xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision bdd1243df58e60e85101c09001d9812a789b6bc4)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 
34 #include <sys/param.h>
35 #include <sys/eventhandler.h>
36 
37 #include "common.h"
38 #include "t4_regs.h"
39 #include "t4_regs_values.h"
40 #include "firmware/t4fw_interface.h"
41 
42 #undef msleep
43 #define msleep(x) do { \
44 	if (cold) \
45 		DELAY((x) * 1000); \
46 	else \
47 		pause("t4hw", (x) * hz / 1000); \
48 } while (0)
49 
50 /**
51  *	t4_wait_op_done_val - wait until an operation is completed
52  *	@adapter: the adapter performing the operation
53  *	@reg: the register to check for completion
54  *	@mask: a single-bit field within @reg that indicates completion
55  *	@polarity: the value of the field when the operation is completed
56  *	@attempts: number of check iterations
57  *	@delay: delay in usecs between iterations
58  *	@valp: where to store the value of the register at completion time
59  *
60  *	Wait until an operation is completed by checking a bit in a register
61  *	up to @attempts times.  If @valp is not NULL the value of the register
62  *	at the time it indicated completion is stored there.  Returns 0 if the
63  *	operation completes and	-EAGAIN	otherwise.
64  */
65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
66 			       int polarity, int attempts, int delay, u32 *valp)
67 {
68 	while (1) {
69 		u32 val = t4_read_reg(adapter, reg);
70 
71 		if (!!(val & mask) == polarity) {
72 			if (valp)
73 				*valp = val;
74 			return 0;
75 		}
76 		if (--attempts == 0)
77 			return -EAGAIN;
78 		if (delay)
79 			udelay(delay);
80 	}
81 }
82 
83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
84 				  int polarity, int attempts, int delay)
85 {
86 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
87 				   delay, NULL);
88 }
89 
90 /**
91  *	t4_set_reg_field - set a register field to a value
92  *	@adapter: the adapter to program
93  *	@addr: the register address
94  *	@mask: specifies the portion of the register to modify
95  *	@val: the new value for the register field
96  *
97  *	Sets a register field specified by the supplied mask to the
98  *	given value.
99  */
100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
101 		      u32 val)
102 {
103 	u32 v = t4_read_reg(adapter, addr) & ~mask;
104 
105 	t4_write_reg(adapter, addr, v | val);
106 	(void) t4_read_reg(adapter, addr);      /* flush */
107 }
108 
109 /**
110  *	t4_read_indirect - read indirectly addressed registers
111  *	@adap: the adapter
112  *	@addr_reg: register holding the indirect address
113  *	@data_reg: register holding the value of the indirect register
114  *	@vals: where the read register values are stored
115  *	@nregs: how many indirect registers to read
116  *	@start_idx: index of first indirect register to read
117  *
118  *	Reads registers that are accessed indirectly through an address/data
119  *	register pair.
120  */
121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
122 			     unsigned int data_reg, u32 *vals,
123 			     unsigned int nregs, unsigned int start_idx)
124 {
125 	while (nregs--) {
126 		t4_write_reg(adap, addr_reg, start_idx);
127 		*vals++ = t4_read_reg(adap, data_reg);
128 		start_idx++;
129 	}
130 }
131 
132 /**
133  *	t4_write_indirect - write indirectly addressed registers
134  *	@adap: the adapter
135  *	@addr_reg: register holding the indirect addresses
136  *	@data_reg: register holding the value for the indirect registers
137  *	@vals: values to write
138  *	@nregs: how many indirect registers to write
139  *	@start_idx: address of first indirect register to write
140  *
141  *	Writes a sequential block of registers that are accessed indirectly
142  *	through an address/data register pair.
143  */
144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
145 		       unsigned int data_reg, const u32 *vals,
146 		       unsigned int nregs, unsigned int start_idx)
147 {
148 	while (nregs--) {
149 		t4_write_reg(adap, addr_reg, start_idx++);
150 		t4_write_reg(adap, data_reg, *vals++);
151 	}
152 }
153 
154 /*
155  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
156  * mechanism.  This guarantees that we get the real value even if we're
157  * operating within a Virtual Machine and the Hypervisor is trapping our
158  * Configuration Space accesses.
159  *
160  * N.B. This routine should only be used as a last resort: the firmware uses
161  *      the backdoor registers on a regular basis and we can end up
162  *      conflicting with it's uses!
163  */
164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
165 {
166 	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
167 	u32 val;
168 
169 	if (chip_id(adap) <= CHELSIO_T5)
170 		req |= F_ENABLE;
171 	else
172 		req |= F_T6_ENABLE;
173 
174 	if (is_t4(adap))
175 		req |= F_LOCALCFG;
176 
177 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
178 	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
179 
180 	/*
181 	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
182 	 * Configuration Space read.  (None of the other fields matter when
183 	 * F_ENABLE is 0 so a simple register write is easier than a
184 	 * read-modify-write via t4_set_reg_field().)
185 	 */
186 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
187 
188 	return val;
189 }
190 
191 /*
192  * t4_report_fw_error - report firmware error
193  * @adap: the adapter
194  *
195  * The adapter firmware can indicate error conditions to the host.
196  * If the firmware has indicated an error, print out the reason for
197  * the firmware error.
198  */
199 void t4_report_fw_error(struct adapter *adap)
200 {
201 	static const char *const reason[] = {
202 		"Crash",			/* PCIE_FW_EVAL_CRASH */
203 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
204 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
205 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
206 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
207 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
208 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
209 		"Reserved",			/* reserved */
210 	};
211 	u32 pcie_fw;
212 
213 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
214 	if (pcie_fw & F_PCIE_FW_ERR) {
215 		CH_ERR(adap, "firmware reports adapter error: %s (0x%08x)\n",
216 		    reason[G_PCIE_FW_EVAL(pcie_fw)], pcie_fw);
217 	}
218 }
219 
220 /*
221  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
222  */
223 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
224 			 u32 mbox_addr)
225 {
226 	for ( ; nflit; nflit--, mbox_addr += 8)
227 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
228 }
229 
230 /*
231  * Handle a FW assertion reported in a mailbox.
232  */
233 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
234 {
235 	CH_ALERT(adap,
236 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
237 		  asrt->u.assert.filename_0_7,
238 		  be32_to_cpu(asrt->u.assert.line),
239 		  be32_to_cpu(asrt->u.assert.x),
240 		  be32_to_cpu(asrt->u.assert.y));
241 }
242 
243 struct port_tx_state {
244 	uint64_t rx_pause;
245 	uint64_t tx_frames;
246 };
247 
248 static void
249 read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state)
250 {
251 	uint32_t rx_pause_reg, tx_frames_reg;
252 
253 	if (is_t4(sc)) {
254 		tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
255 		rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
256 	} else {
257 		tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
258 		rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
259 	}
260 
261 	tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg);
262 	tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg);
263 }
264 
265 static void
266 read_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
267 {
268 	int i;
269 
270 	for_each_port(sc, i)
271 		read_tx_state_one(sc, i, &tx_state[i]);
272 }
273 
274 static void
275 check_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
276 {
277 	uint32_t port_ctl_reg;
278 	uint64_t tx_frames, rx_pause;
279 	int i;
280 
281 	for_each_port(sc, i) {
282 		rx_pause = tx_state[i].rx_pause;
283 		tx_frames = tx_state[i].tx_frames;
284 		read_tx_state_one(sc, i, &tx_state[i]);	/* update */
285 
286 		if (is_t4(sc))
287 			port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL);
288 		else
289 			port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL);
290 		if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN &&
291 		    rx_pause != tx_state[i].rx_pause &&
292 		    tx_frames == tx_state[i].tx_frames) {
293 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0);
294 			mdelay(1);
295 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN);
296 		}
297 	}
298 }
299 
300 #define X_CIM_PF_NOACCESS 0xeeeeeeee
301 /**
302  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
303  *	@adap: the adapter
304  *	@mbox: index of the mailbox to use
305  *	@cmd: the command to write
306  *	@size: command length in bytes
307  *	@rpl: where to optionally store the reply
308  *	@sleep_ok: if true we may sleep while awaiting command completion
309  *	@timeout: time to wait for command to finish before timing out
310  *		(negative implies @sleep_ok=false)
311  *
312  *	Sends the given command to FW through the selected mailbox and waits
313  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
314  *	store the FW's reply to the command.  The command and its optional
315  *	reply are of the same length.  Some FW commands like RESET and
316  *	INITIALIZE can take a considerable amount of time to execute.
317  *	@sleep_ok determines whether we may sleep while awaiting the response.
318  *	If sleeping is allowed we use progressive backoff otherwise we spin.
319  *	Note that passing in a negative @timeout is an alternate mechanism
320  *	for specifying @sleep_ok=false.  This is useful when a higher level
321  *	interface allows for specification of @timeout but not @sleep_ok ...
322  *
323  *	The return value is 0 on success or a negative errno on failure.  A
324  *	failure can happen either because we are not able to execute the
325  *	command or FW executes it but signals an error.  In the latter case
326  *	the return value is the error code indicated by FW (negated).
327  */
328 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
329 			    int size, void *rpl, bool sleep_ok, int timeout)
330 {
331 	/*
332 	 * We delay in small increments at first in an effort to maintain
333 	 * responsiveness for simple, fast executing commands but then back
334 	 * off to larger delays to a maximum retry delay.
335 	 */
336 	static const int delay[] = {
337 		1, 1, 3, 5, 10, 10, 20, 50, 100
338 	};
339 	u32 v;
340 	u64 res;
341 	int i, ms, delay_idx, ret, next_tx_check;
342 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
343 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
344 	u32 ctl;
345 	__be64 cmd_rpl[MBOX_LEN/8];
346 	u32 pcie_fw;
347 	struct port_tx_state tx_state[MAX_NPORTS];
348 
349 	if (adap->flags & CHK_MBOX_ACCESS)
350 		ASSERT_SYNCHRONIZED_OP(adap);
351 
352 	if (size <= 0 || (size & 15) || size > MBOX_LEN)
353 		return -EINVAL;
354 
355 	if (adap->flags & IS_VF) {
356 		if (is_t6(adap))
357 			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
358 		else
359 			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
360 		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
361 	}
362 
363 	/*
364 	 * If we have a negative timeout, that implies that we can't sleep.
365 	 */
366 	if (timeout < 0) {
367 		sleep_ok = false;
368 		timeout = -timeout;
369 	}
370 
371 	/*
372 	 * Attempt to gain access to the mailbox.
373 	 */
374 	pcie_fw = 0;
375 	if (!(adap->flags & IS_VF)) {
376 		pcie_fw = t4_read_reg(adap, A_PCIE_FW);
377 		if (pcie_fw & F_PCIE_FW_ERR)
378 			goto failed;
379 	}
380 	for (i = 0; i < 4; i++) {
381 		ctl = t4_read_reg(adap, ctl_reg);
382 		v = G_MBOWNER(ctl);
383 		if (v != X_MBOWNER_NONE)
384 			break;
385 	}
386 
387 	/*
388 	 * If we were unable to gain access, report the error to our caller.
389 	 */
390 	if (v != X_MBOWNER_PL) {
391 		if (!(adap->flags & IS_VF)) {
392 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
393 			if (pcie_fw & F_PCIE_FW_ERR)
394 				goto failed;
395 		}
396 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
397 		return ret;
398 	}
399 
400 	/*
401 	 * If we gain ownership of the mailbox and there's a "valid" message
402 	 * in it, this is likely an asynchronous error message from the
403 	 * firmware.  So we'll report that and then proceed on with attempting
404 	 * to issue our own command ... which may well fail if the error
405 	 * presaged the firmware crashing ...
406 	 */
407 	if (ctl & F_MBMSGVALID) {
408 		CH_DUMP_MBOX(adap, mbox, data_reg, "VLD", NULL, true);
409 	}
410 
411 	/*
412 	 * Copy in the new mailbox command and send it on its way ...
413 	 */
414 	memset(cmd_rpl, 0, sizeof(cmd_rpl));
415 	memcpy(cmd_rpl, cmd, size);
416 	CH_DUMP_MBOX(adap, mbox, 0, "cmd", cmd_rpl, false);
417 	for (i = 0; i < ARRAY_SIZE(cmd_rpl); i++)
418 		t4_write_reg64(adap, data_reg + i * 8, be64_to_cpu(cmd_rpl[i]));
419 
420 	if (adap->flags & IS_VF) {
421 		/*
422 		 * For the VFs, the Mailbox Data "registers" are
423 		 * actually backed by T4's "MA" interface rather than
424 		 * PL Registers (as is the case for the PFs).  Because
425 		 * these are in different coherency domains, the write
426 		 * to the VF's PL-register-backed Mailbox Control can
427 		 * race in front of the writes to the MA-backed VF
428 		 * Mailbox Data "registers".  So we need to do a
429 		 * read-back on at least one byte of the VF Mailbox
430 		 * Data registers before doing the write to the VF
431 		 * Mailbox Control register.
432 		 */
433 		t4_read_reg(adap, data_reg);
434 	}
435 
436 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
437 	read_tx_state(adap, &tx_state[0]);	/* also flushes the write_reg */
438 	next_tx_check = 1000;
439 	delay_idx = 0;
440 	ms = delay[0];
441 
442 	/*
443 	 * Loop waiting for the reply; bail out if we time out or the firmware
444 	 * reports an error.
445 	 */
446 	for (i = 0; i < timeout; i += ms) {
447 		if (!(adap->flags & IS_VF)) {
448 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
449 			if (pcie_fw & F_PCIE_FW_ERR)
450 				break;
451 		}
452 
453 		if (i >= next_tx_check) {
454 			check_tx_state(adap, &tx_state[0]);
455 			next_tx_check = i + 1000;
456 		}
457 
458 		if (sleep_ok) {
459 			ms = delay[delay_idx];  /* last element may repeat */
460 			if (delay_idx < ARRAY_SIZE(delay) - 1)
461 				delay_idx++;
462 			msleep(ms);
463 		} else {
464 			mdelay(ms);
465 		}
466 
467 		v = t4_read_reg(adap, ctl_reg);
468 		if (v == X_CIM_PF_NOACCESS)
469 			continue;
470 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
471 			if (!(v & F_MBMSGVALID)) {
472 				t4_write_reg(adap, ctl_reg,
473 					     V_MBOWNER(X_MBOWNER_NONE));
474 				continue;
475 			}
476 
477 			/*
478 			 * Retrieve the command reply and release the mailbox.
479 			 */
480 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
481 			CH_DUMP_MBOX(adap, mbox, 0, "rpl", cmd_rpl, false);
482 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
483 
484 			res = be64_to_cpu(cmd_rpl[0]);
485 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
486 				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
487 				res = V_FW_CMD_RETVAL(EIO);
488 			} else if (rpl)
489 				memcpy(rpl, cmd_rpl, size);
490 			return -G_FW_CMD_RETVAL((int)res);
491 		}
492 	}
493 
494 	/*
495 	 * We timed out waiting for a reply to our mailbox command.  Report
496 	 * the error and also check to see if the firmware reported any
497 	 * errors ...
498 	 */
499 	CH_ERR(adap, "command %#x in mbox %d timed out (0x%08x).\n",
500 	    *(const u8 *)cmd, mbox, pcie_fw);
501 	CH_DUMP_MBOX(adap, mbox, 0, "cmdsent", cmd_rpl, true);
502 	CH_DUMP_MBOX(adap, mbox, data_reg, "current", NULL, true);
503 failed:
504 	adap->flags &= ~FW_OK;
505 	ret = pcie_fw & F_PCIE_FW_ERR ? -ENXIO : -ETIMEDOUT;
506 	t4_fatal_err(adap, true);
507 	return ret;
508 }
509 
510 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
511 		    void *rpl, bool sleep_ok)
512 {
513 		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
514 					       sleep_ok, FW_CMD_MAX_TIMEOUT);
515 
516 }
517 
518 static int t4_edc_err_read(struct adapter *adap, int idx)
519 {
520 	u32 edc_ecc_err_addr_reg;
521 	u32 edc_bist_status_rdata_reg;
522 
523 	if (is_t4(adap)) {
524 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
525 		return 0;
526 	}
527 	if (idx != MEM_EDC0 && idx != MEM_EDC1) {
528 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
529 		return 0;
530 	}
531 
532 	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
533 	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
534 
535 	CH_WARN(adap,
536 		"edc%d err addr 0x%x: 0x%x.\n",
537 		idx, edc_ecc_err_addr_reg,
538 		t4_read_reg(adap, edc_ecc_err_addr_reg));
539 	CH_WARN(adap,
540 	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
541 		edc_bist_status_rdata_reg,
542 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
543 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
544 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
545 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
546 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
547 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
548 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
549 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
550 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
551 
552 	return 0;
553 }
554 
555 /**
556  *	t4_mc_read - read from MC through backdoor accesses
557  *	@adap: the adapter
558  *	@idx: which MC to access
559  *	@addr: address of first byte requested
560  *	@data: 64 bytes of data containing the requested address
561  *	@ecc: where to store the corresponding 64-bit ECC word
562  *
563  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
564  *	that covers the requested address @addr.  If @parity is not %NULL it
565  *	is assigned the 64-bit ECC word for the read data.
566  */
567 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
568 {
569 	int i;
570 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
571 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
572 
573 	if (is_t4(adap)) {
574 		mc_bist_cmd_reg = A_MC_BIST_CMD;
575 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
576 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
577 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
578 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
579 	} else {
580 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
581 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
582 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
583 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
584 						  idx);
585 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
586 						  idx);
587 	}
588 
589 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
590 		return -EBUSY;
591 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
592 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
593 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
594 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
595 		     F_START_BIST | V_BIST_CMD_GAP(1));
596 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
597 	if (i)
598 		return i;
599 
600 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
601 
602 	for (i = 15; i >= 0; i--)
603 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
604 	if (ecc)
605 		*ecc = t4_read_reg64(adap, MC_DATA(16));
606 #undef MC_DATA
607 	return 0;
608 }
609 
610 /**
611  *	t4_edc_read - read from EDC through backdoor accesses
612  *	@adap: the adapter
613  *	@idx: which EDC to access
614  *	@addr: address of first byte requested
615  *	@data: 64 bytes of data containing the requested address
616  *	@ecc: where to store the corresponding 64-bit ECC word
617  *
618  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
619  *	that covers the requested address @addr.  If @parity is not %NULL it
620  *	is assigned the 64-bit ECC word for the read data.
621  */
622 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
623 {
624 	int i;
625 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
626 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
627 
628 	if (is_t4(adap)) {
629 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
630 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
631 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
632 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
633 						    idx);
634 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
635 						    idx);
636 	} else {
637 /*
638  * These macro are missing in t4_regs.h file.
639  * Added temporarily for testing.
640  */
641 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
642 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
643 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
644 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
645 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
646 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
647 						    idx);
648 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
649 						    idx);
650 #undef EDC_REG_T5
651 #undef EDC_STRIDE_T5
652 	}
653 
654 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
655 		return -EBUSY;
656 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
657 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
658 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
659 	t4_write_reg(adap, edc_bist_cmd_reg,
660 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
661 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
662 	if (i)
663 		return i;
664 
665 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
666 
667 	for (i = 15; i >= 0; i--)
668 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
669 	if (ecc)
670 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
671 #undef EDC_DATA
672 	return 0;
673 }
674 
675 /**
676  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
677  *	@adap: the adapter
678  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
679  *	@addr: address within indicated memory type
680  *	@len: amount of memory to read
681  *	@buf: host memory buffer
682  *
683  *	Reads an [almost] arbitrary memory region in the firmware: the
684  *	firmware memory address, length and host buffer must be aligned on
685  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
686  *	the firmware's memory.  If this memory contains data structures which
687  *	contain multi-byte integers, it's the callers responsibility to
688  *	perform appropriate byte order conversions.
689  */
690 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
691 		__be32 *buf)
692 {
693 	u32 pos, start, end, offset;
694 	int ret;
695 
696 	/*
697 	 * Argument sanity checks ...
698 	 */
699 	if ((addr & 0x3) || (len & 0x3))
700 		return -EINVAL;
701 
702 	/*
703 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
704 	 * need to round down the start and round up the end.  We'll start
705 	 * copying out of the first line at (addr - start) a word at a time.
706 	 */
707 	start = rounddown2(addr, 64);
708 	end = roundup2(addr + len, 64);
709 	offset = (addr - start)/sizeof(__be32);
710 
711 	for (pos = start; pos < end; pos += 64, offset = 0) {
712 		__be32 data[16];
713 
714 		/*
715 		 * Read the chip's memory block and bail if there's an error.
716 		 */
717 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
718 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
719 		else
720 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
721 		if (ret)
722 			return ret;
723 
724 		/*
725 		 * Copy the data into the caller's memory buffer.
726 		 */
727 		while (offset < 16 && len > 0) {
728 			*buf++ = data[offset++];
729 			len -= sizeof(__be32);
730 		}
731 	}
732 
733 	return 0;
734 }
735 
736 /*
737  * Return the specified PCI-E Configuration Space register from our Physical
738  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
739  * since we prefer to let the firmware own all of these registers, but if that
740  * fails we go for it directly ourselves.
741  */
742 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
743 {
744 
745 	/*
746 	 * If fw_attach != 0, construct and send the Firmware LDST Command to
747 	 * retrieve the specified PCI-E Configuration Space register.
748 	 */
749 	if (drv_fw_attach != 0) {
750 		struct fw_ldst_cmd ldst_cmd;
751 		int ret;
752 
753 		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
754 		ldst_cmd.op_to_addrspace =
755 			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
756 				    F_FW_CMD_REQUEST |
757 				    F_FW_CMD_READ |
758 				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
759 		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
760 		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
761 		ldst_cmd.u.pcie.ctrl_to_fn =
762 			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
763 		ldst_cmd.u.pcie.r = reg;
764 
765 		/*
766 		 * If the LDST Command succeeds, return the result, otherwise
767 		 * fall through to reading it directly ourselves ...
768 		 */
769 		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
770 				 &ldst_cmd);
771 		if (ret == 0)
772 			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
773 
774 		CH_WARN(adap, "Firmware failed to return "
775 			"Configuration Space register %d, err = %d\n",
776 			reg, -ret);
777 	}
778 
779 	/*
780 	 * Read the desired Configuration Space register via the PCI-E
781 	 * Backdoor mechanism.
782 	 */
783 	return t4_hw_pci_read_cfg4(adap, reg);
784 }
785 
786 /**
787  *	t4_get_regs_len - return the size of the chips register set
788  *	@adapter: the adapter
789  *
790  *	Returns the size of the chip's BAR0 register space.
791  */
792 unsigned int t4_get_regs_len(struct adapter *adapter)
793 {
794 	unsigned int chip_version = chip_id(adapter);
795 
796 	switch (chip_version) {
797 	case CHELSIO_T4:
798 		if (adapter->flags & IS_VF)
799 			return FW_T4VF_REGMAP_SIZE;
800 		return T4_REGMAP_SIZE;
801 
802 	case CHELSIO_T5:
803 	case CHELSIO_T6:
804 		if (adapter->flags & IS_VF)
805 			return FW_T4VF_REGMAP_SIZE;
806 		return T5_REGMAP_SIZE;
807 	}
808 
809 	CH_ERR(adapter,
810 		"Unsupported chip version %d\n", chip_version);
811 	return 0;
812 }
813 
814 /**
815  *	t4_get_regs - read chip registers into provided buffer
816  *	@adap: the adapter
817  *	@buf: register buffer
818  *	@buf_size: size (in bytes) of register buffer
819  *
820  *	If the provided register buffer isn't large enough for the chip's
821  *	full register range, the register dump will be truncated to the
822  *	register buffer's size.
823  */
824 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
825 {
826 	static const unsigned int t4_reg_ranges[] = {
827 		0x1008, 0x1108,
828 		0x1180, 0x1184,
829 		0x1190, 0x1194,
830 		0x11a0, 0x11a4,
831 		0x11b0, 0x11b4,
832 		0x11fc, 0x123c,
833 		0x1300, 0x173c,
834 		0x1800, 0x18fc,
835 		0x3000, 0x30d8,
836 		0x30e0, 0x30e4,
837 		0x30ec, 0x5910,
838 		0x5920, 0x5924,
839 		0x5960, 0x5960,
840 		0x5968, 0x5968,
841 		0x5970, 0x5970,
842 		0x5978, 0x5978,
843 		0x5980, 0x5980,
844 		0x5988, 0x5988,
845 		0x5990, 0x5990,
846 		0x5998, 0x5998,
847 		0x59a0, 0x59d4,
848 		0x5a00, 0x5ae0,
849 		0x5ae8, 0x5ae8,
850 		0x5af0, 0x5af0,
851 		0x5af8, 0x5af8,
852 		0x6000, 0x6098,
853 		0x6100, 0x6150,
854 		0x6200, 0x6208,
855 		0x6240, 0x6248,
856 		0x6280, 0x62b0,
857 		0x62c0, 0x6338,
858 		0x6370, 0x638c,
859 		0x6400, 0x643c,
860 		0x6500, 0x6524,
861 		0x6a00, 0x6a04,
862 		0x6a14, 0x6a38,
863 		0x6a60, 0x6a70,
864 		0x6a78, 0x6a78,
865 		0x6b00, 0x6b0c,
866 		0x6b1c, 0x6b84,
867 		0x6bf0, 0x6bf8,
868 		0x6c00, 0x6c0c,
869 		0x6c1c, 0x6c84,
870 		0x6cf0, 0x6cf8,
871 		0x6d00, 0x6d0c,
872 		0x6d1c, 0x6d84,
873 		0x6df0, 0x6df8,
874 		0x6e00, 0x6e0c,
875 		0x6e1c, 0x6e84,
876 		0x6ef0, 0x6ef8,
877 		0x6f00, 0x6f0c,
878 		0x6f1c, 0x6f84,
879 		0x6ff0, 0x6ff8,
880 		0x7000, 0x700c,
881 		0x701c, 0x7084,
882 		0x70f0, 0x70f8,
883 		0x7100, 0x710c,
884 		0x711c, 0x7184,
885 		0x71f0, 0x71f8,
886 		0x7200, 0x720c,
887 		0x721c, 0x7284,
888 		0x72f0, 0x72f8,
889 		0x7300, 0x730c,
890 		0x731c, 0x7384,
891 		0x73f0, 0x73f8,
892 		0x7400, 0x7450,
893 		0x7500, 0x7530,
894 		0x7600, 0x760c,
895 		0x7614, 0x761c,
896 		0x7680, 0x76cc,
897 		0x7700, 0x7798,
898 		0x77c0, 0x77fc,
899 		0x7900, 0x79fc,
900 		0x7b00, 0x7b58,
901 		0x7b60, 0x7b84,
902 		0x7b8c, 0x7c38,
903 		0x7d00, 0x7d38,
904 		0x7d40, 0x7d80,
905 		0x7d8c, 0x7ddc,
906 		0x7de4, 0x7e04,
907 		0x7e10, 0x7e1c,
908 		0x7e24, 0x7e38,
909 		0x7e40, 0x7e44,
910 		0x7e4c, 0x7e78,
911 		0x7e80, 0x7ea4,
912 		0x7eac, 0x7edc,
913 		0x7ee8, 0x7efc,
914 		0x8dc0, 0x8e04,
915 		0x8e10, 0x8e1c,
916 		0x8e30, 0x8e78,
917 		0x8ea0, 0x8eb8,
918 		0x8ec0, 0x8f6c,
919 		0x8fc0, 0x9008,
920 		0x9010, 0x9058,
921 		0x9060, 0x9060,
922 		0x9068, 0x9074,
923 		0x90fc, 0x90fc,
924 		0x9400, 0x9408,
925 		0x9410, 0x9458,
926 		0x9600, 0x9600,
927 		0x9608, 0x9638,
928 		0x9640, 0x96bc,
929 		0x9800, 0x9808,
930 		0x9820, 0x983c,
931 		0x9850, 0x9864,
932 		0x9c00, 0x9c6c,
933 		0x9c80, 0x9cec,
934 		0x9d00, 0x9d6c,
935 		0x9d80, 0x9dec,
936 		0x9e00, 0x9e6c,
937 		0x9e80, 0x9eec,
938 		0x9f00, 0x9f6c,
939 		0x9f80, 0x9fec,
940 		0xd004, 0xd004,
941 		0xd010, 0xd03c,
942 		0xdfc0, 0xdfe0,
943 		0xe000, 0xea7c,
944 		0xf000, 0x11110,
945 		0x11118, 0x11190,
946 		0x19040, 0x1906c,
947 		0x19078, 0x19080,
948 		0x1908c, 0x190e4,
949 		0x190f0, 0x190f8,
950 		0x19100, 0x19110,
951 		0x19120, 0x19124,
952 		0x19150, 0x19194,
953 		0x1919c, 0x191b0,
954 		0x191d0, 0x191e8,
955 		0x19238, 0x1924c,
956 		0x193f8, 0x1943c,
957 		0x1944c, 0x19474,
958 		0x19490, 0x194e0,
959 		0x194f0, 0x194f8,
960 		0x19800, 0x19c08,
961 		0x19c10, 0x19c90,
962 		0x19ca0, 0x19ce4,
963 		0x19cf0, 0x19d40,
964 		0x19d50, 0x19d94,
965 		0x19da0, 0x19de8,
966 		0x19df0, 0x19e40,
967 		0x19e50, 0x19e90,
968 		0x19ea0, 0x19f4c,
969 		0x1a000, 0x1a004,
970 		0x1a010, 0x1a06c,
971 		0x1a0b0, 0x1a0e4,
972 		0x1a0ec, 0x1a0f4,
973 		0x1a100, 0x1a108,
974 		0x1a114, 0x1a120,
975 		0x1a128, 0x1a130,
976 		0x1a138, 0x1a138,
977 		0x1a190, 0x1a1c4,
978 		0x1a1fc, 0x1a1fc,
979 		0x1e040, 0x1e04c,
980 		0x1e284, 0x1e28c,
981 		0x1e2c0, 0x1e2c0,
982 		0x1e2e0, 0x1e2e0,
983 		0x1e300, 0x1e384,
984 		0x1e3c0, 0x1e3c8,
985 		0x1e440, 0x1e44c,
986 		0x1e684, 0x1e68c,
987 		0x1e6c0, 0x1e6c0,
988 		0x1e6e0, 0x1e6e0,
989 		0x1e700, 0x1e784,
990 		0x1e7c0, 0x1e7c8,
991 		0x1e840, 0x1e84c,
992 		0x1ea84, 0x1ea8c,
993 		0x1eac0, 0x1eac0,
994 		0x1eae0, 0x1eae0,
995 		0x1eb00, 0x1eb84,
996 		0x1ebc0, 0x1ebc8,
997 		0x1ec40, 0x1ec4c,
998 		0x1ee84, 0x1ee8c,
999 		0x1eec0, 0x1eec0,
1000 		0x1eee0, 0x1eee0,
1001 		0x1ef00, 0x1ef84,
1002 		0x1efc0, 0x1efc8,
1003 		0x1f040, 0x1f04c,
1004 		0x1f284, 0x1f28c,
1005 		0x1f2c0, 0x1f2c0,
1006 		0x1f2e0, 0x1f2e0,
1007 		0x1f300, 0x1f384,
1008 		0x1f3c0, 0x1f3c8,
1009 		0x1f440, 0x1f44c,
1010 		0x1f684, 0x1f68c,
1011 		0x1f6c0, 0x1f6c0,
1012 		0x1f6e0, 0x1f6e0,
1013 		0x1f700, 0x1f784,
1014 		0x1f7c0, 0x1f7c8,
1015 		0x1f840, 0x1f84c,
1016 		0x1fa84, 0x1fa8c,
1017 		0x1fac0, 0x1fac0,
1018 		0x1fae0, 0x1fae0,
1019 		0x1fb00, 0x1fb84,
1020 		0x1fbc0, 0x1fbc8,
1021 		0x1fc40, 0x1fc4c,
1022 		0x1fe84, 0x1fe8c,
1023 		0x1fec0, 0x1fec0,
1024 		0x1fee0, 0x1fee0,
1025 		0x1ff00, 0x1ff84,
1026 		0x1ffc0, 0x1ffc8,
1027 		0x20000, 0x2002c,
1028 		0x20100, 0x2013c,
1029 		0x20190, 0x201a0,
1030 		0x201a8, 0x201b8,
1031 		0x201c4, 0x201c8,
1032 		0x20200, 0x20318,
1033 		0x20400, 0x204b4,
1034 		0x204c0, 0x20528,
1035 		0x20540, 0x20614,
1036 		0x21000, 0x21040,
1037 		0x2104c, 0x21060,
1038 		0x210c0, 0x210ec,
1039 		0x21200, 0x21268,
1040 		0x21270, 0x21284,
1041 		0x212fc, 0x21388,
1042 		0x21400, 0x21404,
1043 		0x21500, 0x21500,
1044 		0x21510, 0x21518,
1045 		0x2152c, 0x21530,
1046 		0x2153c, 0x2153c,
1047 		0x21550, 0x21554,
1048 		0x21600, 0x21600,
1049 		0x21608, 0x2161c,
1050 		0x21624, 0x21628,
1051 		0x21630, 0x21634,
1052 		0x2163c, 0x2163c,
1053 		0x21700, 0x2171c,
1054 		0x21780, 0x2178c,
1055 		0x21800, 0x21818,
1056 		0x21820, 0x21828,
1057 		0x21830, 0x21848,
1058 		0x21850, 0x21854,
1059 		0x21860, 0x21868,
1060 		0x21870, 0x21870,
1061 		0x21878, 0x21898,
1062 		0x218a0, 0x218a8,
1063 		0x218b0, 0x218c8,
1064 		0x218d0, 0x218d4,
1065 		0x218e0, 0x218e8,
1066 		0x218f0, 0x218f0,
1067 		0x218f8, 0x21a18,
1068 		0x21a20, 0x21a28,
1069 		0x21a30, 0x21a48,
1070 		0x21a50, 0x21a54,
1071 		0x21a60, 0x21a68,
1072 		0x21a70, 0x21a70,
1073 		0x21a78, 0x21a98,
1074 		0x21aa0, 0x21aa8,
1075 		0x21ab0, 0x21ac8,
1076 		0x21ad0, 0x21ad4,
1077 		0x21ae0, 0x21ae8,
1078 		0x21af0, 0x21af0,
1079 		0x21af8, 0x21c18,
1080 		0x21c20, 0x21c20,
1081 		0x21c28, 0x21c30,
1082 		0x21c38, 0x21c38,
1083 		0x21c80, 0x21c98,
1084 		0x21ca0, 0x21ca8,
1085 		0x21cb0, 0x21cc8,
1086 		0x21cd0, 0x21cd4,
1087 		0x21ce0, 0x21ce8,
1088 		0x21cf0, 0x21cf0,
1089 		0x21cf8, 0x21d7c,
1090 		0x21e00, 0x21e04,
1091 		0x22000, 0x2202c,
1092 		0x22100, 0x2213c,
1093 		0x22190, 0x221a0,
1094 		0x221a8, 0x221b8,
1095 		0x221c4, 0x221c8,
1096 		0x22200, 0x22318,
1097 		0x22400, 0x224b4,
1098 		0x224c0, 0x22528,
1099 		0x22540, 0x22614,
1100 		0x23000, 0x23040,
1101 		0x2304c, 0x23060,
1102 		0x230c0, 0x230ec,
1103 		0x23200, 0x23268,
1104 		0x23270, 0x23284,
1105 		0x232fc, 0x23388,
1106 		0x23400, 0x23404,
1107 		0x23500, 0x23500,
1108 		0x23510, 0x23518,
1109 		0x2352c, 0x23530,
1110 		0x2353c, 0x2353c,
1111 		0x23550, 0x23554,
1112 		0x23600, 0x23600,
1113 		0x23608, 0x2361c,
1114 		0x23624, 0x23628,
1115 		0x23630, 0x23634,
1116 		0x2363c, 0x2363c,
1117 		0x23700, 0x2371c,
1118 		0x23780, 0x2378c,
1119 		0x23800, 0x23818,
1120 		0x23820, 0x23828,
1121 		0x23830, 0x23848,
1122 		0x23850, 0x23854,
1123 		0x23860, 0x23868,
1124 		0x23870, 0x23870,
1125 		0x23878, 0x23898,
1126 		0x238a0, 0x238a8,
1127 		0x238b0, 0x238c8,
1128 		0x238d0, 0x238d4,
1129 		0x238e0, 0x238e8,
1130 		0x238f0, 0x238f0,
1131 		0x238f8, 0x23a18,
1132 		0x23a20, 0x23a28,
1133 		0x23a30, 0x23a48,
1134 		0x23a50, 0x23a54,
1135 		0x23a60, 0x23a68,
1136 		0x23a70, 0x23a70,
1137 		0x23a78, 0x23a98,
1138 		0x23aa0, 0x23aa8,
1139 		0x23ab0, 0x23ac8,
1140 		0x23ad0, 0x23ad4,
1141 		0x23ae0, 0x23ae8,
1142 		0x23af0, 0x23af0,
1143 		0x23af8, 0x23c18,
1144 		0x23c20, 0x23c20,
1145 		0x23c28, 0x23c30,
1146 		0x23c38, 0x23c38,
1147 		0x23c80, 0x23c98,
1148 		0x23ca0, 0x23ca8,
1149 		0x23cb0, 0x23cc8,
1150 		0x23cd0, 0x23cd4,
1151 		0x23ce0, 0x23ce8,
1152 		0x23cf0, 0x23cf0,
1153 		0x23cf8, 0x23d7c,
1154 		0x23e00, 0x23e04,
1155 		0x24000, 0x2402c,
1156 		0x24100, 0x2413c,
1157 		0x24190, 0x241a0,
1158 		0x241a8, 0x241b8,
1159 		0x241c4, 0x241c8,
1160 		0x24200, 0x24318,
1161 		0x24400, 0x244b4,
1162 		0x244c0, 0x24528,
1163 		0x24540, 0x24614,
1164 		0x25000, 0x25040,
1165 		0x2504c, 0x25060,
1166 		0x250c0, 0x250ec,
1167 		0x25200, 0x25268,
1168 		0x25270, 0x25284,
1169 		0x252fc, 0x25388,
1170 		0x25400, 0x25404,
1171 		0x25500, 0x25500,
1172 		0x25510, 0x25518,
1173 		0x2552c, 0x25530,
1174 		0x2553c, 0x2553c,
1175 		0x25550, 0x25554,
1176 		0x25600, 0x25600,
1177 		0x25608, 0x2561c,
1178 		0x25624, 0x25628,
1179 		0x25630, 0x25634,
1180 		0x2563c, 0x2563c,
1181 		0x25700, 0x2571c,
1182 		0x25780, 0x2578c,
1183 		0x25800, 0x25818,
1184 		0x25820, 0x25828,
1185 		0x25830, 0x25848,
1186 		0x25850, 0x25854,
1187 		0x25860, 0x25868,
1188 		0x25870, 0x25870,
1189 		0x25878, 0x25898,
1190 		0x258a0, 0x258a8,
1191 		0x258b0, 0x258c8,
1192 		0x258d0, 0x258d4,
1193 		0x258e0, 0x258e8,
1194 		0x258f0, 0x258f0,
1195 		0x258f8, 0x25a18,
1196 		0x25a20, 0x25a28,
1197 		0x25a30, 0x25a48,
1198 		0x25a50, 0x25a54,
1199 		0x25a60, 0x25a68,
1200 		0x25a70, 0x25a70,
1201 		0x25a78, 0x25a98,
1202 		0x25aa0, 0x25aa8,
1203 		0x25ab0, 0x25ac8,
1204 		0x25ad0, 0x25ad4,
1205 		0x25ae0, 0x25ae8,
1206 		0x25af0, 0x25af0,
1207 		0x25af8, 0x25c18,
1208 		0x25c20, 0x25c20,
1209 		0x25c28, 0x25c30,
1210 		0x25c38, 0x25c38,
1211 		0x25c80, 0x25c98,
1212 		0x25ca0, 0x25ca8,
1213 		0x25cb0, 0x25cc8,
1214 		0x25cd0, 0x25cd4,
1215 		0x25ce0, 0x25ce8,
1216 		0x25cf0, 0x25cf0,
1217 		0x25cf8, 0x25d7c,
1218 		0x25e00, 0x25e04,
1219 		0x26000, 0x2602c,
1220 		0x26100, 0x2613c,
1221 		0x26190, 0x261a0,
1222 		0x261a8, 0x261b8,
1223 		0x261c4, 0x261c8,
1224 		0x26200, 0x26318,
1225 		0x26400, 0x264b4,
1226 		0x264c0, 0x26528,
1227 		0x26540, 0x26614,
1228 		0x27000, 0x27040,
1229 		0x2704c, 0x27060,
1230 		0x270c0, 0x270ec,
1231 		0x27200, 0x27268,
1232 		0x27270, 0x27284,
1233 		0x272fc, 0x27388,
1234 		0x27400, 0x27404,
1235 		0x27500, 0x27500,
1236 		0x27510, 0x27518,
1237 		0x2752c, 0x27530,
1238 		0x2753c, 0x2753c,
1239 		0x27550, 0x27554,
1240 		0x27600, 0x27600,
1241 		0x27608, 0x2761c,
1242 		0x27624, 0x27628,
1243 		0x27630, 0x27634,
1244 		0x2763c, 0x2763c,
1245 		0x27700, 0x2771c,
1246 		0x27780, 0x2778c,
1247 		0x27800, 0x27818,
1248 		0x27820, 0x27828,
1249 		0x27830, 0x27848,
1250 		0x27850, 0x27854,
1251 		0x27860, 0x27868,
1252 		0x27870, 0x27870,
1253 		0x27878, 0x27898,
1254 		0x278a0, 0x278a8,
1255 		0x278b0, 0x278c8,
1256 		0x278d0, 0x278d4,
1257 		0x278e0, 0x278e8,
1258 		0x278f0, 0x278f0,
1259 		0x278f8, 0x27a18,
1260 		0x27a20, 0x27a28,
1261 		0x27a30, 0x27a48,
1262 		0x27a50, 0x27a54,
1263 		0x27a60, 0x27a68,
1264 		0x27a70, 0x27a70,
1265 		0x27a78, 0x27a98,
1266 		0x27aa0, 0x27aa8,
1267 		0x27ab0, 0x27ac8,
1268 		0x27ad0, 0x27ad4,
1269 		0x27ae0, 0x27ae8,
1270 		0x27af0, 0x27af0,
1271 		0x27af8, 0x27c18,
1272 		0x27c20, 0x27c20,
1273 		0x27c28, 0x27c30,
1274 		0x27c38, 0x27c38,
1275 		0x27c80, 0x27c98,
1276 		0x27ca0, 0x27ca8,
1277 		0x27cb0, 0x27cc8,
1278 		0x27cd0, 0x27cd4,
1279 		0x27ce0, 0x27ce8,
1280 		0x27cf0, 0x27cf0,
1281 		0x27cf8, 0x27d7c,
1282 		0x27e00, 0x27e04,
1283 	};
1284 
1285 	static const unsigned int t4vf_reg_ranges[] = {
1286 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1287 		VF_MPS_REG(A_MPS_VF_CTL),
1288 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1289 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1290 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1291 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1292 		FW_T4VF_MBDATA_BASE_ADDR,
1293 		FW_T4VF_MBDATA_BASE_ADDR +
1294 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1295 	};
1296 
1297 	static const unsigned int t5_reg_ranges[] = {
1298 		0x1008, 0x10c0,
1299 		0x10cc, 0x10f8,
1300 		0x1100, 0x1100,
1301 		0x110c, 0x1148,
1302 		0x1180, 0x1184,
1303 		0x1190, 0x1194,
1304 		0x11a0, 0x11a4,
1305 		0x11b0, 0x11b4,
1306 		0x11fc, 0x123c,
1307 		0x1280, 0x173c,
1308 		0x1800, 0x18fc,
1309 		0x3000, 0x3028,
1310 		0x3060, 0x30b0,
1311 		0x30b8, 0x30d8,
1312 		0x30e0, 0x30fc,
1313 		0x3140, 0x357c,
1314 		0x35a8, 0x35cc,
1315 		0x35ec, 0x35ec,
1316 		0x3600, 0x5624,
1317 		0x56cc, 0x56ec,
1318 		0x56f4, 0x5720,
1319 		0x5728, 0x575c,
1320 		0x580c, 0x5814,
1321 		0x5890, 0x589c,
1322 		0x58a4, 0x58ac,
1323 		0x58b8, 0x58bc,
1324 		0x5940, 0x59c8,
1325 		0x59d0, 0x59dc,
1326 		0x59fc, 0x5a18,
1327 		0x5a60, 0x5a70,
1328 		0x5a80, 0x5a9c,
1329 		0x5b94, 0x5bfc,
1330 		0x6000, 0x6020,
1331 		0x6028, 0x6040,
1332 		0x6058, 0x609c,
1333 		0x60a8, 0x614c,
1334 		0x7700, 0x7798,
1335 		0x77c0, 0x78fc,
1336 		0x7b00, 0x7b58,
1337 		0x7b60, 0x7b84,
1338 		0x7b8c, 0x7c54,
1339 		0x7d00, 0x7d38,
1340 		0x7d40, 0x7d80,
1341 		0x7d8c, 0x7ddc,
1342 		0x7de4, 0x7e04,
1343 		0x7e10, 0x7e1c,
1344 		0x7e24, 0x7e38,
1345 		0x7e40, 0x7e44,
1346 		0x7e4c, 0x7e78,
1347 		0x7e80, 0x7edc,
1348 		0x7ee8, 0x7efc,
1349 		0x8dc0, 0x8de0,
1350 		0x8df8, 0x8e04,
1351 		0x8e10, 0x8e84,
1352 		0x8ea0, 0x8f84,
1353 		0x8fc0, 0x9058,
1354 		0x9060, 0x9060,
1355 		0x9068, 0x90f8,
1356 		0x9400, 0x9408,
1357 		0x9410, 0x9470,
1358 		0x9600, 0x9600,
1359 		0x9608, 0x9638,
1360 		0x9640, 0x96f4,
1361 		0x9800, 0x9808,
1362 		0x9810, 0x9864,
1363 		0x9c00, 0x9c6c,
1364 		0x9c80, 0x9cec,
1365 		0x9d00, 0x9d6c,
1366 		0x9d80, 0x9dec,
1367 		0x9e00, 0x9e6c,
1368 		0x9e80, 0x9eec,
1369 		0x9f00, 0x9f6c,
1370 		0x9f80, 0xa020,
1371 		0xd000, 0xd004,
1372 		0xd010, 0xd03c,
1373 		0xdfc0, 0xdfe0,
1374 		0xe000, 0x1106c,
1375 		0x11074, 0x11088,
1376 		0x1109c, 0x11110,
1377 		0x11118, 0x1117c,
1378 		0x11190, 0x11204,
1379 		0x19040, 0x1906c,
1380 		0x19078, 0x19080,
1381 		0x1908c, 0x190e8,
1382 		0x190f0, 0x190f8,
1383 		0x19100, 0x19110,
1384 		0x19120, 0x19124,
1385 		0x19150, 0x19194,
1386 		0x1919c, 0x191b0,
1387 		0x191d0, 0x191e8,
1388 		0x19238, 0x19290,
1389 		0x193f8, 0x19428,
1390 		0x19430, 0x19444,
1391 		0x1944c, 0x1946c,
1392 		0x19474, 0x19474,
1393 		0x19490, 0x194cc,
1394 		0x194f0, 0x194f8,
1395 		0x19c00, 0x19c08,
1396 		0x19c10, 0x19c60,
1397 		0x19c94, 0x19ce4,
1398 		0x19cf0, 0x19d40,
1399 		0x19d50, 0x19d94,
1400 		0x19da0, 0x19de8,
1401 		0x19df0, 0x19e10,
1402 		0x19e50, 0x19e90,
1403 		0x19ea0, 0x19f24,
1404 		0x19f34, 0x19f34,
1405 		0x19f40, 0x19f50,
1406 		0x19f90, 0x19fb4,
1407 		0x19fc4, 0x19fe4,
1408 		0x1a000, 0x1a004,
1409 		0x1a010, 0x1a06c,
1410 		0x1a0b0, 0x1a0e4,
1411 		0x1a0ec, 0x1a0f8,
1412 		0x1a100, 0x1a108,
1413 		0x1a114, 0x1a130,
1414 		0x1a138, 0x1a1c4,
1415 		0x1a1fc, 0x1a1fc,
1416 		0x1e008, 0x1e00c,
1417 		0x1e040, 0x1e044,
1418 		0x1e04c, 0x1e04c,
1419 		0x1e284, 0x1e290,
1420 		0x1e2c0, 0x1e2c0,
1421 		0x1e2e0, 0x1e2e0,
1422 		0x1e300, 0x1e384,
1423 		0x1e3c0, 0x1e3c8,
1424 		0x1e408, 0x1e40c,
1425 		0x1e440, 0x1e444,
1426 		0x1e44c, 0x1e44c,
1427 		0x1e684, 0x1e690,
1428 		0x1e6c0, 0x1e6c0,
1429 		0x1e6e0, 0x1e6e0,
1430 		0x1e700, 0x1e784,
1431 		0x1e7c0, 0x1e7c8,
1432 		0x1e808, 0x1e80c,
1433 		0x1e840, 0x1e844,
1434 		0x1e84c, 0x1e84c,
1435 		0x1ea84, 0x1ea90,
1436 		0x1eac0, 0x1eac0,
1437 		0x1eae0, 0x1eae0,
1438 		0x1eb00, 0x1eb84,
1439 		0x1ebc0, 0x1ebc8,
1440 		0x1ec08, 0x1ec0c,
1441 		0x1ec40, 0x1ec44,
1442 		0x1ec4c, 0x1ec4c,
1443 		0x1ee84, 0x1ee90,
1444 		0x1eec0, 0x1eec0,
1445 		0x1eee0, 0x1eee0,
1446 		0x1ef00, 0x1ef84,
1447 		0x1efc0, 0x1efc8,
1448 		0x1f008, 0x1f00c,
1449 		0x1f040, 0x1f044,
1450 		0x1f04c, 0x1f04c,
1451 		0x1f284, 0x1f290,
1452 		0x1f2c0, 0x1f2c0,
1453 		0x1f2e0, 0x1f2e0,
1454 		0x1f300, 0x1f384,
1455 		0x1f3c0, 0x1f3c8,
1456 		0x1f408, 0x1f40c,
1457 		0x1f440, 0x1f444,
1458 		0x1f44c, 0x1f44c,
1459 		0x1f684, 0x1f690,
1460 		0x1f6c0, 0x1f6c0,
1461 		0x1f6e0, 0x1f6e0,
1462 		0x1f700, 0x1f784,
1463 		0x1f7c0, 0x1f7c8,
1464 		0x1f808, 0x1f80c,
1465 		0x1f840, 0x1f844,
1466 		0x1f84c, 0x1f84c,
1467 		0x1fa84, 0x1fa90,
1468 		0x1fac0, 0x1fac0,
1469 		0x1fae0, 0x1fae0,
1470 		0x1fb00, 0x1fb84,
1471 		0x1fbc0, 0x1fbc8,
1472 		0x1fc08, 0x1fc0c,
1473 		0x1fc40, 0x1fc44,
1474 		0x1fc4c, 0x1fc4c,
1475 		0x1fe84, 0x1fe90,
1476 		0x1fec0, 0x1fec0,
1477 		0x1fee0, 0x1fee0,
1478 		0x1ff00, 0x1ff84,
1479 		0x1ffc0, 0x1ffc8,
1480 		0x30000, 0x30030,
1481 		0x30100, 0x30144,
1482 		0x30190, 0x301a0,
1483 		0x301a8, 0x301b8,
1484 		0x301c4, 0x301c8,
1485 		0x301d0, 0x301d0,
1486 		0x30200, 0x30318,
1487 		0x30400, 0x304b4,
1488 		0x304c0, 0x3052c,
1489 		0x30540, 0x3061c,
1490 		0x30800, 0x30828,
1491 		0x30834, 0x30834,
1492 		0x308c0, 0x30908,
1493 		0x30910, 0x309ac,
1494 		0x30a00, 0x30a14,
1495 		0x30a1c, 0x30a2c,
1496 		0x30a44, 0x30a50,
1497 		0x30a74, 0x30a74,
1498 		0x30a7c, 0x30afc,
1499 		0x30b08, 0x30c24,
1500 		0x30d00, 0x30d00,
1501 		0x30d08, 0x30d14,
1502 		0x30d1c, 0x30d20,
1503 		0x30d3c, 0x30d3c,
1504 		0x30d48, 0x30d50,
1505 		0x31200, 0x3120c,
1506 		0x31220, 0x31220,
1507 		0x31240, 0x31240,
1508 		0x31600, 0x3160c,
1509 		0x31a00, 0x31a1c,
1510 		0x31e00, 0x31e20,
1511 		0x31e38, 0x31e3c,
1512 		0x31e80, 0x31e80,
1513 		0x31e88, 0x31ea8,
1514 		0x31eb0, 0x31eb4,
1515 		0x31ec8, 0x31ed4,
1516 		0x31fb8, 0x32004,
1517 		0x32200, 0x32200,
1518 		0x32208, 0x32240,
1519 		0x32248, 0x32280,
1520 		0x32288, 0x322c0,
1521 		0x322c8, 0x322fc,
1522 		0x32600, 0x32630,
1523 		0x32a00, 0x32abc,
1524 		0x32b00, 0x32b10,
1525 		0x32b20, 0x32b30,
1526 		0x32b40, 0x32b50,
1527 		0x32b60, 0x32b70,
1528 		0x33000, 0x33028,
1529 		0x33030, 0x33048,
1530 		0x33060, 0x33068,
1531 		0x33070, 0x3309c,
1532 		0x330f0, 0x33128,
1533 		0x33130, 0x33148,
1534 		0x33160, 0x33168,
1535 		0x33170, 0x3319c,
1536 		0x331f0, 0x33238,
1537 		0x33240, 0x33240,
1538 		0x33248, 0x33250,
1539 		0x3325c, 0x33264,
1540 		0x33270, 0x332b8,
1541 		0x332c0, 0x332e4,
1542 		0x332f8, 0x33338,
1543 		0x33340, 0x33340,
1544 		0x33348, 0x33350,
1545 		0x3335c, 0x33364,
1546 		0x33370, 0x333b8,
1547 		0x333c0, 0x333e4,
1548 		0x333f8, 0x33428,
1549 		0x33430, 0x33448,
1550 		0x33460, 0x33468,
1551 		0x33470, 0x3349c,
1552 		0x334f0, 0x33528,
1553 		0x33530, 0x33548,
1554 		0x33560, 0x33568,
1555 		0x33570, 0x3359c,
1556 		0x335f0, 0x33638,
1557 		0x33640, 0x33640,
1558 		0x33648, 0x33650,
1559 		0x3365c, 0x33664,
1560 		0x33670, 0x336b8,
1561 		0x336c0, 0x336e4,
1562 		0x336f8, 0x33738,
1563 		0x33740, 0x33740,
1564 		0x33748, 0x33750,
1565 		0x3375c, 0x33764,
1566 		0x33770, 0x337b8,
1567 		0x337c0, 0x337e4,
1568 		0x337f8, 0x337fc,
1569 		0x33814, 0x33814,
1570 		0x3382c, 0x3382c,
1571 		0x33880, 0x3388c,
1572 		0x338e8, 0x338ec,
1573 		0x33900, 0x33928,
1574 		0x33930, 0x33948,
1575 		0x33960, 0x33968,
1576 		0x33970, 0x3399c,
1577 		0x339f0, 0x33a38,
1578 		0x33a40, 0x33a40,
1579 		0x33a48, 0x33a50,
1580 		0x33a5c, 0x33a64,
1581 		0x33a70, 0x33ab8,
1582 		0x33ac0, 0x33ae4,
1583 		0x33af8, 0x33b10,
1584 		0x33b28, 0x33b28,
1585 		0x33b3c, 0x33b50,
1586 		0x33bf0, 0x33c10,
1587 		0x33c28, 0x33c28,
1588 		0x33c3c, 0x33c50,
1589 		0x33cf0, 0x33cfc,
1590 		0x34000, 0x34030,
1591 		0x34100, 0x34144,
1592 		0x34190, 0x341a0,
1593 		0x341a8, 0x341b8,
1594 		0x341c4, 0x341c8,
1595 		0x341d0, 0x341d0,
1596 		0x34200, 0x34318,
1597 		0x34400, 0x344b4,
1598 		0x344c0, 0x3452c,
1599 		0x34540, 0x3461c,
1600 		0x34800, 0x34828,
1601 		0x34834, 0x34834,
1602 		0x348c0, 0x34908,
1603 		0x34910, 0x349ac,
1604 		0x34a00, 0x34a14,
1605 		0x34a1c, 0x34a2c,
1606 		0x34a44, 0x34a50,
1607 		0x34a74, 0x34a74,
1608 		0x34a7c, 0x34afc,
1609 		0x34b08, 0x34c24,
1610 		0x34d00, 0x34d00,
1611 		0x34d08, 0x34d14,
1612 		0x34d1c, 0x34d20,
1613 		0x34d3c, 0x34d3c,
1614 		0x34d48, 0x34d50,
1615 		0x35200, 0x3520c,
1616 		0x35220, 0x35220,
1617 		0x35240, 0x35240,
1618 		0x35600, 0x3560c,
1619 		0x35a00, 0x35a1c,
1620 		0x35e00, 0x35e20,
1621 		0x35e38, 0x35e3c,
1622 		0x35e80, 0x35e80,
1623 		0x35e88, 0x35ea8,
1624 		0x35eb0, 0x35eb4,
1625 		0x35ec8, 0x35ed4,
1626 		0x35fb8, 0x36004,
1627 		0x36200, 0x36200,
1628 		0x36208, 0x36240,
1629 		0x36248, 0x36280,
1630 		0x36288, 0x362c0,
1631 		0x362c8, 0x362fc,
1632 		0x36600, 0x36630,
1633 		0x36a00, 0x36abc,
1634 		0x36b00, 0x36b10,
1635 		0x36b20, 0x36b30,
1636 		0x36b40, 0x36b50,
1637 		0x36b60, 0x36b70,
1638 		0x37000, 0x37028,
1639 		0x37030, 0x37048,
1640 		0x37060, 0x37068,
1641 		0x37070, 0x3709c,
1642 		0x370f0, 0x37128,
1643 		0x37130, 0x37148,
1644 		0x37160, 0x37168,
1645 		0x37170, 0x3719c,
1646 		0x371f0, 0x37238,
1647 		0x37240, 0x37240,
1648 		0x37248, 0x37250,
1649 		0x3725c, 0x37264,
1650 		0x37270, 0x372b8,
1651 		0x372c0, 0x372e4,
1652 		0x372f8, 0x37338,
1653 		0x37340, 0x37340,
1654 		0x37348, 0x37350,
1655 		0x3735c, 0x37364,
1656 		0x37370, 0x373b8,
1657 		0x373c0, 0x373e4,
1658 		0x373f8, 0x37428,
1659 		0x37430, 0x37448,
1660 		0x37460, 0x37468,
1661 		0x37470, 0x3749c,
1662 		0x374f0, 0x37528,
1663 		0x37530, 0x37548,
1664 		0x37560, 0x37568,
1665 		0x37570, 0x3759c,
1666 		0x375f0, 0x37638,
1667 		0x37640, 0x37640,
1668 		0x37648, 0x37650,
1669 		0x3765c, 0x37664,
1670 		0x37670, 0x376b8,
1671 		0x376c0, 0x376e4,
1672 		0x376f8, 0x37738,
1673 		0x37740, 0x37740,
1674 		0x37748, 0x37750,
1675 		0x3775c, 0x37764,
1676 		0x37770, 0x377b8,
1677 		0x377c0, 0x377e4,
1678 		0x377f8, 0x377fc,
1679 		0x37814, 0x37814,
1680 		0x3782c, 0x3782c,
1681 		0x37880, 0x3788c,
1682 		0x378e8, 0x378ec,
1683 		0x37900, 0x37928,
1684 		0x37930, 0x37948,
1685 		0x37960, 0x37968,
1686 		0x37970, 0x3799c,
1687 		0x379f0, 0x37a38,
1688 		0x37a40, 0x37a40,
1689 		0x37a48, 0x37a50,
1690 		0x37a5c, 0x37a64,
1691 		0x37a70, 0x37ab8,
1692 		0x37ac0, 0x37ae4,
1693 		0x37af8, 0x37b10,
1694 		0x37b28, 0x37b28,
1695 		0x37b3c, 0x37b50,
1696 		0x37bf0, 0x37c10,
1697 		0x37c28, 0x37c28,
1698 		0x37c3c, 0x37c50,
1699 		0x37cf0, 0x37cfc,
1700 		0x38000, 0x38030,
1701 		0x38100, 0x38144,
1702 		0x38190, 0x381a0,
1703 		0x381a8, 0x381b8,
1704 		0x381c4, 0x381c8,
1705 		0x381d0, 0x381d0,
1706 		0x38200, 0x38318,
1707 		0x38400, 0x384b4,
1708 		0x384c0, 0x3852c,
1709 		0x38540, 0x3861c,
1710 		0x38800, 0x38828,
1711 		0x38834, 0x38834,
1712 		0x388c0, 0x38908,
1713 		0x38910, 0x389ac,
1714 		0x38a00, 0x38a14,
1715 		0x38a1c, 0x38a2c,
1716 		0x38a44, 0x38a50,
1717 		0x38a74, 0x38a74,
1718 		0x38a7c, 0x38afc,
1719 		0x38b08, 0x38c24,
1720 		0x38d00, 0x38d00,
1721 		0x38d08, 0x38d14,
1722 		0x38d1c, 0x38d20,
1723 		0x38d3c, 0x38d3c,
1724 		0x38d48, 0x38d50,
1725 		0x39200, 0x3920c,
1726 		0x39220, 0x39220,
1727 		0x39240, 0x39240,
1728 		0x39600, 0x3960c,
1729 		0x39a00, 0x39a1c,
1730 		0x39e00, 0x39e20,
1731 		0x39e38, 0x39e3c,
1732 		0x39e80, 0x39e80,
1733 		0x39e88, 0x39ea8,
1734 		0x39eb0, 0x39eb4,
1735 		0x39ec8, 0x39ed4,
1736 		0x39fb8, 0x3a004,
1737 		0x3a200, 0x3a200,
1738 		0x3a208, 0x3a240,
1739 		0x3a248, 0x3a280,
1740 		0x3a288, 0x3a2c0,
1741 		0x3a2c8, 0x3a2fc,
1742 		0x3a600, 0x3a630,
1743 		0x3aa00, 0x3aabc,
1744 		0x3ab00, 0x3ab10,
1745 		0x3ab20, 0x3ab30,
1746 		0x3ab40, 0x3ab50,
1747 		0x3ab60, 0x3ab70,
1748 		0x3b000, 0x3b028,
1749 		0x3b030, 0x3b048,
1750 		0x3b060, 0x3b068,
1751 		0x3b070, 0x3b09c,
1752 		0x3b0f0, 0x3b128,
1753 		0x3b130, 0x3b148,
1754 		0x3b160, 0x3b168,
1755 		0x3b170, 0x3b19c,
1756 		0x3b1f0, 0x3b238,
1757 		0x3b240, 0x3b240,
1758 		0x3b248, 0x3b250,
1759 		0x3b25c, 0x3b264,
1760 		0x3b270, 0x3b2b8,
1761 		0x3b2c0, 0x3b2e4,
1762 		0x3b2f8, 0x3b338,
1763 		0x3b340, 0x3b340,
1764 		0x3b348, 0x3b350,
1765 		0x3b35c, 0x3b364,
1766 		0x3b370, 0x3b3b8,
1767 		0x3b3c0, 0x3b3e4,
1768 		0x3b3f8, 0x3b428,
1769 		0x3b430, 0x3b448,
1770 		0x3b460, 0x3b468,
1771 		0x3b470, 0x3b49c,
1772 		0x3b4f0, 0x3b528,
1773 		0x3b530, 0x3b548,
1774 		0x3b560, 0x3b568,
1775 		0x3b570, 0x3b59c,
1776 		0x3b5f0, 0x3b638,
1777 		0x3b640, 0x3b640,
1778 		0x3b648, 0x3b650,
1779 		0x3b65c, 0x3b664,
1780 		0x3b670, 0x3b6b8,
1781 		0x3b6c0, 0x3b6e4,
1782 		0x3b6f8, 0x3b738,
1783 		0x3b740, 0x3b740,
1784 		0x3b748, 0x3b750,
1785 		0x3b75c, 0x3b764,
1786 		0x3b770, 0x3b7b8,
1787 		0x3b7c0, 0x3b7e4,
1788 		0x3b7f8, 0x3b7fc,
1789 		0x3b814, 0x3b814,
1790 		0x3b82c, 0x3b82c,
1791 		0x3b880, 0x3b88c,
1792 		0x3b8e8, 0x3b8ec,
1793 		0x3b900, 0x3b928,
1794 		0x3b930, 0x3b948,
1795 		0x3b960, 0x3b968,
1796 		0x3b970, 0x3b99c,
1797 		0x3b9f0, 0x3ba38,
1798 		0x3ba40, 0x3ba40,
1799 		0x3ba48, 0x3ba50,
1800 		0x3ba5c, 0x3ba64,
1801 		0x3ba70, 0x3bab8,
1802 		0x3bac0, 0x3bae4,
1803 		0x3baf8, 0x3bb10,
1804 		0x3bb28, 0x3bb28,
1805 		0x3bb3c, 0x3bb50,
1806 		0x3bbf0, 0x3bc10,
1807 		0x3bc28, 0x3bc28,
1808 		0x3bc3c, 0x3bc50,
1809 		0x3bcf0, 0x3bcfc,
1810 		0x3c000, 0x3c030,
1811 		0x3c100, 0x3c144,
1812 		0x3c190, 0x3c1a0,
1813 		0x3c1a8, 0x3c1b8,
1814 		0x3c1c4, 0x3c1c8,
1815 		0x3c1d0, 0x3c1d0,
1816 		0x3c200, 0x3c318,
1817 		0x3c400, 0x3c4b4,
1818 		0x3c4c0, 0x3c52c,
1819 		0x3c540, 0x3c61c,
1820 		0x3c800, 0x3c828,
1821 		0x3c834, 0x3c834,
1822 		0x3c8c0, 0x3c908,
1823 		0x3c910, 0x3c9ac,
1824 		0x3ca00, 0x3ca14,
1825 		0x3ca1c, 0x3ca2c,
1826 		0x3ca44, 0x3ca50,
1827 		0x3ca74, 0x3ca74,
1828 		0x3ca7c, 0x3cafc,
1829 		0x3cb08, 0x3cc24,
1830 		0x3cd00, 0x3cd00,
1831 		0x3cd08, 0x3cd14,
1832 		0x3cd1c, 0x3cd20,
1833 		0x3cd3c, 0x3cd3c,
1834 		0x3cd48, 0x3cd50,
1835 		0x3d200, 0x3d20c,
1836 		0x3d220, 0x3d220,
1837 		0x3d240, 0x3d240,
1838 		0x3d600, 0x3d60c,
1839 		0x3da00, 0x3da1c,
1840 		0x3de00, 0x3de20,
1841 		0x3de38, 0x3de3c,
1842 		0x3de80, 0x3de80,
1843 		0x3de88, 0x3dea8,
1844 		0x3deb0, 0x3deb4,
1845 		0x3dec8, 0x3ded4,
1846 		0x3dfb8, 0x3e004,
1847 		0x3e200, 0x3e200,
1848 		0x3e208, 0x3e240,
1849 		0x3e248, 0x3e280,
1850 		0x3e288, 0x3e2c0,
1851 		0x3e2c8, 0x3e2fc,
1852 		0x3e600, 0x3e630,
1853 		0x3ea00, 0x3eabc,
1854 		0x3eb00, 0x3eb10,
1855 		0x3eb20, 0x3eb30,
1856 		0x3eb40, 0x3eb50,
1857 		0x3eb60, 0x3eb70,
1858 		0x3f000, 0x3f028,
1859 		0x3f030, 0x3f048,
1860 		0x3f060, 0x3f068,
1861 		0x3f070, 0x3f09c,
1862 		0x3f0f0, 0x3f128,
1863 		0x3f130, 0x3f148,
1864 		0x3f160, 0x3f168,
1865 		0x3f170, 0x3f19c,
1866 		0x3f1f0, 0x3f238,
1867 		0x3f240, 0x3f240,
1868 		0x3f248, 0x3f250,
1869 		0x3f25c, 0x3f264,
1870 		0x3f270, 0x3f2b8,
1871 		0x3f2c0, 0x3f2e4,
1872 		0x3f2f8, 0x3f338,
1873 		0x3f340, 0x3f340,
1874 		0x3f348, 0x3f350,
1875 		0x3f35c, 0x3f364,
1876 		0x3f370, 0x3f3b8,
1877 		0x3f3c0, 0x3f3e4,
1878 		0x3f3f8, 0x3f428,
1879 		0x3f430, 0x3f448,
1880 		0x3f460, 0x3f468,
1881 		0x3f470, 0x3f49c,
1882 		0x3f4f0, 0x3f528,
1883 		0x3f530, 0x3f548,
1884 		0x3f560, 0x3f568,
1885 		0x3f570, 0x3f59c,
1886 		0x3f5f0, 0x3f638,
1887 		0x3f640, 0x3f640,
1888 		0x3f648, 0x3f650,
1889 		0x3f65c, 0x3f664,
1890 		0x3f670, 0x3f6b8,
1891 		0x3f6c0, 0x3f6e4,
1892 		0x3f6f8, 0x3f738,
1893 		0x3f740, 0x3f740,
1894 		0x3f748, 0x3f750,
1895 		0x3f75c, 0x3f764,
1896 		0x3f770, 0x3f7b8,
1897 		0x3f7c0, 0x3f7e4,
1898 		0x3f7f8, 0x3f7fc,
1899 		0x3f814, 0x3f814,
1900 		0x3f82c, 0x3f82c,
1901 		0x3f880, 0x3f88c,
1902 		0x3f8e8, 0x3f8ec,
1903 		0x3f900, 0x3f928,
1904 		0x3f930, 0x3f948,
1905 		0x3f960, 0x3f968,
1906 		0x3f970, 0x3f99c,
1907 		0x3f9f0, 0x3fa38,
1908 		0x3fa40, 0x3fa40,
1909 		0x3fa48, 0x3fa50,
1910 		0x3fa5c, 0x3fa64,
1911 		0x3fa70, 0x3fab8,
1912 		0x3fac0, 0x3fae4,
1913 		0x3faf8, 0x3fb10,
1914 		0x3fb28, 0x3fb28,
1915 		0x3fb3c, 0x3fb50,
1916 		0x3fbf0, 0x3fc10,
1917 		0x3fc28, 0x3fc28,
1918 		0x3fc3c, 0x3fc50,
1919 		0x3fcf0, 0x3fcfc,
1920 		0x40000, 0x4000c,
1921 		0x40040, 0x40050,
1922 		0x40060, 0x40068,
1923 		0x4007c, 0x4008c,
1924 		0x40094, 0x400b0,
1925 		0x400c0, 0x40144,
1926 		0x40180, 0x4018c,
1927 		0x40200, 0x40254,
1928 		0x40260, 0x40264,
1929 		0x40270, 0x40288,
1930 		0x40290, 0x40298,
1931 		0x402ac, 0x402c8,
1932 		0x402d0, 0x402e0,
1933 		0x402f0, 0x402f0,
1934 		0x40300, 0x4033c,
1935 		0x403f8, 0x403fc,
1936 		0x41304, 0x413c4,
1937 		0x41400, 0x4140c,
1938 		0x41414, 0x4141c,
1939 		0x41480, 0x414d0,
1940 		0x44000, 0x44054,
1941 		0x4405c, 0x44078,
1942 		0x440c0, 0x44174,
1943 		0x44180, 0x441ac,
1944 		0x441b4, 0x441b8,
1945 		0x441c0, 0x44254,
1946 		0x4425c, 0x44278,
1947 		0x442c0, 0x44374,
1948 		0x44380, 0x443ac,
1949 		0x443b4, 0x443b8,
1950 		0x443c0, 0x44454,
1951 		0x4445c, 0x44478,
1952 		0x444c0, 0x44574,
1953 		0x44580, 0x445ac,
1954 		0x445b4, 0x445b8,
1955 		0x445c0, 0x44654,
1956 		0x4465c, 0x44678,
1957 		0x446c0, 0x44774,
1958 		0x44780, 0x447ac,
1959 		0x447b4, 0x447b8,
1960 		0x447c0, 0x44854,
1961 		0x4485c, 0x44878,
1962 		0x448c0, 0x44974,
1963 		0x44980, 0x449ac,
1964 		0x449b4, 0x449b8,
1965 		0x449c0, 0x449fc,
1966 		0x45000, 0x45004,
1967 		0x45010, 0x45030,
1968 		0x45040, 0x45060,
1969 		0x45068, 0x45068,
1970 		0x45080, 0x45084,
1971 		0x450a0, 0x450b0,
1972 		0x45200, 0x45204,
1973 		0x45210, 0x45230,
1974 		0x45240, 0x45260,
1975 		0x45268, 0x45268,
1976 		0x45280, 0x45284,
1977 		0x452a0, 0x452b0,
1978 		0x460c0, 0x460e4,
1979 		0x47000, 0x4703c,
1980 		0x47044, 0x4708c,
1981 		0x47200, 0x47250,
1982 		0x47400, 0x47408,
1983 		0x47414, 0x47420,
1984 		0x47600, 0x47618,
1985 		0x47800, 0x47814,
1986 		0x48000, 0x4800c,
1987 		0x48040, 0x48050,
1988 		0x48060, 0x48068,
1989 		0x4807c, 0x4808c,
1990 		0x48094, 0x480b0,
1991 		0x480c0, 0x48144,
1992 		0x48180, 0x4818c,
1993 		0x48200, 0x48254,
1994 		0x48260, 0x48264,
1995 		0x48270, 0x48288,
1996 		0x48290, 0x48298,
1997 		0x482ac, 0x482c8,
1998 		0x482d0, 0x482e0,
1999 		0x482f0, 0x482f0,
2000 		0x48300, 0x4833c,
2001 		0x483f8, 0x483fc,
2002 		0x49304, 0x493c4,
2003 		0x49400, 0x4940c,
2004 		0x49414, 0x4941c,
2005 		0x49480, 0x494d0,
2006 		0x4c000, 0x4c054,
2007 		0x4c05c, 0x4c078,
2008 		0x4c0c0, 0x4c174,
2009 		0x4c180, 0x4c1ac,
2010 		0x4c1b4, 0x4c1b8,
2011 		0x4c1c0, 0x4c254,
2012 		0x4c25c, 0x4c278,
2013 		0x4c2c0, 0x4c374,
2014 		0x4c380, 0x4c3ac,
2015 		0x4c3b4, 0x4c3b8,
2016 		0x4c3c0, 0x4c454,
2017 		0x4c45c, 0x4c478,
2018 		0x4c4c0, 0x4c574,
2019 		0x4c580, 0x4c5ac,
2020 		0x4c5b4, 0x4c5b8,
2021 		0x4c5c0, 0x4c654,
2022 		0x4c65c, 0x4c678,
2023 		0x4c6c0, 0x4c774,
2024 		0x4c780, 0x4c7ac,
2025 		0x4c7b4, 0x4c7b8,
2026 		0x4c7c0, 0x4c854,
2027 		0x4c85c, 0x4c878,
2028 		0x4c8c0, 0x4c974,
2029 		0x4c980, 0x4c9ac,
2030 		0x4c9b4, 0x4c9b8,
2031 		0x4c9c0, 0x4c9fc,
2032 		0x4d000, 0x4d004,
2033 		0x4d010, 0x4d030,
2034 		0x4d040, 0x4d060,
2035 		0x4d068, 0x4d068,
2036 		0x4d080, 0x4d084,
2037 		0x4d0a0, 0x4d0b0,
2038 		0x4d200, 0x4d204,
2039 		0x4d210, 0x4d230,
2040 		0x4d240, 0x4d260,
2041 		0x4d268, 0x4d268,
2042 		0x4d280, 0x4d284,
2043 		0x4d2a0, 0x4d2b0,
2044 		0x4e0c0, 0x4e0e4,
2045 		0x4f000, 0x4f03c,
2046 		0x4f044, 0x4f08c,
2047 		0x4f200, 0x4f250,
2048 		0x4f400, 0x4f408,
2049 		0x4f414, 0x4f420,
2050 		0x4f600, 0x4f618,
2051 		0x4f800, 0x4f814,
2052 		0x50000, 0x50084,
2053 		0x50090, 0x500cc,
2054 		0x50400, 0x50400,
2055 		0x50800, 0x50884,
2056 		0x50890, 0x508cc,
2057 		0x50c00, 0x50c00,
2058 		0x51000, 0x5101c,
2059 		0x51300, 0x51308,
2060 	};
2061 
2062 	static const unsigned int t5vf_reg_ranges[] = {
2063 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2064 		VF_MPS_REG(A_MPS_VF_CTL),
2065 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2066 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2067 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2068 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2069 		FW_T4VF_MBDATA_BASE_ADDR,
2070 		FW_T4VF_MBDATA_BASE_ADDR +
2071 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2072 	};
2073 
2074 	static const unsigned int t6_reg_ranges[] = {
2075 		0x1008, 0x101c,
2076 		0x1024, 0x10a8,
2077 		0x10b4, 0x10f8,
2078 		0x1100, 0x1114,
2079 		0x111c, 0x112c,
2080 		0x1138, 0x113c,
2081 		0x1144, 0x114c,
2082 		0x1180, 0x1184,
2083 		0x1190, 0x1194,
2084 		0x11a0, 0x11a4,
2085 		0x11b0, 0x11c4,
2086 		0x11fc, 0x123c,
2087 		0x1254, 0x1274,
2088 		0x1280, 0x133c,
2089 		0x1800, 0x18fc,
2090 		0x3000, 0x302c,
2091 		0x3060, 0x30b0,
2092 		0x30b8, 0x30d8,
2093 		0x30e0, 0x30fc,
2094 		0x3140, 0x357c,
2095 		0x35a8, 0x35cc,
2096 		0x35ec, 0x35ec,
2097 		0x3600, 0x5624,
2098 		0x56cc, 0x56ec,
2099 		0x56f4, 0x5720,
2100 		0x5728, 0x575c,
2101 		0x580c, 0x5814,
2102 		0x5890, 0x589c,
2103 		0x58a4, 0x58ac,
2104 		0x58b8, 0x58bc,
2105 		0x5940, 0x595c,
2106 		0x5980, 0x598c,
2107 		0x59b0, 0x59c8,
2108 		0x59d0, 0x59dc,
2109 		0x59fc, 0x5a18,
2110 		0x5a60, 0x5a6c,
2111 		0x5a80, 0x5a8c,
2112 		0x5a94, 0x5a9c,
2113 		0x5b94, 0x5bfc,
2114 		0x5c10, 0x5e48,
2115 		0x5e50, 0x5e94,
2116 		0x5ea0, 0x5eb0,
2117 		0x5ec0, 0x5ec0,
2118 		0x5ec8, 0x5ed0,
2119 		0x5ee0, 0x5ee0,
2120 		0x5ef0, 0x5ef0,
2121 		0x5f00, 0x5f00,
2122 		0x6000, 0x6020,
2123 		0x6028, 0x6040,
2124 		0x6058, 0x609c,
2125 		0x60a8, 0x619c,
2126 		0x7700, 0x7798,
2127 		0x77c0, 0x7880,
2128 		0x78cc, 0x78fc,
2129 		0x7b00, 0x7b58,
2130 		0x7b60, 0x7b84,
2131 		0x7b8c, 0x7c54,
2132 		0x7d00, 0x7d38,
2133 		0x7d40, 0x7d84,
2134 		0x7d8c, 0x7ddc,
2135 		0x7de4, 0x7e04,
2136 		0x7e10, 0x7e1c,
2137 		0x7e24, 0x7e38,
2138 		0x7e40, 0x7e44,
2139 		0x7e4c, 0x7e78,
2140 		0x7e80, 0x7edc,
2141 		0x7ee8, 0x7efc,
2142 		0x8dc0, 0x8de0,
2143 		0x8df8, 0x8e04,
2144 		0x8e10, 0x8e84,
2145 		0x8ea0, 0x8f88,
2146 		0x8fb8, 0x9058,
2147 		0x9060, 0x9060,
2148 		0x9068, 0x90f8,
2149 		0x9100, 0x9124,
2150 		0x9400, 0x9470,
2151 		0x9600, 0x9600,
2152 		0x9608, 0x9638,
2153 		0x9640, 0x9704,
2154 		0x9710, 0x971c,
2155 		0x9800, 0x9808,
2156 		0x9810, 0x9864,
2157 		0x9c00, 0x9c6c,
2158 		0x9c80, 0x9cec,
2159 		0x9d00, 0x9d6c,
2160 		0x9d80, 0x9dec,
2161 		0x9e00, 0x9e6c,
2162 		0x9e80, 0x9eec,
2163 		0x9f00, 0x9f6c,
2164 		0x9f80, 0xa020,
2165 		0xd000, 0xd03c,
2166 		0xd100, 0xd118,
2167 		0xd200, 0xd214,
2168 		0xd220, 0xd234,
2169 		0xd240, 0xd254,
2170 		0xd260, 0xd274,
2171 		0xd280, 0xd294,
2172 		0xd2a0, 0xd2b4,
2173 		0xd2c0, 0xd2d4,
2174 		0xd2e0, 0xd2f4,
2175 		0xd300, 0xd31c,
2176 		0xdfc0, 0xdfe0,
2177 		0xe000, 0xf008,
2178 		0xf010, 0xf018,
2179 		0xf020, 0xf028,
2180 		0x11000, 0x11014,
2181 		0x11048, 0x1106c,
2182 		0x11074, 0x11088,
2183 		0x11098, 0x11120,
2184 		0x1112c, 0x1117c,
2185 		0x11190, 0x112e0,
2186 		0x11300, 0x1130c,
2187 		0x12000, 0x1206c,
2188 		0x19040, 0x1906c,
2189 		0x19078, 0x19080,
2190 		0x1908c, 0x190e8,
2191 		0x190f0, 0x190f8,
2192 		0x19100, 0x19110,
2193 		0x19120, 0x19124,
2194 		0x19150, 0x19194,
2195 		0x1919c, 0x191b0,
2196 		0x191d0, 0x191e8,
2197 		0x19238, 0x19290,
2198 		0x192a4, 0x192b0,
2199 		0x19348, 0x1934c,
2200 		0x193f8, 0x19418,
2201 		0x19420, 0x19428,
2202 		0x19430, 0x19444,
2203 		0x1944c, 0x1946c,
2204 		0x19474, 0x19474,
2205 		0x19490, 0x194cc,
2206 		0x194f0, 0x194f8,
2207 		0x19c00, 0x19c48,
2208 		0x19c50, 0x19c80,
2209 		0x19c94, 0x19c98,
2210 		0x19ca0, 0x19cbc,
2211 		0x19ce4, 0x19ce4,
2212 		0x19cf0, 0x19cf8,
2213 		0x19d00, 0x19d28,
2214 		0x19d50, 0x19d78,
2215 		0x19d94, 0x19d98,
2216 		0x19da0, 0x19de0,
2217 		0x19df0, 0x19e10,
2218 		0x19e50, 0x19e6c,
2219 		0x19ea0, 0x19ebc,
2220 		0x19ec4, 0x19ef4,
2221 		0x19f04, 0x19f2c,
2222 		0x19f34, 0x19f34,
2223 		0x19f40, 0x19f50,
2224 		0x19f90, 0x19fac,
2225 		0x19fc4, 0x19fc8,
2226 		0x19fd0, 0x19fe4,
2227 		0x1a000, 0x1a004,
2228 		0x1a010, 0x1a06c,
2229 		0x1a0b0, 0x1a0e4,
2230 		0x1a0ec, 0x1a0f8,
2231 		0x1a100, 0x1a108,
2232 		0x1a114, 0x1a130,
2233 		0x1a138, 0x1a1c4,
2234 		0x1a1fc, 0x1a1fc,
2235 		0x1e008, 0x1e00c,
2236 		0x1e040, 0x1e044,
2237 		0x1e04c, 0x1e04c,
2238 		0x1e284, 0x1e290,
2239 		0x1e2c0, 0x1e2c0,
2240 		0x1e2e0, 0x1e2e0,
2241 		0x1e300, 0x1e384,
2242 		0x1e3c0, 0x1e3c8,
2243 		0x1e408, 0x1e40c,
2244 		0x1e440, 0x1e444,
2245 		0x1e44c, 0x1e44c,
2246 		0x1e684, 0x1e690,
2247 		0x1e6c0, 0x1e6c0,
2248 		0x1e6e0, 0x1e6e0,
2249 		0x1e700, 0x1e784,
2250 		0x1e7c0, 0x1e7c8,
2251 		0x1e808, 0x1e80c,
2252 		0x1e840, 0x1e844,
2253 		0x1e84c, 0x1e84c,
2254 		0x1ea84, 0x1ea90,
2255 		0x1eac0, 0x1eac0,
2256 		0x1eae0, 0x1eae0,
2257 		0x1eb00, 0x1eb84,
2258 		0x1ebc0, 0x1ebc8,
2259 		0x1ec08, 0x1ec0c,
2260 		0x1ec40, 0x1ec44,
2261 		0x1ec4c, 0x1ec4c,
2262 		0x1ee84, 0x1ee90,
2263 		0x1eec0, 0x1eec0,
2264 		0x1eee0, 0x1eee0,
2265 		0x1ef00, 0x1ef84,
2266 		0x1efc0, 0x1efc8,
2267 		0x1f008, 0x1f00c,
2268 		0x1f040, 0x1f044,
2269 		0x1f04c, 0x1f04c,
2270 		0x1f284, 0x1f290,
2271 		0x1f2c0, 0x1f2c0,
2272 		0x1f2e0, 0x1f2e0,
2273 		0x1f300, 0x1f384,
2274 		0x1f3c0, 0x1f3c8,
2275 		0x1f408, 0x1f40c,
2276 		0x1f440, 0x1f444,
2277 		0x1f44c, 0x1f44c,
2278 		0x1f684, 0x1f690,
2279 		0x1f6c0, 0x1f6c0,
2280 		0x1f6e0, 0x1f6e0,
2281 		0x1f700, 0x1f784,
2282 		0x1f7c0, 0x1f7c8,
2283 		0x1f808, 0x1f80c,
2284 		0x1f840, 0x1f844,
2285 		0x1f84c, 0x1f84c,
2286 		0x1fa84, 0x1fa90,
2287 		0x1fac0, 0x1fac0,
2288 		0x1fae0, 0x1fae0,
2289 		0x1fb00, 0x1fb84,
2290 		0x1fbc0, 0x1fbc8,
2291 		0x1fc08, 0x1fc0c,
2292 		0x1fc40, 0x1fc44,
2293 		0x1fc4c, 0x1fc4c,
2294 		0x1fe84, 0x1fe90,
2295 		0x1fec0, 0x1fec0,
2296 		0x1fee0, 0x1fee0,
2297 		0x1ff00, 0x1ff84,
2298 		0x1ffc0, 0x1ffc8,
2299 		0x30000, 0x30030,
2300 		0x30100, 0x30168,
2301 		0x30190, 0x301a0,
2302 		0x301a8, 0x301b8,
2303 		0x301c4, 0x301c8,
2304 		0x301d0, 0x301d0,
2305 		0x30200, 0x30320,
2306 		0x30400, 0x304b4,
2307 		0x304c0, 0x3052c,
2308 		0x30540, 0x3061c,
2309 		0x30800, 0x308a0,
2310 		0x308c0, 0x30908,
2311 		0x30910, 0x309b8,
2312 		0x30a00, 0x30a04,
2313 		0x30a0c, 0x30a14,
2314 		0x30a1c, 0x30a2c,
2315 		0x30a44, 0x30a50,
2316 		0x30a74, 0x30a74,
2317 		0x30a7c, 0x30afc,
2318 		0x30b08, 0x30c24,
2319 		0x30d00, 0x30d14,
2320 		0x30d1c, 0x30d3c,
2321 		0x30d44, 0x30d4c,
2322 		0x30d54, 0x30d74,
2323 		0x30d7c, 0x30d7c,
2324 		0x30de0, 0x30de0,
2325 		0x30e00, 0x30ed4,
2326 		0x30f00, 0x30fa4,
2327 		0x30fc0, 0x30fc4,
2328 		0x31000, 0x31004,
2329 		0x31080, 0x310fc,
2330 		0x31208, 0x31220,
2331 		0x3123c, 0x31254,
2332 		0x31300, 0x31300,
2333 		0x31308, 0x3131c,
2334 		0x31338, 0x3133c,
2335 		0x31380, 0x31380,
2336 		0x31388, 0x313a8,
2337 		0x313b4, 0x313b4,
2338 		0x31400, 0x31420,
2339 		0x31438, 0x3143c,
2340 		0x31480, 0x31480,
2341 		0x314a8, 0x314a8,
2342 		0x314b0, 0x314b4,
2343 		0x314c8, 0x314d4,
2344 		0x31a40, 0x31a4c,
2345 		0x31af0, 0x31b20,
2346 		0x31b38, 0x31b3c,
2347 		0x31b80, 0x31b80,
2348 		0x31ba8, 0x31ba8,
2349 		0x31bb0, 0x31bb4,
2350 		0x31bc8, 0x31bd4,
2351 		0x32140, 0x3218c,
2352 		0x321f0, 0x321f4,
2353 		0x32200, 0x32200,
2354 		0x32218, 0x32218,
2355 		0x32400, 0x32400,
2356 		0x32408, 0x3241c,
2357 		0x32618, 0x32620,
2358 		0x32664, 0x32664,
2359 		0x326a8, 0x326a8,
2360 		0x326ec, 0x326ec,
2361 		0x32a00, 0x32abc,
2362 		0x32b00, 0x32b18,
2363 		0x32b20, 0x32b38,
2364 		0x32b40, 0x32b58,
2365 		0x32b60, 0x32b78,
2366 		0x32c00, 0x32c00,
2367 		0x32c08, 0x32c3c,
2368 		0x33000, 0x3302c,
2369 		0x33034, 0x33050,
2370 		0x33058, 0x33058,
2371 		0x33060, 0x3308c,
2372 		0x3309c, 0x330ac,
2373 		0x330c0, 0x330c0,
2374 		0x330c8, 0x330d0,
2375 		0x330d8, 0x330e0,
2376 		0x330ec, 0x3312c,
2377 		0x33134, 0x33150,
2378 		0x33158, 0x33158,
2379 		0x33160, 0x3318c,
2380 		0x3319c, 0x331ac,
2381 		0x331c0, 0x331c0,
2382 		0x331c8, 0x331d0,
2383 		0x331d8, 0x331e0,
2384 		0x331ec, 0x33290,
2385 		0x33298, 0x332c4,
2386 		0x332e4, 0x33390,
2387 		0x33398, 0x333c4,
2388 		0x333e4, 0x3342c,
2389 		0x33434, 0x33450,
2390 		0x33458, 0x33458,
2391 		0x33460, 0x3348c,
2392 		0x3349c, 0x334ac,
2393 		0x334c0, 0x334c0,
2394 		0x334c8, 0x334d0,
2395 		0x334d8, 0x334e0,
2396 		0x334ec, 0x3352c,
2397 		0x33534, 0x33550,
2398 		0x33558, 0x33558,
2399 		0x33560, 0x3358c,
2400 		0x3359c, 0x335ac,
2401 		0x335c0, 0x335c0,
2402 		0x335c8, 0x335d0,
2403 		0x335d8, 0x335e0,
2404 		0x335ec, 0x33690,
2405 		0x33698, 0x336c4,
2406 		0x336e4, 0x33790,
2407 		0x33798, 0x337c4,
2408 		0x337e4, 0x337fc,
2409 		0x33814, 0x33814,
2410 		0x33854, 0x33868,
2411 		0x33880, 0x3388c,
2412 		0x338c0, 0x338d0,
2413 		0x338e8, 0x338ec,
2414 		0x33900, 0x3392c,
2415 		0x33934, 0x33950,
2416 		0x33958, 0x33958,
2417 		0x33960, 0x3398c,
2418 		0x3399c, 0x339ac,
2419 		0x339c0, 0x339c0,
2420 		0x339c8, 0x339d0,
2421 		0x339d8, 0x339e0,
2422 		0x339ec, 0x33a90,
2423 		0x33a98, 0x33ac4,
2424 		0x33ae4, 0x33b10,
2425 		0x33b24, 0x33b28,
2426 		0x33b38, 0x33b50,
2427 		0x33bf0, 0x33c10,
2428 		0x33c24, 0x33c28,
2429 		0x33c38, 0x33c50,
2430 		0x33cf0, 0x33cfc,
2431 		0x34000, 0x34030,
2432 		0x34100, 0x34168,
2433 		0x34190, 0x341a0,
2434 		0x341a8, 0x341b8,
2435 		0x341c4, 0x341c8,
2436 		0x341d0, 0x341d0,
2437 		0x34200, 0x34320,
2438 		0x34400, 0x344b4,
2439 		0x344c0, 0x3452c,
2440 		0x34540, 0x3461c,
2441 		0x34800, 0x348a0,
2442 		0x348c0, 0x34908,
2443 		0x34910, 0x349b8,
2444 		0x34a00, 0x34a04,
2445 		0x34a0c, 0x34a14,
2446 		0x34a1c, 0x34a2c,
2447 		0x34a44, 0x34a50,
2448 		0x34a74, 0x34a74,
2449 		0x34a7c, 0x34afc,
2450 		0x34b08, 0x34c24,
2451 		0x34d00, 0x34d14,
2452 		0x34d1c, 0x34d3c,
2453 		0x34d44, 0x34d4c,
2454 		0x34d54, 0x34d74,
2455 		0x34d7c, 0x34d7c,
2456 		0x34de0, 0x34de0,
2457 		0x34e00, 0x34ed4,
2458 		0x34f00, 0x34fa4,
2459 		0x34fc0, 0x34fc4,
2460 		0x35000, 0x35004,
2461 		0x35080, 0x350fc,
2462 		0x35208, 0x35220,
2463 		0x3523c, 0x35254,
2464 		0x35300, 0x35300,
2465 		0x35308, 0x3531c,
2466 		0x35338, 0x3533c,
2467 		0x35380, 0x35380,
2468 		0x35388, 0x353a8,
2469 		0x353b4, 0x353b4,
2470 		0x35400, 0x35420,
2471 		0x35438, 0x3543c,
2472 		0x35480, 0x35480,
2473 		0x354a8, 0x354a8,
2474 		0x354b0, 0x354b4,
2475 		0x354c8, 0x354d4,
2476 		0x35a40, 0x35a4c,
2477 		0x35af0, 0x35b20,
2478 		0x35b38, 0x35b3c,
2479 		0x35b80, 0x35b80,
2480 		0x35ba8, 0x35ba8,
2481 		0x35bb0, 0x35bb4,
2482 		0x35bc8, 0x35bd4,
2483 		0x36140, 0x3618c,
2484 		0x361f0, 0x361f4,
2485 		0x36200, 0x36200,
2486 		0x36218, 0x36218,
2487 		0x36400, 0x36400,
2488 		0x36408, 0x3641c,
2489 		0x36618, 0x36620,
2490 		0x36664, 0x36664,
2491 		0x366a8, 0x366a8,
2492 		0x366ec, 0x366ec,
2493 		0x36a00, 0x36abc,
2494 		0x36b00, 0x36b18,
2495 		0x36b20, 0x36b38,
2496 		0x36b40, 0x36b58,
2497 		0x36b60, 0x36b78,
2498 		0x36c00, 0x36c00,
2499 		0x36c08, 0x36c3c,
2500 		0x37000, 0x3702c,
2501 		0x37034, 0x37050,
2502 		0x37058, 0x37058,
2503 		0x37060, 0x3708c,
2504 		0x3709c, 0x370ac,
2505 		0x370c0, 0x370c0,
2506 		0x370c8, 0x370d0,
2507 		0x370d8, 0x370e0,
2508 		0x370ec, 0x3712c,
2509 		0x37134, 0x37150,
2510 		0x37158, 0x37158,
2511 		0x37160, 0x3718c,
2512 		0x3719c, 0x371ac,
2513 		0x371c0, 0x371c0,
2514 		0x371c8, 0x371d0,
2515 		0x371d8, 0x371e0,
2516 		0x371ec, 0x37290,
2517 		0x37298, 0x372c4,
2518 		0x372e4, 0x37390,
2519 		0x37398, 0x373c4,
2520 		0x373e4, 0x3742c,
2521 		0x37434, 0x37450,
2522 		0x37458, 0x37458,
2523 		0x37460, 0x3748c,
2524 		0x3749c, 0x374ac,
2525 		0x374c0, 0x374c0,
2526 		0x374c8, 0x374d0,
2527 		0x374d8, 0x374e0,
2528 		0x374ec, 0x3752c,
2529 		0x37534, 0x37550,
2530 		0x37558, 0x37558,
2531 		0x37560, 0x3758c,
2532 		0x3759c, 0x375ac,
2533 		0x375c0, 0x375c0,
2534 		0x375c8, 0x375d0,
2535 		0x375d8, 0x375e0,
2536 		0x375ec, 0x37690,
2537 		0x37698, 0x376c4,
2538 		0x376e4, 0x37790,
2539 		0x37798, 0x377c4,
2540 		0x377e4, 0x377fc,
2541 		0x37814, 0x37814,
2542 		0x37854, 0x37868,
2543 		0x37880, 0x3788c,
2544 		0x378c0, 0x378d0,
2545 		0x378e8, 0x378ec,
2546 		0x37900, 0x3792c,
2547 		0x37934, 0x37950,
2548 		0x37958, 0x37958,
2549 		0x37960, 0x3798c,
2550 		0x3799c, 0x379ac,
2551 		0x379c0, 0x379c0,
2552 		0x379c8, 0x379d0,
2553 		0x379d8, 0x379e0,
2554 		0x379ec, 0x37a90,
2555 		0x37a98, 0x37ac4,
2556 		0x37ae4, 0x37b10,
2557 		0x37b24, 0x37b28,
2558 		0x37b38, 0x37b50,
2559 		0x37bf0, 0x37c10,
2560 		0x37c24, 0x37c28,
2561 		0x37c38, 0x37c50,
2562 		0x37cf0, 0x37cfc,
2563 		0x40040, 0x40040,
2564 		0x40080, 0x40084,
2565 		0x40100, 0x40100,
2566 		0x40140, 0x401bc,
2567 		0x40200, 0x40214,
2568 		0x40228, 0x40228,
2569 		0x40240, 0x40258,
2570 		0x40280, 0x40280,
2571 		0x40304, 0x40304,
2572 		0x40330, 0x4033c,
2573 		0x41304, 0x413c8,
2574 		0x413d0, 0x413dc,
2575 		0x413f0, 0x413f0,
2576 		0x41400, 0x4140c,
2577 		0x41414, 0x4141c,
2578 		0x41480, 0x414d0,
2579 		0x44000, 0x4407c,
2580 		0x440c0, 0x441ac,
2581 		0x441b4, 0x4427c,
2582 		0x442c0, 0x443ac,
2583 		0x443b4, 0x4447c,
2584 		0x444c0, 0x445ac,
2585 		0x445b4, 0x4467c,
2586 		0x446c0, 0x447ac,
2587 		0x447b4, 0x4487c,
2588 		0x448c0, 0x449ac,
2589 		0x449b4, 0x44a7c,
2590 		0x44ac0, 0x44bac,
2591 		0x44bb4, 0x44c7c,
2592 		0x44cc0, 0x44dac,
2593 		0x44db4, 0x44e7c,
2594 		0x44ec0, 0x44fac,
2595 		0x44fb4, 0x4507c,
2596 		0x450c0, 0x451ac,
2597 		0x451b4, 0x451fc,
2598 		0x45800, 0x45804,
2599 		0x45810, 0x45830,
2600 		0x45840, 0x45860,
2601 		0x45868, 0x45868,
2602 		0x45880, 0x45884,
2603 		0x458a0, 0x458b0,
2604 		0x45a00, 0x45a04,
2605 		0x45a10, 0x45a30,
2606 		0x45a40, 0x45a60,
2607 		0x45a68, 0x45a68,
2608 		0x45a80, 0x45a84,
2609 		0x45aa0, 0x45ab0,
2610 		0x460c0, 0x460e4,
2611 		0x47000, 0x4703c,
2612 		0x47044, 0x4708c,
2613 		0x47200, 0x47250,
2614 		0x47400, 0x47408,
2615 		0x47414, 0x47420,
2616 		0x47600, 0x47618,
2617 		0x47800, 0x47814,
2618 		0x47820, 0x4782c,
2619 		0x50000, 0x50084,
2620 		0x50090, 0x500cc,
2621 		0x50300, 0x50384,
2622 		0x50400, 0x50400,
2623 		0x50800, 0x50884,
2624 		0x50890, 0x508cc,
2625 		0x50b00, 0x50b84,
2626 		0x50c00, 0x50c00,
2627 		0x51000, 0x51020,
2628 		0x51028, 0x510b0,
2629 		0x51300, 0x51324,
2630 	};
2631 
2632 	static const unsigned int t6vf_reg_ranges[] = {
2633 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2634 		VF_MPS_REG(A_MPS_VF_CTL),
2635 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2636 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2637 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2638 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2639 		FW_T6VF_MBDATA_BASE_ADDR,
2640 		FW_T6VF_MBDATA_BASE_ADDR +
2641 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2642 	};
2643 
2644 	u32 *buf_end = (u32 *)(buf + buf_size);
2645 	const unsigned int *reg_ranges;
2646 	int reg_ranges_size, range;
2647 	unsigned int chip_version = chip_id(adap);
2648 
2649 	/*
2650 	 * Select the right set of register ranges to dump depending on the
2651 	 * adapter chip type.
2652 	 */
2653 	switch (chip_version) {
2654 	case CHELSIO_T4:
2655 		if (adap->flags & IS_VF) {
2656 			reg_ranges = t4vf_reg_ranges;
2657 			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2658 		} else {
2659 			reg_ranges = t4_reg_ranges;
2660 			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2661 		}
2662 		break;
2663 
2664 	case CHELSIO_T5:
2665 		if (adap->flags & IS_VF) {
2666 			reg_ranges = t5vf_reg_ranges;
2667 			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2668 		} else {
2669 			reg_ranges = t5_reg_ranges;
2670 			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2671 		}
2672 		break;
2673 
2674 	case CHELSIO_T6:
2675 		if (adap->flags & IS_VF) {
2676 			reg_ranges = t6vf_reg_ranges;
2677 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2678 		} else {
2679 			reg_ranges = t6_reg_ranges;
2680 			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2681 		}
2682 		break;
2683 
2684 	default:
2685 		CH_ERR(adap,
2686 			"Unsupported chip version %d\n", chip_version);
2687 		return;
2688 	}
2689 
2690 	/*
2691 	 * Clear the register buffer and insert the appropriate register
2692 	 * values selected by the above register ranges.
2693 	 */
2694 	memset(buf, 0, buf_size);
2695 	for (range = 0; range < reg_ranges_size; range += 2) {
2696 		unsigned int reg = reg_ranges[range];
2697 		unsigned int last_reg = reg_ranges[range + 1];
2698 		u32 *bufp = (u32 *)(buf + reg);
2699 
2700 		/*
2701 		 * Iterate across the register range filling in the register
2702 		 * buffer but don't write past the end of the register buffer.
2703 		 */
2704 		while (reg <= last_reg && bufp < buf_end) {
2705 			*bufp++ = t4_read_reg(adap, reg);
2706 			reg += sizeof(u32);
2707 		}
2708 	}
2709 }
2710 
2711 /*
2712  * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2713  * header followed by one or more VPD-R sections, each with its own header.
2714  */
2715 struct t4_vpd_hdr {
2716 	u8  id_tag;
2717 	u8  id_len[2];
2718 	u8  id_data[ID_LEN];
2719 };
2720 
2721 struct t4_vpdr_hdr {
2722 	u8  vpdr_tag;
2723 	u8  vpdr_len[2];
2724 };
2725 
2726 /*
2727  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2728  */
2729 #define EEPROM_DELAY		10		/* 10us per poll spin */
2730 #define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2731 
2732 #define EEPROM_STAT_ADDR	0x7bfc
2733 #define VPD_SIZE		0x800
2734 #define VPD_BASE		0x400
2735 #define VPD_BASE_OLD		0
2736 #define VPD_LEN			1024
2737 #define VPD_INFO_FLD_HDR_SIZE	3
2738 #define CHELSIO_VPD_UNIQUE_ID	0x82
2739 
2740 /*
2741  * Small utility function to wait till any outstanding VPD Access is complete.
2742  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2743  * VPD Access in flight.  This allows us to handle the problem of having a
2744  * previous VPD Access time out and prevent an attempt to inject a new VPD
2745  * Request before any in-flight VPD reguest has completed.
2746  */
2747 static int t4_seeprom_wait(struct adapter *adapter)
2748 {
2749 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2750 	int max_poll;
2751 
2752 	/*
2753 	 * If no VPD Access is in flight, we can just return success right
2754 	 * away.
2755 	 */
2756 	if (!adapter->vpd_busy)
2757 		return 0;
2758 
2759 	/*
2760 	 * Poll the VPD Capability Address/Flag register waiting for it
2761 	 * to indicate that the operation is complete.
2762 	 */
2763 	max_poll = EEPROM_MAX_POLL;
2764 	do {
2765 		u16 val;
2766 
2767 		udelay(EEPROM_DELAY);
2768 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2769 
2770 		/*
2771 		 * If the operation is complete, mark the VPD as no longer
2772 		 * busy and return success.
2773 		 */
2774 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2775 			adapter->vpd_busy = 0;
2776 			return 0;
2777 		}
2778 	} while (--max_poll);
2779 
2780 	/*
2781 	 * Failure!  Note that we leave the VPD Busy status set in order to
2782 	 * avoid pushing a new VPD Access request into the VPD Capability till
2783 	 * the current operation eventually succeeds.  It's a bug to issue a
2784 	 * new request when an existing request is in flight and will result
2785 	 * in corrupt hardware state.
2786 	 */
2787 	return -ETIMEDOUT;
2788 }
2789 
2790 /**
2791  *	t4_seeprom_read - read a serial EEPROM location
2792  *	@adapter: adapter to read
2793  *	@addr: EEPROM virtual address
2794  *	@data: where to store the read data
2795  *
2796  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2797  *	VPD capability.  Note that this function must be called with a virtual
2798  *	address.
2799  */
2800 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2801 {
2802 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2803 	int ret;
2804 
2805 	/*
2806 	 * VPD Accesses must alway be 4-byte aligned!
2807 	 */
2808 	if (addr >= EEPROMVSIZE || (addr & 3))
2809 		return -EINVAL;
2810 
2811 	/*
2812 	 * Wait for any previous operation which may still be in flight to
2813 	 * complete.
2814 	 */
2815 	ret = t4_seeprom_wait(adapter);
2816 	if (ret) {
2817 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2818 		return ret;
2819 	}
2820 
2821 	/*
2822 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2823 	 * for our request to complete.  If it doesn't complete, note the
2824 	 * error and return it to our caller.  Note that we do not reset the
2825 	 * VPD Busy status!
2826 	 */
2827 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2828 	adapter->vpd_busy = 1;
2829 	adapter->vpd_flag = PCI_VPD_ADDR_F;
2830 	ret = t4_seeprom_wait(adapter);
2831 	if (ret) {
2832 		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2833 		return ret;
2834 	}
2835 
2836 	/*
2837 	 * Grab the returned data, swizzle it into our endianness and
2838 	 * return success.
2839 	 */
2840 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2841 	*data = le32_to_cpu(*data);
2842 	return 0;
2843 }
2844 
2845 /**
2846  *	t4_seeprom_write - write a serial EEPROM location
2847  *	@adapter: adapter to write
2848  *	@addr: virtual EEPROM address
2849  *	@data: value to write
2850  *
2851  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2852  *	VPD capability.  Note that this function must be called with a virtual
2853  *	address.
2854  */
2855 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2856 {
2857 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2858 	int ret;
2859 	u32 stats_reg;
2860 	int max_poll;
2861 
2862 	/*
2863 	 * VPD Accesses must alway be 4-byte aligned!
2864 	 */
2865 	if (addr >= EEPROMVSIZE || (addr & 3))
2866 		return -EINVAL;
2867 
2868 	/*
2869 	 * Wait for any previous operation which may still be in flight to
2870 	 * complete.
2871 	 */
2872 	ret = t4_seeprom_wait(adapter);
2873 	if (ret) {
2874 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2875 		return ret;
2876 	}
2877 
2878 	/*
2879 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2880 	 * for our request to complete.  If it doesn't complete, note the
2881 	 * error and return it to our caller.  Note that we do not reset the
2882 	 * VPD Busy status!
2883 	 */
2884 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2885 				 cpu_to_le32(data));
2886 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2887 				 (u16)addr | PCI_VPD_ADDR_F);
2888 	adapter->vpd_busy = 1;
2889 	adapter->vpd_flag = 0;
2890 	ret = t4_seeprom_wait(adapter);
2891 	if (ret) {
2892 		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2893 		return ret;
2894 	}
2895 
2896 	/*
2897 	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2898 	 * request to complete. If it doesn't complete, return error.
2899 	 */
2900 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2901 	max_poll = EEPROM_MAX_POLL;
2902 	do {
2903 		udelay(EEPROM_DELAY);
2904 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2905 	} while ((stats_reg & 0x1) && --max_poll);
2906 	if (!max_poll)
2907 		return -ETIMEDOUT;
2908 
2909 	/* Return success! */
2910 	return 0;
2911 }
2912 
2913 /**
2914  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2915  *	@phys_addr: the physical EEPROM address
2916  *	@fn: the PCI function number
2917  *	@sz: size of function-specific area
2918  *
2919  *	Translate a physical EEPROM address to virtual.  The first 1K is
2920  *	accessed through virtual addresses starting at 31K, the rest is
2921  *	accessed through virtual addresses starting at 0.
2922  *
2923  *	The mapping is as follows:
2924  *	[0..1K) -> [31K..32K)
2925  *	[1K..1K+A) -> [ES-A..ES)
2926  *	[1K+A..ES) -> [0..ES-A-1K)
2927  *
2928  *	where A = @fn * @sz, and ES = EEPROM size.
2929  */
2930 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2931 {
2932 	fn *= sz;
2933 	if (phys_addr < 1024)
2934 		return phys_addr + (31 << 10);
2935 	if (phys_addr < 1024 + fn)
2936 		return EEPROMSIZE - fn + phys_addr - 1024;
2937 	if (phys_addr < EEPROMSIZE)
2938 		return phys_addr - 1024 - fn;
2939 	return -EINVAL;
2940 }
2941 
2942 /**
2943  *	t4_seeprom_wp - enable/disable EEPROM write protection
2944  *	@adapter: the adapter
2945  *	@enable: whether to enable or disable write protection
2946  *
2947  *	Enables or disables write protection on the serial EEPROM.
2948  */
2949 int t4_seeprom_wp(struct adapter *adapter, int enable)
2950 {
2951 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2952 }
2953 
2954 /**
2955  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2956  *	@vpd: Pointer to buffered vpd data structure
2957  *	@kw: The keyword to search for
2958  *	@region: VPD region to search (starting from 0)
2959  *
2960  *	Returns the value of the information field keyword or
2961  *	-ENOENT otherwise.
2962  */
2963 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2964 {
2965 	int i, tag;
2966 	unsigned int offset, len;
2967 	const struct t4_vpdr_hdr *vpdr;
2968 
2969 	offset = sizeof(struct t4_vpd_hdr);
2970 	vpdr = (const void *)(vpd + offset);
2971 	tag = vpdr->vpdr_tag;
2972 	len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2973 	while (region--) {
2974 		offset += sizeof(struct t4_vpdr_hdr) + len;
2975 		vpdr = (const void *)(vpd + offset);
2976 		if (++tag != vpdr->vpdr_tag)
2977 			return -ENOENT;
2978 		len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2979 	}
2980 	offset += sizeof(struct t4_vpdr_hdr);
2981 
2982 	if (offset + len > VPD_LEN) {
2983 		return -ENOENT;
2984 	}
2985 
2986 	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2987 		if (memcmp(vpd + i , kw , 2) == 0){
2988 			i += VPD_INFO_FLD_HDR_SIZE;
2989 			return i;
2990 		}
2991 
2992 		i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
2993 	}
2994 
2995 	return -ENOENT;
2996 }
2997 
2998 
2999 /**
3000  *	get_vpd_params - read VPD parameters from VPD EEPROM
3001  *	@adapter: adapter to read
3002  *	@p: where to store the parameters
3003  *	@vpd: caller provided temporary space to read the VPD into
3004  *
3005  *	Reads card parameters stored in VPD EEPROM.
3006  */
3007 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
3008     uint16_t device_id, u32 *buf)
3009 {
3010 	int i, ret, addr;
3011 	int ec, sn, pn, na, md;
3012 	u8 csum;
3013 	const u8 *vpd = (const u8 *)buf;
3014 
3015 	/*
3016 	 * Card information normally starts at VPD_BASE but early cards had
3017 	 * it at 0.
3018 	 */
3019 	ret = t4_seeprom_read(adapter, VPD_BASE, buf);
3020 	if (ret)
3021 		return (ret);
3022 
3023 	/*
3024 	 * The VPD shall have a unique identifier specified by the PCI SIG.
3025 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
3026 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
3027 	 * is expected to automatically put this entry at the
3028 	 * beginning of the VPD.
3029 	 */
3030 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
3031 
3032 	for (i = 0; i < VPD_LEN; i += 4) {
3033 		ret = t4_seeprom_read(adapter, addr + i, buf++);
3034 		if (ret)
3035 			return ret;
3036 	}
3037 
3038 #define FIND_VPD_KW(var,name) do { \
3039 	var = get_vpd_keyword_val(vpd, name, 0); \
3040 	if (var < 0) { \
3041 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
3042 		return -EINVAL; \
3043 	} \
3044 } while (0)
3045 
3046 	FIND_VPD_KW(i, "RV");
3047 	for (csum = 0; i >= 0; i--)
3048 		csum += vpd[i];
3049 
3050 	if (csum) {
3051 		CH_ERR(adapter,
3052 			"corrupted VPD EEPROM, actual csum %u\n", csum);
3053 		return -EINVAL;
3054 	}
3055 
3056 	FIND_VPD_KW(ec, "EC");
3057 	FIND_VPD_KW(sn, "SN");
3058 	FIND_VPD_KW(pn, "PN");
3059 	FIND_VPD_KW(na, "NA");
3060 #undef FIND_VPD_KW
3061 
3062 	memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3063 	strstrip(p->id);
3064 	memcpy(p->ec, vpd + ec, EC_LEN);
3065 	strstrip(p->ec);
3066 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3067 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3068 	strstrip(p->sn);
3069 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3070 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3071 	strstrip((char *)p->pn);
3072 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3073 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3074 	strstrip((char *)p->na);
3075 
3076 	if (device_id & 0x80)
3077 		return 0;	/* Custom card */
3078 
3079 	md = get_vpd_keyword_val(vpd, "VF", 1);
3080 	if (md < 0) {
3081 		snprintf(p->md, sizeof(p->md), "unknown");
3082 	} else {
3083 		i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3084 		memcpy(p->md, vpd + md, min(i, MD_LEN));
3085 		strstrip((char *)p->md);
3086 	}
3087 
3088 	return 0;
3089 }
3090 
3091 /* serial flash and firmware constants and flash config file constants */
3092 enum {
3093 	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3094 
3095 	/* flash command opcodes */
3096 	SF_PROG_PAGE    = 2,	/* program 256B page */
3097 	SF_WR_DISABLE   = 4,	/* disable writes */
3098 	SF_RD_STATUS    = 5,	/* read status register */
3099 	SF_WR_ENABLE    = 6,	/* enable writes */
3100 	SF_RD_DATA_FAST = 0xb,	/* read flash */
3101 	SF_RD_ID	= 0x9f,	/* read ID */
3102 	SF_ERASE_SECTOR = 0xd8,	/* erase 64KB sector */
3103 };
3104 
3105 /**
3106  *	sf1_read - read data from the serial flash
3107  *	@adapter: the adapter
3108  *	@byte_cnt: number of bytes to read
3109  *	@cont: whether another operation will be chained
3110  *	@lock: whether to lock SF for PL access only
3111  *	@valp: where to store the read data
3112  *
3113  *	Reads up to 4 bytes of data from the serial flash.  The location of
3114  *	the read needs to be specified prior to calling this by issuing the
3115  *	appropriate commands to the serial flash.
3116  */
3117 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3118 		    int lock, u32 *valp)
3119 {
3120 	int ret;
3121 
3122 	if (!byte_cnt || byte_cnt > 4)
3123 		return -EINVAL;
3124 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3125 		return -EBUSY;
3126 	t4_write_reg(adapter, A_SF_OP,
3127 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3128 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3129 	if (!ret)
3130 		*valp = t4_read_reg(adapter, A_SF_DATA);
3131 	return ret;
3132 }
3133 
3134 /**
3135  *	sf1_write - write data to the serial flash
3136  *	@adapter: the adapter
3137  *	@byte_cnt: number of bytes to write
3138  *	@cont: whether another operation will be chained
3139  *	@lock: whether to lock SF for PL access only
3140  *	@val: value to write
3141  *
3142  *	Writes up to 4 bytes of data to the serial flash.  The location of
3143  *	the write needs to be specified prior to calling this by issuing the
3144  *	appropriate commands to the serial flash.
3145  */
3146 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3147 		     int lock, u32 val)
3148 {
3149 	if (!byte_cnt || byte_cnt > 4)
3150 		return -EINVAL;
3151 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3152 		return -EBUSY;
3153 	t4_write_reg(adapter, A_SF_DATA, val);
3154 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3155 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3156 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3157 }
3158 
3159 /**
3160  *	flash_wait_op - wait for a flash operation to complete
3161  *	@adapter: the adapter
3162  *	@attempts: max number of polls of the status register
3163  *	@delay: delay between polls in ms
3164  *
3165  *	Wait for a flash operation to complete by polling the status register.
3166  */
3167 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3168 {
3169 	int ret;
3170 	u32 status;
3171 
3172 	while (1) {
3173 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3174 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3175 			return ret;
3176 		if (!(status & 1))
3177 			return 0;
3178 		if (--attempts == 0)
3179 			return -EAGAIN;
3180 		if (delay)
3181 			msleep(delay);
3182 	}
3183 }
3184 
3185 /**
3186  *	t4_read_flash - read words from serial flash
3187  *	@adapter: the adapter
3188  *	@addr: the start address for the read
3189  *	@nwords: how many 32-bit words to read
3190  *	@data: where to store the read data
3191  *	@byte_oriented: whether to store data as bytes or as words
3192  *
3193  *	Read the specified number of 32-bit words from the serial flash.
3194  *	If @byte_oriented is set the read data is stored as a byte array
3195  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3196  *	natural endianness.
3197  */
3198 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3199 		  unsigned int nwords, u32 *data, int byte_oriented)
3200 {
3201 	int ret;
3202 
3203 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3204 		return -EINVAL;
3205 
3206 	addr = swab32(addr) | SF_RD_DATA_FAST;
3207 
3208 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3209 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3210 		return ret;
3211 
3212 	for ( ; nwords; nwords--, data++) {
3213 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3214 		if (nwords == 1)
3215 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3216 		if (ret)
3217 			return ret;
3218 		if (byte_oriented)
3219 			*data = (__force __u32)(cpu_to_be32(*data));
3220 	}
3221 	return 0;
3222 }
3223 
3224 /**
3225  *	t4_write_flash - write up to a page of data to the serial flash
3226  *	@adapter: the adapter
3227  *	@addr: the start address to write
3228  *	@n: length of data to write in bytes
3229  *	@data: the data to write
3230  *	@byte_oriented: whether to store data as bytes or as words
3231  *
3232  *	Writes up to a page of data (256 bytes) to the serial flash starting
3233  *	at the given address.  All the data must be written to the same page.
3234  *	If @byte_oriented is set the write data is stored as byte stream
3235  *	(i.e. matches what on disk), otherwise in big-endian.
3236  */
3237 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3238 			  unsigned int n, const u8 *data, int byte_oriented)
3239 {
3240 	int ret;
3241 	u32 buf[SF_PAGE_SIZE / 4];
3242 	unsigned int i, c, left, val, offset = addr & 0xff;
3243 
3244 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3245 		return -EINVAL;
3246 
3247 	val = swab32(addr) | SF_PROG_PAGE;
3248 
3249 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3250 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3251 		goto unlock;
3252 
3253 	for (left = n; left; left -= c) {
3254 		c = min(left, 4U);
3255 		for (val = 0, i = 0; i < c; ++i)
3256 			val = (val << 8) + *data++;
3257 
3258 		if (!byte_oriented)
3259 			val = cpu_to_be32(val);
3260 
3261 		ret = sf1_write(adapter, c, c != left, 1, val);
3262 		if (ret)
3263 			goto unlock;
3264 	}
3265 	ret = flash_wait_op(adapter, 8, 1);
3266 	if (ret)
3267 		goto unlock;
3268 
3269 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3270 
3271 	/* Read the page to verify the write succeeded */
3272 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3273 			    byte_oriented);
3274 	if (ret)
3275 		return ret;
3276 
3277 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3278 		CH_ERR(adapter,
3279 			"failed to correctly write the flash page at %#x\n",
3280 			addr);
3281 		return -EIO;
3282 	}
3283 	return 0;
3284 
3285 unlock:
3286 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3287 	return ret;
3288 }
3289 
3290 /**
3291  *	t4_get_fw_version - read the firmware version
3292  *	@adapter: the adapter
3293  *	@vers: where to place the version
3294  *
3295  *	Reads the FW version from flash.
3296  */
3297 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3298 {
3299 	return t4_read_flash(adapter, FLASH_FW_START +
3300 			     offsetof(struct fw_hdr, fw_ver), 1,
3301 			     vers, 0);
3302 }
3303 
3304 /**
3305  *	t4_get_fw_hdr - read the firmware header
3306  *	@adapter: the adapter
3307  *	@hdr: where to place the version
3308  *
3309  *	Reads the FW header from flash into caller provided buffer.
3310  */
3311 int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr)
3312 {
3313 	return t4_read_flash(adapter, FLASH_FW_START,
3314 	    sizeof (*hdr) / sizeof (uint32_t), (uint32_t *)hdr, 1);
3315 }
3316 
3317 /**
3318  *	t4_get_bs_version - read the firmware bootstrap version
3319  *	@adapter: the adapter
3320  *	@vers: where to place the version
3321  *
3322  *	Reads the FW Bootstrap version from flash.
3323  */
3324 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3325 {
3326 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3327 			     offsetof(struct fw_hdr, fw_ver), 1,
3328 			     vers, 0);
3329 }
3330 
3331 /**
3332  *	t4_get_tp_version - read the TP microcode version
3333  *	@adapter: the adapter
3334  *	@vers: where to place the version
3335  *
3336  *	Reads the TP microcode version from flash.
3337  */
3338 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3339 {
3340 	return t4_read_flash(adapter, FLASH_FW_START +
3341 			     offsetof(struct fw_hdr, tp_microcode_ver),
3342 			     1, vers, 0);
3343 }
3344 
3345 /**
3346  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3347  *	@adapter: the adapter
3348  *	@vers: where to place the version
3349  *
3350  *	Reads the Expansion ROM header from FLASH and returns the version
3351  *	number (if present) through the @vers return value pointer.  We return
3352  *	this in the Firmware Version Format since it's convenient.  Return
3353  *	0 on success, -ENOENT if no Expansion ROM is present.
3354  */
3355 int t4_get_exprom_version(struct adapter *adapter, u32 *vers)
3356 {
3357 	struct exprom_header {
3358 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3359 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3360 	} *hdr;
3361 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3362 					   sizeof(u32))];
3363 	int ret;
3364 
3365 	ret = t4_read_flash(adapter, FLASH_EXP_ROM_START,
3366 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3367 			    0);
3368 	if (ret)
3369 		return ret;
3370 
3371 	hdr = (struct exprom_header *)exprom_header_buf;
3372 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3373 		return -ENOENT;
3374 
3375 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3376 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3377 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3378 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3379 	return 0;
3380 }
3381 
3382 /**
3383  *	t4_get_scfg_version - return the Serial Configuration version
3384  *	@adapter: the adapter
3385  *	@vers: where to place the version
3386  *
3387  *	Reads the Serial Configuration Version via the Firmware interface
3388  *	(thus this can only be called once we're ready to issue Firmware
3389  *	commands).  The format of the Serial Configuration version is
3390  *	adapter specific.  Returns 0 on success, an error on failure.
3391  *
3392  *	Note that early versions of the Firmware didn't include the ability
3393  *	to retrieve the Serial Configuration version, so we zero-out the
3394  *	return-value parameter in that case to avoid leaving it with
3395  *	garbage in it.
3396  *
3397  *	Also note that the Firmware will return its cached copy of the Serial
3398  *	Initialization Revision ID, not the actual Revision ID as written in
3399  *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3400  *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3401  *	it's best to defer calling this routine till after a FW_RESET_CMD has
3402  *	been issued if the Host Driver will be performing a full adapter
3403  *	initialization.
3404  */
3405 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3406 {
3407 	u32 scfgrev_param;
3408 	int ret;
3409 
3410 	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3411 			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3412 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3413 			      1, &scfgrev_param, vers);
3414 	if (ret)
3415 		*vers = 0;
3416 	return ret;
3417 }
3418 
3419 /**
3420  *	t4_get_vpd_version - return the VPD version
3421  *	@adapter: the adapter
3422  *	@vers: where to place the version
3423  *
3424  *	Reads the VPD via the Firmware interface (thus this can only be called
3425  *	once we're ready to issue Firmware commands).  The format of the
3426  *	VPD version is adapter specific.  Returns 0 on success, an error on
3427  *	failure.
3428  *
3429  *	Note that early versions of the Firmware didn't include the ability
3430  *	to retrieve the VPD version, so we zero-out the return-value parameter
3431  *	in that case to avoid leaving it with garbage in it.
3432  *
3433  *	Also note that the Firmware will return its cached copy of the VPD
3434  *	Revision ID, not the actual Revision ID as written in the Serial
3435  *	EEPROM.  This is only an issue if a new VPD has been written and the
3436  *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3437  *	to defer calling this routine till after a FW_RESET_CMD has been issued
3438  *	if the Host Driver will be performing a full adapter initialization.
3439  */
3440 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3441 {
3442 	u32 vpdrev_param;
3443 	int ret;
3444 
3445 	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3446 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3447 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3448 			      1, &vpdrev_param, vers);
3449 	if (ret)
3450 		*vers = 0;
3451 	return ret;
3452 }
3453 
3454 /**
3455  *	t4_get_version_info - extract various chip/firmware version information
3456  *	@adapter: the adapter
3457  *
3458  *	Reads various chip/firmware version numbers and stores them into the
3459  *	adapter Adapter Parameters structure.  If any of the efforts fails
3460  *	the first failure will be returned, but all of the version numbers
3461  *	will be read.
3462  */
3463 int t4_get_version_info(struct adapter *adapter)
3464 {
3465 	int ret = 0;
3466 
3467 	#define FIRST_RET(__getvinfo) \
3468 	do { \
3469 		int __ret = __getvinfo; \
3470 		if (__ret && !ret) \
3471 			ret = __ret; \
3472 	} while (0)
3473 
3474 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3475 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3476 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3477 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3478 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3479 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3480 
3481 	#undef FIRST_RET
3482 
3483 	return ret;
3484 }
3485 
3486 /**
3487  *	t4_flash_erase_sectors - erase a range of flash sectors
3488  *	@adapter: the adapter
3489  *	@start: the first sector to erase
3490  *	@end: the last sector to erase
3491  *
3492  *	Erases the sectors in the given inclusive range.
3493  */
3494 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3495 {
3496 	int ret = 0;
3497 
3498 	if (end >= adapter->params.sf_nsec)
3499 		return -EINVAL;
3500 
3501 	while (start <= end) {
3502 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3503 		    (ret = sf1_write(adapter, 4, 0, 1,
3504 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3505 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3506 			CH_ERR(adapter,
3507 				"erase of flash sector %d failed, error %d\n",
3508 				start, ret);
3509 			break;
3510 		}
3511 		start++;
3512 	}
3513 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3514 	return ret;
3515 }
3516 
3517 /**
3518  *	t4_flash_cfg_addr - return the address of the flash configuration file
3519  *	@adapter: the adapter
3520  *
3521  *	Return the address within the flash where the Firmware Configuration
3522  *	File is stored, or an error if the device FLASH is too small to contain
3523  *	a Firmware Configuration File.
3524  */
3525 int t4_flash_cfg_addr(struct adapter *adapter)
3526 {
3527 	/*
3528 	 * If the device FLASH isn't large enough to hold a Firmware
3529 	 * Configuration File, return an error.
3530 	 */
3531 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3532 		return -ENOSPC;
3533 
3534 	return FLASH_CFG_START;
3535 }
3536 
3537 /*
3538  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3539  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3540  * and emit an error message for mismatched firmware to save our caller the
3541  * effort ...
3542  */
3543 static int t4_fw_matches_chip(struct adapter *adap,
3544 			      const struct fw_hdr *hdr)
3545 {
3546 	/*
3547 	 * The expression below will return FALSE for any unsupported adapter
3548 	 * which will keep us "honest" in the future ...
3549 	 */
3550 	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3551 	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3552 	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3553 		return 1;
3554 
3555 	CH_ERR(adap,
3556 		"FW image (%d) is not suitable for this adapter (%d)\n",
3557 		hdr->chip, chip_id(adap));
3558 	return 0;
3559 }
3560 
3561 /**
3562  *	t4_load_fw - download firmware
3563  *	@adap: the adapter
3564  *	@fw_data: the firmware image to write
3565  *	@size: image size
3566  *
3567  *	Write the supplied firmware image to the card's serial flash.
3568  */
3569 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3570 {
3571 	u32 csum;
3572 	int ret, addr;
3573 	unsigned int i;
3574 	u8 first_page[SF_PAGE_SIZE];
3575 	const u32 *p = (const u32 *)fw_data;
3576 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3577 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3578 	unsigned int fw_start_sec;
3579 	unsigned int fw_start;
3580 	unsigned int fw_size;
3581 
3582 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3583 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3584 		fw_start = FLASH_FWBOOTSTRAP_START;
3585 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3586 	} else {
3587 		fw_start_sec = FLASH_FW_START_SEC;
3588  		fw_start = FLASH_FW_START;
3589 		fw_size = FLASH_FW_MAX_SIZE;
3590 	}
3591 
3592 	if (!size) {
3593 		CH_ERR(adap, "FW image has no data\n");
3594 		return -EINVAL;
3595 	}
3596 	if (size & 511) {
3597 		CH_ERR(adap,
3598 			"FW image size not multiple of 512 bytes\n");
3599 		return -EINVAL;
3600 	}
3601 	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3602 		CH_ERR(adap,
3603 			"FW image size differs from size in FW header\n");
3604 		return -EINVAL;
3605 	}
3606 	if (size > fw_size) {
3607 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3608 			fw_size);
3609 		return -EFBIG;
3610 	}
3611 	if (!t4_fw_matches_chip(adap, hdr))
3612 		return -EINVAL;
3613 
3614 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3615 		csum += be32_to_cpu(p[i]);
3616 
3617 	if (csum != 0xffffffff) {
3618 		CH_ERR(adap,
3619 			"corrupted firmware image, checksum %#x\n", csum);
3620 		return -EINVAL;
3621 	}
3622 
3623 	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3624 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3625 	if (ret)
3626 		goto out;
3627 
3628 	/*
3629 	 * We write the correct version at the end so the driver can see a bad
3630 	 * version if the FW write fails.  Start by writing a copy of the
3631 	 * first page with a bad version.
3632 	 */
3633 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3634 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3635 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3636 	if (ret)
3637 		goto out;
3638 
3639 	addr = fw_start;
3640 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3641 		addr += SF_PAGE_SIZE;
3642 		fw_data += SF_PAGE_SIZE;
3643 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3644 		if (ret)
3645 			goto out;
3646 	}
3647 
3648 	ret = t4_write_flash(adap,
3649 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3650 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3651 out:
3652 	if (ret)
3653 		CH_ERR(adap, "firmware download failed, error %d\n",
3654 			ret);
3655 	return ret;
3656 }
3657 
3658 /**
3659  *	t4_fwcache - firmware cache operation
3660  *	@adap: the adapter
3661  *	@op  : the operation (flush or flush and invalidate)
3662  */
3663 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3664 {
3665 	struct fw_params_cmd c;
3666 
3667 	memset(&c, 0, sizeof(c));
3668 	c.op_to_vfn =
3669 	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3670 			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3671 				V_FW_PARAMS_CMD_PFN(adap->pf) |
3672 				V_FW_PARAMS_CMD_VFN(0));
3673 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3674 	c.param[0].mnem =
3675 	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3676 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3677 	c.param[0].val = (__force __be32)op;
3678 
3679 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3680 }
3681 
3682 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3683 			unsigned int *pif_req_wrptr,
3684 			unsigned int *pif_rsp_wrptr)
3685 {
3686 	int i, j;
3687 	u32 cfg, val, req, rsp;
3688 
3689 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3690 	if (cfg & F_LADBGEN)
3691 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3692 
3693 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3694 	req = G_POLADBGWRPTR(val);
3695 	rsp = G_PILADBGWRPTR(val);
3696 	if (pif_req_wrptr)
3697 		*pif_req_wrptr = req;
3698 	if (pif_rsp_wrptr)
3699 		*pif_rsp_wrptr = rsp;
3700 
3701 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3702 		for (j = 0; j < 6; j++) {
3703 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3704 				     V_PILADBGRDPTR(rsp));
3705 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3706 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3707 			req++;
3708 			rsp++;
3709 		}
3710 		req = (req + 2) & M_POLADBGRDPTR;
3711 		rsp = (rsp + 2) & M_PILADBGRDPTR;
3712 	}
3713 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3714 }
3715 
3716 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3717 {
3718 	u32 cfg;
3719 	int i, j, idx;
3720 
3721 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3722 	if (cfg & F_LADBGEN)
3723 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3724 
3725 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3726 		for (j = 0; j < 5; j++) {
3727 			idx = 8 * i + j;
3728 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3729 				     V_PILADBGRDPTR(idx));
3730 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3731 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3732 		}
3733 	}
3734 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3735 }
3736 
3737 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3738 {
3739 	unsigned int i, j;
3740 
3741 	for (i = 0; i < 8; i++) {
3742 		u32 *p = la_buf + i;
3743 
3744 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3745 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3746 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3747 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3748 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3749 	}
3750 }
3751 
3752 /**
3753  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3754  *	@caps16: a 16-bit Port Capabilities value
3755  *
3756  *	Returns the equivalent 32-bit Port Capabilities value.
3757  */
3758 static uint32_t fwcaps16_to_caps32(uint16_t caps16)
3759 {
3760 	uint32_t caps32 = 0;
3761 
3762 	#define CAP16_TO_CAP32(__cap) \
3763 		do { \
3764 			if (caps16 & FW_PORT_CAP_##__cap) \
3765 				caps32 |= FW_PORT_CAP32_##__cap; \
3766 		} while (0)
3767 
3768 	CAP16_TO_CAP32(SPEED_100M);
3769 	CAP16_TO_CAP32(SPEED_1G);
3770 	CAP16_TO_CAP32(SPEED_25G);
3771 	CAP16_TO_CAP32(SPEED_10G);
3772 	CAP16_TO_CAP32(SPEED_40G);
3773 	CAP16_TO_CAP32(SPEED_100G);
3774 	CAP16_TO_CAP32(FC_RX);
3775 	CAP16_TO_CAP32(FC_TX);
3776 	CAP16_TO_CAP32(ANEG);
3777 	CAP16_TO_CAP32(FORCE_PAUSE);
3778 	CAP16_TO_CAP32(MDIAUTO);
3779 	CAP16_TO_CAP32(MDISTRAIGHT);
3780 	CAP16_TO_CAP32(FEC_RS);
3781 	CAP16_TO_CAP32(FEC_BASER_RS);
3782 	CAP16_TO_CAP32(802_3_PAUSE);
3783 	CAP16_TO_CAP32(802_3_ASM_DIR);
3784 
3785 	#undef CAP16_TO_CAP32
3786 
3787 	return caps32;
3788 }
3789 
3790 /**
3791  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3792  *	@caps32: a 32-bit Port Capabilities value
3793  *
3794  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
3795  *	not all 32-bit Port Capabilities can be represented in the 16-bit
3796  *	Port Capabilities and some fields/values may not make it.
3797  */
3798 static uint16_t fwcaps32_to_caps16(uint32_t caps32)
3799 {
3800 	uint16_t caps16 = 0;
3801 
3802 	#define CAP32_TO_CAP16(__cap) \
3803 		do { \
3804 			if (caps32 & FW_PORT_CAP32_##__cap) \
3805 				caps16 |= FW_PORT_CAP_##__cap; \
3806 		} while (0)
3807 
3808 	CAP32_TO_CAP16(SPEED_100M);
3809 	CAP32_TO_CAP16(SPEED_1G);
3810 	CAP32_TO_CAP16(SPEED_10G);
3811 	CAP32_TO_CAP16(SPEED_25G);
3812 	CAP32_TO_CAP16(SPEED_40G);
3813 	CAP32_TO_CAP16(SPEED_100G);
3814 	CAP32_TO_CAP16(FC_RX);
3815 	CAP32_TO_CAP16(FC_TX);
3816 	CAP32_TO_CAP16(802_3_PAUSE);
3817 	CAP32_TO_CAP16(802_3_ASM_DIR);
3818 	CAP32_TO_CAP16(ANEG);
3819 	CAP32_TO_CAP16(FORCE_PAUSE);
3820 	CAP32_TO_CAP16(MDIAUTO);
3821 	CAP32_TO_CAP16(MDISTRAIGHT);
3822 	CAP32_TO_CAP16(FEC_RS);
3823 	CAP32_TO_CAP16(FEC_BASER_RS);
3824 
3825 	#undef CAP32_TO_CAP16
3826 
3827 	return caps16;
3828 }
3829 
3830 static int8_t fwcap_to_fec(uint32_t caps, bool unset_means_none)
3831 {
3832 	int8_t fec = 0;
3833 
3834 	if ((caps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC)) == 0)
3835 		return (unset_means_none ? FEC_NONE : 0);
3836 
3837 	if (caps & FW_PORT_CAP32_FEC_RS)
3838 		fec |= FEC_RS;
3839 	if (caps & FW_PORT_CAP32_FEC_BASER_RS)
3840 		fec |= FEC_BASER_RS;
3841 	if (caps & FW_PORT_CAP32_FEC_NO_FEC)
3842 		fec |= FEC_NONE;
3843 
3844 	return (fec);
3845 }
3846 
3847 /*
3848  * Note that 0 is not translated to NO_FEC.
3849  */
3850 static uint32_t fec_to_fwcap(int8_t fec)
3851 {
3852 	uint32_t caps = 0;
3853 
3854 	/* Only real FECs allowed. */
3855 	MPASS((fec & ~M_FW_PORT_CAP32_FEC) == 0);
3856 
3857 	if (fec & FEC_RS)
3858 		caps |= FW_PORT_CAP32_FEC_RS;
3859 	if (fec & FEC_BASER_RS)
3860 		caps |= FW_PORT_CAP32_FEC_BASER_RS;
3861 	if (fec & FEC_NONE)
3862 		caps |= FW_PORT_CAP32_FEC_NO_FEC;
3863 
3864 	return (caps);
3865 }
3866 
3867 /**
3868  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3869  *	@phy: the PHY to setup
3870  *	@mac: the MAC to setup
3871  *	@lc: the requested link configuration
3872  *
3873  *	Set up a port's MAC and PHY according to a desired link configuration.
3874  *	- If the PHY can auto-negotiate first decide what to advertise, then
3875  *	  enable/disable auto-negotiation as desired, and reset.
3876  *	- If the PHY does not auto-negotiate just reset it.
3877  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3878  *	  otherwise do it later based on the outcome of auto-negotiation.
3879  */
3880 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3881 		  struct link_config *lc)
3882 {
3883 	struct fw_port_cmd c;
3884 	unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
3885 	unsigned int aneg, fc, fec, speed, rcap;
3886 
3887 	fc = 0;
3888 	if (lc->requested_fc & PAUSE_RX)
3889 		fc |= FW_PORT_CAP32_FC_RX;
3890 	if (lc->requested_fc & PAUSE_TX)
3891 		fc |= FW_PORT_CAP32_FC_TX;
3892 	if (!(lc->requested_fc & PAUSE_AUTONEG))
3893 		fc |= FW_PORT_CAP32_FORCE_PAUSE;
3894 
3895 	if (lc->requested_aneg == AUTONEG_DISABLE)
3896 		aneg = 0;
3897 	else if (lc->requested_aneg == AUTONEG_ENABLE)
3898 		aneg = FW_PORT_CAP32_ANEG;
3899 	else
3900 		aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
3901 
3902 	if (aneg) {
3903 		speed = lc->pcaps &
3904 		    V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
3905 	} else if (lc->requested_speed != 0)
3906 		speed = speed_to_fwcap(lc->requested_speed);
3907 	else
3908 		speed = fwcap_top_speed(lc->pcaps);
3909 
3910 	fec = 0;
3911 	if (fec_supported(speed)) {
3912 		int force_fec;
3913 
3914 		if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC)
3915 			force_fec = lc->force_fec;
3916 		else
3917 			force_fec = 0;
3918 
3919 		if (lc->requested_fec == FEC_AUTO) {
3920 			if (force_fec > 0) {
3921 				/*
3922 				 * Must use FORCE_FEC even though requested FEC
3923 				 * is AUTO. Set all the FEC bits valid for the
3924 				 * speed and let the firmware pick one.
3925 				 */
3926 				fec |= FW_PORT_CAP32_FORCE_FEC;
3927 				if (speed & FW_PORT_CAP32_SPEED_100G) {
3928 					fec |= FW_PORT_CAP32_FEC_RS;
3929 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3930 				} else if (speed & FW_PORT_CAP32_SPEED_50G) {
3931 					fec |= FW_PORT_CAP32_FEC_BASER_RS;
3932 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3933 				} else {
3934 					fec |= FW_PORT_CAP32_FEC_RS;
3935 					fec |= FW_PORT_CAP32_FEC_BASER_RS;
3936 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3937 				}
3938 			} else {
3939 				/*
3940 				 * Set only 1b. Old firmwares can't deal with
3941 				 * multiple bits and new firmwares are free to
3942 				 * ignore this and try whatever FECs they want
3943 				 * because we aren't setting FORCE_FEC here.
3944 				 */
3945 				fec |= fec_to_fwcap(lc->fec_hint);
3946 				MPASS(powerof2(fec));
3947 
3948 				/*
3949 				 * Override the hint if the FEC is not valid for
3950 				 * the potential top speed.  Request the best
3951 				 * FEC at that speed instead.
3952 				 */
3953 				if (speed & FW_PORT_CAP32_SPEED_100G) {
3954 					if (fec == FW_PORT_CAP32_FEC_BASER_RS)
3955 						fec = FW_PORT_CAP32_FEC_RS;
3956 				} else if (speed & FW_PORT_CAP32_SPEED_50G) {
3957 					if (fec == FW_PORT_CAP32_FEC_RS)
3958 						fec = FW_PORT_CAP32_FEC_BASER_RS;
3959 				}
3960 			}
3961 		} else {
3962 			/*
3963 			 * User has explicitly requested some FEC(s). Set
3964 			 * FORCE_FEC unless prohibited from using it.
3965 			 */
3966 			if (force_fec != 0)
3967 				fec |= FW_PORT_CAP32_FORCE_FEC;
3968 			fec |= fec_to_fwcap(lc->requested_fec &
3969 			    M_FW_PORT_CAP32_FEC);
3970 			if (lc->requested_fec & FEC_MODULE)
3971 				fec |= fec_to_fwcap(lc->fec_hint);
3972 		}
3973 
3974 		/*
3975 		 * This is for compatibility with old firmwares. The original
3976 		 * way to request NO_FEC was to not set any of the FEC bits. New
3977 		 * firmwares understand this too.
3978 		 */
3979 		if (fec == FW_PORT_CAP32_FEC_NO_FEC)
3980 			fec = 0;
3981 	}
3982 
3983 	/* Force AN on for BT cards. */
3984 	if (isset(&adap->bt_map, port))
3985 		aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
3986 
3987 	rcap = aneg | speed | fc | fec;
3988 	if ((rcap | lc->pcaps) != lc->pcaps) {
3989 #ifdef INVARIANTS
3990 		CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x, removed 0x%x\n", rcap,
3991 		    lc->pcaps, rcap & (rcap ^ lc->pcaps));
3992 #endif
3993 		rcap &= lc->pcaps;
3994 	}
3995 	rcap |= mdi;
3996 
3997 	memset(&c, 0, sizeof(c));
3998 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3999 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
4000 				     V_FW_PORT_CMD_PORTID(port));
4001 	if (adap->params.port_caps32) {
4002 		c.action_to_len16 =
4003 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
4004 			FW_LEN16(c));
4005 		c.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
4006 	} else {
4007 		c.action_to_len16 =
4008 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
4009 			    FW_LEN16(c));
4010 		c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
4011 	}
4012 
4013 	lc->requested_caps = rcap;
4014 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
4015 }
4016 
4017 /**
4018  *	t4_restart_aneg - restart autonegotiation
4019  *	@adap: the adapter
4020  *	@mbox: mbox to use for the FW command
4021  *	@port: the port id
4022  *
4023  *	Restarts autonegotiation for the selected port.
4024  */
4025 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
4026 {
4027 	struct fw_port_cmd c;
4028 
4029 	memset(&c, 0, sizeof(c));
4030 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
4031 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
4032 				     V_FW_PORT_CMD_PORTID(port));
4033 	c.action_to_len16 =
4034 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
4035 			    FW_LEN16(c));
4036 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4037 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4038 }
4039 
4040 struct intr_details {
4041 	u32 mask;
4042 	const char *msg;
4043 };
4044 
4045 struct intr_action {
4046 	u32 mask;
4047 	int arg;
4048 	bool (*action)(struct adapter *, int, bool);
4049 };
4050 
4051 #define NONFATAL_IF_DISABLED 1
4052 struct intr_info {
4053 	const char *name;	/* name of the INT_CAUSE register */
4054 	int cause_reg;		/* INT_CAUSE register */
4055 	int enable_reg;		/* INT_ENABLE register */
4056 	u32 fatal;		/* bits that are fatal */
4057 	int flags;		/* hints */
4058 	const struct intr_details *details;
4059 	const struct intr_action *actions;
4060 };
4061 
4062 static inline char
4063 intr_alert_char(u32 cause, u32 enable, u32 fatal)
4064 {
4065 
4066 	if (cause & fatal)
4067 		return ('!');
4068 	if (cause & enable)
4069 		return ('*');
4070 	return ('-');
4071 }
4072 
4073 static void
4074 t4_show_intr_info(struct adapter *adap, const struct intr_info *ii, u32 cause)
4075 {
4076 	u32 enable, fatal, leftover;
4077 	const struct intr_details *details;
4078 	char alert;
4079 
4080 	enable = t4_read_reg(adap, ii->enable_reg);
4081 	if (ii->flags & NONFATAL_IF_DISABLED)
4082 		fatal = ii->fatal & t4_read_reg(adap, ii->enable_reg);
4083 	else
4084 		fatal = ii->fatal;
4085 	alert = intr_alert_char(cause, enable, fatal);
4086 	CH_ALERT(adap, "%c %s 0x%x = 0x%08x, E 0x%08x, F 0x%08x\n",
4087 	    alert, ii->name, ii->cause_reg, cause, enable, fatal);
4088 
4089 	leftover = cause;
4090 	for (details = ii->details; details && details->mask != 0; details++) {
4091 		u32 msgbits = details->mask & cause;
4092 		if (msgbits == 0)
4093 			continue;
4094 		alert = intr_alert_char(msgbits, enable, ii->fatal);
4095 		CH_ALERT(adap, "  %c [0x%08x] %s\n", alert, msgbits,
4096 		    details->msg);
4097 		leftover &= ~msgbits;
4098 	}
4099 	if (leftover != 0 && leftover != cause)
4100 		CH_ALERT(adap, "  ? [0x%08x]\n", leftover);
4101 }
4102 
4103 /*
4104  * Returns true for fatal error.
4105  */
4106 static bool
4107 t4_handle_intr(struct adapter *adap, const struct intr_info *ii,
4108     u32 additional_cause, bool verbose)
4109 {
4110 	u32 cause, fatal;
4111 	bool rc;
4112 	const struct intr_action *action;
4113 
4114 	/*
4115 	 * Read and display cause.  Note that the top level PL_INT_CAUSE is a
4116 	 * bit special and we need to completely ignore the bits that are not in
4117 	 * PL_INT_ENABLE.
4118 	 */
4119 	cause = t4_read_reg(adap, ii->cause_reg);
4120 	if (ii->cause_reg == A_PL_INT_CAUSE)
4121 		cause &= t4_read_reg(adap, ii->enable_reg);
4122 	if (verbose || cause != 0)
4123 		t4_show_intr_info(adap, ii, cause);
4124 	fatal = cause & ii->fatal;
4125 	if (fatal != 0 && ii->flags & NONFATAL_IF_DISABLED)
4126 		fatal &= t4_read_reg(adap, ii->enable_reg);
4127 	cause |= additional_cause;
4128 	if (cause == 0)
4129 		return (false);
4130 
4131 	rc = fatal != 0;
4132 	for (action = ii->actions; action && action->mask != 0; action++) {
4133 		if (!(action->mask & cause))
4134 			continue;
4135 		rc |= (action->action)(adap, action->arg, verbose);
4136 	}
4137 
4138 	/* clear */
4139 	t4_write_reg(adap, ii->cause_reg, cause);
4140 	(void)t4_read_reg(adap, ii->cause_reg);
4141 
4142 	return (rc);
4143 }
4144 
4145 /*
4146  * Interrupt handler for the PCIE module.
4147  */
4148 static bool pcie_intr_handler(struct adapter *adap, int arg, bool verbose)
4149 {
4150 	static const struct intr_details sysbus_intr_details[] = {
4151 		{ F_RNPP, "RXNP array parity error" },
4152 		{ F_RPCP, "RXPC array parity error" },
4153 		{ F_RCIP, "RXCIF array parity error" },
4154 		{ F_RCCP, "Rx completions control array parity error" },
4155 		{ F_RFTP, "RXFT array parity error" },
4156 		{ 0 }
4157 	};
4158 	static const struct intr_info sysbus_intr_info = {
4159 		.name = "PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS",
4160 		.cause_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4161 		.enable_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_INTERRUPT_ENABLE,
4162 		.fatal = F_RFTP | F_RCCP | F_RCIP | F_RPCP | F_RNPP,
4163 		.flags = 0,
4164 		.details = sysbus_intr_details,
4165 		.actions = NULL,
4166 	};
4167 	static const struct intr_details pcie_port_intr_details[] = {
4168 		{ F_TPCP, "TXPC array parity error" },
4169 		{ F_TNPP, "TXNP array parity error" },
4170 		{ F_TFTP, "TXFT array parity error" },
4171 		{ F_TCAP, "TXCA array parity error" },
4172 		{ F_TCIP, "TXCIF array parity error" },
4173 		{ F_RCAP, "RXCA array parity error" },
4174 		{ F_OTDD, "outbound request TLP discarded" },
4175 		{ F_RDPE, "Rx data parity error" },
4176 		{ F_TDUE, "Tx uncorrectable data error" },
4177 		{ 0 }
4178 	};
4179 	static const struct intr_info pcie_port_intr_info = {
4180 		.name = "PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS",
4181 		.cause_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4182 		.enable_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_INTERRUPT_ENABLE,
4183 		.fatal = F_TPCP | F_TNPP | F_TFTP | F_TCAP | F_TCIP | F_RCAP |
4184 		    F_OTDD | F_RDPE | F_TDUE,
4185 		.flags = 0,
4186 		.details = pcie_port_intr_details,
4187 		.actions = NULL,
4188 	};
4189 	static const struct intr_details pcie_intr_details[] = {
4190 		{ F_MSIADDRLPERR, "MSI AddrL parity error" },
4191 		{ F_MSIADDRHPERR, "MSI AddrH parity error" },
4192 		{ F_MSIDATAPERR, "MSI data parity error" },
4193 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error" },
4194 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error" },
4195 		{ F_MSIXDATAPERR, "MSI-X data parity error" },
4196 		{ F_MSIXDIPERR, "MSI-X DI parity error" },
4197 		{ F_PIOCPLPERR, "PCIe PIO completion FIFO parity error" },
4198 		{ F_PIOREQPERR, "PCIe PIO request FIFO parity error" },
4199 		{ F_TARTAGPERR, "PCIe target tag FIFO parity error" },
4200 		{ F_CCNTPERR, "PCIe CMD channel count parity error" },
4201 		{ F_CREQPERR, "PCIe CMD channel request parity error" },
4202 		{ F_CRSPPERR, "PCIe CMD channel response parity error" },
4203 		{ F_DCNTPERR, "PCIe DMA channel count parity error" },
4204 		{ F_DREQPERR, "PCIe DMA channel request parity error" },
4205 		{ F_DRSPPERR, "PCIe DMA channel response parity error" },
4206 		{ F_HCNTPERR, "PCIe HMA channel count parity error" },
4207 		{ F_HREQPERR, "PCIe HMA channel request parity error" },
4208 		{ F_HRSPPERR, "PCIe HMA channel response parity error" },
4209 		{ F_CFGSNPPERR, "PCIe config snoop FIFO parity error" },
4210 		{ F_FIDPERR, "PCIe FID parity error" },
4211 		{ F_INTXCLRPERR, "PCIe INTx clear parity error" },
4212 		{ F_MATAGPERR, "PCIe MA tag parity error" },
4213 		{ F_PIOTAGPERR, "PCIe PIO tag parity error" },
4214 		{ F_RXCPLPERR, "PCIe Rx completion parity error" },
4215 		{ F_RXWRPERR, "PCIe Rx write parity error" },
4216 		{ F_RPLPERR, "PCIe replay buffer parity error" },
4217 		{ F_PCIESINT, "PCIe core secondary fault" },
4218 		{ F_PCIEPINT, "PCIe core primary fault" },
4219 		{ F_UNXSPLCPLERR, "PCIe unexpected split completion error" },
4220 		{ 0 }
4221 	};
4222 	static const struct intr_details t5_pcie_intr_details[] = {
4223 		{ F_IPGRPPERR, "Parity errors observed by IP" },
4224 		{ F_NONFATALERR, "PCIe non-fatal error" },
4225 		{ F_READRSPERR, "Outbound read error" },
4226 		{ F_TRGT1GRPPERR, "PCIe TRGT1 group FIFOs parity error" },
4227 		{ F_IPSOTPERR, "PCIe IP SOT buffer SRAM parity error" },
4228 		{ F_IPRETRYPERR, "PCIe IP replay buffer parity error" },
4229 		{ F_IPRXDATAGRPPERR, "PCIe IP Rx data group SRAMs parity error" },
4230 		{ F_IPRXHDRGRPPERR, "PCIe IP Rx header group SRAMs parity error" },
4231 		{ F_PIOTAGQPERR, "PIO tag queue FIFO parity error" },
4232 		{ F_MAGRPPERR, "MA group FIFO parity error" },
4233 		{ F_VFIDPERR, "VFID SRAM parity error" },
4234 		{ F_FIDPERR, "FID SRAM parity error" },
4235 		{ F_CFGSNPPERR, "config snoop FIFO parity error" },
4236 		{ F_HRSPPERR, "HMA channel response data SRAM parity error" },
4237 		{ F_HREQRDPERR, "HMA channel read request SRAM parity error" },
4238 		{ F_HREQWRPERR, "HMA channel write request SRAM parity error" },
4239 		{ F_DRSPPERR, "DMA channel response data SRAM parity error" },
4240 		{ F_DREQRDPERR, "DMA channel write request SRAM parity error" },
4241 		{ F_CRSPPERR, "CMD channel response data SRAM parity error" },
4242 		{ F_CREQRDPERR, "CMD channel read request SRAM parity error" },
4243 		{ F_MSTTAGQPERR, "PCIe master tag queue SRAM parity error" },
4244 		{ F_TGTTAGQPERR, "PCIe target tag queue FIFO parity error" },
4245 		{ F_PIOREQGRPPERR, "PIO request group FIFOs parity error" },
4246 		{ F_PIOCPLGRPPERR, "PIO completion group FIFOs parity error" },
4247 		{ F_MSIXDIPERR, "MSI-X DI SRAM parity error" },
4248 		{ F_MSIXDATAPERR, "MSI-X data SRAM parity error" },
4249 		{ F_MSIXADDRHPERR, "MSI-X AddrH SRAM parity error" },
4250 		{ F_MSIXADDRLPERR, "MSI-X AddrL SRAM parity error" },
4251 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error" },
4252 		{ F_MSTTIMEOUTPERR, "Master timeout FIFO parity error" },
4253 		{ F_MSTGRPPERR, "Master response read queue SRAM parity error" },
4254 		{ 0 }
4255 	};
4256 	struct intr_info pcie_intr_info = {
4257 		.name = "PCIE_INT_CAUSE",
4258 		.cause_reg = A_PCIE_INT_CAUSE,
4259 		.enable_reg = A_PCIE_INT_ENABLE,
4260 		.fatal = 0xffffffff,
4261 		.flags = NONFATAL_IF_DISABLED,
4262 		.details = NULL,
4263 		.actions = NULL,
4264 	};
4265 	bool fatal = false;
4266 
4267 	if (is_t4(adap)) {
4268 		fatal |= t4_handle_intr(adap, &sysbus_intr_info, 0, verbose);
4269 		fatal |= t4_handle_intr(adap, &pcie_port_intr_info, 0, verbose);
4270 
4271 		pcie_intr_info.details = pcie_intr_details;
4272 	} else {
4273 		pcie_intr_info.details = t5_pcie_intr_details;
4274 	}
4275 	fatal |= t4_handle_intr(adap, &pcie_intr_info, 0, verbose);
4276 
4277 	return (fatal);
4278 }
4279 
4280 /*
4281  * TP interrupt handler.
4282  */
4283 static bool tp_intr_handler(struct adapter *adap, int arg, bool verbose)
4284 {
4285 	static const struct intr_details tp_intr_details[] = {
4286 		{ 0x3fffffff, "TP parity error" },
4287 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages" },
4288 		{ 0 }
4289 	};
4290 	static const struct intr_info tp_intr_info = {
4291 		.name = "TP_INT_CAUSE",
4292 		.cause_reg = A_TP_INT_CAUSE,
4293 		.enable_reg = A_TP_INT_ENABLE,
4294 		.fatal = 0x7fffffff,
4295 		.flags = NONFATAL_IF_DISABLED,
4296 		.details = tp_intr_details,
4297 		.actions = NULL,
4298 	};
4299 
4300 	return (t4_handle_intr(adap, &tp_intr_info, 0, verbose));
4301 }
4302 
4303 /*
4304  * SGE interrupt handler.
4305  */
4306 static bool sge_intr_handler(struct adapter *adap, int arg, bool verbose)
4307 {
4308 	static const struct intr_info sge_int1_info = {
4309 		.name = "SGE_INT_CAUSE1",
4310 		.cause_reg = A_SGE_INT_CAUSE1,
4311 		.enable_reg = A_SGE_INT_ENABLE1,
4312 		.fatal = 0xffffffff,
4313 		.flags = NONFATAL_IF_DISABLED,
4314 		.details = NULL,
4315 		.actions = NULL,
4316 	};
4317 	static const struct intr_info sge_int2_info = {
4318 		.name = "SGE_INT_CAUSE2",
4319 		.cause_reg = A_SGE_INT_CAUSE2,
4320 		.enable_reg = A_SGE_INT_ENABLE2,
4321 		.fatal = 0xffffffff,
4322 		.flags = NONFATAL_IF_DISABLED,
4323 		.details = NULL,
4324 		.actions = NULL,
4325 	};
4326 	static const struct intr_details sge_int3_details[] = {
4327 		{ F_ERR_FLM_DBP,
4328 			"DBP pointer delivery for invalid context or QID" },
4329 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4330 			"Invalid QID or header request by IDMA" },
4331 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4332 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4333 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4334 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4335 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4336 		{ F_ERR_TIMER_ABOVE_MAX_QID,
4337 			"SGE GTS with timer 0-5 for IQID > 1023" },
4338 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4339 			"SGE received CPL exceeding IQE size" },
4340 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4341 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4342 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4343 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4344 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4345 		  "SGE IQID > 1023 received CPL for FL" },
4346 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4347 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4348 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4349 		{ F_ERR_ING_CTXT_PRIO,
4350 			"Ingress context manager priority user error" },
4351 		{ F_ERR_EGR_CTXT_PRIO,
4352 			"Egress context manager priority user error" },
4353 		{ F_DBFIFO_HP_INT, "High priority DB FIFO threshold reached" },
4354 		{ F_DBFIFO_LP_INT, "Low priority DB FIFO threshold reached" },
4355 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4356 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4357 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4358 		{ 0x0000000f, "SGE context access for invalid queue" },
4359 		{ 0 }
4360 	};
4361 	static const struct intr_details t6_sge_int3_details[] = {
4362 		{ F_ERR_FLM_DBP,
4363 			"DBP pointer delivery for invalid context or QID" },
4364 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4365 			"Invalid QID or header request by IDMA" },
4366 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4367 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4368 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4369 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4370 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4371 		{ F_ERR_TIMER_ABOVE_MAX_QID,
4372 			"SGE GTS with timer 0-5 for IQID > 1023" },
4373 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4374 			"SGE received CPL exceeding IQE size" },
4375 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4376 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4377 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4378 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4379 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4380 			"SGE IQID > 1023 received CPL for FL" },
4381 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4382 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4383 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4384 		{ F_ERR_ING_CTXT_PRIO,
4385 			"Ingress context manager priority user error" },
4386 		{ F_ERR_EGR_CTXT_PRIO,
4387 			"Egress context manager priority user error" },
4388 		{ F_DBP_TBUF_FULL, "SGE DBP tbuf full" },
4389 		{ F_FATAL_WRE_LEN,
4390 			"SGE WRE packet less than advertized length" },
4391 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4392 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4393 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4394 		{ 0x0000000f, "SGE context access for invalid queue" },
4395 		{ 0 }
4396 	};
4397 	struct intr_info sge_int3_info = {
4398 		.name = "SGE_INT_CAUSE3",
4399 		.cause_reg = A_SGE_INT_CAUSE3,
4400 		.enable_reg = A_SGE_INT_ENABLE3,
4401 		.fatal = F_ERR_CPL_EXCEED_IQE_SIZE,
4402 		.flags = 0,
4403 		.details = NULL,
4404 		.actions = NULL,
4405 	};
4406 	static const struct intr_info sge_int4_info = {
4407 		.name = "SGE_INT_CAUSE4",
4408 		.cause_reg = A_SGE_INT_CAUSE4,
4409 		.enable_reg = A_SGE_INT_ENABLE4,
4410 		.fatal = 0,
4411 		.flags = 0,
4412 		.details = NULL,
4413 		.actions = NULL,
4414 	};
4415 	static const struct intr_info sge_int5_info = {
4416 		.name = "SGE_INT_CAUSE5",
4417 		.cause_reg = A_SGE_INT_CAUSE5,
4418 		.enable_reg = A_SGE_INT_ENABLE5,
4419 		.fatal = 0xffffffff,
4420 		.flags = NONFATAL_IF_DISABLED,
4421 		.details = NULL,
4422 		.actions = NULL,
4423 	};
4424 	static const struct intr_info sge_int6_info = {
4425 		.name = "SGE_INT_CAUSE6",
4426 		.cause_reg = A_SGE_INT_CAUSE6,
4427 		.enable_reg = A_SGE_INT_ENABLE6,
4428 		.fatal = 0,
4429 		.flags = 0,
4430 		.details = NULL,
4431 		.actions = NULL,
4432 	};
4433 
4434 	bool fatal;
4435 	u32 v;
4436 
4437 	if (chip_id(adap) <= CHELSIO_T5) {
4438 		sge_int3_info.details = sge_int3_details;
4439 	} else {
4440 		sge_int3_info.details = t6_sge_int3_details;
4441 	}
4442 
4443 	fatal = false;
4444 	fatal |= t4_handle_intr(adap, &sge_int1_info, 0, verbose);
4445 	fatal |= t4_handle_intr(adap, &sge_int2_info, 0, verbose);
4446 	fatal |= t4_handle_intr(adap, &sge_int3_info, 0, verbose);
4447 	fatal |= t4_handle_intr(adap, &sge_int4_info, 0, verbose);
4448 	if (chip_id(adap) >= CHELSIO_T5)
4449 		fatal |= t4_handle_intr(adap, &sge_int5_info, 0, verbose);
4450 	if (chip_id(adap) >= CHELSIO_T6)
4451 		fatal |= t4_handle_intr(adap, &sge_int6_info, 0, verbose);
4452 
4453 	v = t4_read_reg(adap, A_SGE_ERROR_STATS);
4454 	if (v & F_ERROR_QID_VALID) {
4455 		CH_ERR(adap, "SGE error for QID %u\n", G_ERROR_QID(v));
4456 		if (v & F_UNCAPTURED_ERROR)
4457 			CH_ERR(adap, "SGE UNCAPTURED_ERROR set (clearing)\n");
4458 		t4_write_reg(adap, A_SGE_ERROR_STATS,
4459 		    F_ERROR_QID_VALID | F_UNCAPTURED_ERROR);
4460 	}
4461 
4462 	return (fatal);
4463 }
4464 
4465 /*
4466  * CIM interrupt handler.
4467  */
4468 static bool cim_intr_handler(struct adapter *adap, int arg, bool verbose)
4469 {
4470 	static const struct intr_details cim_host_intr_details[] = {
4471 		/* T6+ */
4472 		{ F_PCIE2CIMINTFPARERR, "CIM IBQ PCIe interface parity error" },
4473 
4474 		/* T5+ */
4475 		{ F_MA_CIM_INTFPERR, "MA2CIM interface parity error" },
4476 		{ F_PLCIM_MSTRSPDATAPARERR,
4477 			"PL2CIM master response data parity error" },
4478 		{ F_NCSI2CIMINTFPARERR, "CIM IBQ NC-SI interface parity error" },
4479 		{ F_SGE2CIMINTFPARERR, "CIM IBQ SGE interface parity error" },
4480 		{ F_ULP2CIMINTFPARERR, "CIM IBQ ULP_TX interface parity error" },
4481 		{ F_TP2CIMINTFPARERR, "CIM IBQ TP interface parity error" },
4482 		{ F_OBQSGERX1PARERR, "CIM OBQ SGE1_RX parity error" },
4483 		{ F_OBQSGERX0PARERR, "CIM OBQ SGE0_RX parity error" },
4484 
4485 		/* T4+ */
4486 		{ F_TIEQOUTPARERRINT, "CIM TIEQ outgoing FIFO parity error" },
4487 		{ F_TIEQINPARERRINT, "CIM TIEQ incoming FIFO parity error" },
4488 		{ F_MBHOSTPARERR, "CIM mailbox host read parity error" },
4489 		{ F_MBUPPARERR, "CIM mailbox uP parity error" },
4490 		{ F_IBQTP0PARERR, "CIM IBQ TP0 parity error" },
4491 		{ F_IBQTP1PARERR, "CIM IBQ TP1 parity error" },
4492 		{ F_IBQULPPARERR, "CIM IBQ ULP parity error" },
4493 		{ F_IBQSGELOPARERR, "CIM IBQ SGE_LO parity error" },
4494 		{ F_IBQSGEHIPARERR | F_IBQPCIEPARERR,	/* same bit */
4495 			"CIM IBQ PCIe/SGE_HI parity error" },
4496 		{ F_IBQNCSIPARERR, "CIM IBQ NC-SI parity error" },
4497 		{ F_OBQULP0PARERR, "CIM OBQ ULP0 parity error" },
4498 		{ F_OBQULP1PARERR, "CIM OBQ ULP1 parity error" },
4499 		{ F_OBQULP2PARERR, "CIM OBQ ULP2 parity error" },
4500 		{ F_OBQULP3PARERR, "CIM OBQ ULP3 parity error" },
4501 		{ F_OBQSGEPARERR, "CIM OBQ SGE parity error" },
4502 		{ F_OBQNCSIPARERR, "CIM OBQ NC-SI parity error" },
4503 		{ F_TIMER1INT, "CIM TIMER0 interrupt" },
4504 		{ F_TIMER0INT, "CIM TIMER0 interrupt" },
4505 		{ F_PREFDROPINT, "CIM control register prefetch drop" },
4506 		{ 0}
4507 	};
4508 	static const struct intr_info cim_host_intr_info = {
4509 		.name = "CIM_HOST_INT_CAUSE",
4510 		.cause_reg = A_CIM_HOST_INT_CAUSE,
4511 		.enable_reg = A_CIM_HOST_INT_ENABLE,
4512 		.fatal = 0x007fffe6,
4513 		.flags = NONFATAL_IF_DISABLED,
4514 		.details = cim_host_intr_details,
4515 		.actions = NULL,
4516 	};
4517 	static const struct intr_details cim_host_upacc_intr_details[] = {
4518 		{ F_EEPROMWRINT, "CIM EEPROM came out of busy state" },
4519 		{ F_TIMEOUTMAINT, "CIM PIF MA timeout" },
4520 		{ F_TIMEOUTINT, "CIM PIF timeout" },
4521 		{ F_RSPOVRLOOKUPINT, "CIM response FIFO overwrite" },
4522 		{ F_REQOVRLOOKUPINT, "CIM request FIFO overwrite" },
4523 		{ F_BLKWRPLINT, "CIM block write to PL space" },
4524 		{ F_BLKRDPLINT, "CIM block read from PL space" },
4525 		{ F_SGLWRPLINT,
4526 			"CIM single write to PL space with illegal BEs" },
4527 		{ F_SGLRDPLINT,
4528 			"CIM single read from PL space with illegal BEs" },
4529 		{ F_BLKWRCTLINT, "CIM block write to CTL space" },
4530 		{ F_BLKRDCTLINT, "CIM block read from CTL space" },
4531 		{ F_SGLWRCTLINT,
4532 			"CIM single write to CTL space with illegal BEs" },
4533 		{ F_SGLRDCTLINT,
4534 			"CIM single read from CTL space with illegal BEs" },
4535 		{ F_BLKWREEPROMINT, "CIM block write to EEPROM space" },
4536 		{ F_BLKRDEEPROMINT, "CIM block read from EEPROM space" },
4537 		{ F_SGLWREEPROMINT,
4538 			"CIM single write to EEPROM space with illegal BEs" },
4539 		{ F_SGLRDEEPROMINT,
4540 			"CIM single read from EEPROM space with illegal BEs" },
4541 		{ F_BLKWRFLASHINT, "CIM block write to flash space" },
4542 		{ F_BLKRDFLASHINT, "CIM block read from flash space" },
4543 		{ F_SGLWRFLASHINT, "CIM single write to flash space" },
4544 		{ F_SGLRDFLASHINT,
4545 			"CIM single read from flash space with illegal BEs" },
4546 		{ F_BLKWRBOOTINT, "CIM block write to boot space" },
4547 		{ F_BLKRDBOOTINT, "CIM block read from boot space" },
4548 		{ F_SGLWRBOOTINT, "CIM single write to boot space" },
4549 		{ F_SGLRDBOOTINT,
4550 			"CIM single read from boot space with illegal BEs" },
4551 		{ F_ILLWRBEINT, "CIM illegal write BEs" },
4552 		{ F_ILLRDBEINT, "CIM illegal read BEs" },
4553 		{ F_ILLRDINT, "CIM illegal read" },
4554 		{ F_ILLWRINT, "CIM illegal write" },
4555 		{ F_ILLTRANSINT, "CIM illegal transaction" },
4556 		{ F_RSVDSPACEINT, "CIM reserved space access" },
4557 		{0}
4558 	};
4559 	static const struct intr_info cim_host_upacc_intr_info = {
4560 		.name = "CIM_HOST_UPACC_INT_CAUSE",
4561 		.cause_reg = A_CIM_HOST_UPACC_INT_CAUSE,
4562 		.enable_reg = A_CIM_HOST_UPACC_INT_ENABLE,
4563 		.fatal = 0x3fffeeff,
4564 		.flags = NONFATAL_IF_DISABLED,
4565 		.details = cim_host_upacc_intr_details,
4566 		.actions = NULL,
4567 	};
4568 	static const struct intr_info cim_pf_host_intr_info = {
4569 		.name = "CIM_PF_HOST_INT_CAUSE",
4570 		.cause_reg = MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4571 		.enable_reg = MYPF_REG(A_CIM_PF_HOST_INT_ENABLE),
4572 		.fatal = 0,
4573 		.flags = 0,
4574 		.details = NULL,
4575 		.actions = NULL,
4576 	};
4577 	u32 val, fw_err;
4578 	bool fatal;
4579 
4580 	/*
4581 	 * When the Firmware detects an internal error which normally wouldn't
4582 	 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4583 	 * to make sure the Host sees the Firmware Crash.  So if we have a
4584 	 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4585 	 * interrupt.
4586 	 */
4587 	fw_err = t4_read_reg(adap, A_PCIE_FW);
4588 	val = t4_read_reg(adap, A_CIM_HOST_INT_CAUSE);
4589 	if (val & F_TIMER0INT && (!(fw_err & F_PCIE_FW_ERR) ||
4590 	    G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH)) {
4591 		t4_write_reg(adap, A_CIM_HOST_INT_CAUSE, F_TIMER0INT);
4592 	}
4593 
4594 	fatal = (fw_err & F_PCIE_FW_ERR) != 0;
4595 	fatal |= t4_handle_intr(adap, &cim_host_intr_info, 0, verbose);
4596 	fatal |= t4_handle_intr(adap, &cim_host_upacc_intr_info, 0, verbose);
4597 	fatal |= t4_handle_intr(adap, &cim_pf_host_intr_info, 0, verbose);
4598 	if (fatal)
4599 		t4_os_cim_err(adap);
4600 
4601 	return (fatal);
4602 }
4603 
4604 /*
4605  * ULP RX interrupt handler.
4606  */
4607 static bool ulprx_intr_handler(struct adapter *adap, int arg, bool verbose)
4608 {
4609 	static const struct intr_details ulprx_intr_details[] = {
4610 		/* T5+ */
4611 		{ F_SE_CNT_MISMATCH_1, "ULPRX SE count mismatch in channel 1" },
4612 		{ F_SE_CNT_MISMATCH_0, "ULPRX SE count mismatch in channel 0" },
4613 
4614 		/* T4+ */
4615 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error" },
4616 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error" },
4617 		{ 0x007fffff, "ULPRX parity error" },
4618 		{ 0 }
4619 	};
4620 	static const struct intr_info ulprx_intr_info = {
4621 		.name = "ULP_RX_INT_CAUSE",
4622 		.cause_reg = A_ULP_RX_INT_CAUSE,
4623 		.enable_reg = A_ULP_RX_INT_ENABLE,
4624 		.fatal = 0x07ffffff,
4625 		.flags = NONFATAL_IF_DISABLED,
4626 		.details = ulprx_intr_details,
4627 		.actions = NULL,
4628 	};
4629 	static const struct intr_info ulprx_intr2_info = {
4630 		.name = "ULP_RX_INT_CAUSE_2",
4631 		.cause_reg = A_ULP_RX_INT_CAUSE_2,
4632 		.enable_reg = A_ULP_RX_INT_ENABLE_2,
4633 		.fatal = 0,
4634 		.flags = 0,
4635 		.details = NULL,
4636 		.actions = NULL,
4637 	};
4638 	bool fatal = false;
4639 
4640 	fatal |= t4_handle_intr(adap, &ulprx_intr_info, 0, verbose);
4641 	fatal |= t4_handle_intr(adap, &ulprx_intr2_info, 0, verbose);
4642 
4643 	return (fatal);
4644 }
4645 
4646 /*
4647  * ULP TX interrupt handler.
4648  */
4649 static bool ulptx_intr_handler(struct adapter *adap, int arg, bool verbose)
4650 {
4651 	static const struct intr_details ulptx_intr_details[] = {
4652 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds" },
4653 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds" },
4654 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds" },
4655 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds" },
4656 		{ 0x0fffffff, "ULPTX parity error" },
4657 		{ 0 }
4658 	};
4659 	static const struct intr_info ulptx_intr_info = {
4660 		.name = "ULP_TX_INT_CAUSE",
4661 		.cause_reg = A_ULP_TX_INT_CAUSE,
4662 		.enable_reg = A_ULP_TX_INT_ENABLE,
4663 		.fatal = 0x0fffffff,
4664 		.flags = NONFATAL_IF_DISABLED,
4665 		.details = ulptx_intr_details,
4666 		.actions = NULL,
4667 	};
4668 	static const struct intr_info ulptx_intr2_info = {
4669 		.name = "ULP_TX_INT_CAUSE_2",
4670 		.cause_reg = A_ULP_TX_INT_CAUSE_2,
4671 		.enable_reg = A_ULP_TX_INT_ENABLE_2,
4672 		.fatal = 0xf0,
4673 		.flags = NONFATAL_IF_DISABLED,
4674 		.details = NULL,
4675 		.actions = NULL,
4676 	};
4677 	bool fatal = false;
4678 
4679 	fatal |= t4_handle_intr(adap, &ulptx_intr_info, 0, verbose);
4680 	fatal |= t4_handle_intr(adap, &ulptx_intr2_info, 0, verbose);
4681 
4682 	return (fatal);
4683 }
4684 
4685 static bool pmtx_dump_dbg_stats(struct adapter *adap, int arg, bool verbose)
4686 {
4687 	int i;
4688 	u32 data[17];
4689 
4690 	t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, &data[0],
4691 	    ARRAY_SIZE(data), A_PM_TX_DBG_STAT0);
4692 	for (i = 0; i < ARRAY_SIZE(data); i++) {
4693 		CH_ALERT(adap, "  - PM_TX_DBG_STAT%u (0x%x) = 0x%08x\n", i,
4694 		    A_PM_TX_DBG_STAT0 + i, data[i]);
4695 	}
4696 
4697 	return (false);
4698 }
4699 
4700 /*
4701  * PM TX interrupt handler.
4702  */
4703 static bool pmtx_intr_handler(struct adapter *adap, int arg, bool verbose)
4704 {
4705 	static const struct intr_action pmtx_intr_actions[] = {
4706 		{ 0xffffffff, 0, pmtx_dump_dbg_stats },
4707 		{ 0 },
4708 	};
4709 	static const struct intr_details pmtx_intr_details[] = {
4710 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large" },
4711 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large" },
4712 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large" },
4713 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd" },
4714 		{ 0x0f000000, "PMTX icspi FIFO2X Rx framing error" },
4715 		{ 0x00f00000, "PMTX icspi FIFO Rx framing error" },
4716 		{ 0x000f0000, "PMTX icspi FIFO Tx framing error" },
4717 		{ 0x0000f000, "PMTX oespi FIFO Rx framing error" },
4718 		{ 0x00000f00, "PMTX oespi FIFO Tx framing error" },
4719 		{ 0x000000f0, "PMTX oespi FIFO2X Tx framing error" },
4720 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error" },
4721 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error" },
4722 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error" },
4723 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error" },
4724 		{ 0 }
4725 	};
4726 	static const struct intr_info pmtx_intr_info = {
4727 		.name = "PM_TX_INT_CAUSE",
4728 		.cause_reg = A_PM_TX_INT_CAUSE,
4729 		.enable_reg = A_PM_TX_INT_ENABLE,
4730 		.fatal = 0xffffffff,
4731 		.flags = 0,
4732 		.details = pmtx_intr_details,
4733 		.actions = pmtx_intr_actions,
4734 	};
4735 
4736 	return (t4_handle_intr(adap, &pmtx_intr_info, 0, verbose));
4737 }
4738 
4739 /*
4740  * PM RX interrupt handler.
4741  */
4742 static bool pmrx_intr_handler(struct adapter *adap, int arg, bool verbose)
4743 {
4744 	static const struct intr_details pmrx_intr_details[] = {
4745 		/* T6+ */
4746 		{ 0x18000000, "PMRX ospi overflow" },
4747 		{ F_MA_INTF_SDC_ERR, "PMRX MA interface SDC parity error" },
4748 		{ F_BUNDLE_LEN_PARERR, "PMRX bundle len FIFO parity error" },
4749 		{ F_BUNDLE_LEN_OVFL, "PMRX bundle len FIFO overflow" },
4750 		{ F_SDC_ERR, "PMRX SDC error" },
4751 
4752 		/* T4+ */
4753 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd" },
4754 		{ 0x003c0000, "PMRX iespi FIFO2X Rx framing error" },
4755 		{ 0x0003c000, "PMRX iespi Rx framing error" },
4756 		{ 0x00003c00, "PMRX iespi Tx framing error" },
4757 		{ 0x00000300, "PMRX ocspi Rx framing error" },
4758 		{ 0x000000c0, "PMRX ocspi Tx framing error" },
4759 		{ 0x00000030, "PMRX ocspi FIFO2X Tx framing error" },
4760 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error" },
4761 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error" },
4762 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error" },
4763 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error"},
4764 		{ 0 }
4765 	};
4766 	static const struct intr_info pmrx_intr_info = {
4767 		.name = "PM_RX_INT_CAUSE",
4768 		.cause_reg = A_PM_RX_INT_CAUSE,
4769 		.enable_reg = A_PM_RX_INT_ENABLE,
4770 		.fatal = 0x1fffffff,
4771 		.flags = NONFATAL_IF_DISABLED,
4772 		.details = pmrx_intr_details,
4773 		.actions = NULL,
4774 	};
4775 
4776 	return (t4_handle_intr(adap, &pmrx_intr_info, 0, verbose));
4777 }
4778 
4779 /*
4780  * CPL switch interrupt handler.
4781  */
4782 static bool cplsw_intr_handler(struct adapter *adap, int arg, bool verbose)
4783 {
4784 	static const struct intr_details cplsw_intr_details[] = {
4785 		/* T5+ */
4786 		{ F_PERR_CPL_128TO128_1, "CPLSW 128TO128 FIFO1 parity error" },
4787 		{ F_PERR_CPL_128TO128_0, "CPLSW 128TO128 FIFO0 parity error" },
4788 
4789 		/* T4+ */
4790 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error" },
4791 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow" },
4792 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error" },
4793 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error" },
4794 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error" },
4795 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error" },
4796 		{ 0 }
4797 	};
4798 	static const struct intr_info cplsw_intr_info = {
4799 		.name = "CPL_INTR_CAUSE",
4800 		.cause_reg = A_CPL_INTR_CAUSE,
4801 		.enable_reg = A_CPL_INTR_ENABLE,
4802 		.fatal = 0xff,
4803 		.flags = NONFATAL_IF_DISABLED,
4804 		.details = cplsw_intr_details,
4805 		.actions = NULL,
4806 	};
4807 
4808 	return (t4_handle_intr(adap, &cplsw_intr_info, 0, verbose));
4809 }
4810 
4811 #define T4_LE_FATAL_MASK (F_PARITYERR | F_UNKNOWNCMD | F_REQQPARERR)
4812 #define T5_LE_FATAL_MASK (T4_LE_FATAL_MASK | F_VFPARERR)
4813 #define T6_LE_PERRCRC_MASK (F_PIPELINEERR | F_CLIPTCAMACCFAIL | \
4814     F_SRVSRAMACCFAIL | F_CLCAMCRCPARERR | F_CLCAMINTPERR | F_SSRAMINTPERR | \
4815     F_SRVSRAMPERR | F_VFSRAMPERR | F_TCAMINTPERR | F_TCAMCRCERR | \
4816     F_HASHTBLMEMACCERR | F_MAIFWRINTPERR | F_HASHTBLMEMCRCERR)
4817 #define T6_LE_FATAL_MASK (T6_LE_PERRCRC_MASK | F_T6_UNKNOWNCMD | \
4818     F_TCAMACCFAIL | F_HASHTBLACCFAIL | F_CMDTIDERR | F_CMDPRSRINTERR | \
4819     F_TOTCNTERR | F_CLCAMFIFOERR | F_CLIPSUBERR)
4820 
4821 /*
4822  * LE interrupt handler.
4823  */
4824 static bool le_intr_handler(struct adapter *adap, int arg, bool verbose)
4825 {
4826 	static const struct intr_details le_intr_details[] = {
4827 		{ F_REQQPARERR, "LE request queue parity error" },
4828 		{ F_UNKNOWNCMD, "LE unknown command" },
4829 		{ F_ACTRGNFULL, "LE active region full" },
4830 		{ F_PARITYERR, "LE parity error" },
4831 		{ F_LIPMISS, "LE LIP miss" },
4832 		{ F_LIP0, "LE 0 LIP error" },
4833 		{ 0 }
4834 	};
4835 	static const struct intr_details t6_le_intr_details[] = {
4836 		{ F_CLIPSUBERR, "LE CLIP CAM reverse substitution error" },
4837 		{ F_CLCAMFIFOERR, "LE CLIP CAM internal FIFO error" },
4838 		{ F_CTCAMINVLDENT, "Invalid IPv6 CLIP TCAM entry" },
4839 		{ F_TCAMINVLDENT, "Invalid IPv6 TCAM entry" },
4840 		{ F_TOTCNTERR, "LE total active < TCAM count" },
4841 		{ F_CMDPRSRINTERR, "LE internal error in parser" },
4842 		{ F_CMDTIDERR, "Incorrect tid in LE command" },
4843 		{ F_T6_ACTRGNFULL, "LE active region full" },
4844 		{ F_T6_ACTCNTIPV6TZERO, "LE IPv6 active open TCAM counter -ve" },
4845 		{ F_T6_ACTCNTIPV4TZERO, "LE IPv4 active open TCAM counter -ve" },
4846 		{ F_T6_ACTCNTIPV6ZERO, "LE IPv6 active open counter -ve" },
4847 		{ F_T6_ACTCNTIPV4ZERO, "LE IPv4 active open counter -ve" },
4848 		{ F_HASHTBLACCFAIL, "Hash table read error (proto conflict)" },
4849 		{ F_TCAMACCFAIL, "LE TCAM access failure" },
4850 		{ F_T6_UNKNOWNCMD, "LE unknown command" },
4851 		{ F_T6_LIP0, "LE found 0 LIP during CLIP substitution" },
4852 		{ F_T6_LIPMISS, "LE CLIP lookup miss" },
4853 		{ T6_LE_PERRCRC_MASK, "LE parity/CRC error" },
4854 		{ 0 }
4855 	};
4856 	struct intr_info le_intr_info = {
4857 		.name = "LE_DB_INT_CAUSE",
4858 		.cause_reg = A_LE_DB_INT_CAUSE,
4859 		.enable_reg = A_LE_DB_INT_ENABLE,
4860 		.fatal = 0,
4861 		.flags = NONFATAL_IF_DISABLED,
4862 		.details = NULL,
4863 		.actions = NULL,
4864 	};
4865 
4866 	if (chip_id(adap) <= CHELSIO_T5) {
4867 		le_intr_info.details = le_intr_details;
4868 		le_intr_info.fatal = T5_LE_FATAL_MASK;
4869 	} else {
4870 		le_intr_info.details = t6_le_intr_details;
4871 		le_intr_info.fatal = T6_LE_FATAL_MASK;
4872 	}
4873 
4874 	return (t4_handle_intr(adap, &le_intr_info, 0, verbose));
4875 }
4876 
4877 /*
4878  * MPS interrupt handler.
4879  */
4880 static bool mps_intr_handler(struct adapter *adap, int arg, bool verbose)
4881 {
4882 	static const struct intr_details mps_rx_perr_intr_details[] = {
4883 		{ 0xffffffff, "MPS Rx parity error" },
4884 		{ 0 }
4885 	};
4886 	static const struct intr_info mps_rx_perr_intr_info = {
4887 		.name = "MPS_RX_PERR_INT_CAUSE",
4888 		.cause_reg = A_MPS_RX_PERR_INT_CAUSE,
4889 		.enable_reg = A_MPS_RX_PERR_INT_ENABLE,
4890 		.fatal = 0xffffffff,
4891 		.flags = NONFATAL_IF_DISABLED,
4892 		.details = mps_rx_perr_intr_details,
4893 		.actions = NULL,
4894 	};
4895 	static const struct intr_details mps_tx_intr_details[] = {
4896 		{ F_PORTERR, "MPS Tx destination port is disabled" },
4897 		{ F_FRMERR, "MPS Tx framing error" },
4898 		{ F_SECNTERR, "MPS Tx SOP/EOP error" },
4899 		{ F_BUBBLE, "MPS Tx underflow" },
4900 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error" },
4901 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error" },
4902 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error" },
4903 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error" },
4904 		{ 0 }
4905 	};
4906 	static const struct intr_info mps_tx_intr_info = {
4907 		.name = "MPS_TX_INT_CAUSE",
4908 		.cause_reg = A_MPS_TX_INT_CAUSE,
4909 		.enable_reg = A_MPS_TX_INT_ENABLE,
4910 		.fatal = 0x1ffff,
4911 		.flags = NONFATAL_IF_DISABLED,
4912 		.details = mps_tx_intr_details,
4913 		.actions = NULL,
4914 	};
4915 	static const struct intr_details mps_trc_intr_details[] = {
4916 		{ F_MISCPERR, "MPS TRC misc parity error" },
4917 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error" },
4918 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error" },
4919 		{ 0 }
4920 	};
4921 	static const struct intr_info mps_trc_intr_info = {
4922 		.name = "MPS_TRC_INT_CAUSE",
4923 		.cause_reg = A_MPS_TRC_INT_CAUSE,
4924 		.enable_reg = A_MPS_TRC_INT_ENABLE,
4925 		.fatal = F_MISCPERR | V_PKTFIFO(M_PKTFIFO) | V_FILTMEM(M_FILTMEM),
4926 		.flags = 0,
4927 		.details = mps_trc_intr_details,
4928 		.actions = NULL,
4929 	};
4930 	static const struct intr_details mps_stat_sram_intr_details[] = {
4931 		{ 0xffffffff, "MPS statistics SRAM parity error" },
4932 		{ 0 }
4933 	};
4934 	static const struct intr_info mps_stat_sram_intr_info = {
4935 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM",
4936 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4937 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM,
4938 		.fatal = 0x1fffffff,
4939 		.flags = NONFATAL_IF_DISABLED,
4940 		.details = mps_stat_sram_intr_details,
4941 		.actions = NULL,
4942 	};
4943 	static const struct intr_details mps_stat_tx_intr_details[] = {
4944 		{ 0xffffff, "MPS statistics Tx FIFO parity error" },
4945 		{ 0 }
4946 	};
4947 	static const struct intr_info mps_stat_tx_intr_info = {
4948 		.name = "MPS_STAT_PERR_INT_CAUSE_TX_FIFO",
4949 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4950 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_TX_FIFO,
4951 		.fatal =  0xffffff,
4952 		.flags = NONFATAL_IF_DISABLED,
4953 		.details = mps_stat_tx_intr_details,
4954 		.actions = NULL,
4955 	};
4956 	static const struct intr_details mps_stat_rx_intr_details[] = {
4957 		{ 0xffffff, "MPS statistics Rx FIFO parity error" },
4958 		{ 0 }
4959 	};
4960 	static const struct intr_info mps_stat_rx_intr_info = {
4961 		.name = "MPS_STAT_PERR_INT_CAUSE_RX_FIFO",
4962 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4963 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_RX_FIFO,
4964 		.fatal =  0xffffff,
4965 		.flags = 0,
4966 		.details = mps_stat_rx_intr_details,
4967 		.actions = NULL,
4968 	};
4969 	static const struct intr_details mps_cls_intr_details[] = {
4970 		{ F_HASHSRAM, "MPS hash SRAM parity error" },
4971 		{ F_MATCHTCAM, "MPS match TCAM parity error" },
4972 		{ F_MATCHSRAM, "MPS match SRAM parity error" },
4973 		{ 0 }
4974 	};
4975 	static const struct intr_info mps_cls_intr_info = {
4976 		.name = "MPS_CLS_INT_CAUSE",
4977 		.cause_reg = A_MPS_CLS_INT_CAUSE,
4978 		.enable_reg = A_MPS_CLS_INT_ENABLE,
4979 		.fatal =  F_MATCHSRAM | F_MATCHTCAM | F_HASHSRAM,
4980 		.flags = 0,
4981 		.details = mps_cls_intr_details,
4982 		.actions = NULL,
4983 	};
4984 	static const struct intr_details mps_stat_sram1_intr_details[] = {
4985 		{ 0xff, "MPS statistics SRAM1 parity error" },
4986 		{ 0 }
4987 	};
4988 	static const struct intr_info mps_stat_sram1_intr_info = {
4989 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM1",
4990 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM1,
4991 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM1,
4992 		.fatal = 0xff,
4993 		.flags = 0,
4994 		.details = mps_stat_sram1_intr_details,
4995 		.actions = NULL,
4996 	};
4997 
4998 	bool fatal;
4999 
5000 	fatal = false;
5001 	fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info, 0, verbose);
5002 	fatal |= t4_handle_intr(adap, &mps_tx_intr_info, 0, verbose);
5003 	fatal |= t4_handle_intr(adap, &mps_trc_intr_info, 0, verbose);
5004 	fatal |= t4_handle_intr(adap, &mps_stat_sram_intr_info, 0, verbose);
5005 	fatal |= t4_handle_intr(adap, &mps_stat_tx_intr_info, 0, verbose);
5006 	fatal |= t4_handle_intr(adap, &mps_stat_rx_intr_info, 0, verbose);
5007 	fatal |= t4_handle_intr(adap, &mps_cls_intr_info, 0, verbose);
5008 	if (chip_id(adap) > CHELSIO_T4) {
5009 		fatal |= t4_handle_intr(adap, &mps_stat_sram1_intr_info, 0,
5010 		    verbose);
5011 	}
5012 
5013 	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
5014 	t4_read_reg(adap, A_MPS_INT_CAUSE);	/* flush */
5015 
5016 	return (fatal);
5017 
5018 }
5019 
5020 /*
5021  * EDC/MC interrupt handler.
5022  */
5023 static bool mem_intr_handler(struct adapter *adap, int idx, bool verbose)
5024 {
5025 	static const char name[4][5] = { "EDC0", "EDC1", "MC0", "MC1" };
5026 	unsigned int count_reg, v;
5027 	static const struct intr_details mem_intr_details[] = {
5028 		{ F_ECC_UE_INT_CAUSE, "Uncorrectable ECC data error(s)" },
5029 		{ F_ECC_CE_INT_CAUSE, "Correctable ECC data error(s)" },
5030 		{ F_PERR_INT_CAUSE, "FIFO parity error" },
5031 		{ 0 }
5032 	};
5033 	struct intr_info ii = {
5034 		.fatal = F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE,
5035 		.details = mem_intr_details,
5036 		.flags = 0,
5037 		.actions = NULL,
5038 	};
5039 	bool fatal;
5040 
5041 	switch (idx) {
5042 	case MEM_EDC0:
5043 		ii.name = "EDC0_INT_CAUSE";
5044 		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 0);
5045 		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 0);
5046 		count_reg = EDC_REG(A_EDC_ECC_STATUS, 0);
5047 		break;
5048 	case MEM_EDC1:
5049 		ii.name = "EDC1_INT_CAUSE";
5050 		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 1);
5051 		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 1);
5052 		count_reg = EDC_REG(A_EDC_ECC_STATUS, 1);
5053 		break;
5054 	case MEM_MC0:
5055 		ii.name = "MC0_INT_CAUSE";
5056 		if (is_t4(adap)) {
5057 			ii.cause_reg = A_MC_INT_CAUSE;
5058 			ii.enable_reg = A_MC_INT_ENABLE;
5059 			count_reg = A_MC_ECC_STATUS;
5060 		} else {
5061 			ii.cause_reg = A_MC_P_INT_CAUSE;
5062 			ii.enable_reg = A_MC_P_INT_ENABLE;
5063 			count_reg = A_MC_P_ECC_STATUS;
5064 		}
5065 		break;
5066 	case MEM_MC1:
5067 		ii.name = "MC1_INT_CAUSE";
5068 		ii.cause_reg = MC_REG(A_MC_P_INT_CAUSE, 1);
5069 		ii.enable_reg = MC_REG(A_MC_P_INT_ENABLE, 1);
5070 		count_reg = MC_REG(A_MC_P_ECC_STATUS, 1);
5071 		break;
5072 	}
5073 
5074 	fatal = t4_handle_intr(adap, &ii, 0, verbose);
5075 
5076 	v = t4_read_reg(adap, count_reg);
5077 	if (v != 0) {
5078 		if (G_ECC_UECNT(v) != 0) {
5079 			CH_ALERT(adap,
5080 			    "%s: %u uncorrectable ECC data error(s)\n",
5081 			    name[idx], G_ECC_UECNT(v));
5082 		}
5083 		if (G_ECC_CECNT(v) != 0) {
5084 			if (idx <= MEM_EDC1)
5085 				t4_edc_err_read(adap, idx);
5086 			CH_WARN_RATELIMIT(adap,
5087 			    "%s: %u correctable ECC data error(s)\n",
5088 			    name[idx], G_ECC_CECNT(v));
5089 		}
5090 		t4_write_reg(adap, count_reg, 0xffffffff);
5091 	}
5092 
5093 	return (fatal);
5094 }
5095 
5096 static bool ma_wrap_status(struct adapter *adap, int arg, bool verbose)
5097 {
5098 	u32 v;
5099 
5100 	v = t4_read_reg(adap, A_MA_INT_WRAP_STATUS);
5101 	CH_ALERT(adap,
5102 	    "MA address wrap-around error by client %u to address %#x\n",
5103 	    G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4);
5104 	t4_write_reg(adap, A_MA_INT_WRAP_STATUS, v);
5105 
5106 	return (false);
5107 }
5108 
5109 
5110 /*
5111  * MA interrupt handler.
5112  */
5113 static bool ma_intr_handler(struct adapter *adap, int arg, bool verbose)
5114 {
5115 	static const struct intr_action ma_intr_actions[] = {
5116 		{ F_MEM_WRAP_INT_CAUSE, 0, ma_wrap_status },
5117 		{ 0 },
5118 	};
5119 	static const struct intr_info ma_intr_info = {
5120 		.name = "MA_INT_CAUSE",
5121 		.cause_reg = A_MA_INT_CAUSE,
5122 		.enable_reg = A_MA_INT_ENABLE,
5123 		.fatal = F_MEM_PERR_INT_CAUSE | F_MEM_TO_INT_CAUSE,
5124 		.flags = NONFATAL_IF_DISABLED,
5125 		.details = NULL,
5126 		.actions = ma_intr_actions,
5127 	};
5128 	static const struct intr_info ma_perr_status1 = {
5129 		.name = "MA_PARITY_ERROR_STATUS1",
5130 		.cause_reg = A_MA_PARITY_ERROR_STATUS1,
5131 		.enable_reg = A_MA_PARITY_ERROR_ENABLE1,
5132 		.fatal = 0xffffffff,
5133 		.flags = 0,
5134 		.details = NULL,
5135 		.actions = NULL,
5136 	};
5137 	static const struct intr_info ma_perr_status2 = {
5138 		.name = "MA_PARITY_ERROR_STATUS2",
5139 		.cause_reg = A_MA_PARITY_ERROR_STATUS2,
5140 		.enable_reg = A_MA_PARITY_ERROR_ENABLE2,
5141 		.fatal = 0xffffffff,
5142 		.flags = 0,
5143 		.details = NULL,
5144 		.actions = NULL,
5145 	};
5146 	bool fatal;
5147 
5148 	fatal = false;
5149 	fatal |= t4_handle_intr(adap, &ma_intr_info, 0, verbose);
5150 	fatal |= t4_handle_intr(adap, &ma_perr_status1, 0, verbose);
5151 	if (chip_id(adap) > CHELSIO_T4)
5152 		fatal |= t4_handle_intr(adap, &ma_perr_status2, 0, verbose);
5153 
5154 	return (fatal);
5155 }
5156 
5157 /*
5158  * SMB interrupt handler.
5159  */
5160 static bool smb_intr_handler(struct adapter *adap, int arg, bool verbose)
5161 {
5162 	static const struct intr_details smb_intr_details[] = {
5163 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error" },
5164 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error" },
5165 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error" },
5166 		{ 0 }
5167 	};
5168 	static const struct intr_info smb_intr_info = {
5169 		.name = "SMB_INT_CAUSE",
5170 		.cause_reg = A_SMB_INT_CAUSE,
5171 		.enable_reg = A_SMB_INT_ENABLE,
5172 		.fatal = F_SLVFIFOPARINT | F_MSTRXFIFOPARINT | F_MSTTXFIFOPARINT,
5173 		.flags = 0,
5174 		.details = smb_intr_details,
5175 		.actions = NULL,
5176 	};
5177 
5178 	return (t4_handle_intr(adap, &smb_intr_info, 0, verbose));
5179 }
5180 
5181 /*
5182  * NC-SI interrupt handler.
5183  */
5184 static bool ncsi_intr_handler(struct adapter *adap, int arg, bool verbose)
5185 {
5186 	static const struct intr_details ncsi_intr_details[] = {
5187 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error" },
5188 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error" },
5189 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error" },
5190 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error" },
5191 		{ 0 }
5192 	};
5193 	static const struct intr_info ncsi_intr_info = {
5194 		.name = "NCSI_INT_CAUSE",
5195 		.cause_reg = A_NCSI_INT_CAUSE,
5196 		.enable_reg = A_NCSI_INT_ENABLE,
5197 		.fatal = F_RXFIFO_PRTY_ERR | F_TXFIFO_PRTY_ERR |
5198 		    F_MPS_DM_PRTY_ERR | F_CIM_DM_PRTY_ERR,
5199 		.flags = 0,
5200 		.details = ncsi_intr_details,
5201 		.actions = NULL,
5202 	};
5203 
5204 	return (t4_handle_intr(adap, &ncsi_intr_info, 0, verbose));
5205 }
5206 
5207 /*
5208  * MAC interrupt handler.
5209  */
5210 static bool mac_intr_handler(struct adapter *adap, int port, bool verbose)
5211 {
5212 	static const struct intr_details mac_intr_details[] = {
5213 		{ F_TXFIFO_PRTY_ERR, "MAC Tx FIFO parity error" },
5214 		{ F_RXFIFO_PRTY_ERR, "MAC Rx FIFO parity error" },
5215 		{ 0 }
5216 	};
5217 	char name[32];
5218 	struct intr_info ii;
5219 	bool fatal = false;
5220 
5221 	if (is_t4(adap)) {
5222 		snprintf(name, sizeof(name), "XGMAC_PORT%u_INT_CAUSE", port);
5223 		ii.name = &name[0];
5224 		ii.cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
5225 		ii.enable_reg = PORT_REG(port, A_XGMAC_PORT_INT_EN);
5226 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5227 		ii.flags = 0;
5228 		ii.details = mac_intr_details;
5229 		ii.actions = NULL;
5230 	} else {
5231 		snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port);
5232 		ii.name = &name[0];
5233 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
5234 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_INT_EN);
5235 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5236 		ii.flags = 0;
5237 		ii.details = mac_intr_details;
5238 		ii.actions = NULL;
5239 	}
5240 	fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5241 
5242 	if (chip_id(adap) >= CHELSIO_T5) {
5243 		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE", port);
5244 		ii.name = &name[0];
5245 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE);
5246 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN);
5247 		ii.fatal = 0;
5248 		ii.flags = 0;
5249 		ii.details = NULL;
5250 		ii.actions = NULL;
5251 		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5252 	}
5253 
5254 	if (chip_id(adap) >= CHELSIO_T6) {
5255 		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE_100G", port);
5256 		ii.name = &name[0];
5257 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE_100G);
5258 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN_100G);
5259 		ii.fatal = 0;
5260 		ii.flags = 0;
5261 		ii.details = NULL;
5262 		ii.actions = NULL;
5263 		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5264 	}
5265 
5266 	return (fatal);
5267 }
5268 
5269 static bool pl_timeout_status(struct adapter *adap, int arg, bool verbose)
5270 {
5271 
5272 	CH_ALERT(adap, "    PL_TIMEOUT_STATUS 0x%08x 0x%08x\n",
5273 	    t4_read_reg(adap, A_PL_TIMEOUT_STATUS0),
5274 	    t4_read_reg(adap, A_PL_TIMEOUT_STATUS1));
5275 
5276 	return (false);
5277 }
5278 
5279 static bool plpl_intr_handler(struct adapter *adap, int arg, bool verbose)
5280 {
5281 	static const struct intr_action plpl_intr_actions[] = {
5282 		{ F_TIMEOUT, 0, pl_timeout_status },
5283 		{ 0 },
5284 	};
5285 	static const struct intr_details plpl_intr_details[] = {
5286 		{ F_PL_BUSPERR, "Bus parity error" },
5287 		{ F_FATALPERR, "Fatal parity error" },
5288 		{ F_INVALIDACCESS, "Global reserved memory access" },
5289 		{ F_TIMEOUT,  "Bus timeout" },
5290 		{ F_PLERR, "Module reserved access" },
5291 		{ F_PERRVFID, "VFID_MAP parity error" },
5292 		{ 0 }
5293 	};
5294 	static const struct intr_info plpl_intr_info = {
5295 		.name = "PL_PL_INT_CAUSE",
5296 		.cause_reg = A_PL_PL_INT_CAUSE,
5297 		.enable_reg = A_PL_PL_INT_ENABLE,
5298 		.fatal = F_FATALPERR | F_PERRVFID,
5299 		.flags = NONFATAL_IF_DISABLED,
5300 		.details = plpl_intr_details,
5301 		.actions = plpl_intr_actions,
5302 	};
5303 
5304 	return (t4_handle_intr(adap, &plpl_intr_info, 0, verbose));
5305 }
5306 
5307 /**
5308  *	t4_slow_intr_handler - control path interrupt handler
5309  *	@adap: the adapter
5310  *	@verbose: increased verbosity, for debug
5311  *
5312  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
5313  *	The designation 'slow' is because it involves register reads, while
5314  *	data interrupts typically don't involve any MMIOs.
5315  */
5316 bool t4_slow_intr_handler(struct adapter *adap, bool verbose)
5317 {
5318 	static const struct intr_details pl_intr_details[] = {
5319 		{ F_MC1, "MC1" },
5320 		{ F_UART, "UART" },
5321 		{ F_ULP_TX, "ULP TX" },
5322 		{ F_SGE, "SGE" },
5323 		{ F_HMA, "HMA" },
5324 		{ F_CPL_SWITCH, "CPL Switch" },
5325 		{ F_ULP_RX, "ULP RX" },
5326 		{ F_PM_RX, "PM RX" },
5327 		{ F_PM_TX, "PM TX" },
5328 		{ F_MA, "MA" },
5329 		{ F_TP, "TP" },
5330 		{ F_LE, "LE" },
5331 		{ F_EDC1, "EDC1" },
5332 		{ F_EDC0, "EDC0" },
5333 		{ F_MC, "MC0" },
5334 		{ F_PCIE, "PCIE" },
5335 		{ F_PMU, "PMU" },
5336 		{ F_MAC3, "MAC3" },
5337 		{ F_MAC2, "MAC2" },
5338 		{ F_MAC1, "MAC1" },
5339 		{ F_MAC0, "MAC0" },
5340 		{ F_SMB, "SMB" },
5341 		{ F_SF, "SF" },
5342 		{ F_PL, "PL" },
5343 		{ F_NCSI, "NC-SI" },
5344 		{ F_MPS, "MPS" },
5345 		{ F_MI, "MI" },
5346 		{ F_DBG, "DBG" },
5347 		{ F_I2CM, "I2CM" },
5348 		{ F_CIM, "CIM" },
5349 		{ 0 }
5350 	};
5351 	static const struct intr_info pl_perr_cause = {
5352 		.name = "PL_PERR_CAUSE",
5353 		.cause_reg = A_PL_PERR_CAUSE,
5354 		.enable_reg = A_PL_PERR_ENABLE,
5355 		.fatal = 0xffffffff,
5356 		.flags = 0,
5357 		.details = pl_intr_details,
5358 		.actions = NULL,
5359 	};
5360 	static const struct intr_action pl_intr_action[] = {
5361 		{ F_MC1, MEM_MC1, mem_intr_handler },
5362 		{ F_ULP_TX, -1, ulptx_intr_handler },
5363 		{ F_SGE, -1, sge_intr_handler },
5364 		{ F_CPL_SWITCH, -1, cplsw_intr_handler },
5365 		{ F_ULP_RX, -1, ulprx_intr_handler },
5366 		{ F_PM_RX, -1, pmrx_intr_handler},
5367 		{ F_PM_TX, -1, pmtx_intr_handler},
5368 		{ F_MA, -1, ma_intr_handler },
5369 		{ F_TP, -1, tp_intr_handler },
5370 		{ F_LE, -1, le_intr_handler },
5371 		{ F_EDC1, MEM_EDC1, mem_intr_handler },
5372 		{ F_EDC0, MEM_EDC0, mem_intr_handler },
5373 		{ F_MC0, MEM_MC0, mem_intr_handler },
5374 		{ F_PCIE, -1, pcie_intr_handler },
5375 		{ F_MAC3, 3, mac_intr_handler},
5376 		{ F_MAC2, 2, mac_intr_handler},
5377 		{ F_MAC1, 1, mac_intr_handler},
5378 		{ F_MAC0, 0, mac_intr_handler},
5379 		{ F_SMB, -1, smb_intr_handler},
5380 		{ F_PL, -1, plpl_intr_handler },
5381 		{ F_NCSI, -1, ncsi_intr_handler},
5382 		{ F_MPS, -1, mps_intr_handler },
5383 		{ F_CIM, -1, cim_intr_handler },
5384 		{ 0 }
5385 	};
5386 	static const struct intr_info pl_intr_info = {
5387 		.name = "PL_INT_CAUSE",
5388 		.cause_reg = A_PL_INT_CAUSE,
5389 		.enable_reg = A_PL_INT_ENABLE,
5390 		.fatal = 0,
5391 		.flags = 0,
5392 		.details = pl_intr_details,
5393 		.actions = pl_intr_action,
5394 	};
5395 	u32 perr;
5396 
5397 	perr = t4_read_reg(adap, pl_perr_cause.cause_reg);
5398 	if (verbose || perr != 0) {
5399 		t4_show_intr_info(adap, &pl_perr_cause, perr);
5400 		if (perr != 0)
5401 			t4_write_reg(adap, pl_perr_cause.cause_reg, perr);
5402 		if (verbose)
5403 			perr |= t4_read_reg(adap, pl_intr_info.enable_reg);
5404 	}
5405 
5406 	return (t4_handle_intr(adap, &pl_intr_info, perr, verbose));
5407 }
5408 
5409 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
5410 
5411 /**
5412  *	t4_intr_enable - enable interrupts
5413  *	@adapter: the adapter whose interrupts should be enabled
5414  *
5415  *	Enable PF-specific interrupts for the calling function and the top-level
5416  *	interrupt concentrator for global interrupts.  Interrupts are already
5417  *	enabled at each module,	here we just enable the roots of the interrupt
5418  *	hierarchies.
5419  *
5420  *	Note: this function should be called only when the driver manages
5421  *	non PF-specific interrupts from the various HW modules.  Only one PCI
5422  *	function at a time should be doing this.
5423  */
5424 void t4_intr_enable(struct adapter *adap)
5425 {
5426 	u32 val = 0;
5427 
5428 	if (chip_id(adap) <= CHELSIO_T5)
5429 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
5430 	else
5431 		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
5432 	val |= F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC |
5433 	    F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 |
5434 	    F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 |
5435 	    F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
5436 	    F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_DBFIFO_LP_INT |
5437 	    F_EGRESS_SIZE_ERR;
5438 	t4_set_reg_field(adap, A_SGE_INT_ENABLE3, val, val);
5439 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
5440 	t4_set_reg_field(adap, A_PL_INT_ENABLE, F_SF | F_I2CM, 0);
5441 	t4_set_reg_field(adap, A_PL_INT_MAP0, 0, 1 << adap->pf);
5442 }
5443 
5444 /**
5445  *	t4_intr_disable - disable interrupts
5446  *	@adap: the adapter whose interrupts should be disabled
5447  *
5448  *	Disable interrupts.  We only disable the top-level interrupt
5449  *	concentrators.  The caller must be a PCI function managing global
5450  *	interrupts.
5451  */
5452 void t4_intr_disable(struct adapter *adap)
5453 {
5454 
5455 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
5456 	t4_set_reg_field(adap, A_PL_INT_MAP0, 1 << adap->pf, 0);
5457 }
5458 
5459 /**
5460  *	t4_intr_clear - clear all interrupts
5461  *	@adap: the adapter whose interrupts should be cleared
5462  *
5463  *	Clears all interrupts.  The caller must be a PCI function managing
5464  *	global interrupts.
5465  */
5466 void t4_intr_clear(struct adapter *adap)
5467 {
5468 	static const u32 cause_reg[] = {
5469 		A_CIM_HOST_INT_CAUSE,
5470 		A_CIM_HOST_UPACC_INT_CAUSE,
5471 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
5472 		A_CPL_INTR_CAUSE,
5473 		EDC_REG(A_EDC_INT_CAUSE, 0), EDC_REG(A_EDC_INT_CAUSE, 1),
5474 		A_LE_DB_INT_CAUSE,
5475 		A_MA_INT_WRAP_STATUS,
5476 		A_MA_PARITY_ERROR_STATUS1,
5477 		A_MA_INT_CAUSE,
5478 		A_MPS_CLS_INT_CAUSE,
5479 		A_MPS_RX_PERR_INT_CAUSE,
5480 		A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
5481 		A_MPS_STAT_PERR_INT_CAUSE_SRAM,
5482 		A_MPS_TRC_INT_CAUSE,
5483 		A_MPS_TX_INT_CAUSE,
5484 		A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
5485 		A_NCSI_INT_CAUSE,
5486 		A_PCIE_INT_CAUSE,
5487 		A_PCIE_NONFAT_ERR,
5488 		A_PL_PL_INT_CAUSE,
5489 		A_PM_RX_INT_CAUSE,
5490 		A_PM_TX_INT_CAUSE,
5491 		A_SGE_INT_CAUSE1,
5492 		A_SGE_INT_CAUSE2,
5493 		A_SGE_INT_CAUSE3,
5494 		A_SGE_INT_CAUSE4,
5495 		A_SMB_INT_CAUSE,
5496 		A_TP_INT_CAUSE,
5497 		A_ULP_RX_INT_CAUSE,
5498 		A_ULP_RX_INT_CAUSE_2,
5499 		A_ULP_TX_INT_CAUSE,
5500 		A_ULP_TX_INT_CAUSE_2,
5501 
5502 		MYPF_REG(A_PL_PF_INT_CAUSE),
5503 	};
5504 	int i;
5505 	const int nchan = adap->chip_params->nchan;
5506 
5507 	for (i = 0; i < ARRAY_SIZE(cause_reg); i++)
5508 		t4_write_reg(adap, cause_reg[i], 0xffffffff);
5509 
5510 	if (is_t4(adap)) {
5511 		t4_write_reg(adap, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
5512 		    0xffffffff);
5513 		t4_write_reg(adap, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
5514 		    0xffffffff);
5515 		t4_write_reg(adap, A_MC_INT_CAUSE, 0xffffffff);
5516 		for (i = 0; i < nchan; i++) {
5517 			t4_write_reg(adap, PORT_REG(i, A_XGMAC_PORT_INT_CAUSE),
5518 			    0xffffffff);
5519 		}
5520 	}
5521 	if (chip_id(adap) >= CHELSIO_T5) {
5522 		t4_write_reg(adap, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
5523 		t4_write_reg(adap, A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 0xffffffff);
5524 		t4_write_reg(adap, A_SGE_INT_CAUSE5, 0xffffffff);
5525 		t4_write_reg(adap, A_MC_P_INT_CAUSE, 0xffffffff);
5526 		if (is_t5(adap)) {
5527 			t4_write_reg(adap, MC_REG(A_MC_P_INT_CAUSE, 1),
5528 			    0xffffffff);
5529 		}
5530 		for (i = 0; i < nchan; i++) {
5531 			t4_write_reg(adap, T5_PORT_REG(i,
5532 			    A_MAC_PORT_PERR_INT_CAUSE), 0xffffffff);
5533 			if (chip_id(adap) > CHELSIO_T5) {
5534 				t4_write_reg(adap, T5_PORT_REG(i,
5535 				    A_MAC_PORT_PERR_INT_CAUSE_100G),
5536 				    0xffffffff);
5537 			}
5538 			t4_write_reg(adap, T5_PORT_REG(i, A_MAC_PORT_INT_CAUSE),
5539 			    0xffffffff);
5540 		}
5541 	}
5542 	if (chip_id(adap) >= CHELSIO_T6) {
5543 		t4_write_reg(adap, A_SGE_INT_CAUSE6, 0xffffffff);
5544 	}
5545 
5546 	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
5547 	t4_write_reg(adap, A_PL_PERR_CAUSE, 0xffffffff);
5548 	t4_write_reg(adap, A_PL_INT_CAUSE, 0xffffffff);
5549 	(void) t4_read_reg(adap, A_PL_INT_CAUSE);          /* flush */
5550 }
5551 
5552 /**
5553  *	hash_mac_addr - return the hash value of a MAC address
5554  *	@addr: the 48-bit Ethernet MAC address
5555  *
5556  *	Hashes a MAC address according to the hash function used by HW inexact
5557  *	(hash) address matching.
5558  */
5559 static int hash_mac_addr(const u8 *addr)
5560 {
5561 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
5562 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
5563 	a ^= b;
5564 	a ^= (a >> 12);
5565 	a ^= (a >> 6);
5566 	return a & 0x3f;
5567 }
5568 
5569 /**
5570  *	t4_config_rss_range - configure a portion of the RSS mapping table
5571  *	@adapter: the adapter
5572  *	@mbox: mbox to use for the FW command
5573  *	@viid: virtual interface whose RSS subtable is to be written
5574  *	@start: start entry in the table to write
5575  *	@n: how many table entries to write
5576  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
5577  *	@nrspq: number of values in @rspq
5578  *
5579  *	Programs the selected part of the VI's RSS mapping table with the
5580  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5581  *	until the full table range is populated.
5582  *
5583  *	The caller must ensure the values in @rspq are in the range allowed for
5584  *	@viid.
5585  */
5586 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5587 			int start, int n, const u16 *rspq, unsigned int nrspq)
5588 {
5589 	int ret;
5590 	const u16 *rsp = rspq;
5591 	const u16 *rsp_end = rspq + nrspq;
5592 	struct fw_rss_ind_tbl_cmd cmd;
5593 
5594 	memset(&cmd, 0, sizeof(cmd));
5595 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
5596 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5597 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
5598 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5599 
5600 	/*
5601 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
5602 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
5603 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
5604 	 * reserved.
5605 	 */
5606 	while (n > 0) {
5607 		int nq = min(n, 32);
5608 		int nq_packed = 0;
5609 		__be32 *qp = &cmd.iq0_to_iq2;
5610 
5611 		/*
5612 		 * Set up the firmware RSS command header to send the next
5613 		 * "nq" Ingress Queue IDs to the firmware.
5614 		 */
5615 		cmd.niqid = cpu_to_be16(nq);
5616 		cmd.startidx = cpu_to_be16(start);
5617 
5618 		/*
5619 		 * "nq" more done for the start of the next loop.
5620 		 */
5621 		start += nq;
5622 		n -= nq;
5623 
5624 		/*
5625 		 * While there are still Ingress Queue IDs to stuff into the
5626 		 * current firmware RSS command, retrieve them from the
5627 		 * Ingress Queue ID array and insert them into the command.
5628 		 */
5629 		while (nq > 0) {
5630 			/*
5631 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
5632 			 * around the Ingress Queue ID array if necessary) and
5633 			 * insert them into the firmware RSS command at the
5634 			 * current 3-tuple position within the commad.
5635 			 */
5636 			u16 qbuf[3];
5637 			u16 *qbp = qbuf;
5638 			int nqbuf = min(3, nq);
5639 
5640 			nq -= nqbuf;
5641 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
5642 			while (nqbuf && nq_packed < 32) {
5643 				nqbuf--;
5644 				nq_packed++;
5645 				*qbp++ = *rsp++;
5646 				if (rsp >= rsp_end)
5647 					rsp = rspq;
5648 			}
5649 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
5650 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
5651 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
5652 		}
5653 
5654 		/*
5655 		 * Send this portion of the RRS table update to the firmware;
5656 		 * bail out on any errors.
5657 		 */
5658 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5659 		if (ret)
5660 			return ret;
5661 	}
5662 	return 0;
5663 }
5664 
5665 /**
5666  *	t4_config_glbl_rss - configure the global RSS mode
5667  *	@adapter: the adapter
5668  *	@mbox: mbox to use for the FW command
5669  *	@mode: global RSS mode
5670  *	@flags: mode-specific flags
5671  *
5672  *	Sets the global RSS mode.
5673  */
5674 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5675 		       unsigned int flags)
5676 {
5677 	struct fw_rss_glb_config_cmd c;
5678 
5679 	memset(&c, 0, sizeof(c));
5680 	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
5681 				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5682 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5683 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5684 		c.u.manual.mode_pkd =
5685 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5686 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5687 		c.u.basicvirtual.mode_keymode =
5688 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5689 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5690 	} else
5691 		return -EINVAL;
5692 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5693 }
5694 
5695 /**
5696  *	t4_config_vi_rss - configure per VI RSS settings
5697  *	@adapter: the adapter
5698  *	@mbox: mbox to use for the FW command
5699  *	@viid: the VI id
5700  *	@flags: RSS flags
5701  *	@defq: id of the default RSS queue for the VI.
5702  *	@skeyidx: RSS secret key table index for non-global mode
5703  *	@skey: RSS vf_scramble key for VI.
5704  *
5705  *	Configures VI-specific RSS properties.
5706  */
5707 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5708 		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
5709 		     unsigned int skey)
5710 {
5711 	struct fw_rss_vi_config_cmd c;
5712 
5713 	memset(&c, 0, sizeof(c));
5714 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
5715 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5716 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
5717 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5718 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5719 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
5720 	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
5721 					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
5722 	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
5723 
5724 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5725 }
5726 
5727 /* Read an RSS table row */
5728 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5729 {
5730 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
5731 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
5732 				   5, 0, val);
5733 }
5734 
5735 /**
5736  *	t4_read_rss - read the contents of the RSS mapping table
5737  *	@adapter: the adapter
5738  *	@map: holds the contents of the RSS mapping table
5739  *
5740  *	Reads the contents of the RSS hash->queue mapping table.
5741  */
5742 int t4_read_rss(struct adapter *adapter, u16 *map)
5743 {
5744 	u32 val;
5745 	int i, ret;
5746 	int rss_nentries = adapter->chip_params->rss_nentries;
5747 
5748 	for (i = 0; i < rss_nentries / 2; ++i) {
5749 		ret = rd_rss_row(adapter, i, &val);
5750 		if (ret)
5751 			return ret;
5752 		*map++ = G_LKPTBLQUEUE0(val);
5753 		*map++ = G_LKPTBLQUEUE1(val);
5754 	}
5755 	return 0;
5756 }
5757 
5758 /**
5759  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5760  * @adap: the adapter
5761  * @cmd: TP fw ldst address space type
5762  * @vals: where the indirect register values are stored/written
5763  * @nregs: how many indirect registers to read/write
5764  * @start_idx: index of first indirect register to read/write
5765  * @rw: Read (1) or Write (0)
5766  * @sleep_ok: if true we may sleep while awaiting command completion
5767  *
5768  * Access TP indirect registers through LDST
5769  **/
5770 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5771 			    unsigned int nregs, unsigned int start_index,
5772 			    unsigned int rw, bool sleep_ok)
5773 {
5774 	int ret = 0;
5775 	unsigned int i;
5776 	struct fw_ldst_cmd c;
5777 
5778 	for (i = 0; i < nregs; i++) {
5779 		memset(&c, 0, sizeof(c));
5780 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5781 						F_FW_CMD_REQUEST |
5782 						(rw ? F_FW_CMD_READ :
5783 						      F_FW_CMD_WRITE) |
5784 						V_FW_LDST_CMD_ADDRSPACE(cmd));
5785 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5786 
5787 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5788 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5789 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5790 				      sleep_ok);
5791 		if (ret)
5792 			return ret;
5793 
5794 		if (rw)
5795 			vals[i] = be32_to_cpu(c.u.addrval.val);
5796 	}
5797 	return 0;
5798 }
5799 
5800 /**
5801  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5802  * @adap: the adapter
5803  * @reg_addr: Address Register
5804  * @reg_data: Data register
5805  * @buff: where the indirect register values are stored/written
5806  * @nregs: how many indirect registers to read/write
5807  * @start_index: index of first indirect register to read/write
5808  * @rw: READ(1) or WRITE(0)
5809  * @sleep_ok: if true we may sleep while awaiting command completion
5810  *
5811  * Read/Write TP indirect registers through LDST if possible.
5812  * Else, use backdoor access
5813  **/
5814 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5815 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5816 			      bool sleep_ok)
5817 {
5818 	int rc = -EINVAL;
5819 	int cmd;
5820 
5821 	switch (reg_addr) {
5822 	case A_TP_PIO_ADDR:
5823 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5824 		break;
5825 	case A_TP_TM_PIO_ADDR:
5826 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5827 		break;
5828 	case A_TP_MIB_INDEX:
5829 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5830 		break;
5831 	default:
5832 		goto indirect_access;
5833 	}
5834 
5835 	if (t4_use_ldst(adap))
5836 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5837 				      sleep_ok);
5838 
5839 indirect_access:
5840 
5841 	if (rc) {
5842 		if (rw)
5843 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5844 					 start_index);
5845 		else
5846 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5847 					  start_index);
5848 	}
5849 }
5850 
5851 /**
5852  * t4_tp_pio_read - Read TP PIO registers
5853  * @adap: the adapter
5854  * @buff: where the indirect register values are written
5855  * @nregs: how many indirect registers to read
5856  * @start_index: index of first indirect register to read
5857  * @sleep_ok: if true we may sleep while awaiting command completion
5858  *
5859  * Read TP PIO Registers
5860  **/
5861 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5862 		    u32 start_index, bool sleep_ok)
5863 {
5864 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
5865 			  start_index, 1, sleep_ok);
5866 }
5867 
5868 /**
5869  * t4_tp_pio_write - Write TP PIO registers
5870  * @adap: the adapter
5871  * @buff: where the indirect register values are stored
5872  * @nregs: how many indirect registers to write
5873  * @start_index: index of first indirect register to write
5874  * @sleep_ok: if true we may sleep while awaiting command completion
5875  *
5876  * Write TP PIO Registers
5877  **/
5878 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5879 		     u32 start_index, bool sleep_ok)
5880 {
5881 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5882 	    __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5883 }
5884 
5885 /**
5886  * t4_tp_tm_pio_read - Read TP TM PIO registers
5887  * @adap: the adapter
5888  * @buff: where the indirect register values are written
5889  * @nregs: how many indirect registers to read
5890  * @start_index: index of first indirect register to read
5891  * @sleep_ok: if true we may sleep while awaiting command completion
5892  *
5893  * Read TP TM PIO Registers
5894  **/
5895 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5896 		       u32 start_index, bool sleep_ok)
5897 {
5898 	t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5899 			  nregs, start_index, 1, sleep_ok);
5900 }
5901 
5902 /**
5903  * t4_tp_mib_read - Read TP MIB registers
5904  * @adap: the adapter
5905  * @buff: where the indirect register values are written
5906  * @nregs: how many indirect registers to read
5907  * @start_index: index of first indirect register to read
5908  * @sleep_ok: if true we may sleep while awaiting command completion
5909  *
5910  * Read TP MIB Registers
5911  **/
5912 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5913 		    bool sleep_ok)
5914 {
5915 	t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5916 			  start_index, 1, sleep_ok);
5917 }
5918 
5919 /**
5920  *	t4_read_rss_key - read the global RSS key
5921  *	@adap: the adapter
5922  *	@key: 10-entry array holding the 320-bit RSS key
5923  * 	@sleep_ok: if true we may sleep while awaiting command completion
5924  *
5925  *	Reads the global 320-bit RSS key.
5926  */
5927 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5928 {
5929 	t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5930 }
5931 
5932 /**
5933  *	t4_write_rss_key - program one of the RSS keys
5934  *	@adap: the adapter
5935  *	@key: 10-entry array holding the 320-bit RSS key
5936  *	@idx: which RSS key to write
5937  * 	@sleep_ok: if true we may sleep while awaiting command completion
5938  *
5939  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5940  *	0..15 the corresponding entry in the RSS key table is written,
5941  *	otherwise the global RSS key is written.
5942  */
5943 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5944 		      bool sleep_ok)
5945 {
5946 	u8 rss_key_addr_cnt = 16;
5947 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5948 
5949 	/*
5950 	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5951 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5952 	 * as index[5:4](upper 2) into key table
5953 	 */
5954 	if ((chip_id(adap) > CHELSIO_T5) &&
5955 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5956 		rss_key_addr_cnt = 32;
5957 
5958 	t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5959 
5960 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5961 		if (rss_key_addr_cnt > 16)
5962 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5963 				     vrt | V_KEYWRADDRX(idx >> 4) |
5964 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
5965 		else
5966 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5967 				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5968 	}
5969 }
5970 
5971 /**
5972  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5973  *	@adapter: the adapter
5974  *	@index: the entry in the PF RSS table to read
5975  *	@valp: where to store the returned value
5976  * 	@sleep_ok: if true we may sleep while awaiting command completion
5977  *
5978  *	Reads the PF RSS Configuration Table at the specified index and returns
5979  *	the value found there.
5980  */
5981 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5982 			   u32 *valp, bool sleep_ok)
5983 {
5984 	t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5985 }
5986 
5987 /**
5988  *	t4_write_rss_pf_config - write PF RSS Configuration Table
5989  *	@adapter: the adapter
5990  *	@index: the entry in the VF RSS table to read
5991  *	@val: the value to store
5992  * 	@sleep_ok: if true we may sleep while awaiting command completion
5993  *
5994  *	Writes the PF RSS Configuration Table at the specified index with the
5995  *	specified value.
5996  */
5997 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5998 			    u32 val, bool sleep_ok)
5999 {
6000 	t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
6001 			sleep_ok);
6002 }
6003 
6004 /**
6005  *	t4_read_rss_vf_config - read VF RSS Configuration Table
6006  *	@adapter: the adapter
6007  *	@index: the entry in the VF RSS table to read
6008  *	@vfl: where to store the returned VFL
6009  *	@vfh: where to store the returned VFH
6010  * 	@sleep_ok: if true we may sleep while awaiting command completion
6011  *
6012  *	Reads the VF RSS Configuration Table at the specified index and returns
6013  *	the (VFL, VFH) values found there.
6014  */
6015 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
6016 			   u32 *vfl, u32 *vfh, bool sleep_ok)
6017 {
6018 	u32 vrt, mask, data;
6019 
6020 	if (chip_id(adapter) <= CHELSIO_T5) {
6021 		mask = V_VFWRADDR(M_VFWRADDR);
6022 		data = V_VFWRADDR(index);
6023 	} else {
6024 		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
6025 		 data = V_T6_VFWRADDR(index);
6026 	}
6027 	/*
6028 	 * Request that the index'th VF Table values be read into VFL/VFH.
6029 	 */
6030 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
6031 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
6032 	vrt |= data | F_VFRDEN;
6033 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
6034 
6035 	/*
6036 	 * Grab the VFL/VFH values ...
6037 	 */
6038 	t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
6039 	t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
6040 }
6041 
6042 /**
6043  *	t4_write_rss_vf_config - write VF RSS Configuration Table
6044  *
6045  *	@adapter: the adapter
6046  *	@index: the entry in the VF RSS table to write
6047  *	@vfl: the VFL to store
6048  *	@vfh: the VFH to store
6049  *
6050  *	Writes the VF RSS Configuration Table at the specified index with the
6051  *	specified (VFL, VFH) values.
6052  */
6053 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
6054 			    u32 vfl, u32 vfh, bool sleep_ok)
6055 {
6056 	u32 vrt, mask, data;
6057 
6058 	if (chip_id(adapter) <= CHELSIO_T5) {
6059 		mask = V_VFWRADDR(M_VFWRADDR);
6060 		data = V_VFWRADDR(index);
6061 	} else {
6062 		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
6063 		data = V_T6_VFWRADDR(index);
6064 	}
6065 
6066 	/*
6067 	 * Load up VFL/VFH with the values to be written ...
6068 	 */
6069 	t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
6070 	t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
6071 
6072 	/*
6073 	 * Write the VFL/VFH into the VF Table at index'th location.
6074 	 */
6075 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
6076 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
6077 	vrt |= data | F_VFRDEN;
6078 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
6079 }
6080 
6081 /**
6082  *	t4_read_rss_pf_map - read PF RSS Map
6083  *	@adapter: the adapter
6084  * 	@sleep_ok: if true we may sleep while awaiting command completion
6085  *
6086  *	Reads the PF RSS Map register and returns its value.
6087  */
6088 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
6089 {
6090 	u32 pfmap;
6091 
6092 	t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6093 
6094 	return pfmap;
6095 }
6096 
6097 /**
6098  *	t4_write_rss_pf_map - write PF RSS Map
6099  *	@adapter: the adapter
6100  *	@pfmap: PF RSS Map value
6101  *
6102  *	Writes the specified value to the PF RSS Map register.
6103  */
6104 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
6105 {
6106 	t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6107 }
6108 
6109 /**
6110  *	t4_read_rss_pf_mask - read PF RSS Mask
6111  *	@adapter: the adapter
6112  * 	@sleep_ok: if true we may sleep while awaiting command completion
6113  *
6114  *	Reads the PF RSS Mask register and returns its value.
6115  */
6116 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
6117 {
6118 	u32 pfmask;
6119 
6120 	t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6121 
6122 	return pfmask;
6123 }
6124 
6125 /**
6126  *	t4_write_rss_pf_mask - write PF RSS Mask
6127  *	@adapter: the adapter
6128  *	@pfmask: PF RSS Mask value
6129  *
6130  *	Writes the specified value to the PF RSS Mask register.
6131  */
6132 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
6133 {
6134 	t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6135 }
6136 
6137 /**
6138  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
6139  *	@adap: the adapter
6140  *	@v4: holds the TCP/IP counter values
6141  *	@v6: holds the TCP/IPv6 counter values
6142  * 	@sleep_ok: if true we may sleep while awaiting command completion
6143  *
6144  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
6145  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
6146  */
6147 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
6148 			 struct tp_tcp_stats *v6, bool sleep_ok)
6149 {
6150 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
6151 
6152 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
6153 #define STAT(x)     val[STAT_IDX(x)]
6154 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
6155 
6156 	if (v4) {
6157 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6158 			       A_TP_MIB_TCP_OUT_RST, sleep_ok);
6159 		v4->tcp_out_rsts = STAT(OUT_RST);
6160 		v4->tcp_in_segs  = STAT64(IN_SEG);
6161 		v4->tcp_out_segs = STAT64(OUT_SEG);
6162 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
6163 	}
6164 	if (v6) {
6165 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6166 			       A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
6167 		v6->tcp_out_rsts = STAT(OUT_RST);
6168 		v6->tcp_in_segs  = STAT64(IN_SEG);
6169 		v6->tcp_out_segs = STAT64(OUT_SEG);
6170 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
6171 	}
6172 #undef STAT64
6173 #undef STAT
6174 #undef STAT_IDX
6175 }
6176 
6177 /**
6178  *	t4_tp_get_err_stats - read TP's error MIB counters
6179  *	@adap: the adapter
6180  *	@st: holds the counter values
6181  * 	@sleep_ok: if true we may sleep while awaiting command completion
6182  *
6183  *	Returns the values of TP's error counters.
6184  */
6185 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
6186 			 bool sleep_ok)
6187 {
6188 	int nchan = adap->chip_params->nchan;
6189 
6190 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
6191 		       sleep_ok);
6192 
6193 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
6194 		       sleep_ok);
6195 
6196 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
6197 		       sleep_ok);
6198 
6199 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
6200 		       A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
6201 
6202 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
6203 		       A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
6204 
6205 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
6206 		       sleep_ok);
6207 
6208 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
6209 		       A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
6210 
6211 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
6212 		       A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
6213 
6214 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
6215 		       sleep_ok);
6216 }
6217 
6218 /**
6219  *	t4_tp_get_err_stats - read TP's error MIB counters
6220  *	@adap: the adapter
6221  *	@st: holds the counter values
6222  * 	@sleep_ok: if true we may sleep while awaiting command completion
6223  *
6224  *	Returns the values of TP's error counters.
6225  */
6226 void t4_tp_get_tnl_stats(struct adapter *adap, struct tp_tnl_stats *st,
6227 			 bool sleep_ok)
6228 {
6229 	int nchan = adap->chip_params->nchan;
6230 
6231 	t4_tp_mib_read(adap, st->out_pkt, nchan, A_TP_MIB_TNL_OUT_PKT_0,
6232 		       sleep_ok);
6233 	t4_tp_mib_read(adap, st->in_pkt, nchan, A_TP_MIB_TNL_IN_PKT_0,
6234 		       sleep_ok);
6235 }
6236 
6237 /**
6238  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
6239  *	@adap: the adapter
6240  *	@st: holds the counter values
6241  *
6242  *	Returns the values of TP's proxy counters.
6243  */
6244 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
6245     bool sleep_ok)
6246 {
6247 	int nchan = adap->chip_params->nchan;
6248 
6249 	t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
6250 }
6251 
6252 /**
6253  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
6254  *	@adap: the adapter
6255  *	@st: holds the counter values
6256  * 	@sleep_ok: if true we may sleep while awaiting command completion
6257  *
6258  *	Returns the values of TP's CPL counters.
6259  */
6260 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
6261 			 bool sleep_ok)
6262 {
6263 	int nchan = adap->chip_params->nchan;
6264 
6265 	t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
6266 
6267 	t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
6268 }
6269 
6270 /**
6271  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
6272  *	@adap: the adapter
6273  *	@st: holds the counter values
6274  *
6275  *	Returns the values of TP's RDMA counters.
6276  */
6277 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
6278 			  bool sleep_ok)
6279 {
6280 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
6281 		       sleep_ok);
6282 }
6283 
6284 /**
6285  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
6286  *	@adap: the adapter
6287  *	@idx: the port index
6288  *	@st: holds the counter values
6289  * 	@sleep_ok: if true we may sleep while awaiting command completion
6290  *
6291  *	Returns the values of TP's FCoE counters for the selected port.
6292  */
6293 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
6294 		       struct tp_fcoe_stats *st, bool sleep_ok)
6295 {
6296 	u32 val[2];
6297 
6298 	t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
6299 		       sleep_ok);
6300 
6301 	t4_tp_mib_read(adap, &st->frames_drop, 1,
6302 		       A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
6303 
6304 	t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
6305 		       sleep_ok);
6306 
6307 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
6308 }
6309 
6310 /**
6311  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
6312  *	@adap: the adapter
6313  *	@st: holds the counter values
6314  * 	@sleep_ok: if true we may sleep while awaiting command completion
6315  *
6316  *	Returns the values of TP's counters for non-TCP directly-placed packets.
6317  */
6318 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
6319 		      bool sleep_ok)
6320 {
6321 	u32 val[4];
6322 
6323 	t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
6324 
6325 	st->frames = val[0];
6326 	st->drops = val[1];
6327 	st->octets = ((u64)val[2] << 32) | val[3];
6328 }
6329 
6330 /**
6331  *	t4_tp_get_tid_stats - read TP's tid MIB counters.
6332  *	@adap: the adapter
6333  *	@st: holds the counter values
6334  * 	@sleep_ok: if true we may sleep while awaiting command completion
6335  *
6336  *	Returns the values of TP's counters for tids.
6337  */
6338 void t4_tp_get_tid_stats(struct adapter *adap, struct tp_tid_stats *st,
6339 		      bool sleep_ok)
6340 {
6341 
6342 	t4_tp_mib_read(adap, &st->del, 4, A_TP_MIB_TID_DEL, sleep_ok);
6343 }
6344 
6345 /**
6346  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
6347  *	@adap: the adapter
6348  *	@mtus: where to store the MTU values
6349  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
6350  *
6351  *	Reads the HW path MTU table.
6352  */
6353 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
6354 {
6355 	u32 v;
6356 	int i;
6357 
6358 	for (i = 0; i < NMTUS; ++i) {
6359 		t4_write_reg(adap, A_TP_MTU_TABLE,
6360 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
6361 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
6362 		mtus[i] = G_MTUVALUE(v);
6363 		if (mtu_log)
6364 			mtu_log[i] = G_MTUWIDTH(v);
6365 	}
6366 }
6367 
6368 /**
6369  *	t4_read_cong_tbl - reads the congestion control table
6370  *	@adap: the adapter
6371  *	@incr: where to store the alpha values
6372  *
6373  *	Reads the additive increments programmed into the HW congestion
6374  *	control table.
6375  */
6376 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
6377 {
6378 	unsigned int mtu, w;
6379 
6380 	for (mtu = 0; mtu < NMTUS; ++mtu)
6381 		for (w = 0; w < NCCTRL_WIN; ++w) {
6382 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
6383 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
6384 			incr[mtu][w] = (u16)t4_read_reg(adap,
6385 						A_TP_CCTRL_TABLE) & 0x1fff;
6386 		}
6387 }
6388 
6389 /**
6390  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
6391  *	@adap: the adapter
6392  *	@addr: the indirect TP register address
6393  *	@mask: specifies the field within the register to modify
6394  *	@val: new value for the field
6395  *
6396  *	Sets a field of an indirect TP register to the given value.
6397  */
6398 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
6399 			    unsigned int mask, unsigned int val)
6400 {
6401 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
6402 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
6403 	t4_write_reg(adap, A_TP_PIO_DATA, val);
6404 }
6405 
6406 /**
6407  *	init_cong_ctrl - initialize congestion control parameters
6408  *	@a: the alpha values for congestion control
6409  *	@b: the beta values for congestion control
6410  *
6411  *	Initialize the congestion control parameters.
6412  */
6413 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
6414 {
6415 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
6416 	a[9] = 2;
6417 	a[10] = 3;
6418 	a[11] = 4;
6419 	a[12] = 5;
6420 	a[13] = 6;
6421 	a[14] = 7;
6422 	a[15] = 8;
6423 	a[16] = 9;
6424 	a[17] = 10;
6425 	a[18] = 14;
6426 	a[19] = 17;
6427 	a[20] = 21;
6428 	a[21] = 25;
6429 	a[22] = 30;
6430 	a[23] = 35;
6431 	a[24] = 45;
6432 	a[25] = 60;
6433 	a[26] = 80;
6434 	a[27] = 100;
6435 	a[28] = 200;
6436 	a[29] = 300;
6437 	a[30] = 400;
6438 	a[31] = 500;
6439 
6440 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
6441 	b[9] = b[10] = 1;
6442 	b[11] = b[12] = 2;
6443 	b[13] = b[14] = b[15] = b[16] = 3;
6444 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
6445 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
6446 	b[28] = b[29] = 6;
6447 	b[30] = b[31] = 7;
6448 }
6449 
6450 /* The minimum additive increment value for the congestion control table */
6451 #define CC_MIN_INCR 2U
6452 
6453 /**
6454  *	t4_load_mtus - write the MTU and congestion control HW tables
6455  *	@adap: the adapter
6456  *	@mtus: the values for the MTU table
6457  *	@alpha: the values for the congestion control alpha parameter
6458  *	@beta: the values for the congestion control beta parameter
6459  *
6460  *	Write the HW MTU table with the supplied MTUs and the high-speed
6461  *	congestion control table with the supplied alpha, beta, and MTUs.
6462  *	We write the two tables together because the additive increments
6463  *	depend on the MTUs.
6464  */
6465 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
6466 		  const unsigned short *alpha, const unsigned short *beta)
6467 {
6468 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
6469 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
6470 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
6471 		28672, 40960, 57344, 81920, 114688, 163840, 229376
6472 	};
6473 
6474 	unsigned int i, w;
6475 
6476 	for (i = 0; i < NMTUS; ++i) {
6477 		unsigned int mtu = mtus[i];
6478 		unsigned int log2 = fls(mtu);
6479 
6480 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
6481 			log2--;
6482 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
6483 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
6484 
6485 		for (w = 0; w < NCCTRL_WIN; ++w) {
6486 			unsigned int inc;
6487 
6488 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
6489 				  CC_MIN_INCR);
6490 
6491 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
6492 				     (w << 16) | (beta[w] << 13) | inc);
6493 		}
6494 	}
6495 }
6496 
6497 /**
6498  *	t4_set_pace_tbl - set the pace table
6499  *	@adap: the adapter
6500  *	@pace_vals: the pace values in microseconds
6501  *	@start: index of the first entry in the HW pace table to set
6502  *	@n: how many entries to set
6503  *
6504  *	Sets (a subset of the) HW pace table.
6505  */
6506 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
6507 		     unsigned int start, unsigned int n)
6508 {
6509 	unsigned int vals[NTX_SCHED], i;
6510 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
6511 
6512 	if (n > NTX_SCHED)
6513 	    return -ERANGE;
6514 
6515 	/* convert values from us to dack ticks, rounding to closest value */
6516 	for (i = 0; i < n; i++, pace_vals++) {
6517 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
6518 		if (vals[i] > 0x7ff)
6519 			return -ERANGE;
6520 		if (*pace_vals && vals[i] == 0)
6521 			return -ERANGE;
6522 	}
6523 	for (i = 0; i < n; i++, start++)
6524 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
6525 	return 0;
6526 }
6527 
6528 /**
6529  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
6530  *	@adap: the adapter
6531  *	@kbps: target rate in Kbps
6532  *	@sched: the scheduler index
6533  *
6534  *	Configure a Tx HW scheduler for the target rate.
6535  */
6536 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
6537 {
6538 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
6539 	unsigned int clk = adap->params.vpd.cclk * 1000;
6540 	unsigned int selected_cpt = 0, selected_bpt = 0;
6541 
6542 	if (kbps > 0) {
6543 		kbps *= 125;     /* -> bytes */
6544 		for (cpt = 1; cpt <= 255; cpt++) {
6545 			tps = clk / cpt;
6546 			bpt = (kbps + tps / 2) / tps;
6547 			if (bpt > 0 && bpt <= 255) {
6548 				v = bpt * tps;
6549 				delta = v >= kbps ? v - kbps : kbps - v;
6550 				if (delta < mindelta) {
6551 					mindelta = delta;
6552 					selected_cpt = cpt;
6553 					selected_bpt = bpt;
6554 				}
6555 			} else if (selected_cpt)
6556 				break;
6557 		}
6558 		if (!selected_cpt)
6559 			return -EINVAL;
6560 	}
6561 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
6562 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
6563 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6564 	if (sched & 1)
6565 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
6566 	else
6567 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
6568 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6569 	return 0;
6570 }
6571 
6572 /**
6573  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
6574  *	@adap: the adapter
6575  *	@sched: the scheduler index
6576  *	@ipg: the interpacket delay in tenths of nanoseconds
6577  *
6578  *	Set the interpacket delay for a HW packet rate scheduler.
6579  */
6580 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
6581 {
6582 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
6583 
6584 	/* convert ipg to nearest number of core clocks */
6585 	ipg *= core_ticks_per_usec(adap);
6586 	ipg = (ipg + 5000) / 10000;
6587 	if (ipg > M_TXTIMERSEPQ0)
6588 		return -EINVAL;
6589 
6590 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
6591 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6592 	if (sched & 1)
6593 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
6594 	else
6595 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
6596 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6597 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
6598 	return 0;
6599 }
6600 
6601 /*
6602  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
6603  * clocks.  The formula is
6604  *
6605  * bytes/s = bytes256 * 256 * ClkFreq / 4096
6606  *
6607  * which is equivalent to
6608  *
6609  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
6610  */
6611 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
6612 {
6613 	u64 v = (u64)bytes256 * adap->params.vpd.cclk;
6614 
6615 	return v * 62 + v / 2;
6616 }
6617 
6618 /**
6619  *	t4_get_chan_txrate - get the current per channel Tx rates
6620  *	@adap: the adapter
6621  *	@nic_rate: rates for NIC traffic
6622  *	@ofld_rate: rates for offloaded traffic
6623  *
6624  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
6625  *	for each channel.
6626  */
6627 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
6628 {
6629 	u32 v;
6630 
6631 	v = t4_read_reg(adap, A_TP_TX_TRATE);
6632 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
6633 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
6634 	if (adap->chip_params->nchan > 2) {
6635 		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
6636 		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
6637 	}
6638 
6639 	v = t4_read_reg(adap, A_TP_TX_ORATE);
6640 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
6641 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
6642 	if (adap->chip_params->nchan > 2) {
6643 		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
6644 		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
6645 	}
6646 }
6647 
6648 /**
6649  *	t4_set_trace_filter - configure one of the tracing filters
6650  *	@adap: the adapter
6651  *	@tp: the desired trace filter parameters
6652  *	@idx: which filter to configure
6653  *	@enable: whether to enable or disable the filter
6654  *
6655  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
6656  *	it indicates that the filter is already written in the register and it
6657  *	just needs to be enabled or disabled.
6658  */
6659 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
6660     int idx, int enable)
6661 {
6662 	int i, ofst = idx * 4;
6663 	u32 data_reg, mask_reg, cfg;
6664 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
6665 
6666 	if (idx < 0 || idx >= NTRACE)
6667 		return -EINVAL;
6668 
6669 	if (tp == NULL || !enable) {
6670 		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
6671 		    enable ? en : 0);
6672 		return 0;
6673 	}
6674 
6675 	/*
6676 	 * TODO - After T4 data book is updated, specify the exact
6677 	 * section below.
6678 	 *
6679 	 * See T4 data book - MPS section for a complete description
6680 	 * of the below if..else handling of A_MPS_TRC_CFG register
6681 	 * value.
6682 	 */
6683 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
6684 	if (cfg & F_TRCMULTIFILTER) {
6685 		/*
6686 		 * If multiple tracers are enabled, then maximum
6687 		 * capture size is 2.5KB (FIFO size of a single channel)
6688 		 * minus 2 flits for CPL_TRACE_PKT header.
6689 		 */
6690 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
6691 			return -EINVAL;
6692 	} else {
6693 		/*
6694 		 * If multiple tracers are disabled, to avoid deadlocks
6695 		 * maximum packet capture size of 9600 bytes is recommended.
6696 		 * Also in this mode, only trace0 can be enabled and running.
6697 		 */
6698 		if (tp->snap_len > 9600 || idx)
6699 			return -EINVAL;
6700 	}
6701 
6702 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
6703 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
6704 	    tp->min_len > M_TFMINPKTSIZE)
6705 		return -EINVAL;
6706 
6707 	/* stop the tracer we'll be changing */
6708 	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
6709 
6710 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
6711 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
6712 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
6713 
6714 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6715 		t4_write_reg(adap, data_reg, tp->data[i]);
6716 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
6717 	}
6718 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
6719 		     V_TFCAPTUREMAX(tp->snap_len) |
6720 		     V_TFMINPKTSIZE(tp->min_len));
6721 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
6722 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
6723 		     (is_t4(adap) ?
6724 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
6725 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
6726 
6727 	return 0;
6728 }
6729 
6730 /**
6731  *	t4_get_trace_filter - query one of the tracing filters
6732  *	@adap: the adapter
6733  *	@tp: the current trace filter parameters
6734  *	@idx: which trace filter to query
6735  *	@enabled: non-zero if the filter is enabled
6736  *
6737  *	Returns the current settings of one of the HW tracing filters.
6738  */
6739 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6740 			 int *enabled)
6741 {
6742 	u32 ctla, ctlb;
6743 	int i, ofst = idx * 4;
6744 	u32 data_reg, mask_reg;
6745 
6746 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
6747 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
6748 
6749 	if (is_t4(adap)) {
6750 		*enabled = !!(ctla & F_TFEN);
6751 		tp->port =  G_TFPORT(ctla);
6752 		tp->invert = !!(ctla & F_TFINVERTMATCH);
6753 	} else {
6754 		*enabled = !!(ctla & F_T5_TFEN);
6755 		tp->port = G_T5_TFPORT(ctla);
6756 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
6757 	}
6758 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
6759 	tp->min_len = G_TFMINPKTSIZE(ctlb);
6760 	tp->skip_ofst = G_TFOFFSET(ctla);
6761 	tp->skip_len = G_TFLENGTH(ctla);
6762 
6763 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
6764 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
6765 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
6766 
6767 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6768 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6769 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6770 	}
6771 }
6772 
6773 /**
6774  *	t4_pmtx_get_stats - returns the HW stats from PMTX
6775  *	@adap: the adapter
6776  *	@cnt: where to store the count statistics
6777  *	@cycles: where to store the cycle statistics
6778  *
6779  *	Returns performance statistics from PMTX.
6780  */
6781 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6782 {
6783 	int i;
6784 	u32 data[2];
6785 
6786 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6787 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
6788 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
6789 		if (is_t4(adap))
6790 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
6791 		else {
6792 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
6793 					 A_PM_TX_DBG_DATA, data, 2,
6794 					 A_PM_TX_DBG_STAT_MSB);
6795 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6796 		}
6797 	}
6798 }
6799 
6800 /**
6801  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6802  *	@adap: the adapter
6803  *	@cnt: where to store the count statistics
6804  *	@cycles: where to store the cycle statistics
6805  *
6806  *	Returns performance statistics from PMRX.
6807  */
6808 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6809 {
6810 	int i;
6811 	u32 data[2];
6812 
6813 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6814 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
6815 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
6816 		if (is_t4(adap)) {
6817 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
6818 		} else {
6819 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
6820 					 A_PM_RX_DBG_DATA, data, 2,
6821 					 A_PM_RX_DBG_STAT_MSB);
6822 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6823 		}
6824 	}
6825 }
6826 
6827 /**
6828  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6829  *	@adap: the adapter
6830  *	@idx: the port index
6831  *
6832  *	Returns a bitmap indicating which MPS buffer groups are associated
6833  *	with the given port.  Bit i is set if buffer group i is used by the
6834  *	port.
6835  */
6836 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
6837 {
6838 	u32 n;
6839 
6840 	if (adap->params.mps_bg_map)
6841 		return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
6842 
6843 	n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6844 	if (n == 0)
6845 		return idx == 0 ? 0xf : 0;
6846 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6847 		return idx < 2 ? (3 << (2 * idx)) : 0;
6848 	return 1 << idx;
6849 }
6850 
6851 /*
6852  * TP RX e-channels associated with the port.
6853  */
6854 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
6855 {
6856 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6857 	const u32 all_chan = (1 << adap->chip_params->nchan) - 1;
6858 
6859 	if (n == 0)
6860 		return idx == 0 ? all_chan : 0;
6861 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6862 		return idx < 2 ? (3 << (2 * idx)) : 0;
6863 	return 1 << idx;
6864 }
6865 
6866 /*
6867  * TP RX c-channel associated with the port.
6868  */
6869 static unsigned int t4_get_rx_c_chan(struct adapter *adap, int idx)
6870 {
6871 	u32 param, val;
6872 	int ret;
6873 
6874 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
6875 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPCHMAP));
6876 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
6877 	if (!ret)
6878 		return (val >> (8 * idx)) & 0xff;
6879 
6880         return 0;
6881 }
6882 
6883 /**
6884  *      t4_get_port_type_description - return Port Type string description
6885  *      @port_type: firmware Port Type enumeration
6886  */
6887 const char *t4_get_port_type_description(enum fw_port_type port_type)
6888 {
6889 	static const char *const port_type_description[] = {
6890 		"Fiber_XFI",
6891 		"Fiber_XAUI",
6892 		"BT_SGMII",
6893 		"BT_XFI",
6894 		"BT_XAUI",
6895 		"KX4",
6896 		"CX4",
6897 		"KX",
6898 		"KR",
6899 		"SFP",
6900 		"BP_AP",
6901 		"BP4_AP",
6902 		"QSFP_10G",
6903 		"QSA",
6904 		"QSFP",
6905 		"BP40_BA",
6906 		"KR4_100G",
6907 		"CR4_QSFP",
6908 		"CR_QSFP",
6909 		"CR2_QSFP",
6910 		"SFP28",
6911 		"KR_SFP28",
6912 	};
6913 
6914 	if (port_type < ARRAY_SIZE(port_type_description))
6915 		return port_type_description[port_type];
6916 	return "UNKNOWN";
6917 }
6918 
6919 /**
6920  *      t4_get_port_stats_offset - collect port stats relative to a previous
6921  *				   snapshot
6922  *      @adap: The adapter
6923  *      @idx: The port
6924  *      @stats: Current stats to fill
6925  *      @offset: Previous stats snapshot
6926  */
6927 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6928 		struct port_stats *stats,
6929 		struct port_stats *offset)
6930 {
6931 	u64 *s, *o;
6932 	int i;
6933 
6934 	t4_get_port_stats(adap, idx, stats);
6935 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6936 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
6937 			i++, s++, o++)
6938 		*s -= *o;
6939 }
6940 
6941 /**
6942  *	t4_get_port_stats - collect port statistics
6943  *	@adap: the adapter
6944  *	@idx: the port index
6945  *	@p: the stats structure to fill
6946  *
6947  *	Collect statistics related to the given port from HW.
6948  */
6949 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6950 {
6951 	struct port_info *pi = adap->port[idx];
6952 	u32 bgmap = pi->mps_bg_map;
6953 	u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6954 
6955 #define GET_STAT(name) \
6956 	t4_read_reg64(adap, \
6957 	(is_t4(adap) ? PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##name##_L) : \
6958 	T5_PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##name##_L)))
6959 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6960 
6961 	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
6962 	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
6963 	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
6964 	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
6965 	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
6966 	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
6967 	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
6968 	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
6969 	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
6970 	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
6971 	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
6972 	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
6973 	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
6974 	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
6975 	p->tx_drop		= GET_STAT(TX_PORT_DROP);
6976 	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
6977 	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
6978 	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
6979 	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
6980 	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
6981 	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
6982 	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
6983 	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
6984 
6985 	if (chip_id(adap) >= CHELSIO_T5) {
6986 		if (stat_ctl & F_COUNTPAUSESTATTX) {
6987 			p->tx_frames -= p->tx_pause;
6988 			p->tx_octets -= p->tx_pause * 64;
6989 		}
6990 		if (stat_ctl & F_COUNTPAUSEMCTX)
6991 			p->tx_mcast_frames -= p->tx_pause;
6992 	}
6993 
6994 	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
6995 	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
6996 	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
6997 	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
6998 	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
6999 	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
7000 	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
7001 	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
7002 	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
7003 	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
7004 	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
7005 	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
7006 	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
7007 	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
7008 	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
7009 	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
7010 	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
7011 	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
7012 	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
7013 	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
7014 	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
7015 	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
7016 	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
7017 	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
7018 	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
7019 	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
7020 
7021 	if (pi->fcs_reg != -1)
7022 		p->rx_fcs_err = t4_read_reg64(adap, pi->fcs_reg) - pi->fcs_base;
7023 
7024 	if (chip_id(adap) >= CHELSIO_T5) {
7025 		if (stat_ctl & F_COUNTPAUSESTATRX) {
7026 			p->rx_frames -= p->rx_pause;
7027 			p->rx_octets -= p->rx_pause * 64;
7028 		}
7029 		if (stat_ctl & F_COUNTPAUSEMCRX)
7030 			p->rx_mcast_frames -= p->rx_pause;
7031 	}
7032 
7033 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
7034 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
7035 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
7036 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
7037 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
7038 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
7039 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
7040 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
7041 
7042 #undef GET_STAT
7043 #undef GET_STAT_COM
7044 }
7045 
7046 /**
7047  *	t4_get_lb_stats - collect loopback port statistics
7048  *	@adap: the adapter
7049  *	@idx: the loopback port index
7050  *	@p: the stats structure to fill
7051  *
7052  *	Return HW statistics for the given loopback port.
7053  */
7054 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
7055 {
7056 
7057 #define GET_STAT(name) \
7058 	t4_read_reg64(adap, \
7059 	(is_t4(adap) ? \
7060 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
7061 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
7062 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
7063 
7064 	p->octets	= GET_STAT(BYTES);
7065 	p->frames	= GET_STAT(FRAMES);
7066 	p->bcast_frames	= GET_STAT(BCAST);
7067 	p->mcast_frames	= GET_STAT(MCAST);
7068 	p->ucast_frames	= GET_STAT(UCAST);
7069 	p->error_frames	= GET_STAT(ERROR);
7070 
7071 	p->frames_64		= GET_STAT(64B);
7072 	p->frames_65_127	= GET_STAT(65B_127B);
7073 	p->frames_128_255	= GET_STAT(128B_255B);
7074 	p->frames_256_511	= GET_STAT(256B_511B);
7075 	p->frames_512_1023	= GET_STAT(512B_1023B);
7076 	p->frames_1024_1518	= GET_STAT(1024B_1518B);
7077 	p->frames_1519_max	= GET_STAT(1519B_MAX);
7078 	p->drop			= GET_STAT(DROP_FRAMES);
7079 
7080 	if (idx < adap->params.nports) {
7081 		u32 bg = adap2pinfo(adap, idx)->mps_bg_map;
7082 
7083 		p->ovflow0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
7084 		p->ovflow1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
7085 		p->ovflow2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
7086 		p->ovflow3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
7087 		p->trunc0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
7088 		p->trunc1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
7089 		p->trunc2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
7090 		p->trunc3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
7091 	}
7092 
7093 #undef GET_STAT
7094 #undef GET_STAT_COM
7095 }
7096 
7097 /**
7098  *	t4_wol_magic_enable - enable/disable magic packet WoL
7099  *	@adap: the adapter
7100  *	@port: the physical port index
7101  *	@addr: MAC address expected in magic packets, %NULL to disable
7102  *
7103  *	Enables/disables magic packet wake-on-LAN for the selected port.
7104  */
7105 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
7106 			 const u8 *addr)
7107 {
7108 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
7109 
7110 	if (is_t4(adap)) {
7111 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
7112 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
7113 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7114 	} else {
7115 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
7116 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
7117 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7118 	}
7119 
7120 	if (addr) {
7121 		t4_write_reg(adap, mag_id_reg_l,
7122 			     (addr[2] << 24) | (addr[3] << 16) |
7123 			     (addr[4] << 8) | addr[5]);
7124 		t4_write_reg(adap, mag_id_reg_h,
7125 			     (addr[0] << 8) | addr[1]);
7126 	}
7127 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
7128 			 V_MAGICEN(addr != NULL));
7129 }
7130 
7131 /**
7132  *	t4_wol_pat_enable - enable/disable pattern-based WoL
7133  *	@adap: the adapter
7134  *	@port: the physical port index
7135  *	@map: bitmap of which HW pattern filters to set
7136  *	@mask0: byte mask for bytes 0-63 of a packet
7137  *	@mask1: byte mask for bytes 64-127 of a packet
7138  *	@crc: Ethernet CRC for selected bytes
7139  *	@enable: enable/disable switch
7140  *
7141  *	Sets the pattern filters indicated in @map to mask out the bytes
7142  *	specified in @mask0/@mask1 in received packets and compare the CRC of
7143  *	the resulting packet against @crc.  If @enable is %true pattern-based
7144  *	WoL is enabled, otherwise disabled.
7145  */
7146 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
7147 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
7148 {
7149 	int i;
7150 	u32 port_cfg_reg;
7151 
7152 	if (is_t4(adap))
7153 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7154 	else
7155 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7156 
7157 	if (!enable) {
7158 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
7159 		return 0;
7160 	}
7161 	if (map > 0xff)
7162 		return -EINVAL;
7163 
7164 #define EPIO_REG(name) \
7165 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
7166 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
7167 
7168 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
7169 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
7170 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
7171 
7172 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
7173 		if (!(map & 1))
7174 			continue;
7175 
7176 		/* write byte masks */
7177 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
7178 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
7179 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7180 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7181 			return -ETIMEDOUT;
7182 
7183 		/* write CRC */
7184 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
7185 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
7186 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7187 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7188 			return -ETIMEDOUT;
7189 	}
7190 #undef EPIO_REG
7191 
7192 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
7193 	return 0;
7194 }
7195 
7196 /*     t4_mk_filtdelwr - create a delete filter WR
7197  *     @ftid: the filter ID
7198  *     @wr: the filter work request to populate
7199  *     @qid: ingress queue to receive the delete notification
7200  *
7201  *     Creates a filter work request to delete the supplied filter.  If @qid is
7202  *     negative the delete notification is suppressed.
7203  */
7204 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
7205 {
7206 	memset(wr, 0, sizeof(*wr));
7207 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
7208 	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
7209 	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
7210 				    V_FW_FILTER_WR_NOREPLY(qid < 0));
7211 	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
7212 	if (qid >= 0)
7213 		wr->rx_chan_rx_rpl_iq =
7214 				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
7215 }
7216 
7217 #define INIT_CMD(var, cmd, rd_wr) do { \
7218 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
7219 					F_FW_CMD_REQUEST | \
7220 					F_FW_CMD_##rd_wr); \
7221 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
7222 } while (0)
7223 
7224 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
7225 			  u32 addr, u32 val)
7226 {
7227 	u32 ldst_addrspace;
7228 	struct fw_ldst_cmd c;
7229 
7230 	memset(&c, 0, sizeof(c));
7231 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
7232 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7233 					F_FW_CMD_REQUEST |
7234 					F_FW_CMD_WRITE |
7235 					ldst_addrspace);
7236 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7237 	c.u.addrval.addr = cpu_to_be32(addr);
7238 	c.u.addrval.val = cpu_to_be32(val);
7239 
7240 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7241 }
7242 
7243 /**
7244  *	t4_mdio_rd - read a PHY register through MDIO
7245  *	@adap: the adapter
7246  *	@mbox: mailbox to use for the FW command
7247  *	@phy_addr: the PHY address
7248  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7249  *	@reg: the register to read
7250  *	@valp: where to store the value
7251  *
7252  *	Issues a FW command through the given mailbox to read a PHY register.
7253  */
7254 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7255 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
7256 {
7257 	int ret;
7258 	u32 ldst_addrspace;
7259 	struct fw_ldst_cmd c;
7260 
7261 	memset(&c, 0, sizeof(c));
7262 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7263 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7264 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7265 					ldst_addrspace);
7266 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7267 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7268 					 V_FW_LDST_CMD_MMD(mmd));
7269 	c.u.mdio.raddr = cpu_to_be16(reg);
7270 
7271 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7272 	if (ret == 0)
7273 		*valp = be16_to_cpu(c.u.mdio.rval);
7274 	return ret;
7275 }
7276 
7277 /**
7278  *	t4_mdio_wr - write a PHY register through MDIO
7279  *	@adap: the adapter
7280  *	@mbox: mailbox to use for the FW command
7281  *	@phy_addr: the PHY address
7282  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7283  *	@reg: the register to write
7284  *	@valp: value to write
7285  *
7286  *	Issues a FW command through the given mailbox to write a PHY register.
7287  */
7288 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7289 	       unsigned int mmd, unsigned int reg, unsigned int val)
7290 {
7291 	u32 ldst_addrspace;
7292 	struct fw_ldst_cmd c;
7293 
7294 	memset(&c, 0, sizeof(c));
7295 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7296 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7297 					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7298 					ldst_addrspace);
7299 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7300 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7301 					 V_FW_LDST_CMD_MMD(mmd));
7302 	c.u.mdio.raddr = cpu_to_be16(reg);
7303 	c.u.mdio.rval = cpu_to_be16(val);
7304 
7305 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7306 }
7307 
7308 /**
7309  *
7310  *	t4_sge_decode_idma_state - decode the idma state
7311  *	@adap: the adapter
7312  *	@state: the state idma is stuck in
7313  */
7314 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
7315 {
7316 	static const char * const t4_decode[] = {
7317 		"IDMA_IDLE",
7318 		"IDMA_PUSH_MORE_CPL_FIFO",
7319 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7320 		"Not used",
7321 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7322 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7323 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7324 		"IDMA_SEND_FIFO_TO_IMSG",
7325 		"IDMA_FL_REQ_DATA_FL_PREP",
7326 		"IDMA_FL_REQ_DATA_FL",
7327 		"IDMA_FL_DROP",
7328 		"IDMA_FL_H_REQ_HEADER_FL",
7329 		"IDMA_FL_H_SEND_PCIEHDR",
7330 		"IDMA_FL_H_PUSH_CPL_FIFO",
7331 		"IDMA_FL_H_SEND_CPL",
7332 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7333 		"IDMA_FL_H_SEND_IP_HDR",
7334 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7335 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7336 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7337 		"IDMA_FL_D_SEND_PCIEHDR",
7338 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7339 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7340 		"IDMA_FL_SEND_PCIEHDR",
7341 		"IDMA_FL_PUSH_CPL_FIFO",
7342 		"IDMA_FL_SEND_CPL",
7343 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7344 		"IDMA_FL_SEND_PAYLOAD",
7345 		"IDMA_FL_REQ_NEXT_DATA_FL",
7346 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7347 		"IDMA_FL_SEND_PADDING",
7348 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7349 		"IDMA_FL_SEND_FIFO_TO_IMSG",
7350 		"IDMA_FL_REQ_DATAFL_DONE",
7351 		"IDMA_FL_REQ_HEADERFL_DONE",
7352 	};
7353 	static const char * const t5_decode[] = {
7354 		"IDMA_IDLE",
7355 		"IDMA_ALMOST_IDLE",
7356 		"IDMA_PUSH_MORE_CPL_FIFO",
7357 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7358 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7359 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7360 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7361 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7362 		"IDMA_SEND_FIFO_TO_IMSG",
7363 		"IDMA_FL_REQ_DATA_FL",
7364 		"IDMA_FL_DROP",
7365 		"IDMA_FL_DROP_SEND_INC",
7366 		"IDMA_FL_H_REQ_HEADER_FL",
7367 		"IDMA_FL_H_SEND_PCIEHDR",
7368 		"IDMA_FL_H_PUSH_CPL_FIFO",
7369 		"IDMA_FL_H_SEND_CPL",
7370 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7371 		"IDMA_FL_H_SEND_IP_HDR",
7372 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7373 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7374 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7375 		"IDMA_FL_D_SEND_PCIEHDR",
7376 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7377 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7378 		"IDMA_FL_SEND_PCIEHDR",
7379 		"IDMA_FL_PUSH_CPL_FIFO",
7380 		"IDMA_FL_SEND_CPL",
7381 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7382 		"IDMA_FL_SEND_PAYLOAD",
7383 		"IDMA_FL_REQ_NEXT_DATA_FL",
7384 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7385 		"IDMA_FL_SEND_PADDING",
7386 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7387 	};
7388 	static const char * const t6_decode[] = {
7389 		"IDMA_IDLE",
7390 		"IDMA_PUSH_MORE_CPL_FIFO",
7391 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7392 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7393 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7394 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7395 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7396 		"IDMA_FL_REQ_DATA_FL",
7397 		"IDMA_FL_DROP",
7398 		"IDMA_FL_DROP_SEND_INC",
7399 		"IDMA_FL_H_REQ_HEADER_FL",
7400 		"IDMA_FL_H_SEND_PCIEHDR",
7401 		"IDMA_FL_H_PUSH_CPL_FIFO",
7402 		"IDMA_FL_H_SEND_CPL",
7403 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7404 		"IDMA_FL_H_SEND_IP_HDR",
7405 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7406 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7407 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7408 		"IDMA_FL_D_SEND_PCIEHDR",
7409 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7410 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7411 		"IDMA_FL_SEND_PCIEHDR",
7412 		"IDMA_FL_PUSH_CPL_FIFO",
7413 		"IDMA_FL_SEND_CPL",
7414 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7415 		"IDMA_FL_SEND_PAYLOAD",
7416 		"IDMA_FL_REQ_NEXT_DATA_FL",
7417 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7418 		"IDMA_FL_SEND_PADDING",
7419 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7420 	};
7421 	static const u32 sge_regs[] = {
7422 		A_SGE_DEBUG_DATA_LOW_INDEX_2,
7423 		A_SGE_DEBUG_DATA_LOW_INDEX_3,
7424 		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
7425 	};
7426 	const char * const *sge_idma_decode;
7427 	int sge_idma_decode_nstates;
7428 	int i;
7429 	unsigned int chip_version = chip_id(adapter);
7430 
7431 	/* Select the right set of decode strings to dump depending on the
7432 	 * adapter chip type.
7433 	 */
7434 	switch (chip_version) {
7435 	case CHELSIO_T4:
7436 		sge_idma_decode = (const char * const *)t4_decode;
7437 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
7438 		break;
7439 
7440 	case CHELSIO_T5:
7441 		sge_idma_decode = (const char * const *)t5_decode;
7442 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
7443 		break;
7444 
7445 	case CHELSIO_T6:
7446 		sge_idma_decode = (const char * const *)t6_decode;
7447 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
7448 		break;
7449 
7450 	default:
7451 		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
7452 		return;
7453 	}
7454 
7455 	if (state < sge_idma_decode_nstates)
7456 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
7457 	else
7458 		CH_WARN(adapter, "idma state %d unknown\n", state);
7459 
7460 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
7461 		CH_WARN(adapter, "SGE register %#x value %#x\n",
7462 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
7463 }
7464 
7465 /**
7466  *      t4_sge_ctxt_flush - flush the SGE context cache
7467  *      @adap: the adapter
7468  *      @mbox: mailbox to use for the FW command
7469  *
7470  *      Issues a FW command through the given mailbox to flush the
7471  *      SGE context cache.
7472  */
7473 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
7474 {
7475 	int ret;
7476 	u32 ldst_addrspace;
7477 	struct fw_ldst_cmd c;
7478 
7479 	memset(&c, 0, sizeof(c));
7480 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(ctxt_type == CTXT_EGRESS ?
7481 						 FW_LDST_ADDRSPC_SGE_EGRC :
7482 						 FW_LDST_ADDRSPC_SGE_INGC);
7483 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7484 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7485 					ldst_addrspace);
7486 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7487 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
7488 
7489 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7490 	return ret;
7491 }
7492 
7493 /**
7494  *      t4_fw_hello - establish communication with FW
7495  *      @adap: the adapter
7496  *      @mbox: mailbox to use for the FW command
7497  *      @evt_mbox: mailbox to receive async FW events
7498  *      @master: specifies the caller's willingness to be the device master
7499  *	@state: returns the current device state (if non-NULL)
7500  *
7501  *	Issues a command to establish communication with FW.  Returns either
7502  *	an error (negative integer) or the mailbox of the Master PF.
7503  */
7504 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
7505 		enum dev_master master, enum dev_state *state)
7506 {
7507 	int ret;
7508 	struct fw_hello_cmd c;
7509 	u32 v;
7510 	unsigned int master_mbox;
7511 	int retries = FW_CMD_HELLO_RETRIES;
7512 
7513 retry:
7514 	memset(&c, 0, sizeof(c));
7515 	INIT_CMD(c, HELLO, WRITE);
7516 	c.err_to_clearinit = cpu_to_be32(
7517 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
7518 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
7519 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
7520 					mbox : M_FW_HELLO_CMD_MBMASTER) |
7521 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
7522 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
7523 		F_FW_HELLO_CMD_CLEARINIT);
7524 
7525 	/*
7526 	 * Issue the HELLO command to the firmware.  If it's not successful
7527 	 * but indicates that we got a "busy" or "timeout" condition, retry
7528 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
7529 	 * retry limit, check to see if the firmware left us any error
7530 	 * information and report that if so ...
7531 	 */
7532 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7533 	if (ret != FW_SUCCESS) {
7534 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
7535 			goto retry;
7536 		return ret;
7537 	}
7538 
7539 	v = be32_to_cpu(c.err_to_clearinit);
7540 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
7541 	if (state) {
7542 		if (v & F_FW_HELLO_CMD_ERR)
7543 			*state = DEV_STATE_ERR;
7544 		else if (v & F_FW_HELLO_CMD_INIT)
7545 			*state = DEV_STATE_INIT;
7546 		else
7547 			*state = DEV_STATE_UNINIT;
7548 	}
7549 
7550 	/*
7551 	 * If we're not the Master PF then we need to wait around for the
7552 	 * Master PF Driver to finish setting up the adapter.
7553 	 *
7554 	 * Note that we also do this wait if we're a non-Master-capable PF and
7555 	 * there is no current Master PF; a Master PF may show up momentarily
7556 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
7557 	 * OS loads lots of different drivers rapidly at the same time).  In
7558 	 * this case, the Master PF returned by the firmware will be
7559 	 * M_PCIE_FW_MASTER so the test below will work ...
7560 	 */
7561 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
7562 	    master_mbox != mbox) {
7563 		int waiting = FW_CMD_HELLO_TIMEOUT;
7564 
7565 		/*
7566 		 * Wait for the firmware to either indicate an error or
7567 		 * initialized state.  If we see either of these we bail out
7568 		 * and report the issue to the caller.  If we exhaust the
7569 		 * "hello timeout" and we haven't exhausted our retries, try
7570 		 * again.  Otherwise bail with a timeout error.
7571 		 */
7572 		for (;;) {
7573 			u32 pcie_fw;
7574 
7575 			msleep(50);
7576 			waiting -= 50;
7577 
7578 			/*
7579 			 * If neither Error nor Initialialized are indicated
7580 			 * by the firmware keep waiting till we exhaust our
7581 			 * timeout ... and then retry if we haven't exhausted
7582 			 * our retries ...
7583 			 */
7584 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
7585 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
7586 				if (waiting <= 0) {
7587 					if (retries-- > 0)
7588 						goto retry;
7589 
7590 					return -ETIMEDOUT;
7591 				}
7592 				continue;
7593 			}
7594 
7595 			/*
7596 			 * We either have an Error or Initialized condition
7597 			 * report errors preferentially.
7598 			 */
7599 			if (state) {
7600 				if (pcie_fw & F_PCIE_FW_ERR)
7601 					*state = DEV_STATE_ERR;
7602 				else if (pcie_fw & F_PCIE_FW_INIT)
7603 					*state = DEV_STATE_INIT;
7604 			}
7605 
7606 			/*
7607 			 * If we arrived before a Master PF was selected and
7608 			 * there's not a valid Master PF, grab its identity
7609 			 * for our caller.
7610 			 */
7611 			if (master_mbox == M_PCIE_FW_MASTER &&
7612 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
7613 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
7614 			break;
7615 		}
7616 	}
7617 
7618 	return master_mbox;
7619 }
7620 
7621 /**
7622  *	t4_fw_bye - end communication with FW
7623  *	@adap: the adapter
7624  *	@mbox: mailbox to use for the FW command
7625  *
7626  *	Issues a command to terminate communication with FW.
7627  */
7628 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
7629 {
7630 	struct fw_bye_cmd c;
7631 
7632 	memset(&c, 0, sizeof(c));
7633 	INIT_CMD(c, BYE, WRITE);
7634 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7635 }
7636 
7637 /**
7638  *	t4_fw_reset - issue a reset to FW
7639  *	@adap: the adapter
7640  *	@mbox: mailbox to use for the FW command
7641  *	@reset: specifies the type of reset to perform
7642  *
7643  *	Issues a reset command of the specified type to FW.
7644  */
7645 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7646 {
7647 	struct fw_reset_cmd c;
7648 
7649 	memset(&c, 0, sizeof(c));
7650 	INIT_CMD(c, RESET, WRITE);
7651 	c.val = cpu_to_be32(reset);
7652 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7653 }
7654 
7655 /**
7656  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7657  *	@adap: the adapter
7658  *	@mbox: mailbox to use for the FW RESET command (if desired)
7659  *	@force: force uP into RESET even if FW RESET command fails
7660  *
7661  *	Issues a RESET command to firmware (if desired) with a HALT indication
7662  *	and then puts the microprocessor into RESET state.  The RESET command
7663  *	will only be issued if a legitimate mailbox is provided (mbox <=
7664  *	M_PCIE_FW_MASTER).
7665  *
7666  *	This is generally used in order for the host to safely manipulate the
7667  *	adapter without fear of conflicting with whatever the firmware might
7668  *	be doing.  The only way out of this state is to RESTART the firmware
7669  *	...
7670  */
7671 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7672 {
7673 	int ret = 0;
7674 
7675 	/*
7676 	 * If a legitimate mailbox is provided, issue a RESET command
7677 	 * with a HALT indication.
7678 	 */
7679 	if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) {
7680 		struct fw_reset_cmd c;
7681 
7682 		memset(&c, 0, sizeof(c));
7683 		INIT_CMD(c, RESET, WRITE);
7684 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
7685 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
7686 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7687 	}
7688 
7689 	/*
7690 	 * Normally we won't complete the operation if the firmware RESET
7691 	 * command fails but if our caller insists we'll go ahead and put the
7692 	 * uP into RESET.  This can be useful if the firmware is hung or even
7693 	 * missing ...  We'll have to take the risk of putting the uP into
7694 	 * RESET without the cooperation of firmware in that case.
7695 	 *
7696 	 * We also force the firmware's HALT flag to be on in case we bypassed
7697 	 * the firmware RESET command above or we're dealing with old firmware
7698 	 * which doesn't have the HALT capability.  This will serve as a flag
7699 	 * for the incoming firmware to know that it's coming out of a HALT
7700 	 * rather than a RESET ... if it's new enough to understand that ...
7701 	 */
7702 	if (ret == 0 || force) {
7703 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
7704 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
7705 				 F_PCIE_FW_HALT);
7706 	}
7707 
7708 	/*
7709 	 * And we always return the result of the firmware RESET command
7710 	 * even when we force the uP into RESET ...
7711 	 */
7712 	return ret;
7713 }
7714 
7715 /**
7716  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
7717  *	@adap: the adapter
7718  *
7719  *	Restart firmware previously halted by t4_fw_halt().  On successful
7720  *	return the previous PF Master remains as the new PF Master and there
7721  *	is no need to issue a new HELLO command, etc.
7722  */
7723 int t4_fw_restart(struct adapter *adap, unsigned int mbox)
7724 {
7725 	int ms;
7726 
7727 	t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
7728 	for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7729 		if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
7730 			return FW_SUCCESS;
7731 		msleep(100);
7732 		ms += 100;
7733 	}
7734 
7735 	return -ETIMEDOUT;
7736 }
7737 
7738 /**
7739  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7740  *	@adap: the adapter
7741  *	@mbox: mailbox to use for the FW RESET command (if desired)
7742  *	@fw_data: the firmware image to write
7743  *	@size: image size
7744  *	@force: force upgrade even if firmware doesn't cooperate
7745  *
7746  *	Perform all of the steps necessary for upgrading an adapter's
7747  *	firmware image.  Normally this requires the cooperation of the
7748  *	existing firmware in order to halt all existing activities
7749  *	but if an invalid mailbox token is passed in we skip that step
7750  *	(though we'll still put the adapter microprocessor into RESET in
7751  *	that case).
7752  *
7753  *	On successful return the new firmware will have been loaded and
7754  *	the adapter will have been fully RESET losing all previous setup
7755  *	state.  On unsuccessful return the adapter may be completely hosed ...
7756  *	positive errno indicates that the adapter is ~probably~ intact, a
7757  *	negative errno indicates that things are looking bad ...
7758  */
7759 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7760 		  const u8 *fw_data, unsigned int size, int force)
7761 {
7762 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7763 	unsigned int bootstrap =
7764 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
7765 	int ret;
7766 
7767 	if (!t4_fw_matches_chip(adap, fw_hdr))
7768 		return -EINVAL;
7769 
7770 	if (!bootstrap) {
7771 		ret = t4_fw_halt(adap, mbox, force);
7772 		if (ret < 0 && !force)
7773 			return ret;
7774 	}
7775 
7776 	ret = t4_load_fw(adap, fw_data, size);
7777 	if (ret < 0 || bootstrap)
7778 		return ret;
7779 
7780 	return t4_fw_restart(adap, mbox);
7781 }
7782 
7783 /**
7784  *	t4_fw_initialize - ask FW to initialize the device
7785  *	@adap: the adapter
7786  *	@mbox: mailbox to use for the FW command
7787  *
7788  *	Issues a command to FW to partially initialize the device.  This
7789  *	performs initialization that generally doesn't depend on user input.
7790  */
7791 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7792 {
7793 	struct fw_initialize_cmd c;
7794 
7795 	memset(&c, 0, sizeof(c));
7796 	INIT_CMD(c, INITIALIZE, WRITE);
7797 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7798 }
7799 
7800 /**
7801  *	t4_query_params_rw - query FW or device parameters
7802  *	@adap: the adapter
7803  *	@mbox: mailbox to use for the FW command
7804  *	@pf: the PF
7805  *	@vf: the VF
7806  *	@nparams: the number of parameters
7807  *	@params: the parameter names
7808  *	@val: the parameter values
7809  *	@rw: Write and read flag
7810  *
7811  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7812  *	queried at once.
7813  */
7814 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7815 		       unsigned int vf, unsigned int nparams, const u32 *params,
7816 		       u32 *val, int rw)
7817 {
7818 	int i, ret;
7819 	struct fw_params_cmd c;
7820 	__be32 *p = &c.param[0].mnem;
7821 
7822 	if (nparams > 7)
7823 		return -EINVAL;
7824 
7825 	memset(&c, 0, sizeof(c));
7826 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7827 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
7828 				  V_FW_PARAMS_CMD_PFN(pf) |
7829 				  V_FW_PARAMS_CMD_VFN(vf));
7830 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7831 
7832 	for (i = 0; i < nparams; i++) {
7833 		*p++ = cpu_to_be32(*params++);
7834 		if (rw)
7835 			*p = cpu_to_be32(*(val + i));
7836 		p++;
7837 	}
7838 
7839 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7840 	if (ret == 0)
7841 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7842 			*val++ = be32_to_cpu(*p);
7843 	return ret;
7844 }
7845 
7846 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7847 		    unsigned int vf, unsigned int nparams, const u32 *params,
7848 		    u32 *val)
7849 {
7850 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
7851 }
7852 
7853 /**
7854  *      t4_set_params_timeout - sets FW or device parameters
7855  *      @adap: the adapter
7856  *      @mbox: mailbox to use for the FW command
7857  *      @pf: the PF
7858  *      @vf: the VF
7859  *      @nparams: the number of parameters
7860  *      @params: the parameter names
7861  *      @val: the parameter values
7862  *      @timeout: the timeout time
7863  *
7864  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7865  *      specified at once.
7866  */
7867 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7868 			  unsigned int pf, unsigned int vf,
7869 			  unsigned int nparams, const u32 *params,
7870 			  const u32 *val, int timeout)
7871 {
7872 	struct fw_params_cmd c;
7873 	__be32 *p = &c.param[0].mnem;
7874 
7875 	if (nparams > 7)
7876 		return -EINVAL;
7877 
7878 	memset(&c, 0, sizeof(c));
7879 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7880 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7881 				  V_FW_PARAMS_CMD_PFN(pf) |
7882 				  V_FW_PARAMS_CMD_VFN(vf));
7883 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7884 
7885 	while (nparams--) {
7886 		*p++ = cpu_to_be32(*params++);
7887 		*p++ = cpu_to_be32(*val++);
7888 	}
7889 
7890 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7891 }
7892 
7893 /**
7894  *	t4_set_params - sets FW or device parameters
7895  *	@adap: the adapter
7896  *	@mbox: mailbox to use for the FW command
7897  *	@pf: the PF
7898  *	@vf: the VF
7899  *	@nparams: the number of parameters
7900  *	@params: the parameter names
7901  *	@val: the parameter values
7902  *
7903  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7904  *	specified at once.
7905  */
7906 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7907 		  unsigned int vf, unsigned int nparams, const u32 *params,
7908 		  const u32 *val)
7909 {
7910 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7911 				     FW_CMD_MAX_TIMEOUT);
7912 }
7913 
7914 /**
7915  *	t4_cfg_pfvf - configure PF/VF resource limits
7916  *	@adap: the adapter
7917  *	@mbox: mailbox to use for the FW command
7918  *	@pf: the PF being configured
7919  *	@vf: the VF being configured
7920  *	@txq: the max number of egress queues
7921  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7922  *	@rxqi: the max number of interrupt-capable ingress queues
7923  *	@rxq: the max number of interruptless ingress queues
7924  *	@tc: the PCI traffic class
7925  *	@vi: the max number of virtual interfaces
7926  *	@cmask: the channel access rights mask for the PF/VF
7927  *	@pmask: the port access rights mask for the PF/VF
7928  *	@nexact: the maximum number of exact MPS filters
7929  *	@rcaps: read capabilities
7930  *	@wxcaps: write/execute capabilities
7931  *
7932  *	Configures resource limits and capabilities for a physical or virtual
7933  *	function.
7934  */
7935 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7936 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7937 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7938 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7939 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7940 {
7941 	struct fw_pfvf_cmd c;
7942 
7943 	memset(&c, 0, sizeof(c));
7944 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7945 				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7946 				  V_FW_PFVF_CMD_VFN(vf));
7947 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7948 	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7949 				     V_FW_PFVF_CMD_NIQ(rxq));
7950 	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7951 				    V_FW_PFVF_CMD_PMASK(pmask) |
7952 				    V_FW_PFVF_CMD_NEQ(txq));
7953 	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7954 				      V_FW_PFVF_CMD_NVI(vi) |
7955 				      V_FW_PFVF_CMD_NEXACTF(nexact));
7956 	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7957 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7958 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7959 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7960 }
7961 
7962 /**
7963  *	t4_alloc_vi_func - allocate a virtual interface
7964  *	@adap: the adapter
7965  *	@mbox: mailbox to use for the FW command
7966  *	@port: physical port associated with the VI
7967  *	@pf: the PF owning the VI
7968  *	@vf: the VF owning the VI
7969  *	@nmac: number of MAC addresses needed (1 to 5)
7970  *	@mac: the MAC addresses of the VI
7971  *	@rss_size: size of RSS table slice associated with this VI
7972  *	@portfunc: which Port Application Function MAC Address is desired
7973  *	@idstype: Intrusion Detection Type
7974  *
7975  *	Allocates a virtual interface for the given physical port.  If @mac is
7976  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7977  *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7978  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7979  *	stored consecutively so the space needed is @nmac * 6 bytes.
7980  *	Returns a negative error number or the non-negative VI id.
7981  */
7982 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7983 		     unsigned int port, unsigned int pf, unsigned int vf,
7984 		     unsigned int nmac, u8 *mac, u16 *rss_size,
7985 		     uint8_t *vfvld, uint16_t *vin,
7986 		     unsigned int portfunc, unsigned int idstype)
7987 {
7988 	int ret;
7989 	struct fw_vi_cmd c;
7990 
7991 	memset(&c, 0, sizeof(c));
7992 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7993 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7994 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7995 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7996 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7997 				     V_FW_VI_CMD_FUNC(portfunc));
7998 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7999 	c.nmac = nmac - 1;
8000 	if(!rss_size)
8001 		c.norss_rsssize = F_FW_VI_CMD_NORSS;
8002 
8003 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8004 	if (ret)
8005 		return ret;
8006 	ret = G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
8007 
8008 	if (mac) {
8009 		memcpy(mac, c.mac, sizeof(c.mac));
8010 		switch (nmac) {
8011 		case 5:
8012 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
8013 		case 4:
8014 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
8015 		case 3:
8016 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
8017 		case 2:
8018 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
8019 		}
8020 	}
8021 	if (rss_size)
8022 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
8023 	if (vfvld) {
8024 		*vfvld = adap->params.viid_smt_extn_support ?
8025 		    G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16)) :
8026 		    G_FW_VIID_VIVLD(ret);
8027 	}
8028 	if (vin) {
8029 		*vin = adap->params.viid_smt_extn_support ?
8030 		    G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16)) :
8031 		    G_FW_VIID_VIN(ret);
8032 	}
8033 
8034 	return ret;
8035 }
8036 
8037 /**
8038  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
8039  *      @adap: the adapter
8040  *      @mbox: mailbox to use for the FW command
8041  *      @port: physical port associated with the VI
8042  *      @pf: the PF owning the VI
8043  *      @vf: the VF owning the VI
8044  *      @nmac: number of MAC addresses needed (1 to 5)
8045  *      @mac: the MAC addresses of the VI
8046  *      @rss_size: size of RSS table slice associated with this VI
8047  *
8048  *	backwards compatible and convieniance routine to allocate a Virtual
8049  *	Interface with a Ethernet Port Application Function and Intrustion
8050  *	Detection System disabled.
8051  */
8052 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
8053 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
8054 		u16 *rss_size, uint8_t *vfvld, uint16_t *vin)
8055 {
8056 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
8057 				vfvld, vin, FW_VI_FUNC_ETH, 0);
8058 }
8059 
8060 /**
8061  * 	t4_free_vi - free a virtual interface
8062  * 	@adap: the adapter
8063  * 	@mbox: mailbox to use for the FW command
8064  * 	@pf: the PF owning the VI
8065  * 	@vf: the VF owning the VI
8066  * 	@viid: virtual interface identifiler
8067  *
8068  * 	Free a previously allocated virtual interface.
8069  */
8070 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
8071 	       unsigned int vf, unsigned int viid)
8072 {
8073 	struct fw_vi_cmd c;
8074 
8075 	memset(&c, 0, sizeof(c));
8076 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
8077 				  F_FW_CMD_REQUEST |
8078 				  F_FW_CMD_EXEC |
8079 				  V_FW_VI_CMD_PFN(pf) |
8080 				  V_FW_VI_CMD_VFN(vf));
8081 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
8082 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
8083 
8084 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8085 }
8086 
8087 /**
8088  *	t4_set_rxmode - set Rx properties of a virtual interface
8089  *	@adap: the adapter
8090  *	@mbox: mailbox to use for the FW command
8091  *	@viid: the VI id
8092  *	@mtu: the new MTU or -1
8093  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
8094  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
8095  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
8096  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
8097  *	@sleep_ok: if true we may sleep while awaiting command completion
8098  *
8099  *	Sets Rx properties of a virtual interface.
8100  */
8101 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
8102 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
8103 		  bool sleep_ok)
8104 {
8105 	struct fw_vi_rxmode_cmd c;
8106 
8107 	/* convert to FW values */
8108 	if (mtu < 0)
8109 		mtu = M_FW_VI_RXMODE_CMD_MTU;
8110 	if (promisc < 0)
8111 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
8112 	if (all_multi < 0)
8113 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
8114 	if (bcast < 0)
8115 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
8116 	if (vlanex < 0)
8117 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
8118 
8119 	memset(&c, 0, sizeof(c));
8120 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
8121 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8122 				   V_FW_VI_RXMODE_CMD_VIID(viid));
8123 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
8124 	c.mtu_to_vlanexen =
8125 		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
8126 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
8127 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
8128 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
8129 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
8130 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8131 }
8132 
8133 /**
8134  *	t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
8135  *	@adap: the adapter
8136  *	@viid: the VI id
8137  *	@mac: the MAC address
8138  *	@mask: the mask
8139  *	@vni: the VNI id for the tunnel protocol
8140  *	@vni_mask: mask for the VNI id
8141  *	@dip_hit: to enable DIP match for the MPS entry
8142  *	@lookup_type: MAC address for inner (1) or outer (0) header
8143  *	@sleep_ok: call is allowed to sleep
8144  *
8145  *	Allocates an MPS entry with specified MAC address and VNI value.
8146  *
8147  *	Returns a negative error number or the allocated index for this mac.
8148  */
8149 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
8150 			    const u8 *addr, const u8 *mask, unsigned int vni,
8151 			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
8152 			    bool sleep_ok)
8153 {
8154 	struct fw_vi_mac_cmd c;
8155 	struct fw_vi_mac_vni *p = c.u.exact_vni;
8156 	int ret = 0;
8157 	u32 val;
8158 
8159 	memset(&c, 0, sizeof(c));
8160 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8161 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8162 				   V_FW_VI_MAC_CMD_VIID(viid));
8163 	val = V_FW_CMD_LEN16(1) |
8164 	      V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC_VNI);
8165 	c.freemacs_to_len16 = cpu_to_be32(val);
8166 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8167 				      V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8168 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8169 	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
8170 
8171 	p->lookup_type_to_vni = cpu_to_be32(V_FW_VI_MAC_CMD_VNI(vni) |
8172 					    V_FW_VI_MAC_CMD_DIP_HIT(dip_hit) |
8173 					    V_FW_VI_MAC_CMD_LOOKUP_TYPE(lookup_type));
8174 	p->vni_mask_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_VNI_MASK(vni_mask));
8175 
8176 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8177 	if (ret == 0)
8178 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8179 	return ret;
8180 }
8181 
8182 /**
8183  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
8184  *	@adap: the adapter
8185  *	@viid: the VI id
8186  *	@mac: the MAC address
8187  *	@mask: the mask
8188  *	@idx: index at which to add this entry
8189  *	@port_id: the port index
8190  *	@lookup_type: MAC address for inner (1) or outer (0) header
8191  *	@sleep_ok: call is allowed to sleep
8192  *
8193  *	Adds the mac entry at the specified index using raw mac interface.
8194  *
8195  *	Returns a negative error number or the allocated index for this mac.
8196  */
8197 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
8198 			  const u8 *addr, const u8 *mask, unsigned int idx,
8199 			  u8 lookup_type, u8 port_id, bool sleep_ok)
8200 {
8201 	int ret = 0;
8202 	struct fw_vi_mac_cmd c;
8203 	struct fw_vi_mac_raw *p = &c.u.raw;
8204 	u32 val;
8205 
8206 	memset(&c, 0, sizeof(c));
8207 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8208 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8209 				   V_FW_VI_MAC_CMD_VIID(viid));
8210 	val = V_FW_CMD_LEN16(1) |
8211 	      V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
8212 	c.freemacs_to_len16 = cpu_to_be32(val);
8213 
8214 	/* Specify that this is an inner mac address */
8215 	p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx));
8216 
8217 	/* Lookup Type. Outer header: 0, Inner header: 1 */
8218 	p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
8219 				   V_DATAPORTNUM(port_id));
8220 	/* Lookup mask and port mask */
8221 	p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
8222 				    V_DATAPORTNUM(M_DATAPORTNUM));
8223 
8224 	/* Copy the address and the mask */
8225 	memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
8226 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
8227 
8228 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8229 	if (ret == 0) {
8230 		ret = G_FW_VI_MAC_CMD_RAW_IDX(be32_to_cpu(p->raw_idx_pkd));
8231 		if (ret != idx)
8232 			ret = -ENOMEM;
8233 	}
8234 
8235 	return ret;
8236 }
8237 
8238 /**
8239  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
8240  *	@adap: the adapter
8241  *	@mbox: mailbox to use for the FW command
8242  *	@viid: the VI id
8243  *	@free: if true any existing filters for this VI id are first removed
8244  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8245  *	@addr: the MAC address(es)
8246  *	@idx: where to store the index of each allocated filter
8247  *	@hash: pointer to hash address filter bitmap
8248  *	@sleep_ok: call is allowed to sleep
8249  *
8250  *	Allocates an exact-match filter for each of the supplied addresses and
8251  *	sets it to the corresponding address.  If @idx is not %NULL it should
8252  *	have at least @naddr entries, each of which will be set to the index of
8253  *	the filter allocated for the corresponding MAC address.  If a filter
8254  *	could not be allocated for an address its index is set to 0xffff.
8255  *	If @hash is not %NULL addresses that fail to allocate an exact filter
8256  *	are hashed and update the hash filter bitmap pointed at by @hash.
8257  *
8258  *	Returns a negative error number or the number of filters allocated.
8259  */
8260 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
8261 		      unsigned int viid, bool free, unsigned int naddr,
8262 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
8263 {
8264 	int offset, ret = 0;
8265 	struct fw_vi_mac_cmd c;
8266 	unsigned int nfilters = 0;
8267 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8268 	unsigned int rem = naddr;
8269 
8270 	if (naddr > max_naddr)
8271 		return -EINVAL;
8272 
8273 	for (offset = 0; offset < naddr ; /**/) {
8274 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8275 					 ? rem
8276 					 : ARRAY_SIZE(c.u.exact));
8277 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8278 						     u.exact[fw_naddr]), 16);
8279 		struct fw_vi_mac_exact *p;
8280 		int i;
8281 
8282 		memset(&c, 0, sizeof(c));
8283 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8284 					   F_FW_CMD_REQUEST |
8285 					   F_FW_CMD_WRITE |
8286 					   V_FW_CMD_EXEC(free) |
8287 					   V_FW_VI_MAC_CMD_VIID(viid));
8288 		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
8289 						  V_FW_CMD_LEN16(len16));
8290 
8291 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8292 			p->valid_to_idx =
8293 				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8294 					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8295 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8296 		}
8297 
8298 		/*
8299 		 * It's okay if we run out of space in our MAC address arena.
8300 		 * Some of the addresses we submit may get stored so we need
8301 		 * to run through the reply to see what the results were ...
8302 		 */
8303 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8304 		if (ret && ret != -FW_ENOMEM)
8305 			break;
8306 
8307 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8308 			u16 index = G_FW_VI_MAC_CMD_IDX(
8309 						be16_to_cpu(p->valid_to_idx));
8310 
8311 			if (idx)
8312 				idx[offset+i] = (index >=  max_naddr
8313 						 ? 0xffff
8314 						 : index);
8315 			if (index < max_naddr)
8316 				nfilters++;
8317 			else if (hash)
8318 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
8319 		}
8320 
8321 		free = false;
8322 		offset += fw_naddr;
8323 		rem -= fw_naddr;
8324 	}
8325 
8326 	if (ret == 0 || ret == -FW_ENOMEM)
8327 		ret = nfilters;
8328 	return ret;
8329 }
8330 
8331 /**
8332  *	t4_free_encap_mac_filt - frees MPS entry at given index
8333  *	@adap: the adapter
8334  *	@viid: the VI id
8335  *	@idx: index of MPS entry to be freed
8336  *	@sleep_ok: call is allowed to sleep
8337  *
8338  *	Frees the MPS entry at supplied index
8339  *
8340  *	Returns a negative error number or zero on success
8341  */
8342 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
8343 			   int idx, bool sleep_ok)
8344 {
8345 	struct fw_vi_mac_exact *p;
8346 	struct fw_vi_mac_cmd c;
8347 	u8 addr[] = {0,0,0,0,0,0};
8348 	int ret = 0;
8349 	u32 exact;
8350 
8351 	memset(&c, 0, sizeof(c));
8352 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8353 				   F_FW_CMD_REQUEST |
8354 				   F_FW_CMD_WRITE |
8355 				   V_FW_CMD_EXEC(0) |
8356 				   V_FW_VI_MAC_CMD_VIID(viid));
8357 	exact = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC);
8358 	c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8359 					  exact |
8360 					  V_FW_CMD_LEN16(1));
8361 	p = c.u.exact;
8362 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8363 				      V_FW_VI_MAC_CMD_IDX(idx));
8364 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8365 
8366 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8367 	return ret;
8368 }
8369 
8370 /**
8371  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
8372  *	@adap: the adapter
8373  *	@viid: the VI id
8374  *	@addr: the MAC address
8375  *	@mask: the mask
8376  *	@idx: index of the entry in mps tcam
8377  *	@lookup_type: MAC address for inner (1) or outer (0) header
8378  *	@port_id: the port index
8379  *	@sleep_ok: call is allowed to sleep
8380  *
8381  *	Removes the mac entry at the specified index using raw mac interface.
8382  *
8383  *	Returns a negative error number on failure.
8384  */
8385 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
8386 			 const u8 *addr, const u8 *mask, unsigned int idx,
8387 			 u8 lookup_type, u8 port_id, bool sleep_ok)
8388 {
8389 	struct fw_vi_mac_cmd c;
8390 	struct fw_vi_mac_raw *p = &c.u.raw;
8391 	u32 raw;
8392 
8393 	memset(&c, 0, sizeof(c));
8394 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8395 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8396 				   V_FW_CMD_EXEC(0) |
8397 				   V_FW_VI_MAC_CMD_VIID(viid));
8398 	raw = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
8399 	c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8400 					  raw |
8401 					  V_FW_CMD_LEN16(1));
8402 
8403 	p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx) |
8404 				     FW_VI_MAC_ID_BASED_FREE);
8405 
8406 	/* Lookup Type. Outer header: 0, Inner header: 1 */
8407 	p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
8408 				   V_DATAPORTNUM(port_id));
8409 	/* Lookup mask and port mask */
8410 	p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
8411 				    V_DATAPORTNUM(M_DATAPORTNUM));
8412 
8413 	/* Copy the address and the mask */
8414 	memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
8415 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
8416 
8417 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8418 }
8419 
8420 /**
8421  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
8422  *	@adap: the adapter
8423  *	@mbox: mailbox to use for the FW command
8424  *	@viid: the VI id
8425  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8426  *	@addr: the MAC address(es)
8427  *	@sleep_ok: call is allowed to sleep
8428  *
8429  *	Frees the exact-match filter for each of the supplied addresses
8430  *
8431  *	Returns a negative error number or the number of filters freed.
8432  */
8433 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8434 		      unsigned int viid, unsigned int naddr,
8435 		      const u8 **addr, bool sleep_ok)
8436 {
8437 	int offset, ret = 0;
8438 	struct fw_vi_mac_cmd c;
8439 	unsigned int nfilters = 0;
8440 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8441 	unsigned int rem = naddr;
8442 
8443 	if (naddr > max_naddr)
8444 		return -EINVAL;
8445 
8446 	for (offset = 0; offset < (int)naddr ; /**/) {
8447 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8448 					 ? rem
8449 					 : ARRAY_SIZE(c.u.exact));
8450 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8451 						     u.exact[fw_naddr]), 16);
8452 		struct fw_vi_mac_exact *p;
8453 		int i;
8454 
8455 		memset(&c, 0, sizeof(c));
8456 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8457 				     F_FW_CMD_REQUEST |
8458 				     F_FW_CMD_WRITE |
8459 				     V_FW_CMD_EXEC(0) |
8460 				     V_FW_VI_MAC_CMD_VIID(viid));
8461 		c.freemacs_to_len16 =
8462 				cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8463 					    V_FW_CMD_LEN16(len16));
8464 
8465 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8466 			p->valid_to_idx = cpu_to_be16(
8467 				F_FW_VI_MAC_CMD_VALID |
8468 				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE));
8469 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8470 		}
8471 
8472 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8473 		if (ret)
8474 			break;
8475 
8476 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8477 			u16 index = G_FW_VI_MAC_CMD_IDX(
8478 						be16_to_cpu(p->valid_to_idx));
8479 
8480 			if (index < max_naddr)
8481 				nfilters++;
8482 		}
8483 
8484 		offset += fw_naddr;
8485 		rem -= fw_naddr;
8486 	}
8487 
8488 	if (ret == 0)
8489 		ret = nfilters;
8490 	return ret;
8491 }
8492 
8493 /**
8494  *	t4_change_mac - modifies the exact-match filter for a MAC address
8495  *	@adap: the adapter
8496  *	@mbox: mailbox to use for the FW command
8497  *	@viid: the VI id
8498  *	@idx: index of existing filter for old value of MAC address, or -1
8499  *	@addr: the new MAC address value
8500  *	@persist: whether a new MAC allocation should be persistent
8501  *	@smt_idx: add MAC to SMT and return its index, or NULL
8502  *
8503  *	Modifies an exact-match filter and sets it to the new MAC address if
8504  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
8505  *	latter case the address is added persistently if @persist is %true.
8506  *
8507  *	Note that in general it is not possible to modify the value of a given
8508  *	filter so the generic way to modify an address filter is to free the one
8509  *	being used by the old address value and allocate a new filter for the
8510  *	new address value.
8511  *
8512  *	Returns a negative error number or the index of the filter with the new
8513  *	MAC value.  Note that this index may differ from @idx.
8514  */
8515 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8516 		  int idx, const u8 *addr, bool persist, uint16_t *smt_idx)
8517 {
8518 	int ret, mode;
8519 	struct fw_vi_mac_cmd c;
8520 	struct fw_vi_mac_exact *p = c.u.exact;
8521 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
8522 
8523 	if (idx < 0)		/* new allocation */
8524 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8525 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8526 
8527 	memset(&c, 0, sizeof(c));
8528 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8529 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8530 				   V_FW_VI_MAC_CMD_VIID(viid));
8531 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
8532 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8533 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
8534 				      V_FW_VI_MAC_CMD_IDX(idx));
8535 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8536 
8537 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8538 	if (ret == 0) {
8539 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8540 		if (ret >= max_mac_addr)
8541 			ret = -ENOMEM;
8542 		if (smt_idx) {
8543 			if (adap->params.viid_smt_extn_support)
8544 				*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
8545 			else {
8546 				if (chip_id(adap) <= CHELSIO_T5)
8547 					*smt_idx = (viid & M_FW_VIID_VIN) << 1;
8548 				else
8549 					*smt_idx = viid & M_FW_VIID_VIN;
8550 			}
8551 		}
8552 	}
8553 	return ret;
8554 }
8555 
8556 /**
8557  *	t4_set_addr_hash - program the MAC inexact-match hash filter
8558  *	@adap: the adapter
8559  *	@mbox: mailbox to use for the FW command
8560  *	@viid: the VI id
8561  *	@ucast: whether the hash filter should also match unicast addresses
8562  *	@vec: the value to be written to the hash filter
8563  *	@sleep_ok: call is allowed to sleep
8564  *
8565  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8566  */
8567 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8568 		     bool ucast, u64 vec, bool sleep_ok)
8569 {
8570 	struct fw_vi_mac_cmd c;
8571 	u32 val;
8572 
8573 	memset(&c, 0, sizeof(c));
8574 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8575 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8576 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8577 	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
8578 	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
8579 	c.freemacs_to_len16 = cpu_to_be32(val);
8580 	c.u.hash.hashvec = cpu_to_be64(vec);
8581 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8582 }
8583 
8584 /**
8585  *      t4_enable_vi_params - enable/disable a virtual interface
8586  *      @adap: the adapter
8587  *      @mbox: mailbox to use for the FW command
8588  *      @viid: the VI id
8589  *      @rx_en: 1=enable Rx, 0=disable Rx
8590  *      @tx_en: 1=enable Tx, 0=disable Tx
8591  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8592  *
8593  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8594  *      only makes sense when enabling a Virtual Interface ...
8595  */
8596 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8597 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8598 {
8599 	struct fw_vi_enable_cmd c;
8600 
8601 	memset(&c, 0, sizeof(c));
8602 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8603 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8604 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8605 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
8606 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
8607 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
8608 				     FW_LEN16(c));
8609 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8610 }
8611 
8612 /**
8613  *	t4_enable_vi - enable/disable a virtual interface
8614  *	@adap: the adapter
8615  *	@mbox: mailbox to use for the FW command
8616  *	@viid: the VI id
8617  *	@rx_en: 1=enable Rx, 0=disable Rx
8618  *	@tx_en: 1=enable Tx, 0=disable Tx
8619  *
8620  *	Enables/disables a virtual interface.  Note that setting DCB Enable
8621  *	only makes sense when enabling a Virtual Interface ...
8622  */
8623 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8624 		 bool rx_en, bool tx_en)
8625 {
8626 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8627 }
8628 
8629 /**
8630  *	t4_identify_port - identify a VI's port by blinking its LED
8631  *	@adap: the adapter
8632  *	@mbox: mailbox to use for the FW command
8633  *	@viid: the VI id
8634  *	@nblinks: how many times to blink LED at 2.5 Hz
8635  *
8636  *	Identifies a VI's port by blinking its LED.
8637  */
8638 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8639 		     unsigned int nblinks)
8640 {
8641 	struct fw_vi_enable_cmd c;
8642 
8643 	memset(&c, 0, sizeof(c));
8644 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8645 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8646 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8647 	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
8648 	c.blinkdur = cpu_to_be16(nblinks);
8649 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8650 }
8651 
8652 /**
8653  *	t4_iq_stop - stop an ingress queue and its FLs
8654  *	@adap: the adapter
8655  *	@mbox: mailbox to use for the FW command
8656  *	@pf: the PF owning the queues
8657  *	@vf: the VF owning the queues
8658  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8659  *	@iqid: ingress queue id
8660  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8661  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8662  *
8663  *	Stops an ingress queue and its associated FLs, if any.  This causes
8664  *	any current or future data/messages destined for these queues to be
8665  *	tossed.
8666  */
8667 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8668 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8669 	       unsigned int fl0id, unsigned int fl1id)
8670 {
8671 	struct fw_iq_cmd c;
8672 
8673 	memset(&c, 0, sizeof(c));
8674 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8675 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8676 				  V_FW_IQ_CMD_VFN(vf));
8677 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
8678 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8679 	c.iqid = cpu_to_be16(iqid);
8680 	c.fl0id = cpu_to_be16(fl0id);
8681 	c.fl1id = cpu_to_be16(fl1id);
8682 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8683 }
8684 
8685 /**
8686  *	t4_iq_free - free an ingress queue and its FLs
8687  *	@adap: the adapter
8688  *	@mbox: mailbox to use for the FW command
8689  *	@pf: the PF owning the queues
8690  *	@vf: the VF owning the queues
8691  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8692  *	@iqid: ingress queue id
8693  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8694  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8695  *
8696  *	Frees an ingress queue and its associated FLs, if any.
8697  */
8698 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8699 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8700 	       unsigned int fl0id, unsigned int fl1id)
8701 {
8702 	struct fw_iq_cmd c;
8703 
8704 	memset(&c, 0, sizeof(c));
8705 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8706 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8707 				  V_FW_IQ_CMD_VFN(vf));
8708 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
8709 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8710 	c.iqid = cpu_to_be16(iqid);
8711 	c.fl0id = cpu_to_be16(fl0id);
8712 	c.fl1id = cpu_to_be16(fl1id);
8713 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8714 }
8715 
8716 /**
8717  *	t4_eth_eq_stop - stop an Ethernet egress queue
8718  *	@adap: the adapter
8719  *	@mbox: mailbox to use for the FW command
8720  *	@pf: the PF owning the queues
8721  *	@vf: the VF owning the queues
8722  *	@eqid: egress queue id
8723  *
8724  *	Stops an Ethernet egress queue.  The queue can be reinitialized or
8725  *	freed but is not otherwise functional after this call.
8726  */
8727 int t4_eth_eq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8728                    unsigned int vf, unsigned int eqid)
8729 {
8730 	struct fw_eq_eth_cmd c;
8731 
8732 	memset(&c, 0, sizeof(c));
8733 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8734 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8735 				  V_FW_EQ_ETH_CMD_PFN(pf) |
8736 				  V_FW_EQ_ETH_CMD_VFN(vf));
8737 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_EQSTOP | FW_LEN16(c));
8738 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8739 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8740 }
8741 
8742 /**
8743  *	t4_eth_eq_free - free an Ethernet egress queue
8744  *	@adap: the adapter
8745  *	@mbox: mailbox to use for the FW command
8746  *	@pf: the PF owning the queue
8747  *	@vf: the VF owning the queue
8748  *	@eqid: egress queue id
8749  *
8750  *	Frees an Ethernet egress queue.
8751  */
8752 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8753 		   unsigned int vf, unsigned int eqid)
8754 {
8755 	struct fw_eq_eth_cmd c;
8756 
8757 	memset(&c, 0, sizeof(c));
8758 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8759 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8760 				  V_FW_EQ_ETH_CMD_PFN(pf) |
8761 				  V_FW_EQ_ETH_CMD_VFN(vf));
8762 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
8763 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8764 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8765 }
8766 
8767 /**
8768  *	t4_ctrl_eq_free - free a control egress queue
8769  *	@adap: the adapter
8770  *	@mbox: mailbox to use for the FW command
8771  *	@pf: the PF owning the queue
8772  *	@vf: the VF owning the queue
8773  *	@eqid: egress queue id
8774  *
8775  *	Frees a control egress queue.
8776  */
8777 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8778 		    unsigned int vf, unsigned int eqid)
8779 {
8780 	struct fw_eq_ctrl_cmd c;
8781 
8782 	memset(&c, 0, sizeof(c));
8783 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
8784 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8785 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
8786 				  V_FW_EQ_CTRL_CMD_VFN(vf));
8787 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
8788 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
8789 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8790 }
8791 
8792 /**
8793  *	t4_ofld_eq_free - free an offload egress queue
8794  *	@adap: the adapter
8795  *	@mbox: mailbox to use for the FW command
8796  *	@pf: the PF owning the queue
8797  *	@vf: the VF owning the queue
8798  *	@eqid: egress queue id
8799  *
8800  *	Frees a control egress queue.
8801  */
8802 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8803 		    unsigned int vf, unsigned int eqid)
8804 {
8805 	struct fw_eq_ofld_cmd c;
8806 
8807 	memset(&c, 0, sizeof(c));
8808 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
8809 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8810 				  V_FW_EQ_OFLD_CMD_PFN(pf) |
8811 				  V_FW_EQ_OFLD_CMD_VFN(vf));
8812 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
8813 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
8814 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8815 }
8816 
8817 /**
8818  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8819  *	@link_down_rc: Link Down Reason Code
8820  *
8821  *	Returns a string representation of the Link Down Reason Code.
8822  */
8823 const char *t4_link_down_rc_str(unsigned char link_down_rc)
8824 {
8825 	static const char *reason[] = {
8826 		"Link Down",
8827 		"Remote Fault",
8828 		"Auto-negotiation Failure",
8829 		"Reserved3",
8830 		"Insufficient Airflow",
8831 		"Unable To Determine Reason",
8832 		"No RX Signal Detected",
8833 		"Reserved7",
8834 	};
8835 
8836 	if (link_down_rc >= ARRAY_SIZE(reason))
8837 		return "Bad Reason Code";
8838 
8839 	return reason[link_down_rc];
8840 }
8841 
8842 /*
8843  * Return the highest speed set in the port capabilities, in Mb/s.
8844  */
8845 unsigned int fwcap_to_speed(uint32_t caps)
8846 {
8847 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8848 		do { \
8849 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8850 				return __speed; \
8851 		} while (0)
8852 
8853 	TEST_SPEED_RETURN(400G, 400000);
8854 	TEST_SPEED_RETURN(200G, 200000);
8855 	TEST_SPEED_RETURN(100G, 100000);
8856 	TEST_SPEED_RETURN(50G,   50000);
8857 	TEST_SPEED_RETURN(40G,   40000);
8858 	TEST_SPEED_RETURN(25G,   25000);
8859 	TEST_SPEED_RETURN(10G,   10000);
8860 	TEST_SPEED_RETURN(1G,     1000);
8861 	TEST_SPEED_RETURN(100M,    100);
8862 
8863 	#undef TEST_SPEED_RETURN
8864 
8865 	return 0;
8866 }
8867 
8868 /*
8869  * Return the port capabilities bit for the given speed, which is in Mb/s.
8870  */
8871 uint32_t speed_to_fwcap(unsigned int speed)
8872 {
8873 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8874 		do { \
8875 			if (speed == __speed) \
8876 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8877 		} while (0)
8878 
8879 	TEST_SPEED_RETURN(400G, 400000);
8880 	TEST_SPEED_RETURN(200G, 200000);
8881 	TEST_SPEED_RETURN(100G, 100000);
8882 	TEST_SPEED_RETURN(50G,   50000);
8883 	TEST_SPEED_RETURN(40G,   40000);
8884 	TEST_SPEED_RETURN(25G,   25000);
8885 	TEST_SPEED_RETURN(10G,   10000);
8886 	TEST_SPEED_RETURN(1G,     1000);
8887 	TEST_SPEED_RETURN(100M,    100);
8888 
8889 	#undef TEST_SPEED_RETURN
8890 
8891 	return 0;
8892 }
8893 
8894 /*
8895  * Return the port capabilities bit for the highest speed in the capabilities.
8896  */
8897 uint32_t fwcap_top_speed(uint32_t caps)
8898 {
8899 	#define TEST_SPEED_RETURN(__caps_speed) \
8900 		do { \
8901 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8902 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8903 		} while (0)
8904 
8905 	TEST_SPEED_RETURN(400G);
8906 	TEST_SPEED_RETURN(200G);
8907 	TEST_SPEED_RETURN(100G);
8908 	TEST_SPEED_RETURN(50G);
8909 	TEST_SPEED_RETURN(40G);
8910 	TEST_SPEED_RETURN(25G);
8911 	TEST_SPEED_RETURN(10G);
8912 	TEST_SPEED_RETURN(1G);
8913 	TEST_SPEED_RETURN(100M);
8914 
8915 	#undef TEST_SPEED_RETURN
8916 
8917 	return 0;
8918 }
8919 
8920 /**
8921  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8922  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8923  *
8924  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8925  *	32-bit Port Capabilities value.
8926  */
8927 static uint32_t lstatus_to_fwcap(u32 lstatus)
8928 {
8929 	uint32_t linkattr = 0;
8930 
8931 	/*
8932 	 * Unfortunately the format of the Link Status in the old
8933 	 * 16-bit Port Information message isn't the same as the
8934 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8935 	 */
8936 	if (lstatus & F_FW_PORT_CMD_RXPAUSE)
8937 		linkattr |= FW_PORT_CAP32_FC_RX;
8938 	if (lstatus & F_FW_PORT_CMD_TXPAUSE)
8939 		linkattr |= FW_PORT_CAP32_FC_TX;
8940 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
8941 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8942 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
8943 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8944 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
8945 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8946 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
8947 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8948 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
8949 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8950 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
8951 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8952 
8953 	return linkattr;
8954 }
8955 
8956 /*
8957  * Updates all fields owned by the common code in port_info and link_config
8958  * based on information provided by the firmware.  Does not touch any
8959  * requested_* field.
8960  */
8961 static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p,
8962     enum fw_port_action action, bool *mod_changed, bool *link_changed)
8963 {
8964 	struct link_config old_lc, *lc = &pi->link_cfg;
8965 	unsigned char fc;
8966 	u32 stat, linkattr;
8967 	int old_ptype, old_mtype;
8968 
8969 	old_ptype = pi->port_type;
8970 	old_mtype = pi->mod_type;
8971 	old_lc = *lc;
8972 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8973 		stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
8974 
8975 		pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
8976 		pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
8977 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
8978 		    G_FW_PORT_CMD_MDIOADDR(stat) : -1;
8979 
8980 		lc->pcaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap));
8981 		lc->acaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap));
8982 		lc->lpacaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap));
8983 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
8984 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
8985 
8986 		linkattr = lstatus_to_fwcap(stat);
8987 	} else if (action == FW_PORT_ACTION_GET_PORT_INFO32) {
8988 		stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32);
8989 
8990 		pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat);
8991 		pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat);
8992 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ?
8993 		    G_FW_PORT_CMD_MDIOADDR32(stat) : -1;
8994 
8995 		lc->pcaps = be32_to_cpu(p->u.info32.pcaps32);
8996 		lc->acaps = be32_to_cpu(p->u.info32.acaps32);
8997 		lc->lpacaps = be32_to_cpu(p->u.info32.lpacaps32);
8998 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0;
8999 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat);
9000 
9001 		linkattr = be32_to_cpu(p->u.info32.linkattr32);
9002 	} else {
9003 		CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action);
9004 		return;
9005 	}
9006 
9007 	lc->speed = fwcap_to_speed(linkattr);
9008 	lc->fec = fwcap_to_fec(linkattr, true);
9009 
9010 	fc = 0;
9011 	if (linkattr & FW_PORT_CAP32_FC_RX)
9012 		fc |= PAUSE_RX;
9013 	if (linkattr & FW_PORT_CAP32_FC_TX)
9014 		fc |= PAUSE_TX;
9015 	lc->fc = fc;
9016 
9017 	if (mod_changed != NULL)
9018 		*mod_changed = false;
9019 	if (link_changed != NULL)
9020 		*link_changed = false;
9021 	if (old_ptype != pi->port_type || old_mtype != pi->mod_type ||
9022 	    old_lc.pcaps != lc->pcaps) {
9023 		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE)
9024 			lc->fec_hint = fwcap_to_fec(lc->acaps, true);
9025 		if (mod_changed != NULL)
9026 			*mod_changed = true;
9027 	}
9028 	if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed ||
9029 	    old_lc.fec != lc->fec || old_lc.fc != lc->fc) {
9030 		if (link_changed != NULL)
9031 			*link_changed = true;
9032 	}
9033 }
9034 
9035 /**
9036  *	t4_update_port_info - retrieve and update port information if changed
9037  *	@pi: the port_info
9038  *
9039  *	We issue a Get Port Information Command to the Firmware and, if
9040  *	successful, we check to see if anything is different from what we
9041  *	last recorded and update things accordingly.
9042  */
9043  int t4_update_port_info(struct port_info *pi)
9044  {
9045 	struct adapter *sc = pi->adapter;
9046 	struct fw_port_cmd cmd;
9047 	enum fw_port_action action;
9048 	int ret;
9049 
9050 	memset(&cmd, 0, sizeof(cmd));
9051 	cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
9052 	    F_FW_CMD_REQUEST | F_FW_CMD_READ |
9053 	    V_FW_PORT_CMD_PORTID(pi->tx_chan));
9054 	action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 :
9055 	    FW_PORT_ACTION_GET_PORT_INFO;
9056 	cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) |
9057 	    FW_LEN16(cmd));
9058 	ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd);
9059 	if (ret)
9060 		return ret;
9061 
9062 	handle_port_info(pi, &cmd, action, NULL, NULL);
9063 	return 0;
9064 }
9065 
9066 /**
9067  *	t4_handle_fw_rpl - process a FW reply message
9068  *	@adap: the adapter
9069  *	@rpl: start of the FW message
9070  *
9071  *	Processes a FW message, such as link state change messages.
9072  */
9073 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
9074 {
9075 	u8 opcode = *(const u8 *)rpl;
9076 	const struct fw_port_cmd *p = (const void *)rpl;
9077 	enum fw_port_action action =
9078 	    G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
9079 	bool mod_changed, link_changed;
9080 
9081 	if (opcode == FW_PORT_CMD &&
9082 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
9083 	    action == FW_PORT_ACTION_GET_PORT_INFO32)) {
9084 		/* link/module state change message */
9085 		int i;
9086 		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
9087 		struct port_info *pi = NULL;
9088 
9089 		for_each_port(adap, i) {
9090 			pi = adap2pinfo(adap, i);
9091 			if (pi->tx_chan == chan)
9092 				break;
9093 		}
9094 
9095 		PORT_LOCK(pi);
9096 		handle_port_info(pi, p, action, &mod_changed, &link_changed);
9097 		PORT_UNLOCK(pi);
9098 		if (mod_changed)
9099 			t4_os_portmod_changed(pi);
9100 		if (link_changed) {
9101 			PORT_LOCK(pi);
9102 			t4_os_link_changed(pi);
9103 			PORT_UNLOCK(pi);
9104 		}
9105 	} else {
9106 		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
9107 		return -EINVAL;
9108 	}
9109 	return 0;
9110 }
9111 
9112 /**
9113  *	get_pci_mode - determine a card's PCI mode
9114  *	@adapter: the adapter
9115  *	@p: where to store the PCI settings
9116  *
9117  *	Determines a card's PCI mode and associated parameters, such as speed
9118  *	and width.
9119  */
9120 static void get_pci_mode(struct adapter *adapter,
9121 				   struct pci_params *p)
9122 {
9123 	u16 val;
9124 	u32 pcie_cap;
9125 
9126 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
9127 	if (pcie_cap) {
9128 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
9129 		p->speed = val & PCI_EXP_LNKSTA_CLS;
9130 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
9131 	}
9132 }
9133 
9134 struct flash_desc {
9135 	u32 vendor_and_model_id;
9136 	u32 size_mb;
9137 };
9138 
9139 int t4_get_flash_params(struct adapter *adapter)
9140 {
9141 	/*
9142 	 * Table for non-standard supported Flash parts.  Note, all Flash
9143 	 * parts must have 64KB sectors.
9144 	 */
9145 	static struct flash_desc supported_flash[] = {
9146 		{ 0x00150201, 4 << 20 },	/* Spansion 4MB S25FL032P */
9147 	};
9148 
9149 	int ret;
9150 	u32 flashid = 0;
9151 	unsigned int part, manufacturer;
9152 	unsigned int density, size = 0;
9153 
9154 
9155 	/*
9156 	 * Issue a Read ID Command to the Flash part.  We decode supported
9157 	 * Flash parts and their sizes from this.  There's a newer Query
9158 	 * Command which can retrieve detailed geometry information but many
9159 	 * Flash parts don't support it.
9160 	 */
9161 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
9162 	if (!ret)
9163 		ret = sf1_read(adapter, 3, 0, 1, &flashid);
9164 	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
9165 	if (ret < 0)
9166 		return ret;
9167 
9168 	/*
9169 	 * Check to see if it's one of our non-standard supported Flash parts.
9170 	 */
9171 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
9172 		if (supported_flash[part].vendor_and_model_id == flashid) {
9173 			adapter->params.sf_size =
9174 				supported_flash[part].size_mb;
9175 			adapter->params.sf_nsec =
9176 				adapter->params.sf_size / SF_SEC_SIZE;
9177 			goto found;
9178 		}
9179 
9180 	/*
9181 	 * Decode Flash part size.  The code below looks repetative with
9182 	 * common encodings, but that's not guaranteed in the JEDEC
9183 	 * specification for the Read JADEC ID command.  The only thing that
9184 	 * we're guaranteed by the JADEC specification is where the
9185 	 * Manufacturer ID is in the returned result.  After that each
9186 	 * Manufacturer ~could~ encode things completely differently.
9187 	 * Note, all Flash parts must have 64KB sectors.
9188 	 */
9189 	manufacturer = flashid & 0xff;
9190 	switch (manufacturer) {
9191 	case 0x20: /* Micron/Numonix */
9192 		/*
9193 		 * This Density -> Size decoding table is taken from Micron
9194 		 * Data Sheets.
9195 		 */
9196 		density = (flashid >> 16) & 0xff;
9197 		switch (density) {
9198 		case 0x14: size = 1 << 20; break; /*   1MB */
9199 		case 0x15: size = 1 << 21; break; /*   2MB */
9200 		case 0x16: size = 1 << 22; break; /*   4MB */
9201 		case 0x17: size = 1 << 23; break; /*   8MB */
9202 		case 0x18: size = 1 << 24; break; /*  16MB */
9203 		case 0x19: size = 1 << 25; break; /*  32MB */
9204 		case 0x20: size = 1 << 26; break; /*  64MB */
9205 		case 0x21: size = 1 << 27; break; /* 128MB */
9206 		case 0x22: size = 1 << 28; break; /* 256MB */
9207 		}
9208 		break;
9209 
9210 	case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */
9211 		/*
9212 		 * This Density -> Size decoding table is taken from ISSI
9213 		 * Data Sheets.
9214 		 */
9215 		density = (flashid >> 16) & 0xff;
9216 		switch (density) {
9217 		case 0x16: size = 1 << 25; break; /*  32MB */
9218 		case 0x17: size = 1 << 26; break; /*  64MB */
9219 		}
9220 		break;
9221 
9222 	case 0xc2: /* Macronix */
9223 		/*
9224 		 * This Density -> Size decoding table is taken from Macronix
9225 		 * Data Sheets.
9226 		 */
9227 		density = (flashid >> 16) & 0xff;
9228 		switch (density) {
9229 		case 0x17: size = 1 << 23; break; /*   8MB */
9230 		case 0x18: size = 1 << 24; break; /*  16MB */
9231 		}
9232 		break;
9233 
9234 	case 0xef: /* Winbond */
9235 		/*
9236 		 * This Density -> Size decoding table is taken from Winbond
9237 		 * Data Sheets.
9238 		 */
9239 		density = (flashid >> 16) & 0xff;
9240 		switch (density) {
9241 		case 0x17: size = 1 << 23; break; /*   8MB */
9242 		case 0x18: size = 1 << 24; break; /*  16MB */
9243 		}
9244 		break;
9245 	}
9246 
9247 	/* If we didn't recognize the FLASH part, that's no real issue: the
9248 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
9249 	 * use a FLASH part which is at least 4MB in size and has 64KB
9250 	 * sectors.  The unrecognized FLASH part is likely to be much larger
9251 	 * than 4MB, but that's all we really need.
9252 	 */
9253 	if (size == 0) {
9254 		CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid);
9255 		size = 1 << 22;
9256 	}
9257 
9258 	/*
9259 	 * Store decoded Flash size and fall through into vetting code.
9260 	 */
9261 	adapter->params.sf_size = size;
9262 	adapter->params.sf_nsec = size / SF_SEC_SIZE;
9263 
9264  found:
9265 	/*
9266 	 * We should ~probably~ reject adapters with FLASHes which are too
9267 	 * small but we have some legacy FPGAs with small FLASHes that we'd
9268 	 * still like to use.  So instead we emit a scary message ...
9269 	 */
9270 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
9271 		CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9272 			flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
9273 
9274 	return 0;
9275 }
9276 
9277 static void set_pcie_completion_timeout(struct adapter *adapter,
9278 						  u8 range)
9279 {
9280 	u16 val;
9281 	u32 pcie_cap;
9282 
9283 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
9284 	if (pcie_cap) {
9285 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
9286 		val &= 0xfff0;
9287 		val |= range ;
9288 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
9289 	}
9290 }
9291 
9292 const struct chip_params *t4_get_chip_params(int chipid)
9293 {
9294 	static const struct chip_params chip_params[] = {
9295 		{
9296 			/* T4 */
9297 			.nchan = NCHAN,
9298 			.pm_stats_cnt = PM_NSTATS,
9299 			.cng_ch_bits_log = 2,
9300 			.nsched_cls = 15,
9301 			.cim_num_obq = CIM_NUM_OBQ,
9302 			.filter_opt_len = FILTER_OPT_LEN,
9303 			.mps_rplc_size = 128,
9304 			.vfcount = 128,
9305 			.sge_fl_db = F_DBPRIO,
9306 			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
9307 			.rss_nentries = RSS_NENTRIES,
9308 		},
9309 		{
9310 			/* T5 */
9311 			.nchan = NCHAN,
9312 			.pm_stats_cnt = PM_NSTATS,
9313 			.cng_ch_bits_log = 2,
9314 			.nsched_cls = 16,
9315 			.cim_num_obq = CIM_NUM_OBQ_T5,
9316 			.filter_opt_len = T5_FILTER_OPT_LEN,
9317 			.mps_rplc_size = 128,
9318 			.vfcount = 128,
9319 			.sge_fl_db = F_DBPRIO | F_DBTYPE,
9320 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
9321 			.rss_nentries = RSS_NENTRIES,
9322 		},
9323 		{
9324 			/* T6 */
9325 			.nchan = T6_NCHAN,
9326 			.pm_stats_cnt = T6_PM_NSTATS,
9327 			.cng_ch_bits_log = 3,
9328 			.nsched_cls = 16,
9329 			.cim_num_obq = CIM_NUM_OBQ_T5,
9330 			.filter_opt_len = T5_FILTER_OPT_LEN,
9331 			.mps_rplc_size = 256,
9332 			.vfcount = 256,
9333 			.sge_fl_db = 0,
9334 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
9335 			.rss_nentries = T6_RSS_NENTRIES,
9336 		},
9337 	};
9338 
9339 	chipid -= CHELSIO_T4;
9340 	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
9341 		return NULL;
9342 
9343 	return &chip_params[chipid];
9344 }
9345 
9346 /**
9347  *	t4_prep_adapter - prepare SW and HW for operation
9348  *	@adapter: the adapter
9349  *	@buf: temporary space of at least VPD_LEN size provided by the caller.
9350  *
9351  *	Initialize adapter SW state for the various HW modules, set initial
9352  *	values for some adapter tunables, take PHYs out of reset, and
9353  *	initialize the MDIO interface.
9354  */
9355 int t4_prep_adapter(struct adapter *adapter, u32 *buf)
9356 {
9357 	int ret;
9358 	uint16_t device_id;
9359 	uint32_t pl_rev;
9360 
9361 	get_pci_mode(adapter, &adapter->params.pci);
9362 
9363 	pl_rev = t4_read_reg(adapter, A_PL_REV);
9364 	adapter->params.chipid = G_CHIPID(pl_rev);
9365 	adapter->params.rev = G_REV(pl_rev);
9366 	if (adapter->params.chipid == 0) {
9367 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
9368 		adapter->params.chipid = CHELSIO_T4;
9369 
9370 		/* T4A1 chip is not supported */
9371 		if (adapter->params.rev == 1) {
9372 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
9373 			return -EINVAL;
9374 		}
9375 	}
9376 
9377 	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
9378 	if (adapter->chip_params == NULL)
9379 		return -EINVAL;
9380 
9381 	adapter->params.pci.vpd_cap_addr =
9382 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
9383 
9384 	ret = t4_get_flash_params(adapter);
9385 	if (ret < 0)
9386 		return ret;
9387 
9388 	/* Cards with real ASICs have the chipid in the PCIe device id */
9389 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
9390 	if (device_id >> 12 == chip_id(adapter))
9391 		adapter->params.cim_la_size = CIMLA_SIZE;
9392 	else {
9393 		/* FPGA */
9394 		adapter->params.fpga = 1;
9395 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
9396 	}
9397 
9398 	ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
9399 	if (ret < 0)
9400 		return ret;
9401 
9402 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9403 
9404 	/*
9405 	 * Default port and clock for debugging in case we can't reach FW.
9406 	 */
9407 	adapter->params.nports = 1;
9408 	adapter->params.portvec = 1;
9409 	adapter->params.vpd.cclk = 50000;
9410 
9411 	/* Set pci completion timeout value to 4 seconds. */
9412 	set_pcie_completion_timeout(adapter, 0xd);
9413 	return 0;
9414 }
9415 
9416 /**
9417  *	t4_shutdown_adapter - shut down adapter, host & wire
9418  *	@adapter: the adapter
9419  *
9420  *	Perform an emergency shutdown of the adapter and stop it from
9421  *	continuing any further communication on the ports or DMA to the
9422  *	host.  This is typically used when the adapter and/or firmware
9423  *	have crashed and we want to prevent any further accidental
9424  *	communication with the rest of the world.  This will also force
9425  *	the port Link Status to go down -- if register writes work --
9426  *	which should help our peers figure out that we're down.
9427  */
9428 int t4_shutdown_adapter(struct adapter *adapter)
9429 {
9430 	int port;
9431 	const bool bt = adapter->bt_map != 0;
9432 
9433 	t4_intr_disable(adapter);
9434 	if (bt)
9435 		t4_write_reg(adapter, A_DBG_GPIO_EN, 0xffff0000);
9436 	for_each_port(adapter, port) {
9437 		u32 a_port_cfg = is_t4(adapter) ?
9438 				 PORT_REG(port, A_XGMAC_PORT_CFG) :
9439 				 T5_PORT_REG(port, A_MAC_PORT_CFG);
9440 
9441 		t4_write_reg(adapter, a_port_cfg,
9442 			     t4_read_reg(adapter, a_port_cfg)
9443 			     & ~V_SIGNAL_DET(1));
9444 		if (!bt) {
9445 			u32 hss_cfg0 = is_t4(adapter) ?
9446 					 PORT_REG(port, A_XGMAC_PORT_HSS_CFG0) :
9447 					 T5_PORT_REG(port, A_MAC_PORT_HSS_CFG0);
9448 			t4_set_reg_field(adapter, hss_cfg0, F_HSSPDWNPLLB |
9449 			    F_HSSPDWNPLLA | F_HSSPLLBYPB | F_HSSPLLBYPA,
9450 			    F_HSSPDWNPLLB | F_HSSPDWNPLLA | F_HSSPLLBYPB |
9451 			    F_HSSPLLBYPA);
9452 		}
9453 	}
9454 	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
9455 
9456 	return 0;
9457 }
9458 
9459 /**
9460  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9461  *	@adapter: the adapter
9462  *	@qid: the Queue ID
9463  *	@qtype: the Ingress or Egress type for @qid
9464  *	@user: true if this request is for a user mode queue
9465  *	@pbar2_qoffset: BAR2 Queue Offset
9466  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9467  *
9468  *	Returns the BAR2 SGE Queue Registers information associated with the
9469  *	indicated Absolute Queue ID.  These are passed back in return value
9470  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9471  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9472  *
9473  *	This may return an error which indicates that BAR2 SGE Queue
9474  *	registers aren't available.  If an error is not returned, then the
9475  *	following values are returned:
9476  *
9477  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9478  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9479  *
9480  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9481  *	require the "Inferred Queue ID" ability may be used.  E.g. the
9482  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9483  *	then these "Inferred Queue ID" register may not be used.
9484  */
9485 int t4_bar2_sge_qregs(struct adapter *adapter,
9486 		      unsigned int qid,
9487 		      enum t4_bar2_qtype qtype,
9488 		      int user,
9489 		      u64 *pbar2_qoffset,
9490 		      unsigned int *pbar2_qid)
9491 {
9492 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9493 	u64 bar2_page_offset, bar2_qoffset;
9494 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9495 
9496 	/* T4 doesn't support BAR2 SGE Queue registers for kernel
9497 	 * mode queues.
9498 	 */
9499 	if (!user && is_t4(adapter))
9500 		return -EINVAL;
9501 
9502 	/* Get our SGE Page Size parameters.
9503 	 */
9504 	page_shift = adapter->params.sge.page_shift;
9505 	page_size = 1 << page_shift;
9506 
9507 	/* Get the right Queues per Page parameters for our Queue.
9508 	 */
9509 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9510 		     ? adapter->params.sge.eq_s_qpp
9511 		     : adapter->params.sge.iq_s_qpp);
9512 	qpp_mask = (1 << qpp_shift) - 1;
9513 
9514 	/* Calculate the basics of the BAR2 SGE Queue register area:
9515 	 *  o The BAR2 page the Queue registers will be in.
9516 	 *  o The BAR2 Queue ID.
9517 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9518 	 */
9519 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9520 	bar2_qid = qid & qpp_mask;
9521 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9522 
9523 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9524 	 * hardware will infer the Absolute Queue ID simply from the writes to
9525 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9526 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9527 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9528 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9529 	 * from the BAR2 Page and BAR2 Queue ID.
9530 	 *
9531 	 * One important censequence of this is that some BAR2 SGE registers
9532 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9533 	 * there.  But other registers synthesize the SGE Queue ID purely
9534 	 * from the writes to the registers -- the Write Combined Doorbell
9535 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9536 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9537 	 * Queue ID can be inferred from simple writes.
9538 	 */
9539 	bar2_qoffset = bar2_page_offset;
9540 	bar2_qinferred = (bar2_qid_offset < page_size);
9541 	if (bar2_qinferred) {
9542 		bar2_qoffset += bar2_qid_offset;
9543 		bar2_qid = 0;
9544 	}
9545 
9546 	*pbar2_qoffset = bar2_qoffset;
9547 	*pbar2_qid = bar2_qid;
9548 	return 0;
9549 }
9550 
9551 /**
9552  *	t4_init_devlog_params - initialize adapter->params.devlog
9553  *	@adap: the adapter
9554  *	@fw_attach: whether we can talk to the firmware
9555  *
9556  *	Initialize various fields of the adapter's Firmware Device Log
9557  *	Parameters structure.
9558  */
9559 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
9560 {
9561 	struct devlog_params *dparams = &adap->params.devlog;
9562 	u32 pf_dparams;
9563 	unsigned int devlog_meminfo;
9564 	struct fw_devlog_cmd devlog_cmd;
9565 	int ret;
9566 
9567 	/* If we're dealing with newer firmware, the Device Log Paramerters
9568 	 * are stored in a designated register which allows us to access the
9569 	 * Device Log even if we can't talk to the firmware.
9570 	 */
9571 	pf_dparams =
9572 		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
9573 	if (pf_dparams) {
9574 		unsigned int nentries, nentries128;
9575 
9576 		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
9577 		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
9578 
9579 		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
9580 		nentries = (nentries128 + 1) * 128;
9581 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9582 
9583 		return 0;
9584 	}
9585 
9586 	/*
9587 	 * For any failing returns ...
9588 	 */
9589 	memset(dparams, 0, sizeof *dparams);
9590 
9591 	/*
9592 	 * If we can't talk to the firmware, there's really nothing we can do
9593 	 * at this point.
9594 	 */
9595 	if (!fw_attach)
9596 		return -ENXIO;
9597 
9598 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9599 	 */
9600 	memset(&devlog_cmd, 0, sizeof devlog_cmd);
9601 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9602 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9603 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9604 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9605 			 &devlog_cmd);
9606 	if (ret)
9607 		return ret;
9608 
9609 	devlog_meminfo =
9610 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9611 	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
9612 	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
9613 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9614 
9615 	return 0;
9616 }
9617 
9618 /**
9619  *	t4_init_sge_params - initialize adap->params.sge
9620  *	@adapter: the adapter
9621  *
9622  *	Initialize various fields of the adapter's SGE Parameters structure.
9623  */
9624 int t4_init_sge_params(struct adapter *adapter)
9625 {
9626 	u32 r;
9627 	struct sge_params *sp = &adapter->params.sge;
9628 	unsigned i, tscale = 1;
9629 
9630 	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
9631 	sp->counter_val[0] = G_THRESHOLD_0(r);
9632 	sp->counter_val[1] = G_THRESHOLD_1(r);
9633 	sp->counter_val[2] = G_THRESHOLD_2(r);
9634 	sp->counter_val[3] = G_THRESHOLD_3(r);
9635 
9636 	if (chip_id(adapter) >= CHELSIO_T6) {
9637 		r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
9638 		tscale = G_TSCALE(r);
9639 		if (tscale == 0)
9640 			tscale = 1;
9641 		else
9642 			tscale += 2;
9643 	}
9644 
9645 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
9646 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
9647 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
9648 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
9649 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
9650 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
9651 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
9652 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
9653 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
9654 
9655 	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
9656 	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
9657 	if (is_t4(adapter))
9658 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
9659 	else if (is_t5(adapter))
9660 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
9661 	else
9662 		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
9663 
9664 	/* egress queues: log2 of # of doorbells per BAR2 page */
9665 	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
9666 	r >>= S_QUEUESPERPAGEPF0 +
9667 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9668 	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
9669 
9670 	/* ingress queues: log2 of # of doorbells per BAR2 page */
9671 	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
9672 	r >>= S_QUEUESPERPAGEPF0 +
9673 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9674 	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
9675 
9676 	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
9677 	r >>= S_HOSTPAGESIZEPF0 +
9678 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
9679 	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
9680 
9681 	r = t4_read_reg(adapter, A_SGE_CONTROL);
9682 	sp->sge_control = r;
9683 	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
9684 	sp->fl_pktshift = G_PKTSHIFT(r);
9685 	if (chip_id(adapter) <= CHELSIO_T5) {
9686 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9687 		    X_INGPADBOUNDARY_SHIFT);
9688 	} else {
9689 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9690 		    X_T6_INGPADBOUNDARY_SHIFT);
9691 	}
9692 	if (is_t4(adapter))
9693 		sp->pack_boundary = sp->pad_boundary;
9694 	else {
9695 		r = t4_read_reg(adapter, A_SGE_CONTROL2);
9696 		if (G_INGPACKBOUNDARY(r) == 0)
9697 			sp->pack_boundary = 16;
9698 		else
9699 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
9700 	}
9701 	for (i = 0; i < SGE_FLBUF_SIZES; i++)
9702 		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
9703 		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
9704 
9705 	return 0;
9706 }
9707 
9708 /* Convert the LE's hardware hash mask to a shorter filter mask. */
9709 static inline uint16_t
9710 hashmask_to_filtermask(uint64_t hashmask, uint16_t filter_mode)
9711 {
9712 	static const uint8_t width[] = {1, 3, 17, 17, 8, 8, 16, 9, 3, 1};
9713 	int i;
9714 	uint16_t filter_mask;
9715 	uint64_t mask;		/* field mask */
9716 
9717 	filter_mask = 0;
9718 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++) {
9719 		if ((filter_mode & (1 << i)) == 0)
9720 			continue;
9721 		mask = (1 << width[i]) - 1;
9722 		if ((hashmask & mask) == mask)
9723 			filter_mask |= 1 << i;
9724 		hashmask >>= width[i];
9725 	}
9726 
9727 	return (filter_mask);
9728 }
9729 
9730 /*
9731  * Read and cache the adapter's compressed filter mode and ingress config.
9732  */
9733 static void
9734 read_filter_mode_and_ingress_config(struct adapter *adap)
9735 {
9736 	int rc;
9737 	uint32_t v, param[2], val[2];
9738 	struct tp_params *tpp = &adap->params.tp;
9739 	uint64_t hash_mask;
9740 
9741 	param[0] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9742 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
9743 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
9744 	param[1] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9745 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
9746 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
9747 	rc = -t4_query_params(adap, adap->mbox, adap->pf, 0, 2, param, val);
9748 	if (rc == 0) {
9749 		tpp->filter_mode = G_FW_PARAMS_PARAM_FILTER_MODE(val[0]);
9750 		tpp->filter_mask = G_FW_PARAMS_PARAM_FILTER_MASK(val[0]);
9751 		tpp->vnic_mode = val[1];
9752 	} else {
9753 		/*
9754 		 * Old firmware.  Read filter mode/mask and ingress config
9755 		 * straight from the hardware.
9756 		 */
9757 		t4_tp_pio_read(adap, &v, 1, A_TP_VLAN_PRI_MAP, true);
9758 		tpp->filter_mode = v & 0xffff;
9759 
9760 		hash_mask = 0;
9761 		if (chip_id(adap) > CHELSIO_T4) {
9762 			v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3));
9763 			hash_mask = v;
9764 			v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4));
9765 			hash_mask |= (u64)v << 32;
9766 		}
9767 		tpp->filter_mask = hashmask_to_filtermask(hash_mask,
9768 		    tpp->filter_mode);
9769 
9770 		t4_tp_pio_read(adap, &v, 1, A_TP_INGRESS_CONFIG, true);
9771 		if (v & F_VNIC)
9772 			tpp->vnic_mode = FW_VNIC_MODE_PF_VF;
9773 		else
9774 			tpp->vnic_mode = FW_VNIC_MODE_OUTER_VLAN;
9775 	}
9776 
9777 	/*
9778 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9779 	 * shift positions of several elements of the Compressed Filter Tuple
9780 	 * for this adapter which we need frequently ...
9781 	 */
9782 	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
9783 	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
9784 	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
9785 	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
9786 	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
9787 	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
9788 	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
9789 	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
9790 	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
9791 	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
9792 }
9793 
9794 /**
9795  *      t4_init_tp_params - initialize adap->params.tp
9796  *      @adap: the adapter
9797  *
9798  *      Initialize various fields of the adapter's TP Parameters structure.
9799  */
9800 int t4_init_tp_params(struct adapter *adap)
9801 {
9802 	int chan;
9803 	u32 tx_len, rx_len, r, v;
9804 	struct tp_params *tpp = &adap->params.tp;
9805 
9806 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
9807 	tpp->tre = G_TIMERRESOLUTION(v);
9808 	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
9809 
9810 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9811 	for (chan = 0; chan < MAX_NCHAN; chan++)
9812 		tpp->tx_modq[chan] = chan;
9813 
9814 	read_filter_mode_and_ingress_config(adap);
9815 
9816 	if (chip_id(adap) > CHELSIO_T5) {
9817 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
9818 		tpp->rx_pkt_encap = v & F_CRXPKTENC;
9819 	} else
9820 		tpp->rx_pkt_encap = false;
9821 
9822 	rx_len = t4_read_reg(adap, A_TP_PMM_RX_PAGE_SIZE);
9823 	tx_len = t4_read_reg(adap, A_TP_PMM_TX_PAGE_SIZE);
9824 
9825 	r = t4_read_reg(adap, A_TP_PARA_REG2);
9826 	rx_len = min(rx_len, G_MAXRXDATA(r));
9827 	tx_len = min(tx_len, G_MAXRXDATA(r));
9828 
9829 	r = t4_read_reg(adap, A_TP_PARA_REG7);
9830 	v = min(G_PMMAXXFERLEN0(r), G_PMMAXXFERLEN1(r));
9831 	rx_len = min(rx_len, v);
9832 	tx_len = min(tx_len, v);
9833 
9834 	tpp->max_tx_pdu = tx_len;
9835 	tpp->max_rx_pdu = rx_len;
9836 
9837 	return 0;
9838 }
9839 
9840 /**
9841  *      t4_filter_field_shift - calculate filter field shift
9842  *      @adap: the adapter
9843  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9844  *
9845  *      Return the shift position of a filter field within the Compressed
9846  *      Filter Tuple.  The filter field is specified via its selection bit
9847  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9848  */
9849 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9850 {
9851 	const unsigned int filter_mode = adap->params.tp.filter_mode;
9852 	unsigned int sel;
9853 	int field_shift;
9854 
9855 	if ((filter_mode & filter_sel) == 0)
9856 		return -1;
9857 
9858 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9859 		switch (filter_mode & sel) {
9860 		case F_FCOE:
9861 			field_shift += W_FT_FCOE;
9862 			break;
9863 		case F_PORT:
9864 			field_shift += W_FT_PORT;
9865 			break;
9866 		case F_VNIC_ID:
9867 			field_shift += W_FT_VNIC_ID;
9868 			break;
9869 		case F_VLAN:
9870 			field_shift += W_FT_VLAN;
9871 			break;
9872 		case F_TOS:
9873 			field_shift += W_FT_TOS;
9874 			break;
9875 		case F_PROTOCOL:
9876 			field_shift += W_FT_PROTOCOL;
9877 			break;
9878 		case F_ETHERTYPE:
9879 			field_shift += W_FT_ETHERTYPE;
9880 			break;
9881 		case F_MACMATCH:
9882 			field_shift += W_FT_MACMATCH;
9883 			break;
9884 		case F_MPSHITTYPE:
9885 			field_shift += W_FT_MPSHITTYPE;
9886 			break;
9887 		case F_FRAGMENTATION:
9888 			field_shift += W_FT_FRAGMENTATION;
9889 			break;
9890 		}
9891 	}
9892 	return field_shift;
9893 }
9894 
9895 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
9896 {
9897 	u8 addr[6];
9898 	int ret, i, j;
9899 	struct port_info *p = adap2pinfo(adap, port_id);
9900 	u32 param, val;
9901 	struct vi_info *vi = &p->vi[0];
9902 
9903 	for (i = 0, j = -1; i <= p->port_id; i++) {
9904 		do {
9905 			j++;
9906 		} while ((adap->params.portvec & (1 << j)) == 0);
9907 	}
9908 
9909 	p->tx_chan = j;
9910 	p->mps_bg_map = t4_get_mps_bg_map(adap, j);
9911 	p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
9912 	p->rx_c_chan = t4_get_rx_c_chan(adap, j);
9913 	p->lport = j;
9914 
9915 	if (!(adap->flags & IS_VF) ||
9916 	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
9917  		t4_update_port_info(p);
9918 	}
9919 
9920 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &vi->rss_size,
9921 	    &vi->vfvld, &vi->vin);
9922 	if (ret < 0)
9923 		return ret;
9924 
9925 	vi->viid = ret;
9926 	t4_os_set_hw_addr(p, addr);
9927 
9928 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9929 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
9930 	    V_FW_PARAMS_PARAM_YZ(vi->viid);
9931 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
9932 	if (ret)
9933 		vi->rss_base = 0xffff;
9934 	else {
9935 		/* MPASS((val >> 16) == rss_size); */
9936 		vi->rss_base = val & 0xffff;
9937 	}
9938 
9939 	return 0;
9940 }
9941 
9942 /**
9943  *	t4_read_cimq_cfg - read CIM queue configuration
9944  *	@adap: the adapter
9945  *	@base: holds the queue base addresses in bytes
9946  *	@size: holds the queue sizes in bytes
9947  *	@thres: holds the queue full thresholds in bytes
9948  *
9949  *	Returns the current configuration of the CIM queues, starting with
9950  *	the IBQs, then the OBQs.
9951  */
9952 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9953 {
9954 	unsigned int i, v;
9955 	int cim_num_obq = adap->chip_params->cim_num_obq;
9956 
9957 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9958 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
9959 			     V_QUENUMSELECT(i));
9960 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9961 		/* value is in 256-byte units */
9962 		*base++ = G_CIMQBASE(v) * 256;
9963 		*size++ = G_CIMQSIZE(v) * 256;
9964 		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
9965 	}
9966 	for (i = 0; i < cim_num_obq; i++) {
9967 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9968 			     V_QUENUMSELECT(i));
9969 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9970 		/* value is in 256-byte units */
9971 		*base++ = G_CIMQBASE(v) * 256;
9972 		*size++ = G_CIMQSIZE(v) * 256;
9973 	}
9974 }
9975 
9976 /**
9977  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9978  *	@adap: the adapter
9979  *	@qid: the queue index
9980  *	@data: where to store the queue contents
9981  *	@n: capacity of @data in 32-bit words
9982  *
9983  *	Reads the contents of the selected CIM queue starting at address 0 up
9984  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9985  *	error and the number of 32-bit words actually read on success.
9986  */
9987 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9988 {
9989 	int i, err, attempts;
9990 	unsigned int addr;
9991 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9992 
9993 	if (qid > 5 || (n & 3))
9994 		return -EINVAL;
9995 
9996 	addr = qid * nwords;
9997 	if (n > nwords)
9998 		n = nwords;
9999 
10000 	/* It might take 3-10ms before the IBQ debug read access is allowed.
10001 	 * Wait for 1 Sec with a delay of 1 usec.
10002 	 */
10003 	attempts = 1000000;
10004 
10005 	for (i = 0; i < n; i++, addr++) {
10006 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
10007 			     F_IBQDBGEN);
10008 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
10009 				      attempts, 1);
10010 		if (err)
10011 			return err;
10012 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
10013 	}
10014 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
10015 	return i;
10016 }
10017 
10018 /**
10019  *	t4_read_cim_obq - read the contents of a CIM outbound queue
10020  *	@adap: the adapter
10021  *	@qid: the queue index
10022  *	@data: where to store the queue contents
10023  *	@n: capacity of @data in 32-bit words
10024  *
10025  *	Reads the contents of the selected CIM queue starting at address 0 up
10026  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
10027  *	error and the number of 32-bit words actually read on success.
10028  */
10029 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
10030 {
10031 	int i, err;
10032 	unsigned int addr, v, nwords;
10033 	int cim_num_obq = adap->chip_params->cim_num_obq;
10034 
10035 	if ((qid > (cim_num_obq - 1)) || (n & 3))
10036 		return -EINVAL;
10037 
10038 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
10039 		     V_QUENUMSELECT(qid));
10040 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
10041 
10042 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
10043 	nwords = G_CIMQSIZE(v) * 64;  /* same */
10044 	if (n > nwords)
10045 		n = nwords;
10046 
10047 	for (i = 0; i < n; i++, addr++) {
10048 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
10049 			     F_OBQDBGEN);
10050 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
10051 				      2, 1);
10052 		if (err)
10053 			return err;
10054 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
10055 	}
10056 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
10057 	return i;
10058 }
10059 
10060 enum {
10061 	CIM_QCTL_BASE     = 0,
10062 	CIM_CTL_BASE      = 0x2000,
10063 	CIM_PBT_ADDR_BASE = 0x2800,
10064 	CIM_PBT_LRF_BASE  = 0x3000,
10065 	CIM_PBT_DATA_BASE = 0x3800
10066 };
10067 
10068 /**
10069  *	t4_cim_read - read a block from CIM internal address space
10070  *	@adap: the adapter
10071  *	@addr: the start address within the CIM address space
10072  *	@n: number of words to read
10073  *	@valp: where to store the result
10074  *
10075  *	Reads a block of 4-byte words from the CIM intenal address space.
10076  */
10077 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
10078 		unsigned int *valp)
10079 {
10080 	int ret = 0;
10081 
10082 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
10083 		return -EBUSY;
10084 
10085 	for ( ; !ret && n--; addr += 4) {
10086 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
10087 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
10088 				      0, 5, 2);
10089 		if (!ret)
10090 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
10091 	}
10092 	return ret;
10093 }
10094 
10095 /**
10096  *	t4_cim_write - write a block into CIM internal address space
10097  *	@adap: the adapter
10098  *	@addr: the start address within the CIM address space
10099  *	@n: number of words to write
10100  *	@valp: set of values to write
10101  *
10102  *	Writes a block of 4-byte words into the CIM intenal address space.
10103  */
10104 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
10105 		 const unsigned int *valp)
10106 {
10107 	int ret = 0;
10108 
10109 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
10110 		return -EBUSY;
10111 
10112 	for ( ; !ret && n--; addr += 4) {
10113 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
10114 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
10115 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
10116 				      0, 5, 2);
10117 	}
10118 	return ret;
10119 }
10120 
10121 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
10122 			 unsigned int val)
10123 {
10124 	return t4_cim_write(adap, addr, 1, &val);
10125 }
10126 
10127 /**
10128  *	t4_cim_ctl_read - read a block from CIM control region
10129  *	@adap: the adapter
10130  *	@addr: the start address within the CIM control region
10131  *	@n: number of words to read
10132  *	@valp: where to store the result
10133  *
10134  *	Reads a block of 4-byte words from the CIM control region.
10135  */
10136 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
10137 		    unsigned int *valp)
10138 {
10139 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
10140 }
10141 
10142 /**
10143  *	t4_cim_read_la - read CIM LA capture buffer
10144  *	@adap: the adapter
10145  *	@la_buf: where to store the LA data
10146  *	@wrptr: the HW write pointer within the capture buffer
10147  *
10148  *	Reads the contents of the CIM LA buffer with the most recent entry at
10149  *	the end	of the returned data and with the entry at @wrptr first.
10150  *	We try to leave the LA in the running state we find it in.
10151  */
10152 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
10153 {
10154 	int i, ret;
10155 	unsigned int cfg, val, idx;
10156 
10157 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
10158 	if (ret)
10159 		return ret;
10160 
10161 	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
10162 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
10163 		if (ret)
10164 			return ret;
10165 	}
10166 
10167 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
10168 	if (ret)
10169 		goto restart;
10170 
10171 	idx = G_UPDBGLAWRPTR(val);
10172 	if (wrptr)
10173 		*wrptr = idx;
10174 
10175 	for (i = 0; i < adap->params.cim_la_size; i++) {
10176 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
10177 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
10178 		if (ret)
10179 			break;
10180 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
10181 		if (ret)
10182 			break;
10183 		if (val & F_UPDBGLARDEN) {
10184 			ret = -ETIMEDOUT;
10185 			break;
10186 		}
10187 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
10188 		if (ret)
10189 			break;
10190 
10191 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
10192 		 * identify the 32-bit portion of the full 312-bit data
10193 		 */
10194 		if (is_t6(adap) && (idx & 0xf) >= 9)
10195 			idx = (idx & 0xff0) + 0x10;
10196 		else
10197 			idx++;
10198 		/* address can't exceed 0xfff */
10199 		idx &= M_UPDBGLARDPTR;
10200 	}
10201 restart:
10202 	if (cfg & F_UPDBGLAEN) {
10203 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
10204 				      cfg & ~F_UPDBGLARDEN);
10205 		if (!ret)
10206 			ret = r;
10207 	}
10208 	return ret;
10209 }
10210 
10211 /**
10212  *	t4_tp_read_la - read TP LA capture buffer
10213  *	@adap: the adapter
10214  *	@la_buf: where to store the LA data
10215  *	@wrptr: the HW write pointer within the capture buffer
10216  *
10217  *	Reads the contents of the TP LA buffer with the most recent entry at
10218  *	the end	of the returned data and with the entry at @wrptr first.
10219  *	We leave the LA in the running state we find it in.
10220  */
10221 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
10222 {
10223 	bool last_incomplete;
10224 	unsigned int i, cfg, val, idx;
10225 
10226 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
10227 	if (cfg & F_DBGLAENABLE)			/* freeze LA */
10228 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
10229 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
10230 
10231 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
10232 	idx = G_DBGLAWPTR(val);
10233 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
10234 	if (last_incomplete)
10235 		idx = (idx + 1) & M_DBGLARPTR;
10236 	if (wrptr)
10237 		*wrptr = idx;
10238 
10239 	val &= 0xffff;
10240 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
10241 	val |= adap->params.tp.la_mask;
10242 
10243 	for (i = 0; i < TPLA_SIZE; i++) {
10244 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
10245 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
10246 		idx = (idx + 1) & M_DBGLARPTR;
10247 	}
10248 
10249 	/* Wipe out last entry if it isn't valid */
10250 	if (last_incomplete)
10251 		la_buf[TPLA_SIZE - 1] = ~0ULL;
10252 
10253 	if (cfg & F_DBGLAENABLE)		/* restore running state */
10254 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
10255 			     cfg | adap->params.tp.la_mask);
10256 }
10257 
10258 /*
10259  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10260  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10261  * state for more than the Warning Threshold then we'll issue a warning about
10262  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10263  * appears to be hung every Warning Repeat second till the situation clears.
10264  * If the situation clears, we'll note that as well.
10265  */
10266 #define SGE_IDMA_WARN_THRESH 1
10267 #define SGE_IDMA_WARN_REPEAT 300
10268 
10269 /**
10270  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10271  *	@adapter: the adapter
10272  *	@idma: the adapter IDMA Monitor state
10273  *
10274  *	Initialize the state of an SGE Ingress DMA Monitor.
10275  */
10276 void t4_idma_monitor_init(struct adapter *adapter,
10277 			  struct sge_idma_monitor_state *idma)
10278 {
10279 	/* Initialize the state variables for detecting an SGE Ingress DMA
10280 	 * hang.  The SGE has internal counters which count up on each clock
10281 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
10282 	 * same state they were on the previous clock tick.  The clock used is
10283 	 * the Core Clock so we have a limit on the maximum "time" they can
10284 	 * record; typically a very small number of seconds.  For instance,
10285 	 * with a 600MHz Core Clock, we can only count up to a bit more than
10286 	 * 7s.  So we'll synthesize a larger counter in order to not run the
10287 	 * risk of having the "timers" overflow and give us the flexibility to
10288 	 * maintain a Hung SGE State Machine of our own which operates across
10289 	 * a longer time frame.
10290 	 */
10291 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10292 	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
10293 }
10294 
10295 /**
10296  *	t4_idma_monitor - monitor SGE Ingress DMA state
10297  *	@adapter: the adapter
10298  *	@idma: the adapter IDMA Monitor state
10299  *	@hz: number of ticks/second
10300  *	@ticks: number of ticks since the last IDMA Monitor call
10301  */
10302 void t4_idma_monitor(struct adapter *adapter,
10303 		     struct sge_idma_monitor_state *idma,
10304 		     int hz, int ticks)
10305 {
10306 	int i, idma_same_state_cnt[2];
10307 
10308 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10309 	  * are counters inside the SGE which count up on each clock when the
10310 	  * SGE finds its Ingress DMA State Engines in the same states they
10311 	  * were in the previous clock.  The counters will peg out at
10312 	  * 0xffffffff without wrapping around so once they pass the 1s
10313 	  * threshold they'll stay above that till the IDMA state changes.
10314 	  */
10315 	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
10316 	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
10317 	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10318 
10319 	for (i = 0; i < 2; i++) {
10320 		u32 debug0, debug11;
10321 
10322 		/* If the Ingress DMA Same State Counter ("timer") is less
10323 		 * than 1s, then we can reset our synthesized Stall Timer and
10324 		 * continue.  If we have previously emitted warnings about a
10325 		 * potential stalled Ingress Queue, issue a note indicating
10326 		 * that the Ingress Queue has resumed forward progress.
10327 		 */
10328 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10329 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
10330 				CH_WARN(adapter, "SGE idma%d, queue %u, "
10331 					"resumed after %d seconds\n",
10332 					i, idma->idma_qid[i],
10333 					idma->idma_stalled[i]/hz);
10334 			idma->idma_stalled[i] = 0;
10335 			continue;
10336 		}
10337 
10338 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10339 		 * domain.  The first time we get here it'll be because we
10340 		 * passed the 1s Threshold; each additional time it'll be
10341 		 * because the RX Timer Callback is being fired on its regular
10342 		 * schedule.
10343 		 *
10344 		 * If the stall is below our Potential Hung Ingress Queue
10345 		 * Warning Threshold, continue.
10346 		 */
10347 		if (idma->idma_stalled[i] == 0) {
10348 			idma->idma_stalled[i] = hz;
10349 			idma->idma_warn[i] = 0;
10350 		} else {
10351 			idma->idma_stalled[i] += ticks;
10352 			idma->idma_warn[i] -= ticks;
10353 		}
10354 
10355 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
10356 			continue;
10357 
10358 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10359 		 */
10360 		if (idma->idma_warn[i] > 0)
10361 			continue;
10362 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
10363 
10364 		/* Read and save the SGE IDMA State and Queue ID information.
10365 		 * We do this every time in case it changes across time ...
10366 		 * can't be too careful ...
10367 		 */
10368 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
10369 		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10370 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10371 
10372 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
10373 		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10374 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10375 
10376 		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
10377 			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10378 			i, idma->idma_qid[i], idma->idma_state[i],
10379 			idma->idma_stalled[i]/hz,
10380 			debug0, debug11);
10381 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10382 	}
10383 }
10384 
10385 /**
10386  *     t4_set_vf_mac - Set MAC address for the specified VF
10387  *     @adapter: The adapter
10388  *     @pf: the PF used to instantiate the VFs
10389  *     @vf: one of the VFs instantiated by the specified PF
10390  *     @naddr: the number of MAC addresses
10391  *     @addr: the MAC address(es) to be set to the specified VF
10392  */
10393 int t4_set_vf_mac(struct adapter *adapter, unsigned int pf, unsigned int vf,
10394 		  unsigned int naddr, u8 *addr)
10395 {
10396 	struct fw_acl_mac_cmd cmd;
10397 
10398 	memset(&cmd, 0, sizeof(cmd));
10399 	cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_MAC_CMD) |
10400 				    F_FW_CMD_REQUEST |
10401 				    F_FW_CMD_WRITE |
10402 				    V_FW_ACL_MAC_CMD_PFN(pf) |
10403 				    V_FW_ACL_MAC_CMD_VFN(vf));
10404 
10405 	/* Note: Do not enable the ACL */
10406 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10407 	cmd.nmac = naddr;
10408 
10409 	switch (pf) {
10410 	case 3:
10411 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10412 		break;
10413 	case 2:
10414 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10415 		break;
10416 	case 1:
10417 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10418 		break;
10419 	case 0:
10420 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10421 		break;
10422 	}
10423 
10424 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10425 }
10426 
10427 /**
10428  *	t4_read_pace_tbl - read the pace table
10429  *	@adap: the adapter
10430  *	@pace_vals: holds the returned values
10431  *
10432  *	Returns the values of TP's pace table in microseconds.
10433  */
10434 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10435 {
10436 	unsigned int i, v;
10437 
10438 	for (i = 0; i < NTX_SCHED; i++) {
10439 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
10440 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
10441 		pace_vals[i] = dack_ticks_to_usec(adap, v);
10442 	}
10443 }
10444 
10445 /**
10446  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10447  *	@adap: the adapter
10448  *	@sched: the scheduler index
10449  *	@kbps: the byte rate in Kbps
10450  *	@ipg: the interpacket delay in tenths of nanoseconds
10451  *
10452  *	Return the current configuration of a HW Tx scheduler.
10453  */
10454 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
10455 		     unsigned int *ipg, bool sleep_ok)
10456 {
10457 	unsigned int v, addr, bpt, cpt;
10458 
10459 	if (kbps) {
10460 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
10461 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10462 		if (sched & 1)
10463 			v >>= 16;
10464 		bpt = (v >> 8) & 0xff;
10465 		cpt = v & 0xff;
10466 		if (!cpt)
10467 			*kbps = 0;	/* scheduler disabled */
10468 		else {
10469 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10470 			*kbps = (v * bpt) / 125;
10471 		}
10472 	}
10473 	if (ipg) {
10474 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
10475 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10476 		if (sched & 1)
10477 			v >>= 16;
10478 		v &= 0xffff;
10479 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
10480 	}
10481 }
10482 
10483 /**
10484  *	t4_load_cfg - download config file
10485  *	@adap: the adapter
10486  *	@cfg_data: the cfg text file to write
10487  *	@size: text file size
10488  *
10489  *	Write the supplied config text file to the card's serial flash.
10490  */
10491 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10492 {
10493 	int ret, i, n, cfg_addr;
10494 	unsigned int addr;
10495 	unsigned int flash_cfg_start_sec;
10496 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10497 
10498 	cfg_addr = t4_flash_cfg_addr(adap);
10499 	if (cfg_addr < 0)
10500 		return cfg_addr;
10501 
10502 	addr = cfg_addr;
10503 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10504 
10505 	if (size > FLASH_CFG_MAX_SIZE) {
10506 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
10507 		       FLASH_CFG_MAX_SIZE);
10508 		return -EFBIG;
10509 	}
10510 
10511 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
10512 			 sf_sec_size);
10513 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10514 				     flash_cfg_start_sec + i - 1);
10515 	/*
10516 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10517 	 * with the on-adapter Firmware Configuration File.
10518 	 */
10519 	if (ret || size == 0)
10520 		goto out;
10521 
10522 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10523 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10524 		if ( (size - i) <  SF_PAGE_SIZE)
10525 			n = size - i;
10526 		else
10527 			n = SF_PAGE_SIZE;
10528 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
10529 		if (ret)
10530 			goto out;
10531 
10532 		addr += SF_PAGE_SIZE;
10533 		cfg_data += SF_PAGE_SIZE;
10534 	}
10535 
10536 out:
10537 	if (ret)
10538 		CH_ERR(adap, "config file %s failed %d\n",
10539 		       (size == 0 ? "clear" : "download"), ret);
10540 	return ret;
10541 }
10542 
10543 /**
10544  *	t5_fw_init_extern_mem - initialize the external memory
10545  *	@adap: the adapter
10546  *
10547  *	Initializes the external memory on T5.
10548  */
10549 int t5_fw_init_extern_mem(struct adapter *adap)
10550 {
10551 	u32 params[1], val[1];
10552 	int ret;
10553 
10554 	if (!is_t5(adap))
10555 		return 0;
10556 
10557 	val[0] = 0xff; /* Initialize all MCs */
10558 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10559 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
10560 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
10561 			FW_CMD_MAX_TIMEOUT);
10562 
10563 	return ret;
10564 }
10565 
10566 /* BIOS boot headers */
10567 typedef struct pci_expansion_rom_header {
10568 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
10569 	u8	reserved[22]; /* Reserved per processor Architecture data */
10570 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
10571 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
10572 
10573 /* Legacy PCI Expansion ROM Header */
10574 typedef struct legacy_pci_expansion_rom_header {
10575 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
10576 	u8	size512; /* Current Image Size in units of 512 bytes */
10577 	u8	initentry_point[4];
10578 	u8	cksum; /* Checksum computed on the entire Image */
10579 	u8	reserved[16]; /* Reserved */
10580 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
10581 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
10582 
10583 /* EFI PCI Expansion ROM Header */
10584 typedef struct efi_pci_expansion_rom_header {
10585 	u8	signature[2]; // ROM signature. The value 0xaa55
10586 	u8	initialization_size[2]; /* Units 512. Includes this header */
10587 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
10588 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
10589 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
10590 	u8	compression_type[2]; /* Compression type. */
10591 		/*
10592 		 * Compression type definition
10593 		 * 0x0: uncompressed
10594 		 * 0x1: Compressed
10595 		 * 0x2-0xFFFF: Reserved
10596 		 */
10597 	u8	reserved[8]; /* Reserved */
10598 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
10599 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
10600 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
10601 
10602 /* PCI Data Structure Format */
10603 typedef struct pcir_data_structure { /* PCI Data Structure */
10604 	u8	signature[4]; /* Signature. The string "PCIR" */
10605 	u8	vendor_id[2]; /* Vendor Identification */
10606 	u8	device_id[2]; /* Device Identification */
10607 	u8	vital_product[2]; /* Pointer to Vital Product Data */
10608 	u8	length[2]; /* PCIR Data Structure Length */
10609 	u8	revision; /* PCIR Data Structure Revision */
10610 	u8	class_code[3]; /* Class Code */
10611 	u8	image_length[2]; /* Image Length. Multiple of 512B */
10612 	u8	code_revision[2]; /* Revision Level of Code/Data */
10613 	u8	code_type; /* Code Type. */
10614 		/*
10615 		 * PCI Expansion ROM Code Types
10616 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
10617 		 * 0x01: Open Firmware standard for PCI. FCODE
10618 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
10619 		 * 0x03: EFI Image. EFI
10620 		 * 0x04-0xFF: Reserved.
10621 		 */
10622 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
10623 	u8	reserved[2]; /* Reserved */
10624 } pcir_data_t; /* PCI__DATA_STRUCTURE */
10625 
10626 /* BOOT constants */
10627 enum {
10628 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
10629 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
10630 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
10631 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
10632 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
10633 	VENDOR_ID = 0x1425, /* Vendor ID */
10634 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
10635 };
10636 
10637 /*
10638  *	modify_device_id - Modifies the device ID of the Boot BIOS image
10639  *	@adatper: the device ID to write.
10640  *	@boot_data: the boot image to modify.
10641  *
10642  *	Write the supplied device ID to the boot BIOS image.
10643  */
10644 static void modify_device_id(int device_id, u8 *boot_data)
10645 {
10646 	legacy_pci_exp_rom_header_t *header;
10647 	pcir_data_t *pcir_header;
10648 	u32 cur_header = 0;
10649 
10650 	/*
10651 	 * Loop through all chained images and change the device ID's
10652 	 */
10653 	while (1) {
10654 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
10655 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
10656 			      le16_to_cpu(*(u16*)header->pcir_offset)];
10657 
10658 		/*
10659 		 * Only modify the Device ID if code type is Legacy or HP.
10660 		 * 0x00: Okay to modify
10661 		 * 0x01: FCODE. Do not be modify
10662 		 * 0x03: Okay to modify
10663 		 * 0x04-0xFF: Do not modify
10664 		 */
10665 		if (pcir_header->code_type == 0x00) {
10666 			u8 csum = 0;
10667 			int i;
10668 
10669 			/*
10670 			 * Modify Device ID to match current adatper
10671 			 */
10672 			*(u16*) pcir_header->device_id = device_id;
10673 
10674 			/*
10675 			 * Set checksum temporarily to 0.
10676 			 * We will recalculate it later.
10677 			 */
10678 			header->cksum = 0x0;
10679 
10680 			/*
10681 			 * Calculate and update checksum
10682 			 */
10683 			for (i = 0; i < (header->size512 * 512); i++)
10684 				csum += (u8)boot_data[cur_header + i];
10685 
10686 			/*
10687 			 * Invert summed value to create the checksum
10688 			 * Writing new checksum value directly to the boot data
10689 			 */
10690 			boot_data[cur_header + 7] = -csum;
10691 
10692 		} else if (pcir_header->code_type == 0x03) {
10693 
10694 			/*
10695 			 * Modify Device ID to match current adatper
10696 			 */
10697 			*(u16*) pcir_header->device_id = device_id;
10698 
10699 		}
10700 
10701 
10702 		/*
10703 		 * Check indicator element to identify if this is the last
10704 		 * image in the ROM.
10705 		 */
10706 		if (pcir_header->indicator & 0x80)
10707 			break;
10708 
10709 		/*
10710 		 * Move header pointer up to the next image in the ROM.
10711 		 */
10712 		cur_header += header->size512 * 512;
10713 	}
10714 }
10715 
10716 /*
10717  *	t4_load_boot - download boot flash
10718  *	@adapter: the adapter
10719  *	@boot_data: the boot image to write
10720  *	@boot_addr: offset in flash to write boot_data
10721  *	@size: image size
10722  *
10723  *	Write the supplied boot image to the card's serial flash.
10724  *	The boot image has the following sections: a 28-byte header and the
10725  *	boot image.
10726  */
10727 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10728 		 unsigned int boot_addr, unsigned int size)
10729 {
10730 	pci_exp_rom_header_t *header;
10731 	int pcir_offset ;
10732 	pcir_data_t *pcir_header;
10733 	int ret, addr;
10734 	uint16_t device_id;
10735 	unsigned int i;
10736 	unsigned int boot_sector = (boot_addr * 1024 );
10737 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10738 
10739 	/*
10740 	 * Make sure the boot image does not encroach on the firmware region
10741 	 */
10742 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10743 		CH_ERR(adap, "boot image encroaching on firmware region\n");
10744 		return -EFBIG;
10745 	}
10746 
10747 	/*
10748 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10749 	 * and Boot configuration data sections. These 3 boot sections span
10750 	 * sectors 0 to 7 in flash and live right before the FW image location.
10751 	 */
10752 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
10753 			sf_sec_size);
10754 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10755 				     (boot_sector >> 16) + i - 1);
10756 
10757 	/*
10758 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10759 	 * with the on-adapter option ROM file
10760 	 */
10761 	if (ret || (size == 0))
10762 		goto out;
10763 
10764 	/* Get boot header */
10765 	header = (pci_exp_rom_header_t *)boot_data;
10766 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
10767 	/* PCIR Data Structure */
10768 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
10769 
10770 	/*
10771 	 * Perform some primitive sanity testing to avoid accidentally
10772 	 * writing garbage over the boot sectors.  We ought to check for
10773 	 * more but it's not worth it for now ...
10774 	 */
10775 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10776 		CH_ERR(adap, "boot image too small/large\n");
10777 		return -EFBIG;
10778 	}
10779 
10780 #ifndef CHELSIO_T4_DIAGS
10781 	/*
10782 	 * Check BOOT ROM header signature
10783 	 */
10784 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
10785 		CH_ERR(adap, "Boot image missing signature\n");
10786 		return -EINVAL;
10787 	}
10788 
10789 	/*
10790 	 * Check PCI header signature
10791 	 */
10792 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
10793 		CH_ERR(adap, "PCI header missing signature\n");
10794 		return -EINVAL;
10795 	}
10796 
10797 	/*
10798 	 * Check Vendor ID matches Chelsio ID
10799 	 */
10800 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
10801 		CH_ERR(adap, "Vendor ID missing signature\n");
10802 		return -EINVAL;
10803 	}
10804 #endif
10805 
10806 	/*
10807 	 * Retrieve adapter's device ID
10808 	 */
10809 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
10810 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
10811 	device_id = device_id & 0xf0ff;
10812 
10813 	/*
10814 	 * Check PCIE Device ID
10815 	 */
10816 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
10817 		/*
10818 		 * Change the device ID in the Boot BIOS image to match
10819 		 * the Device ID of the current adapter.
10820 		 */
10821 		modify_device_id(device_id, boot_data);
10822 	}
10823 
10824 	/*
10825 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
10826 	 * we finish copying the rest of the boot image. This will ensure
10827 	 * that the BIOS boot header will only be written if the boot image
10828 	 * was written in full.
10829 	 */
10830 	addr = boot_sector;
10831 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10832 		addr += SF_PAGE_SIZE;
10833 		boot_data += SF_PAGE_SIZE;
10834 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
10835 		if (ret)
10836 			goto out;
10837 	}
10838 
10839 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10840 			     (const u8 *)header, 0);
10841 
10842 out:
10843 	if (ret)
10844 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
10845 	return ret;
10846 }
10847 
10848 /*
10849  *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
10850  *	@adapter: the adapter
10851  *
10852  *	Return the address within the flash where the OptionROM Configuration
10853  *	is stored, or an error if the device FLASH is too small to contain
10854  *	a OptionROM Configuration.
10855  */
10856 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10857 {
10858 	/*
10859 	 * If the device FLASH isn't large enough to hold a Firmware
10860 	 * Configuration File, return an error.
10861 	 */
10862 	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10863 		return -ENOSPC;
10864 
10865 	return FLASH_BOOTCFG_START;
10866 }
10867 
10868 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
10869 {
10870 	int ret, i, n, cfg_addr;
10871 	unsigned int addr;
10872 	unsigned int flash_cfg_start_sec;
10873 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10874 
10875 	cfg_addr = t4_flash_bootcfg_addr(adap);
10876 	if (cfg_addr < 0)
10877 		return cfg_addr;
10878 
10879 	addr = cfg_addr;
10880 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10881 
10882 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
10883 		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
10884 			FLASH_BOOTCFG_MAX_SIZE);
10885 		return -EFBIG;
10886 	}
10887 
10888 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
10889 			 sf_sec_size);
10890 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10891 					flash_cfg_start_sec + i - 1);
10892 
10893 	/*
10894 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10895 	 * with the on-adapter OptionROM Configuration File.
10896 	 */
10897 	if (ret || size == 0)
10898 		goto out;
10899 
10900 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10901 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10902 		if ( (size - i) <  SF_PAGE_SIZE)
10903 			n = size - i;
10904 		else
10905 			n = SF_PAGE_SIZE;
10906 		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
10907 		if (ret)
10908 			goto out;
10909 
10910 		addr += SF_PAGE_SIZE;
10911 		cfg_data += SF_PAGE_SIZE;
10912 	}
10913 
10914 out:
10915 	if (ret)
10916 		CH_ERR(adap, "boot config data %s failed %d\n",
10917 				(size == 0 ? "clear" : "download"), ret);
10918 	return ret;
10919 }
10920 
10921 /**
10922  *	t4_set_filter_cfg - set up filter mode/mask and ingress config.
10923  *	@adap: the adapter
10924  *	@mode: a bitmap selecting which optional filter components to enable
10925  *	@mask: a bitmap selecting which components to enable in filter mask
10926  *	@vnic_mode: the ingress config/vnic mode setting
10927  *
10928  *	Sets the filter mode and mask by selecting the optional components to
10929  *	enable in filter tuples.  Returns 0 on success and a negative error if
10930  *	the requested mode needs more bits than are available for optional
10931  *	components.  The filter mask must be a subset of the filter mode.
10932  */
10933 int t4_set_filter_cfg(struct adapter *adap, int mode, int mask, int vnic_mode)
10934 {
10935 	static const uint8_t width[] = {1, 3, 17, 17, 8, 8, 16, 9, 3, 1};
10936 	int i, nbits, rc;
10937 	uint32_t param, val;
10938 	uint16_t fmode, fmask;
10939 	const int maxbits = adap->chip_params->filter_opt_len;
10940 
10941 	if (mode != -1 || mask != -1) {
10942 		if (mode != -1) {
10943 			fmode = mode;
10944 			nbits = 0;
10945 			for (i = S_FCOE; i <= S_FRAGMENTATION; i++) {
10946 				if (fmode & (1 << i))
10947 					nbits += width[i];
10948 			}
10949 			if (nbits > maxbits) {
10950 				CH_ERR(adap, "optional fields in the filter "
10951 				    "mode (0x%x) add up to %d bits "
10952 				    "(must be <= %db).  Remove some fields and "
10953 				    "try again.\n", fmode, nbits, maxbits);
10954 				return -E2BIG;
10955 			}
10956 
10957 			/*
10958 			 * Hardware wants the bits to be maxed out.  Keep
10959 			 * setting them until there's no room for more.
10960 			 */
10961 			for (i = S_FCOE; i <= S_FRAGMENTATION; i++) {
10962 				if (fmode & (1 << i))
10963 					continue;
10964 				if (nbits + width[i] <= maxbits) {
10965 					fmode |= 1 << i;
10966 					nbits += width[i];
10967 					if (nbits == maxbits)
10968 						break;
10969 				}
10970 			}
10971 
10972 			fmask = fmode & adap->params.tp.filter_mask;
10973 			if (fmask != adap->params.tp.filter_mask) {
10974 				CH_WARN(adap,
10975 				    "filter mask will be changed from 0x%x to "
10976 				    "0x%x to comply with the filter mode (0x%x).\n",
10977 				    adap->params.tp.filter_mask, fmask, fmode);
10978 			}
10979 		} else {
10980 			fmode = adap->params.tp.filter_mode;
10981 			fmask = mask;
10982 			if ((fmode | fmask) != fmode) {
10983 				CH_ERR(adap,
10984 				    "filter mask (0x%x) must be a subset of "
10985 				    "the filter mode (0x%x).\n", fmask, fmode);
10986 				return -EINVAL;
10987 			}
10988 		}
10989 
10990 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10991 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
10992 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
10993 		val = V_FW_PARAMS_PARAM_FILTER_MODE(fmode) |
10994 		    V_FW_PARAMS_PARAM_FILTER_MASK(fmask);
10995 		rc = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param,
10996 		    &val);
10997 		if (rc < 0)
10998 			return rc;
10999 	}
11000 
11001 	if (vnic_mode != -1) {
11002 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11003 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
11004 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
11005 		val = vnic_mode;
11006 		rc = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param,
11007 		    &val);
11008 		if (rc < 0)
11009 			return rc;
11010 	}
11011 
11012 	/* Refresh. */
11013 	read_filter_mode_and_ingress_config(adap);
11014 
11015 	return 0;
11016 }
11017 
11018 /**
11019  *	t4_clr_port_stats - clear port statistics
11020  *	@adap: the adapter
11021  *	@idx: the port index
11022  *
11023  *	Clear HW statistics for the given port.
11024  */
11025 void t4_clr_port_stats(struct adapter *adap, int idx)
11026 {
11027 	unsigned int i;
11028 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
11029 	u32 port_base_addr;
11030 
11031 	if (is_t4(adap))
11032 		port_base_addr = PORT_BASE(idx);
11033 	else
11034 		port_base_addr = T5_PORT_BASE(idx);
11035 
11036 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
11037 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
11038 		t4_write_reg(adap, port_base_addr + i, 0);
11039 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
11040 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
11041 		t4_write_reg(adap, port_base_addr + i, 0);
11042 	for (i = 0; i < 4; i++)
11043 		if (bgmap & (1 << i)) {
11044 			t4_write_reg(adap,
11045 			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
11046 			t4_write_reg(adap,
11047 			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
11048 		}
11049 }
11050 
11051 /**
11052  *	t4_i2c_io - read/write I2C data from adapter
11053  *	@adap: the adapter
11054  *	@port: Port number if per-port device; <0 if not
11055  *	@devid: per-port device ID or absolute device ID
11056  *	@offset: byte offset into device I2C space
11057  *	@len: byte length of I2C space data
11058  *	@buf: buffer in which to return I2C data for read
11059  *	      buffer which holds the I2C data for write
11060  *	@write: if true, do a write; else do a read
11061  *	Reads/Writes the I2C data from/to the indicated device and location.
11062  */
11063 int t4_i2c_io(struct adapter *adap, unsigned int mbox,
11064 	      int port, unsigned int devid,
11065 	      unsigned int offset, unsigned int len,
11066 	      u8 *buf, bool write)
11067 {
11068 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
11069 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
11070 	int ret = 0;
11071 
11072 	if (len > I2C_PAGE_SIZE)
11073 		return -EINVAL;
11074 
11075 	/* Dont allow reads that spans multiple pages */
11076 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
11077 		return -EINVAL;
11078 
11079 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
11080 	ldst_cmd.op_to_addrspace =
11081 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
11082 			    F_FW_CMD_REQUEST |
11083 			    (write ? F_FW_CMD_WRITE : F_FW_CMD_READ) |
11084 			    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C));
11085 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
11086 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
11087 	ldst_cmd.u.i2c.did = devid;
11088 
11089 	while (len > 0) {
11090 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
11091 
11092 		ldst_cmd.u.i2c.boffset = offset;
11093 		ldst_cmd.u.i2c.blen = i2c_len;
11094 
11095 		if (write)
11096 			memcpy(ldst_cmd.u.i2c.data, buf, i2c_len);
11097 
11098 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
11099 				 write ? NULL : &ldst_rpl);
11100 		if (ret)
11101 			break;
11102 
11103 		if (!write)
11104 			memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
11105 		offset += i2c_len;
11106 		buf += i2c_len;
11107 		len -= i2c_len;
11108 	}
11109 
11110 	return ret;
11111 }
11112 
11113 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
11114 	      int port, unsigned int devid,
11115 	      unsigned int offset, unsigned int len,
11116 	      u8 *buf)
11117 {
11118 	return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, false);
11119 }
11120 
11121 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
11122 	      int port, unsigned int devid,
11123 	      unsigned int offset, unsigned int len,
11124 	      u8 *buf)
11125 {
11126 	return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, true);
11127 }
11128 
11129 /**
11130  * 	t4_sge_ctxt_rd - read an SGE context through FW
11131  * 	@adap: the adapter
11132  * 	@mbox: mailbox to use for the FW command
11133  * 	@cid: the context id
11134  * 	@ctype: the context type
11135  * 	@data: where to store the context data
11136  *
11137  * 	Issues a FW command through the given mailbox to read an SGE context.
11138  */
11139 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
11140 		   enum ctxt_type ctype, u32 *data)
11141 {
11142 	int ret;
11143 	struct fw_ldst_cmd c;
11144 
11145 	if (ctype == CTXT_EGRESS)
11146 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
11147 	else if (ctype == CTXT_INGRESS)
11148 		ret = FW_LDST_ADDRSPC_SGE_INGC;
11149 	else if (ctype == CTXT_FLM)
11150 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
11151 	else
11152 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
11153 
11154 	memset(&c, 0, sizeof(c));
11155 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
11156 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
11157 					V_FW_LDST_CMD_ADDRSPACE(ret));
11158 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
11159 	c.u.idctxt.physid = cpu_to_be32(cid);
11160 
11161 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11162 	if (ret == 0) {
11163 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
11164 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
11165 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
11166 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
11167 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
11168 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
11169 	}
11170 	return ret;
11171 }
11172 
11173 /**
11174  * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
11175  * 	@adap: the adapter
11176  * 	@cid: the context id
11177  * 	@ctype: the context type
11178  * 	@data: where to store the context data
11179  *
11180  * 	Reads an SGE context directly, bypassing FW.  This is only for
11181  * 	debugging when FW is unavailable.
11182  */
11183 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
11184 		      u32 *data)
11185 {
11186 	int i, ret;
11187 
11188 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
11189 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
11190 	if (!ret)
11191 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
11192 			*data++ = t4_read_reg(adap, i);
11193 	return ret;
11194 }
11195 
11196 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
11197     int sleep_ok)
11198 {
11199 	struct fw_sched_cmd cmd;
11200 
11201 	memset(&cmd, 0, sizeof(cmd));
11202 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11203 				      F_FW_CMD_REQUEST |
11204 				      F_FW_CMD_WRITE);
11205 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11206 
11207 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
11208 	cmd.u.config.type = type;
11209 	cmd.u.config.minmaxen = minmaxen;
11210 
11211 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11212 			       NULL, sleep_ok);
11213 }
11214 
11215 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
11216 		    int rateunit, int ratemode, int channel, int cl,
11217 		    int minrate, int maxrate, int weight, int pktsize,
11218 		    int burstsize, int sleep_ok)
11219 {
11220 	struct fw_sched_cmd cmd;
11221 
11222 	memset(&cmd, 0, sizeof(cmd));
11223 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11224 				      F_FW_CMD_REQUEST |
11225 				      F_FW_CMD_WRITE);
11226 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11227 
11228 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11229 	cmd.u.params.type = type;
11230 	cmd.u.params.level = level;
11231 	cmd.u.params.mode = mode;
11232 	cmd.u.params.ch = channel;
11233 	cmd.u.params.cl = cl;
11234 	cmd.u.params.unit = rateunit;
11235 	cmd.u.params.rate = ratemode;
11236 	cmd.u.params.min = cpu_to_be32(minrate);
11237 	cmd.u.params.max = cpu_to_be32(maxrate);
11238 	cmd.u.params.weight = cpu_to_be16(weight);
11239 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
11240 	cmd.u.params.burstsize = cpu_to_be16(burstsize);
11241 
11242 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11243 			       NULL, sleep_ok);
11244 }
11245 
11246 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
11247     unsigned int maxrate, int sleep_ok)
11248 {
11249 	struct fw_sched_cmd cmd;
11250 
11251 	memset(&cmd, 0, sizeof(cmd));
11252 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11253 				      F_FW_CMD_REQUEST |
11254 				      F_FW_CMD_WRITE);
11255 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11256 
11257 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11258 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11259 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
11260 	cmd.u.params.ch = channel;
11261 	cmd.u.params.rate = ratemode;		/* REL or ABS */
11262 	cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
11263 
11264 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11265 			       NULL, sleep_ok);
11266 }
11267 
11268 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
11269     int weight, int sleep_ok)
11270 {
11271 	struct fw_sched_cmd cmd;
11272 
11273 	if (weight < 0 || weight > 100)
11274 		return -EINVAL;
11275 
11276 	memset(&cmd, 0, sizeof(cmd));
11277 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11278 				      F_FW_CMD_REQUEST |
11279 				      F_FW_CMD_WRITE);
11280 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11281 
11282 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11283 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11284 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
11285 	cmd.u.params.ch = channel;
11286 	cmd.u.params.cl = cl;
11287 	cmd.u.params.weight = cpu_to_be16(weight);
11288 
11289 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11290 			       NULL, sleep_ok);
11291 }
11292 
11293 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
11294     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
11295 {
11296 	struct fw_sched_cmd cmd;
11297 
11298 	memset(&cmd, 0, sizeof(cmd));
11299 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11300 				      F_FW_CMD_REQUEST |
11301 				      F_FW_CMD_WRITE);
11302 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11303 
11304 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11305 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11306 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
11307 	cmd.u.params.mode = mode;
11308 	cmd.u.params.ch = channel;
11309 	cmd.u.params.cl = cl;
11310 	cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
11311 	cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
11312 	cmd.u.params.max = cpu_to_be32(maxrate);
11313 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
11314 
11315 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11316 			       NULL, sleep_ok);
11317 }
11318 
11319 /*
11320  *	t4_config_watchdog - configure (enable/disable) a watchdog timer
11321  *	@adapter: the adapter
11322  * 	@mbox: mailbox to use for the FW command
11323  * 	@pf: the PF owning the queue
11324  * 	@vf: the VF owning the queue
11325  *	@timeout: watchdog timeout in ms
11326  *	@action: watchdog timer / action
11327  *
11328  *	There are separate watchdog timers for each possible watchdog
11329  *	action.  Configure one of the watchdog timers by setting a non-zero
11330  *	timeout.  Disable a watchdog timer by using a timeout of zero.
11331  */
11332 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
11333 		       unsigned int pf, unsigned int vf,
11334 		       unsigned int timeout, unsigned int action)
11335 {
11336 	struct fw_watchdog_cmd wdog;
11337 	unsigned int ticks;
11338 
11339 	/*
11340 	 * The watchdog command expects a timeout in units of 10ms so we need
11341 	 * to convert it here (via rounding) and force a minimum of one 10ms
11342 	 * "tick" if the timeout is non-zero but the conversion results in 0
11343 	 * ticks.
11344 	 */
11345 	ticks = (timeout + 5)/10;
11346 	if (timeout && !ticks)
11347 		ticks = 1;
11348 
11349 	memset(&wdog, 0, sizeof wdog);
11350 	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
11351 				     F_FW_CMD_REQUEST |
11352 				     F_FW_CMD_WRITE |
11353 				     V_FW_PARAMS_CMD_PFN(pf) |
11354 				     V_FW_PARAMS_CMD_VFN(vf));
11355 	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
11356 	wdog.timeout = cpu_to_be32(ticks);
11357 	wdog.action = cpu_to_be32(action);
11358 
11359 	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
11360 }
11361 
11362 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
11363 {
11364 	struct fw_devlog_cmd devlog_cmd;
11365 	int ret;
11366 
11367 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
11368 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
11369 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
11370 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
11371 	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
11372 			 sizeof(devlog_cmd), &devlog_cmd);
11373 	if (ret)
11374 		return ret;
11375 
11376 	*level = devlog_cmd.level;
11377 	return 0;
11378 }
11379 
11380 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
11381 {
11382 	struct fw_devlog_cmd devlog_cmd;
11383 
11384 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
11385 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
11386 					     F_FW_CMD_REQUEST |
11387 					     F_FW_CMD_WRITE);
11388 	devlog_cmd.level = level;
11389 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
11390 	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
11391 			  sizeof(devlog_cmd), &devlog_cmd);
11392 }
11393 
11394 int t4_configure_add_smac(struct adapter *adap)
11395 {
11396 	unsigned int param, val;
11397 	int ret = 0;
11398 
11399 	adap->params.smac_add_support = 0;
11400 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11401 		  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_ADD_SMAC));
11402 	/* Query FW to check if FW supports adding source mac address
11403 	 * to TCAM feature or not.
11404 	 * If FW returns 1, driver can use this feature and driver need to send
11405 	 * FW_PARAMS_PARAM_DEV_ADD_SMAC write command with value 1 to
11406 	 * enable adding smac to TCAM.
11407 	 */
11408 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11409 	if (ret)
11410 		return ret;
11411 
11412 	if (val == 1) {
11413 		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
11414 				    &param, &val);
11415 		if (!ret)
11416 			/* Firmware allows adding explicit TCAM entries.
11417 			 * Save this internally.
11418 			 */
11419 			adap->params.smac_add_support = 1;
11420 	}
11421 
11422 	return ret;
11423 }
11424 
11425 int t4_configure_ringbb(struct adapter *adap)
11426 {
11427 	unsigned int param, val;
11428 	int ret = 0;
11429 
11430 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11431 		  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RING_BACKBONE));
11432 	/* Query FW to check if FW supports ring switch feature or not.
11433 	 * If FW returns 1, driver can use this feature and driver need to send
11434 	 * FW_PARAMS_PARAM_DEV_RING_BACKBONE write command with value 1 to
11435 	 * enable the ring backbone configuration.
11436 	 */
11437 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11438 	if (ret < 0) {
11439 		CH_ERR(adap, "Querying FW using Ring backbone params command failed, err=%d\n",
11440 			ret);
11441 		goto out;
11442 	}
11443 
11444 	if (val != 1) {
11445 		CH_ERR(adap, "FW doesnot support ringbackbone features\n");
11446 		goto out;
11447 	}
11448 
11449 	ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11450 	if (ret < 0) {
11451 		CH_ERR(adap, "Could not set Ringbackbone, err= %d\n",
11452 			ret);
11453 		goto out;
11454 	}
11455 
11456 out:
11457 	return ret;
11458 }
11459 
11460 /*
11461  *	t4_set_vlan_acl - Set a VLAN id for the specified VF
11462  *	@adapter: the adapter
11463  *	@mbox: mailbox to use for the FW command
11464  *	@vf: one of the VFs instantiated by the specified PF
11465  *	@vlan: The vlanid to be set
11466  *
11467  */
11468 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
11469 		    u16 vlan)
11470 {
11471 	struct fw_acl_vlan_cmd vlan_cmd;
11472 	unsigned int enable;
11473 
11474 	enable = (vlan ? F_FW_ACL_VLAN_CMD_EN : 0);
11475 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
11476 	vlan_cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_VLAN_CMD) |
11477 					 F_FW_CMD_REQUEST |
11478 					 F_FW_CMD_WRITE |
11479 					 F_FW_CMD_EXEC |
11480 					 V_FW_ACL_VLAN_CMD_PFN(adap->pf) |
11481 					 V_FW_ACL_VLAN_CMD_VFN(vf));
11482 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
11483 	/* Drop all packets that donot match vlan id */
11484 	vlan_cmd.dropnovlan_fm = (enable
11485 				  ? (F_FW_ACL_VLAN_CMD_DROPNOVLAN |
11486 				     F_FW_ACL_VLAN_CMD_FM)
11487 				  : 0);
11488 	if (enable != 0) {
11489 		vlan_cmd.nvlan = 1;
11490 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
11491 	}
11492 
11493 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
11494 }
11495 
11496 /**
11497  *	t4_del_mac - Removes the exact-match filter for a MAC address
11498  *	@adap: the adapter
11499  *	@mbox: mailbox to use for the FW command
11500  *	@viid: the VI id
11501  *	@addr: the MAC address value
11502  *	@smac: if true, delete from only the smac region of MPS
11503  *
11504  *	Modifies an exact-match filter and sets it to the new MAC address if
11505  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
11506  *	latter case the address is added persistently if @persist is %true.
11507  *
11508  *	Returns a negative error number or the index of the filter with the new
11509  *	MAC value.  Note that this index may differ from @idx.
11510  */
11511 int t4_del_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
11512 	       const u8 *addr, bool smac)
11513 {
11514 	int ret;
11515 	struct fw_vi_mac_cmd c;
11516 	struct fw_vi_mac_exact *p = c.u.exact;
11517 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
11518 
11519 	memset(&c, 0, sizeof(c));
11520 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
11521 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
11522 				   V_FW_VI_MAC_CMD_VIID(viid));
11523 	c.freemacs_to_len16 = cpu_to_be32(
11524 					V_FW_CMD_LEN16(1) |
11525 					(smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0));
11526 
11527 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
11528 	p->valid_to_idx = cpu_to_be16(
11529 				F_FW_VI_MAC_CMD_VALID |
11530 				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE));
11531 
11532 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11533 	if (ret == 0) {
11534 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
11535 		if (ret < max_mac_addr)
11536 			return -ENOMEM;
11537 	}
11538 
11539 	return ret;
11540 }
11541 
11542 /**
11543  *	t4_add_mac - Adds an exact-match filter for a MAC address
11544  *	@adap: the adapter
11545  *	@mbox: mailbox to use for the FW command
11546  *	@viid: the VI id
11547  *	@idx: index of existing filter for old value of MAC address, or -1
11548  *	@addr: the new MAC address value
11549  *	@persist: whether a new MAC allocation should be persistent
11550  *	@add_smt: if true also add the address to the HW SMT
11551  *	@smac: if true, update only the smac region of MPS
11552  *
11553  *	Modifies an exact-match filter and sets it to the new MAC address if
11554  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
11555  *	latter case the address is added persistently if @persist is %true.
11556  *
11557  *	Returns a negative error number or the index of the filter with the new
11558  *	MAC value.  Note that this index may differ from @idx.
11559  */
11560 int t4_add_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
11561 	       int idx, const u8 *addr, bool persist, u8 *smt_idx, bool smac)
11562 {
11563 	int ret, mode;
11564 	struct fw_vi_mac_cmd c;
11565 	struct fw_vi_mac_exact *p = c.u.exact;
11566 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
11567 
11568 	if (idx < 0)		/* new allocation */
11569 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
11570 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
11571 
11572 	memset(&c, 0, sizeof(c));
11573 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
11574 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
11575 				   V_FW_VI_MAC_CMD_VIID(viid));
11576 	c.freemacs_to_len16 = cpu_to_be32(
11577 				V_FW_CMD_LEN16(1) |
11578 				(smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0));
11579 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
11580 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
11581 				      V_FW_VI_MAC_CMD_IDX(idx));
11582 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
11583 
11584 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11585 	if (ret == 0) {
11586 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
11587 		if (ret >= max_mac_addr)
11588 			return -ENOMEM;
11589 		if (smt_idx) {
11590 			/* Does fw supports returning smt_idx? */
11591 			if (adap->params.viid_smt_extn_support)
11592 				*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
11593 			else {
11594 				/* In T4/T5, SMT contains 256 SMAC entries
11595 				 * organized in 128 rows of 2 entries each.
11596 				 * In T6, SMT contains 256 SMAC entries in
11597 				 * 256 rows.
11598 				 */
11599 				if (chip_id(adap) <= CHELSIO_T5)
11600 					*smt_idx = ((viid & M_FW_VIID_VIN) << 1);
11601 				else
11602 					*smt_idx = (viid & M_FW_VIID_VIN);
11603 			}
11604 		}
11605 	}
11606 
11607 	return ret;
11608 }
11609