 { 0x3fffffff, "TP parity error" }, 4256 { F_FLMTXFLSTEMPTY, "TP out of Tx pages" }, 4257 { 0 } 4258 }; 4259 static const struct intr_info tp_intr_info = { 4260 .name = "TP_INT_CAUSE", 4261 .cause_reg = A_TP_INT_CAUSE, 4262 .enable_reg = A_TP_INT_ENABLE, 4263 .fatal = 0x7fffffff, 4264 .flags = NONFATAL_IF_DISABLED, 4265 .details = tp_intr_details, 4266 .actions = NULL, 4267 }; 4268 4269 return (t4_handle_intr(adap, &tp_intr_info, 0, verbose)); 4270 } 4271 4272 /* 4273 * SGE interrupt handler. 4274 */ 4275 static bool sge_intr_handler(struct adapter *adap, int arg, bool verbose) 4276 { 4277 static const struct intr_info sge_int1_info = { 4278 .name = "SGE_INT_CAUSE1", 4279 .cause_reg = A_SGE_INT_CAUSE1, 4280 .enable_reg = A_SGE_INT_ENABLE1, 4281 .fatal = 0xffffffff, 4282 .flags = NONFATAL_IF_DISABLED, 4283 .details = NULL, 4284 .actions = NULL, 4285 }; 4286 static const struct intr_info sge_int2_info = { 4287 .name = "SGE_INT_CAUSE2", 4288 .cause_reg = A_SGE_INT_CAUSE2, 4289 .enable_reg = A_SGE_INT_ENABLE2, 4290 .fatal = 0xffffffff, 4291 .flags = NONFATAL_IF_DISABLED, 4292 .details = NULL, 4293 .actions = NULL, 4294 }; 4295 static const struct intr_details sge_int3_details[] = { 4296 { F_ERR_FLM_DBP, 4297 "DBP pointer delivery for invalid context or QID" }, 4298 { F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0, 4299 "Invalid QID or header request by IDMA" }, 4300 { F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" }, 4301 { F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" }, 4302 { F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" }, 4303 { F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" }, 4304 { F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" }, 4305 { F_ERR_TIMER_ABOVE_MAX_QID, 4306 "SGE GTS with timer 0-5 for IQID > 1023" }, 4307 { F_ERR_CPL_EXCEED_IQE_SIZE, 4308 "SGE received CPL exceeding IQE size" }, 4309 { F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" }, 4310 { F_ERR_ITP_TIME_PAUSED, "SGE ITP error" }, 4311 { F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" }, 4312 { F_ERR_DROPPED_DB, "SGE DB dropped" }, 4313 { F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0, 4314 "SGE IQID > 1023 received CPL for FL" }, 4315 { F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 | 4316 F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" }, 4317 { F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" }, 4318 { F_ERR_ING_CTXT_PRIO, 4319 "Ingress context manager priority user error" }, 4320 { F_ERR_EGR_CTXT_PRIO, 4321 "Egress context manager priority user error" }, 4322 { F_DBFIFO_HP_INT, "High priority DB FIFO threshold reached" }, 4323 { F_DBFIFO_LP_INT, "Low priority DB FIFO threshold reached" }, 4324 { F_REG_ADDRESS_ERR, "Undefined SGE register accessed" }, 4325 { F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" }, 4326 { F_EGRESS_SIZE_ERR, "SGE illegal egress QID" }, 4327 { 0x0000000f, "SGE context access for invalid queue" }, 4328 { 0 } 4329 }; 4330 static const struct intr_details t6_sge_int3_details[] = { 4331 { F_ERR_FLM_DBP, 4332 "DBP pointer delivery for invalid context or QID" }, 4333 { F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0, 4334 "Invalid QID or header request by IDMA" }, 4335 { F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" }, 4336 { F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" }, 4337 { F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" }, 4338 { F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" }, 4339 { F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" }, 4340 { F_ERR_TIMER_ABOVE_MAX_QID, 4341 "SGE GTS with timer 0-5 for IQID > 1023" }, 4342 { F_ERR_CPL_EXCEED_IQE_SIZE, 4343 "SGE received CPL exceeding IQE size" }, 4344 { F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" }, 4345 { F_ERR_ITP_TIME_PAUSED, "SGE ITP error" }, 4346 { F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" }, 4347 { F_ERR_DROPPED_DB, "SGE DB dropped" }, 4348 { F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0, 4349 "SGE IQID > 1023 received CPL for FL" }, 4350 { F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 | 4351 F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" }, 4352 { F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" }, 4353 { F_ERR_ING_CTXT_PRIO, 4354 "Ingress context manager priority user error" }, 4355 { F_ERR_EGR_CTXT_PRIO, 4356 "Egress context manager priority user error" }, 4357 { F_DBP_TBUF_FULL, "SGE DBP tbuf full" }, 4358 { F_FATAL_WRE_LEN, 4359 "SGE WRE packet less than advertized length" }, 4360 { F_REG_ADDRESS_ERR, "Undefined SGE register accessed" }, 4361 { F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" }, 4362 { F_EGRESS_SIZE_ERR, "SGE illegal egress QID" }, 4363 { 0x0000000f, "SGE context access for invalid queue" }, 4364 { 0 } 4365 }; 4366 struct intr_info sge_int3_info = { 4367 .name = "SGE_INT_CAUSE3", 4368 .cause_reg = A_SGE_INT_CAUSE3, 4369 .enable_reg = A_SGE_INT_ENABLE3, 4370 .fatal = F_ERR_CPL_EXCEED_IQE_SIZE, 4371 .flags = 0, 4372 .details = NULL, 4373 .actions = NULL, 4374 }; 4375 static const struct intr_info sge_int4_info = { 4376 .name = "SGE_INT_CAUSE4", 4377 .cause_reg = A_SGE_INT_CAUSE4, 4378 .enable_reg = A_SGE_INT_ENABLE4, 4379 .fatal = 0, 4380 .flags = 0, 4381 .details = NULL, 4382 .actions = NULL, 4383 }; 4384 static const struct intr_info sge_int5_info = { 4385 .name = "SGE_INT_CAUSE5", 4386 .cause_reg = A_SGE_INT_CAUSE5, 4387 .enable_reg = A_SGE_INT_ENABLE5, 4388 .fatal = 0xffffffff, 4389 .flags = NONFATAL_IF_DISABLED, 4390 .details = NULL, 4391 .actions = NULL, 4392 }; 4393 static const struct intr_info sge_int6_info = { 4394 .name = "SGE_INT_CAUSE6", 4395 .cause_reg = A_SGE_INT_CAUSE6, 4396 .enable_reg = A_SGE_INT_ENABLE6, 4397 .fatal = 0, 4398 .flags = 0, 4399 .details = NULL, 4400 .actions = NULL, 4401 }; 4402 4403 bool fatal; 4404 u32 v; 4405 4406 if (chip_id(adap) <= CHELSIO_T5) { 4407 sge_int3_info.details = sge_int3_details; 4408 } else { 4409 sge_int3_info.details = t6_sge_int3_details; 4410 } 4411 4412 fatal = false; 4413 fatal |= t4_handle_intr(adap, &sge_int1_info, 0, verbose); 4414 fatal |= t4_handle_intr(adap, &sge_int2_info, 0, verbose); 4415 fatal |= t4_handle_intr(adap, &sge_int3_info, 0, verbose); 4416 fatal |= t4_handle_intr(adap, &sge_int4_info, 0, verbose); 4417 if (chip_id(adap) >= CHELSIO_T5) 4418 fatal |= t4_handle_intr(adap, &sge_int5_info, 0, verbose); 4419 if (chip_id(adap) >= CHELSIO_T6) 4420 fatal |= t4_handle_intr(adap, &sge_int6_info, 0, verbose); 4421 4422 v = t4_read_reg(adap, A_SGE_ERROR_STATS); 4423 if (v & F_ERROR_QID_VALID) { 4424 CH_ERR(adap, "SGE error for QID %u\n", G_ERROR_QID(v)); 4425 if (v & F_UNCAPTURED_ERROR) 4426 CH_ERR(adap, "SGE UNCAPTURED_ERROR set (clearing)\n"); 4427 t4_write_reg(adap, A_SGE_ERROR_STATS, 4428 F_ERROR_QID_VALID | F_UNCAPTURED_ERROR); 4429 } 4430 4431 return (fatal); 4432 } 4433 4434 /* 4435 * CIM interrupt handler. 4436 */ 4437 static bool cim_intr_handler(struct adapter *adap, int arg, bool verbose) 4438 { 4439 static const struct intr_action cim_host_intr_actions[] = { 4440 { F_TIMER0INT, 0, t4_os_dump_cimla }, 4441 { 0 }, 4442 }; 4443 static const struct intr_details cim_host_intr_details[] = { 4444 /* T6+ */ 4445 { F_PCIE2CIMINTFPARERR, "CIM IBQ PCIe interface parity error" }, 4446 4447 /* T5+ */ 4448 { F_MA_CIM_INTFPERR, "MA2CIM interface parity error" }, 4449 { F_PLCIM_MSTRSPDATAPARERR, 4450 "PL2CIM master response data parity error" }, 4451 { F_NCSI2CIMINTFPARERR, "CIM IBQ NC-SI interface parity error" }, 4452 { F_SGE2CIMINTFPARERR, "CIM IBQ SGE interface parity error" }, 4453 { F_ULP2CIMINTFPARERR, "CIM IBQ ULP_TX interface parity error" }, 4454 { F_TP2CIMINTFPARERR, "CIM IBQ TP interface parity error" }, 4455 { F_OBQSGERX1PARERR, "CIM OBQ SGE1_RX parity error" }, 4456 { F_OBQSGERX0PARERR, "CIM OBQ SGE0_RX parity error" }, 4457 4458 /* T4+ */ 4459 { F_TIEQOUTPARERRINT, "CIM TIEQ outgoing FIFO parity error" }, 4460 { F_TIEQINPARERRINT, "CIM TIEQ incoming FIFO parity error" }, 4461 { F_MBHOSTPARERR, "CIM mailbox host read parity error" }, 4462 { F_MBUPPARERR, "CIM mailbox uP parity error" }, 4463 { F_IBQTP0PARERR, "CIM IBQ TP0 parity error" }, 4464 { F_IBQTP1PARERR, "CIM IBQ TP1 parity error" }, 4465 { F_IBQULPPARERR, "CIM IBQ ULP parity error" }, 4466 { F_IBQSGELOPARERR, "CIM IBQ SGE_LO parity error" }, 4467 { F_IBQSGEHIPARERR | F_IBQPCIEPARERR, /* same bit */ 4468 "CIM IBQ PCIe/SGE_HI parity error" }, 4469 { F_IBQNCSIPARERR, "CIM IBQ NC-SI parity error" }, 4470 { F_OBQULP0PARERR, "CIM OBQ ULP0 parity error" }, 4471 { F_OBQULP1PARERR, "CIM OBQ ULP1 parity error" }, 4472 { F_OBQULP2PARERR, "CIM OBQ ULP2 parity error" }, 4473 { F_OBQULP3PARERR, "CIM OBQ ULP3 parity error" }, 4474 { F_OBQSGEPARERR, "CIM OBQ SGE parity error" }, 4475 { F_OBQNCSIPARERR, "CIM OBQ NC-SI parity error" }, 4476 { F_TIMER1INT, "CIM TIMER0 interrupt" }, 4477 { F_TIMER0INT, "CIM TIMER0 interrupt" }, 4478 { F_PREFDROPINT, "CIM control register prefetch drop" }, 4479 { 0} 4480 }; 4481 static const struct intr_info cim_host_intr_info = { 4482 .name = "CIM_HOST_INT_CAUSE", 4483 .cause_reg = A_CIM_HOST_INT_CAUSE, 4484 .enable_reg = A_CIM_HOST_INT_ENABLE, 4485 .fatal = 0x007fffe6, 4486 .flags = NONFATAL_IF_DISABLED, 4487 .details = cim_host_intr_details, 4488 .actions = cim_host_intr_actions, 4489 }; 4490 static const struct intr_details cim_host_upacc_intr_details[] = { 4491 { F_EEPROMWRINT, "CIM EEPROM came out of busy state" }, 4492 { F_TIMEOUTMAINT, "CIM PIF MA timeout" }, 4493 { F_TIMEOUTINT, "CIM PIF timeout" }, 4494 { F_RSPOVRLOOKUPINT, "CIM response FIFO overwrite" }, 4495 { F_REQOVRLOOKUPINT, "CIM request FIFO overwrite" }, 4496 { F_BLKWRPLINT, "CIM block write to PL space" }, 4497 { F_BLKRDPLINT, "CIM block read from PL space" }, 4498 { F_SGLWRPLINT, 4499 "CIM single write to PL space with illegal BEs" }, 4500 { F_SGLRDPLINT, 4501 "CIM single read from PL space with illegal BEs" }, 4502 { F_BLKWRCTLINT, "CIM block write to CTL space" }, 4503 { F_BLKRDCTLINT, "CIM block read from CTL space" }, 4504 { F_SGLWRCTLINT, 4505 "CIM single write to CTL space with illegal BEs" }, 4506 { F_SGLRDCTLINT, 4507 "CIM single read from CTL space with illegal BEs" }, 4508 { F_BLKWREEPROMINT, "CIM block write to EEPROM space" }, 4509 { F_BLKRDEEPROMINT, "CIM block read from EEPROM space" }, 4510 { F_SGLWREEPROMINT, 4511 "CIM single write to EEPROM space with illegal BEs" }, 4512 { F_SGLRDEEPROMINT, 4513 "CIM single read from EEPROM space with illegal BEs" }, 4514 { F_BLKWRFLASHINT, "CIM block write to flash space" }, 4515 { F_BLKRDFLASHINT, "CIM block read from flash space" }, 4516 { F_SGLWRFLASHINT, "CIM single write to flash space" }, 4517 { F_SGLRDFLASHINT, 4518 "CIM single read from flash space with illegal BEs" }, 4519 { F_BLKWRBOOTINT, "CIM block write to boot space" }, 4520 { F_BLKRDBOOTINT, "CIM block read from boot space" }, 4521 { F_SGLWRBOOTINT, "CIM single write to boot space" }, 4522 { F_SGLRDBOOTINT, 4523 "CIM single read from boot space with illegal BEs" }, 4524 { F_ILLWRBEINT, "CIM illegal write BEs" }, 4525 { F_ILLRDBEINT, "CIM illegal read BEs" }, 4526 { F_ILLRDINT, "CIM illegal read" }, 4527 { F_ILLWRINT, "CIM illegal write" }, 4528 { F_ILLTRANSINT, "CIM illegal transaction" }, 4529 { F_RSVDSPACEINT, "CIM reserved space access" }, 4530 {0} 4531 }; 4532 static const struct intr_info cim_host_upacc_intr_info = { 4533 .name = "CIM_HOST_UPACC_INT_CAUSE", 4534 .cause_reg = A_CIM_HOST_UPACC_INT_CAUSE, 4535 .enable_reg = A_CIM_HOST_UPACC_INT_ENABLE, 4536 .fatal = 0x3fffeeff, 4537 .flags = NONFATAL_IF_DISABLED, 4538 .details = cim_host_upacc_intr_details, 4539 .actions = NULL, 4540 }; 4541 static const struct intr_info cim_pf_host_intr_info = { 4542 .name = "CIM_PF_HOST_INT_CAUSE", 4543 .cause_reg = MYPF_REG(A_CIM_PF_HOST_INT_CAUSE), 4544 .enable_reg = MYPF_REG(A_CIM_PF_HOST_INT_ENABLE), 4545 .fatal = 0, 4546 .flags = 0, 4547 .details = NULL, 4548 .actions = NULL, 4549 }; 4550 u32 val, fw_err; 4551 bool fatal; 4552 4553 fw_err = t4_read_reg(adap, A_PCIE_FW); 4554 if (fw_err & F_PCIE_FW_ERR) 4555 t4_report_fw_error(adap); 4556 4557 /* 4558 * When the Firmware detects an internal error which normally wouldn't 4559 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order 4560 * to make sure the Host sees the Firmware Crash. So if we have a 4561 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0 4562 * interrupt. 4563 */ 4564 val = t4_read_reg(adap, A_CIM_HOST_INT_CAUSE); 4565 if (val & F_TIMER0INT && (!(fw_err & F_PCIE_FW_ERR) || 4566 G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH)) { 4567 t4_write_reg(adap, A_CIM_HOST_INT_CAUSE, F_TIMER0INT); 4568 } 4569 4570 fatal = false; 4571 fatal |= t4_handle_intr(adap, &cim_host_intr_info, 0, verbose); 4572 fatal |= t4_handle_intr(adap, &cim_host_upacc_intr_info, 0, verbose); 4573 fatal |= t4_handle_intr(adap, &cim_pf_host_intr_info, 0, verbose); 4574 4575 return (fatal); 4576 } 4577 4578 /* 4579 * ULP RX interrupt handler. 4580 */ 4581 static bool ulprx_intr_handler(struct adapter *adap, int arg, bool verbose) 4582 { 4583 static const struct intr_details ulprx_intr_details[] = { 4584 /* T5+ */ 4585 { F_SE_CNT_MISMATCH_1, "ULPRX SE count mismatch in channel 1" }, 4586 { F_SE_CNT_MISMATCH_0, "ULPRX SE count mismatch in channel 0" }, 4587 4588 /* T4+ */ 4589 { F_CAUSE_CTX_1, "ULPRX channel 1 context error" }, 4590 { F_CAUSE_CTX_0, "ULPRX channel 0 context error" }, 4591 { 0x007fffff, "ULPRX parity error" }, 4592 { 0 } 4593 }; 4594 static const struct intr_info ulprx_intr_info = { 4595 .name = "ULP_RX_INT_CAUSE", 4596 .cause_reg = A_ULP_RX_INT_CAUSE, 4597 .enable_reg = A_ULP_RX_INT_ENABLE, 4598 .fatal = 0x07ffffff, 4599 .flags = NONFATAL_IF_DISABLED, 4600 .details = ulprx_intr_details, 4601 .actions = NULL, 4602 }; 4603 static const struct intr_info ulprx_intr2_info = { 4604 .name = "ULP_RX_INT_CAUSE_2", 4605 .cause_reg = A_ULP_RX_INT_CAUSE_2, 4606 .enable_reg = A_ULP_RX_INT_ENABLE_2, 4607 .fatal = 0, 4608 .flags = 0, 4609 .details = NULL, 4610 .actions = NULL, 4611 }; 4612 bool fatal = false; 4613 4614 fatal |= t4_handle_intr(adap, &ulprx_intr_info, 0, verbose); 4615 fatal |= t4_handle_intr(adap, &ulprx_intr2_info, 0, verbose); 4616 4617 return (fatal); 4618 } 4619 4620 /* 4621 * ULP TX interrupt handler. 4622 */ 4623 static bool ulptx_intr_handler(struct adapter *adap, int arg, bool verbose) 4624 { 4625 static const struct intr_details ulptx_intr_details[] = { 4626 { F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds" }, 4627 { F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds" }, 4628 { F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds" }, 4629 { F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds" }, 4630 { 0x0fffffff, "ULPTX parity error" }, 4631 { 0 } 4632 }; 4633 static const struct intr_info ulptx_intr_info = { 4634 .name = "ULP_TX_INT_CAUSE", 4635 .cause_reg = A_ULP_TX_INT_CAUSE, 4636 .enable_reg = A_ULP_TX_INT_ENABLE, 4637 .fatal = 0x0fffffff, 4638 .flags = NONFATAL_IF_DISABLED, 4639 .details = ulptx_intr_details, 4640 .actions = NULL, 4641 }; 4642 static const struct intr_info ulptx_intr2_info = { 4643 .name = "ULP_TX_INT_CAUSE_2", 4644 .cause_reg = A_ULP_TX_INT_CAUSE_2, 4645 .enable_reg = A_ULP_TX_INT_ENABLE_2, 4646 .fatal = 0xf0, 4647 .flags = NONFATAL_IF_DISABLED, 4648 .details = NULL, 4649 .actions = NULL, 4650 }; 4651 bool fatal = false; 4652 4653 fatal |= t4_handle_intr(adap, &ulptx_intr_info, 0, verbose); 4654 fatal |= t4_handle_intr(adap, &ulptx_intr2_info, 0, verbose); 4655 4656 return (fatal); 4657 } 4658 4659 static bool pmtx_dump_dbg_stats(struct adapter *adap, int arg, bool verbose) 4660 { 4661 int i; 4662 u32 data[17]; 4663 4664 t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, &data[0], 4665 ARRAY_SIZE(data), A_PM_TX_DBG_STAT0); 4666 for (i = 0; i < ARRAY_SIZE(data); i++) { 4667 CH_ALERT(adap, " - PM_TX_DBG_STAT%u (0x%x) = 0x%08x\n", i, 4668 A_PM_TX_DBG_STAT0 + i, data[i]); 4669 } 4670 4671 return (false); 4672 } 4673 4674 /* 4675 * PM TX interrupt handler. 4676 */ 4677 static bool pmtx_intr_handler(struct adapter *adap, int arg, bool verbose) 4678 { 4679 static const struct intr_action pmtx_intr_actions[] = { 4680 { 0xffffffff, 0, pmtx_dump_dbg_stats }, 4681 { 0 }, 4682 }; 4683 static const struct intr_details pmtx_intr_details[] = { 4684 { F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large" }, 4685 { F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large" }, 4686 { F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large" }, 4687 { F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd" }, 4688 { 0x0f000000, "PMTX icspi FIFO2X Rx framing error" }, 4689 { 0x00f00000, "PMTX icspi FIFO Rx framing error" }, 4690 { 0x000f0000, "PMTX icspi FIFO Tx framing error" }, 4691 { 0x0000f000, "PMTX oespi FIFO Rx framing error" }, 4692 { 0x00000f00, "PMTX oespi FIFO Tx framing error" }, 4693 { 0x000000f0, "PMTX oespi FIFO2X Tx framing error" }, 4694 { F_OESPI_PAR_ERROR, "PMTX oespi parity error" }, 4695 { F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error" }, 4696 { F_ICSPI_PAR_ERROR, "PMTX icspi parity error" }, 4697 { F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error" }, 4698 { 0 } 4699 }; 4700 static const struct intr_info pmtx_intr_info = { 4701 .name = "PM_TX_INT_CAUSE", 4702 .cause_reg = A_PM_TX_INT_CAUSE, 4703 .enable_reg = A_PM_TX_INT_ENABLE, 4704 .fatal = 0xffffffff, 4705 .flags = 0, 4706 .details = pmtx_intr_details, 4707 .actions = pmtx_intr_actions, 4708 }; 4709 4710 return (t4_handle_intr(adap, &pmtx_intr_info, 0, verbose)); 4711 } 4712 4713 /* 4714 * PM RX interrupt handler. 4715 */ 4716 static bool pmrx_intr_handler(struct adapter *adap, int arg, bool verbose) 4717 { 4718 static const struct intr_details pmrx_intr_details[] = { 4719 /* T6+ */ 4720 { 0x18000000, "PMRX ospi overflow" }, 4721 { F_MA_INTF_SDC_ERR, "PMRX MA interface SDC parity error" }, 4722 { F_BUNDLE_LEN_PARERR, "PMRX bundle len FIFO parity error" }, 4723 { F_BUNDLE_LEN_OVFL, "PMRX bundle len FIFO overflow" }, 4724 { F_SDC_ERR, "PMRX SDC error" }, 4725 4726 /* T4+ */ 4727 { F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd" }, 4728 { 0x003c0000, "PMRX iespi FIFO2X Rx framing error" }, 4729 { 0x0003c000, "PMRX iespi Rx framing error" }, 4730 { 0x00003c00, "PMRX iespi Tx framing error" }, 4731 { 0x00000300, "PMRX ocspi Rx framing error" }, 4732 { 0x000000c0, "PMRX ocspi Tx framing error" }, 4733 { 0x00000030, "PMRX ocspi FIFO2X Tx framing error" }, 4734 { F_OCSPI_PAR_ERROR, "PMRX ocspi parity error" }, 4735 { F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error" }, 4736 { F_IESPI_PAR_ERROR, "PMRX iespi parity error" }, 4737 { F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error"}, 4738 { 0 } 4739 }; 4740 static const struct intr_info pmrx_intr_info = { 4741 .name = "PM_RX_INT_CAUSE", 4742 .cause_reg = A_PM_RX_INT_CAUSE, 4743 .enable_reg = A_PM_RX_INT_ENABLE, 4744 .fatal = 0x1fffffff, 4745 .flags = NONFATAL_IF_DISABLED, 4746 .details = pmrx_intr_details, 4747 .actions = NULL, 4748 }; 4749 4750 return (t4_handle_intr(adap, &pmrx_intr_info, 0, verbose)); 4751 } 4752 4753 /* 4754 * CPL switch interrupt handler. 4755 */ 4756 static bool cplsw_intr_handler(struct adapter *adap, int arg, bool verbose) 4757 { 4758 static const struct intr_details cplsw_intr_details[] = { 4759 /* T5+ */ 4760 { F_PERR_CPL_128TO128_1, "CPLSW 128TO128 FIFO1 parity error" }, 4761 { F_PERR_CPL_128TO128_0, "CPLSW 128TO128 FIFO0 parity error" }, 4762 4763 /* T4+ */ 4764 { F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error" }, 4765 { F_CIM_OVFL_ERROR, "CPLSW CIM overflow" }, 4766 { F_TP_FRAMING_ERROR, "CPLSW TP framing error" }, 4767 { F_SGE_FRAMING_ERROR, "CPLSW SGE framing error" }, 4768 { F_CIM_FRAMING_ERROR, "CPLSW CIM framing error" }, 4769 { F_ZERO_SWITCH_ERROR, "CPLSW no-switch error" }, 4770 { 0 } 4771 }; 4772 static const struct intr_info cplsw_intr_info = { 4773 .name = "CPL_INTR_CAUSE", 4774 .cause_reg = A_CPL_INTR_CAUSE, 4775 .enable_reg = A_CPL_INTR_ENABLE, 4776 .fatal = 0xff, 4777 .flags = NONFATAL_IF_DISABLED, 4778 .details = cplsw_intr_details, 4779 .actions = NULL, 4780 }; 4781 4782 return (t4_handle_intr(adap, &cplsw_intr_info, 0, verbose)); 4783 } 4784 4785 #define T4_LE_FATAL_MASK (F_PARITYERR | F_UNKNOWNCMD | F_REQQPARERR) 4786 #define T5_LE_FATAL_MASK (T4_LE_FATAL_MASK | F_VFPARERR) 4787 #define T6_LE_PERRCRC_MASK (F_PIPELINEERR | F_CLIPTCAMACCFAIL | \ 4788 F_SRVSRAMACCFAIL | F_CLCAMCRCPARERR | F_CLCAMINTPERR | F_SSRAMINTPERR | \ 4789 F_SRVSRAMPERR | F_VFSRAMPERR | F_TCAMINTPERR | F_TCAMCRCERR | \ 4790 F_HASHTBLMEMACCERR | F_MAIFWRINTPERR | F_HASHTBLMEMCRCERR) 4791 #define T6_LE_FATAL_MASK (T6_LE_PERRCRC_MASK | F_T6_UNKNOWNCMD | \ 4792 F_TCAMACCFAIL | F_HASHTBLACCFAIL | F_CMDTIDERR | F_CMDPRSRINTERR | \ 4793 F_TOTCNTERR | F_CLCAMFIFOERR | F_CLIPSUBERR) 4794 4795 /* 4796 * LE interrupt handler. 4797 */ 4798 static bool le_intr_handler(struct adapter *adap, int arg, bool verbose) 4799 { 4800 static const struct intr_details le_intr_details[] = { 4801 { F_REQQPARERR, "LE request queue parity error" }, 4802 { F_UNKNOWNCMD, "LE unknown command" }, 4803 { F_ACTRGNFULL, "LE active region full" }, 4804 { F_PARITYERR, "LE parity error" }, 4805 { F_LIPMISS, "LE LIP miss" }, 4806 { F_LIP0, "LE 0 LIP error" }, 4807 { 0 } 4808 }; 4809 static const struct intr_details t6_le_intr_details[] = { 4810 { F_CLIPSUBERR, "LE CLIP CAM reverse substitution error" }, 4811 { F_CLCAMFIFOERR, "LE CLIP CAM internal FIFO error" }, 4812 { F_CTCAMINVLDENT, "Invalid IPv6 CLIP TCAM entry" }, 4813 { F_TCAMINVLDENT, "Invalid IPv6 TCAM entry" }, 4814 { F_TOTCNTERR, "LE total active < TCAM count" }, 4815 { F_CMDPRSRINTERR, "LE internal error in parser" }, 4816 { F_CMDTIDERR, "Incorrect tid in LE command" }, 4817 { F_T6_ACTRGNFULL, "LE active region full" }, 4818 { F_T6_ACTCNTIPV6TZERO, "LE IPv6 active open TCAM counter -ve" }, 4819 { F_T6_ACTCNTIPV4TZERO, "LE IPv4 active open TCAM counter -ve" }, 4820 { F_T6_ACTCNTIPV6ZERO, "LE IPv6 active open counter -ve" }, 4821 { F_T6_ACTCNTIPV4ZERO, "LE IPv4 active open counter -ve" }, 4822 { F_HASHTBLACCFAIL, "Hash table read error (proto conflict)" }, 4823 { F_TCAMACCFAIL, "LE TCAM access failure" }, 4824 { F_T6_UNKNOWNCMD, "LE unknown command" }, 4825 { F_T6_LIP0, "LE found 0 LIP during CLIP substitution" }, 4826 { F_T6_LIPMISS, "LE CLIP lookup miss" }, 4827 { T6_LE_PERRCRC_MASK, "LE parity/CRC error" }, 4828 { 0 } 4829 }; 4830 struct intr_info le_intr_info = { 4831 .name = "LE_DB_INT_CAUSE", 4832 .cause_reg = A_LE_DB_INT_CAUSE, 4833 .enable_reg = A_LE_DB_INT_ENABLE, 4834 .fatal = 0, 4835 .flags = NONFATAL_IF_DISABLED, 4836 .details = NULL, 4837 .actions = NULL, 4838 }; 4839 4840 if (chip_id(adap) <= CHELSIO_T5) { 4841 le_intr_info.details = le_intr_details; 4842 le_intr_info.fatal = T5_LE_FATAL_MASK; 4843 } else { 4844 le_intr_info.details = t6_le_intr_details; 4845 le_intr_info.fatal = T6_LE_FATAL_MASK; 4846 } 4847 4848 return (t4_handle_intr(adap, &le_intr_info, 0, verbose)); 4849 } 4850 4851 /* 4852 * MPS interrupt handler. 4853 */ 4854 static bool mps_intr_handler(struct adapter *adap, int arg, bool verbose) 4855 { 4856 static const struct intr_details mps_rx_perr_intr_details[] = { 4857 { 0xffffffff, "MPS Rx parity error" }, 4858 { 0 } 4859 }; 4860 static const struct intr_info mps_rx_perr_intr_info = { 4861 .name = "MPS_RX_PERR_INT_CAUSE", 4862 .cause_reg = A_MPS_RX_PERR_INT_CAUSE, 4863 .enable_reg = A_MPS_RX_PERR_INT_ENABLE, 4864 .fatal = 0xffffffff, 4865 .flags = NONFATAL_IF_DISABLED, 4866 .details = mps_rx_perr_intr_details, 4867 .actions = NULL, 4868 }; 4869 static const struct intr_details mps_tx_intr_details[] = { 4870 { F_PORTERR, "MPS Tx destination port is disabled" }, 4871 { F_FRMERR, "MPS Tx framing error" }, 4872 { F_SECNTERR, "MPS Tx SOP/EOP error" }, 4873 { F_BUBBLE, "MPS Tx underflow" }, 4874 { V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error" }, 4875 { V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error" }, 4876 { F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error" }, 4877 { V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error" }, 4878 { 0 } 4879 }; 4880 static const struct intr_info mps_tx_intr_info = { 4881 .name = "MPS_TX_INT_CAUSE", 4882 .cause_reg = A_MPS_TX_INT_CAUSE, 4883 .enable_reg = A_MPS_TX_INT_ENABLE, 4884 .fatal = 0x1ffff, 4885 .flags = NONFATAL_IF_DISABLED, 4886 .details = mps_tx_intr_details, 4887 .actions = NULL, 4888 }; 4889 static const struct intr_details mps_trc_intr_details[] = { 4890 { F_MISCPERR, "MPS TRC misc parity error" }, 4891 { V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error" }, 4892 { V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error" }, 4893 { 0 } 4894 }; 4895 static const struct intr_info mps_trc_intr_info = { 4896 .name = "MPS_TRC_INT_CAUSE", 4897 .cause_reg = A_MPS_TRC_INT_CAUSE, 4898 .enable_reg = A_MPS_TRC_INT_ENABLE, 4899 .fatal = F_MISCPERR | V_PKTFIFO(M_PKTFIFO) | V_FILTMEM(M_FILTMEM), 4900 .flags = 0, 4901 .details = mps_trc_intr_details, 4902 .actions = NULL, 4903 }; 4904 static const struct intr_details mps_stat_sram_intr_details[] = { 4905 { 0xffffffff, "MPS statistics SRAM parity error" }, 4906 { 0 } 4907 }; 4908 static const struct intr_info mps_stat_sram_intr_info = { 4909 .name = "MPS_STAT_PERR_INT_CAUSE_SRAM", 4910 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM, 4911 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM, 4912 .fatal = 0x1fffffff, 4913 .flags = NONFATAL_IF_DISABLED, 4914 .details = mps_stat_sram_intr_details, 4915 .actions = NULL, 4916 }; 4917 static const struct intr_details mps_stat_tx_intr_details[] = { 4918 { 0xffffff, "MPS statistics Tx FIFO parity error" }, 4919 { 0 } 4920 }; 4921 static const struct intr_info mps_stat_tx_intr_info = { 4922 .name = "MPS_STAT_PERR_INT_CAUSE_TX_FIFO", 4923 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO, 4924 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_TX_FIFO, 4925 .fatal = 0xffffff, 4926 .flags = NONFATAL_IF_DISABLED, 4927 .details = mps_stat_tx_intr_details, 4928 .actions = NULL, 4929 }; 4930 static const struct intr_details mps_stat_rx_intr_details[] = { 4931 { 0xffffff, "MPS statistics Rx FIFO parity error" }, 4932 { 0 } 4933 }; 4934 static const struct intr_info mps_stat_rx_intr_info = { 4935 .name = "MPS_STAT_PERR_INT_CAUSE_RX_FIFO", 4936 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO, 4937 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_RX_FIFO, 4938 .fatal = 0xffffff, 4939 .flags = 0, 4940 .details = mps_stat_rx_intr_details, 4941 .actions = NULL, 4942 }; 4943 static const struct intr_details mps_cls_intr_details[] = { 4944 { F_HASHSRAM, "MPS hash SRAM parity error" }, 4945 { F_MATCHTCAM, "MPS match TCAM parity error" }, 4946 { F_MATCHSRAM, "MPS match SRAM parity error" }, 4947 { 0 } 4948 }; 4949 static const struct intr_info mps_cls_intr_info = { 4950 .name = "MPS_CLS_INT_CAUSE", 4951 .cause_reg = A_MPS_CLS_INT_CAUSE, 4952 .enable_reg = A_MPS_CLS_INT_ENABLE, 4953 .fatal = F_MATCHSRAM | F_MATCHTCAM | F_HASHSRAM, 4954 .flags = 0, 4955 .details = mps_cls_intr_details, 4956 .actions = NULL, 4957 }; 4958 static const struct intr_details mps_stat_sram1_intr_details[] = { 4959 { 0xff, "MPS statistics SRAM1 parity error" }, 4960 { 0 } 4961 }; 4962 static const struct intr_info mps_stat_sram1_intr_info = { 4963 .name = "MPS_STAT_PERR_INT_CAUSE_SRAM1", 4964 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 4965 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM1, 4966 .fatal = 0xff, 4967 .flags = 0, 4968 .details = mps_stat_sram1_intr_details, 4969 .actions = NULL, 4970 }; 4971 4972 bool fatal; 4973 4974 fatal = false; 4975 fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info, 0, verbose); 4976 fatal |= t4_handle_intr(adap, &mps_tx_intr_info, 0, verbose); 4977 fatal |= t4_handle_intr(adap, &mps_trc_intr_info, 0, verbose); 4978 fatal |= t4_handle_intr(adap, &mps_stat_sram_intr_info, 0, verbose); 4979 fatal |= t4_handle_intr(adap, &mps_stat_tx_intr_info, 0, verbose); 4980 fatal |= t4_handle_intr(adap, &mps_stat_rx_intr_info, 0, verbose); 4981 fatal |= t4_handle_intr(adap, &mps_cls_intr_info, 0, verbose); 4982 if (chip_id(adap) > CHELSIO_T4) { 4983 fatal |= t4_handle_intr(adap, &mps_stat_sram1_intr_info, 0, 4984 verbose); 4985 } 4986 4987 t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff); 4988 t4_read_reg(adap, A_MPS_INT_CAUSE); /* flush */ 4989 4990 return (fatal); 4991 4992 } 4993 4994 /* 4995 * EDC/MC interrupt handler. 4996 */ 4997 static bool mem_intr_handler(struct adapter *adap, int idx, bool verbose) 4998 { 4999 static const char name[4][5] = { "EDC0", "EDC1", "MC0", "MC1" }; 5000 unsigned int count_reg, v; 5001 static const struct intr_details mem_intr_details[] = { 5002 { F_ECC_UE_INT_CAUSE, "Uncorrectable ECC data error(s)" }, 5003 { F_ECC_CE_INT_CAUSE, "Correctable ECC data error(s)" }, 5004 { F_PERR_INT_CAUSE, "FIFO parity error" }, 5005 { 0 } 5006 }; 5007 struct intr_info ii = { 5008 .fatal = F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE, 5009 .details = mem_intr_details, 5010 .flags = 0, 5011 .actions = NULL, 5012 }; 5013 bool fatal; 5014 5015 switch (idx) { 5016 case MEM_EDC0: 5017 ii.name = "EDC0_INT_CAUSE"; 5018 ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 0); 5019 ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 0); 5020 count_reg = EDC_REG(A_EDC_ECC_STATUS, 0); 5021 break; 5022 case MEM_EDC1: 5023 ii.name = "EDC1_INT_CAUSE"; 5024 ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 1); 5025 ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 1); 5026 count_reg = EDC_REG(A_EDC_ECC_STATUS, 1); 5027 break; 5028 case MEM_MC0: 5029 ii.name = "MC0_INT_CAUSE"; 5030 if (is_t4(adap)) { 5031 ii.cause_reg = A_MC_INT_CAUSE; 5032 ii.enable_reg = A_MC_INT_ENABLE; 5033 count_reg = A_MC_ECC_STATUS; 5034 } else { 5035 ii.cause_reg = A_MC_P_INT_CAUSE; 5036 ii.enable_reg = A_MC_P_INT_ENABLE; 5037 count_reg = A_MC_P_ECC_STATUS; 5038 } 5039 break; 5040 case MEM_MC1: 5041 ii.name = "MC1_INT_CAUSE"; 5042 ii.cause_reg = MC_REG(A_MC_P_INT_CAUSE, 1); 5043 ii.enable_reg = MC_REG(A_MC_P_INT_ENABLE, 1); 5044 count_reg = MC_REG(A_MC_P_ECC_STATUS, 1); 5045 break; 5046 } 5047 5048 fatal = t4_handle_intr(adap, &ii, 0, verbose); 5049 5050 v = t4_read_reg(adap, count_reg); 5051 if (v != 0) { 5052 if (G_ECC_UECNT(v) != 0) { 5053 CH_ALERT(adap, 5054 "%s: %u uncorrectable ECC data error(s)\n", 5055 name[idx], G_ECC_UECNT(v)); 5056 } 5057 if (G_ECC_CECNT(v) != 0) { 5058 if (idx <= MEM_EDC1) 5059 t4_edc_err_read(adap, idx); 5060 CH_WARN_RATELIMIT(adap, 5061 "%s: %u correctable ECC data error(s)\n", 5062 name[idx], G_ECC_CECNT(v)); 5063 } 5064 t4_write_reg(adap, count_reg, 0xffffffff); 5065 } 5066 5067 return (fatal); 5068 } 5069 5070 static bool ma_wrap_status(struct adapter *adap, int arg, bool verbose) 5071 { 5072 u32 v; 5073 5074 v = t4_read_reg(adap, A_MA_INT_WRAP_STATUS); 5075 CH_ALERT(adap, 5076 "MA address wrap-around error by client %u to address %#x\n", 5077 G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4); 5078 t4_write_reg(adap, A_MA_INT_WRAP_STATUS, v); 5079 5080 return (false); 5081 } 5082 5083 5084 /* 5085 * MA interrupt handler. 5086 */ 5087 static bool ma_intr_handler(struct adapter *adap, int arg, bool verbose) 5088 { 5089 static const struct intr_action ma_intr_actions[] = { 5090 { F_MEM_WRAP_INT_CAUSE, 0, ma_wrap_status }, 5091 { 0 }, 5092 }; 5093 static const struct intr_info ma_intr_info = { 5094 .name = "MA_INT_CAUSE", 5095 .cause_reg = A_MA_INT_CAUSE, 5096 .enable_reg = A_MA_INT_ENABLE, 5097 .fatal = F_MEM_PERR_INT_CAUSE | F_MEM_TO_INT_CAUSE, 5098 .flags = NONFATAL_IF_DISABLED, 5099 .details = NULL, 5100 .actions = ma_intr_actions, 5101 }; 5102 static const struct intr_info ma_perr_status1 = { 5103 .name = "MA_PARITY_ERROR_STATUS1", 5104 .cause_reg = A_MA_PARITY_ERROR_STATUS1, 5105 .enable_reg = A_MA_PARITY_ERROR_ENABLE1, 5106 .fatal = 0xffffffff, 5107 .flags = 0, 5108 .details = NULL, 5109 .actions = NULL, 5110 }; 5111 static const struct intr_info ma_perr_status2 = { 5112 .name = "MA_PARITY_ERROR_STATUS2", 5113 .cause_reg = A_MA_PARITY_ERROR_STATUS2, 5114 .enable_reg = A_MA_PARITY_ERROR_ENABLE2, 5115 .fatal = 0xffffffff, 5116 .flags = 0, 5117 .details = NULL, 5118 .actions = NULL, 5119 }; 5120 bool fatal; 5121 5122 fatal = false; 5123 fatal |= t4_handle_intr(adap, &ma_intr_info, 0, verbose); 5124 fatal |= t4_handle_intr(adap, &ma_perr_status1, 0, verbose); 5125 if (chip_id(adap) > CHELSIO_T4) 5126 fatal |= t4_handle_intr(adap, &ma_perr_status2, 0, verbose); 5127 5128 return (fatal); 5129 } 5130 5131 /* 5132 * SMB interrupt handler. 5133 */ 5134 static bool smb_intr_handler(struct adapter *adap, int arg, bool verbose) 5135 { 5136 static const struct intr_details smb_intr_details[] = { 5137 { F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error" }, 5138 { F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error" }, 5139 { F_SLVFIFOPARINT, "SMB slave FIFO parity error" }, 5140 { 0 } 5141 }; 5142 static const struct intr_info smb_intr_info = { 5143 .name = "SMB_INT_CAUSE", 5144 .cause_reg = A_SMB_INT_CAUSE, 5145 .enable_reg = A_SMB_INT_ENABLE, 5146 .fatal = F_SLVFIFOPARINT | F_MSTRXFIFOPARINT | F_MSTTXFIFOPARINT, 5147 .flags = 0, 5148 .details = smb_intr_details, 5149 .actions = NULL, 5150 }; 5151 5152 return (t4_handle_intr(adap, &smb_intr_info, 0, verbose)); 5153 } 5154 5155 /* 5156 * NC-SI interrupt handler. 5157 */ 5158 static bool ncsi_intr_handler(struct adapter *adap, int arg, bool verbose) 5159 { 5160 static const struct intr_details ncsi_intr_details[] = { 5161 { F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error" }, 5162 { F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error" }, 5163 { F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error" }, 5164 { F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error" }, 5165 { 0 } 5166 }; 5167 static const struct intr_info ncsi_intr_info = { 5168 .name = "NCSI_INT_CAUSE", 5169 .cause_reg = A_NCSI_INT_CAUSE, 5170 .enable_reg = A_NCSI_INT_ENABLE, 5171 .fatal = F_RXFIFO_PRTY_ERR | F_TXFIFO_PRTY_ERR | 5172 F_MPS_DM_PRTY_ERR | F_CIM_DM_PRTY_ERR, 5173 .flags = 0, 5174 .details = ncsi_intr_details, 5175 .actions = NULL, 5176 }; 5177 5178 return (t4_handle_intr(adap, &ncsi_intr_info, 0, verbose)); 5179 } 5180 5181 /* 5182 * MAC interrupt handler. 5183 */ 5184 static bool mac_intr_handler(struct adapter *adap, int port, bool verbose) 5185 { 5186 static const struct intr_details mac_intr_details[] = { 5187 { F_TXFIFO_PRTY_ERR, "MAC Tx FIFO parity error" }, 5188 { F_RXFIFO_PRTY_ERR, "MAC Rx FIFO parity error" }, 5189 { 0 } 5190 }; 5191 char name[32]; 5192 struct intr_info ii; 5193 bool fatal = false; 5194 5195 if (is_t4(adap)) { 5196 snprintf(name, sizeof(name), "XGMAC_PORT%u_INT_CAUSE", port); 5197 ii.name = &name[0]; 5198 ii.cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE); 5199 ii.enable_reg = PORT_REG(port, A_XGMAC_PORT_INT_EN); 5200 ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR; 5201 ii.flags = 0; 5202 ii.details = mac_intr_details; 5203 ii.actions = NULL; 5204 } else { 5205 snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port); 5206 ii.name = &name[0]; 5207 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE); 5208 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_INT_EN); 5209 ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR; 5210 ii.flags = 0; 5211 ii.details = mac_intr_details; 5212 ii.actions = NULL; 5213 } 5214 fatal |= t4_handle_intr(adap, &ii, 0, verbose); 5215 5216 if (chip_id(adap) >= CHELSIO_T5) { 5217 snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE", port); 5218 ii.name = &name[0]; 5219 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE); 5220 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN); 5221 ii.fatal = 0; 5222 ii.flags = 0; 5223 ii.details = NULL; 5224 ii.actions = NULL; 5225 fatal |= t4_handle_intr(adap, &ii, 0, verbose); 5226 } 5227 5228 if (chip_id(adap) >= CHELSIO_T6) { 5229 snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE_100G", port); 5230 ii.name = &name[0]; 5231 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE_100G); 5232 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN_100G); 5233 ii.fatal = 0; 5234 ii.flags = 0; 5235 ii.details = NULL; 5236 ii.actions = NULL; 5237 fatal |= t4_handle_intr(adap, &ii, 0, verbose); 5238 } 5239 5240 return (fatal); 5241 } 5242 5243 static bool plpl_intr_handler(struct adapter *adap, int arg, bool verbose) 5244 { 5245 static const struct intr_details plpl_intr_details[] = { 5246 { F_FATALPERR, "Fatal parity error" }, 5247 { F_PERRVFID, "VFID_MAP parity error" }, 5248 { 0 } 5249 }; 5250 static const struct intr_info plpl_intr_info = { 5251 .name = "PL_PL_INT_CAUSE", 5252 .cause_reg = A_PL_PL_INT_CAUSE, 5253 .enable_reg = A_PL_PL_INT_ENABLE, 5254 .fatal = F_FATALPERR | F_PERRVFID, 5255 .flags = NONFATAL_IF_DISABLED, 5256 .details = plpl_intr_details, 5257 .actions = NULL, 5258 }; 5259 5260 return (t4_handle_intr(adap, &plpl_intr_info, 0, verbose)); 5261 } 5262 5263 /** 5264 * t4_slow_intr_handler - control path interrupt handler 5265 * @adap: the adapter 5266 * @verbose: increased verbosity, for debug 5267 * 5268 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 5269 * The designation 'slow' is because it involves register reads, while 5270 * data interrupts typically don't involve any MMIOs. 5271 */ 5272 int t4_slow_intr_handler(struct adapter *adap, bool verbose) 5273 { 5274 static const struct intr_details pl_intr_details[] = { 5275 { F_MC1, "MC1" }, 5276 { F_UART, "UART" }, 5277 { F_ULP_TX, "ULP TX" }, 5278 { F_SGE, "SGE" }, 5279 { F_HMA, "HMA" }, 5280 { F_CPL_SWITCH, "CPL Switch" }, 5281 { F_ULP_RX, "ULP RX" }, 5282 { F_PM_RX, "PM RX" }, 5283 { F_PM_TX, "PM TX" }, 5284 { F_MA, "MA" }, 5285 { F_TP, "TP" }, 5286 { F_LE, "LE" }, 5287 { F_EDC1, "EDC1" }, 5288 { F_EDC0, "EDC0" }, 5289 { F_MC, "MC0" }, 5290 { F_PCIE, "PCIE" }, 5291 { F_PMU, "PMU" }, 5292 { F_MAC3, "MAC3" }, 5293 { F_MAC2, "MAC2" }, 5294 { F_MAC1, "MAC1" }, 5295 { F_MAC0, "MAC0" }, 5296 { F_SMB, "SMB" }, 5297 { F_SF, "SF" }, 5298 { F_PL, "PL" }, 5299 { F_NCSI, "NC-SI" }, 5300 { F_MPS, "MPS" }, 5301 { F_MI, "MI" }, 5302 { F_DBG, "DBG" }, 5303 { F_I2CM, "I2CM" }, 5304 { F_CIM, "CIM" }, 5305 { 0 } 5306 }; 5307 static const struct intr_info pl_perr_cause = { 5308 .name = "PL_PERR_CAUSE", 5309 .cause_reg = A_PL_PERR_CAUSE, 5310 .enable_reg = A_PL_PERR_ENABLE, 5311 .fatal = 0xffffffff, 5312 .flags = 0, 5313 .details = pl_intr_details, 5314 .actions = NULL, 5315 }; 5316 static const struct intr_action pl_intr_action[] = { 5317 { F_MC1, MEM_MC1, mem_intr_handler }, 5318 { F_ULP_TX, -1, ulptx_intr_handler }, 5319 { F_SGE, -1, sge_intr_handler }, 5320 { F_CPL_SWITCH, -1, cplsw_intr_handler }, 5321 { F_ULP_RX, -1, ulprx_intr_handler }, 5322 { F_PM_RX, -1, pmrx_intr_handler}, 5323 { F_PM_TX, -1, pmtx_intr_handler}, 5324 { F_MA, -1, ma_intr_handler }, 5325 { F_TP, -1, tp_intr_handler }, 5326 { F_LE, -1, le_intr_handler }, 5327 { F_EDC1, MEM_EDC1, mem_intr_handler }, 5328 { F_EDC0, MEM_EDC0, mem_intr_handler }, 5329 { F_MC0, MEM_MC0, mem_intr_handler }, 5330 { F_PCIE, -1, pcie_intr_handler }, 5331 { F_MAC3, 3, mac_intr_handler}, 5332 { F_MAC2, 2, mac_intr_handler}, 5333 { F_MAC1, 1, mac_intr_handler}, 5334 { F_MAC0, 0, mac_intr_handler}, 5335 { F_SMB, -1, smb_intr_handler}, 5336 { F_PL, -1, plpl_intr_handler }, 5337 { F_NCSI, -1, ncsi_intr_handler}, 5338 { F_MPS, -1, mps_intr_handler }, 5339 { F_CIM, -1, cim_intr_handler }, 5340 { 0 } 5341 }; 5342 static const struct intr_info pl_intr_info = { 5343 .name = "PL_INT_CAUSE", 5344 .cause_reg = A_PL_INT_CAUSE, 5345 .enable_reg = A_PL_INT_ENABLE, 5346 .fatal = 0, 5347 .flags = 0, 5348 .details = pl_intr_details, 5349 .actions = pl_intr_action, 5350 }; 5351 bool fatal; 5352 u32 perr; 5353 5354 perr = t4_read_reg(adap, pl_perr_cause.cause_reg); 5355 if (verbose || perr != 0) { 5356 t4_show_intr_info(adap, &pl_perr_cause, perr); 5357 if (perr != 0) 5358 t4_write_reg(adap, pl_perr_cause.cause_reg, perr); 5359 if (verbose) 5360 perr |= t4_read_reg(adap, pl_intr_info.enable_reg); 5361 } 5362 fatal = t4_handle_intr(adap, &pl_intr_info, perr, verbose); 5363 if (fatal) 5364 t4_fatal_err(adap, false); 5365 5366 return (0); 5367 } 5368 5369 #define PF_INTR_MASK (F_PFSW | F_PFCIM) 5370 5371 /** 5372 * t4_intr_enable - enable interrupts 5373 * @adapter: the adapter whose interrupts should be enabled 5374 * 5375 * Enable PF-specific interrupts for the calling function and the top-level 5376 * interrupt concentrator for global interrupts. Interrupts are already 5377 * enabled at each module, here we just enable the roots of the interrupt 5378 * hierarchies. 5379 * 5380 * Note: this function should be called only when the driver manages 5381 * non PF-specific interrupts from the various HW modules. Only one PCI 5382 * function at a time should be doing this. 5383 */ 5384 void t4_intr_enable(struct adapter *adap) 5385 { 5386 u32 val = 0; 5387 5388 if (chip_id(adap) <= CHELSIO_T5) 5389 val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT; 5390 else 5391 val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN; 5392 val |= F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC | 5393 F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 | 5394 F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 | 5395 F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 | 5396 F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_DBFIFO_LP_INT | 5397 F_EGRESS_SIZE_ERR; 5398 t4_set_reg_field(adap, A_SGE_INT_ENABLE3, val, val); 5399 t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK); 5400 t4_set_reg_field(adap, A_PL_INT_ENABLE, F_SF | F_I2CM, 0); 5401 t4_set_reg_field(adap, A_PL_INT_MAP0, 0, 1 << adap->pf); 5402 } 5403 5404 /** 5405 * t4_intr_disable - disable interrupts 5406 * @adap: the adapter whose interrupts should be disabled 5407 * 5408 * Disable interrupts. We only disable the top-level interrupt 5409 * concentrators. The caller must be a PCI function managing global 5410 * interrupts. 5411 */ 5412 void t4_intr_disable(struct adapter *adap) 5413 { 5414 5415 t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), 0); 5416 t4_set_reg_field(adap, A_PL_INT_MAP0, 1 << adap->pf, 0); 5417 } 5418 5419 /** 5420 * t4_intr_clear - clear all interrupts 5421 * @adap: the adapter whose interrupts should be cleared 5422 * 5423 * Clears all interrupts. The caller must be a PCI function managing 5424 * global interrupts. 5425 */ 5426 void t4_intr_clear(struct adapter *adap) 5427 { 5428 static const u32 cause_reg[] = { 5429 A_CIM_HOST_INT_CAUSE, 5430 A_CIM_HOST_UPACC_INT_CAUSE, 5431 MYPF_REG(A_CIM_PF_HOST_INT_CAUSE), 5432 A_CPL_INTR_CAUSE, 5433 EDC_REG(A_EDC_INT_CAUSE, 0), EDC_REG(A_EDC_INT_CAUSE, 1), 5434 A_LE_DB_INT_CAUSE, 5435 A_MA_INT_WRAP_STATUS, 5436 A_MA_PARITY_ERROR_STATUS1, 5437 A_MA_INT_CAUSE, 5438 A_MPS_CLS_INT_CAUSE, 5439 A_MPS_RX_PERR_INT_CAUSE, 5440 A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO, 5441 A_MPS_STAT_PERR_INT_CAUSE_SRAM, 5442 A_MPS_TRC_INT_CAUSE, 5443 A_MPS_TX_INT_CAUSE, 5444 A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO, 5445 A_NCSI_INT_CAUSE, 5446 A_PCIE_INT_CAUSE, 5447 A_PCIE_NONFAT_ERR, 5448 A_PL_PL_INT_CAUSE, 5449 A_PM_RX_INT_CAUSE, 5450 A_PM_TX_INT_CAUSE, 5451 A_SGE_INT_CAUSE1, 5452 A_SGE_INT_CAUSE2, 5453 A_SGE_INT_CAUSE3, 5454 A_SGE_INT_CAUSE4, 5455 A_SMB_INT_CAUSE, 5456 A_TP_INT_CAUSE, 5457 A_ULP_RX_INT_CAUSE, 5458 A_ULP_RX_INT_CAUSE_2, 5459 A_ULP_TX_INT_CAUSE, 5460 A_ULP_TX_INT_CAUSE_2, 5461 5462 MYPF_REG(A_PL_PF_INT_CAUSE), 5463 }; 5464 int i; 5465 const int nchan = adap->chip_params->nchan; 5466 5467 for (i = 0; i < ARRAY_SIZE(cause_reg); i++) 5468 t4_write_reg(adap, cause_reg[i], 0xffffffff); 5469 5470 if (is_t4(adap)) { 5471 t4_write_reg(adap, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS, 5472 0xffffffff); 5473 t4_write_reg(adap, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS, 5474 0xffffffff); 5475 t4_write_reg(adap, A_MC_INT_CAUSE, 0xffffffff); 5476 for (i = 0; i < nchan; i++) { 5477 t4_write_reg(adap, PORT_REG(i, A_XGMAC_PORT_INT_CAUSE), 5478 0xffffffff); 5479 } 5480 } 5481 if (chip_id(adap) >= CHELSIO_T5) { 5482 t4_write_reg(adap, A_MA_PARITY_ERROR_STATUS2, 0xffffffff); 5483 t4_write_reg(adap, A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 0xffffffff); 5484 t4_write_reg(adap, A_SGE_INT_CAUSE5, 0xffffffff); 5485 t4_write_reg(adap, A_MC_P_INT_CAUSE, 0xffffffff); 5486 if (is_t5(adap)) { 5487 t4_write_reg(adap, MC_REG(A_MC_P_INT_CAUSE, 1), 5488 0xffffffff); 5489 } 5490 for (i = 0; i < nchan; i++) { 5491 t4_write_reg(adap, T5_PORT_REG(i, 5492 A_MAC_PORT_PERR_INT_CAUSE), 0xffffffff); 5493 if (chip_id(adap) > CHELSIO_T5) { 5494 t4_write_reg(adap, T5_PORT_REG(i, 5495 A_MAC_PORT_PERR_INT_CAUSE_100G), 5496 0xffffffff); 5497 } 5498 t4_write_reg(adap, T5_PORT_REG(i, A_MAC_PORT_INT_CAUSE), 5499 0xffffffff); 5500 } 5501 } 5502 if (chip_id(adap) >= CHELSIO_T6) { 5503 t4_write_reg(adap, A_SGE_INT_CAUSE6, 0xffffffff); 5504 } 5505 5506 t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff); 5507 t4_write_reg(adap, A_PL_PERR_CAUSE, 0xffffffff); 5508 t4_write_reg(adap, A_PL_INT_CAUSE, 0xffffffff); 5509 (void) t4_read_reg(adap, A_PL_INT_CAUSE); /* flush */ 5510 } 5511 5512 /** 5513 * hash_mac_addr - return the hash value of a MAC address 5514 * @addr: the 48-bit Ethernet MAC address 5515 * 5516 * Hashes a MAC address according to the hash function used by HW inexact 5517 * (hash) address matching. 5518 */ 5519 static int hash_mac_addr(const u8 *addr) 5520 { 5521 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2]; 5522 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5]; 5523 a ^= b; 5524 a ^= (a >> 12); 5525 a ^= (a >> 6); 5526 return a & 0x3f; 5527 } 5528 5529 /** 5530 * t4_config_rss_range - configure a portion of the RSS mapping table 5531 * @adapter: the adapter 5532 * @mbox: mbox to use for the FW command 5533 * @viid: virtual interface whose RSS subtable is to be written 5534 * @start: start entry in the table to write 5535 * @n: how many table entries to write 5536 * @rspq: values for the "response queue" (Ingress Queue) lookup table 5537 * @nrspq: number of values in @rspq 5538 * 5539 * Programs the selected part of the VI's RSS mapping table with the 5540 * provided values. If @nrspq < @n the supplied values are used repeatedly 5541 * until the full table range is populated. 5542 * 5543 * The caller must ensure the values in @rspq are in the range allowed for 5544 * @viid. 5545 */ 5546 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 5547 int start, int n, const u16 *rspq, unsigned int nrspq) 5548 { 5549 int ret; 5550 const u16 *rsp = rspq; 5551 const u16 *rsp_end = rspq + nrspq; 5552 struct fw_rss_ind_tbl_cmd cmd; 5553 5554 memset(&cmd, 0, sizeof(cmd)); 5555 cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) | 5556 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 5557 V_FW_RSS_IND_TBL_CMD_VIID(viid)); 5558 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 5559 5560 /* 5561 * Each firmware RSS command can accommodate up to 32 RSS Ingress 5562 * Queue Identifiers. These Ingress Queue IDs are packed three to 5563 * a 32-bit word as 10-bit values with the upper remaining 2 bits 5564 * reserved. 5565 */ 5566 while (n > 0) { 5567 int nq = min(n, 32); 5568 int nq_packed = 0; 5569 __be32 *qp = &cmd.iq0_to_iq2; 5570 5571 /* 5572 * Set up the firmware RSS command header to send the next 5573 * "nq" Ingress Queue IDs to the firmware. 5574 */ 5575 cmd.niqid = cpu_to_be16(nq); 5576 cmd.startidx = cpu_to_be16(start); 5577 5578 /* 5579 * "nq" more done for the start of the next loop. 5580 */ 5581 start += nq; 5582 n -= nq; 5583 5584 /* 5585 * While there are still Ingress Queue IDs to stuff into the 5586 * current firmware RSS command, retrieve them from the 5587 * Ingress Queue ID array and insert them into the command. 5588 */ 5589 while (nq > 0) { 5590 /* 5591 * Grab up to the next 3 Ingress Queue IDs (wrapping 5592 * around the Ingress Queue ID array if necessary) and 5593 * insert them into the firmware RSS command at the 5594 * current 3-tuple position within the commad. 5595 */ 5596 u16 qbuf[3]; 5597 u16 *qbp = qbuf; 5598 int nqbuf = min(3, nq); 5599 5600 nq -= nqbuf; 5601 qbuf[0] = qbuf[1] = qbuf[2] = 0; 5602 while (nqbuf && nq_packed < 32) { 5603 nqbuf--; 5604 nq_packed++; 5605 *qbp++ = *rsp++; 5606 if (rsp >= rsp_end) 5607 rsp = rspq; 5608 } 5609 *qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) | 5610 V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) | 5611 V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2])); 5612 } 5613 5614 /* 5615 * Send this portion of the RRS table update to the firmware; 5616 * bail out on any errors. 5617 */ 5618 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 5619 if (ret) 5620 return ret; 5621 } 5622 return 0; 5623 } 5624 5625 /** 5626 * t4_config_glbl_rss - configure the global RSS mode 5627 * @adapter: the adapter 5628 * @mbox: mbox to use for the FW command 5629 * @mode: global RSS mode 5630 * @flags: mode-specific flags 5631 * 5632 * Sets the global RSS mode. 5633 */ 5634 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 5635 unsigned int flags) 5636 { 5637 struct fw_rss_glb_config_cmd c; 5638 5639 memset(&c, 0, sizeof(c)); 5640 c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) | 5641 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 5642 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5643 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 5644 c.u.manual.mode_pkd = 5645 cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode)); 5646 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 5647 c.u.basicvirtual.mode_keymode = 5648 cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode)); 5649 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); 5650 } else 5651 return -EINVAL; 5652 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5653 } 5654 5655 /** 5656 * t4_config_vi_rss - configure per VI RSS settings 5657 * @adapter: the adapter 5658 * @mbox: mbox to use for the FW command 5659 * @viid: the VI id 5660 * @flags: RSS flags 5661 * @defq: id of the default RSS queue for the VI. 5662 * @skeyidx: RSS secret key table index for non-global mode 5663 * @skey: RSS vf_scramble key for VI. 5664 * 5665 * Configures VI-specific RSS properties. 5666 */ 5667 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, 5668 unsigned int flags, unsigned int defq, unsigned int skeyidx, 5669 unsigned int skey) 5670 { 5671 struct fw_rss_vi_config_cmd c; 5672 5673 memset(&c, 0, sizeof(c)); 5674 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) | 5675 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 5676 V_FW_RSS_VI_CONFIG_CMD_VIID(viid)); 5677 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5678 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | 5679 V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq)); 5680 c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32( 5681 V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx)); 5682 c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey); 5683 5684 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5685 } 5686 5687 /* Read an RSS table row */ 5688 static int rd_rss_row(struct adapter *adap, int row, u32 *val) 5689 { 5690 t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row); 5691 return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1, 5692 5, 0, val); 5693 } 5694 5695 /** 5696 * t4_read_rss - read the contents of the RSS mapping table 5697 * @adapter: the adapter 5698 * @map: holds the contents of the RSS mapping table 5699 * 5700 * Reads the contents of the RSS hash->queue mapping table. 5701 */ 5702 int t4_read_rss(struct adapter *adapter, u16 *map) 5703 { 5704 u32 val; 5705 int i, ret; 5706 5707 for (i = 0; i < RSS_NENTRIES / 2; ++i) { 5708 ret = rd_rss_row(adapter, i, &val); 5709 if (ret) 5710 return ret; 5711 *map++ = G_LKPTBLQUEUE0(val); 5712 *map++ = G_LKPTBLQUEUE1(val); 5713 } 5714 return 0; 5715 } 5716 5717 /** 5718 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST 5719 * @adap: the adapter 5720 * @cmd: TP fw ldst address space type 5721 * @vals: where the indirect register values are stored/written 5722 * @nregs: how many indirect registers to read/write 5723 * @start_idx: index of first indirect register to read/write 5724 * @rw: Read (1) or Write (0) 5725 * @sleep_ok: if true we may sleep while awaiting command completion 5726 * 5727 * Access TP indirect registers through LDST 5728 **/ 5729 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals, 5730 unsigned int nregs, unsigned int start_index, 5731 unsigned int rw, bool sleep_ok) 5732 { 5733 int ret = 0; 5734 unsigned int i; 5735 struct fw_ldst_cmd c; 5736 5737 for (i = 0; i < nregs; i++) { 5738 memset(&c, 0, sizeof(c)); 5739 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 5740 F_FW_CMD_REQUEST | 5741 (rw ? F_FW_CMD_READ : 5742 F_FW_CMD_WRITE) | 5743 V_FW_LDST_CMD_ADDRSPACE(cmd)); 5744 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5745 5746 c.u.addrval.addr = cpu_to_be32(start_index + i); 5747 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); 5748 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, 5749 sleep_ok); 5750 if (ret) 5751 return ret; 5752 5753 if (rw) 5754 vals[i] = be32_to_cpu(c.u.addrval.val); 5755 } 5756 return 0; 5757 } 5758 5759 /** 5760 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor 5761 * @adap: the adapter 5762 * @reg_addr: Address Register 5763 * @reg_data: Data register 5764 * @buff: where the indirect register values are stored/written 5765 * @nregs: how many indirect registers to read/write 5766 * @start_index: index of first indirect register to read/write 5767 * @rw: READ(1) or WRITE(0) 5768 * @sleep_ok: if true we may sleep while awaiting command completion 5769 * 5770 * Read/Write TP indirect registers through LDST if possible. 5771 * Else, use backdoor access 5772 **/ 5773 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data, 5774 u32 *buff, u32 nregs, u32 start_index, int rw, 5775 bool sleep_ok) 5776 { 5777 int rc = -EINVAL; 5778 int cmd; 5779 5780 switch (reg_addr) { 5781 case A_TP_PIO_ADDR: 5782 cmd = FW_LDST_ADDRSPC_TP_PIO; 5783 break; 5784 case A_TP_TM_PIO_ADDR: 5785 cmd = FW_LDST_ADDRSPC_TP_TM_PIO; 5786 break; 5787 case A_TP_MIB_INDEX: 5788 cmd = FW_LDST_ADDRSPC_TP_MIB; 5789 break; 5790 default: 5791 goto indirect_access; 5792 } 5793 5794 if (t4_use_ldst(adap)) 5795 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw, 5796 sleep_ok); 5797 5798 indirect_access: 5799 5800 if (rc) { 5801 if (rw) 5802 t4_read_indirect(adap, reg_addr, reg_data, buff, nregs, 5803 start_index); 5804 else 5805 t4_write_indirect(adap, reg_addr, reg_data, buff, nregs, 5806 start_index); 5807 } 5808 } 5809 5810 /** 5811 * t4_tp_pio_read - Read TP PIO registers 5812 * @adap: the adapter 5813 * @buff: where the indirect register values are written 5814 * @nregs: how many indirect registers to read 5815 * @start_index: index of first indirect register to read 5816 * @sleep_ok: if true we may sleep while awaiting command completion 5817 * 5818 * Read TP PIO Registers 5819 **/ 5820 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5821 u32 start_index, bool sleep_ok) 5822 { 5823 t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs, 5824 start_index, 1, sleep_ok); 5825 } 5826 5827 /** 5828 * t4_tp_pio_write - Write TP PIO registers 5829 * @adap: the adapter 5830 * @buff: where the indirect register values are stored 5831 * @nregs: how many indirect registers to write 5832 * @start_index: index of first indirect register to write 5833 * @sleep_ok: if true we may sleep while awaiting command completion 5834 * 5835 * Write TP PIO Registers 5836 **/ 5837 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs, 5838 u32 start_index, bool sleep_ok) 5839 { 5840 t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, 5841 __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok); 5842 } 5843 5844 /** 5845 * t4_tp_tm_pio_read - Read TP TM PIO registers 5846 * @adap: the adapter 5847 * @buff: where the indirect register values are written 5848 * @nregs: how many indirect registers to read 5849 * @start_index: index of first indirect register to read 5850 * @sleep_ok: if true we may sleep while awaiting command completion 5851 * 5852 * Read TP TM PIO Registers 5853 **/ 5854 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5855 u32 start_index, bool sleep_ok) 5856 { 5857 t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff, 5858 nregs, start_index, 1, sleep_ok); 5859 } 5860 5861 /** 5862 * t4_tp_mib_read - Read TP MIB registers 5863 * @adap: the adapter 5864 * @buff: where the indirect register values are written 5865 * @nregs: how many indirect registers to read 5866 * @start_index: index of first indirect register to read 5867 * @sleep_ok: if true we may sleep while awaiting command completion 5868 * 5869 * Read TP MIB Registers 5870 **/ 5871 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, 5872 bool sleep_ok) 5873 { 5874 t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs, 5875 start_index, 1, sleep_ok); 5876 } 5877 5878 /** 5879 * t4_read_rss_key - read the global RSS key 5880 * @adap: the adapter 5881 * @key: 10-entry array holding the 320-bit RSS key 5882 * @sleep_ok: if true we may sleep while awaiting command completion 5883 * 5884 * Reads the global 320-bit RSS key. 5885 */ 5886 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok) 5887 { 5888 t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok); 5889 } 5890 5891 /** 5892 * t4_write_rss_key - program one of the RSS keys 5893 * @adap: the adapter 5894 * @key: 10-entry array holding the 320-bit RSS key 5895 * @idx: which RSS key to write 5896 * @sleep_ok: if true we may sleep while awaiting command completion 5897 * 5898 * Writes one of the RSS keys with the given 320-bit value. If @idx is 5899 * 0..15 the corresponding entry in the RSS key table is written, 5900 * otherwise the global RSS key is written. 5901 */ 5902 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx, 5903 bool sleep_ok) 5904 { 5905 u8 rss_key_addr_cnt = 16; 5906 u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT); 5907 5908 /* 5909 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble), 5910 * allows access to key addresses 16-63 by using KeyWrAddrX 5911 * as index[5:4](upper 2) into key table 5912 */ 5913 if ((chip_id(adap) > CHELSIO_T5) && 5914 (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3)) 5915 rss_key_addr_cnt = 32; 5916 5917 t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok); 5918 5919 if (idx >= 0 && idx < rss_key_addr_cnt) { 5920 if (rss_key_addr_cnt > 16) 5921 t4_write_reg(adap, A_TP_RSS_CONFIG_VRT, 5922 vrt | V_KEYWRADDRX(idx >> 4) | 5923 V_T6_VFWRADDR(idx) | F_KEYWREN); 5924 else 5925 t4_write_reg(adap, A_TP_RSS_CONFIG_VRT, 5926 vrt| V_KEYWRADDR(idx) | F_KEYWREN); 5927 } 5928 } 5929 5930 /** 5931 * t4_read_rss_pf_config - read PF RSS Configuration Table 5932 * @adapter: the adapter 5933 * @index: the entry in the PF RSS table to read 5934 * @valp: where to store the returned value 5935 * @sleep_ok: if true we may sleep while awaiting command completion 5936 * 5937 * Reads the PF RSS Configuration Table at the specified index and returns 5938 * the value found there. 5939 */ 5940 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 5941 u32 *valp, bool sleep_ok) 5942 { 5943 t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok); 5944 } 5945 5946 /** 5947 * t4_write_rss_pf_config - write PF RSS Configuration Table 5948 * @adapter: the adapter 5949 * @index: the entry in the VF RSS table to read 5950 * @val: the value to store 5951 * @sleep_ok: if true we may sleep while awaiting command completion 5952 * 5953 * Writes the PF RSS Configuration Table at the specified index with the 5954 * specified value. 5955 */ 5956 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index, 5957 u32 val, bool sleep_ok) 5958 { 5959 t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index, 5960 sleep_ok); 5961 } 5962 5963 /** 5964 * t4_read_rss_vf_config - read VF RSS Configuration Table 5965 * @adapter: the adapter 5966 * @index: the entry in the VF RSS table to read 5967 * @vfl: where to store the returned VFL 5968 * @vfh: where to store the returned VFH 5969 * @sleep_ok: if true we may sleep while awaiting command completion 5970 * 5971 * Reads the VF RSS Configuration Table at the specified index and returns 5972 * the (VFL, VFH) values found there. 5973 */ 5974 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 5975 u32 *vfl, u32 *vfh, bool sleep_ok) 5976 { 5977 u32 vrt, mask, data; 5978 5979 if (chip_id(adapter) <= CHELSIO_T5) { 5980 mask = V_VFWRADDR(M_VFWRADDR); 5981 data = V_VFWRADDR(index); 5982 } else { 5983 mask = V_T6_VFWRADDR(M_T6_VFWRADDR); 5984 data = V_T6_VFWRADDR(index); 5985 } 5986 /* 5987 * Request that the index'th VF Table values be read into VFL/VFH. 5988 */ 5989 vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT); 5990 vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask); 5991 vrt |= data | F_VFRDEN; 5992 t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt); 5993 5994 /* 5995 * Grab the VFL/VFH values ... 5996 */ 5997 t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok); 5998 t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok); 5999 } 6000 6001 /** 6002 * t4_write_rss_vf_config - write VF RSS Configuration Table 6003 * 6004 * @adapter: the adapter 6005 * @index: the entry in the VF RSS table to write 6006 * @vfl: the VFL to store 6007 * @vfh: the VFH to store 6008 * 6009 * Writes the VF RSS Configuration Table at the specified index with the 6010 * specified (VFL, VFH) values. 6011 */ 6012 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index, 6013 u32 vfl, u32 vfh, bool sleep_ok) 6014 { 6015 u32 vrt, mask, data; 6016 6017 if (chip_id(adapter) <= CHELSIO_T5) { 6018 mask = V_VFWRADDR(M_VFWRADDR); 6019 data = V_VFWRADDR(index); 6020 } else { 6021 mask = V_T6_VFWRADDR(M_T6_VFWRADDR); 6022 data = V_T6_VFWRADDR(index); 6023 } 6024 6025 /* 6026 * Load up VFL/VFH with the values to be written ... 6027 */ 6028 t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok); 6029 t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok); 6030 6031 /* 6032 * Write the VFL/VFH into the VF Table at index'th location. 6033 */ 6034 vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT); 6035 vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask); 6036 vrt |= data | F_VFRDEN; 6037 t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt); 6038 } 6039 6040 /** 6041 * t4_read_rss_pf_map - read PF RSS Map 6042 * @adapter: the adapter 6043 * @sleep_ok: if true we may sleep while awaiting command completion 6044 * 6045 * Reads the PF RSS Map register and returns its value. 6046 */ 6047 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok) 6048 { 6049 u32 pfmap; 6050 6051 t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok); 6052 6053 return pfmap; 6054 } 6055 6056 /** 6057 * t4_write_rss_pf_map - write PF RSS Map 6058 * @adapter: the adapter 6059 * @pfmap: PF RSS Map value 6060 * 6061 * Writes the specified value to the PF RSS Map register. 6062 */ 6063 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok) 6064 { 6065 t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok); 6066 } 6067 6068 /** 6069 * t4_read_rss_pf_mask - read PF RSS Mask 6070 * @adapter: the adapter 6071 * @sleep_ok: if true we may sleep while awaiting command completion 6072 * 6073 * Reads the PF RSS Mask register and returns its value. 6074 */ 6075 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok) 6076 { 6077 u32 pfmask; 6078 6079 t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok); 6080 6081 return pfmask; 6082 } 6083 6084 /** 6085 * t4_write_rss_pf_mask - write PF RSS Mask 6086 * @adapter: the adapter 6087 * @pfmask: PF RSS Mask value 6088 * 6089 * Writes the specified value to the PF RSS Mask register. 6090 */ 6091 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok) 6092 { 6093 t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok); 6094 } 6095 6096 /** 6097 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 6098 * @adap: the adapter 6099 * @v4: holds the TCP/IP counter values 6100 * @v6: holds the TCP/IPv6 counter values 6101 * @sleep_ok: if true we may sleep while awaiting command completion 6102 * 6103 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 6104 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 6105 */ 6106 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 6107 struct tp_tcp_stats *v6, bool sleep_ok) 6108 { 6109 u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1]; 6110 6111 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST) 6112 #define STAT(x) val[STAT_IDX(x)] 6113 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 6114 6115 if (v4) { 6116 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 6117 A_TP_MIB_TCP_OUT_RST, sleep_ok); 6118 v4->tcp_out_rsts = STAT(OUT_RST); 6119 v4->tcp_in_segs = STAT64(IN_SEG); 6120 v4->tcp_out_segs = STAT64(OUT_SEG); 6121 v4->tcp_retrans_segs = STAT64(RXT_SEG); 6122 } 6123 if (v6) { 6124 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 6125 A_TP_MIB_TCP_V6OUT_RST, sleep_ok); 6126 v6->tcp_out_rsts = STAT(OUT_RST); 6127 v6->tcp_in_segs = STAT64(IN_SEG); 6128 v6->tcp_out_segs = STAT64(OUT_SEG); 6129 v6->tcp_retrans_segs = STAT64(RXT_SEG); 6130 } 6131 #undef STAT64 6132 #undef STAT 6133 #undef STAT_IDX 6134 } 6135 6136 /** 6137 * t4_tp_get_err_stats - read TP's error MIB counters 6138 * @adap: the adapter 6139 * @st: holds the counter values 6140 * @sleep_ok: if true we may sleep while awaiting command completion 6141 * 6142 * Returns the values of TP's error counters. 6143 */ 6144 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st, 6145 bool sleep_ok) 6146 { 6147 int nchan = adap->chip_params->nchan; 6148 6149 t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0, 6150 sleep_ok); 6151 6152 t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0, 6153 sleep_ok); 6154 6155 t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0, 6156 sleep_ok); 6157 6158 t4_tp_mib_read(adap, st->tnl_cong_drops, nchan, 6159 A_TP_MIB_TNL_CNG_DROP_0, sleep_ok); 6160 6161 t4_tp_mib_read(adap, st->ofld_chan_drops, nchan, 6162 A_TP_MIB_OFD_CHN_DROP_0, sleep_ok); 6163 6164 t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0, 6165 sleep_ok); 6166 6167 t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan, 6168 A_TP_MIB_OFD_VLN_DROP_0, sleep_ok); 6169 6170 t4_tp_mib_read(adap, st->tcp6_in_errs, nchan, 6171 A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok); 6172 6173 t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP, 6174 sleep_ok); 6175 } 6176 6177 /** 6178 * t4_tp_get_proxy_stats - read TP's proxy MIB counters 6179 * @adap: the adapter 6180 * @st: holds the counter values 6181 * 6182 * Returns the values of TP's proxy counters. 6183 */ 6184 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st, 6185 bool sleep_ok) 6186 { 6187 int nchan = adap->chip_params->nchan; 6188 6189 t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok); 6190 } 6191 6192 /** 6193 * t4_tp_get_cpl_stats - read TP's CPL MIB counters 6194 * @adap: the adapter 6195 * @st: holds the counter values 6196 * @sleep_ok: if true we may sleep while awaiting command completion 6197 * 6198 * Returns the values of TP's CPL counters. 6199 */ 6200 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st, 6201 bool sleep_ok) 6202 { 6203 int nchan = adap->chip_params->nchan; 6204 6205 t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok); 6206 6207 t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok); 6208 } 6209 6210 /** 6211 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters 6212 * @adap: the adapter 6213 * @st: holds the counter values 6214 * 6215 * Returns the values of TP's RDMA counters. 6216 */ 6217 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st, 6218 bool sleep_ok) 6219 { 6220 t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT, 6221 sleep_ok); 6222 } 6223 6224 /** 6225 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port 6226 * @adap: the adapter 6227 * @idx: the port index 6228 * @st: holds the counter values 6229 * @sleep_ok: if true we may sleep while awaiting command completion 6230 * 6231 * Returns the values of TP's FCoE counters for the selected port. 6232 */ 6233 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, 6234 struct tp_fcoe_stats *st, bool sleep_ok) 6235 { 6236 u32 val[2]; 6237 6238 t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx, 6239 sleep_ok); 6240 6241 t4_tp_mib_read(adap, &st->frames_drop, 1, 6242 A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok); 6243 6244 t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx, 6245 sleep_ok); 6246 6247 st->octets_ddp = ((u64)val[0] << 32) | val[1]; 6248 } 6249 6250 /** 6251 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters 6252 * @adap: the adapter 6253 * @st: holds the counter values 6254 * @sleep_ok: if true we may sleep while awaiting command completion 6255 * 6256 * Returns the values of TP's counters for non-TCP directly-placed packets. 6257 */ 6258 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st, 6259 bool sleep_ok) 6260 { 6261 u32 val[4]; 6262 6263 t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok); 6264 6265 st->frames = val[0]; 6266 st->drops = val[1]; 6267 st->octets = ((u64)val[2] << 32) | val[3]; 6268 } 6269 6270 /** 6271 * t4_read_mtu_tbl - returns the values in the HW path MTU table 6272 * @adap: the adapter 6273 * @mtus: where to store the MTU values 6274 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 6275 * 6276 * Reads the HW path MTU table. 6277 */ 6278 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 6279 { 6280 u32 v; 6281 int i; 6282 6283 for (i = 0; i < NMTUS; ++i) { 6284 t4_write_reg(adap, A_TP_MTU_TABLE, 6285 V_MTUINDEX(0xff) | V_MTUVALUE(i)); 6286 v = t4_read_reg(adap, A_TP_MTU_TABLE); 6287 mtus[i] = G_MTUVALUE(v); 6288 if (mtu_log) 6289 mtu_log[i] = G_MTUWIDTH(v); 6290 } 6291 } 6292 6293 /** 6294 * t4_read_cong_tbl - reads the congestion control table 6295 * @adap: the adapter 6296 * @incr: where to store the alpha values 6297 * 6298 * Reads the additive increments programmed into the HW congestion 6299 * control table. 6300 */ 6301 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 6302 { 6303 unsigned int mtu, w; 6304 6305 for (mtu = 0; mtu < NMTUS; ++mtu) 6306 for (w = 0; w < NCCTRL_WIN; ++w) { 6307 t4_write_reg(adap, A_TP_CCTRL_TABLE, 6308 V_ROWINDEX(0xffff) | (mtu << 5) | w); 6309 incr[mtu][w] = (u16)t4_read_reg(adap, 6310 A_TP_CCTRL_TABLE) & 0x1fff; 6311 } 6312 } 6313 6314 /** 6315 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 6316 * @adap: the adapter 6317 * @addr: the indirect TP register address 6318 * @mask: specifies the field within the register to modify 6319 * @val: new value for the field 6320 * 6321 * Sets a field of an indirect TP register to the given value. 6322 */ 6323 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 6324 unsigned int mask, unsigned int val) 6325 { 6326 t4_write_reg(adap, A_TP_PIO_ADDR, addr); 6327 val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask; 6328 t4_write_reg(adap, A_TP_PIO_DATA, val); 6329 } 6330 6331 /** 6332 * init_cong_ctrl - initialize congestion control parameters 6333 * @a: the alpha values for congestion control 6334 * @b: the beta values for congestion control 6335 * 6336 * Initialize the congestion control parameters. 6337 */ 6338 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 6339 { 6340 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 6341 a[9] = 2; 6342 a[10] = 3; 6343 a[11] = 4; 6344 a[12] = 5; 6345 a[13] = 6; 6346 a[14] = 7; 6347 a[15] = 8; 6348 a[16] = 9; 6349 a[17] = 10; 6350 a[18] = 14; 6351 a[19] = 17; 6352 a[20] = 21; 6353 a[21] = 25; 6354 a[22] = 30; 6355 a[23] = 35; 6356 a[24] = 45; 6357 a[25] = 60; 6358 a[26] = 80; 6359 a[27] = 100; 6360 a[28] = 200; 6361 a[29] = 300; 6362 a[30] = 400; 6363 a[31] = 500; 6364 6365 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 6366 b[9] = b[10] = 1; 6367 b[11] = b[12] = 2; 6368 b[13] = b[14] = b[15] = b[16] = 3; 6369 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 6370 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 6371 b[28] = b[29] = 6; 6372 b[30] = b[31] = 7; 6373 } 6374 6375 /* The minimum additive increment value for the congestion control table */ 6376 #define CC_MIN_INCR 2U 6377 6378 /** 6379 * t4_load_mtus - write the MTU and congestion control HW tables 6380 * @adap: the adapter 6381 * @mtus: the values for the MTU table 6382 * @alpha: the values for the congestion control alpha parameter 6383 * @beta: the values for the congestion control beta parameter 6384 * 6385 * Write the HW MTU table with the supplied MTUs and the high-speed 6386 * congestion control table with the supplied alpha, beta, and MTUs. 6387 * We write the two tables together because the additive increments 6388 * depend on the MTUs. 6389 */ 6390 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 6391 const unsigned short *alpha, const unsigned short *beta) 6392 { 6393 static const unsigned int avg_pkts[NCCTRL_WIN] = { 6394 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 6395 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 6396 28672, 40960, 57344, 81920, 114688, 163840, 229376 6397 }; 6398 6399 unsigned int i, w; 6400 6401 for (i = 0; i < NMTUS; ++i) { 6402 unsigned int mtu = mtus[i]; 6403 unsigned int log2 = fls(mtu); 6404 6405 if (!(mtu & ((1 << log2) >> 2))) /* round */ 6406 log2--; 6407 t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) | 6408 V_MTUWIDTH(log2) | V_MTUVALUE(mtu)); 6409 6410 for (w = 0; w < NCCTRL_WIN; ++w) { 6411 unsigned int inc; 6412 6413 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 6414 CC_MIN_INCR); 6415 6416 t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) | 6417 (w << 16) | (beta[w] << 13) | inc); 6418 } 6419 } 6420 } 6421 6422 /** 6423 * t4_set_pace_tbl - set the pace table 6424 * @adap: the adapter 6425 * @pace_vals: the pace values in microseconds 6426 * @start: index of the first entry in the HW pace table to set 6427 * @n: how many entries to set 6428 * 6429 * Sets (a subset of the) HW pace table. 6430 */ 6431 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals, 6432 unsigned int start, unsigned int n) 6433 { 6434 unsigned int vals[NTX_SCHED], i; 6435 unsigned int tick_ns = dack_ticks_to_usec(adap, 1000); 6436 6437 if (n > NTX_SCHED) 6438 return -ERANGE; 6439 6440 /* convert values from us to dack ticks, rounding to closest value */ 6441 for (i = 0; i < n; i++, pace_vals++) { 6442 vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns; 6443 if (vals[i] > 0x7ff) 6444 return -ERANGE; 6445 if (*pace_vals && vals[i] == 0) 6446 return -ERANGE; 6447 } 6448 for (i = 0; i < n; i++, start++) 6449 t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]); 6450 return 0; 6451 } 6452 6453 /** 6454 * t4_set_sched_bps - set the bit rate for a HW traffic scheduler 6455 * @adap: the adapter 6456 * @kbps: target rate in Kbps 6457 * @sched: the scheduler index 6458 * 6459 * Configure a Tx HW scheduler for the target rate. 6460 */ 6461 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps) 6462 { 6463 unsigned int v, tps, cpt, bpt, delta, mindelta = ~0; 6464 unsigned int clk = adap->params.vpd.cclk * 1000; 6465 unsigned int selected_cpt = 0, selected_bpt = 0; 6466 6467 if (kbps > 0) { 6468 kbps *= 125; /* -> bytes */ 6469 for (cpt = 1; cpt <= 255; cpt++) { 6470 tps = clk / cpt; 6471 bpt = (kbps + tps / 2) / tps; 6472 if (bpt > 0 && bpt <= 255) { 6473 v = bpt * tps; 6474 delta = v >= kbps ? v - kbps : kbps - v; 6475 if (delta < mindelta) { 6476 mindelta = delta; 6477 selected_cpt = cpt; 6478 selected_bpt = bpt; 6479 } 6480 } else if (selected_cpt) 6481 break; 6482 } 6483 if (!selected_cpt) 6484 return -EINVAL; 6485 } 6486 t4_write_reg(adap, A_TP_TM_PIO_ADDR, 6487 A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2); 6488 v = t4_read_reg(adap, A_TP_TM_PIO_DATA); 6489 if (sched & 1) 6490 v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24); 6491 else 6492 v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8); 6493 t4_write_reg(adap, A_TP_TM_PIO_DATA, v); 6494 return 0; 6495 } 6496 6497 /** 6498 * t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler 6499 * @adap: the adapter 6500 * @sched: the scheduler index 6501 * @ipg: the interpacket delay in tenths of nanoseconds 6502 * 6503 * Set the interpacket delay for a HW packet rate scheduler. 6504 */ 6505 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg) 6506 { 6507 unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2; 6508 6509 /* convert ipg to nearest number of core clocks */ 6510 ipg *= core_ticks_per_usec(adap); 6511 ipg = (ipg + 5000) / 10000; 6512 if (ipg > M_TXTIMERSEPQ0) 6513 return -EINVAL; 6514 6515 t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr); 6516 v = t4_read_reg(adap, A_TP_TM_PIO_DATA); 6517 if (sched & 1) 6518 v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg); 6519 else 6520 v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg); 6521 t4_write_reg(adap, A_TP_TM_PIO_DATA, v); 6522 t4_read_reg(adap, A_TP_TM_PIO_DATA); 6523 return 0; 6524 } 6525 6526 /* 6527 * Calculates a rate in bytes/s given the number of 256-byte units per 4K core 6528 * clocks. The formula is 6529 * 6530 * bytes/s = bytes256 * 256 * ClkFreq / 4096 6531 * 6532 * which is equivalent to 6533 * 6534 * bytes/s = 62.5 * bytes256 * ClkFreq_ms 6535 */ 6536 static u64 chan_rate(struct adapter *adap, unsigned int bytes256) 6537 { 6538 u64 v = (u64)bytes256 * adap->params.vpd.cclk; 6539 6540 return v * 62 + v / 2; 6541 } 6542 6543 /** 6544 * t4_get_chan_txrate - get the current per channel Tx rates 6545 * @adap: the adapter 6546 * @nic_rate: rates for NIC traffic 6547 * @ofld_rate: rates for offloaded traffic 6548 * 6549 * Return the current Tx rates in bytes/s for NIC and offloaded traffic 6550 * for each channel. 6551 */ 6552 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) 6553 { 6554 u32 v; 6555 6556 v = t4_read_reg(adap, A_TP_TX_TRATE); 6557 nic_rate[0] = chan_rate(adap, G_TNLRATE0(v)); 6558 nic_rate[1] = chan_rate(adap, G_TNLRATE1(v)); 6559 if (adap->chip_params->nchan > 2) { 6560 nic_rate[2] = chan_rate(adap, G_TNLRATE2(v)); 6561 nic_rate[3] = chan_rate(adap, G_TNLRATE3(v)); 6562 } 6563 6564 v = t4_read_reg(adap, A_TP_TX_ORATE); 6565 ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v)); 6566 ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v)); 6567 if (adap->chip_params->nchan > 2) { 6568 ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v)); 6569 ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v)); 6570 } 6571 } 6572 6573 /** 6574 * t4_set_trace_filter - configure one of the tracing filters 6575 * @adap: the adapter 6576 * @tp: the desired trace filter parameters 6577 * @idx: which filter to configure 6578 * @enable: whether to enable or disable the filter 6579 * 6580 * Configures one of the tracing filters available in HW. If @tp is %NULL 6581 * it indicates that the filter is already written in the register and it 6582 * just needs to be enabled or disabled. 6583 */ 6584 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, 6585 int idx, int enable) 6586 { 6587 int i, ofst = idx * 4; 6588 u32 data_reg, mask_reg, cfg; 6589 u32 multitrc = F_TRCMULTIFILTER; 6590 u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN; 6591 6592 if (idx < 0 || idx >= NTRACE) 6593 return -EINVAL; 6594 6595 if (tp == NULL || !enable) { 6596 t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 6597 enable ? en : 0); 6598 return 0; 6599 } 6600 6601 /* 6602 * TODO - After T4 data book is updated, specify the exact 6603 * section below. 6604 * 6605 * See T4 data book - MPS section for a complete description 6606 * of the below if..else handling of A_MPS_TRC_CFG register 6607 * value. 6608 */ 6609 cfg = t4_read_reg(adap, A_MPS_TRC_CFG); 6610 if (cfg & F_TRCMULTIFILTER) { 6611 /* 6612 * If multiple tracers are enabled, then maximum 6613 * capture size is 2.5KB (FIFO size of a single channel) 6614 * minus 2 flits for CPL_TRACE_PKT header. 6615 */ 6616 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) 6617 return -EINVAL; 6618 } else { 6619 /* 6620 * If multiple tracers are disabled, to avoid deadlocks 6621 * maximum packet capture size of 9600 bytes is recommended. 6622 * Also in this mode, only trace0 can be enabled and running. 6623 */ 6624 multitrc = 0; 6625 if (tp->snap_len > 9600 || idx) 6626 return -EINVAL; 6627 } 6628 6629 if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 || 6630 tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET || 6631 tp->min_len > M_TFMINPKTSIZE) 6632 return -EINVAL; 6633 6634 /* stop the tracer we'll be changing */ 6635 t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0); 6636 6637 idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH); 6638 data_reg = A_MPS_TRC_FILTER0_MATCH + idx; 6639 mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx; 6640 6641 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 6642 t4_write_reg(adap, data_reg, tp->data[i]); 6643 t4_write_reg(adap, mask_reg, ~tp->mask[i]); 6644 } 6645 t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst, 6646 V_TFCAPTUREMAX(tp->snap_len) | 6647 V_TFMINPKTSIZE(tp->min_len)); 6648 t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, 6649 V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en | 6650 (is_t4(adap) ? 6651 V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) : 6652 V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert))); 6653 6654 return 0; 6655 } 6656 6657 /** 6658 * t4_get_trace_filter - query one of the tracing filters 6659 * @adap: the adapter 6660 * @tp: the current trace filter parameters 6661 * @idx: which trace filter to query 6662 * @enabled: non-zero if the filter is enabled 6663 * 6664 * Returns the current settings of one of the HW tracing filters. 6665 */ 6666 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, 6667 int *enabled) 6668 { 6669 u32 ctla, ctlb; 6670 int i, ofst = idx * 4; 6671 u32 data_reg, mask_reg; 6672 6673 ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst); 6674 ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst); 6675 6676 if (is_t4(adap)) { 6677 *enabled = !!(ctla & F_TFEN); 6678 tp->port = G_TFPORT(ctla); 6679 tp->invert = !!(ctla & F_TFINVERTMATCH); 6680 } else { 6681 *enabled = !!(ctla & F_T5_TFEN); 6682 tp->port = G_T5_TFPORT(ctla); 6683 tp->invert = !!(ctla & F_T5_TFINVERTMATCH); 6684 } 6685 tp->snap_len = G_TFCAPTUREMAX(ctlb); 6686 tp->min_len = G_TFMINPKTSIZE(ctlb); 6687 tp->skip_ofst = G_TFOFFSET(ctla); 6688 tp->skip_len = G_TFLENGTH(ctla); 6689 6690 ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx; 6691 data_reg = A_MPS_TRC_FILTER0_MATCH + ofst; 6692 mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst; 6693 6694 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 6695 tp->mask[i] = ~t4_read_reg(adap, mask_reg); 6696 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; 6697 } 6698 } 6699 6700 /** 6701 * t4_pmtx_get_stats - returns the HW stats from PMTX 6702 * @adap: the adapter 6703 * @cnt: where to store the count statistics 6704 * @cycles: where to store the cycle statistics 6705 * 6706 * Returns performance statistics from PMTX. 6707 */ 6708 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6709 { 6710 int i; 6711 u32 data[2]; 6712 6713 for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) { 6714 t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1); 6715 cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT); 6716 if (is_t4(adap)) 6717 cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB); 6718 else { 6719 t4_read_indirect(adap, A_PM_TX_DBG_CTRL, 6720 A_PM_TX_DBG_DATA, data, 2, 6721 A_PM_TX_DBG_STAT_MSB); 6722 cycles[i] = (((u64)data[0] << 32) | data[1]); 6723 } 6724 } 6725 } 6726 6727 /** 6728 * t4_pmrx_get_stats - returns the HW stats from PMRX 6729 * @adap: the adapter 6730 * @cnt: where to store the count statistics 6731 * @cycles: where to store the cycle statistics 6732 * 6733 * Returns performance statistics from PMRX. 6734 */ 6735 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6736 { 6737 int i; 6738 u32 data[2]; 6739 6740 for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) { 6741 t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1); 6742 cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT); 6743 if (is_t4(adap)) { 6744 cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB); 6745 } else { 6746 t4_read_indirect(adap, A_PM_RX_DBG_CTRL, 6747 A_PM_RX_DBG_DATA, data, 2, 6748 A_PM_RX_DBG_STAT_MSB); 6749 cycles[i] = (((u64)data[0] << 32) | data[1]); 6750 } 6751 } 6752 } 6753 6754 /** 6755 * t4_get_mps_bg_map - return the buffer groups associated with a port 6756 * @adap: the adapter 6757 * @idx: the port index 6758 * 6759 * Returns a bitmap indicating which MPS buffer groups are associated 6760 * with the given port. Bit i is set if buffer group i is used by the 6761 * port. 6762 */ 6763 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx) 6764 { 6765 u32 n; 6766 6767 if (adap->params.mps_bg_map) 6768 return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff); 6769 6770 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL)); 6771 if (n == 0) 6772 return idx == 0 ? 0xf : 0; 6773 if (n == 1 && chip_id(adap) <= CHELSIO_T5) 6774 return idx < 2 ? (3 << (2 * idx)) : 0; 6775 return 1 << idx; 6776 } 6777 6778 /* 6779 * TP RX e-channels associated with the port. 6780 */ 6781 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx) 6782 { 6783 u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL)); 6784 6785 if (n == 0) 6786 return idx == 0 ? 0xf : 0; 6787 if (n == 1 && chip_id(adap) <= CHELSIO_T5) 6788 return idx < 2 ? (3 << (2 * idx)) : 0; 6789 return 1 << idx; 6790 } 6791 6792 /** 6793 * t4_get_port_type_description - return Port Type string description 6794 * @port_type: firmware Port Type enumeration 6795 */ 6796 const char *t4_get_port_type_description(enum fw_port_type port_type) 6797 { 6798 static const char *const port_type_description[] = { 6799 "Fiber_XFI", 6800 "Fiber_XAUI", 6801 "BT_SGMII", 6802 "BT_XFI", 6803 "BT_XAUI", 6804 "KX4", 6805 "CX4", 6806 "KX", 6807 "KR", 6808 "SFP", 6809 "BP_AP", 6810 "BP4_AP", 6811 "QSFP_10G", 6812 "QSA", 6813 "QSFP", 6814 "BP40_BA", 6815 "KR4_100G", 6816 "CR4_QSFP", 6817 "CR_QSFP", 6818 "CR2_QSFP", 6819 "SFP28", 6820 "KR_SFP28", 6821 }; 6822 6823 if (port_type < ARRAY_SIZE(port_type_description)) 6824 return port_type_description[port_type]; 6825 return "UNKNOWN"; 6826 } 6827 6828 /** 6829 * t4_get_port_stats_offset - collect port stats relative to a previous 6830 * snapshot 6831 * @adap: The adapter 6832 * @idx: The port 6833 * @stats: Current stats to fill 6834 * @offset: Previous stats snapshot 6835 */ 6836 void t4_get_port_stats_offset(struct adapter *adap, int idx, 6837 struct port_stats *stats, 6838 struct port_stats *offset) 6839 { 6840 u64 *s, *o; 6841 int i; 6842 6843 t4_get_port_stats(adap, idx, stats); 6844 for (i = 0, s = (u64 *)stats, o = (u64 *)offset ; 6845 i < (sizeof(struct port_stats)/sizeof(u64)) ; 6846 i++, s++, o++) 6847 *s -= *o; 6848 } 6849 6850 /** 6851 * t4_get_port_stats - collect port statistics 6852 * @adap: the adapter 6853 * @idx: the port index 6854 * @p: the stats structure to fill 6855 * 6856 * Collect statistics related to the given port from HW. 6857 */ 6858 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 6859 { 6860 u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map; 6861 u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL); 6862 6863 #define GET_STAT(name) \ 6864 t4_read_reg64(adap, \ 6865 (is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \ 6866 T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L))) 6867 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L) 6868 6869 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 6870 p->tx_octets = GET_STAT(TX_PORT_BYTES); 6871 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 6872 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 6873 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 6874 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 6875 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 6876 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 6877 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 6878 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 6879 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 6880 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 6881 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 6882 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 6883 p->tx_drop = GET_STAT(TX_PORT_DROP); 6884 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 6885 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 6886 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 6887 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 6888 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 6889 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 6890 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 6891 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 6892 6893 if (chip_id(adap) >= CHELSIO_T5) { 6894 if (stat_ctl & F_COUNTPAUSESTATTX) { 6895 p->tx_frames -= p->tx_pause; 6896 p->tx_octets -= p->tx_pause * 64; 6897 } 6898 if (stat_ctl & F_COUNTPAUSEMCTX) 6899 p->tx_mcast_frames -= p->tx_pause; 6900 } 6901 6902 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 6903 p->rx_octets = GET_STAT(RX_PORT_BYTES); 6904 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 6905 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 6906 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 6907 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 6908 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 6909 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 6910 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 6911 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 6912 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 6913 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 6914 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 6915 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 6916 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 6917 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 6918 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 6919 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 6920 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 6921 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 6922 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 6923 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 6924 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 6925 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 6926 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 6927 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 6928 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 6929 6930 if (chip_id(adap) >= CHELSIO_T5) { 6931 if (stat_ctl & F_COUNTPAUSESTATRX) { 6932 p->rx_frames -= p->rx_pause; 6933 p->rx_octets -= p->rx_pause * 64; 6934 } 6935 if (stat_ctl & F_COUNTPAUSEMCRX) 6936 p->rx_mcast_frames -= p->rx_pause; 6937 } 6938 6939 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 6940 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 6941 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 6942 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 6943 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 6944 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 6945 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 6946 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 6947 6948 #undef GET_STAT 6949 #undef GET_STAT_COM 6950 } 6951 6952 /** 6953 * t4_get_lb_stats - collect loopback port statistics 6954 * @adap: the adapter 6955 * @idx: the loopback port index 6956 * @p: the stats structure to fill 6957 * 6958 * Return HW statistics for the given loopback port. 6959 */ 6960 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) 6961 { 6962 u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map; 6963 6964 #define GET_STAT(name) \ 6965 t4_read_reg64(adap, \ 6966 (is_t4(adap) ? \ 6967 PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \ 6968 T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L))) 6969 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L) 6970 6971 p->octets = GET_STAT(BYTES); 6972 p->frames = GET_STAT(FRAMES); 6973 p->bcast_frames = GET_STAT(BCAST); 6974 p->mcast_frames = GET_STAT(MCAST); 6975 p->ucast_frames = GET_STAT(UCAST); 6976 p->error_frames = GET_STAT(ERROR); 6977 6978 p->frames_64 = GET_STAT(64B); 6979 p->frames_65_127 = GET_STAT(65B_127B); 6980 p->frames_128_255 = GET_STAT(128B_255B); 6981 p->frames_256_511 = GET_STAT(256B_511B); 6982 p->frames_512_1023 = GET_STAT(512B_1023B); 6983 p->frames_1024_1518 = GET_STAT(1024B_1518B); 6984 p->frames_1519_max = GET_STAT(1519B_MAX); 6985 p->drop = GET_STAT(DROP_FRAMES); 6986 6987 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; 6988 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; 6989 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; 6990 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; 6991 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; 6992 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; 6993 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; 6994 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; 6995 6996 #undef GET_STAT 6997 #undef GET_STAT_COM 6998 } 6999 7000 /** 7001 * t4_wol_magic_enable - enable/disable magic packet WoL 7002 * @adap: the adapter 7003 * @port: the physical port index 7004 * @addr: MAC address expected in magic packets, %NULL to disable 7005 * 7006 * Enables/disables magic packet wake-on-LAN for the selected port. 7007 */ 7008 void t4_wol_magic_enable(struct adapter *adap, unsigned int port, 7009 const u8 *addr) 7010 { 7011 u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg; 7012 7013 if (is_t4(adap)) { 7014 mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO); 7015 mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI); 7016 port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2); 7017 } else { 7018 mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO); 7019 mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI); 7020 port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2); 7021 } 7022 7023 if (addr) { 7024 t4_write_reg(adap, mag_id_reg_l, 7025 (addr[2] << 24) | (addr[3] << 16) | 7026 (addr[4] << 8) | addr[5]); 7027 t4_write_reg(adap, mag_id_reg_h, 7028 (addr[0] << 8) | addr[1]); 7029 } 7030 t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN, 7031 V_MAGICEN(addr != NULL)); 7032 } 7033 7034 /** 7035 * t4_wol_pat_enable - enable/disable pattern-based WoL 7036 * @adap: the adapter 7037 * @port: the physical port index 7038 * @map: bitmap of which HW pattern filters to set 7039 * @mask0: byte mask for bytes 0-63 of a packet 7040 * @mask1: byte mask for bytes 64-127 of a packet 7041 * @crc: Ethernet CRC for selected bytes 7042 * @enable: enable/disable switch 7043 * 7044 * Sets the pattern filters indicated in @map to mask out the bytes 7045 * specified in @mask0/@mask1 in received packets and compare the CRC of 7046 * the resulting packet against @crc. If @enable is %true pattern-based 7047 * WoL is enabled, otherwise disabled. 7048 */ 7049 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map, 7050 u64 mask0, u64 mask1, unsigned int crc, bool enable) 7051 { 7052 int i; 7053 u32 port_cfg_reg; 7054 7055 if (is_t4(adap)) 7056 port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2); 7057 else 7058 port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2); 7059 7060 if (!enable) { 7061 t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0); 7062 return 0; 7063 } 7064 if (map > 0xff) 7065 return -EINVAL; 7066 7067 #define EPIO_REG(name) \ 7068 (is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \ 7069 T5_PORT_REG(port, A_MAC_PORT_EPIO_##name)) 7070 7071 t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32); 7072 t4_write_reg(adap, EPIO_REG(DATA2), mask1); 7073 t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32); 7074 7075 for (i = 0; i < NWOL_PAT; i++, map >>= 1) { 7076 if (!(map & 1)) 7077 continue; 7078 7079 /* write byte masks */ 7080 t4_write_reg(adap, EPIO_REG(DATA0), mask0); 7081 t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR); 7082 t4_read_reg(adap, EPIO_REG(OP)); /* flush */ 7083 if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY) 7084 return -ETIMEDOUT; 7085 7086 /* write CRC */ 7087 t4_write_reg(adap, EPIO_REG(DATA0), crc); 7088 t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR); 7089 t4_read_reg(adap, EPIO_REG(OP)); /* flush */ 7090 if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY) 7091 return -ETIMEDOUT; 7092 } 7093 #undef EPIO_REG 7094 7095 t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN); 7096 return 0; 7097 } 7098 7099 /* t4_mk_filtdelwr - create a delete filter WR 7100 * @ftid: the filter ID 7101 * @wr: the filter work request to populate 7102 * @qid: ingress queue to receive the delete notification 7103 * 7104 * Creates a filter work request to delete the supplied filter. If @qid is 7105 * negative the delete notification is suppressed. 7106 */ 7107 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 7108 { 7109 memset(wr, 0, sizeof(*wr)); 7110 wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR)); 7111 wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16)); 7112 wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) | 7113 V_FW_FILTER_WR_NOREPLY(qid < 0)); 7114 wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER); 7115 if (qid >= 0) 7116 wr->rx_chan_rx_rpl_iq = 7117 cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid)); 7118 } 7119 7120 #define INIT_CMD(var, cmd, rd_wr) do { \ 7121 (var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \ 7122 F_FW_CMD_REQUEST | \ 7123 F_FW_CMD_##rd_wr); \ 7124 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ 7125 } while (0) 7126 7127 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 7128 u32 addr, u32 val) 7129 { 7130 u32 ldst_addrspace; 7131 struct fw_ldst_cmd c; 7132 7133 memset(&c, 0, sizeof(c)); 7134 ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE); 7135 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 7136 F_FW_CMD_REQUEST | 7137 F_FW_CMD_WRITE | 7138 ldst_addrspace); 7139 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 7140 c.u.addrval.addr = cpu_to_be32(addr); 7141 c.u.addrval.val = cpu_to_be32(val); 7142 7143 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7144 } 7145 7146 /** 7147 * t4_mdio_rd - read a PHY register through MDIO 7148 * @adap: the adapter 7149 * @mbox: mailbox to use for the FW command 7150 * @phy_addr: the PHY address 7151 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 7152 * @reg: the register to read 7153 * @valp: where to store the value 7154 * 7155 * Issues a FW command through the given mailbox to read a PHY register. 7156 */ 7157 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 7158 unsigned int mmd, unsigned int reg, unsigned int *valp) 7159 { 7160 int ret; 7161 u32 ldst_addrspace; 7162 struct fw_ldst_cmd c; 7163 7164 memset(&c, 0, sizeof(c)); 7165 ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO); 7166 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 7167 F_FW_CMD_REQUEST | F_FW_CMD_READ | 7168 ldst_addrspace); 7169 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 7170 c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) | 7171 V_FW_LDST_CMD_MMD(mmd)); 7172 c.u.mdio.raddr = cpu_to_be16(reg); 7173 7174 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7175 if (ret == 0) 7176 *valp = be16_to_cpu(c.u.mdio.rval); 7177 return ret; 7178 } 7179 7180 /** 7181 * t4_mdio_wr - write a PHY register through MDIO 7182 * @adap: the adapter 7183 * @mbox: mailbox to use for the FW command 7184 * @phy_addr: the PHY address 7185 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 7186 * @reg: the register to write 7187 * @valp: value to write 7188 * 7189 * Issues a FW command through the given mailbox to write a PHY register. 7190 */ 7191 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 7192 unsigned int mmd, unsigned int reg, unsigned int val) 7193 { 7194 u32 ldst_addrspace; 7195 struct fw_ldst_cmd c; 7196 7197 memset(&c, 0, sizeof(c)); 7198 ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO); 7199 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 7200 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 7201 ldst_addrspace); 7202 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 7203 c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) | 7204 V_FW_LDST_CMD_MMD(mmd)); 7205 c.u.mdio.raddr = cpu_to_be16(reg); 7206 c.u.mdio.rval = cpu_to_be16(val); 7207 7208 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7209 } 7210 7211 /** 7212 * 7213 * t4_sge_decode_idma_state - decode the idma state 7214 * @adap: the adapter 7215 * @state: the state idma is stuck in 7216 */ 7217 void t4_sge_decode_idma_state(struct adapter *adapter, int state) 7218 { 7219 static const char * const t4_decode[] = { 7220 "IDMA_IDLE", 7221 "IDMA_PUSH_MORE_CPL_FIFO", 7222 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 7223 "Not used", 7224 "IDMA_PHYSADDR_SEND_PCIEHDR", 7225 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 7226 "IDMA_PHYSADDR_SEND_PAYLOAD", 7227 "IDMA_SEND_FIFO_TO_IMSG", 7228 "IDMA_FL_REQ_DATA_FL_PREP", 7229 "IDMA_FL_REQ_DATA_FL", 7230 "IDMA_FL_DROP", 7231 "IDMA_FL_H_REQ_HEADER_FL", 7232 "IDMA_FL_H_SEND_PCIEHDR", 7233 "IDMA_FL_H_PUSH_CPL_FIFO", 7234 "IDMA_FL_H_SEND_CPL", 7235 "IDMA_FL_H_SEND_IP_HDR_FIRST", 7236 "IDMA_FL_H_SEND_IP_HDR", 7237 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 7238 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 7239 "IDMA_FL_H_SEND_IP_HDR_PADDING", 7240 "IDMA_FL_D_SEND_PCIEHDR", 7241 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 7242 "IDMA_FL_D_REQ_NEXT_DATA_FL", 7243 "IDMA_FL_SEND_PCIEHDR", 7244 "IDMA_FL_PUSH_CPL_FIFO", 7245 "IDMA_FL_SEND_CPL", 7246 "IDMA_FL_SEND_PAYLOAD_FIRST", 7247 "IDMA_FL_SEND_PAYLOAD", 7248 "IDMA_FL_REQ_NEXT_DATA_FL", 7249 "IDMA_FL_SEND_NEXT_PCIEHDR", 7250 "IDMA_FL_SEND_PADDING", 7251 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 7252 "IDMA_FL_SEND_FIFO_TO_IMSG", 7253 "IDMA_FL_REQ_DATAFL_DONE", 7254 "IDMA_FL_REQ_HEADERFL_DONE", 7255 }; 7256 static const char * const t5_decode[] = { 7257 "IDMA_IDLE", 7258 "IDMA_ALMOST_IDLE", 7259 "IDMA_PUSH_MORE_CPL_FIFO", 7260 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 7261 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 7262 "IDMA_PHYSADDR_SEND_PCIEHDR", 7263 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 7264 "IDMA_PHYSADDR_SEND_PAYLOAD", 7265 "IDMA_SEND_FIFO_TO_IMSG", 7266 "IDMA_FL_REQ_DATA_FL", 7267 "IDMA_FL_DROP", 7268 "IDMA_FL_DROP_SEND_INC", 7269 "IDMA_FL_H_REQ_HEADER_FL", 7270 "IDMA_FL_H_SEND_PCIEHDR", 7271 "IDMA_FL_H_PUSH_CPL_FIFO", 7272 "IDMA_FL_H_SEND_CPL", 7273 "IDMA_FL_H_SEND_IP_HDR_FIRST", 7274 "IDMA_FL_H_SEND_IP_HDR", 7275 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 7276 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 7277 "IDMA_FL_H_SEND_IP_HDR_PADDING", 7278 "IDMA_FL_D_SEND_PCIEHDR", 7279 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 7280 "IDMA_FL_D_REQ_NEXT_DATA_FL", 7281 "IDMA_FL_SEND_PCIEHDR", 7282 "IDMA_FL_PUSH_CPL_FIFO", 7283 "IDMA_FL_SEND_CPL", 7284 "IDMA_FL_SEND_PAYLOAD_FIRST", 7285 "IDMA_FL_SEND_PAYLOAD", 7286 "IDMA_FL_REQ_NEXT_DATA_FL", 7287 "IDMA_FL_SEND_NEXT_PCIEHDR", 7288 "IDMA_FL_SEND_PADDING", 7289 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 7290 }; 7291 static const char * const t6_decode[] = { 7292 "IDMA_IDLE", 7293 "IDMA_PUSH_MORE_CPL_FIFO", 7294 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 7295 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 7296 "IDMA_PHYSADDR_SEND_PCIEHDR", 7297 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 7298 "IDMA_PHYSADDR_SEND_PAYLOAD", 7299 "IDMA_FL_REQ_DATA_FL", 7300 "IDMA_FL_DROP", 7301 "IDMA_FL_DROP_SEND_INC", 7302 "IDMA_FL_H_REQ_HEADER_FL", 7303 "IDMA_FL_H_SEND_PCIEHDR", 7304 "IDMA_FL_H_PUSH_CPL_FIFO", 7305 "IDMA_FL_H_SEND_CPL", 7306 "IDMA_FL_H_SEND_IP_HDR_FIRST", 7307 "IDMA_FL_H_SEND_IP_HDR", 7308 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 7309 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 7310 "IDMA_FL_H_SEND_IP_HDR_PADDING", 7311 "IDMA_FL_D_SEND_PCIEHDR", 7312 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 7313 "IDMA_FL_D_REQ_NEXT_DATA_FL", 7314 "IDMA_FL_SEND_PCIEHDR", 7315 "IDMA_FL_PUSH_CPL_FIFO", 7316 "IDMA_FL_SEND_CPL", 7317 "IDMA_FL_SEND_PAYLOAD_FIRST", 7318 "IDMA_FL_SEND_PAYLOAD", 7319 "IDMA_FL_REQ_NEXT_DATA_FL", 7320 "IDMA_FL_SEND_NEXT_PCIEHDR", 7321 "IDMA_FL_SEND_PADDING", 7322 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 7323 }; 7324 static const u32 sge_regs[] = { 7325 A_SGE_DEBUG_DATA_LOW_INDEX_2, 7326 A_SGE_DEBUG_DATA_LOW_INDEX_3, 7327 A_SGE_DEBUG_DATA_HIGH_INDEX_10, 7328 }; 7329 const char * const *sge_idma_decode; 7330 int sge_idma_decode_nstates; 7331 int i; 7332 unsigned int chip_version = chip_id(adapter); 7333 7334 /* Select the right set of decode strings to dump depending on the 7335 * adapter chip type. 7336 */ 7337 switch (chip_version) { 7338 case CHELSIO_T4: 7339 sge_idma_decode = (const char * const *)t4_decode; 7340 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 7341 break; 7342 7343 case CHELSIO_T5: 7344 sge_idma_decode = (const char * const *)t5_decode; 7345 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 7346 break; 7347 7348 case CHELSIO_T6: 7349 sge_idma_decode = (const char * const *)t6_decode; 7350 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); 7351 break; 7352 7353 default: 7354 CH_ERR(adapter, "Unsupported chip version %d\n", chip_version); 7355 return; 7356 } 7357 7358 if (state < sge_idma_decode_nstates) 7359 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 7360 else 7361 CH_WARN(adapter, "idma state %d unknown\n", state); 7362 7363 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 7364 CH_WARN(adapter, "SGE register %#x value %#x\n", 7365 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 7366 } 7367 7368 /** 7369 * t4_sge_ctxt_flush - flush the SGE context cache 7370 * @adap: the adapter 7371 * @mbox: mailbox to use for the FW command 7372 * 7373 * Issues a FW command through the given mailbox to flush the 7374 * SGE context cache. 7375 */ 7376 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox) 7377 { 7378 int ret; 7379 u32 ldst_addrspace; 7380 struct fw_ldst_cmd c; 7381 7382 memset(&c, 0, sizeof(c)); 7383 ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC); 7384 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 7385 F_FW_CMD_REQUEST | F_FW_CMD_READ | 7386 ldst_addrspace); 7387 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 7388 c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH); 7389 7390 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7391 return ret; 7392 } 7393 7394 /** 7395 * t4_fw_hello - establish communication with FW 7396 * @adap: the adapter 7397 * @mbox: mailbox to use for the FW command 7398 * @evt_mbox: mailbox to receive async FW events 7399 * @master: specifies the caller's willingness to be the device master 7400 * @state: returns the current device state (if non-NULL) 7401 * 7402 * Issues a command to establish communication with FW. Returns either 7403 * an error (negative integer) or the mailbox of the Master PF. 7404 */ 7405 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 7406 enum dev_master master, enum dev_state *state) 7407 { 7408 int ret; 7409 struct fw_hello_cmd c; 7410 u32 v; 7411 unsigned int master_mbox; 7412 int retries = FW_CMD_HELLO_RETRIES; 7413 7414 retry: 7415 memset(&c, 0, sizeof(c)); 7416 INIT_CMD(c, HELLO, WRITE); 7417 c.err_to_clearinit = cpu_to_be32( 7418 V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) | 7419 V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) | 7420 V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? 7421 mbox : M_FW_HELLO_CMD_MBMASTER) | 7422 V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) | 7423 V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) | 7424 F_FW_HELLO_CMD_CLEARINIT); 7425 7426 /* 7427 * Issue the HELLO command to the firmware. If it's not successful 7428 * but indicates that we got a "busy" or "timeout" condition, retry 7429 * the HELLO until we exhaust our retry limit. If we do exceed our 7430 * retry limit, check to see if the firmware left us any error 7431 * information and report that if so ... 7432 */ 7433 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7434 if (ret != FW_SUCCESS) { 7435 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 7436 goto retry; 7437 if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR) 7438 t4_report_fw_error(adap); 7439 return ret; 7440 } 7441 7442 v = be32_to_cpu(c.err_to_clearinit); 7443 master_mbox = G_FW_HELLO_CMD_MBMASTER(v); 7444 if (state) { 7445 if (v & F_FW_HELLO_CMD_ERR) 7446 *state = DEV_STATE_ERR; 7447 else if (v & F_FW_HELLO_CMD_INIT) 7448 *state = DEV_STATE_INIT; 7449 else 7450 *state = DEV_STATE_UNINIT; 7451 } 7452 7453 /* 7454 * If we're not the Master PF then we need to wait around for the 7455 * Master PF Driver to finish setting up the adapter. 7456 * 7457 * Note that we also do this wait if we're a non-Master-capable PF and 7458 * there is no current Master PF; a Master PF may show up momentarily 7459 * and we wouldn't want to fail pointlessly. (This can happen when an 7460 * OS loads lots of different drivers rapidly at the same time). In 7461 * this case, the Master PF returned by the firmware will be 7462 * M_PCIE_FW_MASTER so the test below will work ... 7463 */ 7464 if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 && 7465 master_mbox != mbox) { 7466 int waiting = FW_CMD_HELLO_TIMEOUT; 7467 7468 /* 7469 * Wait for the firmware to either indicate an error or 7470 * initialized state. If we see either of these we bail out 7471 * and report the issue to the caller. If we exhaust the 7472 * "hello timeout" and we haven't exhausted our retries, try 7473 * again. Otherwise bail with a timeout error. 7474 */ 7475 for (;;) { 7476 u32 pcie_fw; 7477 7478 msleep(50); 7479 waiting -= 50; 7480 7481 /* 7482 * If neither Error nor Initialialized are indicated 7483 * by the firmware keep waiting till we exhaust our 7484 * timeout ... and then retry if we haven't exhausted 7485 * our retries ... 7486 */ 7487 pcie_fw = t4_read_reg(adap, A_PCIE_FW); 7488 if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) { 7489 if (waiting <= 0) { 7490 if (retries-- > 0) 7491 goto retry; 7492 7493 return -ETIMEDOUT; 7494 } 7495 continue; 7496 } 7497 7498 /* 7499 * We either have an Error or Initialized condition 7500 * report errors preferentially. 7501 */ 7502 if (state) { 7503 if (pcie_fw & F_PCIE_FW_ERR) 7504 *state = DEV_STATE_ERR; 7505 else if (pcie_fw & F_PCIE_FW_INIT) 7506 *state = DEV_STATE_INIT; 7507 } 7508 7509 /* 7510 * If we arrived before a Master PF was selected and 7511 * there's not a valid Master PF, grab its identity 7512 * for our caller. 7513 */ 7514 if (master_mbox == M_PCIE_FW_MASTER && 7515 (pcie_fw & F_PCIE_FW_MASTER_VLD)) 7516 master_mbox = G_PCIE_FW_MASTER(pcie_fw); 7517 break; 7518 } 7519 } 7520 7521 return master_mbox; 7522 } 7523 7524 /** 7525 * t4_fw_bye - end communication with FW 7526 * @adap: the adapter 7527 * @mbox: mailbox to use for the FW command 7528 * 7529 * Issues a command to terminate communication with FW. 7530 */ 7531 int t4_fw_bye(struct adapter *adap, unsigned int mbox) 7532 { 7533 struct fw_bye_cmd c; 7534 7535 memset(&c, 0, sizeof(c)); 7536 INIT_CMD(c, BYE, WRITE); 7537 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7538 } 7539 7540 /** 7541 * t4_fw_reset - issue a reset to FW 7542 * @adap: the adapter 7543 * @mbox: mailbox to use for the FW command 7544 * @reset: specifies the type of reset to perform 7545 * 7546 * Issues a reset command of the specified type to FW. 7547 */ 7548 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 7549 { 7550 struct fw_reset_cmd c; 7551 7552 memset(&c, 0, sizeof(c)); 7553 INIT_CMD(c, RESET, WRITE); 7554 c.val = cpu_to_be32(reset); 7555 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7556 } 7557 7558 /** 7559 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 7560 * @adap: the adapter 7561 * @mbox: mailbox to use for the FW RESET command (if desired) 7562 * @force: force uP into RESET even if FW RESET command fails 7563 * 7564 * Issues a RESET command to firmware (if desired) with a HALT indication 7565 * and then puts the microprocessor into RESET state. The RESET command 7566 * will only be issued if a legitimate mailbox is provided (mbox <= 7567 * M_PCIE_FW_MASTER). 7568 * 7569 * This is generally used in order for the host to safely manipulate the 7570 * adapter without fear of conflicting with whatever the firmware might 7571 * be doing. The only way out of this state is to RESTART the firmware 7572 * ... 7573 */ 7574 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 7575 { 7576 int ret = 0; 7577 7578 /* 7579 * If a legitimate mailbox is provided, issue a RESET command 7580 * with a HALT indication. 7581 */ 7582 if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) { 7583 struct fw_reset_cmd c; 7584 7585 memset(&c, 0, sizeof(c)); 7586 INIT_CMD(c, RESET, WRITE); 7587 c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE); 7588 c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT); 7589 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7590 } 7591 7592 /* 7593 * Normally we won't complete the operation if the firmware RESET 7594 * command fails but if our caller insists we'll go ahead and put the 7595 * uP into RESET. This can be useful if the firmware is hung or even 7596 * missing ... We'll have to take the risk of putting the uP into 7597 * RESET without the cooperation of firmware in that case. 7598 * 7599 * We also force the firmware's HALT flag to be on in case we bypassed 7600 * the firmware RESET command above or we're dealing with old firmware 7601 * which doesn't have the HALT capability. This will serve as a flag 7602 * for the incoming firmware to know that it's coming out of a HALT 7603 * rather than a RESET ... if it's new enough to understand that ... 7604 */ 7605 if (ret == 0 || force) { 7606 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST); 7607 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 7608 F_PCIE_FW_HALT); 7609 } 7610 7611 /* 7612 * And we always return the result of the firmware RESET command 7613 * even when we force the uP into RESET ... 7614 */ 7615 return ret; 7616 } 7617 7618 /** 7619 * t4_fw_restart - restart the firmware by taking the uP out of RESET 7620 * @adap: the adapter 7621 * 7622 * Restart firmware previously halted by t4_fw_halt(). On successful 7623 * return the previous PF Master remains as the new PF Master and there 7624 * is no need to issue a new HELLO command, etc. 7625 */ 7626 int t4_fw_restart(struct adapter *adap, unsigned int mbox) 7627 { 7628 int ms; 7629 7630 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0); 7631 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 7632 if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT)) 7633 return FW_SUCCESS; 7634 msleep(100); 7635 ms += 100; 7636 } 7637 7638 return -ETIMEDOUT; 7639 } 7640 7641 /** 7642 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 7643 * @adap: the adapter 7644 * @mbox: mailbox to use for the FW RESET command (if desired) 7645 * @fw_data: the firmware image to write 7646 * @size: image size 7647 * @force: force upgrade even if firmware doesn't cooperate 7648 * 7649 * Perform all of the steps necessary for upgrading an adapter's 7650 * firmware image. Normally this requires the cooperation of the 7651 * existing firmware in order to halt all existing activities 7652 * but if an invalid mailbox token is passed in we skip that step 7653 * (though we'll still put the adapter microprocessor into RESET in 7654 * that case). 7655 * 7656 * On successful return the new firmware will have been loaded and 7657 * the adapter will have been fully RESET losing all previous setup 7658 * state. On unsuccessful return the adapter may be completely hosed ... 7659 * positive errno indicates that the adapter is ~probably~ intact, a 7660 * negative errno indicates that things are looking bad ... 7661 */ 7662 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 7663 const u8 *fw_data, unsigned int size, int force) 7664 { 7665 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 7666 unsigned int bootstrap = 7667 be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP; 7668 int ret; 7669 7670 if (!t4_fw_matches_chip(adap, fw_hdr)) 7671 return -EINVAL; 7672 7673 if (!bootstrap) { 7674 ret = t4_fw_halt(adap, mbox, force); 7675 if (ret < 0 && !force) 7676 return ret; 7677 } 7678 7679 ret = t4_load_fw(adap, fw_data, size); 7680 if (ret < 0 || bootstrap) 7681 return ret; 7682 7683 return t4_fw_restart(adap, mbox); 7684 } 7685 7686 /** 7687 * t4_fw_initialize - ask FW to initialize the device 7688 * @adap: the adapter 7689 * @mbox: mailbox to use for the FW command 7690 * 7691 * Issues a command to FW to partially initialize the device. This 7692 * performs initialization that generally doesn't depend on user input. 7693 */ 7694 int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 7695 { 7696 struct fw_initialize_cmd c; 7697 7698 memset(&c, 0, sizeof(c)); 7699 INIT_CMD(c, INITIALIZE, WRITE); 7700 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7701 } 7702 7703 /** 7704 * t4_query_params_rw - query FW or device parameters 7705 * @adap: the adapter 7706 * @mbox: mailbox to use for the FW command 7707 * @pf: the PF 7708 * @vf: the VF 7709 * @nparams: the number of parameters 7710 * @params: the parameter names 7711 * @val: the parameter values 7712 * @rw: Write and read flag 7713 * 7714 * Reads the value of FW or device parameters. Up to 7 parameters can be 7715 * queried at once. 7716 */ 7717 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, 7718 unsigned int vf, unsigned int nparams, const u32 *params, 7719 u32 *val, int rw) 7720 { 7721 int i, ret; 7722 struct fw_params_cmd c; 7723 __be32 *p = &c.param[0].mnem; 7724 7725 if (nparams > 7) 7726 return -EINVAL; 7727 7728 memset(&c, 0, sizeof(c)); 7729 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) | 7730 F_FW_CMD_REQUEST | F_FW_CMD_READ | 7731 V_FW_PARAMS_CMD_PFN(pf) | 7732 V_FW_PARAMS_CMD_VFN(vf)); 7733 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7734 7735 for (i = 0; i < nparams; i++) { 7736 *p++ = cpu_to_be32(*params++); 7737 if (rw) 7738 *p = cpu_to_be32(*(val + i)); 7739 p++; 7740 } 7741 7742 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7743 if (ret == 0) 7744 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 7745 *val++ = be32_to_cpu(*p); 7746 return ret; 7747 } 7748 7749 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7750 unsigned int vf, unsigned int nparams, const u32 *params, 7751 u32 *val) 7752 { 7753 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0); 7754 } 7755 7756 /** 7757 * t4_set_params_timeout - sets FW or device parameters 7758 * @adap: the adapter 7759 * @mbox: mailbox to use for the FW command 7760 * @pf: the PF 7761 * @vf: the VF 7762 * @nparams: the number of parameters 7763 * @params: the parameter names 7764 * @val: the parameter values 7765 * @timeout: the timeout time 7766 * 7767 * Sets the value of FW or device parameters. Up to 7 parameters can be 7768 * specified at once. 7769 */ 7770 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, 7771 unsigned int pf, unsigned int vf, 7772 unsigned int nparams, const u32 *params, 7773 const u32 *val, int timeout) 7774 { 7775 struct fw_params_cmd c; 7776 __be32 *p = &c.param[0].mnem; 7777 7778 if (nparams > 7) 7779 return -EINVAL; 7780 7781 memset(&c, 0, sizeof(c)); 7782 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) | 7783 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 7784 V_FW_PARAMS_CMD_PFN(pf) | 7785 V_FW_PARAMS_CMD_VFN(vf)); 7786 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7787 7788 while (nparams--) { 7789 *p++ = cpu_to_be32(*params++); 7790 *p++ = cpu_to_be32(*val++); 7791 } 7792 7793 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); 7794 } 7795 7796 /** 7797 * t4_set_params - sets FW or device parameters 7798 * @adap: the adapter 7799 * @mbox: mailbox to use for the FW command 7800 * @pf: the PF 7801 * @vf: the VF 7802 * @nparams: the number of parameters 7803 * @params: the parameter names 7804 * @val: the parameter values 7805 * 7806 * Sets the value of FW or device parameters. Up to 7 parameters can be 7807 * specified at once. 7808 */ 7809 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7810 unsigned int vf, unsigned int nparams, const u32 *params, 7811 const u32 *val) 7812 { 7813 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, 7814 FW_CMD_MAX_TIMEOUT); 7815 } 7816 7817 /** 7818 * t4_cfg_pfvf - configure PF/VF resource limits 7819 * @adap: the adapter 7820 * @mbox: mailbox to use for the FW command 7821 * @pf: the PF being configured 7822 * @vf: the VF being configured 7823 * @txq: the max number of egress queues 7824 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 7825 * @rxqi: the max number of interrupt-capable ingress queues 7826 * @rxq: the max number of interruptless ingress queues 7827 * @tc: the PCI traffic class 7828 * @vi: the max number of virtual interfaces 7829 * @cmask: the channel access rights mask for the PF/VF 7830 * @pmask: the port access rights mask for the PF/VF 7831 * @nexact: the maximum number of exact MPS filters 7832 * @rcaps: read capabilities 7833 * @wxcaps: write/execute capabilities 7834 * 7835 * Configures resource limits and capabilities for a physical or virtual 7836 * function. 7837 */ 7838 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 7839 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 7840 unsigned int rxqi, unsigned int rxq, unsigned int tc, 7841 unsigned int vi, unsigned int cmask, unsigned int pmask, 7842 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 7843 { 7844 struct fw_pfvf_cmd c; 7845 7846 memset(&c, 0, sizeof(c)); 7847 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST | 7848 F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) | 7849 V_FW_PFVF_CMD_VFN(vf)); 7850 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7851 c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) | 7852 V_FW_PFVF_CMD_NIQ(rxq)); 7853 c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) | 7854 V_FW_PFVF_CMD_PMASK(pmask) | 7855 V_FW_PFVF_CMD_NEQ(txq)); 7856 c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) | 7857 V_FW_PFVF_CMD_NVI(vi) | 7858 V_FW_PFVF_CMD_NEXACTF(nexact)); 7859 c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) | 7860 V_FW_PFVF_CMD_WX_CAPS(wxcaps) | 7861 V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl)); 7862 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7863 } 7864 7865 /** 7866 * t4_alloc_vi_func - allocate a virtual interface 7867 * @adap: the adapter 7868 * @mbox: mailbox to use for the FW command 7869 * @port: physical port associated with the VI 7870 * @pf: the PF owning the VI 7871 * @vf: the VF owning the VI 7872 * @nmac: number of MAC addresses needed (1 to 5) 7873 * @mac: the MAC addresses of the VI 7874 * @rss_size: size of RSS table slice associated with this VI 7875 * @portfunc: which Port Application Function MAC Address is desired 7876 * @idstype: Intrusion Detection Type 7877 * 7878 * Allocates a virtual interface for the given physical port. If @mac is 7879 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 7880 * If @rss_size is %NULL the VI is not assigned any RSS slice by FW. 7881 * @mac should be large enough to hold @nmac Ethernet addresses, they are 7882 * stored consecutively so the space needed is @nmac * 6 bytes. 7883 * Returns a negative error number or the non-negative VI id. 7884 */ 7885 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox, 7886 unsigned int port, unsigned int pf, unsigned int vf, 7887 unsigned int nmac, u8 *mac, u16 *rss_size, 7888 uint8_t *vfvld, uint16_t *vin, 7889 unsigned int portfunc, unsigned int idstype) 7890 { 7891 int ret; 7892 struct fw_vi_cmd c; 7893 7894 memset(&c, 0, sizeof(c)); 7895 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST | 7896 F_FW_CMD_WRITE | F_FW_CMD_EXEC | 7897 V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf)); 7898 c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c)); 7899 c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) | 7900 V_FW_VI_CMD_FUNC(portfunc)); 7901 c.portid_pkd = V_FW_VI_CMD_PORTID(port); 7902 c.nmac = nmac - 1; 7903 if(!rss_size) 7904 c.norss_rsssize = F_FW_VI_CMD_NORSS; 7905 7906 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7907 if (ret) 7908 return ret; 7909 ret = G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid)); 7910 7911 if (mac) { 7912 memcpy(mac, c.mac, sizeof(c.mac)); 7913 switch (nmac) { 7914 case 5: 7915 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 7916 case 4: 7917 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 7918 case 3: 7919 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 7920 case 2: 7921 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 7922 } 7923 } 7924 if (rss_size) 7925 *rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize)); 7926 if (vfvld) { 7927 *vfvld = adap->params.viid_smt_extn_support ? 7928 G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16)) : 7929 G_FW_VIID_VIVLD(ret); 7930 } 7931 if (vin) { 7932 *vin = adap->params.viid_smt_extn_support ? 7933 G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16)) : 7934 G_FW_VIID_VIN(ret); 7935 } 7936 7937 return ret; 7938 } 7939 7940 /** 7941 * t4_alloc_vi - allocate an [Ethernet Function] virtual interface 7942 * @adap: the adapter 7943 * @mbox: mailbox to use for the FW command 7944 * @port: physical port associated with the VI 7945 * @pf: the PF owning the VI 7946 * @vf: the VF owning the VI 7947 * @nmac: number of MAC addresses needed (1 to 5) 7948 * @mac: the MAC addresses of the VI 7949 * @rss_size: size of RSS table slice associated with this VI 7950 * 7951 * backwards compatible and convieniance routine to allocate a Virtual 7952 * Interface with a Ethernet Port Application Function and Intrustion 7953 * Detection System disabled. 7954 */ 7955 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 7956 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 7957 u16 *rss_size, uint8_t *vfvld, uint16_t *vin) 7958 { 7959 return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size, 7960 vfvld, vin, FW_VI_FUNC_ETH, 0); 7961 } 7962 7963 /** 7964 * t4_free_vi - free a virtual interface 7965 * @adap: the adapter 7966 * @mbox: mailbox to use for the FW command 7967 * @pf: the PF owning the VI 7968 * @vf: the VF owning the VI 7969 * @viid: virtual interface identifiler 7970 * 7971 * Free a previously allocated virtual interface. 7972 */ 7973 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, 7974 unsigned int vf, unsigned int viid) 7975 { 7976 struct fw_vi_cmd c; 7977 7978 memset(&c, 0, sizeof(c)); 7979 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | 7980 F_FW_CMD_REQUEST | 7981 F_FW_CMD_EXEC | 7982 V_FW_VI_CMD_PFN(pf) | 7983 V_FW_VI_CMD_VFN(vf)); 7984 c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c)); 7985 c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid)); 7986 7987 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7988 } 7989 7990 /** 7991 * t4_set_rxmode - set Rx properties of a virtual interface 7992 * @adap: the adapter 7993 * @mbox: mailbox to use for the FW command 7994 * @viid: the VI id 7995 * @mtu: the new MTU or -1 7996 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 7997 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 7998 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 7999 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 8000 * @sleep_ok: if true we may sleep while awaiting command completion 8001 * 8002 * Sets Rx properties of a virtual interface. 8003 */ 8004 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 8005 int mtu, int promisc, int all_multi, int bcast, int vlanex, 8006 bool sleep_ok) 8007 { 8008 struct fw_vi_rxmode_cmd c; 8009 8010 /* convert to FW values */ 8011 if (mtu < 0) 8012 mtu = M_FW_VI_RXMODE_CMD_MTU; 8013 if (promisc < 0) 8014 promisc = M_FW_VI_RXMODE_CMD_PROMISCEN; 8015 if (all_multi < 0) 8016 all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN; 8017 if (bcast < 0) 8018 bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN; 8019 if (vlanex < 0) 8020 vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN; 8021 8022 memset(&c, 0, sizeof(c)); 8023 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) | 8024 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 8025 V_FW_VI_RXMODE_CMD_VIID(viid)); 8026 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 8027 c.mtu_to_vlanexen = 8028 cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) | 8029 V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) | 8030 V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) | 8031 V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) | 8032 V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex)); 8033 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 8034 } 8035 8036 /** 8037 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 8038 * @adap: the adapter 8039 * @mbox: mailbox to use for the FW command 8040 * @viid: the VI id 8041 * @free: if true any existing filters for this VI id are first removed 8042 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 8043 * @addr: the MAC address(es) 8044 * @idx: where to store the index of each allocated filter 8045 * @hash: pointer to hash address filter bitmap 8046 * @sleep_ok: call is allowed to sleep 8047 * 8048 * Allocates an exact-match filter for each of the supplied addresses and 8049 * sets it to the corresponding address. If @idx is not %NULL it should 8050 * have at least @naddr entries, each of which will be set to the index of 8051 * the filter allocated for the corresponding MAC address. If a filter 8052 * could not be allocated for an address its index is set to 0xffff. 8053 * If @hash is not %NULL addresses that fail to allocate an exact filter 8054 * are hashed and update the hash filter bitmap pointed at by @hash. 8055 * 8056 * Returns a negative error number or the number of filters allocated. 8057 */ 8058 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 8059 unsigned int viid, bool free, unsigned int naddr, 8060 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 8061 { 8062 int offset, ret = 0; 8063 struct fw_vi_mac_cmd c; 8064 unsigned int nfilters = 0; 8065 unsigned int max_naddr = adap->chip_params->mps_tcam_size; 8066 unsigned int rem = naddr; 8067 8068 if (naddr > max_naddr) 8069 return -EINVAL; 8070 8071 for (offset = 0; offset < naddr ; /**/) { 8072 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) 8073 ? rem 8074 : ARRAY_SIZE(c.u.exact)); 8075 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 8076 u.exact[fw_naddr]), 16); 8077 struct fw_vi_mac_exact *p; 8078 int i; 8079 8080 memset(&c, 0, sizeof(c)); 8081 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | 8082 F_FW_CMD_REQUEST | 8083 F_FW_CMD_WRITE | 8084 V_FW_CMD_EXEC(free) | 8085 V_FW_VI_MAC_CMD_VIID(viid)); 8086 c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) | 8087 V_FW_CMD_LEN16(len16)); 8088 8089 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8090 p->valid_to_idx = 8091 cpu_to_be16(F_FW_VI_MAC_CMD_VALID | 8092 V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC)); 8093 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 8094 } 8095 8096 /* 8097 * It's okay if we run out of space in our MAC address arena. 8098 * Some of the addresses we submit may get stored so we need 8099 * to run through the reply to see what the results were ... 8100 */ 8101 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 8102 if (ret && ret != -FW_ENOMEM) 8103 break; 8104 8105 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8106 u16 index = G_FW_VI_MAC_CMD_IDX( 8107 be16_to_cpu(p->valid_to_idx)); 8108 8109 if (idx) 8110 idx[offset+i] = (index >= max_naddr 8111 ? 0xffff 8112 : index); 8113 if (index < max_naddr) 8114 nfilters++; 8115 else if (hash) 8116 *hash |= (1ULL << hash_mac_addr(addr[offset+i])); 8117 } 8118 8119 free = false; 8120 offset += fw_naddr; 8121 rem -= fw_naddr; 8122 } 8123 8124 if (ret == 0 || ret == -FW_ENOMEM) 8125 ret = nfilters; 8126 return ret; 8127 } 8128 8129 /** 8130 * t4_change_mac - modifies the exact-match filter for a MAC address 8131 * @adap: the adapter 8132 * @mbox: mailbox to use for the FW command 8133 * @viid: the VI id 8134 * @idx: index of existing filter for old value of MAC address, or -1 8135 * @addr: the new MAC address value 8136 * @persist: whether a new MAC allocation should be persistent 8137 * @smt_idx: add MAC to SMT and return its index, or NULL 8138 * 8139 * Modifies an exact-match filter and sets it to the new MAC address if 8140 * @idx >= 0, or adds the MAC address to a new filter if @idx < 0. In the 8141 * latter case the address is added persistently if @persist is %true. 8142 * 8143 * Note that in general it is not possible to modify the value of a given 8144 * filter so the generic way to modify an address filter is to free the one 8145 * being used by the old address value and allocate a new filter for the 8146 * new address value. 8147 * 8148 * Returns a negative error number or the index of the filter with the new 8149 * MAC value. Note that this index may differ from @idx. 8150 */ 8151 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 8152 int idx, const u8 *addr, bool persist, uint16_t *smt_idx) 8153 { 8154 int ret, mode; 8155 struct fw_vi_mac_cmd c; 8156 struct fw_vi_mac_exact *p = c.u.exact; 8157 unsigned int max_mac_addr = adap->chip_params->mps_tcam_size; 8158 8159 if (idx < 0) /* new allocation */ 8160 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 8161 mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 8162 8163 memset(&c, 0, sizeof(c)); 8164 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | 8165 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 8166 V_FW_VI_MAC_CMD_VIID(viid)); 8167 c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1)); 8168 p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID | 8169 V_FW_VI_MAC_CMD_SMAC_RESULT(mode) | 8170 V_FW_VI_MAC_CMD_IDX(idx)); 8171 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 8172 8173 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 8174 if (ret == 0) { 8175 ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx)); 8176 if (ret >= max_mac_addr) 8177 ret = -ENOMEM; 8178 if (smt_idx) { 8179 if (adap->params.viid_smt_extn_support) 8180 *smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid)); 8181 else { 8182 if (chip_id(adap) <= CHELSIO_T5) 8183 *smt_idx = (viid & M_FW_VIID_VIN) << 1; 8184 else 8185 *smt_idx = viid & M_FW_VIID_VIN; 8186 } 8187 } 8188 } 8189 return ret; 8190 } 8191 8192 /** 8193 * t4_set_addr_hash - program the MAC inexact-match hash filter 8194 * @adap: the adapter 8195 * @mbox: mailbox to use for the FW command 8196 * @viid: the VI id 8197 * @ucast: whether the hash filter should also match unicast addresses 8198 * @vec: the value to be written to the hash filter 8199 * @sleep_ok: call is allowed to sleep 8200 * 8201 * Sets the 64-bit inexact-match hash filter for a virtual interface. 8202 */ 8203 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 8204 bool ucast, u64 vec, bool sleep_ok) 8205 { 8206 struct fw_vi_mac_cmd c; 8207 u32 val; 8208 8209 memset(&c, 0, sizeof(c)); 8210 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | 8211 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 8212 V_FW_VI_ENABLE_CMD_VIID(viid)); 8213 val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) | 8214 V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1); 8215 c.freemacs_to_len16 = cpu_to_be32(val); 8216 c.u.hash.hashvec = cpu_to_be64(vec); 8217 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 8218 } 8219 8220 /** 8221 * t4_enable_vi_params - enable/disable a virtual interface 8222 * @adap: the adapter 8223 * @mbox: mailbox to use for the FW command 8224 * @viid: the VI id 8225 * @rx_en: 1=enable Rx, 0=disable Rx 8226 * @tx_en: 1=enable Tx, 0=disable Tx 8227 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8228 * 8229 * Enables/disables a virtual interface. Note that setting DCB Enable 8230 * only makes sense when enabling a Virtual Interface ... 8231 */ 8232 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 8233 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 8234 { 8235 struct fw_vi_enable_cmd c; 8236 8237 memset(&c, 0, sizeof(c)); 8238 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) | 8239 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 8240 V_FW_VI_ENABLE_CMD_VIID(viid)); 8241 c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) | 8242 V_FW_VI_ENABLE_CMD_EEN(tx_en) | 8243 V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) | 8244 FW_LEN16(c)); 8245 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 8246 } 8247 8248 /** 8249 * t4_enable_vi - enable/disable a virtual interface 8250 * @adap: the adapter 8251 * @mbox: mailbox to use for the FW command 8252 * @viid: the VI id 8253 * @rx_en: 1=enable Rx, 0=disable Rx 8254 * @tx_en: 1=enable Tx, 0=disable Tx 8255 * 8256 * Enables/disables a virtual interface. Note that setting DCB Enable 8257 * only makes sense when enabling a Virtual Interface ... 8258 */ 8259 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 8260 bool rx_en, bool tx_en) 8261 { 8262 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 8263 } 8264 8265 /** 8266 * t4_identify_port - identify a VI's port by blinking its LED 8267 * @adap: the adapter 8268 * @mbox: mailbox to use for the FW command 8269 * @viid: the VI id 8270 * @nblinks: how many times to blink LED at 2.5 Hz 8271 * 8272 * Identifies a VI's port by blinking its LED. 8273 */ 8274 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 8275 unsigned int nblinks) 8276 { 8277 struct fw_vi_enable_cmd c; 8278 8279 memset(&c, 0, sizeof(c)); 8280 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) | 8281 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 8282 V_FW_VI_ENABLE_CMD_VIID(viid)); 8283 c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c)); 8284 c.blinkdur = cpu_to_be16(nblinks); 8285 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8286 } 8287 8288 /** 8289 * t4_iq_stop - stop an ingress queue and its FLs 8290 * @adap: the adapter 8291 * @mbox: mailbox to use for the FW command 8292 * @pf: the PF owning the queues 8293 * @vf: the VF owning the queues 8294 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 8295 * @iqid: ingress queue id 8296 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8297 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8298 * 8299 * Stops an ingress queue and its associated FLs, if any. This causes 8300 * any current or future data/messages destined for these queues to be 8301 * tossed. 8302 */ 8303 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, 8304 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8305 unsigned int fl0id, unsigned int fl1id) 8306 { 8307 struct fw_iq_cmd c; 8308 8309 memset(&c, 0, sizeof(c)); 8310 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | 8311 F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) | 8312 V_FW_IQ_CMD_VFN(vf)); 8313 c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c)); 8314 c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype)); 8315 c.iqid = cpu_to_be16(iqid); 8316 c.fl0id = cpu_to_be16(fl0id); 8317 c.fl1id = cpu_to_be16(fl1id); 8318 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8319 } 8320 8321 /** 8322 * t4_iq_free - free an ingress queue and its FLs 8323 * @adap: the adapter 8324 * @mbox: mailbox to use for the FW command 8325 * @pf: the PF owning the queues 8326 * @vf: the VF owning the queues 8327 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 8328 * @iqid: ingress queue id 8329 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8330 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8331 * 8332 * Frees an ingress queue and its associated FLs, if any. 8333 */ 8334 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8335 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8336 unsigned int fl0id, unsigned int fl1id) 8337 { 8338 struct fw_iq_cmd c; 8339 8340 memset(&c, 0, sizeof(c)); 8341 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | 8342 F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) | 8343 V_FW_IQ_CMD_VFN(vf)); 8344 c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c)); 8345 c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype)); 8346 c.iqid = cpu_to_be16(iqid); 8347 c.fl0id = cpu_to_be16(fl0id); 8348 c.fl1id = cpu_to_be16(fl1id); 8349 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8350 } 8351 8352 /** 8353 * t4_eth_eq_free - free an Ethernet egress queue 8354 * @adap: the adapter 8355 * @mbox: mailbox to use for the FW command 8356 * @pf: the PF owning the queue 8357 * @vf: the VF owning the queue 8358 * @eqid: egress queue id 8359 * 8360 * Frees an Ethernet egress queue. 8361 */ 8362 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8363 unsigned int vf, unsigned int eqid) 8364 { 8365 struct fw_eq_eth_cmd c; 8366 8367 memset(&c, 0, sizeof(c)); 8368 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | 8369 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 8370 V_FW_EQ_ETH_CMD_PFN(pf) | 8371 V_FW_EQ_ETH_CMD_VFN(vf)); 8372 c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c)); 8373 c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid)); 8374 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8375 } 8376 8377 /** 8378 * t4_ctrl_eq_free - free a control egress queue 8379 * @adap: the adapter 8380 * @mbox: mailbox to use for the FW command 8381 * @pf: the PF owning the queue 8382 * @vf: the VF owning the queue 8383 * @eqid: egress queue id 8384 * 8385 * Frees a control egress queue. 8386 */ 8387 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8388 unsigned int vf, unsigned int eqid) 8389 { 8390 struct fw_eq_ctrl_cmd c; 8391 8392 memset(&c, 0, sizeof(c)); 8393 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | 8394 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 8395 V_FW_EQ_CTRL_CMD_PFN(pf) | 8396 V_FW_EQ_CTRL_CMD_VFN(vf)); 8397 c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c)); 8398 c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid)); 8399 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8400 } 8401 8402 /** 8403 * t4_ofld_eq_free - free an offload egress queue 8404 * @adap: the adapter 8405 * @mbox: mailbox to use for the FW command 8406 * @pf: the PF owning the queue 8407 * @vf: the VF owning the queue 8408 * @eqid: egress queue id 8409 * 8410 * Frees a control egress queue. 8411 */ 8412 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8413 unsigned int vf, unsigned int eqid) 8414 { 8415 struct fw_eq_ofld_cmd c; 8416 8417 memset(&c, 0, sizeof(c)); 8418 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | 8419 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 8420 V_FW_EQ_OFLD_CMD_PFN(pf) | 8421 V_FW_EQ_OFLD_CMD_VFN(vf)); 8422 c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c)); 8423 c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid)); 8424 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8425 } 8426 8427 /** 8428 * t4_link_down_rc_str - return a string for a Link Down Reason Code 8429 * @link_down_rc: Link Down Reason Code 8430 * 8431 * Returns a string representation of the Link Down Reason Code. 8432 */ 8433 const char *t4_link_down_rc_str(unsigned char link_down_rc) 8434 { 8435 static const char *reason[] = { 8436 "Link Down", 8437 "Remote Fault", 8438 "Auto-negotiation Failure", 8439 "Reserved3", 8440 "Insufficient Airflow", 8441 "Unable To Determine Reason", 8442 "No RX Signal Detected", 8443 "Reserved7", 8444 }; 8445 8446 if (link_down_rc >= ARRAY_SIZE(reason)) 8447 return "Bad Reason Code"; 8448 8449 return reason[link_down_rc]; 8450 } 8451 8452 /* 8453 * Return the highest speed set in the port capabilities, in Mb/s. 8454 */ 8455 unsigned int fwcap_to_speed(uint32_t caps) 8456 { 8457 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 8458 do { \ 8459 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8460 return __speed; \ 8461 } while (0) 8462 8463 TEST_SPEED_RETURN(400G, 400000); 8464 TEST_SPEED_RETURN(200G, 200000); 8465 TEST_SPEED_RETURN(100G, 100000); 8466 TEST_SPEED_RETURN(50G, 50000); 8467 TEST_SPEED_RETURN(40G, 40000); 8468 TEST_SPEED_RETURN(25G, 25000); 8469 TEST_SPEED_RETURN(10G, 10000); 8470 TEST_SPEED_RETURN(1G, 1000); 8471 TEST_SPEED_RETURN(100M, 100); 8472 8473 #undef TEST_SPEED_RETURN 8474 8475 return 0; 8476 } 8477 8478 /* 8479 * Return the port capabilities bit for the given speed, which is in Mb/s. 8480 */ 8481 uint32_t speed_to_fwcap(unsigned int speed) 8482 { 8483 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 8484 do { \ 8485 if (speed == __speed) \ 8486 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 8487 } while (0) 8488 8489 TEST_SPEED_RETURN(400G, 400000); 8490 TEST_SPEED_RETURN(200G, 200000); 8491 TEST_SPEED_RETURN(100G, 100000); 8492 TEST_SPEED_RETURN(50G, 50000); 8493 TEST_SPEED_RETURN(40G, 40000); 8494 TEST_SPEED_RETURN(25G, 25000); 8495 TEST_SPEED_RETURN(10G, 10000); 8496 TEST_SPEED_RETURN(1G, 1000); 8497 TEST_SPEED_RETURN(100M, 100); 8498 8499 #undef TEST_SPEED_RETURN 8500 8501 return 0; 8502 } 8503 8504 /* 8505 * Return the port capabilities bit for the highest speed in the capabilities. 8506 */ 8507 uint32_t fwcap_top_speed(uint32_t caps) 8508 { 8509 #define TEST_SPEED_RETURN(__caps_speed) \ 8510 do { \ 8511 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8512 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 8513 } while (0) 8514 8515 TEST_SPEED_RETURN(400G); 8516 TEST_SPEED_RETURN(200G); 8517 TEST_SPEED_RETURN(100G); 8518 TEST_SPEED_RETURN(50G); 8519 TEST_SPEED_RETURN(40G); 8520 TEST_SPEED_RETURN(25G); 8521 TEST_SPEED_RETURN(10G); 8522 TEST_SPEED_RETURN(1G); 8523 TEST_SPEED_RETURN(100M); 8524 8525 #undef TEST_SPEED_RETURN 8526 8527 return 0; 8528 } 8529 8530 /** 8531 * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities 8532 * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value 8533 * 8534 * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new 8535 * 32-bit Port Capabilities value. 8536 */ 8537 static uint32_t lstatus_to_fwcap(u32 lstatus) 8538 { 8539 uint32_t linkattr = 0; 8540 8541 /* 8542 * Unfortunately the format of the Link Status in the old 8543 * 16-bit Port Information message isn't the same as the 8544 * 16-bit Port Capabilities bitfield used everywhere else ... 8545 */ 8546 if (lstatus & F_FW_PORT_CMD_RXPAUSE) 8547 linkattr |= FW_PORT_CAP32_FC_RX; 8548 if (lstatus & F_FW_PORT_CMD_TXPAUSE) 8549 linkattr |= FW_PORT_CAP32_FC_TX; 8550 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M)) 8551 linkattr |= FW_PORT_CAP32_SPEED_100M; 8552 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G)) 8553 linkattr |= FW_PORT_CAP32_SPEED_1G; 8554 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G)) 8555 linkattr |= FW_PORT_CAP32_SPEED_10G; 8556 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G)) 8557 linkattr |= FW_PORT_CAP32_SPEED_25G; 8558 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G)) 8559 linkattr |= FW_PORT_CAP32_SPEED_40G; 8560 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G)) 8561 linkattr |= FW_PORT_CAP32_SPEED_100G; 8562 8563 return linkattr; 8564 } 8565 8566 /* 8567 * Updates all fields owned by the common code in port_info and link_config 8568 * based on information provided by the firmware. Does not touch any 8569 * requested_* field. 8570 */ 8571 static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p, 8572 enum fw_port_action action, bool *mod_changed, bool *link_changed) 8573 { 8574 struct link_config old_lc, *lc = &pi->link_cfg; 8575 unsigned char fc; 8576 u32 stat, linkattr; 8577 int old_ptype, old_mtype; 8578 8579 old_ptype = pi->port_type; 8580 old_mtype = pi->mod_type; 8581 old_lc = *lc; 8582 if (action == FW_PORT_ACTION_GET_PORT_INFO) { 8583 stat = be32_to_cpu(p->u.info.lstatus_to_modtype); 8584 8585 pi->port_type = G_FW_PORT_CMD_PTYPE(stat); 8586 pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat); 8587 pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ? 8588 G_FW_PORT_CMD_MDIOADDR(stat) : -1; 8589 8590 lc->pcaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap)); 8591 lc->acaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap)); 8592 lc->lpacaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap)); 8593 lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0; 8594 lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat); 8595 8596 linkattr = lstatus_to_fwcap(stat); 8597 } else if (action == FW_PORT_ACTION_GET_PORT_INFO32) { 8598 stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32); 8599 8600 pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat); 8601 pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat); 8602 pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ? 8603 G_FW_PORT_CMD_MDIOADDR32(stat) : -1; 8604 8605 lc->pcaps = be32_to_cpu(p->u.info32.pcaps32); 8606 lc->acaps = be32_to_cpu(p->u.info32.acaps32); 8607 lc->lpacaps = be32_to_cpu(p->u.info32.lpacaps32); 8608 lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0; 8609 lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat); 8610 8611 linkattr = be32_to_cpu(p->u.info32.linkattr32); 8612 } else { 8613 CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action); 8614 return; 8615 } 8616 8617 lc->speed = fwcap_to_speed(linkattr); 8618 lc->fec = fwcap_to_fec(linkattr, true); 8619 8620 fc = 0; 8621 if (linkattr & FW_PORT_CAP32_FC_RX) 8622 fc |= PAUSE_RX; 8623 if (linkattr & FW_PORT_CAP32_FC_TX) 8624 fc |= PAUSE_TX; 8625 lc->fc = fc; 8626 8627 if (mod_changed != NULL) 8628 *mod_changed = false; 8629 if (link_changed != NULL) 8630 *link_changed = false; 8631 if (old_ptype != pi->port_type || old_mtype != pi->mod_type || 8632 old_lc.pcaps != lc->pcaps) { 8633 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) 8634 lc->fec_hint = fwcap_to_fec(lc->acaps, true); 8635 if (mod_changed != NULL) 8636 *mod_changed = true; 8637 } 8638 if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed || 8639 old_lc.fec != lc->fec || old_lc.fc != lc->fc) { 8640 if (link_changed != NULL) 8641 *link_changed = true; 8642 } 8643 } 8644 8645 /** 8646 * t4_update_port_info - retrieve and update port information if changed 8647 * @pi: the port_info 8648 * 8649 * We issue a Get Port Information Command to the Firmware and, if 8650 * successful, we check to see if anything is different from what we 8651 * last recorded and update things accordingly. 8652 */ 8653 int t4_update_port_info(struct port_info *pi) 8654 { 8655 struct adapter *sc = pi->adapter; 8656 struct fw_port_cmd cmd; 8657 enum fw_port_action action; 8658 int ret; 8659 8660 memset(&cmd, 0, sizeof(cmd)); 8661 cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) | 8662 F_FW_CMD_REQUEST | F_FW_CMD_READ | 8663 V_FW_PORT_CMD_PORTID(pi->tx_chan)); 8664 action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 : 8665 FW_PORT_ACTION_GET_PORT_INFO; 8666 cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) | 8667 FW_LEN16(cmd)); 8668 ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd); 8669 if (ret) 8670 return ret; 8671 8672 handle_port_info(pi, &cmd, action, NULL, NULL); 8673 return 0; 8674 } 8675 8676 /** 8677 * t4_handle_fw_rpl - process a FW reply message 8678 * @adap: the adapter 8679 * @rpl: start of the FW message 8680 * 8681 * Processes a FW message, such as link state change messages. 8682 */ 8683 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 8684 { 8685 u8 opcode = *(const u8 *)rpl; 8686 const struct fw_port_cmd *p = (const void *)rpl; 8687 enum fw_port_action action = 8688 G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16)); 8689 bool mod_changed, link_changed; 8690 8691 if (opcode == FW_PORT_CMD && 8692 (action == FW_PORT_ACTION_GET_PORT_INFO || 8693 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 8694 /* link/module state change message */ 8695 int i; 8696 int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid)); 8697 struct port_info *pi = NULL; 8698 struct link_config *lc; 8699 8700 for_each_port(adap, i) { 8701 pi = adap2pinfo(adap, i); 8702 if (pi->tx_chan == chan) 8703 break; 8704 } 8705 8706 lc = &pi->link_cfg; 8707 PORT_LOCK(pi); 8708 handle_port_info(pi, p, action, &mod_changed, &link_changed); 8709 PORT_UNLOCK(pi); 8710 if (mod_changed) 8711 t4_os_portmod_changed(pi); 8712 if (link_changed) { 8713 PORT_LOCK(pi); 8714 t4_os_link_changed(pi); 8715 PORT_UNLOCK(pi); 8716 } 8717 } else { 8718 CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode); 8719 return -EINVAL; 8720 } 8721 return 0; 8722 } 8723 8724 /** 8725 * get_pci_mode - determine a card's PCI mode 8726 * @adapter: the adapter 8727 * @p: where to store the PCI settings 8728 * 8729 * Determines a card's PCI mode and associated parameters, such as speed 8730 * and width. 8731 */ 8732 static void get_pci_mode(struct adapter *adapter, 8733 struct pci_params *p) 8734 { 8735 u16 val; 8736 u32 pcie_cap; 8737 8738 pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP); 8739 if (pcie_cap) { 8740 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val); 8741 p->speed = val & PCI_EXP_LNKSTA_CLS; 8742 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 8743 } 8744 } 8745 8746 struct flash_desc { 8747 u32 vendor_and_model_id; 8748 u32 size_mb; 8749 }; 8750 8751 int t4_get_flash_params(struct adapter *adapter) 8752 { 8753 /* 8754 * Table for non-standard supported Flash parts. Note, all Flash 8755 * parts must have 64KB sectors. 8756 */ 8757 static struct flash_desc supported_flash[] = { 8758 { 0x00150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 8759 }; 8760 8761 int ret; 8762 u32 flashid = 0; 8763 unsigned int part, manufacturer; 8764 unsigned int density, size = 0; 8765 8766 8767 /* 8768 * Issue a Read ID Command to the Flash part. We decode supported 8769 * Flash parts and their sizes from this. There's a newer Query 8770 * Command which can retrieve detailed geometry information but many 8771 * Flash parts don't support it. 8772 */ 8773 ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID); 8774 if (!ret) 8775 ret = sf1_read(adapter, 3, 0, 1, &flashid); 8776 t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ 8777 if (ret < 0) 8778 return ret; 8779 8780 /* 8781 * Check to see if it's one of our non-standard supported Flash parts. 8782 */ 8783 for (part = 0; part < ARRAY_SIZE(supported_flash); part++) 8784 if (supported_flash[part].vendor_and_model_id == flashid) { 8785 adapter->params.sf_size = 8786 supported_flash[part].size_mb; 8787 adapter->params.sf_nsec = 8788 adapter->params.sf_size / SF_SEC_SIZE; 8789 goto found; 8790 } 8791 8792 /* 8793 * Decode Flash part size. The code below looks repetative with 8794 * common encodings, but that's not guaranteed in the JEDEC 8795 * specification for the Read JADEC ID command. The only thing that 8796 * we're guaranteed by the JADEC specification is where the 8797 * Manufacturer ID is in the returned result. After that each 8798 * Manufacturer ~could~ encode things completely differently. 8799 * Note, all Flash parts must have 64KB sectors. 8800 */ 8801 manufacturer = flashid & 0xff; 8802 switch (manufacturer) { 8803 case 0x20: /* Micron/Numonix */ 8804 /* 8805 * This Density -> Size decoding table is taken from Micron 8806 * Data Sheets. 8807 */ 8808 density = (flashid >> 16) & 0xff; 8809 switch (density) { 8810 case 0x14: size = 1 << 20; break; /* 1MB */ 8811 case 0x15: size = 1 << 21; break; /* 2MB */ 8812 case 0x16: size = 1 << 22; break; /* 4MB */ 8813 case 0x17: size = 1 << 23; break; /* 8MB */ 8814 case 0x18: size = 1 << 24; break; /* 16MB */ 8815 case 0x19: size = 1 << 25; break; /* 32MB */ 8816 case 0x20: size = 1 << 26; break; /* 64MB */ 8817 case 0x21: size = 1 << 27; break; /* 128MB */ 8818 case 0x22: size = 1 << 28; break; /* 256MB */ 8819 } 8820 break; 8821 8822 case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */ 8823 /* 8824 * This Density -> Size decoding table is taken from ISSI 8825 * Data Sheets. 8826 */ 8827 density = (flashid >> 16) & 0xff; 8828 switch (density) { 8829 case 0x16: size = 1 << 25; break; /* 32MB */ 8830 case 0x17: size = 1 << 26; break; /* 64MB */ 8831 } 8832 break; 8833 8834 case 0xc2: /* Macronix */ 8835 /* 8836 * This Density -> Size decoding table is taken from Macronix 8837 * Data Sheets. 8838 */ 8839 density = (flashid >> 16) & 0xff; 8840 switch (density) { 8841 case 0x17: size = 1 << 23; break; /* 8MB */ 8842 case 0x18: size = 1 << 24; break; /* 16MB */ 8843 } 8844 break; 8845 8846 case 0xef: /* Winbond */ 8847 /* 8848 * This Density -> Size decoding table is taken from Winbond 8849 * Data Sheets. 8850 */ 8851 density = (flashid >> 16) & 0xff; 8852 switch (density) { 8853 case 0x17: size = 1 << 23; break; /* 8MB */ 8854 case 0x18: size = 1 << 24; break; /* 16MB */ 8855 } 8856 break; 8857 } 8858 8859 /* If we didn't recognize the FLASH part, that's no real issue: the 8860 * Hardware/Software contract says that Hardware will _*ALWAYS*_ 8861 * use a FLASH part which is at least 4MB in size and has 64KB 8862 * sectors. The unrecognized FLASH part is likely to be much larger 8863 * than 4MB, but that's all we really need. 8864 */ 8865 if (size == 0) { 8866 CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid); 8867 size = 1 << 22; 8868 } 8869 8870 /* 8871 * Store decoded Flash size and fall through into vetting code. 8872 */ 8873 adapter->params.sf_size = size; 8874 adapter->params.sf_nsec = size / SF_SEC_SIZE; 8875 8876 found: 8877 /* 8878 * We should ~probably~ reject adapters with FLASHes which are too 8879 * small but we have some legacy FPGAs with small FLASHes that we'd 8880 * still like to use. So instead we emit a scary message ... 8881 */ 8882 if (adapter->params.sf_size < FLASH_MIN_SIZE) 8883 CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n", 8884 flashid, adapter->params.sf_size, FLASH_MIN_SIZE); 8885 8886 return 0; 8887 } 8888 8889 static void set_pcie_completion_timeout(struct adapter *adapter, 8890 u8 range) 8891 { 8892 u16 val; 8893 u32 pcie_cap; 8894 8895 pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP); 8896 if (pcie_cap) { 8897 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val); 8898 val &= 0xfff0; 8899 val |= range ; 8900 t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val); 8901 } 8902 } 8903 8904 const struct chip_params *t4_get_chip_params(int chipid) 8905 { 8906 static const struct chip_params chip_params[] = { 8907 { 8908 /* T4 */ 8909 .nchan = NCHAN, 8910 .pm_stats_cnt = PM_NSTATS, 8911 .cng_ch_bits_log = 2, 8912 .nsched_cls = 15, 8913 .cim_num_obq = CIM_NUM_OBQ, 8914 .mps_rplc_size = 128, 8915 .vfcount = 128, 8916 .sge_fl_db = F_DBPRIO, 8917 .mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES, 8918 }, 8919 { 8920 /* T5 */ 8921 .nchan = NCHAN, 8922 .pm_stats_cnt = PM_NSTATS, 8923 .cng_ch_bits_log = 2, 8924 .nsched_cls = 16, 8925 .cim_num_obq = CIM_NUM_OBQ_T5, 8926 .mps_rplc_size = 128, 8927 .vfcount = 128, 8928 .sge_fl_db = F_DBPRIO | F_DBTYPE, 8929 .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES, 8930 }, 8931 { 8932 /* T6 */ 8933 .nchan = T6_NCHAN, 8934 .pm_stats_cnt = T6_PM_NSTATS, 8935 .cng_ch_bits_log = 3, 8936 .nsched_cls = 16, 8937 .cim_num_obq = CIM_NUM_OBQ_T5, 8938 .mps_rplc_size = 256, 8939 .vfcount = 256, 8940 .sge_fl_db = 0, 8941 .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES, 8942 }, 8943 }; 8944 8945 chipid -= CHELSIO_T4; 8946 if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params)) 8947 return NULL; 8948 8949 return &chip_params[chipid]; 8950 } 8951 8952 /** 8953 * t4_prep_adapter - prepare SW and HW for operation 8954 * @adapter: the adapter 8955 * @buf: temporary space of at least VPD_LEN size provided by the caller. 8956 * 8957 * Initialize adapter SW state for the various HW modules, set initial 8958 * values for some adapter tunables, take PHYs out of reset, and 8959 * initialize the MDIO interface. 8960 */ 8961 int t4_prep_adapter(struct adapter *adapter, u32 *buf) 8962 { 8963 int ret; 8964 uint16_t device_id; 8965 uint32_t pl_rev; 8966 8967 get_pci_mode(adapter, &adapter->params.pci); 8968 8969 pl_rev = t4_read_reg(adapter, A_PL_REV); 8970 adapter->params.chipid = G_CHIPID(pl_rev); 8971 adapter->params.rev = G_REV(pl_rev); 8972 if (adapter->params.chipid == 0) { 8973 /* T4 did not have chipid in PL_REV (T5 onwards do) */ 8974 adapter->params.chipid = CHELSIO_T4; 8975 8976 /* T4A1 chip is not supported */ 8977 if (adapter->params.rev == 1) { 8978 CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n"); 8979 return -EINVAL; 8980 } 8981 } 8982 8983 adapter->chip_params = t4_get_chip_params(chip_id(adapter)); 8984 if (adapter->chip_params == NULL) 8985 return -EINVAL; 8986 8987 adapter->params.pci.vpd_cap_addr = 8988 t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD); 8989 8990 ret = t4_get_flash_params(adapter); 8991 if (ret < 0) 8992 return ret; 8993 8994 /* Cards with real ASICs have the chipid in the PCIe device id */ 8995 t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id); 8996 if (device_id >> 12 == chip_id(adapter)) 8997 adapter->params.cim_la_size = CIMLA_SIZE; 8998 else { 8999 /* FPGA */ 9000 adapter->params.fpga = 1; 9001 adapter->params.cim_la_size = 2 * CIMLA_SIZE; 9002 } 9003 9004 ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf); 9005 if (ret < 0) 9006 return ret; 9007 9008 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 9009 9010 /* 9011 * Default port and clock for debugging in case we can't reach FW. 9012 */ 9013 adapter->params.nports = 1; 9014 adapter->params.portvec = 1; 9015 adapter->params.vpd.cclk = 50000; 9016 9017 /* Set pci completion timeout value to 4 seconds. */ 9018 set_pcie_completion_timeout(adapter, 0xd); 9019 return 0; 9020 } 9021 9022 /** 9023 * t4_shutdown_adapter - shut down adapter, host & wire 9024 * @adapter: the adapter 9025 * 9026 * Perform an emergency shutdown of the adapter and stop it from 9027 * continuing any further communication on the ports or DMA to the 9028 * host. This is typically used when the adapter and/or firmware 9029 * have crashed and we want to prevent any further accidental 9030 * communication with the rest of the world. This will also force 9031 * the port Link Status to go down -- if register writes work -- 9032 * which should help our peers figure out that we're down. 9033 */ 9034 int t4_shutdown_adapter(struct adapter *adapter) 9035 { 9036 int port; 9037 9038 t4_intr_disable(adapter); 9039 t4_write_reg(adapter, A_DBG_GPIO_EN, 0); 9040 for_each_port(adapter, port) { 9041 u32 a_port_cfg = is_t4(adapter) ? 9042 PORT_REG(port, A_XGMAC_PORT_CFG) : 9043 T5_PORT_REG(port, A_MAC_PORT_CFG); 9044 9045 t4_write_reg(adapter, a_port_cfg, 9046 t4_read_reg(adapter, a_port_cfg) 9047 & ~V_SIGNAL_DET(1)); 9048 } 9049 t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0); 9050 9051 return 0; 9052 } 9053 9054 /** 9055 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 9056 * @adapter: the adapter 9057 * @qid: the Queue ID 9058 * @qtype: the Ingress or Egress type for @qid 9059 * @user: true if this request is for a user mode queue 9060 * @pbar2_qoffset: BAR2 Queue Offset 9061 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 9062 * 9063 * Returns the BAR2 SGE Queue Registers information associated with the 9064 * indicated Absolute Queue ID. These are passed back in return value 9065 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 9066 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 9067 * 9068 * This may return an error which indicates that BAR2 SGE Queue 9069 * registers aren't available. If an error is not returned, then the 9070 * following values are returned: 9071 * 9072 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 9073 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 9074 * 9075 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 9076 * require the "Inferred Queue ID" ability may be used. E.g. the 9077 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 9078 * then these "Inferred Queue ID" register may not be used. 9079 */ 9080 int t4_bar2_sge_qregs(struct adapter *adapter, 9081 unsigned int qid, 9082 enum t4_bar2_qtype qtype, 9083 int user, 9084 u64 *pbar2_qoffset, 9085 unsigned int *pbar2_qid) 9086 { 9087 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 9088 u64 bar2_page_offset, bar2_qoffset; 9089 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 9090 9091 /* T4 doesn't support BAR2 SGE Queue registers for kernel 9092 * mode queues. 9093 */ 9094 if (!user && is_t4(adapter)) 9095 return -EINVAL; 9096 9097 /* Get our SGE Page Size parameters. 9098 */ 9099 page_shift = adapter->params.sge.page_shift; 9100 page_size = 1 << page_shift; 9101 9102 /* Get the right Queues per Page parameters for our Queue. 9103 */ 9104 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 9105 ? adapter->params.sge.eq_s_qpp 9106 : adapter->params.sge.iq_s_qpp); 9107 qpp_mask = (1 << qpp_shift) - 1; 9108 9109 /* Calculate the basics of the BAR2 SGE Queue register area: 9110 * o The BAR2 page the Queue registers will be in. 9111 * o The BAR2 Queue ID. 9112 * o The BAR2 Queue ID Offset into the BAR2 page. 9113 */ 9114 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 9115 bar2_qid = qid & qpp_mask; 9116 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 9117 9118 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 9119 * hardware will infer the Absolute Queue ID simply from the writes to 9120 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 9121 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 9122 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 9123 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 9124 * from the BAR2 Page and BAR2 Queue ID. 9125 * 9126 * One important censequence of this is that some BAR2 SGE registers 9127 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 9128 * there. But other registers synthesize the SGE Queue ID purely 9129 * from the writes to the registers -- the Write Combined Doorbell 9130 * Buffer is a good example. These BAR2 SGE Registers are only 9131 * available for those BAR2 SGE Register areas where the SGE Absolute 9132 * Queue ID can be inferred from simple writes. 9133 */ 9134 bar2_qoffset = bar2_page_offset; 9135 bar2_qinferred = (bar2_qid_offset < page_size); 9136 if (bar2_qinferred) { 9137 bar2_qoffset += bar2_qid_offset; 9138 bar2_qid = 0; 9139 } 9140 9141 *pbar2_qoffset = bar2_qoffset; 9142 *pbar2_qid = bar2_qid; 9143 return 0; 9144 } 9145 9146 /** 9147 * t4_init_devlog_params - initialize adapter->params.devlog 9148 * @adap: the adapter 9149 * @fw_attach: whether we can talk to the firmware 9150 * 9151 * Initialize various fields of the adapter's Firmware Device Log 9152 * Parameters structure. 9153 */ 9154 int t4_init_devlog_params(struct adapter *adap, int fw_attach) 9155 { 9156 struct devlog_params *dparams = &adap->params.devlog; 9157 u32 pf_dparams; 9158 unsigned int devlog_meminfo; 9159 struct fw_devlog_cmd devlog_cmd; 9160 int ret; 9161 9162 /* If we're dealing with newer firmware, the Device Log Paramerters 9163 * are stored in a designated register which allows us to access the 9164 * Device Log even if we can't talk to the firmware. 9165 */ 9166 pf_dparams = 9167 t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG)); 9168 if (pf_dparams) { 9169 unsigned int nentries, nentries128; 9170 9171 dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams); 9172 dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4; 9173 9174 nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams); 9175 nentries = (nentries128 + 1) * 128; 9176 dparams->size = nentries * sizeof(struct fw_devlog_e); 9177 9178 return 0; 9179 } 9180 9181 /* 9182 * For any failing returns ... 9183 */ 9184 memset(dparams, 0, sizeof *dparams); 9185 9186 /* 9187 * If we can't talk to the firmware, there's really nothing we can do 9188 * at this point. 9189 */ 9190 if (!fw_attach) 9191 return -ENXIO; 9192 9193 /* Otherwise, ask the firmware for it's Device Log Parameters. 9194 */ 9195 memset(&devlog_cmd, 0, sizeof devlog_cmd); 9196 devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) | 9197 F_FW_CMD_REQUEST | F_FW_CMD_READ); 9198 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 9199 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 9200 &devlog_cmd); 9201 if (ret) 9202 return ret; 9203 9204 devlog_meminfo = 9205 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); 9206 dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo); 9207 dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4; 9208 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); 9209 9210 return 0; 9211 } 9212 9213 /** 9214 * t4_init_sge_params - initialize adap->params.sge 9215 * @adapter: the adapter 9216 * 9217 * Initialize various fields of the adapter's SGE Parameters structure. 9218 */ 9219 int t4_init_sge_params(struct adapter *adapter) 9220 { 9221 u32 r; 9222 struct sge_params *sp = &adapter->params.sge; 9223 unsigned i, tscale = 1; 9224 9225 r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD); 9226 sp->counter_val[0] = G_THRESHOLD_0(r); 9227 sp->counter_val[1] = G_THRESHOLD_1(r); 9228 sp->counter_val[2] = G_THRESHOLD_2(r); 9229 sp->counter_val[3] = G_THRESHOLD_3(r); 9230 9231 if (chip_id(adapter) >= CHELSIO_T6) { 9232 r = t4_read_reg(adapter, A_SGE_ITP_CONTROL); 9233 tscale = G_TSCALE(r); 9234 if (tscale == 0) 9235 tscale = 1; 9236 else 9237 tscale += 2; 9238 } 9239 9240 r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1); 9241 sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale; 9242 sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale; 9243 r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3); 9244 sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale; 9245 sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale; 9246 r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5); 9247 sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale; 9248 sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale; 9249 9250 r = t4_read_reg(adapter, A_SGE_CONM_CTRL); 9251 sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1; 9252 if (is_t4(adapter)) 9253 sp->fl_starve_threshold2 = sp->fl_starve_threshold; 9254 else if (is_t5(adapter)) 9255 sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1; 9256 else 9257 sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1; 9258 9259 /* egress queues: log2 of # of doorbells per BAR2 page */ 9260 r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF); 9261 r >>= S_QUEUESPERPAGEPF0 + 9262 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf; 9263 sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0; 9264 9265 /* ingress queues: log2 of # of doorbells per BAR2 page */ 9266 r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF); 9267 r >>= S_QUEUESPERPAGEPF0 + 9268 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf; 9269 sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0; 9270 9271 r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE); 9272 r >>= S_HOSTPAGESIZEPF0 + 9273 (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf; 9274 sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10; 9275 9276 r = t4_read_reg(adapter, A_SGE_CONTROL); 9277 sp->sge_control = r; 9278 sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64; 9279 sp->fl_pktshift = G_PKTSHIFT(r); 9280 if (chip_id(adapter) <= CHELSIO_T5) { 9281 sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) + 9282 X_INGPADBOUNDARY_SHIFT); 9283 } else { 9284 sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) + 9285 X_T6_INGPADBOUNDARY_SHIFT); 9286 } 9287 if (is_t4(adapter)) 9288 sp->pack_boundary = sp->pad_boundary; 9289 else { 9290 r = t4_read_reg(adapter, A_SGE_CONTROL2); 9291 if (G_INGPACKBOUNDARY(r) == 0) 9292 sp->pack_boundary = 16; 9293 else 9294 sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5); 9295 } 9296 for (i = 0; i < SGE_FLBUF_SIZES; i++) 9297 sp->sge_fl_buffer_size[i] = t4_read_reg(adapter, 9298 A_SGE_FL_BUFFER_SIZE0 + (4 * i)); 9299 9300 return 0; 9301 } 9302 9303 /* 9304 * Read and cache the adapter's compressed filter mode and ingress config. 9305 */ 9306 static void read_filter_mode_and_ingress_config(struct adapter *adap, 9307 bool sleep_ok) 9308 { 9309 uint32_t v; 9310 struct tp_params *tpp = &adap->params.tp; 9311 9312 t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP, 9313 sleep_ok); 9314 t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG, 9315 sleep_ok); 9316 9317 /* 9318 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 9319 * shift positions of several elements of the Compressed Filter Tuple 9320 * for this adapter which we need frequently ... 9321 */ 9322 tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE); 9323 tpp->port_shift = t4_filter_field_shift(adap, F_PORT); 9324 tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID); 9325 tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN); 9326 tpp->tos_shift = t4_filter_field_shift(adap, F_TOS); 9327 tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL); 9328 tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE); 9329 tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH); 9330 tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE); 9331 tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION); 9332 9333 if (chip_id(adap) > CHELSIO_T4) { 9334 v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3)); 9335 adap->params.tp.hash_filter_mask = v; 9336 v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4)); 9337 adap->params.tp.hash_filter_mask |= (u64)v << 32; 9338 } 9339 } 9340 9341 /** 9342 * t4_init_tp_params - initialize adap->params.tp 9343 * @adap: the adapter 9344 * 9345 * Initialize various fields of the adapter's TP Parameters structure. 9346 */ 9347 int t4_init_tp_params(struct adapter *adap, bool sleep_ok) 9348 { 9349 int chan; 9350 u32 v; 9351 struct tp_params *tpp = &adap->params.tp; 9352 9353 v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION); 9354 tpp->tre = G_TIMERRESOLUTION(v); 9355 tpp->dack_re = G_DELAYEDACKRESOLUTION(v); 9356 9357 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 9358 for (chan = 0; chan < MAX_NCHAN; chan++) 9359 tpp->tx_modq[chan] = chan; 9360 9361 read_filter_mode_and_ingress_config(adap, sleep_ok); 9362 9363 /* 9364 * Cache a mask of the bits that represent the error vector portion of 9365 * rx_pkt.err_vec. T6+ can use a compressed error vector to make room 9366 * for information about outer encapsulation (GENEVE/VXLAN/NVGRE). 9367 */ 9368 tpp->err_vec_mask = htobe16(0xffff); 9369 if (chip_id(adap) > CHELSIO_T5) { 9370 v = t4_read_reg(adap, A_TP_OUT_CONFIG); 9371 if (v & F_CRXPKTENC) { 9372 tpp->err_vec_mask = 9373 htobe16(V_T6_COMPR_RXERR_VEC(M_T6_COMPR_RXERR_VEC)); 9374 } 9375 } 9376 9377 return 0; 9378 } 9379 9380 /** 9381 * t4_filter_field_shift - calculate filter field shift 9382 * @adap: the adapter 9383 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 9384 * 9385 * Return the shift position of a filter field within the Compressed 9386 * Filter Tuple. The filter field is specified via its selection bit 9387 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 9388 */ 9389 int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 9390 { 9391 unsigned int filter_mode = adap->params.tp.vlan_pri_map; 9392 unsigned int sel; 9393 int field_shift; 9394 9395 if ((filter_mode & filter_sel) == 0) 9396 return -1; 9397 9398 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 9399 switch (filter_mode & sel) { 9400 case F_FCOE: 9401 field_shift += W_FT_FCOE; 9402 break; 9403 case F_PORT: 9404 field_shift += W_FT_PORT; 9405 break; 9406 case F_VNIC_ID: 9407 field_shift += W_FT_VNIC_ID; 9408 break; 9409 case F_VLAN: 9410 field_shift += W_FT_VLAN; 9411 break; 9412 case F_TOS: 9413 field_shift += W_FT_TOS; 9414 break; 9415 case F_PROTOCOL: 9416 field_shift += W_FT_PROTOCOL; 9417 break; 9418 case F_ETHERTYPE: 9419 field_shift += W_FT_ETHERTYPE; 9420 break; 9421 case F_MACMATCH: 9422 field_shift += W_FT_MACMATCH; 9423 break; 9424 case F_MPSHITTYPE: 9425 field_shift += W_FT_MPSHITTYPE; 9426 break; 9427 case F_FRAGMENTATION: 9428 field_shift += W_FT_FRAGMENTATION; 9429 break; 9430 } 9431 } 9432 return field_shift; 9433 } 9434 9435 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id) 9436 { 9437 u8 addr[6]; 9438 int ret, i, j; 9439 struct port_info *p = adap2pinfo(adap, port_id); 9440 u32 param, val; 9441 struct vi_info *vi = &p->vi[0]; 9442 9443 for (i = 0, j = -1; i <= p->port_id; i++) { 9444 do { 9445 j++; 9446 } while ((adap->params.portvec & (1 << j)) == 0); 9447 } 9448 9449 p->tx_chan = j; 9450 p->mps_bg_map = t4_get_mps_bg_map(adap, j); 9451 p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j); 9452 p->lport = j; 9453 9454 if (!(adap->flags & IS_VF) || 9455 adap->params.vfres.r_caps & FW_CMD_CAP_PORT) { 9456 t4_update_port_info(p); 9457 } 9458 9459 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &vi->rss_size, 9460 &vi->vfvld, &vi->vin); 9461 if (ret < 0) 9462 return ret; 9463 9464 vi->viid = ret; 9465 t4_os_set_hw_addr(p, addr); 9466 9467 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 9468 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 9469 V_FW_PARAMS_PARAM_YZ(vi->viid); 9470 ret = t4_query_params(adap, mbox, pf, vf, 1, ¶m, &val); 9471 if (ret) 9472 vi->rss_base = 0xffff; 9473 else { 9474 /* MPASS((val >> 16) == rss_size); */ 9475 vi->rss_base = val & 0xffff; 9476 } 9477 9478 return 0; 9479 } 9480 9481 /** 9482 * t4_read_cimq_cfg - read CIM queue configuration 9483 * @adap: the adapter 9484 * @base: holds the queue base addresses in bytes 9485 * @size: holds the queue sizes in bytes 9486 * @thres: holds the queue full thresholds in bytes 9487 * 9488 * Returns the current configuration of the CIM queues, starting with 9489 * the IBQs, then the OBQs. 9490 */ 9491 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 9492 { 9493 unsigned int i, v; 9494 int cim_num_obq = adap->chip_params->cim_num_obq; 9495 9496 for (i = 0; i < CIM_NUM_IBQ; i++) { 9497 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT | 9498 V_QUENUMSELECT(i)); 9499 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL); 9500 /* value is in 256-byte units */ 9501 *base++ = G_CIMQBASE(v) * 256; 9502 *size++ = G_CIMQSIZE(v) * 256; 9503 *thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */ 9504 } 9505 for (i = 0; i < cim_num_obq; i++) { 9506 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT | 9507 V_QUENUMSELECT(i)); 9508 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL); 9509 /* value is in 256-byte units */ 9510 *base++ = G_CIMQBASE(v) * 256; 9511 *size++ = G_CIMQSIZE(v) * 256; 9512 } 9513 } 9514 9515 /** 9516 * t4_read_cim_ibq - read the contents of a CIM inbound queue 9517 * @adap: the adapter 9518 * @qid: the queue index 9519 * @data: where to store the queue contents 9520 * @n: capacity of @data in 32-bit words 9521 * 9522 * Reads the contents of the selected CIM queue starting at address 0 up 9523 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9524 * error and the number of 32-bit words actually read on success. 9525 */ 9526 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9527 { 9528 int i, err, attempts; 9529 unsigned int addr; 9530 const unsigned int nwords = CIM_IBQ_SIZE * 4; 9531 9532 if (qid > 5 || (n & 3)) 9533 return -EINVAL; 9534 9535 addr = qid * nwords; 9536 if (n > nwords) 9537 n = nwords; 9538 9539 /* It might take 3-10ms before the IBQ debug read access is allowed. 9540 * Wait for 1 Sec with a delay of 1 usec. 9541 */ 9542 attempts = 1000000; 9543 9544 for (i = 0; i < n; i++, addr++) { 9545 t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) | 9546 F_IBQDBGEN); 9547 err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0, 9548 attempts, 1); 9549 if (err) 9550 return err; 9551 *data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA); 9552 } 9553 t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0); 9554 return i; 9555 } 9556 9557 /** 9558 * t4_read_cim_obq - read the contents of a CIM outbound queue 9559 * @adap: the adapter 9560 * @qid: the queue index 9561 * @data: where to store the queue contents 9562 * @n: capacity of @data in 32-bit words 9563 * 9564 * Reads the contents of the selected CIM queue starting at address 0 up 9565 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9566 * error and the number of 32-bit words actually read on success. 9567 */ 9568 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9569 { 9570 int i, err; 9571 unsigned int addr, v, nwords; 9572 int cim_num_obq = adap->chip_params->cim_num_obq; 9573 9574 if ((qid > (cim_num_obq - 1)) || (n & 3)) 9575 return -EINVAL; 9576 9577 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT | 9578 V_QUENUMSELECT(qid)); 9579 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL); 9580 9581 addr = G_CIMQBASE(v) * 64; /* muliple of 256 -> muliple of 4 */ 9582 nwords = G_CIMQSIZE(v) * 64; /* same */ 9583 if (n > nwords) 9584 n = nwords; 9585 9586 for (i = 0; i < n; i++, addr++) { 9587 t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) | 9588 F_OBQDBGEN); 9589 err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0, 9590 2, 1); 9591 if (err) 9592 return err; 9593 *data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA); 9594 } 9595 t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0); 9596 return i; 9597 } 9598 9599 enum { 9600 CIM_QCTL_BASE = 0, 9601 CIM_CTL_BASE = 0x2000, 9602 CIM_PBT_ADDR_BASE = 0x2800, 9603 CIM_PBT_LRF_BASE = 0x3000, 9604 CIM_PBT_DATA_BASE = 0x3800 9605 }; 9606 9607 /** 9608 * t4_cim_read - read a block from CIM internal address space 9609 * @adap: the adapter 9610 * @addr: the start address within the CIM address space 9611 * @n: number of words to read 9612 * @valp: where to store the result 9613 * 9614 * Reads a block of 4-byte words from the CIM intenal address space. 9615 */ 9616 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 9617 unsigned int *valp) 9618 { 9619 int ret = 0; 9620 9621 if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY) 9622 return -EBUSY; 9623 9624 for ( ; !ret && n--; addr += 4) { 9625 t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr); 9626 ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY, 9627 0, 5, 2); 9628 if (!ret) 9629 *valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA); 9630 } 9631 return ret; 9632 } 9633 9634 /** 9635 * t4_cim_write - write a block into CIM internal address space 9636 * @adap: the adapter 9637 * @addr: the start address within the CIM address space 9638 * @n: number of words to write 9639 * @valp: set of values to write 9640 * 9641 * Writes a block of 4-byte words into the CIM intenal address space. 9642 */ 9643 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 9644 const unsigned int *valp) 9645 { 9646 int ret = 0; 9647 9648 if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY) 9649 return -EBUSY; 9650 9651 for ( ; !ret && n--; addr += 4) { 9652 t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++); 9653 t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE); 9654 ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY, 9655 0, 5, 2); 9656 } 9657 return ret; 9658 } 9659 9660 static int t4_cim_write1(struct adapter *adap, unsigned int addr, 9661 unsigned int val) 9662 { 9663 return t4_cim_write(adap, addr, 1, &val); 9664 } 9665 9666 /** 9667 * t4_cim_ctl_read - read a block from CIM control region 9668 * @adap: the adapter 9669 * @addr: the start address within the CIM control region 9670 * @n: number of words to read 9671 * @valp: where to store the result 9672 * 9673 * Reads a block of 4-byte words from the CIM control region. 9674 */ 9675 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n, 9676 unsigned int *valp) 9677 { 9678 return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp); 9679 } 9680 9681 /** 9682 * t4_cim_read_la - read CIM LA capture buffer 9683 * @adap: the adapter 9684 * @la_buf: where to store the LA data 9685 * @wrptr: the HW write pointer within the capture buffer 9686 * 9687 * Reads the contents of the CIM LA buffer with the most recent entry at 9688 * the end of the returned data and with the entry at @wrptr first. 9689 * We try to leave the LA in the running state we find it in. 9690 */ 9691 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 9692 { 9693 int i, ret; 9694 unsigned int cfg, val, idx; 9695 9696 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg); 9697 if (ret) 9698 return ret; 9699 9700 if (cfg & F_UPDBGLAEN) { /* LA is running, freeze it */ 9701 ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0); 9702 if (ret) 9703 return ret; 9704 } 9705 9706 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val); 9707 if (ret) 9708 goto restart; 9709 9710 idx = G_UPDBGLAWRPTR(val); 9711 if (wrptr) 9712 *wrptr = idx; 9713 9714 for (i = 0; i < adap->params.cim_la_size; i++) { 9715 ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 9716 V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN); 9717 if (ret) 9718 break; 9719 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val); 9720 if (ret) 9721 break; 9722 if (val & F_UPDBGLARDEN) { 9723 ret = -ETIMEDOUT; 9724 break; 9725 } 9726 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]); 9727 if (ret) 9728 break; 9729 9730 /* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */ 9731 idx = (idx + 1) & M_UPDBGLARDPTR; 9732 /* 9733 * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to 9734 * identify the 32-bit portion of the full 312-bit data 9735 */ 9736 if (is_t6(adap)) 9737 while ((idx & 0xf) > 9) 9738 idx = (idx + 1) % M_UPDBGLARDPTR; 9739 } 9740 restart: 9741 if (cfg & F_UPDBGLAEN) { 9742 int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 9743 cfg & ~F_UPDBGLARDEN); 9744 if (!ret) 9745 ret = r; 9746 } 9747 return ret; 9748 } 9749 9750 /** 9751 * t4_tp_read_la - read TP LA capture buffer 9752 * @adap: the adapter 9753 * @la_buf: where to store the LA data 9754 * @wrptr: the HW write pointer within the capture buffer 9755 * 9756 * Reads the contents of the TP LA buffer with the most recent entry at 9757 * the end of the returned data and with the entry at @wrptr first. 9758 * We leave the LA in the running state we find it in. 9759 */ 9760 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 9761 { 9762 bool last_incomplete; 9763 unsigned int i, cfg, val, idx; 9764 9765 cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff; 9766 if (cfg & F_DBGLAENABLE) /* freeze LA */ 9767 t4_write_reg(adap, A_TP_DBG_LA_CONFIG, 9768 adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE)); 9769 9770 val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG); 9771 idx = G_DBGLAWPTR(val); 9772 last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0; 9773 if (last_incomplete) 9774 idx = (idx + 1) & M_DBGLARPTR; 9775 if (wrptr) 9776 *wrptr = idx; 9777 9778 val &= 0xffff; 9779 val &= ~V_DBGLARPTR(M_DBGLARPTR); 9780 val |= adap->params.tp.la_mask; 9781 9782 for (i = 0; i < TPLA_SIZE; i++) { 9783 t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val); 9784 la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL); 9785 idx = (idx + 1) & M_DBGLARPTR; 9786 } 9787 9788 /* Wipe out last entry if it isn't valid */ 9789 if (last_incomplete) 9790 la_buf[TPLA_SIZE - 1] = ~0ULL; 9791 9792 if (cfg & F_DBGLAENABLE) /* restore running state */ 9793 t4_write_reg(adap, A_TP_DBG_LA_CONFIG, 9794 cfg | adap->params.tp.la_mask); 9795 } 9796 9797 /* 9798 * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in 9799 * seconds). If we find one of the SGE Ingress DMA State Machines in the same 9800 * state for more than the Warning Threshold then we'll issue a warning about 9801 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel 9802 * appears to be hung every Warning Repeat second till the situation clears. 9803 * If the situation clears, we'll note that as well. 9804 */ 9805 #define SGE_IDMA_WARN_THRESH 1 9806 #define SGE_IDMA_WARN_REPEAT 300 9807 9808 /** 9809 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor 9810 * @adapter: the adapter 9811 * @idma: the adapter IDMA Monitor state 9812 * 9813 * Initialize the state of an SGE Ingress DMA Monitor. 9814 */ 9815 void t4_idma_monitor_init(struct adapter *adapter, 9816 struct sge_idma_monitor_state *idma) 9817 { 9818 /* Initialize the state variables for detecting an SGE Ingress DMA 9819 * hang. The SGE has internal counters which count up on each clock 9820 * tick whenever the SGE finds its Ingress DMA State Engines in the 9821 * same state they were on the previous clock tick. The clock used is 9822 * the Core Clock so we have a limit on the maximum "time" they can 9823 * record; typically a very small number of seconds. For instance, 9824 * with a 600MHz Core Clock, we can only count up to a bit more than 9825 * 7s. So we'll synthesize a larger counter in order to not run the 9826 * risk of having the "timers" overflow and give us the flexibility to 9827 * maintain a Hung SGE State Machine of our own which operates across 9828 * a longer time frame. 9829 */ 9830 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ 9831 idma->idma_stalled[0] = idma->idma_stalled[1] = 0; 9832 } 9833 9834 /** 9835 * t4_idma_monitor - monitor SGE Ingress DMA state 9836 * @adapter: the adapter 9837 * @idma: the adapter IDMA Monitor state 9838 * @hz: number of ticks/second 9839 * @ticks: number of ticks since the last IDMA Monitor call 9840 */ 9841 void t4_idma_monitor(struct adapter *adapter, 9842 struct sge_idma_monitor_state *idma, 9843 int hz, int ticks) 9844 { 9845 int i, idma_same_state_cnt[2]; 9846 9847 /* Read the SGE Debug Ingress DMA Same State Count registers. These 9848 * are counters inside the SGE which count up on each clock when the 9849 * SGE finds its Ingress DMA State Engines in the same states they 9850 * were in the previous clock. The counters will peg out at 9851 * 0xffffffff without wrapping around so once they pass the 1s 9852 * threshold they'll stay above that till the IDMA state changes. 9853 */ 9854 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13); 9855 idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH); 9856 idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW); 9857 9858 for (i = 0; i < 2; i++) { 9859 u32 debug0, debug11; 9860 9861 /* If the Ingress DMA Same State Counter ("timer") is less 9862 * than 1s, then we can reset our synthesized Stall Timer and 9863 * continue. If we have previously emitted warnings about a 9864 * potential stalled Ingress Queue, issue a note indicating 9865 * that the Ingress Queue has resumed forward progress. 9866 */ 9867 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { 9868 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz) 9869 CH_WARN(adapter, "SGE idma%d, queue %u, " 9870 "resumed after %d seconds\n", 9871 i, idma->idma_qid[i], 9872 idma->idma_stalled[i]/hz); 9873 idma->idma_stalled[i] = 0; 9874 continue; 9875 } 9876 9877 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 9878 * domain. The first time we get here it'll be because we 9879 * passed the 1s Threshold; each additional time it'll be 9880 * because the RX Timer Callback is being fired on its regular 9881 * schedule. 9882 * 9883 * If the stall is below our Potential Hung Ingress Queue 9884 * Warning Threshold, continue. 9885 */ 9886 if (idma->idma_stalled[i] == 0) { 9887 idma->idma_stalled[i] = hz; 9888 idma->idma_warn[i] = 0; 9889 } else { 9890 idma->idma_stalled[i] += ticks; 9891 idma->idma_warn[i] -= ticks; 9892 } 9893 9894 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz) 9895 continue; 9896 9897 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. 9898 */ 9899 if (idma->idma_warn[i] > 0) 9900 continue; 9901 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz; 9902 9903 /* Read and save the SGE IDMA State and Queue ID information. 9904 * We do this every time in case it changes across time ... 9905 * can't be too careful ... 9906 */ 9907 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0); 9908 debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW); 9909 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 9910 9911 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11); 9912 debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW); 9913 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 9914 9915 CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in " 9916 " state %u for %d seconds (debug0=%#x, debug11=%#x)\n", 9917 i, idma->idma_qid[i], idma->idma_state[i], 9918 idma->idma_stalled[i]/hz, 9919 debug0, debug11); 9920 t4_sge_decode_idma_state(adapter, idma->idma_state[i]); 9921 } 9922 } 9923 9924 /** 9925 * t4_read_pace_tbl - read the pace table 9926 * @adap: the adapter 9927 * @pace_vals: holds the returned values 9928 * 9929 * Returns the values of TP's pace table in microseconds. 9930 */ 9931 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED]) 9932 { 9933 unsigned int i, v; 9934 9935 for (i = 0; i < NTX_SCHED; i++) { 9936 t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i); 9937 v = t4_read_reg(adap, A_TP_PACE_TABLE); 9938 pace_vals[i] = dack_ticks_to_usec(adap, v); 9939 } 9940 } 9941 9942 /** 9943 * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler 9944 * @adap: the adapter 9945 * @sched: the scheduler index 9946 * @kbps: the byte rate in Kbps 9947 * @ipg: the interpacket delay in tenths of nanoseconds 9948 * 9949 * Return the current configuration of a HW Tx scheduler. 9950 */ 9951 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps, 9952 unsigned int *ipg, bool sleep_ok) 9953 { 9954 unsigned int v, addr, bpt, cpt; 9955 9956 if (kbps) { 9957 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2; 9958 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 9959 if (sched & 1) 9960 v >>= 16; 9961 bpt = (v >> 8) & 0xff; 9962 cpt = v & 0xff; 9963 if (!cpt) 9964 *kbps = 0; /* scheduler disabled */ 9965 else { 9966 v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */ 9967 *kbps = (v * bpt) / 125; 9968 } 9969 } 9970 if (ipg) { 9971 addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2; 9972 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 9973 if (sched & 1) 9974 v >>= 16; 9975 v &= 0xffff; 9976 *ipg = (10000 * v) / core_ticks_per_usec(adap); 9977 } 9978 } 9979 9980 /** 9981 * t4_load_cfg - download config file 9982 * @adap: the adapter 9983 * @cfg_data: the cfg text file to write 9984 * @size: text file size 9985 * 9986 * Write the supplied config text file to the card's serial flash. 9987 */ 9988 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 9989 { 9990 int ret, i, n, cfg_addr; 9991 unsigned int addr; 9992 unsigned int flash_cfg_start_sec; 9993 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 9994 9995 cfg_addr = t4_flash_cfg_addr(adap); 9996 if (cfg_addr < 0) 9997 return cfg_addr; 9998 9999 addr = cfg_addr; 10000 flash_cfg_start_sec = addr / SF_SEC_SIZE; 10001 10002 if (size > FLASH_CFG_MAX_SIZE) { 10003 CH_ERR(adap, "cfg file too large, max is %u bytes\n", 10004 FLASH_CFG_MAX_SIZE); 10005 return -EFBIG; 10006 } 10007 10008 i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ 10009 sf_sec_size); 10010 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 10011 flash_cfg_start_sec + i - 1); 10012 /* 10013 * If size == 0 then we're simply erasing the FLASH sectors associated 10014 * with the on-adapter Firmware Configuration File. 10015 */ 10016 if (ret || size == 0) 10017 goto out; 10018 10019 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 10020 for (i = 0; i< size; i+= SF_PAGE_SIZE) { 10021 if ( (size - i) < SF_PAGE_SIZE) 10022 n = size - i; 10023 else 10024 n = SF_PAGE_SIZE; 10025 ret = t4_write_flash(adap, addr, n, cfg_data, 1); 10026 if (ret) 10027 goto out; 10028 10029 addr += SF_PAGE_SIZE; 10030 cfg_data += SF_PAGE_SIZE; 10031 } 10032 10033 out: 10034 if (ret) 10035 CH_ERR(adap, "config file %s failed %d\n", 10036 (size == 0 ? "clear" : "download"), ret); 10037 return ret; 10038 } 10039 10040 /** 10041 * t5_fw_init_extern_mem - initialize the external memory 10042 * @adap: the adapter 10043 * 10044 * Initializes the external memory on T5. 10045 */ 10046 int t5_fw_init_extern_mem(struct adapter *adap) 10047 { 10048 u32 params[1], val[1]; 10049 int ret; 10050 10051 if (!is_t5(adap)) 10052 return 0; 10053 10054 val[0] = 0xff; /* Initialize all MCs */ 10055 params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 10056 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT)); 10057 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val, 10058 FW_CMD_MAX_TIMEOUT); 10059 10060 return ret; 10061 } 10062 10063 /* BIOS boot headers */ 10064 typedef struct pci_expansion_rom_header { 10065 u8 signature[2]; /* ROM Signature. Should be 0xaa55 */ 10066 u8 reserved[22]; /* Reserved per processor Architecture data */ 10067 u8 pcir_offset[2]; /* Offset to PCI Data Structure */ 10068 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */ 10069 10070 /* Legacy PCI Expansion ROM Header */ 10071 typedef struct legacy_pci_expansion_rom_header { 10072 u8 signature[2]; /* ROM Signature. Should be 0xaa55 */ 10073 u8 size512; /* Current Image Size in units of 512 bytes */ 10074 u8 initentry_point[4]; 10075 u8 cksum; /* Checksum computed on the entire Image */ 10076 u8 reserved[16]; /* Reserved */ 10077 u8 pcir_offset[2]; /* Offset to PCI Data Struture */ 10078 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */ 10079 10080 /* EFI PCI Expansion ROM Header */ 10081 typedef struct efi_pci_expansion_rom_header { 10082 u8 signature[2]; // ROM signature. The value 0xaa55 10083 u8 initialization_size[2]; /* Units 512. Includes this header */ 10084 u8 efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */ 10085 u8 efi_subsystem[2]; /* Subsystem value for EFI image header */ 10086 u8 efi_machine_type[2]; /* Machine type from EFI image header */ 10087 u8 compression_type[2]; /* Compression type. */ 10088 /* 10089 * Compression type definition 10090 * 0x0: uncompressed 10091 * 0x1: Compressed 10092 * 0x2-0xFFFF: Reserved 10093 */ 10094 u8 reserved[8]; /* Reserved */ 10095 u8 efi_image_header_offset[2]; /* Offset to EFI Image */ 10096 u8 pcir_offset[2]; /* Offset to PCI Data Structure */ 10097 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */ 10098 10099 /* PCI Data Structure Format */ 10100 typedef struct pcir_data_structure { /* PCI Data Structure */ 10101 u8 signature[4]; /* Signature. The string "PCIR" */ 10102 u8 vendor_id[2]; /* Vendor Identification */ 10103 u8 device_id[2]; /* Device Identification */ 10104 u8 vital_product[2]; /* Pointer to Vital Product Data */ 10105 u8 length[2]; /* PCIR Data Structure Length */ 10106 u8 revision; /* PCIR Data Structure Revision */ 10107 u8 class_code[3]; /* Class Code */ 10108 u8 image_length[2]; /* Image Length. Multiple of 512B */ 10109 u8 code_revision[2]; /* Revision Level of Code/Data */ 10110 u8 code_type; /* Code Type. */ 10111 /* 10112 * PCI Expansion ROM Code Types 10113 * 0x00: Intel IA-32, PC-AT compatible. Legacy 10114 * 0x01: Open Firmware standard for PCI. FCODE 10115 * 0x02: Hewlett-Packard PA RISC. HP reserved 10116 * 0x03: EFI Image. EFI 10117 * 0x04-0xFF: Reserved. 10118 */ 10119 u8 indicator; /* Indicator. Identifies the last image in the ROM */ 10120 u8 reserved[2]; /* Reserved */ 10121 } pcir_data_t; /* PCI__DATA_STRUCTURE */ 10122 10123 /* BOOT constants */ 10124 enum { 10125 BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */ 10126 BOOT_SIGNATURE = 0xaa55, /* signature of BIOS boot ROM */ 10127 BOOT_SIZE_INC = 512, /* image size measured in 512B chunks */ 10128 BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */ 10129 BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment */ 10130 VENDOR_ID = 0x1425, /* Vendor ID */ 10131 PCIR_SIGNATURE = 0x52494350 /* PCIR signature */ 10132 }; 10133 10134 /* 10135 * modify_device_id - Modifies the device ID of the Boot BIOS image 10136 * @adatper: the device ID to write. 10137 * @boot_data: the boot image to modify. 10138 * 10139 * Write the supplied device ID to the boot BIOS image. 10140 */ 10141 static void modify_device_id(int device_id, u8 *boot_data) 10142 { 10143 legacy_pci_exp_rom_header_t *header; 10144 pcir_data_t *pcir_header; 10145 u32 cur_header = 0; 10146 10147 /* 10148 * Loop through all chained images and change the device ID's 10149 */ 10150 while (1) { 10151 header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header]; 10152 pcir_header = (pcir_data_t *) &boot_data[cur_header + 10153 le16_to_cpu(*(u16*)header->pcir_offset)]; 10154 10155 /* 10156 * Only modify the Device ID if code type is Legacy or HP. 10157 * 0x00: Okay to modify 10158 * 0x01: FCODE. Do not be modify 10159 * 0x03: Okay to modify 10160 * 0x04-0xFF: Do not modify 10161 */ 10162 if (pcir_header->code_type == 0x00) { 10163 u8 csum = 0; 10164 int i; 10165 10166 /* 10167 * Modify Device ID to match current adatper 10168 */ 10169 *(u16*) pcir_header->device_id = device_id; 10170 10171 /* 10172 * Set checksum temporarily to 0. 10173 * We will recalculate it later. 10174 */ 10175 header->cksum = 0x0; 10176 10177 /* 10178 * Calculate and update checksum 10179 */ 10180 for (i = 0; i < (header->size512 * 512); i++) 10181 csum += (u8)boot_data[cur_header + i]; 10182 10183 /* 10184 * Invert summed value to create the checksum 10185 * Writing new checksum value directly to the boot data 10186 */ 10187 boot_data[cur_header + 7] = -csum; 10188 10189 } else if (pcir_header->code_type == 0x03) { 10190 10191 /* 10192 * Modify Device ID to match current adatper 10193 */ 10194 *(u16*) pcir_header->device_id = device_id; 10195 10196 } 10197 10198 10199 /* 10200 * Check indicator element to identify if this is the last 10201 * image in the ROM. 10202 */ 10203 if (pcir_header->indicator & 0x80) 10204 break; 10205 10206 /* 10207 * Move header pointer up to the next image in the ROM. 10208 */ 10209 cur_header += header->size512 * 512; 10210 } 10211 } 10212 10213 /* 10214 * t4_load_boot - download boot flash 10215 * @adapter: the adapter 10216 * @boot_data: the boot image to write 10217 * @boot_addr: offset in flash to write boot_data 10218 * @size: image size 10219 * 10220 * Write the supplied boot image to the card's serial flash. 10221 * The boot image has the following sections: a 28-byte header and the 10222 * boot image. 10223 */ 10224 int t4_load_boot(struct adapter *adap, u8 *boot_data, 10225 unsigned int boot_addr, unsigned int size) 10226 { 10227 pci_exp_rom_header_t *header; 10228 int pcir_offset ; 10229 pcir_data_t *pcir_header; 10230 int ret, addr; 10231 uint16_t device_id; 10232 unsigned int i; 10233 unsigned int boot_sector = (boot_addr * 1024 ); 10234 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10235 10236 /* 10237 * Make sure the boot image does not encroach on the firmware region 10238 */ 10239 if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) { 10240 CH_ERR(adap, "boot image encroaching on firmware region\n"); 10241 return -EFBIG; 10242 } 10243 10244 /* 10245 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot, 10246 * and Boot configuration data sections. These 3 boot sections span 10247 * sectors 0 to 7 in flash and live right before the FW image location. 10248 */ 10249 i = DIV_ROUND_UP(size ? size : FLASH_FW_START, 10250 sf_sec_size); 10251 ret = t4_flash_erase_sectors(adap, boot_sector >> 16, 10252 (boot_sector >> 16) + i - 1); 10253 10254 /* 10255 * If size == 0 then we're simply erasing the FLASH sectors associated 10256 * with the on-adapter option ROM file 10257 */ 10258 if (ret || (size == 0)) 10259 goto out; 10260 10261 /* Get boot header */ 10262 header = (pci_exp_rom_header_t *)boot_data; 10263 pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset); 10264 /* PCIR Data Structure */ 10265 pcir_header = (pcir_data_t *) &boot_data[pcir_offset]; 10266 10267 /* 10268 * Perform some primitive sanity testing to avoid accidentally 10269 * writing garbage over the boot sectors. We ought to check for 10270 * more but it's not worth it for now ... 10271 */ 10272 if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) { 10273 CH_ERR(adap, "boot image too small/large\n"); 10274 return -EFBIG; 10275 } 10276 10277 #ifndef CHELSIO_T4_DIAGS 10278 /* 10279 * Check BOOT ROM header signature 10280 */ 10281 if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) { 10282 CH_ERR(adap, "Boot image missing signature\n"); 10283 return -EINVAL; 10284 } 10285 10286 /* 10287 * Check PCI header signature 10288 */ 10289 if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) { 10290 CH_ERR(adap, "PCI header missing signature\n"); 10291 return -EINVAL; 10292 } 10293 10294 /* 10295 * Check Vendor ID matches Chelsio ID 10296 */ 10297 if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) { 10298 CH_ERR(adap, "Vendor ID missing signature\n"); 10299 return -EINVAL; 10300 } 10301 #endif 10302 10303 /* 10304 * Retrieve adapter's device ID 10305 */ 10306 t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id); 10307 /* Want to deal with PF 0 so I strip off PF 4 indicator */ 10308 device_id = device_id & 0xf0ff; 10309 10310 /* 10311 * Check PCIE Device ID 10312 */ 10313 if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) { 10314 /* 10315 * Change the device ID in the Boot BIOS image to match 10316 * the Device ID of the current adapter. 10317 */ 10318 modify_device_id(device_id, boot_data); 10319 } 10320 10321 /* 10322 * Skip over the first SF_PAGE_SIZE worth of data and write it after 10323 * we finish copying the rest of the boot image. This will ensure 10324 * that the BIOS boot header will only be written if the boot image 10325 * was written in full. 10326 */ 10327 addr = boot_sector; 10328 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 10329 addr += SF_PAGE_SIZE; 10330 boot_data += SF_PAGE_SIZE; 10331 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0); 10332 if (ret) 10333 goto out; 10334 } 10335 10336 ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE, 10337 (const u8 *)header, 0); 10338 10339 out: 10340 if (ret) 10341 CH_ERR(adap, "boot image download failed, error %d\n", ret); 10342 return ret; 10343 } 10344 10345 /* 10346 * t4_flash_bootcfg_addr - return the address of the flash optionrom configuration 10347 * @adapter: the adapter 10348 * 10349 * Return the address within the flash where the OptionROM Configuration 10350 * is stored, or an error if the device FLASH is too small to contain 10351 * a OptionROM Configuration. 10352 */ 10353 static int t4_flash_bootcfg_addr(struct adapter *adapter) 10354 { 10355 /* 10356 * If the device FLASH isn't large enough to hold a Firmware 10357 * Configuration File, return an error. 10358 */ 10359 if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE) 10360 return -ENOSPC; 10361 10362 return FLASH_BOOTCFG_START; 10363 } 10364 10365 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size) 10366 { 10367 int ret, i, n, cfg_addr; 10368 unsigned int addr; 10369 unsigned int flash_cfg_start_sec; 10370 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10371 10372 cfg_addr = t4_flash_bootcfg_addr(adap); 10373 if (cfg_addr < 0) 10374 return cfg_addr; 10375 10376 addr = cfg_addr; 10377 flash_cfg_start_sec = addr / SF_SEC_SIZE; 10378 10379 if (size > FLASH_BOOTCFG_MAX_SIZE) { 10380 CH_ERR(adap, "bootcfg file too large, max is %u bytes\n", 10381 FLASH_BOOTCFG_MAX_SIZE); 10382 return -EFBIG; 10383 } 10384 10385 i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */ 10386 sf_sec_size); 10387 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 10388 flash_cfg_start_sec + i - 1); 10389 10390 /* 10391 * If size == 0 then we're simply erasing the FLASH sectors associated 10392 * with the on-adapter OptionROM Configuration File. 10393 */ 10394 if (ret || size == 0) 10395 goto out; 10396 10397 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 10398 for (i = 0; i< size; i+= SF_PAGE_SIZE) { 10399 if ( (size - i) < SF_PAGE_SIZE) 10400 n = size - i; 10401 else 10402 n = SF_PAGE_SIZE; 10403 ret = t4_write_flash(adap, addr, n, cfg_data, 0); 10404 if (ret) 10405 goto out; 10406 10407 addr += SF_PAGE_SIZE; 10408 cfg_data += SF_PAGE_SIZE; 10409 } 10410 10411 out: 10412 if (ret) 10413 CH_ERR(adap, "boot config data %s failed %d\n", 10414 (size == 0 ? "clear" : "download"), ret); 10415 return ret; 10416 } 10417 10418 /** 10419 * t4_set_filter_mode - configure the optional components of filter tuples 10420 * @adap: the adapter 10421 * @mode_map: a bitmap selcting which optional filter components to enable 10422 * @sleep_ok: if true we may sleep while awaiting command completion 10423 * 10424 * Sets the filter mode by selecting the optional components to enable 10425 * in filter tuples. Returns 0 on success and a negative error if the 10426 * requested mode needs more bits than are available for optional 10427 * components. 10428 */ 10429 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map, 10430 bool sleep_ok) 10431 { 10432 static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 }; 10433 10434 int i, nbits = 0; 10435 10436 for (i = S_FCOE; i <= S_FRAGMENTATION; i++) 10437 if (mode_map & (1 << i)) 10438 nbits += width[i]; 10439 if (nbits > FILTER_OPT_LEN) 10440 return -EINVAL; 10441 t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok); 10442 read_filter_mode_and_ingress_config(adap, sleep_ok); 10443 10444 return 0; 10445 } 10446 10447 /** 10448 * t4_clr_port_stats - clear port statistics 10449 * @adap: the adapter 10450 * @idx: the port index 10451 * 10452 * Clear HW statistics for the given port. 10453 */ 10454 void t4_clr_port_stats(struct adapter *adap, int idx) 10455 { 10456 unsigned int i; 10457 u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map; 10458 u32 port_base_addr; 10459 10460 if (is_t4(adap)) 10461 port_base_addr = PORT_BASE(idx); 10462 else 10463 port_base_addr = T5_PORT_BASE(idx); 10464 10465 for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L; 10466 i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8) 10467 t4_write_reg(adap, port_base_addr + i, 0); 10468 for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L; 10469 i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8) 10470 t4_write_reg(adap, port_base_addr + i, 0); 10471 for (i = 0; i < 4; i++) 10472 if (bgmap & (1 << i)) { 10473 t4_write_reg(adap, 10474 A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0); 10475 t4_write_reg(adap, 10476 A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0); 10477 } 10478 } 10479 10480 /** 10481 * t4_i2c_rd - read I2C data from adapter 10482 * @adap: the adapter 10483 * @port: Port number if per-port device; <0 if not 10484 * @devid: per-port device ID or absolute device ID 10485 * @offset: byte offset into device I2C space 10486 * @len: byte length of I2C space data 10487 * @buf: buffer in which to return I2C data 10488 * 10489 * Reads the I2C data from the indicated device and location. 10490 */ 10491 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, 10492 int port, unsigned int devid, 10493 unsigned int offset, unsigned int len, 10494 u8 *buf) 10495 { 10496 u32 ldst_addrspace; 10497 struct fw_ldst_cmd ldst; 10498 int ret; 10499 10500 if (port >= 4 || 10501 devid >= 256 || 10502 offset >= 256 || 10503 len > sizeof ldst.u.i2c.data) 10504 return -EINVAL; 10505 10506 memset(&ldst, 0, sizeof ldst); 10507 ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C); 10508 ldst.op_to_addrspace = 10509 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 10510 F_FW_CMD_REQUEST | 10511 F_FW_CMD_READ | 10512 ldst_addrspace); 10513 ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst)); 10514 ldst.u.i2c.pid = (port < 0 ? 0xff : port); 10515 ldst.u.i2c.did = devid; 10516 ldst.u.i2c.boffset = offset; 10517 ldst.u.i2c.blen = len; 10518 ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst); 10519 if (!ret) 10520 memcpy(buf, ldst.u.i2c.data, len); 10521 return ret; 10522 } 10523 10524 /** 10525 * t4_i2c_wr - write I2C data to adapter 10526 * @adap: the adapter 10527 * @port: Port number if per-port device; <0 if not 10528 * @devid: per-port device ID or absolute device ID 10529 * @offset: byte offset into device I2C space 10530 * @len: byte length of I2C space data 10531 * @buf: buffer containing new I2C data 10532 * 10533 * Write the I2C data to the indicated device and location. 10534 */ 10535 int t4_i2c_wr(struct adapter *adap, unsigned int mbox, 10536 int port, unsigned int devid, 10537 unsigned int offset, unsigned int len, 10538 u8 *buf) 10539 { 10540 u32 ldst_addrspace; 10541 struct fw_ldst_cmd ldst; 10542 10543 if (port >= 4 || 10544 devid >= 256 || 10545 offset >= 256 || 10546 len > sizeof ldst.u.i2c.data) 10547 return -EINVAL; 10548 10549 memset(&ldst, 0, sizeof ldst); 10550 ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C); 10551 ldst.op_to_addrspace = 10552 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 10553 F_FW_CMD_REQUEST | 10554 F_FW_CMD_WRITE | 10555 ldst_addrspace); 10556 ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst)); 10557 ldst.u.i2c.pid = (port < 0 ? 0xff : port); 10558 ldst.u.i2c.did = devid; 10559 ldst.u.i2c.boffset = offset; 10560 ldst.u.i2c.blen = len; 10561 memcpy(ldst.u.i2c.data, buf, len); 10562 return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst); 10563 } 10564 10565 /** 10566 * t4_sge_ctxt_rd - read an SGE context through FW 10567 * @adap: the adapter 10568 * @mbox: mailbox to use for the FW command 10569 * @cid: the context id 10570 * @ctype: the context type 10571 * @data: where to store the context data 10572 * 10573 * Issues a FW command through the given mailbox to read an SGE context. 10574 */ 10575 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid, 10576 enum ctxt_type ctype, u32 *data) 10577 { 10578 int ret; 10579 struct fw_ldst_cmd c; 10580 10581 if (ctype == CTXT_EGRESS) 10582 ret = FW_LDST_ADDRSPC_SGE_EGRC; 10583 else if (ctype == CTXT_INGRESS) 10584 ret = FW_LDST_ADDRSPC_SGE_INGC; 10585 else if (ctype == CTXT_FLM) 10586 ret = FW_LDST_ADDRSPC_SGE_FLMC; 10587 else 10588 ret = FW_LDST_ADDRSPC_SGE_CONMC; 10589 10590 memset(&c, 0, sizeof(c)); 10591 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 10592 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10593 V_FW_LDST_CMD_ADDRSPACE(ret)); 10594 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 10595 c.u.idctxt.physid = cpu_to_be32(cid); 10596 10597 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 10598 if (ret == 0) { 10599 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0); 10600 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1); 10601 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2); 10602 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3); 10603 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4); 10604 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5); 10605 } 10606 return ret; 10607 } 10608 10609 /** 10610 * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW 10611 * @adap: the adapter 10612 * @cid: the context id 10613 * @ctype: the context type 10614 * @data: where to store the context data 10615 * 10616 * Reads an SGE context directly, bypassing FW. This is only for 10617 * debugging when FW is unavailable. 10618 */ 10619 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype, 10620 u32 *data) 10621 { 10622 int i, ret; 10623 10624 t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype)); 10625 ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1); 10626 if (!ret) 10627 for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4) 10628 *data++ = t4_read_reg(adap, i); 10629 return ret; 10630 } 10631 10632 int t4_sched_config(struct adapter *adapter, int type, int minmaxen, 10633 int sleep_ok) 10634 { 10635 struct fw_sched_cmd cmd; 10636 10637 memset(&cmd, 0, sizeof(cmd)); 10638 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | 10639 F_FW_CMD_REQUEST | 10640 F_FW_CMD_WRITE); 10641 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10642 10643 cmd.u.config.sc = FW_SCHED_SC_CONFIG; 10644 cmd.u.config.type = type; 10645 cmd.u.config.minmaxen = minmaxen; 10646 10647 return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), 10648 NULL, sleep_ok); 10649 } 10650 10651 int t4_sched_params(struct adapter *adapter, int type, int level, int mode, 10652 int rateunit, int ratemode, int channel, int cl, 10653 int minrate, int maxrate, int weight, int pktsize, 10654 int burstsize, int sleep_ok) 10655 { 10656 struct fw_sched_cmd cmd; 10657 10658 memset(&cmd, 0, sizeof(cmd)); 10659 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | 10660 F_FW_CMD_REQUEST | 10661 F_FW_CMD_WRITE); 10662 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10663 10664 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10665 cmd.u.params.type = type; 10666 cmd.u.params.level = level; 10667 cmd.u.params.mode = mode; 10668 cmd.u.params.ch = channel; 10669 cmd.u.params.cl = cl; 10670 cmd.u.params.unit = rateunit; 10671 cmd.u.params.rate = ratemode; 10672 cmd.u.params.min = cpu_to_be32(minrate); 10673 cmd.u.params.max = cpu_to_be32(maxrate); 10674 cmd.u.params.weight = cpu_to_be16(weight); 10675 cmd.u.params.pktsize = cpu_to_be16(pktsize); 10676 cmd.u.params.burstsize = cpu_to_be16(burstsize); 10677 10678 return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), 10679 NULL, sleep_ok); 10680 } 10681 10682 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode, 10683 unsigned int maxrate, int sleep_ok) 10684 { 10685 struct fw_sched_cmd cmd; 10686 10687 memset(&cmd, 0, sizeof(cmd)); 10688 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | 10689 F_FW_CMD_REQUEST | 10690 F_FW_CMD_WRITE); 10691 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10692 10693 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10694 cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED; 10695 cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL; 10696 cmd.u.params.ch = channel; 10697 cmd.u.params.rate = ratemode; /* REL or ABS */ 10698 cmd.u.params.max = cpu_to_be32(maxrate);/* % or kbps */ 10699 10700 return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), 10701 NULL, sleep_ok); 10702 } 10703 10704 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl, 10705 int weight, int sleep_ok) 10706 { 10707 struct fw_sched_cmd cmd; 10708 10709 if (weight < 0 || weight > 100) 10710 return -EINVAL; 10711 10712 memset(&cmd, 0, sizeof(cmd)); 10713 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | 10714 F_FW_CMD_REQUEST | 10715 F_FW_CMD_WRITE); 10716 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10717 10718 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10719 cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED; 10720 cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR; 10721 cmd.u.params.ch = channel; 10722 cmd.u.params.cl = cl; 10723 cmd.u.params.weight = cpu_to_be16(weight); 10724 10725 return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), 10726 NULL, sleep_ok); 10727 } 10728 10729 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl, 10730 int mode, unsigned int maxrate, int pktsize, int sleep_ok) 10731 { 10732 struct fw_sched_cmd cmd; 10733 10734 memset(&cmd, 0, sizeof(cmd)); 10735 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | 10736 F_FW_CMD_REQUEST | 10737 F_FW_CMD_WRITE); 10738 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10739 10740 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10741 cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED; 10742 cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL; 10743 cmd.u.params.mode = mode; 10744 cmd.u.params.ch = channel; 10745 cmd.u.params.cl = cl; 10746 cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE; 10747 cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS; 10748 cmd.u.params.max = cpu_to_be32(maxrate); 10749 cmd.u.params.pktsize = cpu_to_be16(pktsize); 10750 10751 return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), 10752 NULL, sleep_ok); 10753 } 10754 10755 /* 10756 * t4_config_watchdog - configure (enable/disable) a watchdog timer 10757 * @adapter: the adapter 10758 * @mbox: mailbox to use for the FW command 10759 * @pf: the PF owning the queue 10760 * @vf: the VF owning the queue 10761 * @timeout: watchdog timeout in ms 10762 * @action: watchdog timer / action 10763 * 10764 * There are separate watchdog timers for each possible watchdog 10765 * action. Configure one of the watchdog timers by setting a non-zero 10766 * timeout. Disable a watchdog timer by using a timeout of zero. 10767 */ 10768 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox, 10769 unsigned int pf, unsigned int vf, 10770 unsigned int timeout, unsigned int action) 10771 { 10772 struct fw_watchdog_cmd wdog; 10773 unsigned int ticks; 10774 10775 /* 10776 * The watchdog command expects a timeout in units of 10ms so we need 10777 * to convert it here (via rounding) and force a minimum of one 10ms 10778 * "tick" if the timeout is non-zero but the conversion results in 0 10779 * ticks. 10780 */ 10781 ticks = (timeout + 5)/10; 10782 if (timeout && !ticks) 10783 ticks = 1; 10784 10785 memset(&wdog, 0, sizeof wdog); 10786 wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) | 10787 F_FW_CMD_REQUEST | 10788 F_FW_CMD_WRITE | 10789 V_FW_PARAMS_CMD_PFN(pf) | 10790 V_FW_PARAMS_CMD_VFN(vf)); 10791 wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog)); 10792 wdog.timeout = cpu_to_be32(ticks); 10793 wdog.action = cpu_to_be32(action); 10794 10795 return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL); 10796 } 10797 10798 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level) 10799 { 10800 struct fw_devlog_cmd devlog_cmd; 10801 int ret; 10802 10803 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 10804 devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) | 10805 F_FW_CMD_REQUEST | F_FW_CMD_READ); 10806 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 10807 ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd, 10808 sizeof(devlog_cmd), &devlog_cmd); 10809 if (ret) 10810 return ret; 10811 10812 *level = devlog_cmd.level; 10813 return 0; 10814 } 10815 10816 int t4_set_devlog_level(struct adapter *adapter, unsigned int level) 10817 { 10818 struct fw_devlog_cmd devlog_cmd; 10819 10820 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 10821 devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) | 10822 F_FW_CMD_REQUEST | 10823 F_FW_CMD_WRITE); 10824 devlog_cmd.level = level; 10825 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 10826 return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd, 10827 sizeof(devlog_cmd), &devlog_cmd); 10828 } 10829