xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision ce437beff1f521b5ac35ea67d0669c46b3bef27f)
1 /*-
2  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 
32 #include <sys/param.h>
33 #include <sys/eventhandler.h>
34 
35 #include "common.h"
36 #include "t4_regs.h"
37 #include "t4_regs_values.h"
38 #include "firmware/t4fw_interface.h"
39 
40 #undef msleep
41 #define msleep(x) do { \
42 	if (cold) \
43 		DELAY((x) * 1000); \
44 	else \
45 		pause("t4hw", (x) * hz / 1000); \
46 } while (0)
47 
48 /**
49  *	t4_wait_op_done_val - wait until an operation is completed
50  *	@adapter: the adapter performing the operation
51  *	@reg: the register to check for completion
52  *	@mask: a single-bit field within @reg that indicates completion
53  *	@polarity: the value of the field when the operation is completed
54  *	@attempts: number of check iterations
55  *	@delay: delay in usecs between iterations
56  *	@valp: where to store the value of the register at completion time
57  *
58  *	Wait until an operation is completed by checking a bit in a register
59  *	up to @attempts times.  If @valp is not NULL the value of the register
60  *	at the time it indicated completion is stored there.  Returns 0 if the
61  *	operation completes and	-EAGAIN	otherwise.
62  */
63 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
64 			       int polarity, int attempts, int delay, u32 *valp)
65 {
66 	while (1) {
67 		u32 val = t4_read_reg(adapter, reg);
68 
69 		if (!!(val & mask) == polarity) {
70 			if (valp)
71 				*valp = val;
72 			return 0;
73 		}
74 		if (--attempts == 0)
75 			return -EAGAIN;
76 		if (delay)
77 			udelay(delay);
78 	}
79 }
80 
81 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
82 				  int polarity, int attempts, int delay)
83 {
84 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
85 				   delay, NULL);
86 }
87 
88 /**
89  *	t4_set_reg_field - set a register field to a value
90  *	@adapter: the adapter to program
91  *	@addr: the register address
92  *	@mask: specifies the portion of the register to modify
93  *	@val: the new value for the register field
94  *
95  *	Sets a register field specified by the supplied mask to the
96  *	given value.
97  */
98 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
99 		      u32 val)
100 {
101 	u32 v = t4_read_reg(adapter, addr) & ~mask;
102 
103 	t4_write_reg(adapter, addr, v | val);
104 	(void) t4_read_reg(adapter, addr);      /* flush */
105 }
106 
107 /**
108  *	t4_read_indirect - read indirectly addressed registers
109  *	@adap: the adapter
110  *	@addr_reg: register holding the indirect address
111  *	@data_reg: register holding the value of the indirect register
112  *	@vals: where the read register values are stored
113  *	@nregs: how many indirect registers to read
114  *	@start_idx: index of first indirect register to read
115  *
116  *	Reads registers that are accessed indirectly through an address/data
117  *	register pair.
118  */
119 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
120 			     unsigned int data_reg, u32 *vals,
121 			     unsigned int nregs, unsigned int start_idx)
122 {
123 	while (nregs--) {
124 		t4_write_reg(adap, addr_reg, start_idx);
125 		*vals++ = t4_read_reg(adap, data_reg);
126 		start_idx++;
127 	}
128 }
129 
130 /**
131  *	t4_write_indirect - write indirectly addressed registers
132  *	@adap: the adapter
133  *	@addr_reg: register holding the indirect addresses
134  *	@data_reg: register holding the value for the indirect registers
135  *	@vals: values to write
136  *	@nregs: how many indirect registers to write
137  *	@start_idx: address of first indirect register to write
138  *
139  *	Writes a sequential block of registers that are accessed indirectly
140  *	through an address/data register pair.
141  */
142 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
143 		       unsigned int data_reg, const u32 *vals,
144 		       unsigned int nregs, unsigned int start_idx)
145 {
146 	while (nregs--) {
147 		t4_write_reg(adap, addr_reg, start_idx++);
148 		t4_write_reg(adap, data_reg, *vals++);
149 	}
150 }
151 
152 /*
153  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
154  * mechanism.  This guarantees that we get the real value even if we're
155  * operating within a Virtual Machine and the Hypervisor is trapping our
156  * Configuration Space accesses.
157  *
158  * N.B. This routine should only be used as a last resort: the firmware uses
159  *      the backdoor registers on a regular basis and we can end up
160  *      conflicting with it's uses!
161  */
162 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
163 {
164 	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
165 	u32 val;
166 
167 	if (chip_id(adap) <= CHELSIO_T5)
168 		req |= F_ENABLE;
169 	else
170 		req |= F_T6_ENABLE;
171 
172 	if (is_t4(adap))
173 		req |= F_LOCALCFG;
174 
175 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
176 	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
177 
178 	/*
179 	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
180 	 * Configuration Space read.  (None of the other fields matter when
181 	 * F_ENABLE is 0 so a simple register write is easier than a
182 	 * read-modify-write via t4_set_reg_field().)
183 	 */
184 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
185 
186 	return val;
187 }
188 
189 /*
190  * t4_report_fw_error - report firmware error
191  * @adap: the adapter
192  *
193  * The adapter firmware can indicate error conditions to the host.
194  * If the firmware has indicated an error, print out the reason for
195  * the firmware error.
196  */
197 static void t4_report_fw_error(struct adapter *adap)
198 {
199 	static const char *const reason[] = {
200 		"Crash",			/* PCIE_FW_EVAL_CRASH */
201 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
202 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
203 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
204 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
205 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
206 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
207 		"Reserved",			/* reserved */
208 	};
209 	u32 pcie_fw;
210 
211 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
212 	if (pcie_fw & F_PCIE_FW_ERR)
213 		CH_ERR(adap, "Firmware reports adapter error: %s\n",
214 			reason[G_PCIE_FW_EVAL(pcie_fw)]);
215 }
216 
217 /*
218  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
219  */
220 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
221 			 u32 mbox_addr)
222 {
223 	for ( ; nflit; nflit--, mbox_addr += 8)
224 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
225 }
226 
227 /*
228  * Handle a FW assertion reported in a mailbox.
229  */
230 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
231 {
232 	CH_ALERT(adap,
233 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
234 		  asrt->u.assert.filename_0_7,
235 		  be32_to_cpu(asrt->u.assert.line),
236 		  be32_to_cpu(asrt->u.assert.x),
237 		  be32_to_cpu(asrt->u.assert.y));
238 }
239 
240 #define X_CIM_PF_NOACCESS 0xeeeeeeee
241 /**
242  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
243  *	@adap: the adapter
244  *	@mbox: index of the mailbox to use
245  *	@cmd: the command to write
246  *	@size: command length in bytes
247  *	@rpl: where to optionally store the reply
248  *	@sleep_ok: if true we may sleep while awaiting command completion
249  *	@timeout: time to wait for command to finish before timing out
250  *		(negative implies @sleep_ok=false)
251  *
252  *	Sends the given command to FW through the selected mailbox and waits
253  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
254  *	store the FW's reply to the command.  The command and its optional
255  *	reply are of the same length.  Some FW commands like RESET and
256  *	INITIALIZE can take a considerable amount of time to execute.
257  *	@sleep_ok determines whether we may sleep while awaiting the response.
258  *	If sleeping is allowed we use progressive backoff otherwise we spin.
259  *	Note that passing in a negative @timeout is an alternate mechanism
260  *	for specifying @sleep_ok=false.  This is useful when a higher level
261  *	interface allows for specification of @timeout but not @sleep_ok ...
262  *
263  *	The return value is 0 on success or a negative errno on failure.  A
264  *	failure can happen either because we are not able to execute the
265  *	command or FW executes it but signals an error.  In the latter case
266  *	the return value is the error code indicated by FW (negated).
267  */
268 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
269 			    int size, void *rpl, bool sleep_ok, int timeout)
270 {
271 	/*
272 	 * We delay in small increments at first in an effort to maintain
273 	 * responsiveness for simple, fast executing commands but then back
274 	 * off to larger delays to a maximum retry delay.
275 	 */
276 	static const int delay[] = {
277 		1, 1, 3, 5, 10, 10, 20, 50, 100
278 	};
279 	u32 v;
280 	u64 res;
281 	int i, ms, delay_idx, ret;
282 	const __be64 *p = cmd;
283 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
284 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
285 	u32 ctl;
286 	__be64 cmd_rpl[MBOX_LEN/8];
287 	u32 pcie_fw;
288 
289 	if ((size & 15) || size > MBOX_LEN)
290 		return -EINVAL;
291 
292 	if (adap->flags & IS_VF) {
293 		if (is_t6(adap))
294 			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
295 		else
296 			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
297 		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
298 	}
299 
300 	/*
301 	 * If we have a negative timeout, that implies that we can't sleep.
302 	 */
303 	if (timeout < 0) {
304 		sleep_ok = false;
305 		timeout = -timeout;
306 	}
307 
308 	/*
309 	 * Attempt to gain access to the mailbox.
310 	 */
311 	for (i = 0; i < 4; i++) {
312 		ctl = t4_read_reg(adap, ctl_reg);
313 		v = G_MBOWNER(ctl);
314 		if (v != X_MBOWNER_NONE)
315 			break;
316 	}
317 
318 	/*
319 	 * If we were unable to gain access, dequeue ourselves from the
320 	 * mailbox atomic access list and report the error to our caller.
321 	 */
322 	if (v != X_MBOWNER_PL) {
323 		t4_report_fw_error(adap);
324 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
325 		return ret;
326 	}
327 
328 	/*
329 	 * If we gain ownership of the mailbox and there's a "valid" message
330 	 * in it, this is likely an asynchronous error message from the
331 	 * firmware.  So we'll report that and then proceed on with attempting
332 	 * to issue our own command ... which may well fail if the error
333 	 * presaged the firmware crashing ...
334 	 */
335 	if (ctl & F_MBMSGVALID) {
336 		CH_ERR(adap, "found VALID command in mbox %u: "
337 		       "%llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
338 		       (unsigned long long)t4_read_reg64(adap, data_reg),
339 		       (unsigned long long)t4_read_reg64(adap, data_reg + 8),
340 		       (unsigned long long)t4_read_reg64(adap, data_reg + 16),
341 		       (unsigned long long)t4_read_reg64(adap, data_reg + 24),
342 		       (unsigned long long)t4_read_reg64(adap, data_reg + 32),
343 		       (unsigned long long)t4_read_reg64(adap, data_reg + 40),
344 		       (unsigned long long)t4_read_reg64(adap, data_reg + 48),
345 		       (unsigned long long)t4_read_reg64(adap, data_reg + 56));
346 	}
347 
348 	/*
349 	 * Copy in the new mailbox command and send it on its way ...
350 	 */
351 	for (i = 0; i < size; i += 8, p++)
352 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
353 
354 	if (adap->flags & IS_VF) {
355 		/*
356 		 * For the VFs, the Mailbox Data "registers" are
357 		 * actually backed by T4's "MA" interface rather than
358 		 * PL Registers (as is the case for the PFs).  Because
359 		 * these are in different coherency domains, the write
360 		 * to the VF's PL-register-backed Mailbox Control can
361 		 * race in front of the writes to the MA-backed VF
362 		 * Mailbox Data "registers".  So we need to do a
363 		 * read-back on at least one byte of the VF Mailbox
364 		 * Data registers before doing the write to the VF
365 		 * Mailbox Control register.
366 		 */
367 		t4_read_reg(adap, data_reg);
368 	}
369 
370 	CH_DUMP_MBOX(adap, mbox, data_reg);
371 
372 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
373 	t4_read_reg(adap, ctl_reg);	/* flush write */
374 
375 	delay_idx = 0;
376 	ms = delay[0];
377 
378 	/*
379 	 * Loop waiting for the reply; bail out if we time out or the firmware
380 	 * reports an error.
381 	 */
382 	pcie_fw = 0;
383 	for (i = 0; i < timeout; i += ms) {
384 		if (!(adap->flags & IS_VF)) {
385 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
386 			if (pcie_fw & F_PCIE_FW_ERR)
387 				break;
388 		}
389 		if (sleep_ok) {
390 			ms = delay[delay_idx];  /* last element may repeat */
391 			if (delay_idx < ARRAY_SIZE(delay) - 1)
392 				delay_idx++;
393 			msleep(ms);
394 		} else {
395 			mdelay(ms);
396 		}
397 
398 		v = t4_read_reg(adap, ctl_reg);
399 		if (v == X_CIM_PF_NOACCESS)
400 			continue;
401 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
402 			if (!(v & F_MBMSGVALID)) {
403 				t4_write_reg(adap, ctl_reg,
404 					     V_MBOWNER(X_MBOWNER_NONE));
405 				continue;
406 			}
407 
408 			/*
409 			 * Retrieve the command reply and release the mailbox.
410 			 */
411 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
412 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
413 
414 			CH_DUMP_MBOX(adap, mbox, data_reg);
415 
416 			res = be64_to_cpu(cmd_rpl[0]);
417 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
418 				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
419 				res = V_FW_CMD_RETVAL(EIO);
420 			} else if (rpl)
421 				memcpy(rpl, cmd_rpl, size);
422 			return -G_FW_CMD_RETVAL((int)res);
423 		}
424 	}
425 
426 	/*
427 	 * We timed out waiting for a reply to our mailbox command.  Report
428 	 * the error and also check to see if the firmware reported any
429 	 * errors ...
430 	 */
431 	ret = (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT;
432 	CH_ERR(adap, "command %#x in mailbox %d timed out\n",
433 	       *(const u8 *)cmd, mbox);
434 
435 	t4_report_fw_error(adap);
436 	t4_fatal_err(adap);
437 	return ret;
438 }
439 
440 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
441 		    void *rpl, bool sleep_ok)
442 {
443 		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
444 					       sleep_ok, FW_CMD_MAX_TIMEOUT);
445 
446 }
447 
448 static int t4_edc_err_read(struct adapter *adap, int idx)
449 {
450 	u32 edc_ecc_err_addr_reg;
451 	u32 edc_bist_status_rdata_reg;
452 
453 	if (is_t4(adap)) {
454 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
455 		return 0;
456 	}
457 	if (idx != 0 && idx != 1) {
458 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
459 		return 0;
460 	}
461 
462 	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
463 	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
464 
465 	CH_WARN(adap,
466 		"edc%d err addr 0x%x: 0x%x.\n",
467 		idx, edc_ecc_err_addr_reg,
468 		t4_read_reg(adap, edc_ecc_err_addr_reg));
469 	CH_WARN(adap,
470 	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
471 		edc_bist_status_rdata_reg,
472 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
473 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
474 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
475 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
476 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
477 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
478 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
479 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
480 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
481 
482 	return 0;
483 }
484 
485 /**
486  *	t4_mc_read - read from MC through backdoor accesses
487  *	@adap: the adapter
488  *	@idx: which MC to access
489  *	@addr: address of first byte requested
490  *	@data: 64 bytes of data containing the requested address
491  *	@ecc: where to store the corresponding 64-bit ECC word
492  *
493  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
494  *	that covers the requested address @addr.  If @parity is not %NULL it
495  *	is assigned the 64-bit ECC word for the read data.
496  */
497 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
498 {
499 	int i;
500 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
501 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
502 
503 	if (is_t4(adap)) {
504 		mc_bist_cmd_reg = A_MC_BIST_CMD;
505 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
506 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
507 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
508 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
509 	} else {
510 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
511 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
512 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
513 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
514 						  idx);
515 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
516 						  idx);
517 	}
518 
519 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
520 		return -EBUSY;
521 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
522 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
523 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
524 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
525 		     F_START_BIST | V_BIST_CMD_GAP(1));
526 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
527 	if (i)
528 		return i;
529 
530 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
531 
532 	for (i = 15; i >= 0; i--)
533 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
534 	if (ecc)
535 		*ecc = t4_read_reg64(adap, MC_DATA(16));
536 #undef MC_DATA
537 	return 0;
538 }
539 
540 /**
541  *	t4_edc_read - read from EDC through backdoor accesses
542  *	@adap: the adapter
543  *	@idx: which EDC to access
544  *	@addr: address of first byte requested
545  *	@data: 64 bytes of data containing the requested address
546  *	@ecc: where to store the corresponding 64-bit ECC word
547  *
548  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
549  *	that covers the requested address @addr.  If @parity is not %NULL it
550  *	is assigned the 64-bit ECC word for the read data.
551  */
552 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
553 {
554 	int i;
555 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
556 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
557 
558 	if (is_t4(adap)) {
559 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
560 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
561 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
562 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
563 						    idx);
564 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
565 						    idx);
566 	} else {
567 /*
568  * These macro are missing in t4_regs.h file.
569  * Added temporarily for testing.
570  */
571 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
572 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
573 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
574 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
575 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
576 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
577 						    idx);
578 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
579 						    idx);
580 #undef EDC_REG_T5
581 #undef EDC_STRIDE_T5
582 	}
583 
584 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
585 		return -EBUSY;
586 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
587 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
588 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
589 	t4_write_reg(adap, edc_bist_cmd_reg,
590 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
591 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
592 	if (i)
593 		return i;
594 
595 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
596 
597 	for (i = 15; i >= 0; i--)
598 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
599 	if (ecc)
600 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
601 #undef EDC_DATA
602 	return 0;
603 }
604 
605 /**
606  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
607  *	@adap: the adapter
608  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
609  *	@addr: address within indicated memory type
610  *	@len: amount of memory to read
611  *	@buf: host memory buffer
612  *
613  *	Reads an [almost] arbitrary memory region in the firmware: the
614  *	firmware memory address, length and host buffer must be aligned on
615  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
616  *	the firmware's memory.  If this memory contains data structures which
617  *	contain multi-byte integers, it's the callers responsibility to
618  *	perform appropriate byte order conversions.
619  */
620 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
621 		__be32 *buf)
622 {
623 	u32 pos, start, end, offset;
624 	int ret;
625 
626 	/*
627 	 * Argument sanity checks ...
628 	 */
629 	if ((addr & 0x3) || (len & 0x3))
630 		return -EINVAL;
631 
632 	/*
633 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
634 	 * need to round down the start and round up the end.  We'll start
635 	 * copying out of the first line at (addr - start) a word at a time.
636 	 */
637 	start = rounddown2(addr, 64);
638 	end = roundup2(addr + len, 64);
639 	offset = (addr - start)/sizeof(__be32);
640 
641 	for (pos = start; pos < end; pos += 64, offset = 0) {
642 		__be32 data[16];
643 
644 		/*
645 		 * Read the chip's memory block and bail if there's an error.
646 		 */
647 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
648 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
649 		else
650 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
651 		if (ret)
652 			return ret;
653 
654 		/*
655 		 * Copy the data into the caller's memory buffer.
656 		 */
657 		while (offset < 16 && len > 0) {
658 			*buf++ = data[offset++];
659 			len -= sizeof(__be32);
660 		}
661 	}
662 
663 	return 0;
664 }
665 
666 /*
667  * Return the specified PCI-E Configuration Space register from our Physical
668  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
669  * since we prefer to let the firmware own all of these registers, but if that
670  * fails we go for it directly ourselves.
671  */
672 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
673 {
674 
675 	/*
676 	 * If fw_attach != 0, construct and send the Firmware LDST Command to
677 	 * retrieve the specified PCI-E Configuration Space register.
678 	 */
679 	if (drv_fw_attach != 0) {
680 		struct fw_ldst_cmd ldst_cmd;
681 		int ret;
682 
683 		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
684 		ldst_cmd.op_to_addrspace =
685 			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
686 				    F_FW_CMD_REQUEST |
687 				    F_FW_CMD_READ |
688 				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
689 		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
690 		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
691 		ldst_cmd.u.pcie.ctrl_to_fn =
692 			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
693 		ldst_cmd.u.pcie.r = reg;
694 
695 		/*
696 		 * If the LDST Command succeeds, return the result, otherwise
697 		 * fall through to reading it directly ourselves ...
698 		 */
699 		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
700 				 &ldst_cmd);
701 		if (ret == 0)
702 			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
703 
704 		CH_WARN(adap, "Firmware failed to return "
705 			"Configuration Space register %d, err = %d\n",
706 			reg, -ret);
707 	}
708 
709 	/*
710 	 * Read the desired Configuration Space register via the PCI-E
711 	 * Backdoor mechanism.
712 	 */
713 	return t4_hw_pci_read_cfg4(adap, reg);
714 }
715 
716 /**
717  *	t4_get_regs_len - return the size of the chips register set
718  *	@adapter: the adapter
719  *
720  *	Returns the size of the chip's BAR0 register space.
721  */
722 unsigned int t4_get_regs_len(struct adapter *adapter)
723 {
724 	unsigned int chip_version = chip_id(adapter);
725 
726 	switch (chip_version) {
727 	case CHELSIO_T4:
728 		if (adapter->flags & IS_VF)
729 			return FW_T4VF_REGMAP_SIZE;
730 		return T4_REGMAP_SIZE;
731 
732 	case CHELSIO_T5:
733 	case CHELSIO_T6:
734 		if (adapter->flags & IS_VF)
735 			return FW_T4VF_REGMAP_SIZE;
736 		return T5_REGMAP_SIZE;
737 	}
738 
739 	CH_ERR(adapter,
740 		"Unsupported chip version %d\n", chip_version);
741 	return 0;
742 }
743 
744 /**
745  *	t4_get_regs - read chip registers into provided buffer
746  *	@adap: the adapter
747  *	@buf: register buffer
748  *	@buf_size: size (in bytes) of register buffer
749  *
750  *	If the provided register buffer isn't large enough for the chip's
751  *	full register range, the register dump will be truncated to the
752  *	register buffer's size.
753  */
754 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
755 {
756 	static const unsigned int t4_reg_ranges[] = {
757 		0x1008, 0x1108,
758 		0x1180, 0x1184,
759 		0x1190, 0x1194,
760 		0x11a0, 0x11a4,
761 		0x11b0, 0x11b4,
762 		0x11fc, 0x123c,
763 		0x1300, 0x173c,
764 		0x1800, 0x18fc,
765 		0x3000, 0x30d8,
766 		0x30e0, 0x30e4,
767 		0x30ec, 0x5910,
768 		0x5920, 0x5924,
769 		0x5960, 0x5960,
770 		0x5968, 0x5968,
771 		0x5970, 0x5970,
772 		0x5978, 0x5978,
773 		0x5980, 0x5980,
774 		0x5988, 0x5988,
775 		0x5990, 0x5990,
776 		0x5998, 0x5998,
777 		0x59a0, 0x59d4,
778 		0x5a00, 0x5ae0,
779 		0x5ae8, 0x5ae8,
780 		0x5af0, 0x5af0,
781 		0x5af8, 0x5af8,
782 		0x6000, 0x6098,
783 		0x6100, 0x6150,
784 		0x6200, 0x6208,
785 		0x6240, 0x6248,
786 		0x6280, 0x62b0,
787 		0x62c0, 0x6338,
788 		0x6370, 0x638c,
789 		0x6400, 0x643c,
790 		0x6500, 0x6524,
791 		0x6a00, 0x6a04,
792 		0x6a14, 0x6a38,
793 		0x6a60, 0x6a70,
794 		0x6a78, 0x6a78,
795 		0x6b00, 0x6b0c,
796 		0x6b1c, 0x6b84,
797 		0x6bf0, 0x6bf8,
798 		0x6c00, 0x6c0c,
799 		0x6c1c, 0x6c84,
800 		0x6cf0, 0x6cf8,
801 		0x6d00, 0x6d0c,
802 		0x6d1c, 0x6d84,
803 		0x6df0, 0x6df8,
804 		0x6e00, 0x6e0c,
805 		0x6e1c, 0x6e84,
806 		0x6ef0, 0x6ef8,
807 		0x6f00, 0x6f0c,
808 		0x6f1c, 0x6f84,
809 		0x6ff0, 0x6ff8,
810 		0x7000, 0x700c,
811 		0x701c, 0x7084,
812 		0x70f0, 0x70f8,
813 		0x7100, 0x710c,
814 		0x711c, 0x7184,
815 		0x71f0, 0x71f8,
816 		0x7200, 0x720c,
817 		0x721c, 0x7284,
818 		0x72f0, 0x72f8,
819 		0x7300, 0x730c,
820 		0x731c, 0x7384,
821 		0x73f0, 0x73f8,
822 		0x7400, 0x7450,
823 		0x7500, 0x7530,
824 		0x7600, 0x760c,
825 		0x7614, 0x761c,
826 		0x7680, 0x76cc,
827 		0x7700, 0x7798,
828 		0x77c0, 0x77fc,
829 		0x7900, 0x79fc,
830 		0x7b00, 0x7b58,
831 		0x7b60, 0x7b84,
832 		0x7b8c, 0x7c38,
833 		0x7d00, 0x7d38,
834 		0x7d40, 0x7d80,
835 		0x7d8c, 0x7ddc,
836 		0x7de4, 0x7e04,
837 		0x7e10, 0x7e1c,
838 		0x7e24, 0x7e38,
839 		0x7e40, 0x7e44,
840 		0x7e4c, 0x7e78,
841 		0x7e80, 0x7ea4,
842 		0x7eac, 0x7edc,
843 		0x7ee8, 0x7efc,
844 		0x8dc0, 0x8e04,
845 		0x8e10, 0x8e1c,
846 		0x8e30, 0x8e78,
847 		0x8ea0, 0x8eb8,
848 		0x8ec0, 0x8f6c,
849 		0x8fc0, 0x9008,
850 		0x9010, 0x9058,
851 		0x9060, 0x9060,
852 		0x9068, 0x9074,
853 		0x90fc, 0x90fc,
854 		0x9400, 0x9408,
855 		0x9410, 0x9458,
856 		0x9600, 0x9600,
857 		0x9608, 0x9638,
858 		0x9640, 0x96bc,
859 		0x9800, 0x9808,
860 		0x9820, 0x983c,
861 		0x9850, 0x9864,
862 		0x9c00, 0x9c6c,
863 		0x9c80, 0x9cec,
864 		0x9d00, 0x9d6c,
865 		0x9d80, 0x9dec,
866 		0x9e00, 0x9e6c,
867 		0x9e80, 0x9eec,
868 		0x9f00, 0x9f6c,
869 		0x9f80, 0x9fec,
870 		0xd004, 0xd004,
871 		0xd010, 0xd03c,
872 		0xdfc0, 0xdfe0,
873 		0xe000, 0xea7c,
874 		0xf000, 0x11190,
875 		0x19040, 0x1906c,
876 		0x19078, 0x19080,
877 		0x1908c, 0x190e4,
878 		0x190f0, 0x190f8,
879 		0x19100, 0x19110,
880 		0x19120, 0x19124,
881 		0x19150, 0x19194,
882 		0x1919c, 0x191b0,
883 		0x191d0, 0x191e8,
884 		0x19238, 0x1924c,
885 		0x193f8, 0x1943c,
886 		0x1944c, 0x19474,
887 		0x19490, 0x194e0,
888 		0x194f0, 0x194f8,
889 		0x19800, 0x19c08,
890 		0x19c10, 0x19c90,
891 		0x19ca0, 0x19ce4,
892 		0x19cf0, 0x19d40,
893 		0x19d50, 0x19d94,
894 		0x19da0, 0x19de8,
895 		0x19df0, 0x19e40,
896 		0x19e50, 0x19e90,
897 		0x19ea0, 0x19f4c,
898 		0x1a000, 0x1a004,
899 		0x1a010, 0x1a06c,
900 		0x1a0b0, 0x1a0e4,
901 		0x1a0ec, 0x1a0f4,
902 		0x1a100, 0x1a108,
903 		0x1a114, 0x1a120,
904 		0x1a128, 0x1a130,
905 		0x1a138, 0x1a138,
906 		0x1a190, 0x1a1c4,
907 		0x1a1fc, 0x1a1fc,
908 		0x1e040, 0x1e04c,
909 		0x1e284, 0x1e28c,
910 		0x1e2c0, 0x1e2c0,
911 		0x1e2e0, 0x1e2e0,
912 		0x1e300, 0x1e384,
913 		0x1e3c0, 0x1e3c8,
914 		0x1e440, 0x1e44c,
915 		0x1e684, 0x1e68c,
916 		0x1e6c0, 0x1e6c0,
917 		0x1e6e0, 0x1e6e0,
918 		0x1e700, 0x1e784,
919 		0x1e7c0, 0x1e7c8,
920 		0x1e840, 0x1e84c,
921 		0x1ea84, 0x1ea8c,
922 		0x1eac0, 0x1eac0,
923 		0x1eae0, 0x1eae0,
924 		0x1eb00, 0x1eb84,
925 		0x1ebc0, 0x1ebc8,
926 		0x1ec40, 0x1ec4c,
927 		0x1ee84, 0x1ee8c,
928 		0x1eec0, 0x1eec0,
929 		0x1eee0, 0x1eee0,
930 		0x1ef00, 0x1ef84,
931 		0x1efc0, 0x1efc8,
932 		0x1f040, 0x1f04c,
933 		0x1f284, 0x1f28c,
934 		0x1f2c0, 0x1f2c0,
935 		0x1f2e0, 0x1f2e0,
936 		0x1f300, 0x1f384,
937 		0x1f3c0, 0x1f3c8,
938 		0x1f440, 0x1f44c,
939 		0x1f684, 0x1f68c,
940 		0x1f6c0, 0x1f6c0,
941 		0x1f6e0, 0x1f6e0,
942 		0x1f700, 0x1f784,
943 		0x1f7c0, 0x1f7c8,
944 		0x1f840, 0x1f84c,
945 		0x1fa84, 0x1fa8c,
946 		0x1fac0, 0x1fac0,
947 		0x1fae0, 0x1fae0,
948 		0x1fb00, 0x1fb84,
949 		0x1fbc0, 0x1fbc8,
950 		0x1fc40, 0x1fc4c,
951 		0x1fe84, 0x1fe8c,
952 		0x1fec0, 0x1fec0,
953 		0x1fee0, 0x1fee0,
954 		0x1ff00, 0x1ff84,
955 		0x1ffc0, 0x1ffc8,
956 		0x20000, 0x2002c,
957 		0x20100, 0x2013c,
958 		0x20190, 0x201a0,
959 		0x201a8, 0x201b8,
960 		0x201c4, 0x201c8,
961 		0x20200, 0x20318,
962 		0x20400, 0x204b4,
963 		0x204c0, 0x20528,
964 		0x20540, 0x20614,
965 		0x21000, 0x21040,
966 		0x2104c, 0x21060,
967 		0x210c0, 0x210ec,
968 		0x21200, 0x21268,
969 		0x21270, 0x21284,
970 		0x212fc, 0x21388,
971 		0x21400, 0x21404,
972 		0x21500, 0x21500,
973 		0x21510, 0x21518,
974 		0x2152c, 0x21530,
975 		0x2153c, 0x2153c,
976 		0x21550, 0x21554,
977 		0x21600, 0x21600,
978 		0x21608, 0x2161c,
979 		0x21624, 0x21628,
980 		0x21630, 0x21634,
981 		0x2163c, 0x2163c,
982 		0x21700, 0x2171c,
983 		0x21780, 0x2178c,
984 		0x21800, 0x21818,
985 		0x21820, 0x21828,
986 		0x21830, 0x21848,
987 		0x21850, 0x21854,
988 		0x21860, 0x21868,
989 		0x21870, 0x21870,
990 		0x21878, 0x21898,
991 		0x218a0, 0x218a8,
992 		0x218b0, 0x218c8,
993 		0x218d0, 0x218d4,
994 		0x218e0, 0x218e8,
995 		0x218f0, 0x218f0,
996 		0x218f8, 0x21a18,
997 		0x21a20, 0x21a28,
998 		0x21a30, 0x21a48,
999 		0x21a50, 0x21a54,
1000 		0x21a60, 0x21a68,
1001 		0x21a70, 0x21a70,
1002 		0x21a78, 0x21a98,
1003 		0x21aa0, 0x21aa8,
1004 		0x21ab0, 0x21ac8,
1005 		0x21ad0, 0x21ad4,
1006 		0x21ae0, 0x21ae8,
1007 		0x21af0, 0x21af0,
1008 		0x21af8, 0x21c18,
1009 		0x21c20, 0x21c20,
1010 		0x21c28, 0x21c30,
1011 		0x21c38, 0x21c38,
1012 		0x21c80, 0x21c98,
1013 		0x21ca0, 0x21ca8,
1014 		0x21cb0, 0x21cc8,
1015 		0x21cd0, 0x21cd4,
1016 		0x21ce0, 0x21ce8,
1017 		0x21cf0, 0x21cf0,
1018 		0x21cf8, 0x21d7c,
1019 		0x21e00, 0x21e04,
1020 		0x22000, 0x2202c,
1021 		0x22100, 0x2213c,
1022 		0x22190, 0x221a0,
1023 		0x221a8, 0x221b8,
1024 		0x221c4, 0x221c8,
1025 		0x22200, 0x22318,
1026 		0x22400, 0x224b4,
1027 		0x224c0, 0x22528,
1028 		0x22540, 0x22614,
1029 		0x23000, 0x23040,
1030 		0x2304c, 0x23060,
1031 		0x230c0, 0x230ec,
1032 		0x23200, 0x23268,
1033 		0x23270, 0x23284,
1034 		0x232fc, 0x23388,
1035 		0x23400, 0x23404,
1036 		0x23500, 0x23500,
1037 		0x23510, 0x23518,
1038 		0x2352c, 0x23530,
1039 		0x2353c, 0x2353c,
1040 		0x23550, 0x23554,
1041 		0x23600, 0x23600,
1042 		0x23608, 0x2361c,
1043 		0x23624, 0x23628,
1044 		0x23630, 0x23634,
1045 		0x2363c, 0x2363c,
1046 		0x23700, 0x2371c,
1047 		0x23780, 0x2378c,
1048 		0x23800, 0x23818,
1049 		0x23820, 0x23828,
1050 		0x23830, 0x23848,
1051 		0x23850, 0x23854,
1052 		0x23860, 0x23868,
1053 		0x23870, 0x23870,
1054 		0x23878, 0x23898,
1055 		0x238a0, 0x238a8,
1056 		0x238b0, 0x238c8,
1057 		0x238d0, 0x238d4,
1058 		0x238e0, 0x238e8,
1059 		0x238f0, 0x238f0,
1060 		0x238f8, 0x23a18,
1061 		0x23a20, 0x23a28,
1062 		0x23a30, 0x23a48,
1063 		0x23a50, 0x23a54,
1064 		0x23a60, 0x23a68,
1065 		0x23a70, 0x23a70,
1066 		0x23a78, 0x23a98,
1067 		0x23aa0, 0x23aa8,
1068 		0x23ab0, 0x23ac8,
1069 		0x23ad0, 0x23ad4,
1070 		0x23ae0, 0x23ae8,
1071 		0x23af0, 0x23af0,
1072 		0x23af8, 0x23c18,
1073 		0x23c20, 0x23c20,
1074 		0x23c28, 0x23c30,
1075 		0x23c38, 0x23c38,
1076 		0x23c80, 0x23c98,
1077 		0x23ca0, 0x23ca8,
1078 		0x23cb0, 0x23cc8,
1079 		0x23cd0, 0x23cd4,
1080 		0x23ce0, 0x23ce8,
1081 		0x23cf0, 0x23cf0,
1082 		0x23cf8, 0x23d7c,
1083 		0x23e00, 0x23e04,
1084 		0x24000, 0x2402c,
1085 		0x24100, 0x2413c,
1086 		0x24190, 0x241a0,
1087 		0x241a8, 0x241b8,
1088 		0x241c4, 0x241c8,
1089 		0x24200, 0x24318,
1090 		0x24400, 0x244b4,
1091 		0x244c0, 0x24528,
1092 		0x24540, 0x24614,
1093 		0x25000, 0x25040,
1094 		0x2504c, 0x25060,
1095 		0x250c0, 0x250ec,
1096 		0x25200, 0x25268,
1097 		0x25270, 0x25284,
1098 		0x252fc, 0x25388,
1099 		0x25400, 0x25404,
1100 		0x25500, 0x25500,
1101 		0x25510, 0x25518,
1102 		0x2552c, 0x25530,
1103 		0x2553c, 0x2553c,
1104 		0x25550, 0x25554,
1105 		0x25600, 0x25600,
1106 		0x25608, 0x2561c,
1107 		0x25624, 0x25628,
1108 		0x25630, 0x25634,
1109 		0x2563c, 0x2563c,
1110 		0x25700, 0x2571c,
1111 		0x25780, 0x2578c,
1112 		0x25800, 0x25818,
1113 		0x25820, 0x25828,
1114 		0x25830, 0x25848,
1115 		0x25850, 0x25854,
1116 		0x25860, 0x25868,
1117 		0x25870, 0x25870,
1118 		0x25878, 0x25898,
1119 		0x258a0, 0x258a8,
1120 		0x258b0, 0x258c8,
1121 		0x258d0, 0x258d4,
1122 		0x258e0, 0x258e8,
1123 		0x258f0, 0x258f0,
1124 		0x258f8, 0x25a18,
1125 		0x25a20, 0x25a28,
1126 		0x25a30, 0x25a48,
1127 		0x25a50, 0x25a54,
1128 		0x25a60, 0x25a68,
1129 		0x25a70, 0x25a70,
1130 		0x25a78, 0x25a98,
1131 		0x25aa0, 0x25aa8,
1132 		0x25ab0, 0x25ac8,
1133 		0x25ad0, 0x25ad4,
1134 		0x25ae0, 0x25ae8,
1135 		0x25af0, 0x25af0,
1136 		0x25af8, 0x25c18,
1137 		0x25c20, 0x25c20,
1138 		0x25c28, 0x25c30,
1139 		0x25c38, 0x25c38,
1140 		0x25c80, 0x25c98,
1141 		0x25ca0, 0x25ca8,
1142 		0x25cb0, 0x25cc8,
1143 		0x25cd0, 0x25cd4,
1144 		0x25ce0, 0x25ce8,
1145 		0x25cf0, 0x25cf0,
1146 		0x25cf8, 0x25d7c,
1147 		0x25e00, 0x25e04,
1148 		0x26000, 0x2602c,
1149 		0x26100, 0x2613c,
1150 		0x26190, 0x261a0,
1151 		0x261a8, 0x261b8,
1152 		0x261c4, 0x261c8,
1153 		0x26200, 0x26318,
1154 		0x26400, 0x264b4,
1155 		0x264c0, 0x26528,
1156 		0x26540, 0x26614,
1157 		0x27000, 0x27040,
1158 		0x2704c, 0x27060,
1159 		0x270c0, 0x270ec,
1160 		0x27200, 0x27268,
1161 		0x27270, 0x27284,
1162 		0x272fc, 0x27388,
1163 		0x27400, 0x27404,
1164 		0x27500, 0x27500,
1165 		0x27510, 0x27518,
1166 		0x2752c, 0x27530,
1167 		0x2753c, 0x2753c,
1168 		0x27550, 0x27554,
1169 		0x27600, 0x27600,
1170 		0x27608, 0x2761c,
1171 		0x27624, 0x27628,
1172 		0x27630, 0x27634,
1173 		0x2763c, 0x2763c,
1174 		0x27700, 0x2771c,
1175 		0x27780, 0x2778c,
1176 		0x27800, 0x27818,
1177 		0x27820, 0x27828,
1178 		0x27830, 0x27848,
1179 		0x27850, 0x27854,
1180 		0x27860, 0x27868,
1181 		0x27870, 0x27870,
1182 		0x27878, 0x27898,
1183 		0x278a0, 0x278a8,
1184 		0x278b0, 0x278c8,
1185 		0x278d0, 0x278d4,
1186 		0x278e0, 0x278e8,
1187 		0x278f0, 0x278f0,
1188 		0x278f8, 0x27a18,
1189 		0x27a20, 0x27a28,
1190 		0x27a30, 0x27a48,
1191 		0x27a50, 0x27a54,
1192 		0x27a60, 0x27a68,
1193 		0x27a70, 0x27a70,
1194 		0x27a78, 0x27a98,
1195 		0x27aa0, 0x27aa8,
1196 		0x27ab0, 0x27ac8,
1197 		0x27ad0, 0x27ad4,
1198 		0x27ae0, 0x27ae8,
1199 		0x27af0, 0x27af0,
1200 		0x27af8, 0x27c18,
1201 		0x27c20, 0x27c20,
1202 		0x27c28, 0x27c30,
1203 		0x27c38, 0x27c38,
1204 		0x27c80, 0x27c98,
1205 		0x27ca0, 0x27ca8,
1206 		0x27cb0, 0x27cc8,
1207 		0x27cd0, 0x27cd4,
1208 		0x27ce0, 0x27ce8,
1209 		0x27cf0, 0x27cf0,
1210 		0x27cf8, 0x27d7c,
1211 		0x27e00, 0x27e04,
1212 	};
1213 
1214 	static const unsigned int t4vf_reg_ranges[] = {
1215 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1216 		VF_MPS_REG(A_MPS_VF_CTL),
1217 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1218 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1219 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1220 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1221 		FW_T4VF_MBDATA_BASE_ADDR,
1222 		FW_T4VF_MBDATA_BASE_ADDR +
1223 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1224 	};
1225 
1226 	static const unsigned int t5_reg_ranges[] = {
1227 		0x1008, 0x10c0,
1228 		0x10cc, 0x10f8,
1229 		0x1100, 0x1100,
1230 		0x110c, 0x1148,
1231 		0x1180, 0x1184,
1232 		0x1190, 0x1194,
1233 		0x11a0, 0x11a4,
1234 		0x11b0, 0x11b4,
1235 		0x11fc, 0x123c,
1236 		0x1280, 0x173c,
1237 		0x1800, 0x18fc,
1238 		0x3000, 0x3028,
1239 		0x3060, 0x30b0,
1240 		0x30b8, 0x30d8,
1241 		0x30e0, 0x30fc,
1242 		0x3140, 0x357c,
1243 		0x35a8, 0x35cc,
1244 		0x35ec, 0x35ec,
1245 		0x3600, 0x5624,
1246 		0x56cc, 0x56ec,
1247 		0x56f4, 0x5720,
1248 		0x5728, 0x575c,
1249 		0x580c, 0x5814,
1250 		0x5890, 0x589c,
1251 		0x58a4, 0x58ac,
1252 		0x58b8, 0x58bc,
1253 		0x5940, 0x59c8,
1254 		0x59d0, 0x59dc,
1255 		0x59fc, 0x5a18,
1256 		0x5a60, 0x5a70,
1257 		0x5a80, 0x5a9c,
1258 		0x5b94, 0x5bfc,
1259 		0x6000, 0x6020,
1260 		0x6028, 0x6040,
1261 		0x6058, 0x609c,
1262 		0x60a8, 0x614c,
1263 		0x7700, 0x7798,
1264 		0x77c0, 0x78fc,
1265 		0x7b00, 0x7b58,
1266 		0x7b60, 0x7b84,
1267 		0x7b8c, 0x7c54,
1268 		0x7d00, 0x7d38,
1269 		0x7d40, 0x7d80,
1270 		0x7d8c, 0x7ddc,
1271 		0x7de4, 0x7e04,
1272 		0x7e10, 0x7e1c,
1273 		0x7e24, 0x7e38,
1274 		0x7e40, 0x7e44,
1275 		0x7e4c, 0x7e78,
1276 		0x7e80, 0x7edc,
1277 		0x7ee8, 0x7efc,
1278 		0x8dc0, 0x8de0,
1279 		0x8df8, 0x8e04,
1280 		0x8e10, 0x8e84,
1281 		0x8ea0, 0x8f84,
1282 		0x8fc0, 0x9058,
1283 		0x9060, 0x9060,
1284 		0x9068, 0x90f8,
1285 		0x9400, 0x9408,
1286 		0x9410, 0x9470,
1287 		0x9600, 0x9600,
1288 		0x9608, 0x9638,
1289 		0x9640, 0x96f4,
1290 		0x9800, 0x9808,
1291 		0x9820, 0x983c,
1292 		0x9850, 0x9864,
1293 		0x9c00, 0x9c6c,
1294 		0x9c80, 0x9cec,
1295 		0x9d00, 0x9d6c,
1296 		0x9d80, 0x9dec,
1297 		0x9e00, 0x9e6c,
1298 		0x9e80, 0x9eec,
1299 		0x9f00, 0x9f6c,
1300 		0x9f80, 0xa020,
1301 		0xd004, 0xd004,
1302 		0xd010, 0xd03c,
1303 		0xdfc0, 0xdfe0,
1304 		0xe000, 0x1106c,
1305 		0x11074, 0x11088,
1306 		0x1109c, 0x1117c,
1307 		0x11190, 0x11204,
1308 		0x19040, 0x1906c,
1309 		0x19078, 0x19080,
1310 		0x1908c, 0x190e8,
1311 		0x190f0, 0x190f8,
1312 		0x19100, 0x19110,
1313 		0x19120, 0x19124,
1314 		0x19150, 0x19194,
1315 		0x1919c, 0x191b0,
1316 		0x191d0, 0x191e8,
1317 		0x19238, 0x19290,
1318 		0x193f8, 0x19428,
1319 		0x19430, 0x19444,
1320 		0x1944c, 0x1946c,
1321 		0x19474, 0x19474,
1322 		0x19490, 0x194cc,
1323 		0x194f0, 0x194f8,
1324 		0x19c00, 0x19c08,
1325 		0x19c10, 0x19c60,
1326 		0x19c94, 0x19ce4,
1327 		0x19cf0, 0x19d40,
1328 		0x19d50, 0x19d94,
1329 		0x19da0, 0x19de8,
1330 		0x19df0, 0x19e10,
1331 		0x19e50, 0x19e90,
1332 		0x19ea0, 0x19f24,
1333 		0x19f34, 0x19f34,
1334 		0x19f40, 0x19f50,
1335 		0x19f90, 0x19fb4,
1336 		0x19fc4, 0x19fe4,
1337 		0x1a000, 0x1a004,
1338 		0x1a010, 0x1a06c,
1339 		0x1a0b0, 0x1a0e4,
1340 		0x1a0ec, 0x1a0f8,
1341 		0x1a100, 0x1a108,
1342 		0x1a114, 0x1a120,
1343 		0x1a128, 0x1a130,
1344 		0x1a138, 0x1a138,
1345 		0x1a190, 0x1a1c4,
1346 		0x1a1fc, 0x1a1fc,
1347 		0x1e008, 0x1e00c,
1348 		0x1e040, 0x1e044,
1349 		0x1e04c, 0x1e04c,
1350 		0x1e284, 0x1e290,
1351 		0x1e2c0, 0x1e2c0,
1352 		0x1e2e0, 0x1e2e0,
1353 		0x1e300, 0x1e384,
1354 		0x1e3c0, 0x1e3c8,
1355 		0x1e408, 0x1e40c,
1356 		0x1e440, 0x1e444,
1357 		0x1e44c, 0x1e44c,
1358 		0x1e684, 0x1e690,
1359 		0x1e6c0, 0x1e6c0,
1360 		0x1e6e0, 0x1e6e0,
1361 		0x1e700, 0x1e784,
1362 		0x1e7c0, 0x1e7c8,
1363 		0x1e808, 0x1e80c,
1364 		0x1e840, 0x1e844,
1365 		0x1e84c, 0x1e84c,
1366 		0x1ea84, 0x1ea90,
1367 		0x1eac0, 0x1eac0,
1368 		0x1eae0, 0x1eae0,
1369 		0x1eb00, 0x1eb84,
1370 		0x1ebc0, 0x1ebc8,
1371 		0x1ec08, 0x1ec0c,
1372 		0x1ec40, 0x1ec44,
1373 		0x1ec4c, 0x1ec4c,
1374 		0x1ee84, 0x1ee90,
1375 		0x1eec0, 0x1eec0,
1376 		0x1eee0, 0x1eee0,
1377 		0x1ef00, 0x1ef84,
1378 		0x1efc0, 0x1efc8,
1379 		0x1f008, 0x1f00c,
1380 		0x1f040, 0x1f044,
1381 		0x1f04c, 0x1f04c,
1382 		0x1f284, 0x1f290,
1383 		0x1f2c0, 0x1f2c0,
1384 		0x1f2e0, 0x1f2e0,
1385 		0x1f300, 0x1f384,
1386 		0x1f3c0, 0x1f3c8,
1387 		0x1f408, 0x1f40c,
1388 		0x1f440, 0x1f444,
1389 		0x1f44c, 0x1f44c,
1390 		0x1f684, 0x1f690,
1391 		0x1f6c0, 0x1f6c0,
1392 		0x1f6e0, 0x1f6e0,
1393 		0x1f700, 0x1f784,
1394 		0x1f7c0, 0x1f7c8,
1395 		0x1f808, 0x1f80c,
1396 		0x1f840, 0x1f844,
1397 		0x1f84c, 0x1f84c,
1398 		0x1fa84, 0x1fa90,
1399 		0x1fac0, 0x1fac0,
1400 		0x1fae0, 0x1fae0,
1401 		0x1fb00, 0x1fb84,
1402 		0x1fbc0, 0x1fbc8,
1403 		0x1fc08, 0x1fc0c,
1404 		0x1fc40, 0x1fc44,
1405 		0x1fc4c, 0x1fc4c,
1406 		0x1fe84, 0x1fe90,
1407 		0x1fec0, 0x1fec0,
1408 		0x1fee0, 0x1fee0,
1409 		0x1ff00, 0x1ff84,
1410 		0x1ffc0, 0x1ffc8,
1411 		0x30000, 0x30030,
1412 		0x30038, 0x30038,
1413 		0x30040, 0x30040,
1414 		0x30100, 0x30144,
1415 		0x30190, 0x301a0,
1416 		0x301a8, 0x301b8,
1417 		0x301c4, 0x301c8,
1418 		0x301d0, 0x301d0,
1419 		0x30200, 0x30318,
1420 		0x30400, 0x304b4,
1421 		0x304c0, 0x3052c,
1422 		0x30540, 0x3061c,
1423 		0x30800, 0x30828,
1424 		0x30834, 0x30834,
1425 		0x308c0, 0x30908,
1426 		0x30910, 0x309ac,
1427 		0x30a00, 0x30a14,
1428 		0x30a1c, 0x30a2c,
1429 		0x30a44, 0x30a50,
1430 		0x30a74, 0x30a74,
1431 		0x30a7c, 0x30afc,
1432 		0x30b08, 0x30c24,
1433 		0x30d00, 0x30d00,
1434 		0x30d08, 0x30d14,
1435 		0x30d1c, 0x30d20,
1436 		0x30d3c, 0x30d3c,
1437 		0x30d48, 0x30d50,
1438 		0x31200, 0x3120c,
1439 		0x31220, 0x31220,
1440 		0x31240, 0x31240,
1441 		0x31600, 0x3160c,
1442 		0x31a00, 0x31a1c,
1443 		0x31e00, 0x31e20,
1444 		0x31e38, 0x31e3c,
1445 		0x31e80, 0x31e80,
1446 		0x31e88, 0x31ea8,
1447 		0x31eb0, 0x31eb4,
1448 		0x31ec8, 0x31ed4,
1449 		0x31fb8, 0x32004,
1450 		0x32200, 0x32200,
1451 		0x32208, 0x32240,
1452 		0x32248, 0x32280,
1453 		0x32288, 0x322c0,
1454 		0x322c8, 0x322fc,
1455 		0x32600, 0x32630,
1456 		0x32a00, 0x32abc,
1457 		0x32b00, 0x32b10,
1458 		0x32b20, 0x32b30,
1459 		0x32b40, 0x32b50,
1460 		0x32b60, 0x32b70,
1461 		0x33000, 0x33028,
1462 		0x33030, 0x33048,
1463 		0x33060, 0x33068,
1464 		0x33070, 0x3309c,
1465 		0x330f0, 0x33128,
1466 		0x33130, 0x33148,
1467 		0x33160, 0x33168,
1468 		0x33170, 0x3319c,
1469 		0x331f0, 0x33238,
1470 		0x33240, 0x33240,
1471 		0x33248, 0x33250,
1472 		0x3325c, 0x33264,
1473 		0x33270, 0x332b8,
1474 		0x332c0, 0x332e4,
1475 		0x332f8, 0x33338,
1476 		0x33340, 0x33340,
1477 		0x33348, 0x33350,
1478 		0x3335c, 0x33364,
1479 		0x33370, 0x333b8,
1480 		0x333c0, 0x333e4,
1481 		0x333f8, 0x33428,
1482 		0x33430, 0x33448,
1483 		0x33460, 0x33468,
1484 		0x33470, 0x3349c,
1485 		0x334f0, 0x33528,
1486 		0x33530, 0x33548,
1487 		0x33560, 0x33568,
1488 		0x33570, 0x3359c,
1489 		0x335f0, 0x33638,
1490 		0x33640, 0x33640,
1491 		0x33648, 0x33650,
1492 		0x3365c, 0x33664,
1493 		0x33670, 0x336b8,
1494 		0x336c0, 0x336e4,
1495 		0x336f8, 0x33738,
1496 		0x33740, 0x33740,
1497 		0x33748, 0x33750,
1498 		0x3375c, 0x33764,
1499 		0x33770, 0x337b8,
1500 		0x337c0, 0x337e4,
1501 		0x337f8, 0x337fc,
1502 		0x33814, 0x33814,
1503 		0x3382c, 0x3382c,
1504 		0x33880, 0x3388c,
1505 		0x338e8, 0x338ec,
1506 		0x33900, 0x33928,
1507 		0x33930, 0x33948,
1508 		0x33960, 0x33968,
1509 		0x33970, 0x3399c,
1510 		0x339f0, 0x33a38,
1511 		0x33a40, 0x33a40,
1512 		0x33a48, 0x33a50,
1513 		0x33a5c, 0x33a64,
1514 		0x33a70, 0x33ab8,
1515 		0x33ac0, 0x33ae4,
1516 		0x33af8, 0x33b10,
1517 		0x33b28, 0x33b28,
1518 		0x33b3c, 0x33b50,
1519 		0x33bf0, 0x33c10,
1520 		0x33c28, 0x33c28,
1521 		0x33c3c, 0x33c50,
1522 		0x33cf0, 0x33cfc,
1523 		0x34000, 0x34030,
1524 		0x34038, 0x34038,
1525 		0x34040, 0x34040,
1526 		0x34100, 0x34144,
1527 		0x34190, 0x341a0,
1528 		0x341a8, 0x341b8,
1529 		0x341c4, 0x341c8,
1530 		0x341d0, 0x341d0,
1531 		0x34200, 0x34318,
1532 		0x34400, 0x344b4,
1533 		0x344c0, 0x3452c,
1534 		0x34540, 0x3461c,
1535 		0x34800, 0x34828,
1536 		0x34834, 0x34834,
1537 		0x348c0, 0x34908,
1538 		0x34910, 0x349ac,
1539 		0x34a00, 0x34a14,
1540 		0x34a1c, 0x34a2c,
1541 		0x34a44, 0x34a50,
1542 		0x34a74, 0x34a74,
1543 		0x34a7c, 0x34afc,
1544 		0x34b08, 0x34c24,
1545 		0x34d00, 0x34d00,
1546 		0x34d08, 0x34d14,
1547 		0x34d1c, 0x34d20,
1548 		0x34d3c, 0x34d3c,
1549 		0x34d48, 0x34d50,
1550 		0x35200, 0x3520c,
1551 		0x35220, 0x35220,
1552 		0x35240, 0x35240,
1553 		0x35600, 0x3560c,
1554 		0x35a00, 0x35a1c,
1555 		0x35e00, 0x35e20,
1556 		0x35e38, 0x35e3c,
1557 		0x35e80, 0x35e80,
1558 		0x35e88, 0x35ea8,
1559 		0x35eb0, 0x35eb4,
1560 		0x35ec8, 0x35ed4,
1561 		0x35fb8, 0x36004,
1562 		0x36200, 0x36200,
1563 		0x36208, 0x36240,
1564 		0x36248, 0x36280,
1565 		0x36288, 0x362c0,
1566 		0x362c8, 0x362fc,
1567 		0x36600, 0x36630,
1568 		0x36a00, 0x36abc,
1569 		0x36b00, 0x36b10,
1570 		0x36b20, 0x36b30,
1571 		0x36b40, 0x36b50,
1572 		0x36b60, 0x36b70,
1573 		0x37000, 0x37028,
1574 		0x37030, 0x37048,
1575 		0x37060, 0x37068,
1576 		0x37070, 0x3709c,
1577 		0x370f0, 0x37128,
1578 		0x37130, 0x37148,
1579 		0x37160, 0x37168,
1580 		0x37170, 0x3719c,
1581 		0x371f0, 0x37238,
1582 		0x37240, 0x37240,
1583 		0x37248, 0x37250,
1584 		0x3725c, 0x37264,
1585 		0x37270, 0x372b8,
1586 		0x372c0, 0x372e4,
1587 		0x372f8, 0x37338,
1588 		0x37340, 0x37340,
1589 		0x37348, 0x37350,
1590 		0x3735c, 0x37364,
1591 		0x37370, 0x373b8,
1592 		0x373c0, 0x373e4,
1593 		0x373f8, 0x37428,
1594 		0x37430, 0x37448,
1595 		0x37460, 0x37468,
1596 		0x37470, 0x3749c,
1597 		0x374f0, 0x37528,
1598 		0x37530, 0x37548,
1599 		0x37560, 0x37568,
1600 		0x37570, 0x3759c,
1601 		0x375f0, 0x37638,
1602 		0x37640, 0x37640,
1603 		0x37648, 0x37650,
1604 		0x3765c, 0x37664,
1605 		0x37670, 0x376b8,
1606 		0x376c0, 0x376e4,
1607 		0x376f8, 0x37738,
1608 		0x37740, 0x37740,
1609 		0x37748, 0x37750,
1610 		0x3775c, 0x37764,
1611 		0x37770, 0x377b8,
1612 		0x377c0, 0x377e4,
1613 		0x377f8, 0x377fc,
1614 		0x37814, 0x37814,
1615 		0x3782c, 0x3782c,
1616 		0x37880, 0x3788c,
1617 		0x378e8, 0x378ec,
1618 		0x37900, 0x37928,
1619 		0x37930, 0x37948,
1620 		0x37960, 0x37968,
1621 		0x37970, 0x3799c,
1622 		0x379f0, 0x37a38,
1623 		0x37a40, 0x37a40,
1624 		0x37a48, 0x37a50,
1625 		0x37a5c, 0x37a64,
1626 		0x37a70, 0x37ab8,
1627 		0x37ac0, 0x37ae4,
1628 		0x37af8, 0x37b10,
1629 		0x37b28, 0x37b28,
1630 		0x37b3c, 0x37b50,
1631 		0x37bf0, 0x37c10,
1632 		0x37c28, 0x37c28,
1633 		0x37c3c, 0x37c50,
1634 		0x37cf0, 0x37cfc,
1635 		0x38000, 0x38030,
1636 		0x38038, 0x38038,
1637 		0x38040, 0x38040,
1638 		0x38100, 0x38144,
1639 		0x38190, 0x381a0,
1640 		0x381a8, 0x381b8,
1641 		0x381c4, 0x381c8,
1642 		0x381d0, 0x381d0,
1643 		0x38200, 0x38318,
1644 		0x38400, 0x384b4,
1645 		0x384c0, 0x3852c,
1646 		0x38540, 0x3861c,
1647 		0x38800, 0x38828,
1648 		0x38834, 0x38834,
1649 		0x388c0, 0x38908,
1650 		0x38910, 0x389ac,
1651 		0x38a00, 0x38a14,
1652 		0x38a1c, 0x38a2c,
1653 		0x38a44, 0x38a50,
1654 		0x38a74, 0x38a74,
1655 		0x38a7c, 0x38afc,
1656 		0x38b08, 0x38c24,
1657 		0x38d00, 0x38d00,
1658 		0x38d08, 0x38d14,
1659 		0x38d1c, 0x38d20,
1660 		0x38d3c, 0x38d3c,
1661 		0x38d48, 0x38d50,
1662 		0x39200, 0x3920c,
1663 		0x39220, 0x39220,
1664 		0x39240, 0x39240,
1665 		0x39600, 0x3960c,
1666 		0x39a00, 0x39a1c,
1667 		0x39e00, 0x39e20,
1668 		0x39e38, 0x39e3c,
1669 		0x39e80, 0x39e80,
1670 		0x39e88, 0x39ea8,
1671 		0x39eb0, 0x39eb4,
1672 		0x39ec8, 0x39ed4,
1673 		0x39fb8, 0x3a004,
1674 		0x3a200, 0x3a200,
1675 		0x3a208, 0x3a240,
1676 		0x3a248, 0x3a280,
1677 		0x3a288, 0x3a2c0,
1678 		0x3a2c8, 0x3a2fc,
1679 		0x3a600, 0x3a630,
1680 		0x3aa00, 0x3aabc,
1681 		0x3ab00, 0x3ab10,
1682 		0x3ab20, 0x3ab30,
1683 		0x3ab40, 0x3ab50,
1684 		0x3ab60, 0x3ab70,
1685 		0x3b000, 0x3b028,
1686 		0x3b030, 0x3b048,
1687 		0x3b060, 0x3b068,
1688 		0x3b070, 0x3b09c,
1689 		0x3b0f0, 0x3b128,
1690 		0x3b130, 0x3b148,
1691 		0x3b160, 0x3b168,
1692 		0x3b170, 0x3b19c,
1693 		0x3b1f0, 0x3b238,
1694 		0x3b240, 0x3b240,
1695 		0x3b248, 0x3b250,
1696 		0x3b25c, 0x3b264,
1697 		0x3b270, 0x3b2b8,
1698 		0x3b2c0, 0x3b2e4,
1699 		0x3b2f8, 0x3b338,
1700 		0x3b340, 0x3b340,
1701 		0x3b348, 0x3b350,
1702 		0x3b35c, 0x3b364,
1703 		0x3b370, 0x3b3b8,
1704 		0x3b3c0, 0x3b3e4,
1705 		0x3b3f8, 0x3b428,
1706 		0x3b430, 0x3b448,
1707 		0x3b460, 0x3b468,
1708 		0x3b470, 0x3b49c,
1709 		0x3b4f0, 0x3b528,
1710 		0x3b530, 0x3b548,
1711 		0x3b560, 0x3b568,
1712 		0x3b570, 0x3b59c,
1713 		0x3b5f0, 0x3b638,
1714 		0x3b640, 0x3b640,
1715 		0x3b648, 0x3b650,
1716 		0x3b65c, 0x3b664,
1717 		0x3b670, 0x3b6b8,
1718 		0x3b6c0, 0x3b6e4,
1719 		0x3b6f8, 0x3b738,
1720 		0x3b740, 0x3b740,
1721 		0x3b748, 0x3b750,
1722 		0x3b75c, 0x3b764,
1723 		0x3b770, 0x3b7b8,
1724 		0x3b7c0, 0x3b7e4,
1725 		0x3b7f8, 0x3b7fc,
1726 		0x3b814, 0x3b814,
1727 		0x3b82c, 0x3b82c,
1728 		0x3b880, 0x3b88c,
1729 		0x3b8e8, 0x3b8ec,
1730 		0x3b900, 0x3b928,
1731 		0x3b930, 0x3b948,
1732 		0x3b960, 0x3b968,
1733 		0x3b970, 0x3b99c,
1734 		0x3b9f0, 0x3ba38,
1735 		0x3ba40, 0x3ba40,
1736 		0x3ba48, 0x3ba50,
1737 		0x3ba5c, 0x3ba64,
1738 		0x3ba70, 0x3bab8,
1739 		0x3bac0, 0x3bae4,
1740 		0x3baf8, 0x3bb10,
1741 		0x3bb28, 0x3bb28,
1742 		0x3bb3c, 0x3bb50,
1743 		0x3bbf0, 0x3bc10,
1744 		0x3bc28, 0x3bc28,
1745 		0x3bc3c, 0x3bc50,
1746 		0x3bcf0, 0x3bcfc,
1747 		0x3c000, 0x3c030,
1748 		0x3c038, 0x3c038,
1749 		0x3c040, 0x3c040,
1750 		0x3c100, 0x3c144,
1751 		0x3c190, 0x3c1a0,
1752 		0x3c1a8, 0x3c1b8,
1753 		0x3c1c4, 0x3c1c8,
1754 		0x3c1d0, 0x3c1d0,
1755 		0x3c200, 0x3c318,
1756 		0x3c400, 0x3c4b4,
1757 		0x3c4c0, 0x3c52c,
1758 		0x3c540, 0x3c61c,
1759 		0x3c800, 0x3c828,
1760 		0x3c834, 0x3c834,
1761 		0x3c8c0, 0x3c908,
1762 		0x3c910, 0x3c9ac,
1763 		0x3ca00, 0x3ca14,
1764 		0x3ca1c, 0x3ca2c,
1765 		0x3ca44, 0x3ca50,
1766 		0x3ca74, 0x3ca74,
1767 		0x3ca7c, 0x3cafc,
1768 		0x3cb08, 0x3cc24,
1769 		0x3cd00, 0x3cd00,
1770 		0x3cd08, 0x3cd14,
1771 		0x3cd1c, 0x3cd20,
1772 		0x3cd3c, 0x3cd3c,
1773 		0x3cd48, 0x3cd50,
1774 		0x3d200, 0x3d20c,
1775 		0x3d220, 0x3d220,
1776 		0x3d240, 0x3d240,
1777 		0x3d600, 0x3d60c,
1778 		0x3da00, 0x3da1c,
1779 		0x3de00, 0x3de20,
1780 		0x3de38, 0x3de3c,
1781 		0x3de80, 0x3de80,
1782 		0x3de88, 0x3dea8,
1783 		0x3deb0, 0x3deb4,
1784 		0x3dec8, 0x3ded4,
1785 		0x3dfb8, 0x3e004,
1786 		0x3e200, 0x3e200,
1787 		0x3e208, 0x3e240,
1788 		0x3e248, 0x3e280,
1789 		0x3e288, 0x3e2c0,
1790 		0x3e2c8, 0x3e2fc,
1791 		0x3e600, 0x3e630,
1792 		0x3ea00, 0x3eabc,
1793 		0x3eb00, 0x3eb10,
1794 		0x3eb20, 0x3eb30,
1795 		0x3eb40, 0x3eb50,
1796 		0x3eb60, 0x3eb70,
1797 		0x3f000, 0x3f028,
1798 		0x3f030, 0x3f048,
1799 		0x3f060, 0x3f068,
1800 		0x3f070, 0x3f09c,
1801 		0x3f0f0, 0x3f128,
1802 		0x3f130, 0x3f148,
1803 		0x3f160, 0x3f168,
1804 		0x3f170, 0x3f19c,
1805 		0x3f1f0, 0x3f238,
1806 		0x3f240, 0x3f240,
1807 		0x3f248, 0x3f250,
1808 		0x3f25c, 0x3f264,
1809 		0x3f270, 0x3f2b8,
1810 		0x3f2c0, 0x3f2e4,
1811 		0x3f2f8, 0x3f338,
1812 		0x3f340, 0x3f340,
1813 		0x3f348, 0x3f350,
1814 		0x3f35c, 0x3f364,
1815 		0x3f370, 0x3f3b8,
1816 		0x3f3c0, 0x3f3e4,
1817 		0x3f3f8, 0x3f428,
1818 		0x3f430, 0x3f448,
1819 		0x3f460, 0x3f468,
1820 		0x3f470, 0x3f49c,
1821 		0x3f4f0, 0x3f528,
1822 		0x3f530, 0x3f548,
1823 		0x3f560, 0x3f568,
1824 		0x3f570, 0x3f59c,
1825 		0x3f5f0, 0x3f638,
1826 		0x3f640, 0x3f640,
1827 		0x3f648, 0x3f650,
1828 		0x3f65c, 0x3f664,
1829 		0x3f670, 0x3f6b8,
1830 		0x3f6c0, 0x3f6e4,
1831 		0x3f6f8, 0x3f738,
1832 		0x3f740, 0x3f740,
1833 		0x3f748, 0x3f750,
1834 		0x3f75c, 0x3f764,
1835 		0x3f770, 0x3f7b8,
1836 		0x3f7c0, 0x3f7e4,
1837 		0x3f7f8, 0x3f7fc,
1838 		0x3f814, 0x3f814,
1839 		0x3f82c, 0x3f82c,
1840 		0x3f880, 0x3f88c,
1841 		0x3f8e8, 0x3f8ec,
1842 		0x3f900, 0x3f928,
1843 		0x3f930, 0x3f948,
1844 		0x3f960, 0x3f968,
1845 		0x3f970, 0x3f99c,
1846 		0x3f9f0, 0x3fa38,
1847 		0x3fa40, 0x3fa40,
1848 		0x3fa48, 0x3fa50,
1849 		0x3fa5c, 0x3fa64,
1850 		0x3fa70, 0x3fab8,
1851 		0x3fac0, 0x3fae4,
1852 		0x3faf8, 0x3fb10,
1853 		0x3fb28, 0x3fb28,
1854 		0x3fb3c, 0x3fb50,
1855 		0x3fbf0, 0x3fc10,
1856 		0x3fc28, 0x3fc28,
1857 		0x3fc3c, 0x3fc50,
1858 		0x3fcf0, 0x3fcfc,
1859 		0x40000, 0x4000c,
1860 		0x40040, 0x40050,
1861 		0x40060, 0x40068,
1862 		0x4007c, 0x4008c,
1863 		0x40094, 0x400b0,
1864 		0x400c0, 0x40144,
1865 		0x40180, 0x4018c,
1866 		0x40200, 0x40254,
1867 		0x40260, 0x40264,
1868 		0x40270, 0x40288,
1869 		0x40290, 0x40298,
1870 		0x402ac, 0x402c8,
1871 		0x402d0, 0x402e0,
1872 		0x402f0, 0x402f0,
1873 		0x40300, 0x4033c,
1874 		0x403f8, 0x403fc,
1875 		0x41304, 0x413c4,
1876 		0x41400, 0x4140c,
1877 		0x41414, 0x4141c,
1878 		0x41480, 0x414d0,
1879 		0x44000, 0x44054,
1880 		0x4405c, 0x44078,
1881 		0x440c0, 0x44174,
1882 		0x44180, 0x441ac,
1883 		0x441b4, 0x441b8,
1884 		0x441c0, 0x44254,
1885 		0x4425c, 0x44278,
1886 		0x442c0, 0x44374,
1887 		0x44380, 0x443ac,
1888 		0x443b4, 0x443b8,
1889 		0x443c0, 0x44454,
1890 		0x4445c, 0x44478,
1891 		0x444c0, 0x44574,
1892 		0x44580, 0x445ac,
1893 		0x445b4, 0x445b8,
1894 		0x445c0, 0x44654,
1895 		0x4465c, 0x44678,
1896 		0x446c0, 0x44774,
1897 		0x44780, 0x447ac,
1898 		0x447b4, 0x447b8,
1899 		0x447c0, 0x44854,
1900 		0x4485c, 0x44878,
1901 		0x448c0, 0x44974,
1902 		0x44980, 0x449ac,
1903 		0x449b4, 0x449b8,
1904 		0x449c0, 0x449fc,
1905 		0x45000, 0x45004,
1906 		0x45010, 0x45030,
1907 		0x45040, 0x45060,
1908 		0x45068, 0x45068,
1909 		0x45080, 0x45084,
1910 		0x450a0, 0x450b0,
1911 		0x45200, 0x45204,
1912 		0x45210, 0x45230,
1913 		0x45240, 0x45260,
1914 		0x45268, 0x45268,
1915 		0x45280, 0x45284,
1916 		0x452a0, 0x452b0,
1917 		0x460c0, 0x460e4,
1918 		0x47000, 0x4703c,
1919 		0x47044, 0x4708c,
1920 		0x47200, 0x47250,
1921 		0x47400, 0x47408,
1922 		0x47414, 0x47420,
1923 		0x47600, 0x47618,
1924 		0x47800, 0x47814,
1925 		0x48000, 0x4800c,
1926 		0x48040, 0x48050,
1927 		0x48060, 0x48068,
1928 		0x4807c, 0x4808c,
1929 		0x48094, 0x480b0,
1930 		0x480c0, 0x48144,
1931 		0x48180, 0x4818c,
1932 		0x48200, 0x48254,
1933 		0x48260, 0x48264,
1934 		0x48270, 0x48288,
1935 		0x48290, 0x48298,
1936 		0x482ac, 0x482c8,
1937 		0x482d0, 0x482e0,
1938 		0x482f0, 0x482f0,
1939 		0x48300, 0x4833c,
1940 		0x483f8, 0x483fc,
1941 		0x49304, 0x493c4,
1942 		0x49400, 0x4940c,
1943 		0x49414, 0x4941c,
1944 		0x49480, 0x494d0,
1945 		0x4c000, 0x4c054,
1946 		0x4c05c, 0x4c078,
1947 		0x4c0c0, 0x4c174,
1948 		0x4c180, 0x4c1ac,
1949 		0x4c1b4, 0x4c1b8,
1950 		0x4c1c0, 0x4c254,
1951 		0x4c25c, 0x4c278,
1952 		0x4c2c0, 0x4c374,
1953 		0x4c380, 0x4c3ac,
1954 		0x4c3b4, 0x4c3b8,
1955 		0x4c3c0, 0x4c454,
1956 		0x4c45c, 0x4c478,
1957 		0x4c4c0, 0x4c574,
1958 		0x4c580, 0x4c5ac,
1959 		0x4c5b4, 0x4c5b8,
1960 		0x4c5c0, 0x4c654,
1961 		0x4c65c, 0x4c678,
1962 		0x4c6c0, 0x4c774,
1963 		0x4c780, 0x4c7ac,
1964 		0x4c7b4, 0x4c7b8,
1965 		0x4c7c0, 0x4c854,
1966 		0x4c85c, 0x4c878,
1967 		0x4c8c0, 0x4c974,
1968 		0x4c980, 0x4c9ac,
1969 		0x4c9b4, 0x4c9b8,
1970 		0x4c9c0, 0x4c9fc,
1971 		0x4d000, 0x4d004,
1972 		0x4d010, 0x4d030,
1973 		0x4d040, 0x4d060,
1974 		0x4d068, 0x4d068,
1975 		0x4d080, 0x4d084,
1976 		0x4d0a0, 0x4d0b0,
1977 		0x4d200, 0x4d204,
1978 		0x4d210, 0x4d230,
1979 		0x4d240, 0x4d260,
1980 		0x4d268, 0x4d268,
1981 		0x4d280, 0x4d284,
1982 		0x4d2a0, 0x4d2b0,
1983 		0x4e0c0, 0x4e0e4,
1984 		0x4f000, 0x4f03c,
1985 		0x4f044, 0x4f08c,
1986 		0x4f200, 0x4f250,
1987 		0x4f400, 0x4f408,
1988 		0x4f414, 0x4f420,
1989 		0x4f600, 0x4f618,
1990 		0x4f800, 0x4f814,
1991 		0x50000, 0x50084,
1992 		0x50090, 0x500cc,
1993 		0x50400, 0x50400,
1994 		0x50800, 0x50884,
1995 		0x50890, 0x508cc,
1996 		0x50c00, 0x50c00,
1997 		0x51000, 0x5101c,
1998 		0x51300, 0x51308,
1999 	};
2000 
2001 	static const unsigned int t5vf_reg_ranges[] = {
2002 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2003 		VF_MPS_REG(A_MPS_VF_CTL),
2004 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2005 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2006 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2007 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2008 		FW_T4VF_MBDATA_BASE_ADDR,
2009 		FW_T4VF_MBDATA_BASE_ADDR +
2010 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2011 	};
2012 
2013 	static const unsigned int t6_reg_ranges[] = {
2014 		0x1008, 0x101c,
2015 		0x1024, 0x10a8,
2016 		0x10b4, 0x10f8,
2017 		0x1100, 0x1114,
2018 		0x111c, 0x112c,
2019 		0x1138, 0x113c,
2020 		0x1144, 0x114c,
2021 		0x1180, 0x1184,
2022 		0x1190, 0x1194,
2023 		0x11a0, 0x11a4,
2024 		0x11b0, 0x11b4,
2025 		0x11fc, 0x1274,
2026 		0x1280, 0x133c,
2027 		0x1800, 0x18fc,
2028 		0x3000, 0x302c,
2029 		0x3060, 0x30b0,
2030 		0x30b8, 0x30d8,
2031 		0x30e0, 0x30fc,
2032 		0x3140, 0x357c,
2033 		0x35a8, 0x35cc,
2034 		0x35ec, 0x35ec,
2035 		0x3600, 0x5624,
2036 		0x56cc, 0x56ec,
2037 		0x56f4, 0x5720,
2038 		0x5728, 0x575c,
2039 		0x580c, 0x5814,
2040 		0x5890, 0x589c,
2041 		0x58a4, 0x58ac,
2042 		0x58b8, 0x58bc,
2043 		0x5940, 0x595c,
2044 		0x5980, 0x598c,
2045 		0x59b0, 0x59c8,
2046 		0x59d0, 0x59dc,
2047 		0x59fc, 0x5a18,
2048 		0x5a60, 0x5a6c,
2049 		0x5a80, 0x5a8c,
2050 		0x5a94, 0x5a9c,
2051 		0x5b94, 0x5bfc,
2052 		0x5c10, 0x5e48,
2053 		0x5e50, 0x5e94,
2054 		0x5ea0, 0x5eb0,
2055 		0x5ec0, 0x5ec0,
2056 		0x5ec8, 0x5ed0,
2057 		0x5ee0, 0x5ee0,
2058 		0x5ef0, 0x5ef0,
2059 		0x5f00, 0x5f00,
2060 		0x6000, 0x6020,
2061 		0x6028, 0x6040,
2062 		0x6058, 0x609c,
2063 		0x60a8, 0x619c,
2064 		0x7700, 0x7798,
2065 		0x77c0, 0x7880,
2066 		0x78cc, 0x78fc,
2067 		0x7b00, 0x7b58,
2068 		0x7b60, 0x7b84,
2069 		0x7b8c, 0x7c54,
2070 		0x7d00, 0x7d38,
2071 		0x7d40, 0x7d84,
2072 		0x7d8c, 0x7ddc,
2073 		0x7de4, 0x7e04,
2074 		0x7e10, 0x7e1c,
2075 		0x7e24, 0x7e38,
2076 		0x7e40, 0x7e44,
2077 		0x7e4c, 0x7e78,
2078 		0x7e80, 0x7edc,
2079 		0x7ee8, 0x7efc,
2080 		0x8dc0, 0x8de4,
2081 		0x8df8, 0x8e04,
2082 		0x8e10, 0x8e84,
2083 		0x8ea0, 0x8f88,
2084 		0x8fb8, 0x9058,
2085 		0x9060, 0x9060,
2086 		0x9068, 0x90f8,
2087 		0x9100, 0x9124,
2088 		0x9400, 0x9470,
2089 		0x9600, 0x9600,
2090 		0x9608, 0x9638,
2091 		0x9640, 0x9704,
2092 		0x9710, 0x971c,
2093 		0x9800, 0x9808,
2094 		0x9820, 0x983c,
2095 		0x9850, 0x9864,
2096 		0x9c00, 0x9c6c,
2097 		0x9c80, 0x9cec,
2098 		0x9d00, 0x9d6c,
2099 		0x9d80, 0x9dec,
2100 		0x9e00, 0x9e6c,
2101 		0x9e80, 0x9eec,
2102 		0x9f00, 0x9f6c,
2103 		0x9f80, 0xa020,
2104 		0xd004, 0xd03c,
2105 		0xd100, 0xd118,
2106 		0xd200, 0xd214,
2107 		0xd220, 0xd234,
2108 		0xd240, 0xd254,
2109 		0xd260, 0xd274,
2110 		0xd280, 0xd294,
2111 		0xd2a0, 0xd2b4,
2112 		0xd2c0, 0xd2d4,
2113 		0xd2e0, 0xd2f4,
2114 		0xd300, 0xd31c,
2115 		0xdfc0, 0xdfe0,
2116 		0xe000, 0xf008,
2117 		0xf010, 0xf018,
2118 		0xf020, 0xf028,
2119 		0x11000, 0x11014,
2120 		0x11048, 0x1106c,
2121 		0x11074, 0x11088,
2122 		0x11098, 0x11120,
2123 		0x1112c, 0x1117c,
2124 		0x11190, 0x112e0,
2125 		0x11300, 0x1130c,
2126 		0x12000, 0x1206c,
2127 		0x19040, 0x1906c,
2128 		0x19078, 0x19080,
2129 		0x1908c, 0x190e8,
2130 		0x190f0, 0x190f8,
2131 		0x19100, 0x19110,
2132 		0x19120, 0x19124,
2133 		0x19150, 0x19194,
2134 		0x1919c, 0x191b0,
2135 		0x191d0, 0x191e8,
2136 		0x19238, 0x19290,
2137 		0x192a4, 0x192b0,
2138 		0x192bc, 0x192bc,
2139 		0x19348, 0x1934c,
2140 		0x193f8, 0x19418,
2141 		0x19420, 0x19428,
2142 		0x19430, 0x19444,
2143 		0x1944c, 0x1946c,
2144 		0x19474, 0x19474,
2145 		0x19490, 0x194cc,
2146 		0x194f0, 0x194f8,
2147 		0x19c00, 0x19c48,
2148 		0x19c50, 0x19c80,
2149 		0x19c94, 0x19c98,
2150 		0x19ca0, 0x19cbc,
2151 		0x19ce4, 0x19ce4,
2152 		0x19cf0, 0x19cf8,
2153 		0x19d00, 0x19d28,
2154 		0x19d50, 0x19d78,
2155 		0x19d94, 0x19d98,
2156 		0x19da0, 0x19dc8,
2157 		0x19df0, 0x19e10,
2158 		0x19e50, 0x19e6c,
2159 		0x19ea0, 0x19ebc,
2160 		0x19ec4, 0x19ef4,
2161 		0x19f04, 0x19f2c,
2162 		0x19f34, 0x19f34,
2163 		0x19f40, 0x19f50,
2164 		0x19f90, 0x19fac,
2165 		0x19fc4, 0x19fc8,
2166 		0x19fd0, 0x19fe4,
2167 		0x1a000, 0x1a004,
2168 		0x1a010, 0x1a06c,
2169 		0x1a0b0, 0x1a0e4,
2170 		0x1a0ec, 0x1a0f8,
2171 		0x1a100, 0x1a108,
2172 		0x1a114, 0x1a120,
2173 		0x1a128, 0x1a130,
2174 		0x1a138, 0x1a138,
2175 		0x1a190, 0x1a1c4,
2176 		0x1a1fc, 0x1a1fc,
2177 		0x1e008, 0x1e00c,
2178 		0x1e040, 0x1e044,
2179 		0x1e04c, 0x1e04c,
2180 		0x1e284, 0x1e290,
2181 		0x1e2c0, 0x1e2c0,
2182 		0x1e2e0, 0x1e2e0,
2183 		0x1e300, 0x1e384,
2184 		0x1e3c0, 0x1e3c8,
2185 		0x1e408, 0x1e40c,
2186 		0x1e440, 0x1e444,
2187 		0x1e44c, 0x1e44c,
2188 		0x1e684, 0x1e690,
2189 		0x1e6c0, 0x1e6c0,
2190 		0x1e6e0, 0x1e6e0,
2191 		0x1e700, 0x1e784,
2192 		0x1e7c0, 0x1e7c8,
2193 		0x1e808, 0x1e80c,
2194 		0x1e840, 0x1e844,
2195 		0x1e84c, 0x1e84c,
2196 		0x1ea84, 0x1ea90,
2197 		0x1eac0, 0x1eac0,
2198 		0x1eae0, 0x1eae0,
2199 		0x1eb00, 0x1eb84,
2200 		0x1ebc0, 0x1ebc8,
2201 		0x1ec08, 0x1ec0c,
2202 		0x1ec40, 0x1ec44,
2203 		0x1ec4c, 0x1ec4c,
2204 		0x1ee84, 0x1ee90,
2205 		0x1eec0, 0x1eec0,
2206 		0x1eee0, 0x1eee0,
2207 		0x1ef00, 0x1ef84,
2208 		0x1efc0, 0x1efc8,
2209 		0x1f008, 0x1f00c,
2210 		0x1f040, 0x1f044,
2211 		0x1f04c, 0x1f04c,
2212 		0x1f284, 0x1f290,
2213 		0x1f2c0, 0x1f2c0,
2214 		0x1f2e0, 0x1f2e0,
2215 		0x1f300, 0x1f384,
2216 		0x1f3c0, 0x1f3c8,
2217 		0x1f408, 0x1f40c,
2218 		0x1f440, 0x1f444,
2219 		0x1f44c, 0x1f44c,
2220 		0x1f684, 0x1f690,
2221 		0x1f6c0, 0x1f6c0,
2222 		0x1f6e0, 0x1f6e0,
2223 		0x1f700, 0x1f784,
2224 		0x1f7c0, 0x1f7c8,
2225 		0x1f808, 0x1f80c,
2226 		0x1f840, 0x1f844,
2227 		0x1f84c, 0x1f84c,
2228 		0x1fa84, 0x1fa90,
2229 		0x1fac0, 0x1fac0,
2230 		0x1fae0, 0x1fae0,
2231 		0x1fb00, 0x1fb84,
2232 		0x1fbc0, 0x1fbc8,
2233 		0x1fc08, 0x1fc0c,
2234 		0x1fc40, 0x1fc44,
2235 		0x1fc4c, 0x1fc4c,
2236 		0x1fe84, 0x1fe90,
2237 		0x1fec0, 0x1fec0,
2238 		0x1fee0, 0x1fee0,
2239 		0x1ff00, 0x1ff84,
2240 		0x1ffc0, 0x1ffc8,
2241 		0x30000, 0x30030,
2242 		0x30038, 0x30038,
2243 		0x30040, 0x30040,
2244 		0x30048, 0x30048,
2245 		0x30050, 0x30050,
2246 		0x3005c, 0x30060,
2247 		0x30068, 0x30068,
2248 		0x30070, 0x30070,
2249 		0x30100, 0x30168,
2250 		0x30190, 0x301a0,
2251 		0x301a8, 0x301b8,
2252 		0x301c4, 0x301c8,
2253 		0x301d0, 0x301d0,
2254 		0x30200, 0x30320,
2255 		0x30400, 0x304b4,
2256 		0x304c0, 0x3052c,
2257 		0x30540, 0x3061c,
2258 		0x30800, 0x308a0,
2259 		0x308c0, 0x30908,
2260 		0x30910, 0x309b8,
2261 		0x30a00, 0x30a04,
2262 		0x30a0c, 0x30a14,
2263 		0x30a1c, 0x30a2c,
2264 		0x30a44, 0x30a50,
2265 		0x30a74, 0x30a74,
2266 		0x30a7c, 0x30afc,
2267 		0x30b08, 0x30c24,
2268 		0x30d00, 0x30d14,
2269 		0x30d1c, 0x30d3c,
2270 		0x30d44, 0x30d4c,
2271 		0x30d54, 0x30d74,
2272 		0x30d7c, 0x30d7c,
2273 		0x30de0, 0x30de0,
2274 		0x30e00, 0x30ed4,
2275 		0x30f00, 0x30fa4,
2276 		0x30fc0, 0x30fc4,
2277 		0x31000, 0x31004,
2278 		0x31080, 0x310fc,
2279 		0x31208, 0x31220,
2280 		0x3123c, 0x31254,
2281 		0x31300, 0x31300,
2282 		0x31308, 0x3131c,
2283 		0x31338, 0x3133c,
2284 		0x31380, 0x31380,
2285 		0x31388, 0x313a8,
2286 		0x313b4, 0x313b4,
2287 		0x31400, 0x31420,
2288 		0x31438, 0x3143c,
2289 		0x31480, 0x31480,
2290 		0x314a8, 0x314a8,
2291 		0x314b0, 0x314b4,
2292 		0x314c8, 0x314d4,
2293 		0x31a40, 0x31a4c,
2294 		0x31af0, 0x31b20,
2295 		0x31b38, 0x31b3c,
2296 		0x31b80, 0x31b80,
2297 		0x31ba8, 0x31ba8,
2298 		0x31bb0, 0x31bb4,
2299 		0x31bc8, 0x31bd4,
2300 		0x32140, 0x3218c,
2301 		0x321f0, 0x321f4,
2302 		0x32200, 0x32200,
2303 		0x32218, 0x32218,
2304 		0x32400, 0x32400,
2305 		0x32408, 0x3241c,
2306 		0x32618, 0x32620,
2307 		0x32664, 0x32664,
2308 		0x326a8, 0x326a8,
2309 		0x326ec, 0x326ec,
2310 		0x32a00, 0x32abc,
2311 		0x32b00, 0x32b38,
2312 		0x32b40, 0x32b58,
2313 		0x32b60, 0x32b78,
2314 		0x32c00, 0x32c00,
2315 		0x32c08, 0x32c3c,
2316 		0x32e00, 0x32e2c,
2317 		0x32f00, 0x32f2c,
2318 		0x33000, 0x3302c,
2319 		0x33034, 0x33050,
2320 		0x33058, 0x33058,
2321 		0x33060, 0x3308c,
2322 		0x3309c, 0x330ac,
2323 		0x330c0, 0x330c0,
2324 		0x330c8, 0x330d0,
2325 		0x330d8, 0x330e0,
2326 		0x330ec, 0x3312c,
2327 		0x33134, 0x33150,
2328 		0x33158, 0x33158,
2329 		0x33160, 0x3318c,
2330 		0x3319c, 0x331ac,
2331 		0x331c0, 0x331c0,
2332 		0x331c8, 0x331d0,
2333 		0x331d8, 0x331e0,
2334 		0x331ec, 0x33290,
2335 		0x33298, 0x332c4,
2336 		0x332e4, 0x33390,
2337 		0x33398, 0x333c4,
2338 		0x333e4, 0x3342c,
2339 		0x33434, 0x33450,
2340 		0x33458, 0x33458,
2341 		0x33460, 0x3348c,
2342 		0x3349c, 0x334ac,
2343 		0x334c0, 0x334c0,
2344 		0x334c8, 0x334d0,
2345 		0x334d8, 0x334e0,
2346 		0x334ec, 0x3352c,
2347 		0x33534, 0x33550,
2348 		0x33558, 0x33558,
2349 		0x33560, 0x3358c,
2350 		0x3359c, 0x335ac,
2351 		0x335c0, 0x335c0,
2352 		0x335c8, 0x335d0,
2353 		0x335d8, 0x335e0,
2354 		0x335ec, 0x33690,
2355 		0x33698, 0x336c4,
2356 		0x336e4, 0x33790,
2357 		0x33798, 0x337c4,
2358 		0x337e4, 0x337fc,
2359 		0x33814, 0x33814,
2360 		0x33854, 0x33868,
2361 		0x33880, 0x3388c,
2362 		0x338c0, 0x338d0,
2363 		0x338e8, 0x338ec,
2364 		0x33900, 0x3392c,
2365 		0x33934, 0x33950,
2366 		0x33958, 0x33958,
2367 		0x33960, 0x3398c,
2368 		0x3399c, 0x339ac,
2369 		0x339c0, 0x339c0,
2370 		0x339c8, 0x339d0,
2371 		0x339d8, 0x339e0,
2372 		0x339ec, 0x33a90,
2373 		0x33a98, 0x33ac4,
2374 		0x33ae4, 0x33b10,
2375 		0x33b24, 0x33b28,
2376 		0x33b38, 0x33b50,
2377 		0x33bf0, 0x33c10,
2378 		0x33c24, 0x33c28,
2379 		0x33c38, 0x33c50,
2380 		0x33cf0, 0x33cfc,
2381 		0x34000, 0x34030,
2382 		0x34038, 0x34038,
2383 		0x34040, 0x34040,
2384 		0x34048, 0x34048,
2385 		0x34050, 0x34050,
2386 		0x3405c, 0x34060,
2387 		0x34068, 0x34068,
2388 		0x34070, 0x34070,
2389 		0x34100, 0x34168,
2390 		0x34190, 0x341a0,
2391 		0x341a8, 0x341b8,
2392 		0x341c4, 0x341c8,
2393 		0x341d0, 0x341d0,
2394 		0x34200, 0x34320,
2395 		0x34400, 0x344b4,
2396 		0x344c0, 0x3452c,
2397 		0x34540, 0x3461c,
2398 		0x34800, 0x348a0,
2399 		0x348c0, 0x34908,
2400 		0x34910, 0x349b8,
2401 		0x34a00, 0x34a04,
2402 		0x34a0c, 0x34a14,
2403 		0x34a1c, 0x34a2c,
2404 		0x34a44, 0x34a50,
2405 		0x34a74, 0x34a74,
2406 		0x34a7c, 0x34afc,
2407 		0x34b08, 0x34c24,
2408 		0x34d00, 0x34d14,
2409 		0x34d1c, 0x34d3c,
2410 		0x34d44, 0x34d4c,
2411 		0x34d54, 0x34d74,
2412 		0x34d7c, 0x34d7c,
2413 		0x34de0, 0x34de0,
2414 		0x34e00, 0x34ed4,
2415 		0x34f00, 0x34fa4,
2416 		0x34fc0, 0x34fc4,
2417 		0x35000, 0x35004,
2418 		0x35080, 0x350fc,
2419 		0x35208, 0x35220,
2420 		0x3523c, 0x35254,
2421 		0x35300, 0x35300,
2422 		0x35308, 0x3531c,
2423 		0x35338, 0x3533c,
2424 		0x35380, 0x35380,
2425 		0x35388, 0x353a8,
2426 		0x353b4, 0x353b4,
2427 		0x35400, 0x35420,
2428 		0x35438, 0x3543c,
2429 		0x35480, 0x35480,
2430 		0x354a8, 0x354a8,
2431 		0x354b0, 0x354b4,
2432 		0x354c8, 0x354d4,
2433 		0x35a40, 0x35a4c,
2434 		0x35af0, 0x35b20,
2435 		0x35b38, 0x35b3c,
2436 		0x35b80, 0x35b80,
2437 		0x35ba8, 0x35ba8,
2438 		0x35bb0, 0x35bb4,
2439 		0x35bc8, 0x35bd4,
2440 		0x36140, 0x3618c,
2441 		0x361f0, 0x361f4,
2442 		0x36200, 0x36200,
2443 		0x36218, 0x36218,
2444 		0x36400, 0x36400,
2445 		0x36408, 0x3641c,
2446 		0x36618, 0x36620,
2447 		0x36664, 0x36664,
2448 		0x366a8, 0x366a8,
2449 		0x366ec, 0x366ec,
2450 		0x36a00, 0x36abc,
2451 		0x36b00, 0x36b38,
2452 		0x36b40, 0x36b58,
2453 		0x36b60, 0x36b78,
2454 		0x36c00, 0x36c00,
2455 		0x36c08, 0x36c3c,
2456 		0x36e00, 0x36e2c,
2457 		0x36f00, 0x36f2c,
2458 		0x37000, 0x3702c,
2459 		0x37034, 0x37050,
2460 		0x37058, 0x37058,
2461 		0x37060, 0x3708c,
2462 		0x3709c, 0x370ac,
2463 		0x370c0, 0x370c0,
2464 		0x370c8, 0x370d0,
2465 		0x370d8, 0x370e0,
2466 		0x370ec, 0x3712c,
2467 		0x37134, 0x37150,
2468 		0x37158, 0x37158,
2469 		0x37160, 0x3718c,
2470 		0x3719c, 0x371ac,
2471 		0x371c0, 0x371c0,
2472 		0x371c8, 0x371d0,
2473 		0x371d8, 0x371e0,
2474 		0x371ec, 0x37290,
2475 		0x37298, 0x372c4,
2476 		0x372e4, 0x37390,
2477 		0x37398, 0x373c4,
2478 		0x373e4, 0x3742c,
2479 		0x37434, 0x37450,
2480 		0x37458, 0x37458,
2481 		0x37460, 0x3748c,
2482 		0x3749c, 0x374ac,
2483 		0x374c0, 0x374c0,
2484 		0x374c8, 0x374d0,
2485 		0x374d8, 0x374e0,
2486 		0x374ec, 0x3752c,
2487 		0x37534, 0x37550,
2488 		0x37558, 0x37558,
2489 		0x37560, 0x3758c,
2490 		0x3759c, 0x375ac,
2491 		0x375c0, 0x375c0,
2492 		0x375c8, 0x375d0,
2493 		0x375d8, 0x375e0,
2494 		0x375ec, 0x37690,
2495 		0x37698, 0x376c4,
2496 		0x376e4, 0x37790,
2497 		0x37798, 0x377c4,
2498 		0x377e4, 0x377fc,
2499 		0x37814, 0x37814,
2500 		0x37854, 0x37868,
2501 		0x37880, 0x3788c,
2502 		0x378c0, 0x378d0,
2503 		0x378e8, 0x378ec,
2504 		0x37900, 0x3792c,
2505 		0x37934, 0x37950,
2506 		0x37958, 0x37958,
2507 		0x37960, 0x3798c,
2508 		0x3799c, 0x379ac,
2509 		0x379c0, 0x379c0,
2510 		0x379c8, 0x379d0,
2511 		0x379d8, 0x379e0,
2512 		0x379ec, 0x37a90,
2513 		0x37a98, 0x37ac4,
2514 		0x37ae4, 0x37b10,
2515 		0x37b24, 0x37b28,
2516 		0x37b38, 0x37b50,
2517 		0x37bf0, 0x37c10,
2518 		0x37c24, 0x37c28,
2519 		0x37c38, 0x37c50,
2520 		0x37cf0, 0x37cfc,
2521 		0x40040, 0x40040,
2522 		0x40080, 0x40084,
2523 		0x40100, 0x40100,
2524 		0x40140, 0x401bc,
2525 		0x40200, 0x40214,
2526 		0x40228, 0x40228,
2527 		0x40240, 0x40258,
2528 		0x40280, 0x40280,
2529 		0x40304, 0x40304,
2530 		0x40330, 0x4033c,
2531 		0x41304, 0x413c8,
2532 		0x413d0, 0x413dc,
2533 		0x413f0, 0x413f0,
2534 		0x41400, 0x4140c,
2535 		0x41414, 0x4141c,
2536 		0x41480, 0x414d0,
2537 		0x44000, 0x4407c,
2538 		0x440c0, 0x441ac,
2539 		0x441b4, 0x4427c,
2540 		0x442c0, 0x443ac,
2541 		0x443b4, 0x4447c,
2542 		0x444c0, 0x445ac,
2543 		0x445b4, 0x4467c,
2544 		0x446c0, 0x447ac,
2545 		0x447b4, 0x4487c,
2546 		0x448c0, 0x449ac,
2547 		0x449b4, 0x44a7c,
2548 		0x44ac0, 0x44bac,
2549 		0x44bb4, 0x44c7c,
2550 		0x44cc0, 0x44dac,
2551 		0x44db4, 0x44e7c,
2552 		0x44ec0, 0x44fac,
2553 		0x44fb4, 0x4507c,
2554 		0x450c0, 0x451ac,
2555 		0x451b4, 0x451fc,
2556 		0x45800, 0x45804,
2557 		0x45810, 0x45830,
2558 		0x45840, 0x45860,
2559 		0x45868, 0x45868,
2560 		0x45880, 0x45884,
2561 		0x458a0, 0x458b0,
2562 		0x45a00, 0x45a04,
2563 		0x45a10, 0x45a30,
2564 		0x45a40, 0x45a60,
2565 		0x45a68, 0x45a68,
2566 		0x45a80, 0x45a84,
2567 		0x45aa0, 0x45ab0,
2568 		0x460c0, 0x460e4,
2569 		0x47000, 0x4703c,
2570 		0x47044, 0x4708c,
2571 		0x47200, 0x47250,
2572 		0x47400, 0x47408,
2573 		0x47414, 0x47420,
2574 		0x47600, 0x47618,
2575 		0x47800, 0x47814,
2576 		0x47820, 0x4782c,
2577 		0x50000, 0x50084,
2578 		0x50090, 0x500cc,
2579 		0x50300, 0x50384,
2580 		0x50400, 0x50400,
2581 		0x50800, 0x50884,
2582 		0x50890, 0x508cc,
2583 		0x50b00, 0x50b84,
2584 		0x50c00, 0x50c00,
2585 		0x51000, 0x51020,
2586 		0x51028, 0x510b0,
2587 		0x51300, 0x51324,
2588 	};
2589 
2590 	static const unsigned int t6vf_reg_ranges[] = {
2591 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2592 		VF_MPS_REG(A_MPS_VF_CTL),
2593 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2594 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2595 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2596 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2597 		FW_T6VF_MBDATA_BASE_ADDR,
2598 		FW_T6VF_MBDATA_BASE_ADDR +
2599 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2600 	};
2601 
2602 	u32 *buf_end = (u32 *)(buf + buf_size);
2603 	const unsigned int *reg_ranges;
2604 	int reg_ranges_size, range;
2605 	unsigned int chip_version = chip_id(adap);
2606 
2607 	/*
2608 	 * Select the right set of register ranges to dump depending on the
2609 	 * adapter chip type.
2610 	 */
2611 	switch (chip_version) {
2612 	case CHELSIO_T4:
2613 		if (adap->flags & IS_VF) {
2614 			reg_ranges = t4vf_reg_ranges;
2615 			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2616 		} else {
2617 			reg_ranges = t4_reg_ranges;
2618 			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2619 		}
2620 		break;
2621 
2622 	case CHELSIO_T5:
2623 		if (adap->flags & IS_VF) {
2624 			reg_ranges = t5vf_reg_ranges;
2625 			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2626 		} else {
2627 			reg_ranges = t5_reg_ranges;
2628 			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2629 		}
2630 		break;
2631 
2632 	case CHELSIO_T6:
2633 		if (adap->flags & IS_VF) {
2634 			reg_ranges = t6vf_reg_ranges;
2635 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2636 		} else {
2637 			reg_ranges = t6_reg_ranges;
2638 			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2639 		}
2640 		break;
2641 
2642 	default:
2643 		CH_ERR(adap,
2644 			"Unsupported chip version %d\n", chip_version);
2645 		return;
2646 	}
2647 
2648 	/*
2649 	 * Clear the register buffer and insert the appropriate register
2650 	 * values selected by the above register ranges.
2651 	 */
2652 	memset(buf, 0, buf_size);
2653 	for (range = 0; range < reg_ranges_size; range += 2) {
2654 		unsigned int reg = reg_ranges[range];
2655 		unsigned int last_reg = reg_ranges[range + 1];
2656 		u32 *bufp = (u32 *)(buf + reg);
2657 
2658 		/*
2659 		 * Iterate across the register range filling in the register
2660 		 * buffer but don't write past the end of the register buffer.
2661 		 */
2662 		while (reg <= last_reg && bufp < buf_end) {
2663 			*bufp++ = t4_read_reg(adap, reg);
2664 			reg += sizeof(u32);
2665 		}
2666 	}
2667 }
2668 
2669 /*
2670  * Partial EEPROM Vital Product Data structure.  Includes only the ID and
2671  * VPD-R sections.
2672  */
2673 struct t4_vpd_hdr {
2674 	u8  id_tag;
2675 	u8  id_len[2];
2676 	u8  id_data[ID_LEN];
2677 	u8  vpdr_tag;
2678 	u8  vpdr_len[2];
2679 };
2680 
2681 /*
2682  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2683  */
2684 #define EEPROM_DELAY		10		/* 10us per poll spin */
2685 #define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2686 
2687 #define EEPROM_STAT_ADDR	0x7bfc
2688 #define VPD_BASE		0x400
2689 #define VPD_BASE_OLD		0
2690 #define VPD_LEN			1024
2691 #define VPD_INFO_FLD_HDR_SIZE	3
2692 #define CHELSIO_VPD_UNIQUE_ID	0x82
2693 
2694 /*
2695  * Small utility function to wait till any outstanding VPD Access is complete.
2696  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2697  * VPD Access in flight.  This allows us to handle the problem of having a
2698  * previous VPD Access time out and prevent an attempt to inject a new VPD
2699  * Request before any in-flight VPD reguest has completed.
2700  */
2701 static int t4_seeprom_wait(struct adapter *adapter)
2702 {
2703 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2704 	int max_poll;
2705 
2706 	/*
2707 	 * If no VPD Access is in flight, we can just return success right
2708 	 * away.
2709 	 */
2710 	if (!adapter->vpd_busy)
2711 		return 0;
2712 
2713 	/*
2714 	 * Poll the VPD Capability Address/Flag register waiting for it
2715 	 * to indicate that the operation is complete.
2716 	 */
2717 	max_poll = EEPROM_MAX_POLL;
2718 	do {
2719 		u16 val;
2720 
2721 		udelay(EEPROM_DELAY);
2722 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2723 
2724 		/*
2725 		 * If the operation is complete, mark the VPD as no longer
2726 		 * busy and return success.
2727 		 */
2728 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2729 			adapter->vpd_busy = 0;
2730 			return 0;
2731 		}
2732 	} while (--max_poll);
2733 
2734 	/*
2735 	 * Failure!  Note that we leave the VPD Busy status set in order to
2736 	 * avoid pushing a new VPD Access request into the VPD Capability till
2737 	 * the current operation eventually succeeds.  It's a bug to issue a
2738 	 * new request when an existing request is in flight and will result
2739 	 * in corrupt hardware state.
2740 	 */
2741 	return -ETIMEDOUT;
2742 }
2743 
2744 /**
2745  *	t4_seeprom_read - read a serial EEPROM location
2746  *	@adapter: adapter to read
2747  *	@addr: EEPROM virtual address
2748  *	@data: where to store the read data
2749  *
2750  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2751  *	VPD capability.  Note that this function must be called with a virtual
2752  *	address.
2753  */
2754 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2755 {
2756 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2757 	int ret;
2758 
2759 	/*
2760 	 * VPD Accesses must alway be 4-byte aligned!
2761 	 */
2762 	if (addr >= EEPROMVSIZE || (addr & 3))
2763 		return -EINVAL;
2764 
2765 	/*
2766 	 * Wait for any previous operation which may still be in flight to
2767 	 * complete.
2768 	 */
2769 	ret = t4_seeprom_wait(adapter);
2770 	if (ret) {
2771 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2772 		return ret;
2773 	}
2774 
2775 	/*
2776 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2777 	 * for our request to complete.  If it doesn't complete, note the
2778 	 * error and return it to our caller.  Note that we do not reset the
2779 	 * VPD Busy status!
2780 	 */
2781 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2782 	adapter->vpd_busy = 1;
2783 	adapter->vpd_flag = PCI_VPD_ADDR_F;
2784 	ret = t4_seeprom_wait(adapter);
2785 	if (ret) {
2786 		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2787 		return ret;
2788 	}
2789 
2790 	/*
2791 	 * Grab the returned data, swizzle it into our endianness and
2792 	 * return success.
2793 	 */
2794 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2795 	*data = le32_to_cpu(*data);
2796 	return 0;
2797 }
2798 
2799 /**
2800  *	t4_seeprom_write - write a serial EEPROM location
2801  *	@adapter: adapter to write
2802  *	@addr: virtual EEPROM address
2803  *	@data: value to write
2804  *
2805  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2806  *	VPD capability.  Note that this function must be called with a virtual
2807  *	address.
2808  */
2809 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2810 {
2811 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2812 	int ret;
2813 	u32 stats_reg;
2814 	int max_poll;
2815 
2816 	/*
2817 	 * VPD Accesses must alway be 4-byte aligned!
2818 	 */
2819 	if (addr >= EEPROMVSIZE || (addr & 3))
2820 		return -EINVAL;
2821 
2822 	/*
2823 	 * Wait for any previous operation which may still be in flight to
2824 	 * complete.
2825 	 */
2826 	ret = t4_seeprom_wait(adapter);
2827 	if (ret) {
2828 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2829 		return ret;
2830 	}
2831 
2832 	/*
2833 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2834 	 * for our request to complete.  If it doesn't complete, note the
2835 	 * error and return it to our caller.  Note that we do not reset the
2836 	 * VPD Busy status!
2837 	 */
2838 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2839 				 cpu_to_le32(data));
2840 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2841 				 (u16)addr | PCI_VPD_ADDR_F);
2842 	adapter->vpd_busy = 1;
2843 	adapter->vpd_flag = 0;
2844 	ret = t4_seeprom_wait(adapter);
2845 	if (ret) {
2846 		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2847 		return ret;
2848 	}
2849 
2850 	/*
2851 	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2852 	 * request to complete. If it doesn't complete, return error.
2853 	 */
2854 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2855 	max_poll = EEPROM_MAX_POLL;
2856 	do {
2857 		udelay(EEPROM_DELAY);
2858 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2859 	} while ((stats_reg & 0x1) && --max_poll);
2860 	if (!max_poll)
2861 		return -ETIMEDOUT;
2862 
2863 	/* Return success! */
2864 	return 0;
2865 }
2866 
2867 /**
2868  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2869  *	@phys_addr: the physical EEPROM address
2870  *	@fn: the PCI function number
2871  *	@sz: size of function-specific area
2872  *
2873  *	Translate a physical EEPROM address to virtual.  The first 1K is
2874  *	accessed through virtual addresses starting at 31K, the rest is
2875  *	accessed through virtual addresses starting at 0.
2876  *
2877  *	The mapping is as follows:
2878  *	[0..1K) -> [31K..32K)
2879  *	[1K..1K+A) -> [ES-A..ES)
2880  *	[1K+A..ES) -> [0..ES-A-1K)
2881  *
2882  *	where A = @fn * @sz, and ES = EEPROM size.
2883  */
2884 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2885 {
2886 	fn *= sz;
2887 	if (phys_addr < 1024)
2888 		return phys_addr + (31 << 10);
2889 	if (phys_addr < 1024 + fn)
2890 		return EEPROMSIZE - fn + phys_addr - 1024;
2891 	if (phys_addr < EEPROMSIZE)
2892 		return phys_addr - 1024 - fn;
2893 	return -EINVAL;
2894 }
2895 
2896 /**
2897  *	t4_seeprom_wp - enable/disable EEPROM write protection
2898  *	@adapter: the adapter
2899  *	@enable: whether to enable or disable write protection
2900  *
2901  *	Enables or disables write protection on the serial EEPROM.
2902  */
2903 int t4_seeprom_wp(struct adapter *adapter, int enable)
2904 {
2905 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2906 }
2907 
2908 /**
2909  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2910  *	@v: Pointer to buffered vpd data structure
2911  *	@kw: The keyword to search for
2912  *
2913  *	Returns the value of the information field keyword or
2914  *	-ENOENT otherwise.
2915  */
2916 static int get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
2917 {
2918 	int i;
2919 	unsigned int offset , len;
2920 	const u8 *buf = (const u8 *)v;
2921 	const u8 *vpdr_len = &v->vpdr_len[0];
2922 	offset = sizeof(struct t4_vpd_hdr);
2923 	len =  (u16)vpdr_len[0] + ((u16)vpdr_len[1] << 8);
2924 
2925 	if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN) {
2926 		return -ENOENT;
2927 	}
2928 
2929 	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2930 		if(memcmp(buf + i , kw , 2) == 0){
2931 			i += VPD_INFO_FLD_HDR_SIZE;
2932 			return i;
2933 		}
2934 
2935 		i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
2936 	}
2937 
2938 	return -ENOENT;
2939 }
2940 
2941 
2942 /**
2943  *	get_vpd_params - read VPD parameters from VPD EEPROM
2944  *	@adapter: adapter to read
2945  *	@p: where to store the parameters
2946  *	@vpd: caller provided temporary space to read the VPD into
2947  *
2948  *	Reads card parameters stored in VPD EEPROM.
2949  */
2950 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
2951     u8 *vpd)
2952 {
2953 	int i, ret, addr;
2954 	int ec, sn, pn, na;
2955 	u8 csum;
2956 	const struct t4_vpd_hdr *v;
2957 
2958 	/*
2959 	 * Card information normally starts at VPD_BASE but early cards had
2960 	 * it at 0.
2961 	 */
2962 	ret = t4_seeprom_read(adapter, VPD_BASE, (u32 *)(vpd));
2963 	if (ret)
2964 		return (ret);
2965 
2966 	/*
2967 	 * The VPD shall have a unique identifier specified by the PCI SIG.
2968 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2969 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2970 	 * is expected to automatically put this entry at the
2971 	 * beginning of the VPD.
2972 	 */
2973 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2974 
2975 	for (i = 0; i < VPD_LEN; i += 4) {
2976 		ret = t4_seeprom_read(adapter, addr + i, (u32 *)(vpd + i));
2977 		if (ret)
2978 			return ret;
2979 	}
2980  	v = (const struct t4_vpd_hdr *)vpd;
2981 
2982 #define FIND_VPD_KW(var,name) do { \
2983 	var = get_vpd_keyword_val(v , name); \
2984 	if (var < 0) { \
2985 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
2986 		return -EINVAL; \
2987 	} \
2988 } while (0)
2989 
2990 	FIND_VPD_KW(i, "RV");
2991 	for (csum = 0; i >= 0; i--)
2992 		csum += vpd[i];
2993 
2994 	if (csum) {
2995 		CH_ERR(adapter,
2996 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2997 		return -EINVAL;
2998 	}
2999 
3000 	FIND_VPD_KW(ec, "EC");
3001 	FIND_VPD_KW(sn, "SN");
3002 	FIND_VPD_KW(pn, "PN");
3003 	FIND_VPD_KW(na, "NA");
3004 #undef FIND_VPD_KW
3005 
3006 	memcpy(p->id, v->id_data, ID_LEN);
3007 	strstrip(p->id);
3008 	memcpy(p->ec, vpd + ec, EC_LEN);
3009 	strstrip(p->ec);
3010 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3011 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3012 	strstrip(p->sn);
3013 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3014 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3015 	strstrip((char *)p->pn);
3016 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3017 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3018 	strstrip((char *)p->na);
3019 
3020 	return 0;
3021 }
3022 
3023 /* serial flash and firmware constants and flash config file constants */
3024 enum {
3025 	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3026 
3027 	/* flash command opcodes */
3028 	SF_PROG_PAGE    = 2,	/* program page */
3029 	SF_WR_DISABLE   = 4,	/* disable writes */
3030 	SF_RD_STATUS    = 5,	/* read status register */
3031 	SF_WR_ENABLE    = 6,	/* enable writes */
3032 	SF_RD_DATA_FAST = 0xb,	/* read flash */
3033 	SF_RD_ID	= 0x9f,	/* read ID */
3034 	SF_ERASE_SECTOR = 0xd8,	/* erase sector */
3035 };
3036 
3037 /**
3038  *	sf1_read - read data from the serial flash
3039  *	@adapter: the adapter
3040  *	@byte_cnt: number of bytes to read
3041  *	@cont: whether another operation will be chained
3042  *	@lock: whether to lock SF for PL access only
3043  *	@valp: where to store the read data
3044  *
3045  *	Reads up to 4 bytes of data from the serial flash.  The location of
3046  *	the read needs to be specified prior to calling this by issuing the
3047  *	appropriate commands to the serial flash.
3048  */
3049 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3050 		    int lock, u32 *valp)
3051 {
3052 	int ret;
3053 
3054 	if (!byte_cnt || byte_cnt > 4)
3055 		return -EINVAL;
3056 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3057 		return -EBUSY;
3058 	t4_write_reg(adapter, A_SF_OP,
3059 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3060 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3061 	if (!ret)
3062 		*valp = t4_read_reg(adapter, A_SF_DATA);
3063 	return ret;
3064 }
3065 
3066 /**
3067  *	sf1_write - write data to the serial flash
3068  *	@adapter: the adapter
3069  *	@byte_cnt: number of bytes to write
3070  *	@cont: whether another operation will be chained
3071  *	@lock: whether to lock SF for PL access only
3072  *	@val: value to write
3073  *
3074  *	Writes up to 4 bytes of data to the serial flash.  The location of
3075  *	the write needs to be specified prior to calling this by issuing the
3076  *	appropriate commands to the serial flash.
3077  */
3078 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3079 		     int lock, u32 val)
3080 {
3081 	if (!byte_cnt || byte_cnt > 4)
3082 		return -EINVAL;
3083 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3084 		return -EBUSY;
3085 	t4_write_reg(adapter, A_SF_DATA, val);
3086 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3087 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3088 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3089 }
3090 
3091 /**
3092  *	flash_wait_op - wait for a flash operation to complete
3093  *	@adapter: the adapter
3094  *	@attempts: max number of polls of the status register
3095  *	@delay: delay between polls in ms
3096  *
3097  *	Wait for a flash operation to complete by polling the status register.
3098  */
3099 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3100 {
3101 	int ret;
3102 	u32 status;
3103 
3104 	while (1) {
3105 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3106 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3107 			return ret;
3108 		if (!(status & 1))
3109 			return 0;
3110 		if (--attempts == 0)
3111 			return -EAGAIN;
3112 		if (delay)
3113 			msleep(delay);
3114 	}
3115 }
3116 
3117 /**
3118  *	t4_read_flash - read words from serial flash
3119  *	@adapter: the adapter
3120  *	@addr: the start address for the read
3121  *	@nwords: how many 32-bit words to read
3122  *	@data: where to store the read data
3123  *	@byte_oriented: whether to store data as bytes or as words
3124  *
3125  *	Read the specified number of 32-bit words from the serial flash.
3126  *	If @byte_oriented is set the read data is stored as a byte array
3127  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3128  *	natural endianness.
3129  */
3130 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3131 		  unsigned int nwords, u32 *data, int byte_oriented)
3132 {
3133 	int ret;
3134 
3135 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3136 		return -EINVAL;
3137 
3138 	addr = swab32(addr) | SF_RD_DATA_FAST;
3139 
3140 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3141 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3142 		return ret;
3143 
3144 	for ( ; nwords; nwords--, data++) {
3145 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3146 		if (nwords == 1)
3147 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3148 		if (ret)
3149 			return ret;
3150 		if (byte_oriented)
3151 			*data = (__force __u32)(cpu_to_be32(*data));
3152 	}
3153 	return 0;
3154 }
3155 
3156 /**
3157  *	t4_write_flash - write up to a page of data to the serial flash
3158  *	@adapter: the adapter
3159  *	@addr: the start address to write
3160  *	@n: length of data to write in bytes
3161  *	@data: the data to write
3162  *	@byte_oriented: whether to store data as bytes or as words
3163  *
3164  *	Writes up to a page of data (256 bytes) to the serial flash starting
3165  *	at the given address.  All the data must be written to the same page.
3166  *	If @byte_oriented is set the write data is stored as byte stream
3167  *	(i.e. matches what on disk), otherwise in big-endian.
3168  */
3169 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3170 			  unsigned int n, const u8 *data, int byte_oriented)
3171 {
3172 	int ret;
3173 	u32 buf[SF_PAGE_SIZE / 4];
3174 	unsigned int i, c, left, val, offset = addr & 0xff;
3175 
3176 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3177 		return -EINVAL;
3178 
3179 	val = swab32(addr) | SF_PROG_PAGE;
3180 
3181 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3182 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3183 		goto unlock;
3184 
3185 	for (left = n; left; left -= c) {
3186 		c = min(left, 4U);
3187 		for (val = 0, i = 0; i < c; ++i)
3188 			val = (val << 8) + *data++;
3189 
3190 		if (!byte_oriented)
3191 			val = cpu_to_be32(val);
3192 
3193 		ret = sf1_write(adapter, c, c != left, 1, val);
3194 		if (ret)
3195 			goto unlock;
3196 	}
3197 	ret = flash_wait_op(adapter, 8, 1);
3198 	if (ret)
3199 		goto unlock;
3200 
3201 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3202 
3203 	/* Read the page to verify the write succeeded */
3204 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3205 			    byte_oriented);
3206 	if (ret)
3207 		return ret;
3208 
3209 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3210 		CH_ERR(adapter,
3211 			"failed to correctly write the flash page at %#x\n",
3212 			addr);
3213 		return -EIO;
3214 	}
3215 	return 0;
3216 
3217 unlock:
3218 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3219 	return ret;
3220 }
3221 
3222 /**
3223  *	t4_get_fw_version - read the firmware version
3224  *	@adapter: the adapter
3225  *	@vers: where to place the version
3226  *
3227  *	Reads the FW version from flash.
3228  */
3229 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3230 {
3231 	return t4_read_flash(adapter, FLASH_FW_START +
3232 			     offsetof(struct fw_hdr, fw_ver), 1,
3233 			     vers, 0);
3234 }
3235 
3236 /**
3237  *	t4_get_tp_version - read the TP microcode version
3238  *	@adapter: the adapter
3239  *	@vers: where to place the version
3240  *
3241  *	Reads the TP microcode version from flash.
3242  */
3243 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3244 {
3245 	return t4_read_flash(adapter, FLASH_FW_START +
3246 			     offsetof(struct fw_hdr, tp_microcode_ver),
3247 			     1, vers, 0);
3248 }
3249 
3250 /**
3251  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3252  *	@adapter: the adapter
3253  *	@vers: where to place the version
3254  *
3255  *	Reads the Expansion ROM header from FLASH and returns the version
3256  *	number (if present) through the @vers return value pointer.  We return
3257  *	this in the Firmware Version Format since it's convenient.  Return
3258  *	0 on success, -ENOENT if no Expansion ROM is present.
3259  */
3260 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3261 {
3262 	struct exprom_header {
3263 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3264 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3265 	} *hdr;
3266 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3267 					   sizeof(u32))];
3268 	int ret;
3269 
3270 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3271 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3272 			    0);
3273 	if (ret)
3274 		return ret;
3275 
3276 	hdr = (struct exprom_header *)exprom_header_buf;
3277 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3278 		return -ENOENT;
3279 
3280 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3281 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3282 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3283 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3284 	return 0;
3285 }
3286 
3287 /**
3288  *	t4_flash_erase_sectors - erase a range of flash sectors
3289  *	@adapter: the adapter
3290  *	@start: the first sector to erase
3291  *	@end: the last sector to erase
3292  *
3293  *	Erases the sectors in the given inclusive range.
3294  */
3295 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3296 {
3297 	int ret = 0;
3298 
3299 	if (end >= adapter->params.sf_nsec)
3300 		return -EINVAL;
3301 
3302 	while (start <= end) {
3303 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3304 		    (ret = sf1_write(adapter, 4, 0, 1,
3305 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3306 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3307 			CH_ERR(adapter,
3308 				"erase of flash sector %d failed, error %d\n",
3309 				start, ret);
3310 			break;
3311 		}
3312 		start++;
3313 	}
3314 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3315 	return ret;
3316 }
3317 
3318 /**
3319  *	t4_flash_cfg_addr - return the address of the flash configuration file
3320  *	@adapter: the adapter
3321  *
3322  *	Return the address within the flash where the Firmware Configuration
3323  *	File is stored, or an error if the device FLASH is too small to contain
3324  *	a Firmware Configuration File.
3325  */
3326 int t4_flash_cfg_addr(struct adapter *adapter)
3327 {
3328 	/*
3329 	 * If the device FLASH isn't large enough to hold a Firmware
3330 	 * Configuration File, return an error.
3331 	 */
3332 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3333 		return -ENOSPC;
3334 
3335 	return FLASH_CFG_START;
3336 }
3337 
3338 /*
3339  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3340  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3341  * and emit an error message for mismatched firmware to save our caller the
3342  * effort ...
3343  */
3344 static int t4_fw_matches_chip(struct adapter *adap,
3345 			      const struct fw_hdr *hdr)
3346 {
3347 	/*
3348 	 * The expression below will return FALSE for any unsupported adapter
3349 	 * which will keep us "honest" in the future ...
3350 	 */
3351 	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3352 	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3353 	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3354 		return 1;
3355 
3356 	CH_ERR(adap,
3357 		"FW image (%d) is not suitable for this adapter (%d)\n",
3358 		hdr->chip, chip_id(adap));
3359 	return 0;
3360 }
3361 
3362 /**
3363  *	t4_load_fw - download firmware
3364  *	@adap: the adapter
3365  *	@fw_data: the firmware image to write
3366  *	@size: image size
3367  *
3368  *	Write the supplied firmware image to the card's serial flash.
3369  */
3370 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3371 {
3372 	u32 csum;
3373 	int ret, addr;
3374 	unsigned int i;
3375 	u8 first_page[SF_PAGE_SIZE];
3376 	const u32 *p = (const u32 *)fw_data;
3377 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3378 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3379 	unsigned int fw_start_sec;
3380 	unsigned int fw_start;
3381 	unsigned int fw_size;
3382 
3383 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3384 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3385 		fw_start = FLASH_FWBOOTSTRAP_START;
3386 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3387 	} else {
3388 		fw_start_sec = FLASH_FW_START_SEC;
3389  		fw_start = FLASH_FW_START;
3390 		fw_size = FLASH_FW_MAX_SIZE;
3391 	}
3392 
3393 	if (!size) {
3394 		CH_ERR(adap, "FW image has no data\n");
3395 		return -EINVAL;
3396 	}
3397 	if (size & 511) {
3398 		CH_ERR(adap,
3399 			"FW image size not multiple of 512 bytes\n");
3400 		return -EINVAL;
3401 	}
3402 	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3403 		CH_ERR(adap,
3404 			"FW image size differs from size in FW header\n");
3405 		return -EINVAL;
3406 	}
3407 	if (size > fw_size) {
3408 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3409 			fw_size);
3410 		return -EFBIG;
3411 	}
3412 	if (!t4_fw_matches_chip(adap, hdr))
3413 		return -EINVAL;
3414 
3415 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3416 		csum += be32_to_cpu(p[i]);
3417 
3418 	if (csum != 0xffffffff) {
3419 		CH_ERR(adap,
3420 			"corrupted firmware image, checksum %#x\n", csum);
3421 		return -EINVAL;
3422 	}
3423 
3424 	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3425 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3426 	if (ret)
3427 		goto out;
3428 
3429 	/*
3430 	 * We write the correct version at the end so the driver can see a bad
3431 	 * version if the FW write fails.  Start by writing a copy of the
3432 	 * first page with a bad version.
3433 	 */
3434 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3435 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3436 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3437 	if (ret)
3438 		goto out;
3439 
3440 	addr = fw_start;
3441 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3442 		addr += SF_PAGE_SIZE;
3443 		fw_data += SF_PAGE_SIZE;
3444 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3445 		if (ret)
3446 			goto out;
3447 	}
3448 
3449 	ret = t4_write_flash(adap,
3450 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3451 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3452 out:
3453 	if (ret)
3454 		CH_ERR(adap, "firmware download failed, error %d\n",
3455 			ret);
3456 	return ret;
3457 }
3458 
3459 /**
3460  *	t4_fwcache - firmware cache operation
3461  *	@adap: the adapter
3462  *	@op  : the operation (flush or flush and invalidate)
3463  */
3464 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3465 {
3466 	struct fw_params_cmd c;
3467 
3468 	memset(&c, 0, sizeof(c));
3469 	c.op_to_vfn =
3470 	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3471 			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3472 				V_FW_PARAMS_CMD_PFN(adap->pf) |
3473 				V_FW_PARAMS_CMD_VFN(0));
3474 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3475 	c.param[0].mnem =
3476 	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3477 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3478 	c.param[0].val = (__force __be32)op;
3479 
3480 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3481 }
3482 
3483 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3484 			unsigned int *pif_req_wrptr,
3485 			unsigned int *pif_rsp_wrptr)
3486 {
3487 	int i, j;
3488 	u32 cfg, val, req, rsp;
3489 
3490 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3491 	if (cfg & F_LADBGEN)
3492 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3493 
3494 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3495 	req = G_POLADBGWRPTR(val);
3496 	rsp = G_PILADBGWRPTR(val);
3497 	if (pif_req_wrptr)
3498 		*pif_req_wrptr = req;
3499 	if (pif_rsp_wrptr)
3500 		*pif_rsp_wrptr = rsp;
3501 
3502 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3503 		for (j = 0; j < 6; j++) {
3504 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3505 				     V_PILADBGRDPTR(rsp));
3506 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3507 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3508 			req++;
3509 			rsp++;
3510 		}
3511 		req = (req + 2) & M_POLADBGRDPTR;
3512 		rsp = (rsp + 2) & M_PILADBGRDPTR;
3513 	}
3514 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3515 }
3516 
3517 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3518 {
3519 	u32 cfg;
3520 	int i, j, idx;
3521 
3522 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3523 	if (cfg & F_LADBGEN)
3524 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3525 
3526 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3527 		for (j = 0; j < 5; j++) {
3528 			idx = 8 * i + j;
3529 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3530 				     V_PILADBGRDPTR(idx));
3531 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3532 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3533 		}
3534 	}
3535 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3536 }
3537 
3538 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3539 {
3540 	unsigned int i, j;
3541 
3542 	for (i = 0; i < 8; i++) {
3543 		u32 *p = la_buf + i;
3544 
3545 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3546 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3547 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3548 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3549 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3550 	}
3551 }
3552 
3553 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
3554 		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
3555 		     FW_PORT_CAP_SPEED_100G | FW_PORT_CAP_ANEG)
3556 
3557 /**
3558  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3559  *	@phy: the PHY to setup
3560  *	@mac: the MAC to setup
3561  *	@lc: the requested link configuration
3562  *
3563  *	Set up a port's MAC and PHY according to a desired link configuration.
3564  *	- If the PHY can auto-negotiate first decide what to advertise, then
3565  *	  enable/disable auto-negotiation as desired, and reset.
3566  *	- If the PHY does not auto-negotiate just reset it.
3567  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3568  *	  otherwise do it later based on the outcome of auto-negotiation.
3569  */
3570 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3571 		  struct link_config *lc)
3572 {
3573 	struct fw_port_cmd c;
3574 	unsigned int fc = 0, mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO);
3575 
3576 	lc->link_ok = 0;
3577 	if (lc->requested_fc & PAUSE_RX)
3578 		fc |= FW_PORT_CAP_FC_RX;
3579 	if (lc->requested_fc & PAUSE_TX)
3580 		fc |= FW_PORT_CAP_FC_TX;
3581 
3582 	memset(&c, 0, sizeof(c));
3583 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3584 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3585 				     V_FW_PORT_CMD_PORTID(port));
3586 	c.action_to_len16 =
3587 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3588 			    FW_LEN16(c));
3589 
3590 	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
3591 		c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3592 					     fc);
3593 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3594 	} else if (lc->autoneg == AUTONEG_DISABLE) {
3595 		c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
3596 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3597 	} else
3598 		c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
3599 
3600 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3601 }
3602 
3603 /**
3604  *	t4_restart_aneg - restart autonegotiation
3605  *	@adap: the adapter
3606  *	@mbox: mbox to use for the FW command
3607  *	@port: the port id
3608  *
3609  *	Restarts autonegotiation for the selected port.
3610  */
3611 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3612 {
3613 	struct fw_port_cmd c;
3614 
3615 	memset(&c, 0, sizeof(c));
3616 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3617 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3618 				     V_FW_PORT_CMD_PORTID(port));
3619 	c.action_to_len16 =
3620 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3621 			    FW_LEN16(c));
3622 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3623 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3624 }
3625 
3626 typedef void (*int_handler_t)(struct adapter *adap);
3627 
3628 struct intr_info {
3629 	unsigned int mask;	/* bits to check in interrupt status */
3630 	const char *msg;	/* message to print or NULL */
3631 	short stat_idx;		/* stat counter to increment or -1 */
3632 	unsigned short fatal;	/* whether the condition reported is fatal */
3633 	int_handler_t int_handler;	/* platform-specific int handler */
3634 };
3635 
3636 /**
3637  *	t4_handle_intr_status - table driven interrupt handler
3638  *	@adapter: the adapter that generated the interrupt
3639  *	@reg: the interrupt status register to process
3640  *	@acts: table of interrupt actions
3641  *
3642  *	A table driven interrupt handler that applies a set of masks to an
3643  *	interrupt status word and performs the corresponding actions if the
3644  *	interrupts described by the mask have occurred.  The actions include
3645  *	optionally emitting a warning or alert message.  The table is terminated
3646  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
3647  *	conditions.
3648  */
3649 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3650 				 const struct intr_info *acts)
3651 {
3652 	int fatal = 0;
3653 	unsigned int mask = 0;
3654 	unsigned int status = t4_read_reg(adapter, reg);
3655 
3656 	for ( ; acts->mask; ++acts) {
3657 		if (!(status & acts->mask))
3658 			continue;
3659 		if (acts->fatal) {
3660 			fatal++;
3661 			CH_ALERT(adapter, "%s (0x%x)\n", acts->msg,
3662 				  status & acts->mask);
3663 		} else if (acts->msg)
3664 			CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n", acts->msg,
3665 				 status & acts->mask);
3666 		if (acts->int_handler)
3667 			acts->int_handler(adapter);
3668 		mask |= acts->mask;
3669 	}
3670 	status &= mask;
3671 	if (status)	/* clear processed interrupts */
3672 		t4_write_reg(adapter, reg, status);
3673 	return fatal;
3674 }
3675 
3676 /*
3677  * Interrupt handler for the PCIE module.
3678  */
3679 static void pcie_intr_handler(struct adapter *adapter)
3680 {
3681 	static const struct intr_info sysbus_intr_info[] = {
3682 		{ F_RNPP, "RXNP array parity error", -1, 1 },
3683 		{ F_RPCP, "RXPC array parity error", -1, 1 },
3684 		{ F_RCIP, "RXCIF array parity error", -1, 1 },
3685 		{ F_RCCP, "Rx completions control array parity error", -1, 1 },
3686 		{ F_RFTP, "RXFT array parity error", -1, 1 },
3687 		{ 0 }
3688 	};
3689 	static const struct intr_info pcie_port_intr_info[] = {
3690 		{ F_TPCP, "TXPC array parity error", -1, 1 },
3691 		{ F_TNPP, "TXNP array parity error", -1, 1 },
3692 		{ F_TFTP, "TXFT array parity error", -1, 1 },
3693 		{ F_TCAP, "TXCA array parity error", -1, 1 },
3694 		{ F_TCIP, "TXCIF array parity error", -1, 1 },
3695 		{ F_RCAP, "RXCA array parity error", -1, 1 },
3696 		{ F_OTDD, "outbound request TLP discarded", -1, 1 },
3697 		{ F_RDPE, "Rx data parity error", -1, 1 },
3698 		{ F_TDUE, "Tx uncorrectable data error", -1, 1 },
3699 		{ 0 }
3700 	};
3701 	static const struct intr_info pcie_intr_info[] = {
3702 		{ F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
3703 		{ F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
3704 		{ F_MSIDATAPERR, "MSI data parity error", -1, 1 },
3705 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3706 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3707 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3708 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3709 		{ F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
3710 		{ F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
3711 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3712 		{ F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
3713 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3714 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3715 		{ F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
3716 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3717 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3718 		{ F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
3719 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3720 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3721 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3722 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3723 		{ F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
3724 		{ F_MATAGPERR, "PCI MA tag parity error", -1, 1 },
3725 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3726 		{ F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
3727 		{ F_RXWRPERR, "PCI Rx write parity error", -1, 1 },
3728 		{ F_RPLPERR, "PCI replay buffer parity error", -1, 1 },
3729 		{ F_PCIESINT, "PCI core secondary fault", -1, 1 },
3730 		{ F_PCIEPINT, "PCI core primary fault", -1, 1 },
3731 		{ F_UNXSPLCPLERR, "PCI unexpected split completion error", -1,
3732 		  0 },
3733 		{ 0 }
3734 	};
3735 
3736 	static const struct intr_info t5_pcie_intr_info[] = {
3737 		{ F_MSTGRPPERR, "Master Response Read Queue parity error",
3738 		  -1, 1 },
3739 		{ F_MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
3740 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
3741 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3742 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3743 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3744 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3745 		{ F_PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
3746 		  -1, 1 },
3747 		{ F_PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
3748 		  -1, 1 },
3749 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3750 		{ F_MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
3751 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3752 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3753 		{ F_DREQWRPERR, "PCI DMA channel write request parity error",
3754 		  -1, 1 },
3755 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3756 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3757 		{ F_HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
3758 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3759 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3760 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3761 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3762 		{ F_VFIDPERR, "PCI INTx clear parity error", -1, 1 },
3763 		{ F_MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
3764 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3765 		{ F_IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
3766 		  -1, 1 },
3767 		{ F_IPRXDATAGRPPERR, "PCI IP Rx data group parity error",
3768 		  -1, 1 },
3769 		{ F_RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
3770 		{ F_IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
3771 		{ F_TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3772 		{ F_READRSPERR, "Outbound read error", -1,
3773 		  0 },
3774 		{ 0 }
3775 	};
3776 
3777 	int fat;
3778 
3779 	if (is_t4(adapter))
3780 		fat = t4_handle_intr_status(adapter,
3781 				A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
3782 				sysbus_intr_info) +
3783 			t4_handle_intr_status(adapter,
3784 					A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
3785 					pcie_port_intr_info) +
3786 			t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3787 					      pcie_intr_info);
3788 	else
3789 		fat = t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3790 					    t5_pcie_intr_info);
3791 	if (fat)
3792 		t4_fatal_err(adapter);
3793 }
3794 
3795 /*
3796  * TP interrupt handler.
3797  */
3798 static void tp_intr_handler(struct adapter *adapter)
3799 {
3800 	static const struct intr_info tp_intr_info[] = {
3801 		{ 0x3fffffff, "TP parity error", -1, 1 },
3802 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
3803 		{ 0 }
3804 	};
3805 
3806 	if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info))
3807 		t4_fatal_err(adapter);
3808 }
3809 
3810 /*
3811  * SGE interrupt handler.
3812  */
3813 static void sge_intr_handler(struct adapter *adapter)
3814 {
3815 	u64 v;
3816 	u32 err;
3817 
3818 	static const struct intr_info sge_intr_info[] = {
3819 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
3820 		  "SGE received CPL exceeding IQE size", -1, 1 },
3821 		{ F_ERR_INVALID_CIDX_INC,
3822 		  "SGE GTS CIDX increment too large", -1, 0 },
3823 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
3824 		{ F_DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
3825 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
3826 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
3827 		{ F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
3828 		  0 },
3829 		{ F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
3830 		  0 },
3831 		{ F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
3832 		  0 },
3833 		{ F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
3834 		  0 },
3835 		{ F_ERR_ING_CTXT_PRIO,
3836 		  "SGE too many priority ingress contexts", -1, 0 },
3837 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
3838 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
3839 		{ 0 }
3840 	};
3841 
3842 	static const struct intr_info t4t5_sge_intr_info[] = {
3843 		{ F_ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
3844 		{ F_DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
3845 		{ F_ERR_EGR_CTXT_PRIO,
3846 		  "SGE too many priority egress contexts", -1, 0 },
3847 		{ 0 }
3848 	};
3849 
3850 	/*
3851  	* For now, treat below interrupts as fatal so that we disable SGE and
3852  	* get better debug */
3853 	static const struct intr_info t6_sge_intr_info[] = {
3854 		{ F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1,
3855 		  "SGE PCIe error for a DBP thread", -1, 1 },
3856 		{ F_FATAL_WRE_LEN,
3857 		  "SGE Actual WRE packet is less than advertized length",
3858 		  -1, 1 },
3859 		{ 0 }
3860 	};
3861 
3862 	v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) |
3863 		((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32);
3864 	if (v) {
3865 		CH_ALERT(adapter, "SGE parity error (%#llx)\n",
3866 				(unsigned long long)v);
3867 		t4_write_reg(adapter, A_SGE_INT_CAUSE1, v);
3868 		t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32);
3869 	}
3870 
3871 	v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info);
3872 	if (chip_id(adapter) <= CHELSIO_T5)
3873 		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
3874 					   t4t5_sge_intr_info);
3875 	else
3876 		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
3877 					   t6_sge_intr_info);
3878 
3879 	err = t4_read_reg(adapter, A_SGE_ERROR_STATS);
3880 	if (err & F_ERROR_QID_VALID) {
3881 		CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err));
3882 		if (err & F_UNCAPTURED_ERROR)
3883 			CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n");
3884 		t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID |
3885 			     F_UNCAPTURED_ERROR);
3886 	}
3887 
3888 	if (v != 0)
3889 		t4_fatal_err(adapter);
3890 }
3891 
3892 #define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\
3893 		      F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR)
3894 #define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\
3895 		      F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR)
3896 
3897 /*
3898  * CIM interrupt handler.
3899  */
3900 static void cim_intr_handler(struct adapter *adapter)
3901 {
3902 	static const struct intr_info cim_intr_info[] = {
3903 		{ F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
3904 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3905 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3906 		{ F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
3907 		{ F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
3908 		{ F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
3909 		{ F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
3910 		{ 0 }
3911 	};
3912 	static const struct intr_info cim_upintr_info[] = {
3913 		{ F_RSVDSPACEINT, "CIM reserved space access", -1, 1 },
3914 		{ F_ILLTRANSINT, "CIM illegal transaction", -1, 1 },
3915 		{ F_ILLWRINT, "CIM illegal write", -1, 1 },
3916 		{ F_ILLRDINT, "CIM illegal read", -1, 1 },
3917 		{ F_ILLRDBEINT, "CIM illegal read BE", -1, 1 },
3918 		{ F_ILLWRBEINT, "CIM illegal write BE", -1, 1 },
3919 		{ F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
3920 		{ F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
3921 		{ F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
3922 		{ F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
3923 		{ F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
3924 		{ F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
3925 		{ F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
3926 		{ F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
3927 		{ F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
3928 		{ F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
3929 		{ F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
3930 		{ F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
3931 		{ F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
3932 		{ F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
3933 		{ F_SGLRDPLINT , "CIM single read from PL space", -1, 1 },
3934 		{ F_SGLWRPLINT , "CIM single write to PL space", -1, 1 },
3935 		{ F_BLKRDPLINT , "CIM block read from PL space", -1, 1 },
3936 		{ F_BLKWRPLINT , "CIM block write to PL space", -1, 1 },
3937 		{ F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
3938 		{ F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
3939 		{ F_TIMEOUTINT , "CIM PIF timeout", -1, 1 },
3940 		{ F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
3941 		{ 0 }
3942 	};
3943 	int fat;
3944 
3945 	if (t4_read_reg(adapter, A_PCIE_FW) & F_PCIE_FW_ERR)
3946 		t4_report_fw_error(adapter);
3947 
3948 	fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE,
3949 				    cim_intr_info) +
3950 	      t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE,
3951 				    cim_upintr_info);
3952 	if (fat)
3953 		t4_fatal_err(adapter);
3954 }
3955 
3956 /*
3957  * ULP RX interrupt handler.
3958  */
3959 static void ulprx_intr_handler(struct adapter *adapter)
3960 {
3961 	static const struct intr_info ulprx_intr_info[] = {
3962 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 },
3963 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 },
3964 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
3965 		{ 0 }
3966 	};
3967 
3968 	if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info))
3969 		t4_fatal_err(adapter);
3970 }
3971 
3972 /*
3973  * ULP TX interrupt handler.
3974  */
3975 static void ulptx_intr_handler(struct adapter *adapter)
3976 {
3977 	static const struct intr_info ulptx_intr_info[] = {
3978 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
3979 		  0 },
3980 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
3981 		  0 },
3982 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
3983 		  0 },
3984 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
3985 		  0 },
3986 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
3987 		{ 0 }
3988 	};
3989 
3990 	if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info))
3991 		t4_fatal_err(adapter);
3992 }
3993 
3994 /*
3995  * PM TX interrupt handler.
3996  */
3997 static void pmtx_intr_handler(struct adapter *adapter)
3998 {
3999 	static const struct intr_info pmtx_intr_info[] = {
4000 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
4001 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
4002 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
4003 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
4004 		{ 0xffffff0, "PMTX framing error", -1, 1 },
4005 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
4006 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
4007 		  1 },
4008 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
4009 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
4010 		{ 0 }
4011 	};
4012 
4013 	if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info))
4014 		t4_fatal_err(adapter);
4015 }
4016 
4017 /*
4018  * PM RX interrupt handler.
4019  */
4020 static void pmrx_intr_handler(struct adapter *adapter)
4021 {
4022 	static const struct intr_info pmrx_intr_info[] = {
4023 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
4024 		{ 0x3ffff0, "PMRX framing error", -1, 1 },
4025 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
4026 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
4027 		  1 },
4028 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
4029 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
4030 		{ 0 }
4031 	};
4032 
4033 	if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info))
4034 		t4_fatal_err(adapter);
4035 }
4036 
4037 /*
4038  * CPL switch interrupt handler.
4039  */
4040 static void cplsw_intr_handler(struct adapter *adapter)
4041 {
4042 	static const struct intr_info cplsw_intr_info[] = {
4043 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
4044 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
4045 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
4046 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
4047 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
4048 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
4049 		{ 0 }
4050 	};
4051 
4052 	if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info))
4053 		t4_fatal_err(adapter);
4054 }
4055 
4056 /*
4057  * LE interrupt handler.
4058  */
4059 static void le_intr_handler(struct adapter *adap)
4060 {
4061 	unsigned int chip_ver = chip_id(adap);
4062 	static const struct intr_info le_intr_info[] = {
4063 		{ F_LIPMISS, "LE LIP miss", -1, 0 },
4064 		{ F_LIP0, "LE 0 LIP error", -1, 0 },
4065 		{ F_PARITYERR, "LE parity error", -1, 1 },
4066 		{ F_UNKNOWNCMD, "LE unknown command", -1, 1 },
4067 		{ F_REQQPARERR, "LE request queue parity error", -1, 1 },
4068 		{ 0 }
4069 	};
4070 
4071 	static const struct intr_info t6_le_intr_info[] = {
4072 		{ F_T6_LIPMISS, "LE LIP miss", -1, 0 },
4073 		{ F_T6_LIP0, "LE 0 LIP error", -1, 0 },
4074 		{ F_TCAMINTPERR, "LE parity error", -1, 1 },
4075 		{ F_T6_UNKNOWNCMD, "LE unknown command", -1, 1 },
4076 		{ F_SSRAMINTPERR, "LE request queue parity error", -1, 1 },
4077 		{ 0 }
4078 	};
4079 
4080 	if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE,
4081 				  (chip_ver <= CHELSIO_T5) ?
4082 				  le_intr_info : t6_le_intr_info))
4083 		t4_fatal_err(adap);
4084 }
4085 
4086 /*
4087  * MPS interrupt handler.
4088  */
4089 static void mps_intr_handler(struct adapter *adapter)
4090 {
4091 	static const struct intr_info mps_rx_intr_info[] = {
4092 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4093 		{ 0 }
4094 	};
4095 	static const struct intr_info mps_tx_intr_info[] = {
4096 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 },
4097 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4098 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error",
4099 		  -1, 1 },
4100 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error",
4101 		  -1, 1 },
4102 		{ F_BUBBLE, "MPS Tx underflow", -1, 1 },
4103 		{ F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
4104 		{ F_FRMERR, "MPS Tx framing error", -1, 1 },
4105 		{ 0 }
4106 	};
4107 	static const struct intr_info mps_trc_intr_info[] = {
4108 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 },
4109 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1,
4110 		  1 },
4111 		{ F_MISCPERR, "MPS TRC misc parity error", -1, 1 },
4112 		{ 0 }
4113 	};
4114 	static const struct intr_info mps_stat_sram_intr_info[] = {
4115 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4116 		{ 0 }
4117 	};
4118 	static const struct intr_info mps_stat_tx_intr_info[] = {
4119 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4120 		{ 0 }
4121 	};
4122 	static const struct intr_info mps_stat_rx_intr_info[] = {
4123 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4124 		{ 0 }
4125 	};
4126 	static const struct intr_info mps_cls_intr_info[] = {
4127 		{ F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
4128 		{ F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
4129 		{ F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
4130 		{ 0 }
4131 	};
4132 
4133 	int fat;
4134 
4135 	fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE,
4136 				    mps_rx_intr_info) +
4137 	      t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE,
4138 				    mps_tx_intr_info) +
4139 	      t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE,
4140 				    mps_trc_intr_info) +
4141 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4142 				    mps_stat_sram_intr_info) +
4143 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4144 				    mps_stat_tx_intr_info) +
4145 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4146 				    mps_stat_rx_intr_info) +
4147 	      t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE,
4148 				    mps_cls_intr_info);
4149 
4150 	t4_write_reg(adapter, A_MPS_INT_CAUSE, 0);
4151 	t4_read_reg(adapter, A_MPS_INT_CAUSE);	/* flush */
4152 	if (fat)
4153 		t4_fatal_err(adapter);
4154 }
4155 
4156 #define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | \
4157 		      F_ECC_UE_INT_CAUSE)
4158 
4159 /*
4160  * EDC/MC interrupt handler.
4161  */
4162 static void mem_intr_handler(struct adapter *adapter, int idx)
4163 {
4164 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4165 
4166 	unsigned int addr, cnt_addr, v;
4167 
4168 	if (idx <= MEM_EDC1) {
4169 		addr = EDC_REG(A_EDC_INT_CAUSE, idx);
4170 		cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx);
4171 	} else if (idx == MEM_MC) {
4172 		if (is_t4(adapter)) {
4173 			addr = A_MC_INT_CAUSE;
4174 			cnt_addr = A_MC_ECC_STATUS;
4175 		} else {
4176 			addr = A_MC_P_INT_CAUSE;
4177 			cnt_addr = A_MC_P_ECC_STATUS;
4178 		}
4179 	} else {
4180 		addr = MC_REG(A_MC_P_INT_CAUSE, 1);
4181 		cnt_addr = MC_REG(A_MC_P_ECC_STATUS, 1);
4182 	}
4183 
4184 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4185 	if (v & F_PERR_INT_CAUSE)
4186 		CH_ALERT(adapter, "%s FIFO parity error\n",
4187 			  name[idx]);
4188 	if (v & F_ECC_CE_INT_CAUSE) {
4189 		u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr));
4190 
4191 		t4_edc_err_read(adapter, idx);
4192 
4193 		t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT));
4194 		CH_WARN_RATELIMIT(adapter,
4195 				  "%u %s correctable ECC data error%s\n",
4196 				  cnt, name[idx], cnt > 1 ? "s" : "");
4197 	}
4198 	if (v & F_ECC_UE_INT_CAUSE)
4199 		CH_ALERT(adapter,
4200 			 "%s uncorrectable ECC data error\n", name[idx]);
4201 
4202 	t4_write_reg(adapter, addr, v);
4203 	if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE))
4204 		t4_fatal_err(adapter);
4205 }
4206 
4207 /*
4208  * MA interrupt handler.
4209  */
4210 static void ma_intr_handler(struct adapter *adapter)
4211 {
4212 	u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE);
4213 
4214 	if (status & F_MEM_PERR_INT_CAUSE) {
4215 		CH_ALERT(adapter,
4216 			  "MA parity error, parity status %#x\n",
4217 			  t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS1));
4218 		if (is_t5(adapter))
4219 			CH_ALERT(adapter,
4220 				  "MA parity error, parity status %#x\n",
4221 				  t4_read_reg(adapter,
4222 					      A_MA_PARITY_ERROR_STATUS2));
4223 	}
4224 	if (status & F_MEM_WRAP_INT_CAUSE) {
4225 		v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS);
4226 		CH_ALERT(adapter, "MA address wrap-around error by "
4227 			  "client %u to address %#x\n",
4228 			  G_MEM_WRAP_CLIENT_NUM(v),
4229 			  G_MEM_WRAP_ADDRESS(v) << 4);
4230 	}
4231 	t4_write_reg(adapter, A_MA_INT_CAUSE, status);
4232 	t4_fatal_err(adapter);
4233 }
4234 
4235 /*
4236  * SMB interrupt handler.
4237  */
4238 static void smb_intr_handler(struct adapter *adap)
4239 {
4240 	static const struct intr_info smb_intr_info[] = {
4241 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
4242 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
4243 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
4244 		{ 0 }
4245 	};
4246 
4247 	if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info))
4248 		t4_fatal_err(adap);
4249 }
4250 
4251 /*
4252  * NC-SI interrupt handler.
4253  */
4254 static void ncsi_intr_handler(struct adapter *adap)
4255 {
4256 	static const struct intr_info ncsi_intr_info[] = {
4257 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
4258 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
4259 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
4260 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
4261 		{ 0 }
4262 	};
4263 
4264 	if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info))
4265 		t4_fatal_err(adap);
4266 }
4267 
4268 /*
4269  * XGMAC interrupt handler.
4270  */
4271 static void xgmac_intr_handler(struct adapter *adap, int port)
4272 {
4273 	u32 v, int_cause_reg;
4274 
4275 	if (is_t4(adap))
4276 		int_cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
4277 	else
4278 		int_cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
4279 
4280 	v = t4_read_reg(adap, int_cause_reg);
4281 
4282 	v &= (F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR);
4283 	if (!v)
4284 		return;
4285 
4286 	if (v & F_TXFIFO_PRTY_ERR)
4287 		CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n",
4288 			  port);
4289 	if (v & F_RXFIFO_PRTY_ERR)
4290 		CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n",
4291 			  port);
4292 	t4_write_reg(adap, int_cause_reg, v);
4293 	t4_fatal_err(adap);
4294 }
4295 
4296 /*
4297  * PL interrupt handler.
4298  */
4299 static void pl_intr_handler(struct adapter *adap)
4300 {
4301 	static const struct intr_info pl_intr_info[] = {
4302 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4303 		{ F_PERRVFID, "PL VFID_MAP parity error", -1, 1 },
4304 		{ 0 }
4305 	};
4306 
4307 	static const struct intr_info t5_pl_intr_info[] = {
4308 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4309 		{ 0 }
4310 	};
4311 
4312 	if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE,
4313 				  is_t4(adap) ?
4314 				  pl_intr_info : t5_pl_intr_info))
4315 		t4_fatal_err(adap);
4316 }
4317 
4318 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
4319 
4320 /**
4321  *	t4_slow_intr_handler - control path interrupt handler
4322  *	@adapter: the adapter
4323  *
4324  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4325  *	The designation 'slow' is because it involves register reads, while
4326  *	data interrupts typically don't involve any MMIOs.
4327  */
4328 int t4_slow_intr_handler(struct adapter *adapter)
4329 {
4330 	u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE);
4331 
4332 	if (!(cause & GLBL_INTR_MASK))
4333 		return 0;
4334 	if (cause & F_CIM)
4335 		cim_intr_handler(adapter);
4336 	if (cause & F_MPS)
4337 		mps_intr_handler(adapter);
4338 	if (cause & F_NCSI)
4339 		ncsi_intr_handler(adapter);
4340 	if (cause & F_PL)
4341 		pl_intr_handler(adapter);
4342 	if (cause & F_SMB)
4343 		smb_intr_handler(adapter);
4344 	if (cause & F_MAC0)
4345 		xgmac_intr_handler(adapter, 0);
4346 	if (cause & F_MAC1)
4347 		xgmac_intr_handler(adapter, 1);
4348 	if (cause & F_MAC2)
4349 		xgmac_intr_handler(adapter, 2);
4350 	if (cause & F_MAC3)
4351 		xgmac_intr_handler(adapter, 3);
4352 	if (cause & F_PCIE)
4353 		pcie_intr_handler(adapter);
4354 	if (cause & F_MC0)
4355 		mem_intr_handler(adapter, MEM_MC);
4356 	if (is_t5(adapter) && (cause & F_MC1))
4357 		mem_intr_handler(adapter, MEM_MC1);
4358 	if (cause & F_EDC0)
4359 		mem_intr_handler(adapter, MEM_EDC0);
4360 	if (cause & F_EDC1)
4361 		mem_intr_handler(adapter, MEM_EDC1);
4362 	if (cause & F_LE)
4363 		le_intr_handler(adapter);
4364 	if (cause & F_TP)
4365 		tp_intr_handler(adapter);
4366 	if (cause & F_MA)
4367 		ma_intr_handler(adapter);
4368 	if (cause & F_PM_TX)
4369 		pmtx_intr_handler(adapter);
4370 	if (cause & F_PM_RX)
4371 		pmrx_intr_handler(adapter);
4372 	if (cause & F_ULP_RX)
4373 		ulprx_intr_handler(adapter);
4374 	if (cause & F_CPL_SWITCH)
4375 		cplsw_intr_handler(adapter);
4376 	if (cause & F_SGE)
4377 		sge_intr_handler(adapter);
4378 	if (cause & F_ULP_TX)
4379 		ulptx_intr_handler(adapter);
4380 
4381 	/* Clear the interrupts just processed for which we are the master. */
4382 	t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK);
4383 	(void)t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */
4384 	return 1;
4385 }
4386 
4387 /**
4388  *	t4_intr_enable - enable interrupts
4389  *	@adapter: the adapter whose interrupts should be enabled
4390  *
4391  *	Enable PF-specific interrupts for the calling function and the top-level
4392  *	interrupt concentrator for global interrupts.  Interrupts are already
4393  *	enabled at each module,	here we just enable the roots of the interrupt
4394  *	hierarchies.
4395  *
4396  *	Note: this function should be called only when the driver manages
4397  *	non PF-specific interrupts from the various HW modules.  Only one PCI
4398  *	function at a time should be doing this.
4399  */
4400 void t4_intr_enable(struct adapter *adapter)
4401 {
4402 	u32 val = 0;
4403 	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4404 	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4405 		  ? G_SOURCEPF(whoami)
4406 		  : G_T6_SOURCEPF(whoami));
4407 
4408 	if (chip_id(adapter) <= CHELSIO_T5)
4409 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
4410 	else
4411 		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
4412 	t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
4413 		     F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
4414 		     F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
4415 		     F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
4416 		     F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4417 		     F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
4418 		     F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
4419 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
4420 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
4421 }
4422 
4423 /**
4424  *	t4_intr_disable - disable interrupts
4425  *	@adapter: the adapter whose interrupts should be disabled
4426  *
4427  *	Disable interrupts.  We only disable the top-level interrupt
4428  *	concentrators.  The caller must be a PCI function managing global
4429  *	interrupts.
4430  */
4431 void t4_intr_disable(struct adapter *adapter)
4432 {
4433 	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4434 	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4435 		  ? G_SOURCEPF(whoami)
4436 		  : G_T6_SOURCEPF(whoami));
4437 
4438 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
4439 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
4440 }
4441 
4442 /**
4443  *	t4_intr_clear - clear all interrupts
4444  *	@adapter: the adapter whose interrupts should be cleared
4445  *
4446  *	Clears all interrupts.  The caller must be a PCI function managing
4447  *	global interrupts.
4448  */
4449 void t4_intr_clear(struct adapter *adapter)
4450 {
4451 	static const unsigned int cause_reg[] = {
4452 		A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3,
4453 		A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE,
4454 		A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS1, A_MA_INT_CAUSE,
4455 		A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1),
4456 		A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE,
4457 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4458 		A_TP_INT_CAUSE,
4459 		A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE,
4460 		A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE,
4461 		A_MPS_RX_PERR_INT_CAUSE,
4462 		A_CPL_INTR_CAUSE,
4463 		MYPF_REG(A_PL_PF_INT_CAUSE),
4464 		A_PL_PL_INT_CAUSE,
4465 		A_LE_DB_INT_CAUSE,
4466 	};
4467 
4468 	unsigned int i;
4469 
4470 	for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
4471 		t4_write_reg(adapter, cause_reg[i], 0xffffffff);
4472 
4473 	t4_write_reg(adapter, is_t4(adapter) ? A_MC_INT_CAUSE :
4474 				A_MC_P_INT_CAUSE, 0xffffffff);
4475 
4476 	if (is_t4(adapter)) {
4477 		t4_write_reg(adapter, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4478 				0xffffffff);
4479 		t4_write_reg(adapter, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4480 				0xffffffff);
4481 	} else
4482 		t4_write_reg(adapter, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
4483 
4484 	t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK);
4485 	(void) t4_read_reg(adapter, A_PL_INT_CAUSE);          /* flush */
4486 }
4487 
4488 /**
4489  *	hash_mac_addr - return the hash value of a MAC address
4490  *	@addr: the 48-bit Ethernet MAC address
4491  *
4492  *	Hashes a MAC address according to the hash function used by HW inexact
4493  *	(hash) address matching.
4494  */
4495 static int hash_mac_addr(const u8 *addr)
4496 {
4497 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
4498 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
4499 	a ^= b;
4500 	a ^= (a >> 12);
4501 	a ^= (a >> 6);
4502 	return a & 0x3f;
4503 }
4504 
4505 /**
4506  *	t4_config_rss_range - configure a portion of the RSS mapping table
4507  *	@adapter: the adapter
4508  *	@mbox: mbox to use for the FW command
4509  *	@viid: virtual interface whose RSS subtable is to be written
4510  *	@start: start entry in the table to write
4511  *	@n: how many table entries to write
4512  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
4513  *	@nrspq: number of values in @rspq
4514  *
4515  *	Programs the selected part of the VI's RSS mapping table with the
4516  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4517  *	until the full table range is populated.
4518  *
4519  *	The caller must ensure the values in @rspq are in the range allowed for
4520  *	@viid.
4521  */
4522 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4523 			int start, int n, const u16 *rspq, unsigned int nrspq)
4524 {
4525 	int ret;
4526 	const u16 *rsp = rspq;
4527 	const u16 *rsp_end = rspq + nrspq;
4528 	struct fw_rss_ind_tbl_cmd cmd;
4529 
4530 	memset(&cmd, 0, sizeof(cmd));
4531 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
4532 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4533 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
4534 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4535 
4536 	/*
4537 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
4538 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
4539 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
4540 	 * reserved.
4541 	 */
4542 	while (n > 0) {
4543 		int nq = min(n, 32);
4544 		int nq_packed = 0;
4545 		__be32 *qp = &cmd.iq0_to_iq2;
4546 
4547 		/*
4548 		 * Set up the firmware RSS command header to send the next
4549 		 * "nq" Ingress Queue IDs to the firmware.
4550 		 */
4551 		cmd.niqid = cpu_to_be16(nq);
4552 		cmd.startidx = cpu_to_be16(start);
4553 
4554 		/*
4555 		 * "nq" more done for the start of the next loop.
4556 		 */
4557 		start += nq;
4558 		n -= nq;
4559 
4560 		/*
4561 		 * While there are still Ingress Queue IDs to stuff into the
4562 		 * current firmware RSS command, retrieve them from the
4563 		 * Ingress Queue ID array and insert them into the command.
4564 		 */
4565 		while (nq > 0) {
4566 			/*
4567 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
4568 			 * around the Ingress Queue ID array if necessary) and
4569 			 * insert them into the firmware RSS command at the
4570 			 * current 3-tuple position within the commad.
4571 			 */
4572 			u16 qbuf[3];
4573 			u16 *qbp = qbuf;
4574 			int nqbuf = min(3, nq);
4575 
4576 			nq -= nqbuf;
4577 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
4578 			while (nqbuf && nq_packed < 32) {
4579 				nqbuf--;
4580 				nq_packed++;
4581 				*qbp++ = *rsp++;
4582 				if (rsp >= rsp_end)
4583 					rsp = rspq;
4584 			}
4585 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
4586 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
4587 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
4588 		}
4589 
4590 		/*
4591 		 * Send this portion of the RRS table update to the firmware;
4592 		 * bail out on any errors.
4593 		 */
4594 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4595 		if (ret)
4596 			return ret;
4597 	}
4598 	return 0;
4599 }
4600 
4601 /**
4602  *	t4_config_glbl_rss - configure the global RSS mode
4603  *	@adapter: the adapter
4604  *	@mbox: mbox to use for the FW command
4605  *	@mode: global RSS mode
4606  *	@flags: mode-specific flags
4607  *
4608  *	Sets the global RSS mode.
4609  */
4610 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4611 		       unsigned int flags)
4612 {
4613 	struct fw_rss_glb_config_cmd c;
4614 
4615 	memset(&c, 0, sizeof(c));
4616 	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
4617 				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
4618 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4619 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4620 		c.u.manual.mode_pkd =
4621 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4622 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4623 		c.u.basicvirtual.mode_pkd =
4624 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4625 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4626 	} else
4627 		return -EINVAL;
4628 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4629 }
4630 
4631 /**
4632  *	t4_config_vi_rss - configure per VI RSS settings
4633  *	@adapter: the adapter
4634  *	@mbox: mbox to use for the FW command
4635  *	@viid: the VI id
4636  *	@flags: RSS flags
4637  *	@defq: id of the default RSS queue for the VI.
4638  *
4639  *	Configures VI-specific RSS properties.
4640  */
4641 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4642 		     unsigned int flags, unsigned int defq)
4643 {
4644 	struct fw_rss_vi_config_cmd c;
4645 
4646 	memset(&c, 0, sizeof(c));
4647 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
4648 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4649 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
4650 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4651 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4652 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
4653 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4654 }
4655 
4656 /* Read an RSS table row */
4657 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4658 {
4659 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
4660 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
4661 				   5, 0, val);
4662 }
4663 
4664 /**
4665  *	t4_read_rss - read the contents of the RSS mapping table
4666  *	@adapter: the adapter
4667  *	@map: holds the contents of the RSS mapping table
4668  *
4669  *	Reads the contents of the RSS hash->queue mapping table.
4670  */
4671 int t4_read_rss(struct adapter *adapter, u16 *map)
4672 {
4673 	u32 val;
4674 	int i, ret;
4675 
4676 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4677 		ret = rd_rss_row(adapter, i, &val);
4678 		if (ret)
4679 			return ret;
4680 		*map++ = G_LKPTBLQUEUE0(val);
4681 		*map++ = G_LKPTBLQUEUE1(val);
4682 	}
4683 	return 0;
4684 }
4685 
4686 /**
4687  *	t4_fw_tp_pio_rw - Access TP PIO through LDST
4688  *	@adap: the adapter
4689  *	@vals: where the indirect register values are stored/written
4690  *	@nregs: how many indirect registers to read/write
4691  *	@start_idx: index of first indirect register to read/write
4692  *	@rw: Read (1) or Write (0)
4693  *
4694  *	Access TP PIO registers through LDST
4695  */
4696 void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4697 		     unsigned int start_index, unsigned int rw)
4698 {
4699 	int ret, i;
4700 	int cmd = FW_LDST_ADDRSPC_TP_PIO;
4701 	struct fw_ldst_cmd c;
4702 
4703 	for (i = 0 ; i < nregs; i++) {
4704 		memset(&c, 0, sizeof(c));
4705 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
4706 						F_FW_CMD_REQUEST |
4707 						(rw ? F_FW_CMD_READ :
4708 						     F_FW_CMD_WRITE) |
4709 						V_FW_LDST_CMD_ADDRSPACE(cmd));
4710 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4711 
4712 		c.u.addrval.addr = cpu_to_be32(start_index + i);
4713 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4714 		ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4715 		if (ret == 0) {
4716 			if (rw)
4717 				vals[i] = be32_to_cpu(c.u.addrval.val);
4718 		}
4719 	}
4720 }
4721 
4722 /**
4723  *	t4_read_rss_key - read the global RSS key
4724  *	@adap: the adapter
4725  *	@key: 10-entry array holding the 320-bit RSS key
4726  *
4727  *	Reads the global 320-bit RSS key.
4728  */
4729 void t4_read_rss_key(struct adapter *adap, u32 *key)
4730 {
4731 	if (t4_use_ldst(adap))
4732 		t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 1);
4733 	else
4734 		t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
4735 				 A_TP_RSS_SECRET_KEY0);
4736 }
4737 
4738 /**
4739  *	t4_write_rss_key - program one of the RSS keys
4740  *	@adap: the adapter
4741  *	@key: 10-entry array holding the 320-bit RSS key
4742  *	@idx: which RSS key to write
4743  *
4744  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
4745  *	0..15 the corresponding entry in the RSS key table is written,
4746  *	otherwise the global RSS key is written.
4747  */
4748 void t4_write_rss_key(struct adapter *adap, u32 *key, int idx)
4749 {
4750 	u8 rss_key_addr_cnt = 16;
4751 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
4752 
4753 	/*
4754 	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4755 	 * allows access to key addresses 16-63 by using KeyWrAddrX
4756 	 * as index[5:4](upper 2) into key table
4757 	 */
4758 	if ((chip_id(adap) > CHELSIO_T5) &&
4759 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
4760 		rss_key_addr_cnt = 32;
4761 
4762 	if (t4_use_ldst(adap))
4763 		t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 0);
4764 	else
4765 		t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
4766 				  A_TP_RSS_SECRET_KEY0);
4767 
4768 	if (idx >= 0 && idx < rss_key_addr_cnt) {
4769 		if (rss_key_addr_cnt > 16)
4770 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
4771 				     V_KEYWRADDRX(idx >> 4) |
4772 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
4773 		else
4774 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
4775 				     V_KEYWRADDR(idx) | F_KEYWREN);
4776 	}
4777 }
4778 
4779 /**
4780  *	t4_read_rss_pf_config - read PF RSS Configuration Table
4781  *	@adapter: the adapter
4782  *	@index: the entry in the PF RSS table to read
4783  *	@valp: where to store the returned value
4784  *
4785  *	Reads the PF RSS Configuration Table at the specified index and returns
4786  *	the value found there.
4787  */
4788 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4789 			   u32 *valp)
4790 {
4791 	if (t4_use_ldst(adapter))
4792 		t4_fw_tp_pio_rw(adapter, valp, 1,
4793 				A_TP_RSS_PF0_CONFIG + index, 1);
4794 	else
4795 		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4796 				 valp, 1, A_TP_RSS_PF0_CONFIG + index);
4797 }
4798 
4799 /**
4800  *	t4_write_rss_pf_config - write PF RSS Configuration Table
4801  *	@adapter: the adapter
4802  *	@index: the entry in the VF RSS table to read
4803  *	@val: the value to store
4804  *
4805  *	Writes the PF RSS Configuration Table at the specified index with the
4806  *	specified value.
4807  */
4808 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
4809 			    u32 val)
4810 {
4811 	if (t4_use_ldst(adapter))
4812 		t4_fw_tp_pio_rw(adapter, &val, 1,
4813 				A_TP_RSS_PF0_CONFIG + index, 0);
4814 	else
4815 		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4816 				  &val, 1, A_TP_RSS_PF0_CONFIG + index);
4817 }
4818 
4819 /**
4820  *	t4_read_rss_vf_config - read VF RSS Configuration Table
4821  *	@adapter: the adapter
4822  *	@index: the entry in the VF RSS table to read
4823  *	@vfl: where to store the returned VFL
4824  *	@vfh: where to store the returned VFH
4825  *
4826  *	Reads the VF RSS Configuration Table at the specified index and returns
4827  *	the (VFL, VFH) values found there.
4828  */
4829 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4830 			   u32 *vfl, u32 *vfh)
4831 {
4832 	u32 vrt, mask, data;
4833 
4834 	if (chip_id(adapter) <= CHELSIO_T5) {
4835 		mask = V_VFWRADDR(M_VFWRADDR);
4836 		data = V_VFWRADDR(index);
4837 	} else {
4838 		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
4839 		 data = V_T6_VFWRADDR(index);
4840 	}
4841 	/*
4842 	 * Request that the index'th VF Table values be read into VFL/VFH.
4843 	 */
4844 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
4845 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
4846 	vrt |= data | F_VFRDEN;
4847 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
4848 
4849 	/*
4850 	 * Grab the VFL/VFH values ...
4851 	 */
4852 	if (t4_use_ldst(adapter)) {
4853 		t4_fw_tp_pio_rw(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, 1);
4854 		t4_fw_tp_pio_rw(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, 1);
4855 	} else {
4856 		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4857 				 vfl, 1, A_TP_RSS_VFL_CONFIG);
4858 		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4859 				 vfh, 1, A_TP_RSS_VFH_CONFIG);
4860 	}
4861 }
4862 
4863 /**
4864  *	t4_write_rss_vf_config - write VF RSS Configuration Table
4865  *
4866  *	@adapter: the adapter
4867  *	@index: the entry in the VF RSS table to write
4868  *	@vfl: the VFL to store
4869  *	@vfh: the VFH to store
4870  *
4871  *	Writes the VF RSS Configuration Table at the specified index with the
4872  *	specified (VFL, VFH) values.
4873  */
4874 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
4875 			    u32 vfl, u32 vfh)
4876 {
4877 	u32 vrt, mask, data;
4878 
4879 	if (chip_id(adapter) <= CHELSIO_T5) {
4880 		mask = V_VFWRADDR(M_VFWRADDR);
4881 		data = V_VFWRADDR(index);
4882 	} else {
4883 		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
4884 		data = V_T6_VFWRADDR(index);
4885 	}
4886 
4887 	/*
4888 	 * Load up VFL/VFH with the values to be written ...
4889 	 */
4890 	if (t4_use_ldst(adapter)) {
4891 		t4_fw_tp_pio_rw(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, 0);
4892 		t4_fw_tp_pio_rw(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, 0);
4893 	} else {
4894 		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4895 				  &vfl, 1, A_TP_RSS_VFL_CONFIG);
4896 		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4897 				  &vfh, 1, A_TP_RSS_VFH_CONFIG);
4898 	}
4899 
4900 	/*
4901 	 * Write the VFL/VFH into the VF Table at index'th location.
4902 	 */
4903 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
4904 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
4905 	vrt |= data | F_VFRDEN;
4906 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
4907 }
4908 
4909 /**
4910  *	t4_read_rss_pf_map - read PF RSS Map
4911  *	@adapter: the adapter
4912  *
4913  *	Reads the PF RSS Map register and returns its value.
4914  */
4915 u32 t4_read_rss_pf_map(struct adapter *adapter)
4916 {
4917 	u32 pfmap;
4918 
4919 	if (t4_use_ldst(adapter))
4920 		t4_fw_tp_pio_rw(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, 1);
4921 	else
4922 		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4923 				 &pfmap, 1, A_TP_RSS_PF_MAP);
4924 	return pfmap;
4925 }
4926 
4927 /**
4928  *	t4_write_rss_pf_map - write PF RSS Map
4929  *	@adapter: the adapter
4930  *	@pfmap: PF RSS Map value
4931  *
4932  *	Writes the specified value to the PF RSS Map register.
4933  */
4934 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap)
4935 {
4936 	if (t4_use_ldst(adapter))
4937 		t4_fw_tp_pio_rw(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, 0);
4938 	else
4939 		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4940 				  &pfmap, 1, A_TP_RSS_PF_MAP);
4941 }
4942 
4943 /**
4944  *	t4_read_rss_pf_mask - read PF RSS Mask
4945  *	@adapter: the adapter
4946  *
4947  *	Reads the PF RSS Mask register and returns its value.
4948  */
4949 u32 t4_read_rss_pf_mask(struct adapter *adapter)
4950 {
4951 	u32 pfmask;
4952 
4953 	if (t4_use_ldst(adapter))
4954 		t4_fw_tp_pio_rw(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, 1);
4955 	else
4956 		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4957 				 &pfmask, 1, A_TP_RSS_PF_MSK);
4958 	return pfmask;
4959 }
4960 
4961 /**
4962  *	t4_write_rss_pf_mask - write PF RSS Mask
4963  *	@adapter: the adapter
4964  *	@pfmask: PF RSS Mask value
4965  *
4966  *	Writes the specified value to the PF RSS Mask register.
4967  */
4968 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask)
4969 {
4970 	if (t4_use_ldst(adapter))
4971 		t4_fw_tp_pio_rw(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, 0);
4972 	else
4973 		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4974 				  &pfmask, 1, A_TP_RSS_PF_MSK);
4975 }
4976 
4977 /**
4978  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
4979  *	@adap: the adapter
4980  *	@v4: holds the TCP/IP counter values
4981  *	@v6: holds the TCP/IPv6 counter values
4982  *
4983  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
4984  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
4985  */
4986 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
4987 			 struct tp_tcp_stats *v6)
4988 {
4989 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
4990 
4991 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
4992 #define STAT(x)     val[STAT_IDX(x)]
4993 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
4994 
4995 	if (v4) {
4996 		t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
4997 				 ARRAY_SIZE(val), A_TP_MIB_TCP_OUT_RST);
4998 		v4->tcp_out_rsts = STAT(OUT_RST);
4999 		v4->tcp_in_segs  = STAT64(IN_SEG);
5000 		v4->tcp_out_segs = STAT64(OUT_SEG);
5001 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5002 	}
5003 	if (v6) {
5004 		t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
5005 				 ARRAY_SIZE(val), A_TP_MIB_TCP_V6OUT_RST);
5006 		v6->tcp_out_rsts = STAT(OUT_RST);
5007 		v6->tcp_in_segs  = STAT64(IN_SEG);
5008 		v6->tcp_out_segs = STAT64(OUT_SEG);
5009 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5010 	}
5011 #undef STAT64
5012 #undef STAT
5013 #undef STAT_IDX
5014 }
5015 
5016 /**
5017  *	t4_tp_get_err_stats - read TP's error MIB counters
5018  *	@adap: the adapter
5019  *	@st: holds the counter values
5020  *
5021  *	Returns the values of TP's error counters.
5022  */
5023 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
5024 {
5025 	int nchan = adap->chip_params->nchan;
5026 
5027 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5028 			st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0);
5029 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5030 			st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0);
5031 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5032 			st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0);
5033 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5034 			st->tnl_cong_drops, nchan, A_TP_MIB_TNL_CNG_DROP_0);
5035 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5036 			st->ofld_chan_drops, nchan, A_TP_MIB_OFD_CHN_DROP_0);
5037 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5038 			st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0);
5039 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5040 			st->ofld_vlan_drops, nchan, A_TP_MIB_OFD_VLN_DROP_0);
5041 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5042 			st->tcp6_in_errs, nchan, A_TP_MIB_TCP_V6IN_ERR_0);
5043 
5044 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5045 			 &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP);
5046 }
5047 
5048 /**
5049  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
5050  *	@adap: the adapter
5051  *	@st: holds the counter values
5052  *
5053  *	Returns the values of TP's proxy counters.
5054  */
5055 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st)
5056 {
5057 	int nchan = adap->chip_params->nchan;
5058 
5059 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->proxy,
5060 			 nchan, A_TP_MIB_TNL_LPBK_0);
5061 }
5062 
5063 /**
5064  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5065  *	@adap: the adapter
5066  *	@st: holds the counter values
5067  *
5068  *	Returns the values of TP's CPL counters.
5069  */
5070 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
5071 {
5072 	int nchan = adap->chip_params->nchan;
5073 
5074 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->req,
5075 			 nchan, A_TP_MIB_CPL_IN_REQ_0);
5076 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->rsp,
5077 			 nchan, A_TP_MIB_CPL_OUT_RSP_0);
5078 }
5079 
5080 /**
5081  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5082  *	@adap: the adapter
5083  *	@st: holds the counter values
5084  *
5085  *	Returns the values of TP's RDMA counters.
5086  */
5087 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
5088 {
5089 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->rqe_dfr_pkt,
5090 			 2, A_TP_MIB_RQE_DFR_PKT);
5091 }
5092 
5093 /**
5094  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5095  *	@adap: the adapter
5096  *	@idx: the port index
5097  *	@st: holds the counter values
5098  *
5099  *	Returns the values of TP's FCoE counters for the selected port.
5100  */
5101 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5102 		       struct tp_fcoe_stats *st)
5103 {
5104 	u32 val[2];
5105 
5106 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->frames_ddp,
5107 			 1, A_TP_MIB_FCOE_DDP_0 + idx);
5108 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->frames_drop,
5109 			 1, A_TP_MIB_FCOE_DROP_0 + idx);
5110 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
5111 			 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx);
5112 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5113 }
5114 
5115 /**
5116  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5117  *	@adap: the adapter
5118  *	@st: holds the counter values
5119  *
5120  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5121  */
5122 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
5123 {
5124 	u32 val[4];
5125 
5126 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val, 4,
5127 			 A_TP_MIB_USM_PKTS);
5128 	st->frames = val[0];
5129 	st->drops = val[1];
5130 	st->octets = ((u64)val[2] << 32) | val[3];
5131 }
5132 
5133 /**
5134  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5135  *	@adap: the adapter
5136  *	@mtus: where to store the MTU values
5137  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5138  *
5139  *	Reads the HW path MTU table.
5140  */
5141 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5142 {
5143 	u32 v;
5144 	int i;
5145 
5146 	for (i = 0; i < NMTUS; ++i) {
5147 		t4_write_reg(adap, A_TP_MTU_TABLE,
5148 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
5149 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
5150 		mtus[i] = G_MTUVALUE(v);
5151 		if (mtu_log)
5152 			mtu_log[i] = G_MTUWIDTH(v);
5153 	}
5154 }
5155 
5156 /**
5157  *	t4_read_cong_tbl - reads the congestion control table
5158  *	@adap: the adapter
5159  *	@incr: where to store the alpha values
5160  *
5161  *	Reads the additive increments programmed into the HW congestion
5162  *	control table.
5163  */
5164 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5165 {
5166 	unsigned int mtu, w;
5167 
5168 	for (mtu = 0; mtu < NMTUS; ++mtu)
5169 		for (w = 0; w < NCCTRL_WIN; ++w) {
5170 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
5171 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
5172 			incr[mtu][w] = (u16)t4_read_reg(adap,
5173 						A_TP_CCTRL_TABLE) & 0x1fff;
5174 		}
5175 }
5176 
5177 /**
5178  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5179  *	@adap: the adapter
5180  *	@addr: the indirect TP register address
5181  *	@mask: specifies the field within the register to modify
5182  *	@val: new value for the field
5183  *
5184  *	Sets a field of an indirect TP register to the given value.
5185  */
5186 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5187 			    unsigned int mask, unsigned int val)
5188 {
5189 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
5190 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
5191 	t4_write_reg(adap, A_TP_PIO_DATA, val);
5192 }
5193 
5194 /**
5195  *	init_cong_ctrl - initialize congestion control parameters
5196  *	@a: the alpha values for congestion control
5197  *	@b: the beta values for congestion control
5198  *
5199  *	Initialize the congestion control parameters.
5200  */
5201 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5202 {
5203 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5204 	a[9] = 2;
5205 	a[10] = 3;
5206 	a[11] = 4;
5207 	a[12] = 5;
5208 	a[13] = 6;
5209 	a[14] = 7;
5210 	a[15] = 8;
5211 	a[16] = 9;
5212 	a[17] = 10;
5213 	a[18] = 14;
5214 	a[19] = 17;
5215 	a[20] = 21;
5216 	a[21] = 25;
5217 	a[22] = 30;
5218 	a[23] = 35;
5219 	a[24] = 45;
5220 	a[25] = 60;
5221 	a[26] = 80;
5222 	a[27] = 100;
5223 	a[28] = 200;
5224 	a[29] = 300;
5225 	a[30] = 400;
5226 	a[31] = 500;
5227 
5228 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5229 	b[9] = b[10] = 1;
5230 	b[11] = b[12] = 2;
5231 	b[13] = b[14] = b[15] = b[16] = 3;
5232 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5233 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5234 	b[28] = b[29] = 6;
5235 	b[30] = b[31] = 7;
5236 }
5237 
5238 /* The minimum additive increment value for the congestion control table */
5239 #define CC_MIN_INCR 2U
5240 
5241 /**
5242  *	t4_load_mtus - write the MTU and congestion control HW tables
5243  *	@adap: the adapter
5244  *	@mtus: the values for the MTU table
5245  *	@alpha: the values for the congestion control alpha parameter
5246  *	@beta: the values for the congestion control beta parameter
5247  *
5248  *	Write the HW MTU table with the supplied MTUs and the high-speed
5249  *	congestion control table with the supplied alpha, beta, and MTUs.
5250  *	We write the two tables together because the additive increments
5251  *	depend on the MTUs.
5252  */
5253 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5254 		  const unsigned short *alpha, const unsigned short *beta)
5255 {
5256 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5257 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5258 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5259 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5260 	};
5261 
5262 	unsigned int i, w;
5263 
5264 	for (i = 0; i < NMTUS; ++i) {
5265 		unsigned int mtu = mtus[i];
5266 		unsigned int log2 = fls(mtu);
5267 
5268 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5269 			log2--;
5270 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
5271 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
5272 
5273 		for (w = 0; w < NCCTRL_WIN; ++w) {
5274 			unsigned int inc;
5275 
5276 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5277 				  CC_MIN_INCR);
5278 
5279 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
5280 				     (w << 16) | (beta[w] << 13) | inc);
5281 		}
5282 	}
5283 }
5284 
5285 /**
5286  *	t4_set_pace_tbl - set the pace table
5287  *	@adap: the adapter
5288  *	@pace_vals: the pace values in microseconds
5289  *	@start: index of the first entry in the HW pace table to set
5290  *	@n: how many entries to set
5291  *
5292  *	Sets (a subset of the) HW pace table.
5293  */
5294 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
5295 		     unsigned int start, unsigned int n)
5296 {
5297 	unsigned int vals[NTX_SCHED], i;
5298 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
5299 
5300 	if (n > NTX_SCHED)
5301 	    return -ERANGE;
5302 
5303 	/* convert values from us to dack ticks, rounding to closest value */
5304 	for (i = 0; i < n; i++, pace_vals++) {
5305 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
5306 		if (vals[i] > 0x7ff)
5307 			return -ERANGE;
5308 		if (*pace_vals && vals[i] == 0)
5309 			return -ERANGE;
5310 	}
5311 	for (i = 0; i < n; i++, start++)
5312 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
5313 	return 0;
5314 }
5315 
5316 /**
5317  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
5318  *	@adap: the adapter
5319  *	@kbps: target rate in Kbps
5320  *	@sched: the scheduler index
5321  *
5322  *	Configure a Tx HW scheduler for the target rate.
5323  */
5324 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
5325 {
5326 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
5327 	unsigned int clk = adap->params.vpd.cclk * 1000;
5328 	unsigned int selected_cpt = 0, selected_bpt = 0;
5329 
5330 	if (kbps > 0) {
5331 		kbps *= 125;     /* -> bytes */
5332 		for (cpt = 1; cpt <= 255; cpt++) {
5333 			tps = clk / cpt;
5334 			bpt = (kbps + tps / 2) / tps;
5335 			if (bpt > 0 && bpt <= 255) {
5336 				v = bpt * tps;
5337 				delta = v >= kbps ? v - kbps : kbps - v;
5338 				if (delta < mindelta) {
5339 					mindelta = delta;
5340 					selected_cpt = cpt;
5341 					selected_bpt = bpt;
5342 				}
5343 			} else if (selected_cpt)
5344 				break;
5345 		}
5346 		if (!selected_cpt)
5347 			return -EINVAL;
5348 	}
5349 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
5350 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
5351 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5352 	if (sched & 1)
5353 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
5354 	else
5355 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
5356 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5357 	return 0;
5358 }
5359 
5360 /**
5361  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
5362  *	@adap: the adapter
5363  *	@sched: the scheduler index
5364  *	@ipg: the interpacket delay in tenths of nanoseconds
5365  *
5366  *	Set the interpacket delay for a HW packet rate scheduler.
5367  */
5368 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
5369 {
5370 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
5371 
5372 	/* convert ipg to nearest number of core clocks */
5373 	ipg *= core_ticks_per_usec(adap);
5374 	ipg = (ipg + 5000) / 10000;
5375 	if (ipg > M_TXTIMERSEPQ0)
5376 		return -EINVAL;
5377 
5378 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
5379 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5380 	if (sched & 1)
5381 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
5382 	else
5383 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
5384 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5385 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
5386 	return 0;
5387 }
5388 
5389 /*
5390  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5391  * clocks.  The formula is
5392  *
5393  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5394  *
5395  * which is equivalent to
5396  *
5397  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5398  */
5399 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5400 {
5401 	u64 v = bytes256 * adap->params.vpd.cclk;
5402 
5403 	return v * 62 + v / 2;
5404 }
5405 
5406 /**
5407  *	t4_get_chan_txrate - get the current per channel Tx rates
5408  *	@adap: the adapter
5409  *	@nic_rate: rates for NIC traffic
5410  *	@ofld_rate: rates for offloaded traffic
5411  *
5412  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5413  *	for each channel.
5414  */
5415 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5416 {
5417 	u32 v;
5418 
5419 	v = t4_read_reg(adap, A_TP_TX_TRATE);
5420 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
5421 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
5422 	if (adap->chip_params->nchan > 2) {
5423 		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
5424 		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
5425 	}
5426 
5427 	v = t4_read_reg(adap, A_TP_TX_ORATE);
5428 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
5429 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
5430 	if (adap->chip_params->nchan > 2) {
5431 		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
5432 		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
5433 	}
5434 }
5435 
5436 /**
5437  *	t4_set_trace_filter - configure one of the tracing filters
5438  *	@adap: the adapter
5439  *	@tp: the desired trace filter parameters
5440  *	@idx: which filter to configure
5441  *	@enable: whether to enable or disable the filter
5442  *
5443  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
5444  *	it indicates that the filter is already written in the register and it
5445  *	just needs to be enabled or disabled.
5446  */
5447 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5448     int idx, int enable)
5449 {
5450 	int i, ofst = idx * 4;
5451 	u32 data_reg, mask_reg, cfg;
5452 	u32 multitrc = F_TRCMULTIFILTER;
5453 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
5454 
5455 	if (idx < 0 || idx >= NTRACE)
5456 		return -EINVAL;
5457 
5458 	if (tp == NULL || !enable) {
5459 		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
5460 		    enable ? en : 0);
5461 		return 0;
5462 	}
5463 
5464 	/*
5465 	 * TODO - After T4 data book is updated, specify the exact
5466 	 * section below.
5467 	 *
5468 	 * See T4 data book - MPS section for a complete description
5469 	 * of the below if..else handling of A_MPS_TRC_CFG register
5470 	 * value.
5471 	 */
5472 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
5473 	if (cfg & F_TRCMULTIFILTER) {
5474 		/*
5475 		 * If multiple tracers are enabled, then maximum
5476 		 * capture size is 2.5KB (FIFO size of a single channel)
5477 		 * minus 2 flits for CPL_TRACE_PKT header.
5478 		 */
5479 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5480 			return -EINVAL;
5481 	} else {
5482 		/*
5483 		 * If multiple tracers are disabled, to avoid deadlocks
5484 		 * maximum packet capture size of 9600 bytes is recommended.
5485 		 * Also in this mode, only trace0 can be enabled and running.
5486 		 */
5487 		multitrc = 0;
5488 		if (tp->snap_len > 9600 || idx)
5489 			return -EINVAL;
5490 	}
5491 
5492 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
5493 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
5494 	    tp->min_len > M_TFMINPKTSIZE)
5495 		return -EINVAL;
5496 
5497 	/* stop the tracer we'll be changing */
5498 	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
5499 
5500 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
5501 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
5502 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
5503 
5504 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5505 		t4_write_reg(adap, data_reg, tp->data[i]);
5506 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5507 	}
5508 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
5509 		     V_TFCAPTUREMAX(tp->snap_len) |
5510 		     V_TFMINPKTSIZE(tp->min_len));
5511 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
5512 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
5513 		     (is_t4(adap) ?
5514 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
5515 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
5516 
5517 	return 0;
5518 }
5519 
5520 /**
5521  *	t4_get_trace_filter - query one of the tracing filters
5522  *	@adap: the adapter
5523  *	@tp: the current trace filter parameters
5524  *	@idx: which trace filter to query
5525  *	@enabled: non-zero if the filter is enabled
5526  *
5527  *	Returns the current settings of one of the HW tracing filters.
5528  */
5529 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5530 			 int *enabled)
5531 {
5532 	u32 ctla, ctlb;
5533 	int i, ofst = idx * 4;
5534 	u32 data_reg, mask_reg;
5535 
5536 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
5537 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
5538 
5539 	if (is_t4(adap)) {
5540 		*enabled = !!(ctla & F_TFEN);
5541 		tp->port =  G_TFPORT(ctla);
5542 		tp->invert = !!(ctla & F_TFINVERTMATCH);
5543 	} else {
5544 		*enabled = !!(ctla & F_T5_TFEN);
5545 		tp->port = G_T5_TFPORT(ctla);
5546 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
5547 	}
5548 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
5549 	tp->min_len = G_TFMINPKTSIZE(ctlb);
5550 	tp->skip_ofst = G_TFOFFSET(ctla);
5551 	tp->skip_len = G_TFLENGTH(ctla);
5552 
5553 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
5554 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
5555 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
5556 
5557 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5558 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5559 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5560 	}
5561 }
5562 
5563 /**
5564  *	t4_pmtx_get_stats - returns the HW stats from PMTX
5565  *	@adap: the adapter
5566  *	@cnt: where to store the count statistics
5567  *	@cycles: where to store the cycle statistics
5568  *
5569  *	Returns performance statistics from PMTX.
5570  */
5571 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5572 {
5573 	int i;
5574 	u32 data[2];
5575 
5576 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5577 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
5578 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
5579 		if (is_t4(adap))
5580 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
5581 		else {
5582 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
5583 					 A_PM_TX_DBG_DATA, data, 2,
5584 					 A_PM_TX_DBG_STAT_MSB);
5585 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5586 		}
5587 	}
5588 }
5589 
5590 /**
5591  *	t4_pmrx_get_stats - returns the HW stats from PMRX
5592  *	@adap: the adapter
5593  *	@cnt: where to store the count statistics
5594  *	@cycles: where to store the cycle statistics
5595  *
5596  *	Returns performance statistics from PMRX.
5597  */
5598 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5599 {
5600 	int i;
5601 	u32 data[2];
5602 
5603 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5604 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
5605 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
5606 		if (is_t4(adap)) {
5607 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
5608 		} else {
5609 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
5610 					 A_PM_RX_DBG_DATA, data, 2,
5611 					 A_PM_RX_DBG_STAT_MSB);
5612 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5613 		}
5614 	}
5615 }
5616 
5617 /**
5618  *	t4_get_mps_bg_map - return the buffer groups associated with a port
5619  *	@adap: the adapter
5620  *	@idx: the port index
5621  *
5622  *	Returns a bitmap indicating which MPS buffer groups are associated
5623  *	with the given port.  Bit i is set if buffer group i is used by the
5624  *	port.
5625  */
5626 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5627 {
5628 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
5629 
5630 	if (n == 0)
5631 		return idx == 0 ? 0xf : 0;
5632 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
5633 		return idx < 2 ? (3 << (2 * idx)) : 0;
5634 	return 1 << idx;
5635 }
5636 
5637 /**
5638  *      t4_get_port_type_description - return Port Type string description
5639  *      @port_type: firmware Port Type enumeration
5640  */
5641 const char *t4_get_port_type_description(enum fw_port_type port_type)
5642 {
5643 	static const char *const port_type_description[] = {
5644 		"Fiber_XFI",
5645 		"Fiber_XAUI",
5646 		"BT_SGMII",
5647 		"BT_XFI",
5648 		"BT_XAUI",
5649 		"KX4",
5650 		"CX4",
5651 		"KX",
5652 		"KR",
5653 		"SFP",
5654 		"BP_AP",
5655 		"BP4_AP",
5656 		"QSFP_10G",
5657 		"QSA",
5658 		"QSFP",
5659 		"BP40_BA",
5660 	};
5661 
5662 	if (port_type < ARRAY_SIZE(port_type_description))
5663 		return port_type_description[port_type];
5664 	return "UNKNOWN";
5665 }
5666 
5667 /**
5668  *      t4_get_port_stats_offset - collect port stats relative to a previous
5669  *				   snapshot
5670  *      @adap: The adapter
5671  *      @idx: The port
5672  *      @stats: Current stats to fill
5673  *      @offset: Previous stats snapshot
5674  */
5675 void t4_get_port_stats_offset(struct adapter *adap, int idx,
5676 		struct port_stats *stats,
5677 		struct port_stats *offset)
5678 {
5679 	u64 *s, *o;
5680 	int i;
5681 
5682 	t4_get_port_stats(adap, idx, stats);
5683 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
5684 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
5685 			i++, s++, o++)
5686 		*s -= *o;
5687 }
5688 
5689 /**
5690  *	t4_get_port_stats - collect port statistics
5691  *	@adap: the adapter
5692  *	@idx: the port index
5693  *	@p: the stats structure to fill
5694  *
5695  *	Collect statistics related to the given port from HW.
5696  */
5697 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5698 {
5699 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5700 	u32 stat_ctl;
5701 
5702 #define GET_STAT(name) \
5703 	t4_read_reg64(adap, \
5704 	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
5705 	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
5706 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
5707 
5708 	stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
5709 
5710 	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
5711 	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
5712 	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
5713 	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
5714 	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
5715 	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
5716 	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
5717 	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
5718 	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
5719 	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
5720 	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
5721 	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
5722 	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
5723 	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
5724 	p->tx_drop		= GET_STAT(TX_PORT_DROP);
5725 	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
5726 	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
5727 	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
5728 	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
5729 	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
5730 	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
5731 	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
5732 	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
5733 
5734 	if (stat_ctl & F_COUNTPAUSESTATTX) {
5735 		p->tx_frames -= p->tx_pause;
5736 		p->tx_octets -= p->tx_pause * 64;
5737 		p->tx_mcast_frames -= p->tx_pause;
5738 	}
5739 
5740 	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
5741 	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
5742 	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
5743 	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
5744 	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
5745 	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
5746 	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
5747 	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
5748 	p->rx_fcs_err		= GET_STAT(RX_PORT_CRC_ERROR);
5749 	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
5750 	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
5751 	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
5752 	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
5753 	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
5754 	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
5755 	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
5756 	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
5757 	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
5758 	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
5759 	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
5760 	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
5761 	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
5762 	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
5763 	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
5764 	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
5765 	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
5766 	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
5767 
5768 	if (stat_ctl & F_COUNTPAUSESTATRX) {
5769 		p->rx_frames -= p->rx_pause;
5770 		p->rx_octets -= p->rx_pause * 64;
5771 		p->rx_mcast_frames -= p->rx_pause;
5772 	}
5773 
5774 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5775 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5776 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5777 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5778 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5779 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5780 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5781 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5782 
5783 #undef GET_STAT
5784 #undef GET_STAT_COM
5785 }
5786 
5787 /**
5788  *	t4_get_lb_stats - collect loopback port statistics
5789  *	@adap: the adapter
5790  *	@idx: the loopback port index
5791  *	@p: the stats structure to fill
5792  *
5793  *	Return HW statistics for the given loopback port.
5794  */
5795 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
5796 {
5797 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5798 
5799 #define GET_STAT(name) \
5800 	t4_read_reg64(adap, \
5801 	(is_t4(adap) ? \
5802 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
5803 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
5804 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
5805 
5806 	p->octets	= GET_STAT(BYTES);
5807 	p->frames	= GET_STAT(FRAMES);
5808 	p->bcast_frames	= GET_STAT(BCAST);
5809 	p->mcast_frames	= GET_STAT(MCAST);
5810 	p->ucast_frames	= GET_STAT(UCAST);
5811 	p->error_frames	= GET_STAT(ERROR);
5812 
5813 	p->frames_64		= GET_STAT(64B);
5814 	p->frames_65_127	= GET_STAT(65B_127B);
5815 	p->frames_128_255	= GET_STAT(128B_255B);
5816 	p->frames_256_511	= GET_STAT(256B_511B);
5817 	p->frames_512_1023	= GET_STAT(512B_1023B);
5818 	p->frames_1024_1518	= GET_STAT(1024B_1518B);
5819 	p->frames_1519_max	= GET_STAT(1519B_MAX);
5820 	p->drop			= GET_STAT(DROP_FRAMES);
5821 
5822 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5823 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5824 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5825 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5826 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5827 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5828 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5829 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
5830 
5831 #undef GET_STAT
5832 #undef GET_STAT_COM
5833 }
5834 
5835 /**
5836  *	t4_wol_magic_enable - enable/disable magic packet WoL
5837  *	@adap: the adapter
5838  *	@port: the physical port index
5839  *	@addr: MAC address expected in magic packets, %NULL to disable
5840  *
5841  *	Enables/disables magic packet wake-on-LAN for the selected port.
5842  */
5843 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
5844 			 const u8 *addr)
5845 {
5846 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
5847 
5848 	if (is_t4(adap)) {
5849 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
5850 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
5851 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
5852 	} else {
5853 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
5854 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
5855 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
5856 	}
5857 
5858 	if (addr) {
5859 		t4_write_reg(adap, mag_id_reg_l,
5860 			     (addr[2] << 24) | (addr[3] << 16) |
5861 			     (addr[4] << 8) | addr[5]);
5862 		t4_write_reg(adap, mag_id_reg_h,
5863 			     (addr[0] << 8) | addr[1]);
5864 	}
5865 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
5866 			 V_MAGICEN(addr != NULL));
5867 }
5868 
5869 /**
5870  *	t4_wol_pat_enable - enable/disable pattern-based WoL
5871  *	@adap: the adapter
5872  *	@port: the physical port index
5873  *	@map: bitmap of which HW pattern filters to set
5874  *	@mask0: byte mask for bytes 0-63 of a packet
5875  *	@mask1: byte mask for bytes 64-127 of a packet
5876  *	@crc: Ethernet CRC for selected bytes
5877  *	@enable: enable/disable switch
5878  *
5879  *	Sets the pattern filters indicated in @map to mask out the bytes
5880  *	specified in @mask0/@mask1 in received packets and compare the CRC of
5881  *	the resulting packet against @crc.  If @enable is %true pattern-based
5882  *	WoL is enabled, otherwise disabled.
5883  */
5884 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
5885 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
5886 {
5887 	int i;
5888 	u32 port_cfg_reg;
5889 
5890 	if (is_t4(adap))
5891 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
5892 	else
5893 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
5894 
5895 	if (!enable) {
5896 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
5897 		return 0;
5898 	}
5899 	if (map > 0xff)
5900 		return -EINVAL;
5901 
5902 #define EPIO_REG(name) \
5903 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
5904 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
5905 
5906 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
5907 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
5908 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
5909 
5910 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
5911 		if (!(map & 1))
5912 			continue;
5913 
5914 		/* write byte masks */
5915 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
5916 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
5917 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
5918 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
5919 			return -ETIMEDOUT;
5920 
5921 		/* write CRC */
5922 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
5923 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
5924 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
5925 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
5926 			return -ETIMEDOUT;
5927 	}
5928 #undef EPIO_REG
5929 
5930 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
5931 	return 0;
5932 }
5933 
5934 /*     t4_mk_filtdelwr - create a delete filter WR
5935  *     @ftid: the filter ID
5936  *     @wr: the filter work request to populate
5937  *     @qid: ingress queue to receive the delete notification
5938  *
5939  *     Creates a filter work request to delete the supplied filter.  If @qid is
5940  *     negative the delete notification is suppressed.
5941  */
5942 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
5943 {
5944 	memset(wr, 0, sizeof(*wr));
5945 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
5946 	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
5947 	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
5948 				    V_FW_FILTER_WR_NOREPLY(qid < 0));
5949 	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
5950 	if (qid >= 0)
5951 		wr->rx_chan_rx_rpl_iq =
5952 				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
5953 }
5954 
5955 #define INIT_CMD(var, cmd, rd_wr) do { \
5956 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
5957 					F_FW_CMD_REQUEST | \
5958 					F_FW_CMD_##rd_wr); \
5959 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
5960 } while (0)
5961 
5962 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
5963 			  u32 addr, u32 val)
5964 {
5965 	u32 ldst_addrspace;
5966 	struct fw_ldst_cmd c;
5967 
5968 	memset(&c, 0, sizeof(c));
5969 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
5970 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5971 					F_FW_CMD_REQUEST |
5972 					F_FW_CMD_WRITE |
5973 					ldst_addrspace);
5974 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5975 	c.u.addrval.addr = cpu_to_be32(addr);
5976 	c.u.addrval.val = cpu_to_be32(val);
5977 
5978 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5979 }
5980 
5981 /**
5982  *	t4_mdio_rd - read a PHY register through MDIO
5983  *	@adap: the adapter
5984  *	@mbox: mailbox to use for the FW command
5985  *	@phy_addr: the PHY address
5986  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
5987  *	@reg: the register to read
5988  *	@valp: where to store the value
5989  *
5990  *	Issues a FW command through the given mailbox to read a PHY register.
5991  */
5992 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5993 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
5994 {
5995 	int ret;
5996 	u32 ldst_addrspace;
5997 	struct fw_ldst_cmd c;
5998 
5999 	memset(&c, 0, sizeof(c));
6000 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6001 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6002 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6003 					ldst_addrspace);
6004 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6005 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6006 					 V_FW_LDST_CMD_MMD(mmd));
6007 	c.u.mdio.raddr = cpu_to_be16(reg);
6008 
6009 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6010 	if (ret == 0)
6011 		*valp = be16_to_cpu(c.u.mdio.rval);
6012 	return ret;
6013 }
6014 
6015 /**
6016  *	t4_mdio_wr - write a PHY register through MDIO
6017  *	@adap: the adapter
6018  *	@mbox: mailbox to use for the FW command
6019  *	@phy_addr: the PHY address
6020  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6021  *	@reg: the register to write
6022  *	@valp: value to write
6023  *
6024  *	Issues a FW command through the given mailbox to write a PHY register.
6025  */
6026 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6027 	       unsigned int mmd, unsigned int reg, unsigned int val)
6028 {
6029 	u32 ldst_addrspace;
6030 	struct fw_ldst_cmd c;
6031 
6032 	memset(&c, 0, sizeof(c));
6033 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6034 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6035 					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6036 					ldst_addrspace);
6037 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6038 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6039 					 V_FW_LDST_CMD_MMD(mmd));
6040 	c.u.mdio.raddr = cpu_to_be16(reg);
6041 	c.u.mdio.rval = cpu_to_be16(val);
6042 
6043 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6044 }
6045 
6046 /**
6047  *
6048  *	t4_sge_decode_idma_state - decode the idma state
6049  *	@adap: the adapter
6050  *	@state: the state idma is stuck in
6051  */
6052 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6053 {
6054 	static const char * const t4_decode[] = {
6055 		"IDMA_IDLE",
6056 		"IDMA_PUSH_MORE_CPL_FIFO",
6057 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6058 		"Not used",
6059 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6060 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6061 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6062 		"IDMA_SEND_FIFO_TO_IMSG",
6063 		"IDMA_FL_REQ_DATA_FL_PREP",
6064 		"IDMA_FL_REQ_DATA_FL",
6065 		"IDMA_FL_DROP",
6066 		"IDMA_FL_H_REQ_HEADER_FL",
6067 		"IDMA_FL_H_SEND_PCIEHDR",
6068 		"IDMA_FL_H_PUSH_CPL_FIFO",
6069 		"IDMA_FL_H_SEND_CPL",
6070 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6071 		"IDMA_FL_H_SEND_IP_HDR",
6072 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6073 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6074 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6075 		"IDMA_FL_D_SEND_PCIEHDR",
6076 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6077 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6078 		"IDMA_FL_SEND_PCIEHDR",
6079 		"IDMA_FL_PUSH_CPL_FIFO",
6080 		"IDMA_FL_SEND_CPL",
6081 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6082 		"IDMA_FL_SEND_PAYLOAD",
6083 		"IDMA_FL_REQ_NEXT_DATA_FL",
6084 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6085 		"IDMA_FL_SEND_PADDING",
6086 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6087 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6088 		"IDMA_FL_REQ_DATAFL_DONE",
6089 		"IDMA_FL_REQ_HEADERFL_DONE",
6090 	};
6091 	static const char * const t5_decode[] = {
6092 		"IDMA_IDLE",
6093 		"IDMA_ALMOST_IDLE",
6094 		"IDMA_PUSH_MORE_CPL_FIFO",
6095 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6096 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6097 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6098 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6099 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6100 		"IDMA_SEND_FIFO_TO_IMSG",
6101 		"IDMA_FL_REQ_DATA_FL",
6102 		"IDMA_FL_DROP",
6103 		"IDMA_FL_DROP_SEND_INC",
6104 		"IDMA_FL_H_REQ_HEADER_FL",
6105 		"IDMA_FL_H_SEND_PCIEHDR",
6106 		"IDMA_FL_H_PUSH_CPL_FIFO",
6107 		"IDMA_FL_H_SEND_CPL",
6108 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6109 		"IDMA_FL_H_SEND_IP_HDR",
6110 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6111 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6112 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6113 		"IDMA_FL_D_SEND_PCIEHDR",
6114 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6115 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6116 		"IDMA_FL_SEND_PCIEHDR",
6117 		"IDMA_FL_PUSH_CPL_FIFO",
6118 		"IDMA_FL_SEND_CPL",
6119 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6120 		"IDMA_FL_SEND_PAYLOAD",
6121 		"IDMA_FL_REQ_NEXT_DATA_FL",
6122 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6123 		"IDMA_FL_SEND_PADDING",
6124 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6125 	};
6126 	static const char * const t6_decode[] = {
6127 		"IDMA_IDLE",
6128 		"IDMA_PUSH_MORE_CPL_FIFO",
6129 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6130 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6131 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6132 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6133 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6134 		"IDMA_FL_REQ_DATA_FL",
6135 		"IDMA_FL_DROP",
6136 		"IDMA_FL_DROP_SEND_INC",
6137 		"IDMA_FL_H_REQ_HEADER_FL",
6138 		"IDMA_FL_H_SEND_PCIEHDR",
6139 		"IDMA_FL_H_PUSH_CPL_FIFO",
6140 		"IDMA_FL_H_SEND_CPL",
6141 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6142 		"IDMA_FL_H_SEND_IP_HDR",
6143 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6144 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6145 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6146 		"IDMA_FL_D_SEND_PCIEHDR",
6147 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6148 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6149 		"IDMA_FL_SEND_PCIEHDR",
6150 		"IDMA_FL_PUSH_CPL_FIFO",
6151 		"IDMA_FL_SEND_CPL",
6152 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6153 		"IDMA_FL_SEND_PAYLOAD",
6154 		"IDMA_FL_REQ_NEXT_DATA_FL",
6155 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6156 		"IDMA_FL_SEND_PADDING",
6157 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6158 	};
6159 	static const u32 sge_regs[] = {
6160 		A_SGE_DEBUG_DATA_LOW_INDEX_2,
6161 		A_SGE_DEBUG_DATA_LOW_INDEX_3,
6162 		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
6163 	};
6164 	const char * const *sge_idma_decode;
6165 	int sge_idma_decode_nstates;
6166 	int i;
6167 	unsigned int chip_version = chip_id(adapter);
6168 
6169 	/* Select the right set of decode strings to dump depending on the
6170 	 * adapter chip type.
6171 	 */
6172 	switch (chip_version) {
6173 	case CHELSIO_T4:
6174 		sge_idma_decode = (const char * const *)t4_decode;
6175 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6176 		break;
6177 
6178 	case CHELSIO_T5:
6179 		sge_idma_decode = (const char * const *)t5_decode;
6180 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6181 		break;
6182 
6183 	case CHELSIO_T6:
6184 		sge_idma_decode = (const char * const *)t6_decode;
6185 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6186 		break;
6187 
6188 	default:
6189 		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
6190 		return;
6191 	}
6192 
6193 	if (state < sge_idma_decode_nstates)
6194 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6195 	else
6196 		CH_WARN(adapter, "idma state %d unknown\n", state);
6197 
6198 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6199 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6200 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6201 }
6202 
6203 /**
6204  *      t4_sge_ctxt_flush - flush the SGE context cache
6205  *      @adap: the adapter
6206  *      @mbox: mailbox to use for the FW command
6207  *
6208  *      Issues a FW command through the given mailbox to flush the
6209  *      SGE context cache.
6210  */
6211 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
6212 {
6213 	int ret;
6214 	u32 ldst_addrspace;
6215 	struct fw_ldst_cmd c;
6216 
6217 	memset(&c, 0, sizeof(c));
6218 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
6219 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6220 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6221 					ldst_addrspace);
6222 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6223 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
6224 
6225 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6226 	return ret;
6227 }
6228 
6229 /**
6230  *      t4_fw_hello - establish communication with FW
6231  *      @adap: the adapter
6232  *      @mbox: mailbox to use for the FW command
6233  *      @evt_mbox: mailbox to receive async FW events
6234  *      @master: specifies the caller's willingness to be the device master
6235  *	@state: returns the current device state (if non-NULL)
6236  *
6237  *	Issues a command to establish communication with FW.  Returns either
6238  *	an error (negative integer) or the mailbox of the Master PF.
6239  */
6240 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6241 		enum dev_master master, enum dev_state *state)
6242 {
6243 	int ret;
6244 	struct fw_hello_cmd c;
6245 	u32 v;
6246 	unsigned int master_mbox;
6247 	int retries = FW_CMD_HELLO_RETRIES;
6248 
6249 retry:
6250 	memset(&c, 0, sizeof(c));
6251 	INIT_CMD(c, HELLO, WRITE);
6252 	c.err_to_clearinit = cpu_to_be32(
6253 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
6254 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
6255 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
6256 					mbox : M_FW_HELLO_CMD_MBMASTER) |
6257 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
6258 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
6259 		F_FW_HELLO_CMD_CLEARINIT);
6260 
6261 	/*
6262 	 * Issue the HELLO command to the firmware.  If it's not successful
6263 	 * but indicates that we got a "busy" or "timeout" condition, retry
6264 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6265 	 * retry limit, check to see if the firmware left us any error
6266 	 * information and report that if so ...
6267 	 */
6268 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6269 	if (ret != FW_SUCCESS) {
6270 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6271 			goto retry;
6272 		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
6273 			t4_report_fw_error(adap);
6274 		return ret;
6275 	}
6276 
6277 	v = be32_to_cpu(c.err_to_clearinit);
6278 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
6279 	if (state) {
6280 		if (v & F_FW_HELLO_CMD_ERR)
6281 			*state = DEV_STATE_ERR;
6282 		else if (v & F_FW_HELLO_CMD_INIT)
6283 			*state = DEV_STATE_INIT;
6284 		else
6285 			*state = DEV_STATE_UNINIT;
6286 	}
6287 
6288 	/*
6289 	 * If we're not the Master PF then we need to wait around for the
6290 	 * Master PF Driver to finish setting up the adapter.
6291 	 *
6292 	 * Note that we also do this wait if we're a non-Master-capable PF and
6293 	 * there is no current Master PF; a Master PF may show up momentarily
6294 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6295 	 * OS loads lots of different drivers rapidly at the same time).  In
6296 	 * this case, the Master PF returned by the firmware will be
6297 	 * M_PCIE_FW_MASTER so the test below will work ...
6298 	 */
6299 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
6300 	    master_mbox != mbox) {
6301 		int waiting = FW_CMD_HELLO_TIMEOUT;
6302 
6303 		/*
6304 		 * Wait for the firmware to either indicate an error or
6305 		 * initialized state.  If we see either of these we bail out
6306 		 * and report the issue to the caller.  If we exhaust the
6307 		 * "hello timeout" and we haven't exhausted our retries, try
6308 		 * again.  Otherwise bail with a timeout error.
6309 		 */
6310 		for (;;) {
6311 			u32 pcie_fw;
6312 
6313 			msleep(50);
6314 			waiting -= 50;
6315 
6316 			/*
6317 			 * If neither Error nor Initialialized are indicated
6318 			 * by the firmware keep waiting till we exhaust our
6319 			 * timeout ... and then retry if we haven't exhausted
6320 			 * our retries ...
6321 			 */
6322 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
6323 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
6324 				if (waiting <= 0) {
6325 					if (retries-- > 0)
6326 						goto retry;
6327 
6328 					return -ETIMEDOUT;
6329 				}
6330 				continue;
6331 			}
6332 
6333 			/*
6334 			 * We either have an Error or Initialized condition
6335 			 * report errors preferentially.
6336 			 */
6337 			if (state) {
6338 				if (pcie_fw & F_PCIE_FW_ERR)
6339 					*state = DEV_STATE_ERR;
6340 				else if (pcie_fw & F_PCIE_FW_INIT)
6341 					*state = DEV_STATE_INIT;
6342 			}
6343 
6344 			/*
6345 			 * If we arrived before a Master PF was selected and
6346 			 * there's not a valid Master PF, grab its identity
6347 			 * for our caller.
6348 			 */
6349 			if (master_mbox == M_PCIE_FW_MASTER &&
6350 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
6351 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
6352 			break;
6353 		}
6354 	}
6355 
6356 	return master_mbox;
6357 }
6358 
6359 /**
6360  *	t4_fw_bye - end communication with FW
6361  *	@adap: the adapter
6362  *	@mbox: mailbox to use for the FW command
6363  *
6364  *	Issues a command to terminate communication with FW.
6365  */
6366 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6367 {
6368 	struct fw_bye_cmd c;
6369 
6370 	memset(&c, 0, sizeof(c));
6371 	INIT_CMD(c, BYE, WRITE);
6372 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6373 }
6374 
6375 /**
6376  *	t4_fw_reset - issue a reset to FW
6377  *	@adap: the adapter
6378  *	@mbox: mailbox to use for the FW command
6379  *	@reset: specifies the type of reset to perform
6380  *
6381  *	Issues a reset command of the specified type to FW.
6382  */
6383 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6384 {
6385 	struct fw_reset_cmd c;
6386 
6387 	memset(&c, 0, sizeof(c));
6388 	INIT_CMD(c, RESET, WRITE);
6389 	c.val = cpu_to_be32(reset);
6390 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6391 }
6392 
6393 /**
6394  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6395  *	@adap: the adapter
6396  *	@mbox: mailbox to use for the FW RESET command (if desired)
6397  *	@force: force uP into RESET even if FW RESET command fails
6398  *
6399  *	Issues a RESET command to firmware (if desired) with a HALT indication
6400  *	and then puts the microprocessor into RESET state.  The RESET command
6401  *	will only be issued if a legitimate mailbox is provided (mbox <=
6402  *	M_PCIE_FW_MASTER).
6403  *
6404  *	This is generally used in order for the host to safely manipulate the
6405  *	adapter without fear of conflicting with whatever the firmware might
6406  *	be doing.  The only way out of this state is to RESTART the firmware
6407  *	...
6408  */
6409 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6410 {
6411 	int ret = 0;
6412 
6413 	/*
6414 	 * If a legitimate mailbox is provided, issue a RESET command
6415 	 * with a HALT indication.
6416 	 */
6417 	if (mbox <= M_PCIE_FW_MASTER) {
6418 		struct fw_reset_cmd c;
6419 
6420 		memset(&c, 0, sizeof(c));
6421 		INIT_CMD(c, RESET, WRITE);
6422 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
6423 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
6424 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6425 	}
6426 
6427 	/*
6428 	 * Normally we won't complete the operation if the firmware RESET
6429 	 * command fails but if our caller insists we'll go ahead and put the
6430 	 * uP into RESET.  This can be useful if the firmware is hung or even
6431 	 * missing ...  We'll have to take the risk of putting the uP into
6432 	 * RESET without the cooperation of firmware in that case.
6433 	 *
6434 	 * We also force the firmware's HALT flag to be on in case we bypassed
6435 	 * the firmware RESET command above or we're dealing with old firmware
6436 	 * which doesn't have the HALT capability.  This will serve as a flag
6437 	 * for the incoming firmware to know that it's coming out of a HALT
6438 	 * rather than a RESET ... if it's new enough to understand that ...
6439 	 */
6440 	if (ret == 0 || force) {
6441 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6442 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
6443 				 F_PCIE_FW_HALT);
6444 	}
6445 
6446 	/*
6447 	 * And we always return the result of the firmware RESET command
6448 	 * even when we force the uP into RESET ...
6449 	 */
6450 	return ret;
6451 }
6452 
6453 /**
6454  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6455  *	@adap: the adapter
6456  *	@reset: if we want to do a RESET to restart things
6457  *
6458  *	Restart firmware previously halted by t4_fw_halt().  On successful
6459  *	return the previous PF Master remains as the new PF Master and there
6460  *	is no need to issue a new HELLO command, etc.
6461  *
6462  *	We do this in two ways:
6463  *
6464  *	 1. If we're dealing with newer firmware we'll simply want to take
6465  *	    the chip's microprocessor out of RESET.  This will cause the
6466  *	    firmware to start up from its start vector.  And then we'll loop
6467  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6468  *	    reset to 0) or we timeout.
6469  *
6470  *	 2. If we're dealing with older firmware then we'll need to RESET
6471  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6472  *	    flag and automatically RESET itself on startup.
6473  */
6474 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6475 {
6476 	if (reset) {
6477 		/*
6478 		 * Since we're directing the RESET instead of the firmware
6479 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6480 		 * bit.
6481 		 */
6482 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
6483 
6484 		/*
6485 		 * If we've been given a valid mailbox, first try to get the
6486 		 * firmware to do the RESET.  If that works, great and we can
6487 		 * return success.  Otherwise, if we haven't been given a
6488 		 * valid mailbox or the RESET command failed, fall back to
6489 		 * hitting the chip with a hammer.
6490 		 */
6491 		if (mbox <= M_PCIE_FW_MASTER) {
6492 			t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6493 			msleep(100);
6494 			if (t4_fw_reset(adap, mbox,
6495 					F_PIORST | F_PIORSTMODE) == 0)
6496 				return 0;
6497 		}
6498 
6499 		t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6500 		msleep(2000);
6501 	} else {
6502 		int ms;
6503 
6504 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6505 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6506 			if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
6507 				return FW_SUCCESS;
6508 			msleep(100);
6509 			ms += 100;
6510 		}
6511 		return -ETIMEDOUT;
6512 	}
6513 	return 0;
6514 }
6515 
6516 /**
6517  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6518  *	@adap: the adapter
6519  *	@mbox: mailbox to use for the FW RESET command (if desired)
6520  *	@fw_data: the firmware image to write
6521  *	@size: image size
6522  *	@force: force upgrade even if firmware doesn't cooperate
6523  *
6524  *	Perform all of the steps necessary for upgrading an adapter's
6525  *	firmware image.  Normally this requires the cooperation of the
6526  *	existing firmware in order to halt all existing activities
6527  *	but if an invalid mailbox token is passed in we skip that step
6528  *	(though we'll still put the adapter microprocessor into RESET in
6529  *	that case).
6530  *
6531  *	On successful return the new firmware will have been loaded and
6532  *	the adapter will have been fully RESET losing all previous setup
6533  *	state.  On unsuccessful return the adapter may be completely hosed ...
6534  *	positive errno indicates that the adapter is ~probably~ intact, a
6535  *	negative errno indicates that things are looking bad ...
6536  */
6537 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6538 		  const u8 *fw_data, unsigned int size, int force)
6539 {
6540 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6541 	unsigned int bootstrap =
6542 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
6543 	int reset, ret;
6544 
6545 	if (!t4_fw_matches_chip(adap, fw_hdr))
6546 		return -EINVAL;
6547 
6548 	if (!bootstrap) {
6549 		ret = t4_fw_halt(adap, mbox, force);
6550 		if (ret < 0 && !force)
6551 			return ret;
6552 	}
6553 
6554 	ret = t4_load_fw(adap, fw_data, size);
6555 	if (ret < 0 || bootstrap)
6556 		return ret;
6557 
6558 	/*
6559 	 * Older versions of the firmware don't understand the new
6560 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6561 	 * restart.  So for newly loaded older firmware we'll have to do the
6562 	 * RESET for it so it starts up on a clean slate.  We can tell if
6563 	 * the newly loaded firmware will handle this right by checking
6564 	 * its header flags to see if it advertises the capability.
6565 	 */
6566 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6567 	return t4_fw_restart(adap, mbox, reset);
6568 }
6569 
6570 /**
6571  *	t4_fw_initialize - ask FW to initialize the device
6572  *	@adap: the adapter
6573  *	@mbox: mailbox to use for the FW command
6574  *
6575  *	Issues a command to FW to partially initialize the device.  This
6576  *	performs initialization that generally doesn't depend on user input.
6577  */
6578 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6579 {
6580 	struct fw_initialize_cmd c;
6581 
6582 	memset(&c, 0, sizeof(c));
6583 	INIT_CMD(c, INITIALIZE, WRITE);
6584 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6585 }
6586 
6587 /**
6588  *	t4_query_params_rw - query FW or device parameters
6589  *	@adap: the adapter
6590  *	@mbox: mailbox to use for the FW command
6591  *	@pf: the PF
6592  *	@vf: the VF
6593  *	@nparams: the number of parameters
6594  *	@params: the parameter names
6595  *	@val: the parameter values
6596  *	@rw: Write and read flag
6597  *
6598  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
6599  *	queried at once.
6600  */
6601 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6602 		       unsigned int vf, unsigned int nparams, const u32 *params,
6603 		       u32 *val, int rw)
6604 {
6605 	int i, ret;
6606 	struct fw_params_cmd c;
6607 	__be32 *p = &c.param[0].mnem;
6608 
6609 	if (nparams > 7)
6610 		return -EINVAL;
6611 
6612 	memset(&c, 0, sizeof(c));
6613 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6614 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
6615 				  V_FW_PARAMS_CMD_PFN(pf) |
6616 				  V_FW_PARAMS_CMD_VFN(vf));
6617 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6618 
6619 	for (i = 0; i < nparams; i++) {
6620 		*p++ = cpu_to_be32(*params++);
6621 		if (rw)
6622 			*p = cpu_to_be32(*(val + i));
6623 		p++;
6624 	}
6625 
6626 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6627 	if (ret == 0)
6628 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6629 			*val++ = be32_to_cpu(*p);
6630 	return ret;
6631 }
6632 
6633 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6634 		    unsigned int vf, unsigned int nparams, const u32 *params,
6635 		    u32 *val)
6636 {
6637 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6638 }
6639 
6640 /**
6641  *      t4_set_params_timeout - sets FW or device parameters
6642  *      @adap: the adapter
6643  *      @mbox: mailbox to use for the FW command
6644  *      @pf: the PF
6645  *      @vf: the VF
6646  *      @nparams: the number of parameters
6647  *      @params: the parameter names
6648  *      @val: the parameter values
6649  *      @timeout: the timeout time
6650  *
6651  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6652  *      specified at once.
6653  */
6654 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6655 			  unsigned int pf, unsigned int vf,
6656 			  unsigned int nparams, const u32 *params,
6657 			  const u32 *val, int timeout)
6658 {
6659 	struct fw_params_cmd c;
6660 	__be32 *p = &c.param[0].mnem;
6661 
6662 	if (nparams > 7)
6663 		return -EINVAL;
6664 
6665 	memset(&c, 0, sizeof(c));
6666 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6667 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6668 				  V_FW_PARAMS_CMD_PFN(pf) |
6669 				  V_FW_PARAMS_CMD_VFN(vf));
6670 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6671 
6672 	while (nparams--) {
6673 		*p++ = cpu_to_be32(*params++);
6674 		*p++ = cpu_to_be32(*val++);
6675 	}
6676 
6677 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
6678 }
6679 
6680 /**
6681  *	t4_set_params - sets FW or device parameters
6682  *	@adap: the adapter
6683  *	@mbox: mailbox to use for the FW command
6684  *	@pf: the PF
6685  *	@vf: the VF
6686  *	@nparams: the number of parameters
6687  *	@params: the parameter names
6688  *	@val: the parameter values
6689  *
6690  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
6691  *	specified at once.
6692  */
6693 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6694 		  unsigned int vf, unsigned int nparams, const u32 *params,
6695 		  const u32 *val)
6696 {
6697 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6698 				     FW_CMD_MAX_TIMEOUT);
6699 }
6700 
6701 /**
6702  *	t4_cfg_pfvf - configure PF/VF resource limits
6703  *	@adap: the adapter
6704  *	@mbox: mailbox to use for the FW command
6705  *	@pf: the PF being configured
6706  *	@vf: the VF being configured
6707  *	@txq: the max number of egress queues
6708  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
6709  *	@rxqi: the max number of interrupt-capable ingress queues
6710  *	@rxq: the max number of interruptless ingress queues
6711  *	@tc: the PCI traffic class
6712  *	@vi: the max number of virtual interfaces
6713  *	@cmask: the channel access rights mask for the PF/VF
6714  *	@pmask: the port access rights mask for the PF/VF
6715  *	@nexact: the maximum number of exact MPS filters
6716  *	@rcaps: read capabilities
6717  *	@wxcaps: write/execute capabilities
6718  *
6719  *	Configures resource limits and capabilities for a physical or virtual
6720  *	function.
6721  */
6722 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6723 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6724 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
6725 		unsigned int vi, unsigned int cmask, unsigned int pmask,
6726 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6727 {
6728 	struct fw_pfvf_cmd c;
6729 
6730 	memset(&c, 0, sizeof(c));
6731 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
6732 				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
6733 				  V_FW_PFVF_CMD_VFN(vf));
6734 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6735 	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
6736 				     V_FW_PFVF_CMD_NIQ(rxq));
6737 	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
6738 				    V_FW_PFVF_CMD_PMASK(pmask) |
6739 				    V_FW_PFVF_CMD_NEQ(txq));
6740 	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
6741 				      V_FW_PFVF_CMD_NVI(vi) |
6742 				      V_FW_PFVF_CMD_NEXACTF(nexact));
6743 	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
6744 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
6745 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
6746 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6747 }
6748 
6749 /**
6750  *	t4_alloc_vi_func - allocate a virtual interface
6751  *	@adap: the adapter
6752  *	@mbox: mailbox to use for the FW command
6753  *	@port: physical port associated with the VI
6754  *	@pf: the PF owning the VI
6755  *	@vf: the VF owning the VI
6756  *	@nmac: number of MAC addresses needed (1 to 5)
6757  *	@mac: the MAC addresses of the VI
6758  *	@rss_size: size of RSS table slice associated with this VI
6759  *	@portfunc: which Port Application Function MAC Address is desired
6760  *	@idstype: Intrusion Detection Type
6761  *
6762  *	Allocates a virtual interface for the given physical port.  If @mac is
6763  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
6764  *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
6765  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
6766  *	stored consecutively so the space needed is @nmac * 6 bytes.
6767  *	Returns a negative error number or the non-negative VI id.
6768  */
6769 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
6770 		     unsigned int port, unsigned int pf, unsigned int vf,
6771 		     unsigned int nmac, u8 *mac, u16 *rss_size,
6772 		     unsigned int portfunc, unsigned int idstype)
6773 {
6774 	int ret;
6775 	struct fw_vi_cmd c;
6776 
6777 	memset(&c, 0, sizeof(c));
6778 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
6779 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
6780 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
6781 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
6782 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
6783 				     V_FW_VI_CMD_FUNC(portfunc));
6784 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
6785 	c.nmac = nmac - 1;
6786 	if(!rss_size)
6787 		c.norss_rsssize = F_FW_VI_CMD_NORSS;
6788 
6789 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6790 	if (ret)
6791 		return ret;
6792 
6793 	if (mac) {
6794 		memcpy(mac, c.mac, sizeof(c.mac));
6795 		switch (nmac) {
6796 		case 5:
6797 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6798 		case 4:
6799 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6800 		case 3:
6801 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6802 		case 2:
6803 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
6804 		}
6805 	}
6806 	if (rss_size)
6807 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
6808 	return G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
6809 }
6810 
6811 /**
6812  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
6813  *      @adap: the adapter
6814  *      @mbox: mailbox to use for the FW command
6815  *      @port: physical port associated with the VI
6816  *      @pf: the PF owning the VI
6817  *      @vf: the VF owning the VI
6818  *      @nmac: number of MAC addresses needed (1 to 5)
6819  *      @mac: the MAC addresses of the VI
6820  *      @rss_size: size of RSS table slice associated with this VI
6821  *
6822  *	backwards compatible and convieniance routine to allocate a Virtual
6823  *	Interface with a Ethernet Port Application Function and Intrustion
6824  *	Detection System disabled.
6825  */
6826 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6827 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6828 		u16 *rss_size)
6829 {
6830 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
6831 				FW_VI_FUNC_ETH, 0);
6832 }
6833 
6834 /**
6835  * 	t4_free_vi - free a virtual interface
6836  * 	@adap: the adapter
6837  * 	@mbox: mailbox to use for the FW command
6838  * 	@pf: the PF owning the VI
6839  * 	@vf: the VF owning the VI
6840  * 	@viid: virtual interface identifiler
6841  *
6842  * 	Free a previously allocated virtual interface.
6843  */
6844 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
6845 	       unsigned int vf, unsigned int viid)
6846 {
6847 	struct fw_vi_cmd c;
6848 
6849 	memset(&c, 0, sizeof(c));
6850 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
6851 				  F_FW_CMD_REQUEST |
6852 				  F_FW_CMD_EXEC |
6853 				  V_FW_VI_CMD_PFN(pf) |
6854 				  V_FW_VI_CMD_VFN(vf));
6855 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
6856 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
6857 
6858 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6859 }
6860 
6861 /**
6862  *	t4_set_rxmode - set Rx properties of a virtual interface
6863  *	@adap: the adapter
6864  *	@mbox: mailbox to use for the FW command
6865  *	@viid: the VI id
6866  *	@mtu: the new MTU or -1
6867  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
6868  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
6869  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
6870  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
6871  *	@sleep_ok: if true we may sleep while awaiting command completion
6872  *
6873  *	Sets Rx properties of a virtual interface.
6874  */
6875 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
6876 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
6877 		  bool sleep_ok)
6878 {
6879 	struct fw_vi_rxmode_cmd c;
6880 
6881 	/* convert to FW values */
6882 	if (mtu < 0)
6883 		mtu = M_FW_VI_RXMODE_CMD_MTU;
6884 	if (promisc < 0)
6885 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
6886 	if (all_multi < 0)
6887 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
6888 	if (bcast < 0)
6889 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
6890 	if (vlanex < 0)
6891 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
6892 
6893 	memset(&c, 0, sizeof(c));
6894 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
6895 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6896 				   V_FW_VI_RXMODE_CMD_VIID(viid));
6897 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6898 	c.mtu_to_vlanexen =
6899 		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
6900 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
6901 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
6902 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
6903 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
6904 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6905 }
6906 
6907 /**
6908  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
6909  *	@adap: the adapter
6910  *	@mbox: mailbox to use for the FW command
6911  *	@viid: the VI id
6912  *	@free: if true any existing filters for this VI id are first removed
6913  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
6914  *	@addr: the MAC address(es)
6915  *	@idx: where to store the index of each allocated filter
6916  *	@hash: pointer to hash address filter bitmap
6917  *	@sleep_ok: call is allowed to sleep
6918  *
6919  *	Allocates an exact-match filter for each of the supplied addresses and
6920  *	sets it to the corresponding address.  If @idx is not %NULL it should
6921  *	have at least @naddr entries, each of which will be set to the index of
6922  *	the filter allocated for the corresponding MAC address.  If a filter
6923  *	could not be allocated for an address its index is set to 0xffff.
6924  *	If @hash is not %NULL addresses that fail to allocate an exact filter
6925  *	are hashed and update the hash filter bitmap pointed at by @hash.
6926  *
6927  *	Returns a negative error number or the number of filters allocated.
6928  */
6929 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
6930 		      unsigned int viid, bool free, unsigned int naddr,
6931 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
6932 {
6933 	int offset, ret = 0;
6934 	struct fw_vi_mac_cmd c;
6935 	unsigned int nfilters = 0;
6936 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
6937 	unsigned int rem = naddr;
6938 
6939 	if (naddr > max_naddr)
6940 		return -EINVAL;
6941 
6942 	for (offset = 0; offset < naddr ; /**/) {
6943 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
6944 					 ? rem
6945 					 : ARRAY_SIZE(c.u.exact));
6946 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6947 						     u.exact[fw_naddr]), 16);
6948 		struct fw_vi_mac_exact *p;
6949 		int i;
6950 
6951 		memset(&c, 0, sizeof(c));
6952 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
6953 					   F_FW_CMD_REQUEST |
6954 					   F_FW_CMD_WRITE |
6955 					   V_FW_CMD_EXEC(free) |
6956 					   V_FW_VI_MAC_CMD_VIID(viid));
6957 		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
6958 						  V_FW_CMD_LEN16(len16));
6959 
6960 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6961 			p->valid_to_idx =
6962 				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
6963 					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
6964 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
6965 		}
6966 
6967 		/*
6968 		 * It's okay if we run out of space in our MAC address arena.
6969 		 * Some of the addresses we submit may get stored so we need
6970 		 * to run through the reply to see what the results were ...
6971 		 */
6972 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6973 		if (ret && ret != -FW_ENOMEM)
6974 			break;
6975 
6976 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6977 			u16 index = G_FW_VI_MAC_CMD_IDX(
6978 						be16_to_cpu(p->valid_to_idx));
6979 
6980 			if (idx)
6981 				idx[offset+i] = (index >=  max_naddr
6982 						 ? 0xffff
6983 						 : index);
6984 			if (index < max_naddr)
6985 				nfilters++;
6986 			else if (hash)
6987 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
6988 		}
6989 
6990 		free = false;
6991 		offset += fw_naddr;
6992 		rem -= fw_naddr;
6993 	}
6994 
6995 	if (ret == 0 || ret == -FW_ENOMEM)
6996 		ret = nfilters;
6997 	return ret;
6998 }
6999 
7000 /**
7001  *	t4_change_mac - modifies the exact-match filter for a MAC address
7002  *	@adap: the adapter
7003  *	@mbox: mailbox to use for the FW command
7004  *	@viid: the VI id
7005  *	@idx: index of existing filter for old value of MAC address, or -1
7006  *	@addr: the new MAC address value
7007  *	@persist: whether a new MAC allocation should be persistent
7008  *	@add_smt: if true also add the address to the HW SMT
7009  *
7010  *	Modifies an exact-match filter and sets it to the new MAC address if
7011  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
7012  *	latter case the address is added persistently if @persist is %true.
7013  *
7014  *	Note that in general it is not possible to modify the value of a given
7015  *	filter so the generic way to modify an address filter is to free the one
7016  *	being used by the old address value and allocate a new filter for the
7017  *	new address value.
7018  *
7019  *	Returns a negative error number or the index of the filter with the new
7020  *	MAC value.  Note that this index may differ from @idx.
7021  */
7022 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7023 		  int idx, const u8 *addr, bool persist, bool add_smt)
7024 {
7025 	int ret, mode;
7026 	struct fw_vi_mac_cmd c;
7027 	struct fw_vi_mac_exact *p = c.u.exact;
7028 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
7029 
7030 	if (idx < 0)		/* new allocation */
7031 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7032 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7033 
7034 	memset(&c, 0, sizeof(c));
7035 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7036 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7037 				   V_FW_VI_MAC_CMD_VIID(viid));
7038 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
7039 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7040 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
7041 				      V_FW_VI_MAC_CMD_IDX(idx));
7042 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7043 
7044 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7045 	if (ret == 0) {
7046 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
7047 		if (ret >= max_mac_addr)
7048 			ret = -ENOMEM;
7049 	}
7050 	return ret;
7051 }
7052 
7053 /**
7054  *	t4_set_addr_hash - program the MAC inexact-match hash filter
7055  *	@adap: the adapter
7056  *	@mbox: mailbox to use for the FW command
7057  *	@viid: the VI id
7058  *	@ucast: whether the hash filter should also match unicast addresses
7059  *	@vec: the value to be written to the hash filter
7060  *	@sleep_ok: call is allowed to sleep
7061  *
7062  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
7063  */
7064 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7065 		     bool ucast, u64 vec, bool sleep_ok)
7066 {
7067 	struct fw_vi_mac_cmd c;
7068 	u32 val;
7069 
7070 	memset(&c, 0, sizeof(c));
7071 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7072 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7073 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7074 	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
7075 	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
7076 	c.freemacs_to_len16 = cpu_to_be32(val);
7077 	c.u.hash.hashvec = cpu_to_be64(vec);
7078 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7079 }
7080 
7081 /**
7082  *      t4_enable_vi_params - enable/disable a virtual interface
7083  *      @adap: the adapter
7084  *      @mbox: mailbox to use for the FW command
7085  *      @viid: the VI id
7086  *      @rx_en: 1=enable Rx, 0=disable Rx
7087  *      @tx_en: 1=enable Tx, 0=disable Tx
7088  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7089  *
7090  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7091  *      only makes sense when enabling a Virtual Interface ...
7092  */
7093 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7094 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7095 {
7096 	struct fw_vi_enable_cmd c;
7097 
7098 	memset(&c, 0, sizeof(c));
7099 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7100 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7101 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7102 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
7103 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
7104 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
7105 				     FW_LEN16(c));
7106 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7107 }
7108 
7109 /**
7110  *	t4_enable_vi - enable/disable a virtual interface
7111  *	@adap: the adapter
7112  *	@mbox: mailbox to use for the FW command
7113  *	@viid: the VI id
7114  *	@rx_en: 1=enable Rx, 0=disable Rx
7115  *	@tx_en: 1=enable Tx, 0=disable Tx
7116  *
7117  *	Enables/disables a virtual interface.  Note that setting DCB Enable
7118  *	only makes sense when enabling a Virtual Interface ...
7119  */
7120 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7121 		 bool rx_en, bool tx_en)
7122 {
7123 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7124 }
7125 
7126 /**
7127  *	t4_identify_port - identify a VI's port by blinking its LED
7128  *	@adap: the adapter
7129  *	@mbox: mailbox to use for the FW command
7130  *	@viid: the VI id
7131  *	@nblinks: how many times to blink LED at 2.5 Hz
7132  *
7133  *	Identifies a VI's port by blinking its LED.
7134  */
7135 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7136 		     unsigned int nblinks)
7137 {
7138 	struct fw_vi_enable_cmd c;
7139 
7140 	memset(&c, 0, sizeof(c));
7141 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7142 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7143 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7144 	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
7145 	c.blinkdur = cpu_to_be16(nblinks);
7146 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7147 }
7148 
7149 /**
7150  *	t4_iq_stop - stop an ingress queue and its FLs
7151  *	@adap: the adapter
7152  *	@mbox: mailbox to use for the FW command
7153  *	@pf: the PF owning the queues
7154  *	@vf: the VF owning the queues
7155  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7156  *	@iqid: ingress queue id
7157  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7158  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7159  *
7160  *	Stops an ingress queue and its associated FLs, if any.  This causes
7161  *	any current or future data/messages destined for these queues to be
7162  *	tossed.
7163  */
7164 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7165 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7166 	       unsigned int fl0id, unsigned int fl1id)
7167 {
7168 	struct fw_iq_cmd c;
7169 
7170 	memset(&c, 0, sizeof(c));
7171 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7172 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7173 				  V_FW_IQ_CMD_VFN(vf));
7174 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
7175 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7176 	c.iqid = cpu_to_be16(iqid);
7177 	c.fl0id = cpu_to_be16(fl0id);
7178 	c.fl1id = cpu_to_be16(fl1id);
7179 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7180 }
7181 
7182 /**
7183  *	t4_iq_free - free an ingress queue and its FLs
7184  *	@adap: the adapter
7185  *	@mbox: mailbox to use for the FW command
7186  *	@pf: the PF owning the queues
7187  *	@vf: the VF owning the queues
7188  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7189  *	@iqid: ingress queue id
7190  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7191  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7192  *
7193  *	Frees an ingress queue and its associated FLs, if any.
7194  */
7195 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7196 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7197 	       unsigned int fl0id, unsigned int fl1id)
7198 {
7199 	struct fw_iq_cmd c;
7200 
7201 	memset(&c, 0, sizeof(c));
7202 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7203 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7204 				  V_FW_IQ_CMD_VFN(vf));
7205 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
7206 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7207 	c.iqid = cpu_to_be16(iqid);
7208 	c.fl0id = cpu_to_be16(fl0id);
7209 	c.fl1id = cpu_to_be16(fl1id);
7210 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7211 }
7212 
7213 /**
7214  *	t4_eth_eq_free - free an Ethernet egress queue
7215  *	@adap: the adapter
7216  *	@mbox: mailbox to use for the FW command
7217  *	@pf: the PF owning the queue
7218  *	@vf: the VF owning the queue
7219  *	@eqid: egress queue id
7220  *
7221  *	Frees an Ethernet egress queue.
7222  */
7223 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7224 		   unsigned int vf, unsigned int eqid)
7225 {
7226 	struct fw_eq_eth_cmd c;
7227 
7228 	memset(&c, 0, sizeof(c));
7229 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
7230 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7231 				  V_FW_EQ_ETH_CMD_PFN(pf) |
7232 				  V_FW_EQ_ETH_CMD_VFN(vf));
7233 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
7234 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
7235 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7236 }
7237 
7238 /**
7239  *	t4_ctrl_eq_free - free a control egress queue
7240  *	@adap: the adapter
7241  *	@mbox: mailbox to use for the FW command
7242  *	@pf: the PF owning the queue
7243  *	@vf: the VF owning the queue
7244  *	@eqid: egress queue id
7245  *
7246  *	Frees a control egress queue.
7247  */
7248 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7249 		    unsigned int vf, unsigned int eqid)
7250 {
7251 	struct fw_eq_ctrl_cmd c;
7252 
7253 	memset(&c, 0, sizeof(c));
7254 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
7255 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7256 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
7257 				  V_FW_EQ_CTRL_CMD_VFN(vf));
7258 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
7259 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
7260 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7261 }
7262 
7263 /**
7264  *	t4_ofld_eq_free - free an offload egress queue
7265  *	@adap: the adapter
7266  *	@mbox: mailbox to use for the FW command
7267  *	@pf: the PF owning the queue
7268  *	@vf: the VF owning the queue
7269  *	@eqid: egress queue id
7270  *
7271  *	Frees a control egress queue.
7272  */
7273 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7274 		    unsigned int vf, unsigned int eqid)
7275 {
7276 	struct fw_eq_ofld_cmd c;
7277 
7278 	memset(&c, 0, sizeof(c));
7279 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
7280 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7281 				  V_FW_EQ_OFLD_CMD_PFN(pf) |
7282 				  V_FW_EQ_OFLD_CMD_VFN(vf));
7283 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
7284 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
7285 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7286 }
7287 
7288 /**
7289  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
7290  *	@link_down_rc: Link Down Reason Code
7291  *
7292  *	Returns a string representation of the Link Down Reason Code.
7293  */
7294 const char *t4_link_down_rc_str(unsigned char link_down_rc)
7295 {
7296 	static const char *reason[] = {
7297 		"Link Down",
7298 		"Remote Fault",
7299 		"Auto-negotiation Failure",
7300 		"Reserved3",
7301 		"Insufficient Airflow",
7302 		"Unable To Determine Reason",
7303 		"No RX Signal Detected",
7304 		"Reserved7",
7305 	};
7306 
7307 	if (link_down_rc >= ARRAY_SIZE(reason))
7308 		return "Bad Reason Code";
7309 
7310 	return reason[link_down_rc];
7311 }
7312 
7313 /**
7314  *	t4_handle_fw_rpl - process a FW reply message
7315  *	@adap: the adapter
7316  *	@rpl: start of the FW message
7317  *
7318  *	Processes a FW message, such as link state change messages.
7319  */
7320 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7321 {
7322 	u8 opcode = *(const u8 *)rpl;
7323 	const struct fw_port_cmd *p = (const void *)rpl;
7324 	unsigned int action =
7325 			G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
7326 
7327 	if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7328 		/* link/module state change message */
7329 		int speed = 0, fc = 0, i;
7330 		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
7331 		struct port_info *pi = NULL;
7332 		struct link_config *lc;
7333 		u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
7334 		int link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
7335 		u32 mod = G_FW_PORT_CMD_MODTYPE(stat);
7336 
7337 		if (stat & F_FW_PORT_CMD_RXPAUSE)
7338 			fc |= PAUSE_RX;
7339 		if (stat & F_FW_PORT_CMD_TXPAUSE)
7340 			fc |= PAUSE_TX;
7341 		if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
7342 			speed = 100;
7343 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
7344 			speed = 1000;
7345 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
7346 			speed = 10000;
7347 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
7348 			speed = 40000;
7349 
7350 		for_each_port(adap, i) {
7351 			pi = adap2pinfo(adap, i);
7352 			if (pi->tx_chan == chan)
7353 				break;
7354 		}
7355 		lc = &pi->link_cfg;
7356 
7357 		if (mod != pi->mod_type) {
7358 			pi->mod_type = mod;
7359 			t4_os_portmod_changed(adap, i);
7360 		}
7361 		if (link_ok != lc->link_ok || speed != lc->speed ||
7362 		    fc != lc->fc) {                    /* something changed */
7363 			int reason;
7364 
7365 			if (!link_ok && lc->link_ok)
7366 				reason = G_FW_PORT_CMD_LINKDNRC(stat);
7367 			else
7368 				reason = -1;
7369 
7370 			lc->link_ok = link_ok;
7371 			lc->speed = speed;
7372 			lc->fc = fc;
7373 			lc->supported = be16_to_cpu(p->u.info.pcap);
7374 			t4_os_link_changed(adap, i, link_ok, reason);
7375 		}
7376 	} else {
7377 		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
7378 		return -EINVAL;
7379 	}
7380 	return 0;
7381 }
7382 
7383 /**
7384  *	get_pci_mode - determine a card's PCI mode
7385  *	@adapter: the adapter
7386  *	@p: where to store the PCI settings
7387  *
7388  *	Determines a card's PCI mode and associated parameters, such as speed
7389  *	and width.
7390  */
7391 static void get_pci_mode(struct adapter *adapter,
7392 				   struct pci_params *p)
7393 {
7394 	u16 val;
7395 	u32 pcie_cap;
7396 
7397 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7398 	if (pcie_cap) {
7399 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
7400 		p->speed = val & PCI_EXP_LNKSTA_CLS;
7401 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7402 	}
7403 }
7404 
7405 /**
7406  *	init_link_config - initialize a link's SW state
7407  *	@lc: structure holding the link state
7408  *	@caps: link capabilities
7409  *
7410  *	Initializes the SW state maintained for each link, including the link's
7411  *	capabilities and default speed/flow-control/autonegotiation settings.
7412  */
7413 static void init_link_config(struct link_config *lc, unsigned int caps)
7414 {
7415 	lc->supported = caps;
7416 	lc->requested_speed = 0;
7417 	lc->speed = 0;
7418 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
7419 	if (lc->supported & FW_PORT_CAP_ANEG) {
7420 		lc->advertising = lc->supported & ADVERT_MASK;
7421 		lc->autoneg = AUTONEG_ENABLE;
7422 		lc->requested_fc |= PAUSE_AUTONEG;
7423 	} else {
7424 		lc->advertising = 0;
7425 		lc->autoneg = AUTONEG_DISABLE;
7426 	}
7427 }
7428 
7429 struct flash_desc {
7430 	u32 vendor_and_model_id;
7431 	u32 size_mb;
7432 };
7433 
7434 int t4_get_flash_params(struct adapter *adapter)
7435 {
7436 	/*
7437 	 * Table for non-Numonix supported flash parts.  Numonix parts are left
7438 	 * to the preexisting well-tested code.  All flash parts have 64KB
7439 	 * sectors.
7440 	 */
7441 	static struct flash_desc supported_flash[] = {
7442 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
7443 	};
7444 
7445 	int ret;
7446 	u32 info = 0;
7447 
7448 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
7449 	if (!ret)
7450 		ret = sf1_read(adapter, 3, 0, 1, &info);
7451 	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
7452 	if (ret < 0)
7453 		return ret;
7454 
7455 	for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
7456 		if (supported_flash[ret].vendor_and_model_id == info) {
7457 			adapter->params.sf_size = supported_flash[ret].size_mb;
7458 			adapter->params.sf_nsec =
7459 				adapter->params.sf_size / SF_SEC_SIZE;
7460 			return 0;
7461 		}
7462 
7463 	if ((info & 0xff) != 0x20)		/* not a Numonix flash */
7464 		return -EINVAL;
7465 	info >>= 16;				/* log2 of size */
7466 	if (info >= 0x14 && info < 0x18)
7467 		adapter->params.sf_nsec = 1 << (info - 16);
7468 	else if (info == 0x18)
7469 		adapter->params.sf_nsec = 64;
7470 	else
7471 		return -EINVAL;
7472 	adapter->params.sf_size = 1 << info;
7473 
7474 	/*
7475 	 * We should ~probably~ reject adapters with FLASHes which are too
7476 	 * small but we have some legacy FPGAs with small FLASHes that we'd
7477 	 * still like to use.  So instead we emit a scary message ...
7478 	 */
7479 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
7480 		CH_WARN(adapter, "WARNING!!! FLASH size %#x < %#x!!!\n",
7481 			adapter->params.sf_size, FLASH_MIN_SIZE);
7482 
7483 	return 0;
7484 }
7485 
7486 static void set_pcie_completion_timeout(struct adapter *adapter,
7487 						  u8 range)
7488 {
7489 	u16 val;
7490 	u32 pcie_cap;
7491 
7492 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7493 	if (pcie_cap) {
7494 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
7495 		val &= 0xfff0;
7496 		val |= range ;
7497 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
7498 	}
7499 }
7500 
7501 static const struct chip_params *get_chip_params(int chipid)
7502 {
7503 	static const struct chip_params chip_params[] = {
7504 		{
7505 			/* T4 */
7506 			.nchan = NCHAN,
7507 			.pm_stats_cnt = PM_NSTATS,
7508 			.cng_ch_bits_log = 2,
7509 			.nsched_cls = 15,
7510 			.cim_num_obq = CIM_NUM_OBQ,
7511 			.mps_rplc_size = 128,
7512 			.vfcount = 128,
7513 			.sge_fl_db = F_DBPRIO,
7514 			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
7515 		},
7516 		{
7517 			/* T5 */
7518 			.nchan = NCHAN,
7519 			.pm_stats_cnt = PM_NSTATS,
7520 			.cng_ch_bits_log = 2,
7521 			.nsched_cls = 16,
7522 			.cim_num_obq = CIM_NUM_OBQ_T5,
7523 			.mps_rplc_size = 128,
7524 			.vfcount = 128,
7525 			.sge_fl_db = F_DBPRIO | F_DBTYPE,
7526 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
7527 		},
7528 		{
7529 			/* T6 */
7530 			.nchan = T6_NCHAN,
7531 			.pm_stats_cnt = T6_PM_NSTATS,
7532 			.cng_ch_bits_log = 3,
7533 			.nsched_cls = 16,
7534 			.cim_num_obq = CIM_NUM_OBQ_T5,
7535 			.mps_rplc_size = 256,
7536 			.vfcount = 256,
7537 			.sge_fl_db = 0,
7538 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
7539 		},
7540 	};
7541 
7542 	chipid -= CHELSIO_T4;
7543 	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
7544 		return NULL;
7545 
7546 	return &chip_params[chipid];
7547 }
7548 
7549 /**
7550  *	t4_prep_adapter - prepare SW and HW for operation
7551  *	@adapter: the adapter
7552  *	@buf: temporary space of at least VPD_LEN size provided by the caller.
7553  *
7554  *	Initialize adapter SW state for the various HW modules, set initial
7555  *	values for some adapter tunables, take PHYs out of reset, and
7556  *	initialize the MDIO interface.
7557  */
7558 int t4_prep_adapter(struct adapter *adapter, u8 *buf)
7559 {
7560 	int ret;
7561 	uint16_t device_id;
7562 	uint32_t pl_rev;
7563 
7564 	get_pci_mode(adapter, &adapter->params.pci);
7565 
7566 	pl_rev = t4_read_reg(adapter, A_PL_REV);
7567 	adapter->params.chipid = G_CHIPID(pl_rev);
7568 	adapter->params.rev = G_REV(pl_rev);
7569 	if (adapter->params.chipid == 0) {
7570 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
7571 		adapter->params.chipid = CHELSIO_T4;
7572 
7573 		/* T4A1 chip is not supported */
7574 		if (adapter->params.rev == 1) {
7575 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
7576 			return -EINVAL;
7577 		}
7578 	}
7579 
7580 	adapter->chip_params = get_chip_params(chip_id(adapter));
7581 	if (adapter->chip_params == NULL)
7582 		return -EINVAL;
7583 
7584 	adapter->params.pci.vpd_cap_addr =
7585 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
7586 
7587 	ret = t4_get_flash_params(adapter);
7588 	if (ret < 0)
7589 		return ret;
7590 
7591 	ret = get_vpd_params(adapter, &adapter->params.vpd, buf);
7592 	if (ret < 0)
7593 		return ret;
7594 
7595 	/* Cards with real ASICs have the chipid in the PCIe device id */
7596 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
7597 	if (device_id >> 12 == chip_id(adapter))
7598 		adapter->params.cim_la_size = CIMLA_SIZE;
7599 	else {
7600 		/* FPGA */
7601 		adapter->params.fpga = 1;
7602 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
7603 	}
7604 
7605 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7606 
7607 	/*
7608 	 * Default port and clock for debugging in case we can't reach FW.
7609 	 */
7610 	adapter->params.nports = 1;
7611 	adapter->params.portvec = 1;
7612 	adapter->params.vpd.cclk = 50000;
7613 
7614 	/* Set pci completion timeout value to 4 seconds. */
7615 	set_pcie_completion_timeout(adapter, 0xd);
7616 	return 0;
7617 }
7618 
7619 /**
7620  *	t4_shutdown_adapter - shut down adapter, host & wire
7621  *	@adapter: the adapter
7622  *
7623  *	Perform an emergency shutdown of the adapter and stop it from
7624  *	continuing any further communication on the ports or DMA to the
7625  *	host.  This is typically used when the adapter and/or firmware
7626  *	have crashed and we want to prevent any further accidental
7627  *	communication with the rest of the world.  This will also force
7628  *	the port Link Status to go down -- if register writes work --
7629  *	which should help our peers figure out that we're down.
7630  */
7631 int t4_shutdown_adapter(struct adapter *adapter)
7632 {
7633 	int port;
7634 
7635 	t4_intr_disable(adapter);
7636 	t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
7637 	for_each_port(adapter, port) {
7638 		u32 a_port_cfg = PORT_REG(port,
7639 					  is_t4(adapter)
7640 					  ? A_XGMAC_PORT_CFG
7641 					  : A_MAC_PORT_CFG);
7642 
7643 		t4_write_reg(adapter, a_port_cfg,
7644 			     t4_read_reg(adapter, a_port_cfg)
7645 			     & ~V_SIGNAL_DET(1));
7646 	}
7647 	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
7648 
7649 	return 0;
7650 }
7651 
7652 /**
7653  *	t4_init_devlog_params - initialize adapter->params.devlog
7654  *	@adap: the adapter
7655  *	@fw_attach: whether we can talk to the firmware
7656  *
7657  *	Initialize various fields of the adapter's Firmware Device Log
7658  *	Parameters structure.
7659  */
7660 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
7661 {
7662 	struct devlog_params *dparams = &adap->params.devlog;
7663 	u32 pf_dparams;
7664 	unsigned int devlog_meminfo;
7665 	struct fw_devlog_cmd devlog_cmd;
7666 	int ret;
7667 
7668 	/* If we're dealing with newer firmware, the Device Log Paramerters
7669 	 * are stored in a designated register which allows us to access the
7670 	 * Device Log even if we can't talk to the firmware.
7671 	 */
7672 	pf_dparams =
7673 		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
7674 	if (pf_dparams) {
7675 		unsigned int nentries, nentries128;
7676 
7677 		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
7678 		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
7679 
7680 		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
7681 		nentries = (nentries128 + 1) * 128;
7682 		dparams->size = nentries * sizeof(struct fw_devlog_e);
7683 
7684 		return 0;
7685 	}
7686 
7687 	/*
7688 	 * For any failing returns ...
7689 	 */
7690 	memset(dparams, 0, sizeof *dparams);
7691 
7692 	/*
7693 	 * If we can't talk to the firmware, there's really nothing we can do
7694 	 * at this point.
7695 	 */
7696 	if (!fw_attach)
7697 		return -ENXIO;
7698 
7699 	/* Otherwise, ask the firmware for it's Device Log Parameters.
7700 	 */
7701 	memset(&devlog_cmd, 0, sizeof devlog_cmd);
7702 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
7703 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
7704 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
7705 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7706 			 &devlog_cmd);
7707 	if (ret)
7708 		return ret;
7709 
7710 	devlog_meminfo =
7711 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
7712 	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
7713 	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
7714 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
7715 
7716 	return 0;
7717 }
7718 
7719 /**
7720  *	t4_init_sge_params - initialize adap->params.sge
7721  *	@adapter: the adapter
7722  *
7723  *	Initialize various fields of the adapter's SGE Parameters structure.
7724  */
7725 int t4_init_sge_params(struct adapter *adapter)
7726 {
7727 	u32 r;
7728 	struct sge_params *sp = &adapter->params.sge;
7729 	unsigned i;
7730 
7731 	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
7732 	sp->counter_val[0] = G_THRESHOLD_0(r);
7733 	sp->counter_val[1] = G_THRESHOLD_1(r);
7734 	sp->counter_val[2] = G_THRESHOLD_2(r);
7735 	sp->counter_val[3] = G_THRESHOLD_3(r);
7736 
7737 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
7738 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r));
7739 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r));
7740 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
7741 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r));
7742 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r));
7743 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
7744 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r));
7745 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r));
7746 
7747 	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
7748 	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
7749 	if (is_t4(adapter))
7750 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
7751 	else
7752 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
7753 
7754 	/* egress queues: log2 of # of doorbells per BAR2 page */
7755 	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
7756 	r >>= S_QUEUESPERPAGEPF0 +
7757 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
7758 	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
7759 
7760 	/* ingress queues: log2 of # of doorbells per BAR2 page */
7761 	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
7762 	r >>= S_QUEUESPERPAGEPF0 +
7763 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
7764 	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
7765 
7766 	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
7767 	r >>= S_HOSTPAGESIZEPF0 +
7768 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
7769 	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
7770 
7771 	r = t4_read_reg(adapter, A_SGE_CONTROL);
7772 	sp->sge_control = r;
7773 	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
7774 	sp->fl_pktshift = G_PKTSHIFT(r);
7775 	sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) + 5);
7776 	if (is_t4(adapter))
7777 		sp->pack_boundary = sp->pad_boundary;
7778 	else {
7779 		r = t4_read_reg(adapter, A_SGE_CONTROL2);
7780 		if (G_INGPACKBOUNDARY(r) == 0)
7781 			sp->pack_boundary = 16;
7782 		else
7783 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
7784 	}
7785 	for (i = 0; i < SGE_FLBUF_SIZES; i++)
7786 		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
7787 		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
7788 
7789 	return 0;
7790 }
7791 
7792 /*
7793  * Read and cache the adapter's compressed filter mode and ingress config.
7794  */
7795 static void read_filter_mode_and_ingress_config(struct adapter *adap)
7796 {
7797 	struct tp_params *tpp = &adap->params.tp;
7798 
7799 	if (t4_use_ldst(adap)) {
7800 		t4_fw_tp_pio_rw(adap, &tpp->vlan_pri_map, 1,
7801 				A_TP_VLAN_PRI_MAP, 1);
7802 		t4_fw_tp_pio_rw(adap, &tpp->ingress_config, 1,
7803 				A_TP_INGRESS_CONFIG, 1);
7804 	} else {
7805 		t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
7806 				 &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP);
7807 		t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
7808 				 &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG);
7809 	}
7810 
7811 	/*
7812 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
7813 	 * shift positions of several elements of the Compressed Filter Tuple
7814 	 * for this adapter which we need frequently ...
7815 	 */
7816 	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
7817 	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
7818 	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
7819 	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
7820 	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
7821 	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
7822 	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
7823 	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
7824 	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
7825 	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
7826 
7827 	/*
7828 	 * If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
7829 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
7830 	 */
7831 	if ((tpp->ingress_config & F_VNIC) == 0)
7832 		tpp->vnic_shift = -1;
7833 }
7834 
7835 /**
7836  *      t4_init_tp_params - initialize adap->params.tp
7837  *      @adap: the adapter
7838  *
7839  *      Initialize various fields of the adapter's TP Parameters structure.
7840  */
7841 int t4_init_tp_params(struct adapter *adap)
7842 {
7843 	int chan;
7844 	u32 v;
7845 	struct tp_params *tpp = &adap->params.tp;
7846 
7847 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
7848 	tpp->tre = G_TIMERRESOLUTION(v);
7849 	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
7850 
7851 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
7852 	for (chan = 0; chan < MAX_NCHAN; chan++)
7853 		tpp->tx_modq[chan] = chan;
7854 
7855 	read_filter_mode_and_ingress_config(adap);
7856 
7857 	/*
7858 	 * For T6, cache the adapter's compressed error vector
7859 	 * and passing outer header info for encapsulated packets.
7860 	 */
7861 	if (chip_id(adap) > CHELSIO_T5) {
7862 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
7863 		tpp->rx_pkt_encap = (v & F_CRXPKTENC) ? 1 : 0;
7864 	}
7865 
7866 	return 0;
7867 }
7868 
7869 /**
7870  *      t4_filter_field_shift - calculate filter field shift
7871  *      @adap: the adapter
7872  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
7873  *
7874  *      Return the shift position of a filter field within the Compressed
7875  *      Filter Tuple.  The filter field is specified via its selection bit
7876  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
7877  */
7878 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
7879 {
7880 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
7881 	unsigned int sel;
7882 	int field_shift;
7883 
7884 	if ((filter_mode & filter_sel) == 0)
7885 		return -1;
7886 
7887 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
7888 		switch (filter_mode & sel) {
7889 		case F_FCOE:
7890 			field_shift += W_FT_FCOE;
7891 			break;
7892 		case F_PORT:
7893 			field_shift += W_FT_PORT;
7894 			break;
7895 		case F_VNIC_ID:
7896 			field_shift += W_FT_VNIC_ID;
7897 			break;
7898 		case F_VLAN:
7899 			field_shift += W_FT_VLAN;
7900 			break;
7901 		case F_TOS:
7902 			field_shift += W_FT_TOS;
7903 			break;
7904 		case F_PROTOCOL:
7905 			field_shift += W_FT_PROTOCOL;
7906 			break;
7907 		case F_ETHERTYPE:
7908 			field_shift += W_FT_ETHERTYPE;
7909 			break;
7910 		case F_MACMATCH:
7911 			field_shift += W_FT_MACMATCH;
7912 			break;
7913 		case F_MPSHITTYPE:
7914 			field_shift += W_FT_MPSHITTYPE;
7915 			break;
7916 		case F_FRAGMENTATION:
7917 			field_shift += W_FT_FRAGMENTATION;
7918 			break;
7919 		}
7920 	}
7921 	return field_shift;
7922 }
7923 
7924 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
7925 {
7926 	u8 addr[6];
7927 	int ret, i, j;
7928 	struct fw_port_cmd c;
7929 	u16 rss_size;
7930 	struct port_info *p = adap2pinfo(adap, port_id);
7931 	u32 param, val;
7932 
7933 	memset(&c, 0, sizeof(c));
7934 
7935 	for (i = 0, j = -1; i <= p->port_id; i++) {
7936 		do {
7937 			j++;
7938 		} while ((adap->params.portvec & (1 << j)) == 0);
7939 	}
7940 
7941 	if (!(adap->flags & IS_VF) ||
7942 	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
7943 		c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) |
7944 				       F_FW_CMD_REQUEST | F_FW_CMD_READ |
7945 				       V_FW_PORT_CMD_PORTID(j));
7946 		c.action_to_len16 = htonl(
7947 			V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
7948 			FW_LEN16(c));
7949 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7950 		if (ret)
7951 			return ret;
7952 
7953 		ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
7954 		p->mdio_addr = (ret & F_FW_PORT_CMD_MDIOCAP) ?
7955 			G_FW_PORT_CMD_MDIOADDR(ret) : -1;
7956 		p->port_type = G_FW_PORT_CMD_PTYPE(ret);
7957 		p->mod_type = G_FW_PORT_CMD_MODTYPE(ret);
7958 
7959 		init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
7960 	}
7961 
7962 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
7963 	if (ret < 0)
7964 		return ret;
7965 
7966 	p->vi[0].viid = ret;
7967 	p->tx_chan = j;
7968 	p->rx_chan_map = t4_get_mps_bg_map(adap, j);
7969 	p->lport = j;
7970 	p->vi[0].rss_size = rss_size;
7971 	t4_os_set_hw_addr(adap, p->port_id, addr);
7972 
7973 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
7974 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
7975 	    V_FW_PARAMS_PARAM_YZ(p->vi[0].viid);
7976 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
7977 	if (ret)
7978 		p->vi[0].rss_base = 0xffff;
7979 	else {
7980 		/* MPASS((val >> 16) == rss_size); */
7981 		p->vi[0].rss_base = val & 0xffff;
7982 	}
7983 
7984 	return 0;
7985 }
7986 
7987 /**
7988  *	t4_read_cimq_cfg - read CIM queue configuration
7989  *	@adap: the adapter
7990  *	@base: holds the queue base addresses in bytes
7991  *	@size: holds the queue sizes in bytes
7992  *	@thres: holds the queue full thresholds in bytes
7993  *
7994  *	Returns the current configuration of the CIM queues, starting with
7995  *	the IBQs, then the OBQs.
7996  */
7997 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
7998 {
7999 	unsigned int i, v;
8000 	int cim_num_obq = adap->chip_params->cim_num_obq;
8001 
8002 	for (i = 0; i < CIM_NUM_IBQ; i++) {
8003 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
8004 			     V_QUENUMSELECT(i));
8005 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8006 		/* value is in 256-byte units */
8007 		*base++ = G_CIMQBASE(v) * 256;
8008 		*size++ = G_CIMQSIZE(v) * 256;
8009 		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
8010 	}
8011 	for (i = 0; i < cim_num_obq; i++) {
8012 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8013 			     V_QUENUMSELECT(i));
8014 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8015 		/* value is in 256-byte units */
8016 		*base++ = G_CIMQBASE(v) * 256;
8017 		*size++ = G_CIMQSIZE(v) * 256;
8018 	}
8019 }
8020 
8021 /**
8022  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
8023  *	@adap: the adapter
8024  *	@qid: the queue index
8025  *	@data: where to store the queue contents
8026  *	@n: capacity of @data in 32-bit words
8027  *
8028  *	Reads the contents of the selected CIM queue starting at address 0 up
8029  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8030  *	error and the number of 32-bit words actually read on success.
8031  */
8032 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8033 {
8034 	int i, err, attempts;
8035 	unsigned int addr;
8036 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
8037 
8038 	if (qid > 5 || (n & 3))
8039 		return -EINVAL;
8040 
8041 	addr = qid * nwords;
8042 	if (n > nwords)
8043 		n = nwords;
8044 
8045 	/* It might take 3-10ms before the IBQ debug read access is allowed.
8046 	 * Wait for 1 Sec with a delay of 1 usec.
8047 	 */
8048 	attempts = 1000000;
8049 
8050 	for (i = 0; i < n; i++, addr++) {
8051 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
8052 			     F_IBQDBGEN);
8053 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
8054 				      attempts, 1);
8055 		if (err)
8056 			return err;
8057 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
8058 	}
8059 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
8060 	return i;
8061 }
8062 
8063 /**
8064  *	t4_read_cim_obq - read the contents of a CIM outbound queue
8065  *	@adap: the adapter
8066  *	@qid: the queue index
8067  *	@data: where to store the queue contents
8068  *	@n: capacity of @data in 32-bit words
8069  *
8070  *	Reads the contents of the selected CIM queue starting at address 0 up
8071  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8072  *	error and the number of 32-bit words actually read on success.
8073  */
8074 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8075 {
8076 	int i, err;
8077 	unsigned int addr, v, nwords;
8078 	int cim_num_obq = adap->chip_params->cim_num_obq;
8079 
8080 	if ((qid > (cim_num_obq - 1)) || (n & 3))
8081 		return -EINVAL;
8082 
8083 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8084 		     V_QUENUMSELECT(qid));
8085 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8086 
8087 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
8088 	nwords = G_CIMQSIZE(v) * 64;  /* same */
8089 	if (n > nwords)
8090 		n = nwords;
8091 
8092 	for (i = 0; i < n; i++, addr++) {
8093 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
8094 			     F_OBQDBGEN);
8095 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
8096 				      2, 1);
8097 		if (err)
8098 			return err;
8099 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
8100 	}
8101 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
8102 	return i;
8103 }
8104 
8105 enum {
8106 	CIM_QCTL_BASE     = 0,
8107 	CIM_CTL_BASE      = 0x2000,
8108 	CIM_PBT_ADDR_BASE = 0x2800,
8109 	CIM_PBT_LRF_BASE  = 0x3000,
8110 	CIM_PBT_DATA_BASE = 0x3800
8111 };
8112 
8113 /**
8114  *	t4_cim_read - read a block from CIM internal address space
8115  *	@adap: the adapter
8116  *	@addr: the start address within the CIM address space
8117  *	@n: number of words to read
8118  *	@valp: where to store the result
8119  *
8120  *	Reads a block of 4-byte words from the CIM intenal address space.
8121  */
8122 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
8123 		unsigned int *valp)
8124 {
8125 	int ret = 0;
8126 
8127 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8128 		return -EBUSY;
8129 
8130 	for ( ; !ret && n--; addr += 4) {
8131 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
8132 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8133 				      0, 5, 2);
8134 		if (!ret)
8135 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
8136 	}
8137 	return ret;
8138 }
8139 
8140 /**
8141  *	t4_cim_write - write a block into CIM internal address space
8142  *	@adap: the adapter
8143  *	@addr: the start address within the CIM address space
8144  *	@n: number of words to write
8145  *	@valp: set of values to write
8146  *
8147  *	Writes a block of 4-byte words into the CIM intenal address space.
8148  */
8149 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8150 		 const unsigned int *valp)
8151 {
8152 	int ret = 0;
8153 
8154 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8155 		return -EBUSY;
8156 
8157 	for ( ; !ret && n--; addr += 4) {
8158 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
8159 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
8160 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8161 				      0, 5, 2);
8162 	}
8163 	return ret;
8164 }
8165 
8166 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8167 			 unsigned int val)
8168 {
8169 	return t4_cim_write(adap, addr, 1, &val);
8170 }
8171 
8172 /**
8173  *	t4_cim_ctl_read - read a block from CIM control region
8174  *	@adap: the adapter
8175  *	@addr: the start address within the CIM control region
8176  *	@n: number of words to read
8177  *	@valp: where to store the result
8178  *
8179  *	Reads a block of 4-byte words from the CIM control region.
8180  */
8181 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
8182 		    unsigned int *valp)
8183 {
8184 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
8185 }
8186 
8187 /**
8188  *	t4_cim_read_la - read CIM LA capture buffer
8189  *	@adap: the adapter
8190  *	@la_buf: where to store the LA data
8191  *	@wrptr: the HW write pointer within the capture buffer
8192  *
8193  *	Reads the contents of the CIM LA buffer with the most recent entry at
8194  *	the end	of the returned data and with the entry at @wrptr first.
8195  *	We try to leave the LA in the running state we find it in.
8196  */
8197 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8198 {
8199 	int i, ret;
8200 	unsigned int cfg, val, idx;
8201 
8202 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
8203 	if (ret)
8204 		return ret;
8205 
8206 	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
8207 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
8208 		if (ret)
8209 			return ret;
8210 	}
8211 
8212 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8213 	if (ret)
8214 		goto restart;
8215 
8216 	idx = G_UPDBGLAWRPTR(val);
8217 	if (wrptr)
8218 		*wrptr = idx;
8219 
8220 	for (i = 0; i < adap->params.cim_la_size; i++) {
8221 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8222 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
8223 		if (ret)
8224 			break;
8225 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8226 		if (ret)
8227 			break;
8228 		if (val & F_UPDBGLARDEN) {
8229 			ret = -ETIMEDOUT;
8230 			break;
8231 		}
8232 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
8233 		if (ret)
8234 			break;
8235 
8236 		/* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
8237 		idx = (idx + 1) & M_UPDBGLARDPTR;
8238 		/*
8239 		 * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
8240 		 * identify the 32-bit portion of the full 312-bit data
8241 		 */
8242 		if (is_t6(adap))
8243 			while ((idx & 0xf) > 9)
8244 				idx = (idx + 1) % M_UPDBGLARDPTR;
8245 	}
8246 restart:
8247 	if (cfg & F_UPDBGLAEN) {
8248 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8249 				      cfg & ~F_UPDBGLARDEN);
8250 		if (!ret)
8251 			ret = r;
8252 	}
8253 	return ret;
8254 }
8255 
8256 /**
8257  *	t4_tp_read_la - read TP LA capture buffer
8258  *	@adap: the adapter
8259  *	@la_buf: where to store the LA data
8260  *	@wrptr: the HW write pointer within the capture buffer
8261  *
8262  *	Reads the contents of the TP LA buffer with the most recent entry at
8263  *	the end	of the returned data and with the entry at @wrptr first.
8264  *	We leave the LA in the running state we find it in.
8265  */
8266 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8267 {
8268 	bool last_incomplete;
8269 	unsigned int i, cfg, val, idx;
8270 
8271 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
8272 	if (cfg & F_DBGLAENABLE)			/* freeze LA */
8273 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8274 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
8275 
8276 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
8277 	idx = G_DBGLAWPTR(val);
8278 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
8279 	if (last_incomplete)
8280 		idx = (idx + 1) & M_DBGLARPTR;
8281 	if (wrptr)
8282 		*wrptr = idx;
8283 
8284 	val &= 0xffff;
8285 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
8286 	val |= adap->params.tp.la_mask;
8287 
8288 	for (i = 0; i < TPLA_SIZE; i++) {
8289 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
8290 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
8291 		idx = (idx + 1) & M_DBGLARPTR;
8292 	}
8293 
8294 	/* Wipe out last entry if it isn't valid */
8295 	if (last_incomplete)
8296 		la_buf[TPLA_SIZE - 1] = ~0ULL;
8297 
8298 	if (cfg & F_DBGLAENABLE)		/* restore running state */
8299 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8300 			     cfg | adap->params.tp.la_mask);
8301 }
8302 
8303 /*
8304  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8305  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
8306  * state for more than the Warning Threshold then we'll issue a warning about
8307  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
8308  * appears to be hung every Warning Repeat second till the situation clears.
8309  * If the situation clears, we'll note that as well.
8310  */
8311 #define SGE_IDMA_WARN_THRESH 1
8312 #define SGE_IDMA_WARN_REPEAT 300
8313 
8314 /**
8315  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8316  *	@adapter: the adapter
8317  *	@idma: the adapter IDMA Monitor state
8318  *
8319  *	Initialize the state of an SGE Ingress DMA Monitor.
8320  */
8321 void t4_idma_monitor_init(struct adapter *adapter,
8322 			  struct sge_idma_monitor_state *idma)
8323 {
8324 	/* Initialize the state variables for detecting an SGE Ingress DMA
8325 	 * hang.  The SGE has internal counters which count up on each clock
8326 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
8327 	 * same state they were on the previous clock tick.  The clock used is
8328 	 * the Core Clock so we have a limit on the maximum "time" they can
8329 	 * record; typically a very small number of seconds.  For instance,
8330 	 * with a 600MHz Core Clock, we can only count up to a bit more than
8331 	 * 7s.  So we'll synthesize a larger counter in order to not run the
8332 	 * risk of having the "timers" overflow and give us the flexibility to
8333 	 * maintain a Hung SGE State Machine of our own which operates across
8334 	 * a longer time frame.
8335 	 */
8336 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8337 	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
8338 }
8339 
8340 /**
8341  *	t4_idma_monitor - monitor SGE Ingress DMA state
8342  *	@adapter: the adapter
8343  *	@idma: the adapter IDMA Monitor state
8344  *	@hz: number of ticks/second
8345  *	@ticks: number of ticks since the last IDMA Monitor call
8346  */
8347 void t4_idma_monitor(struct adapter *adapter,
8348 		     struct sge_idma_monitor_state *idma,
8349 		     int hz, int ticks)
8350 {
8351 	int i, idma_same_state_cnt[2];
8352 
8353 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
8354 	  * are counters inside the SGE which count up on each clock when the
8355 	  * SGE finds its Ingress DMA State Engines in the same states they
8356 	  * were in the previous clock.  The counters will peg out at
8357 	  * 0xffffffff without wrapping around so once they pass the 1s
8358 	  * threshold they'll stay above that till the IDMA state changes.
8359 	  */
8360 	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
8361 	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
8362 	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8363 
8364 	for (i = 0; i < 2; i++) {
8365 		u32 debug0, debug11;
8366 
8367 		/* If the Ingress DMA Same State Counter ("timer") is less
8368 		 * than 1s, then we can reset our synthesized Stall Timer and
8369 		 * continue.  If we have previously emitted warnings about a
8370 		 * potential stalled Ingress Queue, issue a note indicating
8371 		 * that the Ingress Queue has resumed forward progress.
8372 		 */
8373 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8374 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
8375 				CH_WARN(adapter, "SGE idma%d, queue %u, "
8376 					"resumed after %d seconds\n",
8377 					i, idma->idma_qid[i],
8378 					idma->idma_stalled[i]/hz);
8379 			idma->idma_stalled[i] = 0;
8380 			continue;
8381 		}
8382 
8383 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8384 		 * domain.  The first time we get here it'll be because we
8385 		 * passed the 1s Threshold; each additional time it'll be
8386 		 * because the RX Timer Callback is being fired on its regular
8387 		 * schedule.
8388 		 *
8389 		 * If the stall is below our Potential Hung Ingress Queue
8390 		 * Warning Threshold, continue.
8391 		 */
8392 		if (idma->idma_stalled[i] == 0) {
8393 			idma->idma_stalled[i] = hz;
8394 			idma->idma_warn[i] = 0;
8395 		} else {
8396 			idma->idma_stalled[i] += ticks;
8397 			idma->idma_warn[i] -= ticks;
8398 		}
8399 
8400 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
8401 			continue;
8402 
8403 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8404 		 */
8405 		if (idma->idma_warn[i] > 0)
8406 			continue;
8407 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
8408 
8409 		/* Read and save the SGE IDMA State and Queue ID information.
8410 		 * We do this every time in case it changes across time ...
8411 		 * can't be too careful ...
8412 		 */
8413 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
8414 		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8415 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8416 
8417 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
8418 		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8419 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8420 
8421 		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
8422 			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8423 			i, idma->idma_qid[i], idma->idma_state[i],
8424 			idma->idma_stalled[i]/hz,
8425 			debug0, debug11);
8426 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8427 	}
8428 }
8429 
8430 /**
8431  *	t4_read_pace_tbl - read the pace table
8432  *	@adap: the adapter
8433  *	@pace_vals: holds the returned values
8434  *
8435  *	Returns the values of TP's pace table in microseconds.
8436  */
8437 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
8438 {
8439 	unsigned int i, v;
8440 
8441 	for (i = 0; i < NTX_SCHED; i++) {
8442 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
8443 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
8444 		pace_vals[i] = dack_ticks_to_usec(adap, v);
8445 	}
8446 }
8447 
8448 /**
8449  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
8450  *	@adap: the adapter
8451  *	@sched: the scheduler index
8452  *	@kbps: the byte rate in Kbps
8453  *	@ipg: the interpacket delay in tenths of nanoseconds
8454  *
8455  *	Return the current configuration of a HW Tx scheduler.
8456  */
8457 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
8458 		     unsigned int *ipg)
8459 {
8460 	unsigned int v, addr, bpt, cpt;
8461 
8462 	if (kbps) {
8463 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
8464 		t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
8465 		v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
8466 		if (sched & 1)
8467 			v >>= 16;
8468 		bpt = (v >> 8) & 0xff;
8469 		cpt = v & 0xff;
8470 		if (!cpt)
8471 			*kbps = 0;	/* scheduler disabled */
8472 		else {
8473 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
8474 			*kbps = (v * bpt) / 125;
8475 		}
8476 	}
8477 	if (ipg) {
8478 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
8479 		t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
8480 		v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
8481 		if (sched & 1)
8482 			v >>= 16;
8483 		v &= 0xffff;
8484 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
8485 	}
8486 }
8487 
8488 /**
8489  *	t4_load_cfg - download config file
8490  *	@adap: the adapter
8491  *	@cfg_data: the cfg text file to write
8492  *	@size: text file size
8493  *
8494  *	Write the supplied config text file to the card's serial flash.
8495  */
8496 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
8497 {
8498 	int ret, i, n, cfg_addr;
8499 	unsigned int addr;
8500 	unsigned int flash_cfg_start_sec;
8501 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
8502 
8503 	cfg_addr = t4_flash_cfg_addr(adap);
8504 	if (cfg_addr < 0)
8505 		return cfg_addr;
8506 
8507 	addr = cfg_addr;
8508 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
8509 
8510 	if (size > FLASH_CFG_MAX_SIZE) {
8511 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
8512 		       FLASH_CFG_MAX_SIZE);
8513 		return -EFBIG;
8514 	}
8515 
8516 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
8517 			 sf_sec_size);
8518 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
8519 				     flash_cfg_start_sec + i - 1);
8520 	/*
8521 	 * If size == 0 then we're simply erasing the FLASH sectors associated
8522 	 * with the on-adapter Firmware Configuration File.
8523 	 */
8524 	if (ret || size == 0)
8525 		goto out;
8526 
8527 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
8528 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
8529 		if ( (size - i) <  SF_PAGE_SIZE)
8530 			n = size - i;
8531 		else
8532 			n = SF_PAGE_SIZE;
8533 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
8534 		if (ret)
8535 			goto out;
8536 
8537 		addr += SF_PAGE_SIZE;
8538 		cfg_data += SF_PAGE_SIZE;
8539 	}
8540 
8541 out:
8542 	if (ret)
8543 		CH_ERR(adap, "config file %s failed %d\n",
8544 		       (size == 0 ? "clear" : "download"), ret);
8545 	return ret;
8546 }
8547 
8548 /**
8549  *	t5_fw_init_extern_mem - initialize the external memory
8550  *	@adap: the adapter
8551  *
8552  *	Initializes the external memory on T5.
8553  */
8554 int t5_fw_init_extern_mem(struct adapter *adap)
8555 {
8556 	u32 params[1], val[1];
8557 	int ret;
8558 
8559 	if (!is_t5(adap))
8560 		return 0;
8561 
8562 	val[0] = 0xff; /* Initialize all MCs */
8563 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8564 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
8565 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
8566 			FW_CMD_MAX_TIMEOUT);
8567 
8568 	return ret;
8569 }
8570 
8571 /* BIOS boot headers */
8572 typedef struct pci_expansion_rom_header {
8573 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
8574 	u8	reserved[22]; /* Reserved per processor Architecture data */
8575 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
8576 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
8577 
8578 /* Legacy PCI Expansion ROM Header */
8579 typedef struct legacy_pci_expansion_rom_header {
8580 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
8581 	u8	size512; /* Current Image Size in units of 512 bytes */
8582 	u8	initentry_point[4];
8583 	u8	cksum; /* Checksum computed on the entire Image */
8584 	u8	reserved[16]; /* Reserved */
8585 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
8586 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
8587 
8588 /* EFI PCI Expansion ROM Header */
8589 typedef struct efi_pci_expansion_rom_header {
8590 	u8	signature[2]; // ROM signature. The value 0xaa55
8591 	u8	initialization_size[2]; /* Units 512. Includes this header */
8592 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
8593 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
8594 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
8595 	u8	compression_type[2]; /* Compression type. */
8596 		/*
8597 		 * Compression type definition
8598 		 * 0x0: uncompressed
8599 		 * 0x1: Compressed
8600 		 * 0x2-0xFFFF: Reserved
8601 		 */
8602 	u8	reserved[8]; /* Reserved */
8603 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
8604 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
8605 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
8606 
8607 /* PCI Data Structure Format */
8608 typedef struct pcir_data_structure { /* PCI Data Structure */
8609 	u8	signature[4]; /* Signature. The string "PCIR" */
8610 	u8	vendor_id[2]; /* Vendor Identification */
8611 	u8	device_id[2]; /* Device Identification */
8612 	u8	vital_product[2]; /* Pointer to Vital Product Data */
8613 	u8	length[2]; /* PCIR Data Structure Length */
8614 	u8	revision; /* PCIR Data Structure Revision */
8615 	u8	class_code[3]; /* Class Code */
8616 	u8	image_length[2]; /* Image Length. Multiple of 512B */
8617 	u8	code_revision[2]; /* Revision Level of Code/Data */
8618 	u8	code_type; /* Code Type. */
8619 		/*
8620 		 * PCI Expansion ROM Code Types
8621 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
8622 		 * 0x01: Open Firmware standard for PCI. FCODE
8623 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
8624 		 * 0x03: EFI Image. EFI
8625 		 * 0x04-0xFF: Reserved.
8626 		 */
8627 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
8628 	u8	reserved[2]; /* Reserved */
8629 } pcir_data_t; /* PCI__DATA_STRUCTURE */
8630 
8631 /* BOOT constants */
8632 enum {
8633 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
8634 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
8635 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
8636 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
8637 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
8638 	VENDOR_ID = 0x1425, /* Vendor ID */
8639 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
8640 };
8641 
8642 /*
8643  *	modify_device_id - Modifies the device ID of the Boot BIOS image
8644  *	@adatper: the device ID to write.
8645  *	@boot_data: the boot image to modify.
8646  *
8647  *	Write the supplied device ID to the boot BIOS image.
8648  */
8649 static void modify_device_id(int device_id, u8 *boot_data)
8650 {
8651 	legacy_pci_exp_rom_header_t *header;
8652 	pcir_data_t *pcir_header;
8653 	u32 cur_header = 0;
8654 
8655 	/*
8656 	 * Loop through all chained images and change the device ID's
8657 	 */
8658 	while (1) {
8659 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
8660 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
8661 			      le16_to_cpu(*(u16*)header->pcir_offset)];
8662 
8663 		/*
8664 		 * Only modify the Device ID if code type is Legacy or HP.
8665 		 * 0x00: Okay to modify
8666 		 * 0x01: FCODE. Do not be modify
8667 		 * 0x03: Okay to modify
8668 		 * 0x04-0xFF: Do not modify
8669 		 */
8670 		if (pcir_header->code_type == 0x00) {
8671 			u8 csum = 0;
8672 			int i;
8673 
8674 			/*
8675 			 * Modify Device ID to match current adatper
8676 			 */
8677 			*(u16*) pcir_header->device_id = device_id;
8678 
8679 			/*
8680 			 * Set checksum temporarily to 0.
8681 			 * We will recalculate it later.
8682 			 */
8683 			header->cksum = 0x0;
8684 
8685 			/*
8686 			 * Calculate and update checksum
8687 			 */
8688 			for (i = 0; i < (header->size512 * 512); i++)
8689 				csum += (u8)boot_data[cur_header + i];
8690 
8691 			/*
8692 			 * Invert summed value to create the checksum
8693 			 * Writing new checksum value directly to the boot data
8694 			 */
8695 			boot_data[cur_header + 7] = -csum;
8696 
8697 		} else if (pcir_header->code_type == 0x03) {
8698 
8699 			/*
8700 			 * Modify Device ID to match current adatper
8701 			 */
8702 			*(u16*) pcir_header->device_id = device_id;
8703 
8704 		}
8705 
8706 
8707 		/*
8708 		 * Check indicator element to identify if this is the last
8709 		 * image in the ROM.
8710 		 */
8711 		if (pcir_header->indicator & 0x80)
8712 			break;
8713 
8714 		/*
8715 		 * Move header pointer up to the next image in the ROM.
8716 		 */
8717 		cur_header += header->size512 * 512;
8718 	}
8719 }
8720 
8721 /*
8722  *	t4_load_boot - download boot flash
8723  *	@adapter: the adapter
8724  *	@boot_data: the boot image to write
8725  *	@boot_addr: offset in flash to write boot_data
8726  *	@size: image size
8727  *
8728  *	Write the supplied boot image to the card's serial flash.
8729  *	The boot image has the following sections: a 28-byte header and the
8730  *	boot image.
8731  */
8732 int t4_load_boot(struct adapter *adap, u8 *boot_data,
8733 		 unsigned int boot_addr, unsigned int size)
8734 {
8735 	pci_exp_rom_header_t *header;
8736 	int pcir_offset ;
8737 	pcir_data_t *pcir_header;
8738 	int ret, addr;
8739 	uint16_t device_id;
8740 	unsigned int i;
8741 	unsigned int boot_sector = (boot_addr * 1024 );
8742 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
8743 
8744 	/*
8745 	 * Make sure the boot image does not encroach on the firmware region
8746 	 */
8747 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
8748 		CH_ERR(adap, "boot image encroaching on firmware region\n");
8749 		return -EFBIG;
8750 	}
8751 
8752 	/*
8753 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
8754 	 * and Boot configuration data sections. These 3 boot sections span
8755 	 * sectors 0 to 7 in flash and live right before the FW image location.
8756 	 */
8757 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
8758 			sf_sec_size);
8759 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
8760 				     (boot_sector >> 16) + i - 1);
8761 
8762 	/*
8763 	 * If size == 0 then we're simply erasing the FLASH sectors associated
8764 	 * with the on-adapter option ROM file
8765 	 */
8766 	if (ret || (size == 0))
8767 		goto out;
8768 
8769 	/* Get boot header */
8770 	header = (pci_exp_rom_header_t *)boot_data;
8771 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
8772 	/* PCIR Data Structure */
8773 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
8774 
8775 	/*
8776 	 * Perform some primitive sanity testing to avoid accidentally
8777 	 * writing garbage over the boot sectors.  We ought to check for
8778 	 * more but it's not worth it for now ...
8779 	 */
8780 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
8781 		CH_ERR(adap, "boot image too small/large\n");
8782 		return -EFBIG;
8783 	}
8784 
8785 #ifndef CHELSIO_T4_DIAGS
8786 	/*
8787 	 * Check BOOT ROM header signature
8788 	 */
8789 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
8790 		CH_ERR(adap, "Boot image missing signature\n");
8791 		return -EINVAL;
8792 	}
8793 
8794 	/*
8795 	 * Check PCI header signature
8796 	 */
8797 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
8798 		CH_ERR(adap, "PCI header missing signature\n");
8799 		return -EINVAL;
8800 	}
8801 
8802 	/*
8803 	 * Check Vendor ID matches Chelsio ID
8804 	 */
8805 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
8806 		CH_ERR(adap, "Vendor ID missing signature\n");
8807 		return -EINVAL;
8808 	}
8809 #endif
8810 
8811 	/*
8812 	 * Retrieve adapter's device ID
8813 	 */
8814 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
8815 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
8816 	device_id = device_id & 0xf0ff;
8817 
8818 	/*
8819 	 * Check PCIE Device ID
8820 	 */
8821 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
8822 		/*
8823 		 * Change the device ID in the Boot BIOS image to match
8824 		 * the Device ID of the current adapter.
8825 		 */
8826 		modify_device_id(device_id, boot_data);
8827 	}
8828 
8829 	/*
8830 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
8831 	 * we finish copying the rest of the boot image. This will ensure
8832 	 * that the BIOS boot header will only be written if the boot image
8833 	 * was written in full.
8834 	 */
8835 	addr = boot_sector;
8836 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
8837 		addr += SF_PAGE_SIZE;
8838 		boot_data += SF_PAGE_SIZE;
8839 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
8840 		if (ret)
8841 			goto out;
8842 	}
8843 
8844 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
8845 			     (const u8 *)header, 0);
8846 
8847 out:
8848 	if (ret)
8849 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
8850 	return ret;
8851 }
8852 
8853 /*
8854  *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
8855  *	@adapter: the adapter
8856  *
8857  *	Return the address within the flash where the OptionROM Configuration
8858  *	is stored, or an error if the device FLASH is too small to contain
8859  *	a OptionROM Configuration.
8860  */
8861 static int t4_flash_bootcfg_addr(struct adapter *adapter)
8862 {
8863 	/*
8864 	 * If the device FLASH isn't large enough to hold a Firmware
8865 	 * Configuration File, return an error.
8866 	 */
8867 	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
8868 		return -ENOSPC;
8869 
8870 	return FLASH_BOOTCFG_START;
8871 }
8872 
8873 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
8874 {
8875 	int ret, i, n, cfg_addr;
8876 	unsigned int addr;
8877 	unsigned int flash_cfg_start_sec;
8878 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
8879 
8880 	cfg_addr = t4_flash_bootcfg_addr(adap);
8881 	if (cfg_addr < 0)
8882 		return cfg_addr;
8883 
8884 	addr = cfg_addr;
8885 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
8886 
8887 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
8888 		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
8889 			FLASH_BOOTCFG_MAX_SIZE);
8890 		return -EFBIG;
8891 	}
8892 
8893 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
8894 			 sf_sec_size);
8895 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
8896 					flash_cfg_start_sec + i - 1);
8897 
8898 	/*
8899 	 * If size == 0 then we're simply erasing the FLASH sectors associated
8900 	 * with the on-adapter OptionROM Configuration File.
8901 	 */
8902 	if (ret || size == 0)
8903 		goto out;
8904 
8905 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
8906 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
8907 		if ( (size - i) <  SF_PAGE_SIZE)
8908 			n = size - i;
8909 		else
8910 			n = SF_PAGE_SIZE;
8911 		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
8912 		if (ret)
8913 			goto out;
8914 
8915 		addr += SF_PAGE_SIZE;
8916 		cfg_data += SF_PAGE_SIZE;
8917 	}
8918 
8919 out:
8920 	if (ret)
8921 		CH_ERR(adap, "boot config data %s failed %d\n",
8922 				(size == 0 ? "clear" : "download"), ret);
8923 	return ret;
8924 }
8925 
8926 /**
8927  *	t4_set_filter_mode - configure the optional components of filter tuples
8928  *	@adap: the adapter
8929  *	@mode_map: a bitmap selcting which optional filter components to enable
8930  *
8931  *	Sets the filter mode by selecting the optional components to enable
8932  *	in filter tuples.  Returns 0 on success and a negative error if the
8933  *	requested mode needs more bits than are available for optional
8934  *	components.
8935  */
8936 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map)
8937 {
8938 	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
8939 
8940 	int i, nbits = 0;
8941 
8942 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
8943 		if (mode_map & (1 << i))
8944 			nbits += width[i];
8945 	if (nbits > FILTER_OPT_LEN)
8946 		return -EINVAL;
8947 	if (t4_use_ldst(adap))
8948 		t4_fw_tp_pio_rw(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, 0);
8949 	else
8950 		t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, &mode_map,
8951 				  1, A_TP_VLAN_PRI_MAP);
8952 	read_filter_mode_and_ingress_config(adap);
8953 
8954 	return 0;
8955 }
8956 
8957 /**
8958  *	t4_clr_port_stats - clear port statistics
8959  *	@adap: the adapter
8960  *	@idx: the port index
8961  *
8962  *	Clear HW statistics for the given port.
8963  */
8964 void t4_clr_port_stats(struct adapter *adap, int idx)
8965 {
8966 	unsigned int i;
8967 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
8968 	u32 port_base_addr;
8969 
8970 	if (is_t4(adap))
8971 		port_base_addr = PORT_BASE(idx);
8972 	else
8973 		port_base_addr = T5_PORT_BASE(idx);
8974 
8975 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
8976 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
8977 		t4_write_reg(adap, port_base_addr + i, 0);
8978 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
8979 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
8980 		t4_write_reg(adap, port_base_addr + i, 0);
8981 	for (i = 0; i < 4; i++)
8982 		if (bgmap & (1 << i)) {
8983 			t4_write_reg(adap,
8984 			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
8985 			t4_write_reg(adap,
8986 			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
8987 		}
8988 }
8989 
8990 /**
8991  *	t4_i2c_rd - read I2C data from adapter
8992  *	@adap: the adapter
8993  *	@port: Port number if per-port device; <0 if not
8994  *	@devid: per-port device ID or absolute device ID
8995  *	@offset: byte offset into device I2C space
8996  *	@len: byte length of I2C space data
8997  *	@buf: buffer in which to return I2C data
8998  *
8999  *	Reads the I2C data from the indicated device and location.
9000  */
9001 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
9002 	      int port, unsigned int devid,
9003 	      unsigned int offset, unsigned int len,
9004 	      u8 *buf)
9005 {
9006 	u32 ldst_addrspace;
9007 	struct fw_ldst_cmd ldst;
9008 	int ret;
9009 
9010 	if (port >= 4 ||
9011 	    devid >= 256 ||
9012 	    offset >= 256 ||
9013 	    len > sizeof ldst.u.i2c.data)
9014 		return -EINVAL;
9015 
9016 	memset(&ldst, 0, sizeof ldst);
9017 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9018 	ldst.op_to_addrspace =
9019 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9020 			    F_FW_CMD_REQUEST |
9021 			    F_FW_CMD_READ |
9022 			    ldst_addrspace);
9023 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9024 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9025 	ldst.u.i2c.did = devid;
9026 	ldst.u.i2c.boffset = offset;
9027 	ldst.u.i2c.blen = len;
9028 	ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9029 	if (!ret)
9030 		memcpy(buf, ldst.u.i2c.data, len);
9031 	return ret;
9032 }
9033 
9034 /**
9035  *	t4_i2c_wr - write I2C data to adapter
9036  *	@adap: the adapter
9037  *	@port: Port number if per-port device; <0 if not
9038  *	@devid: per-port device ID or absolute device ID
9039  *	@offset: byte offset into device I2C space
9040  *	@len: byte length of I2C space data
9041  *	@buf: buffer containing new I2C data
9042  *
9043  *	Write the I2C data to the indicated device and location.
9044  */
9045 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
9046 	      int port, unsigned int devid,
9047 	      unsigned int offset, unsigned int len,
9048 	      u8 *buf)
9049 {
9050 	u32 ldst_addrspace;
9051 	struct fw_ldst_cmd ldst;
9052 
9053 	if (port >= 4 ||
9054 	    devid >= 256 ||
9055 	    offset >= 256 ||
9056 	    len > sizeof ldst.u.i2c.data)
9057 		return -EINVAL;
9058 
9059 	memset(&ldst, 0, sizeof ldst);
9060 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9061 	ldst.op_to_addrspace =
9062 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9063 			    F_FW_CMD_REQUEST |
9064 			    F_FW_CMD_WRITE |
9065 			    ldst_addrspace);
9066 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9067 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9068 	ldst.u.i2c.did = devid;
9069 	ldst.u.i2c.boffset = offset;
9070 	ldst.u.i2c.blen = len;
9071 	memcpy(ldst.u.i2c.data, buf, len);
9072 	return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9073 }
9074 
9075 /**
9076  * 	t4_sge_ctxt_rd - read an SGE context through FW
9077  * 	@adap: the adapter
9078  * 	@mbox: mailbox to use for the FW command
9079  * 	@cid: the context id
9080  * 	@ctype: the context type
9081  * 	@data: where to store the context data
9082  *
9083  * 	Issues a FW command through the given mailbox to read an SGE context.
9084  */
9085 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
9086 		   enum ctxt_type ctype, u32 *data)
9087 {
9088 	int ret;
9089 	struct fw_ldst_cmd c;
9090 
9091 	if (ctype == CTXT_EGRESS)
9092 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
9093 	else if (ctype == CTXT_INGRESS)
9094 		ret = FW_LDST_ADDRSPC_SGE_INGC;
9095 	else if (ctype == CTXT_FLM)
9096 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
9097 	else
9098 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
9099 
9100 	memset(&c, 0, sizeof(c));
9101 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9102 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
9103 					V_FW_LDST_CMD_ADDRSPACE(ret));
9104 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9105 	c.u.idctxt.physid = cpu_to_be32(cid);
9106 
9107 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9108 	if (ret == 0) {
9109 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
9110 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
9111 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
9112 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
9113 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
9114 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
9115 	}
9116 	return ret;
9117 }
9118 
9119 /**
9120  * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
9121  * 	@adap: the adapter
9122  * 	@cid: the context id
9123  * 	@ctype: the context type
9124  * 	@data: where to store the context data
9125  *
9126  * 	Reads an SGE context directly, bypassing FW.  This is only for
9127  * 	debugging when FW is unavailable.
9128  */
9129 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
9130 		      u32 *data)
9131 {
9132 	int i, ret;
9133 
9134 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
9135 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
9136 	if (!ret)
9137 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
9138 			*data++ = t4_read_reg(adap, i);
9139 	return ret;
9140 }
9141 
9142 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
9143     		    int sleep_ok)
9144 {
9145 	struct fw_sched_cmd cmd;
9146 
9147 	memset(&cmd, 0, sizeof(cmd));
9148 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9149 				      F_FW_CMD_REQUEST |
9150 				      F_FW_CMD_WRITE);
9151 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9152 
9153 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
9154 	cmd.u.config.type = type;
9155 	cmd.u.config.minmaxen = minmaxen;
9156 
9157 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9158 			       NULL, sleep_ok);
9159 }
9160 
9161 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
9162 		    int rateunit, int ratemode, int channel, int cl,
9163 		    int minrate, int maxrate, int weight, int pktsize,
9164 		    int sleep_ok)
9165 {
9166 	struct fw_sched_cmd cmd;
9167 
9168 	memset(&cmd, 0, sizeof(cmd));
9169 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9170 				      F_FW_CMD_REQUEST |
9171 				      F_FW_CMD_WRITE);
9172 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9173 
9174 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9175 	cmd.u.params.type = type;
9176 	cmd.u.params.level = level;
9177 	cmd.u.params.mode = mode;
9178 	cmd.u.params.ch = channel;
9179 	cmd.u.params.cl = cl;
9180 	cmd.u.params.unit = rateunit;
9181 	cmd.u.params.rate = ratemode;
9182 	cmd.u.params.min = cpu_to_be32(minrate);
9183 	cmd.u.params.max = cpu_to_be32(maxrate);
9184 	cmd.u.params.weight = cpu_to_be16(weight);
9185 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9186 
9187 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9188 			       NULL, sleep_ok);
9189 }
9190 
9191 /*
9192  *	t4_config_watchdog - configure (enable/disable) a watchdog timer
9193  *	@adapter: the adapter
9194  * 	@mbox: mailbox to use for the FW command
9195  * 	@pf: the PF owning the queue
9196  * 	@vf: the VF owning the queue
9197  *	@timeout: watchdog timeout in ms
9198  *	@action: watchdog timer / action
9199  *
9200  *	There are separate watchdog timers for each possible watchdog
9201  *	action.  Configure one of the watchdog timers by setting a non-zero
9202  *	timeout.  Disable a watchdog timer by using a timeout of zero.
9203  */
9204 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
9205 		       unsigned int pf, unsigned int vf,
9206 		       unsigned int timeout, unsigned int action)
9207 {
9208 	struct fw_watchdog_cmd wdog;
9209 	unsigned int ticks;
9210 
9211 	/*
9212 	 * The watchdog command expects a timeout in units of 10ms so we need
9213 	 * to convert it here (via rounding) and force a minimum of one 10ms
9214 	 * "tick" if the timeout is non-zero but the conversion results in 0
9215 	 * ticks.
9216 	 */
9217 	ticks = (timeout + 5)/10;
9218 	if (timeout && !ticks)
9219 		ticks = 1;
9220 
9221 	memset(&wdog, 0, sizeof wdog);
9222 	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
9223 				     F_FW_CMD_REQUEST |
9224 				     F_FW_CMD_WRITE |
9225 				     V_FW_PARAMS_CMD_PFN(pf) |
9226 				     V_FW_PARAMS_CMD_VFN(vf));
9227 	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
9228 	wdog.timeout = cpu_to_be32(ticks);
9229 	wdog.action = cpu_to_be32(action);
9230 
9231 	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
9232 }
9233 
9234 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
9235 {
9236 	struct fw_devlog_cmd devlog_cmd;
9237 	int ret;
9238 
9239 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9240 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9241 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9242 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9243 	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9244 			 sizeof(devlog_cmd), &devlog_cmd);
9245 	if (ret)
9246 		return ret;
9247 
9248 	*level = devlog_cmd.level;
9249 	return 0;
9250 }
9251 
9252 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
9253 {
9254 	struct fw_devlog_cmd devlog_cmd;
9255 
9256 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9257 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9258 					     F_FW_CMD_REQUEST |
9259 					     F_FW_CMD_WRITE);
9260 	devlog_cmd.level = level;
9261 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9262 	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9263 			  sizeof(devlog_cmd), &devlog_cmd);
9264 }
9265