xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision 8a16b7a18f5d0b031f09832fd7752fba717e2a97)
1 /*-
2  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 
32 #include <sys/param.h>
33 #include <sys/eventhandler.h>
34 
35 #include "common.h"
36 #include "t4_regs.h"
37 #include "t4_regs_values.h"
38 #include "firmware/t4fw_interface.h"
39 
40 #undef msleep
41 #define msleep(x) do { \
42 	if (cold) \
43 		DELAY((x) * 1000); \
44 	else \
45 		pause("t4hw", (x) * hz / 1000); \
46 } while (0)
47 
48 /**
49  *	t4_wait_op_done_val - wait until an operation is completed
50  *	@adapter: the adapter performing the operation
51  *	@reg: the register to check for completion
52  *	@mask: a single-bit field within @reg that indicates completion
53  *	@polarity: the value of the field when the operation is completed
54  *	@attempts: number of check iterations
55  *	@delay: delay in usecs between iterations
56  *	@valp: where to store the value of the register at completion time
57  *
58  *	Wait until an operation is completed by checking a bit in a register
59  *	up to @attempts times.  If @valp is not NULL the value of the register
60  *	at the time it indicated completion is stored there.  Returns 0 if the
61  *	operation completes and	-EAGAIN	otherwise.
62  */
63 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
64 			       int polarity, int attempts, int delay, u32 *valp)
65 {
66 	while (1) {
67 		u32 val = t4_read_reg(adapter, reg);
68 
69 		if (!!(val & mask) == polarity) {
70 			if (valp)
71 				*valp = val;
72 			return 0;
73 		}
74 		if (--attempts == 0)
75 			return -EAGAIN;
76 		if (delay)
77 			udelay(delay);
78 	}
79 }
80 
81 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
82 				  int polarity, int attempts, int delay)
83 {
84 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
85 				   delay, NULL);
86 }
87 
88 /**
89  *	t4_set_reg_field - set a register field to a value
90  *	@adapter: the adapter to program
91  *	@addr: the register address
92  *	@mask: specifies the portion of the register to modify
93  *	@val: the new value for the register field
94  *
95  *	Sets a register field specified by the supplied mask to the
96  *	given value.
97  */
98 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
99 		      u32 val)
100 {
101 	u32 v = t4_read_reg(adapter, addr) & ~mask;
102 
103 	t4_write_reg(adapter, addr, v | val);
104 	(void) t4_read_reg(adapter, addr);      /* flush */
105 }
106 
107 /**
108  *	t4_read_indirect - read indirectly addressed registers
109  *	@adap: the adapter
110  *	@addr_reg: register holding the indirect address
111  *	@data_reg: register holding the value of the indirect register
112  *	@vals: where the read register values are stored
113  *	@nregs: how many indirect registers to read
114  *	@start_idx: index of first indirect register to read
115  *
116  *	Reads registers that are accessed indirectly through an address/data
117  *	register pair.
118  */
119 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
120 			     unsigned int data_reg, u32 *vals,
121 			     unsigned int nregs, unsigned int start_idx)
122 {
123 	while (nregs--) {
124 		t4_write_reg(adap, addr_reg, start_idx);
125 		*vals++ = t4_read_reg(adap, data_reg);
126 		start_idx++;
127 	}
128 }
129 
130 /**
131  *	t4_write_indirect - write indirectly addressed registers
132  *	@adap: the adapter
133  *	@addr_reg: register holding the indirect addresses
134  *	@data_reg: register holding the value for the indirect registers
135  *	@vals: values to write
136  *	@nregs: how many indirect registers to write
137  *	@start_idx: address of first indirect register to write
138  *
139  *	Writes a sequential block of registers that are accessed indirectly
140  *	through an address/data register pair.
141  */
142 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
143 		       unsigned int data_reg, const u32 *vals,
144 		       unsigned int nregs, unsigned int start_idx)
145 {
146 	while (nregs--) {
147 		t4_write_reg(adap, addr_reg, start_idx++);
148 		t4_write_reg(adap, data_reg, *vals++);
149 	}
150 }
151 
152 /*
153  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
154  * mechanism.  This guarantees that we get the real value even if we're
155  * operating within a Virtual Machine and the Hypervisor is trapping our
156  * Configuration Space accesses.
157  *
158  * N.B. This routine should only be used as a last resort: the firmware uses
159  *      the backdoor registers on a regular basis and we can end up
160  *      conflicting with it's uses!
161  */
162 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
163 {
164 	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
165 	u32 val;
166 
167 	if (chip_id(adap) <= CHELSIO_T5)
168 		req |= F_ENABLE;
169 	else
170 		req |= F_T6_ENABLE;
171 
172 	if (is_t4(adap))
173 		req |= F_LOCALCFG;
174 
175 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
176 	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
177 
178 	/*
179 	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
180 	 * Configuration Space read.  (None of the other fields matter when
181 	 * F_ENABLE is 0 so a simple register write is easier than a
182 	 * read-modify-write via t4_set_reg_field().)
183 	 */
184 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
185 
186 	return val;
187 }
188 
189 /*
190  * t4_report_fw_error - report firmware error
191  * @adap: the adapter
192  *
193  * The adapter firmware can indicate error conditions to the host.
194  * If the firmware has indicated an error, print out the reason for
195  * the firmware error.
196  */
197 static void t4_report_fw_error(struct adapter *adap)
198 {
199 	static const char *const reason[] = {
200 		"Crash",			/* PCIE_FW_EVAL_CRASH */
201 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
202 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
203 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
204 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
205 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
206 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
207 		"Reserved",			/* reserved */
208 	};
209 	u32 pcie_fw;
210 
211 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
212 	if (pcie_fw & F_PCIE_FW_ERR)
213 		CH_ERR(adap, "Firmware reports adapter error: %s\n",
214 			reason[G_PCIE_FW_EVAL(pcie_fw)]);
215 }
216 
217 /*
218  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
219  */
220 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
221 			 u32 mbox_addr)
222 {
223 	for ( ; nflit; nflit--, mbox_addr += 8)
224 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
225 }
226 
227 /*
228  * Handle a FW assertion reported in a mailbox.
229  */
230 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
231 {
232 	CH_ALERT(adap,
233 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
234 		  asrt->u.assert.filename_0_7,
235 		  be32_to_cpu(asrt->u.assert.line),
236 		  be32_to_cpu(asrt->u.assert.x),
237 		  be32_to_cpu(asrt->u.assert.y));
238 }
239 
240 #define X_CIM_PF_NOACCESS 0xeeeeeeee
241 /**
242  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
243  *	@adap: the adapter
244  *	@mbox: index of the mailbox to use
245  *	@cmd: the command to write
246  *	@size: command length in bytes
247  *	@rpl: where to optionally store the reply
248  *	@sleep_ok: if true we may sleep while awaiting command completion
249  *	@timeout: time to wait for command to finish before timing out
250  *		(negative implies @sleep_ok=false)
251  *
252  *	Sends the given command to FW through the selected mailbox and waits
253  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
254  *	store the FW's reply to the command.  The command and its optional
255  *	reply are of the same length.  Some FW commands like RESET and
256  *	INITIALIZE can take a considerable amount of time to execute.
257  *	@sleep_ok determines whether we may sleep while awaiting the response.
258  *	If sleeping is allowed we use progressive backoff otherwise we spin.
259  *	Note that passing in a negative @timeout is an alternate mechanism
260  *	for specifying @sleep_ok=false.  This is useful when a higher level
261  *	interface allows for specification of @timeout but not @sleep_ok ...
262  *
263  *	The return value is 0 on success or a negative errno on failure.  A
264  *	failure can happen either because we are not able to execute the
265  *	command or FW executes it but signals an error.  In the latter case
266  *	the return value is the error code indicated by FW (negated).
267  */
268 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
269 			    int size, void *rpl, bool sleep_ok, int timeout)
270 {
271 	/*
272 	 * We delay in small increments at first in an effort to maintain
273 	 * responsiveness for simple, fast executing commands but then back
274 	 * off to larger delays to a maximum retry delay.
275 	 */
276 	static const int delay[] = {
277 		1, 1, 3, 5, 10, 10, 20, 50, 100
278 	};
279 	u32 v;
280 	u64 res;
281 	int i, ms, delay_idx, ret;
282 	const __be64 *p = cmd;
283 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
284 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
285 	u32 ctl;
286 	__be64 cmd_rpl[MBOX_LEN/8];
287 	u32 pcie_fw;
288 
289 	if (adap->flags & CHK_MBOX_ACCESS)
290 		ASSERT_SYNCHRONIZED_OP(adap);
291 
292 	if ((size & 15) || size > MBOX_LEN)
293 		return -EINVAL;
294 
295 	if (adap->flags & IS_VF) {
296 		if (is_t6(adap))
297 			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
298 		else
299 			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
300 		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
301 	}
302 
303 	/*
304 	 * If we have a negative timeout, that implies that we can't sleep.
305 	 */
306 	if (timeout < 0) {
307 		sleep_ok = false;
308 		timeout = -timeout;
309 	}
310 
311 	/*
312 	 * Attempt to gain access to the mailbox.
313 	 */
314 	for (i = 0; i < 4; i++) {
315 		ctl = t4_read_reg(adap, ctl_reg);
316 		v = G_MBOWNER(ctl);
317 		if (v != X_MBOWNER_NONE)
318 			break;
319 	}
320 
321 	/*
322 	 * If we were unable to gain access, dequeue ourselves from the
323 	 * mailbox atomic access list and report the error to our caller.
324 	 */
325 	if (v != X_MBOWNER_PL) {
326 		t4_report_fw_error(adap);
327 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
328 		return ret;
329 	}
330 
331 	/*
332 	 * If we gain ownership of the mailbox and there's a "valid" message
333 	 * in it, this is likely an asynchronous error message from the
334 	 * firmware.  So we'll report that and then proceed on with attempting
335 	 * to issue our own command ... which may well fail if the error
336 	 * presaged the firmware crashing ...
337 	 */
338 	if (ctl & F_MBMSGVALID) {
339 		CH_ERR(adap, "found VALID command in mbox %u: %016llx %016llx "
340 		       "%016llx %016llx %016llx %016llx %016llx %016llx\n",
341 		       mbox, (unsigned long long)t4_read_reg64(adap, data_reg),
342 		       (unsigned long long)t4_read_reg64(adap, data_reg + 8),
343 		       (unsigned long long)t4_read_reg64(adap, data_reg + 16),
344 		       (unsigned long long)t4_read_reg64(adap, data_reg + 24),
345 		       (unsigned long long)t4_read_reg64(adap, data_reg + 32),
346 		       (unsigned long long)t4_read_reg64(adap, data_reg + 40),
347 		       (unsigned long long)t4_read_reg64(adap, data_reg + 48),
348 		       (unsigned long long)t4_read_reg64(adap, data_reg + 56));
349 	}
350 
351 	/*
352 	 * Copy in the new mailbox command and send it on its way ...
353 	 */
354 	for (i = 0; i < size; i += 8, p++)
355 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
356 
357 	if (adap->flags & IS_VF) {
358 		/*
359 		 * For the VFs, the Mailbox Data "registers" are
360 		 * actually backed by T4's "MA" interface rather than
361 		 * PL Registers (as is the case for the PFs).  Because
362 		 * these are in different coherency domains, the write
363 		 * to the VF's PL-register-backed Mailbox Control can
364 		 * race in front of the writes to the MA-backed VF
365 		 * Mailbox Data "registers".  So we need to do a
366 		 * read-back on at least one byte of the VF Mailbox
367 		 * Data registers before doing the write to the VF
368 		 * Mailbox Control register.
369 		 */
370 		t4_read_reg(adap, data_reg);
371 	}
372 
373 	CH_DUMP_MBOX(adap, mbox, data_reg);
374 
375 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
376 	t4_read_reg(adap, ctl_reg);	/* flush write */
377 
378 	delay_idx = 0;
379 	ms = delay[0];
380 
381 	/*
382 	 * Loop waiting for the reply; bail out if we time out or the firmware
383 	 * reports an error.
384 	 */
385 	pcie_fw = 0;
386 	for (i = 0; i < timeout; i += ms) {
387 		if (!(adap->flags & IS_VF)) {
388 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
389 			if (pcie_fw & F_PCIE_FW_ERR)
390 				break;
391 		}
392 		if (sleep_ok) {
393 			ms = delay[delay_idx];  /* last element may repeat */
394 			if (delay_idx < ARRAY_SIZE(delay) - 1)
395 				delay_idx++;
396 			msleep(ms);
397 		} else {
398 			mdelay(ms);
399 		}
400 
401 		v = t4_read_reg(adap, ctl_reg);
402 		if (v == X_CIM_PF_NOACCESS)
403 			continue;
404 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
405 			if (!(v & F_MBMSGVALID)) {
406 				t4_write_reg(adap, ctl_reg,
407 					     V_MBOWNER(X_MBOWNER_NONE));
408 				continue;
409 			}
410 
411 			/*
412 			 * Retrieve the command reply and release the mailbox.
413 			 */
414 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
415 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
416 
417 			CH_DUMP_MBOX(adap, mbox, data_reg);
418 
419 			res = be64_to_cpu(cmd_rpl[0]);
420 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
421 				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
422 				res = V_FW_CMD_RETVAL(EIO);
423 			} else if (rpl)
424 				memcpy(rpl, cmd_rpl, size);
425 			return -G_FW_CMD_RETVAL((int)res);
426 		}
427 	}
428 
429 	/*
430 	 * We timed out waiting for a reply to our mailbox command.  Report
431 	 * the error and also check to see if the firmware reported any
432 	 * errors ...
433 	 */
434 	ret = (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT;
435 	CH_ERR(adap, "command %#x in mailbox %d timed out\n",
436 	       *(const u8 *)cmd, mbox);
437 
438 	/* If DUMP_MBOX is set the mbox has already been dumped */
439 	if ((adap->debug_flags & DF_DUMP_MBOX) == 0) {
440 		p = cmd;
441 		CH_ERR(adap, "mbox: %016llx %016llx %016llx %016llx "
442 		    "%016llx %016llx %016llx %016llx\n",
443 		    (unsigned long long)be64_to_cpu(p[0]),
444 		    (unsigned long long)be64_to_cpu(p[1]),
445 		    (unsigned long long)be64_to_cpu(p[2]),
446 		    (unsigned long long)be64_to_cpu(p[3]),
447 		    (unsigned long long)be64_to_cpu(p[4]),
448 		    (unsigned long long)be64_to_cpu(p[5]),
449 		    (unsigned long long)be64_to_cpu(p[6]),
450 		    (unsigned long long)be64_to_cpu(p[7]));
451 	}
452 
453 	t4_report_fw_error(adap);
454 	t4_fatal_err(adap);
455 	return ret;
456 }
457 
458 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
459 		    void *rpl, bool sleep_ok)
460 {
461 		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
462 					       sleep_ok, FW_CMD_MAX_TIMEOUT);
463 
464 }
465 
466 static int t4_edc_err_read(struct adapter *adap, int idx)
467 {
468 	u32 edc_ecc_err_addr_reg;
469 	u32 edc_bist_status_rdata_reg;
470 
471 	if (is_t4(adap)) {
472 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
473 		return 0;
474 	}
475 	if (idx != MEM_EDC0 && idx != MEM_EDC1) {
476 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
477 		return 0;
478 	}
479 
480 	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
481 	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
482 
483 	CH_WARN(adap,
484 		"edc%d err addr 0x%x: 0x%x.\n",
485 		idx, edc_ecc_err_addr_reg,
486 		t4_read_reg(adap, edc_ecc_err_addr_reg));
487 	CH_WARN(adap,
488 	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
489 		edc_bist_status_rdata_reg,
490 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
491 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
492 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
493 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
494 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
495 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
496 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
497 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
498 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
499 
500 	return 0;
501 }
502 
503 /**
504  *	t4_mc_read - read from MC through backdoor accesses
505  *	@adap: the adapter
506  *	@idx: which MC to access
507  *	@addr: address of first byte requested
508  *	@data: 64 bytes of data containing the requested address
509  *	@ecc: where to store the corresponding 64-bit ECC word
510  *
511  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
512  *	that covers the requested address @addr.  If @parity is not %NULL it
513  *	is assigned the 64-bit ECC word for the read data.
514  */
515 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
516 {
517 	int i;
518 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
519 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
520 
521 	if (is_t4(adap)) {
522 		mc_bist_cmd_reg = A_MC_BIST_CMD;
523 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
524 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
525 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
526 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
527 	} else {
528 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
529 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
530 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
531 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
532 						  idx);
533 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
534 						  idx);
535 	}
536 
537 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
538 		return -EBUSY;
539 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
540 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
541 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
542 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
543 		     F_START_BIST | V_BIST_CMD_GAP(1));
544 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
545 	if (i)
546 		return i;
547 
548 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
549 
550 	for (i = 15; i >= 0; i--)
551 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
552 	if (ecc)
553 		*ecc = t4_read_reg64(adap, MC_DATA(16));
554 #undef MC_DATA
555 	return 0;
556 }
557 
558 /**
559  *	t4_edc_read - read from EDC through backdoor accesses
560  *	@adap: the adapter
561  *	@idx: which EDC to access
562  *	@addr: address of first byte requested
563  *	@data: 64 bytes of data containing the requested address
564  *	@ecc: where to store the corresponding 64-bit ECC word
565  *
566  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
567  *	that covers the requested address @addr.  If @parity is not %NULL it
568  *	is assigned the 64-bit ECC word for the read data.
569  */
570 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
571 {
572 	int i;
573 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
574 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
575 
576 	if (is_t4(adap)) {
577 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
578 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
579 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
580 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
581 						    idx);
582 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
583 						    idx);
584 	} else {
585 /*
586  * These macro are missing in t4_regs.h file.
587  * Added temporarily for testing.
588  */
589 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
590 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
591 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
592 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
593 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
594 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
595 						    idx);
596 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
597 						    idx);
598 #undef EDC_REG_T5
599 #undef EDC_STRIDE_T5
600 	}
601 
602 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
603 		return -EBUSY;
604 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
605 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
606 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
607 	t4_write_reg(adap, edc_bist_cmd_reg,
608 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
609 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
610 	if (i)
611 		return i;
612 
613 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
614 
615 	for (i = 15; i >= 0; i--)
616 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
617 	if (ecc)
618 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
619 #undef EDC_DATA
620 	return 0;
621 }
622 
623 /**
624  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
625  *	@adap: the adapter
626  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
627  *	@addr: address within indicated memory type
628  *	@len: amount of memory to read
629  *	@buf: host memory buffer
630  *
631  *	Reads an [almost] arbitrary memory region in the firmware: the
632  *	firmware memory address, length and host buffer must be aligned on
633  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
634  *	the firmware's memory.  If this memory contains data structures which
635  *	contain multi-byte integers, it's the callers responsibility to
636  *	perform appropriate byte order conversions.
637  */
638 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
639 		__be32 *buf)
640 {
641 	u32 pos, start, end, offset;
642 	int ret;
643 
644 	/*
645 	 * Argument sanity checks ...
646 	 */
647 	if ((addr & 0x3) || (len & 0x3))
648 		return -EINVAL;
649 
650 	/*
651 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
652 	 * need to round down the start and round up the end.  We'll start
653 	 * copying out of the first line at (addr - start) a word at a time.
654 	 */
655 	start = rounddown2(addr, 64);
656 	end = roundup2(addr + len, 64);
657 	offset = (addr - start)/sizeof(__be32);
658 
659 	for (pos = start; pos < end; pos += 64, offset = 0) {
660 		__be32 data[16];
661 
662 		/*
663 		 * Read the chip's memory block and bail if there's an error.
664 		 */
665 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
666 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
667 		else
668 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
669 		if (ret)
670 			return ret;
671 
672 		/*
673 		 * Copy the data into the caller's memory buffer.
674 		 */
675 		while (offset < 16 && len > 0) {
676 			*buf++ = data[offset++];
677 			len -= sizeof(__be32);
678 		}
679 	}
680 
681 	return 0;
682 }
683 
684 /*
685  * Return the specified PCI-E Configuration Space register from our Physical
686  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
687  * since we prefer to let the firmware own all of these registers, but if that
688  * fails we go for it directly ourselves.
689  */
690 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
691 {
692 
693 	/*
694 	 * If fw_attach != 0, construct and send the Firmware LDST Command to
695 	 * retrieve the specified PCI-E Configuration Space register.
696 	 */
697 	if (drv_fw_attach != 0) {
698 		struct fw_ldst_cmd ldst_cmd;
699 		int ret;
700 
701 		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
702 		ldst_cmd.op_to_addrspace =
703 			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
704 				    F_FW_CMD_REQUEST |
705 				    F_FW_CMD_READ |
706 				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
707 		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
708 		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
709 		ldst_cmd.u.pcie.ctrl_to_fn =
710 			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
711 		ldst_cmd.u.pcie.r = reg;
712 
713 		/*
714 		 * If the LDST Command succeeds, return the result, otherwise
715 		 * fall through to reading it directly ourselves ...
716 		 */
717 		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
718 				 &ldst_cmd);
719 		if (ret == 0)
720 			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
721 
722 		CH_WARN(adap, "Firmware failed to return "
723 			"Configuration Space register %d, err = %d\n",
724 			reg, -ret);
725 	}
726 
727 	/*
728 	 * Read the desired Configuration Space register via the PCI-E
729 	 * Backdoor mechanism.
730 	 */
731 	return t4_hw_pci_read_cfg4(adap, reg);
732 }
733 
734 /**
735  *	t4_get_regs_len - return the size of the chips register set
736  *	@adapter: the adapter
737  *
738  *	Returns the size of the chip's BAR0 register space.
739  */
740 unsigned int t4_get_regs_len(struct adapter *adapter)
741 {
742 	unsigned int chip_version = chip_id(adapter);
743 
744 	switch (chip_version) {
745 	case CHELSIO_T4:
746 		if (adapter->flags & IS_VF)
747 			return FW_T4VF_REGMAP_SIZE;
748 		return T4_REGMAP_SIZE;
749 
750 	case CHELSIO_T5:
751 	case CHELSIO_T6:
752 		if (adapter->flags & IS_VF)
753 			return FW_T4VF_REGMAP_SIZE;
754 		return T5_REGMAP_SIZE;
755 	}
756 
757 	CH_ERR(adapter,
758 		"Unsupported chip version %d\n", chip_version);
759 	return 0;
760 }
761 
762 /**
763  *	t4_get_regs - read chip registers into provided buffer
764  *	@adap: the adapter
765  *	@buf: register buffer
766  *	@buf_size: size (in bytes) of register buffer
767  *
768  *	If the provided register buffer isn't large enough for the chip's
769  *	full register range, the register dump will be truncated to the
770  *	register buffer's size.
771  */
772 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
773 {
774 	static const unsigned int t4_reg_ranges[] = {
775 		0x1008, 0x1108,
776 		0x1180, 0x1184,
777 		0x1190, 0x1194,
778 		0x11a0, 0x11a4,
779 		0x11b0, 0x11b4,
780 		0x11fc, 0x123c,
781 		0x1300, 0x173c,
782 		0x1800, 0x18fc,
783 		0x3000, 0x30d8,
784 		0x30e0, 0x30e4,
785 		0x30ec, 0x5910,
786 		0x5920, 0x5924,
787 		0x5960, 0x5960,
788 		0x5968, 0x5968,
789 		0x5970, 0x5970,
790 		0x5978, 0x5978,
791 		0x5980, 0x5980,
792 		0x5988, 0x5988,
793 		0x5990, 0x5990,
794 		0x5998, 0x5998,
795 		0x59a0, 0x59d4,
796 		0x5a00, 0x5ae0,
797 		0x5ae8, 0x5ae8,
798 		0x5af0, 0x5af0,
799 		0x5af8, 0x5af8,
800 		0x6000, 0x6098,
801 		0x6100, 0x6150,
802 		0x6200, 0x6208,
803 		0x6240, 0x6248,
804 		0x6280, 0x62b0,
805 		0x62c0, 0x6338,
806 		0x6370, 0x638c,
807 		0x6400, 0x643c,
808 		0x6500, 0x6524,
809 		0x6a00, 0x6a04,
810 		0x6a14, 0x6a38,
811 		0x6a60, 0x6a70,
812 		0x6a78, 0x6a78,
813 		0x6b00, 0x6b0c,
814 		0x6b1c, 0x6b84,
815 		0x6bf0, 0x6bf8,
816 		0x6c00, 0x6c0c,
817 		0x6c1c, 0x6c84,
818 		0x6cf0, 0x6cf8,
819 		0x6d00, 0x6d0c,
820 		0x6d1c, 0x6d84,
821 		0x6df0, 0x6df8,
822 		0x6e00, 0x6e0c,
823 		0x6e1c, 0x6e84,
824 		0x6ef0, 0x6ef8,
825 		0x6f00, 0x6f0c,
826 		0x6f1c, 0x6f84,
827 		0x6ff0, 0x6ff8,
828 		0x7000, 0x700c,
829 		0x701c, 0x7084,
830 		0x70f0, 0x70f8,
831 		0x7100, 0x710c,
832 		0x711c, 0x7184,
833 		0x71f0, 0x71f8,
834 		0x7200, 0x720c,
835 		0x721c, 0x7284,
836 		0x72f0, 0x72f8,
837 		0x7300, 0x730c,
838 		0x731c, 0x7384,
839 		0x73f0, 0x73f8,
840 		0x7400, 0x7450,
841 		0x7500, 0x7530,
842 		0x7600, 0x760c,
843 		0x7614, 0x761c,
844 		0x7680, 0x76cc,
845 		0x7700, 0x7798,
846 		0x77c0, 0x77fc,
847 		0x7900, 0x79fc,
848 		0x7b00, 0x7b58,
849 		0x7b60, 0x7b84,
850 		0x7b8c, 0x7c38,
851 		0x7d00, 0x7d38,
852 		0x7d40, 0x7d80,
853 		0x7d8c, 0x7ddc,
854 		0x7de4, 0x7e04,
855 		0x7e10, 0x7e1c,
856 		0x7e24, 0x7e38,
857 		0x7e40, 0x7e44,
858 		0x7e4c, 0x7e78,
859 		0x7e80, 0x7ea4,
860 		0x7eac, 0x7edc,
861 		0x7ee8, 0x7efc,
862 		0x8dc0, 0x8e04,
863 		0x8e10, 0x8e1c,
864 		0x8e30, 0x8e78,
865 		0x8ea0, 0x8eb8,
866 		0x8ec0, 0x8f6c,
867 		0x8fc0, 0x9008,
868 		0x9010, 0x9058,
869 		0x9060, 0x9060,
870 		0x9068, 0x9074,
871 		0x90fc, 0x90fc,
872 		0x9400, 0x9408,
873 		0x9410, 0x9458,
874 		0x9600, 0x9600,
875 		0x9608, 0x9638,
876 		0x9640, 0x96bc,
877 		0x9800, 0x9808,
878 		0x9820, 0x983c,
879 		0x9850, 0x9864,
880 		0x9c00, 0x9c6c,
881 		0x9c80, 0x9cec,
882 		0x9d00, 0x9d6c,
883 		0x9d80, 0x9dec,
884 		0x9e00, 0x9e6c,
885 		0x9e80, 0x9eec,
886 		0x9f00, 0x9f6c,
887 		0x9f80, 0x9fec,
888 		0xd004, 0xd004,
889 		0xd010, 0xd03c,
890 		0xdfc0, 0xdfe0,
891 		0xe000, 0xea7c,
892 		0xf000, 0x11110,
893 		0x11118, 0x11190,
894 		0x19040, 0x1906c,
895 		0x19078, 0x19080,
896 		0x1908c, 0x190e4,
897 		0x190f0, 0x190f8,
898 		0x19100, 0x19110,
899 		0x19120, 0x19124,
900 		0x19150, 0x19194,
901 		0x1919c, 0x191b0,
902 		0x191d0, 0x191e8,
903 		0x19238, 0x1924c,
904 		0x193f8, 0x1943c,
905 		0x1944c, 0x19474,
906 		0x19490, 0x194e0,
907 		0x194f0, 0x194f8,
908 		0x19800, 0x19c08,
909 		0x19c10, 0x19c90,
910 		0x19ca0, 0x19ce4,
911 		0x19cf0, 0x19d40,
912 		0x19d50, 0x19d94,
913 		0x19da0, 0x19de8,
914 		0x19df0, 0x19e40,
915 		0x19e50, 0x19e90,
916 		0x19ea0, 0x19f4c,
917 		0x1a000, 0x1a004,
918 		0x1a010, 0x1a06c,
919 		0x1a0b0, 0x1a0e4,
920 		0x1a0ec, 0x1a0f4,
921 		0x1a100, 0x1a108,
922 		0x1a114, 0x1a120,
923 		0x1a128, 0x1a130,
924 		0x1a138, 0x1a138,
925 		0x1a190, 0x1a1c4,
926 		0x1a1fc, 0x1a1fc,
927 		0x1e040, 0x1e04c,
928 		0x1e284, 0x1e28c,
929 		0x1e2c0, 0x1e2c0,
930 		0x1e2e0, 0x1e2e0,
931 		0x1e300, 0x1e384,
932 		0x1e3c0, 0x1e3c8,
933 		0x1e440, 0x1e44c,
934 		0x1e684, 0x1e68c,
935 		0x1e6c0, 0x1e6c0,
936 		0x1e6e0, 0x1e6e0,
937 		0x1e700, 0x1e784,
938 		0x1e7c0, 0x1e7c8,
939 		0x1e840, 0x1e84c,
940 		0x1ea84, 0x1ea8c,
941 		0x1eac0, 0x1eac0,
942 		0x1eae0, 0x1eae0,
943 		0x1eb00, 0x1eb84,
944 		0x1ebc0, 0x1ebc8,
945 		0x1ec40, 0x1ec4c,
946 		0x1ee84, 0x1ee8c,
947 		0x1eec0, 0x1eec0,
948 		0x1eee0, 0x1eee0,
949 		0x1ef00, 0x1ef84,
950 		0x1efc0, 0x1efc8,
951 		0x1f040, 0x1f04c,
952 		0x1f284, 0x1f28c,
953 		0x1f2c0, 0x1f2c0,
954 		0x1f2e0, 0x1f2e0,
955 		0x1f300, 0x1f384,
956 		0x1f3c0, 0x1f3c8,
957 		0x1f440, 0x1f44c,
958 		0x1f684, 0x1f68c,
959 		0x1f6c0, 0x1f6c0,
960 		0x1f6e0, 0x1f6e0,
961 		0x1f700, 0x1f784,
962 		0x1f7c0, 0x1f7c8,
963 		0x1f840, 0x1f84c,
964 		0x1fa84, 0x1fa8c,
965 		0x1fac0, 0x1fac0,
966 		0x1fae0, 0x1fae0,
967 		0x1fb00, 0x1fb84,
968 		0x1fbc0, 0x1fbc8,
969 		0x1fc40, 0x1fc4c,
970 		0x1fe84, 0x1fe8c,
971 		0x1fec0, 0x1fec0,
972 		0x1fee0, 0x1fee0,
973 		0x1ff00, 0x1ff84,
974 		0x1ffc0, 0x1ffc8,
975 		0x20000, 0x2002c,
976 		0x20100, 0x2013c,
977 		0x20190, 0x201a0,
978 		0x201a8, 0x201b8,
979 		0x201c4, 0x201c8,
980 		0x20200, 0x20318,
981 		0x20400, 0x204b4,
982 		0x204c0, 0x20528,
983 		0x20540, 0x20614,
984 		0x21000, 0x21040,
985 		0x2104c, 0x21060,
986 		0x210c0, 0x210ec,
987 		0x21200, 0x21268,
988 		0x21270, 0x21284,
989 		0x212fc, 0x21388,
990 		0x21400, 0x21404,
991 		0x21500, 0x21500,
992 		0x21510, 0x21518,
993 		0x2152c, 0x21530,
994 		0x2153c, 0x2153c,
995 		0x21550, 0x21554,
996 		0x21600, 0x21600,
997 		0x21608, 0x2161c,
998 		0x21624, 0x21628,
999 		0x21630, 0x21634,
1000 		0x2163c, 0x2163c,
1001 		0x21700, 0x2171c,
1002 		0x21780, 0x2178c,
1003 		0x21800, 0x21818,
1004 		0x21820, 0x21828,
1005 		0x21830, 0x21848,
1006 		0x21850, 0x21854,
1007 		0x21860, 0x21868,
1008 		0x21870, 0x21870,
1009 		0x21878, 0x21898,
1010 		0x218a0, 0x218a8,
1011 		0x218b0, 0x218c8,
1012 		0x218d0, 0x218d4,
1013 		0x218e0, 0x218e8,
1014 		0x218f0, 0x218f0,
1015 		0x218f8, 0x21a18,
1016 		0x21a20, 0x21a28,
1017 		0x21a30, 0x21a48,
1018 		0x21a50, 0x21a54,
1019 		0x21a60, 0x21a68,
1020 		0x21a70, 0x21a70,
1021 		0x21a78, 0x21a98,
1022 		0x21aa0, 0x21aa8,
1023 		0x21ab0, 0x21ac8,
1024 		0x21ad0, 0x21ad4,
1025 		0x21ae0, 0x21ae8,
1026 		0x21af0, 0x21af0,
1027 		0x21af8, 0x21c18,
1028 		0x21c20, 0x21c20,
1029 		0x21c28, 0x21c30,
1030 		0x21c38, 0x21c38,
1031 		0x21c80, 0x21c98,
1032 		0x21ca0, 0x21ca8,
1033 		0x21cb0, 0x21cc8,
1034 		0x21cd0, 0x21cd4,
1035 		0x21ce0, 0x21ce8,
1036 		0x21cf0, 0x21cf0,
1037 		0x21cf8, 0x21d7c,
1038 		0x21e00, 0x21e04,
1039 		0x22000, 0x2202c,
1040 		0x22100, 0x2213c,
1041 		0x22190, 0x221a0,
1042 		0x221a8, 0x221b8,
1043 		0x221c4, 0x221c8,
1044 		0x22200, 0x22318,
1045 		0x22400, 0x224b4,
1046 		0x224c0, 0x22528,
1047 		0x22540, 0x22614,
1048 		0x23000, 0x23040,
1049 		0x2304c, 0x23060,
1050 		0x230c0, 0x230ec,
1051 		0x23200, 0x23268,
1052 		0x23270, 0x23284,
1053 		0x232fc, 0x23388,
1054 		0x23400, 0x23404,
1055 		0x23500, 0x23500,
1056 		0x23510, 0x23518,
1057 		0x2352c, 0x23530,
1058 		0x2353c, 0x2353c,
1059 		0x23550, 0x23554,
1060 		0x23600, 0x23600,
1061 		0x23608, 0x2361c,
1062 		0x23624, 0x23628,
1063 		0x23630, 0x23634,
1064 		0x2363c, 0x2363c,
1065 		0x23700, 0x2371c,
1066 		0x23780, 0x2378c,
1067 		0x23800, 0x23818,
1068 		0x23820, 0x23828,
1069 		0x23830, 0x23848,
1070 		0x23850, 0x23854,
1071 		0x23860, 0x23868,
1072 		0x23870, 0x23870,
1073 		0x23878, 0x23898,
1074 		0x238a0, 0x238a8,
1075 		0x238b0, 0x238c8,
1076 		0x238d0, 0x238d4,
1077 		0x238e0, 0x238e8,
1078 		0x238f0, 0x238f0,
1079 		0x238f8, 0x23a18,
1080 		0x23a20, 0x23a28,
1081 		0x23a30, 0x23a48,
1082 		0x23a50, 0x23a54,
1083 		0x23a60, 0x23a68,
1084 		0x23a70, 0x23a70,
1085 		0x23a78, 0x23a98,
1086 		0x23aa0, 0x23aa8,
1087 		0x23ab0, 0x23ac8,
1088 		0x23ad0, 0x23ad4,
1089 		0x23ae0, 0x23ae8,
1090 		0x23af0, 0x23af0,
1091 		0x23af8, 0x23c18,
1092 		0x23c20, 0x23c20,
1093 		0x23c28, 0x23c30,
1094 		0x23c38, 0x23c38,
1095 		0x23c80, 0x23c98,
1096 		0x23ca0, 0x23ca8,
1097 		0x23cb0, 0x23cc8,
1098 		0x23cd0, 0x23cd4,
1099 		0x23ce0, 0x23ce8,
1100 		0x23cf0, 0x23cf0,
1101 		0x23cf8, 0x23d7c,
1102 		0x23e00, 0x23e04,
1103 		0x24000, 0x2402c,
1104 		0x24100, 0x2413c,
1105 		0x24190, 0x241a0,
1106 		0x241a8, 0x241b8,
1107 		0x241c4, 0x241c8,
1108 		0x24200, 0x24318,
1109 		0x24400, 0x244b4,
1110 		0x244c0, 0x24528,
1111 		0x24540, 0x24614,
1112 		0x25000, 0x25040,
1113 		0x2504c, 0x25060,
1114 		0x250c0, 0x250ec,
1115 		0x25200, 0x25268,
1116 		0x25270, 0x25284,
1117 		0x252fc, 0x25388,
1118 		0x25400, 0x25404,
1119 		0x25500, 0x25500,
1120 		0x25510, 0x25518,
1121 		0x2552c, 0x25530,
1122 		0x2553c, 0x2553c,
1123 		0x25550, 0x25554,
1124 		0x25600, 0x25600,
1125 		0x25608, 0x2561c,
1126 		0x25624, 0x25628,
1127 		0x25630, 0x25634,
1128 		0x2563c, 0x2563c,
1129 		0x25700, 0x2571c,
1130 		0x25780, 0x2578c,
1131 		0x25800, 0x25818,
1132 		0x25820, 0x25828,
1133 		0x25830, 0x25848,
1134 		0x25850, 0x25854,
1135 		0x25860, 0x25868,
1136 		0x25870, 0x25870,
1137 		0x25878, 0x25898,
1138 		0x258a0, 0x258a8,
1139 		0x258b0, 0x258c8,
1140 		0x258d0, 0x258d4,
1141 		0x258e0, 0x258e8,
1142 		0x258f0, 0x258f0,
1143 		0x258f8, 0x25a18,
1144 		0x25a20, 0x25a28,
1145 		0x25a30, 0x25a48,
1146 		0x25a50, 0x25a54,
1147 		0x25a60, 0x25a68,
1148 		0x25a70, 0x25a70,
1149 		0x25a78, 0x25a98,
1150 		0x25aa0, 0x25aa8,
1151 		0x25ab0, 0x25ac8,
1152 		0x25ad0, 0x25ad4,
1153 		0x25ae0, 0x25ae8,
1154 		0x25af0, 0x25af0,
1155 		0x25af8, 0x25c18,
1156 		0x25c20, 0x25c20,
1157 		0x25c28, 0x25c30,
1158 		0x25c38, 0x25c38,
1159 		0x25c80, 0x25c98,
1160 		0x25ca0, 0x25ca8,
1161 		0x25cb0, 0x25cc8,
1162 		0x25cd0, 0x25cd4,
1163 		0x25ce0, 0x25ce8,
1164 		0x25cf0, 0x25cf0,
1165 		0x25cf8, 0x25d7c,
1166 		0x25e00, 0x25e04,
1167 		0x26000, 0x2602c,
1168 		0x26100, 0x2613c,
1169 		0x26190, 0x261a0,
1170 		0x261a8, 0x261b8,
1171 		0x261c4, 0x261c8,
1172 		0x26200, 0x26318,
1173 		0x26400, 0x264b4,
1174 		0x264c0, 0x26528,
1175 		0x26540, 0x26614,
1176 		0x27000, 0x27040,
1177 		0x2704c, 0x27060,
1178 		0x270c0, 0x270ec,
1179 		0x27200, 0x27268,
1180 		0x27270, 0x27284,
1181 		0x272fc, 0x27388,
1182 		0x27400, 0x27404,
1183 		0x27500, 0x27500,
1184 		0x27510, 0x27518,
1185 		0x2752c, 0x27530,
1186 		0x2753c, 0x2753c,
1187 		0x27550, 0x27554,
1188 		0x27600, 0x27600,
1189 		0x27608, 0x2761c,
1190 		0x27624, 0x27628,
1191 		0x27630, 0x27634,
1192 		0x2763c, 0x2763c,
1193 		0x27700, 0x2771c,
1194 		0x27780, 0x2778c,
1195 		0x27800, 0x27818,
1196 		0x27820, 0x27828,
1197 		0x27830, 0x27848,
1198 		0x27850, 0x27854,
1199 		0x27860, 0x27868,
1200 		0x27870, 0x27870,
1201 		0x27878, 0x27898,
1202 		0x278a0, 0x278a8,
1203 		0x278b0, 0x278c8,
1204 		0x278d0, 0x278d4,
1205 		0x278e0, 0x278e8,
1206 		0x278f0, 0x278f0,
1207 		0x278f8, 0x27a18,
1208 		0x27a20, 0x27a28,
1209 		0x27a30, 0x27a48,
1210 		0x27a50, 0x27a54,
1211 		0x27a60, 0x27a68,
1212 		0x27a70, 0x27a70,
1213 		0x27a78, 0x27a98,
1214 		0x27aa0, 0x27aa8,
1215 		0x27ab0, 0x27ac8,
1216 		0x27ad0, 0x27ad4,
1217 		0x27ae0, 0x27ae8,
1218 		0x27af0, 0x27af0,
1219 		0x27af8, 0x27c18,
1220 		0x27c20, 0x27c20,
1221 		0x27c28, 0x27c30,
1222 		0x27c38, 0x27c38,
1223 		0x27c80, 0x27c98,
1224 		0x27ca0, 0x27ca8,
1225 		0x27cb0, 0x27cc8,
1226 		0x27cd0, 0x27cd4,
1227 		0x27ce0, 0x27ce8,
1228 		0x27cf0, 0x27cf0,
1229 		0x27cf8, 0x27d7c,
1230 		0x27e00, 0x27e04,
1231 	};
1232 
1233 	static const unsigned int t4vf_reg_ranges[] = {
1234 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1235 		VF_MPS_REG(A_MPS_VF_CTL),
1236 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1237 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1238 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1239 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1240 		FW_T4VF_MBDATA_BASE_ADDR,
1241 		FW_T4VF_MBDATA_BASE_ADDR +
1242 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1243 	};
1244 
1245 	static const unsigned int t5_reg_ranges[] = {
1246 		0x1008, 0x10c0,
1247 		0x10cc, 0x10f8,
1248 		0x1100, 0x1100,
1249 		0x110c, 0x1148,
1250 		0x1180, 0x1184,
1251 		0x1190, 0x1194,
1252 		0x11a0, 0x11a4,
1253 		0x11b0, 0x11b4,
1254 		0x11fc, 0x123c,
1255 		0x1280, 0x173c,
1256 		0x1800, 0x18fc,
1257 		0x3000, 0x3028,
1258 		0x3060, 0x30b0,
1259 		0x30b8, 0x30d8,
1260 		0x30e0, 0x30fc,
1261 		0x3140, 0x357c,
1262 		0x35a8, 0x35cc,
1263 		0x35ec, 0x35ec,
1264 		0x3600, 0x5624,
1265 		0x56cc, 0x56ec,
1266 		0x56f4, 0x5720,
1267 		0x5728, 0x575c,
1268 		0x580c, 0x5814,
1269 		0x5890, 0x589c,
1270 		0x58a4, 0x58ac,
1271 		0x58b8, 0x58bc,
1272 		0x5940, 0x59c8,
1273 		0x59d0, 0x59dc,
1274 		0x59fc, 0x5a18,
1275 		0x5a60, 0x5a70,
1276 		0x5a80, 0x5a9c,
1277 		0x5b94, 0x5bfc,
1278 		0x6000, 0x6020,
1279 		0x6028, 0x6040,
1280 		0x6058, 0x609c,
1281 		0x60a8, 0x614c,
1282 		0x7700, 0x7798,
1283 		0x77c0, 0x78fc,
1284 		0x7b00, 0x7b58,
1285 		0x7b60, 0x7b84,
1286 		0x7b8c, 0x7c54,
1287 		0x7d00, 0x7d38,
1288 		0x7d40, 0x7d80,
1289 		0x7d8c, 0x7ddc,
1290 		0x7de4, 0x7e04,
1291 		0x7e10, 0x7e1c,
1292 		0x7e24, 0x7e38,
1293 		0x7e40, 0x7e44,
1294 		0x7e4c, 0x7e78,
1295 		0x7e80, 0x7edc,
1296 		0x7ee8, 0x7efc,
1297 		0x8dc0, 0x8de0,
1298 		0x8df8, 0x8e04,
1299 		0x8e10, 0x8e84,
1300 		0x8ea0, 0x8f84,
1301 		0x8fc0, 0x9058,
1302 		0x9060, 0x9060,
1303 		0x9068, 0x90f8,
1304 		0x9400, 0x9408,
1305 		0x9410, 0x9470,
1306 		0x9600, 0x9600,
1307 		0x9608, 0x9638,
1308 		0x9640, 0x96f4,
1309 		0x9800, 0x9808,
1310 		0x9820, 0x983c,
1311 		0x9850, 0x9864,
1312 		0x9c00, 0x9c6c,
1313 		0x9c80, 0x9cec,
1314 		0x9d00, 0x9d6c,
1315 		0x9d80, 0x9dec,
1316 		0x9e00, 0x9e6c,
1317 		0x9e80, 0x9eec,
1318 		0x9f00, 0x9f6c,
1319 		0x9f80, 0xa020,
1320 		0xd004, 0xd004,
1321 		0xd010, 0xd03c,
1322 		0xdfc0, 0xdfe0,
1323 		0xe000, 0x1106c,
1324 		0x11074, 0x11088,
1325 		0x1109c, 0x1117c,
1326 		0x11190, 0x11204,
1327 		0x19040, 0x1906c,
1328 		0x19078, 0x19080,
1329 		0x1908c, 0x190e8,
1330 		0x190f0, 0x190f8,
1331 		0x19100, 0x19110,
1332 		0x19120, 0x19124,
1333 		0x19150, 0x19194,
1334 		0x1919c, 0x191b0,
1335 		0x191d0, 0x191e8,
1336 		0x19238, 0x19290,
1337 		0x193f8, 0x19428,
1338 		0x19430, 0x19444,
1339 		0x1944c, 0x1946c,
1340 		0x19474, 0x19474,
1341 		0x19490, 0x194cc,
1342 		0x194f0, 0x194f8,
1343 		0x19c00, 0x19c08,
1344 		0x19c10, 0x19c60,
1345 		0x19c94, 0x19ce4,
1346 		0x19cf0, 0x19d40,
1347 		0x19d50, 0x19d94,
1348 		0x19da0, 0x19de8,
1349 		0x19df0, 0x19e10,
1350 		0x19e50, 0x19e90,
1351 		0x19ea0, 0x19f24,
1352 		0x19f34, 0x19f34,
1353 		0x19f40, 0x19f50,
1354 		0x19f90, 0x19fb4,
1355 		0x19fc4, 0x19fe4,
1356 		0x1a000, 0x1a004,
1357 		0x1a010, 0x1a06c,
1358 		0x1a0b0, 0x1a0e4,
1359 		0x1a0ec, 0x1a0f8,
1360 		0x1a100, 0x1a108,
1361 		0x1a114, 0x1a120,
1362 		0x1a128, 0x1a130,
1363 		0x1a138, 0x1a138,
1364 		0x1a190, 0x1a1c4,
1365 		0x1a1fc, 0x1a1fc,
1366 		0x1e008, 0x1e00c,
1367 		0x1e040, 0x1e044,
1368 		0x1e04c, 0x1e04c,
1369 		0x1e284, 0x1e290,
1370 		0x1e2c0, 0x1e2c0,
1371 		0x1e2e0, 0x1e2e0,
1372 		0x1e300, 0x1e384,
1373 		0x1e3c0, 0x1e3c8,
1374 		0x1e408, 0x1e40c,
1375 		0x1e440, 0x1e444,
1376 		0x1e44c, 0x1e44c,
1377 		0x1e684, 0x1e690,
1378 		0x1e6c0, 0x1e6c0,
1379 		0x1e6e0, 0x1e6e0,
1380 		0x1e700, 0x1e784,
1381 		0x1e7c0, 0x1e7c8,
1382 		0x1e808, 0x1e80c,
1383 		0x1e840, 0x1e844,
1384 		0x1e84c, 0x1e84c,
1385 		0x1ea84, 0x1ea90,
1386 		0x1eac0, 0x1eac0,
1387 		0x1eae0, 0x1eae0,
1388 		0x1eb00, 0x1eb84,
1389 		0x1ebc0, 0x1ebc8,
1390 		0x1ec08, 0x1ec0c,
1391 		0x1ec40, 0x1ec44,
1392 		0x1ec4c, 0x1ec4c,
1393 		0x1ee84, 0x1ee90,
1394 		0x1eec0, 0x1eec0,
1395 		0x1eee0, 0x1eee0,
1396 		0x1ef00, 0x1ef84,
1397 		0x1efc0, 0x1efc8,
1398 		0x1f008, 0x1f00c,
1399 		0x1f040, 0x1f044,
1400 		0x1f04c, 0x1f04c,
1401 		0x1f284, 0x1f290,
1402 		0x1f2c0, 0x1f2c0,
1403 		0x1f2e0, 0x1f2e0,
1404 		0x1f300, 0x1f384,
1405 		0x1f3c0, 0x1f3c8,
1406 		0x1f408, 0x1f40c,
1407 		0x1f440, 0x1f444,
1408 		0x1f44c, 0x1f44c,
1409 		0x1f684, 0x1f690,
1410 		0x1f6c0, 0x1f6c0,
1411 		0x1f6e0, 0x1f6e0,
1412 		0x1f700, 0x1f784,
1413 		0x1f7c0, 0x1f7c8,
1414 		0x1f808, 0x1f80c,
1415 		0x1f840, 0x1f844,
1416 		0x1f84c, 0x1f84c,
1417 		0x1fa84, 0x1fa90,
1418 		0x1fac0, 0x1fac0,
1419 		0x1fae0, 0x1fae0,
1420 		0x1fb00, 0x1fb84,
1421 		0x1fbc0, 0x1fbc8,
1422 		0x1fc08, 0x1fc0c,
1423 		0x1fc40, 0x1fc44,
1424 		0x1fc4c, 0x1fc4c,
1425 		0x1fe84, 0x1fe90,
1426 		0x1fec0, 0x1fec0,
1427 		0x1fee0, 0x1fee0,
1428 		0x1ff00, 0x1ff84,
1429 		0x1ffc0, 0x1ffc8,
1430 		0x30000, 0x30030,
1431 		0x30100, 0x30144,
1432 		0x30190, 0x301a0,
1433 		0x301a8, 0x301b8,
1434 		0x301c4, 0x301c8,
1435 		0x301d0, 0x301d0,
1436 		0x30200, 0x30318,
1437 		0x30400, 0x304b4,
1438 		0x304c0, 0x3052c,
1439 		0x30540, 0x3061c,
1440 		0x30800, 0x30828,
1441 		0x30834, 0x30834,
1442 		0x308c0, 0x30908,
1443 		0x30910, 0x309ac,
1444 		0x30a00, 0x30a14,
1445 		0x30a1c, 0x30a2c,
1446 		0x30a44, 0x30a50,
1447 		0x30a74, 0x30a74,
1448 		0x30a7c, 0x30afc,
1449 		0x30b08, 0x30c24,
1450 		0x30d00, 0x30d00,
1451 		0x30d08, 0x30d14,
1452 		0x30d1c, 0x30d20,
1453 		0x30d3c, 0x30d3c,
1454 		0x30d48, 0x30d50,
1455 		0x31200, 0x3120c,
1456 		0x31220, 0x31220,
1457 		0x31240, 0x31240,
1458 		0x31600, 0x3160c,
1459 		0x31a00, 0x31a1c,
1460 		0x31e00, 0x31e20,
1461 		0x31e38, 0x31e3c,
1462 		0x31e80, 0x31e80,
1463 		0x31e88, 0x31ea8,
1464 		0x31eb0, 0x31eb4,
1465 		0x31ec8, 0x31ed4,
1466 		0x31fb8, 0x32004,
1467 		0x32200, 0x32200,
1468 		0x32208, 0x32240,
1469 		0x32248, 0x32280,
1470 		0x32288, 0x322c0,
1471 		0x322c8, 0x322fc,
1472 		0x32600, 0x32630,
1473 		0x32a00, 0x32abc,
1474 		0x32b00, 0x32b10,
1475 		0x32b20, 0x32b30,
1476 		0x32b40, 0x32b50,
1477 		0x32b60, 0x32b70,
1478 		0x33000, 0x33028,
1479 		0x33030, 0x33048,
1480 		0x33060, 0x33068,
1481 		0x33070, 0x3309c,
1482 		0x330f0, 0x33128,
1483 		0x33130, 0x33148,
1484 		0x33160, 0x33168,
1485 		0x33170, 0x3319c,
1486 		0x331f0, 0x33238,
1487 		0x33240, 0x33240,
1488 		0x33248, 0x33250,
1489 		0x3325c, 0x33264,
1490 		0x33270, 0x332b8,
1491 		0x332c0, 0x332e4,
1492 		0x332f8, 0x33338,
1493 		0x33340, 0x33340,
1494 		0x33348, 0x33350,
1495 		0x3335c, 0x33364,
1496 		0x33370, 0x333b8,
1497 		0x333c0, 0x333e4,
1498 		0x333f8, 0x33428,
1499 		0x33430, 0x33448,
1500 		0x33460, 0x33468,
1501 		0x33470, 0x3349c,
1502 		0x334f0, 0x33528,
1503 		0x33530, 0x33548,
1504 		0x33560, 0x33568,
1505 		0x33570, 0x3359c,
1506 		0x335f0, 0x33638,
1507 		0x33640, 0x33640,
1508 		0x33648, 0x33650,
1509 		0x3365c, 0x33664,
1510 		0x33670, 0x336b8,
1511 		0x336c0, 0x336e4,
1512 		0x336f8, 0x33738,
1513 		0x33740, 0x33740,
1514 		0x33748, 0x33750,
1515 		0x3375c, 0x33764,
1516 		0x33770, 0x337b8,
1517 		0x337c0, 0x337e4,
1518 		0x337f8, 0x337fc,
1519 		0x33814, 0x33814,
1520 		0x3382c, 0x3382c,
1521 		0x33880, 0x3388c,
1522 		0x338e8, 0x338ec,
1523 		0x33900, 0x33928,
1524 		0x33930, 0x33948,
1525 		0x33960, 0x33968,
1526 		0x33970, 0x3399c,
1527 		0x339f0, 0x33a38,
1528 		0x33a40, 0x33a40,
1529 		0x33a48, 0x33a50,
1530 		0x33a5c, 0x33a64,
1531 		0x33a70, 0x33ab8,
1532 		0x33ac0, 0x33ae4,
1533 		0x33af8, 0x33b10,
1534 		0x33b28, 0x33b28,
1535 		0x33b3c, 0x33b50,
1536 		0x33bf0, 0x33c10,
1537 		0x33c28, 0x33c28,
1538 		0x33c3c, 0x33c50,
1539 		0x33cf0, 0x33cfc,
1540 		0x34000, 0x34030,
1541 		0x34100, 0x34144,
1542 		0x34190, 0x341a0,
1543 		0x341a8, 0x341b8,
1544 		0x341c4, 0x341c8,
1545 		0x341d0, 0x341d0,
1546 		0x34200, 0x34318,
1547 		0x34400, 0x344b4,
1548 		0x344c0, 0x3452c,
1549 		0x34540, 0x3461c,
1550 		0x34800, 0x34828,
1551 		0x34834, 0x34834,
1552 		0x348c0, 0x34908,
1553 		0x34910, 0x349ac,
1554 		0x34a00, 0x34a14,
1555 		0x34a1c, 0x34a2c,
1556 		0x34a44, 0x34a50,
1557 		0x34a74, 0x34a74,
1558 		0x34a7c, 0x34afc,
1559 		0x34b08, 0x34c24,
1560 		0x34d00, 0x34d00,
1561 		0x34d08, 0x34d14,
1562 		0x34d1c, 0x34d20,
1563 		0x34d3c, 0x34d3c,
1564 		0x34d48, 0x34d50,
1565 		0x35200, 0x3520c,
1566 		0x35220, 0x35220,
1567 		0x35240, 0x35240,
1568 		0x35600, 0x3560c,
1569 		0x35a00, 0x35a1c,
1570 		0x35e00, 0x35e20,
1571 		0x35e38, 0x35e3c,
1572 		0x35e80, 0x35e80,
1573 		0x35e88, 0x35ea8,
1574 		0x35eb0, 0x35eb4,
1575 		0x35ec8, 0x35ed4,
1576 		0x35fb8, 0x36004,
1577 		0x36200, 0x36200,
1578 		0x36208, 0x36240,
1579 		0x36248, 0x36280,
1580 		0x36288, 0x362c0,
1581 		0x362c8, 0x362fc,
1582 		0x36600, 0x36630,
1583 		0x36a00, 0x36abc,
1584 		0x36b00, 0x36b10,
1585 		0x36b20, 0x36b30,
1586 		0x36b40, 0x36b50,
1587 		0x36b60, 0x36b70,
1588 		0x37000, 0x37028,
1589 		0x37030, 0x37048,
1590 		0x37060, 0x37068,
1591 		0x37070, 0x3709c,
1592 		0x370f0, 0x37128,
1593 		0x37130, 0x37148,
1594 		0x37160, 0x37168,
1595 		0x37170, 0x3719c,
1596 		0x371f0, 0x37238,
1597 		0x37240, 0x37240,
1598 		0x37248, 0x37250,
1599 		0x3725c, 0x37264,
1600 		0x37270, 0x372b8,
1601 		0x372c0, 0x372e4,
1602 		0x372f8, 0x37338,
1603 		0x37340, 0x37340,
1604 		0x37348, 0x37350,
1605 		0x3735c, 0x37364,
1606 		0x37370, 0x373b8,
1607 		0x373c0, 0x373e4,
1608 		0x373f8, 0x37428,
1609 		0x37430, 0x37448,
1610 		0x37460, 0x37468,
1611 		0x37470, 0x3749c,
1612 		0x374f0, 0x37528,
1613 		0x37530, 0x37548,
1614 		0x37560, 0x37568,
1615 		0x37570, 0x3759c,
1616 		0x375f0, 0x37638,
1617 		0x37640, 0x37640,
1618 		0x37648, 0x37650,
1619 		0x3765c, 0x37664,
1620 		0x37670, 0x376b8,
1621 		0x376c0, 0x376e4,
1622 		0x376f8, 0x37738,
1623 		0x37740, 0x37740,
1624 		0x37748, 0x37750,
1625 		0x3775c, 0x37764,
1626 		0x37770, 0x377b8,
1627 		0x377c0, 0x377e4,
1628 		0x377f8, 0x377fc,
1629 		0x37814, 0x37814,
1630 		0x3782c, 0x3782c,
1631 		0x37880, 0x3788c,
1632 		0x378e8, 0x378ec,
1633 		0x37900, 0x37928,
1634 		0x37930, 0x37948,
1635 		0x37960, 0x37968,
1636 		0x37970, 0x3799c,
1637 		0x379f0, 0x37a38,
1638 		0x37a40, 0x37a40,
1639 		0x37a48, 0x37a50,
1640 		0x37a5c, 0x37a64,
1641 		0x37a70, 0x37ab8,
1642 		0x37ac0, 0x37ae4,
1643 		0x37af8, 0x37b10,
1644 		0x37b28, 0x37b28,
1645 		0x37b3c, 0x37b50,
1646 		0x37bf0, 0x37c10,
1647 		0x37c28, 0x37c28,
1648 		0x37c3c, 0x37c50,
1649 		0x37cf0, 0x37cfc,
1650 		0x38000, 0x38030,
1651 		0x38100, 0x38144,
1652 		0x38190, 0x381a0,
1653 		0x381a8, 0x381b8,
1654 		0x381c4, 0x381c8,
1655 		0x381d0, 0x381d0,
1656 		0x38200, 0x38318,
1657 		0x38400, 0x384b4,
1658 		0x384c0, 0x3852c,
1659 		0x38540, 0x3861c,
1660 		0x38800, 0x38828,
1661 		0x38834, 0x38834,
1662 		0x388c0, 0x38908,
1663 		0x38910, 0x389ac,
1664 		0x38a00, 0x38a14,
1665 		0x38a1c, 0x38a2c,
1666 		0x38a44, 0x38a50,
1667 		0x38a74, 0x38a74,
1668 		0x38a7c, 0x38afc,
1669 		0x38b08, 0x38c24,
1670 		0x38d00, 0x38d00,
1671 		0x38d08, 0x38d14,
1672 		0x38d1c, 0x38d20,
1673 		0x38d3c, 0x38d3c,
1674 		0x38d48, 0x38d50,
1675 		0x39200, 0x3920c,
1676 		0x39220, 0x39220,
1677 		0x39240, 0x39240,
1678 		0x39600, 0x3960c,
1679 		0x39a00, 0x39a1c,
1680 		0x39e00, 0x39e20,
1681 		0x39e38, 0x39e3c,
1682 		0x39e80, 0x39e80,
1683 		0x39e88, 0x39ea8,
1684 		0x39eb0, 0x39eb4,
1685 		0x39ec8, 0x39ed4,
1686 		0x39fb8, 0x3a004,
1687 		0x3a200, 0x3a200,
1688 		0x3a208, 0x3a240,
1689 		0x3a248, 0x3a280,
1690 		0x3a288, 0x3a2c0,
1691 		0x3a2c8, 0x3a2fc,
1692 		0x3a600, 0x3a630,
1693 		0x3aa00, 0x3aabc,
1694 		0x3ab00, 0x3ab10,
1695 		0x3ab20, 0x3ab30,
1696 		0x3ab40, 0x3ab50,
1697 		0x3ab60, 0x3ab70,
1698 		0x3b000, 0x3b028,
1699 		0x3b030, 0x3b048,
1700 		0x3b060, 0x3b068,
1701 		0x3b070, 0x3b09c,
1702 		0x3b0f0, 0x3b128,
1703 		0x3b130, 0x3b148,
1704 		0x3b160, 0x3b168,
1705 		0x3b170, 0x3b19c,
1706 		0x3b1f0, 0x3b238,
1707 		0x3b240, 0x3b240,
1708 		0x3b248, 0x3b250,
1709 		0x3b25c, 0x3b264,
1710 		0x3b270, 0x3b2b8,
1711 		0x3b2c0, 0x3b2e4,
1712 		0x3b2f8, 0x3b338,
1713 		0x3b340, 0x3b340,
1714 		0x3b348, 0x3b350,
1715 		0x3b35c, 0x3b364,
1716 		0x3b370, 0x3b3b8,
1717 		0x3b3c0, 0x3b3e4,
1718 		0x3b3f8, 0x3b428,
1719 		0x3b430, 0x3b448,
1720 		0x3b460, 0x3b468,
1721 		0x3b470, 0x3b49c,
1722 		0x3b4f0, 0x3b528,
1723 		0x3b530, 0x3b548,
1724 		0x3b560, 0x3b568,
1725 		0x3b570, 0x3b59c,
1726 		0x3b5f0, 0x3b638,
1727 		0x3b640, 0x3b640,
1728 		0x3b648, 0x3b650,
1729 		0x3b65c, 0x3b664,
1730 		0x3b670, 0x3b6b8,
1731 		0x3b6c0, 0x3b6e4,
1732 		0x3b6f8, 0x3b738,
1733 		0x3b740, 0x3b740,
1734 		0x3b748, 0x3b750,
1735 		0x3b75c, 0x3b764,
1736 		0x3b770, 0x3b7b8,
1737 		0x3b7c0, 0x3b7e4,
1738 		0x3b7f8, 0x3b7fc,
1739 		0x3b814, 0x3b814,
1740 		0x3b82c, 0x3b82c,
1741 		0x3b880, 0x3b88c,
1742 		0x3b8e8, 0x3b8ec,
1743 		0x3b900, 0x3b928,
1744 		0x3b930, 0x3b948,
1745 		0x3b960, 0x3b968,
1746 		0x3b970, 0x3b99c,
1747 		0x3b9f0, 0x3ba38,
1748 		0x3ba40, 0x3ba40,
1749 		0x3ba48, 0x3ba50,
1750 		0x3ba5c, 0x3ba64,
1751 		0x3ba70, 0x3bab8,
1752 		0x3bac0, 0x3bae4,
1753 		0x3baf8, 0x3bb10,
1754 		0x3bb28, 0x3bb28,
1755 		0x3bb3c, 0x3bb50,
1756 		0x3bbf0, 0x3bc10,
1757 		0x3bc28, 0x3bc28,
1758 		0x3bc3c, 0x3bc50,
1759 		0x3bcf0, 0x3bcfc,
1760 		0x3c000, 0x3c030,
1761 		0x3c100, 0x3c144,
1762 		0x3c190, 0x3c1a0,
1763 		0x3c1a8, 0x3c1b8,
1764 		0x3c1c4, 0x3c1c8,
1765 		0x3c1d0, 0x3c1d0,
1766 		0x3c200, 0x3c318,
1767 		0x3c400, 0x3c4b4,
1768 		0x3c4c0, 0x3c52c,
1769 		0x3c540, 0x3c61c,
1770 		0x3c800, 0x3c828,
1771 		0x3c834, 0x3c834,
1772 		0x3c8c0, 0x3c908,
1773 		0x3c910, 0x3c9ac,
1774 		0x3ca00, 0x3ca14,
1775 		0x3ca1c, 0x3ca2c,
1776 		0x3ca44, 0x3ca50,
1777 		0x3ca74, 0x3ca74,
1778 		0x3ca7c, 0x3cafc,
1779 		0x3cb08, 0x3cc24,
1780 		0x3cd00, 0x3cd00,
1781 		0x3cd08, 0x3cd14,
1782 		0x3cd1c, 0x3cd20,
1783 		0x3cd3c, 0x3cd3c,
1784 		0x3cd48, 0x3cd50,
1785 		0x3d200, 0x3d20c,
1786 		0x3d220, 0x3d220,
1787 		0x3d240, 0x3d240,
1788 		0x3d600, 0x3d60c,
1789 		0x3da00, 0x3da1c,
1790 		0x3de00, 0x3de20,
1791 		0x3de38, 0x3de3c,
1792 		0x3de80, 0x3de80,
1793 		0x3de88, 0x3dea8,
1794 		0x3deb0, 0x3deb4,
1795 		0x3dec8, 0x3ded4,
1796 		0x3dfb8, 0x3e004,
1797 		0x3e200, 0x3e200,
1798 		0x3e208, 0x3e240,
1799 		0x3e248, 0x3e280,
1800 		0x3e288, 0x3e2c0,
1801 		0x3e2c8, 0x3e2fc,
1802 		0x3e600, 0x3e630,
1803 		0x3ea00, 0x3eabc,
1804 		0x3eb00, 0x3eb10,
1805 		0x3eb20, 0x3eb30,
1806 		0x3eb40, 0x3eb50,
1807 		0x3eb60, 0x3eb70,
1808 		0x3f000, 0x3f028,
1809 		0x3f030, 0x3f048,
1810 		0x3f060, 0x3f068,
1811 		0x3f070, 0x3f09c,
1812 		0x3f0f0, 0x3f128,
1813 		0x3f130, 0x3f148,
1814 		0x3f160, 0x3f168,
1815 		0x3f170, 0x3f19c,
1816 		0x3f1f0, 0x3f238,
1817 		0x3f240, 0x3f240,
1818 		0x3f248, 0x3f250,
1819 		0x3f25c, 0x3f264,
1820 		0x3f270, 0x3f2b8,
1821 		0x3f2c0, 0x3f2e4,
1822 		0x3f2f8, 0x3f338,
1823 		0x3f340, 0x3f340,
1824 		0x3f348, 0x3f350,
1825 		0x3f35c, 0x3f364,
1826 		0x3f370, 0x3f3b8,
1827 		0x3f3c0, 0x3f3e4,
1828 		0x3f3f8, 0x3f428,
1829 		0x3f430, 0x3f448,
1830 		0x3f460, 0x3f468,
1831 		0x3f470, 0x3f49c,
1832 		0x3f4f0, 0x3f528,
1833 		0x3f530, 0x3f548,
1834 		0x3f560, 0x3f568,
1835 		0x3f570, 0x3f59c,
1836 		0x3f5f0, 0x3f638,
1837 		0x3f640, 0x3f640,
1838 		0x3f648, 0x3f650,
1839 		0x3f65c, 0x3f664,
1840 		0x3f670, 0x3f6b8,
1841 		0x3f6c0, 0x3f6e4,
1842 		0x3f6f8, 0x3f738,
1843 		0x3f740, 0x3f740,
1844 		0x3f748, 0x3f750,
1845 		0x3f75c, 0x3f764,
1846 		0x3f770, 0x3f7b8,
1847 		0x3f7c0, 0x3f7e4,
1848 		0x3f7f8, 0x3f7fc,
1849 		0x3f814, 0x3f814,
1850 		0x3f82c, 0x3f82c,
1851 		0x3f880, 0x3f88c,
1852 		0x3f8e8, 0x3f8ec,
1853 		0x3f900, 0x3f928,
1854 		0x3f930, 0x3f948,
1855 		0x3f960, 0x3f968,
1856 		0x3f970, 0x3f99c,
1857 		0x3f9f0, 0x3fa38,
1858 		0x3fa40, 0x3fa40,
1859 		0x3fa48, 0x3fa50,
1860 		0x3fa5c, 0x3fa64,
1861 		0x3fa70, 0x3fab8,
1862 		0x3fac0, 0x3fae4,
1863 		0x3faf8, 0x3fb10,
1864 		0x3fb28, 0x3fb28,
1865 		0x3fb3c, 0x3fb50,
1866 		0x3fbf0, 0x3fc10,
1867 		0x3fc28, 0x3fc28,
1868 		0x3fc3c, 0x3fc50,
1869 		0x3fcf0, 0x3fcfc,
1870 		0x40000, 0x4000c,
1871 		0x40040, 0x40050,
1872 		0x40060, 0x40068,
1873 		0x4007c, 0x4008c,
1874 		0x40094, 0x400b0,
1875 		0x400c0, 0x40144,
1876 		0x40180, 0x4018c,
1877 		0x40200, 0x40254,
1878 		0x40260, 0x40264,
1879 		0x40270, 0x40288,
1880 		0x40290, 0x40298,
1881 		0x402ac, 0x402c8,
1882 		0x402d0, 0x402e0,
1883 		0x402f0, 0x402f0,
1884 		0x40300, 0x4033c,
1885 		0x403f8, 0x403fc,
1886 		0x41304, 0x413c4,
1887 		0x41400, 0x4140c,
1888 		0x41414, 0x4141c,
1889 		0x41480, 0x414d0,
1890 		0x44000, 0x44054,
1891 		0x4405c, 0x44078,
1892 		0x440c0, 0x44174,
1893 		0x44180, 0x441ac,
1894 		0x441b4, 0x441b8,
1895 		0x441c0, 0x44254,
1896 		0x4425c, 0x44278,
1897 		0x442c0, 0x44374,
1898 		0x44380, 0x443ac,
1899 		0x443b4, 0x443b8,
1900 		0x443c0, 0x44454,
1901 		0x4445c, 0x44478,
1902 		0x444c0, 0x44574,
1903 		0x44580, 0x445ac,
1904 		0x445b4, 0x445b8,
1905 		0x445c0, 0x44654,
1906 		0x4465c, 0x44678,
1907 		0x446c0, 0x44774,
1908 		0x44780, 0x447ac,
1909 		0x447b4, 0x447b8,
1910 		0x447c0, 0x44854,
1911 		0x4485c, 0x44878,
1912 		0x448c0, 0x44974,
1913 		0x44980, 0x449ac,
1914 		0x449b4, 0x449b8,
1915 		0x449c0, 0x449fc,
1916 		0x45000, 0x45004,
1917 		0x45010, 0x45030,
1918 		0x45040, 0x45060,
1919 		0x45068, 0x45068,
1920 		0x45080, 0x45084,
1921 		0x450a0, 0x450b0,
1922 		0x45200, 0x45204,
1923 		0x45210, 0x45230,
1924 		0x45240, 0x45260,
1925 		0x45268, 0x45268,
1926 		0x45280, 0x45284,
1927 		0x452a0, 0x452b0,
1928 		0x460c0, 0x460e4,
1929 		0x47000, 0x4703c,
1930 		0x47044, 0x4708c,
1931 		0x47200, 0x47250,
1932 		0x47400, 0x47408,
1933 		0x47414, 0x47420,
1934 		0x47600, 0x47618,
1935 		0x47800, 0x47814,
1936 		0x48000, 0x4800c,
1937 		0x48040, 0x48050,
1938 		0x48060, 0x48068,
1939 		0x4807c, 0x4808c,
1940 		0x48094, 0x480b0,
1941 		0x480c0, 0x48144,
1942 		0x48180, 0x4818c,
1943 		0x48200, 0x48254,
1944 		0x48260, 0x48264,
1945 		0x48270, 0x48288,
1946 		0x48290, 0x48298,
1947 		0x482ac, 0x482c8,
1948 		0x482d0, 0x482e0,
1949 		0x482f0, 0x482f0,
1950 		0x48300, 0x4833c,
1951 		0x483f8, 0x483fc,
1952 		0x49304, 0x493c4,
1953 		0x49400, 0x4940c,
1954 		0x49414, 0x4941c,
1955 		0x49480, 0x494d0,
1956 		0x4c000, 0x4c054,
1957 		0x4c05c, 0x4c078,
1958 		0x4c0c0, 0x4c174,
1959 		0x4c180, 0x4c1ac,
1960 		0x4c1b4, 0x4c1b8,
1961 		0x4c1c0, 0x4c254,
1962 		0x4c25c, 0x4c278,
1963 		0x4c2c0, 0x4c374,
1964 		0x4c380, 0x4c3ac,
1965 		0x4c3b4, 0x4c3b8,
1966 		0x4c3c0, 0x4c454,
1967 		0x4c45c, 0x4c478,
1968 		0x4c4c0, 0x4c574,
1969 		0x4c580, 0x4c5ac,
1970 		0x4c5b4, 0x4c5b8,
1971 		0x4c5c0, 0x4c654,
1972 		0x4c65c, 0x4c678,
1973 		0x4c6c0, 0x4c774,
1974 		0x4c780, 0x4c7ac,
1975 		0x4c7b4, 0x4c7b8,
1976 		0x4c7c0, 0x4c854,
1977 		0x4c85c, 0x4c878,
1978 		0x4c8c0, 0x4c974,
1979 		0x4c980, 0x4c9ac,
1980 		0x4c9b4, 0x4c9b8,
1981 		0x4c9c0, 0x4c9fc,
1982 		0x4d000, 0x4d004,
1983 		0x4d010, 0x4d030,
1984 		0x4d040, 0x4d060,
1985 		0x4d068, 0x4d068,
1986 		0x4d080, 0x4d084,
1987 		0x4d0a0, 0x4d0b0,
1988 		0x4d200, 0x4d204,
1989 		0x4d210, 0x4d230,
1990 		0x4d240, 0x4d260,
1991 		0x4d268, 0x4d268,
1992 		0x4d280, 0x4d284,
1993 		0x4d2a0, 0x4d2b0,
1994 		0x4e0c0, 0x4e0e4,
1995 		0x4f000, 0x4f03c,
1996 		0x4f044, 0x4f08c,
1997 		0x4f200, 0x4f250,
1998 		0x4f400, 0x4f408,
1999 		0x4f414, 0x4f420,
2000 		0x4f600, 0x4f618,
2001 		0x4f800, 0x4f814,
2002 		0x50000, 0x50084,
2003 		0x50090, 0x500cc,
2004 		0x50400, 0x50400,
2005 		0x50800, 0x50884,
2006 		0x50890, 0x508cc,
2007 		0x50c00, 0x50c00,
2008 		0x51000, 0x5101c,
2009 		0x51300, 0x51308,
2010 	};
2011 
2012 	static const unsigned int t5vf_reg_ranges[] = {
2013 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2014 		VF_MPS_REG(A_MPS_VF_CTL),
2015 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2016 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2017 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2018 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2019 		FW_T4VF_MBDATA_BASE_ADDR,
2020 		FW_T4VF_MBDATA_BASE_ADDR +
2021 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2022 	};
2023 
2024 	static const unsigned int t6_reg_ranges[] = {
2025 		0x1008, 0x101c,
2026 		0x1024, 0x10a8,
2027 		0x10b4, 0x10f8,
2028 		0x1100, 0x1114,
2029 		0x111c, 0x112c,
2030 		0x1138, 0x113c,
2031 		0x1144, 0x114c,
2032 		0x1180, 0x1184,
2033 		0x1190, 0x1194,
2034 		0x11a0, 0x11a4,
2035 		0x11b0, 0x11b4,
2036 		0x11fc, 0x1274,
2037 		0x1280, 0x133c,
2038 		0x1800, 0x18fc,
2039 		0x3000, 0x302c,
2040 		0x3060, 0x30b0,
2041 		0x30b8, 0x30d8,
2042 		0x30e0, 0x30fc,
2043 		0x3140, 0x357c,
2044 		0x35a8, 0x35cc,
2045 		0x35ec, 0x35ec,
2046 		0x3600, 0x5624,
2047 		0x56cc, 0x56ec,
2048 		0x56f4, 0x5720,
2049 		0x5728, 0x575c,
2050 		0x580c, 0x5814,
2051 		0x5890, 0x589c,
2052 		0x58a4, 0x58ac,
2053 		0x58b8, 0x58bc,
2054 		0x5940, 0x595c,
2055 		0x5980, 0x598c,
2056 		0x59b0, 0x59c8,
2057 		0x59d0, 0x59dc,
2058 		0x59fc, 0x5a18,
2059 		0x5a60, 0x5a6c,
2060 		0x5a80, 0x5a8c,
2061 		0x5a94, 0x5a9c,
2062 		0x5b94, 0x5bfc,
2063 		0x5c10, 0x5e48,
2064 		0x5e50, 0x5e94,
2065 		0x5ea0, 0x5eb0,
2066 		0x5ec0, 0x5ec0,
2067 		0x5ec8, 0x5ed0,
2068 		0x5ee0, 0x5ee0,
2069 		0x5ef0, 0x5ef0,
2070 		0x5f00, 0x5f00,
2071 		0x6000, 0x6020,
2072 		0x6028, 0x6040,
2073 		0x6058, 0x609c,
2074 		0x60a8, 0x619c,
2075 		0x7700, 0x7798,
2076 		0x77c0, 0x7880,
2077 		0x78cc, 0x78fc,
2078 		0x7b00, 0x7b58,
2079 		0x7b60, 0x7b84,
2080 		0x7b8c, 0x7c54,
2081 		0x7d00, 0x7d38,
2082 		0x7d40, 0x7d84,
2083 		0x7d8c, 0x7ddc,
2084 		0x7de4, 0x7e04,
2085 		0x7e10, 0x7e1c,
2086 		0x7e24, 0x7e38,
2087 		0x7e40, 0x7e44,
2088 		0x7e4c, 0x7e78,
2089 		0x7e80, 0x7edc,
2090 		0x7ee8, 0x7efc,
2091 		0x8dc0, 0x8de4,
2092 		0x8df8, 0x8e04,
2093 		0x8e10, 0x8e84,
2094 		0x8ea0, 0x8f88,
2095 		0x8fb8, 0x9058,
2096 		0x9060, 0x9060,
2097 		0x9068, 0x90f8,
2098 		0x9100, 0x9124,
2099 		0x9400, 0x9470,
2100 		0x9600, 0x9600,
2101 		0x9608, 0x9638,
2102 		0x9640, 0x9704,
2103 		0x9710, 0x971c,
2104 		0x9800, 0x9808,
2105 		0x9820, 0x983c,
2106 		0x9850, 0x9864,
2107 		0x9c00, 0x9c6c,
2108 		0x9c80, 0x9cec,
2109 		0x9d00, 0x9d6c,
2110 		0x9d80, 0x9dec,
2111 		0x9e00, 0x9e6c,
2112 		0x9e80, 0x9eec,
2113 		0x9f00, 0x9f6c,
2114 		0x9f80, 0xa020,
2115 		0xd004, 0xd03c,
2116 		0xd100, 0xd118,
2117 		0xd200, 0xd214,
2118 		0xd220, 0xd234,
2119 		0xd240, 0xd254,
2120 		0xd260, 0xd274,
2121 		0xd280, 0xd294,
2122 		0xd2a0, 0xd2b4,
2123 		0xd2c0, 0xd2d4,
2124 		0xd2e0, 0xd2f4,
2125 		0xd300, 0xd31c,
2126 		0xdfc0, 0xdfe0,
2127 		0xe000, 0xf008,
2128 		0xf010, 0xf018,
2129 		0xf020, 0xf028,
2130 		0x11000, 0x11014,
2131 		0x11048, 0x1106c,
2132 		0x11074, 0x11088,
2133 		0x11098, 0x11120,
2134 		0x1112c, 0x1117c,
2135 		0x11190, 0x112e0,
2136 		0x11300, 0x1130c,
2137 		0x12000, 0x1206c,
2138 		0x19040, 0x1906c,
2139 		0x19078, 0x19080,
2140 		0x1908c, 0x190e8,
2141 		0x190f0, 0x190f8,
2142 		0x19100, 0x19110,
2143 		0x19120, 0x19124,
2144 		0x19150, 0x19194,
2145 		0x1919c, 0x191b0,
2146 		0x191d0, 0x191e8,
2147 		0x19238, 0x19290,
2148 		0x192a4, 0x192b0,
2149 		0x192bc, 0x192bc,
2150 		0x19348, 0x1934c,
2151 		0x193f8, 0x19418,
2152 		0x19420, 0x19428,
2153 		0x19430, 0x19444,
2154 		0x1944c, 0x1946c,
2155 		0x19474, 0x19474,
2156 		0x19490, 0x194cc,
2157 		0x194f0, 0x194f8,
2158 		0x19c00, 0x19c48,
2159 		0x19c50, 0x19c80,
2160 		0x19c94, 0x19c98,
2161 		0x19ca0, 0x19cbc,
2162 		0x19ce4, 0x19ce4,
2163 		0x19cf0, 0x19cf8,
2164 		0x19d00, 0x19d28,
2165 		0x19d50, 0x19d78,
2166 		0x19d94, 0x19d98,
2167 		0x19da0, 0x19dc8,
2168 		0x19df0, 0x19e10,
2169 		0x19e50, 0x19e6c,
2170 		0x19ea0, 0x19ebc,
2171 		0x19ec4, 0x19ef4,
2172 		0x19f04, 0x19f2c,
2173 		0x19f34, 0x19f34,
2174 		0x19f40, 0x19f50,
2175 		0x19f90, 0x19fac,
2176 		0x19fc4, 0x19fc8,
2177 		0x19fd0, 0x19fe4,
2178 		0x1a000, 0x1a004,
2179 		0x1a010, 0x1a06c,
2180 		0x1a0b0, 0x1a0e4,
2181 		0x1a0ec, 0x1a0f8,
2182 		0x1a100, 0x1a108,
2183 		0x1a114, 0x1a120,
2184 		0x1a128, 0x1a130,
2185 		0x1a138, 0x1a138,
2186 		0x1a190, 0x1a1c4,
2187 		0x1a1fc, 0x1a1fc,
2188 		0x1e008, 0x1e00c,
2189 		0x1e040, 0x1e044,
2190 		0x1e04c, 0x1e04c,
2191 		0x1e284, 0x1e290,
2192 		0x1e2c0, 0x1e2c0,
2193 		0x1e2e0, 0x1e2e0,
2194 		0x1e300, 0x1e384,
2195 		0x1e3c0, 0x1e3c8,
2196 		0x1e408, 0x1e40c,
2197 		0x1e440, 0x1e444,
2198 		0x1e44c, 0x1e44c,
2199 		0x1e684, 0x1e690,
2200 		0x1e6c0, 0x1e6c0,
2201 		0x1e6e0, 0x1e6e0,
2202 		0x1e700, 0x1e784,
2203 		0x1e7c0, 0x1e7c8,
2204 		0x1e808, 0x1e80c,
2205 		0x1e840, 0x1e844,
2206 		0x1e84c, 0x1e84c,
2207 		0x1ea84, 0x1ea90,
2208 		0x1eac0, 0x1eac0,
2209 		0x1eae0, 0x1eae0,
2210 		0x1eb00, 0x1eb84,
2211 		0x1ebc0, 0x1ebc8,
2212 		0x1ec08, 0x1ec0c,
2213 		0x1ec40, 0x1ec44,
2214 		0x1ec4c, 0x1ec4c,
2215 		0x1ee84, 0x1ee90,
2216 		0x1eec0, 0x1eec0,
2217 		0x1eee0, 0x1eee0,
2218 		0x1ef00, 0x1ef84,
2219 		0x1efc0, 0x1efc8,
2220 		0x1f008, 0x1f00c,
2221 		0x1f040, 0x1f044,
2222 		0x1f04c, 0x1f04c,
2223 		0x1f284, 0x1f290,
2224 		0x1f2c0, 0x1f2c0,
2225 		0x1f2e0, 0x1f2e0,
2226 		0x1f300, 0x1f384,
2227 		0x1f3c0, 0x1f3c8,
2228 		0x1f408, 0x1f40c,
2229 		0x1f440, 0x1f444,
2230 		0x1f44c, 0x1f44c,
2231 		0x1f684, 0x1f690,
2232 		0x1f6c0, 0x1f6c0,
2233 		0x1f6e0, 0x1f6e0,
2234 		0x1f700, 0x1f784,
2235 		0x1f7c0, 0x1f7c8,
2236 		0x1f808, 0x1f80c,
2237 		0x1f840, 0x1f844,
2238 		0x1f84c, 0x1f84c,
2239 		0x1fa84, 0x1fa90,
2240 		0x1fac0, 0x1fac0,
2241 		0x1fae0, 0x1fae0,
2242 		0x1fb00, 0x1fb84,
2243 		0x1fbc0, 0x1fbc8,
2244 		0x1fc08, 0x1fc0c,
2245 		0x1fc40, 0x1fc44,
2246 		0x1fc4c, 0x1fc4c,
2247 		0x1fe84, 0x1fe90,
2248 		0x1fec0, 0x1fec0,
2249 		0x1fee0, 0x1fee0,
2250 		0x1ff00, 0x1ff84,
2251 		0x1ffc0, 0x1ffc8,
2252 		0x30000, 0x30030,
2253 		0x30100, 0x30168,
2254 		0x30190, 0x301a0,
2255 		0x301a8, 0x301b8,
2256 		0x301c4, 0x301c8,
2257 		0x301d0, 0x301d0,
2258 		0x30200, 0x30320,
2259 		0x30400, 0x304b4,
2260 		0x304c0, 0x3052c,
2261 		0x30540, 0x3061c,
2262 		0x30800, 0x308a0,
2263 		0x308c0, 0x30908,
2264 		0x30910, 0x309b8,
2265 		0x30a00, 0x30a04,
2266 		0x30a0c, 0x30a14,
2267 		0x30a1c, 0x30a2c,
2268 		0x30a44, 0x30a50,
2269 		0x30a74, 0x30a74,
2270 		0x30a7c, 0x30afc,
2271 		0x30b08, 0x30c24,
2272 		0x30d00, 0x30d14,
2273 		0x30d1c, 0x30d3c,
2274 		0x30d44, 0x30d4c,
2275 		0x30d54, 0x30d74,
2276 		0x30d7c, 0x30d7c,
2277 		0x30de0, 0x30de0,
2278 		0x30e00, 0x30ed4,
2279 		0x30f00, 0x30fa4,
2280 		0x30fc0, 0x30fc4,
2281 		0x31000, 0x31004,
2282 		0x31080, 0x310fc,
2283 		0x31208, 0x31220,
2284 		0x3123c, 0x31254,
2285 		0x31300, 0x31300,
2286 		0x31308, 0x3131c,
2287 		0x31338, 0x3133c,
2288 		0x31380, 0x31380,
2289 		0x31388, 0x313a8,
2290 		0x313b4, 0x313b4,
2291 		0x31400, 0x31420,
2292 		0x31438, 0x3143c,
2293 		0x31480, 0x31480,
2294 		0x314a8, 0x314a8,
2295 		0x314b0, 0x314b4,
2296 		0x314c8, 0x314d4,
2297 		0x31a40, 0x31a4c,
2298 		0x31af0, 0x31b20,
2299 		0x31b38, 0x31b3c,
2300 		0x31b80, 0x31b80,
2301 		0x31ba8, 0x31ba8,
2302 		0x31bb0, 0x31bb4,
2303 		0x31bc8, 0x31bd4,
2304 		0x32140, 0x3218c,
2305 		0x321f0, 0x321f4,
2306 		0x32200, 0x32200,
2307 		0x32218, 0x32218,
2308 		0x32400, 0x32400,
2309 		0x32408, 0x3241c,
2310 		0x32618, 0x32620,
2311 		0x32664, 0x32664,
2312 		0x326a8, 0x326a8,
2313 		0x326ec, 0x326ec,
2314 		0x32a00, 0x32abc,
2315 		0x32b00, 0x32b18,
2316 		0x32b20, 0x32b38,
2317 		0x32b40, 0x32b58,
2318 		0x32b60, 0x32b78,
2319 		0x32c00, 0x32c00,
2320 		0x32c08, 0x32c3c,
2321 		0x33000, 0x3302c,
2322 		0x33034, 0x33050,
2323 		0x33058, 0x33058,
2324 		0x33060, 0x3308c,
2325 		0x3309c, 0x330ac,
2326 		0x330c0, 0x330c0,
2327 		0x330c8, 0x330d0,
2328 		0x330d8, 0x330e0,
2329 		0x330ec, 0x3312c,
2330 		0x33134, 0x33150,
2331 		0x33158, 0x33158,
2332 		0x33160, 0x3318c,
2333 		0x3319c, 0x331ac,
2334 		0x331c0, 0x331c0,
2335 		0x331c8, 0x331d0,
2336 		0x331d8, 0x331e0,
2337 		0x331ec, 0x33290,
2338 		0x33298, 0x332c4,
2339 		0x332e4, 0x33390,
2340 		0x33398, 0x333c4,
2341 		0x333e4, 0x3342c,
2342 		0x33434, 0x33450,
2343 		0x33458, 0x33458,
2344 		0x33460, 0x3348c,
2345 		0x3349c, 0x334ac,
2346 		0x334c0, 0x334c0,
2347 		0x334c8, 0x334d0,
2348 		0x334d8, 0x334e0,
2349 		0x334ec, 0x3352c,
2350 		0x33534, 0x33550,
2351 		0x33558, 0x33558,
2352 		0x33560, 0x3358c,
2353 		0x3359c, 0x335ac,
2354 		0x335c0, 0x335c0,
2355 		0x335c8, 0x335d0,
2356 		0x335d8, 0x335e0,
2357 		0x335ec, 0x33690,
2358 		0x33698, 0x336c4,
2359 		0x336e4, 0x33790,
2360 		0x33798, 0x337c4,
2361 		0x337e4, 0x337fc,
2362 		0x33814, 0x33814,
2363 		0x33854, 0x33868,
2364 		0x33880, 0x3388c,
2365 		0x338c0, 0x338d0,
2366 		0x338e8, 0x338ec,
2367 		0x33900, 0x3392c,
2368 		0x33934, 0x33950,
2369 		0x33958, 0x33958,
2370 		0x33960, 0x3398c,
2371 		0x3399c, 0x339ac,
2372 		0x339c0, 0x339c0,
2373 		0x339c8, 0x339d0,
2374 		0x339d8, 0x339e0,
2375 		0x339ec, 0x33a90,
2376 		0x33a98, 0x33ac4,
2377 		0x33ae4, 0x33b10,
2378 		0x33b24, 0x33b28,
2379 		0x33b38, 0x33b50,
2380 		0x33bf0, 0x33c10,
2381 		0x33c24, 0x33c28,
2382 		0x33c38, 0x33c50,
2383 		0x33cf0, 0x33cfc,
2384 		0x34000, 0x34030,
2385 		0x34100, 0x34168,
2386 		0x34190, 0x341a0,
2387 		0x341a8, 0x341b8,
2388 		0x341c4, 0x341c8,
2389 		0x341d0, 0x341d0,
2390 		0x34200, 0x34320,
2391 		0x34400, 0x344b4,
2392 		0x344c0, 0x3452c,
2393 		0x34540, 0x3461c,
2394 		0x34800, 0x348a0,
2395 		0x348c0, 0x34908,
2396 		0x34910, 0x349b8,
2397 		0x34a00, 0x34a04,
2398 		0x34a0c, 0x34a14,
2399 		0x34a1c, 0x34a2c,
2400 		0x34a44, 0x34a50,
2401 		0x34a74, 0x34a74,
2402 		0x34a7c, 0x34afc,
2403 		0x34b08, 0x34c24,
2404 		0x34d00, 0x34d14,
2405 		0x34d1c, 0x34d3c,
2406 		0x34d44, 0x34d4c,
2407 		0x34d54, 0x34d74,
2408 		0x34d7c, 0x34d7c,
2409 		0x34de0, 0x34de0,
2410 		0x34e00, 0x34ed4,
2411 		0x34f00, 0x34fa4,
2412 		0x34fc0, 0x34fc4,
2413 		0x35000, 0x35004,
2414 		0x35080, 0x350fc,
2415 		0x35208, 0x35220,
2416 		0x3523c, 0x35254,
2417 		0x35300, 0x35300,
2418 		0x35308, 0x3531c,
2419 		0x35338, 0x3533c,
2420 		0x35380, 0x35380,
2421 		0x35388, 0x353a8,
2422 		0x353b4, 0x353b4,
2423 		0x35400, 0x35420,
2424 		0x35438, 0x3543c,
2425 		0x35480, 0x35480,
2426 		0x354a8, 0x354a8,
2427 		0x354b0, 0x354b4,
2428 		0x354c8, 0x354d4,
2429 		0x35a40, 0x35a4c,
2430 		0x35af0, 0x35b20,
2431 		0x35b38, 0x35b3c,
2432 		0x35b80, 0x35b80,
2433 		0x35ba8, 0x35ba8,
2434 		0x35bb0, 0x35bb4,
2435 		0x35bc8, 0x35bd4,
2436 		0x36140, 0x3618c,
2437 		0x361f0, 0x361f4,
2438 		0x36200, 0x36200,
2439 		0x36218, 0x36218,
2440 		0x36400, 0x36400,
2441 		0x36408, 0x3641c,
2442 		0x36618, 0x36620,
2443 		0x36664, 0x36664,
2444 		0x366a8, 0x366a8,
2445 		0x366ec, 0x366ec,
2446 		0x36a00, 0x36abc,
2447 		0x36b00, 0x36b18,
2448 		0x36b20, 0x36b38,
2449 		0x36b40, 0x36b58,
2450 		0x36b60, 0x36b78,
2451 		0x36c00, 0x36c00,
2452 		0x36c08, 0x36c3c,
2453 		0x37000, 0x3702c,
2454 		0x37034, 0x37050,
2455 		0x37058, 0x37058,
2456 		0x37060, 0x3708c,
2457 		0x3709c, 0x370ac,
2458 		0x370c0, 0x370c0,
2459 		0x370c8, 0x370d0,
2460 		0x370d8, 0x370e0,
2461 		0x370ec, 0x3712c,
2462 		0x37134, 0x37150,
2463 		0x37158, 0x37158,
2464 		0x37160, 0x3718c,
2465 		0x3719c, 0x371ac,
2466 		0x371c0, 0x371c0,
2467 		0x371c8, 0x371d0,
2468 		0x371d8, 0x371e0,
2469 		0x371ec, 0x37290,
2470 		0x37298, 0x372c4,
2471 		0x372e4, 0x37390,
2472 		0x37398, 0x373c4,
2473 		0x373e4, 0x3742c,
2474 		0x37434, 0x37450,
2475 		0x37458, 0x37458,
2476 		0x37460, 0x3748c,
2477 		0x3749c, 0x374ac,
2478 		0x374c0, 0x374c0,
2479 		0x374c8, 0x374d0,
2480 		0x374d8, 0x374e0,
2481 		0x374ec, 0x3752c,
2482 		0x37534, 0x37550,
2483 		0x37558, 0x37558,
2484 		0x37560, 0x3758c,
2485 		0x3759c, 0x375ac,
2486 		0x375c0, 0x375c0,
2487 		0x375c8, 0x375d0,
2488 		0x375d8, 0x375e0,
2489 		0x375ec, 0x37690,
2490 		0x37698, 0x376c4,
2491 		0x376e4, 0x37790,
2492 		0x37798, 0x377c4,
2493 		0x377e4, 0x377fc,
2494 		0x37814, 0x37814,
2495 		0x37854, 0x37868,
2496 		0x37880, 0x3788c,
2497 		0x378c0, 0x378d0,
2498 		0x378e8, 0x378ec,
2499 		0x37900, 0x3792c,
2500 		0x37934, 0x37950,
2501 		0x37958, 0x37958,
2502 		0x37960, 0x3798c,
2503 		0x3799c, 0x379ac,
2504 		0x379c0, 0x379c0,
2505 		0x379c8, 0x379d0,
2506 		0x379d8, 0x379e0,
2507 		0x379ec, 0x37a90,
2508 		0x37a98, 0x37ac4,
2509 		0x37ae4, 0x37b10,
2510 		0x37b24, 0x37b28,
2511 		0x37b38, 0x37b50,
2512 		0x37bf0, 0x37c10,
2513 		0x37c24, 0x37c28,
2514 		0x37c38, 0x37c50,
2515 		0x37cf0, 0x37cfc,
2516 		0x40040, 0x40040,
2517 		0x40080, 0x40084,
2518 		0x40100, 0x40100,
2519 		0x40140, 0x401bc,
2520 		0x40200, 0x40214,
2521 		0x40228, 0x40228,
2522 		0x40240, 0x40258,
2523 		0x40280, 0x40280,
2524 		0x40304, 0x40304,
2525 		0x40330, 0x4033c,
2526 		0x41304, 0x413c8,
2527 		0x413d0, 0x413dc,
2528 		0x413f0, 0x413f0,
2529 		0x41400, 0x4140c,
2530 		0x41414, 0x4141c,
2531 		0x41480, 0x414d0,
2532 		0x44000, 0x4407c,
2533 		0x440c0, 0x441ac,
2534 		0x441b4, 0x4427c,
2535 		0x442c0, 0x443ac,
2536 		0x443b4, 0x4447c,
2537 		0x444c0, 0x445ac,
2538 		0x445b4, 0x4467c,
2539 		0x446c0, 0x447ac,
2540 		0x447b4, 0x4487c,
2541 		0x448c0, 0x449ac,
2542 		0x449b4, 0x44a7c,
2543 		0x44ac0, 0x44bac,
2544 		0x44bb4, 0x44c7c,
2545 		0x44cc0, 0x44dac,
2546 		0x44db4, 0x44e7c,
2547 		0x44ec0, 0x44fac,
2548 		0x44fb4, 0x4507c,
2549 		0x450c0, 0x451ac,
2550 		0x451b4, 0x451fc,
2551 		0x45800, 0x45804,
2552 		0x45810, 0x45830,
2553 		0x45840, 0x45860,
2554 		0x45868, 0x45868,
2555 		0x45880, 0x45884,
2556 		0x458a0, 0x458b0,
2557 		0x45a00, 0x45a04,
2558 		0x45a10, 0x45a30,
2559 		0x45a40, 0x45a60,
2560 		0x45a68, 0x45a68,
2561 		0x45a80, 0x45a84,
2562 		0x45aa0, 0x45ab0,
2563 		0x460c0, 0x460e4,
2564 		0x47000, 0x4703c,
2565 		0x47044, 0x4708c,
2566 		0x47200, 0x47250,
2567 		0x47400, 0x47408,
2568 		0x47414, 0x47420,
2569 		0x47600, 0x47618,
2570 		0x47800, 0x47814,
2571 		0x47820, 0x4782c,
2572 		0x50000, 0x50084,
2573 		0x50090, 0x500cc,
2574 		0x50300, 0x50384,
2575 		0x50400, 0x50400,
2576 		0x50800, 0x50884,
2577 		0x50890, 0x508cc,
2578 		0x50b00, 0x50b84,
2579 		0x50c00, 0x50c00,
2580 		0x51000, 0x51020,
2581 		0x51028, 0x510b0,
2582 		0x51300, 0x51324,
2583 	};
2584 
2585 	static const unsigned int t6vf_reg_ranges[] = {
2586 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2587 		VF_MPS_REG(A_MPS_VF_CTL),
2588 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2589 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2590 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2591 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2592 		FW_T6VF_MBDATA_BASE_ADDR,
2593 		FW_T6VF_MBDATA_BASE_ADDR +
2594 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2595 	};
2596 
2597 	u32 *buf_end = (u32 *)(buf + buf_size);
2598 	const unsigned int *reg_ranges;
2599 	int reg_ranges_size, range;
2600 	unsigned int chip_version = chip_id(adap);
2601 
2602 	/*
2603 	 * Select the right set of register ranges to dump depending on the
2604 	 * adapter chip type.
2605 	 */
2606 	switch (chip_version) {
2607 	case CHELSIO_T4:
2608 		if (adap->flags & IS_VF) {
2609 			reg_ranges = t4vf_reg_ranges;
2610 			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2611 		} else {
2612 			reg_ranges = t4_reg_ranges;
2613 			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2614 		}
2615 		break;
2616 
2617 	case CHELSIO_T5:
2618 		if (adap->flags & IS_VF) {
2619 			reg_ranges = t5vf_reg_ranges;
2620 			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2621 		} else {
2622 			reg_ranges = t5_reg_ranges;
2623 			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2624 		}
2625 		break;
2626 
2627 	case CHELSIO_T6:
2628 		if (adap->flags & IS_VF) {
2629 			reg_ranges = t6vf_reg_ranges;
2630 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2631 		} else {
2632 			reg_ranges = t6_reg_ranges;
2633 			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2634 		}
2635 		break;
2636 
2637 	default:
2638 		CH_ERR(adap,
2639 			"Unsupported chip version %d\n", chip_version);
2640 		return;
2641 	}
2642 
2643 	/*
2644 	 * Clear the register buffer and insert the appropriate register
2645 	 * values selected by the above register ranges.
2646 	 */
2647 	memset(buf, 0, buf_size);
2648 	for (range = 0; range < reg_ranges_size; range += 2) {
2649 		unsigned int reg = reg_ranges[range];
2650 		unsigned int last_reg = reg_ranges[range + 1];
2651 		u32 *bufp = (u32 *)(buf + reg);
2652 
2653 		/*
2654 		 * Iterate across the register range filling in the register
2655 		 * buffer but don't write past the end of the register buffer.
2656 		 */
2657 		while (reg <= last_reg && bufp < buf_end) {
2658 			*bufp++ = t4_read_reg(adap, reg);
2659 			reg += sizeof(u32);
2660 		}
2661 	}
2662 }
2663 
2664 /*
2665  * Partial EEPROM Vital Product Data structure.  Includes only the ID and
2666  * VPD-R sections.
2667  */
2668 struct t4_vpd_hdr {
2669 	u8  id_tag;
2670 	u8  id_len[2];
2671 	u8  id_data[ID_LEN];
2672 	u8  vpdr_tag;
2673 	u8  vpdr_len[2];
2674 };
2675 
2676 /*
2677  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2678  */
2679 #define EEPROM_DELAY		10		/* 10us per poll spin */
2680 #define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2681 
2682 #define EEPROM_STAT_ADDR	0x7bfc
2683 #define VPD_SIZE		0x800
2684 #define VPD_BASE		0x400
2685 #define VPD_BASE_OLD		0
2686 #define VPD_LEN			1024
2687 #define VPD_INFO_FLD_HDR_SIZE	3
2688 #define CHELSIO_VPD_UNIQUE_ID	0x82
2689 
2690 /*
2691  * Small utility function to wait till any outstanding VPD Access is complete.
2692  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2693  * VPD Access in flight.  This allows us to handle the problem of having a
2694  * previous VPD Access time out and prevent an attempt to inject a new VPD
2695  * Request before any in-flight VPD reguest has completed.
2696  */
2697 static int t4_seeprom_wait(struct adapter *adapter)
2698 {
2699 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2700 	int max_poll;
2701 
2702 	/*
2703 	 * If no VPD Access is in flight, we can just return success right
2704 	 * away.
2705 	 */
2706 	if (!adapter->vpd_busy)
2707 		return 0;
2708 
2709 	/*
2710 	 * Poll the VPD Capability Address/Flag register waiting for it
2711 	 * to indicate that the operation is complete.
2712 	 */
2713 	max_poll = EEPROM_MAX_POLL;
2714 	do {
2715 		u16 val;
2716 
2717 		udelay(EEPROM_DELAY);
2718 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2719 
2720 		/*
2721 		 * If the operation is complete, mark the VPD as no longer
2722 		 * busy and return success.
2723 		 */
2724 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2725 			adapter->vpd_busy = 0;
2726 			return 0;
2727 		}
2728 	} while (--max_poll);
2729 
2730 	/*
2731 	 * Failure!  Note that we leave the VPD Busy status set in order to
2732 	 * avoid pushing a new VPD Access request into the VPD Capability till
2733 	 * the current operation eventually succeeds.  It's a bug to issue a
2734 	 * new request when an existing request is in flight and will result
2735 	 * in corrupt hardware state.
2736 	 */
2737 	return -ETIMEDOUT;
2738 }
2739 
2740 /**
2741  *	t4_seeprom_read - read a serial EEPROM location
2742  *	@adapter: adapter to read
2743  *	@addr: EEPROM virtual address
2744  *	@data: where to store the read data
2745  *
2746  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2747  *	VPD capability.  Note that this function must be called with a virtual
2748  *	address.
2749  */
2750 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2751 {
2752 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2753 	int ret;
2754 
2755 	/*
2756 	 * VPD Accesses must alway be 4-byte aligned!
2757 	 */
2758 	if (addr >= EEPROMVSIZE || (addr & 3))
2759 		return -EINVAL;
2760 
2761 	/*
2762 	 * Wait for any previous operation which may still be in flight to
2763 	 * complete.
2764 	 */
2765 	ret = t4_seeprom_wait(adapter);
2766 	if (ret) {
2767 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2768 		return ret;
2769 	}
2770 
2771 	/*
2772 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2773 	 * for our request to complete.  If it doesn't complete, note the
2774 	 * error and return it to our caller.  Note that we do not reset the
2775 	 * VPD Busy status!
2776 	 */
2777 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2778 	adapter->vpd_busy = 1;
2779 	adapter->vpd_flag = PCI_VPD_ADDR_F;
2780 	ret = t4_seeprom_wait(adapter);
2781 	if (ret) {
2782 		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2783 		return ret;
2784 	}
2785 
2786 	/*
2787 	 * Grab the returned data, swizzle it into our endianness and
2788 	 * return success.
2789 	 */
2790 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2791 	*data = le32_to_cpu(*data);
2792 	return 0;
2793 }
2794 
2795 /**
2796  *	t4_seeprom_write - write a serial EEPROM location
2797  *	@adapter: adapter to write
2798  *	@addr: virtual EEPROM address
2799  *	@data: value to write
2800  *
2801  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2802  *	VPD capability.  Note that this function must be called with a virtual
2803  *	address.
2804  */
2805 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2806 {
2807 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2808 	int ret;
2809 	u32 stats_reg;
2810 	int max_poll;
2811 
2812 	/*
2813 	 * VPD Accesses must alway be 4-byte aligned!
2814 	 */
2815 	if (addr >= EEPROMVSIZE || (addr & 3))
2816 		return -EINVAL;
2817 
2818 	/*
2819 	 * Wait for any previous operation which may still be in flight to
2820 	 * complete.
2821 	 */
2822 	ret = t4_seeprom_wait(adapter);
2823 	if (ret) {
2824 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2825 		return ret;
2826 	}
2827 
2828 	/*
2829 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2830 	 * for our request to complete.  If it doesn't complete, note the
2831 	 * error and return it to our caller.  Note that we do not reset the
2832 	 * VPD Busy status!
2833 	 */
2834 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2835 				 cpu_to_le32(data));
2836 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2837 				 (u16)addr | PCI_VPD_ADDR_F);
2838 	adapter->vpd_busy = 1;
2839 	adapter->vpd_flag = 0;
2840 	ret = t4_seeprom_wait(adapter);
2841 	if (ret) {
2842 		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2843 		return ret;
2844 	}
2845 
2846 	/*
2847 	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2848 	 * request to complete. If it doesn't complete, return error.
2849 	 */
2850 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2851 	max_poll = EEPROM_MAX_POLL;
2852 	do {
2853 		udelay(EEPROM_DELAY);
2854 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2855 	} while ((stats_reg & 0x1) && --max_poll);
2856 	if (!max_poll)
2857 		return -ETIMEDOUT;
2858 
2859 	/* Return success! */
2860 	return 0;
2861 }
2862 
2863 /**
2864  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2865  *	@phys_addr: the physical EEPROM address
2866  *	@fn: the PCI function number
2867  *	@sz: size of function-specific area
2868  *
2869  *	Translate a physical EEPROM address to virtual.  The first 1K is
2870  *	accessed through virtual addresses starting at 31K, the rest is
2871  *	accessed through virtual addresses starting at 0.
2872  *
2873  *	The mapping is as follows:
2874  *	[0..1K) -> [31K..32K)
2875  *	[1K..1K+A) -> [ES-A..ES)
2876  *	[1K+A..ES) -> [0..ES-A-1K)
2877  *
2878  *	where A = @fn * @sz, and ES = EEPROM size.
2879  */
2880 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2881 {
2882 	fn *= sz;
2883 	if (phys_addr < 1024)
2884 		return phys_addr + (31 << 10);
2885 	if (phys_addr < 1024 + fn)
2886 		return EEPROMSIZE - fn + phys_addr - 1024;
2887 	if (phys_addr < EEPROMSIZE)
2888 		return phys_addr - 1024 - fn;
2889 	return -EINVAL;
2890 }
2891 
2892 /**
2893  *	t4_seeprom_wp - enable/disable EEPROM write protection
2894  *	@adapter: the adapter
2895  *	@enable: whether to enable or disable write protection
2896  *
2897  *	Enables or disables write protection on the serial EEPROM.
2898  */
2899 int t4_seeprom_wp(struct adapter *adapter, int enable)
2900 {
2901 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2902 }
2903 
2904 /**
2905  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2906  *	@v: Pointer to buffered vpd data structure
2907  *	@kw: The keyword to search for
2908  *
2909  *	Returns the value of the information field keyword or
2910  *	-ENOENT otherwise.
2911  */
2912 static int get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
2913 {
2914 	int i;
2915 	unsigned int offset , len;
2916 	const u8 *buf = (const u8 *)v;
2917 	const u8 *vpdr_len = &v->vpdr_len[0];
2918 	offset = sizeof(struct t4_vpd_hdr);
2919 	len =  (u16)vpdr_len[0] + ((u16)vpdr_len[1] << 8);
2920 
2921 	if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN) {
2922 		return -ENOENT;
2923 	}
2924 
2925 	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2926 		if(memcmp(buf + i , kw , 2) == 0){
2927 			i += VPD_INFO_FLD_HDR_SIZE;
2928 			return i;
2929 		}
2930 
2931 		i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
2932 	}
2933 
2934 	return -ENOENT;
2935 }
2936 
2937 
2938 /**
2939  *	get_vpd_params - read VPD parameters from VPD EEPROM
2940  *	@adapter: adapter to read
2941  *	@p: where to store the parameters
2942  *	@vpd: caller provided temporary space to read the VPD into
2943  *
2944  *	Reads card parameters stored in VPD EEPROM.
2945  */
2946 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
2947     u8 *vpd)
2948 {
2949 	int i, ret, addr;
2950 	int ec, sn, pn, na;
2951 	u8 csum;
2952 	const struct t4_vpd_hdr *v;
2953 
2954 	/*
2955 	 * Card information normally starts at VPD_BASE but early cards had
2956 	 * it at 0.
2957 	 */
2958 	ret = t4_seeprom_read(adapter, VPD_BASE, (u32 *)(vpd));
2959 	if (ret)
2960 		return (ret);
2961 
2962 	/*
2963 	 * The VPD shall have a unique identifier specified by the PCI SIG.
2964 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2965 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2966 	 * is expected to automatically put this entry at the
2967 	 * beginning of the VPD.
2968 	 */
2969 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2970 
2971 	for (i = 0; i < VPD_LEN; i += 4) {
2972 		ret = t4_seeprom_read(adapter, addr + i, (u32 *)(vpd + i));
2973 		if (ret)
2974 			return ret;
2975 	}
2976  	v = (const struct t4_vpd_hdr *)vpd;
2977 
2978 #define FIND_VPD_KW(var,name) do { \
2979 	var = get_vpd_keyword_val(v , name); \
2980 	if (var < 0) { \
2981 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
2982 		return -EINVAL; \
2983 	} \
2984 } while (0)
2985 
2986 	FIND_VPD_KW(i, "RV");
2987 	for (csum = 0; i >= 0; i--)
2988 		csum += vpd[i];
2989 
2990 	if (csum) {
2991 		CH_ERR(adapter,
2992 			"corrupted VPD EEPROM, actual csum %u\n", csum);
2993 		return -EINVAL;
2994 	}
2995 
2996 	FIND_VPD_KW(ec, "EC");
2997 	FIND_VPD_KW(sn, "SN");
2998 	FIND_VPD_KW(pn, "PN");
2999 	FIND_VPD_KW(na, "NA");
3000 #undef FIND_VPD_KW
3001 
3002 	memcpy(p->id, v->id_data, ID_LEN);
3003 	strstrip(p->id);
3004 	memcpy(p->ec, vpd + ec, EC_LEN);
3005 	strstrip(p->ec);
3006 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3007 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3008 	strstrip(p->sn);
3009 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3010 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3011 	strstrip((char *)p->pn);
3012 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3013 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3014 	strstrip((char *)p->na);
3015 
3016 	return 0;
3017 }
3018 
3019 /* serial flash and firmware constants and flash config file constants */
3020 enum {
3021 	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3022 
3023 	/* flash command opcodes */
3024 	SF_PROG_PAGE    = 2,	/* program 256B page */
3025 	SF_WR_DISABLE   = 4,	/* disable writes */
3026 	SF_RD_STATUS    = 5,	/* read status register */
3027 	SF_WR_ENABLE    = 6,	/* enable writes */
3028 	SF_RD_DATA_FAST = 0xb,	/* read flash */
3029 	SF_RD_ID	= 0x9f,	/* read ID */
3030 	SF_ERASE_SECTOR = 0xd8,	/* erase 64KB sector */
3031 };
3032 
3033 /**
3034  *	sf1_read - read data from the serial flash
3035  *	@adapter: the adapter
3036  *	@byte_cnt: number of bytes to read
3037  *	@cont: whether another operation will be chained
3038  *	@lock: whether to lock SF for PL access only
3039  *	@valp: where to store the read data
3040  *
3041  *	Reads up to 4 bytes of data from the serial flash.  The location of
3042  *	the read needs to be specified prior to calling this by issuing the
3043  *	appropriate commands to the serial flash.
3044  */
3045 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3046 		    int lock, u32 *valp)
3047 {
3048 	int ret;
3049 
3050 	if (!byte_cnt || byte_cnt > 4)
3051 		return -EINVAL;
3052 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3053 		return -EBUSY;
3054 	t4_write_reg(adapter, A_SF_OP,
3055 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3056 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3057 	if (!ret)
3058 		*valp = t4_read_reg(adapter, A_SF_DATA);
3059 	return ret;
3060 }
3061 
3062 /**
3063  *	sf1_write - write data to the serial flash
3064  *	@adapter: the adapter
3065  *	@byte_cnt: number of bytes to write
3066  *	@cont: whether another operation will be chained
3067  *	@lock: whether to lock SF for PL access only
3068  *	@val: value to write
3069  *
3070  *	Writes up to 4 bytes of data to the serial flash.  The location of
3071  *	the write needs to be specified prior to calling this by issuing the
3072  *	appropriate commands to the serial flash.
3073  */
3074 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3075 		     int lock, u32 val)
3076 {
3077 	if (!byte_cnt || byte_cnt > 4)
3078 		return -EINVAL;
3079 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3080 		return -EBUSY;
3081 	t4_write_reg(adapter, A_SF_DATA, val);
3082 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3083 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3084 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3085 }
3086 
3087 /**
3088  *	flash_wait_op - wait for a flash operation to complete
3089  *	@adapter: the adapter
3090  *	@attempts: max number of polls of the status register
3091  *	@delay: delay between polls in ms
3092  *
3093  *	Wait for a flash operation to complete by polling the status register.
3094  */
3095 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3096 {
3097 	int ret;
3098 	u32 status;
3099 
3100 	while (1) {
3101 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3102 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3103 			return ret;
3104 		if (!(status & 1))
3105 			return 0;
3106 		if (--attempts == 0)
3107 			return -EAGAIN;
3108 		if (delay)
3109 			msleep(delay);
3110 	}
3111 }
3112 
3113 /**
3114  *	t4_read_flash - read words from serial flash
3115  *	@adapter: the adapter
3116  *	@addr: the start address for the read
3117  *	@nwords: how many 32-bit words to read
3118  *	@data: where to store the read data
3119  *	@byte_oriented: whether to store data as bytes or as words
3120  *
3121  *	Read the specified number of 32-bit words from the serial flash.
3122  *	If @byte_oriented is set the read data is stored as a byte array
3123  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3124  *	natural endianness.
3125  */
3126 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3127 		  unsigned int nwords, u32 *data, int byte_oriented)
3128 {
3129 	int ret;
3130 
3131 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3132 		return -EINVAL;
3133 
3134 	addr = swab32(addr) | SF_RD_DATA_FAST;
3135 
3136 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3137 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3138 		return ret;
3139 
3140 	for ( ; nwords; nwords--, data++) {
3141 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3142 		if (nwords == 1)
3143 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3144 		if (ret)
3145 			return ret;
3146 		if (byte_oriented)
3147 			*data = (__force __u32)(cpu_to_be32(*data));
3148 	}
3149 	return 0;
3150 }
3151 
3152 /**
3153  *	t4_write_flash - write up to a page of data to the serial flash
3154  *	@adapter: the adapter
3155  *	@addr: the start address to write
3156  *	@n: length of data to write in bytes
3157  *	@data: the data to write
3158  *	@byte_oriented: whether to store data as bytes or as words
3159  *
3160  *	Writes up to a page of data (256 bytes) to the serial flash starting
3161  *	at the given address.  All the data must be written to the same page.
3162  *	If @byte_oriented is set the write data is stored as byte stream
3163  *	(i.e. matches what on disk), otherwise in big-endian.
3164  */
3165 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3166 			  unsigned int n, const u8 *data, int byte_oriented)
3167 {
3168 	int ret;
3169 	u32 buf[SF_PAGE_SIZE / 4];
3170 	unsigned int i, c, left, val, offset = addr & 0xff;
3171 
3172 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3173 		return -EINVAL;
3174 
3175 	val = swab32(addr) | SF_PROG_PAGE;
3176 
3177 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3178 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3179 		goto unlock;
3180 
3181 	for (left = n; left; left -= c) {
3182 		c = min(left, 4U);
3183 		for (val = 0, i = 0; i < c; ++i)
3184 			val = (val << 8) + *data++;
3185 
3186 		if (!byte_oriented)
3187 			val = cpu_to_be32(val);
3188 
3189 		ret = sf1_write(adapter, c, c != left, 1, val);
3190 		if (ret)
3191 			goto unlock;
3192 	}
3193 	ret = flash_wait_op(adapter, 8, 1);
3194 	if (ret)
3195 		goto unlock;
3196 
3197 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3198 
3199 	/* Read the page to verify the write succeeded */
3200 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3201 			    byte_oriented);
3202 	if (ret)
3203 		return ret;
3204 
3205 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3206 		CH_ERR(adapter,
3207 			"failed to correctly write the flash page at %#x\n",
3208 			addr);
3209 		return -EIO;
3210 	}
3211 	return 0;
3212 
3213 unlock:
3214 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3215 	return ret;
3216 }
3217 
3218 /**
3219  *	t4_get_fw_version - read the firmware version
3220  *	@adapter: the adapter
3221  *	@vers: where to place the version
3222  *
3223  *	Reads the FW version from flash.
3224  */
3225 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3226 {
3227 	return t4_read_flash(adapter, FLASH_FW_START +
3228 			     offsetof(struct fw_hdr, fw_ver), 1,
3229 			     vers, 0);
3230 }
3231 
3232 /**
3233  *	t4_get_bs_version - read the firmware bootstrap version
3234  *	@adapter: the adapter
3235  *	@vers: where to place the version
3236  *
3237  *	Reads the FW Bootstrap version from flash.
3238  */
3239 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3240 {
3241 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3242 			     offsetof(struct fw_hdr, fw_ver), 1,
3243 			     vers, 0);
3244 }
3245 
3246 /**
3247  *	t4_get_tp_version - read the TP microcode version
3248  *	@adapter: the adapter
3249  *	@vers: where to place the version
3250  *
3251  *	Reads the TP microcode version from flash.
3252  */
3253 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3254 {
3255 	return t4_read_flash(adapter, FLASH_FW_START +
3256 			     offsetof(struct fw_hdr, tp_microcode_ver),
3257 			     1, vers, 0);
3258 }
3259 
3260 /**
3261  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3262  *	@adapter: the adapter
3263  *	@vers: where to place the version
3264  *
3265  *	Reads the Expansion ROM header from FLASH and returns the version
3266  *	number (if present) through the @vers return value pointer.  We return
3267  *	this in the Firmware Version Format since it's convenient.  Return
3268  *	0 on success, -ENOENT if no Expansion ROM is present.
3269  */
3270 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3271 {
3272 	struct exprom_header {
3273 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3274 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3275 	} *hdr;
3276 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3277 					   sizeof(u32))];
3278 	int ret;
3279 
3280 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3281 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3282 			    0);
3283 	if (ret)
3284 		return ret;
3285 
3286 	hdr = (struct exprom_header *)exprom_header_buf;
3287 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3288 		return -ENOENT;
3289 
3290 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3291 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3292 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3293 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3294 	return 0;
3295 }
3296 
3297 /**
3298  *	t4_get_scfg_version - return the Serial Configuration version
3299  *	@adapter: the adapter
3300  *	@vers: where to place the version
3301  *
3302  *	Reads the Serial Configuration Version via the Firmware interface
3303  *	(thus this can only be called once we're ready to issue Firmware
3304  *	commands).  The format of the Serial Configuration version is
3305  *	adapter specific.  Returns 0 on success, an error on failure.
3306  *
3307  *	Note that early versions of the Firmware didn't include the ability
3308  *	to retrieve the Serial Configuration version, so we zero-out the
3309  *	return-value parameter in that case to avoid leaving it with
3310  *	garbage in it.
3311  *
3312  *	Also note that the Firmware will return its cached copy of the Serial
3313  *	Initialization Revision ID, not the actual Revision ID as written in
3314  *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3315  *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3316  *	it's best to defer calling this routine till after a FW_RESET_CMD has
3317  *	been issued if the Host Driver will be performing a full adapter
3318  *	initialization.
3319  */
3320 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3321 {
3322 	u32 scfgrev_param;
3323 	int ret;
3324 
3325 	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3326 			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3327 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3328 			      1, &scfgrev_param, vers);
3329 	if (ret)
3330 		*vers = 0;
3331 	return ret;
3332 }
3333 
3334 /**
3335  *	t4_get_vpd_version - return the VPD version
3336  *	@adapter: the adapter
3337  *	@vers: where to place the version
3338  *
3339  *	Reads the VPD via the Firmware interface (thus this can only be called
3340  *	once we're ready to issue Firmware commands).  The format of the
3341  *	VPD version is adapter specific.  Returns 0 on success, an error on
3342  *	failure.
3343  *
3344  *	Note that early versions of the Firmware didn't include the ability
3345  *	to retrieve the VPD version, so we zero-out the return-value parameter
3346  *	in that case to avoid leaving it with garbage in it.
3347  *
3348  *	Also note that the Firmware will return its cached copy of the VPD
3349  *	Revision ID, not the actual Revision ID as written in the Serial
3350  *	EEPROM.  This is only an issue if a new VPD has been written and the
3351  *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3352  *	to defer calling this routine till after a FW_RESET_CMD has been issued
3353  *	if the Host Driver will be performing a full adapter initialization.
3354  */
3355 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3356 {
3357 	u32 vpdrev_param;
3358 	int ret;
3359 
3360 	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3361 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3362 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3363 			      1, &vpdrev_param, vers);
3364 	if (ret)
3365 		*vers = 0;
3366 	return ret;
3367 }
3368 
3369 /**
3370  *	t4_get_version_info - extract various chip/firmware version information
3371  *	@adapter: the adapter
3372  *
3373  *	Reads various chip/firmware version numbers and stores them into the
3374  *	adapter Adapter Parameters structure.  If any of the efforts fails
3375  *	the first failure will be returned, but all of the version numbers
3376  *	will be read.
3377  */
3378 int t4_get_version_info(struct adapter *adapter)
3379 {
3380 	int ret = 0;
3381 
3382 	#define FIRST_RET(__getvinfo) \
3383 	do { \
3384 		int __ret = __getvinfo; \
3385 		if (__ret && !ret) \
3386 			ret = __ret; \
3387 	} while (0)
3388 
3389 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3390 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3391 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3392 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3393 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3394 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3395 
3396 	#undef FIRST_RET
3397 
3398 	return ret;
3399 }
3400 
3401 /**
3402  *	t4_flash_erase_sectors - erase a range of flash sectors
3403  *	@adapter: the adapter
3404  *	@start: the first sector to erase
3405  *	@end: the last sector to erase
3406  *
3407  *	Erases the sectors in the given inclusive range.
3408  */
3409 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3410 {
3411 	int ret = 0;
3412 
3413 	if (end >= adapter->params.sf_nsec)
3414 		return -EINVAL;
3415 
3416 	while (start <= end) {
3417 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3418 		    (ret = sf1_write(adapter, 4, 0, 1,
3419 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3420 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3421 			CH_ERR(adapter,
3422 				"erase of flash sector %d failed, error %d\n",
3423 				start, ret);
3424 			break;
3425 		}
3426 		start++;
3427 	}
3428 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3429 	return ret;
3430 }
3431 
3432 /**
3433  *	t4_flash_cfg_addr - return the address of the flash configuration file
3434  *	@adapter: the adapter
3435  *
3436  *	Return the address within the flash where the Firmware Configuration
3437  *	File is stored, or an error if the device FLASH is too small to contain
3438  *	a Firmware Configuration File.
3439  */
3440 int t4_flash_cfg_addr(struct adapter *adapter)
3441 {
3442 	/*
3443 	 * If the device FLASH isn't large enough to hold a Firmware
3444 	 * Configuration File, return an error.
3445 	 */
3446 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3447 		return -ENOSPC;
3448 
3449 	return FLASH_CFG_START;
3450 }
3451 
3452 /*
3453  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3454  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3455  * and emit an error message for mismatched firmware to save our caller the
3456  * effort ...
3457  */
3458 static int t4_fw_matches_chip(struct adapter *adap,
3459 			      const struct fw_hdr *hdr)
3460 {
3461 	/*
3462 	 * The expression below will return FALSE for any unsupported adapter
3463 	 * which will keep us "honest" in the future ...
3464 	 */
3465 	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3466 	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3467 	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3468 		return 1;
3469 
3470 	CH_ERR(adap,
3471 		"FW image (%d) is not suitable for this adapter (%d)\n",
3472 		hdr->chip, chip_id(adap));
3473 	return 0;
3474 }
3475 
3476 /**
3477  *	t4_load_fw - download firmware
3478  *	@adap: the adapter
3479  *	@fw_data: the firmware image to write
3480  *	@size: image size
3481  *
3482  *	Write the supplied firmware image to the card's serial flash.
3483  */
3484 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3485 {
3486 	u32 csum;
3487 	int ret, addr;
3488 	unsigned int i;
3489 	u8 first_page[SF_PAGE_SIZE];
3490 	const u32 *p = (const u32 *)fw_data;
3491 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3492 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3493 	unsigned int fw_start_sec;
3494 	unsigned int fw_start;
3495 	unsigned int fw_size;
3496 
3497 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3498 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3499 		fw_start = FLASH_FWBOOTSTRAP_START;
3500 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3501 	} else {
3502 		fw_start_sec = FLASH_FW_START_SEC;
3503  		fw_start = FLASH_FW_START;
3504 		fw_size = FLASH_FW_MAX_SIZE;
3505 	}
3506 
3507 	if (!size) {
3508 		CH_ERR(adap, "FW image has no data\n");
3509 		return -EINVAL;
3510 	}
3511 	if (size & 511) {
3512 		CH_ERR(adap,
3513 			"FW image size not multiple of 512 bytes\n");
3514 		return -EINVAL;
3515 	}
3516 	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3517 		CH_ERR(adap,
3518 			"FW image size differs from size in FW header\n");
3519 		return -EINVAL;
3520 	}
3521 	if (size > fw_size) {
3522 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3523 			fw_size);
3524 		return -EFBIG;
3525 	}
3526 	if (!t4_fw_matches_chip(adap, hdr))
3527 		return -EINVAL;
3528 
3529 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3530 		csum += be32_to_cpu(p[i]);
3531 
3532 	if (csum != 0xffffffff) {
3533 		CH_ERR(adap,
3534 			"corrupted firmware image, checksum %#x\n", csum);
3535 		return -EINVAL;
3536 	}
3537 
3538 	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3539 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3540 	if (ret)
3541 		goto out;
3542 
3543 	/*
3544 	 * We write the correct version at the end so the driver can see a bad
3545 	 * version if the FW write fails.  Start by writing a copy of the
3546 	 * first page with a bad version.
3547 	 */
3548 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3549 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3550 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3551 	if (ret)
3552 		goto out;
3553 
3554 	addr = fw_start;
3555 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3556 		addr += SF_PAGE_SIZE;
3557 		fw_data += SF_PAGE_SIZE;
3558 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3559 		if (ret)
3560 			goto out;
3561 	}
3562 
3563 	ret = t4_write_flash(adap,
3564 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3565 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3566 out:
3567 	if (ret)
3568 		CH_ERR(adap, "firmware download failed, error %d\n",
3569 			ret);
3570 	return ret;
3571 }
3572 
3573 /**
3574  *	t4_fwcache - firmware cache operation
3575  *	@adap: the adapter
3576  *	@op  : the operation (flush or flush and invalidate)
3577  */
3578 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3579 {
3580 	struct fw_params_cmd c;
3581 
3582 	memset(&c, 0, sizeof(c));
3583 	c.op_to_vfn =
3584 	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3585 			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3586 				V_FW_PARAMS_CMD_PFN(adap->pf) |
3587 				V_FW_PARAMS_CMD_VFN(0));
3588 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3589 	c.param[0].mnem =
3590 	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3591 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3592 	c.param[0].val = (__force __be32)op;
3593 
3594 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3595 }
3596 
3597 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3598 			unsigned int *pif_req_wrptr,
3599 			unsigned int *pif_rsp_wrptr)
3600 {
3601 	int i, j;
3602 	u32 cfg, val, req, rsp;
3603 
3604 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3605 	if (cfg & F_LADBGEN)
3606 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3607 
3608 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3609 	req = G_POLADBGWRPTR(val);
3610 	rsp = G_PILADBGWRPTR(val);
3611 	if (pif_req_wrptr)
3612 		*pif_req_wrptr = req;
3613 	if (pif_rsp_wrptr)
3614 		*pif_rsp_wrptr = rsp;
3615 
3616 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3617 		for (j = 0; j < 6; j++) {
3618 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3619 				     V_PILADBGRDPTR(rsp));
3620 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3621 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3622 			req++;
3623 			rsp++;
3624 		}
3625 		req = (req + 2) & M_POLADBGRDPTR;
3626 		rsp = (rsp + 2) & M_PILADBGRDPTR;
3627 	}
3628 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3629 }
3630 
3631 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3632 {
3633 	u32 cfg;
3634 	int i, j, idx;
3635 
3636 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3637 	if (cfg & F_LADBGEN)
3638 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3639 
3640 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3641 		for (j = 0; j < 5; j++) {
3642 			idx = 8 * i + j;
3643 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3644 				     V_PILADBGRDPTR(idx));
3645 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3646 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3647 		}
3648 	}
3649 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3650 }
3651 
3652 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3653 {
3654 	unsigned int i, j;
3655 
3656 	for (i = 0; i < 8; i++) {
3657 		u32 *p = la_buf + i;
3658 
3659 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3660 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3661 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3662 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3663 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3664 	}
3665 }
3666 
3667 /**
3668  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3669  *	@phy: the PHY to setup
3670  *	@mac: the MAC to setup
3671  *	@lc: the requested link configuration
3672  *
3673  *	Set up a port's MAC and PHY according to a desired link configuration.
3674  *	- If the PHY can auto-negotiate first decide what to advertise, then
3675  *	  enable/disable auto-negotiation as desired, and reset.
3676  *	- If the PHY does not auto-negotiate just reset it.
3677  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3678  *	  otherwise do it later based on the outcome of auto-negotiation.
3679  */
3680 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3681 		  struct link_config *lc)
3682 {
3683 	struct fw_port_cmd c;
3684 	unsigned int mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO);
3685 	unsigned int aneg, fc, fec, speed, rcap;
3686 
3687 	fc = 0;
3688 	if (lc->requested_fc & PAUSE_RX)
3689 		fc |= FW_PORT_CAP_FC_RX;
3690 	if (lc->requested_fc & PAUSE_TX)
3691 		fc |= FW_PORT_CAP_FC_TX;
3692 
3693 	fec = 0;
3694 	if (lc->requested_fec & FEC_RS)
3695 		fec = FW_PORT_CAP_FEC_RS;
3696 	else if (lc->requested_fec & FEC_BASER_RS)
3697 		fec = FW_PORT_CAP_FEC_BASER_RS;
3698 	else if (lc->requested_fec & FEC_RESERVED)
3699 		fec = FW_PORT_CAP_FEC_RESERVED;
3700 
3701 	if (!(lc->supported & FW_PORT_CAP_ANEG) ||
3702 	    lc->requested_aneg == AUTONEG_DISABLE) {
3703 		aneg = 0;
3704 		switch (lc->requested_speed) {
3705 		case 100:
3706 			speed = FW_PORT_CAP_SPEED_100G;
3707 			break;
3708 		case 40:
3709 			speed = FW_PORT_CAP_SPEED_40G;
3710 			break;
3711 		case 25:
3712 			speed = FW_PORT_CAP_SPEED_25G;
3713 			break;
3714 		case 10:
3715 			speed = FW_PORT_CAP_SPEED_10G;
3716 			break;
3717 		case 1:
3718 			speed = FW_PORT_CAP_SPEED_1G;
3719 			break;
3720 		default:
3721 			return -EINVAL;
3722 			break;
3723 		}
3724 	} else {
3725 		aneg = FW_PORT_CAP_ANEG;
3726 		speed = lc->supported &
3727 		    V_FW_PORT_CAP_SPEED(M_FW_PORT_CAP_SPEED);
3728 	}
3729 
3730 	rcap = aneg | speed | fc | fec;
3731 	if ((rcap | lc->supported) != lc->supported) {
3732 		CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x\n", rcap,
3733 		    lc->supported);
3734 		rcap &= lc->supported;
3735 	}
3736 	rcap |= mdi;
3737 
3738 	memset(&c, 0, sizeof(c));
3739 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3740 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3741 				     V_FW_PORT_CMD_PORTID(port));
3742 	c.action_to_len16 =
3743 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3744 			    FW_LEN16(c));
3745 	c.u.l1cfg.rcap = cpu_to_be32(rcap);
3746 
3747 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3748 }
3749 
3750 /**
3751  *	t4_restart_aneg - restart autonegotiation
3752  *	@adap: the adapter
3753  *	@mbox: mbox to use for the FW command
3754  *	@port: the port id
3755  *
3756  *	Restarts autonegotiation for the selected port.
3757  */
3758 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3759 {
3760 	struct fw_port_cmd c;
3761 
3762 	memset(&c, 0, sizeof(c));
3763 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3764 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3765 				     V_FW_PORT_CMD_PORTID(port));
3766 	c.action_to_len16 =
3767 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3768 			    FW_LEN16(c));
3769 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3770 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3771 }
3772 
3773 typedef void (*int_handler_t)(struct adapter *adap);
3774 
3775 struct intr_info {
3776 	unsigned int mask;	/* bits to check in interrupt status */
3777 	const char *msg;	/* message to print or NULL */
3778 	short stat_idx;		/* stat counter to increment or -1 */
3779 	unsigned short fatal;	/* whether the condition reported is fatal */
3780 	int_handler_t int_handler;	/* platform-specific int handler */
3781 };
3782 
3783 /**
3784  *	t4_handle_intr_status - table driven interrupt handler
3785  *	@adapter: the adapter that generated the interrupt
3786  *	@reg: the interrupt status register to process
3787  *	@acts: table of interrupt actions
3788  *
3789  *	A table driven interrupt handler that applies a set of masks to an
3790  *	interrupt status word and performs the corresponding actions if the
3791  *	interrupts described by the mask have occurred.  The actions include
3792  *	optionally emitting a warning or alert message.  The table is terminated
3793  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
3794  *	conditions.
3795  */
3796 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3797 				 const struct intr_info *acts)
3798 {
3799 	int fatal = 0;
3800 	unsigned int mask = 0;
3801 	unsigned int status = t4_read_reg(adapter, reg);
3802 
3803 	for ( ; acts->mask; ++acts) {
3804 		if (!(status & acts->mask))
3805 			continue;
3806 		if (acts->fatal) {
3807 			fatal++;
3808 			CH_ALERT(adapter, "%s (0x%x)\n", acts->msg,
3809 				  status & acts->mask);
3810 		} else if (acts->msg)
3811 			CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n", acts->msg,
3812 				 status & acts->mask);
3813 		if (acts->int_handler)
3814 			acts->int_handler(adapter);
3815 		mask |= acts->mask;
3816 	}
3817 	status &= mask;
3818 	if (status)	/* clear processed interrupts */
3819 		t4_write_reg(adapter, reg, status);
3820 	return fatal;
3821 }
3822 
3823 /*
3824  * Interrupt handler for the PCIE module.
3825  */
3826 static void pcie_intr_handler(struct adapter *adapter)
3827 {
3828 	static const struct intr_info sysbus_intr_info[] = {
3829 		{ F_RNPP, "RXNP array parity error", -1, 1 },
3830 		{ F_RPCP, "RXPC array parity error", -1, 1 },
3831 		{ F_RCIP, "RXCIF array parity error", -1, 1 },
3832 		{ F_RCCP, "Rx completions control array parity error", -1, 1 },
3833 		{ F_RFTP, "RXFT array parity error", -1, 1 },
3834 		{ 0 }
3835 	};
3836 	static const struct intr_info pcie_port_intr_info[] = {
3837 		{ F_TPCP, "TXPC array parity error", -1, 1 },
3838 		{ F_TNPP, "TXNP array parity error", -1, 1 },
3839 		{ F_TFTP, "TXFT array parity error", -1, 1 },
3840 		{ F_TCAP, "TXCA array parity error", -1, 1 },
3841 		{ F_TCIP, "TXCIF array parity error", -1, 1 },
3842 		{ F_RCAP, "RXCA array parity error", -1, 1 },
3843 		{ F_OTDD, "outbound request TLP discarded", -1, 1 },
3844 		{ F_RDPE, "Rx data parity error", -1, 1 },
3845 		{ F_TDUE, "Tx uncorrectable data error", -1, 1 },
3846 		{ 0 }
3847 	};
3848 	static const struct intr_info pcie_intr_info[] = {
3849 		{ F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
3850 		{ F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
3851 		{ F_MSIDATAPERR, "MSI data parity error", -1, 1 },
3852 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3853 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3854 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3855 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3856 		{ F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
3857 		{ F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
3858 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3859 		{ F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
3860 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3861 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3862 		{ F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
3863 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3864 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3865 		{ F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
3866 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3867 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3868 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3869 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3870 		{ F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
3871 		{ F_MATAGPERR, "PCI MA tag parity error", -1, 1 },
3872 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3873 		{ F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
3874 		{ F_RXWRPERR, "PCI Rx write parity error", -1, 1 },
3875 		{ F_RPLPERR, "PCI replay buffer parity error", -1, 1 },
3876 		{ F_PCIESINT, "PCI core secondary fault", -1, 1 },
3877 		{ F_PCIEPINT, "PCI core primary fault", -1, 1 },
3878 		{ F_UNXSPLCPLERR, "PCI unexpected split completion error", -1,
3879 		  0 },
3880 		{ 0 }
3881 	};
3882 
3883 	static const struct intr_info t5_pcie_intr_info[] = {
3884 		{ F_MSTGRPPERR, "Master Response Read Queue parity error",
3885 		  -1, 1 },
3886 		{ F_MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
3887 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
3888 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3889 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3890 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3891 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3892 		{ F_PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
3893 		  -1, 1 },
3894 		{ F_PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
3895 		  -1, 1 },
3896 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3897 		{ F_MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
3898 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3899 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3900 		{ F_DREQWRPERR, "PCI DMA channel write request parity error",
3901 		  -1, 1 },
3902 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3903 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3904 		{ F_HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
3905 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3906 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3907 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3908 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3909 		{ F_VFIDPERR, "PCI INTx clear parity error", -1, 1 },
3910 		{ F_MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
3911 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3912 		{ F_IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
3913 		  -1, 1 },
3914 		{ F_IPRXDATAGRPPERR, "PCI IP Rx data group parity error",
3915 		  -1, 1 },
3916 		{ F_RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
3917 		{ F_IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
3918 		{ F_TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3919 		{ F_READRSPERR, "Outbound read error", -1,
3920 		  0 },
3921 		{ 0 }
3922 	};
3923 
3924 	int fat;
3925 
3926 	if (is_t4(adapter))
3927 		fat = t4_handle_intr_status(adapter,
3928 				A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
3929 				sysbus_intr_info) +
3930 			t4_handle_intr_status(adapter,
3931 					A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
3932 					pcie_port_intr_info) +
3933 			t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3934 					      pcie_intr_info);
3935 	else
3936 		fat = t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3937 					    t5_pcie_intr_info);
3938 	if (fat)
3939 		t4_fatal_err(adapter);
3940 }
3941 
3942 /*
3943  * TP interrupt handler.
3944  */
3945 static void tp_intr_handler(struct adapter *adapter)
3946 {
3947 	static const struct intr_info tp_intr_info[] = {
3948 		{ 0x3fffffff, "TP parity error", -1, 1 },
3949 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
3950 		{ 0 }
3951 	};
3952 
3953 	if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info))
3954 		t4_fatal_err(adapter);
3955 }
3956 
3957 /*
3958  * SGE interrupt handler.
3959  */
3960 static void sge_intr_handler(struct adapter *adapter)
3961 {
3962 	u64 v;
3963 	u32 err;
3964 
3965 	static const struct intr_info sge_intr_info[] = {
3966 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
3967 		  "SGE received CPL exceeding IQE size", -1, 1 },
3968 		{ F_ERR_INVALID_CIDX_INC,
3969 		  "SGE GTS CIDX increment too large", -1, 0 },
3970 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
3971 		{ F_DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
3972 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
3973 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
3974 		{ F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
3975 		  0 },
3976 		{ F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
3977 		  0 },
3978 		{ F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
3979 		  0 },
3980 		{ F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
3981 		  0 },
3982 		{ F_ERR_ING_CTXT_PRIO,
3983 		  "SGE too many priority ingress contexts", -1, 0 },
3984 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
3985 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
3986 		{ F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 |
3987 		  F_ERR_PCIE_ERROR2 | F_ERR_PCIE_ERROR3,
3988 		  "SGE PCIe error for a DBP thread", -1, 0 },
3989 		{ 0 }
3990 	};
3991 
3992 	static const struct intr_info t4t5_sge_intr_info[] = {
3993 		{ F_ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
3994 		{ F_DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
3995 		{ F_ERR_EGR_CTXT_PRIO,
3996 		  "SGE too many priority egress contexts", -1, 0 },
3997 		{ 0 }
3998 	};
3999 
4000 	/*
4001  	* For now, treat below interrupts as fatal so that we disable SGE and
4002  	* get better debug */
4003 	static const struct intr_info t6_sge_intr_info[] = {
4004 		{ F_FATAL_WRE_LEN,
4005 		  "SGE Actual WRE packet is less than advertized length",
4006 		  -1, 1 },
4007 		{ 0 }
4008 	};
4009 
4010 	v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) |
4011 		((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32);
4012 	if (v) {
4013 		CH_ALERT(adapter, "SGE parity error (%#llx)\n",
4014 				(unsigned long long)v);
4015 		t4_write_reg(adapter, A_SGE_INT_CAUSE1, v);
4016 		t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32);
4017 	}
4018 
4019 	v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info);
4020 	if (chip_id(adapter) <= CHELSIO_T5)
4021 		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4022 					   t4t5_sge_intr_info);
4023 	else
4024 		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4025 					   t6_sge_intr_info);
4026 
4027 	err = t4_read_reg(adapter, A_SGE_ERROR_STATS);
4028 	if (err & F_ERROR_QID_VALID) {
4029 		CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err));
4030 		if (err & F_UNCAPTURED_ERROR)
4031 			CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n");
4032 		t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID |
4033 			     F_UNCAPTURED_ERROR);
4034 	}
4035 
4036 	if (v != 0)
4037 		t4_fatal_err(adapter);
4038 }
4039 
4040 #define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\
4041 		      F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR)
4042 #define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\
4043 		      F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR)
4044 
4045 /*
4046  * CIM interrupt handler.
4047  */
4048 static void cim_intr_handler(struct adapter *adapter)
4049 {
4050 	static const struct intr_info cim_intr_info[] = {
4051 		{ F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
4052 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4053 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4054 		{ F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
4055 		{ F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
4056 		{ F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
4057 		{ F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
4058 		{ F_TIMER0INT, "CIM TIMER0 interrupt", -1, 1 },
4059 		{ 0 }
4060 	};
4061 	static const struct intr_info cim_upintr_info[] = {
4062 		{ F_RSVDSPACEINT, "CIM reserved space access", -1, 1 },
4063 		{ F_ILLTRANSINT, "CIM illegal transaction", -1, 1 },
4064 		{ F_ILLWRINT, "CIM illegal write", -1, 1 },
4065 		{ F_ILLRDINT, "CIM illegal read", -1, 1 },
4066 		{ F_ILLRDBEINT, "CIM illegal read BE", -1, 1 },
4067 		{ F_ILLWRBEINT, "CIM illegal write BE", -1, 1 },
4068 		{ F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
4069 		{ F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
4070 		{ F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
4071 		{ F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
4072 		{ F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
4073 		{ F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
4074 		{ F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
4075 		{ F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
4076 		{ F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
4077 		{ F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
4078 		{ F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
4079 		{ F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
4080 		{ F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
4081 		{ F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
4082 		{ F_SGLRDPLINT , "CIM single read from PL space", -1, 1 },
4083 		{ F_SGLWRPLINT , "CIM single write to PL space", -1, 1 },
4084 		{ F_BLKRDPLINT , "CIM block read from PL space", -1, 1 },
4085 		{ F_BLKWRPLINT , "CIM block write to PL space", -1, 1 },
4086 		{ F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
4087 		{ F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
4088 		{ F_TIMEOUTINT , "CIM PIF timeout", -1, 1 },
4089 		{ F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
4090 		{ 0 }
4091 	};
4092 	u32 val, fw_err;
4093 	int fat;
4094 
4095 	fw_err = t4_read_reg(adapter, A_PCIE_FW);
4096 	if (fw_err & F_PCIE_FW_ERR)
4097 		t4_report_fw_error(adapter);
4098 
4099 	/* When the Firmware detects an internal error which normally wouldn't
4100 	 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4101 	 * to make sure the Host sees the Firmware Crash.  So if we have a
4102 	 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4103 	 * interrupt.
4104 	 */
4105 	val = t4_read_reg(adapter, A_CIM_HOST_INT_CAUSE);
4106 	if (val & F_TIMER0INT)
4107 		if (!(fw_err & F_PCIE_FW_ERR) ||
4108 		    (G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH))
4109 			t4_write_reg(adapter, A_CIM_HOST_INT_CAUSE,
4110 				     F_TIMER0INT);
4111 
4112 	fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE,
4113 				    cim_intr_info) +
4114 	      t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE,
4115 				    cim_upintr_info);
4116 	if (fat)
4117 		t4_fatal_err(adapter);
4118 }
4119 
4120 /*
4121  * ULP RX interrupt handler.
4122  */
4123 static void ulprx_intr_handler(struct adapter *adapter)
4124 {
4125 	static const struct intr_info ulprx_intr_info[] = {
4126 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 },
4127 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 },
4128 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4129 		{ 0 }
4130 	};
4131 
4132 	if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info))
4133 		t4_fatal_err(adapter);
4134 }
4135 
4136 /*
4137  * ULP TX interrupt handler.
4138  */
4139 static void ulptx_intr_handler(struct adapter *adapter)
4140 {
4141 	static const struct intr_info ulptx_intr_info[] = {
4142 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
4143 		  0 },
4144 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
4145 		  0 },
4146 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
4147 		  0 },
4148 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
4149 		  0 },
4150 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4151 		{ 0 }
4152 	};
4153 
4154 	if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info))
4155 		t4_fatal_err(adapter);
4156 }
4157 
4158 /*
4159  * PM TX interrupt handler.
4160  */
4161 static void pmtx_intr_handler(struct adapter *adapter)
4162 {
4163 	static const struct intr_info pmtx_intr_info[] = {
4164 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
4165 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
4166 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
4167 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
4168 		{ 0xffffff0, "PMTX framing error", -1, 1 },
4169 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
4170 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
4171 		  1 },
4172 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
4173 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
4174 		{ 0 }
4175 	};
4176 
4177 	if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info))
4178 		t4_fatal_err(adapter);
4179 }
4180 
4181 /*
4182  * PM RX interrupt handler.
4183  */
4184 static void pmrx_intr_handler(struct adapter *adapter)
4185 {
4186 	static const struct intr_info pmrx_intr_info[] = {
4187 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
4188 		{ 0x3ffff0, "PMRX framing error", -1, 1 },
4189 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
4190 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
4191 		  1 },
4192 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
4193 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
4194 		{ 0 }
4195 	};
4196 
4197 	if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info))
4198 		t4_fatal_err(adapter);
4199 }
4200 
4201 /*
4202  * CPL switch interrupt handler.
4203  */
4204 static void cplsw_intr_handler(struct adapter *adapter)
4205 {
4206 	static const struct intr_info cplsw_intr_info[] = {
4207 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
4208 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
4209 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
4210 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
4211 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
4212 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
4213 		{ 0 }
4214 	};
4215 
4216 	if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info))
4217 		t4_fatal_err(adapter);
4218 }
4219 
4220 /*
4221  * LE interrupt handler.
4222  */
4223 static void le_intr_handler(struct adapter *adap)
4224 {
4225 	unsigned int chip_ver = chip_id(adap);
4226 	static const struct intr_info le_intr_info[] = {
4227 		{ F_LIPMISS, "LE LIP miss", -1, 0 },
4228 		{ F_LIP0, "LE 0 LIP error", -1, 0 },
4229 		{ F_PARITYERR, "LE parity error", -1, 1 },
4230 		{ F_UNKNOWNCMD, "LE unknown command", -1, 1 },
4231 		{ F_REQQPARERR, "LE request queue parity error", -1, 1 },
4232 		{ 0 }
4233 	};
4234 
4235 	static const struct intr_info t6_le_intr_info[] = {
4236 		{ F_T6_LIPMISS, "LE LIP miss", -1, 0 },
4237 		{ F_T6_LIP0, "LE 0 LIP error", -1, 0 },
4238 		{ F_TCAMINTPERR, "LE parity error", -1, 1 },
4239 		{ F_T6_UNKNOWNCMD, "LE unknown command", -1, 1 },
4240 		{ F_SSRAMINTPERR, "LE request queue parity error", -1, 1 },
4241 		{ 0 }
4242 	};
4243 
4244 	if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE,
4245 				  (chip_ver <= CHELSIO_T5) ?
4246 				  le_intr_info : t6_le_intr_info))
4247 		t4_fatal_err(adap);
4248 }
4249 
4250 /*
4251  * MPS interrupt handler.
4252  */
4253 static void mps_intr_handler(struct adapter *adapter)
4254 {
4255 	static const struct intr_info mps_rx_intr_info[] = {
4256 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4257 		{ 0 }
4258 	};
4259 	static const struct intr_info mps_tx_intr_info[] = {
4260 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 },
4261 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4262 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error",
4263 		  -1, 1 },
4264 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error",
4265 		  -1, 1 },
4266 		{ F_BUBBLE, "MPS Tx underflow", -1, 1 },
4267 		{ F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
4268 		{ F_FRMERR, "MPS Tx framing error", -1, 1 },
4269 		{ 0 }
4270 	};
4271 	static const struct intr_info mps_trc_intr_info[] = {
4272 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 },
4273 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1,
4274 		  1 },
4275 		{ F_MISCPERR, "MPS TRC misc parity error", -1, 1 },
4276 		{ 0 }
4277 	};
4278 	static const struct intr_info mps_stat_sram_intr_info[] = {
4279 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4280 		{ 0 }
4281 	};
4282 	static const struct intr_info mps_stat_tx_intr_info[] = {
4283 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4284 		{ 0 }
4285 	};
4286 	static const struct intr_info mps_stat_rx_intr_info[] = {
4287 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4288 		{ 0 }
4289 	};
4290 	static const struct intr_info mps_cls_intr_info[] = {
4291 		{ F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
4292 		{ F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
4293 		{ F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
4294 		{ 0 }
4295 	};
4296 
4297 	int fat;
4298 
4299 	fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE,
4300 				    mps_rx_intr_info) +
4301 	      t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE,
4302 				    mps_tx_intr_info) +
4303 	      t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE,
4304 				    mps_trc_intr_info) +
4305 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4306 				    mps_stat_sram_intr_info) +
4307 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4308 				    mps_stat_tx_intr_info) +
4309 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4310 				    mps_stat_rx_intr_info) +
4311 	      t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE,
4312 				    mps_cls_intr_info);
4313 
4314 	t4_write_reg(adapter, A_MPS_INT_CAUSE, 0);
4315 	t4_read_reg(adapter, A_MPS_INT_CAUSE);	/* flush */
4316 	if (fat)
4317 		t4_fatal_err(adapter);
4318 }
4319 
4320 #define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | \
4321 		      F_ECC_UE_INT_CAUSE)
4322 
4323 /*
4324  * EDC/MC interrupt handler.
4325  */
4326 static void mem_intr_handler(struct adapter *adapter, int idx)
4327 {
4328 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4329 
4330 	unsigned int addr, cnt_addr, v;
4331 
4332 	if (idx <= MEM_EDC1) {
4333 		addr = EDC_REG(A_EDC_INT_CAUSE, idx);
4334 		cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx);
4335 	} else if (idx == MEM_MC) {
4336 		if (is_t4(adapter)) {
4337 			addr = A_MC_INT_CAUSE;
4338 			cnt_addr = A_MC_ECC_STATUS;
4339 		} else {
4340 			addr = A_MC_P_INT_CAUSE;
4341 			cnt_addr = A_MC_P_ECC_STATUS;
4342 		}
4343 	} else {
4344 		addr = MC_REG(A_MC_P_INT_CAUSE, 1);
4345 		cnt_addr = MC_REG(A_MC_P_ECC_STATUS, 1);
4346 	}
4347 
4348 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4349 	if (v & F_PERR_INT_CAUSE)
4350 		CH_ALERT(adapter, "%s FIFO parity error\n",
4351 			  name[idx]);
4352 	if (v & F_ECC_CE_INT_CAUSE) {
4353 		u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr));
4354 
4355 		if (idx <= MEM_EDC1)
4356 			t4_edc_err_read(adapter, idx);
4357 
4358 		t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT));
4359 		CH_WARN_RATELIMIT(adapter,
4360 				  "%u %s correctable ECC data error%s\n",
4361 				  cnt, name[idx], cnt > 1 ? "s" : "");
4362 	}
4363 	if (v & F_ECC_UE_INT_CAUSE)
4364 		CH_ALERT(adapter,
4365 			 "%s uncorrectable ECC data error\n", name[idx]);
4366 
4367 	t4_write_reg(adapter, addr, v);
4368 	if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE))
4369 		t4_fatal_err(adapter);
4370 }
4371 
4372 /*
4373  * MA interrupt handler.
4374  */
4375 static void ma_intr_handler(struct adapter *adapter)
4376 {
4377 	u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE);
4378 
4379 	if (status & F_MEM_PERR_INT_CAUSE) {
4380 		CH_ALERT(adapter,
4381 			  "MA parity error, parity status %#x\n",
4382 			  t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS1));
4383 		if (is_t5(adapter))
4384 			CH_ALERT(adapter,
4385 				  "MA parity error, parity status %#x\n",
4386 				  t4_read_reg(adapter,
4387 					      A_MA_PARITY_ERROR_STATUS2));
4388 	}
4389 	if (status & F_MEM_WRAP_INT_CAUSE) {
4390 		v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS);
4391 		CH_ALERT(adapter, "MA address wrap-around error by "
4392 			  "client %u to address %#x\n",
4393 			  G_MEM_WRAP_CLIENT_NUM(v),
4394 			  G_MEM_WRAP_ADDRESS(v) << 4);
4395 	}
4396 	t4_write_reg(adapter, A_MA_INT_CAUSE, status);
4397 	t4_fatal_err(adapter);
4398 }
4399 
4400 /*
4401  * SMB interrupt handler.
4402  */
4403 static void smb_intr_handler(struct adapter *adap)
4404 {
4405 	static const struct intr_info smb_intr_info[] = {
4406 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
4407 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
4408 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
4409 		{ 0 }
4410 	};
4411 
4412 	if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info))
4413 		t4_fatal_err(adap);
4414 }
4415 
4416 /*
4417  * NC-SI interrupt handler.
4418  */
4419 static void ncsi_intr_handler(struct adapter *adap)
4420 {
4421 	static const struct intr_info ncsi_intr_info[] = {
4422 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
4423 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
4424 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
4425 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
4426 		{ 0 }
4427 	};
4428 
4429 	if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info))
4430 		t4_fatal_err(adap);
4431 }
4432 
4433 /*
4434  * XGMAC interrupt handler.
4435  */
4436 static void xgmac_intr_handler(struct adapter *adap, int port)
4437 {
4438 	u32 v, int_cause_reg;
4439 
4440 	if (is_t4(adap))
4441 		int_cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
4442 	else
4443 		int_cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
4444 
4445 	v = t4_read_reg(adap, int_cause_reg);
4446 
4447 	v &= (F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR);
4448 	if (!v)
4449 		return;
4450 
4451 	if (v & F_TXFIFO_PRTY_ERR)
4452 		CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n",
4453 			  port);
4454 	if (v & F_RXFIFO_PRTY_ERR)
4455 		CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n",
4456 			  port);
4457 	t4_write_reg(adap, int_cause_reg, v);
4458 	t4_fatal_err(adap);
4459 }
4460 
4461 /*
4462  * PL interrupt handler.
4463  */
4464 static void pl_intr_handler(struct adapter *adap)
4465 {
4466 	static const struct intr_info pl_intr_info[] = {
4467 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4468 		{ F_PERRVFID, "PL VFID_MAP parity error", -1, 1 },
4469 		{ 0 }
4470 	};
4471 
4472 	static const struct intr_info t5_pl_intr_info[] = {
4473 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4474 		{ 0 }
4475 	};
4476 
4477 	if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE,
4478 				  is_t4(adap) ?
4479 				  pl_intr_info : t5_pl_intr_info))
4480 		t4_fatal_err(adap);
4481 }
4482 
4483 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
4484 
4485 /**
4486  *	t4_slow_intr_handler - control path interrupt handler
4487  *	@adapter: the adapter
4488  *
4489  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4490  *	The designation 'slow' is because it involves register reads, while
4491  *	data interrupts typically don't involve any MMIOs.
4492  */
4493 int t4_slow_intr_handler(struct adapter *adapter)
4494 {
4495 	u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE);
4496 
4497 	if (!(cause & GLBL_INTR_MASK))
4498 		return 0;
4499 	if (cause & F_CIM)
4500 		cim_intr_handler(adapter);
4501 	if (cause & F_MPS)
4502 		mps_intr_handler(adapter);
4503 	if (cause & F_NCSI)
4504 		ncsi_intr_handler(adapter);
4505 	if (cause & F_PL)
4506 		pl_intr_handler(adapter);
4507 	if (cause & F_SMB)
4508 		smb_intr_handler(adapter);
4509 	if (cause & F_MAC0)
4510 		xgmac_intr_handler(adapter, 0);
4511 	if (cause & F_MAC1)
4512 		xgmac_intr_handler(adapter, 1);
4513 	if (cause & F_MAC2)
4514 		xgmac_intr_handler(adapter, 2);
4515 	if (cause & F_MAC3)
4516 		xgmac_intr_handler(adapter, 3);
4517 	if (cause & F_PCIE)
4518 		pcie_intr_handler(adapter);
4519 	if (cause & F_MC0)
4520 		mem_intr_handler(adapter, MEM_MC);
4521 	if (is_t5(adapter) && (cause & F_MC1))
4522 		mem_intr_handler(adapter, MEM_MC1);
4523 	if (cause & F_EDC0)
4524 		mem_intr_handler(adapter, MEM_EDC0);
4525 	if (cause & F_EDC1)
4526 		mem_intr_handler(adapter, MEM_EDC1);
4527 	if (cause & F_LE)
4528 		le_intr_handler(adapter);
4529 	if (cause & F_TP)
4530 		tp_intr_handler(adapter);
4531 	if (cause & F_MA)
4532 		ma_intr_handler(adapter);
4533 	if (cause & F_PM_TX)
4534 		pmtx_intr_handler(adapter);
4535 	if (cause & F_PM_RX)
4536 		pmrx_intr_handler(adapter);
4537 	if (cause & F_ULP_RX)
4538 		ulprx_intr_handler(adapter);
4539 	if (cause & F_CPL_SWITCH)
4540 		cplsw_intr_handler(adapter);
4541 	if (cause & F_SGE)
4542 		sge_intr_handler(adapter);
4543 	if (cause & F_ULP_TX)
4544 		ulptx_intr_handler(adapter);
4545 
4546 	/* Clear the interrupts just processed for which we are the master. */
4547 	t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK);
4548 	(void)t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */
4549 	return 1;
4550 }
4551 
4552 /**
4553  *	t4_intr_enable - enable interrupts
4554  *	@adapter: the adapter whose interrupts should be enabled
4555  *
4556  *	Enable PF-specific interrupts for the calling function and the top-level
4557  *	interrupt concentrator for global interrupts.  Interrupts are already
4558  *	enabled at each module,	here we just enable the roots of the interrupt
4559  *	hierarchies.
4560  *
4561  *	Note: this function should be called only when the driver manages
4562  *	non PF-specific interrupts from the various HW modules.  Only one PCI
4563  *	function at a time should be doing this.
4564  */
4565 void t4_intr_enable(struct adapter *adapter)
4566 {
4567 	u32 val = 0;
4568 	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4569 	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4570 		  ? G_SOURCEPF(whoami)
4571 		  : G_T6_SOURCEPF(whoami));
4572 
4573 	if (chip_id(adapter) <= CHELSIO_T5)
4574 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
4575 	else
4576 		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
4577 	t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
4578 		     F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
4579 		     F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
4580 		     F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
4581 		     F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4582 		     F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
4583 		     F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
4584 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
4585 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
4586 }
4587 
4588 /**
4589  *	t4_intr_disable - disable interrupts
4590  *	@adapter: the adapter whose interrupts should be disabled
4591  *
4592  *	Disable interrupts.  We only disable the top-level interrupt
4593  *	concentrators.  The caller must be a PCI function managing global
4594  *	interrupts.
4595  */
4596 void t4_intr_disable(struct adapter *adapter)
4597 {
4598 	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4599 	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4600 		  ? G_SOURCEPF(whoami)
4601 		  : G_T6_SOURCEPF(whoami));
4602 
4603 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
4604 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
4605 }
4606 
4607 /**
4608  *	t4_intr_clear - clear all interrupts
4609  *	@adapter: the adapter whose interrupts should be cleared
4610  *
4611  *	Clears all interrupts.  The caller must be a PCI function managing
4612  *	global interrupts.
4613  */
4614 void t4_intr_clear(struct adapter *adapter)
4615 {
4616 	static const unsigned int cause_reg[] = {
4617 		A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3,
4618 		A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE,
4619 		A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS1, A_MA_INT_CAUSE,
4620 		A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1),
4621 		A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE,
4622 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4623 		A_TP_INT_CAUSE,
4624 		A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE,
4625 		A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE,
4626 		A_MPS_RX_PERR_INT_CAUSE,
4627 		A_CPL_INTR_CAUSE,
4628 		MYPF_REG(A_PL_PF_INT_CAUSE),
4629 		A_PL_PL_INT_CAUSE,
4630 		A_LE_DB_INT_CAUSE,
4631 	};
4632 
4633 	unsigned int i;
4634 
4635 	for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
4636 		t4_write_reg(adapter, cause_reg[i], 0xffffffff);
4637 
4638 	t4_write_reg(adapter, is_t4(adapter) ? A_MC_INT_CAUSE :
4639 				A_MC_P_INT_CAUSE, 0xffffffff);
4640 
4641 	if (is_t4(adapter)) {
4642 		t4_write_reg(adapter, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4643 				0xffffffff);
4644 		t4_write_reg(adapter, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4645 				0xffffffff);
4646 	} else
4647 		t4_write_reg(adapter, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
4648 
4649 	t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK);
4650 	(void) t4_read_reg(adapter, A_PL_INT_CAUSE);          /* flush */
4651 }
4652 
4653 /**
4654  *	hash_mac_addr - return the hash value of a MAC address
4655  *	@addr: the 48-bit Ethernet MAC address
4656  *
4657  *	Hashes a MAC address according to the hash function used by HW inexact
4658  *	(hash) address matching.
4659  */
4660 static int hash_mac_addr(const u8 *addr)
4661 {
4662 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
4663 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
4664 	a ^= b;
4665 	a ^= (a >> 12);
4666 	a ^= (a >> 6);
4667 	return a & 0x3f;
4668 }
4669 
4670 /**
4671  *	t4_config_rss_range - configure a portion of the RSS mapping table
4672  *	@adapter: the adapter
4673  *	@mbox: mbox to use for the FW command
4674  *	@viid: virtual interface whose RSS subtable is to be written
4675  *	@start: start entry in the table to write
4676  *	@n: how many table entries to write
4677  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
4678  *	@nrspq: number of values in @rspq
4679  *
4680  *	Programs the selected part of the VI's RSS mapping table with the
4681  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4682  *	until the full table range is populated.
4683  *
4684  *	The caller must ensure the values in @rspq are in the range allowed for
4685  *	@viid.
4686  */
4687 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4688 			int start, int n, const u16 *rspq, unsigned int nrspq)
4689 {
4690 	int ret;
4691 	const u16 *rsp = rspq;
4692 	const u16 *rsp_end = rspq + nrspq;
4693 	struct fw_rss_ind_tbl_cmd cmd;
4694 
4695 	memset(&cmd, 0, sizeof(cmd));
4696 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
4697 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4698 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
4699 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4700 
4701 	/*
4702 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
4703 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
4704 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
4705 	 * reserved.
4706 	 */
4707 	while (n > 0) {
4708 		int nq = min(n, 32);
4709 		int nq_packed = 0;
4710 		__be32 *qp = &cmd.iq0_to_iq2;
4711 
4712 		/*
4713 		 * Set up the firmware RSS command header to send the next
4714 		 * "nq" Ingress Queue IDs to the firmware.
4715 		 */
4716 		cmd.niqid = cpu_to_be16(nq);
4717 		cmd.startidx = cpu_to_be16(start);
4718 
4719 		/*
4720 		 * "nq" more done for the start of the next loop.
4721 		 */
4722 		start += nq;
4723 		n -= nq;
4724 
4725 		/*
4726 		 * While there are still Ingress Queue IDs to stuff into the
4727 		 * current firmware RSS command, retrieve them from the
4728 		 * Ingress Queue ID array and insert them into the command.
4729 		 */
4730 		while (nq > 0) {
4731 			/*
4732 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
4733 			 * around the Ingress Queue ID array if necessary) and
4734 			 * insert them into the firmware RSS command at the
4735 			 * current 3-tuple position within the commad.
4736 			 */
4737 			u16 qbuf[3];
4738 			u16 *qbp = qbuf;
4739 			int nqbuf = min(3, nq);
4740 
4741 			nq -= nqbuf;
4742 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
4743 			while (nqbuf && nq_packed < 32) {
4744 				nqbuf--;
4745 				nq_packed++;
4746 				*qbp++ = *rsp++;
4747 				if (rsp >= rsp_end)
4748 					rsp = rspq;
4749 			}
4750 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
4751 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
4752 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
4753 		}
4754 
4755 		/*
4756 		 * Send this portion of the RRS table update to the firmware;
4757 		 * bail out on any errors.
4758 		 */
4759 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4760 		if (ret)
4761 			return ret;
4762 	}
4763 	return 0;
4764 }
4765 
4766 /**
4767  *	t4_config_glbl_rss - configure the global RSS mode
4768  *	@adapter: the adapter
4769  *	@mbox: mbox to use for the FW command
4770  *	@mode: global RSS mode
4771  *	@flags: mode-specific flags
4772  *
4773  *	Sets the global RSS mode.
4774  */
4775 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4776 		       unsigned int flags)
4777 {
4778 	struct fw_rss_glb_config_cmd c;
4779 
4780 	memset(&c, 0, sizeof(c));
4781 	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
4782 				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
4783 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4784 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4785 		c.u.manual.mode_pkd =
4786 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4787 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4788 		c.u.basicvirtual.mode_keymode =
4789 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4790 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4791 	} else
4792 		return -EINVAL;
4793 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4794 }
4795 
4796 /**
4797  *	t4_config_vi_rss - configure per VI RSS settings
4798  *	@adapter: the adapter
4799  *	@mbox: mbox to use for the FW command
4800  *	@viid: the VI id
4801  *	@flags: RSS flags
4802  *	@defq: id of the default RSS queue for the VI.
4803  *	@skeyidx: RSS secret key table index for non-global mode
4804  *	@skey: RSS vf_scramble key for VI.
4805  *
4806  *	Configures VI-specific RSS properties.
4807  */
4808 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4809 		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
4810 		     unsigned int skey)
4811 {
4812 	struct fw_rss_vi_config_cmd c;
4813 
4814 	memset(&c, 0, sizeof(c));
4815 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
4816 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4817 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
4818 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4819 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4820 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
4821 	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
4822 					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
4823 	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
4824 
4825 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4826 }
4827 
4828 /* Read an RSS table row */
4829 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4830 {
4831 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
4832 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
4833 				   5, 0, val);
4834 }
4835 
4836 /**
4837  *	t4_read_rss - read the contents of the RSS mapping table
4838  *	@adapter: the adapter
4839  *	@map: holds the contents of the RSS mapping table
4840  *
4841  *	Reads the contents of the RSS hash->queue mapping table.
4842  */
4843 int t4_read_rss(struct adapter *adapter, u16 *map)
4844 {
4845 	u32 val;
4846 	int i, ret;
4847 
4848 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4849 		ret = rd_rss_row(adapter, i, &val);
4850 		if (ret)
4851 			return ret;
4852 		*map++ = G_LKPTBLQUEUE0(val);
4853 		*map++ = G_LKPTBLQUEUE1(val);
4854 	}
4855 	return 0;
4856 }
4857 
4858 /**
4859  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
4860  * @adap: the adapter
4861  * @cmd: TP fw ldst address space type
4862  * @vals: where the indirect register values are stored/written
4863  * @nregs: how many indirect registers to read/write
4864  * @start_idx: index of first indirect register to read/write
4865  * @rw: Read (1) or Write (0)
4866  * @sleep_ok: if true we may sleep while awaiting command completion
4867  *
4868  * Access TP indirect registers through LDST
4869  **/
4870 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
4871 			    unsigned int nregs, unsigned int start_index,
4872 			    unsigned int rw, bool sleep_ok)
4873 {
4874 	int ret = 0;
4875 	unsigned int i;
4876 	struct fw_ldst_cmd c;
4877 
4878 	for (i = 0; i < nregs; i++) {
4879 		memset(&c, 0, sizeof(c));
4880 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
4881 						F_FW_CMD_REQUEST |
4882 						(rw ? F_FW_CMD_READ :
4883 						      F_FW_CMD_WRITE) |
4884 						V_FW_LDST_CMD_ADDRSPACE(cmd));
4885 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4886 
4887 		c.u.addrval.addr = cpu_to_be32(start_index + i);
4888 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4889 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
4890 				      sleep_ok);
4891 		if (ret)
4892 			return ret;
4893 
4894 		if (rw)
4895 			vals[i] = be32_to_cpu(c.u.addrval.val);
4896 	}
4897 	return 0;
4898 }
4899 
4900 /**
4901  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
4902  * @adap: the adapter
4903  * @reg_addr: Address Register
4904  * @reg_data: Data register
4905  * @buff: where the indirect register values are stored/written
4906  * @nregs: how many indirect registers to read/write
4907  * @start_index: index of first indirect register to read/write
4908  * @rw: READ(1) or WRITE(0)
4909  * @sleep_ok: if true we may sleep while awaiting command completion
4910  *
4911  * Read/Write TP indirect registers through LDST if possible.
4912  * Else, use backdoor access
4913  **/
4914 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
4915 			      u32 *buff, u32 nregs, u32 start_index, int rw,
4916 			      bool sleep_ok)
4917 {
4918 	int rc = -EINVAL;
4919 	int cmd;
4920 
4921 	switch (reg_addr) {
4922 	case A_TP_PIO_ADDR:
4923 		cmd = FW_LDST_ADDRSPC_TP_PIO;
4924 		break;
4925 	case A_TP_TM_PIO_ADDR:
4926 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
4927 		break;
4928 	case A_TP_MIB_INDEX:
4929 		cmd = FW_LDST_ADDRSPC_TP_MIB;
4930 		break;
4931 	default:
4932 		goto indirect_access;
4933 	}
4934 
4935 	if (t4_use_ldst(adap))
4936 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
4937 				      sleep_ok);
4938 
4939 indirect_access:
4940 
4941 	if (rc) {
4942 		if (rw)
4943 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
4944 					 start_index);
4945 		else
4946 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
4947 					  start_index);
4948 	}
4949 }
4950 
4951 /**
4952  * t4_tp_pio_read - Read TP PIO registers
4953  * @adap: the adapter
4954  * @buff: where the indirect register values are written
4955  * @nregs: how many indirect registers to read
4956  * @start_index: index of first indirect register to read
4957  * @sleep_ok: if true we may sleep while awaiting command completion
4958  *
4959  * Read TP PIO Registers
4960  **/
4961 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
4962 		    u32 start_index, bool sleep_ok)
4963 {
4964 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
4965 			  start_index, 1, sleep_ok);
4966 }
4967 
4968 /**
4969  * t4_tp_pio_write - Write TP PIO registers
4970  * @adap: the adapter
4971  * @buff: where the indirect register values are stored
4972  * @nregs: how many indirect registers to write
4973  * @start_index: index of first indirect register to write
4974  * @sleep_ok: if true we may sleep while awaiting command completion
4975  *
4976  * Write TP PIO Registers
4977  **/
4978 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
4979 		     u32 start_index, bool sleep_ok)
4980 {
4981 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4982 	    __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
4983 }
4984 
4985 /**
4986  * t4_tp_tm_pio_read - Read TP TM PIO registers
4987  * @adap: the adapter
4988  * @buff: where the indirect register values are written
4989  * @nregs: how many indirect registers to read
4990  * @start_index: index of first indirect register to read
4991  * @sleep_ok: if true we may sleep while awaiting command completion
4992  *
4993  * Read TP TM PIO Registers
4994  **/
4995 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
4996 		       u32 start_index, bool sleep_ok)
4997 {
4998 	t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
4999 			  nregs, start_index, 1, sleep_ok);
5000 }
5001 
5002 /**
5003  * t4_tp_mib_read - Read TP MIB registers
5004  * @adap: the adapter
5005  * @buff: where the indirect register values are written
5006  * @nregs: how many indirect registers to read
5007  * @start_index: index of first indirect register to read
5008  * @sleep_ok: if true we may sleep while awaiting command completion
5009  *
5010  * Read TP MIB Registers
5011  **/
5012 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5013 		    bool sleep_ok)
5014 {
5015 	t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5016 			  start_index, 1, sleep_ok);
5017 }
5018 
5019 /**
5020  *	t4_read_rss_key - read the global RSS key
5021  *	@adap: the adapter
5022  *	@key: 10-entry array holding the 320-bit RSS key
5023  * 	@sleep_ok: if true we may sleep while awaiting command completion
5024  *
5025  *	Reads the global 320-bit RSS key.
5026  */
5027 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5028 {
5029 	t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5030 }
5031 
5032 /**
5033  *	t4_write_rss_key - program one of the RSS keys
5034  *	@adap: the adapter
5035  *	@key: 10-entry array holding the 320-bit RSS key
5036  *	@idx: which RSS key to write
5037  * 	@sleep_ok: if true we may sleep while awaiting command completion
5038  *
5039  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5040  *	0..15 the corresponding entry in the RSS key table is written,
5041  *	otherwise the global RSS key is written.
5042  */
5043 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5044 		      bool sleep_ok)
5045 {
5046 	u8 rss_key_addr_cnt = 16;
5047 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5048 
5049 	/*
5050 	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5051 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5052 	 * as index[5:4](upper 2) into key table
5053 	 */
5054 	if ((chip_id(adap) > CHELSIO_T5) &&
5055 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5056 		rss_key_addr_cnt = 32;
5057 
5058 	t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5059 
5060 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5061 		if (rss_key_addr_cnt > 16)
5062 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5063 				     vrt | V_KEYWRADDRX(idx >> 4) |
5064 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
5065 		else
5066 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5067 				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5068 	}
5069 }
5070 
5071 /**
5072  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5073  *	@adapter: the adapter
5074  *	@index: the entry in the PF RSS table to read
5075  *	@valp: where to store the returned value
5076  * 	@sleep_ok: if true we may sleep while awaiting command completion
5077  *
5078  *	Reads the PF RSS Configuration Table at the specified index and returns
5079  *	the value found there.
5080  */
5081 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5082 			   u32 *valp, bool sleep_ok)
5083 {
5084 	t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5085 }
5086 
5087 /**
5088  *	t4_write_rss_pf_config - write PF RSS Configuration Table
5089  *	@adapter: the adapter
5090  *	@index: the entry in the VF RSS table to read
5091  *	@val: the value to store
5092  * 	@sleep_ok: if true we may sleep while awaiting command completion
5093  *
5094  *	Writes the PF RSS Configuration Table at the specified index with the
5095  *	specified value.
5096  */
5097 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5098 			    u32 val, bool sleep_ok)
5099 {
5100 	t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5101 			sleep_ok);
5102 }
5103 
5104 /**
5105  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5106  *	@adapter: the adapter
5107  *	@index: the entry in the VF RSS table to read
5108  *	@vfl: where to store the returned VFL
5109  *	@vfh: where to store the returned VFH
5110  * 	@sleep_ok: if true we may sleep while awaiting command completion
5111  *
5112  *	Reads the VF RSS Configuration Table at the specified index and returns
5113  *	the (VFL, VFH) values found there.
5114  */
5115 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5116 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5117 {
5118 	u32 vrt, mask, data;
5119 
5120 	if (chip_id(adapter) <= CHELSIO_T5) {
5121 		mask = V_VFWRADDR(M_VFWRADDR);
5122 		data = V_VFWRADDR(index);
5123 	} else {
5124 		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5125 		 data = V_T6_VFWRADDR(index);
5126 	}
5127 	/*
5128 	 * Request that the index'th VF Table values be read into VFL/VFH.
5129 	 */
5130 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5131 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5132 	vrt |= data | F_VFRDEN;
5133 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5134 
5135 	/*
5136 	 * Grab the VFL/VFH values ...
5137 	 */
5138 	t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5139 	t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5140 }
5141 
5142 /**
5143  *	t4_write_rss_vf_config - write VF RSS Configuration Table
5144  *
5145  *	@adapter: the adapter
5146  *	@index: the entry in the VF RSS table to write
5147  *	@vfl: the VFL to store
5148  *	@vfh: the VFH to store
5149  *
5150  *	Writes the VF RSS Configuration Table at the specified index with the
5151  *	specified (VFL, VFH) values.
5152  */
5153 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
5154 			    u32 vfl, u32 vfh, bool sleep_ok)
5155 {
5156 	u32 vrt, mask, data;
5157 
5158 	if (chip_id(adapter) <= CHELSIO_T5) {
5159 		mask = V_VFWRADDR(M_VFWRADDR);
5160 		data = V_VFWRADDR(index);
5161 	} else {
5162 		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5163 		data = V_T6_VFWRADDR(index);
5164 	}
5165 
5166 	/*
5167 	 * Load up VFL/VFH with the values to be written ...
5168 	 */
5169 	t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5170 	t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5171 
5172 	/*
5173 	 * Write the VFL/VFH into the VF Table at index'th location.
5174 	 */
5175 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5176 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5177 	vrt |= data | F_VFRDEN;
5178 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5179 }
5180 
5181 /**
5182  *	t4_read_rss_pf_map - read PF RSS Map
5183  *	@adapter: the adapter
5184  * 	@sleep_ok: if true we may sleep while awaiting command completion
5185  *
5186  *	Reads the PF RSS Map register and returns its value.
5187  */
5188 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5189 {
5190 	u32 pfmap;
5191 
5192 	t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5193 
5194 	return pfmap;
5195 }
5196 
5197 /**
5198  *	t4_write_rss_pf_map - write PF RSS Map
5199  *	@adapter: the adapter
5200  *	@pfmap: PF RSS Map value
5201  *
5202  *	Writes the specified value to the PF RSS Map register.
5203  */
5204 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
5205 {
5206 	t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5207 }
5208 
5209 /**
5210  *	t4_read_rss_pf_mask - read PF RSS Mask
5211  *	@adapter: the adapter
5212  * 	@sleep_ok: if true we may sleep while awaiting command completion
5213  *
5214  *	Reads the PF RSS Mask register and returns its value.
5215  */
5216 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5217 {
5218 	u32 pfmask;
5219 
5220 	t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
5221 
5222 	return pfmask;
5223 }
5224 
5225 /**
5226  *	t4_write_rss_pf_mask - write PF RSS Mask
5227  *	@adapter: the adapter
5228  *	@pfmask: PF RSS Mask value
5229  *
5230  *	Writes the specified value to the PF RSS Mask register.
5231  */
5232 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
5233 {
5234 	t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
5235 }
5236 
5237 /**
5238  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5239  *	@adap: the adapter
5240  *	@v4: holds the TCP/IP counter values
5241  *	@v6: holds the TCP/IPv6 counter values
5242  * 	@sleep_ok: if true we may sleep while awaiting command completion
5243  *
5244  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5245  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5246  */
5247 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5248 			 struct tp_tcp_stats *v6, bool sleep_ok)
5249 {
5250 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
5251 
5252 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
5253 #define STAT(x)     val[STAT_IDX(x)]
5254 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5255 
5256 	if (v4) {
5257 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5258 			       A_TP_MIB_TCP_OUT_RST, sleep_ok);
5259 		v4->tcp_out_rsts = STAT(OUT_RST);
5260 		v4->tcp_in_segs  = STAT64(IN_SEG);
5261 		v4->tcp_out_segs = STAT64(OUT_SEG);
5262 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5263 	}
5264 	if (v6) {
5265 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5266 			       A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
5267 		v6->tcp_out_rsts = STAT(OUT_RST);
5268 		v6->tcp_in_segs  = STAT64(IN_SEG);
5269 		v6->tcp_out_segs = STAT64(OUT_SEG);
5270 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5271 	}
5272 #undef STAT64
5273 #undef STAT
5274 #undef STAT_IDX
5275 }
5276 
5277 /**
5278  *	t4_tp_get_err_stats - read TP's error MIB counters
5279  *	@adap: the adapter
5280  *	@st: holds the counter values
5281  * 	@sleep_ok: if true we may sleep while awaiting command completion
5282  *
5283  *	Returns the values of TP's error counters.
5284  */
5285 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5286 			 bool sleep_ok)
5287 {
5288 	int nchan = adap->chip_params->nchan;
5289 
5290 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
5291 		       sleep_ok);
5292 
5293 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
5294 		       sleep_ok);
5295 
5296 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
5297 		       sleep_ok);
5298 
5299 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5300 		       A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
5301 
5302 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5303 		       A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
5304 
5305 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
5306 		       sleep_ok);
5307 
5308 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5309 		       A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
5310 
5311 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5312 		       A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
5313 
5314 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
5315 		       sleep_ok);
5316 }
5317 
5318 /**
5319  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
5320  *	@adap: the adapter
5321  *	@st: holds the counter values
5322  *
5323  *	Returns the values of TP's proxy counters.
5324  */
5325 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
5326     bool sleep_ok)
5327 {
5328 	int nchan = adap->chip_params->nchan;
5329 
5330 	t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
5331 }
5332 
5333 /**
5334  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5335  *	@adap: the adapter
5336  *	@st: holds the counter values
5337  * 	@sleep_ok: if true we may sleep while awaiting command completion
5338  *
5339  *	Returns the values of TP's CPL counters.
5340  */
5341 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5342 			 bool sleep_ok)
5343 {
5344 	int nchan = adap->chip_params->nchan;
5345 
5346 	t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
5347 
5348 	t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
5349 }
5350 
5351 /**
5352  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5353  *	@adap: the adapter
5354  *	@st: holds the counter values
5355  *
5356  *	Returns the values of TP's RDMA counters.
5357  */
5358 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5359 			  bool sleep_ok)
5360 {
5361 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
5362 		       sleep_ok);
5363 }
5364 
5365 /**
5366  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5367  *	@adap: the adapter
5368  *	@idx: the port index
5369  *	@st: holds the counter values
5370  * 	@sleep_ok: if true we may sleep while awaiting command completion
5371  *
5372  *	Returns the values of TP's FCoE counters for the selected port.
5373  */
5374 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5375 		       struct tp_fcoe_stats *st, bool sleep_ok)
5376 {
5377 	u32 val[2];
5378 
5379 	t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
5380 		       sleep_ok);
5381 
5382 	t4_tp_mib_read(adap, &st->frames_drop, 1,
5383 		       A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
5384 
5385 	t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
5386 		       sleep_ok);
5387 
5388 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5389 }
5390 
5391 /**
5392  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5393  *	@adap: the adapter
5394  *	@st: holds the counter values
5395  * 	@sleep_ok: if true we may sleep while awaiting command completion
5396  *
5397  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5398  */
5399 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5400 		      bool sleep_ok)
5401 {
5402 	u32 val[4];
5403 
5404 	t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
5405 
5406 	st->frames = val[0];
5407 	st->drops = val[1];
5408 	st->octets = ((u64)val[2] << 32) | val[3];
5409 }
5410 
5411 /**
5412  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5413  *	@adap: the adapter
5414  *	@mtus: where to store the MTU values
5415  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5416  *
5417  *	Reads the HW path MTU table.
5418  */
5419 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5420 {
5421 	u32 v;
5422 	int i;
5423 
5424 	for (i = 0; i < NMTUS; ++i) {
5425 		t4_write_reg(adap, A_TP_MTU_TABLE,
5426 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
5427 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
5428 		mtus[i] = G_MTUVALUE(v);
5429 		if (mtu_log)
5430 			mtu_log[i] = G_MTUWIDTH(v);
5431 	}
5432 }
5433 
5434 /**
5435  *	t4_read_cong_tbl - reads the congestion control table
5436  *	@adap: the adapter
5437  *	@incr: where to store the alpha values
5438  *
5439  *	Reads the additive increments programmed into the HW congestion
5440  *	control table.
5441  */
5442 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5443 {
5444 	unsigned int mtu, w;
5445 
5446 	for (mtu = 0; mtu < NMTUS; ++mtu)
5447 		for (w = 0; w < NCCTRL_WIN; ++w) {
5448 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
5449 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
5450 			incr[mtu][w] = (u16)t4_read_reg(adap,
5451 						A_TP_CCTRL_TABLE) & 0x1fff;
5452 		}
5453 }
5454 
5455 /**
5456  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5457  *	@adap: the adapter
5458  *	@addr: the indirect TP register address
5459  *	@mask: specifies the field within the register to modify
5460  *	@val: new value for the field
5461  *
5462  *	Sets a field of an indirect TP register to the given value.
5463  */
5464 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5465 			    unsigned int mask, unsigned int val)
5466 {
5467 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
5468 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
5469 	t4_write_reg(adap, A_TP_PIO_DATA, val);
5470 }
5471 
5472 /**
5473  *	init_cong_ctrl - initialize congestion control parameters
5474  *	@a: the alpha values for congestion control
5475  *	@b: the beta values for congestion control
5476  *
5477  *	Initialize the congestion control parameters.
5478  */
5479 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5480 {
5481 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5482 	a[9] = 2;
5483 	a[10] = 3;
5484 	a[11] = 4;
5485 	a[12] = 5;
5486 	a[13] = 6;
5487 	a[14] = 7;
5488 	a[15] = 8;
5489 	a[16] = 9;
5490 	a[17] = 10;
5491 	a[18] = 14;
5492 	a[19] = 17;
5493 	a[20] = 21;
5494 	a[21] = 25;
5495 	a[22] = 30;
5496 	a[23] = 35;
5497 	a[24] = 45;
5498 	a[25] = 60;
5499 	a[26] = 80;
5500 	a[27] = 100;
5501 	a[28] = 200;
5502 	a[29] = 300;
5503 	a[30] = 400;
5504 	a[31] = 500;
5505 
5506 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5507 	b[9] = b[10] = 1;
5508 	b[11] = b[12] = 2;
5509 	b[13] = b[14] = b[15] = b[16] = 3;
5510 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5511 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5512 	b[28] = b[29] = 6;
5513 	b[30] = b[31] = 7;
5514 }
5515 
5516 /* The minimum additive increment value for the congestion control table */
5517 #define CC_MIN_INCR 2U
5518 
5519 /**
5520  *	t4_load_mtus - write the MTU and congestion control HW tables
5521  *	@adap: the adapter
5522  *	@mtus: the values for the MTU table
5523  *	@alpha: the values for the congestion control alpha parameter
5524  *	@beta: the values for the congestion control beta parameter
5525  *
5526  *	Write the HW MTU table with the supplied MTUs and the high-speed
5527  *	congestion control table with the supplied alpha, beta, and MTUs.
5528  *	We write the two tables together because the additive increments
5529  *	depend on the MTUs.
5530  */
5531 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5532 		  const unsigned short *alpha, const unsigned short *beta)
5533 {
5534 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5535 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5536 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5537 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5538 	};
5539 
5540 	unsigned int i, w;
5541 
5542 	for (i = 0; i < NMTUS; ++i) {
5543 		unsigned int mtu = mtus[i];
5544 		unsigned int log2 = fls(mtu);
5545 
5546 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5547 			log2--;
5548 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
5549 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
5550 
5551 		for (w = 0; w < NCCTRL_WIN; ++w) {
5552 			unsigned int inc;
5553 
5554 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5555 				  CC_MIN_INCR);
5556 
5557 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
5558 				     (w << 16) | (beta[w] << 13) | inc);
5559 		}
5560 	}
5561 }
5562 
5563 /**
5564  *	t4_set_pace_tbl - set the pace table
5565  *	@adap: the adapter
5566  *	@pace_vals: the pace values in microseconds
5567  *	@start: index of the first entry in the HW pace table to set
5568  *	@n: how many entries to set
5569  *
5570  *	Sets (a subset of the) HW pace table.
5571  */
5572 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
5573 		     unsigned int start, unsigned int n)
5574 {
5575 	unsigned int vals[NTX_SCHED], i;
5576 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
5577 
5578 	if (n > NTX_SCHED)
5579 	    return -ERANGE;
5580 
5581 	/* convert values from us to dack ticks, rounding to closest value */
5582 	for (i = 0; i < n; i++, pace_vals++) {
5583 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
5584 		if (vals[i] > 0x7ff)
5585 			return -ERANGE;
5586 		if (*pace_vals && vals[i] == 0)
5587 			return -ERANGE;
5588 	}
5589 	for (i = 0; i < n; i++, start++)
5590 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
5591 	return 0;
5592 }
5593 
5594 /**
5595  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
5596  *	@adap: the adapter
5597  *	@kbps: target rate in Kbps
5598  *	@sched: the scheduler index
5599  *
5600  *	Configure a Tx HW scheduler for the target rate.
5601  */
5602 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
5603 {
5604 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
5605 	unsigned int clk = adap->params.vpd.cclk * 1000;
5606 	unsigned int selected_cpt = 0, selected_bpt = 0;
5607 
5608 	if (kbps > 0) {
5609 		kbps *= 125;     /* -> bytes */
5610 		for (cpt = 1; cpt <= 255; cpt++) {
5611 			tps = clk / cpt;
5612 			bpt = (kbps + tps / 2) / tps;
5613 			if (bpt > 0 && bpt <= 255) {
5614 				v = bpt * tps;
5615 				delta = v >= kbps ? v - kbps : kbps - v;
5616 				if (delta < mindelta) {
5617 					mindelta = delta;
5618 					selected_cpt = cpt;
5619 					selected_bpt = bpt;
5620 				}
5621 			} else if (selected_cpt)
5622 				break;
5623 		}
5624 		if (!selected_cpt)
5625 			return -EINVAL;
5626 	}
5627 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
5628 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
5629 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5630 	if (sched & 1)
5631 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
5632 	else
5633 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
5634 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5635 	return 0;
5636 }
5637 
5638 /**
5639  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
5640  *	@adap: the adapter
5641  *	@sched: the scheduler index
5642  *	@ipg: the interpacket delay in tenths of nanoseconds
5643  *
5644  *	Set the interpacket delay for a HW packet rate scheduler.
5645  */
5646 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
5647 {
5648 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
5649 
5650 	/* convert ipg to nearest number of core clocks */
5651 	ipg *= core_ticks_per_usec(adap);
5652 	ipg = (ipg + 5000) / 10000;
5653 	if (ipg > M_TXTIMERSEPQ0)
5654 		return -EINVAL;
5655 
5656 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
5657 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5658 	if (sched & 1)
5659 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
5660 	else
5661 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
5662 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5663 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
5664 	return 0;
5665 }
5666 
5667 /*
5668  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5669  * clocks.  The formula is
5670  *
5671  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5672  *
5673  * which is equivalent to
5674  *
5675  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5676  */
5677 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5678 {
5679 	u64 v = bytes256 * adap->params.vpd.cclk;
5680 
5681 	return v * 62 + v / 2;
5682 }
5683 
5684 /**
5685  *	t4_get_chan_txrate - get the current per channel Tx rates
5686  *	@adap: the adapter
5687  *	@nic_rate: rates for NIC traffic
5688  *	@ofld_rate: rates for offloaded traffic
5689  *
5690  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5691  *	for each channel.
5692  */
5693 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5694 {
5695 	u32 v;
5696 
5697 	v = t4_read_reg(adap, A_TP_TX_TRATE);
5698 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
5699 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
5700 	if (adap->chip_params->nchan > 2) {
5701 		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
5702 		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
5703 	}
5704 
5705 	v = t4_read_reg(adap, A_TP_TX_ORATE);
5706 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
5707 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
5708 	if (adap->chip_params->nchan > 2) {
5709 		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
5710 		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
5711 	}
5712 }
5713 
5714 /**
5715  *	t4_set_trace_filter - configure one of the tracing filters
5716  *	@adap: the adapter
5717  *	@tp: the desired trace filter parameters
5718  *	@idx: which filter to configure
5719  *	@enable: whether to enable or disable the filter
5720  *
5721  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
5722  *	it indicates that the filter is already written in the register and it
5723  *	just needs to be enabled or disabled.
5724  */
5725 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5726     int idx, int enable)
5727 {
5728 	int i, ofst = idx * 4;
5729 	u32 data_reg, mask_reg, cfg;
5730 	u32 multitrc = F_TRCMULTIFILTER;
5731 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
5732 
5733 	if (idx < 0 || idx >= NTRACE)
5734 		return -EINVAL;
5735 
5736 	if (tp == NULL || !enable) {
5737 		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
5738 		    enable ? en : 0);
5739 		return 0;
5740 	}
5741 
5742 	/*
5743 	 * TODO - After T4 data book is updated, specify the exact
5744 	 * section below.
5745 	 *
5746 	 * See T4 data book - MPS section for a complete description
5747 	 * of the below if..else handling of A_MPS_TRC_CFG register
5748 	 * value.
5749 	 */
5750 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
5751 	if (cfg & F_TRCMULTIFILTER) {
5752 		/*
5753 		 * If multiple tracers are enabled, then maximum
5754 		 * capture size is 2.5KB (FIFO size of a single channel)
5755 		 * minus 2 flits for CPL_TRACE_PKT header.
5756 		 */
5757 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5758 			return -EINVAL;
5759 	} else {
5760 		/*
5761 		 * If multiple tracers are disabled, to avoid deadlocks
5762 		 * maximum packet capture size of 9600 bytes is recommended.
5763 		 * Also in this mode, only trace0 can be enabled and running.
5764 		 */
5765 		multitrc = 0;
5766 		if (tp->snap_len > 9600 || idx)
5767 			return -EINVAL;
5768 	}
5769 
5770 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
5771 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
5772 	    tp->min_len > M_TFMINPKTSIZE)
5773 		return -EINVAL;
5774 
5775 	/* stop the tracer we'll be changing */
5776 	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
5777 
5778 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
5779 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
5780 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
5781 
5782 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5783 		t4_write_reg(adap, data_reg, tp->data[i]);
5784 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5785 	}
5786 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
5787 		     V_TFCAPTUREMAX(tp->snap_len) |
5788 		     V_TFMINPKTSIZE(tp->min_len));
5789 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
5790 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
5791 		     (is_t4(adap) ?
5792 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
5793 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
5794 
5795 	return 0;
5796 }
5797 
5798 /**
5799  *	t4_get_trace_filter - query one of the tracing filters
5800  *	@adap: the adapter
5801  *	@tp: the current trace filter parameters
5802  *	@idx: which trace filter to query
5803  *	@enabled: non-zero if the filter is enabled
5804  *
5805  *	Returns the current settings of one of the HW tracing filters.
5806  */
5807 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5808 			 int *enabled)
5809 {
5810 	u32 ctla, ctlb;
5811 	int i, ofst = idx * 4;
5812 	u32 data_reg, mask_reg;
5813 
5814 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
5815 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
5816 
5817 	if (is_t4(adap)) {
5818 		*enabled = !!(ctla & F_TFEN);
5819 		tp->port =  G_TFPORT(ctla);
5820 		tp->invert = !!(ctla & F_TFINVERTMATCH);
5821 	} else {
5822 		*enabled = !!(ctla & F_T5_TFEN);
5823 		tp->port = G_T5_TFPORT(ctla);
5824 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
5825 	}
5826 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
5827 	tp->min_len = G_TFMINPKTSIZE(ctlb);
5828 	tp->skip_ofst = G_TFOFFSET(ctla);
5829 	tp->skip_len = G_TFLENGTH(ctla);
5830 
5831 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
5832 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
5833 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
5834 
5835 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5836 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5837 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5838 	}
5839 }
5840 
5841 /**
5842  *	t4_pmtx_get_stats - returns the HW stats from PMTX
5843  *	@adap: the adapter
5844  *	@cnt: where to store the count statistics
5845  *	@cycles: where to store the cycle statistics
5846  *
5847  *	Returns performance statistics from PMTX.
5848  */
5849 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5850 {
5851 	int i;
5852 	u32 data[2];
5853 
5854 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5855 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
5856 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
5857 		if (is_t4(adap))
5858 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
5859 		else {
5860 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
5861 					 A_PM_TX_DBG_DATA, data, 2,
5862 					 A_PM_TX_DBG_STAT_MSB);
5863 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5864 		}
5865 	}
5866 }
5867 
5868 /**
5869  *	t4_pmrx_get_stats - returns the HW stats from PMRX
5870  *	@adap: the adapter
5871  *	@cnt: where to store the count statistics
5872  *	@cycles: where to store the cycle statistics
5873  *
5874  *	Returns performance statistics from PMRX.
5875  */
5876 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5877 {
5878 	int i;
5879 	u32 data[2];
5880 
5881 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5882 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
5883 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
5884 		if (is_t4(adap)) {
5885 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
5886 		} else {
5887 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
5888 					 A_PM_RX_DBG_DATA, data, 2,
5889 					 A_PM_RX_DBG_STAT_MSB);
5890 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5891 		}
5892 	}
5893 }
5894 
5895 /**
5896  *	t4_get_mps_bg_map - return the buffer groups associated with a port
5897  *	@adap: the adapter
5898  *	@idx: the port index
5899  *
5900  *	Returns a bitmap indicating which MPS buffer groups are associated
5901  *	with the given port.  Bit i is set if buffer group i is used by the
5902  *	port.
5903  */
5904 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5905 {
5906 	u32 n;
5907 
5908 	if (adap->params.mps_bg_map)
5909 		return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
5910 
5911 	n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
5912 	if (n == 0)
5913 		return idx == 0 ? 0xf : 0;
5914 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
5915 		return idx < 2 ? (3 << (2 * idx)) : 0;
5916 	return 1 << idx;
5917 }
5918 
5919 /*
5920  * TP RX e-channels associated with the port.
5921  */
5922 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
5923 {
5924 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
5925 
5926 	if (n == 0)
5927 		return idx == 0 ? 0xf : 0;
5928 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
5929 		return idx < 2 ? (3 << (2 * idx)) : 0;
5930 	return 1 << idx;
5931 }
5932 
5933 /**
5934  *      t4_get_port_type_description - return Port Type string description
5935  *      @port_type: firmware Port Type enumeration
5936  */
5937 const char *t4_get_port_type_description(enum fw_port_type port_type)
5938 {
5939 	static const char *const port_type_description[] = {
5940 		"Fiber_XFI",
5941 		"Fiber_XAUI",
5942 		"BT_SGMII",
5943 		"BT_XFI",
5944 		"BT_XAUI",
5945 		"KX4",
5946 		"CX4",
5947 		"KX",
5948 		"KR",
5949 		"SFP",
5950 		"BP_AP",
5951 		"BP4_AP",
5952 		"QSFP_10G",
5953 		"QSA",
5954 		"QSFP",
5955 		"BP40_BA",
5956 		"KR4_100G",
5957 		"CR4_QSFP",
5958 		"CR_QSFP",
5959 		"CR2_QSFP",
5960 		"SFP28",
5961 		"KR_SFP28",
5962 	};
5963 
5964 	if (port_type < ARRAY_SIZE(port_type_description))
5965 		return port_type_description[port_type];
5966 	return "UNKNOWN";
5967 }
5968 
5969 /**
5970  *      t4_get_port_stats_offset - collect port stats relative to a previous
5971  *				   snapshot
5972  *      @adap: The adapter
5973  *      @idx: The port
5974  *      @stats: Current stats to fill
5975  *      @offset: Previous stats snapshot
5976  */
5977 void t4_get_port_stats_offset(struct adapter *adap, int idx,
5978 		struct port_stats *stats,
5979 		struct port_stats *offset)
5980 {
5981 	u64 *s, *o;
5982 	int i;
5983 
5984 	t4_get_port_stats(adap, idx, stats);
5985 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
5986 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
5987 			i++, s++, o++)
5988 		*s -= *o;
5989 }
5990 
5991 /**
5992  *	t4_get_port_stats - collect port statistics
5993  *	@adap: the adapter
5994  *	@idx: the port index
5995  *	@p: the stats structure to fill
5996  *
5997  *	Collect statistics related to the given port from HW.
5998  */
5999 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6000 {
6001 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6002 	u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6003 
6004 #define GET_STAT(name) \
6005 	t4_read_reg64(adap, \
6006 	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
6007 	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
6008 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6009 
6010 	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
6011 	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
6012 	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
6013 	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
6014 	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
6015 	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
6016 	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
6017 	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
6018 	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
6019 	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
6020 	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
6021 	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
6022 	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
6023 	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
6024 	p->tx_drop		= GET_STAT(TX_PORT_DROP);
6025 	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
6026 	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
6027 	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
6028 	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
6029 	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
6030 	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
6031 	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
6032 	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
6033 
6034 	if (chip_id(adap) >= CHELSIO_T5) {
6035 		if (stat_ctl & F_COUNTPAUSESTATTX) {
6036 			p->tx_frames -= p->tx_pause;
6037 			p->tx_octets -= p->tx_pause * 64;
6038 		}
6039 		if (stat_ctl & F_COUNTPAUSEMCTX)
6040 			p->tx_mcast_frames -= p->tx_pause;
6041 	}
6042 
6043 	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
6044 	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
6045 	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
6046 	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
6047 	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
6048 	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
6049 	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
6050 	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
6051 	p->rx_fcs_err		= GET_STAT(RX_PORT_CRC_ERROR);
6052 	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
6053 	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
6054 	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
6055 	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
6056 	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
6057 	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
6058 	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
6059 	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
6060 	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
6061 	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
6062 	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
6063 	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
6064 	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
6065 	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
6066 	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
6067 	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
6068 	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
6069 	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
6070 
6071 	if (chip_id(adap) >= CHELSIO_T5) {
6072 		if (stat_ctl & F_COUNTPAUSESTATRX) {
6073 			p->rx_frames -= p->rx_pause;
6074 			p->rx_octets -= p->rx_pause * 64;
6075 		}
6076 		if (stat_ctl & F_COUNTPAUSEMCRX)
6077 			p->rx_mcast_frames -= p->rx_pause;
6078 	}
6079 
6080 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6081 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6082 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6083 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6084 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6085 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6086 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6087 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6088 
6089 #undef GET_STAT
6090 #undef GET_STAT_COM
6091 }
6092 
6093 /**
6094  *	t4_get_lb_stats - collect loopback port statistics
6095  *	@adap: the adapter
6096  *	@idx: the loopback port index
6097  *	@p: the stats structure to fill
6098  *
6099  *	Return HW statistics for the given loopback port.
6100  */
6101 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6102 {
6103 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6104 
6105 #define GET_STAT(name) \
6106 	t4_read_reg64(adap, \
6107 	(is_t4(adap) ? \
6108 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
6109 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
6110 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6111 
6112 	p->octets	= GET_STAT(BYTES);
6113 	p->frames	= GET_STAT(FRAMES);
6114 	p->bcast_frames	= GET_STAT(BCAST);
6115 	p->mcast_frames	= GET_STAT(MCAST);
6116 	p->ucast_frames	= GET_STAT(UCAST);
6117 	p->error_frames	= GET_STAT(ERROR);
6118 
6119 	p->frames_64		= GET_STAT(64B);
6120 	p->frames_65_127	= GET_STAT(65B_127B);
6121 	p->frames_128_255	= GET_STAT(128B_255B);
6122 	p->frames_256_511	= GET_STAT(256B_511B);
6123 	p->frames_512_1023	= GET_STAT(512B_1023B);
6124 	p->frames_1024_1518	= GET_STAT(1024B_1518B);
6125 	p->frames_1519_max	= GET_STAT(1519B_MAX);
6126 	p->drop			= GET_STAT(DROP_FRAMES);
6127 
6128 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6129 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6130 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6131 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6132 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6133 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6134 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6135 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6136 
6137 #undef GET_STAT
6138 #undef GET_STAT_COM
6139 }
6140 
6141 /**
6142  *	t4_wol_magic_enable - enable/disable magic packet WoL
6143  *	@adap: the adapter
6144  *	@port: the physical port index
6145  *	@addr: MAC address expected in magic packets, %NULL to disable
6146  *
6147  *	Enables/disables magic packet wake-on-LAN for the selected port.
6148  */
6149 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
6150 			 const u8 *addr)
6151 {
6152 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
6153 
6154 	if (is_t4(adap)) {
6155 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
6156 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
6157 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6158 	} else {
6159 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
6160 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
6161 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6162 	}
6163 
6164 	if (addr) {
6165 		t4_write_reg(adap, mag_id_reg_l,
6166 			     (addr[2] << 24) | (addr[3] << 16) |
6167 			     (addr[4] << 8) | addr[5]);
6168 		t4_write_reg(adap, mag_id_reg_h,
6169 			     (addr[0] << 8) | addr[1]);
6170 	}
6171 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
6172 			 V_MAGICEN(addr != NULL));
6173 }
6174 
6175 /**
6176  *	t4_wol_pat_enable - enable/disable pattern-based WoL
6177  *	@adap: the adapter
6178  *	@port: the physical port index
6179  *	@map: bitmap of which HW pattern filters to set
6180  *	@mask0: byte mask for bytes 0-63 of a packet
6181  *	@mask1: byte mask for bytes 64-127 of a packet
6182  *	@crc: Ethernet CRC for selected bytes
6183  *	@enable: enable/disable switch
6184  *
6185  *	Sets the pattern filters indicated in @map to mask out the bytes
6186  *	specified in @mask0/@mask1 in received packets and compare the CRC of
6187  *	the resulting packet against @crc.  If @enable is %true pattern-based
6188  *	WoL is enabled, otherwise disabled.
6189  */
6190 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
6191 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
6192 {
6193 	int i;
6194 	u32 port_cfg_reg;
6195 
6196 	if (is_t4(adap))
6197 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6198 	else
6199 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6200 
6201 	if (!enable) {
6202 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
6203 		return 0;
6204 	}
6205 	if (map > 0xff)
6206 		return -EINVAL;
6207 
6208 #define EPIO_REG(name) \
6209 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
6210 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
6211 
6212 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
6213 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
6214 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
6215 
6216 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
6217 		if (!(map & 1))
6218 			continue;
6219 
6220 		/* write byte masks */
6221 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
6222 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
6223 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6224 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6225 			return -ETIMEDOUT;
6226 
6227 		/* write CRC */
6228 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
6229 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
6230 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6231 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6232 			return -ETIMEDOUT;
6233 	}
6234 #undef EPIO_REG
6235 
6236 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
6237 	return 0;
6238 }
6239 
6240 /*     t4_mk_filtdelwr - create a delete filter WR
6241  *     @ftid: the filter ID
6242  *     @wr: the filter work request to populate
6243  *     @qid: ingress queue to receive the delete notification
6244  *
6245  *     Creates a filter work request to delete the supplied filter.  If @qid is
6246  *     negative the delete notification is suppressed.
6247  */
6248 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6249 {
6250 	memset(wr, 0, sizeof(*wr));
6251 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
6252 	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
6253 	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
6254 				    V_FW_FILTER_WR_NOREPLY(qid < 0));
6255 	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
6256 	if (qid >= 0)
6257 		wr->rx_chan_rx_rpl_iq =
6258 				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
6259 }
6260 
6261 #define INIT_CMD(var, cmd, rd_wr) do { \
6262 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
6263 					F_FW_CMD_REQUEST | \
6264 					F_FW_CMD_##rd_wr); \
6265 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6266 } while (0)
6267 
6268 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6269 			  u32 addr, u32 val)
6270 {
6271 	u32 ldst_addrspace;
6272 	struct fw_ldst_cmd c;
6273 
6274 	memset(&c, 0, sizeof(c));
6275 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
6276 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6277 					F_FW_CMD_REQUEST |
6278 					F_FW_CMD_WRITE |
6279 					ldst_addrspace);
6280 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6281 	c.u.addrval.addr = cpu_to_be32(addr);
6282 	c.u.addrval.val = cpu_to_be32(val);
6283 
6284 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6285 }
6286 
6287 /**
6288  *	t4_mdio_rd - read a PHY register through MDIO
6289  *	@adap: the adapter
6290  *	@mbox: mailbox to use for the FW command
6291  *	@phy_addr: the PHY address
6292  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6293  *	@reg: the register to read
6294  *	@valp: where to store the value
6295  *
6296  *	Issues a FW command through the given mailbox to read a PHY register.
6297  */
6298 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6299 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
6300 {
6301 	int ret;
6302 	u32 ldst_addrspace;
6303 	struct fw_ldst_cmd c;
6304 
6305 	memset(&c, 0, sizeof(c));
6306 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6307 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6308 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6309 					ldst_addrspace);
6310 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6311 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6312 					 V_FW_LDST_CMD_MMD(mmd));
6313 	c.u.mdio.raddr = cpu_to_be16(reg);
6314 
6315 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6316 	if (ret == 0)
6317 		*valp = be16_to_cpu(c.u.mdio.rval);
6318 	return ret;
6319 }
6320 
6321 /**
6322  *	t4_mdio_wr - write a PHY register through MDIO
6323  *	@adap: the adapter
6324  *	@mbox: mailbox to use for the FW command
6325  *	@phy_addr: the PHY address
6326  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6327  *	@reg: the register to write
6328  *	@valp: value to write
6329  *
6330  *	Issues a FW command through the given mailbox to write a PHY register.
6331  */
6332 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6333 	       unsigned int mmd, unsigned int reg, unsigned int val)
6334 {
6335 	u32 ldst_addrspace;
6336 	struct fw_ldst_cmd c;
6337 
6338 	memset(&c, 0, sizeof(c));
6339 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6340 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6341 					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6342 					ldst_addrspace);
6343 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6344 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6345 					 V_FW_LDST_CMD_MMD(mmd));
6346 	c.u.mdio.raddr = cpu_to_be16(reg);
6347 	c.u.mdio.rval = cpu_to_be16(val);
6348 
6349 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6350 }
6351 
6352 /**
6353  *
6354  *	t4_sge_decode_idma_state - decode the idma state
6355  *	@adap: the adapter
6356  *	@state: the state idma is stuck in
6357  */
6358 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6359 {
6360 	static const char * const t4_decode[] = {
6361 		"IDMA_IDLE",
6362 		"IDMA_PUSH_MORE_CPL_FIFO",
6363 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6364 		"Not used",
6365 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6366 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6367 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6368 		"IDMA_SEND_FIFO_TO_IMSG",
6369 		"IDMA_FL_REQ_DATA_FL_PREP",
6370 		"IDMA_FL_REQ_DATA_FL",
6371 		"IDMA_FL_DROP",
6372 		"IDMA_FL_H_REQ_HEADER_FL",
6373 		"IDMA_FL_H_SEND_PCIEHDR",
6374 		"IDMA_FL_H_PUSH_CPL_FIFO",
6375 		"IDMA_FL_H_SEND_CPL",
6376 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6377 		"IDMA_FL_H_SEND_IP_HDR",
6378 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6379 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6380 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6381 		"IDMA_FL_D_SEND_PCIEHDR",
6382 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6383 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6384 		"IDMA_FL_SEND_PCIEHDR",
6385 		"IDMA_FL_PUSH_CPL_FIFO",
6386 		"IDMA_FL_SEND_CPL",
6387 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6388 		"IDMA_FL_SEND_PAYLOAD",
6389 		"IDMA_FL_REQ_NEXT_DATA_FL",
6390 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6391 		"IDMA_FL_SEND_PADDING",
6392 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6393 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6394 		"IDMA_FL_REQ_DATAFL_DONE",
6395 		"IDMA_FL_REQ_HEADERFL_DONE",
6396 	};
6397 	static const char * const t5_decode[] = {
6398 		"IDMA_IDLE",
6399 		"IDMA_ALMOST_IDLE",
6400 		"IDMA_PUSH_MORE_CPL_FIFO",
6401 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6402 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6403 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6404 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6405 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6406 		"IDMA_SEND_FIFO_TO_IMSG",
6407 		"IDMA_FL_REQ_DATA_FL",
6408 		"IDMA_FL_DROP",
6409 		"IDMA_FL_DROP_SEND_INC",
6410 		"IDMA_FL_H_REQ_HEADER_FL",
6411 		"IDMA_FL_H_SEND_PCIEHDR",
6412 		"IDMA_FL_H_PUSH_CPL_FIFO",
6413 		"IDMA_FL_H_SEND_CPL",
6414 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6415 		"IDMA_FL_H_SEND_IP_HDR",
6416 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6417 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6418 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6419 		"IDMA_FL_D_SEND_PCIEHDR",
6420 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6421 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6422 		"IDMA_FL_SEND_PCIEHDR",
6423 		"IDMA_FL_PUSH_CPL_FIFO",
6424 		"IDMA_FL_SEND_CPL",
6425 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6426 		"IDMA_FL_SEND_PAYLOAD",
6427 		"IDMA_FL_REQ_NEXT_DATA_FL",
6428 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6429 		"IDMA_FL_SEND_PADDING",
6430 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6431 	};
6432 	static const char * const t6_decode[] = {
6433 		"IDMA_IDLE",
6434 		"IDMA_PUSH_MORE_CPL_FIFO",
6435 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6436 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6437 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6438 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6439 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6440 		"IDMA_FL_REQ_DATA_FL",
6441 		"IDMA_FL_DROP",
6442 		"IDMA_FL_DROP_SEND_INC",
6443 		"IDMA_FL_H_REQ_HEADER_FL",
6444 		"IDMA_FL_H_SEND_PCIEHDR",
6445 		"IDMA_FL_H_PUSH_CPL_FIFO",
6446 		"IDMA_FL_H_SEND_CPL",
6447 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6448 		"IDMA_FL_H_SEND_IP_HDR",
6449 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6450 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6451 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6452 		"IDMA_FL_D_SEND_PCIEHDR",
6453 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6454 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6455 		"IDMA_FL_SEND_PCIEHDR",
6456 		"IDMA_FL_PUSH_CPL_FIFO",
6457 		"IDMA_FL_SEND_CPL",
6458 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6459 		"IDMA_FL_SEND_PAYLOAD",
6460 		"IDMA_FL_REQ_NEXT_DATA_FL",
6461 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6462 		"IDMA_FL_SEND_PADDING",
6463 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6464 	};
6465 	static const u32 sge_regs[] = {
6466 		A_SGE_DEBUG_DATA_LOW_INDEX_2,
6467 		A_SGE_DEBUG_DATA_LOW_INDEX_3,
6468 		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
6469 	};
6470 	const char * const *sge_idma_decode;
6471 	int sge_idma_decode_nstates;
6472 	int i;
6473 	unsigned int chip_version = chip_id(adapter);
6474 
6475 	/* Select the right set of decode strings to dump depending on the
6476 	 * adapter chip type.
6477 	 */
6478 	switch (chip_version) {
6479 	case CHELSIO_T4:
6480 		sge_idma_decode = (const char * const *)t4_decode;
6481 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6482 		break;
6483 
6484 	case CHELSIO_T5:
6485 		sge_idma_decode = (const char * const *)t5_decode;
6486 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6487 		break;
6488 
6489 	case CHELSIO_T6:
6490 		sge_idma_decode = (const char * const *)t6_decode;
6491 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6492 		break;
6493 
6494 	default:
6495 		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
6496 		return;
6497 	}
6498 
6499 	if (state < sge_idma_decode_nstates)
6500 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6501 	else
6502 		CH_WARN(adapter, "idma state %d unknown\n", state);
6503 
6504 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6505 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6506 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6507 }
6508 
6509 /**
6510  *      t4_sge_ctxt_flush - flush the SGE context cache
6511  *      @adap: the adapter
6512  *      @mbox: mailbox to use for the FW command
6513  *
6514  *      Issues a FW command through the given mailbox to flush the
6515  *      SGE context cache.
6516  */
6517 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
6518 {
6519 	int ret;
6520 	u32 ldst_addrspace;
6521 	struct fw_ldst_cmd c;
6522 
6523 	memset(&c, 0, sizeof(c));
6524 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
6525 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6526 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6527 					ldst_addrspace);
6528 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6529 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
6530 
6531 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6532 	return ret;
6533 }
6534 
6535 /**
6536  *      t4_fw_hello - establish communication with FW
6537  *      @adap: the adapter
6538  *      @mbox: mailbox to use for the FW command
6539  *      @evt_mbox: mailbox to receive async FW events
6540  *      @master: specifies the caller's willingness to be the device master
6541  *	@state: returns the current device state (if non-NULL)
6542  *
6543  *	Issues a command to establish communication with FW.  Returns either
6544  *	an error (negative integer) or the mailbox of the Master PF.
6545  */
6546 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6547 		enum dev_master master, enum dev_state *state)
6548 {
6549 	int ret;
6550 	struct fw_hello_cmd c;
6551 	u32 v;
6552 	unsigned int master_mbox;
6553 	int retries = FW_CMD_HELLO_RETRIES;
6554 
6555 retry:
6556 	memset(&c, 0, sizeof(c));
6557 	INIT_CMD(c, HELLO, WRITE);
6558 	c.err_to_clearinit = cpu_to_be32(
6559 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
6560 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
6561 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
6562 					mbox : M_FW_HELLO_CMD_MBMASTER) |
6563 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
6564 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
6565 		F_FW_HELLO_CMD_CLEARINIT);
6566 
6567 	/*
6568 	 * Issue the HELLO command to the firmware.  If it's not successful
6569 	 * but indicates that we got a "busy" or "timeout" condition, retry
6570 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6571 	 * retry limit, check to see if the firmware left us any error
6572 	 * information and report that if so ...
6573 	 */
6574 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6575 	if (ret != FW_SUCCESS) {
6576 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6577 			goto retry;
6578 		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
6579 			t4_report_fw_error(adap);
6580 		return ret;
6581 	}
6582 
6583 	v = be32_to_cpu(c.err_to_clearinit);
6584 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
6585 	if (state) {
6586 		if (v & F_FW_HELLO_CMD_ERR)
6587 			*state = DEV_STATE_ERR;
6588 		else if (v & F_FW_HELLO_CMD_INIT)
6589 			*state = DEV_STATE_INIT;
6590 		else
6591 			*state = DEV_STATE_UNINIT;
6592 	}
6593 
6594 	/*
6595 	 * If we're not the Master PF then we need to wait around for the
6596 	 * Master PF Driver to finish setting up the adapter.
6597 	 *
6598 	 * Note that we also do this wait if we're a non-Master-capable PF and
6599 	 * there is no current Master PF; a Master PF may show up momentarily
6600 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6601 	 * OS loads lots of different drivers rapidly at the same time).  In
6602 	 * this case, the Master PF returned by the firmware will be
6603 	 * M_PCIE_FW_MASTER so the test below will work ...
6604 	 */
6605 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
6606 	    master_mbox != mbox) {
6607 		int waiting = FW_CMD_HELLO_TIMEOUT;
6608 
6609 		/*
6610 		 * Wait for the firmware to either indicate an error or
6611 		 * initialized state.  If we see either of these we bail out
6612 		 * and report the issue to the caller.  If we exhaust the
6613 		 * "hello timeout" and we haven't exhausted our retries, try
6614 		 * again.  Otherwise bail with a timeout error.
6615 		 */
6616 		for (;;) {
6617 			u32 pcie_fw;
6618 
6619 			msleep(50);
6620 			waiting -= 50;
6621 
6622 			/*
6623 			 * If neither Error nor Initialialized are indicated
6624 			 * by the firmware keep waiting till we exhaust our
6625 			 * timeout ... and then retry if we haven't exhausted
6626 			 * our retries ...
6627 			 */
6628 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
6629 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
6630 				if (waiting <= 0) {
6631 					if (retries-- > 0)
6632 						goto retry;
6633 
6634 					return -ETIMEDOUT;
6635 				}
6636 				continue;
6637 			}
6638 
6639 			/*
6640 			 * We either have an Error or Initialized condition
6641 			 * report errors preferentially.
6642 			 */
6643 			if (state) {
6644 				if (pcie_fw & F_PCIE_FW_ERR)
6645 					*state = DEV_STATE_ERR;
6646 				else if (pcie_fw & F_PCIE_FW_INIT)
6647 					*state = DEV_STATE_INIT;
6648 			}
6649 
6650 			/*
6651 			 * If we arrived before a Master PF was selected and
6652 			 * there's not a valid Master PF, grab its identity
6653 			 * for our caller.
6654 			 */
6655 			if (master_mbox == M_PCIE_FW_MASTER &&
6656 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
6657 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
6658 			break;
6659 		}
6660 	}
6661 
6662 	return master_mbox;
6663 }
6664 
6665 /**
6666  *	t4_fw_bye - end communication with FW
6667  *	@adap: the adapter
6668  *	@mbox: mailbox to use for the FW command
6669  *
6670  *	Issues a command to terminate communication with FW.
6671  */
6672 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6673 {
6674 	struct fw_bye_cmd c;
6675 
6676 	memset(&c, 0, sizeof(c));
6677 	INIT_CMD(c, BYE, WRITE);
6678 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6679 }
6680 
6681 /**
6682  *	t4_fw_reset - issue a reset to FW
6683  *	@adap: the adapter
6684  *	@mbox: mailbox to use for the FW command
6685  *	@reset: specifies the type of reset to perform
6686  *
6687  *	Issues a reset command of the specified type to FW.
6688  */
6689 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6690 {
6691 	struct fw_reset_cmd c;
6692 
6693 	memset(&c, 0, sizeof(c));
6694 	INIT_CMD(c, RESET, WRITE);
6695 	c.val = cpu_to_be32(reset);
6696 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6697 }
6698 
6699 /**
6700  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6701  *	@adap: the adapter
6702  *	@mbox: mailbox to use for the FW RESET command (if desired)
6703  *	@force: force uP into RESET even if FW RESET command fails
6704  *
6705  *	Issues a RESET command to firmware (if desired) with a HALT indication
6706  *	and then puts the microprocessor into RESET state.  The RESET command
6707  *	will only be issued if a legitimate mailbox is provided (mbox <=
6708  *	M_PCIE_FW_MASTER).
6709  *
6710  *	This is generally used in order for the host to safely manipulate the
6711  *	adapter without fear of conflicting with whatever the firmware might
6712  *	be doing.  The only way out of this state is to RESTART the firmware
6713  *	...
6714  */
6715 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6716 {
6717 	int ret = 0;
6718 
6719 	/*
6720 	 * If a legitimate mailbox is provided, issue a RESET command
6721 	 * with a HALT indication.
6722 	 */
6723 	if (mbox <= M_PCIE_FW_MASTER) {
6724 		struct fw_reset_cmd c;
6725 
6726 		memset(&c, 0, sizeof(c));
6727 		INIT_CMD(c, RESET, WRITE);
6728 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
6729 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
6730 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6731 	}
6732 
6733 	/*
6734 	 * Normally we won't complete the operation if the firmware RESET
6735 	 * command fails but if our caller insists we'll go ahead and put the
6736 	 * uP into RESET.  This can be useful if the firmware is hung or even
6737 	 * missing ...  We'll have to take the risk of putting the uP into
6738 	 * RESET without the cooperation of firmware in that case.
6739 	 *
6740 	 * We also force the firmware's HALT flag to be on in case we bypassed
6741 	 * the firmware RESET command above or we're dealing with old firmware
6742 	 * which doesn't have the HALT capability.  This will serve as a flag
6743 	 * for the incoming firmware to know that it's coming out of a HALT
6744 	 * rather than a RESET ... if it's new enough to understand that ...
6745 	 */
6746 	if (ret == 0 || force) {
6747 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6748 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
6749 				 F_PCIE_FW_HALT);
6750 	}
6751 
6752 	/*
6753 	 * And we always return the result of the firmware RESET command
6754 	 * even when we force the uP into RESET ...
6755 	 */
6756 	return ret;
6757 }
6758 
6759 /**
6760  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6761  *	@adap: the adapter
6762  *	@reset: if we want to do a RESET to restart things
6763  *
6764  *	Restart firmware previously halted by t4_fw_halt().  On successful
6765  *	return the previous PF Master remains as the new PF Master and there
6766  *	is no need to issue a new HELLO command, etc.
6767  *
6768  *	We do this in two ways:
6769  *
6770  *	 1. If we're dealing with newer firmware we'll simply want to take
6771  *	    the chip's microprocessor out of RESET.  This will cause the
6772  *	    firmware to start up from its start vector.  And then we'll loop
6773  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6774  *	    reset to 0) or we timeout.
6775  *
6776  *	 2. If we're dealing with older firmware then we'll need to RESET
6777  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6778  *	    flag and automatically RESET itself on startup.
6779  */
6780 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6781 {
6782 	if (reset) {
6783 		/*
6784 		 * Since we're directing the RESET instead of the firmware
6785 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6786 		 * bit.
6787 		 */
6788 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
6789 
6790 		/*
6791 		 * If we've been given a valid mailbox, first try to get the
6792 		 * firmware to do the RESET.  If that works, great and we can
6793 		 * return success.  Otherwise, if we haven't been given a
6794 		 * valid mailbox or the RESET command failed, fall back to
6795 		 * hitting the chip with a hammer.
6796 		 */
6797 		if (mbox <= M_PCIE_FW_MASTER) {
6798 			t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6799 			msleep(100);
6800 			if (t4_fw_reset(adap, mbox,
6801 					F_PIORST | F_PIORSTMODE) == 0)
6802 				return 0;
6803 		}
6804 
6805 		t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6806 		msleep(2000);
6807 	} else {
6808 		int ms;
6809 
6810 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6811 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6812 			if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
6813 				return FW_SUCCESS;
6814 			msleep(100);
6815 			ms += 100;
6816 		}
6817 		return -ETIMEDOUT;
6818 	}
6819 	return 0;
6820 }
6821 
6822 /**
6823  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6824  *	@adap: the adapter
6825  *	@mbox: mailbox to use for the FW RESET command (if desired)
6826  *	@fw_data: the firmware image to write
6827  *	@size: image size
6828  *	@force: force upgrade even if firmware doesn't cooperate
6829  *
6830  *	Perform all of the steps necessary for upgrading an adapter's
6831  *	firmware image.  Normally this requires the cooperation of the
6832  *	existing firmware in order to halt all existing activities
6833  *	but if an invalid mailbox token is passed in we skip that step
6834  *	(though we'll still put the adapter microprocessor into RESET in
6835  *	that case).
6836  *
6837  *	On successful return the new firmware will have been loaded and
6838  *	the adapter will have been fully RESET losing all previous setup
6839  *	state.  On unsuccessful return the adapter may be completely hosed ...
6840  *	positive errno indicates that the adapter is ~probably~ intact, a
6841  *	negative errno indicates that things are looking bad ...
6842  */
6843 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6844 		  const u8 *fw_data, unsigned int size, int force)
6845 {
6846 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6847 	unsigned int bootstrap =
6848 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
6849 	int reset, ret;
6850 
6851 	if (!t4_fw_matches_chip(adap, fw_hdr))
6852 		return -EINVAL;
6853 
6854 	if (!bootstrap) {
6855 		ret = t4_fw_halt(adap, mbox, force);
6856 		if (ret < 0 && !force)
6857 			return ret;
6858 	}
6859 
6860 	ret = t4_load_fw(adap, fw_data, size);
6861 	if (ret < 0 || bootstrap)
6862 		return ret;
6863 
6864 	/*
6865 	 * Older versions of the firmware don't understand the new
6866 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6867 	 * restart.  So for newly loaded older firmware we'll have to do the
6868 	 * RESET for it so it starts up on a clean slate.  We can tell if
6869 	 * the newly loaded firmware will handle this right by checking
6870 	 * its header flags to see if it advertises the capability.
6871 	 */
6872 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6873 	return t4_fw_restart(adap, mbox, reset);
6874 }
6875 
6876 /*
6877  * Card doesn't have a firmware, install one.
6878  */
6879 int t4_fw_forceinstall(struct adapter *adap, const u8 *fw_data,
6880     unsigned int size)
6881 {
6882 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6883 	unsigned int bootstrap =
6884 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
6885 	int ret;
6886 
6887 	if (!t4_fw_matches_chip(adap, fw_hdr) || bootstrap)
6888 		return -EINVAL;
6889 
6890 	t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6891 	t4_write_reg(adap, A_PCIE_FW, 0);	/* Clobber internal state */
6892 	ret = t4_load_fw(adap, fw_data, size);
6893 	if (ret < 0)
6894 		return ret;
6895 	t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6896 	msleep(1000);
6897 
6898 	return (0);
6899 }
6900 
6901 /**
6902  *	t4_fw_initialize - ask FW to initialize the device
6903  *	@adap: the adapter
6904  *	@mbox: mailbox to use for the FW command
6905  *
6906  *	Issues a command to FW to partially initialize the device.  This
6907  *	performs initialization that generally doesn't depend on user input.
6908  */
6909 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6910 {
6911 	struct fw_initialize_cmd c;
6912 
6913 	memset(&c, 0, sizeof(c));
6914 	INIT_CMD(c, INITIALIZE, WRITE);
6915 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6916 }
6917 
6918 /**
6919  *	t4_query_params_rw - query FW or device parameters
6920  *	@adap: the adapter
6921  *	@mbox: mailbox to use for the FW command
6922  *	@pf: the PF
6923  *	@vf: the VF
6924  *	@nparams: the number of parameters
6925  *	@params: the parameter names
6926  *	@val: the parameter values
6927  *	@rw: Write and read flag
6928  *
6929  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
6930  *	queried at once.
6931  */
6932 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6933 		       unsigned int vf, unsigned int nparams, const u32 *params,
6934 		       u32 *val, int rw)
6935 {
6936 	int i, ret;
6937 	struct fw_params_cmd c;
6938 	__be32 *p = &c.param[0].mnem;
6939 
6940 	if (nparams > 7)
6941 		return -EINVAL;
6942 
6943 	memset(&c, 0, sizeof(c));
6944 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6945 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
6946 				  V_FW_PARAMS_CMD_PFN(pf) |
6947 				  V_FW_PARAMS_CMD_VFN(vf));
6948 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6949 
6950 	for (i = 0; i < nparams; i++) {
6951 		*p++ = cpu_to_be32(*params++);
6952 		if (rw)
6953 			*p = cpu_to_be32(*(val + i));
6954 		p++;
6955 	}
6956 
6957 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6958 	if (ret == 0)
6959 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6960 			*val++ = be32_to_cpu(*p);
6961 	return ret;
6962 }
6963 
6964 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6965 		    unsigned int vf, unsigned int nparams, const u32 *params,
6966 		    u32 *val)
6967 {
6968 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6969 }
6970 
6971 /**
6972  *      t4_set_params_timeout - sets FW or device parameters
6973  *      @adap: the adapter
6974  *      @mbox: mailbox to use for the FW command
6975  *      @pf: the PF
6976  *      @vf: the VF
6977  *      @nparams: the number of parameters
6978  *      @params: the parameter names
6979  *      @val: the parameter values
6980  *      @timeout: the timeout time
6981  *
6982  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6983  *      specified at once.
6984  */
6985 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6986 			  unsigned int pf, unsigned int vf,
6987 			  unsigned int nparams, const u32 *params,
6988 			  const u32 *val, int timeout)
6989 {
6990 	struct fw_params_cmd c;
6991 	__be32 *p = &c.param[0].mnem;
6992 
6993 	if (nparams > 7)
6994 		return -EINVAL;
6995 
6996 	memset(&c, 0, sizeof(c));
6997 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6998 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6999 				  V_FW_PARAMS_CMD_PFN(pf) |
7000 				  V_FW_PARAMS_CMD_VFN(vf));
7001 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7002 
7003 	while (nparams--) {
7004 		*p++ = cpu_to_be32(*params++);
7005 		*p++ = cpu_to_be32(*val++);
7006 	}
7007 
7008 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7009 }
7010 
7011 /**
7012  *	t4_set_params - sets FW or device parameters
7013  *	@adap: the adapter
7014  *	@mbox: mailbox to use for the FW command
7015  *	@pf: the PF
7016  *	@vf: the VF
7017  *	@nparams: the number of parameters
7018  *	@params: the parameter names
7019  *	@val: the parameter values
7020  *
7021  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7022  *	specified at once.
7023  */
7024 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7025 		  unsigned int vf, unsigned int nparams, const u32 *params,
7026 		  const u32 *val)
7027 {
7028 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7029 				     FW_CMD_MAX_TIMEOUT);
7030 }
7031 
7032 /**
7033  *	t4_cfg_pfvf - configure PF/VF resource limits
7034  *	@adap: the adapter
7035  *	@mbox: mailbox to use for the FW command
7036  *	@pf: the PF being configured
7037  *	@vf: the VF being configured
7038  *	@txq: the max number of egress queues
7039  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7040  *	@rxqi: the max number of interrupt-capable ingress queues
7041  *	@rxq: the max number of interruptless ingress queues
7042  *	@tc: the PCI traffic class
7043  *	@vi: the max number of virtual interfaces
7044  *	@cmask: the channel access rights mask for the PF/VF
7045  *	@pmask: the port access rights mask for the PF/VF
7046  *	@nexact: the maximum number of exact MPS filters
7047  *	@rcaps: read capabilities
7048  *	@wxcaps: write/execute capabilities
7049  *
7050  *	Configures resource limits and capabilities for a physical or virtual
7051  *	function.
7052  */
7053 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7054 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7055 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7056 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7057 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7058 {
7059 	struct fw_pfvf_cmd c;
7060 
7061 	memset(&c, 0, sizeof(c));
7062 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7063 				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7064 				  V_FW_PFVF_CMD_VFN(vf));
7065 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7066 	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7067 				     V_FW_PFVF_CMD_NIQ(rxq));
7068 	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7069 				    V_FW_PFVF_CMD_PMASK(pmask) |
7070 				    V_FW_PFVF_CMD_NEQ(txq));
7071 	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7072 				      V_FW_PFVF_CMD_NVI(vi) |
7073 				      V_FW_PFVF_CMD_NEXACTF(nexact));
7074 	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7075 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7076 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7077 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7078 }
7079 
7080 /**
7081  *	t4_alloc_vi_func - allocate a virtual interface
7082  *	@adap: the adapter
7083  *	@mbox: mailbox to use for the FW command
7084  *	@port: physical port associated with the VI
7085  *	@pf: the PF owning the VI
7086  *	@vf: the VF owning the VI
7087  *	@nmac: number of MAC addresses needed (1 to 5)
7088  *	@mac: the MAC addresses of the VI
7089  *	@rss_size: size of RSS table slice associated with this VI
7090  *	@portfunc: which Port Application Function MAC Address is desired
7091  *	@idstype: Intrusion Detection Type
7092  *
7093  *	Allocates a virtual interface for the given physical port.  If @mac is
7094  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7095  *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7096  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7097  *	stored consecutively so the space needed is @nmac * 6 bytes.
7098  *	Returns a negative error number or the non-negative VI id.
7099  */
7100 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7101 		     unsigned int port, unsigned int pf, unsigned int vf,
7102 		     unsigned int nmac, u8 *mac, u16 *rss_size,
7103 		     unsigned int portfunc, unsigned int idstype)
7104 {
7105 	int ret;
7106 	struct fw_vi_cmd c;
7107 
7108 	memset(&c, 0, sizeof(c));
7109 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7110 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7111 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7112 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7113 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7114 				     V_FW_VI_CMD_FUNC(portfunc));
7115 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7116 	c.nmac = nmac - 1;
7117 	if(!rss_size)
7118 		c.norss_rsssize = F_FW_VI_CMD_NORSS;
7119 
7120 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7121 	if (ret)
7122 		return ret;
7123 
7124 	if (mac) {
7125 		memcpy(mac, c.mac, sizeof(c.mac));
7126 		switch (nmac) {
7127 		case 5:
7128 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7129 		case 4:
7130 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7131 		case 3:
7132 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7133 		case 2:
7134 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7135 		}
7136 	}
7137 	if (rss_size)
7138 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
7139 	return G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7140 }
7141 
7142 /**
7143  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
7144  *      @adap: the adapter
7145  *      @mbox: mailbox to use for the FW command
7146  *      @port: physical port associated with the VI
7147  *      @pf: the PF owning the VI
7148  *      @vf: the VF owning the VI
7149  *      @nmac: number of MAC addresses needed (1 to 5)
7150  *      @mac: the MAC addresses of the VI
7151  *      @rss_size: size of RSS table slice associated with this VI
7152  *
7153  *	backwards compatible and convieniance routine to allocate a Virtual
7154  *	Interface with a Ethernet Port Application Function and Intrustion
7155  *	Detection System disabled.
7156  */
7157 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7158 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7159 		u16 *rss_size)
7160 {
7161 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
7162 				FW_VI_FUNC_ETH, 0);
7163 }
7164 
7165 /**
7166  * 	t4_free_vi - free a virtual interface
7167  * 	@adap: the adapter
7168  * 	@mbox: mailbox to use for the FW command
7169  * 	@pf: the PF owning the VI
7170  * 	@vf: the VF owning the VI
7171  * 	@viid: virtual interface identifiler
7172  *
7173  * 	Free a previously allocated virtual interface.
7174  */
7175 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7176 	       unsigned int vf, unsigned int viid)
7177 {
7178 	struct fw_vi_cmd c;
7179 
7180 	memset(&c, 0, sizeof(c));
7181 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
7182 				  F_FW_CMD_REQUEST |
7183 				  F_FW_CMD_EXEC |
7184 				  V_FW_VI_CMD_PFN(pf) |
7185 				  V_FW_VI_CMD_VFN(vf));
7186 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
7187 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
7188 
7189 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7190 }
7191 
7192 /**
7193  *	t4_set_rxmode - set Rx properties of a virtual interface
7194  *	@adap: the adapter
7195  *	@mbox: mailbox to use for the FW command
7196  *	@viid: the VI id
7197  *	@mtu: the new MTU or -1
7198  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7199  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7200  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7201  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7202  *	@sleep_ok: if true we may sleep while awaiting command completion
7203  *
7204  *	Sets Rx properties of a virtual interface.
7205  */
7206 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7207 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7208 		  bool sleep_ok)
7209 {
7210 	struct fw_vi_rxmode_cmd c;
7211 
7212 	/* convert to FW values */
7213 	if (mtu < 0)
7214 		mtu = M_FW_VI_RXMODE_CMD_MTU;
7215 	if (promisc < 0)
7216 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
7217 	if (all_multi < 0)
7218 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
7219 	if (bcast < 0)
7220 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
7221 	if (vlanex < 0)
7222 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
7223 
7224 	memset(&c, 0, sizeof(c));
7225 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
7226 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7227 				   V_FW_VI_RXMODE_CMD_VIID(viid));
7228 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7229 	c.mtu_to_vlanexen =
7230 		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
7231 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
7232 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
7233 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
7234 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
7235 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7236 }
7237 
7238 /**
7239  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7240  *	@adap: the adapter
7241  *	@mbox: mailbox to use for the FW command
7242  *	@viid: the VI id
7243  *	@free: if true any existing filters for this VI id are first removed
7244  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7245  *	@addr: the MAC address(es)
7246  *	@idx: where to store the index of each allocated filter
7247  *	@hash: pointer to hash address filter bitmap
7248  *	@sleep_ok: call is allowed to sleep
7249  *
7250  *	Allocates an exact-match filter for each of the supplied addresses and
7251  *	sets it to the corresponding address.  If @idx is not %NULL it should
7252  *	have at least @naddr entries, each of which will be set to the index of
7253  *	the filter allocated for the corresponding MAC address.  If a filter
7254  *	could not be allocated for an address its index is set to 0xffff.
7255  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7256  *	are hashed and update the hash filter bitmap pointed at by @hash.
7257  *
7258  *	Returns a negative error number or the number of filters allocated.
7259  */
7260 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7261 		      unsigned int viid, bool free, unsigned int naddr,
7262 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7263 {
7264 	int offset, ret = 0;
7265 	struct fw_vi_mac_cmd c;
7266 	unsigned int nfilters = 0;
7267 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
7268 	unsigned int rem = naddr;
7269 
7270 	if (naddr > max_naddr)
7271 		return -EINVAL;
7272 
7273 	for (offset = 0; offset < naddr ; /**/) {
7274 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7275 					 ? rem
7276 					 : ARRAY_SIZE(c.u.exact));
7277 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7278 						     u.exact[fw_naddr]), 16);
7279 		struct fw_vi_mac_exact *p;
7280 		int i;
7281 
7282 		memset(&c, 0, sizeof(c));
7283 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7284 					   F_FW_CMD_REQUEST |
7285 					   F_FW_CMD_WRITE |
7286 					   V_FW_CMD_EXEC(free) |
7287 					   V_FW_VI_MAC_CMD_VIID(viid));
7288 		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
7289 						  V_FW_CMD_LEN16(len16));
7290 
7291 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7292 			p->valid_to_idx =
7293 				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7294 					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
7295 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7296 		}
7297 
7298 		/*
7299 		 * It's okay if we run out of space in our MAC address arena.
7300 		 * Some of the addresses we submit may get stored so we need
7301 		 * to run through the reply to see what the results were ...
7302 		 */
7303 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7304 		if (ret && ret != -FW_ENOMEM)
7305 			break;
7306 
7307 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7308 			u16 index = G_FW_VI_MAC_CMD_IDX(
7309 						be16_to_cpu(p->valid_to_idx));
7310 
7311 			if (idx)
7312 				idx[offset+i] = (index >=  max_naddr
7313 						 ? 0xffff
7314 						 : index);
7315 			if (index < max_naddr)
7316 				nfilters++;
7317 			else if (hash)
7318 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
7319 		}
7320 
7321 		free = false;
7322 		offset += fw_naddr;
7323 		rem -= fw_naddr;
7324 	}
7325 
7326 	if (ret == 0 || ret == -FW_ENOMEM)
7327 		ret = nfilters;
7328 	return ret;
7329 }
7330 
7331 /**
7332  *	t4_change_mac - modifies the exact-match filter for a MAC address
7333  *	@adap: the adapter
7334  *	@mbox: mailbox to use for the FW command
7335  *	@viid: the VI id
7336  *	@idx: index of existing filter for old value of MAC address, or -1
7337  *	@addr: the new MAC address value
7338  *	@persist: whether a new MAC allocation should be persistent
7339  *	@add_smt: if true also add the address to the HW SMT
7340  *
7341  *	Modifies an exact-match filter and sets it to the new MAC address if
7342  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
7343  *	latter case the address is added persistently if @persist is %true.
7344  *
7345  *	Note that in general it is not possible to modify the value of a given
7346  *	filter so the generic way to modify an address filter is to free the one
7347  *	being used by the old address value and allocate a new filter for the
7348  *	new address value.
7349  *
7350  *	Returns a negative error number or the index of the filter with the new
7351  *	MAC value.  Note that this index may differ from @idx.
7352  */
7353 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7354 		  int idx, const u8 *addr, bool persist, bool add_smt)
7355 {
7356 	int ret, mode;
7357 	struct fw_vi_mac_cmd c;
7358 	struct fw_vi_mac_exact *p = c.u.exact;
7359 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
7360 
7361 	if (idx < 0)		/* new allocation */
7362 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7363 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7364 
7365 	memset(&c, 0, sizeof(c));
7366 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7367 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7368 				   V_FW_VI_MAC_CMD_VIID(viid));
7369 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
7370 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7371 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
7372 				      V_FW_VI_MAC_CMD_IDX(idx));
7373 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7374 
7375 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7376 	if (ret == 0) {
7377 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
7378 		if (ret >= max_mac_addr)
7379 			ret = -ENOMEM;
7380 	}
7381 	return ret;
7382 }
7383 
7384 /**
7385  *	t4_set_addr_hash - program the MAC inexact-match hash filter
7386  *	@adap: the adapter
7387  *	@mbox: mailbox to use for the FW command
7388  *	@viid: the VI id
7389  *	@ucast: whether the hash filter should also match unicast addresses
7390  *	@vec: the value to be written to the hash filter
7391  *	@sleep_ok: call is allowed to sleep
7392  *
7393  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
7394  */
7395 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7396 		     bool ucast, u64 vec, bool sleep_ok)
7397 {
7398 	struct fw_vi_mac_cmd c;
7399 	u32 val;
7400 
7401 	memset(&c, 0, sizeof(c));
7402 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7403 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7404 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7405 	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
7406 	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
7407 	c.freemacs_to_len16 = cpu_to_be32(val);
7408 	c.u.hash.hashvec = cpu_to_be64(vec);
7409 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7410 }
7411 
7412 /**
7413  *      t4_enable_vi_params - enable/disable a virtual interface
7414  *      @adap: the adapter
7415  *      @mbox: mailbox to use for the FW command
7416  *      @viid: the VI id
7417  *      @rx_en: 1=enable Rx, 0=disable Rx
7418  *      @tx_en: 1=enable Tx, 0=disable Tx
7419  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7420  *
7421  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7422  *      only makes sense when enabling a Virtual Interface ...
7423  */
7424 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7425 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7426 {
7427 	struct fw_vi_enable_cmd c;
7428 
7429 	memset(&c, 0, sizeof(c));
7430 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7431 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7432 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7433 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
7434 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
7435 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
7436 				     FW_LEN16(c));
7437 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7438 }
7439 
7440 /**
7441  *	t4_enable_vi - enable/disable a virtual interface
7442  *	@adap: the adapter
7443  *	@mbox: mailbox to use for the FW command
7444  *	@viid: the VI id
7445  *	@rx_en: 1=enable Rx, 0=disable Rx
7446  *	@tx_en: 1=enable Tx, 0=disable Tx
7447  *
7448  *	Enables/disables a virtual interface.  Note that setting DCB Enable
7449  *	only makes sense when enabling a Virtual Interface ...
7450  */
7451 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7452 		 bool rx_en, bool tx_en)
7453 {
7454 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7455 }
7456 
7457 /**
7458  *	t4_identify_port - identify a VI's port by blinking its LED
7459  *	@adap: the adapter
7460  *	@mbox: mailbox to use for the FW command
7461  *	@viid: the VI id
7462  *	@nblinks: how many times to blink LED at 2.5 Hz
7463  *
7464  *	Identifies a VI's port by blinking its LED.
7465  */
7466 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7467 		     unsigned int nblinks)
7468 {
7469 	struct fw_vi_enable_cmd c;
7470 
7471 	memset(&c, 0, sizeof(c));
7472 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7473 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7474 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7475 	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
7476 	c.blinkdur = cpu_to_be16(nblinks);
7477 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7478 }
7479 
7480 /**
7481  *	t4_iq_stop - stop an ingress queue and its FLs
7482  *	@adap: the adapter
7483  *	@mbox: mailbox to use for the FW command
7484  *	@pf: the PF owning the queues
7485  *	@vf: the VF owning the queues
7486  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7487  *	@iqid: ingress queue id
7488  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7489  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7490  *
7491  *	Stops an ingress queue and its associated FLs, if any.  This causes
7492  *	any current or future data/messages destined for these queues to be
7493  *	tossed.
7494  */
7495 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7496 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7497 	       unsigned int fl0id, unsigned int fl1id)
7498 {
7499 	struct fw_iq_cmd c;
7500 
7501 	memset(&c, 0, sizeof(c));
7502 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7503 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7504 				  V_FW_IQ_CMD_VFN(vf));
7505 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
7506 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7507 	c.iqid = cpu_to_be16(iqid);
7508 	c.fl0id = cpu_to_be16(fl0id);
7509 	c.fl1id = cpu_to_be16(fl1id);
7510 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7511 }
7512 
7513 /**
7514  *	t4_iq_free - free an ingress queue and its FLs
7515  *	@adap: the adapter
7516  *	@mbox: mailbox to use for the FW command
7517  *	@pf: the PF owning the queues
7518  *	@vf: the VF owning the queues
7519  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7520  *	@iqid: ingress queue id
7521  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7522  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7523  *
7524  *	Frees an ingress queue and its associated FLs, if any.
7525  */
7526 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7527 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7528 	       unsigned int fl0id, unsigned int fl1id)
7529 {
7530 	struct fw_iq_cmd c;
7531 
7532 	memset(&c, 0, sizeof(c));
7533 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7534 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7535 				  V_FW_IQ_CMD_VFN(vf));
7536 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
7537 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7538 	c.iqid = cpu_to_be16(iqid);
7539 	c.fl0id = cpu_to_be16(fl0id);
7540 	c.fl1id = cpu_to_be16(fl1id);
7541 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7542 }
7543 
7544 /**
7545  *	t4_eth_eq_free - free an Ethernet egress queue
7546  *	@adap: the adapter
7547  *	@mbox: mailbox to use for the FW command
7548  *	@pf: the PF owning the queue
7549  *	@vf: the VF owning the queue
7550  *	@eqid: egress queue id
7551  *
7552  *	Frees an Ethernet egress queue.
7553  */
7554 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7555 		   unsigned int vf, unsigned int eqid)
7556 {
7557 	struct fw_eq_eth_cmd c;
7558 
7559 	memset(&c, 0, sizeof(c));
7560 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
7561 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7562 				  V_FW_EQ_ETH_CMD_PFN(pf) |
7563 				  V_FW_EQ_ETH_CMD_VFN(vf));
7564 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
7565 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
7566 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7567 }
7568 
7569 /**
7570  *	t4_ctrl_eq_free - free a control egress queue
7571  *	@adap: the adapter
7572  *	@mbox: mailbox to use for the FW command
7573  *	@pf: the PF owning the queue
7574  *	@vf: the VF owning the queue
7575  *	@eqid: egress queue id
7576  *
7577  *	Frees a control egress queue.
7578  */
7579 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7580 		    unsigned int vf, unsigned int eqid)
7581 {
7582 	struct fw_eq_ctrl_cmd c;
7583 
7584 	memset(&c, 0, sizeof(c));
7585 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
7586 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7587 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
7588 				  V_FW_EQ_CTRL_CMD_VFN(vf));
7589 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
7590 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
7591 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7592 }
7593 
7594 /**
7595  *	t4_ofld_eq_free - free an offload egress queue
7596  *	@adap: the adapter
7597  *	@mbox: mailbox to use for the FW command
7598  *	@pf: the PF owning the queue
7599  *	@vf: the VF owning the queue
7600  *	@eqid: egress queue id
7601  *
7602  *	Frees a control egress queue.
7603  */
7604 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7605 		    unsigned int vf, unsigned int eqid)
7606 {
7607 	struct fw_eq_ofld_cmd c;
7608 
7609 	memset(&c, 0, sizeof(c));
7610 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
7611 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7612 				  V_FW_EQ_OFLD_CMD_PFN(pf) |
7613 				  V_FW_EQ_OFLD_CMD_VFN(vf));
7614 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
7615 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
7616 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7617 }
7618 
7619 /**
7620  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
7621  *	@link_down_rc: Link Down Reason Code
7622  *
7623  *	Returns a string representation of the Link Down Reason Code.
7624  */
7625 const char *t4_link_down_rc_str(unsigned char link_down_rc)
7626 {
7627 	static const char *reason[] = {
7628 		"Link Down",
7629 		"Remote Fault",
7630 		"Auto-negotiation Failure",
7631 		"Reserved3",
7632 		"Insufficient Airflow",
7633 		"Unable To Determine Reason",
7634 		"No RX Signal Detected",
7635 		"Reserved7",
7636 	};
7637 
7638 	if (link_down_rc >= ARRAY_SIZE(reason))
7639 		return "Bad Reason Code";
7640 
7641 	return reason[link_down_rc];
7642 }
7643 
7644 /*
7645  * Updates all fields owned by the common code in port_info and link_config
7646  * based on information provided by the firmware.  Does not touch any
7647  * requested_* field.
7648  */
7649 static void handle_port_info(struct port_info *pi, const struct fw_port_info *p)
7650 {
7651 	struct link_config *lc = &pi->link_cfg;
7652 	int speed;
7653 	unsigned char fc, fec;
7654 	u32 stat = be32_to_cpu(p->lstatus_to_modtype);
7655 
7656 	pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
7657 	pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
7658 	pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
7659 	    G_FW_PORT_CMD_MDIOADDR(stat) : -1;
7660 
7661 	lc->supported = be16_to_cpu(p->pcap);
7662 	lc->advertising = be16_to_cpu(p->acap);
7663 	lc->lp_advertising = be16_to_cpu(p->lpacap);
7664 	lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
7665 	lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
7666 
7667 	speed = 0;
7668 	if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
7669 		speed = 100;
7670 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
7671 		speed = 1000;
7672 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
7673 		speed = 10000;
7674 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
7675 		speed = 25000;
7676 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
7677 		speed = 40000;
7678 	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
7679 		speed = 100000;
7680 	lc->speed = speed;
7681 
7682 	fc = 0;
7683 	if (stat & F_FW_PORT_CMD_RXPAUSE)
7684 		fc |= PAUSE_RX;
7685 	if (stat & F_FW_PORT_CMD_TXPAUSE)
7686 		fc |= PAUSE_TX;
7687 	lc->fc = fc;
7688 
7689 	fec = 0;
7690 	if (lc->advertising & FW_PORT_CAP_FEC_RS)
7691 		fec |= FEC_RS;
7692 	if (lc->advertising & FW_PORT_CAP_FEC_BASER_RS)
7693 		fec |= FEC_BASER_RS;
7694 	if (lc->advertising & FW_PORT_CAP_FEC_RESERVED)
7695 		fec |= FEC_RESERVED;
7696 	lc->fec = fec;
7697 }
7698 
7699 /**
7700  *	t4_update_port_info - retrieve and update port information if changed
7701  *	@pi: the port_info
7702  *
7703  *	We issue a Get Port Information Command to the Firmware and, if
7704  *	successful, we check to see if anything is different from what we
7705  *	last recorded and update things accordingly.
7706  */
7707  int t4_update_port_info(struct port_info *pi)
7708  {
7709 	struct fw_port_cmd port_cmd;
7710 	int ret;
7711 
7712 	memset(&port_cmd, 0, sizeof port_cmd);
7713 	port_cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
7714 					    F_FW_CMD_REQUEST | F_FW_CMD_READ |
7715 					    V_FW_PORT_CMD_PORTID(pi->tx_chan));
7716 	port_cmd.action_to_len16 = cpu_to_be32(
7717 		V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
7718 		FW_LEN16(port_cmd));
7719 	ret = t4_wr_mbox_ns(pi->adapter, pi->adapter->mbox,
7720 			 &port_cmd, sizeof(port_cmd), &port_cmd);
7721 	if (ret)
7722 		return ret;
7723 
7724 	handle_port_info(pi, &port_cmd.u.info);
7725 	return 0;
7726 }
7727 
7728 /**
7729  *	t4_handle_fw_rpl - process a FW reply message
7730  *	@adap: the adapter
7731  *	@rpl: start of the FW message
7732  *
7733  *	Processes a FW message, such as link state change messages.
7734  */
7735 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7736 {
7737 	u8 opcode = *(const u8 *)rpl;
7738 	const struct fw_port_cmd *p = (const void *)rpl;
7739 	unsigned int action =
7740 			G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
7741 
7742 	if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7743 		/* link/module state change message */
7744 		int i, old_ptype, old_mtype;
7745 		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
7746 		struct port_info *pi = NULL;
7747 		struct link_config *lc, *old_lc;
7748 
7749 		for_each_port(adap, i) {
7750 			pi = adap2pinfo(adap, i);
7751 			if (pi->tx_chan == chan)
7752 				break;
7753 		}
7754 
7755 		lc = &pi->link_cfg;
7756 		old_lc = &pi->old_link_cfg;
7757 		old_ptype = pi->port_type;
7758 		old_mtype = pi->mod_type;
7759 
7760 		handle_port_info(pi, &p->u.info);
7761 		if (old_ptype != pi->port_type || old_mtype != pi->mod_type) {
7762 			t4_os_portmod_changed(pi);
7763 		}
7764 		if (old_lc->link_ok != lc->link_ok ||
7765 		    old_lc->speed != lc->speed ||
7766 		    old_lc->fec != lc->fec ||
7767 		    old_lc->fc != lc->fc) {
7768 			t4_os_link_changed(pi);
7769 			*old_lc = *lc;
7770 		}
7771 	} else {
7772 		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
7773 		return -EINVAL;
7774 	}
7775 	return 0;
7776 }
7777 
7778 /**
7779  *	get_pci_mode - determine a card's PCI mode
7780  *	@adapter: the adapter
7781  *	@p: where to store the PCI settings
7782  *
7783  *	Determines a card's PCI mode and associated parameters, such as speed
7784  *	and width.
7785  */
7786 static void get_pci_mode(struct adapter *adapter,
7787 				   struct pci_params *p)
7788 {
7789 	u16 val;
7790 	u32 pcie_cap;
7791 
7792 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7793 	if (pcie_cap) {
7794 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
7795 		p->speed = val & PCI_EXP_LNKSTA_CLS;
7796 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7797 	}
7798 }
7799 
7800 struct flash_desc {
7801 	u32 vendor_and_model_id;
7802 	u32 size_mb;
7803 };
7804 
7805 int t4_get_flash_params(struct adapter *adapter)
7806 {
7807 	/*
7808 	 * Table for non-standard supported Flash parts.  Note, all Flash
7809 	 * parts must have 64KB sectors.
7810 	 */
7811 	static struct flash_desc supported_flash[] = {
7812 		{ 0x00150201, 4 << 20 },	/* Spansion 4MB S25FL032P */
7813 	};
7814 
7815 	int ret;
7816 	u32 flashid = 0;
7817 	unsigned int part, manufacturer;
7818 	unsigned int density, size;
7819 
7820 
7821 	/*
7822 	 * Issue a Read ID Command to the Flash part.  We decode supported
7823 	 * Flash parts and their sizes from this.  There's a newer Query
7824 	 * Command which can retrieve detailed geometry information but many
7825 	 * Flash parts don't support it.
7826 	 */
7827 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
7828 	if (!ret)
7829 		ret = sf1_read(adapter, 3, 0, 1, &flashid);
7830 	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
7831 	if (ret < 0)
7832 		return ret;
7833 
7834 	/*
7835 	 * Check to see if it's one of our non-standard supported Flash parts.
7836 	 */
7837 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
7838 		if (supported_flash[part].vendor_and_model_id == flashid) {
7839 			adapter->params.sf_size =
7840 				supported_flash[part].size_mb;
7841 			adapter->params.sf_nsec =
7842 				adapter->params.sf_size / SF_SEC_SIZE;
7843 			goto found;
7844 		}
7845 
7846 	/*
7847 	 * Decode Flash part size.  The code below looks repetative with
7848 	 * common encodings, but that's not guaranteed in the JEDEC
7849 	 * specification for the Read JADEC ID command.  The only thing that
7850 	 * we're guaranteed by the JADEC specification is where the
7851 	 * Manufacturer ID is in the returned result.  After that each
7852 	 * Manufacturer ~could~ encode things completely differently.
7853 	 * Note, all Flash parts must have 64KB sectors.
7854 	 */
7855 	manufacturer = flashid & 0xff;
7856 	switch (manufacturer) {
7857 	case 0x20: { /* Micron/Numonix */
7858 		/*
7859 		 * This Density -> Size decoding table is taken from Micron
7860 		 * Data Sheets.
7861 		 */
7862 		density = (flashid >> 16) & 0xff;
7863 		switch (density) {
7864 		case 0x14: size = 1 << 20; break; /*   1MB */
7865 		case 0x15: size = 1 << 21; break; /*   2MB */
7866 		case 0x16: size = 1 << 22; break; /*   4MB */
7867 		case 0x17: size = 1 << 23; break; /*   8MB */
7868 		case 0x18: size = 1 << 24; break; /*  16MB */
7869 		case 0x19: size = 1 << 25; break; /*  32MB */
7870 		case 0x20: size = 1 << 26; break; /*  64MB */
7871 		case 0x21: size = 1 << 27; break; /* 128MB */
7872 		case 0x22: size = 1 << 28; break; /* 256MB */
7873 
7874 		default:
7875 			CH_ERR(adapter, "Micron Flash Part has bad size, "
7876 			       "ID = %#x, Density code = %#x\n",
7877 			       flashid, density);
7878 			return -EINVAL;
7879 		}
7880 		break;
7881 	}
7882 
7883 	case 0xef: { /* Winbond */
7884 		/*
7885 		 * This Density -> Size decoding table is taken from Winbond
7886 		 * Data Sheets.
7887 		 */
7888 		density = (flashid >> 16) & 0xff;
7889 		switch (density) {
7890 		case 0x17: size = 1 << 23; break; /*   8MB */
7891 		case 0x18: size = 1 << 24; break; /*  16MB */
7892 
7893 		default:
7894 			CH_ERR(adapter, "Winbond Flash Part has bad size, "
7895 			       "ID = %#x, Density code = %#x\n",
7896 			       flashid, density);
7897 			return -EINVAL;
7898 		}
7899 		break;
7900 	}
7901 
7902 	default:
7903 		CH_ERR(adapter, "Unsupported Flash Part, ID = %#x\n", flashid);
7904 		return -EINVAL;
7905 	}
7906 
7907 	/*
7908 	 * Store decoded Flash size and fall through into vetting code.
7909 	 */
7910 	adapter->params.sf_size = size;
7911 	adapter->params.sf_nsec = size / SF_SEC_SIZE;
7912 
7913  found:
7914 	/*
7915 	 * We should ~probably~ reject adapters with FLASHes which are too
7916 	 * small but we have some legacy FPGAs with small FLASHes that we'd
7917 	 * still like to use.  So instead we emit a scary message ...
7918 	 */
7919 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
7920 		CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
7921 			flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
7922 
7923 	return 0;
7924 }
7925 
7926 static void set_pcie_completion_timeout(struct adapter *adapter,
7927 						  u8 range)
7928 {
7929 	u16 val;
7930 	u32 pcie_cap;
7931 
7932 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7933 	if (pcie_cap) {
7934 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
7935 		val &= 0xfff0;
7936 		val |= range ;
7937 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
7938 	}
7939 }
7940 
7941 const struct chip_params *t4_get_chip_params(int chipid)
7942 {
7943 	static const struct chip_params chip_params[] = {
7944 		{
7945 			/* T4 */
7946 			.nchan = NCHAN,
7947 			.pm_stats_cnt = PM_NSTATS,
7948 			.cng_ch_bits_log = 2,
7949 			.nsched_cls = 15,
7950 			.cim_num_obq = CIM_NUM_OBQ,
7951 			.mps_rplc_size = 128,
7952 			.vfcount = 128,
7953 			.sge_fl_db = F_DBPRIO,
7954 			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
7955 		},
7956 		{
7957 			/* T5 */
7958 			.nchan = NCHAN,
7959 			.pm_stats_cnt = PM_NSTATS,
7960 			.cng_ch_bits_log = 2,
7961 			.nsched_cls = 16,
7962 			.cim_num_obq = CIM_NUM_OBQ_T5,
7963 			.mps_rplc_size = 128,
7964 			.vfcount = 128,
7965 			.sge_fl_db = F_DBPRIO | F_DBTYPE,
7966 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
7967 		},
7968 		{
7969 			/* T6 */
7970 			.nchan = T6_NCHAN,
7971 			.pm_stats_cnt = T6_PM_NSTATS,
7972 			.cng_ch_bits_log = 3,
7973 			.nsched_cls = 16,
7974 			.cim_num_obq = CIM_NUM_OBQ_T5,
7975 			.mps_rplc_size = 256,
7976 			.vfcount = 256,
7977 			.sge_fl_db = 0,
7978 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
7979 		},
7980 	};
7981 
7982 	chipid -= CHELSIO_T4;
7983 	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
7984 		return NULL;
7985 
7986 	return &chip_params[chipid];
7987 }
7988 
7989 /**
7990  *	t4_prep_adapter - prepare SW and HW for operation
7991  *	@adapter: the adapter
7992  *	@buf: temporary space of at least VPD_LEN size provided by the caller.
7993  *
7994  *	Initialize adapter SW state for the various HW modules, set initial
7995  *	values for some adapter tunables, take PHYs out of reset, and
7996  *	initialize the MDIO interface.
7997  */
7998 int t4_prep_adapter(struct adapter *adapter, u8 *buf)
7999 {
8000 	int ret;
8001 	uint16_t device_id;
8002 	uint32_t pl_rev;
8003 
8004 	get_pci_mode(adapter, &adapter->params.pci);
8005 
8006 	pl_rev = t4_read_reg(adapter, A_PL_REV);
8007 	adapter->params.chipid = G_CHIPID(pl_rev);
8008 	adapter->params.rev = G_REV(pl_rev);
8009 	if (adapter->params.chipid == 0) {
8010 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
8011 		adapter->params.chipid = CHELSIO_T4;
8012 
8013 		/* T4A1 chip is not supported */
8014 		if (adapter->params.rev == 1) {
8015 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
8016 			return -EINVAL;
8017 		}
8018 	}
8019 
8020 	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
8021 	if (adapter->chip_params == NULL)
8022 		return -EINVAL;
8023 
8024 	adapter->params.pci.vpd_cap_addr =
8025 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
8026 
8027 	ret = t4_get_flash_params(adapter);
8028 	if (ret < 0)
8029 		return ret;
8030 
8031 	ret = get_vpd_params(adapter, &adapter->params.vpd, buf);
8032 	if (ret < 0)
8033 		return ret;
8034 
8035 	/* Cards with real ASICs have the chipid in the PCIe device id */
8036 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
8037 	if (device_id >> 12 == chip_id(adapter))
8038 		adapter->params.cim_la_size = CIMLA_SIZE;
8039 	else {
8040 		/* FPGA */
8041 		adapter->params.fpga = 1;
8042 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
8043 	}
8044 
8045 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8046 
8047 	/*
8048 	 * Default port and clock for debugging in case we can't reach FW.
8049 	 */
8050 	adapter->params.nports = 1;
8051 	adapter->params.portvec = 1;
8052 	adapter->params.vpd.cclk = 50000;
8053 
8054 	/* Set pci completion timeout value to 4 seconds. */
8055 	set_pcie_completion_timeout(adapter, 0xd);
8056 	return 0;
8057 }
8058 
8059 /**
8060  *	t4_shutdown_adapter - shut down adapter, host & wire
8061  *	@adapter: the adapter
8062  *
8063  *	Perform an emergency shutdown of the adapter and stop it from
8064  *	continuing any further communication on the ports or DMA to the
8065  *	host.  This is typically used when the adapter and/or firmware
8066  *	have crashed and we want to prevent any further accidental
8067  *	communication with the rest of the world.  This will also force
8068  *	the port Link Status to go down -- if register writes work --
8069  *	which should help our peers figure out that we're down.
8070  */
8071 int t4_shutdown_adapter(struct adapter *adapter)
8072 {
8073 	int port;
8074 
8075 	t4_intr_disable(adapter);
8076 	t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
8077 	for_each_port(adapter, port) {
8078 		u32 a_port_cfg = is_t4(adapter) ?
8079 				 PORT_REG(port, A_XGMAC_PORT_CFG) :
8080 				 T5_PORT_REG(port, A_MAC_PORT_CFG);
8081 
8082 		t4_write_reg(adapter, a_port_cfg,
8083 			     t4_read_reg(adapter, a_port_cfg)
8084 			     & ~V_SIGNAL_DET(1));
8085 	}
8086 	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
8087 
8088 	return 0;
8089 }
8090 
8091 /**
8092  *	t4_init_devlog_params - initialize adapter->params.devlog
8093  *	@adap: the adapter
8094  *	@fw_attach: whether we can talk to the firmware
8095  *
8096  *	Initialize various fields of the adapter's Firmware Device Log
8097  *	Parameters structure.
8098  */
8099 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
8100 {
8101 	struct devlog_params *dparams = &adap->params.devlog;
8102 	u32 pf_dparams;
8103 	unsigned int devlog_meminfo;
8104 	struct fw_devlog_cmd devlog_cmd;
8105 	int ret;
8106 
8107 	/* If we're dealing with newer firmware, the Device Log Paramerters
8108 	 * are stored in a designated register which allows us to access the
8109 	 * Device Log even if we can't talk to the firmware.
8110 	 */
8111 	pf_dparams =
8112 		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
8113 	if (pf_dparams) {
8114 		unsigned int nentries, nentries128;
8115 
8116 		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
8117 		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
8118 
8119 		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
8120 		nentries = (nentries128 + 1) * 128;
8121 		dparams->size = nentries * sizeof(struct fw_devlog_e);
8122 
8123 		return 0;
8124 	}
8125 
8126 	/*
8127 	 * For any failing returns ...
8128 	 */
8129 	memset(dparams, 0, sizeof *dparams);
8130 
8131 	/*
8132 	 * If we can't talk to the firmware, there's really nothing we can do
8133 	 * at this point.
8134 	 */
8135 	if (!fw_attach)
8136 		return -ENXIO;
8137 
8138 	/* Otherwise, ask the firmware for it's Device Log Parameters.
8139 	 */
8140 	memset(&devlog_cmd, 0, sizeof devlog_cmd);
8141 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
8142 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
8143 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
8144 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
8145 			 &devlog_cmd);
8146 	if (ret)
8147 		return ret;
8148 
8149 	devlog_meminfo =
8150 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
8151 	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
8152 	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
8153 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
8154 
8155 	return 0;
8156 }
8157 
8158 /**
8159  *	t4_init_sge_params - initialize adap->params.sge
8160  *	@adapter: the adapter
8161  *
8162  *	Initialize various fields of the adapter's SGE Parameters structure.
8163  */
8164 int t4_init_sge_params(struct adapter *adapter)
8165 {
8166 	u32 r;
8167 	struct sge_params *sp = &adapter->params.sge;
8168 	unsigned i, tscale = 1;
8169 
8170 	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
8171 	sp->counter_val[0] = G_THRESHOLD_0(r);
8172 	sp->counter_val[1] = G_THRESHOLD_1(r);
8173 	sp->counter_val[2] = G_THRESHOLD_2(r);
8174 	sp->counter_val[3] = G_THRESHOLD_3(r);
8175 
8176 	if (chip_id(adapter) >= CHELSIO_T6) {
8177 		r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
8178 		tscale = G_TSCALE(r);
8179 		if (tscale == 0)
8180 			tscale = 1;
8181 		else
8182 			tscale += 2;
8183 	}
8184 
8185 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
8186 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
8187 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
8188 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
8189 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
8190 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
8191 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
8192 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
8193 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
8194 
8195 	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
8196 	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
8197 	if (is_t4(adapter))
8198 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
8199 	else if (is_t5(adapter))
8200 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
8201 	else
8202 		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
8203 
8204 	/* egress queues: log2 of # of doorbells per BAR2 page */
8205 	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
8206 	r >>= S_QUEUESPERPAGEPF0 +
8207 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
8208 	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
8209 
8210 	/* ingress queues: log2 of # of doorbells per BAR2 page */
8211 	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
8212 	r >>= S_QUEUESPERPAGEPF0 +
8213 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
8214 	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
8215 
8216 	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
8217 	r >>= S_HOSTPAGESIZEPF0 +
8218 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
8219 	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
8220 
8221 	r = t4_read_reg(adapter, A_SGE_CONTROL);
8222 	sp->sge_control = r;
8223 	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
8224 	sp->fl_pktshift = G_PKTSHIFT(r);
8225 	if (chip_id(adapter) <= CHELSIO_T5) {
8226 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
8227 		    X_INGPADBOUNDARY_SHIFT);
8228 	} else {
8229 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
8230 		    X_T6_INGPADBOUNDARY_SHIFT);
8231 	}
8232 	if (is_t4(adapter))
8233 		sp->pack_boundary = sp->pad_boundary;
8234 	else {
8235 		r = t4_read_reg(adapter, A_SGE_CONTROL2);
8236 		if (G_INGPACKBOUNDARY(r) == 0)
8237 			sp->pack_boundary = 16;
8238 		else
8239 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
8240 	}
8241 	for (i = 0; i < SGE_FLBUF_SIZES; i++)
8242 		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
8243 		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
8244 
8245 	return 0;
8246 }
8247 
8248 /*
8249  * Read and cache the adapter's compressed filter mode and ingress config.
8250  */
8251 static void read_filter_mode_and_ingress_config(struct adapter *adap,
8252     bool sleep_ok)
8253 {
8254 	struct tp_params *tpp = &adap->params.tp;
8255 
8256 	t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP,
8257 	    sleep_ok);
8258 	t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG,
8259 	    sleep_ok);
8260 
8261 	/*
8262 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
8263 	 * shift positions of several elements of the Compressed Filter Tuple
8264 	 * for this adapter which we need frequently ...
8265 	 */
8266 	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
8267 	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
8268 	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
8269 	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
8270 	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
8271 	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
8272 	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
8273 	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
8274 	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
8275 	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
8276 
8277 	/*
8278 	 * If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
8279 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
8280 	 */
8281 	if ((tpp->ingress_config & F_VNIC) == 0)
8282 		tpp->vnic_shift = -1;
8283 }
8284 
8285 /**
8286  *      t4_init_tp_params - initialize adap->params.tp
8287  *      @adap: the adapter
8288  *
8289  *      Initialize various fields of the adapter's TP Parameters structure.
8290  */
8291 int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
8292 {
8293 	int chan;
8294 	u32 v;
8295 	struct tp_params *tpp = &adap->params.tp;
8296 
8297 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
8298 	tpp->tre = G_TIMERRESOLUTION(v);
8299 	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
8300 
8301 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
8302 	for (chan = 0; chan < MAX_NCHAN; chan++)
8303 		tpp->tx_modq[chan] = chan;
8304 
8305 	read_filter_mode_and_ingress_config(adap, sleep_ok);
8306 
8307 	/*
8308 	 * Cache a mask of the bits that represent the error vector portion of
8309 	 * rx_pkt.err_vec.  T6+ can use a compressed error vector to make room
8310 	 * for information about outer encapsulation (GENEVE/VXLAN/NVGRE).
8311 	 */
8312 	tpp->err_vec_mask = htobe16(0xffff);
8313 	if (chip_id(adap) > CHELSIO_T5) {
8314 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
8315 		if (v & F_CRXPKTENC) {
8316 			tpp->err_vec_mask =
8317 			    htobe16(V_T6_COMPR_RXERR_VEC(M_T6_COMPR_RXERR_VEC));
8318 		}
8319 	}
8320 
8321 	return 0;
8322 }
8323 
8324 /**
8325  *      t4_filter_field_shift - calculate filter field shift
8326  *      @adap: the adapter
8327  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
8328  *
8329  *      Return the shift position of a filter field within the Compressed
8330  *      Filter Tuple.  The filter field is specified via its selection bit
8331  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
8332  */
8333 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
8334 {
8335 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
8336 	unsigned int sel;
8337 	int field_shift;
8338 
8339 	if ((filter_mode & filter_sel) == 0)
8340 		return -1;
8341 
8342 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
8343 		switch (filter_mode & sel) {
8344 		case F_FCOE:
8345 			field_shift += W_FT_FCOE;
8346 			break;
8347 		case F_PORT:
8348 			field_shift += W_FT_PORT;
8349 			break;
8350 		case F_VNIC_ID:
8351 			field_shift += W_FT_VNIC_ID;
8352 			break;
8353 		case F_VLAN:
8354 			field_shift += W_FT_VLAN;
8355 			break;
8356 		case F_TOS:
8357 			field_shift += W_FT_TOS;
8358 			break;
8359 		case F_PROTOCOL:
8360 			field_shift += W_FT_PROTOCOL;
8361 			break;
8362 		case F_ETHERTYPE:
8363 			field_shift += W_FT_ETHERTYPE;
8364 			break;
8365 		case F_MACMATCH:
8366 			field_shift += W_FT_MACMATCH;
8367 			break;
8368 		case F_MPSHITTYPE:
8369 			field_shift += W_FT_MPSHITTYPE;
8370 			break;
8371 		case F_FRAGMENTATION:
8372 			field_shift += W_FT_FRAGMENTATION;
8373 			break;
8374 		}
8375 	}
8376 	return field_shift;
8377 }
8378 
8379 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
8380 {
8381 	u8 addr[6];
8382 	int ret, i, j;
8383 	u16 rss_size;
8384 	struct port_info *p = adap2pinfo(adap, port_id);
8385 	u32 param, val;
8386 
8387 	for (i = 0, j = -1; i <= p->port_id; i++) {
8388 		do {
8389 			j++;
8390 		} while ((adap->params.portvec & (1 << j)) == 0);
8391 	}
8392 
8393 	if (!(adap->flags & IS_VF) ||
8394 	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
8395  		t4_update_port_info(p);
8396 	}
8397 
8398 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
8399 	if (ret < 0)
8400 		return ret;
8401 
8402 	p->vi[0].viid = ret;
8403 	if (chip_id(adap) <= CHELSIO_T5)
8404 		p->vi[0].smt_idx = (ret & 0x7f) << 1;
8405 	else
8406 		p->vi[0].smt_idx = (ret & 0x7f);
8407 	p->tx_chan = j;
8408 	p->mps_bg_map = t4_get_mps_bg_map(adap, j);
8409 	p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
8410 	p->lport = j;
8411 	p->vi[0].rss_size = rss_size;
8412 	t4_os_set_hw_addr(p, addr);
8413 
8414 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8415 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
8416 	    V_FW_PARAMS_PARAM_YZ(p->vi[0].viid);
8417 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
8418 	if (ret)
8419 		p->vi[0].rss_base = 0xffff;
8420 	else {
8421 		/* MPASS((val >> 16) == rss_size); */
8422 		p->vi[0].rss_base = val & 0xffff;
8423 	}
8424 
8425 	return 0;
8426 }
8427 
8428 /**
8429  *	t4_read_cimq_cfg - read CIM queue configuration
8430  *	@adap: the adapter
8431  *	@base: holds the queue base addresses in bytes
8432  *	@size: holds the queue sizes in bytes
8433  *	@thres: holds the queue full thresholds in bytes
8434  *
8435  *	Returns the current configuration of the CIM queues, starting with
8436  *	the IBQs, then the OBQs.
8437  */
8438 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
8439 {
8440 	unsigned int i, v;
8441 	int cim_num_obq = adap->chip_params->cim_num_obq;
8442 
8443 	for (i = 0; i < CIM_NUM_IBQ; i++) {
8444 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
8445 			     V_QUENUMSELECT(i));
8446 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8447 		/* value is in 256-byte units */
8448 		*base++ = G_CIMQBASE(v) * 256;
8449 		*size++ = G_CIMQSIZE(v) * 256;
8450 		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
8451 	}
8452 	for (i = 0; i < cim_num_obq; i++) {
8453 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8454 			     V_QUENUMSELECT(i));
8455 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8456 		/* value is in 256-byte units */
8457 		*base++ = G_CIMQBASE(v) * 256;
8458 		*size++ = G_CIMQSIZE(v) * 256;
8459 	}
8460 }
8461 
8462 /**
8463  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
8464  *	@adap: the adapter
8465  *	@qid: the queue index
8466  *	@data: where to store the queue contents
8467  *	@n: capacity of @data in 32-bit words
8468  *
8469  *	Reads the contents of the selected CIM queue starting at address 0 up
8470  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8471  *	error and the number of 32-bit words actually read on success.
8472  */
8473 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8474 {
8475 	int i, err, attempts;
8476 	unsigned int addr;
8477 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
8478 
8479 	if (qid > 5 || (n & 3))
8480 		return -EINVAL;
8481 
8482 	addr = qid * nwords;
8483 	if (n > nwords)
8484 		n = nwords;
8485 
8486 	/* It might take 3-10ms before the IBQ debug read access is allowed.
8487 	 * Wait for 1 Sec with a delay of 1 usec.
8488 	 */
8489 	attempts = 1000000;
8490 
8491 	for (i = 0; i < n; i++, addr++) {
8492 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
8493 			     F_IBQDBGEN);
8494 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
8495 				      attempts, 1);
8496 		if (err)
8497 			return err;
8498 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
8499 	}
8500 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
8501 	return i;
8502 }
8503 
8504 /**
8505  *	t4_read_cim_obq - read the contents of a CIM outbound queue
8506  *	@adap: the adapter
8507  *	@qid: the queue index
8508  *	@data: where to store the queue contents
8509  *	@n: capacity of @data in 32-bit words
8510  *
8511  *	Reads the contents of the selected CIM queue starting at address 0 up
8512  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8513  *	error and the number of 32-bit words actually read on success.
8514  */
8515 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8516 {
8517 	int i, err;
8518 	unsigned int addr, v, nwords;
8519 	int cim_num_obq = adap->chip_params->cim_num_obq;
8520 
8521 	if ((qid > (cim_num_obq - 1)) || (n & 3))
8522 		return -EINVAL;
8523 
8524 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8525 		     V_QUENUMSELECT(qid));
8526 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8527 
8528 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
8529 	nwords = G_CIMQSIZE(v) * 64;  /* same */
8530 	if (n > nwords)
8531 		n = nwords;
8532 
8533 	for (i = 0; i < n; i++, addr++) {
8534 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
8535 			     F_OBQDBGEN);
8536 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
8537 				      2, 1);
8538 		if (err)
8539 			return err;
8540 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
8541 	}
8542 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
8543 	return i;
8544 }
8545 
8546 enum {
8547 	CIM_QCTL_BASE     = 0,
8548 	CIM_CTL_BASE      = 0x2000,
8549 	CIM_PBT_ADDR_BASE = 0x2800,
8550 	CIM_PBT_LRF_BASE  = 0x3000,
8551 	CIM_PBT_DATA_BASE = 0x3800
8552 };
8553 
8554 /**
8555  *	t4_cim_read - read a block from CIM internal address space
8556  *	@adap: the adapter
8557  *	@addr: the start address within the CIM address space
8558  *	@n: number of words to read
8559  *	@valp: where to store the result
8560  *
8561  *	Reads a block of 4-byte words from the CIM intenal address space.
8562  */
8563 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
8564 		unsigned int *valp)
8565 {
8566 	int ret = 0;
8567 
8568 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8569 		return -EBUSY;
8570 
8571 	for ( ; !ret && n--; addr += 4) {
8572 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
8573 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8574 				      0, 5, 2);
8575 		if (!ret)
8576 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
8577 	}
8578 	return ret;
8579 }
8580 
8581 /**
8582  *	t4_cim_write - write a block into CIM internal address space
8583  *	@adap: the adapter
8584  *	@addr: the start address within the CIM address space
8585  *	@n: number of words to write
8586  *	@valp: set of values to write
8587  *
8588  *	Writes a block of 4-byte words into the CIM intenal address space.
8589  */
8590 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8591 		 const unsigned int *valp)
8592 {
8593 	int ret = 0;
8594 
8595 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8596 		return -EBUSY;
8597 
8598 	for ( ; !ret && n--; addr += 4) {
8599 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
8600 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
8601 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8602 				      0, 5, 2);
8603 	}
8604 	return ret;
8605 }
8606 
8607 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8608 			 unsigned int val)
8609 {
8610 	return t4_cim_write(adap, addr, 1, &val);
8611 }
8612 
8613 /**
8614  *	t4_cim_ctl_read - read a block from CIM control region
8615  *	@adap: the adapter
8616  *	@addr: the start address within the CIM control region
8617  *	@n: number of words to read
8618  *	@valp: where to store the result
8619  *
8620  *	Reads a block of 4-byte words from the CIM control region.
8621  */
8622 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
8623 		    unsigned int *valp)
8624 {
8625 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
8626 }
8627 
8628 /**
8629  *	t4_cim_read_la - read CIM LA capture buffer
8630  *	@adap: the adapter
8631  *	@la_buf: where to store the LA data
8632  *	@wrptr: the HW write pointer within the capture buffer
8633  *
8634  *	Reads the contents of the CIM LA buffer with the most recent entry at
8635  *	the end	of the returned data and with the entry at @wrptr first.
8636  *	We try to leave the LA in the running state we find it in.
8637  */
8638 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8639 {
8640 	int i, ret;
8641 	unsigned int cfg, val, idx;
8642 
8643 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
8644 	if (ret)
8645 		return ret;
8646 
8647 	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
8648 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
8649 		if (ret)
8650 			return ret;
8651 	}
8652 
8653 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8654 	if (ret)
8655 		goto restart;
8656 
8657 	idx = G_UPDBGLAWRPTR(val);
8658 	if (wrptr)
8659 		*wrptr = idx;
8660 
8661 	for (i = 0; i < adap->params.cim_la_size; i++) {
8662 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8663 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
8664 		if (ret)
8665 			break;
8666 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8667 		if (ret)
8668 			break;
8669 		if (val & F_UPDBGLARDEN) {
8670 			ret = -ETIMEDOUT;
8671 			break;
8672 		}
8673 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
8674 		if (ret)
8675 			break;
8676 
8677 		/* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
8678 		idx = (idx + 1) & M_UPDBGLARDPTR;
8679 		/*
8680 		 * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
8681 		 * identify the 32-bit portion of the full 312-bit data
8682 		 */
8683 		if (is_t6(adap))
8684 			while ((idx & 0xf) > 9)
8685 				idx = (idx + 1) % M_UPDBGLARDPTR;
8686 	}
8687 restart:
8688 	if (cfg & F_UPDBGLAEN) {
8689 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8690 				      cfg & ~F_UPDBGLARDEN);
8691 		if (!ret)
8692 			ret = r;
8693 	}
8694 	return ret;
8695 }
8696 
8697 /**
8698  *	t4_tp_read_la - read TP LA capture buffer
8699  *	@adap: the adapter
8700  *	@la_buf: where to store the LA data
8701  *	@wrptr: the HW write pointer within the capture buffer
8702  *
8703  *	Reads the contents of the TP LA buffer with the most recent entry at
8704  *	the end	of the returned data and with the entry at @wrptr first.
8705  *	We leave the LA in the running state we find it in.
8706  */
8707 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8708 {
8709 	bool last_incomplete;
8710 	unsigned int i, cfg, val, idx;
8711 
8712 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
8713 	if (cfg & F_DBGLAENABLE)			/* freeze LA */
8714 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8715 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
8716 
8717 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
8718 	idx = G_DBGLAWPTR(val);
8719 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
8720 	if (last_incomplete)
8721 		idx = (idx + 1) & M_DBGLARPTR;
8722 	if (wrptr)
8723 		*wrptr = idx;
8724 
8725 	val &= 0xffff;
8726 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
8727 	val |= adap->params.tp.la_mask;
8728 
8729 	for (i = 0; i < TPLA_SIZE; i++) {
8730 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
8731 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
8732 		idx = (idx + 1) & M_DBGLARPTR;
8733 	}
8734 
8735 	/* Wipe out last entry if it isn't valid */
8736 	if (last_incomplete)
8737 		la_buf[TPLA_SIZE - 1] = ~0ULL;
8738 
8739 	if (cfg & F_DBGLAENABLE)		/* restore running state */
8740 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8741 			     cfg | adap->params.tp.la_mask);
8742 }
8743 
8744 /*
8745  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8746  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
8747  * state for more than the Warning Threshold then we'll issue a warning about
8748  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
8749  * appears to be hung every Warning Repeat second till the situation clears.
8750  * If the situation clears, we'll note that as well.
8751  */
8752 #define SGE_IDMA_WARN_THRESH 1
8753 #define SGE_IDMA_WARN_REPEAT 300
8754 
8755 /**
8756  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8757  *	@adapter: the adapter
8758  *	@idma: the adapter IDMA Monitor state
8759  *
8760  *	Initialize the state of an SGE Ingress DMA Monitor.
8761  */
8762 void t4_idma_monitor_init(struct adapter *adapter,
8763 			  struct sge_idma_monitor_state *idma)
8764 {
8765 	/* Initialize the state variables for detecting an SGE Ingress DMA
8766 	 * hang.  The SGE has internal counters which count up on each clock
8767 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
8768 	 * same state they were on the previous clock tick.  The clock used is
8769 	 * the Core Clock so we have a limit on the maximum "time" they can
8770 	 * record; typically a very small number of seconds.  For instance,
8771 	 * with a 600MHz Core Clock, we can only count up to a bit more than
8772 	 * 7s.  So we'll synthesize a larger counter in order to not run the
8773 	 * risk of having the "timers" overflow and give us the flexibility to
8774 	 * maintain a Hung SGE State Machine of our own which operates across
8775 	 * a longer time frame.
8776 	 */
8777 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8778 	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
8779 }
8780 
8781 /**
8782  *	t4_idma_monitor - monitor SGE Ingress DMA state
8783  *	@adapter: the adapter
8784  *	@idma: the adapter IDMA Monitor state
8785  *	@hz: number of ticks/second
8786  *	@ticks: number of ticks since the last IDMA Monitor call
8787  */
8788 void t4_idma_monitor(struct adapter *adapter,
8789 		     struct sge_idma_monitor_state *idma,
8790 		     int hz, int ticks)
8791 {
8792 	int i, idma_same_state_cnt[2];
8793 
8794 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
8795 	  * are counters inside the SGE which count up on each clock when the
8796 	  * SGE finds its Ingress DMA State Engines in the same states they
8797 	  * were in the previous clock.  The counters will peg out at
8798 	  * 0xffffffff without wrapping around so once they pass the 1s
8799 	  * threshold they'll stay above that till the IDMA state changes.
8800 	  */
8801 	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
8802 	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
8803 	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8804 
8805 	for (i = 0; i < 2; i++) {
8806 		u32 debug0, debug11;
8807 
8808 		/* If the Ingress DMA Same State Counter ("timer") is less
8809 		 * than 1s, then we can reset our synthesized Stall Timer and
8810 		 * continue.  If we have previously emitted warnings about a
8811 		 * potential stalled Ingress Queue, issue a note indicating
8812 		 * that the Ingress Queue has resumed forward progress.
8813 		 */
8814 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8815 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
8816 				CH_WARN(adapter, "SGE idma%d, queue %u, "
8817 					"resumed after %d seconds\n",
8818 					i, idma->idma_qid[i],
8819 					idma->idma_stalled[i]/hz);
8820 			idma->idma_stalled[i] = 0;
8821 			continue;
8822 		}
8823 
8824 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8825 		 * domain.  The first time we get here it'll be because we
8826 		 * passed the 1s Threshold; each additional time it'll be
8827 		 * because the RX Timer Callback is being fired on its regular
8828 		 * schedule.
8829 		 *
8830 		 * If the stall is below our Potential Hung Ingress Queue
8831 		 * Warning Threshold, continue.
8832 		 */
8833 		if (idma->idma_stalled[i] == 0) {
8834 			idma->idma_stalled[i] = hz;
8835 			idma->idma_warn[i] = 0;
8836 		} else {
8837 			idma->idma_stalled[i] += ticks;
8838 			idma->idma_warn[i] -= ticks;
8839 		}
8840 
8841 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
8842 			continue;
8843 
8844 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8845 		 */
8846 		if (idma->idma_warn[i] > 0)
8847 			continue;
8848 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
8849 
8850 		/* Read and save the SGE IDMA State and Queue ID information.
8851 		 * We do this every time in case it changes across time ...
8852 		 * can't be too careful ...
8853 		 */
8854 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
8855 		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8856 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8857 
8858 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
8859 		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8860 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8861 
8862 		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
8863 			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8864 			i, idma->idma_qid[i], idma->idma_state[i],
8865 			idma->idma_stalled[i]/hz,
8866 			debug0, debug11);
8867 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8868 	}
8869 }
8870 
8871 /**
8872  *	t4_read_pace_tbl - read the pace table
8873  *	@adap: the adapter
8874  *	@pace_vals: holds the returned values
8875  *
8876  *	Returns the values of TP's pace table in microseconds.
8877  */
8878 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
8879 {
8880 	unsigned int i, v;
8881 
8882 	for (i = 0; i < NTX_SCHED; i++) {
8883 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
8884 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
8885 		pace_vals[i] = dack_ticks_to_usec(adap, v);
8886 	}
8887 }
8888 
8889 /**
8890  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
8891  *	@adap: the adapter
8892  *	@sched: the scheduler index
8893  *	@kbps: the byte rate in Kbps
8894  *	@ipg: the interpacket delay in tenths of nanoseconds
8895  *
8896  *	Return the current configuration of a HW Tx scheduler.
8897  */
8898 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
8899 		     unsigned int *ipg, bool sleep_ok)
8900 {
8901 	unsigned int v, addr, bpt, cpt;
8902 
8903 	if (kbps) {
8904 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
8905 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
8906 		if (sched & 1)
8907 			v >>= 16;
8908 		bpt = (v >> 8) & 0xff;
8909 		cpt = v & 0xff;
8910 		if (!cpt)
8911 			*kbps = 0;	/* scheduler disabled */
8912 		else {
8913 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
8914 			*kbps = (v * bpt) / 125;
8915 		}
8916 	}
8917 	if (ipg) {
8918 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
8919 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
8920 		if (sched & 1)
8921 			v >>= 16;
8922 		v &= 0xffff;
8923 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
8924 	}
8925 }
8926 
8927 /**
8928  *	t4_load_cfg - download config file
8929  *	@adap: the adapter
8930  *	@cfg_data: the cfg text file to write
8931  *	@size: text file size
8932  *
8933  *	Write the supplied config text file to the card's serial flash.
8934  */
8935 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
8936 {
8937 	int ret, i, n, cfg_addr;
8938 	unsigned int addr;
8939 	unsigned int flash_cfg_start_sec;
8940 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
8941 
8942 	cfg_addr = t4_flash_cfg_addr(adap);
8943 	if (cfg_addr < 0)
8944 		return cfg_addr;
8945 
8946 	addr = cfg_addr;
8947 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
8948 
8949 	if (size > FLASH_CFG_MAX_SIZE) {
8950 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
8951 		       FLASH_CFG_MAX_SIZE);
8952 		return -EFBIG;
8953 	}
8954 
8955 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
8956 			 sf_sec_size);
8957 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
8958 				     flash_cfg_start_sec + i - 1);
8959 	/*
8960 	 * If size == 0 then we're simply erasing the FLASH sectors associated
8961 	 * with the on-adapter Firmware Configuration File.
8962 	 */
8963 	if (ret || size == 0)
8964 		goto out;
8965 
8966 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
8967 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
8968 		if ( (size - i) <  SF_PAGE_SIZE)
8969 			n = size - i;
8970 		else
8971 			n = SF_PAGE_SIZE;
8972 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
8973 		if (ret)
8974 			goto out;
8975 
8976 		addr += SF_PAGE_SIZE;
8977 		cfg_data += SF_PAGE_SIZE;
8978 	}
8979 
8980 out:
8981 	if (ret)
8982 		CH_ERR(adap, "config file %s failed %d\n",
8983 		       (size == 0 ? "clear" : "download"), ret);
8984 	return ret;
8985 }
8986 
8987 /**
8988  *	t5_fw_init_extern_mem - initialize the external memory
8989  *	@adap: the adapter
8990  *
8991  *	Initializes the external memory on T5.
8992  */
8993 int t5_fw_init_extern_mem(struct adapter *adap)
8994 {
8995 	u32 params[1], val[1];
8996 	int ret;
8997 
8998 	if (!is_t5(adap))
8999 		return 0;
9000 
9001 	val[0] = 0xff; /* Initialize all MCs */
9002 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9003 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
9004 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
9005 			FW_CMD_MAX_TIMEOUT);
9006 
9007 	return ret;
9008 }
9009 
9010 /* BIOS boot headers */
9011 typedef struct pci_expansion_rom_header {
9012 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
9013 	u8	reserved[22]; /* Reserved per processor Architecture data */
9014 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
9015 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
9016 
9017 /* Legacy PCI Expansion ROM Header */
9018 typedef struct legacy_pci_expansion_rom_header {
9019 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
9020 	u8	size512; /* Current Image Size in units of 512 bytes */
9021 	u8	initentry_point[4];
9022 	u8	cksum; /* Checksum computed on the entire Image */
9023 	u8	reserved[16]; /* Reserved */
9024 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
9025 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
9026 
9027 /* EFI PCI Expansion ROM Header */
9028 typedef struct efi_pci_expansion_rom_header {
9029 	u8	signature[2]; // ROM signature. The value 0xaa55
9030 	u8	initialization_size[2]; /* Units 512. Includes this header */
9031 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
9032 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
9033 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
9034 	u8	compression_type[2]; /* Compression type. */
9035 		/*
9036 		 * Compression type definition
9037 		 * 0x0: uncompressed
9038 		 * 0x1: Compressed
9039 		 * 0x2-0xFFFF: Reserved
9040 		 */
9041 	u8	reserved[8]; /* Reserved */
9042 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
9043 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
9044 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
9045 
9046 /* PCI Data Structure Format */
9047 typedef struct pcir_data_structure { /* PCI Data Structure */
9048 	u8	signature[4]; /* Signature. The string "PCIR" */
9049 	u8	vendor_id[2]; /* Vendor Identification */
9050 	u8	device_id[2]; /* Device Identification */
9051 	u8	vital_product[2]; /* Pointer to Vital Product Data */
9052 	u8	length[2]; /* PCIR Data Structure Length */
9053 	u8	revision; /* PCIR Data Structure Revision */
9054 	u8	class_code[3]; /* Class Code */
9055 	u8	image_length[2]; /* Image Length. Multiple of 512B */
9056 	u8	code_revision[2]; /* Revision Level of Code/Data */
9057 	u8	code_type; /* Code Type. */
9058 		/*
9059 		 * PCI Expansion ROM Code Types
9060 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
9061 		 * 0x01: Open Firmware standard for PCI. FCODE
9062 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
9063 		 * 0x03: EFI Image. EFI
9064 		 * 0x04-0xFF: Reserved.
9065 		 */
9066 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
9067 	u8	reserved[2]; /* Reserved */
9068 } pcir_data_t; /* PCI__DATA_STRUCTURE */
9069 
9070 /* BOOT constants */
9071 enum {
9072 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
9073 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
9074 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
9075 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
9076 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
9077 	VENDOR_ID = 0x1425, /* Vendor ID */
9078 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
9079 };
9080 
9081 /*
9082  *	modify_device_id - Modifies the device ID of the Boot BIOS image
9083  *	@adatper: the device ID to write.
9084  *	@boot_data: the boot image to modify.
9085  *
9086  *	Write the supplied device ID to the boot BIOS image.
9087  */
9088 static void modify_device_id(int device_id, u8 *boot_data)
9089 {
9090 	legacy_pci_exp_rom_header_t *header;
9091 	pcir_data_t *pcir_header;
9092 	u32 cur_header = 0;
9093 
9094 	/*
9095 	 * Loop through all chained images and change the device ID's
9096 	 */
9097 	while (1) {
9098 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
9099 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
9100 			      le16_to_cpu(*(u16*)header->pcir_offset)];
9101 
9102 		/*
9103 		 * Only modify the Device ID if code type is Legacy or HP.
9104 		 * 0x00: Okay to modify
9105 		 * 0x01: FCODE. Do not be modify
9106 		 * 0x03: Okay to modify
9107 		 * 0x04-0xFF: Do not modify
9108 		 */
9109 		if (pcir_header->code_type == 0x00) {
9110 			u8 csum = 0;
9111 			int i;
9112 
9113 			/*
9114 			 * Modify Device ID to match current adatper
9115 			 */
9116 			*(u16*) pcir_header->device_id = device_id;
9117 
9118 			/*
9119 			 * Set checksum temporarily to 0.
9120 			 * We will recalculate it later.
9121 			 */
9122 			header->cksum = 0x0;
9123 
9124 			/*
9125 			 * Calculate and update checksum
9126 			 */
9127 			for (i = 0; i < (header->size512 * 512); i++)
9128 				csum += (u8)boot_data[cur_header + i];
9129 
9130 			/*
9131 			 * Invert summed value to create the checksum
9132 			 * Writing new checksum value directly to the boot data
9133 			 */
9134 			boot_data[cur_header + 7] = -csum;
9135 
9136 		} else if (pcir_header->code_type == 0x03) {
9137 
9138 			/*
9139 			 * Modify Device ID to match current adatper
9140 			 */
9141 			*(u16*) pcir_header->device_id = device_id;
9142 
9143 		}
9144 
9145 
9146 		/*
9147 		 * Check indicator element to identify if this is the last
9148 		 * image in the ROM.
9149 		 */
9150 		if (pcir_header->indicator & 0x80)
9151 			break;
9152 
9153 		/*
9154 		 * Move header pointer up to the next image in the ROM.
9155 		 */
9156 		cur_header += header->size512 * 512;
9157 	}
9158 }
9159 
9160 /*
9161  *	t4_load_boot - download boot flash
9162  *	@adapter: the adapter
9163  *	@boot_data: the boot image to write
9164  *	@boot_addr: offset in flash to write boot_data
9165  *	@size: image size
9166  *
9167  *	Write the supplied boot image to the card's serial flash.
9168  *	The boot image has the following sections: a 28-byte header and the
9169  *	boot image.
9170  */
9171 int t4_load_boot(struct adapter *adap, u8 *boot_data,
9172 		 unsigned int boot_addr, unsigned int size)
9173 {
9174 	pci_exp_rom_header_t *header;
9175 	int pcir_offset ;
9176 	pcir_data_t *pcir_header;
9177 	int ret, addr;
9178 	uint16_t device_id;
9179 	unsigned int i;
9180 	unsigned int boot_sector = (boot_addr * 1024 );
9181 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9182 
9183 	/*
9184 	 * Make sure the boot image does not encroach on the firmware region
9185 	 */
9186 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
9187 		CH_ERR(adap, "boot image encroaching on firmware region\n");
9188 		return -EFBIG;
9189 	}
9190 
9191 	/*
9192 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
9193 	 * and Boot configuration data sections. These 3 boot sections span
9194 	 * sectors 0 to 7 in flash and live right before the FW image location.
9195 	 */
9196 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
9197 			sf_sec_size);
9198 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
9199 				     (boot_sector >> 16) + i - 1);
9200 
9201 	/*
9202 	 * If size == 0 then we're simply erasing the FLASH sectors associated
9203 	 * with the on-adapter option ROM file
9204 	 */
9205 	if (ret || (size == 0))
9206 		goto out;
9207 
9208 	/* Get boot header */
9209 	header = (pci_exp_rom_header_t *)boot_data;
9210 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
9211 	/* PCIR Data Structure */
9212 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
9213 
9214 	/*
9215 	 * Perform some primitive sanity testing to avoid accidentally
9216 	 * writing garbage over the boot sectors.  We ought to check for
9217 	 * more but it's not worth it for now ...
9218 	 */
9219 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
9220 		CH_ERR(adap, "boot image too small/large\n");
9221 		return -EFBIG;
9222 	}
9223 
9224 #ifndef CHELSIO_T4_DIAGS
9225 	/*
9226 	 * Check BOOT ROM header signature
9227 	 */
9228 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
9229 		CH_ERR(adap, "Boot image missing signature\n");
9230 		return -EINVAL;
9231 	}
9232 
9233 	/*
9234 	 * Check PCI header signature
9235 	 */
9236 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
9237 		CH_ERR(adap, "PCI header missing signature\n");
9238 		return -EINVAL;
9239 	}
9240 
9241 	/*
9242 	 * Check Vendor ID matches Chelsio ID
9243 	 */
9244 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
9245 		CH_ERR(adap, "Vendor ID missing signature\n");
9246 		return -EINVAL;
9247 	}
9248 #endif
9249 
9250 	/*
9251 	 * Retrieve adapter's device ID
9252 	 */
9253 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
9254 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
9255 	device_id = device_id & 0xf0ff;
9256 
9257 	/*
9258 	 * Check PCIE Device ID
9259 	 */
9260 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
9261 		/*
9262 		 * Change the device ID in the Boot BIOS image to match
9263 		 * the Device ID of the current adapter.
9264 		 */
9265 		modify_device_id(device_id, boot_data);
9266 	}
9267 
9268 	/*
9269 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
9270 	 * we finish copying the rest of the boot image. This will ensure
9271 	 * that the BIOS boot header will only be written if the boot image
9272 	 * was written in full.
9273 	 */
9274 	addr = boot_sector;
9275 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
9276 		addr += SF_PAGE_SIZE;
9277 		boot_data += SF_PAGE_SIZE;
9278 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
9279 		if (ret)
9280 			goto out;
9281 	}
9282 
9283 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
9284 			     (const u8 *)header, 0);
9285 
9286 out:
9287 	if (ret)
9288 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
9289 	return ret;
9290 }
9291 
9292 /*
9293  *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
9294  *	@adapter: the adapter
9295  *
9296  *	Return the address within the flash where the OptionROM Configuration
9297  *	is stored, or an error if the device FLASH is too small to contain
9298  *	a OptionROM Configuration.
9299  */
9300 static int t4_flash_bootcfg_addr(struct adapter *adapter)
9301 {
9302 	/*
9303 	 * If the device FLASH isn't large enough to hold a Firmware
9304 	 * Configuration File, return an error.
9305 	 */
9306 	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
9307 		return -ENOSPC;
9308 
9309 	return FLASH_BOOTCFG_START;
9310 }
9311 
9312 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
9313 {
9314 	int ret, i, n, cfg_addr;
9315 	unsigned int addr;
9316 	unsigned int flash_cfg_start_sec;
9317 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9318 
9319 	cfg_addr = t4_flash_bootcfg_addr(adap);
9320 	if (cfg_addr < 0)
9321 		return cfg_addr;
9322 
9323 	addr = cfg_addr;
9324 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9325 
9326 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
9327 		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
9328 			FLASH_BOOTCFG_MAX_SIZE);
9329 		return -EFBIG;
9330 	}
9331 
9332 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
9333 			 sf_sec_size);
9334 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9335 					flash_cfg_start_sec + i - 1);
9336 
9337 	/*
9338 	 * If size == 0 then we're simply erasing the FLASH sectors associated
9339 	 * with the on-adapter OptionROM Configuration File.
9340 	 */
9341 	if (ret || size == 0)
9342 		goto out;
9343 
9344 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9345 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9346 		if ( (size - i) <  SF_PAGE_SIZE)
9347 			n = size - i;
9348 		else
9349 			n = SF_PAGE_SIZE;
9350 		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
9351 		if (ret)
9352 			goto out;
9353 
9354 		addr += SF_PAGE_SIZE;
9355 		cfg_data += SF_PAGE_SIZE;
9356 	}
9357 
9358 out:
9359 	if (ret)
9360 		CH_ERR(adap, "boot config data %s failed %d\n",
9361 				(size == 0 ? "clear" : "download"), ret);
9362 	return ret;
9363 }
9364 
9365 /**
9366  *	t4_set_filter_mode - configure the optional components of filter tuples
9367  *	@adap: the adapter
9368  *	@mode_map: a bitmap selcting which optional filter components to enable
9369  * 	@sleep_ok: if true we may sleep while awaiting command completion
9370  *
9371  *	Sets the filter mode by selecting the optional components to enable
9372  *	in filter tuples.  Returns 0 on success and a negative error if the
9373  *	requested mode needs more bits than are available for optional
9374  *	components.
9375  */
9376 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map,
9377 		       bool sleep_ok)
9378 {
9379 	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
9380 
9381 	int i, nbits = 0;
9382 
9383 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
9384 		if (mode_map & (1 << i))
9385 			nbits += width[i];
9386 	if (nbits > FILTER_OPT_LEN)
9387 		return -EINVAL;
9388 	t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok);
9389 	read_filter_mode_and_ingress_config(adap, sleep_ok);
9390 
9391 	return 0;
9392 }
9393 
9394 /**
9395  *	t4_clr_port_stats - clear port statistics
9396  *	@adap: the adapter
9397  *	@idx: the port index
9398  *
9399  *	Clear HW statistics for the given port.
9400  */
9401 void t4_clr_port_stats(struct adapter *adap, int idx)
9402 {
9403 	unsigned int i;
9404 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
9405 	u32 port_base_addr;
9406 
9407 	if (is_t4(adap))
9408 		port_base_addr = PORT_BASE(idx);
9409 	else
9410 		port_base_addr = T5_PORT_BASE(idx);
9411 
9412 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
9413 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
9414 		t4_write_reg(adap, port_base_addr + i, 0);
9415 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
9416 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
9417 		t4_write_reg(adap, port_base_addr + i, 0);
9418 	for (i = 0; i < 4; i++)
9419 		if (bgmap & (1 << i)) {
9420 			t4_write_reg(adap,
9421 			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
9422 			t4_write_reg(adap,
9423 			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
9424 		}
9425 }
9426 
9427 /**
9428  *	t4_i2c_rd - read I2C data from adapter
9429  *	@adap: the adapter
9430  *	@port: Port number if per-port device; <0 if not
9431  *	@devid: per-port device ID or absolute device ID
9432  *	@offset: byte offset into device I2C space
9433  *	@len: byte length of I2C space data
9434  *	@buf: buffer in which to return I2C data
9435  *
9436  *	Reads the I2C data from the indicated device and location.
9437  */
9438 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
9439 	      int port, unsigned int devid,
9440 	      unsigned int offset, unsigned int len,
9441 	      u8 *buf)
9442 {
9443 	u32 ldst_addrspace;
9444 	struct fw_ldst_cmd ldst;
9445 	int ret;
9446 
9447 	if (port >= 4 ||
9448 	    devid >= 256 ||
9449 	    offset >= 256 ||
9450 	    len > sizeof ldst.u.i2c.data)
9451 		return -EINVAL;
9452 
9453 	memset(&ldst, 0, sizeof ldst);
9454 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9455 	ldst.op_to_addrspace =
9456 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9457 			    F_FW_CMD_REQUEST |
9458 			    F_FW_CMD_READ |
9459 			    ldst_addrspace);
9460 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9461 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9462 	ldst.u.i2c.did = devid;
9463 	ldst.u.i2c.boffset = offset;
9464 	ldst.u.i2c.blen = len;
9465 	ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9466 	if (!ret)
9467 		memcpy(buf, ldst.u.i2c.data, len);
9468 	return ret;
9469 }
9470 
9471 /**
9472  *	t4_i2c_wr - write I2C data to adapter
9473  *	@adap: the adapter
9474  *	@port: Port number if per-port device; <0 if not
9475  *	@devid: per-port device ID or absolute device ID
9476  *	@offset: byte offset into device I2C space
9477  *	@len: byte length of I2C space data
9478  *	@buf: buffer containing new I2C data
9479  *
9480  *	Write the I2C data to the indicated device and location.
9481  */
9482 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
9483 	      int port, unsigned int devid,
9484 	      unsigned int offset, unsigned int len,
9485 	      u8 *buf)
9486 {
9487 	u32 ldst_addrspace;
9488 	struct fw_ldst_cmd ldst;
9489 
9490 	if (port >= 4 ||
9491 	    devid >= 256 ||
9492 	    offset >= 256 ||
9493 	    len > sizeof ldst.u.i2c.data)
9494 		return -EINVAL;
9495 
9496 	memset(&ldst, 0, sizeof ldst);
9497 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9498 	ldst.op_to_addrspace =
9499 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9500 			    F_FW_CMD_REQUEST |
9501 			    F_FW_CMD_WRITE |
9502 			    ldst_addrspace);
9503 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9504 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9505 	ldst.u.i2c.did = devid;
9506 	ldst.u.i2c.boffset = offset;
9507 	ldst.u.i2c.blen = len;
9508 	memcpy(ldst.u.i2c.data, buf, len);
9509 	return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9510 }
9511 
9512 /**
9513  * 	t4_sge_ctxt_rd - read an SGE context through FW
9514  * 	@adap: the adapter
9515  * 	@mbox: mailbox to use for the FW command
9516  * 	@cid: the context id
9517  * 	@ctype: the context type
9518  * 	@data: where to store the context data
9519  *
9520  * 	Issues a FW command through the given mailbox to read an SGE context.
9521  */
9522 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
9523 		   enum ctxt_type ctype, u32 *data)
9524 {
9525 	int ret;
9526 	struct fw_ldst_cmd c;
9527 
9528 	if (ctype == CTXT_EGRESS)
9529 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
9530 	else if (ctype == CTXT_INGRESS)
9531 		ret = FW_LDST_ADDRSPC_SGE_INGC;
9532 	else if (ctype == CTXT_FLM)
9533 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
9534 	else
9535 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
9536 
9537 	memset(&c, 0, sizeof(c));
9538 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9539 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
9540 					V_FW_LDST_CMD_ADDRSPACE(ret));
9541 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9542 	c.u.idctxt.physid = cpu_to_be32(cid);
9543 
9544 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9545 	if (ret == 0) {
9546 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
9547 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
9548 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
9549 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
9550 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
9551 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
9552 	}
9553 	return ret;
9554 }
9555 
9556 /**
9557  * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
9558  * 	@adap: the adapter
9559  * 	@cid: the context id
9560  * 	@ctype: the context type
9561  * 	@data: where to store the context data
9562  *
9563  * 	Reads an SGE context directly, bypassing FW.  This is only for
9564  * 	debugging when FW is unavailable.
9565  */
9566 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
9567 		      u32 *data)
9568 {
9569 	int i, ret;
9570 
9571 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
9572 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
9573 	if (!ret)
9574 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
9575 			*data++ = t4_read_reg(adap, i);
9576 	return ret;
9577 }
9578 
9579 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
9580     int sleep_ok)
9581 {
9582 	struct fw_sched_cmd cmd;
9583 
9584 	memset(&cmd, 0, sizeof(cmd));
9585 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9586 				      F_FW_CMD_REQUEST |
9587 				      F_FW_CMD_WRITE);
9588 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9589 
9590 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
9591 	cmd.u.config.type = type;
9592 	cmd.u.config.minmaxen = minmaxen;
9593 
9594 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9595 			       NULL, sleep_ok);
9596 }
9597 
9598 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
9599 		    int rateunit, int ratemode, int channel, int cl,
9600 		    int minrate, int maxrate, int weight, int pktsize,
9601 		    int sleep_ok)
9602 {
9603 	struct fw_sched_cmd cmd;
9604 
9605 	memset(&cmd, 0, sizeof(cmd));
9606 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9607 				      F_FW_CMD_REQUEST |
9608 				      F_FW_CMD_WRITE);
9609 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9610 
9611 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9612 	cmd.u.params.type = type;
9613 	cmd.u.params.level = level;
9614 	cmd.u.params.mode = mode;
9615 	cmd.u.params.ch = channel;
9616 	cmd.u.params.cl = cl;
9617 	cmd.u.params.unit = rateunit;
9618 	cmd.u.params.rate = ratemode;
9619 	cmd.u.params.min = cpu_to_be32(minrate);
9620 	cmd.u.params.max = cpu_to_be32(maxrate);
9621 	cmd.u.params.weight = cpu_to_be16(weight);
9622 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9623 
9624 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9625 			       NULL, sleep_ok);
9626 }
9627 
9628 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
9629     unsigned int maxrate, int sleep_ok)
9630 {
9631 	struct fw_sched_cmd cmd;
9632 
9633 	memset(&cmd, 0, sizeof(cmd));
9634 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9635 				      F_FW_CMD_REQUEST |
9636 				      F_FW_CMD_WRITE);
9637 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9638 
9639 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9640 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9641 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
9642 	cmd.u.params.ch = channel;
9643 	cmd.u.params.rate = ratemode;		/* REL or ABS */
9644 	cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
9645 
9646 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9647 			       NULL, sleep_ok);
9648 }
9649 
9650 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
9651     int weight, int sleep_ok)
9652 {
9653 	struct fw_sched_cmd cmd;
9654 
9655 	if (weight < 0 || weight > 100)
9656 		return -EINVAL;
9657 
9658 	memset(&cmd, 0, sizeof(cmd));
9659 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9660 				      F_FW_CMD_REQUEST |
9661 				      F_FW_CMD_WRITE);
9662 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9663 
9664 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9665 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9666 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
9667 	cmd.u.params.ch = channel;
9668 	cmd.u.params.cl = cl;
9669 	cmd.u.params.weight = cpu_to_be16(weight);
9670 
9671 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9672 			       NULL, sleep_ok);
9673 }
9674 
9675 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
9676     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
9677 {
9678 	struct fw_sched_cmd cmd;
9679 
9680 	memset(&cmd, 0, sizeof(cmd));
9681 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9682 				      F_FW_CMD_REQUEST |
9683 				      F_FW_CMD_WRITE);
9684 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9685 
9686 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9687 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9688 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
9689 	cmd.u.params.mode = mode;
9690 	cmd.u.params.ch = channel;
9691 	cmd.u.params.cl = cl;
9692 	cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
9693 	cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
9694 	cmd.u.params.max = cpu_to_be32(maxrate);
9695 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9696 
9697 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9698 			       NULL, sleep_ok);
9699 }
9700 
9701 /*
9702  *	t4_config_watchdog - configure (enable/disable) a watchdog timer
9703  *	@adapter: the adapter
9704  * 	@mbox: mailbox to use for the FW command
9705  * 	@pf: the PF owning the queue
9706  * 	@vf: the VF owning the queue
9707  *	@timeout: watchdog timeout in ms
9708  *	@action: watchdog timer / action
9709  *
9710  *	There are separate watchdog timers for each possible watchdog
9711  *	action.  Configure one of the watchdog timers by setting a non-zero
9712  *	timeout.  Disable a watchdog timer by using a timeout of zero.
9713  */
9714 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
9715 		       unsigned int pf, unsigned int vf,
9716 		       unsigned int timeout, unsigned int action)
9717 {
9718 	struct fw_watchdog_cmd wdog;
9719 	unsigned int ticks;
9720 
9721 	/*
9722 	 * The watchdog command expects a timeout in units of 10ms so we need
9723 	 * to convert it here (via rounding) and force a minimum of one 10ms
9724 	 * "tick" if the timeout is non-zero but the conversion results in 0
9725 	 * ticks.
9726 	 */
9727 	ticks = (timeout + 5)/10;
9728 	if (timeout && !ticks)
9729 		ticks = 1;
9730 
9731 	memset(&wdog, 0, sizeof wdog);
9732 	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
9733 				     F_FW_CMD_REQUEST |
9734 				     F_FW_CMD_WRITE |
9735 				     V_FW_PARAMS_CMD_PFN(pf) |
9736 				     V_FW_PARAMS_CMD_VFN(vf));
9737 	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
9738 	wdog.timeout = cpu_to_be32(ticks);
9739 	wdog.action = cpu_to_be32(action);
9740 
9741 	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
9742 }
9743 
9744 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
9745 {
9746 	struct fw_devlog_cmd devlog_cmd;
9747 	int ret;
9748 
9749 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9750 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9751 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9752 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9753 	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9754 			 sizeof(devlog_cmd), &devlog_cmd);
9755 	if (ret)
9756 		return ret;
9757 
9758 	*level = devlog_cmd.level;
9759 	return 0;
9760 }
9761 
9762 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
9763 {
9764 	struct fw_devlog_cmd devlog_cmd;
9765 
9766 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9767 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9768 					     F_FW_CMD_REQUEST |
9769 					     F_FW_CMD_WRITE);
9770 	devlog_cmd.level = level;
9771 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9772 	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9773 			  sizeof(devlog_cmd), &devlog_cmd);
9774 }
9775