xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision d06955f9bdb1416d9196043ed781f9b36dae9adc)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 
34 #include <sys/param.h>
35 #include <sys/eventhandler.h>
36 
37 #include "common.h"
38 #include "t4_regs.h"
39 #include "t4_regs_values.h"
40 #include "firmware/t4fw_interface.h"
41 
42 #undef msleep
43 #define msleep(x) do { \
44 	if (cold) \
45 		DELAY((x) * 1000); \
46 	else \
47 		pause("t4hw", (x) * hz / 1000); \
48 } while (0)
49 
50 /**
51  *	t4_wait_op_done_val - wait until an operation is completed
52  *	@adapter: the adapter performing the operation
53  *	@reg: the register to check for completion
54  *	@mask: a single-bit field within @reg that indicates completion
55  *	@polarity: the value of the field when the operation is completed
56  *	@attempts: number of check iterations
57  *	@delay: delay in usecs between iterations
58  *	@valp: where to store the value of the register at completion time
59  *
60  *	Wait until an operation is completed by checking a bit in a register
61  *	up to @attempts times.  If @valp is not NULL the value of the register
62  *	at the time it indicated completion is stored there.  Returns 0 if the
63  *	operation completes and	-EAGAIN	otherwise.
64  */
65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
66 			       int polarity, int attempts, int delay, u32 *valp)
67 {
68 	while (1) {
69 		u32 val = t4_read_reg(adapter, reg);
70 
71 		if (!!(val & mask) == polarity) {
72 			if (valp)
73 				*valp = val;
74 			return 0;
75 		}
76 		if (--attempts == 0)
77 			return -EAGAIN;
78 		if (delay)
79 			udelay(delay);
80 	}
81 }
82 
83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
84 				  int polarity, int attempts, int delay)
85 {
86 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
87 				   delay, NULL);
88 }
89 
90 /**
91  *	t4_set_reg_field - set a register field to a value
92  *	@adapter: the adapter to program
93  *	@addr: the register address
94  *	@mask: specifies the portion of the register to modify
95  *	@val: the new value for the register field
96  *
97  *	Sets a register field specified by the supplied mask to the
98  *	given value.
99  */
100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
101 		      u32 val)
102 {
103 	u32 v = t4_read_reg(adapter, addr) & ~mask;
104 
105 	t4_write_reg(adapter, addr, v | val);
106 	(void) t4_read_reg(adapter, addr);      /* flush */
107 }
108 
109 /**
110  *	t4_read_indirect - read indirectly addressed registers
111  *	@adap: the adapter
112  *	@addr_reg: register holding the indirect address
113  *	@data_reg: register holding the value of the indirect register
114  *	@vals: where the read register values are stored
115  *	@nregs: how many indirect registers to read
116  *	@start_idx: index of first indirect register to read
117  *
118  *	Reads registers that are accessed indirectly through an address/data
119  *	register pair.
120  */
121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
122 			     unsigned int data_reg, u32 *vals,
123 			     unsigned int nregs, unsigned int start_idx)
124 {
125 	while (nregs--) {
126 		t4_write_reg(adap, addr_reg, start_idx);
127 		*vals++ = t4_read_reg(adap, data_reg);
128 		start_idx++;
129 	}
130 }
131 
132 /**
133  *	t4_write_indirect - write indirectly addressed registers
134  *	@adap: the adapter
135  *	@addr_reg: register holding the indirect addresses
136  *	@data_reg: register holding the value for the indirect registers
137  *	@vals: values to write
138  *	@nregs: how many indirect registers to write
139  *	@start_idx: address of first indirect register to write
140  *
141  *	Writes a sequential block of registers that are accessed indirectly
142  *	through an address/data register pair.
143  */
144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
145 		       unsigned int data_reg, const u32 *vals,
146 		       unsigned int nregs, unsigned int start_idx)
147 {
148 	while (nregs--) {
149 		t4_write_reg(adap, addr_reg, start_idx++);
150 		t4_write_reg(adap, data_reg, *vals++);
151 	}
152 }
153 
154 /*
155  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
156  * mechanism.  This guarantees that we get the real value even if we're
157  * operating within a Virtual Machine and the Hypervisor is trapping our
158  * Configuration Space accesses.
159  *
160  * N.B. This routine should only be used as a last resort: the firmware uses
161  *      the backdoor registers on a regular basis and we can end up
162  *      conflicting with it's uses!
163  */
164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
165 {
166 	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
167 	u32 val;
168 
169 	if (chip_id(adap) <= CHELSIO_T5)
170 		req |= F_ENABLE;
171 	else
172 		req |= F_T6_ENABLE;
173 
174 	if (is_t4(adap))
175 		req |= F_LOCALCFG;
176 
177 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
178 	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
179 
180 	/*
181 	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
182 	 * Configuration Space read.  (None of the other fields matter when
183 	 * F_ENABLE is 0 so a simple register write is easier than a
184 	 * read-modify-write via t4_set_reg_field().)
185 	 */
186 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
187 
188 	return val;
189 }
190 
191 /*
192  * t4_report_fw_error - report firmware error
193  * @adap: the adapter
194  *
195  * The adapter firmware can indicate error conditions to the host.
196  * If the firmware has indicated an error, print out the reason for
197  * the firmware error.
198  */
199 static void t4_report_fw_error(struct adapter *adap)
200 {
201 	static const char *const reason[] = {
202 		"Crash",			/* PCIE_FW_EVAL_CRASH */
203 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
204 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
205 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
206 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
207 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
208 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
209 		"Reserved",			/* reserved */
210 	};
211 	u32 pcie_fw;
212 
213 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
214 	if (pcie_fw & F_PCIE_FW_ERR)
215 		CH_ERR(adap, "Firmware reports adapter error: %s\n",
216 			reason[G_PCIE_FW_EVAL(pcie_fw)]);
217 }
218 
219 /*
220  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
221  */
222 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
223 			 u32 mbox_addr)
224 {
225 	for ( ; nflit; nflit--, mbox_addr += 8)
226 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
227 }
228 
229 /*
230  * Handle a FW assertion reported in a mailbox.
231  */
232 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
233 {
234 	CH_ALERT(adap,
235 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
236 		  asrt->u.assert.filename_0_7,
237 		  be32_to_cpu(asrt->u.assert.line),
238 		  be32_to_cpu(asrt->u.assert.x),
239 		  be32_to_cpu(asrt->u.assert.y));
240 }
241 
242 #define X_CIM_PF_NOACCESS 0xeeeeeeee
243 /**
244  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
245  *	@adap: the adapter
246  *	@mbox: index of the mailbox to use
247  *	@cmd: the command to write
248  *	@size: command length in bytes
249  *	@rpl: where to optionally store the reply
250  *	@sleep_ok: if true we may sleep while awaiting command completion
251  *	@timeout: time to wait for command to finish before timing out
252  *		(negative implies @sleep_ok=false)
253  *
254  *	Sends the given command to FW through the selected mailbox and waits
255  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
256  *	store the FW's reply to the command.  The command and its optional
257  *	reply are of the same length.  Some FW commands like RESET and
258  *	INITIALIZE can take a considerable amount of time to execute.
259  *	@sleep_ok determines whether we may sleep while awaiting the response.
260  *	If sleeping is allowed we use progressive backoff otherwise we spin.
261  *	Note that passing in a negative @timeout is an alternate mechanism
262  *	for specifying @sleep_ok=false.  This is useful when a higher level
263  *	interface allows for specification of @timeout but not @sleep_ok ...
264  *
265  *	The return value is 0 on success or a negative errno on failure.  A
266  *	failure can happen either because we are not able to execute the
267  *	command or FW executes it but signals an error.  In the latter case
268  *	the return value is the error code indicated by FW (negated).
269  */
270 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
271 			    int size, void *rpl, bool sleep_ok, int timeout)
272 {
273 	/*
274 	 * We delay in small increments at first in an effort to maintain
275 	 * responsiveness for simple, fast executing commands but then back
276 	 * off to larger delays to a maximum retry delay.
277 	 */
278 	static const int delay[] = {
279 		1, 1, 3, 5, 10, 10, 20, 50, 100
280 	};
281 	u32 v;
282 	u64 res;
283 	int i, ms, delay_idx, ret;
284 	const __be64 *p = cmd;
285 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
286 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
287 	u32 ctl;
288 	__be64 cmd_rpl[MBOX_LEN/8];
289 	u32 pcie_fw;
290 
291 	if (adap->flags & CHK_MBOX_ACCESS)
292 		ASSERT_SYNCHRONIZED_OP(adap);
293 
294 	if ((size & 15) || size > MBOX_LEN)
295 		return -EINVAL;
296 
297 	if (adap->flags & IS_VF) {
298 		if (is_t6(adap))
299 			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
300 		else
301 			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
302 		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
303 	}
304 
305 	/*
306 	 * If we have a negative timeout, that implies that we can't sleep.
307 	 */
308 	if (timeout < 0) {
309 		sleep_ok = false;
310 		timeout = -timeout;
311 	}
312 
313 	/*
314 	 * Attempt to gain access to the mailbox.
315 	 */
316 	for (i = 0; i < 4; i++) {
317 		ctl = t4_read_reg(adap, ctl_reg);
318 		v = G_MBOWNER(ctl);
319 		if (v != X_MBOWNER_NONE)
320 			break;
321 	}
322 
323 	/*
324 	 * If we were unable to gain access, dequeue ourselves from the
325 	 * mailbox atomic access list and report the error to our caller.
326 	 */
327 	if (v != X_MBOWNER_PL) {
328 		t4_report_fw_error(adap);
329 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
330 		return ret;
331 	}
332 
333 	/*
334 	 * If we gain ownership of the mailbox and there's a "valid" message
335 	 * in it, this is likely an asynchronous error message from the
336 	 * firmware.  So we'll report that and then proceed on with attempting
337 	 * to issue our own command ... which may well fail if the error
338 	 * presaged the firmware crashing ...
339 	 */
340 	if (ctl & F_MBMSGVALID) {
341 		CH_ERR(adap, "found VALID command in mbox %u: %016llx %016llx "
342 		       "%016llx %016llx %016llx %016llx %016llx %016llx\n",
343 		       mbox, (unsigned long long)t4_read_reg64(adap, data_reg),
344 		       (unsigned long long)t4_read_reg64(adap, data_reg + 8),
345 		       (unsigned long long)t4_read_reg64(adap, data_reg + 16),
346 		       (unsigned long long)t4_read_reg64(adap, data_reg + 24),
347 		       (unsigned long long)t4_read_reg64(adap, data_reg + 32),
348 		       (unsigned long long)t4_read_reg64(adap, data_reg + 40),
349 		       (unsigned long long)t4_read_reg64(adap, data_reg + 48),
350 		       (unsigned long long)t4_read_reg64(adap, data_reg + 56));
351 	}
352 
353 	/*
354 	 * Copy in the new mailbox command and send it on its way ...
355 	 */
356 	for (i = 0; i < size; i += 8, p++)
357 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
358 
359 	if (adap->flags & IS_VF) {
360 		/*
361 		 * For the VFs, the Mailbox Data "registers" are
362 		 * actually backed by T4's "MA" interface rather than
363 		 * PL Registers (as is the case for the PFs).  Because
364 		 * these are in different coherency domains, the write
365 		 * to the VF's PL-register-backed Mailbox Control can
366 		 * race in front of the writes to the MA-backed VF
367 		 * Mailbox Data "registers".  So we need to do a
368 		 * read-back on at least one byte of the VF Mailbox
369 		 * Data registers before doing the write to the VF
370 		 * Mailbox Control register.
371 		 */
372 		t4_read_reg(adap, data_reg);
373 	}
374 
375 	CH_DUMP_MBOX(adap, mbox, data_reg);
376 
377 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
378 	t4_read_reg(adap, ctl_reg);	/* flush write */
379 
380 	delay_idx = 0;
381 	ms = delay[0];
382 
383 	/*
384 	 * Loop waiting for the reply; bail out if we time out or the firmware
385 	 * reports an error.
386 	 */
387 	pcie_fw = 0;
388 	for (i = 0; i < timeout; i += ms) {
389 		if (!(adap->flags & IS_VF)) {
390 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
391 			if (pcie_fw & F_PCIE_FW_ERR)
392 				break;
393 		}
394 		if (sleep_ok) {
395 			ms = delay[delay_idx];  /* last element may repeat */
396 			if (delay_idx < ARRAY_SIZE(delay) - 1)
397 				delay_idx++;
398 			msleep(ms);
399 		} else {
400 			mdelay(ms);
401 		}
402 
403 		v = t4_read_reg(adap, ctl_reg);
404 		if (v == X_CIM_PF_NOACCESS)
405 			continue;
406 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
407 			if (!(v & F_MBMSGVALID)) {
408 				t4_write_reg(adap, ctl_reg,
409 					     V_MBOWNER(X_MBOWNER_NONE));
410 				continue;
411 			}
412 
413 			/*
414 			 * Retrieve the command reply and release the mailbox.
415 			 */
416 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
417 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
418 
419 			CH_DUMP_MBOX(adap, mbox, data_reg);
420 
421 			res = be64_to_cpu(cmd_rpl[0]);
422 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
423 				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
424 				res = V_FW_CMD_RETVAL(EIO);
425 			} else if (rpl)
426 				memcpy(rpl, cmd_rpl, size);
427 			return -G_FW_CMD_RETVAL((int)res);
428 		}
429 	}
430 
431 	/*
432 	 * We timed out waiting for a reply to our mailbox command.  Report
433 	 * the error and also check to see if the firmware reported any
434 	 * errors ...
435 	 */
436 	ret = (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT;
437 	CH_ERR(adap, "command %#x in mailbox %d timed out\n",
438 	       *(const u8 *)cmd, mbox);
439 
440 	/* If DUMP_MBOX is set the mbox has already been dumped */
441 	if ((adap->debug_flags & DF_DUMP_MBOX) == 0) {
442 		p = cmd;
443 		CH_ERR(adap, "mbox: %016llx %016llx %016llx %016llx "
444 		    "%016llx %016llx %016llx %016llx\n",
445 		    (unsigned long long)be64_to_cpu(p[0]),
446 		    (unsigned long long)be64_to_cpu(p[1]),
447 		    (unsigned long long)be64_to_cpu(p[2]),
448 		    (unsigned long long)be64_to_cpu(p[3]),
449 		    (unsigned long long)be64_to_cpu(p[4]),
450 		    (unsigned long long)be64_to_cpu(p[5]),
451 		    (unsigned long long)be64_to_cpu(p[6]),
452 		    (unsigned long long)be64_to_cpu(p[7]));
453 	}
454 
455 	t4_report_fw_error(adap);
456 	t4_fatal_err(adap);
457 	return ret;
458 }
459 
460 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
461 		    void *rpl, bool sleep_ok)
462 {
463 		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
464 					       sleep_ok, FW_CMD_MAX_TIMEOUT);
465 
466 }
467 
468 static int t4_edc_err_read(struct adapter *adap, int idx)
469 {
470 	u32 edc_ecc_err_addr_reg;
471 	u32 edc_bist_status_rdata_reg;
472 
473 	if (is_t4(adap)) {
474 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
475 		return 0;
476 	}
477 	if (idx != MEM_EDC0 && idx != MEM_EDC1) {
478 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
479 		return 0;
480 	}
481 
482 	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
483 	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
484 
485 	CH_WARN(adap,
486 		"edc%d err addr 0x%x: 0x%x.\n",
487 		idx, edc_ecc_err_addr_reg,
488 		t4_read_reg(adap, edc_ecc_err_addr_reg));
489 	CH_WARN(adap,
490 	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
491 		edc_bist_status_rdata_reg,
492 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
493 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
494 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
495 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
496 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
497 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
498 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
499 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
500 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
501 
502 	return 0;
503 }
504 
505 /**
506  *	t4_mc_read - read from MC through backdoor accesses
507  *	@adap: the adapter
508  *	@idx: which MC to access
509  *	@addr: address of first byte requested
510  *	@data: 64 bytes of data containing the requested address
511  *	@ecc: where to store the corresponding 64-bit ECC word
512  *
513  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
514  *	that covers the requested address @addr.  If @parity is not %NULL it
515  *	is assigned the 64-bit ECC word for the read data.
516  */
517 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
518 {
519 	int i;
520 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
521 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
522 
523 	if (is_t4(adap)) {
524 		mc_bist_cmd_reg = A_MC_BIST_CMD;
525 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
526 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
527 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
528 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
529 	} else {
530 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
531 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
532 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
533 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
534 						  idx);
535 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
536 						  idx);
537 	}
538 
539 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
540 		return -EBUSY;
541 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
542 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
543 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
544 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
545 		     F_START_BIST | V_BIST_CMD_GAP(1));
546 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
547 	if (i)
548 		return i;
549 
550 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
551 
552 	for (i = 15; i >= 0; i--)
553 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
554 	if (ecc)
555 		*ecc = t4_read_reg64(adap, MC_DATA(16));
556 #undef MC_DATA
557 	return 0;
558 }
559 
560 /**
561  *	t4_edc_read - read from EDC through backdoor accesses
562  *	@adap: the adapter
563  *	@idx: which EDC to access
564  *	@addr: address of first byte requested
565  *	@data: 64 bytes of data containing the requested address
566  *	@ecc: where to store the corresponding 64-bit ECC word
567  *
568  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
569  *	that covers the requested address @addr.  If @parity is not %NULL it
570  *	is assigned the 64-bit ECC word for the read data.
571  */
572 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
573 {
574 	int i;
575 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
576 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
577 
578 	if (is_t4(adap)) {
579 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
580 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
581 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
582 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
583 						    idx);
584 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
585 						    idx);
586 	} else {
587 /*
588  * These macro are missing in t4_regs.h file.
589  * Added temporarily for testing.
590  */
591 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
592 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
593 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
594 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
595 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
596 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
597 						    idx);
598 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
599 						    idx);
600 #undef EDC_REG_T5
601 #undef EDC_STRIDE_T5
602 	}
603 
604 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
605 		return -EBUSY;
606 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
607 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
608 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
609 	t4_write_reg(adap, edc_bist_cmd_reg,
610 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
611 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
612 	if (i)
613 		return i;
614 
615 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
616 
617 	for (i = 15; i >= 0; i--)
618 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
619 	if (ecc)
620 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
621 #undef EDC_DATA
622 	return 0;
623 }
624 
625 /**
626  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
627  *	@adap: the adapter
628  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
629  *	@addr: address within indicated memory type
630  *	@len: amount of memory to read
631  *	@buf: host memory buffer
632  *
633  *	Reads an [almost] arbitrary memory region in the firmware: the
634  *	firmware memory address, length and host buffer must be aligned on
635  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
636  *	the firmware's memory.  If this memory contains data structures which
637  *	contain multi-byte integers, it's the callers responsibility to
638  *	perform appropriate byte order conversions.
639  */
640 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
641 		__be32 *buf)
642 {
643 	u32 pos, start, end, offset;
644 	int ret;
645 
646 	/*
647 	 * Argument sanity checks ...
648 	 */
649 	if ((addr & 0x3) || (len & 0x3))
650 		return -EINVAL;
651 
652 	/*
653 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
654 	 * need to round down the start and round up the end.  We'll start
655 	 * copying out of the first line at (addr - start) a word at a time.
656 	 */
657 	start = rounddown2(addr, 64);
658 	end = roundup2(addr + len, 64);
659 	offset = (addr - start)/sizeof(__be32);
660 
661 	for (pos = start; pos < end; pos += 64, offset = 0) {
662 		__be32 data[16];
663 
664 		/*
665 		 * Read the chip's memory block and bail if there's an error.
666 		 */
667 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
668 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
669 		else
670 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
671 		if (ret)
672 			return ret;
673 
674 		/*
675 		 * Copy the data into the caller's memory buffer.
676 		 */
677 		while (offset < 16 && len > 0) {
678 			*buf++ = data[offset++];
679 			len -= sizeof(__be32);
680 		}
681 	}
682 
683 	return 0;
684 }
685 
686 /*
687  * Return the specified PCI-E Configuration Space register from our Physical
688  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
689  * since we prefer to let the firmware own all of these registers, but if that
690  * fails we go for it directly ourselves.
691  */
692 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
693 {
694 
695 	/*
696 	 * If fw_attach != 0, construct and send the Firmware LDST Command to
697 	 * retrieve the specified PCI-E Configuration Space register.
698 	 */
699 	if (drv_fw_attach != 0) {
700 		struct fw_ldst_cmd ldst_cmd;
701 		int ret;
702 
703 		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
704 		ldst_cmd.op_to_addrspace =
705 			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
706 				    F_FW_CMD_REQUEST |
707 				    F_FW_CMD_READ |
708 				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
709 		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
710 		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
711 		ldst_cmd.u.pcie.ctrl_to_fn =
712 			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
713 		ldst_cmd.u.pcie.r = reg;
714 
715 		/*
716 		 * If the LDST Command succeeds, return the result, otherwise
717 		 * fall through to reading it directly ourselves ...
718 		 */
719 		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
720 				 &ldst_cmd);
721 		if (ret == 0)
722 			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
723 
724 		CH_WARN(adap, "Firmware failed to return "
725 			"Configuration Space register %d, err = %d\n",
726 			reg, -ret);
727 	}
728 
729 	/*
730 	 * Read the desired Configuration Space register via the PCI-E
731 	 * Backdoor mechanism.
732 	 */
733 	return t4_hw_pci_read_cfg4(adap, reg);
734 }
735 
736 /**
737  *	t4_get_regs_len - return the size of the chips register set
738  *	@adapter: the adapter
739  *
740  *	Returns the size of the chip's BAR0 register space.
741  */
742 unsigned int t4_get_regs_len(struct adapter *adapter)
743 {
744 	unsigned int chip_version = chip_id(adapter);
745 
746 	switch (chip_version) {
747 	case CHELSIO_T4:
748 		if (adapter->flags & IS_VF)
749 			return FW_T4VF_REGMAP_SIZE;
750 		return T4_REGMAP_SIZE;
751 
752 	case CHELSIO_T5:
753 	case CHELSIO_T6:
754 		if (adapter->flags & IS_VF)
755 			return FW_T4VF_REGMAP_SIZE;
756 		return T5_REGMAP_SIZE;
757 	}
758 
759 	CH_ERR(adapter,
760 		"Unsupported chip version %d\n", chip_version);
761 	return 0;
762 }
763 
764 /**
765  *	t4_get_regs - read chip registers into provided buffer
766  *	@adap: the adapter
767  *	@buf: register buffer
768  *	@buf_size: size (in bytes) of register buffer
769  *
770  *	If the provided register buffer isn't large enough for the chip's
771  *	full register range, the register dump will be truncated to the
772  *	register buffer's size.
773  */
774 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
775 {
776 	static const unsigned int t4_reg_ranges[] = {
777 		0x1008, 0x1108,
778 		0x1180, 0x1184,
779 		0x1190, 0x1194,
780 		0x11a0, 0x11a4,
781 		0x11b0, 0x11b4,
782 		0x11fc, 0x123c,
783 		0x1300, 0x173c,
784 		0x1800, 0x18fc,
785 		0x3000, 0x30d8,
786 		0x30e0, 0x30e4,
787 		0x30ec, 0x5910,
788 		0x5920, 0x5924,
789 		0x5960, 0x5960,
790 		0x5968, 0x5968,
791 		0x5970, 0x5970,
792 		0x5978, 0x5978,
793 		0x5980, 0x5980,
794 		0x5988, 0x5988,
795 		0x5990, 0x5990,
796 		0x5998, 0x5998,
797 		0x59a0, 0x59d4,
798 		0x5a00, 0x5ae0,
799 		0x5ae8, 0x5ae8,
800 		0x5af0, 0x5af0,
801 		0x5af8, 0x5af8,
802 		0x6000, 0x6098,
803 		0x6100, 0x6150,
804 		0x6200, 0x6208,
805 		0x6240, 0x6248,
806 		0x6280, 0x62b0,
807 		0x62c0, 0x6338,
808 		0x6370, 0x638c,
809 		0x6400, 0x643c,
810 		0x6500, 0x6524,
811 		0x6a00, 0x6a04,
812 		0x6a14, 0x6a38,
813 		0x6a60, 0x6a70,
814 		0x6a78, 0x6a78,
815 		0x6b00, 0x6b0c,
816 		0x6b1c, 0x6b84,
817 		0x6bf0, 0x6bf8,
818 		0x6c00, 0x6c0c,
819 		0x6c1c, 0x6c84,
820 		0x6cf0, 0x6cf8,
821 		0x6d00, 0x6d0c,
822 		0x6d1c, 0x6d84,
823 		0x6df0, 0x6df8,
824 		0x6e00, 0x6e0c,
825 		0x6e1c, 0x6e84,
826 		0x6ef0, 0x6ef8,
827 		0x6f00, 0x6f0c,
828 		0x6f1c, 0x6f84,
829 		0x6ff0, 0x6ff8,
830 		0x7000, 0x700c,
831 		0x701c, 0x7084,
832 		0x70f0, 0x70f8,
833 		0x7100, 0x710c,
834 		0x711c, 0x7184,
835 		0x71f0, 0x71f8,
836 		0x7200, 0x720c,
837 		0x721c, 0x7284,
838 		0x72f0, 0x72f8,
839 		0x7300, 0x730c,
840 		0x731c, 0x7384,
841 		0x73f0, 0x73f8,
842 		0x7400, 0x7450,
843 		0x7500, 0x7530,
844 		0x7600, 0x760c,
845 		0x7614, 0x761c,
846 		0x7680, 0x76cc,
847 		0x7700, 0x7798,
848 		0x77c0, 0x77fc,
849 		0x7900, 0x79fc,
850 		0x7b00, 0x7b58,
851 		0x7b60, 0x7b84,
852 		0x7b8c, 0x7c38,
853 		0x7d00, 0x7d38,
854 		0x7d40, 0x7d80,
855 		0x7d8c, 0x7ddc,
856 		0x7de4, 0x7e04,
857 		0x7e10, 0x7e1c,
858 		0x7e24, 0x7e38,
859 		0x7e40, 0x7e44,
860 		0x7e4c, 0x7e78,
861 		0x7e80, 0x7ea4,
862 		0x7eac, 0x7edc,
863 		0x7ee8, 0x7efc,
864 		0x8dc0, 0x8e04,
865 		0x8e10, 0x8e1c,
866 		0x8e30, 0x8e78,
867 		0x8ea0, 0x8eb8,
868 		0x8ec0, 0x8f6c,
869 		0x8fc0, 0x9008,
870 		0x9010, 0x9058,
871 		0x9060, 0x9060,
872 		0x9068, 0x9074,
873 		0x90fc, 0x90fc,
874 		0x9400, 0x9408,
875 		0x9410, 0x9458,
876 		0x9600, 0x9600,
877 		0x9608, 0x9638,
878 		0x9640, 0x96bc,
879 		0x9800, 0x9808,
880 		0x9820, 0x983c,
881 		0x9850, 0x9864,
882 		0x9c00, 0x9c6c,
883 		0x9c80, 0x9cec,
884 		0x9d00, 0x9d6c,
885 		0x9d80, 0x9dec,
886 		0x9e00, 0x9e6c,
887 		0x9e80, 0x9eec,
888 		0x9f00, 0x9f6c,
889 		0x9f80, 0x9fec,
890 		0xd004, 0xd004,
891 		0xd010, 0xd03c,
892 		0xdfc0, 0xdfe0,
893 		0xe000, 0xea7c,
894 		0xf000, 0x11110,
895 		0x11118, 0x11190,
896 		0x19040, 0x1906c,
897 		0x19078, 0x19080,
898 		0x1908c, 0x190e4,
899 		0x190f0, 0x190f8,
900 		0x19100, 0x19110,
901 		0x19120, 0x19124,
902 		0x19150, 0x19194,
903 		0x1919c, 0x191b0,
904 		0x191d0, 0x191e8,
905 		0x19238, 0x1924c,
906 		0x193f8, 0x1943c,
907 		0x1944c, 0x19474,
908 		0x19490, 0x194e0,
909 		0x194f0, 0x194f8,
910 		0x19800, 0x19c08,
911 		0x19c10, 0x19c90,
912 		0x19ca0, 0x19ce4,
913 		0x19cf0, 0x19d40,
914 		0x19d50, 0x19d94,
915 		0x19da0, 0x19de8,
916 		0x19df0, 0x19e40,
917 		0x19e50, 0x19e90,
918 		0x19ea0, 0x19f4c,
919 		0x1a000, 0x1a004,
920 		0x1a010, 0x1a06c,
921 		0x1a0b0, 0x1a0e4,
922 		0x1a0ec, 0x1a0f4,
923 		0x1a100, 0x1a108,
924 		0x1a114, 0x1a120,
925 		0x1a128, 0x1a130,
926 		0x1a138, 0x1a138,
927 		0x1a190, 0x1a1c4,
928 		0x1a1fc, 0x1a1fc,
929 		0x1e040, 0x1e04c,
930 		0x1e284, 0x1e28c,
931 		0x1e2c0, 0x1e2c0,
932 		0x1e2e0, 0x1e2e0,
933 		0x1e300, 0x1e384,
934 		0x1e3c0, 0x1e3c8,
935 		0x1e440, 0x1e44c,
936 		0x1e684, 0x1e68c,
937 		0x1e6c0, 0x1e6c0,
938 		0x1e6e0, 0x1e6e0,
939 		0x1e700, 0x1e784,
940 		0x1e7c0, 0x1e7c8,
941 		0x1e840, 0x1e84c,
942 		0x1ea84, 0x1ea8c,
943 		0x1eac0, 0x1eac0,
944 		0x1eae0, 0x1eae0,
945 		0x1eb00, 0x1eb84,
946 		0x1ebc0, 0x1ebc8,
947 		0x1ec40, 0x1ec4c,
948 		0x1ee84, 0x1ee8c,
949 		0x1eec0, 0x1eec0,
950 		0x1eee0, 0x1eee0,
951 		0x1ef00, 0x1ef84,
952 		0x1efc0, 0x1efc8,
953 		0x1f040, 0x1f04c,
954 		0x1f284, 0x1f28c,
955 		0x1f2c0, 0x1f2c0,
956 		0x1f2e0, 0x1f2e0,
957 		0x1f300, 0x1f384,
958 		0x1f3c0, 0x1f3c8,
959 		0x1f440, 0x1f44c,
960 		0x1f684, 0x1f68c,
961 		0x1f6c0, 0x1f6c0,
962 		0x1f6e0, 0x1f6e0,
963 		0x1f700, 0x1f784,
964 		0x1f7c0, 0x1f7c8,
965 		0x1f840, 0x1f84c,
966 		0x1fa84, 0x1fa8c,
967 		0x1fac0, 0x1fac0,
968 		0x1fae0, 0x1fae0,
969 		0x1fb00, 0x1fb84,
970 		0x1fbc0, 0x1fbc8,
971 		0x1fc40, 0x1fc4c,
972 		0x1fe84, 0x1fe8c,
973 		0x1fec0, 0x1fec0,
974 		0x1fee0, 0x1fee0,
975 		0x1ff00, 0x1ff84,
976 		0x1ffc0, 0x1ffc8,
977 		0x20000, 0x2002c,
978 		0x20100, 0x2013c,
979 		0x20190, 0x201a0,
980 		0x201a8, 0x201b8,
981 		0x201c4, 0x201c8,
982 		0x20200, 0x20318,
983 		0x20400, 0x204b4,
984 		0x204c0, 0x20528,
985 		0x20540, 0x20614,
986 		0x21000, 0x21040,
987 		0x2104c, 0x21060,
988 		0x210c0, 0x210ec,
989 		0x21200, 0x21268,
990 		0x21270, 0x21284,
991 		0x212fc, 0x21388,
992 		0x21400, 0x21404,
993 		0x21500, 0x21500,
994 		0x21510, 0x21518,
995 		0x2152c, 0x21530,
996 		0x2153c, 0x2153c,
997 		0x21550, 0x21554,
998 		0x21600, 0x21600,
999 		0x21608, 0x2161c,
1000 		0x21624, 0x21628,
1001 		0x21630, 0x21634,
1002 		0x2163c, 0x2163c,
1003 		0x21700, 0x2171c,
1004 		0x21780, 0x2178c,
1005 		0x21800, 0x21818,
1006 		0x21820, 0x21828,
1007 		0x21830, 0x21848,
1008 		0x21850, 0x21854,
1009 		0x21860, 0x21868,
1010 		0x21870, 0x21870,
1011 		0x21878, 0x21898,
1012 		0x218a0, 0x218a8,
1013 		0x218b0, 0x218c8,
1014 		0x218d0, 0x218d4,
1015 		0x218e0, 0x218e8,
1016 		0x218f0, 0x218f0,
1017 		0x218f8, 0x21a18,
1018 		0x21a20, 0x21a28,
1019 		0x21a30, 0x21a48,
1020 		0x21a50, 0x21a54,
1021 		0x21a60, 0x21a68,
1022 		0x21a70, 0x21a70,
1023 		0x21a78, 0x21a98,
1024 		0x21aa0, 0x21aa8,
1025 		0x21ab0, 0x21ac8,
1026 		0x21ad0, 0x21ad4,
1027 		0x21ae0, 0x21ae8,
1028 		0x21af0, 0x21af0,
1029 		0x21af8, 0x21c18,
1030 		0x21c20, 0x21c20,
1031 		0x21c28, 0x21c30,
1032 		0x21c38, 0x21c38,
1033 		0x21c80, 0x21c98,
1034 		0x21ca0, 0x21ca8,
1035 		0x21cb0, 0x21cc8,
1036 		0x21cd0, 0x21cd4,
1037 		0x21ce0, 0x21ce8,
1038 		0x21cf0, 0x21cf0,
1039 		0x21cf8, 0x21d7c,
1040 		0x21e00, 0x21e04,
1041 		0x22000, 0x2202c,
1042 		0x22100, 0x2213c,
1043 		0x22190, 0x221a0,
1044 		0x221a8, 0x221b8,
1045 		0x221c4, 0x221c8,
1046 		0x22200, 0x22318,
1047 		0x22400, 0x224b4,
1048 		0x224c0, 0x22528,
1049 		0x22540, 0x22614,
1050 		0x23000, 0x23040,
1051 		0x2304c, 0x23060,
1052 		0x230c0, 0x230ec,
1053 		0x23200, 0x23268,
1054 		0x23270, 0x23284,
1055 		0x232fc, 0x23388,
1056 		0x23400, 0x23404,
1057 		0x23500, 0x23500,
1058 		0x23510, 0x23518,
1059 		0x2352c, 0x23530,
1060 		0x2353c, 0x2353c,
1061 		0x23550, 0x23554,
1062 		0x23600, 0x23600,
1063 		0x23608, 0x2361c,
1064 		0x23624, 0x23628,
1065 		0x23630, 0x23634,
1066 		0x2363c, 0x2363c,
1067 		0x23700, 0x2371c,
1068 		0x23780, 0x2378c,
1069 		0x23800, 0x23818,
1070 		0x23820, 0x23828,
1071 		0x23830, 0x23848,
1072 		0x23850, 0x23854,
1073 		0x23860, 0x23868,
1074 		0x23870, 0x23870,
1075 		0x23878, 0x23898,
1076 		0x238a0, 0x238a8,
1077 		0x238b0, 0x238c8,
1078 		0x238d0, 0x238d4,
1079 		0x238e0, 0x238e8,
1080 		0x238f0, 0x238f0,
1081 		0x238f8, 0x23a18,
1082 		0x23a20, 0x23a28,
1083 		0x23a30, 0x23a48,
1084 		0x23a50, 0x23a54,
1085 		0x23a60, 0x23a68,
1086 		0x23a70, 0x23a70,
1087 		0x23a78, 0x23a98,
1088 		0x23aa0, 0x23aa8,
1089 		0x23ab0, 0x23ac8,
1090 		0x23ad0, 0x23ad4,
1091 		0x23ae0, 0x23ae8,
1092 		0x23af0, 0x23af0,
1093 		0x23af8, 0x23c18,
1094 		0x23c20, 0x23c20,
1095 		0x23c28, 0x23c30,
1096 		0x23c38, 0x23c38,
1097 		0x23c80, 0x23c98,
1098 		0x23ca0, 0x23ca8,
1099 		0x23cb0, 0x23cc8,
1100 		0x23cd0, 0x23cd4,
1101 		0x23ce0, 0x23ce8,
1102 		0x23cf0, 0x23cf0,
1103 		0x23cf8, 0x23d7c,
1104 		0x23e00, 0x23e04,
1105 		0x24000, 0x2402c,
1106 		0x24100, 0x2413c,
1107 		0x24190, 0x241a0,
1108 		0x241a8, 0x241b8,
1109 		0x241c4, 0x241c8,
1110 		0x24200, 0x24318,
1111 		0x24400, 0x244b4,
1112 		0x244c0, 0x24528,
1113 		0x24540, 0x24614,
1114 		0x25000, 0x25040,
1115 		0x2504c, 0x25060,
1116 		0x250c0, 0x250ec,
1117 		0x25200, 0x25268,
1118 		0x25270, 0x25284,
1119 		0x252fc, 0x25388,
1120 		0x25400, 0x25404,
1121 		0x25500, 0x25500,
1122 		0x25510, 0x25518,
1123 		0x2552c, 0x25530,
1124 		0x2553c, 0x2553c,
1125 		0x25550, 0x25554,
1126 		0x25600, 0x25600,
1127 		0x25608, 0x2561c,
1128 		0x25624, 0x25628,
1129 		0x25630, 0x25634,
1130 		0x2563c, 0x2563c,
1131 		0x25700, 0x2571c,
1132 		0x25780, 0x2578c,
1133 		0x25800, 0x25818,
1134 		0x25820, 0x25828,
1135 		0x25830, 0x25848,
1136 		0x25850, 0x25854,
1137 		0x25860, 0x25868,
1138 		0x25870, 0x25870,
1139 		0x25878, 0x25898,
1140 		0x258a0, 0x258a8,
1141 		0x258b0, 0x258c8,
1142 		0x258d0, 0x258d4,
1143 		0x258e0, 0x258e8,
1144 		0x258f0, 0x258f0,
1145 		0x258f8, 0x25a18,
1146 		0x25a20, 0x25a28,
1147 		0x25a30, 0x25a48,
1148 		0x25a50, 0x25a54,
1149 		0x25a60, 0x25a68,
1150 		0x25a70, 0x25a70,
1151 		0x25a78, 0x25a98,
1152 		0x25aa0, 0x25aa8,
1153 		0x25ab0, 0x25ac8,
1154 		0x25ad0, 0x25ad4,
1155 		0x25ae0, 0x25ae8,
1156 		0x25af0, 0x25af0,
1157 		0x25af8, 0x25c18,
1158 		0x25c20, 0x25c20,
1159 		0x25c28, 0x25c30,
1160 		0x25c38, 0x25c38,
1161 		0x25c80, 0x25c98,
1162 		0x25ca0, 0x25ca8,
1163 		0x25cb0, 0x25cc8,
1164 		0x25cd0, 0x25cd4,
1165 		0x25ce0, 0x25ce8,
1166 		0x25cf0, 0x25cf0,
1167 		0x25cf8, 0x25d7c,
1168 		0x25e00, 0x25e04,
1169 		0x26000, 0x2602c,
1170 		0x26100, 0x2613c,
1171 		0x26190, 0x261a0,
1172 		0x261a8, 0x261b8,
1173 		0x261c4, 0x261c8,
1174 		0x26200, 0x26318,
1175 		0x26400, 0x264b4,
1176 		0x264c0, 0x26528,
1177 		0x26540, 0x26614,
1178 		0x27000, 0x27040,
1179 		0x2704c, 0x27060,
1180 		0x270c0, 0x270ec,
1181 		0x27200, 0x27268,
1182 		0x27270, 0x27284,
1183 		0x272fc, 0x27388,
1184 		0x27400, 0x27404,
1185 		0x27500, 0x27500,
1186 		0x27510, 0x27518,
1187 		0x2752c, 0x27530,
1188 		0x2753c, 0x2753c,
1189 		0x27550, 0x27554,
1190 		0x27600, 0x27600,
1191 		0x27608, 0x2761c,
1192 		0x27624, 0x27628,
1193 		0x27630, 0x27634,
1194 		0x2763c, 0x2763c,
1195 		0x27700, 0x2771c,
1196 		0x27780, 0x2778c,
1197 		0x27800, 0x27818,
1198 		0x27820, 0x27828,
1199 		0x27830, 0x27848,
1200 		0x27850, 0x27854,
1201 		0x27860, 0x27868,
1202 		0x27870, 0x27870,
1203 		0x27878, 0x27898,
1204 		0x278a0, 0x278a8,
1205 		0x278b0, 0x278c8,
1206 		0x278d0, 0x278d4,
1207 		0x278e0, 0x278e8,
1208 		0x278f0, 0x278f0,
1209 		0x278f8, 0x27a18,
1210 		0x27a20, 0x27a28,
1211 		0x27a30, 0x27a48,
1212 		0x27a50, 0x27a54,
1213 		0x27a60, 0x27a68,
1214 		0x27a70, 0x27a70,
1215 		0x27a78, 0x27a98,
1216 		0x27aa0, 0x27aa8,
1217 		0x27ab0, 0x27ac8,
1218 		0x27ad0, 0x27ad4,
1219 		0x27ae0, 0x27ae8,
1220 		0x27af0, 0x27af0,
1221 		0x27af8, 0x27c18,
1222 		0x27c20, 0x27c20,
1223 		0x27c28, 0x27c30,
1224 		0x27c38, 0x27c38,
1225 		0x27c80, 0x27c98,
1226 		0x27ca0, 0x27ca8,
1227 		0x27cb0, 0x27cc8,
1228 		0x27cd0, 0x27cd4,
1229 		0x27ce0, 0x27ce8,
1230 		0x27cf0, 0x27cf0,
1231 		0x27cf8, 0x27d7c,
1232 		0x27e00, 0x27e04,
1233 	};
1234 
1235 	static const unsigned int t4vf_reg_ranges[] = {
1236 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1237 		VF_MPS_REG(A_MPS_VF_CTL),
1238 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1239 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1240 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1241 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1242 		FW_T4VF_MBDATA_BASE_ADDR,
1243 		FW_T4VF_MBDATA_BASE_ADDR +
1244 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1245 	};
1246 
1247 	static const unsigned int t5_reg_ranges[] = {
1248 		0x1008, 0x10c0,
1249 		0x10cc, 0x10f8,
1250 		0x1100, 0x1100,
1251 		0x110c, 0x1148,
1252 		0x1180, 0x1184,
1253 		0x1190, 0x1194,
1254 		0x11a0, 0x11a4,
1255 		0x11b0, 0x11b4,
1256 		0x11fc, 0x123c,
1257 		0x1280, 0x173c,
1258 		0x1800, 0x18fc,
1259 		0x3000, 0x3028,
1260 		0x3060, 0x30b0,
1261 		0x30b8, 0x30d8,
1262 		0x30e0, 0x30fc,
1263 		0x3140, 0x357c,
1264 		0x35a8, 0x35cc,
1265 		0x35ec, 0x35ec,
1266 		0x3600, 0x5624,
1267 		0x56cc, 0x56ec,
1268 		0x56f4, 0x5720,
1269 		0x5728, 0x575c,
1270 		0x580c, 0x5814,
1271 		0x5890, 0x589c,
1272 		0x58a4, 0x58ac,
1273 		0x58b8, 0x58bc,
1274 		0x5940, 0x59c8,
1275 		0x59d0, 0x59dc,
1276 		0x59fc, 0x5a18,
1277 		0x5a60, 0x5a70,
1278 		0x5a80, 0x5a9c,
1279 		0x5b94, 0x5bfc,
1280 		0x6000, 0x6020,
1281 		0x6028, 0x6040,
1282 		0x6058, 0x609c,
1283 		0x60a8, 0x614c,
1284 		0x7700, 0x7798,
1285 		0x77c0, 0x78fc,
1286 		0x7b00, 0x7b58,
1287 		0x7b60, 0x7b84,
1288 		0x7b8c, 0x7c54,
1289 		0x7d00, 0x7d38,
1290 		0x7d40, 0x7d80,
1291 		0x7d8c, 0x7ddc,
1292 		0x7de4, 0x7e04,
1293 		0x7e10, 0x7e1c,
1294 		0x7e24, 0x7e38,
1295 		0x7e40, 0x7e44,
1296 		0x7e4c, 0x7e78,
1297 		0x7e80, 0x7edc,
1298 		0x7ee8, 0x7efc,
1299 		0x8dc0, 0x8de0,
1300 		0x8df8, 0x8e04,
1301 		0x8e10, 0x8e84,
1302 		0x8ea0, 0x8f84,
1303 		0x8fc0, 0x9058,
1304 		0x9060, 0x9060,
1305 		0x9068, 0x90f8,
1306 		0x9400, 0x9408,
1307 		0x9410, 0x9470,
1308 		0x9600, 0x9600,
1309 		0x9608, 0x9638,
1310 		0x9640, 0x96f4,
1311 		0x9800, 0x9808,
1312 		0x9820, 0x983c,
1313 		0x9850, 0x9864,
1314 		0x9c00, 0x9c6c,
1315 		0x9c80, 0x9cec,
1316 		0x9d00, 0x9d6c,
1317 		0x9d80, 0x9dec,
1318 		0x9e00, 0x9e6c,
1319 		0x9e80, 0x9eec,
1320 		0x9f00, 0x9f6c,
1321 		0x9f80, 0xa020,
1322 		0xd004, 0xd004,
1323 		0xd010, 0xd03c,
1324 		0xdfc0, 0xdfe0,
1325 		0xe000, 0x1106c,
1326 		0x11074, 0x11088,
1327 		0x1109c, 0x1117c,
1328 		0x11190, 0x11204,
1329 		0x19040, 0x1906c,
1330 		0x19078, 0x19080,
1331 		0x1908c, 0x190e8,
1332 		0x190f0, 0x190f8,
1333 		0x19100, 0x19110,
1334 		0x19120, 0x19124,
1335 		0x19150, 0x19194,
1336 		0x1919c, 0x191b0,
1337 		0x191d0, 0x191e8,
1338 		0x19238, 0x19290,
1339 		0x193f8, 0x19428,
1340 		0x19430, 0x19444,
1341 		0x1944c, 0x1946c,
1342 		0x19474, 0x19474,
1343 		0x19490, 0x194cc,
1344 		0x194f0, 0x194f8,
1345 		0x19c00, 0x19c08,
1346 		0x19c10, 0x19c60,
1347 		0x19c94, 0x19ce4,
1348 		0x19cf0, 0x19d40,
1349 		0x19d50, 0x19d94,
1350 		0x19da0, 0x19de8,
1351 		0x19df0, 0x19e10,
1352 		0x19e50, 0x19e90,
1353 		0x19ea0, 0x19f24,
1354 		0x19f34, 0x19f34,
1355 		0x19f40, 0x19f50,
1356 		0x19f90, 0x19fb4,
1357 		0x19fc4, 0x19fe4,
1358 		0x1a000, 0x1a004,
1359 		0x1a010, 0x1a06c,
1360 		0x1a0b0, 0x1a0e4,
1361 		0x1a0ec, 0x1a0f8,
1362 		0x1a100, 0x1a108,
1363 		0x1a114, 0x1a120,
1364 		0x1a128, 0x1a130,
1365 		0x1a138, 0x1a138,
1366 		0x1a190, 0x1a1c4,
1367 		0x1a1fc, 0x1a1fc,
1368 		0x1e008, 0x1e00c,
1369 		0x1e040, 0x1e044,
1370 		0x1e04c, 0x1e04c,
1371 		0x1e284, 0x1e290,
1372 		0x1e2c0, 0x1e2c0,
1373 		0x1e2e0, 0x1e2e0,
1374 		0x1e300, 0x1e384,
1375 		0x1e3c0, 0x1e3c8,
1376 		0x1e408, 0x1e40c,
1377 		0x1e440, 0x1e444,
1378 		0x1e44c, 0x1e44c,
1379 		0x1e684, 0x1e690,
1380 		0x1e6c0, 0x1e6c0,
1381 		0x1e6e0, 0x1e6e0,
1382 		0x1e700, 0x1e784,
1383 		0x1e7c0, 0x1e7c8,
1384 		0x1e808, 0x1e80c,
1385 		0x1e840, 0x1e844,
1386 		0x1e84c, 0x1e84c,
1387 		0x1ea84, 0x1ea90,
1388 		0x1eac0, 0x1eac0,
1389 		0x1eae0, 0x1eae0,
1390 		0x1eb00, 0x1eb84,
1391 		0x1ebc0, 0x1ebc8,
1392 		0x1ec08, 0x1ec0c,
1393 		0x1ec40, 0x1ec44,
1394 		0x1ec4c, 0x1ec4c,
1395 		0x1ee84, 0x1ee90,
1396 		0x1eec0, 0x1eec0,
1397 		0x1eee0, 0x1eee0,
1398 		0x1ef00, 0x1ef84,
1399 		0x1efc0, 0x1efc8,
1400 		0x1f008, 0x1f00c,
1401 		0x1f040, 0x1f044,
1402 		0x1f04c, 0x1f04c,
1403 		0x1f284, 0x1f290,
1404 		0x1f2c0, 0x1f2c0,
1405 		0x1f2e0, 0x1f2e0,
1406 		0x1f300, 0x1f384,
1407 		0x1f3c0, 0x1f3c8,
1408 		0x1f408, 0x1f40c,
1409 		0x1f440, 0x1f444,
1410 		0x1f44c, 0x1f44c,
1411 		0x1f684, 0x1f690,
1412 		0x1f6c0, 0x1f6c0,
1413 		0x1f6e0, 0x1f6e0,
1414 		0x1f700, 0x1f784,
1415 		0x1f7c0, 0x1f7c8,
1416 		0x1f808, 0x1f80c,
1417 		0x1f840, 0x1f844,
1418 		0x1f84c, 0x1f84c,
1419 		0x1fa84, 0x1fa90,
1420 		0x1fac0, 0x1fac0,
1421 		0x1fae0, 0x1fae0,
1422 		0x1fb00, 0x1fb84,
1423 		0x1fbc0, 0x1fbc8,
1424 		0x1fc08, 0x1fc0c,
1425 		0x1fc40, 0x1fc44,
1426 		0x1fc4c, 0x1fc4c,
1427 		0x1fe84, 0x1fe90,
1428 		0x1fec0, 0x1fec0,
1429 		0x1fee0, 0x1fee0,
1430 		0x1ff00, 0x1ff84,
1431 		0x1ffc0, 0x1ffc8,
1432 		0x30000, 0x30030,
1433 		0x30100, 0x30144,
1434 		0x30190, 0x301a0,
1435 		0x301a8, 0x301b8,
1436 		0x301c4, 0x301c8,
1437 		0x301d0, 0x301d0,
1438 		0x30200, 0x30318,
1439 		0x30400, 0x304b4,
1440 		0x304c0, 0x3052c,
1441 		0x30540, 0x3061c,
1442 		0x30800, 0x30828,
1443 		0x30834, 0x30834,
1444 		0x308c0, 0x30908,
1445 		0x30910, 0x309ac,
1446 		0x30a00, 0x30a14,
1447 		0x30a1c, 0x30a2c,
1448 		0x30a44, 0x30a50,
1449 		0x30a74, 0x30a74,
1450 		0x30a7c, 0x30afc,
1451 		0x30b08, 0x30c24,
1452 		0x30d00, 0x30d00,
1453 		0x30d08, 0x30d14,
1454 		0x30d1c, 0x30d20,
1455 		0x30d3c, 0x30d3c,
1456 		0x30d48, 0x30d50,
1457 		0x31200, 0x3120c,
1458 		0x31220, 0x31220,
1459 		0x31240, 0x31240,
1460 		0x31600, 0x3160c,
1461 		0x31a00, 0x31a1c,
1462 		0x31e00, 0x31e20,
1463 		0x31e38, 0x31e3c,
1464 		0x31e80, 0x31e80,
1465 		0x31e88, 0x31ea8,
1466 		0x31eb0, 0x31eb4,
1467 		0x31ec8, 0x31ed4,
1468 		0x31fb8, 0x32004,
1469 		0x32200, 0x32200,
1470 		0x32208, 0x32240,
1471 		0x32248, 0x32280,
1472 		0x32288, 0x322c0,
1473 		0x322c8, 0x322fc,
1474 		0x32600, 0x32630,
1475 		0x32a00, 0x32abc,
1476 		0x32b00, 0x32b10,
1477 		0x32b20, 0x32b30,
1478 		0x32b40, 0x32b50,
1479 		0x32b60, 0x32b70,
1480 		0x33000, 0x33028,
1481 		0x33030, 0x33048,
1482 		0x33060, 0x33068,
1483 		0x33070, 0x3309c,
1484 		0x330f0, 0x33128,
1485 		0x33130, 0x33148,
1486 		0x33160, 0x33168,
1487 		0x33170, 0x3319c,
1488 		0x331f0, 0x33238,
1489 		0x33240, 0x33240,
1490 		0x33248, 0x33250,
1491 		0x3325c, 0x33264,
1492 		0x33270, 0x332b8,
1493 		0x332c0, 0x332e4,
1494 		0x332f8, 0x33338,
1495 		0x33340, 0x33340,
1496 		0x33348, 0x33350,
1497 		0x3335c, 0x33364,
1498 		0x33370, 0x333b8,
1499 		0x333c0, 0x333e4,
1500 		0x333f8, 0x33428,
1501 		0x33430, 0x33448,
1502 		0x33460, 0x33468,
1503 		0x33470, 0x3349c,
1504 		0x334f0, 0x33528,
1505 		0x33530, 0x33548,
1506 		0x33560, 0x33568,
1507 		0x33570, 0x3359c,
1508 		0x335f0, 0x33638,
1509 		0x33640, 0x33640,
1510 		0x33648, 0x33650,
1511 		0x3365c, 0x33664,
1512 		0x33670, 0x336b8,
1513 		0x336c0, 0x336e4,
1514 		0x336f8, 0x33738,
1515 		0x33740, 0x33740,
1516 		0x33748, 0x33750,
1517 		0x3375c, 0x33764,
1518 		0x33770, 0x337b8,
1519 		0x337c0, 0x337e4,
1520 		0x337f8, 0x337fc,
1521 		0x33814, 0x33814,
1522 		0x3382c, 0x3382c,
1523 		0x33880, 0x3388c,
1524 		0x338e8, 0x338ec,
1525 		0x33900, 0x33928,
1526 		0x33930, 0x33948,
1527 		0x33960, 0x33968,
1528 		0x33970, 0x3399c,
1529 		0x339f0, 0x33a38,
1530 		0x33a40, 0x33a40,
1531 		0x33a48, 0x33a50,
1532 		0x33a5c, 0x33a64,
1533 		0x33a70, 0x33ab8,
1534 		0x33ac0, 0x33ae4,
1535 		0x33af8, 0x33b10,
1536 		0x33b28, 0x33b28,
1537 		0x33b3c, 0x33b50,
1538 		0x33bf0, 0x33c10,
1539 		0x33c28, 0x33c28,
1540 		0x33c3c, 0x33c50,
1541 		0x33cf0, 0x33cfc,
1542 		0x34000, 0x34030,
1543 		0x34100, 0x34144,
1544 		0x34190, 0x341a0,
1545 		0x341a8, 0x341b8,
1546 		0x341c4, 0x341c8,
1547 		0x341d0, 0x341d0,
1548 		0x34200, 0x34318,
1549 		0x34400, 0x344b4,
1550 		0x344c0, 0x3452c,
1551 		0x34540, 0x3461c,
1552 		0x34800, 0x34828,
1553 		0x34834, 0x34834,
1554 		0x348c0, 0x34908,
1555 		0x34910, 0x349ac,
1556 		0x34a00, 0x34a14,
1557 		0x34a1c, 0x34a2c,
1558 		0x34a44, 0x34a50,
1559 		0x34a74, 0x34a74,
1560 		0x34a7c, 0x34afc,
1561 		0x34b08, 0x34c24,
1562 		0x34d00, 0x34d00,
1563 		0x34d08, 0x34d14,
1564 		0x34d1c, 0x34d20,
1565 		0x34d3c, 0x34d3c,
1566 		0x34d48, 0x34d50,
1567 		0x35200, 0x3520c,
1568 		0x35220, 0x35220,
1569 		0x35240, 0x35240,
1570 		0x35600, 0x3560c,
1571 		0x35a00, 0x35a1c,
1572 		0x35e00, 0x35e20,
1573 		0x35e38, 0x35e3c,
1574 		0x35e80, 0x35e80,
1575 		0x35e88, 0x35ea8,
1576 		0x35eb0, 0x35eb4,
1577 		0x35ec8, 0x35ed4,
1578 		0x35fb8, 0x36004,
1579 		0x36200, 0x36200,
1580 		0x36208, 0x36240,
1581 		0x36248, 0x36280,
1582 		0x36288, 0x362c0,
1583 		0x362c8, 0x362fc,
1584 		0x36600, 0x36630,
1585 		0x36a00, 0x36abc,
1586 		0x36b00, 0x36b10,
1587 		0x36b20, 0x36b30,
1588 		0x36b40, 0x36b50,
1589 		0x36b60, 0x36b70,
1590 		0x37000, 0x37028,
1591 		0x37030, 0x37048,
1592 		0x37060, 0x37068,
1593 		0x37070, 0x3709c,
1594 		0x370f0, 0x37128,
1595 		0x37130, 0x37148,
1596 		0x37160, 0x37168,
1597 		0x37170, 0x3719c,
1598 		0x371f0, 0x37238,
1599 		0x37240, 0x37240,
1600 		0x37248, 0x37250,
1601 		0x3725c, 0x37264,
1602 		0x37270, 0x372b8,
1603 		0x372c0, 0x372e4,
1604 		0x372f8, 0x37338,
1605 		0x37340, 0x37340,
1606 		0x37348, 0x37350,
1607 		0x3735c, 0x37364,
1608 		0x37370, 0x373b8,
1609 		0x373c0, 0x373e4,
1610 		0x373f8, 0x37428,
1611 		0x37430, 0x37448,
1612 		0x37460, 0x37468,
1613 		0x37470, 0x3749c,
1614 		0x374f0, 0x37528,
1615 		0x37530, 0x37548,
1616 		0x37560, 0x37568,
1617 		0x37570, 0x3759c,
1618 		0x375f0, 0x37638,
1619 		0x37640, 0x37640,
1620 		0x37648, 0x37650,
1621 		0x3765c, 0x37664,
1622 		0x37670, 0x376b8,
1623 		0x376c0, 0x376e4,
1624 		0x376f8, 0x37738,
1625 		0x37740, 0x37740,
1626 		0x37748, 0x37750,
1627 		0x3775c, 0x37764,
1628 		0x37770, 0x377b8,
1629 		0x377c0, 0x377e4,
1630 		0x377f8, 0x377fc,
1631 		0x37814, 0x37814,
1632 		0x3782c, 0x3782c,
1633 		0x37880, 0x3788c,
1634 		0x378e8, 0x378ec,
1635 		0x37900, 0x37928,
1636 		0x37930, 0x37948,
1637 		0x37960, 0x37968,
1638 		0x37970, 0x3799c,
1639 		0x379f0, 0x37a38,
1640 		0x37a40, 0x37a40,
1641 		0x37a48, 0x37a50,
1642 		0x37a5c, 0x37a64,
1643 		0x37a70, 0x37ab8,
1644 		0x37ac0, 0x37ae4,
1645 		0x37af8, 0x37b10,
1646 		0x37b28, 0x37b28,
1647 		0x37b3c, 0x37b50,
1648 		0x37bf0, 0x37c10,
1649 		0x37c28, 0x37c28,
1650 		0x37c3c, 0x37c50,
1651 		0x37cf0, 0x37cfc,
1652 		0x38000, 0x38030,
1653 		0x38100, 0x38144,
1654 		0x38190, 0x381a0,
1655 		0x381a8, 0x381b8,
1656 		0x381c4, 0x381c8,
1657 		0x381d0, 0x381d0,
1658 		0x38200, 0x38318,
1659 		0x38400, 0x384b4,
1660 		0x384c0, 0x3852c,
1661 		0x38540, 0x3861c,
1662 		0x38800, 0x38828,
1663 		0x38834, 0x38834,
1664 		0x388c0, 0x38908,
1665 		0x38910, 0x389ac,
1666 		0x38a00, 0x38a14,
1667 		0x38a1c, 0x38a2c,
1668 		0x38a44, 0x38a50,
1669 		0x38a74, 0x38a74,
1670 		0x38a7c, 0x38afc,
1671 		0x38b08, 0x38c24,
1672 		0x38d00, 0x38d00,
1673 		0x38d08, 0x38d14,
1674 		0x38d1c, 0x38d20,
1675 		0x38d3c, 0x38d3c,
1676 		0x38d48, 0x38d50,
1677 		0x39200, 0x3920c,
1678 		0x39220, 0x39220,
1679 		0x39240, 0x39240,
1680 		0x39600, 0x3960c,
1681 		0x39a00, 0x39a1c,
1682 		0x39e00, 0x39e20,
1683 		0x39e38, 0x39e3c,
1684 		0x39e80, 0x39e80,
1685 		0x39e88, 0x39ea8,
1686 		0x39eb0, 0x39eb4,
1687 		0x39ec8, 0x39ed4,
1688 		0x39fb8, 0x3a004,
1689 		0x3a200, 0x3a200,
1690 		0x3a208, 0x3a240,
1691 		0x3a248, 0x3a280,
1692 		0x3a288, 0x3a2c0,
1693 		0x3a2c8, 0x3a2fc,
1694 		0x3a600, 0x3a630,
1695 		0x3aa00, 0x3aabc,
1696 		0x3ab00, 0x3ab10,
1697 		0x3ab20, 0x3ab30,
1698 		0x3ab40, 0x3ab50,
1699 		0x3ab60, 0x3ab70,
1700 		0x3b000, 0x3b028,
1701 		0x3b030, 0x3b048,
1702 		0x3b060, 0x3b068,
1703 		0x3b070, 0x3b09c,
1704 		0x3b0f0, 0x3b128,
1705 		0x3b130, 0x3b148,
1706 		0x3b160, 0x3b168,
1707 		0x3b170, 0x3b19c,
1708 		0x3b1f0, 0x3b238,
1709 		0x3b240, 0x3b240,
1710 		0x3b248, 0x3b250,
1711 		0x3b25c, 0x3b264,
1712 		0x3b270, 0x3b2b8,
1713 		0x3b2c0, 0x3b2e4,
1714 		0x3b2f8, 0x3b338,
1715 		0x3b340, 0x3b340,
1716 		0x3b348, 0x3b350,
1717 		0x3b35c, 0x3b364,
1718 		0x3b370, 0x3b3b8,
1719 		0x3b3c0, 0x3b3e4,
1720 		0x3b3f8, 0x3b428,
1721 		0x3b430, 0x3b448,
1722 		0x3b460, 0x3b468,
1723 		0x3b470, 0x3b49c,
1724 		0x3b4f0, 0x3b528,
1725 		0x3b530, 0x3b548,
1726 		0x3b560, 0x3b568,
1727 		0x3b570, 0x3b59c,
1728 		0x3b5f0, 0x3b638,
1729 		0x3b640, 0x3b640,
1730 		0x3b648, 0x3b650,
1731 		0x3b65c, 0x3b664,
1732 		0x3b670, 0x3b6b8,
1733 		0x3b6c0, 0x3b6e4,
1734 		0x3b6f8, 0x3b738,
1735 		0x3b740, 0x3b740,
1736 		0x3b748, 0x3b750,
1737 		0x3b75c, 0x3b764,
1738 		0x3b770, 0x3b7b8,
1739 		0x3b7c0, 0x3b7e4,
1740 		0x3b7f8, 0x3b7fc,
1741 		0x3b814, 0x3b814,
1742 		0x3b82c, 0x3b82c,
1743 		0x3b880, 0x3b88c,
1744 		0x3b8e8, 0x3b8ec,
1745 		0x3b900, 0x3b928,
1746 		0x3b930, 0x3b948,
1747 		0x3b960, 0x3b968,
1748 		0x3b970, 0x3b99c,
1749 		0x3b9f0, 0x3ba38,
1750 		0x3ba40, 0x3ba40,
1751 		0x3ba48, 0x3ba50,
1752 		0x3ba5c, 0x3ba64,
1753 		0x3ba70, 0x3bab8,
1754 		0x3bac0, 0x3bae4,
1755 		0x3baf8, 0x3bb10,
1756 		0x3bb28, 0x3bb28,
1757 		0x3bb3c, 0x3bb50,
1758 		0x3bbf0, 0x3bc10,
1759 		0x3bc28, 0x3bc28,
1760 		0x3bc3c, 0x3bc50,
1761 		0x3bcf0, 0x3bcfc,
1762 		0x3c000, 0x3c030,
1763 		0x3c100, 0x3c144,
1764 		0x3c190, 0x3c1a0,
1765 		0x3c1a8, 0x3c1b8,
1766 		0x3c1c4, 0x3c1c8,
1767 		0x3c1d0, 0x3c1d0,
1768 		0x3c200, 0x3c318,
1769 		0x3c400, 0x3c4b4,
1770 		0x3c4c0, 0x3c52c,
1771 		0x3c540, 0x3c61c,
1772 		0x3c800, 0x3c828,
1773 		0x3c834, 0x3c834,
1774 		0x3c8c0, 0x3c908,
1775 		0x3c910, 0x3c9ac,
1776 		0x3ca00, 0x3ca14,
1777 		0x3ca1c, 0x3ca2c,
1778 		0x3ca44, 0x3ca50,
1779 		0x3ca74, 0x3ca74,
1780 		0x3ca7c, 0x3cafc,
1781 		0x3cb08, 0x3cc24,
1782 		0x3cd00, 0x3cd00,
1783 		0x3cd08, 0x3cd14,
1784 		0x3cd1c, 0x3cd20,
1785 		0x3cd3c, 0x3cd3c,
1786 		0x3cd48, 0x3cd50,
1787 		0x3d200, 0x3d20c,
1788 		0x3d220, 0x3d220,
1789 		0x3d240, 0x3d240,
1790 		0x3d600, 0x3d60c,
1791 		0x3da00, 0x3da1c,
1792 		0x3de00, 0x3de20,
1793 		0x3de38, 0x3de3c,
1794 		0x3de80, 0x3de80,
1795 		0x3de88, 0x3dea8,
1796 		0x3deb0, 0x3deb4,
1797 		0x3dec8, 0x3ded4,
1798 		0x3dfb8, 0x3e004,
1799 		0x3e200, 0x3e200,
1800 		0x3e208, 0x3e240,
1801 		0x3e248, 0x3e280,
1802 		0x3e288, 0x3e2c0,
1803 		0x3e2c8, 0x3e2fc,
1804 		0x3e600, 0x3e630,
1805 		0x3ea00, 0x3eabc,
1806 		0x3eb00, 0x3eb10,
1807 		0x3eb20, 0x3eb30,
1808 		0x3eb40, 0x3eb50,
1809 		0x3eb60, 0x3eb70,
1810 		0x3f000, 0x3f028,
1811 		0x3f030, 0x3f048,
1812 		0x3f060, 0x3f068,
1813 		0x3f070, 0x3f09c,
1814 		0x3f0f0, 0x3f128,
1815 		0x3f130, 0x3f148,
1816 		0x3f160, 0x3f168,
1817 		0x3f170, 0x3f19c,
1818 		0x3f1f0, 0x3f238,
1819 		0x3f240, 0x3f240,
1820 		0x3f248, 0x3f250,
1821 		0x3f25c, 0x3f264,
1822 		0x3f270, 0x3f2b8,
1823 		0x3f2c0, 0x3f2e4,
1824 		0x3f2f8, 0x3f338,
1825 		0x3f340, 0x3f340,
1826 		0x3f348, 0x3f350,
1827 		0x3f35c, 0x3f364,
1828 		0x3f370, 0x3f3b8,
1829 		0x3f3c0, 0x3f3e4,
1830 		0x3f3f8, 0x3f428,
1831 		0x3f430, 0x3f448,
1832 		0x3f460, 0x3f468,
1833 		0x3f470, 0x3f49c,
1834 		0x3f4f0, 0x3f528,
1835 		0x3f530, 0x3f548,
1836 		0x3f560, 0x3f568,
1837 		0x3f570, 0x3f59c,
1838 		0x3f5f0, 0x3f638,
1839 		0x3f640, 0x3f640,
1840 		0x3f648, 0x3f650,
1841 		0x3f65c, 0x3f664,
1842 		0x3f670, 0x3f6b8,
1843 		0x3f6c0, 0x3f6e4,
1844 		0x3f6f8, 0x3f738,
1845 		0x3f740, 0x3f740,
1846 		0x3f748, 0x3f750,
1847 		0x3f75c, 0x3f764,
1848 		0x3f770, 0x3f7b8,
1849 		0x3f7c0, 0x3f7e4,
1850 		0x3f7f8, 0x3f7fc,
1851 		0x3f814, 0x3f814,
1852 		0x3f82c, 0x3f82c,
1853 		0x3f880, 0x3f88c,
1854 		0x3f8e8, 0x3f8ec,
1855 		0x3f900, 0x3f928,
1856 		0x3f930, 0x3f948,
1857 		0x3f960, 0x3f968,
1858 		0x3f970, 0x3f99c,
1859 		0x3f9f0, 0x3fa38,
1860 		0x3fa40, 0x3fa40,
1861 		0x3fa48, 0x3fa50,
1862 		0x3fa5c, 0x3fa64,
1863 		0x3fa70, 0x3fab8,
1864 		0x3fac0, 0x3fae4,
1865 		0x3faf8, 0x3fb10,
1866 		0x3fb28, 0x3fb28,
1867 		0x3fb3c, 0x3fb50,
1868 		0x3fbf0, 0x3fc10,
1869 		0x3fc28, 0x3fc28,
1870 		0x3fc3c, 0x3fc50,
1871 		0x3fcf0, 0x3fcfc,
1872 		0x40000, 0x4000c,
1873 		0x40040, 0x40050,
1874 		0x40060, 0x40068,
1875 		0x4007c, 0x4008c,
1876 		0x40094, 0x400b0,
1877 		0x400c0, 0x40144,
1878 		0x40180, 0x4018c,
1879 		0x40200, 0x40254,
1880 		0x40260, 0x40264,
1881 		0x40270, 0x40288,
1882 		0x40290, 0x40298,
1883 		0x402ac, 0x402c8,
1884 		0x402d0, 0x402e0,
1885 		0x402f0, 0x402f0,
1886 		0x40300, 0x4033c,
1887 		0x403f8, 0x403fc,
1888 		0x41304, 0x413c4,
1889 		0x41400, 0x4140c,
1890 		0x41414, 0x4141c,
1891 		0x41480, 0x414d0,
1892 		0x44000, 0x44054,
1893 		0x4405c, 0x44078,
1894 		0x440c0, 0x44174,
1895 		0x44180, 0x441ac,
1896 		0x441b4, 0x441b8,
1897 		0x441c0, 0x44254,
1898 		0x4425c, 0x44278,
1899 		0x442c0, 0x44374,
1900 		0x44380, 0x443ac,
1901 		0x443b4, 0x443b8,
1902 		0x443c0, 0x44454,
1903 		0x4445c, 0x44478,
1904 		0x444c0, 0x44574,
1905 		0x44580, 0x445ac,
1906 		0x445b4, 0x445b8,
1907 		0x445c0, 0x44654,
1908 		0x4465c, 0x44678,
1909 		0x446c0, 0x44774,
1910 		0x44780, 0x447ac,
1911 		0x447b4, 0x447b8,
1912 		0x447c0, 0x44854,
1913 		0x4485c, 0x44878,
1914 		0x448c0, 0x44974,
1915 		0x44980, 0x449ac,
1916 		0x449b4, 0x449b8,
1917 		0x449c0, 0x449fc,
1918 		0x45000, 0x45004,
1919 		0x45010, 0x45030,
1920 		0x45040, 0x45060,
1921 		0x45068, 0x45068,
1922 		0x45080, 0x45084,
1923 		0x450a0, 0x450b0,
1924 		0x45200, 0x45204,
1925 		0x45210, 0x45230,
1926 		0x45240, 0x45260,
1927 		0x45268, 0x45268,
1928 		0x45280, 0x45284,
1929 		0x452a0, 0x452b0,
1930 		0x460c0, 0x460e4,
1931 		0x47000, 0x4703c,
1932 		0x47044, 0x4708c,
1933 		0x47200, 0x47250,
1934 		0x47400, 0x47408,
1935 		0x47414, 0x47420,
1936 		0x47600, 0x47618,
1937 		0x47800, 0x47814,
1938 		0x48000, 0x4800c,
1939 		0x48040, 0x48050,
1940 		0x48060, 0x48068,
1941 		0x4807c, 0x4808c,
1942 		0x48094, 0x480b0,
1943 		0x480c0, 0x48144,
1944 		0x48180, 0x4818c,
1945 		0x48200, 0x48254,
1946 		0x48260, 0x48264,
1947 		0x48270, 0x48288,
1948 		0x48290, 0x48298,
1949 		0x482ac, 0x482c8,
1950 		0x482d0, 0x482e0,
1951 		0x482f0, 0x482f0,
1952 		0x48300, 0x4833c,
1953 		0x483f8, 0x483fc,
1954 		0x49304, 0x493c4,
1955 		0x49400, 0x4940c,
1956 		0x49414, 0x4941c,
1957 		0x49480, 0x494d0,
1958 		0x4c000, 0x4c054,
1959 		0x4c05c, 0x4c078,
1960 		0x4c0c0, 0x4c174,
1961 		0x4c180, 0x4c1ac,
1962 		0x4c1b4, 0x4c1b8,
1963 		0x4c1c0, 0x4c254,
1964 		0x4c25c, 0x4c278,
1965 		0x4c2c0, 0x4c374,
1966 		0x4c380, 0x4c3ac,
1967 		0x4c3b4, 0x4c3b8,
1968 		0x4c3c0, 0x4c454,
1969 		0x4c45c, 0x4c478,
1970 		0x4c4c0, 0x4c574,
1971 		0x4c580, 0x4c5ac,
1972 		0x4c5b4, 0x4c5b8,
1973 		0x4c5c0, 0x4c654,
1974 		0x4c65c, 0x4c678,
1975 		0x4c6c0, 0x4c774,
1976 		0x4c780, 0x4c7ac,
1977 		0x4c7b4, 0x4c7b8,
1978 		0x4c7c0, 0x4c854,
1979 		0x4c85c, 0x4c878,
1980 		0x4c8c0, 0x4c974,
1981 		0x4c980, 0x4c9ac,
1982 		0x4c9b4, 0x4c9b8,
1983 		0x4c9c0, 0x4c9fc,
1984 		0x4d000, 0x4d004,
1985 		0x4d010, 0x4d030,
1986 		0x4d040, 0x4d060,
1987 		0x4d068, 0x4d068,
1988 		0x4d080, 0x4d084,
1989 		0x4d0a0, 0x4d0b0,
1990 		0x4d200, 0x4d204,
1991 		0x4d210, 0x4d230,
1992 		0x4d240, 0x4d260,
1993 		0x4d268, 0x4d268,
1994 		0x4d280, 0x4d284,
1995 		0x4d2a0, 0x4d2b0,
1996 		0x4e0c0, 0x4e0e4,
1997 		0x4f000, 0x4f03c,
1998 		0x4f044, 0x4f08c,
1999 		0x4f200, 0x4f250,
2000 		0x4f400, 0x4f408,
2001 		0x4f414, 0x4f420,
2002 		0x4f600, 0x4f618,
2003 		0x4f800, 0x4f814,
2004 		0x50000, 0x50084,
2005 		0x50090, 0x500cc,
2006 		0x50400, 0x50400,
2007 		0x50800, 0x50884,
2008 		0x50890, 0x508cc,
2009 		0x50c00, 0x50c00,
2010 		0x51000, 0x5101c,
2011 		0x51300, 0x51308,
2012 	};
2013 
2014 	static const unsigned int t5vf_reg_ranges[] = {
2015 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2016 		VF_MPS_REG(A_MPS_VF_CTL),
2017 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2018 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2019 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2020 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2021 		FW_T4VF_MBDATA_BASE_ADDR,
2022 		FW_T4VF_MBDATA_BASE_ADDR +
2023 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2024 	};
2025 
2026 	static const unsigned int t6_reg_ranges[] = {
2027 		0x1008, 0x101c,
2028 		0x1024, 0x10a8,
2029 		0x10b4, 0x10f8,
2030 		0x1100, 0x1114,
2031 		0x111c, 0x112c,
2032 		0x1138, 0x113c,
2033 		0x1144, 0x114c,
2034 		0x1180, 0x1184,
2035 		0x1190, 0x1194,
2036 		0x11a0, 0x11a4,
2037 		0x11b0, 0x11b4,
2038 		0x11fc, 0x1274,
2039 		0x1280, 0x133c,
2040 		0x1800, 0x18fc,
2041 		0x3000, 0x302c,
2042 		0x3060, 0x30b0,
2043 		0x30b8, 0x30d8,
2044 		0x30e0, 0x30fc,
2045 		0x3140, 0x357c,
2046 		0x35a8, 0x35cc,
2047 		0x35ec, 0x35ec,
2048 		0x3600, 0x5624,
2049 		0x56cc, 0x56ec,
2050 		0x56f4, 0x5720,
2051 		0x5728, 0x575c,
2052 		0x580c, 0x5814,
2053 		0x5890, 0x589c,
2054 		0x58a4, 0x58ac,
2055 		0x58b8, 0x58bc,
2056 		0x5940, 0x595c,
2057 		0x5980, 0x598c,
2058 		0x59b0, 0x59c8,
2059 		0x59d0, 0x59dc,
2060 		0x59fc, 0x5a18,
2061 		0x5a60, 0x5a6c,
2062 		0x5a80, 0x5a8c,
2063 		0x5a94, 0x5a9c,
2064 		0x5b94, 0x5bfc,
2065 		0x5c10, 0x5e48,
2066 		0x5e50, 0x5e94,
2067 		0x5ea0, 0x5eb0,
2068 		0x5ec0, 0x5ec0,
2069 		0x5ec8, 0x5ed0,
2070 		0x5ee0, 0x5ee0,
2071 		0x5ef0, 0x5ef0,
2072 		0x5f00, 0x5f00,
2073 		0x6000, 0x6020,
2074 		0x6028, 0x6040,
2075 		0x6058, 0x609c,
2076 		0x60a8, 0x619c,
2077 		0x7700, 0x7798,
2078 		0x77c0, 0x7880,
2079 		0x78cc, 0x78fc,
2080 		0x7b00, 0x7b58,
2081 		0x7b60, 0x7b84,
2082 		0x7b8c, 0x7c54,
2083 		0x7d00, 0x7d38,
2084 		0x7d40, 0x7d84,
2085 		0x7d8c, 0x7ddc,
2086 		0x7de4, 0x7e04,
2087 		0x7e10, 0x7e1c,
2088 		0x7e24, 0x7e38,
2089 		0x7e40, 0x7e44,
2090 		0x7e4c, 0x7e78,
2091 		0x7e80, 0x7edc,
2092 		0x7ee8, 0x7efc,
2093 		0x8dc0, 0x8de4,
2094 		0x8df8, 0x8e04,
2095 		0x8e10, 0x8e84,
2096 		0x8ea0, 0x8f88,
2097 		0x8fb8, 0x9058,
2098 		0x9060, 0x9060,
2099 		0x9068, 0x90f8,
2100 		0x9100, 0x9124,
2101 		0x9400, 0x9470,
2102 		0x9600, 0x9600,
2103 		0x9608, 0x9638,
2104 		0x9640, 0x9704,
2105 		0x9710, 0x971c,
2106 		0x9800, 0x9808,
2107 		0x9820, 0x983c,
2108 		0x9850, 0x9864,
2109 		0x9c00, 0x9c6c,
2110 		0x9c80, 0x9cec,
2111 		0x9d00, 0x9d6c,
2112 		0x9d80, 0x9dec,
2113 		0x9e00, 0x9e6c,
2114 		0x9e80, 0x9eec,
2115 		0x9f00, 0x9f6c,
2116 		0x9f80, 0xa020,
2117 		0xd004, 0xd03c,
2118 		0xd100, 0xd118,
2119 		0xd200, 0xd214,
2120 		0xd220, 0xd234,
2121 		0xd240, 0xd254,
2122 		0xd260, 0xd274,
2123 		0xd280, 0xd294,
2124 		0xd2a0, 0xd2b4,
2125 		0xd2c0, 0xd2d4,
2126 		0xd2e0, 0xd2f4,
2127 		0xd300, 0xd31c,
2128 		0xdfc0, 0xdfe0,
2129 		0xe000, 0xf008,
2130 		0xf010, 0xf018,
2131 		0xf020, 0xf028,
2132 		0x11000, 0x11014,
2133 		0x11048, 0x1106c,
2134 		0x11074, 0x11088,
2135 		0x11098, 0x11120,
2136 		0x1112c, 0x1117c,
2137 		0x11190, 0x112e0,
2138 		0x11300, 0x1130c,
2139 		0x12000, 0x1206c,
2140 		0x19040, 0x1906c,
2141 		0x19078, 0x19080,
2142 		0x1908c, 0x190e8,
2143 		0x190f0, 0x190f8,
2144 		0x19100, 0x19110,
2145 		0x19120, 0x19124,
2146 		0x19150, 0x19194,
2147 		0x1919c, 0x191b0,
2148 		0x191d0, 0x191e8,
2149 		0x19238, 0x19290,
2150 		0x192a4, 0x192b0,
2151 		0x192bc, 0x192bc,
2152 		0x19348, 0x1934c,
2153 		0x193f8, 0x19418,
2154 		0x19420, 0x19428,
2155 		0x19430, 0x19444,
2156 		0x1944c, 0x1946c,
2157 		0x19474, 0x19474,
2158 		0x19490, 0x194cc,
2159 		0x194f0, 0x194f8,
2160 		0x19c00, 0x19c48,
2161 		0x19c50, 0x19c80,
2162 		0x19c94, 0x19c98,
2163 		0x19ca0, 0x19cbc,
2164 		0x19ce4, 0x19ce4,
2165 		0x19cf0, 0x19cf8,
2166 		0x19d00, 0x19d28,
2167 		0x19d50, 0x19d78,
2168 		0x19d94, 0x19d98,
2169 		0x19da0, 0x19dc8,
2170 		0x19df0, 0x19e10,
2171 		0x19e50, 0x19e6c,
2172 		0x19ea0, 0x19ebc,
2173 		0x19ec4, 0x19ef4,
2174 		0x19f04, 0x19f2c,
2175 		0x19f34, 0x19f34,
2176 		0x19f40, 0x19f50,
2177 		0x19f90, 0x19fac,
2178 		0x19fc4, 0x19fc8,
2179 		0x19fd0, 0x19fe4,
2180 		0x1a000, 0x1a004,
2181 		0x1a010, 0x1a06c,
2182 		0x1a0b0, 0x1a0e4,
2183 		0x1a0ec, 0x1a0f8,
2184 		0x1a100, 0x1a108,
2185 		0x1a114, 0x1a120,
2186 		0x1a128, 0x1a130,
2187 		0x1a138, 0x1a138,
2188 		0x1a190, 0x1a1c4,
2189 		0x1a1fc, 0x1a1fc,
2190 		0x1e008, 0x1e00c,
2191 		0x1e040, 0x1e044,
2192 		0x1e04c, 0x1e04c,
2193 		0x1e284, 0x1e290,
2194 		0x1e2c0, 0x1e2c0,
2195 		0x1e2e0, 0x1e2e0,
2196 		0x1e300, 0x1e384,
2197 		0x1e3c0, 0x1e3c8,
2198 		0x1e408, 0x1e40c,
2199 		0x1e440, 0x1e444,
2200 		0x1e44c, 0x1e44c,
2201 		0x1e684, 0x1e690,
2202 		0x1e6c0, 0x1e6c0,
2203 		0x1e6e0, 0x1e6e0,
2204 		0x1e700, 0x1e784,
2205 		0x1e7c0, 0x1e7c8,
2206 		0x1e808, 0x1e80c,
2207 		0x1e840, 0x1e844,
2208 		0x1e84c, 0x1e84c,
2209 		0x1ea84, 0x1ea90,
2210 		0x1eac0, 0x1eac0,
2211 		0x1eae0, 0x1eae0,
2212 		0x1eb00, 0x1eb84,
2213 		0x1ebc0, 0x1ebc8,
2214 		0x1ec08, 0x1ec0c,
2215 		0x1ec40, 0x1ec44,
2216 		0x1ec4c, 0x1ec4c,
2217 		0x1ee84, 0x1ee90,
2218 		0x1eec0, 0x1eec0,
2219 		0x1eee0, 0x1eee0,
2220 		0x1ef00, 0x1ef84,
2221 		0x1efc0, 0x1efc8,
2222 		0x1f008, 0x1f00c,
2223 		0x1f040, 0x1f044,
2224 		0x1f04c, 0x1f04c,
2225 		0x1f284, 0x1f290,
2226 		0x1f2c0, 0x1f2c0,
2227 		0x1f2e0, 0x1f2e0,
2228 		0x1f300, 0x1f384,
2229 		0x1f3c0, 0x1f3c8,
2230 		0x1f408, 0x1f40c,
2231 		0x1f440, 0x1f444,
2232 		0x1f44c, 0x1f44c,
2233 		0x1f684, 0x1f690,
2234 		0x1f6c0, 0x1f6c0,
2235 		0x1f6e0, 0x1f6e0,
2236 		0x1f700, 0x1f784,
2237 		0x1f7c0, 0x1f7c8,
2238 		0x1f808, 0x1f80c,
2239 		0x1f840, 0x1f844,
2240 		0x1f84c, 0x1f84c,
2241 		0x1fa84, 0x1fa90,
2242 		0x1fac0, 0x1fac0,
2243 		0x1fae0, 0x1fae0,
2244 		0x1fb00, 0x1fb84,
2245 		0x1fbc0, 0x1fbc8,
2246 		0x1fc08, 0x1fc0c,
2247 		0x1fc40, 0x1fc44,
2248 		0x1fc4c, 0x1fc4c,
2249 		0x1fe84, 0x1fe90,
2250 		0x1fec0, 0x1fec0,
2251 		0x1fee0, 0x1fee0,
2252 		0x1ff00, 0x1ff84,
2253 		0x1ffc0, 0x1ffc8,
2254 		0x30000, 0x30030,
2255 		0x30100, 0x30168,
2256 		0x30190, 0x301a0,
2257 		0x301a8, 0x301b8,
2258 		0x301c4, 0x301c8,
2259 		0x301d0, 0x301d0,
2260 		0x30200, 0x30320,
2261 		0x30400, 0x304b4,
2262 		0x304c0, 0x3052c,
2263 		0x30540, 0x3061c,
2264 		0x30800, 0x308a0,
2265 		0x308c0, 0x30908,
2266 		0x30910, 0x309b8,
2267 		0x30a00, 0x30a04,
2268 		0x30a0c, 0x30a14,
2269 		0x30a1c, 0x30a2c,
2270 		0x30a44, 0x30a50,
2271 		0x30a74, 0x30a74,
2272 		0x30a7c, 0x30afc,
2273 		0x30b08, 0x30c24,
2274 		0x30d00, 0x30d14,
2275 		0x30d1c, 0x30d3c,
2276 		0x30d44, 0x30d4c,
2277 		0x30d54, 0x30d74,
2278 		0x30d7c, 0x30d7c,
2279 		0x30de0, 0x30de0,
2280 		0x30e00, 0x30ed4,
2281 		0x30f00, 0x30fa4,
2282 		0x30fc0, 0x30fc4,
2283 		0x31000, 0x31004,
2284 		0x31080, 0x310fc,
2285 		0x31208, 0x31220,
2286 		0x3123c, 0x31254,
2287 		0x31300, 0x31300,
2288 		0x31308, 0x3131c,
2289 		0x31338, 0x3133c,
2290 		0x31380, 0x31380,
2291 		0x31388, 0x313a8,
2292 		0x313b4, 0x313b4,
2293 		0x31400, 0x31420,
2294 		0x31438, 0x3143c,
2295 		0x31480, 0x31480,
2296 		0x314a8, 0x314a8,
2297 		0x314b0, 0x314b4,
2298 		0x314c8, 0x314d4,
2299 		0x31a40, 0x31a4c,
2300 		0x31af0, 0x31b20,
2301 		0x31b38, 0x31b3c,
2302 		0x31b80, 0x31b80,
2303 		0x31ba8, 0x31ba8,
2304 		0x31bb0, 0x31bb4,
2305 		0x31bc8, 0x31bd4,
2306 		0x32140, 0x3218c,
2307 		0x321f0, 0x321f4,
2308 		0x32200, 0x32200,
2309 		0x32218, 0x32218,
2310 		0x32400, 0x32400,
2311 		0x32408, 0x3241c,
2312 		0x32618, 0x32620,
2313 		0x32664, 0x32664,
2314 		0x326a8, 0x326a8,
2315 		0x326ec, 0x326ec,
2316 		0x32a00, 0x32abc,
2317 		0x32b00, 0x32b18,
2318 		0x32b20, 0x32b38,
2319 		0x32b40, 0x32b58,
2320 		0x32b60, 0x32b78,
2321 		0x32c00, 0x32c00,
2322 		0x32c08, 0x32c3c,
2323 		0x33000, 0x3302c,
2324 		0x33034, 0x33050,
2325 		0x33058, 0x33058,
2326 		0x33060, 0x3308c,
2327 		0x3309c, 0x330ac,
2328 		0x330c0, 0x330c0,
2329 		0x330c8, 0x330d0,
2330 		0x330d8, 0x330e0,
2331 		0x330ec, 0x3312c,
2332 		0x33134, 0x33150,
2333 		0x33158, 0x33158,
2334 		0x33160, 0x3318c,
2335 		0x3319c, 0x331ac,
2336 		0x331c0, 0x331c0,
2337 		0x331c8, 0x331d0,
2338 		0x331d8, 0x331e0,
2339 		0x331ec, 0x33290,
2340 		0x33298, 0x332c4,
2341 		0x332e4, 0x33390,
2342 		0x33398, 0x333c4,
2343 		0x333e4, 0x3342c,
2344 		0x33434, 0x33450,
2345 		0x33458, 0x33458,
2346 		0x33460, 0x3348c,
2347 		0x3349c, 0x334ac,
2348 		0x334c0, 0x334c0,
2349 		0x334c8, 0x334d0,
2350 		0x334d8, 0x334e0,
2351 		0x334ec, 0x3352c,
2352 		0x33534, 0x33550,
2353 		0x33558, 0x33558,
2354 		0x33560, 0x3358c,
2355 		0x3359c, 0x335ac,
2356 		0x335c0, 0x335c0,
2357 		0x335c8, 0x335d0,
2358 		0x335d8, 0x335e0,
2359 		0x335ec, 0x33690,
2360 		0x33698, 0x336c4,
2361 		0x336e4, 0x33790,
2362 		0x33798, 0x337c4,
2363 		0x337e4, 0x337fc,
2364 		0x33814, 0x33814,
2365 		0x33854, 0x33868,
2366 		0x33880, 0x3388c,
2367 		0x338c0, 0x338d0,
2368 		0x338e8, 0x338ec,
2369 		0x33900, 0x3392c,
2370 		0x33934, 0x33950,
2371 		0x33958, 0x33958,
2372 		0x33960, 0x3398c,
2373 		0x3399c, 0x339ac,
2374 		0x339c0, 0x339c0,
2375 		0x339c8, 0x339d0,
2376 		0x339d8, 0x339e0,
2377 		0x339ec, 0x33a90,
2378 		0x33a98, 0x33ac4,
2379 		0x33ae4, 0x33b10,
2380 		0x33b24, 0x33b28,
2381 		0x33b38, 0x33b50,
2382 		0x33bf0, 0x33c10,
2383 		0x33c24, 0x33c28,
2384 		0x33c38, 0x33c50,
2385 		0x33cf0, 0x33cfc,
2386 		0x34000, 0x34030,
2387 		0x34100, 0x34168,
2388 		0x34190, 0x341a0,
2389 		0x341a8, 0x341b8,
2390 		0x341c4, 0x341c8,
2391 		0x341d0, 0x341d0,
2392 		0x34200, 0x34320,
2393 		0x34400, 0x344b4,
2394 		0x344c0, 0x3452c,
2395 		0x34540, 0x3461c,
2396 		0x34800, 0x348a0,
2397 		0x348c0, 0x34908,
2398 		0x34910, 0x349b8,
2399 		0x34a00, 0x34a04,
2400 		0x34a0c, 0x34a14,
2401 		0x34a1c, 0x34a2c,
2402 		0x34a44, 0x34a50,
2403 		0x34a74, 0x34a74,
2404 		0x34a7c, 0x34afc,
2405 		0x34b08, 0x34c24,
2406 		0x34d00, 0x34d14,
2407 		0x34d1c, 0x34d3c,
2408 		0x34d44, 0x34d4c,
2409 		0x34d54, 0x34d74,
2410 		0x34d7c, 0x34d7c,
2411 		0x34de0, 0x34de0,
2412 		0x34e00, 0x34ed4,
2413 		0x34f00, 0x34fa4,
2414 		0x34fc0, 0x34fc4,
2415 		0x35000, 0x35004,
2416 		0x35080, 0x350fc,
2417 		0x35208, 0x35220,
2418 		0x3523c, 0x35254,
2419 		0x35300, 0x35300,
2420 		0x35308, 0x3531c,
2421 		0x35338, 0x3533c,
2422 		0x35380, 0x35380,
2423 		0x35388, 0x353a8,
2424 		0x353b4, 0x353b4,
2425 		0x35400, 0x35420,
2426 		0x35438, 0x3543c,
2427 		0x35480, 0x35480,
2428 		0x354a8, 0x354a8,
2429 		0x354b0, 0x354b4,
2430 		0x354c8, 0x354d4,
2431 		0x35a40, 0x35a4c,
2432 		0x35af0, 0x35b20,
2433 		0x35b38, 0x35b3c,
2434 		0x35b80, 0x35b80,
2435 		0x35ba8, 0x35ba8,
2436 		0x35bb0, 0x35bb4,
2437 		0x35bc8, 0x35bd4,
2438 		0x36140, 0x3618c,
2439 		0x361f0, 0x361f4,
2440 		0x36200, 0x36200,
2441 		0x36218, 0x36218,
2442 		0x36400, 0x36400,
2443 		0x36408, 0x3641c,
2444 		0x36618, 0x36620,
2445 		0x36664, 0x36664,
2446 		0x366a8, 0x366a8,
2447 		0x366ec, 0x366ec,
2448 		0x36a00, 0x36abc,
2449 		0x36b00, 0x36b18,
2450 		0x36b20, 0x36b38,
2451 		0x36b40, 0x36b58,
2452 		0x36b60, 0x36b78,
2453 		0x36c00, 0x36c00,
2454 		0x36c08, 0x36c3c,
2455 		0x37000, 0x3702c,
2456 		0x37034, 0x37050,
2457 		0x37058, 0x37058,
2458 		0x37060, 0x3708c,
2459 		0x3709c, 0x370ac,
2460 		0x370c0, 0x370c0,
2461 		0x370c8, 0x370d0,
2462 		0x370d8, 0x370e0,
2463 		0x370ec, 0x3712c,
2464 		0x37134, 0x37150,
2465 		0x37158, 0x37158,
2466 		0x37160, 0x3718c,
2467 		0x3719c, 0x371ac,
2468 		0x371c0, 0x371c0,
2469 		0x371c8, 0x371d0,
2470 		0x371d8, 0x371e0,
2471 		0x371ec, 0x37290,
2472 		0x37298, 0x372c4,
2473 		0x372e4, 0x37390,
2474 		0x37398, 0x373c4,
2475 		0x373e4, 0x3742c,
2476 		0x37434, 0x37450,
2477 		0x37458, 0x37458,
2478 		0x37460, 0x3748c,
2479 		0x3749c, 0x374ac,
2480 		0x374c0, 0x374c0,
2481 		0x374c8, 0x374d0,
2482 		0x374d8, 0x374e0,
2483 		0x374ec, 0x3752c,
2484 		0x37534, 0x37550,
2485 		0x37558, 0x37558,
2486 		0x37560, 0x3758c,
2487 		0x3759c, 0x375ac,
2488 		0x375c0, 0x375c0,
2489 		0x375c8, 0x375d0,
2490 		0x375d8, 0x375e0,
2491 		0x375ec, 0x37690,
2492 		0x37698, 0x376c4,
2493 		0x376e4, 0x37790,
2494 		0x37798, 0x377c4,
2495 		0x377e4, 0x377fc,
2496 		0x37814, 0x37814,
2497 		0x37854, 0x37868,
2498 		0x37880, 0x3788c,
2499 		0x378c0, 0x378d0,
2500 		0x378e8, 0x378ec,
2501 		0x37900, 0x3792c,
2502 		0x37934, 0x37950,
2503 		0x37958, 0x37958,
2504 		0x37960, 0x3798c,
2505 		0x3799c, 0x379ac,
2506 		0x379c0, 0x379c0,
2507 		0x379c8, 0x379d0,
2508 		0x379d8, 0x379e0,
2509 		0x379ec, 0x37a90,
2510 		0x37a98, 0x37ac4,
2511 		0x37ae4, 0x37b10,
2512 		0x37b24, 0x37b28,
2513 		0x37b38, 0x37b50,
2514 		0x37bf0, 0x37c10,
2515 		0x37c24, 0x37c28,
2516 		0x37c38, 0x37c50,
2517 		0x37cf0, 0x37cfc,
2518 		0x40040, 0x40040,
2519 		0x40080, 0x40084,
2520 		0x40100, 0x40100,
2521 		0x40140, 0x401bc,
2522 		0x40200, 0x40214,
2523 		0x40228, 0x40228,
2524 		0x40240, 0x40258,
2525 		0x40280, 0x40280,
2526 		0x40304, 0x40304,
2527 		0x40330, 0x4033c,
2528 		0x41304, 0x413c8,
2529 		0x413d0, 0x413dc,
2530 		0x413f0, 0x413f0,
2531 		0x41400, 0x4140c,
2532 		0x41414, 0x4141c,
2533 		0x41480, 0x414d0,
2534 		0x44000, 0x4407c,
2535 		0x440c0, 0x441ac,
2536 		0x441b4, 0x4427c,
2537 		0x442c0, 0x443ac,
2538 		0x443b4, 0x4447c,
2539 		0x444c0, 0x445ac,
2540 		0x445b4, 0x4467c,
2541 		0x446c0, 0x447ac,
2542 		0x447b4, 0x4487c,
2543 		0x448c0, 0x449ac,
2544 		0x449b4, 0x44a7c,
2545 		0x44ac0, 0x44bac,
2546 		0x44bb4, 0x44c7c,
2547 		0x44cc0, 0x44dac,
2548 		0x44db4, 0x44e7c,
2549 		0x44ec0, 0x44fac,
2550 		0x44fb4, 0x4507c,
2551 		0x450c0, 0x451ac,
2552 		0x451b4, 0x451fc,
2553 		0x45800, 0x45804,
2554 		0x45810, 0x45830,
2555 		0x45840, 0x45860,
2556 		0x45868, 0x45868,
2557 		0x45880, 0x45884,
2558 		0x458a0, 0x458b0,
2559 		0x45a00, 0x45a04,
2560 		0x45a10, 0x45a30,
2561 		0x45a40, 0x45a60,
2562 		0x45a68, 0x45a68,
2563 		0x45a80, 0x45a84,
2564 		0x45aa0, 0x45ab0,
2565 		0x460c0, 0x460e4,
2566 		0x47000, 0x4703c,
2567 		0x47044, 0x4708c,
2568 		0x47200, 0x47250,
2569 		0x47400, 0x47408,
2570 		0x47414, 0x47420,
2571 		0x47600, 0x47618,
2572 		0x47800, 0x47814,
2573 		0x47820, 0x4782c,
2574 		0x50000, 0x50084,
2575 		0x50090, 0x500cc,
2576 		0x50300, 0x50384,
2577 		0x50400, 0x50400,
2578 		0x50800, 0x50884,
2579 		0x50890, 0x508cc,
2580 		0x50b00, 0x50b84,
2581 		0x50c00, 0x50c00,
2582 		0x51000, 0x51020,
2583 		0x51028, 0x510b0,
2584 		0x51300, 0x51324,
2585 	};
2586 
2587 	static const unsigned int t6vf_reg_ranges[] = {
2588 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2589 		VF_MPS_REG(A_MPS_VF_CTL),
2590 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2591 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2592 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2593 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2594 		FW_T6VF_MBDATA_BASE_ADDR,
2595 		FW_T6VF_MBDATA_BASE_ADDR +
2596 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2597 	};
2598 
2599 	u32 *buf_end = (u32 *)(buf + buf_size);
2600 	const unsigned int *reg_ranges;
2601 	int reg_ranges_size, range;
2602 	unsigned int chip_version = chip_id(adap);
2603 
2604 	/*
2605 	 * Select the right set of register ranges to dump depending on the
2606 	 * adapter chip type.
2607 	 */
2608 	switch (chip_version) {
2609 	case CHELSIO_T4:
2610 		if (adap->flags & IS_VF) {
2611 			reg_ranges = t4vf_reg_ranges;
2612 			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2613 		} else {
2614 			reg_ranges = t4_reg_ranges;
2615 			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2616 		}
2617 		break;
2618 
2619 	case CHELSIO_T5:
2620 		if (adap->flags & IS_VF) {
2621 			reg_ranges = t5vf_reg_ranges;
2622 			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2623 		} else {
2624 			reg_ranges = t5_reg_ranges;
2625 			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2626 		}
2627 		break;
2628 
2629 	case CHELSIO_T6:
2630 		if (adap->flags & IS_VF) {
2631 			reg_ranges = t6vf_reg_ranges;
2632 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2633 		} else {
2634 			reg_ranges = t6_reg_ranges;
2635 			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2636 		}
2637 		break;
2638 
2639 	default:
2640 		CH_ERR(adap,
2641 			"Unsupported chip version %d\n", chip_version);
2642 		return;
2643 	}
2644 
2645 	/*
2646 	 * Clear the register buffer and insert the appropriate register
2647 	 * values selected by the above register ranges.
2648 	 */
2649 	memset(buf, 0, buf_size);
2650 	for (range = 0; range < reg_ranges_size; range += 2) {
2651 		unsigned int reg = reg_ranges[range];
2652 		unsigned int last_reg = reg_ranges[range + 1];
2653 		u32 *bufp = (u32 *)(buf + reg);
2654 
2655 		/*
2656 		 * Iterate across the register range filling in the register
2657 		 * buffer but don't write past the end of the register buffer.
2658 		 */
2659 		while (reg <= last_reg && bufp < buf_end) {
2660 			*bufp++ = t4_read_reg(adap, reg);
2661 			reg += sizeof(u32);
2662 		}
2663 	}
2664 }
2665 
2666 /*
2667  * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2668  * header followed by one or more VPD-R sections, each with its own header.
2669  */
2670 struct t4_vpd_hdr {
2671 	u8  id_tag;
2672 	u8  id_len[2];
2673 	u8  id_data[ID_LEN];
2674 };
2675 
2676 struct t4_vpdr_hdr {
2677 	u8  vpdr_tag;
2678 	u8  vpdr_len[2];
2679 };
2680 
2681 /*
2682  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2683  */
2684 #define EEPROM_DELAY		10		/* 10us per poll spin */
2685 #define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2686 
2687 #define EEPROM_STAT_ADDR	0x7bfc
2688 #define VPD_SIZE		0x800
2689 #define VPD_BASE		0x400
2690 #define VPD_BASE_OLD		0
2691 #define VPD_LEN			1024
2692 #define VPD_INFO_FLD_HDR_SIZE	3
2693 #define CHELSIO_VPD_UNIQUE_ID	0x82
2694 
2695 /*
2696  * Small utility function to wait till any outstanding VPD Access is complete.
2697  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2698  * VPD Access in flight.  This allows us to handle the problem of having a
2699  * previous VPD Access time out and prevent an attempt to inject a new VPD
2700  * Request before any in-flight VPD reguest has completed.
2701  */
2702 static int t4_seeprom_wait(struct adapter *adapter)
2703 {
2704 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2705 	int max_poll;
2706 
2707 	/*
2708 	 * If no VPD Access is in flight, we can just return success right
2709 	 * away.
2710 	 */
2711 	if (!adapter->vpd_busy)
2712 		return 0;
2713 
2714 	/*
2715 	 * Poll the VPD Capability Address/Flag register waiting for it
2716 	 * to indicate that the operation is complete.
2717 	 */
2718 	max_poll = EEPROM_MAX_POLL;
2719 	do {
2720 		u16 val;
2721 
2722 		udelay(EEPROM_DELAY);
2723 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2724 
2725 		/*
2726 		 * If the operation is complete, mark the VPD as no longer
2727 		 * busy and return success.
2728 		 */
2729 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2730 			adapter->vpd_busy = 0;
2731 			return 0;
2732 		}
2733 	} while (--max_poll);
2734 
2735 	/*
2736 	 * Failure!  Note that we leave the VPD Busy status set in order to
2737 	 * avoid pushing a new VPD Access request into the VPD Capability till
2738 	 * the current operation eventually succeeds.  It's a bug to issue a
2739 	 * new request when an existing request is in flight and will result
2740 	 * in corrupt hardware state.
2741 	 */
2742 	return -ETIMEDOUT;
2743 }
2744 
2745 /**
2746  *	t4_seeprom_read - read a serial EEPROM location
2747  *	@adapter: adapter to read
2748  *	@addr: EEPROM virtual address
2749  *	@data: where to store the read data
2750  *
2751  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2752  *	VPD capability.  Note that this function must be called with a virtual
2753  *	address.
2754  */
2755 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2756 {
2757 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2758 	int ret;
2759 
2760 	/*
2761 	 * VPD Accesses must alway be 4-byte aligned!
2762 	 */
2763 	if (addr >= EEPROMVSIZE || (addr & 3))
2764 		return -EINVAL;
2765 
2766 	/*
2767 	 * Wait for any previous operation which may still be in flight to
2768 	 * complete.
2769 	 */
2770 	ret = t4_seeprom_wait(adapter);
2771 	if (ret) {
2772 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2773 		return ret;
2774 	}
2775 
2776 	/*
2777 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2778 	 * for our request to complete.  If it doesn't complete, note the
2779 	 * error and return it to our caller.  Note that we do not reset the
2780 	 * VPD Busy status!
2781 	 */
2782 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2783 	adapter->vpd_busy = 1;
2784 	adapter->vpd_flag = PCI_VPD_ADDR_F;
2785 	ret = t4_seeprom_wait(adapter);
2786 	if (ret) {
2787 		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2788 		return ret;
2789 	}
2790 
2791 	/*
2792 	 * Grab the returned data, swizzle it into our endianness and
2793 	 * return success.
2794 	 */
2795 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2796 	*data = le32_to_cpu(*data);
2797 	return 0;
2798 }
2799 
2800 /**
2801  *	t4_seeprom_write - write a serial EEPROM location
2802  *	@adapter: adapter to write
2803  *	@addr: virtual EEPROM address
2804  *	@data: value to write
2805  *
2806  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2807  *	VPD capability.  Note that this function must be called with a virtual
2808  *	address.
2809  */
2810 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2811 {
2812 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2813 	int ret;
2814 	u32 stats_reg;
2815 	int max_poll;
2816 
2817 	/*
2818 	 * VPD Accesses must alway be 4-byte aligned!
2819 	 */
2820 	if (addr >= EEPROMVSIZE || (addr & 3))
2821 		return -EINVAL;
2822 
2823 	/*
2824 	 * Wait for any previous operation which may still be in flight to
2825 	 * complete.
2826 	 */
2827 	ret = t4_seeprom_wait(adapter);
2828 	if (ret) {
2829 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2830 		return ret;
2831 	}
2832 
2833 	/*
2834 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2835 	 * for our request to complete.  If it doesn't complete, note the
2836 	 * error and return it to our caller.  Note that we do not reset the
2837 	 * VPD Busy status!
2838 	 */
2839 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2840 				 cpu_to_le32(data));
2841 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2842 				 (u16)addr | PCI_VPD_ADDR_F);
2843 	adapter->vpd_busy = 1;
2844 	adapter->vpd_flag = 0;
2845 	ret = t4_seeprom_wait(adapter);
2846 	if (ret) {
2847 		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2848 		return ret;
2849 	}
2850 
2851 	/*
2852 	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2853 	 * request to complete. If it doesn't complete, return error.
2854 	 */
2855 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2856 	max_poll = EEPROM_MAX_POLL;
2857 	do {
2858 		udelay(EEPROM_DELAY);
2859 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2860 	} while ((stats_reg & 0x1) && --max_poll);
2861 	if (!max_poll)
2862 		return -ETIMEDOUT;
2863 
2864 	/* Return success! */
2865 	return 0;
2866 }
2867 
2868 /**
2869  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2870  *	@phys_addr: the physical EEPROM address
2871  *	@fn: the PCI function number
2872  *	@sz: size of function-specific area
2873  *
2874  *	Translate a physical EEPROM address to virtual.  The first 1K is
2875  *	accessed through virtual addresses starting at 31K, the rest is
2876  *	accessed through virtual addresses starting at 0.
2877  *
2878  *	The mapping is as follows:
2879  *	[0..1K) -> [31K..32K)
2880  *	[1K..1K+A) -> [ES-A..ES)
2881  *	[1K+A..ES) -> [0..ES-A-1K)
2882  *
2883  *	where A = @fn * @sz, and ES = EEPROM size.
2884  */
2885 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2886 {
2887 	fn *= sz;
2888 	if (phys_addr < 1024)
2889 		return phys_addr + (31 << 10);
2890 	if (phys_addr < 1024 + fn)
2891 		return EEPROMSIZE - fn + phys_addr - 1024;
2892 	if (phys_addr < EEPROMSIZE)
2893 		return phys_addr - 1024 - fn;
2894 	return -EINVAL;
2895 }
2896 
2897 /**
2898  *	t4_seeprom_wp - enable/disable EEPROM write protection
2899  *	@adapter: the adapter
2900  *	@enable: whether to enable or disable write protection
2901  *
2902  *	Enables or disables write protection on the serial EEPROM.
2903  */
2904 int t4_seeprom_wp(struct adapter *adapter, int enable)
2905 {
2906 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2907 }
2908 
2909 /**
2910  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2911  *	@vpd: Pointer to buffered vpd data structure
2912  *	@kw: The keyword to search for
2913  *	@region: VPD region to search (starting from 0)
2914  *
2915  *	Returns the value of the information field keyword or
2916  *	-ENOENT otherwise.
2917  */
2918 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2919 {
2920 	int i, tag;
2921 	unsigned int offset, len;
2922 	const struct t4_vpdr_hdr *vpdr;
2923 
2924 	offset = sizeof(struct t4_vpd_hdr);
2925 	vpdr = (const void *)(vpd + offset);
2926 	tag = vpdr->vpdr_tag;
2927 	len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2928 	while (region--) {
2929 		offset += sizeof(struct t4_vpdr_hdr) + len;
2930 		vpdr = (const void *)(vpd + offset);
2931 		if (++tag != vpdr->vpdr_tag)
2932 			return -ENOENT;
2933 		len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2934 	}
2935 	offset += sizeof(struct t4_vpdr_hdr);
2936 
2937 	if (offset + len > VPD_LEN) {
2938 		return -ENOENT;
2939 	}
2940 
2941 	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2942 		if (memcmp(vpd + i , kw , 2) == 0){
2943 			i += VPD_INFO_FLD_HDR_SIZE;
2944 			return i;
2945 		}
2946 
2947 		i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
2948 	}
2949 
2950 	return -ENOENT;
2951 }
2952 
2953 
2954 /**
2955  *	get_vpd_params - read VPD parameters from VPD EEPROM
2956  *	@adapter: adapter to read
2957  *	@p: where to store the parameters
2958  *	@vpd: caller provided temporary space to read the VPD into
2959  *
2960  *	Reads card parameters stored in VPD EEPROM.
2961  */
2962 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
2963     u32 *buf)
2964 {
2965 	int i, ret, addr;
2966 	int ec, sn, pn, na, md;
2967 	u8 csum;
2968 	const u8 *vpd = (const u8 *)buf;
2969 
2970 	/*
2971 	 * Card information normally starts at VPD_BASE but early cards had
2972 	 * it at 0.
2973 	 */
2974 	ret = t4_seeprom_read(adapter, VPD_BASE, buf);
2975 	if (ret)
2976 		return (ret);
2977 
2978 	/*
2979 	 * The VPD shall have a unique identifier specified by the PCI SIG.
2980 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2981 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2982 	 * is expected to automatically put this entry at the
2983 	 * beginning of the VPD.
2984 	 */
2985 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2986 
2987 	for (i = 0; i < VPD_LEN; i += 4) {
2988 		ret = t4_seeprom_read(adapter, addr + i, buf++);
2989 		if (ret)
2990 			return ret;
2991 	}
2992 
2993 #define FIND_VPD_KW(var,name) do { \
2994 	var = get_vpd_keyword_val(vpd, name, 0); \
2995 	if (var < 0) { \
2996 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
2997 		return -EINVAL; \
2998 	} \
2999 } while (0)
3000 
3001 	FIND_VPD_KW(i, "RV");
3002 	for (csum = 0; i >= 0; i--)
3003 		csum += vpd[i];
3004 
3005 	if (csum) {
3006 		CH_ERR(adapter,
3007 			"corrupted VPD EEPROM, actual csum %u\n", csum);
3008 		return -EINVAL;
3009 	}
3010 
3011 	FIND_VPD_KW(ec, "EC");
3012 	FIND_VPD_KW(sn, "SN");
3013 	FIND_VPD_KW(pn, "PN");
3014 	FIND_VPD_KW(na, "NA");
3015 #undef FIND_VPD_KW
3016 
3017 	memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3018 	strstrip(p->id);
3019 	memcpy(p->ec, vpd + ec, EC_LEN);
3020 	strstrip(p->ec);
3021 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3022 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3023 	strstrip(p->sn);
3024 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3025 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3026 	strstrip((char *)p->pn);
3027 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3028 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3029 	strstrip((char *)p->na);
3030 
3031 	md = get_vpd_keyword_val(vpd, "VF", 1);
3032 	if (md < 0) {
3033 		snprintf(p->md, sizeof(p->md), "unknown");
3034 	} else {
3035 		i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3036 		memcpy(p->md, vpd + md, min(i, MD_LEN));
3037 	}
3038 
3039 	return 0;
3040 }
3041 
3042 /* serial flash and firmware constants and flash config file constants */
3043 enum {
3044 	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3045 
3046 	/* flash command opcodes */
3047 	SF_PROG_PAGE    = 2,	/* program 256B page */
3048 	SF_WR_DISABLE   = 4,	/* disable writes */
3049 	SF_RD_STATUS    = 5,	/* read status register */
3050 	SF_WR_ENABLE    = 6,	/* enable writes */
3051 	SF_RD_DATA_FAST = 0xb,	/* read flash */
3052 	SF_RD_ID	= 0x9f,	/* read ID */
3053 	SF_ERASE_SECTOR = 0xd8,	/* erase 64KB sector */
3054 };
3055 
3056 /**
3057  *	sf1_read - read data from the serial flash
3058  *	@adapter: the adapter
3059  *	@byte_cnt: number of bytes to read
3060  *	@cont: whether another operation will be chained
3061  *	@lock: whether to lock SF for PL access only
3062  *	@valp: where to store the read data
3063  *
3064  *	Reads up to 4 bytes of data from the serial flash.  The location of
3065  *	the read needs to be specified prior to calling this by issuing the
3066  *	appropriate commands to the serial flash.
3067  */
3068 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3069 		    int lock, u32 *valp)
3070 {
3071 	int ret;
3072 
3073 	if (!byte_cnt || byte_cnt > 4)
3074 		return -EINVAL;
3075 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3076 		return -EBUSY;
3077 	t4_write_reg(adapter, A_SF_OP,
3078 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3079 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3080 	if (!ret)
3081 		*valp = t4_read_reg(adapter, A_SF_DATA);
3082 	return ret;
3083 }
3084 
3085 /**
3086  *	sf1_write - write data to the serial flash
3087  *	@adapter: the adapter
3088  *	@byte_cnt: number of bytes to write
3089  *	@cont: whether another operation will be chained
3090  *	@lock: whether to lock SF for PL access only
3091  *	@val: value to write
3092  *
3093  *	Writes up to 4 bytes of data to the serial flash.  The location of
3094  *	the write needs to be specified prior to calling this by issuing the
3095  *	appropriate commands to the serial flash.
3096  */
3097 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3098 		     int lock, u32 val)
3099 {
3100 	if (!byte_cnt || byte_cnt > 4)
3101 		return -EINVAL;
3102 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3103 		return -EBUSY;
3104 	t4_write_reg(adapter, A_SF_DATA, val);
3105 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3106 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3107 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3108 }
3109 
3110 /**
3111  *	flash_wait_op - wait for a flash operation to complete
3112  *	@adapter: the adapter
3113  *	@attempts: max number of polls of the status register
3114  *	@delay: delay between polls in ms
3115  *
3116  *	Wait for a flash operation to complete by polling the status register.
3117  */
3118 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3119 {
3120 	int ret;
3121 	u32 status;
3122 
3123 	while (1) {
3124 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3125 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3126 			return ret;
3127 		if (!(status & 1))
3128 			return 0;
3129 		if (--attempts == 0)
3130 			return -EAGAIN;
3131 		if (delay)
3132 			msleep(delay);
3133 	}
3134 }
3135 
3136 /**
3137  *	t4_read_flash - read words from serial flash
3138  *	@adapter: the adapter
3139  *	@addr: the start address for the read
3140  *	@nwords: how many 32-bit words to read
3141  *	@data: where to store the read data
3142  *	@byte_oriented: whether to store data as bytes or as words
3143  *
3144  *	Read the specified number of 32-bit words from the serial flash.
3145  *	If @byte_oriented is set the read data is stored as a byte array
3146  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3147  *	natural endianness.
3148  */
3149 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3150 		  unsigned int nwords, u32 *data, int byte_oriented)
3151 {
3152 	int ret;
3153 
3154 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3155 		return -EINVAL;
3156 
3157 	addr = swab32(addr) | SF_RD_DATA_FAST;
3158 
3159 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3160 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3161 		return ret;
3162 
3163 	for ( ; nwords; nwords--, data++) {
3164 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3165 		if (nwords == 1)
3166 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3167 		if (ret)
3168 			return ret;
3169 		if (byte_oriented)
3170 			*data = (__force __u32)(cpu_to_be32(*data));
3171 	}
3172 	return 0;
3173 }
3174 
3175 /**
3176  *	t4_write_flash - write up to a page of data to the serial flash
3177  *	@adapter: the adapter
3178  *	@addr: the start address to write
3179  *	@n: length of data to write in bytes
3180  *	@data: the data to write
3181  *	@byte_oriented: whether to store data as bytes or as words
3182  *
3183  *	Writes up to a page of data (256 bytes) to the serial flash starting
3184  *	at the given address.  All the data must be written to the same page.
3185  *	If @byte_oriented is set the write data is stored as byte stream
3186  *	(i.e. matches what on disk), otherwise in big-endian.
3187  */
3188 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3189 			  unsigned int n, const u8 *data, int byte_oriented)
3190 {
3191 	int ret;
3192 	u32 buf[SF_PAGE_SIZE / 4];
3193 	unsigned int i, c, left, val, offset = addr & 0xff;
3194 
3195 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3196 		return -EINVAL;
3197 
3198 	val = swab32(addr) | SF_PROG_PAGE;
3199 
3200 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3201 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3202 		goto unlock;
3203 
3204 	for (left = n; left; left -= c) {
3205 		c = min(left, 4U);
3206 		for (val = 0, i = 0; i < c; ++i)
3207 			val = (val << 8) + *data++;
3208 
3209 		if (!byte_oriented)
3210 			val = cpu_to_be32(val);
3211 
3212 		ret = sf1_write(adapter, c, c != left, 1, val);
3213 		if (ret)
3214 			goto unlock;
3215 	}
3216 	ret = flash_wait_op(adapter, 8, 1);
3217 	if (ret)
3218 		goto unlock;
3219 
3220 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3221 
3222 	/* Read the page to verify the write succeeded */
3223 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3224 			    byte_oriented);
3225 	if (ret)
3226 		return ret;
3227 
3228 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3229 		CH_ERR(adapter,
3230 			"failed to correctly write the flash page at %#x\n",
3231 			addr);
3232 		return -EIO;
3233 	}
3234 	return 0;
3235 
3236 unlock:
3237 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3238 	return ret;
3239 }
3240 
3241 /**
3242  *	t4_get_fw_version - read the firmware version
3243  *	@adapter: the adapter
3244  *	@vers: where to place the version
3245  *
3246  *	Reads the FW version from flash.
3247  */
3248 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3249 {
3250 	return t4_read_flash(adapter, FLASH_FW_START +
3251 			     offsetof(struct fw_hdr, fw_ver), 1,
3252 			     vers, 0);
3253 }
3254 
3255 /**
3256  *	t4_get_bs_version - read the firmware bootstrap version
3257  *	@adapter: the adapter
3258  *	@vers: where to place the version
3259  *
3260  *	Reads the FW Bootstrap version from flash.
3261  */
3262 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3263 {
3264 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3265 			     offsetof(struct fw_hdr, fw_ver), 1,
3266 			     vers, 0);
3267 }
3268 
3269 /**
3270  *	t4_get_tp_version - read the TP microcode version
3271  *	@adapter: the adapter
3272  *	@vers: where to place the version
3273  *
3274  *	Reads the TP microcode version from flash.
3275  */
3276 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3277 {
3278 	return t4_read_flash(adapter, FLASH_FW_START +
3279 			     offsetof(struct fw_hdr, tp_microcode_ver),
3280 			     1, vers, 0);
3281 }
3282 
3283 /**
3284  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3285  *	@adapter: the adapter
3286  *	@vers: where to place the version
3287  *
3288  *	Reads the Expansion ROM header from FLASH and returns the version
3289  *	number (if present) through the @vers return value pointer.  We return
3290  *	this in the Firmware Version Format since it's convenient.  Return
3291  *	0 on success, -ENOENT if no Expansion ROM is present.
3292  */
3293 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3294 {
3295 	struct exprom_header {
3296 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3297 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3298 	} *hdr;
3299 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3300 					   sizeof(u32))];
3301 	int ret;
3302 
3303 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3304 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3305 			    0);
3306 	if (ret)
3307 		return ret;
3308 
3309 	hdr = (struct exprom_header *)exprom_header_buf;
3310 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3311 		return -ENOENT;
3312 
3313 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3314 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3315 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3316 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3317 	return 0;
3318 }
3319 
3320 /**
3321  *	t4_get_scfg_version - return the Serial Configuration version
3322  *	@adapter: the adapter
3323  *	@vers: where to place the version
3324  *
3325  *	Reads the Serial Configuration Version via the Firmware interface
3326  *	(thus this can only be called once we're ready to issue Firmware
3327  *	commands).  The format of the Serial Configuration version is
3328  *	adapter specific.  Returns 0 on success, an error on failure.
3329  *
3330  *	Note that early versions of the Firmware didn't include the ability
3331  *	to retrieve the Serial Configuration version, so we zero-out the
3332  *	return-value parameter in that case to avoid leaving it with
3333  *	garbage in it.
3334  *
3335  *	Also note that the Firmware will return its cached copy of the Serial
3336  *	Initialization Revision ID, not the actual Revision ID as written in
3337  *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3338  *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3339  *	it's best to defer calling this routine till after a FW_RESET_CMD has
3340  *	been issued if the Host Driver will be performing a full adapter
3341  *	initialization.
3342  */
3343 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3344 {
3345 	u32 scfgrev_param;
3346 	int ret;
3347 
3348 	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3349 			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3350 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3351 			      1, &scfgrev_param, vers);
3352 	if (ret)
3353 		*vers = 0;
3354 	return ret;
3355 }
3356 
3357 /**
3358  *	t4_get_vpd_version - return the VPD version
3359  *	@adapter: the adapter
3360  *	@vers: where to place the version
3361  *
3362  *	Reads the VPD via the Firmware interface (thus this can only be called
3363  *	once we're ready to issue Firmware commands).  The format of the
3364  *	VPD version is adapter specific.  Returns 0 on success, an error on
3365  *	failure.
3366  *
3367  *	Note that early versions of the Firmware didn't include the ability
3368  *	to retrieve the VPD version, so we zero-out the return-value parameter
3369  *	in that case to avoid leaving it with garbage in it.
3370  *
3371  *	Also note that the Firmware will return its cached copy of the VPD
3372  *	Revision ID, not the actual Revision ID as written in the Serial
3373  *	EEPROM.  This is only an issue if a new VPD has been written and the
3374  *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3375  *	to defer calling this routine till after a FW_RESET_CMD has been issued
3376  *	if the Host Driver will be performing a full adapter initialization.
3377  */
3378 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3379 {
3380 	u32 vpdrev_param;
3381 	int ret;
3382 
3383 	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3384 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3385 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3386 			      1, &vpdrev_param, vers);
3387 	if (ret)
3388 		*vers = 0;
3389 	return ret;
3390 }
3391 
3392 /**
3393  *	t4_get_version_info - extract various chip/firmware version information
3394  *	@adapter: the adapter
3395  *
3396  *	Reads various chip/firmware version numbers and stores them into the
3397  *	adapter Adapter Parameters structure.  If any of the efforts fails
3398  *	the first failure will be returned, but all of the version numbers
3399  *	will be read.
3400  */
3401 int t4_get_version_info(struct adapter *adapter)
3402 {
3403 	int ret = 0;
3404 
3405 	#define FIRST_RET(__getvinfo) \
3406 	do { \
3407 		int __ret = __getvinfo; \
3408 		if (__ret && !ret) \
3409 			ret = __ret; \
3410 	} while (0)
3411 
3412 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3413 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3414 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3415 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3416 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3417 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3418 
3419 	#undef FIRST_RET
3420 
3421 	return ret;
3422 }
3423 
3424 /**
3425  *	t4_flash_erase_sectors - erase a range of flash sectors
3426  *	@adapter: the adapter
3427  *	@start: the first sector to erase
3428  *	@end: the last sector to erase
3429  *
3430  *	Erases the sectors in the given inclusive range.
3431  */
3432 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3433 {
3434 	int ret = 0;
3435 
3436 	if (end >= adapter->params.sf_nsec)
3437 		return -EINVAL;
3438 
3439 	while (start <= end) {
3440 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3441 		    (ret = sf1_write(adapter, 4, 0, 1,
3442 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3443 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3444 			CH_ERR(adapter,
3445 				"erase of flash sector %d failed, error %d\n",
3446 				start, ret);
3447 			break;
3448 		}
3449 		start++;
3450 	}
3451 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3452 	return ret;
3453 }
3454 
3455 /**
3456  *	t4_flash_cfg_addr - return the address of the flash configuration file
3457  *	@adapter: the adapter
3458  *
3459  *	Return the address within the flash where the Firmware Configuration
3460  *	File is stored, or an error if the device FLASH is too small to contain
3461  *	a Firmware Configuration File.
3462  */
3463 int t4_flash_cfg_addr(struct adapter *adapter)
3464 {
3465 	/*
3466 	 * If the device FLASH isn't large enough to hold a Firmware
3467 	 * Configuration File, return an error.
3468 	 */
3469 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3470 		return -ENOSPC;
3471 
3472 	return FLASH_CFG_START;
3473 }
3474 
3475 /*
3476  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3477  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3478  * and emit an error message for mismatched firmware to save our caller the
3479  * effort ...
3480  */
3481 static int t4_fw_matches_chip(struct adapter *adap,
3482 			      const struct fw_hdr *hdr)
3483 {
3484 	/*
3485 	 * The expression below will return FALSE for any unsupported adapter
3486 	 * which will keep us "honest" in the future ...
3487 	 */
3488 	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3489 	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3490 	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3491 		return 1;
3492 
3493 	CH_ERR(adap,
3494 		"FW image (%d) is not suitable for this adapter (%d)\n",
3495 		hdr->chip, chip_id(adap));
3496 	return 0;
3497 }
3498 
3499 /**
3500  *	t4_load_fw - download firmware
3501  *	@adap: the adapter
3502  *	@fw_data: the firmware image to write
3503  *	@size: image size
3504  *
3505  *	Write the supplied firmware image to the card's serial flash.
3506  */
3507 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3508 {
3509 	u32 csum;
3510 	int ret, addr;
3511 	unsigned int i;
3512 	u8 first_page[SF_PAGE_SIZE];
3513 	const u32 *p = (const u32 *)fw_data;
3514 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3515 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3516 	unsigned int fw_start_sec;
3517 	unsigned int fw_start;
3518 	unsigned int fw_size;
3519 
3520 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3521 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3522 		fw_start = FLASH_FWBOOTSTRAP_START;
3523 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3524 	} else {
3525 		fw_start_sec = FLASH_FW_START_SEC;
3526  		fw_start = FLASH_FW_START;
3527 		fw_size = FLASH_FW_MAX_SIZE;
3528 	}
3529 
3530 	if (!size) {
3531 		CH_ERR(adap, "FW image has no data\n");
3532 		return -EINVAL;
3533 	}
3534 	if (size & 511) {
3535 		CH_ERR(adap,
3536 			"FW image size not multiple of 512 bytes\n");
3537 		return -EINVAL;
3538 	}
3539 	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3540 		CH_ERR(adap,
3541 			"FW image size differs from size in FW header\n");
3542 		return -EINVAL;
3543 	}
3544 	if (size > fw_size) {
3545 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3546 			fw_size);
3547 		return -EFBIG;
3548 	}
3549 	if (!t4_fw_matches_chip(adap, hdr))
3550 		return -EINVAL;
3551 
3552 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3553 		csum += be32_to_cpu(p[i]);
3554 
3555 	if (csum != 0xffffffff) {
3556 		CH_ERR(adap,
3557 			"corrupted firmware image, checksum %#x\n", csum);
3558 		return -EINVAL;
3559 	}
3560 
3561 	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3562 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3563 	if (ret)
3564 		goto out;
3565 
3566 	/*
3567 	 * We write the correct version at the end so the driver can see a bad
3568 	 * version if the FW write fails.  Start by writing a copy of the
3569 	 * first page with a bad version.
3570 	 */
3571 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3572 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3573 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3574 	if (ret)
3575 		goto out;
3576 
3577 	addr = fw_start;
3578 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3579 		addr += SF_PAGE_SIZE;
3580 		fw_data += SF_PAGE_SIZE;
3581 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3582 		if (ret)
3583 			goto out;
3584 	}
3585 
3586 	ret = t4_write_flash(adap,
3587 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3588 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3589 out:
3590 	if (ret)
3591 		CH_ERR(adap, "firmware download failed, error %d\n",
3592 			ret);
3593 	return ret;
3594 }
3595 
3596 /**
3597  *	t4_fwcache - firmware cache operation
3598  *	@adap: the adapter
3599  *	@op  : the operation (flush or flush and invalidate)
3600  */
3601 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3602 {
3603 	struct fw_params_cmd c;
3604 
3605 	memset(&c, 0, sizeof(c));
3606 	c.op_to_vfn =
3607 	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3608 			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3609 				V_FW_PARAMS_CMD_PFN(adap->pf) |
3610 				V_FW_PARAMS_CMD_VFN(0));
3611 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3612 	c.param[0].mnem =
3613 	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3614 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3615 	c.param[0].val = (__force __be32)op;
3616 
3617 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3618 }
3619 
3620 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3621 			unsigned int *pif_req_wrptr,
3622 			unsigned int *pif_rsp_wrptr)
3623 {
3624 	int i, j;
3625 	u32 cfg, val, req, rsp;
3626 
3627 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3628 	if (cfg & F_LADBGEN)
3629 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3630 
3631 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3632 	req = G_POLADBGWRPTR(val);
3633 	rsp = G_PILADBGWRPTR(val);
3634 	if (pif_req_wrptr)
3635 		*pif_req_wrptr = req;
3636 	if (pif_rsp_wrptr)
3637 		*pif_rsp_wrptr = rsp;
3638 
3639 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3640 		for (j = 0; j < 6; j++) {
3641 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3642 				     V_PILADBGRDPTR(rsp));
3643 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3644 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3645 			req++;
3646 			rsp++;
3647 		}
3648 		req = (req + 2) & M_POLADBGRDPTR;
3649 		rsp = (rsp + 2) & M_PILADBGRDPTR;
3650 	}
3651 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3652 }
3653 
3654 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3655 {
3656 	u32 cfg;
3657 	int i, j, idx;
3658 
3659 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3660 	if (cfg & F_LADBGEN)
3661 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3662 
3663 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3664 		for (j = 0; j < 5; j++) {
3665 			idx = 8 * i + j;
3666 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3667 				     V_PILADBGRDPTR(idx));
3668 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3669 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3670 		}
3671 	}
3672 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3673 }
3674 
3675 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3676 {
3677 	unsigned int i, j;
3678 
3679 	for (i = 0; i < 8; i++) {
3680 		u32 *p = la_buf + i;
3681 
3682 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3683 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3684 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3685 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3686 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3687 	}
3688 }
3689 
3690 /**
3691  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3692  *	@phy: the PHY to setup
3693  *	@mac: the MAC to setup
3694  *	@lc: the requested link configuration
3695  *
3696  *	Set up a port's MAC and PHY according to a desired link configuration.
3697  *	- If the PHY can auto-negotiate first decide what to advertise, then
3698  *	  enable/disable auto-negotiation as desired, and reset.
3699  *	- If the PHY does not auto-negotiate just reset it.
3700  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3701  *	  otherwise do it later based on the outcome of auto-negotiation.
3702  */
3703 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3704 		  struct link_config *lc)
3705 {
3706 	struct fw_port_cmd c;
3707 	unsigned int mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO);
3708 	unsigned int aneg, fc, fec, speed, rcap;
3709 
3710 	fc = 0;
3711 	if (lc->requested_fc & PAUSE_RX)
3712 		fc |= FW_PORT_CAP_FC_RX;
3713 	if (lc->requested_fc & PAUSE_TX)
3714 		fc |= FW_PORT_CAP_FC_TX;
3715 
3716 	fec = 0;
3717 	if (lc->requested_fec & FEC_RS)
3718 		fec = FW_PORT_CAP_FEC_RS;
3719 	else if (lc->requested_fec & FEC_BASER_RS)
3720 		fec = FW_PORT_CAP_FEC_BASER_RS;
3721 	else if (lc->requested_fec & FEC_RESERVED)
3722 		fec = FW_PORT_CAP_FEC_RESERVED;
3723 
3724 	if (!(lc->supported & FW_PORT_CAP_ANEG) ||
3725 	    lc->requested_aneg == AUTONEG_DISABLE) {
3726 		aneg = 0;
3727 		switch (lc->requested_speed) {
3728 		case 100:
3729 			speed = FW_PORT_CAP_SPEED_100G;
3730 			break;
3731 		case 40:
3732 			speed = FW_PORT_CAP_SPEED_40G;
3733 			break;
3734 		case 25:
3735 			speed = FW_PORT_CAP_SPEED_25G;
3736 			break;
3737 		case 10:
3738 			speed = FW_PORT_CAP_SPEED_10G;
3739 			break;
3740 		case 1:
3741 			speed = FW_PORT_CAP_SPEED_1G;
3742 			break;
3743 		default:
3744 			return -EINVAL;
3745 			break;
3746 		}
3747 	} else {
3748 		aneg = FW_PORT_CAP_ANEG;
3749 		speed = lc->supported &
3750 		    V_FW_PORT_CAP_SPEED(M_FW_PORT_CAP_SPEED);
3751 	}
3752 
3753 	rcap = aneg | speed | fc | fec;
3754 	if ((rcap | lc->supported) != lc->supported) {
3755 		CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x\n", rcap,
3756 		    lc->supported);
3757 		rcap &= lc->supported;
3758 	}
3759 	rcap |= mdi;
3760 
3761 	memset(&c, 0, sizeof(c));
3762 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3763 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3764 				     V_FW_PORT_CMD_PORTID(port));
3765 	c.action_to_len16 =
3766 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3767 			    FW_LEN16(c));
3768 	c.u.l1cfg.rcap = cpu_to_be32(rcap);
3769 
3770 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3771 }
3772 
3773 /**
3774  *	t4_restart_aneg - restart autonegotiation
3775  *	@adap: the adapter
3776  *	@mbox: mbox to use for the FW command
3777  *	@port: the port id
3778  *
3779  *	Restarts autonegotiation for the selected port.
3780  */
3781 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3782 {
3783 	struct fw_port_cmd c;
3784 
3785 	memset(&c, 0, sizeof(c));
3786 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3787 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3788 				     V_FW_PORT_CMD_PORTID(port));
3789 	c.action_to_len16 =
3790 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3791 			    FW_LEN16(c));
3792 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3793 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3794 }
3795 
3796 typedef void (*int_handler_t)(struct adapter *adap);
3797 
3798 struct intr_info {
3799 	unsigned int mask;	/* bits to check in interrupt status */
3800 	const char *msg;	/* message to print or NULL */
3801 	short stat_idx;		/* stat counter to increment or -1 */
3802 	unsigned short fatal;	/* whether the condition reported is fatal */
3803 	int_handler_t int_handler;	/* platform-specific int handler */
3804 };
3805 
3806 /**
3807  *	t4_handle_intr_status - table driven interrupt handler
3808  *	@adapter: the adapter that generated the interrupt
3809  *	@reg: the interrupt status register to process
3810  *	@acts: table of interrupt actions
3811  *
3812  *	A table driven interrupt handler that applies a set of masks to an
3813  *	interrupt status word and performs the corresponding actions if the
3814  *	interrupts described by the mask have occurred.  The actions include
3815  *	optionally emitting a warning or alert message.  The table is terminated
3816  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
3817  *	conditions.
3818  */
3819 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3820 				 const struct intr_info *acts)
3821 {
3822 	int fatal = 0;
3823 	unsigned int mask = 0;
3824 	unsigned int status = t4_read_reg(adapter, reg);
3825 
3826 	for ( ; acts->mask; ++acts) {
3827 		if (!(status & acts->mask))
3828 			continue;
3829 		if (acts->fatal) {
3830 			fatal++;
3831 			CH_ALERT(adapter, "%s (0x%x)\n", acts->msg,
3832 				  status & acts->mask);
3833 		} else if (acts->msg)
3834 			CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n", acts->msg,
3835 				 status & acts->mask);
3836 		if (acts->int_handler)
3837 			acts->int_handler(adapter);
3838 		mask |= acts->mask;
3839 	}
3840 	status &= mask;
3841 	if (status)	/* clear processed interrupts */
3842 		t4_write_reg(adapter, reg, status);
3843 	return fatal;
3844 }
3845 
3846 /*
3847  * Interrupt handler for the PCIE module.
3848  */
3849 static void pcie_intr_handler(struct adapter *adapter)
3850 {
3851 	static const struct intr_info sysbus_intr_info[] = {
3852 		{ F_RNPP, "RXNP array parity error", -1, 1 },
3853 		{ F_RPCP, "RXPC array parity error", -1, 1 },
3854 		{ F_RCIP, "RXCIF array parity error", -1, 1 },
3855 		{ F_RCCP, "Rx completions control array parity error", -1, 1 },
3856 		{ F_RFTP, "RXFT array parity error", -1, 1 },
3857 		{ 0 }
3858 	};
3859 	static const struct intr_info pcie_port_intr_info[] = {
3860 		{ F_TPCP, "TXPC array parity error", -1, 1 },
3861 		{ F_TNPP, "TXNP array parity error", -1, 1 },
3862 		{ F_TFTP, "TXFT array parity error", -1, 1 },
3863 		{ F_TCAP, "TXCA array parity error", -1, 1 },
3864 		{ F_TCIP, "TXCIF array parity error", -1, 1 },
3865 		{ F_RCAP, "RXCA array parity error", -1, 1 },
3866 		{ F_OTDD, "outbound request TLP discarded", -1, 1 },
3867 		{ F_RDPE, "Rx data parity error", -1, 1 },
3868 		{ F_TDUE, "Tx uncorrectable data error", -1, 1 },
3869 		{ 0 }
3870 	};
3871 	static const struct intr_info pcie_intr_info[] = {
3872 		{ F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
3873 		{ F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
3874 		{ F_MSIDATAPERR, "MSI data parity error", -1, 1 },
3875 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3876 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3877 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3878 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3879 		{ F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
3880 		{ F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
3881 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3882 		{ F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
3883 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3884 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3885 		{ F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
3886 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3887 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3888 		{ F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
3889 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3890 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3891 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3892 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3893 		{ F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
3894 		{ F_MATAGPERR, "PCI MA tag parity error", -1, 1 },
3895 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3896 		{ F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
3897 		{ F_RXWRPERR, "PCI Rx write parity error", -1, 1 },
3898 		{ F_RPLPERR, "PCI replay buffer parity error", -1, 1 },
3899 		{ F_PCIESINT, "PCI core secondary fault", -1, 1 },
3900 		{ F_PCIEPINT, "PCI core primary fault", -1, 1 },
3901 		{ F_UNXSPLCPLERR, "PCI unexpected split completion error", -1,
3902 		  0 },
3903 		{ 0 }
3904 	};
3905 
3906 	static const struct intr_info t5_pcie_intr_info[] = {
3907 		{ F_MSTGRPPERR, "Master Response Read Queue parity error",
3908 		  -1, 1 },
3909 		{ F_MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
3910 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
3911 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3912 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3913 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3914 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3915 		{ F_PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
3916 		  -1, 1 },
3917 		{ F_PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
3918 		  -1, 1 },
3919 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3920 		{ F_MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
3921 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3922 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3923 		{ F_DREQWRPERR, "PCI DMA channel write request parity error",
3924 		  -1, 1 },
3925 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3926 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3927 		{ F_HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
3928 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3929 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3930 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3931 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3932 		{ F_VFIDPERR, "PCI INTx clear parity error", -1, 1 },
3933 		{ F_MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
3934 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3935 		{ F_IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
3936 		  -1, 1 },
3937 		{ F_IPRXDATAGRPPERR, "PCI IP Rx data group parity error",
3938 		  -1, 1 },
3939 		{ F_RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
3940 		{ F_IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
3941 		{ F_TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3942 		{ F_READRSPERR, "Outbound read error", -1,
3943 		  0 },
3944 		{ 0 }
3945 	};
3946 
3947 	int fat;
3948 
3949 	if (is_t4(adapter))
3950 		fat = t4_handle_intr_status(adapter,
3951 				A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
3952 				sysbus_intr_info) +
3953 			t4_handle_intr_status(adapter,
3954 					A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
3955 					pcie_port_intr_info) +
3956 			t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3957 					      pcie_intr_info);
3958 	else
3959 		fat = t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3960 					    t5_pcie_intr_info);
3961 	if (fat)
3962 		t4_fatal_err(adapter);
3963 }
3964 
3965 /*
3966  * TP interrupt handler.
3967  */
3968 static void tp_intr_handler(struct adapter *adapter)
3969 {
3970 	static const struct intr_info tp_intr_info[] = {
3971 		{ 0x3fffffff, "TP parity error", -1, 1 },
3972 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
3973 		{ 0 }
3974 	};
3975 
3976 	if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info))
3977 		t4_fatal_err(adapter);
3978 }
3979 
3980 /*
3981  * SGE interrupt handler.
3982  */
3983 static void sge_intr_handler(struct adapter *adapter)
3984 {
3985 	u64 v;
3986 	u32 err;
3987 
3988 	static const struct intr_info sge_intr_info[] = {
3989 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
3990 		  "SGE received CPL exceeding IQE size", -1, 1 },
3991 		{ F_ERR_INVALID_CIDX_INC,
3992 		  "SGE GTS CIDX increment too large", -1, 0 },
3993 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
3994 		{ F_DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
3995 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
3996 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
3997 		{ F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
3998 		  0 },
3999 		{ F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
4000 		  0 },
4001 		{ F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
4002 		  0 },
4003 		{ F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
4004 		  0 },
4005 		{ F_ERR_ING_CTXT_PRIO,
4006 		  "SGE too many priority ingress contexts", -1, 0 },
4007 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
4008 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
4009 		{ F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 |
4010 		  F_ERR_PCIE_ERROR2 | F_ERR_PCIE_ERROR3,
4011 		  "SGE PCIe error for a DBP thread", -1, 0 },
4012 		{ 0 }
4013 	};
4014 
4015 	static const struct intr_info t4t5_sge_intr_info[] = {
4016 		{ F_ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
4017 		{ F_DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
4018 		{ F_ERR_EGR_CTXT_PRIO,
4019 		  "SGE too many priority egress contexts", -1, 0 },
4020 		{ 0 }
4021 	};
4022 
4023 	/*
4024  	* For now, treat below interrupts as fatal so that we disable SGE and
4025  	* get better debug */
4026 	static const struct intr_info t6_sge_intr_info[] = {
4027 		{ F_FATAL_WRE_LEN,
4028 		  "SGE Actual WRE packet is less than advertized length",
4029 		  -1, 1 },
4030 		{ 0 }
4031 	};
4032 
4033 	v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) |
4034 		((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32);
4035 	if (v) {
4036 		CH_ALERT(adapter, "SGE parity error (%#llx)\n",
4037 				(unsigned long long)v);
4038 		t4_write_reg(adapter, A_SGE_INT_CAUSE1, v);
4039 		t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32);
4040 	}
4041 
4042 	v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info);
4043 	if (chip_id(adapter) <= CHELSIO_T5)
4044 		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4045 					   t4t5_sge_intr_info);
4046 	else
4047 		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4048 					   t6_sge_intr_info);
4049 
4050 	err = t4_read_reg(adapter, A_SGE_ERROR_STATS);
4051 	if (err & F_ERROR_QID_VALID) {
4052 		CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err));
4053 		if (err & F_UNCAPTURED_ERROR)
4054 			CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n");
4055 		t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID |
4056 			     F_UNCAPTURED_ERROR);
4057 	}
4058 
4059 	if (v != 0)
4060 		t4_fatal_err(adapter);
4061 }
4062 
4063 #define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\
4064 		      F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR)
4065 #define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\
4066 		      F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR)
4067 
4068 /*
4069  * CIM interrupt handler.
4070  */
4071 static void cim_intr_handler(struct adapter *adapter)
4072 {
4073 	static const struct intr_info cim_intr_info[] = {
4074 		{ F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
4075 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4076 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4077 		{ F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
4078 		{ F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
4079 		{ F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
4080 		{ F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
4081 		{ F_TIMER0INT, "CIM TIMER0 interrupt", -1, 1 },
4082 		{ 0 }
4083 	};
4084 	static const struct intr_info cim_upintr_info[] = {
4085 		{ F_RSVDSPACEINT, "CIM reserved space access", -1, 1 },
4086 		{ F_ILLTRANSINT, "CIM illegal transaction", -1, 1 },
4087 		{ F_ILLWRINT, "CIM illegal write", -1, 1 },
4088 		{ F_ILLRDINT, "CIM illegal read", -1, 1 },
4089 		{ F_ILLRDBEINT, "CIM illegal read BE", -1, 1 },
4090 		{ F_ILLWRBEINT, "CIM illegal write BE", -1, 1 },
4091 		{ F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
4092 		{ F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
4093 		{ F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
4094 		{ F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
4095 		{ F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
4096 		{ F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
4097 		{ F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
4098 		{ F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
4099 		{ F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
4100 		{ F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
4101 		{ F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
4102 		{ F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
4103 		{ F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
4104 		{ F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
4105 		{ F_SGLRDPLINT , "CIM single read from PL space", -1, 1 },
4106 		{ F_SGLWRPLINT , "CIM single write to PL space", -1, 1 },
4107 		{ F_BLKRDPLINT , "CIM block read from PL space", -1, 1 },
4108 		{ F_BLKWRPLINT , "CIM block write to PL space", -1, 1 },
4109 		{ F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
4110 		{ F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
4111 		{ F_TIMEOUTINT , "CIM PIF timeout", -1, 1 },
4112 		{ F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
4113 		{ 0 }
4114 	};
4115 	u32 val, fw_err;
4116 	int fat;
4117 
4118 	fw_err = t4_read_reg(adapter, A_PCIE_FW);
4119 	if (fw_err & F_PCIE_FW_ERR)
4120 		t4_report_fw_error(adapter);
4121 
4122 	/* When the Firmware detects an internal error which normally wouldn't
4123 	 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4124 	 * to make sure the Host sees the Firmware Crash.  So if we have a
4125 	 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4126 	 * interrupt.
4127 	 */
4128 	val = t4_read_reg(adapter, A_CIM_HOST_INT_CAUSE);
4129 	if (val & F_TIMER0INT)
4130 		if (!(fw_err & F_PCIE_FW_ERR) ||
4131 		    (G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH))
4132 			t4_write_reg(adapter, A_CIM_HOST_INT_CAUSE,
4133 				     F_TIMER0INT);
4134 
4135 	fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE,
4136 				    cim_intr_info) +
4137 	      t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE,
4138 				    cim_upintr_info);
4139 	if (fat)
4140 		t4_fatal_err(adapter);
4141 }
4142 
4143 /*
4144  * ULP RX interrupt handler.
4145  */
4146 static void ulprx_intr_handler(struct adapter *adapter)
4147 {
4148 	static const struct intr_info ulprx_intr_info[] = {
4149 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 },
4150 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 },
4151 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4152 		{ 0 }
4153 	};
4154 
4155 	if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info))
4156 		t4_fatal_err(adapter);
4157 }
4158 
4159 /*
4160  * ULP TX interrupt handler.
4161  */
4162 static void ulptx_intr_handler(struct adapter *adapter)
4163 {
4164 	static const struct intr_info ulptx_intr_info[] = {
4165 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
4166 		  0 },
4167 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
4168 		  0 },
4169 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
4170 		  0 },
4171 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
4172 		  0 },
4173 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4174 		{ 0 }
4175 	};
4176 
4177 	if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info))
4178 		t4_fatal_err(adapter);
4179 }
4180 
4181 /*
4182  * PM TX interrupt handler.
4183  */
4184 static void pmtx_intr_handler(struct adapter *adapter)
4185 {
4186 	static const struct intr_info pmtx_intr_info[] = {
4187 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
4188 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
4189 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
4190 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
4191 		{ 0xffffff0, "PMTX framing error", -1, 1 },
4192 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
4193 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
4194 		  1 },
4195 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
4196 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
4197 		{ 0 }
4198 	};
4199 
4200 	if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info))
4201 		t4_fatal_err(adapter);
4202 }
4203 
4204 /*
4205  * PM RX interrupt handler.
4206  */
4207 static void pmrx_intr_handler(struct adapter *adapter)
4208 {
4209 	static const struct intr_info pmrx_intr_info[] = {
4210 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
4211 		{ 0x3ffff0, "PMRX framing error", -1, 1 },
4212 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
4213 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
4214 		  1 },
4215 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
4216 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
4217 		{ 0 }
4218 	};
4219 
4220 	if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info))
4221 		t4_fatal_err(adapter);
4222 }
4223 
4224 /*
4225  * CPL switch interrupt handler.
4226  */
4227 static void cplsw_intr_handler(struct adapter *adapter)
4228 {
4229 	static const struct intr_info cplsw_intr_info[] = {
4230 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
4231 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
4232 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
4233 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
4234 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
4235 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
4236 		{ 0 }
4237 	};
4238 
4239 	if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info))
4240 		t4_fatal_err(adapter);
4241 }
4242 
4243 /*
4244  * LE interrupt handler.
4245  */
4246 static void le_intr_handler(struct adapter *adap)
4247 {
4248 	unsigned int chip_ver = chip_id(adap);
4249 	static const struct intr_info le_intr_info[] = {
4250 		{ F_LIPMISS, "LE LIP miss", -1, 0 },
4251 		{ F_LIP0, "LE 0 LIP error", -1, 0 },
4252 		{ F_PARITYERR, "LE parity error", -1, 1 },
4253 		{ F_UNKNOWNCMD, "LE unknown command", -1, 1 },
4254 		{ F_REQQPARERR, "LE request queue parity error", -1, 1 },
4255 		{ 0 }
4256 	};
4257 
4258 	static const struct intr_info t6_le_intr_info[] = {
4259 		{ F_T6_LIPMISS, "LE LIP miss", -1, 0 },
4260 		{ F_T6_LIP0, "LE 0 LIP error", -1, 0 },
4261 		{ F_TCAMINTPERR, "LE parity error", -1, 1 },
4262 		{ F_T6_UNKNOWNCMD, "LE unknown command", -1, 1 },
4263 		{ F_SSRAMINTPERR, "LE request queue parity error", -1, 1 },
4264 		{ 0 }
4265 	};
4266 
4267 	if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE,
4268 				  (chip_ver <= CHELSIO_T5) ?
4269 				  le_intr_info : t6_le_intr_info))
4270 		t4_fatal_err(adap);
4271 }
4272 
4273 /*
4274  * MPS interrupt handler.
4275  */
4276 static void mps_intr_handler(struct adapter *adapter)
4277 {
4278 	static const struct intr_info mps_rx_intr_info[] = {
4279 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4280 		{ 0 }
4281 	};
4282 	static const struct intr_info mps_tx_intr_info[] = {
4283 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 },
4284 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4285 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error",
4286 		  -1, 1 },
4287 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error",
4288 		  -1, 1 },
4289 		{ F_BUBBLE, "MPS Tx underflow", -1, 1 },
4290 		{ F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
4291 		{ F_FRMERR, "MPS Tx framing error", -1, 1 },
4292 		{ 0 }
4293 	};
4294 	static const struct intr_info mps_trc_intr_info[] = {
4295 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 },
4296 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1,
4297 		  1 },
4298 		{ F_MISCPERR, "MPS TRC misc parity error", -1, 1 },
4299 		{ 0 }
4300 	};
4301 	static const struct intr_info mps_stat_sram_intr_info[] = {
4302 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4303 		{ 0 }
4304 	};
4305 	static const struct intr_info mps_stat_tx_intr_info[] = {
4306 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4307 		{ 0 }
4308 	};
4309 	static const struct intr_info mps_stat_rx_intr_info[] = {
4310 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4311 		{ 0 }
4312 	};
4313 	static const struct intr_info mps_cls_intr_info[] = {
4314 		{ F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
4315 		{ F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
4316 		{ F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
4317 		{ 0 }
4318 	};
4319 
4320 	int fat;
4321 
4322 	fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE,
4323 				    mps_rx_intr_info) +
4324 	      t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE,
4325 				    mps_tx_intr_info) +
4326 	      t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE,
4327 				    mps_trc_intr_info) +
4328 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4329 				    mps_stat_sram_intr_info) +
4330 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4331 				    mps_stat_tx_intr_info) +
4332 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4333 				    mps_stat_rx_intr_info) +
4334 	      t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE,
4335 				    mps_cls_intr_info);
4336 
4337 	t4_write_reg(adapter, A_MPS_INT_CAUSE, 0);
4338 	t4_read_reg(adapter, A_MPS_INT_CAUSE);	/* flush */
4339 	if (fat)
4340 		t4_fatal_err(adapter);
4341 }
4342 
4343 #define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | \
4344 		      F_ECC_UE_INT_CAUSE)
4345 
4346 /*
4347  * EDC/MC interrupt handler.
4348  */
4349 static void mem_intr_handler(struct adapter *adapter, int idx)
4350 {
4351 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4352 
4353 	unsigned int addr, cnt_addr, v;
4354 
4355 	if (idx <= MEM_EDC1) {
4356 		addr = EDC_REG(A_EDC_INT_CAUSE, idx);
4357 		cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx);
4358 	} else if (idx == MEM_MC) {
4359 		if (is_t4(adapter)) {
4360 			addr = A_MC_INT_CAUSE;
4361 			cnt_addr = A_MC_ECC_STATUS;
4362 		} else {
4363 			addr = A_MC_P_INT_CAUSE;
4364 			cnt_addr = A_MC_P_ECC_STATUS;
4365 		}
4366 	} else {
4367 		addr = MC_REG(A_MC_P_INT_CAUSE, 1);
4368 		cnt_addr = MC_REG(A_MC_P_ECC_STATUS, 1);
4369 	}
4370 
4371 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4372 	if (v & F_PERR_INT_CAUSE)
4373 		CH_ALERT(adapter, "%s FIFO parity error\n",
4374 			  name[idx]);
4375 	if (v & F_ECC_CE_INT_CAUSE) {
4376 		u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr));
4377 
4378 		if (idx <= MEM_EDC1)
4379 			t4_edc_err_read(adapter, idx);
4380 
4381 		t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT));
4382 		CH_WARN_RATELIMIT(adapter,
4383 				  "%u %s correctable ECC data error%s\n",
4384 				  cnt, name[idx], cnt > 1 ? "s" : "");
4385 	}
4386 	if (v & F_ECC_UE_INT_CAUSE)
4387 		CH_ALERT(adapter,
4388 			 "%s uncorrectable ECC data error\n", name[idx]);
4389 
4390 	t4_write_reg(adapter, addr, v);
4391 	if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE))
4392 		t4_fatal_err(adapter);
4393 }
4394 
4395 /*
4396  * MA interrupt handler.
4397  */
4398 static void ma_intr_handler(struct adapter *adapter)
4399 {
4400 	u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE);
4401 
4402 	if (status & F_MEM_PERR_INT_CAUSE) {
4403 		CH_ALERT(adapter,
4404 			  "MA parity error, parity status %#x\n",
4405 			  t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS1));
4406 		if (is_t5(adapter))
4407 			CH_ALERT(adapter,
4408 				  "MA parity error, parity status %#x\n",
4409 				  t4_read_reg(adapter,
4410 					      A_MA_PARITY_ERROR_STATUS2));
4411 	}
4412 	if (status & F_MEM_WRAP_INT_CAUSE) {
4413 		v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS);
4414 		CH_ALERT(adapter, "MA address wrap-around error by "
4415 			  "client %u to address %#x\n",
4416 			  G_MEM_WRAP_CLIENT_NUM(v),
4417 			  G_MEM_WRAP_ADDRESS(v) << 4);
4418 	}
4419 	t4_write_reg(adapter, A_MA_INT_CAUSE, status);
4420 	t4_fatal_err(adapter);
4421 }
4422 
4423 /*
4424  * SMB interrupt handler.
4425  */
4426 static void smb_intr_handler(struct adapter *adap)
4427 {
4428 	static const struct intr_info smb_intr_info[] = {
4429 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
4430 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
4431 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
4432 		{ 0 }
4433 	};
4434 
4435 	if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info))
4436 		t4_fatal_err(adap);
4437 }
4438 
4439 /*
4440  * NC-SI interrupt handler.
4441  */
4442 static void ncsi_intr_handler(struct adapter *adap)
4443 {
4444 	static const struct intr_info ncsi_intr_info[] = {
4445 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
4446 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
4447 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
4448 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
4449 		{ 0 }
4450 	};
4451 
4452 	if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info))
4453 		t4_fatal_err(adap);
4454 }
4455 
4456 /*
4457  * XGMAC interrupt handler.
4458  */
4459 static void xgmac_intr_handler(struct adapter *adap, int port)
4460 {
4461 	u32 v, int_cause_reg;
4462 
4463 	if (is_t4(adap))
4464 		int_cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
4465 	else
4466 		int_cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
4467 
4468 	v = t4_read_reg(adap, int_cause_reg);
4469 
4470 	v &= (F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR);
4471 	if (!v)
4472 		return;
4473 
4474 	if (v & F_TXFIFO_PRTY_ERR)
4475 		CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n",
4476 			  port);
4477 	if (v & F_RXFIFO_PRTY_ERR)
4478 		CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n",
4479 			  port);
4480 	t4_write_reg(adap, int_cause_reg, v);
4481 	t4_fatal_err(adap);
4482 }
4483 
4484 /*
4485  * PL interrupt handler.
4486  */
4487 static void pl_intr_handler(struct adapter *adap)
4488 {
4489 	static const struct intr_info pl_intr_info[] = {
4490 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4491 		{ F_PERRVFID, "PL VFID_MAP parity error", -1, 1 },
4492 		{ 0 }
4493 	};
4494 
4495 	static const struct intr_info t5_pl_intr_info[] = {
4496 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4497 		{ 0 }
4498 	};
4499 
4500 	if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE,
4501 				  is_t4(adap) ?
4502 				  pl_intr_info : t5_pl_intr_info))
4503 		t4_fatal_err(adap);
4504 }
4505 
4506 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
4507 
4508 /**
4509  *	t4_slow_intr_handler - control path interrupt handler
4510  *	@adapter: the adapter
4511  *
4512  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4513  *	The designation 'slow' is because it involves register reads, while
4514  *	data interrupts typically don't involve any MMIOs.
4515  */
4516 int t4_slow_intr_handler(struct adapter *adapter)
4517 {
4518 	u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE);
4519 
4520 	if (!(cause & GLBL_INTR_MASK))
4521 		return 0;
4522 	if (cause & F_CIM)
4523 		cim_intr_handler(adapter);
4524 	if (cause & F_MPS)
4525 		mps_intr_handler(adapter);
4526 	if (cause & F_NCSI)
4527 		ncsi_intr_handler(adapter);
4528 	if (cause & F_PL)
4529 		pl_intr_handler(adapter);
4530 	if (cause & F_SMB)
4531 		smb_intr_handler(adapter);
4532 	if (cause & F_MAC0)
4533 		xgmac_intr_handler(adapter, 0);
4534 	if (cause & F_MAC1)
4535 		xgmac_intr_handler(adapter, 1);
4536 	if (cause & F_MAC2)
4537 		xgmac_intr_handler(adapter, 2);
4538 	if (cause & F_MAC3)
4539 		xgmac_intr_handler(adapter, 3);
4540 	if (cause & F_PCIE)
4541 		pcie_intr_handler(adapter);
4542 	if (cause & F_MC0)
4543 		mem_intr_handler(adapter, MEM_MC);
4544 	if (is_t5(adapter) && (cause & F_MC1))
4545 		mem_intr_handler(adapter, MEM_MC1);
4546 	if (cause & F_EDC0)
4547 		mem_intr_handler(adapter, MEM_EDC0);
4548 	if (cause & F_EDC1)
4549 		mem_intr_handler(adapter, MEM_EDC1);
4550 	if (cause & F_LE)
4551 		le_intr_handler(adapter);
4552 	if (cause & F_TP)
4553 		tp_intr_handler(adapter);
4554 	if (cause & F_MA)
4555 		ma_intr_handler(adapter);
4556 	if (cause & F_PM_TX)
4557 		pmtx_intr_handler(adapter);
4558 	if (cause & F_PM_RX)
4559 		pmrx_intr_handler(adapter);
4560 	if (cause & F_ULP_RX)
4561 		ulprx_intr_handler(adapter);
4562 	if (cause & F_CPL_SWITCH)
4563 		cplsw_intr_handler(adapter);
4564 	if (cause & F_SGE)
4565 		sge_intr_handler(adapter);
4566 	if (cause & F_ULP_TX)
4567 		ulptx_intr_handler(adapter);
4568 
4569 	/* Clear the interrupts just processed for which we are the master. */
4570 	t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK);
4571 	(void)t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */
4572 	return 1;
4573 }
4574 
4575 /**
4576  *	t4_intr_enable - enable interrupts
4577  *	@adapter: the adapter whose interrupts should be enabled
4578  *
4579  *	Enable PF-specific interrupts for the calling function and the top-level
4580  *	interrupt concentrator for global interrupts.  Interrupts are already
4581  *	enabled at each module,	here we just enable the roots of the interrupt
4582  *	hierarchies.
4583  *
4584  *	Note: this function should be called only when the driver manages
4585  *	non PF-specific interrupts from the various HW modules.  Only one PCI
4586  *	function at a time should be doing this.
4587  */
4588 void t4_intr_enable(struct adapter *adapter)
4589 {
4590 	u32 val = 0;
4591 	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4592 	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4593 		  ? G_SOURCEPF(whoami)
4594 		  : G_T6_SOURCEPF(whoami));
4595 
4596 	if (chip_id(adapter) <= CHELSIO_T5)
4597 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
4598 	else
4599 		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
4600 	t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
4601 		     F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
4602 		     F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
4603 		     F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
4604 		     F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4605 		     F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
4606 		     F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
4607 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
4608 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
4609 }
4610 
4611 /**
4612  *	t4_intr_disable - disable interrupts
4613  *	@adapter: the adapter whose interrupts should be disabled
4614  *
4615  *	Disable interrupts.  We only disable the top-level interrupt
4616  *	concentrators.  The caller must be a PCI function managing global
4617  *	interrupts.
4618  */
4619 void t4_intr_disable(struct adapter *adapter)
4620 {
4621 	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4622 	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4623 		  ? G_SOURCEPF(whoami)
4624 		  : G_T6_SOURCEPF(whoami));
4625 
4626 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
4627 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
4628 }
4629 
4630 /**
4631  *	t4_intr_clear - clear all interrupts
4632  *	@adapter: the adapter whose interrupts should be cleared
4633  *
4634  *	Clears all interrupts.  The caller must be a PCI function managing
4635  *	global interrupts.
4636  */
4637 void t4_intr_clear(struct adapter *adapter)
4638 {
4639 	static const unsigned int cause_reg[] = {
4640 		A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3,
4641 		A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE,
4642 		A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS1, A_MA_INT_CAUSE,
4643 		A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1),
4644 		A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE,
4645 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4646 		A_TP_INT_CAUSE,
4647 		A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE,
4648 		A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE,
4649 		A_MPS_RX_PERR_INT_CAUSE,
4650 		A_CPL_INTR_CAUSE,
4651 		MYPF_REG(A_PL_PF_INT_CAUSE),
4652 		A_PL_PL_INT_CAUSE,
4653 		A_LE_DB_INT_CAUSE,
4654 	};
4655 
4656 	unsigned int i;
4657 
4658 	for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
4659 		t4_write_reg(adapter, cause_reg[i], 0xffffffff);
4660 
4661 	t4_write_reg(adapter, is_t4(adapter) ? A_MC_INT_CAUSE :
4662 				A_MC_P_INT_CAUSE, 0xffffffff);
4663 
4664 	if (is_t4(adapter)) {
4665 		t4_write_reg(adapter, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4666 				0xffffffff);
4667 		t4_write_reg(adapter, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4668 				0xffffffff);
4669 	} else
4670 		t4_write_reg(adapter, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
4671 
4672 	t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK);
4673 	(void) t4_read_reg(adapter, A_PL_INT_CAUSE);          /* flush */
4674 }
4675 
4676 /**
4677  *	hash_mac_addr - return the hash value of a MAC address
4678  *	@addr: the 48-bit Ethernet MAC address
4679  *
4680  *	Hashes a MAC address according to the hash function used by HW inexact
4681  *	(hash) address matching.
4682  */
4683 static int hash_mac_addr(const u8 *addr)
4684 {
4685 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
4686 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
4687 	a ^= b;
4688 	a ^= (a >> 12);
4689 	a ^= (a >> 6);
4690 	return a & 0x3f;
4691 }
4692 
4693 /**
4694  *	t4_config_rss_range - configure a portion of the RSS mapping table
4695  *	@adapter: the adapter
4696  *	@mbox: mbox to use for the FW command
4697  *	@viid: virtual interface whose RSS subtable is to be written
4698  *	@start: start entry in the table to write
4699  *	@n: how many table entries to write
4700  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
4701  *	@nrspq: number of values in @rspq
4702  *
4703  *	Programs the selected part of the VI's RSS mapping table with the
4704  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4705  *	until the full table range is populated.
4706  *
4707  *	The caller must ensure the values in @rspq are in the range allowed for
4708  *	@viid.
4709  */
4710 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4711 			int start, int n, const u16 *rspq, unsigned int nrspq)
4712 {
4713 	int ret;
4714 	const u16 *rsp = rspq;
4715 	const u16 *rsp_end = rspq + nrspq;
4716 	struct fw_rss_ind_tbl_cmd cmd;
4717 
4718 	memset(&cmd, 0, sizeof(cmd));
4719 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
4720 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4721 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
4722 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4723 
4724 	/*
4725 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
4726 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
4727 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
4728 	 * reserved.
4729 	 */
4730 	while (n > 0) {
4731 		int nq = min(n, 32);
4732 		int nq_packed = 0;
4733 		__be32 *qp = &cmd.iq0_to_iq2;
4734 
4735 		/*
4736 		 * Set up the firmware RSS command header to send the next
4737 		 * "nq" Ingress Queue IDs to the firmware.
4738 		 */
4739 		cmd.niqid = cpu_to_be16(nq);
4740 		cmd.startidx = cpu_to_be16(start);
4741 
4742 		/*
4743 		 * "nq" more done for the start of the next loop.
4744 		 */
4745 		start += nq;
4746 		n -= nq;
4747 
4748 		/*
4749 		 * While there are still Ingress Queue IDs to stuff into the
4750 		 * current firmware RSS command, retrieve them from the
4751 		 * Ingress Queue ID array and insert them into the command.
4752 		 */
4753 		while (nq > 0) {
4754 			/*
4755 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
4756 			 * around the Ingress Queue ID array if necessary) and
4757 			 * insert them into the firmware RSS command at the
4758 			 * current 3-tuple position within the commad.
4759 			 */
4760 			u16 qbuf[3];
4761 			u16 *qbp = qbuf;
4762 			int nqbuf = min(3, nq);
4763 
4764 			nq -= nqbuf;
4765 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
4766 			while (nqbuf && nq_packed < 32) {
4767 				nqbuf--;
4768 				nq_packed++;
4769 				*qbp++ = *rsp++;
4770 				if (rsp >= rsp_end)
4771 					rsp = rspq;
4772 			}
4773 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
4774 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
4775 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
4776 		}
4777 
4778 		/*
4779 		 * Send this portion of the RRS table update to the firmware;
4780 		 * bail out on any errors.
4781 		 */
4782 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4783 		if (ret)
4784 			return ret;
4785 	}
4786 	return 0;
4787 }
4788 
4789 /**
4790  *	t4_config_glbl_rss - configure the global RSS mode
4791  *	@adapter: the adapter
4792  *	@mbox: mbox to use for the FW command
4793  *	@mode: global RSS mode
4794  *	@flags: mode-specific flags
4795  *
4796  *	Sets the global RSS mode.
4797  */
4798 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4799 		       unsigned int flags)
4800 {
4801 	struct fw_rss_glb_config_cmd c;
4802 
4803 	memset(&c, 0, sizeof(c));
4804 	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
4805 				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
4806 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4807 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4808 		c.u.manual.mode_pkd =
4809 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4810 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4811 		c.u.basicvirtual.mode_keymode =
4812 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4813 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4814 	} else
4815 		return -EINVAL;
4816 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4817 }
4818 
4819 /**
4820  *	t4_config_vi_rss - configure per VI RSS settings
4821  *	@adapter: the adapter
4822  *	@mbox: mbox to use for the FW command
4823  *	@viid: the VI id
4824  *	@flags: RSS flags
4825  *	@defq: id of the default RSS queue for the VI.
4826  *	@skeyidx: RSS secret key table index for non-global mode
4827  *	@skey: RSS vf_scramble key for VI.
4828  *
4829  *	Configures VI-specific RSS properties.
4830  */
4831 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4832 		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
4833 		     unsigned int skey)
4834 {
4835 	struct fw_rss_vi_config_cmd c;
4836 
4837 	memset(&c, 0, sizeof(c));
4838 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
4839 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4840 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
4841 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4842 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4843 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
4844 	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
4845 					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
4846 	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
4847 
4848 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4849 }
4850 
4851 /* Read an RSS table row */
4852 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4853 {
4854 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
4855 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
4856 				   5, 0, val);
4857 }
4858 
4859 /**
4860  *	t4_read_rss - read the contents of the RSS mapping table
4861  *	@adapter: the adapter
4862  *	@map: holds the contents of the RSS mapping table
4863  *
4864  *	Reads the contents of the RSS hash->queue mapping table.
4865  */
4866 int t4_read_rss(struct adapter *adapter, u16 *map)
4867 {
4868 	u32 val;
4869 	int i, ret;
4870 
4871 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4872 		ret = rd_rss_row(adapter, i, &val);
4873 		if (ret)
4874 			return ret;
4875 		*map++ = G_LKPTBLQUEUE0(val);
4876 		*map++ = G_LKPTBLQUEUE1(val);
4877 	}
4878 	return 0;
4879 }
4880 
4881 /**
4882  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
4883  * @adap: the adapter
4884  * @cmd: TP fw ldst address space type
4885  * @vals: where the indirect register values are stored/written
4886  * @nregs: how many indirect registers to read/write
4887  * @start_idx: index of first indirect register to read/write
4888  * @rw: Read (1) or Write (0)
4889  * @sleep_ok: if true we may sleep while awaiting command completion
4890  *
4891  * Access TP indirect registers through LDST
4892  **/
4893 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
4894 			    unsigned int nregs, unsigned int start_index,
4895 			    unsigned int rw, bool sleep_ok)
4896 {
4897 	int ret = 0;
4898 	unsigned int i;
4899 	struct fw_ldst_cmd c;
4900 
4901 	for (i = 0; i < nregs; i++) {
4902 		memset(&c, 0, sizeof(c));
4903 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
4904 						F_FW_CMD_REQUEST |
4905 						(rw ? F_FW_CMD_READ :
4906 						      F_FW_CMD_WRITE) |
4907 						V_FW_LDST_CMD_ADDRSPACE(cmd));
4908 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4909 
4910 		c.u.addrval.addr = cpu_to_be32(start_index + i);
4911 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4912 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
4913 				      sleep_ok);
4914 		if (ret)
4915 			return ret;
4916 
4917 		if (rw)
4918 			vals[i] = be32_to_cpu(c.u.addrval.val);
4919 	}
4920 	return 0;
4921 }
4922 
4923 /**
4924  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
4925  * @adap: the adapter
4926  * @reg_addr: Address Register
4927  * @reg_data: Data register
4928  * @buff: where the indirect register values are stored/written
4929  * @nregs: how many indirect registers to read/write
4930  * @start_index: index of first indirect register to read/write
4931  * @rw: READ(1) or WRITE(0)
4932  * @sleep_ok: if true we may sleep while awaiting command completion
4933  *
4934  * Read/Write TP indirect registers through LDST if possible.
4935  * Else, use backdoor access
4936  **/
4937 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
4938 			      u32 *buff, u32 nregs, u32 start_index, int rw,
4939 			      bool sleep_ok)
4940 {
4941 	int rc = -EINVAL;
4942 	int cmd;
4943 
4944 	switch (reg_addr) {
4945 	case A_TP_PIO_ADDR:
4946 		cmd = FW_LDST_ADDRSPC_TP_PIO;
4947 		break;
4948 	case A_TP_TM_PIO_ADDR:
4949 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
4950 		break;
4951 	case A_TP_MIB_INDEX:
4952 		cmd = FW_LDST_ADDRSPC_TP_MIB;
4953 		break;
4954 	default:
4955 		goto indirect_access;
4956 	}
4957 
4958 	if (t4_use_ldst(adap))
4959 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
4960 				      sleep_ok);
4961 
4962 indirect_access:
4963 
4964 	if (rc) {
4965 		if (rw)
4966 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
4967 					 start_index);
4968 		else
4969 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
4970 					  start_index);
4971 	}
4972 }
4973 
4974 /**
4975  * t4_tp_pio_read - Read TP PIO registers
4976  * @adap: the adapter
4977  * @buff: where the indirect register values are written
4978  * @nregs: how many indirect registers to read
4979  * @start_index: index of first indirect register to read
4980  * @sleep_ok: if true we may sleep while awaiting command completion
4981  *
4982  * Read TP PIO Registers
4983  **/
4984 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
4985 		    u32 start_index, bool sleep_ok)
4986 {
4987 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
4988 			  start_index, 1, sleep_ok);
4989 }
4990 
4991 /**
4992  * t4_tp_pio_write - Write TP PIO registers
4993  * @adap: the adapter
4994  * @buff: where the indirect register values are stored
4995  * @nregs: how many indirect registers to write
4996  * @start_index: index of first indirect register to write
4997  * @sleep_ok: if true we may sleep while awaiting command completion
4998  *
4999  * Write TP PIO Registers
5000  **/
5001 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5002 		     u32 start_index, bool sleep_ok)
5003 {
5004 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5005 	    __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5006 }
5007 
5008 /**
5009  * t4_tp_tm_pio_read - Read TP TM PIO registers
5010  * @adap: the adapter
5011  * @buff: where the indirect register values are written
5012  * @nregs: how many indirect registers to read
5013  * @start_index: index of first indirect register to read
5014  * @sleep_ok: if true we may sleep while awaiting command completion
5015  *
5016  * Read TP TM PIO Registers
5017  **/
5018 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5019 		       u32 start_index, bool sleep_ok)
5020 {
5021 	t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5022 			  nregs, start_index, 1, sleep_ok);
5023 }
5024 
5025 /**
5026  * t4_tp_mib_read - Read TP MIB registers
5027  * @adap: the adapter
5028  * @buff: where the indirect register values are written
5029  * @nregs: how many indirect registers to read
5030  * @start_index: index of first indirect register to read
5031  * @sleep_ok: if true we may sleep while awaiting command completion
5032  *
5033  * Read TP MIB Registers
5034  **/
5035 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5036 		    bool sleep_ok)
5037 {
5038 	t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5039 			  start_index, 1, sleep_ok);
5040 }
5041 
5042 /**
5043  *	t4_read_rss_key - read the global RSS key
5044  *	@adap: the adapter
5045  *	@key: 10-entry array holding the 320-bit RSS key
5046  * 	@sleep_ok: if true we may sleep while awaiting command completion
5047  *
5048  *	Reads the global 320-bit RSS key.
5049  */
5050 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5051 {
5052 	t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5053 }
5054 
5055 /**
5056  *	t4_write_rss_key - program one of the RSS keys
5057  *	@adap: the adapter
5058  *	@key: 10-entry array holding the 320-bit RSS key
5059  *	@idx: which RSS key to write
5060  * 	@sleep_ok: if true we may sleep while awaiting command completion
5061  *
5062  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5063  *	0..15 the corresponding entry in the RSS key table is written,
5064  *	otherwise the global RSS key is written.
5065  */
5066 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5067 		      bool sleep_ok)
5068 {
5069 	u8 rss_key_addr_cnt = 16;
5070 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5071 
5072 	/*
5073 	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5074 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5075 	 * as index[5:4](upper 2) into key table
5076 	 */
5077 	if ((chip_id(adap) > CHELSIO_T5) &&
5078 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5079 		rss_key_addr_cnt = 32;
5080 
5081 	t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5082 
5083 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5084 		if (rss_key_addr_cnt > 16)
5085 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5086 				     vrt | V_KEYWRADDRX(idx >> 4) |
5087 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
5088 		else
5089 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5090 				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5091 	}
5092 }
5093 
5094 /**
5095  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5096  *	@adapter: the adapter
5097  *	@index: the entry in the PF RSS table to read
5098  *	@valp: where to store the returned value
5099  * 	@sleep_ok: if true we may sleep while awaiting command completion
5100  *
5101  *	Reads the PF RSS Configuration Table at the specified index and returns
5102  *	the value found there.
5103  */
5104 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5105 			   u32 *valp, bool sleep_ok)
5106 {
5107 	t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5108 }
5109 
5110 /**
5111  *	t4_write_rss_pf_config - write PF RSS Configuration Table
5112  *	@adapter: the adapter
5113  *	@index: the entry in the VF RSS table to read
5114  *	@val: the value to store
5115  * 	@sleep_ok: if true we may sleep while awaiting command completion
5116  *
5117  *	Writes the PF RSS Configuration Table at the specified index with the
5118  *	specified value.
5119  */
5120 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5121 			    u32 val, bool sleep_ok)
5122 {
5123 	t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5124 			sleep_ok);
5125 }
5126 
5127 /**
5128  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5129  *	@adapter: the adapter
5130  *	@index: the entry in the VF RSS table to read
5131  *	@vfl: where to store the returned VFL
5132  *	@vfh: where to store the returned VFH
5133  * 	@sleep_ok: if true we may sleep while awaiting command completion
5134  *
5135  *	Reads the VF RSS Configuration Table at the specified index and returns
5136  *	the (VFL, VFH) values found there.
5137  */
5138 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5139 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5140 {
5141 	u32 vrt, mask, data;
5142 
5143 	if (chip_id(adapter) <= CHELSIO_T5) {
5144 		mask = V_VFWRADDR(M_VFWRADDR);
5145 		data = V_VFWRADDR(index);
5146 	} else {
5147 		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5148 		 data = V_T6_VFWRADDR(index);
5149 	}
5150 	/*
5151 	 * Request that the index'th VF Table values be read into VFL/VFH.
5152 	 */
5153 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5154 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5155 	vrt |= data | F_VFRDEN;
5156 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5157 
5158 	/*
5159 	 * Grab the VFL/VFH values ...
5160 	 */
5161 	t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5162 	t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5163 }
5164 
5165 /**
5166  *	t4_write_rss_vf_config - write VF RSS Configuration Table
5167  *
5168  *	@adapter: the adapter
5169  *	@index: the entry in the VF RSS table to write
5170  *	@vfl: the VFL to store
5171  *	@vfh: the VFH to store
5172  *
5173  *	Writes the VF RSS Configuration Table at the specified index with the
5174  *	specified (VFL, VFH) values.
5175  */
5176 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
5177 			    u32 vfl, u32 vfh, bool sleep_ok)
5178 {
5179 	u32 vrt, mask, data;
5180 
5181 	if (chip_id(adapter) <= CHELSIO_T5) {
5182 		mask = V_VFWRADDR(M_VFWRADDR);
5183 		data = V_VFWRADDR(index);
5184 	} else {
5185 		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5186 		data = V_T6_VFWRADDR(index);
5187 	}
5188 
5189 	/*
5190 	 * Load up VFL/VFH with the values to be written ...
5191 	 */
5192 	t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5193 	t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5194 
5195 	/*
5196 	 * Write the VFL/VFH into the VF Table at index'th location.
5197 	 */
5198 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5199 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5200 	vrt |= data | F_VFRDEN;
5201 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5202 }
5203 
5204 /**
5205  *	t4_read_rss_pf_map - read PF RSS Map
5206  *	@adapter: the adapter
5207  * 	@sleep_ok: if true we may sleep while awaiting command completion
5208  *
5209  *	Reads the PF RSS Map register and returns its value.
5210  */
5211 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5212 {
5213 	u32 pfmap;
5214 
5215 	t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5216 
5217 	return pfmap;
5218 }
5219 
5220 /**
5221  *	t4_write_rss_pf_map - write PF RSS Map
5222  *	@adapter: the adapter
5223  *	@pfmap: PF RSS Map value
5224  *
5225  *	Writes the specified value to the PF RSS Map register.
5226  */
5227 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
5228 {
5229 	t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5230 }
5231 
5232 /**
5233  *	t4_read_rss_pf_mask - read PF RSS Mask
5234  *	@adapter: the adapter
5235  * 	@sleep_ok: if true we may sleep while awaiting command completion
5236  *
5237  *	Reads the PF RSS Mask register and returns its value.
5238  */
5239 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5240 {
5241 	u32 pfmask;
5242 
5243 	t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
5244 
5245 	return pfmask;
5246 }
5247 
5248 /**
5249  *	t4_write_rss_pf_mask - write PF RSS Mask
5250  *	@adapter: the adapter
5251  *	@pfmask: PF RSS Mask value
5252  *
5253  *	Writes the specified value to the PF RSS Mask register.
5254  */
5255 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
5256 {
5257 	t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
5258 }
5259 
5260 /**
5261  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5262  *	@adap: the adapter
5263  *	@v4: holds the TCP/IP counter values
5264  *	@v6: holds the TCP/IPv6 counter values
5265  * 	@sleep_ok: if true we may sleep while awaiting command completion
5266  *
5267  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5268  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5269  */
5270 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5271 			 struct tp_tcp_stats *v6, bool sleep_ok)
5272 {
5273 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
5274 
5275 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
5276 #define STAT(x)     val[STAT_IDX(x)]
5277 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5278 
5279 	if (v4) {
5280 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5281 			       A_TP_MIB_TCP_OUT_RST, sleep_ok);
5282 		v4->tcp_out_rsts = STAT(OUT_RST);
5283 		v4->tcp_in_segs  = STAT64(IN_SEG);
5284 		v4->tcp_out_segs = STAT64(OUT_SEG);
5285 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5286 	}
5287 	if (v6) {
5288 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5289 			       A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
5290 		v6->tcp_out_rsts = STAT(OUT_RST);
5291 		v6->tcp_in_segs  = STAT64(IN_SEG);
5292 		v6->tcp_out_segs = STAT64(OUT_SEG);
5293 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5294 	}
5295 #undef STAT64
5296 #undef STAT
5297 #undef STAT_IDX
5298 }
5299 
5300 /**
5301  *	t4_tp_get_err_stats - read TP's error MIB counters
5302  *	@adap: the adapter
5303  *	@st: holds the counter values
5304  * 	@sleep_ok: if true we may sleep while awaiting command completion
5305  *
5306  *	Returns the values of TP's error counters.
5307  */
5308 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5309 			 bool sleep_ok)
5310 {
5311 	int nchan = adap->chip_params->nchan;
5312 
5313 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
5314 		       sleep_ok);
5315 
5316 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
5317 		       sleep_ok);
5318 
5319 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
5320 		       sleep_ok);
5321 
5322 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5323 		       A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
5324 
5325 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5326 		       A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
5327 
5328 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
5329 		       sleep_ok);
5330 
5331 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5332 		       A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
5333 
5334 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5335 		       A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
5336 
5337 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
5338 		       sleep_ok);
5339 }
5340 
5341 /**
5342  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
5343  *	@adap: the adapter
5344  *	@st: holds the counter values
5345  *
5346  *	Returns the values of TP's proxy counters.
5347  */
5348 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
5349     bool sleep_ok)
5350 {
5351 	int nchan = adap->chip_params->nchan;
5352 
5353 	t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
5354 }
5355 
5356 /**
5357  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5358  *	@adap: the adapter
5359  *	@st: holds the counter values
5360  * 	@sleep_ok: if true we may sleep while awaiting command completion
5361  *
5362  *	Returns the values of TP's CPL counters.
5363  */
5364 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5365 			 bool sleep_ok)
5366 {
5367 	int nchan = adap->chip_params->nchan;
5368 
5369 	t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
5370 
5371 	t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
5372 }
5373 
5374 /**
5375  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5376  *	@adap: the adapter
5377  *	@st: holds the counter values
5378  *
5379  *	Returns the values of TP's RDMA counters.
5380  */
5381 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5382 			  bool sleep_ok)
5383 {
5384 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
5385 		       sleep_ok);
5386 }
5387 
5388 /**
5389  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5390  *	@adap: the adapter
5391  *	@idx: the port index
5392  *	@st: holds the counter values
5393  * 	@sleep_ok: if true we may sleep while awaiting command completion
5394  *
5395  *	Returns the values of TP's FCoE counters for the selected port.
5396  */
5397 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5398 		       struct tp_fcoe_stats *st, bool sleep_ok)
5399 {
5400 	u32 val[2];
5401 
5402 	t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
5403 		       sleep_ok);
5404 
5405 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5406 		       A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
5407 
5408 	t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
5409 		       sleep_ok);
5410 
5411 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5412 }
5413 
5414 /**
5415  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5416  *	@adap: the adapter
5417  *	@st: holds the counter values
5418  * 	@sleep_ok: if true we may sleep while awaiting command completion
5419  *
5420  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5421  */
5422 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5423 		      bool sleep_ok)
5424 {
5425 	u32 val[4];
5426 
5427 	t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
5428 
5429 	st->frames = val[0];
5430 	st->drops = val[1];
5431 	st->octets = ((u64)val[2] << 32) | val[3];
5432 }
5433 
5434 /**
5435  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5436  *	@adap: the adapter
5437  *	@mtus: where to store the MTU values
5438  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5439  *
5440  *	Reads the HW path MTU table.
5441  */
5442 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5443 {
5444 	u32 v;
5445 	int i;
5446 
5447 	for (i = 0; i < NMTUS; ++i) {
5448 		t4_write_reg(adap, A_TP_MTU_TABLE,
5449 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
5450 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
5451 		mtus[i] = G_MTUVALUE(v);
5452 		if (mtu_log)
5453 			mtu_log[i] = G_MTUWIDTH(v);
5454 	}
5455 }
5456 
5457 /**
5458  *	t4_read_cong_tbl - reads the congestion control table
5459  *	@adap: the adapter
5460  *	@incr: where to store the alpha values
5461  *
5462  *	Reads the additive increments programmed into the HW congestion
5463  *	control table.
5464  */
5465 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5466 {
5467 	unsigned int mtu, w;
5468 
5469 	for (mtu = 0; mtu < NMTUS; ++mtu)
5470 		for (w = 0; w < NCCTRL_WIN; ++w) {
5471 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
5472 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
5473 			incr[mtu][w] = (u16)t4_read_reg(adap,
5474 						A_TP_CCTRL_TABLE) & 0x1fff;
5475 		}
5476 }
5477 
5478 /**
5479  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5480  *	@adap: the adapter
5481  *	@addr: the indirect TP register address
5482  *	@mask: specifies the field within the register to modify
5483  *	@val: new value for the field
5484  *
5485  *	Sets a field of an indirect TP register to the given value.
5486  */
5487 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5488 			    unsigned int mask, unsigned int val)
5489 {
5490 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
5491 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
5492 	t4_write_reg(adap, A_TP_PIO_DATA, val);
5493 }
5494 
5495 /**
5496  *	init_cong_ctrl - initialize congestion control parameters
5497  *	@a: the alpha values for congestion control
5498  *	@b: the beta values for congestion control
5499  *
5500  *	Initialize the congestion control parameters.
5501  */
5502 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5503 {
5504 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5505 	a[9] = 2;
5506 	a[10] = 3;
5507 	a[11] = 4;
5508 	a[12] = 5;
5509 	a[13] = 6;
5510 	a[14] = 7;
5511 	a[15] = 8;
5512 	a[16] = 9;
5513 	a[17] = 10;
5514 	a[18] = 14;
5515 	a[19] = 17;
5516 	a[20] = 21;
5517 	a[21] = 25;
5518 	a[22] = 30;
5519 	a[23] = 35;
5520 	a[24] = 45;
5521 	a[25] = 60;
5522 	a[26] = 80;
5523 	a[27] = 100;
5524 	a[28] = 200;
5525 	a[29] = 300;
5526 	a[30] = 400;
5527 	a[31] = 500;
5528 
5529 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5530 	b[9] = b[10] = 1;
5531 	b[11] = b[12] = 2;
5532 	b[13] = b[14] = b[15] = b[16] = 3;
5533 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5534 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5535 	b[28] = b[29] = 6;
5536 	b[30] = b[31] = 7;
5537 }
5538 
5539 /* The minimum additive increment value for the congestion control table */
5540 #define CC_MIN_INCR 2U
5541 
5542 /**
5543  *	t4_load_mtus - write the MTU and congestion control HW tables
5544  *	@adap: the adapter
5545  *	@mtus: the values for the MTU table
5546  *	@alpha: the values for the congestion control alpha parameter
5547  *	@beta: the values for the congestion control beta parameter
5548  *
5549  *	Write the HW MTU table with the supplied MTUs and the high-speed
5550  *	congestion control table with the supplied alpha, beta, and MTUs.
5551  *	We write the two tables together because the additive increments
5552  *	depend on the MTUs.
5553  */
5554 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5555 		  const unsigned short *alpha, const unsigned short *beta)
5556 {
5557 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5558 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5559 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5560 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5561 	};
5562 
5563 	unsigned int i, w;
5564 
5565 	for (i = 0; i < NMTUS; ++i) {
5566 		unsigned int mtu = mtus[i];
5567 		unsigned int log2 = fls(mtu);
5568 
5569 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5570 			log2--;
5571 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
5572 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
5573 
5574 		for (w = 0; w < NCCTRL_WIN; ++w) {
5575 			unsigned int inc;
5576 
5577 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5578 				  CC_MIN_INCR);
5579 
5580 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
5581 				     (w << 16) | (beta[w] << 13) | inc);
5582 		}
5583 	}
5584 }
5585 
5586 /**
5587  *	t4_set_pace_tbl - set the pace table
5588  *	@adap: the adapter
5589  *	@pace_vals: the pace values in microseconds
5590  *	@start: index of the first entry in the HW pace table to set
5591  *	@n: how many entries to set
5592  *
5593  *	Sets (a subset of the) HW pace table.
5594  */
5595 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
5596 		     unsigned int start, unsigned int n)
5597 {
5598 	unsigned int vals[NTX_SCHED], i;
5599 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
5600 
5601 	if (n > NTX_SCHED)
5602 	    return -ERANGE;
5603 
5604 	/* convert values from us to dack ticks, rounding to closest value */
5605 	for (i = 0; i < n; i++, pace_vals++) {
5606 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
5607 		if (vals[i] > 0x7ff)
5608 			return -ERANGE;
5609 		if (*pace_vals && vals[i] == 0)
5610 			return -ERANGE;
5611 	}
5612 	for (i = 0; i < n; i++, start++)
5613 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
5614 	return 0;
5615 }
5616 
5617 /**
5618  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
5619  *	@adap: the adapter
5620  *	@kbps: target rate in Kbps
5621  *	@sched: the scheduler index
5622  *
5623  *	Configure a Tx HW scheduler for the target rate.
5624  */
5625 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
5626 {
5627 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
5628 	unsigned int clk = adap->params.vpd.cclk * 1000;
5629 	unsigned int selected_cpt = 0, selected_bpt = 0;
5630 
5631 	if (kbps > 0) {
5632 		kbps *= 125;     /* -> bytes */
5633 		for (cpt = 1; cpt <= 255; cpt++) {
5634 			tps = clk / cpt;
5635 			bpt = (kbps + tps / 2) / tps;
5636 			if (bpt > 0 && bpt <= 255) {
5637 				v = bpt * tps;
5638 				delta = v >= kbps ? v - kbps : kbps - v;
5639 				if (delta < mindelta) {
5640 					mindelta = delta;
5641 					selected_cpt = cpt;
5642 					selected_bpt = bpt;
5643 				}
5644 			} else if (selected_cpt)
5645 				break;
5646 		}
5647 		if (!selected_cpt)
5648 			return -EINVAL;
5649 	}
5650 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
5651 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
5652 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5653 	if (sched & 1)
5654 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
5655 	else
5656 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
5657 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5658 	return 0;
5659 }
5660 
5661 /**
5662  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
5663  *	@adap: the adapter
5664  *	@sched: the scheduler index
5665  *	@ipg: the interpacket delay in tenths of nanoseconds
5666  *
5667  *	Set the interpacket delay for a HW packet rate scheduler.
5668  */
5669 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
5670 {
5671 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
5672 
5673 	/* convert ipg to nearest number of core clocks */
5674 	ipg *= core_ticks_per_usec(adap);
5675 	ipg = (ipg + 5000) / 10000;
5676 	if (ipg > M_TXTIMERSEPQ0)
5677 		return -EINVAL;
5678 
5679 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
5680 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5681 	if (sched & 1)
5682 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
5683 	else
5684 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
5685 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5686 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
5687 	return 0;
5688 }
5689 
5690 /*
5691  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5692  * clocks.  The formula is
5693  *
5694  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5695  *
5696  * which is equivalent to
5697  *
5698  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5699  */
5700 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5701 {
5702 	u64 v = bytes256 * adap->params.vpd.cclk;
5703 
5704 	return v * 62 + v / 2;
5705 }
5706 
5707 /**
5708  *	t4_get_chan_txrate - get the current per channel Tx rates
5709  *	@adap: the adapter
5710  *	@nic_rate: rates for NIC traffic
5711  *	@ofld_rate: rates for offloaded traffic
5712  *
5713  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5714  *	for each channel.
5715  */
5716 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5717 {
5718 	u32 v;
5719 
5720 	v = t4_read_reg(adap, A_TP_TX_TRATE);
5721 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
5722 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
5723 	if (adap->chip_params->nchan > 2) {
5724 		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
5725 		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
5726 	}
5727 
5728 	v = t4_read_reg(adap, A_TP_TX_ORATE);
5729 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
5730 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
5731 	if (adap->chip_params->nchan > 2) {
5732 		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
5733 		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
5734 	}
5735 }
5736 
5737 /**
5738  *	t4_set_trace_filter - configure one of the tracing filters
5739  *	@adap: the adapter
5740  *	@tp: the desired trace filter parameters
5741  *	@idx: which filter to configure
5742  *	@enable: whether to enable or disable the filter
5743  *
5744  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
5745  *	it indicates that the filter is already written in the register and it
5746  *	just needs to be enabled or disabled.
5747  */
5748 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5749     int idx, int enable)
5750 {
5751 	int i, ofst = idx * 4;
5752 	u32 data_reg, mask_reg, cfg;
5753 	u32 multitrc = F_TRCMULTIFILTER;
5754 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
5755 
5756 	if (idx < 0 || idx >= NTRACE)
5757 		return -EINVAL;
5758 
5759 	if (tp == NULL || !enable) {
5760 		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
5761 		    enable ? en : 0);
5762 		return 0;
5763 	}
5764 
5765 	/*
5766 	 * TODO - After T4 data book is updated, specify the exact
5767 	 * section below.
5768 	 *
5769 	 * See T4 data book - MPS section for a complete description
5770 	 * of the below if..else handling of A_MPS_TRC_CFG register
5771 	 * value.
5772 	 */
5773 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
5774 	if (cfg & F_TRCMULTIFILTER) {
5775 		/*
5776 		 * If multiple tracers are enabled, then maximum
5777 		 * capture size is 2.5KB (FIFO size of a single channel)
5778 		 * minus 2 flits for CPL_TRACE_PKT header.
5779 		 */
5780 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5781 			return -EINVAL;
5782 	} else {
5783 		/*
5784 		 * If multiple tracers are disabled, to avoid deadlocks
5785 		 * maximum packet capture size of 9600 bytes is recommended.
5786 		 * Also in this mode, only trace0 can be enabled and running.
5787 		 */
5788 		multitrc = 0;
5789 		if (tp->snap_len > 9600 || idx)
5790 			return -EINVAL;
5791 	}
5792 
5793 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
5794 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
5795 	    tp->min_len > M_TFMINPKTSIZE)
5796 		return -EINVAL;
5797 
5798 	/* stop the tracer we'll be changing */
5799 	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
5800 
5801 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
5802 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
5803 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
5804 
5805 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5806 		t4_write_reg(adap, data_reg, tp->data[i]);
5807 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5808 	}
5809 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
5810 		     V_TFCAPTUREMAX(tp->snap_len) |
5811 		     V_TFMINPKTSIZE(tp->min_len));
5812 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
5813 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
5814 		     (is_t4(adap) ?
5815 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
5816 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
5817 
5818 	return 0;
5819 }
5820 
5821 /**
5822  *	t4_get_trace_filter - query one of the tracing filters
5823  *	@adap: the adapter
5824  *	@tp: the current trace filter parameters
5825  *	@idx: which trace filter to query
5826  *	@enabled: non-zero if the filter is enabled
5827  *
5828  *	Returns the current settings of one of the HW tracing filters.
5829  */
5830 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5831 			 int *enabled)
5832 {
5833 	u32 ctla, ctlb;
5834 	int i, ofst = idx * 4;
5835 	u32 data_reg, mask_reg;
5836 
5837 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
5838 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
5839 
5840 	if (is_t4(adap)) {
5841 		*enabled = !!(ctla & F_TFEN);
5842 		tp->port =  G_TFPORT(ctla);
5843 		tp->invert = !!(ctla & F_TFINVERTMATCH);
5844 	} else {
5845 		*enabled = !!(ctla & F_T5_TFEN);
5846 		tp->port = G_T5_TFPORT(ctla);
5847 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
5848 	}
5849 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
5850 	tp->min_len = G_TFMINPKTSIZE(ctlb);
5851 	tp->skip_ofst = G_TFOFFSET(ctla);
5852 	tp->skip_len = G_TFLENGTH(ctla);
5853 
5854 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
5855 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
5856 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
5857 
5858 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5859 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5860 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5861 	}
5862 }
5863 
5864 /**
5865  *	t4_pmtx_get_stats - returns the HW stats from PMTX
5866  *	@adap: the adapter
5867  *	@cnt: where to store the count statistics
5868  *	@cycles: where to store the cycle statistics
5869  *
5870  *	Returns performance statistics from PMTX.
5871  */
5872 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5873 {
5874 	int i;
5875 	u32 data[2];
5876 
5877 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5878 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
5879 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
5880 		if (is_t4(adap))
5881 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
5882 		else {
5883 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
5884 					 A_PM_TX_DBG_DATA, data, 2,
5885 					 A_PM_TX_DBG_STAT_MSB);
5886 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5887 		}
5888 	}
5889 }
5890 
5891 /**
5892  *	t4_pmrx_get_stats - returns the HW stats from PMRX
5893  *	@adap: the adapter
5894  *	@cnt: where to store the count statistics
5895  *	@cycles: where to store the cycle statistics
5896  *
5897  *	Returns performance statistics from PMRX.
5898  */
5899 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5900 {
5901 	int i;
5902 	u32 data[2];
5903 
5904 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5905 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
5906 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
5907 		if (is_t4(adap)) {
5908 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
5909 		} else {
5910 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
5911 					 A_PM_RX_DBG_DATA, data, 2,
5912 					 A_PM_RX_DBG_STAT_MSB);
5913 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5914 		}
5915 	}
5916 }
5917 
5918 /**
5919  *	t4_get_mps_bg_map - return the buffer groups associated with a port
5920  *	@adap: the adapter
5921  *	@idx: the port index
5922  *
5923  *	Returns a bitmap indicating which MPS buffer groups are associated
5924  *	with the given port.  Bit i is set if buffer group i is used by the
5925  *	port.
5926  */
5927 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5928 {
5929 	u32 n;
5930 
5931 	if (adap->params.mps_bg_map)
5932 		return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
5933 
5934 	n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
5935 	if (n == 0)
5936 		return idx == 0 ? 0xf : 0;
5937 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
5938 		return idx < 2 ? (3 << (2 * idx)) : 0;
5939 	return 1 << idx;
5940 }
5941 
5942 /*
5943  * TP RX e-channels associated with the port.
5944  */
5945 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
5946 {
5947 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
5948 
5949 	if (n == 0)
5950 		return idx == 0 ? 0xf : 0;
5951 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
5952 		return idx < 2 ? (3 << (2 * idx)) : 0;
5953 	return 1 << idx;
5954 }
5955 
5956 /**
5957  *      t4_get_port_type_description - return Port Type string description
5958  *      @port_type: firmware Port Type enumeration
5959  */
5960 const char *t4_get_port_type_description(enum fw_port_type port_type)
5961 {
5962 	static const char *const port_type_description[] = {
5963 		"Fiber_XFI",
5964 		"Fiber_XAUI",
5965 		"BT_SGMII",
5966 		"BT_XFI",
5967 		"BT_XAUI",
5968 		"KX4",
5969 		"CX4",
5970 		"KX",
5971 		"KR",
5972 		"SFP",
5973 		"BP_AP",
5974 		"BP4_AP",
5975 		"QSFP_10G",
5976 		"QSA",
5977 		"QSFP",
5978 		"BP40_BA",
5979 		"KR4_100G",
5980 		"CR4_QSFP",
5981 		"CR_QSFP",
5982 		"CR2_QSFP",
5983 		"SFP28",
5984 		"KR_SFP28",
5985 	};
5986 
5987 	if (port_type < ARRAY_SIZE(port_type_description))
5988 		return port_type_description[port_type];
5989 	return "UNKNOWN";
5990 }
5991 
5992 /**
5993  *      t4_get_port_stats_offset - collect port stats relative to a previous
5994  *				   snapshot
5995  *      @adap: The adapter
5996  *      @idx: The port
5997  *      @stats: Current stats to fill
5998  *      @offset: Previous stats snapshot
5999  */
6000 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6001 		struct port_stats *stats,
6002 		struct port_stats *offset)
6003 {
6004 	u64 *s, *o;
6005 	int i;
6006 
6007 	t4_get_port_stats(adap, idx, stats);
6008 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6009 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
6010 			i++, s++, o++)
6011 		*s -= *o;
6012 }
6013 
6014 /**
6015  *	t4_get_port_stats - collect port statistics
6016  *	@adap: the adapter
6017  *	@idx: the port index
6018  *	@p: the stats structure to fill
6019  *
6020  *	Collect statistics related to the given port from HW.
6021  */
6022 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6023 {
6024 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6025 	u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6026 
6027 #define GET_STAT(name) \
6028 	t4_read_reg64(adap, \
6029 	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
6030 	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
6031 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6032 
6033 	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
6034 	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
6035 	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
6036 	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
6037 	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
6038 	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
6039 	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
6040 	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
6041 	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
6042 	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
6043 	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
6044 	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
6045 	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
6046 	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
6047 	p->tx_drop		= GET_STAT(TX_PORT_DROP);
6048 	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
6049 	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
6050 	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
6051 	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
6052 	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
6053 	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
6054 	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
6055 	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
6056 
6057 	if (chip_id(adap) >= CHELSIO_T5) {
6058 		if (stat_ctl & F_COUNTPAUSESTATTX) {
6059 			p->tx_frames -= p->tx_pause;
6060 			p->tx_octets -= p->tx_pause * 64;
6061 		}
6062 		if (stat_ctl & F_COUNTPAUSEMCTX)
6063 			p->tx_mcast_frames -= p->tx_pause;
6064 	}
6065 
6066 	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
6067 	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
6068 	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
6069 	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
6070 	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
6071 	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
6072 	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
6073 	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
6074 	p->rx_fcs_err		= GET_STAT(RX_PORT_CRC_ERROR);
6075 	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
6076 	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
6077 	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
6078 	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
6079 	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
6080 	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
6081 	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
6082 	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
6083 	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
6084 	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
6085 	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
6086 	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
6087 	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
6088 	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
6089 	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
6090 	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
6091 	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
6092 	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
6093 
6094 	if (chip_id(adap) >= CHELSIO_T5) {
6095 		if (stat_ctl & F_COUNTPAUSESTATRX) {
6096 			p->rx_frames -= p->rx_pause;
6097 			p->rx_octets -= p->rx_pause * 64;
6098 		}
6099 		if (stat_ctl & F_COUNTPAUSEMCRX)
6100 			p->rx_mcast_frames -= p->rx_pause;
6101 	}
6102 
6103 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6104 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6105 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6106 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6107 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6108 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6109 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6110 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6111 
6112 #undef GET_STAT
6113 #undef GET_STAT_COM
6114 }
6115 
6116 /**
6117  *	t4_get_lb_stats - collect loopback port statistics
6118  *	@adap: the adapter
6119  *	@idx: the loopback port index
6120  *	@p: the stats structure to fill
6121  *
6122  *	Return HW statistics for the given loopback port.
6123  */
6124 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6125 {
6126 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6127 
6128 #define GET_STAT(name) \
6129 	t4_read_reg64(adap, \
6130 	(is_t4(adap) ? \
6131 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
6132 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
6133 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6134 
6135 	p->octets	= GET_STAT(BYTES);
6136 	p->frames	= GET_STAT(FRAMES);
6137 	p->bcast_frames	= GET_STAT(BCAST);
6138 	p->mcast_frames	= GET_STAT(MCAST);
6139 	p->ucast_frames	= GET_STAT(UCAST);
6140 	p->error_frames	= GET_STAT(ERROR);
6141 
6142 	p->frames_64		= GET_STAT(64B);
6143 	p->frames_65_127	= GET_STAT(65B_127B);
6144 	p->frames_128_255	= GET_STAT(128B_255B);
6145 	p->frames_256_511	= GET_STAT(256B_511B);
6146 	p->frames_512_1023	= GET_STAT(512B_1023B);
6147 	p->frames_1024_1518	= GET_STAT(1024B_1518B);
6148 	p->frames_1519_max	= GET_STAT(1519B_MAX);
6149 	p->drop			= GET_STAT(DROP_FRAMES);
6150 
6151 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6152 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6153 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6154 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6155 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6156 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6157 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6158 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6159 
6160 #undef GET_STAT
6161 #undef GET_STAT_COM
6162 }
6163 
6164 /**
6165  *	t4_wol_magic_enable - enable/disable magic packet WoL
6166  *	@adap: the adapter
6167  *	@port: the physical port index
6168  *	@addr: MAC address expected in magic packets, %NULL to disable
6169  *
6170  *	Enables/disables magic packet wake-on-LAN for the selected port.
6171  */
6172 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
6173 			 const u8 *addr)
6174 {
6175 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
6176 
6177 	if (is_t4(adap)) {
6178 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
6179 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
6180 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6181 	} else {
6182 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
6183 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
6184 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6185 	}
6186 
6187 	if (addr) {
6188 		t4_write_reg(adap, mag_id_reg_l,
6189 			     (addr[2] << 24) | (addr[3] << 16) |
6190 			     (addr[4] << 8) | addr[5]);
6191 		t4_write_reg(adap, mag_id_reg_h,
6192 			     (addr[0] << 8) | addr[1]);
6193 	}
6194 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
6195 			 V_MAGICEN(addr != NULL));
6196 }
6197 
6198 /**
6199  *	t4_wol_pat_enable - enable/disable pattern-based WoL
6200  *	@adap: the adapter
6201  *	@port: the physical port index
6202  *	@map: bitmap of which HW pattern filters to set
6203  *	@mask0: byte mask for bytes 0-63 of a packet
6204  *	@mask1: byte mask for bytes 64-127 of a packet
6205  *	@crc: Ethernet CRC for selected bytes
6206  *	@enable: enable/disable switch
6207  *
6208  *	Sets the pattern filters indicated in @map to mask out the bytes
6209  *	specified in @mask0/@mask1 in received packets and compare the CRC of
6210  *	the resulting packet against @crc.  If @enable is %true pattern-based
6211  *	WoL is enabled, otherwise disabled.
6212  */
6213 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
6214 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
6215 {
6216 	int i;
6217 	u32 port_cfg_reg;
6218 
6219 	if (is_t4(adap))
6220 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6221 	else
6222 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6223 
6224 	if (!enable) {
6225 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
6226 		return 0;
6227 	}
6228 	if (map > 0xff)
6229 		return -EINVAL;
6230 
6231 #define EPIO_REG(name) \
6232 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
6233 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
6234 
6235 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
6236 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
6237 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
6238 
6239 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
6240 		if (!(map & 1))
6241 			continue;
6242 
6243 		/* write byte masks */
6244 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
6245 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
6246 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6247 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6248 			return -ETIMEDOUT;
6249 
6250 		/* write CRC */
6251 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
6252 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
6253 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6254 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6255 			return -ETIMEDOUT;
6256 	}
6257 #undef EPIO_REG
6258 
6259 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
6260 	return 0;
6261 }
6262 
6263 /*     t4_mk_filtdelwr - create a delete filter WR
6264  *     @ftid: the filter ID
6265  *     @wr: the filter work request to populate
6266  *     @qid: ingress queue to receive the delete notification
6267  *
6268  *     Creates a filter work request to delete the supplied filter.  If @qid is
6269  *     negative the delete notification is suppressed.
6270  */
6271 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6272 {
6273 	memset(wr, 0, sizeof(*wr));
6274 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
6275 	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
6276 	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
6277 				    V_FW_FILTER_WR_NOREPLY(qid < 0));
6278 	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
6279 	if (qid >= 0)
6280 		wr->rx_chan_rx_rpl_iq =
6281 				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
6282 }
6283 
6284 #define INIT_CMD(var, cmd, rd_wr) do { \
6285 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
6286 					F_FW_CMD_REQUEST | \
6287 					F_FW_CMD_##rd_wr); \
6288 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6289 } while (0)
6290 
6291 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6292 			  u32 addr, u32 val)
6293 {
6294 	u32 ldst_addrspace;
6295 	struct fw_ldst_cmd c;
6296 
6297 	memset(&c, 0, sizeof(c));
6298 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
6299 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6300 					F_FW_CMD_REQUEST |
6301 					F_FW_CMD_WRITE |
6302 					ldst_addrspace);
6303 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6304 	c.u.addrval.addr = cpu_to_be32(addr);
6305 	c.u.addrval.val = cpu_to_be32(val);
6306 
6307 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6308 }
6309 
6310 /**
6311  *	t4_mdio_rd - read a PHY register through MDIO
6312  *	@adap: the adapter
6313  *	@mbox: mailbox to use for the FW command
6314  *	@phy_addr: the PHY address
6315  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6316  *	@reg: the register to read
6317  *	@valp: where to store the value
6318  *
6319  *	Issues a FW command through the given mailbox to read a PHY register.
6320  */
6321 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6322 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
6323 {
6324 	int ret;
6325 	u32 ldst_addrspace;
6326 	struct fw_ldst_cmd c;
6327 
6328 	memset(&c, 0, sizeof(c));
6329 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6330 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6331 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6332 					ldst_addrspace);
6333 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6334 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6335 					 V_FW_LDST_CMD_MMD(mmd));
6336 	c.u.mdio.raddr = cpu_to_be16(reg);
6337 
6338 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6339 	if (ret == 0)
6340 		*valp = be16_to_cpu(c.u.mdio.rval);
6341 	return ret;
6342 }
6343 
6344 /**
6345  *	t4_mdio_wr - write a PHY register through MDIO
6346  *	@adap: the adapter
6347  *	@mbox: mailbox to use for the FW command
6348  *	@phy_addr: the PHY address
6349  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6350  *	@reg: the register to write
6351  *	@valp: value to write
6352  *
6353  *	Issues a FW command through the given mailbox to write a PHY register.
6354  */
6355 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6356 	       unsigned int mmd, unsigned int reg, unsigned int val)
6357 {
6358 	u32 ldst_addrspace;
6359 	struct fw_ldst_cmd c;
6360 
6361 	memset(&c, 0, sizeof(c));
6362 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6363 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6364 					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6365 					ldst_addrspace);
6366 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6367 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6368 					 V_FW_LDST_CMD_MMD(mmd));
6369 	c.u.mdio.raddr = cpu_to_be16(reg);
6370 	c.u.mdio.rval = cpu_to_be16(val);
6371 
6372 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6373 }
6374 
6375 /**
6376  *
6377  *	t4_sge_decode_idma_state - decode the idma state
6378  *	@adap: the adapter
6379  *	@state: the state idma is stuck in
6380  */
6381 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6382 {
6383 	static const char * const t4_decode[] = {
6384 		"IDMA_IDLE",
6385 		"IDMA_PUSH_MORE_CPL_FIFO",
6386 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6387 		"Not used",
6388 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6389 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6390 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6391 		"IDMA_SEND_FIFO_TO_IMSG",
6392 		"IDMA_FL_REQ_DATA_FL_PREP",
6393 		"IDMA_FL_REQ_DATA_FL",
6394 		"IDMA_FL_DROP",
6395 		"IDMA_FL_H_REQ_HEADER_FL",
6396 		"IDMA_FL_H_SEND_PCIEHDR",
6397 		"IDMA_FL_H_PUSH_CPL_FIFO",
6398 		"IDMA_FL_H_SEND_CPL",
6399 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6400 		"IDMA_FL_H_SEND_IP_HDR",
6401 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6402 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6403 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6404 		"IDMA_FL_D_SEND_PCIEHDR",
6405 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6406 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6407 		"IDMA_FL_SEND_PCIEHDR",
6408 		"IDMA_FL_PUSH_CPL_FIFO",
6409 		"IDMA_FL_SEND_CPL",
6410 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6411 		"IDMA_FL_SEND_PAYLOAD",
6412 		"IDMA_FL_REQ_NEXT_DATA_FL",
6413 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6414 		"IDMA_FL_SEND_PADDING",
6415 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6416 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6417 		"IDMA_FL_REQ_DATAFL_DONE",
6418 		"IDMA_FL_REQ_HEADERFL_DONE",
6419 	};
6420 	static const char * const t5_decode[] = {
6421 		"IDMA_IDLE",
6422 		"IDMA_ALMOST_IDLE",
6423 		"IDMA_PUSH_MORE_CPL_FIFO",
6424 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6425 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6426 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6427 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6428 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6429 		"IDMA_SEND_FIFO_TO_IMSG",
6430 		"IDMA_FL_REQ_DATA_FL",
6431 		"IDMA_FL_DROP",
6432 		"IDMA_FL_DROP_SEND_INC",
6433 		"IDMA_FL_H_REQ_HEADER_FL",
6434 		"IDMA_FL_H_SEND_PCIEHDR",
6435 		"IDMA_FL_H_PUSH_CPL_FIFO",
6436 		"IDMA_FL_H_SEND_CPL",
6437 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6438 		"IDMA_FL_H_SEND_IP_HDR",
6439 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6440 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6441 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6442 		"IDMA_FL_D_SEND_PCIEHDR",
6443 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6444 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6445 		"IDMA_FL_SEND_PCIEHDR",
6446 		"IDMA_FL_PUSH_CPL_FIFO",
6447 		"IDMA_FL_SEND_CPL",
6448 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6449 		"IDMA_FL_SEND_PAYLOAD",
6450 		"IDMA_FL_REQ_NEXT_DATA_FL",
6451 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6452 		"IDMA_FL_SEND_PADDING",
6453 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6454 	};
6455 	static const char * const t6_decode[] = {
6456 		"IDMA_IDLE",
6457 		"IDMA_PUSH_MORE_CPL_FIFO",
6458 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6459 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6460 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6461 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6462 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6463 		"IDMA_FL_REQ_DATA_FL",
6464 		"IDMA_FL_DROP",
6465 		"IDMA_FL_DROP_SEND_INC",
6466 		"IDMA_FL_H_REQ_HEADER_FL",
6467 		"IDMA_FL_H_SEND_PCIEHDR",
6468 		"IDMA_FL_H_PUSH_CPL_FIFO",
6469 		"IDMA_FL_H_SEND_CPL",
6470 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6471 		"IDMA_FL_H_SEND_IP_HDR",
6472 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6473 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6474 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6475 		"IDMA_FL_D_SEND_PCIEHDR",
6476 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6477 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6478 		"IDMA_FL_SEND_PCIEHDR",
6479 		"IDMA_FL_PUSH_CPL_FIFO",
6480 		"IDMA_FL_SEND_CPL",
6481 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6482 		"IDMA_FL_SEND_PAYLOAD",
6483 		"IDMA_FL_REQ_NEXT_DATA_FL",
6484 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6485 		"IDMA_FL_SEND_PADDING",
6486 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6487 	};
6488 	static const u32 sge_regs[] = {
6489 		A_SGE_DEBUG_DATA_LOW_INDEX_2,
6490 		A_SGE_DEBUG_DATA_LOW_INDEX_3,
6491 		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
6492 	};
6493 	const char * const *sge_idma_decode;
6494 	int sge_idma_decode_nstates;
6495 	int i;
6496 	unsigned int chip_version = chip_id(adapter);
6497 
6498 	/* Select the right set of decode strings to dump depending on the
6499 	 * adapter chip type.
6500 	 */
6501 	switch (chip_version) {
6502 	case CHELSIO_T4:
6503 		sge_idma_decode = (const char * const *)t4_decode;
6504 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6505 		break;
6506 
6507 	case CHELSIO_T5:
6508 		sge_idma_decode = (const char * const *)t5_decode;
6509 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6510 		break;
6511 
6512 	case CHELSIO_T6:
6513 		sge_idma_decode = (const char * const *)t6_decode;
6514 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6515 		break;
6516 
6517 	default:
6518 		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
6519 		return;
6520 	}
6521 
6522 	if (state < sge_idma_decode_nstates)
6523 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6524 	else
6525 		CH_WARN(adapter, "idma state %d unknown\n", state);
6526 
6527 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6528 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6529 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6530 }
6531 
6532 /**
6533  *      t4_sge_ctxt_flush - flush the SGE context cache
6534  *      @adap: the adapter
6535  *      @mbox: mailbox to use for the FW command
6536  *
6537  *      Issues a FW command through the given mailbox to flush the
6538  *      SGE context cache.
6539  */
6540 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
6541 {
6542 	int ret;
6543 	u32 ldst_addrspace;
6544 	struct fw_ldst_cmd c;
6545 
6546 	memset(&c, 0, sizeof(c));
6547 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
6548 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6549 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6550 					ldst_addrspace);
6551 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6552 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
6553 
6554 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6555 	return ret;
6556 }
6557 
6558 /**
6559  *      t4_fw_hello - establish communication with FW
6560  *      @adap: the adapter
6561  *      @mbox: mailbox to use for the FW command
6562  *      @evt_mbox: mailbox to receive async FW events
6563  *      @master: specifies the caller's willingness to be the device master
6564  *	@state: returns the current device state (if non-NULL)
6565  *
6566  *	Issues a command to establish communication with FW.  Returns either
6567  *	an error (negative integer) or the mailbox of the Master PF.
6568  */
6569 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6570 		enum dev_master master, enum dev_state *state)
6571 {
6572 	int ret;
6573 	struct fw_hello_cmd c;
6574 	u32 v;
6575 	unsigned int master_mbox;
6576 	int retries = FW_CMD_HELLO_RETRIES;
6577 
6578 retry:
6579 	memset(&c, 0, sizeof(c));
6580 	INIT_CMD(c, HELLO, WRITE);
6581 	c.err_to_clearinit = cpu_to_be32(
6582 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
6583 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
6584 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
6585 					mbox : M_FW_HELLO_CMD_MBMASTER) |
6586 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
6587 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
6588 		F_FW_HELLO_CMD_CLEARINIT);
6589 
6590 	/*
6591 	 * Issue the HELLO command to the firmware.  If it's not successful
6592 	 * but indicates that we got a "busy" or "timeout" condition, retry
6593 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6594 	 * retry limit, check to see if the firmware left us any error
6595 	 * information and report that if so ...
6596 	 */
6597 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6598 	if (ret != FW_SUCCESS) {
6599 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6600 			goto retry;
6601 		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
6602 			t4_report_fw_error(adap);
6603 		return ret;
6604 	}
6605 
6606 	v = be32_to_cpu(c.err_to_clearinit);
6607 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
6608 	if (state) {
6609 		if (v & F_FW_HELLO_CMD_ERR)
6610 			*state = DEV_STATE_ERR;
6611 		else if (v & F_FW_HELLO_CMD_INIT)
6612 			*state = DEV_STATE_INIT;
6613 		else
6614 			*state = DEV_STATE_UNINIT;
6615 	}
6616 
6617 	/*
6618 	 * If we're not the Master PF then we need to wait around for the
6619 	 * Master PF Driver to finish setting up the adapter.
6620 	 *
6621 	 * Note that we also do this wait if we're a non-Master-capable PF and
6622 	 * there is no current Master PF; a Master PF may show up momentarily
6623 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6624 	 * OS loads lots of different drivers rapidly at the same time).  In
6625 	 * this case, the Master PF returned by the firmware will be
6626 	 * M_PCIE_FW_MASTER so the test below will work ...
6627 	 */
6628 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
6629 	    master_mbox != mbox) {
6630 		int waiting = FW_CMD_HELLO_TIMEOUT;
6631 
6632 		/*
6633 		 * Wait for the firmware to either indicate an error or
6634 		 * initialized state.  If we see either of these we bail out
6635 		 * and report the issue to the caller.  If we exhaust the
6636 		 * "hello timeout" and we haven't exhausted our retries, try
6637 		 * again.  Otherwise bail with a timeout error.
6638 		 */
6639 		for (;;) {
6640 			u32 pcie_fw;
6641 
6642 			msleep(50);
6643 			waiting -= 50;
6644 
6645 			/*
6646 			 * If neither Error nor Initialialized are indicated
6647 			 * by the firmware keep waiting till we exhaust our
6648 			 * timeout ... and then retry if we haven't exhausted
6649 			 * our retries ...
6650 			 */
6651 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
6652 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
6653 				if (waiting <= 0) {
6654 					if (retries-- > 0)
6655 						goto retry;
6656 
6657 					return -ETIMEDOUT;
6658 				}
6659 				continue;
6660 			}
6661 
6662 			/*
6663 			 * We either have an Error or Initialized condition
6664 			 * report errors preferentially.
6665 			 */
6666 			if (state) {
6667 				if (pcie_fw & F_PCIE_FW_ERR)
6668 					*state = DEV_STATE_ERR;
6669 				else if (pcie_fw & F_PCIE_FW_INIT)
6670 					*state = DEV_STATE_INIT;
6671 			}
6672 
6673 			/*
6674 			 * If we arrived before a Master PF was selected and
6675 			 * there's not a valid Master PF, grab its identity
6676 			 * for our caller.
6677 			 */
6678 			if (master_mbox == M_PCIE_FW_MASTER &&
6679 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
6680 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
6681 			break;
6682 		}
6683 	}
6684 
6685 	return master_mbox;
6686 }
6687 
6688 /**
6689  *	t4_fw_bye - end communication with FW
6690  *	@adap: the adapter
6691  *	@mbox: mailbox to use for the FW command
6692  *
6693  *	Issues a command to terminate communication with FW.
6694  */
6695 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6696 {
6697 	struct fw_bye_cmd c;
6698 
6699 	memset(&c, 0, sizeof(c));
6700 	INIT_CMD(c, BYE, WRITE);
6701 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6702 }
6703 
6704 /**
6705  *	t4_fw_reset - issue a reset to FW
6706  *	@adap: the adapter
6707  *	@mbox: mailbox to use for the FW command
6708  *	@reset: specifies the type of reset to perform
6709  *
6710  *	Issues a reset command of the specified type to FW.
6711  */
6712 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6713 {
6714 	struct fw_reset_cmd c;
6715 
6716 	memset(&c, 0, sizeof(c));
6717 	INIT_CMD(c, RESET, WRITE);
6718 	c.val = cpu_to_be32(reset);
6719 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6720 }
6721 
6722 /**
6723  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6724  *	@adap: the adapter
6725  *	@mbox: mailbox to use for the FW RESET command (if desired)
6726  *	@force: force uP into RESET even if FW RESET command fails
6727  *
6728  *	Issues a RESET command to firmware (if desired) with a HALT indication
6729  *	and then puts the microprocessor into RESET state.  The RESET command
6730  *	will only be issued if a legitimate mailbox is provided (mbox <=
6731  *	M_PCIE_FW_MASTER).
6732  *
6733  *	This is generally used in order for the host to safely manipulate the
6734  *	adapter without fear of conflicting with whatever the firmware might
6735  *	be doing.  The only way out of this state is to RESTART the firmware
6736  *	...
6737  */
6738 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6739 {
6740 	int ret = 0;
6741 
6742 	/*
6743 	 * If a legitimate mailbox is provided, issue a RESET command
6744 	 * with a HALT indication.
6745 	 */
6746 	if (mbox <= M_PCIE_FW_MASTER) {
6747 		struct fw_reset_cmd c;
6748 
6749 		memset(&c, 0, sizeof(c));
6750 		INIT_CMD(c, RESET, WRITE);
6751 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
6752 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
6753 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6754 	}
6755 
6756 	/*
6757 	 * Normally we won't complete the operation if the firmware RESET
6758 	 * command fails but if our caller insists we'll go ahead and put the
6759 	 * uP into RESET.  This can be useful if the firmware is hung or even
6760 	 * missing ...  We'll have to take the risk of putting the uP into
6761 	 * RESET without the cooperation of firmware in that case.
6762 	 *
6763 	 * We also force the firmware's HALT flag to be on in case we bypassed
6764 	 * the firmware RESET command above or we're dealing with old firmware
6765 	 * which doesn't have the HALT capability.  This will serve as a flag
6766 	 * for the incoming firmware to know that it's coming out of a HALT
6767 	 * rather than a RESET ... if it's new enough to understand that ...
6768 	 */
6769 	if (ret == 0 || force) {
6770 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6771 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
6772 				 F_PCIE_FW_HALT);
6773 	}
6774 
6775 	/*
6776 	 * And we always return the result of the firmware RESET command
6777 	 * even when we force the uP into RESET ...
6778 	 */
6779 	return ret;
6780 }
6781 
6782 /**
6783  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6784  *	@adap: the adapter
6785  *	@reset: if we want to do a RESET to restart things
6786  *
6787  *	Restart firmware previously halted by t4_fw_halt().  On successful
6788  *	return the previous PF Master remains as the new PF Master and there
6789  *	is no need to issue a new HELLO command, etc.
6790  *
6791  *	We do this in two ways:
6792  *
6793  *	 1. If we're dealing with newer firmware we'll simply want to take
6794  *	    the chip's microprocessor out of RESET.  This will cause the
6795  *	    firmware to start up from its start vector.  And then we'll loop
6796  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6797  *	    reset to 0) or we timeout.
6798  *
6799  *	 2. If we're dealing with older firmware then we'll need to RESET
6800  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6801  *	    flag and automatically RESET itself on startup.
6802  */
6803 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6804 {
6805 	if (reset) {
6806 		/*
6807 		 * Since we're directing the RESET instead of the firmware
6808 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6809 		 * bit.
6810 		 */
6811 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
6812 
6813 		/*
6814 		 * If we've been given a valid mailbox, first try to get the
6815 		 * firmware to do the RESET.  If that works, great and we can
6816 		 * return success.  Otherwise, if we haven't been given a
6817 		 * valid mailbox or the RESET command failed, fall back to
6818 		 * hitting the chip with a hammer.
6819 		 */
6820 		if (mbox <= M_PCIE_FW_MASTER) {
6821 			t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6822 			msleep(100);
6823 			if (t4_fw_reset(adap, mbox,
6824 					F_PIORST | F_PIORSTMODE) == 0)
6825 				return 0;
6826 		}
6827 
6828 		t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6829 		msleep(2000);
6830 	} else {
6831 		int ms;
6832 
6833 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6834 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6835 			if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
6836 				return FW_SUCCESS;
6837 			msleep(100);
6838 			ms += 100;
6839 		}
6840 		return -ETIMEDOUT;
6841 	}
6842 	return 0;
6843 }
6844 
6845 /**
6846  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6847  *	@adap: the adapter
6848  *	@mbox: mailbox to use for the FW RESET command (if desired)
6849  *	@fw_data: the firmware image to write
6850  *	@size: image size
6851  *	@force: force upgrade even if firmware doesn't cooperate
6852  *
6853  *	Perform all of the steps necessary for upgrading an adapter's
6854  *	firmware image.  Normally this requires the cooperation of the
6855  *	existing firmware in order to halt all existing activities
6856  *	but if an invalid mailbox token is passed in we skip that step
6857  *	(though we'll still put the adapter microprocessor into RESET in
6858  *	that case).
6859  *
6860  *	On successful return the new firmware will have been loaded and
6861  *	the adapter will have been fully RESET losing all previous setup
6862  *	state.  On unsuccessful return the adapter may be completely hosed ...
6863  *	positive errno indicates that the adapter is ~probably~ intact, a
6864  *	negative errno indicates that things are looking bad ...
6865  */
6866 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6867 		  const u8 *fw_data, unsigned int size, int force)
6868 {
6869 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6870 	unsigned int bootstrap =
6871 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
6872 	int reset, ret;
6873 
6874 	if (!t4_fw_matches_chip(adap, fw_hdr))
6875 		return -EINVAL;
6876 
6877 	if (!bootstrap) {
6878 		ret = t4_fw_halt(adap, mbox, force);
6879 		if (ret < 0 && !force)
6880 			return ret;
6881 	}
6882 
6883 	ret = t4_load_fw(adap, fw_data, size);
6884 	if (ret < 0 || bootstrap)
6885 		return ret;
6886 
6887 	/*
6888 	 * Older versions of the firmware don't understand the new
6889 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6890 	 * restart.  So for newly loaded older firmware we'll have to do the
6891 	 * RESET for it so it starts up on a clean slate.  We can tell if
6892 	 * the newly loaded firmware will handle this right by checking
6893 	 * its header flags to see if it advertises the capability.
6894 	 */
6895 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6896 	return t4_fw_restart(adap, mbox, reset);
6897 }
6898 
6899 /*
6900  * Card doesn't have a firmware, install one.
6901  */
6902 int t4_fw_forceinstall(struct adapter *adap, const u8 *fw_data,
6903     unsigned int size)
6904 {
6905 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6906 	unsigned int bootstrap =
6907 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
6908 	int ret;
6909 
6910 	if (!t4_fw_matches_chip(adap, fw_hdr) || bootstrap)
6911 		return -EINVAL;
6912 
6913 	t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6914 	t4_write_reg(adap, A_PCIE_FW, 0);	/* Clobber internal state */
6915 	ret = t4_load_fw(adap, fw_data, size);
6916 	if (ret < 0)
6917 		return ret;
6918 	t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6919 	msleep(1000);
6920 
6921 	return (0);
6922 }
6923 
6924 /**
6925  *	t4_fw_initialize - ask FW to initialize the device
6926  *	@adap: the adapter
6927  *	@mbox: mailbox to use for the FW command
6928  *
6929  *	Issues a command to FW to partially initialize the device.  This
6930  *	performs initialization that generally doesn't depend on user input.
6931  */
6932 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6933 {
6934 	struct fw_initialize_cmd c;
6935 
6936 	memset(&c, 0, sizeof(c));
6937 	INIT_CMD(c, INITIALIZE, WRITE);
6938 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6939 }
6940 
6941 /**
6942  *	t4_query_params_rw - query FW or device parameters
6943  *	@adap: the adapter
6944  *	@mbox: mailbox to use for the FW command
6945  *	@pf: the PF
6946  *	@vf: the VF
6947  *	@nparams: the number of parameters
6948  *	@params: the parameter names
6949  *	@val: the parameter values
6950  *	@rw: Write and read flag
6951  *
6952  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
6953  *	queried at once.
6954  */
6955 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6956 		       unsigned int vf, unsigned int nparams, const u32 *params,
6957 		       u32 *val, int rw)
6958 {
6959 	int i, ret;
6960 	struct fw_params_cmd c;
6961 	__be32 *p = &c.param[0].mnem;
6962 
6963 	if (nparams > 7)
6964 		return -EINVAL;
6965 
6966 	memset(&c, 0, sizeof(c));
6967 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6968 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
6969 				  V_FW_PARAMS_CMD_PFN(pf) |
6970 				  V_FW_PARAMS_CMD_VFN(vf));
6971 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6972 
6973 	for (i = 0; i < nparams; i++) {
6974 		*p++ = cpu_to_be32(*params++);
6975 		if (rw)
6976 			*p = cpu_to_be32(*(val + i));
6977 		p++;
6978 	}
6979 
6980 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6981 	if (ret == 0)
6982 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6983 			*val++ = be32_to_cpu(*p);
6984 	return ret;
6985 }
6986 
6987 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6988 		    unsigned int vf, unsigned int nparams, const u32 *params,
6989 		    u32 *val)
6990 {
6991 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6992 }
6993 
6994 /**
6995  *      t4_set_params_timeout - sets FW or device parameters
6996  *      @adap: the adapter
6997  *      @mbox: mailbox to use for the FW command
6998  *      @pf: the PF
6999  *      @vf: the VF
7000  *      @nparams: the number of parameters
7001  *      @params: the parameter names
7002  *      @val: the parameter values
7003  *      @timeout: the timeout time
7004  *
7005  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7006  *      specified at once.
7007  */
7008 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7009 			  unsigned int pf, unsigned int vf,
7010 			  unsigned int nparams, const u32 *params,
7011 			  const u32 *val, int timeout)
7012 {
7013 	struct fw_params_cmd c;
7014 	__be32 *p = &c.param[0].mnem;
7015 
7016 	if (nparams > 7)
7017 		return -EINVAL;
7018 
7019 	memset(&c, 0, sizeof(c));
7020 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7021 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7022 				  V_FW_PARAMS_CMD_PFN(pf) |
7023 				  V_FW_PARAMS_CMD_VFN(vf));
7024 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7025 
7026 	while (nparams--) {
7027 		*p++ = cpu_to_be32(*params++);
7028 		*p++ = cpu_to_be32(*val++);
7029 	}
7030 
7031 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7032 }
7033 
7034 /**
7035  *	t4_set_params - sets FW or device parameters
7036  *	@adap: the adapter
7037  *	@mbox: mailbox to use for the FW command
7038  *	@pf: the PF
7039  *	@vf: the VF
7040  *	@nparams: the number of parameters
7041  *	@params: the parameter names
7042  *	@val: the parameter values
7043  *
7044  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7045  *	specified at once.
7046  */
7047 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7048 		  unsigned int vf, unsigned int nparams, const u32 *params,
7049 		  const u32 *val)
7050 {
7051 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7052 				     FW_CMD_MAX_TIMEOUT);
7053 }
7054 
7055 /**
7056  *	t4_cfg_pfvf - configure PF/VF resource limits
7057  *	@adap: the adapter
7058  *	@mbox: mailbox to use for the FW command
7059  *	@pf: the PF being configured
7060  *	@vf: the VF being configured
7061  *	@txq: the max number of egress queues
7062  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7063  *	@rxqi: the max number of interrupt-capable ingress queues
7064  *	@rxq: the max number of interruptless ingress queues
7065  *	@tc: the PCI traffic class
7066  *	@vi: the max number of virtual interfaces
7067  *	@cmask: the channel access rights mask for the PF/VF
7068  *	@pmask: the port access rights mask for the PF/VF
7069  *	@nexact: the maximum number of exact MPS filters
7070  *	@rcaps: read capabilities
7071  *	@wxcaps: write/execute capabilities
7072  *
7073  *	Configures resource limits and capabilities for a physical or virtual
7074  *	function.
7075  */
7076 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7077 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7078 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7079 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7080 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7081 {
7082 	struct fw_pfvf_cmd c;
7083 
7084 	memset(&c, 0, sizeof(c));
7085 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7086 				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7087 				  V_FW_PFVF_CMD_VFN(vf));
7088 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7089 	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7090 				     V_FW_PFVF_CMD_NIQ(rxq));
7091 	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7092 				    V_FW_PFVF_CMD_PMASK(pmask) |
7093 				    V_FW_PFVF_CMD_NEQ(txq));
7094 	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7095 				      V_FW_PFVF_CMD_NVI(vi) |
7096 				      V_FW_PFVF_CMD_NEXACTF(nexact));
7097 	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7098 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7099 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7100 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7101 }
7102 
7103 /**
7104  *	t4_alloc_vi_func - allocate a virtual interface
7105  *	@adap: the adapter
7106  *	@mbox: mailbox to use for the FW command
7107  *	@port: physical port associated with the VI
7108  *	@pf: the PF owning the VI
7109  *	@vf: the VF owning the VI
7110  *	@nmac: number of MAC addresses needed (1 to 5)
7111  *	@mac: the MAC addresses of the VI
7112  *	@rss_size: size of RSS table slice associated with this VI
7113  *	@portfunc: which Port Application Function MAC Address is desired
7114  *	@idstype: Intrusion Detection Type
7115  *
7116  *	Allocates a virtual interface for the given physical port.  If @mac is
7117  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7118  *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7119  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7120  *	stored consecutively so the space needed is @nmac * 6 bytes.
7121  *	Returns a negative error number or the non-negative VI id.
7122  */
7123 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7124 		     unsigned int port, unsigned int pf, unsigned int vf,
7125 		     unsigned int nmac, u8 *mac, u16 *rss_size,
7126 		     unsigned int portfunc, unsigned int idstype)
7127 {
7128 	int ret;
7129 	struct fw_vi_cmd c;
7130 
7131 	memset(&c, 0, sizeof(c));
7132 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7133 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7134 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7135 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7136 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7137 				     V_FW_VI_CMD_FUNC(portfunc));
7138 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7139 	c.nmac = nmac - 1;
7140 	if(!rss_size)
7141 		c.norss_rsssize = F_FW_VI_CMD_NORSS;
7142 
7143 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7144 	if (ret)
7145 		return ret;
7146 
7147 	if (mac) {
7148 		memcpy(mac, c.mac, sizeof(c.mac));
7149 		switch (nmac) {
7150 		case 5:
7151 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7152 		case 4:
7153 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7154 		case 3:
7155 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7156 		case 2:
7157 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7158 		}
7159 	}
7160 	if (rss_size)
7161 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
7162 	return G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7163 }
7164 
7165 /**
7166  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
7167  *      @adap: the adapter
7168  *      @mbox: mailbox to use for the FW command
7169  *      @port: physical port associated with the VI
7170  *      @pf: the PF owning the VI
7171  *      @vf: the VF owning the VI
7172  *      @nmac: number of MAC addresses needed (1 to 5)
7173  *      @mac: the MAC addresses of the VI
7174  *      @rss_size: size of RSS table slice associated with this VI
7175  *
7176  *	backwards compatible and convieniance routine to allocate a Virtual
7177  *	Interface with a Ethernet Port Application Function and Intrustion
7178  *	Detection System disabled.
7179  */
7180 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7181 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7182 		u16 *rss_size)
7183 {
7184 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
7185 				FW_VI_FUNC_ETH, 0);
7186 }
7187 
7188 /**
7189  * 	t4_free_vi - free a virtual interface
7190  * 	@adap: the adapter
7191  * 	@mbox: mailbox to use for the FW command
7192  * 	@pf: the PF owning the VI
7193  * 	@vf: the VF owning the VI
7194  * 	@viid: virtual interface identifiler
7195  *
7196  * 	Free a previously allocated virtual interface.
7197  */
7198 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7199 	       unsigned int vf, unsigned int viid)
7200 {
7201 	struct fw_vi_cmd c;
7202 
7203 	memset(&c, 0, sizeof(c));
7204 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
7205 				  F_FW_CMD_REQUEST |
7206 				  F_FW_CMD_EXEC |
7207 				  V_FW_VI_CMD_PFN(pf) |
7208 				  V_FW_VI_CMD_VFN(vf));
7209 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
7210 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
7211 
7212 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7213 }
7214 
7215 /**
7216  *	t4_set_rxmode - set Rx properties of a virtual interface
7217  *	@adap: the adapter
7218  *	@mbox: mailbox to use for the FW command
7219  *	@viid: the VI id
7220  *	@mtu: the new MTU or -1
7221  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7222  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7223  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7224  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7225  *	@sleep_ok: if true we may sleep while awaiting command completion
7226  *
7227  *	Sets Rx properties of a virtual interface.
7228  */
7229 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7230 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7231 		  bool sleep_ok)
7232 {
7233 	struct fw_vi_rxmode_cmd c;
7234 
7235 	/* convert to FW values */
7236 	if (mtu < 0)
7237 		mtu = M_FW_VI_RXMODE_CMD_MTU;
7238 	if (promisc < 0)
7239 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
7240 	if (all_multi < 0)
7241 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
7242 	if (bcast < 0)
7243 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
7244 	if (vlanex < 0)
7245 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
7246 
7247 	memset(&c, 0, sizeof(c));
7248 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
7249 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7250 				   V_FW_VI_RXMODE_CMD_VIID(viid));
7251 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7252 	c.mtu_to_vlanexen =
7253 		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
7254 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
7255 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
7256 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
7257 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
7258 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7259 }
7260 
7261 /**
7262  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7263  *	@adap: the adapter
7264  *	@mbox: mailbox to use for the FW command
7265  *	@viid: the VI id
7266  *	@free: if true any existing filters for this VI id are first removed
7267  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7268  *	@addr: the MAC address(es)
7269  *	@idx: where to store the index of each allocated filter
7270  *	@hash: pointer to hash address filter bitmap
7271  *	@sleep_ok: call is allowed to sleep
7272  *
7273  *	Allocates an exact-match filter for each of the supplied addresses and
7274  *	sets it to the corresponding address.  If @idx is not %NULL it should
7275  *	have at least @naddr entries, each of which will be set to the index of
7276  *	the filter allocated for the corresponding MAC address.  If a filter
7277  *	could not be allocated for an address its index is set to 0xffff.
7278  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7279  *	are hashed and update the hash filter bitmap pointed at by @hash.
7280  *
7281  *	Returns a negative error number or the number of filters allocated.
7282  */
7283 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7284 		      unsigned int viid, bool free, unsigned int naddr,
7285 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7286 {
7287 	int offset, ret = 0;
7288 	struct fw_vi_mac_cmd c;
7289 	unsigned int nfilters = 0;
7290 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
7291 	unsigned int rem = naddr;
7292 
7293 	if (naddr > max_naddr)
7294 		return -EINVAL;
7295 
7296 	for (offset = 0; offset < naddr ; /**/) {
7297 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7298 					 ? rem
7299 					 : ARRAY_SIZE(c.u.exact));
7300 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7301 						     u.exact[fw_naddr]), 16);
7302 		struct fw_vi_mac_exact *p;
7303 		int i;
7304 
7305 		memset(&c, 0, sizeof(c));
7306 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7307 					   F_FW_CMD_REQUEST |
7308 					   F_FW_CMD_WRITE |
7309 					   V_FW_CMD_EXEC(free) |
7310 					   V_FW_VI_MAC_CMD_VIID(viid));
7311 		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
7312 						  V_FW_CMD_LEN16(len16));
7313 
7314 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7315 			p->valid_to_idx =
7316 				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7317 					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
7318 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7319 		}
7320 
7321 		/*
7322 		 * It's okay if we run out of space in our MAC address arena.
7323 		 * Some of the addresses we submit may get stored so we need
7324 		 * to run through the reply to see what the results were ...
7325 		 */
7326 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7327 		if (ret && ret != -FW_ENOMEM)
7328 			break;
7329 
7330 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7331 			u16 index = G_FW_VI_MAC_CMD_IDX(
7332 						be16_to_cpu(p->valid_to_idx));
7333 
7334 			if (idx)
7335 				idx[offset+i] = (index >=  max_naddr
7336 						 ? 0xffff
7337 						 : index);
7338 			if (index < max_naddr)
7339 				nfilters++;
7340 			else if (hash)
7341 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
7342 		}
7343 
7344 		free = false;
7345 		offset += fw_naddr;
7346 		rem -= fw_naddr;
7347 	}
7348 
7349 	if (ret == 0 || ret == -FW_ENOMEM)
7350 		ret = nfilters;
7351 	return ret;
7352 }
7353 
7354 /**
7355  *	t4_change_mac - modifies the exact-match filter for a MAC address
7356  *	@adap: the adapter
7357  *	@mbox: mailbox to use for the FW command
7358  *	@viid: the VI id
7359  *	@idx: index of existing filter for old value of MAC address, or -1
7360  *	@addr: the new MAC address value
7361  *	@persist: whether a new MAC allocation should be persistent
7362  *	@add_smt: if true also add the address to the HW SMT
7363  *
7364  *	Modifies an exact-match filter and sets it to the new MAC address if
7365  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
7366  *	latter case the address is added persistently if @persist is %true.
7367  *
7368  *	Note that in general it is not possible to modify the value of a given
7369  *	filter so the generic way to modify an address filter is to free the one
7370  *	being used by the old address value and allocate a new filter for the
7371  *	new address value.
7372  *
7373  *	Returns a negative error number or the index of the filter with the new
7374  *	MAC value.  Note that this index may differ from @idx.
7375  */
7376 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7377 		  int idx, const u8 *addr, bool persist, bool add_smt)
7378 {
7379 	int ret, mode;
7380 	struct fw_vi_mac_cmd c;
7381 	struct fw_vi_mac_exact *p = c.u.exact;
7382 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
7383 
7384 	if (idx < 0)		/* new allocation */
7385 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7386 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7387 
7388 	memset(&c, 0, sizeof(c));
7389 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7390 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7391 				   V_FW_VI_MAC_CMD_VIID(viid));
7392 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
7393 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7394 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
7395 				      V_FW_VI_MAC_CMD_IDX(idx));
7396 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7397 
7398 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7399 	if (ret == 0) {
7400 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
7401 		if (ret >= max_mac_addr)
7402 			ret = -ENOMEM;
7403 	}
7404 	return ret;
7405 }
7406 
7407 /**
7408  *	t4_set_addr_hash - program the MAC inexact-match hash filter
7409  *	@adap: the adapter
7410  *	@mbox: mailbox to use for the FW command
7411  *	@viid: the VI id
7412  *	@ucast: whether the hash filter should also match unicast addresses
7413  *	@vec: the value to be written to the hash filter
7414  *	@sleep_ok: call is allowed to sleep
7415  *
7416  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
7417  */
7418 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7419 		     bool ucast, u64 vec, bool sleep_ok)
7420 {
7421 	struct fw_vi_mac_cmd c;
7422 	u32 val;
7423 
7424 	memset(&c, 0, sizeof(c));
7425 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7426 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7427 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7428 	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
7429 	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
7430 	c.freemacs_to_len16 = cpu_to_be32(val);
7431 	c.u.hash.hashvec = cpu_to_be64(vec);
7432 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7433 }
7434 
7435 /**
7436  *      t4_enable_vi_params - enable/disable a virtual interface
7437  *      @adap: the adapter
7438  *      @mbox: mailbox to use for the FW command
7439  *      @viid: the VI id
7440  *      @rx_en: 1=enable Rx, 0=disable Rx
7441  *      @tx_en: 1=enable Tx, 0=disable Tx
7442  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7443  *
7444  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7445  *      only makes sense when enabling a Virtual Interface ...
7446  */
7447 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7448 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7449 {
7450 	struct fw_vi_enable_cmd c;
7451 
7452 	memset(&c, 0, sizeof(c));
7453 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7454 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7455 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7456 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
7457 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
7458 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
7459 				     FW_LEN16(c));
7460 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7461 }
7462 
7463 /**
7464  *	t4_enable_vi - enable/disable a virtual interface
7465  *	@adap: the adapter
7466  *	@mbox: mailbox to use for the FW command
7467  *	@viid: the VI id
7468  *	@rx_en: 1=enable Rx, 0=disable Rx
7469  *	@tx_en: 1=enable Tx, 0=disable Tx
7470  *
7471  *	Enables/disables a virtual interface.  Note that setting DCB Enable
7472  *	only makes sense when enabling a Virtual Interface ...
7473  */
7474 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7475 		 bool rx_en, bool tx_en)
7476 {
7477 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7478 }
7479 
7480 /**
7481  *	t4_identify_port - identify a VI's port by blinking its LED
7482  *	@adap: the adapter
7483  *	@mbox: mailbox to use for the FW command
7484  *	@viid: the VI id
7485  *	@nblinks: how many times to blink LED at 2.5 Hz
7486  *
7487  *	Identifies a VI's port by blinking its LED.
7488  */
7489 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7490 		     unsigned int nblinks)
7491 {
7492 	struct fw_vi_enable_cmd c;
7493 
7494 	memset(&c, 0, sizeof(c));
7495 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7496 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7497 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7498 	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
7499 	c.blinkdur = cpu_to_be16(nblinks);
7500 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7501 }
7502 
7503 /**
7504  *	t4_iq_stop - stop an ingress queue and its FLs
7505  *	@adap: the adapter
7506  *	@mbox: mailbox to use for the FW command
7507  *	@pf: the PF owning the queues
7508  *	@vf: the VF owning the queues
7509  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7510  *	@iqid: ingress queue id
7511  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7512  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7513  *
7514  *	Stops an ingress queue and its associated FLs, if any.  This causes
7515  *	any current or future data/messages destined for these queues to be
7516  *	tossed.
7517  */
7518 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7519 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7520 	       unsigned int fl0id, unsigned int fl1id)
7521 {
7522 	struct fw_iq_cmd c;
7523 
7524 	memset(&c, 0, sizeof(c));
7525 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7526 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7527 				  V_FW_IQ_CMD_VFN(vf));
7528 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
7529 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7530 	c.iqid = cpu_to_be16(iqid);
7531 	c.fl0id = cpu_to_be16(fl0id);
7532 	c.fl1id = cpu_to_be16(fl1id);
7533 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7534 }
7535 
7536 /**
7537  *	t4_iq_free - free an ingress queue and its FLs
7538  *	@adap: the adapter
7539  *	@mbox: mailbox to use for the FW command
7540  *	@pf: the PF owning the queues
7541  *	@vf: the VF owning the queues
7542  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7543  *	@iqid: ingress queue id
7544  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7545  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7546  *
7547  *	Frees an ingress queue and its associated FLs, if any.
7548  */
7549 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7550 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7551 	       unsigned int fl0id, unsigned int fl1id)
7552 {
7553 	struct fw_iq_cmd c;
7554 
7555 	memset(&c, 0, sizeof(c));
7556 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7557 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7558 				  V_FW_IQ_CMD_VFN(vf));
7559 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
7560 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7561 	c.iqid = cpu_to_be16(iqid);
7562 	c.fl0id = cpu_to_be16(fl0id);
7563 	c.fl1id = cpu_to_be16(fl1id);
7564 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7565 }
7566 
7567 /**
7568  *	t4_eth_eq_free - free an Ethernet egress queue
7569  *	@adap: the adapter
7570  *	@mbox: mailbox to use for the FW command
7571  *	@pf: the PF owning the queue
7572  *	@vf: the VF owning the queue
7573  *	@eqid: egress queue id
7574  *
7575  *	Frees an Ethernet egress queue.
7576  */
7577 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7578 		   unsigned int vf, unsigned int eqid)
7579 {
7580 	struct fw_eq_eth_cmd c;
7581 
7582 	memset(&c, 0, sizeof(c));
7583 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
7584 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7585 				  V_FW_EQ_ETH_CMD_PFN(pf) |
7586 				  V_FW_EQ_ETH_CMD_VFN(vf));
7587 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
7588 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
7589 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7590 }
7591 
7592 /**
7593  *	t4_ctrl_eq_free - free a control egress queue
7594  *	@adap: the adapter
7595  *	@mbox: mailbox to use for the FW command
7596  *	@pf: the PF owning the queue
7597  *	@vf: the VF owning the queue
7598  *	@eqid: egress queue id
7599  *
7600  *	Frees a control egress queue.
7601  */
7602 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7603 		    unsigned int vf, unsigned int eqid)
7604 {
7605 	struct fw_eq_ctrl_cmd c;
7606 
7607 	memset(&c, 0, sizeof(c));
7608 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
7609 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7610 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
7611 				  V_FW_EQ_CTRL_CMD_VFN(vf));
7612 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
7613 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
7614 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7615 }
7616 
7617 /**
7618  *	t4_ofld_eq_free - free an offload egress queue
7619  *	@adap: the adapter
7620  *	@mbox: mailbox to use for the FW command
7621  *	@pf: the PF owning the queue
7622  *	@vf: the VF owning the queue
7623  *	@eqid: egress queue id
7624  *
7625  *	Frees a control egress queue.
7626  */
7627 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7628 		    unsigned int vf, unsigned int eqid)
7629 {
7630 	struct fw_eq_ofld_cmd c;
7631 
7632 	memset(&c, 0, sizeof(c));
7633 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
7634 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7635 				  V_FW_EQ_OFLD_CMD_PFN(pf) |
7636 				  V_FW_EQ_OFLD_CMD_VFN(vf));
7637 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
7638 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
7639 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7640 }
7641 
7642 /**
7643  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
7644  *	@link_down_rc: Link Down Reason Code
7645  *
7646  *	Returns a string representation of the Link Down Reason Code.
7647  */
7648 const char *t4_link_down_rc_str(unsigned char link_down_rc)
7649 {
7650 	static const char *reason[] = {
7651 		"Link Down",
7652 		"Remote Fault",
7653 		"Auto-negotiation Failure",
7654 		"Reserved3",
7655 		"Insufficient Airflow",
7656 		"Unable To Determine Reason",
7657 		"No RX Signal Detected",
7658 		"Reserved7",
7659 	};
7660 
7661 	if (link_down_rc >= ARRAY_SIZE(reason))
7662 		return "Bad Reason Code";
7663 
7664 	return reason[link_down_rc];
7665 }
7666 
7667 /*
7668  * Updates all fields owned by the common code in port_info and link_config
7669  * based on information provided by the firmware.  Does not touch any
7670  * requested_* field.
7671  */
7672 static void handle_port_info(struct port_info *pi, const struct fw_port_info *p)
7673 {
7674 	struct link_config *lc = &pi->link_cfg;
7675 	int speed;
7676 	unsigned char fc, fec;
7677 	u32 stat = be32_to_cpu(p->lstatus_to_modtype);
7678 
7679 	pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
7680 	pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
7681 	pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
7682 	    G_FW_PORT_CMD_MDIOADDR(stat) : -1;
7683 
7684 	lc->supported = be16_to_cpu(p->pcap);
7685 	lc->advertising = be16_to_cpu(p->acap);
7686 	lc->lp_advertising = be16_to_cpu(p->lpacap);
7687 	lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
7688 	lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
7689 
7690 	speed = 0;
7691 	if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
7692 		speed = 100;
7693 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
7694 		speed = 1000;
7695 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
7696 		speed = 10000;
7697 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
7698 		speed = 25000;
7699 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
7700 		speed = 40000;
7701 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
7702 		speed = 100000;
7703 	lc->speed = speed;
7704 
7705 	fc = 0;
7706 	if (stat & F_FW_PORT_CMD_RXPAUSE)
7707 		fc |= PAUSE_RX;
7708 	if (stat & F_FW_PORT_CMD_TXPAUSE)
7709 		fc |= PAUSE_TX;
7710 	lc->fc = fc;
7711 
7712 	fec = 0;
7713 	if (lc->advertising & FW_PORT_CAP_FEC_RS)
7714 		fec |= FEC_RS;
7715 	if (lc->advertising & FW_PORT_CAP_FEC_BASER_RS)
7716 		fec |= FEC_BASER_RS;
7717 	if (lc->advertising & FW_PORT_CAP_FEC_RESERVED)
7718 		fec |= FEC_RESERVED;
7719 	lc->fec = fec;
7720 }
7721 
7722 /**
7723  *	t4_update_port_info - retrieve and update port information if changed
7724  *	@pi: the port_info
7725  *
7726  *	We issue a Get Port Information Command to the Firmware and, if
7727  *	successful, we check to see if anything is different from what we
7728  *	last recorded and update things accordingly.
7729  */
7730  int t4_update_port_info(struct port_info *pi)
7731  {
7732 	struct fw_port_cmd port_cmd;
7733 	int ret;
7734 
7735 	memset(&port_cmd, 0, sizeof port_cmd);
7736 	port_cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
7737 					    F_FW_CMD_REQUEST | F_FW_CMD_READ |
7738 					    V_FW_PORT_CMD_PORTID(pi->tx_chan));
7739 	port_cmd.action_to_len16 = cpu_to_be32(
7740 		V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
7741 		FW_LEN16(port_cmd));
7742 	ret = t4_wr_mbox_ns(pi->adapter, pi->adapter->mbox,
7743 			 &port_cmd, sizeof(port_cmd), &port_cmd);
7744 	if (ret)
7745 		return ret;
7746 
7747 	handle_port_info(pi, &port_cmd.u.info);
7748 	return 0;
7749 }
7750 
7751 /**
7752  *	t4_handle_fw_rpl - process a FW reply message
7753  *	@adap: the adapter
7754  *	@rpl: start of the FW message
7755  *
7756  *	Processes a FW message, such as link state change messages.
7757  */
7758 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7759 {
7760 	u8 opcode = *(const u8 *)rpl;
7761 	const struct fw_port_cmd *p = (const void *)rpl;
7762 	unsigned int action =
7763 			G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
7764 
7765 	if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7766 		/* link/module state change message */
7767 		int i, old_ptype, old_mtype;
7768 		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
7769 		struct port_info *pi = NULL;
7770 		struct link_config *lc, *old_lc;
7771 
7772 		for_each_port(adap, i) {
7773 			pi = adap2pinfo(adap, i);
7774 			if (pi->tx_chan == chan)
7775 				break;
7776 		}
7777 
7778 		lc = &pi->link_cfg;
7779 		old_lc = &pi->old_link_cfg;
7780 		old_ptype = pi->port_type;
7781 		old_mtype = pi->mod_type;
7782 
7783 		handle_port_info(pi, &p->u.info);
7784 		if (old_ptype != pi->port_type || old_mtype != pi->mod_type) {
7785 			t4_os_portmod_changed(pi);
7786 		}
7787 		if (old_lc->link_ok != lc->link_ok ||
7788 		    old_lc->speed != lc->speed ||
7789 		    old_lc->fec != lc->fec ||
7790 		    old_lc->fc != lc->fc) {
7791 			t4_os_link_changed(pi);
7792 			*old_lc = *lc;
7793 		}
7794 	} else {
7795 		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
7796 		return -EINVAL;
7797 	}
7798 	return 0;
7799 }
7800 
7801 /**
7802  *	get_pci_mode - determine a card's PCI mode
7803  *	@adapter: the adapter
7804  *	@p: where to store the PCI settings
7805  *
7806  *	Determines a card's PCI mode and associated parameters, such as speed
7807  *	and width.
7808  */
7809 static void get_pci_mode(struct adapter *adapter,
7810 				   struct pci_params *p)
7811 {
7812 	u16 val;
7813 	u32 pcie_cap;
7814 
7815 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7816 	if (pcie_cap) {
7817 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
7818 		p->speed = val & PCI_EXP_LNKSTA_CLS;
7819 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7820 	}
7821 }
7822 
7823 struct flash_desc {
7824 	u32 vendor_and_model_id;
7825 	u32 size_mb;
7826 };
7827 
7828 int t4_get_flash_params(struct adapter *adapter)
7829 {
7830 	/*
7831 	 * Table for non-standard supported Flash parts.  Note, all Flash
7832 	 * parts must have 64KB sectors.
7833 	 */
7834 	static struct flash_desc supported_flash[] = {
7835 		{ 0x00150201, 4 << 20 },	/* Spansion 4MB S25FL032P */
7836 	};
7837 
7838 	int ret;
7839 	u32 flashid = 0;
7840 	unsigned int part, manufacturer;
7841 	unsigned int density, size;
7842 
7843 
7844 	/*
7845 	 * Issue a Read ID Command to the Flash part.  We decode supported
7846 	 * Flash parts and their sizes from this.  There's a newer Query
7847 	 * Command which can retrieve detailed geometry information but many
7848 	 * Flash parts don't support it.
7849 	 */
7850 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
7851 	if (!ret)
7852 		ret = sf1_read(adapter, 3, 0, 1, &flashid);
7853 	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
7854 	if (ret < 0)
7855 		return ret;
7856 
7857 	/*
7858 	 * Check to see if it's one of our non-standard supported Flash parts.
7859 	 */
7860 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
7861 		if (supported_flash[part].vendor_and_model_id == flashid) {
7862 			adapter->params.sf_size =
7863 				supported_flash[part].size_mb;
7864 			adapter->params.sf_nsec =
7865 				adapter->params.sf_size / SF_SEC_SIZE;
7866 			goto found;
7867 		}
7868 
7869 	/*
7870 	 * Decode Flash part size.  The code below looks repetative with
7871 	 * common encodings, but that's not guaranteed in the JEDEC
7872 	 * specification for the Read JADEC ID command.  The only thing that
7873 	 * we're guaranteed by the JADEC specification is where the
7874 	 * Manufacturer ID is in the returned result.  After that each
7875 	 * Manufacturer ~could~ encode things completely differently.
7876 	 * Note, all Flash parts must have 64KB sectors.
7877 	 */
7878 	manufacturer = flashid & 0xff;
7879 	switch (manufacturer) {
7880 	case 0x20: { /* Micron/Numonix */
7881 		/*
7882 		 * This Density -> Size decoding table is taken from Micron
7883 		 * Data Sheets.
7884 		 */
7885 		density = (flashid >> 16) & 0xff;
7886 		switch (density) {
7887 		case 0x14: size = 1 << 20; break; /*   1MB */
7888 		case 0x15: size = 1 << 21; break; /*   2MB */
7889 		case 0x16: size = 1 << 22; break; /*   4MB */
7890 		case 0x17: size = 1 << 23; break; /*   8MB */
7891 		case 0x18: size = 1 << 24; break; /*  16MB */
7892 		case 0x19: size = 1 << 25; break; /*  32MB */
7893 		case 0x20: size = 1 << 26; break; /*  64MB */
7894 		case 0x21: size = 1 << 27; break; /* 128MB */
7895 		case 0x22: size = 1 << 28; break; /* 256MB */
7896 
7897 		default:
7898 			CH_ERR(adapter, "Micron Flash Part has bad size, "
7899 			       "ID = %#x, Density code = %#x\n",
7900 			       flashid, density);
7901 			return -EINVAL;
7902 		}
7903 		break;
7904 	}
7905 
7906 	case 0xef: { /* Winbond */
7907 		/*
7908 		 * This Density -> Size decoding table is taken from Winbond
7909 		 * Data Sheets.
7910 		 */
7911 		density = (flashid >> 16) & 0xff;
7912 		switch (density) {
7913 		case 0x17: size = 1 << 23; break; /*   8MB */
7914 		case 0x18: size = 1 << 24; break; /*  16MB */
7915 
7916 		default:
7917 			CH_ERR(adapter, "Winbond Flash Part has bad size, "
7918 			       "ID = %#x, Density code = %#x\n",
7919 			       flashid, density);
7920 			return -EINVAL;
7921 		}
7922 		break;
7923 	}
7924 
7925 	default:
7926 		CH_ERR(adapter, "Unsupported Flash Part, ID = %#x\n", flashid);
7927 		return -EINVAL;
7928 	}
7929 
7930 	/*
7931 	 * Store decoded Flash size and fall through into vetting code.
7932 	 */
7933 	adapter->params.sf_size = size;
7934 	adapter->params.sf_nsec = size / SF_SEC_SIZE;
7935 
7936  found:
7937 	/*
7938 	 * We should ~probably~ reject adapters with FLASHes which are too
7939 	 * small but we have some legacy FPGAs with small FLASHes that we'd
7940 	 * still like to use.  So instead we emit a scary message ...
7941 	 */
7942 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
7943 		CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
7944 			flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
7945 
7946 	return 0;
7947 }
7948 
7949 static void set_pcie_completion_timeout(struct adapter *adapter,
7950 						  u8 range)
7951 {
7952 	u16 val;
7953 	u32 pcie_cap;
7954 
7955 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7956 	if (pcie_cap) {
7957 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
7958 		val &= 0xfff0;
7959 		val |= range ;
7960 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
7961 	}
7962 }
7963 
7964 const struct chip_params *t4_get_chip_params(int chipid)
7965 {
7966 	static const struct chip_params chip_params[] = {
7967 		{
7968 			/* T4 */
7969 			.nchan = NCHAN,
7970 			.pm_stats_cnt = PM_NSTATS,
7971 			.cng_ch_bits_log = 2,
7972 			.nsched_cls = 15,
7973 			.cim_num_obq = CIM_NUM_OBQ,
7974 			.mps_rplc_size = 128,
7975 			.vfcount = 128,
7976 			.sge_fl_db = F_DBPRIO,
7977 			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
7978 		},
7979 		{
7980 			/* T5 */
7981 			.nchan = NCHAN,
7982 			.pm_stats_cnt = PM_NSTATS,
7983 			.cng_ch_bits_log = 2,
7984 			.nsched_cls = 16,
7985 			.cim_num_obq = CIM_NUM_OBQ_T5,
7986 			.mps_rplc_size = 128,
7987 			.vfcount = 128,
7988 			.sge_fl_db = F_DBPRIO | F_DBTYPE,
7989 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
7990 		},
7991 		{
7992 			/* T6 */
7993 			.nchan = T6_NCHAN,
7994 			.pm_stats_cnt = T6_PM_NSTATS,
7995 			.cng_ch_bits_log = 3,
7996 			.nsched_cls = 16,
7997 			.cim_num_obq = CIM_NUM_OBQ_T5,
7998 			.mps_rplc_size = 256,
7999 			.vfcount = 256,
8000 			.sge_fl_db = 0,
8001 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8002 		},
8003 	};
8004 
8005 	chipid -= CHELSIO_T4;
8006 	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
8007 		return NULL;
8008 
8009 	return &chip_params[chipid];
8010 }
8011 
8012 /**
8013  *	t4_prep_adapter - prepare SW and HW for operation
8014  *	@adapter: the adapter
8015  *	@buf: temporary space of at least VPD_LEN size provided by the caller.
8016  *
8017  *	Initialize adapter SW state for the various HW modules, set initial
8018  *	values for some adapter tunables, take PHYs out of reset, and
8019  *	initialize the MDIO interface.
8020  */
8021 int t4_prep_adapter(struct adapter *adapter, u32 *buf)
8022 {
8023 	int ret;
8024 	uint16_t device_id;
8025 	uint32_t pl_rev;
8026 
8027 	get_pci_mode(adapter, &adapter->params.pci);
8028 
8029 	pl_rev = t4_read_reg(adapter, A_PL_REV);
8030 	adapter->params.chipid = G_CHIPID(pl_rev);
8031 	adapter->params.rev = G_REV(pl_rev);
8032 	if (adapter->params.chipid == 0) {
8033 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
8034 		adapter->params.chipid = CHELSIO_T4;
8035 
8036 		/* T4A1 chip is not supported */
8037 		if (adapter->params.rev == 1) {
8038 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
8039 			return -EINVAL;
8040 		}
8041 	}
8042 
8043 	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
8044 	if (adapter->chip_params == NULL)
8045 		return -EINVAL;
8046 
8047 	adapter->params.pci.vpd_cap_addr =
8048 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
8049 
8050 	ret = t4_get_flash_params(adapter);
8051 	if (ret < 0)
8052 		return ret;
8053 
8054 	ret = get_vpd_params(adapter, &adapter->params.vpd, buf);
8055 	if (ret < 0)
8056 		return ret;
8057 
8058 	/* Cards with real ASICs have the chipid in the PCIe device id */
8059 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
8060 	if (device_id >> 12 == chip_id(adapter))
8061 		adapter->params.cim_la_size = CIMLA_SIZE;
8062 	else {
8063 		/* FPGA */
8064 		adapter->params.fpga = 1;
8065 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
8066 	}
8067 
8068 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8069 
8070 	/*
8071 	 * Default port and clock for debugging in case we can't reach FW.
8072 	 */
8073 	adapter->params.nports = 1;
8074 	adapter->params.portvec = 1;
8075 	adapter->params.vpd.cclk = 50000;
8076 
8077 	/* Set pci completion timeout value to 4 seconds. */
8078 	set_pcie_completion_timeout(adapter, 0xd);
8079 	return 0;
8080 }
8081 
8082 /**
8083  *	t4_shutdown_adapter - shut down adapter, host & wire
8084  *	@adapter: the adapter
8085  *
8086  *	Perform an emergency shutdown of the adapter and stop it from
8087  *	continuing any further communication on the ports or DMA to the
8088  *	host.  This is typically used when the adapter and/or firmware
8089  *	have crashed and we want to prevent any further accidental
8090  *	communication with the rest of the world.  This will also force
8091  *	the port Link Status to go down -- if register writes work --
8092  *	which should help our peers figure out that we're down.
8093  */
8094 int t4_shutdown_adapter(struct adapter *adapter)
8095 {
8096 	int port;
8097 
8098 	t4_intr_disable(adapter);
8099 	t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
8100 	for_each_port(adapter, port) {
8101 		u32 a_port_cfg = is_t4(adapter) ?
8102 				 PORT_REG(port, A_XGMAC_PORT_CFG) :
8103 				 T5_PORT_REG(port, A_MAC_PORT_CFG);
8104 
8105 		t4_write_reg(adapter, a_port_cfg,
8106 			     t4_read_reg(adapter, a_port_cfg)
8107 			     & ~V_SIGNAL_DET(1));
8108 	}
8109 	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
8110 
8111 	return 0;
8112 }
8113 
8114 /**
8115  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
8116  *	@adapter: the adapter
8117  *	@qid: the Queue ID
8118  *	@qtype: the Ingress or Egress type for @qid
8119  *	@user: true if this request is for a user mode queue
8120  *	@pbar2_qoffset: BAR2 Queue Offset
8121  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
8122  *
8123  *	Returns the BAR2 SGE Queue Registers information associated with the
8124  *	indicated Absolute Queue ID.  These are passed back in return value
8125  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
8126  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
8127  *
8128  *	This may return an error which indicates that BAR2 SGE Queue
8129  *	registers aren't available.  If an error is not returned, then the
8130  *	following values are returned:
8131  *
8132  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
8133  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
8134  *
8135  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
8136  *	require the "Inferred Queue ID" ability may be used.  E.g. the
8137  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
8138  *	then these "Inferred Queue ID" register may not be used.
8139  */
8140 int t4_bar2_sge_qregs(struct adapter *adapter,
8141 		      unsigned int qid,
8142 		      enum t4_bar2_qtype qtype,
8143 		      int user,
8144 		      u64 *pbar2_qoffset,
8145 		      unsigned int *pbar2_qid)
8146 {
8147 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
8148 	u64 bar2_page_offset, bar2_qoffset;
8149 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
8150 
8151 	/* T4 doesn't support BAR2 SGE Queue registers for kernel
8152 	 * mode queues.
8153 	 */
8154 	if (!user && is_t4(adapter))
8155 		return -EINVAL;
8156 
8157 	/* Get our SGE Page Size parameters.
8158 	 */
8159 	page_shift = adapter->params.sge.page_shift;
8160 	page_size = 1 << page_shift;
8161 
8162 	/* Get the right Queues per Page parameters for our Queue.
8163 	 */
8164 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
8165 		     ? adapter->params.sge.eq_s_qpp
8166 		     : adapter->params.sge.iq_s_qpp);
8167 	qpp_mask = (1 << qpp_shift) - 1;
8168 
8169 	/* Calculate the basics of the BAR2 SGE Queue register area:
8170 	 *  o The BAR2 page the Queue registers will be in.
8171 	 *  o The BAR2 Queue ID.
8172 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
8173 	 */
8174 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
8175 	bar2_qid = qid & qpp_mask;
8176 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
8177 
8178 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
8179 	 * hardware will infer the Absolute Queue ID simply from the writes to
8180 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
8181 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
8182 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
8183 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
8184 	 * from the BAR2 Page and BAR2 Queue ID.
8185 	 *
8186 	 * One important censequence of this is that some BAR2 SGE registers
8187 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
8188 	 * there.  But other registers synthesize the SGE Queue ID purely
8189 	 * from the writes to the registers -- the Write Combined Doorbell
8190 	 * Buffer is a good example.  These BAR2 SGE Registers are only
8191 	 * available for those BAR2 SGE Register areas where the SGE Absolute
8192 	 * Queue ID can be inferred from simple writes.
8193 	 */
8194 	bar2_qoffset = bar2_page_offset;
8195 	bar2_qinferred = (bar2_qid_offset < page_size);
8196 	if (bar2_qinferred) {
8197 		bar2_qoffset += bar2_qid_offset;
8198 		bar2_qid = 0;
8199 	}
8200 
8201 	*pbar2_qoffset = bar2_qoffset;
8202 	*pbar2_qid = bar2_qid;
8203 	return 0;
8204 }
8205 
8206 /**
8207  *	t4_init_devlog_params - initialize adapter->params.devlog
8208  *	@adap: the adapter
8209  *	@fw_attach: whether we can talk to the firmware
8210  *
8211  *	Initialize various fields of the adapter's Firmware Device Log
8212  *	Parameters structure.
8213  */
8214 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
8215 {
8216 	struct devlog_params *dparams = &adap->params.devlog;
8217 	u32 pf_dparams;
8218 	unsigned int devlog_meminfo;
8219 	struct fw_devlog_cmd devlog_cmd;
8220 	int ret;
8221 
8222 	/* If we're dealing with newer firmware, the Device Log Paramerters
8223 	 * are stored in a designated register which allows us to access the
8224 	 * Device Log even if we can't talk to the firmware.
8225 	 */
8226 	pf_dparams =
8227 		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
8228 	if (pf_dparams) {
8229 		unsigned int nentries, nentries128;
8230 
8231 		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
8232 		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
8233 
8234 		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
8235 		nentries = (nentries128 + 1) * 128;
8236 		dparams->size = nentries * sizeof(struct fw_devlog_e);
8237 
8238 		return 0;
8239 	}
8240 
8241 	/*
8242 	 * For any failing returns ...
8243 	 */
8244 	memset(dparams, 0, sizeof *dparams);
8245 
8246 	/*
8247 	 * If we can't talk to the firmware, there's really nothing we can do
8248 	 * at this point.
8249 	 */
8250 	if (!fw_attach)
8251 		return -ENXIO;
8252 
8253 	/* Otherwise, ask the firmware for it's Device Log Parameters.
8254 	 */
8255 	memset(&devlog_cmd, 0, sizeof devlog_cmd);
8256 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
8257 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
8258 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
8259 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
8260 			 &devlog_cmd);
8261 	if (ret)
8262 		return ret;
8263 
8264 	devlog_meminfo =
8265 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
8266 	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
8267 	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
8268 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
8269 
8270 	return 0;
8271 }
8272 
8273 /**
8274  *	t4_init_sge_params - initialize adap->params.sge
8275  *	@adapter: the adapter
8276  *
8277  *	Initialize various fields of the adapter's SGE Parameters structure.
8278  */
8279 int t4_init_sge_params(struct adapter *adapter)
8280 {
8281 	u32 r;
8282 	struct sge_params *sp = &adapter->params.sge;
8283 	unsigned i, tscale = 1;
8284 
8285 	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
8286 	sp->counter_val[0] = G_THRESHOLD_0(r);
8287 	sp->counter_val[1] = G_THRESHOLD_1(r);
8288 	sp->counter_val[2] = G_THRESHOLD_2(r);
8289 	sp->counter_val[3] = G_THRESHOLD_3(r);
8290 
8291 	if (chip_id(adapter) >= CHELSIO_T6) {
8292 		r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
8293 		tscale = G_TSCALE(r);
8294 		if (tscale == 0)
8295 			tscale = 1;
8296 		else
8297 			tscale += 2;
8298 	}
8299 
8300 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
8301 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
8302 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
8303 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
8304 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
8305 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
8306 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
8307 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
8308 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
8309 
8310 	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
8311 	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
8312 	if (is_t4(adapter))
8313 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
8314 	else if (is_t5(adapter))
8315 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
8316 	else
8317 		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
8318 
8319 	/* egress queues: log2 of # of doorbells per BAR2 page */
8320 	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
8321 	r >>= S_QUEUESPERPAGEPF0 +
8322 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
8323 	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
8324 
8325 	/* ingress queues: log2 of # of doorbells per BAR2 page */
8326 	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
8327 	r >>= S_QUEUESPERPAGEPF0 +
8328 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
8329 	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
8330 
8331 	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
8332 	r >>= S_HOSTPAGESIZEPF0 +
8333 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
8334 	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
8335 
8336 	r = t4_read_reg(adapter, A_SGE_CONTROL);
8337 	sp->sge_control = r;
8338 	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
8339 	sp->fl_pktshift = G_PKTSHIFT(r);
8340 	if (chip_id(adapter) <= CHELSIO_T5) {
8341 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
8342 		    X_INGPADBOUNDARY_SHIFT);
8343 	} else {
8344 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
8345 		    X_T6_INGPADBOUNDARY_SHIFT);
8346 	}
8347 	if (is_t4(adapter))
8348 		sp->pack_boundary = sp->pad_boundary;
8349 	else {
8350 		r = t4_read_reg(adapter, A_SGE_CONTROL2);
8351 		if (G_INGPACKBOUNDARY(r) == 0)
8352 			sp->pack_boundary = 16;
8353 		else
8354 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
8355 	}
8356 	for (i = 0; i < SGE_FLBUF_SIZES; i++)
8357 		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
8358 		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
8359 
8360 	return 0;
8361 }
8362 
8363 /*
8364  * Read and cache the adapter's compressed filter mode and ingress config.
8365  */
8366 static void read_filter_mode_and_ingress_config(struct adapter *adap,
8367     bool sleep_ok)
8368 {
8369 	struct tp_params *tpp = &adap->params.tp;
8370 
8371 	t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP,
8372 	    sleep_ok);
8373 	t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG,
8374 	    sleep_ok);
8375 
8376 	/*
8377 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
8378 	 * shift positions of several elements of the Compressed Filter Tuple
8379 	 * for this adapter which we need frequently ...
8380 	 */
8381 	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
8382 	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
8383 	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
8384 	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
8385 	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
8386 	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
8387 	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
8388 	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
8389 	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
8390 	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
8391 
8392 	/*
8393 	 * If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
8394 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
8395 	 */
8396 	if ((tpp->ingress_config & F_VNIC) == 0)
8397 		tpp->vnic_shift = -1;
8398 }
8399 
8400 /**
8401  *      t4_init_tp_params - initialize adap->params.tp
8402  *      @adap: the adapter
8403  *
8404  *      Initialize various fields of the adapter's TP Parameters structure.
8405  */
8406 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
8407 {
8408 	int chan;
8409 	u32 v;
8410 	struct tp_params *tpp = &adap->params.tp;
8411 
8412 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
8413 	tpp->tre = G_TIMERRESOLUTION(v);
8414 	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
8415 
8416 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
8417 	for (chan = 0; chan < MAX_NCHAN; chan++)
8418 		tpp->tx_modq[chan] = chan;
8419 
8420 	read_filter_mode_and_ingress_config(adap, sleep_ok);
8421 
8422 	/*
8423 	 * Cache a mask of the bits that represent the error vector portion of
8424 	 * rx_pkt.err_vec.  T6+ can use a compressed error vector to make room
8425 	 * for information about outer encapsulation (GENEVE/VXLAN/NVGRE).
8426 	 */
8427 	tpp->err_vec_mask = htobe16(0xffff);
8428 	if (chip_id(adap) > CHELSIO_T5) {
8429 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
8430 		if (v & F_CRXPKTENC) {
8431 			tpp->err_vec_mask =
8432 			    htobe16(V_T6_COMPR_RXERR_VEC(M_T6_COMPR_RXERR_VEC));
8433 		}
8434 	}
8435 
8436 	return 0;
8437 }
8438 
8439 /**
8440  *      t4_filter_field_shift - calculate filter field shift
8441  *      @adap: the adapter
8442  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
8443  *
8444  *      Return the shift position of a filter field within the Compressed
8445  *      Filter Tuple.  The filter field is specified via its selection bit
8446  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
8447  */
8448 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
8449 {
8450 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
8451 	unsigned int sel;
8452 	int field_shift;
8453 
8454 	if ((filter_mode & filter_sel) == 0)
8455 		return -1;
8456 
8457 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
8458 		switch (filter_mode & sel) {
8459 		case F_FCOE:
8460 			field_shift += W_FT_FCOE;
8461 			break;
8462 		case F_PORT:
8463 			field_shift += W_FT_PORT;
8464 			break;
8465 		case F_VNIC_ID:
8466 			field_shift += W_FT_VNIC_ID;
8467 			break;
8468 		case F_VLAN:
8469 			field_shift += W_FT_VLAN;
8470 			break;
8471 		case F_TOS:
8472 			field_shift += W_FT_TOS;
8473 			break;
8474 		case F_PROTOCOL:
8475 			field_shift += W_FT_PROTOCOL;
8476 			break;
8477 		case F_ETHERTYPE:
8478 			field_shift += W_FT_ETHERTYPE;
8479 			break;
8480 		case F_MACMATCH:
8481 			field_shift += W_FT_MACMATCH;
8482 			break;
8483 		case F_MPSHITTYPE:
8484 			field_shift += W_FT_MPSHITTYPE;
8485 			break;
8486 		case F_FRAGMENTATION:
8487 			field_shift += W_FT_FRAGMENTATION;
8488 			break;
8489 		}
8490 	}
8491 	return field_shift;
8492 }
8493 
8494 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
8495 {
8496 	u8 addr[6];
8497 	int ret, i, j;
8498 	u16 rss_size;
8499 	struct port_info *p = adap2pinfo(adap, port_id);
8500 	u32 param, val;
8501 
8502 	for (i = 0, j = -1; i <= p->port_id; i++) {
8503 		do {
8504 			j++;
8505 		} while ((adap->params.portvec & (1 << j)) == 0);
8506 	}
8507 
8508 	if (!(adap->flags & IS_VF) ||
8509 	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
8510  		t4_update_port_info(p);
8511 	}
8512 
8513 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
8514 	if (ret < 0)
8515 		return ret;
8516 
8517 	p->vi[0].viid = ret;
8518 	if (chip_id(adap) <= CHELSIO_T5)
8519 		p->vi[0].smt_idx = (ret & 0x7f) << 1;
8520 	else
8521 		p->vi[0].smt_idx = (ret & 0x7f);
8522 	p->tx_chan = j;
8523 	p->mps_bg_map = t4_get_mps_bg_map(adap, j);
8524 	p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
8525 	p->lport = j;
8526 	p->vi[0].rss_size = rss_size;
8527 	t4_os_set_hw_addr(p, addr);
8528 
8529 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8530 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
8531 	    V_FW_PARAMS_PARAM_YZ(p->vi[0].viid);
8532 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
8533 	if (ret)
8534 		p->vi[0].rss_base = 0xffff;
8535 	else {
8536 		/* MPASS((val >> 16) == rss_size); */
8537 		p->vi[0].rss_base = val & 0xffff;
8538 	}
8539 
8540 	return 0;
8541 }
8542 
8543 /**
8544  *	t4_read_cimq_cfg - read CIM queue configuration
8545  *	@adap: the adapter
8546  *	@base: holds the queue base addresses in bytes
8547  *	@size: holds the queue sizes in bytes
8548  *	@thres: holds the queue full thresholds in bytes
8549  *
8550  *	Returns the current configuration of the CIM queues, starting with
8551  *	the IBQs, then the OBQs.
8552  */
8553 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
8554 {
8555 	unsigned int i, v;
8556 	int cim_num_obq = adap->chip_params->cim_num_obq;
8557 
8558 	for (i = 0; i < CIM_NUM_IBQ; i++) {
8559 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
8560 			     V_QUENUMSELECT(i));
8561 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8562 		/* value is in 256-byte units */
8563 		*base++ = G_CIMQBASE(v) * 256;
8564 		*size++ = G_CIMQSIZE(v) * 256;
8565 		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
8566 	}
8567 	for (i = 0; i < cim_num_obq; i++) {
8568 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8569 			     V_QUENUMSELECT(i));
8570 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8571 		/* value is in 256-byte units */
8572 		*base++ = G_CIMQBASE(v) * 256;
8573 		*size++ = G_CIMQSIZE(v) * 256;
8574 	}
8575 }
8576 
8577 /**
8578  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
8579  *	@adap: the adapter
8580  *	@qid: the queue index
8581  *	@data: where to store the queue contents
8582  *	@n: capacity of @data in 32-bit words
8583  *
8584  *	Reads the contents of the selected CIM queue starting at address 0 up
8585  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8586  *	error and the number of 32-bit words actually read on success.
8587  */
8588 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8589 {
8590 	int i, err, attempts;
8591 	unsigned int addr;
8592 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
8593 
8594 	if (qid > 5 || (n & 3))
8595 		return -EINVAL;
8596 
8597 	addr = qid * nwords;
8598 	if (n > nwords)
8599 		n = nwords;
8600 
8601 	/* It might take 3-10ms before the IBQ debug read access is allowed.
8602 	 * Wait for 1 Sec with a delay of 1 usec.
8603 	 */
8604 	attempts = 1000000;
8605 
8606 	for (i = 0; i < n; i++, addr++) {
8607 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
8608 			     F_IBQDBGEN);
8609 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
8610 				      attempts, 1);
8611 		if (err)
8612 			return err;
8613 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
8614 	}
8615 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
8616 	return i;
8617 }
8618 
8619 /**
8620  *	t4_read_cim_obq - read the contents of a CIM outbound queue
8621  *	@adap: the adapter
8622  *	@qid: the queue index
8623  *	@data: where to store the queue contents
8624  *	@n: capacity of @data in 32-bit words
8625  *
8626  *	Reads the contents of the selected CIM queue starting at address 0 up
8627  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8628  *	error and the number of 32-bit words actually read on success.
8629  */
8630 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8631 {
8632 	int i, err;
8633 	unsigned int addr, v, nwords;
8634 	int cim_num_obq = adap->chip_params->cim_num_obq;
8635 
8636 	if ((qid > (cim_num_obq - 1)) || (n & 3))
8637 		return -EINVAL;
8638 
8639 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8640 		     V_QUENUMSELECT(qid));
8641 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8642 
8643 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
8644 	nwords = G_CIMQSIZE(v) * 64;  /* same */
8645 	if (n > nwords)
8646 		n = nwords;
8647 
8648 	for (i = 0; i < n; i++, addr++) {
8649 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
8650 			     F_OBQDBGEN);
8651 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
8652 				      2, 1);
8653 		if (err)
8654 			return err;
8655 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
8656 	}
8657 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
8658 	return i;
8659 }
8660 
8661 enum {
8662 	CIM_QCTL_BASE     = 0,
8663 	CIM_CTL_BASE      = 0x2000,
8664 	CIM_PBT_ADDR_BASE = 0x2800,
8665 	CIM_PBT_LRF_BASE  = 0x3000,
8666 	CIM_PBT_DATA_BASE = 0x3800
8667 };
8668 
8669 /**
8670  *	t4_cim_read - read a block from CIM internal address space
8671  *	@adap: the adapter
8672  *	@addr: the start address within the CIM address space
8673  *	@n: number of words to read
8674  *	@valp: where to store the result
8675  *
8676  *	Reads a block of 4-byte words from the CIM intenal address space.
8677  */
8678 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
8679 		unsigned int *valp)
8680 {
8681 	int ret = 0;
8682 
8683 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8684 		return -EBUSY;
8685 
8686 	for ( ; !ret && n--; addr += 4) {
8687 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
8688 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8689 				      0, 5, 2);
8690 		if (!ret)
8691 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
8692 	}
8693 	return ret;
8694 }
8695 
8696 /**
8697  *	t4_cim_write - write a block into CIM internal address space
8698  *	@adap: the adapter
8699  *	@addr: the start address within the CIM address space
8700  *	@n: number of words to write
8701  *	@valp: set of values to write
8702  *
8703  *	Writes a block of 4-byte words into the CIM intenal address space.
8704  */
8705 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8706 		 const unsigned int *valp)
8707 {
8708 	int ret = 0;
8709 
8710 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8711 		return -EBUSY;
8712 
8713 	for ( ; !ret && n--; addr += 4) {
8714 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
8715 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
8716 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8717 				      0, 5, 2);
8718 	}
8719 	return ret;
8720 }
8721 
8722 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8723 			 unsigned int val)
8724 {
8725 	return t4_cim_write(adap, addr, 1, &val);
8726 }
8727 
8728 /**
8729  *	t4_cim_ctl_read - read a block from CIM control region
8730  *	@adap: the adapter
8731  *	@addr: the start address within the CIM control region
8732  *	@n: number of words to read
8733  *	@valp: where to store the result
8734  *
8735  *	Reads a block of 4-byte words from the CIM control region.
8736  */
8737 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
8738 		    unsigned int *valp)
8739 {
8740 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
8741 }
8742 
8743 /**
8744  *	t4_cim_read_la - read CIM LA capture buffer
8745  *	@adap: the adapter
8746  *	@la_buf: where to store the LA data
8747  *	@wrptr: the HW write pointer within the capture buffer
8748  *
8749  *	Reads the contents of the CIM LA buffer with the most recent entry at
8750  *	the end	of the returned data and with the entry at @wrptr first.
8751  *	We try to leave the LA in the running state we find it in.
8752  */
8753 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8754 {
8755 	int i, ret;
8756 	unsigned int cfg, val, idx;
8757 
8758 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
8759 	if (ret)
8760 		return ret;
8761 
8762 	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
8763 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
8764 		if (ret)
8765 			return ret;
8766 	}
8767 
8768 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8769 	if (ret)
8770 		goto restart;
8771 
8772 	idx = G_UPDBGLAWRPTR(val);
8773 	if (wrptr)
8774 		*wrptr = idx;
8775 
8776 	for (i = 0; i < adap->params.cim_la_size; i++) {
8777 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8778 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
8779 		if (ret)
8780 			break;
8781 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8782 		if (ret)
8783 			break;
8784 		if (val & F_UPDBGLARDEN) {
8785 			ret = -ETIMEDOUT;
8786 			break;
8787 		}
8788 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
8789 		if (ret)
8790 			break;
8791 
8792 		/* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
8793 		idx = (idx + 1) & M_UPDBGLARDPTR;
8794 		/*
8795 		 * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
8796 		 * identify the 32-bit portion of the full 312-bit data
8797 		 */
8798 		if (is_t6(adap))
8799 			while ((idx & 0xf) > 9)
8800 				idx = (idx + 1) % M_UPDBGLARDPTR;
8801 	}
8802 restart:
8803 	if (cfg & F_UPDBGLAEN) {
8804 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8805 				      cfg & ~F_UPDBGLARDEN);
8806 		if (!ret)
8807 			ret = r;
8808 	}
8809 	return ret;
8810 }
8811 
8812 /**
8813  *	t4_tp_read_la - read TP LA capture buffer
8814  *	@adap: the adapter
8815  *	@la_buf: where to store the LA data
8816  *	@wrptr: the HW write pointer within the capture buffer
8817  *
8818  *	Reads the contents of the TP LA buffer with the most recent entry at
8819  *	the end	of the returned data and with the entry at @wrptr first.
8820  *	We leave the LA in the running state we find it in.
8821  */
8822 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8823 {
8824 	bool last_incomplete;
8825 	unsigned int i, cfg, val, idx;
8826 
8827 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
8828 	if (cfg & F_DBGLAENABLE)			/* freeze LA */
8829 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8830 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
8831 
8832 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
8833 	idx = G_DBGLAWPTR(val);
8834 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
8835 	if (last_incomplete)
8836 		idx = (idx + 1) & M_DBGLARPTR;
8837 	if (wrptr)
8838 		*wrptr = idx;
8839 
8840 	val &= 0xffff;
8841 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
8842 	val |= adap->params.tp.la_mask;
8843 
8844 	for (i = 0; i < TPLA_SIZE; i++) {
8845 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
8846 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
8847 		idx = (idx + 1) & M_DBGLARPTR;
8848 	}
8849 
8850 	/* Wipe out last entry if it isn't valid */
8851 	if (last_incomplete)
8852 		la_buf[TPLA_SIZE - 1] = ~0ULL;
8853 
8854 	if (cfg & F_DBGLAENABLE)		/* restore running state */
8855 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8856 			     cfg | adap->params.tp.la_mask);
8857 }
8858 
8859 /*
8860  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8861  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
8862  * state for more than the Warning Threshold then we'll issue a warning about
8863  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
8864  * appears to be hung every Warning Repeat second till the situation clears.
8865  * If the situation clears, we'll note that as well.
8866  */
8867 #define SGE_IDMA_WARN_THRESH 1
8868 #define SGE_IDMA_WARN_REPEAT 300
8869 
8870 /**
8871  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8872  *	@adapter: the adapter
8873  *	@idma: the adapter IDMA Monitor state
8874  *
8875  *	Initialize the state of an SGE Ingress DMA Monitor.
8876  */
8877 void t4_idma_monitor_init(struct adapter *adapter,
8878 			  struct sge_idma_monitor_state *idma)
8879 {
8880 	/* Initialize the state variables for detecting an SGE Ingress DMA
8881 	 * hang.  The SGE has internal counters which count up on each clock
8882 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
8883 	 * same state they were on the previous clock tick.  The clock used is
8884 	 * the Core Clock so we have a limit on the maximum "time" they can
8885 	 * record; typically a very small number of seconds.  For instance,
8886 	 * with a 600MHz Core Clock, we can only count up to a bit more than
8887 	 * 7s.  So we'll synthesize a larger counter in order to not run the
8888 	 * risk of having the "timers" overflow and give us the flexibility to
8889 	 * maintain a Hung SGE State Machine of our own which operates across
8890 	 * a longer time frame.
8891 	 */
8892 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8893 	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
8894 }
8895 
8896 /**
8897  *	t4_idma_monitor - monitor SGE Ingress DMA state
8898  *	@adapter: the adapter
8899  *	@idma: the adapter IDMA Monitor state
8900  *	@hz: number of ticks/second
8901  *	@ticks: number of ticks since the last IDMA Monitor call
8902  */
8903 void t4_idma_monitor(struct adapter *adapter,
8904 		     struct sge_idma_monitor_state *idma,
8905 		     int hz, int ticks)
8906 {
8907 	int i, idma_same_state_cnt[2];
8908 
8909 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
8910 	  * are counters inside the SGE which count up on each clock when the
8911 	  * SGE finds its Ingress DMA State Engines in the same states they
8912 	  * were in the previous clock.  The counters will peg out at
8913 	  * 0xffffffff without wrapping around so once they pass the 1s
8914 	  * threshold they'll stay above that till the IDMA state changes.
8915 	  */
8916 	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
8917 	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
8918 	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8919 
8920 	for (i = 0; i < 2; i++) {
8921 		u32 debug0, debug11;
8922 
8923 		/* If the Ingress DMA Same State Counter ("timer") is less
8924 		 * than 1s, then we can reset our synthesized Stall Timer and
8925 		 * continue.  If we have previously emitted warnings about a
8926 		 * potential stalled Ingress Queue, issue a note indicating
8927 		 * that the Ingress Queue has resumed forward progress.
8928 		 */
8929 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8930 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
8931 				CH_WARN(adapter, "SGE idma%d, queue %u, "
8932 					"resumed after %d seconds\n",
8933 					i, idma->idma_qid[i],
8934 					idma->idma_stalled[i]/hz);
8935 			idma->idma_stalled[i] = 0;
8936 			continue;
8937 		}
8938 
8939 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8940 		 * domain.  The first time we get here it'll be because we
8941 		 * passed the 1s Threshold; each additional time it'll be
8942 		 * because the RX Timer Callback is being fired on its regular
8943 		 * schedule.
8944 		 *
8945 		 * If the stall is below our Potential Hung Ingress Queue
8946 		 * Warning Threshold, continue.
8947 		 */
8948 		if (idma->idma_stalled[i] == 0) {
8949 			idma->idma_stalled[i] = hz;
8950 			idma->idma_warn[i] = 0;
8951 		} else {
8952 			idma->idma_stalled[i] += ticks;
8953 			idma->idma_warn[i] -= ticks;
8954 		}
8955 
8956 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
8957 			continue;
8958 
8959 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8960 		 */
8961 		if (idma->idma_warn[i] > 0)
8962 			continue;
8963 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
8964 
8965 		/* Read and save the SGE IDMA State and Queue ID information.
8966 		 * We do this every time in case it changes across time ...
8967 		 * can't be too careful ...
8968 		 */
8969 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
8970 		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8971 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8972 
8973 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
8974 		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8975 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8976 
8977 		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
8978 			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8979 			i, idma->idma_qid[i], idma->idma_state[i],
8980 			idma->idma_stalled[i]/hz,
8981 			debug0, debug11);
8982 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8983 	}
8984 }
8985 
8986 /**
8987  *	t4_read_pace_tbl - read the pace table
8988  *	@adap: the adapter
8989  *	@pace_vals: holds the returned values
8990  *
8991  *	Returns the values of TP's pace table in microseconds.
8992  */
8993 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
8994 {
8995 	unsigned int i, v;
8996 
8997 	for (i = 0; i < NTX_SCHED; i++) {
8998 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
8999 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
9000 		pace_vals[i] = dack_ticks_to_usec(adap, v);
9001 	}
9002 }
9003 
9004 /**
9005  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
9006  *	@adap: the adapter
9007  *	@sched: the scheduler index
9008  *	@kbps: the byte rate in Kbps
9009  *	@ipg: the interpacket delay in tenths of nanoseconds
9010  *
9011  *	Return the current configuration of a HW Tx scheduler.
9012  */
9013 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
9014 		     unsigned int *ipg, bool sleep_ok)
9015 {
9016 	unsigned int v, addr, bpt, cpt;
9017 
9018 	if (kbps) {
9019 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
9020 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9021 		if (sched & 1)
9022 			v >>= 16;
9023 		bpt = (v >> 8) & 0xff;
9024 		cpt = v & 0xff;
9025 		if (!cpt)
9026 			*kbps = 0;	/* scheduler disabled */
9027 		else {
9028 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
9029 			*kbps = (v * bpt) / 125;
9030 		}
9031 	}
9032 	if (ipg) {
9033 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
9034 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9035 		if (sched & 1)
9036 			v >>= 16;
9037 		v &= 0xffff;
9038 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
9039 	}
9040 }
9041 
9042 /**
9043  *	t4_load_cfg - download config file
9044  *	@adap: the adapter
9045  *	@cfg_data: the cfg text file to write
9046  *	@size: text file size
9047  *
9048  *	Write the supplied config text file to the card's serial flash.
9049  */
9050 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9051 {
9052 	int ret, i, n, cfg_addr;
9053 	unsigned int addr;
9054 	unsigned int flash_cfg_start_sec;
9055 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9056 
9057 	cfg_addr = t4_flash_cfg_addr(adap);
9058 	if (cfg_addr < 0)
9059 		return cfg_addr;
9060 
9061 	addr = cfg_addr;
9062 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9063 
9064 	if (size > FLASH_CFG_MAX_SIZE) {
9065 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
9066 		       FLASH_CFG_MAX_SIZE);
9067 		return -EFBIG;
9068 	}
9069 
9070 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
9071 			 sf_sec_size);
9072 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9073 				     flash_cfg_start_sec + i - 1);
9074 	/*
9075 	 * If size == 0 then we're simply erasing the FLASH sectors associated
9076 	 * with the on-adapter Firmware Configuration File.
9077 	 */
9078 	if (ret || size == 0)
9079 		goto out;
9080 
9081 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9082 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9083 		if ( (size - i) <  SF_PAGE_SIZE)
9084 			n = size - i;
9085 		else
9086 			n = SF_PAGE_SIZE;
9087 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
9088 		if (ret)
9089 			goto out;
9090 
9091 		addr += SF_PAGE_SIZE;
9092 		cfg_data += SF_PAGE_SIZE;
9093 	}
9094 
9095 out:
9096 	if (ret)
9097 		CH_ERR(adap, "config file %s failed %d\n",
9098 		       (size == 0 ? "clear" : "download"), ret);
9099 	return ret;
9100 }
9101 
9102 /**
9103  *	t5_fw_init_extern_mem - initialize the external memory
9104  *	@adap: the adapter
9105  *
9106  *	Initializes the external memory on T5.
9107  */
9108 int t5_fw_init_extern_mem(struct adapter *adap)
9109 {
9110 	u32 params[1], val[1];
9111 	int ret;
9112 
9113 	if (!is_t5(adap))
9114 		return 0;
9115 
9116 	val[0] = 0xff; /* Initialize all MCs */
9117 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9118 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
9119 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
9120 			FW_CMD_MAX_TIMEOUT);
9121 
9122 	return ret;
9123 }
9124 
9125 /* BIOS boot headers */
9126 typedef struct pci_expansion_rom_header {
9127 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
9128 	u8	reserved[22]; /* Reserved per processor Architecture data */
9129 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
9130 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
9131 
9132 /* Legacy PCI Expansion ROM Header */
9133 typedef struct legacy_pci_expansion_rom_header {
9134 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
9135 	u8	size512; /* Current Image Size in units of 512 bytes */
9136 	u8	initentry_point[4];
9137 	u8	cksum; /* Checksum computed on the entire Image */
9138 	u8	reserved[16]; /* Reserved */
9139 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
9140 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
9141 
9142 /* EFI PCI Expansion ROM Header */
9143 typedef struct efi_pci_expansion_rom_header {
9144 	u8	signature[2]; // ROM signature. The value 0xaa55
9145 	u8	initialization_size[2]; /* Units 512. Includes this header */
9146 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
9147 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
9148 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
9149 	u8	compression_type[2]; /* Compression type. */
9150 		/*
9151 		 * Compression type definition
9152 		 * 0x0: uncompressed
9153 		 * 0x1: Compressed
9154 		 * 0x2-0xFFFF: Reserved
9155 		 */
9156 	u8	reserved[8]; /* Reserved */
9157 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
9158 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
9159 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
9160 
9161 /* PCI Data Structure Format */
9162 typedef struct pcir_data_structure { /* PCI Data Structure */
9163 	u8	signature[4]; /* Signature. The string "PCIR" */
9164 	u8	vendor_id[2]; /* Vendor Identification */
9165 	u8	device_id[2]; /* Device Identification */
9166 	u8	vital_product[2]; /* Pointer to Vital Product Data */
9167 	u8	length[2]; /* PCIR Data Structure Length */
9168 	u8	revision; /* PCIR Data Structure Revision */
9169 	u8	class_code[3]; /* Class Code */
9170 	u8	image_length[2]; /* Image Length. Multiple of 512B */
9171 	u8	code_revision[2]; /* Revision Level of Code/Data */
9172 	u8	code_type; /* Code Type. */
9173 		/*
9174 		 * PCI Expansion ROM Code Types
9175 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
9176 		 * 0x01: Open Firmware standard for PCI. FCODE
9177 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
9178 		 * 0x03: EFI Image. EFI
9179 		 * 0x04-0xFF: Reserved.
9180 		 */
9181 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
9182 	u8	reserved[2]; /* Reserved */
9183 } pcir_data_t; /* PCI__DATA_STRUCTURE */
9184 
9185 /* BOOT constants */
9186 enum {
9187 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
9188 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
9189 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
9190 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
9191 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
9192 	VENDOR_ID = 0x1425, /* Vendor ID */
9193 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
9194 };
9195 
9196 /*
9197  *	modify_device_id - Modifies the device ID of the Boot BIOS image
9198  *	@adatper: the device ID to write.
9199  *	@boot_data: the boot image to modify.
9200  *
9201  *	Write the supplied device ID to the boot BIOS image.
9202  */
9203 static void modify_device_id(int device_id, u8 *boot_data)
9204 {
9205 	legacy_pci_exp_rom_header_t *header;
9206 	pcir_data_t *pcir_header;
9207 	u32 cur_header = 0;
9208 
9209 	/*
9210 	 * Loop through all chained images and change the device ID's
9211 	 */
9212 	while (1) {
9213 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
9214 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
9215 			      le16_to_cpu(*(u16*)header->pcir_offset)];
9216 
9217 		/*
9218 		 * Only modify the Device ID if code type is Legacy or HP.
9219 		 * 0x00: Okay to modify
9220 		 * 0x01: FCODE. Do not be modify
9221 		 * 0x03: Okay to modify
9222 		 * 0x04-0xFF: Do not modify
9223 		 */
9224 		if (pcir_header->code_type == 0x00) {
9225 			u8 csum = 0;
9226 			int i;
9227 
9228 			/*
9229 			 * Modify Device ID to match current adatper
9230 			 */
9231 			*(u16*) pcir_header->device_id = device_id;
9232 
9233 			/*
9234 			 * Set checksum temporarily to 0.
9235 			 * We will recalculate it later.
9236 			 */
9237 			header->cksum = 0x0;
9238 
9239 			/*
9240 			 * Calculate and update checksum
9241 			 */
9242 			for (i = 0; i < (header->size512 * 512); i++)
9243 				csum += (u8)boot_data[cur_header + i];
9244 
9245 			/*
9246 			 * Invert summed value to create the checksum
9247 			 * Writing new checksum value directly to the boot data
9248 			 */
9249 			boot_data[cur_header + 7] = -csum;
9250 
9251 		} else if (pcir_header->code_type == 0x03) {
9252 
9253 			/*
9254 			 * Modify Device ID to match current adatper
9255 			 */
9256 			*(u16*) pcir_header->device_id = device_id;
9257 
9258 		}
9259 
9260 
9261 		/*
9262 		 * Check indicator element to identify if this is the last
9263 		 * image in the ROM.
9264 		 */
9265 		if (pcir_header->indicator & 0x80)
9266 			break;
9267 
9268 		/*
9269 		 * Move header pointer up to the next image in the ROM.
9270 		 */
9271 		cur_header += header->size512 * 512;
9272 	}
9273 }
9274 
9275 /*
9276  *	t4_load_boot - download boot flash
9277  *	@adapter: the adapter
9278  *	@boot_data: the boot image to write
9279  *	@boot_addr: offset in flash to write boot_data
9280  *	@size: image size
9281  *
9282  *	Write the supplied boot image to the card's serial flash.
9283  *	The boot image has the following sections: a 28-byte header and the
9284  *	boot image.
9285  */
9286 int t4_load_boot(struct adapter *adap, u8 *boot_data,
9287 		 unsigned int boot_addr, unsigned int size)
9288 {
9289 	pci_exp_rom_header_t *header;
9290 	int pcir_offset ;
9291 	pcir_data_t *pcir_header;
9292 	int ret, addr;
9293 	uint16_t device_id;
9294 	unsigned int i;
9295 	unsigned int boot_sector = (boot_addr * 1024 );
9296 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9297 
9298 	/*
9299 	 * Make sure the boot image does not encroach on the firmware region
9300 	 */
9301 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
9302 		CH_ERR(adap, "boot image encroaching on firmware region\n");
9303 		return -EFBIG;
9304 	}
9305 
9306 	/*
9307 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
9308 	 * and Boot configuration data sections. These 3 boot sections span
9309 	 * sectors 0 to 7 in flash and live right before the FW image location.
9310 	 */
9311 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
9312 			sf_sec_size);
9313 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
9314 				     (boot_sector >> 16) + i - 1);
9315 
9316 	/*
9317 	 * If size == 0 then we're simply erasing the FLASH sectors associated
9318 	 * with the on-adapter option ROM file
9319 	 */
9320 	if (ret || (size == 0))
9321 		goto out;
9322 
9323 	/* Get boot header */
9324 	header = (pci_exp_rom_header_t *)boot_data;
9325 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
9326 	/* PCIR Data Structure */
9327 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
9328 
9329 	/*
9330 	 * Perform some primitive sanity testing to avoid accidentally
9331 	 * writing garbage over the boot sectors.  We ought to check for
9332 	 * more but it's not worth it for now ...
9333 	 */
9334 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
9335 		CH_ERR(adap, "boot image too small/large\n");
9336 		return -EFBIG;
9337 	}
9338 
9339 #ifndef CHELSIO_T4_DIAGS
9340 	/*
9341 	 * Check BOOT ROM header signature
9342 	 */
9343 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
9344 		CH_ERR(adap, "Boot image missing signature\n");
9345 		return -EINVAL;
9346 	}
9347 
9348 	/*
9349 	 * Check PCI header signature
9350 	 */
9351 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
9352 		CH_ERR(adap, "PCI header missing signature\n");
9353 		return -EINVAL;
9354 	}
9355 
9356 	/*
9357 	 * Check Vendor ID matches Chelsio ID
9358 	 */
9359 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
9360 		CH_ERR(adap, "Vendor ID missing signature\n");
9361 		return -EINVAL;
9362 	}
9363 #endif
9364 
9365 	/*
9366 	 * Retrieve adapter's device ID
9367 	 */
9368 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
9369 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
9370 	device_id = device_id & 0xf0ff;
9371 
9372 	/*
9373 	 * Check PCIE Device ID
9374 	 */
9375 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
9376 		/*
9377 		 * Change the device ID in the Boot BIOS image to match
9378 		 * the Device ID of the current adapter.
9379 		 */
9380 		modify_device_id(device_id, boot_data);
9381 	}
9382 
9383 	/*
9384 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
9385 	 * we finish copying the rest of the boot image. This will ensure
9386 	 * that the BIOS boot header will only be written if the boot image
9387 	 * was written in full.
9388 	 */
9389 	addr = boot_sector;
9390 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
9391 		addr += SF_PAGE_SIZE;
9392 		boot_data += SF_PAGE_SIZE;
9393 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
9394 		if (ret)
9395 			goto out;
9396 	}
9397 
9398 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
9399 			     (const u8 *)header, 0);
9400 
9401 out:
9402 	if (ret)
9403 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
9404 	return ret;
9405 }
9406 
9407 /*
9408  *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
9409  *	@adapter: the adapter
9410  *
9411  *	Return the address within the flash where the OptionROM Configuration
9412  *	is stored, or an error if the device FLASH is too small to contain
9413  *	a OptionROM Configuration.
9414  */
9415 static int t4_flash_bootcfg_addr(struct adapter *adapter)
9416 {
9417 	/*
9418 	 * If the device FLASH isn't large enough to hold a Firmware
9419 	 * Configuration File, return an error.
9420 	 */
9421 	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
9422 		return -ENOSPC;
9423 
9424 	return FLASH_BOOTCFG_START;
9425 }
9426 
9427 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
9428 {
9429 	int ret, i, n, cfg_addr;
9430 	unsigned int addr;
9431 	unsigned int flash_cfg_start_sec;
9432 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9433 
9434 	cfg_addr = t4_flash_bootcfg_addr(adap);
9435 	if (cfg_addr < 0)
9436 		return cfg_addr;
9437 
9438 	addr = cfg_addr;
9439 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9440 
9441 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
9442 		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
9443 			FLASH_BOOTCFG_MAX_SIZE);
9444 		return -EFBIG;
9445 	}
9446 
9447 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
9448 			 sf_sec_size);
9449 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9450 					flash_cfg_start_sec + i - 1);
9451 
9452 	/*
9453 	 * If size == 0 then we're simply erasing the FLASH sectors associated
9454 	 * with the on-adapter OptionROM Configuration File.
9455 	 */
9456 	if (ret || size == 0)
9457 		goto out;
9458 
9459 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9460 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9461 		if ( (size - i) <  SF_PAGE_SIZE)
9462 			n = size - i;
9463 		else
9464 			n = SF_PAGE_SIZE;
9465 		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
9466 		if (ret)
9467 			goto out;
9468 
9469 		addr += SF_PAGE_SIZE;
9470 		cfg_data += SF_PAGE_SIZE;
9471 	}
9472 
9473 out:
9474 	if (ret)
9475 		CH_ERR(adap, "boot config data %s failed %d\n",
9476 				(size == 0 ? "clear" : "download"), ret);
9477 	return ret;
9478 }
9479 
9480 /**
9481  *	t4_set_filter_mode - configure the optional components of filter tuples
9482  *	@adap: the adapter
9483  *	@mode_map: a bitmap selcting which optional filter components to enable
9484  * 	@sleep_ok: if true we may sleep while awaiting command completion
9485  *
9486  *	Sets the filter mode by selecting the optional components to enable
9487  *	in filter tuples.  Returns 0 on success and a negative error if the
9488  *	requested mode needs more bits than are available for optional
9489  *	components.
9490  */
9491 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map,
9492 		       bool sleep_ok)
9493 {
9494 	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
9495 
9496 	int i, nbits = 0;
9497 
9498 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
9499 		if (mode_map & (1 << i))
9500 			nbits += width[i];
9501 	if (nbits > FILTER_OPT_LEN)
9502 		return -EINVAL;
9503 	t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok);
9504 	read_filter_mode_and_ingress_config(adap, sleep_ok);
9505 
9506 	return 0;
9507 }
9508 
9509 /**
9510  *	t4_clr_port_stats - clear port statistics
9511  *	@adap: the adapter
9512  *	@idx: the port index
9513  *
9514  *	Clear HW statistics for the given port.
9515  */
9516 void t4_clr_port_stats(struct adapter *adap, int idx)
9517 {
9518 	unsigned int i;
9519 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
9520 	u32 port_base_addr;
9521 
9522 	if (is_t4(adap))
9523 		port_base_addr = PORT_BASE(idx);
9524 	else
9525 		port_base_addr = T5_PORT_BASE(idx);
9526 
9527 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
9528 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
9529 		t4_write_reg(adap, port_base_addr + i, 0);
9530 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
9531 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
9532 		t4_write_reg(adap, port_base_addr + i, 0);
9533 	for (i = 0; i < 4; i++)
9534 		if (bgmap & (1 << i)) {
9535 			t4_write_reg(adap,
9536 			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
9537 			t4_write_reg(adap,
9538 			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
9539 		}
9540 }
9541 
9542 /**
9543  *	t4_i2c_rd - read I2C data from adapter
9544  *	@adap: the adapter
9545  *	@port: Port number if per-port device; <0 if not
9546  *	@devid: per-port device ID or absolute device ID
9547  *	@offset: byte offset into device I2C space
9548  *	@len: byte length of I2C space data
9549  *	@buf: buffer in which to return I2C data
9550  *
9551  *	Reads the I2C data from the indicated device and location.
9552  */
9553 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
9554 	      int port, unsigned int devid,
9555 	      unsigned int offset, unsigned int len,
9556 	      u8 *buf)
9557 {
9558 	u32 ldst_addrspace;
9559 	struct fw_ldst_cmd ldst;
9560 	int ret;
9561 
9562 	if (port >= 4 ||
9563 	    devid >= 256 ||
9564 	    offset >= 256 ||
9565 	    len > sizeof ldst.u.i2c.data)
9566 		return -EINVAL;
9567 
9568 	memset(&ldst, 0, sizeof ldst);
9569 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9570 	ldst.op_to_addrspace =
9571 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9572 			    F_FW_CMD_REQUEST |
9573 			    F_FW_CMD_READ |
9574 			    ldst_addrspace);
9575 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9576 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9577 	ldst.u.i2c.did = devid;
9578 	ldst.u.i2c.boffset = offset;
9579 	ldst.u.i2c.blen = len;
9580 	ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9581 	if (!ret)
9582 		memcpy(buf, ldst.u.i2c.data, len);
9583 	return ret;
9584 }
9585 
9586 /**
9587  *	t4_i2c_wr - write I2C data to adapter
9588  *	@adap: the adapter
9589  *	@port: Port number if per-port device; <0 if not
9590  *	@devid: per-port device ID or absolute device ID
9591  *	@offset: byte offset into device I2C space
9592  *	@len: byte length of I2C space data
9593  *	@buf: buffer containing new I2C data
9594  *
9595  *	Write the I2C data to the indicated device and location.
9596  */
9597 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
9598 	      int port, unsigned int devid,
9599 	      unsigned int offset, unsigned int len,
9600 	      u8 *buf)
9601 {
9602 	u32 ldst_addrspace;
9603 	struct fw_ldst_cmd ldst;
9604 
9605 	if (port >= 4 ||
9606 	    devid >= 256 ||
9607 	    offset >= 256 ||
9608 	    len > sizeof ldst.u.i2c.data)
9609 		return -EINVAL;
9610 
9611 	memset(&ldst, 0, sizeof ldst);
9612 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9613 	ldst.op_to_addrspace =
9614 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9615 			    F_FW_CMD_REQUEST |
9616 			    F_FW_CMD_WRITE |
9617 			    ldst_addrspace);
9618 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9619 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9620 	ldst.u.i2c.did = devid;
9621 	ldst.u.i2c.boffset = offset;
9622 	ldst.u.i2c.blen = len;
9623 	memcpy(ldst.u.i2c.data, buf, len);
9624 	return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9625 }
9626 
9627 /**
9628  * 	t4_sge_ctxt_rd - read an SGE context through FW
9629  * 	@adap: the adapter
9630  * 	@mbox: mailbox to use for the FW command
9631  * 	@cid: the context id
9632  * 	@ctype: the context type
9633  * 	@data: where to store the context data
9634  *
9635  * 	Issues a FW command through the given mailbox to read an SGE context.
9636  */
9637 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
9638 		   enum ctxt_type ctype, u32 *data)
9639 {
9640 	int ret;
9641 	struct fw_ldst_cmd c;
9642 
9643 	if (ctype == CTXT_EGRESS)
9644 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
9645 	else if (ctype == CTXT_INGRESS)
9646 		ret = FW_LDST_ADDRSPC_SGE_INGC;
9647 	else if (ctype == CTXT_FLM)
9648 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
9649 	else
9650 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
9651 
9652 	memset(&c, 0, sizeof(c));
9653 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9654 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
9655 					V_FW_LDST_CMD_ADDRSPACE(ret));
9656 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9657 	c.u.idctxt.physid = cpu_to_be32(cid);
9658 
9659 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9660 	if (ret == 0) {
9661 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
9662 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
9663 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
9664 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
9665 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
9666 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
9667 	}
9668 	return ret;
9669 }
9670 
9671 /**
9672  * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
9673  * 	@adap: the adapter
9674  * 	@cid: the context id
9675  * 	@ctype: the context type
9676  * 	@data: where to store the context data
9677  *
9678  * 	Reads an SGE context directly, bypassing FW.  This is only for
9679  * 	debugging when FW is unavailable.
9680  */
9681 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
9682 		      u32 *data)
9683 {
9684 	int i, ret;
9685 
9686 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
9687 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
9688 	if (!ret)
9689 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
9690 			*data++ = t4_read_reg(adap, i);
9691 	return ret;
9692 }
9693 
9694 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
9695     int sleep_ok)
9696 {
9697 	struct fw_sched_cmd cmd;
9698 
9699 	memset(&cmd, 0, sizeof(cmd));
9700 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9701 				      F_FW_CMD_REQUEST |
9702 				      F_FW_CMD_WRITE);
9703 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9704 
9705 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
9706 	cmd.u.config.type = type;
9707 	cmd.u.config.minmaxen = minmaxen;
9708 
9709 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9710 			       NULL, sleep_ok);
9711 }
9712 
9713 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
9714 		    int rateunit, int ratemode, int channel, int cl,
9715 		    int minrate, int maxrate, int weight, int pktsize,
9716 		    int sleep_ok)
9717 {
9718 	struct fw_sched_cmd cmd;
9719 
9720 	memset(&cmd, 0, sizeof(cmd));
9721 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9722 				      F_FW_CMD_REQUEST |
9723 				      F_FW_CMD_WRITE);
9724 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9725 
9726 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9727 	cmd.u.params.type = type;
9728 	cmd.u.params.level = level;
9729 	cmd.u.params.mode = mode;
9730 	cmd.u.params.ch = channel;
9731 	cmd.u.params.cl = cl;
9732 	cmd.u.params.unit = rateunit;
9733 	cmd.u.params.rate = ratemode;
9734 	cmd.u.params.min = cpu_to_be32(minrate);
9735 	cmd.u.params.max = cpu_to_be32(maxrate);
9736 	cmd.u.params.weight = cpu_to_be16(weight);
9737 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9738 
9739 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9740 			       NULL, sleep_ok);
9741 }
9742 
9743 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
9744     unsigned int maxrate, int sleep_ok)
9745 {
9746 	struct fw_sched_cmd cmd;
9747 
9748 	memset(&cmd, 0, sizeof(cmd));
9749 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9750 				      F_FW_CMD_REQUEST |
9751 				      F_FW_CMD_WRITE);
9752 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9753 
9754 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9755 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9756 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
9757 	cmd.u.params.ch = channel;
9758 	cmd.u.params.rate = ratemode;		/* REL or ABS */
9759 	cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
9760 
9761 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9762 			       NULL, sleep_ok);
9763 }
9764 
9765 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
9766     int weight, int sleep_ok)
9767 {
9768 	struct fw_sched_cmd cmd;
9769 
9770 	if (weight < 0 || weight > 100)
9771 		return -EINVAL;
9772 
9773 	memset(&cmd, 0, sizeof(cmd));
9774 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9775 				      F_FW_CMD_REQUEST |
9776 				      F_FW_CMD_WRITE);
9777 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9778 
9779 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9780 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9781 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
9782 	cmd.u.params.ch = channel;
9783 	cmd.u.params.cl = cl;
9784 	cmd.u.params.weight = cpu_to_be16(weight);
9785 
9786 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9787 			       NULL, sleep_ok);
9788 }
9789 
9790 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
9791     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
9792 {
9793 	struct fw_sched_cmd cmd;
9794 
9795 	memset(&cmd, 0, sizeof(cmd));
9796 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9797 				      F_FW_CMD_REQUEST |
9798 				      F_FW_CMD_WRITE);
9799 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9800 
9801 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9802 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9803 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
9804 	cmd.u.params.mode = mode;
9805 	cmd.u.params.ch = channel;
9806 	cmd.u.params.cl = cl;
9807 	cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
9808 	cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
9809 	cmd.u.params.max = cpu_to_be32(maxrate);
9810 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9811 
9812 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9813 			       NULL, sleep_ok);
9814 }
9815 
9816 /*
9817  *	t4_config_watchdog - configure (enable/disable) a watchdog timer
9818  *	@adapter: the adapter
9819  * 	@mbox: mailbox to use for the FW command
9820  * 	@pf: the PF owning the queue
9821  * 	@vf: the VF owning the queue
9822  *	@timeout: watchdog timeout in ms
9823  *	@action: watchdog timer / action
9824  *
9825  *	There are separate watchdog timers for each possible watchdog
9826  *	action.  Configure one of the watchdog timers by setting a non-zero
9827  *	timeout.  Disable a watchdog timer by using a timeout of zero.
9828  */
9829 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
9830 		       unsigned int pf, unsigned int vf,
9831 		       unsigned int timeout, unsigned int action)
9832 {
9833 	struct fw_watchdog_cmd wdog;
9834 	unsigned int ticks;
9835 
9836 	/*
9837 	 * The watchdog command expects a timeout in units of 10ms so we need
9838 	 * to convert it here (via rounding) and force a minimum of one 10ms
9839 	 * "tick" if the timeout is non-zero but the conversion results in 0
9840 	 * ticks.
9841 	 */
9842 	ticks = (timeout + 5)/10;
9843 	if (timeout && !ticks)
9844 		ticks = 1;
9845 
9846 	memset(&wdog, 0, sizeof wdog);
9847 	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
9848 				     F_FW_CMD_REQUEST |
9849 				     F_FW_CMD_WRITE |
9850 				     V_FW_PARAMS_CMD_PFN(pf) |
9851 				     V_FW_PARAMS_CMD_VFN(vf));
9852 	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
9853 	wdog.timeout = cpu_to_be32(ticks);
9854 	wdog.action = cpu_to_be32(action);
9855 
9856 	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
9857 }
9858 
9859 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
9860 {
9861 	struct fw_devlog_cmd devlog_cmd;
9862 	int ret;
9863 
9864 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9865 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9866 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9867 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9868 	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9869 			 sizeof(devlog_cmd), &devlog_cmd);
9870 	if (ret)
9871 		return ret;
9872 
9873 	*level = devlog_cmd.level;
9874 	return 0;
9875 }
9876 
9877 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
9878 {
9879 	struct fw_devlog_cmd devlog_cmd;
9880 
9881 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9882 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9883 					     F_FW_CMD_REQUEST |
9884 					     F_FW_CMD_WRITE);
9885 	devlog_cmd.level = level;
9886 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9887 	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9888 			  sizeof(devlog_cmd), &devlog_cmd);
9889 }
9890