1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2012, 2016 Chelsio Communications, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_inet.h" 33 34 #include <sys/param.h> 35 #include <sys/eventhandler.h> 36 37 #include "common.h" 38 #include "t4_regs.h" 39 #include "t4_regs_values.h" 40 #include "firmware/t4fw_interface.h" 41 42 #undef msleep 43 #define msleep(x) do { \ 44 if (cold) \ 45 DELAY((x) * 1000); \ 46 else \ 47 pause("t4hw", (x) * hz / 1000); \ 48 } while (0) 49 50 /** 51 * t4_wait_op_done_val - wait until an operation is completed 52 * @adapter: the adapter performing the operation 53 * @reg: the register to check for completion 54 * @mask: a single-bit field within @reg that indicates completion 55 * @polarity: the value of the field when the operation is completed 56 * @attempts: number of check iterations 57 * @delay: delay in usecs between iterations 58 * @valp: where to store the value of the register at completion time 59 * 60 * Wait until an operation is completed by checking a bit in a register 61 * up to @attempts times. If @valp is not NULL the value of the register 62 * at the time it indicated completion is stored there. Returns 0 if the 63 * operation completes and -EAGAIN otherwise. 64 */ 65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 66 int polarity, int attempts, int delay, u32 *valp) 67 { 68 while (1) { 69 u32 val = t4_read_reg(adapter, reg); 70 71 if (!!(val & mask) == polarity) { 72 if (valp) 73 *valp = val; 74 return 0; 75 } 76 if (--attempts == 0) 77 return -EAGAIN; 78 if (delay) 79 udelay(delay); 80 } 81 } 82 83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 84 int polarity, int attempts, int delay) 85 { 86 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 87 delay, NULL); 88 } 89 90 /** 91 * t4_set_reg_field - set a register field to a value 92 * @adapter: the adapter to program 93 * @addr: the register address 94 * @mask: specifies the portion of the register to modify 95 * @val: the new value for the register field 96 * 97 * Sets a register field specified by the supplied mask to the 98 * given value. 99 */ 100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 101 u32 val) 102 { 103 u32 v = t4_read_reg(adapter, addr) & ~mask; 104 105 t4_write_reg(adapter, addr, v | val); 106 (void) t4_read_reg(adapter, addr); /* flush */ 107 } 108 109 /** 110 * t4_read_indirect - read indirectly addressed registers 111 * @adap: the adapter 112 * @addr_reg: register holding the indirect address 113 * @data_reg: register holding the value of the indirect register 114 * @vals: where the read register values are stored 115 * @nregs: how many indirect registers to read 116 * @start_idx: index of first indirect register to read 117 * 118 * Reads registers that are accessed indirectly through an address/data 119 * register pair. 120 */ 121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 122 unsigned int data_reg, u32 *vals, 123 unsigned int nregs, unsigned int start_idx) 124 { 125 while (nregs--) { 126 t4_write_reg(adap, addr_reg, start_idx); 127 *vals++ = t4_read_reg(adap, data_reg); 128 start_idx++; 129 } 130 } 131 132 /** 133 * t4_write_indirect - write indirectly addressed registers 134 * @adap: the adapter 135 * @addr_reg: register holding the indirect addresses 136 * @data_reg: register holding the value for the indirect registers 137 * @vals: values to write 138 * @nregs: how many indirect registers to write 139 * @start_idx: address of first indirect register to write 140 * 141 * Writes a sequential block of registers that are accessed indirectly 142 * through an address/data register pair. 143 */ 144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 145 unsigned int data_reg, const u32 *vals, 146 unsigned int nregs, unsigned int start_idx) 147 { 148 while (nregs--) { 149 t4_write_reg(adap, addr_reg, start_idx++); 150 t4_write_reg(adap, data_reg, *vals++); 151 } 152 } 153 154 /* 155 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 156 * mechanism. This guarantees that we get the real value even if we're 157 * operating within a Virtual Machine and the Hypervisor is trapping our 158 * Configuration Space accesses. 159 * 160 * N.B. This routine should only be used as a last resort: the firmware uses 161 * the backdoor registers on a regular basis and we can end up 162 * conflicting with it's uses! 163 */ 164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg) 165 { 166 u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg); 167 u32 val; 168 169 if (chip_id(adap) <= CHELSIO_T5) 170 req |= F_ENABLE; 171 else 172 req |= F_T6_ENABLE; 173 174 if (is_t4(adap)) 175 req |= F_LOCALCFG; 176 177 t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req); 178 val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA); 179 180 /* 181 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 182 * Configuration Space read. (None of the other fields matter when 183 * F_ENABLE is 0 so a simple register write is easier than a 184 * read-modify-write via t4_set_reg_field().) 185 */ 186 t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0); 187 188 return val; 189 } 190 191 /* 192 * t4_report_fw_error - report firmware error 193 * @adap: the adapter 194 * 195 * The adapter firmware can indicate error conditions to the host. 196 * If the firmware has indicated an error, print out the reason for 197 * the firmware error. 198 */ 199 static void t4_report_fw_error(struct adapter *adap) 200 { 201 static const char *const reason[] = { 202 "Crash", /* PCIE_FW_EVAL_CRASH */ 203 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 204 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 205 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 206 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 207 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 208 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 209 "Reserved", /* reserved */ 210 }; 211 u32 pcie_fw; 212 213 pcie_fw = t4_read_reg(adap, A_PCIE_FW); 214 if (pcie_fw & F_PCIE_FW_ERR) { 215 adap->flags &= ~FW_OK; 216 CH_ERR(adap, "firmware reports adapter error: %s (0x%08x)\n", 217 reason[G_PCIE_FW_EVAL(pcie_fw)], pcie_fw); 218 if (pcie_fw != 0xffffffff) 219 t4_os_dump_devlog(adap); 220 } 221 } 222 223 /* 224 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 225 */ 226 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 227 u32 mbox_addr) 228 { 229 for ( ; nflit; nflit--, mbox_addr += 8) 230 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 231 } 232 233 /* 234 * Handle a FW assertion reported in a mailbox. 235 */ 236 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt) 237 { 238 CH_ALERT(adap, 239 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 240 asrt->u.assert.filename_0_7, 241 be32_to_cpu(asrt->u.assert.line), 242 be32_to_cpu(asrt->u.assert.x), 243 be32_to_cpu(asrt->u.assert.y)); 244 } 245 246 struct port_tx_state { 247 uint64_t rx_pause; 248 uint64_t tx_frames; 249 }; 250 251 static void 252 read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state) 253 { 254 uint32_t rx_pause_reg, tx_frames_reg; 255 256 if (is_t4(sc)) { 257 tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L); 258 rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L); 259 } else { 260 tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L); 261 rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L); 262 } 263 264 tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg); 265 tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg); 266 } 267 268 static void 269 read_tx_state(struct adapter *sc, struct port_tx_state *tx_state) 270 { 271 int i; 272 273 for_each_port(sc, i) 274 read_tx_state_one(sc, i, &tx_state[i]); 275 } 276 277 static void 278 check_tx_state(struct adapter *sc, struct port_tx_state *tx_state) 279 { 280 uint32_t port_ctl_reg; 281 uint64_t tx_frames, rx_pause; 282 int i; 283 284 for_each_port(sc, i) { 285 rx_pause = tx_state[i].rx_pause; 286 tx_frames = tx_state[i].tx_frames; 287 read_tx_state_one(sc, i, &tx_state[i]); /* update */ 288 289 if (is_t4(sc)) 290 port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL); 291 else 292 port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL); 293 if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN && 294 rx_pause != tx_state[i].rx_pause && 295 tx_frames == tx_state[i].tx_frames) { 296 t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0); 297 mdelay(1); 298 t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN); 299 } 300 } 301 } 302 303 #define X_CIM_PF_NOACCESS 0xeeeeeeee 304 /** 305 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox 306 * @adap: the adapter 307 * @mbox: index of the mailbox to use 308 * @cmd: the command to write 309 * @size: command length in bytes 310 * @rpl: where to optionally store the reply 311 * @sleep_ok: if true we may sleep while awaiting command completion 312 * @timeout: time to wait for command to finish before timing out 313 * (negative implies @sleep_ok=false) 314 * 315 * Sends the given command to FW through the selected mailbox and waits 316 * for the FW to execute the command. If @rpl is not %NULL it is used to 317 * store the FW's reply to the command. The command and its optional 318 * reply are of the same length. Some FW commands like RESET and 319 * INITIALIZE can take a considerable amount of time to execute. 320 * @sleep_ok determines whether we may sleep while awaiting the response. 321 * If sleeping is allowed we use progressive backoff otherwise we spin. 322 * Note that passing in a negative @timeout is an alternate mechanism 323 * for specifying @sleep_ok=false. This is useful when a higher level 324 * interface allows for specification of @timeout but not @sleep_ok ... 325 * 326 * The return value is 0 on success or a negative errno on failure. A 327 * failure can happen either because we are not able to execute the 328 * command or FW executes it but signals an error. In the latter case 329 * the return value is the error code indicated by FW (negated). 330 */ 331 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, 332 int size, void *rpl, bool sleep_ok, int timeout) 333 { 334 /* 335 * We delay in small increments at first in an effort to maintain 336 * responsiveness for simple, fast executing commands but then back 337 * off to larger delays to a maximum retry delay. 338 */ 339 static const int delay[] = { 340 1, 1, 3, 5, 10, 10, 20, 50, 100 341 }; 342 u32 v; 343 u64 res; 344 int i, ms, delay_idx, ret, next_tx_check; 345 u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA); 346 u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL); 347 u32 ctl; 348 __be64 cmd_rpl[MBOX_LEN/8]; 349 u32 pcie_fw; 350 struct port_tx_state tx_state[MAX_NPORTS]; 351 352 if (adap->flags & CHK_MBOX_ACCESS) 353 ASSERT_SYNCHRONIZED_OP(adap); 354 355 if (size <= 0 || (size & 15) || size > MBOX_LEN) 356 return -EINVAL; 357 358 if (adap->flags & IS_VF) { 359 if (is_t6(adap)) 360 data_reg = FW_T6VF_MBDATA_BASE_ADDR; 361 else 362 data_reg = FW_T4VF_MBDATA_BASE_ADDR; 363 ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL); 364 } 365 366 /* 367 * If we have a negative timeout, that implies that we can't sleep. 368 */ 369 if (timeout < 0) { 370 sleep_ok = false; 371 timeout = -timeout; 372 } 373 374 /* 375 * Attempt to gain access to the mailbox. 376 */ 377 for (i = 0; i < 4; i++) { 378 ctl = t4_read_reg(adap, ctl_reg); 379 v = G_MBOWNER(ctl); 380 if (v != X_MBOWNER_NONE) 381 break; 382 } 383 384 /* 385 * If we were unable to gain access, report the error to our caller. 386 */ 387 if (v != X_MBOWNER_PL) { 388 t4_report_fw_error(adap); 389 ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT; 390 return ret; 391 } 392 393 /* 394 * If we gain ownership of the mailbox and there's a "valid" message 395 * in it, this is likely an asynchronous error message from the 396 * firmware. So we'll report that and then proceed on with attempting 397 * to issue our own command ... which may well fail if the error 398 * presaged the firmware crashing ... 399 */ 400 if (ctl & F_MBMSGVALID) { 401 CH_DUMP_MBOX(adap, mbox, data_reg, "VLD", NULL, true); 402 } 403 404 /* 405 * Copy in the new mailbox command and send it on its way ... 406 */ 407 memset(cmd_rpl, 0, sizeof(cmd_rpl)); 408 memcpy(cmd_rpl, cmd, size); 409 CH_DUMP_MBOX(adap, mbox, 0, "cmd", cmd_rpl, false); 410 for (i = 0; i < ARRAY_SIZE(cmd_rpl); i++) 411 t4_write_reg64(adap, data_reg + i * 8, be64_to_cpu(cmd_rpl[i])); 412 413 if (adap->flags & IS_VF) { 414 /* 415 * For the VFs, the Mailbox Data "registers" are 416 * actually backed by T4's "MA" interface rather than 417 * PL Registers (as is the case for the PFs). Because 418 * these are in different coherency domains, the write 419 * to the VF's PL-register-backed Mailbox Control can 420 * race in front of the writes to the MA-backed VF 421 * Mailbox Data "registers". So we need to do a 422 * read-back on at least one byte of the VF Mailbox 423 * Data registers before doing the write to the VF 424 * Mailbox Control register. 425 */ 426 t4_read_reg(adap, data_reg); 427 } 428 429 t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW)); 430 read_tx_state(adap, &tx_state[0]); /* also flushes the write_reg */ 431 next_tx_check = 1000; 432 delay_idx = 0; 433 ms = delay[0]; 434 435 /* 436 * Loop waiting for the reply; bail out if we time out or the firmware 437 * reports an error. 438 */ 439 pcie_fw = 0; 440 for (i = 0; i < timeout; i += ms) { 441 if (!(adap->flags & IS_VF)) { 442 pcie_fw = t4_read_reg(adap, A_PCIE_FW); 443 if (pcie_fw & F_PCIE_FW_ERR) 444 break; 445 } 446 447 if (i >= next_tx_check) { 448 check_tx_state(adap, &tx_state[0]); 449 next_tx_check = i + 1000; 450 } 451 452 if (sleep_ok) { 453 ms = delay[delay_idx]; /* last element may repeat */ 454 if (delay_idx < ARRAY_SIZE(delay) - 1) 455 delay_idx++; 456 msleep(ms); 457 } else { 458 mdelay(ms); 459 } 460 461 v = t4_read_reg(adap, ctl_reg); 462 if (v == X_CIM_PF_NOACCESS) 463 continue; 464 if (G_MBOWNER(v) == X_MBOWNER_PL) { 465 if (!(v & F_MBMSGVALID)) { 466 t4_write_reg(adap, ctl_reg, 467 V_MBOWNER(X_MBOWNER_NONE)); 468 continue; 469 } 470 471 /* 472 * Retrieve the command reply and release the mailbox. 473 */ 474 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg); 475 CH_DUMP_MBOX(adap, mbox, 0, "rpl", cmd_rpl, false); 476 t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE)); 477 478 res = be64_to_cpu(cmd_rpl[0]); 479 if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) { 480 fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl); 481 res = V_FW_CMD_RETVAL(EIO); 482 } else if (rpl) 483 memcpy(rpl, cmd_rpl, size); 484 return -G_FW_CMD_RETVAL((int)res); 485 } 486 } 487 488 /* 489 * We timed out waiting for a reply to our mailbox command. Report 490 * the error and also check to see if the firmware reported any 491 * errors ... 492 */ 493 CH_ERR(adap, "command %#x in mbox %d timed out (0x%08x).\n", 494 *(const u8 *)cmd, mbox, pcie_fw); 495 CH_DUMP_MBOX(adap, mbox, 0, "cmdsent", cmd_rpl, true); 496 CH_DUMP_MBOX(adap, mbox, data_reg, "current", NULL, true); 497 498 if (pcie_fw & F_PCIE_FW_ERR) { 499 ret = -ENXIO; 500 t4_report_fw_error(adap); 501 } else { 502 ret = -ETIMEDOUT; 503 t4_os_dump_devlog(adap); 504 } 505 506 t4_fatal_err(adap, true); 507 return ret; 508 } 509 510 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 511 void *rpl, bool sleep_ok) 512 { 513 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, 514 sleep_ok, FW_CMD_MAX_TIMEOUT); 515 516 } 517 518 static int t4_edc_err_read(struct adapter *adap, int idx) 519 { 520 u32 edc_ecc_err_addr_reg; 521 u32 edc_bist_status_rdata_reg; 522 523 if (is_t4(adap)) { 524 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); 525 return 0; 526 } 527 if (idx != MEM_EDC0 && idx != MEM_EDC1) { 528 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); 529 return 0; 530 } 531 532 edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx); 533 edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx); 534 535 CH_WARN(adap, 536 "edc%d err addr 0x%x: 0x%x.\n", 537 idx, edc_ecc_err_addr_reg, 538 t4_read_reg(adap, edc_ecc_err_addr_reg)); 539 CH_WARN(adap, 540 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", 541 edc_bist_status_rdata_reg, 542 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg), 543 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8), 544 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16), 545 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24), 546 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32), 547 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40), 548 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48), 549 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56), 550 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64)); 551 552 return 0; 553 } 554 555 /** 556 * t4_mc_read - read from MC through backdoor accesses 557 * @adap: the adapter 558 * @idx: which MC to access 559 * @addr: address of first byte requested 560 * @data: 64 bytes of data containing the requested address 561 * @ecc: where to store the corresponding 64-bit ECC word 562 * 563 * Read 64 bytes of data from MC starting at a 64-byte-aligned address 564 * that covers the requested address @addr. If @parity is not %NULL it 565 * is assigned the 64-bit ECC word for the read data. 566 */ 567 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc) 568 { 569 int i; 570 u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg; 571 u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg; 572 573 if (is_t4(adap)) { 574 mc_bist_cmd_reg = A_MC_BIST_CMD; 575 mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR; 576 mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN; 577 mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA; 578 mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN; 579 } else { 580 mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx); 581 mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx); 582 mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx); 583 mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA, 584 idx); 585 mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN, 586 idx); 587 } 588 589 if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST) 590 return -EBUSY; 591 t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU); 592 t4_write_reg(adap, mc_bist_cmd_len_reg, 64); 593 t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc); 594 t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) | 595 F_START_BIST | V_BIST_CMD_GAP(1)); 596 i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1); 597 if (i) 598 return i; 599 600 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i) 601 602 for (i = 15; i >= 0; i--) 603 *data++ = ntohl(t4_read_reg(adap, MC_DATA(i))); 604 if (ecc) 605 *ecc = t4_read_reg64(adap, MC_DATA(16)); 606 #undef MC_DATA 607 return 0; 608 } 609 610 /** 611 * t4_edc_read - read from EDC through backdoor accesses 612 * @adap: the adapter 613 * @idx: which EDC to access 614 * @addr: address of first byte requested 615 * @data: 64 bytes of data containing the requested address 616 * @ecc: where to store the corresponding 64-bit ECC word 617 * 618 * Read 64 bytes of data from EDC starting at a 64-byte-aligned address 619 * that covers the requested address @addr. If @parity is not %NULL it 620 * is assigned the 64-bit ECC word for the read data. 621 */ 622 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc) 623 { 624 int i; 625 u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg; 626 u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg; 627 628 if (is_t4(adap)) { 629 edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx); 630 edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx); 631 edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx); 632 edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN, 633 idx); 634 edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA, 635 idx); 636 } else { 637 /* 638 * These macro are missing in t4_regs.h file. 639 * Added temporarily for testing. 640 */ 641 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR) 642 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx) 643 edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx); 644 edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx); 645 edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx); 646 edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN, 647 idx); 648 edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA, 649 idx); 650 #undef EDC_REG_T5 651 #undef EDC_STRIDE_T5 652 } 653 654 if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST) 655 return -EBUSY; 656 t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU); 657 t4_write_reg(adap, edc_bist_cmd_len_reg, 64); 658 t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc); 659 t4_write_reg(adap, edc_bist_cmd_reg, 660 V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST); 661 i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1); 662 if (i) 663 return i; 664 665 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i) 666 667 for (i = 15; i >= 0; i--) 668 *data++ = ntohl(t4_read_reg(adap, EDC_DATA(i))); 669 if (ecc) 670 *ecc = t4_read_reg64(adap, EDC_DATA(16)); 671 #undef EDC_DATA 672 return 0; 673 } 674 675 /** 676 * t4_mem_read - read EDC 0, EDC 1 or MC into buffer 677 * @adap: the adapter 678 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 679 * @addr: address within indicated memory type 680 * @len: amount of memory to read 681 * @buf: host memory buffer 682 * 683 * Reads an [almost] arbitrary memory region in the firmware: the 684 * firmware memory address, length and host buffer must be aligned on 685 * 32-bit boudaries. The memory is returned as a raw byte sequence from 686 * the firmware's memory. If this memory contains data structures which 687 * contain multi-byte integers, it's the callers responsibility to 688 * perform appropriate byte order conversions. 689 */ 690 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len, 691 __be32 *buf) 692 { 693 u32 pos, start, end, offset; 694 int ret; 695 696 /* 697 * Argument sanity checks ... 698 */ 699 if ((addr & 0x3) || (len & 0x3)) 700 return -EINVAL; 701 702 /* 703 * The underlaying EDC/MC read routines read 64 bytes at a time so we 704 * need to round down the start and round up the end. We'll start 705 * copying out of the first line at (addr - start) a word at a time. 706 */ 707 start = rounddown2(addr, 64); 708 end = roundup2(addr + len, 64); 709 offset = (addr - start)/sizeof(__be32); 710 711 for (pos = start; pos < end; pos += 64, offset = 0) { 712 __be32 data[16]; 713 714 /* 715 * Read the chip's memory block and bail if there's an error. 716 */ 717 if ((mtype == MEM_MC) || (mtype == MEM_MC1)) 718 ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL); 719 else 720 ret = t4_edc_read(adap, mtype, pos, data, NULL); 721 if (ret) 722 return ret; 723 724 /* 725 * Copy the data into the caller's memory buffer. 726 */ 727 while (offset < 16 && len > 0) { 728 *buf++ = data[offset++]; 729 len -= sizeof(__be32); 730 } 731 } 732 733 return 0; 734 } 735 736 /* 737 * Return the specified PCI-E Configuration Space register from our Physical 738 * Function. We try first via a Firmware LDST Command (if fw_attach != 0) 739 * since we prefer to let the firmware own all of these registers, but if that 740 * fails we go for it directly ourselves. 741 */ 742 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach) 743 { 744 745 /* 746 * If fw_attach != 0, construct and send the Firmware LDST Command to 747 * retrieve the specified PCI-E Configuration Space register. 748 */ 749 if (drv_fw_attach != 0) { 750 struct fw_ldst_cmd ldst_cmd; 751 int ret; 752 753 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 754 ldst_cmd.op_to_addrspace = 755 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 756 F_FW_CMD_REQUEST | 757 F_FW_CMD_READ | 758 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE)); 759 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 760 ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1); 761 ldst_cmd.u.pcie.ctrl_to_fn = 762 (F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf)); 763 ldst_cmd.u.pcie.r = reg; 764 765 /* 766 * If the LDST Command succeeds, return the result, otherwise 767 * fall through to reading it directly ourselves ... 768 */ 769 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 770 &ldst_cmd); 771 if (ret == 0) 772 return be32_to_cpu(ldst_cmd.u.pcie.data[0]); 773 774 CH_WARN(adap, "Firmware failed to return " 775 "Configuration Space register %d, err = %d\n", 776 reg, -ret); 777 } 778 779 /* 780 * Read the desired Configuration Space register via the PCI-E 781 * Backdoor mechanism. 782 */ 783 return t4_hw_pci_read_cfg4(adap, reg); 784 } 785 786 /** 787 * t4_get_regs_len - return the size of the chips register set 788 * @adapter: the adapter 789 * 790 * Returns the size of the chip's BAR0 register space. 791 */ 792 unsigned int t4_get_regs_len(struct adapter *adapter) 793 { 794 unsigned int chip_version = chip_id(adapter); 795 796 switch (chip_version) { 797 case CHELSIO_T4: 798 if (adapter->flags & IS_VF) 799 return FW_T4VF_REGMAP_SIZE; 800 return T4_REGMAP_SIZE; 801 802 case CHELSIO_T5: 803 case CHELSIO_T6: 804 if (adapter->flags & IS_VF) 805 return FW_T4VF_REGMAP_SIZE; 806 return T5_REGMAP_SIZE; 807 } 808 809 CH_ERR(adapter, 810 "Unsupported chip version %d\n", chip_version); 811 return 0; 812 } 813 814 /** 815 * t4_get_regs - read chip registers into provided buffer 816 * @adap: the adapter 817 * @buf: register buffer 818 * @buf_size: size (in bytes) of register buffer 819 * 820 * If the provided register buffer isn't large enough for the chip's 821 * full register range, the register dump will be truncated to the 822 * register buffer's size. 823 */ 824 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size) 825 { 826 static const unsigned int t4_reg_ranges[] = { 827 0x1008, 0x1108, 828 0x1180, 0x1184, 829 0x1190, 0x1194, 830 0x11a0, 0x11a4, 831 0x11b0, 0x11b4, 832 0x11fc, 0x123c, 833 0x1300, 0x173c, 834 0x1800, 0x18fc, 835 0x3000, 0x30d8, 836 0x30e0, 0x30e4, 837 0x30ec, 0x5910, 838 0x5920, 0x5924, 839 0x5960, 0x5960, 840 0x5968, 0x5968, 841 0x5970, 0x5970, 842 0x5978, 0x5978, 843 0x5980, 0x5980, 844 0x5988, 0x5988, 845 0x5990, 0x5990, 846 0x5998, 0x5998, 847 0x59a0, 0x59d4, 848 0x5a00, 0x5ae0, 849 0x5ae8, 0x5ae8, 850 0x5af0, 0x5af0, 851 0x5af8, 0x5af8, 852 0x6000, 0x6098, 853 0x6100, 0x6150, 854 0x6200, 0x6208, 855 0x6240, 0x6248, 856 0x6280, 0x62b0, 857 0x62c0, 0x6338, 858 0x6370, 0x638c, 859 0x6400, 0x643c, 860 0x6500, 0x6524, 861 0x6a00, 0x6a04, 862 0x6a14, 0x6a38, 863 0x6a60, 0x6a70, 864 0x6a78, 0x6a78, 865 0x6b00, 0x6b0c, 866 0x6b1c, 0x6b84, 867 0x6bf0, 0x6bf8, 868 0x6c00, 0x6c0c, 869 0x6c1c, 0x6c84, 870 0x6cf0, 0x6cf8, 871 0x6d00, 0x6d0c, 872 0x6d1c, 0x6d84, 873 0x6df0, 0x6df8, 874 0x6e00, 0x6e0c, 875 0x6e1c, 0x6e84, 876 0x6ef0, 0x6ef8, 877 0x6f00, 0x6f0c, 878 0x6f1c, 0x6f84, 879 0x6ff0, 0x6ff8, 880 0x7000, 0x700c, 881 0x701c, 0x7084, 882 0x70f0, 0x70f8, 883 0x7100, 0x710c, 884 0x711c, 0x7184, 885 0x71f0, 0x71f8, 886 0x7200, 0x720c, 887 0x721c, 0x7284, 888 0x72f0, 0x72f8, 889 0x7300, 0x730c, 890 0x731c, 0x7384, 891 0x73f0, 0x73f8, 892 0x7400, 0x7450, 893 0x7500, 0x7530, 894 0x7600, 0x760c, 895 0x7614, 0x761c, 896 0x7680, 0x76cc, 897 0x7700, 0x7798, 898 0x77c0, 0x77fc, 899 0x7900, 0x79fc, 900 0x7b00, 0x7b58, 901 0x7b60, 0x7b84, 902 0x7b8c, 0x7c38, 903 0x7d00, 0x7d38, 904 0x7d40, 0x7d80, 905 0x7d8c, 0x7ddc, 906 0x7de4, 0x7e04, 907 0x7e10, 0x7e1c, 908 0x7e24, 0x7e38, 909 0x7e40, 0x7e44, 910 0x7e4c, 0x7e78, 911 0x7e80, 0x7ea4, 912 0x7eac, 0x7edc, 913 0x7ee8, 0x7efc, 914 0x8dc0, 0x8e04, 915 0x8e10, 0x8e1c, 916 0x8e30, 0x8e78, 917 0x8ea0, 0x8eb8, 918 0x8ec0, 0x8f6c, 919 0x8fc0, 0x9008, 920 0x9010, 0x9058, 921 0x9060, 0x9060, 922 0x9068, 0x9074, 923 0x90fc, 0x90fc, 924 0x9400, 0x9408, 925 0x9410, 0x9458, 926 0x9600, 0x9600, 927 0x9608, 0x9638, 928 0x9640, 0x96bc, 929 0x9800, 0x9808, 930 0x9820, 0x983c, 931 0x9850, 0x9864, 932 0x9c00, 0x9c6c, 933 0x9c80, 0x9cec, 934 0x9d00, 0x9d6c, 935 0x9d80, 0x9dec, 936 0x9e00, 0x9e6c, 937 0x9e80, 0x9eec, 938 0x9f00, 0x9f6c, 939 0x9f80, 0x9fec, 940 0xd004, 0xd004, 941 0xd010, 0xd03c, 942 0xdfc0, 0xdfe0, 943 0xe000, 0xea7c, 944 0xf000, 0x11110, 945 0x11118, 0x11190, 946 0x19040, 0x1906c, 947 0x19078, 0x19080, 948 0x1908c, 0x190e4, 949 0x190f0, 0x190f8, 950 0x19100, 0x19110, 951 0x19120, 0x19124, 952 0x19150, 0x19194, 953 0x1919c, 0x191b0, 954 0x191d0, 0x191e8, 955 0x19238, 0x1924c, 956 0x193f8, 0x1943c, 957 0x1944c, 0x19474, 958 0x19490, 0x194e0, 959 0x194f0, 0x194f8, 960 0x19800, 0x19c08, 961 0x19c10, 0x19c90, 962 0x19ca0, 0x19ce4, 963 0x19cf0, 0x19d40, 964 0x19d50, 0x19d94, 965 0x19da0, 0x19de8, 966 0x19df0, 0x19e40, 967 0x19e50, 0x19e90, 968 0x19ea0, 0x19f4c, 969 0x1a000, 0x1a004, 970 0x1a010, 0x1a06c, 971 0x1a0b0, 0x1a0e4, 972 0x1a0ec, 0x1a0f4, 973 0x1a100, 0x1a108, 974 0x1a114, 0x1a120, 975 0x1a128, 0x1a130, 976 0x1a138, 0x1a138, 977 0x1a190, 0x1a1c4, 978 0x1a1fc, 0x1a1fc, 979 0x1e040, 0x1e04c, 980 0x1e284, 0x1e28c, 981 0x1e2c0, 0x1e2c0, 982 0x1e2e0, 0x1e2e0, 983 0x1e300, 0x1e384, 984 0x1e3c0, 0x1e3c8, 985 0x1e440, 0x1e44c, 986 0x1e684, 0x1e68c, 987 0x1e6c0, 0x1e6c0, 988 0x1e6e0, 0x1e6e0, 989 0x1e700, 0x1e784, 990 0x1e7c0, 0x1e7c8, 991 0x1e840, 0x1e84c, 992 0x1ea84, 0x1ea8c, 993 0x1eac0, 0x1eac0, 994 0x1eae0, 0x1eae0, 995 0x1eb00, 0x1eb84, 996 0x1ebc0, 0x1ebc8, 997 0x1ec40, 0x1ec4c, 998 0x1ee84, 0x1ee8c, 999 0x1eec0, 0x1eec0, 1000 0x1eee0, 0x1eee0, 1001 0x1ef00, 0x1ef84, 1002 0x1efc0, 0x1efc8, 1003 0x1f040, 0x1f04c, 1004 0x1f284, 0x1f28c, 1005 0x1f2c0, 0x1f2c0, 1006 0x1f2e0, 0x1f2e0, 1007 0x1f300, 0x1f384, 1008 0x1f3c0, 0x1f3c8, 1009 0x1f440, 0x1f44c, 1010 0x1f684, 0x1f68c, 1011 0x1f6c0, 0x1f6c0, 1012 0x1f6e0, 0x1f6e0, 1013 0x1f700, 0x1f784, 1014 0x1f7c0, 0x1f7c8, 1015 0x1f840, 0x1f84c, 1016 0x1fa84, 0x1fa8c, 1017 0x1fac0, 0x1fac0, 1018 0x1fae0, 0x1fae0, 1019 0x1fb00, 0x1fb84, 1020 0x1fbc0, 0x1fbc8, 1021 0x1fc40, 0x1fc4c, 1022 0x1fe84, 0x1fe8c, 1023 0x1fec0, 0x1fec0, 1024 0x1fee0, 0x1fee0, 1025 0x1ff00, 0x1ff84, 1026 0x1ffc0, 0x1ffc8, 1027 0x20000, 0x2002c, 1028 0x20100, 0x2013c, 1029 0x20190, 0x201a0, 1030 0x201a8, 0x201b8, 1031 0x201c4, 0x201c8, 1032 0x20200, 0x20318, 1033 0x20400, 0x204b4, 1034 0x204c0, 0x20528, 1035 0x20540, 0x20614, 1036 0x21000, 0x21040, 1037 0x2104c, 0x21060, 1038 0x210c0, 0x210ec, 1039 0x21200, 0x21268, 1040 0x21270, 0x21284, 1041 0x212fc, 0x21388, 1042 0x21400, 0x21404, 1043 0x21500, 0x21500, 1044 0x21510, 0x21518, 1045 0x2152c, 0x21530, 1046 0x2153c, 0x2153c, 1047 0x21550, 0x21554, 1048 0x21600, 0x21600, 1049 0x21608, 0x2161c, 1050 0x21624, 0x21628, 1051 0x21630, 0x21634, 1052 0x2163c, 0x2163c, 1053 0x21700, 0x2171c, 1054 0x21780, 0x2178c, 1055 0x21800, 0x21818, 1056 0x21820, 0x21828, 1057 0x21830, 0x21848, 1058 0x21850, 0x21854, 1059 0x21860, 0x21868, 1060 0x21870, 0x21870, 1061 0x21878, 0x21898, 1062 0x218a0, 0x218a8, 1063 0x218b0, 0x218c8, 1064 0x218d0, 0x218d4, 1065 0x218e0, 0x218e8, 1066 0x218f0, 0x218f0, 1067 0x218f8, 0x21a18, 1068 0x21a20, 0x21a28, 1069 0x21a30, 0x21a48, 1070 0x21a50, 0x21a54, 1071 0x21a60, 0x21a68, 1072 0x21a70, 0x21a70, 1073 0x21a78, 0x21a98, 1074 0x21aa0, 0x21aa8, 1075 0x21ab0, 0x21ac8, 1076 0x21ad0, 0x21ad4, 1077 0x21ae0, 0x21ae8, 1078 0x21af0, 0x21af0, 1079 0x21af8, 0x21c18, 1080 0x21c20, 0x21c20, 1081 0x21c28, 0x21c30, 1082 0x21c38, 0x21c38, 1083 0x21c80, 0x21c98, 1084 0x21ca0, 0x21ca8, 1085 0x21cb0, 0x21cc8, 1086 0x21cd0, 0x21cd4, 1087 0x21ce0, 0x21ce8, 1088 0x21cf0, 0x21cf0, 1089 0x21cf8, 0x21d7c, 1090 0x21e00, 0x21e04, 1091 0x22000, 0x2202c, 1092 0x22100, 0x2213c, 1093 0x22190, 0x221a0, 1094 0x221a8, 0x221b8, 1095 0x221c4, 0x221c8, 1096 0x22200, 0x22318, 1097 0x22400, 0x224b4, 1098 0x224c0, 0x22528, 1099 0x22540, 0x22614, 1100 0x23000, 0x23040, 1101 0x2304c, 0x23060, 1102 0x230c0, 0x230ec, 1103 0x23200, 0x23268, 1104 0x23270, 0x23284, 1105 0x232fc, 0x23388, 1106 0x23400, 0x23404, 1107 0x23500, 0x23500, 1108 0x23510, 0x23518, 1109 0x2352c, 0x23530, 1110 0x2353c, 0x2353c, 1111 0x23550, 0x23554, 1112 0x23600, 0x23600, 1113 0x23608, 0x2361c, 1114 0x23624, 0x23628, 1115 0x23630, 0x23634, 1116 0x2363c, 0x2363c, 1117 0x23700, 0x2371c, 1118 0x23780, 0x2378c, 1119 0x23800, 0x23818, 1120 0x23820, 0x23828, 1121 0x23830, 0x23848, 1122 0x23850, 0x23854, 1123 0x23860, 0x23868, 1124 0x23870, 0x23870, 1125 0x23878, 0x23898, 1126 0x238a0, 0x238a8, 1127 0x238b0, 0x238c8, 1128 0x238d0, 0x238d4, 1129 0x238e0, 0x238e8, 1130 0x238f0, 0x238f0, 1131 0x238f8, 0x23a18, 1132 0x23a20, 0x23a28, 1133 0x23a30, 0x23a48, 1134 0x23a50, 0x23a54, 1135 0x23a60, 0x23a68, 1136 0x23a70, 0x23a70, 1137 0x23a78, 0x23a98, 1138 0x23aa0, 0x23aa8, 1139 0x23ab0, 0x23ac8, 1140 0x23ad0, 0x23ad4, 1141 0x23ae0, 0x23ae8, 1142 0x23af0, 0x23af0, 1143 0x23af8, 0x23c18, 1144 0x23c20, 0x23c20, 1145 0x23c28, 0x23c30, 1146 0x23c38, 0x23c38, 1147 0x23c80, 0x23c98, 1148 0x23ca0, 0x23ca8, 1149 0x23cb0, 0x23cc8, 1150 0x23cd0, 0x23cd4, 1151 0x23ce0, 0x23ce8, 1152 0x23cf0, 0x23cf0, 1153 0x23cf8, 0x23d7c, 1154 0x23e00, 0x23e04, 1155 0x24000, 0x2402c, 1156 0x24100, 0x2413c, 1157 0x24190, 0x241a0, 1158 0x241a8, 0x241b8, 1159 0x241c4, 0x241c8, 1160 0x24200, 0x24318, 1161 0x24400, 0x244b4, 1162 0x244c0, 0x24528, 1163 0x24540, 0x24614, 1164 0x25000, 0x25040, 1165 0x2504c, 0x25060, 1166 0x250c0, 0x250ec, 1167 0x25200, 0x25268, 1168 0x25270, 0x25284, 1169 0x252fc, 0x25388, 1170 0x25400, 0x25404, 1171 0x25500, 0x25500, 1172 0x25510, 0x25518, 1173 0x2552c, 0x25530, 1174 0x2553c, 0x2553c, 1175 0x25550, 0x25554, 1176 0x25600, 0x25600, 1177 0x25608, 0x2561c, 1178 0x25624, 0x25628, 1179 0x25630, 0x25634, 1180 0x2563c, 0x2563c, 1181 0x25700, 0x2571c, 1182 0x25780, 0x2578c, 1183 0x25800, 0x25818, 1184 0x25820, 0x25828, 1185 0x25830, 0x25848, 1186 0x25850, 0x25854, 1187 0x25860, 0x25868, 1188 0x25870, 0x25870, 1189 0x25878, 0x25898, 1190 0x258a0, 0x258a8, 1191 0x258b0, 0x258c8, 1192 0x258d0, 0x258d4, 1193 0x258e0, 0x258e8, 1194 0x258f0, 0x258f0, 1195 0x258f8, 0x25a18, 1196 0x25a20, 0x25a28, 1197 0x25a30, 0x25a48, 1198 0x25a50, 0x25a54, 1199 0x25a60, 0x25a68, 1200 0x25a70, 0x25a70, 1201 0x25a78, 0x25a98, 1202 0x25aa0, 0x25aa8, 1203 0x25ab0, 0x25ac8, 1204 0x25ad0, 0x25ad4, 1205 0x25ae0, 0x25ae8, 1206 0x25af0, 0x25af0, 1207 0x25af8, 0x25c18, 1208 0x25c20, 0x25c20, 1209 0x25c28, 0x25c30, 1210 0x25c38, 0x25c38, 1211 0x25c80, 0x25c98, 1212 0x25ca0, 0x25ca8, 1213 0x25cb0, 0x25cc8, 1214 0x25cd0, 0x25cd4, 1215 0x25ce0, 0x25ce8, 1216 0x25cf0, 0x25cf0, 1217 0x25cf8, 0x25d7c, 1218 0x25e00, 0x25e04, 1219 0x26000, 0x2602c, 1220 0x26100, 0x2613c, 1221 0x26190, 0x261a0, 1222 0x261a8, 0x261b8, 1223 0x261c4, 0x261c8, 1224 0x26200, 0x26318, 1225 0x26400, 0x264b4, 1226 0x264c0, 0x26528, 1227 0x26540, 0x26614, 1228 0x27000, 0x27040, 1229 0x2704c, 0x27060, 1230 0x270c0, 0x270ec, 1231 0x27200, 0x27268, 1232 0x27270, 0x27284, 1233 0x272fc, 0x27388, 1234 0x27400, 0x27404, 1235 0x27500, 0x27500, 1236 0x27510, 0x27518, 1237 0x2752c, 0x27530, 1238 0x2753c, 0x2753c, 1239 0x27550, 0x27554, 1240 0x27600, 0x27600, 1241 0x27608, 0x2761c, 1242 0x27624, 0x27628, 1243 0x27630, 0x27634, 1244 0x2763c, 0x2763c, 1245 0x27700, 0x2771c, 1246 0x27780, 0x2778c, 1247 0x27800, 0x27818, 1248 0x27820, 0x27828, 1249 0x27830, 0x27848, 1250 0x27850, 0x27854, 1251 0x27860, 0x27868, 1252 0x27870, 0x27870, 1253 0x27878, 0x27898, 1254 0x278a0, 0x278a8, 1255 0x278b0, 0x278c8, 1256 0x278d0, 0x278d4, 1257 0x278e0, 0x278e8, 1258 0x278f0, 0x278f0, 1259 0x278f8, 0x27a18, 1260 0x27a20, 0x27a28, 1261 0x27a30, 0x27a48, 1262 0x27a50, 0x27a54, 1263 0x27a60, 0x27a68, 1264 0x27a70, 0x27a70, 1265 0x27a78, 0x27a98, 1266 0x27aa0, 0x27aa8, 1267 0x27ab0, 0x27ac8, 1268 0x27ad0, 0x27ad4, 1269 0x27ae0, 0x27ae8, 1270 0x27af0, 0x27af0, 1271 0x27af8, 0x27c18, 1272 0x27c20, 0x27c20, 1273 0x27c28, 0x27c30, 1274 0x27c38, 0x27c38, 1275 0x27c80, 0x27c98, 1276 0x27ca0, 0x27ca8, 1277 0x27cb0, 0x27cc8, 1278 0x27cd0, 0x27cd4, 1279 0x27ce0, 0x27ce8, 1280 0x27cf0, 0x27cf0, 1281 0x27cf8, 0x27d7c, 1282 0x27e00, 0x27e04, 1283 }; 1284 1285 static const unsigned int t4vf_reg_ranges[] = { 1286 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS), 1287 VF_MPS_REG(A_MPS_VF_CTL), 1288 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H), 1289 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI), 1290 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL), 1291 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS), 1292 FW_T4VF_MBDATA_BASE_ADDR, 1293 FW_T4VF_MBDATA_BASE_ADDR + 1294 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4), 1295 }; 1296 1297 static const unsigned int t5_reg_ranges[] = { 1298 0x1008, 0x10c0, 1299 0x10cc, 0x10f8, 1300 0x1100, 0x1100, 1301 0x110c, 0x1148, 1302 0x1180, 0x1184, 1303 0x1190, 0x1194, 1304 0x11a0, 0x11a4, 1305 0x11b0, 0x11b4, 1306 0x11fc, 0x123c, 1307 0x1280, 0x173c, 1308 0x1800, 0x18fc, 1309 0x3000, 0x3028, 1310 0x3060, 0x30b0, 1311 0x30b8, 0x30d8, 1312 0x30e0, 0x30fc, 1313 0x3140, 0x357c, 1314 0x35a8, 0x35cc, 1315 0x35ec, 0x35ec, 1316 0x3600, 0x5624, 1317 0x56cc, 0x56ec, 1318 0x56f4, 0x5720, 1319 0x5728, 0x575c, 1320 0x580c, 0x5814, 1321 0x5890, 0x589c, 1322 0x58a4, 0x58ac, 1323 0x58b8, 0x58bc, 1324 0x5940, 0x59c8, 1325 0x59d0, 0x59dc, 1326 0x59fc, 0x5a18, 1327 0x5a60, 0x5a70, 1328 0x5a80, 0x5a9c, 1329 0x5b94, 0x5bfc, 1330 0x6000, 0x6020, 1331 0x6028, 0x6040, 1332 0x6058, 0x609c, 1333 0x60a8, 0x614c, 1334 0x7700, 0x7798, 1335 0x77c0, 0x78fc, 1336 0x7b00, 0x7b58, 1337 0x7b60, 0x7b84, 1338 0x7b8c, 0x7c54, 1339 0x7d00, 0x7d38, 1340 0x7d40, 0x7d80, 1341 0x7d8c, 0x7ddc, 1342 0x7de4, 0x7e04, 1343 0x7e10, 0x7e1c, 1344 0x7e24, 0x7e38, 1345 0x7e40, 0x7e44, 1346 0x7e4c, 0x7e78, 1347 0x7e80, 0x7edc, 1348 0x7ee8, 0x7efc, 1349 0x8dc0, 0x8de0, 1350 0x8df8, 0x8e04, 1351 0x8e10, 0x8e84, 1352 0x8ea0, 0x8f84, 1353 0x8fc0, 0x9058, 1354 0x9060, 0x9060, 1355 0x9068, 0x90f8, 1356 0x9400, 0x9408, 1357 0x9410, 0x9470, 1358 0x9600, 0x9600, 1359 0x9608, 0x9638, 1360 0x9640, 0x96f4, 1361 0x9800, 0x9808, 1362 0x9820, 0x983c, 1363 0x9850, 0x9864, 1364 0x9c00, 0x9c6c, 1365 0x9c80, 0x9cec, 1366 0x9d00, 0x9d6c, 1367 0x9d80, 0x9dec, 1368 0x9e00, 0x9e6c, 1369 0x9e80, 0x9eec, 1370 0x9f00, 0x9f6c, 1371 0x9f80, 0xa020, 1372 0xd004, 0xd004, 1373 0xd010, 0xd03c, 1374 0xdfc0, 0xdfe0, 1375 0xe000, 0x1106c, 1376 0x11074, 0x11088, 1377 0x1109c, 0x1117c, 1378 0x11190, 0x11204, 1379 0x19040, 0x1906c, 1380 0x19078, 0x19080, 1381 0x1908c, 0x190e8, 1382 0x190f0, 0x190f8, 1383 0x19100, 0x19110, 1384 0x19120, 0x19124, 1385 0x19150, 0x19194, 1386 0x1919c, 0x191b0, 1387 0x191d0, 0x191e8, 1388 0x19238, 0x19290, 1389 0x193f8, 0x19428, 1390 0x19430, 0x19444, 1391 0x1944c, 0x1946c, 1392 0x19474, 0x19474, 1393 0x19490, 0x194cc, 1394 0x194f0, 0x194f8, 1395 0x19c00, 0x19c08, 1396 0x19c10, 0x19c60, 1397 0x19c94, 0x19ce4, 1398 0x19cf0, 0x19d40, 1399 0x19d50, 0x19d94, 1400 0x19da0, 0x19de8, 1401 0x19df0, 0x19e10, 1402 0x19e50, 0x19e90, 1403 0x19ea0, 0x19f24, 1404 0x19f34, 0x19f34, 1405 0x19f40, 0x19f50, 1406 0x19f90, 0x19fb4, 1407 0x19fc4, 0x19fe4, 1408 0x1a000, 0x1a004, 1409 0x1a010, 0x1a06c, 1410 0x1a0b0, 0x1a0e4, 1411 0x1a0ec, 0x1a0f8, 1412 0x1a100, 0x1a108, 1413 0x1a114, 0x1a120, 1414 0x1a128, 0x1a130, 1415 0x1a138, 0x1a138, 1416 0x1a190, 0x1a1c4, 1417 0x1a1fc, 0x1a1fc, 1418 0x1e008, 0x1e00c, 1419 0x1e040, 0x1e044, 1420 0x1e04c, 0x1e04c, 1421 0x1e284, 0x1e290, 1422 0x1e2c0, 0x1e2c0, 1423 0x1e2e0, 0x1e2e0, 1424 0x1e300, 0x1e384, 1425 0x1e3c0, 0x1e3c8, 1426 0x1e408, 0x1e40c, 1427 0x1e440, 0x1e444, 1428 0x1e44c, 0x1e44c, 1429 0x1e684, 0x1e690, 1430 0x1e6c0, 0x1e6c0, 1431 0x1e6e0, 0x1e6e0, 1432 0x1e700, 0x1e784, 1433 0x1e7c0, 0x1e7c8, 1434 0x1e808, 0x1e80c, 1435 0x1e840, 0x1e844, 1436 0x1e84c, 0x1e84c, 1437 0x1ea84, 0x1ea90, 1438 0x1eac0, 0x1eac0, 1439 0x1eae0, 0x1eae0, 1440 0x1eb00, 0x1eb84, 1441 0x1ebc0, 0x1ebc8, 1442 0x1ec08, 0x1ec0c, 1443 0x1ec40, 0x1ec44, 1444 0x1ec4c, 0x1ec4c, 1445 0x1ee84, 0x1ee90, 1446 0x1eec0, 0x1eec0, 1447 0x1eee0, 0x1eee0, 1448 0x1ef00, 0x1ef84, 1449 0x1efc0, 0x1efc8, 1450 0x1f008, 0x1f00c, 1451 0x1f040, 0x1f044, 1452 0x1f04c, 0x1f04c, 1453 0x1f284, 0x1f290, 1454 0x1f2c0, 0x1f2c0, 1455 0x1f2e0, 0x1f2e0, 1456 0x1f300, 0x1f384, 1457 0x1f3c0, 0x1f3c8, 1458 0x1f408, 0x1f40c, 1459 0x1f440, 0x1f444, 1460 0x1f44c, 0x1f44c, 1461 0x1f684, 0x1f690, 1462 0x1f6c0, 0x1f6c0, 1463 0x1f6e0, 0x1f6e0, 1464 0x1f700, 0x1f784, 1465 0x1f7c0, 0x1f7c8, 1466 0x1f808, 0x1f80c, 1467 0x1f840, 0x1f844, 1468 0x1f84c, 0x1f84c, 1469 0x1fa84, 0x1fa90, 1470 0x1fac0, 0x1fac0, 1471 0x1fae0, 0x1fae0, 1472 0x1fb00, 0x1fb84, 1473 0x1fbc0, 0x1fbc8, 1474 0x1fc08, 0x1fc0c, 1475 0x1fc40, 0x1fc44, 1476 0x1fc4c, 0x1fc4c, 1477 0x1fe84, 0x1fe90, 1478 0x1fec0, 0x1fec0, 1479 0x1fee0, 0x1fee0, 1480 0x1ff00, 0x1ff84, 1481 0x1ffc0, 0x1ffc8, 1482 0x30000, 0x30030, 1483 0x30100, 0x30144, 1484 0x30190, 0x301a0, 1485 0x301a8, 0x301b8, 1486 0x301c4, 0x301c8, 1487 0x301d0, 0x301d0, 1488 0x30200, 0x30318, 1489 0x30400, 0x304b4, 1490 0x304c0, 0x3052c, 1491 0x30540, 0x3061c, 1492 0x30800, 0x30828, 1493 0x30834, 0x30834, 1494 0x308c0, 0x30908, 1495 0x30910, 0x309ac, 1496 0x30a00, 0x30a14, 1497 0x30a1c, 0x30a2c, 1498 0x30a44, 0x30a50, 1499 0x30a74, 0x30a74, 1500 0x30a7c, 0x30afc, 1501 0x30b08, 0x30c24, 1502 0x30d00, 0x30d00, 1503 0x30d08, 0x30d14, 1504 0x30d1c, 0x30d20, 1505 0x30d3c, 0x30d3c, 1506 0x30d48, 0x30d50, 1507 0x31200, 0x3120c, 1508 0x31220, 0x31220, 1509 0x31240, 0x31240, 1510 0x31600, 0x3160c, 1511 0x31a00, 0x31a1c, 1512 0x31e00, 0x31e20, 1513 0x31e38, 0x31e3c, 1514 0x31e80, 0x31e80, 1515 0x31e88, 0x31ea8, 1516 0x31eb0, 0x31eb4, 1517 0x31ec8, 0x31ed4, 1518 0x31fb8, 0x32004, 1519 0x32200, 0x32200, 1520 0x32208, 0x32240, 1521 0x32248, 0x32280, 1522 0x32288, 0x322c0, 1523 0x322c8, 0x322fc, 1524 0x32600, 0x32630, 1525 0x32a00, 0x32abc, 1526 0x32b00, 0x32b10, 1527 0x32b20, 0x32b30, 1528 0x32b40, 0x32b50, 1529 0x32b60, 0x32b70, 1530 0x33000, 0x33028, 1531 0x33030, 0x33048, 1532 0x33060, 0x33068, 1533 0x33070, 0x3309c, 1534 0x330f0, 0x33128, 1535 0x33130, 0x33148, 1536 0x33160, 0x33168, 1537 0x33170, 0x3319c, 1538 0x331f0, 0x33238, 1539 0x33240, 0x33240, 1540 0x33248, 0x33250, 1541 0x3325c, 0x33264, 1542 0x33270, 0x332b8, 1543 0x332c0, 0x332e4, 1544 0x332f8, 0x33338, 1545 0x33340, 0x33340, 1546 0x33348, 0x33350, 1547 0x3335c, 0x33364, 1548 0x33370, 0x333b8, 1549 0x333c0, 0x333e4, 1550 0x333f8, 0x33428, 1551 0x33430, 0x33448, 1552 0x33460, 0x33468, 1553 0x33470, 0x3349c, 1554 0x334f0, 0x33528, 1555 0x33530, 0x33548, 1556 0x33560, 0x33568, 1557 0x33570, 0x3359c, 1558 0x335f0, 0x33638, 1559 0x33640, 0x33640, 1560 0x33648, 0x33650, 1561 0x3365c, 0x33664, 1562 0x33670, 0x336b8, 1563 0x336c0, 0x336e4, 1564 0x336f8, 0x33738, 1565 0x33740, 0x33740, 1566 0x33748, 0x33750, 1567 0x3375c, 0x33764, 1568 0x33770, 0x337b8, 1569 0x337c0, 0x337e4, 1570 0x337f8, 0x337fc, 1571 0x33814, 0x33814, 1572 0x3382c, 0x3382c, 1573 0x33880, 0x3388c, 1574 0x338e8, 0x338ec, 1575 0x33900, 0x33928, 1576 0x33930, 0x33948, 1577 0x33960, 0x33968, 1578 0x33970, 0x3399c, 1579 0x339f0, 0x33a38, 1580 0x33a40, 0x33a40, 1581 0x33a48, 0x33a50, 1582 0x33a5c, 0x33a64, 1583 0x33a70, 0x33ab8, 1584 0x33ac0, 0x33ae4, 1585 0x33af8, 0x33b10, 1586 0x33b28, 0x33b28, 1587 0x33b3c, 0x33b50, 1588 0x33bf0, 0x33c10, 1589 0x33c28, 0x33c28, 1590 0x33c3c, 0x33c50, 1591 0x33cf0, 0x33cfc, 1592 0x34000, 0x34030, 1593 0x34100, 0x34144, 1594 0x34190, 0x341a0, 1595 0x341a8, 0x341b8, 1596 0x341c4, 0x341c8, 1597 0x341d0, 0x341d0, 1598 0x34200, 0x34318, 1599 0x34400, 0x344b4, 1600 0x344c0, 0x3452c, 1601 0x34540, 0x3461c, 1602 0x34800, 0x34828, 1603 0x34834, 0x34834, 1604 0x348c0, 0x34908, 1605 0x34910, 0x349ac, 1606 0x34a00, 0x34a14, 1607 0x34a1c, 0x34a2c, 1608 0x34a44, 0x34a50, 1609 0x34a74, 0x34a74, 1610 0x34a7c, 0x34afc, 1611 0x34b08, 0x34c24, 1612 0x34d00, 0x34d00, 1613 0x34d08, 0x34d14, 1614 0x34d1c, 0x34d20, 1615 0x34d3c, 0x34d3c, 1616 0x34d48, 0x34d50, 1617 0x35200, 0x3520c, 1618 0x35220, 0x35220, 1619 0x35240, 0x35240, 1620 0x35600, 0x3560c, 1621 0x35a00, 0x35a1c, 1622 0x35e00, 0x35e20, 1623 0x35e38, 0x35e3c, 1624 0x35e80, 0x35e80, 1625 0x35e88, 0x35ea8, 1626 0x35eb0, 0x35eb4, 1627 0x35ec8, 0x35ed4, 1628 0x35fb8, 0x36004, 1629 0x36200, 0x36200, 1630 0x36208, 0x36240, 1631 0x36248, 0x36280, 1632 0x36288, 0x362c0, 1633 0x362c8, 0x362fc, 1634 0x36600, 0x36630, 1635 0x36a00, 0x36abc, 1636 0x36b00, 0x36b10, 1637 0x36b20, 0x36b30, 1638 0x36b40, 0x36b50, 1639 0x36b60, 0x36b70, 1640 0x37000, 0x37028, 1641 0x37030, 0x37048, 1642 0x37060, 0x37068, 1643 0x37070, 0x3709c, 1644 0x370f0, 0x37128, 1645 0x37130, 0x37148, 1646 0x37160, 0x37168, 1647 0x37170, 0x3719c, 1648 0x371f0, 0x37238, 1649 0x37240, 0x37240, 1650 0x37248, 0x37250, 1651 0x3725c, 0x37264, 1652 0x37270, 0x372b8, 1653 0x372c0, 0x372e4, 1654 0x372f8, 0x37338, 1655 0x37340, 0x37340, 1656 0x37348, 0x37350, 1657 0x3735c, 0x37364, 1658 0x37370, 0x373b8, 1659 0x373c0, 0x373e4, 1660 0x373f8, 0x37428, 1661 0x37430, 0x37448, 1662 0x37460, 0x37468, 1663 0x37470, 0x3749c, 1664 0x374f0, 0x37528, 1665 0x37530, 0x37548, 1666 0x37560, 0x37568, 1667 0x37570, 0x3759c, 1668 0x375f0, 0x37638, 1669 0x37640, 0x37640, 1670 0x37648, 0x37650, 1671 0x3765c, 0x37664, 1672 0x37670, 0x376b8, 1673 0x376c0, 0x376e4, 1674 0x376f8, 0x37738, 1675 0x37740, 0x37740, 1676 0x37748, 0x37750, 1677 0x3775c, 0x37764, 1678 0x37770, 0x377b8, 1679 0x377c0, 0x377e4, 1680 0x377f8, 0x377fc, 1681 0x37814, 0x37814, 1682 0x3782c, 0x3782c, 1683 0x37880, 0x3788c, 1684 0x378e8, 0x378ec, 1685 0x37900, 0x37928, 1686 0x37930, 0x37948, 1687 0x37960, 0x37968, 1688 0x37970, 0x3799c, 1689 0x379f0, 0x37a38, 1690 0x37a40, 0x37a40, 1691 0x37a48, 0x37a50, 1692 0x37a5c, 0x37a64, 1693 0x37a70, 0x37ab8, 1694 0x37ac0, 0x37ae4, 1695 0x37af8, 0x37b10, 1696 0x37b28, 0x37b28, 1697 0x37b3c, 0x37b50, 1698 0x37bf0, 0x37c10, 1699 0x37c28, 0x37c28, 1700 0x37c3c, 0x37c50, 1701 0x37cf0, 0x37cfc, 1702 0x38000, 0x38030, 1703 0x38100, 0x38144, 1704 0x38190, 0x381a0, 1705 0x381a8, 0x381b8, 1706 0x381c4, 0x381c8, 1707 0x381d0, 0x381d0, 1708 0x38200, 0x38318, 1709 0x38400, 0x384b4, 1710 0x384c0, 0x3852c, 1711 0x38540, 0x3861c, 1712 0x38800, 0x38828, 1713 0x38834, 0x38834, 1714 0x388c0, 0x38908, 1715 0x38910, 0x389ac, 1716 0x38a00, 0x38a14, 1717 0x38a1c, 0x38a2c, 1718 0x38a44, 0x38a50, 1719 0x38a74, 0x38a74, 1720 0x38a7c, 0x38afc, 1721 0x38b08, 0x38c24, 1722 0x38d00, 0x38d00, 1723 0x38d08, 0x38d14, 1724 0x38d1c, 0x38d20, 1725 0x38d3c, 0x38d3c, 1726 0x38d48, 0x38d50, 1727 0x39200, 0x3920c, 1728 0x39220, 0x39220, 1729 0x39240, 0x39240, 1730 0x39600, 0x3960c, 1731 0x39a00, 0x39a1c, 1732 0x39e00, 0x39e20, 1733 0x39e38, 0x39e3c, 1734 0x39e80, 0x39e80, 1735 0x39e88, 0x39ea8, 1736 0x39eb0, 0x39eb4, 1737 0x39ec8, 0x39ed4, 1738 0x39fb8, 0x3a004, 1739 0x3a200, 0x3a200, 1740 0x3a208, 0x3a240, 1741 0x3a248, 0x3a280, 1742 0x3a288, 0x3a2c0, 1743 0x3a2c8, 0x3a2fc, 1744 0x3a600, 0x3a630, 1745 0x3aa00, 0x3aabc, 1746 0x3ab00, 0x3ab10, 1747 0x3ab20, 0x3ab30, 1748 0x3ab40, 0x3ab50, 1749 0x3ab60, 0x3ab70, 1750 0x3b000, 0x3b028, 1751 0x3b030, 0x3b048, 1752 0x3b060, 0x3b068, 1753 0x3b070, 0x3b09c, 1754 0x3b0f0, 0x3b128, 1755 0x3b130, 0x3b148, 1756 0x3b160, 0x3b168, 1757 0x3b170, 0x3b19c, 1758 0x3b1f0, 0x3b238, 1759 0x3b240, 0x3b240, 1760 0x3b248, 0x3b250, 1761 0x3b25c, 0x3b264, 1762 0x3b270, 0x3b2b8, 1763 0x3b2c0, 0x3b2e4, 1764 0x3b2f8, 0x3b338, 1765 0x3b340, 0x3b340, 1766 0x3b348, 0x3b350, 1767 0x3b35c, 0x3b364, 1768 0x3b370, 0x3b3b8, 1769 0x3b3c0, 0x3b3e4, 1770 0x3b3f8, 0x3b428, 1771 0x3b430, 0x3b448, 1772 0x3b460, 0x3b468, 1773 0x3b470, 0x3b49c, 1774 0x3b4f0, 0x3b528, 1775 0x3b530, 0x3b548, 1776 0x3b560, 0x3b568, 1777 0x3b570, 0x3b59c, 1778 0x3b5f0, 0x3b638, 1779 0x3b640, 0x3b640, 1780 0x3b648, 0x3b650, 1781 0x3b65c, 0x3b664, 1782 0x3b670, 0x3b6b8, 1783 0x3b6c0, 0x3b6e4, 1784 0x3b6f8, 0x3b738, 1785 0x3b740, 0x3b740, 1786 0x3b748, 0x3b750, 1787 0x3b75c, 0x3b764, 1788 0x3b770, 0x3b7b8, 1789 0x3b7c0, 0x3b7e4, 1790 0x3b7f8, 0x3b7fc, 1791 0x3b814, 0x3b814, 1792 0x3b82c, 0x3b82c, 1793 0x3b880, 0x3b88c, 1794 0x3b8e8, 0x3b8ec, 1795 0x3b900, 0x3b928, 1796 0x3b930, 0x3b948, 1797 0x3b960, 0x3b968, 1798 0x3b970, 0x3b99c, 1799 0x3b9f0, 0x3ba38, 1800 0x3ba40, 0x3ba40, 1801 0x3ba48, 0x3ba50, 1802 0x3ba5c, 0x3ba64, 1803 0x3ba70, 0x3bab8, 1804 0x3bac0, 0x3bae4, 1805 0x3baf8, 0x3bb10, 1806 0x3bb28, 0x3bb28, 1807 0x3bb3c, 0x3bb50, 1808 0x3bbf0, 0x3bc10, 1809 0x3bc28, 0x3bc28, 1810 0x3bc3c, 0x3bc50, 1811 0x3bcf0, 0x3bcfc, 1812 0x3c000, 0x3c030, 1813 0x3c100, 0x3c144, 1814 0x3c190, 0x3c1a0, 1815 0x3c1a8, 0x3c1b8, 1816 0x3c1c4, 0x3c1c8, 1817 0x3c1d0, 0x3c1d0, 1818 0x3c200, 0x3c318, 1819 0x3c400, 0x3c4b4, 1820 0x3c4c0, 0x3c52c, 1821 0x3c540, 0x3c61c, 1822 0x3c800, 0x3c828, 1823 0x3c834, 0x3c834, 1824 0x3c8c0, 0x3c908, 1825 0x3c910, 0x3c9ac, 1826 0x3ca00, 0x3ca14, 1827 0x3ca1c, 0x3ca2c, 1828 0x3ca44, 0x3ca50, 1829 0x3ca74, 0x3ca74, 1830 0x3ca7c, 0x3cafc, 1831 0x3cb08, 0x3cc24, 1832 0x3cd00, 0x3cd00, 1833 0x3cd08, 0x3cd14, 1834 0x3cd1c, 0x3cd20, 1835 0x3cd3c, 0x3cd3c, 1836 0x3cd48, 0x3cd50, 1837 0x3d200, 0x3d20c, 1838 0x3d220, 0x3d220, 1839 0x3d240, 0x3d240, 1840 0x3d600, 0x3d60c, 1841 0x3da00, 0x3da1c, 1842 0x3de00, 0x3de20, 1843 0x3de38, 0x3de3c, 1844 0x3de80, 0x3de80, 1845 0x3de88, 0x3dea8, 1846 0x3deb0, 0x3deb4, 1847 0x3dec8, 0x3ded4, 1848 0x3dfb8, 0x3e004, 1849 0x3e200, 0x3e200, 1850 0x3e208, 0x3e240, 1851 0x3e248, 0x3e280, 1852 0x3e288, 0x3e2c0, 1853 0x3e2c8, 0x3e2fc, 1854 0x3e600, 0x3e630, 1855 0x3ea00, 0x3eabc, 1856 0x3eb00, 0x3eb10, 1857 0x3eb20, 0x3eb30, 1858 0x3eb40, 0x3eb50, 1859 0x3eb60, 0x3eb70, 1860 0x3f000, 0x3f028, 1861 0x3f030, 0x3f048, 1862 0x3f060, 0x3f068, 1863 0x3f070, 0x3f09c, 1864 0x3f0f0, 0x3f128, 1865 0x3f130, 0x3f148, 1866 0x3f160, 0x3f168, 1867 0x3f170, 0x3f19c, 1868 0x3f1f0, 0x3f238, 1869 0x3f240, 0x3f240, 1870 0x3f248, 0x3f250, 1871 0x3f25c, 0x3f264, 1872 0x3f270, 0x3f2b8, 1873 0x3f2c0, 0x3f2e4, 1874 0x3f2f8, 0x3f338, 1875 0x3f340, 0x3f340, 1876 0x3f348, 0x3f350, 1877 0x3f35c, 0x3f364, 1878 0x3f370, 0x3f3b8, 1879 0x3f3c0, 0x3f3e4, 1880 0x3f3f8, 0x3f428, 1881 0x3f430, 0x3f448, 1882 0x3f460, 0x3f468, 1883 0x3f470, 0x3f49c, 1884 0x3f4f0, 0x3f528, 1885 0x3f530, 0x3f548, 1886 0x3f560, 0x3f568, 1887 0x3f570, 0x3f59c, 1888 0x3f5f0, 0x3f638, 1889 0x3f640, 0x3f640, 1890 0x3f648, 0x3f650, 1891 0x3f65c, 0x3f664, 1892 0x3f670, 0x3f6b8, 1893 0x3f6c0, 0x3f6e4, 1894 0x3f6f8, 0x3f738, 1895 0x3f740, 0x3f740, 1896 0x3f748, 0x3f750, 1897 0x3f75c, 0x3f764, 1898 0x3f770, 0x3f7b8, 1899 0x3f7c0, 0x3f7e4, 1900 0x3f7f8, 0x3f7fc, 1901 0x3f814, 0x3f814, 1902 0x3f82c, 0x3f82c, 1903 0x3f880, 0x3f88c, 1904 0x3f8e8, 0x3f8ec, 1905 0x3f900, 0x3f928, 1906 0x3f930, 0x3f948, 1907 0x3f960, 0x3f968, 1908 0x3f970, 0x3f99c, 1909 0x3f9f0, 0x3fa38, 1910 0x3fa40, 0x3fa40, 1911 0x3fa48, 0x3fa50, 1912 0x3fa5c, 0x3fa64, 1913 0x3fa70, 0x3fab8, 1914 0x3fac0, 0x3fae4, 1915 0x3faf8, 0x3fb10, 1916 0x3fb28, 0x3fb28, 1917 0x3fb3c, 0x3fb50, 1918 0x3fbf0, 0x3fc10, 1919 0x3fc28, 0x3fc28, 1920 0x3fc3c, 0x3fc50, 1921 0x3fcf0, 0x3fcfc, 1922 0x40000, 0x4000c, 1923 0x40040, 0x40050, 1924 0x40060, 0x40068, 1925 0x4007c, 0x4008c, 1926 0x40094, 0x400b0, 1927 0x400c0, 0x40144, 1928 0x40180, 0x4018c, 1929 0x40200, 0x40254, 1930 0x40260, 0x40264, 1931 0x40270, 0x40288, 1932 0x40290, 0x40298, 1933 0x402ac, 0x402c8, 1934 0x402d0, 0x402e0, 1935 0x402f0, 0x402f0, 1936 0x40300, 0x4033c, 1937 0x403f8, 0x403fc, 1938 0x41304, 0x413c4, 1939 0x41400, 0x4140c, 1940 0x41414, 0x4141c, 1941 0x41480, 0x414d0, 1942 0x44000, 0x44054, 1943 0x4405c, 0x44078, 1944 0x440c0, 0x44174, 1945 0x44180, 0x441ac, 1946 0x441b4, 0x441b8, 1947 0x441c0, 0x44254, 1948 0x4425c, 0x44278, 1949 0x442c0, 0x44374, 1950 0x44380, 0x443ac, 1951 0x443b4, 0x443b8, 1952 0x443c0, 0x44454, 1953 0x4445c, 0x44478, 1954 0x444c0, 0x44574, 1955 0x44580, 0x445ac, 1956 0x445b4, 0x445b8, 1957 0x445c0, 0x44654, 1958 0x4465c, 0x44678, 1959 0x446c0, 0x44774, 1960 0x44780, 0x447ac, 1961 0x447b4, 0x447b8, 1962 0x447c0, 0x44854, 1963 0x4485c, 0x44878, 1964 0x448c0, 0x44974, 1965 0x44980, 0x449ac, 1966 0x449b4, 0x449b8, 1967 0x449c0, 0x449fc, 1968 0x45000, 0x45004, 1969 0x45010, 0x45030, 1970 0x45040, 0x45060, 1971 0x45068, 0x45068, 1972 0x45080, 0x45084, 1973 0x450a0, 0x450b0, 1974 0x45200, 0x45204, 1975 0x45210, 0x45230, 1976 0x45240, 0x45260, 1977 0x45268, 0x45268, 1978 0x45280, 0x45284, 1979 0x452a0, 0x452b0, 1980 0x460c0, 0x460e4, 1981 0x47000, 0x4703c, 1982 0x47044, 0x4708c, 1983 0x47200, 0x47250, 1984 0x47400, 0x47408, 1985 0x47414, 0x47420, 1986 0x47600, 0x47618, 1987 0x47800, 0x47814, 1988 0x48000, 0x4800c, 1989 0x48040, 0x48050, 1990 0x48060, 0x48068, 1991 0x4807c, 0x4808c, 1992 0x48094, 0x480b0, 1993 0x480c0, 0x48144, 1994 0x48180, 0x4818c, 1995 0x48200, 0x48254, 1996 0x48260, 0x48264, 1997 0x48270, 0x48288, 1998 0x48290, 0x48298, 1999 0x482ac, 0x482c8, 2000 0x482d0, 0x482e0, 2001 0x482f0, 0x482f0, 2002 0x48300, 0x4833c, 2003 0x483f8, 0x483fc, 2004 0x49304, 0x493c4, 2005 0x49400, 0x4940c, 2006 0x49414, 0x4941c, 2007 0x49480, 0x494d0, 2008 0x4c000, 0x4c054, 2009 0x4c05c, 0x4c078, 2010 0x4c0c0, 0x4c174, 2011 0x4c180, 0x4c1ac, 2012 0x4c1b4, 0x4c1b8, 2013 0x4c1c0, 0x4c254, 2014 0x4c25c, 0x4c278, 2015 0x4c2c0, 0x4c374, 2016 0x4c380, 0x4c3ac, 2017 0x4c3b4, 0x4c3b8, 2018 0x4c3c0, 0x4c454, 2019 0x4c45c, 0x4c478, 2020 0x4c4c0, 0x4c574, 2021 0x4c580, 0x4c5ac, 2022 0x4c5b4, 0x4c5b8, 2023 0x4c5c0, 0x4c654, 2024 0x4c65c, 0x4c678, 2025 0x4c6c0, 0x4c774, 2026 0x4c780, 0x4c7ac, 2027 0x4c7b4, 0x4c7b8, 2028 0x4c7c0, 0x4c854, 2029 0x4c85c, 0x4c878, 2030 0x4c8c0, 0x4c974, 2031 0x4c980, 0x4c9ac, 2032 0x4c9b4, 0x4c9b8, 2033 0x4c9c0, 0x4c9fc, 2034 0x4d000, 0x4d004, 2035 0x4d010, 0x4d030, 2036 0x4d040, 0x4d060, 2037 0x4d068, 0x4d068, 2038 0x4d080, 0x4d084, 2039 0x4d0a0, 0x4d0b0, 2040 0x4d200, 0x4d204, 2041 0x4d210, 0x4d230, 2042 0x4d240, 0x4d260, 2043 0x4d268, 0x4d268, 2044 0x4d280, 0x4d284, 2045 0x4d2a0, 0x4d2b0, 2046 0x4e0c0, 0x4e0e4, 2047 0x4f000, 0x4f03c, 2048 0x4f044, 0x4f08c, 2049 0x4f200, 0x4f250, 2050 0x4f400, 0x4f408, 2051 0x4f414, 0x4f420, 2052 0x4f600, 0x4f618, 2053 0x4f800, 0x4f814, 2054 0x50000, 0x50084, 2055 0x50090, 0x500cc, 2056 0x50400, 0x50400, 2057 0x50800, 0x50884, 2058 0x50890, 0x508cc, 2059 0x50c00, 0x50c00, 2060 0x51000, 0x5101c, 2061 0x51300, 0x51308, 2062 }; 2063 2064 static const unsigned int t5vf_reg_ranges[] = { 2065 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS), 2066 VF_MPS_REG(A_MPS_VF_CTL), 2067 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H), 2068 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION), 2069 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL), 2070 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS), 2071 FW_T4VF_MBDATA_BASE_ADDR, 2072 FW_T4VF_MBDATA_BASE_ADDR + 2073 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4), 2074 }; 2075 2076 static const unsigned int t6_reg_ranges[] = { 2077 0x1008, 0x101c, 2078 0x1024, 0x10a8, 2079 0x10b4, 0x10f8, 2080 0x1100, 0x1114, 2081 0x111c, 0x112c, 2082 0x1138, 0x113c, 2083 0x1144, 0x114c, 2084 0x1180, 0x1184, 2085 0x1190, 0x1194, 2086 0x11a0, 0x11a4, 2087 0x11b0, 0x11b4, 2088 0x11fc, 0x1274, 2089 0x1280, 0x133c, 2090 0x1800, 0x18fc, 2091 0x3000, 0x302c, 2092 0x3060, 0x30b0, 2093 0x30b8, 0x30d8, 2094 0x30e0, 0x30fc, 2095 0x3140, 0x357c, 2096 0x35a8, 0x35cc, 2097 0x35ec, 0x35ec, 2098 0x3600, 0x5624, 2099 0x56cc, 0x56ec, 2100 0x56f4, 0x5720, 2101 0x5728, 0x575c, 2102 0x580c, 0x5814, 2103 0x5890, 0x589c, 2104 0x58a4, 0x58ac, 2105 0x58b8, 0x58bc, 2106 0x5940, 0x595c, 2107 0x5980, 0x598c, 2108 0x59b0, 0x59c8, 2109 0x59d0, 0x59dc, 2110 0x59fc, 0x5a18, 2111 0x5a60, 0x5a6c, 2112 0x5a80, 0x5a8c, 2113 0x5a94, 0x5a9c, 2114 0x5b94, 0x5bfc, 2115 0x5c10, 0x5e48, 2116 0x5e50, 0x5e94, 2117 0x5ea0, 0x5eb0, 2118 0x5ec0, 0x5ec0, 2119 0x5ec8, 0x5ed0, 2120 0x5ee0, 0x5ee0, 2121 0x5ef0, 0x5ef0, 2122 0x5f00, 0x5f00, 2123 0x6000, 0x6020, 2124 0x6028, 0x6040, 2125 0x6058, 0x609c, 2126 0x60a8, 0x619c, 2127 0x7700, 0x7798, 2128 0x77c0, 0x7880, 2129 0x78cc, 0x78fc, 2130 0x7b00, 0x7b58, 2131 0x7b60, 0x7b84, 2132 0x7b8c, 0x7c54, 2133 0x7d00, 0x7d38, 2134 0x7d40, 0x7d84, 2135 0x7d8c, 0x7ddc, 2136 0x7de4, 0x7e04, 2137 0x7e10, 0x7e1c, 2138 0x7e24, 0x7e38, 2139 0x7e40, 0x7e44, 2140 0x7e4c, 0x7e78, 2141 0x7e80, 0x7edc, 2142 0x7ee8, 0x7efc, 2143 0x8dc0, 0x8de4, 2144 0x8df8, 0x8e04, 2145 0x8e10, 0x8e84, 2146 0x8ea0, 0x8f88, 2147 0x8fb8, 0x9058, 2148 0x9060, 0x9060, 2149 0x9068, 0x90f8, 2150 0x9100, 0x9124, 2151 0x9400, 0x9470, 2152 0x9600, 0x9600, 2153 0x9608, 0x9638, 2154 0x9640, 0x9704, 2155 0x9710, 0x971c, 2156 0x9800, 0x9808, 2157 0x9820, 0x983c, 2158 0x9850, 0x9864, 2159 0x9c00, 0x9c6c, 2160 0x9c80, 0x9cec, 2161 0x9d00, 0x9d6c, 2162 0x9d80, 0x9dec, 2163 0x9e00, 0x9e6c, 2164 0x9e80, 0x9eec, 2165 0x9f00, 0x9f6c, 2166 0x9f80, 0xa020, 2167 0xd004, 0xd03c, 2168 0xd100, 0xd118, 2169 0xd200, 0xd214, 2170 0xd220, 0xd234, 2171 0xd240, 0xd254, 2172 0xd260, 0xd274, 2173 0xd280, 0xd294, 2174 0xd2a0, 0xd2b4, 2175 0xd2c0, 0xd2d4, 2176 0xd2e0, 0xd2f4, 2177 0xd300, 0xd31c, 2178 0xdfc0, 0xdfe0, 2179 0xe000, 0xf008, 2180 0xf010, 0xf018, 2181 0xf020, 0xf028, 2182 0x11000, 0x11014, 2183 0x11048, 0x1106c, 2184 0x11074, 0x11088, 2185 0x11098, 0x11120, 2186 0x1112c, 0x1117c, 2187 0x11190, 0x112e0, 2188 0x11300, 0x1130c, 2189 0x12000, 0x1206c, 2190 0x19040, 0x1906c, 2191 0x19078, 0x19080, 2192 0x1908c, 0x190e8, 2193 0x190f0, 0x190f8, 2194 0x19100, 0x19110, 2195 0x19120, 0x19124, 2196 0x19150, 0x19194, 2197 0x1919c, 0x191b0, 2198 0x191d0, 0x191e8, 2199 0x19238, 0x19290, 2200 0x192a4, 0x192b0, 2201 0x192bc, 0x192bc, 2202 0x19348, 0x1934c, 2203 0x193f8, 0x19418, 2204 0x19420, 0x19428, 2205 0x19430, 0x19444, 2206 0x1944c, 0x1946c, 2207 0x19474, 0x19474, 2208 0x19490, 0x194cc, 2209 0x194f0, 0x194f8, 2210 0x19c00, 0x19c48, 2211 0x19c50, 0x19c80, 2212 0x19c94, 0x19c98, 2213 0x19ca0, 0x19cbc, 2214 0x19ce4, 0x19ce4, 2215 0x19cf0, 0x19cf8, 2216 0x19d00, 0x19d28, 2217 0x19d50, 0x19d78, 2218 0x19d94, 0x19d98, 2219 0x19da0, 0x19dc8, 2220 0x19df0, 0x19e10, 2221 0x19e50, 0x19e6c, 2222 0x19ea0, 0x19ebc, 2223 0x19ec4, 0x19ef4, 2224 0x19f04, 0x19f2c, 2225 0x19f34, 0x19f34, 2226 0x19f40, 0x19f50, 2227 0x19f90, 0x19fac, 2228 0x19fc4, 0x19fc8, 2229 0x19fd0, 0x19fe4, 2230 0x1a000, 0x1a004, 2231 0x1a010, 0x1a06c, 2232 0x1a0b0, 0x1a0e4, 2233 0x1a0ec, 0x1a0f8, 2234 0x1a100, 0x1a108, 2235 0x1a114, 0x1a120, 2236 0x1a128, 0x1a130, 2237 0x1a138, 0x1a138, 2238 0x1a190, 0x1a1c4, 2239 0x1a1fc, 0x1a1fc, 2240 0x1e008, 0x1e00c, 2241 0x1e040, 0x1e044, 2242 0x1e04c, 0x1e04c, 2243 0x1e284, 0x1e290, 2244 0x1e2c0, 0x1e2c0, 2245 0x1e2e0, 0x1e2e0, 2246 0x1e300, 0x1e384, 2247 0x1e3c0, 0x1e3c8, 2248 0x1e408, 0x1e40c, 2249 0x1e440, 0x1e444, 2250 0x1e44c, 0x1e44c, 2251 0x1e684, 0x1e690, 2252 0x1e6c0, 0x1e6c0, 2253 0x1e6e0, 0x1e6e0, 2254 0x1e700, 0x1e784, 2255 0x1e7c0, 0x1e7c8, 2256 0x1e808, 0x1e80c, 2257 0x1e840, 0x1e844, 2258 0x1e84c, 0x1e84c, 2259 0x1ea84, 0x1ea90, 2260 0x1eac0, 0x1eac0, 2261 0x1eae0, 0x1eae0, 2262 0x1eb00, 0x1eb84, 2263 0x1ebc0, 0x1ebc8, 2264 0x1ec08, 0x1ec0c, 2265 0x1ec40, 0x1ec44, 2266 0x1ec4c, 0x1ec4c, 2267 0x1ee84, 0x1ee90, 2268 0x1eec0, 0x1eec0, 2269 0x1eee0, 0x1eee0, 2270 0x1ef00, 0x1ef84, 2271 0x1efc0, 0x1efc8, 2272 0x1f008, 0x1f00c, 2273 0x1f040, 0x1f044, 2274 0x1f04c, 0x1f04c, 2275 0x1f284, 0x1f290, 2276 0x1f2c0, 0x1f2c0, 2277 0x1f2e0, 0x1f2e0, 2278 0x1f300, 0x1f384, 2279 0x1f3c0, 0x1f3c8, 2280 0x1f408, 0x1f40c, 2281 0x1f440, 0x1f444, 2282 0x1f44c, 0x1f44c, 2283 0x1f684, 0x1f690, 2284 0x1f6c0, 0x1f6c0, 2285 0x1f6e0, 0x1f6e0, 2286 0x1f700, 0x1f784, 2287 0x1f7c0, 0x1f7c8, 2288 0x1f808, 0x1f80c, 2289 0x1f840, 0x1f844, 2290 0x1f84c, 0x1f84c, 2291 0x1fa84, 0x1fa90, 2292 0x1fac0, 0x1fac0, 2293 0x1fae0, 0x1fae0, 2294 0x1fb00, 0x1fb84, 2295 0x1fbc0, 0x1fbc8, 2296 0x1fc08, 0x1fc0c, 2297 0x1fc40, 0x1fc44, 2298 0x1fc4c, 0x1fc4c, 2299 0x1fe84, 0x1fe90, 2300 0x1fec0, 0x1fec0, 2301 0x1fee0, 0x1fee0, 2302 0x1ff00, 0x1ff84, 2303 0x1ffc0, 0x1ffc8, 2304 0x30000, 0x30030, 2305 0x30100, 0x30168, 2306 0x30190, 0x301a0, 2307 0x301a8, 0x301b8, 2308 0x301c4, 0x301c8, 2309 0x301d0, 0x301d0, 2310 0x30200, 0x30320, 2311 0x30400, 0x304b4, 2312 0x304c0, 0x3052c, 2313 0x30540, 0x3061c, 2314 0x30800, 0x308a0, 2315 0x308c0, 0x30908, 2316 0x30910, 0x309b8, 2317 0x30a00, 0x30a04, 2318 0x30a0c, 0x30a14, 2319 0x30a1c, 0x30a2c, 2320 0x30a44, 0x30a50, 2321 0x30a74, 0x30a74, 2322 0x30a7c, 0x30afc, 2323 0x30b08, 0x30c24, 2324 0x30d00, 0x30d14, 2325 0x30d1c, 0x30d3c, 2326 0x30d44, 0x30d4c, 2327 0x30d54, 0x30d74, 2328 0x30d7c, 0x30d7c, 2329 0x30de0, 0x30de0, 2330 0x30e00, 0x30ed4, 2331 0x30f00, 0x30fa4, 2332 0x30fc0, 0x30fc4, 2333 0x31000, 0x31004, 2334 0x31080, 0x310fc, 2335 0x31208, 0x31220, 2336 0x3123c, 0x31254, 2337 0x31300, 0x31300, 2338 0x31308, 0x3131c, 2339 0x31338, 0x3133c, 2340 0x31380, 0x31380, 2341 0x31388, 0x313a8, 2342 0x313b4, 0x313b4, 2343 0x31400, 0x31420, 2344 0x31438, 0x3143c, 2345 0x31480, 0x31480, 2346 0x314a8, 0x314a8, 2347 0x314b0, 0x314b4, 2348 0x314c8, 0x314d4, 2349 0x31a40, 0x31a4c, 2350 0x31af0, 0x31b20, 2351 0x31b38, 0x31b3c, 2352 0x31b80, 0x31b80, 2353 0x31ba8, 0x31ba8, 2354 0x31bb0, 0x31bb4, 2355 0x31bc8, 0x31bd4, 2356 0x32140, 0x3218c, 2357 0x321f0, 0x321f4, 2358 0x32200, 0x32200, 2359 0x32218, 0x32218, 2360 0x32400, 0x32400, 2361 0x32408, 0x3241c, 2362 0x32618, 0x32620, 2363 0x32664, 0x32664, 2364 0x326a8, 0x326a8, 2365 0x326ec, 0x326ec, 2366 0x32a00, 0x32abc, 2367 0x32b00, 0x32b18, 2368 0x32b20, 0x32b38, 2369 0x32b40, 0x32b58, 2370 0x32b60, 0x32b78, 2371 0x32c00, 0x32c00, 2372 0x32c08, 0x32c3c, 2373 0x33000, 0x3302c, 2374 0x33034, 0x33050, 2375 0x33058, 0x33058, 2376 0x33060, 0x3308c, 2377 0x3309c, 0x330ac, 2378 0x330c0, 0x330c0, 2379 0x330c8, 0x330d0, 2380 0x330d8, 0x330e0, 2381 0x330ec, 0x3312c, 2382 0x33134, 0x33150, 2383 0x33158, 0x33158, 2384 0x33160, 0x3318c, 2385 0x3319c, 0x331ac, 2386 0x331c0, 0x331c0, 2387 0x331c8, 0x331d0, 2388 0x331d8, 0x331e0, 2389 0x331ec, 0x33290, 2390 0x33298, 0x332c4, 2391 0x332e4, 0x33390, 2392 0x33398, 0x333c4, 2393 0x333e4, 0x3342c, 2394 0x33434, 0x33450, 2395 0x33458, 0x33458, 2396 0x33460, 0x3348c, 2397 0x3349c, 0x334ac, 2398 0x334c0, 0x334c0, 2399 0x334c8, 0x334d0, 2400 0x334d8, 0x334e0, 2401 0x334ec, 0x3352c, 2402 0x33534, 0x33550, 2403 0x33558, 0x33558, 2404 0x33560, 0x3358c, 2405 0x3359c, 0x335ac, 2406 0x335c0, 0x335c0, 2407 0x335c8, 0x335d0, 2408 0x335d8, 0x335e0, 2409 0x335ec, 0x33690, 2410 0x33698, 0x336c4, 2411 0x336e4, 0x33790, 2412 0x33798, 0x337c4, 2413 0x337e4, 0x337fc, 2414 0x33814, 0x33814, 2415 0x33854, 0x33868, 2416 0x33880, 0x3388c, 2417 0x338c0, 0x338d0, 2418 0x338e8, 0x338ec, 2419 0x33900, 0x3392c, 2420 0x33934, 0x33950, 2421 0x33958, 0x33958, 2422 0x33960, 0x3398c, 2423 0x3399c, 0x339ac, 2424 0x339c0, 0x339c0, 2425 0x339c8, 0x339d0, 2426 0x339d8, 0x339e0, 2427 0x339ec, 0x33a90, 2428 0x33a98, 0x33ac4, 2429 0x33ae4, 0x33b10, 2430 0x33b24, 0x33b28, 2431 0x33b38, 0x33b50, 2432 0x33bf0, 0x33c10, 2433 0x33c24, 0x33c28, 2434 0x33c38, 0x33c50, 2435 0x33cf0, 0x33cfc, 2436 0x34000, 0x34030, 2437 0x34100, 0x34168, 2438 0x34190, 0x341a0, 2439 0x341a8, 0x341b8, 2440 0x341c4, 0x341c8, 2441 0x341d0, 0x341d0, 2442 0x34200, 0x34320, 2443 0x34400, 0x344b4, 2444 0x344c0, 0x3452c, 2445 0x34540, 0x3461c, 2446 0x34800, 0x348a0, 2447 0x348c0, 0x34908, 2448 0x34910, 0x349b8, 2449 0x34a00, 0x34a04, 2450 0x34a0c, 0x34a14, 2451 0x34a1c, 0x34a2c, 2452 0x34a44, 0x34a50, 2453 0x34a74, 0x34a74, 2454 0x34a7c, 0x34afc, 2455 0x34b08, 0x34c24, 2456 0x34d00, 0x34d14, 2457 0x34d1c, 0x34d3c, 2458 0x34d44, 0x34d4c, 2459 0x34d54, 0x34d74, 2460 0x34d7c, 0x34d7c, 2461 0x34de0, 0x34de0, 2462 0x34e00, 0x34ed4, 2463 0x34f00, 0x34fa4, 2464 0x34fc0, 0x34fc4, 2465 0x35000, 0x35004, 2466 0x35080, 0x350fc, 2467 0x35208, 0x35220, 2468 0x3523c, 0x35254, 2469 0x35300, 0x35300, 2470 0x35308, 0x3531c, 2471 0x35338, 0x3533c, 2472 0x35380, 0x35380, 2473 0x35388, 0x353a8, 2474 0x353b4, 0x353b4, 2475 0x35400, 0x35420, 2476 0x35438, 0x3543c, 2477 0x35480, 0x35480, 2478 0x354a8, 0x354a8, 2479 0x354b0, 0x354b4, 2480 0x354c8, 0x354d4, 2481 0x35a40, 0x35a4c, 2482 0x35af0, 0x35b20, 2483 0x35b38, 0x35b3c, 2484 0x35b80, 0x35b80, 2485 0x35ba8, 0x35ba8, 2486 0x35bb0, 0x35bb4, 2487 0x35bc8, 0x35bd4, 2488 0x36140, 0x3618c, 2489 0x361f0, 0x361f4, 2490 0x36200, 0x36200, 2491 0x36218, 0x36218, 2492 0x36400, 0x36400, 2493 0x36408, 0x3641c, 2494 0x36618, 0x36620, 2495 0x36664, 0x36664, 2496 0x366a8, 0x366a8, 2497 0x366ec, 0x366ec, 2498 0x36a00, 0x36abc, 2499 0x36b00, 0x36b18, 2500 0x36b20, 0x36b38, 2501 0x36b40, 0x36b58, 2502 0x36b60, 0x36b78, 2503 0x36c00, 0x36c00, 2504 0x36c08, 0x36c3c, 2505 0x37000, 0x3702c, 2506 0x37034, 0x37050, 2507 0x37058, 0x37058, 2508 0x37060, 0x3708c, 2509 0x3709c, 0x370ac, 2510 0x370c0, 0x370c0, 2511 0x370c8, 0x370d0, 2512 0x370d8, 0x370e0, 2513 0x370ec, 0x3712c, 2514 0x37134, 0x37150, 2515 0x37158, 0x37158, 2516 0x37160, 0x3718c, 2517 0x3719c, 0x371ac, 2518 0x371c0, 0x371c0, 2519 0x371c8, 0x371d0, 2520 0x371d8, 0x371e0, 2521 0x371ec, 0x37290, 2522 0x37298, 0x372c4, 2523 0x372e4, 0x37390, 2524 0x37398, 0x373c4, 2525 0x373e4, 0x3742c, 2526 0x37434, 0x37450, 2527 0x37458, 0x37458, 2528 0x37460, 0x3748c, 2529 0x3749c, 0x374ac, 2530 0x374c0, 0x374c0, 2531 0x374c8, 0x374d0, 2532 0x374d8, 0x374e0, 2533 0x374ec, 0x3752c, 2534 0x37534, 0x37550, 2535 0x37558, 0x37558, 2536 0x37560, 0x3758c, 2537 0x3759c, 0x375ac, 2538 0x375c0, 0x375c0, 2539 0x375c8, 0x375d0, 2540 0x375d8, 0x375e0, 2541 0x375ec, 0x37690, 2542 0x37698, 0x376c4, 2543 0x376e4, 0x37790, 2544 0x37798, 0x377c4, 2545 0x377e4, 0x377fc, 2546 0x37814, 0x37814, 2547 0x37854, 0x37868, 2548 0x37880, 0x3788c, 2549 0x378c0, 0x378d0, 2550 0x378e8, 0x378ec, 2551 0x37900, 0x3792c, 2552 0x37934, 0x37950, 2553 0x37958, 0x37958, 2554 0x37960, 0x3798c, 2555 0x3799c, 0x379ac, 2556 0x379c0, 0x379c0, 2557 0x379c8, 0x379d0, 2558 0x379d8, 0x379e0, 2559 0x379ec, 0x37a90, 2560 0x37a98, 0x37ac4, 2561 0x37ae4, 0x37b10, 2562 0x37b24, 0x37b28, 2563 0x37b38, 0x37b50, 2564 0x37bf0, 0x37c10, 2565 0x37c24, 0x37c28, 2566 0x37c38, 0x37c50, 2567 0x37cf0, 0x37cfc, 2568 0x40040, 0x40040, 2569 0x40080, 0x40084, 2570 0x40100, 0x40100, 2571 0x40140, 0x401bc, 2572 0x40200, 0x40214, 2573 0x40228, 0x40228, 2574 0x40240, 0x40258, 2575 0x40280, 0x40280, 2576 0x40304, 0x40304, 2577 0x40330, 0x4033c, 2578 0x41304, 0x413c8, 2579 0x413d0, 0x413dc, 2580 0x413f0, 0x413f0, 2581 0x41400, 0x4140c, 2582 0x41414, 0x4141c, 2583 0x41480, 0x414d0, 2584 0x44000, 0x4407c, 2585 0x440c0, 0x441ac, 2586 0x441b4, 0x4427c, 2587 0x442c0, 0x443ac, 2588 0x443b4, 0x4447c, 2589 0x444c0, 0x445ac, 2590 0x445b4, 0x4467c, 2591 0x446c0, 0x447ac, 2592 0x447b4, 0x4487c, 2593 0x448c0, 0x449ac, 2594 0x449b4, 0x44a7c, 2595 0x44ac0, 0x44bac, 2596 0x44bb4, 0x44c7c, 2597 0x44cc0, 0x44dac, 2598 0x44db4, 0x44e7c, 2599 0x44ec0, 0x44fac, 2600 0x44fb4, 0x4507c, 2601 0x450c0, 0x451ac, 2602 0x451b4, 0x451fc, 2603 0x45800, 0x45804, 2604 0x45810, 0x45830, 2605 0x45840, 0x45860, 2606 0x45868, 0x45868, 2607 0x45880, 0x45884, 2608 0x458a0, 0x458b0, 2609 0x45a00, 0x45a04, 2610 0x45a10, 0x45a30, 2611 0x45a40, 0x45a60, 2612 0x45a68, 0x45a68, 2613 0x45a80, 0x45a84, 2614 0x45aa0, 0x45ab0, 2615 0x460c0, 0x460e4, 2616 0x47000, 0x4703c, 2617 0x47044, 0x4708c, 2618 0x47200, 0x47250, 2619 0x47400, 0x47408, 2620 0x47414, 0x47420, 2621 0x47600, 0x47618, 2622 0x47800, 0x47814, 2623 0x47820, 0x4782c, 2624 0x50000, 0x50084, 2625 0x50090, 0x500cc, 2626 0x50300, 0x50384, 2627 0x50400, 0x50400, 2628 0x50800, 0x50884, 2629 0x50890, 0x508cc, 2630 0x50b00, 0x50b84, 2631 0x50c00, 0x50c00, 2632 0x51000, 0x51020, 2633 0x51028, 0x510b0, 2634 0x51300, 0x51324, 2635 }; 2636 2637 static const unsigned int t6vf_reg_ranges[] = { 2638 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS), 2639 VF_MPS_REG(A_MPS_VF_CTL), 2640 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H), 2641 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION), 2642 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL), 2643 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS), 2644 FW_T6VF_MBDATA_BASE_ADDR, 2645 FW_T6VF_MBDATA_BASE_ADDR + 2646 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4), 2647 }; 2648 2649 u32 *buf_end = (u32 *)(buf + buf_size); 2650 const unsigned int *reg_ranges; 2651 int reg_ranges_size, range; 2652 unsigned int chip_version = chip_id(adap); 2653 2654 /* 2655 * Select the right set of register ranges to dump depending on the 2656 * adapter chip type. 2657 */ 2658 switch (chip_version) { 2659 case CHELSIO_T4: 2660 if (adap->flags & IS_VF) { 2661 reg_ranges = t4vf_reg_ranges; 2662 reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges); 2663 } else { 2664 reg_ranges = t4_reg_ranges; 2665 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 2666 } 2667 break; 2668 2669 case CHELSIO_T5: 2670 if (adap->flags & IS_VF) { 2671 reg_ranges = t5vf_reg_ranges; 2672 reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges); 2673 } else { 2674 reg_ranges = t5_reg_ranges; 2675 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 2676 } 2677 break; 2678 2679 case CHELSIO_T6: 2680 if (adap->flags & IS_VF) { 2681 reg_ranges = t6vf_reg_ranges; 2682 reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges); 2683 } else { 2684 reg_ranges = t6_reg_ranges; 2685 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); 2686 } 2687 break; 2688 2689 default: 2690 CH_ERR(adap, 2691 "Unsupported chip version %d\n", chip_version); 2692 return; 2693 } 2694 2695 /* 2696 * Clear the register buffer and insert the appropriate register 2697 * values selected by the above register ranges. 2698 */ 2699 memset(buf, 0, buf_size); 2700 for (range = 0; range < reg_ranges_size; range += 2) { 2701 unsigned int reg = reg_ranges[range]; 2702 unsigned int last_reg = reg_ranges[range + 1]; 2703 u32 *bufp = (u32 *)(buf + reg); 2704 2705 /* 2706 * Iterate across the register range filling in the register 2707 * buffer but don't write past the end of the register buffer. 2708 */ 2709 while (reg <= last_reg && bufp < buf_end) { 2710 *bufp++ = t4_read_reg(adap, reg); 2711 reg += sizeof(u32); 2712 } 2713 } 2714 } 2715 2716 /* 2717 * Partial EEPROM Vital Product Data structure. The VPD starts with one ID 2718 * header followed by one or more VPD-R sections, each with its own header. 2719 */ 2720 struct t4_vpd_hdr { 2721 u8 id_tag; 2722 u8 id_len[2]; 2723 u8 id_data[ID_LEN]; 2724 }; 2725 2726 struct t4_vpdr_hdr { 2727 u8 vpdr_tag; 2728 u8 vpdr_len[2]; 2729 }; 2730 2731 /* 2732 * EEPROM reads take a few tens of us while writes can take a bit over 5 ms. 2733 */ 2734 #define EEPROM_DELAY 10 /* 10us per poll spin */ 2735 #define EEPROM_MAX_POLL 5000 /* x 5000 == 50ms */ 2736 2737 #define EEPROM_STAT_ADDR 0x7bfc 2738 #define VPD_SIZE 0x800 2739 #define VPD_BASE 0x400 2740 #define VPD_BASE_OLD 0 2741 #define VPD_LEN 1024 2742 #define VPD_INFO_FLD_HDR_SIZE 3 2743 #define CHELSIO_VPD_UNIQUE_ID 0x82 2744 2745 /* 2746 * Small utility function to wait till any outstanding VPD Access is complete. 2747 * We have a per-adapter state variable "VPD Busy" to indicate when we have a 2748 * VPD Access in flight. This allows us to handle the problem of having a 2749 * previous VPD Access time out and prevent an attempt to inject a new VPD 2750 * Request before any in-flight VPD reguest has completed. 2751 */ 2752 static int t4_seeprom_wait(struct adapter *adapter) 2753 { 2754 unsigned int base = adapter->params.pci.vpd_cap_addr; 2755 int max_poll; 2756 2757 /* 2758 * If no VPD Access is in flight, we can just return success right 2759 * away. 2760 */ 2761 if (!adapter->vpd_busy) 2762 return 0; 2763 2764 /* 2765 * Poll the VPD Capability Address/Flag register waiting for it 2766 * to indicate that the operation is complete. 2767 */ 2768 max_poll = EEPROM_MAX_POLL; 2769 do { 2770 u16 val; 2771 2772 udelay(EEPROM_DELAY); 2773 t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val); 2774 2775 /* 2776 * If the operation is complete, mark the VPD as no longer 2777 * busy and return success. 2778 */ 2779 if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) { 2780 adapter->vpd_busy = 0; 2781 return 0; 2782 } 2783 } while (--max_poll); 2784 2785 /* 2786 * Failure! Note that we leave the VPD Busy status set in order to 2787 * avoid pushing a new VPD Access request into the VPD Capability till 2788 * the current operation eventually succeeds. It's a bug to issue a 2789 * new request when an existing request is in flight and will result 2790 * in corrupt hardware state. 2791 */ 2792 return -ETIMEDOUT; 2793 } 2794 2795 /** 2796 * t4_seeprom_read - read a serial EEPROM location 2797 * @adapter: adapter to read 2798 * @addr: EEPROM virtual address 2799 * @data: where to store the read data 2800 * 2801 * Read a 32-bit word from a location in serial EEPROM using the card's PCI 2802 * VPD capability. Note that this function must be called with a virtual 2803 * address. 2804 */ 2805 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data) 2806 { 2807 unsigned int base = adapter->params.pci.vpd_cap_addr; 2808 int ret; 2809 2810 /* 2811 * VPD Accesses must alway be 4-byte aligned! 2812 */ 2813 if (addr >= EEPROMVSIZE || (addr & 3)) 2814 return -EINVAL; 2815 2816 /* 2817 * Wait for any previous operation which may still be in flight to 2818 * complete. 2819 */ 2820 ret = t4_seeprom_wait(adapter); 2821 if (ret) { 2822 CH_ERR(adapter, "VPD still busy from previous operation\n"); 2823 return ret; 2824 } 2825 2826 /* 2827 * Issue our new VPD Read request, mark the VPD as being busy and wait 2828 * for our request to complete. If it doesn't complete, note the 2829 * error and return it to our caller. Note that we do not reset the 2830 * VPD Busy status! 2831 */ 2832 t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr); 2833 adapter->vpd_busy = 1; 2834 adapter->vpd_flag = PCI_VPD_ADDR_F; 2835 ret = t4_seeprom_wait(adapter); 2836 if (ret) { 2837 CH_ERR(adapter, "VPD read of address %#x failed\n", addr); 2838 return ret; 2839 } 2840 2841 /* 2842 * Grab the returned data, swizzle it into our endianness and 2843 * return success. 2844 */ 2845 t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data); 2846 *data = le32_to_cpu(*data); 2847 return 0; 2848 } 2849 2850 /** 2851 * t4_seeprom_write - write a serial EEPROM location 2852 * @adapter: adapter to write 2853 * @addr: virtual EEPROM address 2854 * @data: value to write 2855 * 2856 * Write a 32-bit word to a location in serial EEPROM using the card's PCI 2857 * VPD capability. Note that this function must be called with a virtual 2858 * address. 2859 */ 2860 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data) 2861 { 2862 unsigned int base = adapter->params.pci.vpd_cap_addr; 2863 int ret; 2864 u32 stats_reg; 2865 int max_poll; 2866 2867 /* 2868 * VPD Accesses must alway be 4-byte aligned! 2869 */ 2870 if (addr >= EEPROMVSIZE || (addr & 3)) 2871 return -EINVAL; 2872 2873 /* 2874 * Wait for any previous operation which may still be in flight to 2875 * complete. 2876 */ 2877 ret = t4_seeprom_wait(adapter); 2878 if (ret) { 2879 CH_ERR(adapter, "VPD still busy from previous operation\n"); 2880 return ret; 2881 } 2882 2883 /* 2884 * Issue our new VPD Read request, mark the VPD as being busy and wait 2885 * for our request to complete. If it doesn't complete, note the 2886 * error and return it to our caller. Note that we do not reset the 2887 * VPD Busy status! 2888 */ 2889 t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 2890 cpu_to_le32(data)); 2891 t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, 2892 (u16)addr | PCI_VPD_ADDR_F); 2893 adapter->vpd_busy = 1; 2894 adapter->vpd_flag = 0; 2895 ret = t4_seeprom_wait(adapter); 2896 if (ret) { 2897 CH_ERR(adapter, "VPD write of address %#x failed\n", addr); 2898 return ret; 2899 } 2900 2901 /* 2902 * Reset PCI_VPD_DATA register after a transaction and wait for our 2903 * request to complete. If it doesn't complete, return error. 2904 */ 2905 t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0); 2906 max_poll = EEPROM_MAX_POLL; 2907 do { 2908 udelay(EEPROM_DELAY); 2909 t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg); 2910 } while ((stats_reg & 0x1) && --max_poll); 2911 if (!max_poll) 2912 return -ETIMEDOUT; 2913 2914 /* Return success! */ 2915 return 0; 2916 } 2917 2918 /** 2919 * t4_eeprom_ptov - translate a physical EEPROM address to virtual 2920 * @phys_addr: the physical EEPROM address 2921 * @fn: the PCI function number 2922 * @sz: size of function-specific area 2923 * 2924 * Translate a physical EEPROM address to virtual. The first 1K is 2925 * accessed through virtual addresses starting at 31K, the rest is 2926 * accessed through virtual addresses starting at 0. 2927 * 2928 * The mapping is as follows: 2929 * [0..1K) -> [31K..32K) 2930 * [1K..1K+A) -> [ES-A..ES) 2931 * [1K+A..ES) -> [0..ES-A-1K) 2932 * 2933 * where A = @fn * @sz, and ES = EEPROM size. 2934 */ 2935 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) 2936 { 2937 fn *= sz; 2938 if (phys_addr < 1024) 2939 return phys_addr + (31 << 10); 2940 if (phys_addr < 1024 + fn) 2941 return EEPROMSIZE - fn + phys_addr - 1024; 2942 if (phys_addr < EEPROMSIZE) 2943 return phys_addr - 1024 - fn; 2944 return -EINVAL; 2945 } 2946 2947 /** 2948 * t4_seeprom_wp - enable/disable EEPROM write protection 2949 * @adapter: the adapter 2950 * @enable: whether to enable or disable write protection 2951 * 2952 * Enables or disables write protection on the serial EEPROM. 2953 */ 2954 int t4_seeprom_wp(struct adapter *adapter, int enable) 2955 { 2956 return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0); 2957 } 2958 2959 /** 2960 * get_vpd_keyword_val - Locates an information field keyword in the VPD 2961 * @vpd: Pointer to buffered vpd data structure 2962 * @kw: The keyword to search for 2963 * @region: VPD region to search (starting from 0) 2964 * 2965 * Returns the value of the information field keyword or 2966 * -ENOENT otherwise. 2967 */ 2968 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region) 2969 { 2970 int i, tag; 2971 unsigned int offset, len; 2972 const struct t4_vpdr_hdr *vpdr; 2973 2974 offset = sizeof(struct t4_vpd_hdr); 2975 vpdr = (const void *)(vpd + offset); 2976 tag = vpdr->vpdr_tag; 2977 len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8); 2978 while (region--) { 2979 offset += sizeof(struct t4_vpdr_hdr) + len; 2980 vpdr = (const void *)(vpd + offset); 2981 if (++tag != vpdr->vpdr_tag) 2982 return -ENOENT; 2983 len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8); 2984 } 2985 offset += sizeof(struct t4_vpdr_hdr); 2986 2987 if (offset + len > VPD_LEN) { 2988 return -ENOENT; 2989 } 2990 2991 for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) { 2992 if (memcmp(vpd + i , kw , 2) == 0){ 2993 i += VPD_INFO_FLD_HDR_SIZE; 2994 return i; 2995 } 2996 2997 i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2]; 2998 } 2999 3000 return -ENOENT; 3001 } 3002 3003 3004 /** 3005 * get_vpd_params - read VPD parameters from VPD EEPROM 3006 * @adapter: adapter to read 3007 * @p: where to store the parameters 3008 * @vpd: caller provided temporary space to read the VPD into 3009 * 3010 * Reads card parameters stored in VPD EEPROM. 3011 */ 3012 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p, 3013 uint16_t device_id, u32 *buf) 3014 { 3015 int i, ret, addr; 3016 int ec, sn, pn, na, md; 3017 u8 csum; 3018 const u8 *vpd = (const u8 *)buf; 3019 3020 /* 3021 * Card information normally starts at VPD_BASE but early cards had 3022 * it at 0. 3023 */ 3024 ret = t4_seeprom_read(adapter, VPD_BASE, buf); 3025 if (ret) 3026 return (ret); 3027 3028 /* 3029 * The VPD shall have a unique identifier specified by the PCI SIG. 3030 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD 3031 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software 3032 * is expected to automatically put this entry at the 3033 * beginning of the VPD. 3034 */ 3035 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD; 3036 3037 for (i = 0; i < VPD_LEN; i += 4) { 3038 ret = t4_seeprom_read(adapter, addr + i, buf++); 3039 if (ret) 3040 return ret; 3041 } 3042 3043 #define FIND_VPD_KW(var,name) do { \ 3044 var = get_vpd_keyword_val(vpd, name, 0); \ 3045 if (var < 0) { \ 3046 CH_ERR(adapter, "missing VPD keyword " name "\n"); \ 3047 return -EINVAL; \ 3048 } \ 3049 } while (0) 3050 3051 FIND_VPD_KW(i, "RV"); 3052 for (csum = 0; i >= 0; i--) 3053 csum += vpd[i]; 3054 3055 if (csum) { 3056 CH_ERR(adapter, 3057 "corrupted VPD EEPROM, actual csum %u\n", csum); 3058 return -EINVAL; 3059 } 3060 3061 FIND_VPD_KW(ec, "EC"); 3062 FIND_VPD_KW(sn, "SN"); 3063 FIND_VPD_KW(pn, "PN"); 3064 FIND_VPD_KW(na, "NA"); 3065 #undef FIND_VPD_KW 3066 3067 memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN); 3068 strstrip(p->id); 3069 memcpy(p->ec, vpd + ec, EC_LEN); 3070 strstrip(p->ec); 3071 i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2]; 3072 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 3073 strstrip(p->sn); 3074 i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2]; 3075 memcpy(p->pn, vpd + pn, min(i, PN_LEN)); 3076 strstrip((char *)p->pn); 3077 i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2]; 3078 memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); 3079 strstrip((char *)p->na); 3080 3081 if (device_id & 0x80) 3082 return 0; /* Custom card */ 3083 3084 md = get_vpd_keyword_val(vpd, "VF", 1); 3085 if (md < 0) { 3086 snprintf(p->md, sizeof(p->md), "unknown"); 3087 } else { 3088 i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2]; 3089 memcpy(p->md, vpd + md, min(i, MD_LEN)); 3090 strstrip((char *)p->md); 3091 } 3092 3093 return 0; 3094 } 3095 3096 /* serial flash and firmware constants and flash config file constants */ 3097 enum { 3098 SF_ATTEMPTS = 10, /* max retries for SF operations */ 3099 3100 /* flash command opcodes */ 3101 SF_PROG_PAGE = 2, /* program 256B page */ 3102 SF_WR_DISABLE = 4, /* disable writes */ 3103 SF_RD_STATUS = 5, /* read status register */ 3104 SF_WR_ENABLE = 6, /* enable writes */ 3105 SF_RD_DATA_FAST = 0xb, /* read flash */ 3106 SF_RD_ID = 0x9f, /* read ID */ 3107 SF_ERASE_SECTOR = 0xd8, /* erase 64KB sector */ 3108 }; 3109 3110 /** 3111 * sf1_read - read data from the serial flash 3112 * @adapter: the adapter 3113 * @byte_cnt: number of bytes to read 3114 * @cont: whether another operation will be chained 3115 * @lock: whether to lock SF for PL access only 3116 * @valp: where to store the read data 3117 * 3118 * Reads up to 4 bytes of data from the serial flash. The location of 3119 * the read needs to be specified prior to calling this by issuing the 3120 * appropriate commands to the serial flash. 3121 */ 3122 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 3123 int lock, u32 *valp) 3124 { 3125 int ret; 3126 3127 if (!byte_cnt || byte_cnt > 4) 3128 return -EINVAL; 3129 if (t4_read_reg(adapter, A_SF_OP) & F_BUSY) 3130 return -EBUSY; 3131 t4_write_reg(adapter, A_SF_OP, 3132 V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1)); 3133 ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5); 3134 if (!ret) 3135 *valp = t4_read_reg(adapter, A_SF_DATA); 3136 return ret; 3137 } 3138 3139 /** 3140 * sf1_write - write data to the serial flash 3141 * @adapter: the adapter 3142 * @byte_cnt: number of bytes to write 3143 * @cont: whether another operation will be chained 3144 * @lock: whether to lock SF for PL access only 3145 * @val: value to write 3146 * 3147 * Writes up to 4 bytes of data to the serial flash. The location of 3148 * the write needs to be specified prior to calling this by issuing the 3149 * appropriate commands to the serial flash. 3150 */ 3151 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 3152 int lock, u32 val) 3153 { 3154 if (!byte_cnt || byte_cnt > 4) 3155 return -EINVAL; 3156 if (t4_read_reg(adapter, A_SF_OP) & F_BUSY) 3157 return -EBUSY; 3158 t4_write_reg(adapter, A_SF_DATA, val); 3159 t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) | 3160 V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1)); 3161 return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5); 3162 } 3163 3164 /** 3165 * flash_wait_op - wait for a flash operation to complete 3166 * @adapter: the adapter 3167 * @attempts: max number of polls of the status register 3168 * @delay: delay between polls in ms 3169 * 3170 * Wait for a flash operation to complete by polling the status register. 3171 */ 3172 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 3173 { 3174 int ret; 3175 u32 status; 3176 3177 while (1) { 3178 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 3179 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 3180 return ret; 3181 if (!(status & 1)) 3182 return 0; 3183 if (--attempts == 0) 3184 return -EAGAIN; 3185 if (delay) 3186 msleep(delay); 3187 } 3188 } 3189 3190 /** 3191 * t4_read_flash - read words from serial flash 3192 * @adapter: the adapter 3193 * @addr: the start address for the read 3194 * @nwords: how many 32-bit words to read 3195 * @data: where to store the read data 3196 * @byte_oriented: whether to store data as bytes or as words 3197 * 3198 * Read the specified number of 32-bit words from the serial flash. 3199 * If @byte_oriented is set the read data is stored as a byte array 3200 * (i.e., big-endian), otherwise as 32-bit words in the platform's 3201 * natural endianness. 3202 */ 3203 int t4_read_flash(struct adapter *adapter, unsigned int addr, 3204 unsigned int nwords, u32 *data, int byte_oriented) 3205 { 3206 int ret; 3207 3208 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 3209 return -EINVAL; 3210 3211 addr = swab32(addr) | SF_RD_DATA_FAST; 3212 3213 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 3214 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 3215 return ret; 3216 3217 for ( ; nwords; nwords--, data++) { 3218 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 3219 if (nwords == 1) 3220 t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ 3221 if (ret) 3222 return ret; 3223 if (byte_oriented) 3224 *data = (__force __u32)(cpu_to_be32(*data)); 3225 } 3226 return 0; 3227 } 3228 3229 /** 3230 * t4_write_flash - write up to a page of data to the serial flash 3231 * @adapter: the adapter 3232 * @addr: the start address to write 3233 * @n: length of data to write in bytes 3234 * @data: the data to write 3235 * @byte_oriented: whether to store data as bytes or as words 3236 * 3237 * Writes up to a page of data (256 bytes) to the serial flash starting 3238 * at the given address. All the data must be written to the same page. 3239 * If @byte_oriented is set the write data is stored as byte stream 3240 * (i.e. matches what on disk), otherwise in big-endian. 3241 */ 3242 int t4_write_flash(struct adapter *adapter, unsigned int addr, 3243 unsigned int n, const u8 *data, int byte_oriented) 3244 { 3245 int ret; 3246 u32 buf[SF_PAGE_SIZE / 4]; 3247 unsigned int i, c, left, val, offset = addr & 0xff; 3248 3249 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 3250 return -EINVAL; 3251 3252 val = swab32(addr) | SF_PROG_PAGE; 3253 3254 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3255 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 3256 goto unlock; 3257 3258 for (left = n; left; left -= c) { 3259 c = min(left, 4U); 3260 for (val = 0, i = 0; i < c; ++i) 3261 val = (val << 8) + *data++; 3262 3263 if (!byte_oriented) 3264 val = cpu_to_be32(val); 3265 3266 ret = sf1_write(adapter, c, c != left, 1, val); 3267 if (ret) 3268 goto unlock; 3269 } 3270 ret = flash_wait_op(adapter, 8, 1); 3271 if (ret) 3272 goto unlock; 3273 3274 t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ 3275 3276 /* Read the page to verify the write succeeded */ 3277 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 3278 byte_oriented); 3279 if (ret) 3280 return ret; 3281 3282 if (memcmp(data - n, (u8 *)buf + offset, n)) { 3283 CH_ERR(adapter, 3284 "failed to correctly write the flash page at %#x\n", 3285 addr); 3286 return -EIO; 3287 } 3288 return 0; 3289 3290 unlock: 3291 t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ 3292 return ret; 3293 } 3294 3295 /** 3296 * t4_get_fw_version - read the firmware version 3297 * @adapter: the adapter 3298 * @vers: where to place the version 3299 * 3300 * Reads the FW version from flash. 3301 */ 3302 int t4_get_fw_version(struct adapter *adapter, u32 *vers) 3303 { 3304 return t4_read_flash(adapter, FLASH_FW_START + 3305 offsetof(struct fw_hdr, fw_ver), 1, 3306 vers, 0); 3307 } 3308 3309 /** 3310 * t4_get_fw_hdr - read the firmware header 3311 * @adapter: the adapter 3312 * @hdr: where to place the version 3313 * 3314 * Reads the FW header from flash into caller provided buffer. 3315 */ 3316 int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr) 3317 { 3318 return t4_read_flash(adapter, FLASH_FW_START, 3319 sizeof (*hdr) / sizeof (uint32_t), (uint32_t *)hdr, 1); 3320 } 3321 3322 /** 3323 * t4_get_bs_version - read the firmware bootstrap version 3324 * @adapter: the adapter 3325 * @vers: where to place the version 3326 * 3327 * Reads the FW Bootstrap version from flash. 3328 */ 3329 int t4_get_bs_version(struct adapter *adapter, u32 *vers) 3330 { 3331 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + 3332 offsetof(struct fw_hdr, fw_ver), 1, 3333 vers, 0); 3334 } 3335 3336 /** 3337 * t4_get_tp_version - read the TP microcode version 3338 * @adapter: the adapter 3339 * @vers: where to place the version 3340 * 3341 * Reads the TP microcode version from flash. 3342 */ 3343 int t4_get_tp_version(struct adapter *adapter, u32 *vers) 3344 { 3345 return t4_read_flash(adapter, FLASH_FW_START + 3346 offsetof(struct fw_hdr, tp_microcode_ver), 3347 1, vers, 0); 3348 } 3349 3350 /** 3351 * t4_get_exprom_version - return the Expansion ROM version (if any) 3352 * @adapter: the adapter 3353 * @vers: where to place the version 3354 * 3355 * Reads the Expansion ROM header from FLASH and returns the version 3356 * number (if present) through the @vers return value pointer. We return 3357 * this in the Firmware Version Format since it's convenient. Return 3358 * 0 on success, -ENOENT if no Expansion ROM is present. 3359 */ 3360 int t4_get_exprom_version(struct adapter *adap, u32 *vers) 3361 { 3362 struct exprom_header { 3363 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 3364 unsigned char hdr_ver[4]; /* Expansion ROM version */ 3365 } *hdr; 3366 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 3367 sizeof(u32))]; 3368 int ret; 3369 3370 ret = t4_read_flash(adap, FLASH_EXP_ROM_START, 3371 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 3372 0); 3373 if (ret) 3374 return ret; 3375 3376 hdr = (struct exprom_header *)exprom_header_buf; 3377 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 3378 return -ENOENT; 3379 3380 *vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) | 3381 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) | 3382 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) | 3383 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3])); 3384 return 0; 3385 } 3386 3387 /** 3388 * t4_get_scfg_version - return the Serial Configuration version 3389 * @adapter: the adapter 3390 * @vers: where to place the version 3391 * 3392 * Reads the Serial Configuration Version via the Firmware interface 3393 * (thus this can only be called once we're ready to issue Firmware 3394 * commands). The format of the Serial Configuration version is 3395 * adapter specific. Returns 0 on success, an error on failure. 3396 * 3397 * Note that early versions of the Firmware didn't include the ability 3398 * to retrieve the Serial Configuration version, so we zero-out the 3399 * return-value parameter in that case to avoid leaving it with 3400 * garbage in it. 3401 * 3402 * Also note that the Firmware will return its cached copy of the Serial 3403 * Initialization Revision ID, not the actual Revision ID as written in 3404 * the Serial EEPROM. This is only an issue if a new VPD has been written 3405 * and the Firmware/Chip haven't yet gone through a RESET sequence. So 3406 * it's best to defer calling this routine till after a FW_RESET_CMD has 3407 * been issued if the Host Driver will be performing a full adapter 3408 * initialization. 3409 */ 3410 int t4_get_scfg_version(struct adapter *adapter, u32 *vers) 3411 { 3412 u32 scfgrev_param; 3413 int ret; 3414 3415 scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3416 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV)); 3417 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3418 1, &scfgrev_param, vers); 3419 if (ret) 3420 *vers = 0; 3421 return ret; 3422 } 3423 3424 /** 3425 * t4_get_vpd_version - return the VPD version 3426 * @adapter: the adapter 3427 * @vers: where to place the version 3428 * 3429 * Reads the VPD via the Firmware interface (thus this can only be called 3430 * once we're ready to issue Firmware commands). The format of the 3431 * VPD version is adapter specific. Returns 0 on success, an error on 3432 * failure. 3433 * 3434 * Note that early versions of the Firmware didn't include the ability 3435 * to retrieve the VPD version, so we zero-out the return-value parameter 3436 * in that case to avoid leaving it with garbage in it. 3437 * 3438 * Also note that the Firmware will return its cached copy of the VPD 3439 * Revision ID, not the actual Revision ID as written in the Serial 3440 * EEPROM. This is only an issue if a new VPD has been written and the 3441 * Firmware/Chip haven't yet gone through a RESET sequence. So it's best 3442 * to defer calling this routine till after a FW_RESET_CMD has been issued 3443 * if the Host Driver will be performing a full adapter initialization. 3444 */ 3445 int t4_get_vpd_version(struct adapter *adapter, u32 *vers) 3446 { 3447 u32 vpdrev_param; 3448 int ret; 3449 3450 vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3451 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV)); 3452 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3453 1, &vpdrev_param, vers); 3454 if (ret) 3455 *vers = 0; 3456 return ret; 3457 } 3458 3459 /** 3460 * t4_get_version_info - extract various chip/firmware version information 3461 * @adapter: the adapter 3462 * 3463 * Reads various chip/firmware version numbers and stores them into the 3464 * adapter Adapter Parameters structure. If any of the efforts fails 3465 * the first failure will be returned, but all of the version numbers 3466 * will be read. 3467 */ 3468 int t4_get_version_info(struct adapter *adapter) 3469 { 3470 int ret = 0; 3471 3472 #define FIRST_RET(__getvinfo) \ 3473 do { \ 3474 int __ret = __getvinfo; \ 3475 if (__ret && !ret) \ 3476 ret = __ret; \ 3477 } while (0) 3478 3479 FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers)); 3480 FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers)); 3481 FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers)); 3482 FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers)); 3483 FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers)); 3484 FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers)); 3485 3486 #undef FIRST_RET 3487 3488 return ret; 3489 } 3490 3491 /** 3492 * t4_flash_erase_sectors - erase a range of flash sectors 3493 * @adapter: the adapter 3494 * @start: the first sector to erase 3495 * @end: the last sector to erase 3496 * 3497 * Erases the sectors in the given inclusive range. 3498 */ 3499 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 3500 { 3501 int ret = 0; 3502 3503 if (end >= adapter->params.sf_nsec) 3504 return -EINVAL; 3505 3506 while (start <= end) { 3507 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3508 (ret = sf1_write(adapter, 4, 0, 1, 3509 SF_ERASE_SECTOR | (start << 8))) != 0 || 3510 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 3511 CH_ERR(adapter, 3512 "erase of flash sector %d failed, error %d\n", 3513 start, ret); 3514 break; 3515 } 3516 start++; 3517 } 3518 t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ 3519 return ret; 3520 } 3521 3522 /** 3523 * t4_flash_cfg_addr - return the address of the flash configuration file 3524 * @adapter: the adapter 3525 * 3526 * Return the address within the flash where the Firmware Configuration 3527 * File is stored, or an error if the device FLASH is too small to contain 3528 * a Firmware Configuration File. 3529 */ 3530 int t4_flash_cfg_addr(struct adapter *adapter) 3531 { 3532 /* 3533 * If the device FLASH isn't large enough to hold a Firmware 3534 * Configuration File, return an error. 3535 */ 3536 if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE) 3537 return -ENOSPC; 3538 3539 return FLASH_CFG_START; 3540 } 3541 3542 /* 3543 * Return TRUE if the specified firmware matches the adapter. I.e. T4 3544 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 3545 * and emit an error message for mismatched firmware to save our caller the 3546 * effort ... 3547 */ 3548 static int t4_fw_matches_chip(struct adapter *adap, 3549 const struct fw_hdr *hdr) 3550 { 3551 /* 3552 * The expression below will return FALSE for any unsupported adapter 3553 * which will keep us "honest" in the future ... 3554 */ 3555 if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) || 3556 (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) || 3557 (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6)) 3558 return 1; 3559 3560 CH_ERR(adap, 3561 "FW image (%d) is not suitable for this adapter (%d)\n", 3562 hdr->chip, chip_id(adap)); 3563 return 0; 3564 } 3565 3566 /** 3567 * t4_load_fw - download firmware 3568 * @adap: the adapter 3569 * @fw_data: the firmware image to write 3570 * @size: image size 3571 * 3572 * Write the supplied firmware image to the card's serial flash. 3573 */ 3574 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 3575 { 3576 u32 csum; 3577 int ret, addr; 3578 unsigned int i; 3579 u8 first_page[SF_PAGE_SIZE]; 3580 const u32 *p = (const u32 *)fw_data; 3581 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 3582 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 3583 unsigned int fw_start_sec; 3584 unsigned int fw_start; 3585 unsigned int fw_size; 3586 3587 if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) { 3588 fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC; 3589 fw_start = FLASH_FWBOOTSTRAP_START; 3590 fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE; 3591 } else { 3592 fw_start_sec = FLASH_FW_START_SEC; 3593 fw_start = FLASH_FW_START; 3594 fw_size = FLASH_FW_MAX_SIZE; 3595 } 3596 3597 if (!size) { 3598 CH_ERR(adap, "FW image has no data\n"); 3599 return -EINVAL; 3600 } 3601 if (size & 511) { 3602 CH_ERR(adap, 3603 "FW image size not multiple of 512 bytes\n"); 3604 return -EINVAL; 3605 } 3606 if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) { 3607 CH_ERR(adap, 3608 "FW image size differs from size in FW header\n"); 3609 return -EINVAL; 3610 } 3611 if (size > fw_size) { 3612 CH_ERR(adap, "FW image too large, max is %u bytes\n", 3613 fw_size); 3614 return -EFBIG; 3615 } 3616 if (!t4_fw_matches_chip(adap, hdr)) 3617 return -EINVAL; 3618 3619 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 3620 csum += be32_to_cpu(p[i]); 3621 3622 if (csum != 0xffffffff) { 3623 CH_ERR(adap, 3624 "corrupted firmware image, checksum %#x\n", csum); 3625 return -EINVAL; 3626 } 3627 3628 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 3629 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 3630 if (ret) 3631 goto out; 3632 3633 /* 3634 * We write the correct version at the end so the driver can see a bad 3635 * version if the FW write fails. Start by writing a copy of the 3636 * first page with a bad version. 3637 */ 3638 memcpy(first_page, fw_data, SF_PAGE_SIZE); 3639 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); 3640 ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1); 3641 if (ret) 3642 goto out; 3643 3644 addr = fw_start; 3645 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 3646 addr += SF_PAGE_SIZE; 3647 fw_data += SF_PAGE_SIZE; 3648 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1); 3649 if (ret) 3650 goto out; 3651 } 3652 3653 ret = t4_write_flash(adap, 3654 fw_start + offsetof(struct fw_hdr, fw_ver), 3655 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1); 3656 out: 3657 if (ret) 3658 CH_ERR(adap, "firmware download failed, error %d\n", 3659 ret); 3660 return ret; 3661 } 3662 3663 /** 3664 * t4_fwcache - firmware cache operation 3665 * @adap: the adapter 3666 * @op : the operation (flush or flush and invalidate) 3667 */ 3668 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 3669 { 3670 struct fw_params_cmd c; 3671 3672 memset(&c, 0, sizeof(c)); 3673 c.op_to_vfn = 3674 cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) | 3675 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 3676 V_FW_PARAMS_CMD_PFN(adap->pf) | 3677 V_FW_PARAMS_CMD_VFN(0)); 3678 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 3679 c.param[0].mnem = 3680 cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3681 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE)); 3682 c.param[0].val = (__force __be32)op; 3683 3684 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 3685 } 3686 3687 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, 3688 unsigned int *pif_req_wrptr, 3689 unsigned int *pif_rsp_wrptr) 3690 { 3691 int i, j; 3692 u32 cfg, val, req, rsp; 3693 3694 cfg = t4_read_reg(adap, A_CIM_DEBUGCFG); 3695 if (cfg & F_LADBGEN) 3696 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN); 3697 3698 val = t4_read_reg(adap, A_CIM_DEBUGSTS); 3699 req = G_POLADBGWRPTR(val); 3700 rsp = G_PILADBGWRPTR(val); 3701 if (pif_req_wrptr) 3702 *pif_req_wrptr = req; 3703 if (pif_rsp_wrptr) 3704 *pif_rsp_wrptr = rsp; 3705 3706 for (i = 0; i < CIM_PIFLA_SIZE; i++) { 3707 for (j = 0; j < 6; j++) { 3708 t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) | 3709 V_PILADBGRDPTR(rsp)); 3710 *pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA); 3711 *pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA); 3712 req++; 3713 rsp++; 3714 } 3715 req = (req + 2) & M_POLADBGRDPTR; 3716 rsp = (rsp + 2) & M_PILADBGRDPTR; 3717 } 3718 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg); 3719 } 3720 3721 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) 3722 { 3723 u32 cfg; 3724 int i, j, idx; 3725 3726 cfg = t4_read_reg(adap, A_CIM_DEBUGCFG); 3727 if (cfg & F_LADBGEN) 3728 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN); 3729 3730 for (i = 0; i < CIM_MALA_SIZE; i++) { 3731 for (j = 0; j < 5; j++) { 3732 idx = 8 * i + j; 3733 t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) | 3734 V_PILADBGRDPTR(idx)); 3735 *ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA); 3736 *ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA); 3737 } 3738 } 3739 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg); 3740 } 3741 3742 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 3743 { 3744 unsigned int i, j; 3745 3746 for (i = 0; i < 8; i++) { 3747 u32 *p = la_buf + i; 3748 3749 t4_write_reg(adap, A_ULP_RX_LA_CTL, i); 3750 j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR); 3751 t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j); 3752 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 3753 *p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA); 3754 } 3755 } 3756 3757 /** 3758 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits 3759 * @caps16: a 16-bit Port Capabilities value 3760 * 3761 * Returns the equivalent 32-bit Port Capabilities value. 3762 */ 3763 static uint32_t fwcaps16_to_caps32(uint16_t caps16) 3764 { 3765 uint32_t caps32 = 0; 3766 3767 #define CAP16_TO_CAP32(__cap) \ 3768 do { \ 3769 if (caps16 & FW_PORT_CAP_##__cap) \ 3770 caps32 |= FW_PORT_CAP32_##__cap; \ 3771 } while (0) 3772 3773 CAP16_TO_CAP32(SPEED_100M); 3774 CAP16_TO_CAP32(SPEED_1G); 3775 CAP16_TO_CAP32(SPEED_25G); 3776 CAP16_TO_CAP32(SPEED_10G); 3777 CAP16_TO_CAP32(SPEED_40G); 3778 CAP16_TO_CAP32(SPEED_100G); 3779 CAP16_TO_CAP32(FC_RX); 3780 CAP16_TO_CAP32(FC_TX); 3781 CAP16_TO_CAP32(ANEG); 3782 CAP16_TO_CAP32(FORCE_PAUSE); 3783 CAP16_TO_CAP32(MDIAUTO); 3784 CAP16_TO_CAP32(MDISTRAIGHT); 3785 CAP16_TO_CAP32(FEC_RS); 3786 CAP16_TO_CAP32(FEC_BASER_RS); 3787 CAP16_TO_CAP32(802_3_PAUSE); 3788 CAP16_TO_CAP32(802_3_ASM_DIR); 3789 3790 #undef CAP16_TO_CAP32 3791 3792 return caps32; 3793 } 3794 3795 /** 3796 * fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits 3797 * @caps32: a 32-bit Port Capabilities value 3798 * 3799 * Returns the equivalent 16-bit Port Capabilities value. Note that 3800 * not all 32-bit Port Capabilities can be represented in the 16-bit 3801 * Port Capabilities and some fields/values may not make it. 3802 */ 3803 static uint16_t fwcaps32_to_caps16(uint32_t caps32) 3804 { 3805 uint16_t caps16 = 0; 3806 3807 #define CAP32_TO_CAP16(__cap) \ 3808 do { \ 3809 if (caps32 & FW_PORT_CAP32_##__cap) \ 3810 caps16 |= FW_PORT_CAP_##__cap; \ 3811 } while (0) 3812 3813 CAP32_TO_CAP16(SPEED_100M); 3814 CAP32_TO_CAP16(SPEED_1G); 3815 CAP32_TO_CAP16(SPEED_10G); 3816 CAP32_TO_CAP16(SPEED_25G); 3817 CAP32_TO_CAP16(SPEED_40G); 3818 CAP32_TO_CAP16(SPEED_100G); 3819 CAP32_TO_CAP16(FC_RX); 3820 CAP32_TO_CAP16(FC_TX); 3821 CAP32_TO_CAP16(802_3_PAUSE); 3822 CAP32_TO_CAP16(802_3_ASM_DIR); 3823 CAP32_TO_CAP16(ANEG); 3824 CAP32_TO_CAP16(FORCE_PAUSE); 3825 CAP32_TO_CAP16(MDIAUTO); 3826 CAP32_TO_CAP16(MDISTRAIGHT); 3827 CAP32_TO_CAP16(FEC_RS); 3828 CAP32_TO_CAP16(FEC_BASER_RS); 3829 3830 #undef CAP32_TO_CAP16 3831 3832 return caps16; 3833 } 3834 3835 static bool 3836 is_bt(struct port_info *pi) 3837 { 3838 3839 return (pi->port_type == FW_PORT_TYPE_BT_SGMII || 3840 pi->port_type == FW_PORT_TYPE_BT_XFI || 3841 pi->port_type == FW_PORT_TYPE_BT_XAUI); 3842 } 3843 3844 static int8_t fwcap_to_fec(uint32_t caps, bool unset_means_none) 3845 { 3846 int8_t fec = 0; 3847 3848 if ((caps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC)) == 0) 3849 return (unset_means_none ? FEC_NONE : 0); 3850 3851 if (caps & FW_PORT_CAP32_FEC_RS) 3852 fec |= FEC_RS; 3853 if (caps & FW_PORT_CAP32_FEC_BASER_RS) 3854 fec |= FEC_BASER_RS; 3855 if (caps & FW_PORT_CAP32_FEC_NO_FEC) 3856 fec |= FEC_NONE; 3857 3858 return (fec); 3859 } 3860 3861 /* 3862 * Note that 0 is not translated to NO_FEC. 3863 */ 3864 static uint32_t fec_to_fwcap(int8_t fec) 3865 { 3866 uint32_t caps = 0; 3867 3868 /* Only real FECs allowed. */ 3869 MPASS((fec & ~M_FW_PORT_CAP32_FEC) == 0); 3870 3871 if (fec & FEC_RS) 3872 caps |= FW_PORT_CAP32_FEC_RS; 3873 if (fec & FEC_BASER_RS) 3874 caps |= FW_PORT_CAP32_FEC_BASER_RS; 3875 if (fec & FEC_NONE) 3876 caps |= FW_PORT_CAP32_FEC_NO_FEC; 3877 3878 return (caps); 3879 } 3880 3881 /** 3882 * t4_link_l1cfg - apply link configuration to MAC/PHY 3883 * @phy: the PHY to setup 3884 * @mac: the MAC to setup 3885 * @lc: the requested link configuration 3886 * 3887 * Set up a port's MAC and PHY according to a desired link configuration. 3888 * - If the PHY can auto-negotiate first decide what to advertise, then 3889 * enable/disable auto-negotiation as desired, and reset. 3890 * - If the PHY does not auto-negotiate just reset it. 3891 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 3892 * otherwise do it later based on the outcome of auto-negotiation. 3893 */ 3894 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port, 3895 struct link_config *lc) 3896 { 3897 struct fw_port_cmd c; 3898 unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO); 3899 unsigned int aneg, fc, fec, speed, rcap; 3900 3901 fc = 0; 3902 if (lc->requested_fc & PAUSE_RX) 3903 fc |= FW_PORT_CAP32_FC_RX; 3904 if (lc->requested_fc & PAUSE_TX) 3905 fc |= FW_PORT_CAP32_FC_TX; 3906 if (!(lc->requested_fc & PAUSE_AUTONEG)) 3907 fc |= FW_PORT_CAP32_FORCE_PAUSE; 3908 3909 if (lc->requested_aneg == AUTONEG_DISABLE) 3910 aneg = 0; 3911 else if (lc->requested_aneg == AUTONEG_ENABLE) 3912 aneg = FW_PORT_CAP32_ANEG; 3913 else 3914 aneg = lc->pcaps & FW_PORT_CAP32_ANEG; 3915 3916 if (aneg) { 3917 speed = lc->pcaps & 3918 V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED); 3919 } else if (lc->requested_speed != 0) 3920 speed = speed_to_fwcap(lc->requested_speed); 3921 else 3922 speed = fwcap_top_speed(lc->pcaps); 3923 3924 fec = 0; 3925 if (fec_supported(lc->pcaps)) { 3926 if (lc->requested_fec == FEC_AUTO) { 3927 if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC) { 3928 if (speed & FW_PORT_CAP32_SPEED_100G) { 3929 fec |= FW_PORT_CAP32_FEC_RS; 3930 fec |= FW_PORT_CAP32_FEC_NO_FEC; 3931 } else { 3932 fec |= FW_PORT_CAP32_FEC_RS; 3933 fec |= FW_PORT_CAP32_FEC_BASER_RS; 3934 fec |= FW_PORT_CAP32_FEC_NO_FEC; 3935 } 3936 } else { 3937 /* Set only 1b with old firmwares. */ 3938 fec |= fec_to_fwcap(lc->fec_hint); 3939 } 3940 } else { 3941 fec |= fec_to_fwcap(lc->requested_fec & 3942 M_FW_PORT_CAP32_FEC); 3943 if (lc->requested_fec & FEC_MODULE) 3944 fec |= fec_to_fwcap(lc->fec_hint); 3945 } 3946 3947 if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC) 3948 fec |= FW_PORT_CAP32_FORCE_FEC; 3949 else if (fec == FW_PORT_CAP32_FEC_NO_FEC) 3950 fec = 0; 3951 } 3952 3953 /* Force AN on for BT cards. */ 3954 if (is_bt(adap->port[adap->chan_map[port]])) 3955 aneg = lc->pcaps & FW_PORT_CAP32_ANEG; 3956 3957 rcap = aneg | speed | fc | fec; 3958 if ((rcap | lc->pcaps) != lc->pcaps) { 3959 #ifdef INVARIANTS 3960 CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x, removed 0x%x\n", rcap, 3961 lc->pcaps, rcap & (rcap ^ lc->pcaps)); 3962 #endif 3963 rcap &= lc->pcaps; 3964 } 3965 rcap |= mdi; 3966 3967 memset(&c, 0, sizeof(c)); 3968 c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) | 3969 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 3970 V_FW_PORT_CMD_PORTID(port)); 3971 if (adap->params.port_caps32) { 3972 c.action_to_len16 = 3973 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) | 3974 FW_LEN16(c)); 3975 c.u.l1cfg32.rcap32 = cpu_to_be32(rcap); 3976 } else { 3977 c.action_to_len16 = 3978 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) | 3979 FW_LEN16(c)); 3980 c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap)); 3981 } 3982 3983 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 3984 } 3985 3986 /** 3987 * t4_restart_aneg - restart autonegotiation 3988 * @adap: the adapter 3989 * @mbox: mbox to use for the FW command 3990 * @port: the port id 3991 * 3992 * Restarts autonegotiation for the selected port. 3993 */ 3994 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 3995 { 3996 struct fw_port_cmd c; 3997 3998 memset(&c, 0, sizeof(c)); 3999 c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) | 4000 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 4001 V_FW_PORT_CMD_PORTID(port)); 4002 c.action_to_len16 = 4003 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) | 4004 FW_LEN16(c)); 4005 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG); 4006 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 4007 } 4008 4009 struct intr_details { 4010 u32 mask; 4011 const char *msg; 4012 }; 4013 4014 struct intr_action { 4015 u32 mask; 4016 int arg; 4017 bool (*action)(struct adapter *, int, bool); 4018 }; 4019 4020 #define NONFATAL_IF_DISABLED 1 4021 struct intr_info { 4022 const char *name; /* name of the INT_CAUSE register */ 4023 int cause_reg; /* INT_CAUSE register */ 4024 int enable_reg; /* INT_ENABLE register */ 4025 u32 fatal; /* bits that are fatal */ 4026 int flags; /* hints */ 4027 const struct intr_details *details; 4028 const struct intr_action *actions; 4029 }; 4030 4031 static inline char 4032 intr_alert_char(u32 cause, u32 enable, u32 fatal) 4033 { 4034 4035 if (cause & fatal) 4036 return ('!'); 4037 if (cause & enable) 4038 return ('*'); 4039 return ('-'); 4040 } 4041 4042 static void 4043 t4_show_intr_info(struct adapter *adap, const struct intr_info *ii, u32 cause) 4044 { 4045 u32 enable, fatal, leftover; 4046 const struct intr_details *details; 4047 char alert; 4048 4049 enable = t4_read_reg(adap, ii->enable_reg); 4050 if (ii->flags & NONFATAL_IF_DISABLED) 4051 fatal = ii->fatal & t4_read_reg(adap, ii->enable_reg); 4052 else 4053 fatal = ii->fatal; 4054 alert = intr_alert_char(cause, enable, fatal); 4055 CH_ALERT(adap, "%c %s 0x%x = 0x%08x, E 0x%08x, F 0x%08x\n", 4056 alert, ii->name, ii->cause_reg, cause, enable, fatal); 4057 4058 leftover = cause; 4059 for (details = ii->details; details && details->mask != 0; details++) { 4060 u32 msgbits = details->mask & cause; 4061 if (msgbits == 0) 4062 continue; 4063 alert = intr_alert_char(msgbits, enable, ii->fatal); 4064 CH_ALERT(adap, " %c [0x%08x] %s\n", alert, msgbits, 4065 details->msg); 4066 leftover &= ~msgbits; 4067 } 4068 if (leftover != 0 && leftover != cause) 4069 CH_ALERT(adap, " ? [0x%08x]\n", leftover); 4070 } 4071 4072 /* 4073 * Returns true for fatal error. 4074 */ 4075 static bool 4076 t4_handle_intr(struct adapter *adap, const struct intr_info *ii, 4077 u32 additional_cause, bool verbose) 4078 { 4079 u32 cause, fatal; 4080 bool rc; 4081 const struct intr_action *action; 4082 4083 /* 4084 * Read and display cause. Note that the top level PL_INT_CAUSE is a 4085 * bit special and we need to completely ignore the bits that are not in 4086 * PL_INT_ENABLE. 4087 */ 4088 cause = t4_read_reg(adap, ii->cause_reg); 4089 if (ii->cause_reg == A_PL_INT_CAUSE) 4090 cause &= t4_read_reg(adap, ii->enable_reg); 4091 if (verbose || cause != 0) 4092 t4_show_intr_info(adap, ii, cause); 4093 fatal = cause & ii->fatal; 4094 if (fatal != 0 && ii->flags & NONFATAL_IF_DISABLED) 4095 fatal &= t4_read_reg(adap, ii->enable_reg); 4096 cause |= additional_cause; 4097 if (cause == 0) 4098 return (false); 4099 4100 rc = fatal != 0; 4101 for (action = ii->actions; action && action->mask != 0; action++) { 4102 if (!(action->mask & cause)) 4103 continue; 4104 rc |= (action->action)(adap, action->arg, verbose); 4105 } 4106 4107 /* clear */ 4108 t4_write_reg(adap, ii->cause_reg, cause); 4109 (void)t4_read_reg(adap, ii->cause_reg); 4110 4111 return (rc); 4112 } 4113 4114 /* 4115 * Interrupt handler for the PCIE module. 4116 */ 4117 static bool pcie_intr_handler(struct adapter *adap, int arg, bool verbose) 4118 { 4119 static const struct intr_details sysbus_intr_details[] = { 4120 { F_RNPP, "RXNP array parity error" }, 4121 { F_RPCP, "RXPC array parity error" }, 4122 { F_RCIP, "RXCIF array parity error" }, 4123 { F_RCCP, "Rx completions control array parity error" }, 4124 { F_RFTP, "RXFT array parity error" }, 4125 { 0 } 4126 }; 4127 static const struct intr_info sysbus_intr_info = { 4128 .name = "PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS", 4129 .cause_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS, 4130 .enable_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_INTERRUPT_ENABLE, 4131 .fatal = F_RFTP | F_RCCP | F_RCIP | F_RPCP | F_RNPP, 4132 .flags = 0, 4133 .details = sysbus_intr_details, 4134 .actions = NULL, 4135 }; 4136 static const struct intr_details pcie_port_intr_details[] = { 4137 { F_TPCP, "TXPC array parity error" }, 4138 { F_TNPP, "TXNP array parity error" }, 4139 { F_TFTP, "TXFT array parity error" }, 4140 { F_TCAP, "TXCA array parity error" }, 4141 { F_TCIP, "TXCIF array parity error" }, 4142 { F_RCAP, "RXCA array parity error" }, 4143 { F_OTDD, "outbound request TLP discarded" }, 4144 { F_RDPE, "Rx data parity error" }, 4145 { F_TDUE, "Tx uncorrectable data error" }, 4146 { 0 } 4147 }; 4148 static const struct intr_info pcie_port_intr_info = { 4149 .name = "PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS", 4150 .cause_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS, 4151 .enable_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_INTERRUPT_ENABLE, 4152 .fatal = F_TPCP | F_TNPP | F_TFTP | F_TCAP | F_TCIP | F_RCAP | 4153 F_OTDD | F_RDPE | F_TDUE, 4154 .flags = 0, 4155 .details = pcie_port_intr_details, 4156 .actions = NULL, 4157 }; 4158 static const struct intr_details pcie_intr_details[] = { 4159 { F_MSIADDRLPERR, "MSI AddrL parity error" }, 4160 { F_MSIADDRHPERR, "MSI AddrH parity error" }, 4161 { F_MSIDATAPERR, "MSI data parity error" }, 4162 { F_MSIXADDRLPERR, "MSI-X AddrL parity error" }, 4163 { F_MSIXADDRHPERR, "MSI-X AddrH parity error" }, 4164 { F_MSIXDATAPERR, "MSI-X data parity error" }, 4165 { F_MSIXDIPERR, "MSI-X DI parity error" }, 4166 { F_PIOCPLPERR, "PCIe PIO completion FIFO parity error" }, 4167 { F_PIOREQPERR, "PCIe PIO request FIFO parity error" }, 4168 { F_TARTAGPERR, "PCIe target tag FIFO parity error" }, 4169 { F_CCNTPERR, "PCIe CMD channel count parity error" }, 4170 { F_CREQPERR, "PCIe CMD channel request parity error" }, 4171 { F_CRSPPERR, "PCIe CMD channel response parity error" }, 4172 { F_DCNTPERR, "PCIe DMA channel count parity error" }, 4173 { F_DREQPERR, "PCIe DMA channel request parity error" }, 4174 { F_DRSPPERR, "PCIe DMA channel response parity error" }, 4175 { F_HCNTPERR, "PCIe HMA channel count parity error" }, 4176 { F_HREQPERR, "PCIe HMA channel request parity error" }, 4177 { F_HRSPPERR, "PCIe HMA channel response parity error" }, 4178 { F_CFGSNPPERR, "PCIe config snoop FIFO parity error" }, 4179 { F_FIDPERR, "PCIe FID parity error" }, 4180 { F_INTXCLRPERR, "PCIe INTx clear parity error" }, 4181 { F_MATAGPERR, "PCIe MA tag parity error" }, 4182 { F_PIOTAGPERR, "PCIe PIO tag parity error" }, 4183 { F_RXCPLPERR, "PCIe Rx completion parity error" }, 4184 { F_RXWRPERR, "PCIe Rx write parity error" }, 4185 { F_RPLPERR, "PCIe replay buffer parity error" }, 4186 { F_PCIESINT, "PCIe core secondary fault" }, 4187 { F_PCIEPINT, "PCIe core primary fault" }, 4188 { F_UNXSPLCPLERR, "PCIe unexpected split completion error" }, 4189 { 0 } 4190 }; 4191 static const struct intr_details t5_pcie_intr_details[] = { 4192 { F_IPGRPPERR, "Parity errors observed by IP" }, 4193 { F_NONFATALERR, "PCIe non-fatal error" }, 4194 { F_READRSPERR, "Outbound read error" }, 4195 { F_TRGT1GRPPERR, "PCIe TRGT1 group FIFOs parity error" }, 4196 { F_IPSOTPERR, "PCIe IP SOT buffer SRAM parity error" }, 4197 { F_IPRETRYPERR, "PCIe IP replay buffer parity error" }, 4198 { F_IPRXDATAGRPPERR, "PCIe IP Rx data group SRAMs parity error" }, 4199 { F_IPRXHDRGRPPERR, "PCIe IP Rx header group SRAMs parity error" }, 4200 { F_PIOTAGQPERR, "PIO tag queue FIFO parity error" }, 4201 { F_MAGRPPERR, "MA group FIFO parity error" }, 4202 { F_VFIDPERR, "VFID SRAM parity error" }, 4203 { F_FIDPERR, "FID SRAM parity error" }, 4204 { F_CFGSNPPERR, "config snoop FIFO parity error" }, 4205 { F_HRSPPERR, "HMA channel response data SRAM parity error" }, 4206 { F_HREQRDPERR, "HMA channel read request SRAM parity error" }, 4207 { F_HREQWRPERR, "HMA channel write request SRAM parity error" }, 4208 { F_DRSPPERR, "DMA channel response data SRAM parity error" }, 4209 { F_DREQRDPERR, "DMA channel write request SRAM parity error" }, 4210 { F_CRSPPERR, "CMD channel response data SRAM parity error" }, 4211 { F_CREQRDPERR, "CMD channel read request SRAM parity error" }, 4212 { F_MSTTAGQPERR, "PCIe master tag queue SRAM parity error" }, 4213 { F_TGTTAGQPERR, "PCIe target tag queue FIFO parity error" }, 4214 { F_PIOREQGRPPERR, "PIO request group FIFOs parity error" }, 4215 { F_PIOCPLGRPPERR, "PIO completion group FIFOs parity error" }, 4216 { F_MSIXDIPERR, "MSI-X DI SRAM parity error" }, 4217 { F_MSIXDATAPERR, "MSI-X data SRAM parity error" }, 4218 { F_MSIXADDRHPERR, "MSI-X AddrH SRAM parity error" }, 4219 { F_MSIXADDRLPERR, "MSI-X AddrL SRAM parity error" }, 4220 { F_MSIXSTIPERR, "MSI-X STI SRAM parity error" }, 4221 { F_MSTTIMEOUTPERR, "Master timeout FIFO parity error" }, 4222 { F_MSTGRPPERR, "Master response read queue SRAM parity error" }, 4223 { 0 } 4224 }; 4225 struct intr_info pcie_intr_info = { 4226 .name = "PCIE_INT_CAUSE", 4227 .cause_reg = A_PCIE_INT_CAUSE, 4228 .enable_reg = A_PCIE_INT_ENABLE, 4229 .fatal = 0xffffffff, 4230 .flags = NONFATAL_IF_DISABLED, 4231 .details = NULL, 4232 .actions = NULL, 4233 }; 4234 bool fatal = false; 4235 4236 if (is_t4(adap)) { 4237 fatal |= t4_handle_intr(adap, &sysbus_intr_info, 0, verbose); 4238 fatal |= t4_handle_intr(adap, &pcie_port_intr_info, 0, verbose); 4239 4240 pcie_intr_info.details = pcie_intr_details; 4241 } else { 4242 pcie_intr_info.details = t5_pcie_intr_details; 4243 } 4244 fatal |= t4_handle_intr(adap, &pcie_intr_info, 0, verbose); 4245 4246 return (fatal); 4247 } 4248 4249 /* 4250 * TP interrupt handler. 4251 */ 4252 static bool tp_intr_handler(struct adapter *adap, int arg, bool verbose) 4253 { 4254 static const struct intr_details tp_intr_details[] = { 4255 { 0x3fffffff, "TP parity error" }, 4256 { F_FLMTXFLSTEMPTY, "TP out of Tx pages" }, 4257 { 0 } 4258 }; 4259 static const struct intr_info tp_intr_info = { 4260 .name = "TP_INT_CAUSE", 4261 .cause_reg = A_TP_INT_CAUSE, 4262 .enable_reg = A_TP_INT_ENABLE, 4263 .fatal = 0x7fffffff, 4264 .flags = NONFATAL_IF_DISABLED, 4265 .details = tp_intr_details, 4266 .actions = NULL, 4267 }; 4268 4269 return (t4_handle_intr(adap, &tp_intr_info, 0, verbose)); 4270 } 4271 4272 /* 4273 * SGE interrupt handler. 4274 */ 4275 static bool sge_intr_handler(struct adapter *adap, int arg, bool verbose) 4276 { 4277 static const struct intr_info sge_int1_info = { 4278 .name = "SGE_INT_CAUSE1", 4279 .cause_reg = A_SGE_INT_CAUSE1, 4280 .enable_reg = A_SGE_INT_ENABLE1, 4281 .fatal = 0xffffffff, 4282 .flags = NONFATAL_IF_DISABLED, 4283 .details = NULL, 4284 .actions = NULL, 4285 }; 4286 static const struct intr_info sge_int2_info = { 4287 .name = "SGE_INT_CAUSE2", 4288 .cause_reg = A_SGE_INT_CAUSE2, 4289 .enable_reg = A_SGE_INT_ENABLE2, 4290 .fatal = 0xffffffff, 4291 .flags = NONFATAL_IF_DISABLED, 4292 .details = NULL, 4293 .actions = NULL, 4294 }; 4295 static const struct intr_details sge_int3_details[] = { 4296 { F_ERR_FLM_DBP, 4297 "DBP pointer delivery for invalid context or QID" }, 4298 { F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0, 4299 "Invalid QID or header request by IDMA" }, 4300 { F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" }, 4301 { F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" }, 4302 { F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" }, 4303 { F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" }, 4304 { F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" }, 4305 { F_ERR_TIMER_ABOVE_MAX_QID, 4306 "SGE GTS with timer 0-5 for IQID > 1023" }, 4307 { F_ERR_CPL_EXCEED_IQE_SIZE, 4308 "SGE received CPL exceeding IQE size" }, 4309 { F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" }, 4310 { F_ERR_ITP_TIME_PAUSED, "SGE ITP error" }, 4311 { F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" }, 4312 { F_ERR_DROPPED_DB, "SGE DB dropped" }, 4313 { F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0, 4314 "SGE IQID > 1023 received CPL for FL" }, 4315 { F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 | 4316 F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" }, 4317 { F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" }, 4318 { F_ERR_ING_CTXT_PRIO, 4319 "Ingress context manager priority user error" }, 4320 { F_ERR_EGR_CTXT_PRIO, 4321 "Egress context manager priority user error" }, 4322 { F_DBFIFO_HP_INT, "High priority DB FIFO threshold reached" }, 4323 { F_DBFIFO_LP_INT, "Low priority DB FIFO threshold reached" }, 4324 { F_REG_ADDRESS_ERR, "Undefined SGE register accessed" }, 4325 { F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" }, 4326 { F_EGRESS_SIZE_ERR, "SGE illegal egress QID" }, 4327 { 0x0000000f, "SGE context access for invalid queue" }, 4328 { 0 } 4329 }; 4330 static const struct intr_details t6_sge_int3_details[] = { 4331 { F_ERR_FLM_DBP, 4332 "DBP pointer delivery for invalid context or QID" }, 4333 { F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0, 4334 "Invalid QID or header request by IDMA" }, 4335 { F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" }, 4336 { F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" }, 4337 { F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" }, 4338 { F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" }, 4339 { F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" }, 4340 { F_ERR_TIMER_ABOVE_MAX_QID, 4341 "SGE GTS with timer 0-5 for IQID > 1023" }, 4342 { F_ERR_CPL_EXCEED_IQE_SIZE, 4343 "SGE received CPL exceeding IQE size" }, 4344 { F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" }, 4345 { F_ERR_ITP_TIME_PAUSED, "SGE ITP error" }, 4346 { F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" }, 4347 { F_ERR_DROPPED_DB, "SGE DB dropped" }, 4348 { F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0, 4349 "SGE IQID > 1023 received CPL for FL" }, 4350 { F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 | 4351 F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" }, 4352 { F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" }, 4353 { F_ERR_ING_CTXT_PRIO, 4354 "Ingress context manager priority user error" }, 4355 { F_ERR_EGR_CTXT_PRIO, 4356 "Egress context manager priority user error" }, 4357 { F_DBP_TBUF_FULL, "SGE DBP tbuf full" }, 4358 { F_FATAL_WRE_LEN, 4359 "SGE WRE packet less than advertized length" }, 4360 { F_REG_ADDRESS_ERR, "Undefined SGE register accessed" }, 4361 { F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" }, 4362 { F_EGRESS_SIZE_ERR, "SGE illegal egress QID" }, 4363 { 0x0000000f, "SGE context access for invalid queue" }, 4364 { 0 } 4365 }; 4366 struct intr_info sge_int3_info = { 4367 .name = "SGE_INT_CAUSE3", 4368 .cause_reg = A_SGE_INT_CAUSE3, 4369 .enable_reg = A_SGE_INT_ENABLE3, 4370 .fatal = F_ERR_CPL_EXCEED_IQE_SIZE, 4371 .flags = 0, 4372 .details = NULL, 4373 .actions = NULL, 4374 }; 4375 static const struct intr_info sge_int4_info = { 4376 .name = "SGE_INT_CAUSE4", 4377 .cause_reg = A_SGE_INT_CAUSE4, 4378 .enable_reg = A_SGE_INT_ENABLE4, 4379 .fatal = 0, 4380 .flags = 0, 4381 .details = NULL, 4382 .actions = NULL, 4383 }; 4384 static const struct intr_info sge_int5_info = { 4385 .name = "SGE_INT_CAUSE5", 4386 .cause_reg = A_SGE_INT_CAUSE5, 4387 .enable_reg = A_SGE_INT_ENABLE5, 4388 .fatal = 0xffffffff, 4389 .flags = NONFATAL_IF_DISABLED, 4390 .details = NULL, 4391 .actions = NULL, 4392 }; 4393 static const struct intr_info sge_int6_info = { 4394 .name = "SGE_INT_CAUSE6", 4395 .cause_reg = A_SGE_INT_CAUSE6, 4396 .enable_reg = A_SGE_INT_ENABLE6, 4397 .fatal = 0, 4398 .flags = 0, 4399 .details = NULL, 4400 .actions = NULL, 4401 }; 4402 4403 bool fatal; 4404 u32 v; 4405 4406 if (chip_id(adap) <= CHELSIO_T5) { 4407 sge_int3_info.details = sge_int3_details; 4408 } else { 4409 sge_int3_info.details = t6_sge_int3_details; 4410 } 4411 4412 fatal = false; 4413 fatal |= t4_handle_intr(adap, &sge_int1_info, 0, verbose); 4414 fatal |= t4_handle_intr(adap, &sge_int2_info, 0, verbose); 4415 fatal |= t4_handle_intr(adap, &sge_int3_info, 0, verbose); 4416 fatal |= t4_handle_intr(adap, &sge_int4_info, 0, verbose); 4417 if (chip_id(adap) >= CHELSIO_T5) 4418 fatal |= t4_handle_intr(adap, &sge_int5_info, 0, verbose); 4419 if (chip_id(adap) >= CHELSIO_T6) 4420 fatal |= t4_handle_intr(adap, &sge_int6_info, 0, verbose); 4421 4422 v = t4_read_reg(adap, A_SGE_ERROR_STATS); 4423 if (v & F_ERROR_QID_VALID) { 4424 CH_ERR(adap, "SGE error for QID %u\n", G_ERROR_QID(v)); 4425 if (v & F_UNCAPTURED_ERROR) 4426 CH_ERR(adap, "SGE UNCAPTURED_ERROR set (clearing)\n"); 4427 t4_write_reg(adap, A_SGE_ERROR_STATS, 4428 F_ERROR_QID_VALID | F_UNCAPTURED_ERROR); 4429 } 4430 4431 return (fatal); 4432 } 4433 4434 /* 4435 * CIM interrupt handler. 4436 */ 4437 static bool cim_intr_handler(struct adapter *adap, int arg, bool verbose) 4438 { 4439 static const struct intr_action cim_host_intr_actions[] = { 4440 { F_TIMER0INT, 0, t4_os_dump_cimla }, 4441 { 0 }, 4442 }; 4443 static const struct intr_details cim_host_intr_details[] = { 4444 /* T6+ */ 4445 { F_PCIE2CIMINTFPARERR, "CIM IBQ PCIe interface parity error" }, 4446 4447 /* T5+ */ 4448 { F_MA_CIM_INTFPERR, "MA2CIM interface parity error" }, 4449 { F_PLCIM_MSTRSPDATAPARERR, 4450 "PL2CIM master response data parity error" }, 4451 { F_NCSI2CIMINTFPARERR, "CIM IBQ NC-SI interface parity error" }, 4452 { F_SGE2CIMINTFPARERR, "CIM IBQ SGE interface parity error" }, 4453 { F_ULP2CIMINTFPARERR, "CIM IBQ ULP_TX interface parity error" }, 4454 { F_TP2CIMINTFPARERR, "CIM IBQ TP interface parity error" }, 4455 { F_OBQSGERX1PARERR, "CIM OBQ SGE1_RX parity error" }, 4456 { F_OBQSGERX0PARERR, "CIM OBQ SGE0_RX parity error" }, 4457 4458 /* T4+ */ 4459 { F_TIEQOUTPARERRINT, "CIM TIEQ outgoing FIFO parity error" }, 4460 { F_TIEQINPARERRINT, "CIM TIEQ incoming FIFO parity error" }, 4461 { F_MBHOSTPARERR, "CIM mailbox host read parity error" }, 4462 { F_MBUPPARERR, "CIM mailbox uP parity error" }, 4463 { F_IBQTP0PARERR, "CIM IBQ TP0 parity error" }, 4464 { F_IBQTP1PARERR, "CIM IBQ TP1 parity error" }, 4465 { F_IBQULPPARERR, "CIM IBQ ULP parity error" }, 4466 { F_IBQSGELOPARERR, "CIM IBQ SGE_LO parity error" }, 4467 { F_IBQSGEHIPARERR | F_IBQPCIEPARERR, /* same bit */ 4468 "CIM IBQ PCIe/SGE_HI parity error" }, 4469 { F_IBQNCSIPARERR, "CIM IBQ NC-SI parity error" }, 4470 { F_OBQULP0PARERR, "CIM OBQ ULP0 parity error" }, 4471 { F_OBQULP1PARERR, "CIM OBQ ULP1 parity error" }, 4472 { F_OBQULP2PARERR, "CIM OBQ ULP2 parity error" }, 4473 { F_OBQULP3PARERR, "CIM OBQ ULP3 parity error" }, 4474 { F_OBQSGEPARERR, "CIM OBQ SGE parity error" }, 4475 { F_OBQNCSIPARERR, "CIM OBQ NC-SI parity error" }, 4476 { F_TIMER1INT, "CIM TIMER0 interrupt" }, 4477 { F_TIMER0INT, "CIM TIMER0 interrupt" }, 4478 { F_PREFDROPINT, "CIM control register prefetch drop" }, 4479 { 0} 4480 }; 4481 static const struct intr_info cim_host_intr_info = { 4482 .name = "CIM_HOST_INT_CAUSE", 4483 .cause_reg = A_CIM_HOST_INT_CAUSE, 4484 .enable_reg = A_CIM_HOST_INT_ENABLE, 4485 .fatal = 0x007fffe6, 4486 .flags = NONFATAL_IF_DISABLED, 4487 .details = cim_host_intr_details, 4488 .actions = cim_host_intr_actions, 4489 }; 4490 static const struct intr_details cim_host_upacc_intr_details[] = { 4491 { F_EEPROMWRINT, "CIM EEPROM came out of busy state" }, 4492 { F_TIMEOUTMAINT, "CIM PIF MA timeout" }, 4493 { F_TIMEOUTINT, "CIM PIF timeout" }, 4494 { F_RSPOVRLOOKUPINT, "CIM response FIFO overwrite" }, 4495 { F_REQOVRLOOKUPINT, "CIM request FIFO overwrite" }, 4496 { F_BLKWRPLINT, "CIM block write to PL space" }, 4497 { F_BLKRDPLINT, "CIM block read from PL space" }, 4498 { F_SGLWRPLINT, 4499 "CIM single write to PL space with illegal BEs" }, 4500 { F_SGLRDPLINT, 4501 "CIM single read from PL space with illegal BEs" }, 4502 { F_BLKWRCTLINT, "CIM block write to CTL space" }, 4503 { F_BLKRDCTLINT, "CIM block read from CTL space" }, 4504 { F_SGLWRCTLINT, 4505 "CIM single write to CTL space with illegal BEs" }, 4506 { F_SGLRDCTLINT, 4507 "CIM single read from CTL space with illegal BEs" }, 4508 { F_BLKWREEPROMINT, "CIM block write to EEPROM space" }, 4509 { F_BLKRDEEPROMINT, "CIM block read from EEPROM space" }, 4510 { F_SGLWREEPROMINT, 4511 "CIM single write to EEPROM space with illegal BEs" }, 4512 { F_SGLRDEEPROMINT, 4513 "CIM single read from EEPROM space with illegal BEs" }, 4514 { F_BLKWRFLASHINT, "CIM block write to flash space" }, 4515 { F_BLKRDFLASHINT, "CIM block read from flash space" }, 4516 { F_SGLWRFLASHINT, "CIM single write to flash space" }, 4517 { F_SGLRDFLASHINT, 4518 "CIM single read from flash space with illegal BEs" }, 4519 { F_BLKWRBOOTINT, "CIM block write to boot space" }, 4520 { F_BLKRDBOOTINT, "CIM block read from boot space" }, 4521 { F_SGLWRBOOTINT, "CIM single write to boot space" }, 4522 { F_SGLRDBOOTINT, 4523 "CIM single read from boot space with illegal BEs" }, 4524 { F_ILLWRBEINT, "CIM illegal write BEs" }, 4525 { F_ILLRDBEINT, "CIM illegal read BEs" }, 4526 { F_ILLRDINT, "CIM illegal read" }, 4527 { F_ILLWRINT, "CIM illegal write" }, 4528 { F_ILLTRANSINT, "CIM illegal transaction" }, 4529 { F_RSVDSPACEINT, "CIM reserved space access" }, 4530 {0} 4531 }; 4532 static const struct intr_info cim_host_upacc_intr_info = { 4533 .name = "CIM_HOST_UPACC_INT_CAUSE", 4534 .cause_reg = A_CIM_HOST_UPACC_INT_CAUSE, 4535 .enable_reg = A_CIM_HOST_UPACC_INT_ENABLE, 4536 .fatal = 0x3fffeeff, 4537 .flags = NONFATAL_IF_DISABLED, 4538 .details = cim_host_upacc_intr_details, 4539 .actions = NULL, 4540 }; 4541 static const struct intr_info cim_pf_host_intr_info = { 4542 .name = "CIM_PF_HOST_INT_CAUSE", 4543 .cause_reg = MYPF_REG(A_CIM_PF_HOST_INT_CAUSE), 4544 .enable_reg = MYPF_REG(A_CIM_PF_HOST_INT_ENABLE), 4545 .fatal = 0, 4546 .flags = 0, 4547 .details = NULL, 4548 .actions = NULL, 4549 }; 4550 u32 val, fw_err; 4551 bool fatal; 4552 4553 fw_err = t4_read_reg(adap, A_PCIE_FW); 4554 if (fw_err & F_PCIE_FW_ERR) 4555 t4_report_fw_error(adap); 4556 4557 /* 4558 * When the Firmware detects an internal error which normally wouldn't 4559 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order 4560 * to make sure the Host sees the Firmware Crash. So if we have a 4561 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0 4562 * interrupt. 4563 */ 4564 val = t4_read_reg(adap, A_CIM_HOST_INT_CAUSE); 4565 if (val & F_TIMER0INT && (!(fw_err & F_PCIE_FW_ERR) || 4566 G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH)) { 4567 t4_write_reg(adap, A_CIM_HOST_INT_CAUSE, F_TIMER0INT); 4568 } 4569 4570 fatal = false; 4571 fatal |= t4_handle_intr(adap, &cim_host_intr_info, 0, verbose); 4572 fatal |= t4_handle_intr(adap, &cim_host_upacc_intr_info, 0, verbose); 4573 fatal |= t4_handle_intr(adap, &cim_pf_host_intr_info, 0, verbose); 4574 4575 return (fatal); 4576 } 4577 4578 /* 4579 * ULP RX interrupt handler. 4580 */ 4581 static bool ulprx_intr_handler(struct adapter *adap, int arg, bool verbose) 4582 { 4583 static const struct intr_details ulprx_intr_details[] = { 4584 /* T5+ */ 4585 { F_SE_CNT_MISMATCH_1, "ULPRX SE count mismatch in channel 1" }, 4586 { F_SE_CNT_MISMATCH_0, "ULPRX SE count mismatch in channel 0" }, 4587 4588 /* T4+ */ 4589 { F_CAUSE_CTX_1, "ULPRX channel 1 context error" }, 4590 { F_CAUSE_CTX_0, "ULPRX channel 0 context error" }, 4591 { 0x007fffff, "ULPRX parity error" }, 4592 { 0 } 4593 }; 4594 static const struct intr_info ulprx_intr_info = { 4595 .name = "ULP_RX_INT_CAUSE", 4596 .cause_reg = A_ULP_RX_INT_CAUSE, 4597 .enable_reg = A_ULP_RX_INT_ENABLE, 4598 .fatal = 0x07ffffff, 4599 .flags = NONFATAL_IF_DISABLED, 4600 .details = ulprx_intr_details, 4601 .actions = NULL, 4602 }; 4603 static const struct intr_info ulprx_intr2_info = { 4604 .name = "ULP_RX_INT_CAUSE_2", 4605 .cause_reg = A_ULP_RX_INT_CAUSE_2, 4606 .enable_reg = A_ULP_RX_INT_ENABLE_2, 4607 .fatal = 0, 4608 .flags = 0, 4609 .details = NULL, 4610 .actions = NULL, 4611 }; 4612 bool fatal = false; 4613 4614 fatal |= t4_handle_intr(adap, &ulprx_intr_info, 0, verbose); 4615 fatal |= t4_handle_intr(adap, &ulprx_intr2_info, 0, verbose); 4616 4617 return (fatal); 4618 } 4619 4620 /* 4621 * ULP TX interrupt handler. 4622 */ 4623 static bool ulptx_intr_handler(struct adapter *adap, int arg, bool verbose) 4624 { 4625 static const struct intr_details ulptx_intr_details[] = { 4626 { F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds" }, 4627 { F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds" }, 4628 { F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds" }, 4629 { F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds" }, 4630 { 0x0fffffff, "ULPTX parity error" }, 4631 { 0 } 4632 }; 4633 static const struct intr_info ulptx_intr_info = { 4634 .name = "ULP_TX_INT_CAUSE", 4635 .cause_reg = A_ULP_TX_INT_CAUSE, 4636 .enable_reg = A_ULP_TX_INT_ENABLE, 4637 .fatal = 0x0fffffff, 4638 .flags = NONFATAL_IF_DISABLED, 4639 .details = ulptx_intr_details, 4640 .actions = NULL, 4641 }; 4642 static const struct intr_info ulptx_intr2_info = { 4643 .name = "ULP_TX_INT_CAUSE_2", 4644 .cause_reg = A_ULP_TX_INT_CAUSE_2, 4645 .enable_reg = A_ULP_TX_INT_ENABLE_2, 4646 .fatal = 0xf0, 4647 .flags = NONFATAL_IF_DISABLED, 4648 .details = NULL, 4649 .actions = NULL, 4650 }; 4651 bool fatal = false; 4652 4653 fatal |= t4_handle_intr(adap, &ulptx_intr_info, 0, verbose); 4654 fatal |= t4_handle_intr(adap, &ulptx_intr2_info, 0, verbose); 4655 4656 return (fatal); 4657 } 4658 4659 static bool pmtx_dump_dbg_stats(struct adapter *adap, int arg, bool verbose) 4660 { 4661 int i; 4662 u32 data[17]; 4663 4664 t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, &data[0], 4665 ARRAY_SIZE(data), A_PM_TX_DBG_STAT0); 4666 for (i = 0; i < ARRAY_SIZE(data); i++) { 4667 CH_ALERT(adap, " - PM_TX_DBG_STAT%u (0x%x) = 0x%08x\n", i, 4668 A_PM_TX_DBG_STAT0 + i, data[i]); 4669 } 4670 4671 return (false); 4672 } 4673 4674 /* 4675 * PM TX interrupt handler. 4676 */ 4677 static bool pmtx_intr_handler(struct adapter *adap, int arg, bool verbose) 4678 { 4679 static const struct intr_action pmtx_intr_actions[] = { 4680 { 0xffffffff, 0, pmtx_dump_dbg_stats }, 4681 { 0 }, 4682 }; 4683 static const struct intr_details pmtx_intr_details[] = { 4684 { F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large" }, 4685 { F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large" }, 4686 { F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large" }, 4687 { F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd" }, 4688 { 0x0f000000, "PMTX icspi FIFO2X Rx framing error" }, 4689 { 0x00f00000, "PMTX icspi FIFO Rx framing error" }, 4690 { 0x000f0000, "PMTX icspi FIFO Tx framing error" }, 4691 { 0x0000f000, "PMTX oespi FIFO Rx framing error" }, 4692 { 0x00000f00, "PMTX oespi FIFO Tx framing error" }, 4693 { 0x000000f0, "PMTX oespi FIFO2X Tx framing error" }, 4694 { F_OESPI_PAR_ERROR, "PMTX oespi parity error" }, 4695 { F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error" }, 4696 { F_ICSPI_PAR_ERROR, "PMTX icspi parity error" }, 4697 { F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error" }, 4698 { 0 } 4699 }; 4700 static const struct intr_info pmtx_intr_info = { 4701 .name = "PM_TX_INT_CAUSE", 4702 .cause_reg = A_PM_TX_INT_CAUSE, 4703 .enable_reg = A_PM_TX_INT_ENABLE, 4704 .fatal = 0xffffffff, 4705 .flags = 0, 4706 .details = pmtx_intr_details, 4707 .actions = pmtx_intr_actions, 4708 }; 4709 4710 return (t4_handle_intr(adap, &pmtx_intr_info, 0, verbose)); 4711 } 4712 4713 /* 4714 * PM RX interrupt handler. 4715 */ 4716 static bool pmrx_intr_handler(struct adapter *adap, int arg, bool verbose) 4717 { 4718 static const struct intr_details pmrx_intr_details[] = { 4719 /* T6+ */ 4720 { 0x18000000, "PMRX ospi overflow" }, 4721 { F_MA_INTF_SDC_ERR, "PMRX MA interface SDC parity error" }, 4722 { F_BUNDLE_LEN_PARERR, "PMRX bundle len FIFO parity error" }, 4723 { F_BUNDLE_LEN_OVFL, "PMRX bundle len FIFO overflow" }, 4724 { F_SDC_ERR, "PMRX SDC error" }, 4725 4726 /* T4+ */ 4727 { F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd" }, 4728 { 0x003c0000, "PMRX iespi FIFO2X Rx framing error" }, 4729 { 0x0003c000, "PMRX iespi Rx framing error" }, 4730 { 0x00003c00, "PMRX iespi Tx framing error" }, 4731 { 0x00000300, "PMRX ocspi Rx framing error" }, 4732 { 0x000000c0, "PMRX ocspi Tx framing error" }, 4733 { 0x00000030, "PMRX ocspi FIFO2X Tx framing error" }, 4734 { F_OCSPI_PAR_ERROR, "PMRX ocspi parity error" }, 4735 { F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error" }, 4736 { F_IESPI_PAR_ERROR, "PMRX iespi parity error" }, 4737 { F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error"}, 4738 { 0 } 4739 }; 4740 static const struct intr_info pmrx_intr_info = { 4741 .name = "PM_RX_INT_CAUSE", 4742 .cause_reg = A_PM_RX_INT_CAUSE, 4743 .enable_reg = A_PM_RX_INT_ENABLE, 4744 .fatal = 0x1fffffff, 4745 .flags = NONFATAL_IF_DISABLED, 4746 .details = pmrx_intr_details, 4747 .actions = NULL, 4748 }; 4749 4750 return (t4_handle_intr(adap, &pmrx_intr_info, 0, verbose)); 4751 } 4752 4753 /* 4754 * CPL switch interrupt handler. 4755 */ 4756 static bool cplsw_intr_handler(struct adapter *adap, int arg, bool verbose) 4757 { 4758 static const struct intr_details cplsw_intr_details[] = { 4759 /* T5+ */ 4760 { F_PERR_CPL_128TO128_1, "CPLSW 128TO128 FIFO1 parity error" }, 4761 { F_PERR_CPL_128TO128_0, "CPLSW 128TO128 FIFO0 parity error" }, 4762 4763 /* T4+ */ 4764 { F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error" }, 4765 { F_CIM_OVFL_ERROR, "CPLSW CIM overflow" }, 4766 { F_TP_FRAMING_ERROR, "CPLSW TP framing error" }, 4767 { F_SGE_FRAMING_ERROR, "CPLSW SGE framing error" }, 4768 { F_CIM_FRAMING_ERROR, "CPLSW CIM framing error" }, 4769 { F_ZERO_SWITCH_ERROR, "CPLSW no-switch error" }, 4770 { 0 } 4771 }; 4772 static const struct intr_info cplsw_intr_info = { 4773 .name = "CPL_INTR_CAUSE", 4774 .cause_reg = A_CPL_INTR_CAUSE, 4775 .enable_reg = A_CPL_INTR_ENABLE, 4776 .fatal = 0xff, 4777 .flags = NONFATAL_IF_DISABLED, 4778 .details = cplsw_intr_details, 4779 .actions = NULL, 4780 }; 4781 4782 return (t4_handle_intr(adap, &cplsw_intr_info, 0, verbose)); 4783 } 4784 4785 #define T4_LE_FATAL_MASK (F_PARITYERR | F_UNKNOWNCMD | F_REQQPARERR) 4786 #define T5_LE_FATAL_MASK (T4_LE_FATAL_MASK | F_VFPARERR) 4787 #define T6_LE_PERRCRC_MASK (F_PIPELINEERR | F_CLIPTCAMACCFAIL | \ 4788 F_SRVSRAMACCFAIL | F_CLCAMCRCPARERR | F_CLCAMINTPERR | F_SSRAMINTPERR | \ 4789 F_SRVSRAMPERR | F_VFSRAMPERR | F_TCAMINTPERR | F_TCAMCRCERR | \ 4790 F_HASHTBLMEMACCERR | F_MAIFWRINTPERR | F_HASHTBLMEMCRCERR) 4791 #define T6_LE_FATAL_MASK (T6_LE_PERRCRC_MASK | F_T6_UNKNOWNCMD | \ 4792 F_TCAMACCFAIL | F_HASHTBLACCFAIL | F_CMDTIDERR | F_CMDPRSRINTERR | \ 4793 F_TOTCNTERR | F_CLCAMFIFOERR | F_CLIPSUBERR) 4794 4795 /* 4796 * LE interrupt handler. 4797 */ 4798 static bool le_intr_handler(struct adapter *adap, int arg, bool verbose) 4799 { 4800 static const struct intr_details le_intr_details[] = { 4801 { F_REQQPARERR, "LE request queue parity error" }, 4802 { F_UNKNOWNCMD, "LE unknown command" }, 4803 { F_ACTRGNFULL, "LE active region full" }, 4804 { F_PARITYERR, "LE parity error" }, 4805 { F_LIPMISS, "LE LIP miss" }, 4806 { F_LIP0, "LE 0 LIP error" }, 4807 { 0 } 4808 }; 4809 static const struct intr_details t6_le_intr_details[] = { 4810 { F_CLIPSUBERR, "LE CLIP CAM reverse substitution error" }, 4811 { F_CLCAMFIFOERR, "LE CLIP CAM internal FIFO error" }, 4812 { F_CTCAMINVLDENT, "Invalid IPv6 CLIP TCAM entry" }, 4813 { F_TCAMINVLDENT, "Invalid IPv6 TCAM entry" }, 4814 { F_TOTCNTERR, "LE total active < TCAM count" }, 4815 { F_CMDPRSRINTERR, "LE internal error in parser" }, 4816 { F_CMDTIDERR, "Incorrect tid in LE command" }, 4817 { F_T6_ACTRGNFULL, "LE active region full" }, 4818 { F_T6_ACTCNTIPV6TZERO, "LE IPv6 active open TCAM counter -ve" }, 4819 { F_T6_ACTCNTIPV4TZERO, "LE IPv4 active open TCAM counter -ve" }, 4820 { F_T6_ACTCNTIPV6ZERO, "LE IPv6 active open counter -ve" }, 4821 { F_T6_ACTCNTIPV4ZERO, "LE IPv4 active open counter -ve" }, 4822 { F_HASHTBLACCFAIL, "Hash table read error (proto conflict)" }, 4823 { F_TCAMACCFAIL, "LE TCAM access failure" }, 4824 { F_T6_UNKNOWNCMD, "LE unknown command" }, 4825 { F_T6_LIP0, "LE found 0 LIP during CLIP substitution" }, 4826 { F_T6_LIPMISS, "LE CLIP lookup miss" }, 4827 { T6_LE_PERRCRC_MASK, "LE parity/CRC error" }, 4828 { 0 } 4829 }; 4830 struct intr_info le_intr_info = { 4831 .name = "LE_DB_INT_CAUSE", 4832 .cause_reg = A_LE_DB_INT_CAUSE, 4833 .enable_reg = A_LE_DB_INT_ENABLE, 4834 .fatal = 0, 4835 .flags = NONFATAL_IF_DISABLED, 4836 .details = NULL, 4837 .actions = NULL, 4838 }; 4839 4840 if (chip_id(adap) <= CHELSIO_T5) { 4841 le_intr_info.details = le_intr_details; 4842 le_intr_info.fatal = T5_LE_FATAL_MASK; 4843 } else { 4844 le_intr_info.details = t6_le_intr_details; 4845 le_intr_info.fatal = T6_LE_FATAL_MASK; 4846 } 4847 4848 return (t4_handle_intr(adap, &le_intr_info, 0, verbose)); 4849 } 4850 4851 /* 4852 * MPS interrupt handler. 4853 */ 4854 static bool mps_intr_handler(struct adapter *adap, int arg, bool verbose) 4855 { 4856 static const struct intr_details mps_rx_perr_intr_details[] = { 4857 { 0xffffffff, "MPS Rx parity error" }, 4858 { 0 } 4859 }; 4860 static const struct intr_info mps_rx_perr_intr_info = { 4861 .name = "MPS_RX_PERR_INT_CAUSE", 4862 .cause_reg = A_MPS_RX_PERR_INT_CAUSE, 4863 .enable_reg = A_MPS_RX_PERR_INT_ENABLE, 4864 .fatal = 0xffffffff, 4865 .flags = NONFATAL_IF_DISABLED, 4866 .details = mps_rx_perr_intr_details, 4867 .actions = NULL, 4868 }; 4869 static const struct intr_details mps_tx_intr_details[] = { 4870 { F_PORTERR, "MPS Tx destination port is disabled" }, 4871 { F_FRMERR, "MPS Tx framing error" }, 4872 { F_SECNTERR, "MPS Tx SOP/EOP error" }, 4873 { F_BUBBLE, "MPS Tx underflow" }, 4874 { V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error" }, 4875 { V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error" }, 4876 { F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error" }, 4877 { V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error" }, 4878 { 0 } 4879 }; 4880 static const struct intr_info mps_tx_intr_info = { 4881 .name = "MPS_TX_INT_CAUSE", 4882 .cause_reg = A_MPS_TX_INT_CAUSE, 4883 .enable_reg = A_MPS_TX_INT_ENABLE, 4884 .fatal = 0x1ffff, 4885 .flags = NONFATAL_IF_DISABLED, 4886 .details = mps_tx_intr_details, 4887 .actions = NULL, 4888 }; 4889 static const struct intr_details mps_trc_intr_details[] = { 4890 { F_MISCPERR, "MPS TRC misc parity error" }, 4891 { V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error" }, 4892 { V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error" }, 4893 { 0 } 4894 }; 4895 static const struct intr_info mps_trc_intr_info = { 4896 .name = "MPS_TRC_INT_CAUSE", 4897 .cause_reg = A_MPS_TRC_INT_CAUSE, 4898 .enable_reg = A_MPS_TRC_INT_ENABLE, 4899 .fatal = F_MISCPERR | V_PKTFIFO(M_PKTFIFO) | V_FILTMEM(M_FILTMEM), 4900 .flags = 0, 4901 .details = mps_trc_intr_details, 4902 .actions = NULL, 4903 }; 4904 static const struct intr_details mps_stat_sram_intr_details[] = { 4905 { 0xffffffff, "MPS statistics SRAM parity error" }, 4906 { 0 } 4907 }; 4908 static const struct intr_info mps_stat_sram_intr_info = { 4909 .name = "MPS_STAT_PERR_INT_CAUSE_SRAM", 4910 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM, 4911 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM, 4912 .fatal = 0x1fffffff, 4913 .flags = NONFATAL_IF_DISABLED, 4914 .details = mps_stat_sram_intr_details, 4915 .actions = NULL, 4916 }; 4917 static const struct intr_details mps_stat_tx_intr_details[] = { 4918 { 0xffffff, "MPS statistics Tx FIFO parity error" }, 4919 { 0 } 4920 }; 4921 static const struct intr_info mps_stat_tx_intr_info = { 4922 .name = "MPS_STAT_PERR_INT_CAUSE_TX_FIFO", 4923 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO, 4924 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_TX_FIFO, 4925 .fatal = 0xffffff, 4926 .flags = NONFATAL_IF_DISABLED, 4927 .details = mps_stat_tx_intr_details, 4928 .actions = NULL, 4929 }; 4930 static const struct intr_details mps_stat_rx_intr_details[] = { 4931 { 0xffffff, "MPS statistics Rx FIFO parity error" }, 4932 { 0 } 4933 }; 4934 static const struct intr_info mps_stat_rx_intr_info = { 4935 .name = "MPS_STAT_PERR_INT_CAUSE_RX_FIFO", 4936 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO, 4937 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_RX_FIFO, 4938 .fatal = 0xffffff, 4939 .flags = 0, 4940 .details = mps_stat_rx_intr_details, 4941 .actions = NULL, 4942 }; 4943 static const struct intr_details mps_cls_intr_details[] = { 4944 { F_HASHSRAM, "MPS hash SRAM parity error" }, 4945 { F_MATCHTCAM, "MPS match TCAM parity error" }, 4946 { F_MATCHSRAM, "MPS match SRAM parity error" }, 4947 { 0 } 4948 }; 4949 static const struct intr_info mps_cls_intr_info = { 4950 .name = "MPS_CLS_INT_CAUSE", 4951 .cause_reg = A_MPS_CLS_INT_CAUSE, 4952 .enable_reg = A_MPS_CLS_INT_ENABLE, 4953 .fatal = F_MATCHSRAM | F_MATCHTCAM | F_HASHSRAM, 4954 .flags = 0, 4955 .details = mps_cls_intr_details, 4956 .actions = NULL, 4957 }; 4958 static const struct intr_details mps_stat_sram1_intr_details[] = { 4959 { 0xff, "MPS statistics SRAM1 parity error" }, 4960 { 0 } 4961 }; 4962 static const struct intr_info mps_stat_sram1_intr_info = { 4963 .name = "MPS_STAT_PERR_INT_CAUSE_SRAM1", 4964 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 4965 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM1, 4966 .fatal = 0xff, 4967 .flags = 0, 4968 .details = mps_stat_sram1_intr_details, 4969 .actions = NULL, 4970 }; 4971 4972 bool fatal; 4973 4974 fatal = false; 4975 fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info, 0, verbose); 4976 fatal |= t4_handle_intr(adap, &mps_tx_intr_info, 0, verbose); 4977 fatal |= t4_handle_intr(adap, &mps_trc_intr_info, 0, verbose); 4978 fatal |= t4_handle_intr(adap, &mps_stat_sram_intr_info, 0, verbose); 4979 fatal |= t4_handle_intr(adap, &mps_stat_tx_intr_info, 0, verbose); 4980 fatal |= t4_handle_intr(adap, &mps_stat_rx_intr_info, 0, verbose); 4981 fatal |= t4_handle_intr(adap, &mps_cls_intr_info, 0, verbose); 4982 if (chip_id(adap) > CHELSIO_T4) { 4983 fatal |= t4_handle_intr(adap, &mps_stat_sram1_intr_info, 0, 4984 verbose); 4985 } 4986 4987 t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff); 4988 t4_read_reg(adap, A_MPS_INT_CAUSE); /* flush */ 4989 4990 return (fatal); 4991 4992 } 4993 4994 /* 4995 * EDC/MC interrupt handler. 4996 */ 4997 static bool mem_intr_handler(struct adapter *adap, int idx, bool verbose) 4998 { 4999 static const char name[4][5] = { "EDC0", "EDC1", "MC0", "MC1" }; 5000 unsigned int count_reg, v; 5001 static const struct intr_details mem_intr_details[] = { 5002 { F_ECC_UE_INT_CAUSE, "Uncorrectable ECC data error(s)" }, 5003 { F_ECC_CE_INT_CAUSE, "Correctable ECC data error(s)" }, 5004 { F_PERR_INT_CAUSE, "FIFO parity error" }, 5005 { 0 } 5006 }; 5007 struct intr_info ii = { 5008 .fatal = F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE, 5009 .details = mem_intr_details, 5010 .flags = 0, 5011 .actions = NULL, 5012 }; 5013 bool fatal; 5014 5015 switch (idx) { 5016 case MEM_EDC0: 5017 ii.name = "EDC0_INT_CAUSE"; 5018 ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 0); 5019 ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 0); 5020 count_reg = EDC_REG(A_EDC_ECC_STATUS, 0); 5021 break; 5022 case MEM_EDC1: 5023 ii.name = "EDC1_INT_CAUSE"; 5024 ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 1); 5025 ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 1); 5026 count_reg = EDC_REG(A_EDC_ECC_STATUS, 1); 5027 break; 5028 case MEM_MC0: 5029 ii.name = "MC0_INT_CAUSE"; 5030 if (is_t4(adap)) { 5031 ii.cause_reg = A_MC_INT_CAUSE; 5032 ii.enable_reg = A_MC_INT_ENABLE; 5033 count_reg = A_MC_ECC_STATUS; 5034 } else { 5035 ii.cause_reg = A_MC_P_INT_CAUSE; 5036 ii.enable_reg = A_MC_P_INT_ENABLE; 5037 count_reg = A_MC_P_ECC_STATUS; 5038 } 5039 break; 5040 case MEM_MC1: 5041 ii.name = "MC1_INT_CAUSE"; 5042 ii.cause_reg = MC_REG(A_MC_P_INT_CAUSE, 1); 5043 ii.enable_reg = MC_REG(A_MC_P_INT_ENABLE, 1); 5044 count_reg = MC_REG(A_MC_P_ECC_STATUS, 1); 5045 break; 5046 } 5047 5048 fatal = t4_handle_intr(adap, &ii, 0, verbose); 5049 5050 v = t4_read_reg(adap, count_reg); 5051 if (v != 0) { 5052 if (G_ECC_UECNT(v) != 0) { 5053 CH_ALERT(adap, 5054 "%s: %u uncorrectable ECC data error(s)\n", 5055 name[idx], G_ECC_UECNT(v)); 5056 } 5057 if (G_ECC_CECNT(v) != 0) { 5058 if (idx <= MEM_EDC1) 5059 t4_edc_err_read(adap, idx); 5060 CH_WARN_RATELIMIT(adap, 5061 "%s: %u correctable ECC data error(s)\n", 5062 name[idx], G_ECC_CECNT(v)); 5063 } 5064 t4_write_reg(adap, count_reg, 0xffffffff); 5065 } 5066 5067 return (fatal); 5068 } 5069 5070 static bool ma_wrap_status(struct adapter *adap, int arg, bool verbose) 5071 { 5072 u32 v; 5073 5074 v = t4_read_reg(adap, A_MA_INT_WRAP_STATUS); 5075 CH_ALERT(adap, 5076 "MA address wrap-around error by client %u to address %#x\n", 5077 G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4); 5078 t4_write_reg(adap, A_MA_INT_WRAP_STATUS, v); 5079 5080 return (false); 5081 } 5082 5083 5084 /* 5085 * MA interrupt handler. 5086 */ 5087 static bool ma_intr_handler(struct adapter *adap, int arg, bool verbose) 5088 { 5089 static const struct intr_action ma_intr_actions[] = { 5090 { F_MEM_WRAP_INT_CAUSE, 0, ma_wrap_status }, 5091 { 0 }, 5092 }; 5093 static const struct intr_info ma_intr_info = { 5094 .name = "MA_INT_CAUSE", 5095 .cause_reg = A_MA_INT_CAUSE, 5096 .enable_reg = A_MA_INT_ENABLE, 5097 .fatal = F_MEM_PERR_INT_CAUSE | F_MEM_TO_INT_CAUSE, 5098 .flags = NONFATAL_IF_DISABLED, 5099 .details = NULL, 5100 .actions = ma_intr_actions, 5101 }; 5102 static const struct intr_info ma_perr_status1 = { 5103 .name = "MA_PARITY_ERROR_STATUS1", 5104 .cause_reg = A_MA_PARITY_ERROR_STATUS1, 5105 .enable_reg = A_MA_PARITY_ERROR_ENABLE1, 5106 .fatal = 0xffffffff, 5107 .flags = 0, 5108 .details = NULL, 5109 .actions = NULL, 5110 }; 5111 static const struct intr_info ma_perr_status2 = { 5112 .name = "MA_PARITY_ERROR_STATUS2", 5113 .cause_reg = A_MA_PARITY_ERROR_STATUS2, 5114 .enable_reg = A_MA_PARITY_ERROR_ENABLE2, 5115 .fatal = 0xffffffff, 5116 .flags = 0, 5117 .details = NULL, 5118 .actions = NULL, 5119 }; 5120 bool fatal; 5121 5122 fatal = false; 5123 fatal |= t4_handle_intr(adap, &ma_intr_info, 0, verbose); 5124 fatal |= t4_handle_intr(adap, &ma_perr_status1, 0, verbose); 5125 if (chip_id(adap) > CHELSIO_T4) 5126 fatal |= t4_handle_intr(adap, &ma_perr_status2, 0, verbose); 5127 5128 return (fatal); 5129 } 5130 5131 /* 5132 * SMB interrupt handler. 5133 */ 5134 static bool smb_intr_handler(struct adapter *adap, int arg, bool verbose) 5135 { 5136 static const struct intr_details smb_intr_details[] = { 5137 { F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error" }, 5138 { F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error" }, 5139 { F_SLVFIFOPARINT, "SMB slave FIFO parity error" }, 5140 { 0 } 5141 }; 5142 static const struct intr_info smb_intr_info = { 5143 .name = "SMB_INT_CAUSE", 5144 .cause_reg = A_SMB_INT_CAUSE, 5145 .enable_reg = A_SMB_INT_ENABLE, 5146 .fatal = F_SLVFIFOPARINT | F_MSTRXFIFOPARINT | F_MSTTXFIFOPARINT, 5147 .flags = 0, 5148 .details = smb_intr_details, 5149 .actions = NULL, 5150 }; 5151 5152 return (t4_handle_intr(adap, &smb_intr_info, 0, verbose)); 5153 } 5154 5155 /* 5156 * NC-SI interrupt handler. 5157 */ 5158 static bool ncsi_intr_handler(struct adapter *adap, int arg, bool verbose) 5159 { 5160 static const struct intr_details ncsi_intr_details[] = { 5161 { F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error" }, 5162 { F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error" }, 5163 { F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error" }, 5164 { F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error" }, 5165 { 0 } 5166 }; 5167 static const struct intr_info ncsi_intr_info = { 5168 .name = "NCSI_INT_CAUSE", 5169 .cause_reg = A_NCSI_INT_CAUSE, 5170 .enable_reg = A_NCSI_INT_ENABLE, 5171 .fatal = F_RXFIFO_PRTY_ERR | F_TXFIFO_PRTY_ERR | 5172 F_MPS_DM_PRTY_ERR | F_CIM_DM_PRTY_ERR, 5173 .flags = 0, 5174 .details = ncsi_intr_details, 5175 .actions = NULL, 5176 }; 5177 5178 return (t4_handle_intr(adap, &ncsi_intr_info, 0, verbose)); 5179 } 5180 5181 /* 5182 * MAC interrupt handler. 5183 */ 5184 static bool mac_intr_handler(struct adapter *adap, int port, bool verbose) 5185 { 5186 static const struct intr_details mac_intr_details[] = { 5187 { F_TXFIFO_PRTY_ERR, "MAC Tx FIFO parity error" }, 5188 { F_RXFIFO_PRTY_ERR, "MAC Rx FIFO parity error" }, 5189 { 0 } 5190 }; 5191 char name[32]; 5192 struct intr_info ii; 5193 bool fatal = false; 5194 5195 if (is_t4(adap)) { 5196 snprintf(name, sizeof(name), "XGMAC_PORT%u_INT_CAUSE", port); 5197 ii.name = &name[0]; 5198 ii.cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE); 5199 ii.enable_reg = PORT_REG(port, A_XGMAC_PORT_INT_EN); 5200 ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR; 5201 ii.flags = 0; 5202 ii.details = mac_intr_details; 5203 ii.actions = NULL; 5204 } else { 5205 snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port); 5206 ii.name = &name[0]; 5207 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE); 5208 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_INT_EN); 5209 ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR; 5210 ii.flags = 0; 5211 ii.details = mac_intr_details; 5212 ii.actions = NULL; 5213 } 5214 fatal |= t4_handle_intr(adap, &ii, 0, verbose); 5215 5216 if (chip_id(adap) >= CHELSIO_T5) { 5217 snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE", port); 5218 ii.name = &name[0]; 5219 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE); 5220 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN); 5221 ii.fatal = 0; 5222 ii.flags = 0; 5223 ii.details = NULL; 5224 ii.actions = NULL; 5225 fatal |= t4_handle_intr(adap, &ii, 0, verbose); 5226 } 5227 5228 if (chip_id(adap) >= CHELSIO_T6) { 5229 snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE_100G", port); 5230 ii.name = &name[0]; 5231 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE_100G); 5232 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN_100G); 5233 ii.fatal = 0; 5234 ii.flags = 0; 5235 ii.details = NULL; 5236 ii.actions = NULL; 5237 fatal |= t4_handle_intr(adap, &ii, 0, verbose); 5238 } 5239 5240 return (fatal); 5241 } 5242 5243 static bool plpl_intr_handler(struct adapter *adap, int arg, bool verbose) 5244 { 5245 static const struct intr_details plpl_intr_details[] = { 5246 { F_FATALPERR, "Fatal parity error" }, 5247 { F_PERRVFID, "VFID_MAP parity error" }, 5248 { 0 } 5249 }; 5250 static const struct intr_info plpl_intr_info = { 5251 .name = "PL_PL_INT_CAUSE", 5252 .cause_reg = A_PL_PL_INT_CAUSE, 5253 .enable_reg = A_PL_PL_INT_ENABLE, 5254 .fatal = F_FATALPERR | F_PERRVFID, 5255 .flags = NONFATAL_IF_DISABLED, 5256 .details = plpl_intr_details, 5257 .actions = NULL, 5258 }; 5259 5260 return (t4_handle_intr(adap, &plpl_intr_info, 0, verbose)); 5261 } 5262 5263 /** 5264 * t4_slow_intr_handler - control path interrupt handler 5265 * @adap: the adapter 5266 * @verbose: increased verbosity, for debug 5267 * 5268 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 5269 * The designation 'slow' is because it involves register reads, while 5270 * data interrupts typically don't involve any MMIOs. 5271 */ 5272 int t4_slow_intr_handler(struct adapter *adap, bool verbose) 5273 { 5274 static const struct intr_details pl_intr_details[] = { 5275 { F_MC1, "MC1" }, 5276 { F_UART, "UART" }, 5277 { F_ULP_TX, "ULP TX" }, 5278 { F_SGE, "SGE" }, 5279 { F_HMA, "HMA" }, 5280 { F_CPL_SWITCH, "CPL Switch" }, 5281 { F_ULP_RX, "ULP RX" }, 5282 { F_PM_RX, "PM RX" }, 5283 { F_PM_TX, "PM TX" }, 5284 { F_MA, "MA" }, 5285 { F_TP, "TP" }, 5286 { F_LE, "LE" }, 5287 { F_EDC1, "EDC1" }, 5288 { F_EDC0, "EDC0" }, 5289 { F_MC, "MC0" }, 5290 { F_PCIE, "PCIE" }, 5291 { F_PMU, "PMU" }, 5292 { F_MAC3, "MAC3" }, 5293 { F_MAC2, "MAC2" }, 5294 { F_MAC1, "MAC1" }, 5295 { F_MAC0, "MAC0" }, 5296 { F_SMB, "SMB" }, 5297 { F_SF, "SF" }, 5298 { F_PL, "PL" }, 5299 { F_NCSI, "NC-SI" }, 5300 { F_MPS, "MPS" }, 5301 { F_MI, "MI" }, 5302 { F_DBG, "DBG" }, 5303 { F_I2CM, "I2CM" }, 5304 { F_CIM, "CIM" }, 5305 { 0 } 5306 }; 5307 static const struct intr_info pl_perr_cause = { 5308 .name = "PL_PERR_CAUSE", 5309 .cause_reg = A_PL_PERR_CAUSE, 5310 .enable_reg = A_PL_PERR_ENABLE, 5311 .fatal = 0xffffffff, 5312 .flags = 0, 5313 .details = pl_intr_details, 5314 .actions = NULL, 5315 }; 5316 static const struct intr_action pl_intr_action[] = { 5317 { F_MC1, MEM_MC1, mem_intr_handler }, 5318 { F_ULP_TX, -1, ulptx_intr_handler }, 5319 { F_SGE, -1, sge_intr_handler }, 5320 { F_CPL_SWITCH, -1, cplsw_intr_handler }, 5321 { F_ULP_RX, -1, ulprx_intr_handler }, 5322 { F_PM_RX, -1, pmrx_intr_handler}, 5323 { F_PM_TX, -1, pmtx_intr_handler}, 5324 { F_MA, -1, ma_intr_handler }, 5325 { F_TP, -1, tp_intr_handler }, 5326 { F_LE, -1, le_intr_handler }, 5327 { F_EDC1, MEM_EDC1, mem_intr_handler }, 5328 { F_EDC0, MEM_EDC0, mem_intr_handler }, 5329 { F_MC0, MEM_MC0, mem_intr_handler }, 5330 { F_PCIE, -1, pcie_intr_handler }, 5331 { F_MAC3, 3, mac_intr_handler}, 5332 { F_MAC2, 2, mac_intr_handler}, 5333 { F_MAC1, 1, mac_intr_handler}, 5334 { F_MAC0, 0, mac_intr_handler}, 5335 { F_SMB, -1, smb_intr_handler}, 5336 { F_PL, -1, plpl_intr_handler }, 5337 { F_NCSI, -1, ncsi_intr_handler}, 5338 { F_MPS, -1, mps_intr_handler }, 5339 { F_CIM, -1, cim_intr_handler }, 5340 { 0 } 5341 }; 5342 static const struct intr_info pl_intr_info = { 5343 .name = "PL_INT_CAUSE", 5344 .cause_reg = A_PL_INT_CAUSE, 5345 .enable_reg = A_PL_INT_ENABLE, 5346 .fatal = 0, 5347 .flags = 0, 5348 .details = pl_intr_details, 5349 .actions = pl_intr_action, 5350 }; 5351 bool fatal; 5352 u32 perr; 5353 5354 perr = t4_read_reg(adap, pl_perr_cause.cause_reg); 5355 if (verbose || perr != 0) { 5356 t4_show_intr_info(adap, &pl_perr_cause, perr); 5357 if (perr != 0) 5358 t4_write_reg(adap, pl_perr_cause.cause_reg, perr); 5359 if (verbose) 5360 perr |= t4_read_reg(adap, pl_intr_info.enable_reg); 5361 } 5362 fatal = t4_handle_intr(adap, &pl_intr_info, perr, verbose); 5363 if (fatal) 5364 t4_fatal_err(adap, false); 5365 5366 return (0); 5367 } 5368 5369 #define PF_INTR_MASK (F_PFSW | F_PFCIM) 5370 5371 /** 5372 * t4_intr_enable - enable interrupts 5373 * @adapter: the adapter whose interrupts should be enabled 5374 * 5375 * Enable PF-specific interrupts for the calling function and the top-level 5376 * interrupt concentrator for global interrupts. Interrupts are already 5377 * enabled at each module, here we just enable the roots of the interrupt 5378 * hierarchies. 5379 * 5380 * Note: this function should be called only when the driver manages 5381 * non PF-specific interrupts from the various HW modules. Only one PCI 5382 * function at a time should be doing this. 5383 */ 5384 void t4_intr_enable(struct adapter *adap) 5385 { 5386 u32 val = 0; 5387 5388 if (chip_id(adap) <= CHELSIO_T5) 5389 val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT; 5390 else 5391 val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN; 5392 val |= F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC | 5393 F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 | 5394 F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 | 5395 F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 | 5396 F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_DBFIFO_LP_INT | 5397 F_EGRESS_SIZE_ERR; 5398 t4_set_reg_field(adap, A_SGE_INT_ENABLE3, val, val); 5399 t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK); 5400 t4_set_reg_field(adap, A_PL_INT_ENABLE, F_SF | F_I2CM, 0); 5401 t4_set_reg_field(adap, A_PL_INT_MAP0, 0, 1 << adap->pf); 5402 } 5403 5404 /** 5405 * t4_intr_disable - disable interrupts 5406 * @adap: the adapter whose interrupts should be disabled 5407 * 5408 * Disable interrupts. We only disable the top-level interrupt 5409 * concentrators. The caller must be a PCI function managing global 5410 * interrupts. 5411 */ 5412 void t4_intr_disable(struct adapter *adap) 5413 { 5414 5415 t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), 0); 5416 t4_set_reg_field(adap, A_PL_INT_MAP0, 1 << adap->pf, 0); 5417 } 5418 5419 /** 5420 * t4_intr_clear - clear all interrupts 5421 * @adap: the adapter whose interrupts should be cleared 5422 * 5423 * Clears all interrupts. The caller must be a PCI function managing 5424 * global interrupts. 5425 */ 5426 void t4_intr_clear(struct adapter *adap) 5427 { 5428 static const u32 cause_reg[] = { 5429 A_CIM_HOST_INT_CAUSE, 5430 A_CIM_HOST_UPACC_INT_CAUSE, 5431 MYPF_REG(A_CIM_PF_HOST_INT_CAUSE), 5432 A_CPL_INTR_CAUSE, 5433 EDC_REG(A_EDC_INT_CAUSE, 0), EDC_REG(A_EDC_INT_CAUSE, 1), 5434 A_LE_DB_INT_CAUSE, 5435 A_MA_INT_WRAP_STATUS, 5436 A_MA_PARITY_ERROR_STATUS1, 5437 A_MA_INT_CAUSE, 5438 A_MPS_CLS_INT_CAUSE, 5439 A_MPS_RX_PERR_INT_CAUSE, 5440 A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO, 5441 A_MPS_STAT_PERR_INT_CAUSE_SRAM, 5442 A_MPS_TRC_INT_CAUSE, 5443 A_MPS_TX_INT_CAUSE, 5444 A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO, 5445 A_NCSI_INT_CAUSE, 5446 A_PCIE_INT_CAUSE, 5447 A_PCIE_NONFAT_ERR, 5448 A_PL_PL_INT_CAUSE, 5449 A_PM_RX_INT_CAUSE, 5450 A_PM_TX_INT_CAUSE, 5451 A_SGE_INT_CAUSE1, 5452 A_SGE_INT_CAUSE2, 5453 A_SGE_INT_CAUSE3, 5454 A_SGE_INT_CAUSE4, 5455 A_SMB_INT_CAUSE, 5456 A_TP_INT_CAUSE, 5457 A_ULP_RX_INT_CAUSE, 5458 A_ULP_RX_INT_CAUSE_2, 5459 A_ULP_TX_INT_CAUSE, 5460 A_ULP_TX_INT_CAUSE_2, 5461 5462 MYPF_REG(A_PL_PF_INT_CAUSE), 5463 }; 5464 int i; 5465 const int nchan = adap->chip_params->nchan; 5466 5467 for (i = 0; i < ARRAY_SIZE(cause_reg); i++) 5468 t4_write_reg(adap, cause_reg[i], 0xffffffff); 5469 5470 if (is_t4(adap)) { 5471 t4_write_reg(adap, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS, 5472 0xffffffff); 5473 t4_write_reg(adap, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS, 5474 0xffffffff); 5475 t4_write_reg(adap, A_MC_INT_CAUSE, 0xffffffff); 5476 for (i = 0; i < nchan; i++) { 5477 t4_write_reg(adap, PORT_REG(i, A_XGMAC_PORT_INT_CAUSE), 5478 0xffffffff); 5479 } 5480 } 5481 if (chip_id(adap) >= CHELSIO_T5) { 5482 t4_write_reg(adap, A_MA_PARITY_ERROR_STATUS2, 0xffffffff); 5483 t4_write_reg(adap, A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 0xffffffff); 5484 t4_write_reg(adap, A_SGE_INT_CAUSE5, 0xffffffff); 5485 t4_write_reg(adap, A_MC_P_INT_CAUSE, 0xffffffff); 5486 if (is_t5(adap)) { 5487 t4_write_reg(adap, MC_REG(A_MC_P_INT_CAUSE, 1), 5488 0xffffffff); 5489 } 5490 for (i = 0; i < nchan; i++) { 5491 t4_write_reg(adap, T5_PORT_REG(i, 5492 A_MAC_PORT_PERR_INT_CAUSE), 0xffffffff); 5493 if (chip_id(adap) > CHELSIO_T5) { 5494 t4_write_reg(adap, T5_PORT_REG(i, 5495 A_MAC_PORT_PERR_INT_CAUSE_100G), 5496 0xffffffff); 5497 } 5498 t4_write_reg(adap, T5_PORT_REG(i, A_MAC_PORT_INT_CAUSE), 5499 0xffffffff); 5500 } 5501 } 5502 if (chip_id(adap) >= CHELSIO_T6) { 5503 t4_write_reg(adap, A_SGE_INT_CAUSE6, 0xffffffff); 5504 } 5505 5506 t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff); 5507 t4_write_reg(adap, A_PL_PERR_CAUSE, 0xffffffff); 5508 t4_write_reg(adap, A_PL_INT_CAUSE, 0xffffffff); 5509 (void) t4_read_reg(adap, A_PL_INT_CAUSE); /* flush */ 5510 } 5511 5512 /** 5513 * hash_mac_addr - return the hash value of a MAC address 5514 * @addr: the 48-bit Ethernet MAC address 5515 * 5516 * Hashes a MAC address according to the hash function used by HW inexact 5517 * (hash) address matching. 5518 */ 5519 static int hash_mac_addr(const u8 *addr) 5520 { 5521 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2]; 5522 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5]; 5523 a ^= b; 5524 a ^= (a >> 12); 5525 a ^= (a >> 6); 5526 return a & 0x3f; 5527 } 5528 5529 /** 5530 * t4_config_rss_range - configure a portion of the RSS mapping table 5531 * @adapter: the adapter 5532 * @mbox: mbox to use for the FW command 5533 * @viid: virtual interface whose RSS subtable is to be written 5534 * @start: start entry in the table to write 5535 * @n: how many table entries to write 5536 * @rspq: values for the "response queue" (Ingress Queue) lookup table 5537 * @nrspq: number of values in @rspq 5538 * 5539 * Programs the selected part of the VI's RSS mapping table with the 5540 * provided values. If @nrspq < @n the supplied values are used repeatedly 5541 * until the full table range is populated. 5542 * 5543 * The caller must ensure the values in @rspq are in the range allowed for 5544 * @viid. 5545 */ 5546 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 5547 int start, int n, const u16 *rspq, unsigned int nrspq) 5548 { 5549 int ret; 5550 const u16 *rsp = rspq; 5551 const u16 *rsp_end = rspq + nrspq; 5552 struct fw_rss_ind_tbl_cmd cmd; 5553 5554 memset(&cmd, 0, sizeof(cmd)); 5555 cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) | 5556 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 5557 V_FW_RSS_IND_TBL_CMD_VIID(viid)); 5558 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 5559 5560 /* 5561 * Each firmware RSS command can accommodate up to 32 RSS Ingress 5562 * Queue Identifiers. These Ingress Queue IDs are packed three to 5563 * a 32-bit word as 10-bit values with the upper remaining 2 bits 5564 * reserved. 5565 */ 5566 while (n > 0) { 5567 int nq = min(n, 32); 5568 int nq_packed = 0; 5569 __be32 *qp = &cmd.iq0_to_iq2; 5570 5571 /* 5572 * Set up the firmware RSS command header to send the next 5573 * "nq" Ingress Queue IDs to the firmware. 5574 */ 5575 cmd.niqid = cpu_to_be16(nq); 5576 cmd.startidx = cpu_to_be16(start); 5577 5578 /* 5579 * "nq" more done for the start of the next loop. 5580 */ 5581 start += nq; 5582 n -= nq; 5583 5584 /* 5585 * While there are still Ingress Queue IDs to stuff into the 5586 * current firmware RSS command, retrieve them from the 5587 * Ingress Queue ID array and insert them into the command. 5588 */ 5589 while (nq > 0) { 5590 /* 5591 * Grab up to the next 3 Ingress Queue IDs (wrapping 5592 * around the Ingress Queue ID array if necessary) and 5593 * insert them into the firmware RSS command at the 5594 * current 3-tuple position within the commad. 5595 */ 5596 u16 qbuf[3]; 5597 u16 *qbp = qbuf; 5598 int nqbuf = min(3, nq); 5599 5600 nq -= nqbuf; 5601 qbuf[0] = qbuf[1] = qbuf[2] = 0; 5602 while (nqbuf && nq_packed < 32) { 5603 nqbuf--; 5604 nq_packed++; 5605 *qbp++ = *rsp++; 5606 if (rsp >= rsp_end) 5607 rsp = rspq; 5608 } 5609 *qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) | 5610 V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) | 5611 V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2])); 5612 } 5613 5614 /* 5615 * Send this portion of the RRS table update to the firmware; 5616 * bail out on any errors. 5617 */ 5618 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 5619 if (ret) 5620 return ret; 5621 } 5622 return 0; 5623 } 5624 5625 /** 5626 * t4_config_glbl_rss - configure the global RSS mode 5627 * @adapter: the adapter 5628 * @mbox: mbox to use for the FW command 5629 * @mode: global RSS mode 5630 * @flags: mode-specific flags 5631 * 5632 * Sets the global RSS mode. 5633 */ 5634 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 5635 unsigned int flags) 5636 { 5637 struct fw_rss_glb_config_cmd c; 5638 5639 memset(&c, 0, sizeof(c)); 5640 c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) | 5641 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 5642 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5643 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 5644 c.u.manual.mode_pkd = 5645 cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode)); 5646 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 5647 c.u.basicvirtual.mode_keymode = 5648 cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode)); 5649 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); 5650 } else 5651 return -EINVAL; 5652 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5653 } 5654 5655 /** 5656 * t4_config_vi_rss - configure per VI RSS settings 5657 * @adapter: the adapter 5658 * @mbox: mbox to use for the FW command 5659 * @viid: the VI id 5660 * @flags: RSS flags 5661 * @defq: id of the default RSS queue for the VI. 5662 * @skeyidx: RSS secret key table index for non-global mode 5663 * @skey: RSS vf_scramble key for VI. 5664 * 5665 * Configures VI-specific RSS properties. 5666 */ 5667 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, 5668 unsigned int flags, unsigned int defq, unsigned int skeyidx, 5669 unsigned int skey) 5670 { 5671 struct fw_rss_vi_config_cmd c; 5672 5673 memset(&c, 0, sizeof(c)); 5674 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) | 5675 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 5676 V_FW_RSS_VI_CONFIG_CMD_VIID(viid)); 5677 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5678 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | 5679 V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq)); 5680 c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32( 5681 V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx)); 5682 c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey); 5683 5684 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5685 } 5686 5687 /* Read an RSS table row */ 5688 static int rd_rss_row(struct adapter *adap, int row, u32 *val) 5689 { 5690 t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row); 5691 return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1, 5692 5, 0, val); 5693 } 5694 5695 /** 5696 * t4_read_rss - read the contents of the RSS mapping table 5697 * @adapter: the adapter 5698 * @map: holds the contents of the RSS mapping table 5699 * 5700 * Reads the contents of the RSS hash->queue mapping table. 5701 */ 5702 int t4_read_rss(struct adapter *adapter, u16 *map) 5703 { 5704 u32 val; 5705 int i, ret; 5706 5707 for (i = 0; i < RSS_NENTRIES / 2; ++i) { 5708 ret = rd_rss_row(adapter, i, &val); 5709 if (ret) 5710 return ret; 5711 *map++ = G_LKPTBLQUEUE0(val); 5712 *map++ = G_LKPTBLQUEUE1(val); 5713 } 5714 return 0; 5715 } 5716 5717 /** 5718 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST 5719 * @adap: the adapter 5720 * @cmd: TP fw ldst address space type 5721 * @vals: where the indirect register values are stored/written 5722 * @nregs: how many indirect registers to read/write 5723 * @start_idx: index of first indirect register to read/write 5724 * @rw: Read (1) or Write (0) 5725 * @sleep_ok: if true we may sleep while awaiting command completion 5726 * 5727 * Access TP indirect registers through LDST 5728 **/ 5729 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals, 5730 unsigned int nregs, unsigned int start_index, 5731 unsigned int rw, bool sleep_ok) 5732 { 5733 int ret = 0; 5734 unsigned int i; 5735 struct fw_ldst_cmd c; 5736 5737 for (i = 0; i < nregs; i++) { 5738 memset(&c, 0, sizeof(c)); 5739 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 5740 F_FW_CMD_REQUEST | 5741 (rw ? F_FW_CMD_READ : 5742 F_FW_CMD_WRITE) | 5743 V_FW_LDST_CMD_ADDRSPACE(cmd)); 5744 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5745 5746 c.u.addrval.addr = cpu_to_be32(start_index + i); 5747 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); 5748 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, 5749 sleep_ok); 5750 if (ret) 5751 return ret; 5752 5753 if (rw) 5754 vals[i] = be32_to_cpu(c.u.addrval.val); 5755 } 5756 return 0; 5757 } 5758 5759 /** 5760 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor 5761 * @adap: the adapter 5762 * @reg_addr: Address Register 5763 * @reg_data: Data register 5764 * @buff: where the indirect register values are stored/written 5765 * @nregs: how many indirect registers to read/write 5766 * @start_index: index of first indirect register to read/write 5767 * @rw: READ(1) or WRITE(0) 5768 * @sleep_ok: if true we may sleep while awaiting command completion 5769 * 5770 * Read/Write TP indirect registers through LDST if possible. 5771 * Else, use backdoor access 5772 **/ 5773 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data, 5774 u32 *buff, u32 nregs, u32 start_index, int rw, 5775 bool sleep_ok) 5776 { 5777 int rc = -EINVAL; 5778 int cmd; 5779 5780 switch (reg_addr) { 5781 case A_TP_PIO_ADDR: 5782 cmd = FW_LDST_ADDRSPC_TP_PIO; 5783 break; 5784 case A_TP_TM_PIO_ADDR: 5785 cmd = FW_LDST_ADDRSPC_TP_TM_PIO; 5786 break; 5787 case A_TP_MIB_INDEX: 5788 cmd = FW_LDST_ADDRSPC_TP_MIB; 5789 break; 5790 default: 5791 goto indirect_access; 5792 } 5793 5794 if (t4_use_ldst(adap)) 5795 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw, 5796 sleep_ok); 5797 5798 indirect_access: 5799 5800 if (rc) { 5801 if (rw) 5802 t4_read_indirect(adap, reg_addr, reg_data, buff, nregs, 5803 start_index); 5804 else 5805 t4_write_indirect(adap, reg_addr, reg_data, buff, nregs, 5806 start_index); 5807 } 5808 } 5809 5810 /** 5811 * t4_tp_pio_read - Read TP PIO registers 5812 * @adap: the adapter 5813 * @buff: where the indirect register values are written 5814 * @nregs: how many indirect registers to read 5815 * @start_index: index of first indirect register to read 5816 * @sleep_ok: if true we may sleep while awaiting command completion 5817 * 5818 * Read TP PIO Registers 5819 **/ 5820 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5821 u32 start_index, bool sleep_ok) 5822 { 5823 t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs, 5824 start_index, 1, sleep_ok); 5825 } 5826 5827 /** 5828 * t4_tp_pio_write - Write TP PIO registers 5829 * @adap: the adapter 5830 * @buff: where the indirect register values are stored 5831 * @nregs: how many indirect registers to write 5832 * @start_index: index of first indirect register to write 5833 * @sleep_ok: if true we may sleep while awaiting command completion 5834 * 5835 * Write TP PIO Registers 5836 **/ 5837 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs, 5838 u32 start_index, bool sleep_ok) 5839 { 5840 t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, 5841 __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok); 5842 } 5843 5844 /** 5845 * t4_tp_tm_pio_read - Read TP TM PIO registers 5846 * @adap: the adapter 5847 * @buff: where the indirect register values are written 5848 * @nregs: how many indirect registers to read 5849 * @start_index: index of first indirect register to read 5850 * @sleep_ok: if true we may sleep while awaiting command completion 5851 * 5852 * Read TP TM PIO Registers 5853 **/ 5854 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5855 u32 start_index, bool sleep_ok) 5856 { 5857 t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff, 5858 nregs, start_index, 1, sleep_ok); 5859 } 5860 5861 /** 5862 * t4_tp_mib_read - Read TP MIB registers 5863 * @adap: the adapter 5864 * @buff: where the indirect register values are written 5865 * @nregs: how many indirect registers to read 5866 * @start_index: index of first indirect register to read 5867 * @sleep_ok: if true we may sleep while awaiting command completion 5868 * 5869 * Read TP MIB Registers 5870 **/ 5871 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, 5872 bool sleep_ok) 5873 { 5874 t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs, 5875 start_index, 1, sleep_ok); 5876 } 5877 5878 /** 5879 * t4_read_rss_key - read the global RSS key 5880 * @adap: the adapter 5881 * @key: 10-entry array holding the 320-bit RSS key 5882 * @sleep_ok: if true we may sleep while awaiting command completion 5883 * 5884 * Reads the global 320-bit RSS key. 5885 */ 5886 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok) 5887 { 5888 t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok); 5889 } 5890 5891 /** 5892 * t4_write_rss_key - program one of the RSS keys 5893 * @adap: the adapter 5894 * @key: 10-entry array holding the 320-bit RSS key 5895 * @idx: which RSS key to write 5896 * @sleep_ok: if true we may sleep while awaiting command completion 5897 * 5898 * Writes one of the RSS keys with the given 320-bit value. If @idx is 5899 * 0..15 the corresponding entry in the RSS key table is written, 5900 * otherwise the global RSS key is written. 5901 */ 5902 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx, 5903 bool sleep_ok) 5904 { 5905 u8 rss_key_addr_cnt = 16; 5906 u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT); 5907 5908 /* 5909 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble), 5910 * allows access to key addresses 16-63 by using KeyWrAddrX 5911 * as index[5:4](upper 2) into key table 5912 */ 5913 if ((chip_id(adap) > CHELSIO_T5) && 5914 (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3)) 5915 rss_key_addr_cnt = 32; 5916 5917 t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok); 5918 5919 if (idx >= 0 && idx < rss_key_addr_cnt) { 5920 if (rss_key_addr_cnt > 16) 5921 t4_write_reg(adap, A_TP_RSS_CONFIG_VRT, 5922 vrt | V_KEYWRADDRX(idx >> 4) | 5923 V_T6_VFWRADDR(idx) | F_KEYWREN); 5924 else 5925 t4_write_reg(adap, A_TP_RSS_CONFIG_VRT, 5926 vrt| V_KEYWRADDR(idx) | F_KEYWREN); 5927 } 5928 } 5929 5930 /** 5931 * t4_read_rss_pf_config - read PF RSS Configuration Table 5932 * @adapter: the adapter 5933 * @index: the entry in the PF RSS table to read 5934 * @valp: where to store the returned value 5935 * @sleep_ok: if true we may sleep while awaiting command completion 5936 * 5937 * Reads the PF RSS Configuration Table at the specified index and returns 5938 * the value found there. 5939 */ 5940 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 5941 u32 *valp, bool sleep_ok) 5942 { 5943 t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok); 5944 } 5945 5946 /** 5947 * t4_write_rss_pf_config - write PF RSS Configuration Table 5948 * @adapter: the adapter 5949 * @index: the entry in the VF RSS table to read 5950 * @val: the value to store 5951 * @sleep_ok: if true we may sleep while awaiting command completion 5952 * 5953 * Writes the PF RSS Configuration Table at the specified index with the 5954 * specified value. 5955 */ 5956 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index, 5957 u32 val, bool sleep_ok) 5958 { 5959 t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index, 5960 sleep_ok); 5961 } 5962 5963 /** 5964 * t4_read_rss_vf_config - read VF RSS Configuration Table 5965 * @adapter: the adapter 5966 * @index: the entry in the VF RSS table to read 5967 * @vfl: where to store the returned VFL 5968 * @vfh: where to store the returned VFH 5969 * @sleep_ok: if true we may sleep while awaiting command completion 5970 * 5971 * Reads the VF RSS Configuration Table at the specified index and returns 5972 * the (VFL, VFH) values found there. 5973 */ 5974 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 5975 u32 *vfl, u32 *vfh, bool sleep_ok) 5976 { 5977 u32 vrt, mask, data; 5978 5979 if (chip_id(adapter) <= CHELSIO_T5) { 5980 mask = V_VFWRADDR(M_VFWRADDR); 5981 data = V_VFWRADDR(index); 5982 } else { 5983 mask = V_T6_VFWRADDR(M_T6_VFWRADDR); 5984 data = V_T6_VFWRADDR(index); 5985 } 5986 /* 5987 * Request that the index'th VF Table values be read into VFL/VFH. 5988 */ 5989 vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT); 5990 vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask); 5991 vrt |= data | F_VFRDEN; 5992 t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt); 5993 5994 /* 5995 * Grab the VFL/VFH values ... 5996 */ 5997 t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok); 5998 t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok); 5999 } 6000 6001 /** 6002 * t4_write_rss_vf_config - write VF RSS Configuration Table 6003 * 6004 * @adapter: the adapter 6005 * @index: the entry in the VF RSS table to write 6006 * @vfl: the VFL to store 6007 * @vfh: the VFH to store 6008 * 6009 * Writes the VF RSS Configuration Table at the specified index with the 6010 * specified (VFL, VFH) values. 6011 */ 6012 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index, 6013 u32 vfl, u32 vfh, bool sleep_ok) 6014 { 6015 u32 vrt, mask, data; 6016 6017 if (chip_id(adapter) <= CHELSIO_T5) { 6018 mask = V_VFWRADDR(M_VFWRADDR); 6019 data = V_VFWRADDR(index); 6020 } else { 6021 mask = V_T6_VFWRADDR(M_T6_VFWRADDR); 6022 data = V_T6_VFWRADDR(index); 6023 } 6024 6025 /* 6026 * Load up VFL/VFH with the values to be written ... 6027 */ 6028 t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok); 6029 t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok); 6030 6031 /* 6032 * Write the VFL/VFH into the VF Table at index'th location. 6033 */ 6034 vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT); 6035 vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask); 6036 vrt |= data | F_VFRDEN; 6037 t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt); 6038 } 6039 6040 /** 6041 * t4_read_rss_pf_map - read PF RSS Map 6042 * @adapter: the adapter 6043 * @sleep_ok: if true we may sleep while awaiting command completion 6044 * 6045 * Reads the PF RSS Map register and returns its value. 6046 */ 6047 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok) 6048 { 6049 u32 pfmap; 6050 6051 t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok); 6052 6053 return pfmap; 6054 } 6055 6056 /** 6057 * t4_write_rss_pf_map - write PF RSS Map 6058 * @adapter: the adapter 6059 * @pfmap: PF RSS Map value 6060 * 6061 * Writes the specified value to the PF RSS Map register. 6062 */ 6063 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok) 6064 { 6065 t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok); 6066 } 6067 6068 /** 6069 * t4_read_rss_pf_mask - read PF RSS Mask 6070 * @adapter: the adapter 6071 * @sleep_ok: if true we may sleep while awaiting command completion 6072 * 6073 * Reads the PF RSS Mask register and returns its value. 6074 */ 6075 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok) 6076 { 6077 u32 pfmask; 6078 6079 t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok); 6080 6081 return pfmask; 6082 } 6083 6084 /** 6085 * t4_write_rss_pf_mask - write PF RSS Mask 6086 * @adapter: the adapter 6087 * @pfmask: PF RSS Mask value 6088 * 6089 * Writes the specified value to the PF RSS Mask register. 6090 */ 6091 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok) 6092 { 6093 t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok); 6094 } 6095 6096 /** 6097 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 6098 * @adap: the adapter 6099 * @v4: holds the TCP/IP counter values 6100 * @v6: holds the TCP/IPv6 counter values 6101 * @sleep_ok: if true we may sleep while awaiting command completion 6102 * 6103 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 6104 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 6105 */ 6106 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 6107 struct tp_tcp_stats *v6, bool sleep_ok) 6108 { 6109 u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1]; 6110 6111 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST) 6112 #define STAT(x) val[STAT_IDX(x)] 6113 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 6114 6115 if (v4) { 6116 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 6117 A_TP_MIB_TCP_OUT_RST, sleep_ok); 6118 v4->tcp_out_rsts = STAT(OUT_RST); 6119 v4->tcp_in_segs = STAT64(IN_SEG); 6120 v4->tcp_out_segs = STAT64(OUT_SEG); 6121 v4->tcp_retrans_segs = STAT64(RXT_SEG); 6122 } 6123 if (v6) { 6124 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 6125 A_TP_MIB_TCP_V6OUT_RST, sleep_ok); 6126 v6->tcp_out_rsts = STAT(OUT_RST); 6127 v6->tcp_in_segs = STAT64(IN_SEG); 6128 v6->tcp_out_segs = STAT64(OUT_SEG); 6129 v6->tcp_retrans_segs = STAT64(RXT_SEG); 6130 } 6131 #undef STAT64 6132 #undef STAT 6133 #undef STAT_IDX 6134 } 6135 6136 /** 6137 * t4_tp_get_err_stats - read TP's error MIB counters 6138 * @adap: the adapter 6139 * @st: holds the counter values 6140 * @sleep_ok: if true we may sleep while awaiting command completion 6141 * 6142 * Returns the values of TP's error counters. 6143 */ 6144 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st, 6145 bool sleep_ok) 6146 { 6147 int nchan = adap->chip_params->nchan; 6148 6149 t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0, 6150 sleep_ok); 6151 6152 t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0, 6153 sleep_ok); 6154 6155 t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0, 6156 sleep_ok); 6157 6158 t4_tp_mib_read(adap, st->tnl_cong_drops, nchan, 6159 A_TP_MIB_TNL_CNG_DROP_0, sleep_ok); 6160 6161 t4_tp_mib_read(adap, st->ofld_chan_drops, nchan, 6162 A_TP_MIB_OFD_CHN_DROP_0, sleep_ok); 6163 6164 t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0, 6165 sleep_ok); 6166 6167 t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan, 6168 A_TP_MIB_OFD_VLN_DROP_0, sleep_ok); 6169 6170 t4_tp_mib_read(adap, st->tcp6_in_errs, nchan, 6171 A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok); 6172 6173 t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP, 6174 sleep_ok); 6175 } 6176 6177 /** 6178 * t4_tp_get_proxy_stats - read TP's proxy MIB counters 6179 * @adap: the adapter 6180 * @st: holds the counter values 6181 * 6182 * Returns the values of TP's proxy counters. 6183 */ 6184 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st, 6185 bool sleep_ok) 6186 { 6187 int nchan = adap->chip_params->nchan; 6188 6189 t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok); 6190 } 6191 6192 /** 6193 * t4_tp_get_cpl_stats - read TP's CPL MIB counters 6194 * @adap: the adapter 6195 * @st: holds the counter values 6196 * @sleep_ok: if true we may sleep while awaiting command completion 6197 * 6198 * Returns the values of TP's CPL counters. 6199 */ 6200 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st, 6201 bool sleep_ok) 6202 { 6203 int nchan = adap->chip_params->nchan; 6204 6205 t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok); 6206 6207 t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok); 6208 } 6209 6210 /** 6211 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters 6212 * @adap: the adapter 6213 * @st: holds the counter values 6214 * 6215 * Returns the values of TP's RDMA counters. 6216 */ 6217 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st, 6218 bool sleep_ok) 6219 { 6220 t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT, 6221 sleep_ok); 6222 } 6223 6224 /** 6225 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port 6226 * @adap: the adapter 6227 * @idx: the port index 6228 * @st: holds the counter values 6229 * @sleep_ok: if true we may sleep while awaiting command completion 6230 * 6231 * Returns the values of TP's FCoE counters for the selected port. 6232 */ 6233 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, 6234 struct tp_fcoe_stats *st, bool sleep_ok) 6235 { 6236 u32 val[2]; 6237 6238 t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx, 6239 sleep_ok); 6240 6241 t4_tp_mib_read(adap, &st->frames_drop, 1, 6242 A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok); 6243 6244 t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx, 6245 sleep_ok); 6246 6247 st->octets_ddp = ((u64)val[0] << 32) | val[1]; 6248 } 6249 6250 /** 6251 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters 6252 * @adap: the adapter 6253 * @st: holds the counter values 6254 * @sleep_ok: if true we may sleep while awaiting command completion 6255 * 6256 * Returns the values of TP's counters for non-TCP directly-placed packets. 6257 */ 6258 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st, 6259 bool sleep_ok) 6260 { 6261 u32 val[4]; 6262 6263 t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok); 6264 6265 st->frames = val[0]; 6266 st->drops = val[1]; 6267 st->octets = ((u64)val[2] << 32) | val[3]; 6268 } 6269 6270 /** 6271 * t4_read_mtu_tbl - returns the values in the HW path MTU table 6272 * @adap: the adapter 6273 * @mtus: where to store the MTU values 6274 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 6275 * 6276 * Reads the HW path MTU table. 6277 */ 6278 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 6279 { 6280 u32 v; 6281 int i; 6282 6283 for (i = 0; i < NMTUS; ++i) { 6284 t4_write_reg(adap, A_TP_MTU_TABLE, 6285 V_MTUINDEX(0xff) | V_MTUVALUE(i)); 6286 v = t4_read_reg(adap, A_TP_MTU_TABLE); 6287 mtus[i] = G_MTUVALUE(v); 6288 if (mtu_log) 6289 mtu_log[i] = G_MTUWIDTH(v); 6290 } 6291 } 6292 6293 /** 6294 * t4_read_cong_tbl - reads the congestion control table 6295 * @adap: the adapter 6296 * @incr: where to store the alpha values 6297 * 6298 * Reads the additive increments programmed into the HW congestion 6299 * control table. 6300 */ 6301 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 6302 { 6303 unsigned int mtu, w; 6304 6305 for (mtu = 0; mtu < NMTUS; ++mtu) 6306 for (w = 0; w < NCCTRL_WIN; ++w) { 6307 t4_write_reg(adap, A_TP_CCTRL_TABLE, 6308 V_ROWINDEX(0xffff) | (mtu << 5) | w); 6309 incr[mtu][w] = (u16)t4_read_reg(adap, 6310 A_TP_CCTRL_TABLE) & 0x1fff; 6311 } 6312 } 6313 6314 /** 6315 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 6316 * @adap: the adapter 6317 * @addr: the indirect TP register address 6318 * @mask: specifies the field within the register to modify 6319 * @val: new value for the field 6320 * 6321 * Sets a field of an indirect TP register to the given value. 6322 */ 6323 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 6324 unsigned int mask, unsigned int val) 6325 { 6326 t4_write_reg(adap, A_TP_PIO_ADDR, addr); 6327 val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask; 6328 t4_write_reg(adap, A_TP_PIO_DATA, val); 6329 } 6330 6331 /** 6332 * init_cong_ctrl - initialize congestion control parameters 6333 * @a: the alpha values for congestion control 6334 * @b: the beta values for congestion control 6335 * 6336 * Initialize the congestion control parameters. 6337 */ 6338 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 6339 { 6340 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 6341 a[9] = 2; 6342 a[10] = 3; 6343 a[11] = 4; 6344 a[12] = 5; 6345 a[13] = 6; 6346 a[14] = 7; 6347 a[15] = 8; 6348 a[16] = 9; 6349 a[17] = 10; 6350 a[18] = 14; 6351 a[19] = 17; 6352 a[20] = 21; 6353 a[21] = 25; 6354 a[22] = 30; 6355 a[23] = 35; 6356 a[24] = 45; 6357 a[25] = 60; 6358 a[26] = 80; 6359 a[27] = 100; 6360 a[28] = 200; 6361 a[29] = 300; 6362 a[30] = 400; 6363 a[31] = 500; 6364 6365 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 6366 b[9] = b[10] = 1; 6367 b[11] = b[12] = 2; 6368 b[13] = b[14] = b[15] = b[16] = 3; 6369 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 6370 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 6371 b[28] = b[29] = 6; 6372 b[30] = b[31] = 7; 6373 } 6374 6375 /* The minimum additive increment value for the congestion control table */ 6376 #define CC_MIN_INCR 2U 6377 6378 /** 6379 * t4_load_mtus - write the MTU and congestion control HW tables 6380 * @adap: the adapter 6381 * @mtus: the values for the MTU table 6382 * @alpha: the values for the congestion control alpha parameter 6383 * @beta: the values for the congestion control beta parameter 6384 * 6385 * Write the HW MTU table with the supplied MTUs and the high-speed 6386 * congestion control table with the supplied alpha, beta, and MTUs. 6387 * We write the two tables together because the additive increments 6388 * depend on the MTUs. 6389 */ 6390 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 6391 const unsigned short *alpha, const unsigned short *beta) 6392 { 6393 static const unsigned int avg_pkts[NCCTRL_WIN] = { 6394 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 6395 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 6396 28672, 40960, 57344, 81920, 114688, 163840, 229376 6397 }; 6398 6399 unsigned int i, w; 6400 6401 for (i = 0; i < NMTUS; ++i) { 6402 unsigned int mtu = mtus[i]; 6403 unsigned int log2 = fls(mtu); 6404 6405 if (!(mtu & ((1 << log2) >> 2))) /* round */ 6406 log2--; 6407 t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) | 6408 V_MTUWIDTH(log2) | V_MTUVALUE(mtu)); 6409 6410 for (w = 0; w < NCCTRL_WIN; ++w) { 6411 unsigned int inc; 6412 6413 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 6414 CC_MIN_INCR); 6415 6416 t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) | 6417 (w << 16) | (beta[w] << 13) | inc); 6418 } 6419 } 6420 } 6421 6422 /** 6423 * t4_set_pace_tbl - set the pace table 6424 * @adap: the adapter 6425 * @pace_vals: the pace values in microseconds 6426 * @start: index of the first entry in the HW pace table to set 6427 * @n: how many entries to set 6428 * 6429 * Sets (a subset of the) HW pace table. 6430 */ 6431 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals, 6432 unsigned int start, unsigned int n) 6433 { 6434 unsigned int vals[NTX_SCHED], i; 6435 unsigned int tick_ns = dack_ticks_to_usec(adap, 1000); 6436 6437 if (n > NTX_SCHED) 6438 return -ERANGE; 6439 6440 /* convert values from us to dack ticks, rounding to closest value */ 6441 for (i = 0; i < n; i++, pace_vals++) { 6442 vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns; 6443 if (vals[i] > 0x7ff) 6444 return -ERANGE; 6445 if (*pace_vals && vals[i] == 0) 6446 return -ERANGE; 6447 } 6448 for (i = 0; i < n; i++, start++) 6449 t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]); 6450 return 0; 6451 } 6452 6453 /** 6454 * t4_set_sched_bps - set the bit rate for a HW traffic scheduler 6455 * @adap: the adapter 6456 * @kbps: target rate in Kbps 6457 * @sched: the scheduler index 6458 * 6459 * Configure a Tx HW scheduler for the target rate. 6460 */ 6461 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps) 6462 { 6463 unsigned int v, tps, cpt, bpt, delta, mindelta = ~0; 6464 unsigned int clk = adap->params.vpd.cclk * 1000; 6465 unsigned int selected_cpt = 0, selected_bpt = 0; 6466 6467 if (kbps > 0) { 6468 kbps *= 125; /* -> bytes */ 6469 for (cpt = 1; cpt <= 255; cpt++) { 6470 tps = clk / cpt; 6471 bpt = (kbps + tps / 2) / tps; 6472 if (bpt > 0 && bpt <= 255) { 6473 v = bpt * tps; 6474 delta = v >= kbps ? v - kbps : kbps - v; 6475 if (delta < mindelta) { 6476 mindelta = delta; 6477 selected_cpt = cpt; 6478 selected_bpt = bpt; 6479 } 6480 } else if (selected_cpt) 6481 break; 6482 } 6483 if (!selected_cpt) 6484 return -EINVAL; 6485 } 6486 t4_write_reg(adap, A_TP_TM_PIO_ADDR, 6487 A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2); 6488 v = t4_read_reg(adap, A_TP_TM_PIO_DATA); 6489 if (sched & 1) 6490 v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24); 6491 else 6492 v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8); 6493 t4_write_reg(adap, A_TP_TM_PIO_DATA, v); 6494 return 0; 6495 } 6496 6497 /** 6498 * t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler 6499 * @adap: the adapter 6500 * @sched: the scheduler index 6501 * @ipg: the interpacket delay in tenths of nanoseconds 6502 * 6503 * Set the interpacket delay for a HW packet rate scheduler. 6504 */ 6505 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg) 6506 { 6507 unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2; 6508 6509 /* convert ipg to nearest number of core clocks */ 6510 ipg *= core_ticks_per_usec(adap); 6511 ipg = (ipg + 5000) / 10000; 6512 if (ipg > M_TXTIMERSEPQ0) 6513 return -EINVAL; 6514 6515 t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr); 6516 v = t4_read_reg(adap, A_TP_TM_PIO_DATA); 6517 if (sched & 1) 6518 v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg); 6519 else 6520 v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg); 6521 t4_write_reg(adap, A_TP_TM_PIO_DATA, v); 6522 t4_read_reg(adap, A_TP_TM_PIO_DATA); 6523 return 0; 6524 } 6525 6526 /* 6527 * Calculates a rate in bytes/s given the number of 256-byte units per 4K core 6528 * clocks. The formula is 6529 * 6530 * bytes/s = bytes256 * 256 * ClkFreq / 4096 6531 * 6532 * which is equivalent to 6533 * 6534 * bytes/s = 62.5 * bytes256 * ClkFreq_ms 6535 */ 6536 static u64 chan_rate(struct adapter *adap, unsigned int bytes256) 6537 { 6538 u64 v = (u64)bytes256 * adap->params.vpd.cclk; 6539 6540 return v * 62 + v / 2; 6541 } 6542 6543 /** 6544 * t4_get_chan_txrate - get the current per channel Tx rates 6545 * @adap: the adapter 6546 * @nic_rate: rates for NIC traffic 6547 * @ofld_rate: rates for offloaded traffic 6548 * 6549 * Return the current Tx rates in bytes/s for NIC and offloaded traffic 6550 * for each channel. 6551 */ 6552 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) 6553 { 6554 u32 v; 6555 6556 v = t4_read_reg(adap, A_TP_TX_TRATE); 6557 nic_rate[0] = chan_rate(adap, G_TNLRATE0(v)); 6558 nic_rate[1] = chan_rate(adap, G_TNLRATE1(v)); 6559 if (adap->chip_params->nchan > 2) { 6560 nic_rate[2] = chan_rate(adap, G_TNLRATE2(v)); 6561 nic_rate[3] = chan_rate(adap, G_TNLRATE3(v)); 6562 } 6563 6564 v = t4_read_reg(adap, A_TP_TX_ORATE); 6565 ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v)); 6566 ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v)); 6567 if (adap->chip_params->nchan > 2) { 6568 ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v)); 6569 ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v)); 6570 } 6571 } 6572 6573 /** 6574 * t4_set_trace_filter - configure one of the tracing filters 6575 * @adap: the adapter 6576 * @tp: the desired trace filter parameters 6577 * @idx: which filter to configure 6578 * @enable: whether to enable or disable the filter 6579 * 6580 * Configures one of the tracing filters available in HW. If @tp is %NULL 6581 * it indicates that the filter is already written in the register and it 6582 * just needs to be enabled or disabled. 6583 */ 6584 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, 6585 int idx, int enable) 6586 { 6587 int i, ofst = idx * 4; 6588 u32 data_reg, mask_reg, cfg; 6589 u32 multitrc = F_TRCMULTIFILTER; 6590 u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN; 6591 6592 if (idx < 0 || idx >= NTRACE) 6593 return -EINVAL; 6594 6595 if (tp == NULL || !enable) { 6596 t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 6597 enable ? en : 0); 6598 return 0; 6599 } 6600 6601 /* 6602 * TODO - After T4 data book is updated, specify the exact 6603 * section below. 6604 * 6605 * See T4 data book - MPS section for a complete description 6606 * of the below if..else handling of A_MPS_TRC_CFG register 6607 * value. 6608 */ 6609 cfg = t4_read_reg(adap, A_MPS_TRC_CFG); 6610 if (cfg & F_TRCMULTIFILTER) { 6611 /* 6612 * If multiple tracers are enabled, then maximum 6613 * capture size is 2.5KB (FIFO size of a single channel) 6614 * minus 2 flits for CPL_TRACE_PKT header. 6615 */ 6616 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) 6617 return -EINVAL; 6618 } else { 6619 /* 6620 * If multiple tracers are disabled, to avoid deadlocks 6621 * maximum packet capture size of 9600 bytes is recommended. 6622 * Also in this mode, only trace0 can be enabled and running. 6623 */ 6624 multitrc = 0; 6625 if (tp->snap_len > 9600 || idx) 6626 return -EINVAL; 6627 } 6628 6629 if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 || 6630 tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET || 6631 tp->min_len > M_TFMINPKTSIZE) 6632 return -EINVAL; 6633 6634 /* stop the tracer we'll be changing */ 6635 t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0); 6636 6637 idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH); 6638 data_reg = A_MPS_TRC_FILTER0_MATCH + idx; 6639 mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx; 6640 6641 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 6642 t4_write_reg(adap, data_reg, tp->data[i]); 6643 t4_write_reg(adap, mask_reg, ~tp->mask[i]); 6644 } 6645 t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst, 6646 V_TFCAPTUREMAX(tp->snap_len) | 6647 V_TFMINPKTSIZE(tp->min_len)); 6648 t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, 6649 V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en | 6650 (is_t4(adap) ? 6651 V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) : 6652 V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert))); 6653 6654 return 0; 6655 } 6656 6657 /** 6658 * t4_get_trace_filter - query one of the tracing filters 6659 * @adap: the adapter 6660 * @tp: the current trace filter parameters 6661 * @idx: which trace filter to query 6662 * @enabled: non-zero if the filter is enabled 6663 * 6664 * Returns the current settings of one of the HW tracing filters. 6665 */ 6666 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, 6667 int *enabled) 6668 { 6669 u32 ctla, ctlb; 6670 int i, ofst = idx * 4; 6671 u32 data_reg, mask_reg; 6672 6673 ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst); 6674 ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst); 6675 6676 if (is_t4(adap)) { 6677 *enabled = !!(ctla & F_TFEN); 6678 tp->port = G_TFPORT(ctla); 6679 tp->invert = !!(ctla & F_TFINVERTMATCH); 6680 } else { 6681 *enabled = !!(ctla & F_T5_TFEN); 6682 tp->port = G_T5_TFPORT(ctla); 6683 tp->invert = !!(ctla & F_T5_TFINVERTMATCH); 6684 } 6685 tp->snap_len = G_TFCAPTUREMAX(ctlb); 6686 tp->min_len = G_TFMINPKTSIZE(ctlb); 6687 tp->skip_ofst = G_TFOFFSET(ctla); 6688 tp->skip_len = G_TFLENGTH(ctla); 6689 6690 ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx; 6691 data_reg = A_MPS_TRC_FILTER0_MATCH + ofst; 6692 mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst; 6693 6694 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 6695 tp->mask[i] = ~t4_read_reg(adap, mask_reg); 6696 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; 6697 } 6698 } 6699 6700 /** 6701 * t4_pmtx_get_stats - returns the HW stats from PMTX 6702 * @adap: the adapter 6703 * @cnt: where to store the count statistics 6704 * @cycles: where to store the cycle statistics 6705 * 6706 * Returns performance statistics from PMTX. 6707 */ 6708 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6709 { 6710 int i; 6711 u32 data[2]; 6712 6713 for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) { 6714 t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1); 6715 cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT); 6716 if (is_t4(adap)) 6717 cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB); 6718 else { 6719 t4_read_indirect(adap, A_PM_TX_DBG_CTRL, 6720 A_PM_TX_DBG_DATA, data, 2, 6721 A_PM_TX_DBG_STAT_MSB); 6722 cycles[i] = (((u64)data[0] << 32) | data[1]); 6723 } 6724 } 6725 } 6726 6727 /** 6728 * t4_pmrx_get_stats - returns the HW stats from PMRX 6729 * @adap: the adapter 6730 * @cnt: where to store the count statistics 6731 * @cycles: where to store the cycle statistics 6732 * 6733 * Returns performance statistics from PMRX. 6734 */ 6735 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6736 { 6737 int i; 6738 u32 data[2]; 6739 6740 for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) { 6741 t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1); 6742 cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT); 6743 if (is_t4(adap)) { 6744 cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB); 6745 } else { 6746 t4_read_indirect(adap, A_PM_RX_DBG_CTRL, 6747 A_PM_RX_DBG_DATA, data, 2, 6748 A_PM_RX_DBG_STAT_MSB); 6749 cycles[i] = (((u64)data[0] << 32) | data[1]); 6750 } 6751 } 6752 } 6753 6754 /** 6755 * t4_get_mps_bg_map - return the buffer groups associated with a port 6756 * @adap: the adapter 6757 * @idx: the port index 6758 * 6759 * Returns a bitmap indicating which MPS buffer groups are associated 6760 * with the given port. Bit i is set if buffer group i is used by the 6761 * port. 6762 */ 6763 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx) 6764 { 6765 u32 n; 6766 6767 if (adap->params.mps_bg_map) 6768 return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff); 6769 6770 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL)); 6771 if (n == 0) 6772 return idx == 0 ? 0xf : 0; 6773 if (n == 1 && chip_id(adap) <= CHELSIO_T5) 6774 return idx < 2 ? (3 << (2 * idx)) : 0; 6775 return 1 << idx; 6776 } 6777 6778 /* 6779 * TP RX e-channels associated with the port. 6780 */ 6781 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx) 6782 { 6783 u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL)); 6784 const u32 all_chan = (1 << adap->chip_params->nchan) - 1; 6785 6786 if (n == 0) 6787 return idx == 0 ? all_chan : 0; 6788 if (n == 1 && chip_id(adap) <= CHELSIO_T5) 6789 return idx < 2 ? (3 << (2 * idx)) : 0; 6790 return 1 << idx; 6791 } 6792 6793 /** 6794 * t4_get_port_type_description - return Port Type string description 6795 * @port_type: firmware Port Type enumeration 6796 */ 6797 const char *t4_get_port_type_description(enum fw_port_type port_type) 6798 { 6799 static const char *const port_type_description[] = { 6800 "Fiber_XFI", 6801 "Fiber_XAUI", 6802 "BT_SGMII", 6803 "BT_XFI", 6804 "BT_XAUI", 6805 "KX4", 6806 "CX4", 6807 "KX", 6808 "KR", 6809 "SFP", 6810 "BP_AP", 6811 "BP4_AP", 6812 "QSFP_10G", 6813 "QSA", 6814 "QSFP", 6815 "BP40_BA", 6816 "KR4_100G", 6817 "CR4_QSFP", 6818 "CR_QSFP", 6819 "CR2_QSFP", 6820 "SFP28", 6821 "KR_SFP28", 6822 }; 6823 6824 if (port_type < ARRAY_SIZE(port_type_description)) 6825 return port_type_description[port_type]; 6826 return "UNKNOWN"; 6827 } 6828 6829 /** 6830 * t4_get_port_stats_offset - collect port stats relative to a previous 6831 * snapshot 6832 * @adap: The adapter 6833 * @idx: The port 6834 * @stats: Current stats to fill 6835 * @offset: Previous stats snapshot 6836 */ 6837 void t4_get_port_stats_offset(struct adapter *adap, int idx, 6838 struct port_stats *stats, 6839 struct port_stats *offset) 6840 { 6841 u64 *s, *o; 6842 int i; 6843 6844 t4_get_port_stats(adap, idx, stats); 6845 for (i = 0, s = (u64 *)stats, o = (u64 *)offset ; 6846 i < (sizeof(struct port_stats)/sizeof(u64)) ; 6847 i++, s++, o++) 6848 *s -= *o; 6849 } 6850 6851 /** 6852 * t4_get_port_stats - collect port statistics 6853 * @adap: the adapter 6854 * @idx: the port index 6855 * @p: the stats structure to fill 6856 * 6857 * Collect statistics related to the given port from HW. 6858 */ 6859 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 6860 { 6861 u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map; 6862 u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL); 6863 6864 #define GET_STAT(name) \ 6865 t4_read_reg64(adap, \ 6866 (is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \ 6867 T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L))) 6868 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L) 6869 6870 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 6871 p->tx_octets = GET_STAT(TX_PORT_BYTES); 6872 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 6873 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 6874 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 6875 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 6876 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 6877 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 6878 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 6879 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 6880 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 6881 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 6882 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 6883 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 6884 p->tx_drop = GET_STAT(TX_PORT_DROP); 6885 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 6886 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 6887 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 6888 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 6889 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 6890 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 6891 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 6892 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 6893 6894 if (chip_id(adap) >= CHELSIO_T5) { 6895 if (stat_ctl & F_COUNTPAUSESTATTX) { 6896 p->tx_frames -= p->tx_pause; 6897 p->tx_octets -= p->tx_pause * 64; 6898 } 6899 if (stat_ctl & F_COUNTPAUSEMCTX) 6900 p->tx_mcast_frames -= p->tx_pause; 6901 } 6902 6903 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 6904 p->rx_octets = GET_STAT(RX_PORT_BYTES); 6905 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 6906 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 6907 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 6908 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 6909 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 6910 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 6911 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 6912 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 6913 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 6914 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 6915 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 6916 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 6917 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 6918 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 6919 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 6920 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 6921 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 6922 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 6923 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 6924 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 6925 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 6926 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 6927 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 6928 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 6929 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 6930 6931 if (chip_id(adap) >= CHELSIO_T5) { 6932 if (stat_ctl & F_COUNTPAUSESTATRX) { 6933 p->rx_frames -= p->rx_pause; 6934 p->rx_octets -= p->rx_pause * 64; 6935 } 6936 if (stat_ctl & F_COUNTPAUSEMCRX) 6937 p->rx_mcast_frames -= p->rx_pause; 6938 } 6939 6940 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 6941 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 6942 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 6943 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 6944 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 6945 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 6946 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 6947 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 6948 6949 #undef GET_STAT 6950 #undef GET_STAT_COM 6951 } 6952 6953 /** 6954 * t4_get_lb_stats - collect loopback port statistics 6955 * @adap: the adapter 6956 * @idx: the loopback port index 6957 * @p: the stats structure to fill 6958 * 6959 * Return HW statistics for the given loopback port. 6960 */ 6961 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) 6962 { 6963 u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map; 6964 6965 #define GET_STAT(name) \ 6966 t4_read_reg64(adap, \ 6967 (is_t4(adap) ? \ 6968 PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \ 6969 T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L))) 6970 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L) 6971 6972 p->octets = GET_STAT(BYTES); 6973 p->frames = GET_STAT(FRAMES); 6974 p->bcast_frames = GET_STAT(BCAST); 6975 p->mcast_frames = GET_STAT(MCAST); 6976 p->ucast_frames = GET_STAT(UCAST); 6977 p->error_frames = GET_STAT(ERROR); 6978 6979 p->frames_64 = GET_STAT(64B); 6980 p->frames_65_127 = GET_STAT(65B_127B); 6981 p->frames_128_255 = GET_STAT(128B_255B); 6982 p->frames_256_511 = GET_STAT(256B_511B); 6983 p->frames_512_1023 = GET_STAT(512B_1023B); 6984 p->frames_1024_1518 = GET_STAT(1024B_1518B); 6985 p->frames_1519_max = GET_STAT(1519B_MAX); 6986 p->drop = GET_STAT(DROP_FRAMES); 6987 6988 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; 6989 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; 6990 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; 6991 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; 6992 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; 6993 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; 6994 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; 6995 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; 6996 6997 #undef GET_STAT 6998 #undef GET_STAT_COM 6999 } 7000 7001 /** 7002 * t4_wol_magic_enable - enable/disable magic packet WoL 7003 * @adap: the adapter 7004 * @port: the physical port index 7005 * @addr: MAC address expected in magic packets, %NULL to disable 7006 * 7007 * Enables/disables magic packet wake-on-LAN for the selected port. 7008 */ 7009 void t4_wol_magic_enable(struct adapter *adap, unsigned int port, 7010 const u8 *addr) 7011 { 7012 u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg; 7013 7014 if (is_t4(adap)) { 7015 mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO); 7016 mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI); 7017 port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2); 7018 } else { 7019 mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO); 7020 mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI); 7021 port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2); 7022 } 7023 7024 if (addr) { 7025 t4_write_reg(adap, mag_id_reg_l, 7026 (addr[2] << 24) | (addr[3] << 16) | 7027 (addr[4] << 8) | addr[5]); 7028 t4_write_reg(adap, mag_id_reg_h, 7029 (addr[0] << 8) | addr[1]); 7030 } 7031 t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN, 7032 V_MAGICEN(addr != NULL)); 7033 } 7034 7035 /** 7036 * t4_wol_pat_enable - enable/disable pattern-based WoL 7037 * @adap: the adapter 7038 * @port: the physical port index 7039 * @map: bitmap of which HW pattern filters to set 7040 * @mask0: byte mask for bytes 0-63 of a packet 7041 * @mask1: byte mask for bytes 64-127 of a packet 7042 * @crc: Ethernet CRC for selected bytes 7043 * @enable: enable/disable switch 7044 * 7045 * Sets the pattern filters indicated in @map to mask out the bytes 7046 * specified in @mask0/@mask1 in received packets and compare the CRC of 7047 * the resulting packet against @crc. If @enable is %true pattern-based 7048 * WoL is enabled, otherwise disabled. 7049 */ 7050 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map, 7051 u64 mask0, u64 mask1, unsigned int crc, bool enable) 7052 { 7053 int i; 7054 u32 port_cfg_reg; 7055 7056 if (is_t4(adap)) 7057 port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2); 7058 else 7059 port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2); 7060 7061 if (!enable) { 7062 t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0); 7063 return 0; 7064 } 7065 if (map > 0xff) 7066 return -EINVAL; 7067 7068 #define EPIO_REG(name) \ 7069 (is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \ 7070 T5_PORT_REG(port, A_MAC_PORT_EPIO_##name)) 7071 7072 t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32); 7073 t4_write_reg(adap, EPIO_REG(DATA2), mask1); 7074 t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32); 7075 7076 for (i = 0; i < NWOL_PAT; i++, map >>= 1) { 7077 if (!(map & 1)) 7078 continue; 7079 7080 /* write byte masks */ 7081 t4_write_reg(adap, EPIO_REG(DATA0), mask0); 7082 t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR); 7083 t4_read_reg(adap, EPIO_REG(OP)); /* flush */ 7084 if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY) 7085 return -ETIMEDOUT; 7086 7087 /* write CRC */ 7088 t4_write_reg(adap, EPIO_REG(DATA0), crc); 7089 t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR); 7090 t4_read_reg(adap, EPIO_REG(OP)); /* flush */ 7091 if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY) 7092 return -ETIMEDOUT; 7093 } 7094 #undef EPIO_REG 7095 7096 t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN); 7097 return 0; 7098 } 7099 7100 /* t4_mk_filtdelwr - create a delete filter WR 7101 * @ftid: the filter ID 7102 * @wr: the filter work request to populate 7103 * @qid: ingress queue to receive the delete notification 7104 * 7105 * Creates a filter work request to delete the supplied filter. If @qid is 7106 * negative the delete notification is suppressed. 7107 */ 7108 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 7109 { 7110 memset(wr, 0, sizeof(*wr)); 7111 wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR)); 7112 wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16)); 7113 wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) | 7114 V_FW_FILTER_WR_NOREPLY(qid < 0)); 7115 wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER); 7116 if (qid >= 0) 7117 wr->rx_chan_rx_rpl_iq = 7118 cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid)); 7119 } 7120 7121 #define INIT_CMD(var, cmd, rd_wr) do { \ 7122 (var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \ 7123 F_FW_CMD_REQUEST | \ 7124 F_FW_CMD_##rd_wr); \ 7125 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ 7126 } while (0) 7127 7128 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 7129 u32 addr, u32 val) 7130 { 7131 u32 ldst_addrspace; 7132 struct fw_ldst_cmd c; 7133 7134 memset(&c, 0, sizeof(c)); 7135 ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE); 7136 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 7137 F_FW_CMD_REQUEST | 7138 F_FW_CMD_WRITE | 7139 ldst_addrspace); 7140 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 7141 c.u.addrval.addr = cpu_to_be32(addr); 7142 c.u.addrval.val = cpu_to_be32(val); 7143 7144 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7145 } 7146 7147 /** 7148 * t4_mdio_rd - read a PHY register through MDIO 7149 * @adap: the adapter 7150 * @mbox: mailbox to use for the FW command 7151 * @phy_addr: the PHY address 7152 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 7153 * @reg: the register to read 7154 * @valp: where to store the value 7155 * 7156 * Issues a FW command through the given mailbox to read a PHY register. 7157 */ 7158 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 7159 unsigned int mmd, unsigned int reg, unsigned int *valp) 7160 { 7161 int ret; 7162 u32 ldst_addrspace; 7163 struct fw_ldst_cmd c; 7164 7165 memset(&c, 0, sizeof(c)); 7166 ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO); 7167 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 7168 F_FW_CMD_REQUEST | F_FW_CMD_READ | 7169 ldst_addrspace); 7170 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 7171 c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) | 7172 V_FW_LDST_CMD_MMD(mmd)); 7173 c.u.mdio.raddr = cpu_to_be16(reg); 7174 7175 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7176 if (ret == 0) 7177 *valp = be16_to_cpu(c.u.mdio.rval); 7178 return ret; 7179 } 7180 7181 /** 7182 * t4_mdio_wr - write a PHY register through MDIO 7183 * @adap: the adapter 7184 * @mbox: mailbox to use for the FW command 7185 * @phy_addr: the PHY address 7186 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 7187 * @reg: the register to write 7188 * @valp: value to write 7189 * 7190 * Issues a FW command through the given mailbox to write a PHY register. 7191 */ 7192 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 7193 unsigned int mmd, unsigned int reg, unsigned int val) 7194 { 7195 u32 ldst_addrspace; 7196 struct fw_ldst_cmd c; 7197 7198 memset(&c, 0, sizeof(c)); 7199 ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO); 7200 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 7201 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 7202 ldst_addrspace); 7203 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 7204 c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) | 7205 V_FW_LDST_CMD_MMD(mmd)); 7206 c.u.mdio.raddr = cpu_to_be16(reg); 7207 c.u.mdio.rval = cpu_to_be16(val); 7208 7209 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7210 } 7211 7212 /** 7213 * 7214 * t4_sge_decode_idma_state - decode the idma state 7215 * @adap: the adapter 7216 * @state: the state idma is stuck in 7217 */ 7218 void t4_sge_decode_idma_state(struct adapter *adapter, int state) 7219 { 7220 static const char * const t4_decode[] = { 7221 "IDMA_IDLE", 7222 "IDMA_PUSH_MORE_CPL_FIFO", 7223 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 7224 "Not used", 7225 "IDMA_PHYSADDR_SEND_PCIEHDR", 7226 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 7227 "IDMA_PHYSADDR_SEND_PAYLOAD", 7228 "IDMA_SEND_FIFO_TO_IMSG", 7229 "IDMA_FL_REQ_DATA_FL_PREP", 7230 "IDMA_FL_REQ_DATA_FL", 7231 "IDMA_FL_DROP", 7232 "IDMA_FL_H_REQ_HEADER_FL", 7233 "IDMA_FL_H_SEND_PCIEHDR", 7234 "IDMA_FL_H_PUSH_CPL_FIFO", 7235 "IDMA_FL_H_SEND_CPL", 7236 "IDMA_FL_H_SEND_IP_HDR_FIRST", 7237 "IDMA_FL_H_SEND_IP_HDR", 7238 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 7239 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 7240 "IDMA_FL_H_SEND_IP_HDR_PADDING", 7241 "IDMA_FL_D_SEND_PCIEHDR", 7242 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 7243 "IDMA_FL_D_REQ_NEXT_DATA_FL", 7244 "IDMA_FL_SEND_PCIEHDR", 7245 "IDMA_FL_PUSH_CPL_FIFO", 7246 "IDMA_FL_SEND_CPL", 7247 "IDMA_FL_SEND_PAYLOAD_FIRST", 7248 "IDMA_FL_SEND_PAYLOAD", 7249 "IDMA_FL_REQ_NEXT_DATA_FL", 7250 "IDMA_FL_SEND_NEXT_PCIEHDR", 7251 "IDMA_FL_SEND_PADDING", 7252 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 7253 "IDMA_FL_SEND_FIFO_TO_IMSG", 7254 "IDMA_FL_REQ_DATAFL_DONE", 7255 "IDMA_FL_REQ_HEADERFL_DONE", 7256 }; 7257 static const char * const t5_decode[] = { 7258 "IDMA_IDLE", 7259 "IDMA_ALMOST_IDLE", 7260 "IDMA_PUSH_MORE_CPL_FIFO", 7261 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 7262 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 7263 "IDMA_PHYSADDR_SEND_PCIEHDR", 7264 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 7265 "IDMA_PHYSADDR_SEND_PAYLOAD", 7266 "IDMA_SEND_FIFO_TO_IMSG", 7267 "IDMA_FL_REQ_DATA_FL", 7268 "IDMA_FL_DROP", 7269 "IDMA_FL_DROP_SEND_INC", 7270 "IDMA_FL_H_REQ_HEADER_FL", 7271 "IDMA_FL_H_SEND_PCIEHDR", 7272 "IDMA_FL_H_PUSH_CPL_FIFO", 7273 "IDMA_FL_H_SEND_CPL", 7274 "IDMA_FL_H_SEND_IP_HDR_FIRST", 7275 "IDMA_FL_H_SEND_IP_HDR", 7276 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 7277 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 7278 "IDMA_FL_H_SEND_IP_HDR_PADDING", 7279 "IDMA_FL_D_SEND_PCIEHDR", 7280 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 7281 "IDMA_FL_D_REQ_NEXT_DATA_FL", 7282 "IDMA_FL_SEND_PCIEHDR", 7283 "IDMA_FL_PUSH_CPL_FIFO", 7284 "IDMA_FL_SEND_CPL", 7285 "IDMA_FL_SEND_PAYLOAD_FIRST", 7286 "IDMA_FL_SEND_PAYLOAD", 7287 "IDMA_FL_REQ_NEXT_DATA_FL", 7288 "IDMA_FL_SEND_NEXT_PCIEHDR", 7289 "IDMA_FL_SEND_PADDING", 7290 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 7291 }; 7292 static const char * const t6_decode[] = { 7293 "IDMA_IDLE", 7294 "IDMA_PUSH_MORE_CPL_FIFO", 7295 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 7296 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 7297 "IDMA_PHYSADDR_SEND_PCIEHDR", 7298 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 7299 "IDMA_PHYSADDR_SEND_PAYLOAD", 7300 "IDMA_FL_REQ_DATA_FL", 7301 "IDMA_FL_DROP", 7302 "IDMA_FL_DROP_SEND_INC", 7303 "IDMA_FL_H_REQ_HEADER_FL", 7304 "IDMA_FL_H_SEND_PCIEHDR", 7305 "IDMA_FL_H_PUSH_CPL_FIFO", 7306 "IDMA_FL_H_SEND_CPL", 7307 "IDMA_FL_H_SEND_IP_HDR_FIRST", 7308 "IDMA_FL_H_SEND_IP_HDR", 7309 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 7310 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 7311 "IDMA_FL_H_SEND_IP_HDR_PADDING", 7312 "IDMA_FL_D_SEND_PCIEHDR", 7313 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 7314 "IDMA_FL_D_REQ_NEXT_DATA_FL", 7315 "IDMA_FL_SEND_PCIEHDR", 7316 "IDMA_FL_PUSH_CPL_FIFO", 7317 "IDMA_FL_SEND_CPL", 7318 "IDMA_FL_SEND_PAYLOAD_FIRST", 7319 "IDMA_FL_SEND_PAYLOAD", 7320 "IDMA_FL_REQ_NEXT_DATA_FL", 7321 "IDMA_FL_SEND_NEXT_PCIEHDR", 7322 "IDMA_FL_SEND_PADDING", 7323 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 7324 }; 7325 static const u32 sge_regs[] = { 7326 A_SGE_DEBUG_DATA_LOW_INDEX_2, 7327 A_SGE_DEBUG_DATA_LOW_INDEX_3, 7328 A_SGE_DEBUG_DATA_HIGH_INDEX_10, 7329 }; 7330 const char * const *sge_idma_decode; 7331 int sge_idma_decode_nstates; 7332 int i; 7333 unsigned int chip_version = chip_id(adapter); 7334 7335 /* Select the right set of decode strings to dump depending on the 7336 * adapter chip type. 7337 */ 7338 switch (chip_version) { 7339 case CHELSIO_T4: 7340 sge_idma_decode = (const char * const *)t4_decode; 7341 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 7342 break; 7343 7344 case CHELSIO_T5: 7345 sge_idma_decode = (const char * const *)t5_decode; 7346 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 7347 break; 7348 7349 case CHELSIO_T6: 7350 sge_idma_decode = (const char * const *)t6_decode; 7351 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); 7352 break; 7353 7354 default: 7355 CH_ERR(adapter, "Unsupported chip version %d\n", chip_version); 7356 return; 7357 } 7358 7359 if (state < sge_idma_decode_nstates) 7360 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 7361 else 7362 CH_WARN(adapter, "idma state %d unknown\n", state); 7363 7364 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 7365 CH_WARN(adapter, "SGE register %#x value %#x\n", 7366 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 7367 } 7368 7369 /** 7370 * t4_sge_ctxt_flush - flush the SGE context cache 7371 * @adap: the adapter 7372 * @mbox: mailbox to use for the FW command 7373 * 7374 * Issues a FW command through the given mailbox to flush the 7375 * SGE context cache. 7376 */ 7377 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox) 7378 { 7379 int ret; 7380 u32 ldst_addrspace; 7381 struct fw_ldst_cmd c; 7382 7383 memset(&c, 0, sizeof(c)); 7384 ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC); 7385 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 7386 F_FW_CMD_REQUEST | F_FW_CMD_READ | 7387 ldst_addrspace); 7388 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 7389 c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH); 7390 7391 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7392 return ret; 7393 } 7394 7395 /** 7396 * t4_fw_hello - establish communication with FW 7397 * @adap: the adapter 7398 * @mbox: mailbox to use for the FW command 7399 * @evt_mbox: mailbox to receive async FW events 7400 * @master: specifies the caller's willingness to be the device master 7401 * @state: returns the current device state (if non-NULL) 7402 * 7403 * Issues a command to establish communication with FW. Returns either 7404 * an error (negative integer) or the mailbox of the Master PF. 7405 */ 7406 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 7407 enum dev_master master, enum dev_state *state) 7408 { 7409 int ret; 7410 struct fw_hello_cmd c; 7411 u32 v; 7412 unsigned int master_mbox; 7413 int retries = FW_CMD_HELLO_RETRIES; 7414 7415 retry: 7416 memset(&c, 0, sizeof(c)); 7417 INIT_CMD(c, HELLO, WRITE); 7418 c.err_to_clearinit = cpu_to_be32( 7419 V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) | 7420 V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) | 7421 V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? 7422 mbox : M_FW_HELLO_CMD_MBMASTER) | 7423 V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) | 7424 V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) | 7425 F_FW_HELLO_CMD_CLEARINIT); 7426 7427 /* 7428 * Issue the HELLO command to the firmware. If it's not successful 7429 * but indicates that we got a "busy" or "timeout" condition, retry 7430 * the HELLO until we exhaust our retry limit. If we do exceed our 7431 * retry limit, check to see if the firmware left us any error 7432 * information and report that if so ... 7433 */ 7434 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7435 if (ret != FW_SUCCESS) { 7436 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 7437 goto retry; 7438 if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR) 7439 t4_report_fw_error(adap); 7440 return ret; 7441 } 7442 7443 v = be32_to_cpu(c.err_to_clearinit); 7444 master_mbox = G_FW_HELLO_CMD_MBMASTER(v); 7445 if (state) { 7446 if (v & F_FW_HELLO_CMD_ERR) 7447 *state = DEV_STATE_ERR; 7448 else if (v & F_FW_HELLO_CMD_INIT) 7449 *state = DEV_STATE_INIT; 7450 else 7451 *state = DEV_STATE_UNINIT; 7452 } 7453 7454 /* 7455 * If we're not the Master PF then we need to wait around for the 7456 * Master PF Driver to finish setting up the adapter. 7457 * 7458 * Note that we also do this wait if we're a non-Master-capable PF and 7459 * there is no current Master PF; a Master PF may show up momentarily 7460 * and we wouldn't want to fail pointlessly. (This can happen when an 7461 * OS loads lots of different drivers rapidly at the same time). In 7462 * this case, the Master PF returned by the firmware will be 7463 * M_PCIE_FW_MASTER so the test below will work ... 7464 */ 7465 if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 && 7466 master_mbox != mbox) { 7467 int waiting = FW_CMD_HELLO_TIMEOUT; 7468 7469 /* 7470 * Wait for the firmware to either indicate an error or 7471 * initialized state. If we see either of these we bail out 7472 * and report the issue to the caller. If we exhaust the 7473 * "hello timeout" and we haven't exhausted our retries, try 7474 * again. Otherwise bail with a timeout error. 7475 */ 7476 for (;;) { 7477 u32 pcie_fw; 7478 7479 msleep(50); 7480 waiting -= 50; 7481 7482 /* 7483 * If neither Error nor Initialialized are indicated 7484 * by the firmware keep waiting till we exhaust our 7485 * timeout ... and then retry if we haven't exhausted 7486 * our retries ... 7487 */ 7488 pcie_fw = t4_read_reg(adap, A_PCIE_FW); 7489 if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) { 7490 if (waiting <= 0) { 7491 if (retries-- > 0) 7492 goto retry; 7493 7494 return -ETIMEDOUT; 7495 } 7496 continue; 7497 } 7498 7499 /* 7500 * We either have an Error or Initialized condition 7501 * report errors preferentially. 7502 */ 7503 if (state) { 7504 if (pcie_fw & F_PCIE_FW_ERR) 7505 *state = DEV_STATE_ERR; 7506 else if (pcie_fw & F_PCIE_FW_INIT) 7507 *state = DEV_STATE_INIT; 7508 } 7509 7510 /* 7511 * If we arrived before a Master PF was selected and 7512 * there's not a valid Master PF, grab its identity 7513 * for our caller. 7514 */ 7515 if (master_mbox == M_PCIE_FW_MASTER && 7516 (pcie_fw & F_PCIE_FW_MASTER_VLD)) 7517 master_mbox = G_PCIE_FW_MASTER(pcie_fw); 7518 break; 7519 } 7520 } 7521 7522 return master_mbox; 7523 } 7524 7525 /** 7526 * t4_fw_bye - end communication with FW 7527 * @adap: the adapter 7528 * @mbox: mailbox to use for the FW command 7529 * 7530 * Issues a command to terminate communication with FW. 7531 */ 7532 int t4_fw_bye(struct adapter *adap, unsigned int mbox) 7533 { 7534 struct fw_bye_cmd c; 7535 7536 memset(&c, 0, sizeof(c)); 7537 INIT_CMD(c, BYE, WRITE); 7538 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7539 } 7540 7541 /** 7542 * t4_fw_reset - issue a reset to FW 7543 * @adap: the adapter 7544 * @mbox: mailbox to use for the FW command 7545 * @reset: specifies the type of reset to perform 7546 * 7547 * Issues a reset command of the specified type to FW. 7548 */ 7549 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 7550 { 7551 struct fw_reset_cmd c; 7552 7553 memset(&c, 0, sizeof(c)); 7554 INIT_CMD(c, RESET, WRITE); 7555 c.val = cpu_to_be32(reset); 7556 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7557 } 7558 7559 /** 7560 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 7561 * @adap: the adapter 7562 * @mbox: mailbox to use for the FW RESET command (if desired) 7563 * @force: force uP into RESET even if FW RESET command fails 7564 * 7565 * Issues a RESET command to firmware (if desired) with a HALT indication 7566 * and then puts the microprocessor into RESET state. The RESET command 7567 * will only be issued if a legitimate mailbox is provided (mbox <= 7568 * M_PCIE_FW_MASTER). 7569 * 7570 * This is generally used in order for the host to safely manipulate the 7571 * adapter without fear of conflicting with whatever the firmware might 7572 * be doing. The only way out of this state is to RESTART the firmware 7573 * ... 7574 */ 7575 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 7576 { 7577 int ret = 0; 7578 7579 /* 7580 * If a legitimate mailbox is provided, issue a RESET command 7581 * with a HALT indication. 7582 */ 7583 if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) { 7584 struct fw_reset_cmd c; 7585 7586 memset(&c, 0, sizeof(c)); 7587 INIT_CMD(c, RESET, WRITE); 7588 c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE); 7589 c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT); 7590 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7591 } 7592 7593 /* 7594 * Normally we won't complete the operation if the firmware RESET 7595 * command fails but if our caller insists we'll go ahead and put the 7596 * uP into RESET. This can be useful if the firmware is hung or even 7597 * missing ... We'll have to take the risk of putting the uP into 7598 * RESET without the cooperation of firmware in that case. 7599 * 7600 * We also force the firmware's HALT flag to be on in case we bypassed 7601 * the firmware RESET command above or we're dealing with old firmware 7602 * which doesn't have the HALT capability. This will serve as a flag 7603 * for the incoming firmware to know that it's coming out of a HALT 7604 * rather than a RESET ... if it's new enough to understand that ... 7605 */ 7606 if (ret == 0 || force) { 7607 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST); 7608 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 7609 F_PCIE_FW_HALT); 7610 } 7611 7612 /* 7613 * And we always return the result of the firmware RESET command 7614 * even when we force the uP into RESET ... 7615 */ 7616 return ret; 7617 } 7618 7619 /** 7620 * t4_fw_restart - restart the firmware by taking the uP out of RESET 7621 * @adap: the adapter 7622 * 7623 * Restart firmware previously halted by t4_fw_halt(). On successful 7624 * return the previous PF Master remains as the new PF Master and there 7625 * is no need to issue a new HELLO command, etc. 7626 */ 7627 int t4_fw_restart(struct adapter *adap, unsigned int mbox) 7628 { 7629 int ms; 7630 7631 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0); 7632 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 7633 if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT)) 7634 return FW_SUCCESS; 7635 msleep(100); 7636 ms += 100; 7637 } 7638 7639 return -ETIMEDOUT; 7640 } 7641 7642 /** 7643 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 7644 * @adap: the adapter 7645 * @mbox: mailbox to use for the FW RESET command (if desired) 7646 * @fw_data: the firmware image to write 7647 * @size: image size 7648 * @force: force upgrade even if firmware doesn't cooperate 7649 * 7650 * Perform all of the steps necessary for upgrading an adapter's 7651 * firmware image. Normally this requires the cooperation of the 7652 * existing firmware in order to halt all existing activities 7653 * but if an invalid mailbox token is passed in we skip that step 7654 * (though we'll still put the adapter microprocessor into RESET in 7655 * that case). 7656 * 7657 * On successful return the new firmware will have been loaded and 7658 * the adapter will have been fully RESET losing all previous setup 7659 * state. On unsuccessful return the adapter may be completely hosed ... 7660 * positive errno indicates that the adapter is ~probably~ intact, a 7661 * negative errno indicates that things are looking bad ... 7662 */ 7663 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 7664 const u8 *fw_data, unsigned int size, int force) 7665 { 7666 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 7667 unsigned int bootstrap = 7668 be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP; 7669 int ret; 7670 7671 if (!t4_fw_matches_chip(adap, fw_hdr)) 7672 return -EINVAL; 7673 7674 if (!bootstrap) { 7675 ret = t4_fw_halt(adap, mbox, force); 7676 if (ret < 0 && !force) 7677 return ret; 7678 } 7679 7680 ret = t4_load_fw(adap, fw_data, size); 7681 if (ret < 0 || bootstrap) 7682 return ret; 7683 7684 return t4_fw_restart(adap, mbox); 7685 } 7686 7687 /** 7688 * t4_fw_initialize - ask FW to initialize the device 7689 * @adap: the adapter 7690 * @mbox: mailbox to use for the FW command 7691 * 7692 * Issues a command to FW to partially initialize the device. This 7693 * performs initialization that generally doesn't depend on user input. 7694 */ 7695 int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 7696 { 7697 struct fw_initialize_cmd c; 7698 7699 memset(&c, 0, sizeof(c)); 7700 INIT_CMD(c, INITIALIZE, WRITE); 7701 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7702 } 7703 7704 /** 7705 * t4_query_params_rw - query FW or device parameters 7706 * @adap: the adapter 7707 * @mbox: mailbox to use for the FW command 7708 * @pf: the PF 7709 * @vf: the VF 7710 * @nparams: the number of parameters 7711 * @params: the parameter names 7712 * @val: the parameter values 7713 * @rw: Write and read flag 7714 * 7715 * Reads the value of FW or device parameters. Up to 7 parameters can be 7716 * queried at once. 7717 */ 7718 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, 7719 unsigned int vf, unsigned int nparams, const u32 *params, 7720 u32 *val, int rw) 7721 { 7722 int i, ret; 7723 struct fw_params_cmd c; 7724 __be32 *p = &c.param[0].mnem; 7725 7726 if (nparams > 7) 7727 return -EINVAL; 7728 7729 memset(&c, 0, sizeof(c)); 7730 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) | 7731 F_FW_CMD_REQUEST | F_FW_CMD_READ | 7732 V_FW_PARAMS_CMD_PFN(pf) | 7733 V_FW_PARAMS_CMD_VFN(vf)); 7734 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7735 7736 for (i = 0; i < nparams; i++) { 7737 *p++ = cpu_to_be32(*params++); 7738 if (rw) 7739 *p = cpu_to_be32(*(val + i)); 7740 p++; 7741 } 7742 7743 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7744 if (ret == 0) 7745 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 7746 *val++ = be32_to_cpu(*p); 7747 return ret; 7748 } 7749 7750 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7751 unsigned int vf, unsigned int nparams, const u32 *params, 7752 u32 *val) 7753 { 7754 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0); 7755 } 7756 7757 /** 7758 * t4_set_params_timeout - sets FW or device parameters 7759 * @adap: the adapter 7760 * @mbox: mailbox to use for the FW command 7761 * @pf: the PF 7762 * @vf: the VF 7763 * @nparams: the number of parameters 7764 * @params: the parameter names 7765 * @val: the parameter values 7766 * @timeout: the timeout time 7767 * 7768 * Sets the value of FW or device parameters. Up to 7 parameters can be 7769 * specified at once. 7770 */ 7771 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, 7772 unsigned int pf, unsigned int vf, 7773 unsigned int nparams, const u32 *params, 7774 const u32 *val, int timeout) 7775 { 7776 struct fw_params_cmd c; 7777 __be32 *p = &c.param[0].mnem; 7778 7779 if (nparams > 7) 7780 return -EINVAL; 7781 7782 memset(&c, 0, sizeof(c)); 7783 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) | 7784 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 7785 V_FW_PARAMS_CMD_PFN(pf) | 7786 V_FW_PARAMS_CMD_VFN(vf)); 7787 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7788 7789 while (nparams--) { 7790 *p++ = cpu_to_be32(*params++); 7791 *p++ = cpu_to_be32(*val++); 7792 } 7793 7794 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); 7795 } 7796 7797 /** 7798 * t4_set_params - sets FW or device parameters 7799 * @adap: the adapter 7800 * @mbox: mailbox to use for the FW command 7801 * @pf: the PF 7802 * @vf: the VF 7803 * @nparams: the number of parameters 7804 * @params: the parameter names 7805 * @val: the parameter values 7806 * 7807 * Sets the value of FW or device parameters. Up to 7 parameters can be 7808 * specified at once. 7809 */ 7810 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7811 unsigned int vf, unsigned int nparams, const u32 *params, 7812 const u32 *val) 7813 { 7814 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, 7815 FW_CMD_MAX_TIMEOUT); 7816 } 7817 7818 /** 7819 * t4_cfg_pfvf - configure PF/VF resource limits 7820 * @adap: the adapter 7821 * @mbox: mailbox to use for the FW command 7822 * @pf: the PF being configured 7823 * @vf: the VF being configured 7824 * @txq: the max number of egress queues 7825 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 7826 * @rxqi: the max number of interrupt-capable ingress queues 7827 * @rxq: the max number of interruptless ingress queues 7828 * @tc: the PCI traffic class 7829 * @vi: the max number of virtual interfaces 7830 * @cmask: the channel access rights mask for the PF/VF 7831 * @pmask: the port access rights mask for the PF/VF 7832 * @nexact: the maximum number of exact MPS filters 7833 * @rcaps: read capabilities 7834 * @wxcaps: write/execute capabilities 7835 * 7836 * Configures resource limits and capabilities for a physical or virtual 7837 * function. 7838 */ 7839 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 7840 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 7841 unsigned int rxqi, unsigned int rxq, unsigned int tc, 7842 unsigned int vi, unsigned int cmask, unsigned int pmask, 7843 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 7844 { 7845 struct fw_pfvf_cmd c; 7846 7847 memset(&c, 0, sizeof(c)); 7848 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST | 7849 F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) | 7850 V_FW_PFVF_CMD_VFN(vf)); 7851 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7852 c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) | 7853 V_FW_PFVF_CMD_NIQ(rxq)); 7854 c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) | 7855 V_FW_PFVF_CMD_PMASK(pmask) | 7856 V_FW_PFVF_CMD_NEQ(txq)); 7857 c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) | 7858 V_FW_PFVF_CMD_NVI(vi) | 7859 V_FW_PFVF_CMD_NEXACTF(nexact)); 7860 c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) | 7861 V_FW_PFVF_CMD_WX_CAPS(wxcaps) | 7862 V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl)); 7863 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7864 } 7865 7866 /** 7867 * t4_alloc_vi_func - allocate a virtual interface 7868 * @adap: the adapter 7869 * @mbox: mailbox to use for the FW command 7870 * @port: physical port associated with the VI 7871 * @pf: the PF owning the VI 7872 * @vf: the VF owning the VI 7873 * @nmac: number of MAC addresses needed (1 to 5) 7874 * @mac: the MAC addresses of the VI 7875 * @rss_size: size of RSS table slice associated with this VI 7876 * @portfunc: which Port Application Function MAC Address is desired 7877 * @idstype: Intrusion Detection Type 7878 * 7879 * Allocates a virtual interface for the given physical port. If @mac is 7880 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 7881 * If @rss_size is %NULL the VI is not assigned any RSS slice by FW. 7882 * @mac should be large enough to hold @nmac Ethernet addresses, they are 7883 * stored consecutively so the space needed is @nmac * 6 bytes. 7884 * Returns a negative error number or the non-negative VI id. 7885 */ 7886 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox, 7887 unsigned int port, unsigned int pf, unsigned int vf, 7888 unsigned int nmac, u8 *mac, u16 *rss_size, 7889 uint8_t *vfvld, uint16_t *vin, 7890 unsigned int portfunc, unsigned int idstype) 7891 { 7892 int ret; 7893 struct fw_vi_cmd c; 7894 7895 memset(&c, 0, sizeof(c)); 7896 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST | 7897 F_FW_CMD_WRITE | F_FW_CMD_EXEC | 7898 V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf)); 7899 c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c)); 7900 c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) | 7901 V_FW_VI_CMD_FUNC(portfunc)); 7902 c.portid_pkd = V_FW_VI_CMD_PORTID(port); 7903 c.nmac = nmac - 1; 7904 if(!rss_size) 7905 c.norss_rsssize = F_FW_VI_CMD_NORSS; 7906 7907 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7908 if (ret) 7909 return ret; 7910 ret = G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid)); 7911 7912 if (mac) { 7913 memcpy(mac, c.mac, sizeof(c.mac)); 7914 switch (nmac) { 7915 case 5: 7916 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 7917 case 4: 7918 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 7919 case 3: 7920 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 7921 case 2: 7922 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 7923 } 7924 } 7925 if (rss_size) 7926 *rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize)); 7927 if (vfvld) { 7928 *vfvld = adap->params.viid_smt_extn_support ? 7929 G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16)) : 7930 G_FW_VIID_VIVLD(ret); 7931 } 7932 if (vin) { 7933 *vin = adap->params.viid_smt_extn_support ? 7934 G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16)) : 7935 G_FW_VIID_VIN(ret); 7936 } 7937 7938 return ret; 7939 } 7940 7941 /** 7942 * t4_alloc_vi - allocate an [Ethernet Function] virtual interface 7943 * @adap: the adapter 7944 * @mbox: mailbox to use for the FW command 7945 * @port: physical port associated with the VI 7946 * @pf: the PF owning the VI 7947 * @vf: the VF owning the VI 7948 * @nmac: number of MAC addresses needed (1 to 5) 7949 * @mac: the MAC addresses of the VI 7950 * @rss_size: size of RSS table slice associated with this VI 7951 * 7952 * backwards compatible and convieniance routine to allocate a Virtual 7953 * Interface with a Ethernet Port Application Function and Intrustion 7954 * Detection System disabled. 7955 */ 7956 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 7957 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 7958 u16 *rss_size, uint8_t *vfvld, uint16_t *vin) 7959 { 7960 return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size, 7961 vfvld, vin, FW_VI_FUNC_ETH, 0); 7962 } 7963 7964 /** 7965 * t4_free_vi - free a virtual interface 7966 * @adap: the adapter 7967 * @mbox: mailbox to use for the FW command 7968 * @pf: the PF owning the VI 7969 * @vf: the VF owning the VI 7970 * @viid: virtual interface identifiler 7971 * 7972 * Free a previously allocated virtual interface. 7973 */ 7974 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, 7975 unsigned int vf, unsigned int viid) 7976 { 7977 struct fw_vi_cmd c; 7978 7979 memset(&c, 0, sizeof(c)); 7980 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | 7981 F_FW_CMD_REQUEST | 7982 F_FW_CMD_EXEC | 7983 V_FW_VI_CMD_PFN(pf) | 7984 V_FW_VI_CMD_VFN(vf)); 7985 c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c)); 7986 c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid)); 7987 7988 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7989 } 7990 7991 /** 7992 * t4_set_rxmode - set Rx properties of a virtual interface 7993 * @adap: the adapter 7994 * @mbox: mailbox to use for the FW command 7995 * @viid: the VI id 7996 * @mtu: the new MTU or -1 7997 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 7998 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 7999 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 8000 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 8001 * @sleep_ok: if true we may sleep while awaiting command completion 8002 * 8003 * Sets Rx properties of a virtual interface. 8004 */ 8005 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 8006 int mtu, int promisc, int all_multi, int bcast, int vlanex, 8007 bool sleep_ok) 8008 { 8009 struct fw_vi_rxmode_cmd c; 8010 8011 /* convert to FW values */ 8012 if (mtu < 0) 8013 mtu = M_FW_VI_RXMODE_CMD_MTU; 8014 if (promisc < 0) 8015 promisc = M_FW_VI_RXMODE_CMD_PROMISCEN; 8016 if (all_multi < 0) 8017 all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN; 8018 if (bcast < 0) 8019 bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN; 8020 if (vlanex < 0) 8021 vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN; 8022 8023 memset(&c, 0, sizeof(c)); 8024 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) | 8025 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 8026 V_FW_VI_RXMODE_CMD_VIID(viid)); 8027 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 8028 c.mtu_to_vlanexen = 8029 cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) | 8030 V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) | 8031 V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) | 8032 V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) | 8033 V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex)); 8034 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 8035 } 8036 8037 /** 8038 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 8039 * @adap: the adapter 8040 * @mbox: mailbox to use for the FW command 8041 * @viid: the VI id 8042 * @free: if true any existing filters for this VI id are first removed 8043 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 8044 * @addr: the MAC address(es) 8045 * @idx: where to store the index of each allocated filter 8046 * @hash: pointer to hash address filter bitmap 8047 * @sleep_ok: call is allowed to sleep 8048 * 8049 * Allocates an exact-match filter for each of the supplied addresses and 8050 * sets it to the corresponding address. If @idx is not %NULL it should 8051 * have at least @naddr entries, each of which will be set to the index of 8052 * the filter allocated for the corresponding MAC address. If a filter 8053 * could not be allocated for an address its index is set to 0xffff. 8054 * If @hash is not %NULL addresses that fail to allocate an exact filter 8055 * are hashed and update the hash filter bitmap pointed at by @hash. 8056 * 8057 * Returns a negative error number or the number of filters allocated. 8058 */ 8059 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 8060 unsigned int viid, bool free, unsigned int naddr, 8061 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 8062 { 8063 int offset, ret = 0; 8064 struct fw_vi_mac_cmd c; 8065 unsigned int nfilters = 0; 8066 unsigned int max_naddr = adap->chip_params->mps_tcam_size; 8067 unsigned int rem = naddr; 8068 8069 if (naddr > max_naddr) 8070 return -EINVAL; 8071 8072 for (offset = 0; offset < naddr ; /**/) { 8073 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) 8074 ? rem 8075 : ARRAY_SIZE(c.u.exact)); 8076 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 8077 u.exact[fw_naddr]), 16); 8078 struct fw_vi_mac_exact *p; 8079 int i; 8080 8081 memset(&c, 0, sizeof(c)); 8082 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | 8083 F_FW_CMD_REQUEST | 8084 F_FW_CMD_WRITE | 8085 V_FW_CMD_EXEC(free) | 8086 V_FW_VI_MAC_CMD_VIID(viid)); 8087 c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) | 8088 V_FW_CMD_LEN16(len16)); 8089 8090 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8091 p->valid_to_idx = 8092 cpu_to_be16(F_FW_VI_MAC_CMD_VALID | 8093 V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC)); 8094 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 8095 } 8096 8097 /* 8098 * It's okay if we run out of space in our MAC address arena. 8099 * Some of the addresses we submit may get stored so we need 8100 * to run through the reply to see what the results were ... 8101 */ 8102 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 8103 if (ret && ret != -FW_ENOMEM) 8104 break; 8105 8106 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8107 u16 index = G_FW_VI_MAC_CMD_IDX( 8108 be16_to_cpu(p->valid_to_idx)); 8109 8110 if (idx) 8111 idx[offset+i] = (index >= max_naddr 8112 ? 0xffff 8113 : index); 8114 if (index < max_naddr) 8115 nfilters++; 8116 else if (hash) 8117 *hash |= (1ULL << hash_mac_addr(addr[offset+i])); 8118 } 8119 8120 free = false; 8121 offset += fw_naddr; 8122 rem -= fw_naddr; 8123 } 8124 8125 if (ret == 0 || ret == -FW_ENOMEM) 8126 ret = nfilters; 8127 return ret; 8128 } 8129 8130 /** 8131 * t4_change_mac - modifies the exact-match filter for a MAC address 8132 * @adap: the adapter 8133 * @mbox: mailbox to use for the FW command 8134 * @viid: the VI id 8135 * @idx: index of existing filter for old value of MAC address, or -1 8136 * @addr: the new MAC address value 8137 * @persist: whether a new MAC allocation should be persistent 8138 * @smt_idx: add MAC to SMT and return its index, or NULL 8139 * 8140 * Modifies an exact-match filter and sets it to the new MAC address if 8141 * @idx >= 0, or adds the MAC address to a new filter if @idx < 0. In the 8142 * latter case the address is added persistently if @persist is %true. 8143 * 8144 * Note that in general it is not possible to modify the value of a given 8145 * filter so the generic way to modify an address filter is to free the one 8146 * being used by the old address value and allocate a new filter for the 8147 * new address value. 8148 * 8149 * Returns a negative error number or the index of the filter with the new 8150 * MAC value. Note that this index may differ from @idx. 8151 */ 8152 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 8153 int idx, const u8 *addr, bool persist, uint16_t *smt_idx) 8154 { 8155 int ret, mode; 8156 struct fw_vi_mac_cmd c; 8157 struct fw_vi_mac_exact *p = c.u.exact; 8158 unsigned int max_mac_addr = adap->chip_params->mps_tcam_size; 8159 8160 if (idx < 0) /* new allocation */ 8161 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 8162 mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 8163 8164 memset(&c, 0, sizeof(c)); 8165 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | 8166 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 8167 V_FW_VI_MAC_CMD_VIID(viid)); 8168 c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1)); 8169 p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID | 8170 V_FW_VI_MAC_CMD_SMAC_RESULT(mode) | 8171 V_FW_VI_MAC_CMD_IDX(idx)); 8172 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 8173 8174 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 8175 if (ret == 0) { 8176 ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx)); 8177 if (ret >= max_mac_addr) 8178 ret = -ENOMEM; 8179 if (smt_idx) { 8180 if (adap->params.viid_smt_extn_support) 8181 *smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid)); 8182 else { 8183 if (chip_id(adap) <= CHELSIO_T5) 8184 *smt_idx = (viid & M_FW_VIID_VIN) << 1; 8185 else 8186 *smt_idx = viid & M_FW_VIID_VIN; 8187 } 8188 } 8189 } 8190 return ret; 8191 } 8192 8193 /** 8194 * t4_set_addr_hash - program the MAC inexact-match hash filter 8195 * @adap: the adapter 8196 * @mbox: mailbox to use for the FW command 8197 * @viid: the VI id 8198 * @ucast: whether the hash filter should also match unicast addresses 8199 * @vec: the value to be written to the hash filter 8200 * @sleep_ok: call is allowed to sleep 8201 * 8202 * Sets the 64-bit inexact-match hash filter for a virtual interface. 8203 */ 8204 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 8205 bool ucast, u64 vec, bool sleep_ok) 8206 { 8207 struct fw_vi_mac_cmd c; 8208 u32 val; 8209 8210 memset(&c, 0, sizeof(c)); 8211 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | 8212 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 8213 V_FW_VI_ENABLE_CMD_VIID(viid)); 8214 val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) | 8215 V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1); 8216 c.freemacs_to_len16 = cpu_to_be32(val); 8217 c.u.hash.hashvec = cpu_to_be64(vec); 8218 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 8219 } 8220 8221 /** 8222 * t4_enable_vi_params - enable/disable a virtual interface 8223 * @adap: the adapter 8224 * @mbox: mailbox to use for the FW command 8225 * @viid: the VI id 8226 * @rx_en: 1=enable Rx, 0=disable Rx 8227 * @tx_en: 1=enable Tx, 0=disable Tx 8228 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8229 * 8230 * Enables/disables a virtual interface. Note that setting DCB Enable 8231 * only makes sense when enabling a Virtual Interface ... 8232 */ 8233 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 8234 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 8235 { 8236 struct fw_vi_enable_cmd c; 8237 8238 memset(&c, 0, sizeof(c)); 8239 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) | 8240 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 8241 V_FW_VI_ENABLE_CMD_VIID(viid)); 8242 c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) | 8243 V_FW_VI_ENABLE_CMD_EEN(tx_en) | 8244 V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) | 8245 FW_LEN16(c)); 8246 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 8247 } 8248 8249 /** 8250 * t4_enable_vi - enable/disable a virtual interface 8251 * @adap: the adapter 8252 * @mbox: mailbox to use for the FW command 8253 * @viid: the VI id 8254 * @rx_en: 1=enable Rx, 0=disable Rx 8255 * @tx_en: 1=enable Tx, 0=disable Tx 8256 * 8257 * Enables/disables a virtual interface. Note that setting DCB Enable 8258 * only makes sense when enabling a Virtual Interface ... 8259 */ 8260 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 8261 bool rx_en, bool tx_en) 8262 { 8263 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 8264 } 8265 8266 /** 8267 * t4_identify_port - identify a VI's port by blinking its LED 8268 * @adap: the adapter 8269 * @mbox: mailbox to use for the FW command 8270 * @viid: the VI id 8271 * @nblinks: how many times to blink LED at 2.5 Hz 8272 * 8273 * Identifies a VI's port by blinking its LED. 8274 */ 8275 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 8276 unsigned int nblinks) 8277 { 8278 struct fw_vi_enable_cmd c; 8279 8280 memset(&c, 0, sizeof(c)); 8281 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) | 8282 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 8283 V_FW_VI_ENABLE_CMD_VIID(viid)); 8284 c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c)); 8285 c.blinkdur = cpu_to_be16(nblinks); 8286 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8287 } 8288 8289 /** 8290 * t4_iq_stop - stop an ingress queue and its FLs 8291 * @adap: the adapter 8292 * @mbox: mailbox to use for the FW command 8293 * @pf: the PF owning the queues 8294 * @vf: the VF owning the queues 8295 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 8296 * @iqid: ingress queue id 8297 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8298 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8299 * 8300 * Stops an ingress queue and its associated FLs, if any. This causes 8301 * any current or future data/messages destined for these queues to be 8302 * tossed. 8303 */ 8304 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, 8305 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8306 unsigned int fl0id, unsigned int fl1id) 8307 { 8308 struct fw_iq_cmd c; 8309 8310 memset(&c, 0, sizeof(c)); 8311 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | 8312 F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) | 8313 V_FW_IQ_CMD_VFN(vf)); 8314 c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c)); 8315 c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype)); 8316 c.iqid = cpu_to_be16(iqid); 8317 c.fl0id = cpu_to_be16(fl0id); 8318 c.fl1id = cpu_to_be16(fl1id); 8319 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8320 } 8321 8322 /** 8323 * t4_iq_free - free an ingress queue and its FLs 8324 * @adap: the adapter 8325 * @mbox: mailbox to use for the FW command 8326 * @pf: the PF owning the queues 8327 * @vf: the VF owning the queues 8328 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 8329 * @iqid: ingress queue id 8330 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8331 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8332 * 8333 * Frees an ingress queue and its associated FLs, if any. 8334 */ 8335 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8336 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8337 unsigned int fl0id, unsigned int fl1id) 8338 { 8339 struct fw_iq_cmd c; 8340 8341 memset(&c, 0, sizeof(c)); 8342 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | 8343 F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) | 8344 V_FW_IQ_CMD_VFN(vf)); 8345 c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c)); 8346 c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype)); 8347 c.iqid = cpu_to_be16(iqid); 8348 c.fl0id = cpu_to_be16(fl0id); 8349 c.fl1id = cpu_to_be16(fl1id); 8350 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8351 } 8352 8353 /** 8354 * t4_eth_eq_free - free an Ethernet egress queue 8355 * @adap: the adapter 8356 * @mbox: mailbox to use for the FW command 8357 * @pf: the PF owning the queue 8358 * @vf: the VF owning the queue 8359 * @eqid: egress queue id 8360 * 8361 * Frees an Ethernet egress queue. 8362 */ 8363 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8364 unsigned int vf, unsigned int eqid) 8365 { 8366 struct fw_eq_eth_cmd c; 8367 8368 memset(&c, 0, sizeof(c)); 8369 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | 8370 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 8371 V_FW_EQ_ETH_CMD_PFN(pf) | 8372 V_FW_EQ_ETH_CMD_VFN(vf)); 8373 c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c)); 8374 c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid)); 8375 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8376 } 8377 8378 /** 8379 * t4_ctrl_eq_free - free a control egress queue 8380 * @adap: the adapter 8381 * @mbox: mailbox to use for the FW command 8382 * @pf: the PF owning the queue 8383 * @vf: the VF owning the queue 8384 * @eqid: egress queue id 8385 * 8386 * Frees a control egress queue. 8387 */ 8388 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8389 unsigned int vf, unsigned int eqid) 8390 { 8391 struct fw_eq_ctrl_cmd c; 8392 8393 memset(&c, 0, sizeof(c)); 8394 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | 8395 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 8396 V_FW_EQ_CTRL_CMD_PFN(pf) | 8397 V_FW_EQ_CTRL_CMD_VFN(vf)); 8398 c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c)); 8399 c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid)); 8400 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8401 } 8402 8403 /** 8404 * t4_ofld_eq_free - free an offload egress queue 8405 * @adap: the adapter 8406 * @mbox: mailbox to use for the FW command 8407 * @pf: the PF owning the queue 8408 * @vf: the VF owning the queue 8409 * @eqid: egress queue id 8410 * 8411 * Frees a control egress queue. 8412 */ 8413 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8414 unsigned int vf, unsigned int eqid) 8415 { 8416 struct fw_eq_ofld_cmd c; 8417 8418 memset(&c, 0, sizeof(c)); 8419 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | 8420 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 8421 V_FW_EQ_OFLD_CMD_PFN(pf) | 8422 V_FW_EQ_OFLD_CMD_VFN(vf)); 8423 c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c)); 8424 c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid)); 8425 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8426 } 8427 8428 /** 8429 * t4_link_down_rc_str - return a string for a Link Down Reason Code 8430 * @link_down_rc: Link Down Reason Code 8431 * 8432 * Returns a string representation of the Link Down Reason Code. 8433 */ 8434 const char *t4_link_down_rc_str(unsigned char link_down_rc) 8435 { 8436 static const char *reason[] = { 8437 "Link Down", 8438 "Remote Fault", 8439 "Auto-negotiation Failure", 8440 "Reserved3", 8441 "Insufficient Airflow", 8442 "Unable To Determine Reason", 8443 "No RX Signal Detected", 8444 "Reserved7", 8445 }; 8446 8447 if (link_down_rc >= ARRAY_SIZE(reason)) 8448 return "Bad Reason Code"; 8449 8450 return reason[link_down_rc]; 8451 } 8452 8453 /* 8454 * Return the highest speed set in the port capabilities, in Mb/s. 8455 */ 8456 unsigned int fwcap_to_speed(uint32_t caps) 8457 { 8458 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 8459 do { \ 8460 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8461 return __speed; \ 8462 } while (0) 8463 8464 TEST_SPEED_RETURN(400G, 400000); 8465 TEST_SPEED_RETURN(200G, 200000); 8466 TEST_SPEED_RETURN(100G, 100000); 8467 TEST_SPEED_RETURN(50G, 50000); 8468 TEST_SPEED_RETURN(40G, 40000); 8469 TEST_SPEED_RETURN(25G, 25000); 8470 TEST_SPEED_RETURN(10G, 10000); 8471 TEST_SPEED_RETURN(1G, 1000); 8472 TEST_SPEED_RETURN(100M, 100); 8473 8474 #undef TEST_SPEED_RETURN 8475 8476 return 0; 8477 } 8478 8479 /* 8480 * Return the port capabilities bit for the given speed, which is in Mb/s. 8481 */ 8482 uint32_t speed_to_fwcap(unsigned int speed) 8483 { 8484 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 8485 do { \ 8486 if (speed == __speed) \ 8487 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 8488 } while (0) 8489 8490 TEST_SPEED_RETURN(400G, 400000); 8491 TEST_SPEED_RETURN(200G, 200000); 8492 TEST_SPEED_RETURN(100G, 100000); 8493 TEST_SPEED_RETURN(50G, 50000); 8494 TEST_SPEED_RETURN(40G, 40000); 8495 TEST_SPEED_RETURN(25G, 25000); 8496 TEST_SPEED_RETURN(10G, 10000); 8497 TEST_SPEED_RETURN(1G, 1000); 8498 TEST_SPEED_RETURN(100M, 100); 8499 8500 #undef TEST_SPEED_RETURN 8501 8502 return 0; 8503 } 8504 8505 /* 8506 * Return the port capabilities bit for the highest speed in the capabilities. 8507 */ 8508 uint32_t fwcap_top_speed(uint32_t caps) 8509 { 8510 #define TEST_SPEED_RETURN(__caps_speed) \ 8511 do { \ 8512 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8513 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 8514 } while (0) 8515 8516 TEST_SPEED_RETURN(400G); 8517 TEST_SPEED_RETURN(200G); 8518 TEST_SPEED_RETURN(100G); 8519 TEST_SPEED_RETURN(50G); 8520 TEST_SPEED_RETURN(40G); 8521 TEST_SPEED_RETURN(25G); 8522 TEST_SPEED_RETURN(10G); 8523 TEST_SPEED_RETURN(1G); 8524 TEST_SPEED_RETURN(100M); 8525 8526 #undef TEST_SPEED_RETURN 8527 8528 return 0; 8529 } 8530 8531 /** 8532 * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities 8533 * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value 8534 * 8535 * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new 8536 * 32-bit Port Capabilities value. 8537 */ 8538 static uint32_t lstatus_to_fwcap(u32 lstatus) 8539 { 8540 uint32_t linkattr = 0; 8541 8542 /* 8543 * Unfortunately the format of the Link Status in the old 8544 * 16-bit Port Information message isn't the same as the 8545 * 16-bit Port Capabilities bitfield used everywhere else ... 8546 */ 8547 if (lstatus & F_FW_PORT_CMD_RXPAUSE) 8548 linkattr |= FW_PORT_CAP32_FC_RX; 8549 if (lstatus & F_FW_PORT_CMD_TXPAUSE) 8550 linkattr |= FW_PORT_CAP32_FC_TX; 8551 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M)) 8552 linkattr |= FW_PORT_CAP32_SPEED_100M; 8553 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G)) 8554 linkattr |= FW_PORT_CAP32_SPEED_1G; 8555 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G)) 8556 linkattr |= FW_PORT_CAP32_SPEED_10G; 8557 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G)) 8558 linkattr |= FW_PORT_CAP32_SPEED_25G; 8559 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G)) 8560 linkattr |= FW_PORT_CAP32_SPEED_40G; 8561 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G)) 8562 linkattr |= FW_PORT_CAP32_SPEED_100G; 8563 8564 return linkattr; 8565 } 8566 8567 /* 8568 * Updates all fields owned by the common code in port_info and link_config 8569 * based on information provided by the firmware. Does not touch any 8570 * requested_* field. 8571 */ 8572 static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p, 8573 enum fw_port_action action, bool *mod_changed, bool *link_changed) 8574 { 8575 struct link_config old_lc, *lc = &pi->link_cfg; 8576 unsigned char fc; 8577 u32 stat, linkattr; 8578 int old_ptype, old_mtype; 8579 8580 old_ptype = pi->port_type; 8581 old_mtype = pi->mod_type; 8582 old_lc = *lc; 8583 if (action == FW_PORT_ACTION_GET_PORT_INFO) { 8584 stat = be32_to_cpu(p->u.info.lstatus_to_modtype); 8585 8586 pi->port_type = G_FW_PORT_CMD_PTYPE(stat); 8587 pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat); 8588 pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ? 8589 G_FW_PORT_CMD_MDIOADDR(stat) : -1; 8590 8591 lc->pcaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap)); 8592 lc->acaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap)); 8593 lc->lpacaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap)); 8594 lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0; 8595 lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat); 8596 8597 linkattr = lstatus_to_fwcap(stat); 8598 } else if (action == FW_PORT_ACTION_GET_PORT_INFO32) { 8599 stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32); 8600 8601 pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat); 8602 pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat); 8603 pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ? 8604 G_FW_PORT_CMD_MDIOADDR32(stat) : -1; 8605 8606 lc->pcaps = be32_to_cpu(p->u.info32.pcaps32); 8607 lc->acaps = be32_to_cpu(p->u.info32.acaps32); 8608 lc->lpacaps = be32_to_cpu(p->u.info32.lpacaps32); 8609 lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0; 8610 lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat); 8611 8612 linkattr = be32_to_cpu(p->u.info32.linkattr32); 8613 } else { 8614 CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action); 8615 return; 8616 } 8617 8618 lc->speed = fwcap_to_speed(linkattr); 8619 lc->fec = fwcap_to_fec(linkattr, true); 8620 8621 fc = 0; 8622 if (linkattr & FW_PORT_CAP32_FC_RX) 8623 fc |= PAUSE_RX; 8624 if (linkattr & FW_PORT_CAP32_FC_TX) 8625 fc |= PAUSE_TX; 8626 lc->fc = fc; 8627 8628 if (mod_changed != NULL) 8629 *mod_changed = false; 8630 if (link_changed != NULL) 8631 *link_changed = false; 8632 if (old_ptype != pi->port_type || old_mtype != pi->mod_type || 8633 old_lc.pcaps != lc->pcaps) { 8634 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) 8635 lc->fec_hint = fwcap_to_fec(lc->acaps, true); 8636 if (mod_changed != NULL) 8637 *mod_changed = true; 8638 } 8639 if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed || 8640 old_lc.fec != lc->fec || old_lc.fc != lc->fc) { 8641 if (link_changed != NULL) 8642 *link_changed = true; 8643 } 8644 } 8645 8646 /** 8647 * t4_update_port_info - retrieve and update port information if changed 8648 * @pi: the port_info 8649 * 8650 * We issue a Get Port Information Command to the Firmware and, if 8651 * successful, we check to see if anything is different from what we 8652 * last recorded and update things accordingly. 8653 */ 8654 int t4_update_port_info(struct port_info *pi) 8655 { 8656 struct adapter *sc = pi->adapter; 8657 struct fw_port_cmd cmd; 8658 enum fw_port_action action; 8659 int ret; 8660 8661 memset(&cmd, 0, sizeof(cmd)); 8662 cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) | 8663 F_FW_CMD_REQUEST | F_FW_CMD_READ | 8664 V_FW_PORT_CMD_PORTID(pi->tx_chan)); 8665 action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 : 8666 FW_PORT_ACTION_GET_PORT_INFO; 8667 cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) | 8668 FW_LEN16(cmd)); 8669 ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd); 8670 if (ret) 8671 return ret; 8672 8673 handle_port_info(pi, &cmd, action, NULL, NULL); 8674 return 0; 8675 } 8676 8677 /** 8678 * t4_handle_fw_rpl - process a FW reply message 8679 * @adap: the adapter 8680 * @rpl: start of the FW message 8681 * 8682 * Processes a FW message, such as link state change messages. 8683 */ 8684 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 8685 { 8686 u8 opcode = *(const u8 *)rpl; 8687 const struct fw_port_cmd *p = (const void *)rpl; 8688 enum fw_port_action action = 8689 G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16)); 8690 bool mod_changed, link_changed; 8691 8692 if (opcode == FW_PORT_CMD && 8693 (action == FW_PORT_ACTION_GET_PORT_INFO || 8694 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 8695 /* link/module state change message */ 8696 int i; 8697 int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid)); 8698 struct port_info *pi = NULL; 8699 struct link_config *lc; 8700 8701 for_each_port(adap, i) { 8702 pi = adap2pinfo(adap, i); 8703 if (pi->tx_chan == chan) 8704 break; 8705 } 8706 8707 lc = &pi->link_cfg; 8708 PORT_LOCK(pi); 8709 handle_port_info(pi, p, action, &mod_changed, &link_changed); 8710 PORT_UNLOCK(pi); 8711 if (mod_changed) 8712 t4_os_portmod_changed(pi); 8713 if (link_changed) { 8714 PORT_LOCK(pi); 8715 t4_os_link_changed(pi); 8716 PORT_UNLOCK(pi); 8717 } 8718 } else { 8719 CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode); 8720 return -EINVAL; 8721 } 8722 return 0; 8723 } 8724 8725 /** 8726 * get_pci_mode - determine a card's PCI mode 8727 * @adapter: the adapter 8728 * @p: where to store the PCI settings 8729 * 8730 * Determines a card's PCI mode and associated parameters, such as speed 8731 * and width. 8732 */ 8733 static void get_pci_mode(struct adapter *adapter, 8734 struct pci_params *p) 8735 { 8736 u16 val; 8737 u32 pcie_cap; 8738 8739 pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP); 8740 if (pcie_cap) { 8741 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val); 8742 p->speed = val & PCI_EXP_LNKSTA_CLS; 8743 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 8744 } 8745 } 8746 8747 struct flash_desc { 8748 u32 vendor_and_model_id; 8749 u32 size_mb; 8750 }; 8751 8752 int t4_get_flash_params(struct adapter *adapter) 8753 { 8754 /* 8755 * Table for non-standard supported Flash parts. Note, all Flash 8756 * parts must have 64KB sectors. 8757 */ 8758 static struct flash_desc supported_flash[] = { 8759 { 0x00150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 8760 }; 8761 8762 int ret; 8763 u32 flashid = 0; 8764 unsigned int part, manufacturer; 8765 unsigned int density, size = 0; 8766 8767 8768 /* 8769 * Issue a Read ID Command to the Flash part. We decode supported 8770 * Flash parts and their sizes from this. There's a newer Query 8771 * Command which can retrieve detailed geometry information but many 8772 * Flash parts don't support it. 8773 */ 8774 ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID); 8775 if (!ret) 8776 ret = sf1_read(adapter, 3, 0, 1, &flashid); 8777 t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ 8778 if (ret < 0) 8779 return ret; 8780 8781 /* 8782 * Check to see if it's one of our non-standard supported Flash parts. 8783 */ 8784 for (part = 0; part < ARRAY_SIZE(supported_flash); part++) 8785 if (supported_flash[part].vendor_and_model_id == flashid) { 8786 adapter->params.sf_size = 8787 supported_flash[part].size_mb; 8788 adapter->params.sf_nsec = 8789 adapter->params.sf_size / SF_SEC_SIZE; 8790 goto found; 8791 } 8792 8793 /* 8794 * Decode Flash part size. The code below looks repetative with 8795 * common encodings, but that's not guaranteed in the JEDEC 8796 * specification for the Read JADEC ID command. The only thing that 8797 * we're guaranteed by the JADEC specification is where the 8798 * Manufacturer ID is in the returned result. After that each 8799 * Manufacturer ~could~ encode things completely differently. 8800 * Note, all Flash parts must have 64KB sectors. 8801 */ 8802 manufacturer = flashid & 0xff; 8803 switch (manufacturer) { 8804 case 0x20: /* Micron/Numonix */ 8805 /* 8806 * This Density -> Size decoding table is taken from Micron 8807 * Data Sheets. 8808 */ 8809 density = (flashid >> 16) & 0xff; 8810 switch (density) { 8811 case 0x14: size = 1 << 20; break; /* 1MB */ 8812 case 0x15: size = 1 << 21; break; /* 2MB */ 8813 case 0x16: size = 1 << 22; break; /* 4MB */ 8814 case 0x17: size = 1 << 23; break; /* 8MB */ 8815 case 0x18: size = 1 << 24; break; /* 16MB */ 8816 case 0x19: size = 1 << 25; break; /* 32MB */ 8817 case 0x20: size = 1 << 26; break; /* 64MB */ 8818 case 0x21: size = 1 << 27; break; /* 128MB */ 8819 case 0x22: size = 1 << 28; break; /* 256MB */ 8820 } 8821 break; 8822 8823 case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */ 8824 /* 8825 * This Density -> Size decoding table is taken from ISSI 8826 * Data Sheets. 8827 */ 8828 density = (flashid >> 16) & 0xff; 8829 switch (density) { 8830 case 0x16: size = 1 << 25; break; /* 32MB */ 8831 case 0x17: size = 1 << 26; break; /* 64MB */ 8832 } 8833 break; 8834 8835 case 0xc2: /* Macronix */ 8836 /* 8837 * This Density -> Size decoding table is taken from Macronix 8838 * Data Sheets. 8839 */ 8840 density = (flashid >> 16) & 0xff; 8841 switch (density) { 8842 case 0x17: size = 1 << 23; break; /* 8MB */ 8843 case 0x18: size = 1 << 24; break; /* 16MB */ 8844 } 8845 break; 8846 8847 case 0xef: /* Winbond */ 8848 /* 8849 * This Density -> Size decoding table is taken from Winbond 8850 * Data Sheets. 8851 */ 8852 density = (flashid >> 16) & 0xff; 8853 switch (density) { 8854 case 0x17: size = 1 << 23; break; /* 8MB */ 8855 case 0x18: size = 1 << 24; break; /* 16MB */ 8856 } 8857 break; 8858 } 8859 8860 /* If we didn't recognize the FLASH part, that's no real issue: the 8861 * Hardware/Software contract says that Hardware will _*ALWAYS*_ 8862 * use a FLASH part which is at least 4MB in size and has 64KB 8863 * sectors. The unrecognized FLASH part is likely to be much larger 8864 * than 4MB, but that's all we really need. 8865 */ 8866 if (size == 0) { 8867 CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid); 8868 size = 1 << 22; 8869 } 8870 8871 /* 8872 * Store decoded Flash size and fall through into vetting code. 8873 */ 8874 adapter->params.sf_size = size; 8875 adapter->params.sf_nsec = size / SF_SEC_SIZE; 8876 8877 found: 8878 /* 8879 * We should ~probably~ reject adapters with FLASHes which are too 8880 * small but we have some legacy FPGAs with small FLASHes that we'd 8881 * still like to use. So instead we emit a scary message ... 8882 */ 8883 if (adapter->params.sf_size < FLASH_MIN_SIZE) 8884 CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n", 8885 flashid, adapter->params.sf_size, FLASH_MIN_SIZE); 8886 8887 return 0; 8888 } 8889 8890 static void set_pcie_completion_timeout(struct adapter *adapter, 8891 u8 range) 8892 { 8893 u16 val; 8894 u32 pcie_cap; 8895 8896 pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP); 8897 if (pcie_cap) { 8898 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val); 8899 val &= 0xfff0; 8900 val |= range ; 8901 t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val); 8902 } 8903 } 8904 8905 const struct chip_params *t4_get_chip_params(int chipid) 8906 { 8907 static const struct chip_params chip_params[] = { 8908 { 8909 /* T4 */ 8910 .nchan = NCHAN, 8911 .pm_stats_cnt = PM_NSTATS, 8912 .cng_ch_bits_log = 2, 8913 .nsched_cls = 15, 8914 .cim_num_obq = CIM_NUM_OBQ, 8915 .mps_rplc_size = 128, 8916 .vfcount = 128, 8917 .sge_fl_db = F_DBPRIO, 8918 .mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES, 8919 }, 8920 { 8921 /* T5 */ 8922 .nchan = NCHAN, 8923 .pm_stats_cnt = PM_NSTATS, 8924 .cng_ch_bits_log = 2, 8925 .nsched_cls = 16, 8926 .cim_num_obq = CIM_NUM_OBQ_T5, 8927 .mps_rplc_size = 128, 8928 .vfcount = 128, 8929 .sge_fl_db = F_DBPRIO | F_DBTYPE, 8930 .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES, 8931 }, 8932 { 8933 /* T6 */ 8934 .nchan = T6_NCHAN, 8935 .pm_stats_cnt = T6_PM_NSTATS, 8936 .cng_ch_bits_log = 3, 8937 .nsched_cls = 16, 8938 .cim_num_obq = CIM_NUM_OBQ_T5, 8939 .mps_rplc_size = 256, 8940 .vfcount = 256, 8941 .sge_fl_db = 0, 8942 .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES, 8943 }, 8944 }; 8945 8946 chipid -= CHELSIO_T4; 8947 if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params)) 8948 return NULL; 8949 8950 return &chip_params[chipid]; 8951 } 8952 8953 /** 8954 * t4_prep_adapter - prepare SW and HW for operation 8955 * @adapter: the adapter 8956 * @buf: temporary space of at least VPD_LEN size provided by the caller. 8957 * 8958 * Initialize adapter SW state for the various HW modules, set initial 8959 * values for some adapter tunables, take PHYs out of reset, and 8960 * initialize the MDIO interface. 8961 */ 8962 int t4_prep_adapter(struct adapter *adapter, u32 *buf) 8963 { 8964 int ret; 8965 uint16_t device_id; 8966 uint32_t pl_rev; 8967 8968 get_pci_mode(adapter, &adapter->params.pci); 8969 8970 pl_rev = t4_read_reg(adapter, A_PL_REV); 8971 adapter->params.chipid = G_CHIPID(pl_rev); 8972 adapter->params.rev = G_REV(pl_rev); 8973 if (adapter->params.chipid == 0) { 8974 /* T4 did not have chipid in PL_REV (T5 onwards do) */ 8975 adapter->params.chipid = CHELSIO_T4; 8976 8977 /* T4A1 chip is not supported */ 8978 if (adapter->params.rev == 1) { 8979 CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n"); 8980 return -EINVAL; 8981 } 8982 } 8983 8984 adapter->chip_params = t4_get_chip_params(chip_id(adapter)); 8985 if (adapter->chip_params == NULL) 8986 return -EINVAL; 8987 8988 adapter->params.pci.vpd_cap_addr = 8989 t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD); 8990 8991 ret = t4_get_flash_params(adapter); 8992 if (ret < 0) 8993 return ret; 8994 8995 /* Cards with real ASICs have the chipid in the PCIe device id */ 8996 t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id); 8997 if (device_id >> 12 == chip_id(adapter)) 8998 adapter->params.cim_la_size = CIMLA_SIZE; 8999 else { 9000 /* FPGA */ 9001 adapter->params.fpga = 1; 9002 adapter->params.cim_la_size = 2 * CIMLA_SIZE; 9003 } 9004 9005 ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf); 9006 if (ret < 0) 9007 return ret; 9008 9009 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 9010 9011 /* 9012 * Default port and clock for debugging in case we can't reach FW. 9013 */ 9014 adapter->params.nports = 1; 9015 adapter->params.portvec = 1; 9016 adapter->params.vpd.cclk = 50000; 9017 9018 /* Set pci completion timeout value to 4 seconds. */ 9019 set_pcie_completion_timeout(adapter, 0xd); 9020 return 0; 9021 } 9022 9023 /** 9024 * t4_shutdown_adapter - shut down adapter, host & wire 9025 * @adapter: the adapter 9026 * 9027 * Perform an emergency shutdown of the adapter and stop it from 9028 * continuing any further communication on the ports or DMA to the 9029 * host. This is typically used when the adapter and/or firmware 9030 * have crashed and we want to prevent any further accidental 9031 * communication with the rest of the world. This will also force 9032 * the port Link Status to go down -- if register writes work -- 9033 * which should help our peers figure out that we're down. 9034 */ 9035 int t4_shutdown_adapter(struct adapter *adapter) 9036 { 9037 int port; 9038 9039 t4_intr_disable(adapter); 9040 t4_write_reg(adapter, A_DBG_GPIO_EN, 0); 9041 for_each_port(adapter, port) { 9042 u32 a_port_cfg = is_t4(adapter) ? 9043 PORT_REG(port, A_XGMAC_PORT_CFG) : 9044 T5_PORT_REG(port, A_MAC_PORT_CFG); 9045 9046 t4_write_reg(adapter, a_port_cfg, 9047 t4_read_reg(adapter, a_port_cfg) 9048 & ~V_SIGNAL_DET(1)); 9049 } 9050 t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0); 9051 9052 return 0; 9053 } 9054 9055 /** 9056 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 9057 * @adapter: the adapter 9058 * @qid: the Queue ID 9059 * @qtype: the Ingress or Egress type for @qid 9060 * @user: true if this request is for a user mode queue 9061 * @pbar2_qoffset: BAR2 Queue Offset 9062 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 9063 * 9064 * Returns the BAR2 SGE Queue Registers information associated with the 9065 * indicated Absolute Queue ID. These are passed back in return value 9066 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 9067 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 9068 * 9069 * This may return an error which indicates that BAR2 SGE Queue 9070 * registers aren't available. If an error is not returned, then the 9071 * following values are returned: 9072 * 9073 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 9074 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 9075 * 9076 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 9077 * require the "Inferred Queue ID" ability may be used. E.g. the 9078 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 9079 * then these "Inferred Queue ID" register may not be used. 9080 */ 9081 int t4_bar2_sge_qregs(struct adapter *adapter, 9082 unsigned int qid, 9083 enum t4_bar2_qtype qtype, 9084 int user, 9085 u64 *pbar2_qoffset, 9086 unsigned int *pbar2_qid) 9087 { 9088 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 9089 u64 bar2_page_offset, bar2_qoffset; 9090 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 9091 9092 /* T4 doesn't support BAR2 SGE Queue registers for kernel 9093 * mode queues. 9094 */ 9095 if (!user && is_t4(adapter)) 9096 return -EINVAL; 9097 9098 /* Get our SGE Page Size parameters. 9099 */ 9100 page_shift = adapter->params.sge.page_shift; 9101 page_size = 1 << page_shift; 9102 9103 /* Get the right Queues per Page parameters for our Queue. 9104 */ 9105 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 9106 ? adapter->params.sge.eq_s_qpp 9107 : adapter->params.sge.iq_s_qpp); 9108 qpp_mask = (1 << qpp_shift) - 1; 9109 9110 /* Calculate the basics of the BAR2 SGE Queue register area: 9111 * o The BAR2 page the Queue registers will be in. 9112 * o The BAR2 Queue ID. 9113 * o The BAR2 Queue ID Offset into the BAR2 page. 9114 */ 9115 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 9116 bar2_qid = qid & qpp_mask; 9117 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 9118 9119 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 9120 * hardware will infer the Absolute Queue ID simply from the writes to 9121 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 9122 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 9123 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 9124 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 9125 * from the BAR2 Page and BAR2 Queue ID. 9126 * 9127 * One important censequence of this is that some BAR2 SGE registers 9128 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 9129 * there. But other registers synthesize the SGE Queue ID purely 9130 * from the writes to the registers -- the Write Combined Doorbell 9131 * Buffer is a good example. These BAR2 SGE Registers are only 9132 * available for those BAR2 SGE Register areas where the SGE Absolute 9133 * Queue ID can be inferred from simple writes. 9134 */ 9135 bar2_qoffset = bar2_page_offset; 9136 bar2_qinferred = (bar2_qid_offset < page_size); 9137 if (bar2_qinferred) { 9138 bar2_qoffset += bar2_qid_offset; 9139 bar2_qid = 0; 9140 } 9141 9142 *pbar2_qoffset = bar2_qoffset; 9143 *pbar2_qid = bar2_qid; 9144 return 0; 9145 } 9146 9147 /** 9148 * t4_init_devlog_params - initialize adapter->params.devlog 9149 * @adap: the adapter 9150 * @fw_attach: whether we can talk to the firmware 9151 * 9152 * Initialize various fields of the adapter's Firmware Device Log 9153 * Parameters structure. 9154 */ 9155 int t4_init_devlog_params(struct adapter *adap, int fw_attach) 9156 { 9157 struct devlog_params *dparams = &adap->params.devlog; 9158 u32 pf_dparams; 9159 unsigned int devlog_meminfo; 9160 struct fw_devlog_cmd devlog_cmd; 9161 int ret; 9162 9163 /* If we're dealing with newer firmware, the Device Log Paramerters 9164 * are stored in a designated register which allows us to access the 9165 * Device Log even if we can't talk to the firmware. 9166 */ 9167 pf_dparams = 9168 t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG)); 9169 if (pf_dparams) { 9170 unsigned int nentries, nentries128; 9171 9172 dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams); 9173 dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4; 9174 9175 nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams); 9176 nentries = (nentries128 + 1) * 128; 9177 dparams->size = nentries * sizeof(struct fw_devlog_e); 9178 9179 return 0; 9180 } 9181 9182 /* 9183 * For any failing returns ... 9184 */ 9185 memset(dparams, 0, sizeof *dparams); 9186 9187 /* 9188 * If we can't talk to the firmware, there's really nothing we can do 9189 * at this point. 9190 */ 9191 if (!fw_attach) 9192 return -ENXIO; 9193 9194 /* Otherwise, ask the firmware for it's Device Log Parameters. 9195 */ 9196 memset(&devlog_cmd, 0, sizeof devlog_cmd); 9197 devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) | 9198 F_FW_CMD_REQUEST | F_FW_CMD_READ); 9199 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 9200 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 9201 &devlog_cmd); 9202 if (ret) 9203 return ret; 9204 9205 devlog_meminfo = 9206 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); 9207 dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo); 9208 dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4; 9209 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); 9210 9211 return 0; 9212 } 9213 9214 /** 9215 * t4_init_sge_params - initialize adap->params.sge 9216 * @adapter: the adapter 9217 * 9218 * Initialize various fields of the adapter's SGE Parameters structure. 9219 */ 9220 int t4_init_sge_params(struct adapter *adapter) 9221 { 9222 u32 r; 9223 struct sge_params *sp = &adapter->params.sge; 9224 unsigned i, tscale = 1; 9225 9226 r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD); 9227 sp->counter_val[0] = G_THRESHOLD_0(r); 9228 sp->counter_val[1] = G_THRESHOLD_1(r); 9229 sp->counter_val[2] = G_THRESHOLD_2(r); 9230 sp->counter_val[3] = G_THRESHOLD_3(r); 9231 9232 if (chip_id(adapter) >= CHELSIO_T6) { 9233 r = t4_read_reg(adapter, A_SGE_ITP_CONTROL); 9234 tscale = G_TSCALE(r); 9235 if (tscale == 0) 9236 tscale = 1; 9237 else 9238 tscale += 2; 9239 } 9240 9241 r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1); 9242 sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale; 9243 sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale; 9244 r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3); 9245 sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale; 9246 sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale; 9247 r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5); 9248 sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale; 9249 sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale; 9250 9251 r = t4_read_reg(adapter, A_SGE_CONM_CTRL); 9252 sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1; 9253 if (is_t4(adapter)) 9254 sp->fl_starve_threshold2 = sp->fl_starve_threshold; 9255 else if (is_t5(adapter)) 9256 sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1; 9257 else 9258 sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1; 9259 9260 /* egress queues: log2 of # of doorbells per BAR2 page */ 9261 r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF); 9262 r >>= S_QUEUESPERPAGEPF0 + 9263 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf; 9264 sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0; 9265 9266 /* ingress queues: log2 of # of doorbells per BAR2 page */ 9267 r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF); 9268 r >>= S_QUEUESPERPAGEPF0 + 9269 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf; 9270 sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0; 9271 9272 r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE); 9273 r >>= S_HOSTPAGESIZEPF0 + 9274 (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf; 9275 sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10; 9276 9277 r = t4_read_reg(adapter, A_SGE_CONTROL); 9278 sp->sge_control = r; 9279 sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64; 9280 sp->fl_pktshift = G_PKTSHIFT(r); 9281 if (chip_id(adapter) <= CHELSIO_T5) { 9282 sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) + 9283 X_INGPADBOUNDARY_SHIFT); 9284 } else { 9285 sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) + 9286 X_T6_INGPADBOUNDARY_SHIFT); 9287 } 9288 if (is_t4(adapter)) 9289 sp->pack_boundary = sp->pad_boundary; 9290 else { 9291 r = t4_read_reg(adapter, A_SGE_CONTROL2); 9292 if (G_INGPACKBOUNDARY(r) == 0) 9293 sp->pack_boundary = 16; 9294 else 9295 sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5); 9296 } 9297 for (i = 0; i < SGE_FLBUF_SIZES; i++) 9298 sp->sge_fl_buffer_size[i] = t4_read_reg(adapter, 9299 A_SGE_FL_BUFFER_SIZE0 + (4 * i)); 9300 9301 return 0; 9302 } 9303 9304 /* 9305 * Read and cache the adapter's compressed filter mode and ingress config. 9306 */ 9307 static void read_filter_mode_and_ingress_config(struct adapter *adap, 9308 bool sleep_ok) 9309 { 9310 uint32_t v; 9311 struct tp_params *tpp = &adap->params.tp; 9312 9313 t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP, 9314 sleep_ok); 9315 t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG, 9316 sleep_ok); 9317 9318 /* 9319 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 9320 * shift positions of several elements of the Compressed Filter Tuple 9321 * for this adapter which we need frequently ... 9322 */ 9323 tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE); 9324 tpp->port_shift = t4_filter_field_shift(adap, F_PORT); 9325 tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID); 9326 tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN); 9327 tpp->tos_shift = t4_filter_field_shift(adap, F_TOS); 9328 tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL); 9329 tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE); 9330 tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH); 9331 tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE); 9332 tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION); 9333 9334 if (chip_id(adap) > CHELSIO_T4) { 9335 v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3)); 9336 adap->params.tp.hash_filter_mask = v; 9337 v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4)); 9338 adap->params.tp.hash_filter_mask |= (u64)v << 32; 9339 } 9340 } 9341 9342 /** 9343 * t4_init_tp_params - initialize adap->params.tp 9344 * @adap: the adapter 9345 * 9346 * Initialize various fields of the adapter's TP Parameters structure. 9347 */ 9348 int t4_init_tp_params(struct adapter *adap, bool sleep_ok) 9349 { 9350 int chan; 9351 u32 v; 9352 struct tp_params *tpp = &adap->params.tp; 9353 9354 v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION); 9355 tpp->tre = G_TIMERRESOLUTION(v); 9356 tpp->dack_re = G_DELAYEDACKRESOLUTION(v); 9357 9358 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 9359 for (chan = 0; chan < MAX_NCHAN; chan++) 9360 tpp->tx_modq[chan] = chan; 9361 9362 read_filter_mode_and_ingress_config(adap, sleep_ok); 9363 9364 /* 9365 * Cache a mask of the bits that represent the error vector portion of 9366 * rx_pkt.err_vec. T6+ can use a compressed error vector to make room 9367 * for information about outer encapsulation (GENEVE/VXLAN/NVGRE). 9368 */ 9369 tpp->err_vec_mask = htobe16(0xffff); 9370 if (chip_id(adap) > CHELSIO_T5) { 9371 v = t4_read_reg(adap, A_TP_OUT_CONFIG); 9372 if (v & F_CRXPKTENC) { 9373 tpp->err_vec_mask = 9374 htobe16(V_T6_COMPR_RXERR_VEC(M_T6_COMPR_RXERR_VEC)); 9375 } 9376 } 9377 9378 return 0; 9379 } 9380 9381 /** 9382 * t4_filter_field_shift - calculate filter field shift 9383 * @adap: the adapter 9384 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 9385 * 9386 * Return the shift position of a filter field within the Compressed 9387 * Filter Tuple. The filter field is specified via its selection bit 9388 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 9389 */ 9390 int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 9391 { 9392 unsigned int filter_mode = adap->params.tp.vlan_pri_map; 9393 unsigned int sel; 9394 int field_shift; 9395 9396 if ((filter_mode & filter_sel) == 0) 9397 return -1; 9398 9399 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 9400 switch (filter_mode & sel) { 9401 case F_FCOE: 9402 field_shift += W_FT_FCOE; 9403 break; 9404 case F_PORT: 9405 field_shift += W_FT_PORT; 9406 break; 9407 case F_VNIC_ID: 9408 field_shift += W_FT_VNIC_ID; 9409 break; 9410 case F_VLAN: 9411 field_shift += W_FT_VLAN; 9412 break; 9413 case F_TOS: 9414 field_shift += W_FT_TOS; 9415 break; 9416 case F_PROTOCOL: 9417 field_shift += W_FT_PROTOCOL; 9418 break; 9419 case F_ETHERTYPE: 9420 field_shift += W_FT_ETHERTYPE; 9421 break; 9422 case F_MACMATCH: 9423 field_shift += W_FT_MACMATCH; 9424 break; 9425 case F_MPSHITTYPE: 9426 field_shift += W_FT_MPSHITTYPE; 9427 break; 9428 case F_FRAGMENTATION: 9429 field_shift += W_FT_FRAGMENTATION; 9430 break; 9431 } 9432 } 9433 return field_shift; 9434 } 9435 9436 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id) 9437 { 9438 u8 addr[6]; 9439 int ret, i, j; 9440 struct port_info *p = adap2pinfo(adap, port_id); 9441 u32 param, val; 9442 struct vi_info *vi = &p->vi[0]; 9443 9444 for (i = 0, j = -1; i <= p->port_id; i++) { 9445 do { 9446 j++; 9447 } while ((adap->params.portvec & (1 << j)) == 0); 9448 } 9449 9450 p->tx_chan = j; 9451 p->mps_bg_map = t4_get_mps_bg_map(adap, j); 9452 p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j); 9453 p->lport = j; 9454 9455 if (!(adap->flags & IS_VF) || 9456 adap->params.vfres.r_caps & FW_CMD_CAP_PORT) { 9457 t4_update_port_info(p); 9458 } 9459 9460 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &vi->rss_size, 9461 &vi->vfvld, &vi->vin); 9462 if (ret < 0) 9463 return ret; 9464 9465 vi->viid = ret; 9466 t4_os_set_hw_addr(p, addr); 9467 9468 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 9469 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 9470 V_FW_PARAMS_PARAM_YZ(vi->viid); 9471 ret = t4_query_params(adap, mbox, pf, vf, 1, ¶m, &val); 9472 if (ret) 9473 vi->rss_base = 0xffff; 9474 else { 9475 /* MPASS((val >> 16) == rss_size); */ 9476 vi->rss_base = val & 0xffff; 9477 } 9478 9479 return 0; 9480 } 9481 9482 /** 9483 * t4_read_cimq_cfg - read CIM queue configuration 9484 * @adap: the adapter 9485 * @base: holds the queue base addresses in bytes 9486 * @size: holds the queue sizes in bytes 9487 * @thres: holds the queue full thresholds in bytes 9488 * 9489 * Returns the current configuration of the CIM queues, starting with 9490 * the IBQs, then the OBQs. 9491 */ 9492 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 9493 { 9494 unsigned int i, v; 9495 int cim_num_obq = adap->chip_params->cim_num_obq; 9496 9497 for (i = 0; i < CIM_NUM_IBQ; i++) { 9498 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT | 9499 V_QUENUMSELECT(i)); 9500 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL); 9501 /* value is in 256-byte units */ 9502 *base++ = G_CIMQBASE(v) * 256; 9503 *size++ = G_CIMQSIZE(v) * 256; 9504 *thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */ 9505 } 9506 for (i = 0; i < cim_num_obq; i++) { 9507 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT | 9508 V_QUENUMSELECT(i)); 9509 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL); 9510 /* value is in 256-byte units */ 9511 *base++ = G_CIMQBASE(v) * 256; 9512 *size++ = G_CIMQSIZE(v) * 256; 9513 } 9514 } 9515 9516 /** 9517 * t4_read_cim_ibq - read the contents of a CIM inbound queue 9518 * @adap: the adapter 9519 * @qid: the queue index 9520 * @data: where to store the queue contents 9521 * @n: capacity of @data in 32-bit words 9522 * 9523 * Reads the contents of the selected CIM queue starting at address 0 up 9524 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9525 * error and the number of 32-bit words actually read on success. 9526 */ 9527 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9528 { 9529 int i, err, attempts; 9530 unsigned int addr; 9531 const unsigned int nwords = CIM_IBQ_SIZE * 4; 9532 9533 if (qid > 5 || (n & 3)) 9534 return -EINVAL; 9535 9536 addr = qid * nwords; 9537 if (n > nwords) 9538 n = nwords; 9539 9540 /* It might take 3-10ms before the IBQ debug read access is allowed. 9541 * Wait for 1 Sec with a delay of 1 usec. 9542 */ 9543 attempts = 1000000; 9544 9545 for (i = 0; i < n; i++, addr++) { 9546 t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) | 9547 F_IBQDBGEN); 9548 err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0, 9549 attempts, 1); 9550 if (err) 9551 return err; 9552 *data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA); 9553 } 9554 t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0); 9555 return i; 9556 } 9557 9558 /** 9559 * t4_read_cim_obq - read the contents of a CIM outbound queue 9560 * @adap: the adapter 9561 * @qid: the queue index 9562 * @data: where to store the queue contents 9563 * @n: capacity of @data in 32-bit words 9564 * 9565 * Reads the contents of the selected CIM queue starting at address 0 up 9566 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9567 * error and the number of 32-bit words actually read on success. 9568 */ 9569 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9570 { 9571 int i, err; 9572 unsigned int addr, v, nwords; 9573 int cim_num_obq = adap->chip_params->cim_num_obq; 9574 9575 if ((qid > (cim_num_obq - 1)) || (n & 3)) 9576 return -EINVAL; 9577 9578 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT | 9579 V_QUENUMSELECT(qid)); 9580 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL); 9581 9582 addr = G_CIMQBASE(v) * 64; /* muliple of 256 -> muliple of 4 */ 9583 nwords = G_CIMQSIZE(v) * 64; /* same */ 9584 if (n > nwords) 9585 n = nwords; 9586 9587 for (i = 0; i < n; i++, addr++) { 9588 t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) | 9589 F_OBQDBGEN); 9590 err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0, 9591 2, 1); 9592 if (err) 9593 return err; 9594 *data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA); 9595 } 9596 t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0); 9597 return i; 9598 } 9599 9600 enum { 9601 CIM_QCTL_BASE = 0, 9602 CIM_CTL_BASE = 0x2000, 9603 CIM_PBT_ADDR_BASE = 0x2800, 9604 CIM_PBT_LRF_BASE = 0x3000, 9605 CIM_PBT_DATA_BASE = 0x3800 9606 }; 9607 9608 /** 9609 * t4_cim_read - read a block from CIM internal address space 9610 * @adap: the adapter 9611 * @addr: the start address within the CIM address space 9612 * @n: number of words to read 9613 * @valp: where to store the result 9614 * 9615 * Reads a block of 4-byte words from the CIM intenal address space. 9616 */ 9617 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 9618 unsigned int *valp) 9619 { 9620 int ret = 0; 9621 9622 if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY) 9623 return -EBUSY; 9624 9625 for ( ; !ret && n--; addr += 4) { 9626 t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr); 9627 ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY, 9628 0, 5, 2); 9629 if (!ret) 9630 *valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA); 9631 } 9632 return ret; 9633 } 9634 9635 /** 9636 * t4_cim_write - write a block into CIM internal address space 9637 * @adap: the adapter 9638 * @addr: the start address within the CIM address space 9639 * @n: number of words to write 9640 * @valp: set of values to write 9641 * 9642 * Writes a block of 4-byte words into the CIM intenal address space. 9643 */ 9644 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 9645 const unsigned int *valp) 9646 { 9647 int ret = 0; 9648 9649 if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY) 9650 return -EBUSY; 9651 9652 for ( ; !ret && n--; addr += 4) { 9653 t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++); 9654 t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE); 9655 ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY, 9656 0, 5, 2); 9657 } 9658 return ret; 9659 } 9660 9661 static int t4_cim_write1(struct adapter *adap, unsigned int addr, 9662 unsigned int val) 9663 { 9664 return t4_cim_write(adap, addr, 1, &val); 9665 } 9666 9667 /** 9668 * t4_cim_ctl_read - read a block from CIM control region 9669 * @adap: the adapter 9670 * @addr: the start address within the CIM control region 9671 * @n: number of words to read 9672 * @valp: where to store the result 9673 * 9674 * Reads a block of 4-byte words from the CIM control region. 9675 */ 9676 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n, 9677 unsigned int *valp) 9678 { 9679 return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp); 9680 } 9681 9682 /** 9683 * t4_cim_read_la - read CIM LA capture buffer 9684 * @adap: the adapter 9685 * @la_buf: where to store the LA data 9686 * @wrptr: the HW write pointer within the capture buffer 9687 * 9688 * Reads the contents of the CIM LA buffer with the most recent entry at 9689 * the end of the returned data and with the entry at @wrptr first. 9690 * We try to leave the LA in the running state we find it in. 9691 */ 9692 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 9693 { 9694 int i, ret; 9695 unsigned int cfg, val, idx; 9696 9697 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg); 9698 if (ret) 9699 return ret; 9700 9701 if (cfg & F_UPDBGLAEN) { /* LA is running, freeze it */ 9702 ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0); 9703 if (ret) 9704 return ret; 9705 } 9706 9707 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val); 9708 if (ret) 9709 goto restart; 9710 9711 idx = G_UPDBGLAWRPTR(val); 9712 if (wrptr) 9713 *wrptr = idx; 9714 9715 for (i = 0; i < adap->params.cim_la_size; i++) { 9716 ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 9717 V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN); 9718 if (ret) 9719 break; 9720 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val); 9721 if (ret) 9722 break; 9723 if (val & F_UPDBGLARDEN) { 9724 ret = -ETIMEDOUT; 9725 break; 9726 } 9727 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]); 9728 if (ret) 9729 break; 9730 9731 /* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */ 9732 idx = (idx + 1) & M_UPDBGLARDPTR; 9733 /* 9734 * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to 9735 * identify the 32-bit portion of the full 312-bit data 9736 */ 9737 if (is_t6(adap)) 9738 while ((idx & 0xf) > 9) 9739 idx = (idx + 1) % M_UPDBGLARDPTR; 9740 } 9741 restart: 9742 if (cfg & F_UPDBGLAEN) { 9743 int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 9744 cfg & ~F_UPDBGLARDEN); 9745 if (!ret) 9746 ret = r; 9747 } 9748 return ret; 9749 } 9750 9751 /** 9752 * t4_tp_read_la - read TP LA capture buffer 9753 * @adap: the adapter 9754 * @la_buf: where to store the LA data 9755 * @wrptr: the HW write pointer within the capture buffer 9756 * 9757 * Reads the contents of the TP LA buffer with the most recent entry at 9758 * the end of the returned data and with the entry at @wrptr first. 9759 * We leave the LA in the running state we find it in. 9760 */ 9761 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 9762 { 9763 bool last_incomplete; 9764 unsigned int i, cfg, val, idx; 9765 9766 cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff; 9767 if (cfg & F_DBGLAENABLE) /* freeze LA */ 9768 t4_write_reg(adap, A_TP_DBG_LA_CONFIG, 9769 adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE)); 9770 9771 val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG); 9772 idx = G_DBGLAWPTR(val); 9773 last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0; 9774 if (last_incomplete) 9775 idx = (idx + 1) & M_DBGLARPTR; 9776 if (wrptr) 9777 *wrptr = idx; 9778 9779 val &= 0xffff; 9780 val &= ~V_DBGLARPTR(M_DBGLARPTR); 9781 val |= adap->params.tp.la_mask; 9782 9783 for (i = 0; i < TPLA_SIZE; i++) { 9784 t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val); 9785 la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL); 9786 idx = (idx + 1) & M_DBGLARPTR; 9787 } 9788 9789 /* Wipe out last entry if it isn't valid */ 9790 if (last_incomplete) 9791 la_buf[TPLA_SIZE - 1] = ~0ULL; 9792 9793 if (cfg & F_DBGLAENABLE) /* restore running state */ 9794 t4_write_reg(adap, A_TP_DBG_LA_CONFIG, 9795 cfg | adap->params.tp.la_mask); 9796 } 9797 9798 /* 9799 * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in 9800 * seconds). If we find one of the SGE Ingress DMA State Machines in the same 9801 * state for more than the Warning Threshold then we'll issue a warning about 9802 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel 9803 * appears to be hung every Warning Repeat second till the situation clears. 9804 * If the situation clears, we'll note that as well. 9805 */ 9806 #define SGE_IDMA_WARN_THRESH 1 9807 #define SGE_IDMA_WARN_REPEAT 300 9808 9809 /** 9810 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor 9811 * @adapter: the adapter 9812 * @idma: the adapter IDMA Monitor state 9813 * 9814 * Initialize the state of an SGE Ingress DMA Monitor. 9815 */ 9816 void t4_idma_monitor_init(struct adapter *adapter, 9817 struct sge_idma_monitor_state *idma) 9818 { 9819 /* Initialize the state variables for detecting an SGE Ingress DMA 9820 * hang. The SGE has internal counters which count up on each clock 9821 * tick whenever the SGE finds its Ingress DMA State Engines in the 9822 * same state they were on the previous clock tick. The clock used is 9823 * the Core Clock so we have a limit on the maximum "time" they can 9824 * record; typically a very small number of seconds. For instance, 9825 * with a 600MHz Core Clock, we can only count up to a bit more than 9826 * 7s. So we'll synthesize a larger counter in order to not run the 9827 * risk of having the "timers" overflow and give us the flexibility to 9828 * maintain a Hung SGE State Machine of our own which operates across 9829 * a longer time frame. 9830 */ 9831 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ 9832 idma->idma_stalled[0] = idma->idma_stalled[1] = 0; 9833 } 9834 9835 /** 9836 * t4_idma_monitor - monitor SGE Ingress DMA state 9837 * @adapter: the adapter 9838 * @idma: the adapter IDMA Monitor state 9839 * @hz: number of ticks/second 9840 * @ticks: number of ticks since the last IDMA Monitor call 9841 */ 9842 void t4_idma_monitor(struct adapter *adapter, 9843 struct sge_idma_monitor_state *idma, 9844 int hz, int ticks) 9845 { 9846 int i, idma_same_state_cnt[2]; 9847 9848 /* Read the SGE Debug Ingress DMA Same State Count registers. These 9849 * are counters inside the SGE which count up on each clock when the 9850 * SGE finds its Ingress DMA State Engines in the same states they 9851 * were in the previous clock. The counters will peg out at 9852 * 0xffffffff without wrapping around so once they pass the 1s 9853 * threshold they'll stay above that till the IDMA state changes. 9854 */ 9855 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13); 9856 idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH); 9857 idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW); 9858 9859 for (i = 0; i < 2; i++) { 9860 u32 debug0, debug11; 9861 9862 /* If the Ingress DMA Same State Counter ("timer") is less 9863 * than 1s, then we can reset our synthesized Stall Timer and 9864 * continue. If we have previously emitted warnings about a 9865 * potential stalled Ingress Queue, issue a note indicating 9866 * that the Ingress Queue has resumed forward progress. 9867 */ 9868 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { 9869 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz) 9870 CH_WARN(adapter, "SGE idma%d, queue %u, " 9871 "resumed after %d seconds\n", 9872 i, idma->idma_qid[i], 9873 idma->idma_stalled[i]/hz); 9874 idma->idma_stalled[i] = 0; 9875 continue; 9876 } 9877 9878 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 9879 * domain. The first time we get here it'll be because we 9880 * passed the 1s Threshold; each additional time it'll be 9881 * because the RX Timer Callback is being fired on its regular 9882 * schedule. 9883 * 9884 * If the stall is below our Potential Hung Ingress Queue 9885 * Warning Threshold, continue. 9886 */ 9887 if (idma->idma_stalled[i] == 0) { 9888 idma->idma_stalled[i] = hz; 9889 idma->idma_warn[i] = 0; 9890 } else { 9891 idma->idma_stalled[i] += ticks; 9892 idma->idma_warn[i] -= ticks; 9893 } 9894 9895 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz) 9896 continue; 9897 9898 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. 9899 */ 9900 if (idma->idma_warn[i] > 0) 9901 continue; 9902 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz; 9903 9904 /* Read and save the SGE IDMA State and Queue ID information. 9905 * We do this every time in case it changes across time ... 9906 * can't be too careful ... 9907 */ 9908 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0); 9909 debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW); 9910 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 9911 9912 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11); 9913 debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW); 9914 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 9915 9916 CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in " 9917 " state %u for %d seconds (debug0=%#x, debug11=%#x)\n", 9918 i, idma->idma_qid[i], idma->idma_state[i], 9919 idma->idma_stalled[i]/hz, 9920 debug0, debug11); 9921 t4_sge_decode_idma_state(adapter, idma->idma_state[i]); 9922 } 9923 } 9924 9925 /** 9926 * t4_read_pace_tbl - read the pace table 9927 * @adap: the adapter 9928 * @pace_vals: holds the returned values 9929 * 9930 * Returns the values of TP's pace table in microseconds. 9931 */ 9932 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED]) 9933 { 9934 unsigned int i, v; 9935 9936 for (i = 0; i < NTX_SCHED; i++) { 9937 t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i); 9938 v = t4_read_reg(adap, A_TP_PACE_TABLE); 9939 pace_vals[i] = dack_ticks_to_usec(adap, v); 9940 } 9941 } 9942 9943 /** 9944 * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler 9945 * @adap: the adapter 9946 * @sched: the scheduler index 9947 * @kbps: the byte rate in Kbps 9948 * @ipg: the interpacket delay in tenths of nanoseconds 9949 * 9950 * Return the current configuration of a HW Tx scheduler. 9951 */ 9952 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps, 9953 unsigned int *ipg, bool sleep_ok) 9954 { 9955 unsigned int v, addr, bpt, cpt; 9956 9957 if (kbps) { 9958 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2; 9959 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 9960 if (sched & 1) 9961 v >>= 16; 9962 bpt = (v >> 8) & 0xff; 9963 cpt = v & 0xff; 9964 if (!cpt) 9965 *kbps = 0; /* scheduler disabled */ 9966 else { 9967 v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */ 9968 *kbps = (v * bpt) / 125; 9969 } 9970 } 9971 if (ipg) { 9972 addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2; 9973 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 9974 if (sched & 1) 9975 v >>= 16; 9976 v &= 0xffff; 9977 *ipg = (10000 * v) / core_ticks_per_usec(adap); 9978 } 9979 } 9980 9981 /** 9982 * t4_load_cfg - download config file 9983 * @adap: the adapter 9984 * @cfg_data: the cfg text file to write 9985 * @size: text file size 9986 * 9987 * Write the supplied config text file to the card's serial flash. 9988 */ 9989 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 9990 { 9991 int ret, i, n, cfg_addr; 9992 unsigned int addr; 9993 unsigned int flash_cfg_start_sec; 9994 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 9995 9996 cfg_addr = t4_flash_cfg_addr(adap); 9997 if (cfg_addr < 0) 9998 return cfg_addr; 9999 10000 addr = cfg_addr; 10001 flash_cfg_start_sec = addr / SF_SEC_SIZE; 10002 10003 if (size > FLASH_CFG_MAX_SIZE) { 10004 CH_ERR(adap, "cfg file too large, max is %u bytes\n", 10005 FLASH_CFG_MAX_SIZE); 10006 return -EFBIG; 10007 } 10008 10009 i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ 10010 sf_sec_size); 10011 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 10012 flash_cfg_start_sec + i - 1); 10013 /* 10014 * If size == 0 then we're simply erasing the FLASH sectors associated 10015 * with the on-adapter Firmware Configuration File. 10016 */ 10017 if (ret || size == 0) 10018 goto out; 10019 10020 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 10021 for (i = 0; i< size; i+= SF_PAGE_SIZE) { 10022 if ( (size - i) < SF_PAGE_SIZE) 10023 n = size - i; 10024 else 10025 n = SF_PAGE_SIZE; 10026 ret = t4_write_flash(adap, addr, n, cfg_data, 1); 10027 if (ret) 10028 goto out; 10029 10030 addr += SF_PAGE_SIZE; 10031 cfg_data += SF_PAGE_SIZE; 10032 } 10033 10034 out: 10035 if (ret) 10036 CH_ERR(adap, "config file %s failed %d\n", 10037 (size == 0 ? "clear" : "download"), ret); 10038 return ret; 10039 } 10040 10041 /** 10042 * t5_fw_init_extern_mem - initialize the external memory 10043 * @adap: the adapter 10044 * 10045 * Initializes the external memory on T5. 10046 */ 10047 int t5_fw_init_extern_mem(struct adapter *adap) 10048 { 10049 u32 params[1], val[1]; 10050 int ret; 10051 10052 if (!is_t5(adap)) 10053 return 0; 10054 10055 val[0] = 0xff; /* Initialize all MCs */ 10056 params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 10057 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT)); 10058 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val, 10059 FW_CMD_MAX_TIMEOUT); 10060 10061 return ret; 10062 } 10063 10064 /* BIOS boot headers */ 10065 typedef struct pci_expansion_rom_header { 10066 u8 signature[2]; /* ROM Signature. Should be 0xaa55 */ 10067 u8 reserved[22]; /* Reserved per processor Architecture data */ 10068 u8 pcir_offset[2]; /* Offset to PCI Data Structure */ 10069 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */ 10070 10071 /* Legacy PCI Expansion ROM Header */ 10072 typedef struct legacy_pci_expansion_rom_header { 10073 u8 signature[2]; /* ROM Signature. Should be 0xaa55 */ 10074 u8 size512; /* Current Image Size in units of 512 bytes */ 10075 u8 initentry_point[4]; 10076 u8 cksum; /* Checksum computed on the entire Image */ 10077 u8 reserved[16]; /* Reserved */ 10078 u8 pcir_offset[2]; /* Offset to PCI Data Struture */ 10079 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */ 10080 10081 /* EFI PCI Expansion ROM Header */ 10082 typedef struct efi_pci_expansion_rom_header { 10083 u8 signature[2]; // ROM signature. The value 0xaa55 10084 u8 initialization_size[2]; /* Units 512. Includes this header */ 10085 u8 efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */ 10086 u8 efi_subsystem[2]; /* Subsystem value for EFI image header */ 10087 u8 efi_machine_type[2]; /* Machine type from EFI image header */ 10088 u8 compression_type[2]; /* Compression type. */ 10089 /* 10090 * Compression type definition 10091 * 0x0: uncompressed 10092 * 0x1: Compressed 10093 * 0x2-0xFFFF: Reserved 10094 */ 10095 u8 reserved[8]; /* Reserved */ 10096 u8 efi_image_header_offset[2]; /* Offset to EFI Image */ 10097 u8 pcir_offset[2]; /* Offset to PCI Data Structure */ 10098 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */ 10099 10100 /* PCI Data Structure Format */ 10101 typedef struct pcir_data_structure { /* PCI Data Structure */ 10102 u8 signature[4]; /* Signature. The string "PCIR" */ 10103 u8 vendor_id[2]; /* Vendor Identification */ 10104 u8 device_id[2]; /* Device Identification */ 10105 u8 vital_product[2]; /* Pointer to Vital Product Data */ 10106 u8 length[2]; /* PCIR Data Structure Length */ 10107 u8 revision; /* PCIR Data Structure Revision */ 10108 u8 class_code[3]; /* Class Code */ 10109 u8 image_length[2]; /* Image Length. Multiple of 512B */ 10110 u8 code_revision[2]; /* Revision Level of Code/Data */ 10111 u8 code_type; /* Code Type. */ 10112 /* 10113 * PCI Expansion ROM Code Types 10114 * 0x00: Intel IA-32, PC-AT compatible. Legacy 10115 * 0x01: Open Firmware standard for PCI. FCODE 10116 * 0x02: Hewlett-Packard PA RISC. HP reserved 10117 * 0x03: EFI Image. EFI 10118 * 0x04-0xFF: Reserved. 10119 */ 10120 u8 indicator; /* Indicator. Identifies the last image in the ROM */ 10121 u8 reserved[2]; /* Reserved */ 10122 } pcir_data_t; /* PCI__DATA_STRUCTURE */ 10123 10124 /* BOOT constants */ 10125 enum { 10126 BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */ 10127 BOOT_SIGNATURE = 0xaa55, /* signature of BIOS boot ROM */ 10128 BOOT_SIZE_INC = 512, /* image size measured in 512B chunks */ 10129 BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */ 10130 BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment */ 10131 VENDOR_ID = 0x1425, /* Vendor ID */ 10132 PCIR_SIGNATURE = 0x52494350 /* PCIR signature */ 10133 }; 10134 10135 /* 10136 * modify_device_id - Modifies the device ID of the Boot BIOS image 10137 * @adatper: the device ID to write. 10138 * @boot_data: the boot image to modify. 10139 * 10140 * Write the supplied device ID to the boot BIOS image. 10141 */ 10142 static void modify_device_id(int device_id, u8 *boot_data) 10143 { 10144 legacy_pci_exp_rom_header_t *header; 10145 pcir_data_t *pcir_header; 10146 u32 cur_header = 0; 10147 10148 /* 10149 * Loop through all chained images and change the device ID's 10150 */ 10151 while (1) { 10152 header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header]; 10153 pcir_header = (pcir_data_t *) &boot_data[cur_header + 10154 le16_to_cpu(*(u16*)header->pcir_offset)]; 10155 10156 /* 10157 * Only modify the Device ID if code type is Legacy or HP. 10158 * 0x00: Okay to modify 10159 * 0x01: FCODE. Do not be modify 10160 * 0x03: Okay to modify 10161 * 0x04-0xFF: Do not modify 10162 */ 10163 if (pcir_header->code_type == 0x00) { 10164 u8 csum = 0; 10165 int i; 10166 10167 /* 10168 * Modify Device ID to match current adatper 10169 */ 10170 *(u16*) pcir_header->device_id = device_id; 10171 10172 /* 10173 * Set checksum temporarily to 0. 10174 * We will recalculate it later. 10175 */ 10176 header->cksum = 0x0; 10177 10178 /* 10179 * Calculate and update checksum 10180 */ 10181 for (i = 0; i < (header->size512 * 512); i++) 10182 csum += (u8)boot_data[cur_header + i]; 10183 10184 /* 10185 * Invert summed value to create the checksum 10186 * Writing new checksum value directly to the boot data 10187 */ 10188 boot_data[cur_header + 7] = -csum; 10189 10190 } else if (pcir_header->code_type == 0x03) { 10191 10192 /* 10193 * Modify Device ID to match current adatper 10194 */ 10195 *(u16*) pcir_header->device_id = device_id; 10196 10197 } 10198 10199 10200 /* 10201 * Check indicator element to identify if this is the last 10202 * image in the ROM. 10203 */ 10204 if (pcir_header->indicator & 0x80) 10205 break; 10206 10207 /* 10208 * Move header pointer up to the next image in the ROM. 10209 */ 10210 cur_header += header->size512 * 512; 10211 } 10212 } 10213 10214 /* 10215 * t4_load_boot - download boot flash 10216 * @adapter: the adapter 10217 * @boot_data: the boot image to write 10218 * @boot_addr: offset in flash to write boot_data 10219 * @size: image size 10220 * 10221 * Write the supplied boot image to the card's serial flash. 10222 * The boot image has the following sections: a 28-byte header and the 10223 * boot image. 10224 */ 10225 int t4_load_boot(struct adapter *adap, u8 *boot_data, 10226 unsigned int boot_addr, unsigned int size) 10227 { 10228 pci_exp_rom_header_t *header; 10229 int pcir_offset ; 10230 pcir_data_t *pcir_header; 10231 int ret, addr; 10232 uint16_t device_id; 10233 unsigned int i; 10234 unsigned int boot_sector = (boot_addr * 1024 ); 10235 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10236 10237 /* 10238 * Make sure the boot image does not encroach on the firmware region 10239 */ 10240 if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) { 10241 CH_ERR(adap, "boot image encroaching on firmware region\n"); 10242 return -EFBIG; 10243 } 10244 10245 /* 10246 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot, 10247 * and Boot configuration data sections. These 3 boot sections span 10248 * sectors 0 to 7 in flash and live right before the FW image location. 10249 */ 10250 i = DIV_ROUND_UP(size ? size : FLASH_FW_START, 10251 sf_sec_size); 10252 ret = t4_flash_erase_sectors(adap, boot_sector >> 16, 10253 (boot_sector >> 16) + i - 1); 10254 10255 /* 10256 * If size == 0 then we're simply erasing the FLASH sectors associated 10257 * with the on-adapter option ROM file 10258 */ 10259 if (ret || (size == 0)) 10260 goto out; 10261 10262 /* Get boot header */ 10263 header = (pci_exp_rom_header_t *)boot_data; 10264 pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset); 10265 /* PCIR Data Structure */ 10266 pcir_header = (pcir_data_t *) &boot_data[pcir_offset]; 10267 10268 /* 10269 * Perform some primitive sanity testing to avoid accidentally 10270 * writing garbage over the boot sectors. We ought to check for 10271 * more but it's not worth it for now ... 10272 */ 10273 if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) { 10274 CH_ERR(adap, "boot image too small/large\n"); 10275 return -EFBIG; 10276 } 10277 10278 #ifndef CHELSIO_T4_DIAGS 10279 /* 10280 * Check BOOT ROM header signature 10281 */ 10282 if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) { 10283 CH_ERR(adap, "Boot image missing signature\n"); 10284 return -EINVAL; 10285 } 10286 10287 /* 10288 * Check PCI header signature 10289 */ 10290 if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) { 10291 CH_ERR(adap, "PCI header missing signature\n"); 10292 return -EINVAL; 10293 } 10294 10295 /* 10296 * Check Vendor ID matches Chelsio ID 10297 */ 10298 if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) { 10299 CH_ERR(adap, "Vendor ID missing signature\n"); 10300 return -EINVAL; 10301 } 10302 #endif 10303 10304 /* 10305 * Retrieve adapter's device ID 10306 */ 10307 t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id); 10308 /* Want to deal with PF 0 so I strip off PF 4 indicator */ 10309 device_id = device_id & 0xf0ff; 10310 10311 /* 10312 * Check PCIE Device ID 10313 */ 10314 if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) { 10315 /* 10316 * Change the device ID in the Boot BIOS image to match 10317 * the Device ID of the current adapter. 10318 */ 10319 modify_device_id(device_id, boot_data); 10320 } 10321 10322 /* 10323 * Skip over the first SF_PAGE_SIZE worth of data and write it after 10324 * we finish copying the rest of the boot image. This will ensure 10325 * that the BIOS boot header will only be written if the boot image 10326 * was written in full. 10327 */ 10328 addr = boot_sector; 10329 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 10330 addr += SF_PAGE_SIZE; 10331 boot_data += SF_PAGE_SIZE; 10332 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0); 10333 if (ret) 10334 goto out; 10335 } 10336 10337 ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE, 10338 (const u8 *)header, 0); 10339 10340 out: 10341 if (ret) 10342 CH_ERR(adap, "boot image download failed, error %d\n", ret); 10343 return ret; 10344 } 10345 10346 /* 10347 * t4_flash_bootcfg_addr - return the address of the flash optionrom configuration 10348 * @adapter: the adapter 10349 * 10350 * Return the address within the flash where the OptionROM Configuration 10351 * is stored, or an error if the device FLASH is too small to contain 10352 * a OptionROM Configuration. 10353 */ 10354 static int t4_flash_bootcfg_addr(struct adapter *adapter) 10355 { 10356 /* 10357 * If the device FLASH isn't large enough to hold a Firmware 10358 * Configuration File, return an error. 10359 */ 10360 if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE) 10361 return -ENOSPC; 10362 10363 return FLASH_BOOTCFG_START; 10364 } 10365 10366 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size) 10367 { 10368 int ret, i, n, cfg_addr; 10369 unsigned int addr; 10370 unsigned int flash_cfg_start_sec; 10371 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10372 10373 cfg_addr = t4_flash_bootcfg_addr(adap); 10374 if (cfg_addr < 0) 10375 return cfg_addr; 10376 10377 addr = cfg_addr; 10378 flash_cfg_start_sec = addr / SF_SEC_SIZE; 10379 10380 if (size > FLASH_BOOTCFG_MAX_SIZE) { 10381 CH_ERR(adap, "bootcfg file too large, max is %u bytes\n", 10382 FLASH_BOOTCFG_MAX_SIZE); 10383 return -EFBIG; 10384 } 10385 10386 i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */ 10387 sf_sec_size); 10388 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 10389 flash_cfg_start_sec + i - 1); 10390 10391 /* 10392 * If size == 0 then we're simply erasing the FLASH sectors associated 10393 * with the on-adapter OptionROM Configuration File. 10394 */ 10395 if (ret || size == 0) 10396 goto out; 10397 10398 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 10399 for (i = 0; i< size; i+= SF_PAGE_SIZE) { 10400 if ( (size - i) < SF_PAGE_SIZE) 10401 n = size - i; 10402 else 10403 n = SF_PAGE_SIZE; 10404 ret = t4_write_flash(adap, addr, n, cfg_data, 0); 10405 if (ret) 10406 goto out; 10407 10408 addr += SF_PAGE_SIZE; 10409 cfg_data += SF_PAGE_SIZE; 10410 } 10411 10412 out: 10413 if (ret) 10414 CH_ERR(adap, "boot config data %s failed %d\n", 10415 (size == 0 ? "clear" : "download"), ret); 10416 return ret; 10417 } 10418 10419 /** 10420 * t4_set_filter_mode - configure the optional components of filter tuples 10421 * @adap: the adapter 10422 * @mode_map: a bitmap selcting which optional filter components to enable 10423 * @sleep_ok: if true we may sleep while awaiting command completion 10424 * 10425 * Sets the filter mode by selecting the optional components to enable 10426 * in filter tuples. Returns 0 on success and a negative error if the 10427 * requested mode needs more bits than are available for optional 10428 * components. 10429 */ 10430 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map, 10431 bool sleep_ok) 10432 { 10433 static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 }; 10434 10435 int i, nbits = 0; 10436 10437 for (i = S_FCOE; i <= S_FRAGMENTATION; i++) 10438 if (mode_map & (1 << i)) 10439 nbits += width[i]; 10440 if (nbits > FILTER_OPT_LEN) 10441 return -EINVAL; 10442 t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok); 10443 read_filter_mode_and_ingress_config(adap, sleep_ok); 10444 10445 return 0; 10446 } 10447 10448 /** 10449 * t4_clr_port_stats - clear port statistics 10450 * @adap: the adapter 10451 * @idx: the port index 10452 * 10453 * Clear HW statistics for the given port. 10454 */ 10455 void t4_clr_port_stats(struct adapter *adap, int idx) 10456 { 10457 unsigned int i; 10458 u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map; 10459 u32 port_base_addr; 10460 10461 if (is_t4(adap)) 10462 port_base_addr = PORT_BASE(idx); 10463 else 10464 port_base_addr = T5_PORT_BASE(idx); 10465 10466 for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L; 10467 i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8) 10468 t4_write_reg(adap, port_base_addr + i, 0); 10469 for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L; 10470 i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8) 10471 t4_write_reg(adap, port_base_addr + i, 0); 10472 for (i = 0; i < 4; i++) 10473 if (bgmap & (1 << i)) { 10474 t4_write_reg(adap, 10475 A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0); 10476 t4_write_reg(adap, 10477 A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0); 10478 } 10479 } 10480 10481 /** 10482 * t4_i2c_rd - read I2C data from adapter 10483 * @adap: the adapter 10484 * @port: Port number if per-port device; <0 if not 10485 * @devid: per-port device ID or absolute device ID 10486 * @offset: byte offset into device I2C space 10487 * @len: byte length of I2C space data 10488 * @buf: buffer in which to return I2C data 10489 * 10490 * Reads the I2C data from the indicated device and location. 10491 */ 10492 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, 10493 int port, unsigned int devid, 10494 unsigned int offset, unsigned int len, 10495 u8 *buf) 10496 { 10497 u32 ldst_addrspace; 10498 struct fw_ldst_cmd ldst; 10499 int ret; 10500 10501 if (port >= 4 || 10502 devid >= 256 || 10503 offset >= 256 || 10504 len > sizeof ldst.u.i2c.data) 10505 return -EINVAL; 10506 10507 memset(&ldst, 0, sizeof ldst); 10508 ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C); 10509 ldst.op_to_addrspace = 10510 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 10511 F_FW_CMD_REQUEST | 10512 F_FW_CMD_READ | 10513 ldst_addrspace); 10514 ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst)); 10515 ldst.u.i2c.pid = (port < 0 ? 0xff : port); 10516 ldst.u.i2c.did = devid; 10517 ldst.u.i2c.boffset = offset; 10518 ldst.u.i2c.blen = len; 10519 ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst); 10520 if (!ret) 10521 memcpy(buf, ldst.u.i2c.data, len); 10522 return ret; 10523 } 10524 10525 /** 10526 * t4_i2c_wr - write I2C data to adapter 10527 * @adap: the adapter 10528 * @port: Port number if per-port device; <0 if not 10529 * @devid: per-port device ID or absolute device ID 10530 * @offset: byte offset into device I2C space 10531 * @len: byte length of I2C space data 10532 * @buf: buffer containing new I2C data 10533 * 10534 * Write the I2C data to the indicated device and location. 10535 */ 10536 int t4_i2c_wr(struct adapter *adap, unsigned int mbox, 10537 int port, unsigned int devid, 10538 unsigned int offset, unsigned int len, 10539 u8 *buf) 10540 { 10541 u32 ldst_addrspace; 10542 struct fw_ldst_cmd ldst; 10543 10544 if (port >= 4 || 10545 devid >= 256 || 10546 offset >= 256 || 10547 len > sizeof ldst.u.i2c.data) 10548 return -EINVAL; 10549 10550 memset(&ldst, 0, sizeof ldst); 10551 ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C); 10552 ldst.op_to_addrspace = 10553 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 10554 F_FW_CMD_REQUEST | 10555 F_FW_CMD_WRITE | 10556 ldst_addrspace); 10557 ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst)); 10558 ldst.u.i2c.pid = (port < 0 ? 0xff : port); 10559 ldst.u.i2c.did = devid; 10560 ldst.u.i2c.boffset = offset; 10561 ldst.u.i2c.blen = len; 10562 memcpy(ldst.u.i2c.data, buf, len); 10563 return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst); 10564 } 10565 10566 /** 10567 * t4_sge_ctxt_rd - read an SGE context through FW 10568 * @adap: the adapter 10569 * @mbox: mailbox to use for the FW command 10570 * @cid: the context id 10571 * @ctype: the context type 10572 * @data: where to store the context data 10573 * 10574 * Issues a FW command through the given mailbox to read an SGE context. 10575 */ 10576 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid, 10577 enum ctxt_type ctype, u32 *data) 10578 { 10579 int ret; 10580 struct fw_ldst_cmd c; 10581 10582 if (ctype == CTXT_EGRESS) 10583 ret = FW_LDST_ADDRSPC_SGE_EGRC; 10584 else if (ctype == CTXT_INGRESS) 10585 ret = FW_LDST_ADDRSPC_SGE_INGC; 10586 else if (ctype == CTXT_FLM) 10587 ret = FW_LDST_ADDRSPC_SGE_FLMC; 10588 else 10589 ret = FW_LDST_ADDRSPC_SGE_CONMC; 10590 10591 memset(&c, 0, sizeof(c)); 10592 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 10593 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10594 V_FW_LDST_CMD_ADDRSPACE(ret)); 10595 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 10596 c.u.idctxt.physid = cpu_to_be32(cid); 10597 10598 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 10599 if (ret == 0) { 10600 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0); 10601 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1); 10602 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2); 10603 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3); 10604 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4); 10605 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5); 10606 } 10607 return ret; 10608 } 10609 10610 /** 10611 * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW 10612 * @adap: the adapter 10613 * @cid: the context id 10614 * @ctype: the context type 10615 * @data: where to store the context data 10616 * 10617 * Reads an SGE context directly, bypassing FW. This is only for 10618 * debugging when FW is unavailable. 10619 */ 10620 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype, 10621 u32 *data) 10622 { 10623 int i, ret; 10624 10625 t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype)); 10626 ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1); 10627 if (!ret) 10628 for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4) 10629 *data++ = t4_read_reg(adap, i); 10630 return ret; 10631 } 10632 10633 int t4_sched_config(struct adapter *adapter, int type, int minmaxen, 10634 int sleep_ok) 10635 { 10636 struct fw_sched_cmd cmd; 10637 10638 memset(&cmd, 0, sizeof(cmd)); 10639 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | 10640 F_FW_CMD_REQUEST | 10641 F_FW_CMD_WRITE); 10642 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10643 10644 cmd.u.config.sc = FW_SCHED_SC_CONFIG; 10645 cmd.u.config.type = type; 10646 cmd.u.config.minmaxen = minmaxen; 10647 10648 return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), 10649 NULL, sleep_ok); 10650 } 10651 10652 int t4_sched_params(struct adapter *adapter, int type, int level, int mode, 10653 int rateunit, int ratemode, int channel, int cl, 10654 int minrate, int maxrate, int weight, int pktsize, 10655 int burstsize, int sleep_ok) 10656 { 10657 struct fw_sched_cmd cmd; 10658 10659 memset(&cmd, 0, sizeof(cmd)); 10660 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | 10661 F_FW_CMD_REQUEST | 10662 F_FW_CMD_WRITE); 10663 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10664 10665 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10666 cmd.u.params.type = type; 10667 cmd.u.params.level = level; 10668 cmd.u.params.mode = mode; 10669 cmd.u.params.ch = channel; 10670 cmd.u.params.cl = cl; 10671 cmd.u.params.unit = rateunit; 10672 cmd.u.params.rate = ratemode; 10673 cmd.u.params.min = cpu_to_be32(minrate); 10674 cmd.u.params.max = cpu_to_be32(maxrate); 10675 cmd.u.params.weight = cpu_to_be16(weight); 10676 cmd.u.params.pktsize = cpu_to_be16(pktsize); 10677 cmd.u.params.burstsize = cpu_to_be16(burstsize); 10678 10679 return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), 10680 NULL, sleep_ok); 10681 } 10682 10683 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode, 10684 unsigned int maxrate, int sleep_ok) 10685 { 10686 struct fw_sched_cmd cmd; 10687 10688 memset(&cmd, 0, sizeof(cmd)); 10689 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | 10690 F_FW_CMD_REQUEST | 10691 F_FW_CMD_WRITE); 10692 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10693 10694 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10695 cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED; 10696 cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL; 10697 cmd.u.params.ch = channel; 10698 cmd.u.params.rate = ratemode; /* REL or ABS */ 10699 cmd.u.params.max = cpu_to_be32(maxrate);/* % or kbps */ 10700 10701 return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), 10702 NULL, sleep_ok); 10703 } 10704 10705 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl, 10706 int weight, int sleep_ok) 10707 { 10708 struct fw_sched_cmd cmd; 10709 10710 if (weight < 0 || weight > 100) 10711 return -EINVAL; 10712 10713 memset(&cmd, 0, sizeof(cmd)); 10714 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | 10715 F_FW_CMD_REQUEST | 10716 F_FW_CMD_WRITE); 10717 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10718 10719 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10720 cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED; 10721 cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR; 10722 cmd.u.params.ch = channel; 10723 cmd.u.params.cl = cl; 10724 cmd.u.params.weight = cpu_to_be16(weight); 10725 10726 return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), 10727 NULL, sleep_ok); 10728 } 10729 10730 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl, 10731 int mode, unsigned int maxrate, int pktsize, int sleep_ok) 10732 { 10733 struct fw_sched_cmd cmd; 10734 10735 memset(&cmd, 0, sizeof(cmd)); 10736 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | 10737 F_FW_CMD_REQUEST | 10738 F_FW_CMD_WRITE); 10739 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10740 10741 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10742 cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED; 10743 cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL; 10744 cmd.u.params.mode = mode; 10745 cmd.u.params.ch = channel; 10746 cmd.u.params.cl = cl; 10747 cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE; 10748 cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS; 10749 cmd.u.params.max = cpu_to_be32(maxrate); 10750 cmd.u.params.pktsize = cpu_to_be16(pktsize); 10751 10752 return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), 10753 NULL, sleep_ok); 10754 } 10755 10756 /* 10757 * t4_config_watchdog - configure (enable/disable) a watchdog timer 10758 * @adapter: the adapter 10759 * @mbox: mailbox to use for the FW command 10760 * @pf: the PF owning the queue 10761 * @vf: the VF owning the queue 10762 * @timeout: watchdog timeout in ms 10763 * @action: watchdog timer / action 10764 * 10765 * There are separate watchdog timers for each possible watchdog 10766 * action. Configure one of the watchdog timers by setting a non-zero 10767 * timeout. Disable a watchdog timer by using a timeout of zero. 10768 */ 10769 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox, 10770 unsigned int pf, unsigned int vf, 10771 unsigned int timeout, unsigned int action) 10772 { 10773 struct fw_watchdog_cmd wdog; 10774 unsigned int ticks; 10775 10776 /* 10777 * The watchdog command expects a timeout in units of 10ms so we need 10778 * to convert it here (via rounding) and force a minimum of one 10ms 10779 * "tick" if the timeout is non-zero but the conversion results in 0 10780 * ticks. 10781 */ 10782 ticks = (timeout + 5)/10; 10783 if (timeout && !ticks) 10784 ticks = 1; 10785 10786 memset(&wdog, 0, sizeof wdog); 10787 wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) | 10788 F_FW_CMD_REQUEST | 10789 F_FW_CMD_WRITE | 10790 V_FW_PARAMS_CMD_PFN(pf) | 10791 V_FW_PARAMS_CMD_VFN(vf)); 10792 wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog)); 10793 wdog.timeout = cpu_to_be32(ticks); 10794 wdog.action = cpu_to_be32(action); 10795 10796 return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL); 10797 } 10798 10799 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level) 10800 { 10801 struct fw_devlog_cmd devlog_cmd; 10802 int ret; 10803 10804 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 10805 devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) | 10806 F_FW_CMD_REQUEST | F_FW_CMD_READ); 10807 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 10808 ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd, 10809 sizeof(devlog_cmd), &devlog_cmd); 10810 if (ret) 10811 return ret; 10812 10813 *level = devlog_cmd.level; 10814 return 0; 10815 } 10816 10817 int t4_set_devlog_level(struct adapter *adapter, unsigned int level) 10818 { 10819 struct fw_devlog_cmd devlog_cmd; 10820 10821 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 10822 devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) | 10823 F_FW_CMD_REQUEST | 10824 F_FW_CMD_WRITE); 10825 devlog_cmd.level = level; 10826 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 10827 return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd, 10828 sizeof(devlog_cmd), &devlog_cmd); 10829 } 10830