1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2012, 2016 Chelsio Communications, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_inet.h" 33 34 #include <sys/param.h> 35 #include <sys/eventhandler.h> 36 37 #include "common.h" 38 #include "t4_regs.h" 39 #include "t4_regs_values.h" 40 #include "firmware/t4fw_interface.h" 41 42 #undef msleep 43 #define msleep(x) do { \ 44 if (cold) \ 45 DELAY((x) * 1000); \ 46 else \ 47 pause("t4hw", (x) * hz / 1000); \ 48 } while (0) 49 50 /** 51 * t4_wait_op_done_val - wait until an operation is completed 52 * @adapter: the adapter performing the operation 53 * @reg: the register to check for completion 54 * @mask: a single-bit field within @reg that indicates completion 55 * @polarity: the value of the field when the operation is completed 56 * @attempts: number of check iterations 57 * @delay: delay in usecs between iterations 58 * @valp: where to store the value of the register at completion time 59 * 60 * Wait until an operation is completed by checking a bit in a register 61 * up to @attempts times. If @valp is not NULL the value of the register 62 * at the time it indicated completion is stored there. Returns 0 if the 63 * operation completes and -EAGAIN otherwise. 64 */ 65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 66 int polarity, int attempts, int delay, u32 *valp) 67 { 68 while (1) { 69 u32 val = t4_read_reg(adapter, reg); 70 71 if (!!(val & mask) == polarity) { 72 if (valp) 73 *valp = val; 74 return 0; 75 } 76 if (--attempts == 0) 77 return -EAGAIN; 78 if (delay) 79 udelay(delay); 80 } 81 } 82 83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 84 int polarity, int attempts, int delay) 85 { 86 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 87 delay, NULL); 88 } 89 90 /** 91 * t4_set_reg_field - set a register field to a value 92 * @adapter: the adapter to program 93 * @addr: the register address 94 * @mask: specifies the portion of the register to modify 95 * @val: the new value for the register field 96 * 97 * Sets a register field specified by the supplied mask to the 98 * given value. 99 */ 100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 101 u32 val) 102 { 103 u32 v = t4_read_reg(adapter, addr) & ~mask; 104 105 t4_write_reg(adapter, addr, v | val); 106 (void) t4_read_reg(adapter, addr); /* flush */ 107 } 108 109 /** 110 * t4_read_indirect - read indirectly addressed registers 111 * @adap: the adapter 112 * @addr_reg: register holding the indirect address 113 * @data_reg: register holding the value of the indirect register 114 * @vals: where the read register values are stored 115 * @nregs: how many indirect registers to read 116 * @start_idx: index of first indirect register to read 117 * 118 * Reads registers that are accessed indirectly through an address/data 119 * register pair. 120 */ 121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 122 unsigned int data_reg, u32 *vals, 123 unsigned int nregs, unsigned int start_idx) 124 { 125 while (nregs--) { 126 t4_write_reg(adap, addr_reg, start_idx); 127 *vals++ = t4_read_reg(adap, data_reg); 128 start_idx++; 129 } 130 } 131 132 /** 133 * t4_write_indirect - write indirectly addressed registers 134 * @adap: the adapter 135 * @addr_reg: register holding the indirect addresses 136 * @data_reg: register holding the value for the indirect registers 137 * @vals: values to write 138 * @nregs: how many indirect registers to write 139 * @start_idx: address of first indirect register to write 140 * 141 * Writes a sequential block of registers that are accessed indirectly 142 * through an address/data register pair. 143 */ 144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 145 unsigned int data_reg, const u32 *vals, 146 unsigned int nregs, unsigned int start_idx) 147 { 148 while (nregs--) { 149 t4_write_reg(adap, addr_reg, start_idx++); 150 t4_write_reg(adap, data_reg, *vals++); 151 } 152 } 153 154 /* 155 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 156 * mechanism. This guarantees that we get the real value even if we're 157 * operating within a Virtual Machine and the Hypervisor is trapping our 158 * Configuration Space accesses. 159 * 160 * N.B. This routine should only be used as a last resort: the firmware uses 161 * the backdoor registers on a regular basis and we can end up 162 * conflicting with it's uses! 163 */ 164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg) 165 { 166 u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg); 167 u32 val; 168 169 if (chip_id(adap) <= CHELSIO_T5) 170 req |= F_ENABLE; 171 else 172 req |= F_T6_ENABLE; 173 174 if (is_t4(adap)) 175 req |= F_LOCALCFG; 176 177 t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req); 178 val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA); 179 180 /* 181 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 182 * Configuration Space read. (None of the other fields matter when 183 * F_ENABLE is 0 so a simple register write is easier than a 184 * read-modify-write via t4_set_reg_field().) 185 */ 186 t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0); 187 188 return val; 189 } 190 191 /* 192 * t4_report_fw_error - report firmware error 193 * @adap: the adapter 194 * 195 * The adapter firmware can indicate error conditions to the host. 196 * If the firmware has indicated an error, print out the reason for 197 * the firmware error. 198 */ 199 static void t4_report_fw_error(struct adapter *adap) 200 { 201 static const char *const reason[] = { 202 "Crash", /* PCIE_FW_EVAL_CRASH */ 203 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 204 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 205 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 206 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 207 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 208 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 209 "Reserved", /* reserved */ 210 }; 211 u32 pcie_fw; 212 213 pcie_fw = t4_read_reg(adap, A_PCIE_FW); 214 if (pcie_fw & F_PCIE_FW_ERR) { 215 adap->flags &= ~FW_OK; 216 CH_ERR(adap, "firmware reports adapter error: %s (0x%08x)\n", 217 reason[G_PCIE_FW_EVAL(pcie_fw)], pcie_fw); 218 if (pcie_fw != 0xffffffff) 219 t4_os_dump_devlog(adap); 220 } 221 } 222 223 /* 224 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 225 */ 226 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 227 u32 mbox_addr) 228 { 229 for ( ; nflit; nflit--, mbox_addr += 8) 230 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 231 } 232 233 /* 234 * Handle a FW assertion reported in a mailbox. 235 */ 236 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt) 237 { 238 CH_ALERT(adap, 239 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 240 asrt->u.assert.filename_0_7, 241 be32_to_cpu(asrt->u.assert.line), 242 be32_to_cpu(asrt->u.assert.x), 243 be32_to_cpu(asrt->u.assert.y)); 244 } 245 246 struct port_tx_state { 247 uint64_t rx_pause; 248 uint64_t tx_frames; 249 }; 250 251 static void 252 read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state) 253 { 254 uint32_t rx_pause_reg, tx_frames_reg; 255 256 if (is_t4(sc)) { 257 tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L); 258 rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L); 259 } else { 260 tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L); 261 rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L); 262 } 263 264 tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg); 265 tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg); 266 } 267 268 static void 269 read_tx_state(struct adapter *sc, struct port_tx_state *tx_state) 270 { 271 int i; 272 273 for_each_port(sc, i) 274 read_tx_state_one(sc, i, &tx_state[i]); 275 } 276 277 static void 278 check_tx_state(struct adapter *sc, struct port_tx_state *tx_state) 279 { 280 uint32_t port_ctl_reg; 281 uint64_t tx_frames, rx_pause; 282 int i; 283 284 for_each_port(sc, i) { 285 rx_pause = tx_state[i].rx_pause; 286 tx_frames = tx_state[i].tx_frames; 287 read_tx_state_one(sc, i, &tx_state[i]); /* update */ 288 289 if (is_t4(sc)) 290 port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL); 291 else 292 port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL); 293 if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN && 294 rx_pause != tx_state[i].rx_pause && 295 tx_frames == tx_state[i].tx_frames) { 296 t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0); 297 mdelay(1); 298 t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN); 299 } 300 } 301 } 302 303 #define X_CIM_PF_NOACCESS 0xeeeeeeee 304 /** 305 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox 306 * @adap: the adapter 307 * @mbox: index of the mailbox to use 308 * @cmd: the command to write 309 * @size: command length in bytes 310 * @rpl: where to optionally store the reply 311 * @sleep_ok: if true we may sleep while awaiting command completion 312 * @timeout: time to wait for command to finish before timing out 313 * (negative implies @sleep_ok=false) 314 * 315 * Sends the given command to FW through the selected mailbox and waits 316 * for the FW to execute the command. If @rpl is not %NULL it is used to 317 * store the FW's reply to the command. The command and its optional 318 * reply are of the same length. Some FW commands like RESET and 319 * INITIALIZE can take a considerable amount of time to execute. 320 * @sleep_ok determines whether we may sleep while awaiting the response. 321 * If sleeping is allowed we use progressive backoff otherwise we spin. 322 * Note that passing in a negative @timeout is an alternate mechanism 323 * for specifying @sleep_ok=false. This is useful when a higher level 324 * interface allows for specification of @timeout but not @sleep_ok ... 325 * 326 * The return value is 0 on success or a negative errno on failure. A 327 * failure can happen either because we are not able to execute the 328 * command or FW executes it but signals an error. In the latter case 329 * the return value is the error code indicated by FW (negated). 330 */ 331 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, 332 int size, void *rpl, bool sleep_ok, int timeout) 333 { 334 /* 335 * We delay in small increments at first in an effort to maintain 336 * responsiveness for simple, fast executing commands but then back 337 * off to larger delays to a maximum retry delay. 338 */ 339 static const int delay[] = { 340 1, 1, 3, 5, 10, 10, 20, 50, 100 341 }; 342 u32 v; 343 u64 res; 344 int i, ms, delay_idx, ret, next_tx_check; 345 u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA); 346 u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL); 347 u32 ctl; 348 __be64 cmd_rpl[MBOX_LEN/8]; 349 u32 pcie_fw; 350 struct port_tx_state tx_state[MAX_NPORTS]; 351 352 if (adap->flags & CHK_MBOX_ACCESS) 353 ASSERT_SYNCHRONIZED_OP(adap); 354 355 if (size <= 0 || (size & 15) || size > MBOX_LEN) 356 return -EINVAL; 357 358 if (adap->flags & IS_VF) { 359 if (is_t6(adap)) 360 data_reg = FW_T6VF_MBDATA_BASE_ADDR; 361 else 362 data_reg = FW_T4VF_MBDATA_BASE_ADDR; 363 ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL); 364 } 365 366 /* 367 * If we have a negative timeout, that implies that we can't sleep. 368 */ 369 if (timeout < 0) { 370 sleep_ok = false; 371 timeout = -timeout; 372 } 373 374 /* 375 * Attempt to gain access to the mailbox. 376 */ 377 for (i = 0; i < 4; i++) { 378 ctl = t4_read_reg(adap, ctl_reg); 379 v = G_MBOWNER(ctl); 380 if (v != X_MBOWNER_NONE) 381 break; 382 } 383 384 /* 385 * If we were unable to gain access, report the error to our caller. 386 */ 387 if (v != X_MBOWNER_PL) { 388 t4_report_fw_error(adap); 389 ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT; 390 return ret; 391 } 392 393 /* 394 * If we gain ownership of the mailbox and there's a "valid" message 395 * in it, this is likely an asynchronous error message from the 396 * firmware. So we'll report that and then proceed on with attempting 397 * to issue our own command ... which may well fail if the error 398 * presaged the firmware crashing ... 399 */ 400 if (ctl & F_MBMSGVALID) { 401 CH_DUMP_MBOX(adap, mbox, data_reg, "VLD", NULL, true); 402 } 403 404 /* 405 * Copy in the new mailbox command and send it on its way ... 406 */ 407 memset(cmd_rpl, 0, sizeof(cmd_rpl)); 408 memcpy(cmd_rpl, cmd, size); 409 CH_DUMP_MBOX(adap, mbox, 0, "cmd", cmd_rpl, false); 410 for (i = 0; i < ARRAY_SIZE(cmd_rpl); i++) 411 t4_write_reg64(adap, data_reg + i * 8, be64_to_cpu(cmd_rpl[i])); 412 413 if (adap->flags & IS_VF) { 414 /* 415 * For the VFs, the Mailbox Data "registers" are 416 * actually backed by T4's "MA" interface rather than 417 * PL Registers (as is the case for the PFs). Because 418 * these are in different coherency domains, the write 419 * to the VF's PL-register-backed Mailbox Control can 420 * race in front of the writes to the MA-backed VF 421 * Mailbox Data "registers". So we need to do a 422 * read-back on at least one byte of the VF Mailbox 423 * Data registers before doing the write to the VF 424 * Mailbox Control register. 425 */ 426 t4_read_reg(adap, data_reg); 427 } 428 429 t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW)); 430 read_tx_state(adap, &tx_state[0]); /* also flushes the write_reg */ 431 next_tx_check = 1000; 432 delay_idx = 0; 433 ms = delay[0]; 434 435 /* 436 * Loop waiting for the reply; bail out if we time out or the firmware 437 * reports an error. 438 */ 439 pcie_fw = 0; 440 for (i = 0; i < timeout; i += ms) { 441 if (!(adap->flags & IS_VF)) { 442 pcie_fw = t4_read_reg(adap, A_PCIE_FW); 443 if (pcie_fw & F_PCIE_FW_ERR) 444 break; 445 } 446 447 if (i >= next_tx_check) { 448 check_tx_state(adap, &tx_state[0]); 449 next_tx_check = i + 1000; 450 } 451 452 if (sleep_ok) { 453 ms = delay[delay_idx]; /* last element may repeat */ 454 if (delay_idx < ARRAY_SIZE(delay) - 1) 455 delay_idx++; 456 msleep(ms); 457 } else { 458 mdelay(ms); 459 } 460 461 v = t4_read_reg(adap, ctl_reg); 462 if (v == X_CIM_PF_NOACCESS) 463 continue; 464 if (G_MBOWNER(v) == X_MBOWNER_PL) { 465 if (!(v & F_MBMSGVALID)) { 466 t4_write_reg(adap, ctl_reg, 467 V_MBOWNER(X_MBOWNER_NONE)); 468 continue; 469 } 470 471 /* 472 * Retrieve the command reply and release the mailbox. 473 */ 474 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg); 475 CH_DUMP_MBOX(adap, mbox, 0, "rpl", cmd_rpl, false); 476 t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE)); 477 478 res = be64_to_cpu(cmd_rpl[0]); 479 if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) { 480 fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl); 481 res = V_FW_CMD_RETVAL(EIO); 482 } else if (rpl) 483 memcpy(rpl, cmd_rpl, size); 484 return -G_FW_CMD_RETVAL((int)res); 485 } 486 } 487 488 /* 489 * We timed out waiting for a reply to our mailbox command. Report 490 * the error and also check to see if the firmware reported any 491 * errors ... 492 */ 493 CH_ERR(adap, "command %#x in mbox %d timed out (0x%08x).\n", 494 *(const u8 *)cmd, mbox, pcie_fw); 495 CH_DUMP_MBOX(adap, mbox, 0, "cmdsent", cmd_rpl, true); 496 CH_DUMP_MBOX(adap, mbox, data_reg, "current", NULL, true); 497 498 if (pcie_fw & F_PCIE_FW_ERR) { 499 ret = -ENXIO; 500 t4_report_fw_error(adap); 501 } else { 502 ret = -ETIMEDOUT; 503 t4_os_dump_devlog(adap); 504 } 505 506 t4_fatal_err(adap, true); 507 return ret; 508 } 509 510 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 511 void *rpl, bool sleep_ok) 512 { 513 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, 514 sleep_ok, FW_CMD_MAX_TIMEOUT); 515 516 } 517 518 static int t4_edc_err_read(struct adapter *adap, int idx) 519 { 520 u32 edc_ecc_err_addr_reg; 521 u32 edc_bist_status_rdata_reg; 522 523 if (is_t4(adap)) { 524 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); 525 return 0; 526 } 527 if (idx != MEM_EDC0 && idx != MEM_EDC1) { 528 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); 529 return 0; 530 } 531 532 edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx); 533 edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx); 534 535 CH_WARN(adap, 536 "edc%d err addr 0x%x: 0x%x.\n", 537 idx, edc_ecc_err_addr_reg, 538 t4_read_reg(adap, edc_ecc_err_addr_reg)); 539 CH_WARN(adap, 540 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", 541 edc_bist_status_rdata_reg, 542 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg), 543 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8), 544 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16), 545 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24), 546 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32), 547 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40), 548 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48), 549 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56), 550 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64)); 551 552 return 0; 553 } 554 555 /** 556 * t4_mc_read - read from MC through backdoor accesses 557 * @adap: the adapter 558 * @idx: which MC to access 559 * @addr: address of first byte requested 560 * @data: 64 bytes of data containing the requested address 561 * @ecc: where to store the corresponding 64-bit ECC word 562 * 563 * Read 64 bytes of data from MC starting at a 64-byte-aligned address 564 * that covers the requested address @addr. If @parity is not %NULL it 565 * is assigned the 64-bit ECC word for the read data. 566 */ 567 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc) 568 { 569 int i; 570 u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg; 571 u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg; 572 573 if (is_t4(adap)) { 574 mc_bist_cmd_reg = A_MC_BIST_CMD; 575 mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR; 576 mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN; 577 mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA; 578 mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN; 579 } else { 580 mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx); 581 mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx); 582 mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx); 583 mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA, 584 idx); 585 mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN, 586 idx); 587 } 588 589 if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST) 590 return -EBUSY; 591 t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU); 592 t4_write_reg(adap, mc_bist_cmd_len_reg, 64); 593 t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc); 594 t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) | 595 F_START_BIST | V_BIST_CMD_GAP(1)); 596 i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1); 597 if (i) 598 return i; 599 600 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i) 601 602 for (i = 15; i >= 0; i--) 603 *data++ = ntohl(t4_read_reg(adap, MC_DATA(i))); 604 if (ecc) 605 *ecc = t4_read_reg64(adap, MC_DATA(16)); 606 #undef MC_DATA 607 return 0; 608 } 609 610 /** 611 * t4_edc_read - read from EDC through backdoor accesses 612 * @adap: the adapter 613 * @idx: which EDC to access 614 * @addr: address of first byte requested 615 * @data: 64 bytes of data containing the requested address 616 * @ecc: where to store the corresponding 64-bit ECC word 617 * 618 * Read 64 bytes of data from EDC starting at a 64-byte-aligned address 619 * that covers the requested address @addr. If @parity is not %NULL it 620 * is assigned the 64-bit ECC word for the read data. 621 */ 622 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc) 623 { 624 int i; 625 u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg; 626 u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg; 627 628 if (is_t4(adap)) { 629 edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx); 630 edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx); 631 edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx); 632 edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN, 633 idx); 634 edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA, 635 idx); 636 } else { 637 /* 638 * These macro are missing in t4_regs.h file. 639 * Added temporarily for testing. 640 */ 641 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR) 642 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx) 643 edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx); 644 edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx); 645 edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx); 646 edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN, 647 idx); 648 edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA, 649 idx); 650 #undef EDC_REG_T5 651 #undef EDC_STRIDE_T5 652 } 653 654 if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST) 655 return -EBUSY; 656 t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU); 657 t4_write_reg(adap, edc_bist_cmd_len_reg, 64); 658 t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc); 659 t4_write_reg(adap, edc_bist_cmd_reg, 660 V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST); 661 i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1); 662 if (i) 663 return i; 664 665 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i) 666 667 for (i = 15; i >= 0; i--) 668 *data++ = ntohl(t4_read_reg(adap, EDC_DATA(i))); 669 if (ecc) 670 *ecc = t4_read_reg64(adap, EDC_DATA(16)); 671 #undef EDC_DATA 672 return 0; 673 } 674 675 /** 676 * t4_mem_read - read EDC 0, EDC 1 or MC into buffer 677 * @adap: the adapter 678 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 679 * @addr: address within indicated memory type 680 * @len: amount of memory to read 681 * @buf: host memory buffer 682 * 683 * Reads an [almost] arbitrary memory region in the firmware: the 684 * firmware memory address, length and host buffer must be aligned on 685 * 32-bit boudaries. The memory is returned as a raw byte sequence from 686 * the firmware's memory. If this memory contains data structures which 687 * contain multi-byte integers, it's the callers responsibility to 688 * perform appropriate byte order conversions. 689 */ 690 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len, 691 __be32 *buf) 692 { 693 u32 pos, start, end, offset; 694 int ret; 695 696 /* 697 * Argument sanity checks ... 698 */ 699 if ((addr & 0x3) || (len & 0x3)) 700 return -EINVAL; 701 702 /* 703 * The underlaying EDC/MC read routines read 64 bytes at a time so we 704 * need to round down the start and round up the end. We'll start 705 * copying out of the first line at (addr - start) a word at a time. 706 */ 707 start = rounddown2(addr, 64); 708 end = roundup2(addr + len, 64); 709 offset = (addr - start)/sizeof(__be32); 710 711 for (pos = start; pos < end; pos += 64, offset = 0) { 712 __be32 data[16]; 713 714 /* 715 * Read the chip's memory block and bail if there's an error. 716 */ 717 if ((mtype == MEM_MC) || (mtype == MEM_MC1)) 718 ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL); 719 else 720 ret = t4_edc_read(adap, mtype, pos, data, NULL); 721 if (ret) 722 return ret; 723 724 /* 725 * Copy the data into the caller's memory buffer. 726 */ 727 while (offset < 16 && len > 0) { 728 *buf++ = data[offset++]; 729 len -= sizeof(__be32); 730 } 731 } 732 733 return 0; 734 } 735 736 /* 737 * Return the specified PCI-E Configuration Space register from our Physical 738 * Function. We try first via a Firmware LDST Command (if fw_attach != 0) 739 * since we prefer to let the firmware own all of these registers, but if that 740 * fails we go for it directly ourselves. 741 */ 742 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach) 743 { 744 745 /* 746 * If fw_attach != 0, construct and send the Firmware LDST Command to 747 * retrieve the specified PCI-E Configuration Space register. 748 */ 749 if (drv_fw_attach != 0) { 750 struct fw_ldst_cmd ldst_cmd; 751 int ret; 752 753 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 754 ldst_cmd.op_to_addrspace = 755 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 756 F_FW_CMD_REQUEST | 757 F_FW_CMD_READ | 758 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE)); 759 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 760 ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1); 761 ldst_cmd.u.pcie.ctrl_to_fn = 762 (F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf)); 763 ldst_cmd.u.pcie.r = reg; 764 765 /* 766 * If the LDST Command succeeds, return the result, otherwise 767 * fall through to reading it directly ourselves ... 768 */ 769 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 770 &ldst_cmd); 771 if (ret == 0) 772 return be32_to_cpu(ldst_cmd.u.pcie.data[0]); 773 774 CH_WARN(adap, "Firmware failed to return " 775 "Configuration Space register %d, err = %d\n", 776 reg, -ret); 777 } 778 779 /* 780 * Read the desired Configuration Space register via the PCI-E 781 * Backdoor mechanism. 782 */ 783 return t4_hw_pci_read_cfg4(adap, reg); 784 } 785 786 /** 787 * t4_get_regs_len - return the size of the chips register set 788 * @adapter: the adapter 789 * 790 * Returns the size of the chip's BAR0 register space. 791 */ 792 unsigned int t4_get_regs_len(struct adapter *adapter) 793 { 794 unsigned int chip_version = chip_id(adapter); 795 796 switch (chip_version) { 797 case CHELSIO_T4: 798 if (adapter->flags & IS_VF) 799 return FW_T4VF_REGMAP_SIZE; 800 return T4_REGMAP_SIZE; 801 802 case CHELSIO_T5: 803 case CHELSIO_T6: 804 if (adapter->flags & IS_VF) 805 return FW_T4VF_REGMAP_SIZE; 806 return T5_REGMAP_SIZE; 807 } 808 809 CH_ERR(adapter, 810 "Unsupported chip version %d\n", chip_version); 811 return 0; 812 } 813 814 /** 815 * t4_get_regs - read chip registers into provided buffer 816 * @adap: the adapter 817 * @buf: register buffer 818 * @buf_size: size (in bytes) of register buffer 819 * 820 * If the provided register buffer isn't large enough for the chip's 821 * full register range, the register dump will be truncated to the 822 * register buffer's size. 823 */ 824 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size) 825 { 826 static const unsigned int t4_reg_ranges[] = { 827 0x1008, 0x1108, 828 0x1180, 0x1184, 829 0x1190, 0x1194, 830 0x11a0, 0x11a4, 831 0x11b0, 0x11b4, 832 0x11fc, 0x123c, 833 0x1300, 0x173c, 834 0x1800, 0x18fc, 835 0x3000, 0x30d8, 836 0x30e0, 0x30e4, 837 0x30ec, 0x5910, 838 0x5920, 0x5924, 839 0x5960, 0x5960, 840 0x5968, 0x5968, 841 0x5970, 0x5970, 842 0x5978, 0x5978, 843 0x5980, 0x5980, 844 0x5988, 0x5988, 845 0x5990, 0x5990, 846 0x5998, 0x5998, 847 0x59a0, 0x59d4, 848 0x5a00, 0x5ae0, 849 0x5ae8, 0x5ae8, 850 0x5af0, 0x5af0, 851 0x5af8, 0x5af8, 852 0x6000, 0x6098, 853 0x6100, 0x6150, 854 0x6200, 0x6208, 855 0x6240, 0x6248, 856 0x6280, 0x62b0, 857 0x62c0, 0x6338, 858 0x6370, 0x638c, 859 0x6400, 0x643c, 860 0x6500, 0x6524, 861 0x6a00, 0x6a04, 862 0x6a14, 0x6a38, 863 0x6a60, 0x6a70, 864 0x6a78, 0x6a78, 865 0x6b00, 0x6b0c, 866 0x6b1c, 0x6b84, 867 0x6bf0, 0x6bf8, 868 0x6c00, 0x6c0c, 869 0x6c1c, 0x6c84, 870 0x6cf0, 0x6cf8, 871 0x6d00, 0x6d0c, 872 0x6d1c, 0x6d84, 873 0x6df0, 0x6df8, 874 0x6e00, 0x6e0c, 875 0x6e1c, 0x6e84, 876 0x6ef0, 0x6ef8, 877 0x6f00, 0x6f0c, 878 0x6f1c, 0x6f84, 879 0x6ff0, 0x6ff8, 880 0x7000, 0x700c, 881 0x701c, 0x7084, 882 0x70f0, 0x70f8, 883 0x7100, 0x710c, 884 0x711c, 0x7184, 885 0x71f0, 0x71f8, 886 0x7200, 0x720c, 887 0x721c, 0x7284, 888 0x72f0, 0x72f8, 889 0x7300, 0x730c, 890 0x731c, 0x7384, 891 0x73f0, 0x73f8, 892 0x7400, 0x7450, 893 0x7500, 0x7530, 894 0x7600, 0x760c, 895 0x7614, 0x761c, 896 0x7680, 0x76cc, 897 0x7700, 0x7798, 898 0x77c0, 0x77fc, 899 0x7900, 0x79fc, 900 0x7b00, 0x7b58, 901 0x7b60, 0x7b84, 902 0x7b8c, 0x7c38, 903 0x7d00, 0x7d38, 904 0x7d40, 0x7d80, 905 0x7d8c, 0x7ddc, 906 0x7de4, 0x7e04, 907 0x7e10, 0x7e1c, 908 0x7e24, 0x7e38, 909 0x7e40, 0x7e44, 910 0x7e4c, 0x7e78, 911 0x7e80, 0x7ea4, 912 0x7eac, 0x7edc, 913 0x7ee8, 0x7efc, 914 0x8dc0, 0x8e04, 915 0x8e10, 0x8e1c, 916 0x8e30, 0x8e78, 917 0x8ea0, 0x8eb8, 918 0x8ec0, 0x8f6c, 919 0x8fc0, 0x9008, 920 0x9010, 0x9058, 921 0x9060, 0x9060, 922 0x9068, 0x9074, 923 0x90fc, 0x90fc, 924 0x9400, 0x9408, 925 0x9410, 0x9458, 926 0x9600, 0x9600, 927 0x9608, 0x9638, 928 0x9640, 0x96bc, 929 0x9800, 0x9808, 930 0x9820, 0x983c, 931 0x9850, 0x9864, 932 0x9c00, 0x9c6c, 933 0x9c80, 0x9cec, 934 0x9d00, 0x9d6c, 935 0x9d80, 0x9dec, 936 0x9e00, 0x9e6c, 937 0x9e80, 0x9eec, 938 0x9f00, 0x9f6c, 939 0x9f80, 0x9fec, 940 0xd004, 0xd004, 941 0xd010, 0xd03c, 942 0xdfc0, 0xdfe0, 943 0xe000, 0xea7c, 944 0xf000, 0x11110, 945 0x11118, 0x11190, 946 0x19040, 0x1906c, 947 0x19078, 0x19080, 948 0x1908c, 0x190e4, 949 0x190f0, 0x190f8, 950 0x19100, 0x19110, 951 0x19120, 0x19124, 952 0x19150, 0x19194, 953 0x1919c, 0x191b0, 954 0x191d0, 0x191e8, 955 0x19238, 0x1924c, 956 0x193f8, 0x1943c, 957 0x1944c, 0x19474, 958 0x19490, 0x194e0, 959 0x194f0, 0x194f8, 960 0x19800, 0x19c08, 961 0x19c10, 0x19c90, 962 0x19ca0, 0x19ce4, 963 0x19cf0, 0x19d40, 964 0x19d50, 0x19d94, 965 0x19da0, 0x19de8, 966 0x19df0, 0x19e40, 967 0x19e50, 0x19e90, 968 0x19ea0, 0x19f4c, 969 0x1a000, 0x1a004, 970 0x1a010, 0x1a06c, 971 0x1a0b0, 0x1a0e4, 972 0x1a0ec, 0x1a0f4, 973 0x1a100, 0x1a108, 974 0x1a114, 0x1a120, 975 0x1a128, 0x1a130, 976 0x1a138, 0x1a138, 977 0x1a190, 0x1a1c4, 978 0x1a1fc, 0x1a1fc, 979 0x1e040, 0x1e04c, 980 0x1e284, 0x1e28c, 981 0x1e2c0, 0x1e2c0, 982 0x1e2e0, 0x1e2e0, 983 0x1e300, 0x1e384, 984 0x1e3c0, 0x1e3c8, 985 0x1e440, 0x1e44c, 986 0x1e684, 0x1e68c, 987 0x1e6c0, 0x1e6c0, 988 0x1e6e0, 0x1e6e0, 989 0x1e700, 0x1e784, 990 0x1e7c0, 0x1e7c8, 991 0x1e840, 0x1e84c, 992 0x1ea84, 0x1ea8c, 993 0x1eac0, 0x1eac0, 994 0x1eae0, 0x1eae0, 995 0x1eb00, 0x1eb84, 996 0x1ebc0, 0x1ebc8, 997 0x1ec40, 0x1ec4c, 998 0x1ee84, 0x1ee8c, 999 0x1eec0, 0x1eec0, 1000 0x1eee0, 0x1eee0, 1001 0x1ef00, 0x1ef84, 1002 0x1efc0, 0x1efc8, 1003 0x1f040, 0x1f04c, 1004 0x1f284, 0x1f28c, 1005 0x1f2c0, 0x1f2c0, 1006 0x1f2e0, 0x1f2e0, 1007 0x1f300, 0x1f384, 1008 0x1f3c0, 0x1f3c8, 1009 0x1f440, 0x1f44c, 1010 0x1f684, 0x1f68c, 1011 0x1f6c0, 0x1f6c0, 1012 0x1f6e0, 0x1f6e0, 1013 0x1f700, 0x1f784, 1014 0x1f7c0, 0x1f7c8, 1015 0x1f840, 0x1f84c, 1016 0x1fa84, 0x1fa8c, 1017 0x1fac0, 0x1fac0, 1018 0x1fae0, 0x1fae0, 1019 0x1fb00, 0x1fb84, 1020 0x1fbc0, 0x1fbc8, 1021 0x1fc40, 0x1fc4c, 1022 0x1fe84, 0x1fe8c, 1023 0x1fec0, 0x1fec0, 1024 0x1fee0, 0x1fee0, 1025 0x1ff00, 0x1ff84, 1026 0x1ffc0, 0x1ffc8, 1027 0x20000, 0x2002c, 1028 0x20100, 0x2013c, 1029 0x20190, 0x201a0, 1030 0x201a8, 0x201b8, 1031 0x201c4, 0x201c8, 1032 0x20200, 0x20318, 1033 0x20400, 0x204b4, 1034 0x204c0, 0x20528, 1035 0x20540, 0x20614, 1036 0x21000, 0x21040, 1037 0x2104c, 0x21060, 1038 0x210c0, 0x210ec, 1039 0x21200, 0x21268, 1040 0x21270, 0x21284, 1041 0x212fc, 0x21388, 1042 0x21400, 0x21404, 1043 0x21500, 0x21500, 1044 0x21510, 0x21518, 1045 0x2152c, 0x21530, 1046 0x2153c, 0x2153c, 1047 0x21550, 0x21554, 1048 0x21600, 0x21600, 1049 0x21608, 0x2161c, 1050 0x21624, 0x21628, 1051 0x21630, 0x21634, 1052 0x2163c, 0x2163c, 1053 0x21700, 0x2171c, 1054 0x21780, 0x2178c, 1055 0x21800, 0x21818, 1056 0x21820, 0x21828, 1057 0x21830, 0x21848, 1058 0x21850, 0x21854, 1059 0x21860, 0x21868, 1060 0x21870, 0x21870, 1061 0x21878, 0x21898, 1062 0x218a0, 0x218a8, 1063 0x218b0, 0x218c8, 1064 0x218d0, 0x218d4, 1065 0x218e0, 0x218e8, 1066 0x218f0, 0x218f0, 1067 0x218f8, 0x21a18, 1068 0x21a20, 0x21a28, 1069 0x21a30, 0x21a48, 1070 0x21a50, 0x21a54, 1071 0x21a60, 0x21a68, 1072 0x21a70, 0x21a70, 1073 0x21a78, 0x21a98, 1074 0x21aa0, 0x21aa8, 1075 0x21ab0, 0x21ac8, 1076 0x21ad0, 0x21ad4, 1077 0x21ae0, 0x21ae8, 1078 0x21af0, 0x21af0, 1079 0x21af8, 0x21c18, 1080 0x21c20, 0x21c20, 1081 0x21c28, 0x21c30, 1082 0x21c38, 0x21c38, 1083 0x21c80, 0x21c98, 1084 0x21ca0, 0x21ca8, 1085 0x21cb0, 0x21cc8, 1086 0x21cd0, 0x21cd4, 1087 0x21ce0, 0x21ce8, 1088 0x21cf0, 0x21cf0, 1089 0x21cf8, 0x21d7c, 1090 0x21e00, 0x21e04, 1091 0x22000, 0x2202c, 1092 0x22100, 0x2213c, 1093 0x22190, 0x221a0, 1094 0x221a8, 0x221b8, 1095 0x221c4, 0x221c8, 1096 0x22200, 0x22318, 1097 0x22400, 0x224b4, 1098 0x224c0, 0x22528, 1099 0x22540, 0x22614, 1100 0x23000, 0x23040, 1101 0x2304c, 0x23060, 1102 0x230c0, 0x230ec, 1103 0x23200, 0x23268, 1104 0x23270, 0x23284, 1105 0x232fc, 0x23388, 1106 0x23400, 0x23404, 1107 0x23500, 0x23500, 1108 0x23510, 0x23518, 1109 0x2352c, 0x23530, 1110 0x2353c, 0x2353c, 1111 0x23550, 0x23554, 1112 0x23600, 0x23600, 1113 0x23608, 0x2361c, 1114 0x23624, 0x23628, 1115 0x23630, 0x23634, 1116 0x2363c, 0x2363c, 1117 0x23700, 0x2371c, 1118 0x23780, 0x2378c, 1119 0x23800, 0x23818, 1120 0x23820, 0x23828, 1121 0x23830, 0x23848, 1122 0x23850, 0x23854, 1123 0x23860, 0x23868, 1124 0x23870, 0x23870, 1125 0x23878, 0x23898, 1126 0x238a0, 0x238a8, 1127 0x238b0, 0x238c8, 1128 0x238d0, 0x238d4, 1129 0x238e0, 0x238e8, 1130 0x238f0, 0x238f0, 1131 0x238f8, 0x23a18, 1132 0x23a20, 0x23a28, 1133 0x23a30, 0x23a48, 1134 0x23a50, 0x23a54, 1135 0x23a60, 0x23a68, 1136 0x23a70, 0x23a70, 1137 0x23a78, 0x23a98, 1138 0x23aa0, 0x23aa8, 1139 0x23ab0, 0x23ac8, 1140 0x23ad0, 0x23ad4, 1141 0x23ae0, 0x23ae8, 1142 0x23af0, 0x23af0, 1143 0x23af8, 0x23c18, 1144 0x23c20, 0x23c20, 1145 0x23c28, 0x23c30, 1146 0x23c38, 0x23c38, 1147 0x23c80, 0x23c98, 1148 0x23ca0, 0x23ca8, 1149 0x23cb0, 0x23cc8, 1150 0x23cd0, 0x23cd4, 1151 0x23ce0, 0x23ce8, 1152 0x23cf0, 0x23cf0, 1153 0x23cf8, 0x23d7c, 1154 0x23e00, 0x23e04, 1155 0x24000, 0x2402c, 1156 0x24100, 0x2413c, 1157 0x24190, 0x241a0, 1158 0x241a8, 0x241b8, 1159 0x241c4, 0x241c8, 1160 0x24200, 0x24318, 1161 0x24400, 0x244b4, 1162 0x244c0, 0x24528, 1163 0x24540, 0x24614, 1164 0x25000, 0x25040, 1165 0x2504c, 0x25060, 1166 0x250c0, 0x250ec, 1167 0x25200, 0x25268, 1168 0x25270, 0x25284, 1169 0x252fc, 0x25388, 1170 0x25400, 0x25404, 1171 0x25500, 0x25500, 1172 0x25510, 0x25518, 1173 0x2552c, 0x25530, 1174 0x2553c, 0x2553c, 1175 0x25550, 0x25554, 1176 0x25600, 0x25600, 1177 0x25608, 0x2561c, 1178 0x25624, 0x25628, 1179 0x25630, 0x25634, 1180 0x2563c, 0x2563c, 1181 0x25700, 0x2571c, 1182 0x25780, 0x2578c, 1183 0x25800, 0x25818, 1184 0x25820, 0x25828, 1185 0x25830, 0x25848, 1186 0x25850, 0x25854, 1187 0x25860, 0x25868, 1188 0x25870, 0x25870, 1189 0x25878, 0x25898, 1190 0x258a0, 0x258a8, 1191 0x258b0, 0x258c8, 1192 0x258d0, 0x258d4, 1193 0x258e0, 0x258e8, 1194 0x258f0, 0x258f0, 1195 0x258f8, 0x25a18, 1196 0x25a20, 0x25a28, 1197 0x25a30, 0x25a48, 1198 0x25a50, 0x25a54, 1199 0x25a60, 0x25a68, 1200 0x25a70, 0x25a70, 1201 0x25a78, 0x25a98, 1202 0x25aa0, 0x25aa8, 1203 0x25ab0, 0x25ac8, 1204 0x25ad0, 0x25ad4, 1205 0x25ae0, 0x25ae8, 1206 0x25af0, 0x25af0, 1207 0x25af8, 0x25c18, 1208 0x25c20, 0x25c20, 1209 0x25c28, 0x25c30, 1210 0x25c38, 0x25c38, 1211 0x25c80, 0x25c98, 1212 0x25ca0, 0x25ca8, 1213 0x25cb0, 0x25cc8, 1214 0x25cd0, 0x25cd4, 1215 0x25ce0, 0x25ce8, 1216 0x25cf0, 0x25cf0, 1217 0x25cf8, 0x25d7c, 1218 0x25e00, 0x25e04, 1219 0x26000, 0x2602c, 1220 0x26100, 0x2613c, 1221 0x26190, 0x261a0, 1222 0x261a8, 0x261b8, 1223 0x261c4, 0x261c8, 1224 0x26200, 0x26318, 1225 0x26400, 0x264b4, 1226 0x264c0, 0x26528, 1227 0x26540, 0x26614, 1228 0x27000, 0x27040, 1229 0x2704c, 0x27060, 1230 0x270c0, 0x270ec, 1231 0x27200, 0x27268, 1232 0x27270, 0x27284, 1233 0x272fc, 0x27388, 1234 0x27400, 0x27404, 1235 0x27500, 0x27500, 1236 0x27510, 0x27518, 1237 0x2752c, 0x27530, 1238 0x2753c, 0x2753c, 1239 0x27550, 0x27554, 1240 0x27600, 0x27600, 1241 0x27608, 0x2761c, 1242 0x27624, 0x27628, 1243 0x27630, 0x27634, 1244 0x2763c, 0x2763c, 1245 0x27700, 0x2771c, 1246 0x27780, 0x2778c, 1247 0x27800, 0x27818, 1248 0x27820, 0x27828, 1249 0x27830, 0x27848, 1250 0x27850, 0x27854, 1251 0x27860, 0x27868, 1252 0x27870, 0x27870, 1253 0x27878, 0x27898, 1254 0x278a0, 0x278a8, 1255 0x278b0, 0x278c8, 1256 0x278d0, 0x278d4, 1257 0x278e0, 0x278e8, 1258 0x278f0, 0x278f0, 1259 0x278f8, 0x27a18, 1260 0x27a20, 0x27a28, 1261 0x27a30, 0x27a48, 1262 0x27a50, 0x27a54, 1263 0x27a60, 0x27a68, 1264 0x27a70, 0x27a70, 1265 0x27a78, 0x27a98, 1266 0x27aa0, 0x27aa8, 1267 0x27ab0, 0x27ac8, 1268 0x27ad0, 0x27ad4, 1269 0x27ae0, 0x27ae8, 1270 0x27af0, 0x27af0, 1271 0x27af8, 0x27c18, 1272 0x27c20, 0x27c20, 1273 0x27c28, 0x27c30, 1274 0x27c38, 0x27c38, 1275 0x27c80, 0x27c98, 1276 0x27ca0, 0x27ca8, 1277 0x27cb0, 0x27cc8, 1278 0x27cd0, 0x27cd4, 1279 0x27ce0, 0x27ce8, 1280 0x27cf0, 0x27cf0, 1281 0x27cf8, 0x27d7c, 1282 0x27e00, 0x27e04, 1283 }; 1284 1285 static const unsigned int t4vf_reg_ranges[] = { 1286 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS), 1287 VF_MPS_REG(A_MPS_VF_CTL), 1288 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H), 1289 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI), 1290 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL), 1291 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS), 1292 FW_T4VF_MBDATA_BASE_ADDR, 1293 FW_T4VF_MBDATA_BASE_ADDR + 1294 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4), 1295 }; 1296 1297 static const unsigned int t5_reg_ranges[] = { 1298 0x1008, 0x10c0, 1299 0x10cc, 0x10f8, 1300 0x1100, 0x1100, 1301 0x110c, 0x1148, 1302 0x1180, 0x1184, 1303 0x1190, 0x1194, 1304 0x11a0, 0x11a4, 1305 0x11b0, 0x11b4, 1306 0x11fc, 0x123c, 1307 0x1280, 0x173c, 1308 0x1800, 0x18fc, 1309 0x3000, 0x3028, 1310 0x3060, 0x30b0, 1311 0x30b8, 0x30d8, 1312 0x30e0, 0x30fc, 1313 0x3140, 0x357c, 1314 0x35a8, 0x35cc, 1315 0x35ec, 0x35ec, 1316 0x3600, 0x5624, 1317 0x56cc, 0x56ec, 1318 0x56f4, 0x5720, 1319 0x5728, 0x575c, 1320 0x580c, 0x5814, 1321 0x5890, 0x589c, 1322 0x58a4, 0x58ac, 1323 0x58b8, 0x58bc, 1324 0x5940, 0x59c8, 1325 0x59d0, 0x59dc, 1326 0x59fc, 0x5a18, 1327 0x5a60, 0x5a70, 1328 0x5a80, 0x5a9c, 1329 0x5b94, 0x5bfc, 1330 0x6000, 0x6020, 1331 0x6028, 0x6040, 1332 0x6058, 0x609c, 1333 0x60a8, 0x614c, 1334 0x7700, 0x7798, 1335 0x77c0, 0x78fc, 1336 0x7b00, 0x7b58, 1337 0x7b60, 0x7b84, 1338 0x7b8c, 0x7c54, 1339 0x7d00, 0x7d38, 1340 0x7d40, 0x7d80, 1341 0x7d8c, 0x7ddc, 1342 0x7de4, 0x7e04, 1343 0x7e10, 0x7e1c, 1344 0x7e24, 0x7e38, 1345 0x7e40, 0x7e44, 1346 0x7e4c, 0x7e78, 1347 0x7e80, 0x7edc, 1348 0x7ee8, 0x7efc, 1349 0x8dc0, 0x8de0, 1350 0x8df8, 0x8e04, 1351 0x8e10, 0x8e84, 1352 0x8ea0, 0x8f84, 1353 0x8fc0, 0x9058, 1354 0x9060, 0x9060, 1355 0x9068, 0x90f8, 1356 0x9400, 0x9408, 1357 0x9410, 0x9470, 1358 0x9600, 0x9600, 1359 0x9608, 0x9638, 1360 0x9640, 0x96f4, 1361 0x9800, 0x9808, 1362 0x9810, 0x9864, 1363 0x9c00, 0x9c6c, 1364 0x9c80, 0x9cec, 1365 0x9d00, 0x9d6c, 1366 0x9d80, 0x9dec, 1367 0x9e00, 0x9e6c, 1368 0x9e80, 0x9eec, 1369 0x9f00, 0x9f6c, 1370 0x9f80, 0xa020, 1371 0xd000, 0xd004, 1372 0xd010, 0xd03c, 1373 0xdfc0, 0xdfe0, 1374 0xe000, 0x1106c, 1375 0x11074, 0x11088, 1376 0x1109c, 0x1117c, 1377 0x11190, 0x11204, 1378 0x19040, 0x1906c, 1379 0x19078, 0x19080, 1380 0x1908c, 0x190e8, 1381 0x190f0, 0x190f8, 1382 0x19100, 0x19110, 1383 0x19120, 0x19124, 1384 0x19150, 0x19194, 1385 0x1919c, 0x191b0, 1386 0x191d0, 0x191e8, 1387 0x19238, 0x19290, 1388 0x193f8, 0x19428, 1389 0x19430, 0x19444, 1390 0x1944c, 0x1946c, 1391 0x19474, 0x19474, 1392 0x19490, 0x194cc, 1393 0x194f0, 0x194f8, 1394 0x19c00, 0x19c08, 1395 0x19c10, 0x19c60, 1396 0x19c94, 0x19ce4, 1397 0x19cf0, 0x19d40, 1398 0x19d50, 0x19d94, 1399 0x19da0, 0x19de8, 1400 0x19df0, 0x19e10, 1401 0x19e50, 0x19e90, 1402 0x19ea0, 0x19f24, 1403 0x19f34, 0x19f34, 1404 0x19f40, 0x19f50, 1405 0x19f90, 0x19fb4, 1406 0x19fc4, 0x19fe4, 1407 0x1a000, 0x1a004, 1408 0x1a010, 0x1a06c, 1409 0x1a0b0, 0x1a0e4, 1410 0x1a0ec, 0x1a0f8, 1411 0x1a100, 0x1a108, 1412 0x1a114, 0x1a130, 1413 0x1a138, 0x1a1c4, 1414 0x1a1fc, 0x1a1fc, 1415 0x1e008, 0x1e00c, 1416 0x1e040, 0x1e044, 1417 0x1e04c, 0x1e04c, 1418 0x1e284, 0x1e290, 1419 0x1e2c0, 0x1e2c0, 1420 0x1e2e0, 0x1e2e0, 1421 0x1e300, 0x1e384, 1422 0x1e3c0, 0x1e3c8, 1423 0x1e408, 0x1e40c, 1424 0x1e440, 0x1e444, 1425 0x1e44c, 0x1e44c, 1426 0x1e684, 0x1e690, 1427 0x1e6c0, 0x1e6c0, 1428 0x1e6e0, 0x1e6e0, 1429 0x1e700, 0x1e784, 1430 0x1e7c0, 0x1e7c8, 1431 0x1e808, 0x1e80c, 1432 0x1e840, 0x1e844, 1433 0x1e84c, 0x1e84c, 1434 0x1ea84, 0x1ea90, 1435 0x1eac0, 0x1eac0, 1436 0x1eae0, 0x1eae0, 1437 0x1eb00, 0x1eb84, 1438 0x1ebc0, 0x1ebc8, 1439 0x1ec08, 0x1ec0c, 1440 0x1ec40, 0x1ec44, 1441 0x1ec4c, 0x1ec4c, 1442 0x1ee84, 0x1ee90, 1443 0x1eec0, 0x1eec0, 1444 0x1eee0, 0x1eee0, 1445 0x1ef00, 0x1ef84, 1446 0x1efc0, 0x1efc8, 1447 0x1f008, 0x1f00c, 1448 0x1f040, 0x1f044, 1449 0x1f04c, 0x1f04c, 1450 0x1f284, 0x1f290, 1451 0x1f2c0, 0x1f2c0, 1452 0x1f2e0, 0x1f2e0, 1453 0x1f300, 0x1f384, 1454 0x1f3c0, 0x1f3c8, 1455 0x1f408, 0x1f40c, 1456 0x1f440, 0x1f444, 1457 0x1f44c, 0x1f44c, 1458 0x1f684, 0x1f690, 1459 0x1f6c0, 0x1f6c0, 1460 0x1f6e0, 0x1f6e0, 1461 0x1f700, 0x1f784, 1462 0x1f7c0, 0x1f7c8, 1463 0x1f808, 0x1f80c, 1464 0x1f840, 0x1f844, 1465 0x1f84c, 0x1f84c, 1466 0x1fa84, 0x1fa90, 1467 0x1fac0, 0x1fac0, 1468 0x1fae0, 0x1fae0, 1469 0x1fb00, 0x1fb84, 1470 0x1fbc0, 0x1fbc8, 1471 0x1fc08, 0x1fc0c, 1472 0x1fc40, 0x1fc44, 1473 0x1fc4c, 0x1fc4c, 1474 0x1fe84, 0x1fe90, 1475 0x1fec0, 0x1fec0, 1476 0x1fee0, 0x1fee0, 1477 0x1ff00, 0x1ff84, 1478 0x1ffc0, 0x1ffc8, 1479 0x30000, 0x30030, 1480 0x30100, 0x30144, 1481 0x30190, 0x301a0, 1482 0x301a8, 0x301b8, 1483 0x301c4, 0x301c8, 1484 0x301d0, 0x301d0, 1485 0x30200, 0x30318, 1486 0x30400, 0x304b4, 1487 0x304c0, 0x3052c, 1488 0x30540, 0x3061c, 1489 0x30800, 0x30828, 1490 0x30834, 0x30834, 1491 0x308c0, 0x30908, 1492 0x30910, 0x309ac, 1493 0x30a00, 0x30a14, 1494 0x30a1c, 0x30a2c, 1495 0x30a44, 0x30a50, 1496 0x30a74, 0x30a74, 1497 0x30a7c, 0x30afc, 1498 0x30b08, 0x30c24, 1499 0x30d00, 0x30d00, 1500 0x30d08, 0x30d14, 1501 0x30d1c, 0x30d20, 1502 0x30d3c, 0x30d3c, 1503 0x30d48, 0x30d50, 1504 0x31200, 0x3120c, 1505 0x31220, 0x31220, 1506 0x31240, 0x31240, 1507 0x31600, 0x3160c, 1508 0x31a00, 0x31a1c, 1509 0x31e00, 0x31e20, 1510 0x31e38, 0x31e3c, 1511 0x31e80, 0x31e80, 1512 0x31e88, 0x31ea8, 1513 0x31eb0, 0x31eb4, 1514 0x31ec8, 0x31ed4, 1515 0x31fb8, 0x32004, 1516 0x32200, 0x32200, 1517 0x32208, 0x32240, 1518 0x32248, 0x32280, 1519 0x32288, 0x322c0, 1520 0x322c8, 0x322fc, 1521 0x32600, 0x32630, 1522 0x32a00, 0x32abc, 1523 0x32b00, 0x32b10, 1524 0x32b20, 0x32b30, 1525 0x32b40, 0x32b50, 1526 0x32b60, 0x32b70, 1527 0x33000, 0x33028, 1528 0x33030, 0x33048, 1529 0x33060, 0x33068, 1530 0x33070, 0x3309c, 1531 0x330f0, 0x33128, 1532 0x33130, 0x33148, 1533 0x33160, 0x33168, 1534 0x33170, 0x3319c, 1535 0x331f0, 0x33238, 1536 0x33240, 0x33240, 1537 0x33248, 0x33250, 1538 0x3325c, 0x33264, 1539 0x33270, 0x332b8, 1540 0x332c0, 0x332e4, 1541 0x332f8, 0x33338, 1542 0x33340, 0x33340, 1543 0x33348, 0x33350, 1544 0x3335c, 0x33364, 1545 0x33370, 0x333b8, 1546 0x333c0, 0x333e4, 1547 0x333f8, 0x33428, 1548 0x33430, 0x33448, 1549 0x33460, 0x33468, 1550 0x33470, 0x3349c, 1551 0x334f0, 0x33528, 1552 0x33530, 0x33548, 1553 0x33560, 0x33568, 1554 0x33570, 0x3359c, 1555 0x335f0, 0x33638, 1556 0x33640, 0x33640, 1557 0x33648, 0x33650, 1558 0x3365c, 0x33664, 1559 0x33670, 0x336b8, 1560 0x336c0, 0x336e4, 1561 0x336f8, 0x33738, 1562 0x33740, 0x33740, 1563 0x33748, 0x33750, 1564 0x3375c, 0x33764, 1565 0x33770, 0x337b8, 1566 0x337c0, 0x337e4, 1567 0x337f8, 0x337fc, 1568 0x33814, 0x33814, 1569 0x3382c, 0x3382c, 1570 0x33880, 0x3388c, 1571 0x338e8, 0x338ec, 1572 0x33900, 0x33928, 1573 0x33930, 0x33948, 1574 0x33960, 0x33968, 1575 0x33970, 0x3399c, 1576 0x339f0, 0x33a38, 1577 0x33a40, 0x33a40, 1578 0x33a48, 0x33a50, 1579 0x33a5c, 0x33a64, 1580 0x33a70, 0x33ab8, 1581 0x33ac0, 0x33ae4, 1582 0x33af8, 0x33b10, 1583 0x33b28, 0x33b28, 1584 0x33b3c, 0x33b50, 1585 0x33bf0, 0x33c10, 1586 0x33c28, 0x33c28, 1587 0x33c3c, 0x33c50, 1588 0x33cf0, 0x33cfc, 1589 0x34000, 0x34030, 1590 0x34100, 0x34144, 1591 0x34190, 0x341a0, 1592 0x341a8, 0x341b8, 1593 0x341c4, 0x341c8, 1594 0x341d0, 0x341d0, 1595 0x34200, 0x34318, 1596 0x34400, 0x344b4, 1597 0x344c0, 0x3452c, 1598 0x34540, 0x3461c, 1599 0x34800, 0x34828, 1600 0x34834, 0x34834, 1601 0x348c0, 0x34908, 1602 0x34910, 0x349ac, 1603 0x34a00, 0x34a14, 1604 0x34a1c, 0x34a2c, 1605 0x34a44, 0x34a50, 1606 0x34a74, 0x34a74, 1607 0x34a7c, 0x34afc, 1608 0x34b08, 0x34c24, 1609 0x34d00, 0x34d00, 1610 0x34d08, 0x34d14, 1611 0x34d1c, 0x34d20, 1612 0x34d3c, 0x34d3c, 1613 0x34d48, 0x34d50, 1614 0x35200, 0x3520c, 1615 0x35220, 0x35220, 1616 0x35240, 0x35240, 1617 0x35600, 0x3560c, 1618 0x35a00, 0x35a1c, 1619 0x35e00, 0x35e20, 1620 0x35e38, 0x35e3c, 1621 0x35e80, 0x35e80, 1622 0x35e88, 0x35ea8, 1623 0x35eb0, 0x35eb4, 1624 0x35ec8, 0x35ed4, 1625 0x35fb8, 0x36004, 1626 0x36200, 0x36200, 1627 0x36208, 0x36240, 1628 0x36248, 0x36280, 1629 0x36288, 0x362c0, 1630 0x362c8, 0x362fc, 1631 0x36600, 0x36630, 1632 0x36a00, 0x36abc, 1633 0x36b00, 0x36b10, 1634 0x36b20, 0x36b30, 1635 0x36b40, 0x36b50, 1636 0x36b60, 0x36b70, 1637 0x37000, 0x37028, 1638 0x37030, 0x37048, 1639 0x37060, 0x37068, 1640 0x37070, 0x3709c, 1641 0x370f0, 0x37128, 1642 0x37130, 0x37148, 1643 0x37160, 0x37168, 1644 0x37170, 0x3719c, 1645 0x371f0, 0x37238, 1646 0x37240, 0x37240, 1647 0x37248, 0x37250, 1648 0x3725c, 0x37264, 1649 0x37270, 0x372b8, 1650 0x372c0, 0x372e4, 1651 0x372f8, 0x37338, 1652 0x37340, 0x37340, 1653 0x37348, 0x37350, 1654 0x3735c, 0x37364, 1655 0x37370, 0x373b8, 1656 0x373c0, 0x373e4, 1657 0x373f8, 0x37428, 1658 0x37430, 0x37448, 1659 0x37460, 0x37468, 1660 0x37470, 0x3749c, 1661 0x374f0, 0x37528, 1662 0x37530, 0x37548, 1663 0x37560, 0x37568, 1664 0x37570, 0x3759c, 1665 0x375f0, 0x37638, 1666 0x37640, 0x37640, 1667 0x37648, 0x37650, 1668 0x3765c, 0x37664, 1669 0x37670, 0x376b8, 1670 0x376c0, 0x376e4, 1671 0x376f8, 0x37738, 1672 0x37740, 0x37740, 1673 0x37748, 0x37750, 1674 0x3775c, 0x37764, 1675 0x37770, 0x377b8, 1676 0x377c0, 0x377e4, 1677 0x377f8, 0x377fc, 1678 0x37814, 0x37814, 1679 0x3782c, 0x3782c, 1680 0x37880, 0x3788c, 1681 0x378e8, 0x378ec, 1682 0x37900, 0x37928, 1683 0x37930, 0x37948, 1684 0x37960, 0x37968, 1685 0x37970, 0x3799c, 1686 0x379f0, 0x37a38, 1687 0x37a40, 0x37a40, 1688 0x37a48, 0x37a50, 1689 0x37a5c, 0x37a64, 1690 0x37a70, 0x37ab8, 1691 0x37ac0, 0x37ae4, 1692 0x37af8, 0x37b10, 1693 0x37b28, 0x37b28, 1694 0x37b3c, 0x37b50, 1695 0x37bf0, 0x37c10, 1696 0x37c28, 0x37c28, 1697 0x37c3c, 0x37c50, 1698 0x37cf0, 0x37cfc, 1699 0x38000, 0x38030, 1700 0x38100, 0x38144, 1701 0x38190, 0x381a0, 1702 0x381a8, 0x381b8, 1703 0x381c4, 0x381c8, 1704 0x381d0, 0x381d0, 1705 0x38200, 0x38318, 1706 0x38400, 0x384b4, 1707 0x384c0, 0x3852c, 1708 0x38540, 0x3861c, 1709 0x38800, 0x38828, 1710 0x38834, 0x38834, 1711 0x388c0, 0x38908, 1712 0x38910, 0x389ac, 1713 0x38a00, 0x38a14, 1714 0x38a1c, 0x38a2c, 1715 0x38a44, 0x38a50, 1716 0x38a74, 0x38a74, 1717 0x38a7c, 0x38afc, 1718 0x38b08, 0x38c24, 1719 0x38d00, 0x38d00, 1720 0x38d08, 0x38d14, 1721 0x38d1c, 0x38d20, 1722 0x38d3c, 0x38d3c, 1723 0x38d48, 0x38d50, 1724 0x39200, 0x3920c, 1725 0x39220, 0x39220, 1726 0x39240, 0x39240, 1727 0x39600, 0x3960c, 1728 0x39a00, 0x39a1c, 1729 0x39e00, 0x39e20, 1730 0x39e38, 0x39e3c, 1731 0x39e80, 0x39e80, 1732 0x39e88, 0x39ea8, 1733 0x39eb0, 0x39eb4, 1734 0x39ec8, 0x39ed4, 1735 0x39fb8, 0x3a004, 1736 0x3a200, 0x3a200, 1737 0x3a208, 0x3a240, 1738 0x3a248, 0x3a280, 1739 0x3a288, 0x3a2c0, 1740 0x3a2c8, 0x3a2fc, 1741 0x3a600, 0x3a630, 1742 0x3aa00, 0x3aabc, 1743 0x3ab00, 0x3ab10, 1744 0x3ab20, 0x3ab30, 1745 0x3ab40, 0x3ab50, 1746 0x3ab60, 0x3ab70, 1747 0x3b000, 0x3b028, 1748 0x3b030, 0x3b048, 1749 0x3b060, 0x3b068, 1750 0x3b070, 0x3b09c, 1751 0x3b0f0, 0x3b128, 1752 0x3b130, 0x3b148, 1753 0x3b160, 0x3b168, 1754 0x3b170, 0x3b19c, 1755 0x3b1f0, 0x3b238, 1756 0x3b240, 0x3b240, 1757 0x3b248, 0x3b250, 1758 0x3b25c, 0x3b264, 1759 0x3b270, 0x3b2b8, 1760 0x3b2c0, 0x3b2e4, 1761 0x3b2f8, 0x3b338, 1762 0x3b340, 0x3b340, 1763 0x3b348, 0x3b350, 1764 0x3b35c, 0x3b364, 1765 0x3b370, 0x3b3b8, 1766 0x3b3c0, 0x3b3e4, 1767 0x3b3f8, 0x3b428, 1768 0x3b430, 0x3b448, 1769 0x3b460, 0x3b468, 1770 0x3b470, 0x3b49c, 1771 0x3b4f0, 0x3b528, 1772 0x3b530, 0x3b548, 1773 0x3b560, 0x3b568, 1774 0x3b570, 0x3b59c, 1775 0x3b5f0, 0x3b638, 1776 0x3b640, 0x3b640, 1777 0x3b648, 0x3b650, 1778 0x3b65c, 0x3b664, 1779 0x3b670, 0x3b6b8, 1780 0x3b6c0, 0x3b6e4, 1781 0x3b6f8, 0x3b738, 1782 0x3b740, 0x3b740, 1783 0x3b748, 0x3b750, 1784 0x3b75c, 0x3b764, 1785 0x3b770, 0x3b7b8, 1786 0x3b7c0, 0x3b7e4, 1787 0x3b7f8, 0x3b7fc, 1788 0x3b814, 0x3b814, 1789 0x3b82c, 0x3b82c, 1790 0x3b880, 0x3b88c, 1791 0x3b8e8, 0x3b8ec, 1792 0x3b900, 0x3b928, 1793 0x3b930, 0x3b948, 1794 0x3b960, 0x3b968, 1795 0x3b970, 0x3b99c, 1796 0x3b9f0, 0x3ba38, 1797 0x3ba40, 0x3ba40, 1798 0x3ba48, 0x3ba50, 1799 0x3ba5c, 0x3ba64, 1800 0x3ba70, 0x3bab8, 1801 0x3bac0, 0x3bae4, 1802 0x3baf8, 0x3bb10, 1803 0x3bb28, 0x3bb28, 1804 0x3bb3c, 0x3bb50, 1805 0x3bbf0, 0x3bc10, 1806 0x3bc28, 0x3bc28, 1807 0x3bc3c, 0x3bc50, 1808 0x3bcf0, 0x3bcfc, 1809 0x3c000, 0x3c030, 1810 0x3c100, 0x3c144, 1811 0x3c190, 0x3c1a0, 1812 0x3c1a8, 0x3c1b8, 1813 0x3c1c4, 0x3c1c8, 1814 0x3c1d0, 0x3c1d0, 1815 0x3c200, 0x3c318, 1816 0x3c400, 0x3c4b4, 1817 0x3c4c0, 0x3c52c, 1818 0x3c540, 0x3c61c, 1819 0x3c800, 0x3c828, 1820 0x3c834, 0x3c834, 1821 0x3c8c0, 0x3c908, 1822 0x3c910, 0x3c9ac, 1823 0x3ca00, 0x3ca14, 1824 0x3ca1c, 0x3ca2c, 1825 0x3ca44, 0x3ca50, 1826 0x3ca74, 0x3ca74, 1827 0x3ca7c, 0x3cafc, 1828 0x3cb08, 0x3cc24, 1829 0x3cd00, 0x3cd00, 1830 0x3cd08, 0x3cd14, 1831 0x3cd1c, 0x3cd20, 1832 0x3cd3c, 0x3cd3c, 1833 0x3cd48, 0x3cd50, 1834 0x3d200, 0x3d20c, 1835 0x3d220, 0x3d220, 1836 0x3d240, 0x3d240, 1837 0x3d600, 0x3d60c, 1838 0x3da00, 0x3da1c, 1839 0x3de00, 0x3de20, 1840 0x3de38, 0x3de3c, 1841 0x3de80, 0x3de80, 1842 0x3de88, 0x3dea8, 1843 0x3deb0, 0x3deb4, 1844 0x3dec8, 0x3ded4, 1845 0x3dfb8, 0x3e004, 1846 0x3e200, 0x3e200, 1847 0x3e208, 0x3e240, 1848 0x3e248, 0x3e280, 1849 0x3e288, 0x3e2c0, 1850 0x3e2c8, 0x3e2fc, 1851 0x3e600, 0x3e630, 1852 0x3ea00, 0x3eabc, 1853 0x3eb00, 0x3eb10, 1854 0x3eb20, 0x3eb30, 1855 0x3eb40, 0x3eb50, 1856 0x3eb60, 0x3eb70, 1857 0x3f000, 0x3f028, 1858 0x3f030, 0x3f048, 1859 0x3f060, 0x3f068, 1860 0x3f070, 0x3f09c, 1861 0x3f0f0, 0x3f128, 1862 0x3f130, 0x3f148, 1863 0x3f160, 0x3f168, 1864 0x3f170, 0x3f19c, 1865 0x3f1f0, 0x3f238, 1866 0x3f240, 0x3f240, 1867 0x3f248, 0x3f250, 1868 0x3f25c, 0x3f264, 1869 0x3f270, 0x3f2b8, 1870 0x3f2c0, 0x3f2e4, 1871 0x3f2f8, 0x3f338, 1872 0x3f340, 0x3f340, 1873 0x3f348, 0x3f350, 1874 0x3f35c, 0x3f364, 1875 0x3f370, 0x3f3b8, 1876 0x3f3c0, 0x3f3e4, 1877 0x3f3f8, 0x3f428, 1878 0x3f430, 0x3f448, 1879 0x3f460, 0x3f468, 1880 0x3f470, 0x3f49c, 1881 0x3f4f0, 0x3f528, 1882 0x3f530, 0x3f548, 1883 0x3f560, 0x3f568, 1884 0x3f570, 0x3f59c, 1885 0x3f5f0, 0x3f638, 1886 0x3f640, 0x3f640, 1887 0x3f648, 0x3f650, 1888 0x3f65c, 0x3f664, 1889 0x3f670, 0x3f6b8, 1890 0x3f6c0, 0x3f6e4, 1891 0x3f6f8, 0x3f738, 1892 0x3f740, 0x3f740, 1893 0x3f748, 0x3f750, 1894 0x3f75c, 0x3f764, 1895 0x3f770, 0x3f7b8, 1896 0x3f7c0, 0x3f7e4, 1897 0x3f7f8, 0x3f7fc, 1898 0x3f814, 0x3f814, 1899 0x3f82c, 0x3f82c, 1900 0x3f880, 0x3f88c, 1901 0x3f8e8, 0x3f8ec, 1902 0x3f900, 0x3f928, 1903 0x3f930, 0x3f948, 1904 0x3f960, 0x3f968, 1905 0x3f970, 0x3f99c, 1906 0x3f9f0, 0x3fa38, 1907 0x3fa40, 0x3fa40, 1908 0x3fa48, 0x3fa50, 1909 0x3fa5c, 0x3fa64, 1910 0x3fa70, 0x3fab8, 1911 0x3fac0, 0x3fae4, 1912 0x3faf8, 0x3fb10, 1913 0x3fb28, 0x3fb28, 1914 0x3fb3c, 0x3fb50, 1915 0x3fbf0, 0x3fc10, 1916 0x3fc28, 0x3fc28, 1917 0x3fc3c, 0x3fc50, 1918 0x3fcf0, 0x3fcfc, 1919 0x40000, 0x4000c, 1920 0x40040, 0x40050, 1921 0x40060, 0x40068, 1922 0x4007c, 0x4008c, 1923 0x40094, 0x400b0, 1924 0x400c0, 0x40144, 1925 0x40180, 0x4018c, 1926 0x40200, 0x40254, 1927 0x40260, 0x40264, 1928 0x40270, 0x40288, 1929 0x40290, 0x40298, 1930 0x402ac, 0x402c8, 1931 0x402d0, 0x402e0, 1932 0x402f0, 0x402f0, 1933 0x40300, 0x4033c, 1934 0x403f8, 0x403fc, 1935 0x41304, 0x413c4, 1936 0x41400, 0x4140c, 1937 0x41414, 0x4141c, 1938 0x41480, 0x414d0, 1939 0x44000, 0x44054, 1940 0x4405c, 0x44078, 1941 0x440c0, 0x44174, 1942 0x44180, 0x441ac, 1943 0x441b4, 0x441b8, 1944 0x441c0, 0x44254, 1945 0x4425c, 0x44278, 1946 0x442c0, 0x44374, 1947 0x44380, 0x443ac, 1948 0x443b4, 0x443b8, 1949 0x443c0, 0x44454, 1950 0x4445c, 0x44478, 1951 0x444c0, 0x44574, 1952 0x44580, 0x445ac, 1953 0x445b4, 0x445b8, 1954 0x445c0, 0x44654, 1955 0x4465c, 0x44678, 1956 0x446c0, 0x44774, 1957 0x44780, 0x447ac, 1958 0x447b4, 0x447b8, 1959 0x447c0, 0x44854, 1960 0x4485c, 0x44878, 1961 0x448c0, 0x44974, 1962 0x44980, 0x449ac, 1963 0x449b4, 0x449b8, 1964 0x449c0, 0x449fc, 1965 0x45000, 0x45004, 1966 0x45010, 0x45030, 1967 0x45040, 0x45060, 1968 0x45068, 0x45068, 1969 0x45080, 0x45084, 1970 0x450a0, 0x450b0, 1971 0x45200, 0x45204, 1972 0x45210, 0x45230, 1973 0x45240, 0x45260, 1974 0x45268, 0x45268, 1975 0x45280, 0x45284, 1976 0x452a0, 0x452b0, 1977 0x460c0, 0x460e4, 1978 0x47000, 0x4703c, 1979 0x47044, 0x4708c, 1980 0x47200, 0x47250, 1981 0x47400, 0x47408, 1982 0x47414, 0x47420, 1983 0x47600, 0x47618, 1984 0x47800, 0x47814, 1985 0x48000, 0x4800c, 1986 0x48040, 0x48050, 1987 0x48060, 0x48068, 1988 0x4807c, 0x4808c, 1989 0x48094, 0x480b0, 1990 0x480c0, 0x48144, 1991 0x48180, 0x4818c, 1992 0x48200, 0x48254, 1993 0x48260, 0x48264, 1994 0x48270, 0x48288, 1995 0x48290, 0x48298, 1996 0x482ac, 0x482c8, 1997 0x482d0, 0x482e0, 1998 0x482f0, 0x482f0, 1999 0x48300, 0x4833c, 2000 0x483f8, 0x483fc, 2001 0x49304, 0x493c4, 2002 0x49400, 0x4940c, 2003 0x49414, 0x4941c, 2004 0x49480, 0x494d0, 2005 0x4c000, 0x4c054, 2006 0x4c05c, 0x4c078, 2007 0x4c0c0, 0x4c174, 2008 0x4c180, 0x4c1ac, 2009 0x4c1b4, 0x4c1b8, 2010 0x4c1c0, 0x4c254, 2011 0x4c25c, 0x4c278, 2012 0x4c2c0, 0x4c374, 2013 0x4c380, 0x4c3ac, 2014 0x4c3b4, 0x4c3b8, 2015 0x4c3c0, 0x4c454, 2016 0x4c45c, 0x4c478, 2017 0x4c4c0, 0x4c574, 2018 0x4c580, 0x4c5ac, 2019 0x4c5b4, 0x4c5b8, 2020 0x4c5c0, 0x4c654, 2021 0x4c65c, 0x4c678, 2022 0x4c6c0, 0x4c774, 2023 0x4c780, 0x4c7ac, 2024 0x4c7b4, 0x4c7b8, 2025 0x4c7c0, 0x4c854, 2026 0x4c85c, 0x4c878, 2027 0x4c8c0, 0x4c974, 2028 0x4c980, 0x4c9ac, 2029 0x4c9b4, 0x4c9b8, 2030 0x4c9c0, 0x4c9fc, 2031 0x4d000, 0x4d004, 2032 0x4d010, 0x4d030, 2033 0x4d040, 0x4d060, 2034 0x4d068, 0x4d068, 2035 0x4d080, 0x4d084, 2036 0x4d0a0, 0x4d0b0, 2037 0x4d200, 0x4d204, 2038 0x4d210, 0x4d230, 2039 0x4d240, 0x4d260, 2040 0x4d268, 0x4d268, 2041 0x4d280, 0x4d284, 2042 0x4d2a0, 0x4d2b0, 2043 0x4e0c0, 0x4e0e4, 2044 0x4f000, 0x4f03c, 2045 0x4f044, 0x4f08c, 2046 0x4f200, 0x4f250, 2047 0x4f400, 0x4f408, 2048 0x4f414, 0x4f420, 2049 0x4f600, 0x4f618, 2050 0x4f800, 0x4f814, 2051 0x50000, 0x50084, 2052 0x50090, 0x500cc, 2053 0x50400, 0x50400, 2054 0x50800, 0x50884, 2055 0x50890, 0x508cc, 2056 0x50c00, 0x50c00, 2057 0x51000, 0x5101c, 2058 0x51300, 0x51308, 2059 }; 2060 2061 static const unsigned int t5vf_reg_ranges[] = { 2062 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS), 2063 VF_MPS_REG(A_MPS_VF_CTL), 2064 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H), 2065 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION), 2066 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL), 2067 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS), 2068 FW_T4VF_MBDATA_BASE_ADDR, 2069 FW_T4VF_MBDATA_BASE_ADDR + 2070 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4), 2071 }; 2072 2073 static const unsigned int t6_reg_ranges[] = { 2074 0x1008, 0x101c, 2075 0x1024, 0x10a8, 2076 0x10b4, 0x10f8, 2077 0x1100, 0x1114, 2078 0x111c, 0x112c, 2079 0x1138, 0x113c, 2080 0x1144, 0x114c, 2081 0x1180, 0x1184, 2082 0x1190, 0x1194, 2083 0x11a0, 0x11a4, 2084 0x11b0, 0x11c4, 2085 0x11fc, 0x1274, 2086 0x1280, 0x133c, 2087 0x1800, 0x18fc, 2088 0x3000, 0x302c, 2089 0x3060, 0x30b0, 2090 0x30b8, 0x30d8, 2091 0x30e0, 0x30fc, 2092 0x3140, 0x357c, 2093 0x35a8, 0x35cc, 2094 0x35ec, 0x35ec, 2095 0x3600, 0x5624, 2096 0x56cc, 0x56ec, 2097 0x56f4, 0x5720, 2098 0x5728, 0x575c, 2099 0x580c, 0x5814, 2100 0x5890, 0x589c, 2101 0x58a4, 0x58ac, 2102 0x58b8, 0x58bc, 2103 0x5940, 0x595c, 2104 0x5980, 0x598c, 2105 0x59b0, 0x59c8, 2106 0x59d0, 0x59dc, 2107 0x59fc, 0x5a18, 2108 0x5a60, 0x5a6c, 2109 0x5a80, 0x5a8c, 2110 0x5a94, 0x5a9c, 2111 0x5b94, 0x5bfc, 2112 0x5c10, 0x5e48, 2113 0x5e50, 0x5e94, 2114 0x5ea0, 0x5eb0, 2115 0x5ec0, 0x5ec0, 2116 0x5ec8, 0x5ed0, 2117 0x5ee0, 0x5ee0, 2118 0x5ef0, 0x5ef0, 2119 0x5f00, 0x5f00, 2120 0x6000, 0x6020, 2121 0x6028, 0x6040, 2122 0x6058, 0x609c, 2123 0x60a8, 0x619c, 2124 0x7700, 0x7798, 2125 0x77c0, 0x7880, 2126 0x78cc, 0x78fc, 2127 0x7b00, 0x7b58, 2128 0x7b60, 0x7b84, 2129 0x7b8c, 0x7c54, 2130 0x7d00, 0x7d38, 2131 0x7d40, 0x7d84, 2132 0x7d8c, 0x7ddc, 2133 0x7de4, 0x7e04, 2134 0x7e10, 0x7e1c, 2135 0x7e24, 0x7e38, 2136 0x7e40, 0x7e44, 2137 0x7e4c, 0x7e78, 2138 0x7e80, 0x7edc, 2139 0x7ee8, 0x7efc, 2140 0x8dc0, 0x8de0, 2141 0x8df8, 0x8e04, 2142 0x8e10, 0x8e84, 2143 0x8ea0, 0x8f88, 2144 0x8fb8, 0x9058, 2145 0x9060, 0x9060, 2146 0x9068, 0x90f8, 2147 0x9100, 0x9124, 2148 0x9400, 0x9470, 2149 0x9600, 0x9600, 2150 0x9608, 0x9638, 2151 0x9640, 0x9704, 2152 0x9710, 0x971c, 2153 0x9800, 0x9808, 2154 0x9810, 0x9864, 2155 0x9c00, 0x9c6c, 2156 0x9c80, 0x9cec, 2157 0x9d00, 0x9d6c, 2158 0x9d80, 0x9dec, 2159 0x9e00, 0x9e6c, 2160 0x9e80, 0x9eec, 2161 0x9f00, 0x9f6c, 2162 0x9f80, 0xa020, 2163 0xd000, 0xd03c, 2164 0xd100, 0xd118, 2165 0xd200, 0xd214, 2166 0xd220, 0xd234, 2167 0xd240, 0xd254, 2168 0xd260, 0xd274, 2169 0xd280, 0xd294, 2170 0xd2a0, 0xd2b4, 2171 0xd2c0, 0xd2d4, 2172 0xd2e0, 0xd2f4, 2173 0xd300, 0xd31c, 2174 0xdfc0, 0xdfe0, 2175 0xe000, 0xf008, 2176 0xf010, 0xf018, 2177 0xf020, 0xf028, 2178 0x11000, 0x11014, 2179 0x11048, 0x1106c, 2180 0x11074, 0x11088, 2181 0x11098, 0x11120, 2182 0x1112c, 0x1117c, 2183 0x11190, 0x112e0, 2184 0x11300, 0x1130c, 2185 0x12000, 0x1206c, 2186 0x19040, 0x1906c, 2187 0x19078, 0x19080, 2188 0x1908c, 0x190e8, 2189 0x190f0, 0x190f8, 2190 0x19100, 0x19110, 2191 0x19120, 0x19124, 2192 0x19150, 0x19194, 2193 0x1919c, 0x191b0, 2194 0x191d0, 0x191e8, 2195 0x19238, 0x19290, 2196 0x192a4, 0x192b0, 2197 0x19348, 0x1934c, 2198 0x193f8, 0x19418, 2199 0x19420, 0x19428, 2200 0x19430, 0x19444, 2201 0x1944c, 0x1946c, 2202 0x19474, 0x19474, 2203 0x19490, 0x194cc, 2204 0x194f0, 0x194f8, 2205 0x19c00, 0x19c48, 2206 0x19c50, 0x19c80, 2207 0x19c94, 0x19c98, 2208 0x19ca0, 0x19cbc, 2209 0x19ce4, 0x19ce4, 2210 0x19cf0, 0x19cf8, 2211 0x19d00, 0x19d28, 2212 0x19d50, 0x19d78, 2213 0x19d94, 0x19d98, 2214 0x19da0, 0x19de0, 2215 0x19df0, 0x19e10, 2216 0x19e50, 0x19e6c, 2217 0x19ea0, 0x19ebc, 2218 0x19ec4, 0x19ef4, 2219 0x19f04, 0x19f2c, 2220 0x19f34, 0x19f34, 2221 0x19f40, 0x19f50, 2222 0x19f90, 0x19fac, 2223 0x19fc4, 0x19fc8, 2224 0x19fd0, 0x19fe4, 2225 0x1a000, 0x1a004, 2226 0x1a010, 0x1a06c, 2227 0x1a0b0, 0x1a0e4, 2228 0x1a0ec, 0x1a0f8, 2229 0x1a100, 0x1a108, 2230 0x1a114, 0x1a130, 2231 0x1a138, 0x1a1c4, 2232 0x1a1fc, 0x1a1fc, 2233 0x1e008, 0x1e00c, 2234 0x1e040, 0x1e044, 2235 0x1e04c, 0x1e04c, 2236 0x1e284, 0x1e290, 2237 0x1e2c0, 0x1e2c0, 2238 0x1e2e0, 0x1e2e0, 2239 0x1e300, 0x1e384, 2240 0x1e3c0, 0x1e3c8, 2241 0x1e408, 0x1e40c, 2242 0x1e440, 0x1e444, 2243 0x1e44c, 0x1e44c, 2244 0x1e684, 0x1e690, 2245 0x1e6c0, 0x1e6c0, 2246 0x1e6e0, 0x1e6e0, 2247 0x1e700, 0x1e784, 2248 0x1e7c0, 0x1e7c8, 2249 0x1e808, 0x1e80c, 2250 0x1e840, 0x1e844, 2251 0x1e84c, 0x1e84c, 2252 0x1ea84, 0x1ea90, 2253 0x1eac0, 0x1eac0, 2254 0x1eae0, 0x1eae0, 2255 0x1eb00, 0x1eb84, 2256 0x1ebc0, 0x1ebc8, 2257 0x1ec08, 0x1ec0c, 2258 0x1ec40, 0x1ec44, 2259 0x1ec4c, 0x1ec4c, 2260 0x1ee84, 0x1ee90, 2261 0x1eec0, 0x1eec0, 2262 0x1eee0, 0x1eee0, 2263 0x1ef00, 0x1ef84, 2264 0x1efc0, 0x1efc8, 2265 0x1f008, 0x1f00c, 2266 0x1f040, 0x1f044, 2267 0x1f04c, 0x1f04c, 2268 0x1f284, 0x1f290, 2269 0x1f2c0, 0x1f2c0, 2270 0x1f2e0, 0x1f2e0, 2271 0x1f300, 0x1f384, 2272 0x1f3c0, 0x1f3c8, 2273 0x1f408, 0x1f40c, 2274 0x1f440, 0x1f444, 2275 0x1f44c, 0x1f44c, 2276 0x1f684, 0x1f690, 2277 0x1f6c0, 0x1f6c0, 2278 0x1f6e0, 0x1f6e0, 2279 0x1f700, 0x1f784, 2280 0x1f7c0, 0x1f7c8, 2281 0x1f808, 0x1f80c, 2282 0x1f840, 0x1f844, 2283 0x1f84c, 0x1f84c, 2284 0x1fa84, 0x1fa90, 2285 0x1fac0, 0x1fac0, 2286 0x1fae0, 0x1fae0, 2287 0x1fb00, 0x1fb84, 2288 0x1fbc0, 0x1fbc8, 2289 0x1fc08, 0x1fc0c, 2290 0x1fc40, 0x1fc44, 2291 0x1fc4c, 0x1fc4c, 2292 0x1fe84, 0x1fe90, 2293 0x1fec0, 0x1fec0, 2294 0x1fee0, 0x1fee0, 2295 0x1ff00, 0x1ff84, 2296 0x1ffc0, 0x1ffc8, 2297 0x30000, 0x30030, 2298 0x30100, 0x30168, 2299 0x30190, 0x301a0, 2300 0x301a8, 0x301b8, 2301 0x301c4, 0x301c8, 2302 0x301d0, 0x301d0, 2303 0x30200, 0x30320, 2304 0x30400, 0x304b4, 2305 0x304c0, 0x3052c, 2306 0x30540, 0x3061c, 2307 0x30800, 0x308a0, 2308 0x308c0, 0x30908, 2309 0x30910, 0x309b8, 2310 0x30a00, 0x30a04, 2311 0x30a0c, 0x30a14, 2312 0x30a1c, 0x30a2c, 2313 0x30a44, 0x30a50, 2314 0x30a74, 0x30a74, 2315 0x30a7c, 0x30afc, 2316 0x30b08, 0x30c24, 2317 0x30d00, 0x30d14, 2318 0x30d1c, 0x30d3c, 2319 0x30d44, 0x30d4c, 2320 0x30d54, 0x30d74, 2321 0x30d7c, 0x30d7c, 2322 0x30de0, 0x30de0, 2323 0x30e00, 0x30ed4, 2324 0x30f00, 0x30fa4, 2325 0x30fc0, 0x30fc4, 2326 0x31000, 0x31004, 2327 0x31080, 0x310fc, 2328 0x31208, 0x31220, 2329 0x3123c, 0x31254, 2330 0x31300, 0x31300, 2331 0x31308, 0x3131c, 2332 0x31338, 0x3133c, 2333 0x31380, 0x31380, 2334 0x31388, 0x313a8, 2335 0x313b4, 0x313b4, 2336 0x31400, 0x31420, 2337 0x31438, 0x3143c, 2338 0x31480, 0x31480, 2339 0x314a8, 0x314a8, 2340 0x314b0, 0x314b4, 2341 0x314c8, 0x314d4, 2342 0x31a40, 0x31a4c, 2343 0x31af0, 0x31b20, 2344 0x31b38, 0x31b3c, 2345 0x31b80, 0x31b80, 2346 0x31ba8, 0x31ba8, 2347 0x31bb0, 0x31bb4, 2348 0x31bc8, 0x31bd4, 2349 0x32140, 0x3218c, 2350 0x321f0, 0x321f4, 2351 0x32200, 0x32200, 2352 0x32218, 0x32218, 2353 0x32400, 0x32400, 2354 0x32408, 0x3241c, 2355 0x32618, 0x32620, 2356 0x32664, 0x32664, 2357 0x326a8, 0x326a8, 2358 0x326ec, 0x326ec, 2359 0x32a00, 0x32abc, 2360 0x32b00, 0x32b18, 2361 0x32b20, 0x32b38, 2362 0x32b40, 0x32b58, 2363 0x32b60, 0x32b78, 2364 0x32c00, 0x32c00, 2365 0x32c08, 0x32c3c, 2366 0x33000, 0x3302c, 2367 0x33034, 0x33050, 2368 0x33058, 0x33058, 2369 0x33060, 0x3308c, 2370 0x3309c, 0x330ac, 2371 0x330c0, 0x330c0, 2372 0x330c8, 0x330d0, 2373 0x330d8, 0x330e0, 2374 0x330ec, 0x3312c, 2375 0x33134, 0x33150, 2376 0x33158, 0x33158, 2377 0x33160, 0x3318c, 2378 0x3319c, 0x331ac, 2379 0x331c0, 0x331c0, 2380 0x331c8, 0x331d0, 2381 0x331d8, 0x331e0, 2382 0x331ec, 0x33290, 2383 0x33298, 0x332c4, 2384 0x332e4, 0x33390, 2385 0x33398, 0x333c4, 2386 0x333e4, 0x3342c, 2387 0x33434, 0x33450, 2388 0x33458, 0x33458, 2389 0x33460, 0x3348c, 2390 0x3349c, 0x334ac, 2391 0x334c0, 0x334c0, 2392 0x334c8, 0x334d0, 2393 0x334d8, 0x334e0, 2394 0x334ec, 0x3352c, 2395 0x33534, 0x33550, 2396 0x33558, 0x33558, 2397 0x33560, 0x3358c, 2398 0x3359c, 0x335ac, 2399 0x335c0, 0x335c0, 2400 0x335c8, 0x335d0, 2401 0x335d8, 0x335e0, 2402 0x335ec, 0x33690, 2403 0x33698, 0x336c4, 2404 0x336e4, 0x33790, 2405 0x33798, 0x337c4, 2406 0x337e4, 0x337fc, 2407 0x33814, 0x33814, 2408 0x33854, 0x33868, 2409 0x33880, 0x3388c, 2410 0x338c0, 0x338d0, 2411 0x338e8, 0x338ec, 2412 0x33900, 0x3392c, 2413 0x33934, 0x33950, 2414 0x33958, 0x33958, 2415 0x33960, 0x3398c, 2416 0x3399c, 0x339ac, 2417 0x339c0, 0x339c0, 2418 0x339c8, 0x339d0, 2419 0x339d8, 0x339e0, 2420 0x339ec, 0x33a90, 2421 0x33a98, 0x33ac4, 2422 0x33ae4, 0x33b10, 2423 0x33b24, 0x33b28, 2424 0x33b38, 0x33b50, 2425 0x33bf0, 0x33c10, 2426 0x33c24, 0x33c28, 2427 0x33c38, 0x33c50, 2428 0x33cf0, 0x33cfc, 2429 0x34000, 0x34030, 2430 0x34100, 0x34168, 2431 0x34190, 0x341a0, 2432 0x341a8, 0x341b8, 2433 0x341c4, 0x341c8, 2434 0x341d0, 0x341d0, 2435 0x34200, 0x34320, 2436 0x34400, 0x344b4, 2437 0x344c0, 0x3452c, 2438 0x34540, 0x3461c, 2439 0x34800, 0x348a0, 2440 0x348c0, 0x34908, 2441 0x34910, 0x349b8, 2442 0x34a00, 0x34a04, 2443 0x34a0c, 0x34a14, 2444 0x34a1c, 0x34a2c, 2445 0x34a44, 0x34a50, 2446 0x34a74, 0x34a74, 2447 0x34a7c, 0x34afc, 2448 0x34b08, 0x34c24, 2449 0x34d00, 0x34d14, 2450 0x34d1c, 0x34d3c, 2451 0x34d44, 0x34d4c, 2452 0x34d54, 0x34d74, 2453 0x34d7c, 0x34d7c, 2454 0x34de0, 0x34de0, 2455 0x34e00, 0x34ed4, 2456 0x34f00, 0x34fa4, 2457 0x34fc0, 0x34fc4, 2458 0x35000, 0x35004, 2459 0x35080, 0x350fc, 2460 0x35208, 0x35220, 2461 0x3523c, 0x35254, 2462 0x35300, 0x35300, 2463 0x35308, 0x3531c, 2464 0x35338, 0x3533c, 2465 0x35380, 0x35380, 2466 0x35388, 0x353a8, 2467 0x353b4, 0x353b4, 2468 0x35400, 0x35420, 2469 0x35438, 0x3543c, 2470 0x35480, 0x35480, 2471 0x354a8, 0x354a8, 2472 0x354b0, 0x354b4, 2473 0x354c8, 0x354d4, 2474 0x35a40, 0x35a4c, 2475 0x35af0, 0x35b20, 2476 0x35b38, 0x35b3c, 2477 0x35b80, 0x35b80, 2478 0x35ba8, 0x35ba8, 2479 0x35bb0, 0x35bb4, 2480 0x35bc8, 0x35bd4, 2481 0x36140, 0x3618c, 2482 0x361f0, 0x361f4, 2483 0x36200, 0x36200, 2484 0x36218, 0x36218, 2485 0x36400, 0x36400, 2486 0x36408, 0x3641c, 2487 0x36618, 0x36620, 2488 0x36664, 0x36664, 2489 0x366a8, 0x366a8, 2490 0x366ec, 0x366ec, 2491 0x36a00, 0x36abc, 2492 0x36b00, 0x36b18, 2493 0x36b20, 0x36b38, 2494 0x36b40, 0x36b58, 2495 0x36b60, 0x36b78, 2496 0x36c00, 0x36c00, 2497 0x36c08, 0x36c3c, 2498 0x37000, 0x3702c, 2499 0x37034, 0x37050, 2500 0x37058, 0x37058, 2501 0x37060, 0x3708c, 2502 0x3709c, 0x370ac, 2503 0x370c0, 0x370c0, 2504 0x370c8, 0x370d0, 2505 0x370d8, 0x370e0, 2506 0x370ec, 0x3712c, 2507 0x37134, 0x37150, 2508 0x37158, 0x37158, 2509 0x37160, 0x3718c, 2510 0x3719c, 0x371ac, 2511 0x371c0, 0x371c0, 2512 0x371c8, 0x371d0, 2513 0x371d8, 0x371e0, 2514 0x371ec, 0x37290, 2515 0x37298, 0x372c4, 2516 0x372e4, 0x37390, 2517 0x37398, 0x373c4, 2518 0x373e4, 0x3742c, 2519 0x37434, 0x37450, 2520 0x37458, 0x37458, 2521 0x37460, 0x3748c, 2522 0x3749c, 0x374ac, 2523 0x374c0, 0x374c0, 2524 0x374c8, 0x374d0, 2525 0x374d8, 0x374e0, 2526 0x374ec, 0x3752c, 2527 0x37534, 0x37550, 2528 0x37558, 0x37558, 2529 0x37560, 0x3758c, 2530 0x3759c, 0x375ac, 2531 0x375c0, 0x375c0, 2532 0x375c8, 0x375d0, 2533 0x375d8, 0x375e0, 2534 0x375ec, 0x37690, 2535 0x37698, 0x376c4, 2536 0x376e4, 0x37790, 2537 0x37798, 0x377c4, 2538 0x377e4, 0x377fc, 2539 0x37814, 0x37814, 2540 0x37854, 0x37868, 2541 0x37880, 0x3788c, 2542 0x378c0, 0x378d0, 2543 0x378e8, 0x378ec, 2544 0x37900, 0x3792c, 2545 0x37934, 0x37950, 2546 0x37958, 0x37958, 2547 0x37960, 0x3798c, 2548 0x3799c, 0x379ac, 2549 0x379c0, 0x379c0, 2550 0x379c8, 0x379d0, 2551 0x379d8, 0x379e0, 2552 0x379ec, 0x37a90, 2553 0x37a98, 0x37ac4, 2554 0x37ae4, 0x37b10, 2555 0x37b24, 0x37b28, 2556 0x37b38, 0x37b50, 2557 0x37bf0, 0x37c10, 2558 0x37c24, 0x37c28, 2559 0x37c38, 0x37c50, 2560 0x37cf0, 0x37cfc, 2561 0x40040, 0x40040, 2562 0x40080, 0x40084, 2563 0x40100, 0x40100, 2564 0x40140, 0x401bc, 2565 0x40200, 0x40214, 2566 0x40228, 0x40228, 2567 0x40240, 0x40258, 2568 0x40280, 0x40280, 2569 0x40304, 0x40304, 2570 0x40330, 0x4033c, 2571 0x41304, 0x413c8, 2572 0x413d0, 0x413dc, 2573 0x413f0, 0x413f0, 2574 0x41400, 0x4140c, 2575 0x41414, 0x4141c, 2576 0x41480, 0x414d0, 2577 0x44000, 0x4407c, 2578 0x440c0, 0x441ac, 2579 0x441b4, 0x4427c, 2580 0x442c0, 0x443ac, 2581 0x443b4, 0x4447c, 2582 0x444c0, 0x445ac, 2583 0x445b4, 0x4467c, 2584 0x446c0, 0x447ac, 2585 0x447b4, 0x4487c, 2586 0x448c0, 0x449ac, 2587 0x449b4, 0x44a7c, 2588 0x44ac0, 0x44bac, 2589 0x44bb4, 0x44c7c, 2590 0x44cc0, 0x44dac, 2591 0x44db4, 0x44e7c, 2592 0x44ec0, 0x44fac, 2593 0x44fb4, 0x4507c, 2594 0x450c0, 0x451ac, 2595 0x451b4, 0x451fc, 2596 0x45800, 0x45804, 2597 0x45810, 0x45830, 2598 0x45840, 0x45860, 2599 0x45868, 0x45868, 2600 0x45880, 0x45884, 2601 0x458a0, 0x458b0, 2602 0x45a00, 0x45a04, 2603 0x45a10, 0x45a30, 2604 0x45a40, 0x45a60, 2605 0x45a68, 0x45a68, 2606 0x45a80, 0x45a84, 2607 0x45aa0, 0x45ab0, 2608 0x460c0, 0x460e4, 2609 0x47000, 0x4703c, 2610 0x47044, 0x4708c, 2611 0x47200, 0x47250, 2612 0x47400, 0x47408, 2613 0x47414, 0x47420, 2614 0x47600, 0x47618, 2615 0x47800, 0x47814, 2616 0x47820, 0x4782c, 2617 0x50000, 0x50084, 2618 0x50090, 0x500cc, 2619 0x50300, 0x50384, 2620 0x50400, 0x50400, 2621 0x50800, 0x50884, 2622 0x50890, 0x508cc, 2623 0x50b00, 0x50b84, 2624 0x50c00, 0x50c00, 2625 0x51000, 0x51020, 2626 0x51028, 0x510b0, 2627 0x51300, 0x51324, 2628 }; 2629 2630 static const unsigned int t6vf_reg_ranges[] = { 2631 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS), 2632 VF_MPS_REG(A_MPS_VF_CTL), 2633 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H), 2634 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION), 2635 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL), 2636 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS), 2637 FW_T6VF_MBDATA_BASE_ADDR, 2638 FW_T6VF_MBDATA_BASE_ADDR + 2639 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4), 2640 }; 2641 2642 u32 *buf_end = (u32 *)(buf + buf_size); 2643 const unsigned int *reg_ranges; 2644 int reg_ranges_size, range; 2645 unsigned int chip_version = chip_id(adap); 2646 2647 /* 2648 * Select the right set of register ranges to dump depending on the 2649 * adapter chip type. 2650 */ 2651 switch (chip_version) { 2652 case CHELSIO_T4: 2653 if (adap->flags & IS_VF) { 2654 reg_ranges = t4vf_reg_ranges; 2655 reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges); 2656 } else { 2657 reg_ranges = t4_reg_ranges; 2658 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 2659 } 2660 break; 2661 2662 case CHELSIO_T5: 2663 if (adap->flags & IS_VF) { 2664 reg_ranges = t5vf_reg_ranges; 2665 reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges); 2666 } else { 2667 reg_ranges = t5_reg_ranges; 2668 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 2669 } 2670 break; 2671 2672 case CHELSIO_T6: 2673 if (adap->flags & IS_VF) { 2674 reg_ranges = t6vf_reg_ranges; 2675 reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges); 2676 } else { 2677 reg_ranges = t6_reg_ranges; 2678 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); 2679 } 2680 break; 2681 2682 default: 2683 CH_ERR(adap, 2684 "Unsupported chip version %d\n", chip_version); 2685 return; 2686 } 2687 2688 /* 2689 * Clear the register buffer and insert the appropriate register 2690 * values selected by the above register ranges. 2691 */ 2692 memset(buf, 0, buf_size); 2693 for (range = 0; range < reg_ranges_size; range += 2) { 2694 unsigned int reg = reg_ranges[range]; 2695 unsigned int last_reg = reg_ranges[range + 1]; 2696 u32 *bufp = (u32 *)(buf + reg); 2697 2698 /* 2699 * Iterate across the register range filling in the register 2700 * buffer but don't write past the end of the register buffer. 2701 */ 2702 while (reg <= last_reg && bufp < buf_end) { 2703 *bufp++ = t4_read_reg(adap, reg); 2704 reg += sizeof(u32); 2705 } 2706 } 2707 } 2708 2709 /* 2710 * Partial EEPROM Vital Product Data structure. The VPD starts with one ID 2711 * header followed by one or more VPD-R sections, each with its own header. 2712 */ 2713 struct t4_vpd_hdr { 2714 u8 id_tag; 2715 u8 id_len[2]; 2716 u8 id_data[ID_LEN]; 2717 }; 2718 2719 struct t4_vpdr_hdr { 2720 u8 vpdr_tag; 2721 u8 vpdr_len[2]; 2722 }; 2723 2724 /* 2725 * EEPROM reads take a few tens of us while writes can take a bit over 5 ms. 2726 */ 2727 #define EEPROM_DELAY 10 /* 10us per poll spin */ 2728 #define EEPROM_MAX_POLL 5000 /* x 5000 == 50ms */ 2729 2730 #define EEPROM_STAT_ADDR 0x7bfc 2731 #define VPD_SIZE 0x800 2732 #define VPD_BASE 0x400 2733 #define VPD_BASE_OLD 0 2734 #define VPD_LEN 1024 2735 #define VPD_INFO_FLD_HDR_SIZE 3 2736 #define CHELSIO_VPD_UNIQUE_ID 0x82 2737 2738 /* 2739 * Small utility function to wait till any outstanding VPD Access is complete. 2740 * We have a per-adapter state variable "VPD Busy" to indicate when we have a 2741 * VPD Access in flight. This allows us to handle the problem of having a 2742 * previous VPD Access time out and prevent an attempt to inject a new VPD 2743 * Request before any in-flight VPD reguest has completed. 2744 */ 2745 static int t4_seeprom_wait(struct adapter *adapter) 2746 { 2747 unsigned int base = adapter->params.pci.vpd_cap_addr; 2748 int max_poll; 2749 2750 /* 2751 * If no VPD Access is in flight, we can just return success right 2752 * away. 2753 */ 2754 if (!adapter->vpd_busy) 2755 return 0; 2756 2757 /* 2758 * Poll the VPD Capability Address/Flag register waiting for it 2759 * to indicate that the operation is complete. 2760 */ 2761 max_poll = EEPROM_MAX_POLL; 2762 do { 2763 u16 val; 2764 2765 udelay(EEPROM_DELAY); 2766 t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val); 2767 2768 /* 2769 * If the operation is complete, mark the VPD as no longer 2770 * busy and return success. 2771 */ 2772 if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) { 2773 adapter->vpd_busy = 0; 2774 return 0; 2775 } 2776 } while (--max_poll); 2777 2778 /* 2779 * Failure! Note that we leave the VPD Busy status set in order to 2780 * avoid pushing a new VPD Access request into the VPD Capability till 2781 * the current operation eventually succeeds. It's a bug to issue a 2782 * new request when an existing request is in flight and will result 2783 * in corrupt hardware state. 2784 */ 2785 return -ETIMEDOUT; 2786 } 2787 2788 /** 2789 * t4_seeprom_read - read a serial EEPROM location 2790 * @adapter: adapter to read 2791 * @addr: EEPROM virtual address 2792 * @data: where to store the read data 2793 * 2794 * Read a 32-bit word from a location in serial EEPROM using the card's PCI 2795 * VPD capability. Note that this function must be called with a virtual 2796 * address. 2797 */ 2798 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data) 2799 { 2800 unsigned int base = adapter->params.pci.vpd_cap_addr; 2801 int ret; 2802 2803 /* 2804 * VPD Accesses must alway be 4-byte aligned! 2805 */ 2806 if (addr >= EEPROMVSIZE || (addr & 3)) 2807 return -EINVAL; 2808 2809 /* 2810 * Wait for any previous operation which may still be in flight to 2811 * complete. 2812 */ 2813 ret = t4_seeprom_wait(adapter); 2814 if (ret) { 2815 CH_ERR(adapter, "VPD still busy from previous operation\n"); 2816 return ret; 2817 } 2818 2819 /* 2820 * Issue our new VPD Read request, mark the VPD as being busy and wait 2821 * for our request to complete. If it doesn't complete, note the 2822 * error and return it to our caller. Note that we do not reset the 2823 * VPD Busy status! 2824 */ 2825 t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr); 2826 adapter->vpd_busy = 1; 2827 adapter->vpd_flag = PCI_VPD_ADDR_F; 2828 ret = t4_seeprom_wait(adapter); 2829 if (ret) { 2830 CH_ERR(adapter, "VPD read of address %#x failed\n", addr); 2831 return ret; 2832 } 2833 2834 /* 2835 * Grab the returned data, swizzle it into our endianness and 2836 * return success. 2837 */ 2838 t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data); 2839 *data = le32_to_cpu(*data); 2840 return 0; 2841 } 2842 2843 /** 2844 * t4_seeprom_write - write a serial EEPROM location 2845 * @adapter: adapter to write 2846 * @addr: virtual EEPROM address 2847 * @data: value to write 2848 * 2849 * Write a 32-bit word to a location in serial EEPROM using the card's PCI 2850 * VPD capability. Note that this function must be called with a virtual 2851 * address. 2852 */ 2853 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data) 2854 { 2855 unsigned int base = adapter->params.pci.vpd_cap_addr; 2856 int ret; 2857 u32 stats_reg; 2858 int max_poll; 2859 2860 /* 2861 * VPD Accesses must alway be 4-byte aligned! 2862 */ 2863 if (addr >= EEPROMVSIZE || (addr & 3)) 2864 return -EINVAL; 2865 2866 /* 2867 * Wait for any previous operation which may still be in flight to 2868 * complete. 2869 */ 2870 ret = t4_seeprom_wait(adapter); 2871 if (ret) { 2872 CH_ERR(adapter, "VPD still busy from previous operation\n"); 2873 return ret; 2874 } 2875 2876 /* 2877 * Issue our new VPD Read request, mark the VPD as being busy and wait 2878 * for our request to complete. If it doesn't complete, note the 2879 * error and return it to our caller. Note that we do not reset the 2880 * VPD Busy status! 2881 */ 2882 t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 2883 cpu_to_le32(data)); 2884 t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, 2885 (u16)addr | PCI_VPD_ADDR_F); 2886 adapter->vpd_busy = 1; 2887 adapter->vpd_flag = 0; 2888 ret = t4_seeprom_wait(adapter); 2889 if (ret) { 2890 CH_ERR(adapter, "VPD write of address %#x failed\n", addr); 2891 return ret; 2892 } 2893 2894 /* 2895 * Reset PCI_VPD_DATA register after a transaction and wait for our 2896 * request to complete. If it doesn't complete, return error. 2897 */ 2898 t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0); 2899 max_poll = EEPROM_MAX_POLL; 2900 do { 2901 udelay(EEPROM_DELAY); 2902 t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg); 2903 } while ((stats_reg & 0x1) && --max_poll); 2904 if (!max_poll) 2905 return -ETIMEDOUT; 2906 2907 /* Return success! */ 2908 return 0; 2909 } 2910 2911 /** 2912 * t4_eeprom_ptov - translate a physical EEPROM address to virtual 2913 * @phys_addr: the physical EEPROM address 2914 * @fn: the PCI function number 2915 * @sz: size of function-specific area 2916 * 2917 * Translate a physical EEPROM address to virtual. The first 1K is 2918 * accessed through virtual addresses starting at 31K, the rest is 2919 * accessed through virtual addresses starting at 0. 2920 * 2921 * The mapping is as follows: 2922 * [0..1K) -> [31K..32K) 2923 * [1K..1K+A) -> [ES-A..ES) 2924 * [1K+A..ES) -> [0..ES-A-1K) 2925 * 2926 * where A = @fn * @sz, and ES = EEPROM size. 2927 */ 2928 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) 2929 { 2930 fn *= sz; 2931 if (phys_addr < 1024) 2932 return phys_addr + (31 << 10); 2933 if (phys_addr < 1024 + fn) 2934 return EEPROMSIZE - fn + phys_addr - 1024; 2935 if (phys_addr < EEPROMSIZE) 2936 return phys_addr - 1024 - fn; 2937 return -EINVAL; 2938 } 2939 2940 /** 2941 * t4_seeprom_wp - enable/disable EEPROM write protection 2942 * @adapter: the adapter 2943 * @enable: whether to enable or disable write protection 2944 * 2945 * Enables or disables write protection on the serial EEPROM. 2946 */ 2947 int t4_seeprom_wp(struct adapter *adapter, int enable) 2948 { 2949 return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0); 2950 } 2951 2952 /** 2953 * get_vpd_keyword_val - Locates an information field keyword in the VPD 2954 * @vpd: Pointer to buffered vpd data structure 2955 * @kw: The keyword to search for 2956 * @region: VPD region to search (starting from 0) 2957 * 2958 * Returns the value of the information field keyword or 2959 * -ENOENT otherwise. 2960 */ 2961 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region) 2962 { 2963 int i, tag; 2964 unsigned int offset, len; 2965 const struct t4_vpdr_hdr *vpdr; 2966 2967 offset = sizeof(struct t4_vpd_hdr); 2968 vpdr = (const void *)(vpd + offset); 2969 tag = vpdr->vpdr_tag; 2970 len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8); 2971 while (region--) { 2972 offset += sizeof(struct t4_vpdr_hdr) + len; 2973 vpdr = (const void *)(vpd + offset); 2974 if (++tag != vpdr->vpdr_tag) 2975 return -ENOENT; 2976 len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8); 2977 } 2978 offset += sizeof(struct t4_vpdr_hdr); 2979 2980 if (offset + len > VPD_LEN) { 2981 return -ENOENT; 2982 } 2983 2984 for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) { 2985 if (memcmp(vpd + i , kw , 2) == 0){ 2986 i += VPD_INFO_FLD_HDR_SIZE; 2987 return i; 2988 } 2989 2990 i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2]; 2991 } 2992 2993 return -ENOENT; 2994 } 2995 2996 2997 /** 2998 * get_vpd_params - read VPD parameters from VPD EEPROM 2999 * @adapter: adapter to read 3000 * @p: where to store the parameters 3001 * @vpd: caller provided temporary space to read the VPD into 3002 * 3003 * Reads card parameters stored in VPD EEPROM. 3004 */ 3005 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p, 3006 uint16_t device_id, u32 *buf) 3007 { 3008 int i, ret, addr; 3009 int ec, sn, pn, na, md; 3010 u8 csum; 3011 const u8 *vpd = (const u8 *)buf; 3012 3013 /* 3014 * Card information normally starts at VPD_BASE but early cards had 3015 * it at 0. 3016 */ 3017 ret = t4_seeprom_read(adapter, VPD_BASE, buf); 3018 if (ret) 3019 return (ret); 3020 3021 /* 3022 * The VPD shall have a unique identifier specified by the PCI SIG. 3023 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD 3024 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software 3025 * is expected to automatically put this entry at the 3026 * beginning of the VPD. 3027 */ 3028 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD; 3029 3030 for (i = 0; i < VPD_LEN; i += 4) { 3031 ret = t4_seeprom_read(adapter, addr + i, buf++); 3032 if (ret) 3033 return ret; 3034 } 3035 3036 #define FIND_VPD_KW(var,name) do { \ 3037 var = get_vpd_keyword_val(vpd, name, 0); \ 3038 if (var < 0) { \ 3039 CH_ERR(adapter, "missing VPD keyword " name "\n"); \ 3040 return -EINVAL; \ 3041 } \ 3042 } while (0) 3043 3044 FIND_VPD_KW(i, "RV"); 3045 for (csum = 0; i >= 0; i--) 3046 csum += vpd[i]; 3047 3048 if (csum) { 3049 CH_ERR(adapter, 3050 "corrupted VPD EEPROM, actual csum %u\n", csum); 3051 return -EINVAL; 3052 } 3053 3054 FIND_VPD_KW(ec, "EC"); 3055 FIND_VPD_KW(sn, "SN"); 3056 FIND_VPD_KW(pn, "PN"); 3057 FIND_VPD_KW(na, "NA"); 3058 #undef FIND_VPD_KW 3059 3060 memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN); 3061 strstrip(p->id); 3062 memcpy(p->ec, vpd + ec, EC_LEN); 3063 strstrip(p->ec); 3064 i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2]; 3065 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 3066 strstrip(p->sn); 3067 i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2]; 3068 memcpy(p->pn, vpd + pn, min(i, PN_LEN)); 3069 strstrip((char *)p->pn); 3070 i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2]; 3071 memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); 3072 strstrip((char *)p->na); 3073 3074 if (device_id & 0x80) 3075 return 0; /* Custom card */ 3076 3077 md = get_vpd_keyword_val(vpd, "VF", 1); 3078 if (md < 0) { 3079 snprintf(p->md, sizeof(p->md), "unknown"); 3080 } else { 3081 i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2]; 3082 memcpy(p->md, vpd + md, min(i, MD_LEN)); 3083 strstrip((char *)p->md); 3084 } 3085 3086 return 0; 3087 } 3088 3089 /* serial flash and firmware constants and flash config file constants */ 3090 enum { 3091 SF_ATTEMPTS = 10, /* max retries for SF operations */ 3092 3093 /* flash command opcodes */ 3094 SF_PROG_PAGE = 2, /* program 256B page */ 3095 SF_WR_DISABLE = 4, /* disable writes */ 3096 SF_RD_STATUS = 5, /* read status register */ 3097 SF_WR_ENABLE = 6, /* enable writes */ 3098 SF_RD_DATA_FAST = 0xb, /* read flash */ 3099 SF_RD_ID = 0x9f, /* read ID */ 3100 SF_ERASE_SECTOR = 0xd8, /* erase 64KB sector */ 3101 }; 3102 3103 /** 3104 * sf1_read - read data from the serial flash 3105 * @adapter: the adapter 3106 * @byte_cnt: number of bytes to read 3107 * @cont: whether another operation will be chained 3108 * @lock: whether to lock SF for PL access only 3109 * @valp: where to store the read data 3110 * 3111 * Reads up to 4 bytes of data from the serial flash. The location of 3112 * the read needs to be specified prior to calling this by issuing the 3113 * appropriate commands to the serial flash. 3114 */ 3115 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 3116 int lock, u32 *valp) 3117 { 3118 int ret; 3119 3120 if (!byte_cnt || byte_cnt > 4) 3121 return -EINVAL; 3122 if (t4_read_reg(adapter, A_SF_OP) & F_BUSY) 3123 return -EBUSY; 3124 t4_write_reg(adapter, A_SF_OP, 3125 V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1)); 3126 ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5); 3127 if (!ret) 3128 *valp = t4_read_reg(adapter, A_SF_DATA); 3129 return ret; 3130 } 3131 3132 /** 3133 * sf1_write - write data to the serial flash 3134 * @adapter: the adapter 3135 * @byte_cnt: number of bytes to write 3136 * @cont: whether another operation will be chained 3137 * @lock: whether to lock SF for PL access only 3138 * @val: value to write 3139 * 3140 * Writes up to 4 bytes of data to the serial flash. The location of 3141 * the write needs to be specified prior to calling this by issuing the 3142 * appropriate commands to the serial flash. 3143 */ 3144 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 3145 int lock, u32 val) 3146 { 3147 if (!byte_cnt || byte_cnt > 4) 3148 return -EINVAL; 3149 if (t4_read_reg(adapter, A_SF_OP) & F_BUSY) 3150 return -EBUSY; 3151 t4_write_reg(adapter, A_SF_DATA, val); 3152 t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) | 3153 V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1)); 3154 return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5); 3155 } 3156 3157 /** 3158 * flash_wait_op - wait for a flash operation to complete 3159 * @adapter: the adapter 3160 * @attempts: max number of polls of the status register 3161 * @delay: delay between polls in ms 3162 * 3163 * Wait for a flash operation to complete by polling the status register. 3164 */ 3165 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 3166 { 3167 int ret; 3168 u32 status; 3169 3170 while (1) { 3171 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 3172 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 3173 return ret; 3174 if (!(status & 1)) 3175 return 0; 3176 if (--attempts == 0) 3177 return -EAGAIN; 3178 if (delay) 3179 msleep(delay); 3180 } 3181 } 3182 3183 /** 3184 * t4_read_flash - read words from serial flash 3185 * @adapter: the adapter 3186 * @addr: the start address for the read 3187 * @nwords: how many 32-bit words to read 3188 * @data: where to store the read data 3189 * @byte_oriented: whether to store data as bytes or as words 3190 * 3191 * Read the specified number of 32-bit words from the serial flash. 3192 * If @byte_oriented is set the read data is stored as a byte array 3193 * (i.e., big-endian), otherwise as 32-bit words in the platform's 3194 * natural endianness. 3195 */ 3196 int t4_read_flash(struct adapter *adapter, unsigned int addr, 3197 unsigned int nwords, u32 *data, int byte_oriented) 3198 { 3199 int ret; 3200 3201 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 3202 return -EINVAL; 3203 3204 addr = swab32(addr) | SF_RD_DATA_FAST; 3205 3206 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 3207 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 3208 return ret; 3209 3210 for ( ; nwords; nwords--, data++) { 3211 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 3212 if (nwords == 1) 3213 t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ 3214 if (ret) 3215 return ret; 3216 if (byte_oriented) 3217 *data = (__force __u32)(cpu_to_be32(*data)); 3218 } 3219 return 0; 3220 } 3221 3222 /** 3223 * t4_write_flash - write up to a page of data to the serial flash 3224 * @adapter: the adapter 3225 * @addr: the start address to write 3226 * @n: length of data to write in bytes 3227 * @data: the data to write 3228 * @byte_oriented: whether to store data as bytes or as words 3229 * 3230 * Writes up to a page of data (256 bytes) to the serial flash starting 3231 * at the given address. All the data must be written to the same page. 3232 * If @byte_oriented is set the write data is stored as byte stream 3233 * (i.e. matches what on disk), otherwise in big-endian. 3234 */ 3235 int t4_write_flash(struct adapter *adapter, unsigned int addr, 3236 unsigned int n, const u8 *data, int byte_oriented) 3237 { 3238 int ret; 3239 u32 buf[SF_PAGE_SIZE / 4]; 3240 unsigned int i, c, left, val, offset = addr & 0xff; 3241 3242 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 3243 return -EINVAL; 3244 3245 val = swab32(addr) | SF_PROG_PAGE; 3246 3247 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3248 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 3249 goto unlock; 3250 3251 for (left = n; left; left -= c) { 3252 c = min(left, 4U); 3253 for (val = 0, i = 0; i < c; ++i) 3254 val = (val << 8) + *data++; 3255 3256 if (!byte_oriented) 3257 val = cpu_to_be32(val); 3258 3259 ret = sf1_write(adapter, c, c != left, 1, val); 3260 if (ret) 3261 goto unlock; 3262 } 3263 ret = flash_wait_op(adapter, 8, 1); 3264 if (ret) 3265 goto unlock; 3266 3267 t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ 3268 3269 /* Read the page to verify the write succeeded */ 3270 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 3271 byte_oriented); 3272 if (ret) 3273 return ret; 3274 3275 if (memcmp(data - n, (u8 *)buf + offset, n)) { 3276 CH_ERR(adapter, 3277 "failed to correctly write the flash page at %#x\n", 3278 addr); 3279 return -EIO; 3280 } 3281 return 0; 3282 3283 unlock: 3284 t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ 3285 return ret; 3286 } 3287 3288 /** 3289 * t4_get_fw_version - read the firmware version 3290 * @adapter: the adapter 3291 * @vers: where to place the version 3292 * 3293 * Reads the FW version from flash. 3294 */ 3295 int t4_get_fw_version(struct adapter *adapter, u32 *vers) 3296 { 3297 return t4_read_flash(adapter, FLASH_FW_START + 3298 offsetof(struct fw_hdr, fw_ver), 1, 3299 vers, 0); 3300 } 3301 3302 /** 3303 * t4_get_fw_hdr - read the firmware header 3304 * @adapter: the adapter 3305 * @hdr: where to place the version 3306 * 3307 * Reads the FW header from flash into caller provided buffer. 3308 */ 3309 int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr) 3310 { 3311 return t4_read_flash(adapter, FLASH_FW_START, 3312 sizeof (*hdr) / sizeof (uint32_t), (uint32_t *)hdr, 1); 3313 } 3314 3315 /** 3316 * t4_get_bs_version - read the firmware bootstrap version 3317 * @adapter: the adapter 3318 * @vers: where to place the version 3319 * 3320 * Reads the FW Bootstrap version from flash. 3321 */ 3322 int t4_get_bs_version(struct adapter *adapter, u32 *vers) 3323 { 3324 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + 3325 offsetof(struct fw_hdr, fw_ver), 1, 3326 vers, 0); 3327 } 3328 3329 /** 3330 * t4_get_tp_version - read the TP microcode version 3331 * @adapter: the adapter 3332 * @vers: where to place the version 3333 * 3334 * Reads the TP microcode version from flash. 3335 */ 3336 int t4_get_tp_version(struct adapter *adapter, u32 *vers) 3337 { 3338 return t4_read_flash(adapter, FLASH_FW_START + 3339 offsetof(struct fw_hdr, tp_microcode_ver), 3340 1, vers, 0); 3341 } 3342 3343 /** 3344 * t4_get_exprom_version - return the Expansion ROM version (if any) 3345 * @adapter: the adapter 3346 * @vers: where to place the version 3347 * 3348 * Reads the Expansion ROM header from FLASH and returns the version 3349 * number (if present) through the @vers return value pointer. We return 3350 * this in the Firmware Version Format since it's convenient. Return 3351 * 0 on success, -ENOENT if no Expansion ROM is present. 3352 */ 3353 int t4_get_exprom_version(struct adapter *adapter, u32 *vers) 3354 { 3355 struct exprom_header { 3356 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 3357 unsigned char hdr_ver[4]; /* Expansion ROM version */ 3358 } *hdr; 3359 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 3360 sizeof(u32))]; 3361 int ret; 3362 3363 ret = t4_read_flash(adapter, FLASH_EXP_ROM_START, 3364 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 3365 0); 3366 if (ret) 3367 return ret; 3368 3369 hdr = (struct exprom_header *)exprom_header_buf; 3370 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 3371 return -ENOENT; 3372 3373 *vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) | 3374 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) | 3375 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) | 3376 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3])); 3377 return 0; 3378 } 3379 3380 /** 3381 * t4_get_scfg_version - return the Serial Configuration version 3382 * @adapter: the adapter 3383 * @vers: where to place the version 3384 * 3385 * Reads the Serial Configuration Version via the Firmware interface 3386 * (thus this can only be called once we're ready to issue Firmware 3387 * commands). The format of the Serial Configuration version is 3388 * adapter specific. Returns 0 on success, an error on failure. 3389 * 3390 * Note that early versions of the Firmware didn't include the ability 3391 * to retrieve the Serial Configuration version, so we zero-out the 3392 * return-value parameter in that case to avoid leaving it with 3393 * garbage in it. 3394 * 3395 * Also note that the Firmware will return its cached copy of the Serial 3396 * Initialization Revision ID, not the actual Revision ID as written in 3397 * the Serial EEPROM. This is only an issue if a new VPD has been written 3398 * and the Firmware/Chip haven't yet gone through a RESET sequence. So 3399 * it's best to defer calling this routine till after a FW_RESET_CMD has 3400 * been issued if the Host Driver will be performing a full adapter 3401 * initialization. 3402 */ 3403 int t4_get_scfg_version(struct adapter *adapter, u32 *vers) 3404 { 3405 u32 scfgrev_param; 3406 int ret; 3407 3408 scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3409 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV)); 3410 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3411 1, &scfgrev_param, vers); 3412 if (ret) 3413 *vers = 0; 3414 return ret; 3415 } 3416 3417 /** 3418 * t4_get_vpd_version - return the VPD version 3419 * @adapter: the adapter 3420 * @vers: where to place the version 3421 * 3422 * Reads the VPD via the Firmware interface (thus this can only be called 3423 * once we're ready to issue Firmware commands). The format of the 3424 * VPD version is adapter specific. Returns 0 on success, an error on 3425 * failure. 3426 * 3427 * Note that early versions of the Firmware didn't include the ability 3428 * to retrieve the VPD version, so we zero-out the return-value parameter 3429 * in that case to avoid leaving it with garbage in it. 3430 * 3431 * Also note that the Firmware will return its cached copy of the VPD 3432 * Revision ID, not the actual Revision ID as written in the Serial 3433 * EEPROM. This is only an issue if a new VPD has been written and the 3434 * Firmware/Chip haven't yet gone through a RESET sequence. So it's best 3435 * to defer calling this routine till after a FW_RESET_CMD has been issued 3436 * if the Host Driver will be performing a full adapter initialization. 3437 */ 3438 int t4_get_vpd_version(struct adapter *adapter, u32 *vers) 3439 { 3440 u32 vpdrev_param; 3441 int ret; 3442 3443 vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3444 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV)); 3445 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3446 1, &vpdrev_param, vers); 3447 if (ret) 3448 *vers = 0; 3449 return ret; 3450 } 3451 3452 /** 3453 * t4_get_version_info - extract various chip/firmware version information 3454 * @adapter: the adapter 3455 * 3456 * Reads various chip/firmware version numbers and stores them into the 3457 * adapter Adapter Parameters structure. If any of the efforts fails 3458 * the first failure will be returned, but all of the version numbers 3459 * will be read. 3460 */ 3461 int t4_get_version_info(struct adapter *adapter) 3462 { 3463 int ret = 0; 3464 3465 #define FIRST_RET(__getvinfo) \ 3466 do { \ 3467 int __ret = __getvinfo; \ 3468 if (__ret && !ret) \ 3469 ret = __ret; \ 3470 } while (0) 3471 3472 FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers)); 3473 FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers)); 3474 FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers)); 3475 FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers)); 3476 FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers)); 3477 FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers)); 3478 3479 #undef FIRST_RET 3480 3481 return ret; 3482 } 3483 3484 /** 3485 * t4_flash_erase_sectors - erase a range of flash sectors 3486 * @adapter: the adapter 3487 * @start: the first sector to erase 3488 * @end: the last sector to erase 3489 * 3490 * Erases the sectors in the given inclusive range. 3491 */ 3492 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 3493 { 3494 int ret = 0; 3495 3496 if (end >= adapter->params.sf_nsec) 3497 return -EINVAL; 3498 3499 while (start <= end) { 3500 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3501 (ret = sf1_write(adapter, 4, 0, 1, 3502 SF_ERASE_SECTOR | (start << 8))) != 0 || 3503 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 3504 CH_ERR(adapter, 3505 "erase of flash sector %d failed, error %d\n", 3506 start, ret); 3507 break; 3508 } 3509 start++; 3510 } 3511 t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ 3512 return ret; 3513 } 3514 3515 /** 3516 * t4_flash_cfg_addr - return the address of the flash configuration file 3517 * @adapter: the adapter 3518 * 3519 * Return the address within the flash where the Firmware Configuration 3520 * File is stored, or an error if the device FLASH is too small to contain 3521 * a Firmware Configuration File. 3522 */ 3523 int t4_flash_cfg_addr(struct adapter *adapter) 3524 { 3525 /* 3526 * If the device FLASH isn't large enough to hold a Firmware 3527 * Configuration File, return an error. 3528 */ 3529 if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE) 3530 return -ENOSPC; 3531 3532 return FLASH_CFG_START; 3533 } 3534 3535 /* 3536 * Return TRUE if the specified firmware matches the adapter. I.e. T4 3537 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 3538 * and emit an error message for mismatched firmware to save our caller the 3539 * effort ... 3540 */ 3541 static int t4_fw_matches_chip(struct adapter *adap, 3542 const struct fw_hdr *hdr) 3543 { 3544 /* 3545 * The expression below will return FALSE for any unsupported adapter 3546 * which will keep us "honest" in the future ... 3547 */ 3548 if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) || 3549 (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) || 3550 (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6)) 3551 return 1; 3552 3553 CH_ERR(adap, 3554 "FW image (%d) is not suitable for this adapter (%d)\n", 3555 hdr->chip, chip_id(adap)); 3556 return 0; 3557 } 3558 3559 /** 3560 * t4_load_fw - download firmware 3561 * @adap: the adapter 3562 * @fw_data: the firmware image to write 3563 * @size: image size 3564 * 3565 * Write the supplied firmware image to the card's serial flash. 3566 */ 3567 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 3568 { 3569 u32 csum; 3570 int ret, addr; 3571 unsigned int i; 3572 u8 first_page[SF_PAGE_SIZE]; 3573 const u32 *p = (const u32 *)fw_data; 3574 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 3575 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 3576 unsigned int fw_start_sec; 3577 unsigned int fw_start; 3578 unsigned int fw_size; 3579 3580 if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) { 3581 fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC; 3582 fw_start = FLASH_FWBOOTSTRAP_START; 3583 fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE; 3584 } else { 3585 fw_start_sec = FLASH_FW_START_SEC; 3586 fw_start = FLASH_FW_START; 3587 fw_size = FLASH_FW_MAX_SIZE; 3588 } 3589 3590 if (!size) { 3591 CH_ERR(adap, "FW image has no data\n"); 3592 return -EINVAL; 3593 } 3594 if (size & 511) { 3595 CH_ERR(adap, 3596 "FW image size not multiple of 512 bytes\n"); 3597 return -EINVAL; 3598 } 3599 if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) { 3600 CH_ERR(adap, 3601 "FW image size differs from size in FW header\n"); 3602 return -EINVAL; 3603 } 3604 if (size > fw_size) { 3605 CH_ERR(adap, "FW image too large, max is %u bytes\n", 3606 fw_size); 3607 return -EFBIG; 3608 } 3609 if (!t4_fw_matches_chip(adap, hdr)) 3610 return -EINVAL; 3611 3612 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 3613 csum += be32_to_cpu(p[i]); 3614 3615 if (csum != 0xffffffff) { 3616 CH_ERR(adap, 3617 "corrupted firmware image, checksum %#x\n", csum); 3618 return -EINVAL; 3619 } 3620 3621 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 3622 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 3623 if (ret) 3624 goto out; 3625 3626 /* 3627 * We write the correct version at the end so the driver can see a bad 3628 * version if the FW write fails. Start by writing a copy of the 3629 * first page with a bad version. 3630 */ 3631 memcpy(first_page, fw_data, SF_PAGE_SIZE); 3632 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); 3633 ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1); 3634 if (ret) 3635 goto out; 3636 3637 addr = fw_start; 3638 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 3639 addr += SF_PAGE_SIZE; 3640 fw_data += SF_PAGE_SIZE; 3641 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1); 3642 if (ret) 3643 goto out; 3644 } 3645 3646 ret = t4_write_flash(adap, 3647 fw_start + offsetof(struct fw_hdr, fw_ver), 3648 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1); 3649 out: 3650 if (ret) 3651 CH_ERR(adap, "firmware download failed, error %d\n", 3652 ret); 3653 return ret; 3654 } 3655 3656 /** 3657 * t4_fwcache - firmware cache operation 3658 * @adap: the adapter 3659 * @op : the operation (flush or flush and invalidate) 3660 */ 3661 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 3662 { 3663 struct fw_params_cmd c; 3664 3665 memset(&c, 0, sizeof(c)); 3666 c.op_to_vfn = 3667 cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) | 3668 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 3669 V_FW_PARAMS_CMD_PFN(adap->pf) | 3670 V_FW_PARAMS_CMD_VFN(0)); 3671 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 3672 c.param[0].mnem = 3673 cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3674 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE)); 3675 c.param[0].val = (__force __be32)op; 3676 3677 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 3678 } 3679 3680 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, 3681 unsigned int *pif_req_wrptr, 3682 unsigned int *pif_rsp_wrptr) 3683 { 3684 int i, j; 3685 u32 cfg, val, req, rsp; 3686 3687 cfg = t4_read_reg(adap, A_CIM_DEBUGCFG); 3688 if (cfg & F_LADBGEN) 3689 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN); 3690 3691 val = t4_read_reg(adap, A_CIM_DEBUGSTS); 3692 req = G_POLADBGWRPTR(val); 3693 rsp = G_PILADBGWRPTR(val); 3694 if (pif_req_wrptr) 3695 *pif_req_wrptr = req; 3696 if (pif_rsp_wrptr) 3697 *pif_rsp_wrptr = rsp; 3698 3699 for (i = 0; i < CIM_PIFLA_SIZE; i++) { 3700 for (j = 0; j < 6; j++) { 3701 t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) | 3702 V_PILADBGRDPTR(rsp)); 3703 *pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA); 3704 *pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA); 3705 req++; 3706 rsp++; 3707 } 3708 req = (req + 2) & M_POLADBGRDPTR; 3709 rsp = (rsp + 2) & M_PILADBGRDPTR; 3710 } 3711 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg); 3712 } 3713 3714 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) 3715 { 3716 u32 cfg; 3717 int i, j, idx; 3718 3719 cfg = t4_read_reg(adap, A_CIM_DEBUGCFG); 3720 if (cfg & F_LADBGEN) 3721 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN); 3722 3723 for (i = 0; i < CIM_MALA_SIZE; i++) { 3724 for (j = 0; j < 5; j++) { 3725 idx = 8 * i + j; 3726 t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) | 3727 V_PILADBGRDPTR(idx)); 3728 *ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA); 3729 *ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA); 3730 } 3731 } 3732 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg); 3733 } 3734 3735 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 3736 { 3737 unsigned int i, j; 3738 3739 for (i = 0; i < 8; i++) { 3740 u32 *p = la_buf + i; 3741 3742 t4_write_reg(adap, A_ULP_RX_LA_CTL, i); 3743 j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR); 3744 t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j); 3745 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 3746 *p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA); 3747 } 3748 } 3749 3750 /** 3751 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits 3752 * @caps16: a 16-bit Port Capabilities value 3753 * 3754 * Returns the equivalent 32-bit Port Capabilities value. 3755 */ 3756 static uint32_t fwcaps16_to_caps32(uint16_t caps16) 3757 { 3758 uint32_t caps32 = 0; 3759 3760 #define CAP16_TO_CAP32(__cap) \ 3761 do { \ 3762 if (caps16 & FW_PORT_CAP_##__cap) \ 3763 caps32 |= FW_PORT_CAP32_##__cap; \ 3764 } while (0) 3765 3766 CAP16_TO_CAP32(SPEED_100M); 3767 CAP16_TO_CAP32(SPEED_1G); 3768 CAP16_TO_CAP32(SPEED_25G); 3769 CAP16_TO_CAP32(SPEED_10G); 3770 CAP16_TO_CAP32(SPEED_40G); 3771 CAP16_TO_CAP32(SPEED_100G); 3772 CAP16_TO_CAP32(FC_RX); 3773 CAP16_TO_CAP32(FC_TX); 3774 CAP16_TO_CAP32(ANEG); 3775 CAP16_TO_CAP32(FORCE_PAUSE); 3776 CAP16_TO_CAP32(MDIAUTO); 3777 CAP16_TO_CAP32(MDISTRAIGHT); 3778 CAP16_TO_CAP32(FEC_RS); 3779 CAP16_TO_CAP32(FEC_BASER_RS); 3780 CAP16_TO_CAP32(802_3_PAUSE); 3781 CAP16_TO_CAP32(802_3_ASM_DIR); 3782 3783 #undef CAP16_TO_CAP32 3784 3785 return caps32; 3786 } 3787 3788 /** 3789 * fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits 3790 * @caps32: a 32-bit Port Capabilities value 3791 * 3792 * Returns the equivalent 16-bit Port Capabilities value. Note that 3793 * not all 32-bit Port Capabilities can be represented in the 16-bit 3794 * Port Capabilities and some fields/values may not make it. 3795 */ 3796 static uint16_t fwcaps32_to_caps16(uint32_t caps32) 3797 { 3798 uint16_t caps16 = 0; 3799 3800 #define CAP32_TO_CAP16(__cap) \ 3801 do { \ 3802 if (caps32 & FW_PORT_CAP32_##__cap) \ 3803 caps16 |= FW_PORT_CAP_##__cap; \ 3804 } while (0) 3805 3806 CAP32_TO_CAP16(SPEED_100M); 3807 CAP32_TO_CAP16(SPEED_1G); 3808 CAP32_TO_CAP16(SPEED_10G); 3809 CAP32_TO_CAP16(SPEED_25G); 3810 CAP32_TO_CAP16(SPEED_40G); 3811 CAP32_TO_CAP16(SPEED_100G); 3812 CAP32_TO_CAP16(FC_RX); 3813 CAP32_TO_CAP16(FC_TX); 3814 CAP32_TO_CAP16(802_3_PAUSE); 3815 CAP32_TO_CAP16(802_3_ASM_DIR); 3816 CAP32_TO_CAP16(ANEG); 3817 CAP32_TO_CAP16(FORCE_PAUSE); 3818 CAP32_TO_CAP16(MDIAUTO); 3819 CAP32_TO_CAP16(MDISTRAIGHT); 3820 CAP32_TO_CAP16(FEC_RS); 3821 CAP32_TO_CAP16(FEC_BASER_RS); 3822 3823 #undef CAP32_TO_CAP16 3824 3825 return caps16; 3826 } 3827 3828 static bool 3829 is_bt(struct port_info *pi) 3830 { 3831 3832 return (pi->port_type == FW_PORT_TYPE_BT_SGMII || 3833 pi->port_type == FW_PORT_TYPE_BT_XFI || 3834 pi->port_type == FW_PORT_TYPE_BT_XAUI); 3835 } 3836 3837 static int8_t fwcap_to_fec(uint32_t caps, bool unset_means_none) 3838 { 3839 int8_t fec = 0; 3840 3841 if ((caps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC)) == 0) 3842 return (unset_means_none ? FEC_NONE : 0); 3843 3844 if (caps & FW_PORT_CAP32_FEC_RS) 3845 fec |= FEC_RS; 3846 if (caps & FW_PORT_CAP32_FEC_BASER_RS) 3847 fec |= FEC_BASER_RS; 3848 if (caps & FW_PORT_CAP32_FEC_NO_FEC) 3849 fec |= FEC_NONE; 3850 3851 return (fec); 3852 } 3853 3854 /* 3855 * Note that 0 is not translated to NO_FEC. 3856 */ 3857 static uint32_t fec_to_fwcap(int8_t fec) 3858 { 3859 uint32_t caps = 0; 3860 3861 /* Only real FECs allowed. */ 3862 MPASS((fec & ~M_FW_PORT_CAP32_FEC) == 0); 3863 3864 if (fec & FEC_RS) 3865 caps |= FW_PORT_CAP32_FEC_RS; 3866 if (fec & FEC_BASER_RS) 3867 caps |= FW_PORT_CAP32_FEC_BASER_RS; 3868 if (fec & FEC_NONE) 3869 caps |= FW_PORT_CAP32_FEC_NO_FEC; 3870 3871 return (caps); 3872 } 3873 3874 /** 3875 * t4_link_l1cfg - apply link configuration to MAC/PHY 3876 * @phy: the PHY to setup 3877 * @mac: the MAC to setup 3878 * @lc: the requested link configuration 3879 * 3880 * Set up a port's MAC and PHY according to a desired link configuration. 3881 * - If the PHY can auto-negotiate first decide what to advertise, then 3882 * enable/disable auto-negotiation as desired, and reset. 3883 * - If the PHY does not auto-negotiate just reset it. 3884 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 3885 * otherwise do it later based on the outcome of auto-negotiation. 3886 */ 3887 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port, 3888 struct link_config *lc) 3889 { 3890 struct fw_port_cmd c; 3891 unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO); 3892 unsigned int aneg, fc, fec, speed, rcap; 3893 3894 fc = 0; 3895 if (lc->requested_fc & PAUSE_RX) 3896 fc |= FW_PORT_CAP32_FC_RX; 3897 if (lc->requested_fc & PAUSE_TX) 3898 fc |= FW_PORT_CAP32_FC_TX; 3899 if (!(lc->requested_fc & PAUSE_AUTONEG)) 3900 fc |= FW_PORT_CAP32_FORCE_PAUSE; 3901 3902 if (lc->requested_aneg == AUTONEG_DISABLE) 3903 aneg = 0; 3904 else if (lc->requested_aneg == AUTONEG_ENABLE) 3905 aneg = FW_PORT_CAP32_ANEG; 3906 else 3907 aneg = lc->pcaps & FW_PORT_CAP32_ANEG; 3908 3909 if (aneg) { 3910 speed = lc->pcaps & 3911 V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED); 3912 } else if (lc->requested_speed != 0) 3913 speed = speed_to_fwcap(lc->requested_speed); 3914 else 3915 speed = fwcap_top_speed(lc->pcaps); 3916 3917 fec = 0; 3918 if (fec_supported(lc->pcaps)) { 3919 if (lc->requested_fec == FEC_AUTO) { 3920 if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC) { 3921 if (speed & FW_PORT_CAP32_SPEED_100G) { 3922 fec |= FW_PORT_CAP32_FEC_RS; 3923 fec |= FW_PORT_CAP32_FEC_NO_FEC; 3924 } else { 3925 fec |= FW_PORT_CAP32_FEC_RS; 3926 fec |= FW_PORT_CAP32_FEC_BASER_RS; 3927 fec |= FW_PORT_CAP32_FEC_NO_FEC; 3928 } 3929 } else { 3930 /* Set only 1b with old firmwares. */ 3931 fec |= fec_to_fwcap(lc->fec_hint); 3932 } 3933 } else { 3934 fec |= fec_to_fwcap(lc->requested_fec & 3935 M_FW_PORT_CAP32_FEC); 3936 if (lc->requested_fec & FEC_MODULE) 3937 fec |= fec_to_fwcap(lc->fec_hint); 3938 } 3939 3940 if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC) 3941 fec |= FW_PORT_CAP32_FORCE_FEC; 3942 else if (fec == FW_PORT_CAP32_FEC_NO_FEC) 3943 fec = 0; 3944 } 3945 3946 /* Force AN on for BT cards. */ 3947 if (is_bt(adap->port[adap->chan_map[port]])) 3948 aneg = lc->pcaps & FW_PORT_CAP32_ANEG; 3949 3950 rcap = aneg | speed | fc | fec; 3951 if ((rcap | lc->pcaps) != lc->pcaps) { 3952 #ifdef INVARIANTS 3953 CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x, removed 0x%x\n", rcap, 3954 lc->pcaps, rcap & (rcap ^ lc->pcaps)); 3955 #endif 3956 rcap &= lc->pcaps; 3957 } 3958 rcap |= mdi; 3959 3960 memset(&c, 0, sizeof(c)); 3961 c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) | 3962 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 3963 V_FW_PORT_CMD_PORTID(port)); 3964 if (adap->params.port_caps32) { 3965 c.action_to_len16 = 3966 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) | 3967 FW_LEN16(c)); 3968 c.u.l1cfg32.rcap32 = cpu_to_be32(rcap); 3969 } else { 3970 c.action_to_len16 = 3971 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) | 3972 FW_LEN16(c)); 3973 c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap)); 3974 } 3975 3976 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 3977 } 3978 3979 /** 3980 * t4_restart_aneg - restart autonegotiation 3981 * @adap: the adapter 3982 * @mbox: mbox to use for the FW command 3983 * @port: the port id 3984 * 3985 * Restarts autonegotiation for the selected port. 3986 */ 3987 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 3988 { 3989 struct fw_port_cmd c; 3990 3991 memset(&c, 0, sizeof(c)); 3992 c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) | 3993 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 3994 V_FW_PORT_CMD_PORTID(port)); 3995 c.action_to_len16 = 3996 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) | 3997 FW_LEN16(c)); 3998 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG); 3999 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4000 } 4001 4002 struct intr_details { 4003 u32 mask; 4004 const char *msg; 4005 }; 4006 4007 struct intr_action { 4008 u32 mask; 4009 int arg; 4010 bool (*action)(struct adapter *, int, bool); 4011 }; 4012 4013 #define NONFATAL_IF_DISABLED 1 4014 struct intr_info { 4015 const char *name; /* name of the INT_CAUSE register */ 4016 int cause_reg; /* INT_CAUSE register */ 4017 int enable_reg; /* INT_ENABLE register */ 4018 u32 fatal; /* bits that are fatal */ 4019 int flags; /* hints */ 4020 const struct intr_details *details; 4021 const struct intr_action *actions; 4022 }; 4023 4024 static inline char 4025 intr_alert_char(u32 cause, u32 enable, u32 fatal) 4026 { 4027 4028 if (cause & fatal) 4029 return ('!'); 4030 if (cause & enable) 4031 return ('*'); 4032 return ('-'); 4033 } 4034 4035 static void 4036 t4_show_intr_info(struct adapter *adap, const struct intr_info *ii, u32 cause) 4037 { 4038 u32 enable, fatal, leftover; 4039 const struct intr_details *details; 4040 char alert; 4041 4042 enable = t4_read_reg(adap, ii->enable_reg); 4043 if (ii->flags & NONFATAL_IF_DISABLED) 4044 fatal = ii->fatal & t4_read_reg(adap, ii->enable_reg); 4045 else 4046 fatal = ii->fatal; 4047 alert = intr_alert_char(cause, enable, fatal); 4048 CH_ALERT(adap, "%c %s 0x%x = 0x%08x, E 0x%08x, F 0x%08x\n", 4049 alert, ii->name, ii->cause_reg, cause, enable, fatal); 4050 4051 leftover = cause; 4052 for (details = ii->details; details && details->mask != 0; details++) { 4053 u32 msgbits = details->mask & cause; 4054 if (msgbits == 0) 4055 continue; 4056 alert = intr_alert_char(msgbits, enable, ii->fatal); 4057 CH_ALERT(adap, " %c [0x%08x] %s\n", alert, msgbits, 4058 details->msg); 4059 leftover &= ~msgbits; 4060 } 4061 if (leftover != 0 && leftover != cause) 4062 CH_ALERT(adap, " ? [0x%08x]\n", leftover); 4063 } 4064 4065 /* 4066 * Returns true for fatal error. 4067 */ 4068 static bool 4069 t4_handle_intr(struct adapter *adap, const struct intr_info *ii, 4070 u32 additional_cause, bool verbose) 4071 { 4072 u32 cause, fatal; 4073 bool rc; 4074 const struct intr_action *action; 4075 4076 /* 4077 * Read and display cause. Note that the top level PL_INT_CAUSE is a 4078 * bit special and we need to completely ignore the bits that are not in 4079 * PL_INT_ENABLE. 4080 */ 4081 cause = t4_read_reg(adap, ii->cause_reg); 4082 if (ii->cause_reg == A_PL_INT_CAUSE) 4083 cause &= t4_read_reg(adap, ii->enable_reg); 4084 if (verbose || cause != 0) 4085 t4_show_intr_info(adap, ii, cause); 4086 fatal = cause & ii->fatal; 4087 if (fatal != 0 && ii->flags & NONFATAL_IF_DISABLED) 4088 fatal &= t4_read_reg(adap, ii->enable_reg); 4089 cause |= additional_cause; 4090 if (cause == 0) 4091 return (false); 4092 4093 rc = fatal != 0; 4094 for (action = ii->actions; action && action->mask != 0; action++) { 4095 if (!(action->mask & cause)) 4096 continue; 4097 rc |= (action->action)(adap, action->arg, verbose); 4098 } 4099 4100 /* clear */ 4101 t4_write_reg(adap, ii->cause_reg, cause); 4102 (void)t4_read_reg(adap, ii->cause_reg); 4103 4104 return (rc); 4105 } 4106 4107 /* 4108 * Interrupt handler for the PCIE module. 4109 */ 4110 static bool pcie_intr_handler(struct adapter *adap, int arg, bool verbose) 4111 { 4112 static const struct intr_details sysbus_intr_details[] = { 4113 { F_RNPP, "RXNP array parity error" }, 4114 { F_RPCP, "RXPC array parity error" }, 4115 { F_RCIP, "RXCIF array parity error" }, 4116 { F_RCCP, "Rx completions control array parity error" }, 4117 { F_RFTP, "RXFT array parity error" }, 4118 { 0 } 4119 }; 4120 static const struct intr_info sysbus_intr_info = { 4121 .name = "PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS", 4122 .cause_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS, 4123 .enable_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_INTERRUPT_ENABLE, 4124 .fatal = F_RFTP | F_RCCP | F_RCIP | F_RPCP | F_RNPP, 4125 .flags = 0, 4126 .details = sysbus_intr_details, 4127 .actions = NULL, 4128 }; 4129 static const struct intr_details pcie_port_intr_details[] = { 4130 { F_TPCP, "TXPC array parity error" }, 4131 { F_TNPP, "TXNP array parity error" }, 4132 { F_TFTP, "TXFT array parity error" }, 4133 { F_TCAP, "TXCA array parity error" }, 4134 { F_TCIP, "TXCIF array parity error" }, 4135 { F_RCAP, "RXCA array parity error" }, 4136 { F_OTDD, "outbound request TLP discarded" }, 4137 { F_RDPE, "Rx data parity error" }, 4138 { F_TDUE, "Tx uncorrectable data error" }, 4139 { 0 } 4140 }; 4141 static const struct intr_info pcie_port_intr_info = { 4142 .name = "PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS", 4143 .cause_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS, 4144 .enable_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_INTERRUPT_ENABLE, 4145 .fatal = F_TPCP | F_TNPP | F_TFTP | F_TCAP | F_TCIP | F_RCAP | 4146 F_OTDD | F_RDPE | F_TDUE, 4147 .flags = 0, 4148 .details = pcie_port_intr_details, 4149 .actions = NULL, 4150 }; 4151 static const struct intr_details pcie_intr_details[] = { 4152 { F_MSIADDRLPERR, "MSI AddrL parity error" }, 4153 { F_MSIADDRHPERR, "MSI AddrH parity error" }, 4154 { F_MSIDATAPERR, "MSI data parity error" }, 4155 { F_MSIXADDRLPERR, "MSI-X AddrL parity error" }, 4156 { F_MSIXADDRHPERR, "MSI-X AddrH parity error" }, 4157 { F_MSIXDATAPERR, "MSI-X data parity error" }, 4158 { F_MSIXDIPERR, "MSI-X DI parity error" }, 4159 { F_PIOCPLPERR, "PCIe PIO completion FIFO parity error" }, 4160 { F_PIOREQPERR, "PCIe PIO request FIFO parity error" }, 4161 { F_TARTAGPERR, "PCIe target tag FIFO parity error" }, 4162 { F_CCNTPERR, "PCIe CMD channel count parity error" }, 4163 { F_CREQPERR, "PCIe CMD channel request parity error" }, 4164 { F_CRSPPERR, "PCIe CMD channel response parity error" }, 4165 { F_DCNTPERR, "PCIe DMA channel count parity error" }, 4166 { F_DREQPERR, "PCIe DMA channel request parity error" }, 4167 { F_DRSPPERR, "PCIe DMA channel response parity error" }, 4168 { F_HCNTPERR, "PCIe HMA channel count parity error" }, 4169 { F_HREQPERR, "PCIe HMA channel request parity error" }, 4170 { F_HRSPPERR, "PCIe HMA channel response parity error" }, 4171 { F_CFGSNPPERR, "PCIe config snoop FIFO parity error" }, 4172 { F_FIDPERR, "PCIe FID parity error" }, 4173 { F_INTXCLRPERR, "PCIe INTx clear parity error" }, 4174 { F_MATAGPERR, "PCIe MA tag parity error" }, 4175 { F_PIOTAGPERR, "PCIe PIO tag parity error" }, 4176 { F_RXCPLPERR, "PCIe Rx completion parity error" }, 4177 { F_RXWRPERR, "PCIe Rx write parity error" }, 4178 { F_RPLPERR, "PCIe replay buffer parity error" }, 4179 { F_PCIESINT, "PCIe core secondary fault" }, 4180 { F_PCIEPINT, "PCIe core primary fault" }, 4181 { F_UNXSPLCPLERR, "PCIe unexpected split completion error" }, 4182 { 0 } 4183 }; 4184 static const struct intr_details t5_pcie_intr_details[] = { 4185 { F_IPGRPPERR, "Parity errors observed by IP" }, 4186 { F_NONFATALERR, "PCIe non-fatal error" }, 4187 { F_READRSPERR, "Outbound read error" }, 4188 { F_TRGT1GRPPERR, "PCIe TRGT1 group FIFOs parity error" }, 4189 { F_IPSOTPERR, "PCIe IP SOT buffer SRAM parity error" }, 4190 { F_IPRETRYPERR, "PCIe IP replay buffer parity error" }, 4191 { F_IPRXDATAGRPPERR, "PCIe IP Rx data group SRAMs parity error" }, 4192 { F_IPRXHDRGRPPERR, "PCIe IP Rx header group SRAMs parity error" }, 4193 { F_PIOTAGQPERR, "PIO tag queue FIFO parity error" }, 4194 { F_MAGRPPERR, "MA group FIFO parity error" }, 4195 { F_VFIDPERR, "VFID SRAM parity error" }, 4196 { F_FIDPERR, "FID SRAM parity error" }, 4197 { F_CFGSNPPERR, "config snoop FIFO parity error" }, 4198 { F_HRSPPERR, "HMA channel response data SRAM parity error" }, 4199 { F_HREQRDPERR, "HMA channel read request SRAM parity error" }, 4200 { F_HREQWRPERR, "HMA channel write request SRAM parity error" }, 4201 { F_DRSPPERR, "DMA channel response data SRAM parity error" }, 4202 { F_DREQRDPERR, "DMA channel write request SRAM parity error" }, 4203 { F_CRSPPERR, "CMD channel response data SRAM parity error" }, 4204 { F_CREQRDPERR, "CMD channel read request SRAM parity error" }, 4205 { F_MSTTAGQPERR, "PCIe master tag queue SRAM parity error" }, 4206 { F_TGTTAGQPERR, "PCIe target tag queue FIFO parity error" }, 4207 { F_PIOREQGRPPERR, "PIO request group FIFOs parity error" }, 4208 { F_PIOCPLGRPPERR, "PIO completion group FIFOs parity error" }, 4209 { F_MSIXDIPERR, "MSI-X DI SRAM parity error" }, 4210 { F_MSIXDATAPERR, "MSI-X data SRAM parity error" }, 4211 { F_MSIXADDRHPERR, "MSI-X AddrH SRAM parity error" }, 4212 { F_MSIXADDRLPERR, "MSI-X AddrL SRAM parity error" }, 4213 { F_MSIXSTIPERR, "MSI-X STI SRAM parity error" }, 4214 { F_MSTTIMEOUTPERR, "Master timeout FIFO parity error" }, 4215 { F_MSTGRPPERR, "Master response read queue SRAM parity error" }, 4216 { 0 } 4217 }; 4218 struct intr_info pcie_intr_info = { 4219 .name = "PCIE_INT_CAUSE", 4220 .cause_reg = A_PCIE_INT_CAUSE, 4221 .enable_reg = A_PCIE_INT_ENABLE, 4222 .fatal = 0xffffffff, 4223 .flags = NONFATAL_IF_DISABLED, 4224 .details = NULL, 4225 .actions = NULL, 4226 }; 4227 bool fatal = false; 4228 4229 if (is_t4(adap)) { 4230 fatal |= t4_handle_intr(adap, &sysbus_intr_info, 0, verbose); 4231 fatal |= t4_handle_intr(adap, &pcie_port_intr_info, 0, verbose); 4232 4233 pcie_intr_info.details = pcie_intr_details; 4234 } else { 4235 pcie_intr_info.details = t5_pcie_intr_details; 4236 } 4237 fatal |= t4_handle_intr(adap, &pcie_intr_info, 0, verbose); 4238 4239 return (fatal); 4240 } 4241 4242 /* 4243 * TP interrupt handler. 4244 */ 4245 static bool tp_intr_handler(struct adapter *adap, int arg, bool verbose) 4246 { 4247 static const struct intr_details tp_intr_details[] = { 4248 { 0x3fffffff, "TP parity error" }, 4249 { F_FLMTXFLSTEMPTY, "TP out of Tx pages" }, 4250 { 0 } 4251 }; 4252 static const struct intr_info tp_intr_info = { 4253 .name = "TP_INT_CAUSE", 4254 .cause_reg = A_TP_INT_CAUSE, 4255 .enable_reg = A_TP_INT_ENABLE, 4256 .fatal = 0x7fffffff, 4257 .flags = NONFATAL_IF_DISABLED, 4258 .details = tp_intr_details, 4259 .actions = NULL, 4260 }; 4261 4262 return (t4_handle_intr(adap, &tp_intr_info, 0, verbose)); 4263 } 4264 4265 /* 4266 * SGE interrupt handler. 4267 */ 4268 static bool sge_intr_handler(struct adapter *adap, int arg, bool verbose) 4269 { 4270 static const struct intr_info sge_int1_info = { 4271 .name = "SGE_INT_CAUSE1", 4272 .cause_reg = A_SGE_INT_CAUSE1, 4273 .enable_reg = A_SGE_INT_ENABLE1, 4274 .fatal = 0xffffffff, 4275 .flags = NONFATAL_IF_DISABLED, 4276 .details = NULL, 4277 .actions = NULL, 4278 }; 4279 static const struct intr_info sge_int2_info = { 4280 .name = "SGE_INT_CAUSE2", 4281 .cause_reg = A_SGE_INT_CAUSE2, 4282 .enable_reg = A_SGE_INT_ENABLE2, 4283 .fatal = 0xffffffff, 4284 .flags = NONFATAL_IF_DISABLED, 4285 .details = NULL, 4286 .actions = NULL, 4287 }; 4288 static const struct intr_details sge_int3_details[] = { 4289 { F_ERR_FLM_DBP, 4290 "DBP pointer delivery for invalid context or QID" }, 4291 { F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0, 4292 "Invalid QID or header request by IDMA" }, 4293 { F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" }, 4294 { F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" }, 4295 { F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" }, 4296 { F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" }, 4297 { F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" }, 4298 { F_ERR_TIMER_ABOVE_MAX_QID, 4299 "SGE GTS with timer 0-5 for IQID > 1023" }, 4300 { F_ERR_CPL_EXCEED_IQE_SIZE, 4301 "SGE received CPL exceeding IQE size" }, 4302 { F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" }, 4303 { F_ERR_ITP_TIME_PAUSED, "SGE ITP error" }, 4304 { F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" }, 4305 { F_ERR_DROPPED_DB, "SGE DB dropped" }, 4306 { F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0, 4307 "SGE IQID > 1023 received CPL for FL" }, 4308 { F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 | 4309 F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" }, 4310 { F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" }, 4311 { F_ERR_ING_CTXT_PRIO, 4312 "Ingress context manager priority user error" }, 4313 { F_ERR_EGR_CTXT_PRIO, 4314 "Egress context manager priority user error" }, 4315 { F_DBFIFO_HP_INT, "High priority DB FIFO threshold reached" }, 4316 { F_DBFIFO_LP_INT, "Low priority DB FIFO threshold reached" }, 4317 { F_REG_ADDRESS_ERR, "Undefined SGE register accessed" }, 4318 { F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" }, 4319 { F_EGRESS_SIZE_ERR, "SGE illegal egress QID" }, 4320 { 0x0000000f, "SGE context access for invalid queue" }, 4321 { 0 } 4322 }; 4323 static const struct intr_details t6_sge_int3_details[] = { 4324 { F_ERR_FLM_DBP, 4325 "DBP pointer delivery for invalid context or QID" }, 4326 { F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0, 4327 "Invalid QID or header request by IDMA" }, 4328 { F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" }, 4329 { F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" }, 4330 { F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" }, 4331 { F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" }, 4332 { F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" }, 4333 { F_ERR_TIMER_ABOVE_MAX_QID, 4334 "SGE GTS with timer 0-5 for IQID > 1023" }, 4335 { F_ERR_CPL_EXCEED_IQE_SIZE, 4336 "SGE received CPL exceeding IQE size" }, 4337 { F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" }, 4338 { F_ERR_ITP_TIME_PAUSED, "SGE ITP error" }, 4339 { F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" }, 4340 { F_ERR_DROPPED_DB, "SGE DB dropped" }, 4341 { F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0, 4342 "SGE IQID > 1023 received CPL for FL" }, 4343 { F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 | 4344 F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" }, 4345 { F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" }, 4346 { F_ERR_ING_CTXT_PRIO, 4347 "Ingress context manager priority user error" }, 4348 { F_ERR_EGR_CTXT_PRIO, 4349 "Egress context manager priority user error" }, 4350 { F_DBP_TBUF_FULL, "SGE DBP tbuf full" }, 4351 { F_FATAL_WRE_LEN, 4352 "SGE WRE packet less than advertized length" }, 4353 { F_REG_ADDRESS_ERR, "Undefined SGE register accessed" }, 4354 { F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" }, 4355 { F_EGRESS_SIZE_ERR, "SGE illegal egress QID" }, 4356 { 0x0000000f, "SGE context access for invalid queue" }, 4357 { 0 } 4358 }; 4359 struct intr_info sge_int3_info = { 4360 .name = "SGE_INT_CAUSE3", 4361 .cause_reg = A_SGE_INT_CAUSE3, 4362 .enable_reg = A_SGE_INT_ENABLE3, 4363 .fatal = F_ERR_CPL_EXCEED_IQE_SIZE, 4364 .flags = 0, 4365 .details = NULL, 4366 .actions = NULL, 4367 }; 4368 static const struct intr_info sge_int4_info = { 4369 .name = "SGE_INT_CAUSE4", 4370 .cause_reg = A_SGE_INT_CAUSE4, 4371 .enable_reg = A_SGE_INT_ENABLE4, 4372 .fatal = 0, 4373 .flags = 0, 4374 .details = NULL, 4375 .actions = NULL, 4376 }; 4377 static const struct intr_info sge_int5_info = { 4378 .name = "SGE_INT_CAUSE5", 4379 .cause_reg = A_SGE_INT_CAUSE5, 4380 .enable_reg = A_SGE_INT_ENABLE5, 4381 .fatal = 0xffffffff, 4382 .flags = NONFATAL_IF_DISABLED, 4383 .details = NULL, 4384 .actions = NULL, 4385 }; 4386 static const struct intr_info sge_int6_info = { 4387 .name = "SGE_INT_CAUSE6", 4388 .cause_reg = A_SGE_INT_CAUSE6, 4389 .enable_reg = A_SGE_INT_ENABLE6, 4390 .fatal = 0, 4391 .flags = 0, 4392 .details = NULL, 4393 .actions = NULL, 4394 }; 4395 4396 bool fatal; 4397 u32 v; 4398 4399 if (chip_id(adap) <= CHELSIO_T5) { 4400 sge_int3_info.details = sge_int3_details; 4401 } else { 4402 sge_int3_info.details = t6_sge_int3_details; 4403 } 4404 4405 fatal = false; 4406 fatal |= t4_handle_intr(adap, &sge_int1_info, 0, verbose); 4407 fatal |= t4_handle_intr(adap, &sge_int2_info, 0, verbose); 4408 fatal |= t4_handle_intr(adap, &sge_int3_info, 0, verbose); 4409 fatal |= t4_handle_intr(adap, &sge_int4_info, 0, verbose); 4410 if (chip_id(adap) >= CHELSIO_T5) 4411 fatal |= t4_handle_intr(adap, &sge_int5_info, 0, verbose); 4412 if (chip_id(adap) >= CHELSIO_T6) 4413 fatal |= t4_handle_intr(adap, &sge_int6_info, 0, verbose); 4414 4415 v = t4_read_reg(adap, A_SGE_ERROR_STATS); 4416 if (v & F_ERROR_QID_VALID) { 4417 CH_ERR(adap, "SGE error for QID %u\n", G_ERROR_QID(v)); 4418 if (v & F_UNCAPTURED_ERROR) 4419 CH_ERR(adap, "SGE UNCAPTURED_ERROR set (clearing)\n"); 4420 t4_write_reg(adap, A_SGE_ERROR_STATS, 4421 F_ERROR_QID_VALID | F_UNCAPTURED_ERROR); 4422 } 4423 4424 return (fatal); 4425 } 4426 4427 /* 4428 * CIM interrupt handler. 4429 */ 4430 static bool cim_intr_handler(struct adapter *adap, int arg, bool verbose) 4431 { 4432 static const struct intr_action cim_host_intr_actions[] = { 4433 { F_TIMER0INT, 0, t4_os_dump_cimla }, 4434 { 0 }, 4435 }; 4436 static const struct intr_details cim_host_intr_details[] = { 4437 /* T6+ */ 4438 { F_PCIE2CIMINTFPARERR, "CIM IBQ PCIe interface parity error" }, 4439 4440 /* T5+ */ 4441 { F_MA_CIM_INTFPERR, "MA2CIM interface parity error" }, 4442 { F_PLCIM_MSTRSPDATAPARERR, 4443 "PL2CIM master response data parity error" }, 4444 { F_NCSI2CIMINTFPARERR, "CIM IBQ NC-SI interface parity error" }, 4445 { F_SGE2CIMINTFPARERR, "CIM IBQ SGE interface parity error" }, 4446 { F_ULP2CIMINTFPARERR, "CIM IBQ ULP_TX interface parity error" }, 4447 { F_TP2CIMINTFPARERR, "CIM IBQ TP interface parity error" }, 4448 { F_OBQSGERX1PARERR, "CIM OBQ SGE1_RX parity error" }, 4449 { F_OBQSGERX0PARERR, "CIM OBQ SGE0_RX parity error" }, 4450 4451 /* T4+ */ 4452 { F_TIEQOUTPARERRINT, "CIM TIEQ outgoing FIFO parity error" }, 4453 { F_TIEQINPARERRINT, "CIM TIEQ incoming FIFO parity error" }, 4454 { F_MBHOSTPARERR, "CIM mailbox host read parity error" }, 4455 { F_MBUPPARERR, "CIM mailbox uP parity error" }, 4456 { F_IBQTP0PARERR, "CIM IBQ TP0 parity error" }, 4457 { F_IBQTP1PARERR, "CIM IBQ TP1 parity error" }, 4458 { F_IBQULPPARERR, "CIM IBQ ULP parity error" }, 4459 { F_IBQSGELOPARERR, "CIM IBQ SGE_LO parity error" }, 4460 { F_IBQSGEHIPARERR | F_IBQPCIEPARERR, /* same bit */ 4461 "CIM IBQ PCIe/SGE_HI parity error" }, 4462 { F_IBQNCSIPARERR, "CIM IBQ NC-SI parity error" }, 4463 { F_OBQULP0PARERR, "CIM OBQ ULP0 parity error" }, 4464 { F_OBQULP1PARERR, "CIM OBQ ULP1 parity error" }, 4465 { F_OBQULP2PARERR, "CIM OBQ ULP2 parity error" }, 4466 { F_OBQULP3PARERR, "CIM OBQ ULP3 parity error" }, 4467 { F_OBQSGEPARERR, "CIM OBQ SGE parity error" }, 4468 { F_OBQNCSIPARERR, "CIM OBQ NC-SI parity error" }, 4469 { F_TIMER1INT, "CIM TIMER0 interrupt" }, 4470 { F_TIMER0INT, "CIM TIMER0 interrupt" }, 4471 { F_PREFDROPINT, "CIM control register prefetch drop" }, 4472 { 0} 4473 }; 4474 static const struct intr_info cim_host_intr_info = { 4475 .name = "CIM_HOST_INT_CAUSE", 4476 .cause_reg = A_CIM_HOST_INT_CAUSE, 4477 .enable_reg = A_CIM_HOST_INT_ENABLE, 4478 .fatal = 0x007fffe6, 4479 .flags = NONFATAL_IF_DISABLED, 4480 .details = cim_host_intr_details, 4481 .actions = cim_host_intr_actions, 4482 }; 4483 static const struct intr_details cim_host_upacc_intr_details[] = { 4484 { F_EEPROMWRINT, "CIM EEPROM came out of busy state" }, 4485 { F_TIMEOUTMAINT, "CIM PIF MA timeout" }, 4486 { F_TIMEOUTINT, "CIM PIF timeout" }, 4487 { F_RSPOVRLOOKUPINT, "CIM response FIFO overwrite" }, 4488 { F_REQOVRLOOKUPINT, "CIM request FIFO overwrite" }, 4489 { F_BLKWRPLINT, "CIM block write to PL space" }, 4490 { F_BLKRDPLINT, "CIM block read from PL space" }, 4491 { F_SGLWRPLINT, 4492 "CIM single write to PL space with illegal BEs" }, 4493 { F_SGLRDPLINT, 4494 "CIM single read from PL space with illegal BEs" }, 4495 { F_BLKWRCTLINT, "CIM block write to CTL space" }, 4496 { F_BLKRDCTLINT, "CIM block read from CTL space" }, 4497 { F_SGLWRCTLINT, 4498 "CIM single write to CTL space with illegal BEs" }, 4499 { F_SGLRDCTLINT, 4500 "CIM single read from CTL space with illegal BEs" }, 4501 { F_BLKWREEPROMINT, "CIM block write to EEPROM space" }, 4502 { F_BLKRDEEPROMINT, "CIM block read from EEPROM space" }, 4503 { F_SGLWREEPROMINT, 4504 "CIM single write to EEPROM space with illegal BEs" }, 4505 { F_SGLRDEEPROMINT, 4506 "CIM single read from EEPROM space with illegal BEs" }, 4507 { F_BLKWRFLASHINT, "CIM block write to flash space" }, 4508 { F_BLKRDFLASHINT, "CIM block read from flash space" }, 4509 { F_SGLWRFLASHINT, "CIM single write to flash space" }, 4510 { F_SGLRDFLASHINT, 4511 "CIM single read from flash space with illegal BEs" }, 4512 { F_BLKWRBOOTINT, "CIM block write to boot space" }, 4513 { F_BLKRDBOOTINT, "CIM block read from boot space" }, 4514 { F_SGLWRBOOTINT, "CIM single write to boot space" }, 4515 { F_SGLRDBOOTINT, 4516 "CIM single read from boot space with illegal BEs" }, 4517 { F_ILLWRBEINT, "CIM illegal write BEs" }, 4518 { F_ILLRDBEINT, "CIM illegal read BEs" }, 4519 { F_ILLRDINT, "CIM illegal read" }, 4520 { F_ILLWRINT, "CIM illegal write" }, 4521 { F_ILLTRANSINT, "CIM illegal transaction" }, 4522 { F_RSVDSPACEINT, "CIM reserved space access" }, 4523 {0} 4524 }; 4525 static const struct intr_info cim_host_upacc_intr_info = { 4526 .name = "CIM_HOST_UPACC_INT_CAUSE", 4527 .cause_reg = A_CIM_HOST_UPACC_INT_CAUSE, 4528 .enable_reg = A_CIM_HOST_UPACC_INT_ENABLE, 4529 .fatal = 0x3fffeeff, 4530 .flags = NONFATAL_IF_DISABLED, 4531 .details = cim_host_upacc_intr_details, 4532 .actions = NULL, 4533 }; 4534 static const struct intr_info cim_pf_host_intr_info = { 4535 .name = "CIM_PF_HOST_INT_CAUSE", 4536 .cause_reg = MYPF_REG(A_CIM_PF_HOST_INT_CAUSE), 4537 .enable_reg = MYPF_REG(A_CIM_PF_HOST_INT_ENABLE), 4538 .fatal = 0, 4539 .flags = 0, 4540 .details = NULL, 4541 .actions = NULL, 4542 }; 4543 u32 val, fw_err; 4544 bool fatal; 4545 4546 fw_err = t4_read_reg(adap, A_PCIE_FW); 4547 if (fw_err & F_PCIE_FW_ERR) 4548 t4_report_fw_error(adap); 4549 4550 /* 4551 * When the Firmware detects an internal error which normally wouldn't 4552 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order 4553 * to make sure the Host sees the Firmware Crash. So if we have a 4554 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0 4555 * interrupt. 4556 */ 4557 val = t4_read_reg(adap, A_CIM_HOST_INT_CAUSE); 4558 if (val & F_TIMER0INT && (!(fw_err & F_PCIE_FW_ERR) || 4559 G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH)) { 4560 t4_write_reg(adap, A_CIM_HOST_INT_CAUSE, F_TIMER0INT); 4561 } 4562 4563 fatal = false; 4564 fatal |= t4_handle_intr(adap, &cim_host_intr_info, 0, verbose); 4565 fatal |= t4_handle_intr(adap, &cim_host_upacc_intr_info, 0, verbose); 4566 fatal |= t4_handle_intr(adap, &cim_pf_host_intr_info, 0, verbose); 4567 4568 return (fatal); 4569 } 4570 4571 /* 4572 * ULP RX interrupt handler. 4573 */ 4574 static bool ulprx_intr_handler(struct adapter *adap, int arg, bool verbose) 4575 { 4576 static const struct intr_details ulprx_intr_details[] = { 4577 /* T5+ */ 4578 { F_SE_CNT_MISMATCH_1, "ULPRX SE count mismatch in channel 1" }, 4579 { F_SE_CNT_MISMATCH_0, "ULPRX SE count mismatch in channel 0" }, 4580 4581 /* T4+ */ 4582 { F_CAUSE_CTX_1, "ULPRX channel 1 context error" }, 4583 { F_CAUSE_CTX_0, "ULPRX channel 0 context error" }, 4584 { 0x007fffff, "ULPRX parity error" }, 4585 { 0 } 4586 }; 4587 static const struct intr_info ulprx_intr_info = { 4588 .name = "ULP_RX_INT_CAUSE", 4589 .cause_reg = A_ULP_RX_INT_CAUSE, 4590 .enable_reg = A_ULP_RX_INT_ENABLE, 4591 .fatal = 0x07ffffff, 4592 .flags = NONFATAL_IF_DISABLED, 4593 .details = ulprx_intr_details, 4594 .actions = NULL, 4595 }; 4596 static const struct intr_info ulprx_intr2_info = { 4597 .name = "ULP_RX_INT_CAUSE_2", 4598 .cause_reg = A_ULP_RX_INT_CAUSE_2, 4599 .enable_reg = A_ULP_RX_INT_ENABLE_2, 4600 .fatal = 0, 4601 .flags = 0, 4602 .details = NULL, 4603 .actions = NULL, 4604 }; 4605 bool fatal = false; 4606 4607 fatal |= t4_handle_intr(adap, &ulprx_intr_info, 0, verbose); 4608 fatal |= t4_handle_intr(adap, &ulprx_intr2_info, 0, verbose); 4609 4610 return (fatal); 4611 } 4612 4613 /* 4614 * ULP TX interrupt handler. 4615 */ 4616 static bool ulptx_intr_handler(struct adapter *adap, int arg, bool verbose) 4617 { 4618 static const struct intr_details ulptx_intr_details[] = { 4619 { F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds" }, 4620 { F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds" }, 4621 { F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds" }, 4622 { F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds" }, 4623 { 0x0fffffff, "ULPTX parity error" }, 4624 { 0 } 4625 }; 4626 static const struct intr_info ulptx_intr_info = { 4627 .name = "ULP_TX_INT_CAUSE", 4628 .cause_reg = A_ULP_TX_INT_CAUSE, 4629 .enable_reg = A_ULP_TX_INT_ENABLE, 4630 .fatal = 0x0fffffff, 4631 .flags = NONFATAL_IF_DISABLED, 4632 .details = ulptx_intr_details, 4633 .actions = NULL, 4634 }; 4635 static const struct intr_info ulptx_intr2_info = { 4636 .name = "ULP_TX_INT_CAUSE_2", 4637 .cause_reg = A_ULP_TX_INT_CAUSE_2, 4638 .enable_reg = A_ULP_TX_INT_ENABLE_2, 4639 .fatal = 0xf0, 4640 .flags = NONFATAL_IF_DISABLED, 4641 .details = NULL, 4642 .actions = NULL, 4643 }; 4644 bool fatal = false; 4645 4646 fatal |= t4_handle_intr(adap, &ulptx_intr_info, 0, verbose); 4647 fatal |= t4_handle_intr(adap, &ulptx_intr2_info, 0, verbose); 4648 4649 return (fatal); 4650 } 4651 4652 static bool pmtx_dump_dbg_stats(struct adapter *adap, int arg, bool verbose) 4653 { 4654 int i; 4655 u32 data[17]; 4656 4657 t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, &data[0], 4658 ARRAY_SIZE(data), A_PM_TX_DBG_STAT0); 4659 for (i = 0; i < ARRAY_SIZE(data); i++) { 4660 CH_ALERT(adap, " - PM_TX_DBG_STAT%u (0x%x) = 0x%08x\n", i, 4661 A_PM_TX_DBG_STAT0 + i, data[i]); 4662 } 4663 4664 return (false); 4665 } 4666 4667 /* 4668 * PM TX interrupt handler. 4669 */ 4670 static bool pmtx_intr_handler(struct adapter *adap, int arg, bool verbose) 4671 { 4672 static const struct intr_action pmtx_intr_actions[] = { 4673 { 0xffffffff, 0, pmtx_dump_dbg_stats }, 4674 { 0 }, 4675 }; 4676 static const struct intr_details pmtx_intr_details[] = { 4677 { F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large" }, 4678 { F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large" }, 4679 { F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large" }, 4680 { F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd" }, 4681 { 0x0f000000, "PMTX icspi FIFO2X Rx framing error" }, 4682 { 0x00f00000, "PMTX icspi FIFO Rx framing error" }, 4683 { 0x000f0000, "PMTX icspi FIFO Tx framing error" }, 4684 { 0x0000f000, "PMTX oespi FIFO Rx framing error" }, 4685 { 0x00000f00, "PMTX oespi FIFO Tx framing error" }, 4686 { 0x000000f0, "PMTX oespi FIFO2X Tx framing error" }, 4687 { F_OESPI_PAR_ERROR, "PMTX oespi parity error" }, 4688 { F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error" }, 4689 { F_ICSPI_PAR_ERROR, "PMTX icspi parity error" }, 4690 { F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error" }, 4691 { 0 } 4692 }; 4693 static const struct intr_info pmtx_intr_info = { 4694 .name = "PM_TX_INT_CAUSE", 4695 .cause_reg = A_PM_TX_INT_CAUSE, 4696 .enable_reg = A_PM_TX_INT_ENABLE, 4697 .fatal = 0xffffffff, 4698 .flags = 0, 4699 .details = pmtx_intr_details, 4700 .actions = pmtx_intr_actions, 4701 }; 4702 4703 return (t4_handle_intr(adap, &pmtx_intr_info, 0, verbose)); 4704 } 4705 4706 /* 4707 * PM RX interrupt handler. 4708 */ 4709 static bool pmrx_intr_handler(struct adapter *adap, int arg, bool verbose) 4710 { 4711 static const struct intr_details pmrx_intr_details[] = { 4712 /* T6+ */ 4713 { 0x18000000, "PMRX ospi overflow" }, 4714 { F_MA_INTF_SDC_ERR, "PMRX MA interface SDC parity error" }, 4715 { F_BUNDLE_LEN_PARERR, "PMRX bundle len FIFO parity error" }, 4716 { F_BUNDLE_LEN_OVFL, "PMRX bundle len FIFO overflow" }, 4717 { F_SDC_ERR, "PMRX SDC error" }, 4718 4719 /* T4+ */ 4720 { F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd" }, 4721 { 0x003c0000, "PMRX iespi FIFO2X Rx framing error" }, 4722 { 0x0003c000, "PMRX iespi Rx framing error" }, 4723 { 0x00003c00, "PMRX iespi Tx framing error" }, 4724 { 0x00000300, "PMRX ocspi Rx framing error" }, 4725 { 0x000000c0, "PMRX ocspi Tx framing error" }, 4726 { 0x00000030, "PMRX ocspi FIFO2X Tx framing error" }, 4727 { F_OCSPI_PAR_ERROR, "PMRX ocspi parity error" }, 4728 { F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error" }, 4729 { F_IESPI_PAR_ERROR, "PMRX iespi parity error" }, 4730 { F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error"}, 4731 { 0 } 4732 }; 4733 static const struct intr_info pmrx_intr_info = { 4734 .name = "PM_RX_INT_CAUSE", 4735 .cause_reg = A_PM_RX_INT_CAUSE, 4736 .enable_reg = A_PM_RX_INT_ENABLE, 4737 .fatal = 0x1fffffff, 4738 .flags = NONFATAL_IF_DISABLED, 4739 .details = pmrx_intr_details, 4740 .actions = NULL, 4741 }; 4742 4743 return (t4_handle_intr(adap, &pmrx_intr_info, 0, verbose)); 4744 } 4745 4746 /* 4747 * CPL switch interrupt handler. 4748 */ 4749 static bool cplsw_intr_handler(struct adapter *adap, int arg, bool verbose) 4750 { 4751 static const struct intr_details cplsw_intr_details[] = { 4752 /* T5+ */ 4753 { F_PERR_CPL_128TO128_1, "CPLSW 128TO128 FIFO1 parity error" }, 4754 { F_PERR_CPL_128TO128_0, "CPLSW 128TO128 FIFO0 parity error" }, 4755 4756 /* T4+ */ 4757 { F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error" }, 4758 { F_CIM_OVFL_ERROR, "CPLSW CIM overflow" }, 4759 { F_TP_FRAMING_ERROR, "CPLSW TP framing error" }, 4760 { F_SGE_FRAMING_ERROR, "CPLSW SGE framing error" }, 4761 { F_CIM_FRAMING_ERROR, "CPLSW CIM framing error" }, 4762 { F_ZERO_SWITCH_ERROR, "CPLSW no-switch error" }, 4763 { 0 } 4764 }; 4765 static const struct intr_info cplsw_intr_info = { 4766 .name = "CPL_INTR_CAUSE", 4767 .cause_reg = A_CPL_INTR_CAUSE, 4768 .enable_reg = A_CPL_INTR_ENABLE, 4769 .fatal = 0xff, 4770 .flags = NONFATAL_IF_DISABLED, 4771 .details = cplsw_intr_details, 4772 .actions = NULL, 4773 }; 4774 4775 return (t4_handle_intr(adap, &cplsw_intr_info, 0, verbose)); 4776 } 4777 4778 #define T4_LE_FATAL_MASK (F_PARITYERR | F_UNKNOWNCMD | F_REQQPARERR) 4779 #define T5_LE_FATAL_MASK (T4_LE_FATAL_MASK | F_VFPARERR) 4780 #define T6_LE_PERRCRC_MASK (F_PIPELINEERR | F_CLIPTCAMACCFAIL | \ 4781 F_SRVSRAMACCFAIL | F_CLCAMCRCPARERR | F_CLCAMINTPERR | F_SSRAMINTPERR | \ 4782 F_SRVSRAMPERR | F_VFSRAMPERR | F_TCAMINTPERR | F_TCAMCRCERR | \ 4783 F_HASHTBLMEMACCERR | F_MAIFWRINTPERR | F_HASHTBLMEMCRCERR) 4784 #define T6_LE_FATAL_MASK (T6_LE_PERRCRC_MASK | F_T6_UNKNOWNCMD | \ 4785 F_TCAMACCFAIL | F_HASHTBLACCFAIL | F_CMDTIDERR | F_CMDPRSRINTERR | \ 4786 F_TOTCNTERR | F_CLCAMFIFOERR | F_CLIPSUBERR) 4787 4788 /* 4789 * LE interrupt handler. 4790 */ 4791 static bool le_intr_handler(struct adapter *adap, int arg, bool verbose) 4792 { 4793 static const struct intr_details le_intr_details[] = { 4794 { F_REQQPARERR, "LE request queue parity error" }, 4795 { F_UNKNOWNCMD, "LE unknown command" }, 4796 { F_ACTRGNFULL, "LE active region full" }, 4797 { F_PARITYERR, "LE parity error" }, 4798 { F_LIPMISS, "LE LIP miss" }, 4799 { F_LIP0, "LE 0 LIP error" }, 4800 { 0 } 4801 }; 4802 static const struct intr_details t6_le_intr_details[] = { 4803 { F_CLIPSUBERR, "LE CLIP CAM reverse substitution error" }, 4804 { F_CLCAMFIFOERR, "LE CLIP CAM internal FIFO error" }, 4805 { F_CTCAMINVLDENT, "Invalid IPv6 CLIP TCAM entry" }, 4806 { F_TCAMINVLDENT, "Invalid IPv6 TCAM entry" }, 4807 { F_TOTCNTERR, "LE total active < TCAM count" }, 4808 { F_CMDPRSRINTERR, "LE internal error in parser" }, 4809 { F_CMDTIDERR, "Incorrect tid in LE command" }, 4810 { F_T6_ACTRGNFULL, "LE active region full" }, 4811 { F_T6_ACTCNTIPV6TZERO, "LE IPv6 active open TCAM counter -ve" }, 4812 { F_T6_ACTCNTIPV4TZERO, "LE IPv4 active open TCAM counter -ve" }, 4813 { F_T6_ACTCNTIPV6ZERO, "LE IPv6 active open counter -ve" }, 4814 { F_T6_ACTCNTIPV4ZERO, "LE IPv4 active open counter -ve" }, 4815 { F_HASHTBLACCFAIL, "Hash table read error (proto conflict)" }, 4816 { F_TCAMACCFAIL, "LE TCAM access failure" }, 4817 { F_T6_UNKNOWNCMD, "LE unknown command" }, 4818 { F_T6_LIP0, "LE found 0 LIP during CLIP substitution" }, 4819 { F_T6_LIPMISS, "LE CLIP lookup miss" }, 4820 { T6_LE_PERRCRC_MASK, "LE parity/CRC error" }, 4821 { 0 } 4822 }; 4823 struct intr_info le_intr_info = { 4824 .name = "LE_DB_INT_CAUSE", 4825 .cause_reg = A_LE_DB_INT_CAUSE, 4826 .enable_reg = A_LE_DB_INT_ENABLE, 4827 .fatal = 0, 4828 .flags = NONFATAL_IF_DISABLED, 4829 .details = NULL, 4830 .actions = NULL, 4831 }; 4832 4833 if (chip_id(adap) <= CHELSIO_T5) { 4834 le_intr_info.details = le_intr_details; 4835 le_intr_info.fatal = T5_LE_FATAL_MASK; 4836 } else { 4837 le_intr_info.details = t6_le_intr_details; 4838 le_intr_info.fatal = T6_LE_FATAL_MASK; 4839 } 4840 4841 return (t4_handle_intr(adap, &le_intr_info, 0, verbose)); 4842 } 4843 4844 /* 4845 * MPS interrupt handler. 4846 */ 4847 static bool mps_intr_handler(struct adapter *adap, int arg, bool verbose) 4848 { 4849 static const struct intr_details mps_rx_perr_intr_details[] = { 4850 { 0xffffffff, "MPS Rx parity error" }, 4851 { 0 } 4852 }; 4853 static const struct intr_info mps_rx_perr_intr_info = { 4854 .name = "MPS_RX_PERR_INT_CAUSE", 4855 .cause_reg = A_MPS_RX_PERR_INT_CAUSE, 4856 .enable_reg = A_MPS_RX_PERR_INT_ENABLE, 4857 .fatal = 0xffffffff, 4858 .flags = NONFATAL_IF_DISABLED, 4859 .details = mps_rx_perr_intr_details, 4860 .actions = NULL, 4861 }; 4862 static const struct intr_details mps_tx_intr_details[] = { 4863 { F_PORTERR, "MPS Tx destination port is disabled" }, 4864 { F_FRMERR, "MPS Tx framing error" }, 4865 { F_SECNTERR, "MPS Tx SOP/EOP error" }, 4866 { F_BUBBLE, "MPS Tx underflow" }, 4867 { V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error" }, 4868 { V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error" }, 4869 { F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error" }, 4870 { V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error" }, 4871 { 0 } 4872 }; 4873 static const struct intr_info mps_tx_intr_info = { 4874 .name = "MPS_TX_INT_CAUSE", 4875 .cause_reg = A_MPS_TX_INT_CAUSE, 4876 .enable_reg = A_MPS_TX_INT_ENABLE, 4877 .fatal = 0x1ffff, 4878 .flags = NONFATAL_IF_DISABLED, 4879 .details = mps_tx_intr_details, 4880 .actions = NULL, 4881 }; 4882 static const struct intr_details mps_trc_intr_details[] = { 4883 { F_MISCPERR, "MPS TRC misc parity error" }, 4884 { V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error" }, 4885 { V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error" }, 4886 { 0 } 4887 }; 4888 static const struct intr_info mps_trc_intr_info = { 4889 .name = "MPS_TRC_INT_CAUSE", 4890 .cause_reg = A_MPS_TRC_INT_CAUSE, 4891 .enable_reg = A_MPS_TRC_INT_ENABLE, 4892 .fatal = F_MISCPERR | V_PKTFIFO(M_PKTFIFO) | V_FILTMEM(M_FILTMEM), 4893 .flags = 0, 4894 .details = mps_trc_intr_details, 4895 .actions = NULL, 4896 }; 4897 static const struct intr_details mps_stat_sram_intr_details[] = { 4898 { 0xffffffff, "MPS statistics SRAM parity error" }, 4899 { 0 } 4900 }; 4901 static const struct intr_info mps_stat_sram_intr_info = { 4902 .name = "MPS_STAT_PERR_INT_CAUSE_SRAM", 4903 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM, 4904 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM, 4905 .fatal = 0x1fffffff, 4906 .flags = NONFATAL_IF_DISABLED, 4907 .details = mps_stat_sram_intr_details, 4908 .actions = NULL, 4909 }; 4910 static const struct intr_details mps_stat_tx_intr_details[] = { 4911 { 0xffffff, "MPS statistics Tx FIFO parity error" }, 4912 { 0 } 4913 }; 4914 static const struct intr_info mps_stat_tx_intr_info = { 4915 .name = "MPS_STAT_PERR_INT_CAUSE_TX_FIFO", 4916 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO, 4917 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_TX_FIFO, 4918 .fatal = 0xffffff, 4919 .flags = NONFATAL_IF_DISABLED, 4920 .details = mps_stat_tx_intr_details, 4921 .actions = NULL, 4922 }; 4923 static const struct intr_details mps_stat_rx_intr_details[] = { 4924 { 0xffffff, "MPS statistics Rx FIFO parity error" }, 4925 { 0 } 4926 }; 4927 static const struct intr_info mps_stat_rx_intr_info = { 4928 .name = "MPS_STAT_PERR_INT_CAUSE_RX_FIFO", 4929 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO, 4930 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_RX_FIFO, 4931 .fatal = 0xffffff, 4932 .flags = 0, 4933 .details = mps_stat_rx_intr_details, 4934 .actions = NULL, 4935 }; 4936 static const struct intr_details mps_cls_intr_details[] = { 4937 { F_HASHSRAM, "MPS hash SRAM parity error" }, 4938 { F_MATCHTCAM, "MPS match TCAM parity error" }, 4939 { F_MATCHSRAM, "MPS match SRAM parity error" }, 4940 { 0 } 4941 }; 4942 static const struct intr_info mps_cls_intr_info = { 4943 .name = "MPS_CLS_INT_CAUSE", 4944 .cause_reg = A_MPS_CLS_INT_CAUSE, 4945 .enable_reg = A_MPS_CLS_INT_ENABLE, 4946 .fatal = F_MATCHSRAM | F_MATCHTCAM | F_HASHSRAM, 4947 .flags = 0, 4948 .details = mps_cls_intr_details, 4949 .actions = NULL, 4950 }; 4951 static const struct intr_details mps_stat_sram1_intr_details[] = { 4952 { 0xff, "MPS statistics SRAM1 parity error" }, 4953 { 0 } 4954 }; 4955 static const struct intr_info mps_stat_sram1_intr_info = { 4956 .name = "MPS_STAT_PERR_INT_CAUSE_SRAM1", 4957 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 4958 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM1, 4959 .fatal = 0xff, 4960 .flags = 0, 4961 .details = mps_stat_sram1_intr_details, 4962 .actions = NULL, 4963 }; 4964 4965 bool fatal; 4966 4967 fatal = false; 4968 fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info, 0, verbose); 4969 fatal |= t4_handle_intr(adap, &mps_tx_intr_info, 0, verbose); 4970 fatal |= t4_handle_intr(adap, &mps_trc_intr_info, 0, verbose); 4971 fatal |= t4_handle_intr(adap, &mps_stat_sram_intr_info, 0, verbose); 4972 fatal |= t4_handle_intr(adap, &mps_stat_tx_intr_info, 0, verbose); 4973 fatal |= t4_handle_intr(adap, &mps_stat_rx_intr_info, 0, verbose); 4974 fatal |= t4_handle_intr(adap, &mps_cls_intr_info, 0, verbose); 4975 if (chip_id(adap) > CHELSIO_T4) { 4976 fatal |= t4_handle_intr(adap, &mps_stat_sram1_intr_info, 0, 4977 verbose); 4978 } 4979 4980 t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff); 4981 t4_read_reg(adap, A_MPS_INT_CAUSE); /* flush */ 4982 4983 return (fatal); 4984 4985 } 4986 4987 /* 4988 * EDC/MC interrupt handler. 4989 */ 4990 static bool mem_intr_handler(struct adapter *adap, int idx, bool verbose) 4991 { 4992 static const char name[4][5] = { "EDC0", "EDC1", "MC0", "MC1" }; 4993 unsigned int count_reg, v; 4994 static const struct intr_details mem_intr_details[] = { 4995 { F_ECC_UE_INT_CAUSE, "Uncorrectable ECC data error(s)" }, 4996 { F_ECC_CE_INT_CAUSE, "Correctable ECC data error(s)" }, 4997 { F_PERR_INT_CAUSE, "FIFO parity error" }, 4998 { 0 } 4999 }; 5000 struct intr_info ii = { 5001 .fatal = F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE, 5002 .details = mem_intr_details, 5003 .flags = 0, 5004 .actions = NULL, 5005 }; 5006 bool fatal; 5007 5008 switch (idx) { 5009 case MEM_EDC0: 5010 ii.name = "EDC0_INT_CAUSE"; 5011 ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 0); 5012 ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 0); 5013 count_reg = EDC_REG(A_EDC_ECC_STATUS, 0); 5014 break; 5015 case MEM_EDC1: 5016 ii.name = "EDC1_INT_CAUSE"; 5017 ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 1); 5018 ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 1); 5019 count_reg = EDC_REG(A_EDC_ECC_STATUS, 1); 5020 break; 5021 case MEM_MC0: 5022 ii.name = "MC0_INT_CAUSE"; 5023 if (is_t4(adap)) { 5024 ii.cause_reg = A_MC_INT_CAUSE; 5025 ii.enable_reg = A_MC_INT_ENABLE; 5026 count_reg = A_MC_ECC_STATUS; 5027 } else { 5028 ii.cause_reg = A_MC_P_INT_CAUSE; 5029 ii.enable_reg = A_MC_P_INT_ENABLE; 5030 count_reg = A_MC_P_ECC_STATUS; 5031 } 5032 break; 5033 case MEM_MC1: 5034 ii.name = "MC1_INT_CAUSE"; 5035 ii.cause_reg = MC_REG(A_MC_P_INT_CAUSE, 1); 5036 ii.enable_reg = MC_REG(A_MC_P_INT_ENABLE, 1); 5037 count_reg = MC_REG(A_MC_P_ECC_STATUS, 1); 5038 break; 5039 } 5040 5041 fatal = t4_handle_intr(adap, &ii, 0, verbose); 5042 5043 v = t4_read_reg(adap, count_reg); 5044 if (v != 0) { 5045 if (G_ECC_UECNT(v) != 0) { 5046 CH_ALERT(adap, 5047 "%s: %u uncorrectable ECC data error(s)\n", 5048 name[idx], G_ECC_UECNT(v)); 5049 } 5050 if (G_ECC_CECNT(v) != 0) { 5051 if (idx <= MEM_EDC1) 5052 t4_edc_err_read(adap, idx); 5053 CH_WARN_RATELIMIT(adap, 5054 "%s: %u correctable ECC data error(s)\n", 5055 name[idx], G_ECC_CECNT(v)); 5056 } 5057 t4_write_reg(adap, count_reg, 0xffffffff); 5058 } 5059 5060 return (fatal); 5061 } 5062 5063 static bool ma_wrap_status(struct adapter *adap, int arg, bool verbose) 5064 { 5065 u32 v; 5066 5067 v = t4_read_reg(adap, A_MA_INT_WRAP_STATUS); 5068 CH_ALERT(adap, 5069 "MA address wrap-around error by client %u to address %#x\n", 5070 G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4); 5071 t4_write_reg(adap, A_MA_INT_WRAP_STATUS, v); 5072 5073 return (false); 5074 } 5075 5076 5077 /* 5078 * MA interrupt handler. 5079 */ 5080 static bool ma_intr_handler(struct adapter *adap, int arg, bool verbose) 5081 { 5082 static const struct intr_action ma_intr_actions[] = { 5083 { F_MEM_WRAP_INT_CAUSE, 0, ma_wrap_status }, 5084 { 0 }, 5085 }; 5086 static const struct intr_info ma_intr_info = { 5087 .name = "MA_INT_CAUSE", 5088 .cause_reg = A_MA_INT_CAUSE, 5089 .enable_reg = A_MA_INT_ENABLE, 5090 .fatal = F_MEM_PERR_INT_CAUSE | F_MEM_TO_INT_CAUSE, 5091 .flags = NONFATAL_IF_DISABLED, 5092 .details = NULL, 5093 .actions = ma_intr_actions, 5094 }; 5095 static const struct intr_info ma_perr_status1 = { 5096 .name = "MA_PARITY_ERROR_STATUS1", 5097 .cause_reg = A_MA_PARITY_ERROR_STATUS1, 5098 .enable_reg = A_MA_PARITY_ERROR_ENABLE1, 5099 .fatal = 0xffffffff, 5100 .flags = 0, 5101 .details = NULL, 5102 .actions = NULL, 5103 }; 5104 static const struct intr_info ma_perr_status2 = { 5105 .name = "MA_PARITY_ERROR_STATUS2", 5106 .cause_reg = A_MA_PARITY_ERROR_STATUS2, 5107 .enable_reg = A_MA_PARITY_ERROR_ENABLE2, 5108 .fatal = 0xffffffff, 5109 .flags = 0, 5110 .details = NULL, 5111 .actions = NULL, 5112 }; 5113 bool fatal; 5114 5115 fatal = false; 5116 fatal |= t4_handle_intr(adap, &ma_intr_info, 0, verbose); 5117 fatal |= t4_handle_intr(adap, &ma_perr_status1, 0, verbose); 5118 if (chip_id(adap) > CHELSIO_T4) 5119 fatal |= t4_handle_intr(adap, &ma_perr_status2, 0, verbose); 5120 5121 return (fatal); 5122 } 5123 5124 /* 5125 * SMB interrupt handler. 5126 */ 5127 static bool smb_intr_handler(struct adapter *adap, int arg, bool verbose) 5128 { 5129 static const struct intr_details smb_intr_details[] = { 5130 { F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error" }, 5131 { F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error" }, 5132 { F_SLVFIFOPARINT, "SMB slave FIFO parity error" }, 5133 { 0 } 5134 }; 5135 static const struct intr_info smb_intr_info = { 5136 .name = "SMB_INT_CAUSE", 5137 .cause_reg = A_SMB_INT_CAUSE, 5138 .enable_reg = A_SMB_INT_ENABLE, 5139 .fatal = F_SLVFIFOPARINT | F_MSTRXFIFOPARINT | F_MSTTXFIFOPARINT, 5140 .flags = 0, 5141 .details = smb_intr_details, 5142 .actions = NULL, 5143 }; 5144 5145 return (t4_handle_intr(adap, &smb_intr_info, 0, verbose)); 5146 } 5147 5148 /* 5149 * NC-SI interrupt handler. 5150 */ 5151 static bool ncsi_intr_handler(struct adapter *adap, int arg, bool verbose) 5152 { 5153 static const struct intr_details ncsi_intr_details[] = { 5154 { F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error" }, 5155 { F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error" }, 5156 { F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error" }, 5157 { F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error" }, 5158 { 0 } 5159 }; 5160 static const struct intr_info ncsi_intr_info = { 5161 .name = "NCSI_INT_CAUSE", 5162 .cause_reg = A_NCSI_INT_CAUSE, 5163 .enable_reg = A_NCSI_INT_ENABLE, 5164 .fatal = F_RXFIFO_PRTY_ERR | F_TXFIFO_PRTY_ERR | 5165 F_MPS_DM_PRTY_ERR | F_CIM_DM_PRTY_ERR, 5166 .flags = 0, 5167 .details = ncsi_intr_details, 5168 .actions = NULL, 5169 }; 5170 5171 return (t4_handle_intr(adap, &ncsi_intr_info, 0, verbose)); 5172 } 5173 5174 /* 5175 * MAC interrupt handler. 5176 */ 5177 static bool mac_intr_handler(struct adapter *adap, int port, bool verbose) 5178 { 5179 static const struct intr_details mac_intr_details[] = { 5180 { F_TXFIFO_PRTY_ERR, "MAC Tx FIFO parity error" }, 5181 { F_RXFIFO_PRTY_ERR, "MAC Rx FIFO parity error" }, 5182 { 0 } 5183 }; 5184 char name[32]; 5185 struct intr_info ii; 5186 bool fatal = false; 5187 5188 if (is_t4(adap)) { 5189 snprintf(name, sizeof(name), "XGMAC_PORT%u_INT_CAUSE", port); 5190 ii.name = &name[0]; 5191 ii.cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE); 5192 ii.enable_reg = PORT_REG(port, A_XGMAC_PORT_INT_EN); 5193 ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR; 5194 ii.flags = 0; 5195 ii.details = mac_intr_details; 5196 ii.actions = NULL; 5197 } else { 5198 snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port); 5199 ii.name = &name[0]; 5200 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE); 5201 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_INT_EN); 5202 ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR; 5203 ii.flags = 0; 5204 ii.details = mac_intr_details; 5205 ii.actions = NULL; 5206 } 5207 fatal |= t4_handle_intr(adap, &ii, 0, verbose); 5208 5209 if (chip_id(adap) >= CHELSIO_T5) { 5210 snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE", port); 5211 ii.name = &name[0]; 5212 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE); 5213 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN); 5214 ii.fatal = 0; 5215 ii.flags = 0; 5216 ii.details = NULL; 5217 ii.actions = NULL; 5218 fatal |= t4_handle_intr(adap, &ii, 0, verbose); 5219 } 5220 5221 if (chip_id(adap) >= CHELSIO_T6) { 5222 snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE_100G", port); 5223 ii.name = &name[0]; 5224 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE_100G); 5225 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN_100G); 5226 ii.fatal = 0; 5227 ii.flags = 0; 5228 ii.details = NULL; 5229 ii.actions = NULL; 5230 fatal |= t4_handle_intr(adap, &ii, 0, verbose); 5231 } 5232 5233 return (fatal); 5234 } 5235 5236 static bool plpl_intr_handler(struct adapter *adap, int arg, bool verbose) 5237 { 5238 static const struct intr_details plpl_intr_details[] = { 5239 { F_FATALPERR, "Fatal parity error" }, 5240 { F_PERRVFID, "VFID_MAP parity error" }, 5241 { 0 } 5242 }; 5243 static const struct intr_info plpl_intr_info = { 5244 .name = "PL_PL_INT_CAUSE", 5245 .cause_reg = A_PL_PL_INT_CAUSE, 5246 .enable_reg = A_PL_PL_INT_ENABLE, 5247 .fatal = F_FATALPERR | F_PERRVFID, 5248 .flags = NONFATAL_IF_DISABLED, 5249 .details = plpl_intr_details, 5250 .actions = NULL, 5251 }; 5252 5253 return (t4_handle_intr(adap, &plpl_intr_info, 0, verbose)); 5254 } 5255 5256 /** 5257 * t4_slow_intr_handler - control path interrupt handler 5258 * @adap: the adapter 5259 * @verbose: increased verbosity, for debug 5260 * 5261 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 5262 * The designation 'slow' is because it involves register reads, while 5263 * data interrupts typically don't involve any MMIOs. 5264 */ 5265 int t4_slow_intr_handler(struct adapter *adap, bool verbose) 5266 { 5267 static const struct intr_details pl_intr_details[] = { 5268 { F_MC1, "MC1" }, 5269 { F_UART, "UART" }, 5270 { F_ULP_TX, "ULP TX" }, 5271 { F_SGE, "SGE" }, 5272 { F_HMA, "HMA" }, 5273 { F_CPL_SWITCH, "CPL Switch" }, 5274 { F_ULP_RX, "ULP RX" }, 5275 { F_PM_RX, "PM RX" }, 5276 { F_PM_TX, "PM TX" }, 5277 { F_MA, "MA" }, 5278 { F_TP, "TP" }, 5279 { F_LE, "LE" }, 5280 { F_EDC1, "EDC1" }, 5281 { F_EDC0, "EDC0" }, 5282 { F_MC, "MC0" }, 5283 { F_PCIE, "PCIE" }, 5284 { F_PMU, "PMU" }, 5285 { F_MAC3, "MAC3" }, 5286 { F_MAC2, "MAC2" }, 5287 { F_MAC1, "MAC1" }, 5288 { F_MAC0, "MAC0" }, 5289 { F_SMB, "SMB" }, 5290 { F_SF, "SF" }, 5291 { F_PL, "PL" }, 5292 { F_NCSI, "NC-SI" }, 5293 { F_MPS, "MPS" }, 5294 { F_MI, "MI" }, 5295 { F_DBG, "DBG" }, 5296 { F_I2CM, "I2CM" }, 5297 { F_CIM, "CIM" }, 5298 { 0 } 5299 }; 5300 static const struct intr_info pl_perr_cause = { 5301 .name = "PL_PERR_CAUSE", 5302 .cause_reg = A_PL_PERR_CAUSE, 5303 .enable_reg = A_PL_PERR_ENABLE, 5304 .fatal = 0xffffffff, 5305 .flags = 0, 5306 .details = pl_intr_details, 5307 .actions = NULL, 5308 }; 5309 static const struct intr_action pl_intr_action[] = { 5310 { F_MC1, MEM_MC1, mem_intr_handler }, 5311 { F_ULP_TX, -1, ulptx_intr_handler }, 5312 { F_SGE, -1, sge_intr_handler }, 5313 { F_CPL_SWITCH, -1, cplsw_intr_handler }, 5314 { F_ULP_RX, -1, ulprx_intr_handler }, 5315 { F_PM_RX, -1, pmrx_intr_handler}, 5316 { F_PM_TX, -1, pmtx_intr_handler}, 5317 { F_MA, -1, ma_intr_handler }, 5318 { F_TP, -1, tp_intr_handler }, 5319 { F_LE, -1, le_intr_handler }, 5320 { F_EDC1, MEM_EDC1, mem_intr_handler }, 5321 { F_EDC0, MEM_EDC0, mem_intr_handler }, 5322 { F_MC0, MEM_MC0, mem_intr_handler }, 5323 { F_PCIE, -1, pcie_intr_handler }, 5324 { F_MAC3, 3, mac_intr_handler}, 5325 { F_MAC2, 2, mac_intr_handler}, 5326 { F_MAC1, 1, mac_intr_handler}, 5327 { F_MAC0, 0, mac_intr_handler}, 5328 { F_SMB, -1, smb_intr_handler}, 5329 { F_PL, -1, plpl_intr_handler }, 5330 { F_NCSI, -1, ncsi_intr_handler}, 5331 { F_MPS, -1, mps_intr_handler }, 5332 { F_CIM, -1, cim_intr_handler }, 5333 { 0 } 5334 }; 5335 static const struct intr_info pl_intr_info = { 5336 .name = "PL_INT_CAUSE", 5337 .cause_reg = A_PL_INT_CAUSE, 5338 .enable_reg = A_PL_INT_ENABLE, 5339 .fatal = 0, 5340 .flags = 0, 5341 .details = pl_intr_details, 5342 .actions = pl_intr_action, 5343 }; 5344 bool fatal; 5345 u32 perr; 5346 5347 perr = t4_read_reg(adap, pl_perr_cause.cause_reg); 5348 if (verbose || perr != 0) { 5349 t4_show_intr_info(adap, &pl_perr_cause, perr); 5350 if (perr != 0) 5351 t4_write_reg(adap, pl_perr_cause.cause_reg, perr); 5352 if (verbose) 5353 perr |= t4_read_reg(adap, pl_intr_info.enable_reg); 5354 } 5355 fatal = t4_handle_intr(adap, &pl_intr_info, perr, verbose); 5356 if (fatal) 5357 t4_fatal_err(adap, false); 5358 5359 return (0); 5360 } 5361 5362 #define PF_INTR_MASK (F_PFSW | F_PFCIM) 5363 5364 /** 5365 * t4_intr_enable - enable interrupts 5366 * @adapter: the adapter whose interrupts should be enabled 5367 * 5368 * Enable PF-specific interrupts for the calling function and the top-level 5369 * interrupt concentrator for global interrupts. Interrupts are already 5370 * enabled at each module, here we just enable the roots of the interrupt 5371 * hierarchies. 5372 * 5373 * Note: this function should be called only when the driver manages 5374 * non PF-specific interrupts from the various HW modules. Only one PCI 5375 * function at a time should be doing this. 5376 */ 5377 void t4_intr_enable(struct adapter *adap) 5378 { 5379 u32 val = 0; 5380 5381 if (chip_id(adap) <= CHELSIO_T5) 5382 val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT; 5383 else 5384 val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN; 5385 val |= F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC | 5386 F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 | 5387 F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 | 5388 F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 | 5389 F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_DBFIFO_LP_INT | 5390 F_EGRESS_SIZE_ERR; 5391 t4_set_reg_field(adap, A_SGE_INT_ENABLE3, val, val); 5392 t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK); 5393 t4_set_reg_field(adap, A_PL_INT_ENABLE, F_SF | F_I2CM, 0); 5394 t4_set_reg_field(adap, A_PL_INT_MAP0, 0, 1 << adap->pf); 5395 } 5396 5397 /** 5398 * t4_intr_disable - disable interrupts 5399 * @adap: the adapter whose interrupts should be disabled 5400 * 5401 * Disable interrupts. We only disable the top-level interrupt 5402 * concentrators. The caller must be a PCI function managing global 5403 * interrupts. 5404 */ 5405 void t4_intr_disable(struct adapter *adap) 5406 { 5407 5408 t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), 0); 5409 t4_set_reg_field(adap, A_PL_INT_MAP0, 1 << adap->pf, 0); 5410 } 5411 5412 /** 5413 * t4_intr_clear - clear all interrupts 5414 * @adap: the adapter whose interrupts should be cleared 5415 * 5416 * Clears all interrupts. The caller must be a PCI function managing 5417 * global interrupts. 5418 */ 5419 void t4_intr_clear(struct adapter *adap) 5420 { 5421 static const u32 cause_reg[] = { 5422 A_CIM_HOST_INT_CAUSE, 5423 A_CIM_HOST_UPACC_INT_CAUSE, 5424 MYPF_REG(A_CIM_PF_HOST_INT_CAUSE), 5425 A_CPL_INTR_CAUSE, 5426 EDC_REG(A_EDC_INT_CAUSE, 0), EDC_REG(A_EDC_INT_CAUSE, 1), 5427 A_LE_DB_INT_CAUSE, 5428 A_MA_INT_WRAP_STATUS, 5429 A_MA_PARITY_ERROR_STATUS1, 5430 A_MA_INT_CAUSE, 5431 A_MPS_CLS_INT_CAUSE, 5432 A_MPS_RX_PERR_INT_CAUSE, 5433 A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO, 5434 A_MPS_STAT_PERR_INT_CAUSE_SRAM, 5435 A_MPS_TRC_INT_CAUSE, 5436 A_MPS_TX_INT_CAUSE, 5437 A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO, 5438 A_NCSI_INT_CAUSE, 5439 A_PCIE_INT_CAUSE, 5440 A_PCIE_NONFAT_ERR, 5441 A_PL_PL_INT_CAUSE, 5442 A_PM_RX_INT_CAUSE, 5443 A_PM_TX_INT_CAUSE, 5444 A_SGE_INT_CAUSE1, 5445 A_SGE_INT_CAUSE2, 5446 A_SGE_INT_CAUSE3, 5447 A_SGE_INT_CAUSE4, 5448 A_SMB_INT_CAUSE, 5449 A_TP_INT_CAUSE, 5450 A_ULP_RX_INT_CAUSE, 5451 A_ULP_RX_INT_CAUSE_2, 5452 A_ULP_TX_INT_CAUSE, 5453 A_ULP_TX_INT_CAUSE_2, 5454 5455 MYPF_REG(A_PL_PF_INT_CAUSE), 5456 }; 5457 int i; 5458 const int nchan = adap->chip_params->nchan; 5459 5460 for (i = 0; i < ARRAY_SIZE(cause_reg); i++) 5461 t4_write_reg(adap, cause_reg[i], 0xffffffff); 5462 5463 if (is_t4(adap)) { 5464 t4_write_reg(adap, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS, 5465 0xffffffff); 5466 t4_write_reg(adap, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS, 5467 0xffffffff); 5468 t4_write_reg(adap, A_MC_INT_CAUSE, 0xffffffff); 5469 for (i = 0; i < nchan; i++) { 5470 t4_write_reg(adap, PORT_REG(i, A_XGMAC_PORT_INT_CAUSE), 5471 0xffffffff); 5472 } 5473 } 5474 if (chip_id(adap) >= CHELSIO_T5) { 5475 t4_write_reg(adap, A_MA_PARITY_ERROR_STATUS2, 0xffffffff); 5476 t4_write_reg(adap, A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 0xffffffff); 5477 t4_write_reg(adap, A_SGE_INT_CAUSE5, 0xffffffff); 5478 t4_write_reg(adap, A_MC_P_INT_CAUSE, 0xffffffff); 5479 if (is_t5(adap)) { 5480 t4_write_reg(adap, MC_REG(A_MC_P_INT_CAUSE, 1), 5481 0xffffffff); 5482 } 5483 for (i = 0; i < nchan; i++) { 5484 t4_write_reg(adap, T5_PORT_REG(i, 5485 A_MAC_PORT_PERR_INT_CAUSE), 0xffffffff); 5486 if (chip_id(adap) > CHELSIO_T5) { 5487 t4_write_reg(adap, T5_PORT_REG(i, 5488 A_MAC_PORT_PERR_INT_CAUSE_100G), 5489 0xffffffff); 5490 } 5491 t4_write_reg(adap, T5_PORT_REG(i, A_MAC_PORT_INT_CAUSE), 5492 0xffffffff); 5493 } 5494 } 5495 if (chip_id(adap) >= CHELSIO_T6) { 5496 t4_write_reg(adap, A_SGE_INT_CAUSE6, 0xffffffff); 5497 } 5498 5499 t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff); 5500 t4_write_reg(adap, A_PL_PERR_CAUSE, 0xffffffff); 5501 t4_write_reg(adap, A_PL_INT_CAUSE, 0xffffffff); 5502 (void) t4_read_reg(adap, A_PL_INT_CAUSE); /* flush */ 5503 } 5504 5505 /** 5506 * hash_mac_addr - return the hash value of a MAC address 5507 * @addr: the 48-bit Ethernet MAC address 5508 * 5509 * Hashes a MAC address according to the hash function used by HW inexact 5510 * (hash) address matching. 5511 */ 5512 static int hash_mac_addr(const u8 *addr) 5513 { 5514 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2]; 5515 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5]; 5516 a ^= b; 5517 a ^= (a >> 12); 5518 a ^= (a >> 6); 5519 return a & 0x3f; 5520 } 5521 5522 /** 5523 * t4_config_rss_range - configure a portion of the RSS mapping table 5524 * @adapter: the adapter 5525 * @mbox: mbox to use for the FW command 5526 * @viid: virtual interface whose RSS subtable is to be written 5527 * @start: start entry in the table to write 5528 * @n: how many table entries to write 5529 * @rspq: values for the "response queue" (Ingress Queue) lookup table 5530 * @nrspq: number of values in @rspq 5531 * 5532 * Programs the selected part of the VI's RSS mapping table with the 5533 * provided values. If @nrspq < @n the supplied values are used repeatedly 5534 * until the full table range is populated. 5535 * 5536 * The caller must ensure the values in @rspq are in the range allowed for 5537 * @viid. 5538 */ 5539 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 5540 int start, int n, const u16 *rspq, unsigned int nrspq) 5541 { 5542 int ret; 5543 const u16 *rsp = rspq; 5544 const u16 *rsp_end = rspq + nrspq; 5545 struct fw_rss_ind_tbl_cmd cmd; 5546 5547 memset(&cmd, 0, sizeof(cmd)); 5548 cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) | 5549 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 5550 V_FW_RSS_IND_TBL_CMD_VIID(viid)); 5551 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 5552 5553 /* 5554 * Each firmware RSS command can accommodate up to 32 RSS Ingress 5555 * Queue Identifiers. These Ingress Queue IDs are packed three to 5556 * a 32-bit word as 10-bit values with the upper remaining 2 bits 5557 * reserved. 5558 */ 5559 while (n > 0) { 5560 int nq = min(n, 32); 5561 int nq_packed = 0; 5562 __be32 *qp = &cmd.iq0_to_iq2; 5563 5564 /* 5565 * Set up the firmware RSS command header to send the next 5566 * "nq" Ingress Queue IDs to the firmware. 5567 */ 5568 cmd.niqid = cpu_to_be16(nq); 5569 cmd.startidx = cpu_to_be16(start); 5570 5571 /* 5572 * "nq" more done for the start of the next loop. 5573 */ 5574 start += nq; 5575 n -= nq; 5576 5577 /* 5578 * While there are still Ingress Queue IDs to stuff into the 5579 * current firmware RSS command, retrieve them from the 5580 * Ingress Queue ID array and insert them into the command. 5581 */ 5582 while (nq > 0) { 5583 /* 5584 * Grab up to the next 3 Ingress Queue IDs (wrapping 5585 * around the Ingress Queue ID array if necessary) and 5586 * insert them into the firmware RSS command at the 5587 * current 3-tuple position within the commad. 5588 */ 5589 u16 qbuf[3]; 5590 u16 *qbp = qbuf; 5591 int nqbuf = min(3, nq); 5592 5593 nq -= nqbuf; 5594 qbuf[0] = qbuf[1] = qbuf[2] = 0; 5595 while (nqbuf && nq_packed < 32) { 5596 nqbuf--; 5597 nq_packed++; 5598 *qbp++ = *rsp++; 5599 if (rsp >= rsp_end) 5600 rsp = rspq; 5601 } 5602 *qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) | 5603 V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) | 5604 V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2])); 5605 } 5606 5607 /* 5608 * Send this portion of the RRS table update to the firmware; 5609 * bail out on any errors. 5610 */ 5611 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 5612 if (ret) 5613 return ret; 5614 } 5615 return 0; 5616 } 5617 5618 /** 5619 * t4_config_glbl_rss - configure the global RSS mode 5620 * @adapter: the adapter 5621 * @mbox: mbox to use for the FW command 5622 * @mode: global RSS mode 5623 * @flags: mode-specific flags 5624 * 5625 * Sets the global RSS mode. 5626 */ 5627 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 5628 unsigned int flags) 5629 { 5630 struct fw_rss_glb_config_cmd c; 5631 5632 memset(&c, 0, sizeof(c)); 5633 c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) | 5634 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 5635 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5636 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 5637 c.u.manual.mode_pkd = 5638 cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode)); 5639 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 5640 c.u.basicvirtual.mode_keymode = 5641 cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode)); 5642 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); 5643 } else 5644 return -EINVAL; 5645 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5646 } 5647 5648 /** 5649 * t4_config_vi_rss - configure per VI RSS settings 5650 * @adapter: the adapter 5651 * @mbox: mbox to use for the FW command 5652 * @viid: the VI id 5653 * @flags: RSS flags 5654 * @defq: id of the default RSS queue for the VI. 5655 * @skeyidx: RSS secret key table index for non-global mode 5656 * @skey: RSS vf_scramble key for VI. 5657 * 5658 * Configures VI-specific RSS properties. 5659 */ 5660 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, 5661 unsigned int flags, unsigned int defq, unsigned int skeyidx, 5662 unsigned int skey) 5663 { 5664 struct fw_rss_vi_config_cmd c; 5665 5666 memset(&c, 0, sizeof(c)); 5667 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) | 5668 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 5669 V_FW_RSS_VI_CONFIG_CMD_VIID(viid)); 5670 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5671 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | 5672 V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq)); 5673 c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32( 5674 V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx)); 5675 c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey); 5676 5677 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5678 } 5679 5680 /* Read an RSS table row */ 5681 static int rd_rss_row(struct adapter *adap, int row, u32 *val) 5682 { 5683 t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row); 5684 return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1, 5685 5, 0, val); 5686 } 5687 5688 /** 5689 * t4_read_rss - read the contents of the RSS mapping table 5690 * @adapter: the adapter 5691 * @map: holds the contents of the RSS mapping table 5692 * 5693 * Reads the contents of the RSS hash->queue mapping table. 5694 */ 5695 int t4_read_rss(struct adapter *adapter, u16 *map) 5696 { 5697 u32 val; 5698 int i, ret; 5699 int rss_nentries = adapter->chip_params->rss_nentries; 5700 5701 for (i = 0; i < rss_nentries / 2; ++i) { 5702 ret = rd_rss_row(adapter, i, &val); 5703 if (ret) 5704 return ret; 5705 *map++ = G_LKPTBLQUEUE0(val); 5706 *map++ = G_LKPTBLQUEUE1(val); 5707 } 5708 return 0; 5709 } 5710 5711 /** 5712 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST 5713 * @adap: the adapter 5714 * @cmd: TP fw ldst address space type 5715 * @vals: where the indirect register values are stored/written 5716 * @nregs: how many indirect registers to read/write 5717 * @start_idx: index of first indirect register to read/write 5718 * @rw: Read (1) or Write (0) 5719 * @sleep_ok: if true we may sleep while awaiting command completion 5720 * 5721 * Access TP indirect registers through LDST 5722 **/ 5723 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals, 5724 unsigned int nregs, unsigned int start_index, 5725 unsigned int rw, bool sleep_ok) 5726 { 5727 int ret = 0; 5728 unsigned int i; 5729 struct fw_ldst_cmd c; 5730 5731 for (i = 0; i < nregs; i++) { 5732 memset(&c, 0, sizeof(c)); 5733 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 5734 F_FW_CMD_REQUEST | 5735 (rw ? F_FW_CMD_READ : 5736 F_FW_CMD_WRITE) | 5737 V_FW_LDST_CMD_ADDRSPACE(cmd)); 5738 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5739 5740 c.u.addrval.addr = cpu_to_be32(start_index + i); 5741 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); 5742 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, 5743 sleep_ok); 5744 if (ret) 5745 return ret; 5746 5747 if (rw) 5748 vals[i] = be32_to_cpu(c.u.addrval.val); 5749 } 5750 return 0; 5751 } 5752 5753 /** 5754 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor 5755 * @adap: the adapter 5756 * @reg_addr: Address Register 5757 * @reg_data: Data register 5758 * @buff: where the indirect register values are stored/written 5759 * @nregs: how many indirect registers to read/write 5760 * @start_index: index of first indirect register to read/write 5761 * @rw: READ(1) or WRITE(0) 5762 * @sleep_ok: if true we may sleep while awaiting command completion 5763 * 5764 * Read/Write TP indirect registers through LDST if possible. 5765 * Else, use backdoor access 5766 **/ 5767 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data, 5768 u32 *buff, u32 nregs, u32 start_index, int rw, 5769 bool sleep_ok) 5770 { 5771 int rc = -EINVAL; 5772 int cmd; 5773 5774 switch (reg_addr) { 5775 case A_TP_PIO_ADDR: 5776 cmd = FW_LDST_ADDRSPC_TP_PIO; 5777 break; 5778 case A_TP_TM_PIO_ADDR: 5779 cmd = FW_LDST_ADDRSPC_TP_TM_PIO; 5780 break; 5781 case A_TP_MIB_INDEX: 5782 cmd = FW_LDST_ADDRSPC_TP_MIB; 5783 break; 5784 default: 5785 goto indirect_access; 5786 } 5787 5788 if (t4_use_ldst(adap)) 5789 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw, 5790 sleep_ok); 5791 5792 indirect_access: 5793 5794 if (rc) { 5795 if (rw) 5796 t4_read_indirect(adap, reg_addr, reg_data, buff, nregs, 5797 start_index); 5798 else 5799 t4_write_indirect(adap, reg_addr, reg_data, buff, nregs, 5800 start_index); 5801 } 5802 } 5803 5804 /** 5805 * t4_tp_pio_read - Read TP PIO registers 5806 * @adap: the adapter 5807 * @buff: where the indirect register values are written 5808 * @nregs: how many indirect registers to read 5809 * @start_index: index of first indirect register to read 5810 * @sleep_ok: if true we may sleep while awaiting command completion 5811 * 5812 * Read TP PIO Registers 5813 **/ 5814 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5815 u32 start_index, bool sleep_ok) 5816 { 5817 t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs, 5818 start_index, 1, sleep_ok); 5819 } 5820 5821 /** 5822 * t4_tp_pio_write - Write TP PIO registers 5823 * @adap: the adapter 5824 * @buff: where the indirect register values are stored 5825 * @nregs: how many indirect registers to write 5826 * @start_index: index of first indirect register to write 5827 * @sleep_ok: if true we may sleep while awaiting command completion 5828 * 5829 * Write TP PIO Registers 5830 **/ 5831 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs, 5832 u32 start_index, bool sleep_ok) 5833 { 5834 t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, 5835 __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok); 5836 } 5837 5838 /** 5839 * t4_tp_tm_pio_read - Read TP TM PIO registers 5840 * @adap: the adapter 5841 * @buff: where the indirect register values are written 5842 * @nregs: how many indirect registers to read 5843 * @start_index: index of first indirect register to read 5844 * @sleep_ok: if true we may sleep while awaiting command completion 5845 * 5846 * Read TP TM PIO Registers 5847 **/ 5848 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5849 u32 start_index, bool sleep_ok) 5850 { 5851 t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff, 5852 nregs, start_index, 1, sleep_ok); 5853 } 5854 5855 /** 5856 * t4_tp_mib_read - Read TP MIB registers 5857 * @adap: the adapter 5858 * @buff: where the indirect register values are written 5859 * @nregs: how many indirect registers to read 5860 * @start_index: index of first indirect register to read 5861 * @sleep_ok: if true we may sleep while awaiting command completion 5862 * 5863 * Read TP MIB Registers 5864 **/ 5865 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, 5866 bool sleep_ok) 5867 { 5868 t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs, 5869 start_index, 1, sleep_ok); 5870 } 5871 5872 /** 5873 * t4_read_rss_key - read the global RSS key 5874 * @adap: the adapter 5875 * @key: 10-entry array holding the 320-bit RSS key 5876 * @sleep_ok: if true we may sleep while awaiting command completion 5877 * 5878 * Reads the global 320-bit RSS key. 5879 */ 5880 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok) 5881 { 5882 t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok); 5883 } 5884 5885 /** 5886 * t4_write_rss_key - program one of the RSS keys 5887 * @adap: the adapter 5888 * @key: 10-entry array holding the 320-bit RSS key 5889 * @idx: which RSS key to write 5890 * @sleep_ok: if true we may sleep while awaiting command completion 5891 * 5892 * Writes one of the RSS keys with the given 320-bit value. If @idx is 5893 * 0..15 the corresponding entry in the RSS key table is written, 5894 * otherwise the global RSS key is written. 5895 */ 5896 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx, 5897 bool sleep_ok) 5898 { 5899 u8 rss_key_addr_cnt = 16; 5900 u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT); 5901 5902 /* 5903 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble), 5904 * allows access to key addresses 16-63 by using KeyWrAddrX 5905 * as index[5:4](upper 2) into key table 5906 */ 5907 if ((chip_id(adap) > CHELSIO_T5) && 5908 (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3)) 5909 rss_key_addr_cnt = 32; 5910 5911 t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok); 5912 5913 if (idx >= 0 && idx < rss_key_addr_cnt) { 5914 if (rss_key_addr_cnt > 16) 5915 t4_write_reg(adap, A_TP_RSS_CONFIG_VRT, 5916 vrt | V_KEYWRADDRX(idx >> 4) | 5917 V_T6_VFWRADDR(idx) | F_KEYWREN); 5918 else 5919 t4_write_reg(adap, A_TP_RSS_CONFIG_VRT, 5920 vrt| V_KEYWRADDR(idx) | F_KEYWREN); 5921 } 5922 } 5923 5924 /** 5925 * t4_read_rss_pf_config - read PF RSS Configuration Table 5926 * @adapter: the adapter 5927 * @index: the entry in the PF RSS table to read 5928 * @valp: where to store the returned value 5929 * @sleep_ok: if true we may sleep while awaiting command completion 5930 * 5931 * Reads the PF RSS Configuration Table at the specified index and returns 5932 * the value found there. 5933 */ 5934 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 5935 u32 *valp, bool sleep_ok) 5936 { 5937 t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok); 5938 } 5939 5940 /** 5941 * t4_write_rss_pf_config - write PF RSS Configuration Table 5942 * @adapter: the adapter 5943 * @index: the entry in the VF RSS table to read 5944 * @val: the value to store 5945 * @sleep_ok: if true we may sleep while awaiting command completion 5946 * 5947 * Writes the PF RSS Configuration Table at the specified index with the 5948 * specified value. 5949 */ 5950 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index, 5951 u32 val, bool sleep_ok) 5952 { 5953 t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index, 5954 sleep_ok); 5955 } 5956 5957 /** 5958 * t4_read_rss_vf_config - read VF RSS Configuration Table 5959 * @adapter: the adapter 5960 * @index: the entry in the VF RSS table to read 5961 * @vfl: where to store the returned VFL 5962 * @vfh: where to store the returned VFH 5963 * @sleep_ok: if true we may sleep while awaiting command completion 5964 * 5965 * Reads the VF RSS Configuration Table at the specified index and returns 5966 * the (VFL, VFH) values found there. 5967 */ 5968 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 5969 u32 *vfl, u32 *vfh, bool sleep_ok) 5970 { 5971 u32 vrt, mask, data; 5972 5973 if (chip_id(adapter) <= CHELSIO_T5) { 5974 mask = V_VFWRADDR(M_VFWRADDR); 5975 data = V_VFWRADDR(index); 5976 } else { 5977 mask = V_T6_VFWRADDR(M_T6_VFWRADDR); 5978 data = V_T6_VFWRADDR(index); 5979 } 5980 /* 5981 * Request that the index'th VF Table values be read into VFL/VFH. 5982 */ 5983 vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT); 5984 vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask); 5985 vrt |= data | F_VFRDEN; 5986 t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt); 5987 5988 /* 5989 * Grab the VFL/VFH values ... 5990 */ 5991 t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok); 5992 t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok); 5993 } 5994 5995 /** 5996 * t4_write_rss_vf_config - write VF RSS Configuration Table 5997 * 5998 * @adapter: the adapter 5999 * @index: the entry in the VF RSS table to write 6000 * @vfl: the VFL to store 6001 * @vfh: the VFH to store 6002 * 6003 * Writes the VF RSS Configuration Table at the specified index with the 6004 * specified (VFL, VFH) values. 6005 */ 6006 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index, 6007 u32 vfl, u32 vfh, bool sleep_ok) 6008 { 6009 u32 vrt, mask, data; 6010 6011 if (chip_id(adapter) <= CHELSIO_T5) { 6012 mask = V_VFWRADDR(M_VFWRADDR); 6013 data = V_VFWRADDR(index); 6014 } else { 6015 mask = V_T6_VFWRADDR(M_T6_VFWRADDR); 6016 data = V_T6_VFWRADDR(index); 6017 } 6018 6019 /* 6020 * Load up VFL/VFH with the values to be written ... 6021 */ 6022 t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok); 6023 t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok); 6024 6025 /* 6026 * Write the VFL/VFH into the VF Table at index'th location. 6027 */ 6028 vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT); 6029 vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask); 6030 vrt |= data | F_VFRDEN; 6031 t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt); 6032 } 6033 6034 /** 6035 * t4_read_rss_pf_map - read PF RSS Map 6036 * @adapter: the adapter 6037 * @sleep_ok: if true we may sleep while awaiting command completion 6038 * 6039 * Reads the PF RSS Map register and returns its value. 6040 */ 6041 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok) 6042 { 6043 u32 pfmap; 6044 6045 t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok); 6046 6047 return pfmap; 6048 } 6049 6050 /** 6051 * t4_write_rss_pf_map - write PF RSS Map 6052 * @adapter: the adapter 6053 * @pfmap: PF RSS Map value 6054 * 6055 * Writes the specified value to the PF RSS Map register. 6056 */ 6057 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok) 6058 { 6059 t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok); 6060 } 6061 6062 /** 6063 * t4_read_rss_pf_mask - read PF RSS Mask 6064 * @adapter: the adapter 6065 * @sleep_ok: if true we may sleep while awaiting command completion 6066 * 6067 * Reads the PF RSS Mask register and returns its value. 6068 */ 6069 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok) 6070 { 6071 u32 pfmask; 6072 6073 t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok); 6074 6075 return pfmask; 6076 } 6077 6078 /** 6079 * t4_write_rss_pf_mask - write PF RSS Mask 6080 * @adapter: the adapter 6081 * @pfmask: PF RSS Mask value 6082 * 6083 * Writes the specified value to the PF RSS Mask register. 6084 */ 6085 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok) 6086 { 6087 t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok); 6088 } 6089 6090 /** 6091 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 6092 * @adap: the adapter 6093 * @v4: holds the TCP/IP counter values 6094 * @v6: holds the TCP/IPv6 counter values 6095 * @sleep_ok: if true we may sleep while awaiting command completion 6096 * 6097 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 6098 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 6099 */ 6100 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 6101 struct tp_tcp_stats *v6, bool sleep_ok) 6102 { 6103 u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1]; 6104 6105 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST) 6106 #define STAT(x) val[STAT_IDX(x)] 6107 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 6108 6109 if (v4) { 6110 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 6111 A_TP_MIB_TCP_OUT_RST, sleep_ok); 6112 v4->tcp_out_rsts = STAT(OUT_RST); 6113 v4->tcp_in_segs = STAT64(IN_SEG); 6114 v4->tcp_out_segs = STAT64(OUT_SEG); 6115 v4->tcp_retrans_segs = STAT64(RXT_SEG); 6116 } 6117 if (v6) { 6118 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 6119 A_TP_MIB_TCP_V6OUT_RST, sleep_ok); 6120 v6->tcp_out_rsts = STAT(OUT_RST); 6121 v6->tcp_in_segs = STAT64(IN_SEG); 6122 v6->tcp_out_segs = STAT64(OUT_SEG); 6123 v6->tcp_retrans_segs = STAT64(RXT_SEG); 6124 } 6125 #undef STAT64 6126 #undef STAT 6127 #undef STAT_IDX 6128 } 6129 6130 /** 6131 * t4_tp_get_err_stats - read TP's error MIB counters 6132 * @adap: the adapter 6133 * @st: holds the counter values 6134 * @sleep_ok: if true we may sleep while awaiting command completion 6135 * 6136 * Returns the values of TP's error counters. 6137 */ 6138 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st, 6139 bool sleep_ok) 6140 { 6141 int nchan = adap->chip_params->nchan; 6142 6143 t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0, 6144 sleep_ok); 6145 6146 t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0, 6147 sleep_ok); 6148 6149 t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0, 6150 sleep_ok); 6151 6152 t4_tp_mib_read(adap, st->tnl_cong_drops, nchan, 6153 A_TP_MIB_TNL_CNG_DROP_0, sleep_ok); 6154 6155 t4_tp_mib_read(adap, st->ofld_chan_drops, nchan, 6156 A_TP_MIB_OFD_CHN_DROP_0, sleep_ok); 6157 6158 t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0, 6159 sleep_ok); 6160 6161 t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan, 6162 A_TP_MIB_OFD_VLN_DROP_0, sleep_ok); 6163 6164 t4_tp_mib_read(adap, st->tcp6_in_errs, nchan, 6165 A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok); 6166 6167 t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP, 6168 sleep_ok); 6169 } 6170 6171 /** 6172 * t4_tp_get_proxy_stats - read TP's proxy MIB counters 6173 * @adap: the adapter 6174 * @st: holds the counter values 6175 * 6176 * Returns the values of TP's proxy counters. 6177 */ 6178 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st, 6179 bool sleep_ok) 6180 { 6181 int nchan = adap->chip_params->nchan; 6182 6183 t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok); 6184 } 6185 6186 /** 6187 * t4_tp_get_cpl_stats - read TP's CPL MIB counters 6188 * @adap: the adapter 6189 * @st: holds the counter values 6190 * @sleep_ok: if true we may sleep while awaiting command completion 6191 * 6192 * Returns the values of TP's CPL counters. 6193 */ 6194 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st, 6195 bool sleep_ok) 6196 { 6197 int nchan = adap->chip_params->nchan; 6198 6199 t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok); 6200 6201 t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok); 6202 } 6203 6204 /** 6205 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters 6206 * @adap: the adapter 6207 * @st: holds the counter values 6208 * 6209 * Returns the values of TP's RDMA counters. 6210 */ 6211 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st, 6212 bool sleep_ok) 6213 { 6214 t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT, 6215 sleep_ok); 6216 } 6217 6218 /** 6219 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port 6220 * @adap: the adapter 6221 * @idx: the port index 6222 * @st: holds the counter values 6223 * @sleep_ok: if true we may sleep while awaiting command completion 6224 * 6225 * Returns the values of TP's FCoE counters for the selected port. 6226 */ 6227 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, 6228 struct tp_fcoe_stats *st, bool sleep_ok) 6229 { 6230 u32 val[2]; 6231 6232 t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx, 6233 sleep_ok); 6234 6235 t4_tp_mib_read(adap, &st->frames_drop, 1, 6236 A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok); 6237 6238 t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx, 6239 sleep_ok); 6240 6241 st->octets_ddp = ((u64)val[0] << 32) | val[1]; 6242 } 6243 6244 /** 6245 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters 6246 * @adap: the adapter 6247 * @st: holds the counter values 6248 * @sleep_ok: if true we may sleep while awaiting command completion 6249 * 6250 * Returns the values of TP's counters for non-TCP directly-placed packets. 6251 */ 6252 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st, 6253 bool sleep_ok) 6254 { 6255 u32 val[4]; 6256 6257 t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok); 6258 6259 st->frames = val[0]; 6260 st->drops = val[1]; 6261 st->octets = ((u64)val[2] << 32) | val[3]; 6262 } 6263 6264 /** 6265 * t4_read_mtu_tbl - returns the values in the HW path MTU table 6266 * @adap: the adapter 6267 * @mtus: where to store the MTU values 6268 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 6269 * 6270 * Reads the HW path MTU table. 6271 */ 6272 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 6273 { 6274 u32 v; 6275 int i; 6276 6277 for (i = 0; i < NMTUS; ++i) { 6278 t4_write_reg(adap, A_TP_MTU_TABLE, 6279 V_MTUINDEX(0xff) | V_MTUVALUE(i)); 6280 v = t4_read_reg(adap, A_TP_MTU_TABLE); 6281 mtus[i] = G_MTUVALUE(v); 6282 if (mtu_log) 6283 mtu_log[i] = G_MTUWIDTH(v); 6284 } 6285 } 6286 6287 /** 6288 * t4_read_cong_tbl - reads the congestion control table 6289 * @adap: the adapter 6290 * @incr: where to store the alpha values 6291 * 6292 * Reads the additive increments programmed into the HW congestion 6293 * control table. 6294 */ 6295 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 6296 { 6297 unsigned int mtu, w; 6298 6299 for (mtu = 0; mtu < NMTUS; ++mtu) 6300 for (w = 0; w < NCCTRL_WIN; ++w) { 6301 t4_write_reg(adap, A_TP_CCTRL_TABLE, 6302 V_ROWINDEX(0xffff) | (mtu << 5) | w); 6303 incr[mtu][w] = (u16)t4_read_reg(adap, 6304 A_TP_CCTRL_TABLE) & 0x1fff; 6305 } 6306 } 6307 6308 /** 6309 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 6310 * @adap: the adapter 6311 * @addr: the indirect TP register address 6312 * @mask: specifies the field within the register to modify 6313 * @val: new value for the field 6314 * 6315 * Sets a field of an indirect TP register to the given value. 6316 */ 6317 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 6318 unsigned int mask, unsigned int val) 6319 { 6320 t4_write_reg(adap, A_TP_PIO_ADDR, addr); 6321 val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask; 6322 t4_write_reg(adap, A_TP_PIO_DATA, val); 6323 } 6324 6325 /** 6326 * init_cong_ctrl - initialize congestion control parameters 6327 * @a: the alpha values for congestion control 6328 * @b: the beta values for congestion control 6329 * 6330 * Initialize the congestion control parameters. 6331 */ 6332 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 6333 { 6334 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 6335 a[9] = 2; 6336 a[10] = 3; 6337 a[11] = 4; 6338 a[12] = 5; 6339 a[13] = 6; 6340 a[14] = 7; 6341 a[15] = 8; 6342 a[16] = 9; 6343 a[17] = 10; 6344 a[18] = 14; 6345 a[19] = 17; 6346 a[20] = 21; 6347 a[21] = 25; 6348 a[22] = 30; 6349 a[23] = 35; 6350 a[24] = 45; 6351 a[25] = 60; 6352 a[26] = 80; 6353 a[27] = 100; 6354 a[28] = 200; 6355 a[29] = 300; 6356 a[30] = 400; 6357 a[31] = 500; 6358 6359 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 6360 b[9] = b[10] = 1; 6361 b[11] = b[12] = 2; 6362 b[13] = b[14] = b[15] = b[16] = 3; 6363 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 6364 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 6365 b[28] = b[29] = 6; 6366 b[30] = b[31] = 7; 6367 } 6368 6369 /* The minimum additive increment value for the congestion control table */ 6370 #define CC_MIN_INCR 2U 6371 6372 /** 6373 * t4_load_mtus - write the MTU and congestion control HW tables 6374 * @adap: the adapter 6375 * @mtus: the values for the MTU table 6376 * @alpha: the values for the congestion control alpha parameter 6377 * @beta: the values for the congestion control beta parameter 6378 * 6379 * Write the HW MTU table with the supplied MTUs and the high-speed 6380 * congestion control table with the supplied alpha, beta, and MTUs. 6381 * We write the two tables together because the additive increments 6382 * depend on the MTUs. 6383 */ 6384 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 6385 const unsigned short *alpha, const unsigned short *beta) 6386 { 6387 static const unsigned int avg_pkts[NCCTRL_WIN] = { 6388 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 6389 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 6390 28672, 40960, 57344, 81920, 114688, 163840, 229376 6391 }; 6392 6393 unsigned int i, w; 6394 6395 for (i = 0; i < NMTUS; ++i) { 6396 unsigned int mtu = mtus[i]; 6397 unsigned int log2 = fls(mtu); 6398 6399 if (!(mtu & ((1 << log2) >> 2))) /* round */ 6400 log2--; 6401 t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) | 6402 V_MTUWIDTH(log2) | V_MTUVALUE(mtu)); 6403 6404 for (w = 0; w < NCCTRL_WIN; ++w) { 6405 unsigned int inc; 6406 6407 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 6408 CC_MIN_INCR); 6409 6410 t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) | 6411 (w << 16) | (beta[w] << 13) | inc); 6412 } 6413 } 6414 } 6415 6416 /** 6417 * t4_set_pace_tbl - set the pace table 6418 * @adap: the adapter 6419 * @pace_vals: the pace values in microseconds 6420 * @start: index of the first entry in the HW pace table to set 6421 * @n: how many entries to set 6422 * 6423 * Sets (a subset of the) HW pace table. 6424 */ 6425 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals, 6426 unsigned int start, unsigned int n) 6427 { 6428 unsigned int vals[NTX_SCHED], i; 6429 unsigned int tick_ns = dack_ticks_to_usec(adap, 1000); 6430 6431 if (n > NTX_SCHED) 6432 return -ERANGE; 6433 6434 /* convert values from us to dack ticks, rounding to closest value */ 6435 for (i = 0; i < n; i++, pace_vals++) { 6436 vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns; 6437 if (vals[i] > 0x7ff) 6438 return -ERANGE; 6439 if (*pace_vals && vals[i] == 0) 6440 return -ERANGE; 6441 } 6442 for (i = 0; i < n; i++, start++) 6443 t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]); 6444 return 0; 6445 } 6446 6447 /** 6448 * t4_set_sched_bps - set the bit rate for a HW traffic scheduler 6449 * @adap: the adapter 6450 * @kbps: target rate in Kbps 6451 * @sched: the scheduler index 6452 * 6453 * Configure a Tx HW scheduler for the target rate. 6454 */ 6455 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps) 6456 { 6457 unsigned int v, tps, cpt, bpt, delta, mindelta = ~0; 6458 unsigned int clk = adap->params.vpd.cclk * 1000; 6459 unsigned int selected_cpt = 0, selected_bpt = 0; 6460 6461 if (kbps > 0) { 6462 kbps *= 125; /* -> bytes */ 6463 for (cpt = 1; cpt <= 255; cpt++) { 6464 tps = clk / cpt; 6465 bpt = (kbps + tps / 2) / tps; 6466 if (bpt > 0 && bpt <= 255) { 6467 v = bpt * tps; 6468 delta = v >= kbps ? v - kbps : kbps - v; 6469 if (delta < mindelta) { 6470 mindelta = delta; 6471 selected_cpt = cpt; 6472 selected_bpt = bpt; 6473 } 6474 } else if (selected_cpt) 6475 break; 6476 } 6477 if (!selected_cpt) 6478 return -EINVAL; 6479 } 6480 t4_write_reg(adap, A_TP_TM_PIO_ADDR, 6481 A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2); 6482 v = t4_read_reg(adap, A_TP_TM_PIO_DATA); 6483 if (sched & 1) 6484 v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24); 6485 else 6486 v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8); 6487 t4_write_reg(adap, A_TP_TM_PIO_DATA, v); 6488 return 0; 6489 } 6490 6491 /** 6492 * t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler 6493 * @adap: the adapter 6494 * @sched: the scheduler index 6495 * @ipg: the interpacket delay in tenths of nanoseconds 6496 * 6497 * Set the interpacket delay for a HW packet rate scheduler. 6498 */ 6499 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg) 6500 { 6501 unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2; 6502 6503 /* convert ipg to nearest number of core clocks */ 6504 ipg *= core_ticks_per_usec(adap); 6505 ipg = (ipg + 5000) / 10000; 6506 if (ipg > M_TXTIMERSEPQ0) 6507 return -EINVAL; 6508 6509 t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr); 6510 v = t4_read_reg(adap, A_TP_TM_PIO_DATA); 6511 if (sched & 1) 6512 v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg); 6513 else 6514 v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg); 6515 t4_write_reg(adap, A_TP_TM_PIO_DATA, v); 6516 t4_read_reg(adap, A_TP_TM_PIO_DATA); 6517 return 0; 6518 } 6519 6520 /* 6521 * Calculates a rate in bytes/s given the number of 256-byte units per 4K core 6522 * clocks. The formula is 6523 * 6524 * bytes/s = bytes256 * 256 * ClkFreq / 4096 6525 * 6526 * which is equivalent to 6527 * 6528 * bytes/s = 62.5 * bytes256 * ClkFreq_ms 6529 */ 6530 static u64 chan_rate(struct adapter *adap, unsigned int bytes256) 6531 { 6532 u64 v = (u64)bytes256 * adap->params.vpd.cclk; 6533 6534 return v * 62 + v / 2; 6535 } 6536 6537 /** 6538 * t4_get_chan_txrate - get the current per channel Tx rates 6539 * @adap: the adapter 6540 * @nic_rate: rates for NIC traffic 6541 * @ofld_rate: rates for offloaded traffic 6542 * 6543 * Return the current Tx rates in bytes/s for NIC and offloaded traffic 6544 * for each channel. 6545 */ 6546 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) 6547 { 6548 u32 v; 6549 6550 v = t4_read_reg(adap, A_TP_TX_TRATE); 6551 nic_rate[0] = chan_rate(adap, G_TNLRATE0(v)); 6552 nic_rate[1] = chan_rate(adap, G_TNLRATE1(v)); 6553 if (adap->chip_params->nchan > 2) { 6554 nic_rate[2] = chan_rate(adap, G_TNLRATE2(v)); 6555 nic_rate[3] = chan_rate(adap, G_TNLRATE3(v)); 6556 } 6557 6558 v = t4_read_reg(adap, A_TP_TX_ORATE); 6559 ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v)); 6560 ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v)); 6561 if (adap->chip_params->nchan > 2) { 6562 ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v)); 6563 ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v)); 6564 } 6565 } 6566 6567 /** 6568 * t4_set_trace_filter - configure one of the tracing filters 6569 * @adap: the adapter 6570 * @tp: the desired trace filter parameters 6571 * @idx: which filter to configure 6572 * @enable: whether to enable or disable the filter 6573 * 6574 * Configures one of the tracing filters available in HW. If @tp is %NULL 6575 * it indicates that the filter is already written in the register and it 6576 * just needs to be enabled or disabled. 6577 */ 6578 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, 6579 int idx, int enable) 6580 { 6581 int i, ofst = idx * 4; 6582 u32 data_reg, mask_reg, cfg; 6583 u32 multitrc = F_TRCMULTIFILTER; 6584 u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN; 6585 6586 if (idx < 0 || idx >= NTRACE) 6587 return -EINVAL; 6588 6589 if (tp == NULL || !enable) { 6590 t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 6591 enable ? en : 0); 6592 return 0; 6593 } 6594 6595 /* 6596 * TODO - After T4 data book is updated, specify the exact 6597 * section below. 6598 * 6599 * See T4 data book - MPS section for a complete description 6600 * of the below if..else handling of A_MPS_TRC_CFG register 6601 * value. 6602 */ 6603 cfg = t4_read_reg(adap, A_MPS_TRC_CFG); 6604 if (cfg & F_TRCMULTIFILTER) { 6605 /* 6606 * If multiple tracers are enabled, then maximum 6607 * capture size is 2.5KB (FIFO size of a single channel) 6608 * minus 2 flits for CPL_TRACE_PKT header. 6609 */ 6610 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) 6611 return -EINVAL; 6612 } else { 6613 /* 6614 * If multiple tracers are disabled, to avoid deadlocks 6615 * maximum packet capture size of 9600 bytes is recommended. 6616 * Also in this mode, only trace0 can be enabled and running. 6617 */ 6618 multitrc = 0; 6619 if (tp->snap_len > 9600 || idx) 6620 return -EINVAL; 6621 } 6622 6623 if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 || 6624 tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET || 6625 tp->min_len > M_TFMINPKTSIZE) 6626 return -EINVAL; 6627 6628 /* stop the tracer we'll be changing */ 6629 t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0); 6630 6631 idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH); 6632 data_reg = A_MPS_TRC_FILTER0_MATCH + idx; 6633 mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx; 6634 6635 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 6636 t4_write_reg(adap, data_reg, tp->data[i]); 6637 t4_write_reg(adap, mask_reg, ~tp->mask[i]); 6638 } 6639 t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst, 6640 V_TFCAPTUREMAX(tp->snap_len) | 6641 V_TFMINPKTSIZE(tp->min_len)); 6642 t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, 6643 V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en | 6644 (is_t4(adap) ? 6645 V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) : 6646 V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert))); 6647 6648 return 0; 6649 } 6650 6651 /** 6652 * t4_get_trace_filter - query one of the tracing filters 6653 * @adap: the adapter 6654 * @tp: the current trace filter parameters 6655 * @idx: which trace filter to query 6656 * @enabled: non-zero if the filter is enabled 6657 * 6658 * Returns the current settings of one of the HW tracing filters. 6659 */ 6660 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, 6661 int *enabled) 6662 { 6663 u32 ctla, ctlb; 6664 int i, ofst = idx * 4; 6665 u32 data_reg, mask_reg; 6666 6667 ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst); 6668 ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst); 6669 6670 if (is_t4(adap)) { 6671 *enabled = !!(ctla & F_TFEN); 6672 tp->port = G_TFPORT(ctla); 6673 tp->invert = !!(ctla & F_TFINVERTMATCH); 6674 } else { 6675 *enabled = !!(ctla & F_T5_TFEN); 6676 tp->port = G_T5_TFPORT(ctla); 6677 tp->invert = !!(ctla & F_T5_TFINVERTMATCH); 6678 } 6679 tp->snap_len = G_TFCAPTUREMAX(ctlb); 6680 tp->min_len = G_TFMINPKTSIZE(ctlb); 6681 tp->skip_ofst = G_TFOFFSET(ctla); 6682 tp->skip_len = G_TFLENGTH(ctla); 6683 6684 ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx; 6685 data_reg = A_MPS_TRC_FILTER0_MATCH + ofst; 6686 mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst; 6687 6688 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 6689 tp->mask[i] = ~t4_read_reg(adap, mask_reg); 6690 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; 6691 } 6692 } 6693 6694 /** 6695 * t4_pmtx_get_stats - returns the HW stats from PMTX 6696 * @adap: the adapter 6697 * @cnt: where to store the count statistics 6698 * @cycles: where to store the cycle statistics 6699 * 6700 * Returns performance statistics from PMTX. 6701 */ 6702 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6703 { 6704 int i; 6705 u32 data[2]; 6706 6707 for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) { 6708 t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1); 6709 cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT); 6710 if (is_t4(adap)) 6711 cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB); 6712 else { 6713 t4_read_indirect(adap, A_PM_TX_DBG_CTRL, 6714 A_PM_TX_DBG_DATA, data, 2, 6715 A_PM_TX_DBG_STAT_MSB); 6716 cycles[i] = (((u64)data[0] << 32) | data[1]); 6717 } 6718 } 6719 } 6720 6721 /** 6722 * t4_pmrx_get_stats - returns the HW stats from PMRX 6723 * @adap: the adapter 6724 * @cnt: where to store the count statistics 6725 * @cycles: where to store the cycle statistics 6726 * 6727 * Returns performance statistics from PMRX. 6728 */ 6729 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6730 { 6731 int i; 6732 u32 data[2]; 6733 6734 for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) { 6735 t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1); 6736 cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT); 6737 if (is_t4(adap)) { 6738 cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB); 6739 } else { 6740 t4_read_indirect(adap, A_PM_RX_DBG_CTRL, 6741 A_PM_RX_DBG_DATA, data, 2, 6742 A_PM_RX_DBG_STAT_MSB); 6743 cycles[i] = (((u64)data[0] << 32) | data[1]); 6744 } 6745 } 6746 } 6747 6748 /** 6749 * t4_get_mps_bg_map - return the buffer groups associated with a port 6750 * @adap: the adapter 6751 * @idx: the port index 6752 * 6753 * Returns a bitmap indicating which MPS buffer groups are associated 6754 * with the given port. Bit i is set if buffer group i is used by the 6755 * port. 6756 */ 6757 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx) 6758 { 6759 u32 n; 6760 6761 if (adap->params.mps_bg_map) 6762 return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff); 6763 6764 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL)); 6765 if (n == 0) 6766 return idx == 0 ? 0xf : 0; 6767 if (n == 1 && chip_id(adap) <= CHELSIO_T5) 6768 return idx < 2 ? (3 << (2 * idx)) : 0; 6769 return 1 << idx; 6770 } 6771 6772 /* 6773 * TP RX e-channels associated with the port. 6774 */ 6775 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx) 6776 { 6777 u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL)); 6778 const u32 all_chan = (1 << adap->chip_params->nchan) - 1; 6779 6780 if (n == 0) 6781 return idx == 0 ? all_chan : 0; 6782 if (n == 1 && chip_id(adap) <= CHELSIO_T5) 6783 return idx < 2 ? (3 << (2 * idx)) : 0; 6784 return 1 << idx; 6785 } 6786 6787 /** 6788 * t4_get_port_type_description - return Port Type string description 6789 * @port_type: firmware Port Type enumeration 6790 */ 6791 const char *t4_get_port_type_description(enum fw_port_type port_type) 6792 { 6793 static const char *const port_type_description[] = { 6794 "Fiber_XFI", 6795 "Fiber_XAUI", 6796 "BT_SGMII", 6797 "BT_XFI", 6798 "BT_XAUI", 6799 "KX4", 6800 "CX4", 6801 "KX", 6802 "KR", 6803 "SFP", 6804 "BP_AP", 6805 "BP4_AP", 6806 "QSFP_10G", 6807 "QSA", 6808 "QSFP", 6809 "BP40_BA", 6810 "KR4_100G", 6811 "CR4_QSFP", 6812 "CR_QSFP", 6813 "CR2_QSFP", 6814 "SFP28", 6815 "KR_SFP28", 6816 }; 6817 6818 if (port_type < ARRAY_SIZE(port_type_description)) 6819 return port_type_description[port_type]; 6820 return "UNKNOWN"; 6821 } 6822 6823 /** 6824 * t4_get_port_stats_offset - collect port stats relative to a previous 6825 * snapshot 6826 * @adap: The adapter 6827 * @idx: The port 6828 * @stats: Current stats to fill 6829 * @offset: Previous stats snapshot 6830 */ 6831 void t4_get_port_stats_offset(struct adapter *adap, int idx, 6832 struct port_stats *stats, 6833 struct port_stats *offset) 6834 { 6835 u64 *s, *o; 6836 int i; 6837 6838 t4_get_port_stats(adap, idx, stats); 6839 for (i = 0, s = (u64 *)stats, o = (u64 *)offset ; 6840 i < (sizeof(struct port_stats)/sizeof(u64)) ; 6841 i++, s++, o++) 6842 *s -= *o; 6843 } 6844 6845 /** 6846 * t4_get_port_stats - collect port statistics 6847 * @adap: the adapter 6848 * @idx: the port index 6849 * @p: the stats structure to fill 6850 * 6851 * Collect statistics related to the given port from HW. 6852 */ 6853 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 6854 { 6855 struct port_info *pi = adap->port[idx]; 6856 u32 bgmap = pi->mps_bg_map; 6857 u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL); 6858 6859 #define GET_STAT(name) \ 6860 t4_read_reg64(adap, \ 6861 (is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \ 6862 T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L))) 6863 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L) 6864 6865 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 6866 p->tx_octets = GET_STAT(TX_PORT_BYTES); 6867 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 6868 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 6869 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 6870 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 6871 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 6872 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 6873 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 6874 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 6875 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 6876 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 6877 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 6878 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 6879 p->tx_drop = GET_STAT(TX_PORT_DROP); 6880 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 6881 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 6882 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 6883 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 6884 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 6885 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 6886 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 6887 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 6888 6889 if (chip_id(adap) >= CHELSIO_T5) { 6890 if (stat_ctl & F_COUNTPAUSESTATTX) { 6891 p->tx_frames -= p->tx_pause; 6892 p->tx_octets -= p->tx_pause * 64; 6893 } 6894 if (stat_ctl & F_COUNTPAUSEMCTX) 6895 p->tx_mcast_frames -= p->tx_pause; 6896 } 6897 6898 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 6899 p->rx_octets = GET_STAT(RX_PORT_BYTES); 6900 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 6901 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 6902 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 6903 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 6904 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 6905 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 6906 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 6907 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 6908 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 6909 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 6910 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 6911 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 6912 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 6913 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 6914 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 6915 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 6916 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 6917 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 6918 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 6919 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 6920 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 6921 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 6922 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 6923 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 6924 6925 if (pi->fcs_reg != -1) 6926 p->rx_fcs_err = t4_read_reg64(adap, pi->fcs_reg) - pi->fcs_base; 6927 6928 if (chip_id(adap) >= CHELSIO_T5) { 6929 if (stat_ctl & F_COUNTPAUSESTATRX) { 6930 p->rx_frames -= p->rx_pause; 6931 p->rx_octets -= p->rx_pause * 64; 6932 } 6933 if (stat_ctl & F_COUNTPAUSEMCRX) 6934 p->rx_mcast_frames -= p->rx_pause; 6935 } 6936 6937 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 6938 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 6939 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 6940 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 6941 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 6942 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 6943 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 6944 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 6945 6946 #undef GET_STAT 6947 #undef GET_STAT_COM 6948 } 6949 6950 /** 6951 * t4_get_lb_stats - collect loopback port statistics 6952 * @adap: the adapter 6953 * @idx: the loopback port index 6954 * @p: the stats structure to fill 6955 * 6956 * Return HW statistics for the given loopback port. 6957 */ 6958 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) 6959 { 6960 u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map; 6961 6962 #define GET_STAT(name) \ 6963 t4_read_reg64(adap, \ 6964 (is_t4(adap) ? \ 6965 PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \ 6966 T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L))) 6967 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L) 6968 6969 p->octets = GET_STAT(BYTES); 6970 p->frames = GET_STAT(FRAMES); 6971 p->bcast_frames = GET_STAT(BCAST); 6972 p->mcast_frames = GET_STAT(MCAST); 6973 p->ucast_frames = GET_STAT(UCAST); 6974 p->error_frames = GET_STAT(ERROR); 6975 6976 p->frames_64 = GET_STAT(64B); 6977 p->frames_65_127 = GET_STAT(65B_127B); 6978 p->frames_128_255 = GET_STAT(128B_255B); 6979 p->frames_256_511 = GET_STAT(256B_511B); 6980 p->frames_512_1023 = GET_STAT(512B_1023B); 6981 p->frames_1024_1518 = GET_STAT(1024B_1518B); 6982 p->frames_1519_max = GET_STAT(1519B_MAX); 6983 p->drop = GET_STAT(DROP_FRAMES); 6984 6985 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; 6986 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; 6987 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; 6988 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; 6989 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; 6990 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; 6991 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; 6992 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; 6993 6994 #undef GET_STAT 6995 #undef GET_STAT_COM 6996 } 6997 6998 /** 6999 * t4_wol_magic_enable - enable/disable magic packet WoL 7000 * @adap: the adapter 7001 * @port: the physical port index 7002 * @addr: MAC address expected in magic packets, %NULL to disable 7003 * 7004 * Enables/disables magic packet wake-on-LAN for the selected port. 7005 */ 7006 void t4_wol_magic_enable(struct adapter *adap, unsigned int port, 7007 const u8 *addr) 7008 { 7009 u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg; 7010 7011 if (is_t4(adap)) { 7012 mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO); 7013 mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI); 7014 port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2); 7015 } else { 7016 mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO); 7017 mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI); 7018 port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2); 7019 } 7020 7021 if (addr) { 7022 t4_write_reg(adap, mag_id_reg_l, 7023 (addr[2] << 24) | (addr[3] << 16) | 7024 (addr[4] << 8) | addr[5]); 7025 t4_write_reg(adap, mag_id_reg_h, 7026 (addr[0] << 8) | addr[1]); 7027 } 7028 t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN, 7029 V_MAGICEN(addr != NULL)); 7030 } 7031 7032 /** 7033 * t4_wol_pat_enable - enable/disable pattern-based WoL 7034 * @adap: the adapter 7035 * @port: the physical port index 7036 * @map: bitmap of which HW pattern filters to set 7037 * @mask0: byte mask for bytes 0-63 of a packet 7038 * @mask1: byte mask for bytes 64-127 of a packet 7039 * @crc: Ethernet CRC for selected bytes 7040 * @enable: enable/disable switch 7041 * 7042 * Sets the pattern filters indicated in @map to mask out the bytes 7043 * specified in @mask0/@mask1 in received packets and compare the CRC of 7044 * the resulting packet against @crc. If @enable is %true pattern-based 7045 * WoL is enabled, otherwise disabled. 7046 */ 7047 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map, 7048 u64 mask0, u64 mask1, unsigned int crc, bool enable) 7049 { 7050 int i; 7051 u32 port_cfg_reg; 7052 7053 if (is_t4(adap)) 7054 port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2); 7055 else 7056 port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2); 7057 7058 if (!enable) { 7059 t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0); 7060 return 0; 7061 } 7062 if (map > 0xff) 7063 return -EINVAL; 7064 7065 #define EPIO_REG(name) \ 7066 (is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \ 7067 T5_PORT_REG(port, A_MAC_PORT_EPIO_##name)) 7068 7069 t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32); 7070 t4_write_reg(adap, EPIO_REG(DATA2), mask1); 7071 t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32); 7072 7073 for (i = 0; i < NWOL_PAT; i++, map >>= 1) { 7074 if (!(map & 1)) 7075 continue; 7076 7077 /* write byte masks */ 7078 t4_write_reg(adap, EPIO_REG(DATA0), mask0); 7079 t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR); 7080 t4_read_reg(adap, EPIO_REG(OP)); /* flush */ 7081 if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY) 7082 return -ETIMEDOUT; 7083 7084 /* write CRC */ 7085 t4_write_reg(adap, EPIO_REG(DATA0), crc); 7086 t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR); 7087 t4_read_reg(adap, EPIO_REG(OP)); /* flush */ 7088 if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY) 7089 return -ETIMEDOUT; 7090 } 7091 #undef EPIO_REG 7092 7093 t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN); 7094 return 0; 7095 } 7096 7097 /* t4_mk_filtdelwr - create a delete filter WR 7098 * @ftid: the filter ID 7099 * @wr: the filter work request to populate 7100 * @qid: ingress queue to receive the delete notification 7101 * 7102 * Creates a filter work request to delete the supplied filter. If @qid is 7103 * negative the delete notification is suppressed. 7104 */ 7105 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 7106 { 7107 memset(wr, 0, sizeof(*wr)); 7108 wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR)); 7109 wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16)); 7110 wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) | 7111 V_FW_FILTER_WR_NOREPLY(qid < 0)); 7112 wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER); 7113 if (qid >= 0) 7114 wr->rx_chan_rx_rpl_iq = 7115 cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid)); 7116 } 7117 7118 #define INIT_CMD(var, cmd, rd_wr) do { \ 7119 (var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \ 7120 F_FW_CMD_REQUEST | \ 7121 F_FW_CMD_##rd_wr); \ 7122 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ 7123 } while (0) 7124 7125 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 7126 u32 addr, u32 val) 7127 { 7128 u32 ldst_addrspace; 7129 struct fw_ldst_cmd c; 7130 7131 memset(&c, 0, sizeof(c)); 7132 ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE); 7133 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 7134 F_FW_CMD_REQUEST | 7135 F_FW_CMD_WRITE | 7136 ldst_addrspace); 7137 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 7138 c.u.addrval.addr = cpu_to_be32(addr); 7139 c.u.addrval.val = cpu_to_be32(val); 7140 7141 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7142 } 7143 7144 /** 7145 * t4_mdio_rd - read a PHY register through MDIO 7146 * @adap: the adapter 7147 * @mbox: mailbox to use for the FW command 7148 * @phy_addr: the PHY address 7149 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 7150 * @reg: the register to read 7151 * @valp: where to store the value 7152 * 7153 * Issues a FW command through the given mailbox to read a PHY register. 7154 */ 7155 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 7156 unsigned int mmd, unsigned int reg, unsigned int *valp) 7157 { 7158 int ret; 7159 u32 ldst_addrspace; 7160 struct fw_ldst_cmd c; 7161 7162 memset(&c, 0, sizeof(c)); 7163 ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO); 7164 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 7165 F_FW_CMD_REQUEST | F_FW_CMD_READ | 7166 ldst_addrspace); 7167 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 7168 c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) | 7169 V_FW_LDST_CMD_MMD(mmd)); 7170 c.u.mdio.raddr = cpu_to_be16(reg); 7171 7172 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7173 if (ret == 0) 7174 *valp = be16_to_cpu(c.u.mdio.rval); 7175 return ret; 7176 } 7177 7178 /** 7179 * t4_mdio_wr - write a PHY register through MDIO 7180 * @adap: the adapter 7181 * @mbox: mailbox to use for the FW command 7182 * @phy_addr: the PHY address 7183 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 7184 * @reg: the register to write 7185 * @valp: value to write 7186 * 7187 * Issues a FW command through the given mailbox to write a PHY register. 7188 */ 7189 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 7190 unsigned int mmd, unsigned int reg, unsigned int val) 7191 { 7192 u32 ldst_addrspace; 7193 struct fw_ldst_cmd c; 7194 7195 memset(&c, 0, sizeof(c)); 7196 ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO); 7197 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 7198 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 7199 ldst_addrspace); 7200 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 7201 c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) | 7202 V_FW_LDST_CMD_MMD(mmd)); 7203 c.u.mdio.raddr = cpu_to_be16(reg); 7204 c.u.mdio.rval = cpu_to_be16(val); 7205 7206 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7207 } 7208 7209 /** 7210 * 7211 * t4_sge_decode_idma_state - decode the idma state 7212 * @adap: the adapter 7213 * @state: the state idma is stuck in 7214 */ 7215 void t4_sge_decode_idma_state(struct adapter *adapter, int state) 7216 { 7217 static const char * const t4_decode[] = { 7218 "IDMA_IDLE", 7219 "IDMA_PUSH_MORE_CPL_FIFO", 7220 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 7221 "Not used", 7222 "IDMA_PHYSADDR_SEND_PCIEHDR", 7223 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 7224 "IDMA_PHYSADDR_SEND_PAYLOAD", 7225 "IDMA_SEND_FIFO_TO_IMSG", 7226 "IDMA_FL_REQ_DATA_FL_PREP", 7227 "IDMA_FL_REQ_DATA_FL", 7228 "IDMA_FL_DROP", 7229 "IDMA_FL_H_REQ_HEADER_FL", 7230 "IDMA_FL_H_SEND_PCIEHDR", 7231 "IDMA_FL_H_PUSH_CPL_FIFO", 7232 "IDMA_FL_H_SEND_CPL", 7233 "IDMA_FL_H_SEND_IP_HDR_FIRST", 7234 "IDMA_FL_H_SEND_IP_HDR", 7235 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 7236 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 7237 "IDMA_FL_H_SEND_IP_HDR_PADDING", 7238 "IDMA_FL_D_SEND_PCIEHDR", 7239 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 7240 "IDMA_FL_D_REQ_NEXT_DATA_FL", 7241 "IDMA_FL_SEND_PCIEHDR", 7242 "IDMA_FL_PUSH_CPL_FIFO", 7243 "IDMA_FL_SEND_CPL", 7244 "IDMA_FL_SEND_PAYLOAD_FIRST", 7245 "IDMA_FL_SEND_PAYLOAD", 7246 "IDMA_FL_REQ_NEXT_DATA_FL", 7247 "IDMA_FL_SEND_NEXT_PCIEHDR", 7248 "IDMA_FL_SEND_PADDING", 7249 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 7250 "IDMA_FL_SEND_FIFO_TO_IMSG", 7251 "IDMA_FL_REQ_DATAFL_DONE", 7252 "IDMA_FL_REQ_HEADERFL_DONE", 7253 }; 7254 static const char * const t5_decode[] = { 7255 "IDMA_IDLE", 7256 "IDMA_ALMOST_IDLE", 7257 "IDMA_PUSH_MORE_CPL_FIFO", 7258 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 7259 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 7260 "IDMA_PHYSADDR_SEND_PCIEHDR", 7261 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 7262 "IDMA_PHYSADDR_SEND_PAYLOAD", 7263 "IDMA_SEND_FIFO_TO_IMSG", 7264 "IDMA_FL_REQ_DATA_FL", 7265 "IDMA_FL_DROP", 7266 "IDMA_FL_DROP_SEND_INC", 7267 "IDMA_FL_H_REQ_HEADER_FL", 7268 "IDMA_FL_H_SEND_PCIEHDR", 7269 "IDMA_FL_H_PUSH_CPL_FIFO", 7270 "IDMA_FL_H_SEND_CPL", 7271 "IDMA_FL_H_SEND_IP_HDR_FIRST", 7272 "IDMA_FL_H_SEND_IP_HDR", 7273 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 7274 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 7275 "IDMA_FL_H_SEND_IP_HDR_PADDING", 7276 "IDMA_FL_D_SEND_PCIEHDR", 7277 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 7278 "IDMA_FL_D_REQ_NEXT_DATA_FL", 7279 "IDMA_FL_SEND_PCIEHDR", 7280 "IDMA_FL_PUSH_CPL_FIFO", 7281 "IDMA_FL_SEND_CPL", 7282 "IDMA_FL_SEND_PAYLOAD_FIRST", 7283 "IDMA_FL_SEND_PAYLOAD", 7284 "IDMA_FL_REQ_NEXT_DATA_FL", 7285 "IDMA_FL_SEND_NEXT_PCIEHDR", 7286 "IDMA_FL_SEND_PADDING", 7287 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 7288 }; 7289 static const char * const t6_decode[] = { 7290 "IDMA_IDLE", 7291 "IDMA_PUSH_MORE_CPL_FIFO", 7292 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 7293 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 7294 "IDMA_PHYSADDR_SEND_PCIEHDR", 7295 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 7296 "IDMA_PHYSADDR_SEND_PAYLOAD", 7297 "IDMA_FL_REQ_DATA_FL", 7298 "IDMA_FL_DROP", 7299 "IDMA_FL_DROP_SEND_INC", 7300 "IDMA_FL_H_REQ_HEADER_FL", 7301 "IDMA_FL_H_SEND_PCIEHDR", 7302 "IDMA_FL_H_PUSH_CPL_FIFO", 7303 "IDMA_FL_H_SEND_CPL", 7304 "IDMA_FL_H_SEND_IP_HDR_FIRST", 7305 "IDMA_FL_H_SEND_IP_HDR", 7306 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 7307 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 7308 "IDMA_FL_H_SEND_IP_HDR_PADDING", 7309 "IDMA_FL_D_SEND_PCIEHDR", 7310 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 7311 "IDMA_FL_D_REQ_NEXT_DATA_FL", 7312 "IDMA_FL_SEND_PCIEHDR", 7313 "IDMA_FL_PUSH_CPL_FIFO", 7314 "IDMA_FL_SEND_CPL", 7315 "IDMA_FL_SEND_PAYLOAD_FIRST", 7316 "IDMA_FL_SEND_PAYLOAD", 7317 "IDMA_FL_REQ_NEXT_DATA_FL", 7318 "IDMA_FL_SEND_NEXT_PCIEHDR", 7319 "IDMA_FL_SEND_PADDING", 7320 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 7321 }; 7322 static const u32 sge_regs[] = { 7323 A_SGE_DEBUG_DATA_LOW_INDEX_2, 7324 A_SGE_DEBUG_DATA_LOW_INDEX_3, 7325 A_SGE_DEBUG_DATA_HIGH_INDEX_10, 7326 }; 7327 const char * const *sge_idma_decode; 7328 int sge_idma_decode_nstates; 7329 int i; 7330 unsigned int chip_version = chip_id(adapter); 7331 7332 /* Select the right set of decode strings to dump depending on the 7333 * adapter chip type. 7334 */ 7335 switch (chip_version) { 7336 case CHELSIO_T4: 7337 sge_idma_decode = (const char * const *)t4_decode; 7338 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 7339 break; 7340 7341 case CHELSIO_T5: 7342 sge_idma_decode = (const char * const *)t5_decode; 7343 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 7344 break; 7345 7346 case CHELSIO_T6: 7347 sge_idma_decode = (const char * const *)t6_decode; 7348 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); 7349 break; 7350 7351 default: 7352 CH_ERR(adapter, "Unsupported chip version %d\n", chip_version); 7353 return; 7354 } 7355 7356 if (state < sge_idma_decode_nstates) 7357 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 7358 else 7359 CH_WARN(adapter, "idma state %d unknown\n", state); 7360 7361 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 7362 CH_WARN(adapter, "SGE register %#x value %#x\n", 7363 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 7364 } 7365 7366 /** 7367 * t4_sge_ctxt_flush - flush the SGE context cache 7368 * @adap: the adapter 7369 * @mbox: mailbox to use for the FW command 7370 * 7371 * Issues a FW command through the given mailbox to flush the 7372 * SGE context cache. 7373 */ 7374 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type) 7375 { 7376 int ret; 7377 u32 ldst_addrspace; 7378 struct fw_ldst_cmd c; 7379 7380 memset(&c, 0, sizeof(c)); 7381 ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(ctxt_type == CTXT_EGRESS ? 7382 FW_LDST_ADDRSPC_SGE_EGRC : 7383 FW_LDST_ADDRSPC_SGE_INGC); 7384 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 7385 F_FW_CMD_REQUEST | F_FW_CMD_READ | 7386 ldst_addrspace); 7387 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 7388 c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH); 7389 7390 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7391 return ret; 7392 } 7393 7394 /** 7395 * t4_fw_hello - establish communication with FW 7396 * @adap: the adapter 7397 * @mbox: mailbox to use for the FW command 7398 * @evt_mbox: mailbox to receive async FW events 7399 * @master: specifies the caller's willingness to be the device master 7400 * @state: returns the current device state (if non-NULL) 7401 * 7402 * Issues a command to establish communication with FW. Returns either 7403 * an error (negative integer) or the mailbox of the Master PF. 7404 */ 7405 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 7406 enum dev_master master, enum dev_state *state) 7407 { 7408 int ret; 7409 struct fw_hello_cmd c; 7410 u32 v; 7411 unsigned int master_mbox; 7412 int retries = FW_CMD_HELLO_RETRIES; 7413 7414 retry: 7415 memset(&c, 0, sizeof(c)); 7416 INIT_CMD(c, HELLO, WRITE); 7417 c.err_to_clearinit = cpu_to_be32( 7418 V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) | 7419 V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) | 7420 V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? 7421 mbox : M_FW_HELLO_CMD_MBMASTER) | 7422 V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) | 7423 V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) | 7424 F_FW_HELLO_CMD_CLEARINIT); 7425 7426 /* 7427 * Issue the HELLO command to the firmware. If it's not successful 7428 * but indicates that we got a "busy" or "timeout" condition, retry 7429 * the HELLO until we exhaust our retry limit. If we do exceed our 7430 * retry limit, check to see if the firmware left us any error 7431 * information and report that if so ... 7432 */ 7433 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7434 if (ret != FW_SUCCESS) { 7435 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 7436 goto retry; 7437 if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR) 7438 t4_report_fw_error(adap); 7439 return ret; 7440 } 7441 7442 v = be32_to_cpu(c.err_to_clearinit); 7443 master_mbox = G_FW_HELLO_CMD_MBMASTER(v); 7444 if (state) { 7445 if (v & F_FW_HELLO_CMD_ERR) 7446 *state = DEV_STATE_ERR; 7447 else if (v & F_FW_HELLO_CMD_INIT) 7448 *state = DEV_STATE_INIT; 7449 else 7450 *state = DEV_STATE_UNINIT; 7451 } 7452 7453 /* 7454 * If we're not the Master PF then we need to wait around for the 7455 * Master PF Driver to finish setting up the adapter. 7456 * 7457 * Note that we also do this wait if we're a non-Master-capable PF and 7458 * there is no current Master PF; a Master PF may show up momentarily 7459 * and we wouldn't want to fail pointlessly. (This can happen when an 7460 * OS loads lots of different drivers rapidly at the same time). In 7461 * this case, the Master PF returned by the firmware will be 7462 * M_PCIE_FW_MASTER so the test below will work ... 7463 */ 7464 if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 && 7465 master_mbox != mbox) { 7466 int waiting = FW_CMD_HELLO_TIMEOUT; 7467 7468 /* 7469 * Wait for the firmware to either indicate an error or 7470 * initialized state. If we see either of these we bail out 7471 * and report the issue to the caller. If we exhaust the 7472 * "hello timeout" and we haven't exhausted our retries, try 7473 * again. Otherwise bail with a timeout error. 7474 */ 7475 for (;;) { 7476 u32 pcie_fw; 7477 7478 msleep(50); 7479 waiting -= 50; 7480 7481 /* 7482 * If neither Error nor Initialialized are indicated 7483 * by the firmware keep waiting till we exhaust our 7484 * timeout ... and then retry if we haven't exhausted 7485 * our retries ... 7486 */ 7487 pcie_fw = t4_read_reg(adap, A_PCIE_FW); 7488 if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) { 7489 if (waiting <= 0) { 7490 if (retries-- > 0) 7491 goto retry; 7492 7493 return -ETIMEDOUT; 7494 } 7495 continue; 7496 } 7497 7498 /* 7499 * We either have an Error or Initialized condition 7500 * report errors preferentially. 7501 */ 7502 if (state) { 7503 if (pcie_fw & F_PCIE_FW_ERR) 7504 *state = DEV_STATE_ERR; 7505 else if (pcie_fw & F_PCIE_FW_INIT) 7506 *state = DEV_STATE_INIT; 7507 } 7508 7509 /* 7510 * If we arrived before a Master PF was selected and 7511 * there's not a valid Master PF, grab its identity 7512 * for our caller. 7513 */ 7514 if (master_mbox == M_PCIE_FW_MASTER && 7515 (pcie_fw & F_PCIE_FW_MASTER_VLD)) 7516 master_mbox = G_PCIE_FW_MASTER(pcie_fw); 7517 break; 7518 } 7519 } 7520 7521 return master_mbox; 7522 } 7523 7524 /** 7525 * t4_fw_bye - end communication with FW 7526 * @adap: the adapter 7527 * @mbox: mailbox to use for the FW command 7528 * 7529 * Issues a command to terminate communication with FW. 7530 */ 7531 int t4_fw_bye(struct adapter *adap, unsigned int mbox) 7532 { 7533 struct fw_bye_cmd c; 7534 7535 memset(&c, 0, sizeof(c)); 7536 INIT_CMD(c, BYE, WRITE); 7537 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7538 } 7539 7540 /** 7541 * t4_fw_reset - issue a reset to FW 7542 * @adap: the adapter 7543 * @mbox: mailbox to use for the FW command 7544 * @reset: specifies the type of reset to perform 7545 * 7546 * Issues a reset command of the specified type to FW. 7547 */ 7548 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 7549 { 7550 struct fw_reset_cmd c; 7551 7552 memset(&c, 0, sizeof(c)); 7553 INIT_CMD(c, RESET, WRITE); 7554 c.val = cpu_to_be32(reset); 7555 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7556 } 7557 7558 /** 7559 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 7560 * @adap: the adapter 7561 * @mbox: mailbox to use for the FW RESET command (if desired) 7562 * @force: force uP into RESET even if FW RESET command fails 7563 * 7564 * Issues a RESET command to firmware (if desired) with a HALT indication 7565 * and then puts the microprocessor into RESET state. The RESET command 7566 * will only be issued if a legitimate mailbox is provided (mbox <= 7567 * M_PCIE_FW_MASTER). 7568 * 7569 * This is generally used in order for the host to safely manipulate the 7570 * adapter without fear of conflicting with whatever the firmware might 7571 * be doing. The only way out of this state is to RESTART the firmware 7572 * ... 7573 */ 7574 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 7575 { 7576 int ret = 0; 7577 7578 /* 7579 * If a legitimate mailbox is provided, issue a RESET command 7580 * with a HALT indication. 7581 */ 7582 if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) { 7583 struct fw_reset_cmd c; 7584 7585 memset(&c, 0, sizeof(c)); 7586 INIT_CMD(c, RESET, WRITE); 7587 c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE); 7588 c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT); 7589 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7590 } 7591 7592 /* 7593 * Normally we won't complete the operation if the firmware RESET 7594 * command fails but if our caller insists we'll go ahead and put the 7595 * uP into RESET. This can be useful if the firmware is hung or even 7596 * missing ... We'll have to take the risk of putting the uP into 7597 * RESET without the cooperation of firmware in that case. 7598 * 7599 * We also force the firmware's HALT flag to be on in case we bypassed 7600 * the firmware RESET command above or we're dealing with old firmware 7601 * which doesn't have the HALT capability. This will serve as a flag 7602 * for the incoming firmware to know that it's coming out of a HALT 7603 * rather than a RESET ... if it's new enough to understand that ... 7604 */ 7605 if (ret == 0 || force) { 7606 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST); 7607 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 7608 F_PCIE_FW_HALT); 7609 } 7610 7611 /* 7612 * And we always return the result of the firmware RESET command 7613 * even when we force the uP into RESET ... 7614 */ 7615 return ret; 7616 } 7617 7618 /** 7619 * t4_fw_restart - restart the firmware by taking the uP out of RESET 7620 * @adap: the adapter 7621 * 7622 * Restart firmware previously halted by t4_fw_halt(). On successful 7623 * return the previous PF Master remains as the new PF Master and there 7624 * is no need to issue a new HELLO command, etc. 7625 */ 7626 int t4_fw_restart(struct adapter *adap, unsigned int mbox) 7627 { 7628 int ms; 7629 7630 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0); 7631 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 7632 if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT)) 7633 return FW_SUCCESS; 7634 msleep(100); 7635 ms += 100; 7636 } 7637 7638 return -ETIMEDOUT; 7639 } 7640 7641 /** 7642 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 7643 * @adap: the adapter 7644 * @mbox: mailbox to use for the FW RESET command (if desired) 7645 * @fw_data: the firmware image to write 7646 * @size: image size 7647 * @force: force upgrade even if firmware doesn't cooperate 7648 * 7649 * Perform all of the steps necessary for upgrading an adapter's 7650 * firmware image. Normally this requires the cooperation of the 7651 * existing firmware in order to halt all existing activities 7652 * but if an invalid mailbox token is passed in we skip that step 7653 * (though we'll still put the adapter microprocessor into RESET in 7654 * that case). 7655 * 7656 * On successful return the new firmware will have been loaded and 7657 * the adapter will have been fully RESET losing all previous setup 7658 * state. On unsuccessful return the adapter may be completely hosed ... 7659 * positive errno indicates that the adapter is ~probably~ intact, a 7660 * negative errno indicates that things are looking bad ... 7661 */ 7662 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 7663 const u8 *fw_data, unsigned int size, int force) 7664 { 7665 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 7666 unsigned int bootstrap = 7667 be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP; 7668 int ret; 7669 7670 if (!t4_fw_matches_chip(adap, fw_hdr)) 7671 return -EINVAL; 7672 7673 if (!bootstrap) { 7674 ret = t4_fw_halt(adap, mbox, force); 7675 if (ret < 0 && !force) 7676 return ret; 7677 } 7678 7679 ret = t4_load_fw(adap, fw_data, size); 7680 if (ret < 0 || bootstrap) 7681 return ret; 7682 7683 return t4_fw_restart(adap, mbox); 7684 } 7685 7686 /** 7687 * t4_fw_initialize - ask FW to initialize the device 7688 * @adap: the adapter 7689 * @mbox: mailbox to use for the FW command 7690 * 7691 * Issues a command to FW to partially initialize the device. This 7692 * performs initialization that generally doesn't depend on user input. 7693 */ 7694 int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 7695 { 7696 struct fw_initialize_cmd c; 7697 7698 memset(&c, 0, sizeof(c)); 7699 INIT_CMD(c, INITIALIZE, WRITE); 7700 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7701 } 7702 7703 /** 7704 * t4_query_params_rw - query FW or device parameters 7705 * @adap: the adapter 7706 * @mbox: mailbox to use for the FW command 7707 * @pf: the PF 7708 * @vf: the VF 7709 * @nparams: the number of parameters 7710 * @params: the parameter names 7711 * @val: the parameter values 7712 * @rw: Write and read flag 7713 * 7714 * Reads the value of FW or device parameters. Up to 7 parameters can be 7715 * queried at once. 7716 */ 7717 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, 7718 unsigned int vf, unsigned int nparams, const u32 *params, 7719 u32 *val, int rw) 7720 { 7721 int i, ret; 7722 struct fw_params_cmd c; 7723 __be32 *p = &c.param[0].mnem; 7724 7725 if (nparams > 7) 7726 return -EINVAL; 7727 7728 memset(&c, 0, sizeof(c)); 7729 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) | 7730 F_FW_CMD_REQUEST | F_FW_CMD_READ | 7731 V_FW_PARAMS_CMD_PFN(pf) | 7732 V_FW_PARAMS_CMD_VFN(vf)); 7733 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7734 7735 for (i = 0; i < nparams; i++) { 7736 *p++ = cpu_to_be32(*params++); 7737 if (rw) 7738 *p = cpu_to_be32(*(val + i)); 7739 p++; 7740 } 7741 7742 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7743 if (ret == 0) 7744 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 7745 *val++ = be32_to_cpu(*p); 7746 return ret; 7747 } 7748 7749 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7750 unsigned int vf, unsigned int nparams, const u32 *params, 7751 u32 *val) 7752 { 7753 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0); 7754 } 7755 7756 /** 7757 * t4_set_params_timeout - sets FW or device parameters 7758 * @adap: the adapter 7759 * @mbox: mailbox to use for the FW command 7760 * @pf: the PF 7761 * @vf: the VF 7762 * @nparams: the number of parameters 7763 * @params: the parameter names 7764 * @val: the parameter values 7765 * @timeout: the timeout time 7766 * 7767 * Sets the value of FW or device parameters. Up to 7 parameters can be 7768 * specified at once. 7769 */ 7770 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, 7771 unsigned int pf, unsigned int vf, 7772 unsigned int nparams, const u32 *params, 7773 const u32 *val, int timeout) 7774 { 7775 struct fw_params_cmd c; 7776 __be32 *p = &c.param[0].mnem; 7777 7778 if (nparams > 7) 7779 return -EINVAL; 7780 7781 memset(&c, 0, sizeof(c)); 7782 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) | 7783 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 7784 V_FW_PARAMS_CMD_PFN(pf) | 7785 V_FW_PARAMS_CMD_VFN(vf)); 7786 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7787 7788 while (nparams--) { 7789 *p++ = cpu_to_be32(*params++); 7790 *p++ = cpu_to_be32(*val++); 7791 } 7792 7793 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); 7794 } 7795 7796 /** 7797 * t4_set_params - sets FW or device parameters 7798 * @adap: the adapter 7799 * @mbox: mailbox to use for the FW command 7800 * @pf: the PF 7801 * @vf: the VF 7802 * @nparams: the number of parameters 7803 * @params: the parameter names 7804 * @val: the parameter values 7805 * 7806 * Sets the value of FW or device parameters. Up to 7 parameters can be 7807 * specified at once. 7808 */ 7809 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7810 unsigned int vf, unsigned int nparams, const u32 *params, 7811 const u32 *val) 7812 { 7813 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, 7814 FW_CMD_MAX_TIMEOUT); 7815 } 7816 7817 /** 7818 * t4_cfg_pfvf - configure PF/VF resource limits 7819 * @adap: the adapter 7820 * @mbox: mailbox to use for the FW command 7821 * @pf: the PF being configured 7822 * @vf: the VF being configured 7823 * @txq: the max number of egress queues 7824 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 7825 * @rxqi: the max number of interrupt-capable ingress queues 7826 * @rxq: the max number of interruptless ingress queues 7827 * @tc: the PCI traffic class 7828 * @vi: the max number of virtual interfaces 7829 * @cmask: the channel access rights mask for the PF/VF 7830 * @pmask: the port access rights mask for the PF/VF 7831 * @nexact: the maximum number of exact MPS filters 7832 * @rcaps: read capabilities 7833 * @wxcaps: write/execute capabilities 7834 * 7835 * Configures resource limits and capabilities for a physical or virtual 7836 * function. 7837 */ 7838 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 7839 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 7840 unsigned int rxqi, unsigned int rxq, unsigned int tc, 7841 unsigned int vi, unsigned int cmask, unsigned int pmask, 7842 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 7843 { 7844 struct fw_pfvf_cmd c; 7845 7846 memset(&c, 0, sizeof(c)); 7847 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST | 7848 F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) | 7849 V_FW_PFVF_CMD_VFN(vf)); 7850 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7851 c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) | 7852 V_FW_PFVF_CMD_NIQ(rxq)); 7853 c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) | 7854 V_FW_PFVF_CMD_PMASK(pmask) | 7855 V_FW_PFVF_CMD_NEQ(txq)); 7856 c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) | 7857 V_FW_PFVF_CMD_NVI(vi) | 7858 V_FW_PFVF_CMD_NEXACTF(nexact)); 7859 c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) | 7860 V_FW_PFVF_CMD_WX_CAPS(wxcaps) | 7861 V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl)); 7862 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7863 } 7864 7865 /** 7866 * t4_alloc_vi_func - allocate a virtual interface 7867 * @adap: the adapter 7868 * @mbox: mailbox to use for the FW command 7869 * @port: physical port associated with the VI 7870 * @pf: the PF owning the VI 7871 * @vf: the VF owning the VI 7872 * @nmac: number of MAC addresses needed (1 to 5) 7873 * @mac: the MAC addresses of the VI 7874 * @rss_size: size of RSS table slice associated with this VI 7875 * @portfunc: which Port Application Function MAC Address is desired 7876 * @idstype: Intrusion Detection Type 7877 * 7878 * Allocates a virtual interface for the given physical port. If @mac is 7879 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 7880 * If @rss_size is %NULL the VI is not assigned any RSS slice by FW. 7881 * @mac should be large enough to hold @nmac Ethernet addresses, they are 7882 * stored consecutively so the space needed is @nmac * 6 bytes. 7883 * Returns a negative error number or the non-negative VI id. 7884 */ 7885 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox, 7886 unsigned int port, unsigned int pf, unsigned int vf, 7887 unsigned int nmac, u8 *mac, u16 *rss_size, 7888 uint8_t *vfvld, uint16_t *vin, 7889 unsigned int portfunc, unsigned int idstype) 7890 { 7891 int ret; 7892 struct fw_vi_cmd c; 7893 7894 memset(&c, 0, sizeof(c)); 7895 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST | 7896 F_FW_CMD_WRITE | F_FW_CMD_EXEC | 7897 V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf)); 7898 c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c)); 7899 c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) | 7900 V_FW_VI_CMD_FUNC(portfunc)); 7901 c.portid_pkd = V_FW_VI_CMD_PORTID(port); 7902 c.nmac = nmac - 1; 7903 if(!rss_size) 7904 c.norss_rsssize = F_FW_VI_CMD_NORSS; 7905 7906 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7907 if (ret) 7908 return ret; 7909 ret = G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid)); 7910 7911 if (mac) { 7912 memcpy(mac, c.mac, sizeof(c.mac)); 7913 switch (nmac) { 7914 case 5: 7915 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 7916 case 4: 7917 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 7918 case 3: 7919 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 7920 case 2: 7921 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 7922 } 7923 } 7924 if (rss_size) 7925 *rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize)); 7926 if (vfvld) { 7927 *vfvld = adap->params.viid_smt_extn_support ? 7928 G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16)) : 7929 G_FW_VIID_VIVLD(ret); 7930 } 7931 if (vin) { 7932 *vin = adap->params.viid_smt_extn_support ? 7933 G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16)) : 7934 G_FW_VIID_VIN(ret); 7935 } 7936 7937 return ret; 7938 } 7939 7940 /** 7941 * t4_alloc_vi - allocate an [Ethernet Function] virtual interface 7942 * @adap: the adapter 7943 * @mbox: mailbox to use for the FW command 7944 * @port: physical port associated with the VI 7945 * @pf: the PF owning the VI 7946 * @vf: the VF owning the VI 7947 * @nmac: number of MAC addresses needed (1 to 5) 7948 * @mac: the MAC addresses of the VI 7949 * @rss_size: size of RSS table slice associated with this VI 7950 * 7951 * backwards compatible and convieniance routine to allocate a Virtual 7952 * Interface with a Ethernet Port Application Function and Intrustion 7953 * Detection System disabled. 7954 */ 7955 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 7956 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 7957 u16 *rss_size, uint8_t *vfvld, uint16_t *vin) 7958 { 7959 return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size, 7960 vfvld, vin, FW_VI_FUNC_ETH, 0); 7961 } 7962 7963 /** 7964 * t4_free_vi - free a virtual interface 7965 * @adap: the adapter 7966 * @mbox: mailbox to use for the FW command 7967 * @pf: the PF owning the VI 7968 * @vf: the VF owning the VI 7969 * @viid: virtual interface identifiler 7970 * 7971 * Free a previously allocated virtual interface. 7972 */ 7973 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, 7974 unsigned int vf, unsigned int viid) 7975 { 7976 struct fw_vi_cmd c; 7977 7978 memset(&c, 0, sizeof(c)); 7979 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | 7980 F_FW_CMD_REQUEST | 7981 F_FW_CMD_EXEC | 7982 V_FW_VI_CMD_PFN(pf) | 7983 V_FW_VI_CMD_VFN(vf)); 7984 c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c)); 7985 c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid)); 7986 7987 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7988 } 7989 7990 /** 7991 * t4_set_rxmode - set Rx properties of a virtual interface 7992 * @adap: the adapter 7993 * @mbox: mailbox to use for the FW command 7994 * @viid: the VI id 7995 * @mtu: the new MTU or -1 7996 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 7997 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 7998 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 7999 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 8000 * @sleep_ok: if true we may sleep while awaiting command completion 8001 * 8002 * Sets Rx properties of a virtual interface. 8003 */ 8004 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 8005 int mtu, int promisc, int all_multi, int bcast, int vlanex, 8006 bool sleep_ok) 8007 { 8008 struct fw_vi_rxmode_cmd c; 8009 8010 /* convert to FW values */ 8011 if (mtu < 0) 8012 mtu = M_FW_VI_RXMODE_CMD_MTU; 8013 if (promisc < 0) 8014 promisc = M_FW_VI_RXMODE_CMD_PROMISCEN; 8015 if (all_multi < 0) 8016 all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN; 8017 if (bcast < 0) 8018 bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN; 8019 if (vlanex < 0) 8020 vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN; 8021 8022 memset(&c, 0, sizeof(c)); 8023 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) | 8024 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 8025 V_FW_VI_RXMODE_CMD_VIID(viid)); 8026 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 8027 c.mtu_to_vlanexen = 8028 cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) | 8029 V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) | 8030 V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) | 8031 V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) | 8032 V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex)); 8033 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 8034 } 8035 8036 /** 8037 * t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support 8038 * @adap: the adapter 8039 * @viid: the VI id 8040 * @mac: the MAC address 8041 * @mask: the mask 8042 * @vni: the VNI id for the tunnel protocol 8043 * @vni_mask: mask for the VNI id 8044 * @dip_hit: to enable DIP match for the MPS entry 8045 * @lookup_type: MAC address for inner (1) or outer (0) header 8046 * @sleep_ok: call is allowed to sleep 8047 * 8048 * Allocates an MPS entry with specified MAC address and VNI value. 8049 * 8050 * Returns a negative error number or the allocated index for this mac. 8051 */ 8052 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid, 8053 const u8 *addr, const u8 *mask, unsigned int vni, 8054 unsigned int vni_mask, u8 dip_hit, u8 lookup_type, 8055 bool sleep_ok) 8056 { 8057 struct fw_vi_mac_cmd c; 8058 struct fw_vi_mac_vni *p = c.u.exact_vni; 8059 int ret = 0; 8060 u32 val; 8061 8062 memset(&c, 0, sizeof(c)); 8063 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | 8064 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 8065 V_FW_VI_MAC_CMD_VIID(viid)); 8066 val = V_FW_CMD_LEN16(1) | 8067 V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC_VNI); 8068 c.freemacs_to_len16 = cpu_to_be32(val); 8069 p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID | 8070 V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC)); 8071 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 8072 memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask)); 8073 8074 p->lookup_type_to_vni = cpu_to_be32(V_FW_VI_MAC_CMD_VNI(vni) | 8075 V_FW_VI_MAC_CMD_DIP_HIT(dip_hit) | 8076 V_FW_VI_MAC_CMD_LOOKUP_TYPE(lookup_type)); 8077 p->vni_mask_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_VNI_MASK(vni_mask)); 8078 8079 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 8080 if (ret == 0) 8081 ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx)); 8082 return ret; 8083 } 8084 8085 /** 8086 * t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam 8087 * @adap: the adapter 8088 * @viid: the VI id 8089 * @mac: the MAC address 8090 * @mask: the mask 8091 * @idx: index at which to add this entry 8092 * @port_id: the port index 8093 * @lookup_type: MAC address for inner (1) or outer (0) header 8094 * @sleep_ok: call is allowed to sleep 8095 * 8096 * Adds the mac entry at the specified index using raw mac interface. 8097 * 8098 * Returns a negative error number or the allocated index for this mac. 8099 */ 8100 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid, 8101 const u8 *addr, const u8 *mask, unsigned int idx, 8102 u8 lookup_type, u8 port_id, bool sleep_ok) 8103 { 8104 int ret = 0; 8105 struct fw_vi_mac_cmd c; 8106 struct fw_vi_mac_raw *p = &c.u.raw; 8107 u32 val; 8108 8109 memset(&c, 0, sizeof(c)); 8110 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | 8111 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 8112 V_FW_VI_MAC_CMD_VIID(viid)); 8113 val = V_FW_CMD_LEN16(1) | 8114 V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW); 8115 c.freemacs_to_len16 = cpu_to_be32(val); 8116 8117 /* Specify that this is an inner mac address */ 8118 p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx)); 8119 8120 /* Lookup Type. Outer header: 0, Inner header: 1 */ 8121 p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) | 8122 V_DATAPORTNUM(port_id)); 8123 /* Lookup mask and port mask */ 8124 p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) | 8125 V_DATAPORTNUM(M_DATAPORTNUM)); 8126 8127 /* Copy the address and the mask */ 8128 memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN); 8129 memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN); 8130 8131 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 8132 if (ret == 0) { 8133 ret = G_FW_VI_MAC_CMD_RAW_IDX(be32_to_cpu(p->raw_idx_pkd)); 8134 if (ret != idx) 8135 ret = -ENOMEM; 8136 } 8137 8138 return ret; 8139 } 8140 8141 /** 8142 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 8143 * @adap: the adapter 8144 * @mbox: mailbox to use for the FW command 8145 * @viid: the VI id 8146 * @free: if true any existing filters for this VI id are first removed 8147 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 8148 * @addr: the MAC address(es) 8149 * @idx: where to store the index of each allocated filter 8150 * @hash: pointer to hash address filter bitmap 8151 * @sleep_ok: call is allowed to sleep 8152 * 8153 * Allocates an exact-match filter for each of the supplied addresses and 8154 * sets it to the corresponding address. If @idx is not %NULL it should 8155 * have at least @naddr entries, each of which will be set to the index of 8156 * the filter allocated for the corresponding MAC address. If a filter 8157 * could not be allocated for an address its index is set to 0xffff. 8158 * If @hash is not %NULL addresses that fail to allocate an exact filter 8159 * are hashed and update the hash filter bitmap pointed at by @hash. 8160 * 8161 * Returns a negative error number or the number of filters allocated. 8162 */ 8163 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 8164 unsigned int viid, bool free, unsigned int naddr, 8165 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 8166 { 8167 int offset, ret = 0; 8168 struct fw_vi_mac_cmd c; 8169 unsigned int nfilters = 0; 8170 unsigned int max_naddr = adap->chip_params->mps_tcam_size; 8171 unsigned int rem = naddr; 8172 8173 if (naddr > max_naddr) 8174 return -EINVAL; 8175 8176 for (offset = 0; offset < naddr ; /**/) { 8177 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) 8178 ? rem 8179 : ARRAY_SIZE(c.u.exact)); 8180 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 8181 u.exact[fw_naddr]), 16); 8182 struct fw_vi_mac_exact *p; 8183 int i; 8184 8185 memset(&c, 0, sizeof(c)); 8186 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | 8187 F_FW_CMD_REQUEST | 8188 F_FW_CMD_WRITE | 8189 V_FW_CMD_EXEC(free) | 8190 V_FW_VI_MAC_CMD_VIID(viid)); 8191 c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) | 8192 V_FW_CMD_LEN16(len16)); 8193 8194 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8195 p->valid_to_idx = 8196 cpu_to_be16(F_FW_VI_MAC_CMD_VALID | 8197 V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC)); 8198 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 8199 } 8200 8201 /* 8202 * It's okay if we run out of space in our MAC address arena. 8203 * Some of the addresses we submit may get stored so we need 8204 * to run through the reply to see what the results were ... 8205 */ 8206 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 8207 if (ret && ret != -FW_ENOMEM) 8208 break; 8209 8210 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8211 u16 index = G_FW_VI_MAC_CMD_IDX( 8212 be16_to_cpu(p->valid_to_idx)); 8213 8214 if (idx) 8215 idx[offset+i] = (index >= max_naddr 8216 ? 0xffff 8217 : index); 8218 if (index < max_naddr) 8219 nfilters++; 8220 else if (hash) 8221 *hash |= (1ULL << hash_mac_addr(addr[offset+i])); 8222 } 8223 8224 free = false; 8225 offset += fw_naddr; 8226 rem -= fw_naddr; 8227 } 8228 8229 if (ret == 0 || ret == -FW_ENOMEM) 8230 ret = nfilters; 8231 return ret; 8232 } 8233 8234 /** 8235 * t4_free_encap_mac_filt - frees MPS entry at given index 8236 * @adap: the adapter 8237 * @viid: the VI id 8238 * @idx: index of MPS entry to be freed 8239 * @sleep_ok: call is allowed to sleep 8240 * 8241 * Frees the MPS entry at supplied index 8242 * 8243 * Returns a negative error number or zero on success 8244 */ 8245 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid, 8246 int idx, bool sleep_ok) 8247 { 8248 struct fw_vi_mac_exact *p; 8249 struct fw_vi_mac_cmd c; 8250 u8 addr[] = {0,0,0,0,0,0}; 8251 int ret = 0; 8252 u32 exact; 8253 8254 memset(&c, 0, sizeof(c)); 8255 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | 8256 F_FW_CMD_REQUEST | 8257 F_FW_CMD_WRITE | 8258 V_FW_CMD_EXEC(0) | 8259 V_FW_VI_MAC_CMD_VIID(viid)); 8260 exact = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC); 8261 c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) | 8262 exact | 8263 V_FW_CMD_LEN16(1)); 8264 p = c.u.exact; 8265 p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID | 8266 V_FW_VI_MAC_CMD_IDX(idx)); 8267 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 8268 8269 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 8270 return ret; 8271 } 8272 8273 /** 8274 * t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam 8275 * @adap: the adapter 8276 * @viid: the VI id 8277 * @addr: the MAC address 8278 * @mask: the mask 8279 * @idx: index of the entry in mps tcam 8280 * @lookup_type: MAC address for inner (1) or outer (0) header 8281 * @port_id: the port index 8282 * @sleep_ok: call is allowed to sleep 8283 * 8284 * Removes the mac entry at the specified index using raw mac interface. 8285 * 8286 * Returns a negative error number on failure. 8287 */ 8288 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid, 8289 const u8 *addr, const u8 *mask, unsigned int idx, 8290 u8 lookup_type, u8 port_id, bool sleep_ok) 8291 { 8292 struct fw_vi_mac_cmd c; 8293 struct fw_vi_mac_raw *p = &c.u.raw; 8294 u32 raw; 8295 8296 memset(&c, 0, sizeof(c)); 8297 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | 8298 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 8299 V_FW_CMD_EXEC(0) | 8300 V_FW_VI_MAC_CMD_VIID(viid)); 8301 raw = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW); 8302 c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) | 8303 raw | 8304 V_FW_CMD_LEN16(1)); 8305 8306 p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx) | 8307 FW_VI_MAC_ID_BASED_FREE); 8308 8309 /* Lookup Type. Outer header: 0, Inner header: 1 */ 8310 p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) | 8311 V_DATAPORTNUM(port_id)); 8312 /* Lookup mask and port mask */ 8313 p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) | 8314 V_DATAPORTNUM(M_DATAPORTNUM)); 8315 8316 /* Copy the address and the mask */ 8317 memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN); 8318 memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN); 8319 8320 return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok); 8321 } 8322 8323 /** 8324 * t4_free_mac_filt - frees exact-match filters of given MAC addresses 8325 * @adap: the adapter 8326 * @mbox: mailbox to use for the FW command 8327 * @viid: the VI id 8328 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 8329 * @addr: the MAC address(es) 8330 * @sleep_ok: call is allowed to sleep 8331 * 8332 * Frees the exact-match filter for each of the supplied addresses 8333 * 8334 * Returns a negative error number or the number of filters freed. 8335 */ 8336 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox, 8337 unsigned int viid, unsigned int naddr, 8338 const u8 **addr, bool sleep_ok) 8339 { 8340 int offset, ret = 0; 8341 struct fw_vi_mac_cmd c; 8342 unsigned int nfilters = 0; 8343 unsigned int max_naddr = adap->chip_params->mps_tcam_size; 8344 unsigned int rem = naddr; 8345 8346 if (naddr > max_naddr) 8347 return -EINVAL; 8348 8349 for (offset = 0; offset < (int)naddr ; /**/) { 8350 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) 8351 ? rem 8352 : ARRAY_SIZE(c.u.exact)); 8353 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 8354 u.exact[fw_naddr]), 16); 8355 struct fw_vi_mac_exact *p; 8356 int i; 8357 8358 memset(&c, 0, sizeof(c)); 8359 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | 8360 F_FW_CMD_REQUEST | 8361 F_FW_CMD_WRITE | 8362 V_FW_CMD_EXEC(0) | 8363 V_FW_VI_MAC_CMD_VIID(viid)); 8364 c.freemacs_to_len16 = 8365 cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) | 8366 V_FW_CMD_LEN16(len16)); 8367 8368 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) { 8369 p->valid_to_idx = cpu_to_be16( 8370 F_FW_VI_MAC_CMD_VALID | 8371 V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE)); 8372 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 8373 } 8374 8375 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 8376 if (ret) 8377 break; 8378 8379 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8380 u16 index = G_FW_VI_MAC_CMD_IDX( 8381 be16_to_cpu(p->valid_to_idx)); 8382 8383 if (index < max_naddr) 8384 nfilters++; 8385 } 8386 8387 offset += fw_naddr; 8388 rem -= fw_naddr; 8389 } 8390 8391 if (ret == 0) 8392 ret = nfilters; 8393 return ret; 8394 } 8395 8396 /** 8397 * t4_change_mac - modifies the exact-match filter for a MAC address 8398 * @adap: the adapter 8399 * @mbox: mailbox to use for the FW command 8400 * @viid: the VI id 8401 * @idx: index of existing filter for old value of MAC address, or -1 8402 * @addr: the new MAC address value 8403 * @persist: whether a new MAC allocation should be persistent 8404 * @smt_idx: add MAC to SMT and return its index, or NULL 8405 * 8406 * Modifies an exact-match filter and sets it to the new MAC address if 8407 * @idx >= 0, or adds the MAC address to a new filter if @idx < 0. In the 8408 * latter case the address is added persistently if @persist is %true. 8409 * 8410 * Note that in general it is not possible to modify the value of a given 8411 * filter so the generic way to modify an address filter is to free the one 8412 * being used by the old address value and allocate a new filter for the 8413 * new address value. 8414 * 8415 * Returns a negative error number or the index of the filter with the new 8416 * MAC value. Note that this index may differ from @idx. 8417 */ 8418 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 8419 int idx, const u8 *addr, bool persist, uint16_t *smt_idx) 8420 { 8421 int ret, mode; 8422 struct fw_vi_mac_cmd c; 8423 struct fw_vi_mac_exact *p = c.u.exact; 8424 unsigned int max_mac_addr = adap->chip_params->mps_tcam_size; 8425 8426 if (idx < 0) /* new allocation */ 8427 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 8428 mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 8429 8430 memset(&c, 0, sizeof(c)); 8431 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | 8432 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 8433 V_FW_VI_MAC_CMD_VIID(viid)); 8434 c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1)); 8435 p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID | 8436 V_FW_VI_MAC_CMD_SMAC_RESULT(mode) | 8437 V_FW_VI_MAC_CMD_IDX(idx)); 8438 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 8439 8440 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 8441 if (ret == 0) { 8442 ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx)); 8443 if (ret >= max_mac_addr) 8444 ret = -ENOMEM; 8445 if (smt_idx) { 8446 if (adap->params.viid_smt_extn_support) 8447 *smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid)); 8448 else { 8449 if (chip_id(adap) <= CHELSIO_T5) 8450 *smt_idx = (viid & M_FW_VIID_VIN) << 1; 8451 else 8452 *smt_idx = viid & M_FW_VIID_VIN; 8453 } 8454 } 8455 } 8456 return ret; 8457 } 8458 8459 /** 8460 * t4_set_addr_hash - program the MAC inexact-match hash filter 8461 * @adap: the adapter 8462 * @mbox: mailbox to use for the FW command 8463 * @viid: the VI id 8464 * @ucast: whether the hash filter should also match unicast addresses 8465 * @vec: the value to be written to the hash filter 8466 * @sleep_ok: call is allowed to sleep 8467 * 8468 * Sets the 64-bit inexact-match hash filter for a virtual interface. 8469 */ 8470 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 8471 bool ucast, u64 vec, bool sleep_ok) 8472 { 8473 struct fw_vi_mac_cmd c; 8474 u32 val; 8475 8476 memset(&c, 0, sizeof(c)); 8477 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | 8478 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 8479 V_FW_VI_ENABLE_CMD_VIID(viid)); 8480 val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) | 8481 V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1); 8482 c.freemacs_to_len16 = cpu_to_be32(val); 8483 c.u.hash.hashvec = cpu_to_be64(vec); 8484 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 8485 } 8486 8487 /** 8488 * t4_enable_vi_params - enable/disable a virtual interface 8489 * @adap: the adapter 8490 * @mbox: mailbox to use for the FW command 8491 * @viid: the VI id 8492 * @rx_en: 1=enable Rx, 0=disable Rx 8493 * @tx_en: 1=enable Tx, 0=disable Tx 8494 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8495 * 8496 * Enables/disables a virtual interface. Note that setting DCB Enable 8497 * only makes sense when enabling a Virtual Interface ... 8498 */ 8499 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 8500 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 8501 { 8502 struct fw_vi_enable_cmd c; 8503 8504 memset(&c, 0, sizeof(c)); 8505 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) | 8506 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 8507 V_FW_VI_ENABLE_CMD_VIID(viid)); 8508 c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) | 8509 V_FW_VI_ENABLE_CMD_EEN(tx_en) | 8510 V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) | 8511 FW_LEN16(c)); 8512 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 8513 } 8514 8515 /** 8516 * t4_enable_vi - enable/disable a virtual interface 8517 * @adap: the adapter 8518 * @mbox: mailbox to use for the FW command 8519 * @viid: the VI id 8520 * @rx_en: 1=enable Rx, 0=disable Rx 8521 * @tx_en: 1=enable Tx, 0=disable Tx 8522 * 8523 * Enables/disables a virtual interface. Note that setting DCB Enable 8524 * only makes sense when enabling a Virtual Interface ... 8525 */ 8526 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 8527 bool rx_en, bool tx_en) 8528 { 8529 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 8530 } 8531 8532 /** 8533 * t4_identify_port - identify a VI's port by blinking its LED 8534 * @adap: the adapter 8535 * @mbox: mailbox to use for the FW command 8536 * @viid: the VI id 8537 * @nblinks: how many times to blink LED at 2.5 Hz 8538 * 8539 * Identifies a VI's port by blinking its LED. 8540 */ 8541 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 8542 unsigned int nblinks) 8543 { 8544 struct fw_vi_enable_cmd c; 8545 8546 memset(&c, 0, sizeof(c)); 8547 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) | 8548 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 8549 V_FW_VI_ENABLE_CMD_VIID(viid)); 8550 c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c)); 8551 c.blinkdur = cpu_to_be16(nblinks); 8552 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8553 } 8554 8555 /** 8556 * t4_iq_stop - stop an ingress queue and its FLs 8557 * @adap: the adapter 8558 * @mbox: mailbox to use for the FW command 8559 * @pf: the PF owning the queues 8560 * @vf: the VF owning the queues 8561 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 8562 * @iqid: ingress queue id 8563 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8564 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8565 * 8566 * Stops an ingress queue and its associated FLs, if any. This causes 8567 * any current or future data/messages destined for these queues to be 8568 * tossed. 8569 */ 8570 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, 8571 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8572 unsigned int fl0id, unsigned int fl1id) 8573 { 8574 struct fw_iq_cmd c; 8575 8576 memset(&c, 0, sizeof(c)); 8577 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | 8578 F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) | 8579 V_FW_IQ_CMD_VFN(vf)); 8580 c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c)); 8581 c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype)); 8582 c.iqid = cpu_to_be16(iqid); 8583 c.fl0id = cpu_to_be16(fl0id); 8584 c.fl1id = cpu_to_be16(fl1id); 8585 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8586 } 8587 8588 /** 8589 * t4_iq_free - free an ingress queue and its FLs 8590 * @adap: the adapter 8591 * @mbox: mailbox to use for the FW command 8592 * @pf: the PF owning the queues 8593 * @vf: the VF owning the queues 8594 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 8595 * @iqid: ingress queue id 8596 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8597 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8598 * 8599 * Frees an ingress queue and its associated FLs, if any. 8600 */ 8601 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8602 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8603 unsigned int fl0id, unsigned int fl1id) 8604 { 8605 struct fw_iq_cmd c; 8606 8607 memset(&c, 0, sizeof(c)); 8608 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | 8609 F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) | 8610 V_FW_IQ_CMD_VFN(vf)); 8611 c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c)); 8612 c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype)); 8613 c.iqid = cpu_to_be16(iqid); 8614 c.fl0id = cpu_to_be16(fl0id); 8615 c.fl1id = cpu_to_be16(fl1id); 8616 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8617 } 8618 8619 /** 8620 * t4_eth_eq_free - free an Ethernet egress queue 8621 * @adap: the adapter 8622 * @mbox: mailbox to use for the FW command 8623 * @pf: the PF owning the queue 8624 * @vf: the VF owning the queue 8625 * @eqid: egress queue id 8626 * 8627 * Frees an Ethernet egress queue. 8628 */ 8629 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8630 unsigned int vf, unsigned int eqid) 8631 { 8632 struct fw_eq_eth_cmd c; 8633 8634 memset(&c, 0, sizeof(c)); 8635 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | 8636 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 8637 V_FW_EQ_ETH_CMD_PFN(pf) | 8638 V_FW_EQ_ETH_CMD_VFN(vf)); 8639 c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c)); 8640 c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid)); 8641 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8642 } 8643 8644 /** 8645 * t4_ctrl_eq_free - free a control egress queue 8646 * @adap: the adapter 8647 * @mbox: mailbox to use for the FW command 8648 * @pf: the PF owning the queue 8649 * @vf: the VF owning the queue 8650 * @eqid: egress queue id 8651 * 8652 * Frees a control egress queue. 8653 */ 8654 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8655 unsigned int vf, unsigned int eqid) 8656 { 8657 struct fw_eq_ctrl_cmd c; 8658 8659 memset(&c, 0, sizeof(c)); 8660 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | 8661 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 8662 V_FW_EQ_CTRL_CMD_PFN(pf) | 8663 V_FW_EQ_CTRL_CMD_VFN(vf)); 8664 c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c)); 8665 c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid)); 8666 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8667 } 8668 8669 /** 8670 * t4_ofld_eq_free - free an offload egress queue 8671 * @adap: the adapter 8672 * @mbox: mailbox to use for the FW command 8673 * @pf: the PF owning the queue 8674 * @vf: the VF owning the queue 8675 * @eqid: egress queue id 8676 * 8677 * Frees a control egress queue. 8678 */ 8679 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8680 unsigned int vf, unsigned int eqid) 8681 { 8682 struct fw_eq_ofld_cmd c; 8683 8684 memset(&c, 0, sizeof(c)); 8685 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | 8686 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 8687 V_FW_EQ_OFLD_CMD_PFN(pf) | 8688 V_FW_EQ_OFLD_CMD_VFN(vf)); 8689 c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c)); 8690 c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid)); 8691 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8692 } 8693 8694 /** 8695 * t4_link_down_rc_str - return a string for a Link Down Reason Code 8696 * @link_down_rc: Link Down Reason Code 8697 * 8698 * Returns a string representation of the Link Down Reason Code. 8699 */ 8700 const char *t4_link_down_rc_str(unsigned char link_down_rc) 8701 { 8702 static const char *reason[] = { 8703 "Link Down", 8704 "Remote Fault", 8705 "Auto-negotiation Failure", 8706 "Reserved3", 8707 "Insufficient Airflow", 8708 "Unable To Determine Reason", 8709 "No RX Signal Detected", 8710 "Reserved7", 8711 }; 8712 8713 if (link_down_rc >= ARRAY_SIZE(reason)) 8714 return "Bad Reason Code"; 8715 8716 return reason[link_down_rc]; 8717 } 8718 8719 /* 8720 * Return the highest speed set in the port capabilities, in Mb/s. 8721 */ 8722 unsigned int fwcap_to_speed(uint32_t caps) 8723 { 8724 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 8725 do { \ 8726 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8727 return __speed; \ 8728 } while (0) 8729 8730 TEST_SPEED_RETURN(400G, 400000); 8731 TEST_SPEED_RETURN(200G, 200000); 8732 TEST_SPEED_RETURN(100G, 100000); 8733 TEST_SPEED_RETURN(50G, 50000); 8734 TEST_SPEED_RETURN(40G, 40000); 8735 TEST_SPEED_RETURN(25G, 25000); 8736 TEST_SPEED_RETURN(10G, 10000); 8737 TEST_SPEED_RETURN(1G, 1000); 8738 TEST_SPEED_RETURN(100M, 100); 8739 8740 #undef TEST_SPEED_RETURN 8741 8742 return 0; 8743 } 8744 8745 /* 8746 * Return the port capabilities bit for the given speed, which is in Mb/s. 8747 */ 8748 uint32_t speed_to_fwcap(unsigned int speed) 8749 { 8750 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 8751 do { \ 8752 if (speed == __speed) \ 8753 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 8754 } while (0) 8755 8756 TEST_SPEED_RETURN(400G, 400000); 8757 TEST_SPEED_RETURN(200G, 200000); 8758 TEST_SPEED_RETURN(100G, 100000); 8759 TEST_SPEED_RETURN(50G, 50000); 8760 TEST_SPEED_RETURN(40G, 40000); 8761 TEST_SPEED_RETURN(25G, 25000); 8762 TEST_SPEED_RETURN(10G, 10000); 8763 TEST_SPEED_RETURN(1G, 1000); 8764 TEST_SPEED_RETURN(100M, 100); 8765 8766 #undef TEST_SPEED_RETURN 8767 8768 return 0; 8769 } 8770 8771 /* 8772 * Return the port capabilities bit for the highest speed in the capabilities. 8773 */ 8774 uint32_t fwcap_top_speed(uint32_t caps) 8775 { 8776 #define TEST_SPEED_RETURN(__caps_speed) \ 8777 do { \ 8778 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8779 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 8780 } while (0) 8781 8782 TEST_SPEED_RETURN(400G); 8783 TEST_SPEED_RETURN(200G); 8784 TEST_SPEED_RETURN(100G); 8785 TEST_SPEED_RETURN(50G); 8786 TEST_SPEED_RETURN(40G); 8787 TEST_SPEED_RETURN(25G); 8788 TEST_SPEED_RETURN(10G); 8789 TEST_SPEED_RETURN(1G); 8790 TEST_SPEED_RETURN(100M); 8791 8792 #undef TEST_SPEED_RETURN 8793 8794 return 0; 8795 } 8796 8797 /** 8798 * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities 8799 * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value 8800 * 8801 * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new 8802 * 32-bit Port Capabilities value. 8803 */ 8804 static uint32_t lstatus_to_fwcap(u32 lstatus) 8805 { 8806 uint32_t linkattr = 0; 8807 8808 /* 8809 * Unfortunately the format of the Link Status in the old 8810 * 16-bit Port Information message isn't the same as the 8811 * 16-bit Port Capabilities bitfield used everywhere else ... 8812 */ 8813 if (lstatus & F_FW_PORT_CMD_RXPAUSE) 8814 linkattr |= FW_PORT_CAP32_FC_RX; 8815 if (lstatus & F_FW_PORT_CMD_TXPAUSE) 8816 linkattr |= FW_PORT_CAP32_FC_TX; 8817 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M)) 8818 linkattr |= FW_PORT_CAP32_SPEED_100M; 8819 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G)) 8820 linkattr |= FW_PORT_CAP32_SPEED_1G; 8821 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G)) 8822 linkattr |= FW_PORT_CAP32_SPEED_10G; 8823 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G)) 8824 linkattr |= FW_PORT_CAP32_SPEED_25G; 8825 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G)) 8826 linkattr |= FW_PORT_CAP32_SPEED_40G; 8827 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G)) 8828 linkattr |= FW_PORT_CAP32_SPEED_100G; 8829 8830 return linkattr; 8831 } 8832 8833 /* 8834 * Updates all fields owned by the common code in port_info and link_config 8835 * based on information provided by the firmware. Does not touch any 8836 * requested_* field. 8837 */ 8838 static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p, 8839 enum fw_port_action action, bool *mod_changed, bool *link_changed) 8840 { 8841 struct link_config old_lc, *lc = &pi->link_cfg; 8842 unsigned char fc; 8843 u32 stat, linkattr; 8844 int old_ptype, old_mtype; 8845 8846 old_ptype = pi->port_type; 8847 old_mtype = pi->mod_type; 8848 old_lc = *lc; 8849 if (action == FW_PORT_ACTION_GET_PORT_INFO) { 8850 stat = be32_to_cpu(p->u.info.lstatus_to_modtype); 8851 8852 pi->port_type = G_FW_PORT_CMD_PTYPE(stat); 8853 pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat); 8854 pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ? 8855 G_FW_PORT_CMD_MDIOADDR(stat) : -1; 8856 8857 lc->pcaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap)); 8858 lc->acaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap)); 8859 lc->lpacaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap)); 8860 lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0; 8861 lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat); 8862 8863 linkattr = lstatus_to_fwcap(stat); 8864 } else if (action == FW_PORT_ACTION_GET_PORT_INFO32) { 8865 stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32); 8866 8867 pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat); 8868 pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat); 8869 pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ? 8870 G_FW_PORT_CMD_MDIOADDR32(stat) : -1; 8871 8872 lc->pcaps = be32_to_cpu(p->u.info32.pcaps32); 8873 lc->acaps = be32_to_cpu(p->u.info32.acaps32); 8874 lc->lpacaps = be32_to_cpu(p->u.info32.lpacaps32); 8875 lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0; 8876 lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat); 8877 8878 linkattr = be32_to_cpu(p->u.info32.linkattr32); 8879 } else { 8880 CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action); 8881 return; 8882 } 8883 8884 lc->speed = fwcap_to_speed(linkattr); 8885 lc->fec = fwcap_to_fec(linkattr, true); 8886 8887 fc = 0; 8888 if (linkattr & FW_PORT_CAP32_FC_RX) 8889 fc |= PAUSE_RX; 8890 if (linkattr & FW_PORT_CAP32_FC_TX) 8891 fc |= PAUSE_TX; 8892 lc->fc = fc; 8893 8894 if (mod_changed != NULL) 8895 *mod_changed = false; 8896 if (link_changed != NULL) 8897 *link_changed = false; 8898 if (old_ptype != pi->port_type || old_mtype != pi->mod_type || 8899 old_lc.pcaps != lc->pcaps) { 8900 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) 8901 lc->fec_hint = fwcap_to_fec(lc->acaps, true); 8902 if (mod_changed != NULL) 8903 *mod_changed = true; 8904 } 8905 if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed || 8906 old_lc.fec != lc->fec || old_lc.fc != lc->fc) { 8907 if (link_changed != NULL) 8908 *link_changed = true; 8909 } 8910 } 8911 8912 /** 8913 * t4_update_port_info - retrieve and update port information if changed 8914 * @pi: the port_info 8915 * 8916 * We issue a Get Port Information Command to the Firmware and, if 8917 * successful, we check to see if anything is different from what we 8918 * last recorded and update things accordingly. 8919 */ 8920 int t4_update_port_info(struct port_info *pi) 8921 { 8922 struct adapter *sc = pi->adapter; 8923 struct fw_port_cmd cmd; 8924 enum fw_port_action action; 8925 int ret; 8926 8927 memset(&cmd, 0, sizeof(cmd)); 8928 cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) | 8929 F_FW_CMD_REQUEST | F_FW_CMD_READ | 8930 V_FW_PORT_CMD_PORTID(pi->tx_chan)); 8931 action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 : 8932 FW_PORT_ACTION_GET_PORT_INFO; 8933 cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) | 8934 FW_LEN16(cmd)); 8935 ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd); 8936 if (ret) 8937 return ret; 8938 8939 handle_port_info(pi, &cmd, action, NULL, NULL); 8940 return 0; 8941 } 8942 8943 /** 8944 * t4_handle_fw_rpl - process a FW reply message 8945 * @adap: the adapter 8946 * @rpl: start of the FW message 8947 * 8948 * Processes a FW message, such as link state change messages. 8949 */ 8950 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 8951 { 8952 u8 opcode = *(const u8 *)rpl; 8953 const struct fw_port_cmd *p = (const void *)rpl; 8954 enum fw_port_action action = 8955 G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16)); 8956 bool mod_changed, link_changed; 8957 8958 if (opcode == FW_PORT_CMD && 8959 (action == FW_PORT_ACTION_GET_PORT_INFO || 8960 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 8961 /* link/module state change message */ 8962 int i; 8963 int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid)); 8964 struct port_info *pi = NULL; 8965 struct link_config *lc; 8966 8967 for_each_port(adap, i) { 8968 pi = adap2pinfo(adap, i); 8969 if (pi->tx_chan == chan) 8970 break; 8971 } 8972 8973 lc = &pi->link_cfg; 8974 PORT_LOCK(pi); 8975 handle_port_info(pi, p, action, &mod_changed, &link_changed); 8976 PORT_UNLOCK(pi); 8977 if (mod_changed) 8978 t4_os_portmod_changed(pi); 8979 if (link_changed) { 8980 PORT_LOCK(pi); 8981 t4_os_link_changed(pi); 8982 PORT_UNLOCK(pi); 8983 } 8984 } else { 8985 CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode); 8986 return -EINVAL; 8987 } 8988 return 0; 8989 } 8990 8991 /** 8992 * get_pci_mode - determine a card's PCI mode 8993 * @adapter: the adapter 8994 * @p: where to store the PCI settings 8995 * 8996 * Determines a card's PCI mode and associated parameters, such as speed 8997 * and width. 8998 */ 8999 static void get_pci_mode(struct adapter *adapter, 9000 struct pci_params *p) 9001 { 9002 u16 val; 9003 u32 pcie_cap; 9004 9005 pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP); 9006 if (pcie_cap) { 9007 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val); 9008 p->speed = val & PCI_EXP_LNKSTA_CLS; 9009 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 9010 } 9011 } 9012 9013 struct flash_desc { 9014 u32 vendor_and_model_id; 9015 u32 size_mb; 9016 }; 9017 9018 int t4_get_flash_params(struct adapter *adapter) 9019 { 9020 /* 9021 * Table for non-standard supported Flash parts. Note, all Flash 9022 * parts must have 64KB sectors. 9023 */ 9024 static struct flash_desc supported_flash[] = { 9025 { 0x00150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 9026 }; 9027 9028 int ret; 9029 u32 flashid = 0; 9030 unsigned int part, manufacturer; 9031 unsigned int density, size = 0; 9032 9033 9034 /* 9035 * Issue a Read ID Command to the Flash part. We decode supported 9036 * Flash parts and their sizes from this. There's a newer Query 9037 * Command which can retrieve detailed geometry information but many 9038 * Flash parts don't support it. 9039 */ 9040 ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID); 9041 if (!ret) 9042 ret = sf1_read(adapter, 3, 0, 1, &flashid); 9043 t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ 9044 if (ret < 0) 9045 return ret; 9046 9047 /* 9048 * Check to see if it's one of our non-standard supported Flash parts. 9049 */ 9050 for (part = 0; part < ARRAY_SIZE(supported_flash); part++) 9051 if (supported_flash[part].vendor_and_model_id == flashid) { 9052 adapter->params.sf_size = 9053 supported_flash[part].size_mb; 9054 adapter->params.sf_nsec = 9055 adapter->params.sf_size / SF_SEC_SIZE; 9056 goto found; 9057 } 9058 9059 /* 9060 * Decode Flash part size. The code below looks repetative with 9061 * common encodings, but that's not guaranteed in the JEDEC 9062 * specification for the Read JADEC ID command. The only thing that 9063 * we're guaranteed by the JADEC specification is where the 9064 * Manufacturer ID is in the returned result. After that each 9065 * Manufacturer ~could~ encode things completely differently. 9066 * Note, all Flash parts must have 64KB sectors. 9067 */ 9068 manufacturer = flashid & 0xff; 9069 switch (manufacturer) { 9070 case 0x20: /* Micron/Numonix */ 9071 /* 9072 * This Density -> Size decoding table is taken from Micron 9073 * Data Sheets. 9074 */ 9075 density = (flashid >> 16) & 0xff; 9076 switch (density) { 9077 case 0x14: size = 1 << 20; break; /* 1MB */ 9078 case 0x15: size = 1 << 21; break; /* 2MB */ 9079 case 0x16: size = 1 << 22; break; /* 4MB */ 9080 case 0x17: size = 1 << 23; break; /* 8MB */ 9081 case 0x18: size = 1 << 24; break; /* 16MB */ 9082 case 0x19: size = 1 << 25; break; /* 32MB */ 9083 case 0x20: size = 1 << 26; break; /* 64MB */ 9084 case 0x21: size = 1 << 27; break; /* 128MB */ 9085 case 0x22: size = 1 << 28; break; /* 256MB */ 9086 } 9087 break; 9088 9089 case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */ 9090 /* 9091 * This Density -> Size decoding table is taken from ISSI 9092 * Data Sheets. 9093 */ 9094 density = (flashid >> 16) & 0xff; 9095 switch (density) { 9096 case 0x16: size = 1 << 25; break; /* 32MB */ 9097 case 0x17: size = 1 << 26; break; /* 64MB */ 9098 } 9099 break; 9100 9101 case 0xc2: /* Macronix */ 9102 /* 9103 * This Density -> Size decoding table is taken from Macronix 9104 * Data Sheets. 9105 */ 9106 density = (flashid >> 16) & 0xff; 9107 switch (density) { 9108 case 0x17: size = 1 << 23; break; /* 8MB */ 9109 case 0x18: size = 1 << 24; break; /* 16MB */ 9110 } 9111 break; 9112 9113 case 0xef: /* Winbond */ 9114 /* 9115 * This Density -> Size decoding table is taken from Winbond 9116 * Data Sheets. 9117 */ 9118 density = (flashid >> 16) & 0xff; 9119 switch (density) { 9120 case 0x17: size = 1 << 23; break; /* 8MB */ 9121 case 0x18: size = 1 << 24; break; /* 16MB */ 9122 } 9123 break; 9124 } 9125 9126 /* If we didn't recognize the FLASH part, that's no real issue: the 9127 * Hardware/Software contract says that Hardware will _*ALWAYS*_ 9128 * use a FLASH part which is at least 4MB in size and has 64KB 9129 * sectors. The unrecognized FLASH part is likely to be much larger 9130 * than 4MB, but that's all we really need. 9131 */ 9132 if (size == 0) { 9133 CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid); 9134 size = 1 << 22; 9135 } 9136 9137 /* 9138 * Store decoded Flash size and fall through into vetting code. 9139 */ 9140 adapter->params.sf_size = size; 9141 adapter->params.sf_nsec = size / SF_SEC_SIZE; 9142 9143 found: 9144 /* 9145 * We should ~probably~ reject adapters with FLASHes which are too 9146 * small but we have some legacy FPGAs with small FLASHes that we'd 9147 * still like to use. So instead we emit a scary message ... 9148 */ 9149 if (adapter->params.sf_size < FLASH_MIN_SIZE) 9150 CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n", 9151 flashid, adapter->params.sf_size, FLASH_MIN_SIZE); 9152 9153 return 0; 9154 } 9155 9156 static void set_pcie_completion_timeout(struct adapter *adapter, 9157 u8 range) 9158 { 9159 u16 val; 9160 u32 pcie_cap; 9161 9162 pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP); 9163 if (pcie_cap) { 9164 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val); 9165 val &= 0xfff0; 9166 val |= range ; 9167 t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val); 9168 } 9169 } 9170 9171 const struct chip_params *t4_get_chip_params(int chipid) 9172 { 9173 static const struct chip_params chip_params[] = { 9174 { 9175 /* T4 */ 9176 .nchan = NCHAN, 9177 .pm_stats_cnt = PM_NSTATS, 9178 .cng_ch_bits_log = 2, 9179 .nsched_cls = 15, 9180 .cim_num_obq = CIM_NUM_OBQ, 9181 .mps_rplc_size = 128, 9182 .vfcount = 128, 9183 .sge_fl_db = F_DBPRIO, 9184 .mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES, 9185 .rss_nentries = RSS_NENTRIES, 9186 }, 9187 { 9188 /* T5 */ 9189 .nchan = NCHAN, 9190 .pm_stats_cnt = PM_NSTATS, 9191 .cng_ch_bits_log = 2, 9192 .nsched_cls = 16, 9193 .cim_num_obq = CIM_NUM_OBQ_T5, 9194 .mps_rplc_size = 128, 9195 .vfcount = 128, 9196 .sge_fl_db = F_DBPRIO | F_DBTYPE, 9197 .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES, 9198 .rss_nentries = RSS_NENTRIES, 9199 }, 9200 { 9201 /* T6 */ 9202 .nchan = T6_NCHAN, 9203 .pm_stats_cnt = T6_PM_NSTATS, 9204 .cng_ch_bits_log = 3, 9205 .nsched_cls = 16, 9206 .cim_num_obq = CIM_NUM_OBQ_T5, 9207 .mps_rplc_size = 256, 9208 .vfcount = 256, 9209 .sge_fl_db = 0, 9210 .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES, 9211 .rss_nentries = T6_RSS_NENTRIES, 9212 }, 9213 }; 9214 9215 chipid -= CHELSIO_T4; 9216 if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params)) 9217 return NULL; 9218 9219 return &chip_params[chipid]; 9220 } 9221 9222 /** 9223 * t4_prep_adapter - prepare SW and HW for operation 9224 * @adapter: the adapter 9225 * @buf: temporary space of at least VPD_LEN size provided by the caller. 9226 * 9227 * Initialize adapter SW state for the various HW modules, set initial 9228 * values for some adapter tunables, take PHYs out of reset, and 9229 * initialize the MDIO interface. 9230 */ 9231 int t4_prep_adapter(struct adapter *adapter, u32 *buf) 9232 { 9233 int ret; 9234 uint16_t device_id; 9235 uint32_t pl_rev; 9236 9237 get_pci_mode(adapter, &adapter->params.pci); 9238 9239 pl_rev = t4_read_reg(adapter, A_PL_REV); 9240 adapter->params.chipid = G_CHIPID(pl_rev); 9241 adapter->params.rev = G_REV(pl_rev); 9242 if (adapter->params.chipid == 0) { 9243 /* T4 did not have chipid in PL_REV (T5 onwards do) */ 9244 adapter->params.chipid = CHELSIO_T4; 9245 9246 /* T4A1 chip is not supported */ 9247 if (adapter->params.rev == 1) { 9248 CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n"); 9249 return -EINVAL; 9250 } 9251 } 9252 9253 adapter->chip_params = t4_get_chip_params(chip_id(adapter)); 9254 if (adapter->chip_params == NULL) 9255 return -EINVAL; 9256 9257 adapter->params.pci.vpd_cap_addr = 9258 t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD); 9259 9260 ret = t4_get_flash_params(adapter); 9261 if (ret < 0) 9262 return ret; 9263 9264 /* Cards with real ASICs have the chipid in the PCIe device id */ 9265 t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id); 9266 if (device_id >> 12 == chip_id(adapter)) 9267 adapter->params.cim_la_size = CIMLA_SIZE; 9268 else { 9269 /* FPGA */ 9270 adapter->params.fpga = 1; 9271 adapter->params.cim_la_size = 2 * CIMLA_SIZE; 9272 } 9273 9274 ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf); 9275 if (ret < 0) 9276 return ret; 9277 9278 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 9279 9280 /* 9281 * Default port and clock for debugging in case we can't reach FW. 9282 */ 9283 adapter->params.nports = 1; 9284 adapter->params.portvec = 1; 9285 adapter->params.vpd.cclk = 50000; 9286 9287 /* Set pci completion timeout value to 4 seconds. */ 9288 set_pcie_completion_timeout(adapter, 0xd); 9289 return 0; 9290 } 9291 9292 /** 9293 * t4_shutdown_adapter - shut down adapter, host & wire 9294 * @adapter: the adapter 9295 * 9296 * Perform an emergency shutdown of the adapter and stop it from 9297 * continuing any further communication on the ports or DMA to the 9298 * host. This is typically used when the adapter and/or firmware 9299 * have crashed and we want to prevent any further accidental 9300 * communication with the rest of the world. This will also force 9301 * the port Link Status to go down -- if register writes work -- 9302 * which should help our peers figure out that we're down. 9303 */ 9304 int t4_shutdown_adapter(struct adapter *adapter) 9305 { 9306 int port; 9307 9308 t4_intr_disable(adapter); 9309 t4_write_reg(adapter, A_DBG_GPIO_EN, 0); 9310 for_each_port(adapter, port) { 9311 u32 a_port_cfg = is_t4(adapter) ? 9312 PORT_REG(port, A_XGMAC_PORT_CFG) : 9313 T5_PORT_REG(port, A_MAC_PORT_CFG); 9314 9315 t4_write_reg(adapter, a_port_cfg, 9316 t4_read_reg(adapter, a_port_cfg) 9317 & ~V_SIGNAL_DET(1)); 9318 } 9319 t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0); 9320 9321 return 0; 9322 } 9323 9324 /** 9325 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 9326 * @adapter: the adapter 9327 * @qid: the Queue ID 9328 * @qtype: the Ingress or Egress type for @qid 9329 * @user: true if this request is for a user mode queue 9330 * @pbar2_qoffset: BAR2 Queue Offset 9331 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 9332 * 9333 * Returns the BAR2 SGE Queue Registers information associated with the 9334 * indicated Absolute Queue ID. These are passed back in return value 9335 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 9336 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 9337 * 9338 * This may return an error which indicates that BAR2 SGE Queue 9339 * registers aren't available. If an error is not returned, then the 9340 * following values are returned: 9341 * 9342 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 9343 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 9344 * 9345 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 9346 * require the "Inferred Queue ID" ability may be used. E.g. the 9347 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 9348 * then these "Inferred Queue ID" register may not be used. 9349 */ 9350 int t4_bar2_sge_qregs(struct adapter *adapter, 9351 unsigned int qid, 9352 enum t4_bar2_qtype qtype, 9353 int user, 9354 u64 *pbar2_qoffset, 9355 unsigned int *pbar2_qid) 9356 { 9357 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 9358 u64 bar2_page_offset, bar2_qoffset; 9359 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 9360 9361 /* T4 doesn't support BAR2 SGE Queue registers for kernel 9362 * mode queues. 9363 */ 9364 if (!user && is_t4(adapter)) 9365 return -EINVAL; 9366 9367 /* Get our SGE Page Size parameters. 9368 */ 9369 page_shift = adapter->params.sge.page_shift; 9370 page_size = 1 << page_shift; 9371 9372 /* Get the right Queues per Page parameters for our Queue. 9373 */ 9374 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 9375 ? adapter->params.sge.eq_s_qpp 9376 : adapter->params.sge.iq_s_qpp); 9377 qpp_mask = (1 << qpp_shift) - 1; 9378 9379 /* Calculate the basics of the BAR2 SGE Queue register area: 9380 * o The BAR2 page the Queue registers will be in. 9381 * o The BAR2 Queue ID. 9382 * o The BAR2 Queue ID Offset into the BAR2 page. 9383 */ 9384 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 9385 bar2_qid = qid & qpp_mask; 9386 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 9387 9388 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 9389 * hardware will infer the Absolute Queue ID simply from the writes to 9390 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 9391 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 9392 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 9393 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 9394 * from the BAR2 Page and BAR2 Queue ID. 9395 * 9396 * One important censequence of this is that some BAR2 SGE registers 9397 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 9398 * there. But other registers synthesize the SGE Queue ID purely 9399 * from the writes to the registers -- the Write Combined Doorbell 9400 * Buffer is a good example. These BAR2 SGE Registers are only 9401 * available for those BAR2 SGE Register areas where the SGE Absolute 9402 * Queue ID can be inferred from simple writes. 9403 */ 9404 bar2_qoffset = bar2_page_offset; 9405 bar2_qinferred = (bar2_qid_offset < page_size); 9406 if (bar2_qinferred) { 9407 bar2_qoffset += bar2_qid_offset; 9408 bar2_qid = 0; 9409 } 9410 9411 *pbar2_qoffset = bar2_qoffset; 9412 *pbar2_qid = bar2_qid; 9413 return 0; 9414 } 9415 9416 /** 9417 * t4_init_devlog_params - initialize adapter->params.devlog 9418 * @adap: the adapter 9419 * @fw_attach: whether we can talk to the firmware 9420 * 9421 * Initialize various fields of the adapter's Firmware Device Log 9422 * Parameters structure. 9423 */ 9424 int t4_init_devlog_params(struct adapter *adap, int fw_attach) 9425 { 9426 struct devlog_params *dparams = &adap->params.devlog; 9427 u32 pf_dparams; 9428 unsigned int devlog_meminfo; 9429 struct fw_devlog_cmd devlog_cmd; 9430 int ret; 9431 9432 /* If we're dealing with newer firmware, the Device Log Paramerters 9433 * are stored in a designated register which allows us to access the 9434 * Device Log even if we can't talk to the firmware. 9435 */ 9436 pf_dparams = 9437 t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG)); 9438 if (pf_dparams) { 9439 unsigned int nentries, nentries128; 9440 9441 dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams); 9442 dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4; 9443 9444 nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams); 9445 nentries = (nentries128 + 1) * 128; 9446 dparams->size = nentries * sizeof(struct fw_devlog_e); 9447 9448 return 0; 9449 } 9450 9451 /* 9452 * For any failing returns ... 9453 */ 9454 memset(dparams, 0, sizeof *dparams); 9455 9456 /* 9457 * If we can't talk to the firmware, there's really nothing we can do 9458 * at this point. 9459 */ 9460 if (!fw_attach) 9461 return -ENXIO; 9462 9463 /* Otherwise, ask the firmware for it's Device Log Parameters. 9464 */ 9465 memset(&devlog_cmd, 0, sizeof devlog_cmd); 9466 devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) | 9467 F_FW_CMD_REQUEST | F_FW_CMD_READ); 9468 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 9469 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 9470 &devlog_cmd); 9471 if (ret) 9472 return ret; 9473 9474 devlog_meminfo = 9475 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); 9476 dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo); 9477 dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4; 9478 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); 9479 9480 return 0; 9481 } 9482 9483 /** 9484 * t4_init_sge_params - initialize adap->params.sge 9485 * @adapter: the adapter 9486 * 9487 * Initialize various fields of the adapter's SGE Parameters structure. 9488 */ 9489 int t4_init_sge_params(struct adapter *adapter) 9490 { 9491 u32 r; 9492 struct sge_params *sp = &adapter->params.sge; 9493 unsigned i, tscale = 1; 9494 9495 r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD); 9496 sp->counter_val[0] = G_THRESHOLD_0(r); 9497 sp->counter_val[1] = G_THRESHOLD_1(r); 9498 sp->counter_val[2] = G_THRESHOLD_2(r); 9499 sp->counter_val[3] = G_THRESHOLD_3(r); 9500 9501 if (chip_id(adapter) >= CHELSIO_T6) { 9502 r = t4_read_reg(adapter, A_SGE_ITP_CONTROL); 9503 tscale = G_TSCALE(r); 9504 if (tscale == 0) 9505 tscale = 1; 9506 else 9507 tscale += 2; 9508 } 9509 9510 r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1); 9511 sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale; 9512 sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale; 9513 r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3); 9514 sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale; 9515 sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale; 9516 r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5); 9517 sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale; 9518 sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale; 9519 9520 r = t4_read_reg(adapter, A_SGE_CONM_CTRL); 9521 sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1; 9522 if (is_t4(adapter)) 9523 sp->fl_starve_threshold2 = sp->fl_starve_threshold; 9524 else if (is_t5(adapter)) 9525 sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1; 9526 else 9527 sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1; 9528 9529 /* egress queues: log2 of # of doorbells per BAR2 page */ 9530 r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF); 9531 r >>= S_QUEUESPERPAGEPF0 + 9532 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf; 9533 sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0; 9534 9535 /* ingress queues: log2 of # of doorbells per BAR2 page */ 9536 r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF); 9537 r >>= S_QUEUESPERPAGEPF0 + 9538 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf; 9539 sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0; 9540 9541 r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE); 9542 r >>= S_HOSTPAGESIZEPF0 + 9543 (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf; 9544 sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10; 9545 9546 r = t4_read_reg(adapter, A_SGE_CONTROL); 9547 sp->sge_control = r; 9548 sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64; 9549 sp->fl_pktshift = G_PKTSHIFT(r); 9550 if (chip_id(adapter) <= CHELSIO_T5) { 9551 sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) + 9552 X_INGPADBOUNDARY_SHIFT); 9553 } else { 9554 sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) + 9555 X_T6_INGPADBOUNDARY_SHIFT); 9556 } 9557 if (is_t4(adapter)) 9558 sp->pack_boundary = sp->pad_boundary; 9559 else { 9560 r = t4_read_reg(adapter, A_SGE_CONTROL2); 9561 if (G_INGPACKBOUNDARY(r) == 0) 9562 sp->pack_boundary = 16; 9563 else 9564 sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5); 9565 } 9566 for (i = 0; i < SGE_FLBUF_SIZES; i++) 9567 sp->sge_fl_buffer_size[i] = t4_read_reg(adapter, 9568 A_SGE_FL_BUFFER_SIZE0 + (4 * i)); 9569 9570 return 0; 9571 } 9572 9573 /* 9574 * Read and cache the adapter's compressed filter mode and ingress config. 9575 */ 9576 static void read_filter_mode_and_ingress_config(struct adapter *adap, 9577 bool sleep_ok) 9578 { 9579 uint32_t v; 9580 struct tp_params *tpp = &adap->params.tp; 9581 9582 t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP, 9583 sleep_ok); 9584 t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG, 9585 sleep_ok); 9586 9587 /* 9588 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 9589 * shift positions of several elements of the Compressed Filter Tuple 9590 * for this adapter which we need frequently ... 9591 */ 9592 tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE); 9593 tpp->port_shift = t4_filter_field_shift(adap, F_PORT); 9594 tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID); 9595 tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN); 9596 tpp->tos_shift = t4_filter_field_shift(adap, F_TOS); 9597 tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL); 9598 tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE); 9599 tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH); 9600 tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE); 9601 tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION); 9602 9603 if (chip_id(adap) > CHELSIO_T4) { 9604 v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3)); 9605 adap->params.tp.hash_filter_mask = v; 9606 v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4)); 9607 adap->params.tp.hash_filter_mask |= (u64)v << 32; 9608 } 9609 } 9610 9611 /** 9612 * t4_init_tp_params - initialize adap->params.tp 9613 * @adap: the adapter 9614 * 9615 * Initialize various fields of the adapter's TP Parameters structure. 9616 */ 9617 int t4_init_tp_params(struct adapter *adap, bool sleep_ok) 9618 { 9619 int chan; 9620 u32 tx_len, rx_len, r, v; 9621 struct tp_params *tpp = &adap->params.tp; 9622 9623 v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION); 9624 tpp->tre = G_TIMERRESOLUTION(v); 9625 tpp->dack_re = G_DELAYEDACKRESOLUTION(v); 9626 9627 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 9628 for (chan = 0; chan < MAX_NCHAN; chan++) 9629 tpp->tx_modq[chan] = chan; 9630 9631 read_filter_mode_and_ingress_config(adap, sleep_ok); 9632 9633 if (chip_id(adap) > CHELSIO_T5) { 9634 v = t4_read_reg(adap, A_TP_OUT_CONFIG); 9635 tpp->rx_pkt_encap = v & F_CRXPKTENC; 9636 } else 9637 tpp->rx_pkt_encap = false; 9638 9639 rx_len = t4_read_reg(adap, A_TP_PMM_RX_PAGE_SIZE); 9640 tx_len = t4_read_reg(adap, A_TP_PMM_TX_PAGE_SIZE); 9641 9642 r = t4_read_reg(adap, A_TP_PARA_REG2); 9643 rx_len = min(rx_len, G_MAXRXDATA(r)); 9644 tx_len = min(tx_len, G_MAXRXDATA(r)); 9645 9646 r = t4_read_reg(adap, A_TP_PARA_REG7); 9647 v = min(G_PMMAXXFERLEN0(r), G_PMMAXXFERLEN1(r)); 9648 rx_len = min(rx_len, v); 9649 tx_len = min(tx_len, v); 9650 9651 tpp->max_tx_pdu = tx_len; 9652 tpp->max_rx_pdu = rx_len; 9653 9654 return 0; 9655 } 9656 9657 /** 9658 * t4_filter_field_shift - calculate filter field shift 9659 * @adap: the adapter 9660 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 9661 * 9662 * Return the shift position of a filter field within the Compressed 9663 * Filter Tuple. The filter field is specified via its selection bit 9664 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 9665 */ 9666 int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 9667 { 9668 unsigned int filter_mode = adap->params.tp.vlan_pri_map; 9669 unsigned int sel; 9670 int field_shift; 9671 9672 if ((filter_mode & filter_sel) == 0) 9673 return -1; 9674 9675 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 9676 switch (filter_mode & sel) { 9677 case F_FCOE: 9678 field_shift += W_FT_FCOE; 9679 break; 9680 case F_PORT: 9681 field_shift += W_FT_PORT; 9682 break; 9683 case F_VNIC_ID: 9684 field_shift += W_FT_VNIC_ID; 9685 break; 9686 case F_VLAN: 9687 field_shift += W_FT_VLAN; 9688 break; 9689 case F_TOS: 9690 field_shift += W_FT_TOS; 9691 break; 9692 case F_PROTOCOL: 9693 field_shift += W_FT_PROTOCOL; 9694 break; 9695 case F_ETHERTYPE: 9696 field_shift += W_FT_ETHERTYPE; 9697 break; 9698 case F_MACMATCH: 9699 field_shift += W_FT_MACMATCH; 9700 break; 9701 case F_MPSHITTYPE: 9702 field_shift += W_FT_MPSHITTYPE; 9703 break; 9704 case F_FRAGMENTATION: 9705 field_shift += W_FT_FRAGMENTATION; 9706 break; 9707 } 9708 } 9709 return field_shift; 9710 } 9711 9712 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id) 9713 { 9714 u8 addr[6]; 9715 int ret, i, j; 9716 struct port_info *p = adap2pinfo(adap, port_id); 9717 u32 param, val; 9718 struct vi_info *vi = &p->vi[0]; 9719 9720 for (i = 0, j = -1; i <= p->port_id; i++) { 9721 do { 9722 j++; 9723 } while ((adap->params.portvec & (1 << j)) == 0); 9724 } 9725 9726 p->tx_chan = j; 9727 p->mps_bg_map = t4_get_mps_bg_map(adap, j); 9728 p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j); 9729 p->lport = j; 9730 9731 if (!(adap->flags & IS_VF) || 9732 adap->params.vfres.r_caps & FW_CMD_CAP_PORT) { 9733 t4_update_port_info(p); 9734 } 9735 9736 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &vi->rss_size, 9737 &vi->vfvld, &vi->vin); 9738 if (ret < 0) 9739 return ret; 9740 9741 vi->viid = ret; 9742 t4_os_set_hw_addr(p, addr); 9743 9744 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 9745 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 9746 V_FW_PARAMS_PARAM_YZ(vi->viid); 9747 ret = t4_query_params(adap, mbox, pf, vf, 1, ¶m, &val); 9748 if (ret) 9749 vi->rss_base = 0xffff; 9750 else { 9751 /* MPASS((val >> 16) == rss_size); */ 9752 vi->rss_base = val & 0xffff; 9753 } 9754 9755 return 0; 9756 } 9757 9758 /** 9759 * t4_read_cimq_cfg - read CIM queue configuration 9760 * @adap: the adapter 9761 * @base: holds the queue base addresses in bytes 9762 * @size: holds the queue sizes in bytes 9763 * @thres: holds the queue full thresholds in bytes 9764 * 9765 * Returns the current configuration of the CIM queues, starting with 9766 * the IBQs, then the OBQs. 9767 */ 9768 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 9769 { 9770 unsigned int i, v; 9771 int cim_num_obq = adap->chip_params->cim_num_obq; 9772 9773 for (i = 0; i < CIM_NUM_IBQ; i++) { 9774 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT | 9775 V_QUENUMSELECT(i)); 9776 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL); 9777 /* value is in 256-byte units */ 9778 *base++ = G_CIMQBASE(v) * 256; 9779 *size++ = G_CIMQSIZE(v) * 256; 9780 *thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */ 9781 } 9782 for (i = 0; i < cim_num_obq; i++) { 9783 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT | 9784 V_QUENUMSELECT(i)); 9785 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL); 9786 /* value is in 256-byte units */ 9787 *base++ = G_CIMQBASE(v) * 256; 9788 *size++ = G_CIMQSIZE(v) * 256; 9789 } 9790 } 9791 9792 /** 9793 * t4_read_cim_ibq - read the contents of a CIM inbound queue 9794 * @adap: the adapter 9795 * @qid: the queue index 9796 * @data: where to store the queue contents 9797 * @n: capacity of @data in 32-bit words 9798 * 9799 * Reads the contents of the selected CIM queue starting at address 0 up 9800 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9801 * error and the number of 32-bit words actually read on success. 9802 */ 9803 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9804 { 9805 int i, err, attempts; 9806 unsigned int addr; 9807 const unsigned int nwords = CIM_IBQ_SIZE * 4; 9808 9809 if (qid > 5 || (n & 3)) 9810 return -EINVAL; 9811 9812 addr = qid * nwords; 9813 if (n > nwords) 9814 n = nwords; 9815 9816 /* It might take 3-10ms before the IBQ debug read access is allowed. 9817 * Wait for 1 Sec with a delay of 1 usec. 9818 */ 9819 attempts = 1000000; 9820 9821 for (i = 0; i < n; i++, addr++) { 9822 t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) | 9823 F_IBQDBGEN); 9824 err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0, 9825 attempts, 1); 9826 if (err) 9827 return err; 9828 *data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA); 9829 } 9830 t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0); 9831 return i; 9832 } 9833 9834 /** 9835 * t4_read_cim_obq - read the contents of a CIM outbound queue 9836 * @adap: the adapter 9837 * @qid: the queue index 9838 * @data: where to store the queue contents 9839 * @n: capacity of @data in 32-bit words 9840 * 9841 * Reads the contents of the selected CIM queue starting at address 0 up 9842 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9843 * error and the number of 32-bit words actually read on success. 9844 */ 9845 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9846 { 9847 int i, err; 9848 unsigned int addr, v, nwords; 9849 int cim_num_obq = adap->chip_params->cim_num_obq; 9850 9851 if ((qid > (cim_num_obq - 1)) || (n & 3)) 9852 return -EINVAL; 9853 9854 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT | 9855 V_QUENUMSELECT(qid)); 9856 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL); 9857 9858 addr = G_CIMQBASE(v) * 64; /* muliple of 256 -> muliple of 4 */ 9859 nwords = G_CIMQSIZE(v) * 64; /* same */ 9860 if (n > nwords) 9861 n = nwords; 9862 9863 for (i = 0; i < n; i++, addr++) { 9864 t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) | 9865 F_OBQDBGEN); 9866 err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0, 9867 2, 1); 9868 if (err) 9869 return err; 9870 *data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA); 9871 } 9872 t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0); 9873 return i; 9874 } 9875 9876 enum { 9877 CIM_QCTL_BASE = 0, 9878 CIM_CTL_BASE = 0x2000, 9879 CIM_PBT_ADDR_BASE = 0x2800, 9880 CIM_PBT_LRF_BASE = 0x3000, 9881 CIM_PBT_DATA_BASE = 0x3800 9882 }; 9883 9884 /** 9885 * t4_cim_read - read a block from CIM internal address space 9886 * @adap: the adapter 9887 * @addr: the start address within the CIM address space 9888 * @n: number of words to read 9889 * @valp: where to store the result 9890 * 9891 * Reads a block of 4-byte words from the CIM intenal address space. 9892 */ 9893 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 9894 unsigned int *valp) 9895 { 9896 int ret = 0; 9897 9898 if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY) 9899 return -EBUSY; 9900 9901 for ( ; !ret && n--; addr += 4) { 9902 t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr); 9903 ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY, 9904 0, 5, 2); 9905 if (!ret) 9906 *valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA); 9907 } 9908 return ret; 9909 } 9910 9911 /** 9912 * t4_cim_write - write a block into CIM internal address space 9913 * @adap: the adapter 9914 * @addr: the start address within the CIM address space 9915 * @n: number of words to write 9916 * @valp: set of values to write 9917 * 9918 * Writes a block of 4-byte words into the CIM intenal address space. 9919 */ 9920 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 9921 const unsigned int *valp) 9922 { 9923 int ret = 0; 9924 9925 if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY) 9926 return -EBUSY; 9927 9928 for ( ; !ret && n--; addr += 4) { 9929 t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++); 9930 t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE); 9931 ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY, 9932 0, 5, 2); 9933 } 9934 return ret; 9935 } 9936 9937 static int t4_cim_write1(struct adapter *adap, unsigned int addr, 9938 unsigned int val) 9939 { 9940 return t4_cim_write(adap, addr, 1, &val); 9941 } 9942 9943 /** 9944 * t4_cim_ctl_read - read a block from CIM control region 9945 * @adap: the adapter 9946 * @addr: the start address within the CIM control region 9947 * @n: number of words to read 9948 * @valp: where to store the result 9949 * 9950 * Reads a block of 4-byte words from the CIM control region. 9951 */ 9952 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n, 9953 unsigned int *valp) 9954 { 9955 return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp); 9956 } 9957 9958 /** 9959 * t4_cim_read_la - read CIM LA capture buffer 9960 * @adap: the adapter 9961 * @la_buf: where to store the LA data 9962 * @wrptr: the HW write pointer within the capture buffer 9963 * 9964 * Reads the contents of the CIM LA buffer with the most recent entry at 9965 * the end of the returned data and with the entry at @wrptr first. 9966 * We try to leave the LA in the running state we find it in. 9967 */ 9968 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 9969 { 9970 int i, ret; 9971 unsigned int cfg, val, idx; 9972 9973 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg); 9974 if (ret) 9975 return ret; 9976 9977 if (cfg & F_UPDBGLAEN) { /* LA is running, freeze it */ 9978 ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0); 9979 if (ret) 9980 return ret; 9981 } 9982 9983 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val); 9984 if (ret) 9985 goto restart; 9986 9987 idx = G_UPDBGLAWRPTR(val); 9988 if (wrptr) 9989 *wrptr = idx; 9990 9991 for (i = 0; i < adap->params.cim_la_size; i++) { 9992 ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 9993 V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN); 9994 if (ret) 9995 break; 9996 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val); 9997 if (ret) 9998 break; 9999 if (val & F_UPDBGLARDEN) { 10000 ret = -ETIMEDOUT; 10001 break; 10002 } 10003 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]); 10004 if (ret) 10005 break; 10006 10007 /* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to 10008 * identify the 32-bit portion of the full 312-bit data 10009 */ 10010 if (is_t6(adap) && (idx & 0xf) >= 9) 10011 idx = (idx & 0xff0) + 0x10; 10012 else 10013 idx++; 10014 /* address can't exceed 0xfff */ 10015 idx &= M_UPDBGLARDPTR; 10016 } 10017 restart: 10018 if (cfg & F_UPDBGLAEN) { 10019 int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 10020 cfg & ~F_UPDBGLARDEN); 10021 if (!ret) 10022 ret = r; 10023 } 10024 return ret; 10025 } 10026 10027 /** 10028 * t4_tp_read_la - read TP LA capture buffer 10029 * @adap: the adapter 10030 * @la_buf: where to store the LA data 10031 * @wrptr: the HW write pointer within the capture buffer 10032 * 10033 * Reads the contents of the TP LA buffer with the most recent entry at 10034 * the end of the returned data and with the entry at @wrptr first. 10035 * We leave the LA in the running state we find it in. 10036 */ 10037 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 10038 { 10039 bool last_incomplete; 10040 unsigned int i, cfg, val, idx; 10041 10042 cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff; 10043 if (cfg & F_DBGLAENABLE) /* freeze LA */ 10044 t4_write_reg(adap, A_TP_DBG_LA_CONFIG, 10045 adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE)); 10046 10047 val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG); 10048 idx = G_DBGLAWPTR(val); 10049 last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0; 10050 if (last_incomplete) 10051 idx = (idx + 1) & M_DBGLARPTR; 10052 if (wrptr) 10053 *wrptr = idx; 10054 10055 val &= 0xffff; 10056 val &= ~V_DBGLARPTR(M_DBGLARPTR); 10057 val |= adap->params.tp.la_mask; 10058 10059 for (i = 0; i < TPLA_SIZE; i++) { 10060 t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val); 10061 la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL); 10062 idx = (idx + 1) & M_DBGLARPTR; 10063 } 10064 10065 /* Wipe out last entry if it isn't valid */ 10066 if (last_incomplete) 10067 la_buf[TPLA_SIZE - 1] = ~0ULL; 10068 10069 if (cfg & F_DBGLAENABLE) /* restore running state */ 10070 t4_write_reg(adap, A_TP_DBG_LA_CONFIG, 10071 cfg | adap->params.tp.la_mask); 10072 } 10073 10074 /* 10075 * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in 10076 * seconds). If we find one of the SGE Ingress DMA State Machines in the same 10077 * state for more than the Warning Threshold then we'll issue a warning about 10078 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel 10079 * appears to be hung every Warning Repeat second till the situation clears. 10080 * If the situation clears, we'll note that as well. 10081 */ 10082 #define SGE_IDMA_WARN_THRESH 1 10083 #define SGE_IDMA_WARN_REPEAT 300 10084 10085 /** 10086 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor 10087 * @adapter: the adapter 10088 * @idma: the adapter IDMA Monitor state 10089 * 10090 * Initialize the state of an SGE Ingress DMA Monitor. 10091 */ 10092 void t4_idma_monitor_init(struct adapter *adapter, 10093 struct sge_idma_monitor_state *idma) 10094 { 10095 /* Initialize the state variables for detecting an SGE Ingress DMA 10096 * hang. The SGE has internal counters which count up on each clock 10097 * tick whenever the SGE finds its Ingress DMA State Engines in the 10098 * same state they were on the previous clock tick. The clock used is 10099 * the Core Clock so we have a limit on the maximum "time" they can 10100 * record; typically a very small number of seconds. For instance, 10101 * with a 600MHz Core Clock, we can only count up to a bit more than 10102 * 7s. So we'll synthesize a larger counter in order to not run the 10103 * risk of having the "timers" overflow and give us the flexibility to 10104 * maintain a Hung SGE State Machine of our own which operates across 10105 * a longer time frame. 10106 */ 10107 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ 10108 idma->idma_stalled[0] = idma->idma_stalled[1] = 0; 10109 } 10110 10111 /** 10112 * t4_idma_monitor - monitor SGE Ingress DMA state 10113 * @adapter: the adapter 10114 * @idma: the adapter IDMA Monitor state 10115 * @hz: number of ticks/second 10116 * @ticks: number of ticks since the last IDMA Monitor call 10117 */ 10118 void t4_idma_monitor(struct adapter *adapter, 10119 struct sge_idma_monitor_state *idma, 10120 int hz, int ticks) 10121 { 10122 int i, idma_same_state_cnt[2]; 10123 10124 /* Read the SGE Debug Ingress DMA Same State Count registers. These 10125 * are counters inside the SGE which count up on each clock when the 10126 * SGE finds its Ingress DMA State Engines in the same states they 10127 * were in the previous clock. The counters will peg out at 10128 * 0xffffffff without wrapping around so once they pass the 1s 10129 * threshold they'll stay above that till the IDMA state changes. 10130 */ 10131 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13); 10132 idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH); 10133 idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW); 10134 10135 for (i = 0; i < 2; i++) { 10136 u32 debug0, debug11; 10137 10138 /* If the Ingress DMA Same State Counter ("timer") is less 10139 * than 1s, then we can reset our synthesized Stall Timer and 10140 * continue. If we have previously emitted warnings about a 10141 * potential stalled Ingress Queue, issue a note indicating 10142 * that the Ingress Queue has resumed forward progress. 10143 */ 10144 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { 10145 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz) 10146 CH_WARN(adapter, "SGE idma%d, queue %u, " 10147 "resumed after %d seconds\n", 10148 i, idma->idma_qid[i], 10149 idma->idma_stalled[i]/hz); 10150 idma->idma_stalled[i] = 0; 10151 continue; 10152 } 10153 10154 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 10155 * domain. The first time we get here it'll be because we 10156 * passed the 1s Threshold; each additional time it'll be 10157 * because the RX Timer Callback is being fired on its regular 10158 * schedule. 10159 * 10160 * If the stall is below our Potential Hung Ingress Queue 10161 * Warning Threshold, continue. 10162 */ 10163 if (idma->idma_stalled[i] == 0) { 10164 idma->idma_stalled[i] = hz; 10165 idma->idma_warn[i] = 0; 10166 } else { 10167 idma->idma_stalled[i] += ticks; 10168 idma->idma_warn[i] -= ticks; 10169 } 10170 10171 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz) 10172 continue; 10173 10174 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. 10175 */ 10176 if (idma->idma_warn[i] > 0) 10177 continue; 10178 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz; 10179 10180 /* Read and save the SGE IDMA State and Queue ID information. 10181 * We do this every time in case it changes across time ... 10182 * can't be too careful ... 10183 */ 10184 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0); 10185 debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW); 10186 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 10187 10188 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11); 10189 debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW); 10190 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 10191 10192 CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in " 10193 " state %u for %d seconds (debug0=%#x, debug11=%#x)\n", 10194 i, idma->idma_qid[i], idma->idma_state[i], 10195 idma->idma_stalled[i]/hz, 10196 debug0, debug11); 10197 t4_sge_decode_idma_state(adapter, idma->idma_state[i]); 10198 } 10199 } 10200 10201 /** 10202 * t4_read_pace_tbl - read the pace table 10203 * @adap: the adapter 10204 * @pace_vals: holds the returned values 10205 * 10206 * Returns the values of TP's pace table in microseconds. 10207 */ 10208 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED]) 10209 { 10210 unsigned int i, v; 10211 10212 for (i = 0; i < NTX_SCHED; i++) { 10213 t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i); 10214 v = t4_read_reg(adap, A_TP_PACE_TABLE); 10215 pace_vals[i] = dack_ticks_to_usec(adap, v); 10216 } 10217 } 10218 10219 /** 10220 * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler 10221 * @adap: the adapter 10222 * @sched: the scheduler index 10223 * @kbps: the byte rate in Kbps 10224 * @ipg: the interpacket delay in tenths of nanoseconds 10225 * 10226 * Return the current configuration of a HW Tx scheduler. 10227 */ 10228 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps, 10229 unsigned int *ipg, bool sleep_ok) 10230 { 10231 unsigned int v, addr, bpt, cpt; 10232 10233 if (kbps) { 10234 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2; 10235 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 10236 if (sched & 1) 10237 v >>= 16; 10238 bpt = (v >> 8) & 0xff; 10239 cpt = v & 0xff; 10240 if (!cpt) 10241 *kbps = 0; /* scheduler disabled */ 10242 else { 10243 v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */ 10244 *kbps = (v * bpt) / 125; 10245 } 10246 } 10247 if (ipg) { 10248 addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2; 10249 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 10250 if (sched & 1) 10251 v >>= 16; 10252 v &= 0xffff; 10253 *ipg = (10000 * v) / core_ticks_per_usec(adap); 10254 } 10255 } 10256 10257 /** 10258 * t4_load_cfg - download config file 10259 * @adap: the adapter 10260 * @cfg_data: the cfg text file to write 10261 * @size: text file size 10262 * 10263 * Write the supplied config text file to the card's serial flash. 10264 */ 10265 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 10266 { 10267 int ret, i, n, cfg_addr; 10268 unsigned int addr; 10269 unsigned int flash_cfg_start_sec; 10270 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10271 10272 cfg_addr = t4_flash_cfg_addr(adap); 10273 if (cfg_addr < 0) 10274 return cfg_addr; 10275 10276 addr = cfg_addr; 10277 flash_cfg_start_sec = addr / SF_SEC_SIZE; 10278 10279 if (size > FLASH_CFG_MAX_SIZE) { 10280 CH_ERR(adap, "cfg file too large, max is %u bytes\n", 10281 FLASH_CFG_MAX_SIZE); 10282 return -EFBIG; 10283 } 10284 10285 i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ 10286 sf_sec_size); 10287 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 10288 flash_cfg_start_sec + i - 1); 10289 /* 10290 * If size == 0 then we're simply erasing the FLASH sectors associated 10291 * with the on-adapter Firmware Configuration File. 10292 */ 10293 if (ret || size == 0) 10294 goto out; 10295 10296 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 10297 for (i = 0; i< size; i+= SF_PAGE_SIZE) { 10298 if ( (size - i) < SF_PAGE_SIZE) 10299 n = size - i; 10300 else 10301 n = SF_PAGE_SIZE; 10302 ret = t4_write_flash(adap, addr, n, cfg_data, 1); 10303 if (ret) 10304 goto out; 10305 10306 addr += SF_PAGE_SIZE; 10307 cfg_data += SF_PAGE_SIZE; 10308 } 10309 10310 out: 10311 if (ret) 10312 CH_ERR(adap, "config file %s failed %d\n", 10313 (size == 0 ? "clear" : "download"), ret); 10314 return ret; 10315 } 10316 10317 /** 10318 * t5_fw_init_extern_mem - initialize the external memory 10319 * @adap: the adapter 10320 * 10321 * Initializes the external memory on T5. 10322 */ 10323 int t5_fw_init_extern_mem(struct adapter *adap) 10324 { 10325 u32 params[1], val[1]; 10326 int ret; 10327 10328 if (!is_t5(adap)) 10329 return 0; 10330 10331 val[0] = 0xff; /* Initialize all MCs */ 10332 params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 10333 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT)); 10334 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val, 10335 FW_CMD_MAX_TIMEOUT); 10336 10337 return ret; 10338 } 10339 10340 /* BIOS boot headers */ 10341 typedef struct pci_expansion_rom_header { 10342 u8 signature[2]; /* ROM Signature. Should be 0xaa55 */ 10343 u8 reserved[22]; /* Reserved per processor Architecture data */ 10344 u8 pcir_offset[2]; /* Offset to PCI Data Structure */ 10345 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */ 10346 10347 /* Legacy PCI Expansion ROM Header */ 10348 typedef struct legacy_pci_expansion_rom_header { 10349 u8 signature[2]; /* ROM Signature. Should be 0xaa55 */ 10350 u8 size512; /* Current Image Size in units of 512 bytes */ 10351 u8 initentry_point[4]; 10352 u8 cksum; /* Checksum computed on the entire Image */ 10353 u8 reserved[16]; /* Reserved */ 10354 u8 pcir_offset[2]; /* Offset to PCI Data Struture */ 10355 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */ 10356 10357 /* EFI PCI Expansion ROM Header */ 10358 typedef struct efi_pci_expansion_rom_header { 10359 u8 signature[2]; // ROM signature. The value 0xaa55 10360 u8 initialization_size[2]; /* Units 512. Includes this header */ 10361 u8 efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */ 10362 u8 efi_subsystem[2]; /* Subsystem value for EFI image header */ 10363 u8 efi_machine_type[2]; /* Machine type from EFI image header */ 10364 u8 compression_type[2]; /* Compression type. */ 10365 /* 10366 * Compression type definition 10367 * 0x0: uncompressed 10368 * 0x1: Compressed 10369 * 0x2-0xFFFF: Reserved 10370 */ 10371 u8 reserved[8]; /* Reserved */ 10372 u8 efi_image_header_offset[2]; /* Offset to EFI Image */ 10373 u8 pcir_offset[2]; /* Offset to PCI Data Structure */ 10374 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */ 10375 10376 /* PCI Data Structure Format */ 10377 typedef struct pcir_data_structure { /* PCI Data Structure */ 10378 u8 signature[4]; /* Signature. The string "PCIR" */ 10379 u8 vendor_id[2]; /* Vendor Identification */ 10380 u8 device_id[2]; /* Device Identification */ 10381 u8 vital_product[2]; /* Pointer to Vital Product Data */ 10382 u8 length[2]; /* PCIR Data Structure Length */ 10383 u8 revision; /* PCIR Data Structure Revision */ 10384 u8 class_code[3]; /* Class Code */ 10385 u8 image_length[2]; /* Image Length. Multiple of 512B */ 10386 u8 code_revision[2]; /* Revision Level of Code/Data */ 10387 u8 code_type; /* Code Type. */ 10388 /* 10389 * PCI Expansion ROM Code Types 10390 * 0x00: Intel IA-32, PC-AT compatible. Legacy 10391 * 0x01: Open Firmware standard for PCI. FCODE 10392 * 0x02: Hewlett-Packard PA RISC. HP reserved 10393 * 0x03: EFI Image. EFI 10394 * 0x04-0xFF: Reserved. 10395 */ 10396 u8 indicator; /* Indicator. Identifies the last image in the ROM */ 10397 u8 reserved[2]; /* Reserved */ 10398 } pcir_data_t; /* PCI__DATA_STRUCTURE */ 10399 10400 /* BOOT constants */ 10401 enum { 10402 BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */ 10403 BOOT_SIGNATURE = 0xaa55, /* signature of BIOS boot ROM */ 10404 BOOT_SIZE_INC = 512, /* image size measured in 512B chunks */ 10405 BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */ 10406 BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment */ 10407 VENDOR_ID = 0x1425, /* Vendor ID */ 10408 PCIR_SIGNATURE = 0x52494350 /* PCIR signature */ 10409 }; 10410 10411 /* 10412 * modify_device_id - Modifies the device ID of the Boot BIOS image 10413 * @adatper: the device ID to write. 10414 * @boot_data: the boot image to modify. 10415 * 10416 * Write the supplied device ID to the boot BIOS image. 10417 */ 10418 static void modify_device_id(int device_id, u8 *boot_data) 10419 { 10420 legacy_pci_exp_rom_header_t *header; 10421 pcir_data_t *pcir_header; 10422 u32 cur_header = 0; 10423 10424 /* 10425 * Loop through all chained images and change the device ID's 10426 */ 10427 while (1) { 10428 header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header]; 10429 pcir_header = (pcir_data_t *) &boot_data[cur_header + 10430 le16_to_cpu(*(u16*)header->pcir_offset)]; 10431 10432 /* 10433 * Only modify the Device ID if code type is Legacy or HP. 10434 * 0x00: Okay to modify 10435 * 0x01: FCODE. Do not be modify 10436 * 0x03: Okay to modify 10437 * 0x04-0xFF: Do not modify 10438 */ 10439 if (pcir_header->code_type == 0x00) { 10440 u8 csum = 0; 10441 int i; 10442 10443 /* 10444 * Modify Device ID to match current adatper 10445 */ 10446 *(u16*) pcir_header->device_id = device_id; 10447 10448 /* 10449 * Set checksum temporarily to 0. 10450 * We will recalculate it later. 10451 */ 10452 header->cksum = 0x0; 10453 10454 /* 10455 * Calculate and update checksum 10456 */ 10457 for (i = 0; i < (header->size512 * 512); i++) 10458 csum += (u8)boot_data[cur_header + i]; 10459 10460 /* 10461 * Invert summed value to create the checksum 10462 * Writing new checksum value directly to the boot data 10463 */ 10464 boot_data[cur_header + 7] = -csum; 10465 10466 } else if (pcir_header->code_type == 0x03) { 10467 10468 /* 10469 * Modify Device ID to match current adatper 10470 */ 10471 *(u16*) pcir_header->device_id = device_id; 10472 10473 } 10474 10475 10476 /* 10477 * Check indicator element to identify if this is the last 10478 * image in the ROM. 10479 */ 10480 if (pcir_header->indicator & 0x80) 10481 break; 10482 10483 /* 10484 * Move header pointer up to the next image in the ROM. 10485 */ 10486 cur_header += header->size512 * 512; 10487 } 10488 } 10489 10490 /* 10491 * t4_load_boot - download boot flash 10492 * @adapter: the adapter 10493 * @boot_data: the boot image to write 10494 * @boot_addr: offset in flash to write boot_data 10495 * @size: image size 10496 * 10497 * Write the supplied boot image to the card's serial flash. 10498 * The boot image has the following sections: a 28-byte header and the 10499 * boot image. 10500 */ 10501 int t4_load_boot(struct adapter *adap, u8 *boot_data, 10502 unsigned int boot_addr, unsigned int size) 10503 { 10504 pci_exp_rom_header_t *header; 10505 int pcir_offset ; 10506 pcir_data_t *pcir_header; 10507 int ret, addr; 10508 uint16_t device_id; 10509 unsigned int i; 10510 unsigned int boot_sector = (boot_addr * 1024 ); 10511 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10512 10513 /* 10514 * Make sure the boot image does not encroach on the firmware region 10515 */ 10516 if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) { 10517 CH_ERR(adap, "boot image encroaching on firmware region\n"); 10518 return -EFBIG; 10519 } 10520 10521 /* 10522 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot, 10523 * and Boot configuration data sections. These 3 boot sections span 10524 * sectors 0 to 7 in flash and live right before the FW image location. 10525 */ 10526 i = DIV_ROUND_UP(size ? size : FLASH_FW_START, 10527 sf_sec_size); 10528 ret = t4_flash_erase_sectors(adap, boot_sector >> 16, 10529 (boot_sector >> 16) + i - 1); 10530 10531 /* 10532 * If size == 0 then we're simply erasing the FLASH sectors associated 10533 * with the on-adapter option ROM file 10534 */ 10535 if (ret || (size == 0)) 10536 goto out; 10537 10538 /* Get boot header */ 10539 header = (pci_exp_rom_header_t *)boot_data; 10540 pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset); 10541 /* PCIR Data Structure */ 10542 pcir_header = (pcir_data_t *) &boot_data[pcir_offset]; 10543 10544 /* 10545 * Perform some primitive sanity testing to avoid accidentally 10546 * writing garbage over the boot sectors. We ought to check for 10547 * more but it's not worth it for now ... 10548 */ 10549 if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) { 10550 CH_ERR(adap, "boot image too small/large\n"); 10551 return -EFBIG; 10552 } 10553 10554 #ifndef CHELSIO_T4_DIAGS 10555 /* 10556 * Check BOOT ROM header signature 10557 */ 10558 if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) { 10559 CH_ERR(adap, "Boot image missing signature\n"); 10560 return -EINVAL; 10561 } 10562 10563 /* 10564 * Check PCI header signature 10565 */ 10566 if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) { 10567 CH_ERR(adap, "PCI header missing signature\n"); 10568 return -EINVAL; 10569 } 10570 10571 /* 10572 * Check Vendor ID matches Chelsio ID 10573 */ 10574 if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) { 10575 CH_ERR(adap, "Vendor ID missing signature\n"); 10576 return -EINVAL; 10577 } 10578 #endif 10579 10580 /* 10581 * Retrieve adapter's device ID 10582 */ 10583 t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id); 10584 /* Want to deal with PF 0 so I strip off PF 4 indicator */ 10585 device_id = device_id & 0xf0ff; 10586 10587 /* 10588 * Check PCIE Device ID 10589 */ 10590 if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) { 10591 /* 10592 * Change the device ID in the Boot BIOS image to match 10593 * the Device ID of the current adapter. 10594 */ 10595 modify_device_id(device_id, boot_data); 10596 } 10597 10598 /* 10599 * Skip over the first SF_PAGE_SIZE worth of data and write it after 10600 * we finish copying the rest of the boot image. This will ensure 10601 * that the BIOS boot header will only be written if the boot image 10602 * was written in full. 10603 */ 10604 addr = boot_sector; 10605 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 10606 addr += SF_PAGE_SIZE; 10607 boot_data += SF_PAGE_SIZE; 10608 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0); 10609 if (ret) 10610 goto out; 10611 } 10612 10613 ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE, 10614 (const u8 *)header, 0); 10615 10616 out: 10617 if (ret) 10618 CH_ERR(adap, "boot image download failed, error %d\n", ret); 10619 return ret; 10620 } 10621 10622 /* 10623 * t4_flash_bootcfg_addr - return the address of the flash optionrom configuration 10624 * @adapter: the adapter 10625 * 10626 * Return the address within the flash where the OptionROM Configuration 10627 * is stored, or an error if the device FLASH is too small to contain 10628 * a OptionROM Configuration. 10629 */ 10630 static int t4_flash_bootcfg_addr(struct adapter *adapter) 10631 { 10632 /* 10633 * If the device FLASH isn't large enough to hold a Firmware 10634 * Configuration File, return an error. 10635 */ 10636 if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE) 10637 return -ENOSPC; 10638 10639 return FLASH_BOOTCFG_START; 10640 } 10641 10642 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size) 10643 { 10644 int ret, i, n, cfg_addr; 10645 unsigned int addr; 10646 unsigned int flash_cfg_start_sec; 10647 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10648 10649 cfg_addr = t4_flash_bootcfg_addr(adap); 10650 if (cfg_addr < 0) 10651 return cfg_addr; 10652 10653 addr = cfg_addr; 10654 flash_cfg_start_sec = addr / SF_SEC_SIZE; 10655 10656 if (size > FLASH_BOOTCFG_MAX_SIZE) { 10657 CH_ERR(adap, "bootcfg file too large, max is %u bytes\n", 10658 FLASH_BOOTCFG_MAX_SIZE); 10659 return -EFBIG; 10660 } 10661 10662 i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */ 10663 sf_sec_size); 10664 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 10665 flash_cfg_start_sec + i - 1); 10666 10667 /* 10668 * If size == 0 then we're simply erasing the FLASH sectors associated 10669 * with the on-adapter OptionROM Configuration File. 10670 */ 10671 if (ret || size == 0) 10672 goto out; 10673 10674 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 10675 for (i = 0; i< size; i+= SF_PAGE_SIZE) { 10676 if ( (size - i) < SF_PAGE_SIZE) 10677 n = size - i; 10678 else 10679 n = SF_PAGE_SIZE; 10680 ret = t4_write_flash(adap, addr, n, cfg_data, 0); 10681 if (ret) 10682 goto out; 10683 10684 addr += SF_PAGE_SIZE; 10685 cfg_data += SF_PAGE_SIZE; 10686 } 10687 10688 out: 10689 if (ret) 10690 CH_ERR(adap, "boot config data %s failed %d\n", 10691 (size == 0 ? "clear" : "download"), ret); 10692 return ret; 10693 } 10694 10695 /** 10696 * t4_set_filter_mode - configure the optional components of filter tuples 10697 * @adap: the adapter 10698 * @mode_map: a bitmap selcting which optional filter components to enable 10699 * @sleep_ok: if true we may sleep while awaiting command completion 10700 * 10701 * Sets the filter mode by selecting the optional components to enable 10702 * in filter tuples. Returns 0 on success and a negative error if the 10703 * requested mode needs more bits than are available for optional 10704 * components. 10705 */ 10706 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map, 10707 bool sleep_ok) 10708 { 10709 static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 }; 10710 10711 int i, nbits = 0; 10712 10713 for (i = S_FCOE; i <= S_FRAGMENTATION; i++) 10714 if (mode_map & (1 << i)) 10715 nbits += width[i]; 10716 if (nbits > FILTER_OPT_LEN) 10717 return -EINVAL; 10718 t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok); 10719 read_filter_mode_and_ingress_config(adap, sleep_ok); 10720 10721 return 0; 10722 } 10723 10724 /** 10725 * t4_clr_port_stats - clear port statistics 10726 * @adap: the adapter 10727 * @idx: the port index 10728 * 10729 * Clear HW statistics for the given port. 10730 */ 10731 void t4_clr_port_stats(struct adapter *adap, int idx) 10732 { 10733 unsigned int i; 10734 u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map; 10735 u32 port_base_addr; 10736 10737 if (is_t4(adap)) 10738 port_base_addr = PORT_BASE(idx); 10739 else 10740 port_base_addr = T5_PORT_BASE(idx); 10741 10742 for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L; 10743 i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8) 10744 t4_write_reg(adap, port_base_addr + i, 0); 10745 for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L; 10746 i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8) 10747 t4_write_reg(adap, port_base_addr + i, 0); 10748 for (i = 0; i < 4; i++) 10749 if (bgmap & (1 << i)) { 10750 t4_write_reg(adap, 10751 A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0); 10752 t4_write_reg(adap, 10753 A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0); 10754 } 10755 } 10756 10757 /** 10758 * t4_i2c_io - read/write I2C data from adapter 10759 * @adap: the adapter 10760 * @port: Port number if per-port device; <0 if not 10761 * @devid: per-port device ID or absolute device ID 10762 * @offset: byte offset into device I2C space 10763 * @len: byte length of I2C space data 10764 * @buf: buffer in which to return I2C data for read 10765 * buffer which holds the I2C data for write 10766 * @write: if true, do a write; else do a read 10767 * Reads/Writes the I2C data from/to the indicated device and location. 10768 */ 10769 int t4_i2c_io(struct adapter *adap, unsigned int mbox, 10770 int port, unsigned int devid, 10771 unsigned int offset, unsigned int len, 10772 u8 *buf, bool write) 10773 { 10774 struct fw_ldst_cmd ldst_cmd, ldst_rpl; 10775 unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data); 10776 int ret = 0; 10777 10778 if (len > I2C_PAGE_SIZE) 10779 return -EINVAL; 10780 10781 /* Dont allow reads that spans multiple pages */ 10782 if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE) 10783 return -EINVAL; 10784 10785 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 10786 ldst_cmd.op_to_addrspace = 10787 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 10788 F_FW_CMD_REQUEST | 10789 (write ? F_FW_CMD_WRITE : F_FW_CMD_READ) | 10790 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C)); 10791 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 10792 ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port); 10793 ldst_cmd.u.i2c.did = devid; 10794 10795 while (len > 0) { 10796 unsigned int i2c_len = (len < i2c_max) ? len : i2c_max; 10797 10798 ldst_cmd.u.i2c.boffset = offset; 10799 ldst_cmd.u.i2c.blen = i2c_len; 10800 10801 if (write) 10802 memcpy(ldst_cmd.u.i2c.data, buf, i2c_len); 10803 10804 ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd), 10805 write ? NULL : &ldst_rpl); 10806 if (ret) 10807 break; 10808 10809 if (!write) 10810 memcpy(buf, ldst_rpl.u.i2c.data, i2c_len); 10811 offset += i2c_len; 10812 buf += i2c_len; 10813 len -= i2c_len; 10814 } 10815 10816 return ret; 10817 } 10818 10819 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, 10820 int port, unsigned int devid, 10821 unsigned int offset, unsigned int len, 10822 u8 *buf) 10823 { 10824 return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, false); 10825 } 10826 10827 int t4_i2c_wr(struct adapter *adap, unsigned int mbox, 10828 int port, unsigned int devid, 10829 unsigned int offset, unsigned int len, 10830 u8 *buf) 10831 { 10832 return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, true); 10833 } 10834 10835 /** 10836 * t4_sge_ctxt_rd - read an SGE context through FW 10837 * @adap: the adapter 10838 * @mbox: mailbox to use for the FW command 10839 * @cid: the context id 10840 * @ctype: the context type 10841 * @data: where to store the context data 10842 * 10843 * Issues a FW command through the given mailbox to read an SGE context. 10844 */ 10845 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid, 10846 enum ctxt_type ctype, u32 *data) 10847 { 10848 int ret; 10849 struct fw_ldst_cmd c; 10850 10851 if (ctype == CTXT_EGRESS) 10852 ret = FW_LDST_ADDRSPC_SGE_EGRC; 10853 else if (ctype == CTXT_INGRESS) 10854 ret = FW_LDST_ADDRSPC_SGE_INGC; 10855 else if (ctype == CTXT_FLM) 10856 ret = FW_LDST_ADDRSPC_SGE_FLMC; 10857 else 10858 ret = FW_LDST_ADDRSPC_SGE_CONMC; 10859 10860 memset(&c, 0, sizeof(c)); 10861 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 10862 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10863 V_FW_LDST_CMD_ADDRSPACE(ret)); 10864 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 10865 c.u.idctxt.physid = cpu_to_be32(cid); 10866 10867 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 10868 if (ret == 0) { 10869 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0); 10870 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1); 10871 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2); 10872 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3); 10873 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4); 10874 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5); 10875 } 10876 return ret; 10877 } 10878 10879 /** 10880 * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW 10881 * @adap: the adapter 10882 * @cid: the context id 10883 * @ctype: the context type 10884 * @data: where to store the context data 10885 * 10886 * Reads an SGE context directly, bypassing FW. This is only for 10887 * debugging when FW is unavailable. 10888 */ 10889 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype, 10890 u32 *data) 10891 { 10892 int i, ret; 10893 10894 t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype)); 10895 ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1); 10896 if (!ret) 10897 for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4) 10898 *data++ = t4_read_reg(adap, i); 10899 return ret; 10900 } 10901 10902 int t4_sched_config(struct adapter *adapter, int type, int minmaxen, 10903 int sleep_ok) 10904 { 10905 struct fw_sched_cmd cmd; 10906 10907 memset(&cmd, 0, sizeof(cmd)); 10908 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | 10909 F_FW_CMD_REQUEST | 10910 F_FW_CMD_WRITE); 10911 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10912 10913 cmd.u.config.sc = FW_SCHED_SC_CONFIG; 10914 cmd.u.config.type = type; 10915 cmd.u.config.minmaxen = minmaxen; 10916 10917 return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), 10918 NULL, sleep_ok); 10919 } 10920 10921 int t4_sched_params(struct adapter *adapter, int type, int level, int mode, 10922 int rateunit, int ratemode, int channel, int cl, 10923 int minrate, int maxrate, int weight, int pktsize, 10924 int burstsize, int sleep_ok) 10925 { 10926 struct fw_sched_cmd cmd; 10927 10928 memset(&cmd, 0, sizeof(cmd)); 10929 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | 10930 F_FW_CMD_REQUEST | 10931 F_FW_CMD_WRITE); 10932 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10933 10934 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10935 cmd.u.params.type = type; 10936 cmd.u.params.level = level; 10937 cmd.u.params.mode = mode; 10938 cmd.u.params.ch = channel; 10939 cmd.u.params.cl = cl; 10940 cmd.u.params.unit = rateunit; 10941 cmd.u.params.rate = ratemode; 10942 cmd.u.params.min = cpu_to_be32(minrate); 10943 cmd.u.params.max = cpu_to_be32(maxrate); 10944 cmd.u.params.weight = cpu_to_be16(weight); 10945 cmd.u.params.pktsize = cpu_to_be16(pktsize); 10946 cmd.u.params.burstsize = cpu_to_be16(burstsize); 10947 10948 return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), 10949 NULL, sleep_ok); 10950 } 10951 10952 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode, 10953 unsigned int maxrate, int sleep_ok) 10954 { 10955 struct fw_sched_cmd cmd; 10956 10957 memset(&cmd, 0, sizeof(cmd)); 10958 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | 10959 F_FW_CMD_REQUEST | 10960 F_FW_CMD_WRITE); 10961 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10962 10963 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10964 cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED; 10965 cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL; 10966 cmd.u.params.ch = channel; 10967 cmd.u.params.rate = ratemode; /* REL or ABS */ 10968 cmd.u.params.max = cpu_to_be32(maxrate);/* % or kbps */ 10969 10970 return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), 10971 NULL, sleep_ok); 10972 } 10973 10974 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl, 10975 int weight, int sleep_ok) 10976 { 10977 struct fw_sched_cmd cmd; 10978 10979 if (weight < 0 || weight > 100) 10980 return -EINVAL; 10981 10982 memset(&cmd, 0, sizeof(cmd)); 10983 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | 10984 F_FW_CMD_REQUEST | 10985 F_FW_CMD_WRITE); 10986 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10987 10988 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10989 cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED; 10990 cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR; 10991 cmd.u.params.ch = channel; 10992 cmd.u.params.cl = cl; 10993 cmd.u.params.weight = cpu_to_be16(weight); 10994 10995 return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), 10996 NULL, sleep_ok); 10997 } 10998 10999 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl, 11000 int mode, unsigned int maxrate, int pktsize, int sleep_ok) 11001 { 11002 struct fw_sched_cmd cmd; 11003 11004 memset(&cmd, 0, sizeof(cmd)); 11005 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | 11006 F_FW_CMD_REQUEST | 11007 F_FW_CMD_WRITE); 11008 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 11009 11010 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 11011 cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED; 11012 cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL; 11013 cmd.u.params.mode = mode; 11014 cmd.u.params.ch = channel; 11015 cmd.u.params.cl = cl; 11016 cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE; 11017 cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS; 11018 cmd.u.params.max = cpu_to_be32(maxrate); 11019 cmd.u.params.pktsize = cpu_to_be16(pktsize); 11020 11021 return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), 11022 NULL, sleep_ok); 11023 } 11024 11025 /* 11026 * t4_config_watchdog - configure (enable/disable) a watchdog timer 11027 * @adapter: the adapter 11028 * @mbox: mailbox to use for the FW command 11029 * @pf: the PF owning the queue 11030 * @vf: the VF owning the queue 11031 * @timeout: watchdog timeout in ms 11032 * @action: watchdog timer / action 11033 * 11034 * There are separate watchdog timers for each possible watchdog 11035 * action. Configure one of the watchdog timers by setting a non-zero 11036 * timeout. Disable a watchdog timer by using a timeout of zero. 11037 */ 11038 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox, 11039 unsigned int pf, unsigned int vf, 11040 unsigned int timeout, unsigned int action) 11041 { 11042 struct fw_watchdog_cmd wdog; 11043 unsigned int ticks; 11044 11045 /* 11046 * The watchdog command expects a timeout in units of 10ms so we need 11047 * to convert it here (via rounding) and force a minimum of one 10ms 11048 * "tick" if the timeout is non-zero but the conversion results in 0 11049 * ticks. 11050 */ 11051 ticks = (timeout + 5)/10; 11052 if (timeout && !ticks) 11053 ticks = 1; 11054 11055 memset(&wdog, 0, sizeof wdog); 11056 wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) | 11057 F_FW_CMD_REQUEST | 11058 F_FW_CMD_WRITE | 11059 V_FW_PARAMS_CMD_PFN(pf) | 11060 V_FW_PARAMS_CMD_VFN(vf)); 11061 wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog)); 11062 wdog.timeout = cpu_to_be32(ticks); 11063 wdog.action = cpu_to_be32(action); 11064 11065 return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL); 11066 } 11067 11068 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level) 11069 { 11070 struct fw_devlog_cmd devlog_cmd; 11071 int ret; 11072 11073 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 11074 devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) | 11075 F_FW_CMD_REQUEST | F_FW_CMD_READ); 11076 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 11077 ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd, 11078 sizeof(devlog_cmd), &devlog_cmd); 11079 if (ret) 11080 return ret; 11081 11082 *level = devlog_cmd.level; 11083 return 0; 11084 } 11085 11086 int t4_set_devlog_level(struct adapter *adapter, unsigned int level) 11087 { 11088 struct fw_devlog_cmd devlog_cmd; 11089 11090 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 11091 devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) | 11092 F_FW_CMD_REQUEST | 11093 F_FW_CMD_WRITE); 11094 devlog_cmd.level = level; 11095 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 11096 return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd, 11097 sizeof(devlog_cmd), &devlog_cmd); 11098 } 11099 11100 int t4_configure_add_smac(struct adapter *adap) 11101 { 11102 unsigned int param, val; 11103 int ret = 0; 11104 11105 adap->params.smac_add_support = 0; 11106 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 11107 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_ADD_SMAC)); 11108 /* Query FW to check if FW supports adding source mac address 11109 * to TCAM feature or not. 11110 * If FW returns 1, driver can use this feature and driver need to send 11111 * FW_PARAMS_PARAM_DEV_ADD_SMAC write command with value 1 to 11112 * enable adding smac to TCAM. 11113 */ 11114 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 11115 if (ret) 11116 return ret; 11117 11118 if (val == 1) { 11119 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, 11120 ¶m, &val); 11121 if (!ret) 11122 /* Firmware allows adding explicit TCAM entries. 11123 * Save this internally. 11124 */ 11125 adap->params.smac_add_support = 1; 11126 } 11127 11128 return ret; 11129 } 11130 11131 int t4_configure_ringbb(struct adapter *adap) 11132 { 11133 unsigned int param, val; 11134 int ret = 0; 11135 11136 param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 11137 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RING_BACKBONE)); 11138 /* Query FW to check if FW supports ring switch feature or not. 11139 * If FW returns 1, driver can use this feature and driver need to send 11140 * FW_PARAMS_PARAM_DEV_RING_BACKBONE write command with value 1 to 11141 * enable the ring backbone configuration. 11142 */ 11143 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 11144 if (ret < 0) { 11145 CH_ERR(adap, "Querying FW using Ring backbone params command failed, err=%d\n", 11146 ret); 11147 goto out; 11148 } 11149 11150 if (val != 1) { 11151 CH_ERR(adap, "FW doesnot support ringbackbone features\n"); 11152 goto out; 11153 } 11154 11155 ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, ¶m, &val); 11156 if (ret < 0) { 11157 CH_ERR(adap, "Could not set Ringbackbone, err= %d\n", 11158 ret); 11159 goto out; 11160 } 11161 11162 out: 11163 return ret; 11164 } 11165 11166 /* 11167 * t4_set_vlan_acl - Set a VLAN id for the specified VF 11168 * @adapter: the adapter 11169 * @mbox: mailbox to use for the FW command 11170 * @vf: one of the VFs instantiated by the specified PF 11171 * @vlan: The vlanid to be set 11172 * 11173 */ 11174 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf, 11175 u16 vlan) 11176 { 11177 struct fw_acl_vlan_cmd vlan_cmd; 11178 unsigned int enable; 11179 11180 enable = (vlan ? F_FW_ACL_VLAN_CMD_EN : 0); 11181 memset(&vlan_cmd, 0, sizeof(vlan_cmd)); 11182 vlan_cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_VLAN_CMD) | 11183 F_FW_CMD_REQUEST | 11184 F_FW_CMD_WRITE | 11185 F_FW_CMD_EXEC | 11186 V_FW_ACL_VLAN_CMD_PFN(adap->pf) | 11187 V_FW_ACL_VLAN_CMD_VFN(vf)); 11188 vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd)); 11189 /* Drop all packets that donot match vlan id */ 11190 vlan_cmd.dropnovlan_fm = (enable 11191 ? (F_FW_ACL_VLAN_CMD_DROPNOVLAN | 11192 F_FW_ACL_VLAN_CMD_FM) 11193 : 0); 11194 if (enable != 0) { 11195 vlan_cmd.nvlan = 1; 11196 vlan_cmd.vlanid[0] = cpu_to_be16(vlan); 11197 } 11198 11199 return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL); 11200 } 11201 11202 /** 11203 * t4_del_mac - Removes the exact-match filter for a MAC address 11204 * @adap: the adapter 11205 * @mbox: mailbox to use for the FW command 11206 * @viid: the VI id 11207 * @addr: the MAC address value 11208 * @smac: if true, delete from only the smac region of MPS 11209 * 11210 * Modifies an exact-match filter and sets it to the new MAC address if 11211 * @idx >= 0, or adds the MAC address to a new filter if @idx < 0. In the 11212 * latter case the address is added persistently if @persist is %true. 11213 * 11214 * Returns a negative error number or the index of the filter with the new 11215 * MAC value. Note that this index may differ from @idx. 11216 */ 11217 int t4_del_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 11218 const u8 *addr, bool smac) 11219 { 11220 int ret; 11221 struct fw_vi_mac_cmd c; 11222 struct fw_vi_mac_exact *p = c.u.exact; 11223 unsigned int max_mac_addr = adap->chip_params->mps_tcam_size; 11224 11225 memset(&c, 0, sizeof(c)); 11226 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | 11227 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 11228 V_FW_VI_MAC_CMD_VIID(viid)); 11229 c.freemacs_to_len16 = cpu_to_be32( 11230 V_FW_CMD_LEN16(1) | 11231 (smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0)); 11232 11233 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 11234 p->valid_to_idx = cpu_to_be16( 11235 F_FW_VI_MAC_CMD_VALID | 11236 V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE)); 11237 11238 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 11239 if (ret == 0) { 11240 ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx)); 11241 if (ret < max_mac_addr) 11242 return -ENOMEM; 11243 } 11244 11245 return ret; 11246 } 11247 11248 /** 11249 * t4_add_mac - Adds an exact-match filter for a MAC address 11250 * @adap: the adapter 11251 * @mbox: mailbox to use for the FW command 11252 * @viid: the VI id 11253 * @idx: index of existing filter for old value of MAC address, or -1 11254 * @addr: the new MAC address value 11255 * @persist: whether a new MAC allocation should be persistent 11256 * @add_smt: if true also add the address to the HW SMT 11257 * @smac: if true, update only the smac region of MPS 11258 * 11259 * Modifies an exact-match filter and sets it to the new MAC address if 11260 * @idx >= 0, or adds the MAC address to a new filter if @idx < 0. In the 11261 * latter case the address is added persistently if @persist is %true. 11262 * 11263 * Returns a negative error number or the index of the filter with the new 11264 * MAC value. Note that this index may differ from @idx. 11265 */ 11266 int t4_add_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 11267 int idx, const u8 *addr, bool persist, u8 *smt_idx, bool smac) 11268 { 11269 int ret, mode; 11270 struct fw_vi_mac_cmd c; 11271 struct fw_vi_mac_exact *p = c.u.exact; 11272 unsigned int max_mac_addr = adap->chip_params->mps_tcam_size; 11273 11274 if (idx < 0) /* new allocation */ 11275 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 11276 mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 11277 11278 memset(&c, 0, sizeof(c)); 11279 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | 11280 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 11281 V_FW_VI_MAC_CMD_VIID(viid)); 11282 c.freemacs_to_len16 = cpu_to_be32( 11283 V_FW_CMD_LEN16(1) | 11284 (smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0)); 11285 p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID | 11286 V_FW_VI_MAC_CMD_SMAC_RESULT(mode) | 11287 V_FW_VI_MAC_CMD_IDX(idx)); 11288 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 11289 11290 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 11291 if (ret == 0) { 11292 ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx)); 11293 if (ret >= max_mac_addr) 11294 return -ENOMEM; 11295 if (smt_idx) { 11296 /* Does fw supports returning smt_idx? */ 11297 if (adap->params.viid_smt_extn_support) 11298 *smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid)); 11299 else { 11300 /* In T4/T5, SMT contains 256 SMAC entries 11301 * organized in 128 rows of 2 entries each. 11302 * In T6, SMT contains 256 SMAC entries in 11303 * 256 rows. 11304 */ 11305 if (chip_id(adap) <= CHELSIO_T5) 11306 *smt_idx = ((viid & M_FW_VIID_VIN) << 1); 11307 else 11308 *smt_idx = (viid & M_FW_VIID_VIN); 11309 } 11310 } 11311 } 11312 11313 return ret; 11314 } 11315