1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2012, 2016 Chelsio Communications, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 #include "opt_inet.h" 33 34 #include <sys/param.h> 35 #include <sys/eventhandler.h> 36 37 #include "common.h" 38 #include "t4_regs.h" 39 #include "t4_regs_values.h" 40 #include "firmware/t4fw_interface.h" 41 42 #undef msleep 43 #define msleep(x) do { \ 44 if (cold) \ 45 DELAY((x) * 1000); \ 46 else \ 47 pause("t4hw", (x) * hz / 1000); \ 48 } while (0) 49 50 /** 51 * t4_wait_op_done_val - wait until an operation is completed 52 * @adapter: the adapter performing the operation 53 * @reg: the register to check for completion 54 * @mask: a single-bit field within @reg that indicates completion 55 * @polarity: the value of the field when the operation is completed 56 * @attempts: number of check iterations 57 * @delay: delay in usecs between iterations 58 * @valp: where to store the value of the register at completion time 59 * 60 * Wait until an operation is completed by checking a bit in a register 61 * up to @attempts times. If @valp is not NULL the value of the register 62 * at the time it indicated completion is stored there. Returns 0 if the 63 * operation completes and -EAGAIN otherwise. 64 */ 65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, 66 int polarity, int attempts, int delay, u32 *valp) 67 { 68 while (1) { 69 u32 val = t4_read_reg(adapter, reg); 70 71 if (!!(val & mask) == polarity) { 72 if (valp) 73 *valp = val; 74 return 0; 75 } 76 if (--attempts == 0) 77 return -EAGAIN; 78 if (delay) 79 udelay(delay); 80 } 81 } 82 83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, 84 int polarity, int attempts, int delay) 85 { 86 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, 87 delay, NULL); 88 } 89 90 /** 91 * t4_set_reg_field - set a register field to a value 92 * @adapter: the adapter to program 93 * @addr: the register address 94 * @mask: specifies the portion of the register to modify 95 * @val: the new value for the register field 96 * 97 * Sets a register field specified by the supplied mask to the 98 * given value. 99 */ 100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, 101 u32 val) 102 { 103 u32 v = t4_read_reg(adapter, addr) & ~mask; 104 105 t4_write_reg(adapter, addr, v | val); 106 (void) t4_read_reg(adapter, addr); /* flush */ 107 } 108 109 /** 110 * t4_read_indirect - read indirectly addressed registers 111 * @adap: the adapter 112 * @addr_reg: register holding the indirect address 113 * @data_reg: register holding the value of the indirect register 114 * @vals: where the read register values are stored 115 * @nregs: how many indirect registers to read 116 * @start_idx: index of first indirect register to read 117 * 118 * Reads registers that are accessed indirectly through an address/data 119 * register pair. 120 */ 121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, 122 unsigned int data_reg, u32 *vals, 123 unsigned int nregs, unsigned int start_idx) 124 { 125 while (nregs--) { 126 t4_write_reg(adap, addr_reg, start_idx); 127 *vals++ = t4_read_reg(adap, data_reg); 128 start_idx++; 129 } 130 } 131 132 /** 133 * t4_write_indirect - write indirectly addressed registers 134 * @adap: the adapter 135 * @addr_reg: register holding the indirect addresses 136 * @data_reg: register holding the value for the indirect registers 137 * @vals: values to write 138 * @nregs: how many indirect registers to write 139 * @start_idx: address of first indirect register to write 140 * 141 * Writes a sequential block of registers that are accessed indirectly 142 * through an address/data register pair. 143 */ 144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, 145 unsigned int data_reg, const u32 *vals, 146 unsigned int nregs, unsigned int start_idx) 147 { 148 while (nregs--) { 149 t4_write_reg(adap, addr_reg, start_idx++); 150 t4_write_reg(adap, data_reg, *vals++); 151 } 152 } 153 154 /* 155 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor 156 * mechanism. This guarantees that we get the real value even if we're 157 * operating within a Virtual Machine and the Hypervisor is trapping our 158 * Configuration Space accesses. 159 * 160 * N.B. This routine should only be used as a last resort: the firmware uses 161 * the backdoor registers on a regular basis and we can end up 162 * conflicting with it's uses! 163 */ 164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg) 165 { 166 u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg); 167 u32 val; 168 169 if (chip_id(adap) <= CHELSIO_T5) 170 req |= F_ENABLE; 171 else 172 req |= F_T6_ENABLE; 173 174 if (is_t4(adap)) 175 req |= F_LOCALCFG; 176 177 t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req); 178 val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA); 179 180 /* 181 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a 182 * Configuration Space read. (None of the other fields matter when 183 * F_ENABLE is 0 so a simple register write is easier than a 184 * read-modify-write via t4_set_reg_field().) 185 */ 186 t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0); 187 188 return val; 189 } 190 191 /* 192 * t4_report_fw_error - report firmware error 193 * @adap: the adapter 194 * 195 * The adapter firmware can indicate error conditions to the host. 196 * If the firmware has indicated an error, print out the reason for 197 * the firmware error. 198 */ 199 static void t4_report_fw_error(struct adapter *adap) 200 { 201 static const char *const reason[] = { 202 "Crash", /* PCIE_FW_EVAL_CRASH */ 203 "During Device Preparation", /* PCIE_FW_EVAL_PREP */ 204 "During Device Configuration", /* PCIE_FW_EVAL_CONF */ 205 "During Device Initialization", /* PCIE_FW_EVAL_INIT */ 206 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ 207 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ 208 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ 209 "Reserved", /* reserved */ 210 }; 211 u32 pcie_fw; 212 213 pcie_fw = t4_read_reg(adap, A_PCIE_FW); 214 if (pcie_fw & F_PCIE_FW_ERR) { 215 adap->flags &= ~FW_OK; 216 CH_ERR(adap, "firmware reports adapter error: %s (0x%08x)\n", 217 reason[G_PCIE_FW_EVAL(pcie_fw)], pcie_fw); 218 if (pcie_fw != 0xffffffff) 219 t4_os_dump_devlog(adap); 220 } 221 } 222 223 /* 224 * Get the reply to a mailbox command and store it in @rpl in big-endian order. 225 */ 226 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, 227 u32 mbox_addr) 228 { 229 for ( ; nflit; nflit--, mbox_addr += 8) 230 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); 231 } 232 233 /* 234 * Handle a FW assertion reported in a mailbox. 235 */ 236 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt) 237 { 238 CH_ALERT(adap, 239 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", 240 asrt->u.assert.filename_0_7, 241 be32_to_cpu(asrt->u.assert.line), 242 be32_to_cpu(asrt->u.assert.x), 243 be32_to_cpu(asrt->u.assert.y)); 244 } 245 246 struct port_tx_state { 247 uint64_t rx_pause; 248 uint64_t tx_frames; 249 }; 250 251 static void 252 read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state) 253 { 254 uint32_t rx_pause_reg, tx_frames_reg; 255 256 if (is_t4(sc)) { 257 tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L); 258 rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L); 259 } else { 260 tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L); 261 rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L); 262 } 263 264 tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg); 265 tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg); 266 } 267 268 static void 269 read_tx_state(struct adapter *sc, struct port_tx_state *tx_state) 270 { 271 int i; 272 273 for_each_port(sc, i) 274 read_tx_state_one(sc, i, &tx_state[i]); 275 } 276 277 static void 278 check_tx_state(struct adapter *sc, struct port_tx_state *tx_state) 279 { 280 uint32_t port_ctl_reg; 281 uint64_t tx_frames, rx_pause; 282 int i; 283 284 for_each_port(sc, i) { 285 rx_pause = tx_state[i].rx_pause; 286 tx_frames = tx_state[i].tx_frames; 287 read_tx_state_one(sc, i, &tx_state[i]); /* update */ 288 289 if (is_t4(sc)) 290 port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL); 291 else 292 port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL); 293 if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN && 294 rx_pause != tx_state[i].rx_pause && 295 tx_frames == tx_state[i].tx_frames) { 296 t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0); 297 mdelay(1); 298 t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN); 299 } 300 } 301 } 302 303 #define X_CIM_PF_NOACCESS 0xeeeeeeee 304 /** 305 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox 306 * @adap: the adapter 307 * @mbox: index of the mailbox to use 308 * @cmd: the command to write 309 * @size: command length in bytes 310 * @rpl: where to optionally store the reply 311 * @sleep_ok: if true we may sleep while awaiting command completion 312 * @timeout: time to wait for command to finish before timing out 313 * (negative implies @sleep_ok=false) 314 * 315 * Sends the given command to FW through the selected mailbox and waits 316 * for the FW to execute the command. If @rpl is not %NULL it is used to 317 * store the FW's reply to the command. The command and its optional 318 * reply are of the same length. Some FW commands like RESET and 319 * INITIALIZE can take a considerable amount of time to execute. 320 * @sleep_ok determines whether we may sleep while awaiting the response. 321 * If sleeping is allowed we use progressive backoff otherwise we spin. 322 * Note that passing in a negative @timeout is an alternate mechanism 323 * for specifying @sleep_ok=false. This is useful when a higher level 324 * interface allows for specification of @timeout but not @sleep_ok ... 325 * 326 * The return value is 0 on success or a negative errno on failure. A 327 * failure can happen either because we are not able to execute the 328 * command or FW executes it but signals an error. In the latter case 329 * the return value is the error code indicated by FW (negated). 330 */ 331 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd, 332 int size, void *rpl, bool sleep_ok, int timeout) 333 { 334 /* 335 * We delay in small increments at first in an effort to maintain 336 * responsiveness for simple, fast executing commands but then back 337 * off to larger delays to a maximum retry delay. 338 */ 339 static const int delay[] = { 340 1, 1, 3, 5, 10, 10, 20, 50, 100 341 }; 342 u32 v; 343 u64 res; 344 int i, ms, delay_idx, ret, next_tx_check; 345 u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA); 346 u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL); 347 u32 ctl; 348 __be64 cmd_rpl[MBOX_LEN/8]; 349 u32 pcie_fw; 350 struct port_tx_state tx_state[MAX_NPORTS]; 351 352 if (adap->flags & CHK_MBOX_ACCESS) 353 ASSERT_SYNCHRONIZED_OP(adap); 354 355 if (size <= 0 || (size & 15) || size > MBOX_LEN) 356 return -EINVAL; 357 358 if (adap->flags & IS_VF) { 359 if (is_t6(adap)) 360 data_reg = FW_T6VF_MBDATA_BASE_ADDR; 361 else 362 data_reg = FW_T4VF_MBDATA_BASE_ADDR; 363 ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL); 364 } 365 366 /* 367 * If we have a negative timeout, that implies that we can't sleep. 368 */ 369 if (timeout < 0) { 370 sleep_ok = false; 371 timeout = -timeout; 372 } 373 374 /* 375 * Attempt to gain access to the mailbox. 376 */ 377 for (i = 0; i < 4; i++) { 378 ctl = t4_read_reg(adap, ctl_reg); 379 v = G_MBOWNER(ctl); 380 if (v != X_MBOWNER_NONE) 381 break; 382 } 383 384 /* 385 * If we were unable to gain access, report the error to our caller. 386 */ 387 if (v != X_MBOWNER_PL) { 388 t4_report_fw_error(adap); 389 ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT; 390 return ret; 391 } 392 393 /* 394 * If we gain ownership of the mailbox and there's a "valid" message 395 * in it, this is likely an asynchronous error message from the 396 * firmware. So we'll report that and then proceed on with attempting 397 * to issue our own command ... which may well fail if the error 398 * presaged the firmware crashing ... 399 */ 400 if (ctl & F_MBMSGVALID) { 401 CH_DUMP_MBOX(adap, mbox, data_reg, "VLD", NULL, true); 402 } 403 404 /* 405 * Copy in the new mailbox command and send it on its way ... 406 */ 407 memset(cmd_rpl, 0, sizeof(cmd_rpl)); 408 memcpy(cmd_rpl, cmd, size); 409 CH_DUMP_MBOX(adap, mbox, 0, "cmd", cmd_rpl, false); 410 for (i = 0; i < ARRAY_SIZE(cmd_rpl); i++) 411 t4_write_reg64(adap, data_reg + i * 8, be64_to_cpu(cmd_rpl[i])); 412 413 if (adap->flags & IS_VF) { 414 /* 415 * For the VFs, the Mailbox Data "registers" are 416 * actually backed by T4's "MA" interface rather than 417 * PL Registers (as is the case for the PFs). Because 418 * these are in different coherency domains, the write 419 * to the VF's PL-register-backed Mailbox Control can 420 * race in front of the writes to the MA-backed VF 421 * Mailbox Data "registers". So we need to do a 422 * read-back on at least one byte of the VF Mailbox 423 * Data registers before doing the write to the VF 424 * Mailbox Control register. 425 */ 426 t4_read_reg(adap, data_reg); 427 } 428 429 t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW)); 430 read_tx_state(adap, &tx_state[0]); /* also flushes the write_reg */ 431 next_tx_check = 1000; 432 delay_idx = 0; 433 ms = delay[0]; 434 435 /* 436 * Loop waiting for the reply; bail out if we time out or the firmware 437 * reports an error. 438 */ 439 pcie_fw = 0; 440 for (i = 0; i < timeout; i += ms) { 441 if (!(adap->flags & IS_VF)) { 442 pcie_fw = t4_read_reg(adap, A_PCIE_FW); 443 if (pcie_fw & F_PCIE_FW_ERR) 444 break; 445 } 446 447 if (i >= next_tx_check) { 448 check_tx_state(adap, &tx_state[0]); 449 next_tx_check = i + 1000; 450 } 451 452 if (sleep_ok) { 453 ms = delay[delay_idx]; /* last element may repeat */ 454 if (delay_idx < ARRAY_SIZE(delay) - 1) 455 delay_idx++; 456 msleep(ms); 457 } else { 458 mdelay(ms); 459 } 460 461 v = t4_read_reg(adap, ctl_reg); 462 if (v == X_CIM_PF_NOACCESS) 463 continue; 464 if (G_MBOWNER(v) == X_MBOWNER_PL) { 465 if (!(v & F_MBMSGVALID)) { 466 t4_write_reg(adap, ctl_reg, 467 V_MBOWNER(X_MBOWNER_NONE)); 468 continue; 469 } 470 471 /* 472 * Retrieve the command reply and release the mailbox. 473 */ 474 get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg); 475 CH_DUMP_MBOX(adap, mbox, 0, "rpl", cmd_rpl, false); 476 t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE)); 477 478 res = be64_to_cpu(cmd_rpl[0]); 479 if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) { 480 fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl); 481 res = V_FW_CMD_RETVAL(EIO); 482 } else if (rpl) 483 memcpy(rpl, cmd_rpl, size); 484 return -G_FW_CMD_RETVAL((int)res); 485 } 486 } 487 488 /* 489 * We timed out waiting for a reply to our mailbox command. Report 490 * the error and also check to see if the firmware reported any 491 * errors ... 492 */ 493 CH_ERR(adap, "command %#x in mbox %d timed out (0x%08x).\n", 494 *(const u8 *)cmd, mbox, pcie_fw); 495 CH_DUMP_MBOX(adap, mbox, 0, "cmdsent", cmd_rpl, true); 496 CH_DUMP_MBOX(adap, mbox, data_reg, "current", NULL, true); 497 498 if (pcie_fw & F_PCIE_FW_ERR) { 499 ret = -ENXIO; 500 t4_report_fw_error(adap); 501 } else { 502 ret = -ETIMEDOUT; 503 t4_os_dump_devlog(adap); 504 } 505 506 t4_fatal_err(adap, true); 507 return ret; 508 } 509 510 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, 511 void *rpl, bool sleep_ok) 512 { 513 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, 514 sleep_ok, FW_CMD_MAX_TIMEOUT); 515 516 } 517 518 static int t4_edc_err_read(struct adapter *adap, int idx) 519 { 520 u32 edc_ecc_err_addr_reg; 521 u32 edc_bist_status_rdata_reg; 522 523 if (is_t4(adap)) { 524 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__); 525 return 0; 526 } 527 if (idx != MEM_EDC0 && idx != MEM_EDC1) { 528 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx); 529 return 0; 530 } 531 532 edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx); 533 edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx); 534 535 CH_WARN(adap, 536 "edc%d err addr 0x%x: 0x%x.\n", 537 idx, edc_ecc_err_addr_reg, 538 t4_read_reg(adap, edc_ecc_err_addr_reg)); 539 CH_WARN(adap, 540 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n", 541 edc_bist_status_rdata_reg, 542 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg), 543 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8), 544 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16), 545 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24), 546 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32), 547 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40), 548 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48), 549 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56), 550 (unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64)); 551 552 return 0; 553 } 554 555 /** 556 * t4_mc_read - read from MC through backdoor accesses 557 * @adap: the adapter 558 * @idx: which MC to access 559 * @addr: address of first byte requested 560 * @data: 64 bytes of data containing the requested address 561 * @ecc: where to store the corresponding 64-bit ECC word 562 * 563 * Read 64 bytes of data from MC starting at a 64-byte-aligned address 564 * that covers the requested address @addr. If @parity is not %NULL it 565 * is assigned the 64-bit ECC word for the read data. 566 */ 567 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc) 568 { 569 int i; 570 u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg; 571 u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg; 572 573 if (is_t4(adap)) { 574 mc_bist_cmd_reg = A_MC_BIST_CMD; 575 mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR; 576 mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN; 577 mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA; 578 mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN; 579 } else { 580 mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx); 581 mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx); 582 mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx); 583 mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA, 584 idx); 585 mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN, 586 idx); 587 } 588 589 if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST) 590 return -EBUSY; 591 t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU); 592 t4_write_reg(adap, mc_bist_cmd_len_reg, 64); 593 t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc); 594 t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) | 595 F_START_BIST | V_BIST_CMD_GAP(1)); 596 i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1); 597 if (i) 598 return i; 599 600 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i) 601 602 for (i = 15; i >= 0; i--) 603 *data++ = ntohl(t4_read_reg(adap, MC_DATA(i))); 604 if (ecc) 605 *ecc = t4_read_reg64(adap, MC_DATA(16)); 606 #undef MC_DATA 607 return 0; 608 } 609 610 /** 611 * t4_edc_read - read from EDC through backdoor accesses 612 * @adap: the adapter 613 * @idx: which EDC to access 614 * @addr: address of first byte requested 615 * @data: 64 bytes of data containing the requested address 616 * @ecc: where to store the corresponding 64-bit ECC word 617 * 618 * Read 64 bytes of data from EDC starting at a 64-byte-aligned address 619 * that covers the requested address @addr. If @parity is not %NULL it 620 * is assigned the 64-bit ECC word for the read data. 621 */ 622 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc) 623 { 624 int i; 625 u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg; 626 u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg; 627 628 if (is_t4(adap)) { 629 edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx); 630 edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx); 631 edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx); 632 edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN, 633 idx); 634 edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA, 635 idx); 636 } else { 637 /* 638 * These macro are missing in t4_regs.h file. 639 * Added temporarily for testing. 640 */ 641 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR) 642 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx) 643 edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx); 644 edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx); 645 edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx); 646 edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN, 647 idx); 648 edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA, 649 idx); 650 #undef EDC_REG_T5 651 #undef EDC_STRIDE_T5 652 } 653 654 if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST) 655 return -EBUSY; 656 t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU); 657 t4_write_reg(adap, edc_bist_cmd_len_reg, 64); 658 t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc); 659 t4_write_reg(adap, edc_bist_cmd_reg, 660 V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST); 661 i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1); 662 if (i) 663 return i; 664 665 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i) 666 667 for (i = 15; i >= 0; i--) 668 *data++ = ntohl(t4_read_reg(adap, EDC_DATA(i))); 669 if (ecc) 670 *ecc = t4_read_reg64(adap, EDC_DATA(16)); 671 #undef EDC_DATA 672 return 0; 673 } 674 675 /** 676 * t4_mem_read - read EDC 0, EDC 1 or MC into buffer 677 * @adap: the adapter 678 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC 679 * @addr: address within indicated memory type 680 * @len: amount of memory to read 681 * @buf: host memory buffer 682 * 683 * Reads an [almost] arbitrary memory region in the firmware: the 684 * firmware memory address, length and host buffer must be aligned on 685 * 32-bit boudaries. The memory is returned as a raw byte sequence from 686 * the firmware's memory. If this memory contains data structures which 687 * contain multi-byte integers, it's the callers responsibility to 688 * perform appropriate byte order conversions. 689 */ 690 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len, 691 __be32 *buf) 692 { 693 u32 pos, start, end, offset; 694 int ret; 695 696 /* 697 * Argument sanity checks ... 698 */ 699 if ((addr & 0x3) || (len & 0x3)) 700 return -EINVAL; 701 702 /* 703 * The underlaying EDC/MC read routines read 64 bytes at a time so we 704 * need to round down the start and round up the end. We'll start 705 * copying out of the first line at (addr - start) a word at a time. 706 */ 707 start = rounddown2(addr, 64); 708 end = roundup2(addr + len, 64); 709 offset = (addr - start)/sizeof(__be32); 710 711 for (pos = start; pos < end; pos += 64, offset = 0) { 712 __be32 data[16]; 713 714 /* 715 * Read the chip's memory block and bail if there's an error. 716 */ 717 if ((mtype == MEM_MC) || (mtype == MEM_MC1)) 718 ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL); 719 else 720 ret = t4_edc_read(adap, mtype, pos, data, NULL); 721 if (ret) 722 return ret; 723 724 /* 725 * Copy the data into the caller's memory buffer. 726 */ 727 while (offset < 16 && len > 0) { 728 *buf++ = data[offset++]; 729 len -= sizeof(__be32); 730 } 731 } 732 733 return 0; 734 } 735 736 /* 737 * Return the specified PCI-E Configuration Space register from our Physical 738 * Function. We try first via a Firmware LDST Command (if fw_attach != 0) 739 * since we prefer to let the firmware own all of these registers, but if that 740 * fails we go for it directly ourselves. 741 */ 742 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach) 743 { 744 745 /* 746 * If fw_attach != 0, construct and send the Firmware LDST Command to 747 * retrieve the specified PCI-E Configuration Space register. 748 */ 749 if (drv_fw_attach != 0) { 750 struct fw_ldst_cmd ldst_cmd; 751 int ret; 752 753 memset(&ldst_cmd, 0, sizeof(ldst_cmd)); 754 ldst_cmd.op_to_addrspace = 755 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 756 F_FW_CMD_REQUEST | 757 F_FW_CMD_READ | 758 V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE)); 759 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd)); 760 ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1); 761 ldst_cmd.u.pcie.ctrl_to_fn = 762 (F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf)); 763 ldst_cmd.u.pcie.r = reg; 764 765 /* 766 * If the LDST Command succeeds, return the result, otherwise 767 * fall through to reading it directly ourselves ... 768 */ 769 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd), 770 &ldst_cmd); 771 if (ret == 0) 772 return be32_to_cpu(ldst_cmd.u.pcie.data[0]); 773 774 CH_WARN(adap, "Firmware failed to return " 775 "Configuration Space register %d, err = %d\n", 776 reg, -ret); 777 } 778 779 /* 780 * Read the desired Configuration Space register via the PCI-E 781 * Backdoor mechanism. 782 */ 783 return t4_hw_pci_read_cfg4(adap, reg); 784 } 785 786 /** 787 * t4_get_regs_len - return the size of the chips register set 788 * @adapter: the adapter 789 * 790 * Returns the size of the chip's BAR0 register space. 791 */ 792 unsigned int t4_get_regs_len(struct adapter *adapter) 793 { 794 unsigned int chip_version = chip_id(adapter); 795 796 switch (chip_version) { 797 case CHELSIO_T4: 798 if (adapter->flags & IS_VF) 799 return FW_T4VF_REGMAP_SIZE; 800 return T4_REGMAP_SIZE; 801 802 case CHELSIO_T5: 803 case CHELSIO_T6: 804 if (adapter->flags & IS_VF) 805 return FW_T4VF_REGMAP_SIZE; 806 return T5_REGMAP_SIZE; 807 } 808 809 CH_ERR(adapter, 810 "Unsupported chip version %d\n", chip_version); 811 return 0; 812 } 813 814 /** 815 * t4_get_regs - read chip registers into provided buffer 816 * @adap: the adapter 817 * @buf: register buffer 818 * @buf_size: size (in bytes) of register buffer 819 * 820 * If the provided register buffer isn't large enough for the chip's 821 * full register range, the register dump will be truncated to the 822 * register buffer's size. 823 */ 824 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size) 825 { 826 static const unsigned int t4_reg_ranges[] = { 827 0x1008, 0x1108, 828 0x1180, 0x1184, 829 0x1190, 0x1194, 830 0x11a0, 0x11a4, 831 0x11b0, 0x11b4, 832 0x11fc, 0x123c, 833 0x1300, 0x173c, 834 0x1800, 0x18fc, 835 0x3000, 0x30d8, 836 0x30e0, 0x30e4, 837 0x30ec, 0x5910, 838 0x5920, 0x5924, 839 0x5960, 0x5960, 840 0x5968, 0x5968, 841 0x5970, 0x5970, 842 0x5978, 0x5978, 843 0x5980, 0x5980, 844 0x5988, 0x5988, 845 0x5990, 0x5990, 846 0x5998, 0x5998, 847 0x59a0, 0x59d4, 848 0x5a00, 0x5ae0, 849 0x5ae8, 0x5ae8, 850 0x5af0, 0x5af0, 851 0x5af8, 0x5af8, 852 0x6000, 0x6098, 853 0x6100, 0x6150, 854 0x6200, 0x6208, 855 0x6240, 0x6248, 856 0x6280, 0x62b0, 857 0x62c0, 0x6338, 858 0x6370, 0x638c, 859 0x6400, 0x643c, 860 0x6500, 0x6524, 861 0x6a00, 0x6a04, 862 0x6a14, 0x6a38, 863 0x6a60, 0x6a70, 864 0x6a78, 0x6a78, 865 0x6b00, 0x6b0c, 866 0x6b1c, 0x6b84, 867 0x6bf0, 0x6bf8, 868 0x6c00, 0x6c0c, 869 0x6c1c, 0x6c84, 870 0x6cf0, 0x6cf8, 871 0x6d00, 0x6d0c, 872 0x6d1c, 0x6d84, 873 0x6df0, 0x6df8, 874 0x6e00, 0x6e0c, 875 0x6e1c, 0x6e84, 876 0x6ef0, 0x6ef8, 877 0x6f00, 0x6f0c, 878 0x6f1c, 0x6f84, 879 0x6ff0, 0x6ff8, 880 0x7000, 0x700c, 881 0x701c, 0x7084, 882 0x70f0, 0x70f8, 883 0x7100, 0x710c, 884 0x711c, 0x7184, 885 0x71f0, 0x71f8, 886 0x7200, 0x720c, 887 0x721c, 0x7284, 888 0x72f0, 0x72f8, 889 0x7300, 0x730c, 890 0x731c, 0x7384, 891 0x73f0, 0x73f8, 892 0x7400, 0x7450, 893 0x7500, 0x7530, 894 0x7600, 0x760c, 895 0x7614, 0x761c, 896 0x7680, 0x76cc, 897 0x7700, 0x7798, 898 0x77c0, 0x77fc, 899 0x7900, 0x79fc, 900 0x7b00, 0x7b58, 901 0x7b60, 0x7b84, 902 0x7b8c, 0x7c38, 903 0x7d00, 0x7d38, 904 0x7d40, 0x7d80, 905 0x7d8c, 0x7ddc, 906 0x7de4, 0x7e04, 907 0x7e10, 0x7e1c, 908 0x7e24, 0x7e38, 909 0x7e40, 0x7e44, 910 0x7e4c, 0x7e78, 911 0x7e80, 0x7ea4, 912 0x7eac, 0x7edc, 913 0x7ee8, 0x7efc, 914 0x8dc0, 0x8e04, 915 0x8e10, 0x8e1c, 916 0x8e30, 0x8e78, 917 0x8ea0, 0x8eb8, 918 0x8ec0, 0x8f6c, 919 0x8fc0, 0x9008, 920 0x9010, 0x9058, 921 0x9060, 0x9060, 922 0x9068, 0x9074, 923 0x90fc, 0x90fc, 924 0x9400, 0x9408, 925 0x9410, 0x9458, 926 0x9600, 0x9600, 927 0x9608, 0x9638, 928 0x9640, 0x96bc, 929 0x9800, 0x9808, 930 0x9820, 0x983c, 931 0x9850, 0x9864, 932 0x9c00, 0x9c6c, 933 0x9c80, 0x9cec, 934 0x9d00, 0x9d6c, 935 0x9d80, 0x9dec, 936 0x9e00, 0x9e6c, 937 0x9e80, 0x9eec, 938 0x9f00, 0x9f6c, 939 0x9f80, 0x9fec, 940 0xd004, 0xd004, 941 0xd010, 0xd03c, 942 0xdfc0, 0xdfe0, 943 0xe000, 0xea7c, 944 0xf000, 0x11110, 945 0x11118, 0x11190, 946 0x19040, 0x1906c, 947 0x19078, 0x19080, 948 0x1908c, 0x190e4, 949 0x190f0, 0x190f8, 950 0x19100, 0x19110, 951 0x19120, 0x19124, 952 0x19150, 0x19194, 953 0x1919c, 0x191b0, 954 0x191d0, 0x191e8, 955 0x19238, 0x1924c, 956 0x193f8, 0x1943c, 957 0x1944c, 0x19474, 958 0x19490, 0x194e0, 959 0x194f0, 0x194f8, 960 0x19800, 0x19c08, 961 0x19c10, 0x19c90, 962 0x19ca0, 0x19ce4, 963 0x19cf0, 0x19d40, 964 0x19d50, 0x19d94, 965 0x19da0, 0x19de8, 966 0x19df0, 0x19e40, 967 0x19e50, 0x19e90, 968 0x19ea0, 0x19f4c, 969 0x1a000, 0x1a004, 970 0x1a010, 0x1a06c, 971 0x1a0b0, 0x1a0e4, 972 0x1a0ec, 0x1a0f4, 973 0x1a100, 0x1a108, 974 0x1a114, 0x1a120, 975 0x1a128, 0x1a130, 976 0x1a138, 0x1a138, 977 0x1a190, 0x1a1c4, 978 0x1a1fc, 0x1a1fc, 979 0x1e040, 0x1e04c, 980 0x1e284, 0x1e28c, 981 0x1e2c0, 0x1e2c0, 982 0x1e2e0, 0x1e2e0, 983 0x1e300, 0x1e384, 984 0x1e3c0, 0x1e3c8, 985 0x1e440, 0x1e44c, 986 0x1e684, 0x1e68c, 987 0x1e6c0, 0x1e6c0, 988 0x1e6e0, 0x1e6e0, 989 0x1e700, 0x1e784, 990 0x1e7c0, 0x1e7c8, 991 0x1e840, 0x1e84c, 992 0x1ea84, 0x1ea8c, 993 0x1eac0, 0x1eac0, 994 0x1eae0, 0x1eae0, 995 0x1eb00, 0x1eb84, 996 0x1ebc0, 0x1ebc8, 997 0x1ec40, 0x1ec4c, 998 0x1ee84, 0x1ee8c, 999 0x1eec0, 0x1eec0, 1000 0x1eee0, 0x1eee0, 1001 0x1ef00, 0x1ef84, 1002 0x1efc0, 0x1efc8, 1003 0x1f040, 0x1f04c, 1004 0x1f284, 0x1f28c, 1005 0x1f2c0, 0x1f2c0, 1006 0x1f2e0, 0x1f2e0, 1007 0x1f300, 0x1f384, 1008 0x1f3c0, 0x1f3c8, 1009 0x1f440, 0x1f44c, 1010 0x1f684, 0x1f68c, 1011 0x1f6c0, 0x1f6c0, 1012 0x1f6e0, 0x1f6e0, 1013 0x1f700, 0x1f784, 1014 0x1f7c0, 0x1f7c8, 1015 0x1f840, 0x1f84c, 1016 0x1fa84, 0x1fa8c, 1017 0x1fac0, 0x1fac0, 1018 0x1fae0, 0x1fae0, 1019 0x1fb00, 0x1fb84, 1020 0x1fbc0, 0x1fbc8, 1021 0x1fc40, 0x1fc4c, 1022 0x1fe84, 0x1fe8c, 1023 0x1fec0, 0x1fec0, 1024 0x1fee0, 0x1fee0, 1025 0x1ff00, 0x1ff84, 1026 0x1ffc0, 0x1ffc8, 1027 0x20000, 0x2002c, 1028 0x20100, 0x2013c, 1029 0x20190, 0x201a0, 1030 0x201a8, 0x201b8, 1031 0x201c4, 0x201c8, 1032 0x20200, 0x20318, 1033 0x20400, 0x204b4, 1034 0x204c0, 0x20528, 1035 0x20540, 0x20614, 1036 0x21000, 0x21040, 1037 0x2104c, 0x21060, 1038 0x210c0, 0x210ec, 1039 0x21200, 0x21268, 1040 0x21270, 0x21284, 1041 0x212fc, 0x21388, 1042 0x21400, 0x21404, 1043 0x21500, 0x21500, 1044 0x21510, 0x21518, 1045 0x2152c, 0x21530, 1046 0x2153c, 0x2153c, 1047 0x21550, 0x21554, 1048 0x21600, 0x21600, 1049 0x21608, 0x2161c, 1050 0x21624, 0x21628, 1051 0x21630, 0x21634, 1052 0x2163c, 0x2163c, 1053 0x21700, 0x2171c, 1054 0x21780, 0x2178c, 1055 0x21800, 0x21818, 1056 0x21820, 0x21828, 1057 0x21830, 0x21848, 1058 0x21850, 0x21854, 1059 0x21860, 0x21868, 1060 0x21870, 0x21870, 1061 0x21878, 0x21898, 1062 0x218a0, 0x218a8, 1063 0x218b0, 0x218c8, 1064 0x218d0, 0x218d4, 1065 0x218e0, 0x218e8, 1066 0x218f0, 0x218f0, 1067 0x218f8, 0x21a18, 1068 0x21a20, 0x21a28, 1069 0x21a30, 0x21a48, 1070 0x21a50, 0x21a54, 1071 0x21a60, 0x21a68, 1072 0x21a70, 0x21a70, 1073 0x21a78, 0x21a98, 1074 0x21aa0, 0x21aa8, 1075 0x21ab0, 0x21ac8, 1076 0x21ad0, 0x21ad4, 1077 0x21ae0, 0x21ae8, 1078 0x21af0, 0x21af0, 1079 0x21af8, 0x21c18, 1080 0x21c20, 0x21c20, 1081 0x21c28, 0x21c30, 1082 0x21c38, 0x21c38, 1083 0x21c80, 0x21c98, 1084 0x21ca0, 0x21ca8, 1085 0x21cb0, 0x21cc8, 1086 0x21cd0, 0x21cd4, 1087 0x21ce0, 0x21ce8, 1088 0x21cf0, 0x21cf0, 1089 0x21cf8, 0x21d7c, 1090 0x21e00, 0x21e04, 1091 0x22000, 0x2202c, 1092 0x22100, 0x2213c, 1093 0x22190, 0x221a0, 1094 0x221a8, 0x221b8, 1095 0x221c4, 0x221c8, 1096 0x22200, 0x22318, 1097 0x22400, 0x224b4, 1098 0x224c0, 0x22528, 1099 0x22540, 0x22614, 1100 0x23000, 0x23040, 1101 0x2304c, 0x23060, 1102 0x230c0, 0x230ec, 1103 0x23200, 0x23268, 1104 0x23270, 0x23284, 1105 0x232fc, 0x23388, 1106 0x23400, 0x23404, 1107 0x23500, 0x23500, 1108 0x23510, 0x23518, 1109 0x2352c, 0x23530, 1110 0x2353c, 0x2353c, 1111 0x23550, 0x23554, 1112 0x23600, 0x23600, 1113 0x23608, 0x2361c, 1114 0x23624, 0x23628, 1115 0x23630, 0x23634, 1116 0x2363c, 0x2363c, 1117 0x23700, 0x2371c, 1118 0x23780, 0x2378c, 1119 0x23800, 0x23818, 1120 0x23820, 0x23828, 1121 0x23830, 0x23848, 1122 0x23850, 0x23854, 1123 0x23860, 0x23868, 1124 0x23870, 0x23870, 1125 0x23878, 0x23898, 1126 0x238a0, 0x238a8, 1127 0x238b0, 0x238c8, 1128 0x238d0, 0x238d4, 1129 0x238e0, 0x238e8, 1130 0x238f0, 0x238f0, 1131 0x238f8, 0x23a18, 1132 0x23a20, 0x23a28, 1133 0x23a30, 0x23a48, 1134 0x23a50, 0x23a54, 1135 0x23a60, 0x23a68, 1136 0x23a70, 0x23a70, 1137 0x23a78, 0x23a98, 1138 0x23aa0, 0x23aa8, 1139 0x23ab0, 0x23ac8, 1140 0x23ad0, 0x23ad4, 1141 0x23ae0, 0x23ae8, 1142 0x23af0, 0x23af0, 1143 0x23af8, 0x23c18, 1144 0x23c20, 0x23c20, 1145 0x23c28, 0x23c30, 1146 0x23c38, 0x23c38, 1147 0x23c80, 0x23c98, 1148 0x23ca0, 0x23ca8, 1149 0x23cb0, 0x23cc8, 1150 0x23cd0, 0x23cd4, 1151 0x23ce0, 0x23ce8, 1152 0x23cf0, 0x23cf0, 1153 0x23cf8, 0x23d7c, 1154 0x23e00, 0x23e04, 1155 0x24000, 0x2402c, 1156 0x24100, 0x2413c, 1157 0x24190, 0x241a0, 1158 0x241a8, 0x241b8, 1159 0x241c4, 0x241c8, 1160 0x24200, 0x24318, 1161 0x24400, 0x244b4, 1162 0x244c0, 0x24528, 1163 0x24540, 0x24614, 1164 0x25000, 0x25040, 1165 0x2504c, 0x25060, 1166 0x250c0, 0x250ec, 1167 0x25200, 0x25268, 1168 0x25270, 0x25284, 1169 0x252fc, 0x25388, 1170 0x25400, 0x25404, 1171 0x25500, 0x25500, 1172 0x25510, 0x25518, 1173 0x2552c, 0x25530, 1174 0x2553c, 0x2553c, 1175 0x25550, 0x25554, 1176 0x25600, 0x25600, 1177 0x25608, 0x2561c, 1178 0x25624, 0x25628, 1179 0x25630, 0x25634, 1180 0x2563c, 0x2563c, 1181 0x25700, 0x2571c, 1182 0x25780, 0x2578c, 1183 0x25800, 0x25818, 1184 0x25820, 0x25828, 1185 0x25830, 0x25848, 1186 0x25850, 0x25854, 1187 0x25860, 0x25868, 1188 0x25870, 0x25870, 1189 0x25878, 0x25898, 1190 0x258a0, 0x258a8, 1191 0x258b0, 0x258c8, 1192 0x258d0, 0x258d4, 1193 0x258e0, 0x258e8, 1194 0x258f0, 0x258f0, 1195 0x258f8, 0x25a18, 1196 0x25a20, 0x25a28, 1197 0x25a30, 0x25a48, 1198 0x25a50, 0x25a54, 1199 0x25a60, 0x25a68, 1200 0x25a70, 0x25a70, 1201 0x25a78, 0x25a98, 1202 0x25aa0, 0x25aa8, 1203 0x25ab0, 0x25ac8, 1204 0x25ad0, 0x25ad4, 1205 0x25ae0, 0x25ae8, 1206 0x25af0, 0x25af0, 1207 0x25af8, 0x25c18, 1208 0x25c20, 0x25c20, 1209 0x25c28, 0x25c30, 1210 0x25c38, 0x25c38, 1211 0x25c80, 0x25c98, 1212 0x25ca0, 0x25ca8, 1213 0x25cb0, 0x25cc8, 1214 0x25cd0, 0x25cd4, 1215 0x25ce0, 0x25ce8, 1216 0x25cf0, 0x25cf0, 1217 0x25cf8, 0x25d7c, 1218 0x25e00, 0x25e04, 1219 0x26000, 0x2602c, 1220 0x26100, 0x2613c, 1221 0x26190, 0x261a0, 1222 0x261a8, 0x261b8, 1223 0x261c4, 0x261c8, 1224 0x26200, 0x26318, 1225 0x26400, 0x264b4, 1226 0x264c0, 0x26528, 1227 0x26540, 0x26614, 1228 0x27000, 0x27040, 1229 0x2704c, 0x27060, 1230 0x270c0, 0x270ec, 1231 0x27200, 0x27268, 1232 0x27270, 0x27284, 1233 0x272fc, 0x27388, 1234 0x27400, 0x27404, 1235 0x27500, 0x27500, 1236 0x27510, 0x27518, 1237 0x2752c, 0x27530, 1238 0x2753c, 0x2753c, 1239 0x27550, 0x27554, 1240 0x27600, 0x27600, 1241 0x27608, 0x2761c, 1242 0x27624, 0x27628, 1243 0x27630, 0x27634, 1244 0x2763c, 0x2763c, 1245 0x27700, 0x2771c, 1246 0x27780, 0x2778c, 1247 0x27800, 0x27818, 1248 0x27820, 0x27828, 1249 0x27830, 0x27848, 1250 0x27850, 0x27854, 1251 0x27860, 0x27868, 1252 0x27870, 0x27870, 1253 0x27878, 0x27898, 1254 0x278a0, 0x278a8, 1255 0x278b0, 0x278c8, 1256 0x278d0, 0x278d4, 1257 0x278e0, 0x278e8, 1258 0x278f0, 0x278f0, 1259 0x278f8, 0x27a18, 1260 0x27a20, 0x27a28, 1261 0x27a30, 0x27a48, 1262 0x27a50, 0x27a54, 1263 0x27a60, 0x27a68, 1264 0x27a70, 0x27a70, 1265 0x27a78, 0x27a98, 1266 0x27aa0, 0x27aa8, 1267 0x27ab0, 0x27ac8, 1268 0x27ad0, 0x27ad4, 1269 0x27ae0, 0x27ae8, 1270 0x27af0, 0x27af0, 1271 0x27af8, 0x27c18, 1272 0x27c20, 0x27c20, 1273 0x27c28, 0x27c30, 1274 0x27c38, 0x27c38, 1275 0x27c80, 0x27c98, 1276 0x27ca0, 0x27ca8, 1277 0x27cb0, 0x27cc8, 1278 0x27cd0, 0x27cd4, 1279 0x27ce0, 0x27ce8, 1280 0x27cf0, 0x27cf0, 1281 0x27cf8, 0x27d7c, 1282 0x27e00, 0x27e04, 1283 }; 1284 1285 static const unsigned int t4vf_reg_ranges[] = { 1286 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS), 1287 VF_MPS_REG(A_MPS_VF_CTL), 1288 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H), 1289 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI), 1290 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL), 1291 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS), 1292 FW_T4VF_MBDATA_BASE_ADDR, 1293 FW_T4VF_MBDATA_BASE_ADDR + 1294 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4), 1295 }; 1296 1297 static const unsigned int t5_reg_ranges[] = { 1298 0x1008, 0x10c0, 1299 0x10cc, 0x10f8, 1300 0x1100, 0x1100, 1301 0x110c, 0x1148, 1302 0x1180, 0x1184, 1303 0x1190, 0x1194, 1304 0x11a0, 0x11a4, 1305 0x11b0, 0x11b4, 1306 0x11fc, 0x123c, 1307 0x1280, 0x173c, 1308 0x1800, 0x18fc, 1309 0x3000, 0x3028, 1310 0x3060, 0x30b0, 1311 0x30b8, 0x30d8, 1312 0x30e0, 0x30fc, 1313 0x3140, 0x357c, 1314 0x35a8, 0x35cc, 1315 0x35ec, 0x35ec, 1316 0x3600, 0x5624, 1317 0x56cc, 0x56ec, 1318 0x56f4, 0x5720, 1319 0x5728, 0x575c, 1320 0x580c, 0x5814, 1321 0x5890, 0x589c, 1322 0x58a4, 0x58ac, 1323 0x58b8, 0x58bc, 1324 0x5940, 0x59c8, 1325 0x59d0, 0x59dc, 1326 0x59fc, 0x5a18, 1327 0x5a60, 0x5a70, 1328 0x5a80, 0x5a9c, 1329 0x5b94, 0x5bfc, 1330 0x6000, 0x6020, 1331 0x6028, 0x6040, 1332 0x6058, 0x609c, 1333 0x60a8, 0x614c, 1334 0x7700, 0x7798, 1335 0x77c0, 0x78fc, 1336 0x7b00, 0x7b58, 1337 0x7b60, 0x7b84, 1338 0x7b8c, 0x7c54, 1339 0x7d00, 0x7d38, 1340 0x7d40, 0x7d80, 1341 0x7d8c, 0x7ddc, 1342 0x7de4, 0x7e04, 1343 0x7e10, 0x7e1c, 1344 0x7e24, 0x7e38, 1345 0x7e40, 0x7e44, 1346 0x7e4c, 0x7e78, 1347 0x7e80, 0x7edc, 1348 0x7ee8, 0x7efc, 1349 0x8dc0, 0x8de0, 1350 0x8df8, 0x8e04, 1351 0x8e10, 0x8e84, 1352 0x8ea0, 0x8f84, 1353 0x8fc0, 0x9058, 1354 0x9060, 0x9060, 1355 0x9068, 0x90f8, 1356 0x9400, 0x9408, 1357 0x9410, 0x9470, 1358 0x9600, 0x9600, 1359 0x9608, 0x9638, 1360 0x9640, 0x96f4, 1361 0x9800, 0x9808, 1362 0x9820, 0x983c, 1363 0x9850, 0x9864, 1364 0x9c00, 0x9c6c, 1365 0x9c80, 0x9cec, 1366 0x9d00, 0x9d6c, 1367 0x9d80, 0x9dec, 1368 0x9e00, 0x9e6c, 1369 0x9e80, 0x9eec, 1370 0x9f00, 0x9f6c, 1371 0x9f80, 0xa020, 1372 0xd004, 0xd004, 1373 0xd010, 0xd03c, 1374 0xdfc0, 0xdfe0, 1375 0xe000, 0x1106c, 1376 0x11074, 0x11088, 1377 0x1109c, 0x1117c, 1378 0x11190, 0x11204, 1379 0x19040, 0x1906c, 1380 0x19078, 0x19080, 1381 0x1908c, 0x190e8, 1382 0x190f0, 0x190f8, 1383 0x19100, 0x19110, 1384 0x19120, 0x19124, 1385 0x19150, 0x19194, 1386 0x1919c, 0x191b0, 1387 0x191d0, 0x191e8, 1388 0x19238, 0x19290, 1389 0x193f8, 0x19428, 1390 0x19430, 0x19444, 1391 0x1944c, 0x1946c, 1392 0x19474, 0x19474, 1393 0x19490, 0x194cc, 1394 0x194f0, 0x194f8, 1395 0x19c00, 0x19c08, 1396 0x19c10, 0x19c60, 1397 0x19c94, 0x19ce4, 1398 0x19cf0, 0x19d40, 1399 0x19d50, 0x19d94, 1400 0x19da0, 0x19de8, 1401 0x19df0, 0x19e10, 1402 0x19e50, 0x19e90, 1403 0x19ea0, 0x19f24, 1404 0x19f34, 0x19f34, 1405 0x19f40, 0x19f50, 1406 0x19f90, 0x19fb4, 1407 0x19fc4, 0x19fe4, 1408 0x1a000, 0x1a004, 1409 0x1a010, 0x1a06c, 1410 0x1a0b0, 0x1a0e4, 1411 0x1a0ec, 0x1a0f8, 1412 0x1a100, 0x1a108, 1413 0x1a114, 0x1a120, 1414 0x1a128, 0x1a130, 1415 0x1a138, 0x1a138, 1416 0x1a190, 0x1a1c4, 1417 0x1a1fc, 0x1a1fc, 1418 0x1e008, 0x1e00c, 1419 0x1e040, 0x1e044, 1420 0x1e04c, 0x1e04c, 1421 0x1e284, 0x1e290, 1422 0x1e2c0, 0x1e2c0, 1423 0x1e2e0, 0x1e2e0, 1424 0x1e300, 0x1e384, 1425 0x1e3c0, 0x1e3c8, 1426 0x1e408, 0x1e40c, 1427 0x1e440, 0x1e444, 1428 0x1e44c, 0x1e44c, 1429 0x1e684, 0x1e690, 1430 0x1e6c0, 0x1e6c0, 1431 0x1e6e0, 0x1e6e0, 1432 0x1e700, 0x1e784, 1433 0x1e7c0, 0x1e7c8, 1434 0x1e808, 0x1e80c, 1435 0x1e840, 0x1e844, 1436 0x1e84c, 0x1e84c, 1437 0x1ea84, 0x1ea90, 1438 0x1eac0, 0x1eac0, 1439 0x1eae0, 0x1eae0, 1440 0x1eb00, 0x1eb84, 1441 0x1ebc0, 0x1ebc8, 1442 0x1ec08, 0x1ec0c, 1443 0x1ec40, 0x1ec44, 1444 0x1ec4c, 0x1ec4c, 1445 0x1ee84, 0x1ee90, 1446 0x1eec0, 0x1eec0, 1447 0x1eee0, 0x1eee0, 1448 0x1ef00, 0x1ef84, 1449 0x1efc0, 0x1efc8, 1450 0x1f008, 0x1f00c, 1451 0x1f040, 0x1f044, 1452 0x1f04c, 0x1f04c, 1453 0x1f284, 0x1f290, 1454 0x1f2c0, 0x1f2c0, 1455 0x1f2e0, 0x1f2e0, 1456 0x1f300, 0x1f384, 1457 0x1f3c0, 0x1f3c8, 1458 0x1f408, 0x1f40c, 1459 0x1f440, 0x1f444, 1460 0x1f44c, 0x1f44c, 1461 0x1f684, 0x1f690, 1462 0x1f6c0, 0x1f6c0, 1463 0x1f6e0, 0x1f6e0, 1464 0x1f700, 0x1f784, 1465 0x1f7c0, 0x1f7c8, 1466 0x1f808, 0x1f80c, 1467 0x1f840, 0x1f844, 1468 0x1f84c, 0x1f84c, 1469 0x1fa84, 0x1fa90, 1470 0x1fac0, 0x1fac0, 1471 0x1fae0, 0x1fae0, 1472 0x1fb00, 0x1fb84, 1473 0x1fbc0, 0x1fbc8, 1474 0x1fc08, 0x1fc0c, 1475 0x1fc40, 0x1fc44, 1476 0x1fc4c, 0x1fc4c, 1477 0x1fe84, 0x1fe90, 1478 0x1fec0, 0x1fec0, 1479 0x1fee0, 0x1fee0, 1480 0x1ff00, 0x1ff84, 1481 0x1ffc0, 0x1ffc8, 1482 0x30000, 0x30030, 1483 0x30100, 0x30144, 1484 0x30190, 0x301a0, 1485 0x301a8, 0x301b8, 1486 0x301c4, 0x301c8, 1487 0x301d0, 0x301d0, 1488 0x30200, 0x30318, 1489 0x30400, 0x304b4, 1490 0x304c0, 0x3052c, 1491 0x30540, 0x3061c, 1492 0x30800, 0x30828, 1493 0x30834, 0x30834, 1494 0x308c0, 0x30908, 1495 0x30910, 0x309ac, 1496 0x30a00, 0x30a14, 1497 0x30a1c, 0x30a2c, 1498 0x30a44, 0x30a50, 1499 0x30a74, 0x30a74, 1500 0x30a7c, 0x30afc, 1501 0x30b08, 0x30c24, 1502 0x30d00, 0x30d00, 1503 0x30d08, 0x30d14, 1504 0x30d1c, 0x30d20, 1505 0x30d3c, 0x30d3c, 1506 0x30d48, 0x30d50, 1507 0x31200, 0x3120c, 1508 0x31220, 0x31220, 1509 0x31240, 0x31240, 1510 0x31600, 0x3160c, 1511 0x31a00, 0x31a1c, 1512 0x31e00, 0x31e20, 1513 0x31e38, 0x31e3c, 1514 0x31e80, 0x31e80, 1515 0x31e88, 0x31ea8, 1516 0x31eb0, 0x31eb4, 1517 0x31ec8, 0x31ed4, 1518 0x31fb8, 0x32004, 1519 0x32200, 0x32200, 1520 0x32208, 0x32240, 1521 0x32248, 0x32280, 1522 0x32288, 0x322c0, 1523 0x322c8, 0x322fc, 1524 0x32600, 0x32630, 1525 0x32a00, 0x32abc, 1526 0x32b00, 0x32b10, 1527 0x32b20, 0x32b30, 1528 0x32b40, 0x32b50, 1529 0x32b60, 0x32b70, 1530 0x33000, 0x33028, 1531 0x33030, 0x33048, 1532 0x33060, 0x33068, 1533 0x33070, 0x3309c, 1534 0x330f0, 0x33128, 1535 0x33130, 0x33148, 1536 0x33160, 0x33168, 1537 0x33170, 0x3319c, 1538 0x331f0, 0x33238, 1539 0x33240, 0x33240, 1540 0x33248, 0x33250, 1541 0x3325c, 0x33264, 1542 0x33270, 0x332b8, 1543 0x332c0, 0x332e4, 1544 0x332f8, 0x33338, 1545 0x33340, 0x33340, 1546 0x33348, 0x33350, 1547 0x3335c, 0x33364, 1548 0x33370, 0x333b8, 1549 0x333c0, 0x333e4, 1550 0x333f8, 0x33428, 1551 0x33430, 0x33448, 1552 0x33460, 0x33468, 1553 0x33470, 0x3349c, 1554 0x334f0, 0x33528, 1555 0x33530, 0x33548, 1556 0x33560, 0x33568, 1557 0x33570, 0x3359c, 1558 0x335f0, 0x33638, 1559 0x33640, 0x33640, 1560 0x33648, 0x33650, 1561 0x3365c, 0x33664, 1562 0x33670, 0x336b8, 1563 0x336c0, 0x336e4, 1564 0x336f8, 0x33738, 1565 0x33740, 0x33740, 1566 0x33748, 0x33750, 1567 0x3375c, 0x33764, 1568 0x33770, 0x337b8, 1569 0x337c0, 0x337e4, 1570 0x337f8, 0x337fc, 1571 0x33814, 0x33814, 1572 0x3382c, 0x3382c, 1573 0x33880, 0x3388c, 1574 0x338e8, 0x338ec, 1575 0x33900, 0x33928, 1576 0x33930, 0x33948, 1577 0x33960, 0x33968, 1578 0x33970, 0x3399c, 1579 0x339f0, 0x33a38, 1580 0x33a40, 0x33a40, 1581 0x33a48, 0x33a50, 1582 0x33a5c, 0x33a64, 1583 0x33a70, 0x33ab8, 1584 0x33ac0, 0x33ae4, 1585 0x33af8, 0x33b10, 1586 0x33b28, 0x33b28, 1587 0x33b3c, 0x33b50, 1588 0x33bf0, 0x33c10, 1589 0x33c28, 0x33c28, 1590 0x33c3c, 0x33c50, 1591 0x33cf0, 0x33cfc, 1592 0x34000, 0x34030, 1593 0x34100, 0x34144, 1594 0x34190, 0x341a0, 1595 0x341a8, 0x341b8, 1596 0x341c4, 0x341c8, 1597 0x341d0, 0x341d0, 1598 0x34200, 0x34318, 1599 0x34400, 0x344b4, 1600 0x344c0, 0x3452c, 1601 0x34540, 0x3461c, 1602 0x34800, 0x34828, 1603 0x34834, 0x34834, 1604 0x348c0, 0x34908, 1605 0x34910, 0x349ac, 1606 0x34a00, 0x34a14, 1607 0x34a1c, 0x34a2c, 1608 0x34a44, 0x34a50, 1609 0x34a74, 0x34a74, 1610 0x34a7c, 0x34afc, 1611 0x34b08, 0x34c24, 1612 0x34d00, 0x34d00, 1613 0x34d08, 0x34d14, 1614 0x34d1c, 0x34d20, 1615 0x34d3c, 0x34d3c, 1616 0x34d48, 0x34d50, 1617 0x35200, 0x3520c, 1618 0x35220, 0x35220, 1619 0x35240, 0x35240, 1620 0x35600, 0x3560c, 1621 0x35a00, 0x35a1c, 1622 0x35e00, 0x35e20, 1623 0x35e38, 0x35e3c, 1624 0x35e80, 0x35e80, 1625 0x35e88, 0x35ea8, 1626 0x35eb0, 0x35eb4, 1627 0x35ec8, 0x35ed4, 1628 0x35fb8, 0x36004, 1629 0x36200, 0x36200, 1630 0x36208, 0x36240, 1631 0x36248, 0x36280, 1632 0x36288, 0x362c0, 1633 0x362c8, 0x362fc, 1634 0x36600, 0x36630, 1635 0x36a00, 0x36abc, 1636 0x36b00, 0x36b10, 1637 0x36b20, 0x36b30, 1638 0x36b40, 0x36b50, 1639 0x36b60, 0x36b70, 1640 0x37000, 0x37028, 1641 0x37030, 0x37048, 1642 0x37060, 0x37068, 1643 0x37070, 0x3709c, 1644 0x370f0, 0x37128, 1645 0x37130, 0x37148, 1646 0x37160, 0x37168, 1647 0x37170, 0x3719c, 1648 0x371f0, 0x37238, 1649 0x37240, 0x37240, 1650 0x37248, 0x37250, 1651 0x3725c, 0x37264, 1652 0x37270, 0x372b8, 1653 0x372c0, 0x372e4, 1654 0x372f8, 0x37338, 1655 0x37340, 0x37340, 1656 0x37348, 0x37350, 1657 0x3735c, 0x37364, 1658 0x37370, 0x373b8, 1659 0x373c0, 0x373e4, 1660 0x373f8, 0x37428, 1661 0x37430, 0x37448, 1662 0x37460, 0x37468, 1663 0x37470, 0x3749c, 1664 0x374f0, 0x37528, 1665 0x37530, 0x37548, 1666 0x37560, 0x37568, 1667 0x37570, 0x3759c, 1668 0x375f0, 0x37638, 1669 0x37640, 0x37640, 1670 0x37648, 0x37650, 1671 0x3765c, 0x37664, 1672 0x37670, 0x376b8, 1673 0x376c0, 0x376e4, 1674 0x376f8, 0x37738, 1675 0x37740, 0x37740, 1676 0x37748, 0x37750, 1677 0x3775c, 0x37764, 1678 0x37770, 0x377b8, 1679 0x377c0, 0x377e4, 1680 0x377f8, 0x377fc, 1681 0x37814, 0x37814, 1682 0x3782c, 0x3782c, 1683 0x37880, 0x3788c, 1684 0x378e8, 0x378ec, 1685 0x37900, 0x37928, 1686 0x37930, 0x37948, 1687 0x37960, 0x37968, 1688 0x37970, 0x3799c, 1689 0x379f0, 0x37a38, 1690 0x37a40, 0x37a40, 1691 0x37a48, 0x37a50, 1692 0x37a5c, 0x37a64, 1693 0x37a70, 0x37ab8, 1694 0x37ac0, 0x37ae4, 1695 0x37af8, 0x37b10, 1696 0x37b28, 0x37b28, 1697 0x37b3c, 0x37b50, 1698 0x37bf0, 0x37c10, 1699 0x37c28, 0x37c28, 1700 0x37c3c, 0x37c50, 1701 0x37cf0, 0x37cfc, 1702 0x38000, 0x38030, 1703 0x38100, 0x38144, 1704 0x38190, 0x381a0, 1705 0x381a8, 0x381b8, 1706 0x381c4, 0x381c8, 1707 0x381d0, 0x381d0, 1708 0x38200, 0x38318, 1709 0x38400, 0x384b4, 1710 0x384c0, 0x3852c, 1711 0x38540, 0x3861c, 1712 0x38800, 0x38828, 1713 0x38834, 0x38834, 1714 0x388c0, 0x38908, 1715 0x38910, 0x389ac, 1716 0x38a00, 0x38a14, 1717 0x38a1c, 0x38a2c, 1718 0x38a44, 0x38a50, 1719 0x38a74, 0x38a74, 1720 0x38a7c, 0x38afc, 1721 0x38b08, 0x38c24, 1722 0x38d00, 0x38d00, 1723 0x38d08, 0x38d14, 1724 0x38d1c, 0x38d20, 1725 0x38d3c, 0x38d3c, 1726 0x38d48, 0x38d50, 1727 0x39200, 0x3920c, 1728 0x39220, 0x39220, 1729 0x39240, 0x39240, 1730 0x39600, 0x3960c, 1731 0x39a00, 0x39a1c, 1732 0x39e00, 0x39e20, 1733 0x39e38, 0x39e3c, 1734 0x39e80, 0x39e80, 1735 0x39e88, 0x39ea8, 1736 0x39eb0, 0x39eb4, 1737 0x39ec8, 0x39ed4, 1738 0x39fb8, 0x3a004, 1739 0x3a200, 0x3a200, 1740 0x3a208, 0x3a240, 1741 0x3a248, 0x3a280, 1742 0x3a288, 0x3a2c0, 1743 0x3a2c8, 0x3a2fc, 1744 0x3a600, 0x3a630, 1745 0x3aa00, 0x3aabc, 1746 0x3ab00, 0x3ab10, 1747 0x3ab20, 0x3ab30, 1748 0x3ab40, 0x3ab50, 1749 0x3ab60, 0x3ab70, 1750 0x3b000, 0x3b028, 1751 0x3b030, 0x3b048, 1752 0x3b060, 0x3b068, 1753 0x3b070, 0x3b09c, 1754 0x3b0f0, 0x3b128, 1755 0x3b130, 0x3b148, 1756 0x3b160, 0x3b168, 1757 0x3b170, 0x3b19c, 1758 0x3b1f0, 0x3b238, 1759 0x3b240, 0x3b240, 1760 0x3b248, 0x3b250, 1761 0x3b25c, 0x3b264, 1762 0x3b270, 0x3b2b8, 1763 0x3b2c0, 0x3b2e4, 1764 0x3b2f8, 0x3b338, 1765 0x3b340, 0x3b340, 1766 0x3b348, 0x3b350, 1767 0x3b35c, 0x3b364, 1768 0x3b370, 0x3b3b8, 1769 0x3b3c0, 0x3b3e4, 1770 0x3b3f8, 0x3b428, 1771 0x3b430, 0x3b448, 1772 0x3b460, 0x3b468, 1773 0x3b470, 0x3b49c, 1774 0x3b4f0, 0x3b528, 1775 0x3b530, 0x3b548, 1776 0x3b560, 0x3b568, 1777 0x3b570, 0x3b59c, 1778 0x3b5f0, 0x3b638, 1779 0x3b640, 0x3b640, 1780 0x3b648, 0x3b650, 1781 0x3b65c, 0x3b664, 1782 0x3b670, 0x3b6b8, 1783 0x3b6c0, 0x3b6e4, 1784 0x3b6f8, 0x3b738, 1785 0x3b740, 0x3b740, 1786 0x3b748, 0x3b750, 1787 0x3b75c, 0x3b764, 1788 0x3b770, 0x3b7b8, 1789 0x3b7c0, 0x3b7e4, 1790 0x3b7f8, 0x3b7fc, 1791 0x3b814, 0x3b814, 1792 0x3b82c, 0x3b82c, 1793 0x3b880, 0x3b88c, 1794 0x3b8e8, 0x3b8ec, 1795 0x3b900, 0x3b928, 1796 0x3b930, 0x3b948, 1797 0x3b960, 0x3b968, 1798 0x3b970, 0x3b99c, 1799 0x3b9f0, 0x3ba38, 1800 0x3ba40, 0x3ba40, 1801 0x3ba48, 0x3ba50, 1802 0x3ba5c, 0x3ba64, 1803 0x3ba70, 0x3bab8, 1804 0x3bac0, 0x3bae4, 1805 0x3baf8, 0x3bb10, 1806 0x3bb28, 0x3bb28, 1807 0x3bb3c, 0x3bb50, 1808 0x3bbf0, 0x3bc10, 1809 0x3bc28, 0x3bc28, 1810 0x3bc3c, 0x3bc50, 1811 0x3bcf0, 0x3bcfc, 1812 0x3c000, 0x3c030, 1813 0x3c100, 0x3c144, 1814 0x3c190, 0x3c1a0, 1815 0x3c1a8, 0x3c1b8, 1816 0x3c1c4, 0x3c1c8, 1817 0x3c1d0, 0x3c1d0, 1818 0x3c200, 0x3c318, 1819 0x3c400, 0x3c4b4, 1820 0x3c4c0, 0x3c52c, 1821 0x3c540, 0x3c61c, 1822 0x3c800, 0x3c828, 1823 0x3c834, 0x3c834, 1824 0x3c8c0, 0x3c908, 1825 0x3c910, 0x3c9ac, 1826 0x3ca00, 0x3ca14, 1827 0x3ca1c, 0x3ca2c, 1828 0x3ca44, 0x3ca50, 1829 0x3ca74, 0x3ca74, 1830 0x3ca7c, 0x3cafc, 1831 0x3cb08, 0x3cc24, 1832 0x3cd00, 0x3cd00, 1833 0x3cd08, 0x3cd14, 1834 0x3cd1c, 0x3cd20, 1835 0x3cd3c, 0x3cd3c, 1836 0x3cd48, 0x3cd50, 1837 0x3d200, 0x3d20c, 1838 0x3d220, 0x3d220, 1839 0x3d240, 0x3d240, 1840 0x3d600, 0x3d60c, 1841 0x3da00, 0x3da1c, 1842 0x3de00, 0x3de20, 1843 0x3de38, 0x3de3c, 1844 0x3de80, 0x3de80, 1845 0x3de88, 0x3dea8, 1846 0x3deb0, 0x3deb4, 1847 0x3dec8, 0x3ded4, 1848 0x3dfb8, 0x3e004, 1849 0x3e200, 0x3e200, 1850 0x3e208, 0x3e240, 1851 0x3e248, 0x3e280, 1852 0x3e288, 0x3e2c0, 1853 0x3e2c8, 0x3e2fc, 1854 0x3e600, 0x3e630, 1855 0x3ea00, 0x3eabc, 1856 0x3eb00, 0x3eb10, 1857 0x3eb20, 0x3eb30, 1858 0x3eb40, 0x3eb50, 1859 0x3eb60, 0x3eb70, 1860 0x3f000, 0x3f028, 1861 0x3f030, 0x3f048, 1862 0x3f060, 0x3f068, 1863 0x3f070, 0x3f09c, 1864 0x3f0f0, 0x3f128, 1865 0x3f130, 0x3f148, 1866 0x3f160, 0x3f168, 1867 0x3f170, 0x3f19c, 1868 0x3f1f0, 0x3f238, 1869 0x3f240, 0x3f240, 1870 0x3f248, 0x3f250, 1871 0x3f25c, 0x3f264, 1872 0x3f270, 0x3f2b8, 1873 0x3f2c0, 0x3f2e4, 1874 0x3f2f8, 0x3f338, 1875 0x3f340, 0x3f340, 1876 0x3f348, 0x3f350, 1877 0x3f35c, 0x3f364, 1878 0x3f370, 0x3f3b8, 1879 0x3f3c0, 0x3f3e4, 1880 0x3f3f8, 0x3f428, 1881 0x3f430, 0x3f448, 1882 0x3f460, 0x3f468, 1883 0x3f470, 0x3f49c, 1884 0x3f4f0, 0x3f528, 1885 0x3f530, 0x3f548, 1886 0x3f560, 0x3f568, 1887 0x3f570, 0x3f59c, 1888 0x3f5f0, 0x3f638, 1889 0x3f640, 0x3f640, 1890 0x3f648, 0x3f650, 1891 0x3f65c, 0x3f664, 1892 0x3f670, 0x3f6b8, 1893 0x3f6c0, 0x3f6e4, 1894 0x3f6f8, 0x3f738, 1895 0x3f740, 0x3f740, 1896 0x3f748, 0x3f750, 1897 0x3f75c, 0x3f764, 1898 0x3f770, 0x3f7b8, 1899 0x3f7c0, 0x3f7e4, 1900 0x3f7f8, 0x3f7fc, 1901 0x3f814, 0x3f814, 1902 0x3f82c, 0x3f82c, 1903 0x3f880, 0x3f88c, 1904 0x3f8e8, 0x3f8ec, 1905 0x3f900, 0x3f928, 1906 0x3f930, 0x3f948, 1907 0x3f960, 0x3f968, 1908 0x3f970, 0x3f99c, 1909 0x3f9f0, 0x3fa38, 1910 0x3fa40, 0x3fa40, 1911 0x3fa48, 0x3fa50, 1912 0x3fa5c, 0x3fa64, 1913 0x3fa70, 0x3fab8, 1914 0x3fac0, 0x3fae4, 1915 0x3faf8, 0x3fb10, 1916 0x3fb28, 0x3fb28, 1917 0x3fb3c, 0x3fb50, 1918 0x3fbf0, 0x3fc10, 1919 0x3fc28, 0x3fc28, 1920 0x3fc3c, 0x3fc50, 1921 0x3fcf0, 0x3fcfc, 1922 0x40000, 0x4000c, 1923 0x40040, 0x40050, 1924 0x40060, 0x40068, 1925 0x4007c, 0x4008c, 1926 0x40094, 0x400b0, 1927 0x400c0, 0x40144, 1928 0x40180, 0x4018c, 1929 0x40200, 0x40254, 1930 0x40260, 0x40264, 1931 0x40270, 0x40288, 1932 0x40290, 0x40298, 1933 0x402ac, 0x402c8, 1934 0x402d0, 0x402e0, 1935 0x402f0, 0x402f0, 1936 0x40300, 0x4033c, 1937 0x403f8, 0x403fc, 1938 0x41304, 0x413c4, 1939 0x41400, 0x4140c, 1940 0x41414, 0x4141c, 1941 0x41480, 0x414d0, 1942 0x44000, 0x44054, 1943 0x4405c, 0x44078, 1944 0x440c0, 0x44174, 1945 0x44180, 0x441ac, 1946 0x441b4, 0x441b8, 1947 0x441c0, 0x44254, 1948 0x4425c, 0x44278, 1949 0x442c0, 0x44374, 1950 0x44380, 0x443ac, 1951 0x443b4, 0x443b8, 1952 0x443c0, 0x44454, 1953 0x4445c, 0x44478, 1954 0x444c0, 0x44574, 1955 0x44580, 0x445ac, 1956 0x445b4, 0x445b8, 1957 0x445c0, 0x44654, 1958 0x4465c, 0x44678, 1959 0x446c0, 0x44774, 1960 0x44780, 0x447ac, 1961 0x447b4, 0x447b8, 1962 0x447c0, 0x44854, 1963 0x4485c, 0x44878, 1964 0x448c0, 0x44974, 1965 0x44980, 0x449ac, 1966 0x449b4, 0x449b8, 1967 0x449c0, 0x449fc, 1968 0x45000, 0x45004, 1969 0x45010, 0x45030, 1970 0x45040, 0x45060, 1971 0x45068, 0x45068, 1972 0x45080, 0x45084, 1973 0x450a0, 0x450b0, 1974 0x45200, 0x45204, 1975 0x45210, 0x45230, 1976 0x45240, 0x45260, 1977 0x45268, 0x45268, 1978 0x45280, 0x45284, 1979 0x452a0, 0x452b0, 1980 0x460c0, 0x460e4, 1981 0x47000, 0x4703c, 1982 0x47044, 0x4708c, 1983 0x47200, 0x47250, 1984 0x47400, 0x47408, 1985 0x47414, 0x47420, 1986 0x47600, 0x47618, 1987 0x47800, 0x47814, 1988 0x48000, 0x4800c, 1989 0x48040, 0x48050, 1990 0x48060, 0x48068, 1991 0x4807c, 0x4808c, 1992 0x48094, 0x480b0, 1993 0x480c0, 0x48144, 1994 0x48180, 0x4818c, 1995 0x48200, 0x48254, 1996 0x48260, 0x48264, 1997 0x48270, 0x48288, 1998 0x48290, 0x48298, 1999 0x482ac, 0x482c8, 2000 0x482d0, 0x482e0, 2001 0x482f0, 0x482f0, 2002 0x48300, 0x4833c, 2003 0x483f8, 0x483fc, 2004 0x49304, 0x493c4, 2005 0x49400, 0x4940c, 2006 0x49414, 0x4941c, 2007 0x49480, 0x494d0, 2008 0x4c000, 0x4c054, 2009 0x4c05c, 0x4c078, 2010 0x4c0c0, 0x4c174, 2011 0x4c180, 0x4c1ac, 2012 0x4c1b4, 0x4c1b8, 2013 0x4c1c0, 0x4c254, 2014 0x4c25c, 0x4c278, 2015 0x4c2c0, 0x4c374, 2016 0x4c380, 0x4c3ac, 2017 0x4c3b4, 0x4c3b8, 2018 0x4c3c0, 0x4c454, 2019 0x4c45c, 0x4c478, 2020 0x4c4c0, 0x4c574, 2021 0x4c580, 0x4c5ac, 2022 0x4c5b4, 0x4c5b8, 2023 0x4c5c0, 0x4c654, 2024 0x4c65c, 0x4c678, 2025 0x4c6c0, 0x4c774, 2026 0x4c780, 0x4c7ac, 2027 0x4c7b4, 0x4c7b8, 2028 0x4c7c0, 0x4c854, 2029 0x4c85c, 0x4c878, 2030 0x4c8c0, 0x4c974, 2031 0x4c980, 0x4c9ac, 2032 0x4c9b4, 0x4c9b8, 2033 0x4c9c0, 0x4c9fc, 2034 0x4d000, 0x4d004, 2035 0x4d010, 0x4d030, 2036 0x4d040, 0x4d060, 2037 0x4d068, 0x4d068, 2038 0x4d080, 0x4d084, 2039 0x4d0a0, 0x4d0b0, 2040 0x4d200, 0x4d204, 2041 0x4d210, 0x4d230, 2042 0x4d240, 0x4d260, 2043 0x4d268, 0x4d268, 2044 0x4d280, 0x4d284, 2045 0x4d2a0, 0x4d2b0, 2046 0x4e0c0, 0x4e0e4, 2047 0x4f000, 0x4f03c, 2048 0x4f044, 0x4f08c, 2049 0x4f200, 0x4f250, 2050 0x4f400, 0x4f408, 2051 0x4f414, 0x4f420, 2052 0x4f600, 0x4f618, 2053 0x4f800, 0x4f814, 2054 0x50000, 0x50084, 2055 0x50090, 0x500cc, 2056 0x50400, 0x50400, 2057 0x50800, 0x50884, 2058 0x50890, 0x508cc, 2059 0x50c00, 0x50c00, 2060 0x51000, 0x5101c, 2061 0x51300, 0x51308, 2062 }; 2063 2064 static const unsigned int t5vf_reg_ranges[] = { 2065 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS), 2066 VF_MPS_REG(A_MPS_VF_CTL), 2067 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H), 2068 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION), 2069 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL), 2070 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS), 2071 FW_T4VF_MBDATA_BASE_ADDR, 2072 FW_T4VF_MBDATA_BASE_ADDR + 2073 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4), 2074 }; 2075 2076 static const unsigned int t6_reg_ranges[] = { 2077 0x1008, 0x101c, 2078 0x1024, 0x10a8, 2079 0x10b4, 0x10f8, 2080 0x1100, 0x1114, 2081 0x111c, 0x112c, 2082 0x1138, 0x113c, 2083 0x1144, 0x114c, 2084 0x1180, 0x1184, 2085 0x1190, 0x1194, 2086 0x11a0, 0x11a4, 2087 0x11b0, 0x11b4, 2088 0x11fc, 0x1274, 2089 0x1280, 0x133c, 2090 0x1800, 0x18fc, 2091 0x3000, 0x302c, 2092 0x3060, 0x30b0, 2093 0x30b8, 0x30d8, 2094 0x30e0, 0x30fc, 2095 0x3140, 0x357c, 2096 0x35a8, 0x35cc, 2097 0x35ec, 0x35ec, 2098 0x3600, 0x5624, 2099 0x56cc, 0x56ec, 2100 0x56f4, 0x5720, 2101 0x5728, 0x575c, 2102 0x580c, 0x5814, 2103 0x5890, 0x589c, 2104 0x58a4, 0x58ac, 2105 0x58b8, 0x58bc, 2106 0x5940, 0x595c, 2107 0x5980, 0x598c, 2108 0x59b0, 0x59c8, 2109 0x59d0, 0x59dc, 2110 0x59fc, 0x5a18, 2111 0x5a60, 0x5a6c, 2112 0x5a80, 0x5a8c, 2113 0x5a94, 0x5a9c, 2114 0x5b94, 0x5bfc, 2115 0x5c10, 0x5e48, 2116 0x5e50, 0x5e94, 2117 0x5ea0, 0x5eb0, 2118 0x5ec0, 0x5ec0, 2119 0x5ec8, 0x5ed0, 2120 0x5ee0, 0x5ee0, 2121 0x5ef0, 0x5ef0, 2122 0x5f00, 0x5f00, 2123 0x6000, 0x6020, 2124 0x6028, 0x6040, 2125 0x6058, 0x609c, 2126 0x60a8, 0x619c, 2127 0x7700, 0x7798, 2128 0x77c0, 0x7880, 2129 0x78cc, 0x78fc, 2130 0x7b00, 0x7b58, 2131 0x7b60, 0x7b84, 2132 0x7b8c, 0x7c54, 2133 0x7d00, 0x7d38, 2134 0x7d40, 0x7d84, 2135 0x7d8c, 0x7ddc, 2136 0x7de4, 0x7e04, 2137 0x7e10, 0x7e1c, 2138 0x7e24, 0x7e38, 2139 0x7e40, 0x7e44, 2140 0x7e4c, 0x7e78, 2141 0x7e80, 0x7edc, 2142 0x7ee8, 0x7efc, 2143 0x8dc0, 0x8de4, 2144 0x8df8, 0x8e04, 2145 0x8e10, 0x8e84, 2146 0x8ea0, 0x8f88, 2147 0x8fb8, 0x9058, 2148 0x9060, 0x9060, 2149 0x9068, 0x90f8, 2150 0x9100, 0x9124, 2151 0x9400, 0x9470, 2152 0x9600, 0x9600, 2153 0x9608, 0x9638, 2154 0x9640, 0x9704, 2155 0x9710, 0x971c, 2156 0x9800, 0x9808, 2157 0x9820, 0x983c, 2158 0x9850, 0x9864, 2159 0x9c00, 0x9c6c, 2160 0x9c80, 0x9cec, 2161 0x9d00, 0x9d6c, 2162 0x9d80, 0x9dec, 2163 0x9e00, 0x9e6c, 2164 0x9e80, 0x9eec, 2165 0x9f00, 0x9f6c, 2166 0x9f80, 0xa020, 2167 0xd004, 0xd03c, 2168 0xd100, 0xd118, 2169 0xd200, 0xd214, 2170 0xd220, 0xd234, 2171 0xd240, 0xd254, 2172 0xd260, 0xd274, 2173 0xd280, 0xd294, 2174 0xd2a0, 0xd2b4, 2175 0xd2c0, 0xd2d4, 2176 0xd2e0, 0xd2f4, 2177 0xd300, 0xd31c, 2178 0xdfc0, 0xdfe0, 2179 0xe000, 0xf008, 2180 0xf010, 0xf018, 2181 0xf020, 0xf028, 2182 0x11000, 0x11014, 2183 0x11048, 0x1106c, 2184 0x11074, 0x11088, 2185 0x11098, 0x11120, 2186 0x1112c, 0x1117c, 2187 0x11190, 0x112e0, 2188 0x11300, 0x1130c, 2189 0x12000, 0x1206c, 2190 0x19040, 0x1906c, 2191 0x19078, 0x19080, 2192 0x1908c, 0x190e8, 2193 0x190f0, 0x190f8, 2194 0x19100, 0x19110, 2195 0x19120, 0x19124, 2196 0x19150, 0x19194, 2197 0x1919c, 0x191b0, 2198 0x191d0, 0x191e8, 2199 0x19238, 0x19290, 2200 0x192a4, 0x192b0, 2201 0x192bc, 0x192bc, 2202 0x19348, 0x1934c, 2203 0x193f8, 0x19418, 2204 0x19420, 0x19428, 2205 0x19430, 0x19444, 2206 0x1944c, 0x1946c, 2207 0x19474, 0x19474, 2208 0x19490, 0x194cc, 2209 0x194f0, 0x194f8, 2210 0x19c00, 0x19c48, 2211 0x19c50, 0x19c80, 2212 0x19c94, 0x19c98, 2213 0x19ca0, 0x19cbc, 2214 0x19ce4, 0x19ce4, 2215 0x19cf0, 0x19cf8, 2216 0x19d00, 0x19d28, 2217 0x19d50, 0x19d78, 2218 0x19d94, 0x19d98, 2219 0x19da0, 0x19dc8, 2220 0x19df0, 0x19e10, 2221 0x19e50, 0x19e6c, 2222 0x19ea0, 0x19ebc, 2223 0x19ec4, 0x19ef4, 2224 0x19f04, 0x19f2c, 2225 0x19f34, 0x19f34, 2226 0x19f40, 0x19f50, 2227 0x19f90, 0x19fac, 2228 0x19fc4, 0x19fc8, 2229 0x19fd0, 0x19fe4, 2230 0x1a000, 0x1a004, 2231 0x1a010, 0x1a06c, 2232 0x1a0b0, 0x1a0e4, 2233 0x1a0ec, 0x1a0f8, 2234 0x1a100, 0x1a108, 2235 0x1a114, 0x1a120, 2236 0x1a128, 0x1a130, 2237 0x1a138, 0x1a138, 2238 0x1a190, 0x1a1c4, 2239 0x1a1fc, 0x1a1fc, 2240 0x1e008, 0x1e00c, 2241 0x1e040, 0x1e044, 2242 0x1e04c, 0x1e04c, 2243 0x1e284, 0x1e290, 2244 0x1e2c0, 0x1e2c0, 2245 0x1e2e0, 0x1e2e0, 2246 0x1e300, 0x1e384, 2247 0x1e3c0, 0x1e3c8, 2248 0x1e408, 0x1e40c, 2249 0x1e440, 0x1e444, 2250 0x1e44c, 0x1e44c, 2251 0x1e684, 0x1e690, 2252 0x1e6c0, 0x1e6c0, 2253 0x1e6e0, 0x1e6e0, 2254 0x1e700, 0x1e784, 2255 0x1e7c0, 0x1e7c8, 2256 0x1e808, 0x1e80c, 2257 0x1e840, 0x1e844, 2258 0x1e84c, 0x1e84c, 2259 0x1ea84, 0x1ea90, 2260 0x1eac0, 0x1eac0, 2261 0x1eae0, 0x1eae0, 2262 0x1eb00, 0x1eb84, 2263 0x1ebc0, 0x1ebc8, 2264 0x1ec08, 0x1ec0c, 2265 0x1ec40, 0x1ec44, 2266 0x1ec4c, 0x1ec4c, 2267 0x1ee84, 0x1ee90, 2268 0x1eec0, 0x1eec0, 2269 0x1eee0, 0x1eee0, 2270 0x1ef00, 0x1ef84, 2271 0x1efc0, 0x1efc8, 2272 0x1f008, 0x1f00c, 2273 0x1f040, 0x1f044, 2274 0x1f04c, 0x1f04c, 2275 0x1f284, 0x1f290, 2276 0x1f2c0, 0x1f2c0, 2277 0x1f2e0, 0x1f2e0, 2278 0x1f300, 0x1f384, 2279 0x1f3c0, 0x1f3c8, 2280 0x1f408, 0x1f40c, 2281 0x1f440, 0x1f444, 2282 0x1f44c, 0x1f44c, 2283 0x1f684, 0x1f690, 2284 0x1f6c0, 0x1f6c0, 2285 0x1f6e0, 0x1f6e0, 2286 0x1f700, 0x1f784, 2287 0x1f7c0, 0x1f7c8, 2288 0x1f808, 0x1f80c, 2289 0x1f840, 0x1f844, 2290 0x1f84c, 0x1f84c, 2291 0x1fa84, 0x1fa90, 2292 0x1fac0, 0x1fac0, 2293 0x1fae0, 0x1fae0, 2294 0x1fb00, 0x1fb84, 2295 0x1fbc0, 0x1fbc8, 2296 0x1fc08, 0x1fc0c, 2297 0x1fc40, 0x1fc44, 2298 0x1fc4c, 0x1fc4c, 2299 0x1fe84, 0x1fe90, 2300 0x1fec0, 0x1fec0, 2301 0x1fee0, 0x1fee0, 2302 0x1ff00, 0x1ff84, 2303 0x1ffc0, 0x1ffc8, 2304 0x30000, 0x30030, 2305 0x30100, 0x30168, 2306 0x30190, 0x301a0, 2307 0x301a8, 0x301b8, 2308 0x301c4, 0x301c8, 2309 0x301d0, 0x301d0, 2310 0x30200, 0x30320, 2311 0x30400, 0x304b4, 2312 0x304c0, 0x3052c, 2313 0x30540, 0x3061c, 2314 0x30800, 0x308a0, 2315 0x308c0, 0x30908, 2316 0x30910, 0x309b8, 2317 0x30a00, 0x30a04, 2318 0x30a0c, 0x30a14, 2319 0x30a1c, 0x30a2c, 2320 0x30a44, 0x30a50, 2321 0x30a74, 0x30a74, 2322 0x30a7c, 0x30afc, 2323 0x30b08, 0x30c24, 2324 0x30d00, 0x30d14, 2325 0x30d1c, 0x30d3c, 2326 0x30d44, 0x30d4c, 2327 0x30d54, 0x30d74, 2328 0x30d7c, 0x30d7c, 2329 0x30de0, 0x30de0, 2330 0x30e00, 0x30ed4, 2331 0x30f00, 0x30fa4, 2332 0x30fc0, 0x30fc4, 2333 0x31000, 0x31004, 2334 0x31080, 0x310fc, 2335 0x31208, 0x31220, 2336 0x3123c, 0x31254, 2337 0x31300, 0x31300, 2338 0x31308, 0x3131c, 2339 0x31338, 0x3133c, 2340 0x31380, 0x31380, 2341 0x31388, 0x313a8, 2342 0x313b4, 0x313b4, 2343 0x31400, 0x31420, 2344 0x31438, 0x3143c, 2345 0x31480, 0x31480, 2346 0x314a8, 0x314a8, 2347 0x314b0, 0x314b4, 2348 0x314c8, 0x314d4, 2349 0x31a40, 0x31a4c, 2350 0x31af0, 0x31b20, 2351 0x31b38, 0x31b3c, 2352 0x31b80, 0x31b80, 2353 0x31ba8, 0x31ba8, 2354 0x31bb0, 0x31bb4, 2355 0x31bc8, 0x31bd4, 2356 0x32140, 0x3218c, 2357 0x321f0, 0x321f4, 2358 0x32200, 0x32200, 2359 0x32218, 0x32218, 2360 0x32400, 0x32400, 2361 0x32408, 0x3241c, 2362 0x32618, 0x32620, 2363 0x32664, 0x32664, 2364 0x326a8, 0x326a8, 2365 0x326ec, 0x326ec, 2366 0x32a00, 0x32abc, 2367 0x32b00, 0x32b18, 2368 0x32b20, 0x32b38, 2369 0x32b40, 0x32b58, 2370 0x32b60, 0x32b78, 2371 0x32c00, 0x32c00, 2372 0x32c08, 0x32c3c, 2373 0x33000, 0x3302c, 2374 0x33034, 0x33050, 2375 0x33058, 0x33058, 2376 0x33060, 0x3308c, 2377 0x3309c, 0x330ac, 2378 0x330c0, 0x330c0, 2379 0x330c8, 0x330d0, 2380 0x330d8, 0x330e0, 2381 0x330ec, 0x3312c, 2382 0x33134, 0x33150, 2383 0x33158, 0x33158, 2384 0x33160, 0x3318c, 2385 0x3319c, 0x331ac, 2386 0x331c0, 0x331c0, 2387 0x331c8, 0x331d0, 2388 0x331d8, 0x331e0, 2389 0x331ec, 0x33290, 2390 0x33298, 0x332c4, 2391 0x332e4, 0x33390, 2392 0x33398, 0x333c4, 2393 0x333e4, 0x3342c, 2394 0x33434, 0x33450, 2395 0x33458, 0x33458, 2396 0x33460, 0x3348c, 2397 0x3349c, 0x334ac, 2398 0x334c0, 0x334c0, 2399 0x334c8, 0x334d0, 2400 0x334d8, 0x334e0, 2401 0x334ec, 0x3352c, 2402 0x33534, 0x33550, 2403 0x33558, 0x33558, 2404 0x33560, 0x3358c, 2405 0x3359c, 0x335ac, 2406 0x335c0, 0x335c0, 2407 0x335c8, 0x335d0, 2408 0x335d8, 0x335e0, 2409 0x335ec, 0x33690, 2410 0x33698, 0x336c4, 2411 0x336e4, 0x33790, 2412 0x33798, 0x337c4, 2413 0x337e4, 0x337fc, 2414 0x33814, 0x33814, 2415 0x33854, 0x33868, 2416 0x33880, 0x3388c, 2417 0x338c0, 0x338d0, 2418 0x338e8, 0x338ec, 2419 0x33900, 0x3392c, 2420 0x33934, 0x33950, 2421 0x33958, 0x33958, 2422 0x33960, 0x3398c, 2423 0x3399c, 0x339ac, 2424 0x339c0, 0x339c0, 2425 0x339c8, 0x339d0, 2426 0x339d8, 0x339e0, 2427 0x339ec, 0x33a90, 2428 0x33a98, 0x33ac4, 2429 0x33ae4, 0x33b10, 2430 0x33b24, 0x33b28, 2431 0x33b38, 0x33b50, 2432 0x33bf0, 0x33c10, 2433 0x33c24, 0x33c28, 2434 0x33c38, 0x33c50, 2435 0x33cf0, 0x33cfc, 2436 0x34000, 0x34030, 2437 0x34100, 0x34168, 2438 0x34190, 0x341a0, 2439 0x341a8, 0x341b8, 2440 0x341c4, 0x341c8, 2441 0x341d0, 0x341d0, 2442 0x34200, 0x34320, 2443 0x34400, 0x344b4, 2444 0x344c0, 0x3452c, 2445 0x34540, 0x3461c, 2446 0x34800, 0x348a0, 2447 0x348c0, 0x34908, 2448 0x34910, 0x349b8, 2449 0x34a00, 0x34a04, 2450 0x34a0c, 0x34a14, 2451 0x34a1c, 0x34a2c, 2452 0x34a44, 0x34a50, 2453 0x34a74, 0x34a74, 2454 0x34a7c, 0x34afc, 2455 0x34b08, 0x34c24, 2456 0x34d00, 0x34d14, 2457 0x34d1c, 0x34d3c, 2458 0x34d44, 0x34d4c, 2459 0x34d54, 0x34d74, 2460 0x34d7c, 0x34d7c, 2461 0x34de0, 0x34de0, 2462 0x34e00, 0x34ed4, 2463 0x34f00, 0x34fa4, 2464 0x34fc0, 0x34fc4, 2465 0x35000, 0x35004, 2466 0x35080, 0x350fc, 2467 0x35208, 0x35220, 2468 0x3523c, 0x35254, 2469 0x35300, 0x35300, 2470 0x35308, 0x3531c, 2471 0x35338, 0x3533c, 2472 0x35380, 0x35380, 2473 0x35388, 0x353a8, 2474 0x353b4, 0x353b4, 2475 0x35400, 0x35420, 2476 0x35438, 0x3543c, 2477 0x35480, 0x35480, 2478 0x354a8, 0x354a8, 2479 0x354b0, 0x354b4, 2480 0x354c8, 0x354d4, 2481 0x35a40, 0x35a4c, 2482 0x35af0, 0x35b20, 2483 0x35b38, 0x35b3c, 2484 0x35b80, 0x35b80, 2485 0x35ba8, 0x35ba8, 2486 0x35bb0, 0x35bb4, 2487 0x35bc8, 0x35bd4, 2488 0x36140, 0x3618c, 2489 0x361f0, 0x361f4, 2490 0x36200, 0x36200, 2491 0x36218, 0x36218, 2492 0x36400, 0x36400, 2493 0x36408, 0x3641c, 2494 0x36618, 0x36620, 2495 0x36664, 0x36664, 2496 0x366a8, 0x366a8, 2497 0x366ec, 0x366ec, 2498 0x36a00, 0x36abc, 2499 0x36b00, 0x36b18, 2500 0x36b20, 0x36b38, 2501 0x36b40, 0x36b58, 2502 0x36b60, 0x36b78, 2503 0x36c00, 0x36c00, 2504 0x36c08, 0x36c3c, 2505 0x37000, 0x3702c, 2506 0x37034, 0x37050, 2507 0x37058, 0x37058, 2508 0x37060, 0x3708c, 2509 0x3709c, 0x370ac, 2510 0x370c0, 0x370c0, 2511 0x370c8, 0x370d0, 2512 0x370d8, 0x370e0, 2513 0x370ec, 0x3712c, 2514 0x37134, 0x37150, 2515 0x37158, 0x37158, 2516 0x37160, 0x3718c, 2517 0x3719c, 0x371ac, 2518 0x371c0, 0x371c0, 2519 0x371c8, 0x371d0, 2520 0x371d8, 0x371e0, 2521 0x371ec, 0x37290, 2522 0x37298, 0x372c4, 2523 0x372e4, 0x37390, 2524 0x37398, 0x373c4, 2525 0x373e4, 0x3742c, 2526 0x37434, 0x37450, 2527 0x37458, 0x37458, 2528 0x37460, 0x3748c, 2529 0x3749c, 0x374ac, 2530 0x374c0, 0x374c0, 2531 0x374c8, 0x374d0, 2532 0x374d8, 0x374e0, 2533 0x374ec, 0x3752c, 2534 0x37534, 0x37550, 2535 0x37558, 0x37558, 2536 0x37560, 0x3758c, 2537 0x3759c, 0x375ac, 2538 0x375c0, 0x375c0, 2539 0x375c8, 0x375d0, 2540 0x375d8, 0x375e0, 2541 0x375ec, 0x37690, 2542 0x37698, 0x376c4, 2543 0x376e4, 0x37790, 2544 0x37798, 0x377c4, 2545 0x377e4, 0x377fc, 2546 0x37814, 0x37814, 2547 0x37854, 0x37868, 2548 0x37880, 0x3788c, 2549 0x378c0, 0x378d0, 2550 0x378e8, 0x378ec, 2551 0x37900, 0x3792c, 2552 0x37934, 0x37950, 2553 0x37958, 0x37958, 2554 0x37960, 0x3798c, 2555 0x3799c, 0x379ac, 2556 0x379c0, 0x379c0, 2557 0x379c8, 0x379d0, 2558 0x379d8, 0x379e0, 2559 0x379ec, 0x37a90, 2560 0x37a98, 0x37ac4, 2561 0x37ae4, 0x37b10, 2562 0x37b24, 0x37b28, 2563 0x37b38, 0x37b50, 2564 0x37bf0, 0x37c10, 2565 0x37c24, 0x37c28, 2566 0x37c38, 0x37c50, 2567 0x37cf0, 0x37cfc, 2568 0x40040, 0x40040, 2569 0x40080, 0x40084, 2570 0x40100, 0x40100, 2571 0x40140, 0x401bc, 2572 0x40200, 0x40214, 2573 0x40228, 0x40228, 2574 0x40240, 0x40258, 2575 0x40280, 0x40280, 2576 0x40304, 0x40304, 2577 0x40330, 0x4033c, 2578 0x41304, 0x413c8, 2579 0x413d0, 0x413dc, 2580 0x413f0, 0x413f0, 2581 0x41400, 0x4140c, 2582 0x41414, 0x4141c, 2583 0x41480, 0x414d0, 2584 0x44000, 0x4407c, 2585 0x440c0, 0x441ac, 2586 0x441b4, 0x4427c, 2587 0x442c0, 0x443ac, 2588 0x443b4, 0x4447c, 2589 0x444c0, 0x445ac, 2590 0x445b4, 0x4467c, 2591 0x446c0, 0x447ac, 2592 0x447b4, 0x4487c, 2593 0x448c0, 0x449ac, 2594 0x449b4, 0x44a7c, 2595 0x44ac0, 0x44bac, 2596 0x44bb4, 0x44c7c, 2597 0x44cc0, 0x44dac, 2598 0x44db4, 0x44e7c, 2599 0x44ec0, 0x44fac, 2600 0x44fb4, 0x4507c, 2601 0x450c0, 0x451ac, 2602 0x451b4, 0x451fc, 2603 0x45800, 0x45804, 2604 0x45810, 0x45830, 2605 0x45840, 0x45860, 2606 0x45868, 0x45868, 2607 0x45880, 0x45884, 2608 0x458a0, 0x458b0, 2609 0x45a00, 0x45a04, 2610 0x45a10, 0x45a30, 2611 0x45a40, 0x45a60, 2612 0x45a68, 0x45a68, 2613 0x45a80, 0x45a84, 2614 0x45aa0, 0x45ab0, 2615 0x460c0, 0x460e4, 2616 0x47000, 0x4703c, 2617 0x47044, 0x4708c, 2618 0x47200, 0x47250, 2619 0x47400, 0x47408, 2620 0x47414, 0x47420, 2621 0x47600, 0x47618, 2622 0x47800, 0x47814, 2623 0x47820, 0x4782c, 2624 0x50000, 0x50084, 2625 0x50090, 0x500cc, 2626 0x50300, 0x50384, 2627 0x50400, 0x50400, 2628 0x50800, 0x50884, 2629 0x50890, 0x508cc, 2630 0x50b00, 0x50b84, 2631 0x50c00, 0x50c00, 2632 0x51000, 0x51020, 2633 0x51028, 0x510b0, 2634 0x51300, 0x51324, 2635 }; 2636 2637 static const unsigned int t6vf_reg_ranges[] = { 2638 VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS), 2639 VF_MPS_REG(A_MPS_VF_CTL), 2640 VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H), 2641 VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION), 2642 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL), 2643 VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS), 2644 FW_T6VF_MBDATA_BASE_ADDR, 2645 FW_T6VF_MBDATA_BASE_ADDR + 2646 ((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4), 2647 }; 2648 2649 u32 *buf_end = (u32 *)(buf + buf_size); 2650 const unsigned int *reg_ranges; 2651 int reg_ranges_size, range; 2652 unsigned int chip_version = chip_id(adap); 2653 2654 /* 2655 * Select the right set of register ranges to dump depending on the 2656 * adapter chip type. 2657 */ 2658 switch (chip_version) { 2659 case CHELSIO_T4: 2660 if (adap->flags & IS_VF) { 2661 reg_ranges = t4vf_reg_ranges; 2662 reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges); 2663 } else { 2664 reg_ranges = t4_reg_ranges; 2665 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges); 2666 } 2667 break; 2668 2669 case CHELSIO_T5: 2670 if (adap->flags & IS_VF) { 2671 reg_ranges = t5vf_reg_ranges; 2672 reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges); 2673 } else { 2674 reg_ranges = t5_reg_ranges; 2675 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges); 2676 } 2677 break; 2678 2679 case CHELSIO_T6: 2680 if (adap->flags & IS_VF) { 2681 reg_ranges = t6vf_reg_ranges; 2682 reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges); 2683 } else { 2684 reg_ranges = t6_reg_ranges; 2685 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges); 2686 } 2687 break; 2688 2689 default: 2690 CH_ERR(adap, 2691 "Unsupported chip version %d\n", chip_version); 2692 return; 2693 } 2694 2695 /* 2696 * Clear the register buffer and insert the appropriate register 2697 * values selected by the above register ranges. 2698 */ 2699 memset(buf, 0, buf_size); 2700 for (range = 0; range < reg_ranges_size; range += 2) { 2701 unsigned int reg = reg_ranges[range]; 2702 unsigned int last_reg = reg_ranges[range + 1]; 2703 u32 *bufp = (u32 *)(buf + reg); 2704 2705 /* 2706 * Iterate across the register range filling in the register 2707 * buffer but don't write past the end of the register buffer. 2708 */ 2709 while (reg <= last_reg && bufp < buf_end) { 2710 *bufp++ = t4_read_reg(adap, reg); 2711 reg += sizeof(u32); 2712 } 2713 } 2714 } 2715 2716 /* 2717 * Partial EEPROM Vital Product Data structure. The VPD starts with one ID 2718 * header followed by one or more VPD-R sections, each with its own header. 2719 */ 2720 struct t4_vpd_hdr { 2721 u8 id_tag; 2722 u8 id_len[2]; 2723 u8 id_data[ID_LEN]; 2724 }; 2725 2726 struct t4_vpdr_hdr { 2727 u8 vpdr_tag; 2728 u8 vpdr_len[2]; 2729 }; 2730 2731 /* 2732 * EEPROM reads take a few tens of us while writes can take a bit over 5 ms. 2733 */ 2734 #define EEPROM_DELAY 10 /* 10us per poll spin */ 2735 #define EEPROM_MAX_POLL 5000 /* x 5000 == 50ms */ 2736 2737 #define EEPROM_STAT_ADDR 0x7bfc 2738 #define VPD_SIZE 0x800 2739 #define VPD_BASE 0x400 2740 #define VPD_BASE_OLD 0 2741 #define VPD_LEN 1024 2742 #define VPD_INFO_FLD_HDR_SIZE 3 2743 #define CHELSIO_VPD_UNIQUE_ID 0x82 2744 2745 /* 2746 * Small utility function to wait till any outstanding VPD Access is complete. 2747 * We have a per-adapter state variable "VPD Busy" to indicate when we have a 2748 * VPD Access in flight. This allows us to handle the problem of having a 2749 * previous VPD Access time out and prevent an attempt to inject a new VPD 2750 * Request before any in-flight VPD reguest has completed. 2751 */ 2752 static int t4_seeprom_wait(struct adapter *adapter) 2753 { 2754 unsigned int base = adapter->params.pci.vpd_cap_addr; 2755 int max_poll; 2756 2757 /* 2758 * If no VPD Access is in flight, we can just return success right 2759 * away. 2760 */ 2761 if (!adapter->vpd_busy) 2762 return 0; 2763 2764 /* 2765 * Poll the VPD Capability Address/Flag register waiting for it 2766 * to indicate that the operation is complete. 2767 */ 2768 max_poll = EEPROM_MAX_POLL; 2769 do { 2770 u16 val; 2771 2772 udelay(EEPROM_DELAY); 2773 t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val); 2774 2775 /* 2776 * If the operation is complete, mark the VPD as no longer 2777 * busy and return success. 2778 */ 2779 if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) { 2780 adapter->vpd_busy = 0; 2781 return 0; 2782 } 2783 } while (--max_poll); 2784 2785 /* 2786 * Failure! Note that we leave the VPD Busy status set in order to 2787 * avoid pushing a new VPD Access request into the VPD Capability till 2788 * the current operation eventually succeeds. It's a bug to issue a 2789 * new request when an existing request is in flight and will result 2790 * in corrupt hardware state. 2791 */ 2792 return -ETIMEDOUT; 2793 } 2794 2795 /** 2796 * t4_seeprom_read - read a serial EEPROM location 2797 * @adapter: adapter to read 2798 * @addr: EEPROM virtual address 2799 * @data: where to store the read data 2800 * 2801 * Read a 32-bit word from a location in serial EEPROM using the card's PCI 2802 * VPD capability. Note that this function must be called with a virtual 2803 * address. 2804 */ 2805 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data) 2806 { 2807 unsigned int base = adapter->params.pci.vpd_cap_addr; 2808 int ret; 2809 2810 /* 2811 * VPD Accesses must alway be 4-byte aligned! 2812 */ 2813 if (addr >= EEPROMVSIZE || (addr & 3)) 2814 return -EINVAL; 2815 2816 /* 2817 * Wait for any previous operation which may still be in flight to 2818 * complete. 2819 */ 2820 ret = t4_seeprom_wait(adapter); 2821 if (ret) { 2822 CH_ERR(adapter, "VPD still busy from previous operation\n"); 2823 return ret; 2824 } 2825 2826 /* 2827 * Issue our new VPD Read request, mark the VPD as being busy and wait 2828 * for our request to complete. If it doesn't complete, note the 2829 * error and return it to our caller. Note that we do not reset the 2830 * VPD Busy status! 2831 */ 2832 t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr); 2833 adapter->vpd_busy = 1; 2834 adapter->vpd_flag = PCI_VPD_ADDR_F; 2835 ret = t4_seeprom_wait(adapter); 2836 if (ret) { 2837 CH_ERR(adapter, "VPD read of address %#x failed\n", addr); 2838 return ret; 2839 } 2840 2841 /* 2842 * Grab the returned data, swizzle it into our endianness and 2843 * return success. 2844 */ 2845 t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data); 2846 *data = le32_to_cpu(*data); 2847 return 0; 2848 } 2849 2850 /** 2851 * t4_seeprom_write - write a serial EEPROM location 2852 * @adapter: adapter to write 2853 * @addr: virtual EEPROM address 2854 * @data: value to write 2855 * 2856 * Write a 32-bit word to a location in serial EEPROM using the card's PCI 2857 * VPD capability. Note that this function must be called with a virtual 2858 * address. 2859 */ 2860 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data) 2861 { 2862 unsigned int base = adapter->params.pci.vpd_cap_addr; 2863 int ret; 2864 u32 stats_reg; 2865 int max_poll; 2866 2867 /* 2868 * VPD Accesses must alway be 4-byte aligned! 2869 */ 2870 if (addr >= EEPROMVSIZE || (addr & 3)) 2871 return -EINVAL; 2872 2873 /* 2874 * Wait for any previous operation which may still be in flight to 2875 * complete. 2876 */ 2877 ret = t4_seeprom_wait(adapter); 2878 if (ret) { 2879 CH_ERR(adapter, "VPD still busy from previous operation\n"); 2880 return ret; 2881 } 2882 2883 /* 2884 * Issue our new VPD Read request, mark the VPD as being busy and wait 2885 * for our request to complete. If it doesn't complete, note the 2886 * error and return it to our caller. Note that we do not reset the 2887 * VPD Busy status! 2888 */ 2889 t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 2890 cpu_to_le32(data)); 2891 t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, 2892 (u16)addr | PCI_VPD_ADDR_F); 2893 adapter->vpd_busy = 1; 2894 adapter->vpd_flag = 0; 2895 ret = t4_seeprom_wait(adapter); 2896 if (ret) { 2897 CH_ERR(adapter, "VPD write of address %#x failed\n", addr); 2898 return ret; 2899 } 2900 2901 /* 2902 * Reset PCI_VPD_DATA register after a transaction and wait for our 2903 * request to complete. If it doesn't complete, return error. 2904 */ 2905 t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0); 2906 max_poll = EEPROM_MAX_POLL; 2907 do { 2908 udelay(EEPROM_DELAY); 2909 t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg); 2910 } while ((stats_reg & 0x1) && --max_poll); 2911 if (!max_poll) 2912 return -ETIMEDOUT; 2913 2914 /* Return success! */ 2915 return 0; 2916 } 2917 2918 /** 2919 * t4_eeprom_ptov - translate a physical EEPROM address to virtual 2920 * @phys_addr: the physical EEPROM address 2921 * @fn: the PCI function number 2922 * @sz: size of function-specific area 2923 * 2924 * Translate a physical EEPROM address to virtual. The first 1K is 2925 * accessed through virtual addresses starting at 31K, the rest is 2926 * accessed through virtual addresses starting at 0. 2927 * 2928 * The mapping is as follows: 2929 * [0..1K) -> [31K..32K) 2930 * [1K..1K+A) -> [ES-A..ES) 2931 * [1K+A..ES) -> [0..ES-A-1K) 2932 * 2933 * where A = @fn * @sz, and ES = EEPROM size. 2934 */ 2935 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz) 2936 { 2937 fn *= sz; 2938 if (phys_addr < 1024) 2939 return phys_addr + (31 << 10); 2940 if (phys_addr < 1024 + fn) 2941 return EEPROMSIZE - fn + phys_addr - 1024; 2942 if (phys_addr < EEPROMSIZE) 2943 return phys_addr - 1024 - fn; 2944 return -EINVAL; 2945 } 2946 2947 /** 2948 * t4_seeprom_wp - enable/disable EEPROM write protection 2949 * @adapter: the adapter 2950 * @enable: whether to enable or disable write protection 2951 * 2952 * Enables or disables write protection on the serial EEPROM. 2953 */ 2954 int t4_seeprom_wp(struct adapter *adapter, int enable) 2955 { 2956 return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0); 2957 } 2958 2959 /** 2960 * get_vpd_keyword_val - Locates an information field keyword in the VPD 2961 * @vpd: Pointer to buffered vpd data structure 2962 * @kw: The keyword to search for 2963 * @region: VPD region to search (starting from 0) 2964 * 2965 * Returns the value of the information field keyword or 2966 * -ENOENT otherwise. 2967 */ 2968 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region) 2969 { 2970 int i, tag; 2971 unsigned int offset, len; 2972 const struct t4_vpdr_hdr *vpdr; 2973 2974 offset = sizeof(struct t4_vpd_hdr); 2975 vpdr = (const void *)(vpd + offset); 2976 tag = vpdr->vpdr_tag; 2977 len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8); 2978 while (region--) { 2979 offset += sizeof(struct t4_vpdr_hdr) + len; 2980 vpdr = (const void *)(vpd + offset); 2981 if (++tag != vpdr->vpdr_tag) 2982 return -ENOENT; 2983 len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8); 2984 } 2985 offset += sizeof(struct t4_vpdr_hdr); 2986 2987 if (offset + len > VPD_LEN) { 2988 return -ENOENT; 2989 } 2990 2991 for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) { 2992 if (memcmp(vpd + i , kw , 2) == 0){ 2993 i += VPD_INFO_FLD_HDR_SIZE; 2994 return i; 2995 } 2996 2997 i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2]; 2998 } 2999 3000 return -ENOENT; 3001 } 3002 3003 3004 /** 3005 * get_vpd_params - read VPD parameters from VPD EEPROM 3006 * @adapter: adapter to read 3007 * @p: where to store the parameters 3008 * @vpd: caller provided temporary space to read the VPD into 3009 * 3010 * Reads card parameters stored in VPD EEPROM. 3011 */ 3012 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p, 3013 uint16_t device_id, u32 *buf) 3014 { 3015 int i, ret, addr; 3016 int ec, sn, pn, na, md; 3017 u8 csum; 3018 const u8 *vpd = (const u8 *)buf; 3019 3020 /* 3021 * Card information normally starts at VPD_BASE but early cards had 3022 * it at 0. 3023 */ 3024 ret = t4_seeprom_read(adapter, VPD_BASE, buf); 3025 if (ret) 3026 return (ret); 3027 3028 /* 3029 * The VPD shall have a unique identifier specified by the PCI SIG. 3030 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD 3031 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software 3032 * is expected to automatically put this entry at the 3033 * beginning of the VPD. 3034 */ 3035 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD; 3036 3037 for (i = 0; i < VPD_LEN; i += 4) { 3038 ret = t4_seeprom_read(adapter, addr + i, buf++); 3039 if (ret) 3040 return ret; 3041 } 3042 3043 #define FIND_VPD_KW(var,name) do { \ 3044 var = get_vpd_keyword_val(vpd, name, 0); \ 3045 if (var < 0) { \ 3046 CH_ERR(adapter, "missing VPD keyword " name "\n"); \ 3047 return -EINVAL; \ 3048 } \ 3049 } while (0) 3050 3051 FIND_VPD_KW(i, "RV"); 3052 for (csum = 0; i >= 0; i--) 3053 csum += vpd[i]; 3054 3055 if (csum) { 3056 CH_ERR(adapter, 3057 "corrupted VPD EEPROM, actual csum %u\n", csum); 3058 return -EINVAL; 3059 } 3060 3061 FIND_VPD_KW(ec, "EC"); 3062 FIND_VPD_KW(sn, "SN"); 3063 FIND_VPD_KW(pn, "PN"); 3064 FIND_VPD_KW(na, "NA"); 3065 #undef FIND_VPD_KW 3066 3067 memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN); 3068 strstrip(p->id); 3069 memcpy(p->ec, vpd + ec, EC_LEN); 3070 strstrip(p->ec); 3071 i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2]; 3072 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); 3073 strstrip(p->sn); 3074 i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2]; 3075 memcpy(p->pn, vpd + pn, min(i, PN_LEN)); 3076 strstrip((char *)p->pn); 3077 i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2]; 3078 memcpy(p->na, vpd + na, min(i, MACADDR_LEN)); 3079 strstrip((char *)p->na); 3080 3081 if (device_id & 0x80) 3082 return 0; /* Custom card */ 3083 3084 md = get_vpd_keyword_val(vpd, "VF", 1); 3085 if (md < 0) { 3086 snprintf(p->md, sizeof(p->md), "unknown"); 3087 } else { 3088 i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2]; 3089 memcpy(p->md, vpd + md, min(i, MD_LEN)); 3090 strstrip((char *)p->md); 3091 } 3092 3093 return 0; 3094 } 3095 3096 /* serial flash and firmware constants and flash config file constants */ 3097 enum { 3098 SF_ATTEMPTS = 10, /* max retries for SF operations */ 3099 3100 /* flash command opcodes */ 3101 SF_PROG_PAGE = 2, /* program 256B page */ 3102 SF_WR_DISABLE = 4, /* disable writes */ 3103 SF_RD_STATUS = 5, /* read status register */ 3104 SF_WR_ENABLE = 6, /* enable writes */ 3105 SF_RD_DATA_FAST = 0xb, /* read flash */ 3106 SF_RD_ID = 0x9f, /* read ID */ 3107 SF_ERASE_SECTOR = 0xd8, /* erase 64KB sector */ 3108 }; 3109 3110 /** 3111 * sf1_read - read data from the serial flash 3112 * @adapter: the adapter 3113 * @byte_cnt: number of bytes to read 3114 * @cont: whether another operation will be chained 3115 * @lock: whether to lock SF for PL access only 3116 * @valp: where to store the read data 3117 * 3118 * Reads up to 4 bytes of data from the serial flash. The location of 3119 * the read needs to be specified prior to calling this by issuing the 3120 * appropriate commands to the serial flash. 3121 */ 3122 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, 3123 int lock, u32 *valp) 3124 { 3125 int ret; 3126 3127 if (!byte_cnt || byte_cnt > 4) 3128 return -EINVAL; 3129 if (t4_read_reg(adapter, A_SF_OP) & F_BUSY) 3130 return -EBUSY; 3131 t4_write_reg(adapter, A_SF_OP, 3132 V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1)); 3133 ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5); 3134 if (!ret) 3135 *valp = t4_read_reg(adapter, A_SF_DATA); 3136 return ret; 3137 } 3138 3139 /** 3140 * sf1_write - write data to the serial flash 3141 * @adapter: the adapter 3142 * @byte_cnt: number of bytes to write 3143 * @cont: whether another operation will be chained 3144 * @lock: whether to lock SF for PL access only 3145 * @val: value to write 3146 * 3147 * Writes up to 4 bytes of data to the serial flash. The location of 3148 * the write needs to be specified prior to calling this by issuing the 3149 * appropriate commands to the serial flash. 3150 */ 3151 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, 3152 int lock, u32 val) 3153 { 3154 if (!byte_cnt || byte_cnt > 4) 3155 return -EINVAL; 3156 if (t4_read_reg(adapter, A_SF_OP) & F_BUSY) 3157 return -EBUSY; 3158 t4_write_reg(adapter, A_SF_DATA, val); 3159 t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) | 3160 V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1)); 3161 return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5); 3162 } 3163 3164 /** 3165 * flash_wait_op - wait for a flash operation to complete 3166 * @adapter: the adapter 3167 * @attempts: max number of polls of the status register 3168 * @delay: delay between polls in ms 3169 * 3170 * Wait for a flash operation to complete by polling the status register. 3171 */ 3172 static int flash_wait_op(struct adapter *adapter, int attempts, int delay) 3173 { 3174 int ret; 3175 u32 status; 3176 3177 while (1) { 3178 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || 3179 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) 3180 return ret; 3181 if (!(status & 1)) 3182 return 0; 3183 if (--attempts == 0) 3184 return -EAGAIN; 3185 if (delay) 3186 msleep(delay); 3187 } 3188 } 3189 3190 /** 3191 * t4_read_flash - read words from serial flash 3192 * @adapter: the adapter 3193 * @addr: the start address for the read 3194 * @nwords: how many 32-bit words to read 3195 * @data: where to store the read data 3196 * @byte_oriented: whether to store data as bytes or as words 3197 * 3198 * Read the specified number of 32-bit words from the serial flash. 3199 * If @byte_oriented is set the read data is stored as a byte array 3200 * (i.e., big-endian), otherwise as 32-bit words in the platform's 3201 * natural endianness. 3202 */ 3203 int t4_read_flash(struct adapter *adapter, unsigned int addr, 3204 unsigned int nwords, u32 *data, int byte_oriented) 3205 { 3206 int ret; 3207 3208 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) 3209 return -EINVAL; 3210 3211 addr = swab32(addr) | SF_RD_DATA_FAST; 3212 3213 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || 3214 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) 3215 return ret; 3216 3217 for ( ; nwords; nwords--, data++) { 3218 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); 3219 if (nwords == 1) 3220 t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ 3221 if (ret) 3222 return ret; 3223 if (byte_oriented) 3224 *data = (__force __u32)(cpu_to_be32(*data)); 3225 } 3226 return 0; 3227 } 3228 3229 /** 3230 * t4_write_flash - write up to a page of data to the serial flash 3231 * @adapter: the adapter 3232 * @addr: the start address to write 3233 * @n: length of data to write in bytes 3234 * @data: the data to write 3235 * @byte_oriented: whether to store data as bytes or as words 3236 * 3237 * Writes up to a page of data (256 bytes) to the serial flash starting 3238 * at the given address. All the data must be written to the same page. 3239 * If @byte_oriented is set the write data is stored as byte stream 3240 * (i.e. matches what on disk), otherwise in big-endian. 3241 */ 3242 int t4_write_flash(struct adapter *adapter, unsigned int addr, 3243 unsigned int n, const u8 *data, int byte_oriented) 3244 { 3245 int ret; 3246 u32 buf[SF_PAGE_SIZE / 4]; 3247 unsigned int i, c, left, val, offset = addr & 0xff; 3248 3249 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) 3250 return -EINVAL; 3251 3252 val = swab32(addr) | SF_PROG_PAGE; 3253 3254 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3255 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) 3256 goto unlock; 3257 3258 for (left = n; left; left -= c) { 3259 c = min(left, 4U); 3260 for (val = 0, i = 0; i < c; ++i) 3261 val = (val << 8) + *data++; 3262 3263 if (!byte_oriented) 3264 val = cpu_to_be32(val); 3265 3266 ret = sf1_write(adapter, c, c != left, 1, val); 3267 if (ret) 3268 goto unlock; 3269 } 3270 ret = flash_wait_op(adapter, 8, 1); 3271 if (ret) 3272 goto unlock; 3273 3274 t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ 3275 3276 /* Read the page to verify the write succeeded */ 3277 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 3278 byte_oriented); 3279 if (ret) 3280 return ret; 3281 3282 if (memcmp(data - n, (u8 *)buf + offset, n)) { 3283 CH_ERR(adapter, 3284 "failed to correctly write the flash page at %#x\n", 3285 addr); 3286 return -EIO; 3287 } 3288 return 0; 3289 3290 unlock: 3291 t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ 3292 return ret; 3293 } 3294 3295 /** 3296 * t4_get_fw_version - read the firmware version 3297 * @adapter: the adapter 3298 * @vers: where to place the version 3299 * 3300 * Reads the FW version from flash. 3301 */ 3302 int t4_get_fw_version(struct adapter *adapter, u32 *vers) 3303 { 3304 return t4_read_flash(adapter, FLASH_FW_START + 3305 offsetof(struct fw_hdr, fw_ver), 1, 3306 vers, 0); 3307 } 3308 3309 /** 3310 * t4_get_fw_hdr - read the firmware header 3311 * @adapter: the adapter 3312 * @hdr: where to place the version 3313 * 3314 * Reads the FW header from flash into caller provided buffer. 3315 */ 3316 int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr) 3317 { 3318 return t4_read_flash(adapter, FLASH_FW_START, 3319 sizeof (*hdr) / sizeof (uint32_t), (uint32_t *)hdr, 1); 3320 } 3321 3322 /** 3323 * t4_get_bs_version - read the firmware bootstrap version 3324 * @adapter: the adapter 3325 * @vers: where to place the version 3326 * 3327 * Reads the FW Bootstrap version from flash. 3328 */ 3329 int t4_get_bs_version(struct adapter *adapter, u32 *vers) 3330 { 3331 return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START + 3332 offsetof(struct fw_hdr, fw_ver), 1, 3333 vers, 0); 3334 } 3335 3336 /** 3337 * t4_get_tp_version - read the TP microcode version 3338 * @adapter: the adapter 3339 * @vers: where to place the version 3340 * 3341 * Reads the TP microcode version from flash. 3342 */ 3343 int t4_get_tp_version(struct adapter *adapter, u32 *vers) 3344 { 3345 return t4_read_flash(adapter, FLASH_FW_START + 3346 offsetof(struct fw_hdr, tp_microcode_ver), 3347 1, vers, 0); 3348 } 3349 3350 /** 3351 * t4_get_exprom_version - return the Expansion ROM version (if any) 3352 * @adapter: the adapter 3353 * @vers: where to place the version 3354 * 3355 * Reads the Expansion ROM header from FLASH and returns the version 3356 * number (if present) through the @vers return value pointer. We return 3357 * this in the Firmware Version Format since it's convenient. Return 3358 * 0 on success, -ENOENT if no Expansion ROM is present. 3359 */ 3360 int t4_get_exprom_version(struct adapter *adap, u32 *vers) 3361 { 3362 struct exprom_header { 3363 unsigned char hdr_arr[16]; /* must start with 0x55aa */ 3364 unsigned char hdr_ver[4]; /* Expansion ROM version */ 3365 } *hdr; 3366 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header), 3367 sizeof(u32))]; 3368 int ret; 3369 3370 ret = t4_read_flash(adap, FLASH_EXP_ROM_START, 3371 ARRAY_SIZE(exprom_header_buf), exprom_header_buf, 3372 0); 3373 if (ret) 3374 return ret; 3375 3376 hdr = (struct exprom_header *)exprom_header_buf; 3377 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa) 3378 return -ENOENT; 3379 3380 *vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) | 3381 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) | 3382 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) | 3383 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3])); 3384 return 0; 3385 } 3386 3387 /** 3388 * t4_get_scfg_version - return the Serial Configuration version 3389 * @adapter: the adapter 3390 * @vers: where to place the version 3391 * 3392 * Reads the Serial Configuration Version via the Firmware interface 3393 * (thus this can only be called once we're ready to issue Firmware 3394 * commands). The format of the Serial Configuration version is 3395 * adapter specific. Returns 0 on success, an error on failure. 3396 * 3397 * Note that early versions of the Firmware didn't include the ability 3398 * to retrieve the Serial Configuration version, so we zero-out the 3399 * return-value parameter in that case to avoid leaving it with 3400 * garbage in it. 3401 * 3402 * Also note that the Firmware will return its cached copy of the Serial 3403 * Initialization Revision ID, not the actual Revision ID as written in 3404 * the Serial EEPROM. This is only an issue if a new VPD has been written 3405 * and the Firmware/Chip haven't yet gone through a RESET sequence. So 3406 * it's best to defer calling this routine till after a FW_RESET_CMD has 3407 * been issued if the Host Driver will be performing a full adapter 3408 * initialization. 3409 */ 3410 int t4_get_scfg_version(struct adapter *adapter, u32 *vers) 3411 { 3412 u32 scfgrev_param; 3413 int ret; 3414 3415 scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3416 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV)); 3417 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3418 1, &scfgrev_param, vers); 3419 if (ret) 3420 *vers = 0; 3421 return ret; 3422 } 3423 3424 /** 3425 * t4_get_vpd_version - return the VPD version 3426 * @adapter: the adapter 3427 * @vers: where to place the version 3428 * 3429 * Reads the VPD via the Firmware interface (thus this can only be called 3430 * once we're ready to issue Firmware commands). The format of the 3431 * VPD version is adapter specific. Returns 0 on success, an error on 3432 * failure. 3433 * 3434 * Note that early versions of the Firmware didn't include the ability 3435 * to retrieve the VPD version, so we zero-out the return-value parameter 3436 * in that case to avoid leaving it with garbage in it. 3437 * 3438 * Also note that the Firmware will return its cached copy of the VPD 3439 * Revision ID, not the actual Revision ID as written in the Serial 3440 * EEPROM. This is only an issue if a new VPD has been written and the 3441 * Firmware/Chip haven't yet gone through a RESET sequence. So it's best 3442 * to defer calling this routine till after a FW_RESET_CMD has been issued 3443 * if the Host Driver will be performing a full adapter initialization. 3444 */ 3445 int t4_get_vpd_version(struct adapter *adapter, u32 *vers) 3446 { 3447 u32 vpdrev_param; 3448 int ret; 3449 3450 vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3451 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV)); 3452 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0, 3453 1, &vpdrev_param, vers); 3454 if (ret) 3455 *vers = 0; 3456 return ret; 3457 } 3458 3459 /** 3460 * t4_get_version_info - extract various chip/firmware version information 3461 * @adapter: the adapter 3462 * 3463 * Reads various chip/firmware version numbers and stores them into the 3464 * adapter Adapter Parameters structure. If any of the efforts fails 3465 * the first failure will be returned, but all of the version numbers 3466 * will be read. 3467 */ 3468 int t4_get_version_info(struct adapter *adapter) 3469 { 3470 int ret = 0; 3471 3472 #define FIRST_RET(__getvinfo) \ 3473 do { \ 3474 int __ret = __getvinfo; \ 3475 if (__ret && !ret) \ 3476 ret = __ret; \ 3477 } while (0) 3478 3479 FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers)); 3480 FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers)); 3481 FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers)); 3482 FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers)); 3483 FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers)); 3484 FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers)); 3485 3486 #undef FIRST_RET 3487 3488 return ret; 3489 } 3490 3491 /** 3492 * t4_flash_erase_sectors - erase a range of flash sectors 3493 * @adapter: the adapter 3494 * @start: the first sector to erase 3495 * @end: the last sector to erase 3496 * 3497 * Erases the sectors in the given inclusive range. 3498 */ 3499 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) 3500 { 3501 int ret = 0; 3502 3503 if (end >= adapter->params.sf_nsec) 3504 return -EINVAL; 3505 3506 while (start <= end) { 3507 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || 3508 (ret = sf1_write(adapter, 4, 0, 1, 3509 SF_ERASE_SECTOR | (start << 8))) != 0 || 3510 (ret = flash_wait_op(adapter, 14, 500)) != 0) { 3511 CH_ERR(adapter, 3512 "erase of flash sector %d failed, error %d\n", 3513 start, ret); 3514 break; 3515 } 3516 start++; 3517 } 3518 t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ 3519 return ret; 3520 } 3521 3522 /** 3523 * t4_flash_cfg_addr - return the address of the flash configuration file 3524 * @adapter: the adapter 3525 * 3526 * Return the address within the flash where the Firmware Configuration 3527 * File is stored, or an error if the device FLASH is too small to contain 3528 * a Firmware Configuration File. 3529 */ 3530 int t4_flash_cfg_addr(struct adapter *adapter) 3531 { 3532 /* 3533 * If the device FLASH isn't large enough to hold a Firmware 3534 * Configuration File, return an error. 3535 */ 3536 if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE) 3537 return -ENOSPC; 3538 3539 return FLASH_CFG_START; 3540 } 3541 3542 /* 3543 * Return TRUE if the specified firmware matches the adapter. I.e. T4 3544 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead 3545 * and emit an error message for mismatched firmware to save our caller the 3546 * effort ... 3547 */ 3548 static int t4_fw_matches_chip(struct adapter *adap, 3549 const struct fw_hdr *hdr) 3550 { 3551 /* 3552 * The expression below will return FALSE for any unsupported adapter 3553 * which will keep us "honest" in the future ... 3554 */ 3555 if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) || 3556 (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) || 3557 (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6)) 3558 return 1; 3559 3560 CH_ERR(adap, 3561 "FW image (%d) is not suitable for this adapter (%d)\n", 3562 hdr->chip, chip_id(adap)); 3563 return 0; 3564 } 3565 3566 /** 3567 * t4_load_fw - download firmware 3568 * @adap: the adapter 3569 * @fw_data: the firmware image to write 3570 * @size: image size 3571 * 3572 * Write the supplied firmware image to the card's serial flash. 3573 */ 3574 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) 3575 { 3576 u32 csum; 3577 int ret, addr; 3578 unsigned int i; 3579 u8 first_page[SF_PAGE_SIZE]; 3580 const u32 *p = (const u32 *)fw_data; 3581 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; 3582 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 3583 unsigned int fw_start_sec; 3584 unsigned int fw_start; 3585 unsigned int fw_size; 3586 3587 if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) { 3588 fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC; 3589 fw_start = FLASH_FWBOOTSTRAP_START; 3590 fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE; 3591 } else { 3592 fw_start_sec = FLASH_FW_START_SEC; 3593 fw_start = FLASH_FW_START; 3594 fw_size = FLASH_FW_MAX_SIZE; 3595 } 3596 3597 if (!size) { 3598 CH_ERR(adap, "FW image has no data\n"); 3599 return -EINVAL; 3600 } 3601 if (size & 511) { 3602 CH_ERR(adap, 3603 "FW image size not multiple of 512 bytes\n"); 3604 return -EINVAL; 3605 } 3606 if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) { 3607 CH_ERR(adap, 3608 "FW image size differs from size in FW header\n"); 3609 return -EINVAL; 3610 } 3611 if (size > fw_size) { 3612 CH_ERR(adap, "FW image too large, max is %u bytes\n", 3613 fw_size); 3614 return -EFBIG; 3615 } 3616 if (!t4_fw_matches_chip(adap, hdr)) 3617 return -EINVAL; 3618 3619 for (csum = 0, i = 0; i < size / sizeof(csum); i++) 3620 csum += be32_to_cpu(p[i]); 3621 3622 if (csum != 0xffffffff) { 3623 CH_ERR(adap, 3624 "corrupted firmware image, checksum %#x\n", csum); 3625 return -EINVAL; 3626 } 3627 3628 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ 3629 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); 3630 if (ret) 3631 goto out; 3632 3633 /* 3634 * We write the correct version at the end so the driver can see a bad 3635 * version if the FW write fails. Start by writing a copy of the 3636 * first page with a bad version. 3637 */ 3638 memcpy(first_page, fw_data, SF_PAGE_SIZE); 3639 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff); 3640 ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1); 3641 if (ret) 3642 goto out; 3643 3644 addr = fw_start; 3645 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 3646 addr += SF_PAGE_SIZE; 3647 fw_data += SF_PAGE_SIZE; 3648 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1); 3649 if (ret) 3650 goto out; 3651 } 3652 3653 ret = t4_write_flash(adap, 3654 fw_start + offsetof(struct fw_hdr, fw_ver), 3655 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1); 3656 out: 3657 if (ret) 3658 CH_ERR(adap, "firmware download failed, error %d\n", 3659 ret); 3660 return ret; 3661 } 3662 3663 /** 3664 * t4_fwcache - firmware cache operation 3665 * @adap: the adapter 3666 * @op : the operation (flush or flush and invalidate) 3667 */ 3668 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op) 3669 { 3670 struct fw_params_cmd c; 3671 3672 memset(&c, 0, sizeof(c)); 3673 c.op_to_vfn = 3674 cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) | 3675 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 3676 V_FW_PARAMS_CMD_PFN(adap->pf) | 3677 V_FW_PARAMS_CMD_VFN(0)); 3678 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 3679 c.param[0].mnem = 3680 cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 3681 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE)); 3682 c.param[0].val = (__force __be32)op; 3683 3684 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL); 3685 } 3686 3687 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp, 3688 unsigned int *pif_req_wrptr, 3689 unsigned int *pif_rsp_wrptr) 3690 { 3691 int i, j; 3692 u32 cfg, val, req, rsp; 3693 3694 cfg = t4_read_reg(adap, A_CIM_DEBUGCFG); 3695 if (cfg & F_LADBGEN) 3696 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN); 3697 3698 val = t4_read_reg(adap, A_CIM_DEBUGSTS); 3699 req = G_POLADBGWRPTR(val); 3700 rsp = G_PILADBGWRPTR(val); 3701 if (pif_req_wrptr) 3702 *pif_req_wrptr = req; 3703 if (pif_rsp_wrptr) 3704 *pif_rsp_wrptr = rsp; 3705 3706 for (i = 0; i < CIM_PIFLA_SIZE; i++) { 3707 for (j = 0; j < 6; j++) { 3708 t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) | 3709 V_PILADBGRDPTR(rsp)); 3710 *pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA); 3711 *pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA); 3712 req++; 3713 rsp++; 3714 } 3715 req = (req + 2) & M_POLADBGRDPTR; 3716 rsp = (rsp + 2) & M_PILADBGRDPTR; 3717 } 3718 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg); 3719 } 3720 3721 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp) 3722 { 3723 u32 cfg; 3724 int i, j, idx; 3725 3726 cfg = t4_read_reg(adap, A_CIM_DEBUGCFG); 3727 if (cfg & F_LADBGEN) 3728 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN); 3729 3730 for (i = 0; i < CIM_MALA_SIZE; i++) { 3731 for (j = 0; j < 5; j++) { 3732 idx = 8 * i + j; 3733 t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) | 3734 V_PILADBGRDPTR(idx)); 3735 *ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA); 3736 *ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA); 3737 } 3738 } 3739 t4_write_reg(adap, A_CIM_DEBUGCFG, cfg); 3740 } 3741 3742 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf) 3743 { 3744 unsigned int i, j; 3745 3746 for (i = 0; i < 8; i++) { 3747 u32 *p = la_buf + i; 3748 3749 t4_write_reg(adap, A_ULP_RX_LA_CTL, i); 3750 j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR); 3751 t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j); 3752 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8) 3753 *p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA); 3754 } 3755 } 3756 3757 /** 3758 * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits 3759 * @caps16: a 16-bit Port Capabilities value 3760 * 3761 * Returns the equivalent 32-bit Port Capabilities value. 3762 */ 3763 static uint32_t fwcaps16_to_caps32(uint16_t caps16) 3764 { 3765 uint32_t caps32 = 0; 3766 3767 #define CAP16_TO_CAP32(__cap) \ 3768 do { \ 3769 if (caps16 & FW_PORT_CAP_##__cap) \ 3770 caps32 |= FW_PORT_CAP32_##__cap; \ 3771 } while (0) 3772 3773 CAP16_TO_CAP32(SPEED_100M); 3774 CAP16_TO_CAP32(SPEED_1G); 3775 CAP16_TO_CAP32(SPEED_25G); 3776 CAP16_TO_CAP32(SPEED_10G); 3777 CAP16_TO_CAP32(SPEED_40G); 3778 CAP16_TO_CAP32(SPEED_100G); 3779 CAP16_TO_CAP32(FC_RX); 3780 CAP16_TO_CAP32(FC_TX); 3781 CAP16_TO_CAP32(ANEG); 3782 CAP16_TO_CAP32(FORCE_PAUSE); 3783 CAP16_TO_CAP32(MDIAUTO); 3784 CAP16_TO_CAP32(MDISTRAIGHT); 3785 CAP16_TO_CAP32(FEC_RS); 3786 CAP16_TO_CAP32(FEC_BASER_RS); 3787 CAP16_TO_CAP32(802_3_PAUSE); 3788 CAP16_TO_CAP32(802_3_ASM_DIR); 3789 3790 #undef CAP16_TO_CAP32 3791 3792 return caps32; 3793 } 3794 3795 /** 3796 * fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits 3797 * @caps32: a 32-bit Port Capabilities value 3798 * 3799 * Returns the equivalent 16-bit Port Capabilities value. Note that 3800 * not all 32-bit Port Capabilities can be represented in the 16-bit 3801 * Port Capabilities and some fields/values may not make it. 3802 */ 3803 static uint16_t fwcaps32_to_caps16(uint32_t caps32) 3804 { 3805 uint16_t caps16 = 0; 3806 3807 #define CAP32_TO_CAP16(__cap) \ 3808 do { \ 3809 if (caps32 & FW_PORT_CAP32_##__cap) \ 3810 caps16 |= FW_PORT_CAP_##__cap; \ 3811 } while (0) 3812 3813 CAP32_TO_CAP16(SPEED_100M); 3814 CAP32_TO_CAP16(SPEED_1G); 3815 CAP32_TO_CAP16(SPEED_10G); 3816 CAP32_TO_CAP16(SPEED_25G); 3817 CAP32_TO_CAP16(SPEED_40G); 3818 CAP32_TO_CAP16(SPEED_100G); 3819 CAP32_TO_CAP16(FC_RX); 3820 CAP32_TO_CAP16(FC_TX); 3821 CAP32_TO_CAP16(802_3_PAUSE); 3822 CAP32_TO_CAP16(802_3_ASM_DIR); 3823 CAP32_TO_CAP16(ANEG); 3824 CAP32_TO_CAP16(FORCE_PAUSE); 3825 CAP32_TO_CAP16(MDIAUTO); 3826 CAP32_TO_CAP16(MDISTRAIGHT); 3827 CAP32_TO_CAP16(FEC_RS); 3828 CAP32_TO_CAP16(FEC_BASER_RS); 3829 3830 #undef CAP32_TO_CAP16 3831 3832 return caps16; 3833 } 3834 3835 static bool 3836 is_bt(struct port_info *pi) 3837 { 3838 3839 return (pi->port_type == FW_PORT_TYPE_BT_SGMII || 3840 pi->port_type == FW_PORT_TYPE_BT_XFI || 3841 pi->port_type == FW_PORT_TYPE_BT_XAUI); 3842 } 3843 3844 /** 3845 * t4_link_l1cfg - apply link configuration to MAC/PHY 3846 * @phy: the PHY to setup 3847 * @mac: the MAC to setup 3848 * @lc: the requested link configuration 3849 * 3850 * Set up a port's MAC and PHY according to a desired link configuration. 3851 * - If the PHY can auto-negotiate first decide what to advertise, then 3852 * enable/disable auto-negotiation as desired, and reset. 3853 * - If the PHY does not auto-negotiate just reset it. 3854 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, 3855 * otherwise do it later based on the outcome of auto-negotiation. 3856 */ 3857 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port, 3858 struct link_config *lc) 3859 { 3860 struct fw_port_cmd c; 3861 unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO); 3862 unsigned int aneg, fc, fec, speed, rcap; 3863 3864 fc = 0; 3865 if (lc->requested_fc & PAUSE_RX) 3866 fc |= FW_PORT_CAP32_FC_RX; 3867 if (lc->requested_fc & PAUSE_TX) 3868 fc |= FW_PORT_CAP32_FC_TX; 3869 if (!(lc->requested_fc & PAUSE_AUTONEG)) 3870 fc |= FW_PORT_CAP32_FORCE_PAUSE; 3871 3872 fec = 0; 3873 if (lc->requested_fec == FEC_AUTO) 3874 fec = lc->fec_hint; 3875 else { 3876 if (lc->requested_fec & FEC_RS) 3877 fec |= FW_PORT_CAP32_FEC_RS; 3878 if (lc->requested_fec & FEC_BASER_RS) 3879 fec |= FW_PORT_CAP32_FEC_BASER_RS; 3880 } 3881 3882 if (lc->requested_aneg == AUTONEG_DISABLE) 3883 aneg = 0; 3884 else if (lc->requested_aneg == AUTONEG_ENABLE) 3885 aneg = FW_PORT_CAP32_ANEG; 3886 else 3887 aneg = lc->supported & FW_PORT_CAP32_ANEG; 3888 3889 if (aneg) { 3890 speed = lc->supported & V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED); 3891 } else if (lc->requested_speed != 0) 3892 speed = speed_to_fwcap(lc->requested_speed); 3893 else 3894 speed = fwcap_top_speed(lc->supported); 3895 3896 /* Force AN on for BT cards. */ 3897 if (is_bt(adap->port[adap->chan_map[port]])) 3898 aneg = lc->supported & FW_PORT_CAP32_ANEG; 3899 3900 rcap = aneg | speed | fc | fec; 3901 if ((rcap | lc->supported) != lc->supported) { 3902 #ifdef INVARIANTS 3903 CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x\n", rcap, 3904 lc->supported); 3905 #endif 3906 rcap &= lc->supported; 3907 } 3908 rcap |= mdi; 3909 3910 memset(&c, 0, sizeof(c)); 3911 c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) | 3912 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 3913 V_FW_PORT_CMD_PORTID(port)); 3914 if (adap->params.port_caps32) { 3915 c.action_to_len16 = 3916 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) | 3917 FW_LEN16(c)); 3918 c.u.l1cfg32.rcap32 = cpu_to_be32(rcap); 3919 } else { 3920 c.action_to_len16 = 3921 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) | 3922 FW_LEN16(c)); 3923 c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap)); 3924 } 3925 3926 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 3927 } 3928 3929 /** 3930 * t4_restart_aneg - restart autonegotiation 3931 * @adap: the adapter 3932 * @mbox: mbox to use for the FW command 3933 * @port: the port id 3934 * 3935 * Restarts autonegotiation for the selected port. 3936 */ 3937 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) 3938 { 3939 struct fw_port_cmd c; 3940 3941 memset(&c, 0, sizeof(c)); 3942 c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) | 3943 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 3944 V_FW_PORT_CMD_PORTID(port)); 3945 c.action_to_len16 = 3946 cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) | 3947 FW_LEN16(c)); 3948 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG); 3949 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 3950 } 3951 3952 struct intr_details { 3953 u32 mask; 3954 const char *msg; 3955 }; 3956 3957 struct intr_action { 3958 u32 mask; 3959 int arg; 3960 bool (*action)(struct adapter *, int, bool); 3961 }; 3962 3963 struct intr_info { 3964 const char *name; /* name of the INT_CAUSE register */ 3965 int cause_reg; /* INT_CAUSE register */ 3966 int enable_reg; /* INT_ENABLE register */ 3967 u32 fatal; /* bits that are fatal */ 3968 const struct intr_details *details; 3969 const struct intr_action *actions; 3970 }; 3971 3972 static inline char 3973 intr_alert_char(u32 cause, u32 enable, u32 fatal) 3974 { 3975 3976 if (cause & fatal) 3977 return ('!'); 3978 if (cause & enable) 3979 return ('*'); 3980 return ('-'); 3981 } 3982 3983 static void 3984 t4_show_intr_info(struct adapter *adap, const struct intr_info *ii, u32 cause) 3985 { 3986 u32 enable, leftover; 3987 const struct intr_details *details; 3988 char alert; 3989 3990 enable = t4_read_reg(adap, ii->enable_reg); 3991 alert = intr_alert_char(cause, enable, ii->fatal); 3992 CH_ALERT(adap, "%c %s 0x%x = 0x%08x, E 0x%08x, F 0x%08x\n", 3993 alert, ii->name, ii->cause_reg, cause, enable, ii->fatal); 3994 3995 leftover = cause; 3996 for (details = ii->details; details && details->mask != 0; details++) { 3997 u32 msgbits = details->mask & cause; 3998 if (msgbits == 0) 3999 continue; 4000 alert = intr_alert_char(msgbits, enable, ii->fatal); 4001 CH_ALERT(adap, " %c [0x%08x] %s\n", alert, msgbits, 4002 details->msg); 4003 leftover &= ~msgbits; 4004 } 4005 if (leftover != 0 && leftover != cause) 4006 CH_ALERT(adap, " ? [0x%08x]\n", leftover); 4007 } 4008 4009 /* 4010 * Returns true for fatal error. 4011 */ 4012 static bool 4013 t4_handle_intr(struct adapter *adap, const struct intr_info *ii, 4014 u32 additional_cause, bool verbose) 4015 { 4016 u32 cause; 4017 bool fatal; 4018 const struct intr_action *action; 4019 4020 /* read and display cause. */ 4021 cause = t4_read_reg(adap, ii->cause_reg); 4022 if (verbose || cause != 0) 4023 t4_show_intr_info(adap, ii, cause); 4024 fatal = (cause & ii->fatal) != 0; 4025 cause |= additional_cause; 4026 if (cause == 0) 4027 return (false); 4028 4029 for (action = ii->actions; action && action->mask != 0; action++) { 4030 if (!(action->mask & cause)) 4031 continue; 4032 fatal |= (action->action)(adap, action->arg, verbose); 4033 } 4034 4035 /* clear */ 4036 t4_write_reg(adap, ii->cause_reg, cause); 4037 (void)t4_read_reg(adap, ii->cause_reg); 4038 4039 return (fatal); 4040 } 4041 4042 /* 4043 * Interrupt handler for the PCIE module. 4044 */ 4045 static bool pcie_intr_handler(struct adapter *adap, int arg, bool verbose) 4046 { 4047 static const struct intr_details sysbus_intr_details[] = { 4048 { F_RNPP, "RXNP array parity error" }, 4049 { F_RPCP, "RXPC array parity error" }, 4050 { F_RCIP, "RXCIF array parity error" }, 4051 { F_RCCP, "Rx completions control array parity error" }, 4052 { F_RFTP, "RXFT array parity error" }, 4053 { 0 } 4054 }; 4055 static const struct intr_info sysbus_intr_info = { 4056 .name = "PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS", 4057 .cause_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS, 4058 .enable_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_INTERRUPT_ENABLE, 4059 .fatal = F_RFTP | F_RCCP | F_RCIP | F_RPCP | F_RNPP, 4060 .details = sysbus_intr_details, 4061 .actions = NULL, 4062 }; 4063 static const struct intr_details pcie_port_intr_details[] = { 4064 { F_TPCP, "TXPC array parity error" }, 4065 { F_TNPP, "TXNP array parity error" }, 4066 { F_TFTP, "TXFT array parity error" }, 4067 { F_TCAP, "TXCA array parity error" }, 4068 { F_TCIP, "TXCIF array parity error" }, 4069 { F_RCAP, "RXCA array parity error" }, 4070 { F_OTDD, "outbound request TLP discarded" }, 4071 { F_RDPE, "Rx data parity error" }, 4072 { F_TDUE, "Tx uncorrectable data error" }, 4073 { 0 } 4074 }; 4075 static const struct intr_info pcie_port_intr_info = { 4076 .name = "PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS", 4077 .cause_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS, 4078 .enable_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_INTERRUPT_ENABLE, 4079 .fatal = F_TPCP | F_TNPP | F_TFTP | F_TCAP | F_TCIP | F_RCAP | 4080 F_OTDD | F_RDPE | F_TDUE, 4081 .details = pcie_port_intr_details, 4082 .actions = NULL, 4083 }; 4084 static const struct intr_details pcie_intr_details[] = { 4085 { F_MSIADDRLPERR, "MSI AddrL parity error" }, 4086 { F_MSIADDRHPERR, "MSI AddrH parity error" }, 4087 { F_MSIDATAPERR, "MSI data parity error" }, 4088 { F_MSIXADDRLPERR, "MSI-X AddrL parity error" }, 4089 { F_MSIXADDRHPERR, "MSI-X AddrH parity error" }, 4090 { F_MSIXDATAPERR, "MSI-X data parity error" }, 4091 { F_MSIXDIPERR, "MSI-X DI parity error" }, 4092 { F_PIOCPLPERR, "PCIe PIO completion FIFO parity error" }, 4093 { F_PIOREQPERR, "PCIe PIO request FIFO parity error" }, 4094 { F_TARTAGPERR, "PCIe target tag FIFO parity error" }, 4095 { F_CCNTPERR, "PCIe CMD channel count parity error" }, 4096 { F_CREQPERR, "PCIe CMD channel request parity error" }, 4097 { F_CRSPPERR, "PCIe CMD channel response parity error" }, 4098 { F_DCNTPERR, "PCIe DMA channel count parity error" }, 4099 { F_DREQPERR, "PCIe DMA channel request parity error" }, 4100 { F_DRSPPERR, "PCIe DMA channel response parity error" }, 4101 { F_HCNTPERR, "PCIe HMA channel count parity error" }, 4102 { F_HREQPERR, "PCIe HMA channel request parity error" }, 4103 { F_HRSPPERR, "PCIe HMA channel response parity error" }, 4104 { F_CFGSNPPERR, "PCIe config snoop FIFO parity error" }, 4105 { F_FIDPERR, "PCIe FID parity error" }, 4106 { F_INTXCLRPERR, "PCIe INTx clear parity error" }, 4107 { F_MATAGPERR, "PCIe MA tag parity error" }, 4108 { F_PIOTAGPERR, "PCIe PIO tag parity error" }, 4109 { F_RXCPLPERR, "PCIe Rx completion parity error" }, 4110 { F_RXWRPERR, "PCIe Rx write parity error" }, 4111 { F_RPLPERR, "PCIe replay buffer parity error" }, 4112 { F_PCIESINT, "PCIe core secondary fault" }, 4113 { F_PCIEPINT, "PCIe core primary fault" }, 4114 { F_UNXSPLCPLERR, "PCIe unexpected split completion error" }, 4115 { 0 } 4116 }; 4117 static const struct intr_details t5_pcie_intr_details[] = { 4118 { F_IPGRPPERR, "Parity errors observed by IP" }, 4119 { F_NONFATALERR, "PCIe non-fatal error" }, 4120 { F_READRSPERR, "Outbound read error" }, 4121 { F_TRGT1GRPPERR, "PCIe TRGT1 group FIFOs parity error" }, 4122 { F_IPSOTPERR, "PCIe IP SOT buffer SRAM parity error" }, 4123 { F_IPRETRYPERR, "PCIe IP replay buffer parity error" }, 4124 { F_IPRXDATAGRPPERR, "PCIe IP Rx data group SRAMs parity error" }, 4125 { F_IPRXHDRGRPPERR, "PCIe IP Rx header group SRAMs parity error" }, 4126 { F_PIOTAGQPERR, "PIO tag queue FIFO parity error" }, 4127 { F_MAGRPPERR, "MA group FIFO parity error" }, 4128 { F_VFIDPERR, "VFID SRAM parity error" }, 4129 { F_FIDPERR, "FID SRAM parity error" }, 4130 { F_CFGSNPPERR, "config snoop FIFO parity error" }, 4131 { F_HRSPPERR, "HMA channel response data SRAM parity error" }, 4132 { F_HREQRDPERR, "HMA channel read request SRAM parity error" }, 4133 { F_HREQWRPERR, "HMA channel write request SRAM parity error" }, 4134 { F_DRSPPERR, "DMA channel response data SRAM parity error" }, 4135 { F_DREQRDPERR, "DMA channel write request SRAM parity error" }, 4136 { F_CRSPPERR, "CMD channel response data SRAM parity error" }, 4137 { F_CREQRDPERR, "CMD channel read request SRAM parity error" }, 4138 { F_MSTTAGQPERR, "PCIe master tag queue SRAM parity error" }, 4139 { F_TGTTAGQPERR, "PCIe target tag queue FIFO parity error" }, 4140 { F_PIOREQGRPPERR, "PIO request group FIFOs parity error" }, 4141 { F_PIOCPLGRPPERR, "PIO completion group FIFOs parity error" }, 4142 { F_MSIXDIPERR, "MSI-X DI SRAM parity error" }, 4143 { F_MSIXDATAPERR, "MSI-X data SRAM parity error" }, 4144 { F_MSIXADDRHPERR, "MSI-X AddrH SRAM parity error" }, 4145 { F_MSIXADDRLPERR, "MSI-X AddrL SRAM parity error" }, 4146 { F_MSIXSTIPERR, "MSI-X STI SRAM parity error" }, 4147 { F_MSTTIMEOUTPERR, "Master timeout FIFO parity error" }, 4148 { F_MSTGRPPERR, "Master response read queue SRAM parity error" }, 4149 { 0 } 4150 }; 4151 struct intr_info pcie_intr_info = { 4152 .name = "PCIE_INT_CAUSE", 4153 .cause_reg = A_PCIE_INT_CAUSE, 4154 .enable_reg = A_PCIE_INT_ENABLE, 4155 .fatal = 0, 4156 .details = NULL, 4157 .actions = NULL, 4158 }; 4159 bool fatal = false; 4160 4161 if (is_t4(adap)) { 4162 fatal |= t4_handle_intr(adap, &sysbus_intr_info, 0, verbose); 4163 fatal |= t4_handle_intr(adap, &pcie_port_intr_info, 0, verbose); 4164 4165 pcie_intr_info.fatal = 0x3fffffc0; 4166 pcie_intr_info.details = pcie_intr_details; 4167 } else { 4168 pcie_intr_info.fatal = is_t5(adap) ? 0xbfffff40 : 0x9fffff40; 4169 pcie_intr_info.details = t5_pcie_intr_details; 4170 } 4171 fatal |= t4_handle_intr(adap, &pcie_intr_info, 0, verbose); 4172 4173 return (fatal); 4174 } 4175 4176 /* 4177 * TP interrupt handler. 4178 */ 4179 static bool tp_intr_handler(struct adapter *adap, int arg, bool verbose) 4180 { 4181 static const struct intr_details tp_intr_details[] = { 4182 { 0x3fffffff, "TP parity error" }, 4183 { F_FLMTXFLSTEMPTY, "TP out of Tx pages" }, 4184 { 0 } 4185 }; 4186 static const struct intr_info tp_intr_info = { 4187 .name = "TP_INT_CAUSE", 4188 .cause_reg = A_TP_INT_CAUSE, 4189 .enable_reg = A_TP_INT_ENABLE, 4190 .fatal = 0x7fffffff, 4191 .details = tp_intr_details, 4192 .actions = NULL, 4193 }; 4194 4195 return (t4_handle_intr(adap, &tp_intr_info, 0, verbose)); 4196 } 4197 4198 /* 4199 * SGE interrupt handler. 4200 */ 4201 static bool sge_intr_handler(struct adapter *adap, int arg, bool verbose) 4202 { 4203 static const struct intr_info sge_int1_info = { 4204 .name = "SGE_INT_CAUSE1", 4205 .cause_reg = A_SGE_INT_CAUSE1, 4206 .enable_reg = A_SGE_INT_ENABLE1, 4207 .fatal = 0xffffffff, 4208 .details = NULL, 4209 .actions = NULL, 4210 }; 4211 static const struct intr_info sge_int2_info = { 4212 .name = "SGE_INT_CAUSE2", 4213 .cause_reg = A_SGE_INT_CAUSE2, 4214 .enable_reg = A_SGE_INT_ENABLE2, 4215 .fatal = 0xffffffff, 4216 .details = NULL, 4217 .actions = NULL, 4218 }; 4219 static const struct intr_details sge_int3_details[] = { 4220 { F_ERR_FLM_DBP, 4221 "DBP pointer delivery for invalid context or QID" }, 4222 { F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0, 4223 "Invalid QID or header request by IDMA" }, 4224 { F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" }, 4225 { F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" }, 4226 { F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" }, 4227 { F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" }, 4228 { F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" }, 4229 { F_ERR_TIMER_ABOVE_MAX_QID, 4230 "SGE GTS with timer 0-5 for IQID > 1023" }, 4231 { F_ERR_CPL_EXCEED_IQE_SIZE, 4232 "SGE received CPL exceeding IQE size" }, 4233 { F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" }, 4234 { F_ERR_ITP_TIME_PAUSED, "SGE ITP error" }, 4235 { F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" }, 4236 { F_ERR_DROPPED_DB, "SGE DB dropped" }, 4237 { F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0, 4238 "SGE IQID > 1023 received CPL for FL" }, 4239 { F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 | 4240 F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" }, 4241 { F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" }, 4242 { F_ERR_ING_CTXT_PRIO, 4243 "Ingress context manager priority user error" }, 4244 { F_ERR_EGR_CTXT_PRIO, 4245 "Egress context manager priority user error" }, 4246 { F_DBFIFO_HP_INT, "High priority DB FIFO threshold reached" }, 4247 { F_DBFIFO_LP_INT, "Low priority DB FIFO threshold reached" }, 4248 { F_REG_ADDRESS_ERR, "Undefined SGE register accessed" }, 4249 { F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" }, 4250 { F_EGRESS_SIZE_ERR, "SGE illegal egress QID" }, 4251 { 0x0000000f, "SGE context access for invalid queue" }, 4252 { 0 } 4253 }; 4254 static const struct intr_details t6_sge_int3_details[] = { 4255 { F_ERR_FLM_DBP, 4256 "DBP pointer delivery for invalid context or QID" }, 4257 { F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0, 4258 "Invalid QID or header request by IDMA" }, 4259 { F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" }, 4260 { F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" }, 4261 { F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" }, 4262 { F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" }, 4263 { F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" }, 4264 { F_ERR_TIMER_ABOVE_MAX_QID, 4265 "SGE GTS with timer 0-5 for IQID > 1023" }, 4266 { F_ERR_CPL_EXCEED_IQE_SIZE, 4267 "SGE received CPL exceeding IQE size" }, 4268 { F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" }, 4269 { F_ERR_ITP_TIME_PAUSED, "SGE ITP error" }, 4270 { F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" }, 4271 { F_ERR_DROPPED_DB, "SGE DB dropped" }, 4272 { F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0, 4273 "SGE IQID > 1023 received CPL for FL" }, 4274 { F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 | 4275 F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" }, 4276 { F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" }, 4277 { F_ERR_ING_CTXT_PRIO, 4278 "Ingress context manager priority user error" }, 4279 { F_ERR_EGR_CTXT_PRIO, 4280 "Egress context manager priority user error" }, 4281 { F_DBP_TBUF_FULL, "SGE DBP tbuf full" }, 4282 { F_FATAL_WRE_LEN, 4283 "SGE WRE packet less than advertized length" }, 4284 { F_REG_ADDRESS_ERR, "Undefined SGE register accessed" }, 4285 { F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" }, 4286 { F_EGRESS_SIZE_ERR, "SGE illegal egress QID" }, 4287 { 0x0000000f, "SGE context access for invalid queue" }, 4288 { 0 } 4289 }; 4290 struct intr_info sge_int3_info = { 4291 .name = "SGE_INT_CAUSE3", 4292 .cause_reg = A_SGE_INT_CAUSE3, 4293 .enable_reg = A_SGE_INT_ENABLE3, 4294 .fatal = F_ERR_CPL_EXCEED_IQE_SIZE, 4295 .details = NULL, 4296 .actions = NULL, 4297 }; 4298 static const struct intr_info sge_int4_info = { 4299 .name = "SGE_INT_CAUSE4", 4300 .cause_reg = A_SGE_INT_CAUSE4, 4301 .enable_reg = A_SGE_INT_ENABLE4, 4302 .fatal = 0, 4303 .details = NULL, 4304 .actions = NULL, 4305 }; 4306 static const struct intr_info sge_int5_info = { 4307 .name = "SGE_INT_CAUSE5", 4308 .cause_reg = A_SGE_INT_CAUSE5, 4309 .enable_reg = A_SGE_INT_ENABLE5, 4310 .fatal = 0xffffffff, 4311 .details = NULL, 4312 .actions = NULL, 4313 }; 4314 static const struct intr_info sge_int6_info = { 4315 .name = "SGE_INT_CAUSE6", 4316 .cause_reg = A_SGE_INT_CAUSE6, 4317 .enable_reg = A_SGE_INT_ENABLE6, 4318 .fatal = 0, 4319 .details = NULL, 4320 .actions = NULL, 4321 }; 4322 4323 bool fatal; 4324 u32 v; 4325 4326 if (chip_id(adap) <= CHELSIO_T5) { 4327 sge_int3_info.details = sge_int3_details; 4328 } else { 4329 sge_int3_info.details = t6_sge_int3_details; 4330 } 4331 4332 fatal = false; 4333 fatal |= t4_handle_intr(adap, &sge_int1_info, 0, verbose); 4334 fatal |= t4_handle_intr(adap, &sge_int2_info, 0, verbose); 4335 fatal |= t4_handle_intr(adap, &sge_int3_info, 0, verbose); 4336 fatal |= t4_handle_intr(adap, &sge_int4_info, 0, verbose); 4337 if (chip_id(adap) >= CHELSIO_T5) 4338 fatal |= t4_handle_intr(adap, &sge_int5_info, 0, verbose); 4339 if (chip_id(adap) >= CHELSIO_T6) 4340 fatal |= t4_handle_intr(adap, &sge_int6_info, 0, verbose); 4341 4342 v = t4_read_reg(adap, A_SGE_ERROR_STATS); 4343 if (v & F_ERROR_QID_VALID) { 4344 CH_ERR(adap, "SGE error for QID %u\n", G_ERROR_QID(v)); 4345 if (v & F_UNCAPTURED_ERROR) 4346 CH_ERR(adap, "SGE UNCAPTURED_ERROR set (clearing)\n"); 4347 t4_write_reg(adap, A_SGE_ERROR_STATS, 4348 F_ERROR_QID_VALID | F_UNCAPTURED_ERROR); 4349 } 4350 4351 return (fatal); 4352 } 4353 4354 /* 4355 * CIM interrupt handler. 4356 */ 4357 static bool cim_intr_handler(struct adapter *adap, int arg, bool verbose) 4358 { 4359 static const struct intr_action cim_host_intr_actions[] = { 4360 { F_TIMER0INT, 0, t4_os_dump_cimla }, 4361 { 0 }, 4362 }; 4363 static const struct intr_details cim_host_intr_details[] = { 4364 /* T6+ */ 4365 { F_PCIE2CIMINTFPARERR, "CIM IBQ PCIe interface parity error" }, 4366 4367 /* T5+ */ 4368 { F_MA_CIM_INTFPERR, "MA2CIM interface parity error" }, 4369 { F_PLCIM_MSTRSPDATAPARERR, 4370 "PL2CIM master response data parity error" }, 4371 { F_NCSI2CIMINTFPARERR, "CIM IBQ NC-SI interface parity error" }, 4372 { F_SGE2CIMINTFPARERR, "CIM IBQ SGE interface parity error" }, 4373 { F_ULP2CIMINTFPARERR, "CIM IBQ ULP_TX interface parity error" }, 4374 { F_TP2CIMINTFPARERR, "CIM IBQ TP interface parity error" }, 4375 { F_OBQSGERX1PARERR, "CIM OBQ SGE1_RX parity error" }, 4376 { F_OBQSGERX0PARERR, "CIM OBQ SGE0_RX parity error" }, 4377 4378 /* T4+ */ 4379 { F_TIEQOUTPARERRINT, "CIM TIEQ outgoing FIFO parity error" }, 4380 { F_TIEQINPARERRINT, "CIM TIEQ incoming FIFO parity error" }, 4381 { F_MBHOSTPARERR, "CIM mailbox host read parity error" }, 4382 { F_MBUPPARERR, "CIM mailbox uP parity error" }, 4383 { F_IBQTP0PARERR, "CIM IBQ TP0 parity error" }, 4384 { F_IBQTP1PARERR, "CIM IBQ TP1 parity error" }, 4385 { F_IBQULPPARERR, "CIM IBQ ULP parity error" }, 4386 { F_IBQSGELOPARERR, "CIM IBQ SGE_LO parity error" }, 4387 { F_IBQSGEHIPARERR | F_IBQPCIEPARERR, /* same bit */ 4388 "CIM IBQ PCIe/SGE_HI parity error" }, 4389 { F_IBQNCSIPARERR, "CIM IBQ NC-SI parity error" }, 4390 { F_OBQULP0PARERR, "CIM OBQ ULP0 parity error" }, 4391 { F_OBQULP1PARERR, "CIM OBQ ULP1 parity error" }, 4392 { F_OBQULP2PARERR, "CIM OBQ ULP2 parity error" }, 4393 { F_OBQULP3PARERR, "CIM OBQ ULP3 parity error" }, 4394 { F_OBQSGEPARERR, "CIM OBQ SGE parity error" }, 4395 { F_OBQNCSIPARERR, "CIM OBQ NC-SI parity error" }, 4396 { F_TIMER1INT, "CIM TIMER0 interrupt" }, 4397 { F_TIMER0INT, "CIM TIMER0 interrupt" }, 4398 { F_PREFDROPINT, "CIM control register prefetch drop" }, 4399 { 0} 4400 }; 4401 struct intr_info cim_host_intr_info = { 4402 .name = "CIM_HOST_INT_CAUSE", 4403 .cause_reg = A_CIM_HOST_INT_CAUSE, 4404 .enable_reg = A_CIM_HOST_INT_ENABLE, 4405 .fatal = 0, 4406 .details = cim_host_intr_details, 4407 .actions = cim_host_intr_actions, 4408 }; 4409 static const struct intr_details cim_host_upacc_intr_details[] = { 4410 { F_EEPROMWRINT, "CIM EEPROM came out of busy state" }, 4411 { F_TIMEOUTMAINT, "CIM PIF MA timeout" }, 4412 { F_TIMEOUTINT, "CIM PIF timeout" }, 4413 { F_RSPOVRLOOKUPINT, "CIM response FIFO overwrite" }, 4414 { F_REQOVRLOOKUPINT, "CIM request FIFO overwrite" }, 4415 { F_BLKWRPLINT, "CIM block write to PL space" }, 4416 { F_BLKRDPLINT, "CIM block read from PL space" }, 4417 { F_SGLWRPLINT, 4418 "CIM single write to PL space with illegal BEs" }, 4419 { F_SGLRDPLINT, 4420 "CIM single read from PL space with illegal BEs" }, 4421 { F_BLKWRCTLINT, "CIM block write to CTL space" }, 4422 { F_BLKRDCTLINT, "CIM block read from CTL space" }, 4423 { F_SGLWRCTLINT, 4424 "CIM single write to CTL space with illegal BEs" }, 4425 { F_SGLRDCTLINT, 4426 "CIM single read from CTL space with illegal BEs" }, 4427 { F_BLKWREEPROMINT, "CIM block write to EEPROM space" }, 4428 { F_BLKRDEEPROMINT, "CIM block read from EEPROM space" }, 4429 { F_SGLWREEPROMINT, 4430 "CIM single write to EEPROM space with illegal BEs" }, 4431 { F_SGLRDEEPROMINT, 4432 "CIM single read from EEPROM space with illegal BEs" }, 4433 { F_BLKWRFLASHINT, "CIM block write to flash space" }, 4434 { F_BLKRDFLASHINT, "CIM block read from flash space" }, 4435 { F_SGLWRFLASHINT, "CIM single write to flash space" }, 4436 { F_SGLRDFLASHINT, 4437 "CIM single read from flash space with illegal BEs" }, 4438 { F_BLKWRBOOTINT, "CIM block write to boot space" }, 4439 { F_BLKRDBOOTINT, "CIM block read from boot space" }, 4440 { F_SGLWRBOOTINT, "CIM single write to boot space" }, 4441 { F_SGLRDBOOTINT, 4442 "CIM single read from boot space with illegal BEs" }, 4443 { F_ILLWRBEINT, "CIM illegal write BEs" }, 4444 { F_ILLRDBEINT, "CIM illegal read BEs" }, 4445 { F_ILLRDINT, "CIM illegal read" }, 4446 { F_ILLWRINT, "CIM illegal write" }, 4447 { F_ILLTRANSINT, "CIM illegal transaction" }, 4448 { F_RSVDSPACEINT, "CIM reserved space access" }, 4449 {0} 4450 }; 4451 static const struct intr_info cim_host_upacc_intr_info = { 4452 .name = "CIM_HOST_UPACC_INT_CAUSE", 4453 .cause_reg = A_CIM_HOST_UPACC_INT_CAUSE, 4454 .enable_reg = A_CIM_HOST_UPACC_INT_ENABLE, 4455 .fatal = 0x3fffeeff, 4456 .details = cim_host_upacc_intr_details, 4457 .actions = NULL, 4458 }; 4459 static const struct intr_info cim_pf_host_intr_info = { 4460 .name = "CIM_PF_HOST_INT_CAUSE", 4461 .cause_reg = MYPF_REG(A_CIM_PF_HOST_INT_CAUSE), 4462 .enable_reg = MYPF_REG(A_CIM_PF_HOST_INT_ENABLE), 4463 .fatal = 0, 4464 .details = NULL, 4465 .actions = NULL, 4466 }; 4467 u32 val, fw_err; 4468 bool fatal; 4469 4470 fw_err = t4_read_reg(adap, A_PCIE_FW); 4471 if (fw_err & F_PCIE_FW_ERR) 4472 t4_report_fw_error(adap); 4473 4474 /* 4475 * When the Firmware detects an internal error which normally wouldn't 4476 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order 4477 * to make sure the Host sees the Firmware Crash. So if we have a 4478 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0 4479 * interrupt. 4480 */ 4481 val = t4_read_reg(adap, A_CIM_HOST_INT_CAUSE); 4482 if (val & F_TIMER0INT && (!(fw_err & F_PCIE_FW_ERR) || 4483 G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH)) { 4484 t4_write_reg(adap, A_CIM_HOST_INT_CAUSE, F_TIMER0INT); 4485 } 4486 4487 fatal = false; 4488 if (is_t4(adap)) 4489 cim_host_intr_info.fatal = 0x001fffe2; 4490 else if (is_t5(adap)) 4491 cim_host_intr_info.fatal = 0x007dffe2; 4492 else 4493 cim_host_intr_info.fatal = 0x007dffe6; 4494 fatal |= t4_handle_intr(adap, &cim_host_intr_info, 0, verbose); 4495 fatal |= t4_handle_intr(adap, &cim_host_upacc_intr_info, 0, verbose); 4496 fatal |= t4_handle_intr(adap, &cim_pf_host_intr_info, 0, verbose); 4497 4498 return (fatal); 4499 } 4500 4501 /* 4502 * ULP RX interrupt handler. 4503 */ 4504 static bool ulprx_intr_handler(struct adapter *adap, int arg, bool verbose) 4505 { 4506 static const struct intr_details ulprx_intr_details[] = { 4507 /* T5+ */ 4508 { F_SE_CNT_MISMATCH_1, "ULPRX SE count mismatch in channel 1" }, 4509 { F_SE_CNT_MISMATCH_0, "ULPRX SE count mismatch in channel 0" }, 4510 4511 /* T4+ */ 4512 { F_CAUSE_CTX_1, "ULPRX channel 1 context error" }, 4513 { F_CAUSE_CTX_0, "ULPRX channel 0 context error" }, 4514 { 0x007fffff, "ULPRX parity error" }, 4515 { 0 } 4516 }; 4517 static const struct intr_info ulprx_intr_info = { 4518 .name = "ULP_RX_INT_CAUSE", 4519 .cause_reg = A_ULP_RX_INT_CAUSE, 4520 .enable_reg = A_ULP_RX_INT_ENABLE, 4521 .fatal = 0x07ffffff, 4522 .details = ulprx_intr_details, 4523 .actions = NULL, 4524 }; 4525 static const struct intr_info ulprx_intr2_info = { 4526 .name = "ULP_RX_INT_CAUSE_2", 4527 .cause_reg = A_ULP_RX_INT_CAUSE_2, 4528 .enable_reg = A_ULP_RX_INT_ENABLE_2, 4529 .fatal = 0, 4530 .details = NULL, 4531 .actions = NULL, 4532 }; 4533 bool fatal = false; 4534 4535 fatal |= t4_handle_intr(adap, &ulprx_intr_info, 0, verbose); 4536 fatal |= t4_handle_intr(adap, &ulprx_intr2_info, 0, verbose); 4537 4538 return (fatal); 4539 } 4540 4541 /* 4542 * ULP TX interrupt handler. 4543 */ 4544 static bool ulptx_intr_handler(struct adapter *adap, int arg, bool verbose) 4545 { 4546 static const struct intr_details ulptx_intr_details[] = { 4547 { F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds" }, 4548 { F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds" }, 4549 { F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds" }, 4550 { F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds" }, 4551 { 0x0fffffff, "ULPTX parity error" }, 4552 { 0 } 4553 }; 4554 static const struct intr_info ulptx_intr_info = { 4555 .name = "ULP_TX_INT_CAUSE", 4556 .cause_reg = A_ULP_TX_INT_CAUSE, 4557 .enable_reg = A_ULP_TX_INT_ENABLE, 4558 .fatal = 0x0fffffff, 4559 .details = ulptx_intr_details, 4560 .actions = NULL, 4561 }; 4562 static const struct intr_info ulptx_intr2_info = { 4563 .name = "ULP_TX_INT_CAUSE_2", 4564 .cause_reg = A_ULP_TX_INT_CAUSE_2, 4565 .enable_reg = A_ULP_TX_INT_ENABLE_2, 4566 .fatal = 0, 4567 .details = NULL, 4568 .actions = NULL, 4569 }; 4570 bool fatal = false; 4571 4572 fatal |= t4_handle_intr(adap, &ulptx_intr_info, 0, verbose); 4573 fatal |= t4_handle_intr(adap, &ulptx_intr2_info, 0, verbose); 4574 4575 return (fatal); 4576 } 4577 4578 static bool pmtx_dump_dbg_stats(struct adapter *adap, int arg, bool verbose) 4579 { 4580 int i; 4581 u32 data[17]; 4582 4583 t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, &data[0], 4584 ARRAY_SIZE(data), A_PM_TX_DBG_STAT0); 4585 for (i = 0; i < ARRAY_SIZE(data); i++) { 4586 CH_ALERT(adap, " - PM_TX_DBG_STAT%u (0x%x) = 0x%08x\n", i, 4587 A_PM_TX_DBG_STAT0 + i, data[i]); 4588 } 4589 4590 return (false); 4591 } 4592 4593 /* 4594 * PM TX interrupt handler. 4595 */ 4596 static bool pmtx_intr_handler(struct adapter *adap, int arg, bool verbose) 4597 { 4598 static const struct intr_action pmtx_intr_actions[] = { 4599 { 0xffffffff, 0, pmtx_dump_dbg_stats }, 4600 { 0 }, 4601 }; 4602 static const struct intr_details pmtx_intr_details[] = { 4603 { F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large" }, 4604 { F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large" }, 4605 { F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large" }, 4606 { F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd" }, 4607 { 0x0f000000, "PMTX icspi FIFO2X Rx framing error" }, 4608 { 0x00f00000, "PMTX icspi FIFO Rx framing error" }, 4609 { 0x000f0000, "PMTX icspi FIFO Tx framing error" }, 4610 { 0x0000f000, "PMTX oespi FIFO Rx framing error" }, 4611 { 0x00000f00, "PMTX oespi FIFO Tx framing error" }, 4612 { 0x000000f0, "PMTX oespi FIFO2X Tx framing error" }, 4613 { F_OESPI_PAR_ERROR, "PMTX oespi parity error" }, 4614 { F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error" }, 4615 { F_ICSPI_PAR_ERROR, "PMTX icspi parity error" }, 4616 { F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error" }, 4617 { 0 } 4618 }; 4619 static const struct intr_info pmtx_intr_info = { 4620 .name = "PM_TX_INT_CAUSE", 4621 .cause_reg = A_PM_TX_INT_CAUSE, 4622 .enable_reg = A_PM_TX_INT_ENABLE, 4623 .fatal = 0xffffffff, 4624 .details = pmtx_intr_details, 4625 .actions = pmtx_intr_actions, 4626 }; 4627 4628 return (t4_handle_intr(adap, &pmtx_intr_info, 0, verbose)); 4629 } 4630 4631 /* 4632 * PM RX interrupt handler. 4633 */ 4634 static bool pmrx_intr_handler(struct adapter *adap, int arg, bool verbose) 4635 { 4636 static const struct intr_details pmrx_intr_details[] = { 4637 /* T6+ */ 4638 { 0x18000000, "PMRX ospi overflow" }, 4639 { F_MA_INTF_SDC_ERR, "PMRX MA interface SDC parity error" }, 4640 { F_BUNDLE_LEN_PARERR, "PMRX bundle len FIFO parity error" }, 4641 { F_BUNDLE_LEN_OVFL, "PMRX bundle len FIFO overflow" }, 4642 { F_SDC_ERR, "PMRX SDC error" }, 4643 4644 /* T4+ */ 4645 { F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd" }, 4646 { 0x003c0000, "PMRX iespi FIFO2X Rx framing error" }, 4647 { 0x0003c000, "PMRX iespi Rx framing error" }, 4648 { 0x00003c00, "PMRX iespi Tx framing error" }, 4649 { 0x00000300, "PMRX ocspi Rx framing error" }, 4650 { 0x000000c0, "PMRX ocspi Tx framing error" }, 4651 { 0x00000030, "PMRX ocspi FIFO2X Tx framing error" }, 4652 { F_OCSPI_PAR_ERROR, "PMRX ocspi parity error" }, 4653 { F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error" }, 4654 { F_IESPI_PAR_ERROR, "PMRX iespi parity error" }, 4655 { F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error"}, 4656 { 0 } 4657 }; 4658 static const struct intr_info pmrx_intr_info = { 4659 .name = "PM_RX_INT_CAUSE", 4660 .cause_reg = A_PM_RX_INT_CAUSE, 4661 .enable_reg = A_PM_RX_INT_ENABLE, 4662 .fatal = 0x1fffffff, 4663 .details = pmrx_intr_details, 4664 .actions = NULL, 4665 }; 4666 4667 return (t4_handle_intr(adap, &pmrx_intr_info, 0, verbose)); 4668 } 4669 4670 /* 4671 * CPL switch interrupt handler. 4672 */ 4673 static bool cplsw_intr_handler(struct adapter *adap, int arg, bool verbose) 4674 { 4675 static const struct intr_details cplsw_intr_details[] = { 4676 /* T5+ */ 4677 { F_PERR_CPL_128TO128_1, "CPLSW 128TO128 FIFO1 parity error" }, 4678 { F_PERR_CPL_128TO128_0, "CPLSW 128TO128 FIFO0 parity error" }, 4679 4680 /* T4+ */ 4681 { F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error" }, 4682 { F_CIM_OVFL_ERROR, "CPLSW CIM overflow" }, 4683 { F_TP_FRAMING_ERROR, "CPLSW TP framing error" }, 4684 { F_SGE_FRAMING_ERROR, "CPLSW SGE framing error" }, 4685 { F_CIM_FRAMING_ERROR, "CPLSW CIM framing error" }, 4686 { F_ZERO_SWITCH_ERROR, "CPLSW no-switch error" }, 4687 { 0 } 4688 }; 4689 struct intr_info cplsw_intr_info = { 4690 .name = "CPL_INTR_CAUSE", 4691 .cause_reg = A_CPL_INTR_CAUSE, 4692 .enable_reg = A_CPL_INTR_ENABLE, 4693 .fatal = 0, 4694 .details = cplsw_intr_details, 4695 .actions = NULL, 4696 }; 4697 4698 if (is_t4(adap)) 4699 cplsw_intr_info.fatal = 0x2f; 4700 else if (is_t5(adap)) 4701 cplsw_intr_info.fatal = 0xef; 4702 else 4703 cplsw_intr_info.fatal = 0xff; 4704 4705 return (t4_handle_intr(adap, &cplsw_intr_info, 0, verbose)); 4706 } 4707 4708 #define T4_LE_FATAL_MASK (F_PARITYERR | F_UNKNOWNCMD | F_REQQPARERR) 4709 #define T6_LE_PERRCRC_MASK (F_PIPELINEERR | F_CLIPTCAMACCFAIL | \ 4710 F_SRVSRAMACCFAIL | F_CLCAMCRCPARERR | F_CLCAMINTPERR | F_SSRAMINTPERR | \ 4711 F_SRVSRAMPERR | F_VFSRAMPERR | F_TCAMINTPERR | F_TCAMCRCERR | \ 4712 F_HASHTBLMEMACCERR | F_MAIFWRINTPERR | F_HASHTBLMEMCRCERR) 4713 #define T6_LE_FATAL_MASK (T6_LE_PERRCRC_MASK | F_T6_UNKNOWNCMD | \ 4714 F_TCAMACCFAIL | F_HASHTBLACCFAIL | F_CMDTIDERR | F_CMDPRSRINTERR | \ 4715 F_TOTCNTERR | F_CLCAMFIFOERR | F_CLIPSUBERR) 4716 4717 /* 4718 * LE interrupt handler. 4719 */ 4720 static bool le_intr_handler(struct adapter *adap, int arg, bool verbose) 4721 { 4722 static const struct intr_details le_intr_details[] = { 4723 { F_REQQPARERR, "LE request queue parity error" }, 4724 { F_UNKNOWNCMD, "LE unknown command" }, 4725 { F_ACTRGNFULL, "LE active region full" }, 4726 { F_PARITYERR, "LE parity error" }, 4727 { F_LIPMISS, "LE LIP miss" }, 4728 { F_LIP0, "LE 0 LIP error" }, 4729 { 0 } 4730 }; 4731 static const struct intr_details t6_le_intr_details[] = { 4732 { F_CLIPSUBERR, "LE CLIP CAM reverse substitution error" }, 4733 { F_CLCAMFIFOERR, "LE CLIP CAM internal FIFO error" }, 4734 { F_CTCAMINVLDENT, "Invalid IPv6 CLIP TCAM entry" }, 4735 { F_TCAMINVLDENT, "Invalid IPv6 TCAM entry" }, 4736 { F_TOTCNTERR, "LE total active < TCAM count" }, 4737 { F_CMDPRSRINTERR, "LE internal error in parser" }, 4738 { F_CMDTIDERR, "Incorrect tid in LE command" }, 4739 { F_T6_ACTRGNFULL, "LE active region full" }, 4740 { F_T6_ACTCNTIPV6TZERO, "LE IPv6 active open TCAM counter -ve" }, 4741 { F_T6_ACTCNTIPV4TZERO, "LE IPv4 active open TCAM counter -ve" }, 4742 { F_T6_ACTCNTIPV6ZERO, "LE IPv6 active open counter -ve" }, 4743 { F_T6_ACTCNTIPV4ZERO, "LE IPv4 active open counter -ve" }, 4744 { F_HASHTBLACCFAIL, "Hash table read error (proto conflict)" }, 4745 { F_TCAMACCFAIL, "LE TCAM access failure" }, 4746 { F_T6_UNKNOWNCMD, "LE unknown command" }, 4747 { F_T6_LIP0, "LE found 0 LIP during CLIP substitution" }, 4748 { F_T6_LIPMISS, "LE CLIP lookup miss" }, 4749 { T6_LE_PERRCRC_MASK, "LE parity/CRC error" }, 4750 { 0 } 4751 }; 4752 struct intr_info le_intr_info = { 4753 .name = "LE_DB_INT_CAUSE", 4754 .cause_reg = A_LE_DB_INT_CAUSE, 4755 .enable_reg = A_LE_DB_INT_ENABLE, 4756 .fatal = 0, 4757 .details = NULL, 4758 .actions = NULL, 4759 }; 4760 4761 if (chip_id(adap) <= CHELSIO_T5) { 4762 le_intr_info.details = le_intr_details; 4763 le_intr_info.fatal = T4_LE_FATAL_MASK; 4764 if (is_t5(adap)) 4765 le_intr_info.fatal |= F_VFPARERR; 4766 } else { 4767 le_intr_info.details = t6_le_intr_details; 4768 le_intr_info.fatal = T6_LE_FATAL_MASK; 4769 } 4770 4771 return (t4_handle_intr(adap, &le_intr_info, 0, verbose)); 4772 } 4773 4774 /* 4775 * MPS interrupt handler. 4776 */ 4777 static bool mps_intr_handler(struct adapter *adap, int arg, bool verbose) 4778 { 4779 static const struct intr_details mps_rx_perr_intr_details[] = { 4780 { 0xffffffff, "MPS Rx parity error" }, 4781 { 0 } 4782 }; 4783 static const struct intr_info mps_rx_perr_intr_info = { 4784 .name = "MPS_RX_PERR_INT_CAUSE", 4785 .cause_reg = A_MPS_RX_PERR_INT_CAUSE, 4786 .enable_reg = A_MPS_RX_PERR_INT_ENABLE, 4787 .fatal = 0xffffffff, 4788 .details = mps_rx_perr_intr_details, 4789 .actions = NULL, 4790 }; 4791 static const struct intr_details mps_tx_intr_details[] = { 4792 { F_PORTERR, "MPS Tx destination port is disabled" }, 4793 { F_FRMERR, "MPS Tx framing error" }, 4794 { F_SECNTERR, "MPS Tx SOP/EOP error" }, 4795 { F_BUBBLE, "MPS Tx underflow" }, 4796 { V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error" }, 4797 { V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error" }, 4798 { F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error" }, 4799 { V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error" }, 4800 { 0 } 4801 }; 4802 struct intr_info mps_tx_intr_info = { 4803 .name = "MPS_TX_INT_CAUSE", 4804 .cause_reg = A_MPS_TX_INT_CAUSE, 4805 .enable_reg = A_MPS_TX_INT_ENABLE, 4806 .fatal = 0x1ffff, 4807 .details = mps_tx_intr_details, 4808 .actions = NULL, 4809 }; 4810 static const struct intr_details mps_trc_intr_details[] = { 4811 { F_MISCPERR, "MPS TRC misc parity error" }, 4812 { V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error" }, 4813 { V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error" }, 4814 { 0 } 4815 }; 4816 static const struct intr_info mps_trc_intr_info = { 4817 .name = "MPS_TRC_INT_CAUSE", 4818 .cause_reg = A_MPS_TRC_INT_CAUSE, 4819 .enable_reg = A_MPS_TRC_INT_ENABLE, 4820 .fatal = F_MISCPERR | V_PKTFIFO(M_PKTFIFO) | V_FILTMEM(M_FILTMEM), 4821 .details = mps_trc_intr_details, 4822 .actions = NULL, 4823 }; 4824 static const struct intr_details mps_stat_sram_intr_details[] = { 4825 { 0xffffffff, "MPS statistics SRAM parity error" }, 4826 { 0 } 4827 }; 4828 static const struct intr_info mps_stat_sram_intr_info = { 4829 .name = "MPS_STAT_PERR_INT_CAUSE_SRAM", 4830 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM, 4831 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM, 4832 .fatal = 0x1fffffff, 4833 .details = mps_stat_sram_intr_details, 4834 .actions = NULL, 4835 }; 4836 static const struct intr_details mps_stat_tx_intr_details[] = { 4837 { 0xffffff, "MPS statistics Tx FIFO parity error" }, 4838 { 0 } 4839 }; 4840 static const struct intr_info mps_stat_tx_intr_info = { 4841 .name = "MPS_STAT_PERR_INT_CAUSE_TX_FIFO", 4842 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO, 4843 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_TX_FIFO, 4844 .fatal = 0xffffff, 4845 .details = mps_stat_tx_intr_details, 4846 .actions = NULL, 4847 }; 4848 static const struct intr_details mps_stat_rx_intr_details[] = { 4849 { 0xffffff, "MPS statistics Rx FIFO parity error" }, 4850 { 0 } 4851 }; 4852 static const struct intr_info mps_stat_rx_intr_info = { 4853 .name = "MPS_STAT_PERR_INT_CAUSE_RX_FIFO", 4854 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO, 4855 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_RX_FIFO, 4856 .fatal = 0xffffff, 4857 .details = mps_stat_rx_intr_details, 4858 .actions = NULL, 4859 }; 4860 static const struct intr_details mps_cls_intr_details[] = { 4861 { F_HASHSRAM, "MPS hash SRAM parity error" }, 4862 { F_MATCHTCAM, "MPS match TCAM parity error" }, 4863 { F_MATCHSRAM, "MPS match SRAM parity error" }, 4864 { 0 } 4865 }; 4866 static const struct intr_info mps_cls_intr_info = { 4867 .name = "MPS_CLS_INT_CAUSE", 4868 .cause_reg = A_MPS_CLS_INT_CAUSE, 4869 .enable_reg = A_MPS_CLS_INT_ENABLE, 4870 .fatal = F_MATCHSRAM | F_MATCHTCAM | F_HASHSRAM, 4871 .details = mps_cls_intr_details, 4872 .actions = NULL, 4873 }; 4874 static const struct intr_details mps_stat_sram1_intr_details[] = { 4875 { 0xff, "MPS statistics SRAM1 parity error" }, 4876 { 0 } 4877 }; 4878 static const struct intr_info mps_stat_sram1_intr_info = { 4879 .name = "MPS_STAT_PERR_INT_CAUSE_SRAM1", 4880 .cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 4881 .enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM1, 4882 .fatal = 0xff, 4883 .details = mps_stat_sram1_intr_details, 4884 .actions = NULL, 4885 }; 4886 4887 bool fatal; 4888 4889 if (chip_id(adap) == CHELSIO_T6) 4890 mps_tx_intr_info.fatal &= ~F_BUBBLE; 4891 4892 fatal = false; 4893 fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info, 0, verbose); 4894 fatal |= t4_handle_intr(adap, &mps_tx_intr_info, 0, verbose); 4895 fatal |= t4_handle_intr(adap, &mps_trc_intr_info, 0, verbose); 4896 fatal |= t4_handle_intr(adap, &mps_stat_sram_intr_info, 0, verbose); 4897 fatal |= t4_handle_intr(adap, &mps_stat_tx_intr_info, 0, verbose); 4898 fatal |= t4_handle_intr(adap, &mps_stat_rx_intr_info, 0, verbose); 4899 fatal |= t4_handle_intr(adap, &mps_cls_intr_info, 0, verbose); 4900 if (chip_id(adap) > CHELSIO_T4) { 4901 fatal |= t4_handle_intr(adap, &mps_stat_sram1_intr_info, 0, 4902 verbose); 4903 } 4904 4905 t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff); 4906 t4_read_reg(adap, A_MPS_INT_CAUSE); /* flush */ 4907 4908 return (fatal); 4909 4910 } 4911 4912 /* 4913 * EDC/MC interrupt handler. 4914 */ 4915 static bool mem_intr_handler(struct adapter *adap, int idx, bool verbose) 4916 { 4917 static const char name[4][5] = { "EDC0", "EDC1", "MC0", "MC1" }; 4918 unsigned int count_reg, v; 4919 static const struct intr_details mem_intr_details[] = { 4920 { F_ECC_UE_INT_CAUSE, "Uncorrectable ECC data error(s)" }, 4921 { F_ECC_CE_INT_CAUSE, "Correctable ECC data error(s)" }, 4922 { F_PERR_INT_CAUSE, "FIFO parity error" }, 4923 { 0 } 4924 }; 4925 struct intr_info ii = { 4926 .fatal = F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE, 4927 .details = mem_intr_details, 4928 .actions = NULL, 4929 }; 4930 bool fatal; 4931 4932 switch (idx) { 4933 case MEM_EDC0: 4934 ii.name = "EDC0_INT_CAUSE"; 4935 ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 0); 4936 ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 0); 4937 count_reg = EDC_REG(A_EDC_ECC_STATUS, 0); 4938 break; 4939 case MEM_EDC1: 4940 ii.name = "EDC1_INT_CAUSE"; 4941 ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 1); 4942 ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 1); 4943 count_reg = EDC_REG(A_EDC_ECC_STATUS, 1); 4944 break; 4945 case MEM_MC0: 4946 ii.name = "MC0_INT_CAUSE"; 4947 if (is_t4(adap)) { 4948 ii.cause_reg = A_MC_INT_CAUSE; 4949 ii.enable_reg = A_MC_INT_ENABLE; 4950 count_reg = A_MC_ECC_STATUS; 4951 } else { 4952 ii.cause_reg = A_MC_P_INT_CAUSE; 4953 ii.enable_reg = A_MC_P_INT_ENABLE; 4954 count_reg = A_MC_P_ECC_STATUS; 4955 } 4956 break; 4957 case MEM_MC1: 4958 ii.name = "MC1_INT_CAUSE"; 4959 ii.cause_reg = MC_REG(A_MC_P_INT_CAUSE, 1); 4960 ii.enable_reg = MC_REG(A_MC_P_INT_ENABLE, 1); 4961 count_reg = MC_REG(A_MC_P_ECC_STATUS, 1); 4962 break; 4963 } 4964 4965 fatal = t4_handle_intr(adap, &ii, 0, verbose); 4966 4967 v = t4_read_reg(adap, count_reg); 4968 if (v != 0) { 4969 if (G_ECC_UECNT(v) != 0) { 4970 CH_ALERT(adap, 4971 "%s: %u uncorrectable ECC data error(s)\n", 4972 name[idx], G_ECC_UECNT(v)); 4973 } 4974 if (G_ECC_CECNT(v) != 0) { 4975 if (idx <= MEM_EDC1) 4976 t4_edc_err_read(adap, idx); 4977 CH_WARN_RATELIMIT(adap, 4978 "%s: %u correctable ECC data error(s)\n", 4979 name[idx], G_ECC_CECNT(v)); 4980 } 4981 t4_write_reg(adap, count_reg, 0xffffffff); 4982 } 4983 4984 return (fatal); 4985 } 4986 4987 static bool ma_wrap_status(struct adapter *adap, int arg, bool verbose) 4988 { 4989 u32 v; 4990 4991 v = t4_read_reg(adap, A_MA_INT_WRAP_STATUS); 4992 CH_ALERT(adap, 4993 "MA address wrap-around error by client %u to address %#x\n", 4994 G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4); 4995 t4_write_reg(adap, A_MA_INT_WRAP_STATUS, v); 4996 4997 return (false); 4998 } 4999 5000 5001 /* 5002 * MA interrupt handler. 5003 */ 5004 static bool ma_intr_handler(struct adapter *adap, int arg, bool verbose) 5005 { 5006 static const struct intr_action ma_intr_actions[] = { 5007 { F_MEM_WRAP_INT_CAUSE, 0, ma_wrap_status }, 5008 { 0 }, 5009 }; 5010 static const struct intr_info ma_intr_info = { 5011 .name = "MA_INT_CAUSE", 5012 .cause_reg = A_MA_INT_CAUSE, 5013 .enable_reg = A_MA_INT_ENABLE, 5014 .fatal = F_MEM_WRAP_INT_CAUSE | F_MEM_PERR_INT_CAUSE | 5015 F_MEM_TO_INT_CAUSE, 5016 .details = NULL, 5017 .actions = ma_intr_actions, 5018 }; 5019 static const struct intr_info ma_perr_status1 = { 5020 .name = "MA_PARITY_ERROR_STATUS1", 5021 .cause_reg = A_MA_PARITY_ERROR_STATUS1, 5022 .enable_reg = A_MA_PARITY_ERROR_ENABLE1, 5023 .fatal = 0xffffffff, 5024 .details = NULL, 5025 .actions = NULL, 5026 }; 5027 static const struct intr_info ma_perr_status2 = { 5028 .name = "MA_PARITY_ERROR_STATUS2", 5029 .cause_reg = A_MA_PARITY_ERROR_STATUS2, 5030 .enable_reg = A_MA_PARITY_ERROR_ENABLE2, 5031 .fatal = 0xffffffff, 5032 .details = NULL, 5033 .actions = NULL, 5034 }; 5035 bool fatal; 5036 5037 fatal = false; 5038 fatal |= t4_handle_intr(adap, &ma_intr_info, 0, verbose); 5039 fatal |= t4_handle_intr(adap, &ma_perr_status1, 0, verbose); 5040 if (chip_id(adap) > CHELSIO_T4) 5041 fatal |= t4_handle_intr(adap, &ma_perr_status2, 0, verbose); 5042 5043 return (fatal); 5044 } 5045 5046 /* 5047 * SMB interrupt handler. 5048 */ 5049 static bool smb_intr_handler(struct adapter *adap, int arg, bool verbose) 5050 { 5051 static const struct intr_details smb_intr_details[] = { 5052 { F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error" }, 5053 { F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error" }, 5054 { F_SLVFIFOPARINT, "SMB slave FIFO parity error" }, 5055 { 0 } 5056 }; 5057 static const struct intr_info smb_intr_info = { 5058 .name = "SMB_INT_CAUSE", 5059 .cause_reg = A_SMB_INT_CAUSE, 5060 .enable_reg = A_SMB_INT_ENABLE, 5061 .fatal = F_SLVFIFOPARINT | F_MSTRXFIFOPARINT | F_MSTTXFIFOPARINT, 5062 .details = smb_intr_details, 5063 .actions = NULL, 5064 }; 5065 5066 return (t4_handle_intr(adap, &smb_intr_info, 0, verbose)); 5067 } 5068 5069 /* 5070 * NC-SI interrupt handler. 5071 */ 5072 static bool ncsi_intr_handler(struct adapter *adap, int arg, bool verbose) 5073 { 5074 static const struct intr_details ncsi_intr_details[] = { 5075 { F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error" }, 5076 { F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error" }, 5077 { F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error" }, 5078 { F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error" }, 5079 { 0 } 5080 }; 5081 static const struct intr_info ncsi_intr_info = { 5082 .name = "NCSI_INT_CAUSE", 5083 .cause_reg = A_NCSI_INT_CAUSE, 5084 .enable_reg = A_NCSI_INT_ENABLE, 5085 .fatal = F_RXFIFO_PRTY_ERR | F_TXFIFO_PRTY_ERR | 5086 F_MPS_DM_PRTY_ERR | F_CIM_DM_PRTY_ERR, 5087 .details = ncsi_intr_details, 5088 .actions = NULL, 5089 }; 5090 5091 return (t4_handle_intr(adap, &ncsi_intr_info, 0, verbose)); 5092 } 5093 5094 /* 5095 * MAC interrupt handler. 5096 */ 5097 static bool mac_intr_handler(struct adapter *adap, int port, bool verbose) 5098 { 5099 static const struct intr_details mac_intr_details[] = { 5100 { F_TXFIFO_PRTY_ERR, "MAC Tx FIFO parity error" }, 5101 { F_RXFIFO_PRTY_ERR, "MAC Rx FIFO parity error" }, 5102 { 0 } 5103 }; 5104 char name[32]; 5105 struct intr_info ii; 5106 bool fatal = false; 5107 5108 if (is_t4(adap)) { 5109 snprintf(name, sizeof(name), "XGMAC_PORT%u_INT_CAUSE", port); 5110 ii.name = &name[0]; 5111 ii.cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE); 5112 ii.enable_reg = PORT_REG(port, A_XGMAC_PORT_INT_EN); 5113 ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR, 5114 ii.details = mac_intr_details, 5115 ii.actions = NULL; 5116 } else { 5117 snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port); 5118 ii.name = &name[0]; 5119 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE); 5120 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_INT_EN); 5121 ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR, 5122 ii.details = mac_intr_details, 5123 ii.actions = NULL; 5124 } 5125 fatal |= t4_handle_intr(adap, &ii, 0, verbose); 5126 5127 if (chip_id(adap) >= CHELSIO_T5) { 5128 snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE", port); 5129 ii.name = &name[0]; 5130 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE); 5131 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN); 5132 ii.fatal = 0; 5133 ii.details = NULL; 5134 ii.actions = NULL; 5135 fatal |= t4_handle_intr(adap, &ii, 0, verbose); 5136 } 5137 5138 if (chip_id(adap) >= CHELSIO_T6) { 5139 snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE_100G", port); 5140 ii.name = &name[0]; 5141 ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE_100G); 5142 ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN_100G); 5143 ii.fatal = 0; 5144 ii.details = NULL; 5145 ii.actions = NULL; 5146 fatal |= t4_handle_intr(adap, &ii, 0, verbose); 5147 } 5148 5149 return (fatal); 5150 } 5151 5152 static bool plpl_intr_handler(struct adapter *adap, int arg, bool verbose) 5153 { 5154 static const struct intr_details plpl_intr_details[] = { 5155 { F_FATALPERR, "Fatal parity error" }, 5156 { F_PERRVFID, "VFID_MAP parity error" }, 5157 { 0 } 5158 }; 5159 struct intr_info plpl_intr_info = { 5160 .name = "PL_PL_INT_CAUSE", 5161 .cause_reg = A_PL_PL_INT_CAUSE, 5162 .enable_reg = A_PL_PL_INT_ENABLE, 5163 .fatal = F_FATALPERR, 5164 .details = plpl_intr_details, 5165 .actions = NULL, 5166 }; 5167 5168 if (is_t4(adap)) 5169 plpl_intr_info.fatal |= F_PERRVFID; 5170 5171 return (t4_handle_intr(adap, &plpl_intr_info, 0, verbose)); 5172 } 5173 5174 /** 5175 * t4_slow_intr_handler - control path interrupt handler 5176 * @adap: the adapter 5177 * @verbose: increased verbosity, for debug 5178 * 5179 * T4 interrupt handler for non-data global interrupt events, e.g., errors. 5180 * The designation 'slow' is because it involves register reads, while 5181 * data interrupts typically don't involve any MMIOs. 5182 */ 5183 int t4_slow_intr_handler(struct adapter *adap, bool verbose) 5184 { 5185 static const struct intr_details pl_intr_details[] = { 5186 { F_MC1, "MC1" }, 5187 { F_UART, "UART" }, 5188 { F_ULP_TX, "ULP TX" }, 5189 { F_SGE, "SGE" }, 5190 { F_HMA, "HMA" }, 5191 { F_CPL_SWITCH, "CPL Switch" }, 5192 { F_ULP_RX, "ULP RX" }, 5193 { F_PM_RX, "PM RX" }, 5194 { F_PM_TX, "PM TX" }, 5195 { F_MA, "MA" }, 5196 { F_TP, "TP" }, 5197 { F_LE, "LE" }, 5198 { F_EDC1, "EDC1" }, 5199 { F_EDC0, "EDC0" }, 5200 { F_MC, "MC0" }, 5201 { F_PCIE, "PCIE" }, 5202 { F_PMU, "PMU" }, 5203 { F_MAC3, "MAC3" }, 5204 { F_MAC2, "MAC2" }, 5205 { F_MAC1, "MAC1" }, 5206 { F_MAC0, "MAC0" }, 5207 { F_SMB, "SMB" }, 5208 { F_SF, "SF" }, 5209 { F_PL, "PL" }, 5210 { F_NCSI, "NC-SI" }, 5211 { F_MPS, "MPS" }, 5212 { F_MI, "MI" }, 5213 { F_DBG, "DBG" }, 5214 { F_I2CM, "I2CM" }, 5215 { F_CIM, "CIM" }, 5216 { 0 } 5217 }; 5218 static const struct intr_info pl_perr_cause = { 5219 .name = "PL_PERR_CAUSE", 5220 .cause_reg = A_PL_PERR_CAUSE, 5221 .enable_reg = A_PL_PERR_ENABLE, 5222 .fatal = 0xffffffff, 5223 .details = pl_intr_details, 5224 .actions = NULL, 5225 }; 5226 static const struct intr_action pl_intr_action[] = { 5227 { F_MC1, MEM_MC1, mem_intr_handler }, 5228 { F_ULP_TX, -1, ulptx_intr_handler }, 5229 { F_SGE, -1, sge_intr_handler }, 5230 { F_CPL_SWITCH, -1, cplsw_intr_handler }, 5231 { F_ULP_RX, -1, ulprx_intr_handler }, 5232 { F_PM_RX, -1, pmrx_intr_handler}, 5233 { F_PM_TX, -1, pmtx_intr_handler}, 5234 { F_MA, -1, ma_intr_handler }, 5235 { F_TP, -1, tp_intr_handler }, 5236 { F_LE, -1, le_intr_handler }, 5237 { F_EDC1, MEM_EDC1, mem_intr_handler }, 5238 { F_EDC0, MEM_EDC0, mem_intr_handler }, 5239 { F_MC0, MEM_MC0, mem_intr_handler }, 5240 { F_PCIE, -1, pcie_intr_handler }, 5241 { F_MAC3, 3, mac_intr_handler}, 5242 { F_MAC2, 2, mac_intr_handler}, 5243 { F_MAC1, 1, mac_intr_handler}, 5244 { F_MAC0, 0, mac_intr_handler}, 5245 { F_SMB, -1, smb_intr_handler}, 5246 { F_PL, -1, plpl_intr_handler }, 5247 { F_NCSI, -1, ncsi_intr_handler}, 5248 { F_MPS, -1, mps_intr_handler }, 5249 { F_CIM, -1, cim_intr_handler }, 5250 { 0 } 5251 }; 5252 static const struct intr_info pl_intr_info = { 5253 .name = "PL_INT_CAUSE", 5254 .cause_reg = A_PL_INT_CAUSE, 5255 .enable_reg = A_PL_INT_ENABLE, 5256 .fatal = 0, 5257 .details = pl_intr_details, 5258 .actions = pl_intr_action, 5259 }; 5260 bool fatal; 5261 u32 perr; 5262 5263 perr = t4_read_reg(adap, pl_perr_cause.cause_reg); 5264 if (verbose || perr != 0) { 5265 t4_show_intr_info(adap, &pl_perr_cause, perr); 5266 if (perr != 0) 5267 t4_write_reg(adap, pl_perr_cause.cause_reg, perr); 5268 if (verbose) 5269 perr |= t4_read_reg(adap, pl_intr_info.enable_reg); 5270 } 5271 fatal = t4_handle_intr(adap, &pl_intr_info, perr, verbose); 5272 if (fatal) 5273 t4_fatal_err(adap, false); 5274 5275 return (0); 5276 } 5277 5278 #define PF_INTR_MASK (F_PFSW | F_PFCIM) 5279 5280 /** 5281 * t4_intr_enable - enable interrupts 5282 * @adapter: the adapter whose interrupts should be enabled 5283 * 5284 * Enable PF-specific interrupts for the calling function and the top-level 5285 * interrupt concentrator for global interrupts. Interrupts are already 5286 * enabled at each module, here we just enable the roots of the interrupt 5287 * hierarchies. 5288 * 5289 * Note: this function should be called only when the driver manages 5290 * non PF-specific interrupts from the various HW modules. Only one PCI 5291 * function at a time should be doing this. 5292 */ 5293 void t4_intr_enable(struct adapter *adap) 5294 { 5295 u32 val = 0; 5296 5297 if (chip_id(adap) <= CHELSIO_T5) 5298 val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT; 5299 else 5300 val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN; 5301 val |= F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC | 5302 F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 | 5303 F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 | 5304 F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 | 5305 F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_DBFIFO_LP_INT | 5306 F_EGRESS_SIZE_ERR; 5307 t4_set_reg_field(adap, A_SGE_INT_ENABLE3, val, val); 5308 t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK); 5309 t4_set_reg_field(adap, A_PL_INT_ENABLE, F_SF | F_I2CM, 0); 5310 t4_set_reg_field(adap, A_PL_INT_MAP0, 0, 1 << adap->pf); 5311 } 5312 5313 /** 5314 * t4_intr_disable - disable interrupts 5315 * @adap: the adapter whose interrupts should be disabled 5316 * 5317 * Disable interrupts. We only disable the top-level interrupt 5318 * concentrators. The caller must be a PCI function managing global 5319 * interrupts. 5320 */ 5321 void t4_intr_disable(struct adapter *adap) 5322 { 5323 5324 t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), 0); 5325 t4_set_reg_field(adap, A_PL_INT_MAP0, 1 << adap->pf, 0); 5326 } 5327 5328 /** 5329 * t4_intr_clear - clear all interrupts 5330 * @adap: the adapter whose interrupts should be cleared 5331 * 5332 * Clears all interrupts. The caller must be a PCI function managing 5333 * global interrupts. 5334 */ 5335 void t4_intr_clear(struct adapter *adap) 5336 { 5337 static const u32 cause_reg[] = { 5338 A_CIM_HOST_INT_CAUSE, 5339 A_CIM_HOST_UPACC_INT_CAUSE, 5340 MYPF_REG(A_CIM_PF_HOST_INT_CAUSE), 5341 A_CPL_INTR_CAUSE, 5342 EDC_REG(A_EDC_INT_CAUSE, 0), EDC_REG(A_EDC_INT_CAUSE, 1), 5343 A_LE_DB_INT_CAUSE, 5344 A_MA_INT_WRAP_STATUS, 5345 A_MA_PARITY_ERROR_STATUS1, 5346 A_MA_INT_CAUSE, 5347 A_MPS_CLS_INT_CAUSE, 5348 A_MPS_RX_PERR_INT_CAUSE, 5349 A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO, 5350 A_MPS_STAT_PERR_INT_CAUSE_SRAM, 5351 A_MPS_TRC_INT_CAUSE, 5352 A_MPS_TX_INT_CAUSE, 5353 A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO, 5354 A_NCSI_INT_CAUSE, 5355 A_PCIE_INT_CAUSE, 5356 A_PCIE_NONFAT_ERR, 5357 A_PL_PL_INT_CAUSE, 5358 A_PM_RX_INT_CAUSE, 5359 A_PM_TX_INT_CAUSE, 5360 A_SGE_INT_CAUSE1, 5361 A_SGE_INT_CAUSE2, 5362 A_SGE_INT_CAUSE3, 5363 A_SGE_INT_CAUSE4, 5364 A_SMB_INT_CAUSE, 5365 A_TP_INT_CAUSE, 5366 A_ULP_RX_INT_CAUSE, 5367 A_ULP_RX_INT_CAUSE_2, 5368 A_ULP_TX_INT_CAUSE, 5369 A_ULP_TX_INT_CAUSE_2, 5370 5371 MYPF_REG(A_PL_PF_INT_CAUSE), 5372 }; 5373 int i; 5374 const int nchan = adap->chip_params->nchan; 5375 5376 for (i = 0; i < ARRAY_SIZE(cause_reg); i++) 5377 t4_write_reg(adap, cause_reg[i], 0xffffffff); 5378 5379 if (is_t4(adap)) { 5380 t4_write_reg(adap, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS, 5381 0xffffffff); 5382 t4_write_reg(adap, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS, 5383 0xffffffff); 5384 t4_write_reg(adap, A_MC_INT_CAUSE, 0xffffffff); 5385 for (i = 0; i < nchan; i++) { 5386 t4_write_reg(adap, PORT_REG(i, A_XGMAC_PORT_INT_CAUSE), 5387 0xffffffff); 5388 } 5389 } 5390 if (chip_id(adap) >= CHELSIO_T5) { 5391 t4_write_reg(adap, A_MA_PARITY_ERROR_STATUS2, 0xffffffff); 5392 t4_write_reg(adap, A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 0xffffffff); 5393 t4_write_reg(adap, A_SGE_INT_CAUSE5, 0xffffffff); 5394 t4_write_reg(adap, A_MC_P_INT_CAUSE, 0xffffffff); 5395 if (is_t5(adap)) { 5396 t4_write_reg(adap, MC_REG(A_MC_P_INT_CAUSE, 1), 5397 0xffffffff); 5398 } 5399 for (i = 0; i < nchan; i++) { 5400 t4_write_reg(adap, T5_PORT_REG(i, 5401 A_MAC_PORT_PERR_INT_CAUSE), 0xffffffff); 5402 if (chip_id(adap) > CHELSIO_T5) { 5403 t4_write_reg(adap, T5_PORT_REG(i, 5404 A_MAC_PORT_PERR_INT_CAUSE_100G), 5405 0xffffffff); 5406 } 5407 t4_write_reg(adap, T5_PORT_REG(i, A_MAC_PORT_INT_CAUSE), 5408 0xffffffff); 5409 } 5410 } 5411 if (chip_id(adap) >= CHELSIO_T6) { 5412 t4_write_reg(adap, A_SGE_INT_CAUSE6, 0xffffffff); 5413 } 5414 5415 t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff); 5416 t4_write_reg(adap, A_PL_PERR_CAUSE, 0xffffffff); 5417 t4_write_reg(adap, A_PL_INT_CAUSE, 0xffffffff); 5418 (void) t4_read_reg(adap, A_PL_INT_CAUSE); /* flush */ 5419 } 5420 5421 /** 5422 * hash_mac_addr - return the hash value of a MAC address 5423 * @addr: the 48-bit Ethernet MAC address 5424 * 5425 * Hashes a MAC address according to the hash function used by HW inexact 5426 * (hash) address matching. 5427 */ 5428 static int hash_mac_addr(const u8 *addr) 5429 { 5430 u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2]; 5431 u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5]; 5432 a ^= b; 5433 a ^= (a >> 12); 5434 a ^= (a >> 6); 5435 return a & 0x3f; 5436 } 5437 5438 /** 5439 * t4_config_rss_range - configure a portion of the RSS mapping table 5440 * @adapter: the adapter 5441 * @mbox: mbox to use for the FW command 5442 * @viid: virtual interface whose RSS subtable is to be written 5443 * @start: start entry in the table to write 5444 * @n: how many table entries to write 5445 * @rspq: values for the "response queue" (Ingress Queue) lookup table 5446 * @nrspq: number of values in @rspq 5447 * 5448 * Programs the selected part of the VI's RSS mapping table with the 5449 * provided values. If @nrspq < @n the supplied values are used repeatedly 5450 * until the full table range is populated. 5451 * 5452 * The caller must ensure the values in @rspq are in the range allowed for 5453 * @viid. 5454 */ 5455 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, 5456 int start, int n, const u16 *rspq, unsigned int nrspq) 5457 { 5458 int ret; 5459 const u16 *rsp = rspq; 5460 const u16 *rsp_end = rspq + nrspq; 5461 struct fw_rss_ind_tbl_cmd cmd; 5462 5463 memset(&cmd, 0, sizeof(cmd)); 5464 cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) | 5465 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 5466 V_FW_RSS_IND_TBL_CMD_VIID(viid)); 5467 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 5468 5469 /* 5470 * Each firmware RSS command can accommodate up to 32 RSS Ingress 5471 * Queue Identifiers. These Ingress Queue IDs are packed three to 5472 * a 32-bit word as 10-bit values with the upper remaining 2 bits 5473 * reserved. 5474 */ 5475 while (n > 0) { 5476 int nq = min(n, 32); 5477 int nq_packed = 0; 5478 __be32 *qp = &cmd.iq0_to_iq2; 5479 5480 /* 5481 * Set up the firmware RSS command header to send the next 5482 * "nq" Ingress Queue IDs to the firmware. 5483 */ 5484 cmd.niqid = cpu_to_be16(nq); 5485 cmd.startidx = cpu_to_be16(start); 5486 5487 /* 5488 * "nq" more done for the start of the next loop. 5489 */ 5490 start += nq; 5491 n -= nq; 5492 5493 /* 5494 * While there are still Ingress Queue IDs to stuff into the 5495 * current firmware RSS command, retrieve them from the 5496 * Ingress Queue ID array and insert them into the command. 5497 */ 5498 while (nq > 0) { 5499 /* 5500 * Grab up to the next 3 Ingress Queue IDs (wrapping 5501 * around the Ingress Queue ID array if necessary) and 5502 * insert them into the firmware RSS command at the 5503 * current 3-tuple position within the commad. 5504 */ 5505 u16 qbuf[3]; 5506 u16 *qbp = qbuf; 5507 int nqbuf = min(3, nq); 5508 5509 nq -= nqbuf; 5510 qbuf[0] = qbuf[1] = qbuf[2] = 0; 5511 while (nqbuf && nq_packed < 32) { 5512 nqbuf--; 5513 nq_packed++; 5514 *qbp++ = *rsp++; 5515 if (rsp >= rsp_end) 5516 rsp = rspq; 5517 } 5518 *qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) | 5519 V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) | 5520 V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2])); 5521 } 5522 5523 /* 5524 * Send this portion of the RRS table update to the firmware; 5525 * bail out on any errors. 5526 */ 5527 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); 5528 if (ret) 5529 return ret; 5530 } 5531 return 0; 5532 } 5533 5534 /** 5535 * t4_config_glbl_rss - configure the global RSS mode 5536 * @adapter: the adapter 5537 * @mbox: mbox to use for the FW command 5538 * @mode: global RSS mode 5539 * @flags: mode-specific flags 5540 * 5541 * Sets the global RSS mode. 5542 */ 5543 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, 5544 unsigned int flags) 5545 { 5546 struct fw_rss_glb_config_cmd c; 5547 5548 memset(&c, 0, sizeof(c)); 5549 c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) | 5550 F_FW_CMD_REQUEST | F_FW_CMD_WRITE); 5551 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5552 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { 5553 c.u.manual.mode_pkd = 5554 cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode)); 5555 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { 5556 c.u.basicvirtual.mode_keymode = 5557 cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode)); 5558 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags); 5559 } else 5560 return -EINVAL; 5561 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5562 } 5563 5564 /** 5565 * t4_config_vi_rss - configure per VI RSS settings 5566 * @adapter: the adapter 5567 * @mbox: mbox to use for the FW command 5568 * @viid: the VI id 5569 * @flags: RSS flags 5570 * @defq: id of the default RSS queue for the VI. 5571 * @skeyidx: RSS secret key table index for non-global mode 5572 * @skey: RSS vf_scramble key for VI. 5573 * 5574 * Configures VI-specific RSS properties. 5575 */ 5576 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid, 5577 unsigned int flags, unsigned int defq, unsigned int skeyidx, 5578 unsigned int skey) 5579 { 5580 struct fw_rss_vi_config_cmd c; 5581 5582 memset(&c, 0, sizeof(c)); 5583 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) | 5584 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 5585 V_FW_RSS_VI_CONFIG_CMD_VIID(viid)); 5586 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 5587 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags | 5588 V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq)); 5589 c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32( 5590 V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx)); 5591 c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey); 5592 5593 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); 5594 } 5595 5596 /* Read an RSS table row */ 5597 static int rd_rss_row(struct adapter *adap, int row, u32 *val) 5598 { 5599 t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row); 5600 return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1, 5601 5, 0, val); 5602 } 5603 5604 /** 5605 * t4_read_rss - read the contents of the RSS mapping table 5606 * @adapter: the adapter 5607 * @map: holds the contents of the RSS mapping table 5608 * 5609 * Reads the contents of the RSS hash->queue mapping table. 5610 */ 5611 int t4_read_rss(struct adapter *adapter, u16 *map) 5612 { 5613 u32 val; 5614 int i, ret; 5615 5616 for (i = 0; i < RSS_NENTRIES / 2; ++i) { 5617 ret = rd_rss_row(adapter, i, &val); 5618 if (ret) 5619 return ret; 5620 *map++ = G_LKPTBLQUEUE0(val); 5621 *map++ = G_LKPTBLQUEUE1(val); 5622 } 5623 return 0; 5624 } 5625 5626 /** 5627 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST 5628 * @adap: the adapter 5629 * @cmd: TP fw ldst address space type 5630 * @vals: where the indirect register values are stored/written 5631 * @nregs: how many indirect registers to read/write 5632 * @start_idx: index of first indirect register to read/write 5633 * @rw: Read (1) or Write (0) 5634 * @sleep_ok: if true we may sleep while awaiting command completion 5635 * 5636 * Access TP indirect registers through LDST 5637 **/ 5638 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals, 5639 unsigned int nregs, unsigned int start_index, 5640 unsigned int rw, bool sleep_ok) 5641 { 5642 int ret = 0; 5643 unsigned int i; 5644 struct fw_ldst_cmd c; 5645 5646 for (i = 0; i < nregs; i++) { 5647 memset(&c, 0, sizeof(c)); 5648 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 5649 F_FW_CMD_REQUEST | 5650 (rw ? F_FW_CMD_READ : 5651 F_FW_CMD_WRITE) | 5652 V_FW_LDST_CMD_ADDRSPACE(cmd)); 5653 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 5654 5655 c.u.addrval.addr = cpu_to_be32(start_index + i); 5656 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]); 5657 ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, 5658 sleep_ok); 5659 if (ret) 5660 return ret; 5661 5662 if (rw) 5663 vals[i] = be32_to_cpu(c.u.addrval.val); 5664 } 5665 return 0; 5666 } 5667 5668 /** 5669 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor 5670 * @adap: the adapter 5671 * @reg_addr: Address Register 5672 * @reg_data: Data register 5673 * @buff: where the indirect register values are stored/written 5674 * @nregs: how many indirect registers to read/write 5675 * @start_index: index of first indirect register to read/write 5676 * @rw: READ(1) or WRITE(0) 5677 * @sleep_ok: if true we may sleep while awaiting command completion 5678 * 5679 * Read/Write TP indirect registers through LDST if possible. 5680 * Else, use backdoor access 5681 **/ 5682 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data, 5683 u32 *buff, u32 nregs, u32 start_index, int rw, 5684 bool sleep_ok) 5685 { 5686 int rc = -EINVAL; 5687 int cmd; 5688 5689 switch (reg_addr) { 5690 case A_TP_PIO_ADDR: 5691 cmd = FW_LDST_ADDRSPC_TP_PIO; 5692 break; 5693 case A_TP_TM_PIO_ADDR: 5694 cmd = FW_LDST_ADDRSPC_TP_TM_PIO; 5695 break; 5696 case A_TP_MIB_INDEX: 5697 cmd = FW_LDST_ADDRSPC_TP_MIB; 5698 break; 5699 default: 5700 goto indirect_access; 5701 } 5702 5703 if (t4_use_ldst(adap)) 5704 rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw, 5705 sleep_ok); 5706 5707 indirect_access: 5708 5709 if (rc) { 5710 if (rw) 5711 t4_read_indirect(adap, reg_addr, reg_data, buff, nregs, 5712 start_index); 5713 else 5714 t4_write_indirect(adap, reg_addr, reg_data, buff, nregs, 5715 start_index); 5716 } 5717 } 5718 5719 /** 5720 * t4_tp_pio_read - Read TP PIO registers 5721 * @adap: the adapter 5722 * @buff: where the indirect register values are written 5723 * @nregs: how many indirect registers to read 5724 * @start_index: index of first indirect register to read 5725 * @sleep_ok: if true we may sleep while awaiting command completion 5726 * 5727 * Read TP PIO Registers 5728 **/ 5729 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5730 u32 start_index, bool sleep_ok) 5731 { 5732 t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs, 5733 start_index, 1, sleep_ok); 5734 } 5735 5736 /** 5737 * t4_tp_pio_write - Write TP PIO registers 5738 * @adap: the adapter 5739 * @buff: where the indirect register values are stored 5740 * @nregs: how many indirect registers to write 5741 * @start_index: index of first indirect register to write 5742 * @sleep_ok: if true we may sleep while awaiting command completion 5743 * 5744 * Write TP PIO Registers 5745 **/ 5746 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs, 5747 u32 start_index, bool sleep_ok) 5748 { 5749 t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, 5750 __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok); 5751 } 5752 5753 /** 5754 * t4_tp_tm_pio_read - Read TP TM PIO registers 5755 * @adap: the adapter 5756 * @buff: where the indirect register values are written 5757 * @nregs: how many indirect registers to read 5758 * @start_index: index of first indirect register to read 5759 * @sleep_ok: if true we may sleep while awaiting command completion 5760 * 5761 * Read TP TM PIO Registers 5762 **/ 5763 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs, 5764 u32 start_index, bool sleep_ok) 5765 { 5766 t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff, 5767 nregs, start_index, 1, sleep_ok); 5768 } 5769 5770 /** 5771 * t4_tp_mib_read - Read TP MIB registers 5772 * @adap: the adapter 5773 * @buff: where the indirect register values are written 5774 * @nregs: how many indirect registers to read 5775 * @start_index: index of first indirect register to read 5776 * @sleep_ok: if true we may sleep while awaiting command completion 5777 * 5778 * Read TP MIB Registers 5779 **/ 5780 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index, 5781 bool sleep_ok) 5782 { 5783 t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs, 5784 start_index, 1, sleep_ok); 5785 } 5786 5787 /** 5788 * t4_read_rss_key - read the global RSS key 5789 * @adap: the adapter 5790 * @key: 10-entry array holding the 320-bit RSS key 5791 * @sleep_ok: if true we may sleep while awaiting command completion 5792 * 5793 * Reads the global 320-bit RSS key. 5794 */ 5795 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok) 5796 { 5797 t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok); 5798 } 5799 5800 /** 5801 * t4_write_rss_key - program one of the RSS keys 5802 * @adap: the adapter 5803 * @key: 10-entry array holding the 320-bit RSS key 5804 * @idx: which RSS key to write 5805 * @sleep_ok: if true we may sleep while awaiting command completion 5806 * 5807 * Writes one of the RSS keys with the given 320-bit value. If @idx is 5808 * 0..15 the corresponding entry in the RSS key table is written, 5809 * otherwise the global RSS key is written. 5810 */ 5811 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx, 5812 bool sleep_ok) 5813 { 5814 u8 rss_key_addr_cnt = 16; 5815 u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT); 5816 5817 /* 5818 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble), 5819 * allows access to key addresses 16-63 by using KeyWrAddrX 5820 * as index[5:4](upper 2) into key table 5821 */ 5822 if ((chip_id(adap) > CHELSIO_T5) && 5823 (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3)) 5824 rss_key_addr_cnt = 32; 5825 5826 t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok); 5827 5828 if (idx >= 0 && idx < rss_key_addr_cnt) { 5829 if (rss_key_addr_cnt > 16) 5830 t4_write_reg(adap, A_TP_RSS_CONFIG_VRT, 5831 vrt | V_KEYWRADDRX(idx >> 4) | 5832 V_T6_VFWRADDR(idx) | F_KEYWREN); 5833 else 5834 t4_write_reg(adap, A_TP_RSS_CONFIG_VRT, 5835 vrt| V_KEYWRADDR(idx) | F_KEYWREN); 5836 } 5837 } 5838 5839 /** 5840 * t4_read_rss_pf_config - read PF RSS Configuration Table 5841 * @adapter: the adapter 5842 * @index: the entry in the PF RSS table to read 5843 * @valp: where to store the returned value 5844 * @sleep_ok: if true we may sleep while awaiting command completion 5845 * 5846 * Reads the PF RSS Configuration Table at the specified index and returns 5847 * the value found there. 5848 */ 5849 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index, 5850 u32 *valp, bool sleep_ok) 5851 { 5852 t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok); 5853 } 5854 5855 /** 5856 * t4_write_rss_pf_config - write PF RSS Configuration Table 5857 * @adapter: the adapter 5858 * @index: the entry in the VF RSS table to read 5859 * @val: the value to store 5860 * @sleep_ok: if true we may sleep while awaiting command completion 5861 * 5862 * Writes the PF RSS Configuration Table at the specified index with the 5863 * specified value. 5864 */ 5865 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index, 5866 u32 val, bool sleep_ok) 5867 { 5868 t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index, 5869 sleep_ok); 5870 } 5871 5872 /** 5873 * t4_read_rss_vf_config - read VF RSS Configuration Table 5874 * @adapter: the adapter 5875 * @index: the entry in the VF RSS table to read 5876 * @vfl: where to store the returned VFL 5877 * @vfh: where to store the returned VFH 5878 * @sleep_ok: if true we may sleep while awaiting command completion 5879 * 5880 * Reads the VF RSS Configuration Table at the specified index and returns 5881 * the (VFL, VFH) values found there. 5882 */ 5883 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index, 5884 u32 *vfl, u32 *vfh, bool sleep_ok) 5885 { 5886 u32 vrt, mask, data; 5887 5888 if (chip_id(adapter) <= CHELSIO_T5) { 5889 mask = V_VFWRADDR(M_VFWRADDR); 5890 data = V_VFWRADDR(index); 5891 } else { 5892 mask = V_T6_VFWRADDR(M_T6_VFWRADDR); 5893 data = V_T6_VFWRADDR(index); 5894 } 5895 /* 5896 * Request that the index'th VF Table values be read into VFL/VFH. 5897 */ 5898 vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT); 5899 vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask); 5900 vrt |= data | F_VFRDEN; 5901 t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt); 5902 5903 /* 5904 * Grab the VFL/VFH values ... 5905 */ 5906 t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok); 5907 t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok); 5908 } 5909 5910 /** 5911 * t4_write_rss_vf_config - write VF RSS Configuration Table 5912 * 5913 * @adapter: the adapter 5914 * @index: the entry in the VF RSS table to write 5915 * @vfl: the VFL to store 5916 * @vfh: the VFH to store 5917 * 5918 * Writes the VF RSS Configuration Table at the specified index with the 5919 * specified (VFL, VFH) values. 5920 */ 5921 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index, 5922 u32 vfl, u32 vfh, bool sleep_ok) 5923 { 5924 u32 vrt, mask, data; 5925 5926 if (chip_id(adapter) <= CHELSIO_T5) { 5927 mask = V_VFWRADDR(M_VFWRADDR); 5928 data = V_VFWRADDR(index); 5929 } else { 5930 mask = V_T6_VFWRADDR(M_T6_VFWRADDR); 5931 data = V_T6_VFWRADDR(index); 5932 } 5933 5934 /* 5935 * Load up VFL/VFH with the values to be written ... 5936 */ 5937 t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok); 5938 t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok); 5939 5940 /* 5941 * Write the VFL/VFH into the VF Table at index'th location. 5942 */ 5943 vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT); 5944 vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask); 5945 vrt |= data | F_VFRDEN; 5946 t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt); 5947 } 5948 5949 /** 5950 * t4_read_rss_pf_map - read PF RSS Map 5951 * @adapter: the adapter 5952 * @sleep_ok: if true we may sleep while awaiting command completion 5953 * 5954 * Reads the PF RSS Map register and returns its value. 5955 */ 5956 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok) 5957 { 5958 u32 pfmap; 5959 5960 t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok); 5961 5962 return pfmap; 5963 } 5964 5965 /** 5966 * t4_write_rss_pf_map - write PF RSS Map 5967 * @adapter: the adapter 5968 * @pfmap: PF RSS Map value 5969 * 5970 * Writes the specified value to the PF RSS Map register. 5971 */ 5972 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok) 5973 { 5974 t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok); 5975 } 5976 5977 /** 5978 * t4_read_rss_pf_mask - read PF RSS Mask 5979 * @adapter: the adapter 5980 * @sleep_ok: if true we may sleep while awaiting command completion 5981 * 5982 * Reads the PF RSS Mask register and returns its value. 5983 */ 5984 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok) 5985 { 5986 u32 pfmask; 5987 5988 t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok); 5989 5990 return pfmask; 5991 } 5992 5993 /** 5994 * t4_write_rss_pf_mask - write PF RSS Mask 5995 * @adapter: the adapter 5996 * @pfmask: PF RSS Mask value 5997 * 5998 * Writes the specified value to the PF RSS Mask register. 5999 */ 6000 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok) 6001 { 6002 t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok); 6003 } 6004 6005 /** 6006 * t4_tp_get_tcp_stats - read TP's TCP MIB counters 6007 * @adap: the adapter 6008 * @v4: holds the TCP/IP counter values 6009 * @v6: holds the TCP/IPv6 counter values 6010 * @sleep_ok: if true we may sleep while awaiting command completion 6011 * 6012 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. 6013 * Either @v4 or @v6 may be %NULL to skip the corresponding stats. 6014 */ 6015 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, 6016 struct tp_tcp_stats *v6, bool sleep_ok) 6017 { 6018 u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1]; 6019 6020 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST) 6021 #define STAT(x) val[STAT_IDX(x)] 6022 #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) 6023 6024 if (v4) { 6025 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 6026 A_TP_MIB_TCP_OUT_RST, sleep_ok); 6027 v4->tcp_out_rsts = STAT(OUT_RST); 6028 v4->tcp_in_segs = STAT64(IN_SEG); 6029 v4->tcp_out_segs = STAT64(OUT_SEG); 6030 v4->tcp_retrans_segs = STAT64(RXT_SEG); 6031 } 6032 if (v6) { 6033 t4_tp_mib_read(adap, val, ARRAY_SIZE(val), 6034 A_TP_MIB_TCP_V6OUT_RST, sleep_ok); 6035 v6->tcp_out_rsts = STAT(OUT_RST); 6036 v6->tcp_in_segs = STAT64(IN_SEG); 6037 v6->tcp_out_segs = STAT64(OUT_SEG); 6038 v6->tcp_retrans_segs = STAT64(RXT_SEG); 6039 } 6040 #undef STAT64 6041 #undef STAT 6042 #undef STAT_IDX 6043 } 6044 6045 /** 6046 * t4_tp_get_err_stats - read TP's error MIB counters 6047 * @adap: the adapter 6048 * @st: holds the counter values 6049 * @sleep_ok: if true we may sleep while awaiting command completion 6050 * 6051 * Returns the values of TP's error counters. 6052 */ 6053 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st, 6054 bool sleep_ok) 6055 { 6056 int nchan = adap->chip_params->nchan; 6057 6058 t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0, 6059 sleep_ok); 6060 6061 t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0, 6062 sleep_ok); 6063 6064 t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0, 6065 sleep_ok); 6066 6067 t4_tp_mib_read(adap, st->tnl_cong_drops, nchan, 6068 A_TP_MIB_TNL_CNG_DROP_0, sleep_ok); 6069 6070 t4_tp_mib_read(adap, st->ofld_chan_drops, nchan, 6071 A_TP_MIB_OFD_CHN_DROP_0, sleep_ok); 6072 6073 t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0, 6074 sleep_ok); 6075 6076 t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan, 6077 A_TP_MIB_OFD_VLN_DROP_0, sleep_ok); 6078 6079 t4_tp_mib_read(adap, st->tcp6_in_errs, nchan, 6080 A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok); 6081 6082 t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP, 6083 sleep_ok); 6084 } 6085 6086 /** 6087 * t4_tp_get_proxy_stats - read TP's proxy MIB counters 6088 * @adap: the adapter 6089 * @st: holds the counter values 6090 * 6091 * Returns the values of TP's proxy counters. 6092 */ 6093 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st, 6094 bool sleep_ok) 6095 { 6096 int nchan = adap->chip_params->nchan; 6097 6098 t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok); 6099 } 6100 6101 /** 6102 * t4_tp_get_cpl_stats - read TP's CPL MIB counters 6103 * @adap: the adapter 6104 * @st: holds the counter values 6105 * @sleep_ok: if true we may sleep while awaiting command completion 6106 * 6107 * Returns the values of TP's CPL counters. 6108 */ 6109 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st, 6110 bool sleep_ok) 6111 { 6112 int nchan = adap->chip_params->nchan; 6113 6114 t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok); 6115 6116 t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok); 6117 } 6118 6119 /** 6120 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters 6121 * @adap: the adapter 6122 * @st: holds the counter values 6123 * 6124 * Returns the values of TP's RDMA counters. 6125 */ 6126 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st, 6127 bool sleep_ok) 6128 { 6129 t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT, 6130 sleep_ok); 6131 } 6132 6133 /** 6134 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port 6135 * @adap: the adapter 6136 * @idx: the port index 6137 * @st: holds the counter values 6138 * @sleep_ok: if true we may sleep while awaiting command completion 6139 * 6140 * Returns the values of TP's FCoE counters for the selected port. 6141 */ 6142 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx, 6143 struct tp_fcoe_stats *st, bool sleep_ok) 6144 { 6145 u32 val[2]; 6146 6147 t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx, 6148 sleep_ok); 6149 6150 t4_tp_mib_read(adap, &st->frames_drop, 1, 6151 A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok); 6152 6153 t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx, 6154 sleep_ok); 6155 6156 st->octets_ddp = ((u64)val[0] << 32) | val[1]; 6157 } 6158 6159 /** 6160 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters 6161 * @adap: the adapter 6162 * @st: holds the counter values 6163 * @sleep_ok: if true we may sleep while awaiting command completion 6164 * 6165 * Returns the values of TP's counters for non-TCP directly-placed packets. 6166 */ 6167 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st, 6168 bool sleep_ok) 6169 { 6170 u32 val[4]; 6171 6172 t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok); 6173 6174 st->frames = val[0]; 6175 st->drops = val[1]; 6176 st->octets = ((u64)val[2] << 32) | val[3]; 6177 } 6178 6179 /** 6180 * t4_read_mtu_tbl - returns the values in the HW path MTU table 6181 * @adap: the adapter 6182 * @mtus: where to store the MTU values 6183 * @mtu_log: where to store the MTU base-2 log (may be %NULL) 6184 * 6185 * Reads the HW path MTU table. 6186 */ 6187 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) 6188 { 6189 u32 v; 6190 int i; 6191 6192 for (i = 0; i < NMTUS; ++i) { 6193 t4_write_reg(adap, A_TP_MTU_TABLE, 6194 V_MTUINDEX(0xff) | V_MTUVALUE(i)); 6195 v = t4_read_reg(adap, A_TP_MTU_TABLE); 6196 mtus[i] = G_MTUVALUE(v); 6197 if (mtu_log) 6198 mtu_log[i] = G_MTUWIDTH(v); 6199 } 6200 } 6201 6202 /** 6203 * t4_read_cong_tbl - reads the congestion control table 6204 * @adap: the adapter 6205 * @incr: where to store the alpha values 6206 * 6207 * Reads the additive increments programmed into the HW congestion 6208 * control table. 6209 */ 6210 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN]) 6211 { 6212 unsigned int mtu, w; 6213 6214 for (mtu = 0; mtu < NMTUS; ++mtu) 6215 for (w = 0; w < NCCTRL_WIN; ++w) { 6216 t4_write_reg(adap, A_TP_CCTRL_TABLE, 6217 V_ROWINDEX(0xffff) | (mtu << 5) | w); 6218 incr[mtu][w] = (u16)t4_read_reg(adap, 6219 A_TP_CCTRL_TABLE) & 0x1fff; 6220 } 6221 } 6222 6223 /** 6224 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register 6225 * @adap: the adapter 6226 * @addr: the indirect TP register address 6227 * @mask: specifies the field within the register to modify 6228 * @val: new value for the field 6229 * 6230 * Sets a field of an indirect TP register to the given value. 6231 */ 6232 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, 6233 unsigned int mask, unsigned int val) 6234 { 6235 t4_write_reg(adap, A_TP_PIO_ADDR, addr); 6236 val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask; 6237 t4_write_reg(adap, A_TP_PIO_DATA, val); 6238 } 6239 6240 /** 6241 * init_cong_ctrl - initialize congestion control parameters 6242 * @a: the alpha values for congestion control 6243 * @b: the beta values for congestion control 6244 * 6245 * Initialize the congestion control parameters. 6246 */ 6247 static void init_cong_ctrl(unsigned short *a, unsigned short *b) 6248 { 6249 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; 6250 a[9] = 2; 6251 a[10] = 3; 6252 a[11] = 4; 6253 a[12] = 5; 6254 a[13] = 6; 6255 a[14] = 7; 6256 a[15] = 8; 6257 a[16] = 9; 6258 a[17] = 10; 6259 a[18] = 14; 6260 a[19] = 17; 6261 a[20] = 21; 6262 a[21] = 25; 6263 a[22] = 30; 6264 a[23] = 35; 6265 a[24] = 45; 6266 a[25] = 60; 6267 a[26] = 80; 6268 a[27] = 100; 6269 a[28] = 200; 6270 a[29] = 300; 6271 a[30] = 400; 6272 a[31] = 500; 6273 6274 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; 6275 b[9] = b[10] = 1; 6276 b[11] = b[12] = 2; 6277 b[13] = b[14] = b[15] = b[16] = 3; 6278 b[17] = b[18] = b[19] = b[20] = b[21] = 4; 6279 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; 6280 b[28] = b[29] = 6; 6281 b[30] = b[31] = 7; 6282 } 6283 6284 /* The minimum additive increment value for the congestion control table */ 6285 #define CC_MIN_INCR 2U 6286 6287 /** 6288 * t4_load_mtus - write the MTU and congestion control HW tables 6289 * @adap: the adapter 6290 * @mtus: the values for the MTU table 6291 * @alpha: the values for the congestion control alpha parameter 6292 * @beta: the values for the congestion control beta parameter 6293 * 6294 * Write the HW MTU table with the supplied MTUs and the high-speed 6295 * congestion control table with the supplied alpha, beta, and MTUs. 6296 * We write the two tables together because the additive increments 6297 * depend on the MTUs. 6298 */ 6299 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, 6300 const unsigned short *alpha, const unsigned short *beta) 6301 { 6302 static const unsigned int avg_pkts[NCCTRL_WIN] = { 6303 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 6304 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 6305 28672, 40960, 57344, 81920, 114688, 163840, 229376 6306 }; 6307 6308 unsigned int i, w; 6309 6310 for (i = 0; i < NMTUS; ++i) { 6311 unsigned int mtu = mtus[i]; 6312 unsigned int log2 = fls(mtu); 6313 6314 if (!(mtu & ((1 << log2) >> 2))) /* round */ 6315 log2--; 6316 t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) | 6317 V_MTUWIDTH(log2) | V_MTUVALUE(mtu)); 6318 6319 for (w = 0; w < NCCTRL_WIN; ++w) { 6320 unsigned int inc; 6321 6322 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], 6323 CC_MIN_INCR); 6324 6325 t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) | 6326 (w << 16) | (beta[w] << 13) | inc); 6327 } 6328 } 6329 } 6330 6331 /** 6332 * t4_set_pace_tbl - set the pace table 6333 * @adap: the adapter 6334 * @pace_vals: the pace values in microseconds 6335 * @start: index of the first entry in the HW pace table to set 6336 * @n: how many entries to set 6337 * 6338 * Sets (a subset of the) HW pace table. 6339 */ 6340 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals, 6341 unsigned int start, unsigned int n) 6342 { 6343 unsigned int vals[NTX_SCHED], i; 6344 unsigned int tick_ns = dack_ticks_to_usec(adap, 1000); 6345 6346 if (n > NTX_SCHED) 6347 return -ERANGE; 6348 6349 /* convert values from us to dack ticks, rounding to closest value */ 6350 for (i = 0; i < n; i++, pace_vals++) { 6351 vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns; 6352 if (vals[i] > 0x7ff) 6353 return -ERANGE; 6354 if (*pace_vals && vals[i] == 0) 6355 return -ERANGE; 6356 } 6357 for (i = 0; i < n; i++, start++) 6358 t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]); 6359 return 0; 6360 } 6361 6362 /** 6363 * t4_set_sched_bps - set the bit rate for a HW traffic scheduler 6364 * @adap: the adapter 6365 * @kbps: target rate in Kbps 6366 * @sched: the scheduler index 6367 * 6368 * Configure a Tx HW scheduler for the target rate. 6369 */ 6370 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps) 6371 { 6372 unsigned int v, tps, cpt, bpt, delta, mindelta = ~0; 6373 unsigned int clk = adap->params.vpd.cclk * 1000; 6374 unsigned int selected_cpt = 0, selected_bpt = 0; 6375 6376 if (kbps > 0) { 6377 kbps *= 125; /* -> bytes */ 6378 for (cpt = 1; cpt <= 255; cpt++) { 6379 tps = clk / cpt; 6380 bpt = (kbps + tps / 2) / tps; 6381 if (bpt > 0 && bpt <= 255) { 6382 v = bpt * tps; 6383 delta = v >= kbps ? v - kbps : kbps - v; 6384 if (delta < mindelta) { 6385 mindelta = delta; 6386 selected_cpt = cpt; 6387 selected_bpt = bpt; 6388 } 6389 } else if (selected_cpt) 6390 break; 6391 } 6392 if (!selected_cpt) 6393 return -EINVAL; 6394 } 6395 t4_write_reg(adap, A_TP_TM_PIO_ADDR, 6396 A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2); 6397 v = t4_read_reg(adap, A_TP_TM_PIO_DATA); 6398 if (sched & 1) 6399 v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24); 6400 else 6401 v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8); 6402 t4_write_reg(adap, A_TP_TM_PIO_DATA, v); 6403 return 0; 6404 } 6405 6406 /** 6407 * t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler 6408 * @adap: the adapter 6409 * @sched: the scheduler index 6410 * @ipg: the interpacket delay in tenths of nanoseconds 6411 * 6412 * Set the interpacket delay for a HW packet rate scheduler. 6413 */ 6414 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg) 6415 { 6416 unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2; 6417 6418 /* convert ipg to nearest number of core clocks */ 6419 ipg *= core_ticks_per_usec(adap); 6420 ipg = (ipg + 5000) / 10000; 6421 if (ipg > M_TXTIMERSEPQ0) 6422 return -EINVAL; 6423 6424 t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr); 6425 v = t4_read_reg(adap, A_TP_TM_PIO_DATA); 6426 if (sched & 1) 6427 v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg); 6428 else 6429 v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg); 6430 t4_write_reg(adap, A_TP_TM_PIO_DATA, v); 6431 t4_read_reg(adap, A_TP_TM_PIO_DATA); 6432 return 0; 6433 } 6434 6435 /* 6436 * Calculates a rate in bytes/s given the number of 256-byte units per 4K core 6437 * clocks. The formula is 6438 * 6439 * bytes/s = bytes256 * 256 * ClkFreq / 4096 6440 * 6441 * which is equivalent to 6442 * 6443 * bytes/s = 62.5 * bytes256 * ClkFreq_ms 6444 */ 6445 static u64 chan_rate(struct adapter *adap, unsigned int bytes256) 6446 { 6447 u64 v = (u64)bytes256 * adap->params.vpd.cclk; 6448 6449 return v * 62 + v / 2; 6450 } 6451 6452 /** 6453 * t4_get_chan_txrate - get the current per channel Tx rates 6454 * @adap: the adapter 6455 * @nic_rate: rates for NIC traffic 6456 * @ofld_rate: rates for offloaded traffic 6457 * 6458 * Return the current Tx rates in bytes/s for NIC and offloaded traffic 6459 * for each channel. 6460 */ 6461 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate) 6462 { 6463 u32 v; 6464 6465 v = t4_read_reg(adap, A_TP_TX_TRATE); 6466 nic_rate[0] = chan_rate(adap, G_TNLRATE0(v)); 6467 nic_rate[1] = chan_rate(adap, G_TNLRATE1(v)); 6468 if (adap->chip_params->nchan > 2) { 6469 nic_rate[2] = chan_rate(adap, G_TNLRATE2(v)); 6470 nic_rate[3] = chan_rate(adap, G_TNLRATE3(v)); 6471 } 6472 6473 v = t4_read_reg(adap, A_TP_TX_ORATE); 6474 ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v)); 6475 ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v)); 6476 if (adap->chip_params->nchan > 2) { 6477 ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v)); 6478 ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v)); 6479 } 6480 } 6481 6482 /** 6483 * t4_set_trace_filter - configure one of the tracing filters 6484 * @adap: the adapter 6485 * @tp: the desired trace filter parameters 6486 * @idx: which filter to configure 6487 * @enable: whether to enable or disable the filter 6488 * 6489 * Configures one of the tracing filters available in HW. If @tp is %NULL 6490 * it indicates that the filter is already written in the register and it 6491 * just needs to be enabled or disabled. 6492 */ 6493 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp, 6494 int idx, int enable) 6495 { 6496 int i, ofst = idx * 4; 6497 u32 data_reg, mask_reg, cfg; 6498 u32 multitrc = F_TRCMULTIFILTER; 6499 u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN; 6500 6501 if (idx < 0 || idx >= NTRACE) 6502 return -EINVAL; 6503 6504 if (tp == NULL || !enable) { 6505 t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 6506 enable ? en : 0); 6507 return 0; 6508 } 6509 6510 /* 6511 * TODO - After T4 data book is updated, specify the exact 6512 * section below. 6513 * 6514 * See T4 data book - MPS section for a complete description 6515 * of the below if..else handling of A_MPS_TRC_CFG register 6516 * value. 6517 */ 6518 cfg = t4_read_reg(adap, A_MPS_TRC_CFG); 6519 if (cfg & F_TRCMULTIFILTER) { 6520 /* 6521 * If multiple tracers are enabled, then maximum 6522 * capture size is 2.5KB (FIFO size of a single channel) 6523 * minus 2 flits for CPL_TRACE_PKT header. 6524 */ 6525 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8))) 6526 return -EINVAL; 6527 } else { 6528 /* 6529 * If multiple tracers are disabled, to avoid deadlocks 6530 * maximum packet capture size of 9600 bytes is recommended. 6531 * Also in this mode, only trace0 can be enabled and running. 6532 */ 6533 multitrc = 0; 6534 if (tp->snap_len > 9600 || idx) 6535 return -EINVAL; 6536 } 6537 6538 if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 || 6539 tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET || 6540 tp->min_len > M_TFMINPKTSIZE) 6541 return -EINVAL; 6542 6543 /* stop the tracer we'll be changing */ 6544 t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0); 6545 6546 idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH); 6547 data_reg = A_MPS_TRC_FILTER0_MATCH + idx; 6548 mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx; 6549 6550 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 6551 t4_write_reg(adap, data_reg, tp->data[i]); 6552 t4_write_reg(adap, mask_reg, ~tp->mask[i]); 6553 } 6554 t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst, 6555 V_TFCAPTUREMAX(tp->snap_len) | 6556 V_TFMINPKTSIZE(tp->min_len)); 6557 t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, 6558 V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en | 6559 (is_t4(adap) ? 6560 V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) : 6561 V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert))); 6562 6563 return 0; 6564 } 6565 6566 /** 6567 * t4_get_trace_filter - query one of the tracing filters 6568 * @adap: the adapter 6569 * @tp: the current trace filter parameters 6570 * @idx: which trace filter to query 6571 * @enabled: non-zero if the filter is enabled 6572 * 6573 * Returns the current settings of one of the HW tracing filters. 6574 */ 6575 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx, 6576 int *enabled) 6577 { 6578 u32 ctla, ctlb; 6579 int i, ofst = idx * 4; 6580 u32 data_reg, mask_reg; 6581 6582 ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst); 6583 ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst); 6584 6585 if (is_t4(adap)) { 6586 *enabled = !!(ctla & F_TFEN); 6587 tp->port = G_TFPORT(ctla); 6588 tp->invert = !!(ctla & F_TFINVERTMATCH); 6589 } else { 6590 *enabled = !!(ctla & F_T5_TFEN); 6591 tp->port = G_T5_TFPORT(ctla); 6592 tp->invert = !!(ctla & F_T5_TFINVERTMATCH); 6593 } 6594 tp->snap_len = G_TFCAPTUREMAX(ctlb); 6595 tp->min_len = G_TFMINPKTSIZE(ctlb); 6596 tp->skip_ofst = G_TFOFFSET(ctla); 6597 tp->skip_len = G_TFLENGTH(ctla); 6598 6599 ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx; 6600 data_reg = A_MPS_TRC_FILTER0_MATCH + ofst; 6601 mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst; 6602 6603 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) { 6604 tp->mask[i] = ~t4_read_reg(adap, mask_reg); 6605 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i]; 6606 } 6607 } 6608 6609 /** 6610 * t4_pmtx_get_stats - returns the HW stats from PMTX 6611 * @adap: the adapter 6612 * @cnt: where to store the count statistics 6613 * @cycles: where to store the cycle statistics 6614 * 6615 * Returns performance statistics from PMTX. 6616 */ 6617 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6618 { 6619 int i; 6620 u32 data[2]; 6621 6622 for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) { 6623 t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1); 6624 cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT); 6625 if (is_t4(adap)) 6626 cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB); 6627 else { 6628 t4_read_indirect(adap, A_PM_TX_DBG_CTRL, 6629 A_PM_TX_DBG_DATA, data, 2, 6630 A_PM_TX_DBG_STAT_MSB); 6631 cycles[i] = (((u64)data[0] << 32) | data[1]); 6632 } 6633 } 6634 } 6635 6636 /** 6637 * t4_pmrx_get_stats - returns the HW stats from PMRX 6638 * @adap: the adapter 6639 * @cnt: where to store the count statistics 6640 * @cycles: where to store the cycle statistics 6641 * 6642 * Returns performance statistics from PMRX. 6643 */ 6644 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[]) 6645 { 6646 int i; 6647 u32 data[2]; 6648 6649 for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) { 6650 t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1); 6651 cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT); 6652 if (is_t4(adap)) { 6653 cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB); 6654 } else { 6655 t4_read_indirect(adap, A_PM_RX_DBG_CTRL, 6656 A_PM_RX_DBG_DATA, data, 2, 6657 A_PM_RX_DBG_STAT_MSB); 6658 cycles[i] = (((u64)data[0] << 32) | data[1]); 6659 } 6660 } 6661 } 6662 6663 /** 6664 * t4_get_mps_bg_map - return the buffer groups associated with a port 6665 * @adap: the adapter 6666 * @idx: the port index 6667 * 6668 * Returns a bitmap indicating which MPS buffer groups are associated 6669 * with the given port. Bit i is set if buffer group i is used by the 6670 * port. 6671 */ 6672 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx) 6673 { 6674 u32 n; 6675 6676 if (adap->params.mps_bg_map) 6677 return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff); 6678 6679 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL)); 6680 if (n == 0) 6681 return idx == 0 ? 0xf : 0; 6682 if (n == 1 && chip_id(adap) <= CHELSIO_T5) 6683 return idx < 2 ? (3 << (2 * idx)) : 0; 6684 return 1 << idx; 6685 } 6686 6687 /* 6688 * TP RX e-channels associated with the port. 6689 */ 6690 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx) 6691 { 6692 u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL)); 6693 6694 if (n == 0) 6695 return idx == 0 ? 0xf : 0; 6696 if (n == 1 && chip_id(adap) <= CHELSIO_T5) 6697 return idx < 2 ? (3 << (2 * idx)) : 0; 6698 return 1 << idx; 6699 } 6700 6701 /** 6702 * t4_get_port_type_description - return Port Type string description 6703 * @port_type: firmware Port Type enumeration 6704 */ 6705 const char *t4_get_port_type_description(enum fw_port_type port_type) 6706 { 6707 static const char *const port_type_description[] = { 6708 "Fiber_XFI", 6709 "Fiber_XAUI", 6710 "BT_SGMII", 6711 "BT_XFI", 6712 "BT_XAUI", 6713 "KX4", 6714 "CX4", 6715 "KX", 6716 "KR", 6717 "SFP", 6718 "BP_AP", 6719 "BP4_AP", 6720 "QSFP_10G", 6721 "QSA", 6722 "QSFP", 6723 "BP40_BA", 6724 "KR4_100G", 6725 "CR4_QSFP", 6726 "CR_QSFP", 6727 "CR2_QSFP", 6728 "SFP28", 6729 "KR_SFP28", 6730 }; 6731 6732 if (port_type < ARRAY_SIZE(port_type_description)) 6733 return port_type_description[port_type]; 6734 return "UNKNOWN"; 6735 } 6736 6737 /** 6738 * t4_get_port_stats_offset - collect port stats relative to a previous 6739 * snapshot 6740 * @adap: The adapter 6741 * @idx: The port 6742 * @stats: Current stats to fill 6743 * @offset: Previous stats snapshot 6744 */ 6745 void t4_get_port_stats_offset(struct adapter *adap, int idx, 6746 struct port_stats *stats, 6747 struct port_stats *offset) 6748 { 6749 u64 *s, *o; 6750 int i; 6751 6752 t4_get_port_stats(adap, idx, stats); 6753 for (i = 0, s = (u64 *)stats, o = (u64 *)offset ; 6754 i < (sizeof(struct port_stats)/sizeof(u64)) ; 6755 i++, s++, o++) 6756 *s -= *o; 6757 } 6758 6759 /** 6760 * t4_get_port_stats - collect port statistics 6761 * @adap: the adapter 6762 * @idx: the port index 6763 * @p: the stats structure to fill 6764 * 6765 * Collect statistics related to the given port from HW. 6766 */ 6767 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) 6768 { 6769 u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map; 6770 u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL); 6771 6772 #define GET_STAT(name) \ 6773 t4_read_reg64(adap, \ 6774 (is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \ 6775 T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L))) 6776 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L) 6777 6778 p->tx_pause = GET_STAT(TX_PORT_PAUSE); 6779 p->tx_octets = GET_STAT(TX_PORT_BYTES); 6780 p->tx_frames = GET_STAT(TX_PORT_FRAMES); 6781 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); 6782 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); 6783 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); 6784 p->tx_error_frames = GET_STAT(TX_PORT_ERROR); 6785 p->tx_frames_64 = GET_STAT(TX_PORT_64B); 6786 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); 6787 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); 6788 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); 6789 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); 6790 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); 6791 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); 6792 p->tx_drop = GET_STAT(TX_PORT_DROP); 6793 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); 6794 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); 6795 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); 6796 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); 6797 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); 6798 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); 6799 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); 6800 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); 6801 6802 if (chip_id(adap) >= CHELSIO_T5) { 6803 if (stat_ctl & F_COUNTPAUSESTATTX) { 6804 p->tx_frames -= p->tx_pause; 6805 p->tx_octets -= p->tx_pause * 64; 6806 } 6807 if (stat_ctl & F_COUNTPAUSEMCTX) 6808 p->tx_mcast_frames -= p->tx_pause; 6809 } 6810 6811 p->rx_pause = GET_STAT(RX_PORT_PAUSE); 6812 p->rx_octets = GET_STAT(RX_PORT_BYTES); 6813 p->rx_frames = GET_STAT(RX_PORT_FRAMES); 6814 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); 6815 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); 6816 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); 6817 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); 6818 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); 6819 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); 6820 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); 6821 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); 6822 p->rx_runt = GET_STAT(RX_PORT_LESS_64B); 6823 p->rx_frames_64 = GET_STAT(RX_PORT_64B); 6824 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); 6825 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); 6826 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); 6827 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); 6828 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); 6829 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); 6830 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); 6831 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); 6832 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); 6833 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); 6834 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); 6835 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); 6836 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); 6837 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); 6838 6839 if (chip_id(adap) >= CHELSIO_T5) { 6840 if (stat_ctl & F_COUNTPAUSESTATRX) { 6841 p->rx_frames -= p->rx_pause; 6842 p->rx_octets -= p->rx_pause * 64; 6843 } 6844 if (stat_ctl & F_COUNTPAUSEMCRX) 6845 p->rx_mcast_frames -= p->rx_pause; 6846 } 6847 6848 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; 6849 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; 6850 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; 6851 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; 6852 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; 6853 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; 6854 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; 6855 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; 6856 6857 #undef GET_STAT 6858 #undef GET_STAT_COM 6859 } 6860 6861 /** 6862 * t4_get_lb_stats - collect loopback port statistics 6863 * @adap: the adapter 6864 * @idx: the loopback port index 6865 * @p: the stats structure to fill 6866 * 6867 * Return HW statistics for the given loopback port. 6868 */ 6869 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p) 6870 { 6871 u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map; 6872 6873 #define GET_STAT(name) \ 6874 t4_read_reg64(adap, \ 6875 (is_t4(adap) ? \ 6876 PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \ 6877 T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L))) 6878 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L) 6879 6880 p->octets = GET_STAT(BYTES); 6881 p->frames = GET_STAT(FRAMES); 6882 p->bcast_frames = GET_STAT(BCAST); 6883 p->mcast_frames = GET_STAT(MCAST); 6884 p->ucast_frames = GET_STAT(UCAST); 6885 p->error_frames = GET_STAT(ERROR); 6886 6887 p->frames_64 = GET_STAT(64B); 6888 p->frames_65_127 = GET_STAT(65B_127B); 6889 p->frames_128_255 = GET_STAT(128B_255B); 6890 p->frames_256_511 = GET_STAT(256B_511B); 6891 p->frames_512_1023 = GET_STAT(512B_1023B); 6892 p->frames_1024_1518 = GET_STAT(1024B_1518B); 6893 p->frames_1519_max = GET_STAT(1519B_MAX); 6894 p->drop = GET_STAT(DROP_FRAMES); 6895 6896 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0; 6897 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0; 6898 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0; 6899 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0; 6900 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0; 6901 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0; 6902 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0; 6903 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0; 6904 6905 #undef GET_STAT 6906 #undef GET_STAT_COM 6907 } 6908 6909 /** 6910 * t4_wol_magic_enable - enable/disable magic packet WoL 6911 * @adap: the adapter 6912 * @port: the physical port index 6913 * @addr: MAC address expected in magic packets, %NULL to disable 6914 * 6915 * Enables/disables magic packet wake-on-LAN for the selected port. 6916 */ 6917 void t4_wol_magic_enable(struct adapter *adap, unsigned int port, 6918 const u8 *addr) 6919 { 6920 u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg; 6921 6922 if (is_t4(adap)) { 6923 mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO); 6924 mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI); 6925 port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2); 6926 } else { 6927 mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO); 6928 mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI); 6929 port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2); 6930 } 6931 6932 if (addr) { 6933 t4_write_reg(adap, mag_id_reg_l, 6934 (addr[2] << 24) | (addr[3] << 16) | 6935 (addr[4] << 8) | addr[5]); 6936 t4_write_reg(adap, mag_id_reg_h, 6937 (addr[0] << 8) | addr[1]); 6938 } 6939 t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN, 6940 V_MAGICEN(addr != NULL)); 6941 } 6942 6943 /** 6944 * t4_wol_pat_enable - enable/disable pattern-based WoL 6945 * @adap: the adapter 6946 * @port: the physical port index 6947 * @map: bitmap of which HW pattern filters to set 6948 * @mask0: byte mask for bytes 0-63 of a packet 6949 * @mask1: byte mask for bytes 64-127 of a packet 6950 * @crc: Ethernet CRC for selected bytes 6951 * @enable: enable/disable switch 6952 * 6953 * Sets the pattern filters indicated in @map to mask out the bytes 6954 * specified in @mask0/@mask1 in received packets and compare the CRC of 6955 * the resulting packet against @crc. If @enable is %true pattern-based 6956 * WoL is enabled, otherwise disabled. 6957 */ 6958 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map, 6959 u64 mask0, u64 mask1, unsigned int crc, bool enable) 6960 { 6961 int i; 6962 u32 port_cfg_reg; 6963 6964 if (is_t4(adap)) 6965 port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2); 6966 else 6967 port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2); 6968 6969 if (!enable) { 6970 t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0); 6971 return 0; 6972 } 6973 if (map > 0xff) 6974 return -EINVAL; 6975 6976 #define EPIO_REG(name) \ 6977 (is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \ 6978 T5_PORT_REG(port, A_MAC_PORT_EPIO_##name)) 6979 6980 t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32); 6981 t4_write_reg(adap, EPIO_REG(DATA2), mask1); 6982 t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32); 6983 6984 for (i = 0; i < NWOL_PAT; i++, map >>= 1) { 6985 if (!(map & 1)) 6986 continue; 6987 6988 /* write byte masks */ 6989 t4_write_reg(adap, EPIO_REG(DATA0), mask0); 6990 t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR); 6991 t4_read_reg(adap, EPIO_REG(OP)); /* flush */ 6992 if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY) 6993 return -ETIMEDOUT; 6994 6995 /* write CRC */ 6996 t4_write_reg(adap, EPIO_REG(DATA0), crc); 6997 t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR); 6998 t4_read_reg(adap, EPIO_REG(OP)); /* flush */ 6999 if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY) 7000 return -ETIMEDOUT; 7001 } 7002 #undef EPIO_REG 7003 7004 t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN); 7005 return 0; 7006 } 7007 7008 /* t4_mk_filtdelwr - create a delete filter WR 7009 * @ftid: the filter ID 7010 * @wr: the filter work request to populate 7011 * @qid: ingress queue to receive the delete notification 7012 * 7013 * Creates a filter work request to delete the supplied filter. If @qid is 7014 * negative the delete notification is suppressed. 7015 */ 7016 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) 7017 { 7018 memset(wr, 0, sizeof(*wr)); 7019 wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR)); 7020 wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16)); 7021 wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) | 7022 V_FW_FILTER_WR_NOREPLY(qid < 0)); 7023 wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER); 7024 if (qid >= 0) 7025 wr->rx_chan_rx_rpl_iq = 7026 cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid)); 7027 } 7028 7029 #define INIT_CMD(var, cmd, rd_wr) do { \ 7030 (var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \ 7031 F_FW_CMD_REQUEST | \ 7032 F_FW_CMD_##rd_wr); \ 7033 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \ 7034 } while (0) 7035 7036 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, 7037 u32 addr, u32 val) 7038 { 7039 u32 ldst_addrspace; 7040 struct fw_ldst_cmd c; 7041 7042 memset(&c, 0, sizeof(c)); 7043 ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE); 7044 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 7045 F_FW_CMD_REQUEST | 7046 F_FW_CMD_WRITE | 7047 ldst_addrspace); 7048 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 7049 c.u.addrval.addr = cpu_to_be32(addr); 7050 c.u.addrval.val = cpu_to_be32(val); 7051 7052 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7053 } 7054 7055 /** 7056 * t4_mdio_rd - read a PHY register through MDIO 7057 * @adap: the adapter 7058 * @mbox: mailbox to use for the FW command 7059 * @phy_addr: the PHY address 7060 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 7061 * @reg: the register to read 7062 * @valp: where to store the value 7063 * 7064 * Issues a FW command through the given mailbox to read a PHY register. 7065 */ 7066 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 7067 unsigned int mmd, unsigned int reg, unsigned int *valp) 7068 { 7069 int ret; 7070 u32 ldst_addrspace; 7071 struct fw_ldst_cmd c; 7072 7073 memset(&c, 0, sizeof(c)); 7074 ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO); 7075 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 7076 F_FW_CMD_REQUEST | F_FW_CMD_READ | 7077 ldst_addrspace); 7078 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 7079 c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) | 7080 V_FW_LDST_CMD_MMD(mmd)); 7081 c.u.mdio.raddr = cpu_to_be16(reg); 7082 7083 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7084 if (ret == 0) 7085 *valp = be16_to_cpu(c.u.mdio.rval); 7086 return ret; 7087 } 7088 7089 /** 7090 * t4_mdio_wr - write a PHY register through MDIO 7091 * @adap: the adapter 7092 * @mbox: mailbox to use for the FW command 7093 * @phy_addr: the PHY address 7094 * @mmd: the PHY MMD to access (0 for clause 22 PHYs) 7095 * @reg: the register to write 7096 * @valp: value to write 7097 * 7098 * Issues a FW command through the given mailbox to write a PHY register. 7099 */ 7100 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, 7101 unsigned int mmd, unsigned int reg, unsigned int val) 7102 { 7103 u32 ldst_addrspace; 7104 struct fw_ldst_cmd c; 7105 7106 memset(&c, 0, sizeof(c)); 7107 ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO); 7108 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 7109 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 7110 ldst_addrspace); 7111 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 7112 c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) | 7113 V_FW_LDST_CMD_MMD(mmd)); 7114 c.u.mdio.raddr = cpu_to_be16(reg); 7115 c.u.mdio.rval = cpu_to_be16(val); 7116 7117 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7118 } 7119 7120 /** 7121 * 7122 * t4_sge_decode_idma_state - decode the idma state 7123 * @adap: the adapter 7124 * @state: the state idma is stuck in 7125 */ 7126 void t4_sge_decode_idma_state(struct adapter *adapter, int state) 7127 { 7128 static const char * const t4_decode[] = { 7129 "IDMA_IDLE", 7130 "IDMA_PUSH_MORE_CPL_FIFO", 7131 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 7132 "Not used", 7133 "IDMA_PHYSADDR_SEND_PCIEHDR", 7134 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 7135 "IDMA_PHYSADDR_SEND_PAYLOAD", 7136 "IDMA_SEND_FIFO_TO_IMSG", 7137 "IDMA_FL_REQ_DATA_FL_PREP", 7138 "IDMA_FL_REQ_DATA_FL", 7139 "IDMA_FL_DROP", 7140 "IDMA_FL_H_REQ_HEADER_FL", 7141 "IDMA_FL_H_SEND_PCIEHDR", 7142 "IDMA_FL_H_PUSH_CPL_FIFO", 7143 "IDMA_FL_H_SEND_CPL", 7144 "IDMA_FL_H_SEND_IP_HDR_FIRST", 7145 "IDMA_FL_H_SEND_IP_HDR", 7146 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 7147 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 7148 "IDMA_FL_H_SEND_IP_HDR_PADDING", 7149 "IDMA_FL_D_SEND_PCIEHDR", 7150 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 7151 "IDMA_FL_D_REQ_NEXT_DATA_FL", 7152 "IDMA_FL_SEND_PCIEHDR", 7153 "IDMA_FL_PUSH_CPL_FIFO", 7154 "IDMA_FL_SEND_CPL", 7155 "IDMA_FL_SEND_PAYLOAD_FIRST", 7156 "IDMA_FL_SEND_PAYLOAD", 7157 "IDMA_FL_REQ_NEXT_DATA_FL", 7158 "IDMA_FL_SEND_NEXT_PCIEHDR", 7159 "IDMA_FL_SEND_PADDING", 7160 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 7161 "IDMA_FL_SEND_FIFO_TO_IMSG", 7162 "IDMA_FL_REQ_DATAFL_DONE", 7163 "IDMA_FL_REQ_HEADERFL_DONE", 7164 }; 7165 static const char * const t5_decode[] = { 7166 "IDMA_IDLE", 7167 "IDMA_ALMOST_IDLE", 7168 "IDMA_PUSH_MORE_CPL_FIFO", 7169 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 7170 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 7171 "IDMA_PHYSADDR_SEND_PCIEHDR", 7172 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 7173 "IDMA_PHYSADDR_SEND_PAYLOAD", 7174 "IDMA_SEND_FIFO_TO_IMSG", 7175 "IDMA_FL_REQ_DATA_FL", 7176 "IDMA_FL_DROP", 7177 "IDMA_FL_DROP_SEND_INC", 7178 "IDMA_FL_H_REQ_HEADER_FL", 7179 "IDMA_FL_H_SEND_PCIEHDR", 7180 "IDMA_FL_H_PUSH_CPL_FIFO", 7181 "IDMA_FL_H_SEND_CPL", 7182 "IDMA_FL_H_SEND_IP_HDR_FIRST", 7183 "IDMA_FL_H_SEND_IP_HDR", 7184 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 7185 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 7186 "IDMA_FL_H_SEND_IP_HDR_PADDING", 7187 "IDMA_FL_D_SEND_PCIEHDR", 7188 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 7189 "IDMA_FL_D_REQ_NEXT_DATA_FL", 7190 "IDMA_FL_SEND_PCIEHDR", 7191 "IDMA_FL_PUSH_CPL_FIFO", 7192 "IDMA_FL_SEND_CPL", 7193 "IDMA_FL_SEND_PAYLOAD_FIRST", 7194 "IDMA_FL_SEND_PAYLOAD", 7195 "IDMA_FL_REQ_NEXT_DATA_FL", 7196 "IDMA_FL_SEND_NEXT_PCIEHDR", 7197 "IDMA_FL_SEND_PADDING", 7198 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 7199 }; 7200 static const char * const t6_decode[] = { 7201 "IDMA_IDLE", 7202 "IDMA_PUSH_MORE_CPL_FIFO", 7203 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", 7204 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", 7205 "IDMA_PHYSADDR_SEND_PCIEHDR", 7206 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", 7207 "IDMA_PHYSADDR_SEND_PAYLOAD", 7208 "IDMA_FL_REQ_DATA_FL", 7209 "IDMA_FL_DROP", 7210 "IDMA_FL_DROP_SEND_INC", 7211 "IDMA_FL_H_REQ_HEADER_FL", 7212 "IDMA_FL_H_SEND_PCIEHDR", 7213 "IDMA_FL_H_PUSH_CPL_FIFO", 7214 "IDMA_FL_H_SEND_CPL", 7215 "IDMA_FL_H_SEND_IP_HDR_FIRST", 7216 "IDMA_FL_H_SEND_IP_HDR", 7217 "IDMA_FL_H_REQ_NEXT_HEADER_FL", 7218 "IDMA_FL_H_SEND_NEXT_PCIEHDR", 7219 "IDMA_FL_H_SEND_IP_HDR_PADDING", 7220 "IDMA_FL_D_SEND_PCIEHDR", 7221 "IDMA_FL_D_SEND_CPL_AND_IP_HDR", 7222 "IDMA_FL_D_REQ_NEXT_DATA_FL", 7223 "IDMA_FL_SEND_PCIEHDR", 7224 "IDMA_FL_PUSH_CPL_FIFO", 7225 "IDMA_FL_SEND_CPL", 7226 "IDMA_FL_SEND_PAYLOAD_FIRST", 7227 "IDMA_FL_SEND_PAYLOAD", 7228 "IDMA_FL_REQ_NEXT_DATA_FL", 7229 "IDMA_FL_SEND_NEXT_PCIEHDR", 7230 "IDMA_FL_SEND_PADDING", 7231 "IDMA_FL_SEND_COMPLETION_TO_IMSG", 7232 }; 7233 static const u32 sge_regs[] = { 7234 A_SGE_DEBUG_DATA_LOW_INDEX_2, 7235 A_SGE_DEBUG_DATA_LOW_INDEX_3, 7236 A_SGE_DEBUG_DATA_HIGH_INDEX_10, 7237 }; 7238 const char * const *sge_idma_decode; 7239 int sge_idma_decode_nstates; 7240 int i; 7241 unsigned int chip_version = chip_id(adapter); 7242 7243 /* Select the right set of decode strings to dump depending on the 7244 * adapter chip type. 7245 */ 7246 switch (chip_version) { 7247 case CHELSIO_T4: 7248 sge_idma_decode = (const char * const *)t4_decode; 7249 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); 7250 break; 7251 7252 case CHELSIO_T5: 7253 sge_idma_decode = (const char * const *)t5_decode; 7254 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); 7255 break; 7256 7257 case CHELSIO_T6: 7258 sge_idma_decode = (const char * const *)t6_decode; 7259 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode); 7260 break; 7261 7262 default: 7263 CH_ERR(adapter, "Unsupported chip version %d\n", chip_version); 7264 return; 7265 } 7266 7267 if (state < sge_idma_decode_nstates) 7268 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); 7269 else 7270 CH_WARN(adapter, "idma state %d unknown\n", state); 7271 7272 for (i = 0; i < ARRAY_SIZE(sge_regs); i++) 7273 CH_WARN(adapter, "SGE register %#x value %#x\n", 7274 sge_regs[i], t4_read_reg(adapter, sge_regs[i])); 7275 } 7276 7277 /** 7278 * t4_sge_ctxt_flush - flush the SGE context cache 7279 * @adap: the adapter 7280 * @mbox: mailbox to use for the FW command 7281 * 7282 * Issues a FW command through the given mailbox to flush the 7283 * SGE context cache. 7284 */ 7285 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox) 7286 { 7287 int ret; 7288 u32 ldst_addrspace; 7289 struct fw_ldst_cmd c; 7290 7291 memset(&c, 0, sizeof(c)); 7292 ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC); 7293 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 7294 F_FW_CMD_REQUEST | F_FW_CMD_READ | 7295 ldst_addrspace); 7296 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 7297 c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH); 7298 7299 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7300 return ret; 7301 } 7302 7303 /** 7304 * t4_fw_hello - establish communication with FW 7305 * @adap: the adapter 7306 * @mbox: mailbox to use for the FW command 7307 * @evt_mbox: mailbox to receive async FW events 7308 * @master: specifies the caller's willingness to be the device master 7309 * @state: returns the current device state (if non-NULL) 7310 * 7311 * Issues a command to establish communication with FW. Returns either 7312 * an error (negative integer) or the mailbox of the Master PF. 7313 */ 7314 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, 7315 enum dev_master master, enum dev_state *state) 7316 { 7317 int ret; 7318 struct fw_hello_cmd c; 7319 u32 v; 7320 unsigned int master_mbox; 7321 int retries = FW_CMD_HELLO_RETRIES; 7322 7323 retry: 7324 memset(&c, 0, sizeof(c)); 7325 INIT_CMD(c, HELLO, WRITE); 7326 c.err_to_clearinit = cpu_to_be32( 7327 V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) | 7328 V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) | 7329 V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ? 7330 mbox : M_FW_HELLO_CMD_MBMASTER) | 7331 V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) | 7332 V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) | 7333 F_FW_HELLO_CMD_CLEARINIT); 7334 7335 /* 7336 * Issue the HELLO command to the firmware. If it's not successful 7337 * but indicates that we got a "busy" or "timeout" condition, retry 7338 * the HELLO until we exhaust our retry limit. If we do exceed our 7339 * retry limit, check to see if the firmware left us any error 7340 * information and report that if so ... 7341 */ 7342 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7343 if (ret != FW_SUCCESS) { 7344 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) 7345 goto retry; 7346 if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR) 7347 t4_report_fw_error(adap); 7348 return ret; 7349 } 7350 7351 v = be32_to_cpu(c.err_to_clearinit); 7352 master_mbox = G_FW_HELLO_CMD_MBMASTER(v); 7353 if (state) { 7354 if (v & F_FW_HELLO_CMD_ERR) 7355 *state = DEV_STATE_ERR; 7356 else if (v & F_FW_HELLO_CMD_INIT) 7357 *state = DEV_STATE_INIT; 7358 else 7359 *state = DEV_STATE_UNINIT; 7360 } 7361 7362 /* 7363 * If we're not the Master PF then we need to wait around for the 7364 * Master PF Driver to finish setting up the adapter. 7365 * 7366 * Note that we also do this wait if we're a non-Master-capable PF and 7367 * there is no current Master PF; a Master PF may show up momentarily 7368 * and we wouldn't want to fail pointlessly. (This can happen when an 7369 * OS loads lots of different drivers rapidly at the same time). In 7370 * this case, the Master PF returned by the firmware will be 7371 * M_PCIE_FW_MASTER so the test below will work ... 7372 */ 7373 if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 && 7374 master_mbox != mbox) { 7375 int waiting = FW_CMD_HELLO_TIMEOUT; 7376 7377 /* 7378 * Wait for the firmware to either indicate an error or 7379 * initialized state. If we see either of these we bail out 7380 * and report the issue to the caller. If we exhaust the 7381 * "hello timeout" and we haven't exhausted our retries, try 7382 * again. Otherwise bail with a timeout error. 7383 */ 7384 for (;;) { 7385 u32 pcie_fw; 7386 7387 msleep(50); 7388 waiting -= 50; 7389 7390 /* 7391 * If neither Error nor Initialialized are indicated 7392 * by the firmware keep waiting till we exhaust our 7393 * timeout ... and then retry if we haven't exhausted 7394 * our retries ... 7395 */ 7396 pcie_fw = t4_read_reg(adap, A_PCIE_FW); 7397 if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) { 7398 if (waiting <= 0) { 7399 if (retries-- > 0) 7400 goto retry; 7401 7402 return -ETIMEDOUT; 7403 } 7404 continue; 7405 } 7406 7407 /* 7408 * We either have an Error or Initialized condition 7409 * report errors preferentially. 7410 */ 7411 if (state) { 7412 if (pcie_fw & F_PCIE_FW_ERR) 7413 *state = DEV_STATE_ERR; 7414 else if (pcie_fw & F_PCIE_FW_INIT) 7415 *state = DEV_STATE_INIT; 7416 } 7417 7418 /* 7419 * If we arrived before a Master PF was selected and 7420 * there's not a valid Master PF, grab its identity 7421 * for our caller. 7422 */ 7423 if (master_mbox == M_PCIE_FW_MASTER && 7424 (pcie_fw & F_PCIE_FW_MASTER_VLD)) 7425 master_mbox = G_PCIE_FW_MASTER(pcie_fw); 7426 break; 7427 } 7428 } 7429 7430 return master_mbox; 7431 } 7432 7433 /** 7434 * t4_fw_bye - end communication with FW 7435 * @adap: the adapter 7436 * @mbox: mailbox to use for the FW command 7437 * 7438 * Issues a command to terminate communication with FW. 7439 */ 7440 int t4_fw_bye(struct adapter *adap, unsigned int mbox) 7441 { 7442 struct fw_bye_cmd c; 7443 7444 memset(&c, 0, sizeof(c)); 7445 INIT_CMD(c, BYE, WRITE); 7446 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7447 } 7448 7449 /** 7450 * t4_fw_reset - issue a reset to FW 7451 * @adap: the adapter 7452 * @mbox: mailbox to use for the FW command 7453 * @reset: specifies the type of reset to perform 7454 * 7455 * Issues a reset command of the specified type to FW. 7456 */ 7457 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) 7458 { 7459 struct fw_reset_cmd c; 7460 7461 memset(&c, 0, sizeof(c)); 7462 INIT_CMD(c, RESET, WRITE); 7463 c.val = cpu_to_be32(reset); 7464 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7465 } 7466 7467 /** 7468 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET 7469 * @adap: the adapter 7470 * @mbox: mailbox to use for the FW RESET command (if desired) 7471 * @force: force uP into RESET even if FW RESET command fails 7472 * 7473 * Issues a RESET command to firmware (if desired) with a HALT indication 7474 * and then puts the microprocessor into RESET state. The RESET command 7475 * will only be issued if a legitimate mailbox is provided (mbox <= 7476 * M_PCIE_FW_MASTER). 7477 * 7478 * This is generally used in order for the host to safely manipulate the 7479 * adapter without fear of conflicting with whatever the firmware might 7480 * be doing. The only way out of this state is to RESTART the firmware 7481 * ... 7482 */ 7483 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) 7484 { 7485 int ret = 0; 7486 7487 /* 7488 * If a legitimate mailbox is provided, issue a RESET command 7489 * with a HALT indication. 7490 */ 7491 if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) { 7492 struct fw_reset_cmd c; 7493 7494 memset(&c, 0, sizeof(c)); 7495 INIT_CMD(c, RESET, WRITE); 7496 c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE); 7497 c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT); 7498 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7499 } 7500 7501 /* 7502 * Normally we won't complete the operation if the firmware RESET 7503 * command fails but if our caller insists we'll go ahead and put the 7504 * uP into RESET. This can be useful if the firmware is hung or even 7505 * missing ... We'll have to take the risk of putting the uP into 7506 * RESET without the cooperation of firmware in that case. 7507 * 7508 * We also force the firmware's HALT flag to be on in case we bypassed 7509 * the firmware RESET command above or we're dealing with old firmware 7510 * which doesn't have the HALT capability. This will serve as a flag 7511 * for the incoming firmware to know that it's coming out of a HALT 7512 * rather than a RESET ... if it's new enough to understand that ... 7513 */ 7514 if (ret == 0 || force) { 7515 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST); 7516 t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 7517 F_PCIE_FW_HALT); 7518 } 7519 7520 /* 7521 * And we always return the result of the firmware RESET command 7522 * even when we force the uP into RESET ... 7523 */ 7524 return ret; 7525 } 7526 7527 /** 7528 * t4_fw_restart - restart the firmware by taking the uP out of RESET 7529 * @adap: the adapter 7530 * 7531 * Restart firmware previously halted by t4_fw_halt(). On successful 7532 * return the previous PF Master remains as the new PF Master and there 7533 * is no need to issue a new HELLO command, etc. 7534 */ 7535 int t4_fw_restart(struct adapter *adap, unsigned int mbox) 7536 { 7537 int ms; 7538 7539 t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0); 7540 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { 7541 if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT)) 7542 return FW_SUCCESS; 7543 msleep(100); 7544 ms += 100; 7545 } 7546 7547 return -ETIMEDOUT; 7548 } 7549 7550 /** 7551 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW 7552 * @adap: the adapter 7553 * @mbox: mailbox to use for the FW RESET command (if desired) 7554 * @fw_data: the firmware image to write 7555 * @size: image size 7556 * @force: force upgrade even if firmware doesn't cooperate 7557 * 7558 * Perform all of the steps necessary for upgrading an adapter's 7559 * firmware image. Normally this requires the cooperation of the 7560 * existing firmware in order to halt all existing activities 7561 * but if an invalid mailbox token is passed in we skip that step 7562 * (though we'll still put the adapter microprocessor into RESET in 7563 * that case). 7564 * 7565 * On successful return the new firmware will have been loaded and 7566 * the adapter will have been fully RESET losing all previous setup 7567 * state. On unsuccessful return the adapter may be completely hosed ... 7568 * positive errno indicates that the adapter is ~probably~ intact, a 7569 * negative errno indicates that things are looking bad ... 7570 */ 7571 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, 7572 const u8 *fw_data, unsigned int size, int force) 7573 { 7574 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; 7575 unsigned int bootstrap = 7576 be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP; 7577 int ret; 7578 7579 if (!t4_fw_matches_chip(adap, fw_hdr)) 7580 return -EINVAL; 7581 7582 if (!bootstrap) { 7583 ret = t4_fw_halt(adap, mbox, force); 7584 if (ret < 0 && !force) 7585 return ret; 7586 } 7587 7588 ret = t4_load_fw(adap, fw_data, size); 7589 if (ret < 0 || bootstrap) 7590 return ret; 7591 7592 return t4_fw_restart(adap, mbox); 7593 } 7594 7595 /** 7596 * t4_fw_initialize - ask FW to initialize the device 7597 * @adap: the adapter 7598 * @mbox: mailbox to use for the FW command 7599 * 7600 * Issues a command to FW to partially initialize the device. This 7601 * performs initialization that generally doesn't depend on user input. 7602 */ 7603 int t4_fw_initialize(struct adapter *adap, unsigned int mbox) 7604 { 7605 struct fw_initialize_cmd c; 7606 7607 memset(&c, 0, sizeof(c)); 7608 INIT_CMD(c, INITIALIZE, WRITE); 7609 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7610 } 7611 7612 /** 7613 * t4_query_params_rw - query FW or device parameters 7614 * @adap: the adapter 7615 * @mbox: mailbox to use for the FW command 7616 * @pf: the PF 7617 * @vf: the VF 7618 * @nparams: the number of parameters 7619 * @params: the parameter names 7620 * @val: the parameter values 7621 * @rw: Write and read flag 7622 * 7623 * Reads the value of FW or device parameters. Up to 7 parameters can be 7624 * queried at once. 7625 */ 7626 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf, 7627 unsigned int vf, unsigned int nparams, const u32 *params, 7628 u32 *val, int rw) 7629 { 7630 int i, ret; 7631 struct fw_params_cmd c; 7632 __be32 *p = &c.param[0].mnem; 7633 7634 if (nparams > 7) 7635 return -EINVAL; 7636 7637 memset(&c, 0, sizeof(c)); 7638 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) | 7639 F_FW_CMD_REQUEST | F_FW_CMD_READ | 7640 V_FW_PARAMS_CMD_PFN(pf) | 7641 V_FW_PARAMS_CMD_VFN(vf)); 7642 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7643 7644 for (i = 0; i < nparams; i++) { 7645 *p++ = cpu_to_be32(*params++); 7646 if (rw) 7647 *p = cpu_to_be32(*(val + i)); 7648 p++; 7649 } 7650 7651 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7652 if (ret == 0) 7653 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) 7654 *val++ = be32_to_cpu(*p); 7655 return ret; 7656 } 7657 7658 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7659 unsigned int vf, unsigned int nparams, const u32 *params, 7660 u32 *val) 7661 { 7662 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0); 7663 } 7664 7665 /** 7666 * t4_set_params_timeout - sets FW or device parameters 7667 * @adap: the adapter 7668 * @mbox: mailbox to use for the FW command 7669 * @pf: the PF 7670 * @vf: the VF 7671 * @nparams: the number of parameters 7672 * @params: the parameter names 7673 * @val: the parameter values 7674 * @timeout: the timeout time 7675 * 7676 * Sets the value of FW or device parameters. Up to 7 parameters can be 7677 * specified at once. 7678 */ 7679 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox, 7680 unsigned int pf, unsigned int vf, 7681 unsigned int nparams, const u32 *params, 7682 const u32 *val, int timeout) 7683 { 7684 struct fw_params_cmd c; 7685 __be32 *p = &c.param[0].mnem; 7686 7687 if (nparams > 7) 7688 return -EINVAL; 7689 7690 memset(&c, 0, sizeof(c)); 7691 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) | 7692 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 7693 V_FW_PARAMS_CMD_PFN(pf) | 7694 V_FW_PARAMS_CMD_VFN(vf)); 7695 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7696 7697 while (nparams--) { 7698 *p++ = cpu_to_be32(*params++); 7699 *p++ = cpu_to_be32(*val++); 7700 } 7701 7702 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout); 7703 } 7704 7705 /** 7706 * t4_set_params - sets FW or device parameters 7707 * @adap: the adapter 7708 * @mbox: mailbox to use for the FW command 7709 * @pf: the PF 7710 * @vf: the VF 7711 * @nparams: the number of parameters 7712 * @params: the parameter names 7713 * @val: the parameter values 7714 * 7715 * Sets the value of FW or device parameters. Up to 7 parameters can be 7716 * specified at once. 7717 */ 7718 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, 7719 unsigned int vf, unsigned int nparams, const u32 *params, 7720 const u32 *val) 7721 { 7722 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val, 7723 FW_CMD_MAX_TIMEOUT); 7724 } 7725 7726 /** 7727 * t4_cfg_pfvf - configure PF/VF resource limits 7728 * @adap: the adapter 7729 * @mbox: mailbox to use for the FW command 7730 * @pf: the PF being configured 7731 * @vf: the VF being configured 7732 * @txq: the max number of egress queues 7733 * @txq_eth_ctrl: the max number of egress Ethernet or control queues 7734 * @rxqi: the max number of interrupt-capable ingress queues 7735 * @rxq: the max number of interruptless ingress queues 7736 * @tc: the PCI traffic class 7737 * @vi: the max number of virtual interfaces 7738 * @cmask: the channel access rights mask for the PF/VF 7739 * @pmask: the port access rights mask for the PF/VF 7740 * @nexact: the maximum number of exact MPS filters 7741 * @rcaps: read capabilities 7742 * @wxcaps: write/execute capabilities 7743 * 7744 * Configures resource limits and capabilities for a physical or virtual 7745 * function. 7746 */ 7747 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, 7748 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, 7749 unsigned int rxqi, unsigned int rxq, unsigned int tc, 7750 unsigned int vi, unsigned int cmask, unsigned int pmask, 7751 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) 7752 { 7753 struct fw_pfvf_cmd c; 7754 7755 memset(&c, 0, sizeof(c)); 7756 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST | 7757 F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) | 7758 V_FW_PFVF_CMD_VFN(vf)); 7759 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7760 c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) | 7761 V_FW_PFVF_CMD_NIQ(rxq)); 7762 c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) | 7763 V_FW_PFVF_CMD_PMASK(pmask) | 7764 V_FW_PFVF_CMD_NEQ(txq)); 7765 c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) | 7766 V_FW_PFVF_CMD_NVI(vi) | 7767 V_FW_PFVF_CMD_NEXACTF(nexact)); 7768 c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) | 7769 V_FW_PFVF_CMD_WX_CAPS(wxcaps) | 7770 V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl)); 7771 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 7772 } 7773 7774 /** 7775 * t4_alloc_vi_func - allocate a virtual interface 7776 * @adap: the adapter 7777 * @mbox: mailbox to use for the FW command 7778 * @port: physical port associated with the VI 7779 * @pf: the PF owning the VI 7780 * @vf: the VF owning the VI 7781 * @nmac: number of MAC addresses needed (1 to 5) 7782 * @mac: the MAC addresses of the VI 7783 * @rss_size: size of RSS table slice associated with this VI 7784 * @portfunc: which Port Application Function MAC Address is desired 7785 * @idstype: Intrusion Detection Type 7786 * 7787 * Allocates a virtual interface for the given physical port. If @mac is 7788 * not %NULL it contains the MAC addresses of the VI as assigned by FW. 7789 * If @rss_size is %NULL the VI is not assigned any RSS slice by FW. 7790 * @mac should be large enough to hold @nmac Ethernet addresses, they are 7791 * stored consecutively so the space needed is @nmac * 6 bytes. 7792 * Returns a negative error number or the non-negative VI id. 7793 */ 7794 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox, 7795 unsigned int port, unsigned int pf, unsigned int vf, 7796 unsigned int nmac, u8 *mac, u16 *rss_size, 7797 unsigned int portfunc, unsigned int idstype) 7798 { 7799 int ret; 7800 struct fw_vi_cmd c; 7801 7802 memset(&c, 0, sizeof(c)); 7803 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST | 7804 F_FW_CMD_WRITE | F_FW_CMD_EXEC | 7805 V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf)); 7806 c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c)); 7807 c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) | 7808 V_FW_VI_CMD_FUNC(portfunc)); 7809 c.portid_pkd = V_FW_VI_CMD_PORTID(port); 7810 c.nmac = nmac - 1; 7811 if(!rss_size) 7812 c.norss_rsssize = F_FW_VI_CMD_NORSS; 7813 7814 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7815 if (ret) 7816 return ret; 7817 7818 if (mac) { 7819 memcpy(mac, c.mac, sizeof(c.mac)); 7820 switch (nmac) { 7821 case 5: 7822 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); 7823 case 4: 7824 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); 7825 case 3: 7826 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); 7827 case 2: 7828 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); 7829 } 7830 } 7831 if (rss_size) 7832 *rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize)); 7833 return G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid)); 7834 } 7835 7836 /** 7837 * t4_alloc_vi - allocate an [Ethernet Function] virtual interface 7838 * @adap: the adapter 7839 * @mbox: mailbox to use for the FW command 7840 * @port: physical port associated with the VI 7841 * @pf: the PF owning the VI 7842 * @vf: the VF owning the VI 7843 * @nmac: number of MAC addresses needed (1 to 5) 7844 * @mac: the MAC addresses of the VI 7845 * @rss_size: size of RSS table slice associated with this VI 7846 * 7847 * backwards compatible and convieniance routine to allocate a Virtual 7848 * Interface with a Ethernet Port Application Function and Intrustion 7849 * Detection System disabled. 7850 */ 7851 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, 7852 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, 7853 u16 *rss_size) 7854 { 7855 return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size, 7856 FW_VI_FUNC_ETH, 0); 7857 } 7858 7859 /** 7860 * t4_free_vi - free a virtual interface 7861 * @adap: the adapter 7862 * @mbox: mailbox to use for the FW command 7863 * @pf: the PF owning the VI 7864 * @vf: the VF owning the VI 7865 * @viid: virtual interface identifiler 7866 * 7867 * Free a previously allocated virtual interface. 7868 */ 7869 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf, 7870 unsigned int vf, unsigned int viid) 7871 { 7872 struct fw_vi_cmd c; 7873 7874 memset(&c, 0, sizeof(c)); 7875 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | 7876 F_FW_CMD_REQUEST | 7877 F_FW_CMD_EXEC | 7878 V_FW_VI_CMD_PFN(pf) | 7879 V_FW_VI_CMD_VFN(vf)); 7880 c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c)); 7881 c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid)); 7882 7883 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 7884 } 7885 7886 /** 7887 * t4_set_rxmode - set Rx properties of a virtual interface 7888 * @adap: the adapter 7889 * @mbox: mailbox to use for the FW command 7890 * @viid: the VI id 7891 * @mtu: the new MTU or -1 7892 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change 7893 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change 7894 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change 7895 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change 7896 * @sleep_ok: if true we may sleep while awaiting command completion 7897 * 7898 * Sets Rx properties of a virtual interface. 7899 */ 7900 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, 7901 int mtu, int promisc, int all_multi, int bcast, int vlanex, 7902 bool sleep_ok) 7903 { 7904 struct fw_vi_rxmode_cmd c; 7905 7906 /* convert to FW values */ 7907 if (mtu < 0) 7908 mtu = M_FW_VI_RXMODE_CMD_MTU; 7909 if (promisc < 0) 7910 promisc = M_FW_VI_RXMODE_CMD_PROMISCEN; 7911 if (all_multi < 0) 7912 all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN; 7913 if (bcast < 0) 7914 bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN; 7915 if (vlanex < 0) 7916 vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN; 7917 7918 memset(&c, 0, sizeof(c)); 7919 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) | 7920 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 7921 V_FW_VI_RXMODE_CMD_VIID(viid)); 7922 c.retval_len16 = cpu_to_be32(FW_LEN16(c)); 7923 c.mtu_to_vlanexen = 7924 cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) | 7925 V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) | 7926 V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) | 7927 V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) | 7928 V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex)); 7929 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 7930 } 7931 7932 /** 7933 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses 7934 * @adap: the adapter 7935 * @mbox: mailbox to use for the FW command 7936 * @viid: the VI id 7937 * @free: if true any existing filters for this VI id are first removed 7938 * @naddr: the number of MAC addresses to allocate filters for (up to 7) 7939 * @addr: the MAC address(es) 7940 * @idx: where to store the index of each allocated filter 7941 * @hash: pointer to hash address filter bitmap 7942 * @sleep_ok: call is allowed to sleep 7943 * 7944 * Allocates an exact-match filter for each of the supplied addresses and 7945 * sets it to the corresponding address. If @idx is not %NULL it should 7946 * have at least @naddr entries, each of which will be set to the index of 7947 * the filter allocated for the corresponding MAC address. If a filter 7948 * could not be allocated for an address its index is set to 0xffff. 7949 * If @hash is not %NULL addresses that fail to allocate an exact filter 7950 * are hashed and update the hash filter bitmap pointed at by @hash. 7951 * 7952 * Returns a negative error number or the number of filters allocated. 7953 */ 7954 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, 7955 unsigned int viid, bool free, unsigned int naddr, 7956 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) 7957 { 7958 int offset, ret = 0; 7959 struct fw_vi_mac_cmd c; 7960 unsigned int nfilters = 0; 7961 unsigned int max_naddr = adap->chip_params->mps_tcam_size; 7962 unsigned int rem = naddr; 7963 7964 if (naddr > max_naddr) 7965 return -EINVAL; 7966 7967 for (offset = 0; offset < naddr ; /**/) { 7968 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) 7969 ? rem 7970 : ARRAY_SIZE(c.u.exact)); 7971 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, 7972 u.exact[fw_naddr]), 16); 7973 struct fw_vi_mac_exact *p; 7974 int i; 7975 7976 memset(&c, 0, sizeof(c)); 7977 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | 7978 F_FW_CMD_REQUEST | 7979 F_FW_CMD_WRITE | 7980 V_FW_CMD_EXEC(free) | 7981 V_FW_VI_MAC_CMD_VIID(viid)); 7982 c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) | 7983 V_FW_CMD_LEN16(len16)); 7984 7985 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 7986 p->valid_to_idx = 7987 cpu_to_be16(F_FW_VI_MAC_CMD_VALID | 7988 V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC)); 7989 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); 7990 } 7991 7992 /* 7993 * It's okay if we run out of space in our MAC address arena. 7994 * Some of the addresses we submit may get stored so we need 7995 * to run through the reply to see what the results were ... 7996 */ 7997 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); 7998 if (ret && ret != -FW_ENOMEM) 7999 break; 8000 8001 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) { 8002 u16 index = G_FW_VI_MAC_CMD_IDX( 8003 be16_to_cpu(p->valid_to_idx)); 8004 8005 if (idx) 8006 idx[offset+i] = (index >= max_naddr 8007 ? 0xffff 8008 : index); 8009 if (index < max_naddr) 8010 nfilters++; 8011 else if (hash) 8012 *hash |= (1ULL << hash_mac_addr(addr[offset+i])); 8013 } 8014 8015 free = false; 8016 offset += fw_naddr; 8017 rem -= fw_naddr; 8018 } 8019 8020 if (ret == 0 || ret == -FW_ENOMEM) 8021 ret = nfilters; 8022 return ret; 8023 } 8024 8025 /** 8026 * t4_change_mac - modifies the exact-match filter for a MAC address 8027 * @adap: the adapter 8028 * @mbox: mailbox to use for the FW command 8029 * @viid: the VI id 8030 * @idx: index of existing filter for old value of MAC address, or -1 8031 * @addr: the new MAC address value 8032 * @persist: whether a new MAC allocation should be persistent 8033 * @add_smt: if true also add the address to the HW SMT 8034 * 8035 * Modifies an exact-match filter and sets it to the new MAC address if 8036 * @idx >= 0, or adds the MAC address to a new filter if @idx < 0. In the 8037 * latter case the address is added persistently if @persist is %true. 8038 * 8039 * Note that in general it is not possible to modify the value of a given 8040 * filter so the generic way to modify an address filter is to free the one 8041 * being used by the old address value and allocate a new filter for the 8042 * new address value. 8043 * 8044 * Returns a negative error number or the index of the filter with the new 8045 * MAC value. Note that this index may differ from @idx. 8046 */ 8047 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, 8048 int idx, const u8 *addr, bool persist, bool add_smt) 8049 { 8050 int ret, mode; 8051 struct fw_vi_mac_cmd c; 8052 struct fw_vi_mac_exact *p = c.u.exact; 8053 unsigned int max_mac_addr = adap->chip_params->mps_tcam_size; 8054 8055 if (idx < 0) /* new allocation */ 8056 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; 8057 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; 8058 8059 memset(&c, 0, sizeof(c)); 8060 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | 8061 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 8062 V_FW_VI_MAC_CMD_VIID(viid)); 8063 c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1)); 8064 p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID | 8065 V_FW_VI_MAC_CMD_SMAC_RESULT(mode) | 8066 V_FW_VI_MAC_CMD_IDX(idx)); 8067 memcpy(p->macaddr, addr, sizeof(p->macaddr)); 8068 8069 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 8070 if (ret == 0) { 8071 ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx)); 8072 if (ret >= max_mac_addr) 8073 ret = -ENOMEM; 8074 } 8075 return ret; 8076 } 8077 8078 /** 8079 * t4_set_addr_hash - program the MAC inexact-match hash filter 8080 * @adap: the adapter 8081 * @mbox: mailbox to use for the FW command 8082 * @viid: the VI id 8083 * @ucast: whether the hash filter should also match unicast addresses 8084 * @vec: the value to be written to the hash filter 8085 * @sleep_ok: call is allowed to sleep 8086 * 8087 * Sets the 64-bit inexact-match hash filter for a virtual interface. 8088 */ 8089 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, 8090 bool ucast, u64 vec, bool sleep_ok) 8091 { 8092 struct fw_vi_mac_cmd c; 8093 u32 val; 8094 8095 memset(&c, 0, sizeof(c)); 8096 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) | 8097 F_FW_CMD_REQUEST | F_FW_CMD_WRITE | 8098 V_FW_VI_ENABLE_CMD_VIID(viid)); 8099 val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) | 8100 V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1); 8101 c.freemacs_to_len16 = cpu_to_be32(val); 8102 c.u.hash.hashvec = cpu_to_be64(vec); 8103 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); 8104 } 8105 8106 /** 8107 * t4_enable_vi_params - enable/disable a virtual interface 8108 * @adap: the adapter 8109 * @mbox: mailbox to use for the FW command 8110 * @viid: the VI id 8111 * @rx_en: 1=enable Rx, 0=disable Rx 8112 * @tx_en: 1=enable Tx, 0=disable Tx 8113 * @dcb_en: 1=enable delivery of Data Center Bridging messages. 8114 * 8115 * Enables/disables a virtual interface. Note that setting DCB Enable 8116 * only makes sense when enabling a Virtual Interface ... 8117 */ 8118 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, 8119 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) 8120 { 8121 struct fw_vi_enable_cmd c; 8122 8123 memset(&c, 0, sizeof(c)); 8124 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) | 8125 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 8126 V_FW_VI_ENABLE_CMD_VIID(viid)); 8127 c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) | 8128 V_FW_VI_ENABLE_CMD_EEN(tx_en) | 8129 V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) | 8130 FW_LEN16(c)); 8131 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); 8132 } 8133 8134 /** 8135 * t4_enable_vi - enable/disable a virtual interface 8136 * @adap: the adapter 8137 * @mbox: mailbox to use for the FW command 8138 * @viid: the VI id 8139 * @rx_en: 1=enable Rx, 0=disable Rx 8140 * @tx_en: 1=enable Tx, 0=disable Tx 8141 * 8142 * Enables/disables a virtual interface. Note that setting DCB Enable 8143 * only makes sense when enabling a Virtual Interface ... 8144 */ 8145 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, 8146 bool rx_en, bool tx_en) 8147 { 8148 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); 8149 } 8150 8151 /** 8152 * t4_identify_port - identify a VI's port by blinking its LED 8153 * @adap: the adapter 8154 * @mbox: mailbox to use for the FW command 8155 * @viid: the VI id 8156 * @nblinks: how many times to blink LED at 2.5 Hz 8157 * 8158 * Identifies a VI's port by blinking its LED. 8159 */ 8160 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, 8161 unsigned int nblinks) 8162 { 8163 struct fw_vi_enable_cmd c; 8164 8165 memset(&c, 0, sizeof(c)); 8166 c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) | 8167 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 8168 V_FW_VI_ENABLE_CMD_VIID(viid)); 8169 c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c)); 8170 c.blinkdur = cpu_to_be16(nblinks); 8171 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8172 } 8173 8174 /** 8175 * t4_iq_stop - stop an ingress queue and its FLs 8176 * @adap: the adapter 8177 * @mbox: mailbox to use for the FW command 8178 * @pf: the PF owning the queues 8179 * @vf: the VF owning the queues 8180 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 8181 * @iqid: ingress queue id 8182 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8183 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8184 * 8185 * Stops an ingress queue and its associated FLs, if any. This causes 8186 * any current or future data/messages destined for these queues to be 8187 * tossed. 8188 */ 8189 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf, 8190 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8191 unsigned int fl0id, unsigned int fl1id) 8192 { 8193 struct fw_iq_cmd c; 8194 8195 memset(&c, 0, sizeof(c)); 8196 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | 8197 F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) | 8198 V_FW_IQ_CMD_VFN(vf)); 8199 c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c)); 8200 c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype)); 8201 c.iqid = cpu_to_be16(iqid); 8202 c.fl0id = cpu_to_be16(fl0id); 8203 c.fl1id = cpu_to_be16(fl1id); 8204 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8205 } 8206 8207 /** 8208 * t4_iq_free - free an ingress queue and its FLs 8209 * @adap: the adapter 8210 * @mbox: mailbox to use for the FW command 8211 * @pf: the PF owning the queues 8212 * @vf: the VF owning the queues 8213 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) 8214 * @iqid: ingress queue id 8215 * @fl0id: FL0 queue id or 0xffff if no attached FL0 8216 * @fl1id: FL1 queue id or 0xffff if no attached FL1 8217 * 8218 * Frees an ingress queue and its associated FLs, if any. 8219 */ 8220 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8221 unsigned int vf, unsigned int iqtype, unsigned int iqid, 8222 unsigned int fl0id, unsigned int fl1id) 8223 { 8224 struct fw_iq_cmd c; 8225 8226 memset(&c, 0, sizeof(c)); 8227 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | 8228 F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) | 8229 V_FW_IQ_CMD_VFN(vf)); 8230 c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c)); 8231 c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype)); 8232 c.iqid = cpu_to_be16(iqid); 8233 c.fl0id = cpu_to_be16(fl0id); 8234 c.fl1id = cpu_to_be16(fl1id); 8235 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8236 } 8237 8238 /** 8239 * t4_eth_eq_free - free an Ethernet egress queue 8240 * @adap: the adapter 8241 * @mbox: mailbox to use for the FW command 8242 * @pf: the PF owning the queue 8243 * @vf: the VF owning the queue 8244 * @eqid: egress queue id 8245 * 8246 * Frees an Ethernet egress queue. 8247 */ 8248 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8249 unsigned int vf, unsigned int eqid) 8250 { 8251 struct fw_eq_eth_cmd c; 8252 8253 memset(&c, 0, sizeof(c)); 8254 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | 8255 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 8256 V_FW_EQ_ETH_CMD_PFN(pf) | 8257 V_FW_EQ_ETH_CMD_VFN(vf)); 8258 c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c)); 8259 c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid)); 8260 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8261 } 8262 8263 /** 8264 * t4_ctrl_eq_free - free a control egress queue 8265 * @adap: the adapter 8266 * @mbox: mailbox to use for the FW command 8267 * @pf: the PF owning the queue 8268 * @vf: the VF owning the queue 8269 * @eqid: egress queue id 8270 * 8271 * Frees a control egress queue. 8272 */ 8273 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8274 unsigned int vf, unsigned int eqid) 8275 { 8276 struct fw_eq_ctrl_cmd c; 8277 8278 memset(&c, 0, sizeof(c)); 8279 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | 8280 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 8281 V_FW_EQ_CTRL_CMD_PFN(pf) | 8282 V_FW_EQ_CTRL_CMD_VFN(vf)); 8283 c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c)); 8284 c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid)); 8285 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8286 } 8287 8288 /** 8289 * t4_ofld_eq_free - free an offload egress queue 8290 * @adap: the adapter 8291 * @mbox: mailbox to use for the FW command 8292 * @pf: the PF owning the queue 8293 * @vf: the VF owning the queue 8294 * @eqid: egress queue id 8295 * 8296 * Frees a control egress queue. 8297 */ 8298 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, 8299 unsigned int vf, unsigned int eqid) 8300 { 8301 struct fw_eq_ofld_cmd c; 8302 8303 memset(&c, 0, sizeof(c)); 8304 c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | 8305 F_FW_CMD_REQUEST | F_FW_CMD_EXEC | 8306 V_FW_EQ_OFLD_CMD_PFN(pf) | 8307 V_FW_EQ_OFLD_CMD_VFN(vf)); 8308 c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c)); 8309 c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid)); 8310 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); 8311 } 8312 8313 /** 8314 * t4_link_down_rc_str - return a string for a Link Down Reason Code 8315 * @link_down_rc: Link Down Reason Code 8316 * 8317 * Returns a string representation of the Link Down Reason Code. 8318 */ 8319 const char *t4_link_down_rc_str(unsigned char link_down_rc) 8320 { 8321 static const char *reason[] = { 8322 "Link Down", 8323 "Remote Fault", 8324 "Auto-negotiation Failure", 8325 "Reserved3", 8326 "Insufficient Airflow", 8327 "Unable To Determine Reason", 8328 "No RX Signal Detected", 8329 "Reserved7", 8330 }; 8331 8332 if (link_down_rc >= ARRAY_SIZE(reason)) 8333 return "Bad Reason Code"; 8334 8335 return reason[link_down_rc]; 8336 } 8337 8338 /* 8339 * Return the highest speed set in the port capabilities, in Mb/s. 8340 */ 8341 unsigned int fwcap_to_speed(uint32_t caps) 8342 { 8343 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 8344 do { \ 8345 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8346 return __speed; \ 8347 } while (0) 8348 8349 TEST_SPEED_RETURN(400G, 400000); 8350 TEST_SPEED_RETURN(200G, 200000); 8351 TEST_SPEED_RETURN(100G, 100000); 8352 TEST_SPEED_RETURN(50G, 50000); 8353 TEST_SPEED_RETURN(40G, 40000); 8354 TEST_SPEED_RETURN(25G, 25000); 8355 TEST_SPEED_RETURN(10G, 10000); 8356 TEST_SPEED_RETURN(1G, 1000); 8357 TEST_SPEED_RETURN(100M, 100); 8358 8359 #undef TEST_SPEED_RETURN 8360 8361 return 0; 8362 } 8363 8364 /* 8365 * Return the port capabilities bit for the given speed, which is in Mb/s. 8366 */ 8367 uint32_t speed_to_fwcap(unsigned int speed) 8368 { 8369 #define TEST_SPEED_RETURN(__caps_speed, __speed) \ 8370 do { \ 8371 if (speed == __speed) \ 8372 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 8373 } while (0) 8374 8375 TEST_SPEED_RETURN(400G, 400000); 8376 TEST_SPEED_RETURN(200G, 200000); 8377 TEST_SPEED_RETURN(100G, 100000); 8378 TEST_SPEED_RETURN(50G, 50000); 8379 TEST_SPEED_RETURN(40G, 40000); 8380 TEST_SPEED_RETURN(25G, 25000); 8381 TEST_SPEED_RETURN(10G, 10000); 8382 TEST_SPEED_RETURN(1G, 1000); 8383 TEST_SPEED_RETURN(100M, 100); 8384 8385 #undef TEST_SPEED_RETURN 8386 8387 return 0; 8388 } 8389 8390 /* 8391 * Return the port capabilities bit for the highest speed in the capabilities. 8392 */ 8393 uint32_t fwcap_top_speed(uint32_t caps) 8394 { 8395 #define TEST_SPEED_RETURN(__caps_speed) \ 8396 do { \ 8397 if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ 8398 return FW_PORT_CAP32_SPEED_##__caps_speed; \ 8399 } while (0) 8400 8401 TEST_SPEED_RETURN(400G); 8402 TEST_SPEED_RETURN(200G); 8403 TEST_SPEED_RETURN(100G); 8404 TEST_SPEED_RETURN(50G); 8405 TEST_SPEED_RETURN(40G); 8406 TEST_SPEED_RETURN(25G); 8407 TEST_SPEED_RETURN(10G); 8408 TEST_SPEED_RETURN(1G); 8409 TEST_SPEED_RETURN(100M); 8410 8411 #undef TEST_SPEED_RETURN 8412 8413 return 0; 8414 } 8415 8416 8417 /** 8418 * lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities 8419 * @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value 8420 * 8421 * Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new 8422 * 32-bit Port Capabilities value. 8423 */ 8424 static uint32_t lstatus_to_fwcap(u32 lstatus) 8425 { 8426 uint32_t linkattr = 0; 8427 8428 /* 8429 * Unfortunately the format of the Link Status in the old 8430 * 16-bit Port Information message isn't the same as the 8431 * 16-bit Port Capabilities bitfield used everywhere else ... 8432 */ 8433 if (lstatus & F_FW_PORT_CMD_RXPAUSE) 8434 linkattr |= FW_PORT_CAP32_FC_RX; 8435 if (lstatus & F_FW_PORT_CMD_TXPAUSE) 8436 linkattr |= FW_PORT_CAP32_FC_TX; 8437 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M)) 8438 linkattr |= FW_PORT_CAP32_SPEED_100M; 8439 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G)) 8440 linkattr |= FW_PORT_CAP32_SPEED_1G; 8441 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G)) 8442 linkattr |= FW_PORT_CAP32_SPEED_10G; 8443 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G)) 8444 linkattr |= FW_PORT_CAP32_SPEED_25G; 8445 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G)) 8446 linkattr |= FW_PORT_CAP32_SPEED_40G; 8447 if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G)) 8448 linkattr |= FW_PORT_CAP32_SPEED_100G; 8449 8450 return linkattr; 8451 } 8452 8453 /* 8454 * Updates all fields owned by the common code in port_info and link_config 8455 * based on information provided by the firmware. Does not touch any 8456 * requested_* field. 8457 */ 8458 static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p, 8459 enum fw_port_action action, bool *mod_changed, bool *link_changed) 8460 { 8461 struct link_config old_lc, *lc = &pi->link_cfg; 8462 unsigned char fc, fec; 8463 u32 stat, linkattr; 8464 int old_ptype, old_mtype; 8465 8466 old_ptype = pi->port_type; 8467 old_mtype = pi->mod_type; 8468 old_lc = *lc; 8469 if (action == FW_PORT_ACTION_GET_PORT_INFO) { 8470 stat = be32_to_cpu(p->u.info.lstatus_to_modtype); 8471 8472 pi->port_type = G_FW_PORT_CMD_PTYPE(stat); 8473 pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat); 8474 pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ? 8475 G_FW_PORT_CMD_MDIOADDR(stat) : -1; 8476 8477 lc->supported = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap)); 8478 lc->advertising = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap)); 8479 lc->lp_advertising = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap)); 8480 lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0; 8481 lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat); 8482 8483 linkattr = lstatus_to_fwcap(stat); 8484 } else if (action == FW_PORT_ACTION_GET_PORT_INFO32) { 8485 stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32); 8486 8487 pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat); 8488 pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat); 8489 pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ? 8490 G_FW_PORT_CMD_MDIOADDR32(stat) : -1; 8491 8492 lc->supported = be32_to_cpu(p->u.info32.pcaps32); 8493 lc->advertising = be32_to_cpu(p->u.info32.acaps32); 8494 lc->lp_advertising = be16_to_cpu(p->u.info32.lpacaps32); 8495 lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0; 8496 lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat); 8497 8498 linkattr = be32_to_cpu(p->u.info32.linkattr32); 8499 } else { 8500 CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action); 8501 return; 8502 } 8503 8504 lc->speed = fwcap_to_speed(linkattr); 8505 8506 fc = 0; 8507 if (linkattr & FW_PORT_CAP32_FC_RX) 8508 fc |= PAUSE_RX; 8509 if (linkattr & FW_PORT_CAP32_FC_TX) 8510 fc |= PAUSE_TX; 8511 lc->fc = fc; 8512 8513 fec = FEC_NONE; 8514 if (linkattr & FW_PORT_CAP32_FEC_RS) 8515 fec |= FEC_RS; 8516 if (linkattr & FW_PORT_CAP32_FEC_BASER_RS) 8517 fec |= FEC_BASER_RS; 8518 lc->fec = fec; 8519 8520 if (mod_changed != NULL) 8521 *mod_changed = false; 8522 if (link_changed != NULL) 8523 *link_changed = false; 8524 if (old_ptype != pi->port_type || old_mtype != pi->mod_type || 8525 old_lc.supported != lc->supported) { 8526 if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) { 8527 lc->fec_hint = lc->advertising & 8528 V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC); 8529 } 8530 if (mod_changed != NULL) 8531 *mod_changed = true; 8532 } 8533 if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed || 8534 old_lc.fec != lc->fec || old_lc.fc != lc->fc) { 8535 if (link_changed != NULL) 8536 *link_changed = true; 8537 } 8538 } 8539 8540 /** 8541 * t4_update_port_info - retrieve and update port information if changed 8542 * @pi: the port_info 8543 * 8544 * We issue a Get Port Information Command to the Firmware and, if 8545 * successful, we check to see if anything is different from what we 8546 * last recorded and update things accordingly. 8547 */ 8548 int t4_update_port_info(struct port_info *pi) 8549 { 8550 struct adapter *sc = pi->adapter; 8551 struct fw_port_cmd cmd; 8552 enum fw_port_action action; 8553 int ret; 8554 8555 memset(&cmd, 0, sizeof(cmd)); 8556 cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) | 8557 F_FW_CMD_REQUEST | F_FW_CMD_READ | 8558 V_FW_PORT_CMD_PORTID(pi->tx_chan)); 8559 action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 : 8560 FW_PORT_ACTION_GET_PORT_INFO; 8561 cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) | 8562 FW_LEN16(cmd)); 8563 ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd); 8564 if (ret) 8565 return ret; 8566 8567 handle_port_info(pi, &cmd, action, NULL, NULL); 8568 return 0; 8569 } 8570 8571 /** 8572 * t4_handle_fw_rpl - process a FW reply message 8573 * @adap: the adapter 8574 * @rpl: start of the FW message 8575 * 8576 * Processes a FW message, such as link state change messages. 8577 */ 8578 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) 8579 { 8580 u8 opcode = *(const u8 *)rpl; 8581 const struct fw_port_cmd *p = (const void *)rpl; 8582 enum fw_port_action action = 8583 G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16)); 8584 bool mod_changed, link_changed; 8585 8586 if (opcode == FW_PORT_CMD && 8587 (action == FW_PORT_ACTION_GET_PORT_INFO || 8588 action == FW_PORT_ACTION_GET_PORT_INFO32)) { 8589 /* link/module state change message */ 8590 int i; 8591 int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid)); 8592 struct port_info *pi = NULL; 8593 struct link_config *lc; 8594 8595 for_each_port(adap, i) { 8596 pi = adap2pinfo(adap, i); 8597 if (pi->tx_chan == chan) 8598 break; 8599 } 8600 8601 lc = &pi->link_cfg; 8602 PORT_LOCK(pi); 8603 handle_port_info(pi, p, action, &mod_changed, &link_changed); 8604 PORT_UNLOCK(pi); 8605 if (mod_changed) 8606 t4_os_portmod_changed(pi); 8607 if (link_changed) { 8608 PORT_LOCK(pi); 8609 t4_os_link_changed(pi); 8610 PORT_UNLOCK(pi); 8611 } 8612 } else { 8613 CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode); 8614 return -EINVAL; 8615 } 8616 return 0; 8617 } 8618 8619 /** 8620 * get_pci_mode - determine a card's PCI mode 8621 * @adapter: the adapter 8622 * @p: where to store the PCI settings 8623 * 8624 * Determines a card's PCI mode and associated parameters, such as speed 8625 * and width. 8626 */ 8627 static void get_pci_mode(struct adapter *adapter, 8628 struct pci_params *p) 8629 { 8630 u16 val; 8631 u32 pcie_cap; 8632 8633 pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP); 8634 if (pcie_cap) { 8635 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val); 8636 p->speed = val & PCI_EXP_LNKSTA_CLS; 8637 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; 8638 } 8639 } 8640 8641 struct flash_desc { 8642 u32 vendor_and_model_id; 8643 u32 size_mb; 8644 }; 8645 8646 int t4_get_flash_params(struct adapter *adapter) 8647 { 8648 /* 8649 * Table for non-standard supported Flash parts. Note, all Flash 8650 * parts must have 64KB sectors. 8651 */ 8652 static struct flash_desc supported_flash[] = { 8653 { 0x00150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ 8654 }; 8655 8656 int ret; 8657 u32 flashid = 0; 8658 unsigned int part, manufacturer; 8659 unsigned int density, size = 0; 8660 8661 8662 /* 8663 * Issue a Read ID Command to the Flash part. We decode supported 8664 * Flash parts and their sizes from this. There's a newer Query 8665 * Command which can retrieve detailed geometry information but many 8666 * Flash parts don't support it. 8667 */ 8668 ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID); 8669 if (!ret) 8670 ret = sf1_read(adapter, 3, 0, 1, &flashid); 8671 t4_write_reg(adapter, A_SF_OP, 0); /* unlock SF */ 8672 if (ret < 0) 8673 return ret; 8674 8675 /* 8676 * Check to see if it's one of our non-standard supported Flash parts. 8677 */ 8678 for (part = 0; part < ARRAY_SIZE(supported_flash); part++) 8679 if (supported_flash[part].vendor_and_model_id == flashid) { 8680 adapter->params.sf_size = 8681 supported_flash[part].size_mb; 8682 adapter->params.sf_nsec = 8683 adapter->params.sf_size / SF_SEC_SIZE; 8684 goto found; 8685 } 8686 8687 /* 8688 * Decode Flash part size. The code below looks repetative with 8689 * common encodings, but that's not guaranteed in the JEDEC 8690 * specification for the Read JADEC ID command. The only thing that 8691 * we're guaranteed by the JADEC specification is where the 8692 * Manufacturer ID is in the returned result. After that each 8693 * Manufacturer ~could~ encode things completely differently. 8694 * Note, all Flash parts must have 64KB sectors. 8695 */ 8696 manufacturer = flashid & 0xff; 8697 switch (manufacturer) { 8698 case 0x20: /* Micron/Numonix */ 8699 /* 8700 * This Density -> Size decoding table is taken from Micron 8701 * Data Sheets. 8702 */ 8703 density = (flashid >> 16) & 0xff; 8704 switch (density) { 8705 case 0x14: size = 1 << 20; break; /* 1MB */ 8706 case 0x15: size = 1 << 21; break; /* 2MB */ 8707 case 0x16: size = 1 << 22; break; /* 4MB */ 8708 case 0x17: size = 1 << 23; break; /* 8MB */ 8709 case 0x18: size = 1 << 24; break; /* 16MB */ 8710 case 0x19: size = 1 << 25; break; /* 32MB */ 8711 case 0x20: size = 1 << 26; break; /* 64MB */ 8712 case 0x21: size = 1 << 27; break; /* 128MB */ 8713 case 0x22: size = 1 << 28; break; /* 256MB */ 8714 } 8715 break; 8716 8717 case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */ 8718 /* 8719 * This Density -> Size decoding table is taken from ISSI 8720 * Data Sheets. 8721 */ 8722 density = (flashid >> 16) & 0xff; 8723 switch (density) { 8724 case 0x16: size = 1 << 25; break; /* 32MB */ 8725 case 0x17: size = 1 << 26; break; /* 64MB */ 8726 } 8727 break; 8728 8729 case 0xc2: /* Macronix */ 8730 /* 8731 * This Density -> Size decoding table is taken from Macronix 8732 * Data Sheets. 8733 */ 8734 density = (flashid >> 16) & 0xff; 8735 switch (density) { 8736 case 0x17: size = 1 << 23; break; /* 8MB */ 8737 case 0x18: size = 1 << 24; break; /* 16MB */ 8738 } 8739 break; 8740 8741 case 0xef: /* Winbond */ 8742 /* 8743 * This Density -> Size decoding table is taken from Winbond 8744 * Data Sheets. 8745 */ 8746 density = (flashid >> 16) & 0xff; 8747 switch (density) { 8748 case 0x17: size = 1 << 23; break; /* 8MB */ 8749 case 0x18: size = 1 << 24; break; /* 16MB */ 8750 } 8751 break; 8752 } 8753 8754 /* If we didn't recognize the FLASH part, that's no real issue: the 8755 * Hardware/Software contract says that Hardware will _*ALWAYS*_ 8756 * use a FLASH part which is at least 4MB in size and has 64KB 8757 * sectors. The unrecognized FLASH part is likely to be much larger 8758 * than 4MB, but that's all we really need. 8759 */ 8760 if (size == 0) { 8761 CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid); 8762 size = 1 << 22; 8763 } 8764 8765 /* 8766 * Store decoded Flash size and fall through into vetting code. 8767 */ 8768 adapter->params.sf_size = size; 8769 adapter->params.sf_nsec = size / SF_SEC_SIZE; 8770 8771 found: 8772 /* 8773 * We should ~probably~ reject adapters with FLASHes which are too 8774 * small but we have some legacy FPGAs with small FLASHes that we'd 8775 * still like to use. So instead we emit a scary message ... 8776 */ 8777 if (adapter->params.sf_size < FLASH_MIN_SIZE) 8778 CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n", 8779 flashid, adapter->params.sf_size, FLASH_MIN_SIZE); 8780 8781 return 0; 8782 } 8783 8784 static void set_pcie_completion_timeout(struct adapter *adapter, 8785 u8 range) 8786 { 8787 u16 val; 8788 u32 pcie_cap; 8789 8790 pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP); 8791 if (pcie_cap) { 8792 t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val); 8793 val &= 0xfff0; 8794 val |= range ; 8795 t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val); 8796 } 8797 } 8798 8799 const struct chip_params *t4_get_chip_params(int chipid) 8800 { 8801 static const struct chip_params chip_params[] = { 8802 { 8803 /* T4 */ 8804 .nchan = NCHAN, 8805 .pm_stats_cnt = PM_NSTATS, 8806 .cng_ch_bits_log = 2, 8807 .nsched_cls = 15, 8808 .cim_num_obq = CIM_NUM_OBQ, 8809 .mps_rplc_size = 128, 8810 .vfcount = 128, 8811 .sge_fl_db = F_DBPRIO, 8812 .mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES, 8813 }, 8814 { 8815 /* T5 */ 8816 .nchan = NCHAN, 8817 .pm_stats_cnt = PM_NSTATS, 8818 .cng_ch_bits_log = 2, 8819 .nsched_cls = 16, 8820 .cim_num_obq = CIM_NUM_OBQ_T5, 8821 .mps_rplc_size = 128, 8822 .vfcount = 128, 8823 .sge_fl_db = F_DBPRIO | F_DBTYPE, 8824 .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES, 8825 }, 8826 { 8827 /* T6 */ 8828 .nchan = T6_NCHAN, 8829 .pm_stats_cnt = T6_PM_NSTATS, 8830 .cng_ch_bits_log = 3, 8831 .nsched_cls = 16, 8832 .cim_num_obq = CIM_NUM_OBQ_T5, 8833 .mps_rplc_size = 256, 8834 .vfcount = 256, 8835 .sge_fl_db = 0, 8836 .mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES, 8837 }, 8838 }; 8839 8840 chipid -= CHELSIO_T4; 8841 if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params)) 8842 return NULL; 8843 8844 return &chip_params[chipid]; 8845 } 8846 8847 /** 8848 * t4_prep_adapter - prepare SW and HW for operation 8849 * @adapter: the adapter 8850 * @buf: temporary space of at least VPD_LEN size provided by the caller. 8851 * 8852 * Initialize adapter SW state for the various HW modules, set initial 8853 * values for some adapter tunables, take PHYs out of reset, and 8854 * initialize the MDIO interface. 8855 */ 8856 int t4_prep_adapter(struct adapter *adapter, u32 *buf) 8857 { 8858 int ret; 8859 uint16_t device_id; 8860 uint32_t pl_rev; 8861 8862 get_pci_mode(adapter, &adapter->params.pci); 8863 8864 pl_rev = t4_read_reg(adapter, A_PL_REV); 8865 adapter->params.chipid = G_CHIPID(pl_rev); 8866 adapter->params.rev = G_REV(pl_rev); 8867 if (adapter->params.chipid == 0) { 8868 /* T4 did not have chipid in PL_REV (T5 onwards do) */ 8869 adapter->params.chipid = CHELSIO_T4; 8870 8871 /* T4A1 chip is not supported */ 8872 if (adapter->params.rev == 1) { 8873 CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n"); 8874 return -EINVAL; 8875 } 8876 } 8877 8878 adapter->chip_params = t4_get_chip_params(chip_id(adapter)); 8879 if (adapter->chip_params == NULL) 8880 return -EINVAL; 8881 8882 adapter->params.pci.vpd_cap_addr = 8883 t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD); 8884 8885 ret = t4_get_flash_params(adapter); 8886 if (ret < 0) 8887 return ret; 8888 8889 /* Cards with real ASICs have the chipid in the PCIe device id */ 8890 t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id); 8891 if (device_id >> 12 == chip_id(adapter)) 8892 adapter->params.cim_la_size = CIMLA_SIZE; 8893 else { 8894 /* FPGA */ 8895 adapter->params.fpga = 1; 8896 adapter->params.cim_la_size = 2 * CIMLA_SIZE; 8897 } 8898 8899 ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf); 8900 if (ret < 0) 8901 return ret; 8902 8903 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); 8904 8905 /* 8906 * Default port and clock for debugging in case we can't reach FW. 8907 */ 8908 adapter->params.nports = 1; 8909 adapter->params.portvec = 1; 8910 adapter->params.vpd.cclk = 50000; 8911 8912 /* Set pci completion timeout value to 4 seconds. */ 8913 set_pcie_completion_timeout(adapter, 0xd); 8914 return 0; 8915 } 8916 8917 /** 8918 * t4_shutdown_adapter - shut down adapter, host & wire 8919 * @adapter: the adapter 8920 * 8921 * Perform an emergency shutdown of the adapter and stop it from 8922 * continuing any further communication on the ports or DMA to the 8923 * host. This is typically used when the adapter and/or firmware 8924 * have crashed and we want to prevent any further accidental 8925 * communication with the rest of the world. This will also force 8926 * the port Link Status to go down -- if register writes work -- 8927 * which should help our peers figure out that we're down. 8928 */ 8929 int t4_shutdown_adapter(struct adapter *adapter) 8930 { 8931 int port; 8932 8933 t4_intr_disable(adapter); 8934 t4_write_reg(adapter, A_DBG_GPIO_EN, 0); 8935 for_each_port(adapter, port) { 8936 u32 a_port_cfg = is_t4(adapter) ? 8937 PORT_REG(port, A_XGMAC_PORT_CFG) : 8938 T5_PORT_REG(port, A_MAC_PORT_CFG); 8939 8940 t4_write_reg(adapter, a_port_cfg, 8941 t4_read_reg(adapter, a_port_cfg) 8942 & ~V_SIGNAL_DET(1)); 8943 } 8944 t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0); 8945 8946 return 0; 8947 } 8948 8949 /** 8950 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information 8951 * @adapter: the adapter 8952 * @qid: the Queue ID 8953 * @qtype: the Ingress or Egress type for @qid 8954 * @user: true if this request is for a user mode queue 8955 * @pbar2_qoffset: BAR2 Queue Offset 8956 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues 8957 * 8958 * Returns the BAR2 SGE Queue Registers information associated with the 8959 * indicated Absolute Queue ID. These are passed back in return value 8960 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue 8961 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. 8962 * 8963 * This may return an error which indicates that BAR2 SGE Queue 8964 * registers aren't available. If an error is not returned, then the 8965 * following values are returned: 8966 * 8967 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers 8968 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid 8969 * 8970 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which 8971 * require the "Inferred Queue ID" ability may be used. E.g. the 8972 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, 8973 * then these "Inferred Queue ID" register may not be used. 8974 */ 8975 int t4_bar2_sge_qregs(struct adapter *adapter, 8976 unsigned int qid, 8977 enum t4_bar2_qtype qtype, 8978 int user, 8979 u64 *pbar2_qoffset, 8980 unsigned int *pbar2_qid) 8981 { 8982 unsigned int page_shift, page_size, qpp_shift, qpp_mask; 8983 u64 bar2_page_offset, bar2_qoffset; 8984 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; 8985 8986 /* T4 doesn't support BAR2 SGE Queue registers for kernel 8987 * mode queues. 8988 */ 8989 if (!user && is_t4(adapter)) 8990 return -EINVAL; 8991 8992 /* Get our SGE Page Size parameters. 8993 */ 8994 page_shift = adapter->params.sge.page_shift; 8995 page_size = 1 << page_shift; 8996 8997 /* Get the right Queues per Page parameters for our Queue. 8998 */ 8999 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS 9000 ? adapter->params.sge.eq_s_qpp 9001 : adapter->params.sge.iq_s_qpp); 9002 qpp_mask = (1 << qpp_shift) - 1; 9003 9004 /* Calculate the basics of the BAR2 SGE Queue register area: 9005 * o The BAR2 page the Queue registers will be in. 9006 * o The BAR2 Queue ID. 9007 * o The BAR2 Queue ID Offset into the BAR2 page. 9008 */ 9009 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); 9010 bar2_qid = qid & qpp_mask; 9011 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; 9012 9013 /* If the BAR2 Queue ID Offset is less than the Page Size, then the 9014 * hardware will infer the Absolute Queue ID simply from the writes to 9015 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a 9016 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply 9017 * write to the first BAR2 SGE Queue Area within the BAR2 Page with 9018 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID 9019 * from the BAR2 Page and BAR2 Queue ID. 9020 * 9021 * One important censequence of this is that some BAR2 SGE registers 9022 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID 9023 * there. But other registers synthesize the SGE Queue ID purely 9024 * from the writes to the registers -- the Write Combined Doorbell 9025 * Buffer is a good example. These BAR2 SGE Registers are only 9026 * available for those BAR2 SGE Register areas where the SGE Absolute 9027 * Queue ID can be inferred from simple writes. 9028 */ 9029 bar2_qoffset = bar2_page_offset; 9030 bar2_qinferred = (bar2_qid_offset < page_size); 9031 if (bar2_qinferred) { 9032 bar2_qoffset += bar2_qid_offset; 9033 bar2_qid = 0; 9034 } 9035 9036 *pbar2_qoffset = bar2_qoffset; 9037 *pbar2_qid = bar2_qid; 9038 return 0; 9039 } 9040 9041 /** 9042 * t4_init_devlog_params - initialize adapter->params.devlog 9043 * @adap: the adapter 9044 * @fw_attach: whether we can talk to the firmware 9045 * 9046 * Initialize various fields of the adapter's Firmware Device Log 9047 * Parameters structure. 9048 */ 9049 int t4_init_devlog_params(struct adapter *adap, int fw_attach) 9050 { 9051 struct devlog_params *dparams = &adap->params.devlog; 9052 u32 pf_dparams; 9053 unsigned int devlog_meminfo; 9054 struct fw_devlog_cmd devlog_cmd; 9055 int ret; 9056 9057 /* If we're dealing with newer firmware, the Device Log Paramerters 9058 * are stored in a designated register which allows us to access the 9059 * Device Log even if we can't talk to the firmware. 9060 */ 9061 pf_dparams = 9062 t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG)); 9063 if (pf_dparams) { 9064 unsigned int nentries, nentries128; 9065 9066 dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams); 9067 dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4; 9068 9069 nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams); 9070 nentries = (nentries128 + 1) * 128; 9071 dparams->size = nentries * sizeof(struct fw_devlog_e); 9072 9073 return 0; 9074 } 9075 9076 /* 9077 * For any failing returns ... 9078 */ 9079 memset(dparams, 0, sizeof *dparams); 9080 9081 /* 9082 * If we can't talk to the firmware, there's really nothing we can do 9083 * at this point. 9084 */ 9085 if (!fw_attach) 9086 return -ENXIO; 9087 9088 /* Otherwise, ask the firmware for it's Device Log Parameters. 9089 */ 9090 memset(&devlog_cmd, 0, sizeof devlog_cmd); 9091 devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) | 9092 F_FW_CMD_REQUEST | F_FW_CMD_READ); 9093 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 9094 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd), 9095 &devlog_cmd); 9096 if (ret) 9097 return ret; 9098 9099 devlog_meminfo = 9100 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog); 9101 dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo); 9102 dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4; 9103 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog); 9104 9105 return 0; 9106 } 9107 9108 /** 9109 * t4_init_sge_params - initialize adap->params.sge 9110 * @adapter: the adapter 9111 * 9112 * Initialize various fields of the adapter's SGE Parameters structure. 9113 */ 9114 int t4_init_sge_params(struct adapter *adapter) 9115 { 9116 u32 r; 9117 struct sge_params *sp = &adapter->params.sge; 9118 unsigned i, tscale = 1; 9119 9120 r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD); 9121 sp->counter_val[0] = G_THRESHOLD_0(r); 9122 sp->counter_val[1] = G_THRESHOLD_1(r); 9123 sp->counter_val[2] = G_THRESHOLD_2(r); 9124 sp->counter_val[3] = G_THRESHOLD_3(r); 9125 9126 if (chip_id(adapter) >= CHELSIO_T6) { 9127 r = t4_read_reg(adapter, A_SGE_ITP_CONTROL); 9128 tscale = G_TSCALE(r); 9129 if (tscale == 0) 9130 tscale = 1; 9131 else 9132 tscale += 2; 9133 } 9134 9135 r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1); 9136 sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale; 9137 sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale; 9138 r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3); 9139 sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale; 9140 sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale; 9141 r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5); 9142 sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale; 9143 sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale; 9144 9145 r = t4_read_reg(adapter, A_SGE_CONM_CTRL); 9146 sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1; 9147 if (is_t4(adapter)) 9148 sp->fl_starve_threshold2 = sp->fl_starve_threshold; 9149 else if (is_t5(adapter)) 9150 sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1; 9151 else 9152 sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1; 9153 9154 /* egress queues: log2 of # of doorbells per BAR2 page */ 9155 r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF); 9156 r >>= S_QUEUESPERPAGEPF0 + 9157 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf; 9158 sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0; 9159 9160 /* ingress queues: log2 of # of doorbells per BAR2 page */ 9161 r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF); 9162 r >>= S_QUEUESPERPAGEPF0 + 9163 (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf; 9164 sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0; 9165 9166 r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE); 9167 r >>= S_HOSTPAGESIZEPF0 + 9168 (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf; 9169 sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10; 9170 9171 r = t4_read_reg(adapter, A_SGE_CONTROL); 9172 sp->sge_control = r; 9173 sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64; 9174 sp->fl_pktshift = G_PKTSHIFT(r); 9175 if (chip_id(adapter) <= CHELSIO_T5) { 9176 sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) + 9177 X_INGPADBOUNDARY_SHIFT); 9178 } else { 9179 sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) + 9180 X_T6_INGPADBOUNDARY_SHIFT); 9181 } 9182 if (is_t4(adapter)) 9183 sp->pack_boundary = sp->pad_boundary; 9184 else { 9185 r = t4_read_reg(adapter, A_SGE_CONTROL2); 9186 if (G_INGPACKBOUNDARY(r) == 0) 9187 sp->pack_boundary = 16; 9188 else 9189 sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5); 9190 } 9191 for (i = 0; i < SGE_FLBUF_SIZES; i++) 9192 sp->sge_fl_buffer_size[i] = t4_read_reg(adapter, 9193 A_SGE_FL_BUFFER_SIZE0 + (4 * i)); 9194 9195 return 0; 9196 } 9197 9198 /* 9199 * Read and cache the adapter's compressed filter mode and ingress config. 9200 */ 9201 static void read_filter_mode_and_ingress_config(struct adapter *adap, 9202 bool sleep_ok) 9203 { 9204 uint32_t v; 9205 struct tp_params *tpp = &adap->params.tp; 9206 9207 t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP, 9208 sleep_ok); 9209 t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG, 9210 sleep_ok); 9211 9212 /* 9213 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field 9214 * shift positions of several elements of the Compressed Filter Tuple 9215 * for this adapter which we need frequently ... 9216 */ 9217 tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE); 9218 tpp->port_shift = t4_filter_field_shift(adap, F_PORT); 9219 tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID); 9220 tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN); 9221 tpp->tos_shift = t4_filter_field_shift(adap, F_TOS); 9222 tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL); 9223 tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE); 9224 tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH); 9225 tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE); 9226 tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION); 9227 9228 if (chip_id(adap) > CHELSIO_T4) { 9229 v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3)); 9230 adap->params.tp.hash_filter_mask = v; 9231 v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4)); 9232 adap->params.tp.hash_filter_mask |= (u64)v << 32; 9233 } 9234 } 9235 9236 /** 9237 * t4_init_tp_params - initialize adap->params.tp 9238 * @adap: the adapter 9239 * 9240 * Initialize various fields of the adapter's TP Parameters structure. 9241 */ 9242 int t4_init_tp_params(struct adapter *adap, bool sleep_ok) 9243 { 9244 int chan; 9245 u32 v; 9246 struct tp_params *tpp = &adap->params.tp; 9247 9248 v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION); 9249 tpp->tre = G_TIMERRESOLUTION(v); 9250 tpp->dack_re = G_DELAYEDACKRESOLUTION(v); 9251 9252 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ 9253 for (chan = 0; chan < MAX_NCHAN; chan++) 9254 tpp->tx_modq[chan] = chan; 9255 9256 read_filter_mode_and_ingress_config(adap, sleep_ok); 9257 9258 /* 9259 * Cache a mask of the bits that represent the error vector portion of 9260 * rx_pkt.err_vec. T6+ can use a compressed error vector to make room 9261 * for information about outer encapsulation (GENEVE/VXLAN/NVGRE). 9262 */ 9263 tpp->err_vec_mask = htobe16(0xffff); 9264 if (chip_id(adap) > CHELSIO_T5) { 9265 v = t4_read_reg(adap, A_TP_OUT_CONFIG); 9266 if (v & F_CRXPKTENC) { 9267 tpp->err_vec_mask = 9268 htobe16(V_T6_COMPR_RXERR_VEC(M_T6_COMPR_RXERR_VEC)); 9269 } 9270 } 9271 9272 return 0; 9273 } 9274 9275 /** 9276 * t4_filter_field_shift - calculate filter field shift 9277 * @adap: the adapter 9278 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) 9279 * 9280 * Return the shift position of a filter field within the Compressed 9281 * Filter Tuple. The filter field is specified via its selection bit 9282 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. 9283 */ 9284 int t4_filter_field_shift(const struct adapter *adap, int filter_sel) 9285 { 9286 unsigned int filter_mode = adap->params.tp.vlan_pri_map; 9287 unsigned int sel; 9288 int field_shift; 9289 9290 if ((filter_mode & filter_sel) == 0) 9291 return -1; 9292 9293 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { 9294 switch (filter_mode & sel) { 9295 case F_FCOE: 9296 field_shift += W_FT_FCOE; 9297 break; 9298 case F_PORT: 9299 field_shift += W_FT_PORT; 9300 break; 9301 case F_VNIC_ID: 9302 field_shift += W_FT_VNIC_ID; 9303 break; 9304 case F_VLAN: 9305 field_shift += W_FT_VLAN; 9306 break; 9307 case F_TOS: 9308 field_shift += W_FT_TOS; 9309 break; 9310 case F_PROTOCOL: 9311 field_shift += W_FT_PROTOCOL; 9312 break; 9313 case F_ETHERTYPE: 9314 field_shift += W_FT_ETHERTYPE; 9315 break; 9316 case F_MACMATCH: 9317 field_shift += W_FT_MACMATCH; 9318 break; 9319 case F_MPSHITTYPE: 9320 field_shift += W_FT_MPSHITTYPE; 9321 break; 9322 case F_FRAGMENTATION: 9323 field_shift += W_FT_FRAGMENTATION; 9324 break; 9325 } 9326 } 9327 return field_shift; 9328 } 9329 9330 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id) 9331 { 9332 u8 addr[6]; 9333 int ret, i, j; 9334 u16 rss_size; 9335 struct port_info *p = adap2pinfo(adap, port_id); 9336 u32 param, val; 9337 9338 for (i = 0, j = -1; i <= p->port_id; i++) { 9339 do { 9340 j++; 9341 } while ((adap->params.portvec & (1 << j)) == 0); 9342 } 9343 9344 p->tx_chan = j; 9345 p->mps_bg_map = t4_get_mps_bg_map(adap, j); 9346 p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j); 9347 p->lport = j; 9348 9349 if (!(adap->flags & IS_VF) || 9350 adap->params.vfres.r_caps & FW_CMD_CAP_PORT) { 9351 t4_update_port_info(p); 9352 } 9353 9354 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size); 9355 if (ret < 0) 9356 return ret; 9357 9358 p->vi[0].viid = ret; 9359 if (chip_id(adap) <= CHELSIO_T5) 9360 p->vi[0].smt_idx = (ret & 0x7f) << 1; 9361 else 9362 p->vi[0].smt_idx = (ret & 0x7f); 9363 p->vi[0].rss_size = rss_size; 9364 t4_os_set_hw_addr(p, addr); 9365 9366 param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 9367 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) | 9368 V_FW_PARAMS_PARAM_YZ(p->vi[0].viid); 9369 ret = t4_query_params(adap, mbox, pf, vf, 1, ¶m, &val); 9370 if (ret) 9371 p->vi[0].rss_base = 0xffff; 9372 else { 9373 /* MPASS((val >> 16) == rss_size); */ 9374 p->vi[0].rss_base = val & 0xffff; 9375 } 9376 9377 return 0; 9378 } 9379 9380 /** 9381 * t4_read_cimq_cfg - read CIM queue configuration 9382 * @adap: the adapter 9383 * @base: holds the queue base addresses in bytes 9384 * @size: holds the queue sizes in bytes 9385 * @thres: holds the queue full thresholds in bytes 9386 * 9387 * Returns the current configuration of the CIM queues, starting with 9388 * the IBQs, then the OBQs. 9389 */ 9390 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres) 9391 { 9392 unsigned int i, v; 9393 int cim_num_obq = adap->chip_params->cim_num_obq; 9394 9395 for (i = 0; i < CIM_NUM_IBQ; i++) { 9396 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT | 9397 V_QUENUMSELECT(i)); 9398 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL); 9399 /* value is in 256-byte units */ 9400 *base++ = G_CIMQBASE(v) * 256; 9401 *size++ = G_CIMQSIZE(v) * 256; 9402 *thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */ 9403 } 9404 for (i = 0; i < cim_num_obq; i++) { 9405 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT | 9406 V_QUENUMSELECT(i)); 9407 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL); 9408 /* value is in 256-byte units */ 9409 *base++ = G_CIMQBASE(v) * 256; 9410 *size++ = G_CIMQSIZE(v) * 256; 9411 } 9412 } 9413 9414 /** 9415 * t4_read_cim_ibq - read the contents of a CIM inbound queue 9416 * @adap: the adapter 9417 * @qid: the queue index 9418 * @data: where to store the queue contents 9419 * @n: capacity of @data in 32-bit words 9420 * 9421 * Reads the contents of the selected CIM queue starting at address 0 up 9422 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9423 * error and the number of 32-bit words actually read on success. 9424 */ 9425 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9426 { 9427 int i, err, attempts; 9428 unsigned int addr; 9429 const unsigned int nwords = CIM_IBQ_SIZE * 4; 9430 9431 if (qid > 5 || (n & 3)) 9432 return -EINVAL; 9433 9434 addr = qid * nwords; 9435 if (n > nwords) 9436 n = nwords; 9437 9438 /* It might take 3-10ms before the IBQ debug read access is allowed. 9439 * Wait for 1 Sec with a delay of 1 usec. 9440 */ 9441 attempts = 1000000; 9442 9443 for (i = 0; i < n; i++, addr++) { 9444 t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) | 9445 F_IBQDBGEN); 9446 err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0, 9447 attempts, 1); 9448 if (err) 9449 return err; 9450 *data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA); 9451 } 9452 t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0); 9453 return i; 9454 } 9455 9456 /** 9457 * t4_read_cim_obq - read the contents of a CIM outbound queue 9458 * @adap: the adapter 9459 * @qid: the queue index 9460 * @data: where to store the queue contents 9461 * @n: capacity of @data in 32-bit words 9462 * 9463 * Reads the contents of the selected CIM queue starting at address 0 up 9464 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on 9465 * error and the number of 32-bit words actually read on success. 9466 */ 9467 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n) 9468 { 9469 int i, err; 9470 unsigned int addr, v, nwords; 9471 int cim_num_obq = adap->chip_params->cim_num_obq; 9472 9473 if ((qid > (cim_num_obq - 1)) || (n & 3)) 9474 return -EINVAL; 9475 9476 t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT | 9477 V_QUENUMSELECT(qid)); 9478 v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL); 9479 9480 addr = G_CIMQBASE(v) * 64; /* muliple of 256 -> muliple of 4 */ 9481 nwords = G_CIMQSIZE(v) * 64; /* same */ 9482 if (n > nwords) 9483 n = nwords; 9484 9485 for (i = 0; i < n; i++, addr++) { 9486 t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) | 9487 F_OBQDBGEN); 9488 err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0, 9489 2, 1); 9490 if (err) 9491 return err; 9492 *data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA); 9493 } 9494 t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0); 9495 return i; 9496 } 9497 9498 enum { 9499 CIM_QCTL_BASE = 0, 9500 CIM_CTL_BASE = 0x2000, 9501 CIM_PBT_ADDR_BASE = 0x2800, 9502 CIM_PBT_LRF_BASE = 0x3000, 9503 CIM_PBT_DATA_BASE = 0x3800 9504 }; 9505 9506 /** 9507 * t4_cim_read - read a block from CIM internal address space 9508 * @adap: the adapter 9509 * @addr: the start address within the CIM address space 9510 * @n: number of words to read 9511 * @valp: where to store the result 9512 * 9513 * Reads a block of 4-byte words from the CIM intenal address space. 9514 */ 9515 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n, 9516 unsigned int *valp) 9517 { 9518 int ret = 0; 9519 9520 if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY) 9521 return -EBUSY; 9522 9523 for ( ; !ret && n--; addr += 4) { 9524 t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr); 9525 ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY, 9526 0, 5, 2); 9527 if (!ret) 9528 *valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA); 9529 } 9530 return ret; 9531 } 9532 9533 /** 9534 * t4_cim_write - write a block into CIM internal address space 9535 * @adap: the adapter 9536 * @addr: the start address within the CIM address space 9537 * @n: number of words to write 9538 * @valp: set of values to write 9539 * 9540 * Writes a block of 4-byte words into the CIM intenal address space. 9541 */ 9542 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n, 9543 const unsigned int *valp) 9544 { 9545 int ret = 0; 9546 9547 if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY) 9548 return -EBUSY; 9549 9550 for ( ; !ret && n--; addr += 4) { 9551 t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++); 9552 t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE); 9553 ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY, 9554 0, 5, 2); 9555 } 9556 return ret; 9557 } 9558 9559 static int t4_cim_write1(struct adapter *adap, unsigned int addr, 9560 unsigned int val) 9561 { 9562 return t4_cim_write(adap, addr, 1, &val); 9563 } 9564 9565 /** 9566 * t4_cim_ctl_read - read a block from CIM control region 9567 * @adap: the adapter 9568 * @addr: the start address within the CIM control region 9569 * @n: number of words to read 9570 * @valp: where to store the result 9571 * 9572 * Reads a block of 4-byte words from the CIM control region. 9573 */ 9574 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n, 9575 unsigned int *valp) 9576 { 9577 return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp); 9578 } 9579 9580 /** 9581 * t4_cim_read_la - read CIM LA capture buffer 9582 * @adap: the adapter 9583 * @la_buf: where to store the LA data 9584 * @wrptr: the HW write pointer within the capture buffer 9585 * 9586 * Reads the contents of the CIM LA buffer with the most recent entry at 9587 * the end of the returned data and with the entry at @wrptr first. 9588 * We try to leave the LA in the running state we find it in. 9589 */ 9590 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr) 9591 { 9592 int i, ret; 9593 unsigned int cfg, val, idx; 9594 9595 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg); 9596 if (ret) 9597 return ret; 9598 9599 if (cfg & F_UPDBGLAEN) { /* LA is running, freeze it */ 9600 ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0); 9601 if (ret) 9602 return ret; 9603 } 9604 9605 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val); 9606 if (ret) 9607 goto restart; 9608 9609 idx = G_UPDBGLAWRPTR(val); 9610 if (wrptr) 9611 *wrptr = idx; 9612 9613 for (i = 0; i < adap->params.cim_la_size; i++) { 9614 ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 9615 V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN); 9616 if (ret) 9617 break; 9618 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val); 9619 if (ret) 9620 break; 9621 if (val & F_UPDBGLARDEN) { 9622 ret = -ETIMEDOUT; 9623 break; 9624 } 9625 ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]); 9626 if (ret) 9627 break; 9628 9629 /* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */ 9630 idx = (idx + 1) & M_UPDBGLARDPTR; 9631 /* 9632 * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to 9633 * identify the 32-bit portion of the full 312-bit data 9634 */ 9635 if (is_t6(adap)) 9636 while ((idx & 0xf) > 9) 9637 idx = (idx + 1) % M_UPDBGLARDPTR; 9638 } 9639 restart: 9640 if (cfg & F_UPDBGLAEN) { 9641 int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 9642 cfg & ~F_UPDBGLARDEN); 9643 if (!ret) 9644 ret = r; 9645 } 9646 return ret; 9647 } 9648 9649 /** 9650 * t4_tp_read_la - read TP LA capture buffer 9651 * @adap: the adapter 9652 * @la_buf: where to store the LA data 9653 * @wrptr: the HW write pointer within the capture buffer 9654 * 9655 * Reads the contents of the TP LA buffer with the most recent entry at 9656 * the end of the returned data and with the entry at @wrptr first. 9657 * We leave the LA in the running state we find it in. 9658 */ 9659 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr) 9660 { 9661 bool last_incomplete; 9662 unsigned int i, cfg, val, idx; 9663 9664 cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff; 9665 if (cfg & F_DBGLAENABLE) /* freeze LA */ 9666 t4_write_reg(adap, A_TP_DBG_LA_CONFIG, 9667 adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE)); 9668 9669 val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG); 9670 idx = G_DBGLAWPTR(val); 9671 last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0; 9672 if (last_incomplete) 9673 idx = (idx + 1) & M_DBGLARPTR; 9674 if (wrptr) 9675 *wrptr = idx; 9676 9677 val &= 0xffff; 9678 val &= ~V_DBGLARPTR(M_DBGLARPTR); 9679 val |= adap->params.tp.la_mask; 9680 9681 for (i = 0; i < TPLA_SIZE; i++) { 9682 t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val); 9683 la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL); 9684 idx = (idx + 1) & M_DBGLARPTR; 9685 } 9686 9687 /* Wipe out last entry if it isn't valid */ 9688 if (last_incomplete) 9689 la_buf[TPLA_SIZE - 1] = ~0ULL; 9690 9691 if (cfg & F_DBGLAENABLE) /* restore running state */ 9692 t4_write_reg(adap, A_TP_DBG_LA_CONFIG, 9693 cfg | adap->params.tp.la_mask); 9694 } 9695 9696 /* 9697 * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in 9698 * seconds). If we find one of the SGE Ingress DMA State Machines in the same 9699 * state for more than the Warning Threshold then we'll issue a warning about 9700 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel 9701 * appears to be hung every Warning Repeat second till the situation clears. 9702 * If the situation clears, we'll note that as well. 9703 */ 9704 #define SGE_IDMA_WARN_THRESH 1 9705 #define SGE_IDMA_WARN_REPEAT 300 9706 9707 /** 9708 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor 9709 * @adapter: the adapter 9710 * @idma: the adapter IDMA Monitor state 9711 * 9712 * Initialize the state of an SGE Ingress DMA Monitor. 9713 */ 9714 void t4_idma_monitor_init(struct adapter *adapter, 9715 struct sge_idma_monitor_state *idma) 9716 { 9717 /* Initialize the state variables for detecting an SGE Ingress DMA 9718 * hang. The SGE has internal counters which count up on each clock 9719 * tick whenever the SGE finds its Ingress DMA State Engines in the 9720 * same state they were on the previous clock tick. The clock used is 9721 * the Core Clock so we have a limit on the maximum "time" they can 9722 * record; typically a very small number of seconds. For instance, 9723 * with a 600MHz Core Clock, we can only count up to a bit more than 9724 * 7s. So we'll synthesize a larger counter in order to not run the 9725 * risk of having the "timers" overflow and give us the flexibility to 9726 * maintain a Hung SGE State Machine of our own which operates across 9727 * a longer time frame. 9728 */ 9729 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */ 9730 idma->idma_stalled[0] = idma->idma_stalled[1] = 0; 9731 } 9732 9733 /** 9734 * t4_idma_monitor - monitor SGE Ingress DMA state 9735 * @adapter: the adapter 9736 * @idma: the adapter IDMA Monitor state 9737 * @hz: number of ticks/second 9738 * @ticks: number of ticks since the last IDMA Monitor call 9739 */ 9740 void t4_idma_monitor(struct adapter *adapter, 9741 struct sge_idma_monitor_state *idma, 9742 int hz, int ticks) 9743 { 9744 int i, idma_same_state_cnt[2]; 9745 9746 /* Read the SGE Debug Ingress DMA Same State Count registers. These 9747 * are counters inside the SGE which count up on each clock when the 9748 * SGE finds its Ingress DMA State Engines in the same states they 9749 * were in the previous clock. The counters will peg out at 9750 * 0xffffffff without wrapping around so once they pass the 1s 9751 * threshold they'll stay above that till the IDMA state changes. 9752 */ 9753 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13); 9754 idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH); 9755 idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW); 9756 9757 for (i = 0; i < 2; i++) { 9758 u32 debug0, debug11; 9759 9760 /* If the Ingress DMA Same State Counter ("timer") is less 9761 * than 1s, then we can reset our synthesized Stall Timer and 9762 * continue. If we have previously emitted warnings about a 9763 * potential stalled Ingress Queue, issue a note indicating 9764 * that the Ingress Queue has resumed forward progress. 9765 */ 9766 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) { 9767 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz) 9768 CH_WARN(adapter, "SGE idma%d, queue %u, " 9769 "resumed after %d seconds\n", 9770 i, idma->idma_qid[i], 9771 idma->idma_stalled[i]/hz); 9772 idma->idma_stalled[i] = 0; 9773 continue; 9774 } 9775 9776 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz 9777 * domain. The first time we get here it'll be because we 9778 * passed the 1s Threshold; each additional time it'll be 9779 * because the RX Timer Callback is being fired on its regular 9780 * schedule. 9781 * 9782 * If the stall is below our Potential Hung Ingress Queue 9783 * Warning Threshold, continue. 9784 */ 9785 if (idma->idma_stalled[i] == 0) { 9786 idma->idma_stalled[i] = hz; 9787 idma->idma_warn[i] = 0; 9788 } else { 9789 idma->idma_stalled[i] += ticks; 9790 idma->idma_warn[i] -= ticks; 9791 } 9792 9793 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz) 9794 continue; 9795 9796 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds. 9797 */ 9798 if (idma->idma_warn[i] > 0) 9799 continue; 9800 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz; 9801 9802 /* Read and save the SGE IDMA State and Queue ID information. 9803 * We do this every time in case it changes across time ... 9804 * can't be too careful ... 9805 */ 9806 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0); 9807 debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW); 9808 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f; 9809 9810 t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11); 9811 debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW); 9812 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff; 9813 9814 CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in " 9815 " state %u for %d seconds (debug0=%#x, debug11=%#x)\n", 9816 i, idma->idma_qid[i], idma->idma_state[i], 9817 idma->idma_stalled[i]/hz, 9818 debug0, debug11); 9819 t4_sge_decode_idma_state(adapter, idma->idma_state[i]); 9820 } 9821 } 9822 9823 /** 9824 * t4_read_pace_tbl - read the pace table 9825 * @adap: the adapter 9826 * @pace_vals: holds the returned values 9827 * 9828 * Returns the values of TP's pace table in microseconds. 9829 */ 9830 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED]) 9831 { 9832 unsigned int i, v; 9833 9834 for (i = 0; i < NTX_SCHED; i++) { 9835 t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i); 9836 v = t4_read_reg(adap, A_TP_PACE_TABLE); 9837 pace_vals[i] = dack_ticks_to_usec(adap, v); 9838 } 9839 } 9840 9841 /** 9842 * t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler 9843 * @adap: the adapter 9844 * @sched: the scheduler index 9845 * @kbps: the byte rate in Kbps 9846 * @ipg: the interpacket delay in tenths of nanoseconds 9847 * 9848 * Return the current configuration of a HW Tx scheduler. 9849 */ 9850 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps, 9851 unsigned int *ipg, bool sleep_ok) 9852 { 9853 unsigned int v, addr, bpt, cpt; 9854 9855 if (kbps) { 9856 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2; 9857 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 9858 if (sched & 1) 9859 v >>= 16; 9860 bpt = (v >> 8) & 0xff; 9861 cpt = v & 0xff; 9862 if (!cpt) 9863 *kbps = 0; /* scheduler disabled */ 9864 else { 9865 v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */ 9866 *kbps = (v * bpt) / 125; 9867 } 9868 } 9869 if (ipg) { 9870 addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2; 9871 t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok); 9872 if (sched & 1) 9873 v >>= 16; 9874 v &= 0xffff; 9875 *ipg = (10000 * v) / core_ticks_per_usec(adap); 9876 } 9877 } 9878 9879 /** 9880 * t4_load_cfg - download config file 9881 * @adap: the adapter 9882 * @cfg_data: the cfg text file to write 9883 * @size: text file size 9884 * 9885 * Write the supplied config text file to the card's serial flash. 9886 */ 9887 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size) 9888 { 9889 int ret, i, n, cfg_addr; 9890 unsigned int addr; 9891 unsigned int flash_cfg_start_sec; 9892 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 9893 9894 cfg_addr = t4_flash_cfg_addr(adap); 9895 if (cfg_addr < 0) 9896 return cfg_addr; 9897 9898 addr = cfg_addr; 9899 flash_cfg_start_sec = addr / SF_SEC_SIZE; 9900 9901 if (size > FLASH_CFG_MAX_SIZE) { 9902 CH_ERR(adap, "cfg file too large, max is %u bytes\n", 9903 FLASH_CFG_MAX_SIZE); 9904 return -EFBIG; 9905 } 9906 9907 i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE, /* # of sectors spanned */ 9908 sf_sec_size); 9909 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 9910 flash_cfg_start_sec + i - 1); 9911 /* 9912 * If size == 0 then we're simply erasing the FLASH sectors associated 9913 * with the on-adapter Firmware Configuration File. 9914 */ 9915 if (ret || size == 0) 9916 goto out; 9917 9918 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 9919 for (i = 0; i< size; i+= SF_PAGE_SIZE) { 9920 if ( (size - i) < SF_PAGE_SIZE) 9921 n = size - i; 9922 else 9923 n = SF_PAGE_SIZE; 9924 ret = t4_write_flash(adap, addr, n, cfg_data, 1); 9925 if (ret) 9926 goto out; 9927 9928 addr += SF_PAGE_SIZE; 9929 cfg_data += SF_PAGE_SIZE; 9930 } 9931 9932 out: 9933 if (ret) 9934 CH_ERR(adap, "config file %s failed %d\n", 9935 (size == 0 ? "clear" : "download"), ret); 9936 return ret; 9937 } 9938 9939 /** 9940 * t5_fw_init_extern_mem - initialize the external memory 9941 * @adap: the adapter 9942 * 9943 * Initializes the external memory on T5. 9944 */ 9945 int t5_fw_init_extern_mem(struct adapter *adap) 9946 { 9947 u32 params[1], val[1]; 9948 int ret; 9949 9950 if (!is_t5(adap)) 9951 return 0; 9952 9953 val[0] = 0xff; /* Initialize all MCs */ 9954 params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | 9955 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT)); 9956 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val, 9957 FW_CMD_MAX_TIMEOUT); 9958 9959 return ret; 9960 } 9961 9962 /* BIOS boot headers */ 9963 typedef struct pci_expansion_rom_header { 9964 u8 signature[2]; /* ROM Signature. Should be 0xaa55 */ 9965 u8 reserved[22]; /* Reserved per processor Architecture data */ 9966 u8 pcir_offset[2]; /* Offset to PCI Data Structure */ 9967 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */ 9968 9969 /* Legacy PCI Expansion ROM Header */ 9970 typedef struct legacy_pci_expansion_rom_header { 9971 u8 signature[2]; /* ROM Signature. Should be 0xaa55 */ 9972 u8 size512; /* Current Image Size in units of 512 bytes */ 9973 u8 initentry_point[4]; 9974 u8 cksum; /* Checksum computed on the entire Image */ 9975 u8 reserved[16]; /* Reserved */ 9976 u8 pcir_offset[2]; /* Offset to PCI Data Struture */ 9977 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */ 9978 9979 /* EFI PCI Expansion ROM Header */ 9980 typedef struct efi_pci_expansion_rom_header { 9981 u8 signature[2]; // ROM signature. The value 0xaa55 9982 u8 initialization_size[2]; /* Units 512. Includes this header */ 9983 u8 efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */ 9984 u8 efi_subsystem[2]; /* Subsystem value for EFI image header */ 9985 u8 efi_machine_type[2]; /* Machine type from EFI image header */ 9986 u8 compression_type[2]; /* Compression type. */ 9987 /* 9988 * Compression type definition 9989 * 0x0: uncompressed 9990 * 0x1: Compressed 9991 * 0x2-0xFFFF: Reserved 9992 */ 9993 u8 reserved[8]; /* Reserved */ 9994 u8 efi_image_header_offset[2]; /* Offset to EFI Image */ 9995 u8 pcir_offset[2]; /* Offset to PCI Data Structure */ 9996 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */ 9997 9998 /* PCI Data Structure Format */ 9999 typedef struct pcir_data_structure { /* PCI Data Structure */ 10000 u8 signature[4]; /* Signature. The string "PCIR" */ 10001 u8 vendor_id[2]; /* Vendor Identification */ 10002 u8 device_id[2]; /* Device Identification */ 10003 u8 vital_product[2]; /* Pointer to Vital Product Data */ 10004 u8 length[2]; /* PCIR Data Structure Length */ 10005 u8 revision; /* PCIR Data Structure Revision */ 10006 u8 class_code[3]; /* Class Code */ 10007 u8 image_length[2]; /* Image Length. Multiple of 512B */ 10008 u8 code_revision[2]; /* Revision Level of Code/Data */ 10009 u8 code_type; /* Code Type. */ 10010 /* 10011 * PCI Expansion ROM Code Types 10012 * 0x00: Intel IA-32, PC-AT compatible. Legacy 10013 * 0x01: Open Firmware standard for PCI. FCODE 10014 * 0x02: Hewlett-Packard PA RISC. HP reserved 10015 * 0x03: EFI Image. EFI 10016 * 0x04-0xFF: Reserved. 10017 */ 10018 u8 indicator; /* Indicator. Identifies the last image in the ROM */ 10019 u8 reserved[2]; /* Reserved */ 10020 } pcir_data_t; /* PCI__DATA_STRUCTURE */ 10021 10022 /* BOOT constants */ 10023 enum { 10024 BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */ 10025 BOOT_SIGNATURE = 0xaa55, /* signature of BIOS boot ROM */ 10026 BOOT_SIZE_INC = 512, /* image size measured in 512B chunks */ 10027 BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */ 10028 BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment */ 10029 VENDOR_ID = 0x1425, /* Vendor ID */ 10030 PCIR_SIGNATURE = 0x52494350 /* PCIR signature */ 10031 }; 10032 10033 /* 10034 * modify_device_id - Modifies the device ID of the Boot BIOS image 10035 * @adatper: the device ID to write. 10036 * @boot_data: the boot image to modify. 10037 * 10038 * Write the supplied device ID to the boot BIOS image. 10039 */ 10040 static void modify_device_id(int device_id, u8 *boot_data) 10041 { 10042 legacy_pci_exp_rom_header_t *header; 10043 pcir_data_t *pcir_header; 10044 u32 cur_header = 0; 10045 10046 /* 10047 * Loop through all chained images and change the device ID's 10048 */ 10049 while (1) { 10050 header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header]; 10051 pcir_header = (pcir_data_t *) &boot_data[cur_header + 10052 le16_to_cpu(*(u16*)header->pcir_offset)]; 10053 10054 /* 10055 * Only modify the Device ID if code type is Legacy or HP. 10056 * 0x00: Okay to modify 10057 * 0x01: FCODE. Do not be modify 10058 * 0x03: Okay to modify 10059 * 0x04-0xFF: Do not modify 10060 */ 10061 if (pcir_header->code_type == 0x00) { 10062 u8 csum = 0; 10063 int i; 10064 10065 /* 10066 * Modify Device ID to match current adatper 10067 */ 10068 *(u16*) pcir_header->device_id = device_id; 10069 10070 /* 10071 * Set checksum temporarily to 0. 10072 * We will recalculate it later. 10073 */ 10074 header->cksum = 0x0; 10075 10076 /* 10077 * Calculate and update checksum 10078 */ 10079 for (i = 0; i < (header->size512 * 512); i++) 10080 csum += (u8)boot_data[cur_header + i]; 10081 10082 /* 10083 * Invert summed value to create the checksum 10084 * Writing new checksum value directly to the boot data 10085 */ 10086 boot_data[cur_header + 7] = -csum; 10087 10088 } else if (pcir_header->code_type == 0x03) { 10089 10090 /* 10091 * Modify Device ID to match current adatper 10092 */ 10093 *(u16*) pcir_header->device_id = device_id; 10094 10095 } 10096 10097 10098 /* 10099 * Check indicator element to identify if this is the last 10100 * image in the ROM. 10101 */ 10102 if (pcir_header->indicator & 0x80) 10103 break; 10104 10105 /* 10106 * Move header pointer up to the next image in the ROM. 10107 */ 10108 cur_header += header->size512 * 512; 10109 } 10110 } 10111 10112 /* 10113 * t4_load_boot - download boot flash 10114 * @adapter: the adapter 10115 * @boot_data: the boot image to write 10116 * @boot_addr: offset in flash to write boot_data 10117 * @size: image size 10118 * 10119 * Write the supplied boot image to the card's serial flash. 10120 * The boot image has the following sections: a 28-byte header and the 10121 * boot image. 10122 */ 10123 int t4_load_boot(struct adapter *adap, u8 *boot_data, 10124 unsigned int boot_addr, unsigned int size) 10125 { 10126 pci_exp_rom_header_t *header; 10127 int pcir_offset ; 10128 pcir_data_t *pcir_header; 10129 int ret, addr; 10130 uint16_t device_id; 10131 unsigned int i; 10132 unsigned int boot_sector = (boot_addr * 1024 ); 10133 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10134 10135 /* 10136 * Make sure the boot image does not encroach on the firmware region 10137 */ 10138 if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) { 10139 CH_ERR(adap, "boot image encroaching on firmware region\n"); 10140 return -EFBIG; 10141 } 10142 10143 /* 10144 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot, 10145 * and Boot configuration data sections. These 3 boot sections span 10146 * sectors 0 to 7 in flash and live right before the FW image location. 10147 */ 10148 i = DIV_ROUND_UP(size ? size : FLASH_FW_START, 10149 sf_sec_size); 10150 ret = t4_flash_erase_sectors(adap, boot_sector >> 16, 10151 (boot_sector >> 16) + i - 1); 10152 10153 /* 10154 * If size == 0 then we're simply erasing the FLASH sectors associated 10155 * with the on-adapter option ROM file 10156 */ 10157 if (ret || (size == 0)) 10158 goto out; 10159 10160 /* Get boot header */ 10161 header = (pci_exp_rom_header_t *)boot_data; 10162 pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset); 10163 /* PCIR Data Structure */ 10164 pcir_header = (pcir_data_t *) &boot_data[pcir_offset]; 10165 10166 /* 10167 * Perform some primitive sanity testing to avoid accidentally 10168 * writing garbage over the boot sectors. We ought to check for 10169 * more but it's not worth it for now ... 10170 */ 10171 if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) { 10172 CH_ERR(adap, "boot image too small/large\n"); 10173 return -EFBIG; 10174 } 10175 10176 #ifndef CHELSIO_T4_DIAGS 10177 /* 10178 * Check BOOT ROM header signature 10179 */ 10180 if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) { 10181 CH_ERR(adap, "Boot image missing signature\n"); 10182 return -EINVAL; 10183 } 10184 10185 /* 10186 * Check PCI header signature 10187 */ 10188 if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) { 10189 CH_ERR(adap, "PCI header missing signature\n"); 10190 return -EINVAL; 10191 } 10192 10193 /* 10194 * Check Vendor ID matches Chelsio ID 10195 */ 10196 if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) { 10197 CH_ERR(adap, "Vendor ID missing signature\n"); 10198 return -EINVAL; 10199 } 10200 #endif 10201 10202 /* 10203 * Retrieve adapter's device ID 10204 */ 10205 t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id); 10206 /* Want to deal with PF 0 so I strip off PF 4 indicator */ 10207 device_id = device_id & 0xf0ff; 10208 10209 /* 10210 * Check PCIE Device ID 10211 */ 10212 if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) { 10213 /* 10214 * Change the device ID in the Boot BIOS image to match 10215 * the Device ID of the current adapter. 10216 */ 10217 modify_device_id(device_id, boot_data); 10218 } 10219 10220 /* 10221 * Skip over the first SF_PAGE_SIZE worth of data and write it after 10222 * we finish copying the rest of the boot image. This will ensure 10223 * that the BIOS boot header will only be written if the boot image 10224 * was written in full. 10225 */ 10226 addr = boot_sector; 10227 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { 10228 addr += SF_PAGE_SIZE; 10229 boot_data += SF_PAGE_SIZE; 10230 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0); 10231 if (ret) 10232 goto out; 10233 } 10234 10235 ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE, 10236 (const u8 *)header, 0); 10237 10238 out: 10239 if (ret) 10240 CH_ERR(adap, "boot image download failed, error %d\n", ret); 10241 return ret; 10242 } 10243 10244 /* 10245 * t4_flash_bootcfg_addr - return the address of the flash optionrom configuration 10246 * @adapter: the adapter 10247 * 10248 * Return the address within the flash where the OptionROM Configuration 10249 * is stored, or an error if the device FLASH is too small to contain 10250 * a OptionROM Configuration. 10251 */ 10252 static int t4_flash_bootcfg_addr(struct adapter *adapter) 10253 { 10254 /* 10255 * If the device FLASH isn't large enough to hold a Firmware 10256 * Configuration File, return an error. 10257 */ 10258 if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE) 10259 return -ENOSPC; 10260 10261 return FLASH_BOOTCFG_START; 10262 } 10263 10264 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size) 10265 { 10266 int ret, i, n, cfg_addr; 10267 unsigned int addr; 10268 unsigned int flash_cfg_start_sec; 10269 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; 10270 10271 cfg_addr = t4_flash_bootcfg_addr(adap); 10272 if (cfg_addr < 0) 10273 return cfg_addr; 10274 10275 addr = cfg_addr; 10276 flash_cfg_start_sec = addr / SF_SEC_SIZE; 10277 10278 if (size > FLASH_BOOTCFG_MAX_SIZE) { 10279 CH_ERR(adap, "bootcfg file too large, max is %u bytes\n", 10280 FLASH_BOOTCFG_MAX_SIZE); 10281 return -EFBIG; 10282 } 10283 10284 i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */ 10285 sf_sec_size); 10286 ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec, 10287 flash_cfg_start_sec + i - 1); 10288 10289 /* 10290 * If size == 0 then we're simply erasing the FLASH sectors associated 10291 * with the on-adapter OptionROM Configuration File. 10292 */ 10293 if (ret || size == 0) 10294 goto out; 10295 10296 /* this will write to the flash up to SF_PAGE_SIZE at a time */ 10297 for (i = 0; i< size; i+= SF_PAGE_SIZE) { 10298 if ( (size - i) < SF_PAGE_SIZE) 10299 n = size - i; 10300 else 10301 n = SF_PAGE_SIZE; 10302 ret = t4_write_flash(adap, addr, n, cfg_data, 0); 10303 if (ret) 10304 goto out; 10305 10306 addr += SF_PAGE_SIZE; 10307 cfg_data += SF_PAGE_SIZE; 10308 } 10309 10310 out: 10311 if (ret) 10312 CH_ERR(adap, "boot config data %s failed %d\n", 10313 (size == 0 ? "clear" : "download"), ret); 10314 return ret; 10315 } 10316 10317 /** 10318 * t4_set_filter_mode - configure the optional components of filter tuples 10319 * @adap: the adapter 10320 * @mode_map: a bitmap selcting which optional filter components to enable 10321 * @sleep_ok: if true we may sleep while awaiting command completion 10322 * 10323 * Sets the filter mode by selecting the optional components to enable 10324 * in filter tuples. Returns 0 on success and a negative error if the 10325 * requested mode needs more bits than are available for optional 10326 * components. 10327 */ 10328 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map, 10329 bool sleep_ok) 10330 { 10331 static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 }; 10332 10333 int i, nbits = 0; 10334 10335 for (i = S_FCOE; i <= S_FRAGMENTATION; i++) 10336 if (mode_map & (1 << i)) 10337 nbits += width[i]; 10338 if (nbits > FILTER_OPT_LEN) 10339 return -EINVAL; 10340 t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok); 10341 read_filter_mode_and_ingress_config(adap, sleep_ok); 10342 10343 return 0; 10344 } 10345 10346 /** 10347 * t4_clr_port_stats - clear port statistics 10348 * @adap: the adapter 10349 * @idx: the port index 10350 * 10351 * Clear HW statistics for the given port. 10352 */ 10353 void t4_clr_port_stats(struct adapter *adap, int idx) 10354 { 10355 unsigned int i; 10356 u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map; 10357 u32 port_base_addr; 10358 10359 if (is_t4(adap)) 10360 port_base_addr = PORT_BASE(idx); 10361 else 10362 port_base_addr = T5_PORT_BASE(idx); 10363 10364 for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L; 10365 i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8) 10366 t4_write_reg(adap, port_base_addr + i, 0); 10367 for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L; 10368 i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8) 10369 t4_write_reg(adap, port_base_addr + i, 0); 10370 for (i = 0; i < 4; i++) 10371 if (bgmap & (1 << i)) { 10372 t4_write_reg(adap, 10373 A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0); 10374 t4_write_reg(adap, 10375 A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0); 10376 } 10377 } 10378 10379 /** 10380 * t4_i2c_rd - read I2C data from adapter 10381 * @adap: the adapter 10382 * @port: Port number if per-port device; <0 if not 10383 * @devid: per-port device ID or absolute device ID 10384 * @offset: byte offset into device I2C space 10385 * @len: byte length of I2C space data 10386 * @buf: buffer in which to return I2C data 10387 * 10388 * Reads the I2C data from the indicated device and location. 10389 */ 10390 int t4_i2c_rd(struct adapter *adap, unsigned int mbox, 10391 int port, unsigned int devid, 10392 unsigned int offset, unsigned int len, 10393 u8 *buf) 10394 { 10395 u32 ldst_addrspace; 10396 struct fw_ldst_cmd ldst; 10397 int ret; 10398 10399 if (port >= 4 || 10400 devid >= 256 || 10401 offset >= 256 || 10402 len > sizeof ldst.u.i2c.data) 10403 return -EINVAL; 10404 10405 memset(&ldst, 0, sizeof ldst); 10406 ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C); 10407 ldst.op_to_addrspace = 10408 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 10409 F_FW_CMD_REQUEST | 10410 F_FW_CMD_READ | 10411 ldst_addrspace); 10412 ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst)); 10413 ldst.u.i2c.pid = (port < 0 ? 0xff : port); 10414 ldst.u.i2c.did = devid; 10415 ldst.u.i2c.boffset = offset; 10416 ldst.u.i2c.blen = len; 10417 ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst); 10418 if (!ret) 10419 memcpy(buf, ldst.u.i2c.data, len); 10420 return ret; 10421 } 10422 10423 /** 10424 * t4_i2c_wr - write I2C data to adapter 10425 * @adap: the adapter 10426 * @port: Port number if per-port device; <0 if not 10427 * @devid: per-port device ID or absolute device ID 10428 * @offset: byte offset into device I2C space 10429 * @len: byte length of I2C space data 10430 * @buf: buffer containing new I2C data 10431 * 10432 * Write the I2C data to the indicated device and location. 10433 */ 10434 int t4_i2c_wr(struct adapter *adap, unsigned int mbox, 10435 int port, unsigned int devid, 10436 unsigned int offset, unsigned int len, 10437 u8 *buf) 10438 { 10439 u32 ldst_addrspace; 10440 struct fw_ldst_cmd ldst; 10441 10442 if (port >= 4 || 10443 devid >= 256 || 10444 offset >= 256 || 10445 len > sizeof ldst.u.i2c.data) 10446 return -EINVAL; 10447 10448 memset(&ldst, 0, sizeof ldst); 10449 ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C); 10450 ldst.op_to_addrspace = 10451 cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 10452 F_FW_CMD_REQUEST | 10453 F_FW_CMD_WRITE | 10454 ldst_addrspace); 10455 ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst)); 10456 ldst.u.i2c.pid = (port < 0 ? 0xff : port); 10457 ldst.u.i2c.did = devid; 10458 ldst.u.i2c.boffset = offset; 10459 ldst.u.i2c.blen = len; 10460 memcpy(ldst.u.i2c.data, buf, len); 10461 return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst); 10462 } 10463 10464 /** 10465 * t4_sge_ctxt_rd - read an SGE context through FW 10466 * @adap: the adapter 10467 * @mbox: mailbox to use for the FW command 10468 * @cid: the context id 10469 * @ctype: the context type 10470 * @data: where to store the context data 10471 * 10472 * Issues a FW command through the given mailbox to read an SGE context. 10473 */ 10474 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid, 10475 enum ctxt_type ctype, u32 *data) 10476 { 10477 int ret; 10478 struct fw_ldst_cmd c; 10479 10480 if (ctype == CTXT_EGRESS) 10481 ret = FW_LDST_ADDRSPC_SGE_EGRC; 10482 else if (ctype == CTXT_INGRESS) 10483 ret = FW_LDST_ADDRSPC_SGE_INGC; 10484 else if (ctype == CTXT_FLM) 10485 ret = FW_LDST_ADDRSPC_SGE_FLMC; 10486 else 10487 ret = FW_LDST_ADDRSPC_SGE_CONMC; 10488 10489 memset(&c, 0, sizeof(c)); 10490 c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) | 10491 F_FW_CMD_REQUEST | F_FW_CMD_READ | 10492 V_FW_LDST_CMD_ADDRSPACE(ret)); 10493 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c)); 10494 c.u.idctxt.physid = cpu_to_be32(cid); 10495 10496 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); 10497 if (ret == 0) { 10498 data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0); 10499 data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1); 10500 data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2); 10501 data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3); 10502 data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4); 10503 data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5); 10504 } 10505 return ret; 10506 } 10507 10508 /** 10509 * t4_sge_ctxt_rd_bd - read an SGE context bypassing FW 10510 * @adap: the adapter 10511 * @cid: the context id 10512 * @ctype: the context type 10513 * @data: where to store the context data 10514 * 10515 * Reads an SGE context directly, bypassing FW. This is only for 10516 * debugging when FW is unavailable. 10517 */ 10518 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype, 10519 u32 *data) 10520 { 10521 int i, ret; 10522 10523 t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype)); 10524 ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1); 10525 if (!ret) 10526 for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4) 10527 *data++ = t4_read_reg(adap, i); 10528 return ret; 10529 } 10530 10531 int t4_sched_config(struct adapter *adapter, int type, int minmaxen, 10532 int sleep_ok) 10533 { 10534 struct fw_sched_cmd cmd; 10535 10536 memset(&cmd, 0, sizeof(cmd)); 10537 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | 10538 F_FW_CMD_REQUEST | 10539 F_FW_CMD_WRITE); 10540 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10541 10542 cmd.u.config.sc = FW_SCHED_SC_CONFIG; 10543 cmd.u.config.type = type; 10544 cmd.u.config.minmaxen = minmaxen; 10545 10546 return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), 10547 NULL, sleep_ok); 10548 } 10549 10550 int t4_sched_params(struct adapter *adapter, int type, int level, int mode, 10551 int rateunit, int ratemode, int channel, int cl, 10552 int minrate, int maxrate, int weight, int pktsize, 10553 int burstsize, int sleep_ok) 10554 { 10555 struct fw_sched_cmd cmd; 10556 10557 memset(&cmd, 0, sizeof(cmd)); 10558 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | 10559 F_FW_CMD_REQUEST | 10560 F_FW_CMD_WRITE); 10561 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10562 10563 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10564 cmd.u.params.type = type; 10565 cmd.u.params.level = level; 10566 cmd.u.params.mode = mode; 10567 cmd.u.params.ch = channel; 10568 cmd.u.params.cl = cl; 10569 cmd.u.params.unit = rateunit; 10570 cmd.u.params.rate = ratemode; 10571 cmd.u.params.min = cpu_to_be32(minrate); 10572 cmd.u.params.max = cpu_to_be32(maxrate); 10573 cmd.u.params.weight = cpu_to_be16(weight); 10574 cmd.u.params.pktsize = cpu_to_be16(pktsize); 10575 cmd.u.params.burstsize = cpu_to_be16(burstsize); 10576 10577 return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), 10578 NULL, sleep_ok); 10579 } 10580 10581 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode, 10582 unsigned int maxrate, int sleep_ok) 10583 { 10584 struct fw_sched_cmd cmd; 10585 10586 memset(&cmd, 0, sizeof(cmd)); 10587 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | 10588 F_FW_CMD_REQUEST | 10589 F_FW_CMD_WRITE); 10590 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10591 10592 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10593 cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED; 10594 cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL; 10595 cmd.u.params.ch = channel; 10596 cmd.u.params.rate = ratemode; /* REL or ABS */ 10597 cmd.u.params.max = cpu_to_be32(maxrate);/* % or kbps */ 10598 10599 return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), 10600 NULL, sleep_ok); 10601 } 10602 10603 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl, 10604 int weight, int sleep_ok) 10605 { 10606 struct fw_sched_cmd cmd; 10607 10608 if (weight < 0 || weight > 100) 10609 return -EINVAL; 10610 10611 memset(&cmd, 0, sizeof(cmd)); 10612 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | 10613 F_FW_CMD_REQUEST | 10614 F_FW_CMD_WRITE); 10615 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10616 10617 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10618 cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED; 10619 cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR; 10620 cmd.u.params.ch = channel; 10621 cmd.u.params.cl = cl; 10622 cmd.u.params.weight = cpu_to_be16(weight); 10623 10624 return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), 10625 NULL, sleep_ok); 10626 } 10627 10628 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl, 10629 int mode, unsigned int maxrate, int pktsize, int sleep_ok) 10630 { 10631 struct fw_sched_cmd cmd; 10632 10633 memset(&cmd, 0, sizeof(cmd)); 10634 cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) | 10635 F_FW_CMD_REQUEST | 10636 F_FW_CMD_WRITE); 10637 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); 10638 10639 cmd.u.params.sc = FW_SCHED_SC_PARAMS; 10640 cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED; 10641 cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL; 10642 cmd.u.params.mode = mode; 10643 cmd.u.params.ch = channel; 10644 cmd.u.params.cl = cl; 10645 cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE; 10646 cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS; 10647 cmd.u.params.max = cpu_to_be32(maxrate); 10648 cmd.u.params.pktsize = cpu_to_be16(pktsize); 10649 10650 return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd), 10651 NULL, sleep_ok); 10652 } 10653 10654 /* 10655 * t4_config_watchdog - configure (enable/disable) a watchdog timer 10656 * @adapter: the adapter 10657 * @mbox: mailbox to use for the FW command 10658 * @pf: the PF owning the queue 10659 * @vf: the VF owning the queue 10660 * @timeout: watchdog timeout in ms 10661 * @action: watchdog timer / action 10662 * 10663 * There are separate watchdog timers for each possible watchdog 10664 * action. Configure one of the watchdog timers by setting a non-zero 10665 * timeout. Disable a watchdog timer by using a timeout of zero. 10666 */ 10667 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox, 10668 unsigned int pf, unsigned int vf, 10669 unsigned int timeout, unsigned int action) 10670 { 10671 struct fw_watchdog_cmd wdog; 10672 unsigned int ticks; 10673 10674 /* 10675 * The watchdog command expects a timeout in units of 10ms so we need 10676 * to convert it here (via rounding) and force a minimum of one 10ms 10677 * "tick" if the timeout is non-zero but the conversion results in 0 10678 * ticks. 10679 */ 10680 ticks = (timeout + 5)/10; 10681 if (timeout && !ticks) 10682 ticks = 1; 10683 10684 memset(&wdog, 0, sizeof wdog); 10685 wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) | 10686 F_FW_CMD_REQUEST | 10687 F_FW_CMD_WRITE | 10688 V_FW_PARAMS_CMD_PFN(pf) | 10689 V_FW_PARAMS_CMD_VFN(vf)); 10690 wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog)); 10691 wdog.timeout = cpu_to_be32(ticks); 10692 wdog.action = cpu_to_be32(action); 10693 10694 return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL); 10695 } 10696 10697 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level) 10698 { 10699 struct fw_devlog_cmd devlog_cmd; 10700 int ret; 10701 10702 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 10703 devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) | 10704 F_FW_CMD_REQUEST | F_FW_CMD_READ); 10705 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 10706 ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd, 10707 sizeof(devlog_cmd), &devlog_cmd); 10708 if (ret) 10709 return ret; 10710 10711 *level = devlog_cmd.level; 10712 return 0; 10713 } 10714 10715 int t4_set_devlog_level(struct adapter *adapter, unsigned int level) 10716 { 10717 struct fw_devlog_cmd devlog_cmd; 10718 10719 memset(&devlog_cmd, 0, sizeof(devlog_cmd)); 10720 devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) | 10721 F_FW_CMD_REQUEST | 10722 F_FW_CMD_WRITE); 10723 devlog_cmd.level = level; 10724 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd)); 10725 return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd, 10726 sizeof(devlog_cmd), &devlog_cmd); 10727 } 10728