1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2012, 2016 Chelsio Communications, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_inet.h" 33 34 #include <sys/param.h> 35 #include <sys/eventhandler.h> 36 37 #include "common.h" 38 #include "t4_regs.h" 39 #include "t4_regs_values.h" 40 #include "firmware/t4fw_interface.h" 41 42 #undef msleep 43 #define msleep(x) do { \ 44 if (cold) \ 45 DELAY((x) * 1000); \ 46 else \ 47 pause("t4hw", (x) * hz / 1000); \ 48 } while (0) 49 50 /** 51 * t4_wait_op_done_val - wait until an operation is completed 52 * @adapter: the adapter performing the operation 53 * @reg: the register to check for completion 54 * @mask: a single-bit field within @reg that indicates completion 55 * @polarity: the value of the field when the operation is completed 56 * @attempts: number of check iterations 57 * @delay: delay in usecs between iterations 58 * @valp: where to store the value of the register at completion time 59 * 60 * Wait until an operation is completed by checking a bit in a register 61 * up to @attempts times. If @valp is not NULL the value of the register 62 * at the time it indicated completion is stored there. Returns 0 if the 63 * operation completes and -EAGAIN otherwise. 64 */ 65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 66 int polarity, int attempts, int delay, u32 *valp) 67 { 68 while (1) { 69 u32 val = t4_read_reg(adapter, reg); 70 71 if (!!(val & mask) == polarity) { 72 if (valp) 73 *valp = val; 74 return 0; 75 } 76 if (--attempts == 0) 77 return -EAGAIN; 78 if (delay) 79 udelay(delay); 80 } 81 } 82 83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 84 int polarity, int attempts, int delay) 85 { 86 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 87 delay, NULL); 88 } 89 90 /** 91 * t4_set_reg_field - set a register field to a value 92 * @adapter: the adapter to program 93 * @addr: the register address 94 * @mask: specifies the portion of the register to modify 95 * @val: the new value for the register field 96 * 97 * Sets a register field specified by the supplied mask to the 98 * given value. 99 */ 100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 101 u32 val) 102 { 103 u32 v = t4_read_reg(adapter, addr) & ~mask; 104 105 t4_write_reg(adapter, addr, v | val); 106 (void) t4_read_reg(adapter, addr); /* flush */ 107 } 108 109 /** 110 * t4_read_indirect - read indirectly addressed registers 111 * @adap: the adapter 112 * @addr_reg: register holding the indirect address 113 * @data_reg: register holding the value of the indirect register 114 * @vals: where the read register values are stored 115 * @nregs: how many indirect registers to read 116 * @start_idx: index of first indirect register to read 117 * 118 * Reads registers that are accessed indirectly through an address/data 119 * register pair. 120 */ 121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 122 unsigned int data_reg, u32 *vals, 123 unsigned int nregs, unsigned int start_idx) 124 { 125 while (nregs--) { 126 t4_write_reg(adap, addr_reg, start_idx); 127 *vals++ = t4_read_reg(adap, data_reg); 128 start_idx++; 129 } 130 } 131 132 /** 133 * t4_write_indirect - write indirectly addressed registers 134 * @adap: the adapter 135 * @addr_reg: register holding the indirect addresses 136 * @data_reg: register holding the value for the indirect registers 137 * @vals: values to write 138 * @nregs: how many indirect registers to write 139 * @start_idx: address of first indirect register to write 140 * 141 * Writes a sequential block of registers that are accessed indirectly 142 * through an address/data register pair. 143 */ 144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 145 unsigned int data_reg, const u32 *vals, 146 unsigned int nregs, unsigned int start_idx) 147 { 148 while (nregs--) { 149 t4_write_reg(adap, addr_reg, start_idx++); 150 t4_write_reg(adap, data_reg, *vals++); 151 } 152 } 153 154 /* 155 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 156 * mechanism. This guarantees that we get the real value even if we're 157 * operating within a Virtual Machine and the Hypervisor is trapping our 158 * Configuration Space accesses. 159 * 160 * N.B. This routine should only be used as a last resort: the firmware uses 161 * the backdoor registers on a regular basis and we can end up 162 * conflicting with it's uses! 163 */ 164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg) 165 { 166 u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg); 167 u32 val; 168 169 if (chip_id(adap) <= CHELSIO_T5) 170 req |= F_ENABLE; 171 else 172 req |= F_T6_ENABLE; 173 174 if (is_t4(adap)) 175 req |= F_LOCALCFG; 176 177 t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req); 178 val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA); 179 180 /* 181 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 182 * Configuration Space read. (None of the other fields matter when 183 * F_ENABLE is 0 so a simple register write is easier than a 184 * read-modify-write via t4_set_reg_field().) 185 */ 186 t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0); 187 188 return val; 189 } 190 191 /* 192 * t4_report_fw_error - report firmware error 193 * @adap: the adapter 194 * 195 * The adapter firmware can indicate error conditions to the host. 196 * If the firmware has indicated an error, print out the reason for 197 * the firmware error. 198 */ 199 void t4_report_fw_error(struct adapter *adap) 200 { 201 static const char *const reason[] = { 202 "Crash", /* PCIE_FW_EVAL_CRASH */ 203 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 204 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 205 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 206 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 207 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 208 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 209 "Reserved", /* reserved */ 210 }; 211 u32 pcie_fw; 212 213 pcie_fw = t4_read_reg(adap, A_PCIE_FW); 214 if (pcie_fw & F_PCIE_FW_ERR) { 215 CH_ERR(adap, "firmware reports adapter error: %s (0x%08x)\n", 216 reason[G_PCIE_FW_EVAL(pcie_fw)], pcie_fw); 217 } 218 } 219 220 /* 221 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 222 */ 223 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 224 u32 mbox_addr) 225 { 226 for ( ; nflit; nflit--, mbox_addr += 8) 227 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 228 } 229 230 /* 231 * Handle a FW assertion reported in a mailbox. 232 */ 233 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt) 234 { 235 CH_ALERT(adap, 236 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 237 asrt->u.assert.filename_0_7, 238 be32_to_cpu(asrt->u.assert.line), 239 be32_to_cpu(asrt->u.assert.x), 240 be32_to_cpu(asrt->u.assert.y)); 241 } 242 243 struct port_tx_state { 244 uint64_t rx_pause; 245 uint64_t tx_frames; 246 }; 247 248 static void 249 read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state) 250 { 251 uint32_t rx_pause_reg, tx_frames_reg; 252 253 if (is_t4(sc)) { 254 tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L); 255 rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L); 256 } else { 257 tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L); 258 rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L); 259 } 260 261 tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg); 262 tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg); 263 } 264 265 static void 266 read_tx_state(struct adapter *sc, struct port_tx_state *tx_state) 267 { 268 int i; 269 270 for_each_port(sc, i) 271 read_tx_state_one(sc, i, &tx_state[i]); 272 } 273 274 static void 275 check_tx_state(struct adapter *sc, struct port_tx_state *tx_state) 276 { 277 uint32_t port_ctl_reg; 278 uint64_t tx_frames, rx_pause; 279 int i; 280 281 for_each_port(sc, i) { 282 rx_pause = tx_state[i].rx_pause; 283 tx_frames = tx_state[i].tx_frames; 284 read_tx_state_one(sc, i, &tx_state[i]); /* update */ 285 286 if (is_t4(sc)) 287 port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL); 288 else 289 port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL); 290 if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN && 291 rx_pause != tx_state[i].rx_pause && 292 tx_frames == tx_state[i].tx_frames) { 293 t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0); 294 mdelay(1); 295 t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN); 296 } 297 } 298 } 299 300 #define X_CIM_PF_NOACCESS 0xeeeeeeee 301 /** 302 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox 303 * @adap: the adapter 304 * @mbox: index of the mailbox to use 305 * @cmd: the command to write 306 * @size: command length in bytes 307 * @rpl: where to optionally store the reply 308 * @sleep_ok: if true we may sleep while awaiting command completion 309 * @timeout: time to wait for command to finish before timing out 310 * (negative implies @sleep_ok=false) 311 * 312 * Sends the given command to FW through the selected mailbox and waits 313 * for the FW to execute the command. If @rpl is not %NULL it is used to 314 * store the FW's reply to the command. The command and its optional 315 * reply are of the same length. Some FW commands like RESET and 316 * INITIALIZE can take a considerable amount of time to execute. 317 * @sleep_ok determines whether we may sleep while awaiting the response. 318 * If sleeping is allowed we use progressive backoff otherwise we spin. 319 * Note that passing in a negative @timeout is an alternate mechanism 320 * for specifying @sleep_ok=false. This is useful when a higher level 321 * interface allows for specification of @timeout but not @sleep_ok ... 322 * 323 * The return value is 0 on success or a negative errno on failure. A 324 * failure can happen either because we are not able to execute the 325 * command or FW executes it but signals an error. In the latter case 326 * the return value is the error code indicated by FW (negated). 327 */ 328 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, 329 int size, void *rpl, bool sleep_ok, int timeout) 330 { 331 /* 332 * We delay in small increments at first in an effort to maintain 333 * responsiveness for simple, fast executing commands but then back 334 * off to larger delays to a maximum retry delay. 335 */ 336 static const int delay[] = { 337 1, 1, 3, 5, 10, 10, 20, 50, 100 338 }; 339 u32 v; 340 u64 res; 341 int i, ms, delay_idx, ret, next_tx_check; 342 u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA); 343 u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL); 344 u32 ctl; 345 __be64 cmd_rpl[MBOX_LEN/8]; 346 u32 pcie_fw; 347 struct port_tx_state tx_state[MAX_NPORTS]; 348 349 if (adap->flags & CHK_MBOX_ACCESS) 350 ASSERT_SYNCHRONIZED_OP(adap); 351 352 if (size <= 0 || (size & 15) || size > MBOX_LEN) 353 return -EINVAL; 354 355 if (adap->flags & IS_VF) { 356 if (is_t6(adap)) 357 data_reg = FW_T6VF_MBDATA_BASE_ADDR; 358 else 359 data_reg = FW_T4VF_MBDATA_BASE_ADDR; 360 ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL); 361 } 362 363 /* 364 * If we have a negative timeout, that implies that we can't sleep. 365 */ 366 if (timeout < 0) { 367 sleep_ok = false; 368 timeout = -timeout; 369 } 370 371 /* 372 * Attempt to gain access to the mailbox. 373 */ 374 pcie_fw = 0; 375 if (!(adap->flags & IS_VF)) { 376 pcie_fw = t4_read_reg(adap, A_PCIE_FW); 377 if (pcie_fw & F_PCIE_FW_ERR) 378 goto failed; 379 } 380 for (i = 0; i < 4; i++) { 381 ctl = t4_read_reg(adap, ctl_reg); 382 v = G_MBOWNER(ctl); 383 if (v != X_MBOWNER_NONE) 384 break; 385 } 386 387 /* 388 * If we were unable to gain access, report the error to our caller. 389 */ 390 if (v != X_MBOWNER_PL) { 391 if (!(adap->flags & IS_VF)) { 392 pcie_fw = t4_read_reg(adap, A_PCIE_FW); 393 if (pcie_fw & F_PCIE_FW_ERR) 394 goto failed; 395 } 396 ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT; 397 return ret; 398 } 399 400 /* 401 * If we gain ownership of the mailbox and there's a "valid" message 402 * in it, this is likely an asynchronous error message from the 403 * firmware. So we'll report that and then proceed on with attempting 404 * to issue our own command ... which may well fail if the error 405 * presaged the firmware crashing ... 406 */ 407 if (ctl & F_MBMSGVALID) { 408 CH_DUMP_MBOX(adap, mbox, data_reg, "VLD", NULL, true); 409 } 410 411 /* 412 * Copy in the new mailbox command and send it on its way ... 413 */ 414 memset(cmd_rpl, 0, sizeof(cmd_rpl)); 415 memcpy(cmd_rpl, cmd, size); 416 CH_DUMP_MBOX(adap, mbox, 0, "cmd", cmd_rpl, false); 417 for (i = 0; i < ARRAY_SIZE(cmd_rpl); i++) 418 t4_write_reg64(adap, data_reg + i * 8, be64_to_cpu(cmd_rpl[i])); 419 420 if (adap->flags & IS_VF) { 421 /* 422 * For the VFs, the Mailbox Data "registers" are 423 * actually backed by T4's "MA" interface rather than 424 * PL Registers (as is the case for the PFs). Because 425 * these are in different coherency domains, the write 426 * to the VF's PL-register-backed Mailbox Control can 427 * race in front of the writes to the MA-backed VF 428 * Mailbox Data "registers". So we need to do a 429 * read-back on at least one byte of the VF Mailbox 430 * Data registers before doing the write to the VF 431 * Mailbox Control register. 432 */ 433 t4_read_reg(adap, data_reg); 434 } 435 436 t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW)); 437 read_tx_state(adap, &tx_state[0]); /* also flushes the write_reg */ 438 next_tx_check = 1000; 439 delay_idx = 0; 440 ms = delay[0]; 441 442 /* 443 * Loop waiting for the reply; bail out if we time out or the firmware 444 * reports an error. 445 */ 446 for (i = 0; i < timeout; i += ms) { 447 if (!(adap->flags & IS_VF)) { 448 pcie_fw = t4_read_reg(adap, A_PCIE_FW); 449 if (pcie_fw & F_PCIE_FW_ERR) 450 break; 451 } 452 453 if (i >= next_tx_check) { 454 check_tx_state(adap, &tx_state[0]); 455 next_tx_check = i + 1000; 456 } 457 458 if (sleep_ok) { 459 ms = delay[delay_idx]; /* last element may repeat */ 460 if (delay_idx < ARRAY_SIZE(delay) - 1) 461 delay_idx++; 462 msleep(ms); 463 } else { 464 mdelay(ms); 465 } 466 467 v = t4_read_reg(adap, ctl_reg); 468 if (v == X_CIM_PF_NOACCESS) 469 continue; 470 if (G_MBOWNER(v) == X_MBOWNER_PL) { 471 if (!(v & F_MBMSGVALID)) { 472 t4_write_reg(adap, ctl_reg, 473 V_MBOWNER(X_MBOWNER_NONE)); 474 continue; 475 } 476 477 /* 478 * Retrieve the command reply and release the mailbox. 479 */ 480 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg); 481 CH_DUMP_MBOX(adap, mbox, 0, "rpl", cmd_rpl, false); 482 t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE)); 483 484 res = be64_to_cpu(cmd_rpl[0]); 485 if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) { 486 fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl); 487 res = V_FW_CMD_RETVAL(EIO); 488 } else if (rpl) 489 memcpy(rpl, cmd_rpl, size); 490 return -G_FW_CMD_RETVAL((int)res); 491 } 492 } 493 494 /* 495 * We timed out waiting for a reply to our mailbox command. Report 496 * the error and also check to see if the firmware reported any 497 * errors ... 498 */ 499 CH_ERR(adap, "command %#x in mbox %d timed out (0x%08x).\n", 500 *(const u8 *)cmd, mbox, pcie_fw); 501 CH_DUMP_MBOX(adap, mbox, 0, "cmdsent", cmd_rpl, true); 502 CH_DUMP_MBOX(adap, mbox, data_reg, "current", NULL, true); 503 failed: 504 adap->flags &= ~FW_OK; 505 ret = pcie_fw & F_PCIE_FW_ERR ? -ENXIO : -ETIMEDOUT; 506 t4_fatal_err(adap, true); 507 return ret; 508 } 509 510 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 511 void *rpl, bool sleep_ok) 512 { 513 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, 514 sleep_ok, FW_CMD_MAX_TIMEOUT); 515 516 } 517 518 static int t4_edc_err_read(struct adapter *adap, int idx) 519 { 520 u32 edc_ecc_err_addr_reg; 521 u32 edc_bist_status_rdata_reg; 522 523 if (is_t4(adap)) { 524 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); 525 return 0; 526 } 527 if (idx != MEM_EDC0 && idx != MEM_EDC1) { 528 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); 529 return 0; 530 } 531 532 edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx); 533 edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx); 534 535 CH_WARN(adap, 536 "edc%d err addr 0x%x: 0x%x.\n", 537 idx, edc_ecc_err_addr_reg, 538 t4_read_reg(adap, edc_ecc_err_addr_reg)); 539 CH_WARN(adap, 540 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", 541 edc_bist_status_rdata_reg, 542 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg), 543 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8), 544 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16), 545 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24), 546 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32), 547 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40), 548 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48), 549 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56), 550 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64)); 551 552 return 0; 553 } 554 555 /** 556 * t4_mc_read - read from MC through backdoor accesses 557 * @adap: the adapter 558 * @idx: which MC to access 559 * @addr: address of first byte requested 560 * @data: 64 bytes of data containing the requested address 561 * @ecc: where to store the corresponding 64-bit ECC word 562 * 563 * Read 64 bytes of data from MC starting at a 64-byte-aligned address 564 * that covers the requested address @addr. If @parity is not %NULL it 565 * is assigned the 64-bit ECC word for the read data. 566 */ 567 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc) 568 { 569 int i; 570 u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg; 571 u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg; 572 573 if (is_t4(adap)) { 574 mc_bist_cmd_reg = A_MC_BIST_CMD; 575 mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR; 576 mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN; 577 mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA; 578 mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN; 579 } else { 580 mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx); 581 mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx); 582 mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx); 583 mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA, 584 idx); 585 mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN, 586 idx); 587 } 588 589 if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST) 590 return -EBUSY; 591 t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU); 592 t4_write_reg(adap, mc_bist_cmd_len_reg, 64); 593 t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc); 594 t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) | 595 F_START_BIST | V_BIST_CMD_GAP(1)); 596 i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1); 597 if (i) 598 return i; 599 600 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i) 601 602 for (i = 15; i >= 0; i--) 603 *data++ = ntohl(t4_read_reg(adap, MC_DATA(i))); 604 if (ecc) 605 *ecc = t4_read_reg64(adap, MC_DATA(16)); 606 #undef MC_DATA 607 return 0; 608 } 609 610 /** 611 * t4_edc_read - read from EDC through backdoor accesses 612 * @adap: the adapter 613 * @idx: which EDC to access 614 * @addr: address of first byte requested 615 * @data: 64 bytes of data containing the requested address 616 * @ecc: where to store the corresponding 64-bit ECC word 617 * 618 * Read 64 bytes of data from EDC starting at a 64-byte-aligned address 619 * that covers the requested address @addr. If @parity is not %NULL it 620 * is assigned the 64-bit ECC word for the read data. 621 */ 622 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc) 623 { 624 int i; 625 u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg; 626 u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg; 627 628 if (is_t4(adap)) { 629 edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx); 630 edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx); 631 edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx); 632 edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN, 633 idx); 634 edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA, 635 idx); 636 } else { 637 /* 638 * These macro are missing in t4_regs.h file. 639 * Added temporarily for testing. 640 */ 641 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR) 642 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx) 643 edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx); 644 edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx); 645 edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx); 646 edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN, 647 idx); 648 edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA, 649 idx); 650 #undef EDC_REG_T5 651 #undef EDC_STRIDE_T5 652 } 653 654 if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST) 655 return -EBUSY; 656 t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU); 657 t4_write_reg(adap, edc_bist_cmd_len_reg, 64); 658 t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc); 659 t4_write_reg(adap, edc_bist_cmd_reg, 660 V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST); 661 i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1); 662 if (i) 663 return i; 664 665 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i) 666 667 for (i = 15; i >= 0; i--) 668 *data++ = ntohl(t4_read_reg(adap, EDC_DATA(i))); 669 if (ecc) 670 *ecc = t4_read_reg64(adap, EDC_DATA(16)); 671 #undef EDC_DATA 672 return 0; 673 } 674 675 /** 676 * t4_mem_read - read EDC 0, EDC 1 or MC into buffer 677 * @adap: the adapter 678 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 679 * @addr: address within indicated memory type 680 * @len: amount of memory to read 681 * @buf: host memory buffer 682 * 683 * Reads an [almost] arbitrary memory region in the firmware: the 684 * firmware memory address, length and host buffer must be aligned on 685 * 32-bit boudaries. The memory is returned as a raw byte sequence from 686 * the firmware's memory. If this memory contains data structures which 687 * contain multi-byte integers, it's the callers responsibility to 688 * perform appropriate byte order conversions. 689 */ 690 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len, 691 __be32 *buf) 692 { 693 u32 pos, start, end, offset; 694 int ret; 695 696 /* 697 * Argument sanity checks ... 698 */ 699 if ((addr & 0x3) || (len & 0x3)) 700 return -EINVAL; 701 702 /* 703 * The underlaying EDC/MC read routines read 64 bytes at a time so we 704 * need to round down the start and round up the end. We'll start 705 * copying out of the first line at (addr - start) a word at a time. 706 */ 707 start = rounddown2(addr, 64); 708 end = roundup2(addr + len, 64); 709 offset = (addr - start)/sizeof(__be32); 710 711 for (pos = start; pos < end; pos += 64, offset = 0) { 712 __be32 data[16]; 713 714 /* 715 * Read the chip's memory block and bail if there's an error. 716 */ 717 if ((mtype == MEM_MC) || (mtype == MEM_MC1)) 718 ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL); 719 else 720 ret = t4_edc_read(adap, mtype, pos, data, NULL); 721 if (ret) 722 return ret; 723 724 /* 725 * Copy the data into the caller's memory buffer. 726 */ 727 while (offset < 16 && len > 0) { 728 *buf++ = data[offset++]; 729 len -= sizeof(__be32); 730 } 731 } 732 733 return 0; 734 } 735 736 /* 737 * Return the specified PCI-E Configuration Space register from our Physical 738 * Function. We try first via a Firmware LDST Command (if fw_attach != 0) 739 * since we prefer to let the firmware own all of these registers, but if that 740 * fails we go for it directly ourselves. 741 */ 742 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach) 743 { 744 745 /* 746 * If fw_attach != 0, construct and send the Firmware LDST Command to 747 * retrieve the specified PCI-E Configuration Space register. 748 */ 749 if (drv_fw_attach != 0) { 750 struct fw_ldst_cmd ldst_cmd; 751 int ret; 752 753 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 754 ldst_cmd.op_to_addrspace = 755 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 756 F_FW_CMD_REQUEST | 757 F_FW_CMD_READ | 758 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE)); 759 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 760 ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1); 761 ldst_cmd.u.pcie.ctrl_to_fn = 762 (F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf)); 763 ldst_cmd.u.pcie.r = reg; 764 765 /* 766 * If the LDST Command succeeds, return the result, otherwise 767 * fall through to reading it directly ourselves ... 768 */ 769 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 770 &ldst_cmd); 771 if (ret == 0) 772 return be32_to_cpu(ldst_cmd.u.pcie.data[0]); 773 774 CH_WARN(adap, "Firmware failed to return " 775 "Configuration Space register %d, err = %d\n", 776 reg, -ret); 777 } 778 779 /* 780 * Read the desired Configuration Space register via the PCI-E 781 * Backdoor mechanism. 782 */ 783 return t4_hw_pci_read_cfg4(adap, reg); 784 } 785 786 /** 787 * t4_get_regs_len - return the size of the chips register set 788 * @adapter: the adapter 789 * 790 * Returns the size of the chip's BAR0 register space. 791 */ 792 unsigned int t4_get_regs_len(struct adapter *adapter) 793 { 794 unsigned int chip_version = chip_id(adapter); 795 796 switch (chip_version) { 797 case CHELSIO_T4: 798 if (adapter->flags & IS_VF) 799 return FW_T4VF_REGMAP_SIZE; 800 return T4_REGMAP_SIZE; 801 802 case CHELSIO_T5: 803 case CHELSIO_T6: 804 if (adapter->flags & IS_VF) 805 return FW_T4VF_REGMAP_SIZE; 806 return T5_REGMAP_SIZE; 807 } 808 809 CH_ERR(adapter, 810 "Unsupported chip version %d\n", chip_version); 811 return 0; 812 } 813 814 /** 815 * t4_get_regs - read chip registers into provided buffer 816 * @adap: the adapter 817 * @buf: register buffer 818 * @buf_size: size (in bytes) of register buffer 819 * 820 * If the provided register buffer isn't large enough for the chip's 821 * full register range, the register dump will be truncated to the 822 * register buffer's size. 823 */ 824 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size) 825 { 826 static const unsigned int t4_reg_ranges[] = { 827 0x1008, 0x1108, 828 0x1180, 0x1184, 829 0x1190, 0x1194, 830 0x11a0, 0x11a4, 831 0x11b0, 0x11b4, 832 0x11fc, 0x123c, 833 0x1300, 0x173c, 834 0x1800, 0x18fc, 835 0x3000, 0x30d8, 836 0x30e0, 0x30e4, 837 0x30ec, 0x5910, 838 0x5920, 0x5924, 839 0x5960, 0x5960, 840 0x5968, 0x5968, 841 0x5970, 0x5970, 842 0x5978, 0x5978, 843 0x5980, 0x5980, 844 0x5988, 0x5988, 845 0x5990, 0x5990, 846 0x5998, 0x5998, 847 0x59a0, 0x59d4, 848 0x5a00, 0x5ae0, 849 0x5ae8, 0x5ae8, 850 0x5af0, 0x5af0, 851 0x5af8, 0x5af8, 852 0x6000, 0x6098, 853 0x6100, 0x6150, 854 0x6200, 0x6208, 855 0x6240, 0x6248, 856 0x6280, 0x62b0, 857 0x62c0, 0x6338, 858 0x6370, 0x638c, 859 0x6400, 0x643c, 860 0x6500, 0x6524, 861 0x6a00, 0x6a04, 862 0x6a14, 0x6a38, 863 0x6a60, 0x6a70, 864 0x6a78, 0x6a78, 865 0x6b00, 0x6b0c, 866 0x6b1c, 0x6b84, 867 0x6bf0, 0x6bf8, 868 0x6c00, 0x6c0c, 869 0x6c1c, 0x6c84, 870 0x6cf0, 0x6cf8, 871 0x6d00, 0x6d0c, 872 0x6d1c, 0x6d84, 873 0x6df0, 0x6df8, 874 0x6e00, 0x6e0c, 875 0x6e1c, 0x6e84, 876 0x6ef0, 0x6ef8, 877 0x6f00, 0x6f0c, 878 0x6f1c, 0x6f84, 879 0x6ff0, 0x6ff8, 880 0x7000, 0x700c, 881 0x701c, 0x7084, 882 0x70f0, 0x70f8, 883 0x7100, 0x710c, 884 0x711c, 0x7184, 885 0x71f0, 0x71f8, 886 0x7200, 0x720c, 887 0x721c, 0x7284, 888 0x72f0, 0x72f8, 889 0x7300, 0x730c, 890 0x731c, 0x7384, 891 0x73f0, 0x73f8, 892 0x7400, 0x7450, 893 0x7500, 0x7530, 894 0x7600, 0x760c, 895 0x7614, 0x761c, 896 0x7680, 0x76cc, 897 0x7700, 0x7798, 898 0x77c0, 0x77fc, 899 0x7900, 0x79fc, 900 0x7b00, 0x7b58, 901 0x7b60, 0x7b84, 902 0x7b8c, 0x7c38, 903 0x7d00, 0x7d38, 904 0x7d40, 0x7d80, 905 0x7d8c, 0x7ddc, 906 0x7de4, 0x7e04, 907 0x7e10, 0x7e1c, 908 0x7e24, 0x7e38, 909 0x7e40, 0x7e44, 910 0x7e4c, 0x7e78, 911 0x7e80, 0x7ea4, 912 0x7eac, 0x7edc, 913 0x7ee8, 0x7efc, 914 0x8dc0, 0x8e04, 915 0x8e10, 0x8e1c, 916 0x8e30, 0x8e78, 917 0x8ea0, 0x8eb8, 918 0x8ec0, 0x8f6c, 919 0x8fc0, 0x9008, 920 0x9010, 0x9058, 921 0x9060, 0x9060, 922 0x9068, 0x9074, 923 0x90fc, 0x90fc, 924 0x9400, 0x9408, 925 0x9410, 0x9458, 926 0x9600, 0x9600, 927 0x9608, 0x9638, 928 0x9640, 0x96bc, 929 0x9800, 0x9808, 930 0x9820, 0x983c, 931 0x9850, 0x9864, 932 0x9c00, 0x9c6c, 933 0x9c80, 0x9cec, 934 0x9d00, 0x9d6c, 935 0x9d80, 0x9dec, 936 0x9e00, 0x9e6c, 937 0x9e80, 0x9eec, 938 0x9f00, 0x9f6c, 939 0x9f80, 0x9fec, 940 0xd004, 0xd004, 941 0xd010, 0xd03c, 942 0xdfc0, 0xdfe0, 943 0xe000, 0xea7c, 944 0xf000, 0x11110, 945 0x11118, 0x11190, 946 0x19040, 0x1906c, 947 0x19078, 0x19080, 948 0x1908c, 0x190e4, 949 0x190f0, 0x190f8, 950 0x19100, 0x19110, 951 0x19120, 0x19124, 952 0x19150, 0x19194, 953 0x1919c, 0x191b0, 954 0x191d0, 0x191e8, 955 0x19238, 0x1924c, 956 0x193f8, 0x1943c, 957 0x1944c, 0x19474, 958 0x19490, 0x194e0, 959 0x194f0, 0x194f8, 960 0x19800, 0x19c08, 961 0x19c10, 0x19c90, 962 0x19ca0, 0x19ce4, 963 0x19cf0, 0x19d40, 964 0x19d50, 0x19d94, 965 0x19da0, 0x19de8, 966 0x19df0, 0x19e40, 967 0x19e50, 0x19e90, 968 0x19ea0, 0x19f4c, 969 0x1a000, 0x1a004, 970 0x1a010, 0x1a06c, 971 0x1a0b0, 0x1a0e4, 972 0x1a0ec, 0x1a0f4, 973 0x1a100, 0x1a108, 974 0x1a114, 0x1a120, 975 0x1a128, 0x1a130, 976 0x1a138, 0x1a138, 977 0x1a190, 0x1a1c4, 978 0x1a1fc, 0x1a1fc, 979 0x1e040, 0x1e04c, 980 0x1e284, 0x1e28c, 981 0x1e2c0, 0x1e2c0, 982 0x1e2e0, 0x1e2e0, 983 0x1e300, 0x1e384, 984 0x1e3c0, 0x1e3c8, 985 0x1e440, 0x1e44c, 986 0x1e684, 0x1e68c, 987 0x1e6c0, 0x1e6c0, 988 0x1e6e0, 0x1e6e0, 989 0x1e700, 0x1e784, 990 0x1e7c0, 0x1e7c8, 991 0x1e840, 0x1e84c, 992 0x1ea84, 0x1ea8c, 993 0x1eac0, 0x1eac0, 994 0x1eae0, 0x1eae0, 995 0x1eb00, 0x1eb84, 996 0x1ebc0, 0x1ebc8, 997 0x1ec40, 0x1ec4c, 998 0x1ee84, 0x1ee8c, 999 0x1eec0, 0x1eec0, 1000 0x1eee0, 0x1eee0, 1001 0x1ef00, 0x1ef84, 1002 0x1efc0, 0x1efc8, 1003 0x1f040, 0x1f04c, 1004 0x1f284, 0x1f28c, 1005 0x1f2c0, 0x1f2c0, 1006 0x1f2e0, 0x1f2e0, 1007 0x1f300, 0x1f384, 1008 0x1f3c0, 0x1f3c8, 1009 0x1f440, 0x1f44c, 1010 0x1f684, 0x1f68c, 1011 0x1f6c0, 0x1f6c0, 1012 0x1f6e0, 0x1f6e0, 1013 0x1f700, 0x1f784, 1014 0x1f7c0, 0x1f7c8, 1015 0x1f840, 0x1f84c, 1016 0x1fa84, 0x1fa8c, 1017 0x1fac0, 0x1fac0, 1018 0x1fae0, 0x1fae0, 1019 0x1fb00, 0x1fb84, 1020 0x1fbc0, 0x1fbc8, 1021 0x1fc40, 0x1fc4c, 1022 0x1fe84, 0x1fe8c, 1023 0x1fec0, 0x1fec0, 1024 0x1fee0, 0x1fee0, 1025 0x1ff00, 0x1ff84, 1026 0x1ffc0, 0x1ffc8, 1027 0x20000, 0x2002c, 1028 0x20100, 0x2013c, 1029 0x20190, 0x201a0, 1030 0x201a8, 0x201b8, 1031 0x201c4, 0x201c8, 1032 0x20200, 0x20318, 1033 0x20400, 0x204b4, 1034 0x204c0, 0x20528, 1035 0x20540, 0x20614, 1036 0x21000, 0x21040, 1037 0x2104c, 0x21060, 1038 0x210c0, 0x210ec, 1039 0x21200, 0x21268, 1040 0x21270, 0x21284, 1041 0x212fc, 0x21388, 1042 0x21400, 0x21404, 1043 0x21500, 0x21500, 1044 0x21510, 0x21518, 1045 0x2152c, 0x21530, 1046 0x2153c, 0x2153c, 1047 0x21550, 0x21554, 1048 0x21600, 0x21600, 1049 0x21608, 0x2161c, 1050 0x21624, 0x21628, 1051 0x21630, 0x21634, 1052 0x2163c, 0x2163c, 1053 0x21700, 0x2171c, 1054 0x21780, 0x2178c, 1055 0x21800, 0x21818, 1056 0x21820, 0x21828, 1057 0x21830, 0x21848, 1058 0x21850, 0x21854, 1059 0x21860, 0x21868, 1060 0x21870, 0x21870, 1061 0x21878, 0x21898, 1062 0x218a0, 0x218a8, 1063 0x218b0, 0x218c8, 1064 0x218d0, 0x218d4, 1065 0x218e0, 0x218e8, 1066 0x218f0, 0x218f0, 1067 0x218f8, 0x21a18, 1068 0x21a20, 0x21a28, 1069 0x21a30, 0x21a48, 1070 0x21a50, 0x21a54, 1071 0x21a60, 0x21a68, 1072 0x21a70, 0x21a70, 1073 0x21a78, 0x21a98, 1074 0x21aa0, 0x21aa8, 1075 0x21ab0, 0x21ac8, 1076 0x21ad0, 0x21ad4, 1077 0x21ae0, 0x21ae8, 1078 0x21af0, 0x21af0, 1079 0x21af8, 0x21c18, 1080 0x21c20, 0x21c20, 1081 0x21c28, 0x21c30, 1082 0x21c38, 0x21c38, 1083 0x21c80, 0x21c98, 1084 0x21ca0, 0x21ca8, 1085 0x21cb0, 0x21cc8, 1086 0x21cd0, 0x21cd4, 1087 0x21ce0, 0x21ce8, 1088 0x21cf0, 0x21cf0, 1089 0x21cf8, 0x21d7c, 1090 0x21e00, 0x21e04, 1091 0x22000, 0x2202c, 1092 0x22100, 0x2213c, 1093 0x22190, 0x221a0, 1094 0x221a8, 0x221b8, 1095 0x221c4, 0x221c8, 1096 0x22200, 0x22318, 1097 0x22400, 0x224b4, 1098 0x224c0, 0x22528, 1099 0x22540, 0x22614, 1100 0x23000, 0x23040, 1101 0x2304c, 0x23060, 1102 0x230c0, 0x230ec, 1103 0x23200, 0x23268, 1104 0x23270, 0x23284, 1105 0x232fc, 0x23388, 1106 0x23400, 0x23404, 1107 0x23500, 0x23500, 1108 0x23510, 0x23518, 1109 0x2352c, 0x23530, 1110 0x2353c, 0x2353c, 1111 0x23550, 0x23554, 1112 0x23600, 0x23600, 1113 0x23608, 0x2361c, 1114 0x23624, 0x23628, 1115 0x23630, 0x23634, 1116 0x2363c, 0x2363c, 1117 0x23700, 0x2371c, 1118 0x23780, 0x2378c, 1119 0x23800, 0x23818, 1120 0x23820, 0x23828, 1121 0x23830, 0x23848, 1122 0x23850, 0x23854, 1123 0x23860, 0x23868, 1124 0x23870, 0x23870, 1125 0x23878, 0x23898, 1126 0x238a0, 0x238a8, 1127 0x238b0, 0x238c8, 1128 0x238d0, 0x238d4, 1129 0x238e0, 0x238e8, 1130 0x238f0, 0x238f0, 1131 0x238f8, 0x23a18, 1132 0x23a20, 0x23a28, 1133 0x23a30, 0x23a48, 1134 0x23a50, 0x23a54, 1135 0x23a60, 0x23a68, 1136 0x23a70, 0x23a70, 1137 0x23a78, 0x23a98, 1138 0x23aa0, 0x23aa8, 1139 0x23ab0, 0x23ac8, 1140 0x23ad0, 0x23ad4, 1141 0x23ae0, 0x23ae8, 1142 0x23af0, 0x23af0, 1143 0x23af8, 0x23c18, 1144 0x23c20, 0x23c20, 1145 0x23c28, 0x23c30, 1146 0x23c38, 0x23c38, 1147 0x23c80, 0x23c98, 1148 0x23ca0, 0x23ca8, 1149 0x23cb0, 0x23cc8, 1150 0x23cd0, 0x23cd4, 1151 0x23ce0, 0x23ce8, 1152 0x23cf0, 0x23cf0, 1153 0x23cf8, 0x23d7c, 1154 0x23e00, 0x23e04, 1155 0x24000, 0x2402c, 1156 0x24100, 0x2413c, 1157 0x24190, 0x241a0, 1158 0x241a8, 0x241b8, 1159 0x241c4, 0x241c8, 1160 0x24200, 0x24318, 1161 0x24400, 0x244b4, 1162 0x244c0, 0x24528, 1163 0x24540, 0x24614, 1164 0x25000, 0x25040, 1165 0x2504c, 0x25060, 1166 0x250c0, 0x250ec, 1167 0x25200, 0x25268, 1168 0x25270, 0x25284, 1169 0x252fc, 0x25388, 1170 0x25400, 0x25404, 1171 0x25500, 0x25500, 1172 0x25510, 0x25518, 1173 0x2552c, 0x25530, 1174 0x2553c, 0x2553c, 1175 0x25550, 0x25554, 1176 0x25600, 0x25600, 1177 0x25608, 0x2561c, 1178 0x25624, 0x25628, 1179 0x25630, 0x25634, 1180 0x2563c, 0x2563c, 1181 0x25700, 0x2571c, 1182 0x25780, 0x2578c, 1183 0x25800, 0x25818, 1184 0x25820, 0x25828, 1185 0x25830, 0x25848, 1186 0x25850, 0x25854, 1187 0x25860, 0x25868, 1188 0x25870, 0x25870, 1189 0x25878, 0x25898, 1190 0x258a0, 0x258a8, 1191 0x258b0, 0x258c8, 1192 0x258d0, 0x258d4, 1193 0x258e0, 0x258e8, 1194 0x258f0, 0x258f0, 1195 0x258f8, 0x25a18, 1196 0x25a20, 0x25a28, 1197 0x25a30, 0x25a48, 1198 0x25a50, 0x25a54, 1199 0x25a60, 0x25a68, 1200 0x25a70, 0x25a70, 1201 0x25a78, 0x25a98, 1202 0x25aa0, 0x25aa8, 1203 0x25ab0, 0x25ac8, 1204 0x25ad0, 0x25ad4, 1205 0x25ae0, 0x25ae8, 1206 0x25af0, 0x25af0, 1207 0x25af8, 0x25c18, 1208 0x25c20, 0x25c20, 1209 0x25c28, 0x25c30, 1210 0x25c38, 0x25c38, 1211 0x25c80, 0x25c98, 1212 0x25ca0, 0x25ca8, 1213 0x25cb0, 0x25cc8, 1214 0x25cd0, 0x25cd4, 1215 0x25ce0, 0x25ce8, 1216 0x25cf0, 0x25cf0, 1217 0x25cf8, 0x25d7c, 1218 0x25e00, 0x25e04, 1219 0x26000, 0x2602c, 1220 0x26100, 0x2613c, 1221 0x26190, 0x261a0, 1222 0x261a8, 0x261b8, 1223 0x261c4, 0x261c8, 1224 0x26200, 0x26318, 1225 0x26400, 0x264b4, 1226 0x264c0, 0x26528, 1227 0x26540, 0x26614, 1228 0x27000, 0x27040, 1229 0x2704c, 0x27060, 1230 0x270c0, 0x270ec, 1231 0x27200, 0x27268, 1232 0x27270, 0x27284, 1233 0x272fc, 0x27388, 1234 0x27400, 0x27404, 1235 0x27500, 0x27500, 1236 0x27510, 0x27518, 1237 0x2752c, 0x27530, 1238 0x2753c, 0x2753c, 1239 0x27550, 0x27554, 1240 0x27600, 0x27600, 1241 0x27608, 0x2761c, 1242 0x27624, 0x27628, 1243 0x27630, 0x27634, 1244 0x2763c, 0x2763c, 1245 0x27700, 0x2771c, 1246 0x27780, 0x2778c, 1247 0x27800, 0x27818, 1248 0x27820, 0x27828, 1249 0x27830, 0x27848, 1250 0x27850, 0x27854, 1251 0x27860, 0x27868, 1252 0x27870, 0x27870, 1253 0x27878, 0x27898, 1254 0x278a0, 0x278a8, 1255 0x278b0, 0x278c8, 1256 0x278d0, 0x278d4, 1257 0x278e0, 0x278e8, 1258 0x278f0, 0x278f0, 1259 0x278f8, 0x27a18, 1260 0x27a20, 0x27a28, 1261 0x27a30, 0x27a48, 1262 0x27a50, 0x27a54, 1263 0x27a60, 0x27a68, 1264 0x27a70, 0x27a70, 1265 0x27a78, 0x27a98, 1266 0x27aa0, 0x27aa8, 1267 0x27ab0, 0x27ac8, 1268 0x27ad0, 0x27ad4, 1269 0x27ae0, 0x27ae8, 1270 0x27af0, 0x27af0, 1271 0x27af8, 0x27c18, 1272 0x27c20, 0x27c20, 1273 0x27c28, 0x27c30, 1274 0x27c38, 0x27c38, 1275 0x27c80, 0x27c98, 1276 0x27ca0, 0x27ca8, 1277 0x27cb0, 0x27cc8, 1278 0x27cd0, 0x27cd4, 1279 0x27ce0, 0x27ce8, 1280 0x27cf0, 0x27cf0, 1281 0x27cf8, 0x27d7c, 1282 0x27e00, 0x27e04, 1283 }; 1284 1285 static const unsigned int t4vf_reg_ranges[] = { 1286 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS), 1287 VF_MPS_REG(A_MPS_VF_CTL), 1288 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H), 1289 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI), 1290 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL), 1291 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS), 1292 FW_T4VF_MBDATA_BASE_ADDR, 1293 FW_T4VF_MBDATA_BASE_ADDR + 1294 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4), 1295 }; 1296 1297 static const unsigned int t5_reg_ranges[] = { 1298 0x1008, 0x10c0, 1299 0x10cc, 0x10f8, 1300 0x1100, 0x1100, 1301 0x110c, 0x1148, 1302 0x1180, 0x1184, 1303 0x1190, 0x1194, 1304 0x11a0, 0x11a4, 1305 0x11b0, 0x11b4, 1306 0x11fc, 0x123c, 1307 0x1280, 0x173c, 1308 0x1800, 0x18fc, 1309 0x3000, 0x3028, 1310 0x3060, 0x30b0, 1311 0x30b8, 0x30d8, 1312 0x30e0, 0x30fc, 1313 0x3140, 0x357c, 1314 0x35a8, 0x35cc, 1315 0x35ec, 0x35ec, 1316 0x3600, 0x5624, 1317 0x56cc, 0x56ec, 1318 0x56f4, 0x5720, 1319 0x5728, 0x575c, 1320 0x580c, 0x5814, 1321 0x5890, 0x589c, 1322 0x58a4, 0x58ac, 1323 0x58b8, 0x58bc, 1324 0x5940, 0x59c8, 1325 0x59d0, 0x59dc, 1326 0x59fc, 0x5a18, 1327 0x5a60, 0x5a70, 1328 0x5a80, 0x5a9c, 1329 0x5b94, 0x5bfc, 1330 0x6000, 0x6020, 1331 0x6028, 0x6040, 1332 0x6058, 0x609c, 1333 0x60a8, 0x614c, 1334 0x7700, 0x7798, 1335 0x77c0, 0x78fc, 1336 0x7b00, 0x7b58, 1337 0x7b60, 0x7b84, 1338 0x7b8c, 0x7c54, 1339 0x7d00, 0x7d38, 1340 0x7d40, 0x7d80, 1341 0x7d8c, 0x7ddc, 1342 0x7de4, 0x7e04, 1343 0x7e10, 0x7e1c, 1344 0x7e24, 0x7e38, 1345 0x7e40, 0x7e44, 1346 0x7e4c, 0x7e78, 1347 0x7e80, 0x7edc, 1348 0x7ee8, 0x7efc, 1349 0x8dc0, 0x8de0, 1350 0x8df8, 0x8e04, 1351 0x8e10, 0x8e84, 1352 0x8ea0, 0x8f84, 1353 0x8fc0, 0x9058, 1354 0x9060, 0x9060, 1355 0x9068, 0x90f8, 1356 0x9400, 0x9408, 1357 0x9410, 0x9470, 1358 0x9600, 0x9600, 1359 0x9608, 0x9638, 1360 0x9640, 0x96f4, 1361 0x9800, 0x9808, 1362 0x9810, 0x9864, 1363 0x9c00, 0x9c6c, 1364 0x9c80, 0x9cec, 1365 0x9d00, 0x9d6c, 1366 0x9d80, 0x9dec, 1367 0x9e00, 0x9e6c, 1368 0x9e80, 0x9eec, 1369 0x9f00, 0x9f6c, 1370 0x9f80, 0xa020, 1371 0xd000, 0xd004, 1372 0xd010, 0xd03c, 1373 0xdfc0, 0xdfe0, 1374 0xe000, 0x1106c, 1375 0x11074, 0x11088, 1376 0x1109c, 0x11110, 1377 0x11118, 0x1117c, 1378 0x11190, 0x11204, 1379 0x19040, 0x1906c, 1380 0x19078, 0x19080, 1381 0x1908c, 0x190e8, 1382 0x190f0, 0x190f8, 1383 0x19100, 0x19110, 1384 0x19120, 0x19124, 1385 0x19150, 0x19194, 1386 0x1919c, 0x191b0, 1387 0x191d0, 0x191e8, 1388 0x19238, 0x19290, 1389 0x193f8, 0x19428, 1390 0x19430, 0x19444, 1391 0x1944c, 0x1946c, 1392 0x19474, 0x19474, 1393 0x19490, 0x194cc, 1394 0x194f0, 0x194f8, 1395 0x19c00, 0x19c08, 1396 0x19c10, 0x19c60, 1397 0x19c94, 0x19ce4, 1398 0x19cf0, 0x19d40, 1399 0x19d50, 0x19d94, 1400 0x19da0, 0x19de8, 1401 0x19df0, 0x19e10, 1402 0x19e50, 0x19e90, 1403 0x19ea0, 0x19f24, 1404 0x19f34, 0x19f34, 1405 0x19f40, 0x19f50, 1406 0x19f90, 0x19fb4, 1407 0x19fc4, 0x19fe4, 1408 0x1a000, 0x1a004, 1409 0x1a010, 0x1a06c, 1410 0x1a0b0, 0x1a0e4, 1411 0x1a0ec, 0x1a0f8, 1412 0x1a100, 0x1a108, 1413 0x1a114, 0x1a130, 1414 0x1a138, 0x1a1c4, 1415 0x1a1fc, 0x1a1fc, 1416 0x1e008, 0x1e00c, 1417 0x1e040, 0x1e044, 1418 0x1e04c, 0x1e04c, 1419 0x1e284, 0x1e290, 1420 0x1e2c0, 0x1e2c0, 1421 0x1e2e0, 0x1e2e0, 1422 0x1e300, 0x1e384, 1423 0x1e3c0, 0x1e3c8, 1424 0x1e408, 0x1e40c, 1425 0x1e440, 0x1e444, 1426 0x1e44c, 0x1e44c, 1427 0x1e684, 0x1e690, 1428 0x1e6c0, 0x1e6c0, 1429 0x1e6e0, 0x1e6e0, 1430 0x1e700, 0x1e784, 1431 0x1e7c0, 0x1e7c8, 1432 0x1e808, 0x1e80c, 1433 0x1e840, 0x1e844, 1434 0x1e84c, 0x1e84c, 1435 0x1ea84, 0x1ea90, 1436 0x1eac0, 0x1eac0, 1437 0x1eae0, 0x1eae0, 1438 0x1eb00, 0x1eb84, 1439 0x1ebc0, 0x1ebc8, 1440 0x1ec08, 0x1ec0c, 1441 0x1ec40, 0x1ec44, 1442 0x1ec4c, 0x1ec4c, 1443 0x1ee84, 0x1ee90, 1444 0x1eec0, 0x1eec0, 1445 0x1eee0, 0x1eee0, 1446 0x1ef00, 0x1ef84, 1447 0x1efc0, 0x1efc8, 1448 0x1f008, 0x1f00c, 1449 0x1f040, 0x1f044, 1450 0x1f04c, 0x1f04c, 1451 0x1f284, 0x1f290, 1452 0x1f2c0, 0x1f2c0, 1453 0x1f2e0, 0x1f2e0, 1454 0x1f300, 0x1f384, 1455 0x1f3c0, 0x1f3c8, 1456 0x1f408, 0x1f40c, 1457 0x1f440, 0x1f444, 1458 0x1f44c, 0x1f44c, 1459 0x1f684, 0x1f690, 1460 0x1f6c0, 0x1f6c0, 1461 0x1f6e0, 0x1f6e0, 1462 0x1f700, 0x1f784, 1463 0x1f7c0, 0x1f7c8, 1464 0x1f808, 0x1f80c, 1465 0x1f840, 0x1f844, 1466 0x1f84c, 0x1f84c, 1467 0x1fa84, 0x1fa90, 1468 0x1fac0, 0x1fac0, 1469 0x1fae0, 0x1fae0, 1470 0x1fb00, 0x1fb84, 1471 0x1fbc0, 0x1fbc8, 1472 0x1fc08, 0x1fc0c, 1473 0x1fc40, 0x1fc44, 1474 0x1fc4c, 0x1fc4c, 1475 0x1fe84, 0x1fe90, 1476 0x1fec0, 0x1fec0, 1477 0x1fee0, 0x1fee0, 1478 0x1ff00, 0x1ff84, 1479 0x1ffc0, 0x1ffc8, 1480 0x30000, 0x30030, 1481 0x30100, 0x30144, 1482 0x30190, 0x301a0, 1483 0x301a8, 0x301b8, 1484 0x301c4, 0x301c8, 1485 0x301d0, 0x301d0, 1486 0x30200, 0x30318, 1487 0x30400, 0x304b4, 1488 0x304c0, 0x3052c, 1489 0x30540, 0x3061c, 1490 0x30800, 0x30828, 1491 0x30834, 0x30834, 1492 0x308c0, 0x30908, 1493 0x30910, 0x309ac, 1494 0x30a00, 0x30a14, 1495 0x30a1c, 0x30a2c, 1496 0x30a44, 0x30a50, 1497 0x30a74, 0x30a74, 1498 0x30a7c, 0x30afc, 1499 0x30b08, 0x30c24, 1500 0x30d00, 0x30d00, 1501 0x30d08, 0x30d14, 1502 0x30d1c, 0x30d20, 1503 0x30d3c, 0x30d3c, 1504 0x30d48, 0x30d50, 1505 0x31200, 0x3120c, 1506 0x31220, 0x31220, 1507 0x31240, 0x31240, 1508 0x31600, 0x3160c, 1509 0x31a00, 0x31a1c, 1510 0x31e00, 0x31e20, 1511 0x31e38, 0x31e3c, 1512 0x31e80, 0x31e80, 1513 0x31e88, 0x31ea8, 1514 0x31eb0, 0x31eb4, 1515 0x31ec8, 0x31ed4, 1516 0x31fb8, 0x32004, 1517 0x32200, 0x32200, 1518 0x32208, 0x32240, 1519 0x32248, 0x32280, 1520 0x32288, 0x322c0, 1521 0x322c8, 0x322fc, 1522 0x32600, 0x32630, 1523 0x32a00, 0x32abc, 1524 0x32b00, 0x32b10, 1525 0x32b20, 0x32b30, 1526 0x32b40, 0x32b50, 1527 0x32b60, 0x32b70, 1528 0x33000, 0x33028, 1529 0x33030, 0x33048, 1530 0x33060, 0x33068, 1531 0x33070, 0x3309c, 1532 0x330f0, 0x33128, 1533 0x33130, 0x33148, 1534 0x33160, 0x33168, 1535 0x33170, 0x3319c, 1536 0x331f0, 0x33238, 1537 0x33240, 0x33240, 1538 0x33248, 0x33250, 1539 0x3325c, 0x33264, 1540 0x33270, 0x332b8, 1541 0x332c0, 0x332e4, 1542 0x332f8, 0x33338, 1543 0x33340, 0x33340, 1544 0x33348, 0x33350, 1545 0x3335c, 0x33364, 1546 0x33370, 0x333b8, 1547 0x333c0, 0x333e4, 1548 0x333f8, 0x33428, 1549 0x33430, 0x33448, 1550 0x33460, 0x33468, 1551 0x33470, 0x3349c, 1552 0x334f0, 0x33528, 1553 0x33530, 0x33548, 1554 0x33560, 0x33568, 1555 0x33570, 0x3359c, 1556 0x335f0, 0x33638, 1557 0x33640, 0x33640, 1558 0x33648, 0x33650, 1559 0x3365c, 0x33664, 1560 0x33670, 0x336b8, 1561 0x336c0, 0x336e4, 1562 0x336f8, 0x33738, 1563 0x33740, 0x33740, 1564 0x33748, 0x33750, 1565 0x3375c, 0x33764, 1566 0x33770, 0x337b8, 1567 0x337c0, 0x337e4, 1568 0x337f8, 0x337fc, 1569 0x33814, 0x33814, 1570 0x3382c, 0x3382c, 1571 0x33880, 0x3388c, 1572 0x338e8, 0x338ec, 1573 0x33900, 0x33928, 1574 0x33930, 0x33948, 1575 0x33960, 0x33968, 1576 0x33970, 0x3399c, 1577 0x339f0, 0x33a38, 1578 0x33a40, 0x33a40, 1579 0x33a48, 0x33a50, 1580 0x33a5c, 0x33a64, 1581 0x33a70, 0x33ab8, 1582 0x33ac0, 0x33ae4, 1583 0x33af8, 0x33b10, 1584 0x33b28, 0x33b28, 1585 0x33b3c, 0x33b50, 1586 0x33bf0, 0x33c10, 1587 0x33c28, 0x33c28, 1588 0x33c3c, 0x33c50, 1589 0x33cf0, 0x33cfc, 1590 0x34000, 0x34030, 1591 0x34100, 0x34144, 1592 0x34190, 0x341a0, 1593 0x341a8, 0x341b8, 1594 0x341c4, 0x341c8, 1595 0x341d0, 0x341d0, 1596 0x34200, 0x34318, 1597 0x34400, 0x344b4, 1598 0x344c0, 0x3452c, 1599 0x34540, 0x3461c, 1600 0x34800, 0x34828, 1601 0x34834, 0x34834, 1602 0x348c0, 0x34908, 1603 0x34910, 0x349ac, 1604 0x34a00, 0x34a14, 1605 0x34a1c, 0x34a2c, 1606 0x34a44, 0x34a50, 1607 0x34a74, 0x34a74, 1608 0x34a7c, 0x34afc, 1609 0x34b08, 0x34c24, 1610 0x34d00, 0x34d00, 1611 0x34d08, 0x34d14, 1612 0x34d1c, 0x34d20, 1613 0x34d3c, 0x34d3c, 1614 0x34d48, 0x34d50, 1615 0x35200, 0x3520c, 1616 0x35220, 0x35220, 1617 0x35240, 0x35240, 1618 0x35600, 0x3560c, 1619 0x35a00, 0x35a1c, 1620 0x35e00, 0x35e20, 1621 0x35e38, 0x35e3c, 1622 0x35e80, 0x35e80, 1623 0x35e88, 0x35ea8, 1624 0x35eb0, 0x35eb4, 1625 0x35ec8, 0x35ed4, 1626 0x35fb8, 0x36004, 1627 0x36200, 0x36200, 1628 0x36208, 0x36240, 1629 0x36248, 0x36280, 1630 0x36288, 0x362c0, 1631 0x362c8, 0x362fc, 1632 0x36600, 0x36630, 1633 0x36a00, 0x36abc, 1634 0x36b00, 0x36b10, 1635 0x36b20, 0x36b30, 1636 0x36b40, 0x36b50, 1637 0x36b60, 0x36b70, 1638 0x37000, 0x37028, 1639 0x37030, 0x37048, 1640 0x37060, 0x37068, 1641 0x37070, 0x3709c, 1642 0x370f0, 0x37128, 1643 0x37130, 0x37148, 1644 0x37160, 0x37168, 1645 0x37170, 0x3719c, 1646 0x371f0, 0x37238, 1647 0x37240, 0x37240, 1648 0x37248, 0x37250, 1649 0x3725c, 0x37264, 1650 0x37270, 0x372b8, 1651 0x372c0, 0x372e4, 1652 0x372f8, 0x37338, 1653 0x37340, 0x37340, 1654 0x37348, 0x37350, 1655 0x3735c, 0x37364, 1656 0x37370, 0x373b8, 1657 0x373c0, 0x373e4, 1658 0x373f8, 0x37428, 1659 0x37430, 0x37448, 1660 0x37460, 0x37468, 1661 0x37470, 0x3749c, 1662 0x374f0, 0x37528, 1663 0x37530, 0x37548, 1664 0x37560, 0x37568, 1665 0x37570, 0x3759c, 1666 0x375f0, 0x37638, 1667 0x37640, 0x37640, 1668 0x37648, 0x37650, 1669 0x3765c, 0x37664, 1670 0x37670, 0x376b8, 1671 0x376c0, 0x376e4, 1672 0x376f8, 0x37738, 1673 0x37740, 0x37740, 1674 0x37748, 0x37750, 1675 0x3775c, 0x37764, 1676 0x37770, 0x377b8, 1677 0x377c0, 0x377e4, 1678 0x377f8, 0x377fc, 1679 0x37814, 0x37814, 1680 0x3782c, 0x3782c, 1681 0x37880, 0x3788c, 1682 0x378e8, 0x378ec, 1683 0x37900, 0x37928, 1684 0x37930, 0x37948, 1685 0x37960, 0x37968, 1686 0x37970, 0x3799c, 1687 0x379f0, 0x37a38, 1688 0x37a40, 0x37a40, 1689 0x37a48, 0x37a50, 1690 0x37a5c, 0x37a64, 1691 0x37a70, 0x37ab8, 1692 0x37ac0, 0x37ae4, 1693 0x37af8, 0x37b10, 1694 0x37b28, 0x37b28, 1695 0x37b3c, 0x37b50, 1696 0x37bf0, 0x37c10, 1697 0x37c28, 0x37c28, 1698 0x37c3c, 0x37c50, 1699 0x37cf0, 0x37cfc, 1700 0x38000, 0x38030, 1701 0x38100, 0x38144, 1702 0x38190, 0x381a0, 1703 0x381a8, 0x381b8, 1704 0x381c4, 0x381c8, 1705 0x381d0, 0x381d0, 1706 0x38200, 0x38318, 1707 0x38400, 0x384b4, 1708 0x384c0, 0x3852c, 1709 0x38540, 0x3861c, 1710 0x38800, 0x38828, 1711 0x38834, 0x38834, 1712 0x388c0, 0x38908, 1713 0x38910, 0x389ac, 1714 0x38a00, 0x38a14, 1715 0x38a1c, 0x38a2c, 1716 0x38a44, 0x38a50, 1717 0x38a74, 0x38a74, 1718 0x38a7c, 0x38afc, 1719 0x38b08, 0x38c24, 1720 0x38d00, 0x38d00, 1721 0x38d08, 0x38d14, 1722 0x38d1c, 0x38d20, 1723 0x38d3c, 0x38d3c, 1724 0x38d48, 0x38d50, 1725 0x39200, 0x3920c, 1726 0x39220, 0x39220, 1727 0x39240, 0x39240, 1728 0x39600, 0x3960c, 1729 0x39a00, 0x39a1c, 1730 0x39e00, 0x39e20, 1731 0x39e38, 0x39e3c, 1732 0x39e80, 0x39e80, 1733 0x39e88, 0x39ea8, 1734 0x39eb0, 0x39eb4, 1735 0x39ec8, 0x39ed4, 1736 0x39fb8, 0x3a004, 1737 0x3a200, 0x3a200, 1738 0x3a208, 0x3a240, 1739 0x3a248, 0x3a280, 1740 0x3a288, 0x3a2c0, 1741 0x3a2c8, 0x3a2fc, 1742 0x3a600, 0x3a630, 1743 0x3aa00, 0x3aabc, 1744 0x3ab00, 0x3ab10, 1745 0x3ab20, 0x3ab30, 1746 0x3ab40, 0x3ab50, 1747 0x3ab60, 0x3ab70, 1748 0x3b000, 0x3b028, 1749 0x3b030, 0x3b048, 1750 0x3b060, 0x3b068, 1751 0x3b070, 0x3b09c, 1752 0x3b0f0, 0x3b128, 1753 0x3b130, 0x3b148, 1754 0x3b160, 0x3b168, 1755 0x3b170, 0x3b19c, 1756 0x3b1f0, 0x3b238, 1757 0x3b240, 0x3b240, 1758 0x3b248, 0x3b250, 1759 0x3b25c, 0x3b264, 1760 0x3b270, 0x3b2b8, 1761 0x3b2c0, 0x3b2e4, 1762 0x3b2f8, 0x3b338, 1763 0x3b340, 0x3b340, 1764 0x3b348, 0x3b350, 1765 0x3b35c, 0x3b364, 1766 0x3b370, 0x3b3b8, 1767 0x3b3c0, 0x3b3e4, 1768 0x3b3f8, 0x3b428, 1769 0x3b430, 0x3b448, 1770 0x3b460, 0x3b468, 1771 0x3b470, 0x3b49c, 1772 0x3b4f0, 0x3b528, 1773 0x3b530, 0x3b548, 1774 0x3b560, 0x3b568, 1775 0x3b570, 0x3b59c, 1776 0x3b5f0, 0x3b638, 1777 0x3b640, 0x3b640, 1778 0x3b648, 0x3b650, 1779 0x3b65c, 0x3b664, 1780 0x3b670, 0x3b6b8, 1781 0x3b6c0, 0x3b6e4, 1782 0x3b6f8, 0x3b738, 1783 0x3b740, 0x3b740, 1784 0x3b748, 0x3b750, 1785 0x3b75c, 0x3b764, 1786 0x3b770, 0x3b7b8, 1787 0x3b7c0, 0x3b7e4, 1788 0x3b7f8, 0x3b7fc, 1789 0x3b814, 0x3b814, 1790 0x3b82c, 0x3b82c, 1791 0x3b880, 0x3b88c, 1792 0x3b8e8, 0x3b8ec, 1793 0x3b900, 0x3b928, 1794 0x3b930, 0x3b948, 1795 0x3b960, 0x3b968, 1796 0x3b970, 0x3b99c, 1797 0x3b9f0, 0x3ba38, 1798 0x3ba40, 0x3ba40, 1799 0x3ba48, 0x3ba50, 1800 0x3ba5c, 0x3ba64, 1801 0x3ba70, 0x3bab8, 1802 0x3bac0, 0x3bae4, 1803 0x3baf8, 0x3bb10, 1804 0x3bb28, 0x3bb28, 1805 0x3bb3c, 0x3bb50, 1806 0x3bbf0, 0x3bc10, 1807 0x3bc28, 0x3bc28, 1808 0x3bc3c, 0x3bc50, 1809 0x3bcf0, 0x3bcfc, 1810 0x3c000, 0x3c030, 1811 0x3c100, 0x3c144, 1812 0x3c190, 0x3c1a0, 1813 0x3c1a8, 0x3c1b8, 1814 0x3c1c4, 0x3c1c8, 1815 0x3c1d0, 0x3c1d0, 1816 0x3c200, 0x3c318, 1817 0x3c400, 0x3c4b4, 1818 0x3c4c0, 0x3c52c, 1819 0x3c540, 0x3c61c, 1820 0x3c800, 0x3c828, 1821 0x3c834, 0x3c834, 1822 0x3c8c0, 0x3c908, 1823 0x3c910, 0x3c9ac, 1824 0x3ca00, 0x3ca14, 1825 0x3ca1c, 0x3ca2c, 1826 0x3ca44, 0x3ca50, 1827 0x3ca74, 0x3ca74, 1828 0x3ca7c, 0x3cafc, 1829 0x3cb08, 0x3cc24, 1830 0x3cd00, 0x3cd00, 1831 0x3cd08, 0x3cd14, 1832 0x3cd1c, 0x3cd20, 1833 0x3cd3c, 0x3cd3c, 1834 0x3cd48, 0x3cd50, 1835 0x3d200, 0x3d20c, 1836 0x3d220, 0x3d220, 1837 0x3d240, 0x3d240, 1838 0x3d600, 0x3d60c, 1839 0x3da00, 0x3da1c, 1840 0x3de00, 0x3de20, 1841 0x3de38, 0x3de3c, 1842 0x3de80, 0x3de80, 1843 0x3de88, 0x3dea8, 1844 0x3deb0, 0x3deb4, 1845 0x3dec8, 0x3ded4, 1846 0x3dfb8, 0x3e004, 1847 0x3e200, 0x3e200, 1848 0x3e208, 0x3e240, 1849 0x3e248, 0x3e280, 1850 0x3e288, 0x3e2c0, 1851 0x3e2c8, 0x3e2fc, 1852 0x3e600, 0x3e630, 1853 0x3ea00, 0x3eabc, 1854 0x3eb00, 0x3eb10, 1855 0x3eb20, 0x3eb30, 1856 0x3eb40, 0x3eb50, 1857 0x3eb60, 0x3eb70, 1858 0x3f000, 0x3f028, 1859 0x3f030, 0x3f048, 1860 0x3f060, 0x3f068, 1861 0x3f070, 0x3f09c, 1862 0x3f0f0, 0x3f128, 1863 0x3f130, 0x3f148, 1864 0x3f160, 0x3f168, 1865 0x3f170, 0x3f19c, 1866 0x3f1f0, 0x3f238, 1867 0x3f240, 0x3f240, 1868 0x3f248, 0x3f250, 1869 0x3f25c, 0x3f264, 1870 0x3f270, 0x3f2b8, 1871 0x3f2c0, 0x3f2e4, 1872 0x3f2f8, 0x3f338, 1873 0x3f340, 0x3f340, 1874 0x3f348, 0x3f350, 1875 0x3f35c, 0x3f364, 1876 0x3f370, 0x3f3b8, 1877 0x3f3c0, 0x3f3e4, 1878 0x3f3f8, 0x3f428, 1879 0x3f430, 0x3f448, 1880 0x3f460, 0x3f468, 1881 0x3f470, 0x3f49c, 1882 0x3f4f0, 0x3f528, 1883 0x3f530, 0x3f548, 1884 0x3f560, 0x3f568, 1885 0x3f570, 0x3f59c, 1886 0x3f5f0, 0x3f638, 1887 0x3f640, 0x3f640, 1888 0x3f648, 0x3f650, 1889 0x3f65c, 0x3f664, 1890 0x3f670, 0x3f6b8, 1891 0x3f6c0, 0x3f6e4, 1892 0x3f6f8, 0x3f738, 1893 0x3f740, 0x3f740, 1894 0x3f748, 0x3f750, 1895 0x3f75c, 0x3f764, 1896 0x3f770, 0x3f7b8, 1897 0x3f7c0, 0x3f7e4, 1898 0x3f7f8, 0x3f7fc, 1899 0x3f814, 0x3f814, 1900 0x3f82c, 0x3f82c, 1901 0x3f880, 0x3f88c, 1902 0x3f8e8, 0x3f8ec, 1903 0x3f900, 0x3f928, 1904 0x3f930, 0x3f948, 1905 0x3f960, 0x3f968, 1906 0x3f970, 0x3f99c, 1907 0x3f9f0, 0x3fa38, 1908 0x3fa40, 0x3fa40, 1909 0x3fa48, 0x3fa50, 1910 0x3fa5c, 0x3fa64, 1911 0x3fa70, 0x3fab8, 1912 0x3fac0, 0x3fae4, 1913 0x3faf8, 0x3fb10, 1914 0x3fb28, 0x3fb28, 1915 0x3fb3c, 0x3fb50, 1916 0x3fbf0, 0x3fc10, 1917 0x3fc28, 0x3fc28, 1918 0x3fc3c, 0x3fc50, 1919 0x3fcf0, 0x3fcfc, 1920 0x40000, 0x4000c, 1921 0x40040, 0x40050, 1922 0x40060, 0x40068, 1923 0x4007c, 0x4008c, 1924 0x40094, 0x400b0, 1925 0x400c0, 0x40144, 1926 0x40180, 0x4018c, 1927 0x40200, 0x40254, 1928 0x40260, 0x40264, 1929 0x40270, 0x40288, 1930 0x40290, 0x40298, 1931 0x402ac, 0x402c8, 1932 0x402d0, 0x402e0, 1933 0x402f0, 0x402f0, 1934 0x40300, 0x4033c, 1935 0x403f8, 0x403fc, 1936 0x41304, 0x413c4, 1937 0x41400, 0x4140c, 1938 0x41414, 0x4141c, 1939 0x41480, 0x414d0, 1940 0x44000, 0x44054, 1941 0x4405c, 0x44078, 1942 0x440c0, 0x44174, 1943 0x44180, 0x441ac, 1944 0x441b4, 0x441b8, 1945 0x441c0, 0x44254, 1946 0x4425c, 0x44278, 1947 0x442c0, 0x44374, 1948 0x44380, 0x443ac, 1949 0x443b4, 0x443b8, 1950 0x443c0, 0x44454, 1951 0x4445c, 0x44478, 1952 0x444c0, 0x44574, 1953 0x44580, 0x445ac, 1954 0x445b4, 0x445b8, 1955 0x445c0, 0x44654, 1956 0x4465c, 0x44678, 1957 0x446c0, 0x44774, 1958 0x44780, 0x447ac, 1959 0x447b4, 0x447b8, 1960 0x447c0, 0x44854, 1961 0x4485c, 0x44878, 1962 0x448c0, 0x44974, 1963 0x44980, 0x449ac, 1964 0x449b4, 0x449b8, 1965 0x449c0, 0x449fc, 1966 0x45000, 0x45004, 1967 0x45010, 0x45030, 1968 0x45040, 0x45060, 1969 0x45068, 0x45068, 1970 0x45080, 0x45084, 1971 0x450a0, 0x450b0, 1972 0x45200, 0x45204, 1973 0x45210, 0x45230, 1974 0x45240, 0x45260, 1975 0x45268, 0x45268, 1976 0x45280, 0x45284, 1977 0x452a0, 0x452b0, 1978 0x460c0, 0x460e4, 1979 0x47000, 0x4703c, 1980 0x47044, 0x4708c, 1981 0x47200, 0x47250, 1982 0x47400, 0x47408, 1983 0x47414, 0x47420, 1984 0x47600, 0x47618, 1985 0x47800, 0x47814, 1986 0x48000, 0x4800c, 1987 0x48040, 0x48050, 1988 0x48060, 0x48068, 1989 0x4807c, 0x4808c, 1990 0x48094, 0x480b0, 1991 0x480c0, 0x48144, 1992 0x48180, 0x4818c, 1993 0x48200, 0x48254, 1994 0x48260, 0x48264, 1995 0x48270, 0x48288, 1996 0x48290, 0x48298, 1997 0x482ac, 0x482c8, 1998 0x482d0, 0x482e0, 1999 0x482f0, 0x482f0, 2000 0x48300, 0x4833c, 2001 0x483f8, 0x483fc, 2002 0x49304, 0x493c4, 2003 0x49400, 0x4940c, 2004 0x49414, 0x4941c, 2005 0x49480, 0x494d0, 2006 0x4c000, 0x4c054, 2007 0x4c05c, 0x4c078, 2008 0x4c0c0, 0x4c174, 2009 0x4c180, 0x4c1ac, 2010 0x4c1b4, 0x4c1b8, 2011 0x4c1c0, 0x4c254, 2012 0x4c25c, 0x4c278, 2013 0x4c2c0, 0x4c374, 2014 0x4c380, 0x4c3ac, 2015 0x4c3b4, 0x4c3b8, 2016 0x4c3c0, 0x4c454, 2017 0x4c45c, 0x4c478, 2018 0x4c4c0, 0x4c574, 2019 0x4c580, 0x4c5ac, 2020 0x4c5b4, 0x4c5b8, 2021 0x4c5c0, 0x4c654, 2022 0x4c65c, 0x4c678, 2023 0x4c6c0, 0x4c774, 2024 0x4c780, 0x4c7ac, 2025 0x4c7b4, 0x4c7b8, 2026 0x4c7c0, 0x4c854, 2027 0x4c85c, 0x4c878, 2028 0x4c8c0, 0x4c974, 2029 0x4c980, 0x4c9ac, 2030 0x4c9b4, 0x4c9b8, 2031 0x4c9c0, 0x4c9fc, 2032 0x4d000, 0x4d004, 2033 0x4d010, 0x4d030, 2034 0x4d040, 0x4d060, 2035 0x4d068, 0x4d068, 2036 0x4d080, 0x4d084, 2037 0x4d0a0, 0x4d0b0, 2038 0x4d200, 0x4d204, 2039 0x4d210, 0x4d230, 2040 0x4d240, 0x4d260, 2041 0x4d268, 0x4d268, 2042 0x4d280, 0x4d284, 2043 0x4d2a0, 0x4d2b0, 2044 0x4e0c0, 0x4e0e4, 2045 0x4f000, 0x4f03c, 2046 0x4f044, 0x4f08c, 2047 0x4f200, 0x4f250, 2048 0x4f400, 0x4f408, 2049 0x4f414, 0x4f420, 2050 0x4f600, 0x4f618, 2051 0x4f800, 0x4f814, 2052 0x50000, 0x50084, 2053 0x50090, 0x500cc, 2054 0x50400, 0x50400, 2055 0x50800, 0x50884, 2056 0x50890, 0x508cc, 2057 0x50c00, 0x50c00, 2058 0x51000, 0x5101c, 2059 0x51300, 0x51308, 2060 }; 2061 2062 static const unsigned int t5vf_reg_ranges[] = { 2063 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS), 2064 VF_MPS_REG(A_MPS_VF_CTL), 2065 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H), 2066 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION), 2067 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL), 2068 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS), 2069 FW_T4VF_MBDATA_BASE_ADDR, 2070 FW_T4VF_MBDATA_BASE_ADDR + 2071 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4), 2072 }; 2073 2074 static const unsigned int t6_reg_ranges[] = { 2075 0x1008, 0x101c, 2076 0x1024, 0x10a8, 2077 0x10b4, 0x10f8, 2078 0x1100, 0x1114, 2079 0x111c, 0x112c, 2080 0x1138, 0x113c, 2081 0x1144, 0x114c, 2082 0x1180, 0x1184, 2083 0x1190, 0x1194, 2084 0x11a0, 0x11a4, 2085 0x11b0, 0x11c4, 2086 0x11fc, 0x123c, 2087 0x1254, 0x1274, 2088 0x1280, 0x133c, 2089 0x1800, 0x18fc, 2090 0x3000, 0x302c, 2091 0x3060, 0x30b0, 2092 0x30b8, 0x30d8, 2093 0x30e0, 0x30fc, 2094 0x3140, 0x357c, 2095 0x35a8, 0x35cc, 2096 0x35ec, 0x35ec, 2097 0x3600, 0x5624, 2098 0x56cc, 0x56ec, 2099 0x56f4, 0x5720, 2100 0x5728, 0x575c, 2101 0x580c, 0x5814, 2102 0x5890, 0x589c, 2103 0x58a4, 0x58ac, 2104 0x58b8, 0x58bc, 2105 0x5940, 0x595c, 2106 0x5980, 0x598c, 2107 0x59b0, 0x59c8, 2108 0x59d0, 0x59dc, 2109 0x59fc, 0x5a18, 2110 0x5a60, 0x5a6c, 2111 0x5a80, 0x5a8c, 2112 0x5a94, 0x5a9c, 2113 0x5b94, 0x5bfc, 2114 0x5c10, 0x5e48, 2115 0x5e50, 0x5e94, 2116 0x5ea0, 0x5eb0, 2117 0x5ec0, 0x5ec0, 2118 0x5ec8, 0x5ed0, 2119 0x5ee0, 0x5ee0, 2120 0x5ef0, 0x5ef0, 2121 0x5f00, 0x5f00, 2122 0x6000, 0x6020, 2123 0x6028, 0x6040, 2124 0x6058, 0x609c, 2125 0x60a8, 0x619c, 2126 0x7700, 0x7798, 2127 0x77c0, 0x7880, 2128 0x78cc, 0x78fc, 2129 0x7b00, 0x7b58, 2130 0x7b60, 0x7b84, 2131 0x7b8c, 0x7c54, 2132 0x7d00, 0x7d38, 2133 0x7d40, 0x7d84, 2134 0x7d8c, 0x7ddc, 2135 0x7de4, 0x7e04, 2136 0x7e10, 0x7e1c, 2137 0x7e24, 0x7e38, 2138 0x7e40, 0x7e44, 2139 0x7e4c, 0x7e78, 2140 0x7e80, 0x7edc, 2141 0x7ee8, 0x7efc, 2142 0x8dc0, 0x8de0, 2143 0x8df8, 0x8e04, 2144 0x8e10, 0x8e84, 2145 0x8ea0, 0x8f88, 2146 0x8fb8, 0x9058, 2147 0x9060, 0x9060, 2148 0x9068, 0x90f8, 2149 0x9100, 0x9124, 2150 0x9400, 0x9470, 2151 0x9600, 0x9600, 2152 0x9608, 0x9638, 2153 0x9640, 0x9704, 2154 0x9710, 0x971c, 2155 0x9800, 0x9808, 2156 0x9810, 0x9864, 2157 0x9c00, 0x9c6c, 2158 0x9c80, 0x9cec, 2159 0x9d00, 0x9d6c, 2160 0x9d80, 0x9dec, 2161 0x9e00, 0x9e6c, 2162 0x9e80, 0x9eec, 2163 0x9f00, 0x9f6c, 2164 0x9f80, 0xa020, 2165 0xd000, 0xd03c, 2166 0xd100, 0xd118, 2167 0xd200, 0xd214, 2168 0xd220, 0xd234, 2169 0xd240, 0xd254, 2170 0xd260, 0xd274, 2171 0xd280, 0xd294, 2172 0xd2a0, 0xd2b4, 2173 0xd2c0, 0xd2d4, 2174 0xd2e0, 0xd2f4, 2175 0xd300, 0xd31c, 2176 0xdfc0, 0xdfe0, 2177 0xe000, 0xf008, 2178 0xf010, 0xf018, 2179 0xf020, 0xf028, 2180 0x11000, 0x11014, 2181 0x11048, 0x1106c, 2182 0x11074, 0x11088, 2183 0x11098, 0x11120, 2184 0x1112c, 0x1117c, 2185 0x11190, 0x112e0, 2186 0x11300, 0x1130c, 2187 0x12000, 0x1206c, 2188 0x19040, 0x1906c, 2189 0x19078, 0x19080, 2190 0x1908c, 0x190e8, 2191 0x190f0, 0x190f8, 2192 0x19100, 0x19110, 2193 0x19120, 0x19124, 2194 0x19150, 0x19194, 2195 0x1919c, 0x191b0, 2196 0x191d0, 0x191e8, 2197 0x19238, 0x19290, 2198 0x192a4, 0x192b0, 2199 0x19348, 0x1934c, 2200 0x193f8, 0x19418, 2201 0x19420, 0x19428, 2202 0x19430, 0x19444, 2203 0x1944c, 0x1946c, 2204 0x19474, 0x19474, 2205 0x19490, 0x194cc, 2206 0x194f0, 0x194f8, 2207 0x19c00, 0x19c48, 2208 0x19c50, 0x19c80, 2209 0x19c94, 0x19c98, 2210 0x19ca0, 0x19cbc, 2211 0x19ce4, 0x19ce4, 2212 0x19cf0, 0x19cf8, 2213 0x19d00, 0x19d28, 2214 0x19d50, 0x19d78, 2215 0x19d94, 0x19d98, 2216 0x19da0, 0x19de0, 2217 0x19df0, 0x19e10, 2218 0x19e50, 0x19e6c, 2219 0x19ea0, 0x19ebc, 2220 0x19ec4, 0x19ef4, 2221 0x19f04, 0x19f2c, 2222 0x19f34, 0x19f34, 2223 0x19f40, 0x19f50, 2224 0x19f90, 0x19fac, 2225 0x19fc4, 0x19fc8, 2226 0x19fd0, 0x19fe4, 2227 0x1a000, 0x1a004, 2228 0x1a010, 0x1a06c, 2229 0x1a0b0, 0x1a0e4, 2230 0x1a0ec, 0x1a0f8, 2231 0x1a100, 0x1a108, 2232 0x1a114, 0x1a130, 2233 0x1a138, 0x1a1c4, 2234 0x1a1fc, 0x1a1fc, 2235 0x1e008, 0x1e00c, 2236 0x1e040, 0x1e044, 2237 0x1e04c, 0x1e04c, 2238 0x1e284, 0x1e290, 2239 0x1e2c0, 0x1e2c0, 2240 0x1e2e0, 0x1e2e0, 2241 0x1e300, 0x1e384, 2242 0x1e3c0, 0x1e3c8, 2243 0x1e408, 0x1e40c, 2244 0x1e440, 0x1e444, 2245 0x1e44c, 0x1e44c, 2246 0x1e684, 0x1e690, 2247 0x1e6c0, 0x1e6c0, 2248 0x1e6e0, 0x1e6e0, 2249 0x1e700, 0x1e784, 2250 0x1e7c0, 0x1e7c8, 2251 0x1e808, 0x1e80c, 2252 0x1e840, 0x1e844, 2253 0x1e84c, 0x1e84c, 2254 0x1ea84, 0x1ea90, 2255 0x1eac0, 0x1eac0, 2256 0x1eae0, 0x1eae0, 2257 0x1eb00, 0x1eb84, 2258 0x1ebc0, 0x1ebc8, 2259 0x1ec08, 0x1ec0c, 2260 0x1ec40, 0x1ec44, 2261 0x1ec4c, 0x1ec4c, 2262 0x1ee84, 0x1ee90, 2263 0x1eec0, 0x1eec0, 2264 0x1eee0, 0x1eee0, 2265 0x1ef00, 0x1ef84, 2266 0x1efc0, 0x1efc8, 2267 0x1f008, 0x1f00c, 2268 0x1f040, 0x1f044, 2269 0x1f04c, 0x1f04c, 2270 0x1f284, 0x1f290, 2271 0x1f2c0, 0x1f2c0, 2272 0x1f2e0, 0x1f2e0, 2273 0x1f300, 0x1f384, 2274 0x1f3c0, 0x1f3c8, 2275 0x1f408, 0x1f40c, 2276 0x1f440, 0x1f444, 2277 0x1f44c, 0x1f44c, 2278 0x1f684, 0x1f690, 2279 0x1f6c0, 0x1f6c0, 2280 0x1f6e0, 0x1f6e0, 2281 0x1f700, 0x1f784, 2282 0x1f7c0, 0x1f7c8, 2283 0x1f808, 0x1f80c, 2284 0x1f840, 0x1f844, 2285 0x1f84c, 0x1f84c, 2286 0x1fa84, 0x1fa90, 2287 0x1fac0, 0x1fac0, 2288 0x1fae0, 0x1fae0, 2289 0x1fb00, 0x1fb84, 2290 0x1fbc0, 0x1fbc8, 2291 0x1fc08, 0x1fc0c, 2292 0x1fc40, 0x1fc44, 2293 0x1fc4c, 0x1fc4c, 2294 0x1fe84, 0x1fe90, 2295 0x1fec0, 0x1fec0, 2296 0x1fee0, 0x1fee0, 2297 0x1ff00, 0x1ff84, 2298 0x1ffc0, 0x1ffc8, 2299 0x30000, 0x30030, 2300 0x30100, 0x30168, 2301 0x30190, 0x301a0, 2302 0x301a8, 0x301b8, 2303 0x301c4, 0x301c8, 2304 0x301d0, 0x301d0, 2305 0x30200, 0x30320, 2306 0x30400, 0x304b4, 2307 0x304c0, 0x3052c, 2308 0x30540, 0x3061c, 2309 0x30800, 0x308a0, 2310 0x308c0, 0x30908, 2311 0x30910, 0x309b8, 2312 0x30a00, 0x30a04, 2313 0x30a0c, 0x30a14, 2314 0x30a1c, 0x30a2c, 2315 0x30a44, 0x30a50, 2316 0x30a74, 0x30a74, 2317 0x30a7c, 0x30afc, 2318 0x30b08, 0x30c24, 2319 0x30d00, 0x30d14, 2320 0x30d1c, 0x30d3c, 2321 0x30d44, 0x30d4c, 2322 0x30d54, 0x30d74, 2323 0x30d7c, 0x30d7c, 2324 0x30de0, 0x30de0, 2325 0x30e00, 0x30ed4, 2326 0x30f00, 0x30fa4, 2327 0x30fc0, 0x30fc4, 2328 0x31000, 0x31004, 2329 0x31080, 0x310fc, 2330 0x31208, 0x31220, 2331 0x3123c, 0x31254, 2332 0x31300, 0x31300, 2333 0x31308, 0x3131c, 2334 0x31338, 0x3133c, 2335 0x31380, 0x31380, 2336 0x31388, 0x313a8, 2337 0x313b4, 0x313b4, 2338 0x31400, 0x31420, 2339 0x31438, 0x3143c, 2340 0x31480, 0x31480, 2341 0x314a8, 0x314a8, 2342 0x314b0, 0x314b4, 2343 0x314c8, 0x314d4, 2344 0x31a40, 0x31a4c, 2345 0x31af0, 0x31b20, 2346 0x31b38, 0x31b3c, 2347 0x31b80, 0x31b80, 2348 0x31ba8, 0x31ba8, 2349 0x31bb0, 0x31bb4, 2350 0x31bc8, 0x31bd4, 2351 0x32140, 0x3218c, 2352 0x321f0, 0x321f4, 2353 0x32200, 0x32200, 2354 0x32218, 0x32218, 2355 0x32400, 0x32400, 2356 0x32408, 0x3241c, 2357 0x32618, 0x32620, 2358 0x32664, 0x32664, 2359 0x326a8, 0x326a8, 2360 0x326ec, 0x326ec, 2361 0x32a00, 0x32abc, 2362 0x32b00, 0x32b18, 2363 0x32b20, 0x32b38, 2364 0x32b40, 0x32b58, 2365 0x32b60, 0x32b78, 2366 0x32c00, 0x32c00, 2367 0x32c08, 0x32c3c, 2368 0x33000, 0x3302c, 2369 0x33034, 0x33050, 2370 0x33058, 0x33058, 2371 0x33060, 0x3308c, 2372 0x3309c, 0x330ac, 2373 0x330c0, 0x330c0, 2374 0x330c8, 0x330d0, 2375 0x330d8, 0x330e0, 2376 0x330ec, 0x3312c, 2377 0x33134, 0x33150, 2378 0x33158, 0x33158, 2379 0x33160, 0x3318c, 2380 0x3319c, 0x331ac, 2381 0x331c0, 0x331c0, 2382 0x331c8, 0x331d0, 2383 0x331d8, 0x331e0, 2384 0x331ec, 0x33290, 2385 0x33298, 0x332c4, 2386 0x332e4, 0x33390, 2387 0x33398, 0x333c4, 2388 0x333e4, 0x3342c, 2389 0x33434, 0x33450, 2390 0x33458, 0x33458, 2391 0x33460, 0x3348c, 2392 0x3349c, 0x334ac, 2393 0x334c0, 0x334c0, 2394 0x334c8, 0x334d0, 2395 0x334d8, 0x334e0, 2396 0x334ec, 0x3352c, 2397 0x33534, 0x33550, 2398 0x33558, 0x33558, 2399 0x33560, 0x3358c, 2400 0x3359c, 0x335ac, 2401 0x335c0, 0x335c0, 2402 0x335c8, 0x335d0, 2403 0x335d8, 0x335e0, 2404 0x335ec, 0x33690, 2405 0x33698, 0x336c4, 2406 0x336e4, 0x33790, 2407 0x33798, 0x337c4, 2408 0x337e4, 0x337fc, 2409 0x33814, 0x33814, 2410 0x33854, 0x33868, 2411 0x33880, 0x3388c, 2412 0x338c0, 0x338d0, 2413 0x338e8, 0x338ec, 2414 0x33900, 0x3392c, 2415 0x33934, 0x33950, 2416 0x33958, 0x33958, 2417 0x33960, 0x3398c, 2418 0x3399c, 0x339ac, 2419 0x339c0, 0x339c0, 2420 0x339c8, 0x339d0, 2421 0x339d8, 0x339e0, 2422 0x339ec, 0x33a90, 2423 0x33a98, 0x33ac4, 2424 0x33ae4, 0x33b10, 2425 0x33b24, 0x33b28, 2426 0x33b38, 0x33b50, 2427 0x33bf0, 0x33c10, 2428 0x33c24, 0x33c28, 2429 0x33c38, 0x33c50, 2430 0x33cf0, 0x33cfc, 2431 0x34000, 0x34030, 2432 0x34100, 0x34168, 2433 0x34190, 0x341a0, 2434 0x341a8, 0x341b8, 2435 0x341c4, 0x341c8, 2436 0x341d0, 0x341d0, 2437 0x34200, 0x34320, 2438 0x34400, 0x344b4, 2439 0x344c0, 0x3452c, 2440 0x34540, 0x3461c, 2441 0x34800, 0x348a0, 2442 0x348c0, 0x34908, 2443 0x34910, 0x349b8, 2444 0x34a00, 0x34a04, 2445 0x34a0c, 0x34a14, 2446 0x34a1c, 0x34a2c, 2447 0x34a44, 0x34a50, 2448 0x34a74, 0x34a74, 2449 0x34a7c, 0x34afc, 2450 0x34b08, 0x34c24, 2451 0x34d00, 0x34d14, 2452 0x34d1c, 0x34d3c, 2453 0x34d44, 0x34d4c, 2454 0x34d54, 0x34d74, 2455 0x34d7c, 0x34d7c, 2456 0x34de0, 0x34de0, 2457 0x34e00, 0x34ed4, 2458 0x34f00, 0x34fa4, 2459 0x34fc0, 0x34fc4, 2460 0x35000, 0x35004, 2461 0x35080, 0x350fc, 2462 0x35208, 0x35220, 2463 0x3523c, 0x35254, 2464 0x35300, 0x35300, 2465 0x35308, 0x3531c, 2466 0x35338, 0x3533c, 2467 0x35380, 0x35380, 2468 0x35388, 0x353a8, 2469 0x353b4, 0x353b4, 2470 0x35400, 0x35420, 2471 0x35438, 0x3543c, 2472 0x35480, 0x35480, 2473 0x354a8, 0x354a8, 2474 0x354b0, 0x354b4, 2475 0x354c8, 0x354d4, 2476 0x35a40, 0x35a4c, 2477 0x35af0, 0x35b20, 2478 0x35b38, 0x35b3c, 2479 0x35b80, 0x35b80, 2480 0x35ba8, 0x35ba8, 2481 0x35bb0, 0x35bb4, 2482 0x35bc8, 0x35bd4, 2483 0x36140, 0x3618c, 2484 0x361f0, 0x361f4, 2485 0x36200, 0x36200, 2486 0x36218, 0x36218, 2487 0x36400, 0x36400, 2488 0x36408, 0x3641c, 2489 0x36618, 0x36620, 2490 0x36664, 0x36664, 2491 0x366a8, 0x366a8, 2492 0x366ec, 0x366ec, 2493 0x36a00, 0x36abc, 2494 0x36b00, 0x36b18, 2495 0x36b20, 0x36b38, 2496 0x36b40, 0x36b58, 2497 0x36b60, 0x36b78, 2498 0x36c00, 0x36c00, 2499 0x36c08, 0x36c3c, 2500 0x37000, 0x3702c, 2501 0x37034, 0x37050, 2502 0x37058, 0x37058, 2503 0x37060, 0x3708c, 2504 0x3709c, 0x370ac, 2505 0x370c0, 0x370c0, 2506 0x370c8, 0x370d0, 2507 0x370d8, 0x370e0, 2508 0x370ec, 0x3712c, 2509 0x37134, 0x37150, 2510 0x37158, 0x37158, 2511 0x37160, 0x3718c, 2512 0x3719c, 0x371ac, 2513 0x371c0, 0x371c0, 2514 0x371c8, 0x371d0, 2515 0x371d8, 0x371e0, 2516 0x371ec, 0x37290, 2517 0x37298, 0x372c4, 2518 0x372e4, 0x37390, 2519 0x37398, 0x373c4, 2520 0x373e4, 0x3742c, 2521 0x37434, 0x37450, 2522 0x37458, 0x37458, 2523 0x37460, 0x3748c, 2524 0x3749c, 0x374ac, 2525 0x374c0, 0x374c0, 2526 0x374c8, 0x374d0, 2527 0x374d8, 0x374e0, 2528 0x374ec, 0x3752c, 2529 0x37534, 0x37550, 2530 0x37558, 0x37558, 2531 0x37560, 0x3758c, 2532 0x3759c, 0x375ac, 2533 0x375c0, 0x375c0, 2534 0x375c8, 0x375d0, 2535 0x375d8, 0x375e0, 2536 0x375ec, 0x37690, 2537 0x37698, 0x376c4, 2538 0x376e4, 0x37790, 2539 0x37798, 0x377c4, 2540 0x377e4, 0x377fc, 2541 0x37814, 0x37814, 2542 0x37854, 0x37868, 2543 0x37880, 0x3788c, 2544 0x378c0, 0x378d0, 2545 0x378e8, 0x378ec, 2546 0x37900, 0x3792c, 2547 0x37934, 0x37950, 2548 0x37958, 0x37958, 2549 0x37960, 0x3798c, 2550 0x3799c, 0x379ac, 2551 0x379c0, 0x379c0, 2552 0x379c8, 0x379d0, 2553 0x379d8, 0x379e0, 2554 0x379ec, 0x37a90, 2555 0x37a98, 0x37ac4, 2556 0x37ae4, 0x37b10, 2557 0x37b24, 0x37b28, 2558 0x37b38, 0x37b50, 2559 0x37bf0, 0x37c10, 2560 0x37c24, 0x37c28, 2561 0x37c38, 0x37c50, 2562 0x37cf0, 0x37cfc, 2563 0x40040, 0x40040, 2564 0x40080, 0x40084, 2565 0x40100, 0x40100, 2566 0x40140, 0x401bc, 2567 0x40200, 0x40214, 2568 0x40228, 0x40228, 2569 0x40240, 0x40258, 2570 0x40280, 0x40280, 2571 0x40304, 0x40304, 2572 0x40330, 0x4033c, 2573 0x41304, 0x413c8, 2574 0x413d0, 0x413dc, 2575 0x413f0, 0x413f0, 2576 0x41400, 0x4140c, 2577 0x41414, 0x4141c, 2578 0x41480, 0x414d0, 2579 0x44000, 0x4407c, 2580 0x440c0, 0x441ac, 2581 0x441b4, 0x4427c, 2582 0x442c0, 0x443ac, 2583 0x443b4, 0x4447c, 2584 0x444c0, 0x445ac, 2585 0x445b4, 0x4467c, 2586 0x446c0, 0x447ac, 2587 0x447b4, 0x4487c, 2588 0x448c0, 0x449ac, 2589 0x449b4, 0x44a7c, 2590 0x44ac0, 0x44bac, 2591 0x44bb4, 0x44c7c, 2592 0x44cc0, 0x44dac, 2593 0x44db4, 0x44e7c, 2594 0x44ec0, 0x44fac, 2595 0x44fb4, 0x4507c, 2596 0x450c0, 0x451ac, 2597 0x451b4, 0x451fc, 2598 0x45800, 0x45804, 2599 0x45810, 0x45830, 2600 0x45840, 0x45860, 2601 0x45868, 0x45868, 2602 0x45880, 0x45884, 2603 0x458a0, 0x458b0, 2604 0x45a00, 0x45a04, 2605 0x45a10, 0x45a30, 2606 0x45a40, 0x45a60, 2607 0x45a68, 0x45a68, 2608 0x45a80, 0x45a84, 2609 0x45aa0, 0x45ab0, 2610 0x460c0, 0x460e4, 2611 0x47000, 0x4703c, 2612 0x47044, 0x4708c, 2613 0x47200, 0x47250, 2614 0x47400, 0x47408, 2615 0x47414, 0x47420, 2616 0x47600, 0x47618, 2617 0x47800, 0x47814, 2618 0x47820, 0x4782c, 2619 0x50000, 0x50084, 2620 0x50090, 0x500cc, 2621 0x50300, 0x50384, 2622 0x50400, 0x50400, 2623 0x50800, 0x50884, 2624 0x50890, 0x508cc, 2625 0x50b00, 0x50b84, 2626 0x50c00, 0x50c00, 2627 0x51000, 0x51020, 2628 0x51028, 0x510b0, 2629 0x51300, 0x51324, 2630 }; 2631 2632 static const unsigned int t6vf_reg_ranges[] = { 2633 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS), 2634 VF_MPS_REG(A_MPS_VF_CTL), 2635 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H), 2636 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION), 2637 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL), 2638 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS), 2639 FW_T6VF_MBDATA_BASE_ADDR, 2640 FW_T6VF_MBDATA_BASE_ADDR + 2641 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4), 2642 }; 2643 2644 u32 *buf_end = (u32 *)(buf + buf_size); 2645 const unsigned int *reg_ranges; 2646 int reg_ranges_size, range; 2647 unsigned int chip_version = chip_id(adap); 2648 2649 /* 2650 * Select the right set of register ranges to dump depending on the 2651 * adapter chip type. 2652 */ 2653 switch (chip_version) { 2654 case CHELSIO_T4: 2655 if (adap->flags & IS_VF) { 2656 reg_ranges = t4vf_reg_ranges; 2657 reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges); 2658 } else { 2659 reg_ranges = t4_reg_ranges; 2660 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 2661 } 2662 break; 2663 2664 case CHELSIO_T5: 2665 if (adap->flags & IS_VF) { 2666 reg_ranges = t5vf_reg_ranges; 2667 reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges); 2668 } else { 2669 reg_ranges = t5_reg_ranges; 2670 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 2671 } 2672 break; 2673 2674 case CHELSIO_T6: 2675 if (adap->flags & IS_VF) { 2676 reg_ranges = t6vf_reg_ranges; 2677 reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges); 2678 } else { 2679 reg_ranges = t6_reg_ranges; 2680 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); 2681 } 2682 break; 2683 2684 default: 2685 CH_ERR(adap, 2686 "Unsupported chip version %d\n", chip_version); 2687 return; 2688 } 2689 2690 /* 2691 * Clear the register buffer and insert the appropriate register 2692 * values selected by the above register ranges. 2693 */ 2694 memset(buf, 0, buf_size); 2695 for (range = 0; range < reg_ranges_size; range += 2) { 2696 unsigned int reg = reg_ranges[range]; 2697 unsigned int last_reg = reg_ranges[range + 1]; 2698 u32 *bufp = (u32 *)(buf + reg); 2699 2700 /* 2701 * Iterate across the register range filling in the register 2702 * buffer but don't write past the end of the register buffer. 2703 */ 2704 while (reg <= last_reg && bufp < buf_end) { 2705 *bufp++ = t4_read_reg(adap, reg); 2706 reg += sizeof(u32); 2707 } 2708 } 2709 } 2710 2711 /* 2712 * Partial EEPROM Vital Product Data structure. The VPD starts with one ID 2713 * header followed by one or more VPD-R sections, each with its own header. 2714 */ 2715 struct t4_vpd_hdr { 2716 u8 id_tag; 2717 u8 id_len[2]; 2718 u8 id_data[ID_LEN]; 2719 }; 2720 2721 struct t4_vpdr_hdr { 2722 u8 vpdr_tag; 2723 u8 vpdr_len[2]; 2724 }; 2725 2726 /* 2727 * EEPROM reads take a few tens of us while writes can take a bit over 5 ms. 2728 */ 2729 #define EEPROM_DELAY 10 /* 10us per poll spin */ 2730 #define EEPROM_MAX_POLL 5000 /* x 5000 == 50ms */ 2731 2732 #define EEPROM_STAT_ADDR 0x7bfc 2733 #define VPD_SIZE 0x800 2734 #define VPD_BASE 0x400 2735 #define VPD_BASE_OLD 0 2736 #define VPD_LEN 1024 2737 #define VPD_INFO_FLD_HDR_SIZE 3 2738 #define CHELSIO_VPD_UNIQUE_ID 0x82 2739 2740 /* 2741 * Small utility function to wait till any outstanding VPD Access is complete. 2742 * We have a per-adapter state variable "VPD Busy" to indicate when we have a 2743 * VPD Access in flight. This allows us to handle the problem of having a 2744 * previous VPD Access time out and prevent an attempt to inject a new VPD 2745 * Request before any in-flight VPD reguest has completed. 2746 */ 2747 static int t4_seeprom_wait(struct adapter *adapter) 2748 { 2749 unsigned int base = adapter->params.pci.vpd_cap_addr; 2750 int max_poll; 2751 2752 /* 2753 * If no VPD Access is in flight, we can just return success right 2754 * away. 2755 */ 2756 if (!adapter->vpd_busy) 2757 return 0; 2758 2759 /* 2760 * Poll the VPD Capability Address/Flag register waiting for it 2761 * to indicate that the operation is complete. 2762 */ 2763 max_poll = EEPROM_MAX_POLL; 2764 do { 2765 u16 val; 2766 2767 udelay(EEPROM_DELAY); 2768 t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val); 2769 2770 /* 2771 * If the operation is complete, mark the VPD as no longer 2772 * busy and return success. 2773 */ 2774 if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) { 2775 adapter->vpd_busy = 0; 2776 return 0; 2777 } 2778 } while (--max_poll); 2779 2780 /* 2781 * Failure! Note that we leave the VPD Busy status set in order to 2782 * avoid pushing a new VPD Access request into the VPD Capability till 2783 * the current operation eventually succeeds. It's a bug to issue a 2784 * new request when an existing request is in flight and will result 2785 * in corrupt hardware state. 2786 */ 2787 return -ETIMEDOUT; 2788 } 2789 2790 /** 2791 * t4_seeprom_read - read a serial EEPROM location 2792 * @adapter: adapter to read 2793 * @addr: EEPROM virtual address 2794 * @data: where to store the read data 2795 * 2796 * Read a 32-bit word from a location in serial EEPROM using the card's PCI 2797 * VPD capability. Note that this function must be called with a virtual 2798 * address. 2799 */ 2800 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data) 2801 { 2802 unsigned int base = adapter->params.pci.vpd_cap_addr; 2803 int ret; 2804 2805 /* 2806 * VPD Accesses must alway be 4-byte aligned! 2807 */ 2808 if (addr >= EEPROMVSIZE || (addr & 3)) 2809 return -EINVAL; 2810 2811 /* 2812 * Wait for any previous operation which may still be in flight to 2813 * complete. 2814 */ 2815 ret = t4_seeprom_wait(adapter); 2816 if (ret) { 2817 CH_ERR(adapter, "VPD still busy from previous operation\n"); 2818 return ret; 2819 } 2820 2821 /* 2822 * Issue our new VPD Read request, mark the VPD as being busy and wait 2823 * for our request to complete. If it doesn't complete, note the 2824 * error and return it to our caller. Note that we do not reset the 2825 * VPD Busy status! 2826 */ 2827 t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr); 2828 adapter->vpd_busy = 1; 2829 adapter->vpd_flag = PCI_VPD_ADDR_F; 2830 ret = t4_seeprom_wait(adapter); 2831 if (ret) { 2832 CH_ERR(adapter, "VPD read of address %#x failed\n", addr); 2833 return ret; 2834 } 2835 2836 /* 2837 * Grab the returned data, swizzle it into our endianness and 2838 * return success. 2839 */ 2840 t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data); 2841 *data = le32_to_cpu(*data); 2842 return 0; 2843 } 2844 2845 /** 2846 * t4_seeprom_write - write a serial EEPROM location 2847 * @adapter: adapter to write 2848 * @addr: virtual EEPROM address 2849 * @data: value to write 2850 * 2851 * Write a 32-bit word to a location in serial EEPROM using the card's PCI 2852 * VPD capability. Note that this function must be called with a virtual 2853 * address. 2854 */ 2855 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data) 2856 { 2857 unsigned int base = adapter->params.pci.vpd_cap_addr; 2858 int ret; 2859 u32 stats_reg; 2860 int max_poll; 2861 2862 /* 2863 * VPD Accesses must alway be 4-byte aligned! 2864 */ 2865 if (addr >= EEPROMVSIZE || (addr & 3)) 2866 return -EINVAL; 2867 2868 /* 2869 * Wait for any previous operation which may still be in flight to 2870 * complete. 2871 */ 2872 ret = t4_seeprom_wait(adapter); 2873 if (ret) { 2874 CH_ERR(adapter, "VPD still busy from previous operation\n"); 2875 return ret; 2876 } 2877 2878 /* 2879 * Issue our new VPD Read request, mark the VPD as being busy and wait 2880 * for our request to complete. If it doesn't complete, note the 2881 * error and return it to our caller. Note that we do not reset the 2882 * VPD Busy status! 2883 */ 2884 t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 2885 cpu_to_le32(data)); 2886 t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, 2887 (u16)addr | PCI_VPD_ADDR_F); 2888 adapter->vpd_busy = 1; 2889 adapter->vpd_flag = 0; 2890 ret = t4_seeprom_wait(adapter); 2891 if (ret) { 2892 CH_ERR(adapter, "VPD write of address %#x failed\n", addr); 2893 return ret; 2894 } 2895 2896 /* 2897 * Reset PCI_VPD_DATA register after a transaction and wait for our 2898 * request to complete. If it doesn't complete, return error. 2899 */ 2900 t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0); 2901 max_poll = EEPROM_MAX_POLL; 2902 do { 2903 udelay(EEPROM_DELAY); 2904 t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg); 2905 } while ((stats_reg & 0x1) && --max_poll); 2906 if (!max_poll) 2907 return -ETIMEDOUT; 2908 2909 /* Return success! */ 2910 return 0; 2911 } 2912 2913 /** 2914 * t4_eeprom_ptov - translate a physical EEPROM address to virtual 2915 * @phys_addr: the physical EEPROM address 2916 * @fn: the PCI function number 2917 * @sz: size of function-specific area 2918 * 2919 * Translate a physical EEPROM address to virtual. The first 1K is 2920 * accessed through virtual addresses starting at 31K, the rest is 2921 * accessed through virtual addresses starting at 0. 2922 * 2923 * The mapping is as follows: 2924 * [0..1K) -> [31K..32K) 2925 * [1K..1K+A) -> [ES-A..ES) 2926 * [1K+A..ES) -> [0..ES-A-1K) 2927 * 2928 * where A = @fn * @sz, and ES = EEPROM size. 2929 */ 2930 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) 2931 { 2932 fn *= sz; 2933 if (phys_addr < 1024) 2934 return phys_addr + (31 << 10); 2935 if (phys_addr < 1024 + fn) 2936 return EEPROMSIZE - fn + phys_addr - 1024; 2937 if (phys_addr < EEPROMSIZE) 2938 return phys_addr - 1024 - fn; 2939 return -EINVAL; 2940 } 2941 2942 /** 2943 * t4_seeprom_wp - enable/disable EEPROM write protection 2944 * @adapter: the adapter 2945 * @enable: whether to enable or disable write protection 2946 * 2947 * Enables or disables write protection on the serial EEPROM. 2948 */ 2949 int t4_seeprom_wp(struct adapter *adapter, int enable) 2950 { 2951 return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0); 2952 } 2953 2954 /** 2955 * get_vpd_keyword_val - Locates an information field keyword in the VPD 2956 * @vpd: Pointer to buffered vpd data structure 2957 * @kw: The keyword to search for 2958 * @region: VPD region to search (starting from 0) 2959 * 2960 * Returns the value of the information field keyword or 2961 * -ENOENT otherwise. 2962 */ 2963 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region) 2964 { 2965 int i, tag; 2966 unsigned int offset, len; 2967 const struct t4_vpdr_hdr *vpdr; 2968 2969 offset = sizeof(struct t4_vpd_hdr); 2970 vpdr = (const void *)(vpd + offset); 2971 tag = vpdr->vpdr_tag; 2972 len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8); 2973 while (region--) { 2974 offset += sizeof(struct t4_vpdr_hdr) + len; 2975 vpdr = (const void *)(vpd + offset); 2976 if (++tag != vpdr->vpdr_tag) 2977 return -ENOENT; 2978 len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8); 2979 } 2980 offset += sizeof(struct t4_vpdr_hdr); 2981 2982 if (offset + len > VPD_LEN) { 2983 return -ENOENT; 2984 } 2985 2986 for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) { 2987 if (memcmp(vpd + i , kw , 2) == 0){ 2988 i += VPD_INFO_FLD_HDR_SIZE; 2989 return i; 2990 } 2991 2992 i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2]; 2993 } 2994 2995 return -ENOENT; 2996 } 2997 2998 2999 /** 3000 * get_vpd_params - read VPD parameters from VPD EEPROM 3001 * @adapter: adapter to read 3002 * @p: where to store the parameters 3003 * @vpd: caller provided temporary space to read the VPD into 3004 * 3005 * Reads card parameters stored in VPD EEPROM. 3006 */ 3007 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p, 3008 uint16_t device_id, u32 *buf) 3009 { 3010 int i, ret, addr; 3011 int ec, sn, pn, na, md; 3012 u8 csum; 3013 const u8 *vpd = (const u8 *)buf; 3014 3015 /* 3016 * Card information normally starts at VPD_BASE but early cards had 3017 * it at 0. 3018 */ 3019 ret = t4_seeprom_read(adapter, VPD_BASE, buf); 3020 if (ret) 3021 return (ret); 3022 3023 /* 3024 * The VPD shall have a unique identifier specified by the PCI SIG. 3025 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD 3026 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software 3027 * is expected to automatically put this entry at the 3028 * beginning of the VPD. 3029 */ 3030 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD; 3031 3032 for (i = 0; i < VPD_LEN; i += 4) { 3033 ret = t4_seeprom_read(adapter, addr + i, buf++); 3034 if (ret) 3035 return ret; 3036 } 3037 3038 #define FIND_VPD_KW(var,name) do { \ 3039 var = get_vpd_keyword_val(vpd, name, 0); \ 3040 if (var < 0) { \ 3041 CH_ERR(adapter, "missing VPD keyword " name "\n"); \ 3042 return -EINVAL; \ 3043 } \ 3044 } while (0) 3045 3046 FIND_VPD_KW(i, "RV"); 3047 for (csum = 0; i >= 0; i--) 3048 csum += vpd[i]; 3049 3050 if (csum) { 3051 CH_ERR(adapter, 3052 "corrupted VPD EEPROM, actual csum %u\n", csum); 3053 return -EINVAL; 3054 } 3055 3056 FIND_VPD_KW(ec, "EC"); 3057 FIND_VPD_KW(sn, "SN"); 3058 FIND_VPD_KW(pn, "PN"); 3059 FIND_VPD_KW(na, "NA"); 3060 #undef FIND_VPD_KW 3061 3062 memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN); 3063 strstrip(p->id); 3064 memcpy(p->ec, vpd + ec, EC_LEN); 3065 strstrip(p->ec); 3066 i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2]; 3067 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 3068 strstrip(p->sn); 3069 i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2]; 3070 memcpy(p->pn, vpd + pn, min(i, PN_LEN)); 3071 strstrip((char *)p->pn); 3072 i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2]; 3073 memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); 3074 strstrip((char *)p->na); 3075 3076 if (device_id & 0x80) 3077 return 0; /* Custom card */ 3078 3079 md = get_vpd_keyword_val(vpd, "VF", 1); 3080 if (md < 0) { 3081 snprintf(p->md, sizeof(p->md), "unknown"); 3082 } else { 3083 i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2]; 3084 memcpy(p->md, vpd + md, min(i, MD_LEN)); 3085 strstrip((char *)p->md); 3086 } 3087 3088 return 0; 3089 } 3090 3091 /* serial flash and firmware constants and flash config file constants */ 3092 enum { 3093 SF_ATTEMPTS = 10, /* max retries for SF operations */ 3094 3095 /* flash command opcodes */ 3096 SF_PROG_PAGE = 2, /* program 256B page */ 3097 SF_WR_DISABLE = 4, /* disable writes */ 3098 SF_RD_STATUS = 5, /* read status register */ 3099 SF_WR_ENABLE = 6, /* enable writes */ 3100 SF_RD_DATA_FAST = 0xb, /* read flash */ 3101 SF_RD_ID = 0x9f, /* read ID */ 3102 SF_ERASE_SECTOR = 0xd8, /* erase 64KB sector */ 3103 }; 3104 3105 /** 3106 * sf1_read - read data from the serial flash 3107 * @adapter: the adapter 3108 * @byte_cnt: number of bytes to read 3109 * @cont: whether another operation will be chained 3110 * @lock: whether to lock SF for PL access only 3111 * @valp: where to store the read data 3112 * 3113 * Reads up to 4 bytes of data from the serial flash. The location of 3114 * the read needs to be specified prior to calling this by issuing the 3115 * appropriate commands to the serial flash. 3116 */ 3117 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 3118 int lock, u32 *valp) 3119 { 3120 int ret; 3121 3122 if (!byte_cnt || byte_cnt > 4) 3123 return -EINVAL; 3124 if (t4_read_reg(adapter, A_SF_OP) & F_BUSY) 3125 return -EBUSY; 3126 t4_write_reg(adapter, A_SF_OP, 3127 V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1)); 3128 ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5); 3129 if (!ret) 3130 *valp = t4_read_reg(adapter, A_SF_DATA); 3131 return ret; 3132 } 3133 3134 /** 3135 * sf1_write - write data to the serial flash 3136 * @adapter: the adapter 3137 * @byte_cnt: number of bytes to write 3138 * @cont: whether another operation will be chained 3139 * @lock: whether to lock SF for PL access only 3140 * @val: value to write 3141 * 3142 * Writes up to 4 bytes of data to the serial flash. The location of 3143 * the write needs to be specified prior to calling this by issuing the 3144 * appropriate commands to the serial flash. 3145 */ 3146 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 3147 int lock, u32 val) 3148 { 3149 if (!byte_cnt || byte_cnt > 4) 3150 return -EINVAL; 3151 if (t4_read_reg(adapter, A_SF_OP) & F_BUSY) 3152 return -EBUSY; 3153 t4_write_reg(adapter, A_SF_DATA, val); 3154 t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) | 3155 V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1)); 3156 return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5); 3157 } 3158 3159 /** 3160 * flash_wait_op - wait for a flash operation to complete 3161 * @adapter: the adapter 3162 * @attempts: max number of polls of the status register 3163 * @delay: delay between polls in ms 3164 * 3165 * Wait for a flash operation to complete by polling the status register. 3166 */ 3167 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 3168 { 3169 int ret; 3170 u32 status; 3171 3172 while (1) { 3173 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 3174 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 3175 return ret; 3176 if (!(status & 1)) 3177 return 0; 3178 if (--attempts == 0) 3179 return -EAGAIN; 3180 if (delay) 3181 msleep(delay); 3182 } 3183 } 3184 3185 /** 3186 * t4_read_flash - read words from serial flash 3187 * @adapter: the adapter 3188 * @addr: the start address for the read 3189 * @nwords: how many 32-bit words to read 3190 * @data: where to store the read data 3191 * @byte_oriented: whether to store data as bytes or as words 3192 * 3193 * Read the specified number of 32-bit words from the serial flash. 3194 * If @byte_oriented is set the read data is stored as a byte array 3195 * (i.e., big-endian), otherwise as 32-bit words in the platform's 3196 * natural endianness. 3197 */ 3198 int t4_read_flash(struct adapter *adapter, unsigned int addr, 3199 unsigned int nwords, u32 *data, int byte_oriented) 3200 { 3201 int ret; 3202 3203 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 3204 return -EINVAL; 3205 3206 addr = swab32(addr) | SF_RD_DATA_FAST; 3207 3208 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 3209 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 3210 return ret; 3211 3212 for ( ; nwords; nwords--, data++) { 3213 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 3214 if (nwords == 1) 3215 t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ 3216 if (ret) 3217 return ret; 3218 if (byte_oriented) 3219 *data = (__force __u32)(cpu_to_be32(*data)); 3220 } 3221 return 0; 3222 } 3223 3224 /** 3225 * t4_write_flash - write up to a page of data to the serial flash 3226 * @adapter: the adapter 3227 * @addr: the start address to write 3228 * @n: length of data to write in bytes 3229 * @data: the data to write 3230 * @byte_oriented: whether to store data as bytes or as words 3231 * 3232 * Writes up to a page of data (256 bytes) to the serial flash starting 3233 * at the given address. All the data must be written to the same page. 3234 * If @byte_oriented is set the write data is stored as byte stream 3235 * (i.e. matches what on disk), otherwise in big-endian. 3236 */ 3237 int t4_write_flash(struct adapter *adapter, unsigned int addr, 3238 unsigned int n, const u8 *data, int byte_oriented) 3239 { 3240 int ret; 3241 u32 buf[SF_PAGE_SIZE / 4]; 3242 unsigned int i, c, left, val, offset = addr & 0xff; 3243 3244 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 3245 return -EINVAL; 3246 3247 val = swab32(addr) | SF_PROG_PAGE; 3248 3249 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3250 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 3251 goto unlock; 3252 3253 for (left = n; left; left -= c) { 3254 c = min(left, 4U); 3255 for (val = 0, i = 0; i < c; ++i) 3256 val = (val << 8) + *data++; 3257 3258 if (!byte_oriented) 3259 val = cpu_to_be32(val); 3260 3261 ret = sf1_write(adapter, c, c != left, 1, val); 3262 if (ret) 3263 goto unlock; 3264 } 3265 ret = flash_wait_op(adapter, 8, 1); 3266 if (ret) 3267 goto unlock; 3268 3269 t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ 3270 3271 /* Read the page to verify the write succeeded */ 3272 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 3273 byte_oriented); 3274 if (ret) 3275 return ret; 3276 3277 if (memcmp(data - n, (u8 *)buf + offset, n)) { 3278 CH_ERR(adapter, 3279 "failed to correctly write the flash page at %#x\n", 3280 addr); 3281 return -EIO; 3282 } 3283 return 0; 3284 3285 unlock: 3286 t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ 3287 return ret; 3288 } 3289 3290 /** 3291 * t4_get_fw_version - read the firmware version 3292 * @adapter: the adapter 3293 * @vers: where to place the version 3294 * 3295 * Reads the FW version from flash. 3296 */ 3297 int t4_get_fw_version(struct adapter *adapter, u32 *vers) 3298 { 3299 return t4_read_flash(adapter, FLASH_FW_START + 3300 offsetof(struct fw_hdr, fw_ver), 1, 3301 vers, 0); 3302 } 3303 3304 /** 3305 * t4_get_fw_hdr - read the firmware header 3306 * @adapter: the adapter 3307 * @hdr: where to place the version 3308 * 3309 * Reads the FW header from flash into caller provided buffer. 3310 */ 3311 int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr) 3312 { 3313 return t4_read_flash(adapter, FLASH_FW_START, 3314 sizeof (*hdr) / sizeof (uint32_t), (uint32_t *)hdr, 1); 3315 } 3316 3317 /** 3318 * t4_get_bs_version - read the firmware bootstrap version 3319 * @adapter: the adapter 3320 * @vers: where to place the version 3321 * 3322 * Reads the FW Bootstrap version from flash. 3323 */ 3324 int t4_get_bs_version(struct adapter *adapter, u32 *vers) 3325 { 3326 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + 3327 offsetof(struct fw_hdr, fw_ver), 1, 3328 vers, 0); 3329 } 3330 3331 /** 3332 * t4_get_tp_version - read the TP microcode version 3333 * @adapter: the adapter 3334 * @vers: where to place the version 3335 * 3336 * Reads the TP microcode version from flash. 3337 */ 3338 int t4_get_tp_version(struct adapter *adapter, u32 *vers) 3339 { 3340 return t4_read_flash(adapter, FLASH_FW_START + 3341 offsetof(struct fw_hdr, tp_microcode_ver), 3342 1, vers, 0); 3343 } 3344 3345 /** 3346 * t4_get_exprom_version - return the Expansion ROM version (if any) 3347 * @adapter: the adapter 3348 * @vers: where to place the version 3349 * 3350 * Reads the Expansion ROM header from FLASH and returns the version 3351 * number (if present) through the @vers return value pointer. We return 3352 * this in the Firmware Version Format since it's convenient. Return 3353 * 0 on success, -ENOENT if no Expansion ROM is present. 3354 */ 3355 int t4_get_exprom_version(struct adapter *adapter, u32 *vers) 3356 { 3357 struct exprom_header { 3358 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 3359 unsigned char hdr_ver[4]; /* Expansion ROM version */ 3360 } *hdr; 3361 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 3362 sizeof(u32))]; 3363 int ret; 3364 3365 ret = t4_read_flash(adapter, FLASH_EXP_ROM_START, 3366 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 3367 0); 3368 if (ret) 3369 return ret; 3370 3371 hdr = (struct exprom_header *)exprom_header_buf; 3372 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 3373 return -ENOENT; 3374 3375 *vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) | 3376 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) | 3377 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) | 3378 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3])); 3379 return 0; 3380 } 3381 3382 /** 3383 * t4_get_scfg_version - return the Serial Configuration version 3384 * @adapter: the adapter 3385 * @vers: where to place the version 3386 * 3387 * Reads the Serial Configuration Version via the Firmware interface 3388 * (thus this can only be called once we're ready to issue Firmware 3389 * commands). The format of the Serial Configuration version is 3390 * adapter specific. Returns 0 on success, an error on failure. 3391 * 3392 * Note that early versions of the Firmware didn't include the ability 3393 * to retrieve the Serial Configuration version, so we zero-out the 3394 * return-value parameter in that case to avoid leaving it with 3395 * garbage in it. 3396 * 3397 * Also note that the Firmware will return its cached copy of the Serial 3398 * Initialization Revision ID, not the actual Revision ID as written in 3399 * the Serial EEPROM. This is only an issue if a new VPD has been written 3400 * and the Firmware/Chip haven't yet gone through a RESET sequence. So 3401 * it's best to defer calling this routine till after a FW_RESET_CMD has 3402 * been issued if the Host Driver will be performing a full adapter 3403 * initialization. 3404 */ 3405 int t4_get_scfg_version(struct adapter *adapter, u32 *vers) 3406 { 3407 u32 scfgrev_param; 3408 int ret; 3409 3410 scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3411 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV)); 3412 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3413 1, &scfgrev_param, vers); 3414 if (ret) 3415 *vers = 0; 3416 return ret; 3417 } 3418 3419 /** 3420 * t4_get_vpd_version - return the VPD version 3421 * @adapter: the adapter 3422 * @vers: where to place the version 3423 * 3424 * Reads the VPD via the Firmware interface (thus this can only be called 3425 * once we're ready to issue Firmware commands). The format of the 3426 * VPD version is adapter specific. Returns 0 on success, an error on 3427 * failure. 3428 * 3429 * Note that early versions of the Firmware didn't include the ability 3430 * to retrieve the VPD version, so we zero-out the return-value parameter 3431 * in that case to avoid leaving it with garbage in it. 3432 * 3433 * Also note that the Firmware will return its cached copy of the VPD 3434 * Revision ID, not the actual Revision ID as written in the Serial 3435 * EEPROM. This is only an issue if a new VPD has been written and the 3436 * Firmware/Chip haven't yet gone through a RESET sequence. So it's best 3437 * to defer calling this routine till after a FW_RESET_CMD has been issued 3438 * if the Host Driver will be performing a full adapter initialization. 3439 */ 3440 int t4_get_vpd_version(struct adapter *adapter, u32 *vers) 3441 { 3442 u32 vpdrev_param; 3443 int ret; 3444 3445 vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3446 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV)); 3447 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3448 1, &vpdrev_param, vers); 3449 if (ret) 3450 *vers = 0; 3451 return ret; 3452 } 3453 3454 /** 3455 * t4_get_version_info - extract various chip/firmware version information 3456 * @adapter: the adapter 3457 * 3458 * Reads various chip/firmware version numbers and stores them into the 3459 * adapter Adapter Parameters structure. If any of the efforts fails 3460 * the first failure will be returned, but all of the version numbers 3461 * will be read. 3462 */ 3463 int t4_get_version_info(struct adapter *adapter) 3464 { 3465 int ret = 0; 3466 3467 #define FIRST_RET(__getvinfo) \ 3468 do { \ 3469 int __ret = __getvinfo; \ 3470 if (__ret && !ret) \ 3471 ret = __ret; \ 3472 } while (0) 3473 3474 FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers)); 3475 FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers)); 3476 FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers)); 3477 FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers)); 3478 FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers)); 3479 FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers)); 3480 3481 #undef FIRST_RET 3482 3483 return ret; 3484 } 3485 3486 /** 3487 * t4_flash_erase_sectors - erase a range of flash sectors 3488 * @adapter: the adapter 3489 * @start: the first sector to erase 3490 * @end: the last sector to erase 3491 * 3492 * Erases the sectors in the given inclusive range. 3493 */ 3494 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 3495 { 3496 int ret = 0; 3497 3498 if (end >= adapter->params.sf_nsec) 3499 return -EINVAL; 3500 3501 while (start <= end) { 3502 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3503 (ret = sf1_write(adapter, 4, 0, 1, 3504 SF_ERASE_SECTOR | (start << 8))) != 0 || 3505 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 3506 CH_ERR(adapter, 3507 "erase of flash sector %d failed, error %d\n", 3508 start, ret); 3509 break; 3510 } 3511 start++; 3512 } 3513 t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ 3514 return ret; 3515 } 3516 3517 /** 3518 * t4_flash_cfg_addr - return the address of the flash configuration file 3519 * @adapter: the adapter 3520 * 3521 * Return the address within the flash where the Firmware Configuration 3522 * File is stored, or an error if the device FLASH is too small to contain 3523 * a Firmware Configuration File. 3524 */ 3525 int t4_flash_cfg_addr(struct adapter *adapter) 3526 { 3527 /* 3528 * If the device FLASH isn't large enough to hold a Firmware 3529 * Configuration File, return an error. 3530 */ 3531 if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE) 3532 return -ENOSPC; 3533 3534 return FLASH_CFG_START; 3535 } 3536 3537 /* 3538 * Return TRUE if the specified firmware matches the adapter. I.e. T4 3539 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 3540 * and emit an error message for mismatched firmware to save our caller the 3541 * effort ... 3542 */ 3543 static int t4_fw_matches_chip(struct adapter *adap, 3544 const struct fw_hdr *hdr) 3545 { 3546 /* 3547 * The expression below will return FALSE for any unsupported adapter 3548 * which will keep us "honest" in the future ... 3549 */ 3550 if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) || 3551 (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) || 3552 (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6)) 3553 return 1; 3554 3555 CH_ERR(adap, 3556 "FW image (%d) is not suitable for this adapter (%d)\n", 3557 hdr->chip, chip_id(adap)); 3558 return 0; 3559 } 3560 3561 /** 3562 * t4_load_fw - download firmware 3563 * @adap: the adapter 3564 * @fw_data: the firmware image to write 3565 * @size: image size 3566 * 3567 * Write the supplied firmware image to the card's serial flash. 3568 */ 3569 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 3570 { 3571 u32 csum; 3572 int ret, addr; 3573 unsigned int i; 3574 u8 first_page[SF_PAGE_SIZE]; 3575 const u32 *p = (const u32 *)fw_data; 3576 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 3577 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 3578 unsigned int fw_start_sec; 3579 unsigned int fw_start; 3580 unsigned int fw_size; 3581 3582 if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) { 3583 fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC; 3584 fw_start = FLASH_FWBOOTSTRAP_START; 3585 fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE; 3586 } else { 3587 fw_start_sec = FLASH_FW_START_SEC; 3588 fw_start = FLASH_FW_START; 3589 fw_size = FLASH_FW_MAX_SIZE; 3590 } 3591 3592 if (!size) { 3593 CH_ERR(adap, "FW image has no data\n"); 3594 return -EINVAL; 3595 } 3596 if (size & 511) { 3597 CH_ERR(adap, 3598 "FW image size not multiple of 512 bytes\n"); 3599 return -EINVAL; 3600 } 3601 if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) { 3602 CH_ERR(adap, 3603 "FW image size differs from size in FW header\n"); 3604 return -EINVAL; 3605 } 3606 if (size > fw_size) { 3607 CH_ERR(adap, "FW image too large, max is %u bytes\n", 3608 fw_size); 3609 return -EFBIG; 3610 } 3611 if (!t4_fw_matches_chip(adap, hdr)) 3612 return -EINVAL; 3613 3614 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 3615 csum += be32_to_cpu(p[i]); 3616 3617 if (csum != 0xffffffff) { 3618 CH_ERR(adap, 3619 "corrupted firmware image, checksum %#x\n", csum); 3620 return -EINVAL; 3621 } 3622 3623 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 3624 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 3625 if (ret) 3626 goto out; 3627 3628 /* 3629 * We write the correct version at the end so the driver can see a bad 3630 * version if the FW write fails. Start by writing a copy of the 3631 * first page with a bad version. 3632 */ 3633 memcpy(first_page, fw_data, SF_PAGE_SIZE); 3634 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); 3635 ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1); 3636 if (ret) 3637 goto out; 3638 3639 addr = fw_start; 3640 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 3641 addr += SF_PAGE_SIZE; 3642 fw_data += SF_PAGE_SIZE; 3643 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1); 3644 if (ret) 3645 goto out; 3646 } 3647 3648 ret = t4_write_flash(adap, 3649 fw_start + offsetof(struct fw_hdr, fw_ver), 3650 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1); 3651 out: 3652 if (ret) 3653 CH_ERR(adap, "firmware download failed, error %d\n", 3654 ret); 3655 return ret; 3656 } 3657 3658 /** 3659 * t4_fwcache - firmware cache operation 3660 * @adap: the adapter 3661 * @op : the operation (flush or flush and invalidate) 3662 */ 3663 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 3664 { 3665 struct fw_params_cmd c; 3666 3667 memset(&c, 0, sizeof(c)); 3668 c.op_to_vfn = 3669 cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) | 3670 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 3671 V_FW_PARAMS_CMD_PFN(adap->pf) | 3672 V_FW_PARAMS_CMD_VFN(0)); 3673 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 3674 c.param[0].mnem = 3675 cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3676 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE)); 3677 c.param[0].val = (__force __be32)op; 3678 3679 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 3680 } 3681 3682 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, 3683 unsigned int *pif_req_wrptr, 3684 unsigned int *pif_rsp_wrptr) 3685 { 3686 int i, j; 3687 u32 cfg, val, req, rsp; 3688 3689 cfg = t4_read_reg(adap, A_CIM_DEBUGCFG); 3690 if (cfg & F_LADBGEN) 3691 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN); 3692 3693 val = t4_read_reg(adap, A_CIM_DEBUGSTS); 3694 req = G_POLADBGWRPTR(val); 3695 rsp = G_PILADBGWRPTR(val); 3696 if (pif_req_wrptr) 3697 *pif_req_wrptr = req; 3698 if (pif_rsp_wrptr) 3699 *pif_rsp_wrptr = rsp; 3700 3701 for (i = 0; i < CIM_PIFLA_SIZE; i++) { 3702 for (j = 0; j < 6; j++) { 3703 t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) | 3704 V_PILADBGRDPTR(rsp)); 3705 *pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA); 3706 *pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA); 3707 req++; 3708 rsp++; 3709 } 3710 req = (req + 2) & M_POLADBGRDPTR; 3711 rsp = (rsp + 2) & M_PILADBGRDPTR; 3712 } 3713 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg); 3714 } 3715 3716 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) 3717 { 3718 u32 cfg; 3719 int i, j, idx; 3720 3721 cfg = t4_read_reg(adap, A_CIM_DEBUGCFG); 3722 if (cfg & F_LADBGEN) 3723 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN); 3724 3725 for (i = 0; i < CIM_MALA_SIZE; i++) { 3726 for (j = 0; j < 5; j++) { 3727 idx = 8 * i + j; 3728 t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) | 3729 V_PILADBGRDPTR(idx)); 3730 *ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA); 3731 *ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA); 3732 } 3733 } 3734 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg); 3735 } 3736 3737 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 3738 { 3739 unsigned int i, j; 3740 3741 for (i = 0; i < 8; i++) { 3742 u32 *p = la_buf + i; 3743 3744 t4_write_reg(adap, A_ULP_RX_LA_CTL, i); 3745 j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR); 3746 t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j); 3747 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 3748 *p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA); 3749 } 3750 } 3751 3752 /** 3753 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits 3754 * @caps16: a 16-bit Port Capabilities value 3755 * 3756 * Returns the equivalent 32-bit Port Capabilities value. 3757 */ 3758 static uint32_t fwcaps16_to_caps32(uint16_t caps16) 3759 { 3760 uint32_t caps32 = 0; 3761 3762 #define CAP16_TO_CAP32(__cap) \ 3763 do { \ 3764 if (caps16 & FW_PORT_CAP_##__cap) \ 3765 caps32 |= FW_PORT_CAP32_##__cap; \ 3766 } while (0) 3767 3768 CAP16_TO_CAP32(SPEED_100M); 3769 CAP16_TO_CAP32(SPEED_1G); 3770 CAP16_TO_CAP32(SPEED_25G); 3771 CAP16_TO_CAP32(SPEED_10G); 3772 CAP16_TO_CAP32(SPEED_40G); 3773 CAP16_TO_CAP32(SPEED_100G); 3774 CAP16_TO_CAP32(FC_RX); 3775 CAP16_TO_CAP32(FC_TX); 3776 CAP16_TO_CAP32(ANEG); 3777 CAP16_TO_CAP32(FORCE_PAUSE); 3778 CAP16_TO_CAP32(MDIAUTO); 3779 CAP16_TO_CAP32(MDISTRAIGHT); 3780 CAP16_TO_CAP32(FEC_RS); 3781 CAP16_TO_CAP32(FEC_BASER_RS); 3782 CAP16_TO_CAP32(802_3_PAUSE); 3783 CAP16_TO_CAP32(802_3_ASM_DIR); 3784 3785 #undef CAP16_TO_CAP32 3786 3787 return caps32; 3788 } 3789 3790 /** 3791 * fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits 3792 * @caps32: a 32-bit Port Capabilities value 3793 * 3794 * Returns the equivalent 16-bit Port Capabilities value. Note that 3795 * not all 32-bit Port Capabilities can be represented in the 16-bit 3796 * Port Capabilities and some fields/values may not make it. 3797 */ 3798 static uint16_t fwcaps32_to_caps16(uint32_t caps32) 3799 { 3800 uint16_t caps16 = 0; 3801 3802 #define CAP32_TO_CAP16(__cap) \ 3803 do { \ 3804 if (caps32 & FW_PORT_CAP32_##__cap) \ 3805 caps16 |= FW_PORT_CAP_##__cap; \ 3806 } while (0) 3807 3808 CAP32_TO_CAP16(SPEED_100M); 3809 CAP32_TO_CAP16(SPEED_1G); 3810 CAP32_TO_CAP16(SPEED_10G); 3811 CAP32_TO_CAP16(SPEED_25G); 3812 CAP32_TO_CAP16(SPEED_40G); 3813 CAP32_TO_CAP16(SPEED_100G); 3814 CAP32_TO_CAP16(FC_RX); 3815 CAP32_TO_CAP16(FC_TX); 3816 CAP32_TO_CAP16(802_3_PAUSE); 3817 CAP32_TO_CAP16(802_3_ASM_DIR); 3818 CAP32_TO_CAP16(ANEG); 3819 CAP32_TO_CAP16(FORCE_PAUSE); 3820 CAP32_TO_CAP16(MDIAUTO); 3821 CAP32_TO_CAP16(MDISTRAIGHT); 3822 CAP32_TO_CAP16(FEC_RS); 3823 CAP32_TO_CAP16(FEC_BASER_RS); 3824 3825 #undef CAP32_TO_CAP16 3826 3827 return caps16; 3828 } 3829 3830 static int8_t fwcap_to_fec(uint32_t caps, bool unset_means_none) 3831 { 3832 int8_t fec = 0; 3833 3834 if ((caps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC)) == 0) 3835 return (unset_means_none ? FEC_NONE : 0); 3836 3837 if (caps & FW_PORT_CAP32_FEC_RS) 3838 fec |= FEC_RS; 3839 if (caps & FW_PORT_CAP32_FEC_BASER_RS) 3840 fec |= FEC_BASER_RS; 3841 if (caps & FW_PORT_CAP32_FEC_NO_FEC) 3842 fec |= FEC_NONE; 3843 3844 return (fec); 3845 } 3846 3847 /* 3848 * Note that 0 is not translated to NO_FEC. 3849 */ 3850 static uint32_t fec_to_fwcap(int8_t fec) 3851 { 3852 uint32_t caps = 0; 3853 3854 /* Only real FECs allowed. */ 3855 MPASS((fec & ~M_FW_PORT_CAP32_FEC) == 0); 3856 3857 if (fec & FEC_RS) 3858 caps |= FW_PORT_CAP32_FEC_RS; 3859 if (fec & FEC_BASER_RS) 3860 caps |= FW_PORT_CAP32_FEC_BASER_RS; 3861 if (fec & FEC_NONE) 3862 caps |= FW_PORT_CAP32_FEC_NO_FEC; 3863 3864 return (caps); 3865 } 3866 3867 /** 3868 * t4_link_l1cfg - apply link configuration to MAC/PHY 3869 * @phy: the PHY to setup 3870 * @mac: the MAC to setup 3871 * @lc: the requested link configuration 3872 * 3873 * Set up a port's MAC and PHY according to a desired link configuration. 3874 * - If the PHY can auto-negotiate first decide what to advertise, then 3875 * enable/disable auto-negotiation as desired, and reset. 3876 * - If the PHY does not auto-negotiate just reset it. 3877 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 3878 * otherwise do it later based on the outcome of auto-negotiation. 3879 */ 3880 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port, 3881 struct link_config *lc) 3882 { 3883 struct fw_port_cmd c; 3884 unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO); 3885 unsigned int aneg, fc, fec, speed, rcap; 3886 3887 fc = 0; 3888 if (lc->requested_fc & PAUSE_RX) 3889 fc |= FW_PORT_CAP32_FC_RX; 3890 if (lc->requested_fc & PAUSE_TX) 3891 fc |= FW_PORT_CAP32_FC_TX; 3892 if (!(lc->requested_fc & PAUSE_AUTONEG)) 3893 fc |= FW_PORT_CAP32_FORCE_PAUSE; 3894 3895 if (lc->requested_aneg == AUTONEG_DISABLE) 3896 aneg = 0; 3897 else if (lc->requested_aneg == AUTONEG_ENABLE) 3898 aneg = FW_PORT_CAP32_ANEG; 3899 else 3900 aneg = lc->pcaps & FW_PORT_CAP32_ANEG; 3901 3902 if (aneg) { 3903 speed = lc->pcaps & 3904 V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED); 3905 } else if (lc->requested_speed != 0) 3906 speed = speed_to_fwcap(lc->requested_speed); 3907 else 3908 speed = fwcap_top_speed(lc->pcaps); 3909 3910 fec = 0; 3911 if (fec_supported(speed)) { 3912 int force_fec; 3913 3914 if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC) 3915 force_fec = lc->force_fec; 3916 else 3917 force_fec = 0; 3918 3919 if (lc->requested_fec == FEC_AUTO) { 3920 if (force_fec > 0) { 3921 /* 3922 * Must use FORCE_FEC even though requested FEC 3923 * is AUTO. Set all the FEC bits valid for the 3924 * speed and let the firmware pick one. 3925 */ 3926 fec |= FW_PORT_CAP32_FORCE_FEC; 3927 if (speed & FW_PORT_CAP32_SPEED_100G) { 3928 fec |= FW_PORT_CAP32_FEC_RS; 3929 fec |= FW_PORT_CAP32_FEC_NO_FEC; 3930 } else if (speed & FW_PORT_CAP32_SPEED_50G) { 3931 fec |= FW_PORT_CAP32_FEC_BASER_RS; 3932 fec |= FW_PORT_CAP32_FEC_NO_FEC; 3933 } else { 3934 fec |= FW_PORT_CAP32_FEC_RS; 3935 fec |= FW_PORT_CAP32_FEC_BASER_RS; 3936 fec |= FW_PORT_CAP32_FEC_NO_FEC; 3937 } 3938 } else { 3939 /* 3940 * Set only 1b. Old firmwares can't deal with 3941 * multiple bits and new firmwares are free to 3942 * ignore this and try whatever FECs they want 3943 * because we aren't setting FORCE_FEC here. 3944 */ 3945 fec |= fec_to_fwcap(lc->fec_hint); 3946 MPASS(powerof2(fec)); 3947 3948 /* 3949 * Override the hint if the FEC is not valid for 3950 * the potential top speed. Request the best 3951 * FEC at that speed instead. 3952 */ 3953 if (speed & FW_PORT_CAP32_SPEED_100G) { 3954 if (fec == FW_PORT_CAP32_FEC_BASER_RS) 3955 fec = FW_PORT_CAP32_FEC_RS; 3956 } else if (speed & FW_PORT_CAP32_SPEED_50G) { 3957 if (fec == FW_PORT_CAP32_FEC_RS) 3958 fec = FW_PORT_CAP32_FEC_BASER_RS; 3959 } 3960 } 3961 } else { 3962 /* 3963 * User has explicitly requested some FEC(s). Set 3964 * FORCE_FEC unless prohibited from using it. 3965 */ 3966 if (force_fec != 0) 3967 fec |= FW_PORT_CAP32_FORCE_FEC; 3968 fec |= fec_to_fwcap(lc->requested_fec & 3969 M_FW_PORT_CAP32_FEC); 3970 if (lc->requested_fec & FEC_MODULE) 3971 fec |= fec_to_fwcap(lc->fec_hint); 3972 } 3973 3974 /* 3975 * This is for compatibility with old firmwares. The original 3976 * way to request NO_FEC was to not set any of the FEC bits. New 3977 * firmwares understand this too. 3978 */ 3979 if (fec == FW_PORT_CAP32_FEC_NO_FEC) 3980 fec = 0; 3981 } 3982 3983 /* Force AN on for BT cards. */ 3984 if (isset(&adap->bt_map, port)) 3985 aneg = lc->pcaps & FW_PORT_CAP32_ANEG; 3986 3987 rcap = aneg | speed | fc | fec; 3988 if ((rcap | lc->pcaps) != lc->pcaps) { 3989 #ifdef INVARIANTS 3990 CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x, removed 0x%x\n", rcap, 3991 lc->pcaps, rcap & (rcap ^ lc->pcaps)); 3992 #endif 3993 rcap &= lc->pcaps; 3994 } 3995 rcap |= mdi; 3996 3997 memset(&c, 0, sizeof(c)); 3998 c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) | 3999 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 4000 V_FW_PORT_CMD_PORTID(port)); 4001 if (adap->params.port_caps32) { 4002 c.action_to_len16 = 4003 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) | 4004 FW_LEN16(c)); 4005 c.u.l1cfg32.rcap32 = cpu_to_be32(rcap); 4006 } else { 4007 c.action_to_len16 = 4008 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) | 4009 FW_LEN16(c)); 4010 c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap)); 4011 } 4012 4013 lc->requested_caps = rcap; 4014 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 4015 } 4016 4017 /** 4018 * t4_restart_aneg - restart autonegotiation 4019 * @adap: the adapter 4020 * @mbox: mbox to use for the FW command 4021 * @port: the port id 4022 * 4023 * Restarts autonegotiation for the selected port. 4024 */ 4025 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 4026 { 4027 struct fw_port_cmd c; 4028 4029 memset(&c, 0, sizeof(c)); 4030 c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) | 4031 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 4032 V_FW_PORT_CMD_PORTID(port)); 4033 c.action_to_len16 = 4034 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) | 4035 FW_LEN16(c)); 4036 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG); 4037 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4038 } 4039 4040 struct intr_details { 4041 u32 mask; 4042 const char *msg; 4043 }; 4044 4045 struct intr_action { 4046 u32 mask; 4047 int arg; 4048 bool (*action)(struct adapter *, int, bool); 4049 }; 4050 4051 #define NONFATAL_IF_DISABLED 1 4052 struct intr_info { 4053 const char *name; /* name of the INT_CAUSE register */ 4054 int cause_reg; /* INT_CAUSE register */ 4055 int enable_reg; /* INT_ENABLE register */ 4056 u32 fatal; /* bits that are fatal */ 4057 int flags; /* hints */ 4058 const struct intr_details *details; 4059 const struct intr_action *actions; 4060 }; 4061 4062 static inline char 4063 intr_alert_char(u32 cause, u32 enable, u32 fatal) 4064 { 4065 4066 if (cause & fatal) 4067 return ('!'); 4068 if (cause & enable) 4069 return ('*'); 4070 return ('-'); 4071 } 4072 4073 static void 4074 t4_show_intr_info(struct adapter *adap, const struct intr_info *ii, u32 cause) 4075 { 4076 u32 enable, fatal, leftover; 4077 const struct intr_details *details; 4078 char alert; 4079 4080 enable = t4_read_reg(adap, ii->enable_reg); 4081 if (ii->flags & NONFATAL_IF_DISABLED) 4082 fatal = ii->fatal & t4_read_reg(adap, ii->enable_reg); 4083 else 4084 fatal = ii->fatal; 4085 alert = intr_alert_char(cause, enable, fatal); 4086 CH_ALERT(adap, "%c %s 0x%x = 0x%08x, E 0x%08x, F 0x%08x\n", 4087 alert, ii->name, ii->cause_reg, cause, enable, fatal); 4088 4089 leftover = cause; 4090 for (details = ii->details; details && details->mask != 0; details++) { 4091 u32 msgbits = details->mask & cause; 4092 if (msgbits == 0) 4093 continue; 4094 alert = intr_alert_char(msgbits, enable, ii->fatal); 4095 CH_ALERT(adap, " %c [0x%08x] %s\n", alert, msgbits, 4096 details->msg); 4097 leftover &= ~msgbits; 4098 } 4099 if (leftover != 0 && leftover != cause) 4100 CH_ALERT(adap, " ? [0x%08x]\n", leftover); 4101 } 4102 4103 /* 4104 * Returns true for fatal error. 4105 */ 4106 static bool 4107 t4_handle_intr(struct adapter *adap, const struct intr_info *ii, 4108 u32 additional_cause, bool verbose) 4109 { 4110 u32 cause, fatal; 4111 bool rc; 4112 const struct intr_action *action; 4113 4114 /* 4115 * Read and display cause. Note that the top level PL_INT_CAUSE is a 4116 * bit special and we need to completely ignore the bits that are not in 4117 * PL_INT_ENABLE. 4118 */ 4119 cause = t4_read_reg(adap, ii->cause_reg); 4120 if (ii->cause_reg == A_PL_INT_CAUSE) 4121 cause &= t4_read_reg(adap, ii->enable_reg); 4122 if (verbose || cause != 0) 4123 t4_show_intr_info(adap, ii, cause); 4124 fatal = cause & ii->fatal; 4125 if (fatal != 0 && ii->flags & NONFATAL_IF_DISABLED) 4126 fatal &= t4_read_reg(adap, ii->enable_reg); 4127 cause |= additional_cause; 4128 if (cause == 0) 4129 return (false); 4130 4131 rc = fatal != 0; 4132 for (action = ii->actions; action && action->mask != 0; action++) { 4133 if (!(action->mask & cause)) 4134 continue; 4135 rc |= (action->action)(adap, action->arg, verbose); 4136 } 4137 4138 /* clear */ 4139 t4_write_reg(adap, ii->cause_reg, cause); 4140 (void)t4_read_reg(adap, ii->cause_reg); 4141 4142 return (rc); 4143 } 4144 4145 /* 4146 * Interrupt handler for the PCIE module. 4147 */ 4148 static bool pcie_intr_handler(struct adapter *adap, int arg, bool verbose) 4149 { 4150 static const struct intr_details sysbus_intr_details[] = { 4151 { F_RNPP, "RXNP array parity error" }, 4152 { F_RPCP, "RXPC array parity error" }, 4153 { F_RCIP, "RXCIF array parity error" }, 4154 { F_RCCP, "Rx completions control array parity error" }, 4155 { F_RFTP, "RXFT array parity error" }, 4156 { 0 } 4157 }; 4158 static const struct intr_info sysbus_intr_info = { 4159 .name = "PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS", 4160 .cause_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS, 4161 .enable_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_INTERRUPT_ENABLE, 4162 .fatal = F_RFTP | F_RCCP | F_RCIP | F_RPCP | F_RNPP, 4163 .flags = 0, 4164 .details = sysbus_intr_details, 4165 .actions = NULL, 4166 }; 4167 static const struct intr_details pcie_port_intr_details[] = { 4168 { F_TPCP, "TXPC array parity error" }, 4169 { F_TNPP, "TXNP array parity error" }, 4170 { F_TFTP, "TXFT array parity error" }, 4171 { F_TCAP, "TXCA array parity error" }, 4172 { F_TCIP, "TXCIF array parity error" }, 4173 { F_RCAP, "RXCA array parity error" }, 4174 { F_OTDD, "outbound request TLP discarded" }, 4175 { F_RDPE, "Rx data parity error" }, 4176 { F_TDUE, "Tx uncorrectable data error" }, 4177 { 0 } 4178 }; 4179 static const struct intr_info pcie_port_intr_info = { 4180 .name = "PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS", 4181 .cause_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS, 4182 .enable_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_INTERRUPT_ENABLE, 4183 .fatal = F_TPCP | F_TNPP | F_TFTP | F_TCAP | F_TCIP | F_RCAP | 4184 F_OTDD | F_RDPE | F_TDUE, 4185 .flags = 0, 4186 .details = pcie_port_intr_details, 4187 .actions = NULL, 4188 }; 4189 static const struct intr_details pcie_intr_details[] = { 4190 { F_MSIADDRLPERR, "MSI AddrL parity error" }, 4191 { F_MSIADDRHPERR, "MSI AddrH parity error" }, 4192 { F_MSIDATAPERR, "MSI data parity error" }, 4193 { F_MSIXADDRLPERR, "MSI-X AddrL parity error" }, 4194 { F_MSIXADDRHPERR, "MSI-X AddrH parity error" }, 4195 { F_MSIXDATAPERR, "MSI-X data parity error" }, 4196 { F_MSIXDIPERR, "MSI-X DI parity error" }, 4197 { F_PIOCPLPERR, "PCIe PIO completion FIFO parity error" }, 4198 { F_PIOREQPERR, "PCIe PIO request FIFO parity error" }, 4199 { F_TARTAGPERR, "PCIe target tag FIFO parity error" }, 4200 { F_CCNTPERR, "PCIe CMD channel count parity error" }, 4201 { F_CREQPERR, "PCIe CMD channel request parity error" }, 4202 { F_CRSPPERR, "PCIe CMD channel response parity error" }, 4203 { F_DCNTPERR, "PCIe DMA channel count parity error" }, 4204 { F_DREQPERR, "PCIe DMA channel request parity error" }, 4205 { F_DRSPPERR, "PCIe DMA channel response parity error" }, 4206 { F_HCNTPERR, "PCIe HMA channel count parity error" }, 4207 { F_HREQPERR, "PCIe HMA channel request parity error" }, 4208 { F_HRSPPERR, "PCIe HMA channel response parity error" }, 4209 { F_CFGSNPPERR, "PCIe config snoop FIFO parity error" }, 4210 { F_FIDPERR, "PCIe FID parity error" }, 4211 { F_INTXCLRPERR, "PCIe INTx clear parity error" }, 4212 { F_MATAGPERR, "PCIe MA tag parity error" }, 4213 { F_PIOTAGPERR, "PCIe PIO tag parity error" }, 4214 { F_RXCPLPERR, "PCIe Rx completion parity error" }, 4215 { F_RXWRPERR, "PCIe Rx write parity error" }, 4216 { F_RPLPERR, "PCIe replay buffer parity error" }, 4217 { F_PCIESINT, "PCIe core secondary fault" }, 4218 { F_PCIEPINT, "PCIe core primary fault" }, 4219 { F_UNXSPLCPLERR, "PCIe unexpected split completion error" }, 4220 { 0 } 4221 }; 4222 static const struct intr_details t5_pcie_intr_details[] = { 4223 { F_IPGRPPERR, "Parity errors observed by IP" }, 4224 { F_NONFATALERR, "PCIe non-fatal error" }, 4225 { F_READRSPERR, "Outbound read error" }, 4226 { F_TRGT1GRPPERR, "PCIe TRGT1 group FIFOs parity error" }, 4227 { F_IPSOTPERR, "PCIe IP SOT buffer SRAM parity error" }, 4228 { F_IPRETRYPERR, "PCIe IP replay buffer parity error" }, 4229 { F_IPRXDATAGRPPERR, "PCIe IP Rx data group SRAMs parity error" }, 4230 { F_IPRXHDRGRPPERR, "PCIe IP Rx header group SRAMs parity error" }, 4231 { F_PIOTAGQPERR, "PIO tag queue FIFO parity error" }, 4232 { F_MAGRPPERR, "MA group FIFO parity error" }, 4233 { F_VFIDPERR, "VFID SRAM parity error" }, 4234 { F_FIDPERR, "FID SRAM parity error" }, 4235 { F_CFGSNPPERR, "config snoop FIFO parity error" }, 4236 { F_HRSPPERR, "HMA channel response data SRAM parity error" }, 4237 { F_HREQRDPERR, "HMA channel read request SRAM parity error" }, 4238 { F_HREQWRPERR, "HMA channel write request SRAM parity error" }, 4239 { F_DRSPPERR, "DMA channel response data SRAM parity error" }, 4240 { F_DREQRDPERR, "DMA channel write request SRAM parity error" }, 4241 { F_CRSPPERR, "CMD channel response data SRAM parity error" }, 4242 { F_CREQRDPERR, "CMD channel read request SRAM parity error" }, 4243 { F_MSTTAGQPERR, "PCIe master tag queue SRAM parity error" }, 4244 { F_TGTTAGQPERR, "PCIe target tag queue FIFO parity error" }, 4245 { F_PIOREQGRPPERR, "PIO request group FIFOs parity error" }, 4246 { F_PIOCPLGRPPERR, "PIO completion group FIFOs parity error" }, 4247 { F_MSIXDIPERR, "MSI-X DI SRAM parity error" }, 4248 { F_MSIXDATAPERR, "MSI-X data SRAM parity error" }, 4249 { F_MSIXADDRHPERR, "MSI-X AddrH SRAM parity error" }, 4250 { F_MSIXADDRLPERR, "MSI-X AddrL SRAM parity error" }, 4251 { F_MSIXSTIPERR, "MSI-X STI SRAM parity error" }, 4252 { F_MSTTIMEOUTPERR, "Master timeout FIFO parity error" }, 4253 { F_MSTGRPPERR, "Master response read queue SRAM parity error" }, 4254 { 0 } 4255 }; 4256 struct intr_info pcie_intr_info = { 4257 .name = "PCIE_INT_CAUSE", 4258 .cause_reg = A_PCIE_INT_CAUSE, 4259 .enable_reg = A_PCIE_INT_ENABLE, 4260 .fatal = 0xffffffff, 4261 .flags = NONFATAL_IF_DISABLED, 4262 .details = NULL, 4263 .actions = NULL, 4264 }; 4265 bool fatal = false; 4266 4267 if (is_t4(adap)) { 4268 fatal |= t4_handle_intr(adap, &sysbus_intr_info, 0, verbose); 4269 fatal |= t4_handle_intr(adap, &pcie_port_intr_info, 0, verbose); 4270 4271 pcie_intr_info.details = pcie_intr_details; 4272 } else { 4273 pcie_intr_info.details = t5_pcie_intr_details; 4274 } 4275 fatal |= t4_handle_intr(adap, &pcie_intr_info, 0, verbose); 4276 4277 return (fatal); 4278 } 4279 4280 /* 4281 * TP interrupt handler. 4282 */ 4283 static bool tp_intr_handler(struct adapter *adap, int arg, bool verbose) 4284 { 4285 static const struct intr_details tp_intr_details[] = { 4286 { 0x3fffffff, "TP parity error" }, 4287 { F_FLMTXFLSTEMPTY, "TP out of Tx pages" }, 4288 { 0 } 4289 }; 4290 static const struct intr_info tp_intr_info = { 4291 .name = "TP_INT_CAUSE", 4292 .cause_reg = A_TP_INT_CAUSE, 4293 .enable_reg = A_TP_INT_ENABLE, 4294 .fatal = 0x7fffffff, 4295 .flags = NONFATAL_IF_DISABLED, 4296 .details = tp_intr_details, 4297 .actions = NULL, 4298 }; 4299 4300 return (t4_handle_intr(adap, &tp_intr_info, 0, verbose)); 4301 } 4302 4303 /* 4304 * SGE interrupt handler. 4305 */ 4306 static bool sge_intr_handler(struct adapter *adap, int arg, bool verbose) 4307 { 4308 static const struct intr_info sge_int1_info = { 4309 .name = "SGE_INT_CAUSE1", 4310 .cause_reg = A_SGE_INT_CAUSE1, 4311 .enable_reg = A_SGE_INT_ENABLE1, 4312 .fatal = 0xffffffff, 4313 .flags = NONFATAL_IF_DISABLED, 4314 .details = NULL, 4315 .actions = NULL, 4316 }; 4317 static const struct intr_info sge_int2_info = { 4318 .name = "SGE_INT_CAUSE2", 4319 .cause_reg = A_SGE_INT_CAUSE2, 4320 .enable_reg = A_SGE_INT_ENABLE2, 4321 .fatal = 0xffffffff, 4322 .flags = NONFATAL_IF_DISABLED, 4323 .details = NULL, 4324 .actions = NULL, 4325 }; 4326 static const struct intr_details sge_int3_details[] = { 4327 { F_ERR_FLM_DBP, 4328 "DBP pointer delivery for invalid context or QID" }, 4329 { F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0, 4330 "Invalid QID or header request by IDMA" }, 4331 { F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" }, 4332 { F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" }, 4333 { F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" }, 4334 { F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" }, 4335 { F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" }, 4336 { F_ERR_TIMER_ABOVE_MAX_QID, 4337 "SGE GTS with timer 0-5 for IQID > 1023" }, 4338 { F_ERR_CPL_EXCEED_IQE_SIZE, 4339 "SGE received CPL exceeding IQE size" }, 4340 { F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" }, 4341 { F_ERR_ITP_TIME_PAUSED, "SGE ITP error" }, 4342 { F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" }, 4343 { F_ERR_DROPPED_DB, "SGE DB dropped" }, 4344 { F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0, 4345 "SGE IQID > 1023 received CPL for FL" }, 4346 { F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 | 4347 F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" }, 4348 { F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" }, 4349 { F_ERR_ING_CTXT_PRIO, 4350 "Ingress context manager priority user error" }, 4351 { F_ERR_EGR_CTXT_PRIO, 4352 "Egress context manager priority user error" }, 4353 { F_DBFIFO_HP_INT, "High priority DB FIFO threshold reached" }, 4354 { F_DBFIFO_LP_INT, "Low priority DB FIFO threshold reached" }, 4355 { F_REG_ADDRESS_ERR, "Undefined SGE register accessed" }, 4356 { F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" }, 4357 { F_EGRESS_SIZE_ERR, "SGE illegal egress QID" }, 4358 { 0x0000000f, "SGE context access for invalid queue" }, 4359 { 0 } 4360 }; 4361 static const struct intr_details t6_sge_int3_details[] = { 4362 { F_ERR_FLM_DBP, 4363 "DBP pointer delivery for invalid context or QID" }, 4364 { F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0, 4365 "Invalid QID or header request by IDMA" }, 4366 { F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" }, 4367 { F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" }, 4368 { F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" }, 4369 { F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" }, 4370 { F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" }, 4371 { F_ERR_TIMER_ABOVE_MAX_QID, 4372 "SGE GTS with timer 0-5 for IQID > 1023" }, 4373 { F_ERR_CPL_EXCEED_IQE_SIZE, 4374 "SGE received CPL exceeding IQE size" }, 4375 { F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" }, 4376 { F_ERR_ITP_TIME_PAUSED, "SGE ITP error" }, 4377 { F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" }, 4378 { F_ERR_DROPPED_DB, "SGE DB dropped" }, 4379 { F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0, 4380 "SGE IQID > 1023 received CPL for FL" }, 4381 { F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 | 4382 F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" }, 4383 { F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" }, 4384 { F_ERR_ING_CTXT_PRIO, 4385 "Ingress context manager priority user error" }, 4386 { F_ERR_EGR_CTXT_PRIO, 4387 "Egress context manager priority user error" }, 4388 { F_DBP_TBUF_FULL, "SGE DBP tbuf full" }, 4389 { F_FATAL_WRE_LEN, 4390 "SGE WRE packet less than advertized length" }, 4391 { F_REG_ADDRESS_ERR, "Undefined SGE register accessed" }, 4392 { F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" }, 4393 { F_EGRESS_SIZE_ERR, "SGE illegal egress QID" }, 4394 { 0x0000000f, "SGE context access for invalid queue" }, 4395 { 0 } 4396 }; 4397 struct intr_info sge_int3_info = { 4398 .name = "SGE_INT_CAUSE3", 4399 .cause_reg = A_SGE_INT_CAUSE3, 4400 .enable_reg = A_SGE_INT_ENABLE3, 4401 .fatal = F_ERR_CPL_EXCEED_IQE_SIZE, 4402 .flags = 0, 4403 .details = NULL, 4404 .actions = NULL, 4405 }; 4406 static const struct intr_info sge_int4_info = { 4407 .name = "SGE_INT_CAUSE4", 4408 .cause_reg = A_SGE_INT_CAUSE4, 4409 .enable_reg = A_SGE_INT_ENABLE4, 4410 .fatal = 0, 4411 .flags = 0, 4412 .details = NULL, 4413 .actions = NULL, 4414 }; 4415 static const struct intr_info sge_int5_info = { 4416 .name = "SGE_INT_CAUSE5", 4417 .cause_reg = A_SGE_INT_CAUSE5, 4418 .enable_reg = A_SGE_INT_ENABLE5, 4419 .fatal = 0xffffffff, 4420 .flags = NONFATAL_IF_DISABLED, 4421 .details = NULL, 4422 .actions = NULL, 4423 }; 4424 static const struct intr_info sge_int6_info = { 4425 .name = "SGE_INT_CAUSE6", 4426 .cause_reg = A_SGE_INT_CAUSE6, 4427 .enable_reg = A_SGE_INT_ENABLE6, 4428 .fatal = 0, 4429 .flags = 0, 4430 .details = NULL, 4431 .actions = NULL, 4432 }; 4433 4434 bool fatal; 4435 u32 v; 4436 4437 if (chip_id(adap) <= CHELSIO_T5) { 4438 sge_int3_info.details = sge_int3_details; 4439 } else { 4440 sge_int3_info.details = t6_sge_int3_details; 4441 } 4442 4443 fatal = false; 4444 fatal |= t4_handle_intr(adap, &sge_int1_info, 0, verbose); 4445 fatal |= t4_handle_intr(adap, &sge_int2_info, 0, verbose); 4446 fatal |= t4_handle_intr(adap, &sge_int3_info, 0, verbose); 4447 fatal |= t4_handle_intr(adap, &sge_int4_info, 0, verbose); 4448 if (chip_id(adap) >= CHELSIO_T5) 4449 fatal |= t4_handle_intr(adap, &sge_int5_info, 0, verbose); 4450 if (chip_id(adap) >= CHELSIO_T6) 4451 fatal |= t4_handle_intr(adap, &sge_int6_info, 0, verbose); 4452 4453 v = t4_read_reg(adap, A_SGE_ERROR_STATS); 4454 if (v & F_ERROR_QID_VALID) { 4455 CH_ERR(adap, "SGE error for QID %u\n", G_ERROR_QID(v)); 4456 if (v & F_UNCAPTURED_ERROR) 4457 CH_ERR(adap, "SGE UNCAPTURED_ERROR set (clearing)\n"); 4458 t4_write_reg(adap, A_SGE_ERROR_STATS, 4459 F_ERROR_QID_VALID | F_UNCAPTURED_ERROR); 4460 } 4461 4462 return (fatal); 4463 } 4464 4465 /* 4466 * CIM interrupt handler. 4467 */ 4468 static bool cim_intr_handler(struct adapter *adap, int arg, bool verbose) 4469 { 4470 static const struct intr_details cim_host_intr_details[] = { 4471 /* T6+ */ 4472 { F_PCIE2CIMINTFPARERR, "CIM IBQ PCIe interface parity error" }, 4473 4474 /* T5+ */ 4475 { F_MA_CIM_INTFPERR, "MA2CIM interface parity error" }, 4476 { F_PLCIM_MSTRSPDATAPARERR, 4477 "PL2CIM master response data parity error" }, 4478 { F_NCSI2CIMINTFPARERR, "CIM IBQ NC-SI interface parity error" }, 4479 { F_SGE2CIMINTFPARERR, "CIM IBQ SGE interface parity error" }, 4480 { F_ULP2CIMINTFPARERR, "CIM IBQ ULP_TX interface parity error" }, 4481 { F_TP2CIMINTFPARERR, "CIM IBQ TP interface parity error" }, 4482 { F_OBQSGERX1PARERR, "CIM OBQ SGE1_RX parity error" }, 4483 { F_OBQSGERX0PARERR, "CIM OBQ SGE0_RX parity error" }, 4484 4485 /* T4+ */ 4486 { F_TIEQOUTPARERRINT, "CIM TIEQ outgoing FIFO parity error" }, 4487 { F_TIEQINPARERRINT, "CIM TIEQ incoming FIFO parity error" }, 4488 { F_MBHOSTPARERR, "CIM mailbox host read parity error" }, 4489 { F_MBUPPARERR, "CIM mailbox uP parity error" }, 4490 { F_IBQTP0PARERR, "CIM IBQ TP0 parity error" }, 4491 { F_IBQTP1PARERR, "CIM IBQ TP1 parity error" }, 4492 { F_IBQULPPARERR, "CIM IBQ ULP parity error" }, 4493 { F_IBQSGELOPARERR, "CIM IBQ SGE_LO parity error" }, 4494 { F_IBQSGEHIPARERR | F_IBQPCIEPARERR, /* same bit */ 4495 "CIM IBQ PCIe/SGE_HI parity error" }, 4496 { F_IBQNCSIPARERR, "CIM IBQ NC-SI parity error" }, 4497 { F_OBQULP0PARERR, "CIM OBQ ULP0 parity error" }, 4498 { F_OBQULP1PARERR, "CIM OBQ ULP1 parity error" }, 4499 { F_OBQULP2PARERR, "CIM OBQ ULP2 parity error" }, 4500 { F_OBQULP3PARERR, "CIM OBQ ULP3 parity error" }, 4501 { F_OBQSGEPARERR, "CIM OBQ SGE parity error" }, 4502 { F_OBQNCSIPARERR, "CIM OBQ NC-SI parity error" }, 4503 { F_TIMER1INT, "CIM TIMER0 interrupt" }, 4504 { F_TIMER0INT, "CIM TIMER0 interrupt" }, 4505 { F_PREFDROPINT, "CIM control register prefetch drop" }, 4506 { 0} 4507 }; 4508 static const struct intr_info cim_host_intr_info = { 4509 .name = "CIM_HOST_INT_CAUSE", 4510 .cause_reg = A_CIM_HOST_INT_CAUSE, 4511 .enable_reg = A_CIM_HOST_INT_ENABLE, 4512 .fatal = 0x007fffe6, 4513 .flags = NONFATAL_IF_DISABLED, 4514 .details = cim_host_intr_details, 4515 .actions = NULL, 4516 }; 4517 static const struct intr_details cim_host_upacc_intr_details[] = { 4518 { F_EEPROMWRINT, "CIM EEPROM came out of busy state" }, 4519 { F_TIMEOUTMAINT, "CIM PIF MA timeout" }, 4520 { F_TIMEOUTINT, "CIM PIF timeout" }, 4521 { F_RSPOVRLOOKUPINT, "CIM response FIFO overwrite" }, 4522 { F_REQOVRLOOKUPINT, "CIM request FIFO overwrite" }, 4523 { F_BLKWRPLINT, "CIM block write to PL space" }, 4524 { F_BLKRDPLINT, "CIM block read from PL space" }, 4525 { F_SGLWRPLINT, 4526 "CIM single write to PL space with illegal BEs" }, 4527 { F_SGLRDPLINT, 4528 "CIM single read from PL space with illegal BEs" }, 4529 { F_BLKWRCTLINT, "CIM block write to CTL space" }, 4530 { F_BLKRDCTLINT, "CIM block read from CTL space" }, 4531 { F_SGLWRCTLINT, 4532 "CIM single write to CTL space with illegal BEs" }, 4533 { F_SGLRDCTLINT, 4534 "CIM single read from CTL space with illegal BEs" }, 4535 { F_BLKWREEPROMINT, "CIM block write to EEPROM space" }, 4536 { F_BLKRDEEPROMINT, "CIM block read from EEPROM space" }, 4537 { F_SGLWREEPROMINT, 4538 "CIM single write to EEPROM space with illegal BEs" }, 4539 { F_SGLRDEEPROMINT, 4540 "CIM single read from EEPROM space with illegal BEs" }, 4541 { F_BLKWRFLASHINT, "CIM block write to flash space" }, 4542 { F_BLKRDFLASHINT, "CIM block read from flash space" }, 4543 { F_SGLWRFLASHINT, "CIM single write to flash space" }, 4544 { F_SGLRDFLASHINT, 4545 "CIM single read from flash space with illegal BEs" }, 4546 { F_BLKWRBOOTINT, "CIM block write to boot space" }, 4547 { F_BLKRDBOOTINT, "CIM block read from boot space" }, 4548 { F_SGLWRBOOTINT, "CIM single write to boot space" }, 4549 { F_SGLRDBOOTINT, 4550 "CIM single read from boot space with illegal BEs" }, 4551 { F_ILLWRBEINT, "CIM illegal write BEs" }, 4552 { F_ILLRDBEINT, "CIM illegal read BEs" }, 4553 { F_ILLRDINT, "CIM illegal read" }, 4554 { F_ILLWRINT, "CIM illegal write" }, 4555 { F_ILLTRANSINT, "CIM illegal transaction" }, 4556 { F_RSVDSPACEINT, "CIM reserved space access" }, 4557 {0} 4558 }; 4559 static const struct intr_info cim_host_upacc_intr_info = { 4560 .name = "CIM_HOST_UPACC_INT_CAUSE", 4561 .cause_reg = A_CIM_HOST_UPACC_INT_CAUSE, 4562 .enable_reg = A_CIM_HOST_UPACC_INT_ENABLE, 4563 .fatal = 0x3fffeeff, 4564 .flags = NONFATAL_IF_DISABLED, 4565 .details = cim_host_upacc_intr_details, 4566 .actions = NULL, 4567 }; 4568 static const struct intr_info cim_pf_host_intr_info = { 4569 .name = "CIM_PF_HOST_INT_CAUSE", 4570 .cause_reg = MYPF_REG(A_CIM_PF_HOST_INT_CAUSE), 4571 .enable_reg = MYPF_REG(A_CIM_PF_HOST_INT_ENABLE), 4572 .fatal = 0, 4573 .flags = 0, 4574 .details = NULL, 4575 .actions = NULL, 4576 }; 4577 u32 val, fw_err; 4578 bool fatal; 4579 4580 /* 4581 * When the Firmware detects an internal error which normally wouldn't 4582 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order 4583 * to make sure the Host sees the Firmware Crash. So if we have a 4584 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0 4585 * interrupt. 4586 */ 4587 fw_err = t4_read_reg(adap, A_PCIE_FW); 4588 val = t4_read_reg(adap, A_CIM_HOST_INT_CAUSE); 4589 if (val & F_TIMER0INT && (!(fw_err & F_PCIE_FW_ERR) || 4590 G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH)) { 4591 t4_write_reg(adap, A_CIM_HOST_INT_CAUSE, F_TIMER0INT); 4592 } 4593 4594 fatal = (fw_err & F_PCIE_FW_ERR) != 0; 4595 fatal |= t4_handle_intr(adap, &cim_host_intr_info, 0, verbose); 4596 fatal |= t4_handle_intr(adap, &cim_host_upacc_intr_info, 0, verbose); 4597 fatal |= t4_handle_intr(adap, &cim_pf_host_intr_info, 0, verbose); 4598 if (fatal) 4599 t4_os_cim_err(adap); 4600 4601 return (fatal); 4602 } 4603 4604 /* 4605 * ULP RX interrupt handler. 4606 */ 4607 static bool ulprx_intr_handler(struct adapter *adap, int arg, bool verbose) 4608 { 4609 static const struct intr_details ulprx_intr_details[] = { 4610 /* T5+ */ 4611 { F_SE_CNT_MISMATCH_1, "ULPRX SE count mismatch in channel 1" }, 4612 { F_SE_CNT_MISMATCH_0, "ULPRX SE count mismatch in channel 0" }, 4613 4614 /* T4+ */ 4615 { F_CAUSE_CTX_1, "ULPRX channel 1 context error" }, 4616 { F_CAUSE_CTX_0, "ULPRX channel 0 context error" }, 4617 { 0x007fffff, "ULPRX parity error" }, 4618 { 0 } 4619 }; 4620 static const struct intr_info ulprx_intr_info = { 4621 .name = "ULP_RX_INT_CAUSE", 4622 .cause_reg = A_ULP_RX_INT_CAUSE, 4623 .enable_reg = A_ULP_RX_INT_ENABLE, 4624 .fatal = 0x07ffffff, 4625 .flags = NONFATAL_IF_DISABLED, 4626 .details = ulprx_intr_details, 4627 .actions = NULL, 4628 }; 4629 static const struct intr_info ulprx_intr2_info = { 4630 .name = "ULP_RX_INT_CAUSE_2", 4631 .cause_reg = A_ULP_RX_INT_CAUSE_2, 4632 .enable_reg = A_ULP_RX_INT_ENABLE_2, 4633 .fatal = 0, 4634 .flags = 0, 4635 .details = NULL, 4636 .actions = NULL, 4637 }; 4638 bool fatal = false; 4639 4640 fatal |= t4_handle_intr(adap, &ulprx_intr_info, 0, verbose); 4641 fatal |= t4_handle_intr(adap, &ulprx_intr2_info, 0, verbose); 4642 4643 return (fatal); 4644 } 4645 4646 /* 4647 * ULP TX interrupt handler. 4648 */ 4649 static bool ulptx_intr_handler(struct adapter *adap, int arg, bool verbose) 4650 { 4651 static const struct intr_details ulptx_intr_details[] = { 4652 { F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds" }, 4653 { F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds" }, 4654 { F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds" }, 4655 { F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds" }, 4656 { 0x0fffffff, "ULPTX parity error" }, 4657 { 0 } 4658 }; 4659 static const struct intr_info ulptx_intr_info = { 4660 .name = "ULP_TX_INT_CAUSE", 4661 .cause_reg = A_ULP_TX_INT_CAUSE, 4662 .enable_reg = A_ULP_TX_INT_ENABLE, 4663 .fatal = 0x0fffffff, 4664 .flags = NONFATAL_IF_DISABLED, 4665 .details = ulptx_intr_details, 4666 .actions = NULL, 4667 }; 4668 static const struct intr_info ulptx_intr2_info = { 4669 .name = "ULP_TX_INT_CAUSE_2", 4670 .cause_reg = A_ULP_TX_INT_CAUSE_2, 4671 .enable_reg = A_ULP_TX_INT_ENABLE_2, 4672 .fatal = 0xf0, 4673 .flags = NONFATAL_IF_DISABLED, 4674 .details = NULL, 4675 .actions = NULL, 4676 }; 4677 bool fatal = false; 4678 4679 fatal |= t4_handle_intr(adap, &ulptx_intr_info, 0, verbose); 4680 fatal |= t4_handle_intr(adap, &ulptx_intr2_info, 0, verbose); 4681 4682 return (fatal); 4683 } 4684 4685 static bool pmtx_dump_dbg_stats(struct adapter *adap, int arg, bool verbose) 4686 { 4687 int i; 4688 u32 data[17]; 4689 4690 t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, &data[0], 4691 ARRAY_SIZE(data), A_PM_TX_DBG_STAT0); 4692 for (i = 0; i < ARRAY_SIZE(data); i++) { 4693 CH_ALERT(adap, " - PM_TX_DBG_STAT%u (0x%x) = 0x%08x\n", i, 4694 A_PM_TX_DBG_STAT0 + i, data[i]); 4695 } 4696 4697 return (false); 4698 } 4699 4700 /* 4701 * PM TX interrupt handler. 4702 */ 4703 static bool pmtx_intr_handler(struct adapter *adap, int arg, bool verbose) 4704 { 4705 static const struct intr_action pmtx_intr_actions[] = { 4706 { 0xffffffff, 0, pmtx_dump_dbg_stats }, 4707 { 0 }, 4708 }; 4709 static const struct intr_details pmtx_intr_details[] = { 4710 { F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large" }, 4711 { F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large" }, 4712 { F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large" }, 4713 { F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd" }, 4714 { 0x0f000000, "PMTX icspi FIFO2X Rx framing error" }, 4715 { 0x00f00000, "PMTX icspi FIFO Rx framing error" }, 4716 { 0x000f0000, "PMTX icspi FIFO Tx framing error" }, 4717 { 0x0000f000, "PMTX oespi FIFO Rx framing error" }, 4718 { 0x00000f00, "PMTX oespi FIFO Tx framing error" }, 4719 { 0x000000f0, "PMTX oespi FIFO2X Tx framing error" }, 4720 { F_OESPI_PAR_ERROR, "PMTX oespi parity error" }, 4721 { F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error" }, 4722 { F_ICSPI_PAR_ERROR, "PMTX icspi parity error" }, 4723 { F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error" }, 4724 { 0 } 4725 }; 4726 static const struct intr_info pmtx_intr_info = { 4727 .name = "PM_TX_INT_CAUSE", 4728 .cause_reg = A_PM_TX_INT_CAUSE, 4729 .enable_reg = A_PM_TX_INT_ENABLE, 4730 .fatal = 0xffffffff, 4731 .flags = 0, 4732 .details = pmtx_intr_details, 4733 .actions = pmtx_intr_actions, 4734 }; 4735 4736 return (t4_handle_intr(adap, &pmtx_intr_info, 0, verbose)); 4737 } 4738 4739 /* 4740 * PM RX interrupt handler. 4741 */ 4742 static bool pmrx_intr_handler(struct adapter *adap, int arg, bool verbose) 4743 { 4744 static const struct intr_details pmrx_intr_details[] = { 4745 /* T6+ */ 4746 { 0x18000000, "PMRX ospi overflow" }, 4747 { F_MA_INTF_SDC_ERR, "PMRX MA interface SDC parity error" }, 4748 { F_BUNDLE_LEN_PARERR, "PMRX bundle len FIFO parity error" }, 4749 { F_BUNDLE_LEN_OVFL, "PMRX bundle len FIFO overflow" }, 4750 { F_SDC_ERR, "PMRX SDC error" }, 4751 4752 /* T4+ */ 4753 { F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd" }, 4754 { 0x003c0000, "PMRX iespi FIFO2X Rx framing error" }, 4755 { 0x0003c000, "PMRX iespi Rx framing error" }, 4756 { 0x00003c00, "PMRX iespi Tx framing error" }, 4757 { 0x00000300, "PMRX ocspi Rx framing error" }, 4758 { 0x000000c0, "PMRX ocspi Tx framing error" }, 4759 { 0x00000030, "PMRX ocspi FIFO2X Tx framing error" }, 4760 { F_OCSPI_PAR_ERROR, "PMRX ocspi parity error" }, 4761 { F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error" }, 4762 { F_IESPI_PAR_ERROR, "PMRX iespi parity error" }, 4763 { F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error"}, 4764 { 0 } 4765 }; 4766 static const struct intr_info pmrx_intr_info = { 4767 .name = "PM_RX_INT_CAUSE", 4768 .cause_reg = A_PM_RX_INT_CAUSE, 4769 .enable_reg = A_PM_RX_INT_ENABLE, 4770 .fatal = 0x1fffffff, 4771 .flags = NONFATAL_IF_DISABLED, 4772 .details = pmrx_intr_details, 4773 .actions = NULL, 4774 }; 4775 4776 return (t4_handle_intr(adap, &pmrx_intr_info, 0, verbose)); 4777 } 4778 4779 /* 4780 * CPL switch interrupt handler. 4781 */ 4782 static bool cplsw_intr_handler(struct adapter *adap, int arg, bool verbose) 4783 { 4784 static const struct intr_details cplsw_intr_details[] = { 4785 /* T5+ */ 4786 { F_PERR_CPL_128TO128_1, "CPLSW 128TO128 FIFO1 parity error" }, 4787 { F_PERR_CPL_128TO128_0, "CPLSW 128TO128 FIFO0 parity error" }, 4788 4789 /* T4+ */ 4790 { F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error" }, 4791 { F_CIM_OVFL_ERROR, "CPLSW CIM overflow" }, 4792 { F_TP_FRAMING_ERROR, "CPLSW TP framing error" }, 4793 { F_SGE_FRAMING_ERROR, "CPLSW SGE framing error" }, 4794 { F_CIM_FRAMING_ERROR, "CPLSW CIM framing error" }, 4795 { F_ZERO_SWITCH_ERROR, "CPLSW no-switch error" }, 4796 { 0 } 4797 }; 4798 static const struct intr_info cplsw_intr_info = { 4799 .name = "CPL_INTR_CAUSE", 4800 .cause_reg = A_CPL_INTR_CAUSE, 4801 .enable_reg = A_CPL_INTR_ENABLE, 4802 .fatal = 0xff, 4803 .flags = NONFATAL_IF_DISABLED, 4804 .details = cplsw_intr_details, 4805 .actions = NULL, 4806 }; 4807 4808 return (t4_handle_intr(adap, &cplsw_intr_info, 0, verbose)); 4809 } 4810 4811 #define T4_LE_FATAL_MASK (F_PARITYERR | F_UNKNOWNCMD | F_REQQPARERR) 4812 #define T5_LE_FATAL_MASK (T4_LE_FATAL_MASK | F_VFPARERR) 4813 #define T6_LE_PERRCRC_MASK (F_PIPELINEERR | F_CLIPTCAMACCFAIL | \ 4814 F_SRVSRAMACCFAIL | F_CLCAMCRCPARERR | F_CLCAMINTPERR | F_SSRAMINTPERR | \ 4815 F_SRVSRAMPERR | F_VFSRAMPERR | F_TCAMINTPERR | F_TCAMCRCERR | \ 4816 F_HASHTBLMEMACCERR | F_MAIFWRINTPERR | F_HASHTBLMEMCRCERR) 4817 #define T6_LE_FATAL_MASK (T6_LE_PERRCRC_MASK | F_T6_UNKNOWNCMD | \ 4818 F_TCAMACCFAIL | F_HASHTBLACCFAIL | F_CMDTIDERR | F_CMDPRSRINTERR | \ 4819 F_TOTCNTERR | F_CLCAMFIFOERR | F_CLIPSUBERR) 4820 4821 /* 4822 * LE interrupt handler. 4823 */ 4824 static bool le_intr_handler(struct adapter *adap, int arg, bool verbose) 4825 { 4826 static const struct intr_details le_intr_details[] = { 4827 { F_REQQPARERR, "LE request queue parity error" }, 4828 { F_UNKNOWNCMD, "LE unknown command" }, 4829 { F_ACTRGNFULL, "LE active region full" }, 4830 { F_PARITYERR, "LE parity error" }, 4831 { F_LIPMISS, "LE LIP miss" }, 4832 { F_LIP0, "LE 0 LIP error" }, 4833 { 0 } 4834 }; 4835 static const struct intr_details t6_le_intr_details[] = { 4836 { F_CLIPSUBERR, "LE CLIP CAM reverse substitution error" }, 4837 { F_CLCAMFIFOERR, "LE CLIP CAM internal FIFO error" }, 4838 { F_CTCAMINVLDENT, "Invalid IPv6 CLIP TCAM entry" }, 4839 { F_TCAMINVLDENT, "Invalid IPv6 TCAM entry" }, 4840 { F_TOTCNTERR, "LE total active < TCAM count" }, 4841 { F_CMDPRSRINTERR, "LE internal error in parser" }, 4842 { F_CMDTIDERR, "Incorrect tid in LE command" }, 4843 { F_T6_ACTRGNFULL, "LE active region full" }, 4844 { F_T6_ACTCNTIPV6TZERO, "LE IPv6 active open TCAM counter -ve" }, 4845 { F_T6_ACTCNTIPV4TZERO, "LE IPv4 active open TCAM counter -ve" }, 4846 { F_T6_ACTCNTIPV6ZERO, "LE IPv6 active open counter -ve" }, 4847 { F_T6_ACTCNTIPV4ZERO, "LE IPv4 active open counter -ve" }, 4848 { F_HASHTBLACCFAIL, "Hash table read error (proto conflict)" }, 4849 { F_TCAMACCFAIL, "LE TCAM access failure" }, 4850 { F_T6_UNKNOWNCMD, "LE unknown command" }, 4851 { F_T6_LIP0, "LE found 0 LIP during CLIP substitution" }, 4852 { F_T6_LIPMISS, "LE CLIP lookup miss" }, 4853 { T6_LE_PERRCRC_MASK, "LE parity/CRC error" }, 4854 { 0 } 4855 }; 4856 struct intr_info le_intr_info = { 4857 .name = "LE_DB_INT_CAUSE", 4858 .cause_reg = A_LE_DB_INT_CAUSE, 4859 .enable_reg = A_LE_DB_INT_ENABLE, 4860 .fatal = 0, 4861 .flags = NONFATAL_IF_DISABLED, 4862 .details = NULL, 4863 .actions = NULL, 4864 }; 4865 4866 if (chip_id(adap) <= CHELSIO_T5) { 4867 le_intr_info.details = le_intr_details; 4868 le_intr_info.fatal = T5_LE_FATAL_MASK; 4869 } else { 4870 le_intr_info.details = t6_le_intr_details; 4871 le_intr_info.fatal = T6_LE_FATAL_MASK; 4872 } 4873 4874 return (t4_handle_intr(adap, &le_intr_info, 0, verbose)); 4875 } 4876 4877 /* 4878 * MPS interrupt handler. 4879 */ 4880 static bool mps_intr_handler(struct adapter *adap, int arg, bool verbose) 4881 { 4882 static const struct intr_details mps_rx_perr_intr_details[] = { 4883 { 0xffffffff, "MPS Rx parity error" }, 4884 { 0 } 4885 }; 4886 static const struct intr_info mps_rx_perr_intr_info = { 4887 .name = "MPS_RX_PERR_INT_CAUSE", 4888 .cause_reg = A_MPS_RX_PERR_INT_CAUSE, 4889 .enable_reg = A_MPS_RX_PERR_INT_ENABLE, 4890 .fatal = 0xffffffff, 4891 .flags = NONFATAL_IF_DISABLED, 4892 .details = mps_rx_perr_intr_details, 4893 .actions = NULL, 4894 }; 4895 static const struct intr_details mps_tx_intr_details[] = { 4896 { F_PORTERR, "MPS Tx destination port is disabled" }, 4897 { F_FRMERR, "MPS Tx framing error" }, 4898 { F_SECNTERR, "MPS Tx SOP/EOP error" }, 4899 { F_BUBBLE, "MPS Tx underflow" }, 4900 { V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error" }, 4901 { V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error" }, 4902 { F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error" }, 4903 { V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error" }, 4904 { 0 } 4905 }; 4906 static const struct intr_info mps_tx_intr_info = { 4907 .name = "MPS_TX_INT_CAUSE", 4908 .cause_reg = A_MPS_TX_INT_CAUSE, 4909 .enable_reg = A_MPS_TX_INT_ENABLE, 4910 .fatal = 0x1ffff, 4911 .flags = NONFATAL_IF_DISABLED, 4912 .details = mps_tx_intr_details, 4913 .actions = NULL, 4914 }; 4915 static const struct intr_details mps_trc_intr_details[] = { 4916 { F_MISCPERR, "MPS TRC misc parity error" }, 4917 { V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error" }, 4918 { V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error" }, 4919 { 0 } 4920 }; 4921 static const struct intr_info mps_trc_intr_info = { 4922 .name = "MPS_TRC_INT_CAUSE", 4923 .cause_reg = A_MPS_TRC_INT_CAUSE, 4924 .enable_reg = A_MPS_TRC_INT_ENABLE, 4925 .fatal = F_MISCPERR | V_PKTFIFO(M_PKTFIFO) | V_FILTMEM(M_FILTMEM), 4926 .flags = 0, 4927 .details = mps_trc_intr_details, 4928 .actions = NULL, 4929 }; 4930 static const struct intr_details mps_stat_sram_intr_details[] = { 4931 { 0xffffffff, "MPS statistics SRAM parity error" }, 4932 { 0 } 4933 }; 4934 static const struct intr_info mps_stat_sram_intr_info = { 4935 .name = "MPS_STAT_PERR_INT_CAUSE_SRAM", 4936 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM, 4937 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM, 4938 .fatal = 0x1fffffff, 4939 .flags = NONFATAL_IF_DISABLED, 4940 .details = mps_stat_sram_intr_details, 4941 .actions = NULL, 4942 }; 4943 static const struct intr_details mps_stat_tx_intr_details[] = { 4944 { 0xffffff, "MPS statistics Tx FIFO parity error" }, 4945 { 0 } 4946 }; 4947 static const struct intr_info mps_stat_tx_intr_info = { 4948 .name = "MPS_STAT_PERR_INT_CAUSE_TX_FIFO", 4949 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO, 4950 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_TX_FIFO, 4951 .fatal = 0xffffff, 4952 .flags = NONFATAL_IF_DISABLED, 4953 .details = mps_stat_tx_intr_details, 4954 .actions = NULL, 4955 }; 4956 static const struct intr_details mps_stat_rx_intr_details[] = { 4957 { 0xffffff, "MPS statistics Rx FIFO parity error" }, 4958 { 0 } 4959 }; 4960 static const struct intr_info mps_stat_rx_intr_info = { 4961 .name = "MPS_STAT_PERR_INT_CAUSE_RX_FIFO", 4962 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO, 4963 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_RX_FIFO, 4964 .fatal = 0xffffff, 4965 .flags = 0, 4966 .details = mps_stat_rx_intr_details, 4967 .actions = NULL, 4968 }; 4969 static const struct intr_details mps_cls_intr_details[] = { 4970 { F_HASHSRAM, "MPS hash SRAM parity error" }, 4971 { F_MATCHTCAM, "MPS match TCAM parity error" }, 4972 { F_MATCHSRAM, "MPS match SRAM parity error" }, 4973 { 0 } 4974 }; 4975 static const struct intr_info mps_cls_intr_info = { 4976 .name = "MPS_CLS_INT_CAUSE", 4977 .cause_reg = A_MPS_CLS_INT_CAUSE, 4978 .enable_reg = A_MPS_CLS_INT_ENABLE, 4979 .fatal = F_MATCHSRAM | F_MATCHTCAM | F_HASHSRAM, 4980 .flags = 0, 4981 .details = mps_cls_intr_details, 4982 .actions = NULL, 4983 }; 4984 static const struct intr_details mps_stat_sram1_intr_details[] = { 4985 { 0xff, "MPS statistics SRAM1 parity error" }, 4986 { 0 } 4987 }; 4988 static const struct intr_info mps_stat_sram1_intr_info = { 4989 .name = "MPS_STAT_PERR_INT_CAUSE_SRAM1", 4990 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 4991 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM1, 4992 .fatal = 0xff, 4993 .flags = 0, 4994 .details = mps_stat_sram1_intr_details, 4995 .actions = NULL, 4996 }; 4997 4998 bool fatal; 4999 5000 fatal = false; 5001 fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info, 0, verbose); 5002 fatal |= t4_handle_intr(adap, &mps_tx_intr_info, 0, verbose); 5003 fatal |= t4_handle_intr(adap, &mps_trc_intr_info, 0, verbose); 5004 fatal |= t4_handle_intr(adap, &mps_stat_sram_intr_info, 0, verbose); 5005 fatal |= t4_handle_intr(adap, &mps_stat_tx_intr_info, 0, verbose); 5006 fatal |= t4_handle_intr(adap, &mps_stat_rx_intr_info, 0, verbose); 5007 fatal |= t4_handle_intr(adap, &mps_cls_intr_info, 0, verbose); 5008 if (chip_id(adap) > CHELSIO_T4) { 5009 fatal |= t4_handle_intr(adap, &mps_stat_sram1_intr_info, 0, 5010 verbose); 5011 } 5012 5013 t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff); 5014 t4_read_reg(adap, A_MPS_INT_CAUSE); /* flush */ 5015 5016 return (fatal); 5017 5018 } 5019 5020 /* 5021 * EDC/MC interrupt handler. 5022 */ 5023 static bool mem_intr_handler(struct adapter *adap, int idx, bool verbose) 5024 { 5025 static const char name[4][5] = { "EDC0", "EDC1", "MC0", "MC1" }; 5026 unsigned int count_reg, v; 5027 static const struct intr_details mem_intr_details[] = { 5028 { F_ECC_UE_INT_CAUSE, "Uncorrectable ECC data error(s)" }, 5029 { F_ECC_CE_INT_CAUSE, "Correctable ECC data error(s)" }, 5030 { F_PERR_INT_CAUSE, "FIFO parity error" }, 5031 { 0 } 5032 }; 5033 struct intr_info ii = { 5034 .fatal = F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE, 5035 .details = mem_intr_details, 5036 .flags = 0, 5037 .actions = NULL, 5038 }; 5039 bool fatal; 5040 5041 switch (idx) { 5042 case MEM_EDC0: 5043 ii.name = "EDC0_INT_CAUSE"; 5044 ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 0); 5045 ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 0); 5046 count_reg = EDC_REG(A_EDC_ECC_STATUS, 0); 5047 break; 5048 case MEM_EDC1: 5049 ii.name = "EDC1_INT_CAUSE"; 5050 ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 1); 5051 ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 1); 5052 count_reg = EDC_REG(A_EDC_ECC_STATUS, 1); 5053 break; 5054 case MEM_MC0: 5055 ii.name = "MC0_INT_CAUSE"; 5056 if (is_t4(adap)) { 5057 ii.cause_reg = A_MC_INT_CAUSE; 5058 ii.enable_reg = A_MC_INT_ENABLE; 5059 count_reg = A_MC_ECC_STATUS; 5060 } else { 5061 ii.cause_reg = A_MC_P_INT_CAUSE; 5062 ii.enable_reg = A_MC_P_INT_ENABLE; 5063 count_reg = A_MC_P_ECC_STATUS; 5064 } 5065 break; 5066 case MEM_MC1: 5067 ii.name = "MC1_INT_CAUSE"; 5068 ii.cause_reg = MC_REG(A_MC_P_INT_CAUSE, 1); 5069 ii.enable_reg = MC_REG(A_MC_P_INT_ENABLE, 1); 5070 count_reg = MC_REG(A_MC_P_ECC_STATUS, 1); 5071 break; 5072 } 5073 5074 fatal = t4_handle_intr(adap, &ii, 0, verbose); 5075 5076 v = t4_read_reg(adap, count_reg); 5077 if (v != 0) { 5078 if (G_ECC_UECNT(v) != 0) { 5079 CH_ALERT(adap, 5080 "%s: %u uncorrectable ECC data error(s)\n", 5081 name[idx], G_ECC_UECNT(v)); 5082 } 5083 if (G_ECC_CECNT(v) != 0) { 5084 if (idx <= MEM_EDC1) 5085 t4_edc_err_read(adap, idx); 5086 CH_WARN_RATELIMIT(adap, 5087 "%s: %u correctable ECC data error(s)\n", 5088 name[idx], G_ECC_CECNT(v)); 5089 } 5090 t4_write_reg(adap, count_reg, 0xffffffff); 5091 } 5092 5093 return (fatal); 5094 } 5095 5096 static bool ma_wrap_status(struct adapter *adap, int arg, bool verbose) 5097 { 5098 u32 v; 5099 5100 v = t4_read_reg(adap, A_MA_INT_WRAP_STATUS); 5101 CH_ALERT(adap, 5102 "MA address wrap-around error by client %u to address %#x\n", 5103 G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4); 5104 t4_write_reg(adap, A_MA_INT_WRAP_STATUS, v); 5105 5106 return (false); 5107 } 5108 5109 5110 /* 5111 * MA interrupt handler. 5112 */ 5113 static bool ma_intr_handler(struct adapter *adap, int arg, bool verbose) 5114 { 5115 static const struct intr_action ma_intr_actions[] = { 5116 { F_MEM_WRAP_INT_CAUSE, 0, ma_wrap_status }, 5117 { 0 }, 5118 }; 5119 static const struct intr_info ma_intr_info = { 5120 .name = "MA_INT_CAUSE", 5121 .cause_reg = A_MA_INT_CAUSE, 5122 .enable_reg = A_MA_INT_ENABLE, 5123 .fatal = F_MEM_PERR_INT_CAUSE | F_MEM_TO_INT_CAUSE, 5124 .flags = NONFATAL_IF_DISABLED, 5125 .details = NULL, 5126 .actions = ma_intr_actions, 5127 }; 5128 static const struct intr_info ma_perr_status1 = { 5129 .name = "MA_PARITY_ERROR_STATUS1", 5130 .cause_reg = A_MA_PARITY_ERROR_STATUS1, 5131 .enable_reg = A_MA_PARITY_ERROR_ENABLE1, 5132 .fatal = 0xffffffff, 5133 .flags = 0, 5134 .details = NULL, 5135 .actions = NULL, 5136 }; 5137 static const struct intr_info ma_perr_status2 = { 5138 .name = "MA_PARITY_ERROR_STATUS2", 5139 .cause_reg = A_MA_PARITY_ERROR_STATUS2, 5140 .enable_reg = A_MA_PARITY_ERROR_ENABLE2, 5141 .fatal = 0xffffffff, 5142 .flags = 0, 5143 .details = NULL, 5144 .actions = NULL, 5145 }; 5146 bool fatal; 5147 5148 fatal = false; 5149 fatal |= t4_handle_intr(adap, &ma_intr_info, 0, verbose); 5150 fatal |= t4_handle_intr(adap, &ma_perr_status1, 0, verbose); 5151 if (chip_id(adap) > CHELSIO_T4) 5152 fatal |= t4_handle_intr(adap, &ma_perr_status2, 0, verbose); 5153 5154 return (fatal); 5155 } 5156 5157 /* 5158 * SMB interrupt handler. 5159 */ 5160 static bool smb_intr_handler(struct adapter *adap, int arg, bool verbose) 5161 { 5162 static const struct intr_details smb_intr_details[] = { 5163 { F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error" }, 5164 { F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error" }, 5165 { F_SLVFIFOPARINT, "SMB slave FIFO parity error" }, 5166 { 0 } 5167 }; 5168 static const struct intr_info smb_intr_info = { 5169 .name = "SMB_INT_CAUSE", 5170 .cause_reg = A_SMB_INT_CAUSE, 5171 .enable_reg = A_SMB_INT_ENABLE, 5172 .fatal = F_SLVFIFOPARINT | F_MSTRXFIFOPARINT | F_MSTTXFIFOPARINT, 5173 .flags = 0, 5174 .details = smb_intr_details, 5175 .actions = NULL, 5176 }; 5177 5178 return (t4_handle_intr(adap, &smb_intr_info, 0, verbose)); 5179 } 5180 5181 /* 5182 * NC-SI interrupt handler. 5183 */ 5184 static bool ncsi_intr_handler(struct adapter *adap, int arg, bool verbose) 5185 { 5186 static const struct intr_details ncsi_intr_details[] = { 5187 { F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error" }, 5188 { F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error" }, 5189 { F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error" }, 5190 { F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error" }, 5191 { 0 } 5192 }; 5193 static const struct intr_info ncsi_intr_info = { 5194 .name = "NCSI_INT_CAUSE", 5195 .cause_reg = A_NCSI_INT_CAUSE, 5196 .enable_reg = A_NCSI_INT_ENABLE, 5197 .fatal = F_RXFIFO_PRTY_ERR | F_TXFIFO_PRTY_ERR | 5198 F_MPS_DM_PRTY_ERR | F_CIM_DM_PRTY_ERR, 5199 .flags = 0, 5200 .details = ncsi_intr_details, 5201 .actions = NULL, 5202 }; 5203 5204 return (t4_handle_intr(adap, &ncsi_intr_info, 0, verbose)); 5205 } 5206 5207 /* 5208 * MAC interrupt handler. 5209 */ 5210 static bool mac_intr_handler(struct adapter *adap, int port, bool verbose) 5211 { 5212 static const struct intr_details mac_intr_details[] = { 5213 { F_TXFIFO_PRTY_ERR, "MAC Tx FIFO parity error" }, 5214 { F_RXFIFO_PRTY_ERR, "MAC Rx FIFO parity error" }, 5215 { 0 } 5216 }; 5217 char name[32]; 5218 struct intr_info ii; 5219 bool fatal = false; 5220 5221 if (is_t4(adap)) { 5222 snprintf(name, sizeof(name), "XGMAC_PORT%u_INT_CAUSE", port); 5223 ii.name = &name[0]; 5224 ii.cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE); 5225 ii.enable_reg = PORT_REG(port, A_XGMAC_PORT_INT_EN); 5226 ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR; 5227 ii.flags = 0; 5228 ii.details = mac_intr_details; 5229 ii.actions = NULL; 5230 } else { 5231 snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port); 5232 ii.name = &name[0]; 5233 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE); 5234 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_INT_EN); 5235 ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR; 5236 ii.flags = 0; 5237 ii.details = mac_intr_details; 5238 ii.actions = NULL; 5239 } 5240 fatal |= t4_handle_intr(adap, &ii, 0, verbose); 5241 5242 if (chip_id(adap) >= CHELSIO_T5) { 5243 snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE", port); 5244 ii.name = &name[0]; 5245 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE); 5246 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN); 5247 ii.fatal = 0; 5248 ii.flags = 0; 5249 ii.details = NULL; 5250 ii.actions = NULL; 5251 fatal |= t4_handle_intr(adap, &ii, 0, verbose); 5252 } 5253 5254 if (chip_id(adap) >= CHELSIO_T6) { 5255 snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE_100G", port); 5256 ii.name = &name[0]; 5257 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE_100G); 5258 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN_100G); 5259 ii.fatal = 0; 5260 ii.flags = 0; 5261 ii.details = NULL; 5262 ii.actions = NULL; 5263 fatal |= t4_handle_intr(adap, &ii, 0, verbose); 5264 } 5265 5266 return (fatal); 5267 } 5268 5269 static bool pl_timeout_status(struct adapter *adap, int arg, bool verbose) 5270 { 5271 5272 CH_ALERT(adap, " PL_TIMEOUT_STATUS 0x%08x 0x%08x\n", 5273 t4_read_reg(adap, A_PL_TIMEOUT_STATUS0), 5274 t4_read_reg(adap, A_PL_TIMEOUT_STATUS1)); 5275 5276 return (false); 5277 } 5278 5279 static bool plpl_intr_handler(struct adapter *adap, int arg, bool verbose) 5280 { 5281 static const struct intr_action plpl_intr_actions[] = { 5282 { F_TIMEOUT, 0, pl_timeout_status }, 5283 { 0 }, 5284 }; 5285 static const struct intr_details plpl_intr_details[] = { 5286 { F_PL_BUSPERR, "Bus parity error" }, 5287 { F_FATALPERR, "Fatal parity error" }, 5288 { F_INVALIDACCESS, "Global reserved memory access" }, 5289 { F_TIMEOUT, "Bus timeout" }, 5290 { F_PLERR, "Module reserved access" }, 5291 { F_PERRVFID, "VFID_MAP parity error" }, 5292 { 0 } 5293 }; 5294 static const struct intr_info plpl_intr_info = { 5295 .name = "PL_PL_INT_CAUSE", 5296 .cause_reg = A_PL_PL_INT_CAUSE, 5297 .enable_reg = A_PL_PL_INT_ENABLE, 5298 .fatal = F_FATALPERR | F_PERRVFID, 5299 .flags = NONFATAL_IF_DISABLED, 5300 .details = plpl_intr_details, 5301 .actions = plpl_intr_actions, 5302 }; 5303 5304 return (t4_handle_intr(adap, &plpl_intr_info, 0, verbose)); 5305 } 5306 5307 /** 5308 * t4_slow_intr_handler - control path interrupt handler 5309 * @adap: the adapter 5310 * @verbose: increased verbosity, for debug 5311 * 5312 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 5313 * The designation 'slow' is because it involves register reads, while 5314 * data interrupts typically don't involve any MMIOs. 5315 */ 5316 bool t4_slow_intr_handler(struct adapter *adap, bool verbose) 5317 { 5318 static const struct intr_details pl_intr_details[] = { 5319 { F_MC1, "MC1" }, 5320 { F_UART, "UART" }, 5321 { F_ULP_TX, "ULP TX" }, 5322 { F_SGE, "SGE" }, 5323 { F_HMA, "HMA" }, 5324 { F_CPL_SWITCH, "CPL Switch" }, 5325 { F_ULP_RX, "ULP RX" }, 5326 { F_PM_RX, "PM RX" }, 5327 { F_PM_TX, "PM TX" }, 5328 { F_MA, "MA" }, 5329 { F_TP, "TP" }, 5330 { F_LE, "LE" }, 5331 { F_EDC1, "EDC1" }, 5332 { F_EDC0, "EDC0" }, 5333 { F_MC, "MC0" }, 5334 { F_PCIE, "PCIE" }, 5335 { F_PMU, "PMU" }, 5336 { F_MAC3, "MAC3" }, 5337 { F_MAC2, "MAC2" }, 5338 { F_MAC1, "MAC1" }, 5339 { F_MAC0, "MAC0" }, 5340 { F_SMB, "SMB" }, 5341 { F_SF, "SF" }, 5342 { F_PL, "PL" }, 5343 { F_NCSI, "NC-SI" }, 5344 { F_MPS, "MPS" }, 5345 { F_MI, "MI" }, 5346 { F_DBG, "DBG" }, 5347 { F_I2CM, "I2CM" }, 5348 { F_CIM, "CIM" }, 5349 { 0 } 5350 }; 5351 static const struct intr_info pl_perr_cause = { 5352 .name = "PL_PERR_CAUSE", 5353 .cause_reg = A_PL_PERR_CAUSE, 5354 .enable_reg = A_PL_PERR_ENABLE, 5355 .fatal = 0xffffffff, 5356 .flags = 0, 5357 .details = pl_intr_details, 5358 .actions = NULL, 5359 }; 5360 static const struct intr_action pl_intr_action[] = { 5361 { F_MC1, MEM_MC1, mem_intr_handler }, 5362 { F_ULP_TX, -1, ulptx_intr_handler }, 5363 { F_SGE, -1, sge_intr_handler }, 5364 { F_CPL_SWITCH, -1, cplsw_intr_handler }, 5365 { F_ULP_RX, -1, ulprx_intr_handler }, 5366 { F_PM_RX, -1, pmrx_intr_handler}, 5367 { F_PM_TX, -1, pmtx_intr_handler}, 5368 { F_MA, -1, ma_intr_handler }, 5369 { F_TP, -1, tp_intr_handler }, 5370 { F_LE, -1, le_intr_handler }, 5371 { F_EDC1, MEM_EDC1, mem_intr_handler }, 5372 { F_EDC0, MEM_EDC0, mem_intr_handler }, 5373 { F_MC0, MEM_MC0, mem_intr_handler }, 5374 { F_PCIE, -1, pcie_intr_handler }, 5375 { F_MAC3, 3, mac_intr_handler}, 5376 { F_MAC2, 2, mac_intr_handler}, 5377 { F_MAC1, 1, mac_intr_handler}, 5378 { F_MAC0, 0, mac_intr_handler}, 5379 { F_SMB, -1, smb_intr_handler}, 5380 { F_PL, -1, plpl_intr_handler }, 5381 { F_NCSI, -1, ncsi_intr_handler}, 5382 { F_MPS, -1, mps_intr_handler }, 5383 { F_CIM, -1, cim_intr_handler }, 5384 { 0 } 5385 }; 5386 static const struct intr_info pl_intr_info = { 5387 .name = "PL_INT_CAUSE", 5388 .cause_reg = A_PL_INT_CAUSE, 5389 .enable_reg = A_PL_INT_ENABLE, 5390 .fatal = 0, 5391 .flags = 0, 5392 .details = pl_intr_details, 5393 .actions = pl_intr_action, 5394 }; 5395 u32 perr; 5396 5397 perr = t4_read_reg(adap, pl_perr_cause.cause_reg); 5398 if (verbose || perr != 0) { 5399 t4_show_intr_info(adap, &pl_perr_cause, perr); 5400 if (perr != 0) 5401 t4_write_reg(adap, pl_perr_cause.cause_reg, perr); 5402 if (verbose) 5403 perr |= t4_read_reg(adap, pl_intr_info.enable_reg); 5404 } 5405 5406 return (t4_handle_intr(adap, &pl_intr_info, perr, verbose)); 5407 } 5408 5409 #define PF_INTR_MASK (F_PFSW | F_PFCIM) 5410 5411 /** 5412 * t4_intr_enable - enable interrupts 5413 * @adapter: the adapter whose interrupts should be enabled 5414 * 5415 * Enable PF-specific interrupts for the calling function and the top-level 5416 * interrupt concentrator for global interrupts. Interrupts are already 5417 * enabled at each module, here we just enable the roots of the interrupt 5418 * hierarchies. 5419 * 5420 * Note: this function should be called only when the driver manages 5421 * non PF-specific interrupts from the various HW modules. Only one PCI 5422 * function at a time should be doing this. 5423 */ 5424 void t4_intr_enable(struct adapter *adap) 5425 { 5426 u32 val = 0; 5427 5428 if (chip_id(adap) <= CHELSIO_T5) 5429 val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT; 5430 else 5431 val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN; 5432 val |= F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC | 5433 F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 | 5434 F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 | 5435 F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 | 5436 F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_DBFIFO_LP_INT | 5437 F_EGRESS_SIZE_ERR; 5438 t4_set_reg_field(adap, A_SGE_INT_ENABLE3, val, val); 5439 t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK); 5440 t4_set_reg_field(adap, A_PL_INT_ENABLE, F_SF | F_I2CM, 0); 5441 t4_set_reg_field(adap, A_PL_INT_MAP0, 0, 1 << adap->pf); 5442 } 5443 5444 /** 5445 * t4_intr_disable - disable interrupts 5446 * @adap: the adapter whose interrupts should be disabled 5447 * 5448 * Disable interrupts. We only disable the top-level interrupt 5449 * concentrators. The caller must be a PCI function managing global 5450 * interrupts. 5451 */ 5452 void t4_intr_disable(struct adapter *adap) 5453 { 5454 5455 t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), 0); 5456 t4_set_reg_field(adap, A_PL_INT_MAP0, 1 << adap->pf, 0); 5457 } 5458 5459 /** 5460 * t4_intr_clear - clear all interrupts 5461 * @adap: the adapter whose interrupts should be cleared 5462 * 5463 * Clears all interrupts. The caller must be a PCI function managing 5464 * global interrupts. 5465 */ 5466 void t4_intr_clear(struct adapter *adap) 5467 { 5468 static const u32 cause_reg[] = { 5469 A_CIM_HOST_INT_CAUSE, 5470 A_CIM_HOST_UPACC_INT_CAUSE, 5471 MYPF_REG(A_CIM_PF_HOST_INT_CAUSE), 5472 A_CPL_INTR_CAUSE, 5473 EDC_REG(A_EDC_INT_CAUSE, 0), EDC_REG(A_EDC_INT_CAUSE, 1), 5474 A_LE_DB_INT_CAUSE, 5475 A_MA_INT_WRAP_STATUS, 5476 A_MA_PARITY_ERROR_STATUS1, 5477 A_MA_INT_CAUSE, 5478 A_MPS_CLS_INT_CAUSE, 5479 A_MPS_RX_PERR_INT_CAUSE, 5480 A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO, 5481 A_MPS_STAT_PERR_INT_CAUSE_SRAM, 5482 A_MPS_TRC_INT_CAUSE, 5483 A_MPS_TX_INT_CAUSE, 5484 A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO, 5485 A_NCSI_INT_CAUSE, 5486 A_PCIE_INT_CAUSE, 5487 A_PCIE_NONFAT_ERR, 5488 A_PL_PL_INT_CAUSE, 5489 A_PM_RX_INT_CAUSE, 5490 A_PM_TX_INT_CAUSE, 5491 A_SGE_INT_CAUSE1, 5492 A_SGE_INT_CAUSE2, 5493 A_SGE_INT_CAUSE3, 5494 A_SGE_INT_CAUSE4, 5495 A_SMB_INT_CAUSE, 5496 A_TP_INT_CAUSE, 5497 A_ULP_RX_INT_CAUSE, 5498 A_ULP_RX_INT_CAUSE_2, 5499 A_ULP_TX_INT_CAUSE, 5500 A_ULP_TX_INT_CAUSE_2, 5501 5502 MYPF_REG(A_PL_PF_INT_CAUSE), 5503 }; 5504 int i; 5505 const int nchan = adap->chip_params->nchan; 5506 5507 for (i = 0; i < ARRAY_SIZE(cause_reg); i++) 5508 t4_write_reg(adap, cause_reg[i], 0xffffffff); 5509 5510 if (is_t4(adap)) { 5511 t4_write_reg(adap, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS, 5512 0xffffffff); 5513 t4_write_reg(adap, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS, 5514 0xffffffff); 5515 t4_write_reg(adap, A_MC_INT_CAUSE, 0xffffffff); 5516 for (i = 0; i < nchan; i++) { 5517 t4_write_reg(adap, PORT_REG(i, A_XGMAC_PORT_INT_CAUSE), 5518 0xffffffff); 5519 } 5520 } 5521 if (chip_id(adap) >= CHELSIO_T5) { 5522 t4_write_reg(adap, A_MA_PARITY_ERROR_STATUS2, 0xffffffff); 5523 t4_write_reg(adap, A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 0xffffffff); 5524 t4_write_reg(adap, A_SGE_INT_CAUSE5, 0xffffffff); 5525 t4_write_reg(adap, A_MC_P_INT_CAUSE, 0xffffffff); 5526 if (is_t5(adap)) { 5527 t4_write_reg(adap, MC_REG(A_MC_P_INT_CAUSE, 1), 5528 0xffffffff); 5529 } 5530 for (i = 0; i < nchan; i++) { 5531 t4_write_reg(adap, T5_PORT_REG(i, 5532 A_MAC_PORT_PERR_INT_CAUSE), 0xffffffff); 5533 if (chip_id(adap) > CHELSIO_T5) { 5534 t4_write_reg(adap, T5_PORT_REG(i, 5535 A_MAC_PORT_PERR_INT_CAUSE_100G), 5536 0xffffffff); 5537 } 5538 t4_write_reg(adap, T5_PORT_REG(i, A_MAC_PORT_INT_CAUSE), 5539 0xffffffff); 5540 } 5541 } 5542 if (chip_id(adap) >= CHELSIO_T6) { 5543 t4_write_reg(adap, A_SGE_INT_CAUSE6, 0xffffffff); 5544 } 5545 5546 t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff); 5547 t4_write_reg(adap, A_PL_PERR_CAUSE, 0xffffffff); 5548 t4_write_reg(adap, A_PL_INT_CAUSE, 0xffffffff); 5549 (void) t4_read_reg(adap, A_PL_INT_CAUSE); /* flush */ 5550 } 5551 5552 /** 5553 * hash_mac_addr - return the hash value of a MAC address 5554 * @addr: the 48-bit Ethernet MAC address 5555 * 5556 * Hashes a MAC address according to the hash function used by HW inexact 5557 * (hash) address matching. 5558 */ 5559 static int hash_mac_addr(const u8 *addr) 5560 { 5561 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2]; 5562 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5]; 5563 a ^= b; 5564 a ^= (a >> 12); 5565 a ^= (a >> 6); 5566 return a & 0x3f; 5567 } 5568 5569 /** 5570 * t4_config_rss_range - configure a portion of the RSS mapping table 5571 * @adapter: the adapter 5572 * @mbox: mbox to use for the FW command 5573 * @viid: virtual interface whose RSS subtable is to be written 5574 * @start: start entry in the table to write 5575 * @n: how many table entries to write 5576 * @rspq: values for the "response queue" (Ingress Queue) lookup table 5577 * @nrspq: number of values in @rspq 5578 * 5579 * Programs the selected part of the VI's RSS mapping table with the 5580 * provided values. If @nrspq < @n the supplied values are used repeatedly 5581 * until the full table range is populated. 5582 * 5583 * The caller must ensure the values in @rspq are in the range allowed for 5584 * @viid. 5585 */ 5586 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 5587 int start, int n, const u16 *rspq, unsigned int nrspq) 5588 { 5589 int ret; 5590 const u16 *rsp = rspq; 5591 const u16 *rsp_end = rspq + nrspq; 5592 struct fw_rss_ind_tbl_cmd cmd; 5593 5594 memset(&cmd, 0, sizeof(cmd)); 5595 cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) | 5596 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 5597 V_FW_RSS_IND_TBL_CMD_VIID(viid)); 5598 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 5599 5600 /* 5601 * Each firmware RSS command can accommodate up to 32 RSS Ingress 5602 * Queue Identifiers. These Ingress Queue IDs are packed three to 5603 * a 32-bit word as 10-bit values with the upper remaining 2 bits 5604 * reserved. 5605 */ 5606 while (n > 0) { 5607 int nq = min(n, 32); 5608 int nq_packed = 0; 5609 __be32 *qp = &cmd.iq0_to_iq2; 5610 5611 /* 5612 * Set up the firmware RSS command header to send the next 5613 * "nq" Ingress Queue IDs to the firmware. 5614 */ 5615 cmd.niqid = cpu_to_be16(nq); 5616 cmd.startidx = cpu_to_be16(start); 5617 5618 /* 5619 * "nq" more done for the start of the next loop. 5620 */ 5621 start += nq; 5622 n -= nq; 5623 5624 /* 5625 * While there are still Ingress Queue IDs to stuff into the 5626 * current firmware RSS command, retrieve them from the 5627 * Ingress Queue ID array and insert them into the command. 5628 */ 5629 while (nq > 0) { 5630 /* 5631 * Grab up to the next 3 Ingress Queue IDs (wrapping 5632 * around the Ingress Queue ID array if necessary) and 5633 * insert them into the firmware RSS command at the 5634 * current 3-tuple position within the commad. 5635 */ 5636 u16 qbuf[3]; 5637 u16 *qbp = qbuf; 5638 int nqbuf = min(3, nq); 5639 5640 nq -= nqbuf; 5641 qbuf[0] = qbuf[1] = qbuf[2] = 0; 5642 while (nqbuf && nq_packed < 32) { 5643 nqbuf--; 5644 nq_packed++; 5645 *qbp++ = *rsp++; 5646 if (rsp >= rsp_end) 5647 rsp = rspq; 5648 } 5649 *qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) | 5650 V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) | 5651 V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2])); 5652 } 5653 5654 /* 5655 * Send this portion of the RRS table update to the firmware; 5656 * bail out on any errors. 5657 */ 5658 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 5659 if (ret) 5660 return ret; 5661 } 5662 return 0; 5663 } 5664 5665 /** 5666 * t4_config_glbl_rss - configure the global RSS mode 5667 * @adapter: the adapter 5668 * @mbox: mbox to use for the FW command 5669 * @mode: global RSS mode 5670 * @flags: mode-specific flags 5671 * 5672 * Sets the global RSS mode. 5673 */ 5674 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 5675 unsigned int flags) 5676 { 5677 struct fw_rss_glb_config_cmd c; 5678 5679 memset(&c, 0, sizeof(c)); 5680 c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) | 5681 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 5682 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5683 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 5684 c.u.manual.mode_pkd = 5685 cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode)); 5686 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 5687 c.u.basicvirtual.mode_keymode = 5688 cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode)); 5689 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); 5690 } else 5691 return -EINVAL; 5692 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5693 } 5694 5695 /** 5696 * t4_config_vi_rss - configure per VI RSS settings 5697 * @adapter: the adapter 5698 * @mbox: mbox to use for the FW command 5699 * @viid: the VI id 5700 * @flags: RSS flags 5701 * @defq: id of the default RSS queue for the VI. 5702 * @skeyidx: RSS secret key table index for non-global mode 5703 * @skey: RSS vf_scramble key for VI. 5704 * 5705 * Configures VI-specific RSS properties. 5706 */ 5707 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, 5708 unsigned int flags, unsigned int defq, unsigned int skeyidx, 5709 unsigned int skey) 5710 { 5711 struct fw_rss_vi_config_cmd c; 5712 5713 memset(&c, 0, sizeof(c)); 5714 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) | 5715 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 5716 V_FW_RSS_VI_CONFIG_CMD_VIID(viid)); 5717 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5718 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | 5719 V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq)); 5720 c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32( 5721 V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx)); 5722 c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey); 5723 5724 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5725 } 5726 5727 /* Read an RSS table row */ 5728 static int rd_rss_row(struct adapter *adap, int row, u32 *val) 5729 { 5730 t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row); 5731 return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1, 5732 5, 0, val); 5733 } 5734 5735 /** 5736 * t4_read_rss - read the contents of the RSS mapping table 5737 * @adapter: the adapter 5738 * @map: holds the contents of the RSS mapping table 5739 * 5740 * Reads the contents of the RSS hash->queue mapping table. 5741 */ 5742 int t4_read_rss(struct adapter *adapter, u16 *map) 5743 { 5744 u32 val; 5745 int i, ret; 5746 int rss_nentries = adapter->chip_params->rss_nentries; 5747 5748 for (i = 0; i < rss_nentries / 2; ++i) { 5749 ret = rd_rss_row(adapter, i, &val); 5750 if (ret) 5751 return ret; 5752 *map++ = G_LKPTBLQUEUE0(val); 5753 *map++ = G_LKPTBLQUEUE1(val); 5754 } 5755 return 0; 5756 } 5757 5758 /** 5759 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST 5760 * @adap: the adapter 5761 * @cmd: TP fw ldst address space type 5762 * @vals: where the indirect register values are stored/written 5763 * @nregs: how many indirect registers to read/write 5764 * @start_idx: index of first indirect register to read/write 5765 * @rw: Read (1) or Write (0) 5766 * @sleep_ok: if true we may sleep while awaiting command completion 5767 * 5768 * Access TP indirect registers through LDST 5769 **/ 5770 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals, 5771 unsigned int nregs, unsigned int start_index, 5772 unsigned int rw, bool sleep_ok) 5773 { 5774 int ret = 0; 5775 unsigned int i; 5776 struct fw_ldst_cmd c; 5777 5778 for (i = 0; i < nregs; i++) { 5779 memset(&c, 0, sizeof(c)); 5780 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 5781 F_FW_CMD_REQUEST | 5782 (rw ? F_FW_CMD_READ : 5783 F_FW_CMD_WRITE) | 5784 V_FW_LDST_CMD_ADDRSPACE(cmd)); 5785 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5786 5787 c.u.addrval.addr = cpu_to_be32(start_index + i); 5788 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); 5789 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, 5790 sleep_ok); 5791 if (ret) 5792 return ret; 5793 5794 if (rw) 5795 vals[i] = be32_to_cpu(c.u.addrval.val); 5796 } 5797 return 0; 5798 } 5799 5800 /** 5801 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor 5802 * @adap: the adapter 5803 * @reg_addr: Address Register 5804 * @reg_data: Data register 5805 * @buff: where the indirect register values are stored/written 5806 * @nregs: how many indirect registers to read/write 5807 * @start_index: index of first indirect register to read/write 5808 * @rw: READ(1) or WRITE(0) 5809 * @sleep_ok: if true we may sleep while awaiting command completion 5810 * 5811 * Read/Write TP indirect registers through LDST if possible. 5812 * Else, use backdoor access 5813 **/ 5814 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data, 5815 u32 *buff, u32 nregs, u32 start_index, int rw, 5816 bool sleep_ok) 5817 { 5818 int rc = -EINVAL; 5819 int cmd; 5820 5821 switch (reg_addr) { 5822 case A_TP_PIO_ADDR: 5823 cmd = FW_LDST_ADDRSPC_TP_PIO; 5824 break; 5825 case A_TP_TM_PIO_ADDR: 5826 cmd = FW_LDST_ADDRSPC_TP_TM_PIO; 5827 break; 5828 case A_TP_MIB_INDEX: 5829 cmd = FW_LDST_ADDRSPC_TP_MIB; 5830 break; 5831 default: 5832 goto indirect_access; 5833 } 5834 5835 if (t4_use_ldst(adap)) 5836 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw, 5837 sleep_ok); 5838 5839 indirect_access: 5840 5841 if (rc) { 5842 if (rw) 5843 t4_read_indirect(adap, reg_addr, reg_data, buff, nregs, 5844 start_index); 5845 else 5846 t4_write_indirect(adap, reg_addr, reg_data, buff, nregs, 5847 start_index); 5848 } 5849 } 5850 5851 /** 5852 * t4_tp_pio_read - Read TP PIO registers 5853 * @adap: the adapter 5854 * @buff: where the indirect register values are written 5855 * @nregs: how many indirect registers to read 5856 * @start_index: index of first indirect register to read 5857 * @sleep_ok: if true we may sleep while awaiting command completion 5858 * 5859 * Read TP PIO Registers 5860 **/ 5861 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5862 u32 start_index, bool sleep_ok) 5863 { 5864 t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs, 5865 start_index, 1, sleep_ok); 5866 } 5867 5868 /** 5869 * t4_tp_pio_write - Write TP PIO registers 5870 * @adap: the adapter 5871 * @buff: where the indirect register values are stored 5872 * @nregs: how many indirect registers to write 5873 * @start_index: index of first indirect register to write 5874 * @sleep_ok: if true we may sleep while awaiting command completion 5875 * 5876 * Write TP PIO Registers 5877 **/ 5878 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs, 5879 u32 start_index, bool sleep_ok) 5880 { 5881 t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, 5882 __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok); 5883 } 5884 5885 /** 5886 * t4_tp_tm_pio_read - Read TP TM PIO registers 5887 * @adap: the adapter 5888 * @buff: where the indirect register values are written 5889 * @nregs: how many indirect registers to read 5890 * @start_index: index of first indirect register to read 5891 * @sleep_ok: if true we may sleep while awaiting command completion 5892 * 5893 * Read TP TM PIO Registers 5894 **/ 5895 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5896 u32 start_index, bool sleep_ok) 5897 { 5898 t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff, 5899 nregs, start_index, 1, sleep_ok); 5900 } 5901 5902 /** 5903 * t4_tp_mib_read - Read TP MIB registers 5904 * @adap: the adapter 5905 * @buff: where the indirect register values are written 5906 * @nregs: how many indirect registers to read 5907 * @start_index: index of first indirect register to read 5908 * @sleep_ok: if true we may sleep while awaiting command completion 5909 * 5910 * Read TP MIB Registers 5911 **/ 5912 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, 5913 bool sleep_ok) 5914 { 5915 t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs, 5916 start_index, 1, sleep_ok); 5917 } 5918 5919 /** 5920 * t4_read_rss_key - read the global RSS key 5921 * @adap: the adapter 5922 * @key: 10-entry array holding the 320-bit RSS key 5923 * @sleep_ok: if true we may sleep while awaiting command completion 5924 * 5925 * Reads the global 320-bit RSS key. 5926 */ 5927 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok) 5928 { 5929 t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok); 5930 } 5931 5932 /** 5933 * t4_write_rss_key - program one of the RSS keys 5934 * @adap: the adapter 5935 * @key: 10-entry array holding the 320-bit RSS key 5936 * @idx: which RSS key to write 5937 * @sleep_ok: if true we may sleep while awaiting command completion 5938 * 5939 * Writes one of the RSS keys with the given 320-bit value. If @idx is 5940 * 0..15 the corresponding entry in the RSS key table is written, 5941 * otherwise the global RSS key is written. 5942 */ 5943 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx, 5944 bool sleep_ok) 5945 { 5946 u8 rss_key_addr_cnt = 16; 5947 u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT); 5948 5949 /* 5950 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble), 5951 * allows access to key addresses 16-63 by using KeyWrAddrX 5952 * as index[5:4](upper 2) into key table 5953 */ 5954 if ((chip_id(adap) > CHELSIO_T5) && 5955 (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3)) 5956 rss_key_addr_cnt = 32; 5957 5958 t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok); 5959 5960 if (idx >= 0 && idx < rss_key_addr_cnt) { 5961 if (rss_key_addr_cnt > 16) 5962 t4_write_reg(adap, A_TP_RSS_CONFIG_VRT, 5963 vrt | V_KEYWRADDRX(idx >> 4) | 5964 V_T6_VFWRADDR(idx) | F_KEYWREN); 5965 else 5966 t4_write_reg(adap, A_TP_RSS_CONFIG_VRT, 5967 vrt| V_KEYWRADDR(idx) | F_KEYWREN); 5968 } 5969 } 5970 5971 /** 5972 * t4_read_rss_pf_config - read PF RSS Configuration Table 5973 * @adapter: the adapter 5974 * @index: the entry in the PF RSS table to read 5975 * @valp: where to store the returned value 5976 * @sleep_ok: if true we may sleep while awaiting command completion 5977 * 5978 * Reads the PF RSS Configuration Table at the specified index and returns 5979 * the value found there. 5980 */ 5981 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 5982 u32 *valp, bool sleep_ok) 5983 { 5984 t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok); 5985 } 5986 5987 /** 5988 * t4_write_rss_pf_config - write PF RSS Configuration Table 5989 * @adapter: the adapter 5990 * @index: the entry in the VF RSS table to read 5991 * @val: the value to store 5992 * @sleep_ok: if true we may sleep while awaiting command completion 5993 * 5994 * Writes the PF RSS Configuration Table at the specified index with the 5995 * specified value. 5996 */ 5997 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index, 5998 u32 val, bool sleep_ok) 5999 { 6000 t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index, 6001 sleep_ok); 6002 } 6003 6004 /** 6005 * t4_read_rss_vf_config - read VF RSS Configuration Table 6006 * @adapter: the adapter 6007 * @index: the entry in the VF RSS table to read 6008 * @vfl: where to store the returned VFL 6009 * @vfh: where to store the returned VFH 6010 * @sleep_ok: if true we may sleep while awaiting command completion 6011 * 6012 * Reads the VF RSS Configuration Table at the specified index and returns 6013 * the (VFL, VFH) values found there. 6014 */ 6015 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 6016 u32 *vfl, u32 *vfh, bool sleep_ok) 6017 { 6018 u32 vrt, mask, data; 6019 6020 if (chip_id(adapter) <= CHELSIO_T5) { 6021 mask = V_VFWRADDR(M_VFWRADDR); 6022 data = V_VFWRADDR(index); 6023 } else { 6024 mask = V_T6_VFWRADDR(M_T6_VFWRADDR); 6025 data = V_T6_VFWRADDR(index); 6026 } 6027 /* 6028 * Request that the index'th VF Table values be read into VFL/VFH. 6029 */ 6030 vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT); 6031 vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask); 6032 vrt |= data | F_VFRDEN; 6033 t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt); 6034 6035 /* 6036 * Grab the VFL/VFH values ... 6037 */ 6038 t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok); 6039 t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok); 6040 } 6041 6042 /** 6043 * t4_write_rss_vf_config - write VF RSS Configuration Table 6044 * 6045 * @adapter: the adapter 6046 * @index: the entry in the VF RSS table to write 6047 * @vfl: the VFL to store 6048 * @vfh: the VFH to store 6049 * 6050 * Writes the VF RSS Configuration Table at the specified index with the 6051 * specified (VFL, VFH) values. 6052 */ 6053 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index, 6054 u32 vfl, u32 vfh, bool sleep_ok) 6055 { 6056 u32 vrt, mask, data; 6057 6058 if (chip_id(adapter) <= CHELSIO_T5) { 6059 mask = V_VFWRADDR(M_VFWRADDR); 6060 data = V_VFWRADDR(index); 6061 } else { 6062 mask = V_T6_VFWRADDR(M_T6_VFWRADDR); 6063 data = V_T6_VFWRADDR(index); 6064 } 6065 6066 /* 6067 * Load up VFL/VFH with the values to be written ... 6068 */ 6069 t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok); 6070 t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok); 6071 6072 /* 6073 * Write the VFL/VFH into the VF Table at index'th location. 6074 */ 6075 vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT); 6076 vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask); 6077 vrt |= data | F_VFRDEN; 6078 t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt); 6079 } 6080 6081 /** 6082 * t4_read_rss_pf_map - read PF RSS Map 6083 * @adapter: the adapter 6084 * @sleep_ok: if true we may sleep while awaiting command completion 6085 * 6086 * Reads the PF RSS Map register and returns its value. 6087 */ 6088 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok) 6089 { 6090 u32 pfmap; 6091 6092 t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok); 6093 6094 return pfmap; 6095 } 6096 6097 /** 6098 * t4_write_rss_pf_map - write PF RSS Map 6099 * @adapter: the adapter 6100 * @pfmap: PF RSS Map value 6101 * 6102 * Writes the specified value to the PF RSS Map register. 6103 */ 6104 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok) 6105 { 6106 t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok); 6107 } 6108 6109 /** 6110 * t4_read_rss_pf_mask - read PF RSS Mask 6111 * @adapter: the adapter 6112 * @sleep_ok: if true we may sleep while awaiting command completion 6113 * 6114 * Reads the PF RSS Mask register and returns its value. 6115 */ 6116 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok) 6117 { 6118 u32 pfmask; 6119 6120 t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok); 6121 6122 return pfmask; 6123 } 6124 6125 /** 6126 * t4_write_rss_pf_mask - write PF RSS Mask 6127 * @adapter: the adapter 6128 * @pfmask: PF RSS Mask value 6129 * 6130 * Writes the specified value to the PF RSS Mask register. 6131 */ 6132 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok) 6133 { 6134 t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok); 6135 } 6136 6137 /** 6138 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 6139 * @adap: the adapter 6140 * @v4: holds the TCP/IP counter values 6141 * @v6: holds the TCP/IPv6 counter values 6142 * @sleep_ok: if true we may sleep while awaiting command completion 6143 * 6144 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 6145 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 6146 */ 6147 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 6148 struct tp_tcp_stats *v6, bool sleep_ok) 6149 { 6150 u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1]; 6151 6152 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST) 6153 #define STAT(x) val[STAT_IDX(x)] 6154 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 6155 6156 if (v4) { 6157 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 6158 A_TP_MIB_TCP_OUT_RST, sleep_ok); 6159 v4->tcp_out_rsts = STAT(OUT_RST); 6160 v4->tcp_in_segs = STAT64(IN_SEG); 6161 v4->tcp_out_segs = STAT64(OUT_SEG); 6162 v4->tcp_retrans_segs = STAT64(RXT_SEG); 6163 } 6164 if (v6) { 6165 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 6166 A_TP_MIB_TCP_V6OUT_RST, sleep_ok); 6167 v6->tcp_out_rsts = STAT(OUT_RST); 6168 v6->tcp_in_segs = STAT64(IN_SEG); 6169 v6->tcp_out_segs = STAT64(OUT_SEG); 6170 v6->tcp_retrans_segs = STAT64(RXT_SEG); 6171 } 6172 #undef STAT64 6173 #undef STAT 6174 #undef STAT_IDX 6175 } 6176 6177 /** 6178 * t4_tp_get_err_stats - read TP's error MIB counters 6179 * @adap: the adapter 6180 * @st: holds the counter values 6181 * @sleep_ok: if true we may sleep while awaiting command completion 6182 * 6183 * Returns the values of TP's error counters. 6184 */ 6185 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st, 6186 bool sleep_ok) 6187 { 6188 int nchan = adap->chip_params->nchan; 6189 6190 t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0, 6191 sleep_ok); 6192 6193 t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0, 6194 sleep_ok); 6195 6196 t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0, 6197 sleep_ok); 6198 6199 t4_tp_mib_read(adap, st->tnl_cong_drops, nchan, 6200 A_TP_MIB_TNL_CNG_DROP_0, sleep_ok); 6201 6202 t4_tp_mib_read(adap, st->ofld_chan_drops, nchan, 6203 A_TP_MIB_OFD_CHN_DROP_0, sleep_ok); 6204 6205 t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0, 6206 sleep_ok); 6207 6208 t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan, 6209 A_TP_MIB_OFD_VLN_DROP_0, sleep_ok); 6210 6211 t4_tp_mib_read(adap, st->tcp6_in_errs, nchan, 6212 A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok); 6213 6214 t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP, 6215 sleep_ok); 6216 } 6217 6218 /** 6219 * t4_tp_get_err_stats - read TP's error MIB counters 6220 * @adap: the adapter 6221 * @st: holds the counter values 6222 * @sleep_ok: if true we may sleep while awaiting command completion 6223 * 6224 * Returns the values of TP's error counters. 6225 */ 6226 void t4_tp_get_tnl_stats(struct adapter *adap, struct tp_tnl_stats *st, 6227 bool sleep_ok) 6228 { 6229 int nchan = adap->chip_params->nchan; 6230 6231 t4_tp_mib_read(adap, st->out_pkt, nchan, A_TP_MIB_TNL_OUT_PKT_0, 6232 sleep_ok); 6233 t4_tp_mib_read(adap, st->in_pkt, nchan, A_TP_MIB_TNL_IN_PKT_0, 6234 sleep_ok); 6235 } 6236 6237 /** 6238 * t4_tp_get_proxy_stats - read TP's proxy MIB counters 6239 * @adap: the adapter 6240 * @st: holds the counter values 6241 * 6242 * Returns the values of TP's proxy counters. 6243 */ 6244 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st, 6245 bool sleep_ok) 6246 { 6247 int nchan = adap->chip_params->nchan; 6248 6249 t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok); 6250 } 6251 6252 /** 6253 * t4_tp_get_cpl_stats - read TP's CPL MIB counters 6254 * @adap: the adapter 6255 * @st: holds the counter values 6256 * @sleep_ok: if true we may sleep while awaiting command completion 6257 * 6258 * Returns the values of TP's CPL counters. 6259 */ 6260 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st, 6261 bool sleep_ok) 6262 { 6263 int nchan = adap->chip_params->nchan; 6264 6265 t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok); 6266 6267 t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok); 6268 } 6269 6270 /** 6271 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters 6272 * @adap: the adapter 6273 * @st: holds the counter values 6274 * 6275 * Returns the values of TP's RDMA counters. 6276 */ 6277 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st, 6278 bool sleep_ok) 6279 { 6280 t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT, 6281 sleep_ok); 6282 } 6283 6284 /** 6285 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port 6286 * @adap: the adapter 6287 * @idx: the port index 6288 * @st: holds the counter values 6289 * @sleep_ok: if true we may sleep while awaiting command completion 6290 * 6291 * Returns the values of TP's FCoE counters for the selected port. 6292 */ 6293 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, 6294 struct tp_fcoe_stats *st, bool sleep_ok) 6295 { 6296 u32 val[2]; 6297 6298 t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx, 6299 sleep_ok); 6300 6301 t4_tp_mib_read(adap, &st->frames_drop, 1, 6302 A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok); 6303 6304 t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx, 6305 sleep_ok); 6306 6307 st->octets_ddp = ((u64)val[0] << 32) | val[1]; 6308 } 6309 6310 /** 6311 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters 6312 * @adap: the adapter 6313 * @st: holds the counter values 6314 * @sleep_ok: if true we may sleep while awaiting command completion 6315 * 6316 * Returns the values of TP's counters for non-TCP directly-placed packets. 6317 */ 6318 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st, 6319 bool sleep_ok) 6320 { 6321 u32 val[4]; 6322 6323 t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok); 6324 6325 st->frames = val[0]; 6326 st->drops = val[1]; 6327 st->octets = ((u64)val[2] << 32) | val[3]; 6328 } 6329 6330 /** 6331 * t4_tp_get_tid_stats - read TP's tid MIB counters. 6332 * @adap: the adapter 6333 * @st: holds the counter values 6334 * @sleep_ok: if true we may sleep while awaiting command completion 6335 * 6336 * Returns the values of TP's counters for tids. 6337 */ 6338 void t4_tp_get_tid_stats(struct adapter *adap, struct tp_tid_stats *st, 6339 bool sleep_ok) 6340 { 6341 6342 t4_tp_mib_read(adap, &st->del, 4, A_TP_MIB_TID_DEL, sleep_ok); 6343 } 6344 6345 /** 6346 * t4_read_mtu_tbl - returns the values in the HW path MTU table 6347 * @adap: the adapter 6348 * @mtus: where to store the MTU values 6349 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 6350 * 6351 * Reads the HW path MTU table. 6352 */ 6353 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 6354 { 6355 u32 v; 6356 int i; 6357 6358 for (i = 0; i < NMTUS; ++i) { 6359 t4_write_reg(adap, A_TP_MTU_TABLE, 6360 V_MTUINDEX(0xff) | V_MTUVALUE(i)); 6361 v = t4_read_reg(adap, A_TP_MTU_TABLE); 6362 mtus[i] = G_MTUVALUE(v); 6363 if (mtu_log) 6364 mtu_log[i] = G_MTUWIDTH(v); 6365 } 6366 } 6367 6368 /** 6369 * t4_read_cong_tbl - reads the congestion control table 6370 * @adap: the adapter 6371 * @incr: where to store the alpha values 6372 * 6373 * Reads the additive increments programmed into the HW congestion 6374 * control table. 6375 */ 6376 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 6377 { 6378 unsigned int mtu, w; 6379 6380 for (mtu = 0; mtu < NMTUS; ++mtu) 6381 for (w = 0; w < NCCTRL_WIN; ++w) { 6382 t4_write_reg(adap, A_TP_CCTRL_TABLE, 6383 V_ROWINDEX(0xffff) | (mtu << 5) | w); 6384 incr[mtu][w] = (u16)t4_read_reg(adap, 6385 A_TP_CCTRL_TABLE) & 0x1fff; 6386 } 6387 } 6388 6389 /** 6390 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 6391 * @adap: the adapter 6392 * @addr: the indirect TP register address 6393 * @mask: specifies the field within the register to modify 6394 * @val: new value for the field 6395 * 6396 * Sets a field of an indirect TP register to the given value. 6397 */ 6398 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 6399 unsigned int mask, unsigned int val) 6400 { 6401 t4_write_reg(adap, A_TP_PIO_ADDR, addr); 6402 val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask; 6403 t4_write_reg(adap, A_TP_PIO_DATA, val); 6404 } 6405 6406 /** 6407 * init_cong_ctrl - initialize congestion control parameters 6408 * @a: the alpha values for congestion control 6409 * @b: the beta values for congestion control 6410 * 6411 * Initialize the congestion control parameters. 6412 */ 6413 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 6414 { 6415 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 6416 a[9] = 2; 6417 a[10] = 3; 6418 a[11] = 4; 6419 a[12] = 5; 6420 a[13] = 6; 6421 a[14] = 7; 6422 a[15] = 8; 6423 a[16] = 9; 6424 a[17] = 10; 6425 a[18] = 14; 6426 a[19] = 17; 6427 a[20] = 21; 6428 a[21] = 25; 6429 a[22] = 30; 6430 a[23] = 35; 6431 a[24] = 45; 6432 a[25] = 60; 6433 a[26] = 80; 6434 a[27] = 100; 6435 a[28] = 200; 6436 a[29] = 300; 6437 a[30] = 400; 6438 a[31] = 500; 6439 6440 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 6441 b[9] = b[10] = 1; 6442 b[11] = b[12] = 2; 6443 b[13] = b[14] = b[15] = b[16] = 3; 6444 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 6445 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 6446 b[28] = b[29] = 6; 6447 b[30] = b[31] = 7; 6448 } 6449 6450 /* The minimum additive increment value for the congestion control table */ 6451 #define CC_MIN_INCR 2U 6452 6453 /** 6454 * t4_load_mtus - write the MTU and congestion control HW tables 6455 * @adap: the adapter 6456 * @mtus: the values for the MTU table 6457 * @alpha: the values for the congestion control alpha parameter 6458 * @beta: the values for the congestion control beta parameter 6459 * 6460 * Write the HW MTU table with the supplied MTUs and the high-speed 6461 * congestion control table with the supplied alpha, beta, and MTUs. 6462 * We write the two tables together because the additive increments 6463 * depend on the MTUs. 6464 */ 6465 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 6466 const unsigned short *alpha, const unsigned short *beta) 6467 { 6468 static const unsigned int avg_pkts[NCCTRL_WIN] = { 6469 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 6470 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 6471 28672, 40960, 57344, 81920, 114688, 163840, 229376 6472 }; 6473 6474 unsigned int i, w; 6475 6476 for (i = 0; i < NMTUS; ++i) { 6477 unsigned int mtu = mtus[i]; 6478 unsigned int log2 = fls(mtu); 6479 6480 if (!(mtu & ((1 << log2) >> 2))) /* round */ 6481 log2--; 6482 t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) | 6483 V_MTUWIDTH(log2) | V_MTUVALUE(mtu)); 6484 6485 for (w = 0; w < NCCTRL_WIN; ++w) { 6486 unsigned int inc; 6487 6488 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 6489 CC_MIN_INCR); 6490 6491 t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) | 6492 (w << 16) | (beta[w] << 13) | inc); 6493 } 6494 } 6495 } 6496 6497 /** 6498 * t4_set_pace_tbl - set the pace table 6499 * @adap: the adapter 6500 * @pace_vals: the pace values in microseconds 6501 * @start: index of the first entry in the HW pace table to set 6502 * @n: how many entries to set 6503 * 6504 * Sets (a subset of the) HW pace table. 6505 */ 6506 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals, 6507 unsigned int start, unsigned int n) 6508 { 6509 unsigned int vals[NTX_SCHED], i; 6510 unsigned int tick_ns = dack_ticks_to_usec(adap, 1000); 6511 6512 if (n > NTX_SCHED) 6513 return -ERANGE; 6514 6515 /* convert values from us to dack ticks, rounding to closest value */ 6516 for (i = 0; i < n; i++, pace_vals++) { 6517 vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns; 6518 if (vals[i] > 0x7ff) 6519 return -ERANGE; 6520 if (*pace_vals && vals[i] == 0) 6521 return -ERANGE; 6522 } 6523 for (i = 0; i < n; i++, start++) 6524 t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]); 6525 return 0; 6526 } 6527 6528 /** 6529 * t4_set_sched_bps - set the bit rate for a HW traffic scheduler 6530 * @adap: the adapter 6531 * @kbps: target rate in Kbps 6532 * @sched: the scheduler index 6533 * 6534 * Configure a Tx HW scheduler for the target rate. 6535 */ 6536 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps) 6537 { 6538 unsigned int v, tps, cpt, bpt, delta, mindelta = ~0; 6539 unsigned int clk = adap->params.vpd.cclk * 1000; 6540 unsigned int selected_cpt = 0, selected_bpt = 0; 6541 6542 if (kbps > 0) { 6543 kbps *= 125; /* -> bytes */ 6544 for (cpt = 1; cpt <= 255; cpt++) { 6545 tps = clk / cpt; 6546 bpt = (kbps + tps / 2) / tps; 6547 if (bpt > 0 && bpt <= 255) { 6548 v = bpt * tps; 6549 delta = v >= kbps ? v - kbps : kbps - v; 6550 if (delta < mindelta) { 6551 mindelta = delta; 6552 selected_cpt = cpt; 6553 selected_bpt = bpt; 6554 } 6555 } else if (selected_cpt) 6556 break; 6557 } 6558 if (!selected_cpt) 6559 return -EINVAL; 6560 } 6561 t4_write_reg(adap, A_TP_TM_PIO_ADDR, 6562 A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2); 6563 v = t4_read_reg(adap, A_TP_TM_PIO_DATA); 6564 if (sched & 1) 6565 v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24); 6566 else 6567 v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8); 6568 t4_write_reg(adap, A_TP_TM_PIO_DATA, v); 6569 return 0; 6570 } 6571 6572 /** 6573 * t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler 6574 * @adap: the adapter 6575 * @sched: the scheduler index 6576 * @ipg: the interpacket delay in tenths of nanoseconds 6577 * 6578 * Set the interpacket delay for a HW packet rate scheduler. 6579 */ 6580 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg) 6581 { 6582 unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2; 6583 6584 /* convert ipg to nearest number of core clocks */ 6585 ipg *= core_ticks_per_usec(adap); 6586 ipg = (ipg + 5000) / 10000; 6587 if (ipg > M_TXTIMERSEPQ0) 6588 return -EINVAL; 6589 6590 t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr); 6591 v = t4_read_reg(adap, A_TP_TM_PIO_DATA); 6592 if (sched & 1) 6593 v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg); 6594 else 6595 v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg); 6596 t4_write_reg(adap, A_TP_TM_PIO_DATA, v); 6597 t4_read_reg(adap, A_TP_TM_PIO_DATA); 6598 return 0; 6599 } 6600 6601 /* 6602 * Calculates a rate in bytes/s given the number of 256-byte units per 4K core 6603 * clocks. The formula is 6604 * 6605 * bytes/s = bytes256 * 256 * ClkFreq / 4096 6606 * 6607 * which is equivalent to 6608 * 6609 * bytes/s = 62.5 * bytes256 * ClkFreq_ms 6610 */ 6611 static u64 chan_rate(struct adapter *adap, unsigned int bytes256) 6612 { 6613 u64 v = (u64)bytes256 * adap->params.vpd.cclk; 6614 6615 return v * 62 + v / 2; 6616 } 6617 6618 /** 6619 * t4_get_chan_txrate - get the current per channel Tx rates 6620 * @adap: the adapter 6621 * @nic_rate: rates for NIC traffic 6622 * @ofld_rate: rates for offloaded traffic 6623 * 6624 * Return the current Tx rates in bytes/s for NIC and offloaded traffic 6625 * for each channel. 6626 */ 6627 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) 6628 { 6629 u32 v; 6630 6631 v = t4_read_reg(adap, A_TP_TX_TRATE); 6632 nic_rate[0] = chan_rate(adap, G_TNLRATE0(v)); 6633 nic_rate[1] = chan_rate(adap, G_TNLRATE1(v)); 6634 if (adap->chip_params->nchan > 2) { 6635 nic_rate[2] = chan_rate(adap, G_TNLRATE2(v)); 6636 nic_rate[3] = chan_rate(adap, G_TNLRATE3(v)); 6637 } 6638 6639 v = t4_read_reg(adap, A_TP_TX_ORATE); 6640 ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v)); 6641 ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v)); 6642 if (adap->chip_params->nchan > 2) { 6643 ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v)); 6644 ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v)); 6645 } 6646 } 6647 6648 /** 6649 * t4_set_trace_filter - configure one of the tracing filters 6650 * @adap: the adapter 6651 * @tp: the desired trace filter parameters 6652 * @idx: which filter to configure 6653 * @enable: whether to enable or disable the filter 6654 * 6655 * Configures one of the tracing filters available in HW. If @tp is %NULL 6656 * it indicates that the filter is already written in the register and it 6657 * just needs to be enabled or disabled. 6658 */ 6659 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, 6660 int idx, int enable) 6661 { 6662 int i, ofst = idx * 4; 6663 u32 data_reg, mask_reg, cfg; 6664 u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN; 6665 6666 if (idx < 0 || idx >= NTRACE) 6667 return -EINVAL; 6668 6669 if (tp == NULL || !enable) { 6670 t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 6671 enable ? en : 0); 6672 return 0; 6673 } 6674 6675 /* 6676 * TODO - After T4 data book is updated, specify the exact 6677 * section below. 6678 * 6679 * See T4 data book - MPS section for a complete description 6680 * of the below if..else handling of A_MPS_TRC_CFG register 6681 * value. 6682 */ 6683 cfg = t4_read_reg(adap, A_MPS_TRC_CFG); 6684 if (cfg & F_TRCMULTIFILTER) { 6685 /* 6686 * If multiple tracers are enabled, then maximum 6687 * capture size is 2.5KB (FIFO size of a single channel) 6688 * minus 2 flits for CPL_TRACE_PKT header. 6689 */ 6690 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) 6691 return -EINVAL; 6692 } else { 6693 /* 6694 * If multiple tracers are disabled, to avoid deadlocks 6695 * maximum packet capture size of 9600 bytes is recommended. 6696 * Also in this mode, only trace0 can be enabled and running. 6697 */ 6698 if (tp->snap_len > 9600 || idx) 6699 return -EINVAL; 6700 } 6701 6702 if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 || 6703 tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET || 6704 tp->min_len > M_TFMINPKTSIZE) 6705 return -EINVAL; 6706 6707 /* stop the tracer we'll be changing */ 6708 t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0); 6709 6710 idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH); 6711 data_reg = A_MPS_TRC_FILTER0_MATCH + idx; 6712 mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx; 6713 6714 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 6715 t4_write_reg(adap, data_reg, tp->data[i]); 6716 t4_write_reg(adap, mask_reg, ~tp->mask[i]); 6717 } 6718 t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst, 6719 V_TFCAPTUREMAX(tp->snap_len) | 6720 V_TFMINPKTSIZE(tp->min_len)); 6721 t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, 6722 V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en | 6723 (is_t4(adap) ? 6724 V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) : 6725 V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert))); 6726 6727 return 0; 6728 } 6729 6730 /** 6731 * t4_get_trace_filter - query one of the tracing filters 6732 * @adap: the adapter 6733 * @tp: the current trace filter parameters 6734 * @idx: which trace filter to query 6735 * @enabled: non-zero if the filter is enabled 6736 * 6737 * Returns the current settings of one of the HW tracing filters. 6738 */ 6739 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, 6740 int *enabled) 6741 { 6742 u32 ctla, ctlb; 6743 int i, ofst = idx * 4; 6744 u32 data_reg, mask_reg; 6745 6746 ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst); 6747 ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst); 6748 6749 if (is_t4(adap)) { 6750 *enabled = !!(ctla & F_TFEN); 6751 tp->port = G_TFPORT(ctla); 6752 tp->invert = !!(ctla & F_TFINVERTMATCH); 6753 } else { 6754 *enabled = !!(ctla & F_T5_TFEN); 6755 tp->port = G_T5_TFPORT(ctla); 6756 tp->invert = !!(ctla & F_T5_TFINVERTMATCH); 6757 } 6758 tp->snap_len = G_TFCAPTUREMAX(ctlb); 6759 tp->min_len = G_TFMINPKTSIZE(ctlb); 6760 tp->skip_ofst = G_TFOFFSET(ctla); 6761 tp->skip_len = G_TFLENGTH(ctla); 6762 6763 ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx; 6764 data_reg = A_MPS_TRC_FILTER0_MATCH + ofst; 6765 mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst; 6766 6767 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 6768 tp->mask[i] = ~t4_read_reg(adap, mask_reg); 6769 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; 6770 } 6771 } 6772 6773 /** 6774 * t4_pmtx_get_stats - returns the HW stats from PMTX 6775 * @adap: the adapter 6776 * @cnt: where to store the count statistics 6777 * @cycles: where to store the cycle statistics 6778 * 6779 * Returns performance statistics from PMTX. 6780 */ 6781 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6782 { 6783 int i; 6784 u32 data[2]; 6785 6786 for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) { 6787 t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1); 6788 cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT); 6789 if (is_t4(adap)) 6790 cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB); 6791 else { 6792 t4_read_indirect(adap, A_PM_TX_DBG_CTRL, 6793 A_PM_TX_DBG_DATA, data, 2, 6794 A_PM_TX_DBG_STAT_MSB); 6795 cycles[i] = (((u64)data[0] << 32) | data[1]); 6796 } 6797 } 6798 } 6799 6800 /** 6801 * t4_pmrx_get_stats - returns the HW stats from PMRX 6802 * @adap: the adapter 6803 * @cnt: where to store the count statistics 6804 * @cycles: where to store the cycle statistics 6805 * 6806 * Returns performance statistics from PMRX. 6807 */ 6808 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6809 { 6810 int i; 6811 u32 data[2]; 6812 6813 for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) { 6814 t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1); 6815 cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT); 6816 if (is_t4(adap)) { 6817 cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB); 6818 } else { 6819 t4_read_indirect(adap, A_PM_RX_DBG_CTRL, 6820 A_PM_RX_DBG_DATA, data, 2, 6821 A_PM_RX_DBG_STAT_MSB); 6822 cycles[i] = (((u64)data[0] << 32) | data[1]); 6823 } 6824 } 6825 } 6826 6827 /** 6828 * t4_get_mps_bg_map - return the buffer groups associated with a port 6829 * @adap: the adapter 6830 * @idx: the port index 6831 * 6832 * Returns a bitmap indicating which MPS buffer groups are associated 6833 * with the given port. Bit i is set if buffer group i is used by the 6834 * port. 6835 */ 6836 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx) 6837 { 6838 u32 n; 6839 6840 if (adap->params.mps_bg_map) 6841 return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff); 6842 6843 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL)); 6844 if (n == 0) 6845 return idx == 0 ? 0xf : 0; 6846 if (n == 1 && chip_id(adap) <= CHELSIO_T5) 6847 return idx < 2 ? (3 << (2 * idx)) : 0; 6848 return 1 << idx; 6849 } 6850 6851 /* 6852 * TP RX e-channels associated with the port. 6853 */ 6854 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx) 6855 { 6856 u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL)); 6857 const u32 all_chan = (1 << adap->chip_params->nchan) - 1; 6858 6859 if (n == 0) 6860 return idx == 0 ? all_chan : 0; 6861 if (n == 1 && chip_id(adap) <= CHELSIO_T5) 6862 return idx < 2 ? (3 << (2 * idx)) : 0; 6863 return 1 << idx; 6864 } 6865 6866 /* 6867 * TP RX c-channel associated with the port. 6868 */ 6869 static unsigned int t4_get_rx_c_chan(struct adapter *adap, int idx) 6870 { 6871 u32 param, val; 6872 int ret; 6873 6874 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 6875 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPCHMAP)); 6876 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 6877 if (!ret) 6878 return (val >> (8 * idx)) & 0xff; 6879 6880 return 0; 6881 } 6882 6883 /** 6884 * t4_get_port_type_description - return Port Type string description 6885 * @port_type: firmware Port Type enumeration 6886 */ 6887 const char *t4_get_port_type_description(enum fw_port_type port_type) 6888 { 6889 static const char *const port_type_description[] = { 6890 "Fiber_XFI", 6891 "Fiber_XAUI", 6892 "BT_SGMII", 6893 "BT_XFI", 6894 "BT_XAUI", 6895 "KX4", 6896 "CX4", 6897 "KX", 6898 "KR", 6899 "SFP", 6900 "BP_AP", 6901 "BP4_AP", 6902 "QSFP_10G", 6903 "QSA", 6904 "QSFP", 6905 "BP40_BA", 6906 "KR4_100G", 6907 "CR4_QSFP", 6908 "CR_QSFP", 6909 "CR2_QSFP", 6910 "SFP28", 6911 "KR_SFP28", 6912 }; 6913 6914 if (port_type < ARRAY_SIZE(port_type_description)) 6915 return port_type_description[port_type]; 6916 return "UNKNOWN"; 6917 } 6918 6919 /** 6920 * t4_get_port_stats_offset - collect port stats relative to a previous 6921 * snapshot 6922 * @adap: The adapter 6923 * @idx: The port 6924 * @stats: Current stats to fill 6925 * @offset: Previous stats snapshot 6926 */ 6927 void t4_get_port_stats_offset(struct adapter *adap, int idx, 6928 struct port_stats *stats, 6929 struct port_stats *offset) 6930 { 6931 u64 *s, *o; 6932 int i; 6933 6934 t4_get_port_stats(adap, idx, stats); 6935 for (i = 0, s = (u64 *)stats, o = (u64 *)offset ; 6936 i < (sizeof(struct port_stats)/sizeof(u64)) ; 6937 i++, s++, o++) 6938 *s -= *o; 6939 } 6940 6941 /** 6942 * t4_get_port_stats - collect port statistics 6943 * @adap: the adapter 6944 * @idx: the port index 6945 * @p: the stats structure to fill 6946 * 6947 * Collect statistics related to the given port from HW. 6948 */ 6949 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 6950 { 6951 struct port_info *pi = adap->port[idx]; 6952 u32 bgmap = pi->mps_bg_map; 6953 u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL); 6954 6955 #define GET_STAT(name) \ 6956 t4_read_reg64(adap, \ 6957 (is_t4(adap) ? PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##name##_L) : \ 6958 T5_PORT_REG(pi->tx_chan, A_MPS_PORT_STAT_##name##_L))) 6959 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L) 6960 6961 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 6962 p->tx_octets = GET_STAT(TX_PORT_BYTES); 6963 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 6964 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 6965 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 6966 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 6967 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 6968 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 6969 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 6970 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 6971 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 6972 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 6973 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 6974 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 6975 p->tx_drop = GET_STAT(TX_PORT_DROP); 6976 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 6977 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 6978 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 6979 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 6980 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 6981 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 6982 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 6983 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 6984 6985 if (chip_id(adap) >= CHELSIO_T5) { 6986 if (stat_ctl & F_COUNTPAUSESTATTX) { 6987 p->tx_frames -= p->tx_pause; 6988 p->tx_octets -= p->tx_pause * 64; 6989 } 6990 if (stat_ctl & F_COUNTPAUSEMCTX) 6991 p->tx_mcast_frames -= p->tx_pause; 6992 } 6993 6994 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 6995 p->rx_octets = GET_STAT(RX_PORT_BYTES); 6996 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 6997 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 6998 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 6999 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 7000 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 7001 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 7002 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 7003 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 7004 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 7005 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 7006 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 7007 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 7008 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 7009 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 7010 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 7011 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 7012 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 7013 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 7014 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 7015 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 7016 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 7017 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 7018 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 7019 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 7020 7021 if (pi->fcs_reg != -1) 7022 p->rx_fcs_err = t4_read_reg64(adap, pi->fcs_reg) - pi->fcs_base; 7023 7024 if (chip_id(adap) >= CHELSIO_T5) { 7025 if (stat_ctl & F_COUNTPAUSESTATRX) { 7026 p->rx_frames -= p->rx_pause; 7027 p->rx_octets -= p->rx_pause * 64; 7028 } 7029 if (stat_ctl & F_COUNTPAUSEMCRX) 7030 p->rx_mcast_frames -= p->rx_pause; 7031 } 7032 7033 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 7034 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 7035 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 7036 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 7037 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 7038 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 7039 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 7040 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 7041 7042 #undef GET_STAT 7043 #undef GET_STAT_COM 7044 } 7045 7046 /** 7047 * t4_get_lb_stats - collect loopback port statistics 7048 * @adap: the adapter 7049 * @idx: the loopback port index 7050 * @p: the stats structure to fill 7051 * 7052 * Return HW statistics for the given loopback port. 7053 */ 7054 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) 7055 { 7056 7057 #define GET_STAT(name) \ 7058 t4_read_reg64(adap, \ 7059 (is_t4(adap) ? \ 7060 PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \ 7061 T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L))) 7062 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L) 7063 7064 p->octets = GET_STAT(BYTES); 7065 p->frames = GET_STAT(FRAMES); 7066 p->bcast_frames = GET_STAT(BCAST); 7067 p->mcast_frames = GET_STAT(MCAST); 7068 p->ucast_frames = GET_STAT(UCAST); 7069 p->error_frames = GET_STAT(ERROR); 7070 7071 p->frames_64 = GET_STAT(64B); 7072 p->frames_65_127 = GET_STAT(65B_127B); 7073 p->frames_128_255 = GET_STAT(128B_255B); 7074 p->frames_256_511 = GET_STAT(256B_511B); 7075 p->frames_512_1023 = GET_STAT(512B_1023B); 7076 p->frames_1024_1518 = GET_STAT(1024B_1518B); 7077 p->frames_1519_max = GET_STAT(1519B_MAX); 7078 p->drop = GET_STAT(DROP_FRAMES); 7079 7080 if (idx < adap->params.nports) { 7081 u32 bg = adap2pinfo(adap, idx)->mps_bg_map; 7082 7083 p->ovflow0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; 7084 p->ovflow1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; 7085 p->ovflow2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; 7086 p->ovflow3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; 7087 p->trunc0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; 7088 p->trunc1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; 7089 p->trunc2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; 7090 p->trunc3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; 7091 } 7092 7093 #undef GET_STAT 7094 #undef GET_STAT_COM 7095 } 7096 7097 /** 7098 * t4_wol_magic_enable - enable/disable magic packet WoL 7099 * @adap: the adapter 7100 * @port: the physical port index 7101 * @addr: MAC address expected in magic packets, %NULL to disable 7102 * 7103 * Enables/disables magic packet wake-on-LAN for the selected port. 7104 */ 7105 void t4_wol_magic_enable(struct adapter *adap, unsigned int port, 7106 const u8 *addr) 7107 { 7108 u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg; 7109 7110 if (is_t4(adap)) { 7111 mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO); 7112 mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI); 7113 port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2); 7114 } else { 7115 mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO); 7116 mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI); 7117 port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2); 7118 } 7119 7120 if (addr) { 7121 t4_write_reg(adap, mag_id_reg_l, 7122 (addr[2] << 24) | (addr[3] << 16) | 7123 (addr[4] << 8) | addr[5]); 7124 t4_write_reg(adap, mag_id_reg_h, 7125 (addr[0] << 8) | addr[1]); 7126 } 7127 t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN, 7128 V_MAGICEN(addr != NULL)); 7129 } 7130 7131 /** 7132 * t4_wol_pat_enable - enable/disable pattern-based WoL 7133 * @adap: the adapter 7134 * @port: the physical port index 7135 * @map: bitmap of which HW pattern filters to set 7136 * @mask0: byte mask for bytes 0-63 of a packet 7137 * @mask1: byte mask for bytes 64-127 of a packet 7138 * @crc: Ethernet CRC for selected bytes 7139 * @enable: enable/disable switch 7140 * 7141 * Sets the pattern filters indicated in @map to mask out the bytes 7142 * specified in @mask0/@mask1 in received packets and compare the CRC of 7143 * the resulting packet against @crc. If @enable is %true pattern-based 7144 * WoL is enabled, otherwise disabled. 7145 */ 7146 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map, 7147 u64 mask0, u64 mask1, unsigned int crc, bool enable) 7148 { 7149 int i; 7150 u32 port_cfg_reg; 7151 7152 if (is_t4(adap)) 7153 port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2); 7154 else 7155 port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2); 7156 7157 if (!enable) { 7158 t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0); 7159 return 0; 7160 } 7161 if (map > 0xff) 7162 return -EINVAL; 7163 7164 #define EPIO_REG(name) \ 7165 (is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \ 7166 T5_PORT_REG(port, A_MAC_PORT_EPIO_##name)) 7167 7168 t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32); 7169 t4_write_reg(adap, EPIO_REG(DATA2), mask1); 7170 t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32); 7171 7172 for (i = 0; i < NWOL_PAT; i++, map >>= 1) { 7173 if (!(map & 1)) 7174 continue; 7175 7176 /* write byte masks */ 7177 t4_write_reg(adap, EPIO_REG(DATA0), mask0); 7178 t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR); 7179 t4_read_reg(adap, EPIO_REG(OP)); /* flush */ 7180 if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY) 7181 return -ETIMEDOUT; 7182 7183 /* write CRC */ 7184 t4_write_reg(adap, EPIO_REG(DATA0), crc); 7185 t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR); 7186 t4_read_reg(adap, EPIO_REG(OP)); /* flush */ 7187 if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY) 7188 return -ETIMEDOUT; 7189 } 7190 #undef EPIO_REG 7191 7192 t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN); 7193 return 0; 7194 } 7195 7196 /* t4_mk_filtdelwr - create a delete filter WR 7197 * @ftid: the filter ID 7198 * @wr: the filter work request to populate 7199 * @qid: ingress queue to receive the delete notification 7200 * 7201 * Creates a filter work request to delete the supplied filter. If @qid is 7202 * negative the delete notification is suppressed. 7203 */ 7204 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 7205 { 7206 memset(wr, 0, sizeof(*wr)); 7207 wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR)); 7208 wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16)); 7209 wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) | 7210 V_FW_FILTER_WR_NOREPLY(qid < 0)); 7211 wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER); 7212 if (qid >= 0) 7213 wr->rx_chan_rx_rpl_iq = 7214 cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid)); 7215 } 7216 7217 #define INIT_CMD(var, cmd, rd_wr) do { \ 7218 (var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \ 7219 F_FW_CMD_REQUEST | \ 7220 F_FW_CMD_##rd_wr); \ 7221 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ 7222 } while (0) 7223 7224 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 7225 u32 addr, u32 val) 7226 { 7227 u32 ldst_addrspace; 7228 struct fw_ldst_cmd c; 7229 7230 memset(&c, 0, sizeof(c)); 7231 ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE); 7232 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 7233 F_FW_CMD_REQUEST | 7234 F_FW_CMD_WRITE | 7235 ldst_addrspace); 7236 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 7237 c.u.addrval.addr = cpu_to_be32(addr); 7238 c.u.addrval.val = cpu_to_be32(val); 7239 7240 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7241 } 7242 7243 /** 7244 * t4_mdio_rd - read a PHY register through MDIO 7245 * @adap: the adapter 7246 * @mbox: mailbox to use for the FW command 7247 * @phy_addr: the PHY address 7248 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 7249 * @reg: the register to read 7250 * @valp: where to store the value 7251 * 7252 * Issues a FW command through the given mailbox to read a PHY register. 7253 */ 7254 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 7255 unsigned int mmd, unsigned int reg, unsigned int *valp) 7256 { 7257 int ret; 7258 u32 ldst_addrspace; 7259 struct fw_ldst_cmd c; 7260 7261 memset(&c, 0, sizeof(c)); 7262 ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO); 7263 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 7264 F_FW_CMD_REQUEST | F_FW_CMD_READ | 7265 ldst_addrspace); 7266 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 7267 c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) | 7268 V_FW_LDST_CMD_MMD(mmd)); 7269 c.u.mdio.raddr = cpu_to_be16(reg); 7270 7271 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7272 if (ret == 0) 7273 *valp = be16_to_cpu(c.u.mdio.rval); 7274 return ret; 7275 } 7276 7277 /** 7278 * t4_mdio_wr - write a PHY register through MDIO 7279 * @adap: the adapter 7280 * @mbox: mailbox to use for the FW command 7281 * @phy_addr: the PHY address 7282 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 7283 * @reg: the register to write 7284 * @valp: value to write 7285 * 7286 * Issues a FW command through the given mailbox to write a PHY register. 7287 */ 7288 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 7289 unsigned int mmd, unsigned int reg, unsigned int val) 7290 { 7291 u32 ldst_addrspace; 7292 struct fw_ldst_cmd c; 7293 7294 memset(&c, 0, sizeof(c)); 7295 ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO); 7296 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 7297 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 7298 ldst_addrspace); 7299 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 7300 c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) | 7301 V_FW_LDST_CMD_MMD(mmd)); 7302 c.u.mdio.raddr = cpu_to_be16(reg); 7303 c.u.mdio.rval = cpu_to_be16(val); 7304 7305 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7306 } 7307 7308 /** 7309 * 7310 * t4_sge_decode_idma_state - decode the idma state 7311 * @adap: the adapter 7312 * @state: the state idma is stuck in 7313 */ 7314 void t4_sge_decode_idma_state(struct adapter *adapter, int state) 7315 { 7316 static const char * const t4_decode[] = { 7317 "IDMA_IDLE", 7318 "IDMA_PUSH_MORE_CPL_FIFO", 7319 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 7320 "Not used", 7321 "IDMA_PHYSADDR_SEND_PCIEHDR", 7322 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 7323 "IDMA_PHYSADDR_SEND_PAYLOAD", 7324 "IDMA_SEND_FIFO_TO_IMSG", 7325 "IDMA_FL_REQ_DATA_FL_PREP", 7326 "IDMA_FL_REQ_DATA_FL", 7327 "IDMA_FL_DROP", 7328 "IDMA_FL_H_REQ_HEADER_FL", 7329 "IDMA_FL_H_SEND_PCIEHDR", 7330 "IDMA_FL_H_PUSH_CPL_FIFO", 7331 "IDMA_FL_H_SEND_CPL", 7332 "IDMA_FL_H_SEND_IP_HDR_FIRST", 7333 "IDMA_FL_H_SEND_IP_HDR", 7334 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 7335 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 7336 "IDMA_FL_H_SEND_IP_HDR_PADDING", 7337 "IDMA_FL_D_SEND_PCIEHDR", 7338 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 7339 "IDMA_FL_D_REQ_NEXT_DATA_FL", 7340 "IDMA_FL_SEND_PCIEHDR", 7341 "IDMA_FL_PUSH_CPL_FIFO", 7342 "IDMA_FL_SEND_CPL", 7343 "IDMA_FL_SEND_PAYLOAD_FIRST", 7344 "IDMA_FL_SEND_PAYLOAD", 7345 "IDMA_FL_REQ_NEXT_DATA_FL", 7346 "IDMA_FL_SEND_NEXT_PCIEHDR", 7347 "IDMA_FL_SEND_PADDING", 7348 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 7349 "IDMA_FL_SEND_FIFO_TO_IMSG", 7350 "IDMA_FL_REQ_DATAFL_DONE", 7351 "IDMA_FL_REQ_HEADERFL_DONE", 7352 }; 7353 static const char * const t5_decode[] = { 7354 "IDMA_IDLE", 7355 "IDMA_ALMOST_IDLE", 7356 "IDMA_PUSH_MORE_CPL_FIFO", 7357 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 7358 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 7359 "IDMA_PHYSADDR_SEND_PCIEHDR", 7360 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 7361 "IDMA_PHYSADDR_SEND_PAYLOAD", 7362 "IDMA_SEND_FIFO_TO_IMSG", 7363 "IDMA_FL_REQ_DATA_FL", 7364 "IDMA_FL_DROP", 7365 "IDMA_FL_DROP_SEND_INC", 7366 "IDMA_FL_H_REQ_HEADER_FL", 7367 "IDMA_FL_H_SEND_PCIEHDR", 7368 "IDMA_FL_H_PUSH_CPL_FIFO", 7369 "IDMA_FL_H_SEND_CPL", 7370 "IDMA_FL_H_SEND_IP_HDR_FIRST", 7371 "IDMA_FL_H_SEND_IP_HDR", 7372 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 7373 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 7374 "IDMA_FL_H_SEND_IP_HDR_PADDING", 7375 "IDMA_FL_D_SEND_PCIEHDR", 7376 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 7377 "IDMA_FL_D_REQ_NEXT_DATA_FL", 7378 "IDMA_FL_SEND_PCIEHDR", 7379 "IDMA_FL_PUSH_CPL_FIFO", 7380 "IDMA_FL_SEND_CPL", 7381 "IDMA_FL_SEND_PAYLOAD_FIRST", 7382 "IDMA_FL_SEND_PAYLOAD", 7383 "IDMA_FL_REQ_NEXT_DATA_FL", 7384 "IDMA_FL_SEND_NEXT_PCIEHDR", 7385 "IDMA_FL_SEND_PADDING", 7386 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 7387 }; 7388 static const char * const t6_decode[] = { 7389 "IDMA_IDLE", 7390 "IDMA_PUSH_MORE_CPL_FIFO", 7391 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 7392 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 7393 "IDMA_PHYSADDR_SEND_PCIEHDR", 7394 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 7395 "IDMA_PHYSADDR_SEND_PAYLOAD", 7396 "IDMA_FL_REQ_DATA_FL", 7397 "IDMA_FL_DROP", 7398 "IDMA_FL_DROP_SEND_INC", 7399 "IDMA_FL_H_REQ_HEADER_FL", 7400 "IDMA_FL_H_SEND_PCIEHDR", 7401 "IDMA_FL_H_PUSH_CPL_FIFO", 7402 "IDMA_FL_H_SEND_CPL", 7403 "IDMA_FL_H_SEND_IP_HDR_FIRST", 7404 "IDMA_FL_H_SEND_IP_HDR", 7405 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 7406 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 7407 "IDMA_FL_H_SEND_IP_HDR_PADDING", 7408 "IDMA_FL_D_SEND_PCIEHDR", 7409 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 7410 "IDMA_FL_D_REQ_NEXT_DATA_FL", 7411 "IDMA_FL_SEND_PCIEHDR", 7412 "IDMA_FL_PUSH_CPL_FIFO", 7413 "IDMA_FL_SEND_CPL", 7414 "IDMA_FL_SEND_PAYLOAD_FIRST", 7415 "IDMA_FL_SEND_PAYLOAD", 7416 "IDMA_FL_REQ_NEXT_DATA_FL", 7417 "IDMA_FL_SEND_NEXT_PCIEHDR", 7418 "IDMA_FL_SEND_PADDING", 7419 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 7420 }; 7421 static const u32 sge_regs[] = { 7422 A_SGE_DEBUG_DATA_LOW_INDEX_2, 7423 A_SGE_DEBUG_DATA_LOW_INDEX_3, 7424 A_SGE_DEBUG_DATA_HIGH_INDEX_10, 7425 }; 7426 const char * const *sge_idma_decode; 7427 int sge_idma_decode_nstates; 7428 int i; 7429 unsigned int chip_version = chip_id(adapter); 7430 7431 /* Select the right set of decode strings to dump depending on the 7432 * adapter chip type. 7433 */ 7434 switch (chip_version) { 7435 case CHELSIO_T4: 7436 sge_idma_decode = (const char * const *)t4_decode; 7437 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 7438 break; 7439 7440 case CHELSIO_T5: 7441 sge_idma_decode = (const char * const *)t5_decode; 7442 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 7443 break; 7444 7445 case CHELSIO_T6: 7446 sge_idma_decode = (const char * const *)t6_decode; 7447 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); 7448 break; 7449 7450 default: 7451 CH_ERR(adapter, "Unsupported chip version %d\n", chip_version); 7452 return; 7453 } 7454 7455 if (state < sge_idma_decode_nstates) 7456 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 7457 else 7458 CH_WARN(adapter, "idma state %d unknown\n", state); 7459 7460 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 7461 CH_WARN(adapter, "SGE register %#x value %#x\n", 7462 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 7463 } 7464 7465 /** 7466 * t4_sge_ctxt_flush - flush the SGE context cache 7467 * @adap: the adapter 7468 * @mbox: mailbox to use for the FW command 7469 * 7470 * Issues a FW command through the given mailbox to flush the 7471 * SGE context cache. 7472 */ 7473 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type) 7474 { 7475 int ret; 7476 u32 ldst_addrspace; 7477 struct fw_ldst_cmd c; 7478 7479 memset(&c, 0, sizeof(c)); 7480 ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(ctxt_type == CTXT_EGRESS ? 7481 FW_LDST_ADDRSPC_SGE_EGRC : 7482 FW_LDST_ADDRSPC_SGE_INGC); 7483 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 7484 F_FW_CMD_REQUEST | F_FW_CMD_READ | 7485 ldst_addrspace); 7486 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 7487 c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH); 7488 7489 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7490 return ret; 7491 } 7492 7493 /** 7494 * t4_fw_hello - establish communication with FW 7495 * @adap: the adapter 7496 * @mbox: mailbox to use for the FW command 7497 * @evt_mbox: mailbox to receive async FW events 7498 * @master: specifies the caller's willingness to be the device master 7499 * @state: returns the current device state (if non-NULL) 7500 * 7501 * Issues a command to establish communication with FW. Returns either 7502 * an error (negative integer) or the mailbox of the Master PF. 7503 */ 7504 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 7505 enum dev_master master, enum dev_state *state) 7506 { 7507 int ret; 7508 struct fw_hello_cmd c; 7509 u32 v; 7510 unsigned int master_mbox; 7511 int retries = FW_CMD_HELLO_RETRIES; 7512 7513 retry: 7514 memset(&c, 0, sizeof(c)); 7515 INIT_CMD(c, HELLO, WRITE); 7516 c.err_to_clearinit = cpu_to_be32( 7517 V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) | 7518 V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) | 7519 V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? 7520 mbox : M_FW_HELLO_CMD_MBMASTER) | 7521 V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) | 7522 V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) | 7523 F_FW_HELLO_CMD_CLEARINIT); 7524 7525 /* 7526 * Issue the HELLO command to the firmware. If it's not successful 7527 * but indicates that we got a "busy" or "timeout" condition, retry 7528 * the HELLO until we exhaust our retry limit. If we do exceed our 7529 * retry limit, check to see if the firmware left us any error 7530 * information and report that if so ... 7531 */ 7532 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7533 if (ret != FW_SUCCESS) { 7534 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 7535 goto retry; 7536 return ret; 7537 } 7538 7539 v = be32_to_cpu(c.err_to_clearinit); 7540 master_mbox = G_FW_HELLO_CMD_MBMASTER(v); 7541 if (state) { 7542 if (v & F_FW_HELLO_CMD_ERR) 7543 *state = DEV_STATE_ERR; 7544 else if (v & F_FW_HELLO_CMD_INIT) 7545 *state = DEV_STATE_INIT; 7546 else 7547 *state = DEV_STATE_UNINIT; 7548 } 7549 7550 /* 7551 * If we're not the Master PF then we need to wait around for the 7552 * Master PF Driver to finish setting up the adapter. 7553 * 7554 * Note that we also do this wait if we're a non-Master-capable PF and 7555 * there is no current Master PF; a Master PF may show up momentarily 7556 * and we wouldn't want to fail pointlessly. (This can happen when an 7557 * OS loads lots of different drivers rapidly at the same time). In 7558 * this case, the Master PF returned by the firmware will be 7559 * M_PCIE_FW_MASTER so the test below will work ... 7560 */ 7561 if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 && 7562 master_mbox != mbox) { 7563 int waiting = FW_CMD_HELLO_TIMEOUT; 7564 7565 /* 7566 * Wait for the firmware to either indicate an error or 7567 * initialized state. If we see either of these we bail out 7568 * and report the issue to the caller. If we exhaust the 7569 * "hello timeout" and we haven't exhausted our retries, try 7570 * again. Otherwise bail with a timeout error. 7571 */ 7572 for (;;) { 7573 u32 pcie_fw; 7574 7575 msleep(50); 7576 waiting -= 50; 7577 7578 /* 7579 * If neither Error nor Initialialized are indicated 7580 * by the firmware keep waiting till we exhaust our 7581 * timeout ... and then retry if we haven't exhausted 7582 * our retries ... 7583 */ 7584 pcie_fw = t4_read_reg(adap, A_PCIE_FW); 7585 if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) { 7586 if (waiting <= 0) { 7587 if (retries-- > 0) 7588 goto retry; 7589 7590 return -ETIMEDOUT; 7591 } 7592 continue; 7593 } 7594 7595 /* 7596 * We either have an Error or Initialized condition 7597 * report errors preferentially. 7598 */ 7599 if (state) { 7600 if (pcie_fw & F_PCIE_FW_ERR) 7601 *state = DEV_STATE_ERR; 7602 else if (pcie_fw & F_PCIE_FW_INIT) 7603 *state = DEV_STATE_INIT; 7604 } 7605 7606 /* 7607 * If we arrived before a Master PF was selected and 7608 * there's not a valid Master PF, grab its identity 7609 * for our caller. 7610 */ 7611 if (master_mbox == M_PCIE_FW_MASTER && 7612 (pcie_fw & F_PCIE_FW_MASTER_VLD)) 7613 master_mbox = G_PCIE_FW_MASTER(pcie_fw); 7614 break; 7615 } 7616 } 7617 7618 return master_mbox; 7619 } 7620 7621 /** 7622 * t4_fw_bye - end communication with FW 7623 * @adap: the adapter 7624 * @mbox: mailbox to use for the FW command 7625 * 7626 * Issues a command to terminate communication with FW. 7627 */ 7628 int t4_fw_bye(struct adapter *adap, unsigned int mbox) 7629 { 7630 struct fw_bye_cmd c; 7631 7632 memset(&c, 0, sizeof(c)); 7633 INIT_CMD(c, BYE, WRITE); 7634 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7635 } 7636 7637 /** 7638 * t4_fw_reset - issue a reset to FW 7639 * @adap: the adapter 7640 * @mbox: mailbox to use for the FW command 7641 * @reset: specifies the type of reset to perform 7642 * 7643 * Issues a reset command of the specified type to FW. 7644 */ 7645 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 7646 { 7647 struct fw_reset_cmd c; 7648 7649 memset(&c, 0, sizeof(c)); 7650 INIT_CMD(c, RESET, WRITE); 7651 c.val = cpu_to_be32(reset); 7652 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7653 } 7654 7655 /** 7656 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 7657 * @adap: the adapter 7658 * @mbox: mailbox to use for the FW RESET command (if desired) 7659 * @force: force uP into RESET even if FW RESET command fails 7660 * 7661 * Issues a RESET command to firmware (if desired) with a HALT indication 7662 * and then puts the microprocessor into RESET state. The RESET command 7663 * will only be issued if a legitimate mailbox is provided (mbox <= 7664 * M_PCIE_FW_MASTER). 7665 * 7666 * This is generally used in order for the host to safely manipulate the 7667 * adapter without fear of conflicting with whatever the firmware might 7668 * be doing. The only way out of this state is to RESTART the firmware 7669 * ... 7670 */ 7671 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 7672 { 7673 int ret = 0; 7674 7675 /* 7676 * If a legitimate mailbox is provided, issue a RESET command 7677 * with a HALT indication. 7678 */ 7679 if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) { 7680 struct fw_reset_cmd c; 7681 7682 memset(&c, 0, sizeof(c)); 7683 INIT_CMD(c, RESET, WRITE); 7684 c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE); 7685 c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT); 7686 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7687 } 7688 7689 /* 7690 * Normally we won't complete the operation if the firmware RESET 7691 * command fails but if our caller insists we'll go ahead and put the 7692 * uP into RESET. This can be useful if the firmware is hung or even 7693 * missing ... We'll have to take the risk of putting the uP into 7694 * RESET without the cooperation of firmware in that case. 7695 * 7696 * We also force the firmware's HALT flag to be on in case we bypassed 7697 * the firmware RESET command above or we're dealing with old firmware 7698 * which doesn't have the HALT capability. This will serve as a flag 7699 * for the incoming firmware to know that it's coming out of a HALT 7700 * rather than a RESET ... if it's new enough to understand that ... 7701 */ 7702 if (ret == 0 || force) { 7703 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST); 7704 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 7705 F_PCIE_FW_HALT); 7706 } 7707 7708 /* 7709 * And we always return the result of the firmware RESET command 7710 * even when we force the uP into RESET ... 7711 */ 7712 return ret; 7713 } 7714 7715 /** 7716 * t4_fw_restart - restart the firmware by taking the uP out of RESET 7717 * @adap: the adapter 7718 * 7719 * Restart firmware previously halted by t4_fw_halt(). On successful 7720 * return the previous PF Master remains as the new PF Master and there 7721 * is no need to issue a new HELLO command, etc. 7722 */ 7723 int t4_fw_restart(struct adapter *adap, unsigned int mbox) 7724 { 7725 int ms; 7726 7727 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0); 7728 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 7729 if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT)) 7730 return FW_SUCCESS; 7731 msleep(100); 7732 ms += 100; 7733 } 7734 7735 return -ETIMEDOUT; 7736 } 7737 7738 /** 7739 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 7740 * @adap: the adapter 7741 * @mbox: mailbox to use for the FW RESET command (if desired) 7742 * @fw_data: the firmware image to write 7743 * @size: image size 7744 * @force: force upgrade even if firmware doesn't cooperate 7745 * 7746 * Perform all of the steps necessary for upgrading an adapter's 7747 * firmware image. Normally this requires the cooperation of the 7748 * existing firmware in order to halt all existing activities 7749 * but if an invalid mailbox token is passed in we skip that step 7750 * (though we'll still put the adapter microprocessor into RESET in 7751 * that case). 7752 * 7753 * On successful return the new firmware will have been loaded and 7754 * the adapter will have been fully RESET losing all previous setup 7755 * state. On unsuccessful return the adapter may be completely hosed ... 7756 * positive errno indicates that the adapter is ~probably~ intact, a 7757 * negative errno indicates that things are looking bad ... 7758 */ 7759 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 7760 const u8 *fw_data, unsigned int size, int force) 7761 { 7762 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 7763 unsigned int bootstrap = 7764 be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP; 7765 int ret; 7766 7767 if (!t4_fw_matches_chip(adap, fw_hdr)) 7768 return -EINVAL; 7769 7770 if (!bootstrap) { 7771 ret = t4_fw_halt(adap, mbox, force); 7772 if (ret < 0 && !force) 7773 return ret; 7774 } 7775 7776 ret = t4_load_fw(adap, fw_data, size); 7777 if (ret < 0 || bootstrap) 7778 return ret; 7779 7780 return t4_fw_restart(adap, mbox); 7781 } 7782 7783 /** 7784 * t4_fw_initialize - ask FW to initialize the device 7785 * @adap: the adapter 7786 * @mbox: mailbox to use for the FW command 7787 * 7788 * Issues a command to FW to partially initialize the device. This 7789 * performs initialization that generally doesn't depend on user input. 7790 */ 7791 int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 7792 { 7793 struct fw_initialize_cmd c; 7794 7795 memset(&c, 0, sizeof(c)); 7796 INIT_CMD(c, INITIALIZE, WRITE); 7797 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7798 } 7799 7800 /** 7801 * t4_query_params_rw - query FW or device parameters 7802 * @adap: the adapter 7803 * @mbox: mailbox to use for the FW command 7804 * @pf: the PF 7805 * @vf: the VF 7806 * @nparams: the number of parameters 7807 * @params: the parameter names 7808 * @val: the parameter values 7809 * @rw: Write and read flag 7810 * 7811 * Reads the value of FW or device parameters. Up to 7 parameters can be 7812 * queried at once. 7813 */ 7814 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, 7815 unsigned int vf, unsigned int nparams, const u32 *params, 7816 u32 *val, int rw) 7817 { 7818 int i, ret; 7819 struct fw_params_cmd c; 7820 __be32 *p = &c.param[0].mnem; 7821 7822 if (nparams > 7) 7823 return -EINVAL; 7824 7825 memset(&c, 0, sizeof(c)); 7826 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) | 7827 F_FW_CMD_REQUEST | F_FW_CMD_READ | 7828 V_FW_PARAMS_CMD_PFN(pf) | 7829 V_FW_PARAMS_CMD_VFN(vf)); 7830 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7831 7832 for (i = 0; i < nparams; i++) { 7833 *p++ = cpu_to_be32(*params++); 7834 if (rw) 7835 *p = cpu_to_be32(*(val + i)); 7836 p++; 7837 } 7838 7839 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7840 if (ret == 0) 7841 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 7842 *val++ = be32_to_cpu(*p); 7843 return ret; 7844 } 7845 7846 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7847 unsigned int vf, unsigned int nparams, const u32 *params, 7848 u32 *val) 7849 { 7850 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0); 7851 } 7852 7853 /** 7854 * t4_set_params_timeout - sets FW or device parameters 7855 * @adap: the adapter 7856 * @mbox: mailbox to use for the FW command 7857 * @pf: the PF 7858 * @vf: the VF 7859 * @nparams: the number of parameters 7860 * @params: the parameter names 7861 * @val: the parameter values 7862 * @timeout: the timeout time 7863 * 7864 * Sets the value of FW or device parameters. Up to 7 parameters can be 7865 * specified at once. 7866 */ 7867 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, 7868 unsigned int pf, unsigned int vf, 7869 unsigned int nparams, const u32 *params, 7870 const u32 *val, int timeout) 7871 { 7872 struct fw_params_cmd c; 7873 __be32 *p = &c.param[0].mnem; 7874 7875 if (nparams > 7) 7876 return -EINVAL; 7877 7878 memset(&c, 0, sizeof(c)); 7879 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) | 7880 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 7881 V_FW_PARAMS_CMD_PFN(pf) | 7882 V_FW_PARAMS_CMD_VFN(vf)); 7883 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7884 7885 while (nparams--) { 7886 *p++ = cpu_to_be32(*params++); 7887 *p++ = cpu_to_be32(*val++); 7888 } 7889 7890 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); 7891 } 7892 7893 /** 7894 * t4_set_params - sets FW or device parameters 7895 * @adap: the adapter 7896 * @mbox: mailbox to use for the FW command 7897 * @pf: the PF 7898 * @vf: the VF 7899 * @nparams: the number of parameters 7900 * @params: the parameter names 7901 * @val: the parameter values 7902 * 7903 * Sets the value of FW or device parameters. Up to 7 parameters can be 7904 * specified at once. 7905 */ 7906 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7907 unsigned int vf, unsigned int nparams, const u32 *params, 7908 const u32 *val) 7909 { 7910 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, 7911 FW_CMD_MAX_TIMEOUT); 7912 } 7913 7914 /** 7915 * t4_cfg_pfvf - configure PF/VF resource limits 7916 * @adap: the adapter 7917 * @mbox: mailbox to use for the FW command 7918 * @pf: the PF being configured 7919 * @vf: the VF being configured 7920 * @txq: the max number of egress queues 7921 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 7922 * @rxqi: the max number of interrupt-capable ingress queues 7923 * @rxq: the max number of interruptless ingress queues 7924 * @tc: the PCI traffic class 7925 * @vi: the max number of virtual interfaces 7926 * @cmask: the channel access rights mask for the PF/VF 7927 * @pmask: the port access rights mask for the PF/VF 7928 * @nexact: the maximum number of exact MPS filters 7929 * @rcaps: read capabilities 7930 * @wxcaps: write/execute capabilities 7931 * 7932 * Configures resource limits and capabilities for a physical or virtual 7933 * function. 7934 */ 7935 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 7936 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 7937 unsigned int rxqi, unsigned int rxq, unsigned int tc, 7938 unsigned int vi, unsigned int cmask, unsigned int pmask, 7939 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 7940 { 7941 struct fw_pfvf_cmd c; 7942 7943 memset(&c, 0, sizeof(c)); 7944 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST | 7945 F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) | 7946 V_FW_PFVF_CMD_VFN(vf)); 7947 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7948 c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) | 7949 V_FW_PFVF_CMD_NIQ(rxq)); 7950 c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) | 7951 V_FW_PFVF_CMD_PMASK(pmask) | 7952 V_FW_PFVF_CMD_NEQ(txq)); 7953 c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) | 7954 V_FW_PFVF_CMD_NVI(vi) | 7955 V_FW_PFVF_CMD_NEXACTF(nexact)); 7956 c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) | 7957 V_FW_PFVF_CMD_WX_CAPS(wxcaps) | 7958 V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl)); 7959 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7960 } 7961 7962 /** 7963 * t4_alloc_vi_func - allocate a virtual interface 7964 * @adap: the adapter 7965 * @mbox: mailbox to use for the FW command 7966 * @port: physical port associated with the VI 7967 * @pf: the PF owning the VI 7968 * @vf: the VF owning the VI 7969 * @nmac: number of MAC addresses needed (1 to 5) 7970 * @mac: the MAC addresses of the VI 7971 * @rss_size: size of RSS table slice associated with this VI 7972 * @portfunc: which Port Application Function MAC Address is desired 7973 * @idstype: Intrusion Detection Type 7974 * 7975 * Allocates a virtual interface for the given physical port. If @mac is 7976 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 7977 * If @rss_size is %NULL the VI is not assigned any RSS slice by FW. 7978 * @mac should be large enough to hold @nmac Ethernet addresses, they are 7979 * stored consecutively so the space needed is @nmac * 6 bytes. 7980 * Returns a negative error number or the non-negative VI id. 7981 */ 7982 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox, 7983 unsigned int port, unsigned int pf, unsigned int vf, 7984 unsigned int nmac, u8 *mac, u16 *rss_size, 7985 uint8_t *vfvld, uint16_t *vin, 7986 unsigned int portfunc, unsigned int idstype) 7987 { 7988 int ret; 7989 struct fw_vi_cmd c; 7990 7991 memset(&c, 0, sizeof(c)); 7992 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST | 7993 F_FW_CMD_WRITE | F_FW_CMD_EXEC | 7994 V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf)); 7995 c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c)); 7996 c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) | 7997 V_FW_VI_CMD_FUNC(portfunc)); 7998 c.portid_pkd = V_FW_VI_CMD_PORTID(port); 7999 c.nmac = nmac - 1; 8000 if(!rss_size) 8001 c.norss_rsssize = F_FW_VI_CMD_NORSS; 8002 8003 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 8004 if (ret) 8005 return ret; 8006 ret = G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid)); 8007 8008 if (mac) { 8009 memcpy(mac, c.mac, sizeof(c.mac)); 8010 switch (nmac) { 8011 case 5: 8012 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 8013 case 4: 8014 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 8015 case 3: 8016 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 8017 case 2: 8018 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 8019 } 8020 } 8021 if (rss_size) 8022 *rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize)); 8023 if (vfvld) { 8024 *vfvld = adap->params.viid_smt_extn_support ? 8025 G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16)) : 8026 G_FW_VIID_VIVLD(ret); 8027 } 8028 if (vin) { 8029 *vin = adap->params.viid_smt_extn_support ? 8030 G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16)) : 8031 G_FW_VIID_VIN(ret); 8032 } 8033 8034 return ret; 8035 } 8036 8037 /** 8038 * t4_alloc_vi - allocate an [Ethernet Function] virtual interface 8039 * @adap: the adapter 8040 * @mbox: mailbox to use for the FW command 8041 * @port: physical port associated with the VI 8042 * @pf: the PF owning the VI 8043 * @vf: the VF owning the VI 8044 * @nmac: number of MAC addresses needed (1 to 5) 8045 * @mac: the MAC addresses of the VI 8046 * @rss_size: size of RSS table slice associated with this VI 8047 * 8048 * backwards compatible and convieniance routine to allocate a Virtual 8049 * Interface with a Ethernet Port Application Function and Intrustion 8050 * Detection System disabled. 8051 */ 8052 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 8053 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 8054 u16 *rss_size, uint8_t *vfvld, uint16_t *vin) 8055 { 8056 return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size, 8057 vfvld, vin, FW_VI_FUNC_ETH, 0); 8058 } 8059 8060 /** 8061 * t4_free_vi - free a virtual interface 8062 * @adap: the adapter 8063 * @mbox: mailbox to use for the FW command 8064 * @pf: the PF owning the VI 8065 * @vf: the VF owning the VI 8066 * @viid: virtual interface identifiler 8067 * 8068 * Free a previously allocated virtual interface. 8069 */ 8070 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, 8071 unsigned int vf, unsigned int viid) 8072 { 8073 struct fw_vi_cmd c; 8074 8075 memset(&c, 0, sizeof(c)); 8076 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | 8077 F_FW_CMD_REQUEST | 8078 F_FW_CMD_EXEC | 8079 V_FW_VI_CMD_PFN(pf) | 8080 V_FW_VI_CMD_VFN(vf)); 8081 c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c)); 8082 c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid)); 8083 8084 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 8085 } 8086 8087 /** 8088 * t4_set_rxmode - set Rx properties of a virtual interface 8089 * @adap: the adapter 8090 * @mbox: mailbox to use for the FW command 8091 * @viid: the VI id 8092 * @mtu: the new MTU or -1 8093 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 8094 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 8095 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 8096 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 8097 * @sleep_ok: if true we may sleep while awaiting command completion 8098 * 8099 * Sets Rx properties of a virtual interface. 8100 */ 8101 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 8102 int mtu, int promisc, int all_multi, int bcast, int vlanex, 8103 bool sleep_ok) 8104 { 8105 struct fw_vi_rxmode_cmd c; 8106 8107 /* convert to FW values */ 8108 if (mtu < 0) 8109 mtu = M_FW_VI_RXMODE_CMD_MTU; 8110 if (promisc < 0) 8111 promisc = M_FW_VI_RXMODE_CMD_PROMISCEN; 8112 if (all_multi < 0) 8113 all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN; 8114 if (bcast < 0) 8115 bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN; 8116 if (vlanex < 0) 8117 vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN; 8118 8119 memset(&c, 0, sizeof(c)); 8120 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) | 8121 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 8122 V_FW_VI_RXMODE_CMD_VIID(viid)); 8123 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 8124 c.mtu_to_vlanexen = 8125 cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) | 8126 V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) | 8127 V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) | 8128 V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) | 8129 V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex)); 8130 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 8131 } 8132 8133 /** 8134 * t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support 8135 * @adap: the adapter 8136 * @viid: the VI id 8137 * @mac: the MAC address 8138 * @mask: the mask 8139 * @vni: the VNI id for the tunnel protocol 8140 * @vni_mask: mask for the VNI id 8141 * @dip_hit: to enable DIP match for the MPS entry 8142 * @lookup_type: MAC address for inner (1) or outer (0) header 8143 * @sleep_ok: call is allowed to sleep 8144 * 8145 * Allocates an MPS entry with specified MAC address and VNI value. 8146 * 8147 * Returns a negative error number or the allocated index for this mac. 8148 */ 8149 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid, 8150 const u8 *addr, const u8 *mask, unsigned int vni, 8151 unsigned int vni_mask, u8 dip_hit, u8 lookup_type, 8152 bool sleep_ok) 8153 { 8154 struct fw_vi_mac_cmd c; 8155 struct fw_vi_mac_vni *p = c.u.exact_vni; 8156 int ret = 0; 8157 u32 val; 8158 8159 memset(&c, 0, sizeof(c)); 8160 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | 8161 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 8162 V_FW_VI_MAC_CMD_VIID(viid)); 8163 val = V_FW_CMD_LEN16(1) | 8164 V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC_VNI); 8165 c.freemacs_to_len16 = cpu_to_be32(val); 8166 p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID | 8167 V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC)); 8168 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 8169 memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask)); 8170 8171 p->lookup_type_to_vni = cpu_to_be32(V_FW_VI_MAC_CMD_VNI(vni) | 8172 V_FW_VI_MAC_CMD_DIP_HIT(dip_hit) | 8173 V_FW_VI_MAC_CMD_LOOKUP_TYPE(lookup_type)); 8174 p->vni_mask_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_VNI_MASK(vni_mask)); 8175 8176 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 8177 if (ret == 0) 8178 ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx)); 8179 return ret; 8180 } 8181 8182 /** 8183 * t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam 8184 * @adap: the adapter 8185 * @viid: the VI id 8186 * @mac: the MAC address 8187 * @mask: the mask 8188 * @idx: index at which to add this entry 8189 * @port_id: the port index 8190 * @lookup_type: MAC address for inner (1) or outer (0) header 8191 * @sleep_ok: call is allowed to sleep 8192 * 8193 * Adds the mac entry at the specified index using raw mac interface. 8194 * 8195 * Returns a negative error number or the allocated index for this mac. 8196 */ 8197 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid, 8198 const u8 *addr, const u8 *mask, unsigned int idx, 8199 u8 lookup_type, u8 port_id, bool sleep_ok) 8200 { 8201 int ret = 0; 8202 struct fw_vi_mac_cmd c; 8203 struct fw_vi_mac_raw *p = &c.u.raw; 8204 u32 val; 8205 8206 memset(&c, 0, sizeof(c)); 8207 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | 8208 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 8209 V_FW_VI_MAC_CMD_VIID(viid)); 8210 val = V_FW_CMD_LEN16(1) | 8211 V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW); 8212 c.freemacs_to_len16 = cpu_to_be32(val); 8213 8214 /* Specify that this is an inner mac address */ 8215 p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx)); 8216 8217 /* Lookup Type. Outer header: 0, Inner header: 1 */ 8218 p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) | 8219 V_DATAPORTNUM(port_id)); 8220 /* Lookup mask and port mask */ 8221 p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) | 8222 V_DATAPORTNUM(M_DATAPORTNUM)); 8223 8224 /* Copy the address and the mask */ 8225 memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN); 8226 memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN); 8227 8228 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 8229 if (ret == 0) { 8230 ret = G_FW_VI_MAC_CMD_RAW_IDX(be32_to_cpu(p->raw_idx_pkd)); 8231 if (ret != idx) 8232 ret = -ENOMEM; 8233 } 8234 8235 return ret; 8236 } 8237 8238 /** 8239 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 8240 * @adap: the adapter 8241 * @mbox: mailbox to use for the FW command 8242 * @viid: the VI id 8243 * @free: if true any existing filters for this VI id are first removed 8244 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 8245 * @addr: the MAC address(es) 8246 * @idx: where to store the index of each allocated filter 8247 * @hash: pointer to hash address filter bitmap 8248 * @sleep_ok: call is allowed to sleep 8249 * 8250 * Allocates an exact-match filter for each of the supplied addresses and 8251 * sets it to the corresponding address. If @idx is not %NULL it should 8252 * have at least @naddr entries, each of which will be set to the index of 8253 * the filter allocated for the corresponding MAC address. If a filter 8254 * could not be allocated for an address its index is set to 0xffff. 8255 * If @hash is not %NULL addresses that fail to allocate an exact filter 8256 * are hashed and update the hash filter bitmap pointed at by @hash. 8257 * 8258 * Returns a negative error number or the number of filters allocated. 8259 */ 8260 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 8261 unsigned int viid, bool free, unsigned int naddr, 8262 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 8263 { 8264 int offset, ret = 0; 8265 struct fw_vi_mac_cmd c; 8266 unsigned int nfilters = 0; 8267 unsigned int max_naddr = adap->chip_params->mps_tcam_size; 8268 unsigned int rem = naddr; 8269 8270 if (naddr > max_naddr) 8271 return -EINVAL; 8272 8273 for (offset = 0; offset < naddr ; /**/) { 8274 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) 8275 ? rem 8276 : ARRAY_SIZE(c.u.exact)); 8277 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 8278 u.exact[fw_naddr]), 16); 8279 struct fw_vi_mac_exact *p; 8280 int i; 8281 8282 memset(&c, 0, sizeof(c)); 8283 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | 8284 F_FW_CMD_REQUEST | 8285 F_FW_CMD_WRITE | 8286 V_FW_CMD_EXEC(free) | 8287 V_FW_VI_MAC_CMD_VIID(viid)); 8288 c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) | 8289 V_FW_CMD_LEN16(len16)); 8290 8291 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8292 p->valid_to_idx = 8293 cpu_to_be16(F_FW_VI_MAC_CMD_VALID | 8294 V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC)); 8295 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 8296 } 8297 8298 /* 8299 * It's okay if we run out of space in our MAC address arena. 8300 * Some of the addresses we submit may get stored so we need 8301 * to run through the reply to see what the results were ... 8302 */ 8303 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 8304 if (ret && ret != -FW_ENOMEM) 8305 break; 8306 8307 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8308 u16 index = G_FW_VI_MAC_CMD_IDX( 8309 be16_to_cpu(p->valid_to_idx)); 8310 8311 if (idx) 8312 idx[offset+i] = (index >= max_naddr 8313 ? 0xffff 8314 : index); 8315 if (index < max_naddr) 8316 nfilters++; 8317 else if (hash) 8318 *hash |= (1ULL << hash_mac_addr(addr[offset+i])); 8319 } 8320 8321 free = false; 8322 offset += fw_naddr; 8323 rem -= fw_naddr; 8324 } 8325 8326 if (ret == 0 || ret == -FW_ENOMEM) 8327 ret = nfilters; 8328 return ret; 8329 } 8330 8331 /** 8332 * t4_free_encap_mac_filt - frees MPS entry at given index 8333 * @adap: the adapter 8334 * @viid: the VI id 8335 * @idx: index of MPS entry to be freed 8336 * @sleep_ok: call is allowed to sleep 8337 * 8338 * Frees the MPS entry at supplied index 8339 * 8340 * Returns a negative error number or zero on success 8341 */ 8342 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid, 8343 int idx, bool sleep_ok) 8344 { 8345 struct fw_vi_mac_exact *p; 8346 struct fw_vi_mac_cmd c; 8347 u8 addr[] = {0,0,0,0,0,0}; 8348 int ret = 0; 8349 u32 exact; 8350 8351 memset(&c, 0, sizeof(c)); 8352 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | 8353 F_FW_CMD_REQUEST | 8354 F_FW_CMD_WRITE | 8355 V_FW_CMD_EXEC(0) | 8356 V_FW_VI_MAC_CMD_VIID(viid)); 8357 exact = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC); 8358 c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) | 8359 exact | 8360 V_FW_CMD_LEN16(1)); 8361 p = c.u.exact; 8362 p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID | 8363 V_FW_VI_MAC_CMD_IDX(idx)); 8364 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 8365 8366 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 8367 return ret; 8368 } 8369 8370 /** 8371 * t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam 8372 * @adap: the adapter 8373 * @viid: the VI id 8374 * @addr: the MAC address 8375 * @mask: the mask 8376 * @idx: index of the entry in mps tcam 8377 * @lookup_type: MAC address for inner (1) or outer (0) header 8378 * @port_id: the port index 8379 * @sleep_ok: call is allowed to sleep 8380 * 8381 * Removes the mac entry at the specified index using raw mac interface. 8382 * 8383 * Returns a negative error number on failure. 8384 */ 8385 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid, 8386 const u8 *addr, const u8 *mask, unsigned int idx, 8387 u8 lookup_type, u8 port_id, bool sleep_ok) 8388 { 8389 struct fw_vi_mac_cmd c; 8390 struct fw_vi_mac_raw *p = &c.u.raw; 8391 u32 raw; 8392 8393 memset(&c, 0, sizeof(c)); 8394 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | 8395 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 8396 V_FW_CMD_EXEC(0) | 8397 V_FW_VI_MAC_CMD_VIID(viid)); 8398 raw = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW); 8399 c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) | 8400 raw | 8401 V_FW_CMD_LEN16(1)); 8402 8403 p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx) | 8404 FW_VI_MAC_ID_BASED_FREE); 8405 8406 /* Lookup Type. Outer header: 0, Inner header: 1 */ 8407 p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) | 8408 V_DATAPORTNUM(port_id)); 8409 /* Lookup mask and port mask */ 8410 p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) | 8411 V_DATAPORTNUM(M_DATAPORTNUM)); 8412 8413 /* Copy the address and the mask */ 8414 memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN); 8415 memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN); 8416 8417 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 8418 } 8419 8420 /** 8421 * t4_free_mac_filt - frees exact-match filters of given MAC addresses 8422 * @adap: the adapter 8423 * @mbox: mailbox to use for the FW command 8424 * @viid: the VI id 8425 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 8426 * @addr: the MAC address(es) 8427 * @sleep_ok: call is allowed to sleep 8428 * 8429 * Frees the exact-match filter for each of the supplied addresses 8430 * 8431 * Returns a negative error number or the number of filters freed. 8432 */ 8433 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox, 8434 unsigned int viid, unsigned int naddr, 8435 const u8 **addr, bool sleep_ok) 8436 { 8437 int offset, ret = 0; 8438 struct fw_vi_mac_cmd c; 8439 unsigned int nfilters = 0; 8440 unsigned int max_naddr = adap->chip_params->mps_tcam_size; 8441 unsigned int rem = naddr; 8442 8443 if (naddr > max_naddr) 8444 return -EINVAL; 8445 8446 for (offset = 0; offset < (int)naddr ; /**/) { 8447 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) 8448 ? rem 8449 : ARRAY_SIZE(c.u.exact)); 8450 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 8451 u.exact[fw_naddr]), 16); 8452 struct fw_vi_mac_exact *p; 8453 int i; 8454 8455 memset(&c, 0, sizeof(c)); 8456 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | 8457 F_FW_CMD_REQUEST | 8458 F_FW_CMD_WRITE | 8459 V_FW_CMD_EXEC(0) | 8460 V_FW_VI_MAC_CMD_VIID(viid)); 8461 c.freemacs_to_len16 = 8462 cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) | 8463 V_FW_CMD_LEN16(len16)); 8464 8465 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) { 8466 p->valid_to_idx = cpu_to_be16( 8467 F_FW_VI_MAC_CMD_VALID | 8468 V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE)); 8469 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 8470 } 8471 8472 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 8473 if (ret) 8474 break; 8475 8476 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8477 u16 index = G_FW_VI_MAC_CMD_IDX( 8478 be16_to_cpu(p->valid_to_idx)); 8479 8480 if (index < max_naddr) 8481 nfilters++; 8482 } 8483 8484 offset += fw_naddr; 8485 rem -= fw_naddr; 8486 } 8487 8488 if (ret == 0) 8489 ret = nfilters; 8490 return ret; 8491 } 8492 8493 /** 8494 * t4_change_mac - modifies the exact-match filter for a MAC address 8495 * @adap: the adapter 8496 * @mbox: mailbox to use for the FW command 8497 * @viid: the VI id 8498 * @idx: index of existing filter for old value of MAC address, or -1 8499 * @addr: the new MAC address value 8500 * @persist: whether a new MAC allocation should be persistent 8501 * @smt_idx: add MAC to SMT and return its index, or NULL 8502 * 8503 * Modifies an exact-match filter and sets it to the new MAC address if 8504 * @idx >= 0, or adds the MAC address to a new filter if @idx < 0. In the 8505 * latter case the address is added persistently if @persist is %true. 8506 * 8507 * Note that in general it is not possible to modify the value of a given 8508 * filter so the generic way to modify an address filter is to free the one 8509 * being used by the old address value and allocate a new filter for the 8510 * new address value. 8511 * 8512 * Returns a negative error number or the index of the filter with the new 8513 * MAC value. Note that this index may differ from @idx. 8514 */ 8515 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 8516 int idx, const u8 *addr, bool persist, uint16_t *smt_idx) 8517 { 8518 int ret, mode; 8519 struct fw_vi_mac_cmd c; 8520 struct fw_vi_mac_exact *p = c.u.exact; 8521 unsigned int max_mac_addr = adap->chip_params->mps_tcam_size; 8522 8523 if (idx < 0) /* new allocation */ 8524 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 8525 mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 8526 8527 memset(&c, 0, sizeof(c)); 8528 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | 8529 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 8530 V_FW_VI_MAC_CMD_VIID(viid)); 8531 c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1)); 8532 p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID | 8533 V_FW_VI_MAC_CMD_SMAC_RESULT(mode) | 8534 V_FW_VI_MAC_CMD_IDX(idx)); 8535 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 8536 8537 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 8538 if (ret == 0) { 8539 ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx)); 8540 if (ret >= max_mac_addr) 8541 ret = -ENOMEM; 8542 if (smt_idx) { 8543 if (adap->params.viid_smt_extn_support) 8544 *smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid)); 8545 else { 8546 if (chip_id(adap) <= CHELSIO_T5) 8547 *smt_idx = (viid & M_FW_VIID_VIN) << 1; 8548 else 8549 *smt_idx = viid & M_FW_VIID_VIN; 8550 } 8551 } 8552 } 8553 return ret; 8554 } 8555 8556 /** 8557 * t4_set_addr_hash - program the MAC inexact-match hash filter 8558 * @adap: the adapter 8559 * @mbox: mailbox to use for the FW command 8560 * @viid: the VI id 8561 * @ucast: whether the hash filter should also match unicast addresses 8562 * @vec: the value to be written to the hash filter 8563 * @sleep_ok: call is allowed to sleep 8564 * 8565 * Sets the 64-bit inexact-match hash filter for a virtual interface. 8566 */ 8567 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 8568 bool ucast, u64 vec, bool sleep_ok) 8569 { 8570 struct fw_vi_mac_cmd c; 8571 u32 val; 8572 8573 memset(&c, 0, sizeof(c)); 8574 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | 8575 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 8576 V_FW_VI_ENABLE_CMD_VIID(viid)); 8577 val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) | 8578 V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1); 8579 c.freemacs_to_len16 = cpu_to_be32(val); 8580 c.u.hash.hashvec = cpu_to_be64(vec); 8581 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 8582 } 8583 8584 /** 8585 * t4_enable_vi_params - enable/disable a virtual interface 8586 * @adap: the adapter 8587 * @mbox: mailbox to use for the FW command 8588 * @viid: the VI id 8589 * @rx_en: 1=enable Rx, 0=disable Rx 8590 * @tx_en: 1=enable Tx, 0=disable Tx 8591 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8592 * 8593 * Enables/disables a virtual interface. Note that setting DCB Enable 8594 * only makes sense when enabling a Virtual Interface ... 8595 */ 8596 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 8597 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 8598 { 8599 struct fw_vi_enable_cmd c; 8600 8601 memset(&c, 0, sizeof(c)); 8602 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) | 8603 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 8604 V_FW_VI_ENABLE_CMD_VIID(viid)); 8605 c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) | 8606 V_FW_VI_ENABLE_CMD_EEN(tx_en) | 8607 V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) | 8608 FW_LEN16(c)); 8609 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 8610 } 8611 8612 /** 8613 * t4_enable_vi - enable/disable a virtual interface 8614 * @adap: the adapter 8615 * @mbox: mailbox to use for the FW command 8616 * @viid: the VI id 8617 * @rx_en: 1=enable Rx, 0=disable Rx 8618 * @tx_en: 1=enable Tx, 0=disable Tx 8619 * 8620 * Enables/disables a virtual interface. Note that setting DCB Enable 8621 * only makes sense when enabling a Virtual Interface ... 8622 */ 8623 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 8624 bool rx_en, bool tx_en) 8625 { 8626 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 8627 } 8628 8629 /** 8630 * t4_identify_port - identify a VI's port by blinking its LED 8631 * @adap: the adapter 8632 * @mbox: mailbox to use for the FW command 8633 * @viid: the VI id 8634 * @nblinks: how many times to blink LED at 2.5 Hz 8635 * 8636 * Identifies a VI's port by blinking its LED. 8637 */ 8638 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 8639 unsigned int nblinks) 8640 { 8641 struct fw_vi_enable_cmd c; 8642 8643 memset(&c, 0, sizeof(c)); 8644 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) | 8645 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 8646 V_FW_VI_ENABLE_CMD_VIID(viid)); 8647 c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c)); 8648 c.blinkdur = cpu_to_be16(nblinks); 8649 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8650 } 8651 8652 /** 8653 * t4_iq_stop - stop an ingress queue and its FLs 8654 * @adap: the adapter 8655 * @mbox: mailbox to use for the FW command 8656 * @pf: the PF owning the queues 8657 * @vf: the VF owning the queues 8658 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 8659 * @iqid: ingress queue id 8660 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8661 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8662 * 8663 * Stops an ingress queue and its associated FLs, if any. This causes 8664 * any current or future data/messages destined for these queues to be 8665 * tossed. 8666 */ 8667 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, 8668 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8669 unsigned int fl0id, unsigned int fl1id) 8670 { 8671 struct fw_iq_cmd c; 8672 8673 memset(&c, 0, sizeof(c)); 8674 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | 8675 F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) | 8676 V_FW_IQ_CMD_VFN(vf)); 8677 c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c)); 8678 c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype)); 8679 c.iqid = cpu_to_be16(iqid); 8680 c.fl0id = cpu_to_be16(fl0id); 8681 c.fl1id = cpu_to_be16(fl1id); 8682 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8683 } 8684 8685 /** 8686 * t4_iq_free - free an ingress queue and its FLs 8687 * @adap: the adapter 8688 * @mbox: mailbox to use for the FW command 8689 * @pf: the PF owning the queues 8690 * @vf: the VF owning the queues 8691 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 8692 * @iqid: ingress queue id 8693 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8694 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8695 * 8696 * Frees an ingress queue and its associated FLs, if any. 8697 */ 8698 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8699 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8700 unsigned int fl0id, unsigned int fl1id) 8701 { 8702 struct fw_iq_cmd c; 8703 8704 memset(&c, 0, sizeof(c)); 8705 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | 8706 F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) | 8707 V_FW_IQ_CMD_VFN(vf)); 8708 c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c)); 8709 c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype)); 8710 c.iqid = cpu_to_be16(iqid); 8711 c.fl0id = cpu_to_be16(fl0id); 8712 c.fl1id = cpu_to_be16(fl1id); 8713 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8714 } 8715 8716 /** 8717 * t4_eth_eq_stop - stop an Ethernet egress queue 8718 * @adap: the adapter 8719 * @mbox: mailbox to use for the FW command 8720 * @pf: the PF owning the queues 8721 * @vf: the VF owning the queues 8722 * @eqid: egress queue id 8723 * 8724 * Stops an Ethernet egress queue. The queue can be reinitialized or 8725 * freed but is not otherwise functional after this call. 8726 */ 8727 int t4_eth_eq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, 8728 unsigned int vf, unsigned int eqid) 8729 { 8730 struct fw_eq_eth_cmd c; 8731 8732 memset(&c, 0, sizeof(c)); 8733 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | 8734 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 8735 V_FW_EQ_ETH_CMD_PFN(pf) | 8736 V_FW_EQ_ETH_CMD_VFN(vf)); 8737 c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_EQSTOP | FW_LEN16(c)); 8738 c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid)); 8739 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8740 } 8741 8742 /** 8743 * t4_eth_eq_free - free an Ethernet egress queue 8744 * @adap: the adapter 8745 * @mbox: mailbox to use for the FW command 8746 * @pf: the PF owning the queue 8747 * @vf: the VF owning the queue 8748 * @eqid: egress queue id 8749 * 8750 * Frees an Ethernet egress queue. 8751 */ 8752 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8753 unsigned int vf, unsigned int eqid) 8754 { 8755 struct fw_eq_eth_cmd c; 8756 8757 memset(&c, 0, sizeof(c)); 8758 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | 8759 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 8760 V_FW_EQ_ETH_CMD_PFN(pf) | 8761 V_FW_EQ_ETH_CMD_VFN(vf)); 8762 c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c)); 8763 c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid)); 8764 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8765 } 8766 8767 /** 8768 * t4_ctrl_eq_free - free a control egress queue 8769 * @adap: the adapter 8770 * @mbox: mailbox to use for the FW command 8771 * @pf: the PF owning the queue 8772 * @vf: the VF owning the queue 8773 * @eqid: egress queue id 8774 * 8775 * Frees a control egress queue. 8776 */ 8777 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8778 unsigned int vf, unsigned int eqid) 8779 { 8780 struct fw_eq_ctrl_cmd c; 8781 8782 memset(&c, 0, sizeof(c)); 8783 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | 8784 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 8785 V_FW_EQ_CTRL_CMD_PFN(pf) | 8786 V_FW_EQ_CTRL_CMD_VFN(vf)); 8787 c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c)); 8788 c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid)); 8789 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8790 } 8791 8792 /** 8793 * t4_ofld_eq_free - free an offload egress queue 8794 * @adap: the adapter 8795 * @mbox: mailbox to use for the FW command 8796 * @pf: the PF owning the queue 8797 * @vf: the VF owning the queue 8798 * @eqid: egress queue id 8799 * 8800 * Frees a control egress queue. 8801 */ 8802 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8803 unsigned int vf, unsigned int eqid) 8804 { 8805 struct fw_eq_ofld_cmd c; 8806 8807 memset(&c, 0, sizeof(c)); 8808 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | 8809 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 8810 V_FW_EQ_OFLD_CMD_PFN(pf) | 8811 V_FW_EQ_OFLD_CMD_VFN(vf)); 8812 c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c)); 8813 c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid)); 8814 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8815 } 8816 8817 /** 8818 * t4_link_down_rc_str - return a string for a Link Down Reason Code 8819 * @link_down_rc: Link Down Reason Code 8820 * 8821 * Returns a string representation of the Link Down Reason Code. 8822 */ 8823 const char *t4_link_down_rc_str(unsigned char link_down_rc) 8824 { 8825 static const char *reason[] = { 8826 "Link Down", 8827 "Remote Fault", 8828 "Auto-negotiation Failure", 8829 "Reserved3", 8830 "Insufficient Airflow", 8831 "Unable To Determine Reason", 8832 "No RX Signal Detected", 8833 "Reserved7", 8834 }; 8835 8836 if (link_down_rc >= ARRAY_SIZE(reason)) 8837 return "Bad Reason Code"; 8838 8839 return reason[link_down_rc]; 8840 } 8841 8842 /* 8843 * Return the highest speed set in the port capabilities, in Mb/s. 8844 */ 8845 unsigned int fwcap_to_speed(uint32_t caps) 8846 { 8847 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 8848 do { \ 8849 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8850 return __speed; \ 8851 } while (0) 8852 8853 TEST_SPEED_RETURN(400G, 400000); 8854 TEST_SPEED_RETURN(200G, 200000); 8855 TEST_SPEED_RETURN(100G, 100000); 8856 TEST_SPEED_RETURN(50G, 50000); 8857 TEST_SPEED_RETURN(40G, 40000); 8858 TEST_SPEED_RETURN(25G, 25000); 8859 TEST_SPEED_RETURN(10G, 10000); 8860 TEST_SPEED_RETURN(1G, 1000); 8861 TEST_SPEED_RETURN(100M, 100); 8862 8863 #undef TEST_SPEED_RETURN 8864 8865 return 0; 8866 } 8867 8868 /* 8869 * Return the port capabilities bit for the given speed, which is in Mb/s. 8870 */ 8871 uint32_t speed_to_fwcap(unsigned int speed) 8872 { 8873 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 8874 do { \ 8875 if (speed == __speed) \ 8876 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 8877 } while (0) 8878 8879 TEST_SPEED_RETURN(400G, 400000); 8880 TEST_SPEED_RETURN(200G, 200000); 8881 TEST_SPEED_RETURN(100G, 100000); 8882 TEST_SPEED_RETURN(50G, 50000); 8883 TEST_SPEED_RETURN(40G, 40000); 8884 TEST_SPEED_RETURN(25G, 25000); 8885 TEST_SPEED_RETURN(10G, 10000); 8886 TEST_SPEED_RETURN(1G, 1000); 8887 TEST_SPEED_RETURN(100M, 100); 8888 8889 #undef TEST_SPEED_RETURN 8890 8891 return 0; 8892 } 8893 8894 /* 8895 * Return the port capabilities bit for the highest speed in the capabilities. 8896 */ 8897 uint32_t fwcap_top_speed(uint32_t caps) 8898 { 8899 #define TEST_SPEED_RETURN(__caps_speed) \ 8900 do { \ 8901 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8902 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 8903 } while (0) 8904 8905 TEST_SPEED_RETURN(400G); 8906 TEST_SPEED_RETURN(200G); 8907 TEST_SPEED_RETURN(100G); 8908 TEST_SPEED_RETURN(50G); 8909 TEST_SPEED_RETURN(40G); 8910 TEST_SPEED_RETURN(25G); 8911 TEST_SPEED_RETURN(10G); 8912 TEST_SPEED_RETURN(1G); 8913 TEST_SPEED_RETURN(100M); 8914 8915 #undef TEST_SPEED_RETURN 8916 8917 return 0; 8918 } 8919 8920 /** 8921 * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities 8922 * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value 8923 * 8924 * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new 8925 * 32-bit Port Capabilities value. 8926 */ 8927 static uint32_t lstatus_to_fwcap(u32 lstatus) 8928 { 8929 uint32_t linkattr = 0; 8930 8931 /* 8932 * Unfortunately the format of the Link Status in the old 8933 * 16-bit Port Information message isn't the same as the 8934 * 16-bit Port Capabilities bitfield used everywhere else ... 8935 */ 8936 if (lstatus & F_FW_PORT_CMD_RXPAUSE) 8937 linkattr |= FW_PORT_CAP32_FC_RX; 8938 if (lstatus & F_FW_PORT_CMD_TXPAUSE) 8939 linkattr |= FW_PORT_CAP32_FC_TX; 8940 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M)) 8941 linkattr |= FW_PORT_CAP32_SPEED_100M; 8942 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G)) 8943 linkattr |= FW_PORT_CAP32_SPEED_1G; 8944 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G)) 8945 linkattr |= FW_PORT_CAP32_SPEED_10G; 8946 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G)) 8947 linkattr |= FW_PORT_CAP32_SPEED_25G; 8948 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G)) 8949 linkattr |= FW_PORT_CAP32_SPEED_40G; 8950 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G)) 8951 linkattr |= FW_PORT_CAP32_SPEED_100G; 8952 8953 return linkattr; 8954 } 8955 8956 /* 8957 * Updates all fields owned by the common code in port_info and link_config 8958 * based on information provided by the firmware. Does not touch any 8959 * requested_* field. 8960 */ 8961 static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p, 8962 enum fw_port_action action, bool *mod_changed, bool *link_changed) 8963 { 8964 struct link_config old_lc, *lc = &pi->link_cfg; 8965 unsigned char fc; 8966 u32 stat, linkattr; 8967 int old_ptype, old_mtype; 8968 8969 old_ptype = pi->port_type; 8970 old_mtype = pi->mod_type; 8971 old_lc = *lc; 8972 if (action == FW_PORT_ACTION_GET_PORT_INFO) { 8973 stat = be32_to_cpu(p->u.info.lstatus_to_modtype); 8974 8975 pi->port_type = G_FW_PORT_CMD_PTYPE(stat); 8976 pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat); 8977 pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ? 8978 G_FW_PORT_CMD_MDIOADDR(stat) : -1; 8979 8980 lc->pcaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap)); 8981 lc->acaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap)); 8982 lc->lpacaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap)); 8983 lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0; 8984 lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat); 8985 8986 linkattr = lstatus_to_fwcap(stat); 8987 } else if (action == FW_PORT_ACTION_GET_PORT_INFO32) { 8988 stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32); 8989 8990 pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat); 8991 pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat); 8992 pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ? 8993 G_FW_PORT_CMD_MDIOADDR32(stat) : -1; 8994 8995 lc->pcaps = be32_to_cpu(p->u.info32.pcaps32); 8996 lc->acaps = be32_to_cpu(p->u.info32.acaps32); 8997 lc->lpacaps = be32_to_cpu(p->u.info32.lpacaps32); 8998 lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0; 8999 lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat); 9000 9001 linkattr = be32_to_cpu(p->u.info32.linkattr32); 9002 } else { 9003 CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action); 9004 return; 9005 } 9006 9007 lc->speed = fwcap_to_speed(linkattr); 9008 lc->fec = fwcap_to_fec(linkattr, true); 9009 9010 fc = 0; 9011 if (linkattr & FW_PORT_CAP32_FC_RX) 9012 fc |= PAUSE_RX; 9013 if (linkattr & FW_PORT_CAP32_FC_TX) 9014 fc |= PAUSE_TX; 9015 lc->fc = fc; 9016 9017 if (mod_changed != NULL) 9018 *mod_changed = false; 9019 if (link_changed != NULL) 9020 *link_changed = false; 9021 if (old_ptype != pi->port_type || old_mtype != pi->mod_type || 9022 old_lc.pcaps != lc->pcaps) { 9023 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) 9024 lc->fec_hint = fwcap_to_fec(lc->acaps, true); 9025 if (mod_changed != NULL) 9026 *mod_changed = true; 9027 } 9028 if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed || 9029 old_lc.fec != lc->fec || old_lc.fc != lc->fc) { 9030 if (link_changed != NULL) 9031 *link_changed = true; 9032 } 9033 } 9034 9035 /** 9036 * t4_update_port_info - retrieve and update port information if changed 9037 * @pi: the port_info 9038 * 9039 * We issue a Get Port Information Command to the Firmware and, if 9040 * successful, we check to see if anything is different from what we 9041 * last recorded and update things accordingly. 9042 */ 9043 int t4_update_port_info(struct port_info *pi) 9044 { 9045 struct adapter *sc = pi->adapter; 9046 struct fw_port_cmd cmd; 9047 enum fw_port_action action; 9048 int ret; 9049 9050 memset(&cmd, 0, sizeof(cmd)); 9051 cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) | 9052 F_FW_CMD_REQUEST | F_FW_CMD_READ | 9053 V_FW_PORT_CMD_PORTID(pi->tx_chan)); 9054 action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 : 9055 FW_PORT_ACTION_GET_PORT_INFO; 9056 cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) | 9057 FW_LEN16(cmd)); 9058 ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd); 9059 if (ret) 9060 return ret; 9061 9062 handle_port_info(pi, &cmd, action, NULL, NULL); 9063 return 0; 9064 } 9065 9066 /** 9067 * t4_handle_fw_rpl - process a FW reply message 9068 * @adap: the adapter 9069 * @rpl: start of the FW message 9070 * 9071 * Processes a FW message, such as link state change messages. 9072 */ 9073 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 9074 { 9075 u8 opcode = *(const u8 *)rpl; 9076 const struct fw_port_cmd *p = (const void *)rpl; 9077 enum fw_port_action action = 9078 G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16)); 9079 bool mod_changed, link_changed; 9080 9081 if (opcode == FW_PORT_CMD && 9082 (action == FW_PORT_ACTION_GET_PORT_INFO || 9083 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 9084 /* link/module state change message */ 9085 int i; 9086 int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid)); 9087 struct port_info *pi = NULL; 9088 9089 for_each_port(adap, i) { 9090 pi = adap2pinfo(adap, i); 9091 if (pi->tx_chan == chan) 9092 break; 9093 } 9094 9095 PORT_LOCK(pi); 9096 handle_port_info(pi, p, action, &mod_changed, &link_changed); 9097 PORT_UNLOCK(pi); 9098 if (mod_changed) 9099 t4_os_portmod_changed(pi); 9100 if (link_changed) { 9101 PORT_LOCK(pi); 9102 t4_os_link_changed(pi); 9103 PORT_UNLOCK(pi); 9104 } 9105 } else { 9106 CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode); 9107 return -EINVAL; 9108 } 9109 return 0; 9110 } 9111 9112 /** 9113 * get_pci_mode - determine a card's PCI mode 9114 * @adapter: the adapter 9115 * @p: where to store the PCI settings 9116 * 9117 * Determines a card's PCI mode and associated parameters, such as speed 9118 * and width. 9119 */ 9120 static void get_pci_mode(struct adapter *adapter, 9121 struct pci_params *p) 9122 { 9123 u16 val; 9124 u32 pcie_cap; 9125 9126 pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP); 9127 if (pcie_cap) { 9128 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val); 9129 p->speed = val & PCI_EXP_LNKSTA_CLS; 9130 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 9131 } 9132 } 9133 9134 struct flash_desc { 9135 u32 vendor_and_model_id; 9136 u32 size_mb; 9137 }; 9138 9139 int t4_get_flash_params(struct adapter *adapter) 9140 { 9141 /* 9142 * Table for non-standard supported Flash parts. Note, all Flash 9143 * parts must have 64KB sectors. 9144 */ 9145 static struct flash_desc supported_flash[] = { 9146 { 0x00150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 9147 }; 9148 9149 int ret; 9150 u32 flashid = 0; 9151 unsigned int part, manufacturer; 9152 unsigned int density, size = 0; 9153 9154 9155 /* 9156 * Issue a Read ID Command to the Flash part. We decode supported 9157 * Flash parts and their sizes from this. There's a newer Query 9158 * Command which can retrieve detailed geometry information but many 9159 * Flash parts don't support it. 9160 */ 9161 ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID); 9162 if (!ret) 9163 ret = sf1_read(adapter, 3, 0, 1, &flashid); 9164 t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ 9165 if (ret < 0) 9166 return ret; 9167 9168 /* 9169 * Check to see if it's one of our non-standard supported Flash parts. 9170 */ 9171 for (part = 0; part < ARRAY_SIZE(supported_flash); part++) 9172 if (supported_flash[part].vendor_and_model_id == flashid) { 9173 adapter->params.sf_size = 9174 supported_flash[part].size_mb; 9175 adapter->params.sf_nsec = 9176 adapter->params.sf_size / SF_SEC_SIZE; 9177 goto found; 9178 } 9179 9180 /* 9181 * Decode Flash part size. The code below looks repetative with 9182 * common encodings, but that's not guaranteed in the JEDEC 9183 * specification for the Read JADEC ID command. The only thing that 9184 * we're guaranteed by the JADEC specification is where the 9185 * Manufacturer ID is in the returned result. After that each 9186 * Manufacturer ~could~ encode things completely differently. 9187 * Note, all Flash parts must have 64KB sectors. 9188 */ 9189 manufacturer = flashid & 0xff; 9190 switch (manufacturer) { 9191 case 0x20: /* Micron/Numonix */ 9192 /* 9193 * This Density -> Size decoding table is taken from Micron 9194 * Data Sheets. 9195 */ 9196 density = (flashid >> 16) & 0xff; 9197 switch (density) { 9198 case 0x14: size = 1 << 20; break; /* 1MB */ 9199 case 0x15: size = 1 << 21; break; /* 2MB */ 9200 case 0x16: size = 1 << 22; break; /* 4MB */ 9201 case 0x17: size = 1 << 23; break; /* 8MB */ 9202 case 0x18: size = 1 << 24; break; /* 16MB */ 9203 case 0x19: size = 1 << 25; break; /* 32MB */ 9204 case 0x20: size = 1 << 26; break; /* 64MB */ 9205 case 0x21: size = 1 << 27; break; /* 128MB */ 9206 case 0x22: size = 1 << 28; break; /* 256MB */ 9207 } 9208 break; 9209 9210 case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */ 9211 /* 9212 * This Density -> Size decoding table is taken from ISSI 9213 * Data Sheets. 9214 */ 9215 density = (flashid >> 16) & 0xff; 9216 switch (density) { 9217 case 0x16: size = 1 << 25; break; /* 32MB */ 9218 case 0x17: size = 1 << 26; break; /* 64MB */ 9219 } 9220 break; 9221 9222 case 0xc2: /* Macronix */ 9223 /* 9224 * This Density -> Size decoding table is taken from Macronix 9225 * Data Sheets. 9226 */ 9227 density = (flashid >> 16) & 0xff; 9228 switch (density) { 9229 case 0x17: size = 1 << 23; break; /* 8MB */ 9230 case 0x18: size = 1 << 24; break; /* 16MB */ 9231 } 9232 break; 9233 9234 case 0xef: /* Winbond */ 9235 /* 9236 * This Density -> Size decoding table is taken from Winbond 9237 * Data Sheets. 9238 */ 9239 density = (flashid >> 16) & 0xff; 9240 switch (density) { 9241 case 0x17: size = 1 << 23; break; /* 8MB */ 9242 case 0x18: size = 1 << 24; break; /* 16MB */ 9243 } 9244 break; 9245 } 9246 9247 /* If we didn't recognize the FLASH part, that's no real issue: the 9248 * Hardware/Software contract says that Hardware will _*ALWAYS*_ 9249 * use a FLASH part which is at least 4MB in size and has 64KB 9250 * sectors. The unrecognized FLASH part is likely to be much larger 9251 * than 4MB, but that's all we really need. 9252 */ 9253 if (size == 0) { 9254 CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid); 9255 size = 1 << 22; 9256 } 9257 9258 /* 9259 * Store decoded Flash size and fall through into vetting code. 9260 */ 9261 adapter->params.sf_size = size; 9262 adapter->params.sf_nsec = size / SF_SEC_SIZE; 9263 9264 found: 9265 /* 9266 * We should ~probably~ reject adapters with FLASHes which are too 9267 * small but we have some legacy FPGAs with small FLASHes that we'd 9268 * still like to use. So instead we emit a scary message ... 9269 */ 9270 if (adapter->params.sf_size < FLASH_MIN_SIZE) 9271 CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n", 9272 flashid, adapter->params.sf_size, FLASH_MIN_SIZE); 9273 9274 return 0; 9275 } 9276 9277 static void set_pcie_completion_timeout(struct adapter *adapter, 9278 u8 range) 9279 { 9280 u16 val; 9281 u32 pcie_cap; 9282 9283 pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP); 9284 if (pcie_cap) { 9285 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val); 9286 val &= 0xfff0; 9287 val |= range ; 9288 t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val); 9289 } 9290 } 9291 9292 const struct chip_params *t4_get_chip_params(int chipid) 9293 { 9294 static const struct chip_params chip_params[] = { 9295 { 9296 /* T4 */ 9297 .nchan = NCHAN, 9298 .pm_stats_cnt = PM_NSTATS, 9299 .cng_ch_bits_log = 2, 9300 .nsched_cls = 15, 9301 .cim_num_obq = CIM_NUM_OBQ, 9302 .filter_opt_len = FILTER_OPT_LEN, 9303 .mps_rplc_size = 128, 9304 .vfcount = 128, 9305 .sge_fl_db = F_DBPRIO, 9306 .mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES, 9307 .rss_nentries = RSS_NENTRIES, 9308 }, 9309 { 9310 /* T5 */ 9311 .nchan = NCHAN, 9312 .pm_stats_cnt = PM_NSTATS, 9313 .cng_ch_bits_log = 2, 9314 .nsched_cls = 16, 9315 .cim_num_obq = CIM_NUM_OBQ_T5, 9316 .filter_opt_len = T5_FILTER_OPT_LEN, 9317 .mps_rplc_size = 128, 9318 .vfcount = 128, 9319 .sge_fl_db = F_DBPRIO | F_DBTYPE, 9320 .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES, 9321 .rss_nentries = RSS_NENTRIES, 9322 }, 9323 { 9324 /* T6 */ 9325 .nchan = T6_NCHAN, 9326 .pm_stats_cnt = T6_PM_NSTATS, 9327 .cng_ch_bits_log = 3, 9328 .nsched_cls = 16, 9329 .cim_num_obq = CIM_NUM_OBQ_T5, 9330 .filter_opt_len = T5_FILTER_OPT_LEN, 9331 .mps_rplc_size = 256, 9332 .vfcount = 256, 9333 .sge_fl_db = 0, 9334 .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES, 9335 .rss_nentries = T6_RSS_NENTRIES, 9336 }, 9337 }; 9338 9339 chipid -= CHELSIO_T4; 9340 if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params)) 9341 return NULL; 9342 9343 return &chip_params[chipid]; 9344 } 9345 9346 /** 9347 * t4_prep_adapter - prepare SW and HW for operation 9348 * @adapter: the adapter 9349 * @buf: temporary space of at least VPD_LEN size provided by the caller. 9350 * 9351 * Initialize adapter SW state for the various HW modules, set initial 9352 * values for some adapter tunables, take PHYs out of reset, and 9353 * initialize the MDIO interface. 9354 */ 9355 int t4_prep_adapter(struct adapter *adapter, u32 *buf) 9356 { 9357 int ret; 9358 uint16_t device_id; 9359 uint32_t pl_rev; 9360 9361 get_pci_mode(adapter, &adapter->params.pci); 9362 9363 pl_rev = t4_read_reg(adapter, A_PL_REV); 9364 adapter->params.chipid = G_CHIPID(pl_rev); 9365 adapter->params.rev = G_REV(pl_rev); 9366 if (adapter->params.chipid == 0) { 9367 /* T4 did not have chipid in PL_REV (T5 onwards do) */ 9368 adapter->params.chipid = CHELSIO_T4; 9369 9370 /* T4A1 chip is not supported */ 9371 if (adapter->params.rev == 1) { 9372 CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n"); 9373 return -EINVAL; 9374 } 9375 } 9376 9377 adapter->chip_params = t4_get_chip_params(chip_id(adapter)); 9378 if (adapter->chip_params == NULL) 9379 return -EINVAL; 9380 9381 adapter->params.pci.vpd_cap_addr = 9382 t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD); 9383 9384 ret = t4_get_flash_params(adapter); 9385 if (ret < 0) 9386 return ret; 9387 9388 /* Cards with real ASICs have the chipid in the PCIe device id */ 9389 t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id); 9390 if (device_id >> 12 == chip_id(adapter)) 9391 adapter->params.cim_la_size = CIMLA_SIZE; 9392 else { 9393 /* FPGA */ 9394 adapter->params.fpga = 1; 9395 adapter->params.cim_la_size = 2 * CIMLA_SIZE; 9396 } 9397 9398 ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf); 9399 if (ret < 0) 9400 return ret; 9401 9402 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 9403 9404 /* 9405 * Default port and clock for debugging in case we can't reach FW. 9406 */ 9407 adapter->params.nports = 1; 9408 adapter->params.portvec = 1; 9409 adapter->params.vpd.cclk = 50000; 9410 9411 /* Set pci completion timeout value to 4 seconds. */ 9412 set_pcie_completion_timeout(adapter, 0xd); 9413 return 0; 9414 } 9415 9416 /** 9417 * t4_shutdown_adapter - shut down adapter, host & wire 9418 * @adapter: the adapter 9419 * 9420 * Perform an emergency shutdown of the adapter and stop it from 9421 * continuing any further communication on the ports or DMA to the 9422 * host. This is typically used when the adapter and/or firmware 9423 * have crashed and we want to prevent any further accidental 9424 * communication with the rest of the world. This will also force 9425 * the port Link Status to go down -- if register writes work -- 9426 * which should help our peers figure out that we're down. 9427 */ 9428 int t4_shutdown_adapter(struct adapter *adapter) 9429 { 9430 int port; 9431 const bool bt = adapter->bt_map != 0; 9432 9433 t4_intr_disable(adapter); 9434 if (bt) 9435 t4_write_reg(adapter, A_DBG_GPIO_EN, 0xffff0000); 9436 for_each_port(adapter, port) { 9437 u32 a_port_cfg = is_t4(adapter) ? 9438 PORT_REG(port, A_XGMAC_PORT_CFG) : 9439 T5_PORT_REG(port, A_MAC_PORT_CFG); 9440 9441 t4_write_reg(adapter, a_port_cfg, 9442 t4_read_reg(adapter, a_port_cfg) 9443 & ~V_SIGNAL_DET(1)); 9444 if (!bt) { 9445 u32 hss_cfg0 = is_t4(adapter) ? 9446 PORT_REG(port, A_XGMAC_PORT_HSS_CFG0) : 9447 T5_PORT_REG(port, A_MAC_PORT_HSS_CFG0); 9448 t4_set_reg_field(adapter, hss_cfg0, F_HSSPDWNPLLB | 9449 F_HSSPDWNPLLA | F_HSSPLLBYPB | F_HSSPLLBYPA, 9450 F_HSSPDWNPLLB | F_HSSPDWNPLLA | F_HSSPLLBYPB | 9451 F_HSSPLLBYPA); 9452 } 9453 } 9454 t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0); 9455 9456 return 0; 9457 } 9458 9459 /** 9460 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 9461 * @adapter: the adapter 9462 * @qid: the Queue ID 9463 * @qtype: the Ingress or Egress type for @qid 9464 * @user: true if this request is for a user mode queue 9465 * @pbar2_qoffset: BAR2 Queue Offset 9466 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 9467 * 9468 * Returns the BAR2 SGE Queue Registers information associated with the 9469 * indicated Absolute Queue ID. These are passed back in return value 9470 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 9471 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 9472 * 9473 * This may return an error which indicates that BAR2 SGE Queue 9474 * registers aren't available. If an error is not returned, then the 9475 * following values are returned: 9476 * 9477 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 9478 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 9479 * 9480 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 9481 * require the "Inferred Queue ID" ability may be used. E.g. the 9482 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 9483 * then these "Inferred Queue ID" register may not be used. 9484 */ 9485 int t4_bar2_sge_qregs(struct adapter *adapter, 9486 unsigned int qid, 9487 enum t4_bar2_qtype qtype, 9488 int user, 9489 u64 *pbar2_qoffset, 9490 unsigned int *pbar2_qid) 9491 { 9492 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 9493 u64 bar2_page_offset, bar2_qoffset; 9494 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 9495 9496 /* T4 doesn't support BAR2 SGE Queue registers for kernel 9497 * mode queues. 9498 */ 9499 if (!user && is_t4(adapter)) 9500 return -EINVAL; 9501 9502 /* Get our SGE Page Size parameters. 9503 */ 9504 page_shift = adapter->params.sge.page_shift; 9505 page_size = 1 << page_shift; 9506 9507 /* Get the right Queues per Page parameters for our Queue. 9508 */ 9509 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 9510 ? adapter->params.sge.eq_s_qpp 9511 : adapter->params.sge.iq_s_qpp); 9512 qpp_mask = (1 << qpp_shift) - 1; 9513 9514 /* Calculate the basics of the BAR2 SGE Queue register area: 9515 * o The BAR2 page the Queue registers will be in. 9516 * o The BAR2 Queue ID. 9517 * o The BAR2 Queue ID Offset into the BAR2 page. 9518 */ 9519 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 9520 bar2_qid = qid & qpp_mask; 9521 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 9522 9523 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 9524 * hardware will infer the Absolute Queue ID simply from the writes to 9525 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 9526 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 9527 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 9528 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 9529 * from the BAR2 Page and BAR2 Queue ID. 9530 * 9531 * One important censequence of this is that some BAR2 SGE registers 9532 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 9533 * there. But other registers synthesize the SGE Queue ID purely 9534 * from the writes to the registers -- the Write Combined Doorbell 9535 * Buffer is a good example. These BAR2 SGE Registers are only 9536 * available for those BAR2 SGE Register areas where the SGE Absolute 9537 * Queue ID can be inferred from simple writes. 9538 */ 9539 bar2_qoffset = bar2_page_offset; 9540 bar2_qinferred = (bar2_qid_offset < page_size); 9541 if (bar2_qinferred) { 9542 bar2_qoffset += bar2_qid_offset; 9543 bar2_qid = 0; 9544 } 9545 9546 *pbar2_qoffset = bar2_qoffset; 9547 *pbar2_qid = bar2_qid; 9548 return 0; 9549 } 9550 9551 /** 9552 * t4_init_devlog_params - initialize adapter->params.devlog 9553 * @adap: the adapter 9554 * @fw_attach: whether we can talk to the firmware 9555 * 9556 * Initialize various fields of the adapter's Firmware Device Log 9557 * Parameters structure. 9558 */ 9559 int t4_init_devlog_params(struct adapter *adap, int fw_attach) 9560 { 9561 struct devlog_params *dparams = &adap->params.devlog; 9562 u32 pf_dparams; 9563 unsigned int devlog_meminfo; 9564 struct fw_devlog_cmd devlog_cmd; 9565 int ret; 9566 9567 /* If we're dealing with newer firmware, the Device Log Paramerters 9568 * are stored in a designated register which allows us to access the 9569 * Device Log even if we can't talk to the firmware. 9570 */ 9571 pf_dparams = 9572 t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG)); 9573 if (pf_dparams) { 9574 unsigned int nentries, nentries128; 9575 9576 dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams); 9577 dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4; 9578 9579 nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams); 9580 nentries = (nentries128 + 1) * 128; 9581 dparams->size = nentries * sizeof(struct fw_devlog_e); 9582 9583 return 0; 9584 } 9585 9586 /* 9587 * For any failing returns ... 9588 */ 9589 memset(dparams, 0, sizeof *dparams); 9590 9591 /* 9592 * If we can't talk to the firmware, there's really nothing we can do 9593 * at this point. 9594 */ 9595 if (!fw_attach) 9596 return -ENXIO; 9597 9598 /* Otherwise, ask the firmware for it's Device Log Parameters. 9599 */ 9600 memset(&devlog_cmd, 0, sizeof devlog_cmd); 9601 devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) | 9602 F_FW_CMD_REQUEST | F_FW_CMD_READ); 9603 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 9604 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 9605 &devlog_cmd); 9606 if (ret) 9607 return ret; 9608 9609 devlog_meminfo = 9610 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); 9611 dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo); 9612 dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4; 9613 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); 9614 9615 return 0; 9616 } 9617 9618 /** 9619 * t4_init_sge_params - initialize adap->params.sge 9620 * @adapter: the adapter 9621 * 9622 * Initialize various fields of the adapter's SGE Parameters structure. 9623 */ 9624 int t4_init_sge_params(struct adapter *adapter) 9625 { 9626 u32 r; 9627 struct sge_params *sp = &adapter->params.sge; 9628 unsigned i, tscale = 1; 9629 9630 r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD); 9631 sp->counter_val[0] = G_THRESHOLD_0(r); 9632 sp->counter_val[1] = G_THRESHOLD_1(r); 9633 sp->counter_val[2] = G_THRESHOLD_2(r); 9634 sp->counter_val[3] = G_THRESHOLD_3(r); 9635 9636 if (chip_id(adapter) >= CHELSIO_T6) { 9637 r = t4_read_reg(adapter, A_SGE_ITP_CONTROL); 9638 tscale = G_TSCALE(r); 9639 if (tscale == 0) 9640 tscale = 1; 9641 else 9642 tscale += 2; 9643 } 9644 9645 r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1); 9646 sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale; 9647 sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale; 9648 r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3); 9649 sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale; 9650 sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale; 9651 r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5); 9652 sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale; 9653 sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale; 9654 9655 r = t4_read_reg(adapter, A_SGE_CONM_CTRL); 9656 sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1; 9657 if (is_t4(adapter)) 9658 sp->fl_starve_threshold2 = sp->fl_starve_threshold; 9659 else if (is_t5(adapter)) 9660 sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1; 9661 else 9662 sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1; 9663 9664 /* egress queues: log2 of # of doorbells per BAR2 page */ 9665 r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF); 9666 r >>= S_QUEUESPERPAGEPF0 + 9667 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf; 9668 sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0; 9669 9670 /* ingress queues: log2 of # of doorbells per BAR2 page */ 9671 r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF); 9672 r >>= S_QUEUESPERPAGEPF0 + 9673 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf; 9674 sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0; 9675 9676 r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE); 9677 r >>= S_HOSTPAGESIZEPF0 + 9678 (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf; 9679 sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10; 9680 9681 r = t4_read_reg(adapter, A_SGE_CONTROL); 9682 sp->sge_control = r; 9683 sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64; 9684 sp->fl_pktshift = G_PKTSHIFT(r); 9685 if (chip_id(adapter) <= CHELSIO_T5) { 9686 sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) + 9687 X_INGPADBOUNDARY_SHIFT); 9688 } else { 9689 sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) + 9690 X_T6_INGPADBOUNDARY_SHIFT); 9691 } 9692 if (is_t4(adapter)) 9693 sp->pack_boundary = sp->pad_boundary; 9694 else { 9695 r = t4_read_reg(adapter, A_SGE_CONTROL2); 9696 if (G_INGPACKBOUNDARY(r) == 0) 9697 sp->pack_boundary = 16; 9698 else 9699 sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5); 9700 } 9701 for (i = 0; i < SGE_FLBUF_SIZES; i++) 9702 sp->sge_fl_buffer_size[i] = t4_read_reg(adapter, 9703 A_SGE_FL_BUFFER_SIZE0 + (4 * i)); 9704 9705 return 0; 9706 } 9707 9708 /* Convert the LE's hardware hash mask to a shorter filter mask. */ 9709 static inline uint16_t 9710 hashmask_to_filtermask(uint64_t hashmask, uint16_t filter_mode) 9711 { 9712 static const uint8_t width[] = {1, 3, 17, 17, 8, 8, 16, 9, 3, 1}; 9713 int i; 9714 uint16_t filter_mask; 9715 uint64_t mask; /* field mask */ 9716 9717 filter_mask = 0; 9718 for (i = S_FCOE; i <= S_FRAGMENTATION; i++) { 9719 if ((filter_mode & (1 << i)) == 0) 9720 continue; 9721 mask = (1 << width[i]) - 1; 9722 if ((hashmask & mask) == mask) 9723 filter_mask |= 1 << i; 9724 hashmask >>= width[i]; 9725 } 9726 9727 return (filter_mask); 9728 } 9729 9730 /* 9731 * Read and cache the adapter's compressed filter mode and ingress config. 9732 */ 9733 static void 9734 read_filter_mode_and_ingress_config(struct adapter *adap) 9735 { 9736 int rc; 9737 uint32_t v, param[2], val[2]; 9738 struct tp_params *tpp = &adap->params.tp; 9739 uint64_t hash_mask; 9740 9741 param[0] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 9742 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) | 9743 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK); 9744 param[1] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 9745 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) | 9746 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE); 9747 rc = -t4_query_params(adap, adap->mbox, adap->pf, 0, 2, param, val); 9748 if (rc == 0) { 9749 tpp->filter_mode = G_FW_PARAMS_PARAM_FILTER_MODE(val[0]); 9750 tpp->filter_mask = G_FW_PARAMS_PARAM_FILTER_MASK(val[0]); 9751 tpp->vnic_mode = val[1]; 9752 } else { 9753 /* 9754 * Old firmware. Read filter mode/mask and ingress config 9755 * straight from the hardware. 9756 */ 9757 t4_tp_pio_read(adap, &v, 1, A_TP_VLAN_PRI_MAP, true); 9758 tpp->filter_mode = v & 0xffff; 9759 9760 hash_mask = 0; 9761 if (chip_id(adap) > CHELSIO_T4) { 9762 v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3)); 9763 hash_mask = v; 9764 v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4)); 9765 hash_mask |= (u64)v << 32; 9766 } 9767 tpp->filter_mask = hashmask_to_filtermask(hash_mask, 9768 tpp->filter_mode); 9769 9770 t4_tp_pio_read(adap, &v, 1, A_TP_INGRESS_CONFIG, true); 9771 if (v & F_VNIC) 9772 tpp->vnic_mode = FW_VNIC_MODE_PF_VF; 9773 else 9774 tpp->vnic_mode = FW_VNIC_MODE_OUTER_VLAN; 9775 } 9776 9777 /* 9778 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 9779 * shift positions of several elements of the Compressed Filter Tuple 9780 * for this adapter which we need frequently ... 9781 */ 9782 tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE); 9783 tpp->port_shift = t4_filter_field_shift(adap, F_PORT); 9784 tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID); 9785 tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN); 9786 tpp->tos_shift = t4_filter_field_shift(adap, F_TOS); 9787 tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL); 9788 tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE); 9789 tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH); 9790 tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE); 9791 tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION); 9792 } 9793 9794 /** 9795 * t4_init_tp_params - initialize adap->params.tp 9796 * @adap: the adapter 9797 * 9798 * Initialize various fields of the adapter's TP Parameters structure. 9799 */ 9800 int t4_init_tp_params(struct adapter *adap) 9801 { 9802 int chan; 9803 u32 tx_len, rx_len, r, v; 9804 struct tp_params *tpp = &adap->params.tp; 9805 9806 v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION); 9807 tpp->tre = G_TIMERRESOLUTION(v); 9808 tpp->dack_re = G_DELAYEDACKRESOLUTION(v); 9809 9810 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 9811 for (chan = 0; chan < MAX_NCHAN; chan++) 9812 tpp->tx_modq[chan] = chan; 9813 9814 read_filter_mode_and_ingress_config(adap); 9815 9816 if (chip_id(adap) > CHELSIO_T5) { 9817 v = t4_read_reg(adap, A_TP_OUT_CONFIG); 9818 tpp->rx_pkt_encap = v & F_CRXPKTENC; 9819 } else 9820 tpp->rx_pkt_encap = false; 9821 9822 rx_len = t4_read_reg(adap, A_TP_PMM_RX_PAGE_SIZE); 9823 tx_len = t4_read_reg(adap, A_TP_PMM_TX_PAGE_SIZE); 9824 9825 r = t4_read_reg(adap, A_TP_PARA_REG2); 9826 rx_len = min(rx_len, G_MAXRXDATA(r)); 9827 tx_len = min(tx_len, G_MAXRXDATA(r)); 9828 9829 r = t4_read_reg(adap, A_TP_PARA_REG7); 9830 v = min(G_PMMAXXFERLEN0(r), G_PMMAXXFERLEN1(r)); 9831 rx_len = min(rx_len, v); 9832 tx_len = min(tx_len, v); 9833 9834 tpp->max_tx_pdu = tx_len; 9835 tpp->max_rx_pdu = rx_len; 9836 9837 return 0; 9838 } 9839 9840 /** 9841 * t4_filter_field_shift - calculate filter field shift 9842 * @adap: the adapter 9843 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 9844 * 9845 * Return the shift position of a filter field within the Compressed 9846 * Filter Tuple. The filter field is specified via its selection bit 9847 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 9848 */ 9849 int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 9850 { 9851 const unsigned int filter_mode = adap->params.tp.filter_mode; 9852 unsigned int sel; 9853 int field_shift; 9854 9855 if ((filter_mode & filter_sel) == 0) 9856 return -1; 9857 9858 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 9859 switch (filter_mode & sel) { 9860 case F_FCOE: 9861 field_shift += W_FT_FCOE; 9862 break; 9863 case F_PORT: 9864 field_shift += W_FT_PORT; 9865 break; 9866 case F_VNIC_ID: 9867 field_shift += W_FT_VNIC_ID; 9868 break; 9869 case F_VLAN: 9870 field_shift += W_FT_VLAN; 9871 break; 9872 case F_TOS: 9873 field_shift += W_FT_TOS; 9874 break; 9875 case F_PROTOCOL: 9876 field_shift += W_FT_PROTOCOL; 9877 break; 9878 case F_ETHERTYPE: 9879 field_shift += W_FT_ETHERTYPE; 9880 break; 9881 case F_MACMATCH: 9882 field_shift += W_FT_MACMATCH; 9883 break; 9884 case F_MPSHITTYPE: 9885 field_shift += W_FT_MPSHITTYPE; 9886 break; 9887 case F_FRAGMENTATION: 9888 field_shift += W_FT_FRAGMENTATION; 9889 break; 9890 } 9891 } 9892 return field_shift; 9893 } 9894 9895 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id) 9896 { 9897 u8 addr[6]; 9898 int ret, i, j; 9899 struct port_info *p = adap2pinfo(adap, port_id); 9900 u32 param, val; 9901 struct vi_info *vi = &p->vi[0]; 9902 9903 for (i = 0, j = -1; i <= p->port_id; i++) { 9904 do { 9905 j++; 9906 } while ((adap->params.portvec & (1 << j)) == 0); 9907 } 9908 9909 p->tx_chan = j; 9910 p->mps_bg_map = t4_get_mps_bg_map(adap, j); 9911 p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j); 9912 p->rx_c_chan = t4_get_rx_c_chan(adap, j); 9913 p->lport = j; 9914 9915 if (!(adap->flags & IS_VF) || 9916 adap->params.vfres.r_caps & FW_CMD_CAP_PORT) { 9917 t4_update_port_info(p); 9918 } 9919 9920 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &vi->rss_size, 9921 &vi->vfvld, &vi->vin); 9922 if (ret < 0) 9923 return ret; 9924 9925 vi->viid = ret; 9926 t4_os_set_hw_addr(p, addr); 9927 9928 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 9929 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 9930 V_FW_PARAMS_PARAM_YZ(vi->viid); 9931 ret = t4_query_params(adap, mbox, pf, vf, 1, ¶m, &val); 9932 if (ret) 9933 vi->rss_base = 0xffff; 9934 else { 9935 /* MPASS((val >> 16) == rss_size); */ 9936 vi->rss_base = val & 0xffff; 9937 } 9938 9939 return 0; 9940 } 9941 9942 /** 9943 * t4_read_cimq_cfg - read CIM queue configuration 9944 * @adap: the adapter 9945 * @base: holds the queue base addresses in bytes 9946 * @size: holds the queue sizes in bytes 9947 * @thres: holds the queue full thresholds in bytes 9948 * 9949 * Returns the current configuration of the CIM queues, starting with 9950 * the IBQs, then the OBQs. 9951 */ 9952 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 9953 { 9954 unsigned int i, v; 9955 int cim_num_obq = adap->chip_params->cim_num_obq; 9956 9957 for (i = 0; i < CIM_NUM_IBQ; i++) { 9958 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT | 9959 V_QUENUMSELECT(i)); 9960 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL); 9961 /* value is in 256-byte units */ 9962 *base++ = G_CIMQBASE(v) * 256; 9963 *size++ = G_CIMQSIZE(v) * 256; 9964 *thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */ 9965 } 9966 for (i = 0; i < cim_num_obq; i++) { 9967 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT | 9968 V_QUENUMSELECT(i)); 9969 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL); 9970 /* value is in 256-byte units */ 9971 *base++ = G_CIMQBASE(v) * 256; 9972 *size++ = G_CIMQSIZE(v) * 256; 9973 } 9974 } 9975 9976 /** 9977 * t4_read_cim_ibq - read the contents of a CIM inbound queue 9978 * @adap: the adapter 9979 * @qid: the queue index 9980 * @data: where to store the queue contents 9981 * @n: capacity of @data in 32-bit words 9982 * 9983 * Reads the contents of the selected CIM queue starting at address 0 up 9984 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9985 * error and the number of 32-bit words actually read on success. 9986 */ 9987 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9988 { 9989 int i, err, attempts; 9990 unsigned int addr; 9991 const unsigned int nwords = CIM_IBQ_SIZE * 4; 9992 9993 if (qid > 5 || (n & 3)) 9994 return -EINVAL; 9995 9996 addr = qid * nwords; 9997 if (n > nwords) 9998 n = nwords; 9999 10000 /* It might take 3-10ms before the IBQ debug read access is allowed. 10001 * Wait for 1 Sec with a delay of 1 usec. 10002 */ 10003 attempts = 1000000; 10004 10005 for (i = 0; i < n; i++, addr++) { 10006 t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) | 10007 F_IBQDBGEN); 10008 err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0, 10009 attempts, 1); 10010 if (err) 10011 return err; 10012 *data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA); 10013 } 10014 t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0); 10015 return i; 10016 } 10017 10018 /** 10019 * t4_read_cim_obq - read the contents of a CIM outbound queue 10020 * @adap: the adapter 10021 * @qid: the queue index 10022 * @data: where to store the queue contents 10023 * @n: capacity of @data in 32-bit words 10024 * 10025 * Reads the contents of the selected CIM queue starting at address 0 up 10026 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 10027 * error and the number of 32-bit words actually read on success. 10028 */ 10029 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 10030 { 10031 int i, err; 10032 unsigned int addr, v, nwords; 10033 int cim_num_obq = adap->chip_params->cim_num_obq; 10034 10035 if ((qid > (cim_num_obq - 1)) || (n & 3)) 10036 return -EINVAL; 10037 10038 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT | 10039 V_QUENUMSELECT(qid)); 10040 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL); 10041 10042 addr = G_CIMQBASE(v) * 64; /* muliple of 256 -> muliple of 4 */ 10043 nwords = G_CIMQSIZE(v) * 64; /* same */ 10044 if (n > nwords) 10045 n = nwords; 10046 10047 for (i = 0; i < n; i++, addr++) { 10048 t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) | 10049 F_OBQDBGEN); 10050 err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0, 10051 2, 1); 10052 if (err) 10053 return err; 10054 *data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA); 10055 } 10056 t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0); 10057 return i; 10058 } 10059 10060 enum { 10061 CIM_QCTL_BASE = 0, 10062 CIM_CTL_BASE = 0x2000, 10063 CIM_PBT_ADDR_BASE = 0x2800, 10064 CIM_PBT_LRF_BASE = 0x3000, 10065 CIM_PBT_DATA_BASE = 0x3800 10066 }; 10067 10068 /** 10069 * t4_cim_read - read a block from CIM internal address space 10070 * @adap: the adapter 10071 * @addr: the start address within the CIM address space 10072 * @n: number of words to read 10073 * @valp: where to store the result 10074 * 10075 * Reads a block of 4-byte words from the CIM intenal address space. 10076 */ 10077 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 10078 unsigned int *valp) 10079 { 10080 int ret = 0; 10081 10082 if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY) 10083 return -EBUSY; 10084 10085 for ( ; !ret && n--; addr += 4) { 10086 t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr); 10087 ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY, 10088 0, 5, 2); 10089 if (!ret) 10090 *valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA); 10091 } 10092 return ret; 10093 } 10094 10095 /** 10096 * t4_cim_write - write a block into CIM internal address space 10097 * @adap: the adapter 10098 * @addr: the start address within the CIM address space 10099 * @n: number of words to write 10100 * @valp: set of values to write 10101 * 10102 * Writes a block of 4-byte words into the CIM intenal address space. 10103 */ 10104 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 10105 const unsigned int *valp) 10106 { 10107 int ret = 0; 10108 10109 if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY) 10110 return -EBUSY; 10111 10112 for ( ; !ret && n--; addr += 4) { 10113 t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++); 10114 t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE); 10115 ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY, 10116 0, 5, 2); 10117 } 10118 return ret; 10119 } 10120 10121 static int t4_cim_write1(struct adapter *adap, unsigned int addr, 10122 unsigned int val) 10123 { 10124 return t4_cim_write(adap, addr, 1, &val); 10125 } 10126 10127 /** 10128 * t4_cim_ctl_read - read a block from CIM control region 10129 * @adap: the adapter 10130 * @addr: the start address within the CIM control region 10131 * @n: number of words to read 10132 * @valp: where to store the result 10133 * 10134 * Reads a block of 4-byte words from the CIM control region. 10135 */ 10136 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n, 10137 unsigned int *valp) 10138 { 10139 return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp); 10140 } 10141 10142 /** 10143 * t4_cim_read_la - read CIM LA capture buffer 10144 * @adap: the adapter 10145 * @la_buf: where to store the LA data 10146 * @wrptr: the HW write pointer within the capture buffer 10147 * 10148 * Reads the contents of the CIM LA buffer with the most recent entry at 10149 * the end of the returned data and with the entry at @wrptr first. 10150 * We try to leave the LA in the running state we find it in. 10151 */ 10152 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 10153 { 10154 int i, ret; 10155 unsigned int cfg, val, idx; 10156 10157 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg); 10158 if (ret) 10159 return ret; 10160 10161 if (cfg & F_UPDBGLAEN) { /* LA is running, freeze it */ 10162 ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0); 10163 if (ret) 10164 return ret; 10165 } 10166 10167 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val); 10168 if (ret) 10169 goto restart; 10170 10171 idx = G_UPDBGLAWRPTR(val); 10172 if (wrptr) 10173 *wrptr = idx; 10174 10175 for (i = 0; i < adap->params.cim_la_size; i++) { 10176 ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 10177 V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN); 10178 if (ret) 10179 break; 10180 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val); 10181 if (ret) 10182 break; 10183 if (val & F_UPDBGLARDEN) { 10184 ret = -ETIMEDOUT; 10185 break; 10186 } 10187 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]); 10188 if (ret) 10189 break; 10190 10191 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to 10192 * identify the 32-bit portion of the full 312-bit data 10193 */ 10194 if (is_t6(adap) && (idx & 0xf) >= 9) 10195 idx = (idx & 0xff0) + 0x10; 10196 else 10197 idx++; 10198 /* address can't exceed 0xfff */ 10199 idx &= M_UPDBGLARDPTR; 10200 } 10201 restart: 10202 if (cfg & F_UPDBGLAEN) { 10203 int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 10204 cfg & ~F_UPDBGLARDEN); 10205 if (!ret) 10206 ret = r; 10207 } 10208 return ret; 10209 } 10210 10211 /** 10212 * t4_tp_read_la - read TP LA capture buffer 10213 * @adap: the adapter 10214 * @la_buf: where to store the LA data 10215 * @wrptr: the HW write pointer within the capture buffer 10216 * 10217 * Reads the contents of the TP LA buffer with the most recent entry at 10218 * the end of the returned data and with the entry at @wrptr first. 10219 * We leave the LA in the running state we find it in. 10220 */ 10221 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 10222 { 10223 bool last_incomplete; 10224 unsigned int i, cfg, val, idx; 10225 10226 cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff; 10227 if (cfg & F_DBGLAENABLE) /* freeze LA */ 10228 t4_write_reg(adap, A_TP_DBG_LA_CONFIG, 10229 adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE)); 10230 10231 val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG); 10232 idx = G_DBGLAWPTR(val); 10233 last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0; 10234 if (last_incomplete) 10235 idx = (idx + 1) & M_DBGLARPTR; 10236 if (wrptr) 10237 *wrptr = idx; 10238 10239 val &= 0xffff; 10240 val &= ~V_DBGLARPTR(M_DBGLARPTR); 10241 val |= adap->params.tp.la_mask; 10242 10243 for (i = 0; i < TPLA_SIZE; i++) { 10244 t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val); 10245 la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL); 10246 idx = (idx + 1) & M_DBGLARPTR; 10247 } 10248 10249 /* Wipe out last entry if it isn't valid */ 10250 if (last_incomplete) 10251 la_buf[TPLA_SIZE - 1] = ~0ULL; 10252 10253 if (cfg & F_DBGLAENABLE) /* restore running state */ 10254 t4_write_reg(adap, A_TP_DBG_LA_CONFIG, 10255 cfg | adap->params.tp.la_mask); 10256 } 10257 10258 /* 10259 * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in 10260 * seconds). If we find one of the SGE Ingress DMA State Machines in the same 10261 * state for more than the Warning Threshold then we'll issue a warning about 10262 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel 10263 * appears to be hung every Warning Repeat second till the situation clears. 10264 * If the situation clears, we'll note that as well. 10265 */ 10266 #define SGE_IDMA_WARN_THRESH 1 10267 #define SGE_IDMA_WARN_REPEAT 300 10268 10269 /** 10270 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor 10271 * @adapter: the adapter 10272 * @idma: the adapter IDMA Monitor state 10273 * 10274 * Initialize the state of an SGE Ingress DMA Monitor. 10275 */ 10276 void t4_idma_monitor_init(struct adapter *adapter, 10277 struct sge_idma_monitor_state *idma) 10278 { 10279 /* Initialize the state variables for detecting an SGE Ingress DMA 10280 * hang. The SGE has internal counters which count up on each clock 10281 * tick whenever the SGE finds its Ingress DMA State Engines in the 10282 * same state they were on the previous clock tick. The clock used is 10283 * the Core Clock so we have a limit on the maximum "time" they can 10284 * record; typically a very small number of seconds. For instance, 10285 * with a 600MHz Core Clock, we can only count up to a bit more than 10286 * 7s. So we'll synthesize a larger counter in order to not run the 10287 * risk of having the "timers" overflow and give us the flexibility to 10288 * maintain a Hung SGE State Machine of our own which operates across 10289 * a longer time frame. 10290 */ 10291 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ 10292 idma->idma_stalled[0] = idma->idma_stalled[1] = 0; 10293 } 10294 10295 /** 10296 * t4_idma_monitor - monitor SGE Ingress DMA state 10297 * @adapter: the adapter 10298 * @idma: the adapter IDMA Monitor state 10299 * @hz: number of ticks/second 10300 * @ticks: number of ticks since the last IDMA Monitor call 10301 */ 10302 void t4_idma_monitor(struct adapter *adapter, 10303 struct sge_idma_monitor_state *idma, 10304 int hz, int ticks) 10305 { 10306 int i, idma_same_state_cnt[2]; 10307 10308 /* Read the SGE Debug Ingress DMA Same State Count registers. These 10309 * are counters inside the SGE which count up on each clock when the 10310 * SGE finds its Ingress DMA State Engines in the same states they 10311 * were in the previous clock. The counters will peg out at 10312 * 0xffffffff without wrapping around so once they pass the 1s 10313 * threshold they'll stay above that till the IDMA state changes. 10314 */ 10315 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13); 10316 idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH); 10317 idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW); 10318 10319 for (i = 0; i < 2; i++) { 10320 u32 debug0, debug11; 10321 10322 /* If the Ingress DMA Same State Counter ("timer") is less 10323 * than 1s, then we can reset our synthesized Stall Timer and 10324 * continue. If we have previously emitted warnings about a 10325 * potential stalled Ingress Queue, issue a note indicating 10326 * that the Ingress Queue has resumed forward progress. 10327 */ 10328 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { 10329 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz) 10330 CH_WARN(adapter, "SGE idma%d, queue %u, " 10331 "resumed after %d seconds\n", 10332 i, idma->idma_qid[i], 10333 idma->idma_stalled[i]/hz); 10334 idma->idma_stalled[i] = 0; 10335 continue; 10336 } 10337 10338 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 10339 * domain. The first time we get here it'll be because we 10340 * passed the 1s Threshold; each additional time it'll be 10341 * because the RX Timer Callback is being fired on its regular 10342 * schedule. 10343 * 10344 * If the stall is below our Potential Hung Ingress Queue 10345 * Warning Threshold, continue. 10346 */ 10347 if (idma->idma_stalled[i] == 0) { 10348 idma->idma_stalled[i] = hz; 10349 idma->idma_warn[i] = 0; 10350 } else { 10351 idma->idma_stalled[i] += ticks; 10352 idma->idma_warn[i] -= ticks; 10353 } 10354 10355 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz) 10356 continue; 10357 10358 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. 10359 */ 10360 if (idma->idma_warn[i] > 0) 10361 continue; 10362 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz; 10363 10364 /* Read and save the SGE IDMA State and Queue ID information. 10365 * We do this every time in case it changes across time ... 10366 * can't be too careful ... 10367 */ 10368 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0); 10369 debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW); 10370 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 10371 10372 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11); 10373 debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW); 10374 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 10375 10376 CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in " 10377 " state %u for %d seconds (debug0=%#x, debug11=%#x)\n", 10378 i, idma->idma_qid[i], idma->idma_state[i], 10379 idma->idma_stalled[i]/hz, 10380 debug0, debug11); 10381 t4_sge_decode_idma_state(adapter, idma->idma_state[i]); 10382 } 10383 } 10384 10385 /** 10386 * t4_set_vf_mac - Set MAC address for the specified VF 10387 * @adapter: The adapter 10388 * @pf: the PF used to instantiate the VFs 10389 * @vf: one of the VFs instantiated by the specified PF 10390 * @naddr: the number of MAC addresses 10391 * @addr: the MAC address(es) to be set to the specified VF 10392 */ 10393 int t4_set_vf_mac(struct adapter *adapter, unsigned int pf, unsigned int vf, 10394 unsigned int naddr, u8 *addr) 10395 { 10396 struct fw_acl_mac_cmd cmd; 10397 10398 memset(&cmd, 0, sizeof(cmd)); 10399 cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_MAC_CMD) | 10400 F_FW_CMD_REQUEST | 10401 F_FW_CMD_WRITE | 10402 V_FW_ACL_MAC_CMD_PFN(pf) | 10403 V_FW_ACL_MAC_CMD_VFN(vf)); 10404 10405 /* Note: Do not enable the ACL */ 10406 cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd)); 10407 cmd.nmac = naddr; 10408 10409 switch (pf) { 10410 case 3: 10411 memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3)); 10412 break; 10413 case 2: 10414 memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2)); 10415 break; 10416 case 1: 10417 memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1)); 10418 break; 10419 case 0: 10420 memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0)); 10421 break; 10422 } 10423 10424 return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd); 10425 } 10426 10427 /** 10428 * t4_read_pace_tbl - read the pace table 10429 * @adap: the adapter 10430 * @pace_vals: holds the returned values 10431 * 10432 * Returns the values of TP's pace table in microseconds. 10433 */ 10434 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED]) 10435 { 10436 unsigned int i, v; 10437 10438 for (i = 0; i < NTX_SCHED; i++) { 10439 t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i); 10440 v = t4_read_reg(adap, A_TP_PACE_TABLE); 10441 pace_vals[i] = dack_ticks_to_usec(adap, v); 10442 } 10443 } 10444 10445 /** 10446 * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler 10447 * @adap: the adapter 10448 * @sched: the scheduler index 10449 * @kbps: the byte rate in Kbps 10450 * @ipg: the interpacket delay in tenths of nanoseconds 10451 * 10452 * Return the current configuration of a HW Tx scheduler. 10453 */ 10454 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps, 10455 unsigned int *ipg, bool sleep_ok) 10456 { 10457 unsigned int v, addr, bpt, cpt; 10458 10459 if (kbps) { 10460 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2; 10461 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 10462 if (sched & 1) 10463 v >>= 16; 10464 bpt = (v >> 8) & 0xff; 10465 cpt = v & 0xff; 10466 if (!cpt) 10467 *kbps = 0; /* scheduler disabled */ 10468 else { 10469 v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */ 10470 *kbps = (v * bpt) / 125; 10471 } 10472 } 10473 if (ipg) { 10474 addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2; 10475 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 10476 if (sched & 1) 10477 v >>= 16; 10478 v &= 0xffff; 10479 *ipg = (10000 * v) / core_ticks_per_usec(adap); 10480 } 10481 } 10482 10483 /** 10484 * t4_load_cfg - download config file 10485 * @adap: the adapter 10486 * @cfg_data: the cfg text file to write 10487 * @size: text file size 10488 * 10489 * Write the supplied config text file to the card's serial flash. 10490 */ 10491 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 10492 { 10493 int ret, i, n, cfg_addr; 10494 unsigned int addr; 10495 unsigned int flash_cfg_start_sec; 10496 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10497 10498 cfg_addr = t4_flash_cfg_addr(adap); 10499 if (cfg_addr < 0) 10500 return cfg_addr; 10501 10502 addr = cfg_addr; 10503 flash_cfg_start_sec = addr / SF_SEC_SIZE; 10504 10505 if (size > FLASH_CFG_MAX_SIZE) { 10506 CH_ERR(adap, "cfg file too large, max is %u bytes\n", 10507 FLASH_CFG_MAX_SIZE); 10508 return -EFBIG; 10509 } 10510 10511 i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ 10512 sf_sec_size); 10513 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 10514 flash_cfg_start_sec + i - 1); 10515 /* 10516 * If size == 0 then we're simply erasing the FLASH sectors associated 10517 * with the on-adapter Firmware Configuration File. 10518 */ 10519 if (ret || size == 0) 10520 goto out; 10521 10522 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 10523 for (i = 0; i< size; i+= SF_PAGE_SIZE) { 10524 if ( (size - i) < SF_PAGE_SIZE) 10525 n = size - i; 10526 else 10527 n = SF_PAGE_SIZE; 10528 ret = t4_write_flash(adap, addr, n, cfg_data, 1); 10529 if (ret) 10530 goto out; 10531 10532 addr += SF_PAGE_SIZE; 10533 cfg_data += SF_PAGE_SIZE; 10534 } 10535 10536 out: 10537 if (ret) 10538 CH_ERR(adap, "config file %s failed %d\n", 10539 (size == 0 ? "clear" : "download"), ret); 10540 return ret; 10541 } 10542 10543 /** 10544 * t5_fw_init_extern_mem - initialize the external memory 10545 * @adap: the adapter 10546 * 10547 * Initializes the external memory on T5. 10548 */ 10549 int t5_fw_init_extern_mem(struct adapter *adap) 10550 { 10551 u32 params[1], val[1]; 10552 int ret; 10553 10554 if (!is_t5(adap)) 10555 return 0; 10556 10557 val[0] = 0xff; /* Initialize all MCs */ 10558 params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 10559 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT)); 10560 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val, 10561 FW_CMD_MAX_TIMEOUT); 10562 10563 return ret; 10564 } 10565 10566 /* BIOS boot headers */ 10567 typedef struct pci_expansion_rom_header { 10568 u8 signature[2]; /* ROM Signature. Should be 0xaa55 */ 10569 u8 reserved[22]; /* Reserved per processor Architecture data */ 10570 u8 pcir_offset[2]; /* Offset to PCI Data Structure */ 10571 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */ 10572 10573 /* Legacy PCI Expansion ROM Header */ 10574 typedef struct legacy_pci_expansion_rom_header { 10575 u8 signature[2]; /* ROM Signature. Should be 0xaa55 */ 10576 u8 size512; /* Current Image Size in units of 512 bytes */ 10577 u8 initentry_point[4]; 10578 u8 cksum; /* Checksum computed on the entire Image */ 10579 u8 reserved[16]; /* Reserved */ 10580 u8 pcir_offset[2]; /* Offset to PCI Data Struture */ 10581 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */ 10582 10583 /* EFI PCI Expansion ROM Header */ 10584 typedef struct efi_pci_expansion_rom_header { 10585 u8 signature[2]; // ROM signature. The value 0xaa55 10586 u8 initialization_size[2]; /* Units 512. Includes this header */ 10587 u8 efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */ 10588 u8 efi_subsystem[2]; /* Subsystem value for EFI image header */ 10589 u8 efi_machine_type[2]; /* Machine type from EFI image header */ 10590 u8 compression_type[2]; /* Compression type. */ 10591 /* 10592 * Compression type definition 10593 * 0x0: uncompressed 10594 * 0x1: Compressed 10595 * 0x2-0xFFFF: Reserved 10596 */ 10597 u8 reserved[8]; /* Reserved */ 10598 u8 efi_image_header_offset[2]; /* Offset to EFI Image */ 10599 u8 pcir_offset[2]; /* Offset to PCI Data Structure */ 10600 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */ 10601 10602 /* PCI Data Structure Format */ 10603 typedef struct pcir_data_structure { /* PCI Data Structure */ 10604 u8 signature[4]; /* Signature. The string "PCIR" */ 10605 u8 vendor_id[2]; /* Vendor Identification */ 10606 u8 device_id[2]; /* Device Identification */ 10607 u8 vital_product[2]; /* Pointer to Vital Product Data */ 10608 u8 length[2]; /* PCIR Data Structure Length */ 10609 u8 revision; /* PCIR Data Structure Revision */ 10610 u8 class_code[3]; /* Class Code */ 10611 u8 image_length[2]; /* Image Length. Multiple of 512B */ 10612 u8 code_revision[2]; /* Revision Level of Code/Data */ 10613 u8 code_type; /* Code Type. */ 10614 /* 10615 * PCI Expansion ROM Code Types 10616 * 0x00: Intel IA-32, PC-AT compatible. Legacy 10617 * 0x01: Open Firmware standard for PCI. FCODE 10618 * 0x02: Hewlett-Packard PA RISC. HP reserved 10619 * 0x03: EFI Image. EFI 10620 * 0x04-0xFF: Reserved. 10621 */ 10622 u8 indicator; /* Indicator. Identifies the last image in the ROM */ 10623 u8 reserved[2]; /* Reserved */ 10624 } pcir_data_t; /* PCI__DATA_STRUCTURE */ 10625 10626 /* BOOT constants */ 10627 enum { 10628 BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */ 10629 BOOT_SIGNATURE = 0xaa55, /* signature of BIOS boot ROM */ 10630 BOOT_SIZE_INC = 512, /* image size measured in 512B chunks */ 10631 BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */ 10632 BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment */ 10633 VENDOR_ID = 0x1425, /* Vendor ID */ 10634 PCIR_SIGNATURE = 0x52494350 /* PCIR signature */ 10635 }; 10636 10637 /* 10638 * modify_device_id - Modifies the device ID of the Boot BIOS image 10639 * @adatper: the device ID to write. 10640 * @boot_data: the boot image to modify. 10641 * 10642 * Write the supplied device ID to the boot BIOS image. 10643 */ 10644 static void modify_device_id(int device_id, u8 *boot_data) 10645 { 10646 legacy_pci_exp_rom_header_t *header; 10647 pcir_data_t *pcir_header; 10648 u32 cur_header = 0; 10649 10650 /* 10651 * Loop through all chained images and change the device ID's 10652 */ 10653 while (1) { 10654 header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header]; 10655 pcir_header = (pcir_data_t *) &boot_data[cur_header + 10656 le16_to_cpu(*(u16*)header->pcir_offset)]; 10657 10658 /* 10659 * Only modify the Device ID if code type is Legacy or HP. 10660 * 0x00: Okay to modify 10661 * 0x01: FCODE. Do not be modify 10662 * 0x03: Okay to modify 10663 * 0x04-0xFF: Do not modify 10664 */ 10665 if (pcir_header->code_type == 0x00) { 10666 u8 csum = 0; 10667 int i; 10668 10669 /* 10670 * Modify Device ID to match current adatper 10671 */ 10672 *(u16*) pcir_header->device_id = device_id; 10673 10674 /* 10675 * Set checksum temporarily to 0. 10676 * We will recalculate it later. 10677 */ 10678 header->cksum = 0x0; 10679 10680 /* 10681 * Calculate and update checksum 10682 */ 10683 for (i = 0; i < (header->size512 * 512); i++) 10684 csum += (u8)boot_data[cur_header + i]; 10685 10686 /* 10687 * Invert summed value to create the checksum 10688 * Writing new checksum value directly to the boot data 10689 */ 10690 boot_data[cur_header + 7] = -csum; 10691 10692 } else if (pcir_header->code_type == 0x03) { 10693 10694 /* 10695 * Modify Device ID to match current adatper 10696 */ 10697 *(u16*) pcir_header->device_id = device_id; 10698 10699 } 10700 10701 10702 /* 10703 * Check indicator element to identify if this is the last 10704 * image in the ROM. 10705 */ 10706 if (pcir_header->indicator & 0x80) 10707 break; 10708 10709 /* 10710 * Move header pointer up to the next image in the ROM. 10711 */ 10712 cur_header += header->size512 * 512; 10713 } 10714 } 10715 10716 /* 10717 * t4_load_boot - download boot flash 10718 * @adapter: the adapter 10719 * @boot_data: the boot image to write 10720 * @boot_addr: offset in flash to write boot_data 10721 * @size: image size 10722 * 10723 * Write the supplied boot image to the card's serial flash. 10724 * The boot image has the following sections: a 28-byte header and the 10725 * boot image. 10726 */ 10727 int t4_load_boot(struct adapter *adap, u8 *boot_data, 10728 unsigned int boot_addr, unsigned int size) 10729 { 10730 pci_exp_rom_header_t *header; 10731 int pcir_offset ; 10732 pcir_data_t *pcir_header; 10733 int ret, addr; 10734 uint16_t device_id; 10735 unsigned int i; 10736 unsigned int boot_sector = (boot_addr * 1024 ); 10737 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10738 10739 /* 10740 * Make sure the boot image does not encroach on the firmware region 10741 */ 10742 if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) { 10743 CH_ERR(adap, "boot image encroaching on firmware region\n"); 10744 return -EFBIG; 10745 } 10746 10747 /* 10748 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot, 10749 * and Boot configuration data sections. These 3 boot sections span 10750 * sectors 0 to 7 in flash and live right before the FW image location. 10751 */ 10752 i = DIV_ROUND_UP(size ? size : FLASH_FW_START, 10753 sf_sec_size); 10754 ret = t4_flash_erase_sectors(adap, boot_sector >> 16, 10755 (boot_sector >> 16) + i - 1); 10756 10757 /* 10758 * If size == 0 then we're simply erasing the FLASH sectors associated 10759 * with the on-adapter option ROM file 10760 */ 10761 if (ret || (size == 0)) 10762 goto out; 10763 10764 /* Get boot header */ 10765 header = (pci_exp_rom_header_t *)boot_data; 10766 pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset); 10767 /* PCIR Data Structure */ 10768 pcir_header = (pcir_data_t *) &boot_data[pcir_offset]; 10769 10770 /* 10771 * Perform some primitive sanity testing to avoid accidentally 10772 * writing garbage over the boot sectors. We ought to check for 10773 * more but it's not worth it for now ... 10774 */ 10775 if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) { 10776 CH_ERR(adap, "boot image too small/large\n"); 10777 return -EFBIG; 10778 } 10779 10780 #ifndef CHELSIO_T4_DIAGS 10781 /* 10782 * Check BOOT ROM header signature 10783 */ 10784 if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) { 10785 CH_ERR(adap, "Boot image missing signature\n"); 10786 return -EINVAL; 10787 } 10788 10789 /* 10790 * Check PCI header signature 10791 */ 10792 if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) { 10793 CH_ERR(adap, "PCI header missing signature\n"); 10794 return -EINVAL; 10795 } 10796 10797 /* 10798 * Check Vendor ID matches Chelsio ID 10799 */ 10800 if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) { 10801 CH_ERR(adap, "Vendor ID missing signature\n"); 10802 return -EINVAL; 10803 } 10804 #endif 10805 10806 /* 10807 * Retrieve adapter's device ID 10808 */ 10809 t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id); 10810 /* Want to deal with PF 0 so I strip off PF 4 indicator */ 10811 device_id = device_id & 0xf0ff; 10812 10813 /* 10814 * Check PCIE Device ID 10815 */ 10816 if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) { 10817 /* 10818 * Change the device ID in the Boot BIOS image to match 10819 * the Device ID of the current adapter. 10820 */ 10821 modify_device_id(device_id, boot_data); 10822 } 10823 10824 /* 10825 * Skip over the first SF_PAGE_SIZE worth of data and write it after 10826 * we finish copying the rest of the boot image. This will ensure 10827 * that the BIOS boot header will only be written if the boot image 10828 * was written in full. 10829 */ 10830 addr = boot_sector; 10831 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 10832 addr += SF_PAGE_SIZE; 10833 boot_data += SF_PAGE_SIZE; 10834 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0); 10835 if (ret) 10836 goto out; 10837 } 10838 10839 ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE, 10840 (const u8 *)header, 0); 10841 10842 out: 10843 if (ret) 10844 CH_ERR(adap, "boot image download failed, error %d\n", ret); 10845 return ret; 10846 } 10847 10848 /* 10849 * t4_flash_bootcfg_addr - return the address of the flash optionrom configuration 10850 * @adapter: the adapter 10851 * 10852 * Return the address within the flash where the OptionROM Configuration 10853 * is stored, or an error if the device FLASH is too small to contain 10854 * a OptionROM Configuration. 10855 */ 10856 static int t4_flash_bootcfg_addr(struct adapter *adapter) 10857 { 10858 /* 10859 * If the device FLASH isn't large enough to hold a Firmware 10860 * Configuration File, return an error. 10861 */ 10862 if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE) 10863 return -ENOSPC; 10864 10865 return FLASH_BOOTCFG_START; 10866 } 10867 10868 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size) 10869 { 10870 int ret, i, n, cfg_addr; 10871 unsigned int addr; 10872 unsigned int flash_cfg_start_sec; 10873 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10874 10875 cfg_addr = t4_flash_bootcfg_addr(adap); 10876 if (cfg_addr < 0) 10877 return cfg_addr; 10878 10879 addr = cfg_addr; 10880 flash_cfg_start_sec = addr / SF_SEC_SIZE; 10881 10882 if (size > FLASH_BOOTCFG_MAX_SIZE) { 10883 CH_ERR(adap, "bootcfg file too large, max is %u bytes\n", 10884 FLASH_BOOTCFG_MAX_SIZE); 10885 return -EFBIG; 10886 } 10887 10888 i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */ 10889 sf_sec_size); 10890 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 10891 flash_cfg_start_sec + i - 1); 10892 10893 /* 10894 * If size == 0 then we're simply erasing the FLASH sectors associated 10895 * with the on-adapter OptionROM Configuration File. 10896 */ 10897 if (ret || size == 0) 10898 goto out; 10899 10900 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 10901 for (i = 0; i< size; i+= SF_PAGE_SIZE) { 10902 if ( (size - i) < SF_PAGE_SIZE) 10903 n = size - i; 10904 else 10905 n = SF_PAGE_SIZE; 10906 ret = t4_write_flash(adap, addr, n, cfg_data, 0); 10907 if (ret) 10908 goto out; 10909 10910 addr += SF_PAGE_SIZE; 10911 cfg_data += SF_PAGE_SIZE; 10912 } 10913 10914 out: 10915 if (ret) 10916 CH_ERR(adap, "boot config data %s failed %d\n", 10917 (size == 0 ? "clear" : "download"), ret); 10918 return ret; 10919 } 10920 10921 /** 10922 * t4_set_filter_cfg - set up filter mode/mask and ingress config. 10923 * @adap: the adapter 10924 * @mode: a bitmap selecting which optional filter components to enable 10925 * @mask: a bitmap selecting which components to enable in filter mask 10926 * @vnic_mode: the ingress config/vnic mode setting 10927 * 10928 * Sets the filter mode and mask by selecting the optional components to 10929 * enable in filter tuples. Returns 0 on success and a negative error if 10930 * the requested mode needs more bits than are available for optional 10931 * components. The filter mask must be a subset of the filter mode. 10932 */ 10933 int t4_set_filter_cfg(struct adapter *adap, int mode, int mask, int vnic_mode) 10934 { 10935 static const uint8_t width[] = {1, 3, 17, 17, 8, 8, 16, 9, 3, 1}; 10936 int i, nbits, rc; 10937 uint32_t param, val; 10938 uint16_t fmode, fmask; 10939 const int maxbits = adap->chip_params->filter_opt_len; 10940 10941 if (mode != -1 || mask != -1) { 10942 if (mode != -1) { 10943 fmode = mode; 10944 nbits = 0; 10945 for (i = S_FCOE; i <= S_FRAGMENTATION; i++) { 10946 if (fmode & (1 << i)) 10947 nbits += width[i]; 10948 } 10949 if (nbits > maxbits) { 10950 CH_ERR(adap, "optional fields in the filter " 10951 "mode (0x%x) add up to %d bits " 10952 "(must be <= %db). Remove some fields and " 10953 "try again.\n", fmode, nbits, maxbits); 10954 return -E2BIG; 10955 } 10956 10957 /* 10958 * Hardware wants the bits to be maxed out. Keep 10959 * setting them until there's no room for more. 10960 */ 10961 for (i = S_FCOE; i <= S_FRAGMENTATION; i++) { 10962 if (fmode & (1 << i)) 10963 continue; 10964 if (nbits + width[i] <= maxbits) { 10965 fmode |= 1 << i; 10966 nbits += width[i]; 10967 if (nbits == maxbits) 10968 break; 10969 } 10970 } 10971 10972 fmask = fmode & adap->params.tp.filter_mask; 10973 if (fmask != adap->params.tp.filter_mask) { 10974 CH_WARN(adap, 10975 "filter mask will be changed from 0x%x to " 10976 "0x%x to comply with the filter mode (0x%x).\n", 10977 adap->params.tp.filter_mask, fmask, fmode); 10978 } 10979 } else { 10980 fmode = adap->params.tp.filter_mode; 10981 fmask = mask; 10982 if ((fmode | fmask) != fmode) { 10983 CH_ERR(adap, 10984 "filter mask (0x%x) must be a subset of " 10985 "the filter mode (0x%x).\n", fmask, fmode); 10986 return -EINVAL; 10987 } 10988 } 10989 10990 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 10991 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) | 10992 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK); 10993 val = V_FW_PARAMS_PARAM_FILTER_MODE(fmode) | 10994 V_FW_PARAMS_PARAM_FILTER_MASK(fmask); 10995 rc = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, 10996 &val); 10997 if (rc < 0) 10998 return rc; 10999 } 11000 11001 if (vnic_mode != -1) { 11002 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 11003 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) | 11004 V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE); 11005 val = vnic_mode; 11006 rc = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, 11007 &val); 11008 if (rc < 0) 11009 return rc; 11010 } 11011 11012 /* Refresh. */ 11013 read_filter_mode_and_ingress_config(adap); 11014 11015 return 0; 11016 } 11017 11018 /** 11019 * t4_clr_port_stats - clear port statistics 11020 * @adap: the adapter 11021 * @idx: the port index 11022 * 11023 * Clear HW statistics for the given port. 11024 */ 11025 void t4_clr_port_stats(struct adapter *adap, int idx) 11026 { 11027 unsigned int i; 11028 u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map; 11029 u32 port_base_addr; 11030 11031 if (is_t4(adap)) 11032 port_base_addr = PORT_BASE(idx); 11033 else 11034 port_base_addr = T5_PORT_BASE(idx); 11035 11036 for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L; 11037 i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8) 11038 t4_write_reg(adap, port_base_addr + i, 0); 11039 for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L; 11040 i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8) 11041 t4_write_reg(adap, port_base_addr + i, 0); 11042 for (i = 0; i < 4; i++) 11043 if (bgmap & (1 << i)) { 11044 t4_write_reg(adap, 11045 A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0); 11046 t4_write_reg(adap, 11047 A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0); 11048 } 11049 } 11050 11051 /** 11052 * t4_i2c_io - read/write I2C data from adapter 11053 * @adap: the adapter 11054 * @port: Port number if per-port device; <0 if not 11055 * @devid: per-port device ID or absolute device ID 11056 * @offset: byte offset into device I2C space 11057 * @len: byte length of I2C space data 11058 * @buf: buffer in which to return I2C data for read 11059 * buffer which holds the I2C data for write 11060 * @write: if true, do a write; else do a read 11061 * Reads/Writes the I2C data from/to the indicated device and location. 11062 */ 11063 int t4_i2c_io(struct adapter *adap, unsigned int mbox, 11064 int port, unsigned int devid, 11065 unsigned int offset, unsigned int len, 11066 u8 *buf, bool write) 11067 { 11068 struct fw_ldst_cmd ldst_cmd, ldst_rpl; 11069 unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data); 11070 int ret = 0; 11071 11072 if (len > I2C_PAGE_SIZE) 11073 return -EINVAL; 11074 11075 /* Dont allow reads that spans multiple pages */ 11076 if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE) 11077 return -EINVAL; 11078 11079 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 11080 ldst_cmd.op_to_addrspace = 11081 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 11082 F_FW_CMD_REQUEST | 11083 (write ? F_FW_CMD_WRITE : F_FW_CMD_READ) | 11084 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C)); 11085 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 11086 ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port); 11087 ldst_cmd.u.i2c.did = devid; 11088 11089 while (len > 0) { 11090 unsigned int i2c_len = (len < i2c_max) ? len : i2c_max; 11091 11092 ldst_cmd.u.i2c.boffset = offset; 11093 ldst_cmd.u.i2c.blen = i2c_len; 11094 11095 if (write) 11096 memcpy(ldst_cmd.u.i2c.data, buf, i2c_len); 11097 11098 ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd), 11099 write ? NULL : &ldst_rpl); 11100 if (ret) 11101 break; 11102 11103 if (!write) 11104 memcpy(buf, ldst_rpl.u.i2c.data, i2c_len); 11105 offset += i2c_len; 11106 buf += i2c_len; 11107 len -= i2c_len; 11108 } 11109 11110 return ret; 11111 } 11112 11113 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, 11114 int port, unsigned int devid, 11115 unsigned int offset, unsigned int len, 11116 u8 *buf) 11117 { 11118 return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, false); 11119 } 11120 11121 int t4_i2c_wr(struct adapter *adap, unsigned int mbox, 11122 int port, unsigned int devid, 11123 unsigned int offset, unsigned int len, 11124 u8 *buf) 11125 { 11126 return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, true); 11127 } 11128 11129 /** 11130 * t4_sge_ctxt_rd - read an SGE context through FW 11131 * @adap: the adapter 11132 * @mbox: mailbox to use for the FW command 11133 * @cid: the context id 11134 * @ctype: the context type 11135 * @data: where to store the context data 11136 * 11137 * Issues a FW command through the given mailbox to read an SGE context. 11138 */ 11139 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid, 11140 enum ctxt_type ctype, u32 *data) 11141 { 11142 int ret; 11143 struct fw_ldst_cmd c; 11144 11145 if (ctype == CTXT_EGRESS) 11146 ret = FW_LDST_ADDRSPC_SGE_EGRC; 11147 else if (ctype == CTXT_INGRESS) 11148 ret = FW_LDST_ADDRSPC_SGE_INGC; 11149 else if (ctype == CTXT_FLM) 11150 ret = FW_LDST_ADDRSPC_SGE_FLMC; 11151 else 11152 ret = FW_LDST_ADDRSPC_SGE_CONMC; 11153 11154 memset(&c, 0, sizeof(c)); 11155 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 11156 F_FW_CMD_REQUEST | F_FW_CMD_READ | 11157 V_FW_LDST_CMD_ADDRSPACE(ret)); 11158 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 11159 c.u.idctxt.physid = cpu_to_be32(cid); 11160 11161 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 11162 if (ret == 0) { 11163 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0); 11164 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1); 11165 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2); 11166 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3); 11167 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4); 11168 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5); 11169 } 11170 return ret; 11171 } 11172 11173 /** 11174 * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW 11175 * @adap: the adapter 11176 * @cid: the context id 11177 * @ctype: the context type 11178 * @data: where to store the context data 11179 * 11180 * Reads an SGE context directly, bypassing FW. This is only for 11181 * debugging when FW is unavailable. 11182 */ 11183 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype, 11184 u32 *data) 11185 { 11186 int i, ret; 11187 11188 t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype)); 11189 ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1); 11190 if (!ret) 11191 for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4) 11192 *data++ = t4_read_reg(adap, i); 11193 return ret; 11194 } 11195 11196 int t4_sched_config(struct adapter *adapter, int type, int minmaxen, 11197 int sleep_ok) 11198 { 11199 struct fw_sched_cmd cmd; 11200 11201 memset(&cmd, 0, sizeof(cmd)); 11202 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | 11203 F_FW_CMD_REQUEST | 11204 F_FW_CMD_WRITE); 11205 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 11206 11207 cmd.u.config.sc = FW_SCHED_SC_CONFIG; 11208 cmd.u.config.type = type; 11209 cmd.u.config.minmaxen = minmaxen; 11210 11211 return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), 11212 NULL, sleep_ok); 11213 } 11214 11215 int t4_sched_params(struct adapter *adapter, int type, int level, int mode, 11216 int rateunit, int ratemode, int channel, int cl, 11217 int minrate, int maxrate, int weight, int pktsize, 11218 int burstsize, int sleep_ok) 11219 { 11220 struct fw_sched_cmd cmd; 11221 11222 memset(&cmd, 0, sizeof(cmd)); 11223 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | 11224 F_FW_CMD_REQUEST | 11225 F_FW_CMD_WRITE); 11226 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 11227 11228 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 11229 cmd.u.params.type = type; 11230 cmd.u.params.level = level; 11231 cmd.u.params.mode = mode; 11232 cmd.u.params.ch = channel; 11233 cmd.u.params.cl = cl; 11234 cmd.u.params.unit = rateunit; 11235 cmd.u.params.rate = ratemode; 11236 cmd.u.params.min = cpu_to_be32(minrate); 11237 cmd.u.params.max = cpu_to_be32(maxrate); 11238 cmd.u.params.weight = cpu_to_be16(weight); 11239 cmd.u.params.pktsize = cpu_to_be16(pktsize); 11240 cmd.u.params.burstsize = cpu_to_be16(burstsize); 11241 11242 return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), 11243 NULL, sleep_ok); 11244 } 11245 11246 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode, 11247 unsigned int maxrate, int sleep_ok) 11248 { 11249 struct fw_sched_cmd cmd; 11250 11251 memset(&cmd, 0, sizeof(cmd)); 11252 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | 11253 F_FW_CMD_REQUEST | 11254 F_FW_CMD_WRITE); 11255 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 11256 11257 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 11258 cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED; 11259 cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL; 11260 cmd.u.params.ch = channel; 11261 cmd.u.params.rate = ratemode; /* REL or ABS */ 11262 cmd.u.params.max = cpu_to_be32(maxrate);/* % or kbps */ 11263 11264 return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), 11265 NULL, sleep_ok); 11266 } 11267 11268 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl, 11269 int weight, int sleep_ok) 11270 { 11271 struct fw_sched_cmd cmd; 11272 11273 if (weight < 0 || weight > 100) 11274 return -EINVAL; 11275 11276 memset(&cmd, 0, sizeof(cmd)); 11277 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | 11278 F_FW_CMD_REQUEST | 11279 F_FW_CMD_WRITE); 11280 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 11281 11282 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 11283 cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED; 11284 cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR; 11285 cmd.u.params.ch = channel; 11286 cmd.u.params.cl = cl; 11287 cmd.u.params.weight = cpu_to_be16(weight); 11288 11289 return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), 11290 NULL, sleep_ok); 11291 } 11292 11293 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl, 11294 int mode, unsigned int maxrate, int pktsize, int sleep_ok) 11295 { 11296 struct fw_sched_cmd cmd; 11297 11298 memset(&cmd, 0, sizeof(cmd)); 11299 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | 11300 F_FW_CMD_REQUEST | 11301 F_FW_CMD_WRITE); 11302 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 11303 11304 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 11305 cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED; 11306 cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL; 11307 cmd.u.params.mode = mode; 11308 cmd.u.params.ch = channel; 11309 cmd.u.params.cl = cl; 11310 cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE; 11311 cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS; 11312 cmd.u.params.max = cpu_to_be32(maxrate); 11313 cmd.u.params.pktsize = cpu_to_be16(pktsize); 11314 11315 return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), 11316 NULL, sleep_ok); 11317 } 11318 11319 /* 11320 * t4_config_watchdog - configure (enable/disable) a watchdog timer 11321 * @adapter: the adapter 11322 * @mbox: mailbox to use for the FW command 11323 * @pf: the PF owning the queue 11324 * @vf: the VF owning the queue 11325 * @timeout: watchdog timeout in ms 11326 * @action: watchdog timer / action 11327 * 11328 * There are separate watchdog timers for each possible watchdog 11329 * action. Configure one of the watchdog timers by setting a non-zero 11330 * timeout. Disable a watchdog timer by using a timeout of zero. 11331 */ 11332 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox, 11333 unsigned int pf, unsigned int vf, 11334 unsigned int timeout, unsigned int action) 11335 { 11336 struct fw_watchdog_cmd wdog; 11337 unsigned int ticks; 11338 11339 /* 11340 * The watchdog command expects a timeout in units of 10ms so we need 11341 * to convert it here (via rounding) and force a minimum of one 10ms 11342 * "tick" if the timeout is non-zero but the conversion results in 0 11343 * ticks. 11344 */ 11345 ticks = (timeout + 5)/10; 11346 if (timeout && !ticks) 11347 ticks = 1; 11348 11349 memset(&wdog, 0, sizeof wdog); 11350 wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) | 11351 F_FW_CMD_REQUEST | 11352 F_FW_CMD_WRITE | 11353 V_FW_PARAMS_CMD_PFN(pf) | 11354 V_FW_PARAMS_CMD_VFN(vf)); 11355 wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog)); 11356 wdog.timeout = cpu_to_be32(ticks); 11357 wdog.action = cpu_to_be32(action); 11358 11359 return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL); 11360 } 11361 11362 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level) 11363 { 11364 struct fw_devlog_cmd devlog_cmd; 11365 int ret; 11366 11367 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 11368 devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) | 11369 F_FW_CMD_REQUEST | F_FW_CMD_READ); 11370 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 11371 ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd, 11372 sizeof(devlog_cmd), &devlog_cmd); 11373 if (ret) 11374 return ret; 11375 11376 *level = devlog_cmd.level; 11377 return 0; 11378 } 11379 11380 int t4_set_devlog_level(struct adapter *adapter, unsigned int level) 11381 { 11382 struct fw_devlog_cmd devlog_cmd; 11383 11384 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 11385 devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) | 11386 F_FW_CMD_REQUEST | 11387 F_FW_CMD_WRITE); 11388 devlog_cmd.level = level; 11389 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 11390 return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd, 11391 sizeof(devlog_cmd), &devlog_cmd); 11392 } 11393 11394 int t4_configure_add_smac(struct adapter *adap) 11395 { 11396 unsigned int param, val; 11397 int ret = 0; 11398 11399 adap->params.smac_add_support = 0; 11400 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 11401 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_ADD_SMAC)); 11402 /* Query FW to check if FW supports adding source mac address 11403 * to TCAM feature or not. 11404 * If FW returns 1, driver can use this feature and driver need to send 11405 * FW_PARAMS_PARAM_DEV_ADD_SMAC write command with value 1 to 11406 * enable adding smac to TCAM. 11407 */ 11408 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 11409 if (ret) 11410 return ret; 11411 11412 if (val == 1) { 11413 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 11414 ¶m, &val); 11415 if (!ret) 11416 /* Firmware allows adding explicit TCAM entries. 11417 * Save this internally. 11418 */ 11419 adap->params.smac_add_support = 1; 11420 } 11421 11422 return ret; 11423 } 11424 11425 int t4_configure_ringbb(struct adapter *adap) 11426 { 11427 unsigned int param, val; 11428 int ret = 0; 11429 11430 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 11431 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RING_BACKBONE)); 11432 /* Query FW to check if FW supports ring switch feature or not. 11433 * If FW returns 1, driver can use this feature and driver need to send 11434 * FW_PARAMS_PARAM_DEV_RING_BACKBONE write command with value 1 to 11435 * enable the ring backbone configuration. 11436 */ 11437 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 11438 if (ret < 0) { 11439 CH_ERR(adap, "Querying FW using Ring backbone params command failed, err=%d\n", 11440 ret); 11441 goto out; 11442 } 11443 11444 if (val != 1) { 11445 CH_ERR(adap, "FW doesnot support ringbackbone features\n"); 11446 goto out; 11447 } 11448 11449 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 11450 if (ret < 0) { 11451 CH_ERR(adap, "Could not set Ringbackbone, err= %d\n", 11452 ret); 11453 goto out; 11454 } 11455 11456 out: 11457 return ret; 11458 } 11459 11460 /* 11461 * t4_set_vlan_acl - Set a VLAN id for the specified VF 11462 * @adapter: the adapter 11463 * @mbox: mailbox to use for the FW command 11464 * @vf: one of the VFs instantiated by the specified PF 11465 * @vlan: The vlanid to be set 11466 * 11467 */ 11468 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf, 11469 u16 vlan) 11470 { 11471 struct fw_acl_vlan_cmd vlan_cmd; 11472 unsigned int enable; 11473 11474 enable = (vlan ? F_FW_ACL_VLAN_CMD_EN : 0); 11475 memset(&vlan_cmd, 0, sizeof(vlan_cmd)); 11476 vlan_cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_VLAN_CMD) | 11477 F_FW_CMD_REQUEST | 11478 F_FW_CMD_WRITE | 11479 F_FW_CMD_EXEC | 11480 V_FW_ACL_VLAN_CMD_PFN(adap->pf) | 11481 V_FW_ACL_VLAN_CMD_VFN(vf)); 11482 vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd)); 11483 /* Drop all packets that donot match vlan id */ 11484 vlan_cmd.dropnovlan_fm = (enable 11485 ? (F_FW_ACL_VLAN_CMD_DROPNOVLAN | 11486 F_FW_ACL_VLAN_CMD_FM) 11487 : 0); 11488 if (enable != 0) { 11489 vlan_cmd.nvlan = 1; 11490 vlan_cmd.vlanid[0] = cpu_to_be16(vlan); 11491 } 11492 11493 return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL); 11494 } 11495 11496 /** 11497 * t4_del_mac - Removes the exact-match filter for a MAC address 11498 * @adap: the adapter 11499 * @mbox: mailbox to use for the FW command 11500 * @viid: the VI id 11501 * @addr: the MAC address value 11502 * @smac: if true, delete from only the smac region of MPS 11503 * 11504 * Modifies an exact-match filter and sets it to the new MAC address if 11505 * @idx >= 0, or adds the MAC address to a new filter if @idx < 0. In the 11506 * latter case the address is added persistently if @persist is %true. 11507 * 11508 * Returns a negative error number or the index of the filter with the new 11509 * MAC value. Note that this index may differ from @idx. 11510 */ 11511 int t4_del_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 11512 const u8 *addr, bool smac) 11513 { 11514 int ret; 11515 struct fw_vi_mac_cmd c; 11516 struct fw_vi_mac_exact *p = c.u.exact; 11517 unsigned int max_mac_addr = adap->chip_params->mps_tcam_size; 11518 11519 memset(&c, 0, sizeof(c)); 11520 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | 11521 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 11522 V_FW_VI_MAC_CMD_VIID(viid)); 11523 c.freemacs_to_len16 = cpu_to_be32( 11524 V_FW_CMD_LEN16(1) | 11525 (smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0)); 11526 11527 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 11528 p->valid_to_idx = cpu_to_be16( 11529 F_FW_VI_MAC_CMD_VALID | 11530 V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE)); 11531 11532 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 11533 if (ret == 0) { 11534 ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx)); 11535 if (ret < max_mac_addr) 11536 return -ENOMEM; 11537 } 11538 11539 return ret; 11540 } 11541 11542 /** 11543 * t4_add_mac - Adds an exact-match filter for a MAC address 11544 * @adap: the adapter 11545 * @mbox: mailbox to use for the FW command 11546 * @viid: the VI id 11547 * @idx: index of existing filter for old value of MAC address, or -1 11548 * @addr: the new MAC address value 11549 * @persist: whether a new MAC allocation should be persistent 11550 * @add_smt: if true also add the address to the HW SMT 11551 * @smac: if true, update only the smac region of MPS 11552 * 11553 * Modifies an exact-match filter and sets it to the new MAC address if 11554 * @idx >= 0, or adds the MAC address to a new filter if @idx < 0. In the 11555 * latter case the address is added persistently if @persist is %true. 11556 * 11557 * Returns a negative error number or the index of the filter with the new 11558 * MAC value. Note that this index may differ from @idx. 11559 */ 11560 int t4_add_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 11561 int idx, const u8 *addr, bool persist, u8 *smt_idx, bool smac) 11562 { 11563 int ret, mode; 11564 struct fw_vi_mac_cmd c; 11565 struct fw_vi_mac_exact *p = c.u.exact; 11566 unsigned int max_mac_addr = adap->chip_params->mps_tcam_size; 11567 11568 if (idx < 0) /* new allocation */ 11569 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 11570 mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 11571 11572 memset(&c, 0, sizeof(c)); 11573 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | 11574 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 11575 V_FW_VI_MAC_CMD_VIID(viid)); 11576 c.freemacs_to_len16 = cpu_to_be32( 11577 V_FW_CMD_LEN16(1) | 11578 (smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0)); 11579 p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID | 11580 V_FW_VI_MAC_CMD_SMAC_RESULT(mode) | 11581 V_FW_VI_MAC_CMD_IDX(idx)); 11582 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 11583 11584 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 11585 if (ret == 0) { 11586 ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx)); 11587 if (ret >= max_mac_addr) 11588 return -ENOMEM; 11589 if (smt_idx) { 11590 /* Does fw supports returning smt_idx? */ 11591 if (adap->params.viid_smt_extn_support) 11592 *smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid)); 11593 else { 11594 /* In T4/T5, SMT contains 256 SMAC entries 11595 * organized in 128 rows of 2 entries each. 11596 * In T6, SMT contains 256 SMAC entries in 11597 * 256 rows. 11598 */ 11599 if (chip_id(adap) <= CHELSIO_T5) 11600 *smt_idx = ((viid & M_FW_VIID_VIN) << 1); 11601 else 11602 *smt_idx = (viid & M_FW_VIID_VIN); 11603 } 11604 } 11605 } 11606 11607 return ret; 11608 } 11609