xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision c7be3f26e87bde0b3a48c993cc17bb011e348144)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 
34 #include <sys/param.h>
35 #include <sys/eventhandler.h>
36 
37 #include "common.h"
38 #include "t4_regs.h"
39 #include "t4_regs_values.h"
40 #include "firmware/t4fw_interface.h"
41 
42 #undef msleep
43 #define msleep(x) do { \
44 	if (cold) \
45 		DELAY((x) * 1000); \
46 	else \
47 		pause("t4hw", (x) * hz / 1000); \
48 } while (0)
49 
50 /**
51  *	t4_wait_op_done_val - wait until an operation is completed
52  *	@adapter: the adapter performing the operation
53  *	@reg: the register to check for completion
54  *	@mask: a single-bit field within @reg that indicates completion
55  *	@polarity: the value of the field when the operation is completed
56  *	@attempts: number of check iterations
57  *	@delay: delay in usecs between iterations
58  *	@valp: where to store the value of the register at completion time
59  *
60  *	Wait until an operation is completed by checking a bit in a register
61  *	up to @attempts times.  If @valp is not NULL the value of the register
62  *	at the time it indicated completion is stored there.  Returns 0 if the
63  *	operation completes and	-EAGAIN	otherwise.
64  */
65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
66 			       int polarity, int attempts, int delay, u32 *valp)
67 {
68 	while (1) {
69 		u32 val = t4_read_reg(adapter, reg);
70 
71 		if (!!(val & mask) == polarity) {
72 			if (valp)
73 				*valp = val;
74 			return 0;
75 		}
76 		if (--attempts == 0)
77 			return -EAGAIN;
78 		if (delay)
79 			udelay(delay);
80 	}
81 }
82 
83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
84 				  int polarity, int attempts, int delay)
85 {
86 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
87 				   delay, NULL);
88 }
89 
90 /**
91  *	t4_set_reg_field - set a register field to a value
92  *	@adapter: the adapter to program
93  *	@addr: the register address
94  *	@mask: specifies the portion of the register to modify
95  *	@val: the new value for the register field
96  *
97  *	Sets a register field specified by the supplied mask to the
98  *	given value.
99  */
100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
101 		      u32 val)
102 {
103 	u32 v = t4_read_reg(adapter, addr) & ~mask;
104 
105 	t4_write_reg(adapter, addr, v | val);
106 	(void) t4_read_reg(adapter, addr);      /* flush */
107 }
108 
109 /**
110  *	t4_read_indirect - read indirectly addressed registers
111  *	@adap: the adapter
112  *	@addr_reg: register holding the indirect address
113  *	@data_reg: register holding the value of the indirect register
114  *	@vals: where the read register values are stored
115  *	@nregs: how many indirect registers to read
116  *	@start_idx: index of first indirect register to read
117  *
118  *	Reads registers that are accessed indirectly through an address/data
119  *	register pair.
120  */
121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
122 			     unsigned int data_reg, u32 *vals,
123 			     unsigned int nregs, unsigned int start_idx)
124 {
125 	while (nregs--) {
126 		t4_write_reg(adap, addr_reg, start_idx);
127 		*vals++ = t4_read_reg(adap, data_reg);
128 		start_idx++;
129 	}
130 }
131 
132 /**
133  *	t4_write_indirect - write indirectly addressed registers
134  *	@adap: the adapter
135  *	@addr_reg: register holding the indirect addresses
136  *	@data_reg: register holding the value for the indirect registers
137  *	@vals: values to write
138  *	@nregs: how many indirect registers to write
139  *	@start_idx: address of first indirect register to write
140  *
141  *	Writes a sequential block of registers that are accessed indirectly
142  *	through an address/data register pair.
143  */
144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
145 		       unsigned int data_reg, const u32 *vals,
146 		       unsigned int nregs, unsigned int start_idx)
147 {
148 	while (nregs--) {
149 		t4_write_reg(adap, addr_reg, start_idx++);
150 		t4_write_reg(adap, data_reg, *vals++);
151 	}
152 }
153 
154 /*
155  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
156  * mechanism.  This guarantees that we get the real value even if we're
157  * operating within a Virtual Machine and the Hypervisor is trapping our
158  * Configuration Space accesses.
159  *
160  * N.B. This routine should only be used as a last resort: the firmware uses
161  *      the backdoor registers on a regular basis and we can end up
162  *      conflicting with it's uses!
163  */
164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
165 {
166 	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
167 	u32 val;
168 
169 	if (chip_id(adap) <= CHELSIO_T5)
170 		req |= F_ENABLE;
171 	else
172 		req |= F_T6_ENABLE;
173 
174 	if (is_t4(adap))
175 		req |= F_LOCALCFG;
176 
177 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
178 	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
179 
180 	/*
181 	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
182 	 * Configuration Space read.  (None of the other fields matter when
183 	 * F_ENABLE is 0 so a simple register write is easier than a
184 	 * read-modify-write via t4_set_reg_field().)
185 	 */
186 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
187 
188 	return val;
189 }
190 
191 /*
192  * t4_report_fw_error - report firmware error
193  * @adap: the adapter
194  *
195  * The adapter firmware can indicate error conditions to the host.
196  * If the firmware has indicated an error, print out the reason for
197  * the firmware error.
198  */
199 static void t4_report_fw_error(struct adapter *adap)
200 {
201 	static const char *const reason[] = {
202 		"Crash",			/* PCIE_FW_EVAL_CRASH */
203 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
204 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
205 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
206 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
207 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
208 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
209 		"Reserved",			/* reserved */
210 	};
211 	u32 pcie_fw;
212 
213 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
214 	if (pcie_fw & F_PCIE_FW_ERR)
215 		CH_ERR(adap, "Firmware reports adapter error: %s\n",
216 			reason[G_PCIE_FW_EVAL(pcie_fw)]);
217 }
218 
219 /*
220  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
221  */
222 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
223 			 u32 mbox_addr)
224 {
225 	for ( ; nflit; nflit--, mbox_addr += 8)
226 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
227 }
228 
229 /*
230  * Handle a FW assertion reported in a mailbox.
231  */
232 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
233 {
234 	CH_ALERT(adap,
235 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
236 		  asrt->u.assert.filename_0_7,
237 		  be32_to_cpu(asrt->u.assert.line),
238 		  be32_to_cpu(asrt->u.assert.x),
239 		  be32_to_cpu(asrt->u.assert.y));
240 }
241 
242 struct port_tx_state {
243 	uint64_t rx_pause;
244 	uint64_t tx_frames;
245 };
246 
247 static void
248 read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state)
249 {
250 	uint32_t rx_pause_reg, tx_frames_reg;
251 
252 	if (is_t4(sc)) {
253 		tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
254 		rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
255 	} else {
256 		tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
257 		rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
258 	}
259 
260 	tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg);
261 	tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg);
262 }
263 
264 static void
265 read_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
266 {
267 	int i;
268 
269 	for_each_port(sc, i)
270 		read_tx_state_one(sc, i, &tx_state[i]);
271 }
272 
273 static void
274 check_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
275 {
276 	uint32_t port_ctl_reg;
277 	uint64_t tx_frames, rx_pause;
278 	int i;
279 
280 	for_each_port(sc, i) {
281 		rx_pause = tx_state[i].rx_pause;
282 		tx_frames = tx_state[i].tx_frames;
283 		read_tx_state_one(sc, i, &tx_state[i]);	/* update */
284 
285 		if (is_t4(sc))
286 			port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL);
287 		else
288 			port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL);
289 		if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN &&
290 		    rx_pause != tx_state[i].rx_pause &&
291 		    tx_frames == tx_state[i].tx_frames) {
292 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0);
293 			mdelay(1);
294 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN);
295 		}
296 	}
297 }
298 
299 #define X_CIM_PF_NOACCESS 0xeeeeeeee
300 /**
301  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
302  *	@adap: the adapter
303  *	@mbox: index of the mailbox to use
304  *	@cmd: the command to write
305  *	@size: command length in bytes
306  *	@rpl: where to optionally store the reply
307  *	@sleep_ok: if true we may sleep while awaiting command completion
308  *	@timeout: time to wait for command to finish before timing out
309  *		(negative implies @sleep_ok=false)
310  *
311  *	Sends the given command to FW through the selected mailbox and waits
312  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
313  *	store the FW's reply to the command.  The command and its optional
314  *	reply are of the same length.  Some FW commands like RESET and
315  *	INITIALIZE can take a considerable amount of time to execute.
316  *	@sleep_ok determines whether we may sleep while awaiting the response.
317  *	If sleeping is allowed we use progressive backoff otherwise we spin.
318  *	Note that passing in a negative @timeout is an alternate mechanism
319  *	for specifying @sleep_ok=false.  This is useful when a higher level
320  *	interface allows for specification of @timeout but not @sleep_ok ...
321  *
322  *	The return value is 0 on success or a negative errno on failure.  A
323  *	failure can happen either because we are not able to execute the
324  *	command or FW executes it but signals an error.  In the latter case
325  *	the return value is the error code indicated by FW (negated).
326  */
327 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
328 			    int size, void *rpl, bool sleep_ok, int timeout)
329 {
330 	/*
331 	 * We delay in small increments at first in an effort to maintain
332 	 * responsiveness for simple, fast executing commands but then back
333 	 * off to larger delays to a maximum retry delay.
334 	 */
335 	static const int delay[] = {
336 		1, 1, 3, 5, 10, 10, 20, 50, 100
337 	};
338 	u32 v;
339 	u64 res;
340 	int i, ms, delay_idx, ret, next_tx_check;
341 	const __be64 *p = cmd;
342 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
343 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
344 	u32 ctl;
345 	__be64 cmd_rpl[MBOX_LEN/8];
346 	u32 pcie_fw;
347 	struct port_tx_state tx_state[MAX_NPORTS];
348 
349 	if (adap->flags & CHK_MBOX_ACCESS)
350 		ASSERT_SYNCHRONIZED_OP(adap);
351 
352 	if ((size & 15) || size > MBOX_LEN)
353 		return -EINVAL;
354 
355 	if (adap->flags & IS_VF) {
356 		if (is_t6(adap))
357 			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
358 		else
359 			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
360 		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
361 	}
362 
363 	/*
364 	 * If we have a negative timeout, that implies that we can't sleep.
365 	 */
366 	if (timeout < 0) {
367 		sleep_ok = false;
368 		timeout = -timeout;
369 	}
370 
371 	/*
372 	 * Attempt to gain access to the mailbox.
373 	 */
374 	for (i = 0; i < 4; i++) {
375 		ctl = t4_read_reg(adap, ctl_reg);
376 		v = G_MBOWNER(ctl);
377 		if (v != X_MBOWNER_NONE)
378 			break;
379 	}
380 
381 	/*
382 	 * If we were unable to gain access, dequeue ourselves from the
383 	 * mailbox atomic access list and report the error to our caller.
384 	 */
385 	if (v != X_MBOWNER_PL) {
386 		t4_report_fw_error(adap);
387 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
388 		return ret;
389 	}
390 
391 	/*
392 	 * If we gain ownership of the mailbox and there's a "valid" message
393 	 * in it, this is likely an asynchronous error message from the
394 	 * firmware.  So we'll report that and then proceed on with attempting
395 	 * to issue our own command ... which may well fail if the error
396 	 * presaged the firmware crashing ...
397 	 */
398 	if (ctl & F_MBMSGVALID) {
399 		CH_ERR(adap, "found VALID command in mbox %u: %016llx %016llx "
400 		       "%016llx %016llx %016llx %016llx %016llx %016llx\n",
401 		       mbox, (unsigned long long)t4_read_reg64(adap, data_reg),
402 		       (unsigned long long)t4_read_reg64(adap, data_reg + 8),
403 		       (unsigned long long)t4_read_reg64(adap, data_reg + 16),
404 		       (unsigned long long)t4_read_reg64(adap, data_reg + 24),
405 		       (unsigned long long)t4_read_reg64(adap, data_reg + 32),
406 		       (unsigned long long)t4_read_reg64(adap, data_reg + 40),
407 		       (unsigned long long)t4_read_reg64(adap, data_reg + 48),
408 		       (unsigned long long)t4_read_reg64(adap, data_reg + 56));
409 	}
410 
411 	/*
412 	 * Copy in the new mailbox command and send it on its way ...
413 	 */
414 	for (i = 0; i < size; i += 8, p++)
415 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
416 
417 	if (adap->flags & IS_VF) {
418 		/*
419 		 * For the VFs, the Mailbox Data "registers" are
420 		 * actually backed by T4's "MA" interface rather than
421 		 * PL Registers (as is the case for the PFs).  Because
422 		 * these are in different coherency domains, the write
423 		 * to the VF's PL-register-backed Mailbox Control can
424 		 * race in front of the writes to the MA-backed VF
425 		 * Mailbox Data "registers".  So we need to do a
426 		 * read-back on at least one byte of the VF Mailbox
427 		 * Data registers before doing the write to the VF
428 		 * Mailbox Control register.
429 		 */
430 		t4_read_reg(adap, data_reg);
431 	}
432 
433 	CH_DUMP_MBOX(adap, mbox, data_reg);
434 
435 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
436 	read_tx_state(adap, &tx_state[0]);	/* also flushes the write_reg */
437 	next_tx_check = 1000;
438 	delay_idx = 0;
439 	ms = delay[0];
440 
441 	/*
442 	 * Loop waiting for the reply; bail out if we time out or the firmware
443 	 * reports an error.
444 	 */
445 	pcie_fw = 0;
446 	for (i = 0; i < timeout; i += ms) {
447 		if (!(adap->flags & IS_VF)) {
448 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
449 			if (pcie_fw & F_PCIE_FW_ERR)
450 				break;
451 		}
452 
453 		if (i >= next_tx_check) {
454 			check_tx_state(adap, &tx_state[0]);
455 			next_tx_check = i + 1000;
456 		}
457 
458 		if (sleep_ok) {
459 			ms = delay[delay_idx];  /* last element may repeat */
460 			if (delay_idx < ARRAY_SIZE(delay) - 1)
461 				delay_idx++;
462 			msleep(ms);
463 		} else {
464 			mdelay(ms);
465 		}
466 
467 		v = t4_read_reg(adap, ctl_reg);
468 		if (v == X_CIM_PF_NOACCESS)
469 			continue;
470 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
471 			if (!(v & F_MBMSGVALID)) {
472 				t4_write_reg(adap, ctl_reg,
473 					     V_MBOWNER(X_MBOWNER_NONE));
474 				continue;
475 			}
476 
477 			/*
478 			 * Retrieve the command reply and release the mailbox.
479 			 */
480 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
481 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
482 
483 			CH_DUMP_MBOX(adap, mbox, data_reg);
484 
485 			res = be64_to_cpu(cmd_rpl[0]);
486 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
487 				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
488 				res = V_FW_CMD_RETVAL(EIO);
489 			} else if (rpl)
490 				memcpy(rpl, cmd_rpl, size);
491 			return -G_FW_CMD_RETVAL((int)res);
492 		}
493 	}
494 
495 	/*
496 	 * We timed out waiting for a reply to our mailbox command.  Report
497 	 * the error and also check to see if the firmware reported any
498 	 * errors ...
499 	 */
500 	ret = (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT;
501 	CH_ERR(adap, "command %#x in mailbox %d timed out\n",
502 	       *(const u8 *)cmd, mbox);
503 
504 	/* If DUMP_MBOX is set the mbox has already been dumped */
505 	if ((adap->debug_flags & DF_DUMP_MBOX) == 0) {
506 		p = cmd;
507 		CH_ERR(adap, "mbox: %016llx %016llx %016llx %016llx "
508 		    "%016llx %016llx %016llx %016llx\n",
509 		    (unsigned long long)be64_to_cpu(p[0]),
510 		    (unsigned long long)be64_to_cpu(p[1]),
511 		    (unsigned long long)be64_to_cpu(p[2]),
512 		    (unsigned long long)be64_to_cpu(p[3]),
513 		    (unsigned long long)be64_to_cpu(p[4]),
514 		    (unsigned long long)be64_to_cpu(p[5]),
515 		    (unsigned long long)be64_to_cpu(p[6]),
516 		    (unsigned long long)be64_to_cpu(p[7]));
517 	}
518 
519 	t4_report_fw_error(adap);
520 	t4_fatal_err(adap);
521 	return ret;
522 }
523 
524 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
525 		    void *rpl, bool sleep_ok)
526 {
527 		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
528 					       sleep_ok, FW_CMD_MAX_TIMEOUT);
529 
530 }
531 
532 static int t4_edc_err_read(struct adapter *adap, int idx)
533 {
534 	u32 edc_ecc_err_addr_reg;
535 	u32 edc_bist_status_rdata_reg;
536 
537 	if (is_t4(adap)) {
538 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
539 		return 0;
540 	}
541 	if (idx != MEM_EDC0 && idx != MEM_EDC1) {
542 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
543 		return 0;
544 	}
545 
546 	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
547 	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
548 
549 	CH_WARN(adap,
550 		"edc%d err addr 0x%x: 0x%x.\n",
551 		idx, edc_ecc_err_addr_reg,
552 		t4_read_reg(adap, edc_ecc_err_addr_reg));
553 	CH_WARN(adap,
554 	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
555 		edc_bist_status_rdata_reg,
556 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
557 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
558 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
559 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
560 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
561 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
562 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
563 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
564 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
565 
566 	return 0;
567 }
568 
569 /**
570  *	t4_mc_read - read from MC through backdoor accesses
571  *	@adap: the adapter
572  *	@idx: which MC to access
573  *	@addr: address of first byte requested
574  *	@data: 64 bytes of data containing the requested address
575  *	@ecc: where to store the corresponding 64-bit ECC word
576  *
577  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
578  *	that covers the requested address @addr.  If @parity is not %NULL it
579  *	is assigned the 64-bit ECC word for the read data.
580  */
581 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
582 {
583 	int i;
584 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
585 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
586 
587 	if (is_t4(adap)) {
588 		mc_bist_cmd_reg = A_MC_BIST_CMD;
589 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
590 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
591 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
592 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
593 	} else {
594 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
595 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
596 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
597 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
598 						  idx);
599 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
600 						  idx);
601 	}
602 
603 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
604 		return -EBUSY;
605 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
606 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
607 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
608 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
609 		     F_START_BIST | V_BIST_CMD_GAP(1));
610 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
611 	if (i)
612 		return i;
613 
614 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
615 
616 	for (i = 15; i >= 0; i--)
617 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
618 	if (ecc)
619 		*ecc = t4_read_reg64(adap, MC_DATA(16));
620 #undef MC_DATA
621 	return 0;
622 }
623 
624 /**
625  *	t4_edc_read - read from EDC through backdoor accesses
626  *	@adap: the adapter
627  *	@idx: which EDC to access
628  *	@addr: address of first byte requested
629  *	@data: 64 bytes of data containing the requested address
630  *	@ecc: where to store the corresponding 64-bit ECC word
631  *
632  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
633  *	that covers the requested address @addr.  If @parity is not %NULL it
634  *	is assigned the 64-bit ECC word for the read data.
635  */
636 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
637 {
638 	int i;
639 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
640 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
641 
642 	if (is_t4(adap)) {
643 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
644 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
645 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
646 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
647 						    idx);
648 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
649 						    idx);
650 	} else {
651 /*
652  * These macro are missing in t4_regs.h file.
653  * Added temporarily for testing.
654  */
655 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
656 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
657 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
658 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
659 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
660 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
661 						    idx);
662 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
663 						    idx);
664 #undef EDC_REG_T5
665 #undef EDC_STRIDE_T5
666 	}
667 
668 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
669 		return -EBUSY;
670 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
671 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
672 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
673 	t4_write_reg(adap, edc_bist_cmd_reg,
674 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
675 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
676 	if (i)
677 		return i;
678 
679 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
680 
681 	for (i = 15; i >= 0; i--)
682 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
683 	if (ecc)
684 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
685 #undef EDC_DATA
686 	return 0;
687 }
688 
689 /**
690  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
691  *	@adap: the adapter
692  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
693  *	@addr: address within indicated memory type
694  *	@len: amount of memory to read
695  *	@buf: host memory buffer
696  *
697  *	Reads an [almost] arbitrary memory region in the firmware: the
698  *	firmware memory address, length and host buffer must be aligned on
699  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
700  *	the firmware's memory.  If this memory contains data structures which
701  *	contain multi-byte integers, it's the callers responsibility to
702  *	perform appropriate byte order conversions.
703  */
704 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
705 		__be32 *buf)
706 {
707 	u32 pos, start, end, offset;
708 	int ret;
709 
710 	/*
711 	 * Argument sanity checks ...
712 	 */
713 	if ((addr & 0x3) || (len & 0x3))
714 		return -EINVAL;
715 
716 	/*
717 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
718 	 * need to round down the start and round up the end.  We'll start
719 	 * copying out of the first line at (addr - start) a word at a time.
720 	 */
721 	start = rounddown2(addr, 64);
722 	end = roundup2(addr + len, 64);
723 	offset = (addr - start)/sizeof(__be32);
724 
725 	for (pos = start; pos < end; pos += 64, offset = 0) {
726 		__be32 data[16];
727 
728 		/*
729 		 * Read the chip's memory block and bail if there's an error.
730 		 */
731 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
732 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
733 		else
734 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
735 		if (ret)
736 			return ret;
737 
738 		/*
739 		 * Copy the data into the caller's memory buffer.
740 		 */
741 		while (offset < 16 && len > 0) {
742 			*buf++ = data[offset++];
743 			len -= sizeof(__be32);
744 		}
745 	}
746 
747 	return 0;
748 }
749 
750 /*
751  * Return the specified PCI-E Configuration Space register from our Physical
752  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
753  * since we prefer to let the firmware own all of these registers, but if that
754  * fails we go for it directly ourselves.
755  */
756 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
757 {
758 
759 	/*
760 	 * If fw_attach != 0, construct and send the Firmware LDST Command to
761 	 * retrieve the specified PCI-E Configuration Space register.
762 	 */
763 	if (drv_fw_attach != 0) {
764 		struct fw_ldst_cmd ldst_cmd;
765 		int ret;
766 
767 		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
768 		ldst_cmd.op_to_addrspace =
769 			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
770 				    F_FW_CMD_REQUEST |
771 				    F_FW_CMD_READ |
772 				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
773 		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
774 		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
775 		ldst_cmd.u.pcie.ctrl_to_fn =
776 			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
777 		ldst_cmd.u.pcie.r = reg;
778 
779 		/*
780 		 * If the LDST Command succeeds, return the result, otherwise
781 		 * fall through to reading it directly ourselves ...
782 		 */
783 		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
784 				 &ldst_cmd);
785 		if (ret == 0)
786 			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
787 
788 		CH_WARN(adap, "Firmware failed to return "
789 			"Configuration Space register %d, err = %d\n",
790 			reg, -ret);
791 	}
792 
793 	/*
794 	 * Read the desired Configuration Space register via the PCI-E
795 	 * Backdoor mechanism.
796 	 */
797 	return t4_hw_pci_read_cfg4(adap, reg);
798 }
799 
800 /**
801  *	t4_get_regs_len - return the size of the chips register set
802  *	@adapter: the adapter
803  *
804  *	Returns the size of the chip's BAR0 register space.
805  */
806 unsigned int t4_get_regs_len(struct adapter *adapter)
807 {
808 	unsigned int chip_version = chip_id(adapter);
809 
810 	switch (chip_version) {
811 	case CHELSIO_T4:
812 		if (adapter->flags & IS_VF)
813 			return FW_T4VF_REGMAP_SIZE;
814 		return T4_REGMAP_SIZE;
815 
816 	case CHELSIO_T5:
817 	case CHELSIO_T6:
818 		if (adapter->flags & IS_VF)
819 			return FW_T4VF_REGMAP_SIZE;
820 		return T5_REGMAP_SIZE;
821 	}
822 
823 	CH_ERR(adapter,
824 		"Unsupported chip version %d\n", chip_version);
825 	return 0;
826 }
827 
828 /**
829  *	t4_get_regs - read chip registers into provided buffer
830  *	@adap: the adapter
831  *	@buf: register buffer
832  *	@buf_size: size (in bytes) of register buffer
833  *
834  *	If the provided register buffer isn't large enough for the chip's
835  *	full register range, the register dump will be truncated to the
836  *	register buffer's size.
837  */
838 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
839 {
840 	static const unsigned int t4_reg_ranges[] = {
841 		0x1008, 0x1108,
842 		0x1180, 0x1184,
843 		0x1190, 0x1194,
844 		0x11a0, 0x11a4,
845 		0x11b0, 0x11b4,
846 		0x11fc, 0x123c,
847 		0x1300, 0x173c,
848 		0x1800, 0x18fc,
849 		0x3000, 0x30d8,
850 		0x30e0, 0x30e4,
851 		0x30ec, 0x5910,
852 		0x5920, 0x5924,
853 		0x5960, 0x5960,
854 		0x5968, 0x5968,
855 		0x5970, 0x5970,
856 		0x5978, 0x5978,
857 		0x5980, 0x5980,
858 		0x5988, 0x5988,
859 		0x5990, 0x5990,
860 		0x5998, 0x5998,
861 		0x59a0, 0x59d4,
862 		0x5a00, 0x5ae0,
863 		0x5ae8, 0x5ae8,
864 		0x5af0, 0x5af0,
865 		0x5af8, 0x5af8,
866 		0x6000, 0x6098,
867 		0x6100, 0x6150,
868 		0x6200, 0x6208,
869 		0x6240, 0x6248,
870 		0x6280, 0x62b0,
871 		0x62c0, 0x6338,
872 		0x6370, 0x638c,
873 		0x6400, 0x643c,
874 		0x6500, 0x6524,
875 		0x6a00, 0x6a04,
876 		0x6a14, 0x6a38,
877 		0x6a60, 0x6a70,
878 		0x6a78, 0x6a78,
879 		0x6b00, 0x6b0c,
880 		0x6b1c, 0x6b84,
881 		0x6bf0, 0x6bf8,
882 		0x6c00, 0x6c0c,
883 		0x6c1c, 0x6c84,
884 		0x6cf0, 0x6cf8,
885 		0x6d00, 0x6d0c,
886 		0x6d1c, 0x6d84,
887 		0x6df0, 0x6df8,
888 		0x6e00, 0x6e0c,
889 		0x6e1c, 0x6e84,
890 		0x6ef0, 0x6ef8,
891 		0x6f00, 0x6f0c,
892 		0x6f1c, 0x6f84,
893 		0x6ff0, 0x6ff8,
894 		0x7000, 0x700c,
895 		0x701c, 0x7084,
896 		0x70f0, 0x70f8,
897 		0x7100, 0x710c,
898 		0x711c, 0x7184,
899 		0x71f0, 0x71f8,
900 		0x7200, 0x720c,
901 		0x721c, 0x7284,
902 		0x72f0, 0x72f8,
903 		0x7300, 0x730c,
904 		0x731c, 0x7384,
905 		0x73f0, 0x73f8,
906 		0x7400, 0x7450,
907 		0x7500, 0x7530,
908 		0x7600, 0x760c,
909 		0x7614, 0x761c,
910 		0x7680, 0x76cc,
911 		0x7700, 0x7798,
912 		0x77c0, 0x77fc,
913 		0x7900, 0x79fc,
914 		0x7b00, 0x7b58,
915 		0x7b60, 0x7b84,
916 		0x7b8c, 0x7c38,
917 		0x7d00, 0x7d38,
918 		0x7d40, 0x7d80,
919 		0x7d8c, 0x7ddc,
920 		0x7de4, 0x7e04,
921 		0x7e10, 0x7e1c,
922 		0x7e24, 0x7e38,
923 		0x7e40, 0x7e44,
924 		0x7e4c, 0x7e78,
925 		0x7e80, 0x7ea4,
926 		0x7eac, 0x7edc,
927 		0x7ee8, 0x7efc,
928 		0x8dc0, 0x8e04,
929 		0x8e10, 0x8e1c,
930 		0x8e30, 0x8e78,
931 		0x8ea0, 0x8eb8,
932 		0x8ec0, 0x8f6c,
933 		0x8fc0, 0x9008,
934 		0x9010, 0x9058,
935 		0x9060, 0x9060,
936 		0x9068, 0x9074,
937 		0x90fc, 0x90fc,
938 		0x9400, 0x9408,
939 		0x9410, 0x9458,
940 		0x9600, 0x9600,
941 		0x9608, 0x9638,
942 		0x9640, 0x96bc,
943 		0x9800, 0x9808,
944 		0x9820, 0x983c,
945 		0x9850, 0x9864,
946 		0x9c00, 0x9c6c,
947 		0x9c80, 0x9cec,
948 		0x9d00, 0x9d6c,
949 		0x9d80, 0x9dec,
950 		0x9e00, 0x9e6c,
951 		0x9e80, 0x9eec,
952 		0x9f00, 0x9f6c,
953 		0x9f80, 0x9fec,
954 		0xd004, 0xd004,
955 		0xd010, 0xd03c,
956 		0xdfc0, 0xdfe0,
957 		0xe000, 0xea7c,
958 		0xf000, 0x11110,
959 		0x11118, 0x11190,
960 		0x19040, 0x1906c,
961 		0x19078, 0x19080,
962 		0x1908c, 0x190e4,
963 		0x190f0, 0x190f8,
964 		0x19100, 0x19110,
965 		0x19120, 0x19124,
966 		0x19150, 0x19194,
967 		0x1919c, 0x191b0,
968 		0x191d0, 0x191e8,
969 		0x19238, 0x1924c,
970 		0x193f8, 0x1943c,
971 		0x1944c, 0x19474,
972 		0x19490, 0x194e0,
973 		0x194f0, 0x194f8,
974 		0x19800, 0x19c08,
975 		0x19c10, 0x19c90,
976 		0x19ca0, 0x19ce4,
977 		0x19cf0, 0x19d40,
978 		0x19d50, 0x19d94,
979 		0x19da0, 0x19de8,
980 		0x19df0, 0x19e40,
981 		0x19e50, 0x19e90,
982 		0x19ea0, 0x19f4c,
983 		0x1a000, 0x1a004,
984 		0x1a010, 0x1a06c,
985 		0x1a0b0, 0x1a0e4,
986 		0x1a0ec, 0x1a0f4,
987 		0x1a100, 0x1a108,
988 		0x1a114, 0x1a120,
989 		0x1a128, 0x1a130,
990 		0x1a138, 0x1a138,
991 		0x1a190, 0x1a1c4,
992 		0x1a1fc, 0x1a1fc,
993 		0x1e040, 0x1e04c,
994 		0x1e284, 0x1e28c,
995 		0x1e2c0, 0x1e2c0,
996 		0x1e2e0, 0x1e2e0,
997 		0x1e300, 0x1e384,
998 		0x1e3c0, 0x1e3c8,
999 		0x1e440, 0x1e44c,
1000 		0x1e684, 0x1e68c,
1001 		0x1e6c0, 0x1e6c0,
1002 		0x1e6e0, 0x1e6e0,
1003 		0x1e700, 0x1e784,
1004 		0x1e7c0, 0x1e7c8,
1005 		0x1e840, 0x1e84c,
1006 		0x1ea84, 0x1ea8c,
1007 		0x1eac0, 0x1eac0,
1008 		0x1eae0, 0x1eae0,
1009 		0x1eb00, 0x1eb84,
1010 		0x1ebc0, 0x1ebc8,
1011 		0x1ec40, 0x1ec4c,
1012 		0x1ee84, 0x1ee8c,
1013 		0x1eec0, 0x1eec0,
1014 		0x1eee0, 0x1eee0,
1015 		0x1ef00, 0x1ef84,
1016 		0x1efc0, 0x1efc8,
1017 		0x1f040, 0x1f04c,
1018 		0x1f284, 0x1f28c,
1019 		0x1f2c0, 0x1f2c0,
1020 		0x1f2e0, 0x1f2e0,
1021 		0x1f300, 0x1f384,
1022 		0x1f3c0, 0x1f3c8,
1023 		0x1f440, 0x1f44c,
1024 		0x1f684, 0x1f68c,
1025 		0x1f6c0, 0x1f6c0,
1026 		0x1f6e0, 0x1f6e0,
1027 		0x1f700, 0x1f784,
1028 		0x1f7c0, 0x1f7c8,
1029 		0x1f840, 0x1f84c,
1030 		0x1fa84, 0x1fa8c,
1031 		0x1fac0, 0x1fac0,
1032 		0x1fae0, 0x1fae0,
1033 		0x1fb00, 0x1fb84,
1034 		0x1fbc0, 0x1fbc8,
1035 		0x1fc40, 0x1fc4c,
1036 		0x1fe84, 0x1fe8c,
1037 		0x1fec0, 0x1fec0,
1038 		0x1fee0, 0x1fee0,
1039 		0x1ff00, 0x1ff84,
1040 		0x1ffc0, 0x1ffc8,
1041 		0x20000, 0x2002c,
1042 		0x20100, 0x2013c,
1043 		0x20190, 0x201a0,
1044 		0x201a8, 0x201b8,
1045 		0x201c4, 0x201c8,
1046 		0x20200, 0x20318,
1047 		0x20400, 0x204b4,
1048 		0x204c0, 0x20528,
1049 		0x20540, 0x20614,
1050 		0x21000, 0x21040,
1051 		0x2104c, 0x21060,
1052 		0x210c0, 0x210ec,
1053 		0x21200, 0x21268,
1054 		0x21270, 0x21284,
1055 		0x212fc, 0x21388,
1056 		0x21400, 0x21404,
1057 		0x21500, 0x21500,
1058 		0x21510, 0x21518,
1059 		0x2152c, 0x21530,
1060 		0x2153c, 0x2153c,
1061 		0x21550, 0x21554,
1062 		0x21600, 0x21600,
1063 		0x21608, 0x2161c,
1064 		0x21624, 0x21628,
1065 		0x21630, 0x21634,
1066 		0x2163c, 0x2163c,
1067 		0x21700, 0x2171c,
1068 		0x21780, 0x2178c,
1069 		0x21800, 0x21818,
1070 		0x21820, 0x21828,
1071 		0x21830, 0x21848,
1072 		0x21850, 0x21854,
1073 		0x21860, 0x21868,
1074 		0x21870, 0x21870,
1075 		0x21878, 0x21898,
1076 		0x218a0, 0x218a8,
1077 		0x218b0, 0x218c8,
1078 		0x218d0, 0x218d4,
1079 		0x218e0, 0x218e8,
1080 		0x218f0, 0x218f0,
1081 		0x218f8, 0x21a18,
1082 		0x21a20, 0x21a28,
1083 		0x21a30, 0x21a48,
1084 		0x21a50, 0x21a54,
1085 		0x21a60, 0x21a68,
1086 		0x21a70, 0x21a70,
1087 		0x21a78, 0x21a98,
1088 		0x21aa0, 0x21aa8,
1089 		0x21ab0, 0x21ac8,
1090 		0x21ad0, 0x21ad4,
1091 		0x21ae0, 0x21ae8,
1092 		0x21af0, 0x21af0,
1093 		0x21af8, 0x21c18,
1094 		0x21c20, 0x21c20,
1095 		0x21c28, 0x21c30,
1096 		0x21c38, 0x21c38,
1097 		0x21c80, 0x21c98,
1098 		0x21ca0, 0x21ca8,
1099 		0x21cb0, 0x21cc8,
1100 		0x21cd0, 0x21cd4,
1101 		0x21ce0, 0x21ce8,
1102 		0x21cf0, 0x21cf0,
1103 		0x21cf8, 0x21d7c,
1104 		0x21e00, 0x21e04,
1105 		0x22000, 0x2202c,
1106 		0x22100, 0x2213c,
1107 		0x22190, 0x221a0,
1108 		0x221a8, 0x221b8,
1109 		0x221c4, 0x221c8,
1110 		0x22200, 0x22318,
1111 		0x22400, 0x224b4,
1112 		0x224c0, 0x22528,
1113 		0x22540, 0x22614,
1114 		0x23000, 0x23040,
1115 		0x2304c, 0x23060,
1116 		0x230c0, 0x230ec,
1117 		0x23200, 0x23268,
1118 		0x23270, 0x23284,
1119 		0x232fc, 0x23388,
1120 		0x23400, 0x23404,
1121 		0x23500, 0x23500,
1122 		0x23510, 0x23518,
1123 		0x2352c, 0x23530,
1124 		0x2353c, 0x2353c,
1125 		0x23550, 0x23554,
1126 		0x23600, 0x23600,
1127 		0x23608, 0x2361c,
1128 		0x23624, 0x23628,
1129 		0x23630, 0x23634,
1130 		0x2363c, 0x2363c,
1131 		0x23700, 0x2371c,
1132 		0x23780, 0x2378c,
1133 		0x23800, 0x23818,
1134 		0x23820, 0x23828,
1135 		0x23830, 0x23848,
1136 		0x23850, 0x23854,
1137 		0x23860, 0x23868,
1138 		0x23870, 0x23870,
1139 		0x23878, 0x23898,
1140 		0x238a0, 0x238a8,
1141 		0x238b0, 0x238c8,
1142 		0x238d0, 0x238d4,
1143 		0x238e0, 0x238e8,
1144 		0x238f0, 0x238f0,
1145 		0x238f8, 0x23a18,
1146 		0x23a20, 0x23a28,
1147 		0x23a30, 0x23a48,
1148 		0x23a50, 0x23a54,
1149 		0x23a60, 0x23a68,
1150 		0x23a70, 0x23a70,
1151 		0x23a78, 0x23a98,
1152 		0x23aa0, 0x23aa8,
1153 		0x23ab0, 0x23ac8,
1154 		0x23ad0, 0x23ad4,
1155 		0x23ae0, 0x23ae8,
1156 		0x23af0, 0x23af0,
1157 		0x23af8, 0x23c18,
1158 		0x23c20, 0x23c20,
1159 		0x23c28, 0x23c30,
1160 		0x23c38, 0x23c38,
1161 		0x23c80, 0x23c98,
1162 		0x23ca0, 0x23ca8,
1163 		0x23cb0, 0x23cc8,
1164 		0x23cd0, 0x23cd4,
1165 		0x23ce0, 0x23ce8,
1166 		0x23cf0, 0x23cf0,
1167 		0x23cf8, 0x23d7c,
1168 		0x23e00, 0x23e04,
1169 		0x24000, 0x2402c,
1170 		0x24100, 0x2413c,
1171 		0x24190, 0x241a0,
1172 		0x241a8, 0x241b8,
1173 		0x241c4, 0x241c8,
1174 		0x24200, 0x24318,
1175 		0x24400, 0x244b4,
1176 		0x244c0, 0x24528,
1177 		0x24540, 0x24614,
1178 		0x25000, 0x25040,
1179 		0x2504c, 0x25060,
1180 		0x250c0, 0x250ec,
1181 		0x25200, 0x25268,
1182 		0x25270, 0x25284,
1183 		0x252fc, 0x25388,
1184 		0x25400, 0x25404,
1185 		0x25500, 0x25500,
1186 		0x25510, 0x25518,
1187 		0x2552c, 0x25530,
1188 		0x2553c, 0x2553c,
1189 		0x25550, 0x25554,
1190 		0x25600, 0x25600,
1191 		0x25608, 0x2561c,
1192 		0x25624, 0x25628,
1193 		0x25630, 0x25634,
1194 		0x2563c, 0x2563c,
1195 		0x25700, 0x2571c,
1196 		0x25780, 0x2578c,
1197 		0x25800, 0x25818,
1198 		0x25820, 0x25828,
1199 		0x25830, 0x25848,
1200 		0x25850, 0x25854,
1201 		0x25860, 0x25868,
1202 		0x25870, 0x25870,
1203 		0x25878, 0x25898,
1204 		0x258a0, 0x258a8,
1205 		0x258b0, 0x258c8,
1206 		0x258d0, 0x258d4,
1207 		0x258e0, 0x258e8,
1208 		0x258f0, 0x258f0,
1209 		0x258f8, 0x25a18,
1210 		0x25a20, 0x25a28,
1211 		0x25a30, 0x25a48,
1212 		0x25a50, 0x25a54,
1213 		0x25a60, 0x25a68,
1214 		0x25a70, 0x25a70,
1215 		0x25a78, 0x25a98,
1216 		0x25aa0, 0x25aa8,
1217 		0x25ab0, 0x25ac8,
1218 		0x25ad0, 0x25ad4,
1219 		0x25ae0, 0x25ae8,
1220 		0x25af0, 0x25af0,
1221 		0x25af8, 0x25c18,
1222 		0x25c20, 0x25c20,
1223 		0x25c28, 0x25c30,
1224 		0x25c38, 0x25c38,
1225 		0x25c80, 0x25c98,
1226 		0x25ca0, 0x25ca8,
1227 		0x25cb0, 0x25cc8,
1228 		0x25cd0, 0x25cd4,
1229 		0x25ce0, 0x25ce8,
1230 		0x25cf0, 0x25cf0,
1231 		0x25cf8, 0x25d7c,
1232 		0x25e00, 0x25e04,
1233 		0x26000, 0x2602c,
1234 		0x26100, 0x2613c,
1235 		0x26190, 0x261a0,
1236 		0x261a8, 0x261b8,
1237 		0x261c4, 0x261c8,
1238 		0x26200, 0x26318,
1239 		0x26400, 0x264b4,
1240 		0x264c0, 0x26528,
1241 		0x26540, 0x26614,
1242 		0x27000, 0x27040,
1243 		0x2704c, 0x27060,
1244 		0x270c0, 0x270ec,
1245 		0x27200, 0x27268,
1246 		0x27270, 0x27284,
1247 		0x272fc, 0x27388,
1248 		0x27400, 0x27404,
1249 		0x27500, 0x27500,
1250 		0x27510, 0x27518,
1251 		0x2752c, 0x27530,
1252 		0x2753c, 0x2753c,
1253 		0x27550, 0x27554,
1254 		0x27600, 0x27600,
1255 		0x27608, 0x2761c,
1256 		0x27624, 0x27628,
1257 		0x27630, 0x27634,
1258 		0x2763c, 0x2763c,
1259 		0x27700, 0x2771c,
1260 		0x27780, 0x2778c,
1261 		0x27800, 0x27818,
1262 		0x27820, 0x27828,
1263 		0x27830, 0x27848,
1264 		0x27850, 0x27854,
1265 		0x27860, 0x27868,
1266 		0x27870, 0x27870,
1267 		0x27878, 0x27898,
1268 		0x278a0, 0x278a8,
1269 		0x278b0, 0x278c8,
1270 		0x278d0, 0x278d4,
1271 		0x278e0, 0x278e8,
1272 		0x278f0, 0x278f0,
1273 		0x278f8, 0x27a18,
1274 		0x27a20, 0x27a28,
1275 		0x27a30, 0x27a48,
1276 		0x27a50, 0x27a54,
1277 		0x27a60, 0x27a68,
1278 		0x27a70, 0x27a70,
1279 		0x27a78, 0x27a98,
1280 		0x27aa0, 0x27aa8,
1281 		0x27ab0, 0x27ac8,
1282 		0x27ad0, 0x27ad4,
1283 		0x27ae0, 0x27ae8,
1284 		0x27af0, 0x27af0,
1285 		0x27af8, 0x27c18,
1286 		0x27c20, 0x27c20,
1287 		0x27c28, 0x27c30,
1288 		0x27c38, 0x27c38,
1289 		0x27c80, 0x27c98,
1290 		0x27ca0, 0x27ca8,
1291 		0x27cb0, 0x27cc8,
1292 		0x27cd0, 0x27cd4,
1293 		0x27ce0, 0x27ce8,
1294 		0x27cf0, 0x27cf0,
1295 		0x27cf8, 0x27d7c,
1296 		0x27e00, 0x27e04,
1297 	};
1298 
1299 	static const unsigned int t4vf_reg_ranges[] = {
1300 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1301 		VF_MPS_REG(A_MPS_VF_CTL),
1302 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1303 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1304 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1305 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1306 		FW_T4VF_MBDATA_BASE_ADDR,
1307 		FW_T4VF_MBDATA_BASE_ADDR +
1308 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1309 	};
1310 
1311 	static const unsigned int t5_reg_ranges[] = {
1312 		0x1008, 0x10c0,
1313 		0x10cc, 0x10f8,
1314 		0x1100, 0x1100,
1315 		0x110c, 0x1148,
1316 		0x1180, 0x1184,
1317 		0x1190, 0x1194,
1318 		0x11a0, 0x11a4,
1319 		0x11b0, 0x11b4,
1320 		0x11fc, 0x123c,
1321 		0x1280, 0x173c,
1322 		0x1800, 0x18fc,
1323 		0x3000, 0x3028,
1324 		0x3060, 0x30b0,
1325 		0x30b8, 0x30d8,
1326 		0x30e0, 0x30fc,
1327 		0x3140, 0x357c,
1328 		0x35a8, 0x35cc,
1329 		0x35ec, 0x35ec,
1330 		0x3600, 0x5624,
1331 		0x56cc, 0x56ec,
1332 		0x56f4, 0x5720,
1333 		0x5728, 0x575c,
1334 		0x580c, 0x5814,
1335 		0x5890, 0x589c,
1336 		0x58a4, 0x58ac,
1337 		0x58b8, 0x58bc,
1338 		0x5940, 0x59c8,
1339 		0x59d0, 0x59dc,
1340 		0x59fc, 0x5a18,
1341 		0x5a60, 0x5a70,
1342 		0x5a80, 0x5a9c,
1343 		0x5b94, 0x5bfc,
1344 		0x6000, 0x6020,
1345 		0x6028, 0x6040,
1346 		0x6058, 0x609c,
1347 		0x60a8, 0x614c,
1348 		0x7700, 0x7798,
1349 		0x77c0, 0x78fc,
1350 		0x7b00, 0x7b58,
1351 		0x7b60, 0x7b84,
1352 		0x7b8c, 0x7c54,
1353 		0x7d00, 0x7d38,
1354 		0x7d40, 0x7d80,
1355 		0x7d8c, 0x7ddc,
1356 		0x7de4, 0x7e04,
1357 		0x7e10, 0x7e1c,
1358 		0x7e24, 0x7e38,
1359 		0x7e40, 0x7e44,
1360 		0x7e4c, 0x7e78,
1361 		0x7e80, 0x7edc,
1362 		0x7ee8, 0x7efc,
1363 		0x8dc0, 0x8de0,
1364 		0x8df8, 0x8e04,
1365 		0x8e10, 0x8e84,
1366 		0x8ea0, 0x8f84,
1367 		0x8fc0, 0x9058,
1368 		0x9060, 0x9060,
1369 		0x9068, 0x90f8,
1370 		0x9400, 0x9408,
1371 		0x9410, 0x9470,
1372 		0x9600, 0x9600,
1373 		0x9608, 0x9638,
1374 		0x9640, 0x96f4,
1375 		0x9800, 0x9808,
1376 		0x9820, 0x983c,
1377 		0x9850, 0x9864,
1378 		0x9c00, 0x9c6c,
1379 		0x9c80, 0x9cec,
1380 		0x9d00, 0x9d6c,
1381 		0x9d80, 0x9dec,
1382 		0x9e00, 0x9e6c,
1383 		0x9e80, 0x9eec,
1384 		0x9f00, 0x9f6c,
1385 		0x9f80, 0xa020,
1386 		0xd004, 0xd004,
1387 		0xd010, 0xd03c,
1388 		0xdfc0, 0xdfe0,
1389 		0xe000, 0x1106c,
1390 		0x11074, 0x11088,
1391 		0x1109c, 0x1117c,
1392 		0x11190, 0x11204,
1393 		0x19040, 0x1906c,
1394 		0x19078, 0x19080,
1395 		0x1908c, 0x190e8,
1396 		0x190f0, 0x190f8,
1397 		0x19100, 0x19110,
1398 		0x19120, 0x19124,
1399 		0x19150, 0x19194,
1400 		0x1919c, 0x191b0,
1401 		0x191d0, 0x191e8,
1402 		0x19238, 0x19290,
1403 		0x193f8, 0x19428,
1404 		0x19430, 0x19444,
1405 		0x1944c, 0x1946c,
1406 		0x19474, 0x19474,
1407 		0x19490, 0x194cc,
1408 		0x194f0, 0x194f8,
1409 		0x19c00, 0x19c08,
1410 		0x19c10, 0x19c60,
1411 		0x19c94, 0x19ce4,
1412 		0x19cf0, 0x19d40,
1413 		0x19d50, 0x19d94,
1414 		0x19da0, 0x19de8,
1415 		0x19df0, 0x19e10,
1416 		0x19e50, 0x19e90,
1417 		0x19ea0, 0x19f24,
1418 		0x19f34, 0x19f34,
1419 		0x19f40, 0x19f50,
1420 		0x19f90, 0x19fb4,
1421 		0x19fc4, 0x19fe4,
1422 		0x1a000, 0x1a004,
1423 		0x1a010, 0x1a06c,
1424 		0x1a0b0, 0x1a0e4,
1425 		0x1a0ec, 0x1a0f8,
1426 		0x1a100, 0x1a108,
1427 		0x1a114, 0x1a120,
1428 		0x1a128, 0x1a130,
1429 		0x1a138, 0x1a138,
1430 		0x1a190, 0x1a1c4,
1431 		0x1a1fc, 0x1a1fc,
1432 		0x1e008, 0x1e00c,
1433 		0x1e040, 0x1e044,
1434 		0x1e04c, 0x1e04c,
1435 		0x1e284, 0x1e290,
1436 		0x1e2c0, 0x1e2c0,
1437 		0x1e2e0, 0x1e2e0,
1438 		0x1e300, 0x1e384,
1439 		0x1e3c0, 0x1e3c8,
1440 		0x1e408, 0x1e40c,
1441 		0x1e440, 0x1e444,
1442 		0x1e44c, 0x1e44c,
1443 		0x1e684, 0x1e690,
1444 		0x1e6c0, 0x1e6c0,
1445 		0x1e6e0, 0x1e6e0,
1446 		0x1e700, 0x1e784,
1447 		0x1e7c0, 0x1e7c8,
1448 		0x1e808, 0x1e80c,
1449 		0x1e840, 0x1e844,
1450 		0x1e84c, 0x1e84c,
1451 		0x1ea84, 0x1ea90,
1452 		0x1eac0, 0x1eac0,
1453 		0x1eae0, 0x1eae0,
1454 		0x1eb00, 0x1eb84,
1455 		0x1ebc0, 0x1ebc8,
1456 		0x1ec08, 0x1ec0c,
1457 		0x1ec40, 0x1ec44,
1458 		0x1ec4c, 0x1ec4c,
1459 		0x1ee84, 0x1ee90,
1460 		0x1eec0, 0x1eec0,
1461 		0x1eee0, 0x1eee0,
1462 		0x1ef00, 0x1ef84,
1463 		0x1efc0, 0x1efc8,
1464 		0x1f008, 0x1f00c,
1465 		0x1f040, 0x1f044,
1466 		0x1f04c, 0x1f04c,
1467 		0x1f284, 0x1f290,
1468 		0x1f2c0, 0x1f2c0,
1469 		0x1f2e0, 0x1f2e0,
1470 		0x1f300, 0x1f384,
1471 		0x1f3c0, 0x1f3c8,
1472 		0x1f408, 0x1f40c,
1473 		0x1f440, 0x1f444,
1474 		0x1f44c, 0x1f44c,
1475 		0x1f684, 0x1f690,
1476 		0x1f6c0, 0x1f6c0,
1477 		0x1f6e0, 0x1f6e0,
1478 		0x1f700, 0x1f784,
1479 		0x1f7c0, 0x1f7c8,
1480 		0x1f808, 0x1f80c,
1481 		0x1f840, 0x1f844,
1482 		0x1f84c, 0x1f84c,
1483 		0x1fa84, 0x1fa90,
1484 		0x1fac0, 0x1fac0,
1485 		0x1fae0, 0x1fae0,
1486 		0x1fb00, 0x1fb84,
1487 		0x1fbc0, 0x1fbc8,
1488 		0x1fc08, 0x1fc0c,
1489 		0x1fc40, 0x1fc44,
1490 		0x1fc4c, 0x1fc4c,
1491 		0x1fe84, 0x1fe90,
1492 		0x1fec0, 0x1fec0,
1493 		0x1fee0, 0x1fee0,
1494 		0x1ff00, 0x1ff84,
1495 		0x1ffc0, 0x1ffc8,
1496 		0x30000, 0x30030,
1497 		0x30100, 0x30144,
1498 		0x30190, 0x301a0,
1499 		0x301a8, 0x301b8,
1500 		0x301c4, 0x301c8,
1501 		0x301d0, 0x301d0,
1502 		0x30200, 0x30318,
1503 		0x30400, 0x304b4,
1504 		0x304c0, 0x3052c,
1505 		0x30540, 0x3061c,
1506 		0x30800, 0x30828,
1507 		0x30834, 0x30834,
1508 		0x308c0, 0x30908,
1509 		0x30910, 0x309ac,
1510 		0x30a00, 0x30a14,
1511 		0x30a1c, 0x30a2c,
1512 		0x30a44, 0x30a50,
1513 		0x30a74, 0x30a74,
1514 		0x30a7c, 0x30afc,
1515 		0x30b08, 0x30c24,
1516 		0x30d00, 0x30d00,
1517 		0x30d08, 0x30d14,
1518 		0x30d1c, 0x30d20,
1519 		0x30d3c, 0x30d3c,
1520 		0x30d48, 0x30d50,
1521 		0x31200, 0x3120c,
1522 		0x31220, 0x31220,
1523 		0x31240, 0x31240,
1524 		0x31600, 0x3160c,
1525 		0x31a00, 0x31a1c,
1526 		0x31e00, 0x31e20,
1527 		0x31e38, 0x31e3c,
1528 		0x31e80, 0x31e80,
1529 		0x31e88, 0x31ea8,
1530 		0x31eb0, 0x31eb4,
1531 		0x31ec8, 0x31ed4,
1532 		0x31fb8, 0x32004,
1533 		0x32200, 0x32200,
1534 		0x32208, 0x32240,
1535 		0x32248, 0x32280,
1536 		0x32288, 0x322c0,
1537 		0x322c8, 0x322fc,
1538 		0x32600, 0x32630,
1539 		0x32a00, 0x32abc,
1540 		0x32b00, 0x32b10,
1541 		0x32b20, 0x32b30,
1542 		0x32b40, 0x32b50,
1543 		0x32b60, 0x32b70,
1544 		0x33000, 0x33028,
1545 		0x33030, 0x33048,
1546 		0x33060, 0x33068,
1547 		0x33070, 0x3309c,
1548 		0x330f0, 0x33128,
1549 		0x33130, 0x33148,
1550 		0x33160, 0x33168,
1551 		0x33170, 0x3319c,
1552 		0x331f0, 0x33238,
1553 		0x33240, 0x33240,
1554 		0x33248, 0x33250,
1555 		0x3325c, 0x33264,
1556 		0x33270, 0x332b8,
1557 		0x332c0, 0x332e4,
1558 		0x332f8, 0x33338,
1559 		0x33340, 0x33340,
1560 		0x33348, 0x33350,
1561 		0x3335c, 0x33364,
1562 		0x33370, 0x333b8,
1563 		0x333c0, 0x333e4,
1564 		0x333f8, 0x33428,
1565 		0x33430, 0x33448,
1566 		0x33460, 0x33468,
1567 		0x33470, 0x3349c,
1568 		0x334f0, 0x33528,
1569 		0x33530, 0x33548,
1570 		0x33560, 0x33568,
1571 		0x33570, 0x3359c,
1572 		0x335f0, 0x33638,
1573 		0x33640, 0x33640,
1574 		0x33648, 0x33650,
1575 		0x3365c, 0x33664,
1576 		0x33670, 0x336b8,
1577 		0x336c0, 0x336e4,
1578 		0x336f8, 0x33738,
1579 		0x33740, 0x33740,
1580 		0x33748, 0x33750,
1581 		0x3375c, 0x33764,
1582 		0x33770, 0x337b8,
1583 		0x337c0, 0x337e4,
1584 		0x337f8, 0x337fc,
1585 		0x33814, 0x33814,
1586 		0x3382c, 0x3382c,
1587 		0x33880, 0x3388c,
1588 		0x338e8, 0x338ec,
1589 		0x33900, 0x33928,
1590 		0x33930, 0x33948,
1591 		0x33960, 0x33968,
1592 		0x33970, 0x3399c,
1593 		0x339f0, 0x33a38,
1594 		0x33a40, 0x33a40,
1595 		0x33a48, 0x33a50,
1596 		0x33a5c, 0x33a64,
1597 		0x33a70, 0x33ab8,
1598 		0x33ac0, 0x33ae4,
1599 		0x33af8, 0x33b10,
1600 		0x33b28, 0x33b28,
1601 		0x33b3c, 0x33b50,
1602 		0x33bf0, 0x33c10,
1603 		0x33c28, 0x33c28,
1604 		0x33c3c, 0x33c50,
1605 		0x33cf0, 0x33cfc,
1606 		0x34000, 0x34030,
1607 		0x34100, 0x34144,
1608 		0x34190, 0x341a0,
1609 		0x341a8, 0x341b8,
1610 		0x341c4, 0x341c8,
1611 		0x341d0, 0x341d0,
1612 		0x34200, 0x34318,
1613 		0x34400, 0x344b4,
1614 		0x344c0, 0x3452c,
1615 		0x34540, 0x3461c,
1616 		0x34800, 0x34828,
1617 		0x34834, 0x34834,
1618 		0x348c0, 0x34908,
1619 		0x34910, 0x349ac,
1620 		0x34a00, 0x34a14,
1621 		0x34a1c, 0x34a2c,
1622 		0x34a44, 0x34a50,
1623 		0x34a74, 0x34a74,
1624 		0x34a7c, 0x34afc,
1625 		0x34b08, 0x34c24,
1626 		0x34d00, 0x34d00,
1627 		0x34d08, 0x34d14,
1628 		0x34d1c, 0x34d20,
1629 		0x34d3c, 0x34d3c,
1630 		0x34d48, 0x34d50,
1631 		0x35200, 0x3520c,
1632 		0x35220, 0x35220,
1633 		0x35240, 0x35240,
1634 		0x35600, 0x3560c,
1635 		0x35a00, 0x35a1c,
1636 		0x35e00, 0x35e20,
1637 		0x35e38, 0x35e3c,
1638 		0x35e80, 0x35e80,
1639 		0x35e88, 0x35ea8,
1640 		0x35eb0, 0x35eb4,
1641 		0x35ec8, 0x35ed4,
1642 		0x35fb8, 0x36004,
1643 		0x36200, 0x36200,
1644 		0x36208, 0x36240,
1645 		0x36248, 0x36280,
1646 		0x36288, 0x362c0,
1647 		0x362c8, 0x362fc,
1648 		0x36600, 0x36630,
1649 		0x36a00, 0x36abc,
1650 		0x36b00, 0x36b10,
1651 		0x36b20, 0x36b30,
1652 		0x36b40, 0x36b50,
1653 		0x36b60, 0x36b70,
1654 		0x37000, 0x37028,
1655 		0x37030, 0x37048,
1656 		0x37060, 0x37068,
1657 		0x37070, 0x3709c,
1658 		0x370f0, 0x37128,
1659 		0x37130, 0x37148,
1660 		0x37160, 0x37168,
1661 		0x37170, 0x3719c,
1662 		0x371f0, 0x37238,
1663 		0x37240, 0x37240,
1664 		0x37248, 0x37250,
1665 		0x3725c, 0x37264,
1666 		0x37270, 0x372b8,
1667 		0x372c0, 0x372e4,
1668 		0x372f8, 0x37338,
1669 		0x37340, 0x37340,
1670 		0x37348, 0x37350,
1671 		0x3735c, 0x37364,
1672 		0x37370, 0x373b8,
1673 		0x373c0, 0x373e4,
1674 		0x373f8, 0x37428,
1675 		0x37430, 0x37448,
1676 		0x37460, 0x37468,
1677 		0x37470, 0x3749c,
1678 		0x374f0, 0x37528,
1679 		0x37530, 0x37548,
1680 		0x37560, 0x37568,
1681 		0x37570, 0x3759c,
1682 		0x375f0, 0x37638,
1683 		0x37640, 0x37640,
1684 		0x37648, 0x37650,
1685 		0x3765c, 0x37664,
1686 		0x37670, 0x376b8,
1687 		0x376c0, 0x376e4,
1688 		0x376f8, 0x37738,
1689 		0x37740, 0x37740,
1690 		0x37748, 0x37750,
1691 		0x3775c, 0x37764,
1692 		0x37770, 0x377b8,
1693 		0x377c0, 0x377e4,
1694 		0x377f8, 0x377fc,
1695 		0x37814, 0x37814,
1696 		0x3782c, 0x3782c,
1697 		0x37880, 0x3788c,
1698 		0x378e8, 0x378ec,
1699 		0x37900, 0x37928,
1700 		0x37930, 0x37948,
1701 		0x37960, 0x37968,
1702 		0x37970, 0x3799c,
1703 		0x379f0, 0x37a38,
1704 		0x37a40, 0x37a40,
1705 		0x37a48, 0x37a50,
1706 		0x37a5c, 0x37a64,
1707 		0x37a70, 0x37ab8,
1708 		0x37ac0, 0x37ae4,
1709 		0x37af8, 0x37b10,
1710 		0x37b28, 0x37b28,
1711 		0x37b3c, 0x37b50,
1712 		0x37bf0, 0x37c10,
1713 		0x37c28, 0x37c28,
1714 		0x37c3c, 0x37c50,
1715 		0x37cf0, 0x37cfc,
1716 		0x38000, 0x38030,
1717 		0x38100, 0x38144,
1718 		0x38190, 0x381a0,
1719 		0x381a8, 0x381b8,
1720 		0x381c4, 0x381c8,
1721 		0x381d0, 0x381d0,
1722 		0x38200, 0x38318,
1723 		0x38400, 0x384b4,
1724 		0x384c0, 0x3852c,
1725 		0x38540, 0x3861c,
1726 		0x38800, 0x38828,
1727 		0x38834, 0x38834,
1728 		0x388c0, 0x38908,
1729 		0x38910, 0x389ac,
1730 		0x38a00, 0x38a14,
1731 		0x38a1c, 0x38a2c,
1732 		0x38a44, 0x38a50,
1733 		0x38a74, 0x38a74,
1734 		0x38a7c, 0x38afc,
1735 		0x38b08, 0x38c24,
1736 		0x38d00, 0x38d00,
1737 		0x38d08, 0x38d14,
1738 		0x38d1c, 0x38d20,
1739 		0x38d3c, 0x38d3c,
1740 		0x38d48, 0x38d50,
1741 		0x39200, 0x3920c,
1742 		0x39220, 0x39220,
1743 		0x39240, 0x39240,
1744 		0x39600, 0x3960c,
1745 		0x39a00, 0x39a1c,
1746 		0x39e00, 0x39e20,
1747 		0x39e38, 0x39e3c,
1748 		0x39e80, 0x39e80,
1749 		0x39e88, 0x39ea8,
1750 		0x39eb0, 0x39eb4,
1751 		0x39ec8, 0x39ed4,
1752 		0x39fb8, 0x3a004,
1753 		0x3a200, 0x3a200,
1754 		0x3a208, 0x3a240,
1755 		0x3a248, 0x3a280,
1756 		0x3a288, 0x3a2c0,
1757 		0x3a2c8, 0x3a2fc,
1758 		0x3a600, 0x3a630,
1759 		0x3aa00, 0x3aabc,
1760 		0x3ab00, 0x3ab10,
1761 		0x3ab20, 0x3ab30,
1762 		0x3ab40, 0x3ab50,
1763 		0x3ab60, 0x3ab70,
1764 		0x3b000, 0x3b028,
1765 		0x3b030, 0x3b048,
1766 		0x3b060, 0x3b068,
1767 		0x3b070, 0x3b09c,
1768 		0x3b0f0, 0x3b128,
1769 		0x3b130, 0x3b148,
1770 		0x3b160, 0x3b168,
1771 		0x3b170, 0x3b19c,
1772 		0x3b1f0, 0x3b238,
1773 		0x3b240, 0x3b240,
1774 		0x3b248, 0x3b250,
1775 		0x3b25c, 0x3b264,
1776 		0x3b270, 0x3b2b8,
1777 		0x3b2c0, 0x3b2e4,
1778 		0x3b2f8, 0x3b338,
1779 		0x3b340, 0x3b340,
1780 		0x3b348, 0x3b350,
1781 		0x3b35c, 0x3b364,
1782 		0x3b370, 0x3b3b8,
1783 		0x3b3c0, 0x3b3e4,
1784 		0x3b3f8, 0x3b428,
1785 		0x3b430, 0x3b448,
1786 		0x3b460, 0x3b468,
1787 		0x3b470, 0x3b49c,
1788 		0x3b4f0, 0x3b528,
1789 		0x3b530, 0x3b548,
1790 		0x3b560, 0x3b568,
1791 		0x3b570, 0x3b59c,
1792 		0x3b5f0, 0x3b638,
1793 		0x3b640, 0x3b640,
1794 		0x3b648, 0x3b650,
1795 		0x3b65c, 0x3b664,
1796 		0x3b670, 0x3b6b8,
1797 		0x3b6c0, 0x3b6e4,
1798 		0x3b6f8, 0x3b738,
1799 		0x3b740, 0x3b740,
1800 		0x3b748, 0x3b750,
1801 		0x3b75c, 0x3b764,
1802 		0x3b770, 0x3b7b8,
1803 		0x3b7c0, 0x3b7e4,
1804 		0x3b7f8, 0x3b7fc,
1805 		0x3b814, 0x3b814,
1806 		0x3b82c, 0x3b82c,
1807 		0x3b880, 0x3b88c,
1808 		0x3b8e8, 0x3b8ec,
1809 		0x3b900, 0x3b928,
1810 		0x3b930, 0x3b948,
1811 		0x3b960, 0x3b968,
1812 		0x3b970, 0x3b99c,
1813 		0x3b9f0, 0x3ba38,
1814 		0x3ba40, 0x3ba40,
1815 		0x3ba48, 0x3ba50,
1816 		0x3ba5c, 0x3ba64,
1817 		0x3ba70, 0x3bab8,
1818 		0x3bac0, 0x3bae4,
1819 		0x3baf8, 0x3bb10,
1820 		0x3bb28, 0x3bb28,
1821 		0x3bb3c, 0x3bb50,
1822 		0x3bbf0, 0x3bc10,
1823 		0x3bc28, 0x3bc28,
1824 		0x3bc3c, 0x3bc50,
1825 		0x3bcf0, 0x3bcfc,
1826 		0x3c000, 0x3c030,
1827 		0x3c100, 0x3c144,
1828 		0x3c190, 0x3c1a0,
1829 		0x3c1a8, 0x3c1b8,
1830 		0x3c1c4, 0x3c1c8,
1831 		0x3c1d0, 0x3c1d0,
1832 		0x3c200, 0x3c318,
1833 		0x3c400, 0x3c4b4,
1834 		0x3c4c0, 0x3c52c,
1835 		0x3c540, 0x3c61c,
1836 		0x3c800, 0x3c828,
1837 		0x3c834, 0x3c834,
1838 		0x3c8c0, 0x3c908,
1839 		0x3c910, 0x3c9ac,
1840 		0x3ca00, 0x3ca14,
1841 		0x3ca1c, 0x3ca2c,
1842 		0x3ca44, 0x3ca50,
1843 		0x3ca74, 0x3ca74,
1844 		0x3ca7c, 0x3cafc,
1845 		0x3cb08, 0x3cc24,
1846 		0x3cd00, 0x3cd00,
1847 		0x3cd08, 0x3cd14,
1848 		0x3cd1c, 0x3cd20,
1849 		0x3cd3c, 0x3cd3c,
1850 		0x3cd48, 0x3cd50,
1851 		0x3d200, 0x3d20c,
1852 		0x3d220, 0x3d220,
1853 		0x3d240, 0x3d240,
1854 		0x3d600, 0x3d60c,
1855 		0x3da00, 0x3da1c,
1856 		0x3de00, 0x3de20,
1857 		0x3de38, 0x3de3c,
1858 		0x3de80, 0x3de80,
1859 		0x3de88, 0x3dea8,
1860 		0x3deb0, 0x3deb4,
1861 		0x3dec8, 0x3ded4,
1862 		0x3dfb8, 0x3e004,
1863 		0x3e200, 0x3e200,
1864 		0x3e208, 0x3e240,
1865 		0x3e248, 0x3e280,
1866 		0x3e288, 0x3e2c0,
1867 		0x3e2c8, 0x3e2fc,
1868 		0x3e600, 0x3e630,
1869 		0x3ea00, 0x3eabc,
1870 		0x3eb00, 0x3eb10,
1871 		0x3eb20, 0x3eb30,
1872 		0x3eb40, 0x3eb50,
1873 		0x3eb60, 0x3eb70,
1874 		0x3f000, 0x3f028,
1875 		0x3f030, 0x3f048,
1876 		0x3f060, 0x3f068,
1877 		0x3f070, 0x3f09c,
1878 		0x3f0f0, 0x3f128,
1879 		0x3f130, 0x3f148,
1880 		0x3f160, 0x3f168,
1881 		0x3f170, 0x3f19c,
1882 		0x3f1f0, 0x3f238,
1883 		0x3f240, 0x3f240,
1884 		0x3f248, 0x3f250,
1885 		0x3f25c, 0x3f264,
1886 		0x3f270, 0x3f2b8,
1887 		0x3f2c0, 0x3f2e4,
1888 		0x3f2f8, 0x3f338,
1889 		0x3f340, 0x3f340,
1890 		0x3f348, 0x3f350,
1891 		0x3f35c, 0x3f364,
1892 		0x3f370, 0x3f3b8,
1893 		0x3f3c0, 0x3f3e4,
1894 		0x3f3f8, 0x3f428,
1895 		0x3f430, 0x3f448,
1896 		0x3f460, 0x3f468,
1897 		0x3f470, 0x3f49c,
1898 		0x3f4f0, 0x3f528,
1899 		0x3f530, 0x3f548,
1900 		0x3f560, 0x3f568,
1901 		0x3f570, 0x3f59c,
1902 		0x3f5f0, 0x3f638,
1903 		0x3f640, 0x3f640,
1904 		0x3f648, 0x3f650,
1905 		0x3f65c, 0x3f664,
1906 		0x3f670, 0x3f6b8,
1907 		0x3f6c0, 0x3f6e4,
1908 		0x3f6f8, 0x3f738,
1909 		0x3f740, 0x3f740,
1910 		0x3f748, 0x3f750,
1911 		0x3f75c, 0x3f764,
1912 		0x3f770, 0x3f7b8,
1913 		0x3f7c0, 0x3f7e4,
1914 		0x3f7f8, 0x3f7fc,
1915 		0x3f814, 0x3f814,
1916 		0x3f82c, 0x3f82c,
1917 		0x3f880, 0x3f88c,
1918 		0x3f8e8, 0x3f8ec,
1919 		0x3f900, 0x3f928,
1920 		0x3f930, 0x3f948,
1921 		0x3f960, 0x3f968,
1922 		0x3f970, 0x3f99c,
1923 		0x3f9f0, 0x3fa38,
1924 		0x3fa40, 0x3fa40,
1925 		0x3fa48, 0x3fa50,
1926 		0x3fa5c, 0x3fa64,
1927 		0x3fa70, 0x3fab8,
1928 		0x3fac0, 0x3fae4,
1929 		0x3faf8, 0x3fb10,
1930 		0x3fb28, 0x3fb28,
1931 		0x3fb3c, 0x3fb50,
1932 		0x3fbf0, 0x3fc10,
1933 		0x3fc28, 0x3fc28,
1934 		0x3fc3c, 0x3fc50,
1935 		0x3fcf0, 0x3fcfc,
1936 		0x40000, 0x4000c,
1937 		0x40040, 0x40050,
1938 		0x40060, 0x40068,
1939 		0x4007c, 0x4008c,
1940 		0x40094, 0x400b0,
1941 		0x400c0, 0x40144,
1942 		0x40180, 0x4018c,
1943 		0x40200, 0x40254,
1944 		0x40260, 0x40264,
1945 		0x40270, 0x40288,
1946 		0x40290, 0x40298,
1947 		0x402ac, 0x402c8,
1948 		0x402d0, 0x402e0,
1949 		0x402f0, 0x402f0,
1950 		0x40300, 0x4033c,
1951 		0x403f8, 0x403fc,
1952 		0x41304, 0x413c4,
1953 		0x41400, 0x4140c,
1954 		0x41414, 0x4141c,
1955 		0x41480, 0x414d0,
1956 		0x44000, 0x44054,
1957 		0x4405c, 0x44078,
1958 		0x440c0, 0x44174,
1959 		0x44180, 0x441ac,
1960 		0x441b4, 0x441b8,
1961 		0x441c0, 0x44254,
1962 		0x4425c, 0x44278,
1963 		0x442c0, 0x44374,
1964 		0x44380, 0x443ac,
1965 		0x443b4, 0x443b8,
1966 		0x443c0, 0x44454,
1967 		0x4445c, 0x44478,
1968 		0x444c0, 0x44574,
1969 		0x44580, 0x445ac,
1970 		0x445b4, 0x445b8,
1971 		0x445c0, 0x44654,
1972 		0x4465c, 0x44678,
1973 		0x446c0, 0x44774,
1974 		0x44780, 0x447ac,
1975 		0x447b4, 0x447b8,
1976 		0x447c0, 0x44854,
1977 		0x4485c, 0x44878,
1978 		0x448c0, 0x44974,
1979 		0x44980, 0x449ac,
1980 		0x449b4, 0x449b8,
1981 		0x449c0, 0x449fc,
1982 		0x45000, 0x45004,
1983 		0x45010, 0x45030,
1984 		0x45040, 0x45060,
1985 		0x45068, 0x45068,
1986 		0x45080, 0x45084,
1987 		0x450a0, 0x450b0,
1988 		0x45200, 0x45204,
1989 		0x45210, 0x45230,
1990 		0x45240, 0x45260,
1991 		0x45268, 0x45268,
1992 		0x45280, 0x45284,
1993 		0x452a0, 0x452b0,
1994 		0x460c0, 0x460e4,
1995 		0x47000, 0x4703c,
1996 		0x47044, 0x4708c,
1997 		0x47200, 0x47250,
1998 		0x47400, 0x47408,
1999 		0x47414, 0x47420,
2000 		0x47600, 0x47618,
2001 		0x47800, 0x47814,
2002 		0x48000, 0x4800c,
2003 		0x48040, 0x48050,
2004 		0x48060, 0x48068,
2005 		0x4807c, 0x4808c,
2006 		0x48094, 0x480b0,
2007 		0x480c0, 0x48144,
2008 		0x48180, 0x4818c,
2009 		0x48200, 0x48254,
2010 		0x48260, 0x48264,
2011 		0x48270, 0x48288,
2012 		0x48290, 0x48298,
2013 		0x482ac, 0x482c8,
2014 		0x482d0, 0x482e0,
2015 		0x482f0, 0x482f0,
2016 		0x48300, 0x4833c,
2017 		0x483f8, 0x483fc,
2018 		0x49304, 0x493c4,
2019 		0x49400, 0x4940c,
2020 		0x49414, 0x4941c,
2021 		0x49480, 0x494d0,
2022 		0x4c000, 0x4c054,
2023 		0x4c05c, 0x4c078,
2024 		0x4c0c0, 0x4c174,
2025 		0x4c180, 0x4c1ac,
2026 		0x4c1b4, 0x4c1b8,
2027 		0x4c1c0, 0x4c254,
2028 		0x4c25c, 0x4c278,
2029 		0x4c2c0, 0x4c374,
2030 		0x4c380, 0x4c3ac,
2031 		0x4c3b4, 0x4c3b8,
2032 		0x4c3c0, 0x4c454,
2033 		0x4c45c, 0x4c478,
2034 		0x4c4c0, 0x4c574,
2035 		0x4c580, 0x4c5ac,
2036 		0x4c5b4, 0x4c5b8,
2037 		0x4c5c0, 0x4c654,
2038 		0x4c65c, 0x4c678,
2039 		0x4c6c0, 0x4c774,
2040 		0x4c780, 0x4c7ac,
2041 		0x4c7b4, 0x4c7b8,
2042 		0x4c7c0, 0x4c854,
2043 		0x4c85c, 0x4c878,
2044 		0x4c8c0, 0x4c974,
2045 		0x4c980, 0x4c9ac,
2046 		0x4c9b4, 0x4c9b8,
2047 		0x4c9c0, 0x4c9fc,
2048 		0x4d000, 0x4d004,
2049 		0x4d010, 0x4d030,
2050 		0x4d040, 0x4d060,
2051 		0x4d068, 0x4d068,
2052 		0x4d080, 0x4d084,
2053 		0x4d0a0, 0x4d0b0,
2054 		0x4d200, 0x4d204,
2055 		0x4d210, 0x4d230,
2056 		0x4d240, 0x4d260,
2057 		0x4d268, 0x4d268,
2058 		0x4d280, 0x4d284,
2059 		0x4d2a0, 0x4d2b0,
2060 		0x4e0c0, 0x4e0e4,
2061 		0x4f000, 0x4f03c,
2062 		0x4f044, 0x4f08c,
2063 		0x4f200, 0x4f250,
2064 		0x4f400, 0x4f408,
2065 		0x4f414, 0x4f420,
2066 		0x4f600, 0x4f618,
2067 		0x4f800, 0x4f814,
2068 		0x50000, 0x50084,
2069 		0x50090, 0x500cc,
2070 		0x50400, 0x50400,
2071 		0x50800, 0x50884,
2072 		0x50890, 0x508cc,
2073 		0x50c00, 0x50c00,
2074 		0x51000, 0x5101c,
2075 		0x51300, 0x51308,
2076 	};
2077 
2078 	static const unsigned int t5vf_reg_ranges[] = {
2079 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2080 		VF_MPS_REG(A_MPS_VF_CTL),
2081 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2082 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2083 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2084 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2085 		FW_T4VF_MBDATA_BASE_ADDR,
2086 		FW_T4VF_MBDATA_BASE_ADDR +
2087 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2088 	};
2089 
2090 	static const unsigned int t6_reg_ranges[] = {
2091 		0x1008, 0x101c,
2092 		0x1024, 0x10a8,
2093 		0x10b4, 0x10f8,
2094 		0x1100, 0x1114,
2095 		0x111c, 0x112c,
2096 		0x1138, 0x113c,
2097 		0x1144, 0x114c,
2098 		0x1180, 0x1184,
2099 		0x1190, 0x1194,
2100 		0x11a0, 0x11a4,
2101 		0x11b0, 0x11b4,
2102 		0x11fc, 0x1274,
2103 		0x1280, 0x133c,
2104 		0x1800, 0x18fc,
2105 		0x3000, 0x302c,
2106 		0x3060, 0x30b0,
2107 		0x30b8, 0x30d8,
2108 		0x30e0, 0x30fc,
2109 		0x3140, 0x357c,
2110 		0x35a8, 0x35cc,
2111 		0x35ec, 0x35ec,
2112 		0x3600, 0x5624,
2113 		0x56cc, 0x56ec,
2114 		0x56f4, 0x5720,
2115 		0x5728, 0x575c,
2116 		0x580c, 0x5814,
2117 		0x5890, 0x589c,
2118 		0x58a4, 0x58ac,
2119 		0x58b8, 0x58bc,
2120 		0x5940, 0x595c,
2121 		0x5980, 0x598c,
2122 		0x59b0, 0x59c8,
2123 		0x59d0, 0x59dc,
2124 		0x59fc, 0x5a18,
2125 		0x5a60, 0x5a6c,
2126 		0x5a80, 0x5a8c,
2127 		0x5a94, 0x5a9c,
2128 		0x5b94, 0x5bfc,
2129 		0x5c10, 0x5e48,
2130 		0x5e50, 0x5e94,
2131 		0x5ea0, 0x5eb0,
2132 		0x5ec0, 0x5ec0,
2133 		0x5ec8, 0x5ed0,
2134 		0x5ee0, 0x5ee0,
2135 		0x5ef0, 0x5ef0,
2136 		0x5f00, 0x5f00,
2137 		0x6000, 0x6020,
2138 		0x6028, 0x6040,
2139 		0x6058, 0x609c,
2140 		0x60a8, 0x619c,
2141 		0x7700, 0x7798,
2142 		0x77c0, 0x7880,
2143 		0x78cc, 0x78fc,
2144 		0x7b00, 0x7b58,
2145 		0x7b60, 0x7b84,
2146 		0x7b8c, 0x7c54,
2147 		0x7d00, 0x7d38,
2148 		0x7d40, 0x7d84,
2149 		0x7d8c, 0x7ddc,
2150 		0x7de4, 0x7e04,
2151 		0x7e10, 0x7e1c,
2152 		0x7e24, 0x7e38,
2153 		0x7e40, 0x7e44,
2154 		0x7e4c, 0x7e78,
2155 		0x7e80, 0x7edc,
2156 		0x7ee8, 0x7efc,
2157 		0x8dc0, 0x8de4,
2158 		0x8df8, 0x8e04,
2159 		0x8e10, 0x8e84,
2160 		0x8ea0, 0x8f88,
2161 		0x8fb8, 0x9058,
2162 		0x9060, 0x9060,
2163 		0x9068, 0x90f8,
2164 		0x9100, 0x9124,
2165 		0x9400, 0x9470,
2166 		0x9600, 0x9600,
2167 		0x9608, 0x9638,
2168 		0x9640, 0x9704,
2169 		0x9710, 0x971c,
2170 		0x9800, 0x9808,
2171 		0x9820, 0x983c,
2172 		0x9850, 0x9864,
2173 		0x9c00, 0x9c6c,
2174 		0x9c80, 0x9cec,
2175 		0x9d00, 0x9d6c,
2176 		0x9d80, 0x9dec,
2177 		0x9e00, 0x9e6c,
2178 		0x9e80, 0x9eec,
2179 		0x9f00, 0x9f6c,
2180 		0x9f80, 0xa020,
2181 		0xd004, 0xd03c,
2182 		0xd100, 0xd118,
2183 		0xd200, 0xd214,
2184 		0xd220, 0xd234,
2185 		0xd240, 0xd254,
2186 		0xd260, 0xd274,
2187 		0xd280, 0xd294,
2188 		0xd2a0, 0xd2b4,
2189 		0xd2c0, 0xd2d4,
2190 		0xd2e0, 0xd2f4,
2191 		0xd300, 0xd31c,
2192 		0xdfc0, 0xdfe0,
2193 		0xe000, 0xf008,
2194 		0xf010, 0xf018,
2195 		0xf020, 0xf028,
2196 		0x11000, 0x11014,
2197 		0x11048, 0x1106c,
2198 		0x11074, 0x11088,
2199 		0x11098, 0x11120,
2200 		0x1112c, 0x1117c,
2201 		0x11190, 0x112e0,
2202 		0x11300, 0x1130c,
2203 		0x12000, 0x1206c,
2204 		0x19040, 0x1906c,
2205 		0x19078, 0x19080,
2206 		0x1908c, 0x190e8,
2207 		0x190f0, 0x190f8,
2208 		0x19100, 0x19110,
2209 		0x19120, 0x19124,
2210 		0x19150, 0x19194,
2211 		0x1919c, 0x191b0,
2212 		0x191d0, 0x191e8,
2213 		0x19238, 0x19290,
2214 		0x192a4, 0x192b0,
2215 		0x192bc, 0x192bc,
2216 		0x19348, 0x1934c,
2217 		0x193f8, 0x19418,
2218 		0x19420, 0x19428,
2219 		0x19430, 0x19444,
2220 		0x1944c, 0x1946c,
2221 		0x19474, 0x19474,
2222 		0x19490, 0x194cc,
2223 		0x194f0, 0x194f8,
2224 		0x19c00, 0x19c48,
2225 		0x19c50, 0x19c80,
2226 		0x19c94, 0x19c98,
2227 		0x19ca0, 0x19cbc,
2228 		0x19ce4, 0x19ce4,
2229 		0x19cf0, 0x19cf8,
2230 		0x19d00, 0x19d28,
2231 		0x19d50, 0x19d78,
2232 		0x19d94, 0x19d98,
2233 		0x19da0, 0x19dc8,
2234 		0x19df0, 0x19e10,
2235 		0x19e50, 0x19e6c,
2236 		0x19ea0, 0x19ebc,
2237 		0x19ec4, 0x19ef4,
2238 		0x19f04, 0x19f2c,
2239 		0x19f34, 0x19f34,
2240 		0x19f40, 0x19f50,
2241 		0x19f90, 0x19fac,
2242 		0x19fc4, 0x19fc8,
2243 		0x19fd0, 0x19fe4,
2244 		0x1a000, 0x1a004,
2245 		0x1a010, 0x1a06c,
2246 		0x1a0b0, 0x1a0e4,
2247 		0x1a0ec, 0x1a0f8,
2248 		0x1a100, 0x1a108,
2249 		0x1a114, 0x1a120,
2250 		0x1a128, 0x1a130,
2251 		0x1a138, 0x1a138,
2252 		0x1a190, 0x1a1c4,
2253 		0x1a1fc, 0x1a1fc,
2254 		0x1e008, 0x1e00c,
2255 		0x1e040, 0x1e044,
2256 		0x1e04c, 0x1e04c,
2257 		0x1e284, 0x1e290,
2258 		0x1e2c0, 0x1e2c0,
2259 		0x1e2e0, 0x1e2e0,
2260 		0x1e300, 0x1e384,
2261 		0x1e3c0, 0x1e3c8,
2262 		0x1e408, 0x1e40c,
2263 		0x1e440, 0x1e444,
2264 		0x1e44c, 0x1e44c,
2265 		0x1e684, 0x1e690,
2266 		0x1e6c0, 0x1e6c0,
2267 		0x1e6e0, 0x1e6e0,
2268 		0x1e700, 0x1e784,
2269 		0x1e7c0, 0x1e7c8,
2270 		0x1e808, 0x1e80c,
2271 		0x1e840, 0x1e844,
2272 		0x1e84c, 0x1e84c,
2273 		0x1ea84, 0x1ea90,
2274 		0x1eac0, 0x1eac0,
2275 		0x1eae0, 0x1eae0,
2276 		0x1eb00, 0x1eb84,
2277 		0x1ebc0, 0x1ebc8,
2278 		0x1ec08, 0x1ec0c,
2279 		0x1ec40, 0x1ec44,
2280 		0x1ec4c, 0x1ec4c,
2281 		0x1ee84, 0x1ee90,
2282 		0x1eec0, 0x1eec0,
2283 		0x1eee0, 0x1eee0,
2284 		0x1ef00, 0x1ef84,
2285 		0x1efc0, 0x1efc8,
2286 		0x1f008, 0x1f00c,
2287 		0x1f040, 0x1f044,
2288 		0x1f04c, 0x1f04c,
2289 		0x1f284, 0x1f290,
2290 		0x1f2c0, 0x1f2c0,
2291 		0x1f2e0, 0x1f2e0,
2292 		0x1f300, 0x1f384,
2293 		0x1f3c0, 0x1f3c8,
2294 		0x1f408, 0x1f40c,
2295 		0x1f440, 0x1f444,
2296 		0x1f44c, 0x1f44c,
2297 		0x1f684, 0x1f690,
2298 		0x1f6c0, 0x1f6c0,
2299 		0x1f6e0, 0x1f6e0,
2300 		0x1f700, 0x1f784,
2301 		0x1f7c0, 0x1f7c8,
2302 		0x1f808, 0x1f80c,
2303 		0x1f840, 0x1f844,
2304 		0x1f84c, 0x1f84c,
2305 		0x1fa84, 0x1fa90,
2306 		0x1fac0, 0x1fac0,
2307 		0x1fae0, 0x1fae0,
2308 		0x1fb00, 0x1fb84,
2309 		0x1fbc0, 0x1fbc8,
2310 		0x1fc08, 0x1fc0c,
2311 		0x1fc40, 0x1fc44,
2312 		0x1fc4c, 0x1fc4c,
2313 		0x1fe84, 0x1fe90,
2314 		0x1fec0, 0x1fec0,
2315 		0x1fee0, 0x1fee0,
2316 		0x1ff00, 0x1ff84,
2317 		0x1ffc0, 0x1ffc8,
2318 		0x30000, 0x30030,
2319 		0x30100, 0x30168,
2320 		0x30190, 0x301a0,
2321 		0x301a8, 0x301b8,
2322 		0x301c4, 0x301c8,
2323 		0x301d0, 0x301d0,
2324 		0x30200, 0x30320,
2325 		0x30400, 0x304b4,
2326 		0x304c0, 0x3052c,
2327 		0x30540, 0x3061c,
2328 		0x30800, 0x308a0,
2329 		0x308c0, 0x30908,
2330 		0x30910, 0x309b8,
2331 		0x30a00, 0x30a04,
2332 		0x30a0c, 0x30a14,
2333 		0x30a1c, 0x30a2c,
2334 		0x30a44, 0x30a50,
2335 		0x30a74, 0x30a74,
2336 		0x30a7c, 0x30afc,
2337 		0x30b08, 0x30c24,
2338 		0x30d00, 0x30d14,
2339 		0x30d1c, 0x30d3c,
2340 		0x30d44, 0x30d4c,
2341 		0x30d54, 0x30d74,
2342 		0x30d7c, 0x30d7c,
2343 		0x30de0, 0x30de0,
2344 		0x30e00, 0x30ed4,
2345 		0x30f00, 0x30fa4,
2346 		0x30fc0, 0x30fc4,
2347 		0x31000, 0x31004,
2348 		0x31080, 0x310fc,
2349 		0x31208, 0x31220,
2350 		0x3123c, 0x31254,
2351 		0x31300, 0x31300,
2352 		0x31308, 0x3131c,
2353 		0x31338, 0x3133c,
2354 		0x31380, 0x31380,
2355 		0x31388, 0x313a8,
2356 		0x313b4, 0x313b4,
2357 		0x31400, 0x31420,
2358 		0x31438, 0x3143c,
2359 		0x31480, 0x31480,
2360 		0x314a8, 0x314a8,
2361 		0x314b0, 0x314b4,
2362 		0x314c8, 0x314d4,
2363 		0x31a40, 0x31a4c,
2364 		0x31af0, 0x31b20,
2365 		0x31b38, 0x31b3c,
2366 		0x31b80, 0x31b80,
2367 		0x31ba8, 0x31ba8,
2368 		0x31bb0, 0x31bb4,
2369 		0x31bc8, 0x31bd4,
2370 		0x32140, 0x3218c,
2371 		0x321f0, 0x321f4,
2372 		0x32200, 0x32200,
2373 		0x32218, 0x32218,
2374 		0x32400, 0x32400,
2375 		0x32408, 0x3241c,
2376 		0x32618, 0x32620,
2377 		0x32664, 0x32664,
2378 		0x326a8, 0x326a8,
2379 		0x326ec, 0x326ec,
2380 		0x32a00, 0x32abc,
2381 		0x32b00, 0x32b18,
2382 		0x32b20, 0x32b38,
2383 		0x32b40, 0x32b58,
2384 		0x32b60, 0x32b78,
2385 		0x32c00, 0x32c00,
2386 		0x32c08, 0x32c3c,
2387 		0x33000, 0x3302c,
2388 		0x33034, 0x33050,
2389 		0x33058, 0x33058,
2390 		0x33060, 0x3308c,
2391 		0x3309c, 0x330ac,
2392 		0x330c0, 0x330c0,
2393 		0x330c8, 0x330d0,
2394 		0x330d8, 0x330e0,
2395 		0x330ec, 0x3312c,
2396 		0x33134, 0x33150,
2397 		0x33158, 0x33158,
2398 		0x33160, 0x3318c,
2399 		0x3319c, 0x331ac,
2400 		0x331c0, 0x331c0,
2401 		0x331c8, 0x331d0,
2402 		0x331d8, 0x331e0,
2403 		0x331ec, 0x33290,
2404 		0x33298, 0x332c4,
2405 		0x332e4, 0x33390,
2406 		0x33398, 0x333c4,
2407 		0x333e4, 0x3342c,
2408 		0x33434, 0x33450,
2409 		0x33458, 0x33458,
2410 		0x33460, 0x3348c,
2411 		0x3349c, 0x334ac,
2412 		0x334c0, 0x334c0,
2413 		0x334c8, 0x334d0,
2414 		0x334d8, 0x334e0,
2415 		0x334ec, 0x3352c,
2416 		0x33534, 0x33550,
2417 		0x33558, 0x33558,
2418 		0x33560, 0x3358c,
2419 		0x3359c, 0x335ac,
2420 		0x335c0, 0x335c0,
2421 		0x335c8, 0x335d0,
2422 		0x335d8, 0x335e0,
2423 		0x335ec, 0x33690,
2424 		0x33698, 0x336c4,
2425 		0x336e4, 0x33790,
2426 		0x33798, 0x337c4,
2427 		0x337e4, 0x337fc,
2428 		0x33814, 0x33814,
2429 		0x33854, 0x33868,
2430 		0x33880, 0x3388c,
2431 		0x338c0, 0x338d0,
2432 		0x338e8, 0x338ec,
2433 		0x33900, 0x3392c,
2434 		0x33934, 0x33950,
2435 		0x33958, 0x33958,
2436 		0x33960, 0x3398c,
2437 		0x3399c, 0x339ac,
2438 		0x339c0, 0x339c0,
2439 		0x339c8, 0x339d0,
2440 		0x339d8, 0x339e0,
2441 		0x339ec, 0x33a90,
2442 		0x33a98, 0x33ac4,
2443 		0x33ae4, 0x33b10,
2444 		0x33b24, 0x33b28,
2445 		0x33b38, 0x33b50,
2446 		0x33bf0, 0x33c10,
2447 		0x33c24, 0x33c28,
2448 		0x33c38, 0x33c50,
2449 		0x33cf0, 0x33cfc,
2450 		0x34000, 0x34030,
2451 		0x34100, 0x34168,
2452 		0x34190, 0x341a0,
2453 		0x341a8, 0x341b8,
2454 		0x341c4, 0x341c8,
2455 		0x341d0, 0x341d0,
2456 		0x34200, 0x34320,
2457 		0x34400, 0x344b4,
2458 		0x344c0, 0x3452c,
2459 		0x34540, 0x3461c,
2460 		0x34800, 0x348a0,
2461 		0x348c0, 0x34908,
2462 		0x34910, 0x349b8,
2463 		0x34a00, 0x34a04,
2464 		0x34a0c, 0x34a14,
2465 		0x34a1c, 0x34a2c,
2466 		0x34a44, 0x34a50,
2467 		0x34a74, 0x34a74,
2468 		0x34a7c, 0x34afc,
2469 		0x34b08, 0x34c24,
2470 		0x34d00, 0x34d14,
2471 		0x34d1c, 0x34d3c,
2472 		0x34d44, 0x34d4c,
2473 		0x34d54, 0x34d74,
2474 		0x34d7c, 0x34d7c,
2475 		0x34de0, 0x34de0,
2476 		0x34e00, 0x34ed4,
2477 		0x34f00, 0x34fa4,
2478 		0x34fc0, 0x34fc4,
2479 		0x35000, 0x35004,
2480 		0x35080, 0x350fc,
2481 		0x35208, 0x35220,
2482 		0x3523c, 0x35254,
2483 		0x35300, 0x35300,
2484 		0x35308, 0x3531c,
2485 		0x35338, 0x3533c,
2486 		0x35380, 0x35380,
2487 		0x35388, 0x353a8,
2488 		0x353b4, 0x353b4,
2489 		0x35400, 0x35420,
2490 		0x35438, 0x3543c,
2491 		0x35480, 0x35480,
2492 		0x354a8, 0x354a8,
2493 		0x354b0, 0x354b4,
2494 		0x354c8, 0x354d4,
2495 		0x35a40, 0x35a4c,
2496 		0x35af0, 0x35b20,
2497 		0x35b38, 0x35b3c,
2498 		0x35b80, 0x35b80,
2499 		0x35ba8, 0x35ba8,
2500 		0x35bb0, 0x35bb4,
2501 		0x35bc8, 0x35bd4,
2502 		0x36140, 0x3618c,
2503 		0x361f0, 0x361f4,
2504 		0x36200, 0x36200,
2505 		0x36218, 0x36218,
2506 		0x36400, 0x36400,
2507 		0x36408, 0x3641c,
2508 		0x36618, 0x36620,
2509 		0x36664, 0x36664,
2510 		0x366a8, 0x366a8,
2511 		0x366ec, 0x366ec,
2512 		0x36a00, 0x36abc,
2513 		0x36b00, 0x36b18,
2514 		0x36b20, 0x36b38,
2515 		0x36b40, 0x36b58,
2516 		0x36b60, 0x36b78,
2517 		0x36c00, 0x36c00,
2518 		0x36c08, 0x36c3c,
2519 		0x37000, 0x3702c,
2520 		0x37034, 0x37050,
2521 		0x37058, 0x37058,
2522 		0x37060, 0x3708c,
2523 		0x3709c, 0x370ac,
2524 		0x370c0, 0x370c0,
2525 		0x370c8, 0x370d0,
2526 		0x370d8, 0x370e0,
2527 		0x370ec, 0x3712c,
2528 		0x37134, 0x37150,
2529 		0x37158, 0x37158,
2530 		0x37160, 0x3718c,
2531 		0x3719c, 0x371ac,
2532 		0x371c0, 0x371c0,
2533 		0x371c8, 0x371d0,
2534 		0x371d8, 0x371e0,
2535 		0x371ec, 0x37290,
2536 		0x37298, 0x372c4,
2537 		0x372e4, 0x37390,
2538 		0x37398, 0x373c4,
2539 		0x373e4, 0x3742c,
2540 		0x37434, 0x37450,
2541 		0x37458, 0x37458,
2542 		0x37460, 0x3748c,
2543 		0x3749c, 0x374ac,
2544 		0x374c0, 0x374c0,
2545 		0x374c8, 0x374d0,
2546 		0x374d8, 0x374e0,
2547 		0x374ec, 0x3752c,
2548 		0x37534, 0x37550,
2549 		0x37558, 0x37558,
2550 		0x37560, 0x3758c,
2551 		0x3759c, 0x375ac,
2552 		0x375c0, 0x375c0,
2553 		0x375c8, 0x375d0,
2554 		0x375d8, 0x375e0,
2555 		0x375ec, 0x37690,
2556 		0x37698, 0x376c4,
2557 		0x376e4, 0x37790,
2558 		0x37798, 0x377c4,
2559 		0x377e4, 0x377fc,
2560 		0x37814, 0x37814,
2561 		0x37854, 0x37868,
2562 		0x37880, 0x3788c,
2563 		0x378c0, 0x378d0,
2564 		0x378e8, 0x378ec,
2565 		0x37900, 0x3792c,
2566 		0x37934, 0x37950,
2567 		0x37958, 0x37958,
2568 		0x37960, 0x3798c,
2569 		0x3799c, 0x379ac,
2570 		0x379c0, 0x379c0,
2571 		0x379c8, 0x379d0,
2572 		0x379d8, 0x379e0,
2573 		0x379ec, 0x37a90,
2574 		0x37a98, 0x37ac4,
2575 		0x37ae4, 0x37b10,
2576 		0x37b24, 0x37b28,
2577 		0x37b38, 0x37b50,
2578 		0x37bf0, 0x37c10,
2579 		0x37c24, 0x37c28,
2580 		0x37c38, 0x37c50,
2581 		0x37cf0, 0x37cfc,
2582 		0x40040, 0x40040,
2583 		0x40080, 0x40084,
2584 		0x40100, 0x40100,
2585 		0x40140, 0x401bc,
2586 		0x40200, 0x40214,
2587 		0x40228, 0x40228,
2588 		0x40240, 0x40258,
2589 		0x40280, 0x40280,
2590 		0x40304, 0x40304,
2591 		0x40330, 0x4033c,
2592 		0x41304, 0x413c8,
2593 		0x413d0, 0x413dc,
2594 		0x413f0, 0x413f0,
2595 		0x41400, 0x4140c,
2596 		0x41414, 0x4141c,
2597 		0x41480, 0x414d0,
2598 		0x44000, 0x4407c,
2599 		0x440c0, 0x441ac,
2600 		0x441b4, 0x4427c,
2601 		0x442c0, 0x443ac,
2602 		0x443b4, 0x4447c,
2603 		0x444c0, 0x445ac,
2604 		0x445b4, 0x4467c,
2605 		0x446c0, 0x447ac,
2606 		0x447b4, 0x4487c,
2607 		0x448c0, 0x449ac,
2608 		0x449b4, 0x44a7c,
2609 		0x44ac0, 0x44bac,
2610 		0x44bb4, 0x44c7c,
2611 		0x44cc0, 0x44dac,
2612 		0x44db4, 0x44e7c,
2613 		0x44ec0, 0x44fac,
2614 		0x44fb4, 0x4507c,
2615 		0x450c0, 0x451ac,
2616 		0x451b4, 0x451fc,
2617 		0x45800, 0x45804,
2618 		0x45810, 0x45830,
2619 		0x45840, 0x45860,
2620 		0x45868, 0x45868,
2621 		0x45880, 0x45884,
2622 		0x458a0, 0x458b0,
2623 		0x45a00, 0x45a04,
2624 		0x45a10, 0x45a30,
2625 		0x45a40, 0x45a60,
2626 		0x45a68, 0x45a68,
2627 		0x45a80, 0x45a84,
2628 		0x45aa0, 0x45ab0,
2629 		0x460c0, 0x460e4,
2630 		0x47000, 0x4703c,
2631 		0x47044, 0x4708c,
2632 		0x47200, 0x47250,
2633 		0x47400, 0x47408,
2634 		0x47414, 0x47420,
2635 		0x47600, 0x47618,
2636 		0x47800, 0x47814,
2637 		0x47820, 0x4782c,
2638 		0x50000, 0x50084,
2639 		0x50090, 0x500cc,
2640 		0x50300, 0x50384,
2641 		0x50400, 0x50400,
2642 		0x50800, 0x50884,
2643 		0x50890, 0x508cc,
2644 		0x50b00, 0x50b84,
2645 		0x50c00, 0x50c00,
2646 		0x51000, 0x51020,
2647 		0x51028, 0x510b0,
2648 		0x51300, 0x51324,
2649 	};
2650 
2651 	static const unsigned int t6vf_reg_ranges[] = {
2652 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2653 		VF_MPS_REG(A_MPS_VF_CTL),
2654 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2655 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2656 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2657 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2658 		FW_T6VF_MBDATA_BASE_ADDR,
2659 		FW_T6VF_MBDATA_BASE_ADDR +
2660 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2661 	};
2662 
2663 	u32 *buf_end = (u32 *)(buf + buf_size);
2664 	const unsigned int *reg_ranges;
2665 	int reg_ranges_size, range;
2666 	unsigned int chip_version = chip_id(adap);
2667 
2668 	/*
2669 	 * Select the right set of register ranges to dump depending on the
2670 	 * adapter chip type.
2671 	 */
2672 	switch (chip_version) {
2673 	case CHELSIO_T4:
2674 		if (adap->flags & IS_VF) {
2675 			reg_ranges = t4vf_reg_ranges;
2676 			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2677 		} else {
2678 			reg_ranges = t4_reg_ranges;
2679 			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2680 		}
2681 		break;
2682 
2683 	case CHELSIO_T5:
2684 		if (adap->flags & IS_VF) {
2685 			reg_ranges = t5vf_reg_ranges;
2686 			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2687 		} else {
2688 			reg_ranges = t5_reg_ranges;
2689 			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2690 		}
2691 		break;
2692 
2693 	case CHELSIO_T6:
2694 		if (adap->flags & IS_VF) {
2695 			reg_ranges = t6vf_reg_ranges;
2696 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2697 		} else {
2698 			reg_ranges = t6_reg_ranges;
2699 			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2700 		}
2701 		break;
2702 
2703 	default:
2704 		CH_ERR(adap,
2705 			"Unsupported chip version %d\n", chip_version);
2706 		return;
2707 	}
2708 
2709 	/*
2710 	 * Clear the register buffer and insert the appropriate register
2711 	 * values selected by the above register ranges.
2712 	 */
2713 	memset(buf, 0, buf_size);
2714 	for (range = 0; range < reg_ranges_size; range += 2) {
2715 		unsigned int reg = reg_ranges[range];
2716 		unsigned int last_reg = reg_ranges[range + 1];
2717 		u32 *bufp = (u32 *)(buf + reg);
2718 
2719 		/*
2720 		 * Iterate across the register range filling in the register
2721 		 * buffer but don't write past the end of the register buffer.
2722 		 */
2723 		while (reg <= last_reg && bufp < buf_end) {
2724 			*bufp++ = t4_read_reg(adap, reg);
2725 			reg += sizeof(u32);
2726 		}
2727 	}
2728 }
2729 
2730 /*
2731  * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2732  * header followed by one or more VPD-R sections, each with its own header.
2733  */
2734 struct t4_vpd_hdr {
2735 	u8  id_tag;
2736 	u8  id_len[2];
2737 	u8  id_data[ID_LEN];
2738 };
2739 
2740 struct t4_vpdr_hdr {
2741 	u8  vpdr_tag;
2742 	u8  vpdr_len[2];
2743 };
2744 
2745 /*
2746  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2747  */
2748 #define EEPROM_DELAY		10		/* 10us per poll spin */
2749 #define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2750 
2751 #define EEPROM_STAT_ADDR	0x7bfc
2752 #define VPD_SIZE		0x800
2753 #define VPD_BASE		0x400
2754 #define VPD_BASE_OLD		0
2755 #define VPD_LEN			1024
2756 #define VPD_INFO_FLD_HDR_SIZE	3
2757 #define CHELSIO_VPD_UNIQUE_ID	0x82
2758 
2759 /*
2760  * Small utility function to wait till any outstanding VPD Access is complete.
2761  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2762  * VPD Access in flight.  This allows us to handle the problem of having a
2763  * previous VPD Access time out and prevent an attempt to inject a new VPD
2764  * Request before any in-flight VPD reguest has completed.
2765  */
2766 static int t4_seeprom_wait(struct adapter *adapter)
2767 {
2768 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2769 	int max_poll;
2770 
2771 	/*
2772 	 * If no VPD Access is in flight, we can just return success right
2773 	 * away.
2774 	 */
2775 	if (!adapter->vpd_busy)
2776 		return 0;
2777 
2778 	/*
2779 	 * Poll the VPD Capability Address/Flag register waiting for it
2780 	 * to indicate that the operation is complete.
2781 	 */
2782 	max_poll = EEPROM_MAX_POLL;
2783 	do {
2784 		u16 val;
2785 
2786 		udelay(EEPROM_DELAY);
2787 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2788 
2789 		/*
2790 		 * If the operation is complete, mark the VPD as no longer
2791 		 * busy and return success.
2792 		 */
2793 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2794 			adapter->vpd_busy = 0;
2795 			return 0;
2796 		}
2797 	} while (--max_poll);
2798 
2799 	/*
2800 	 * Failure!  Note that we leave the VPD Busy status set in order to
2801 	 * avoid pushing a new VPD Access request into the VPD Capability till
2802 	 * the current operation eventually succeeds.  It's a bug to issue a
2803 	 * new request when an existing request is in flight and will result
2804 	 * in corrupt hardware state.
2805 	 */
2806 	return -ETIMEDOUT;
2807 }
2808 
2809 /**
2810  *	t4_seeprom_read - read a serial EEPROM location
2811  *	@adapter: adapter to read
2812  *	@addr: EEPROM virtual address
2813  *	@data: where to store the read data
2814  *
2815  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2816  *	VPD capability.  Note that this function must be called with a virtual
2817  *	address.
2818  */
2819 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2820 {
2821 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2822 	int ret;
2823 
2824 	/*
2825 	 * VPD Accesses must alway be 4-byte aligned!
2826 	 */
2827 	if (addr >= EEPROMVSIZE || (addr & 3))
2828 		return -EINVAL;
2829 
2830 	/*
2831 	 * Wait for any previous operation which may still be in flight to
2832 	 * complete.
2833 	 */
2834 	ret = t4_seeprom_wait(adapter);
2835 	if (ret) {
2836 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2837 		return ret;
2838 	}
2839 
2840 	/*
2841 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2842 	 * for our request to complete.  If it doesn't complete, note the
2843 	 * error and return it to our caller.  Note that we do not reset the
2844 	 * VPD Busy status!
2845 	 */
2846 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2847 	adapter->vpd_busy = 1;
2848 	adapter->vpd_flag = PCI_VPD_ADDR_F;
2849 	ret = t4_seeprom_wait(adapter);
2850 	if (ret) {
2851 		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2852 		return ret;
2853 	}
2854 
2855 	/*
2856 	 * Grab the returned data, swizzle it into our endianness and
2857 	 * return success.
2858 	 */
2859 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2860 	*data = le32_to_cpu(*data);
2861 	return 0;
2862 }
2863 
2864 /**
2865  *	t4_seeprom_write - write a serial EEPROM location
2866  *	@adapter: adapter to write
2867  *	@addr: virtual EEPROM address
2868  *	@data: value to write
2869  *
2870  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2871  *	VPD capability.  Note that this function must be called with a virtual
2872  *	address.
2873  */
2874 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2875 {
2876 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2877 	int ret;
2878 	u32 stats_reg;
2879 	int max_poll;
2880 
2881 	/*
2882 	 * VPD Accesses must alway be 4-byte aligned!
2883 	 */
2884 	if (addr >= EEPROMVSIZE || (addr & 3))
2885 		return -EINVAL;
2886 
2887 	/*
2888 	 * Wait for any previous operation which may still be in flight to
2889 	 * complete.
2890 	 */
2891 	ret = t4_seeprom_wait(adapter);
2892 	if (ret) {
2893 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2894 		return ret;
2895 	}
2896 
2897 	/*
2898 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2899 	 * for our request to complete.  If it doesn't complete, note the
2900 	 * error and return it to our caller.  Note that we do not reset the
2901 	 * VPD Busy status!
2902 	 */
2903 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2904 				 cpu_to_le32(data));
2905 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2906 				 (u16)addr | PCI_VPD_ADDR_F);
2907 	adapter->vpd_busy = 1;
2908 	adapter->vpd_flag = 0;
2909 	ret = t4_seeprom_wait(adapter);
2910 	if (ret) {
2911 		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2912 		return ret;
2913 	}
2914 
2915 	/*
2916 	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2917 	 * request to complete. If it doesn't complete, return error.
2918 	 */
2919 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2920 	max_poll = EEPROM_MAX_POLL;
2921 	do {
2922 		udelay(EEPROM_DELAY);
2923 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2924 	} while ((stats_reg & 0x1) && --max_poll);
2925 	if (!max_poll)
2926 		return -ETIMEDOUT;
2927 
2928 	/* Return success! */
2929 	return 0;
2930 }
2931 
2932 /**
2933  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2934  *	@phys_addr: the physical EEPROM address
2935  *	@fn: the PCI function number
2936  *	@sz: size of function-specific area
2937  *
2938  *	Translate a physical EEPROM address to virtual.  The first 1K is
2939  *	accessed through virtual addresses starting at 31K, the rest is
2940  *	accessed through virtual addresses starting at 0.
2941  *
2942  *	The mapping is as follows:
2943  *	[0..1K) -> [31K..32K)
2944  *	[1K..1K+A) -> [ES-A..ES)
2945  *	[1K+A..ES) -> [0..ES-A-1K)
2946  *
2947  *	where A = @fn * @sz, and ES = EEPROM size.
2948  */
2949 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2950 {
2951 	fn *= sz;
2952 	if (phys_addr < 1024)
2953 		return phys_addr + (31 << 10);
2954 	if (phys_addr < 1024 + fn)
2955 		return EEPROMSIZE - fn + phys_addr - 1024;
2956 	if (phys_addr < EEPROMSIZE)
2957 		return phys_addr - 1024 - fn;
2958 	return -EINVAL;
2959 }
2960 
2961 /**
2962  *	t4_seeprom_wp - enable/disable EEPROM write protection
2963  *	@adapter: the adapter
2964  *	@enable: whether to enable or disable write protection
2965  *
2966  *	Enables or disables write protection on the serial EEPROM.
2967  */
2968 int t4_seeprom_wp(struct adapter *adapter, int enable)
2969 {
2970 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2971 }
2972 
2973 /**
2974  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2975  *	@vpd: Pointer to buffered vpd data structure
2976  *	@kw: The keyword to search for
2977  *	@region: VPD region to search (starting from 0)
2978  *
2979  *	Returns the value of the information field keyword or
2980  *	-ENOENT otherwise.
2981  */
2982 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2983 {
2984 	int i, tag;
2985 	unsigned int offset, len;
2986 	const struct t4_vpdr_hdr *vpdr;
2987 
2988 	offset = sizeof(struct t4_vpd_hdr);
2989 	vpdr = (const void *)(vpd + offset);
2990 	tag = vpdr->vpdr_tag;
2991 	len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2992 	while (region--) {
2993 		offset += sizeof(struct t4_vpdr_hdr) + len;
2994 		vpdr = (const void *)(vpd + offset);
2995 		if (++tag != vpdr->vpdr_tag)
2996 			return -ENOENT;
2997 		len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2998 	}
2999 	offset += sizeof(struct t4_vpdr_hdr);
3000 
3001 	if (offset + len > VPD_LEN) {
3002 		return -ENOENT;
3003 	}
3004 
3005 	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
3006 		if (memcmp(vpd + i , kw , 2) == 0){
3007 			i += VPD_INFO_FLD_HDR_SIZE;
3008 			return i;
3009 		}
3010 
3011 		i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
3012 	}
3013 
3014 	return -ENOENT;
3015 }
3016 
3017 
3018 /**
3019  *	get_vpd_params - read VPD parameters from VPD EEPROM
3020  *	@adapter: adapter to read
3021  *	@p: where to store the parameters
3022  *	@vpd: caller provided temporary space to read the VPD into
3023  *
3024  *	Reads card parameters stored in VPD EEPROM.
3025  */
3026 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
3027     uint16_t device_id, u32 *buf)
3028 {
3029 	int i, ret, addr;
3030 	int ec, sn, pn, na, md;
3031 	u8 csum;
3032 	const u8 *vpd = (const u8 *)buf;
3033 
3034 	/*
3035 	 * Card information normally starts at VPD_BASE but early cards had
3036 	 * it at 0.
3037 	 */
3038 	ret = t4_seeprom_read(adapter, VPD_BASE, buf);
3039 	if (ret)
3040 		return (ret);
3041 
3042 	/*
3043 	 * The VPD shall have a unique identifier specified by the PCI SIG.
3044 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
3045 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
3046 	 * is expected to automatically put this entry at the
3047 	 * beginning of the VPD.
3048 	 */
3049 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
3050 
3051 	for (i = 0; i < VPD_LEN; i += 4) {
3052 		ret = t4_seeprom_read(adapter, addr + i, buf++);
3053 		if (ret)
3054 			return ret;
3055 	}
3056 
3057 #define FIND_VPD_KW(var,name) do { \
3058 	var = get_vpd_keyword_val(vpd, name, 0); \
3059 	if (var < 0) { \
3060 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
3061 		return -EINVAL; \
3062 	} \
3063 } while (0)
3064 
3065 	FIND_VPD_KW(i, "RV");
3066 	for (csum = 0; i >= 0; i--)
3067 		csum += vpd[i];
3068 
3069 	if (csum) {
3070 		CH_ERR(adapter,
3071 			"corrupted VPD EEPROM, actual csum %u\n", csum);
3072 		return -EINVAL;
3073 	}
3074 
3075 	FIND_VPD_KW(ec, "EC");
3076 	FIND_VPD_KW(sn, "SN");
3077 	FIND_VPD_KW(pn, "PN");
3078 	FIND_VPD_KW(na, "NA");
3079 #undef FIND_VPD_KW
3080 
3081 	memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3082 	strstrip(p->id);
3083 	memcpy(p->ec, vpd + ec, EC_LEN);
3084 	strstrip(p->ec);
3085 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3086 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3087 	strstrip(p->sn);
3088 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3089 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3090 	strstrip((char *)p->pn);
3091 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3092 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3093 	strstrip((char *)p->na);
3094 
3095 	if (device_id & 0x80)
3096 		return 0;	/* Custom card */
3097 
3098 	md = get_vpd_keyword_val(vpd, "VF", 1);
3099 	if (md < 0) {
3100 		snprintf(p->md, sizeof(p->md), "unknown");
3101 	} else {
3102 		i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3103 		memcpy(p->md, vpd + md, min(i, MD_LEN));
3104 		strstrip((char *)p->md);
3105 	}
3106 
3107 	return 0;
3108 }
3109 
3110 /* serial flash and firmware constants and flash config file constants */
3111 enum {
3112 	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3113 
3114 	/* flash command opcodes */
3115 	SF_PROG_PAGE    = 2,	/* program 256B page */
3116 	SF_WR_DISABLE   = 4,	/* disable writes */
3117 	SF_RD_STATUS    = 5,	/* read status register */
3118 	SF_WR_ENABLE    = 6,	/* enable writes */
3119 	SF_RD_DATA_FAST = 0xb,	/* read flash */
3120 	SF_RD_ID	= 0x9f,	/* read ID */
3121 	SF_ERASE_SECTOR = 0xd8,	/* erase 64KB sector */
3122 };
3123 
3124 /**
3125  *	sf1_read - read data from the serial flash
3126  *	@adapter: the adapter
3127  *	@byte_cnt: number of bytes to read
3128  *	@cont: whether another operation will be chained
3129  *	@lock: whether to lock SF for PL access only
3130  *	@valp: where to store the read data
3131  *
3132  *	Reads up to 4 bytes of data from the serial flash.  The location of
3133  *	the read needs to be specified prior to calling this by issuing the
3134  *	appropriate commands to the serial flash.
3135  */
3136 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3137 		    int lock, u32 *valp)
3138 {
3139 	int ret;
3140 
3141 	if (!byte_cnt || byte_cnt > 4)
3142 		return -EINVAL;
3143 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3144 		return -EBUSY;
3145 	t4_write_reg(adapter, A_SF_OP,
3146 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3147 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3148 	if (!ret)
3149 		*valp = t4_read_reg(adapter, A_SF_DATA);
3150 	return ret;
3151 }
3152 
3153 /**
3154  *	sf1_write - write data to the serial flash
3155  *	@adapter: the adapter
3156  *	@byte_cnt: number of bytes to write
3157  *	@cont: whether another operation will be chained
3158  *	@lock: whether to lock SF for PL access only
3159  *	@val: value to write
3160  *
3161  *	Writes up to 4 bytes of data to the serial flash.  The location of
3162  *	the write needs to be specified prior to calling this by issuing the
3163  *	appropriate commands to the serial flash.
3164  */
3165 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3166 		     int lock, u32 val)
3167 {
3168 	if (!byte_cnt || byte_cnt > 4)
3169 		return -EINVAL;
3170 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3171 		return -EBUSY;
3172 	t4_write_reg(adapter, A_SF_DATA, val);
3173 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3174 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3175 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3176 }
3177 
3178 /**
3179  *	flash_wait_op - wait for a flash operation to complete
3180  *	@adapter: the adapter
3181  *	@attempts: max number of polls of the status register
3182  *	@delay: delay between polls in ms
3183  *
3184  *	Wait for a flash operation to complete by polling the status register.
3185  */
3186 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3187 {
3188 	int ret;
3189 	u32 status;
3190 
3191 	while (1) {
3192 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3193 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3194 			return ret;
3195 		if (!(status & 1))
3196 			return 0;
3197 		if (--attempts == 0)
3198 			return -EAGAIN;
3199 		if (delay)
3200 			msleep(delay);
3201 	}
3202 }
3203 
3204 /**
3205  *	t4_read_flash - read words from serial flash
3206  *	@adapter: the adapter
3207  *	@addr: the start address for the read
3208  *	@nwords: how many 32-bit words to read
3209  *	@data: where to store the read data
3210  *	@byte_oriented: whether to store data as bytes or as words
3211  *
3212  *	Read the specified number of 32-bit words from the serial flash.
3213  *	If @byte_oriented is set the read data is stored as a byte array
3214  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3215  *	natural endianness.
3216  */
3217 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3218 		  unsigned int nwords, u32 *data, int byte_oriented)
3219 {
3220 	int ret;
3221 
3222 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3223 		return -EINVAL;
3224 
3225 	addr = swab32(addr) | SF_RD_DATA_FAST;
3226 
3227 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3228 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3229 		return ret;
3230 
3231 	for ( ; nwords; nwords--, data++) {
3232 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3233 		if (nwords == 1)
3234 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3235 		if (ret)
3236 			return ret;
3237 		if (byte_oriented)
3238 			*data = (__force __u32)(cpu_to_be32(*data));
3239 	}
3240 	return 0;
3241 }
3242 
3243 /**
3244  *	t4_write_flash - write up to a page of data to the serial flash
3245  *	@adapter: the adapter
3246  *	@addr: the start address to write
3247  *	@n: length of data to write in bytes
3248  *	@data: the data to write
3249  *	@byte_oriented: whether to store data as bytes or as words
3250  *
3251  *	Writes up to a page of data (256 bytes) to the serial flash starting
3252  *	at the given address.  All the data must be written to the same page.
3253  *	If @byte_oriented is set the write data is stored as byte stream
3254  *	(i.e. matches what on disk), otherwise in big-endian.
3255  */
3256 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3257 			  unsigned int n, const u8 *data, int byte_oriented)
3258 {
3259 	int ret;
3260 	u32 buf[SF_PAGE_SIZE / 4];
3261 	unsigned int i, c, left, val, offset = addr & 0xff;
3262 
3263 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3264 		return -EINVAL;
3265 
3266 	val = swab32(addr) | SF_PROG_PAGE;
3267 
3268 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3269 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3270 		goto unlock;
3271 
3272 	for (left = n; left; left -= c) {
3273 		c = min(left, 4U);
3274 		for (val = 0, i = 0; i < c; ++i)
3275 			val = (val << 8) + *data++;
3276 
3277 		if (!byte_oriented)
3278 			val = cpu_to_be32(val);
3279 
3280 		ret = sf1_write(adapter, c, c != left, 1, val);
3281 		if (ret)
3282 			goto unlock;
3283 	}
3284 	ret = flash_wait_op(adapter, 8, 1);
3285 	if (ret)
3286 		goto unlock;
3287 
3288 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3289 
3290 	/* Read the page to verify the write succeeded */
3291 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3292 			    byte_oriented);
3293 	if (ret)
3294 		return ret;
3295 
3296 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3297 		CH_ERR(adapter,
3298 			"failed to correctly write the flash page at %#x\n",
3299 			addr);
3300 		return -EIO;
3301 	}
3302 	return 0;
3303 
3304 unlock:
3305 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3306 	return ret;
3307 }
3308 
3309 /**
3310  *	t4_get_fw_version - read the firmware version
3311  *	@adapter: the adapter
3312  *	@vers: where to place the version
3313  *
3314  *	Reads the FW version from flash.
3315  */
3316 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3317 {
3318 	return t4_read_flash(adapter, FLASH_FW_START +
3319 			     offsetof(struct fw_hdr, fw_ver), 1,
3320 			     vers, 0);
3321 }
3322 
3323 /**
3324  *	t4_get_bs_version - read the firmware bootstrap version
3325  *	@adapter: the adapter
3326  *	@vers: where to place the version
3327  *
3328  *	Reads the FW Bootstrap version from flash.
3329  */
3330 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3331 {
3332 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3333 			     offsetof(struct fw_hdr, fw_ver), 1,
3334 			     vers, 0);
3335 }
3336 
3337 /**
3338  *	t4_get_tp_version - read the TP microcode version
3339  *	@adapter: the adapter
3340  *	@vers: where to place the version
3341  *
3342  *	Reads the TP microcode version from flash.
3343  */
3344 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3345 {
3346 	return t4_read_flash(adapter, FLASH_FW_START +
3347 			     offsetof(struct fw_hdr, tp_microcode_ver),
3348 			     1, vers, 0);
3349 }
3350 
3351 /**
3352  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3353  *	@adapter: the adapter
3354  *	@vers: where to place the version
3355  *
3356  *	Reads the Expansion ROM header from FLASH and returns the version
3357  *	number (if present) through the @vers return value pointer.  We return
3358  *	this in the Firmware Version Format since it's convenient.  Return
3359  *	0 on success, -ENOENT if no Expansion ROM is present.
3360  */
3361 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3362 {
3363 	struct exprom_header {
3364 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3365 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3366 	} *hdr;
3367 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3368 					   sizeof(u32))];
3369 	int ret;
3370 
3371 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3372 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3373 			    0);
3374 	if (ret)
3375 		return ret;
3376 
3377 	hdr = (struct exprom_header *)exprom_header_buf;
3378 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3379 		return -ENOENT;
3380 
3381 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3382 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3383 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3384 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3385 	return 0;
3386 }
3387 
3388 /**
3389  *	t4_get_scfg_version - return the Serial Configuration version
3390  *	@adapter: the adapter
3391  *	@vers: where to place the version
3392  *
3393  *	Reads the Serial Configuration Version via the Firmware interface
3394  *	(thus this can only be called once we're ready to issue Firmware
3395  *	commands).  The format of the Serial Configuration version is
3396  *	adapter specific.  Returns 0 on success, an error on failure.
3397  *
3398  *	Note that early versions of the Firmware didn't include the ability
3399  *	to retrieve the Serial Configuration version, so we zero-out the
3400  *	return-value parameter in that case to avoid leaving it with
3401  *	garbage in it.
3402  *
3403  *	Also note that the Firmware will return its cached copy of the Serial
3404  *	Initialization Revision ID, not the actual Revision ID as written in
3405  *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3406  *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3407  *	it's best to defer calling this routine till after a FW_RESET_CMD has
3408  *	been issued if the Host Driver will be performing a full adapter
3409  *	initialization.
3410  */
3411 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3412 {
3413 	u32 scfgrev_param;
3414 	int ret;
3415 
3416 	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3417 			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3418 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3419 			      1, &scfgrev_param, vers);
3420 	if (ret)
3421 		*vers = 0;
3422 	return ret;
3423 }
3424 
3425 /**
3426  *	t4_get_vpd_version - return the VPD version
3427  *	@adapter: the adapter
3428  *	@vers: where to place the version
3429  *
3430  *	Reads the VPD via the Firmware interface (thus this can only be called
3431  *	once we're ready to issue Firmware commands).  The format of the
3432  *	VPD version is adapter specific.  Returns 0 on success, an error on
3433  *	failure.
3434  *
3435  *	Note that early versions of the Firmware didn't include the ability
3436  *	to retrieve the VPD version, so we zero-out the return-value parameter
3437  *	in that case to avoid leaving it with garbage in it.
3438  *
3439  *	Also note that the Firmware will return its cached copy of the VPD
3440  *	Revision ID, not the actual Revision ID as written in the Serial
3441  *	EEPROM.  This is only an issue if a new VPD has been written and the
3442  *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3443  *	to defer calling this routine till after a FW_RESET_CMD has been issued
3444  *	if the Host Driver will be performing a full adapter initialization.
3445  */
3446 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3447 {
3448 	u32 vpdrev_param;
3449 	int ret;
3450 
3451 	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3452 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3453 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3454 			      1, &vpdrev_param, vers);
3455 	if (ret)
3456 		*vers = 0;
3457 	return ret;
3458 }
3459 
3460 /**
3461  *	t4_get_version_info - extract various chip/firmware version information
3462  *	@adapter: the adapter
3463  *
3464  *	Reads various chip/firmware version numbers and stores them into the
3465  *	adapter Adapter Parameters structure.  If any of the efforts fails
3466  *	the first failure will be returned, but all of the version numbers
3467  *	will be read.
3468  */
3469 int t4_get_version_info(struct adapter *adapter)
3470 {
3471 	int ret = 0;
3472 
3473 	#define FIRST_RET(__getvinfo) \
3474 	do { \
3475 		int __ret = __getvinfo; \
3476 		if (__ret && !ret) \
3477 			ret = __ret; \
3478 	} while (0)
3479 
3480 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3481 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3482 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3483 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3484 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3485 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3486 
3487 	#undef FIRST_RET
3488 
3489 	return ret;
3490 }
3491 
3492 /**
3493  *	t4_flash_erase_sectors - erase a range of flash sectors
3494  *	@adapter: the adapter
3495  *	@start: the first sector to erase
3496  *	@end: the last sector to erase
3497  *
3498  *	Erases the sectors in the given inclusive range.
3499  */
3500 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3501 {
3502 	int ret = 0;
3503 
3504 	if (end >= adapter->params.sf_nsec)
3505 		return -EINVAL;
3506 
3507 	while (start <= end) {
3508 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3509 		    (ret = sf1_write(adapter, 4, 0, 1,
3510 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3511 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3512 			CH_ERR(adapter,
3513 				"erase of flash sector %d failed, error %d\n",
3514 				start, ret);
3515 			break;
3516 		}
3517 		start++;
3518 	}
3519 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3520 	return ret;
3521 }
3522 
3523 /**
3524  *	t4_flash_cfg_addr - return the address of the flash configuration file
3525  *	@adapter: the adapter
3526  *
3527  *	Return the address within the flash where the Firmware Configuration
3528  *	File is stored, or an error if the device FLASH is too small to contain
3529  *	a Firmware Configuration File.
3530  */
3531 int t4_flash_cfg_addr(struct adapter *adapter)
3532 {
3533 	/*
3534 	 * If the device FLASH isn't large enough to hold a Firmware
3535 	 * Configuration File, return an error.
3536 	 */
3537 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3538 		return -ENOSPC;
3539 
3540 	return FLASH_CFG_START;
3541 }
3542 
3543 /*
3544  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3545  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3546  * and emit an error message for mismatched firmware to save our caller the
3547  * effort ...
3548  */
3549 static int t4_fw_matches_chip(struct adapter *adap,
3550 			      const struct fw_hdr *hdr)
3551 {
3552 	/*
3553 	 * The expression below will return FALSE for any unsupported adapter
3554 	 * which will keep us "honest" in the future ...
3555 	 */
3556 	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3557 	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3558 	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3559 		return 1;
3560 
3561 	CH_ERR(adap,
3562 		"FW image (%d) is not suitable for this adapter (%d)\n",
3563 		hdr->chip, chip_id(adap));
3564 	return 0;
3565 }
3566 
3567 /**
3568  *	t4_load_fw - download firmware
3569  *	@adap: the adapter
3570  *	@fw_data: the firmware image to write
3571  *	@size: image size
3572  *
3573  *	Write the supplied firmware image to the card's serial flash.
3574  */
3575 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3576 {
3577 	u32 csum;
3578 	int ret, addr;
3579 	unsigned int i;
3580 	u8 first_page[SF_PAGE_SIZE];
3581 	const u32 *p = (const u32 *)fw_data;
3582 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3583 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3584 	unsigned int fw_start_sec;
3585 	unsigned int fw_start;
3586 	unsigned int fw_size;
3587 
3588 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3589 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3590 		fw_start = FLASH_FWBOOTSTRAP_START;
3591 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3592 	} else {
3593 		fw_start_sec = FLASH_FW_START_SEC;
3594  		fw_start = FLASH_FW_START;
3595 		fw_size = FLASH_FW_MAX_SIZE;
3596 	}
3597 
3598 	if (!size) {
3599 		CH_ERR(adap, "FW image has no data\n");
3600 		return -EINVAL;
3601 	}
3602 	if (size & 511) {
3603 		CH_ERR(adap,
3604 			"FW image size not multiple of 512 bytes\n");
3605 		return -EINVAL;
3606 	}
3607 	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3608 		CH_ERR(adap,
3609 			"FW image size differs from size in FW header\n");
3610 		return -EINVAL;
3611 	}
3612 	if (size > fw_size) {
3613 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3614 			fw_size);
3615 		return -EFBIG;
3616 	}
3617 	if (!t4_fw_matches_chip(adap, hdr))
3618 		return -EINVAL;
3619 
3620 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3621 		csum += be32_to_cpu(p[i]);
3622 
3623 	if (csum != 0xffffffff) {
3624 		CH_ERR(adap,
3625 			"corrupted firmware image, checksum %#x\n", csum);
3626 		return -EINVAL;
3627 	}
3628 
3629 	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3630 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3631 	if (ret)
3632 		goto out;
3633 
3634 	/*
3635 	 * We write the correct version at the end so the driver can see a bad
3636 	 * version if the FW write fails.  Start by writing a copy of the
3637 	 * first page with a bad version.
3638 	 */
3639 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3640 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3641 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3642 	if (ret)
3643 		goto out;
3644 
3645 	addr = fw_start;
3646 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3647 		addr += SF_PAGE_SIZE;
3648 		fw_data += SF_PAGE_SIZE;
3649 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3650 		if (ret)
3651 			goto out;
3652 	}
3653 
3654 	ret = t4_write_flash(adap,
3655 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3656 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3657 out:
3658 	if (ret)
3659 		CH_ERR(adap, "firmware download failed, error %d\n",
3660 			ret);
3661 	return ret;
3662 }
3663 
3664 /**
3665  *	t4_fwcache - firmware cache operation
3666  *	@adap: the adapter
3667  *	@op  : the operation (flush or flush and invalidate)
3668  */
3669 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3670 {
3671 	struct fw_params_cmd c;
3672 
3673 	memset(&c, 0, sizeof(c));
3674 	c.op_to_vfn =
3675 	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3676 			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3677 				V_FW_PARAMS_CMD_PFN(adap->pf) |
3678 				V_FW_PARAMS_CMD_VFN(0));
3679 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3680 	c.param[0].mnem =
3681 	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3682 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3683 	c.param[0].val = (__force __be32)op;
3684 
3685 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3686 }
3687 
3688 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3689 			unsigned int *pif_req_wrptr,
3690 			unsigned int *pif_rsp_wrptr)
3691 {
3692 	int i, j;
3693 	u32 cfg, val, req, rsp;
3694 
3695 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3696 	if (cfg & F_LADBGEN)
3697 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3698 
3699 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3700 	req = G_POLADBGWRPTR(val);
3701 	rsp = G_PILADBGWRPTR(val);
3702 	if (pif_req_wrptr)
3703 		*pif_req_wrptr = req;
3704 	if (pif_rsp_wrptr)
3705 		*pif_rsp_wrptr = rsp;
3706 
3707 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3708 		for (j = 0; j < 6; j++) {
3709 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3710 				     V_PILADBGRDPTR(rsp));
3711 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3712 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3713 			req++;
3714 			rsp++;
3715 		}
3716 		req = (req + 2) & M_POLADBGRDPTR;
3717 		rsp = (rsp + 2) & M_PILADBGRDPTR;
3718 	}
3719 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3720 }
3721 
3722 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3723 {
3724 	u32 cfg;
3725 	int i, j, idx;
3726 
3727 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3728 	if (cfg & F_LADBGEN)
3729 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3730 
3731 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3732 		for (j = 0; j < 5; j++) {
3733 			idx = 8 * i + j;
3734 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3735 				     V_PILADBGRDPTR(idx));
3736 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3737 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3738 		}
3739 	}
3740 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3741 }
3742 
3743 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3744 {
3745 	unsigned int i, j;
3746 
3747 	for (i = 0; i < 8; i++) {
3748 		u32 *p = la_buf + i;
3749 
3750 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3751 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3752 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3753 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3754 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3755 	}
3756 }
3757 
3758 /**
3759  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3760  *	@caps16: a 16-bit Port Capabilities value
3761  *
3762  *	Returns the equivalent 32-bit Port Capabilities value.
3763  */
3764 static uint32_t fwcaps16_to_caps32(uint16_t caps16)
3765 {
3766 	uint32_t caps32 = 0;
3767 
3768 	#define CAP16_TO_CAP32(__cap) \
3769 		do { \
3770 			if (caps16 & FW_PORT_CAP_##__cap) \
3771 				caps32 |= FW_PORT_CAP32_##__cap; \
3772 		} while (0)
3773 
3774 	CAP16_TO_CAP32(SPEED_100M);
3775 	CAP16_TO_CAP32(SPEED_1G);
3776 	CAP16_TO_CAP32(SPEED_25G);
3777 	CAP16_TO_CAP32(SPEED_10G);
3778 	CAP16_TO_CAP32(SPEED_40G);
3779 	CAP16_TO_CAP32(SPEED_100G);
3780 	CAP16_TO_CAP32(FC_RX);
3781 	CAP16_TO_CAP32(FC_TX);
3782 	CAP16_TO_CAP32(ANEG);
3783 	CAP16_TO_CAP32(FORCE_PAUSE);
3784 	CAP16_TO_CAP32(MDIAUTO);
3785 	CAP16_TO_CAP32(MDISTRAIGHT);
3786 	CAP16_TO_CAP32(FEC_RS);
3787 	CAP16_TO_CAP32(FEC_BASER_RS);
3788 	CAP16_TO_CAP32(802_3_PAUSE);
3789 	CAP16_TO_CAP32(802_3_ASM_DIR);
3790 
3791 	#undef CAP16_TO_CAP32
3792 
3793 	return caps32;
3794 }
3795 
3796 /**
3797  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3798  *	@caps32: a 32-bit Port Capabilities value
3799  *
3800  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
3801  *	not all 32-bit Port Capabilities can be represented in the 16-bit
3802  *	Port Capabilities and some fields/values may not make it.
3803  */
3804 static uint16_t fwcaps32_to_caps16(uint32_t caps32)
3805 {
3806 	uint16_t caps16 = 0;
3807 
3808 	#define CAP32_TO_CAP16(__cap) \
3809 		do { \
3810 			if (caps32 & FW_PORT_CAP32_##__cap) \
3811 				caps16 |= FW_PORT_CAP_##__cap; \
3812 		} while (0)
3813 
3814 	CAP32_TO_CAP16(SPEED_100M);
3815 	CAP32_TO_CAP16(SPEED_1G);
3816 	CAP32_TO_CAP16(SPEED_10G);
3817 	CAP32_TO_CAP16(SPEED_25G);
3818 	CAP32_TO_CAP16(SPEED_40G);
3819 	CAP32_TO_CAP16(SPEED_100G);
3820 	CAP32_TO_CAP16(FC_RX);
3821 	CAP32_TO_CAP16(FC_TX);
3822 	CAP32_TO_CAP16(802_3_PAUSE);
3823 	CAP32_TO_CAP16(802_3_ASM_DIR);
3824 	CAP32_TO_CAP16(ANEG);
3825 	CAP32_TO_CAP16(FORCE_PAUSE);
3826 	CAP32_TO_CAP16(MDIAUTO);
3827 	CAP32_TO_CAP16(MDISTRAIGHT);
3828 	CAP32_TO_CAP16(FEC_RS);
3829 	CAP32_TO_CAP16(FEC_BASER_RS);
3830 
3831 	#undef CAP32_TO_CAP16
3832 
3833 	return caps16;
3834 }
3835 
3836 static bool
3837 is_bt(struct port_info *pi)
3838 {
3839 
3840 	return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
3841 	    pi->port_type == FW_PORT_TYPE_BT_XFI ||
3842 	    pi->port_type == FW_PORT_TYPE_BT_XAUI);
3843 }
3844 
3845 /**
3846  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3847  *	@phy: the PHY to setup
3848  *	@mac: the MAC to setup
3849  *	@lc: the requested link configuration
3850  *
3851  *	Set up a port's MAC and PHY according to a desired link configuration.
3852  *	- If the PHY can auto-negotiate first decide what to advertise, then
3853  *	  enable/disable auto-negotiation as desired, and reset.
3854  *	- If the PHY does not auto-negotiate just reset it.
3855  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3856  *	  otherwise do it later based on the outcome of auto-negotiation.
3857  */
3858 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3859 		  struct link_config *lc)
3860 {
3861 	struct fw_port_cmd c;
3862 	unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
3863 	unsigned int aneg, fc, fec, speed, rcap;
3864 
3865 	fc = 0;
3866 	if (lc->requested_fc & PAUSE_RX)
3867 		fc |= FW_PORT_CAP32_FC_RX;
3868 	if (lc->requested_fc & PAUSE_TX)
3869 		fc |= FW_PORT_CAP32_FC_TX;
3870 	if (!(lc->requested_fc & PAUSE_AUTONEG))
3871 		fc |= FW_PORT_CAP32_FORCE_PAUSE;
3872 
3873 	fec = 0;
3874 	if (lc->requested_fec == FEC_AUTO)
3875 		fec = lc->fec_hint;
3876 	else {
3877 		if (lc->requested_fec & FEC_RS)
3878 			fec |= FW_PORT_CAP32_FEC_RS;
3879 		if (lc->requested_fec & FEC_BASER_RS)
3880 			fec |= FW_PORT_CAP32_FEC_BASER_RS;
3881 	}
3882 
3883 	if (lc->requested_aneg == AUTONEG_DISABLE)
3884 		aneg = 0;
3885 	else if (lc->requested_aneg == AUTONEG_ENABLE)
3886 		aneg = FW_PORT_CAP32_ANEG;
3887 	else
3888 		aneg = lc->supported & FW_PORT_CAP32_ANEG;
3889 
3890 	if (aneg) {
3891 		speed = lc->supported & V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
3892 	} else if (lc->requested_speed != 0)
3893 		speed = speed_to_fwcap(lc->requested_speed);
3894 	else
3895 		speed = fwcap_top_speed(lc->supported);
3896 
3897 	/* Force AN on for BT cards. */
3898 	if (is_bt(adap->port[port]))
3899 		aneg = lc->supported & FW_PORT_CAP32_ANEG;
3900 
3901 	rcap = aneg | speed | fc | fec;
3902 	if ((rcap | lc->supported) != lc->supported) {
3903 #ifdef INVARIANTS
3904 		CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x\n", rcap,
3905 		    lc->supported);
3906 #endif
3907 		rcap &= lc->supported;
3908 	}
3909 	rcap |= mdi;
3910 
3911 	memset(&c, 0, sizeof(c));
3912 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3913 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3914 				     V_FW_PORT_CMD_PORTID(port));
3915 	if (adap->params.port_caps32) {
3916 		c.action_to_len16 =
3917 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
3918 			FW_LEN16(c));
3919 		c.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
3920 	} else {
3921 		c.action_to_len16 =
3922 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3923 			    FW_LEN16(c));
3924 		c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
3925 	}
3926 
3927 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3928 }
3929 
3930 /**
3931  *	t4_restart_aneg - restart autonegotiation
3932  *	@adap: the adapter
3933  *	@mbox: mbox to use for the FW command
3934  *	@port: the port id
3935  *
3936  *	Restarts autonegotiation for the selected port.
3937  */
3938 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3939 {
3940 	struct fw_port_cmd c;
3941 
3942 	memset(&c, 0, sizeof(c));
3943 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3944 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3945 				     V_FW_PORT_CMD_PORTID(port));
3946 	c.action_to_len16 =
3947 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3948 			    FW_LEN16(c));
3949 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3950 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3951 }
3952 
3953 typedef void (*int_handler_t)(struct adapter *adap);
3954 
3955 struct intr_info {
3956 	unsigned int mask;	/* bits to check in interrupt status */
3957 	const char *msg;	/* message to print or NULL */
3958 	short stat_idx;		/* stat counter to increment or -1 */
3959 	unsigned short fatal;	/* whether the condition reported is fatal */
3960 	int_handler_t int_handler;	/* platform-specific int handler */
3961 };
3962 
3963 /**
3964  *	t4_handle_intr_status - table driven interrupt handler
3965  *	@adapter: the adapter that generated the interrupt
3966  *	@reg: the interrupt status register to process
3967  *	@acts: table of interrupt actions
3968  *
3969  *	A table driven interrupt handler that applies a set of masks to an
3970  *	interrupt status word and performs the corresponding actions if the
3971  *	interrupts described by the mask have occurred.  The actions include
3972  *	optionally emitting a warning or alert message.  The table is terminated
3973  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
3974  *	conditions.
3975  */
3976 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3977 				 const struct intr_info *acts)
3978 {
3979 	int fatal = 0;
3980 	unsigned int mask = 0;
3981 	unsigned int status = t4_read_reg(adapter, reg);
3982 
3983 	for ( ; acts->mask; ++acts) {
3984 		if (!(status & acts->mask))
3985 			continue;
3986 		if (acts->fatal) {
3987 			fatal++;
3988 			CH_ALERT(adapter, "%s (0x%x)\n", acts->msg,
3989 				  status & acts->mask);
3990 		} else if (acts->msg)
3991 			CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n", acts->msg,
3992 				 status & acts->mask);
3993 		if (acts->int_handler)
3994 			acts->int_handler(adapter);
3995 		mask |= acts->mask;
3996 	}
3997 	status &= mask;
3998 	if (status)	/* clear processed interrupts */
3999 		t4_write_reg(adapter, reg, status);
4000 	return fatal;
4001 }
4002 
4003 /*
4004  * Interrupt handler for the PCIE module.
4005  */
4006 static void pcie_intr_handler(struct adapter *adapter)
4007 {
4008 	static const struct intr_info sysbus_intr_info[] = {
4009 		{ F_RNPP, "RXNP array parity error", -1, 1 },
4010 		{ F_RPCP, "RXPC array parity error", -1, 1 },
4011 		{ F_RCIP, "RXCIF array parity error", -1, 1 },
4012 		{ F_RCCP, "Rx completions control array parity error", -1, 1 },
4013 		{ F_RFTP, "RXFT array parity error", -1, 1 },
4014 		{ 0 }
4015 	};
4016 	static const struct intr_info pcie_port_intr_info[] = {
4017 		{ F_TPCP, "TXPC array parity error", -1, 1 },
4018 		{ F_TNPP, "TXNP array parity error", -1, 1 },
4019 		{ F_TFTP, "TXFT array parity error", -1, 1 },
4020 		{ F_TCAP, "TXCA array parity error", -1, 1 },
4021 		{ F_TCIP, "TXCIF array parity error", -1, 1 },
4022 		{ F_RCAP, "RXCA array parity error", -1, 1 },
4023 		{ F_OTDD, "outbound request TLP discarded", -1, 1 },
4024 		{ F_RDPE, "Rx data parity error", -1, 1 },
4025 		{ F_TDUE, "Tx uncorrectable data error", -1, 1 },
4026 		{ 0 }
4027 	};
4028 	static const struct intr_info pcie_intr_info[] = {
4029 		{ F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
4030 		{ F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
4031 		{ F_MSIDATAPERR, "MSI data parity error", -1, 1 },
4032 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
4033 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
4034 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
4035 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
4036 		{ F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
4037 		{ F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
4038 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
4039 		{ F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
4040 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
4041 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
4042 		{ F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
4043 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
4044 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
4045 		{ F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
4046 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
4047 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
4048 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
4049 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
4050 		{ F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
4051 		{ F_MATAGPERR, "PCI MA tag parity error", -1, 1 },
4052 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
4053 		{ F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
4054 		{ F_RXWRPERR, "PCI Rx write parity error", -1, 1 },
4055 		{ F_RPLPERR, "PCI replay buffer parity error", -1, 1 },
4056 		{ F_PCIESINT, "PCI core secondary fault", -1, 1 },
4057 		{ F_PCIEPINT, "PCI core primary fault", -1, 1 },
4058 		{ F_UNXSPLCPLERR, "PCI unexpected split completion error", -1,
4059 		  0 },
4060 		{ 0 }
4061 	};
4062 
4063 	static const struct intr_info t5_pcie_intr_info[] = {
4064 		{ F_MSTGRPPERR, "Master Response Read Queue parity error",
4065 		  -1, 1 },
4066 		{ F_MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
4067 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
4068 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
4069 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
4070 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
4071 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
4072 		{ F_PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
4073 		  -1, 1 },
4074 		{ F_PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
4075 		  -1, 1 },
4076 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
4077 		{ F_MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
4078 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
4079 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
4080 		{ F_DREQWRPERR, "PCI DMA channel write request parity error",
4081 		  -1, 1 },
4082 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
4083 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
4084 		{ F_HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
4085 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
4086 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
4087 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
4088 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
4089 		{ F_VFIDPERR, "PCI INTx clear parity error", -1, 1 },
4090 		{ F_MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
4091 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
4092 		{ F_IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
4093 		  -1, 1 },
4094 		{ F_IPRXDATAGRPPERR, "PCI IP Rx data group parity error",
4095 		  -1, 1 },
4096 		{ F_RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
4097 		{ F_IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
4098 		{ F_TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
4099 		{ F_READRSPERR, "Outbound read error", -1,
4100 		  0 },
4101 		{ 0 }
4102 	};
4103 
4104 	int fat;
4105 
4106 	if (is_t4(adapter))
4107 		fat = t4_handle_intr_status(adapter,
4108 				A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4109 				sysbus_intr_info) +
4110 			t4_handle_intr_status(adapter,
4111 					A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4112 					pcie_port_intr_info) +
4113 			t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
4114 					      pcie_intr_info);
4115 	else
4116 		fat = t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
4117 					    t5_pcie_intr_info);
4118 	if (fat)
4119 		t4_fatal_err(adapter);
4120 }
4121 
4122 /*
4123  * TP interrupt handler.
4124  */
4125 static void tp_intr_handler(struct adapter *adapter)
4126 {
4127 	static const struct intr_info tp_intr_info[] = {
4128 		{ 0x3fffffff, "TP parity error", -1, 1 },
4129 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
4130 		{ 0 }
4131 	};
4132 
4133 	if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info))
4134 		t4_fatal_err(adapter);
4135 }
4136 
4137 /*
4138  * SGE interrupt handler.
4139  */
4140 static void sge_intr_handler(struct adapter *adapter)
4141 {
4142 	u64 v;
4143 	u32 err;
4144 
4145 	static const struct intr_info sge_intr_info[] = {
4146 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4147 		  "SGE received CPL exceeding IQE size", -1, 1 },
4148 		{ F_ERR_INVALID_CIDX_INC,
4149 		  "SGE GTS CIDX increment too large", -1, 0 },
4150 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
4151 		{ F_DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
4152 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4153 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4154 		{ F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
4155 		  0 },
4156 		{ F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
4157 		  0 },
4158 		{ F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
4159 		  0 },
4160 		{ F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
4161 		  0 },
4162 		{ F_ERR_ING_CTXT_PRIO,
4163 		  "SGE too many priority ingress contexts", -1, 0 },
4164 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
4165 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
4166 		{ F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 |
4167 		  F_ERR_PCIE_ERROR2 | F_ERR_PCIE_ERROR3,
4168 		  "SGE PCIe error for a DBP thread", -1, 0 },
4169 		{ 0 }
4170 	};
4171 
4172 	static const struct intr_info t4t5_sge_intr_info[] = {
4173 		{ F_ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
4174 		{ F_DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
4175 		{ F_ERR_EGR_CTXT_PRIO,
4176 		  "SGE too many priority egress contexts", -1, 0 },
4177 		{ 0 }
4178 	};
4179 
4180 	/*
4181  	* For now, treat below interrupts as fatal so that we disable SGE and
4182  	* get better debug */
4183 	static const struct intr_info t6_sge_intr_info[] = {
4184 		{ F_FATAL_WRE_LEN,
4185 		  "SGE Actual WRE packet is less than advertized length",
4186 		  -1, 1 },
4187 		{ 0 }
4188 	};
4189 
4190 	v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) |
4191 		((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32);
4192 	if (v) {
4193 		CH_ALERT(adapter, "SGE parity error (%#llx)\n",
4194 				(unsigned long long)v);
4195 		t4_write_reg(adapter, A_SGE_INT_CAUSE1, v);
4196 		t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32);
4197 	}
4198 
4199 	v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info);
4200 	if (chip_id(adapter) <= CHELSIO_T5)
4201 		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4202 					   t4t5_sge_intr_info);
4203 	else
4204 		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4205 					   t6_sge_intr_info);
4206 
4207 	err = t4_read_reg(adapter, A_SGE_ERROR_STATS);
4208 	if (err & F_ERROR_QID_VALID) {
4209 		CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err));
4210 		if (err & F_UNCAPTURED_ERROR)
4211 			CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n");
4212 		t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID |
4213 			     F_UNCAPTURED_ERROR);
4214 	}
4215 
4216 	if (v != 0)
4217 		t4_fatal_err(adapter);
4218 }
4219 
4220 #define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\
4221 		      F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR)
4222 #define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\
4223 		      F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR)
4224 
4225 /*
4226  * CIM interrupt handler.
4227  */
4228 static void cim_intr_handler(struct adapter *adapter)
4229 {
4230 	static const struct intr_info cim_intr_info[] = {
4231 		{ F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
4232 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4233 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4234 		{ F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
4235 		{ F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
4236 		{ F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
4237 		{ F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
4238 		{ F_TIMER0INT, "CIM TIMER0 interrupt", -1, 1 },
4239 		{ 0 }
4240 	};
4241 	static const struct intr_info cim_upintr_info[] = {
4242 		{ F_RSVDSPACEINT, "CIM reserved space access", -1, 1 },
4243 		{ F_ILLTRANSINT, "CIM illegal transaction", -1, 1 },
4244 		{ F_ILLWRINT, "CIM illegal write", -1, 1 },
4245 		{ F_ILLRDINT, "CIM illegal read", -1, 1 },
4246 		{ F_ILLRDBEINT, "CIM illegal read BE", -1, 1 },
4247 		{ F_ILLWRBEINT, "CIM illegal write BE", -1, 1 },
4248 		{ F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
4249 		{ F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
4250 		{ F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
4251 		{ F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
4252 		{ F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
4253 		{ F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
4254 		{ F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
4255 		{ F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
4256 		{ F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
4257 		{ F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
4258 		{ F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
4259 		{ F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
4260 		{ F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
4261 		{ F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
4262 		{ F_SGLRDPLINT , "CIM single read from PL space", -1, 1 },
4263 		{ F_SGLWRPLINT , "CIM single write to PL space", -1, 1 },
4264 		{ F_BLKRDPLINT , "CIM block read from PL space", -1, 1 },
4265 		{ F_BLKWRPLINT , "CIM block write to PL space", -1, 1 },
4266 		{ F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
4267 		{ F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
4268 		{ F_TIMEOUTINT , "CIM PIF timeout", -1, 1 },
4269 		{ F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
4270 		{ 0 }
4271 	};
4272 	u32 val, fw_err;
4273 	int fat;
4274 
4275 	fw_err = t4_read_reg(adapter, A_PCIE_FW);
4276 	if (fw_err & F_PCIE_FW_ERR)
4277 		t4_report_fw_error(adapter);
4278 
4279 	/* When the Firmware detects an internal error which normally wouldn't
4280 	 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4281 	 * to make sure the Host sees the Firmware Crash.  So if we have a
4282 	 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4283 	 * interrupt.
4284 	 */
4285 	val = t4_read_reg(adapter, A_CIM_HOST_INT_CAUSE);
4286 	if (val & F_TIMER0INT)
4287 		if (!(fw_err & F_PCIE_FW_ERR) ||
4288 		    (G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH))
4289 			t4_write_reg(adapter, A_CIM_HOST_INT_CAUSE,
4290 				     F_TIMER0INT);
4291 
4292 	fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE,
4293 				    cim_intr_info) +
4294 	      t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE,
4295 				    cim_upintr_info);
4296 	if (fat)
4297 		t4_fatal_err(adapter);
4298 }
4299 
4300 /*
4301  * ULP RX interrupt handler.
4302  */
4303 static void ulprx_intr_handler(struct adapter *adapter)
4304 {
4305 	static const struct intr_info ulprx_intr_info[] = {
4306 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 },
4307 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 },
4308 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4309 		{ 0 }
4310 	};
4311 
4312 	if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info))
4313 		t4_fatal_err(adapter);
4314 }
4315 
4316 /*
4317  * ULP TX interrupt handler.
4318  */
4319 static void ulptx_intr_handler(struct adapter *adapter)
4320 {
4321 	static const struct intr_info ulptx_intr_info[] = {
4322 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
4323 		  0 },
4324 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
4325 		  0 },
4326 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
4327 		  0 },
4328 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
4329 		  0 },
4330 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4331 		{ 0 }
4332 	};
4333 
4334 	if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info))
4335 		t4_fatal_err(adapter);
4336 }
4337 
4338 /*
4339  * PM TX interrupt handler.
4340  */
4341 static void pmtx_intr_handler(struct adapter *adapter)
4342 {
4343 	static const struct intr_info pmtx_intr_info[] = {
4344 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
4345 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
4346 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
4347 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
4348 		{ 0xffffff0, "PMTX framing error", -1, 1 },
4349 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
4350 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
4351 		  1 },
4352 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
4353 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
4354 		{ 0 }
4355 	};
4356 
4357 	if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info))
4358 		t4_fatal_err(adapter);
4359 }
4360 
4361 /*
4362  * PM RX interrupt handler.
4363  */
4364 static void pmrx_intr_handler(struct adapter *adapter)
4365 {
4366 	static const struct intr_info pmrx_intr_info[] = {
4367 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
4368 		{ 0x3ffff0, "PMRX framing error", -1, 1 },
4369 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
4370 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
4371 		  1 },
4372 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
4373 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
4374 		{ 0 }
4375 	};
4376 
4377 	if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info))
4378 		t4_fatal_err(adapter);
4379 }
4380 
4381 /*
4382  * CPL switch interrupt handler.
4383  */
4384 static void cplsw_intr_handler(struct adapter *adapter)
4385 {
4386 	static const struct intr_info cplsw_intr_info[] = {
4387 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
4388 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
4389 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
4390 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
4391 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
4392 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
4393 		{ 0 }
4394 	};
4395 
4396 	if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info))
4397 		t4_fatal_err(adapter);
4398 }
4399 
4400 /*
4401  * LE interrupt handler.
4402  */
4403 static void le_intr_handler(struct adapter *adap)
4404 {
4405 	unsigned int chip_ver = chip_id(adap);
4406 	static const struct intr_info le_intr_info[] = {
4407 		{ F_LIPMISS, "LE LIP miss", -1, 0 },
4408 		{ F_LIP0, "LE 0 LIP error", -1, 0 },
4409 		{ F_PARITYERR, "LE parity error", -1, 1 },
4410 		{ F_UNKNOWNCMD, "LE unknown command", -1, 1 },
4411 		{ F_REQQPARERR, "LE request queue parity error", -1, 1 },
4412 		{ 0 }
4413 	};
4414 
4415 	static const struct intr_info t6_le_intr_info[] = {
4416 		{ F_T6_LIPMISS, "LE LIP miss", -1, 0 },
4417 		{ F_T6_LIP0, "LE 0 LIP error", -1, 0 },
4418 		{ F_TCAMINTPERR, "LE parity error", -1, 1 },
4419 		{ F_T6_UNKNOWNCMD, "LE unknown command", -1, 1 },
4420 		{ F_SSRAMINTPERR, "LE request queue parity error", -1, 1 },
4421 		{ 0 }
4422 	};
4423 
4424 	if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE,
4425 				  (chip_ver <= CHELSIO_T5) ?
4426 				  le_intr_info : t6_le_intr_info))
4427 		t4_fatal_err(adap);
4428 }
4429 
4430 /*
4431  * MPS interrupt handler.
4432  */
4433 static void mps_intr_handler(struct adapter *adapter)
4434 {
4435 	static const struct intr_info mps_rx_intr_info[] = {
4436 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4437 		{ 0 }
4438 	};
4439 	static const struct intr_info mps_tx_intr_info[] = {
4440 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 },
4441 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4442 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error",
4443 		  -1, 1 },
4444 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error",
4445 		  -1, 1 },
4446 		{ F_BUBBLE, "MPS Tx underflow", -1, 1 },
4447 		{ F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
4448 		{ F_FRMERR, "MPS Tx framing error", -1, 1 },
4449 		{ 0 }
4450 	};
4451 	static const struct intr_info mps_trc_intr_info[] = {
4452 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 },
4453 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1,
4454 		  1 },
4455 		{ F_MISCPERR, "MPS TRC misc parity error", -1, 1 },
4456 		{ 0 }
4457 	};
4458 	static const struct intr_info mps_stat_sram_intr_info[] = {
4459 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4460 		{ 0 }
4461 	};
4462 	static const struct intr_info mps_stat_tx_intr_info[] = {
4463 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4464 		{ 0 }
4465 	};
4466 	static const struct intr_info mps_stat_rx_intr_info[] = {
4467 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4468 		{ 0 }
4469 	};
4470 	static const struct intr_info mps_cls_intr_info[] = {
4471 		{ F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
4472 		{ F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
4473 		{ F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
4474 		{ 0 }
4475 	};
4476 
4477 	int fat;
4478 
4479 	fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE,
4480 				    mps_rx_intr_info) +
4481 	      t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE,
4482 				    mps_tx_intr_info) +
4483 	      t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE,
4484 				    mps_trc_intr_info) +
4485 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4486 				    mps_stat_sram_intr_info) +
4487 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4488 				    mps_stat_tx_intr_info) +
4489 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4490 				    mps_stat_rx_intr_info) +
4491 	      t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE,
4492 				    mps_cls_intr_info);
4493 
4494 	t4_write_reg(adapter, A_MPS_INT_CAUSE, 0);
4495 	t4_read_reg(adapter, A_MPS_INT_CAUSE);	/* flush */
4496 	if (fat)
4497 		t4_fatal_err(adapter);
4498 }
4499 
4500 #define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | \
4501 		      F_ECC_UE_INT_CAUSE)
4502 
4503 /*
4504  * EDC/MC interrupt handler.
4505  */
4506 static void mem_intr_handler(struct adapter *adapter, int idx)
4507 {
4508 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4509 
4510 	unsigned int addr, cnt_addr, v;
4511 
4512 	if (idx <= MEM_EDC1) {
4513 		addr = EDC_REG(A_EDC_INT_CAUSE, idx);
4514 		cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx);
4515 	} else if (idx == MEM_MC) {
4516 		if (is_t4(adapter)) {
4517 			addr = A_MC_INT_CAUSE;
4518 			cnt_addr = A_MC_ECC_STATUS;
4519 		} else {
4520 			addr = A_MC_P_INT_CAUSE;
4521 			cnt_addr = A_MC_P_ECC_STATUS;
4522 		}
4523 	} else {
4524 		addr = MC_REG(A_MC_P_INT_CAUSE, 1);
4525 		cnt_addr = MC_REG(A_MC_P_ECC_STATUS, 1);
4526 	}
4527 
4528 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4529 	if (v & F_PERR_INT_CAUSE)
4530 		CH_ALERT(adapter, "%s FIFO parity error\n",
4531 			  name[idx]);
4532 	if (v & F_ECC_CE_INT_CAUSE) {
4533 		u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr));
4534 
4535 		if (idx <= MEM_EDC1)
4536 			t4_edc_err_read(adapter, idx);
4537 
4538 		t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT));
4539 		CH_WARN_RATELIMIT(adapter,
4540 				  "%u %s correctable ECC data error%s\n",
4541 				  cnt, name[idx], cnt > 1 ? "s" : "");
4542 	}
4543 	if (v & F_ECC_UE_INT_CAUSE)
4544 		CH_ALERT(adapter,
4545 			 "%s uncorrectable ECC data error\n", name[idx]);
4546 
4547 	t4_write_reg(adapter, addr, v);
4548 	if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE))
4549 		t4_fatal_err(adapter);
4550 }
4551 
4552 /*
4553  * MA interrupt handler.
4554  */
4555 static void ma_intr_handler(struct adapter *adapter)
4556 {
4557 	u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE);
4558 
4559 	if (status & F_MEM_PERR_INT_CAUSE) {
4560 		CH_ALERT(adapter,
4561 			  "MA parity error, parity status %#x\n",
4562 			  t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS1));
4563 		if (is_t5(adapter))
4564 			CH_ALERT(adapter,
4565 				  "MA parity error, parity status %#x\n",
4566 				  t4_read_reg(adapter,
4567 					      A_MA_PARITY_ERROR_STATUS2));
4568 	}
4569 	if (status & F_MEM_WRAP_INT_CAUSE) {
4570 		v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS);
4571 		CH_ALERT(adapter, "MA address wrap-around error by "
4572 			  "client %u to address %#x\n",
4573 			  G_MEM_WRAP_CLIENT_NUM(v),
4574 			  G_MEM_WRAP_ADDRESS(v) << 4);
4575 	}
4576 	t4_write_reg(adapter, A_MA_INT_CAUSE, status);
4577 	t4_fatal_err(adapter);
4578 }
4579 
4580 /*
4581  * SMB interrupt handler.
4582  */
4583 static void smb_intr_handler(struct adapter *adap)
4584 {
4585 	static const struct intr_info smb_intr_info[] = {
4586 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
4587 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
4588 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
4589 		{ 0 }
4590 	};
4591 
4592 	if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info))
4593 		t4_fatal_err(adap);
4594 }
4595 
4596 /*
4597  * NC-SI interrupt handler.
4598  */
4599 static void ncsi_intr_handler(struct adapter *adap)
4600 {
4601 	static const struct intr_info ncsi_intr_info[] = {
4602 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
4603 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
4604 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
4605 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
4606 		{ 0 }
4607 	};
4608 
4609 	if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info))
4610 		t4_fatal_err(adap);
4611 }
4612 
4613 /*
4614  * XGMAC interrupt handler.
4615  */
4616 static void xgmac_intr_handler(struct adapter *adap, int port)
4617 {
4618 	u32 v, int_cause_reg;
4619 
4620 	if (is_t4(adap))
4621 		int_cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
4622 	else
4623 		int_cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
4624 
4625 	v = t4_read_reg(adap, int_cause_reg);
4626 
4627 	v &= (F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR);
4628 	if (!v)
4629 		return;
4630 
4631 	if (v & F_TXFIFO_PRTY_ERR)
4632 		CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n",
4633 			  port);
4634 	if (v & F_RXFIFO_PRTY_ERR)
4635 		CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n",
4636 			  port);
4637 	t4_write_reg(adap, int_cause_reg, v);
4638 	t4_fatal_err(adap);
4639 }
4640 
4641 /*
4642  * PL interrupt handler.
4643  */
4644 static void pl_intr_handler(struct adapter *adap)
4645 {
4646 	static const struct intr_info pl_intr_info[] = {
4647 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4648 		{ F_PERRVFID, "PL VFID_MAP parity error", -1, 1 },
4649 		{ 0 }
4650 	};
4651 
4652 	static const struct intr_info t5_pl_intr_info[] = {
4653 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4654 		{ 0 }
4655 	};
4656 
4657 	if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE,
4658 				  is_t4(adap) ?
4659 				  pl_intr_info : t5_pl_intr_info))
4660 		t4_fatal_err(adap);
4661 }
4662 
4663 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
4664 
4665 /**
4666  *	t4_slow_intr_handler - control path interrupt handler
4667  *	@adapter: the adapter
4668  *
4669  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4670  *	The designation 'slow' is because it involves register reads, while
4671  *	data interrupts typically don't involve any MMIOs.
4672  */
4673 int t4_slow_intr_handler(struct adapter *adapter)
4674 {
4675 	u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE);
4676 
4677 	if (!(cause & GLBL_INTR_MASK))
4678 		return 0;
4679 	if (cause & F_CIM)
4680 		cim_intr_handler(adapter);
4681 	if (cause & F_MPS)
4682 		mps_intr_handler(adapter);
4683 	if (cause & F_NCSI)
4684 		ncsi_intr_handler(adapter);
4685 	if (cause & F_PL)
4686 		pl_intr_handler(adapter);
4687 	if (cause & F_SMB)
4688 		smb_intr_handler(adapter);
4689 	if (cause & F_MAC0)
4690 		xgmac_intr_handler(adapter, 0);
4691 	if (cause & F_MAC1)
4692 		xgmac_intr_handler(adapter, 1);
4693 	if (cause & F_MAC2)
4694 		xgmac_intr_handler(adapter, 2);
4695 	if (cause & F_MAC3)
4696 		xgmac_intr_handler(adapter, 3);
4697 	if (cause & F_PCIE)
4698 		pcie_intr_handler(adapter);
4699 	if (cause & F_MC0)
4700 		mem_intr_handler(adapter, MEM_MC);
4701 	if (is_t5(adapter) && (cause & F_MC1))
4702 		mem_intr_handler(adapter, MEM_MC1);
4703 	if (cause & F_EDC0)
4704 		mem_intr_handler(adapter, MEM_EDC0);
4705 	if (cause & F_EDC1)
4706 		mem_intr_handler(adapter, MEM_EDC1);
4707 	if (cause & F_LE)
4708 		le_intr_handler(adapter);
4709 	if (cause & F_TP)
4710 		tp_intr_handler(adapter);
4711 	if (cause & F_MA)
4712 		ma_intr_handler(adapter);
4713 	if (cause & F_PM_TX)
4714 		pmtx_intr_handler(adapter);
4715 	if (cause & F_PM_RX)
4716 		pmrx_intr_handler(adapter);
4717 	if (cause & F_ULP_RX)
4718 		ulprx_intr_handler(adapter);
4719 	if (cause & F_CPL_SWITCH)
4720 		cplsw_intr_handler(adapter);
4721 	if (cause & F_SGE)
4722 		sge_intr_handler(adapter);
4723 	if (cause & F_ULP_TX)
4724 		ulptx_intr_handler(adapter);
4725 
4726 	/* Clear the interrupts just processed for which we are the master. */
4727 	t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK);
4728 	(void)t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */
4729 	return 1;
4730 }
4731 
4732 /**
4733  *	t4_intr_enable - enable interrupts
4734  *	@adapter: the adapter whose interrupts should be enabled
4735  *
4736  *	Enable PF-specific interrupts for the calling function and the top-level
4737  *	interrupt concentrator for global interrupts.  Interrupts are already
4738  *	enabled at each module,	here we just enable the roots of the interrupt
4739  *	hierarchies.
4740  *
4741  *	Note: this function should be called only when the driver manages
4742  *	non PF-specific interrupts from the various HW modules.  Only one PCI
4743  *	function at a time should be doing this.
4744  */
4745 void t4_intr_enable(struct adapter *adapter)
4746 {
4747 	u32 val = 0;
4748 	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4749 	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4750 		  ? G_SOURCEPF(whoami)
4751 		  : G_T6_SOURCEPF(whoami));
4752 
4753 	if (chip_id(adapter) <= CHELSIO_T5)
4754 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
4755 	else
4756 		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
4757 	t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
4758 		     F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
4759 		     F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
4760 		     F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
4761 		     F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4762 		     F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
4763 		     F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
4764 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
4765 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
4766 }
4767 
4768 /**
4769  *	t4_intr_disable - disable interrupts
4770  *	@adapter: the adapter whose interrupts should be disabled
4771  *
4772  *	Disable interrupts.  We only disable the top-level interrupt
4773  *	concentrators.  The caller must be a PCI function managing global
4774  *	interrupts.
4775  */
4776 void t4_intr_disable(struct adapter *adapter)
4777 {
4778 	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4779 	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4780 		  ? G_SOURCEPF(whoami)
4781 		  : G_T6_SOURCEPF(whoami));
4782 
4783 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
4784 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
4785 }
4786 
4787 /**
4788  *	t4_intr_clear - clear all interrupts
4789  *	@adapter: the adapter whose interrupts should be cleared
4790  *
4791  *	Clears all interrupts.  The caller must be a PCI function managing
4792  *	global interrupts.
4793  */
4794 void t4_intr_clear(struct adapter *adapter)
4795 {
4796 	static const unsigned int cause_reg[] = {
4797 		A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3,
4798 		A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE,
4799 		A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS1, A_MA_INT_CAUSE,
4800 		A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1),
4801 		A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE,
4802 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4803 		A_TP_INT_CAUSE,
4804 		A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE,
4805 		A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE,
4806 		A_MPS_RX_PERR_INT_CAUSE,
4807 		A_CPL_INTR_CAUSE,
4808 		MYPF_REG(A_PL_PF_INT_CAUSE),
4809 		A_PL_PL_INT_CAUSE,
4810 		A_LE_DB_INT_CAUSE,
4811 	};
4812 
4813 	unsigned int i;
4814 
4815 	for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
4816 		t4_write_reg(adapter, cause_reg[i], 0xffffffff);
4817 
4818 	t4_write_reg(adapter, is_t4(adapter) ? A_MC_INT_CAUSE :
4819 				A_MC_P_INT_CAUSE, 0xffffffff);
4820 
4821 	if (is_t4(adapter)) {
4822 		t4_write_reg(adapter, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4823 				0xffffffff);
4824 		t4_write_reg(adapter, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4825 				0xffffffff);
4826 	} else
4827 		t4_write_reg(adapter, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
4828 
4829 	t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK);
4830 	(void) t4_read_reg(adapter, A_PL_INT_CAUSE);          /* flush */
4831 }
4832 
4833 /**
4834  *	hash_mac_addr - return the hash value of a MAC address
4835  *	@addr: the 48-bit Ethernet MAC address
4836  *
4837  *	Hashes a MAC address according to the hash function used by HW inexact
4838  *	(hash) address matching.
4839  */
4840 static int hash_mac_addr(const u8 *addr)
4841 {
4842 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
4843 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
4844 	a ^= b;
4845 	a ^= (a >> 12);
4846 	a ^= (a >> 6);
4847 	return a & 0x3f;
4848 }
4849 
4850 /**
4851  *	t4_config_rss_range - configure a portion of the RSS mapping table
4852  *	@adapter: the adapter
4853  *	@mbox: mbox to use for the FW command
4854  *	@viid: virtual interface whose RSS subtable is to be written
4855  *	@start: start entry in the table to write
4856  *	@n: how many table entries to write
4857  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
4858  *	@nrspq: number of values in @rspq
4859  *
4860  *	Programs the selected part of the VI's RSS mapping table with the
4861  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4862  *	until the full table range is populated.
4863  *
4864  *	The caller must ensure the values in @rspq are in the range allowed for
4865  *	@viid.
4866  */
4867 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4868 			int start, int n, const u16 *rspq, unsigned int nrspq)
4869 {
4870 	int ret;
4871 	const u16 *rsp = rspq;
4872 	const u16 *rsp_end = rspq + nrspq;
4873 	struct fw_rss_ind_tbl_cmd cmd;
4874 
4875 	memset(&cmd, 0, sizeof(cmd));
4876 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
4877 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4878 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
4879 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4880 
4881 	/*
4882 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
4883 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
4884 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
4885 	 * reserved.
4886 	 */
4887 	while (n > 0) {
4888 		int nq = min(n, 32);
4889 		int nq_packed = 0;
4890 		__be32 *qp = &cmd.iq0_to_iq2;
4891 
4892 		/*
4893 		 * Set up the firmware RSS command header to send the next
4894 		 * "nq" Ingress Queue IDs to the firmware.
4895 		 */
4896 		cmd.niqid = cpu_to_be16(nq);
4897 		cmd.startidx = cpu_to_be16(start);
4898 
4899 		/*
4900 		 * "nq" more done for the start of the next loop.
4901 		 */
4902 		start += nq;
4903 		n -= nq;
4904 
4905 		/*
4906 		 * While there are still Ingress Queue IDs to stuff into the
4907 		 * current firmware RSS command, retrieve them from the
4908 		 * Ingress Queue ID array and insert them into the command.
4909 		 */
4910 		while (nq > 0) {
4911 			/*
4912 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
4913 			 * around the Ingress Queue ID array if necessary) and
4914 			 * insert them into the firmware RSS command at the
4915 			 * current 3-tuple position within the commad.
4916 			 */
4917 			u16 qbuf[3];
4918 			u16 *qbp = qbuf;
4919 			int nqbuf = min(3, nq);
4920 
4921 			nq -= nqbuf;
4922 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
4923 			while (nqbuf && nq_packed < 32) {
4924 				nqbuf--;
4925 				nq_packed++;
4926 				*qbp++ = *rsp++;
4927 				if (rsp >= rsp_end)
4928 					rsp = rspq;
4929 			}
4930 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
4931 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
4932 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
4933 		}
4934 
4935 		/*
4936 		 * Send this portion of the RRS table update to the firmware;
4937 		 * bail out on any errors.
4938 		 */
4939 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4940 		if (ret)
4941 			return ret;
4942 	}
4943 	return 0;
4944 }
4945 
4946 /**
4947  *	t4_config_glbl_rss - configure the global RSS mode
4948  *	@adapter: the adapter
4949  *	@mbox: mbox to use for the FW command
4950  *	@mode: global RSS mode
4951  *	@flags: mode-specific flags
4952  *
4953  *	Sets the global RSS mode.
4954  */
4955 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4956 		       unsigned int flags)
4957 {
4958 	struct fw_rss_glb_config_cmd c;
4959 
4960 	memset(&c, 0, sizeof(c));
4961 	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
4962 				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
4963 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4964 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4965 		c.u.manual.mode_pkd =
4966 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4967 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4968 		c.u.basicvirtual.mode_keymode =
4969 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4970 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4971 	} else
4972 		return -EINVAL;
4973 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4974 }
4975 
4976 /**
4977  *	t4_config_vi_rss - configure per VI RSS settings
4978  *	@adapter: the adapter
4979  *	@mbox: mbox to use for the FW command
4980  *	@viid: the VI id
4981  *	@flags: RSS flags
4982  *	@defq: id of the default RSS queue for the VI.
4983  *	@skeyidx: RSS secret key table index for non-global mode
4984  *	@skey: RSS vf_scramble key for VI.
4985  *
4986  *	Configures VI-specific RSS properties.
4987  */
4988 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4989 		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
4990 		     unsigned int skey)
4991 {
4992 	struct fw_rss_vi_config_cmd c;
4993 
4994 	memset(&c, 0, sizeof(c));
4995 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
4996 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4997 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
4998 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4999 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5000 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
5001 	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
5002 					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
5003 	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
5004 
5005 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5006 }
5007 
5008 /* Read an RSS table row */
5009 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5010 {
5011 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
5012 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
5013 				   5, 0, val);
5014 }
5015 
5016 /**
5017  *	t4_read_rss - read the contents of the RSS mapping table
5018  *	@adapter: the adapter
5019  *	@map: holds the contents of the RSS mapping table
5020  *
5021  *	Reads the contents of the RSS hash->queue mapping table.
5022  */
5023 int t4_read_rss(struct adapter *adapter, u16 *map)
5024 {
5025 	u32 val;
5026 	int i, ret;
5027 
5028 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
5029 		ret = rd_rss_row(adapter, i, &val);
5030 		if (ret)
5031 			return ret;
5032 		*map++ = G_LKPTBLQUEUE0(val);
5033 		*map++ = G_LKPTBLQUEUE1(val);
5034 	}
5035 	return 0;
5036 }
5037 
5038 /**
5039  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5040  * @adap: the adapter
5041  * @cmd: TP fw ldst address space type
5042  * @vals: where the indirect register values are stored/written
5043  * @nregs: how many indirect registers to read/write
5044  * @start_idx: index of first indirect register to read/write
5045  * @rw: Read (1) or Write (0)
5046  * @sleep_ok: if true we may sleep while awaiting command completion
5047  *
5048  * Access TP indirect registers through LDST
5049  **/
5050 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5051 			    unsigned int nregs, unsigned int start_index,
5052 			    unsigned int rw, bool sleep_ok)
5053 {
5054 	int ret = 0;
5055 	unsigned int i;
5056 	struct fw_ldst_cmd c;
5057 
5058 	for (i = 0; i < nregs; i++) {
5059 		memset(&c, 0, sizeof(c));
5060 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5061 						F_FW_CMD_REQUEST |
5062 						(rw ? F_FW_CMD_READ :
5063 						      F_FW_CMD_WRITE) |
5064 						V_FW_LDST_CMD_ADDRSPACE(cmd));
5065 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5066 
5067 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5068 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5069 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5070 				      sleep_ok);
5071 		if (ret)
5072 			return ret;
5073 
5074 		if (rw)
5075 			vals[i] = be32_to_cpu(c.u.addrval.val);
5076 	}
5077 	return 0;
5078 }
5079 
5080 /**
5081  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5082  * @adap: the adapter
5083  * @reg_addr: Address Register
5084  * @reg_data: Data register
5085  * @buff: where the indirect register values are stored/written
5086  * @nregs: how many indirect registers to read/write
5087  * @start_index: index of first indirect register to read/write
5088  * @rw: READ(1) or WRITE(0)
5089  * @sleep_ok: if true we may sleep while awaiting command completion
5090  *
5091  * Read/Write TP indirect registers through LDST if possible.
5092  * Else, use backdoor access
5093  **/
5094 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5095 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5096 			      bool sleep_ok)
5097 {
5098 	int rc = -EINVAL;
5099 	int cmd;
5100 
5101 	switch (reg_addr) {
5102 	case A_TP_PIO_ADDR:
5103 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5104 		break;
5105 	case A_TP_TM_PIO_ADDR:
5106 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5107 		break;
5108 	case A_TP_MIB_INDEX:
5109 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5110 		break;
5111 	default:
5112 		goto indirect_access;
5113 	}
5114 
5115 	if (t4_use_ldst(adap))
5116 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5117 				      sleep_ok);
5118 
5119 indirect_access:
5120 
5121 	if (rc) {
5122 		if (rw)
5123 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5124 					 start_index);
5125 		else
5126 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5127 					  start_index);
5128 	}
5129 }
5130 
5131 /**
5132  * t4_tp_pio_read - Read TP PIO registers
5133  * @adap: the adapter
5134  * @buff: where the indirect register values are written
5135  * @nregs: how many indirect registers to read
5136  * @start_index: index of first indirect register to read
5137  * @sleep_ok: if true we may sleep while awaiting command completion
5138  *
5139  * Read TP PIO Registers
5140  **/
5141 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5142 		    u32 start_index, bool sleep_ok)
5143 {
5144 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
5145 			  start_index, 1, sleep_ok);
5146 }
5147 
5148 /**
5149  * t4_tp_pio_write - Write TP PIO registers
5150  * @adap: the adapter
5151  * @buff: where the indirect register values are stored
5152  * @nregs: how many indirect registers to write
5153  * @start_index: index of first indirect register to write
5154  * @sleep_ok: if true we may sleep while awaiting command completion
5155  *
5156  * Write TP PIO Registers
5157  **/
5158 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5159 		     u32 start_index, bool sleep_ok)
5160 {
5161 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5162 	    __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5163 }
5164 
5165 /**
5166  * t4_tp_tm_pio_read - Read TP TM PIO registers
5167  * @adap: the adapter
5168  * @buff: where the indirect register values are written
5169  * @nregs: how many indirect registers to read
5170  * @start_index: index of first indirect register to read
5171  * @sleep_ok: if true we may sleep while awaiting command completion
5172  *
5173  * Read TP TM PIO Registers
5174  **/
5175 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5176 		       u32 start_index, bool sleep_ok)
5177 {
5178 	t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5179 			  nregs, start_index, 1, sleep_ok);
5180 }
5181 
5182 /**
5183  * t4_tp_mib_read - Read TP MIB registers
5184  * @adap: the adapter
5185  * @buff: where the indirect register values are written
5186  * @nregs: how many indirect registers to read
5187  * @start_index: index of first indirect register to read
5188  * @sleep_ok: if true we may sleep while awaiting command completion
5189  *
5190  * Read TP MIB Registers
5191  **/
5192 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5193 		    bool sleep_ok)
5194 {
5195 	t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5196 			  start_index, 1, sleep_ok);
5197 }
5198 
5199 /**
5200  *	t4_read_rss_key - read the global RSS key
5201  *	@adap: the adapter
5202  *	@key: 10-entry array holding the 320-bit RSS key
5203  * 	@sleep_ok: if true we may sleep while awaiting command completion
5204  *
5205  *	Reads the global 320-bit RSS key.
5206  */
5207 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5208 {
5209 	t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5210 }
5211 
5212 /**
5213  *	t4_write_rss_key - program one of the RSS keys
5214  *	@adap: the adapter
5215  *	@key: 10-entry array holding the 320-bit RSS key
5216  *	@idx: which RSS key to write
5217  * 	@sleep_ok: if true we may sleep while awaiting command completion
5218  *
5219  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5220  *	0..15 the corresponding entry in the RSS key table is written,
5221  *	otherwise the global RSS key is written.
5222  */
5223 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5224 		      bool sleep_ok)
5225 {
5226 	u8 rss_key_addr_cnt = 16;
5227 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5228 
5229 	/*
5230 	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5231 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5232 	 * as index[5:4](upper 2) into key table
5233 	 */
5234 	if ((chip_id(adap) > CHELSIO_T5) &&
5235 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5236 		rss_key_addr_cnt = 32;
5237 
5238 	t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5239 
5240 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5241 		if (rss_key_addr_cnt > 16)
5242 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5243 				     vrt | V_KEYWRADDRX(idx >> 4) |
5244 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
5245 		else
5246 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5247 				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5248 	}
5249 }
5250 
5251 /**
5252  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5253  *	@adapter: the adapter
5254  *	@index: the entry in the PF RSS table to read
5255  *	@valp: where to store the returned value
5256  * 	@sleep_ok: if true we may sleep while awaiting command completion
5257  *
5258  *	Reads the PF RSS Configuration Table at the specified index and returns
5259  *	the value found there.
5260  */
5261 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5262 			   u32 *valp, bool sleep_ok)
5263 {
5264 	t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5265 }
5266 
5267 /**
5268  *	t4_write_rss_pf_config - write PF RSS Configuration Table
5269  *	@adapter: the adapter
5270  *	@index: the entry in the VF RSS table to read
5271  *	@val: the value to store
5272  * 	@sleep_ok: if true we may sleep while awaiting command completion
5273  *
5274  *	Writes the PF RSS Configuration Table at the specified index with the
5275  *	specified value.
5276  */
5277 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5278 			    u32 val, bool sleep_ok)
5279 {
5280 	t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5281 			sleep_ok);
5282 }
5283 
5284 /**
5285  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5286  *	@adapter: the adapter
5287  *	@index: the entry in the VF RSS table to read
5288  *	@vfl: where to store the returned VFL
5289  *	@vfh: where to store the returned VFH
5290  * 	@sleep_ok: if true we may sleep while awaiting command completion
5291  *
5292  *	Reads the VF RSS Configuration Table at the specified index and returns
5293  *	the (VFL, VFH) values found there.
5294  */
5295 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5296 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5297 {
5298 	u32 vrt, mask, data;
5299 
5300 	if (chip_id(adapter) <= CHELSIO_T5) {
5301 		mask = V_VFWRADDR(M_VFWRADDR);
5302 		data = V_VFWRADDR(index);
5303 	} else {
5304 		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5305 		 data = V_T6_VFWRADDR(index);
5306 	}
5307 	/*
5308 	 * Request that the index'th VF Table values be read into VFL/VFH.
5309 	 */
5310 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5311 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5312 	vrt |= data | F_VFRDEN;
5313 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5314 
5315 	/*
5316 	 * Grab the VFL/VFH values ...
5317 	 */
5318 	t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5319 	t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5320 }
5321 
5322 /**
5323  *	t4_write_rss_vf_config - write VF RSS Configuration Table
5324  *
5325  *	@adapter: the adapter
5326  *	@index: the entry in the VF RSS table to write
5327  *	@vfl: the VFL to store
5328  *	@vfh: the VFH to store
5329  *
5330  *	Writes the VF RSS Configuration Table at the specified index with the
5331  *	specified (VFL, VFH) values.
5332  */
5333 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
5334 			    u32 vfl, u32 vfh, bool sleep_ok)
5335 {
5336 	u32 vrt, mask, data;
5337 
5338 	if (chip_id(adapter) <= CHELSIO_T5) {
5339 		mask = V_VFWRADDR(M_VFWRADDR);
5340 		data = V_VFWRADDR(index);
5341 	} else {
5342 		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5343 		data = V_T6_VFWRADDR(index);
5344 	}
5345 
5346 	/*
5347 	 * Load up VFL/VFH with the values to be written ...
5348 	 */
5349 	t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5350 	t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5351 
5352 	/*
5353 	 * Write the VFL/VFH into the VF Table at index'th location.
5354 	 */
5355 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5356 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5357 	vrt |= data | F_VFRDEN;
5358 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5359 }
5360 
5361 /**
5362  *	t4_read_rss_pf_map - read PF RSS Map
5363  *	@adapter: the adapter
5364  * 	@sleep_ok: if true we may sleep while awaiting command completion
5365  *
5366  *	Reads the PF RSS Map register and returns its value.
5367  */
5368 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5369 {
5370 	u32 pfmap;
5371 
5372 	t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5373 
5374 	return pfmap;
5375 }
5376 
5377 /**
5378  *	t4_write_rss_pf_map - write PF RSS Map
5379  *	@adapter: the adapter
5380  *	@pfmap: PF RSS Map value
5381  *
5382  *	Writes the specified value to the PF RSS Map register.
5383  */
5384 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
5385 {
5386 	t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5387 }
5388 
5389 /**
5390  *	t4_read_rss_pf_mask - read PF RSS Mask
5391  *	@adapter: the adapter
5392  * 	@sleep_ok: if true we may sleep while awaiting command completion
5393  *
5394  *	Reads the PF RSS Mask register and returns its value.
5395  */
5396 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5397 {
5398 	u32 pfmask;
5399 
5400 	t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
5401 
5402 	return pfmask;
5403 }
5404 
5405 /**
5406  *	t4_write_rss_pf_mask - write PF RSS Mask
5407  *	@adapter: the adapter
5408  *	@pfmask: PF RSS Mask value
5409  *
5410  *	Writes the specified value to the PF RSS Mask register.
5411  */
5412 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
5413 {
5414 	t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
5415 }
5416 
5417 /**
5418  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5419  *	@adap: the adapter
5420  *	@v4: holds the TCP/IP counter values
5421  *	@v6: holds the TCP/IPv6 counter values
5422  * 	@sleep_ok: if true we may sleep while awaiting command completion
5423  *
5424  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5425  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5426  */
5427 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5428 			 struct tp_tcp_stats *v6, bool sleep_ok)
5429 {
5430 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
5431 
5432 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
5433 #define STAT(x)     val[STAT_IDX(x)]
5434 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5435 
5436 	if (v4) {
5437 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5438 			       A_TP_MIB_TCP_OUT_RST, sleep_ok);
5439 		v4->tcp_out_rsts = STAT(OUT_RST);
5440 		v4->tcp_in_segs  = STAT64(IN_SEG);
5441 		v4->tcp_out_segs = STAT64(OUT_SEG);
5442 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5443 	}
5444 	if (v6) {
5445 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5446 			       A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
5447 		v6->tcp_out_rsts = STAT(OUT_RST);
5448 		v6->tcp_in_segs  = STAT64(IN_SEG);
5449 		v6->tcp_out_segs = STAT64(OUT_SEG);
5450 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5451 	}
5452 #undef STAT64
5453 #undef STAT
5454 #undef STAT_IDX
5455 }
5456 
5457 /**
5458  *	t4_tp_get_err_stats - read TP's error MIB counters
5459  *	@adap: the adapter
5460  *	@st: holds the counter values
5461  * 	@sleep_ok: if true we may sleep while awaiting command completion
5462  *
5463  *	Returns the values of TP's error counters.
5464  */
5465 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5466 			 bool sleep_ok)
5467 {
5468 	int nchan = adap->chip_params->nchan;
5469 
5470 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
5471 		       sleep_ok);
5472 
5473 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
5474 		       sleep_ok);
5475 
5476 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
5477 		       sleep_ok);
5478 
5479 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5480 		       A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
5481 
5482 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5483 		       A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
5484 
5485 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
5486 		       sleep_ok);
5487 
5488 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5489 		       A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
5490 
5491 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5492 		       A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
5493 
5494 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
5495 		       sleep_ok);
5496 }
5497 
5498 /**
5499  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
5500  *	@adap: the adapter
5501  *	@st: holds the counter values
5502  *
5503  *	Returns the values of TP's proxy counters.
5504  */
5505 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
5506     bool sleep_ok)
5507 {
5508 	int nchan = adap->chip_params->nchan;
5509 
5510 	t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
5511 }
5512 
5513 /**
5514  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5515  *	@adap: the adapter
5516  *	@st: holds the counter values
5517  * 	@sleep_ok: if true we may sleep while awaiting command completion
5518  *
5519  *	Returns the values of TP's CPL counters.
5520  */
5521 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5522 			 bool sleep_ok)
5523 {
5524 	int nchan = adap->chip_params->nchan;
5525 
5526 	t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
5527 
5528 	t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
5529 }
5530 
5531 /**
5532  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5533  *	@adap: the adapter
5534  *	@st: holds the counter values
5535  *
5536  *	Returns the values of TP's RDMA counters.
5537  */
5538 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5539 			  bool sleep_ok)
5540 {
5541 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
5542 		       sleep_ok);
5543 }
5544 
5545 /**
5546  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5547  *	@adap: the adapter
5548  *	@idx: the port index
5549  *	@st: holds the counter values
5550  * 	@sleep_ok: if true we may sleep while awaiting command completion
5551  *
5552  *	Returns the values of TP's FCoE counters for the selected port.
5553  */
5554 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5555 		       struct tp_fcoe_stats *st, bool sleep_ok)
5556 {
5557 	u32 val[2];
5558 
5559 	t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
5560 		       sleep_ok);
5561 
5562 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5563 		       A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
5564 
5565 	t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
5566 		       sleep_ok);
5567 
5568 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5569 }
5570 
5571 /**
5572  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5573  *	@adap: the adapter
5574  *	@st: holds the counter values
5575  * 	@sleep_ok: if true we may sleep while awaiting command completion
5576  *
5577  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5578  */
5579 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5580 		      bool sleep_ok)
5581 {
5582 	u32 val[4];
5583 
5584 	t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
5585 
5586 	st->frames = val[0];
5587 	st->drops = val[1];
5588 	st->octets = ((u64)val[2] << 32) | val[3];
5589 }
5590 
5591 /**
5592  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5593  *	@adap: the adapter
5594  *	@mtus: where to store the MTU values
5595  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5596  *
5597  *	Reads the HW path MTU table.
5598  */
5599 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5600 {
5601 	u32 v;
5602 	int i;
5603 
5604 	for (i = 0; i < NMTUS; ++i) {
5605 		t4_write_reg(adap, A_TP_MTU_TABLE,
5606 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
5607 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
5608 		mtus[i] = G_MTUVALUE(v);
5609 		if (mtu_log)
5610 			mtu_log[i] = G_MTUWIDTH(v);
5611 	}
5612 }
5613 
5614 /**
5615  *	t4_read_cong_tbl - reads the congestion control table
5616  *	@adap: the adapter
5617  *	@incr: where to store the alpha values
5618  *
5619  *	Reads the additive increments programmed into the HW congestion
5620  *	control table.
5621  */
5622 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5623 {
5624 	unsigned int mtu, w;
5625 
5626 	for (mtu = 0; mtu < NMTUS; ++mtu)
5627 		for (w = 0; w < NCCTRL_WIN; ++w) {
5628 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
5629 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
5630 			incr[mtu][w] = (u16)t4_read_reg(adap,
5631 						A_TP_CCTRL_TABLE) & 0x1fff;
5632 		}
5633 }
5634 
5635 /**
5636  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5637  *	@adap: the adapter
5638  *	@addr: the indirect TP register address
5639  *	@mask: specifies the field within the register to modify
5640  *	@val: new value for the field
5641  *
5642  *	Sets a field of an indirect TP register to the given value.
5643  */
5644 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5645 			    unsigned int mask, unsigned int val)
5646 {
5647 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
5648 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
5649 	t4_write_reg(adap, A_TP_PIO_DATA, val);
5650 }
5651 
5652 /**
5653  *	init_cong_ctrl - initialize congestion control parameters
5654  *	@a: the alpha values for congestion control
5655  *	@b: the beta values for congestion control
5656  *
5657  *	Initialize the congestion control parameters.
5658  */
5659 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5660 {
5661 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5662 	a[9] = 2;
5663 	a[10] = 3;
5664 	a[11] = 4;
5665 	a[12] = 5;
5666 	a[13] = 6;
5667 	a[14] = 7;
5668 	a[15] = 8;
5669 	a[16] = 9;
5670 	a[17] = 10;
5671 	a[18] = 14;
5672 	a[19] = 17;
5673 	a[20] = 21;
5674 	a[21] = 25;
5675 	a[22] = 30;
5676 	a[23] = 35;
5677 	a[24] = 45;
5678 	a[25] = 60;
5679 	a[26] = 80;
5680 	a[27] = 100;
5681 	a[28] = 200;
5682 	a[29] = 300;
5683 	a[30] = 400;
5684 	a[31] = 500;
5685 
5686 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5687 	b[9] = b[10] = 1;
5688 	b[11] = b[12] = 2;
5689 	b[13] = b[14] = b[15] = b[16] = 3;
5690 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5691 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5692 	b[28] = b[29] = 6;
5693 	b[30] = b[31] = 7;
5694 }
5695 
5696 /* The minimum additive increment value for the congestion control table */
5697 #define CC_MIN_INCR 2U
5698 
5699 /**
5700  *	t4_load_mtus - write the MTU and congestion control HW tables
5701  *	@adap: the adapter
5702  *	@mtus: the values for the MTU table
5703  *	@alpha: the values for the congestion control alpha parameter
5704  *	@beta: the values for the congestion control beta parameter
5705  *
5706  *	Write the HW MTU table with the supplied MTUs and the high-speed
5707  *	congestion control table with the supplied alpha, beta, and MTUs.
5708  *	We write the two tables together because the additive increments
5709  *	depend on the MTUs.
5710  */
5711 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5712 		  const unsigned short *alpha, const unsigned short *beta)
5713 {
5714 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5715 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5716 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5717 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5718 	};
5719 
5720 	unsigned int i, w;
5721 
5722 	for (i = 0; i < NMTUS; ++i) {
5723 		unsigned int mtu = mtus[i];
5724 		unsigned int log2 = fls(mtu);
5725 
5726 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5727 			log2--;
5728 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
5729 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
5730 
5731 		for (w = 0; w < NCCTRL_WIN; ++w) {
5732 			unsigned int inc;
5733 
5734 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5735 				  CC_MIN_INCR);
5736 
5737 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
5738 				     (w << 16) | (beta[w] << 13) | inc);
5739 		}
5740 	}
5741 }
5742 
5743 /**
5744  *	t4_set_pace_tbl - set the pace table
5745  *	@adap: the adapter
5746  *	@pace_vals: the pace values in microseconds
5747  *	@start: index of the first entry in the HW pace table to set
5748  *	@n: how many entries to set
5749  *
5750  *	Sets (a subset of the) HW pace table.
5751  */
5752 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
5753 		     unsigned int start, unsigned int n)
5754 {
5755 	unsigned int vals[NTX_SCHED], i;
5756 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
5757 
5758 	if (n > NTX_SCHED)
5759 	    return -ERANGE;
5760 
5761 	/* convert values from us to dack ticks, rounding to closest value */
5762 	for (i = 0; i < n; i++, pace_vals++) {
5763 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
5764 		if (vals[i] > 0x7ff)
5765 			return -ERANGE;
5766 		if (*pace_vals && vals[i] == 0)
5767 			return -ERANGE;
5768 	}
5769 	for (i = 0; i < n; i++, start++)
5770 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
5771 	return 0;
5772 }
5773 
5774 /**
5775  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
5776  *	@adap: the adapter
5777  *	@kbps: target rate in Kbps
5778  *	@sched: the scheduler index
5779  *
5780  *	Configure a Tx HW scheduler for the target rate.
5781  */
5782 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
5783 {
5784 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
5785 	unsigned int clk = adap->params.vpd.cclk * 1000;
5786 	unsigned int selected_cpt = 0, selected_bpt = 0;
5787 
5788 	if (kbps > 0) {
5789 		kbps *= 125;     /* -> bytes */
5790 		for (cpt = 1; cpt <= 255; cpt++) {
5791 			tps = clk / cpt;
5792 			bpt = (kbps + tps / 2) / tps;
5793 			if (bpt > 0 && bpt <= 255) {
5794 				v = bpt * tps;
5795 				delta = v >= kbps ? v - kbps : kbps - v;
5796 				if (delta < mindelta) {
5797 					mindelta = delta;
5798 					selected_cpt = cpt;
5799 					selected_bpt = bpt;
5800 				}
5801 			} else if (selected_cpt)
5802 				break;
5803 		}
5804 		if (!selected_cpt)
5805 			return -EINVAL;
5806 	}
5807 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
5808 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
5809 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5810 	if (sched & 1)
5811 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
5812 	else
5813 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
5814 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5815 	return 0;
5816 }
5817 
5818 /**
5819  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
5820  *	@adap: the adapter
5821  *	@sched: the scheduler index
5822  *	@ipg: the interpacket delay in tenths of nanoseconds
5823  *
5824  *	Set the interpacket delay for a HW packet rate scheduler.
5825  */
5826 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
5827 {
5828 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
5829 
5830 	/* convert ipg to nearest number of core clocks */
5831 	ipg *= core_ticks_per_usec(adap);
5832 	ipg = (ipg + 5000) / 10000;
5833 	if (ipg > M_TXTIMERSEPQ0)
5834 		return -EINVAL;
5835 
5836 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
5837 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5838 	if (sched & 1)
5839 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
5840 	else
5841 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
5842 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5843 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
5844 	return 0;
5845 }
5846 
5847 /*
5848  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5849  * clocks.  The formula is
5850  *
5851  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5852  *
5853  * which is equivalent to
5854  *
5855  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5856  */
5857 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5858 {
5859 	u64 v = (u64)bytes256 * adap->params.vpd.cclk;
5860 
5861 	return v * 62 + v / 2;
5862 }
5863 
5864 /**
5865  *	t4_get_chan_txrate - get the current per channel Tx rates
5866  *	@adap: the adapter
5867  *	@nic_rate: rates for NIC traffic
5868  *	@ofld_rate: rates for offloaded traffic
5869  *
5870  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5871  *	for each channel.
5872  */
5873 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5874 {
5875 	u32 v;
5876 
5877 	v = t4_read_reg(adap, A_TP_TX_TRATE);
5878 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
5879 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
5880 	if (adap->chip_params->nchan > 2) {
5881 		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
5882 		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
5883 	}
5884 
5885 	v = t4_read_reg(adap, A_TP_TX_ORATE);
5886 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
5887 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
5888 	if (adap->chip_params->nchan > 2) {
5889 		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
5890 		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
5891 	}
5892 }
5893 
5894 /**
5895  *	t4_set_trace_filter - configure one of the tracing filters
5896  *	@adap: the adapter
5897  *	@tp: the desired trace filter parameters
5898  *	@idx: which filter to configure
5899  *	@enable: whether to enable or disable the filter
5900  *
5901  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
5902  *	it indicates that the filter is already written in the register and it
5903  *	just needs to be enabled or disabled.
5904  */
5905 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5906     int idx, int enable)
5907 {
5908 	int i, ofst = idx * 4;
5909 	u32 data_reg, mask_reg, cfg;
5910 	u32 multitrc = F_TRCMULTIFILTER;
5911 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
5912 
5913 	if (idx < 0 || idx >= NTRACE)
5914 		return -EINVAL;
5915 
5916 	if (tp == NULL || !enable) {
5917 		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
5918 		    enable ? en : 0);
5919 		return 0;
5920 	}
5921 
5922 	/*
5923 	 * TODO - After T4 data book is updated, specify the exact
5924 	 * section below.
5925 	 *
5926 	 * See T4 data book - MPS section for a complete description
5927 	 * of the below if..else handling of A_MPS_TRC_CFG register
5928 	 * value.
5929 	 */
5930 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
5931 	if (cfg & F_TRCMULTIFILTER) {
5932 		/*
5933 		 * If multiple tracers are enabled, then maximum
5934 		 * capture size is 2.5KB (FIFO size of a single channel)
5935 		 * minus 2 flits for CPL_TRACE_PKT header.
5936 		 */
5937 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5938 			return -EINVAL;
5939 	} else {
5940 		/*
5941 		 * If multiple tracers are disabled, to avoid deadlocks
5942 		 * maximum packet capture size of 9600 bytes is recommended.
5943 		 * Also in this mode, only trace0 can be enabled and running.
5944 		 */
5945 		multitrc = 0;
5946 		if (tp->snap_len > 9600 || idx)
5947 			return -EINVAL;
5948 	}
5949 
5950 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
5951 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
5952 	    tp->min_len > M_TFMINPKTSIZE)
5953 		return -EINVAL;
5954 
5955 	/* stop the tracer we'll be changing */
5956 	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
5957 
5958 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
5959 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
5960 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
5961 
5962 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5963 		t4_write_reg(adap, data_reg, tp->data[i]);
5964 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5965 	}
5966 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
5967 		     V_TFCAPTUREMAX(tp->snap_len) |
5968 		     V_TFMINPKTSIZE(tp->min_len));
5969 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
5970 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
5971 		     (is_t4(adap) ?
5972 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
5973 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
5974 
5975 	return 0;
5976 }
5977 
5978 /**
5979  *	t4_get_trace_filter - query one of the tracing filters
5980  *	@adap: the adapter
5981  *	@tp: the current trace filter parameters
5982  *	@idx: which trace filter to query
5983  *	@enabled: non-zero if the filter is enabled
5984  *
5985  *	Returns the current settings of one of the HW tracing filters.
5986  */
5987 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5988 			 int *enabled)
5989 {
5990 	u32 ctla, ctlb;
5991 	int i, ofst = idx * 4;
5992 	u32 data_reg, mask_reg;
5993 
5994 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
5995 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
5996 
5997 	if (is_t4(adap)) {
5998 		*enabled = !!(ctla & F_TFEN);
5999 		tp->port =  G_TFPORT(ctla);
6000 		tp->invert = !!(ctla & F_TFINVERTMATCH);
6001 	} else {
6002 		*enabled = !!(ctla & F_T5_TFEN);
6003 		tp->port = G_T5_TFPORT(ctla);
6004 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
6005 	}
6006 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
6007 	tp->min_len = G_TFMINPKTSIZE(ctlb);
6008 	tp->skip_ofst = G_TFOFFSET(ctla);
6009 	tp->skip_len = G_TFLENGTH(ctla);
6010 
6011 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
6012 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
6013 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
6014 
6015 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6016 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6017 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6018 	}
6019 }
6020 
6021 /**
6022  *	t4_pmtx_get_stats - returns the HW stats from PMTX
6023  *	@adap: the adapter
6024  *	@cnt: where to store the count statistics
6025  *	@cycles: where to store the cycle statistics
6026  *
6027  *	Returns performance statistics from PMTX.
6028  */
6029 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6030 {
6031 	int i;
6032 	u32 data[2];
6033 
6034 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6035 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
6036 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
6037 		if (is_t4(adap))
6038 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
6039 		else {
6040 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
6041 					 A_PM_TX_DBG_DATA, data, 2,
6042 					 A_PM_TX_DBG_STAT_MSB);
6043 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6044 		}
6045 	}
6046 }
6047 
6048 /**
6049  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6050  *	@adap: the adapter
6051  *	@cnt: where to store the count statistics
6052  *	@cycles: where to store the cycle statistics
6053  *
6054  *	Returns performance statistics from PMRX.
6055  */
6056 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6057 {
6058 	int i;
6059 	u32 data[2];
6060 
6061 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6062 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
6063 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
6064 		if (is_t4(adap)) {
6065 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
6066 		} else {
6067 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
6068 					 A_PM_RX_DBG_DATA, data, 2,
6069 					 A_PM_RX_DBG_STAT_MSB);
6070 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6071 		}
6072 	}
6073 }
6074 
6075 /**
6076  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6077  *	@adap: the adapter
6078  *	@idx: the port index
6079  *
6080  *	Returns a bitmap indicating which MPS buffer groups are associated
6081  *	with the given port.  Bit i is set if buffer group i is used by the
6082  *	port.
6083  */
6084 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
6085 {
6086 	u32 n;
6087 
6088 	if (adap->params.mps_bg_map)
6089 		return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
6090 
6091 	n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6092 	if (n == 0)
6093 		return idx == 0 ? 0xf : 0;
6094 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6095 		return idx < 2 ? (3 << (2 * idx)) : 0;
6096 	return 1 << idx;
6097 }
6098 
6099 /*
6100  * TP RX e-channels associated with the port.
6101  */
6102 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
6103 {
6104 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6105 
6106 	if (n == 0)
6107 		return idx == 0 ? 0xf : 0;
6108 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6109 		return idx < 2 ? (3 << (2 * idx)) : 0;
6110 	return 1 << idx;
6111 }
6112 
6113 /**
6114  *      t4_get_port_type_description - return Port Type string description
6115  *      @port_type: firmware Port Type enumeration
6116  */
6117 const char *t4_get_port_type_description(enum fw_port_type port_type)
6118 {
6119 	static const char *const port_type_description[] = {
6120 		"Fiber_XFI",
6121 		"Fiber_XAUI",
6122 		"BT_SGMII",
6123 		"BT_XFI",
6124 		"BT_XAUI",
6125 		"KX4",
6126 		"CX4",
6127 		"KX",
6128 		"KR",
6129 		"SFP",
6130 		"BP_AP",
6131 		"BP4_AP",
6132 		"QSFP_10G",
6133 		"QSA",
6134 		"QSFP",
6135 		"BP40_BA",
6136 		"KR4_100G",
6137 		"CR4_QSFP",
6138 		"CR_QSFP",
6139 		"CR2_QSFP",
6140 		"SFP28",
6141 		"KR_SFP28",
6142 	};
6143 
6144 	if (port_type < ARRAY_SIZE(port_type_description))
6145 		return port_type_description[port_type];
6146 	return "UNKNOWN";
6147 }
6148 
6149 /**
6150  *      t4_get_port_stats_offset - collect port stats relative to a previous
6151  *				   snapshot
6152  *      @adap: The adapter
6153  *      @idx: The port
6154  *      @stats: Current stats to fill
6155  *      @offset: Previous stats snapshot
6156  */
6157 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6158 		struct port_stats *stats,
6159 		struct port_stats *offset)
6160 {
6161 	u64 *s, *o;
6162 	int i;
6163 
6164 	t4_get_port_stats(adap, idx, stats);
6165 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6166 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
6167 			i++, s++, o++)
6168 		*s -= *o;
6169 }
6170 
6171 /**
6172  *	t4_get_port_stats - collect port statistics
6173  *	@adap: the adapter
6174  *	@idx: the port index
6175  *	@p: the stats structure to fill
6176  *
6177  *	Collect statistics related to the given port from HW.
6178  */
6179 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6180 {
6181 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6182 	u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6183 
6184 #define GET_STAT(name) \
6185 	t4_read_reg64(adap, \
6186 	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
6187 	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
6188 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6189 
6190 	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
6191 	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
6192 	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
6193 	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
6194 	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
6195 	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
6196 	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
6197 	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
6198 	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
6199 	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
6200 	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
6201 	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
6202 	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
6203 	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
6204 	p->tx_drop		= GET_STAT(TX_PORT_DROP);
6205 	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
6206 	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
6207 	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
6208 	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
6209 	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
6210 	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
6211 	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
6212 	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
6213 
6214 	if (chip_id(adap) >= CHELSIO_T5) {
6215 		if (stat_ctl & F_COUNTPAUSESTATTX) {
6216 			p->tx_frames -= p->tx_pause;
6217 			p->tx_octets -= p->tx_pause * 64;
6218 		}
6219 		if (stat_ctl & F_COUNTPAUSEMCTX)
6220 			p->tx_mcast_frames -= p->tx_pause;
6221 	}
6222 
6223 	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
6224 	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
6225 	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
6226 	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
6227 	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
6228 	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
6229 	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
6230 	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
6231 	p->rx_fcs_err		= GET_STAT(RX_PORT_CRC_ERROR);
6232 	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
6233 	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
6234 	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
6235 	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
6236 	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
6237 	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
6238 	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
6239 	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
6240 	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
6241 	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
6242 	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
6243 	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
6244 	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
6245 	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
6246 	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
6247 	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
6248 	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
6249 	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
6250 
6251 	if (chip_id(adap) >= CHELSIO_T5) {
6252 		if (stat_ctl & F_COUNTPAUSESTATRX) {
6253 			p->rx_frames -= p->rx_pause;
6254 			p->rx_octets -= p->rx_pause * 64;
6255 		}
6256 		if (stat_ctl & F_COUNTPAUSEMCRX)
6257 			p->rx_mcast_frames -= p->rx_pause;
6258 	}
6259 
6260 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6261 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6262 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6263 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6264 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6265 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6266 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6267 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6268 
6269 #undef GET_STAT
6270 #undef GET_STAT_COM
6271 }
6272 
6273 /**
6274  *	t4_get_lb_stats - collect loopback port statistics
6275  *	@adap: the adapter
6276  *	@idx: the loopback port index
6277  *	@p: the stats structure to fill
6278  *
6279  *	Return HW statistics for the given loopback port.
6280  */
6281 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6282 {
6283 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6284 
6285 #define GET_STAT(name) \
6286 	t4_read_reg64(adap, \
6287 	(is_t4(adap) ? \
6288 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
6289 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
6290 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6291 
6292 	p->octets	= GET_STAT(BYTES);
6293 	p->frames	= GET_STAT(FRAMES);
6294 	p->bcast_frames	= GET_STAT(BCAST);
6295 	p->mcast_frames	= GET_STAT(MCAST);
6296 	p->ucast_frames	= GET_STAT(UCAST);
6297 	p->error_frames	= GET_STAT(ERROR);
6298 
6299 	p->frames_64		= GET_STAT(64B);
6300 	p->frames_65_127	= GET_STAT(65B_127B);
6301 	p->frames_128_255	= GET_STAT(128B_255B);
6302 	p->frames_256_511	= GET_STAT(256B_511B);
6303 	p->frames_512_1023	= GET_STAT(512B_1023B);
6304 	p->frames_1024_1518	= GET_STAT(1024B_1518B);
6305 	p->frames_1519_max	= GET_STAT(1519B_MAX);
6306 	p->drop			= GET_STAT(DROP_FRAMES);
6307 
6308 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6309 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6310 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6311 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6312 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6313 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6314 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6315 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6316 
6317 #undef GET_STAT
6318 #undef GET_STAT_COM
6319 }
6320 
6321 /**
6322  *	t4_wol_magic_enable - enable/disable magic packet WoL
6323  *	@adap: the adapter
6324  *	@port: the physical port index
6325  *	@addr: MAC address expected in magic packets, %NULL to disable
6326  *
6327  *	Enables/disables magic packet wake-on-LAN for the selected port.
6328  */
6329 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
6330 			 const u8 *addr)
6331 {
6332 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
6333 
6334 	if (is_t4(adap)) {
6335 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
6336 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
6337 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6338 	} else {
6339 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
6340 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
6341 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6342 	}
6343 
6344 	if (addr) {
6345 		t4_write_reg(adap, mag_id_reg_l,
6346 			     (addr[2] << 24) | (addr[3] << 16) |
6347 			     (addr[4] << 8) | addr[5]);
6348 		t4_write_reg(adap, mag_id_reg_h,
6349 			     (addr[0] << 8) | addr[1]);
6350 	}
6351 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
6352 			 V_MAGICEN(addr != NULL));
6353 }
6354 
6355 /**
6356  *	t4_wol_pat_enable - enable/disable pattern-based WoL
6357  *	@adap: the adapter
6358  *	@port: the physical port index
6359  *	@map: bitmap of which HW pattern filters to set
6360  *	@mask0: byte mask for bytes 0-63 of a packet
6361  *	@mask1: byte mask for bytes 64-127 of a packet
6362  *	@crc: Ethernet CRC for selected bytes
6363  *	@enable: enable/disable switch
6364  *
6365  *	Sets the pattern filters indicated in @map to mask out the bytes
6366  *	specified in @mask0/@mask1 in received packets and compare the CRC of
6367  *	the resulting packet against @crc.  If @enable is %true pattern-based
6368  *	WoL is enabled, otherwise disabled.
6369  */
6370 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
6371 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
6372 {
6373 	int i;
6374 	u32 port_cfg_reg;
6375 
6376 	if (is_t4(adap))
6377 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6378 	else
6379 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6380 
6381 	if (!enable) {
6382 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
6383 		return 0;
6384 	}
6385 	if (map > 0xff)
6386 		return -EINVAL;
6387 
6388 #define EPIO_REG(name) \
6389 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
6390 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
6391 
6392 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
6393 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
6394 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
6395 
6396 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
6397 		if (!(map & 1))
6398 			continue;
6399 
6400 		/* write byte masks */
6401 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
6402 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
6403 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6404 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6405 			return -ETIMEDOUT;
6406 
6407 		/* write CRC */
6408 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
6409 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
6410 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6411 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6412 			return -ETIMEDOUT;
6413 	}
6414 #undef EPIO_REG
6415 
6416 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
6417 	return 0;
6418 }
6419 
6420 /*     t4_mk_filtdelwr - create a delete filter WR
6421  *     @ftid: the filter ID
6422  *     @wr: the filter work request to populate
6423  *     @qid: ingress queue to receive the delete notification
6424  *
6425  *     Creates a filter work request to delete the supplied filter.  If @qid is
6426  *     negative the delete notification is suppressed.
6427  */
6428 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6429 {
6430 	memset(wr, 0, sizeof(*wr));
6431 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
6432 	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
6433 	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
6434 				    V_FW_FILTER_WR_NOREPLY(qid < 0));
6435 	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
6436 	if (qid >= 0)
6437 		wr->rx_chan_rx_rpl_iq =
6438 				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
6439 }
6440 
6441 #define INIT_CMD(var, cmd, rd_wr) do { \
6442 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
6443 					F_FW_CMD_REQUEST | \
6444 					F_FW_CMD_##rd_wr); \
6445 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6446 } while (0)
6447 
6448 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6449 			  u32 addr, u32 val)
6450 {
6451 	u32 ldst_addrspace;
6452 	struct fw_ldst_cmd c;
6453 
6454 	memset(&c, 0, sizeof(c));
6455 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
6456 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6457 					F_FW_CMD_REQUEST |
6458 					F_FW_CMD_WRITE |
6459 					ldst_addrspace);
6460 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6461 	c.u.addrval.addr = cpu_to_be32(addr);
6462 	c.u.addrval.val = cpu_to_be32(val);
6463 
6464 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6465 }
6466 
6467 /**
6468  *	t4_mdio_rd - read a PHY register through MDIO
6469  *	@adap: the adapter
6470  *	@mbox: mailbox to use for the FW command
6471  *	@phy_addr: the PHY address
6472  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6473  *	@reg: the register to read
6474  *	@valp: where to store the value
6475  *
6476  *	Issues a FW command through the given mailbox to read a PHY register.
6477  */
6478 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6479 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
6480 {
6481 	int ret;
6482 	u32 ldst_addrspace;
6483 	struct fw_ldst_cmd c;
6484 
6485 	memset(&c, 0, sizeof(c));
6486 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6487 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6488 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6489 					ldst_addrspace);
6490 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6491 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6492 					 V_FW_LDST_CMD_MMD(mmd));
6493 	c.u.mdio.raddr = cpu_to_be16(reg);
6494 
6495 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6496 	if (ret == 0)
6497 		*valp = be16_to_cpu(c.u.mdio.rval);
6498 	return ret;
6499 }
6500 
6501 /**
6502  *	t4_mdio_wr - write a PHY register through MDIO
6503  *	@adap: the adapter
6504  *	@mbox: mailbox to use for the FW command
6505  *	@phy_addr: the PHY address
6506  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6507  *	@reg: the register to write
6508  *	@valp: value to write
6509  *
6510  *	Issues a FW command through the given mailbox to write a PHY register.
6511  */
6512 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6513 	       unsigned int mmd, unsigned int reg, unsigned int val)
6514 {
6515 	u32 ldst_addrspace;
6516 	struct fw_ldst_cmd c;
6517 
6518 	memset(&c, 0, sizeof(c));
6519 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6520 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6521 					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6522 					ldst_addrspace);
6523 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6524 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6525 					 V_FW_LDST_CMD_MMD(mmd));
6526 	c.u.mdio.raddr = cpu_to_be16(reg);
6527 	c.u.mdio.rval = cpu_to_be16(val);
6528 
6529 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6530 }
6531 
6532 /**
6533  *
6534  *	t4_sge_decode_idma_state - decode the idma state
6535  *	@adap: the adapter
6536  *	@state: the state idma is stuck in
6537  */
6538 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6539 {
6540 	static const char * const t4_decode[] = {
6541 		"IDMA_IDLE",
6542 		"IDMA_PUSH_MORE_CPL_FIFO",
6543 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6544 		"Not used",
6545 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6546 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6547 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6548 		"IDMA_SEND_FIFO_TO_IMSG",
6549 		"IDMA_FL_REQ_DATA_FL_PREP",
6550 		"IDMA_FL_REQ_DATA_FL",
6551 		"IDMA_FL_DROP",
6552 		"IDMA_FL_H_REQ_HEADER_FL",
6553 		"IDMA_FL_H_SEND_PCIEHDR",
6554 		"IDMA_FL_H_PUSH_CPL_FIFO",
6555 		"IDMA_FL_H_SEND_CPL",
6556 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6557 		"IDMA_FL_H_SEND_IP_HDR",
6558 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6559 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6560 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6561 		"IDMA_FL_D_SEND_PCIEHDR",
6562 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6563 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6564 		"IDMA_FL_SEND_PCIEHDR",
6565 		"IDMA_FL_PUSH_CPL_FIFO",
6566 		"IDMA_FL_SEND_CPL",
6567 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6568 		"IDMA_FL_SEND_PAYLOAD",
6569 		"IDMA_FL_REQ_NEXT_DATA_FL",
6570 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6571 		"IDMA_FL_SEND_PADDING",
6572 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6573 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6574 		"IDMA_FL_REQ_DATAFL_DONE",
6575 		"IDMA_FL_REQ_HEADERFL_DONE",
6576 	};
6577 	static const char * const t5_decode[] = {
6578 		"IDMA_IDLE",
6579 		"IDMA_ALMOST_IDLE",
6580 		"IDMA_PUSH_MORE_CPL_FIFO",
6581 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6582 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6583 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6584 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6585 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6586 		"IDMA_SEND_FIFO_TO_IMSG",
6587 		"IDMA_FL_REQ_DATA_FL",
6588 		"IDMA_FL_DROP",
6589 		"IDMA_FL_DROP_SEND_INC",
6590 		"IDMA_FL_H_REQ_HEADER_FL",
6591 		"IDMA_FL_H_SEND_PCIEHDR",
6592 		"IDMA_FL_H_PUSH_CPL_FIFO",
6593 		"IDMA_FL_H_SEND_CPL",
6594 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6595 		"IDMA_FL_H_SEND_IP_HDR",
6596 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6597 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6598 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6599 		"IDMA_FL_D_SEND_PCIEHDR",
6600 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6601 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6602 		"IDMA_FL_SEND_PCIEHDR",
6603 		"IDMA_FL_PUSH_CPL_FIFO",
6604 		"IDMA_FL_SEND_CPL",
6605 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6606 		"IDMA_FL_SEND_PAYLOAD",
6607 		"IDMA_FL_REQ_NEXT_DATA_FL",
6608 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6609 		"IDMA_FL_SEND_PADDING",
6610 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6611 	};
6612 	static const char * const t6_decode[] = {
6613 		"IDMA_IDLE",
6614 		"IDMA_PUSH_MORE_CPL_FIFO",
6615 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6616 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6617 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6618 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6619 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6620 		"IDMA_FL_REQ_DATA_FL",
6621 		"IDMA_FL_DROP",
6622 		"IDMA_FL_DROP_SEND_INC",
6623 		"IDMA_FL_H_REQ_HEADER_FL",
6624 		"IDMA_FL_H_SEND_PCIEHDR",
6625 		"IDMA_FL_H_PUSH_CPL_FIFO",
6626 		"IDMA_FL_H_SEND_CPL",
6627 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6628 		"IDMA_FL_H_SEND_IP_HDR",
6629 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6630 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6631 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6632 		"IDMA_FL_D_SEND_PCIEHDR",
6633 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6634 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6635 		"IDMA_FL_SEND_PCIEHDR",
6636 		"IDMA_FL_PUSH_CPL_FIFO",
6637 		"IDMA_FL_SEND_CPL",
6638 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6639 		"IDMA_FL_SEND_PAYLOAD",
6640 		"IDMA_FL_REQ_NEXT_DATA_FL",
6641 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6642 		"IDMA_FL_SEND_PADDING",
6643 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6644 	};
6645 	static const u32 sge_regs[] = {
6646 		A_SGE_DEBUG_DATA_LOW_INDEX_2,
6647 		A_SGE_DEBUG_DATA_LOW_INDEX_3,
6648 		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
6649 	};
6650 	const char * const *sge_idma_decode;
6651 	int sge_idma_decode_nstates;
6652 	int i;
6653 	unsigned int chip_version = chip_id(adapter);
6654 
6655 	/* Select the right set of decode strings to dump depending on the
6656 	 * adapter chip type.
6657 	 */
6658 	switch (chip_version) {
6659 	case CHELSIO_T4:
6660 		sge_idma_decode = (const char * const *)t4_decode;
6661 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6662 		break;
6663 
6664 	case CHELSIO_T5:
6665 		sge_idma_decode = (const char * const *)t5_decode;
6666 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6667 		break;
6668 
6669 	case CHELSIO_T6:
6670 		sge_idma_decode = (const char * const *)t6_decode;
6671 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6672 		break;
6673 
6674 	default:
6675 		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
6676 		return;
6677 	}
6678 
6679 	if (state < sge_idma_decode_nstates)
6680 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6681 	else
6682 		CH_WARN(adapter, "idma state %d unknown\n", state);
6683 
6684 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6685 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6686 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6687 }
6688 
6689 /**
6690  *      t4_sge_ctxt_flush - flush the SGE context cache
6691  *      @adap: the adapter
6692  *      @mbox: mailbox to use for the FW command
6693  *
6694  *      Issues a FW command through the given mailbox to flush the
6695  *      SGE context cache.
6696  */
6697 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
6698 {
6699 	int ret;
6700 	u32 ldst_addrspace;
6701 	struct fw_ldst_cmd c;
6702 
6703 	memset(&c, 0, sizeof(c));
6704 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
6705 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6706 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6707 					ldst_addrspace);
6708 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6709 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
6710 
6711 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6712 	return ret;
6713 }
6714 
6715 /**
6716  *      t4_fw_hello - establish communication with FW
6717  *      @adap: the adapter
6718  *      @mbox: mailbox to use for the FW command
6719  *      @evt_mbox: mailbox to receive async FW events
6720  *      @master: specifies the caller's willingness to be the device master
6721  *	@state: returns the current device state (if non-NULL)
6722  *
6723  *	Issues a command to establish communication with FW.  Returns either
6724  *	an error (negative integer) or the mailbox of the Master PF.
6725  */
6726 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6727 		enum dev_master master, enum dev_state *state)
6728 {
6729 	int ret;
6730 	struct fw_hello_cmd c;
6731 	u32 v;
6732 	unsigned int master_mbox;
6733 	int retries = FW_CMD_HELLO_RETRIES;
6734 
6735 retry:
6736 	memset(&c, 0, sizeof(c));
6737 	INIT_CMD(c, HELLO, WRITE);
6738 	c.err_to_clearinit = cpu_to_be32(
6739 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
6740 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
6741 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
6742 					mbox : M_FW_HELLO_CMD_MBMASTER) |
6743 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
6744 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
6745 		F_FW_HELLO_CMD_CLEARINIT);
6746 
6747 	/*
6748 	 * Issue the HELLO command to the firmware.  If it's not successful
6749 	 * but indicates that we got a "busy" or "timeout" condition, retry
6750 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6751 	 * retry limit, check to see if the firmware left us any error
6752 	 * information and report that if so ...
6753 	 */
6754 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6755 	if (ret != FW_SUCCESS) {
6756 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6757 			goto retry;
6758 		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
6759 			t4_report_fw_error(adap);
6760 		return ret;
6761 	}
6762 
6763 	v = be32_to_cpu(c.err_to_clearinit);
6764 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
6765 	if (state) {
6766 		if (v & F_FW_HELLO_CMD_ERR)
6767 			*state = DEV_STATE_ERR;
6768 		else if (v & F_FW_HELLO_CMD_INIT)
6769 			*state = DEV_STATE_INIT;
6770 		else
6771 			*state = DEV_STATE_UNINIT;
6772 	}
6773 
6774 	/*
6775 	 * If we're not the Master PF then we need to wait around for the
6776 	 * Master PF Driver to finish setting up the adapter.
6777 	 *
6778 	 * Note that we also do this wait if we're a non-Master-capable PF and
6779 	 * there is no current Master PF; a Master PF may show up momentarily
6780 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6781 	 * OS loads lots of different drivers rapidly at the same time).  In
6782 	 * this case, the Master PF returned by the firmware will be
6783 	 * M_PCIE_FW_MASTER so the test below will work ...
6784 	 */
6785 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
6786 	    master_mbox != mbox) {
6787 		int waiting = FW_CMD_HELLO_TIMEOUT;
6788 
6789 		/*
6790 		 * Wait for the firmware to either indicate an error or
6791 		 * initialized state.  If we see either of these we bail out
6792 		 * and report the issue to the caller.  If we exhaust the
6793 		 * "hello timeout" and we haven't exhausted our retries, try
6794 		 * again.  Otherwise bail with a timeout error.
6795 		 */
6796 		for (;;) {
6797 			u32 pcie_fw;
6798 
6799 			msleep(50);
6800 			waiting -= 50;
6801 
6802 			/*
6803 			 * If neither Error nor Initialialized are indicated
6804 			 * by the firmware keep waiting till we exhaust our
6805 			 * timeout ... and then retry if we haven't exhausted
6806 			 * our retries ...
6807 			 */
6808 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
6809 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
6810 				if (waiting <= 0) {
6811 					if (retries-- > 0)
6812 						goto retry;
6813 
6814 					return -ETIMEDOUT;
6815 				}
6816 				continue;
6817 			}
6818 
6819 			/*
6820 			 * We either have an Error or Initialized condition
6821 			 * report errors preferentially.
6822 			 */
6823 			if (state) {
6824 				if (pcie_fw & F_PCIE_FW_ERR)
6825 					*state = DEV_STATE_ERR;
6826 				else if (pcie_fw & F_PCIE_FW_INIT)
6827 					*state = DEV_STATE_INIT;
6828 			}
6829 
6830 			/*
6831 			 * If we arrived before a Master PF was selected and
6832 			 * there's not a valid Master PF, grab its identity
6833 			 * for our caller.
6834 			 */
6835 			if (master_mbox == M_PCIE_FW_MASTER &&
6836 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
6837 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
6838 			break;
6839 		}
6840 	}
6841 
6842 	return master_mbox;
6843 }
6844 
6845 /**
6846  *	t4_fw_bye - end communication with FW
6847  *	@adap: the adapter
6848  *	@mbox: mailbox to use for the FW command
6849  *
6850  *	Issues a command to terminate communication with FW.
6851  */
6852 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6853 {
6854 	struct fw_bye_cmd c;
6855 
6856 	memset(&c, 0, sizeof(c));
6857 	INIT_CMD(c, BYE, WRITE);
6858 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6859 }
6860 
6861 /**
6862  *	t4_fw_reset - issue a reset to FW
6863  *	@adap: the adapter
6864  *	@mbox: mailbox to use for the FW command
6865  *	@reset: specifies the type of reset to perform
6866  *
6867  *	Issues a reset command of the specified type to FW.
6868  */
6869 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6870 {
6871 	struct fw_reset_cmd c;
6872 
6873 	memset(&c, 0, sizeof(c));
6874 	INIT_CMD(c, RESET, WRITE);
6875 	c.val = cpu_to_be32(reset);
6876 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6877 }
6878 
6879 /**
6880  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6881  *	@adap: the adapter
6882  *	@mbox: mailbox to use for the FW RESET command (if desired)
6883  *	@force: force uP into RESET even if FW RESET command fails
6884  *
6885  *	Issues a RESET command to firmware (if desired) with a HALT indication
6886  *	and then puts the microprocessor into RESET state.  The RESET command
6887  *	will only be issued if a legitimate mailbox is provided (mbox <=
6888  *	M_PCIE_FW_MASTER).
6889  *
6890  *	This is generally used in order for the host to safely manipulate the
6891  *	adapter without fear of conflicting with whatever the firmware might
6892  *	be doing.  The only way out of this state is to RESTART the firmware
6893  *	...
6894  */
6895 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6896 {
6897 	int ret = 0;
6898 
6899 	/*
6900 	 * If a legitimate mailbox is provided, issue a RESET command
6901 	 * with a HALT indication.
6902 	 */
6903 	if (mbox <= M_PCIE_FW_MASTER) {
6904 		struct fw_reset_cmd c;
6905 
6906 		memset(&c, 0, sizeof(c));
6907 		INIT_CMD(c, RESET, WRITE);
6908 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
6909 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
6910 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6911 	}
6912 
6913 	/*
6914 	 * Normally we won't complete the operation if the firmware RESET
6915 	 * command fails but if our caller insists we'll go ahead and put the
6916 	 * uP into RESET.  This can be useful if the firmware is hung or even
6917 	 * missing ...  We'll have to take the risk of putting the uP into
6918 	 * RESET without the cooperation of firmware in that case.
6919 	 *
6920 	 * We also force the firmware's HALT flag to be on in case we bypassed
6921 	 * the firmware RESET command above or we're dealing with old firmware
6922 	 * which doesn't have the HALT capability.  This will serve as a flag
6923 	 * for the incoming firmware to know that it's coming out of a HALT
6924 	 * rather than a RESET ... if it's new enough to understand that ...
6925 	 */
6926 	if (ret == 0 || force) {
6927 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6928 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
6929 				 F_PCIE_FW_HALT);
6930 	}
6931 
6932 	/*
6933 	 * And we always return the result of the firmware RESET command
6934 	 * even when we force the uP into RESET ...
6935 	 */
6936 	return ret;
6937 }
6938 
6939 /**
6940  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6941  *	@adap: the adapter
6942  *	@reset: if we want to do a RESET to restart things
6943  *
6944  *	Restart firmware previously halted by t4_fw_halt().  On successful
6945  *	return the previous PF Master remains as the new PF Master and there
6946  *	is no need to issue a new HELLO command, etc.
6947  *
6948  *	We do this in two ways:
6949  *
6950  *	 1. If we're dealing with newer firmware we'll simply want to take
6951  *	    the chip's microprocessor out of RESET.  This will cause the
6952  *	    firmware to start up from its start vector.  And then we'll loop
6953  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6954  *	    reset to 0) or we timeout.
6955  *
6956  *	 2. If we're dealing with older firmware then we'll need to RESET
6957  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6958  *	    flag and automatically RESET itself on startup.
6959  */
6960 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6961 {
6962 	if (reset) {
6963 		/*
6964 		 * Since we're directing the RESET instead of the firmware
6965 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6966 		 * bit.
6967 		 */
6968 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
6969 
6970 		/*
6971 		 * If we've been given a valid mailbox, first try to get the
6972 		 * firmware to do the RESET.  If that works, great and we can
6973 		 * return success.  Otherwise, if we haven't been given a
6974 		 * valid mailbox or the RESET command failed, fall back to
6975 		 * hitting the chip with a hammer.
6976 		 */
6977 		if (mbox <= M_PCIE_FW_MASTER) {
6978 			t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6979 			msleep(100);
6980 			if (t4_fw_reset(adap, mbox,
6981 					F_PIORST | F_PIORSTMODE) == 0)
6982 				return 0;
6983 		}
6984 
6985 		t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6986 		msleep(2000);
6987 	} else {
6988 		int ms;
6989 
6990 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6991 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6992 			if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
6993 				return FW_SUCCESS;
6994 			msleep(100);
6995 			ms += 100;
6996 		}
6997 		return -ETIMEDOUT;
6998 	}
6999 	return 0;
7000 }
7001 
7002 /**
7003  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7004  *	@adap: the adapter
7005  *	@mbox: mailbox to use for the FW RESET command (if desired)
7006  *	@fw_data: the firmware image to write
7007  *	@size: image size
7008  *	@force: force upgrade even if firmware doesn't cooperate
7009  *
7010  *	Perform all of the steps necessary for upgrading an adapter's
7011  *	firmware image.  Normally this requires the cooperation of the
7012  *	existing firmware in order to halt all existing activities
7013  *	but if an invalid mailbox token is passed in we skip that step
7014  *	(though we'll still put the adapter microprocessor into RESET in
7015  *	that case).
7016  *
7017  *	On successful return the new firmware will have been loaded and
7018  *	the adapter will have been fully RESET losing all previous setup
7019  *	state.  On unsuccessful return the adapter may be completely hosed ...
7020  *	positive errno indicates that the adapter is ~probably~ intact, a
7021  *	negative errno indicates that things are looking bad ...
7022  */
7023 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7024 		  const u8 *fw_data, unsigned int size, int force)
7025 {
7026 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7027 	unsigned int bootstrap =
7028 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
7029 	int reset, ret;
7030 
7031 	if (!t4_fw_matches_chip(adap, fw_hdr))
7032 		return -EINVAL;
7033 
7034 	if (!bootstrap) {
7035 		ret = t4_fw_halt(adap, mbox, force);
7036 		if (ret < 0 && !force)
7037 			return ret;
7038 	}
7039 
7040 	ret = t4_load_fw(adap, fw_data, size);
7041 	if (ret < 0 || bootstrap)
7042 		return ret;
7043 
7044 	/*
7045 	 * Older versions of the firmware don't understand the new
7046 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
7047 	 * restart.  So for newly loaded older firmware we'll have to do the
7048 	 * RESET for it so it starts up on a clean slate.  We can tell if
7049 	 * the newly loaded firmware will handle this right by checking
7050 	 * its header flags to see if it advertises the capability.
7051 	 */
7052 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
7053 	return t4_fw_restart(adap, mbox, reset);
7054 }
7055 
7056 /*
7057  * Card doesn't have a firmware, install one.
7058  */
7059 int t4_fw_forceinstall(struct adapter *adap, const u8 *fw_data,
7060     unsigned int size)
7061 {
7062 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7063 	unsigned int bootstrap =
7064 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
7065 	int ret;
7066 
7067 	if (!t4_fw_matches_chip(adap, fw_hdr) || bootstrap)
7068 		return -EINVAL;
7069 
7070 	t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
7071 	t4_write_reg(adap, A_PCIE_FW, 0);	/* Clobber internal state */
7072 	ret = t4_load_fw(adap, fw_data, size);
7073 	if (ret < 0)
7074 		return ret;
7075 	t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
7076 	msleep(1000);
7077 
7078 	return (0);
7079 }
7080 
7081 /**
7082  *	t4_fw_initialize - ask FW to initialize the device
7083  *	@adap: the adapter
7084  *	@mbox: mailbox to use for the FW command
7085  *
7086  *	Issues a command to FW to partially initialize the device.  This
7087  *	performs initialization that generally doesn't depend on user input.
7088  */
7089 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7090 {
7091 	struct fw_initialize_cmd c;
7092 
7093 	memset(&c, 0, sizeof(c));
7094 	INIT_CMD(c, INITIALIZE, WRITE);
7095 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7096 }
7097 
7098 /**
7099  *	t4_query_params_rw - query FW or device parameters
7100  *	@adap: the adapter
7101  *	@mbox: mailbox to use for the FW command
7102  *	@pf: the PF
7103  *	@vf: the VF
7104  *	@nparams: the number of parameters
7105  *	@params: the parameter names
7106  *	@val: the parameter values
7107  *	@rw: Write and read flag
7108  *
7109  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7110  *	queried at once.
7111  */
7112 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7113 		       unsigned int vf, unsigned int nparams, const u32 *params,
7114 		       u32 *val, int rw)
7115 {
7116 	int i, ret;
7117 	struct fw_params_cmd c;
7118 	__be32 *p = &c.param[0].mnem;
7119 
7120 	if (nparams > 7)
7121 		return -EINVAL;
7122 
7123 	memset(&c, 0, sizeof(c));
7124 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7125 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
7126 				  V_FW_PARAMS_CMD_PFN(pf) |
7127 				  V_FW_PARAMS_CMD_VFN(vf));
7128 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7129 
7130 	for (i = 0; i < nparams; i++) {
7131 		*p++ = cpu_to_be32(*params++);
7132 		if (rw)
7133 			*p = cpu_to_be32(*(val + i));
7134 		p++;
7135 	}
7136 
7137 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7138 	if (ret == 0)
7139 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7140 			*val++ = be32_to_cpu(*p);
7141 	return ret;
7142 }
7143 
7144 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7145 		    unsigned int vf, unsigned int nparams, const u32 *params,
7146 		    u32 *val)
7147 {
7148 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
7149 }
7150 
7151 /**
7152  *      t4_set_params_timeout - sets FW or device parameters
7153  *      @adap: the adapter
7154  *      @mbox: mailbox to use for the FW command
7155  *      @pf: the PF
7156  *      @vf: the VF
7157  *      @nparams: the number of parameters
7158  *      @params: the parameter names
7159  *      @val: the parameter values
7160  *      @timeout: the timeout time
7161  *
7162  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7163  *      specified at once.
7164  */
7165 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7166 			  unsigned int pf, unsigned int vf,
7167 			  unsigned int nparams, const u32 *params,
7168 			  const u32 *val, int timeout)
7169 {
7170 	struct fw_params_cmd c;
7171 	__be32 *p = &c.param[0].mnem;
7172 
7173 	if (nparams > 7)
7174 		return -EINVAL;
7175 
7176 	memset(&c, 0, sizeof(c));
7177 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7178 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7179 				  V_FW_PARAMS_CMD_PFN(pf) |
7180 				  V_FW_PARAMS_CMD_VFN(vf));
7181 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7182 
7183 	while (nparams--) {
7184 		*p++ = cpu_to_be32(*params++);
7185 		*p++ = cpu_to_be32(*val++);
7186 	}
7187 
7188 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7189 }
7190 
7191 /**
7192  *	t4_set_params - sets FW or device parameters
7193  *	@adap: the adapter
7194  *	@mbox: mailbox to use for the FW command
7195  *	@pf: the PF
7196  *	@vf: the VF
7197  *	@nparams: the number of parameters
7198  *	@params: the parameter names
7199  *	@val: the parameter values
7200  *
7201  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7202  *	specified at once.
7203  */
7204 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7205 		  unsigned int vf, unsigned int nparams, const u32 *params,
7206 		  const u32 *val)
7207 {
7208 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7209 				     FW_CMD_MAX_TIMEOUT);
7210 }
7211 
7212 /**
7213  *	t4_cfg_pfvf - configure PF/VF resource limits
7214  *	@adap: the adapter
7215  *	@mbox: mailbox to use for the FW command
7216  *	@pf: the PF being configured
7217  *	@vf: the VF being configured
7218  *	@txq: the max number of egress queues
7219  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7220  *	@rxqi: the max number of interrupt-capable ingress queues
7221  *	@rxq: the max number of interruptless ingress queues
7222  *	@tc: the PCI traffic class
7223  *	@vi: the max number of virtual interfaces
7224  *	@cmask: the channel access rights mask for the PF/VF
7225  *	@pmask: the port access rights mask for the PF/VF
7226  *	@nexact: the maximum number of exact MPS filters
7227  *	@rcaps: read capabilities
7228  *	@wxcaps: write/execute capabilities
7229  *
7230  *	Configures resource limits and capabilities for a physical or virtual
7231  *	function.
7232  */
7233 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7234 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7235 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7236 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7237 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7238 {
7239 	struct fw_pfvf_cmd c;
7240 
7241 	memset(&c, 0, sizeof(c));
7242 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7243 				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7244 				  V_FW_PFVF_CMD_VFN(vf));
7245 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7246 	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7247 				     V_FW_PFVF_CMD_NIQ(rxq));
7248 	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7249 				    V_FW_PFVF_CMD_PMASK(pmask) |
7250 				    V_FW_PFVF_CMD_NEQ(txq));
7251 	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7252 				      V_FW_PFVF_CMD_NVI(vi) |
7253 				      V_FW_PFVF_CMD_NEXACTF(nexact));
7254 	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7255 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7256 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7257 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7258 }
7259 
7260 /**
7261  *	t4_alloc_vi_func - allocate a virtual interface
7262  *	@adap: the adapter
7263  *	@mbox: mailbox to use for the FW command
7264  *	@port: physical port associated with the VI
7265  *	@pf: the PF owning the VI
7266  *	@vf: the VF owning the VI
7267  *	@nmac: number of MAC addresses needed (1 to 5)
7268  *	@mac: the MAC addresses of the VI
7269  *	@rss_size: size of RSS table slice associated with this VI
7270  *	@portfunc: which Port Application Function MAC Address is desired
7271  *	@idstype: Intrusion Detection Type
7272  *
7273  *	Allocates a virtual interface for the given physical port.  If @mac is
7274  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7275  *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7276  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7277  *	stored consecutively so the space needed is @nmac * 6 bytes.
7278  *	Returns a negative error number or the non-negative VI id.
7279  */
7280 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7281 		     unsigned int port, unsigned int pf, unsigned int vf,
7282 		     unsigned int nmac, u8 *mac, u16 *rss_size,
7283 		     unsigned int portfunc, unsigned int idstype)
7284 {
7285 	int ret;
7286 	struct fw_vi_cmd c;
7287 
7288 	memset(&c, 0, sizeof(c));
7289 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7290 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7291 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7292 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7293 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7294 				     V_FW_VI_CMD_FUNC(portfunc));
7295 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7296 	c.nmac = nmac - 1;
7297 	if(!rss_size)
7298 		c.norss_rsssize = F_FW_VI_CMD_NORSS;
7299 
7300 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7301 	if (ret)
7302 		return ret;
7303 
7304 	if (mac) {
7305 		memcpy(mac, c.mac, sizeof(c.mac));
7306 		switch (nmac) {
7307 		case 5:
7308 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7309 		case 4:
7310 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7311 		case 3:
7312 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7313 		case 2:
7314 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7315 		}
7316 	}
7317 	if (rss_size)
7318 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
7319 	return G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7320 }
7321 
7322 /**
7323  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
7324  *      @adap: the adapter
7325  *      @mbox: mailbox to use for the FW command
7326  *      @port: physical port associated with the VI
7327  *      @pf: the PF owning the VI
7328  *      @vf: the VF owning the VI
7329  *      @nmac: number of MAC addresses needed (1 to 5)
7330  *      @mac: the MAC addresses of the VI
7331  *      @rss_size: size of RSS table slice associated with this VI
7332  *
7333  *	backwards compatible and convieniance routine to allocate a Virtual
7334  *	Interface with a Ethernet Port Application Function and Intrustion
7335  *	Detection System disabled.
7336  */
7337 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7338 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7339 		u16 *rss_size)
7340 {
7341 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
7342 				FW_VI_FUNC_ETH, 0);
7343 }
7344 
7345 /**
7346  * 	t4_free_vi - free a virtual interface
7347  * 	@adap: the adapter
7348  * 	@mbox: mailbox to use for the FW command
7349  * 	@pf: the PF owning the VI
7350  * 	@vf: the VF owning the VI
7351  * 	@viid: virtual interface identifiler
7352  *
7353  * 	Free a previously allocated virtual interface.
7354  */
7355 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7356 	       unsigned int vf, unsigned int viid)
7357 {
7358 	struct fw_vi_cmd c;
7359 
7360 	memset(&c, 0, sizeof(c));
7361 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
7362 				  F_FW_CMD_REQUEST |
7363 				  F_FW_CMD_EXEC |
7364 				  V_FW_VI_CMD_PFN(pf) |
7365 				  V_FW_VI_CMD_VFN(vf));
7366 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
7367 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
7368 
7369 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7370 }
7371 
7372 /**
7373  *	t4_set_rxmode - set Rx properties of a virtual interface
7374  *	@adap: the adapter
7375  *	@mbox: mailbox to use for the FW command
7376  *	@viid: the VI id
7377  *	@mtu: the new MTU or -1
7378  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7379  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7380  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7381  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7382  *	@sleep_ok: if true we may sleep while awaiting command completion
7383  *
7384  *	Sets Rx properties of a virtual interface.
7385  */
7386 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7387 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7388 		  bool sleep_ok)
7389 {
7390 	struct fw_vi_rxmode_cmd c;
7391 
7392 	/* convert to FW values */
7393 	if (mtu < 0)
7394 		mtu = M_FW_VI_RXMODE_CMD_MTU;
7395 	if (promisc < 0)
7396 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
7397 	if (all_multi < 0)
7398 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
7399 	if (bcast < 0)
7400 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
7401 	if (vlanex < 0)
7402 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
7403 
7404 	memset(&c, 0, sizeof(c));
7405 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
7406 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7407 				   V_FW_VI_RXMODE_CMD_VIID(viid));
7408 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7409 	c.mtu_to_vlanexen =
7410 		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
7411 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
7412 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
7413 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
7414 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
7415 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7416 }
7417 
7418 /**
7419  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7420  *	@adap: the adapter
7421  *	@mbox: mailbox to use for the FW command
7422  *	@viid: the VI id
7423  *	@free: if true any existing filters for this VI id are first removed
7424  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7425  *	@addr: the MAC address(es)
7426  *	@idx: where to store the index of each allocated filter
7427  *	@hash: pointer to hash address filter bitmap
7428  *	@sleep_ok: call is allowed to sleep
7429  *
7430  *	Allocates an exact-match filter for each of the supplied addresses and
7431  *	sets it to the corresponding address.  If @idx is not %NULL it should
7432  *	have at least @naddr entries, each of which will be set to the index of
7433  *	the filter allocated for the corresponding MAC address.  If a filter
7434  *	could not be allocated for an address its index is set to 0xffff.
7435  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7436  *	are hashed and update the hash filter bitmap pointed at by @hash.
7437  *
7438  *	Returns a negative error number or the number of filters allocated.
7439  */
7440 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7441 		      unsigned int viid, bool free, unsigned int naddr,
7442 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7443 {
7444 	int offset, ret = 0;
7445 	struct fw_vi_mac_cmd c;
7446 	unsigned int nfilters = 0;
7447 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
7448 	unsigned int rem = naddr;
7449 
7450 	if (naddr > max_naddr)
7451 		return -EINVAL;
7452 
7453 	for (offset = 0; offset < naddr ; /**/) {
7454 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7455 					 ? rem
7456 					 : ARRAY_SIZE(c.u.exact));
7457 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7458 						     u.exact[fw_naddr]), 16);
7459 		struct fw_vi_mac_exact *p;
7460 		int i;
7461 
7462 		memset(&c, 0, sizeof(c));
7463 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7464 					   F_FW_CMD_REQUEST |
7465 					   F_FW_CMD_WRITE |
7466 					   V_FW_CMD_EXEC(free) |
7467 					   V_FW_VI_MAC_CMD_VIID(viid));
7468 		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
7469 						  V_FW_CMD_LEN16(len16));
7470 
7471 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7472 			p->valid_to_idx =
7473 				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7474 					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
7475 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7476 		}
7477 
7478 		/*
7479 		 * It's okay if we run out of space in our MAC address arena.
7480 		 * Some of the addresses we submit may get stored so we need
7481 		 * to run through the reply to see what the results were ...
7482 		 */
7483 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7484 		if (ret && ret != -FW_ENOMEM)
7485 			break;
7486 
7487 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7488 			u16 index = G_FW_VI_MAC_CMD_IDX(
7489 						be16_to_cpu(p->valid_to_idx));
7490 
7491 			if (idx)
7492 				idx[offset+i] = (index >=  max_naddr
7493 						 ? 0xffff
7494 						 : index);
7495 			if (index < max_naddr)
7496 				nfilters++;
7497 			else if (hash)
7498 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
7499 		}
7500 
7501 		free = false;
7502 		offset += fw_naddr;
7503 		rem -= fw_naddr;
7504 	}
7505 
7506 	if (ret == 0 || ret == -FW_ENOMEM)
7507 		ret = nfilters;
7508 	return ret;
7509 }
7510 
7511 /**
7512  *	t4_change_mac - modifies the exact-match filter for a MAC address
7513  *	@adap: the adapter
7514  *	@mbox: mailbox to use for the FW command
7515  *	@viid: the VI id
7516  *	@idx: index of existing filter for old value of MAC address, or -1
7517  *	@addr: the new MAC address value
7518  *	@persist: whether a new MAC allocation should be persistent
7519  *	@add_smt: if true also add the address to the HW SMT
7520  *
7521  *	Modifies an exact-match filter and sets it to the new MAC address if
7522  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
7523  *	latter case the address is added persistently if @persist is %true.
7524  *
7525  *	Note that in general it is not possible to modify the value of a given
7526  *	filter so the generic way to modify an address filter is to free the one
7527  *	being used by the old address value and allocate a new filter for the
7528  *	new address value.
7529  *
7530  *	Returns a negative error number or the index of the filter with the new
7531  *	MAC value.  Note that this index may differ from @idx.
7532  */
7533 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7534 		  int idx, const u8 *addr, bool persist, bool add_smt)
7535 {
7536 	int ret, mode;
7537 	struct fw_vi_mac_cmd c;
7538 	struct fw_vi_mac_exact *p = c.u.exact;
7539 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
7540 
7541 	if (idx < 0)		/* new allocation */
7542 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7543 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7544 
7545 	memset(&c, 0, sizeof(c));
7546 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7547 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7548 				   V_FW_VI_MAC_CMD_VIID(viid));
7549 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
7550 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7551 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
7552 				      V_FW_VI_MAC_CMD_IDX(idx));
7553 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7554 
7555 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7556 	if (ret == 0) {
7557 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
7558 		if (ret >= max_mac_addr)
7559 			ret = -ENOMEM;
7560 	}
7561 	return ret;
7562 }
7563 
7564 /**
7565  *	t4_set_addr_hash - program the MAC inexact-match hash filter
7566  *	@adap: the adapter
7567  *	@mbox: mailbox to use for the FW command
7568  *	@viid: the VI id
7569  *	@ucast: whether the hash filter should also match unicast addresses
7570  *	@vec: the value to be written to the hash filter
7571  *	@sleep_ok: call is allowed to sleep
7572  *
7573  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
7574  */
7575 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7576 		     bool ucast, u64 vec, bool sleep_ok)
7577 {
7578 	struct fw_vi_mac_cmd c;
7579 	u32 val;
7580 
7581 	memset(&c, 0, sizeof(c));
7582 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7583 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7584 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7585 	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
7586 	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
7587 	c.freemacs_to_len16 = cpu_to_be32(val);
7588 	c.u.hash.hashvec = cpu_to_be64(vec);
7589 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7590 }
7591 
7592 /**
7593  *      t4_enable_vi_params - enable/disable a virtual interface
7594  *      @adap: the adapter
7595  *      @mbox: mailbox to use for the FW command
7596  *      @viid: the VI id
7597  *      @rx_en: 1=enable Rx, 0=disable Rx
7598  *      @tx_en: 1=enable Tx, 0=disable Tx
7599  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7600  *
7601  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7602  *      only makes sense when enabling a Virtual Interface ...
7603  */
7604 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7605 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7606 {
7607 	struct fw_vi_enable_cmd c;
7608 
7609 	memset(&c, 0, sizeof(c));
7610 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7611 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7612 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7613 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
7614 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
7615 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
7616 				     FW_LEN16(c));
7617 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7618 }
7619 
7620 /**
7621  *	t4_enable_vi - enable/disable a virtual interface
7622  *	@adap: the adapter
7623  *	@mbox: mailbox to use for the FW command
7624  *	@viid: the VI id
7625  *	@rx_en: 1=enable Rx, 0=disable Rx
7626  *	@tx_en: 1=enable Tx, 0=disable Tx
7627  *
7628  *	Enables/disables a virtual interface.  Note that setting DCB Enable
7629  *	only makes sense when enabling a Virtual Interface ...
7630  */
7631 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7632 		 bool rx_en, bool tx_en)
7633 {
7634 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7635 }
7636 
7637 /**
7638  *	t4_identify_port - identify a VI's port by blinking its LED
7639  *	@adap: the adapter
7640  *	@mbox: mailbox to use for the FW command
7641  *	@viid: the VI id
7642  *	@nblinks: how many times to blink LED at 2.5 Hz
7643  *
7644  *	Identifies a VI's port by blinking its LED.
7645  */
7646 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7647 		     unsigned int nblinks)
7648 {
7649 	struct fw_vi_enable_cmd c;
7650 
7651 	memset(&c, 0, sizeof(c));
7652 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7653 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7654 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7655 	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
7656 	c.blinkdur = cpu_to_be16(nblinks);
7657 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7658 }
7659 
7660 /**
7661  *	t4_iq_stop - stop an ingress queue and its FLs
7662  *	@adap: the adapter
7663  *	@mbox: mailbox to use for the FW command
7664  *	@pf: the PF owning the queues
7665  *	@vf: the VF owning the queues
7666  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7667  *	@iqid: ingress queue id
7668  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7669  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7670  *
7671  *	Stops an ingress queue and its associated FLs, if any.  This causes
7672  *	any current or future data/messages destined for these queues to be
7673  *	tossed.
7674  */
7675 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7676 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7677 	       unsigned int fl0id, unsigned int fl1id)
7678 {
7679 	struct fw_iq_cmd c;
7680 
7681 	memset(&c, 0, sizeof(c));
7682 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7683 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7684 				  V_FW_IQ_CMD_VFN(vf));
7685 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
7686 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7687 	c.iqid = cpu_to_be16(iqid);
7688 	c.fl0id = cpu_to_be16(fl0id);
7689 	c.fl1id = cpu_to_be16(fl1id);
7690 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7691 }
7692 
7693 /**
7694  *	t4_iq_free - free an ingress queue and its FLs
7695  *	@adap: the adapter
7696  *	@mbox: mailbox to use for the FW command
7697  *	@pf: the PF owning the queues
7698  *	@vf: the VF owning the queues
7699  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7700  *	@iqid: ingress queue id
7701  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7702  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7703  *
7704  *	Frees an ingress queue and its associated FLs, if any.
7705  */
7706 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7707 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7708 	       unsigned int fl0id, unsigned int fl1id)
7709 {
7710 	struct fw_iq_cmd c;
7711 
7712 	memset(&c, 0, sizeof(c));
7713 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7714 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7715 				  V_FW_IQ_CMD_VFN(vf));
7716 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
7717 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7718 	c.iqid = cpu_to_be16(iqid);
7719 	c.fl0id = cpu_to_be16(fl0id);
7720 	c.fl1id = cpu_to_be16(fl1id);
7721 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7722 }
7723 
7724 /**
7725  *	t4_eth_eq_free - free an Ethernet egress queue
7726  *	@adap: the adapter
7727  *	@mbox: mailbox to use for the FW command
7728  *	@pf: the PF owning the queue
7729  *	@vf: the VF owning the queue
7730  *	@eqid: egress queue id
7731  *
7732  *	Frees an Ethernet egress queue.
7733  */
7734 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7735 		   unsigned int vf, unsigned int eqid)
7736 {
7737 	struct fw_eq_eth_cmd c;
7738 
7739 	memset(&c, 0, sizeof(c));
7740 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
7741 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7742 				  V_FW_EQ_ETH_CMD_PFN(pf) |
7743 				  V_FW_EQ_ETH_CMD_VFN(vf));
7744 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
7745 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
7746 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7747 }
7748 
7749 /**
7750  *	t4_ctrl_eq_free - free a control egress queue
7751  *	@adap: the adapter
7752  *	@mbox: mailbox to use for the FW command
7753  *	@pf: the PF owning the queue
7754  *	@vf: the VF owning the queue
7755  *	@eqid: egress queue id
7756  *
7757  *	Frees a control egress queue.
7758  */
7759 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7760 		    unsigned int vf, unsigned int eqid)
7761 {
7762 	struct fw_eq_ctrl_cmd c;
7763 
7764 	memset(&c, 0, sizeof(c));
7765 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
7766 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7767 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
7768 				  V_FW_EQ_CTRL_CMD_VFN(vf));
7769 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
7770 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
7771 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7772 }
7773 
7774 /**
7775  *	t4_ofld_eq_free - free an offload egress queue
7776  *	@adap: the adapter
7777  *	@mbox: mailbox to use for the FW command
7778  *	@pf: the PF owning the queue
7779  *	@vf: the VF owning the queue
7780  *	@eqid: egress queue id
7781  *
7782  *	Frees a control egress queue.
7783  */
7784 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7785 		    unsigned int vf, unsigned int eqid)
7786 {
7787 	struct fw_eq_ofld_cmd c;
7788 
7789 	memset(&c, 0, sizeof(c));
7790 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
7791 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7792 				  V_FW_EQ_OFLD_CMD_PFN(pf) |
7793 				  V_FW_EQ_OFLD_CMD_VFN(vf));
7794 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
7795 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
7796 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7797 }
7798 
7799 /**
7800  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
7801  *	@link_down_rc: Link Down Reason Code
7802  *
7803  *	Returns a string representation of the Link Down Reason Code.
7804  */
7805 const char *t4_link_down_rc_str(unsigned char link_down_rc)
7806 {
7807 	static const char *reason[] = {
7808 		"Link Down",
7809 		"Remote Fault",
7810 		"Auto-negotiation Failure",
7811 		"Reserved3",
7812 		"Insufficient Airflow",
7813 		"Unable To Determine Reason",
7814 		"No RX Signal Detected",
7815 		"Reserved7",
7816 	};
7817 
7818 	if (link_down_rc >= ARRAY_SIZE(reason))
7819 		return "Bad Reason Code";
7820 
7821 	return reason[link_down_rc];
7822 }
7823 
7824 /*
7825  * Return the highest speed set in the port capabilities, in Mb/s.
7826  */
7827 unsigned int fwcap_to_speed(uint32_t caps)
7828 {
7829 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
7830 		do { \
7831 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
7832 				return __speed; \
7833 		} while (0)
7834 
7835 	TEST_SPEED_RETURN(400G, 400000);
7836 	TEST_SPEED_RETURN(200G, 200000);
7837 	TEST_SPEED_RETURN(100G, 100000);
7838 	TEST_SPEED_RETURN(50G,   50000);
7839 	TEST_SPEED_RETURN(40G,   40000);
7840 	TEST_SPEED_RETURN(25G,   25000);
7841 	TEST_SPEED_RETURN(10G,   10000);
7842 	TEST_SPEED_RETURN(1G,     1000);
7843 	TEST_SPEED_RETURN(100M,    100);
7844 
7845 	#undef TEST_SPEED_RETURN
7846 
7847 	return 0;
7848 }
7849 
7850 /*
7851  * Return the port capabilities bit for the given speed, which is in Mb/s.
7852  */
7853 uint32_t speed_to_fwcap(unsigned int speed)
7854 {
7855 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
7856 		do { \
7857 			if (speed == __speed) \
7858 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
7859 		} while (0)
7860 
7861 	TEST_SPEED_RETURN(400G, 400000);
7862 	TEST_SPEED_RETURN(200G, 200000);
7863 	TEST_SPEED_RETURN(100G, 100000);
7864 	TEST_SPEED_RETURN(50G,   50000);
7865 	TEST_SPEED_RETURN(40G,   40000);
7866 	TEST_SPEED_RETURN(25G,   25000);
7867 	TEST_SPEED_RETURN(10G,   10000);
7868 	TEST_SPEED_RETURN(1G,     1000);
7869 	TEST_SPEED_RETURN(100M,    100);
7870 
7871 	#undef TEST_SPEED_RETURN
7872 
7873 	return 0;
7874 }
7875 
7876 /*
7877  * Return the port capabilities bit for the highest speed in the capabilities.
7878  */
7879 uint32_t fwcap_top_speed(uint32_t caps)
7880 {
7881 	#define TEST_SPEED_RETURN(__caps_speed) \
7882 		do { \
7883 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
7884 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
7885 		} while (0)
7886 
7887 	TEST_SPEED_RETURN(400G);
7888 	TEST_SPEED_RETURN(200G);
7889 	TEST_SPEED_RETURN(100G);
7890 	TEST_SPEED_RETURN(50G);
7891 	TEST_SPEED_RETURN(40G);
7892 	TEST_SPEED_RETURN(25G);
7893 	TEST_SPEED_RETURN(10G);
7894 	TEST_SPEED_RETURN(1G);
7895 	TEST_SPEED_RETURN(100M);
7896 
7897 	#undef TEST_SPEED_RETURN
7898 
7899 	return 0;
7900 }
7901 
7902 
7903 /**
7904  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
7905  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
7906  *
7907  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
7908  *	32-bit Port Capabilities value.
7909  */
7910 static uint32_t lstatus_to_fwcap(u32 lstatus)
7911 {
7912 	uint32_t linkattr = 0;
7913 
7914 	/*
7915 	 * Unfortunately the format of the Link Status in the old
7916 	 * 16-bit Port Information message isn't the same as the
7917 	 * 16-bit Port Capabilities bitfield used everywhere else ...
7918 	 */
7919 	if (lstatus & F_FW_PORT_CMD_RXPAUSE)
7920 		linkattr |= FW_PORT_CAP32_FC_RX;
7921 	if (lstatus & F_FW_PORT_CMD_TXPAUSE)
7922 		linkattr |= FW_PORT_CAP32_FC_TX;
7923 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
7924 		linkattr |= FW_PORT_CAP32_SPEED_100M;
7925 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
7926 		linkattr |= FW_PORT_CAP32_SPEED_1G;
7927 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
7928 		linkattr |= FW_PORT_CAP32_SPEED_10G;
7929 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
7930 		linkattr |= FW_PORT_CAP32_SPEED_25G;
7931 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
7932 		linkattr |= FW_PORT_CAP32_SPEED_40G;
7933 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
7934 		linkattr |= FW_PORT_CAP32_SPEED_100G;
7935 
7936 	return linkattr;
7937 }
7938 
7939 /*
7940  * Updates all fields owned by the common code in port_info and link_config
7941  * based on information provided by the firmware.  Does not touch any
7942  * requested_* field.
7943  */
7944 static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p,
7945     enum fw_port_action action, bool *mod_changed, bool *link_changed)
7946 {
7947 	struct link_config old_lc, *lc = &pi->link_cfg;
7948 	unsigned char fc, fec;
7949 	u32 stat, linkattr;
7950 	int old_ptype, old_mtype;
7951 
7952 	old_ptype = pi->port_type;
7953 	old_mtype = pi->mod_type;
7954 	old_lc = *lc;
7955 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
7956 		stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
7957 
7958 		pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
7959 		pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
7960 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
7961 		    G_FW_PORT_CMD_MDIOADDR(stat) : -1;
7962 
7963 		lc->supported = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap));
7964 		lc->advertising = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap));
7965 		lc->lp_advertising = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap));
7966 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
7967 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
7968 
7969 		linkattr = lstatus_to_fwcap(stat);
7970 	} else if (action == FW_PORT_ACTION_GET_PORT_INFO32) {
7971 		stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32);
7972 
7973 		pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat);
7974 		pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat);
7975 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ?
7976 		    G_FW_PORT_CMD_MDIOADDR32(stat) : -1;
7977 
7978 		lc->supported = be32_to_cpu(p->u.info32.pcaps32);
7979 		lc->advertising = be32_to_cpu(p->u.info32.acaps32);
7980 		lc->lp_advertising = be16_to_cpu(p->u.info32.lpacaps32);
7981 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0;
7982 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat);
7983 
7984 		linkattr = be32_to_cpu(p->u.info32.linkattr32);
7985 	} else {
7986 		CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action);
7987 		return;
7988 	}
7989 
7990 	lc->speed = fwcap_to_speed(linkattr);
7991 
7992 	fc = 0;
7993 	if (linkattr & FW_PORT_CAP32_FC_RX)
7994 		fc |= PAUSE_RX;
7995 	if (linkattr & FW_PORT_CAP32_FC_TX)
7996 		fc |= PAUSE_TX;
7997 	lc->fc = fc;
7998 
7999 	fec = FEC_NONE;
8000 	if (linkattr & FW_PORT_CAP32_FEC_RS)
8001 		fec |= FEC_RS;
8002 	if (linkattr & FW_PORT_CAP32_FEC_BASER_RS)
8003 		fec |= FEC_BASER_RS;
8004 	lc->fec = fec;
8005 
8006 	if (mod_changed != NULL)
8007 		*mod_changed = false;
8008 	if (link_changed != NULL)
8009 		*link_changed = false;
8010 	if (old_ptype != pi->port_type || old_mtype != pi->mod_type ||
8011 	    old_lc.supported != lc->supported) {
8012 		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
8013 			lc->fec_hint = lc->advertising &
8014 			    V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC);
8015 		}
8016 		if (mod_changed != NULL)
8017 			*mod_changed = true;
8018 	}
8019 	if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed ||
8020 	    old_lc.fec != lc->fec || old_lc.fc != lc->fc) {
8021 		if (link_changed != NULL)
8022 			*link_changed = true;
8023 	}
8024 }
8025 
8026 /**
8027  *	t4_update_port_info - retrieve and update port information if changed
8028  *	@pi: the port_info
8029  *
8030  *	We issue a Get Port Information Command to the Firmware and, if
8031  *	successful, we check to see if anything is different from what we
8032  *	last recorded and update things accordingly.
8033  */
8034  int t4_update_port_info(struct port_info *pi)
8035  {
8036 	struct adapter *sc = pi->adapter;
8037 	struct fw_port_cmd cmd;
8038 	enum fw_port_action action;
8039 	int ret;
8040 
8041 	memset(&cmd, 0, sizeof(cmd));
8042 	cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
8043 	    F_FW_CMD_REQUEST | F_FW_CMD_READ |
8044 	    V_FW_PORT_CMD_PORTID(pi->tx_chan));
8045 	action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 :
8046 	    FW_PORT_ACTION_GET_PORT_INFO;
8047 	cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) |
8048 	    FW_LEN16(cmd));
8049 	ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd);
8050 	if (ret)
8051 		return ret;
8052 
8053 	handle_port_info(pi, &cmd, action, NULL, NULL);
8054 	return 0;
8055 }
8056 
8057 /**
8058  *	t4_handle_fw_rpl - process a FW reply message
8059  *	@adap: the adapter
8060  *	@rpl: start of the FW message
8061  *
8062  *	Processes a FW message, such as link state change messages.
8063  */
8064 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8065 {
8066 	u8 opcode = *(const u8 *)rpl;
8067 	const struct fw_port_cmd *p = (const void *)rpl;
8068 	enum fw_port_action action =
8069 	    G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
8070 	bool mod_changed, link_changed;
8071 
8072 	if (opcode == FW_PORT_CMD &&
8073 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8074 	    action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8075 		/* link/module state change message */
8076 		int i;
8077 		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
8078 		struct port_info *pi = NULL;
8079 		struct link_config *lc;
8080 
8081 		for_each_port(adap, i) {
8082 			pi = adap2pinfo(adap, i);
8083 			if (pi->tx_chan == chan)
8084 				break;
8085 		}
8086 
8087 		lc = &pi->link_cfg;
8088 		PORT_LOCK(pi);
8089 		handle_port_info(pi, p, action, &mod_changed, &link_changed);
8090 		PORT_UNLOCK(pi);
8091 		if (mod_changed)
8092 			t4_os_portmod_changed(pi);
8093 		if (link_changed) {
8094 			PORT_LOCK(pi);
8095 			t4_os_link_changed(pi);
8096 			PORT_UNLOCK(pi);
8097 		}
8098 	} else {
8099 		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
8100 		return -EINVAL;
8101 	}
8102 	return 0;
8103 }
8104 
8105 /**
8106  *	get_pci_mode - determine a card's PCI mode
8107  *	@adapter: the adapter
8108  *	@p: where to store the PCI settings
8109  *
8110  *	Determines a card's PCI mode and associated parameters, such as speed
8111  *	and width.
8112  */
8113 static void get_pci_mode(struct adapter *adapter,
8114 				   struct pci_params *p)
8115 {
8116 	u16 val;
8117 	u32 pcie_cap;
8118 
8119 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
8120 	if (pcie_cap) {
8121 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
8122 		p->speed = val & PCI_EXP_LNKSTA_CLS;
8123 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8124 	}
8125 }
8126 
8127 struct flash_desc {
8128 	u32 vendor_and_model_id;
8129 	u32 size_mb;
8130 };
8131 
8132 int t4_get_flash_params(struct adapter *adapter)
8133 {
8134 	/*
8135 	 * Table for non-standard supported Flash parts.  Note, all Flash
8136 	 * parts must have 64KB sectors.
8137 	 */
8138 	static struct flash_desc supported_flash[] = {
8139 		{ 0x00150201, 4 << 20 },	/* Spansion 4MB S25FL032P */
8140 	};
8141 
8142 	int ret;
8143 	u32 flashid = 0;
8144 	unsigned int part, manufacturer;
8145 	unsigned int density, size = 0;
8146 
8147 
8148 	/*
8149 	 * Issue a Read ID Command to the Flash part.  We decode supported
8150 	 * Flash parts and their sizes from this.  There's a newer Query
8151 	 * Command which can retrieve detailed geometry information but many
8152 	 * Flash parts don't support it.
8153 	 */
8154 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
8155 	if (!ret)
8156 		ret = sf1_read(adapter, 3, 0, 1, &flashid);
8157 	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
8158 	if (ret < 0)
8159 		return ret;
8160 
8161 	/*
8162 	 * Check to see if it's one of our non-standard supported Flash parts.
8163 	 */
8164 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8165 		if (supported_flash[part].vendor_and_model_id == flashid) {
8166 			adapter->params.sf_size =
8167 				supported_flash[part].size_mb;
8168 			adapter->params.sf_nsec =
8169 				adapter->params.sf_size / SF_SEC_SIZE;
8170 			goto found;
8171 		}
8172 
8173 	/*
8174 	 * Decode Flash part size.  The code below looks repetative with
8175 	 * common encodings, but that's not guaranteed in the JEDEC
8176 	 * specification for the Read JADEC ID command.  The only thing that
8177 	 * we're guaranteed by the JADEC specification is where the
8178 	 * Manufacturer ID is in the returned result.  After that each
8179 	 * Manufacturer ~could~ encode things completely differently.
8180 	 * Note, all Flash parts must have 64KB sectors.
8181 	 */
8182 	manufacturer = flashid & 0xff;
8183 	switch (manufacturer) {
8184 	case 0x20: /* Micron/Numonix */
8185 		/*
8186 		 * This Density -> Size decoding table is taken from Micron
8187 		 * Data Sheets.
8188 		 */
8189 		density = (flashid >> 16) & 0xff;
8190 		switch (density) {
8191 		case 0x14: size = 1 << 20; break; /*   1MB */
8192 		case 0x15: size = 1 << 21; break; /*   2MB */
8193 		case 0x16: size = 1 << 22; break; /*   4MB */
8194 		case 0x17: size = 1 << 23; break; /*   8MB */
8195 		case 0x18: size = 1 << 24; break; /*  16MB */
8196 		case 0x19: size = 1 << 25; break; /*  32MB */
8197 		case 0x20: size = 1 << 26; break; /*  64MB */
8198 		case 0x21: size = 1 << 27; break; /* 128MB */
8199 		case 0x22: size = 1 << 28; break; /* 256MB */
8200 		}
8201 		break;
8202 
8203 	case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */
8204 		/*
8205 		 * This Density -> Size decoding table is taken from ISSI
8206 		 * Data Sheets.
8207 		 */
8208 		density = (flashid >> 16) & 0xff;
8209 		switch (density) {
8210 		case 0x16: size = 1 << 25; break; /*  32MB */
8211 		case 0x17: size = 1 << 26; break; /*  64MB */
8212 		}
8213 		break;
8214 
8215 	case 0xc2: /* Macronix */
8216 		/*
8217 		 * This Density -> Size decoding table is taken from Macronix
8218 		 * Data Sheets.
8219 		 */
8220 		density = (flashid >> 16) & 0xff;
8221 		switch (density) {
8222 		case 0x17: size = 1 << 23; break; /*   8MB */
8223 		case 0x18: size = 1 << 24; break; /*  16MB */
8224 		}
8225 		break;
8226 
8227 	case 0xef: /* Winbond */
8228 		/*
8229 		 * This Density -> Size decoding table is taken from Winbond
8230 		 * Data Sheets.
8231 		 */
8232 		density = (flashid >> 16) & 0xff;
8233 		switch (density) {
8234 		case 0x17: size = 1 << 23; break; /*   8MB */
8235 		case 0x18: size = 1 << 24; break; /*  16MB */
8236 		}
8237 		break;
8238 	}
8239 
8240 	/* If we didn't recognize the FLASH part, that's no real issue: the
8241 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
8242 	 * use a FLASH part which is at least 4MB in size and has 64KB
8243 	 * sectors.  The unrecognized FLASH part is likely to be much larger
8244 	 * than 4MB, but that's all we really need.
8245 	 */
8246 	if (size == 0) {
8247 		CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid);
8248 		size = 1 << 22;
8249 	}
8250 
8251 	/*
8252 	 * Store decoded Flash size and fall through into vetting code.
8253 	 */
8254 	adapter->params.sf_size = size;
8255 	adapter->params.sf_nsec = size / SF_SEC_SIZE;
8256 
8257  found:
8258 	/*
8259 	 * We should ~probably~ reject adapters with FLASHes which are too
8260 	 * small but we have some legacy FPGAs with small FLASHes that we'd
8261 	 * still like to use.  So instead we emit a scary message ...
8262 	 */
8263 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
8264 		CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
8265 			flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
8266 
8267 	return 0;
8268 }
8269 
8270 static void set_pcie_completion_timeout(struct adapter *adapter,
8271 						  u8 range)
8272 {
8273 	u16 val;
8274 	u32 pcie_cap;
8275 
8276 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
8277 	if (pcie_cap) {
8278 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
8279 		val &= 0xfff0;
8280 		val |= range ;
8281 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
8282 	}
8283 }
8284 
8285 const struct chip_params *t4_get_chip_params(int chipid)
8286 {
8287 	static const struct chip_params chip_params[] = {
8288 		{
8289 			/* T4 */
8290 			.nchan = NCHAN,
8291 			.pm_stats_cnt = PM_NSTATS,
8292 			.cng_ch_bits_log = 2,
8293 			.nsched_cls = 15,
8294 			.cim_num_obq = CIM_NUM_OBQ,
8295 			.mps_rplc_size = 128,
8296 			.vfcount = 128,
8297 			.sge_fl_db = F_DBPRIO,
8298 			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
8299 		},
8300 		{
8301 			/* T5 */
8302 			.nchan = NCHAN,
8303 			.pm_stats_cnt = PM_NSTATS,
8304 			.cng_ch_bits_log = 2,
8305 			.nsched_cls = 16,
8306 			.cim_num_obq = CIM_NUM_OBQ_T5,
8307 			.mps_rplc_size = 128,
8308 			.vfcount = 128,
8309 			.sge_fl_db = F_DBPRIO | F_DBTYPE,
8310 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8311 		},
8312 		{
8313 			/* T6 */
8314 			.nchan = T6_NCHAN,
8315 			.pm_stats_cnt = T6_PM_NSTATS,
8316 			.cng_ch_bits_log = 3,
8317 			.nsched_cls = 16,
8318 			.cim_num_obq = CIM_NUM_OBQ_T5,
8319 			.mps_rplc_size = 256,
8320 			.vfcount = 256,
8321 			.sge_fl_db = 0,
8322 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8323 		},
8324 	};
8325 
8326 	chipid -= CHELSIO_T4;
8327 	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
8328 		return NULL;
8329 
8330 	return &chip_params[chipid];
8331 }
8332 
8333 /**
8334  *	t4_prep_adapter - prepare SW and HW for operation
8335  *	@adapter: the adapter
8336  *	@buf: temporary space of at least VPD_LEN size provided by the caller.
8337  *
8338  *	Initialize adapter SW state for the various HW modules, set initial
8339  *	values for some adapter tunables, take PHYs out of reset, and
8340  *	initialize the MDIO interface.
8341  */
8342 int t4_prep_adapter(struct adapter *adapter, u32 *buf)
8343 {
8344 	int ret;
8345 	uint16_t device_id;
8346 	uint32_t pl_rev;
8347 
8348 	get_pci_mode(adapter, &adapter->params.pci);
8349 
8350 	pl_rev = t4_read_reg(adapter, A_PL_REV);
8351 	adapter->params.chipid = G_CHIPID(pl_rev);
8352 	adapter->params.rev = G_REV(pl_rev);
8353 	if (adapter->params.chipid == 0) {
8354 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
8355 		adapter->params.chipid = CHELSIO_T4;
8356 
8357 		/* T4A1 chip is not supported */
8358 		if (adapter->params.rev == 1) {
8359 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
8360 			return -EINVAL;
8361 		}
8362 	}
8363 
8364 	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
8365 	if (adapter->chip_params == NULL)
8366 		return -EINVAL;
8367 
8368 	adapter->params.pci.vpd_cap_addr =
8369 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
8370 
8371 	ret = t4_get_flash_params(adapter);
8372 	if (ret < 0)
8373 		return ret;
8374 
8375 	/* Cards with real ASICs have the chipid in the PCIe device id */
8376 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
8377 	if (device_id >> 12 == chip_id(adapter))
8378 		adapter->params.cim_la_size = CIMLA_SIZE;
8379 	else {
8380 		/* FPGA */
8381 		adapter->params.fpga = 1;
8382 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
8383 	}
8384 
8385 	ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
8386 	if (ret < 0)
8387 		return ret;
8388 
8389 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8390 
8391 	/*
8392 	 * Default port and clock for debugging in case we can't reach FW.
8393 	 */
8394 	adapter->params.nports = 1;
8395 	adapter->params.portvec = 1;
8396 	adapter->params.vpd.cclk = 50000;
8397 
8398 	/* Set pci completion timeout value to 4 seconds. */
8399 	set_pcie_completion_timeout(adapter, 0xd);
8400 	return 0;
8401 }
8402 
8403 /**
8404  *	t4_shutdown_adapter - shut down adapter, host & wire
8405  *	@adapter: the adapter
8406  *
8407  *	Perform an emergency shutdown of the adapter and stop it from
8408  *	continuing any further communication on the ports or DMA to the
8409  *	host.  This is typically used when the adapter and/or firmware
8410  *	have crashed and we want to prevent any further accidental
8411  *	communication with the rest of the world.  This will also force
8412  *	the port Link Status to go down -- if register writes work --
8413  *	which should help our peers figure out that we're down.
8414  */
8415 int t4_shutdown_adapter(struct adapter *adapter)
8416 {
8417 	int port;
8418 
8419 	t4_intr_disable(adapter);
8420 	t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
8421 	for_each_port(adapter, port) {
8422 		u32 a_port_cfg = is_t4(adapter) ?
8423 				 PORT_REG(port, A_XGMAC_PORT_CFG) :
8424 				 T5_PORT_REG(port, A_MAC_PORT_CFG);
8425 
8426 		t4_write_reg(adapter, a_port_cfg,
8427 			     t4_read_reg(adapter, a_port_cfg)
8428 			     & ~V_SIGNAL_DET(1));
8429 	}
8430 	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
8431 
8432 	return 0;
8433 }
8434 
8435 /**
8436  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
8437  *	@adapter: the adapter
8438  *	@qid: the Queue ID
8439  *	@qtype: the Ingress or Egress type for @qid
8440  *	@user: true if this request is for a user mode queue
8441  *	@pbar2_qoffset: BAR2 Queue Offset
8442  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
8443  *
8444  *	Returns the BAR2 SGE Queue Registers information associated with the
8445  *	indicated Absolute Queue ID.  These are passed back in return value
8446  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
8447  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
8448  *
8449  *	This may return an error which indicates that BAR2 SGE Queue
8450  *	registers aren't available.  If an error is not returned, then the
8451  *	following values are returned:
8452  *
8453  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
8454  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
8455  *
8456  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
8457  *	require the "Inferred Queue ID" ability may be used.  E.g. the
8458  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
8459  *	then these "Inferred Queue ID" register may not be used.
8460  */
8461 int t4_bar2_sge_qregs(struct adapter *adapter,
8462 		      unsigned int qid,
8463 		      enum t4_bar2_qtype qtype,
8464 		      int user,
8465 		      u64 *pbar2_qoffset,
8466 		      unsigned int *pbar2_qid)
8467 {
8468 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
8469 	u64 bar2_page_offset, bar2_qoffset;
8470 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
8471 
8472 	/* T4 doesn't support BAR2 SGE Queue registers for kernel
8473 	 * mode queues.
8474 	 */
8475 	if (!user && is_t4(adapter))
8476 		return -EINVAL;
8477 
8478 	/* Get our SGE Page Size parameters.
8479 	 */
8480 	page_shift = adapter->params.sge.page_shift;
8481 	page_size = 1 << page_shift;
8482 
8483 	/* Get the right Queues per Page parameters for our Queue.
8484 	 */
8485 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
8486 		     ? adapter->params.sge.eq_s_qpp
8487 		     : adapter->params.sge.iq_s_qpp);
8488 	qpp_mask = (1 << qpp_shift) - 1;
8489 
8490 	/* Calculate the basics of the BAR2 SGE Queue register area:
8491 	 *  o The BAR2 page the Queue registers will be in.
8492 	 *  o The BAR2 Queue ID.
8493 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
8494 	 */
8495 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
8496 	bar2_qid = qid & qpp_mask;
8497 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
8498 
8499 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
8500 	 * hardware will infer the Absolute Queue ID simply from the writes to
8501 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
8502 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
8503 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
8504 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
8505 	 * from the BAR2 Page and BAR2 Queue ID.
8506 	 *
8507 	 * One important censequence of this is that some BAR2 SGE registers
8508 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
8509 	 * there.  But other registers synthesize the SGE Queue ID purely
8510 	 * from the writes to the registers -- the Write Combined Doorbell
8511 	 * Buffer is a good example.  These BAR2 SGE Registers are only
8512 	 * available for those BAR2 SGE Register areas where the SGE Absolute
8513 	 * Queue ID can be inferred from simple writes.
8514 	 */
8515 	bar2_qoffset = bar2_page_offset;
8516 	bar2_qinferred = (bar2_qid_offset < page_size);
8517 	if (bar2_qinferred) {
8518 		bar2_qoffset += bar2_qid_offset;
8519 		bar2_qid = 0;
8520 	}
8521 
8522 	*pbar2_qoffset = bar2_qoffset;
8523 	*pbar2_qid = bar2_qid;
8524 	return 0;
8525 }
8526 
8527 /**
8528  *	t4_init_devlog_params - initialize adapter->params.devlog
8529  *	@adap: the adapter
8530  *	@fw_attach: whether we can talk to the firmware
8531  *
8532  *	Initialize various fields of the adapter's Firmware Device Log
8533  *	Parameters structure.
8534  */
8535 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
8536 {
8537 	struct devlog_params *dparams = &adap->params.devlog;
8538 	u32 pf_dparams;
8539 	unsigned int devlog_meminfo;
8540 	struct fw_devlog_cmd devlog_cmd;
8541 	int ret;
8542 
8543 	/* If we're dealing with newer firmware, the Device Log Paramerters
8544 	 * are stored in a designated register which allows us to access the
8545 	 * Device Log even if we can't talk to the firmware.
8546 	 */
8547 	pf_dparams =
8548 		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
8549 	if (pf_dparams) {
8550 		unsigned int nentries, nentries128;
8551 
8552 		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
8553 		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
8554 
8555 		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
8556 		nentries = (nentries128 + 1) * 128;
8557 		dparams->size = nentries * sizeof(struct fw_devlog_e);
8558 
8559 		return 0;
8560 	}
8561 
8562 	/*
8563 	 * For any failing returns ...
8564 	 */
8565 	memset(dparams, 0, sizeof *dparams);
8566 
8567 	/*
8568 	 * If we can't talk to the firmware, there's really nothing we can do
8569 	 * at this point.
8570 	 */
8571 	if (!fw_attach)
8572 		return -ENXIO;
8573 
8574 	/* Otherwise, ask the firmware for it's Device Log Parameters.
8575 	 */
8576 	memset(&devlog_cmd, 0, sizeof devlog_cmd);
8577 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
8578 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
8579 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
8580 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
8581 			 &devlog_cmd);
8582 	if (ret)
8583 		return ret;
8584 
8585 	devlog_meminfo =
8586 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
8587 	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
8588 	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
8589 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
8590 
8591 	return 0;
8592 }
8593 
8594 /**
8595  *	t4_init_sge_params - initialize adap->params.sge
8596  *	@adapter: the adapter
8597  *
8598  *	Initialize various fields of the adapter's SGE Parameters structure.
8599  */
8600 int t4_init_sge_params(struct adapter *adapter)
8601 {
8602 	u32 r;
8603 	struct sge_params *sp = &adapter->params.sge;
8604 	unsigned i, tscale = 1;
8605 
8606 	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
8607 	sp->counter_val[0] = G_THRESHOLD_0(r);
8608 	sp->counter_val[1] = G_THRESHOLD_1(r);
8609 	sp->counter_val[2] = G_THRESHOLD_2(r);
8610 	sp->counter_val[3] = G_THRESHOLD_3(r);
8611 
8612 	if (chip_id(adapter) >= CHELSIO_T6) {
8613 		r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
8614 		tscale = G_TSCALE(r);
8615 		if (tscale == 0)
8616 			tscale = 1;
8617 		else
8618 			tscale += 2;
8619 	}
8620 
8621 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
8622 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
8623 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
8624 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
8625 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
8626 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
8627 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
8628 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
8629 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
8630 
8631 	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
8632 	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
8633 	if (is_t4(adapter))
8634 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
8635 	else if (is_t5(adapter))
8636 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
8637 	else
8638 		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
8639 
8640 	/* egress queues: log2 of # of doorbells per BAR2 page */
8641 	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
8642 	r >>= S_QUEUESPERPAGEPF0 +
8643 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
8644 	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
8645 
8646 	/* ingress queues: log2 of # of doorbells per BAR2 page */
8647 	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
8648 	r >>= S_QUEUESPERPAGEPF0 +
8649 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
8650 	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
8651 
8652 	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
8653 	r >>= S_HOSTPAGESIZEPF0 +
8654 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
8655 	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
8656 
8657 	r = t4_read_reg(adapter, A_SGE_CONTROL);
8658 	sp->sge_control = r;
8659 	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
8660 	sp->fl_pktshift = G_PKTSHIFT(r);
8661 	if (chip_id(adapter) <= CHELSIO_T5) {
8662 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
8663 		    X_INGPADBOUNDARY_SHIFT);
8664 	} else {
8665 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
8666 		    X_T6_INGPADBOUNDARY_SHIFT);
8667 	}
8668 	if (is_t4(adapter))
8669 		sp->pack_boundary = sp->pad_boundary;
8670 	else {
8671 		r = t4_read_reg(adapter, A_SGE_CONTROL2);
8672 		if (G_INGPACKBOUNDARY(r) == 0)
8673 			sp->pack_boundary = 16;
8674 		else
8675 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
8676 	}
8677 	for (i = 0; i < SGE_FLBUF_SIZES; i++)
8678 		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
8679 		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
8680 
8681 	return 0;
8682 }
8683 
8684 /*
8685  * Read and cache the adapter's compressed filter mode and ingress config.
8686  */
8687 static void read_filter_mode_and_ingress_config(struct adapter *adap,
8688     bool sleep_ok)
8689 {
8690 	uint32_t v;
8691 	struct tp_params *tpp = &adap->params.tp;
8692 
8693 	t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP,
8694 	    sleep_ok);
8695 	t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG,
8696 	    sleep_ok);
8697 
8698 	/*
8699 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
8700 	 * shift positions of several elements of the Compressed Filter Tuple
8701 	 * for this adapter which we need frequently ...
8702 	 */
8703 	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
8704 	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
8705 	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
8706 	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
8707 	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
8708 	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
8709 	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
8710 	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
8711 	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
8712 	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
8713 
8714 	if (chip_id(adap) > CHELSIO_T4) {
8715 		v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3));
8716 		adap->params.tp.hash_filter_mask = v;
8717 		v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4));
8718 		adap->params.tp.hash_filter_mask |= (u64)v << 32;
8719 	}
8720 }
8721 
8722 /**
8723  *      t4_init_tp_params - initialize adap->params.tp
8724  *      @adap: the adapter
8725  *
8726  *      Initialize various fields of the adapter's TP Parameters structure.
8727  */
8728 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
8729 {
8730 	int chan;
8731 	u32 v;
8732 	struct tp_params *tpp = &adap->params.tp;
8733 
8734 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
8735 	tpp->tre = G_TIMERRESOLUTION(v);
8736 	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
8737 
8738 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
8739 	for (chan = 0; chan < MAX_NCHAN; chan++)
8740 		tpp->tx_modq[chan] = chan;
8741 
8742 	read_filter_mode_and_ingress_config(adap, sleep_ok);
8743 
8744 	/*
8745 	 * Cache a mask of the bits that represent the error vector portion of
8746 	 * rx_pkt.err_vec.  T6+ can use a compressed error vector to make room
8747 	 * for information about outer encapsulation (GENEVE/VXLAN/NVGRE).
8748 	 */
8749 	tpp->err_vec_mask = htobe16(0xffff);
8750 	if (chip_id(adap) > CHELSIO_T5) {
8751 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
8752 		if (v & F_CRXPKTENC) {
8753 			tpp->err_vec_mask =
8754 			    htobe16(V_T6_COMPR_RXERR_VEC(M_T6_COMPR_RXERR_VEC));
8755 		}
8756 	}
8757 
8758 	return 0;
8759 }
8760 
8761 /**
8762  *      t4_filter_field_shift - calculate filter field shift
8763  *      @adap: the adapter
8764  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
8765  *
8766  *      Return the shift position of a filter field within the Compressed
8767  *      Filter Tuple.  The filter field is specified via its selection bit
8768  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
8769  */
8770 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
8771 {
8772 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
8773 	unsigned int sel;
8774 	int field_shift;
8775 
8776 	if ((filter_mode & filter_sel) == 0)
8777 		return -1;
8778 
8779 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
8780 		switch (filter_mode & sel) {
8781 		case F_FCOE:
8782 			field_shift += W_FT_FCOE;
8783 			break;
8784 		case F_PORT:
8785 			field_shift += W_FT_PORT;
8786 			break;
8787 		case F_VNIC_ID:
8788 			field_shift += W_FT_VNIC_ID;
8789 			break;
8790 		case F_VLAN:
8791 			field_shift += W_FT_VLAN;
8792 			break;
8793 		case F_TOS:
8794 			field_shift += W_FT_TOS;
8795 			break;
8796 		case F_PROTOCOL:
8797 			field_shift += W_FT_PROTOCOL;
8798 			break;
8799 		case F_ETHERTYPE:
8800 			field_shift += W_FT_ETHERTYPE;
8801 			break;
8802 		case F_MACMATCH:
8803 			field_shift += W_FT_MACMATCH;
8804 			break;
8805 		case F_MPSHITTYPE:
8806 			field_shift += W_FT_MPSHITTYPE;
8807 			break;
8808 		case F_FRAGMENTATION:
8809 			field_shift += W_FT_FRAGMENTATION;
8810 			break;
8811 		}
8812 	}
8813 	return field_shift;
8814 }
8815 
8816 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
8817 {
8818 	u8 addr[6];
8819 	int ret, i, j;
8820 	u16 rss_size;
8821 	struct port_info *p = adap2pinfo(adap, port_id);
8822 	u32 param, val;
8823 
8824 	for (i = 0, j = -1; i <= p->port_id; i++) {
8825 		do {
8826 			j++;
8827 		} while ((adap->params.portvec & (1 << j)) == 0);
8828 	}
8829 
8830 	p->tx_chan = j;
8831 	p->mps_bg_map = t4_get_mps_bg_map(adap, j);
8832 	p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
8833 	p->lport = j;
8834 
8835 	if (!(adap->flags & IS_VF) ||
8836 	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
8837  		t4_update_port_info(p);
8838 	}
8839 
8840 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
8841 	if (ret < 0)
8842 		return ret;
8843 
8844 	p->vi[0].viid = ret;
8845 	if (chip_id(adap) <= CHELSIO_T5)
8846 		p->vi[0].smt_idx = (ret & 0x7f) << 1;
8847 	else
8848 		p->vi[0].smt_idx = (ret & 0x7f);
8849 	p->vi[0].rss_size = rss_size;
8850 	t4_os_set_hw_addr(p, addr);
8851 
8852 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8853 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
8854 	    V_FW_PARAMS_PARAM_YZ(p->vi[0].viid);
8855 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
8856 	if (ret)
8857 		p->vi[0].rss_base = 0xffff;
8858 	else {
8859 		/* MPASS((val >> 16) == rss_size); */
8860 		p->vi[0].rss_base = val & 0xffff;
8861 	}
8862 
8863 	return 0;
8864 }
8865 
8866 /**
8867  *	t4_read_cimq_cfg - read CIM queue configuration
8868  *	@adap: the adapter
8869  *	@base: holds the queue base addresses in bytes
8870  *	@size: holds the queue sizes in bytes
8871  *	@thres: holds the queue full thresholds in bytes
8872  *
8873  *	Returns the current configuration of the CIM queues, starting with
8874  *	the IBQs, then the OBQs.
8875  */
8876 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
8877 {
8878 	unsigned int i, v;
8879 	int cim_num_obq = adap->chip_params->cim_num_obq;
8880 
8881 	for (i = 0; i < CIM_NUM_IBQ; i++) {
8882 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
8883 			     V_QUENUMSELECT(i));
8884 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8885 		/* value is in 256-byte units */
8886 		*base++ = G_CIMQBASE(v) * 256;
8887 		*size++ = G_CIMQSIZE(v) * 256;
8888 		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
8889 	}
8890 	for (i = 0; i < cim_num_obq; i++) {
8891 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8892 			     V_QUENUMSELECT(i));
8893 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8894 		/* value is in 256-byte units */
8895 		*base++ = G_CIMQBASE(v) * 256;
8896 		*size++ = G_CIMQSIZE(v) * 256;
8897 	}
8898 }
8899 
8900 /**
8901  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
8902  *	@adap: the adapter
8903  *	@qid: the queue index
8904  *	@data: where to store the queue contents
8905  *	@n: capacity of @data in 32-bit words
8906  *
8907  *	Reads the contents of the selected CIM queue starting at address 0 up
8908  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8909  *	error and the number of 32-bit words actually read on success.
8910  */
8911 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8912 {
8913 	int i, err, attempts;
8914 	unsigned int addr;
8915 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
8916 
8917 	if (qid > 5 || (n & 3))
8918 		return -EINVAL;
8919 
8920 	addr = qid * nwords;
8921 	if (n > nwords)
8922 		n = nwords;
8923 
8924 	/* It might take 3-10ms before the IBQ debug read access is allowed.
8925 	 * Wait for 1 Sec with a delay of 1 usec.
8926 	 */
8927 	attempts = 1000000;
8928 
8929 	for (i = 0; i < n; i++, addr++) {
8930 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
8931 			     F_IBQDBGEN);
8932 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
8933 				      attempts, 1);
8934 		if (err)
8935 			return err;
8936 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
8937 	}
8938 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
8939 	return i;
8940 }
8941 
8942 /**
8943  *	t4_read_cim_obq - read the contents of a CIM outbound queue
8944  *	@adap: the adapter
8945  *	@qid: the queue index
8946  *	@data: where to store the queue contents
8947  *	@n: capacity of @data in 32-bit words
8948  *
8949  *	Reads the contents of the selected CIM queue starting at address 0 up
8950  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8951  *	error and the number of 32-bit words actually read on success.
8952  */
8953 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8954 {
8955 	int i, err;
8956 	unsigned int addr, v, nwords;
8957 	int cim_num_obq = adap->chip_params->cim_num_obq;
8958 
8959 	if ((qid > (cim_num_obq - 1)) || (n & 3))
8960 		return -EINVAL;
8961 
8962 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8963 		     V_QUENUMSELECT(qid));
8964 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8965 
8966 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
8967 	nwords = G_CIMQSIZE(v) * 64;  /* same */
8968 	if (n > nwords)
8969 		n = nwords;
8970 
8971 	for (i = 0; i < n; i++, addr++) {
8972 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
8973 			     F_OBQDBGEN);
8974 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
8975 				      2, 1);
8976 		if (err)
8977 			return err;
8978 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
8979 	}
8980 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
8981 	return i;
8982 }
8983 
8984 enum {
8985 	CIM_QCTL_BASE     = 0,
8986 	CIM_CTL_BASE      = 0x2000,
8987 	CIM_PBT_ADDR_BASE = 0x2800,
8988 	CIM_PBT_LRF_BASE  = 0x3000,
8989 	CIM_PBT_DATA_BASE = 0x3800
8990 };
8991 
8992 /**
8993  *	t4_cim_read - read a block from CIM internal address space
8994  *	@adap: the adapter
8995  *	@addr: the start address within the CIM address space
8996  *	@n: number of words to read
8997  *	@valp: where to store the result
8998  *
8999  *	Reads a block of 4-byte words from the CIM intenal address space.
9000  */
9001 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9002 		unsigned int *valp)
9003 {
9004 	int ret = 0;
9005 
9006 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
9007 		return -EBUSY;
9008 
9009 	for ( ; !ret && n--; addr += 4) {
9010 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
9011 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
9012 				      0, 5, 2);
9013 		if (!ret)
9014 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
9015 	}
9016 	return ret;
9017 }
9018 
9019 /**
9020  *	t4_cim_write - write a block into CIM internal address space
9021  *	@adap: the adapter
9022  *	@addr: the start address within the CIM address space
9023  *	@n: number of words to write
9024  *	@valp: set of values to write
9025  *
9026  *	Writes a block of 4-byte words into the CIM intenal address space.
9027  */
9028 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9029 		 const unsigned int *valp)
9030 {
9031 	int ret = 0;
9032 
9033 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
9034 		return -EBUSY;
9035 
9036 	for ( ; !ret && n--; addr += 4) {
9037 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
9038 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
9039 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
9040 				      0, 5, 2);
9041 	}
9042 	return ret;
9043 }
9044 
9045 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9046 			 unsigned int val)
9047 {
9048 	return t4_cim_write(adap, addr, 1, &val);
9049 }
9050 
9051 /**
9052  *	t4_cim_ctl_read - read a block from CIM control region
9053  *	@adap: the adapter
9054  *	@addr: the start address within the CIM control region
9055  *	@n: number of words to read
9056  *	@valp: where to store the result
9057  *
9058  *	Reads a block of 4-byte words from the CIM control region.
9059  */
9060 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
9061 		    unsigned int *valp)
9062 {
9063 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
9064 }
9065 
9066 /**
9067  *	t4_cim_read_la - read CIM LA capture buffer
9068  *	@adap: the adapter
9069  *	@la_buf: where to store the LA data
9070  *	@wrptr: the HW write pointer within the capture buffer
9071  *
9072  *	Reads the contents of the CIM LA buffer with the most recent entry at
9073  *	the end	of the returned data and with the entry at @wrptr first.
9074  *	We try to leave the LA in the running state we find it in.
9075  */
9076 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9077 {
9078 	int i, ret;
9079 	unsigned int cfg, val, idx;
9080 
9081 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
9082 	if (ret)
9083 		return ret;
9084 
9085 	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
9086 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
9087 		if (ret)
9088 			return ret;
9089 	}
9090 
9091 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
9092 	if (ret)
9093 		goto restart;
9094 
9095 	idx = G_UPDBGLAWRPTR(val);
9096 	if (wrptr)
9097 		*wrptr = idx;
9098 
9099 	for (i = 0; i < adap->params.cim_la_size; i++) {
9100 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
9101 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
9102 		if (ret)
9103 			break;
9104 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
9105 		if (ret)
9106 			break;
9107 		if (val & F_UPDBGLARDEN) {
9108 			ret = -ETIMEDOUT;
9109 			break;
9110 		}
9111 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
9112 		if (ret)
9113 			break;
9114 
9115 		/* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
9116 		idx = (idx + 1) & M_UPDBGLARDPTR;
9117 		/*
9118 		 * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9119 		 * identify the 32-bit portion of the full 312-bit data
9120 		 */
9121 		if (is_t6(adap))
9122 			while ((idx & 0xf) > 9)
9123 				idx = (idx + 1) % M_UPDBGLARDPTR;
9124 	}
9125 restart:
9126 	if (cfg & F_UPDBGLAEN) {
9127 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
9128 				      cfg & ~F_UPDBGLARDEN);
9129 		if (!ret)
9130 			ret = r;
9131 	}
9132 	return ret;
9133 }
9134 
9135 /**
9136  *	t4_tp_read_la - read TP LA capture buffer
9137  *	@adap: the adapter
9138  *	@la_buf: where to store the LA data
9139  *	@wrptr: the HW write pointer within the capture buffer
9140  *
9141  *	Reads the contents of the TP LA buffer with the most recent entry at
9142  *	the end	of the returned data and with the entry at @wrptr first.
9143  *	We leave the LA in the running state we find it in.
9144  */
9145 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9146 {
9147 	bool last_incomplete;
9148 	unsigned int i, cfg, val, idx;
9149 
9150 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
9151 	if (cfg & F_DBGLAENABLE)			/* freeze LA */
9152 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
9153 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
9154 
9155 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
9156 	idx = G_DBGLAWPTR(val);
9157 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
9158 	if (last_incomplete)
9159 		idx = (idx + 1) & M_DBGLARPTR;
9160 	if (wrptr)
9161 		*wrptr = idx;
9162 
9163 	val &= 0xffff;
9164 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
9165 	val |= adap->params.tp.la_mask;
9166 
9167 	for (i = 0; i < TPLA_SIZE; i++) {
9168 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
9169 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
9170 		idx = (idx + 1) & M_DBGLARPTR;
9171 	}
9172 
9173 	/* Wipe out last entry if it isn't valid */
9174 	if (last_incomplete)
9175 		la_buf[TPLA_SIZE - 1] = ~0ULL;
9176 
9177 	if (cfg & F_DBGLAENABLE)		/* restore running state */
9178 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
9179 			     cfg | adap->params.tp.la_mask);
9180 }
9181 
9182 /*
9183  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
9184  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
9185  * state for more than the Warning Threshold then we'll issue a warning about
9186  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
9187  * appears to be hung every Warning Repeat second till the situation clears.
9188  * If the situation clears, we'll note that as well.
9189  */
9190 #define SGE_IDMA_WARN_THRESH 1
9191 #define SGE_IDMA_WARN_REPEAT 300
9192 
9193 /**
9194  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
9195  *	@adapter: the adapter
9196  *	@idma: the adapter IDMA Monitor state
9197  *
9198  *	Initialize the state of an SGE Ingress DMA Monitor.
9199  */
9200 void t4_idma_monitor_init(struct adapter *adapter,
9201 			  struct sge_idma_monitor_state *idma)
9202 {
9203 	/* Initialize the state variables for detecting an SGE Ingress DMA
9204 	 * hang.  The SGE has internal counters which count up on each clock
9205 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
9206 	 * same state they were on the previous clock tick.  The clock used is
9207 	 * the Core Clock so we have a limit on the maximum "time" they can
9208 	 * record; typically a very small number of seconds.  For instance,
9209 	 * with a 600MHz Core Clock, we can only count up to a bit more than
9210 	 * 7s.  So we'll synthesize a larger counter in order to not run the
9211 	 * risk of having the "timers" overflow and give us the flexibility to
9212 	 * maintain a Hung SGE State Machine of our own which operates across
9213 	 * a longer time frame.
9214 	 */
9215 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
9216 	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
9217 }
9218 
9219 /**
9220  *	t4_idma_monitor - monitor SGE Ingress DMA state
9221  *	@adapter: the adapter
9222  *	@idma: the adapter IDMA Monitor state
9223  *	@hz: number of ticks/second
9224  *	@ticks: number of ticks since the last IDMA Monitor call
9225  */
9226 void t4_idma_monitor(struct adapter *adapter,
9227 		     struct sge_idma_monitor_state *idma,
9228 		     int hz, int ticks)
9229 {
9230 	int i, idma_same_state_cnt[2];
9231 
9232 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
9233 	  * are counters inside the SGE which count up on each clock when the
9234 	  * SGE finds its Ingress DMA State Engines in the same states they
9235 	  * were in the previous clock.  The counters will peg out at
9236 	  * 0xffffffff without wrapping around so once they pass the 1s
9237 	  * threshold they'll stay above that till the IDMA state changes.
9238 	  */
9239 	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
9240 	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
9241 	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9242 
9243 	for (i = 0; i < 2; i++) {
9244 		u32 debug0, debug11;
9245 
9246 		/* If the Ingress DMA Same State Counter ("timer") is less
9247 		 * than 1s, then we can reset our synthesized Stall Timer and
9248 		 * continue.  If we have previously emitted warnings about a
9249 		 * potential stalled Ingress Queue, issue a note indicating
9250 		 * that the Ingress Queue has resumed forward progress.
9251 		 */
9252 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
9253 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
9254 				CH_WARN(adapter, "SGE idma%d, queue %u, "
9255 					"resumed after %d seconds\n",
9256 					i, idma->idma_qid[i],
9257 					idma->idma_stalled[i]/hz);
9258 			idma->idma_stalled[i] = 0;
9259 			continue;
9260 		}
9261 
9262 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
9263 		 * domain.  The first time we get here it'll be because we
9264 		 * passed the 1s Threshold; each additional time it'll be
9265 		 * because the RX Timer Callback is being fired on its regular
9266 		 * schedule.
9267 		 *
9268 		 * If the stall is below our Potential Hung Ingress Queue
9269 		 * Warning Threshold, continue.
9270 		 */
9271 		if (idma->idma_stalled[i] == 0) {
9272 			idma->idma_stalled[i] = hz;
9273 			idma->idma_warn[i] = 0;
9274 		} else {
9275 			idma->idma_stalled[i] += ticks;
9276 			idma->idma_warn[i] -= ticks;
9277 		}
9278 
9279 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
9280 			continue;
9281 
9282 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
9283 		 */
9284 		if (idma->idma_warn[i] > 0)
9285 			continue;
9286 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
9287 
9288 		/* Read and save the SGE IDMA State and Queue ID information.
9289 		 * We do this every time in case it changes across time ...
9290 		 * can't be too careful ...
9291 		 */
9292 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
9293 		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9294 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
9295 
9296 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
9297 		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9298 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
9299 
9300 		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
9301 			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
9302 			i, idma->idma_qid[i], idma->idma_state[i],
9303 			idma->idma_stalled[i]/hz,
9304 			debug0, debug11);
9305 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
9306 	}
9307 }
9308 
9309 /**
9310  *	t4_read_pace_tbl - read the pace table
9311  *	@adap: the adapter
9312  *	@pace_vals: holds the returned values
9313  *
9314  *	Returns the values of TP's pace table in microseconds.
9315  */
9316 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
9317 {
9318 	unsigned int i, v;
9319 
9320 	for (i = 0; i < NTX_SCHED; i++) {
9321 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
9322 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
9323 		pace_vals[i] = dack_ticks_to_usec(adap, v);
9324 	}
9325 }
9326 
9327 /**
9328  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
9329  *	@adap: the adapter
9330  *	@sched: the scheduler index
9331  *	@kbps: the byte rate in Kbps
9332  *	@ipg: the interpacket delay in tenths of nanoseconds
9333  *
9334  *	Return the current configuration of a HW Tx scheduler.
9335  */
9336 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
9337 		     unsigned int *ipg, bool sleep_ok)
9338 {
9339 	unsigned int v, addr, bpt, cpt;
9340 
9341 	if (kbps) {
9342 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
9343 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9344 		if (sched & 1)
9345 			v >>= 16;
9346 		bpt = (v >> 8) & 0xff;
9347 		cpt = v & 0xff;
9348 		if (!cpt)
9349 			*kbps = 0;	/* scheduler disabled */
9350 		else {
9351 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
9352 			*kbps = (v * bpt) / 125;
9353 		}
9354 	}
9355 	if (ipg) {
9356 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
9357 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9358 		if (sched & 1)
9359 			v >>= 16;
9360 		v &= 0xffff;
9361 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
9362 	}
9363 }
9364 
9365 /**
9366  *	t4_load_cfg - download config file
9367  *	@adap: the adapter
9368  *	@cfg_data: the cfg text file to write
9369  *	@size: text file size
9370  *
9371  *	Write the supplied config text file to the card's serial flash.
9372  */
9373 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9374 {
9375 	int ret, i, n, cfg_addr;
9376 	unsigned int addr;
9377 	unsigned int flash_cfg_start_sec;
9378 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9379 
9380 	cfg_addr = t4_flash_cfg_addr(adap);
9381 	if (cfg_addr < 0)
9382 		return cfg_addr;
9383 
9384 	addr = cfg_addr;
9385 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9386 
9387 	if (size > FLASH_CFG_MAX_SIZE) {
9388 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
9389 		       FLASH_CFG_MAX_SIZE);
9390 		return -EFBIG;
9391 	}
9392 
9393 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
9394 			 sf_sec_size);
9395 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9396 				     flash_cfg_start_sec + i - 1);
9397 	/*
9398 	 * If size == 0 then we're simply erasing the FLASH sectors associated
9399 	 * with the on-adapter Firmware Configuration File.
9400 	 */
9401 	if (ret || size == 0)
9402 		goto out;
9403 
9404 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9405 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9406 		if ( (size - i) <  SF_PAGE_SIZE)
9407 			n = size - i;
9408 		else
9409 			n = SF_PAGE_SIZE;
9410 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
9411 		if (ret)
9412 			goto out;
9413 
9414 		addr += SF_PAGE_SIZE;
9415 		cfg_data += SF_PAGE_SIZE;
9416 	}
9417 
9418 out:
9419 	if (ret)
9420 		CH_ERR(adap, "config file %s failed %d\n",
9421 		       (size == 0 ? "clear" : "download"), ret);
9422 	return ret;
9423 }
9424 
9425 /**
9426  *	t5_fw_init_extern_mem - initialize the external memory
9427  *	@adap: the adapter
9428  *
9429  *	Initializes the external memory on T5.
9430  */
9431 int t5_fw_init_extern_mem(struct adapter *adap)
9432 {
9433 	u32 params[1], val[1];
9434 	int ret;
9435 
9436 	if (!is_t5(adap))
9437 		return 0;
9438 
9439 	val[0] = 0xff; /* Initialize all MCs */
9440 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9441 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
9442 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
9443 			FW_CMD_MAX_TIMEOUT);
9444 
9445 	return ret;
9446 }
9447 
9448 /* BIOS boot headers */
9449 typedef struct pci_expansion_rom_header {
9450 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
9451 	u8	reserved[22]; /* Reserved per processor Architecture data */
9452 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
9453 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
9454 
9455 /* Legacy PCI Expansion ROM Header */
9456 typedef struct legacy_pci_expansion_rom_header {
9457 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
9458 	u8	size512; /* Current Image Size in units of 512 bytes */
9459 	u8	initentry_point[4];
9460 	u8	cksum; /* Checksum computed on the entire Image */
9461 	u8	reserved[16]; /* Reserved */
9462 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
9463 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
9464 
9465 /* EFI PCI Expansion ROM Header */
9466 typedef struct efi_pci_expansion_rom_header {
9467 	u8	signature[2]; // ROM signature. The value 0xaa55
9468 	u8	initialization_size[2]; /* Units 512. Includes this header */
9469 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
9470 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
9471 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
9472 	u8	compression_type[2]; /* Compression type. */
9473 		/*
9474 		 * Compression type definition
9475 		 * 0x0: uncompressed
9476 		 * 0x1: Compressed
9477 		 * 0x2-0xFFFF: Reserved
9478 		 */
9479 	u8	reserved[8]; /* Reserved */
9480 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
9481 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
9482 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
9483 
9484 /* PCI Data Structure Format */
9485 typedef struct pcir_data_structure { /* PCI Data Structure */
9486 	u8	signature[4]; /* Signature. The string "PCIR" */
9487 	u8	vendor_id[2]; /* Vendor Identification */
9488 	u8	device_id[2]; /* Device Identification */
9489 	u8	vital_product[2]; /* Pointer to Vital Product Data */
9490 	u8	length[2]; /* PCIR Data Structure Length */
9491 	u8	revision; /* PCIR Data Structure Revision */
9492 	u8	class_code[3]; /* Class Code */
9493 	u8	image_length[2]; /* Image Length. Multiple of 512B */
9494 	u8	code_revision[2]; /* Revision Level of Code/Data */
9495 	u8	code_type; /* Code Type. */
9496 		/*
9497 		 * PCI Expansion ROM Code Types
9498 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
9499 		 * 0x01: Open Firmware standard for PCI. FCODE
9500 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
9501 		 * 0x03: EFI Image. EFI
9502 		 * 0x04-0xFF: Reserved.
9503 		 */
9504 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
9505 	u8	reserved[2]; /* Reserved */
9506 } pcir_data_t; /* PCI__DATA_STRUCTURE */
9507 
9508 /* BOOT constants */
9509 enum {
9510 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
9511 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
9512 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
9513 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
9514 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
9515 	VENDOR_ID = 0x1425, /* Vendor ID */
9516 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
9517 };
9518 
9519 /*
9520  *	modify_device_id - Modifies the device ID of the Boot BIOS image
9521  *	@adatper: the device ID to write.
9522  *	@boot_data: the boot image to modify.
9523  *
9524  *	Write the supplied device ID to the boot BIOS image.
9525  */
9526 static void modify_device_id(int device_id, u8 *boot_data)
9527 {
9528 	legacy_pci_exp_rom_header_t *header;
9529 	pcir_data_t *pcir_header;
9530 	u32 cur_header = 0;
9531 
9532 	/*
9533 	 * Loop through all chained images and change the device ID's
9534 	 */
9535 	while (1) {
9536 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
9537 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
9538 			      le16_to_cpu(*(u16*)header->pcir_offset)];
9539 
9540 		/*
9541 		 * Only modify the Device ID if code type is Legacy or HP.
9542 		 * 0x00: Okay to modify
9543 		 * 0x01: FCODE. Do not be modify
9544 		 * 0x03: Okay to modify
9545 		 * 0x04-0xFF: Do not modify
9546 		 */
9547 		if (pcir_header->code_type == 0x00) {
9548 			u8 csum = 0;
9549 			int i;
9550 
9551 			/*
9552 			 * Modify Device ID to match current adatper
9553 			 */
9554 			*(u16*) pcir_header->device_id = device_id;
9555 
9556 			/*
9557 			 * Set checksum temporarily to 0.
9558 			 * We will recalculate it later.
9559 			 */
9560 			header->cksum = 0x0;
9561 
9562 			/*
9563 			 * Calculate and update checksum
9564 			 */
9565 			for (i = 0; i < (header->size512 * 512); i++)
9566 				csum += (u8)boot_data[cur_header + i];
9567 
9568 			/*
9569 			 * Invert summed value to create the checksum
9570 			 * Writing new checksum value directly to the boot data
9571 			 */
9572 			boot_data[cur_header + 7] = -csum;
9573 
9574 		} else if (pcir_header->code_type == 0x03) {
9575 
9576 			/*
9577 			 * Modify Device ID to match current adatper
9578 			 */
9579 			*(u16*) pcir_header->device_id = device_id;
9580 
9581 		}
9582 
9583 
9584 		/*
9585 		 * Check indicator element to identify if this is the last
9586 		 * image in the ROM.
9587 		 */
9588 		if (pcir_header->indicator & 0x80)
9589 			break;
9590 
9591 		/*
9592 		 * Move header pointer up to the next image in the ROM.
9593 		 */
9594 		cur_header += header->size512 * 512;
9595 	}
9596 }
9597 
9598 /*
9599  *	t4_load_boot - download boot flash
9600  *	@adapter: the adapter
9601  *	@boot_data: the boot image to write
9602  *	@boot_addr: offset in flash to write boot_data
9603  *	@size: image size
9604  *
9605  *	Write the supplied boot image to the card's serial flash.
9606  *	The boot image has the following sections: a 28-byte header and the
9607  *	boot image.
9608  */
9609 int t4_load_boot(struct adapter *adap, u8 *boot_data,
9610 		 unsigned int boot_addr, unsigned int size)
9611 {
9612 	pci_exp_rom_header_t *header;
9613 	int pcir_offset ;
9614 	pcir_data_t *pcir_header;
9615 	int ret, addr;
9616 	uint16_t device_id;
9617 	unsigned int i;
9618 	unsigned int boot_sector = (boot_addr * 1024 );
9619 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9620 
9621 	/*
9622 	 * Make sure the boot image does not encroach on the firmware region
9623 	 */
9624 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
9625 		CH_ERR(adap, "boot image encroaching on firmware region\n");
9626 		return -EFBIG;
9627 	}
9628 
9629 	/*
9630 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
9631 	 * and Boot configuration data sections. These 3 boot sections span
9632 	 * sectors 0 to 7 in flash and live right before the FW image location.
9633 	 */
9634 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
9635 			sf_sec_size);
9636 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
9637 				     (boot_sector >> 16) + i - 1);
9638 
9639 	/*
9640 	 * If size == 0 then we're simply erasing the FLASH sectors associated
9641 	 * with the on-adapter option ROM file
9642 	 */
9643 	if (ret || (size == 0))
9644 		goto out;
9645 
9646 	/* Get boot header */
9647 	header = (pci_exp_rom_header_t *)boot_data;
9648 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
9649 	/* PCIR Data Structure */
9650 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
9651 
9652 	/*
9653 	 * Perform some primitive sanity testing to avoid accidentally
9654 	 * writing garbage over the boot sectors.  We ought to check for
9655 	 * more but it's not worth it for now ...
9656 	 */
9657 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
9658 		CH_ERR(adap, "boot image too small/large\n");
9659 		return -EFBIG;
9660 	}
9661 
9662 #ifndef CHELSIO_T4_DIAGS
9663 	/*
9664 	 * Check BOOT ROM header signature
9665 	 */
9666 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
9667 		CH_ERR(adap, "Boot image missing signature\n");
9668 		return -EINVAL;
9669 	}
9670 
9671 	/*
9672 	 * Check PCI header signature
9673 	 */
9674 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
9675 		CH_ERR(adap, "PCI header missing signature\n");
9676 		return -EINVAL;
9677 	}
9678 
9679 	/*
9680 	 * Check Vendor ID matches Chelsio ID
9681 	 */
9682 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
9683 		CH_ERR(adap, "Vendor ID missing signature\n");
9684 		return -EINVAL;
9685 	}
9686 #endif
9687 
9688 	/*
9689 	 * Retrieve adapter's device ID
9690 	 */
9691 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
9692 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
9693 	device_id = device_id & 0xf0ff;
9694 
9695 	/*
9696 	 * Check PCIE Device ID
9697 	 */
9698 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
9699 		/*
9700 		 * Change the device ID in the Boot BIOS image to match
9701 		 * the Device ID of the current adapter.
9702 		 */
9703 		modify_device_id(device_id, boot_data);
9704 	}
9705 
9706 	/*
9707 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
9708 	 * we finish copying the rest of the boot image. This will ensure
9709 	 * that the BIOS boot header will only be written if the boot image
9710 	 * was written in full.
9711 	 */
9712 	addr = boot_sector;
9713 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
9714 		addr += SF_PAGE_SIZE;
9715 		boot_data += SF_PAGE_SIZE;
9716 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
9717 		if (ret)
9718 			goto out;
9719 	}
9720 
9721 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
9722 			     (const u8 *)header, 0);
9723 
9724 out:
9725 	if (ret)
9726 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
9727 	return ret;
9728 }
9729 
9730 /*
9731  *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
9732  *	@adapter: the adapter
9733  *
9734  *	Return the address within the flash where the OptionROM Configuration
9735  *	is stored, or an error if the device FLASH is too small to contain
9736  *	a OptionROM Configuration.
9737  */
9738 static int t4_flash_bootcfg_addr(struct adapter *adapter)
9739 {
9740 	/*
9741 	 * If the device FLASH isn't large enough to hold a Firmware
9742 	 * Configuration File, return an error.
9743 	 */
9744 	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
9745 		return -ENOSPC;
9746 
9747 	return FLASH_BOOTCFG_START;
9748 }
9749 
9750 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
9751 {
9752 	int ret, i, n, cfg_addr;
9753 	unsigned int addr;
9754 	unsigned int flash_cfg_start_sec;
9755 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9756 
9757 	cfg_addr = t4_flash_bootcfg_addr(adap);
9758 	if (cfg_addr < 0)
9759 		return cfg_addr;
9760 
9761 	addr = cfg_addr;
9762 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9763 
9764 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
9765 		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
9766 			FLASH_BOOTCFG_MAX_SIZE);
9767 		return -EFBIG;
9768 	}
9769 
9770 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
9771 			 sf_sec_size);
9772 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9773 					flash_cfg_start_sec + i - 1);
9774 
9775 	/*
9776 	 * If size == 0 then we're simply erasing the FLASH sectors associated
9777 	 * with the on-adapter OptionROM Configuration File.
9778 	 */
9779 	if (ret || size == 0)
9780 		goto out;
9781 
9782 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9783 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9784 		if ( (size - i) <  SF_PAGE_SIZE)
9785 			n = size - i;
9786 		else
9787 			n = SF_PAGE_SIZE;
9788 		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
9789 		if (ret)
9790 			goto out;
9791 
9792 		addr += SF_PAGE_SIZE;
9793 		cfg_data += SF_PAGE_SIZE;
9794 	}
9795 
9796 out:
9797 	if (ret)
9798 		CH_ERR(adap, "boot config data %s failed %d\n",
9799 				(size == 0 ? "clear" : "download"), ret);
9800 	return ret;
9801 }
9802 
9803 /**
9804  *	t4_set_filter_mode - configure the optional components of filter tuples
9805  *	@adap: the adapter
9806  *	@mode_map: a bitmap selcting which optional filter components to enable
9807  * 	@sleep_ok: if true we may sleep while awaiting command completion
9808  *
9809  *	Sets the filter mode by selecting the optional components to enable
9810  *	in filter tuples.  Returns 0 on success and a negative error if the
9811  *	requested mode needs more bits than are available for optional
9812  *	components.
9813  */
9814 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map,
9815 		       bool sleep_ok)
9816 {
9817 	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
9818 
9819 	int i, nbits = 0;
9820 
9821 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
9822 		if (mode_map & (1 << i))
9823 			nbits += width[i];
9824 	if (nbits > FILTER_OPT_LEN)
9825 		return -EINVAL;
9826 	t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok);
9827 	read_filter_mode_and_ingress_config(adap, sleep_ok);
9828 
9829 	return 0;
9830 }
9831 
9832 /**
9833  *	t4_clr_port_stats - clear port statistics
9834  *	@adap: the adapter
9835  *	@idx: the port index
9836  *
9837  *	Clear HW statistics for the given port.
9838  */
9839 void t4_clr_port_stats(struct adapter *adap, int idx)
9840 {
9841 	unsigned int i;
9842 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
9843 	u32 port_base_addr;
9844 
9845 	if (is_t4(adap))
9846 		port_base_addr = PORT_BASE(idx);
9847 	else
9848 		port_base_addr = T5_PORT_BASE(idx);
9849 
9850 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
9851 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
9852 		t4_write_reg(adap, port_base_addr + i, 0);
9853 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
9854 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
9855 		t4_write_reg(adap, port_base_addr + i, 0);
9856 	for (i = 0; i < 4; i++)
9857 		if (bgmap & (1 << i)) {
9858 			t4_write_reg(adap,
9859 			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
9860 			t4_write_reg(adap,
9861 			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
9862 		}
9863 }
9864 
9865 /**
9866  *	t4_i2c_rd - read I2C data from adapter
9867  *	@adap: the adapter
9868  *	@port: Port number if per-port device; <0 if not
9869  *	@devid: per-port device ID or absolute device ID
9870  *	@offset: byte offset into device I2C space
9871  *	@len: byte length of I2C space data
9872  *	@buf: buffer in which to return I2C data
9873  *
9874  *	Reads the I2C data from the indicated device and location.
9875  */
9876 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
9877 	      int port, unsigned int devid,
9878 	      unsigned int offset, unsigned int len,
9879 	      u8 *buf)
9880 {
9881 	u32 ldst_addrspace;
9882 	struct fw_ldst_cmd ldst;
9883 	int ret;
9884 
9885 	if (port >= 4 ||
9886 	    devid >= 256 ||
9887 	    offset >= 256 ||
9888 	    len > sizeof ldst.u.i2c.data)
9889 		return -EINVAL;
9890 
9891 	memset(&ldst, 0, sizeof ldst);
9892 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9893 	ldst.op_to_addrspace =
9894 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9895 			    F_FW_CMD_REQUEST |
9896 			    F_FW_CMD_READ |
9897 			    ldst_addrspace);
9898 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9899 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9900 	ldst.u.i2c.did = devid;
9901 	ldst.u.i2c.boffset = offset;
9902 	ldst.u.i2c.blen = len;
9903 	ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9904 	if (!ret)
9905 		memcpy(buf, ldst.u.i2c.data, len);
9906 	return ret;
9907 }
9908 
9909 /**
9910  *	t4_i2c_wr - write I2C data to adapter
9911  *	@adap: the adapter
9912  *	@port: Port number if per-port device; <0 if not
9913  *	@devid: per-port device ID or absolute device ID
9914  *	@offset: byte offset into device I2C space
9915  *	@len: byte length of I2C space data
9916  *	@buf: buffer containing new I2C data
9917  *
9918  *	Write the I2C data to the indicated device and location.
9919  */
9920 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
9921 	      int port, unsigned int devid,
9922 	      unsigned int offset, unsigned int len,
9923 	      u8 *buf)
9924 {
9925 	u32 ldst_addrspace;
9926 	struct fw_ldst_cmd ldst;
9927 
9928 	if (port >= 4 ||
9929 	    devid >= 256 ||
9930 	    offset >= 256 ||
9931 	    len > sizeof ldst.u.i2c.data)
9932 		return -EINVAL;
9933 
9934 	memset(&ldst, 0, sizeof ldst);
9935 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9936 	ldst.op_to_addrspace =
9937 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9938 			    F_FW_CMD_REQUEST |
9939 			    F_FW_CMD_WRITE |
9940 			    ldst_addrspace);
9941 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9942 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9943 	ldst.u.i2c.did = devid;
9944 	ldst.u.i2c.boffset = offset;
9945 	ldst.u.i2c.blen = len;
9946 	memcpy(ldst.u.i2c.data, buf, len);
9947 	return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9948 }
9949 
9950 /**
9951  * 	t4_sge_ctxt_rd - read an SGE context through FW
9952  * 	@adap: the adapter
9953  * 	@mbox: mailbox to use for the FW command
9954  * 	@cid: the context id
9955  * 	@ctype: the context type
9956  * 	@data: where to store the context data
9957  *
9958  * 	Issues a FW command through the given mailbox to read an SGE context.
9959  */
9960 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
9961 		   enum ctxt_type ctype, u32 *data)
9962 {
9963 	int ret;
9964 	struct fw_ldst_cmd c;
9965 
9966 	if (ctype == CTXT_EGRESS)
9967 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
9968 	else if (ctype == CTXT_INGRESS)
9969 		ret = FW_LDST_ADDRSPC_SGE_INGC;
9970 	else if (ctype == CTXT_FLM)
9971 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
9972 	else
9973 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
9974 
9975 	memset(&c, 0, sizeof(c));
9976 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9977 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
9978 					V_FW_LDST_CMD_ADDRSPACE(ret));
9979 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9980 	c.u.idctxt.physid = cpu_to_be32(cid);
9981 
9982 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9983 	if (ret == 0) {
9984 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
9985 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
9986 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
9987 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
9988 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
9989 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
9990 	}
9991 	return ret;
9992 }
9993 
9994 /**
9995  * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
9996  * 	@adap: the adapter
9997  * 	@cid: the context id
9998  * 	@ctype: the context type
9999  * 	@data: where to store the context data
10000  *
10001  * 	Reads an SGE context directly, bypassing FW.  This is only for
10002  * 	debugging when FW is unavailable.
10003  */
10004 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
10005 		      u32 *data)
10006 {
10007 	int i, ret;
10008 
10009 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
10010 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
10011 	if (!ret)
10012 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
10013 			*data++ = t4_read_reg(adap, i);
10014 	return ret;
10015 }
10016 
10017 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
10018     int sleep_ok)
10019 {
10020 	struct fw_sched_cmd cmd;
10021 
10022 	memset(&cmd, 0, sizeof(cmd));
10023 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10024 				      F_FW_CMD_REQUEST |
10025 				      F_FW_CMD_WRITE);
10026 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10027 
10028 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
10029 	cmd.u.config.type = type;
10030 	cmd.u.config.minmaxen = minmaxen;
10031 
10032 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10033 			       NULL, sleep_ok);
10034 }
10035 
10036 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
10037 		    int rateunit, int ratemode, int channel, int cl,
10038 		    int minrate, int maxrate, int weight, int pktsize,
10039 		    int burstsize, int sleep_ok)
10040 {
10041 	struct fw_sched_cmd cmd;
10042 
10043 	memset(&cmd, 0, sizeof(cmd));
10044 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10045 				      F_FW_CMD_REQUEST |
10046 				      F_FW_CMD_WRITE);
10047 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10048 
10049 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10050 	cmd.u.params.type = type;
10051 	cmd.u.params.level = level;
10052 	cmd.u.params.mode = mode;
10053 	cmd.u.params.ch = channel;
10054 	cmd.u.params.cl = cl;
10055 	cmd.u.params.unit = rateunit;
10056 	cmd.u.params.rate = ratemode;
10057 	cmd.u.params.min = cpu_to_be32(minrate);
10058 	cmd.u.params.max = cpu_to_be32(maxrate);
10059 	cmd.u.params.weight = cpu_to_be16(weight);
10060 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10061 	cmd.u.params.burstsize = cpu_to_be16(burstsize);
10062 
10063 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10064 			       NULL, sleep_ok);
10065 }
10066 
10067 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
10068     unsigned int maxrate, int sleep_ok)
10069 {
10070 	struct fw_sched_cmd cmd;
10071 
10072 	memset(&cmd, 0, sizeof(cmd));
10073 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10074 				      F_FW_CMD_REQUEST |
10075 				      F_FW_CMD_WRITE);
10076 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10077 
10078 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10079 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10080 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
10081 	cmd.u.params.ch = channel;
10082 	cmd.u.params.rate = ratemode;		/* REL or ABS */
10083 	cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
10084 
10085 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10086 			       NULL, sleep_ok);
10087 }
10088 
10089 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
10090     int weight, int sleep_ok)
10091 {
10092 	struct fw_sched_cmd cmd;
10093 
10094 	if (weight < 0 || weight > 100)
10095 		return -EINVAL;
10096 
10097 	memset(&cmd, 0, sizeof(cmd));
10098 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10099 				      F_FW_CMD_REQUEST |
10100 				      F_FW_CMD_WRITE);
10101 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10102 
10103 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10104 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10105 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
10106 	cmd.u.params.ch = channel;
10107 	cmd.u.params.cl = cl;
10108 	cmd.u.params.weight = cpu_to_be16(weight);
10109 
10110 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10111 			       NULL, sleep_ok);
10112 }
10113 
10114 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
10115     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
10116 {
10117 	struct fw_sched_cmd cmd;
10118 
10119 	memset(&cmd, 0, sizeof(cmd));
10120 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10121 				      F_FW_CMD_REQUEST |
10122 				      F_FW_CMD_WRITE);
10123 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10124 
10125 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10126 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10127 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
10128 	cmd.u.params.mode = mode;
10129 	cmd.u.params.ch = channel;
10130 	cmd.u.params.cl = cl;
10131 	cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
10132 	cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
10133 	cmd.u.params.max = cpu_to_be32(maxrate);
10134 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10135 
10136 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10137 			       NULL, sleep_ok);
10138 }
10139 
10140 /*
10141  *	t4_config_watchdog - configure (enable/disable) a watchdog timer
10142  *	@adapter: the adapter
10143  * 	@mbox: mailbox to use for the FW command
10144  * 	@pf: the PF owning the queue
10145  * 	@vf: the VF owning the queue
10146  *	@timeout: watchdog timeout in ms
10147  *	@action: watchdog timer / action
10148  *
10149  *	There are separate watchdog timers for each possible watchdog
10150  *	action.  Configure one of the watchdog timers by setting a non-zero
10151  *	timeout.  Disable a watchdog timer by using a timeout of zero.
10152  */
10153 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
10154 		       unsigned int pf, unsigned int vf,
10155 		       unsigned int timeout, unsigned int action)
10156 {
10157 	struct fw_watchdog_cmd wdog;
10158 	unsigned int ticks;
10159 
10160 	/*
10161 	 * The watchdog command expects a timeout in units of 10ms so we need
10162 	 * to convert it here (via rounding) and force a minimum of one 10ms
10163 	 * "tick" if the timeout is non-zero but the conversion results in 0
10164 	 * ticks.
10165 	 */
10166 	ticks = (timeout + 5)/10;
10167 	if (timeout && !ticks)
10168 		ticks = 1;
10169 
10170 	memset(&wdog, 0, sizeof wdog);
10171 	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
10172 				     F_FW_CMD_REQUEST |
10173 				     F_FW_CMD_WRITE |
10174 				     V_FW_PARAMS_CMD_PFN(pf) |
10175 				     V_FW_PARAMS_CMD_VFN(vf));
10176 	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
10177 	wdog.timeout = cpu_to_be32(ticks);
10178 	wdog.action = cpu_to_be32(action);
10179 
10180 	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
10181 }
10182 
10183 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
10184 {
10185 	struct fw_devlog_cmd devlog_cmd;
10186 	int ret;
10187 
10188 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
10189 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
10190 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
10191 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
10192 	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
10193 			 sizeof(devlog_cmd), &devlog_cmd);
10194 	if (ret)
10195 		return ret;
10196 
10197 	*level = devlog_cmd.level;
10198 	return 0;
10199 }
10200 
10201 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
10202 {
10203 	struct fw_devlog_cmd devlog_cmd;
10204 
10205 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
10206 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
10207 					     F_FW_CMD_REQUEST |
10208 					     F_FW_CMD_WRITE);
10209 	devlog_cmd.level = level;
10210 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
10211 	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
10212 			  sizeof(devlog_cmd), &devlog_cmd);
10213 }
10214