xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision a66ffea41d7ea4e39a49bc146e6f6decb4fbd02c)
1 /*-
2  * Copyright (c) 2012 Chelsio Communications, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 
32 #include "common.h"
33 #include "t4_regs.h"
34 #include "t4_regs_values.h"
35 #include "firmware/t4fw_interface.h"
36 
37 #undef msleep
38 #define msleep(x) do { \
39 	if (cold) \
40 		DELAY((x) * 1000); \
41 	else \
42 		pause("t4hw", (x) * hz / 1000); \
43 } while (0)
44 
45 /**
46  *	t4_wait_op_done_val - wait until an operation is completed
47  *	@adapter: the adapter performing the operation
48  *	@reg: the register to check for completion
49  *	@mask: a single-bit field within @reg that indicates completion
50  *	@polarity: the value of the field when the operation is completed
51  *	@attempts: number of check iterations
52  *	@delay: delay in usecs between iterations
53  *	@valp: where to store the value of the register at completion time
54  *
55  *	Wait until an operation is completed by checking a bit in a register
56  *	up to @attempts times.  If @valp is not NULL the value of the register
57  *	at the time it indicated completion is stored there.  Returns 0 if the
58  *	operation completes and	-EAGAIN	otherwise.
59  */
60 int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
61 		        int polarity, int attempts, int delay, u32 *valp)
62 {
63 	while (1) {
64 		u32 val = t4_read_reg(adapter, reg);
65 
66 		if (!!(val & mask) == polarity) {
67 			if (valp)
68 				*valp = val;
69 			return 0;
70 		}
71 		if (--attempts == 0)
72 			return -EAGAIN;
73 		if (delay)
74 			udelay(delay);
75 	}
76 }
77 
78 /**
79  *	t4_set_reg_field - set a register field to a value
80  *	@adapter: the adapter to program
81  *	@addr: the register address
82  *	@mask: specifies the portion of the register to modify
83  *	@val: the new value for the register field
84  *
85  *	Sets a register field specified by the supplied mask to the
86  *	given value.
87  */
88 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
89 		      u32 val)
90 {
91 	u32 v = t4_read_reg(adapter, addr) & ~mask;
92 
93 	t4_write_reg(adapter, addr, v | val);
94 	(void) t4_read_reg(adapter, addr);      /* flush */
95 }
96 
97 /**
98  *	t4_read_indirect - read indirectly addressed registers
99  *	@adap: the adapter
100  *	@addr_reg: register holding the indirect address
101  *	@data_reg: register holding the value of the indirect register
102  *	@vals: where the read register values are stored
103  *	@nregs: how many indirect registers to read
104  *	@start_idx: index of first indirect register to read
105  *
106  *	Reads registers that are accessed indirectly through an address/data
107  *	register pair.
108  */
109 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
110 		      unsigned int data_reg, u32 *vals, unsigned int nregs,
111 		      unsigned int start_idx)
112 {
113 	while (nregs--) {
114 		t4_write_reg(adap, addr_reg, start_idx);
115 		*vals++ = t4_read_reg(adap, data_reg);
116 		start_idx++;
117 	}
118 }
119 
120 /**
121  *	t4_write_indirect - write indirectly addressed registers
122  *	@adap: the adapter
123  *	@addr_reg: register holding the indirect addresses
124  *	@data_reg: register holding the value for the indirect registers
125  *	@vals: values to write
126  *	@nregs: how many indirect registers to write
127  *	@start_idx: address of first indirect register to write
128  *
129  *	Writes a sequential block of registers that are accessed indirectly
130  *	through an address/data register pair.
131  */
132 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
133 		       unsigned int data_reg, const u32 *vals,
134 		       unsigned int nregs, unsigned int start_idx)
135 {
136 	while (nregs--) {
137 		t4_write_reg(adap, addr_reg, start_idx++);
138 		t4_write_reg(adap, data_reg, *vals++);
139 	}
140 }
141 
142 /*
143  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
144  * mechanism.  This guarantees that we get the real value even if we're
145  * operating within a Virtual Machine and the Hypervisor is trapping our
146  * Configuration Space accesses.
147  */
148 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
149 {
150 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ,
151 		     F_ENABLE | F_LOCALCFG | V_FUNCTION(adap->pf) |
152 		     V_REGISTER(reg));
153 	return t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
154 }
155 
156 /*
157  *	t4_report_fw_error - report firmware error
158  *	@adap: the adapter
159  *
160  *	The adapter firmware can indicate error conditions to the host.
161  *	This routine prints out the reason for the firmware error (as
162  *	reported by the firmware).
163  */
164 static void t4_report_fw_error(struct adapter *adap)
165 {
166 	static const char *reason[] = {
167 		"Crash",			/* PCIE_FW_EVAL_CRASH */
168 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
169 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
170 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
171 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
172 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
173 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
174 		"Reserved",			/* reserved */
175 	};
176 	u32 pcie_fw;
177 
178 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
179 	if (!(pcie_fw & F_PCIE_FW_ERR))
180 		CH_ERR(adap, "Firmware error report called with no error\n");
181 	else
182 		CH_ERR(adap, "Firmware reports adapter error: %s\n",
183 		       reason[G_PCIE_FW_EVAL(pcie_fw)]);
184 }
185 
186 /*
187  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
188  */
189 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
190 			 u32 mbox_addr)
191 {
192 	for ( ; nflit; nflit--, mbox_addr += 8)
193 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
194 }
195 
196 /*
197  * Handle a FW assertion reported in a mailbox.
198  */
199 static void fw_asrt(struct adapter *adap, u32 mbox_addr)
200 {
201 	struct fw_debug_cmd asrt;
202 
203 	get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
204 	CH_ALERT(adap, "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
205 		 asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line),
206 		 ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y));
207 }
208 
209 #define X_CIM_PF_NOACCESS 0xeeeeeeee
210 /**
211  *	t4_wr_mbox_meat - send a command to FW through the given mailbox
212  *	@adap: the adapter
213  *	@mbox: index of the mailbox to use
214  *	@cmd: the command to write
215  *	@size: command length in bytes
216  *	@rpl: where to optionally store the reply
217  *	@sleep_ok: if true we may sleep while awaiting command completion
218  *
219  *	Sends the given command to FW through the selected mailbox and waits
220  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
221  *	store the FW's reply to the command.  The command and its optional
222  *	reply are of the same length.  Some FW commands like RESET and
223  *	INITIALIZE can take a considerable amount of time to execute.
224  *	@sleep_ok determines whether we may sleep while awaiting the response.
225  *	If sleeping is allowed we use progressive backoff otherwise we spin.
226  *
227  *	The return value is 0 on success or a negative errno on failure.  A
228  *	failure can happen either because we are not able to execute the
229  *	command or FW executes it but signals an error.  In the latter case
230  *	the return value is the error code indicated by FW (negated).
231  */
232 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
233 		    void *rpl, bool sleep_ok)
234 {
235 	/*
236 	 * We delay in small increments at first in an effort to maintain
237 	 * responsiveness for simple, fast executing commands but then back
238 	 * off to larger delays to a maximum retry delay.
239 	 */
240 	static const int delay[] = {
241 		1, 1, 3, 5, 10, 10, 20, 50, 100
242 	};
243 
244 	u32 v;
245 	u64 res;
246 	int i, ms, delay_idx;
247 	const __be64 *p = cmd;
248 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
249 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
250 
251 	if ((size & 15) || size > MBOX_LEN)
252 		return -EINVAL;
253 
254 	v = G_MBOWNER(t4_read_reg(adap, ctl_reg));
255 	for (i = 0; v == X_MBOWNER_NONE && i < 3; i++)
256 		v = G_MBOWNER(t4_read_reg(adap, ctl_reg));
257 
258 	if (v != X_MBOWNER_PL)
259 		return v ? -EBUSY : -ETIMEDOUT;
260 
261 	for (i = 0; i < size; i += 8, p++)
262 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
263 
264 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
265 	t4_read_reg(adap, ctl_reg);          /* flush write */
266 
267 	delay_idx = 0;
268 	ms = delay[0];
269 
270 	for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
271 		if (sleep_ok) {
272 			ms = delay[delay_idx];  /* last element may repeat */
273 			if (delay_idx < ARRAY_SIZE(delay) - 1)
274 				delay_idx++;
275 			msleep(ms);
276 		} else
277 			mdelay(ms);
278 
279 		v = t4_read_reg(adap, ctl_reg);
280 		if (v == X_CIM_PF_NOACCESS)
281 			continue;
282 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
283 			if (!(v & F_MBMSGVALID)) {
284 				t4_write_reg(adap, ctl_reg,
285 					     V_MBOWNER(X_MBOWNER_NONE));
286 				continue;
287 			}
288 
289 			res = t4_read_reg64(adap, data_reg);
290 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
291 				fw_asrt(adap, data_reg);
292 				res = V_FW_CMD_RETVAL(EIO);
293 			} else if (rpl)
294 				get_mbox_rpl(adap, rpl, size / 8, data_reg);
295 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
296 			return -G_FW_CMD_RETVAL((int)res);
297 		}
298 	}
299 
300 	/*
301 	 * We timed out waiting for a reply to our mailbox command.  Report
302 	 * the error and also check to see if the firmware reported any
303 	 * errors ...
304 	 */
305 	CH_ERR(adap, "command %#x in mailbox %d timed out\n",
306 	       *(const u8 *)cmd, mbox);
307 	if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
308 		t4_report_fw_error(adap);
309 	return -ETIMEDOUT;
310 }
311 
312 /**
313  *	t4_mc_read - read from MC through backdoor accesses
314  *	@adap: the adapter
315  *	@addr: address of first byte requested
316  *	@data: 64 bytes of data containing the requested address
317  *	@ecc: where to store the corresponding 64-bit ECC word
318  *
319  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
320  *	that covers the requested address @addr.  If @parity is not %NULL it
321  *	is assigned the 64-bit ECC word for the read data.
322  */
323 int t4_mc_read(struct adapter *adap, u32 addr, __be32 *data, u64 *ecc)
324 {
325 	int i;
326 
327 	if (t4_read_reg(adap, A_MC_BIST_CMD) & F_START_BIST)
328 		return -EBUSY;
329 	t4_write_reg(adap, A_MC_BIST_CMD_ADDR, addr & ~0x3fU);
330 	t4_write_reg(adap, A_MC_BIST_CMD_LEN, 64);
331 	t4_write_reg(adap, A_MC_BIST_DATA_PATTERN, 0xc);
332 	t4_write_reg(adap, A_MC_BIST_CMD, V_BIST_OPCODE(1) | F_START_BIST |
333 		     V_BIST_CMD_GAP(1));
334 	i = t4_wait_op_done(adap, A_MC_BIST_CMD, F_START_BIST, 0, 10, 1);
335 	if (i)
336 		return i;
337 
338 #define MC_DATA(i) MC_BIST_STATUS_REG(A_MC_BIST_STATUS_RDATA, i)
339 
340 	for (i = 15; i >= 0; i--)
341 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
342 	if (ecc)
343 		*ecc = t4_read_reg64(adap, MC_DATA(16));
344 #undef MC_DATA
345 	return 0;
346 }
347 
348 /**
349  *	t4_edc_read - read from EDC through backdoor accesses
350  *	@adap: the adapter
351  *	@idx: which EDC to access
352  *	@addr: address of first byte requested
353  *	@data: 64 bytes of data containing the requested address
354  *	@ecc: where to store the corresponding 64-bit ECC word
355  *
356  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
357  *	that covers the requested address @addr.  If @parity is not %NULL it
358  *	is assigned the 64-bit ECC word for the read data.
359  */
360 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
361 {
362 	int i;
363 
364 	idx *= EDC_STRIDE;
365 	if (t4_read_reg(adap, A_EDC_BIST_CMD + idx) & F_START_BIST)
366 		return -EBUSY;
367 	t4_write_reg(adap, A_EDC_BIST_CMD_ADDR + idx, addr & ~0x3fU);
368 	t4_write_reg(adap, A_EDC_BIST_CMD_LEN + idx, 64);
369 	t4_write_reg(adap, A_EDC_BIST_DATA_PATTERN + idx, 0xc);
370 	t4_write_reg(adap, A_EDC_BIST_CMD + idx,
371 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
372 	i = t4_wait_op_done(adap, A_EDC_BIST_CMD + idx, F_START_BIST, 0, 10, 1);
373 	if (i)
374 		return i;
375 
376 #define EDC_DATA(i) (EDC_BIST_STATUS_REG(A_EDC_BIST_STATUS_RDATA, i) + idx)
377 
378 	for (i = 15; i >= 0; i--)
379 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
380 	if (ecc)
381 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
382 #undef EDC_DATA
383 	return 0;
384 }
385 
386 /**
387  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
388  *	@adap: the adapter
389  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
390  *	@addr: address within indicated memory type
391  *	@len: amount of memory to read
392  *	@buf: host memory buffer
393  *
394  *	Reads an [almost] arbitrary memory region in the firmware: the
395  *	firmware memory address, length and host buffer must be aligned on
396  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
397  *	the firmware's memory.  If this memory contains data structures which
398  *	contain multi-byte integers, it's the callers responsibility to
399  *	perform appropriate byte order conversions.
400  */
401 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
402 		__be32 *buf)
403 {
404 	u32 pos, start, end, offset;
405 	int ret;
406 
407 	/*
408 	 * Argument sanity checks ...
409 	 */
410 	if ((addr & 0x3) || (len & 0x3))
411 		return -EINVAL;
412 
413 	/*
414 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
415 	 * need to round down the start and round up the end.  We'll start
416 	 * copying out of the first line at (addr - start) a word at a time.
417 	 */
418 	start = addr & ~(64-1);
419 	end = (addr + len + 64-1) & ~(64-1);
420 	offset = (addr - start)/sizeof(__be32);
421 
422 	for (pos = start; pos < end; pos += 64, offset = 0) {
423 		__be32 data[16];
424 
425 		/*
426 		 * Read the chip's memory block and bail if there's an error.
427 		 */
428 		if (mtype == MEM_MC)
429 			ret = t4_mc_read(adap, pos, data, NULL);
430 		else
431 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
432 		if (ret)
433 			return ret;
434 
435 		/*
436 		 * Copy the data into the caller's memory buffer.
437 		 */
438 		while (offset < 16 && len > 0) {
439 			*buf++ = data[offset++];
440 			len -= sizeof(__be32);
441 		}
442 	}
443 
444 	return 0;
445 }
446 
447 /*
448  * Partial EEPROM Vital Product Data structure.  Includes only the ID and
449  * VPD-R header.
450  */
451 struct t4_vpd_hdr {
452 	u8  id_tag;
453 	u8  id_len[2];
454 	u8  id_data[ID_LEN];
455 	u8  vpdr_tag;
456 	u8  vpdr_len[2];
457 };
458 
459 /*
460  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
461  */
462 #define EEPROM_MAX_RD_POLL 40
463 #define EEPROM_MAX_WR_POLL 6
464 #define EEPROM_STAT_ADDR   0x7bfc
465 #define VPD_BASE           0x400
466 #define VPD_BASE_OLD       0
467 #define VPD_LEN            512
468 #define VPD_INFO_FLD_HDR_SIZE	3
469 
470 /**
471  *	t4_seeprom_read - read a serial EEPROM location
472  *	@adapter: adapter to read
473  *	@addr: EEPROM virtual address
474  *	@data: where to store the read data
475  *
476  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
477  *	VPD capability.  Note that this function must be called with a virtual
478  *	address.
479  */
480 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
481 {
482 	u16 val;
483 	int attempts = EEPROM_MAX_RD_POLL;
484 	unsigned int base = adapter->params.pci.vpd_cap_addr;
485 
486 	if (addr >= EEPROMVSIZE || (addr & 3))
487 		return -EINVAL;
488 
489 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
490 	do {
491 		udelay(10);
492 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
493 	} while (!(val & PCI_VPD_ADDR_F) && --attempts);
494 
495 	if (!(val & PCI_VPD_ADDR_F)) {
496 		CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
497 		return -EIO;
498 	}
499 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
500 	*data = le32_to_cpu(*data);
501 	return 0;
502 }
503 
504 /**
505  *	t4_seeprom_write - write a serial EEPROM location
506  *	@adapter: adapter to write
507  *	@addr: virtual EEPROM address
508  *	@data: value to write
509  *
510  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
511  *	VPD capability.  Note that this function must be called with a virtual
512  *	address.
513  */
514 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
515 {
516 	u16 val;
517 	int attempts = EEPROM_MAX_WR_POLL;
518 	unsigned int base = adapter->params.pci.vpd_cap_addr;
519 
520 	if (addr >= EEPROMVSIZE || (addr & 3))
521 		return -EINVAL;
522 
523 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
524 				 cpu_to_le32(data));
525 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
526 				 (u16)addr | PCI_VPD_ADDR_F);
527 	do {
528 		msleep(1);
529 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
530 	} while ((val & PCI_VPD_ADDR_F) && --attempts);
531 
532 	if (val & PCI_VPD_ADDR_F) {
533 		CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
534 		return -EIO;
535 	}
536 	return 0;
537 }
538 
539 /**
540  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
541  *	@phys_addr: the physical EEPROM address
542  *	@fn: the PCI function number
543  *	@sz: size of function-specific area
544  *
545  *	Translate a physical EEPROM address to virtual.  The first 1K is
546  *	accessed through virtual addresses starting at 31K, the rest is
547  *	accessed through virtual addresses starting at 0.
548  *
549  *	The mapping is as follows:
550  *	[0..1K) -> [31K..32K)
551  *	[1K..1K+A) -> [ES-A..ES)
552  *	[1K+A..ES) -> [0..ES-A-1K)
553  *
554  *	where A = @fn * @sz, and ES = EEPROM size.
555  */
556 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
557 {
558 	fn *= sz;
559 	if (phys_addr < 1024)
560 		return phys_addr + (31 << 10);
561 	if (phys_addr < 1024 + fn)
562 		return EEPROMSIZE - fn + phys_addr - 1024;
563 	if (phys_addr < EEPROMSIZE)
564 		return phys_addr - 1024 - fn;
565 	return -EINVAL;
566 }
567 
568 /**
569  *	t4_seeprom_wp - enable/disable EEPROM write protection
570  *	@adapter: the adapter
571  *	@enable: whether to enable or disable write protection
572  *
573  *	Enables or disables write protection on the serial EEPROM.
574  */
575 int t4_seeprom_wp(struct adapter *adapter, int enable)
576 {
577 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
578 }
579 
580 /**
581  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
582  *	@v: Pointer to buffered vpd data structure
583  *	@kw: The keyword to search for
584  *
585  *	Returns the value of the information field keyword or
586  *	-ENOENT otherwise.
587  */
588 static int get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
589 {
590          int i;
591 	 unsigned int offset , len;
592 	 const u8 *buf = &v->id_tag;
593 	 const u8 *vpdr_len = &v->vpdr_tag;
594 	 offset = sizeof(struct t4_vpd_hdr);
595 	 len =  (u16)vpdr_len[1] + ((u16)vpdr_len[2] << 8);
596 
597 	 if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN) {
598 		 return -ENOENT;
599 	 }
600 
601          for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
602 		 if(memcmp(buf + i , kw , 2) == 0){
603 			 i += VPD_INFO_FLD_HDR_SIZE;
604                          return i;
605 		  }
606 
607                  i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
608          }
609 
610          return -ENOENT;
611 }
612 
613 
614 /**
615  *	get_vpd_params - read VPD parameters from VPD EEPROM
616  *	@adapter: adapter to read
617  *	@p: where to store the parameters
618  *
619  *	Reads card parameters stored in VPD EEPROM.
620  */
621 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
622 {
623 	int i, ret, addr;
624 	int ec, sn, pn, na;
625 	u8 vpd[VPD_LEN], csum;
626 	const struct t4_vpd_hdr *v;
627 
628 	/*
629 	 * Card information normally starts at VPD_BASE but early cards had
630 	 * it at 0.
631 	 */
632 	ret = t4_seeprom_read(adapter, VPD_BASE, (u32 *)(vpd));
633 	addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD;
634 
635 	for (i = 0; i < sizeof(vpd); i += 4) {
636 		ret = t4_seeprom_read(adapter, addr + i, (u32 *)(vpd + i));
637 		if (ret)
638 			return ret;
639 	}
640  	v = (const struct t4_vpd_hdr *)vpd;
641 
642 #define FIND_VPD_KW(var,name) do { \
643 	var = get_vpd_keyword_val(v , name); \
644 	if (var < 0) { \
645 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
646 		return -EINVAL; \
647 	} \
648 } while (0)
649 
650 	FIND_VPD_KW(i, "RV");
651 	for (csum = 0; i >= 0; i--)
652 		csum += vpd[i];
653 
654 	if (csum) {
655 		CH_ERR(adapter, "corrupted VPD EEPROM, actual csum %u\n", csum);
656 		return -EINVAL;
657 	}
658 	FIND_VPD_KW(ec, "EC");
659 	FIND_VPD_KW(sn, "SN");
660 	FIND_VPD_KW(pn, "PN");
661 	FIND_VPD_KW(na, "NA");
662 #undef FIND_VPD_KW
663 
664 	memcpy(p->id, v->id_data, ID_LEN);
665 	strstrip(p->id);
666 	memcpy(p->ec, vpd + ec, EC_LEN);
667 	strstrip(p->ec);
668 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
669 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
670 	strstrip(p->sn);
671 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
672 	strstrip((char *)p->pn);
673 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
674 	strstrip((char *)p->na);
675 
676 	return 0;
677 }
678 
679 /* serial flash and firmware constants and flash config file constants */
680 enum {
681 	SF_ATTEMPTS = 10,             /* max retries for SF operations */
682 
683 	/* flash command opcodes */
684 	SF_PROG_PAGE    = 2,          /* program page */
685 	SF_WR_DISABLE   = 4,          /* disable writes */
686 	SF_RD_STATUS    = 5,          /* read status register */
687 	SF_WR_ENABLE    = 6,          /* enable writes */
688 	SF_RD_DATA_FAST = 0xb,        /* read flash */
689 	SF_RD_ID        = 0x9f,       /* read ID */
690 	SF_ERASE_SECTOR = 0xd8,       /* erase sector */
691 };
692 
693 /**
694  *	sf1_read - read data from the serial flash
695  *	@adapter: the adapter
696  *	@byte_cnt: number of bytes to read
697  *	@cont: whether another operation will be chained
698  *	@lock: whether to lock SF for PL access only
699  *	@valp: where to store the read data
700  *
701  *	Reads up to 4 bytes of data from the serial flash.  The location of
702  *	the read needs to be specified prior to calling this by issuing the
703  *	appropriate commands to the serial flash.
704  */
705 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
706 		    int lock, u32 *valp)
707 {
708 	int ret;
709 
710 	if (!byte_cnt || byte_cnt > 4)
711 		return -EINVAL;
712 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
713 		return -EBUSY;
714 	t4_write_reg(adapter, A_SF_OP,
715 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
716 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
717 	if (!ret)
718 		*valp = t4_read_reg(adapter, A_SF_DATA);
719 	return ret;
720 }
721 
722 /**
723  *	sf1_write - write data to the serial flash
724  *	@adapter: the adapter
725  *	@byte_cnt: number of bytes to write
726  *	@cont: whether another operation will be chained
727  *	@lock: whether to lock SF for PL access only
728  *	@val: value to write
729  *
730  *	Writes up to 4 bytes of data to the serial flash.  The location of
731  *	the write needs to be specified prior to calling this by issuing the
732  *	appropriate commands to the serial flash.
733  */
734 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
735 		     int lock, u32 val)
736 {
737 	if (!byte_cnt || byte_cnt > 4)
738 		return -EINVAL;
739 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
740 		return -EBUSY;
741 	t4_write_reg(adapter, A_SF_DATA, val);
742 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
743 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
744 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
745 }
746 
747 /**
748  *	flash_wait_op - wait for a flash operation to complete
749  *	@adapter: the adapter
750  *	@attempts: max number of polls of the status register
751  *	@delay: delay between polls in ms
752  *
753  *	Wait for a flash operation to complete by polling the status register.
754  */
755 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
756 {
757 	int ret;
758 	u32 status;
759 
760 	while (1) {
761 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
762 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
763 			return ret;
764 		if (!(status & 1))
765 			return 0;
766 		if (--attempts == 0)
767 			return -EAGAIN;
768 		if (delay)
769 			msleep(delay);
770 	}
771 }
772 
773 /**
774  *	t4_read_flash - read words from serial flash
775  *	@adapter: the adapter
776  *	@addr: the start address for the read
777  *	@nwords: how many 32-bit words to read
778  *	@data: where to store the read data
779  *	@byte_oriented: whether to store data as bytes or as words
780  *
781  *	Read the specified number of 32-bit words from the serial flash.
782  *	If @byte_oriented is set the read data is stored as a byte array
783  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
784  *	natural endianess.
785  */
786 int t4_read_flash(struct adapter *adapter, unsigned int addr,
787 		  unsigned int nwords, u32 *data, int byte_oriented)
788 {
789 	int ret;
790 
791 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
792 		return -EINVAL;
793 
794 	addr = swab32(addr) | SF_RD_DATA_FAST;
795 
796 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
797 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
798 		return ret;
799 
800 	for ( ; nwords; nwords--, data++) {
801 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
802 		if (nwords == 1)
803 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
804 		if (ret)
805 			return ret;
806 		if (byte_oriented)
807 			*data = htonl(*data);
808 	}
809 	return 0;
810 }
811 
812 /**
813  *	t4_write_flash - write up to a page of data to the serial flash
814  *	@adapter: the adapter
815  *	@addr: the start address to write
816  *	@n: length of data to write in bytes
817  *	@data: the data to write
818  *	@byte_oriented: whether to store data as bytes or as words
819  *
820  *	Writes up to a page of data (256 bytes) to the serial flash starting
821  *	at the given address.  All the data must be written to the same page.
822  *	If @byte_oriented is set the write data is stored as byte stream
823  *	(i.e. matches what on disk), otherwise in big-endian.
824  */
825 static int t4_write_flash(struct adapter *adapter, unsigned int addr,
826 			  unsigned int n, const u8 *data, int byte_oriented)
827 {
828 	int ret;
829 	u32 buf[SF_PAGE_SIZE / 4];
830 	unsigned int i, c, left, val, offset = addr & 0xff;
831 
832 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
833 		return -EINVAL;
834 
835 	val = swab32(addr) | SF_PROG_PAGE;
836 
837 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
838 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
839 		goto unlock;
840 
841 	for (left = n; left; left -= c) {
842 		c = min(left, 4U);
843 		for (val = 0, i = 0; i < c; ++i)
844 			val = (val << 8) + *data++;
845 
846 		if (!byte_oriented)
847 			val = htonl(val);
848 
849 		ret = sf1_write(adapter, c, c != left, 1, val);
850 		if (ret)
851 			goto unlock;
852 	}
853 	ret = flash_wait_op(adapter, 8, 1);
854 	if (ret)
855 		goto unlock;
856 
857 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
858 
859 	/* Read the page to verify the write succeeded */
860 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
861 			    byte_oriented);
862 	if (ret)
863 		return ret;
864 
865 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
866 		CH_ERR(adapter, "failed to correctly write the flash page "
867 		       "at %#x\n", addr);
868 		return -EIO;
869 	}
870 	return 0;
871 
872 unlock:
873 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
874 	return ret;
875 }
876 
877 /**
878  *	t4_get_fw_version - read the firmware version
879  *	@adapter: the adapter
880  *	@vers: where to place the version
881  *
882  *	Reads the FW version from flash.
883  */
884 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
885 {
886 	return t4_read_flash(adapter,
887 			     FLASH_FW_START + offsetof(struct fw_hdr, fw_ver), 1,
888 			     vers, 0);
889 }
890 
891 /**
892  *	t4_get_tp_version - read the TP microcode version
893  *	@adapter: the adapter
894  *	@vers: where to place the version
895  *
896  *	Reads the TP microcode version from flash.
897  */
898 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
899 {
900 	return t4_read_flash(adapter, FLASH_FW_START + offsetof(struct fw_hdr,
901 							      tp_microcode_ver),
902 			     1, vers, 0);
903 }
904 
905 /**
906  *	t4_check_fw_version - check if the FW is compatible with this driver
907  *	@adapter: the adapter
908  *
909  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
910  *	if there's exact match, a negative error if the version could not be
911  *	read or there's a major version mismatch, and a positive value if the
912  *	expected major version is found but there's a minor version mismatch.
913  */
914 int t4_check_fw_version(struct adapter *adapter)
915 {
916 	int ret, major, minor, micro;
917 
918 	ret = t4_get_fw_version(adapter, &adapter->params.fw_vers);
919 	if (!ret)
920 		ret = t4_get_tp_version(adapter, &adapter->params.tp_vers);
921 	if (ret)
922 		return ret;
923 
924 	major = G_FW_HDR_FW_VER_MAJOR(adapter->params.fw_vers);
925 	minor = G_FW_HDR_FW_VER_MINOR(adapter->params.fw_vers);
926 	micro = G_FW_HDR_FW_VER_MICRO(adapter->params.fw_vers);
927 
928 	if (major != FW_VERSION_MAJOR) {            /* major mismatch - fail */
929 		CH_ERR(adapter, "card FW has major version %u, driver wants "
930 		       "%u\n", major, FW_VERSION_MAJOR);
931 		return -EINVAL;
932 	}
933 
934 	if (minor == FW_VERSION_MINOR && micro == FW_VERSION_MICRO)
935 		return 0;                                   /* perfect match */
936 
937 	/* Minor/micro version mismatch.  Report it but often it's OK. */
938 	return 1;
939 }
940 
941 /**
942  *	t4_flash_erase_sectors - erase a range of flash sectors
943  *	@adapter: the adapter
944  *	@start: the first sector to erase
945  *	@end: the last sector to erase
946  *
947  *	Erases the sectors in the given inclusive range.
948  */
949 static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
950 {
951 	int ret = 0;
952 
953 	while (start <= end) {
954 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
955 		    (ret = sf1_write(adapter, 4, 0, 1,
956 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
957 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
958 			CH_ERR(adapter, "erase of flash sector %d failed, "
959 			       "error %d\n", start, ret);
960 			break;
961 		}
962 		start++;
963 	}
964 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
965 	return ret;
966 }
967 
968 /**
969  *	t4_flash_cfg_addr - return the address of the flash configuration file
970  *	@adapter: the adapter
971  *
972  *	Return the address within the flash where the Firmware Configuration
973  *	File is stored.
974  */
975 unsigned int t4_flash_cfg_addr(struct adapter *adapter)
976 {
977 	if (adapter->params.sf_size == 0x100000)
978 		return FLASH_FPGA_CFG_START;
979 	else
980 		return FLASH_CFG_START;
981 }
982 
983 /**
984  *	t4_load_cfg - download config file
985  *	@adap: the adapter
986  *	@cfg_data: the cfg text file to write
987  *	@size: text file size
988  *
989  *	Write the supplied config text file to the card's serial flash.
990  */
991 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
992 {
993 	int ret, i, n;
994 	unsigned int addr;
995 	unsigned int flash_cfg_start_sec;
996 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
997 
998 	addr = t4_flash_cfg_addr(adap);
999 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
1000 
1001 	if (size > FLASH_CFG_MAX_SIZE) {
1002 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
1003 		       FLASH_CFG_MAX_SIZE);
1004 		return -EFBIG;
1005 	}
1006 
1007 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
1008 			 sf_sec_size);
1009 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
1010 				     flash_cfg_start_sec + i - 1);
1011 	/*
1012 	 * If size == 0 then we're simply erasing the FLASH sectors associated
1013 	 * with the on-adapter Firmware Configuration File.
1014 	 */
1015 	if (ret || size == 0)
1016 		goto out;
1017 
1018 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
1019 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
1020 		if ( (size - i) <  SF_PAGE_SIZE)
1021 			n = size - i;
1022 		else
1023 			n = SF_PAGE_SIZE;
1024 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
1025 		if (ret)
1026 			goto out;
1027 
1028 		addr += SF_PAGE_SIZE;
1029 		cfg_data += SF_PAGE_SIZE;
1030 	}
1031 
1032 out:
1033 	if (ret)
1034 		CH_ERR(adap, "config file %s failed %d\n",
1035 		       (size == 0 ? "clear" : "download"), ret);
1036 	return ret;
1037 }
1038 
1039 
1040 /**
1041  *	t4_load_fw - download firmware
1042  *	@adap: the adapter
1043  *	@fw_data: the firmware image to write
1044  *	@size: image size
1045  *
1046  *	Write the supplied firmware image to the card's serial flash.
1047  */
1048 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
1049 {
1050 	u32 csum;
1051 	int ret, addr;
1052 	unsigned int i;
1053 	u8 first_page[SF_PAGE_SIZE];
1054 	const u32 *p = (const u32 *)fw_data;
1055 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
1056 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
1057 
1058 	if (!size) {
1059 		CH_ERR(adap, "FW image has no data\n");
1060 		return -EINVAL;
1061 	}
1062 	if (size & 511) {
1063 		CH_ERR(adap, "FW image size not multiple of 512 bytes\n");
1064 		return -EINVAL;
1065 	}
1066 	if (ntohs(hdr->len512) * 512 != size) {
1067 		CH_ERR(adap, "FW image size differs from size in FW header\n");
1068 		return -EINVAL;
1069 	}
1070 	if (size > FLASH_FW_MAX_SIZE) {
1071 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
1072 		       FLASH_FW_MAX_SIZE);
1073 		return -EFBIG;
1074 	}
1075 
1076 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
1077 		csum += ntohl(p[i]);
1078 
1079 	if (csum != 0xffffffff) {
1080 		CH_ERR(adap, "corrupted firmware image, checksum %#x\n",
1081 		       csum);
1082 		return -EINVAL;
1083 	}
1084 
1085 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
1086 	ret = t4_flash_erase_sectors(adap, FLASH_FW_START_SEC,
1087 	    FLASH_FW_START_SEC + i - 1);
1088 	if (ret)
1089 		goto out;
1090 
1091 	/*
1092 	 * We write the correct version at the end so the driver can see a bad
1093 	 * version if the FW write fails.  Start by writing a copy of the
1094 	 * first page with a bad version.
1095 	 */
1096 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
1097 	((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
1098 	ret = t4_write_flash(adap, FLASH_FW_START, SF_PAGE_SIZE, first_page, 1);
1099 	if (ret)
1100 		goto out;
1101 
1102 	addr = FLASH_FW_START;
1103 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
1104 		addr += SF_PAGE_SIZE;
1105 		fw_data += SF_PAGE_SIZE;
1106 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
1107 		if (ret)
1108 			goto out;
1109 	}
1110 
1111 	ret = t4_write_flash(adap,
1112 			     FLASH_FW_START + offsetof(struct fw_hdr, fw_ver),
1113 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
1114 out:
1115 	if (ret)
1116 		CH_ERR(adap, "firmware download failed, error %d\n", ret);
1117 	return ret;
1118 }
1119 
1120 /* BIOS boot headers */
1121 typedef struct pci_expansion_rom_header {
1122 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
1123 	u8	reserved[22]; /* Reserved per processor Architecture data */
1124 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
1125 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
1126 
1127 /* Legacy PCI Expansion ROM Header */
1128 typedef struct legacy_pci_expansion_rom_header {
1129 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
1130 	u8	size512; /* Current Image Size in units of 512 bytes */
1131 	u8	initentry_point[4];
1132 	u8	cksum; /* Checksum computed on the entire Image */
1133 	u8	reserved[16]; /* Reserved */
1134 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
1135 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
1136 
1137 /* EFI PCI Expansion ROM Header */
1138 typedef struct efi_pci_expansion_rom_header {
1139 	u8	signature[2]; // ROM signature. The value 0xaa55
1140 	u8	initialization_size[2]; /* Units 512. Includes this header */
1141 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
1142 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
1143 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
1144 	u8	compression_type[2]; /* Compression type. */
1145 		/*
1146 		 * Compression type definition
1147 		 * 0x0: uncompressed
1148 		 * 0x1: Compressed
1149 		 * 0x2-0xFFFF: Reserved
1150 		 */
1151 	u8	reserved[8]; /* Reserved */
1152 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
1153 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
1154 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
1155 
1156 /* PCI Data Structure Format */
1157 typedef struct pcir_data_structure { /* PCI Data Structure */
1158 	u8	signature[4]; /* Signature. The string "PCIR" */
1159 	u8	vendor_id[2]; /* Vendor Identification */
1160 	u8	device_id[2]; /* Device Identification */
1161 	u8	vital_product[2]; /* Pointer to Vital Product Data */
1162 	u8	length[2]; /* PCIR Data Structure Length */
1163 	u8	revision; /* PCIR Data Structure Revision */
1164 	u8	class_code[3]; /* Class Code */
1165 	u8	image_length[2]; /* Image Length. Multiple of 512B */
1166 	u8	code_revision[2]; /* Revision Level of Code/Data */
1167 	u8	code_type; /* Code Type. */
1168 		/*
1169 		 * PCI Expansion ROM Code Types
1170 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
1171 		 * 0x01: Open Firmware standard for PCI. FCODE
1172 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
1173 		 * 0x03: EFI Image. EFI
1174 		 * 0x04-0xFF: Reserved.
1175 		 */
1176 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
1177 	u8	reserved[2]; /* Reserved */
1178 } pcir_data_t; /* PCI__DATA_STRUCTURE */
1179 
1180 /* BOOT constants */
1181 enum {
1182 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
1183 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
1184 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
1185 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
1186 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
1187 	VENDOR_ID = 0x1425, /* Vendor ID */
1188 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
1189 };
1190 
1191 /*
1192  *	modify_device_id - Modifies the device ID of the Boot BIOS image
1193  *	@adatper: the device ID to write.
1194  *	@boot_data: the boot image to modify.
1195  *
1196  *	Write the supplied device ID to the boot BIOS image.
1197  */
1198 static void modify_device_id(int device_id, u8 *boot_data)
1199 {
1200 	legacy_pci_exp_rom_header_t *header;
1201 	pcir_data_t *pcir_header;
1202 	u32 cur_header = 0;
1203 
1204 	/*
1205 	 * Loop through all chained images and change the device ID's
1206 	 */
1207 	while (1) {
1208 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
1209 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
1210 		    le16_to_cpu(*(u16*)header->pcir_offset)];
1211 
1212 		/*
1213 		 * Only modify the Device ID if code type is Legacy or HP.
1214 		 * 0x00: Okay to modify
1215 		 * 0x01: FCODE. Do not be modify
1216 		 * 0x03: Okay to modify
1217 		 * 0x04-0xFF: Do not modify
1218 		 */
1219 		if (pcir_header->code_type == 0x00) {
1220 			u8 csum = 0;
1221 			int i;
1222 
1223 			/*
1224 			 * Modify Device ID to match current adatper
1225 			 */
1226 			*(u16*) pcir_header->device_id = device_id;
1227 
1228 			/*
1229 			 * Set checksum temporarily to 0.
1230 			 * We will recalculate it later.
1231 			 */
1232 			header->cksum = 0x0;
1233 
1234 			/*
1235 			 * Calculate and update checksum
1236 			 */
1237 			for (i = 0; i < (header->size512 * 512); i++)
1238 				csum += (u8)boot_data[cur_header + i];
1239 
1240 			/*
1241 			 * Invert summed value to create the checksum
1242 			 * Writing new checksum value directly to the boot data
1243 			 */
1244 			boot_data[cur_header + 7] = -csum;
1245 
1246 		} else if (pcir_header->code_type == 0x03) {
1247 
1248 			/*
1249 			 * Modify Device ID to match current adatper
1250 			 */
1251 			*(u16*) pcir_header->device_id = device_id;
1252 
1253 		}
1254 
1255 
1256 		/*
1257 		 * Check indicator element to identify if this is the last
1258 		 * image in the ROM.
1259 		 */
1260 		if (pcir_header->indicator & 0x80)
1261 			break;
1262 
1263 		/*
1264 		 * Move header pointer up to the next image in the ROM.
1265 		 */
1266 		cur_header += header->size512 * 512;
1267 	}
1268 }
1269 
1270 /*
1271  *	t4_load_boot - download boot flash
1272  *	@adapter: the adapter
1273  *	@boot_data: the boot image to write
1274  *	@boot_addr: offset in flash to write boot_data
1275  *	@size: image size
1276  *
1277  *	Write the supplied boot image to the card's serial flash.
1278  *	The boot image has the following sections: a 28-byte header and the
1279  *	boot image.
1280  */
1281 int t4_load_boot(struct adapter *adap, u8 *boot_data,
1282 		 unsigned int boot_addr, unsigned int size)
1283 {
1284 	pci_exp_rom_header_t *header;
1285 	int pcir_offset ;
1286 	pcir_data_t *pcir_header;
1287 	int ret, addr;
1288 	uint16_t device_id;
1289 	unsigned int i;
1290 	unsigned int boot_sector = boot_addr * 1024;
1291 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
1292 
1293 	/*
1294 	 * Make sure the boot image does not encroach on the firmware region
1295 	 */
1296 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
1297 		CH_ERR(adap, "boot image encroaching on firmware region\n");
1298 		return -EFBIG;
1299 	}
1300 
1301 	/*
1302 	 * Number of sectors spanned
1303 	 */
1304 	i = DIV_ROUND_UP(size ? size : FLASH_BOOTCFG_MAX_SIZE,
1305 			sf_sec_size);
1306 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
1307 				     (boot_sector >> 16) + i - 1);
1308 
1309 	/*
1310 	 * If size == 0 then we're simply erasing the FLASH sectors associated
1311 	 * with the on-adapter option ROM file
1312 	 */
1313 	if (ret || (size == 0))
1314 		goto out;
1315 
1316 	/* Get boot header */
1317 	header = (pci_exp_rom_header_t *)boot_data;
1318 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
1319 	/* PCIR Data Structure */
1320 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
1321 
1322 	/*
1323 	 * Perform some primitive sanity testing to avoid accidentally
1324 	 * writing garbage over the boot sectors.  We ought to check for
1325 	 * more but it's not worth it for now ...
1326 	 */
1327 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
1328 		CH_ERR(adap, "boot image too small/large\n");
1329 		return -EFBIG;
1330 	}
1331 
1332 	/*
1333 	 * Check BOOT ROM header signature
1334 	 */
1335 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
1336 		CH_ERR(adap, "Boot image missing signature\n");
1337 		return -EINVAL;
1338 	}
1339 
1340 	/*
1341 	 * Check PCI header signature
1342 	 */
1343 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
1344 		CH_ERR(adap, "PCI header missing signature\n");
1345 		return -EINVAL;
1346 	}
1347 
1348 	/*
1349 	 * Check Vendor ID matches Chelsio ID
1350 	 */
1351 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
1352 		CH_ERR(adap, "Vendor ID missing signature\n");
1353 		return -EINVAL;
1354 	}
1355 
1356 	/*
1357 	 * Retrieve adapter's device ID
1358 	 */
1359 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
1360 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
1361 	device_id = (device_id & 0xff) | 0x4000;
1362 
1363 	/*
1364 	 * Check PCIE Device ID
1365 	 */
1366 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
1367 		/*
1368 		 * Change the device ID in the Boot BIOS image to match
1369 		 * the Device ID of the current adapter.
1370 		 */
1371 		modify_device_id(device_id, boot_data);
1372 	}
1373 
1374 	/*
1375 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
1376 	 * we finish copying the rest of the boot image. This will ensure
1377 	 * that the BIOS boot header will only be written if the boot image
1378 	 * was written in full.
1379 	 */
1380 	addr = boot_sector;
1381 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
1382 		addr += SF_PAGE_SIZE;
1383 		boot_data += SF_PAGE_SIZE;
1384 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
1385 		if (ret)
1386 			goto out;
1387 	}
1388 
1389 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE, boot_data, 0);
1390 
1391 out:
1392 	if (ret)
1393 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
1394 	return ret;
1395 }
1396 
1397 /**
1398  *	t4_read_cimq_cfg - read CIM queue configuration
1399  *	@adap: the adapter
1400  *	@base: holds the queue base addresses in bytes
1401  *	@size: holds the queue sizes in bytes
1402  *	@thres: holds the queue full thresholds in bytes
1403  *
1404  *	Returns the current configuration of the CIM queues, starting with
1405  *	the IBQs, then the OBQs.
1406  */
1407 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
1408 {
1409 	unsigned int i, v;
1410 
1411 	for (i = 0; i < CIM_NUM_IBQ; i++) {
1412 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
1413 			     V_QUENUMSELECT(i));
1414 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
1415 		*base++ = G_CIMQBASE(v) * 256; /* value is in 256-byte units */
1416 		*size++ = G_CIMQSIZE(v) * 256; /* value is in 256-byte units */
1417 		*thres++ = G_QUEFULLTHRSH(v) * 8;   /* 8-byte unit */
1418 	}
1419 	for (i = 0; i < CIM_NUM_OBQ; i++) {
1420 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
1421 			     V_QUENUMSELECT(i));
1422 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
1423 		*base++ = G_CIMQBASE(v) * 256; /* value is in 256-byte units */
1424 		*size++ = G_CIMQSIZE(v) * 256; /* value is in 256-byte units */
1425 	}
1426 }
1427 
1428 /**
1429  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
1430  *	@adap: the adapter
1431  *	@qid: the queue index
1432  *	@data: where to store the queue contents
1433  *	@n: capacity of @data in 32-bit words
1434  *
1435  *	Reads the contents of the selected CIM queue starting at address 0 up
1436  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
1437  *	error and the number of 32-bit words actually read on success.
1438  */
1439 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
1440 {
1441 	int i, err;
1442 	unsigned int addr;
1443 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
1444 
1445 	if (qid > 5 || (n & 3))
1446 		return -EINVAL;
1447 
1448 	addr = qid * nwords;
1449 	if (n > nwords)
1450 		n = nwords;
1451 
1452 	for (i = 0; i < n; i++, addr++) {
1453 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
1454 			     F_IBQDBGEN);
1455 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
1456 				      2, 1);
1457 		if (err)
1458 			return err;
1459 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
1460 	}
1461 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
1462 	return i;
1463 }
1464 
1465 /**
1466  *	t4_read_cim_obq - read the contents of a CIM outbound queue
1467  *	@adap: the adapter
1468  *	@qid: the queue index
1469  *	@data: where to store the queue contents
1470  *	@n: capacity of @data in 32-bit words
1471  *
1472  *	Reads the contents of the selected CIM queue starting at address 0 up
1473  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
1474  *	error and the number of 32-bit words actually read on success.
1475  */
1476 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
1477 {
1478 	int i, err;
1479 	unsigned int addr, v, nwords;
1480 
1481 	if (qid > 5 || (n & 3))
1482 		return -EINVAL;
1483 
1484 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
1485 		     V_QUENUMSELECT(qid));
1486 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
1487 
1488 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
1489 	nwords = G_CIMQSIZE(v) * 64;  /* same */
1490 	if (n > nwords)
1491 		n = nwords;
1492 
1493 	for (i = 0; i < n; i++, addr++) {
1494 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
1495 			     F_OBQDBGEN);
1496 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
1497 				      2, 1);
1498 		if (err)
1499 			return err;
1500 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
1501 	}
1502 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
1503 	return i;
1504 }
1505 
1506 enum {
1507 	CIM_QCTL_BASE     = 0,
1508 	CIM_CTL_BASE      = 0x2000,
1509 	CIM_PBT_ADDR_BASE = 0x2800,
1510 	CIM_PBT_LRF_BASE  = 0x3000,
1511 	CIM_PBT_DATA_BASE = 0x3800
1512 };
1513 
1514 /**
1515  *	t4_cim_read - read a block from CIM internal address space
1516  *	@adap: the adapter
1517  *	@addr: the start address within the CIM address space
1518  *	@n: number of words to read
1519  *	@valp: where to store the result
1520  *
1521  *	Reads a block of 4-byte words from the CIM intenal address space.
1522  */
1523 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
1524 		unsigned int *valp)
1525 {
1526 	int ret = 0;
1527 
1528 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
1529 		return -EBUSY;
1530 
1531 	for ( ; !ret && n--; addr += 4) {
1532 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
1533 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
1534 				      0, 5, 2);
1535 		if (!ret)
1536 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
1537 	}
1538 	return ret;
1539 }
1540 
1541 /**
1542  *	t4_cim_write - write a block into CIM internal address space
1543  *	@adap: the adapter
1544  *	@addr: the start address within the CIM address space
1545  *	@n: number of words to write
1546  *	@valp: set of values to write
1547  *
1548  *	Writes a block of 4-byte words into the CIM intenal address space.
1549  */
1550 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
1551 		 const unsigned int *valp)
1552 {
1553 	int ret = 0;
1554 
1555 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
1556 		return -EBUSY;
1557 
1558 	for ( ; !ret && n--; addr += 4) {
1559 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
1560 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
1561 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
1562 				      0, 5, 2);
1563 	}
1564 	return ret;
1565 }
1566 
1567 static int t4_cim_write1(struct adapter *adap, unsigned int addr, unsigned int val)
1568 {
1569 	return t4_cim_write(adap, addr, 1, &val);
1570 }
1571 
1572 /**
1573  *	t4_cim_ctl_read - read a block from CIM control region
1574  *	@adap: the adapter
1575  *	@addr: the start address within the CIM control region
1576  *	@n: number of words to read
1577  *	@valp: where to store the result
1578  *
1579  *	Reads a block of 4-byte words from the CIM control region.
1580  */
1581 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
1582 		    unsigned int *valp)
1583 {
1584 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
1585 }
1586 
1587 /**
1588  *	t4_cim_read_la - read CIM LA capture buffer
1589  *	@adap: the adapter
1590  *	@la_buf: where to store the LA data
1591  *	@wrptr: the HW write pointer within the capture buffer
1592  *
1593  *	Reads the contents of the CIM LA buffer with the most recent entry at
1594  *	the end	of the returned data and with the entry at @wrptr first.
1595  *	We try to leave the LA in the running state we find it in.
1596  */
1597 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
1598 {
1599 	int i, ret;
1600 	unsigned int cfg, val, idx;
1601 
1602 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
1603 	if (ret)
1604 		return ret;
1605 
1606 	if (cfg & F_UPDBGLAEN) {                /* LA is running, freeze it */
1607 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
1608 		if (ret)
1609 			return ret;
1610 	}
1611 
1612 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
1613 	if (ret)
1614 		goto restart;
1615 
1616 	idx = G_UPDBGLAWRPTR(val);
1617 	if (wrptr)
1618 		*wrptr = idx;
1619 
1620 	for (i = 0; i < adap->params.cim_la_size; i++) {
1621 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
1622 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
1623 		if (ret)
1624 			break;
1625 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
1626 		if (ret)
1627 			break;
1628 		if (val & F_UPDBGLARDEN) {
1629 			ret = -ETIMEDOUT;
1630 			break;
1631 		}
1632 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
1633 		if (ret)
1634 			break;
1635 		idx = (idx + 1) & M_UPDBGLARDPTR;
1636 	}
1637 restart:
1638 	if (cfg & F_UPDBGLAEN) {
1639 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
1640 				      cfg & ~F_UPDBGLARDEN);
1641 		if (!ret)
1642 			ret = r;
1643 	}
1644 	return ret;
1645 }
1646 
1647 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
1648 			unsigned int *pif_req_wrptr,
1649 			unsigned int *pif_rsp_wrptr)
1650 {
1651 	int i, j;
1652 	u32 cfg, val, req, rsp;
1653 
1654 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
1655 	if (cfg & F_LADBGEN)
1656 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
1657 
1658 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
1659 	req = G_POLADBGWRPTR(val);
1660 	rsp = G_PILADBGWRPTR(val);
1661 	if (pif_req_wrptr)
1662 		*pif_req_wrptr = req;
1663 	if (pif_rsp_wrptr)
1664 		*pif_rsp_wrptr = rsp;
1665 
1666 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
1667 		for (j = 0; j < 6; j++) {
1668 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
1669 				     V_PILADBGRDPTR(rsp));
1670 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
1671 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
1672 			req++;
1673 			rsp++;
1674 		}
1675 		req = (req + 2) & M_POLADBGRDPTR;
1676 		rsp = (rsp + 2) & M_PILADBGRDPTR;
1677 	}
1678 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
1679 }
1680 
1681 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
1682 {
1683 	u32 cfg;
1684 	int i, j, idx;
1685 
1686 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
1687 	if (cfg & F_LADBGEN)
1688 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
1689 
1690 	for (i = 0; i < CIM_MALA_SIZE; i++) {
1691 		for (j = 0; j < 5; j++) {
1692 			idx = 8 * i + j;
1693 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
1694 				     V_PILADBGRDPTR(idx));
1695 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
1696 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
1697 		}
1698 	}
1699 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
1700 }
1701 
1702 /**
1703  *	t4_tp_read_la - read TP LA capture buffer
1704  *	@adap: the adapter
1705  *	@la_buf: where to store the LA data
1706  *	@wrptr: the HW write pointer within the capture buffer
1707  *
1708  *	Reads the contents of the TP LA buffer with the most recent entry at
1709  *	the end	of the returned data and with the entry at @wrptr first.
1710  *	We leave the LA in the running state we find it in.
1711  */
1712 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
1713 {
1714 	bool last_incomplete;
1715 	unsigned int i, cfg, val, idx;
1716 
1717 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
1718 	if (cfg & F_DBGLAENABLE)                    /* freeze LA */
1719 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
1720 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
1721 
1722 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
1723 	idx = G_DBGLAWPTR(val);
1724 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
1725 	if (last_incomplete)
1726 		idx = (idx + 1) & M_DBGLARPTR;
1727 	if (wrptr)
1728 		*wrptr = idx;
1729 
1730 	val &= 0xffff;
1731 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
1732 	val |= adap->params.tp.la_mask;
1733 
1734 	for (i = 0; i < TPLA_SIZE; i++) {
1735 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
1736 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
1737 		idx = (idx + 1) & M_DBGLARPTR;
1738 	}
1739 
1740 	/* Wipe out last entry if it isn't valid */
1741 	if (last_incomplete)
1742 		la_buf[TPLA_SIZE - 1] = ~0ULL;
1743 
1744 	if (cfg & F_DBGLAENABLE)                    /* restore running state */
1745 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
1746 			     cfg | adap->params.tp.la_mask);
1747 }
1748 
1749 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
1750 {
1751 	unsigned int i, j;
1752 
1753 	for (i = 0; i < 8; i++) {
1754 		u32 *p = la_buf + i;
1755 
1756 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
1757 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
1758 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
1759 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
1760 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
1761 	}
1762 }
1763 
1764 #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
1765 		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_ANEG)
1766 
1767 /**
1768  *	t4_link_start - apply link configuration to MAC/PHY
1769  *	@phy: the PHY to setup
1770  *	@mac: the MAC to setup
1771  *	@lc: the requested link configuration
1772  *
1773  *	Set up a port's MAC and PHY according to a desired link configuration.
1774  *	- If the PHY can auto-negotiate first decide what to advertise, then
1775  *	  enable/disable auto-negotiation as desired, and reset.
1776  *	- If the PHY does not auto-negotiate just reset it.
1777  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
1778  *	  otherwise do it later based on the outcome of auto-negotiation.
1779  */
1780 int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port,
1781 		  struct link_config *lc)
1782 {
1783 	struct fw_port_cmd c;
1784 	unsigned int fc = 0, mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO);
1785 
1786 	lc->link_ok = 0;
1787 	if (lc->requested_fc & PAUSE_RX)
1788 		fc |= FW_PORT_CAP_FC_RX;
1789 	if (lc->requested_fc & PAUSE_TX)
1790 		fc |= FW_PORT_CAP_FC_TX;
1791 
1792 	memset(&c, 0, sizeof(c));
1793 	c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) | F_FW_CMD_REQUEST |
1794 			       F_FW_CMD_EXEC | V_FW_PORT_CMD_PORTID(port));
1795 	c.action_to_len16 = htonl(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
1796 				  FW_LEN16(c));
1797 
1798 	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
1799 		c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc);
1800 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1801 	} else if (lc->autoneg == AUTONEG_DISABLE) {
1802 		c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi);
1803 		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1804 	} else
1805 		c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi);
1806 
1807 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
1808 }
1809 
1810 /**
1811  *	t4_restart_aneg - restart autonegotiation
1812  *	@adap: the adapter
1813  *	@mbox: mbox to use for the FW command
1814  *	@port: the port id
1815  *
1816  *	Restarts autonegotiation for the selected port.
1817  */
1818 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
1819 {
1820 	struct fw_port_cmd c;
1821 
1822 	memset(&c, 0, sizeof(c));
1823 	c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) | F_FW_CMD_REQUEST |
1824 			       F_FW_CMD_EXEC | V_FW_PORT_CMD_PORTID(port));
1825 	c.action_to_len16 = htonl(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
1826 				  FW_LEN16(c));
1827 	c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG);
1828 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
1829 }
1830 
1831 struct intr_info {
1832 	unsigned int mask;       /* bits to check in interrupt status */
1833 	const char *msg;         /* message to print or NULL */
1834 	short stat_idx;          /* stat counter to increment or -1 */
1835 	unsigned short fatal;    /* whether the condition reported is fatal */
1836 };
1837 
1838 /**
1839  *	t4_handle_intr_status - table driven interrupt handler
1840  *	@adapter: the adapter that generated the interrupt
1841  *	@reg: the interrupt status register to process
1842  *	@acts: table of interrupt actions
1843  *
1844  *	A table driven interrupt handler that applies a set of masks to an
1845  *	interrupt status word and performs the corresponding actions if the
1846  *	interrupts described by the mask have occured.  The actions include
1847  *	optionally emitting a warning or alert message.  The table is terminated
1848  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
1849  *	conditions.
1850  */
1851 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
1852 				 const struct intr_info *acts)
1853 {
1854 	int fatal = 0;
1855 	unsigned int mask = 0;
1856 	unsigned int status = t4_read_reg(adapter, reg);
1857 
1858 	for ( ; acts->mask; ++acts) {
1859 		if (!(status & acts->mask))
1860 			continue;
1861 		if (acts->fatal) {
1862 			fatal++;
1863 			CH_ALERT(adapter, "%s (0x%x)\n",
1864 				 acts->msg, status & acts->mask);
1865 		} else if (acts->msg)
1866 			CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n",
1867 					  acts->msg, status & acts->mask);
1868 		mask |= acts->mask;
1869 	}
1870 	status &= mask;
1871 	if (status)                           /* clear processed interrupts */
1872 		t4_write_reg(adapter, reg, status);
1873 	return fatal;
1874 }
1875 
1876 /*
1877  * Interrupt handler for the PCIE module.
1878  */
1879 static void pcie_intr_handler(struct adapter *adapter)
1880 {
1881 	static struct intr_info sysbus_intr_info[] = {
1882 		{ F_RNPP, "RXNP array parity error", -1, 1 },
1883 		{ F_RPCP, "RXPC array parity error", -1, 1 },
1884 		{ F_RCIP, "RXCIF array parity error", -1, 1 },
1885 		{ F_RCCP, "Rx completions control array parity error", -1, 1 },
1886 		{ F_RFTP, "RXFT array parity error", -1, 1 },
1887 		{ 0 }
1888 	};
1889 	static struct intr_info pcie_port_intr_info[] = {
1890 		{ F_TPCP, "TXPC array parity error", -1, 1 },
1891 		{ F_TNPP, "TXNP array parity error", -1, 1 },
1892 		{ F_TFTP, "TXFT array parity error", -1, 1 },
1893 		{ F_TCAP, "TXCA array parity error", -1, 1 },
1894 		{ F_TCIP, "TXCIF array parity error", -1, 1 },
1895 		{ F_RCAP, "RXCA array parity error", -1, 1 },
1896 		{ F_OTDD, "outbound request TLP discarded", -1, 1 },
1897 		{ F_RDPE, "Rx data parity error", -1, 1 },
1898 		{ F_TDUE, "Tx uncorrectable data error", -1, 1 },
1899 		{ 0 }
1900 	};
1901 	static struct intr_info pcie_intr_info[] = {
1902 		{ F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
1903 		{ F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
1904 		{ F_MSIDATAPERR, "MSI data parity error", -1, 1 },
1905 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
1906 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
1907 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
1908 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
1909 		{ F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
1910 		{ F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
1911 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
1912 		{ F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
1913 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
1914 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
1915 		{ F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
1916 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
1917 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
1918 		{ F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
1919 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
1920 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
1921 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
1922 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
1923 		{ F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
1924 		{ F_MATAGPERR, "PCI MA tag parity error", -1, 1 },
1925 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
1926 		{ F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
1927 		{ F_RXWRPERR, "PCI Rx write parity error", -1, 1 },
1928 		{ F_RPLPERR, "PCI replay buffer parity error", -1, 1 },
1929 		{ F_PCIESINT, "PCI core secondary fault", -1, 1 },
1930 		{ F_PCIEPINT, "PCI core primary fault", -1, 1 },
1931 		{ F_UNXSPLCPLERR, "PCI unexpected split completion error", -1,
1932 		  0 },
1933 		{ 0 }
1934 	};
1935 
1936 	int fat;
1937 
1938 	fat = t4_handle_intr_status(adapter,
1939 				    A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
1940 				    sysbus_intr_info) +
1941 	      t4_handle_intr_status(adapter,
1942 				    A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
1943 				    pcie_port_intr_info) +
1944 	      t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE, pcie_intr_info);
1945 	if (fat)
1946 		t4_fatal_err(adapter);
1947 }
1948 
1949 /*
1950  * TP interrupt handler.
1951  */
1952 static void tp_intr_handler(struct adapter *adapter)
1953 {
1954 	static struct intr_info tp_intr_info[] = {
1955 		{ 0x3fffffff, "TP parity error", -1, 1 },
1956 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
1957 		{ 0 }
1958 	};
1959 
1960 	if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info))
1961 		t4_fatal_err(adapter);
1962 }
1963 
1964 /*
1965  * SGE interrupt handler.
1966  */
1967 static void sge_intr_handler(struct adapter *adapter)
1968 {
1969 	u64 v;
1970 	u32 err;
1971 
1972 	static struct intr_info sge_intr_info[] = {
1973 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
1974 		  "SGE received CPL exceeding IQE size", -1, 1 },
1975 		{ F_ERR_INVALID_CIDX_INC,
1976 		  "SGE GTS CIDX increment too large", -1, 0 },
1977 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
1978 		{ F_ERR_DROPPED_DB, "SGE doorbell dropped", -1, 0 },
1979 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
1980 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
1981 		{ F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
1982 		  0 },
1983 		{ F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
1984 		  0 },
1985 		{ F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
1986 		  0 },
1987 		{ F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
1988 		  0 },
1989 		{ F_ERR_ING_CTXT_PRIO,
1990 		  "SGE too many priority ingress contexts", -1, 0 },
1991 		{ F_ERR_EGR_CTXT_PRIO,
1992 		  "SGE too many priority egress contexts", -1, 0 },
1993 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
1994 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
1995 		{ 0 }
1996 	};
1997 
1998 	v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) |
1999 	    ((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32);
2000 	if (v) {
2001 		CH_ALERT(adapter, "SGE parity error (%#llx)\n",
2002 			 (unsigned long long)v);
2003 		t4_write_reg(adapter, A_SGE_INT_CAUSE1, v);
2004 		t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32);
2005 	}
2006 
2007 	v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info);
2008 
2009 	err = t4_read_reg(adapter, A_SGE_ERROR_STATS);
2010 	if (err & F_ERROR_QID_VALID) {
2011 		CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err));
2012 		if (err & F_UNCAPTURED_ERROR)
2013 			CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n");
2014 		t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID |
2015 			     F_UNCAPTURED_ERROR);
2016 	}
2017 
2018 	if (v != 0)
2019 		t4_fatal_err(adapter);
2020 }
2021 
2022 #define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\
2023 		      F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR)
2024 #define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\
2025 		      F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR)
2026 
2027 /*
2028  * CIM interrupt handler.
2029  */
2030 static void cim_intr_handler(struct adapter *adapter)
2031 {
2032 	static struct intr_info cim_intr_info[] = {
2033 		{ F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
2034 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
2035 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
2036 		{ F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
2037 		{ F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
2038 		{ F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
2039 		{ F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
2040 		{ 0 }
2041 	};
2042 	static struct intr_info cim_upintr_info[] = {
2043 		{ F_RSVDSPACEINT, "CIM reserved space access", -1, 1 },
2044 		{ F_ILLTRANSINT, "CIM illegal transaction", -1, 1 },
2045 		{ F_ILLWRINT, "CIM illegal write", -1, 1 },
2046 		{ F_ILLRDINT, "CIM illegal read", -1, 1 },
2047 		{ F_ILLRDBEINT, "CIM illegal read BE", -1, 1 },
2048 		{ F_ILLWRBEINT, "CIM illegal write BE", -1, 1 },
2049 		{ F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
2050 		{ F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
2051 		{ F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
2052 		{ F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
2053 		{ F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
2054 		{ F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
2055 		{ F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
2056 		{ F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
2057 		{ F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
2058 		{ F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
2059 		{ F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
2060 		{ F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
2061 		{ F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
2062 		{ F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
2063 		{ F_SGLRDPLINT , "CIM single read from PL space", -1, 1 },
2064 		{ F_SGLWRPLINT , "CIM single write to PL space", -1, 1 },
2065 		{ F_BLKRDPLINT , "CIM block read from PL space", -1, 1 },
2066 		{ F_BLKWRPLINT , "CIM block write to PL space", -1, 1 },
2067 		{ F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
2068 		{ F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
2069 		{ F_TIMEOUTINT , "CIM PIF timeout", -1, 1 },
2070 		{ F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
2071 		{ 0 }
2072 	};
2073 	int fat;
2074 
2075 	if (t4_read_reg(adapter, A_PCIE_FW) & F_PCIE_FW_ERR)
2076 		t4_report_fw_error(adapter);
2077 
2078 	fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE,
2079 				    cim_intr_info) +
2080 	      t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE,
2081 				    cim_upintr_info);
2082 	if (fat)
2083 		t4_fatal_err(adapter);
2084 }
2085 
2086 /*
2087  * ULP RX interrupt handler.
2088  */
2089 static void ulprx_intr_handler(struct adapter *adapter)
2090 {
2091 	static struct intr_info ulprx_intr_info[] = {
2092 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 },
2093 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 },
2094 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
2095 		{ 0 }
2096 	};
2097 
2098 	if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info))
2099 		t4_fatal_err(adapter);
2100 }
2101 
2102 /*
2103  * ULP TX interrupt handler.
2104  */
2105 static void ulptx_intr_handler(struct adapter *adapter)
2106 {
2107 	static struct intr_info ulptx_intr_info[] = {
2108 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
2109 		  0 },
2110 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
2111 		  0 },
2112 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
2113 		  0 },
2114 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
2115 		  0 },
2116 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
2117 		{ 0 }
2118 	};
2119 
2120 	if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info))
2121 		t4_fatal_err(adapter);
2122 }
2123 
2124 /*
2125  * PM TX interrupt handler.
2126  */
2127 static void pmtx_intr_handler(struct adapter *adapter)
2128 {
2129 	static struct intr_info pmtx_intr_info[] = {
2130 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
2131 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
2132 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
2133 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
2134 		{ 0xffffff0, "PMTX framing error", -1, 1 },
2135 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
2136 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
2137 		  1 },
2138 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
2139 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
2140 		{ 0 }
2141 	};
2142 
2143 	if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info))
2144 		t4_fatal_err(adapter);
2145 }
2146 
2147 /*
2148  * PM RX interrupt handler.
2149  */
2150 static void pmrx_intr_handler(struct adapter *adapter)
2151 {
2152 	static struct intr_info pmrx_intr_info[] = {
2153 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
2154 		{ 0x3ffff0, "PMRX framing error", -1, 1 },
2155 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
2156 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
2157 		  1 },
2158 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
2159 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
2160 		{ 0 }
2161 	};
2162 
2163 	if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info))
2164 		t4_fatal_err(adapter);
2165 }
2166 
2167 /*
2168  * CPL switch interrupt handler.
2169  */
2170 static void cplsw_intr_handler(struct adapter *adapter)
2171 {
2172 	static struct intr_info cplsw_intr_info[] = {
2173 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
2174 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
2175 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
2176 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
2177 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
2178 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
2179 		{ 0 }
2180 	};
2181 
2182 	if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info))
2183 		t4_fatal_err(adapter);
2184 }
2185 
2186 /*
2187  * LE interrupt handler.
2188  */
2189 static void le_intr_handler(struct adapter *adap)
2190 {
2191 	static struct intr_info le_intr_info[] = {
2192 		{ F_LIPMISS, "LE LIP miss", -1, 0 },
2193 		{ F_LIP0, "LE 0 LIP error", -1, 0 },
2194 		{ F_PARITYERR, "LE parity error", -1, 1 },
2195 		{ F_UNKNOWNCMD, "LE unknown command", -1, 1 },
2196 		{ F_REQQPARERR, "LE request queue parity error", -1, 1 },
2197 		{ 0 }
2198 	};
2199 
2200 	if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE, le_intr_info))
2201 		t4_fatal_err(adap);
2202 }
2203 
2204 /*
2205  * MPS interrupt handler.
2206  */
2207 static void mps_intr_handler(struct adapter *adapter)
2208 {
2209 	static struct intr_info mps_rx_intr_info[] = {
2210 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
2211 		{ 0 }
2212 	};
2213 	static struct intr_info mps_tx_intr_info[] = {
2214 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 },
2215 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
2216 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error",
2217 		  -1, 1 },
2218 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error",
2219 		  -1, 1 },
2220 		{ F_BUBBLE, "MPS Tx underflow", -1, 1 },
2221 		{ F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
2222 		{ F_FRMERR, "MPS Tx framing error", -1, 1 },
2223 		{ 0 }
2224 	};
2225 	static struct intr_info mps_trc_intr_info[] = {
2226 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 },
2227 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1,
2228 		  1 },
2229 		{ F_MISCPERR, "MPS TRC misc parity error", -1, 1 },
2230 		{ 0 }
2231 	};
2232 	static struct intr_info mps_stat_sram_intr_info[] = {
2233 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
2234 		{ 0 }
2235 	};
2236 	static struct intr_info mps_stat_tx_intr_info[] = {
2237 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
2238 		{ 0 }
2239 	};
2240 	static struct intr_info mps_stat_rx_intr_info[] = {
2241 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
2242 		{ 0 }
2243 	};
2244 	static struct intr_info mps_cls_intr_info[] = {
2245 		{ F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
2246 		{ F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
2247 		{ F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
2248 		{ 0 }
2249 	};
2250 
2251 	int fat;
2252 
2253 	fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE,
2254 				    mps_rx_intr_info) +
2255 	      t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE,
2256 				    mps_tx_intr_info) +
2257 	      t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE,
2258 				    mps_trc_intr_info) +
2259 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM,
2260 				    mps_stat_sram_intr_info) +
2261 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
2262 				    mps_stat_tx_intr_info) +
2263 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
2264 				    mps_stat_rx_intr_info) +
2265 	      t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE,
2266 				    mps_cls_intr_info);
2267 
2268 	t4_write_reg(adapter, A_MPS_INT_CAUSE, 0);
2269 	t4_read_reg(adapter, A_MPS_INT_CAUSE);                    /* flush */
2270 	if (fat)
2271 		t4_fatal_err(adapter);
2272 }
2273 
2274 #define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | F_ECC_UE_INT_CAUSE)
2275 
2276 /*
2277  * EDC/MC interrupt handler.
2278  */
2279 static void mem_intr_handler(struct adapter *adapter, int idx)
2280 {
2281 	static const char name[3][5] = { "EDC0", "EDC1", "MC" };
2282 
2283 	unsigned int addr, cnt_addr, v;
2284 
2285 	if (idx <= MEM_EDC1) {
2286 		addr = EDC_REG(A_EDC_INT_CAUSE, idx);
2287 		cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx);
2288 	} else {
2289 		addr = A_MC_INT_CAUSE;
2290 		cnt_addr = A_MC_ECC_STATUS;
2291 	}
2292 
2293 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
2294 	if (v & F_PERR_INT_CAUSE)
2295 		CH_ALERT(adapter, "%s FIFO parity error\n", name[idx]);
2296 	if (v & F_ECC_CE_INT_CAUSE) {
2297 		u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr));
2298 
2299 		t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT));
2300 		CH_WARN_RATELIMIT(adapter,
2301 				  "%u %s correctable ECC data error%s\n",
2302 				  cnt, name[idx], cnt > 1 ? "s" : "");
2303 	}
2304 	if (v & F_ECC_UE_INT_CAUSE)
2305 		CH_ALERT(adapter, "%s uncorrectable ECC data error\n",
2306 			 name[idx]);
2307 
2308 	t4_write_reg(adapter, addr, v);
2309 	if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE))
2310 		t4_fatal_err(adapter);
2311 }
2312 
2313 /*
2314  * MA interrupt handler.
2315  */
2316 static void ma_intr_handler(struct adapter *adapter)
2317 {
2318 	u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE);
2319 
2320 	if (status & F_MEM_PERR_INT_CAUSE)
2321 		CH_ALERT(adapter, "MA parity error, parity status %#x\n",
2322 			 t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS));
2323 	if (status & F_MEM_WRAP_INT_CAUSE) {
2324 		v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS);
2325 		CH_ALERT(adapter, "MA address wrap-around error by client %u to"
2326 			 " address %#x\n", G_MEM_WRAP_CLIENT_NUM(v),
2327 			 G_MEM_WRAP_ADDRESS(v) << 4);
2328 	}
2329 	t4_write_reg(adapter, A_MA_INT_CAUSE, status);
2330 	t4_fatal_err(adapter);
2331 }
2332 
2333 /*
2334  * SMB interrupt handler.
2335  */
2336 static void smb_intr_handler(struct adapter *adap)
2337 {
2338 	static struct intr_info smb_intr_info[] = {
2339 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
2340 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
2341 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
2342 		{ 0 }
2343 	};
2344 
2345 	if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info))
2346 		t4_fatal_err(adap);
2347 }
2348 
2349 /*
2350  * NC-SI interrupt handler.
2351  */
2352 static void ncsi_intr_handler(struct adapter *adap)
2353 {
2354 	static struct intr_info ncsi_intr_info[] = {
2355 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
2356 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
2357 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
2358 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
2359 		{ 0 }
2360 	};
2361 
2362 	if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info))
2363 		t4_fatal_err(adap);
2364 }
2365 
2366 /*
2367  * XGMAC interrupt handler.
2368  */
2369 static void xgmac_intr_handler(struct adapter *adap, int port)
2370 {
2371 	u32 v = t4_read_reg(adap, PORT_REG(port, A_XGMAC_PORT_INT_CAUSE));
2372 
2373 	v &= F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
2374 	if (!v)
2375 		return;
2376 
2377 	if (v & F_TXFIFO_PRTY_ERR)
2378 		CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n", port);
2379 	if (v & F_RXFIFO_PRTY_ERR)
2380 		CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n", port);
2381 	t4_write_reg(adap, PORT_REG(port, A_XGMAC_PORT_INT_CAUSE), v);
2382 	t4_fatal_err(adap);
2383 }
2384 
2385 /*
2386  * PL interrupt handler.
2387  */
2388 static void pl_intr_handler(struct adapter *adap)
2389 {
2390 	static struct intr_info pl_intr_info[] = {
2391 		{ F_FATALPERR, "T4 fatal parity error", -1, 1 },
2392 		{ F_PERRVFID, "PL VFID_MAP parity error", -1, 1 },
2393 		{ 0 }
2394 	};
2395 
2396 	if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE, pl_intr_info))
2397 		t4_fatal_err(adap);
2398 }
2399 
2400 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
2401 #define GLBL_INTR_MASK (F_CIM | F_MPS | F_PL | F_PCIE | F_MC | F_EDC0 | \
2402 		F_EDC1 | F_LE | F_TP | F_MA | F_PM_TX | F_PM_RX | F_ULP_RX | \
2403 		F_CPL_SWITCH | F_SGE | F_ULP_TX)
2404 
2405 /**
2406  *	t4_slow_intr_handler - control path interrupt handler
2407  *	@adapter: the adapter
2408  *
2409  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
2410  *	The designation 'slow' is because it involves register reads, while
2411  *	data interrupts typically don't involve any MMIOs.
2412  */
2413 int t4_slow_intr_handler(struct adapter *adapter)
2414 {
2415 	u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE);
2416 
2417 	if (!(cause & GLBL_INTR_MASK))
2418 		return 0;
2419 	if (cause & F_CIM)
2420 		cim_intr_handler(adapter);
2421 	if (cause & F_MPS)
2422 		mps_intr_handler(adapter);
2423 	if (cause & F_NCSI)
2424 		ncsi_intr_handler(adapter);
2425 	if (cause & F_PL)
2426 		pl_intr_handler(adapter);
2427 	if (cause & F_SMB)
2428 		smb_intr_handler(adapter);
2429 	if (cause & F_XGMAC0)
2430 		xgmac_intr_handler(adapter, 0);
2431 	if (cause & F_XGMAC1)
2432 		xgmac_intr_handler(adapter, 1);
2433 	if (cause & F_XGMAC_KR0)
2434 		xgmac_intr_handler(adapter, 2);
2435 	if (cause & F_XGMAC_KR1)
2436 		xgmac_intr_handler(adapter, 3);
2437 	if (cause & F_PCIE)
2438 		pcie_intr_handler(adapter);
2439 	if (cause & F_MC)
2440 		mem_intr_handler(adapter, MEM_MC);
2441 	if (cause & F_EDC0)
2442 		mem_intr_handler(adapter, MEM_EDC0);
2443 	if (cause & F_EDC1)
2444 		mem_intr_handler(adapter, MEM_EDC1);
2445 	if (cause & F_LE)
2446 		le_intr_handler(adapter);
2447 	if (cause & F_TP)
2448 		tp_intr_handler(adapter);
2449 	if (cause & F_MA)
2450 		ma_intr_handler(adapter);
2451 	if (cause & F_PM_TX)
2452 		pmtx_intr_handler(adapter);
2453 	if (cause & F_PM_RX)
2454 		pmrx_intr_handler(adapter);
2455 	if (cause & F_ULP_RX)
2456 		ulprx_intr_handler(adapter);
2457 	if (cause & F_CPL_SWITCH)
2458 		cplsw_intr_handler(adapter);
2459 	if (cause & F_SGE)
2460 		sge_intr_handler(adapter);
2461 	if (cause & F_ULP_TX)
2462 		ulptx_intr_handler(adapter);
2463 
2464 	/* Clear the interrupts just processed for which we are the master. */
2465 	t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK);
2466 	(void) t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */
2467 	return 1;
2468 }
2469 
2470 /**
2471  *	t4_intr_enable - enable interrupts
2472  *	@adapter: the adapter whose interrupts should be enabled
2473  *
2474  *	Enable PF-specific interrupts for the calling function and the top-level
2475  *	interrupt concentrator for global interrupts.  Interrupts are already
2476  *	enabled at each module,	here we just enable the roots of the interrupt
2477  *	hierarchies.
2478  *
2479  *	Note: this function should be called only when the driver manages
2480  *	non PF-specific interrupts from the various HW modules.  Only one PCI
2481  *	function at a time should be doing this.
2482  */
2483 void t4_intr_enable(struct adapter *adapter)
2484 {
2485 	u32 pf = G_SOURCEPF(t4_read_reg(adapter, A_PL_WHOAMI));
2486 
2487 	t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
2488 		     F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
2489 		     F_ERR_DROPPED_DB | F_ERR_DATA_CPL_ON_HIGH_QID1 |
2490 		     F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
2491 		     F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
2492 		     F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
2493 		     F_ERR_EGR_CTXT_PRIO | F_INGRESS_SIZE_ERR |
2494 		     F_EGRESS_SIZE_ERR);
2495 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
2496 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
2497 }
2498 
2499 /**
2500  *	t4_intr_disable - disable interrupts
2501  *	@adapter: the adapter whose interrupts should be disabled
2502  *
2503  *	Disable interrupts.  We only disable the top-level interrupt
2504  *	concentrators.  The caller must be a PCI function managing global
2505  *	interrupts.
2506  */
2507 void t4_intr_disable(struct adapter *adapter)
2508 {
2509 	u32 pf = G_SOURCEPF(t4_read_reg(adapter, A_PL_WHOAMI));
2510 
2511 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
2512 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
2513 }
2514 
2515 /**
2516  *	t4_intr_clear - clear all interrupts
2517  *	@adapter: the adapter whose interrupts should be cleared
2518  *
2519  *	Clears all interrupts.  The caller must be a PCI function managing
2520  *	global interrupts.
2521  */
2522 void t4_intr_clear(struct adapter *adapter)
2523 {
2524 	static const unsigned int cause_reg[] = {
2525 		A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3,
2526 		A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
2527 		A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
2528 		A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE,
2529 		A_MC_INT_CAUSE,
2530 		A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS, A_MA_INT_CAUSE,
2531 		A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1),
2532 		A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE,
2533 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
2534 		A_TP_INT_CAUSE,
2535 		A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE,
2536 		A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE,
2537 		A_MPS_RX_PERR_INT_CAUSE,
2538 		A_CPL_INTR_CAUSE,
2539 		MYPF_REG(A_PL_PF_INT_CAUSE),
2540 		A_PL_PL_INT_CAUSE,
2541 		A_LE_DB_INT_CAUSE,
2542 	};
2543 
2544 	unsigned int i;
2545 
2546 	for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
2547 		t4_write_reg(adapter, cause_reg[i], 0xffffffff);
2548 
2549 	t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK);
2550 	(void) t4_read_reg(adapter, A_PL_INT_CAUSE);          /* flush */
2551 }
2552 
2553 /**
2554  *	hash_mac_addr - return the hash value of a MAC address
2555  *	@addr: the 48-bit Ethernet MAC address
2556  *
2557  *	Hashes a MAC address according to the hash function used by HW inexact
2558  *	(hash) address matching.
2559  */
2560 static int hash_mac_addr(const u8 *addr)
2561 {
2562 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
2563 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
2564 	a ^= b;
2565 	a ^= (a >> 12);
2566 	a ^= (a >> 6);
2567 	return a & 0x3f;
2568 }
2569 
2570 /**
2571  *	t4_config_rss_range - configure a portion of the RSS mapping table
2572  *	@adapter: the adapter
2573  *	@mbox: mbox to use for the FW command
2574  *	@viid: virtual interface whose RSS subtable is to be written
2575  *	@start: start entry in the table to write
2576  *	@n: how many table entries to write
2577  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
2578  *	@nrspq: number of values in @rspq
2579  *
2580  *	Programs the selected part of the VI's RSS mapping table with the
2581  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
2582  *	until the full table range is populated.
2583  *
2584  *	The caller must ensure the values in @rspq are in the range allowed for
2585  *	@viid.
2586  */
2587 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
2588 			int start, int n, const u16 *rspq, unsigned int nrspq)
2589 {
2590 	int ret;
2591 	const u16 *rsp = rspq;
2592 	const u16 *rsp_end = rspq + nrspq;
2593 	struct fw_rss_ind_tbl_cmd cmd;
2594 
2595 	memset(&cmd, 0, sizeof(cmd));
2596 	cmd.op_to_viid = htonl(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
2597 			       F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
2598 			       V_FW_RSS_IND_TBL_CMD_VIID(viid));
2599 	cmd.retval_len16 = htonl(FW_LEN16(cmd));
2600 
2601 
2602 	/*
2603 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
2604 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
2605 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
2606 	 * reserved.
2607 	 */
2608 	while (n > 0) {
2609 		int nq = min(n, 32);
2610 		int nq_packed = 0;
2611 		__be32 *qp = &cmd.iq0_to_iq2;
2612 
2613 		/*
2614 		 * Set up the firmware RSS command header to send the next
2615 		 * "nq" Ingress Queue IDs to the firmware.
2616 		 */
2617 		cmd.niqid = htons(nq);
2618 		cmd.startidx = htons(start);
2619 
2620 		/*
2621 		 * "nq" more done for the start of the next loop.
2622 		 */
2623 		start += nq;
2624 		n -= nq;
2625 
2626 		/*
2627 		 * While there are still Ingress Queue IDs to stuff into the
2628 		 * current firmware RSS command, retrieve them from the
2629 		 * Ingress Queue ID array and insert them into the command.
2630 		 */
2631 		while (nq > 0) {
2632 			/*
2633 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
2634 			 * around the Ingress Queue ID array if necessary) and
2635 			 * insert them into the firmware RSS command at the
2636 			 * current 3-tuple position within the commad.
2637 			 */
2638 			u16 qbuf[3];
2639 			u16 *qbp = qbuf;
2640 			int nqbuf = min(3, nq);
2641 
2642 			nq -= nqbuf;
2643 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
2644 			while (nqbuf && nq_packed < 32) {
2645 				nqbuf--;
2646 				nq_packed++;
2647 				*qbp++ = *rsp++;
2648 				if (rsp >= rsp_end)
2649 					rsp = rspq;
2650 			}
2651 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
2652 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
2653 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
2654 		}
2655 
2656 		/*
2657 		 * Send this portion of the RRS table update to the firmware;
2658 		 * bail out on any errors.
2659 		 */
2660 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
2661 		if (ret)
2662 			return ret;
2663 	}
2664 
2665 	return 0;
2666 }
2667 
2668 /**
2669  *	t4_config_glbl_rss - configure the global RSS mode
2670  *	@adapter: the adapter
2671  *	@mbox: mbox to use for the FW command
2672  *	@mode: global RSS mode
2673  *	@flags: mode-specific flags
2674  *
2675  *	Sets the global RSS mode.
2676  */
2677 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
2678 		       unsigned int flags)
2679 {
2680 	struct fw_rss_glb_config_cmd c;
2681 
2682 	memset(&c, 0, sizeof(c));
2683 	c.op_to_write = htonl(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
2684 			      F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
2685 	c.retval_len16 = htonl(FW_LEN16(c));
2686 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
2687 		c.u.manual.mode_pkd = htonl(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
2688 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2689 		c.u.basicvirtual.mode_pkd =
2690 			htonl(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
2691 		c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags);
2692 	} else
2693 		return -EINVAL;
2694 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
2695 }
2696 
2697 /**
2698  *	t4_config_vi_rss - configure per VI RSS settings
2699  *	@adapter: the adapter
2700  *	@mbox: mbox to use for the FW command
2701  *	@viid: the VI id
2702  *	@flags: RSS flags
2703  *	@defq: id of the default RSS queue for the VI.
2704  *
2705  *	Configures VI-specific RSS properties.
2706  */
2707 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
2708 		     unsigned int flags, unsigned int defq)
2709 {
2710 	struct fw_rss_vi_config_cmd c;
2711 
2712 	memset(&c, 0, sizeof(c));
2713 	c.op_to_viid = htonl(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
2714 			     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
2715 			     V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
2716 	c.retval_len16 = htonl(FW_LEN16(c));
2717 	c.u.basicvirtual.defaultq_to_udpen = htonl(flags |
2718 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
2719 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
2720 }
2721 
2722 /* Read an RSS table row */
2723 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
2724 {
2725 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
2726 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
2727 				   5, 0, val);
2728 }
2729 
2730 /**
2731  *	t4_read_rss - read the contents of the RSS mapping table
2732  *	@adapter: the adapter
2733  *	@map: holds the contents of the RSS mapping table
2734  *
2735  *	Reads the contents of the RSS hash->queue mapping table.
2736  */
2737 int t4_read_rss(struct adapter *adapter, u16 *map)
2738 {
2739 	u32 val;
2740 	int i, ret;
2741 
2742 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
2743 		ret = rd_rss_row(adapter, i, &val);
2744 		if (ret)
2745 			return ret;
2746 		*map++ = G_LKPTBLQUEUE0(val);
2747 		*map++ = G_LKPTBLQUEUE1(val);
2748 	}
2749 	return 0;
2750 }
2751 
2752 /**
2753  *	t4_read_rss_key - read the global RSS key
2754  *	@adap: the adapter
2755  *	@key: 10-entry array holding the 320-bit RSS key
2756  *
2757  *	Reads the global 320-bit RSS key.
2758  */
2759 void t4_read_rss_key(struct adapter *adap, u32 *key)
2760 {
2761 	t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
2762 			 A_TP_RSS_SECRET_KEY0);
2763 }
2764 
2765 /**
2766  *	t4_write_rss_key - program one of the RSS keys
2767  *	@adap: the adapter
2768  *	@key: 10-entry array holding the 320-bit RSS key
2769  *	@idx: which RSS key to write
2770  *
2771  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
2772  *	0..15 the corresponding entry in the RSS key table is written,
2773  *	otherwise the global RSS key is written.
2774  */
2775 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
2776 {
2777 	t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
2778 			  A_TP_RSS_SECRET_KEY0);
2779 	if (idx >= 0 && idx < 16)
2780 		t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
2781 			     V_KEYWRADDR(idx) | F_KEYWREN);
2782 }
2783 
2784 /**
2785  *	t4_read_rss_pf_config - read PF RSS Configuration Table
2786  *	@adapter: the adapter
2787  *	@index: the entry in the PF RSS table to read
2788  *	@valp: where to store the returned value
2789  *
2790  *	Reads the PF RSS Configuration Table at the specified index and returns
2791  *	the value found there.
2792  */
2793 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, u32 *valp)
2794 {
2795 	t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
2796 			 valp, 1, A_TP_RSS_PF0_CONFIG + index);
2797 }
2798 
2799 /**
2800  *	t4_write_rss_pf_config - write PF RSS Configuration Table
2801  *	@adapter: the adapter
2802  *	@index: the entry in the VF RSS table to read
2803  *	@val: the value to store
2804  *
2805  *	Writes the PF RSS Configuration Table at the specified index with the
2806  *	specified value.
2807  */
2808 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index, u32 val)
2809 {
2810 	t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
2811 			  &val, 1, A_TP_RSS_PF0_CONFIG + index);
2812 }
2813 
2814 /**
2815  *	t4_read_rss_vf_config - read VF RSS Configuration Table
2816  *	@adapter: the adapter
2817  *	@index: the entry in the VF RSS table to read
2818  *	@vfl: where to store the returned VFL
2819  *	@vfh: where to store the returned VFH
2820  *
2821  *	Reads the VF RSS Configuration Table at the specified index and returns
2822  *	the (VFL, VFH) values found there.
2823  */
2824 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
2825 			   u32 *vfl, u32 *vfh)
2826 {
2827 	u32 vrt;
2828 
2829 	/*
2830 	 * Request that the index'th VF Table values be read into VFL/VFH.
2831 	 */
2832 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
2833 	vrt &= ~(F_VFRDRG | V_VFWRADDR(M_VFWRADDR) | F_VFWREN | F_KEYWREN);
2834 	vrt |= V_VFWRADDR(index) | F_VFRDEN;
2835 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
2836 
2837 	/*
2838 	 * Grab the VFL/VFH values ...
2839 	 */
2840 	t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
2841 			 vfl, 1, A_TP_RSS_VFL_CONFIG);
2842 	t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
2843 			 vfh, 1, A_TP_RSS_VFH_CONFIG);
2844 }
2845 
2846 /**
2847  *	t4_write_rss_vf_config - write VF RSS Configuration Table
2848  *
2849  *	@adapter: the adapter
2850  *	@index: the entry in the VF RSS table to write
2851  *	@vfl: the VFL to store
2852  *	@vfh: the VFH to store
2853  *
2854  *	Writes the VF RSS Configuration Table at the specified index with the
2855  *	specified (VFL, VFH) values.
2856  */
2857 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
2858 			    u32 vfl, u32 vfh)
2859 {
2860 	u32 vrt;
2861 
2862 	/*
2863 	 * Load up VFL/VFH with the values to be written ...
2864 	 */
2865 	t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
2866 			  &vfl, 1, A_TP_RSS_VFL_CONFIG);
2867 	t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
2868 			  &vfh, 1, A_TP_RSS_VFH_CONFIG);
2869 
2870 	/*
2871 	 * Write the VFL/VFH into the VF Table at index'th location.
2872 	 */
2873 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
2874 	vrt &= ~(F_VFRDRG | F_VFRDEN | V_VFWRADDR(M_VFWRADDR) | F_KEYWREN);
2875 	vrt |= V_VFWRADDR(index) | F_VFWREN;
2876 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
2877 }
2878 
2879 /**
2880  *	t4_read_rss_pf_map - read PF RSS Map
2881  *	@adapter: the adapter
2882  *
2883  *	Reads the PF RSS Map register and returns its value.
2884  */
2885 u32 t4_read_rss_pf_map(struct adapter *adapter)
2886 {
2887 	u32 pfmap;
2888 
2889 	t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
2890 			 &pfmap, 1, A_TP_RSS_PF_MAP);
2891 	return pfmap;
2892 }
2893 
2894 /**
2895  *	t4_write_rss_pf_map - write PF RSS Map
2896  *	@adapter: the adapter
2897  *	@pfmap: PF RSS Map value
2898  *
2899  *	Writes the specified value to the PF RSS Map register.
2900  */
2901 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap)
2902 {
2903 	t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
2904 			  &pfmap, 1, A_TP_RSS_PF_MAP);
2905 }
2906 
2907 /**
2908  *	t4_read_rss_pf_mask - read PF RSS Mask
2909  *	@adapter: the adapter
2910  *
2911  *	Reads the PF RSS Mask register and returns its value.
2912  */
2913 u32 t4_read_rss_pf_mask(struct adapter *adapter)
2914 {
2915 	u32 pfmask;
2916 
2917 	t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
2918 			 &pfmask, 1, A_TP_RSS_PF_MSK);
2919 	return pfmask;
2920 }
2921 
2922 /**
2923  *	t4_write_rss_pf_mask - write PF RSS Mask
2924  *	@adapter: the adapter
2925  *	@pfmask: PF RSS Mask value
2926  *
2927  *	Writes the specified value to the PF RSS Mask register.
2928  */
2929 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask)
2930 {
2931 	t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
2932 			  &pfmask, 1, A_TP_RSS_PF_MSK);
2933 }
2934 
2935 /**
2936  *	t4_set_filter_mode - configure the optional components of filter tuples
2937  *	@adap: the adapter
2938  *	@mode_map: a bitmap selcting which optional filter components to enable
2939  *
2940  *	Sets the filter mode by selecting the optional components to enable
2941  *	in filter tuples.  Returns 0 on success and a negative error if the
2942  *	requested mode needs more bits than are available for optional
2943  *	components.
2944  */
2945 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map)
2946 {
2947 	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
2948 
2949 	int i, nbits = 0;
2950 
2951 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
2952 		if (mode_map & (1 << i))
2953 			nbits += width[i];
2954 	if (nbits > FILTER_OPT_LEN)
2955 		return -EINVAL;
2956 	t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, &mode_map, 1,
2957 			  A_TP_VLAN_PRI_MAP);
2958 	return 0;
2959 }
2960 
2961 /**
2962  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
2963  *	@adap: the adapter
2964  *	@v4: holds the TCP/IP counter values
2965  *	@v6: holds the TCP/IPv6 counter values
2966  *
2967  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
2968  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
2969  */
2970 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
2971 			 struct tp_tcp_stats *v6)
2972 {
2973 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
2974 
2975 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
2976 #define STAT(x)     val[STAT_IDX(x)]
2977 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
2978 
2979 	if (v4) {
2980 		t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
2981 				 ARRAY_SIZE(val), A_TP_MIB_TCP_OUT_RST);
2982 		v4->tcpOutRsts = STAT(OUT_RST);
2983 		v4->tcpInSegs  = STAT64(IN_SEG);
2984 		v4->tcpOutSegs = STAT64(OUT_SEG);
2985 		v4->tcpRetransSegs = STAT64(RXT_SEG);
2986 	}
2987 	if (v6) {
2988 		t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
2989 				 ARRAY_SIZE(val), A_TP_MIB_TCP_V6OUT_RST);
2990 		v6->tcpOutRsts = STAT(OUT_RST);
2991 		v6->tcpInSegs  = STAT64(IN_SEG);
2992 		v6->tcpOutSegs = STAT64(OUT_SEG);
2993 		v6->tcpRetransSegs = STAT64(RXT_SEG);
2994 	}
2995 #undef STAT64
2996 #undef STAT
2997 #undef STAT_IDX
2998 }
2999 
3000 /**
3001  *	t4_tp_get_err_stats - read TP's error MIB counters
3002  *	@adap: the adapter
3003  *	@st: holds the counter values
3004  *
3005  *	Returns the values of TP's error counters.
3006  */
3007 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
3008 {
3009 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->macInErrs,
3010 			 12, A_TP_MIB_MAC_IN_ERR_0);
3011 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->tnlCongDrops,
3012 			 8, A_TP_MIB_TNL_CNG_DROP_0);
3013 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->tnlTxDrops,
3014 			 4, A_TP_MIB_TNL_DROP_0);
3015 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->ofldVlanDrops,
3016 			 4, A_TP_MIB_OFD_VLN_DROP_0);
3017 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->tcp6InErrs,
3018 			 4, A_TP_MIB_TCP_V6IN_ERR_0);
3019 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->ofldNoNeigh,
3020 			 2, A_TP_MIB_OFD_ARP_DROP);
3021 }
3022 
3023 /**
3024  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
3025  *	@adap: the adapter
3026  *	@st: holds the counter values
3027  *
3028  *	Returns the values of TP's proxy counters.
3029  */
3030 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st)
3031 {
3032 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->proxy,
3033 			 4, A_TP_MIB_TNL_LPBK_0);
3034 }
3035 
3036 /**
3037  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
3038  *	@adap: the adapter
3039  *	@st: holds the counter values
3040  *
3041  *	Returns the values of TP's CPL counters.
3042  */
3043 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
3044 {
3045 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->req,
3046 			 8, A_TP_MIB_CPL_IN_REQ_0);
3047 }
3048 
3049 /**
3050  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
3051  *	@adap: the adapter
3052  *	@st: holds the counter values
3053  *
3054  *	Returns the values of TP's RDMA counters.
3055  */
3056 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
3057 {
3058 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->rqe_dfr_mod,
3059 			 2, A_TP_MIB_RQE_DFR_MOD);
3060 }
3061 
3062 /**
3063  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
3064  *	@adap: the adapter
3065  *	@idx: the port index
3066  *	@st: holds the counter values
3067  *
3068  *	Returns the values of TP's FCoE counters for the selected port.
3069  */
3070 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
3071 		       struct tp_fcoe_stats *st)
3072 {
3073 	u32 val[2];
3074 
3075 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->framesDDP,
3076 			 1, A_TP_MIB_FCOE_DDP_0 + idx);
3077 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->framesDrop,
3078 			 1, A_TP_MIB_FCOE_DROP_0 + idx);
3079 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
3080 			 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx);
3081 	st->octetsDDP = ((u64)val[0] << 32) | val[1];
3082 }
3083 
3084 /**
3085  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
3086  *	@adap: the adapter
3087  *	@st: holds the counter values
3088  *
3089  *	Returns the values of TP's counters for non-TCP directly-placed packets.
3090  */
3091 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
3092 {
3093 	u32 val[4];
3094 
3095 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val, 4,
3096 			 A_TP_MIB_USM_PKTS);
3097 	st->frames = val[0];
3098 	st->drops = val[1];
3099 	st->octets = ((u64)val[2] << 32) | val[3];
3100 }
3101 
3102 /**
3103  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
3104  *	@adap: the adapter
3105  *	@mtus: where to store the MTU values
3106  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
3107  *
3108  *	Reads the HW path MTU table.
3109  */
3110 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
3111 {
3112 	u32 v;
3113 	int i;
3114 
3115 	for (i = 0; i < NMTUS; ++i) {
3116 		t4_write_reg(adap, A_TP_MTU_TABLE,
3117 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
3118 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
3119 		mtus[i] = G_MTUVALUE(v);
3120 		if (mtu_log)
3121 			mtu_log[i] = G_MTUWIDTH(v);
3122 	}
3123 }
3124 
3125 /**
3126  *	t4_read_cong_tbl - reads the congestion control table
3127  *	@adap: the adapter
3128  *	@incr: where to store the alpha values
3129  *
3130  *	Reads the additive increments programmed into the HW congestion
3131  *	control table.
3132  */
3133 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
3134 {
3135 	unsigned int mtu, w;
3136 
3137 	for (mtu = 0; mtu < NMTUS; ++mtu)
3138 		for (w = 0; w < NCCTRL_WIN; ++w) {
3139 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
3140 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
3141 			incr[mtu][w] = (u16)t4_read_reg(adap,
3142 						A_TP_CCTRL_TABLE) & 0x1fff;
3143 		}
3144 }
3145 
3146 /**
3147  *	t4_read_pace_tbl - read the pace table
3148  *	@adap: the adapter
3149  *	@pace_vals: holds the returned values
3150  *
3151  *	Returns the values of TP's pace table in microseconds.
3152  */
3153 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
3154 {
3155 	unsigned int i, v;
3156 
3157 	for (i = 0; i < NTX_SCHED; i++) {
3158 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
3159 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
3160 		pace_vals[i] = dack_ticks_to_usec(adap, v);
3161 	}
3162 }
3163 
3164 /**
3165  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
3166  *	@adap: the adapter
3167  *	@addr: the indirect TP register address
3168  *	@mask: specifies the field within the register to modify
3169  *	@val: new value for the field
3170  *
3171  *	Sets a field of an indirect TP register to the given value.
3172  */
3173 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
3174 			    unsigned int mask, unsigned int val)
3175 {
3176 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
3177 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
3178 	t4_write_reg(adap, A_TP_PIO_DATA, val);
3179 }
3180 
3181 /**
3182  *	init_cong_ctrl - initialize congestion control parameters
3183  *	@a: the alpha values for congestion control
3184  *	@b: the beta values for congestion control
3185  *
3186  *	Initialize the congestion control parameters.
3187  */
3188 static void __devinit init_cong_ctrl(unsigned short *a, unsigned short *b)
3189 {
3190 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
3191 	a[9] = 2;
3192 	a[10] = 3;
3193 	a[11] = 4;
3194 	a[12] = 5;
3195 	a[13] = 6;
3196 	a[14] = 7;
3197 	a[15] = 8;
3198 	a[16] = 9;
3199 	a[17] = 10;
3200 	a[18] = 14;
3201 	a[19] = 17;
3202 	a[20] = 21;
3203 	a[21] = 25;
3204 	a[22] = 30;
3205 	a[23] = 35;
3206 	a[24] = 45;
3207 	a[25] = 60;
3208 	a[26] = 80;
3209 	a[27] = 100;
3210 	a[28] = 200;
3211 	a[29] = 300;
3212 	a[30] = 400;
3213 	a[31] = 500;
3214 
3215 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
3216 	b[9] = b[10] = 1;
3217 	b[11] = b[12] = 2;
3218 	b[13] = b[14] = b[15] = b[16] = 3;
3219 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
3220 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
3221 	b[28] = b[29] = 6;
3222 	b[30] = b[31] = 7;
3223 }
3224 
3225 /* The minimum additive increment value for the congestion control table */
3226 #define CC_MIN_INCR 2U
3227 
3228 /**
3229  *	t4_load_mtus - write the MTU and congestion control HW tables
3230  *	@adap: the adapter
3231  *	@mtus: the values for the MTU table
3232  *	@alpha: the values for the congestion control alpha parameter
3233  *	@beta: the values for the congestion control beta parameter
3234  *
3235  *	Write the HW MTU table with the supplied MTUs and the high-speed
3236  *	congestion control table with the supplied alpha, beta, and MTUs.
3237  *	We write the two tables together because the additive increments
3238  *	depend on the MTUs.
3239  */
3240 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
3241 		  const unsigned short *alpha, const unsigned short *beta)
3242 {
3243 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
3244 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
3245 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
3246 		28672, 40960, 57344, 81920, 114688, 163840, 229376
3247 	};
3248 
3249 	unsigned int i, w;
3250 
3251 	for (i = 0; i < NMTUS; ++i) {
3252 		unsigned int mtu = mtus[i];
3253 		unsigned int log2 = fls(mtu);
3254 
3255 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
3256 			log2--;
3257 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
3258 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
3259 
3260 		for (w = 0; w < NCCTRL_WIN; ++w) {
3261 			unsigned int inc;
3262 
3263 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
3264 				  CC_MIN_INCR);
3265 
3266 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
3267 				     (w << 16) | (beta[w] << 13) | inc);
3268 		}
3269 	}
3270 }
3271 
3272 /**
3273  *	t4_set_pace_tbl - set the pace table
3274  *	@adap: the adapter
3275  *	@pace_vals: the pace values in microseconds
3276  *	@start: index of the first entry in the HW pace table to set
3277  *	@n: how many entries to set
3278  *
3279  *	Sets (a subset of the) HW pace table.
3280  */
3281 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
3282 		     unsigned int start, unsigned int n)
3283 {
3284 	unsigned int vals[NTX_SCHED], i;
3285 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
3286 
3287 	if (n > NTX_SCHED)
3288 	    return -ERANGE;
3289 
3290 	/* convert values from us to dack ticks, rounding to closest value */
3291 	for (i = 0; i < n; i++, pace_vals++) {
3292 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
3293 		if (vals[i] > 0x7ff)
3294 			return -ERANGE;
3295 		if (*pace_vals && vals[i] == 0)
3296 			return -ERANGE;
3297 	}
3298 	for (i = 0; i < n; i++, start++)
3299 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
3300 	return 0;
3301 }
3302 
3303 /**
3304  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
3305  *	@adap: the adapter
3306  *	@kbps: target rate in Kbps
3307  *	@sched: the scheduler index
3308  *
3309  *	Configure a Tx HW scheduler for the target rate.
3310  */
3311 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
3312 {
3313 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
3314 	unsigned int clk = adap->params.vpd.cclk * 1000;
3315 	unsigned int selected_cpt = 0, selected_bpt = 0;
3316 
3317 	if (kbps > 0) {
3318 		kbps *= 125;     /* -> bytes */
3319 		for (cpt = 1; cpt <= 255; cpt++) {
3320 			tps = clk / cpt;
3321 			bpt = (kbps + tps / 2) / tps;
3322 			if (bpt > 0 && bpt <= 255) {
3323 				v = bpt * tps;
3324 				delta = v >= kbps ? v - kbps : kbps - v;
3325 				if (delta < mindelta) {
3326 					mindelta = delta;
3327 					selected_cpt = cpt;
3328 					selected_bpt = bpt;
3329 				}
3330 			} else if (selected_cpt)
3331 				break;
3332 		}
3333 		if (!selected_cpt)
3334 			return -EINVAL;
3335 	}
3336 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
3337 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
3338 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
3339 	if (sched & 1)
3340 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
3341 	else
3342 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
3343 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
3344 	return 0;
3345 }
3346 
3347 /**
3348  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
3349  *	@adap: the adapter
3350  *	@sched: the scheduler index
3351  *	@ipg: the interpacket delay in tenths of nanoseconds
3352  *
3353  *	Set the interpacket delay for a HW packet rate scheduler.
3354  */
3355 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
3356 {
3357 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
3358 
3359 	/* convert ipg to nearest number of core clocks */
3360 	ipg *= core_ticks_per_usec(adap);
3361 	ipg = (ipg + 5000) / 10000;
3362 	if (ipg > M_TXTIMERSEPQ0)
3363 		return -EINVAL;
3364 
3365 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
3366 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
3367 	if (sched & 1)
3368 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
3369 	else
3370 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
3371 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
3372 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
3373 	return 0;
3374 }
3375 
3376 /**
3377  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
3378  *	@adap: the adapter
3379  *	@sched: the scheduler index
3380  *	@kbps: the byte rate in Kbps
3381  *	@ipg: the interpacket delay in tenths of nanoseconds
3382  *
3383  *	Return the current configuration of a HW Tx scheduler.
3384  */
3385 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
3386 		     unsigned int *ipg)
3387 {
3388 	unsigned int v, addr, bpt, cpt;
3389 
3390 	if (kbps) {
3391 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
3392 		t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
3393 		v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
3394 		if (sched & 1)
3395 			v >>= 16;
3396 		bpt = (v >> 8) & 0xff;
3397 		cpt = v & 0xff;
3398 		if (!cpt)
3399 			*kbps = 0;        /* scheduler disabled */
3400 		else {
3401 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
3402 			*kbps = (v * bpt) / 125;
3403 		}
3404 	}
3405 	if (ipg) {
3406 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
3407 		t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
3408 		v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
3409 		if (sched & 1)
3410 			v >>= 16;
3411 		v &= 0xffff;
3412 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
3413 	}
3414 }
3415 
3416 /*
3417  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
3418  * clocks.  The formula is
3419  *
3420  * bytes/s = bytes256 * 256 * ClkFreq / 4096
3421  *
3422  * which is equivalent to
3423  *
3424  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
3425  */
3426 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
3427 {
3428 	u64 v = bytes256 * adap->params.vpd.cclk;
3429 
3430 	return v * 62 + v / 2;
3431 }
3432 
3433 /**
3434  *	t4_get_chan_txrate - get the current per channel Tx rates
3435  *	@adap: the adapter
3436  *	@nic_rate: rates for NIC traffic
3437  *	@ofld_rate: rates for offloaded traffic
3438  *
3439  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
3440  *	for each channel.
3441  */
3442 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
3443 {
3444 	u32 v;
3445 
3446 	v = t4_read_reg(adap, A_TP_TX_TRATE);
3447 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
3448 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
3449 	nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
3450 	nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
3451 
3452 	v = t4_read_reg(adap, A_TP_TX_ORATE);
3453 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
3454 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
3455 	ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
3456 	ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
3457 }
3458 
3459 /**
3460  *	t4_set_trace_filter - configure one of the tracing filters
3461  *	@adap: the adapter
3462  *	@tp: the desired trace filter parameters
3463  *	@idx: which filter to configure
3464  *	@enable: whether to enable or disable the filter
3465  *
3466  *	Configures one of the tracing filters available in HW.  If @enable is
3467  *	%0 @tp is not examined and may be %NULL. The user is responsible to
3468  *	set the single/multiple trace mode by writing to A_MPS_TRC_CFG register
3469  *	by using "cxgbtool iface reg reg_addr=val" command. See t4_sniffer/
3470  *	docs/readme.txt for a complete description of how to setup traceing on
3471  *	T4.
3472  */
3473 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, int idx,
3474 			int enable)
3475 {
3476 	int i, ofst = idx * 4;
3477 	u32 data_reg, mask_reg, cfg;
3478 	u32 multitrc = F_TRCMULTIFILTER;
3479 
3480 	if (!enable) {
3481 		t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, 0);
3482 		return 0;
3483 	}
3484 
3485 	/*
3486 	 * TODO - After T4 data book is updated, specify the exact
3487 	 * section below.
3488 	 *
3489 	 * See T4 data book - MPS section for a complete description
3490 	 * of the below if..else handling of A_MPS_TRC_CFG register
3491 	 * value.
3492 	 */
3493 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
3494 	if (cfg & F_TRCMULTIFILTER) {
3495 		/*
3496 		 * If multiple tracers are enabled, then maximum
3497 		 * capture size is 2.5KB (FIFO size of a single channel)
3498 		 * minus 2 flits for CPL_TRACE_PKT header.
3499 		 */
3500 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
3501 			return -EINVAL;
3502 	}
3503 	else {
3504 		/*
3505 		 * If multiple tracers are disabled, to avoid deadlocks
3506 		 * maximum packet capture size of 9600 bytes is recommended.
3507 		 * Also in this mode, only trace0 can be enabled and running.
3508 		 */
3509 		multitrc = 0;
3510 		if (tp->snap_len > 9600 || idx)
3511 			return -EINVAL;
3512 	}
3513 
3514 	if (tp->port > 11 || tp->invert > 1 || tp->skip_len > M_TFLENGTH ||
3515 	    tp->skip_ofst > M_TFOFFSET || tp->min_len > M_TFMINPKTSIZE)
3516 		return -EINVAL;
3517 
3518 	/* stop the tracer we'll be changing */
3519 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, 0);
3520 
3521 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
3522 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
3523 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
3524 
3525 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
3526 		t4_write_reg(adap, data_reg, tp->data[i]);
3527 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
3528 	}
3529 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
3530 		     V_TFCAPTUREMAX(tp->snap_len) |
3531 		     V_TFMINPKTSIZE(tp->min_len));
3532 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
3533 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) |
3534 		     V_TFPORT(tp->port) | F_TFEN | V_TFINVERTMATCH(tp->invert));
3535 
3536 	return 0;
3537 }
3538 
3539 /**
3540  *	t4_get_trace_filter - query one of the tracing filters
3541  *	@adap: the adapter
3542  *	@tp: the current trace filter parameters
3543  *	@idx: which trace filter to query
3544  *	@enabled: non-zero if the filter is enabled
3545  *
3546  *	Returns the current settings of one of the HW tracing filters.
3547  */
3548 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
3549 			 int *enabled)
3550 {
3551 	u32 ctla, ctlb;
3552 	int i, ofst = idx * 4;
3553 	u32 data_reg, mask_reg;
3554 
3555 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
3556 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
3557 
3558 	*enabled = !!(ctla & F_TFEN);
3559 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
3560 	tp->min_len = G_TFMINPKTSIZE(ctlb);
3561 	tp->skip_ofst = G_TFOFFSET(ctla);
3562 	tp->skip_len = G_TFLENGTH(ctla);
3563 	tp->invert = !!(ctla & F_TFINVERTMATCH);
3564 	tp->port = G_TFPORT(ctla);
3565 
3566 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
3567 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
3568 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
3569 
3570 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
3571 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
3572 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
3573 	}
3574 }
3575 
3576 /**
3577  *	t4_pmtx_get_stats - returns the HW stats from PMTX
3578  *	@adap: the adapter
3579  *	@cnt: where to store the count statistics
3580  *	@cycles: where to store the cycle statistics
3581  *
3582  *	Returns performance statistics from PMTX.
3583  */
3584 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
3585 {
3586 	int i;
3587 
3588 	for (i = 0; i < PM_NSTATS; i++) {
3589 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
3590 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
3591 		cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
3592 	}
3593 }
3594 
3595 /**
3596  *	t4_pmrx_get_stats - returns the HW stats from PMRX
3597  *	@adap: the adapter
3598  *	@cnt: where to store the count statistics
3599  *	@cycles: where to store the cycle statistics
3600  *
3601  *	Returns performance statistics from PMRX.
3602  */
3603 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
3604 {
3605 	int i;
3606 
3607 	for (i = 0; i < PM_NSTATS; i++) {
3608 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
3609 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
3610 		cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
3611 	}
3612 }
3613 
3614 /**
3615  *	get_mps_bg_map - return the buffer groups associated with a port
3616  *	@adap: the adapter
3617  *	@idx: the port index
3618  *
3619  *	Returns a bitmap indicating which MPS buffer groups are associated
3620  *	with the given port.  Bit i is set if buffer group i is used by the
3621  *	port.
3622  */
3623 static unsigned int get_mps_bg_map(struct adapter *adap, int idx)
3624 {
3625 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
3626 
3627 	if (n == 0)
3628 		return idx == 0 ? 0xf : 0;
3629 	if (n == 1)
3630 		return idx < 2 ? (3 << (2 * idx)) : 0;
3631 	return 1 << idx;
3632 }
3633 
3634 /**
3635  *      t4_get_port_stats_offset - collect port stats relative to a previous
3636  *                                 snapshot
3637  *      @adap: The adapter
3638  *      @idx: The port
3639  *      @stats: Current stats to fill
3640  *      @offset: Previous stats snapshot
3641  */
3642 void t4_get_port_stats_offset(struct adapter *adap, int idx,
3643 		struct port_stats *stats,
3644 		struct port_stats *offset)
3645 {
3646 	u64 *s, *o;
3647 	int i;
3648 
3649 	t4_get_port_stats(adap, idx, stats);
3650 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
3651 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
3652 			i++, s++, o++)
3653 		*s -= *o;
3654 }
3655 
3656 /**
3657  *	t4_get_port_stats - collect port statistics
3658  *	@adap: the adapter
3659  *	@idx: the port index
3660  *	@p: the stats structure to fill
3661  *
3662  *	Collect statistics related to the given port from HW.
3663  */
3664 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
3665 {
3666 	u32 bgmap = get_mps_bg_map(adap, idx);
3667 
3668 #define GET_STAT(name) \
3669 	t4_read_reg64(adap, PORT_REG(idx, A_MPS_PORT_STAT_##name##_L))
3670 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
3671 
3672 	p->tx_pause            = GET_STAT(TX_PORT_PAUSE);
3673 	p->tx_octets           = GET_STAT(TX_PORT_BYTES);
3674 	p->tx_frames           = GET_STAT(TX_PORT_FRAMES);
3675 	p->tx_bcast_frames     = GET_STAT(TX_PORT_BCAST);
3676 	p->tx_mcast_frames     = GET_STAT(TX_PORT_MCAST);
3677 	p->tx_ucast_frames     = GET_STAT(TX_PORT_UCAST);
3678 	p->tx_error_frames     = GET_STAT(TX_PORT_ERROR);
3679 	p->tx_frames_64        = GET_STAT(TX_PORT_64B);
3680 	p->tx_frames_65_127    = GET_STAT(TX_PORT_65B_127B);
3681 	p->tx_frames_128_255   = GET_STAT(TX_PORT_128B_255B);
3682 	p->tx_frames_256_511   = GET_STAT(TX_PORT_256B_511B);
3683 	p->tx_frames_512_1023  = GET_STAT(TX_PORT_512B_1023B);
3684 	p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
3685 	p->tx_frames_1519_max  = GET_STAT(TX_PORT_1519B_MAX);
3686 	p->tx_drop             = GET_STAT(TX_PORT_DROP);
3687 	p->tx_ppp0             = GET_STAT(TX_PORT_PPP0);
3688 	p->tx_ppp1             = GET_STAT(TX_PORT_PPP1);
3689 	p->tx_ppp2             = GET_STAT(TX_PORT_PPP2);
3690 	p->tx_ppp3             = GET_STAT(TX_PORT_PPP3);
3691 	p->tx_ppp4             = GET_STAT(TX_PORT_PPP4);
3692 	p->tx_ppp5             = GET_STAT(TX_PORT_PPP5);
3693 	p->tx_ppp6             = GET_STAT(TX_PORT_PPP6);
3694 	p->tx_ppp7             = GET_STAT(TX_PORT_PPP7);
3695 
3696 	p->rx_pause            = GET_STAT(RX_PORT_PAUSE);
3697 	p->rx_octets           = GET_STAT(RX_PORT_BYTES);
3698 	p->rx_frames           = GET_STAT(RX_PORT_FRAMES);
3699 	p->rx_bcast_frames     = GET_STAT(RX_PORT_BCAST);
3700 	p->rx_mcast_frames     = GET_STAT(RX_PORT_MCAST);
3701 	p->rx_ucast_frames     = GET_STAT(RX_PORT_UCAST);
3702 	p->rx_too_long         = GET_STAT(RX_PORT_MTU_ERROR);
3703 	p->rx_jabber           = GET_STAT(RX_PORT_MTU_CRC_ERROR);
3704 	p->rx_fcs_err          = GET_STAT(RX_PORT_CRC_ERROR);
3705 	p->rx_len_err          = GET_STAT(RX_PORT_LEN_ERROR);
3706 	p->rx_symbol_err       = GET_STAT(RX_PORT_SYM_ERROR);
3707 	p->rx_runt             = GET_STAT(RX_PORT_LESS_64B);
3708 	p->rx_frames_64        = GET_STAT(RX_PORT_64B);
3709 	p->rx_frames_65_127    = GET_STAT(RX_PORT_65B_127B);
3710 	p->rx_frames_128_255   = GET_STAT(RX_PORT_128B_255B);
3711 	p->rx_frames_256_511   = GET_STAT(RX_PORT_256B_511B);
3712 	p->rx_frames_512_1023  = GET_STAT(RX_PORT_512B_1023B);
3713 	p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
3714 	p->rx_frames_1519_max  = GET_STAT(RX_PORT_1519B_MAX);
3715 	p->rx_ppp0             = GET_STAT(RX_PORT_PPP0);
3716 	p->rx_ppp1             = GET_STAT(RX_PORT_PPP1);
3717 	p->rx_ppp2             = GET_STAT(RX_PORT_PPP2);
3718 	p->rx_ppp3             = GET_STAT(RX_PORT_PPP3);
3719 	p->rx_ppp4             = GET_STAT(RX_PORT_PPP4);
3720 	p->rx_ppp5             = GET_STAT(RX_PORT_PPP5);
3721 	p->rx_ppp6             = GET_STAT(RX_PORT_PPP6);
3722 	p->rx_ppp7             = GET_STAT(RX_PORT_PPP7);
3723 
3724 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
3725 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
3726 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
3727 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
3728 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
3729 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
3730 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
3731 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
3732 
3733 #undef GET_STAT
3734 #undef GET_STAT_COM
3735 }
3736 
3737 /**
3738  *	t4_clr_port_stats - clear port statistics
3739  *	@adap: the adapter
3740  *	@idx: the port index
3741  *
3742  *	Clear HW statistics for the given port.
3743  */
3744 void t4_clr_port_stats(struct adapter *adap, int idx)
3745 {
3746 	unsigned int i;
3747 	u32 bgmap = get_mps_bg_map(adap, idx);
3748 
3749 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
3750 	     i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
3751 		t4_write_reg(adap, PORT_REG(idx, i), 0);
3752 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
3753 	     i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
3754 		t4_write_reg(adap, PORT_REG(idx, i), 0);
3755 	for (i = 0; i < 4; i++)
3756 		if (bgmap & (1 << i)) {
3757 			t4_write_reg(adap,
3758 				A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
3759 			t4_write_reg(adap,
3760 				A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
3761 		}
3762 }
3763 
3764 /**
3765  *	t4_get_lb_stats - collect loopback port statistics
3766  *	@adap: the adapter
3767  *	@idx: the loopback port index
3768  *	@p: the stats structure to fill
3769  *
3770  *	Return HW statistics for the given loopback port.
3771  */
3772 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
3773 {
3774 	u32 bgmap = get_mps_bg_map(adap, idx);
3775 
3776 #define GET_STAT(name) \
3777 	t4_read_reg64(adap, PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L))
3778 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
3779 
3780 	p->octets           = GET_STAT(BYTES);
3781 	p->frames           = GET_STAT(FRAMES);
3782 	p->bcast_frames     = GET_STAT(BCAST);
3783 	p->mcast_frames     = GET_STAT(MCAST);
3784 	p->ucast_frames     = GET_STAT(UCAST);
3785 	p->error_frames     = GET_STAT(ERROR);
3786 
3787 	p->frames_64        = GET_STAT(64B);
3788 	p->frames_65_127    = GET_STAT(65B_127B);
3789 	p->frames_128_255   = GET_STAT(128B_255B);
3790 	p->frames_256_511   = GET_STAT(256B_511B);
3791 	p->frames_512_1023  = GET_STAT(512B_1023B);
3792 	p->frames_1024_1518 = GET_STAT(1024B_1518B);
3793 	p->frames_1519_max  = GET_STAT(1519B_MAX);
3794 	p->drop             = t4_read_reg(adap, PORT_REG(idx,
3795 					  A_MPS_PORT_STAT_LB_PORT_DROP_FRAMES));
3796 
3797 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
3798 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
3799 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
3800 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
3801 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
3802 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
3803 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
3804 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
3805 
3806 #undef GET_STAT
3807 #undef GET_STAT_COM
3808 }
3809 
3810 /**
3811  *	t4_wol_magic_enable - enable/disable magic packet WoL
3812  *	@adap: the adapter
3813  *	@port: the physical port index
3814  *	@addr: MAC address expected in magic packets, %NULL to disable
3815  *
3816  *	Enables/disables magic packet wake-on-LAN for the selected port.
3817  */
3818 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
3819 			 const u8 *addr)
3820 {
3821 	if (addr) {
3822 		t4_write_reg(adap, PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO),
3823 			     (addr[2] << 24) | (addr[3] << 16) |
3824 			     (addr[4] << 8) | addr[5]);
3825 		t4_write_reg(adap, PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI),
3826 			     (addr[0] << 8) | addr[1]);
3827 	}
3828 	t4_set_reg_field(adap, PORT_REG(port, A_XGMAC_PORT_CFG2), F_MAGICEN,
3829 			 V_MAGICEN(addr != NULL));
3830 }
3831 
3832 /**
3833  *	t4_wol_pat_enable - enable/disable pattern-based WoL
3834  *	@adap: the adapter
3835  *	@port: the physical port index
3836  *	@map: bitmap of which HW pattern filters to set
3837  *	@mask0: byte mask for bytes 0-63 of a packet
3838  *	@mask1: byte mask for bytes 64-127 of a packet
3839  *	@crc: Ethernet CRC for selected bytes
3840  *	@enable: enable/disable switch
3841  *
3842  *	Sets the pattern filters indicated in @map to mask out the bytes
3843  *	specified in @mask0/@mask1 in received packets and compare the CRC of
3844  *	the resulting packet against @crc.  If @enable is %true pattern-based
3845  *	WoL is enabled, otherwise disabled.
3846  */
3847 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
3848 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
3849 {
3850 	int i;
3851 
3852 	if (!enable) {
3853 		t4_set_reg_field(adap, PORT_REG(port, A_XGMAC_PORT_CFG2),
3854 				 F_PATEN, 0);
3855 		return 0;
3856 	}
3857 	if (map > 0xff)
3858 		return -EINVAL;
3859 
3860 #define EPIO_REG(name) PORT_REG(port, A_XGMAC_PORT_EPIO_##name)
3861 
3862 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
3863 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
3864 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
3865 
3866 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
3867 		if (!(map & 1))
3868 			continue;
3869 
3870 		/* write byte masks */
3871 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
3872 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
3873 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
3874 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
3875 			return -ETIMEDOUT;
3876 
3877 		/* write CRC */
3878 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
3879 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
3880 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
3881 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
3882 			return -ETIMEDOUT;
3883 	}
3884 #undef EPIO_REG
3885 
3886 	t4_set_reg_field(adap, PORT_REG(port, A_XGMAC_PORT_CFG2), 0, F_PATEN);
3887 	return 0;
3888 }
3889 
3890 /**
3891  *	t4_mk_filtdelwr - create a delete filter WR
3892  *	@ftid: the filter ID
3893  *	@wr: the filter work request to populate
3894  *	@qid: ingress queue to receive the delete notification
3895  *
3896  *	Creates a filter work request to delete the supplied filter.  If @qid is
3897  *	negative the delete notification is suppressed.
3898  */
3899 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
3900 {
3901 	memset(wr, 0, sizeof(*wr));
3902 	wr->op_pkd = htonl(V_FW_WR_OP(FW_FILTER_WR));
3903 	wr->len16_pkd = htonl(V_FW_WR_LEN16(sizeof(*wr) / 16));
3904 	wr->tid_to_iq = htonl(V_FW_FILTER_WR_TID(ftid) |
3905 			      V_FW_FILTER_WR_NOREPLY(qid < 0));
3906 	wr->del_filter_to_l2tix = htonl(F_FW_FILTER_WR_DEL_FILTER);
3907 	if (qid >= 0)
3908 		wr->rx_chan_rx_rpl_iq = htons(V_FW_FILTER_WR_RX_RPL_IQ(qid));
3909 }
3910 
3911 #define INIT_CMD(var, cmd, rd_wr) do { \
3912 	(var).op_to_write = htonl(V_FW_CMD_OP(FW_##cmd##_CMD) | \
3913 				  F_FW_CMD_REQUEST | F_FW_CMD_##rd_wr); \
3914 	(var).retval_len16 = htonl(FW_LEN16(var)); \
3915 } while (0)
3916 
3917 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, u32 addr, u32 val)
3918 {
3919 	struct fw_ldst_cmd c;
3920 
3921 	memset(&c, 0, sizeof(c));
3922 	c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
3923 		F_FW_CMD_WRITE | V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE));
3924 	c.cycles_to_len16 = htonl(FW_LEN16(c));
3925 	c.u.addrval.addr = htonl(addr);
3926 	c.u.addrval.val = htonl(val);
3927 
3928 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3929 }
3930 
3931 /**
3932  *	t4_i2c_rd - read a byte from an i2c addressable device
3933  *	@adap: the adapter
3934  *	@mbox: mailbox to use for the FW command
3935  *	@port_id: the port id
3936  *	@dev_addr: the i2c device address
3937  *	@offset: the byte offset to read from
3938  *	@valp: where to store the value
3939  */
3940 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, unsigned int port_id,
3941 	       u8 dev_addr, u8 offset, u8 *valp)
3942 {
3943 	int ret;
3944 	struct fw_ldst_cmd c;
3945 
3946 	memset(&c, 0, sizeof(c));
3947 	c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
3948 		F_FW_CMD_READ |
3949 		V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_I2C));
3950 	c.cycles_to_len16 = htonl(FW_LEN16(c));
3951 	c.u.i2c_deprecated.pid_pkd = V_FW_LDST_CMD_PID(port_id);
3952 	c.u.i2c_deprecated.base = dev_addr;
3953 	c.u.i2c_deprecated.boffset = offset;
3954 
3955 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3956 	if (ret == 0)
3957 		*valp = c.u.i2c_deprecated.data;
3958 	return ret;
3959 }
3960 
3961 /**
3962  *	t4_mdio_rd - read a PHY register through MDIO
3963  *	@adap: the adapter
3964  *	@mbox: mailbox to use for the FW command
3965  *	@phy_addr: the PHY address
3966  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
3967  *	@reg: the register to read
3968  *	@valp: where to store the value
3969  *
3970  *	Issues a FW command through the given mailbox to read a PHY register.
3971  */
3972 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
3973 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
3974 {
3975 	int ret;
3976 	struct fw_ldst_cmd c;
3977 
3978 	memset(&c, 0, sizeof(c));
3979 	c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
3980 		F_FW_CMD_READ | V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
3981 	c.cycles_to_len16 = htonl(FW_LEN16(c));
3982 	c.u.mdio.paddr_mmd = htons(V_FW_LDST_CMD_PADDR(phy_addr) |
3983 				   V_FW_LDST_CMD_MMD(mmd));
3984 	c.u.mdio.raddr = htons(reg);
3985 
3986 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
3987 	if (ret == 0)
3988 		*valp = ntohs(c.u.mdio.rval);
3989 	return ret;
3990 }
3991 
3992 /**
3993  *	t4_mdio_wr - write a PHY register through MDIO
3994  *	@adap: the adapter
3995  *	@mbox: mailbox to use for the FW command
3996  *	@phy_addr: the PHY address
3997  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
3998  *	@reg: the register to write
3999  *	@valp: value to write
4000  *
4001  *	Issues a FW command through the given mailbox to write a PHY register.
4002  */
4003 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
4004 	       unsigned int mmd, unsigned int reg, unsigned int val)
4005 {
4006 	struct fw_ldst_cmd c;
4007 
4008 	memset(&c, 0, sizeof(c));
4009 	c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
4010 		F_FW_CMD_WRITE | V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO));
4011 	c.cycles_to_len16 = htonl(FW_LEN16(c));
4012 	c.u.mdio.paddr_mmd = htons(V_FW_LDST_CMD_PADDR(phy_addr) |
4013 				   V_FW_LDST_CMD_MMD(mmd));
4014 	c.u.mdio.raddr = htons(reg);
4015 	c.u.mdio.rval = htons(val);
4016 
4017 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4018 }
4019 
4020 /**
4021  *	t4_sge_ctxt_flush - flush the SGE context cache
4022  *	@adap: the adapter
4023  *	@mbox: mailbox to use for the FW command
4024  *
4025  *	Issues a FW command through the given mailbox to flush the
4026  *	SGE context cache.
4027  */
4028 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
4029 {
4030 	int ret;
4031 	struct fw_ldst_cmd c;
4032 
4033 	memset(&c, 0, sizeof(c));
4034 	c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
4035 			F_FW_CMD_READ |
4036 			V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC));
4037 	c.cycles_to_len16 = htonl(FW_LEN16(c));
4038 	c.u.idctxt.msg_ctxtflush = htonl(F_FW_LDST_CMD_CTXTFLUSH);
4039 
4040 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4041 	return ret;
4042 }
4043 
4044 /**
4045  *	t4_sge_ctxt_rd - read an SGE context through FW
4046  *	@adap: the adapter
4047  *	@mbox: mailbox to use for the FW command
4048  *	@cid: the context id
4049  *	@ctype: the context type
4050  *	@data: where to store the context data
4051  *
4052  *	Issues a FW command through the given mailbox to read an SGE context.
4053  */
4054 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
4055 		   enum ctxt_type ctype, u32 *data)
4056 {
4057 	int ret;
4058 	struct fw_ldst_cmd c;
4059 
4060 	if (ctype == CTXT_EGRESS)
4061 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
4062 	else if (ctype == CTXT_INGRESS)
4063 		ret = FW_LDST_ADDRSPC_SGE_INGC;
4064 	else if (ctype == CTXT_FLM)
4065 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
4066 	else
4067 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
4068 
4069 	memset(&c, 0, sizeof(c));
4070 	c.op_to_addrspace = htonl(V_FW_CMD_OP(FW_LDST_CMD) | F_FW_CMD_REQUEST |
4071 				  F_FW_CMD_READ | V_FW_LDST_CMD_ADDRSPACE(ret));
4072 	c.cycles_to_len16 = htonl(FW_LEN16(c));
4073 	c.u.idctxt.physid = htonl(cid);
4074 
4075 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4076 	if (ret == 0) {
4077 		data[0] = ntohl(c.u.idctxt.ctxt_data0);
4078 		data[1] = ntohl(c.u.idctxt.ctxt_data1);
4079 		data[2] = ntohl(c.u.idctxt.ctxt_data2);
4080 		data[3] = ntohl(c.u.idctxt.ctxt_data3);
4081 		data[4] = ntohl(c.u.idctxt.ctxt_data4);
4082 		data[5] = ntohl(c.u.idctxt.ctxt_data5);
4083 	}
4084 	return ret;
4085 }
4086 
4087 /**
4088  *	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
4089  *	@adap: the adapter
4090  *	@cid: the context id
4091  *	@ctype: the context type
4092  *	@data: where to store the context data
4093  *
4094  *	Reads an SGE context directly, bypassing FW.  This is only for
4095  *	debugging when FW is unavailable.
4096  */
4097 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
4098 		      u32 *data)
4099 {
4100 	int i, ret;
4101 
4102 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
4103 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
4104 	if (!ret)
4105 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
4106 			*data++ = t4_read_reg(adap, i);
4107 	return ret;
4108 }
4109 
4110 /**
4111  *	t4_fw_hello - establish communication with FW
4112  *	@adap: the adapter
4113  *	@mbox: mailbox to use for the FW command
4114  *	@evt_mbox: mailbox to receive async FW events
4115  *	@master: specifies the caller's willingness to be the device master
4116  *	@state: returns the current device state (if non-NULL)
4117  *
4118  *	Issues a command to establish communication with FW.  Returns either
4119  *	an error (negative integer) or the mailbox of the Master PF.
4120  */
4121 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
4122 		enum dev_master master, enum dev_state *state)
4123 {
4124 	int ret;
4125 	struct fw_hello_cmd c;
4126 	u32 v;
4127 	unsigned int master_mbox;
4128 	int retries = FW_CMD_HELLO_RETRIES;
4129 
4130 retry:
4131 	memset(&c, 0, sizeof(c));
4132 	INIT_CMD(c, HELLO, WRITE);
4133 	c.err_to_clearinit = htonl(
4134 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
4135 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
4136 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? mbox :
4137 			M_FW_HELLO_CMD_MBMASTER) |
4138 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
4139 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
4140 		F_FW_HELLO_CMD_CLEARINIT);
4141 
4142 	/*
4143 	 * Issue the HELLO command to the firmware.  If it's not successful
4144 	 * but indicates that we got a "busy" or "timeout" condition, retry
4145 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
4146 	 * retry limit, check to see if the firmware left us any error
4147 	 * information and report that if so ...
4148 	 */
4149 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4150 	if (ret != FW_SUCCESS) {
4151 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
4152 			goto retry;
4153 		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
4154 			t4_report_fw_error(adap);
4155 		return ret;
4156 	}
4157 
4158 	v = ntohl(c.err_to_clearinit);
4159 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
4160 	if (state) {
4161 		if (v & F_FW_HELLO_CMD_ERR)
4162 			*state = DEV_STATE_ERR;
4163 		else if (v & F_FW_HELLO_CMD_INIT)
4164 			*state = DEV_STATE_INIT;
4165 		else
4166 			*state = DEV_STATE_UNINIT;
4167 	}
4168 
4169 	/*
4170 	 * If we're not the Master PF then we need to wait around for the
4171 	 * Master PF Driver to finish setting up the adapter.
4172 	 *
4173 	 * Note that we also do this wait if we're a non-Master-capable PF and
4174 	 * there is no current Master PF; a Master PF may show up momentarily
4175 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
4176 	 * OS loads lots of different drivers rapidly at the same time).  In
4177 	 * this case, the Master PF returned by the firmware will be
4178 	 * M_PCIE_FW_MASTER so the test below will work ...
4179 	 */
4180 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
4181 	    master_mbox != mbox) {
4182 		int waiting = FW_CMD_HELLO_TIMEOUT;
4183 
4184 		/*
4185 		 * Wait for the firmware to either indicate an error or
4186 		 * initialized state.  If we see either of these we bail out
4187 		 * and report the issue to the caller.  If we exhaust the
4188 		 * "hello timeout" and we haven't exhausted our retries, try
4189 		 * again.  Otherwise bail with a timeout error.
4190 		 */
4191 		for (;;) {
4192 			u32 pcie_fw;
4193 
4194 			msleep(50);
4195 			waiting -= 50;
4196 
4197 			/*
4198 			 * If neither Error nor Initialialized are indicated
4199 			 * by the firmware keep waiting till we exhaust our
4200 			 * timeout ... and then retry if we haven't exhausted
4201 			 * our retries ...
4202 			 */
4203 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
4204 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
4205 				if (waiting <= 0) {
4206 					if (retries-- > 0)
4207 						goto retry;
4208 
4209 					return -ETIMEDOUT;
4210 				}
4211 				continue;
4212 			}
4213 
4214 			/*
4215 			 * We either have an Error or Initialized condition
4216 			 * report errors preferentially.
4217 			 */
4218 			if (state) {
4219 				if (pcie_fw & F_PCIE_FW_ERR)
4220 					*state = DEV_STATE_ERR;
4221 				else if (pcie_fw & F_PCIE_FW_INIT)
4222 					*state = DEV_STATE_INIT;
4223 			}
4224 
4225 			/*
4226 			 * If we arrived before a Master PF was selected and
4227 			 * there's not a valid Master PF, grab its identity
4228 			 * for our caller.
4229 			 */
4230 			if (master_mbox == M_PCIE_FW_MASTER &&
4231 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
4232 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
4233 			break;
4234 		}
4235 	}
4236 
4237 	return master_mbox;
4238 }
4239 
4240 /**
4241  *	t4_fw_bye - end communication with FW
4242  *	@adap: the adapter
4243  *	@mbox: mailbox to use for the FW command
4244  *
4245  *	Issues a command to terminate communication with FW.
4246  */
4247 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
4248 {
4249 	struct fw_bye_cmd c;
4250 
4251 	memset(&c, 0, sizeof(c));
4252 	INIT_CMD(c, BYE, WRITE);
4253 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4254 }
4255 
4256 /**
4257  *	t4_fw_reset - issue a reset to FW
4258  *	@adap: the adapter
4259  *	@mbox: mailbox to use for the FW command
4260  *	@reset: specifies the type of reset to perform
4261  *
4262  *	Issues a reset command of the specified type to FW.
4263  */
4264 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
4265 {
4266 	struct fw_reset_cmd c;
4267 
4268 	memset(&c, 0, sizeof(c));
4269 	INIT_CMD(c, RESET, WRITE);
4270 	c.val = htonl(reset);
4271 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4272 }
4273 
4274 /**
4275  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
4276  *	@adap: the adapter
4277  *	@mbox: mailbox to use for the FW RESET command (if desired)
4278  *	@force: force uP into RESET even if FW RESET command fails
4279  *
4280  *	Issues a RESET command to firmware (if desired) with a HALT indication
4281  *	and then puts the microprocessor into RESET state.  The RESET command
4282  *	will only be issued if a legitimate mailbox is provided (mbox <=
4283  *	M_PCIE_FW_MASTER).
4284  *
4285  *	This is generally used in order for the host to safely manipulate the
4286  *	adapter without fear of conflicting with whatever the firmware might
4287  *	be doing.  The only way out of this state is to RESTART the firmware
4288  *	...
4289  */
4290 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
4291 {
4292 	int ret = 0;
4293 
4294 	/*
4295 	 * If a legitimate mailbox is provided, issue a RESET command
4296 	 * with a HALT indication.
4297 	 */
4298 	if (mbox <= M_PCIE_FW_MASTER) {
4299 		struct fw_reset_cmd c;
4300 
4301 		memset(&c, 0, sizeof(c));
4302 		INIT_CMD(c, RESET, WRITE);
4303 		c.val = htonl(F_PIORST | F_PIORSTMODE);
4304 		c.halt_pkd = htonl(F_FW_RESET_CMD_HALT);
4305 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4306 	}
4307 
4308 	/*
4309 	 * Normally we won't complete the operation if the firmware RESET
4310 	 * command fails but if our caller insists we'll go ahead and put the
4311 	 * uP into RESET.  This can be useful if the firmware is hung or even
4312 	 * missing ...  We'll have to take the risk of putting the uP into
4313 	 * RESET without the cooperation of firmware in that case.
4314 	 *
4315 	 * We also force the firmware's HALT flag to be on in case we bypassed
4316 	 * the firmware RESET command above or we're dealing with old firmware
4317 	 * which doesn't have the HALT capability.  This will serve as a flag
4318 	 * for the incoming firmware to know that it's coming out of a HALT
4319 	 * rather than a RESET ... if it's new enough to understand that ...
4320 	 */
4321 	if (ret == 0 || force) {
4322 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
4323 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, F_PCIE_FW_HALT);
4324 	}
4325 
4326 	/*
4327 	 * And we always return the result of the firmware RESET command
4328 	 * even when we force the uP into RESET ...
4329 	 */
4330 	return ret;
4331 }
4332 
4333 /**
4334  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
4335  *	@adap: the adapter
4336  *	@reset: if we want to do a RESET to restart things
4337  *
4338  *	Restart firmware previously halted by t4_fw_halt().  On successful
4339  *	return the previous PF Master remains as the new PF Master and there
4340  *	is no need to issue a new HELLO command, etc.
4341  *
4342  *	We do this in two ways:
4343  *
4344  *	 1. If we're dealing with newer firmware we'll simply want to take
4345  *	    the chip's microprocessor out of RESET.  This will cause the
4346  *	    firmware to start up from its start vector.  And then we'll loop
4347  *	    until the firmware indicates it's started again (PCIE_FW.HALT
4348  *	    reset to 0) or we timeout.
4349  *
4350  *	 2. If we're dealing with older firmware then we'll need to RESET
4351  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
4352  *	    flag and automatically RESET itself on startup.
4353  */
4354 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
4355 {
4356 	if (reset) {
4357 		/*
4358 		 * Since we're directing the RESET instead of the firmware
4359 		 * doing it automatically, we need to clear the PCIE_FW.HALT
4360 		 * bit.
4361 		 */
4362 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
4363 
4364 		/*
4365 		 * If we've been given a valid mailbox, first try to get the
4366 		 * firmware to do the RESET.  If that works, great and we can
4367 		 * return success.  Otherwise, if we haven't been given a
4368 		 * valid mailbox or the RESET command failed, fall back to
4369 		 * hitting the chip with a hammer.
4370 		 */
4371 		if (mbox <= M_PCIE_FW_MASTER) {
4372 			t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
4373 			msleep(100);
4374 			if (t4_fw_reset(adap, mbox,
4375 					F_PIORST | F_PIORSTMODE) == 0)
4376 				return 0;
4377 		}
4378 
4379 		t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
4380 		msleep(2000);
4381 	} else {
4382 		int ms;
4383 
4384 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
4385 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
4386 			if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
4387 				return FW_SUCCESS;
4388 			msleep(100);
4389 			ms += 100;
4390 		}
4391 		return -ETIMEDOUT;
4392 	}
4393 	return 0;
4394 }
4395 
4396 /**
4397  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
4398  *	@adap: the adapter
4399  *	@mbox: mailbox to use for the FW RESET command (if desired)
4400  *	@fw_data: the firmware image to write
4401  *	@size: image size
4402  *	@force: force upgrade even if firmware doesn't cooperate
4403  *
4404  *	Perform all of the steps necessary for upgrading an adapter's
4405  *	firmware image.  Normally this requires the cooperation of the
4406  *	existing firmware in order to halt all existing activities
4407  *	but if an invalid mailbox token is passed in we skip that step
4408  *	(though we'll still put the adapter microprocessor into RESET in
4409  *	that case).
4410  *
4411  *	On successful return the new firmware will have been loaded and
4412  *	the adapter will have been fully RESET losing all previous setup
4413  *	state.  On unsuccessful return the adapter may be completely hosed ...
4414  *	positive errno indicates that the adapter is ~probably~ intact, a
4415  *	negative errno indicates that things are looking bad ...
4416  */
4417 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
4418 		  const u8 *fw_data, unsigned int size, int force)
4419 {
4420 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
4421 	int reset, ret;
4422 
4423 	ret = t4_fw_halt(adap, mbox, force);
4424 	if (ret < 0 && !force)
4425 		return ret;
4426 
4427 	ret = t4_load_fw(adap, fw_data, size);
4428 	if (ret < 0)
4429 		return ret;
4430 
4431 	/*
4432 	 * Older versions of the firmware don't understand the new
4433 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
4434 	 * restart.  So for newly loaded older firmware we'll have to do the
4435 	 * RESET for it so it starts up on a clean slate.  We can tell if
4436 	 * the newly loaded firmware will handle this right by checking
4437 	 * its header flags to see if it advertises the capability.
4438 	 */
4439 	reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
4440 	return t4_fw_restart(adap, mbox, reset);
4441 }
4442 
4443 /**
4444  *	t4_fw_initialize - ask FW to initialize the device
4445  *	@adap: the adapter
4446  *	@mbox: mailbox to use for the FW command
4447  *
4448  *	Issues a command to FW to partially initialize the device.  This
4449  *	performs initialization that generally doesn't depend on user input.
4450  */
4451 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
4452 {
4453 	struct fw_initialize_cmd c;
4454 
4455 	memset(&c, 0, sizeof(c));
4456 	INIT_CMD(c, INITIALIZE, WRITE);
4457 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4458 }
4459 
4460 /**
4461  *	t4_query_params - query FW or device parameters
4462  *	@adap: the adapter
4463  *	@mbox: mailbox to use for the FW command
4464  *	@pf: the PF
4465  *	@vf: the VF
4466  *	@nparams: the number of parameters
4467  *	@params: the parameter names
4468  *	@val: the parameter values
4469  *
4470  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
4471  *	queried at once.
4472  */
4473 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
4474 		    unsigned int vf, unsigned int nparams, const u32 *params,
4475 		    u32 *val)
4476 {
4477 	int i, ret;
4478 	struct fw_params_cmd c;
4479 	__be32 *p = &c.param[0].mnem;
4480 
4481 	if (nparams > 7)
4482 		return -EINVAL;
4483 
4484 	memset(&c, 0, sizeof(c));
4485 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_PARAMS_CMD) | F_FW_CMD_REQUEST |
4486 			    F_FW_CMD_READ | V_FW_PARAMS_CMD_PFN(pf) |
4487 			    V_FW_PARAMS_CMD_VFN(vf));
4488 	c.retval_len16 = htonl(FW_LEN16(c));
4489 
4490 	for (i = 0; i < nparams; i++, p += 2)
4491 		*p = htonl(*params++);
4492 
4493 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4494 	if (ret == 0)
4495 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
4496 			*val++ = ntohl(*p);
4497 	return ret;
4498 }
4499 
4500 /**
4501  *	t4_set_params - sets FW or device parameters
4502  *	@adap: the adapter
4503  *	@mbox: mailbox to use for the FW command
4504  *	@pf: the PF
4505  *	@vf: the VF
4506  *	@nparams: the number of parameters
4507  *	@params: the parameter names
4508  *	@val: the parameter values
4509  *
4510  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
4511  *	specified at once.
4512  */
4513 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
4514 		  unsigned int vf, unsigned int nparams, const u32 *params,
4515 		  const u32 *val)
4516 {
4517 	struct fw_params_cmd c;
4518 	__be32 *p = &c.param[0].mnem;
4519 
4520 	if (nparams > 7)
4521 		return -EINVAL;
4522 
4523 	memset(&c, 0, sizeof(c));
4524 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_PARAMS_CMD) | F_FW_CMD_REQUEST |
4525 			    F_FW_CMD_WRITE | V_FW_PARAMS_CMD_PFN(pf) |
4526 			    V_FW_PARAMS_CMD_VFN(vf));
4527 	c.retval_len16 = htonl(FW_LEN16(c));
4528 
4529 	while (nparams--) {
4530 		*p++ = htonl(*params++);
4531 		*p++ = htonl(*val++);
4532 	}
4533 
4534 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4535 }
4536 
4537 /**
4538  *	t4_cfg_pfvf - configure PF/VF resource limits
4539  *	@adap: the adapter
4540  *	@mbox: mailbox to use for the FW command
4541  *	@pf: the PF being configured
4542  *	@vf: the VF being configured
4543  *	@txq: the max number of egress queues
4544  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
4545  *	@rxqi: the max number of interrupt-capable ingress queues
4546  *	@rxq: the max number of interruptless ingress queues
4547  *	@tc: the PCI traffic class
4548  *	@vi: the max number of virtual interfaces
4549  *	@cmask: the channel access rights mask for the PF/VF
4550  *	@pmask: the port access rights mask for the PF/VF
4551  *	@nexact: the maximum number of exact MPS filters
4552  *	@rcaps: read capabilities
4553  *	@wxcaps: write/execute capabilities
4554  *
4555  *	Configures resource limits and capabilities for a physical or virtual
4556  *	function.
4557  */
4558 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
4559 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
4560 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
4561 		unsigned int vi, unsigned int cmask, unsigned int pmask,
4562 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
4563 {
4564 	struct fw_pfvf_cmd c;
4565 
4566 	memset(&c, 0, sizeof(c));
4567 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
4568 			    F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
4569 			    V_FW_PFVF_CMD_VFN(vf));
4570 	c.retval_len16 = htonl(FW_LEN16(c));
4571 	c.niqflint_niq = htonl(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
4572 			       V_FW_PFVF_CMD_NIQ(rxq));
4573 	c.type_to_neq = htonl(V_FW_PFVF_CMD_CMASK(cmask) |
4574 			      V_FW_PFVF_CMD_PMASK(pmask) |
4575 			      V_FW_PFVF_CMD_NEQ(txq));
4576 	c.tc_to_nexactf = htonl(V_FW_PFVF_CMD_TC(tc) | V_FW_PFVF_CMD_NVI(vi) |
4577 				V_FW_PFVF_CMD_NEXACTF(nexact));
4578 	c.r_caps_to_nethctrl = htonl(V_FW_PFVF_CMD_R_CAPS(rcaps) |
4579 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
4580 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
4581 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4582 }
4583 
4584 /**
4585  *	t4_alloc_vi_func - allocate a virtual interface
4586  *	@adap: the adapter
4587  *	@mbox: mailbox to use for the FW command
4588  *	@port: physical port associated with the VI
4589  *	@pf: the PF owning the VI
4590  *	@vf: the VF owning the VI
4591  *	@nmac: number of MAC addresses needed (1 to 5)
4592  *	@mac: the MAC addresses of the VI
4593  *	@rss_size: size of RSS table slice associated with this VI
4594  *	@portfunc: which Port Application Function MAC Address is desired
4595  *	@idstype: Intrusion Detection Type
4596  *
4597  *	Allocates a virtual interface for the given physical port.  If @mac is
4598  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
4599  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
4600  *	stored consecutively so the space needed is @nmac * 6 bytes.
4601  *	Returns a negative error number or the non-negative VI id.
4602  */
4603 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
4604 		     unsigned int port, unsigned int pf, unsigned int vf,
4605 		     unsigned int nmac, u8 *mac, unsigned int *rss_size,
4606 		     unsigned int portfunc, unsigned int idstype)
4607 {
4608 	int ret;
4609 	struct fw_vi_cmd c;
4610 
4611 	memset(&c, 0, sizeof(c));
4612 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
4613 			    F_FW_CMD_WRITE | F_FW_CMD_EXEC |
4614 			    V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
4615 	c.alloc_to_len16 = htonl(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
4616 	c.type_to_viid = htons(V_FW_VI_CMD_TYPE(idstype) |
4617 			       V_FW_VI_CMD_FUNC(portfunc));
4618 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
4619 	c.nmac = nmac - 1;
4620 
4621 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4622 	if (ret)
4623 		return ret;
4624 
4625 	if (mac) {
4626 		memcpy(mac, c.mac, sizeof(c.mac));
4627 		switch (nmac) {
4628 		case 5:
4629 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
4630 		case 4:
4631 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
4632 		case 3:
4633 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
4634 		case 2:
4635 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
4636 		}
4637 	}
4638 	if (rss_size)
4639 		*rss_size = G_FW_VI_CMD_RSSSIZE(ntohs(c.norss_rsssize));
4640 	return G_FW_VI_CMD_VIID(htons(c.type_to_viid));
4641 }
4642 
4643 /**
4644  *	t4_alloc_vi - allocate an [Ethernet Function] virtual interface
4645  *	@adap: the adapter
4646  *	@mbox: mailbox to use for the FW command
4647  *	@port: physical port associated with the VI
4648  *	@pf: the PF owning the VI
4649  *	@vf: the VF owning the VI
4650  *	@nmac: number of MAC addresses needed (1 to 5)
4651  *	@mac: the MAC addresses of the VI
4652  *	@rss_size: size of RSS table slice associated with this VI
4653  *
4654  *	backwards compatible and convieniance routine to allocate a Virtual
4655  *	Interface with a Ethernet Port Application Function and Intrustion
4656  *	Detection System disabled.
4657  */
4658 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
4659 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
4660 		unsigned int *rss_size)
4661 {
4662 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
4663 				FW_VI_FUNC_ETH, 0);
4664 }
4665 
4666 /**
4667  *	t4_free_vi - free a virtual interface
4668  *	@adap: the adapter
4669  *	@mbox: mailbox to use for the FW command
4670  *	@pf: the PF owning the VI
4671  *	@vf: the VF owning the VI
4672  *	@viid: virtual interface identifiler
4673  *
4674  *	Free a previously allocated virtual interface.
4675  */
4676 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
4677 	       unsigned int vf, unsigned int viid)
4678 {
4679 	struct fw_vi_cmd c;
4680 
4681 	memset(&c, 0, sizeof(c));
4682 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_VI_CMD) |
4683 			    F_FW_CMD_REQUEST |
4684 			    F_FW_CMD_EXEC |
4685 			    V_FW_VI_CMD_PFN(pf) |
4686 			    V_FW_VI_CMD_VFN(vf));
4687 	c.alloc_to_len16 = htonl(F_FW_VI_CMD_FREE | FW_LEN16(c));
4688 	c.type_to_viid = htons(V_FW_VI_CMD_VIID(viid));
4689 
4690 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
4691 }
4692 
4693 /**
4694  *	t4_set_rxmode - set Rx properties of a virtual interface
4695  *	@adap: the adapter
4696  *	@mbox: mailbox to use for the FW command
4697  *	@viid: the VI id
4698  *	@mtu: the new MTU or -1
4699  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
4700  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
4701  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
4702  *	@vlanex: 1 to enable HVLAN extraction, 0 to disable it, -1 no change
4703  *	@sleep_ok: if true we may sleep while awaiting command completion
4704  *
4705  *	Sets Rx properties of a virtual interface.
4706  */
4707 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
4708 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
4709 		  bool sleep_ok)
4710 {
4711 	struct fw_vi_rxmode_cmd c;
4712 
4713 	/* convert to FW values */
4714 	if (mtu < 0)
4715 		mtu = M_FW_VI_RXMODE_CMD_MTU;
4716 	if (promisc < 0)
4717 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
4718 	if (all_multi < 0)
4719 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
4720 	if (bcast < 0)
4721 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
4722 	if (vlanex < 0)
4723 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
4724 
4725 	memset(&c, 0, sizeof(c));
4726 	c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_RXMODE_CMD) | F_FW_CMD_REQUEST |
4727 			     F_FW_CMD_WRITE | V_FW_VI_RXMODE_CMD_VIID(viid));
4728 	c.retval_len16 = htonl(FW_LEN16(c));
4729 	c.mtu_to_vlanexen = htonl(V_FW_VI_RXMODE_CMD_MTU(mtu) |
4730 				  V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
4731 				  V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
4732 				  V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
4733 				  V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
4734 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
4735 }
4736 
4737 /**
4738  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
4739  *	@adap: the adapter
4740  *	@mbox: mailbox to use for the FW command
4741  *	@viid: the VI id
4742  *	@free: if true any existing filters for this VI id are first removed
4743  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
4744  *	@addr: the MAC address(es)
4745  *	@idx: where to store the index of each allocated filter
4746  *	@hash: pointer to hash address filter bitmap
4747  *	@sleep_ok: call is allowed to sleep
4748  *
4749  *	Allocates an exact-match filter for each of the supplied addresses and
4750  *	sets it to the corresponding address.  If @idx is not %NULL it should
4751  *	have at least @naddr entries, each of which will be set to the index of
4752  *	the filter allocated for the corresponding MAC address.  If a filter
4753  *	could not be allocated for an address its index is set to 0xffff.
4754  *	If @hash is not %NULL addresses that fail to allocate an exact filter
4755  *	are hashed and update the hash filter bitmap pointed at by @hash.
4756  *
4757  *	Returns a negative error number or the number of filters allocated.
4758  */
4759 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
4760 		      unsigned int viid, bool free, unsigned int naddr,
4761 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
4762 {
4763 	int offset, ret = 0;
4764 	struct fw_vi_mac_cmd c;
4765 	unsigned int nfilters = 0;
4766 	unsigned int rem = naddr;
4767 
4768 	if (naddr > NUM_MPS_CLS_SRAM_L_INSTANCES)
4769 		return -EINVAL;
4770 
4771 	for (offset = 0; offset < naddr ; /**/) {
4772 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
4773 					 ? rem
4774 					 : ARRAY_SIZE(c.u.exact));
4775 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
4776 						     u.exact[fw_naddr]), 16);
4777 		struct fw_vi_mac_exact *p;
4778 		int i;
4779 
4780 		memset(&c, 0, sizeof(c));
4781 		c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_MAC_CMD) |
4782 				     F_FW_CMD_REQUEST |
4783 				     F_FW_CMD_WRITE |
4784 				     V_FW_CMD_EXEC(free) |
4785 				     V_FW_VI_MAC_CMD_VIID(viid));
4786 		c.freemacs_to_len16 = htonl(V_FW_VI_MAC_CMD_FREEMACS(free) |
4787 					    V_FW_CMD_LEN16(len16));
4788 
4789 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
4790 			p->valid_to_idx = htons(
4791 				F_FW_VI_MAC_CMD_VALID |
4792 				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
4793 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
4794 		}
4795 
4796 		/*
4797 		 * It's okay if we run out of space in our MAC address arena.
4798 		 * Some of the addresses we submit may get stored so we need
4799 		 * to run through the reply to see what the results were ...
4800 		 */
4801 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
4802 		if (ret && ret != -FW_ENOMEM)
4803 			break;
4804 
4805 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
4806 			u16 index = G_FW_VI_MAC_CMD_IDX(ntohs(p->valid_to_idx));
4807 
4808 			if (idx)
4809 				idx[offset+i] = (index >= NUM_MPS_CLS_SRAM_L_INSTANCES
4810 						 ? 0xffff
4811 						 : index);
4812 			if (index < NUM_MPS_CLS_SRAM_L_INSTANCES)
4813 				nfilters++;
4814 			else if (hash)
4815 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
4816 		}
4817 
4818 		free = false;
4819 		offset += fw_naddr;
4820 		rem -= fw_naddr;
4821 	}
4822 
4823 	if (ret == 0 || ret == -FW_ENOMEM)
4824 		ret = nfilters;
4825 	return ret;
4826 }
4827 
4828 /**
4829  *	t4_change_mac - modifies the exact-match filter for a MAC address
4830  *	@adap: the adapter
4831  *	@mbox: mailbox to use for the FW command
4832  *	@viid: the VI id
4833  *	@idx: index of existing filter for old value of MAC address, or -1
4834  *	@addr: the new MAC address value
4835  *	@persist: whether a new MAC allocation should be persistent
4836  *	@add_smt: if true also add the address to the HW SMT
4837  *
4838  *	Modifies an exact-match filter and sets it to the new MAC address if
4839  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
4840  *	latter case the address is added persistently if @persist is %true.
4841  *
4842  *	Note that in general it is not possible to modify the value of a given
4843  *	filter so the generic way to modify an address filter is to free the one
4844  *	being used by the old address value and allocate a new filter for the
4845  *	new address value.
4846  *
4847  *	Returns a negative error number or the index of the filter with the new
4848  *	MAC value.  Note that this index may differ from @idx.
4849  */
4850 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
4851 		  int idx, const u8 *addr, bool persist, bool add_smt)
4852 {
4853 	int ret, mode;
4854 	struct fw_vi_mac_cmd c;
4855 	struct fw_vi_mac_exact *p = c.u.exact;
4856 
4857 	if (idx < 0)                             /* new allocation */
4858 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
4859 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
4860 
4861 	memset(&c, 0, sizeof(c));
4862 	c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_MAC_CMD) | F_FW_CMD_REQUEST |
4863 			     F_FW_CMD_WRITE | V_FW_VI_MAC_CMD_VIID(viid));
4864 	c.freemacs_to_len16 = htonl(V_FW_CMD_LEN16(1));
4865 	p->valid_to_idx = htons(F_FW_VI_MAC_CMD_VALID |
4866 				V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
4867 				V_FW_VI_MAC_CMD_IDX(idx));
4868 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
4869 
4870 	ret = t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), &c);
4871 	if (ret == 0) {
4872 		ret = G_FW_VI_MAC_CMD_IDX(ntohs(p->valid_to_idx));
4873 		if (ret >= NUM_MPS_CLS_SRAM_L_INSTANCES)
4874 			ret = -ENOMEM;
4875 	}
4876 	return ret;
4877 }
4878 
4879 /**
4880  *	t4_set_addr_hash - program the MAC inexact-match hash filter
4881  *	@adap: the adapter
4882  *	@mbox: mailbox to use for the FW command
4883  *	@viid: the VI id
4884  *	@ucast: whether the hash filter should also match unicast addresses
4885  *	@vec: the value to be written to the hash filter
4886  *	@sleep_ok: call is allowed to sleep
4887  *
4888  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
4889  */
4890 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
4891 		     bool ucast, u64 vec, bool sleep_ok)
4892 {
4893 	struct fw_vi_mac_cmd c;
4894 
4895 	memset(&c, 0, sizeof(c));
4896 	c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_MAC_CMD) | F_FW_CMD_REQUEST |
4897 			     F_FW_CMD_WRITE | V_FW_VI_ENABLE_CMD_VIID(viid));
4898 	c.freemacs_to_len16 = htonl(F_FW_VI_MAC_CMD_HASHVECEN |
4899 				    V_FW_VI_MAC_CMD_HASHUNIEN(ucast) |
4900 				    V_FW_CMD_LEN16(1));
4901 	c.u.hash.hashvec = cpu_to_be64(vec);
4902 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
4903 }
4904 
4905 /**
4906  *	t4_enable_vi - enable/disable a virtual interface
4907  *	@adap: the adapter
4908  *	@mbox: mailbox to use for the FW command
4909  *	@viid: the VI id
4910  *	@rx_en: 1=enable Rx, 0=disable Rx
4911  *	@tx_en: 1=enable Tx, 0=disable Tx
4912  *
4913  *	Enables/disables a virtual interface.
4914  */
4915 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
4916 		 bool rx_en, bool tx_en)
4917 {
4918 	struct fw_vi_enable_cmd c;
4919 
4920 	memset(&c, 0, sizeof(c));
4921 	c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_ENABLE_CMD) | F_FW_CMD_REQUEST |
4922 			     F_FW_CMD_EXEC | V_FW_VI_ENABLE_CMD_VIID(viid));
4923 	c.ien_to_len16 = htonl(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
4924 			       V_FW_VI_ENABLE_CMD_EEN(tx_en) | FW_LEN16(c));
4925 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4926 }
4927 
4928 /**
4929  *	t4_identify_port - identify a VI's port by blinking its LED
4930  *	@adap: the adapter
4931  *	@mbox: mailbox to use for the FW command
4932  *	@viid: the VI id
4933  *	@nblinks: how many times to blink LED at 2.5 Hz
4934  *
4935  *	Identifies a VI's port by blinking its LED.
4936  */
4937 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
4938 		     unsigned int nblinks)
4939 {
4940 	struct fw_vi_enable_cmd c;
4941 
4942 	memset(&c, 0, sizeof(c));
4943 	c.op_to_viid = htonl(V_FW_CMD_OP(FW_VI_ENABLE_CMD) | F_FW_CMD_REQUEST |
4944 			     F_FW_CMD_EXEC | V_FW_VI_ENABLE_CMD_VIID(viid));
4945 	c.ien_to_len16 = htonl(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
4946 	c.blinkdur = htons(nblinks);
4947 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4948 }
4949 
4950 /**
4951  *	t4_iq_start_stop - enable/disable an ingress queue and its FLs
4952  *	@adap: the adapter
4953  *	@mbox: mailbox to use for the FW command
4954  *	@start: %true to enable the queues, %false to disable them
4955  *	@pf: the PF owning the queues
4956  *	@vf: the VF owning the queues
4957  *	@iqid: ingress queue id
4958  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
4959  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
4960  *
4961  *	Starts or stops an ingress queue and its associated FLs, if any.
4962  */
4963 int t4_iq_start_stop(struct adapter *adap, unsigned int mbox, bool start,
4964 		     unsigned int pf, unsigned int vf, unsigned int iqid,
4965 		     unsigned int fl0id, unsigned int fl1id)
4966 {
4967 	struct fw_iq_cmd c;
4968 
4969 	memset(&c, 0, sizeof(c));
4970 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
4971 			    F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
4972 			    V_FW_IQ_CMD_VFN(vf));
4973 	c.alloc_to_len16 = htonl(V_FW_IQ_CMD_IQSTART(start) |
4974 				 V_FW_IQ_CMD_IQSTOP(!start) | FW_LEN16(c));
4975 	c.iqid = htons(iqid);
4976 	c.fl0id = htons(fl0id);
4977 	c.fl1id = htons(fl1id);
4978 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4979 }
4980 
4981 /**
4982  *	t4_iq_free - free an ingress queue and its FLs
4983  *	@adap: the adapter
4984  *	@mbox: mailbox to use for the FW command
4985  *	@pf: the PF owning the queues
4986  *	@vf: the VF owning the queues
4987  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
4988  *	@iqid: ingress queue id
4989  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
4990  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
4991  *
4992  *	Frees an ingress queue and its associated FLs, if any.
4993  */
4994 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
4995 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
4996 	       unsigned int fl0id, unsigned int fl1id)
4997 {
4998 	struct fw_iq_cmd c;
4999 
5000 	memset(&c, 0, sizeof(c));
5001 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
5002 			    F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
5003 			    V_FW_IQ_CMD_VFN(vf));
5004 	c.alloc_to_len16 = htonl(F_FW_IQ_CMD_FREE | FW_LEN16(c));
5005 	c.type_to_iqandstindex = htonl(V_FW_IQ_CMD_TYPE(iqtype));
5006 	c.iqid = htons(iqid);
5007 	c.fl0id = htons(fl0id);
5008 	c.fl1id = htons(fl1id);
5009 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5010 }
5011 
5012 /**
5013  *	t4_eth_eq_free - free an Ethernet egress queue
5014  *	@adap: the adapter
5015  *	@mbox: mailbox to use for the FW command
5016  *	@pf: the PF owning the queue
5017  *	@vf: the VF owning the queue
5018  *	@eqid: egress queue id
5019  *
5020  *	Frees an Ethernet egress queue.
5021  */
5022 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5023 		   unsigned int vf, unsigned int eqid)
5024 {
5025 	struct fw_eq_eth_cmd c;
5026 
5027 	memset(&c, 0, sizeof(c));
5028 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
5029 			    F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(pf) |
5030 			    V_FW_EQ_ETH_CMD_VFN(vf));
5031 	c.alloc_to_len16 = htonl(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
5032 	c.eqid_pkd = htonl(V_FW_EQ_ETH_CMD_EQID(eqid));
5033 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5034 }
5035 
5036 /**
5037  *	t4_ctrl_eq_free - free a control egress queue
5038  *	@adap: the adapter
5039  *	@mbox: mailbox to use for the FW command
5040  *	@pf: the PF owning the queue
5041  *	@vf: the VF owning the queue
5042  *	@eqid: egress queue id
5043  *
5044  *	Frees a control egress queue.
5045  */
5046 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5047 		    unsigned int vf, unsigned int eqid)
5048 {
5049 	struct fw_eq_ctrl_cmd c;
5050 
5051 	memset(&c, 0, sizeof(c));
5052 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
5053 			    F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(pf) |
5054 			    V_FW_EQ_CTRL_CMD_VFN(vf));
5055 	c.alloc_to_len16 = htonl(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
5056 	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_EQID(eqid));
5057 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5058 }
5059 
5060 /**
5061  *	t4_ofld_eq_free - free an offload egress queue
5062  *	@adap: the adapter
5063  *	@mbox: mailbox to use for the FW command
5064  *	@pf: the PF owning the queue
5065  *	@vf: the VF owning the queue
5066  *	@eqid: egress queue id
5067  *
5068  *	Frees a control egress queue.
5069  */
5070 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
5071 		    unsigned int vf, unsigned int eqid)
5072 {
5073 	struct fw_eq_ofld_cmd c;
5074 
5075 	memset(&c, 0, sizeof(c));
5076 	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
5077 			    F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(pf) |
5078 			    V_FW_EQ_OFLD_CMD_VFN(vf));
5079 	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
5080 	c.eqid_pkd = htonl(V_FW_EQ_OFLD_CMD_EQID(eqid));
5081 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5082 }
5083 
5084 /**
5085  *	t4_handle_fw_rpl - process a FW reply message
5086  *	@adap: the adapter
5087  *	@rpl: start of the FW message
5088  *
5089  *	Processes a FW message, such as link state change messages.
5090  */
5091 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
5092 {
5093 	u8 opcode = *(const u8 *)rpl;
5094 	const struct fw_port_cmd *p = (const void *)rpl;
5095 	unsigned int action = G_FW_PORT_CMD_ACTION(ntohl(p->action_to_len16));
5096 
5097 	if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
5098 		/* link/module state change message */
5099 		int speed = 0, fc = 0, i;
5100 		int chan = G_FW_PORT_CMD_PORTID(ntohl(p->op_to_portid));
5101 		struct port_info *pi = NULL;
5102 		struct link_config *lc;
5103 		u32 stat = ntohl(p->u.info.lstatus_to_modtype);
5104 		int link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
5105 		u32 mod = G_FW_PORT_CMD_MODTYPE(stat);
5106 
5107 		if (stat & F_FW_PORT_CMD_RXPAUSE)
5108 			fc |= PAUSE_RX;
5109 		if (stat & F_FW_PORT_CMD_TXPAUSE)
5110 			fc |= PAUSE_TX;
5111 		if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
5112 			speed = SPEED_100;
5113 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
5114 			speed = SPEED_1000;
5115 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
5116 			speed = SPEED_10000;
5117 
5118 		for_each_port(adap, i) {
5119 			pi = adap2pinfo(adap, i);
5120 			if (pi->tx_chan == chan)
5121 				break;
5122 		}
5123 		lc = &pi->link_cfg;
5124 
5125 		if (link_ok != lc->link_ok || speed != lc->speed ||
5126 		    fc != lc->fc) {                    /* something changed */
5127 			lc->link_ok = link_ok;
5128 			lc->speed = speed;
5129 			lc->fc = fc;
5130 			t4_os_link_changed(adap, i, link_ok);
5131 		}
5132 		if (mod != pi->mod_type) {
5133 			pi->mod_type = mod;
5134 			t4_os_portmod_changed(adap, i);
5135 		}
5136 	} else {
5137 		CH_WARN_RATELIMIT(adap,
5138 		    "Unknown firmware reply 0x%x (0x%x)\n", opcode, action);
5139 		return -EINVAL;
5140 	}
5141 	return 0;
5142 }
5143 
5144 /**
5145  *	get_pci_mode - determine a card's PCI mode
5146  *	@adapter: the adapter
5147  *	@p: where to store the PCI settings
5148  *
5149  *	Determines a card's PCI mode and associated parameters, such as speed
5150  *	and width.
5151  */
5152 static void __devinit get_pci_mode(struct adapter *adapter,
5153 				   struct pci_params *p)
5154 {
5155 	u16 val;
5156 	u32 pcie_cap;
5157 
5158 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
5159 	if (pcie_cap) {
5160 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
5161 		p->speed = val & PCI_EXP_LNKSTA_CLS;
5162 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
5163 	}
5164 }
5165 
5166 /**
5167  *	init_link_config - initialize a link's SW state
5168  *	@lc: structure holding the link state
5169  *	@caps: link capabilities
5170  *
5171  *	Initializes the SW state maintained for each link, including the link's
5172  *	capabilities and default speed/flow-control/autonegotiation settings.
5173  */
5174 static void __devinit init_link_config(struct link_config *lc,
5175 				       unsigned int caps)
5176 {
5177 	lc->supported = caps;
5178 	lc->requested_speed = 0;
5179 	lc->speed = 0;
5180 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
5181 	if (lc->supported & FW_PORT_CAP_ANEG) {
5182 		lc->advertising = lc->supported & ADVERT_MASK;
5183 		lc->autoneg = AUTONEG_ENABLE;
5184 		lc->requested_fc |= PAUSE_AUTONEG;
5185 	} else {
5186 		lc->advertising = 0;
5187 		lc->autoneg = AUTONEG_DISABLE;
5188 	}
5189 }
5190 
5191 static int __devinit wait_dev_ready(struct adapter *adap)
5192 {
5193 	u32 whoami;
5194 
5195 	whoami = t4_read_reg(adap, A_PL_WHOAMI);
5196 
5197 	if (whoami != 0xffffffff && whoami != X_CIM_PF_NOACCESS)
5198 		return 0;
5199 
5200 	msleep(500);
5201 	whoami = t4_read_reg(adap, A_PL_WHOAMI);
5202 	return (whoami != 0xffffffff && whoami != X_CIM_PF_NOACCESS
5203 		? 0 : -EIO);
5204 }
5205 
5206 static int __devinit get_flash_params(struct adapter *adapter)
5207 {
5208 	int ret;
5209 	u32 info = 0;
5210 
5211 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
5212 	if (!ret)
5213 		ret = sf1_read(adapter, 3, 0, 1, &info);
5214 	t4_write_reg(adapter, A_SF_OP, 0);               /* unlock SF */
5215 	if (ret < 0)
5216 		return ret;
5217 
5218 	if ((info & 0xff) != 0x20)             /* not a Numonix flash */
5219 		return -EINVAL;
5220 	info >>= 16;                           /* log2 of size */
5221 	if (info >= 0x14 && info < 0x18)
5222 		adapter->params.sf_nsec = 1 << (info - 16);
5223 	else if (info == 0x18)
5224 		adapter->params.sf_nsec = 64;
5225 	else
5226 		return -EINVAL;
5227 	adapter->params.sf_size = 1 << info;
5228 	return 0;
5229 }
5230 
5231 static void __devinit set_pcie_completion_timeout(struct adapter *adapter,
5232 						  u8 range)
5233 {
5234 	u16 val;
5235 	u32 pcie_cap;
5236 
5237 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
5238 	if (pcie_cap) {
5239 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
5240 		val &= 0xfff0;
5241 		val |= range ;
5242 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
5243 	}
5244 }
5245 
5246 /**
5247  *	t4_prep_adapter - prepare SW and HW for operation
5248  *	@adapter: the adapter
5249  *	@reset: if true perform a HW reset
5250  *
5251  *	Initialize adapter SW state for the various HW modules, set initial
5252  *	values for some adapter tunables, take PHYs out of reset, and
5253  *	initialize the MDIO interface.
5254  */
5255 int __devinit t4_prep_adapter(struct adapter *adapter)
5256 {
5257 	int ret;
5258 
5259 	ret = wait_dev_ready(adapter);
5260 	if (ret < 0)
5261 		return ret;
5262 
5263 	get_pci_mode(adapter, &adapter->params.pci);
5264 
5265 	adapter->params.rev = t4_read_reg(adapter, A_PL_REV);
5266 	/* T4A1 chip is no longer supported */
5267 	if (adapter->params.rev == 1) {
5268 		CH_ALERT(adapter, "T4 rev 1 chip is no longer supported\n");
5269 		return -EINVAL;
5270 	}
5271 	adapter->params.pci.vpd_cap_addr =
5272 		t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
5273 
5274 	ret = get_flash_params(adapter);
5275 	if (ret < 0)
5276 		return ret;
5277 
5278 	ret = get_vpd_params(adapter, &adapter->params.vpd);
5279 	if (ret < 0)
5280 		return ret;
5281 
5282 	if (t4_read_reg(adapter, A_PCIE_REVISION) != 0) {
5283 		/* FPGA */
5284 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
5285 	} else {
5286 		/* ASIC */
5287 		adapter->params.cim_la_size = CIMLA_SIZE;
5288 	}
5289 
5290 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
5291 
5292 	/*
5293 	 * Default port and clock for debugging in case we can't reach FW.
5294 	 */
5295 	adapter->params.nports = 1;
5296 	adapter->params.portvec = 1;
5297 	adapter->params.vpd.cclk = 50000;
5298 
5299 	/* Set pci completion timeout value to 4 seconds. */
5300 	set_pcie_completion_timeout(adapter, 0xd);
5301 	return 0;
5302 }
5303 
5304 int __devinit t4_port_init(struct port_info *p, int mbox, int pf, int vf)
5305 {
5306 	u8 addr[6];
5307 	int ret, i, j;
5308 	struct fw_port_cmd c;
5309 	unsigned int rss_size;
5310 	adapter_t *adap = p->adapter;
5311 
5312 	memset(&c, 0, sizeof(c));
5313 
5314 	for (i = 0, j = -1; i <= p->port_id; i++) {
5315 		do {
5316 			j++;
5317 		} while ((adap->params.portvec & (1 << j)) == 0);
5318 	}
5319 
5320 	c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) |
5321 			       F_FW_CMD_REQUEST | F_FW_CMD_READ |
5322 			       V_FW_PORT_CMD_PORTID(j));
5323 	c.action_to_len16 = htonl(
5324 		V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
5325 		FW_LEN16(c));
5326 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5327 	if (ret)
5328 		return ret;
5329 
5330 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
5331 	if (ret < 0)
5332 		return ret;
5333 
5334 	p->viid = ret;
5335 	p->tx_chan = j;
5336 	p->lport = j;
5337 	p->rss_size = rss_size;
5338 	t4_os_set_hw_addr(adap, p->port_id, addr);
5339 
5340 	ret = ntohl(c.u.info.lstatus_to_modtype);
5341 	p->mdio_addr = (ret & F_FW_PORT_CMD_MDIOCAP) ?
5342 		G_FW_PORT_CMD_MDIOADDR(ret) : -1;
5343 	p->port_type = G_FW_PORT_CMD_PTYPE(ret);
5344 	p->mod_type = G_FW_PORT_CMD_MODTYPE(ret);
5345 
5346 	init_link_config(&p->link_cfg, ntohs(c.u.info.pcap));
5347 
5348 	return 0;
5349 }
5350