xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision 8554754c7bbe3cda171378ad6305bbe8a1a94cb6)
1 /*-
2  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 
32 #include <sys/param.h>
33 #include <sys/eventhandler.h>
34 
35 #include "common.h"
36 #include "t4_regs.h"
37 #include "t4_regs_values.h"
38 #include "firmware/t4fw_interface.h"
39 
40 #undef msleep
41 #define msleep(x) do { \
42 	if (cold) \
43 		DELAY((x) * 1000); \
44 	else \
45 		pause("t4hw", (x) * hz / 1000); \
46 } while (0)
47 
48 /**
49  *	t4_wait_op_done_val - wait until an operation is completed
50  *	@adapter: the adapter performing the operation
51  *	@reg: the register to check for completion
52  *	@mask: a single-bit field within @reg that indicates completion
53  *	@polarity: the value of the field when the operation is completed
54  *	@attempts: number of check iterations
55  *	@delay: delay in usecs between iterations
56  *	@valp: where to store the value of the register at completion time
57  *
58  *	Wait until an operation is completed by checking a bit in a register
59  *	up to @attempts times.  If @valp is not NULL the value of the register
60  *	at the time it indicated completion is stored there.  Returns 0 if the
61  *	operation completes and	-EAGAIN	otherwise.
62  */
63 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
64 			       int polarity, int attempts, int delay, u32 *valp)
65 {
66 	while (1) {
67 		u32 val = t4_read_reg(adapter, reg);
68 
69 		if (!!(val & mask) == polarity) {
70 			if (valp)
71 				*valp = val;
72 			return 0;
73 		}
74 		if (--attempts == 0)
75 			return -EAGAIN;
76 		if (delay)
77 			udelay(delay);
78 	}
79 }
80 
81 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
82 				  int polarity, int attempts, int delay)
83 {
84 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
85 				   delay, NULL);
86 }
87 
88 /**
89  *	t4_set_reg_field - set a register field to a value
90  *	@adapter: the adapter to program
91  *	@addr: the register address
92  *	@mask: specifies the portion of the register to modify
93  *	@val: the new value for the register field
94  *
95  *	Sets a register field specified by the supplied mask to the
96  *	given value.
97  */
98 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
99 		      u32 val)
100 {
101 	u32 v = t4_read_reg(adapter, addr) & ~mask;
102 
103 	t4_write_reg(adapter, addr, v | val);
104 	(void) t4_read_reg(adapter, addr);      /* flush */
105 }
106 
107 /**
108  *	t4_read_indirect - read indirectly addressed registers
109  *	@adap: the adapter
110  *	@addr_reg: register holding the indirect address
111  *	@data_reg: register holding the value of the indirect register
112  *	@vals: where the read register values are stored
113  *	@nregs: how many indirect registers to read
114  *	@start_idx: index of first indirect register to read
115  *
116  *	Reads registers that are accessed indirectly through an address/data
117  *	register pair.
118  */
119 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
120 			     unsigned int data_reg, u32 *vals,
121 			     unsigned int nregs, unsigned int start_idx)
122 {
123 	while (nregs--) {
124 		t4_write_reg(adap, addr_reg, start_idx);
125 		*vals++ = t4_read_reg(adap, data_reg);
126 		start_idx++;
127 	}
128 }
129 
130 /**
131  *	t4_write_indirect - write indirectly addressed registers
132  *	@adap: the adapter
133  *	@addr_reg: register holding the indirect addresses
134  *	@data_reg: register holding the value for the indirect registers
135  *	@vals: values to write
136  *	@nregs: how many indirect registers to write
137  *	@start_idx: address of first indirect register to write
138  *
139  *	Writes a sequential block of registers that are accessed indirectly
140  *	through an address/data register pair.
141  */
142 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
143 		       unsigned int data_reg, const u32 *vals,
144 		       unsigned int nregs, unsigned int start_idx)
145 {
146 	while (nregs--) {
147 		t4_write_reg(adap, addr_reg, start_idx++);
148 		t4_write_reg(adap, data_reg, *vals++);
149 	}
150 }
151 
152 /*
153  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
154  * mechanism.  This guarantees that we get the real value even if we're
155  * operating within a Virtual Machine and the Hypervisor is trapping our
156  * Configuration Space accesses.
157  *
158  * N.B. This routine should only be used as a last resort: the firmware uses
159  *      the backdoor registers on a regular basis and we can end up
160  *      conflicting with it's uses!
161  */
162 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
163 {
164 	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
165 	u32 val;
166 
167 	if (chip_id(adap) <= CHELSIO_T5)
168 		req |= F_ENABLE;
169 	else
170 		req |= F_T6_ENABLE;
171 
172 	if (is_t4(adap))
173 		req |= F_LOCALCFG;
174 
175 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
176 	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
177 
178 	/*
179 	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
180 	 * Configuration Space read.  (None of the other fields matter when
181 	 * F_ENABLE is 0 so a simple register write is easier than a
182 	 * read-modify-write via t4_set_reg_field().)
183 	 */
184 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
185 
186 	return val;
187 }
188 
189 /*
190  * t4_report_fw_error - report firmware error
191  * @adap: the adapter
192  *
193  * The adapter firmware can indicate error conditions to the host.
194  * If the firmware has indicated an error, print out the reason for
195  * the firmware error.
196  */
197 static void t4_report_fw_error(struct adapter *adap)
198 {
199 	static const char *const reason[] = {
200 		"Crash",			/* PCIE_FW_EVAL_CRASH */
201 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
202 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
203 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
204 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
205 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
206 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
207 		"Reserved",			/* reserved */
208 	};
209 	u32 pcie_fw;
210 
211 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
212 	if (pcie_fw & F_PCIE_FW_ERR)
213 		CH_ERR(adap, "Firmware reports adapter error: %s\n",
214 			reason[G_PCIE_FW_EVAL(pcie_fw)]);
215 }
216 
217 /*
218  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
219  */
220 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
221 			 u32 mbox_addr)
222 {
223 	for ( ; nflit; nflit--, mbox_addr += 8)
224 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
225 }
226 
227 /*
228  * Handle a FW assertion reported in a mailbox.
229  */
230 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
231 {
232 	CH_ALERT(adap,
233 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
234 		  asrt->u.assert.filename_0_7,
235 		  be32_to_cpu(asrt->u.assert.line),
236 		  be32_to_cpu(asrt->u.assert.x),
237 		  be32_to_cpu(asrt->u.assert.y));
238 }
239 
240 #define X_CIM_PF_NOACCESS 0xeeeeeeee
241 /**
242  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
243  *	@adap: the adapter
244  *	@mbox: index of the mailbox to use
245  *	@cmd: the command to write
246  *	@size: command length in bytes
247  *	@rpl: where to optionally store the reply
248  *	@sleep_ok: if true we may sleep while awaiting command completion
249  *	@timeout: time to wait for command to finish before timing out
250  *		(negative implies @sleep_ok=false)
251  *
252  *	Sends the given command to FW through the selected mailbox and waits
253  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
254  *	store the FW's reply to the command.  The command and its optional
255  *	reply are of the same length.  Some FW commands like RESET and
256  *	INITIALIZE can take a considerable amount of time to execute.
257  *	@sleep_ok determines whether we may sleep while awaiting the response.
258  *	If sleeping is allowed we use progressive backoff otherwise we spin.
259  *	Note that passing in a negative @timeout is an alternate mechanism
260  *	for specifying @sleep_ok=false.  This is useful when a higher level
261  *	interface allows for specification of @timeout but not @sleep_ok ...
262  *
263  *	The return value is 0 on success or a negative errno on failure.  A
264  *	failure can happen either because we are not able to execute the
265  *	command or FW executes it but signals an error.  In the latter case
266  *	the return value is the error code indicated by FW (negated).
267  */
268 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
269 			    int size, void *rpl, bool sleep_ok, int timeout)
270 {
271 	/*
272 	 * We delay in small increments at first in an effort to maintain
273 	 * responsiveness for simple, fast executing commands but then back
274 	 * off to larger delays to a maximum retry delay.
275 	 */
276 	static const int delay[] = {
277 		1, 1, 3, 5, 10, 10, 20, 50, 100
278 	};
279 	u32 v;
280 	u64 res;
281 	int i, ms, delay_idx, ret;
282 	const __be64 *p = cmd;
283 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
284 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
285 	u32 ctl;
286 	__be64 cmd_rpl[MBOX_LEN/8];
287 	u32 pcie_fw;
288 
289 	if ((size & 15) || size > MBOX_LEN)
290 		return -EINVAL;
291 
292 	if (adap->flags & IS_VF) {
293 		if (is_t6(adap))
294 			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
295 		else
296 			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
297 		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
298 	}
299 
300 	/*
301 	 * If we have a negative timeout, that implies that we can't sleep.
302 	 */
303 	if (timeout < 0) {
304 		sleep_ok = false;
305 		timeout = -timeout;
306 	}
307 
308 	/*
309 	 * Attempt to gain access to the mailbox.
310 	 */
311 	for (i = 0; i < 4; i++) {
312 		ctl = t4_read_reg(adap, ctl_reg);
313 		v = G_MBOWNER(ctl);
314 		if (v != X_MBOWNER_NONE)
315 			break;
316 	}
317 
318 	/*
319 	 * If we were unable to gain access, dequeue ourselves from the
320 	 * mailbox atomic access list and report the error to our caller.
321 	 */
322 	if (v != X_MBOWNER_PL) {
323 		t4_report_fw_error(adap);
324 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
325 		return ret;
326 	}
327 
328 	/*
329 	 * If we gain ownership of the mailbox and there's a "valid" message
330 	 * in it, this is likely an asynchronous error message from the
331 	 * firmware.  So we'll report that and then proceed on with attempting
332 	 * to issue our own command ... which may well fail if the error
333 	 * presaged the firmware crashing ...
334 	 */
335 	if (ctl & F_MBMSGVALID) {
336 		CH_ERR(adap, "found VALID command in mbox %u: "
337 		       "%llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
338 		       (unsigned long long)t4_read_reg64(adap, data_reg),
339 		       (unsigned long long)t4_read_reg64(adap, data_reg + 8),
340 		       (unsigned long long)t4_read_reg64(adap, data_reg + 16),
341 		       (unsigned long long)t4_read_reg64(adap, data_reg + 24),
342 		       (unsigned long long)t4_read_reg64(adap, data_reg + 32),
343 		       (unsigned long long)t4_read_reg64(adap, data_reg + 40),
344 		       (unsigned long long)t4_read_reg64(adap, data_reg + 48),
345 		       (unsigned long long)t4_read_reg64(adap, data_reg + 56));
346 	}
347 
348 	/*
349 	 * Copy in the new mailbox command and send it on its way ...
350 	 */
351 	for (i = 0; i < size; i += 8, p++)
352 		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
353 
354 	if (adap->flags & IS_VF) {
355 		/*
356 		 * For the VFs, the Mailbox Data "registers" are
357 		 * actually backed by T4's "MA" interface rather than
358 		 * PL Registers (as is the case for the PFs).  Because
359 		 * these are in different coherency domains, the write
360 		 * to the VF's PL-register-backed Mailbox Control can
361 		 * race in front of the writes to the MA-backed VF
362 		 * Mailbox Data "registers".  So we need to do a
363 		 * read-back on at least one byte of the VF Mailbox
364 		 * Data registers before doing the write to the VF
365 		 * Mailbox Control register.
366 		 */
367 		t4_read_reg(adap, data_reg);
368 	}
369 
370 	CH_DUMP_MBOX(adap, mbox, data_reg);
371 
372 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
373 	t4_read_reg(adap, ctl_reg);	/* flush write */
374 
375 	delay_idx = 0;
376 	ms = delay[0];
377 
378 	/*
379 	 * Loop waiting for the reply; bail out if we time out or the firmware
380 	 * reports an error.
381 	 */
382 	pcie_fw = 0;
383 	for (i = 0; i < timeout; i += ms) {
384 		if (!(adap->flags & IS_VF)) {
385 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
386 			if (pcie_fw & F_PCIE_FW_ERR)
387 				break;
388 		}
389 		if (sleep_ok) {
390 			ms = delay[delay_idx];  /* last element may repeat */
391 			if (delay_idx < ARRAY_SIZE(delay) - 1)
392 				delay_idx++;
393 			msleep(ms);
394 		} else {
395 			mdelay(ms);
396 		}
397 
398 		v = t4_read_reg(adap, ctl_reg);
399 		if (v == X_CIM_PF_NOACCESS)
400 			continue;
401 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
402 			if (!(v & F_MBMSGVALID)) {
403 				t4_write_reg(adap, ctl_reg,
404 					     V_MBOWNER(X_MBOWNER_NONE));
405 				continue;
406 			}
407 
408 			/*
409 			 * Retrieve the command reply and release the mailbox.
410 			 */
411 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
412 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
413 
414 			CH_DUMP_MBOX(adap, mbox, data_reg);
415 
416 			res = be64_to_cpu(cmd_rpl[0]);
417 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
418 				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
419 				res = V_FW_CMD_RETVAL(EIO);
420 			} else if (rpl)
421 				memcpy(rpl, cmd_rpl, size);
422 			return -G_FW_CMD_RETVAL((int)res);
423 		}
424 	}
425 
426 	/*
427 	 * We timed out waiting for a reply to our mailbox command.  Report
428 	 * the error and also check to see if the firmware reported any
429 	 * errors ...
430 	 */
431 	ret = (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT;
432 	CH_ERR(adap, "command %#x in mailbox %d timed out\n",
433 	       *(const u8 *)cmd, mbox);
434 
435 	/* If DUMP_MBOX is set the mbox has already been dumped */
436 	if ((adap->debug_flags & DF_DUMP_MBOX) == 0) {
437 		p = cmd;
438 		CH_ERR(adap, "mbox: %016llx %016llx %016llx %016llx "
439 		    "%016llx %016llx %016llx %016llx\n",
440 		    (unsigned long long)be64_to_cpu(p[0]),
441 		    (unsigned long long)be64_to_cpu(p[1]),
442 		    (unsigned long long)be64_to_cpu(p[2]),
443 		    (unsigned long long)be64_to_cpu(p[3]),
444 		    (unsigned long long)be64_to_cpu(p[4]),
445 		    (unsigned long long)be64_to_cpu(p[5]),
446 		    (unsigned long long)be64_to_cpu(p[6]),
447 		    (unsigned long long)be64_to_cpu(p[7]));
448 	}
449 
450 	t4_report_fw_error(adap);
451 	t4_fatal_err(adap);
452 	return ret;
453 }
454 
455 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
456 		    void *rpl, bool sleep_ok)
457 {
458 		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
459 					       sleep_ok, FW_CMD_MAX_TIMEOUT);
460 
461 }
462 
463 static int t4_edc_err_read(struct adapter *adap, int idx)
464 {
465 	u32 edc_ecc_err_addr_reg;
466 	u32 edc_bist_status_rdata_reg;
467 
468 	if (is_t4(adap)) {
469 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
470 		return 0;
471 	}
472 	if (idx != 0 && idx != 1) {
473 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
474 		return 0;
475 	}
476 
477 	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
478 	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
479 
480 	CH_WARN(adap,
481 		"edc%d err addr 0x%x: 0x%x.\n",
482 		idx, edc_ecc_err_addr_reg,
483 		t4_read_reg(adap, edc_ecc_err_addr_reg));
484 	CH_WARN(adap,
485 	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
486 		edc_bist_status_rdata_reg,
487 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
488 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
489 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
490 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
491 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
492 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
493 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
494 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
495 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
496 
497 	return 0;
498 }
499 
500 /**
501  *	t4_mc_read - read from MC through backdoor accesses
502  *	@adap: the adapter
503  *	@idx: which MC to access
504  *	@addr: address of first byte requested
505  *	@data: 64 bytes of data containing the requested address
506  *	@ecc: where to store the corresponding 64-bit ECC word
507  *
508  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
509  *	that covers the requested address @addr.  If @parity is not %NULL it
510  *	is assigned the 64-bit ECC word for the read data.
511  */
512 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
513 {
514 	int i;
515 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
516 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
517 
518 	if (is_t4(adap)) {
519 		mc_bist_cmd_reg = A_MC_BIST_CMD;
520 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
521 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
522 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
523 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
524 	} else {
525 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
526 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
527 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
528 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
529 						  idx);
530 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
531 						  idx);
532 	}
533 
534 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
535 		return -EBUSY;
536 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
537 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
538 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
539 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
540 		     F_START_BIST | V_BIST_CMD_GAP(1));
541 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
542 	if (i)
543 		return i;
544 
545 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
546 
547 	for (i = 15; i >= 0; i--)
548 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
549 	if (ecc)
550 		*ecc = t4_read_reg64(adap, MC_DATA(16));
551 #undef MC_DATA
552 	return 0;
553 }
554 
555 /**
556  *	t4_edc_read - read from EDC through backdoor accesses
557  *	@adap: the adapter
558  *	@idx: which EDC to access
559  *	@addr: address of first byte requested
560  *	@data: 64 bytes of data containing the requested address
561  *	@ecc: where to store the corresponding 64-bit ECC word
562  *
563  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
564  *	that covers the requested address @addr.  If @parity is not %NULL it
565  *	is assigned the 64-bit ECC word for the read data.
566  */
567 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
568 {
569 	int i;
570 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
571 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
572 
573 	if (is_t4(adap)) {
574 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
575 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
576 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
577 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
578 						    idx);
579 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
580 						    idx);
581 	} else {
582 /*
583  * These macro are missing in t4_regs.h file.
584  * Added temporarily for testing.
585  */
586 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
587 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
588 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
589 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
590 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
591 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
592 						    idx);
593 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
594 						    idx);
595 #undef EDC_REG_T5
596 #undef EDC_STRIDE_T5
597 	}
598 
599 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
600 		return -EBUSY;
601 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
602 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
603 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
604 	t4_write_reg(adap, edc_bist_cmd_reg,
605 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
606 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
607 	if (i)
608 		return i;
609 
610 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
611 
612 	for (i = 15; i >= 0; i--)
613 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
614 	if (ecc)
615 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
616 #undef EDC_DATA
617 	return 0;
618 }
619 
620 /**
621  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
622  *	@adap: the adapter
623  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
624  *	@addr: address within indicated memory type
625  *	@len: amount of memory to read
626  *	@buf: host memory buffer
627  *
628  *	Reads an [almost] arbitrary memory region in the firmware: the
629  *	firmware memory address, length and host buffer must be aligned on
630  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
631  *	the firmware's memory.  If this memory contains data structures which
632  *	contain multi-byte integers, it's the callers responsibility to
633  *	perform appropriate byte order conversions.
634  */
635 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
636 		__be32 *buf)
637 {
638 	u32 pos, start, end, offset;
639 	int ret;
640 
641 	/*
642 	 * Argument sanity checks ...
643 	 */
644 	if ((addr & 0x3) || (len & 0x3))
645 		return -EINVAL;
646 
647 	/*
648 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
649 	 * need to round down the start and round up the end.  We'll start
650 	 * copying out of the first line at (addr - start) a word at a time.
651 	 */
652 	start = rounddown2(addr, 64);
653 	end = roundup2(addr + len, 64);
654 	offset = (addr - start)/sizeof(__be32);
655 
656 	for (pos = start; pos < end; pos += 64, offset = 0) {
657 		__be32 data[16];
658 
659 		/*
660 		 * Read the chip's memory block and bail if there's an error.
661 		 */
662 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
663 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
664 		else
665 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
666 		if (ret)
667 			return ret;
668 
669 		/*
670 		 * Copy the data into the caller's memory buffer.
671 		 */
672 		while (offset < 16 && len > 0) {
673 			*buf++ = data[offset++];
674 			len -= sizeof(__be32);
675 		}
676 	}
677 
678 	return 0;
679 }
680 
681 /*
682  * Return the specified PCI-E Configuration Space register from our Physical
683  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
684  * since we prefer to let the firmware own all of these registers, but if that
685  * fails we go for it directly ourselves.
686  */
687 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
688 {
689 
690 	/*
691 	 * If fw_attach != 0, construct and send the Firmware LDST Command to
692 	 * retrieve the specified PCI-E Configuration Space register.
693 	 */
694 	if (drv_fw_attach != 0) {
695 		struct fw_ldst_cmd ldst_cmd;
696 		int ret;
697 
698 		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
699 		ldst_cmd.op_to_addrspace =
700 			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
701 				    F_FW_CMD_REQUEST |
702 				    F_FW_CMD_READ |
703 				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
704 		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
705 		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
706 		ldst_cmd.u.pcie.ctrl_to_fn =
707 			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
708 		ldst_cmd.u.pcie.r = reg;
709 
710 		/*
711 		 * If the LDST Command succeeds, return the result, otherwise
712 		 * fall through to reading it directly ourselves ...
713 		 */
714 		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
715 				 &ldst_cmd);
716 		if (ret == 0)
717 			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
718 
719 		CH_WARN(adap, "Firmware failed to return "
720 			"Configuration Space register %d, err = %d\n",
721 			reg, -ret);
722 	}
723 
724 	/*
725 	 * Read the desired Configuration Space register via the PCI-E
726 	 * Backdoor mechanism.
727 	 */
728 	return t4_hw_pci_read_cfg4(adap, reg);
729 }
730 
731 /**
732  *	t4_get_regs_len - return the size of the chips register set
733  *	@adapter: the adapter
734  *
735  *	Returns the size of the chip's BAR0 register space.
736  */
737 unsigned int t4_get_regs_len(struct adapter *adapter)
738 {
739 	unsigned int chip_version = chip_id(adapter);
740 
741 	switch (chip_version) {
742 	case CHELSIO_T4:
743 		if (adapter->flags & IS_VF)
744 			return FW_T4VF_REGMAP_SIZE;
745 		return T4_REGMAP_SIZE;
746 
747 	case CHELSIO_T5:
748 	case CHELSIO_T6:
749 		if (adapter->flags & IS_VF)
750 			return FW_T4VF_REGMAP_SIZE;
751 		return T5_REGMAP_SIZE;
752 	}
753 
754 	CH_ERR(adapter,
755 		"Unsupported chip version %d\n", chip_version);
756 	return 0;
757 }
758 
759 /**
760  *	t4_get_regs - read chip registers into provided buffer
761  *	@adap: the adapter
762  *	@buf: register buffer
763  *	@buf_size: size (in bytes) of register buffer
764  *
765  *	If the provided register buffer isn't large enough for the chip's
766  *	full register range, the register dump will be truncated to the
767  *	register buffer's size.
768  */
769 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
770 {
771 	static const unsigned int t4_reg_ranges[] = {
772 		0x1008, 0x1108,
773 		0x1180, 0x1184,
774 		0x1190, 0x1194,
775 		0x11a0, 0x11a4,
776 		0x11b0, 0x11b4,
777 		0x11fc, 0x123c,
778 		0x1300, 0x173c,
779 		0x1800, 0x18fc,
780 		0x3000, 0x30d8,
781 		0x30e0, 0x30e4,
782 		0x30ec, 0x5910,
783 		0x5920, 0x5924,
784 		0x5960, 0x5960,
785 		0x5968, 0x5968,
786 		0x5970, 0x5970,
787 		0x5978, 0x5978,
788 		0x5980, 0x5980,
789 		0x5988, 0x5988,
790 		0x5990, 0x5990,
791 		0x5998, 0x5998,
792 		0x59a0, 0x59d4,
793 		0x5a00, 0x5ae0,
794 		0x5ae8, 0x5ae8,
795 		0x5af0, 0x5af0,
796 		0x5af8, 0x5af8,
797 		0x6000, 0x6098,
798 		0x6100, 0x6150,
799 		0x6200, 0x6208,
800 		0x6240, 0x6248,
801 		0x6280, 0x62b0,
802 		0x62c0, 0x6338,
803 		0x6370, 0x638c,
804 		0x6400, 0x643c,
805 		0x6500, 0x6524,
806 		0x6a00, 0x6a04,
807 		0x6a14, 0x6a38,
808 		0x6a60, 0x6a70,
809 		0x6a78, 0x6a78,
810 		0x6b00, 0x6b0c,
811 		0x6b1c, 0x6b84,
812 		0x6bf0, 0x6bf8,
813 		0x6c00, 0x6c0c,
814 		0x6c1c, 0x6c84,
815 		0x6cf0, 0x6cf8,
816 		0x6d00, 0x6d0c,
817 		0x6d1c, 0x6d84,
818 		0x6df0, 0x6df8,
819 		0x6e00, 0x6e0c,
820 		0x6e1c, 0x6e84,
821 		0x6ef0, 0x6ef8,
822 		0x6f00, 0x6f0c,
823 		0x6f1c, 0x6f84,
824 		0x6ff0, 0x6ff8,
825 		0x7000, 0x700c,
826 		0x701c, 0x7084,
827 		0x70f0, 0x70f8,
828 		0x7100, 0x710c,
829 		0x711c, 0x7184,
830 		0x71f0, 0x71f8,
831 		0x7200, 0x720c,
832 		0x721c, 0x7284,
833 		0x72f0, 0x72f8,
834 		0x7300, 0x730c,
835 		0x731c, 0x7384,
836 		0x73f0, 0x73f8,
837 		0x7400, 0x7450,
838 		0x7500, 0x7530,
839 		0x7600, 0x760c,
840 		0x7614, 0x761c,
841 		0x7680, 0x76cc,
842 		0x7700, 0x7798,
843 		0x77c0, 0x77fc,
844 		0x7900, 0x79fc,
845 		0x7b00, 0x7b58,
846 		0x7b60, 0x7b84,
847 		0x7b8c, 0x7c38,
848 		0x7d00, 0x7d38,
849 		0x7d40, 0x7d80,
850 		0x7d8c, 0x7ddc,
851 		0x7de4, 0x7e04,
852 		0x7e10, 0x7e1c,
853 		0x7e24, 0x7e38,
854 		0x7e40, 0x7e44,
855 		0x7e4c, 0x7e78,
856 		0x7e80, 0x7ea4,
857 		0x7eac, 0x7edc,
858 		0x7ee8, 0x7efc,
859 		0x8dc0, 0x8e04,
860 		0x8e10, 0x8e1c,
861 		0x8e30, 0x8e78,
862 		0x8ea0, 0x8eb8,
863 		0x8ec0, 0x8f6c,
864 		0x8fc0, 0x9008,
865 		0x9010, 0x9058,
866 		0x9060, 0x9060,
867 		0x9068, 0x9074,
868 		0x90fc, 0x90fc,
869 		0x9400, 0x9408,
870 		0x9410, 0x9458,
871 		0x9600, 0x9600,
872 		0x9608, 0x9638,
873 		0x9640, 0x96bc,
874 		0x9800, 0x9808,
875 		0x9820, 0x983c,
876 		0x9850, 0x9864,
877 		0x9c00, 0x9c6c,
878 		0x9c80, 0x9cec,
879 		0x9d00, 0x9d6c,
880 		0x9d80, 0x9dec,
881 		0x9e00, 0x9e6c,
882 		0x9e80, 0x9eec,
883 		0x9f00, 0x9f6c,
884 		0x9f80, 0x9fec,
885 		0xd004, 0xd004,
886 		0xd010, 0xd03c,
887 		0xdfc0, 0xdfe0,
888 		0xe000, 0xea7c,
889 		0xf000, 0x11190,
890 		0x19040, 0x1906c,
891 		0x19078, 0x19080,
892 		0x1908c, 0x190e4,
893 		0x190f0, 0x190f8,
894 		0x19100, 0x19110,
895 		0x19120, 0x19124,
896 		0x19150, 0x19194,
897 		0x1919c, 0x191b0,
898 		0x191d0, 0x191e8,
899 		0x19238, 0x1924c,
900 		0x193f8, 0x1943c,
901 		0x1944c, 0x19474,
902 		0x19490, 0x194e0,
903 		0x194f0, 0x194f8,
904 		0x19800, 0x19c08,
905 		0x19c10, 0x19c90,
906 		0x19ca0, 0x19ce4,
907 		0x19cf0, 0x19d40,
908 		0x19d50, 0x19d94,
909 		0x19da0, 0x19de8,
910 		0x19df0, 0x19e40,
911 		0x19e50, 0x19e90,
912 		0x19ea0, 0x19f4c,
913 		0x1a000, 0x1a004,
914 		0x1a010, 0x1a06c,
915 		0x1a0b0, 0x1a0e4,
916 		0x1a0ec, 0x1a0f4,
917 		0x1a100, 0x1a108,
918 		0x1a114, 0x1a120,
919 		0x1a128, 0x1a130,
920 		0x1a138, 0x1a138,
921 		0x1a190, 0x1a1c4,
922 		0x1a1fc, 0x1a1fc,
923 		0x1e040, 0x1e04c,
924 		0x1e284, 0x1e28c,
925 		0x1e2c0, 0x1e2c0,
926 		0x1e2e0, 0x1e2e0,
927 		0x1e300, 0x1e384,
928 		0x1e3c0, 0x1e3c8,
929 		0x1e440, 0x1e44c,
930 		0x1e684, 0x1e68c,
931 		0x1e6c0, 0x1e6c0,
932 		0x1e6e0, 0x1e6e0,
933 		0x1e700, 0x1e784,
934 		0x1e7c0, 0x1e7c8,
935 		0x1e840, 0x1e84c,
936 		0x1ea84, 0x1ea8c,
937 		0x1eac0, 0x1eac0,
938 		0x1eae0, 0x1eae0,
939 		0x1eb00, 0x1eb84,
940 		0x1ebc0, 0x1ebc8,
941 		0x1ec40, 0x1ec4c,
942 		0x1ee84, 0x1ee8c,
943 		0x1eec0, 0x1eec0,
944 		0x1eee0, 0x1eee0,
945 		0x1ef00, 0x1ef84,
946 		0x1efc0, 0x1efc8,
947 		0x1f040, 0x1f04c,
948 		0x1f284, 0x1f28c,
949 		0x1f2c0, 0x1f2c0,
950 		0x1f2e0, 0x1f2e0,
951 		0x1f300, 0x1f384,
952 		0x1f3c0, 0x1f3c8,
953 		0x1f440, 0x1f44c,
954 		0x1f684, 0x1f68c,
955 		0x1f6c0, 0x1f6c0,
956 		0x1f6e0, 0x1f6e0,
957 		0x1f700, 0x1f784,
958 		0x1f7c0, 0x1f7c8,
959 		0x1f840, 0x1f84c,
960 		0x1fa84, 0x1fa8c,
961 		0x1fac0, 0x1fac0,
962 		0x1fae0, 0x1fae0,
963 		0x1fb00, 0x1fb84,
964 		0x1fbc0, 0x1fbc8,
965 		0x1fc40, 0x1fc4c,
966 		0x1fe84, 0x1fe8c,
967 		0x1fec0, 0x1fec0,
968 		0x1fee0, 0x1fee0,
969 		0x1ff00, 0x1ff84,
970 		0x1ffc0, 0x1ffc8,
971 		0x20000, 0x2002c,
972 		0x20100, 0x2013c,
973 		0x20190, 0x201a0,
974 		0x201a8, 0x201b8,
975 		0x201c4, 0x201c8,
976 		0x20200, 0x20318,
977 		0x20400, 0x204b4,
978 		0x204c0, 0x20528,
979 		0x20540, 0x20614,
980 		0x21000, 0x21040,
981 		0x2104c, 0x21060,
982 		0x210c0, 0x210ec,
983 		0x21200, 0x21268,
984 		0x21270, 0x21284,
985 		0x212fc, 0x21388,
986 		0x21400, 0x21404,
987 		0x21500, 0x21500,
988 		0x21510, 0x21518,
989 		0x2152c, 0x21530,
990 		0x2153c, 0x2153c,
991 		0x21550, 0x21554,
992 		0x21600, 0x21600,
993 		0x21608, 0x2161c,
994 		0x21624, 0x21628,
995 		0x21630, 0x21634,
996 		0x2163c, 0x2163c,
997 		0x21700, 0x2171c,
998 		0x21780, 0x2178c,
999 		0x21800, 0x21818,
1000 		0x21820, 0x21828,
1001 		0x21830, 0x21848,
1002 		0x21850, 0x21854,
1003 		0x21860, 0x21868,
1004 		0x21870, 0x21870,
1005 		0x21878, 0x21898,
1006 		0x218a0, 0x218a8,
1007 		0x218b0, 0x218c8,
1008 		0x218d0, 0x218d4,
1009 		0x218e0, 0x218e8,
1010 		0x218f0, 0x218f0,
1011 		0x218f8, 0x21a18,
1012 		0x21a20, 0x21a28,
1013 		0x21a30, 0x21a48,
1014 		0x21a50, 0x21a54,
1015 		0x21a60, 0x21a68,
1016 		0x21a70, 0x21a70,
1017 		0x21a78, 0x21a98,
1018 		0x21aa0, 0x21aa8,
1019 		0x21ab0, 0x21ac8,
1020 		0x21ad0, 0x21ad4,
1021 		0x21ae0, 0x21ae8,
1022 		0x21af0, 0x21af0,
1023 		0x21af8, 0x21c18,
1024 		0x21c20, 0x21c20,
1025 		0x21c28, 0x21c30,
1026 		0x21c38, 0x21c38,
1027 		0x21c80, 0x21c98,
1028 		0x21ca0, 0x21ca8,
1029 		0x21cb0, 0x21cc8,
1030 		0x21cd0, 0x21cd4,
1031 		0x21ce0, 0x21ce8,
1032 		0x21cf0, 0x21cf0,
1033 		0x21cf8, 0x21d7c,
1034 		0x21e00, 0x21e04,
1035 		0x22000, 0x2202c,
1036 		0x22100, 0x2213c,
1037 		0x22190, 0x221a0,
1038 		0x221a8, 0x221b8,
1039 		0x221c4, 0x221c8,
1040 		0x22200, 0x22318,
1041 		0x22400, 0x224b4,
1042 		0x224c0, 0x22528,
1043 		0x22540, 0x22614,
1044 		0x23000, 0x23040,
1045 		0x2304c, 0x23060,
1046 		0x230c0, 0x230ec,
1047 		0x23200, 0x23268,
1048 		0x23270, 0x23284,
1049 		0x232fc, 0x23388,
1050 		0x23400, 0x23404,
1051 		0x23500, 0x23500,
1052 		0x23510, 0x23518,
1053 		0x2352c, 0x23530,
1054 		0x2353c, 0x2353c,
1055 		0x23550, 0x23554,
1056 		0x23600, 0x23600,
1057 		0x23608, 0x2361c,
1058 		0x23624, 0x23628,
1059 		0x23630, 0x23634,
1060 		0x2363c, 0x2363c,
1061 		0x23700, 0x2371c,
1062 		0x23780, 0x2378c,
1063 		0x23800, 0x23818,
1064 		0x23820, 0x23828,
1065 		0x23830, 0x23848,
1066 		0x23850, 0x23854,
1067 		0x23860, 0x23868,
1068 		0x23870, 0x23870,
1069 		0x23878, 0x23898,
1070 		0x238a0, 0x238a8,
1071 		0x238b0, 0x238c8,
1072 		0x238d0, 0x238d4,
1073 		0x238e0, 0x238e8,
1074 		0x238f0, 0x238f0,
1075 		0x238f8, 0x23a18,
1076 		0x23a20, 0x23a28,
1077 		0x23a30, 0x23a48,
1078 		0x23a50, 0x23a54,
1079 		0x23a60, 0x23a68,
1080 		0x23a70, 0x23a70,
1081 		0x23a78, 0x23a98,
1082 		0x23aa0, 0x23aa8,
1083 		0x23ab0, 0x23ac8,
1084 		0x23ad0, 0x23ad4,
1085 		0x23ae0, 0x23ae8,
1086 		0x23af0, 0x23af0,
1087 		0x23af8, 0x23c18,
1088 		0x23c20, 0x23c20,
1089 		0x23c28, 0x23c30,
1090 		0x23c38, 0x23c38,
1091 		0x23c80, 0x23c98,
1092 		0x23ca0, 0x23ca8,
1093 		0x23cb0, 0x23cc8,
1094 		0x23cd0, 0x23cd4,
1095 		0x23ce0, 0x23ce8,
1096 		0x23cf0, 0x23cf0,
1097 		0x23cf8, 0x23d7c,
1098 		0x23e00, 0x23e04,
1099 		0x24000, 0x2402c,
1100 		0x24100, 0x2413c,
1101 		0x24190, 0x241a0,
1102 		0x241a8, 0x241b8,
1103 		0x241c4, 0x241c8,
1104 		0x24200, 0x24318,
1105 		0x24400, 0x244b4,
1106 		0x244c0, 0x24528,
1107 		0x24540, 0x24614,
1108 		0x25000, 0x25040,
1109 		0x2504c, 0x25060,
1110 		0x250c0, 0x250ec,
1111 		0x25200, 0x25268,
1112 		0x25270, 0x25284,
1113 		0x252fc, 0x25388,
1114 		0x25400, 0x25404,
1115 		0x25500, 0x25500,
1116 		0x25510, 0x25518,
1117 		0x2552c, 0x25530,
1118 		0x2553c, 0x2553c,
1119 		0x25550, 0x25554,
1120 		0x25600, 0x25600,
1121 		0x25608, 0x2561c,
1122 		0x25624, 0x25628,
1123 		0x25630, 0x25634,
1124 		0x2563c, 0x2563c,
1125 		0x25700, 0x2571c,
1126 		0x25780, 0x2578c,
1127 		0x25800, 0x25818,
1128 		0x25820, 0x25828,
1129 		0x25830, 0x25848,
1130 		0x25850, 0x25854,
1131 		0x25860, 0x25868,
1132 		0x25870, 0x25870,
1133 		0x25878, 0x25898,
1134 		0x258a0, 0x258a8,
1135 		0x258b0, 0x258c8,
1136 		0x258d0, 0x258d4,
1137 		0x258e0, 0x258e8,
1138 		0x258f0, 0x258f0,
1139 		0x258f8, 0x25a18,
1140 		0x25a20, 0x25a28,
1141 		0x25a30, 0x25a48,
1142 		0x25a50, 0x25a54,
1143 		0x25a60, 0x25a68,
1144 		0x25a70, 0x25a70,
1145 		0x25a78, 0x25a98,
1146 		0x25aa0, 0x25aa8,
1147 		0x25ab0, 0x25ac8,
1148 		0x25ad0, 0x25ad4,
1149 		0x25ae0, 0x25ae8,
1150 		0x25af0, 0x25af0,
1151 		0x25af8, 0x25c18,
1152 		0x25c20, 0x25c20,
1153 		0x25c28, 0x25c30,
1154 		0x25c38, 0x25c38,
1155 		0x25c80, 0x25c98,
1156 		0x25ca0, 0x25ca8,
1157 		0x25cb0, 0x25cc8,
1158 		0x25cd0, 0x25cd4,
1159 		0x25ce0, 0x25ce8,
1160 		0x25cf0, 0x25cf0,
1161 		0x25cf8, 0x25d7c,
1162 		0x25e00, 0x25e04,
1163 		0x26000, 0x2602c,
1164 		0x26100, 0x2613c,
1165 		0x26190, 0x261a0,
1166 		0x261a8, 0x261b8,
1167 		0x261c4, 0x261c8,
1168 		0x26200, 0x26318,
1169 		0x26400, 0x264b4,
1170 		0x264c0, 0x26528,
1171 		0x26540, 0x26614,
1172 		0x27000, 0x27040,
1173 		0x2704c, 0x27060,
1174 		0x270c0, 0x270ec,
1175 		0x27200, 0x27268,
1176 		0x27270, 0x27284,
1177 		0x272fc, 0x27388,
1178 		0x27400, 0x27404,
1179 		0x27500, 0x27500,
1180 		0x27510, 0x27518,
1181 		0x2752c, 0x27530,
1182 		0x2753c, 0x2753c,
1183 		0x27550, 0x27554,
1184 		0x27600, 0x27600,
1185 		0x27608, 0x2761c,
1186 		0x27624, 0x27628,
1187 		0x27630, 0x27634,
1188 		0x2763c, 0x2763c,
1189 		0x27700, 0x2771c,
1190 		0x27780, 0x2778c,
1191 		0x27800, 0x27818,
1192 		0x27820, 0x27828,
1193 		0x27830, 0x27848,
1194 		0x27850, 0x27854,
1195 		0x27860, 0x27868,
1196 		0x27870, 0x27870,
1197 		0x27878, 0x27898,
1198 		0x278a0, 0x278a8,
1199 		0x278b0, 0x278c8,
1200 		0x278d0, 0x278d4,
1201 		0x278e0, 0x278e8,
1202 		0x278f0, 0x278f0,
1203 		0x278f8, 0x27a18,
1204 		0x27a20, 0x27a28,
1205 		0x27a30, 0x27a48,
1206 		0x27a50, 0x27a54,
1207 		0x27a60, 0x27a68,
1208 		0x27a70, 0x27a70,
1209 		0x27a78, 0x27a98,
1210 		0x27aa0, 0x27aa8,
1211 		0x27ab0, 0x27ac8,
1212 		0x27ad0, 0x27ad4,
1213 		0x27ae0, 0x27ae8,
1214 		0x27af0, 0x27af0,
1215 		0x27af8, 0x27c18,
1216 		0x27c20, 0x27c20,
1217 		0x27c28, 0x27c30,
1218 		0x27c38, 0x27c38,
1219 		0x27c80, 0x27c98,
1220 		0x27ca0, 0x27ca8,
1221 		0x27cb0, 0x27cc8,
1222 		0x27cd0, 0x27cd4,
1223 		0x27ce0, 0x27ce8,
1224 		0x27cf0, 0x27cf0,
1225 		0x27cf8, 0x27d7c,
1226 		0x27e00, 0x27e04,
1227 	};
1228 
1229 	static const unsigned int t4vf_reg_ranges[] = {
1230 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1231 		VF_MPS_REG(A_MPS_VF_CTL),
1232 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1233 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1234 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1235 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1236 		FW_T4VF_MBDATA_BASE_ADDR,
1237 		FW_T4VF_MBDATA_BASE_ADDR +
1238 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1239 	};
1240 
1241 	static const unsigned int t5_reg_ranges[] = {
1242 		0x1008, 0x10c0,
1243 		0x10cc, 0x10f8,
1244 		0x1100, 0x1100,
1245 		0x110c, 0x1148,
1246 		0x1180, 0x1184,
1247 		0x1190, 0x1194,
1248 		0x11a0, 0x11a4,
1249 		0x11b0, 0x11b4,
1250 		0x11fc, 0x123c,
1251 		0x1280, 0x173c,
1252 		0x1800, 0x18fc,
1253 		0x3000, 0x3028,
1254 		0x3060, 0x30b0,
1255 		0x30b8, 0x30d8,
1256 		0x30e0, 0x30fc,
1257 		0x3140, 0x357c,
1258 		0x35a8, 0x35cc,
1259 		0x35ec, 0x35ec,
1260 		0x3600, 0x5624,
1261 		0x56cc, 0x56ec,
1262 		0x56f4, 0x5720,
1263 		0x5728, 0x575c,
1264 		0x580c, 0x5814,
1265 		0x5890, 0x589c,
1266 		0x58a4, 0x58ac,
1267 		0x58b8, 0x58bc,
1268 		0x5940, 0x59c8,
1269 		0x59d0, 0x59dc,
1270 		0x59fc, 0x5a18,
1271 		0x5a60, 0x5a70,
1272 		0x5a80, 0x5a9c,
1273 		0x5b94, 0x5bfc,
1274 		0x6000, 0x6020,
1275 		0x6028, 0x6040,
1276 		0x6058, 0x609c,
1277 		0x60a8, 0x614c,
1278 		0x7700, 0x7798,
1279 		0x77c0, 0x78fc,
1280 		0x7b00, 0x7b58,
1281 		0x7b60, 0x7b84,
1282 		0x7b8c, 0x7c54,
1283 		0x7d00, 0x7d38,
1284 		0x7d40, 0x7d80,
1285 		0x7d8c, 0x7ddc,
1286 		0x7de4, 0x7e04,
1287 		0x7e10, 0x7e1c,
1288 		0x7e24, 0x7e38,
1289 		0x7e40, 0x7e44,
1290 		0x7e4c, 0x7e78,
1291 		0x7e80, 0x7edc,
1292 		0x7ee8, 0x7efc,
1293 		0x8dc0, 0x8de0,
1294 		0x8df8, 0x8e04,
1295 		0x8e10, 0x8e84,
1296 		0x8ea0, 0x8f84,
1297 		0x8fc0, 0x9058,
1298 		0x9060, 0x9060,
1299 		0x9068, 0x90f8,
1300 		0x9400, 0x9408,
1301 		0x9410, 0x9470,
1302 		0x9600, 0x9600,
1303 		0x9608, 0x9638,
1304 		0x9640, 0x96f4,
1305 		0x9800, 0x9808,
1306 		0x9820, 0x983c,
1307 		0x9850, 0x9864,
1308 		0x9c00, 0x9c6c,
1309 		0x9c80, 0x9cec,
1310 		0x9d00, 0x9d6c,
1311 		0x9d80, 0x9dec,
1312 		0x9e00, 0x9e6c,
1313 		0x9e80, 0x9eec,
1314 		0x9f00, 0x9f6c,
1315 		0x9f80, 0xa020,
1316 		0xd004, 0xd004,
1317 		0xd010, 0xd03c,
1318 		0xdfc0, 0xdfe0,
1319 		0xe000, 0x1106c,
1320 		0x11074, 0x11088,
1321 		0x1109c, 0x1117c,
1322 		0x11190, 0x11204,
1323 		0x19040, 0x1906c,
1324 		0x19078, 0x19080,
1325 		0x1908c, 0x190e8,
1326 		0x190f0, 0x190f8,
1327 		0x19100, 0x19110,
1328 		0x19120, 0x19124,
1329 		0x19150, 0x19194,
1330 		0x1919c, 0x191b0,
1331 		0x191d0, 0x191e8,
1332 		0x19238, 0x19290,
1333 		0x193f8, 0x19428,
1334 		0x19430, 0x19444,
1335 		0x1944c, 0x1946c,
1336 		0x19474, 0x19474,
1337 		0x19490, 0x194cc,
1338 		0x194f0, 0x194f8,
1339 		0x19c00, 0x19c08,
1340 		0x19c10, 0x19c60,
1341 		0x19c94, 0x19ce4,
1342 		0x19cf0, 0x19d40,
1343 		0x19d50, 0x19d94,
1344 		0x19da0, 0x19de8,
1345 		0x19df0, 0x19e10,
1346 		0x19e50, 0x19e90,
1347 		0x19ea0, 0x19f24,
1348 		0x19f34, 0x19f34,
1349 		0x19f40, 0x19f50,
1350 		0x19f90, 0x19fb4,
1351 		0x19fc4, 0x19fe4,
1352 		0x1a000, 0x1a004,
1353 		0x1a010, 0x1a06c,
1354 		0x1a0b0, 0x1a0e4,
1355 		0x1a0ec, 0x1a0f8,
1356 		0x1a100, 0x1a108,
1357 		0x1a114, 0x1a120,
1358 		0x1a128, 0x1a130,
1359 		0x1a138, 0x1a138,
1360 		0x1a190, 0x1a1c4,
1361 		0x1a1fc, 0x1a1fc,
1362 		0x1e008, 0x1e00c,
1363 		0x1e040, 0x1e044,
1364 		0x1e04c, 0x1e04c,
1365 		0x1e284, 0x1e290,
1366 		0x1e2c0, 0x1e2c0,
1367 		0x1e2e0, 0x1e2e0,
1368 		0x1e300, 0x1e384,
1369 		0x1e3c0, 0x1e3c8,
1370 		0x1e408, 0x1e40c,
1371 		0x1e440, 0x1e444,
1372 		0x1e44c, 0x1e44c,
1373 		0x1e684, 0x1e690,
1374 		0x1e6c0, 0x1e6c0,
1375 		0x1e6e0, 0x1e6e0,
1376 		0x1e700, 0x1e784,
1377 		0x1e7c0, 0x1e7c8,
1378 		0x1e808, 0x1e80c,
1379 		0x1e840, 0x1e844,
1380 		0x1e84c, 0x1e84c,
1381 		0x1ea84, 0x1ea90,
1382 		0x1eac0, 0x1eac0,
1383 		0x1eae0, 0x1eae0,
1384 		0x1eb00, 0x1eb84,
1385 		0x1ebc0, 0x1ebc8,
1386 		0x1ec08, 0x1ec0c,
1387 		0x1ec40, 0x1ec44,
1388 		0x1ec4c, 0x1ec4c,
1389 		0x1ee84, 0x1ee90,
1390 		0x1eec0, 0x1eec0,
1391 		0x1eee0, 0x1eee0,
1392 		0x1ef00, 0x1ef84,
1393 		0x1efc0, 0x1efc8,
1394 		0x1f008, 0x1f00c,
1395 		0x1f040, 0x1f044,
1396 		0x1f04c, 0x1f04c,
1397 		0x1f284, 0x1f290,
1398 		0x1f2c0, 0x1f2c0,
1399 		0x1f2e0, 0x1f2e0,
1400 		0x1f300, 0x1f384,
1401 		0x1f3c0, 0x1f3c8,
1402 		0x1f408, 0x1f40c,
1403 		0x1f440, 0x1f444,
1404 		0x1f44c, 0x1f44c,
1405 		0x1f684, 0x1f690,
1406 		0x1f6c0, 0x1f6c0,
1407 		0x1f6e0, 0x1f6e0,
1408 		0x1f700, 0x1f784,
1409 		0x1f7c0, 0x1f7c8,
1410 		0x1f808, 0x1f80c,
1411 		0x1f840, 0x1f844,
1412 		0x1f84c, 0x1f84c,
1413 		0x1fa84, 0x1fa90,
1414 		0x1fac0, 0x1fac0,
1415 		0x1fae0, 0x1fae0,
1416 		0x1fb00, 0x1fb84,
1417 		0x1fbc0, 0x1fbc8,
1418 		0x1fc08, 0x1fc0c,
1419 		0x1fc40, 0x1fc44,
1420 		0x1fc4c, 0x1fc4c,
1421 		0x1fe84, 0x1fe90,
1422 		0x1fec0, 0x1fec0,
1423 		0x1fee0, 0x1fee0,
1424 		0x1ff00, 0x1ff84,
1425 		0x1ffc0, 0x1ffc8,
1426 		0x30000, 0x30030,
1427 		0x30038, 0x30038,
1428 		0x30040, 0x30040,
1429 		0x30100, 0x30144,
1430 		0x30190, 0x301a0,
1431 		0x301a8, 0x301b8,
1432 		0x301c4, 0x301c8,
1433 		0x301d0, 0x301d0,
1434 		0x30200, 0x30318,
1435 		0x30400, 0x304b4,
1436 		0x304c0, 0x3052c,
1437 		0x30540, 0x3061c,
1438 		0x30800, 0x30828,
1439 		0x30834, 0x30834,
1440 		0x308c0, 0x30908,
1441 		0x30910, 0x309ac,
1442 		0x30a00, 0x30a14,
1443 		0x30a1c, 0x30a2c,
1444 		0x30a44, 0x30a50,
1445 		0x30a74, 0x30a74,
1446 		0x30a7c, 0x30afc,
1447 		0x30b08, 0x30c24,
1448 		0x30d00, 0x30d00,
1449 		0x30d08, 0x30d14,
1450 		0x30d1c, 0x30d20,
1451 		0x30d3c, 0x30d3c,
1452 		0x30d48, 0x30d50,
1453 		0x31200, 0x3120c,
1454 		0x31220, 0x31220,
1455 		0x31240, 0x31240,
1456 		0x31600, 0x3160c,
1457 		0x31a00, 0x31a1c,
1458 		0x31e00, 0x31e20,
1459 		0x31e38, 0x31e3c,
1460 		0x31e80, 0x31e80,
1461 		0x31e88, 0x31ea8,
1462 		0x31eb0, 0x31eb4,
1463 		0x31ec8, 0x31ed4,
1464 		0x31fb8, 0x32004,
1465 		0x32200, 0x32200,
1466 		0x32208, 0x32240,
1467 		0x32248, 0x32280,
1468 		0x32288, 0x322c0,
1469 		0x322c8, 0x322fc,
1470 		0x32600, 0x32630,
1471 		0x32a00, 0x32abc,
1472 		0x32b00, 0x32b10,
1473 		0x32b20, 0x32b30,
1474 		0x32b40, 0x32b50,
1475 		0x32b60, 0x32b70,
1476 		0x33000, 0x33028,
1477 		0x33030, 0x33048,
1478 		0x33060, 0x33068,
1479 		0x33070, 0x3309c,
1480 		0x330f0, 0x33128,
1481 		0x33130, 0x33148,
1482 		0x33160, 0x33168,
1483 		0x33170, 0x3319c,
1484 		0x331f0, 0x33238,
1485 		0x33240, 0x33240,
1486 		0x33248, 0x33250,
1487 		0x3325c, 0x33264,
1488 		0x33270, 0x332b8,
1489 		0x332c0, 0x332e4,
1490 		0x332f8, 0x33338,
1491 		0x33340, 0x33340,
1492 		0x33348, 0x33350,
1493 		0x3335c, 0x33364,
1494 		0x33370, 0x333b8,
1495 		0x333c0, 0x333e4,
1496 		0x333f8, 0x33428,
1497 		0x33430, 0x33448,
1498 		0x33460, 0x33468,
1499 		0x33470, 0x3349c,
1500 		0x334f0, 0x33528,
1501 		0x33530, 0x33548,
1502 		0x33560, 0x33568,
1503 		0x33570, 0x3359c,
1504 		0x335f0, 0x33638,
1505 		0x33640, 0x33640,
1506 		0x33648, 0x33650,
1507 		0x3365c, 0x33664,
1508 		0x33670, 0x336b8,
1509 		0x336c0, 0x336e4,
1510 		0x336f8, 0x33738,
1511 		0x33740, 0x33740,
1512 		0x33748, 0x33750,
1513 		0x3375c, 0x33764,
1514 		0x33770, 0x337b8,
1515 		0x337c0, 0x337e4,
1516 		0x337f8, 0x337fc,
1517 		0x33814, 0x33814,
1518 		0x3382c, 0x3382c,
1519 		0x33880, 0x3388c,
1520 		0x338e8, 0x338ec,
1521 		0x33900, 0x33928,
1522 		0x33930, 0x33948,
1523 		0x33960, 0x33968,
1524 		0x33970, 0x3399c,
1525 		0x339f0, 0x33a38,
1526 		0x33a40, 0x33a40,
1527 		0x33a48, 0x33a50,
1528 		0x33a5c, 0x33a64,
1529 		0x33a70, 0x33ab8,
1530 		0x33ac0, 0x33ae4,
1531 		0x33af8, 0x33b10,
1532 		0x33b28, 0x33b28,
1533 		0x33b3c, 0x33b50,
1534 		0x33bf0, 0x33c10,
1535 		0x33c28, 0x33c28,
1536 		0x33c3c, 0x33c50,
1537 		0x33cf0, 0x33cfc,
1538 		0x34000, 0x34030,
1539 		0x34038, 0x34038,
1540 		0x34040, 0x34040,
1541 		0x34100, 0x34144,
1542 		0x34190, 0x341a0,
1543 		0x341a8, 0x341b8,
1544 		0x341c4, 0x341c8,
1545 		0x341d0, 0x341d0,
1546 		0x34200, 0x34318,
1547 		0x34400, 0x344b4,
1548 		0x344c0, 0x3452c,
1549 		0x34540, 0x3461c,
1550 		0x34800, 0x34828,
1551 		0x34834, 0x34834,
1552 		0x348c0, 0x34908,
1553 		0x34910, 0x349ac,
1554 		0x34a00, 0x34a14,
1555 		0x34a1c, 0x34a2c,
1556 		0x34a44, 0x34a50,
1557 		0x34a74, 0x34a74,
1558 		0x34a7c, 0x34afc,
1559 		0x34b08, 0x34c24,
1560 		0x34d00, 0x34d00,
1561 		0x34d08, 0x34d14,
1562 		0x34d1c, 0x34d20,
1563 		0x34d3c, 0x34d3c,
1564 		0x34d48, 0x34d50,
1565 		0x35200, 0x3520c,
1566 		0x35220, 0x35220,
1567 		0x35240, 0x35240,
1568 		0x35600, 0x3560c,
1569 		0x35a00, 0x35a1c,
1570 		0x35e00, 0x35e20,
1571 		0x35e38, 0x35e3c,
1572 		0x35e80, 0x35e80,
1573 		0x35e88, 0x35ea8,
1574 		0x35eb0, 0x35eb4,
1575 		0x35ec8, 0x35ed4,
1576 		0x35fb8, 0x36004,
1577 		0x36200, 0x36200,
1578 		0x36208, 0x36240,
1579 		0x36248, 0x36280,
1580 		0x36288, 0x362c0,
1581 		0x362c8, 0x362fc,
1582 		0x36600, 0x36630,
1583 		0x36a00, 0x36abc,
1584 		0x36b00, 0x36b10,
1585 		0x36b20, 0x36b30,
1586 		0x36b40, 0x36b50,
1587 		0x36b60, 0x36b70,
1588 		0x37000, 0x37028,
1589 		0x37030, 0x37048,
1590 		0x37060, 0x37068,
1591 		0x37070, 0x3709c,
1592 		0x370f0, 0x37128,
1593 		0x37130, 0x37148,
1594 		0x37160, 0x37168,
1595 		0x37170, 0x3719c,
1596 		0x371f0, 0x37238,
1597 		0x37240, 0x37240,
1598 		0x37248, 0x37250,
1599 		0x3725c, 0x37264,
1600 		0x37270, 0x372b8,
1601 		0x372c0, 0x372e4,
1602 		0x372f8, 0x37338,
1603 		0x37340, 0x37340,
1604 		0x37348, 0x37350,
1605 		0x3735c, 0x37364,
1606 		0x37370, 0x373b8,
1607 		0x373c0, 0x373e4,
1608 		0x373f8, 0x37428,
1609 		0x37430, 0x37448,
1610 		0x37460, 0x37468,
1611 		0x37470, 0x3749c,
1612 		0x374f0, 0x37528,
1613 		0x37530, 0x37548,
1614 		0x37560, 0x37568,
1615 		0x37570, 0x3759c,
1616 		0x375f0, 0x37638,
1617 		0x37640, 0x37640,
1618 		0x37648, 0x37650,
1619 		0x3765c, 0x37664,
1620 		0x37670, 0x376b8,
1621 		0x376c0, 0x376e4,
1622 		0x376f8, 0x37738,
1623 		0x37740, 0x37740,
1624 		0x37748, 0x37750,
1625 		0x3775c, 0x37764,
1626 		0x37770, 0x377b8,
1627 		0x377c0, 0x377e4,
1628 		0x377f8, 0x377fc,
1629 		0x37814, 0x37814,
1630 		0x3782c, 0x3782c,
1631 		0x37880, 0x3788c,
1632 		0x378e8, 0x378ec,
1633 		0x37900, 0x37928,
1634 		0x37930, 0x37948,
1635 		0x37960, 0x37968,
1636 		0x37970, 0x3799c,
1637 		0x379f0, 0x37a38,
1638 		0x37a40, 0x37a40,
1639 		0x37a48, 0x37a50,
1640 		0x37a5c, 0x37a64,
1641 		0x37a70, 0x37ab8,
1642 		0x37ac0, 0x37ae4,
1643 		0x37af8, 0x37b10,
1644 		0x37b28, 0x37b28,
1645 		0x37b3c, 0x37b50,
1646 		0x37bf0, 0x37c10,
1647 		0x37c28, 0x37c28,
1648 		0x37c3c, 0x37c50,
1649 		0x37cf0, 0x37cfc,
1650 		0x38000, 0x38030,
1651 		0x38038, 0x38038,
1652 		0x38040, 0x38040,
1653 		0x38100, 0x38144,
1654 		0x38190, 0x381a0,
1655 		0x381a8, 0x381b8,
1656 		0x381c4, 0x381c8,
1657 		0x381d0, 0x381d0,
1658 		0x38200, 0x38318,
1659 		0x38400, 0x384b4,
1660 		0x384c0, 0x3852c,
1661 		0x38540, 0x3861c,
1662 		0x38800, 0x38828,
1663 		0x38834, 0x38834,
1664 		0x388c0, 0x38908,
1665 		0x38910, 0x389ac,
1666 		0x38a00, 0x38a14,
1667 		0x38a1c, 0x38a2c,
1668 		0x38a44, 0x38a50,
1669 		0x38a74, 0x38a74,
1670 		0x38a7c, 0x38afc,
1671 		0x38b08, 0x38c24,
1672 		0x38d00, 0x38d00,
1673 		0x38d08, 0x38d14,
1674 		0x38d1c, 0x38d20,
1675 		0x38d3c, 0x38d3c,
1676 		0x38d48, 0x38d50,
1677 		0x39200, 0x3920c,
1678 		0x39220, 0x39220,
1679 		0x39240, 0x39240,
1680 		0x39600, 0x3960c,
1681 		0x39a00, 0x39a1c,
1682 		0x39e00, 0x39e20,
1683 		0x39e38, 0x39e3c,
1684 		0x39e80, 0x39e80,
1685 		0x39e88, 0x39ea8,
1686 		0x39eb0, 0x39eb4,
1687 		0x39ec8, 0x39ed4,
1688 		0x39fb8, 0x3a004,
1689 		0x3a200, 0x3a200,
1690 		0x3a208, 0x3a240,
1691 		0x3a248, 0x3a280,
1692 		0x3a288, 0x3a2c0,
1693 		0x3a2c8, 0x3a2fc,
1694 		0x3a600, 0x3a630,
1695 		0x3aa00, 0x3aabc,
1696 		0x3ab00, 0x3ab10,
1697 		0x3ab20, 0x3ab30,
1698 		0x3ab40, 0x3ab50,
1699 		0x3ab60, 0x3ab70,
1700 		0x3b000, 0x3b028,
1701 		0x3b030, 0x3b048,
1702 		0x3b060, 0x3b068,
1703 		0x3b070, 0x3b09c,
1704 		0x3b0f0, 0x3b128,
1705 		0x3b130, 0x3b148,
1706 		0x3b160, 0x3b168,
1707 		0x3b170, 0x3b19c,
1708 		0x3b1f0, 0x3b238,
1709 		0x3b240, 0x3b240,
1710 		0x3b248, 0x3b250,
1711 		0x3b25c, 0x3b264,
1712 		0x3b270, 0x3b2b8,
1713 		0x3b2c0, 0x3b2e4,
1714 		0x3b2f8, 0x3b338,
1715 		0x3b340, 0x3b340,
1716 		0x3b348, 0x3b350,
1717 		0x3b35c, 0x3b364,
1718 		0x3b370, 0x3b3b8,
1719 		0x3b3c0, 0x3b3e4,
1720 		0x3b3f8, 0x3b428,
1721 		0x3b430, 0x3b448,
1722 		0x3b460, 0x3b468,
1723 		0x3b470, 0x3b49c,
1724 		0x3b4f0, 0x3b528,
1725 		0x3b530, 0x3b548,
1726 		0x3b560, 0x3b568,
1727 		0x3b570, 0x3b59c,
1728 		0x3b5f0, 0x3b638,
1729 		0x3b640, 0x3b640,
1730 		0x3b648, 0x3b650,
1731 		0x3b65c, 0x3b664,
1732 		0x3b670, 0x3b6b8,
1733 		0x3b6c0, 0x3b6e4,
1734 		0x3b6f8, 0x3b738,
1735 		0x3b740, 0x3b740,
1736 		0x3b748, 0x3b750,
1737 		0x3b75c, 0x3b764,
1738 		0x3b770, 0x3b7b8,
1739 		0x3b7c0, 0x3b7e4,
1740 		0x3b7f8, 0x3b7fc,
1741 		0x3b814, 0x3b814,
1742 		0x3b82c, 0x3b82c,
1743 		0x3b880, 0x3b88c,
1744 		0x3b8e8, 0x3b8ec,
1745 		0x3b900, 0x3b928,
1746 		0x3b930, 0x3b948,
1747 		0x3b960, 0x3b968,
1748 		0x3b970, 0x3b99c,
1749 		0x3b9f0, 0x3ba38,
1750 		0x3ba40, 0x3ba40,
1751 		0x3ba48, 0x3ba50,
1752 		0x3ba5c, 0x3ba64,
1753 		0x3ba70, 0x3bab8,
1754 		0x3bac0, 0x3bae4,
1755 		0x3baf8, 0x3bb10,
1756 		0x3bb28, 0x3bb28,
1757 		0x3bb3c, 0x3bb50,
1758 		0x3bbf0, 0x3bc10,
1759 		0x3bc28, 0x3bc28,
1760 		0x3bc3c, 0x3bc50,
1761 		0x3bcf0, 0x3bcfc,
1762 		0x3c000, 0x3c030,
1763 		0x3c038, 0x3c038,
1764 		0x3c040, 0x3c040,
1765 		0x3c100, 0x3c144,
1766 		0x3c190, 0x3c1a0,
1767 		0x3c1a8, 0x3c1b8,
1768 		0x3c1c4, 0x3c1c8,
1769 		0x3c1d0, 0x3c1d0,
1770 		0x3c200, 0x3c318,
1771 		0x3c400, 0x3c4b4,
1772 		0x3c4c0, 0x3c52c,
1773 		0x3c540, 0x3c61c,
1774 		0x3c800, 0x3c828,
1775 		0x3c834, 0x3c834,
1776 		0x3c8c0, 0x3c908,
1777 		0x3c910, 0x3c9ac,
1778 		0x3ca00, 0x3ca14,
1779 		0x3ca1c, 0x3ca2c,
1780 		0x3ca44, 0x3ca50,
1781 		0x3ca74, 0x3ca74,
1782 		0x3ca7c, 0x3cafc,
1783 		0x3cb08, 0x3cc24,
1784 		0x3cd00, 0x3cd00,
1785 		0x3cd08, 0x3cd14,
1786 		0x3cd1c, 0x3cd20,
1787 		0x3cd3c, 0x3cd3c,
1788 		0x3cd48, 0x3cd50,
1789 		0x3d200, 0x3d20c,
1790 		0x3d220, 0x3d220,
1791 		0x3d240, 0x3d240,
1792 		0x3d600, 0x3d60c,
1793 		0x3da00, 0x3da1c,
1794 		0x3de00, 0x3de20,
1795 		0x3de38, 0x3de3c,
1796 		0x3de80, 0x3de80,
1797 		0x3de88, 0x3dea8,
1798 		0x3deb0, 0x3deb4,
1799 		0x3dec8, 0x3ded4,
1800 		0x3dfb8, 0x3e004,
1801 		0x3e200, 0x3e200,
1802 		0x3e208, 0x3e240,
1803 		0x3e248, 0x3e280,
1804 		0x3e288, 0x3e2c0,
1805 		0x3e2c8, 0x3e2fc,
1806 		0x3e600, 0x3e630,
1807 		0x3ea00, 0x3eabc,
1808 		0x3eb00, 0x3eb10,
1809 		0x3eb20, 0x3eb30,
1810 		0x3eb40, 0x3eb50,
1811 		0x3eb60, 0x3eb70,
1812 		0x3f000, 0x3f028,
1813 		0x3f030, 0x3f048,
1814 		0x3f060, 0x3f068,
1815 		0x3f070, 0x3f09c,
1816 		0x3f0f0, 0x3f128,
1817 		0x3f130, 0x3f148,
1818 		0x3f160, 0x3f168,
1819 		0x3f170, 0x3f19c,
1820 		0x3f1f0, 0x3f238,
1821 		0x3f240, 0x3f240,
1822 		0x3f248, 0x3f250,
1823 		0x3f25c, 0x3f264,
1824 		0x3f270, 0x3f2b8,
1825 		0x3f2c0, 0x3f2e4,
1826 		0x3f2f8, 0x3f338,
1827 		0x3f340, 0x3f340,
1828 		0x3f348, 0x3f350,
1829 		0x3f35c, 0x3f364,
1830 		0x3f370, 0x3f3b8,
1831 		0x3f3c0, 0x3f3e4,
1832 		0x3f3f8, 0x3f428,
1833 		0x3f430, 0x3f448,
1834 		0x3f460, 0x3f468,
1835 		0x3f470, 0x3f49c,
1836 		0x3f4f0, 0x3f528,
1837 		0x3f530, 0x3f548,
1838 		0x3f560, 0x3f568,
1839 		0x3f570, 0x3f59c,
1840 		0x3f5f0, 0x3f638,
1841 		0x3f640, 0x3f640,
1842 		0x3f648, 0x3f650,
1843 		0x3f65c, 0x3f664,
1844 		0x3f670, 0x3f6b8,
1845 		0x3f6c0, 0x3f6e4,
1846 		0x3f6f8, 0x3f738,
1847 		0x3f740, 0x3f740,
1848 		0x3f748, 0x3f750,
1849 		0x3f75c, 0x3f764,
1850 		0x3f770, 0x3f7b8,
1851 		0x3f7c0, 0x3f7e4,
1852 		0x3f7f8, 0x3f7fc,
1853 		0x3f814, 0x3f814,
1854 		0x3f82c, 0x3f82c,
1855 		0x3f880, 0x3f88c,
1856 		0x3f8e8, 0x3f8ec,
1857 		0x3f900, 0x3f928,
1858 		0x3f930, 0x3f948,
1859 		0x3f960, 0x3f968,
1860 		0x3f970, 0x3f99c,
1861 		0x3f9f0, 0x3fa38,
1862 		0x3fa40, 0x3fa40,
1863 		0x3fa48, 0x3fa50,
1864 		0x3fa5c, 0x3fa64,
1865 		0x3fa70, 0x3fab8,
1866 		0x3fac0, 0x3fae4,
1867 		0x3faf8, 0x3fb10,
1868 		0x3fb28, 0x3fb28,
1869 		0x3fb3c, 0x3fb50,
1870 		0x3fbf0, 0x3fc10,
1871 		0x3fc28, 0x3fc28,
1872 		0x3fc3c, 0x3fc50,
1873 		0x3fcf0, 0x3fcfc,
1874 		0x40000, 0x4000c,
1875 		0x40040, 0x40050,
1876 		0x40060, 0x40068,
1877 		0x4007c, 0x4008c,
1878 		0x40094, 0x400b0,
1879 		0x400c0, 0x40144,
1880 		0x40180, 0x4018c,
1881 		0x40200, 0x40254,
1882 		0x40260, 0x40264,
1883 		0x40270, 0x40288,
1884 		0x40290, 0x40298,
1885 		0x402ac, 0x402c8,
1886 		0x402d0, 0x402e0,
1887 		0x402f0, 0x402f0,
1888 		0x40300, 0x4033c,
1889 		0x403f8, 0x403fc,
1890 		0x41304, 0x413c4,
1891 		0x41400, 0x4140c,
1892 		0x41414, 0x4141c,
1893 		0x41480, 0x414d0,
1894 		0x44000, 0x44054,
1895 		0x4405c, 0x44078,
1896 		0x440c0, 0x44174,
1897 		0x44180, 0x441ac,
1898 		0x441b4, 0x441b8,
1899 		0x441c0, 0x44254,
1900 		0x4425c, 0x44278,
1901 		0x442c0, 0x44374,
1902 		0x44380, 0x443ac,
1903 		0x443b4, 0x443b8,
1904 		0x443c0, 0x44454,
1905 		0x4445c, 0x44478,
1906 		0x444c0, 0x44574,
1907 		0x44580, 0x445ac,
1908 		0x445b4, 0x445b8,
1909 		0x445c0, 0x44654,
1910 		0x4465c, 0x44678,
1911 		0x446c0, 0x44774,
1912 		0x44780, 0x447ac,
1913 		0x447b4, 0x447b8,
1914 		0x447c0, 0x44854,
1915 		0x4485c, 0x44878,
1916 		0x448c0, 0x44974,
1917 		0x44980, 0x449ac,
1918 		0x449b4, 0x449b8,
1919 		0x449c0, 0x449fc,
1920 		0x45000, 0x45004,
1921 		0x45010, 0x45030,
1922 		0x45040, 0x45060,
1923 		0x45068, 0x45068,
1924 		0x45080, 0x45084,
1925 		0x450a0, 0x450b0,
1926 		0x45200, 0x45204,
1927 		0x45210, 0x45230,
1928 		0x45240, 0x45260,
1929 		0x45268, 0x45268,
1930 		0x45280, 0x45284,
1931 		0x452a0, 0x452b0,
1932 		0x460c0, 0x460e4,
1933 		0x47000, 0x4703c,
1934 		0x47044, 0x4708c,
1935 		0x47200, 0x47250,
1936 		0x47400, 0x47408,
1937 		0x47414, 0x47420,
1938 		0x47600, 0x47618,
1939 		0x47800, 0x47814,
1940 		0x48000, 0x4800c,
1941 		0x48040, 0x48050,
1942 		0x48060, 0x48068,
1943 		0x4807c, 0x4808c,
1944 		0x48094, 0x480b0,
1945 		0x480c0, 0x48144,
1946 		0x48180, 0x4818c,
1947 		0x48200, 0x48254,
1948 		0x48260, 0x48264,
1949 		0x48270, 0x48288,
1950 		0x48290, 0x48298,
1951 		0x482ac, 0x482c8,
1952 		0x482d0, 0x482e0,
1953 		0x482f0, 0x482f0,
1954 		0x48300, 0x4833c,
1955 		0x483f8, 0x483fc,
1956 		0x49304, 0x493c4,
1957 		0x49400, 0x4940c,
1958 		0x49414, 0x4941c,
1959 		0x49480, 0x494d0,
1960 		0x4c000, 0x4c054,
1961 		0x4c05c, 0x4c078,
1962 		0x4c0c0, 0x4c174,
1963 		0x4c180, 0x4c1ac,
1964 		0x4c1b4, 0x4c1b8,
1965 		0x4c1c0, 0x4c254,
1966 		0x4c25c, 0x4c278,
1967 		0x4c2c0, 0x4c374,
1968 		0x4c380, 0x4c3ac,
1969 		0x4c3b4, 0x4c3b8,
1970 		0x4c3c0, 0x4c454,
1971 		0x4c45c, 0x4c478,
1972 		0x4c4c0, 0x4c574,
1973 		0x4c580, 0x4c5ac,
1974 		0x4c5b4, 0x4c5b8,
1975 		0x4c5c0, 0x4c654,
1976 		0x4c65c, 0x4c678,
1977 		0x4c6c0, 0x4c774,
1978 		0x4c780, 0x4c7ac,
1979 		0x4c7b4, 0x4c7b8,
1980 		0x4c7c0, 0x4c854,
1981 		0x4c85c, 0x4c878,
1982 		0x4c8c0, 0x4c974,
1983 		0x4c980, 0x4c9ac,
1984 		0x4c9b4, 0x4c9b8,
1985 		0x4c9c0, 0x4c9fc,
1986 		0x4d000, 0x4d004,
1987 		0x4d010, 0x4d030,
1988 		0x4d040, 0x4d060,
1989 		0x4d068, 0x4d068,
1990 		0x4d080, 0x4d084,
1991 		0x4d0a0, 0x4d0b0,
1992 		0x4d200, 0x4d204,
1993 		0x4d210, 0x4d230,
1994 		0x4d240, 0x4d260,
1995 		0x4d268, 0x4d268,
1996 		0x4d280, 0x4d284,
1997 		0x4d2a0, 0x4d2b0,
1998 		0x4e0c0, 0x4e0e4,
1999 		0x4f000, 0x4f03c,
2000 		0x4f044, 0x4f08c,
2001 		0x4f200, 0x4f250,
2002 		0x4f400, 0x4f408,
2003 		0x4f414, 0x4f420,
2004 		0x4f600, 0x4f618,
2005 		0x4f800, 0x4f814,
2006 		0x50000, 0x50084,
2007 		0x50090, 0x500cc,
2008 		0x50400, 0x50400,
2009 		0x50800, 0x50884,
2010 		0x50890, 0x508cc,
2011 		0x50c00, 0x50c00,
2012 		0x51000, 0x5101c,
2013 		0x51300, 0x51308,
2014 	};
2015 
2016 	static const unsigned int t5vf_reg_ranges[] = {
2017 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2018 		VF_MPS_REG(A_MPS_VF_CTL),
2019 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2020 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2021 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2022 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2023 		FW_T4VF_MBDATA_BASE_ADDR,
2024 		FW_T4VF_MBDATA_BASE_ADDR +
2025 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2026 	};
2027 
2028 	static const unsigned int t6_reg_ranges[] = {
2029 		0x1008, 0x101c,
2030 		0x1024, 0x10a8,
2031 		0x10b4, 0x10f8,
2032 		0x1100, 0x1114,
2033 		0x111c, 0x112c,
2034 		0x1138, 0x113c,
2035 		0x1144, 0x114c,
2036 		0x1180, 0x1184,
2037 		0x1190, 0x1194,
2038 		0x11a0, 0x11a4,
2039 		0x11b0, 0x11b4,
2040 		0x11fc, 0x1274,
2041 		0x1280, 0x133c,
2042 		0x1800, 0x18fc,
2043 		0x3000, 0x302c,
2044 		0x3060, 0x30b0,
2045 		0x30b8, 0x30d8,
2046 		0x30e0, 0x30fc,
2047 		0x3140, 0x357c,
2048 		0x35a8, 0x35cc,
2049 		0x35ec, 0x35ec,
2050 		0x3600, 0x5624,
2051 		0x56cc, 0x56ec,
2052 		0x56f4, 0x5720,
2053 		0x5728, 0x575c,
2054 		0x580c, 0x5814,
2055 		0x5890, 0x589c,
2056 		0x58a4, 0x58ac,
2057 		0x58b8, 0x58bc,
2058 		0x5940, 0x595c,
2059 		0x5980, 0x598c,
2060 		0x59b0, 0x59c8,
2061 		0x59d0, 0x59dc,
2062 		0x59fc, 0x5a18,
2063 		0x5a60, 0x5a6c,
2064 		0x5a80, 0x5a8c,
2065 		0x5a94, 0x5a9c,
2066 		0x5b94, 0x5bfc,
2067 		0x5c10, 0x5e48,
2068 		0x5e50, 0x5e94,
2069 		0x5ea0, 0x5eb0,
2070 		0x5ec0, 0x5ec0,
2071 		0x5ec8, 0x5ed0,
2072 		0x5ee0, 0x5ee0,
2073 		0x5ef0, 0x5ef0,
2074 		0x5f00, 0x5f00,
2075 		0x6000, 0x6020,
2076 		0x6028, 0x6040,
2077 		0x6058, 0x609c,
2078 		0x60a8, 0x619c,
2079 		0x7700, 0x7798,
2080 		0x77c0, 0x7880,
2081 		0x78cc, 0x78fc,
2082 		0x7b00, 0x7b58,
2083 		0x7b60, 0x7b84,
2084 		0x7b8c, 0x7c54,
2085 		0x7d00, 0x7d38,
2086 		0x7d40, 0x7d84,
2087 		0x7d8c, 0x7ddc,
2088 		0x7de4, 0x7e04,
2089 		0x7e10, 0x7e1c,
2090 		0x7e24, 0x7e38,
2091 		0x7e40, 0x7e44,
2092 		0x7e4c, 0x7e78,
2093 		0x7e80, 0x7edc,
2094 		0x7ee8, 0x7efc,
2095 		0x8dc0, 0x8de4,
2096 		0x8df8, 0x8e04,
2097 		0x8e10, 0x8e84,
2098 		0x8ea0, 0x8f88,
2099 		0x8fb8, 0x9058,
2100 		0x9060, 0x9060,
2101 		0x9068, 0x90f8,
2102 		0x9100, 0x9124,
2103 		0x9400, 0x9470,
2104 		0x9600, 0x9600,
2105 		0x9608, 0x9638,
2106 		0x9640, 0x9704,
2107 		0x9710, 0x971c,
2108 		0x9800, 0x9808,
2109 		0x9820, 0x983c,
2110 		0x9850, 0x9864,
2111 		0x9c00, 0x9c6c,
2112 		0x9c80, 0x9cec,
2113 		0x9d00, 0x9d6c,
2114 		0x9d80, 0x9dec,
2115 		0x9e00, 0x9e6c,
2116 		0x9e80, 0x9eec,
2117 		0x9f00, 0x9f6c,
2118 		0x9f80, 0xa020,
2119 		0xd004, 0xd03c,
2120 		0xd100, 0xd118,
2121 		0xd200, 0xd214,
2122 		0xd220, 0xd234,
2123 		0xd240, 0xd254,
2124 		0xd260, 0xd274,
2125 		0xd280, 0xd294,
2126 		0xd2a0, 0xd2b4,
2127 		0xd2c0, 0xd2d4,
2128 		0xd2e0, 0xd2f4,
2129 		0xd300, 0xd31c,
2130 		0xdfc0, 0xdfe0,
2131 		0xe000, 0xf008,
2132 		0xf010, 0xf018,
2133 		0xf020, 0xf028,
2134 		0x11000, 0x11014,
2135 		0x11048, 0x1106c,
2136 		0x11074, 0x11088,
2137 		0x11098, 0x11120,
2138 		0x1112c, 0x1117c,
2139 		0x11190, 0x112e0,
2140 		0x11300, 0x1130c,
2141 		0x12000, 0x1206c,
2142 		0x19040, 0x1906c,
2143 		0x19078, 0x19080,
2144 		0x1908c, 0x190e8,
2145 		0x190f0, 0x190f8,
2146 		0x19100, 0x19110,
2147 		0x19120, 0x19124,
2148 		0x19150, 0x19194,
2149 		0x1919c, 0x191b0,
2150 		0x191d0, 0x191e8,
2151 		0x19238, 0x19290,
2152 		0x192a4, 0x192b0,
2153 		0x192bc, 0x192bc,
2154 		0x19348, 0x1934c,
2155 		0x193f8, 0x19418,
2156 		0x19420, 0x19428,
2157 		0x19430, 0x19444,
2158 		0x1944c, 0x1946c,
2159 		0x19474, 0x19474,
2160 		0x19490, 0x194cc,
2161 		0x194f0, 0x194f8,
2162 		0x19c00, 0x19c48,
2163 		0x19c50, 0x19c80,
2164 		0x19c94, 0x19c98,
2165 		0x19ca0, 0x19cbc,
2166 		0x19ce4, 0x19ce4,
2167 		0x19cf0, 0x19cf8,
2168 		0x19d00, 0x19d28,
2169 		0x19d50, 0x19d78,
2170 		0x19d94, 0x19d98,
2171 		0x19da0, 0x19dc8,
2172 		0x19df0, 0x19e10,
2173 		0x19e50, 0x19e6c,
2174 		0x19ea0, 0x19ebc,
2175 		0x19ec4, 0x19ef4,
2176 		0x19f04, 0x19f2c,
2177 		0x19f34, 0x19f34,
2178 		0x19f40, 0x19f50,
2179 		0x19f90, 0x19fac,
2180 		0x19fc4, 0x19fc8,
2181 		0x19fd0, 0x19fe4,
2182 		0x1a000, 0x1a004,
2183 		0x1a010, 0x1a06c,
2184 		0x1a0b0, 0x1a0e4,
2185 		0x1a0ec, 0x1a0f8,
2186 		0x1a100, 0x1a108,
2187 		0x1a114, 0x1a120,
2188 		0x1a128, 0x1a130,
2189 		0x1a138, 0x1a138,
2190 		0x1a190, 0x1a1c4,
2191 		0x1a1fc, 0x1a1fc,
2192 		0x1e008, 0x1e00c,
2193 		0x1e040, 0x1e044,
2194 		0x1e04c, 0x1e04c,
2195 		0x1e284, 0x1e290,
2196 		0x1e2c0, 0x1e2c0,
2197 		0x1e2e0, 0x1e2e0,
2198 		0x1e300, 0x1e384,
2199 		0x1e3c0, 0x1e3c8,
2200 		0x1e408, 0x1e40c,
2201 		0x1e440, 0x1e444,
2202 		0x1e44c, 0x1e44c,
2203 		0x1e684, 0x1e690,
2204 		0x1e6c0, 0x1e6c0,
2205 		0x1e6e0, 0x1e6e0,
2206 		0x1e700, 0x1e784,
2207 		0x1e7c0, 0x1e7c8,
2208 		0x1e808, 0x1e80c,
2209 		0x1e840, 0x1e844,
2210 		0x1e84c, 0x1e84c,
2211 		0x1ea84, 0x1ea90,
2212 		0x1eac0, 0x1eac0,
2213 		0x1eae0, 0x1eae0,
2214 		0x1eb00, 0x1eb84,
2215 		0x1ebc0, 0x1ebc8,
2216 		0x1ec08, 0x1ec0c,
2217 		0x1ec40, 0x1ec44,
2218 		0x1ec4c, 0x1ec4c,
2219 		0x1ee84, 0x1ee90,
2220 		0x1eec0, 0x1eec0,
2221 		0x1eee0, 0x1eee0,
2222 		0x1ef00, 0x1ef84,
2223 		0x1efc0, 0x1efc8,
2224 		0x1f008, 0x1f00c,
2225 		0x1f040, 0x1f044,
2226 		0x1f04c, 0x1f04c,
2227 		0x1f284, 0x1f290,
2228 		0x1f2c0, 0x1f2c0,
2229 		0x1f2e0, 0x1f2e0,
2230 		0x1f300, 0x1f384,
2231 		0x1f3c0, 0x1f3c8,
2232 		0x1f408, 0x1f40c,
2233 		0x1f440, 0x1f444,
2234 		0x1f44c, 0x1f44c,
2235 		0x1f684, 0x1f690,
2236 		0x1f6c0, 0x1f6c0,
2237 		0x1f6e0, 0x1f6e0,
2238 		0x1f700, 0x1f784,
2239 		0x1f7c0, 0x1f7c8,
2240 		0x1f808, 0x1f80c,
2241 		0x1f840, 0x1f844,
2242 		0x1f84c, 0x1f84c,
2243 		0x1fa84, 0x1fa90,
2244 		0x1fac0, 0x1fac0,
2245 		0x1fae0, 0x1fae0,
2246 		0x1fb00, 0x1fb84,
2247 		0x1fbc0, 0x1fbc8,
2248 		0x1fc08, 0x1fc0c,
2249 		0x1fc40, 0x1fc44,
2250 		0x1fc4c, 0x1fc4c,
2251 		0x1fe84, 0x1fe90,
2252 		0x1fec0, 0x1fec0,
2253 		0x1fee0, 0x1fee0,
2254 		0x1ff00, 0x1ff84,
2255 		0x1ffc0, 0x1ffc8,
2256 		0x30000, 0x30030,
2257 		0x30038, 0x30038,
2258 		0x30040, 0x30040,
2259 		0x30048, 0x30048,
2260 		0x30050, 0x30050,
2261 		0x3005c, 0x30060,
2262 		0x30068, 0x30068,
2263 		0x30070, 0x30070,
2264 		0x30100, 0x30168,
2265 		0x30190, 0x301a0,
2266 		0x301a8, 0x301b8,
2267 		0x301c4, 0x301c8,
2268 		0x301d0, 0x301d0,
2269 		0x30200, 0x30320,
2270 		0x30400, 0x304b4,
2271 		0x304c0, 0x3052c,
2272 		0x30540, 0x3061c,
2273 		0x30800, 0x308a0,
2274 		0x308c0, 0x30908,
2275 		0x30910, 0x309b8,
2276 		0x30a00, 0x30a04,
2277 		0x30a0c, 0x30a14,
2278 		0x30a1c, 0x30a2c,
2279 		0x30a44, 0x30a50,
2280 		0x30a74, 0x30a74,
2281 		0x30a7c, 0x30afc,
2282 		0x30b08, 0x30c24,
2283 		0x30d00, 0x30d14,
2284 		0x30d1c, 0x30d3c,
2285 		0x30d44, 0x30d4c,
2286 		0x30d54, 0x30d74,
2287 		0x30d7c, 0x30d7c,
2288 		0x30de0, 0x30de0,
2289 		0x30e00, 0x30ed4,
2290 		0x30f00, 0x30fa4,
2291 		0x30fc0, 0x30fc4,
2292 		0x31000, 0x31004,
2293 		0x31080, 0x310fc,
2294 		0x31208, 0x31220,
2295 		0x3123c, 0x31254,
2296 		0x31300, 0x31300,
2297 		0x31308, 0x3131c,
2298 		0x31338, 0x3133c,
2299 		0x31380, 0x31380,
2300 		0x31388, 0x313a8,
2301 		0x313b4, 0x313b4,
2302 		0x31400, 0x31420,
2303 		0x31438, 0x3143c,
2304 		0x31480, 0x31480,
2305 		0x314a8, 0x314a8,
2306 		0x314b0, 0x314b4,
2307 		0x314c8, 0x314d4,
2308 		0x31a40, 0x31a4c,
2309 		0x31af0, 0x31b20,
2310 		0x31b38, 0x31b3c,
2311 		0x31b80, 0x31b80,
2312 		0x31ba8, 0x31ba8,
2313 		0x31bb0, 0x31bb4,
2314 		0x31bc8, 0x31bd4,
2315 		0x32140, 0x3218c,
2316 		0x321f0, 0x321f4,
2317 		0x32200, 0x32200,
2318 		0x32218, 0x32218,
2319 		0x32400, 0x32400,
2320 		0x32408, 0x3241c,
2321 		0x32618, 0x32620,
2322 		0x32664, 0x32664,
2323 		0x326a8, 0x326a8,
2324 		0x326ec, 0x326ec,
2325 		0x32a00, 0x32abc,
2326 		0x32b00, 0x32b38,
2327 		0x32b40, 0x32b58,
2328 		0x32b60, 0x32b78,
2329 		0x32c00, 0x32c00,
2330 		0x32c08, 0x32c3c,
2331 		0x32e00, 0x32e2c,
2332 		0x32f00, 0x32f2c,
2333 		0x33000, 0x3302c,
2334 		0x33034, 0x33050,
2335 		0x33058, 0x33058,
2336 		0x33060, 0x3308c,
2337 		0x3309c, 0x330ac,
2338 		0x330c0, 0x330c0,
2339 		0x330c8, 0x330d0,
2340 		0x330d8, 0x330e0,
2341 		0x330ec, 0x3312c,
2342 		0x33134, 0x33150,
2343 		0x33158, 0x33158,
2344 		0x33160, 0x3318c,
2345 		0x3319c, 0x331ac,
2346 		0x331c0, 0x331c0,
2347 		0x331c8, 0x331d0,
2348 		0x331d8, 0x331e0,
2349 		0x331ec, 0x33290,
2350 		0x33298, 0x332c4,
2351 		0x332e4, 0x33390,
2352 		0x33398, 0x333c4,
2353 		0x333e4, 0x3342c,
2354 		0x33434, 0x33450,
2355 		0x33458, 0x33458,
2356 		0x33460, 0x3348c,
2357 		0x3349c, 0x334ac,
2358 		0x334c0, 0x334c0,
2359 		0x334c8, 0x334d0,
2360 		0x334d8, 0x334e0,
2361 		0x334ec, 0x3352c,
2362 		0x33534, 0x33550,
2363 		0x33558, 0x33558,
2364 		0x33560, 0x3358c,
2365 		0x3359c, 0x335ac,
2366 		0x335c0, 0x335c0,
2367 		0x335c8, 0x335d0,
2368 		0x335d8, 0x335e0,
2369 		0x335ec, 0x33690,
2370 		0x33698, 0x336c4,
2371 		0x336e4, 0x33790,
2372 		0x33798, 0x337c4,
2373 		0x337e4, 0x337fc,
2374 		0x33814, 0x33814,
2375 		0x33854, 0x33868,
2376 		0x33880, 0x3388c,
2377 		0x338c0, 0x338d0,
2378 		0x338e8, 0x338ec,
2379 		0x33900, 0x3392c,
2380 		0x33934, 0x33950,
2381 		0x33958, 0x33958,
2382 		0x33960, 0x3398c,
2383 		0x3399c, 0x339ac,
2384 		0x339c0, 0x339c0,
2385 		0x339c8, 0x339d0,
2386 		0x339d8, 0x339e0,
2387 		0x339ec, 0x33a90,
2388 		0x33a98, 0x33ac4,
2389 		0x33ae4, 0x33b10,
2390 		0x33b24, 0x33b28,
2391 		0x33b38, 0x33b50,
2392 		0x33bf0, 0x33c10,
2393 		0x33c24, 0x33c28,
2394 		0x33c38, 0x33c50,
2395 		0x33cf0, 0x33cfc,
2396 		0x34000, 0x34030,
2397 		0x34038, 0x34038,
2398 		0x34040, 0x34040,
2399 		0x34048, 0x34048,
2400 		0x34050, 0x34050,
2401 		0x3405c, 0x34060,
2402 		0x34068, 0x34068,
2403 		0x34070, 0x34070,
2404 		0x34100, 0x34168,
2405 		0x34190, 0x341a0,
2406 		0x341a8, 0x341b8,
2407 		0x341c4, 0x341c8,
2408 		0x341d0, 0x341d0,
2409 		0x34200, 0x34320,
2410 		0x34400, 0x344b4,
2411 		0x344c0, 0x3452c,
2412 		0x34540, 0x3461c,
2413 		0x34800, 0x348a0,
2414 		0x348c0, 0x34908,
2415 		0x34910, 0x349b8,
2416 		0x34a00, 0x34a04,
2417 		0x34a0c, 0x34a14,
2418 		0x34a1c, 0x34a2c,
2419 		0x34a44, 0x34a50,
2420 		0x34a74, 0x34a74,
2421 		0x34a7c, 0x34afc,
2422 		0x34b08, 0x34c24,
2423 		0x34d00, 0x34d14,
2424 		0x34d1c, 0x34d3c,
2425 		0x34d44, 0x34d4c,
2426 		0x34d54, 0x34d74,
2427 		0x34d7c, 0x34d7c,
2428 		0x34de0, 0x34de0,
2429 		0x34e00, 0x34ed4,
2430 		0x34f00, 0x34fa4,
2431 		0x34fc0, 0x34fc4,
2432 		0x35000, 0x35004,
2433 		0x35080, 0x350fc,
2434 		0x35208, 0x35220,
2435 		0x3523c, 0x35254,
2436 		0x35300, 0x35300,
2437 		0x35308, 0x3531c,
2438 		0x35338, 0x3533c,
2439 		0x35380, 0x35380,
2440 		0x35388, 0x353a8,
2441 		0x353b4, 0x353b4,
2442 		0x35400, 0x35420,
2443 		0x35438, 0x3543c,
2444 		0x35480, 0x35480,
2445 		0x354a8, 0x354a8,
2446 		0x354b0, 0x354b4,
2447 		0x354c8, 0x354d4,
2448 		0x35a40, 0x35a4c,
2449 		0x35af0, 0x35b20,
2450 		0x35b38, 0x35b3c,
2451 		0x35b80, 0x35b80,
2452 		0x35ba8, 0x35ba8,
2453 		0x35bb0, 0x35bb4,
2454 		0x35bc8, 0x35bd4,
2455 		0x36140, 0x3618c,
2456 		0x361f0, 0x361f4,
2457 		0x36200, 0x36200,
2458 		0x36218, 0x36218,
2459 		0x36400, 0x36400,
2460 		0x36408, 0x3641c,
2461 		0x36618, 0x36620,
2462 		0x36664, 0x36664,
2463 		0x366a8, 0x366a8,
2464 		0x366ec, 0x366ec,
2465 		0x36a00, 0x36abc,
2466 		0x36b00, 0x36b38,
2467 		0x36b40, 0x36b58,
2468 		0x36b60, 0x36b78,
2469 		0x36c00, 0x36c00,
2470 		0x36c08, 0x36c3c,
2471 		0x36e00, 0x36e2c,
2472 		0x36f00, 0x36f2c,
2473 		0x37000, 0x3702c,
2474 		0x37034, 0x37050,
2475 		0x37058, 0x37058,
2476 		0x37060, 0x3708c,
2477 		0x3709c, 0x370ac,
2478 		0x370c0, 0x370c0,
2479 		0x370c8, 0x370d0,
2480 		0x370d8, 0x370e0,
2481 		0x370ec, 0x3712c,
2482 		0x37134, 0x37150,
2483 		0x37158, 0x37158,
2484 		0x37160, 0x3718c,
2485 		0x3719c, 0x371ac,
2486 		0x371c0, 0x371c0,
2487 		0x371c8, 0x371d0,
2488 		0x371d8, 0x371e0,
2489 		0x371ec, 0x37290,
2490 		0x37298, 0x372c4,
2491 		0x372e4, 0x37390,
2492 		0x37398, 0x373c4,
2493 		0x373e4, 0x3742c,
2494 		0x37434, 0x37450,
2495 		0x37458, 0x37458,
2496 		0x37460, 0x3748c,
2497 		0x3749c, 0x374ac,
2498 		0x374c0, 0x374c0,
2499 		0x374c8, 0x374d0,
2500 		0x374d8, 0x374e0,
2501 		0x374ec, 0x3752c,
2502 		0x37534, 0x37550,
2503 		0x37558, 0x37558,
2504 		0x37560, 0x3758c,
2505 		0x3759c, 0x375ac,
2506 		0x375c0, 0x375c0,
2507 		0x375c8, 0x375d0,
2508 		0x375d8, 0x375e0,
2509 		0x375ec, 0x37690,
2510 		0x37698, 0x376c4,
2511 		0x376e4, 0x37790,
2512 		0x37798, 0x377c4,
2513 		0x377e4, 0x377fc,
2514 		0x37814, 0x37814,
2515 		0x37854, 0x37868,
2516 		0x37880, 0x3788c,
2517 		0x378c0, 0x378d0,
2518 		0x378e8, 0x378ec,
2519 		0x37900, 0x3792c,
2520 		0x37934, 0x37950,
2521 		0x37958, 0x37958,
2522 		0x37960, 0x3798c,
2523 		0x3799c, 0x379ac,
2524 		0x379c0, 0x379c0,
2525 		0x379c8, 0x379d0,
2526 		0x379d8, 0x379e0,
2527 		0x379ec, 0x37a90,
2528 		0x37a98, 0x37ac4,
2529 		0x37ae4, 0x37b10,
2530 		0x37b24, 0x37b28,
2531 		0x37b38, 0x37b50,
2532 		0x37bf0, 0x37c10,
2533 		0x37c24, 0x37c28,
2534 		0x37c38, 0x37c50,
2535 		0x37cf0, 0x37cfc,
2536 		0x40040, 0x40040,
2537 		0x40080, 0x40084,
2538 		0x40100, 0x40100,
2539 		0x40140, 0x401bc,
2540 		0x40200, 0x40214,
2541 		0x40228, 0x40228,
2542 		0x40240, 0x40258,
2543 		0x40280, 0x40280,
2544 		0x40304, 0x40304,
2545 		0x40330, 0x4033c,
2546 		0x41304, 0x413c8,
2547 		0x413d0, 0x413dc,
2548 		0x413f0, 0x413f0,
2549 		0x41400, 0x4140c,
2550 		0x41414, 0x4141c,
2551 		0x41480, 0x414d0,
2552 		0x44000, 0x4407c,
2553 		0x440c0, 0x441ac,
2554 		0x441b4, 0x4427c,
2555 		0x442c0, 0x443ac,
2556 		0x443b4, 0x4447c,
2557 		0x444c0, 0x445ac,
2558 		0x445b4, 0x4467c,
2559 		0x446c0, 0x447ac,
2560 		0x447b4, 0x4487c,
2561 		0x448c0, 0x449ac,
2562 		0x449b4, 0x44a7c,
2563 		0x44ac0, 0x44bac,
2564 		0x44bb4, 0x44c7c,
2565 		0x44cc0, 0x44dac,
2566 		0x44db4, 0x44e7c,
2567 		0x44ec0, 0x44fac,
2568 		0x44fb4, 0x4507c,
2569 		0x450c0, 0x451ac,
2570 		0x451b4, 0x451fc,
2571 		0x45800, 0x45804,
2572 		0x45810, 0x45830,
2573 		0x45840, 0x45860,
2574 		0x45868, 0x45868,
2575 		0x45880, 0x45884,
2576 		0x458a0, 0x458b0,
2577 		0x45a00, 0x45a04,
2578 		0x45a10, 0x45a30,
2579 		0x45a40, 0x45a60,
2580 		0x45a68, 0x45a68,
2581 		0x45a80, 0x45a84,
2582 		0x45aa0, 0x45ab0,
2583 		0x460c0, 0x460e4,
2584 		0x47000, 0x4703c,
2585 		0x47044, 0x4708c,
2586 		0x47200, 0x47250,
2587 		0x47400, 0x47408,
2588 		0x47414, 0x47420,
2589 		0x47600, 0x47618,
2590 		0x47800, 0x47814,
2591 		0x47820, 0x4782c,
2592 		0x50000, 0x50084,
2593 		0x50090, 0x500cc,
2594 		0x50300, 0x50384,
2595 		0x50400, 0x50400,
2596 		0x50800, 0x50884,
2597 		0x50890, 0x508cc,
2598 		0x50b00, 0x50b84,
2599 		0x50c00, 0x50c00,
2600 		0x51000, 0x51020,
2601 		0x51028, 0x510b0,
2602 		0x51300, 0x51324,
2603 	};
2604 
2605 	static const unsigned int t6vf_reg_ranges[] = {
2606 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2607 		VF_MPS_REG(A_MPS_VF_CTL),
2608 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2609 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2610 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2611 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2612 		FW_T6VF_MBDATA_BASE_ADDR,
2613 		FW_T6VF_MBDATA_BASE_ADDR +
2614 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2615 	};
2616 
2617 	u32 *buf_end = (u32 *)(buf + buf_size);
2618 	const unsigned int *reg_ranges;
2619 	int reg_ranges_size, range;
2620 	unsigned int chip_version = chip_id(adap);
2621 
2622 	/*
2623 	 * Select the right set of register ranges to dump depending on the
2624 	 * adapter chip type.
2625 	 */
2626 	switch (chip_version) {
2627 	case CHELSIO_T4:
2628 		if (adap->flags & IS_VF) {
2629 			reg_ranges = t4vf_reg_ranges;
2630 			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2631 		} else {
2632 			reg_ranges = t4_reg_ranges;
2633 			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2634 		}
2635 		break;
2636 
2637 	case CHELSIO_T5:
2638 		if (adap->flags & IS_VF) {
2639 			reg_ranges = t5vf_reg_ranges;
2640 			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2641 		} else {
2642 			reg_ranges = t5_reg_ranges;
2643 			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2644 		}
2645 		break;
2646 
2647 	case CHELSIO_T6:
2648 		if (adap->flags & IS_VF) {
2649 			reg_ranges = t6vf_reg_ranges;
2650 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2651 		} else {
2652 			reg_ranges = t6_reg_ranges;
2653 			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2654 		}
2655 		break;
2656 
2657 	default:
2658 		CH_ERR(adap,
2659 			"Unsupported chip version %d\n", chip_version);
2660 		return;
2661 	}
2662 
2663 	/*
2664 	 * Clear the register buffer and insert the appropriate register
2665 	 * values selected by the above register ranges.
2666 	 */
2667 	memset(buf, 0, buf_size);
2668 	for (range = 0; range < reg_ranges_size; range += 2) {
2669 		unsigned int reg = reg_ranges[range];
2670 		unsigned int last_reg = reg_ranges[range + 1];
2671 		u32 *bufp = (u32 *)(buf + reg);
2672 
2673 		/*
2674 		 * Iterate across the register range filling in the register
2675 		 * buffer but don't write past the end of the register buffer.
2676 		 */
2677 		while (reg <= last_reg && bufp < buf_end) {
2678 			*bufp++ = t4_read_reg(adap, reg);
2679 			reg += sizeof(u32);
2680 		}
2681 	}
2682 }
2683 
2684 /*
2685  * Partial EEPROM Vital Product Data structure.  Includes only the ID and
2686  * VPD-R sections.
2687  */
2688 struct t4_vpd_hdr {
2689 	u8  id_tag;
2690 	u8  id_len[2];
2691 	u8  id_data[ID_LEN];
2692 	u8  vpdr_tag;
2693 	u8  vpdr_len[2];
2694 };
2695 
2696 /*
2697  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2698  */
2699 #define EEPROM_DELAY		10		/* 10us per poll spin */
2700 #define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2701 
2702 #define EEPROM_STAT_ADDR	0x7bfc
2703 #define VPD_BASE		0x400
2704 #define VPD_BASE_OLD		0
2705 #define VPD_LEN			1024
2706 #define VPD_INFO_FLD_HDR_SIZE	3
2707 #define CHELSIO_VPD_UNIQUE_ID	0x82
2708 
2709 /*
2710  * Small utility function to wait till any outstanding VPD Access is complete.
2711  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2712  * VPD Access in flight.  This allows us to handle the problem of having a
2713  * previous VPD Access time out and prevent an attempt to inject a new VPD
2714  * Request before any in-flight VPD reguest has completed.
2715  */
2716 static int t4_seeprom_wait(struct adapter *adapter)
2717 {
2718 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2719 	int max_poll;
2720 
2721 	/*
2722 	 * If no VPD Access is in flight, we can just return success right
2723 	 * away.
2724 	 */
2725 	if (!adapter->vpd_busy)
2726 		return 0;
2727 
2728 	/*
2729 	 * Poll the VPD Capability Address/Flag register waiting for it
2730 	 * to indicate that the operation is complete.
2731 	 */
2732 	max_poll = EEPROM_MAX_POLL;
2733 	do {
2734 		u16 val;
2735 
2736 		udelay(EEPROM_DELAY);
2737 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2738 
2739 		/*
2740 		 * If the operation is complete, mark the VPD as no longer
2741 		 * busy and return success.
2742 		 */
2743 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2744 			adapter->vpd_busy = 0;
2745 			return 0;
2746 		}
2747 	} while (--max_poll);
2748 
2749 	/*
2750 	 * Failure!  Note that we leave the VPD Busy status set in order to
2751 	 * avoid pushing a new VPD Access request into the VPD Capability till
2752 	 * the current operation eventually succeeds.  It's a bug to issue a
2753 	 * new request when an existing request is in flight and will result
2754 	 * in corrupt hardware state.
2755 	 */
2756 	return -ETIMEDOUT;
2757 }
2758 
2759 /**
2760  *	t4_seeprom_read - read a serial EEPROM location
2761  *	@adapter: adapter to read
2762  *	@addr: EEPROM virtual address
2763  *	@data: where to store the read data
2764  *
2765  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2766  *	VPD capability.  Note that this function must be called with a virtual
2767  *	address.
2768  */
2769 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2770 {
2771 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2772 	int ret;
2773 
2774 	/*
2775 	 * VPD Accesses must alway be 4-byte aligned!
2776 	 */
2777 	if (addr >= EEPROMVSIZE || (addr & 3))
2778 		return -EINVAL;
2779 
2780 	/*
2781 	 * Wait for any previous operation which may still be in flight to
2782 	 * complete.
2783 	 */
2784 	ret = t4_seeprom_wait(adapter);
2785 	if (ret) {
2786 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2787 		return ret;
2788 	}
2789 
2790 	/*
2791 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2792 	 * for our request to complete.  If it doesn't complete, note the
2793 	 * error and return it to our caller.  Note that we do not reset the
2794 	 * VPD Busy status!
2795 	 */
2796 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2797 	adapter->vpd_busy = 1;
2798 	adapter->vpd_flag = PCI_VPD_ADDR_F;
2799 	ret = t4_seeprom_wait(adapter);
2800 	if (ret) {
2801 		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2802 		return ret;
2803 	}
2804 
2805 	/*
2806 	 * Grab the returned data, swizzle it into our endianness and
2807 	 * return success.
2808 	 */
2809 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2810 	*data = le32_to_cpu(*data);
2811 	return 0;
2812 }
2813 
2814 /**
2815  *	t4_seeprom_write - write a serial EEPROM location
2816  *	@adapter: adapter to write
2817  *	@addr: virtual EEPROM address
2818  *	@data: value to write
2819  *
2820  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2821  *	VPD capability.  Note that this function must be called with a virtual
2822  *	address.
2823  */
2824 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2825 {
2826 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2827 	int ret;
2828 	u32 stats_reg;
2829 	int max_poll;
2830 
2831 	/*
2832 	 * VPD Accesses must alway be 4-byte aligned!
2833 	 */
2834 	if (addr >= EEPROMVSIZE || (addr & 3))
2835 		return -EINVAL;
2836 
2837 	/*
2838 	 * Wait for any previous operation which may still be in flight to
2839 	 * complete.
2840 	 */
2841 	ret = t4_seeprom_wait(adapter);
2842 	if (ret) {
2843 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2844 		return ret;
2845 	}
2846 
2847 	/*
2848 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2849 	 * for our request to complete.  If it doesn't complete, note the
2850 	 * error and return it to our caller.  Note that we do not reset the
2851 	 * VPD Busy status!
2852 	 */
2853 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2854 				 cpu_to_le32(data));
2855 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2856 				 (u16)addr | PCI_VPD_ADDR_F);
2857 	adapter->vpd_busy = 1;
2858 	adapter->vpd_flag = 0;
2859 	ret = t4_seeprom_wait(adapter);
2860 	if (ret) {
2861 		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2862 		return ret;
2863 	}
2864 
2865 	/*
2866 	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2867 	 * request to complete. If it doesn't complete, return error.
2868 	 */
2869 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2870 	max_poll = EEPROM_MAX_POLL;
2871 	do {
2872 		udelay(EEPROM_DELAY);
2873 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2874 	} while ((stats_reg & 0x1) && --max_poll);
2875 	if (!max_poll)
2876 		return -ETIMEDOUT;
2877 
2878 	/* Return success! */
2879 	return 0;
2880 }
2881 
2882 /**
2883  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2884  *	@phys_addr: the physical EEPROM address
2885  *	@fn: the PCI function number
2886  *	@sz: size of function-specific area
2887  *
2888  *	Translate a physical EEPROM address to virtual.  The first 1K is
2889  *	accessed through virtual addresses starting at 31K, the rest is
2890  *	accessed through virtual addresses starting at 0.
2891  *
2892  *	The mapping is as follows:
2893  *	[0..1K) -> [31K..32K)
2894  *	[1K..1K+A) -> [ES-A..ES)
2895  *	[1K+A..ES) -> [0..ES-A-1K)
2896  *
2897  *	where A = @fn * @sz, and ES = EEPROM size.
2898  */
2899 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2900 {
2901 	fn *= sz;
2902 	if (phys_addr < 1024)
2903 		return phys_addr + (31 << 10);
2904 	if (phys_addr < 1024 + fn)
2905 		return EEPROMSIZE - fn + phys_addr - 1024;
2906 	if (phys_addr < EEPROMSIZE)
2907 		return phys_addr - 1024 - fn;
2908 	return -EINVAL;
2909 }
2910 
2911 /**
2912  *	t4_seeprom_wp - enable/disable EEPROM write protection
2913  *	@adapter: the adapter
2914  *	@enable: whether to enable or disable write protection
2915  *
2916  *	Enables or disables write protection on the serial EEPROM.
2917  */
2918 int t4_seeprom_wp(struct adapter *adapter, int enable)
2919 {
2920 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2921 }
2922 
2923 /**
2924  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2925  *	@v: Pointer to buffered vpd data structure
2926  *	@kw: The keyword to search for
2927  *
2928  *	Returns the value of the information field keyword or
2929  *	-ENOENT otherwise.
2930  */
2931 static int get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
2932 {
2933 	int i;
2934 	unsigned int offset , len;
2935 	const u8 *buf = (const u8 *)v;
2936 	const u8 *vpdr_len = &v->vpdr_len[0];
2937 	offset = sizeof(struct t4_vpd_hdr);
2938 	len =  (u16)vpdr_len[0] + ((u16)vpdr_len[1] << 8);
2939 
2940 	if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN) {
2941 		return -ENOENT;
2942 	}
2943 
2944 	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2945 		if(memcmp(buf + i , kw , 2) == 0){
2946 			i += VPD_INFO_FLD_HDR_SIZE;
2947 			return i;
2948 		}
2949 
2950 		i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
2951 	}
2952 
2953 	return -ENOENT;
2954 }
2955 
2956 
2957 /**
2958  *	get_vpd_params - read VPD parameters from VPD EEPROM
2959  *	@adapter: adapter to read
2960  *	@p: where to store the parameters
2961  *	@vpd: caller provided temporary space to read the VPD into
2962  *
2963  *	Reads card parameters stored in VPD EEPROM.
2964  */
2965 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
2966     u8 *vpd)
2967 {
2968 	int i, ret, addr;
2969 	int ec, sn, pn, na;
2970 	u8 csum;
2971 	const struct t4_vpd_hdr *v;
2972 
2973 	/*
2974 	 * Card information normally starts at VPD_BASE but early cards had
2975 	 * it at 0.
2976 	 */
2977 	ret = t4_seeprom_read(adapter, VPD_BASE, (u32 *)(vpd));
2978 	if (ret)
2979 		return (ret);
2980 
2981 	/*
2982 	 * The VPD shall have a unique identifier specified by the PCI SIG.
2983 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2984 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2985 	 * is expected to automatically put this entry at the
2986 	 * beginning of the VPD.
2987 	 */
2988 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2989 
2990 	for (i = 0; i < VPD_LEN; i += 4) {
2991 		ret = t4_seeprom_read(adapter, addr + i, (u32 *)(vpd + i));
2992 		if (ret)
2993 			return ret;
2994 	}
2995  	v = (const struct t4_vpd_hdr *)vpd;
2996 
2997 #define FIND_VPD_KW(var,name) do { \
2998 	var = get_vpd_keyword_val(v , name); \
2999 	if (var < 0) { \
3000 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
3001 		return -EINVAL; \
3002 	} \
3003 } while (0)
3004 
3005 	FIND_VPD_KW(i, "RV");
3006 	for (csum = 0; i >= 0; i--)
3007 		csum += vpd[i];
3008 
3009 	if (csum) {
3010 		CH_ERR(adapter,
3011 			"corrupted VPD EEPROM, actual csum %u\n", csum);
3012 		return -EINVAL;
3013 	}
3014 
3015 	FIND_VPD_KW(ec, "EC");
3016 	FIND_VPD_KW(sn, "SN");
3017 	FIND_VPD_KW(pn, "PN");
3018 	FIND_VPD_KW(na, "NA");
3019 #undef FIND_VPD_KW
3020 
3021 	memcpy(p->id, v->id_data, ID_LEN);
3022 	strstrip(p->id);
3023 	memcpy(p->ec, vpd + ec, EC_LEN);
3024 	strstrip(p->ec);
3025 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3026 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3027 	strstrip(p->sn);
3028 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3029 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3030 	strstrip((char *)p->pn);
3031 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3032 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3033 	strstrip((char *)p->na);
3034 
3035 	return 0;
3036 }
3037 
3038 /* serial flash and firmware constants and flash config file constants */
3039 enum {
3040 	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3041 
3042 	/* flash command opcodes */
3043 	SF_PROG_PAGE    = 2,	/* program page */
3044 	SF_WR_DISABLE   = 4,	/* disable writes */
3045 	SF_RD_STATUS    = 5,	/* read status register */
3046 	SF_WR_ENABLE    = 6,	/* enable writes */
3047 	SF_RD_DATA_FAST = 0xb,	/* read flash */
3048 	SF_RD_ID	= 0x9f,	/* read ID */
3049 	SF_ERASE_SECTOR = 0xd8,	/* erase sector */
3050 };
3051 
3052 /**
3053  *	sf1_read - read data from the serial flash
3054  *	@adapter: the adapter
3055  *	@byte_cnt: number of bytes to read
3056  *	@cont: whether another operation will be chained
3057  *	@lock: whether to lock SF for PL access only
3058  *	@valp: where to store the read data
3059  *
3060  *	Reads up to 4 bytes of data from the serial flash.  The location of
3061  *	the read needs to be specified prior to calling this by issuing the
3062  *	appropriate commands to the serial flash.
3063  */
3064 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3065 		    int lock, u32 *valp)
3066 {
3067 	int ret;
3068 
3069 	if (!byte_cnt || byte_cnt > 4)
3070 		return -EINVAL;
3071 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3072 		return -EBUSY;
3073 	t4_write_reg(adapter, A_SF_OP,
3074 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3075 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3076 	if (!ret)
3077 		*valp = t4_read_reg(adapter, A_SF_DATA);
3078 	return ret;
3079 }
3080 
3081 /**
3082  *	sf1_write - write data to the serial flash
3083  *	@adapter: the adapter
3084  *	@byte_cnt: number of bytes to write
3085  *	@cont: whether another operation will be chained
3086  *	@lock: whether to lock SF for PL access only
3087  *	@val: value to write
3088  *
3089  *	Writes up to 4 bytes of data to the serial flash.  The location of
3090  *	the write needs to be specified prior to calling this by issuing the
3091  *	appropriate commands to the serial flash.
3092  */
3093 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3094 		     int lock, u32 val)
3095 {
3096 	if (!byte_cnt || byte_cnt > 4)
3097 		return -EINVAL;
3098 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3099 		return -EBUSY;
3100 	t4_write_reg(adapter, A_SF_DATA, val);
3101 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3102 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3103 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3104 }
3105 
3106 /**
3107  *	flash_wait_op - wait for a flash operation to complete
3108  *	@adapter: the adapter
3109  *	@attempts: max number of polls of the status register
3110  *	@delay: delay between polls in ms
3111  *
3112  *	Wait for a flash operation to complete by polling the status register.
3113  */
3114 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3115 {
3116 	int ret;
3117 	u32 status;
3118 
3119 	while (1) {
3120 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3121 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3122 			return ret;
3123 		if (!(status & 1))
3124 			return 0;
3125 		if (--attempts == 0)
3126 			return -EAGAIN;
3127 		if (delay)
3128 			msleep(delay);
3129 	}
3130 }
3131 
3132 /**
3133  *	t4_read_flash - read words from serial flash
3134  *	@adapter: the adapter
3135  *	@addr: the start address for the read
3136  *	@nwords: how many 32-bit words to read
3137  *	@data: where to store the read data
3138  *	@byte_oriented: whether to store data as bytes or as words
3139  *
3140  *	Read the specified number of 32-bit words from the serial flash.
3141  *	If @byte_oriented is set the read data is stored as a byte array
3142  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3143  *	natural endianness.
3144  */
3145 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3146 		  unsigned int nwords, u32 *data, int byte_oriented)
3147 {
3148 	int ret;
3149 
3150 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3151 		return -EINVAL;
3152 
3153 	addr = swab32(addr) | SF_RD_DATA_FAST;
3154 
3155 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3156 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3157 		return ret;
3158 
3159 	for ( ; nwords; nwords--, data++) {
3160 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3161 		if (nwords == 1)
3162 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3163 		if (ret)
3164 			return ret;
3165 		if (byte_oriented)
3166 			*data = (__force __u32)(cpu_to_be32(*data));
3167 	}
3168 	return 0;
3169 }
3170 
3171 /**
3172  *	t4_write_flash - write up to a page of data to the serial flash
3173  *	@adapter: the adapter
3174  *	@addr: the start address to write
3175  *	@n: length of data to write in bytes
3176  *	@data: the data to write
3177  *	@byte_oriented: whether to store data as bytes or as words
3178  *
3179  *	Writes up to a page of data (256 bytes) to the serial flash starting
3180  *	at the given address.  All the data must be written to the same page.
3181  *	If @byte_oriented is set the write data is stored as byte stream
3182  *	(i.e. matches what on disk), otherwise in big-endian.
3183  */
3184 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3185 			  unsigned int n, const u8 *data, int byte_oriented)
3186 {
3187 	int ret;
3188 	u32 buf[SF_PAGE_SIZE / 4];
3189 	unsigned int i, c, left, val, offset = addr & 0xff;
3190 
3191 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3192 		return -EINVAL;
3193 
3194 	val = swab32(addr) | SF_PROG_PAGE;
3195 
3196 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3197 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3198 		goto unlock;
3199 
3200 	for (left = n; left; left -= c) {
3201 		c = min(left, 4U);
3202 		for (val = 0, i = 0; i < c; ++i)
3203 			val = (val << 8) + *data++;
3204 
3205 		if (!byte_oriented)
3206 			val = cpu_to_be32(val);
3207 
3208 		ret = sf1_write(adapter, c, c != left, 1, val);
3209 		if (ret)
3210 			goto unlock;
3211 	}
3212 	ret = flash_wait_op(adapter, 8, 1);
3213 	if (ret)
3214 		goto unlock;
3215 
3216 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3217 
3218 	/* Read the page to verify the write succeeded */
3219 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3220 			    byte_oriented);
3221 	if (ret)
3222 		return ret;
3223 
3224 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3225 		CH_ERR(adapter,
3226 			"failed to correctly write the flash page at %#x\n",
3227 			addr);
3228 		return -EIO;
3229 	}
3230 	return 0;
3231 
3232 unlock:
3233 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3234 	return ret;
3235 }
3236 
3237 /**
3238  *	t4_get_fw_version - read the firmware version
3239  *	@adapter: the adapter
3240  *	@vers: where to place the version
3241  *
3242  *	Reads the FW version from flash.
3243  */
3244 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3245 {
3246 	return t4_read_flash(adapter, FLASH_FW_START +
3247 			     offsetof(struct fw_hdr, fw_ver), 1,
3248 			     vers, 0);
3249 }
3250 
3251 /**
3252  *	t4_get_bs_version - read the firmware bootstrap version
3253  *	@adapter: the adapter
3254  *	@vers: where to place the version
3255  *
3256  *	Reads the FW Bootstrap version from flash.
3257  */
3258 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3259 {
3260 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3261 			     offsetof(struct fw_hdr, fw_ver), 1,
3262 			     vers, 0);
3263 }
3264 
3265 /**
3266  *	t4_get_tp_version - read the TP microcode version
3267  *	@adapter: the adapter
3268  *	@vers: where to place the version
3269  *
3270  *	Reads the TP microcode version from flash.
3271  */
3272 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3273 {
3274 	return t4_read_flash(adapter, FLASH_FW_START +
3275 			     offsetof(struct fw_hdr, tp_microcode_ver),
3276 			     1, vers, 0);
3277 }
3278 
3279 /**
3280  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3281  *	@adapter: the adapter
3282  *	@vers: where to place the version
3283  *
3284  *	Reads the Expansion ROM header from FLASH and returns the version
3285  *	number (if present) through the @vers return value pointer.  We return
3286  *	this in the Firmware Version Format since it's convenient.  Return
3287  *	0 on success, -ENOENT if no Expansion ROM is present.
3288  */
3289 int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3290 {
3291 	struct exprom_header {
3292 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3293 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3294 	} *hdr;
3295 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3296 					   sizeof(u32))];
3297 	int ret;
3298 
3299 	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3300 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3301 			    0);
3302 	if (ret)
3303 		return ret;
3304 
3305 	hdr = (struct exprom_header *)exprom_header_buf;
3306 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3307 		return -ENOENT;
3308 
3309 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3310 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3311 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3312 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3313 	return 0;
3314 }
3315 
3316 /**
3317  *	t4_get_scfg_version - return the Serial Configuration version
3318  *	@adapter: the adapter
3319  *	@vers: where to place the version
3320  *
3321  *	Reads the Serial Configuration Version via the Firmware interface
3322  *	(thus this can only be called once we're ready to issue Firmware
3323  *	commands).  The format of the Serial Configuration version is
3324  *	adapter specific.  Returns 0 on success, an error on failure.
3325  *
3326  *	Note that early versions of the Firmware didn't include the ability
3327  *	to retrieve the Serial Configuration version, so we zero-out the
3328  *	return-value parameter in that case to avoid leaving it with
3329  *	garbage in it.
3330  *
3331  *	Also note that the Firmware will return its cached copy of the Serial
3332  *	Initialization Revision ID, not the actual Revision ID as written in
3333  *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3334  *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3335  *	it's best to defer calling this routine till after a FW_RESET_CMD has
3336  *	been issued if the Host Driver will be performing a full adapter
3337  *	initialization.
3338  */
3339 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3340 {
3341 	u32 scfgrev_param;
3342 	int ret;
3343 
3344 	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3345 			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3346 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3347 			      1, &scfgrev_param, vers);
3348 	if (ret)
3349 		*vers = 0;
3350 	return ret;
3351 }
3352 
3353 /**
3354  *	t4_get_vpd_version - return the VPD version
3355  *	@adapter: the adapter
3356  *	@vers: where to place the version
3357  *
3358  *	Reads the VPD via the Firmware interface (thus this can only be called
3359  *	once we're ready to issue Firmware commands).  The format of the
3360  *	VPD version is adapter specific.  Returns 0 on success, an error on
3361  *	failure.
3362  *
3363  *	Note that early versions of the Firmware didn't include the ability
3364  *	to retrieve the VPD version, so we zero-out the return-value parameter
3365  *	in that case to avoid leaving it with garbage in it.
3366  *
3367  *	Also note that the Firmware will return its cached copy of the VPD
3368  *	Revision ID, not the actual Revision ID as written in the Serial
3369  *	EEPROM.  This is only an issue if a new VPD has been written and the
3370  *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3371  *	to defer calling this routine till after a FW_RESET_CMD has been issued
3372  *	if the Host Driver will be performing a full adapter initialization.
3373  */
3374 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3375 {
3376 	u32 vpdrev_param;
3377 	int ret;
3378 
3379 	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3380 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3381 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3382 			      1, &vpdrev_param, vers);
3383 	if (ret)
3384 		*vers = 0;
3385 	return ret;
3386 }
3387 
3388 /**
3389  *	t4_get_version_info - extract various chip/firmware version information
3390  *	@adapter: the adapter
3391  *
3392  *	Reads various chip/firmware version numbers and stores them into the
3393  *	adapter Adapter Parameters structure.  If any of the efforts fails
3394  *	the first failure will be returned, but all of the version numbers
3395  *	will be read.
3396  */
3397 int t4_get_version_info(struct adapter *adapter)
3398 {
3399 	int ret = 0;
3400 
3401 	#define FIRST_RET(__getvinfo) \
3402 	do { \
3403 		int __ret = __getvinfo; \
3404 		if (__ret && !ret) \
3405 			ret = __ret; \
3406 	} while (0)
3407 
3408 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3409 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3410 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3411 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3412 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3413 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3414 
3415 	#undef FIRST_RET
3416 
3417 	return ret;
3418 }
3419 
3420 /**
3421  *	t4_flash_erase_sectors - erase a range of flash sectors
3422  *	@adapter: the adapter
3423  *	@start: the first sector to erase
3424  *	@end: the last sector to erase
3425  *
3426  *	Erases the sectors in the given inclusive range.
3427  */
3428 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3429 {
3430 	int ret = 0;
3431 
3432 	if (end >= adapter->params.sf_nsec)
3433 		return -EINVAL;
3434 
3435 	while (start <= end) {
3436 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3437 		    (ret = sf1_write(adapter, 4, 0, 1,
3438 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3439 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3440 			CH_ERR(adapter,
3441 				"erase of flash sector %d failed, error %d\n",
3442 				start, ret);
3443 			break;
3444 		}
3445 		start++;
3446 	}
3447 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3448 	return ret;
3449 }
3450 
3451 /**
3452  *	t4_flash_cfg_addr - return the address of the flash configuration file
3453  *	@adapter: the adapter
3454  *
3455  *	Return the address within the flash where the Firmware Configuration
3456  *	File is stored, or an error if the device FLASH is too small to contain
3457  *	a Firmware Configuration File.
3458  */
3459 int t4_flash_cfg_addr(struct adapter *adapter)
3460 {
3461 	/*
3462 	 * If the device FLASH isn't large enough to hold a Firmware
3463 	 * Configuration File, return an error.
3464 	 */
3465 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3466 		return -ENOSPC;
3467 
3468 	return FLASH_CFG_START;
3469 }
3470 
3471 /*
3472  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3473  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3474  * and emit an error message for mismatched firmware to save our caller the
3475  * effort ...
3476  */
3477 static int t4_fw_matches_chip(struct adapter *adap,
3478 			      const struct fw_hdr *hdr)
3479 {
3480 	/*
3481 	 * The expression below will return FALSE for any unsupported adapter
3482 	 * which will keep us "honest" in the future ...
3483 	 */
3484 	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3485 	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3486 	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3487 		return 1;
3488 
3489 	CH_ERR(adap,
3490 		"FW image (%d) is not suitable for this adapter (%d)\n",
3491 		hdr->chip, chip_id(adap));
3492 	return 0;
3493 }
3494 
3495 /**
3496  *	t4_load_fw - download firmware
3497  *	@adap: the adapter
3498  *	@fw_data: the firmware image to write
3499  *	@size: image size
3500  *
3501  *	Write the supplied firmware image to the card's serial flash.
3502  */
3503 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3504 {
3505 	u32 csum;
3506 	int ret, addr;
3507 	unsigned int i;
3508 	u8 first_page[SF_PAGE_SIZE];
3509 	const u32 *p = (const u32 *)fw_data;
3510 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3511 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3512 	unsigned int fw_start_sec;
3513 	unsigned int fw_start;
3514 	unsigned int fw_size;
3515 
3516 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3517 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3518 		fw_start = FLASH_FWBOOTSTRAP_START;
3519 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3520 	} else {
3521 		fw_start_sec = FLASH_FW_START_SEC;
3522  		fw_start = FLASH_FW_START;
3523 		fw_size = FLASH_FW_MAX_SIZE;
3524 	}
3525 
3526 	if (!size) {
3527 		CH_ERR(adap, "FW image has no data\n");
3528 		return -EINVAL;
3529 	}
3530 	if (size & 511) {
3531 		CH_ERR(adap,
3532 			"FW image size not multiple of 512 bytes\n");
3533 		return -EINVAL;
3534 	}
3535 	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3536 		CH_ERR(adap,
3537 			"FW image size differs from size in FW header\n");
3538 		return -EINVAL;
3539 	}
3540 	if (size > fw_size) {
3541 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3542 			fw_size);
3543 		return -EFBIG;
3544 	}
3545 	if (!t4_fw_matches_chip(adap, hdr))
3546 		return -EINVAL;
3547 
3548 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3549 		csum += be32_to_cpu(p[i]);
3550 
3551 	if (csum != 0xffffffff) {
3552 		CH_ERR(adap,
3553 			"corrupted firmware image, checksum %#x\n", csum);
3554 		return -EINVAL;
3555 	}
3556 
3557 	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3558 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3559 	if (ret)
3560 		goto out;
3561 
3562 	/*
3563 	 * We write the correct version at the end so the driver can see a bad
3564 	 * version if the FW write fails.  Start by writing a copy of the
3565 	 * first page with a bad version.
3566 	 */
3567 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3568 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3569 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3570 	if (ret)
3571 		goto out;
3572 
3573 	addr = fw_start;
3574 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3575 		addr += SF_PAGE_SIZE;
3576 		fw_data += SF_PAGE_SIZE;
3577 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3578 		if (ret)
3579 			goto out;
3580 	}
3581 
3582 	ret = t4_write_flash(adap,
3583 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3584 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3585 out:
3586 	if (ret)
3587 		CH_ERR(adap, "firmware download failed, error %d\n",
3588 			ret);
3589 	return ret;
3590 }
3591 
3592 /**
3593  *	t4_fwcache - firmware cache operation
3594  *	@adap: the adapter
3595  *	@op  : the operation (flush or flush and invalidate)
3596  */
3597 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3598 {
3599 	struct fw_params_cmd c;
3600 
3601 	memset(&c, 0, sizeof(c));
3602 	c.op_to_vfn =
3603 	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3604 			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3605 				V_FW_PARAMS_CMD_PFN(adap->pf) |
3606 				V_FW_PARAMS_CMD_VFN(0));
3607 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3608 	c.param[0].mnem =
3609 	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3610 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3611 	c.param[0].val = (__force __be32)op;
3612 
3613 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3614 }
3615 
3616 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3617 			unsigned int *pif_req_wrptr,
3618 			unsigned int *pif_rsp_wrptr)
3619 {
3620 	int i, j;
3621 	u32 cfg, val, req, rsp;
3622 
3623 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3624 	if (cfg & F_LADBGEN)
3625 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3626 
3627 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3628 	req = G_POLADBGWRPTR(val);
3629 	rsp = G_PILADBGWRPTR(val);
3630 	if (pif_req_wrptr)
3631 		*pif_req_wrptr = req;
3632 	if (pif_rsp_wrptr)
3633 		*pif_rsp_wrptr = rsp;
3634 
3635 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3636 		for (j = 0; j < 6; j++) {
3637 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3638 				     V_PILADBGRDPTR(rsp));
3639 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3640 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3641 			req++;
3642 			rsp++;
3643 		}
3644 		req = (req + 2) & M_POLADBGRDPTR;
3645 		rsp = (rsp + 2) & M_PILADBGRDPTR;
3646 	}
3647 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3648 }
3649 
3650 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3651 {
3652 	u32 cfg;
3653 	int i, j, idx;
3654 
3655 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3656 	if (cfg & F_LADBGEN)
3657 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3658 
3659 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3660 		for (j = 0; j < 5; j++) {
3661 			idx = 8 * i + j;
3662 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3663 				     V_PILADBGRDPTR(idx));
3664 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3665 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3666 		}
3667 	}
3668 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3669 }
3670 
3671 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3672 {
3673 	unsigned int i, j;
3674 
3675 	for (i = 0; i < 8; i++) {
3676 		u32 *p = la_buf + i;
3677 
3678 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3679 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3680 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3681 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3682 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3683 	}
3684 }
3685 
3686 #define ADVERT_MASK (V_FW_PORT_CAP_SPEED(M_FW_PORT_CAP_SPEED) | \
3687 		     FW_PORT_CAP_ANEG)
3688 
3689 /**
3690  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3691  *	@phy: the PHY to setup
3692  *	@mac: the MAC to setup
3693  *	@lc: the requested link configuration
3694  *
3695  *	Set up a port's MAC and PHY according to a desired link configuration.
3696  *	- If the PHY can auto-negotiate first decide what to advertise, then
3697  *	  enable/disable auto-negotiation as desired, and reset.
3698  *	- If the PHY does not auto-negotiate just reset it.
3699  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3700  *	  otherwise do it later based on the outcome of auto-negotiation.
3701  */
3702 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3703 		  struct link_config *lc)
3704 {
3705 	struct fw_port_cmd c;
3706 	unsigned int mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO);
3707 	unsigned int fc, fec;
3708 
3709 	fc = 0;
3710 	if (lc->requested_fc & PAUSE_RX)
3711 		fc |= FW_PORT_CAP_FC_RX;
3712 	if (lc->requested_fc & PAUSE_TX)
3713 		fc |= FW_PORT_CAP_FC_TX;
3714 
3715 	fec = 0;
3716 	if (lc->requested_fec & FEC_RS)
3717 		fec |= FW_PORT_CAP_FEC_RS;
3718 	if (lc->requested_fec & FEC_BASER_RS)
3719 		fec |= FW_PORT_CAP_FEC_BASER_RS;
3720 	if (lc->requested_fec & FEC_RESERVED)
3721 		fec |= FW_PORT_CAP_FEC_RESERVED;
3722 
3723 	memset(&c, 0, sizeof(c));
3724 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3725 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3726 				     V_FW_PORT_CMD_PORTID(port));
3727 	c.action_to_len16 =
3728 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3729 			    FW_LEN16(c));
3730 
3731 	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
3732 		c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3733 					     fc | fec);
3734 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
3735 		lc->fec = lc->requested_fec;
3736 	} else if (lc->autoneg == AUTONEG_DISABLE) {
3737 		c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed |
3738 					     fc | fec | mdi);
3739 		lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
3740 		lc->fec = lc->requested_fec;
3741 	} else
3742 		c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | fec | mdi);
3743 
3744 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3745 }
3746 
3747 /**
3748  *	t4_restart_aneg - restart autonegotiation
3749  *	@adap: the adapter
3750  *	@mbox: mbox to use for the FW command
3751  *	@port: the port id
3752  *
3753  *	Restarts autonegotiation for the selected port.
3754  */
3755 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3756 {
3757 	struct fw_port_cmd c;
3758 
3759 	memset(&c, 0, sizeof(c));
3760 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3761 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3762 				     V_FW_PORT_CMD_PORTID(port));
3763 	c.action_to_len16 =
3764 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3765 			    FW_LEN16(c));
3766 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3767 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3768 }
3769 
3770 typedef void (*int_handler_t)(struct adapter *adap);
3771 
3772 struct intr_info {
3773 	unsigned int mask;	/* bits to check in interrupt status */
3774 	const char *msg;	/* message to print or NULL */
3775 	short stat_idx;		/* stat counter to increment or -1 */
3776 	unsigned short fatal;	/* whether the condition reported is fatal */
3777 	int_handler_t int_handler;	/* platform-specific int handler */
3778 };
3779 
3780 /**
3781  *	t4_handle_intr_status - table driven interrupt handler
3782  *	@adapter: the adapter that generated the interrupt
3783  *	@reg: the interrupt status register to process
3784  *	@acts: table of interrupt actions
3785  *
3786  *	A table driven interrupt handler that applies a set of masks to an
3787  *	interrupt status word and performs the corresponding actions if the
3788  *	interrupts described by the mask have occurred.  The actions include
3789  *	optionally emitting a warning or alert message.  The table is terminated
3790  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
3791  *	conditions.
3792  */
3793 static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3794 				 const struct intr_info *acts)
3795 {
3796 	int fatal = 0;
3797 	unsigned int mask = 0;
3798 	unsigned int status = t4_read_reg(adapter, reg);
3799 
3800 	for ( ; acts->mask; ++acts) {
3801 		if (!(status & acts->mask))
3802 			continue;
3803 		if (acts->fatal) {
3804 			fatal++;
3805 			CH_ALERT(adapter, "%s (0x%x)\n", acts->msg,
3806 				  status & acts->mask);
3807 		} else if (acts->msg)
3808 			CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n", acts->msg,
3809 				 status & acts->mask);
3810 		if (acts->int_handler)
3811 			acts->int_handler(adapter);
3812 		mask |= acts->mask;
3813 	}
3814 	status &= mask;
3815 	if (status)	/* clear processed interrupts */
3816 		t4_write_reg(adapter, reg, status);
3817 	return fatal;
3818 }
3819 
3820 /*
3821  * Interrupt handler for the PCIE module.
3822  */
3823 static void pcie_intr_handler(struct adapter *adapter)
3824 {
3825 	static const struct intr_info sysbus_intr_info[] = {
3826 		{ F_RNPP, "RXNP array parity error", -1, 1 },
3827 		{ F_RPCP, "RXPC array parity error", -1, 1 },
3828 		{ F_RCIP, "RXCIF array parity error", -1, 1 },
3829 		{ F_RCCP, "Rx completions control array parity error", -1, 1 },
3830 		{ F_RFTP, "RXFT array parity error", -1, 1 },
3831 		{ 0 }
3832 	};
3833 	static const struct intr_info pcie_port_intr_info[] = {
3834 		{ F_TPCP, "TXPC array parity error", -1, 1 },
3835 		{ F_TNPP, "TXNP array parity error", -1, 1 },
3836 		{ F_TFTP, "TXFT array parity error", -1, 1 },
3837 		{ F_TCAP, "TXCA array parity error", -1, 1 },
3838 		{ F_TCIP, "TXCIF array parity error", -1, 1 },
3839 		{ F_RCAP, "RXCA array parity error", -1, 1 },
3840 		{ F_OTDD, "outbound request TLP discarded", -1, 1 },
3841 		{ F_RDPE, "Rx data parity error", -1, 1 },
3842 		{ F_TDUE, "Tx uncorrectable data error", -1, 1 },
3843 		{ 0 }
3844 	};
3845 	static const struct intr_info pcie_intr_info[] = {
3846 		{ F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
3847 		{ F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
3848 		{ F_MSIDATAPERR, "MSI data parity error", -1, 1 },
3849 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3850 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3851 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3852 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3853 		{ F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
3854 		{ F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
3855 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3856 		{ F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
3857 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3858 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3859 		{ F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
3860 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3861 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3862 		{ F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
3863 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3864 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3865 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3866 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3867 		{ F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
3868 		{ F_MATAGPERR, "PCI MA tag parity error", -1, 1 },
3869 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3870 		{ F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
3871 		{ F_RXWRPERR, "PCI Rx write parity error", -1, 1 },
3872 		{ F_RPLPERR, "PCI replay buffer parity error", -1, 1 },
3873 		{ F_PCIESINT, "PCI core secondary fault", -1, 1 },
3874 		{ F_PCIEPINT, "PCI core primary fault", -1, 1 },
3875 		{ F_UNXSPLCPLERR, "PCI unexpected split completion error", -1,
3876 		  0 },
3877 		{ 0 }
3878 	};
3879 
3880 	static const struct intr_info t5_pcie_intr_info[] = {
3881 		{ F_MSTGRPPERR, "Master Response Read Queue parity error",
3882 		  -1, 1 },
3883 		{ F_MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
3884 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
3885 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3886 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3887 		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3888 		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3889 		{ F_PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
3890 		  -1, 1 },
3891 		{ F_PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
3892 		  -1, 1 },
3893 		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3894 		{ F_MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
3895 		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3896 		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3897 		{ F_DREQWRPERR, "PCI DMA channel write request parity error",
3898 		  -1, 1 },
3899 		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3900 		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3901 		{ F_HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
3902 		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3903 		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3904 		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3905 		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3906 		{ F_VFIDPERR, "PCI INTx clear parity error", -1, 1 },
3907 		{ F_MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
3908 		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3909 		{ F_IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
3910 		  -1, 1 },
3911 		{ F_IPRXDATAGRPPERR, "PCI IP Rx data group parity error",
3912 		  -1, 1 },
3913 		{ F_RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
3914 		{ F_IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
3915 		{ F_TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3916 		{ F_READRSPERR, "Outbound read error", -1,
3917 		  0 },
3918 		{ 0 }
3919 	};
3920 
3921 	int fat;
3922 
3923 	if (is_t4(adapter))
3924 		fat = t4_handle_intr_status(adapter,
3925 				A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
3926 				sysbus_intr_info) +
3927 			t4_handle_intr_status(adapter,
3928 					A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
3929 					pcie_port_intr_info) +
3930 			t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3931 					      pcie_intr_info);
3932 	else
3933 		fat = t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3934 					    t5_pcie_intr_info);
3935 	if (fat)
3936 		t4_fatal_err(adapter);
3937 }
3938 
3939 /*
3940  * TP interrupt handler.
3941  */
3942 static void tp_intr_handler(struct adapter *adapter)
3943 {
3944 	static const struct intr_info tp_intr_info[] = {
3945 		{ 0x3fffffff, "TP parity error", -1, 1 },
3946 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
3947 		{ 0 }
3948 	};
3949 
3950 	if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info))
3951 		t4_fatal_err(adapter);
3952 }
3953 
3954 /*
3955  * SGE interrupt handler.
3956  */
3957 static void sge_intr_handler(struct adapter *adapter)
3958 {
3959 	u64 v;
3960 	u32 err;
3961 
3962 	static const struct intr_info sge_intr_info[] = {
3963 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
3964 		  "SGE received CPL exceeding IQE size", -1, 1 },
3965 		{ F_ERR_INVALID_CIDX_INC,
3966 		  "SGE GTS CIDX increment too large", -1, 0 },
3967 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
3968 		{ F_DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
3969 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
3970 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
3971 		{ F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
3972 		  0 },
3973 		{ F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
3974 		  0 },
3975 		{ F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
3976 		  0 },
3977 		{ F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
3978 		  0 },
3979 		{ F_ERR_ING_CTXT_PRIO,
3980 		  "SGE too many priority ingress contexts", -1, 0 },
3981 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
3982 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
3983 		{ 0 }
3984 	};
3985 
3986 	static const struct intr_info t4t5_sge_intr_info[] = {
3987 		{ F_ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
3988 		{ F_DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
3989 		{ F_ERR_EGR_CTXT_PRIO,
3990 		  "SGE too many priority egress contexts", -1, 0 },
3991 		{ 0 }
3992 	};
3993 
3994 	/*
3995  	* For now, treat below interrupts as fatal so that we disable SGE and
3996  	* get better debug */
3997 	static const struct intr_info t6_sge_intr_info[] = {
3998 		{ F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1,
3999 		  "SGE PCIe error for a DBP thread", -1, 1 },
4000 		{ F_FATAL_WRE_LEN,
4001 		  "SGE Actual WRE packet is less than advertized length",
4002 		  -1, 1 },
4003 		{ 0 }
4004 	};
4005 
4006 	v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) |
4007 		((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32);
4008 	if (v) {
4009 		CH_ALERT(adapter, "SGE parity error (%#llx)\n",
4010 				(unsigned long long)v);
4011 		t4_write_reg(adapter, A_SGE_INT_CAUSE1, v);
4012 		t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32);
4013 	}
4014 
4015 	v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info);
4016 	if (chip_id(adapter) <= CHELSIO_T5)
4017 		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4018 					   t4t5_sge_intr_info);
4019 	else
4020 		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4021 					   t6_sge_intr_info);
4022 
4023 	err = t4_read_reg(adapter, A_SGE_ERROR_STATS);
4024 	if (err & F_ERROR_QID_VALID) {
4025 		CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err));
4026 		if (err & F_UNCAPTURED_ERROR)
4027 			CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n");
4028 		t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID |
4029 			     F_UNCAPTURED_ERROR);
4030 	}
4031 
4032 	if (v != 0)
4033 		t4_fatal_err(adapter);
4034 }
4035 
4036 #define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\
4037 		      F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR)
4038 #define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\
4039 		      F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR)
4040 
4041 /*
4042  * CIM interrupt handler.
4043  */
4044 static void cim_intr_handler(struct adapter *adapter)
4045 {
4046 	static const struct intr_info cim_intr_info[] = {
4047 		{ F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
4048 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4049 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4050 		{ F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
4051 		{ F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
4052 		{ F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
4053 		{ F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
4054 		{ 0 }
4055 	};
4056 	static const struct intr_info cim_upintr_info[] = {
4057 		{ F_RSVDSPACEINT, "CIM reserved space access", -1, 1 },
4058 		{ F_ILLTRANSINT, "CIM illegal transaction", -1, 1 },
4059 		{ F_ILLWRINT, "CIM illegal write", -1, 1 },
4060 		{ F_ILLRDINT, "CIM illegal read", -1, 1 },
4061 		{ F_ILLRDBEINT, "CIM illegal read BE", -1, 1 },
4062 		{ F_ILLWRBEINT, "CIM illegal write BE", -1, 1 },
4063 		{ F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
4064 		{ F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
4065 		{ F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
4066 		{ F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
4067 		{ F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
4068 		{ F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
4069 		{ F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
4070 		{ F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
4071 		{ F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
4072 		{ F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
4073 		{ F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
4074 		{ F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
4075 		{ F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
4076 		{ F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
4077 		{ F_SGLRDPLINT , "CIM single read from PL space", -1, 1 },
4078 		{ F_SGLWRPLINT , "CIM single write to PL space", -1, 1 },
4079 		{ F_BLKRDPLINT , "CIM block read from PL space", -1, 1 },
4080 		{ F_BLKWRPLINT , "CIM block write to PL space", -1, 1 },
4081 		{ F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
4082 		{ F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
4083 		{ F_TIMEOUTINT , "CIM PIF timeout", -1, 1 },
4084 		{ F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
4085 		{ 0 }
4086 	};
4087 	int fat;
4088 
4089 	if (t4_read_reg(adapter, A_PCIE_FW) & F_PCIE_FW_ERR)
4090 		t4_report_fw_error(adapter);
4091 
4092 	fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE,
4093 				    cim_intr_info) +
4094 	      t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE,
4095 				    cim_upintr_info);
4096 	if (fat)
4097 		t4_fatal_err(adapter);
4098 }
4099 
4100 /*
4101  * ULP RX interrupt handler.
4102  */
4103 static void ulprx_intr_handler(struct adapter *adapter)
4104 {
4105 	static const struct intr_info ulprx_intr_info[] = {
4106 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 },
4107 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 },
4108 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4109 		{ 0 }
4110 	};
4111 
4112 	if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info))
4113 		t4_fatal_err(adapter);
4114 }
4115 
4116 /*
4117  * ULP TX interrupt handler.
4118  */
4119 static void ulptx_intr_handler(struct adapter *adapter)
4120 {
4121 	static const struct intr_info ulptx_intr_info[] = {
4122 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
4123 		  0 },
4124 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
4125 		  0 },
4126 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
4127 		  0 },
4128 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
4129 		  0 },
4130 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4131 		{ 0 }
4132 	};
4133 
4134 	if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info))
4135 		t4_fatal_err(adapter);
4136 }
4137 
4138 /*
4139  * PM TX interrupt handler.
4140  */
4141 static void pmtx_intr_handler(struct adapter *adapter)
4142 {
4143 	static const struct intr_info pmtx_intr_info[] = {
4144 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
4145 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
4146 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
4147 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
4148 		{ 0xffffff0, "PMTX framing error", -1, 1 },
4149 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
4150 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
4151 		  1 },
4152 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
4153 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
4154 		{ 0 }
4155 	};
4156 
4157 	if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info))
4158 		t4_fatal_err(adapter);
4159 }
4160 
4161 /*
4162  * PM RX interrupt handler.
4163  */
4164 static void pmrx_intr_handler(struct adapter *adapter)
4165 {
4166 	static const struct intr_info pmrx_intr_info[] = {
4167 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
4168 		{ 0x3ffff0, "PMRX framing error", -1, 1 },
4169 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
4170 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
4171 		  1 },
4172 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
4173 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
4174 		{ 0 }
4175 	};
4176 
4177 	if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info))
4178 		t4_fatal_err(adapter);
4179 }
4180 
4181 /*
4182  * CPL switch interrupt handler.
4183  */
4184 static void cplsw_intr_handler(struct adapter *adapter)
4185 {
4186 	static const struct intr_info cplsw_intr_info[] = {
4187 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
4188 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
4189 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
4190 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
4191 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
4192 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
4193 		{ 0 }
4194 	};
4195 
4196 	if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info))
4197 		t4_fatal_err(adapter);
4198 }
4199 
4200 /*
4201  * LE interrupt handler.
4202  */
4203 static void le_intr_handler(struct adapter *adap)
4204 {
4205 	unsigned int chip_ver = chip_id(adap);
4206 	static const struct intr_info le_intr_info[] = {
4207 		{ F_LIPMISS, "LE LIP miss", -1, 0 },
4208 		{ F_LIP0, "LE 0 LIP error", -1, 0 },
4209 		{ F_PARITYERR, "LE parity error", -1, 1 },
4210 		{ F_UNKNOWNCMD, "LE unknown command", -1, 1 },
4211 		{ F_REQQPARERR, "LE request queue parity error", -1, 1 },
4212 		{ 0 }
4213 	};
4214 
4215 	static const struct intr_info t6_le_intr_info[] = {
4216 		{ F_T6_LIPMISS, "LE LIP miss", -1, 0 },
4217 		{ F_T6_LIP0, "LE 0 LIP error", -1, 0 },
4218 		{ F_TCAMINTPERR, "LE parity error", -1, 1 },
4219 		{ F_T6_UNKNOWNCMD, "LE unknown command", -1, 1 },
4220 		{ F_SSRAMINTPERR, "LE request queue parity error", -1, 1 },
4221 		{ 0 }
4222 	};
4223 
4224 	if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE,
4225 				  (chip_ver <= CHELSIO_T5) ?
4226 				  le_intr_info : t6_le_intr_info))
4227 		t4_fatal_err(adap);
4228 }
4229 
4230 /*
4231  * MPS interrupt handler.
4232  */
4233 static void mps_intr_handler(struct adapter *adapter)
4234 {
4235 	static const struct intr_info mps_rx_intr_info[] = {
4236 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4237 		{ 0 }
4238 	};
4239 	static const struct intr_info mps_tx_intr_info[] = {
4240 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 },
4241 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4242 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error",
4243 		  -1, 1 },
4244 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error",
4245 		  -1, 1 },
4246 		{ F_BUBBLE, "MPS Tx underflow", -1, 1 },
4247 		{ F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
4248 		{ F_FRMERR, "MPS Tx framing error", -1, 1 },
4249 		{ 0 }
4250 	};
4251 	static const struct intr_info mps_trc_intr_info[] = {
4252 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 },
4253 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1,
4254 		  1 },
4255 		{ F_MISCPERR, "MPS TRC misc parity error", -1, 1 },
4256 		{ 0 }
4257 	};
4258 	static const struct intr_info mps_stat_sram_intr_info[] = {
4259 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4260 		{ 0 }
4261 	};
4262 	static const struct intr_info mps_stat_tx_intr_info[] = {
4263 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4264 		{ 0 }
4265 	};
4266 	static const struct intr_info mps_stat_rx_intr_info[] = {
4267 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4268 		{ 0 }
4269 	};
4270 	static const struct intr_info mps_cls_intr_info[] = {
4271 		{ F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
4272 		{ F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
4273 		{ F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
4274 		{ 0 }
4275 	};
4276 
4277 	int fat;
4278 
4279 	fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE,
4280 				    mps_rx_intr_info) +
4281 	      t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE,
4282 				    mps_tx_intr_info) +
4283 	      t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE,
4284 				    mps_trc_intr_info) +
4285 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4286 				    mps_stat_sram_intr_info) +
4287 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4288 				    mps_stat_tx_intr_info) +
4289 	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4290 				    mps_stat_rx_intr_info) +
4291 	      t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE,
4292 				    mps_cls_intr_info);
4293 
4294 	t4_write_reg(adapter, A_MPS_INT_CAUSE, 0);
4295 	t4_read_reg(adapter, A_MPS_INT_CAUSE);	/* flush */
4296 	if (fat)
4297 		t4_fatal_err(adapter);
4298 }
4299 
4300 #define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | \
4301 		      F_ECC_UE_INT_CAUSE)
4302 
4303 /*
4304  * EDC/MC interrupt handler.
4305  */
4306 static void mem_intr_handler(struct adapter *adapter, int idx)
4307 {
4308 	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4309 
4310 	unsigned int addr, cnt_addr, v;
4311 
4312 	if (idx <= MEM_EDC1) {
4313 		addr = EDC_REG(A_EDC_INT_CAUSE, idx);
4314 		cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx);
4315 	} else if (idx == MEM_MC) {
4316 		if (is_t4(adapter)) {
4317 			addr = A_MC_INT_CAUSE;
4318 			cnt_addr = A_MC_ECC_STATUS;
4319 		} else {
4320 			addr = A_MC_P_INT_CAUSE;
4321 			cnt_addr = A_MC_P_ECC_STATUS;
4322 		}
4323 	} else {
4324 		addr = MC_REG(A_MC_P_INT_CAUSE, 1);
4325 		cnt_addr = MC_REG(A_MC_P_ECC_STATUS, 1);
4326 	}
4327 
4328 	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4329 	if (v & F_PERR_INT_CAUSE)
4330 		CH_ALERT(adapter, "%s FIFO parity error\n",
4331 			  name[idx]);
4332 	if (v & F_ECC_CE_INT_CAUSE) {
4333 		u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr));
4334 
4335 		if (idx <= MEM_EDC1)
4336 			t4_edc_err_read(adapter, idx);
4337 
4338 		t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT));
4339 		CH_WARN_RATELIMIT(adapter,
4340 				  "%u %s correctable ECC data error%s\n",
4341 				  cnt, name[idx], cnt > 1 ? "s" : "");
4342 	}
4343 	if (v & F_ECC_UE_INT_CAUSE)
4344 		CH_ALERT(adapter,
4345 			 "%s uncorrectable ECC data error\n", name[idx]);
4346 
4347 	t4_write_reg(adapter, addr, v);
4348 	if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE))
4349 		t4_fatal_err(adapter);
4350 }
4351 
4352 /*
4353  * MA interrupt handler.
4354  */
4355 static void ma_intr_handler(struct adapter *adapter)
4356 {
4357 	u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE);
4358 
4359 	if (status & F_MEM_PERR_INT_CAUSE) {
4360 		CH_ALERT(adapter,
4361 			  "MA parity error, parity status %#x\n",
4362 			  t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS1));
4363 		if (is_t5(adapter))
4364 			CH_ALERT(adapter,
4365 				  "MA parity error, parity status %#x\n",
4366 				  t4_read_reg(adapter,
4367 					      A_MA_PARITY_ERROR_STATUS2));
4368 	}
4369 	if (status & F_MEM_WRAP_INT_CAUSE) {
4370 		v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS);
4371 		CH_ALERT(adapter, "MA address wrap-around error by "
4372 			  "client %u to address %#x\n",
4373 			  G_MEM_WRAP_CLIENT_NUM(v),
4374 			  G_MEM_WRAP_ADDRESS(v) << 4);
4375 	}
4376 	t4_write_reg(adapter, A_MA_INT_CAUSE, status);
4377 	t4_fatal_err(adapter);
4378 }
4379 
4380 /*
4381  * SMB interrupt handler.
4382  */
4383 static void smb_intr_handler(struct adapter *adap)
4384 {
4385 	static const struct intr_info smb_intr_info[] = {
4386 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
4387 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
4388 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
4389 		{ 0 }
4390 	};
4391 
4392 	if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info))
4393 		t4_fatal_err(adap);
4394 }
4395 
4396 /*
4397  * NC-SI interrupt handler.
4398  */
4399 static void ncsi_intr_handler(struct adapter *adap)
4400 {
4401 	static const struct intr_info ncsi_intr_info[] = {
4402 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
4403 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
4404 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
4405 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
4406 		{ 0 }
4407 	};
4408 
4409 	if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info))
4410 		t4_fatal_err(adap);
4411 }
4412 
4413 /*
4414  * XGMAC interrupt handler.
4415  */
4416 static void xgmac_intr_handler(struct adapter *adap, int port)
4417 {
4418 	u32 v, int_cause_reg;
4419 
4420 	if (is_t4(adap))
4421 		int_cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
4422 	else
4423 		int_cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
4424 
4425 	v = t4_read_reg(adap, int_cause_reg);
4426 
4427 	v &= (F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR);
4428 	if (!v)
4429 		return;
4430 
4431 	if (v & F_TXFIFO_PRTY_ERR)
4432 		CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n",
4433 			  port);
4434 	if (v & F_RXFIFO_PRTY_ERR)
4435 		CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n",
4436 			  port);
4437 	t4_write_reg(adap, int_cause_reg, v);
4438 	t4_fatal_err(adap);
4439 }
4440 
4441 /*
4442  * PL interrupt handler.
4443  */
4444 static void pl_intr_handler(struct adapter *adap)
4445 {
4446 	static const struct intr_info pl_intr_info[] = {
4447 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4448 		{ F_PERRVFID, "PL VFID_MAP parity error", -1, 1 },
4449 		{ 0 }
4450 	};
4451 
4452 	static const struct intr_info t5_pl_intr_info[] = {
4453 		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4454 		{ 0 }
4455 	};
4456 
4457 	if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE,
4458 				  is_t4(adap) ?
4459 				  pl_intr_info : t5_pl_intr_info))
4460 		t4_fatal_err(adap);
4461 }
4462 
4463 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
4464 
4465 /**
4466  *	t4_slow_intr_handler - control path interrupt handler
4467  *	@adapter: the adapter
4468  *
4469  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4470  *	The designation 'slow' is because it involves register reads, while
4471  *	data interrupts typically don't involve any MMIOs.
4472  */
4473 int t4_slow_intr_handler(struct adapter *adapter)
4474 {
4475 	u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE);
4476 
4477 	if (!(cause & GLBL_INTR_MASK))
4478 		return 0;
4479 	if (cause & F_CIM)
4480 		cim_intr_handler(adapter);
4481 	if (cause & F_MPS)
4482 		mps_intr_handler(adapter);
4483 	if (cause & F_NCSI)
4484 		ncsi_intr_handler(adapter);
4485 	if (cause & F_PL)
4486 		pl_intr_handler(adapter);
4487 	if (cause & F_SMB)
4488 		smb_intr_handler(adapter);
4489 	if (cause & F_MAC0)
4490 		xgmac_intr_handler(adapter, 0);
4491 	if (cause & F_MAC1)
4492 		xgmac_intr_handler(adapter, 1);
4493 	if (cause & F_MAC2)
4494 		xgmac_intr_handler(adapter, 2);
4495 	if (cause & F_MAC3)
4496 		xgmac_intr_handler(adapter, 3);
4497 	if (cause & F_PCIE)
4498 		pcie_intr_handler(adapter);
4499 	if (cause & F_MC0)
4500 		mem_intr_handler(adapter, MEM_MC);
4501 	if (is_t5(adapter) && (cause & F_MC1))
4502 		mem_intr_handler(adapter, MEM_MC1);
4503 	if (cause & F_EDC0)
4504 		mem_intr_handler(adapter, MEM_EDC0);
4505 	if (cause & F_EDC1)
4506 		mem_intr_handler(adapter, MEM_EDC1);
4507 	if (cause & F_LE)
4508 		le_intr_handler(adapter);
4509 	if (cause & F_TP)
4510 		tp_intr_handler(adapter);
4511 	if (cause & F_MA)
4512 		ma_intr_handler(adapter);
4513 	if (cause & F_PM_TX)
4514 		pmtx_intr_handler(adapter);
4515 	if (cause & F_PM_RX)
4516 		pmrx_intr_handler(adapter);
4517 	if (cause & F_ULP_RX)
4518 		ulprx_intr_handler(adapter);
4519 	if (cause & F_CPL_SWITCH)
4520 		cplsw_intr_handler(adapter);
4521 	if (cause & F_SGE)
4522 		sge_intr_handler(adapter);
4523 	if (cause & F_ULP_TX)
4524 		ulptx_intr_handler(adapter);
4525 
4526 	/* Clear the interrupts just processed for which we are the master. */
4527 	t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK);
4528 	(void)t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */
4529 	return 1;
4530 }
4531 
4532 /**
4533  *	t4_intr_enable - enable interrupts
4534  *	@adapter: the adapter whose interrupts should be enabled
4535  *
4536  *	Enable PF-specific interrupts for the calling function and the top-level
4537  *	interrupt concentrator for global interrupts.  Interrupts are already
4538  *	enabled at each module,	here we just enable the roots of the interrupt
4539  *	hierarchies.
4540  *
4541  *	Note: this function should be called only when the driver manages
4542  *	non PF-specific interrupts from the various HW modules.  Only one PCI
4543  *	function at a time should be doing this.
4544  */
4545 void t4_intr_enable(struct adapter *adapter)
4546 {
4547 	u32 val = 0;
4548 	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4549 	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4550 		  ? G_SOURCEPF(whoami)
4551 		  : G_T6_SOURCEPF(whoami));
4552 
4553 	if (chip_id(adapter) <= CHELSIO_T5)
4554 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
4555 	else
4556 		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
4557 	t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
4558 		     F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
4559 		     F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
4560 		     F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
4561 		     F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4562 		     F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
4563 		     F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
4564 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
4565 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
4566 }
4567 
4568 /**
4569  *	t4_intr_disable - disable interrupts
4570  *	@adapter: the adapter whose interrupts should be disabled
4571  *
4572  *	Disable interrupts.  We only disable the top-level interrupt
4573  *	concentrators.  The caller must be a PCI function managing global
4574  *	interrupts.
4575  */
4576 void t4_intr_disable(struct adapter *adapter)
4577 {
4578 	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4579 	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4580 		  ? G_SOURCEPF(whoami)
4581 		  : G_T6_SOURCEPF(whoami));
4582 
4583 	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
4584 	t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
4585 }
4586 
4587 /**
4588  *	t4_intr_clear - clear all interrupts
4589  *	@adapter: the adapter whose interrupts should be cleared
4590  *
4591  *	Clears all interrupts.  The caller must be a PCI function managing
4592  *	global interrupts.
4593  */
4594 void t4_intr_clear(struct adapter *adapter)
4595 {
4596 	static const unsigned int cause_reg[] = {
4597 		A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3,
4598 		A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE,
4599 		A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS1, A_MA_INT_CAUSE,
4600 		A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1),
4601 		A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE,
4602 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4603 		A_TP_INT_CAUSE,
4604 		A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE,
4605 		A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE,
4606 		A_MPS_RX_PERR_INT_CAUSE,
4607 		A_CPL_INTR_CAUSE,
4608 		MYPF_REG(A_PL_PF_INT_CAUSE),
4609 		A_PL_PL_INT_CAUSE,
4610 		A_LE_DB_INT_CAUSE,
4611 	};
4612 
4613 	unsigned int i;
4614 
4615 	for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
4616 		t4_write_reg(adapter, cause_reg[i], 0xffffffff);
4617 
4618 	t4_write_reg(adapter, is_t4(adapter) ? A_MC_INT_CAUSE :
4619 				A_MC_P_INT_CAUSE, 0xffffffff);
4620 
4621 	if (is_t4(adapter)) {
4622 		t4_write_reg(adapter, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4623 				0xffffffff);
4624 		t4_write_reg(adapter, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4625 				0xffffffff);
4626 	} else
4627 		t4_write_reg(adapter, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
4628 
4629 	t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK);
4630 	(void) t4_read_reg(adapter, A_PL_INT_CAUSE);          /* flush */
4631 }
4632 
4633 /**
4634  *	hash_mac_addr - return the hash value of a MAC address
4635  *	@addr: the 48-bit Ethernet MAC address
4636  *
4637  *	Hashes a MAC address according to the hash function used by HW inexact
4638  *	(hash) address matching.
4639  */
4640 static int hash_mac_addr(const u8 *addr)
4641 {
4642 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
4643 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
4644 	a ^= b;
4645 	a ^= (a >> 12);
4646 	a ^= (a >> 6);
4647 	return a & 0x3f;
4648 }
4649 
4650 /**
4651  *	t4_config_rss_range - configure a portion of the RSS mapping table
4652  *	@adapter: the adapter
4653  *	@mbox: mbox to use for the FW command
4654  *	@viid: virtual interface whose RSS subtable is to be written
4655  *	@start: start entry in the table to write
4656  *	@n: how many table entries to write
4657  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
4658  *	@nrspq: number of values in @rspq
4659  *
4660  *	Programs the selected part of the VI's RSS mapping table with the
4661  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4662  *	until the full table range is populated.
4663  *
4664  *	The caller must ensure the values in @rspq are in the range allowed for
4665  *	@viid.
4666  */
4667 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4668 			int start, int n, const u16 *rspq, unsigned int nrspq)
4669 {
4670 	int ret;
4671 	const u16 *rsp = rspq;
4672 	const u16 *rsp_end = rspq + nrspq;
4673 	struct fw_rss_ind_tbl_cmd cmd;
4674 
4675 	memset(&cmd, 0, sizeof(cmd));
4676 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
4677 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4678 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
4679 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4680 
4681 	/*
4682 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
4683 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
4684 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
4685 	 * reserved.
4686 	 */
4687 	while (n > 0) {
4688 		int nq = min(n, 32);
4689 		int nq_packed = 0;
4690 		__be32 *qp = &cmd.iq0_to_iq2;
4691 
4692 		/*
4693 		 * Set up the firmware RSS command header to send the next
4694 		 * "nq" Ingress Queue IDs to the firmware.
4695 		 */
4696 		cmd.niqid = cpu_to_be16(nq);
4697 		cmd.startidx = cpu_to_be16(start);
4698 
4699 		/*
4700 		 * "nq" more done for the start of the next loop.
4701 		 */
4702 		start += nq;
4703 		n -= nq;
4704 
4705 		/*
4706 		 * While there are still Ingress Queue IDs to stuff into the
4707 		 * current firmware RSS command, retrieve them from the
4708 		 * Ingress Queue ID array and insert them into the command.
4709 		 */
4710 		while (nq > 0) {
4711 			/*
4712 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
4713 			 * around the Ingress Queue ID array if necessary) and
4714 			 * insert them into the firmware RSS command at the
4715 			 * current 3-tuple position within the commad.
4716 			 */
4717 			u16 qbuf[3];
4718 			u16 *qbp = qbuf;
4719 			int nqbuf = min(3, nq);
4720 
4721 			nq -= nqbuf;
4722 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
4723 			while (nqbuf && nq_packed < 32) {
4724 				nqbuf--;
4725 				nq_packed++;
4726 				*qbp++ = *rsp++;
4727 				if (rsp >= rsp_end)
4728 					rsp = rspq;
4729 			}
4730 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
4731 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
4732 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
4733 		}
4734 
4735 		/*
4736 		 * Send this portion of the RRS table update to the firmware;
4737 		 * bail out on any errors.
4738 		 */
4739 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4740 		if (ret)
4741 			return ret;
4742 	}
4743 	return 0;
4744 }
4745 
4746 /**
4747  *	t4_config_glbl_rss - configure the global RSS mode
4748  *	@adapter: the adapter
4749  *	@mbox: mbox to use for the FW command
4750  *	@mode: global RSS mode
4751  *	@flags: mode-specific flags
4752  *
4753  *	Sets the global RSS mode.
4754  */
4755 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4756 		       unsigned int flags)
4757 {
4758 	struct fw_rss_glb_config_cmd c;
4759 
4760 	memset(&c, 0, sizeof(c));
4761 	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
4762 				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
4763 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4764 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4765 		c.u.manual.mode_pkd =
4766 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4767 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4768 		c.u.basicvirtual.mode_keymode =
4769 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4770 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4771 	} else
4772 		return -EINVAL;
4773 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4774 }
4775 
4776 /**
4777  *	t4_config_vi_rss - configure per VI RSS settings
4778  *	@adapter: the adapter
4779  *	@mbox: mbox to use for the FW command
4780  *	@viid: the VI id
4781  *	@flags: RSS flags
4782  *	@defq: id of the default RSS queue for the VI.
4783  *	@skeyidx: RSS secret key table index for non-global mode
4784  *	@skey: RSS vf_scramble key for VI.
4785  *
4786  *	Configures VI-specific RSS properties.
4787  */
4788 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4789 		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
4790 		     unsigned int skey)
4791 {
4792 	struct fw_rss_vi_config_cmd c;
4793 
4794 	memset(&c, 0, sizeof(c));
4795 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
4796 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4797 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
4798 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4799 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4800 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
4801 	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
4802 					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
4803 	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
4804 
4805 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4806 }
4807 
4808 /* Read an RSS table row */
4809 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4810 {
4811 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
4812 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
4813 				   5, 0, val);
4814 }
4815 
4816 /**
4817  *	t4_read_rss - read the contents of the RSS mapping table
4818  *	@adapter: the adapter
4819  *	@map: holds the contents of the RSS mapping table
4820  *
4821  *	Reads the contents of the RSS hash->queue mapping table.
4822  */
4823 int t4_read_rss(struct adapter *adapter, u16 *map)
4824 {
4825 	u32 val;
4826 	int i, ret;
4827 
4828 	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4829 		ret = rd_rss_row(adapter, i, &val);
4830 		if (ret)
4831 			return ret;
4832 		*map++ = G_LKPTBLQUEUE0(val);
4833 		*map++ = G_LKPTBLQUEUE1(val);
4834 	}
4835 	return 0;
4836 }
4837 
4838 /**
4839  *	t4_fw_tp_pio_rw - Access TP PIO through LDST
4840  *	@adap: the adapter
4841  *	@vals: where the indirect register values are stored/written
4842  *	@nregs: how many indirect registers to read/write
4843  *	@start_idx: index of first indirect register to read/write
4844  *	@rw: Read (1) or Write (0)
4845  *
4846  *	Access TP PIO registers through LDST
4847  */
4848 void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4849 		     unsigned int start_index, unsigned int rw)
4850 {
4851 	int ret, i;
4852 	int cmd = FW_LDST_ADDRSPC_TP_PIO;
4853 	struct fw_ldst_cmd c;
4854 
4855 	for (i = 0 ; i < nregs; i++) {
4856 		memset(&c, 0, sizeof(c));
4857 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
4858 						F_FW_CMD_REQUEST |
4859 						(rw ? F_FW_CMD_READ :
4860 						     F_FW_CMD_WRITE) |
4861 						V_FW_LDST_CMD_ADDRSPACE(cmd));
4862 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4863 
4864 		c.u.addrval.addr = cpu_to_be32(start_index + i);
4865 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4866 		ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4867 		if (ret == 0) {
4868 			if (rw)
4869 				vals[i] = be32_to_cpu(c.u.addrval.val);
4870 		}
4871 	}
4872 }
4873 
4874 /**
4875  *	t4_read_rss_key - read the global RSS key
4876  *	@adap: the adapter
4877  *	@key: 10-entry array holding the 320-bit RSS key
4878  *
4879  *	Reads the global 320-bit RSS key.
4880  */
4881 void t4_read_rss_key(struct adapter *adap, u32 *key)
4882 {
4883 	if (t4_use_ldst(adap))
4884 		t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 1);
4885 	else
4886 		t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
4887 				 A_TP_RSS_SECRET_KEY0);
4888 }
4889 
4890 /**
4891  *	t4_write_rss_key - program one of the RSS keys
4892  *	@adap: the adapter
4893  *	@key: 10-entry array holding the 320-bit RSS key
4894  *	@idx: which RSS key to write
4895  *
4896  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
4897  *	0..15 the corresponding entry in the RSS key table is written,
4898  *	otherwise the global RSS key is written.
4899  */
4900 void t4_write_rss_key(struct adapter *adap, u32 *key, int idx)
4901 {
4902 	u8 rss_key_addr_cnt = 16;
4903 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
4904 
4905 	/*
4906 	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4907 	 * allows access to key addresses 16-63 by using KeyWrAddrX
4908 	 * as index[5:4](upper 2) into key table
4909 	 */
4910 	if ((chip_id(adap) > CHELSIO_T5) &&
4911 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
4912 		rss_key_addr_cnt = 32;
4913 
4914 	if (t4_use_ldst(adap))
4915 		t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 0);
4916 	else
4917 		t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
4918 				  A_TP_RSS_SECRET_KEY0);
4919 
4920 	if (idx >= 0 && idx < rss_key_addr_cnt) {
4921 		if (rss_key_addr_cnt > 16)
4922 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
4923 				     vrt | V_KEYWRADDRX(idx >> 4) |
4924 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
4925 		else
4926 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
4927 				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
4928 	}
4929 }
4930 
4931 /**
4932  *	t4_read_rss_pf_config - read PF RSS Configuration Table
4933  *	@adapter: the adapter
4934  *	@index: the entry in the PF RSS table to read
4935  *	@valp: where to store the returned value
4936  *
4937  *	Reads the PF RSS Configuration Table at the specified index and returns
4938  *	the value found there.
4939  */
4940 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4941 			   u32 *valp)
4942 {
4943 	if (t4_use_ldst(adapter))
4944 		t4_fw_tp_pio_rw(adapter, valp, 1,
4945 				A_TP_RSS_PF0_CONFIG + index, 1);
4946 	else
4947 		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4948 				 valp, 1, A_TP_RSS_PF0_CONFIG + index);
4949 }
4950 
4951 /**
4952  *	t4_write_rss_pf_config - write PF RSS Configuration Table
4953  *	@adapter: the adapter
4954  *	@index: the entry in the VF RSS table to read
4955  *	@val: the value to store
4956  *
4957  *	Writes the PF RSS Configuration Table at the specified index with the
4958  *	specified value.
4959  */
4960 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
4961 			    u32 val)
4962 {
4963 	if (t4_use_ldst(adapter))
4964 		t4_fw_tp_pio_rw(adapter, &val, 1,
4965 				A_TP_RSS_PF0_CONFIG + index, 0);
4966 	else
4967 		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4968 				  &val, 1, A_TP_RSS_PF0_CONFIG + index);
4969 }
4970 
4971 /**
4972  *	t4_read_rss_vf_config - read VF RSS Configuration Table
4973  *	@adapter: the adapter
4974  *	@index: the entry in the VF RSS table to read
4975  *	@vfl: where to store the returned VFL
4976  *	@vfh: where to store the returned VFH
4977  *
4978  *	Reads the VF RSS Configuration Table at the specified index and returns
4979  *	the (VFL, VFH) values found there.
4980  */
4981 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4982 			   u32 *vfl, u32 *vfh)
4983 {
4984 	u32 vrt, mask, data;
4985 
4986 	if (chip_id(adapter) <= CHELSIO_T5) {
4987 		mask = V_VFWRADDR(M_VFWRADDR);
4988 		data = V_VFWRADDR(index);
4989 	} else {
4990 		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
4991 		 data = V_T6_VFWRADDR(index);
4992 	}
4993 	/*
4994 	 * Request that the index'th VF Table values be read into VFL/VFH.
4995 	 */
4996 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
4997 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
4998 	vrt |= data | F_VFRDEN;
4999 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5000 
5001 	/*
5002 	 * Grab the VFL/VFH values ...
5003 	 */
5004 	if (t4_use_ldst(adapter)) {
5005 		t4_fw_tp_pio_rw(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, 1);
5006 		t4_fw_tp_pio_rw(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, 1);
5007 	} else {
5008 		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5009 				 vfl, 1, A_TP_RSS_VFL_CONFIG);
5010 		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5011 				 vfh, 1, A_TP_RSS_VFH_CONFIG);
5012 	}
5013 }
5014 
5015 /**
5016  *	t4_write_rss_vf_config - write VF RSS Configuration Table
5017  *
5018  *	@adapter: the adapter
5019  *	@index: the entry in the VF RSS table to write
5020  *	@vfl: the VFL to store
5021  *	@vfh: the VFH to store
5022  *
5023  *	Writes the VF RSS Configuration Table at the specified index with the
5024  *	specified (VFL, VFH) values.
5025  */
5026 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
5027 			    u32 vfl, u32 vfh)
5028 {
5029 	u32 vrt, mask, data;
5030 
5031 	if (chip_id(adapter) <= CHELSIO_T5) {
5032 		mask = V_VFWRADDR(M_VFWRADDR);
5033 		data = V_VFWRADDR(index);
5034 	} else {
5035 		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5036 		data = V_T6_VFWRADDR(index);
5037 	}
5038 
5039 	/*
5040 	 * Load up VFL/VFH with the values to be written ...
5041 	 */
5042 	if (t4_use_ldst(adapter)) {
5043 		t4_fw_tp_pio_rw(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, 0);
5044 		t4_fw_tp_pio_rw(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, 0);
5045 	} else {
5046 		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5047 				  &vfl, 1, A_TP_RSS_VFL_CONFIG);
5048 		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5049 				  &vfh, 1, A_TP_RSS_VFH_CONFIG);
5050 	}
5051 
5052 	/*
5053 	 * Write the VFL/VFH into the VF Table at index'th location.
5054 	 */
5055 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5056 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5057 	vrt |= data | F_VFRDEN;
5058 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5059 }
5060 
5061 /**
5062  *	t4_read_rss_pf_map - read PF RSS Map
5063  *	@adapter: the adapter
5064  *
5065  *	Reads the PF RSS Map register and returns its value.
5066  */
5067 u32 t4_read_rss_pf_map(struct adapter *adapter)
5068 {
5069 	u32 pfmap;
5070 
5071 	if (t4_use_ldst(adapter))
5072 		t4_fw_tp_pio_rw(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, 1);
5073 	else
5074 		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5075 				 &pfmap, 1, A_TP_RSS_PF_MAP);
5076 	return pfmap;
5077 }
5078 
5079 /**
5080  *	t4_write_rss_pf_map - write PF RSS Map
5081  *	@adapter: the adapter
5082  *	@pfmap: PF RSS Map value
5083  *
5084  *	Writes the specified value to the PF RSS Map register.
5085  */
5086 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap)
5087 {
5088 	if (t4_use_ldst(adapter))
5089 		t4_fw_tp_pio_rw(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, 0);
5090 	else
5091 		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5092 				  &pfmap, 1, A_TP_RSS_PF_MAP);
5093 }
5094 
5095 /**
5096  *	t4_read_rss_pf_mask - read PF RSS Mask
5097  *	@adapter: the adapter
5098  *
5099  *	Reads the PF RSS Mask register and returns its value.
5100  */
5101 u32 t4_read_rss_pf_mask(struct adapter *adapter)
5102 {
5103 	u32 pfmask;
5104 
5105 	if (t4_use_ldst(adapter))
5106 		t4_fw_tp_pio_rw(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, 1);
5107 	else
5108 		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5109 				 &pfmask, 1, A_TP_RSS_PF_MSK);
5110 	return pfmask;
5111 }
5112 
5113 /**
5114  *	t4_write_rss_pf_mask - write PF RSS Mask
5115  *	@adapter: the adapter
5116  *	@pfmask: PF RSS Mask value
5117  *
5118  *	Writes the specified value to the PF RSS Mask register.
5119  */
5120 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask)
5121 {
5122 	if (t4_use_ldst(adapter))
5123 		t4_fw_tp_pio_rw(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, 0);
5124 	else
5125 		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5126 				  &pfmask, 1, A_TP_RSS_PF_MSK);
5127 }
5128 
5129 /**
5130  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5131  *	@adap: the adapter
5132  *	@v4: holds the TCP/IP counter values
5133  *	@v6: holds the TCP/IPv6 counter values
5134  *
5135  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5136  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5137  */
5138 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5139 			 struct tp_tcp_stats *v6)
5140 {
5141 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
5142 
5143 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
5144 #define STAT(x)     val[STAT_IDX(x)]
5145 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5146 
5147 	if (v4) {
5148 		t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
5149 				 ARRAY_SIZE(val), A_TP_MIB_TCP_OUT_RST);
5150 		v4->tcp_out_rsts = STAT(OUT_RST);
5151 		v4->tcp_in_segs  = STAT64(IN_SEG);
5152 		v4->tcp_out_segs = STAT64(OUT_SEG);
5153 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5154 	}
5155 	if (v6) {
5156 		t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
5157 				 ARRAY_SIZE(val), A_TP_MIB_TCP_V6OUT_RST);
5158 		v6->tcp_out_rsts = STAT(OUT_RST);
5159 		v6->tcp_in_segs  = STAT64(IN_SEG);
5160 		v6->tcp_out_segs = STAT64(OUT_SEG);
5161 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5162 	}
5163 #undef STAT64
5164 #undef STAT
5165 #undef STAT_IDX
5166 }
5167 
5168 /**
5169  *	t4_tp_get_err_stats - read TP's error MIB counters
5170  *	@adap: the adapter
5171  *	@st: holds the counter values
5172  *
5173  *	Returns the values of TP's error counters.
5174  */
5175 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
5176 {
5177 	int nchan = adap->chip_params->nchan;
5178 
5179 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5180 			st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0);
5181 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5182 			st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0);
5183 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5184 			st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0);
5185 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5186 			st->tnl_cong_drops, nchan, A_TP_MIB_TNL_CNG_DROP_0);
5187 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5188 			st->ofld_chan_drops, nchan, A_TP_MIB_OFD_CHN_DROP_0);
5189 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5190 			st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0);
5191 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5192 			st->ofld_vlan_drops, nchan, A_TP_MIB_OFD_VLN_DROP_0);
5193 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5194 			st->tcp6_in_errs, nchan, A_TP_MIB_TCP_V6IN_ERR_0);
5195 
5196 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5197 			 &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP);
5198 }
5199 
5200 /**
5201  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
5202  *	@adap: the adapter
5203  *	@st: holds the counter values
5204  *
5205  *	Returns the values of TP's proxy counters.
5206  */
5207 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st)
5208 {
5209 	int nchan = adap->chip_params->nchan;
5210 
5211 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->proxy,
5212 			 nchan, A_TP_MIB_TNL_LPBK_0);
5213 }
5214 
5215 /**
5216  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5217  *	@adap: the adapter
5218  *	@st: holds the counter values
5219  *
5220  *	Returns the values of TP's CPL counters.
5221  */
5222 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
5223 {
5224 	int nchan = adap->chip_params->nchan;
5225 
5226 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->req,
5227 			 nchan, A_TP_MIB_CPL_IN_REQ_0);
5228 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->rsp,
5229 			 nchan, A_TP_MIB_CPL_OUT_RSP_0);
5230 }
5231 
5232 /**
5233  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5234  *	@adap: the adapter
5235  *	@st: holds the counter values
5236  *
5237  *	Returns the values of TP's RDMA counters.
5238  */
5239 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
5240 {
5241 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->rqe_dfr_pkt,
5242 			 2, A_TP_MIB_RQE_DFR_PKT);
5243 }
5244 
5245 /**
5246  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5247  *	@adap: the adapter
5248  *	@idx: the port index
5249  *	@st: holds the counter values
5250  *
5251  *	Returns the values of TP's FCoE counters for the selected port.
5252  */
5253 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5254 		       struct tp_fcoe_stats *st)
5255 {
5256 	u32 val[2];
5257 
5258 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->frames_ddp,
5259 			 1, A_TP_MIB_FCOE_DDP_0 + idx);
5260 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->frames_drop,
5261 			 1, A_TP_MIB_FCOE_DROP_0 + idx);
5262 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
5263 			 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx);
5264 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5265 }
5266 
5267 /**
5268  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5269  *	@adap: the adapter
5270  *	@st: holds the counter values
5271  *
5272  *	Returns the values of TP's counters for non-TCP directly-placed packets.
5273  */
5274 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
5275 {
5276 	u32 val[4];
5277 
5278 	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val, 4,
5279 			 A_TP_MIB_USM_PKTS);
5280 	st->frames = val[0];
5281 	st->drops = val[1];
5282 	st->octets = ((u64)val[2] << 32) | val[3];
5283 }
5284 
5285 /**
5286  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5287  *	@adap: the adapter
5288  *	@mtus: where to store the MTU values
5289  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5290  *
5291  *	Reads the HW path MTU table.
5292  */
5293 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5294 {
5295 	u32 v;
5296 	int i;
5297 
5298 	for (i = 0; i < NMTUS; ++i) {
5299 		t4_write_reg(adap, A_TP_MTU_TABLE,
5300 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
5301 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
5302 		mtus[i] = G_MTUVALUE(v);
5303 		if (mtu_log)
5304 			mtu_log[i] = G_MTUWIDTH(v);
5305 	}
5306 }
5307 
5308 /**
5309  *	t4_read_cong_tbl - reads the congestion control table
5310  *	@adap: the adapter
5311  *	@incr: where to store the alpha values
5312  *
5313  *	Reads the additive increments programmed into the HW congestion
5314  *	control table.
5315  */
5316 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5317 {
5318 	unsigned int mtu, w;
5319 
5320 	for (mtu = 0; mtu < NMTUS; ++mtu)
5321 		for (w = 0; w < NCCTRL_WIN; ++w) {
5322 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
5323 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
5324 			incr[mtu][w] = (u16)t4_read_reg(adap,
5325 						A_TP_CCTRL_TABLE) & 0x1fff;
5326 		}
5327 }
5328 
5329 /**
5330  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5331  *	@adap: the adapter
5332  *	@addr: the indirect TP register address
5333  *	@mask: specifies the field within the register to modify
5334  *	@val: new value for the field
5335  *
5336  *	Sets a field of an indirect TP register to the given value.
5337  */
5338 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5339 			    unsigned int mask, unsigned int val)
5340 {
5341 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
5342 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
5343 	t4_write_reg(adap, A_TP_PIO_DATA, val);
5344 }
5345 
5346 /**
5347  *	init_cong_ctrl - initialize congestion control parameters
5348  *	@a: the alpha values for congestion control
5349  *	@b: the beta values for congestion control
5350  *
5351  *	Initialize the congestion control parameters.
5352  */
5353 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5354 {
5355 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5356 	a[9] = 2;
5357 	a[10] = 3;
5358 	a[11] = 4;
5359 	a[12] = 5;
5360 	a[13] = 6;
5361 	a[14] = 7;
5362 	a[15] = 8;
5363 	a[16] = 9;
5364 	a[17] = 10;
5365 	a[18] = 14;
5366 	a[19] = 17;
5367 	a[20] = 21;
5368 	a[21] = 25;
5369 	a[22] = 30;
5370 	a[23] = 35;
5371 	a[24] = 45;
5372 	a[25] = 60;
5373 	a[26] = 80;
5374 	a[27] = 100;
5375 	a[28] = 200;
5376 	a[29] = 300;
5377 	a[30] = 400;
5378 	a[31] = 500;
5379 
5380 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5381 	b[9] = b[10] = 1;
5382 	b[11] = b[12] = 2;
5383 	b[13] = b[14] = b[15] = b[16] = 3;
5384 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5385 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5386 	b[28] = b[29] = 6;
5387 	b[30] = b[31] = 7;
5388 }
5389 
5390 /* The minimum additive increment value for the congestion control table */
5391 #define CC_MIN_INCR 2U
5392 
5393 /**
5394  *	t4_load_mtus - write the MTU and congestion control HW tables
5395  *	@adap: the adapter
5396  *	@mtus: the values for the MTU table
5397  *	@alpha: the values for the congestion control alpha parameter
5398  *	@beta: the values for the congestion control beta parameter
5399  *
5400  *	Write the HW MTU table with the supplied MTUs and the high-speed
5401  *	congestion control table with the supplied alpha, beta, and MTUs.
5402  *	We write the two tables together because the additive increments
5403  *	depend on the MTUs.
5404  */
5405 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5406 		  const unsigned short *alpha, const unsigned short *beta)
5407 {
5408 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5409 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5410 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5411 		28672, 40960, 57344, 81920, 114688, 163840, 229376
5412 	};
5413 
5414 	unsigned int i, w;
5415 
5416 	for (i = 0; i < NMTUS; ++i) {
5417 		unsigned int mtu = mtus[i];
5418 		unsigned int log2 = fls(mtu);
5419 
5420 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5421 			log2--;
5422 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
5423 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
5424 
5425 		for (w = 0; w < NCCTRL_WIN; ++w) {
5426 			unsigned int inc;
5427 
5428 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5429 				  CC_MIN_INCR);
5430 
5431 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
5432 				     (w << 16) | (beta[w] << 13) | inc);
5433 		}
5434 	}
5435 }
5436 
5437 /**
5438  *	t4_set_pace_tbl - set the pace table
5439  *	@adap: the adapter
5440  *	@pace_vals: the pace values in microseconds
5441  *	@start: index of the first entry in the HW pace table to set
5442  *	@n: how many entries to set
5443  *
5444  *	Sets (a subset of the) HW pace table.
5445  */
5446 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
5447 		     unsigned int start, unsigned int n)
5448 {
5449 	unsigned int vals[NTX_SCHED], i;
5450 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
5451 
5452 	if (n > NTX_SCHED)
5453 	    return -ERANGE;
5454 
5455 	/* convert values from us to dack ticks, rounding to closest value */
5456 	for (i = 0; i < n; i++, pace_vals++) {
5457 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
5458 		if (vals[i] > 0x7ff)
5459 			return -ERANGE;
5460 		if (*pace_vals && vals[i] == 0)
5461 			return -ERANGE;
5462 	}
5463 	for (i = 0; i < n; i++, start++)
5464 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
5465 	return 0;
5466 }
5467 
5468 /**
5469  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
5470  *	@adap: the adapter
5471  *	@kbps: target rate in Kbps
5472  *	@sched: the scheduler index
5473  *
5474  *	Configure a Tx HW scheduler for the target rate.
5475  */
5476 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
5477 {
5478 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
5479 	unsigned int clk = adap->params.vpd.cclk * 1000;
5480 	unsigned int selected_cpt = 0, selected_bpt = 0;
5481 
5482 	if (kbps > 0) {
5483 		kbps *= 125;     /* -> bytes */
5484 		for (cpt = 1; cpt <= 255; cpt++) {
5485 			tps = clk / cpt;
5486 			bpt = (kbps + tps / 2) / tps;
5487 			if (bpt > 0 && bpt <= 255) {
5488 				v = bpt * tps;
5489 				delta = v >= kbps ? v - kbps : kbps - v;
5490 				if (delta < mindelta) {
5491 					mindelta = delta;
5492 					selected_cpt = cpt;
5493 					selected_bpt = bpt;
5494 				}
5495 			} else if (selected_cpt)
5496 				break;
5497 		}
5498 		if (!selected_cpt)
5499 			return -EINVAL;
5500 	}
5501 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
5502 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
5503 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5504 	if (sched & 1)
5505 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
5506 	else
5507 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
5508 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5509 	return 0;
5510 }
5511 
5512 /**
5513  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
5514  *	@adap: the adapter
5515  *	@sched: the scheduler index
5516  *	@ipg: the interpacket delay in tenths of nanoseconds
5517  *
5518  *	Set the interpacket delay for a HW packet rate scheduler.
5519  */
5520 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
5521 {
5522 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
5523 
5524 	/* convert ipg to nearest number of core clocks */
5525 	ipg *= core_ticks_per_usec(adap);
5526 	ipg = (ipg + 5000) / 10000;
5527 	if (ipg > M_TXTIMERSEPQ0)
5528 		return -EINVAL;
5529 
5530 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
5531 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5532 	if (sched & 1)
5533 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
5534 	else
5535 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
5536 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5537 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
5538 	return 0;
5539 }
5540 
5541 /*
5542  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5543  * clocks.  The formula is
5544  *
5545  * bytes/s = bytes256 * 256 * ClkFreq / 4096
5546  *
5547  * which is equivalent to
5548  *
5549  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5550  */
5551 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5552 {
5553 	u64 v = bytes256 * adap->params.vpd.cclk;
5554 
5555 	return v * 62 + v / 2;
5556 }
5557 
5558 /**
5559  *	t4_get_chan_txrate - get the current per channel Tx rates
5560  *	@adap: the adapter
5561  *	@nic_rate: rates for NIC traffic
5562  *	@ofld_rate: rates for offloaded traffic
5563  *
5564  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5565  *	for each channel.
5566  */
5567 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5568 {
5569 	u32 v;
5570 
5571 	v = t4_read_reg(adap, A_TP_TX_TRATE);
5572 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
5573 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
5574 	if (adap->chip_params->nchan > 2) {
5575 		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
5576 		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
5577 	}
5578 
5579 	v = t4_read_reg(adap, A_TP_TX_ORATE);
5580 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
5581 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
5582 	if (adap->chip_params->nchan > 2) {
5583 		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
5584 		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
5585 	}
5586 }
5587 
5588 /**
5589  *	t4_set_trace_filter - configure one of the tracing filters
5590  *	@adap: the adapter
5591  *	@tp: the desired trace filter parameters
5592  *	@idx: which filter to configure
5593  *	@enable: whether to enable or disable the filter
5594  *
5595  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
5596  *	it indicates that the filter is already written in the register and it
5597  *	just needs to be enabled or disabled.
5598  */
5599 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5600     int idx, int enable)
5601 {
5602 	int i, ofst = idx * 4;
5603 	u32 data_reg, mask_reg, cfg;
5604 	u32 multitrc = F_TRCMULTIFILTER;
5605 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
5606 
5607 	if (idx < 0 || idx >= NTRACE)
5608 		return -EINVAL;
5609 
5610 	if (tp == NULL || !enable) {
5611 		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
5612 		    enable ? en : 0);
5613 		return 0;
5614 	}
5615 
5616 	/*
5617 	 * TODO - After T4 data book is updated, specify the exact
5618 	 * section below.
5619 	 *
5620 	 * See T4 data book - MPS section for a complete description
5621 	 * of the below if..else handling of A_MPS_TRC_CFG register
5622 	 * value.
5623 	 */
5624 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
5625 	if (cfg & F_TRCMULTIFILTER) {
5626 		/*
5627 		 * If multiple tracers are enabled, then maximum
5628 		 * capture size is 2.5KB (FIFO size of a single channel)
5629 		 * minus 2 flits for CPL_TRACE_PKT header.
5630 		 */
5631 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5632 			return -EINVAL;
5633 	} else {
5634 		/*
5635 		 * If multiple tracers are disabled, to avoid deadlocks
5636 		 * maximum packet capture size of 9600 bytes is recommended.
5637 		 * Also in this mode, only trace0 can be enabled and running.
5638 		 */
5639 		multitrc = 0;
5640 		if (tp->snap_len > 9600 || idx)
5641 			return -EINVAL;
5642 	}
5643 
5644 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
5645 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
5646 	    tp->min_len > M_TFMINPKTSIZE)
5647 		return -EINVAL;
5648 
5649 	/* stop the tracer we'll be changing */
5650 	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
5651 
5652 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
5653 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
5654 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
5655 
5656 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5657 		t4_write_reg(adap, data_reg, tp->data[i]);
5658 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5659 	}
5660 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
5661 		     V_TFCAPTUREMAX(tp->snap_len) |
5662 		     V_TFMINPKTSIZE(tp->min_len));
5663 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
5664 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
5665 		     (is_t4(adap) ?
5666 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
5667 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
5668 
5669 	return 0;
5670 }
5671 
5672 /**
5673  *	t4_get_trace_filter - query one of the tracing filters
5674  *	@adap: the adapter
5675  *	@tp: the current trace filter parameters
5676  *	@idx: which trace filter to query
5677  *	@enabled: non-zero if the filter is enabled
5678  *
5679  *	Returns the current settings of one of the HW tracing filters.
5680  */
5681 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5682 			 int *enabled)
5683 {
5684 	u32 ctla, ctlb;
5685 	int i, ofst = idx * 4;
5686 	u32 data_reg, mask_reg;
5687 
5688 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
5689 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
5690 
5691 	if (is_t4(adap)) {
5692 		*enabled = !!(ctla & F_TFEN);
5693 		tp->port =  G_TFPORT(ctla);
5694 		tp->invert = !!(ctla & F_TFINVERTMATCH);
5695 	} else {
5696 		*enabled = !!(ctla & F_T5_TFEN);
5697 		tp->port = G_T5_TFPORT(ctla);
5698 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
5699 	}
5700 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
5701 	tp->min_len = G_TFMINPKTSIZE(ctlb);
5702 	tp->skip_ofst = G_TFOFFSET(ctla);
5703 	tp->skip_len = G_TFLENGTH(ctla);
5704 
5705 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
5706 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
5707 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
5708 
5709 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5710 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5711 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5712 	}
5713 }
5714 
5715 /**
5716  *	t4_pmtx_get_stats - returns the HW stats from PMTX
5717  *	@adap: the adapter
5718  *	@cnt: where to store the count statistics
5719  *	@cycles: where to store the cycle statistics
5720  *
5721  *	Returns performance statistics from PMTX.
5722  */
5723 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5724 {
5725 	int i;
5726 	u32 data[2];
5727 
5728 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5729 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
5730 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
5731 		if (is_t4(adap))
5732 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
5733 		else {
5734 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
5735 					 A_PM_TX_DBG_DATA, data, 2,
5736 					 A_PM_TX_DBG_STAT_MSB);
5737 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5738 		}
5739 	}
5740 }
5741 
5742 /**
5743  *	t4_pmrx_get_stats - returns the HW stats from PMRX
5744  *	@adap: the adapter
5745  *	@cnt: where to store the count statistics
5746  *	@cycles: where to store the cycle statistics
5747  *
5748  *	Returns performance statistics from PMRX.
5749  */
5750 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5751 {
5752 	int i;
5753 	u32 data[2];
5754 
5755 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5756 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
5757 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
5758 		if (is_t4(adap)) {
5759 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
5760 		} else {
5761 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
5762 					 A_PM_RX_DBG_DATA, data, 2,
5763 					 A_PM_RX_DBG_STAT_MSB);
5764 			cycles[i] = (((u64)data[0] << 32) | data[1]);
5765 		}
5766 	}
5767 }
5768 
5769 /**
5770  *	t4_get_mps_bg_map - return the buffer groups associated with a port
5771  *	@adap: the adapter
5772  *	@idx: the port index
5773  *
5774  *	Returns a bitmap indicating which MPS buffer groups are associated
5775  *	with the given port.  Bit i is set if buffer group i is used by the
5776  *	port.
5777  */
5778 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5779 {
5780 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
5781 
5782 	if (n == 0)
5783 		return idx == 0 ? 0xf : 0;
5784 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
5785 		return idx < 2 ? (3 << (2 * idx)) : 0;
5786 	return 1 << idx;
5787 }
5788 
5789 /**
5790  *      t4_get_port_type_description - return Port Type string description
5791  *      @port_type: firmware Port Type enumeration
5792  */
5793 const char *t4_get_port_type_description(enum fw_port_type port_type)
5794 {
5795 	static const char *const port_type_description[] = {
5796 		"Fiber_XFI",
5797 		"Fiber_XAUI",
5798 		"BT_SGMII",
5799 		"BT_XFI",
5800 		"BT_XAUI",
5801 		"KX4",
5802 		"CX4",
5803 		"KX",
5804 		"KR",
5805 		"SFP",
5806 		"BP_AP",
5807 		"BP4_AP",
5808 		"QSFP_10G",
5809 		"QSA",
5810 		"QSFP",
5811 		"BP40_BA",
5812 		"KR4_100G",
5813 		"CR4_QSFP",
5814 		"CR_QSFP",
5815 		"CR2_QSFP",
5816 		"SFP28",
5817 		"KR_SFP28",
5818 	};
5819 
5820 	if (port_type < ARRAY_SIZE(port_type_description))
5821 		return port_type_description[port_type];
5822 	return "UNKNOWN";
5823 }
5824 
5825 /**
5826  *      t4_get_port_stats_offset - collect port stats relative to a previous
5827  *				   snapshot
5828  *      @adap: The adapter
5829  *      @idx: The port
5830  *      @stats: Current stats to fill
5831  *      @offset: Previous stats snapshot
5832  */
5833 void t4_get_port_stats_offset(struct adapter *adap, int idx,
5834 		struct port_stats *stats,
5835 		struct port_stats *offset)
5836 {
5837 	u64 *s, *o;
5838 	int i;
5839 
5840 	t4_get_port_stats(adap, idx, stats);
5841 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
5842 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
5843 			i++, s++, o++)
5844 		*s -= *o;
5845 }
5846 
5847 /**
5848  *	t4_get_port_stats - collect port statistics
5849  *	@adap: the adapter
5850  *	@idx: the port index
5851  *	@p: the stats structure to fill
5852  *
5853  *	Collect statistics related to the given port from HW.
5854  */
5855 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5856 {
5857 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5858 	u32 stat_ctl;
5859 
5860 #define GET_STAT(name) \
5861 	t4_read_reg64(adap, \
5862 	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
5863 	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
5864 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
5865 
5866 	stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
5867 
5868 	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
5869 	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
5870 	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
5871 	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
5872 	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
5873 	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
5874 	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
5875 	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
5876 	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
5877 	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
5878 	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
5879 	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
5880 	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
5881 	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
5882 	p->tx_drop		= GET_STAT(TX_PORT_DROP);
5883 	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
5884 	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
5885 	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
5886 	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
5887 	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
5888 	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
5889 	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
5890 	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
5891 
5892 	if (chip_id(adap) >= CHELSIO_T5) {
5893 		if (stat_ctl & F_COUNTPAUSESTATTX) {
5894 			p->tx_frames -= p->tx_pause;
5895 			p->tx_octets -= p->tx_pause * 64;
5896 		}
5897 		if (stat_ctl & F_COUNTPAUSEMCTX)
5898 			p->tx_mcast_frames -= p->tx_pause;
5899 	}
5900 
5901 	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
5902 	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
5903 	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
5904 	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
5905 	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
5906 	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
5907 	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
5908 	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
5909 	p->rx_fcs_err		= GET_STAT(RX_PORT_CRC_ERROR);
5910 	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
5911 	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
5912 	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
5913 	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
5914 	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
5915 	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
5916 	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
5917 	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
5918 	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
5919 	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
5920 	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
5921 	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
5922 	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
5923 	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
5924 	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
5925 	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
5926 	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
5927 	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
5928 
5929 	if (chip_id(adap) >= CHELSIO_T5) {
5930 		if (stat_ctl & F_COUNTPAUSESTATRX) {
5931 			p->rx_frames -= p->rx_pause;
5932 			p->rx_octets -= p->rx_pause * 64;
5933 		}
5934 		if (stat_ctl & F_COUNTPAUSEMCRX)
5935 			p->rx_mcast_frames -= p->rx_pause;
5936 	}
5937 
5938 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5939 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5940 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5941 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5942 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5943 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5944 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5945 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5946 
5947 #undef GET_STAT
5948 #undef GET_STAT_COM
5949 }
5950 
5951 /**
5952  *	t4_get_lb_stats - collect loopback port statistics
5953  *	@adap: the adapter
5954  *	@idx: the loopback port index
5955  *	@p: the stats structure to fill
5956  *
5957  *	Return HW statistics for the given loopback port.
5958  */
5959 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
5960 {
5961 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5962 
5963 #define GET_STAT(name) \
5964 	t4_read_reg64(adap, \
5965 	(is_t4(adap) ? \
5966 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
5967 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
5968 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
5969 
5970 	p->octets	= GET_STAT(BYTES);
5971 	p->frames	= GET_STAT(FRAMES);
5972 	p->bcast_frames	= GET_STAT(BCAST);
5973 	p->mcast_frames	= GET_STAT(MCAST);
5974 	p->ucast_frames	= GET_STAT(UCAST);
5975 	p->error_frames	= GET_STAT(ERROR);
5976 
5977 	p->frames_64		= GET_STAT(64B);
5978 	p->frames_65_127	= GET_STAT(65B_127B);
5979 	p->frames_128_255	= GET_STAT(128B_255B);
5980 	p->frames_256_511	= GET_STAT(256B_511B);
5981 	p->frames_512_1023	= GET_STAT(512B_1023B);
5982 	p->frames_1024_1518	= GET_STAT(1024B_1518B);
5983 	p->frames_1519_max	= GET_STAT(1519B_MAX);
5984 	p->drop			= GET_STAT(DROP_FRAMES);
5985 
5986 	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5987 	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5988 	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5989 	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5990 	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5991 	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5992 	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5993 	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
5994 
5995 #undef GET_STAT
5996 #undef GET_STAT_COM
5997 }
5998 
5999 /**
6000  *	t4_wol_magic_enable - enable/disable magic packet WoL
6001  *	@adap: the adapter
6002  *	@port: the physical port index
6003  *	@addr: MAC address expected in magic packets, %NULL to disable
6004  *
6005  *	Enables/disables magic packet wake-on-LAN for the selected port.
6006  */
6007 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
6008 			 const u8 *addr)
6009 {
6010 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
6011 
6012 	if (is_t4(adap)) {
6013 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
6014 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
6015 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6016 	} else {
6017 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
6018 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
6019 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6020 	}
6021 
6022 	if (addr) {
6023 		t4_write_reg(adap, mag_id_reg_l,
6024 			     (addr[2] << 24) | (addr[3] << 16) |
6025 			     (addr[4] << 8) | addr[5]);
6026 		t4_write_reg(adap, mag_id_reg_h,
6027 			     (addr[0] << 8) | addr[1]);
6028 	}
6029 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
6030 			 V_MAGICEN(addr != NULL));
6031 }
6032 
6033 /**
6034  *	t4_wol_pat_enable - enable/disable pattern-based WoL
6035  *	@adap: the adapter
6036  *	@port: the physical port index
6037  *	@map: bitmap of which HW pattern filters to set
6038  *	@mask0: byte mask for bytes 0-63 of a packet
6039  *	@mask1: byte mask for bytes 64-127 of a packet
6040  *	@crc: Ethernet CRC for selected bytes
6041  *	@enable: enable/disable switch
6042  *
6043  *	Sets the pattern filters indicated in @map to mask out the bytes
6044  *	specified in @mask0/@mask1 in received packets and compare the CRC of
6045  *	the resulting packet against @crc.  If @enable is %true pattern-based
6046  *	WoL is enabled, otherwise disabled.
6047  */
6048 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
6049 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
6050 {
6051 	int i;
6052 	u32 port_cfg_reg;
6053 
6054 	if (is_t4(adap))
6055 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6056 	else
6057 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6058 
6059 	if (!enable) {
6060 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
6061 		return 0;
6062 	}
6063 	if (map > 0xff)
6064 		return -EINVAL;
6065 
6066 #define EPIO_REG(name) \
6067 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
6068 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
6069 
6070 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
6071 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
6072 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
6073 
6074 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
6075 		if (!(map & 1))
6076 			continue;
6077 
6078 		/* write byte masks */
6079 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
6080 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
6081 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6082 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6083 			return -ETIMEDOUT;
6084 
6085 		/* write CRC */
6086 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
6087 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
6088 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6089 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6090 			return -ETIMEDOUT;
6091 	}
6092 #undef EPIO_REG
6093 
6094 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
6095 	return 0;
6096 }
6097 
6098 /*     t4_mk_filtdelwr - create a delete filter WR
6099  *     @ftid: the filter ID
6100  *     @wr: the filter work request to populate
6101  *     @qid: ingress queue to receive the delete notification
6102  *
6103  *     Creates a filter work request to delete the supplied filter.  If @qid is
6104  *     negative the delete notification is suppressed.
6105  */
6106 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6107 {
6108 	memset(wr, 0, sizeof(*wr));
6109 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
6110 	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
6111 	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
6112 				    V_FW_FILTER_WR_NOREPLY(qid < 0));
6113 	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
6114 	if (qid >= 0)
6115 		wr->rx_chan_rx_rpl_iq =
6116 				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
6117 }
6118 
6119 #define INIT_CMD(var, cmd, rd_wr) do { \
6120 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
6121 					F_FW_CMD_REQUEST | \
6122 					F_FW_CMD_##rd_wr); \
6123 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6124 } while (0)
6125 
6126 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6127 			  u32 addr, u32 val)
6128 {
6129 	u32 ldst_addrspace;
6130 	struct fw_ldst_cmd c;
6131 
6132 	memset(&c, 0, sizeof(c));
6133 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
6134 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6135 					F_FW_CMD_REQUEST |
6136 					F_FW_CMD_WRITE |
6137 					ldst_addrspace);
6138 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6139 	c.u.addrval.addr = cpu_to_be32(addr);
6140 	c.u.addrval.val = cpu_to_be32(val);
6141 
6142 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6143 }
6144 
6145 /**
6146  *	t4_mdio_rd - read a PHY register through MDIO
6147  *	@adap: the adapter
6148  *	@mbox: mailbox to use for the FW command
6149  *	@phy_addr: the PHY address
6150  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6151  *	@reg: the register to read
6152  *	@valp: where to store the value
6153  *
6154  *	Issues a FW command through the given mailbox to read a PHY register.
6155  */
6156 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6157 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
6158 {
6159 	int ret;
6160 	u32 ldst_addrspace;
6161 	struct fw_ldst_cmd c;
6162 
6163 	memset(&c, 0, sizeof(c));
6164 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6165 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6166 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6167 					ldst_addrspace);
6168 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6169 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6170 					 V_FW_LDST_CMD_MMD(mmd));
6171 	c.u.mdio.raddr = cpu_to_be16(reg);
6172 
6173 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6174 	if (ret == 0)
6175 		*valp = be16_to_cpu(c.u.mdio.rval);
6176 	return ret;
6177 }
6178 
6179 /**
6180  *	t4_mdio_wr - write a PHY register through MDIO
6181  *	@adap: the adapter
6182  *	@mbox: mailbox to use for the FW command
6183  *	@phy_addr: the PHY address
6184  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6185  *	@reg: the register to write
6186  *	@valp: value to write
6187  *
6188  *	Issues a FW command through the given mailbox to write a PHY register.
6189  */
6190 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6191 	       unsigned int mmd, unsigned int reg, unsigned int val)
6192 {
6193 	u32 ldst_addrspace;
6194 	struct fw_ldst_cmd c;
6195 
6196 	memset(&c, 0, sizeof(c));
6197 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6198 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6199 					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6200 					ldst_addrspace);
6201 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6202 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6203 					 V_FW_LDST_CMD_MMD(mmd));
6204 	c.u.mdio.raddr = cpu_to_be16(reg);
6205 	c.u.mdio.rval = cpu_to_be16(val);
6206 
6207 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6208 }
6209 
6210 /**
6211  *
6212  *	t4_sge_decode_idma_state - decode the idma state
6213  *	@adap: the adapter
6214  *	@state: the state idma is stuck in
6215  */
6216 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6217 {
6218 	static const char * const t4_decode[] = {
6219 		"IDMA_IDLE",
6220 		"IDMA_PUSH_MORE_CPL_FIFO",
6221 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6222 		"Not used",
6223 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6224 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6225 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6226 		"IDMA_SEND_FIFO_TO_IMSG",
6227 		"IDMA_FL_REQ_DATA_FL_PREP",
6228 		"IDMA_FL_REQ_DATA_FL",
6229 		"IDMA_FL_DROP",
6230 		"IDMA_FL_H_REQ_HEADER_FL",
6231 		"IDMA_FL_H_SEND_PCIEHDR",
6232 		"IDMA_FL_H_PUSH_CPL_FIFO",
6233 		"IDMA_FL_H_SEND_CPL",
6234 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6235 		"IDMA_FL_H_SEND_IP_HDR",
6236 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6237 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6238 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6239 		"IDMA_FL_D_SEND_PCIEHDR",
6240 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6241 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6242 		"IDMA_FL_SEND_PCIEHDR",
6243 		"IDMA_FL_PUSH_CPL_FIFO",
6244 		"IDMA_FL_SEND_CPL",
6245 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6246 		"IDMA_FL_SEND_PAYLOAD",
6247 		"IDMA_FL_REQ_NEXT_DATA_FL",
6248 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6249 		"IDMA_FL_SEND_PADDING",
6250 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6251 		"IDMA_FL_SEND_FIFO_TO_IMSG",
6252 		"IDMA_FL_REQ_DATAFL_DONE",
6253 		"IDMA_FL_REQ_HEADERFL_DONE",
6254 	};
6255 	static const char * const t5_decode[] = {
6256 		"IDMA_IDLE",
6257 		"IDMA_ALMOST_IDLE",
6258 		"IDMA_PUSH_MORE_CPL_FIFO",
6259 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6260 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6261 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6262 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6263 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6264 		"IDMA_SEND_FIFO_TO_IMSG",
6265 		"IDMA_FL_REQ_DATA_FL",
6266 		"IDMA_FL_DROP",
6267 		"IDMA_FL_DROP_SEND_INC",
6268 		"IDMA_FL_H_REQ_HEADER_FL",
6269 		"IDMA_FL_H_SEND_PCIEHDR",
6270 		"IDMA_FL_H_PUSH_CPL_FIFO",
6271 		"IDMA_FL_H_SEND_CPL",
6272 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6273 		"IDMA_FL_H_SEND_IP_HDR",
6274 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6275 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6276 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6277 		"IDMA_FL_D_SEND_PCIEHDR",
6278 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6279 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6280 		"IDMA_FL_SEND_PCIEHDR",
6281 		"IDMA_FL_PUSH_CPL_FIFO",
6282 		"IDMA_FL_SEND_CPL",
6283 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6284 		"IDMA_FL_SEND_PAYLOAD",
6285 		"IDMA_FL_REQ_NEXT_DATA_FL",
6286 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6287 		"IDMA_FL_SEND_PADDING",
6288 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6289 	};
6290 	static const char * const t6_decode[] = {
6291 		"IDMA_IDLE",
6292 		"IDMA_PUSH_MORE_CPL_FIFO",
6293 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6294 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6295 		"IDMA_PHYSADDR_SEND_PCIEHDR",
6296 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6297 		"IDMA_PHYSADDR_SEND_PAYLOAD",
6298 		"IDMA_FL_REQ_DATA_FL",
6299 		"IDMA_FL_DROP",
6300 		"IDMA_FL_DROP_SEND_INC",
6301 		"IDMA_FL_H_REQ_HEADER_FL",
6302 		"IDMA_FL_H_SEND_PCIEHDR",
6303 		"IDMA_FL_H_PUSH_CPL_FIFO",
6304 		"IDMA_FL_H_SEND_CPL",
6305 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6306 		"IDMA_FL_H_SEND_IP_HDR",
6307 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6308 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6309 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6310 		"IDMA_FL_D_SEND_PCIEHDR",
6311 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6312 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6313 		"IDMA_FL_SEND_PCIEHDR",
6314 		"IDMA_FL_PUSH_CPL_FIFO",
6315 		"IDMA_FL_SEND_CPL",
6316 		"IDMA_FL_SEND_PAYLOAD_FIRST",
6317 		"IDMA_FL_SEND_PAYLOAD",
6318 		"IDMA_FL_REQ_NEXT_DATA_FL",
6319 		"IDMA_FL_SEND_NEXT_PCIEHDR",
6320 		"IDMA_FL_SEND_PADDING",
6321 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6322 	};
6323 	static const u32 sge_regs[] = {
6324 		A_SGE_DEBUG_DATA_LOW_INDEX_2,
6325 		A_SGE_DEBUG_DATA_LOW_INDEX_3,
6326 		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
6327 	};
6328 	const char * const *sge_idma_decode;
6329 	int sge_idma_decode_nstates;
6330 	int i;
6331 	unsigned int chip_version = chip_id(adapter);
6332 
6333 	/* Select the right set of decode strings to dump depending on the
6334 	 * adapter chip type.
6335 	 */
6336 	switch (chip_version) {
6337 	case CHELSIO_T4:
6338 		sge_idma_decode = (const char * const *)t4_decode;
6339 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6340 		break;
6341 
6342 	case CHELSIO_T5:
6343 		sge_idma_decode = (const char * const *)t5_decode;
6344 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6345 		break;
6346 
6347 	case CHELSIO_T6:
6348 		sge_idma_decode = (const char * const *)t6_decode;
6349 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6350 		break;
6351 
6352 	default:
6353 		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
6354 		return;
6355 	}
6356 
6357 	if (state < sge_idma_decode_nstates)
6358 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6359 	else
6360 		CH_WARN(adapter, "idma state %d unknown\n", state);
6361 
6362 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6363 		CH_WARN(adapter, "SGE register %#x value %#x\n",
6364 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6365 }
6366 
6367 /**
6368  *      t4_sge_ctxt_flush - flush the SGE context cache
6369  *      @adap: the adapter
6370  *      @mbox: mailbox to use for the FW command
6371  *
6372  *      Issues a FW command through the given mailbox to flush the
6373  *      SGE context cache.
6374  */
6375 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
6376 {
6377 	int ret;
6378 	u32 ldst_addrspace;
6379 	struct fw_ldst_cmd c;
6380 
6381 	memset(&c, 0, sizeof(c));
6382 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
6383 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6384 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6385 					ldst_addrspace);
6386 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6387 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
6388 
6389 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6390 	return ret;
6391 }
6392 
6393 /**
6394  *      t4_fw_hello - establish communication with FW
6395  *      @adap: the adapter
6396  *      @mbox: mailbox to use for the FW command
6397  *      @evt_mbox: mailbox to receive async FW events
6398  *      @master: specifies the caller's willingness to be the device master
6399  *	@state: returns the current device state (if non-NULL)
6400  *
6401  *	Issues a command to establish communication with FW.  Returns either
6402  *	an error (negative integer) or the mailbox of the Master PF.
6403  */
6404 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6405 		enum dev_master master, enum dev_state *state)
6406 {
6407 	int ret;
6408 	struct fw_hello_cmd c;
6409 	u32 v;
6410 	unsigned int master_mbox;
6411 	int retries = FW_CMD_HELLO_RETRIES;
6412 
6413 retry:
6414 	memset(&c, 0, sizeof(c));
6415 	INIT_CMD(c, HELLO, WRITE);
6416 	c.err_to_clearinit = cpu_to_be32(
6417 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
6418 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
6419 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
6420 					mbox : M_FW_HELLO_CMD_MBMASTER) |
6421 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
6422 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
6423 		F_FW_HELLO_CMD_CLEARINIT);
6424 
6425 	/*
6426 	 * Issue the HELLO command to the firmware.  If it's not successful
6427 	 * but indicates that we got a "busy" or "timeout" condition, retry
6428 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6429 	 * retry limit, check to see if the firmware left us any error
6430 	 * information and report that if so ...
6431 	 */
6432 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6433 	if (ret != FW_SUCCESS) {
6434 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6435 			goto retry;
6436 		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
6437 			t4_report_fw_error(adap);
6438 		return ret;
6439 	}
6440 
6441 	v = be32_to_cpu(c.err_to_clearinit);
6442 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
6443 	if (state) {
6444 		if (v & F_FW_HELLO_CMD_ERR)
6445 			*state = DEV_STATE_ERR;
6446 		else if (v & F_FW_HELLO_CMD_INIT)
6447 			*state = DEV_STATE_INIT;
6448 		else
6449 			*state = DEV_STATE_UNINIT;
6450 	}
6451 
6452 	/*
6453 	 * If we're not the Master PF then we need to wait around for the
6454 	 * Master PF Driver to finish setting up the adapter.
6455 	 *
6456 	 * Note that we also do this wait if we're a non-Master-capable PF and
6457 	 * there is no current Master PF; a Master PF may show up momentarily
6458 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6459 	 * OS loads lots of different drivers rapidly at the same time).  In
6460 	 * this case, the Master PF returned by the firmware will be
6461 	 * M_PCIE_FW_MASTER so the test below will work ...
6462 	 */
6463 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
6464 	    master_mbox != mbox) {
6465 		int waiting = FW_CMD_HELLO_TIMEOUT;
6466 
6467 		/*
6468 		 * Wait for the firmware to either indicate an error or
6469 		 * initialized state.  If we see either of these we bail out
6470 		 * and report the issue to the caller.  If we exhaust the
6471 		 * "hello timeout" and we haven't exhausted our retries, try
6472 		 * again.  Otherwise bail with a timeout error.
6473 		 */
6474 		for (;;) {
6475 			u32 pcie_fw;
6476 
6477 			msleep(50);
6478 			waiting -= 50;
6479 
6480 			/*
6481 			 * If neither Error nor Initialialized are indicated
6482 			 * by the firmware keep waiting till we exhaust our
6483 			 * timeout ... and then retry if we haven't exhausted
6484 			 * our retries ...
6485 			 */
6486 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
6487 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
6488 				if (waiting <= 0) {
6489 					if (retries-- > 0)
6490 						goto retry;
6491 
6492 					return -ETIMEDOUT;
6493 				}
6494 				continue;
6495 			}
6496 
6497 			/*
6498 			 * We either have an Error or Initialized condition
6499 			 * report errors preferentially.
6500 			 */
6501 			if (state) {
6502 				if (pcie_fw & F_PCIE_FW_ERR)
6503 					*state = DEV_STATE_ERR;
6504 				else if (pcie_fw & F_PCIE_FW_INIT)
6505 					*state = DEV_STATE_INIT;
6506 			}
6507 
6508 			/*
6509 			 * If we arrived before a Master PF was selected and
6510 			 * there's not a valid Master PF, grab its identity
6511 			 * for our caller.
6512 			 */
6513 			if (master_mbox == M_PCIE_FW_MASTER &&
6514 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
6515 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
6516 			break;
6517 		}
6518 	}
6519 
6520 	return master_mbox;
6521 }
6522 
6523 /**
6524  *	t4_fw_bye - end communication with FW
6525  *	@adap: the adapter
6526  *	@mbox: mailbox to use for the FW command
6527  *
6528  *	Issues a command to terminate communication with FW.
6529  */
6530 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6531 {
6532 	struct fw_bye_cmd c;
6533 
6534 	memset(&c, 0, sizeof(c));
6535 	INIT_CMD(c, BYE, WRITE);
6536 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6537 }
6538 
6539 /**
6540  *	t4_fw_reset - issue a reset to FW
6541  *	@adap: the adapter
6542  *	@mbox: mailbox to use for the FW command
6543  *	@reset: specifies the type of reset to perform
6544  *
6545  *	Issues a reset command of the specified type to FW.
6546  */
6547 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6548 {
6549 	struct fw_reset_cmd c;
6550 
6551 	memset(&c, 0, sizeof(c));
6552 	INIT_CMD(c, RESET, WRITE);
6553 	c.val = cpu_to_be32(reset);
6554 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6555 }
6556 
6557 /**
6558  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6559  *	@adap: the adapter
6560  *	@mbox: mailbox to use for the FW RESET command (if desired)
6561  *	@force: force uP into RESET even if FW RESET command fails
6562  *
6563  *	Issues a RESET command to firmware (if desired) with a HALT indication
6564  *	and then puts the microprocessor into RESET state.  The RESET command
6565  *	will only be issued if a legitimate mailbox is provided (mbox <=
6566  *	M_PCIE_FW_MASTER).
6567  *
6568  *	This is generally used in order for the host to safely manipulate the
6569  *	adapter without fear of conflicting with whatever the firmware might
6570  *	be doing.  The only way out of this state is to RESTART the firmware
6571  *	...
6572  */
6573 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6574 {
6575 	int ret = 0;
6576 
6577 	/*
6578 	 * If a legitimate mailbox is provided, issue a RESET command
6579 	 * with a HALT indication.
6580 	 */
6581 	if (mbox <= M_PCIE_FW_MASTER) {
6582 		struct fw_reset_cmd c;
6583 
6584 		memset(&c, 0, sizeof(c));
6585 		INIT_CMD(c, RESET, WRITE);
6586 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
6587 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
6588 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6589 	}
6590 
6591 	/*
6592 	 * Normally we won't complete the operation if the firmware RESET
6593 	 * command fails but if our caller insists we'll go ahead and put the
6594 	 * uP into RESET.  This can be useful if the firmware is hung or even
6595 	 * missing ...  We'll have to take the risk of putting the uP into
6596 	 * RESET without the cooperation of firmware in that case.
6597 	 *
6598 	 * We also force the firmware's HALT flag to be on in case we bypassed
6599 	 * the firmware RESET command above or we're dealing with old firmware
6600 	 * which doesn't have the HALT capability.  This will serve as a flag
6601 	 * for the incoming firmware to know that it's coming out of a HALT
6602 	 * rather than a RESET ... if it's new enough to understand that ...
6603 	 */
6604 	if (ret == 0 || force) {
6605 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6606 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
6607 				 F_PCIE_FW_HALT);
6608 	}
6609 
6610 	/*
6611 	 * And we always return the result of the firmware RESET command
6612 	 * even when we force the uP into RESET ...
6613 	 */
6614 	return ret;
6615 }
6616 
6617 /**
6618  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6619  *	@adap: the adapter
6620  *	@reset: if we want to do a RESET to restart things
6621  *
6622  *	Restart firmware previously halted by t4_fw_halt().  On successful
6623  *	return the previous PF Master remains as the new PF Master and there
6624  *	is no need to issue a new HELLO command, etc.
6625  *
6626  *	We do this in two ways:
6627  *
6628  *	 1. If we're dealing with newer firmware we'll simply want to take
6629  *	    the chip's microprocessor out of RESET.  This will cause the
6630  *	    firmware to start up from its start vector.  And then we'll loop
6631  *	    until the firmware indicates it's started again (PCIE_FW.HALT
6632  *	    reset to 0) or we timeout.
6633  *
6634  *	 2. If we're dealing with older firmware then we'll need to RESET
6635  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6636  *	    flag and automatically RESET itself on startup.
6637  */
6638 int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6639 {
6640 	if (reset) {
6641 		/*
6642 		 * Since we're directing the RESET instead of the firmware
6643 		 * doing it automatically, we need to clear the PCIE_FW.HALT
6644 		 * bit.
6645 		 */
6646 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
6647 
6648 		/*
6649 		 * If we've been given a valid mailbox, first try to get the
6650 		 * firmware to do the RESET.  If that works, great and we can
6651 		 * return success.  Otherwise, if we haven't been given a
6652 		 * valid mailbox or the RESET command failed, fall back to
6653 		 * hitting the chip with a hammer.
6654 		 */
6655 		if (mbox <= M_PCIE_FW_MASTER) {
6656 			t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6657 			msleep(100);
6658 			if (t4_fw_reset(adap, mbox,
6659 					F_PIORST | F_PIORSTMODE) == 0)
6660 				return 0;
6661 		}
6662 
6663 		t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6664 		msleep(2000);
6665 	} else {
6666 		int ms;
6667 
6668 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6669 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6670 			if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
6671 				return FW_SUCCESS;
6672 			msleep(100);
6673 			ms += 100;
6674 		}
6675 		return -ETIMEDOUT;
6676 	}
6677 	return 0;
6678 }
6679 
6680 /**
6681  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6682  *	@adap: the adapter
6683  *	@mbox: mailbox to use for the FW RESET command (if desired)
6684  *	@fw_data: the firmware image to write
6685  *	@size: image size
6686  *	@force: force upgrade even if firmware doesn't cooperate
6687  *
6688  *	Perform all of the steps necessary for upgrading an adapter's
6689  *	firmware image.  Normally this requires the cooperation of the
6690  *	existing firmware in order to halt all existing activities
6691  *	but if an invalid mailbox token is passed in we skip that step
6692  *	(though we'll still put the adapter microprocessor into RESET in
6693  *	that case).
6694  *
6695  *	On successful return the new firmware will have been loaded and
6696  *	the adapter will have been fully RESET losing all previous setup
6697  *	state.  On unsuccessful return the adapter may be completely hosed ...
6698  *	positive errno indicates that the adapter is ~probably~ intact, a
6699  *	negative errno indicates that things are looking bad ...
6700  */
6701 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6702 		  const u8 *fw_data, unsigned int size, int force)
6703 {
6704 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6705 	unsigned int bootstrap =
6706 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
6707 	int reset, ret;
6708 
6709 	if (!t4_fw_matches_chip(adap, fw_hdr))
6710 		return -EINVAL;
6711 
6712 	if (!bootstrap) {
6713 		ret = t4_fw_halt(adap, mbox, force);
6714 		if (ret < 0 && !force)
6715 			return ret;
6716 	}
6717 
6718 	ret = t4_load_fw(adap, fw_data, size);
6719 	if (ret < 0 || bootstrap)
6720 		return ret;
6721 
6722 	/*
6723 	 * Older versions of the firmware don't understand the new
6724 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6725 	 * restart.  So for newly loaded older firmware we'll have to do the
6726 	 * RESET for it so it starts up on a clean slate.  We can tell if
6727 	 * the newly loaded firmware will handle this right by checking
6728 	 * its header flags to see if it advertises the capability.
6729 	 */
6730 	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6731 	return t4_fw_restart(adap, mbox, reset);
6732 }
6733 
6734 /**
6735  *	t4_fw_initialize - ask FW to initialize the device
6736  *	@adap: the adapter
6737  *	@mbox: mailbox to use for the FW command
6738  *
6739  *	Issues a command to FW to partially initialize the device.  This
6740  *	performs initialization that generally doesn't depend on user input.
6741  */
6742 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6743 {
6744 	struct fw_initialize_cmd c;
6745 
6746 	memset(&c, 0, sizeof(c));
6747 	INIT_CMD(c, INITIALIZE, WRITE);
6748 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6749 }
6750 
6751 /**
6752  *	t4_query_params_rw - query FW or device parameters
6753  *	@adap: the adapter
6754  *	@mbox: mailbox to use for the FW command
6755  *	@pf: the PF
6756  *	@vf: the VF
6757  *	@nparams: the number of parameters
6758  *	@params: the parameter names
6759  *	@val: the parameter values
6760  *	@rw: Write and read flag
6761  *
6762  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
6763  *	queried at once.
6764  */
6765 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6766 		       unsigned int vf, unsigned int nparams, const u32 *params,
6767 		       u32 *val, int rw)
6768 {
6769 	int i, ret;
6770 	struct fw_params_cmd c;
6771 	__be32 *p = &c.param[0].mnem;
6772 
6773 	if (nparams > 7)
6774 		return -EINVAL;
6775 
6776 	memset(&c, 0, sizeof(c));
6777 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6778 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
6779 				  V_FW_PARAMS_CMD_PFN(pf) |
6780 				  V_FW_PARAMS_CMD_VFN(vf));
6781 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6782 
6783 	for (i = 0; i < nparams; i++) {
6784 		*p++ = cpu_to_be32(*params++);
6785 		if (rw)
6786 			*p = cpu_to_be32(*(val + i));
6787 		p++;
6788 	}
6789 
6790 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6791 	if (ret == 0)
6792 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6793 			*val++ = be32_to_cpu(*p);
6794 	return ret;
6795 }
6796 
6797 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6798 		    unsigned int vf, unsigned int nparams, const u32 *params,
6799 		    u32 *val)
6800 {
6801 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6802 }
6803 
6804 /**
6805  *      t4_set_params_timeout - sets FW or device parameters
6806  *      @adap: the adapter
6807  *      @mbox: mailbox to use for the FW command
6808  *      @pf: the PF
6809  *      @vf: the VF
6810  *      @nparams: the number of parameters
6811  *      @params: the parameter names
6812  *      @val: the parameter values
6813  *      @timeout: the timeout time
6814  *
6815  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6816  *      specified at once.
6817  */
6818 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6819 			  unsigned int pf, unsigned int vf,
6820 			  unsigned int nparams, const u32 *params,
6821 			  const u32 *val, int timeout)
6822 {
6823 	struct fw_params_cmd c;
6824 	__be32 *p = &c.param[0].mnem;
6825 
6826 	if (nparams > 7)
6827 		return -EINVAL;
6828 
6829 	memset(&c, 0, sizeof(c));
6830 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6831 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6832 				  V_FW_PARAMS_CMD_PFN(pf) |
6833 				  V_FW_PARAMS_CMD_VFN(vf));
6834 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6835 
6836 	while (nparams--) {
6837 		*p++ = cpu_to_be32(*params++);
6838 		*p++ = cpu_to_be32(*val++);
6839 	}
6840 
6841 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
6842 }
6843 
6844 /**
6845  *	t4_set_params - sets FW or device parameters
6846  *	@adap: the adapter
6847  *	@mbox: mailbox to use for the FW command
6848  *	@pf: the PF
6849  *	@vf: the VF
6850  *	@nparams: the number of parameters
6851  *	@params: the parameter names
6852  *	@val: the parameter values
6853  *
6854  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
6855  *	specified at once.
6856  */
6857 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6858 		  unsigned int vf, unsigned int nparams, const u32 *params,
6859 		  const u32 *val)
6860 {
6861 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6862 				     FW_CMD_MAX_TIMEOUT);
6863 }
6864 
6865 /**
6866  *	t4_cfg_pfvf - configure PF/VF resource limits
6867  *	@adap: the adapter
6868  *	@mbox: mailbox to use for the FW command
6869  *	@pf: the PF being configured
6870  *	@vf: the VF being configured
6871  *	@txq: the max number of egress queues
6872  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
6873  *	@rxqi: the max number of interrupt-capable ingress queues
6874  *	@rxq: the max number of interruptless ingress queues
6875  *	@tc: the PCI traffic class
6876  *	@vi: the max number of virtual interfaces
6877  *	@cmask: the channel access rights mask for the PF/VF
6878  *	@pmask: the port access rights mask for the PF/VF
6879  *	@nexact: the maximum number of exact MPS filters
6880  *	@rcaps: read capabilities
6881  *	@wxcaps: write/execute capabilities
6882  *
6883  *	Configures resource limits and capabilities for a physical or virtual
6884  *	function.
6885  */
6886 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6887 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6888 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
6889 		unsigned int vi, unsigned int cmask, unsigned int pmask,
6890 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6891 {
6892 	struct fw_pfvf_cmd c;
6893 
6894 	memset(&c, 0, sizeof(c));
6895 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
6896 				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
6897 				  V_FW_PFVF_CMD_VFN(vf));
6898 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6899 	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
6900 				     V_FW_PFVF_CMD_NIQ(rxq));
6901 	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
6902 				    V_FW_PFVF_CMD_PMASK(pmask) |
6903 				    V_FW_PFVF_CMD_NEQ(txq));
6904 	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
6905 				      V_FW_PFVF_CMD_NVI(vi) |
6906 				      V_FW_PFVF_CMD_NEXACTF(nexact));
6907 	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
6908 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
6909 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
6910 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6911 }
6912 
6913 /**
6914  *	t4_alloc_vi_func - allocate a virtual interface
6915  *	@adap: the adapter
6916  *	@mbox: mailbox to use for the FW command
6917  *	@port: physical port associated with the VI
6918  *	@pf: the PF owning the VI
6919  *	@vf: the VF owning the VI
6920  *	@nmac: number of MAC addresses needed (1 to 5)
6921  *	@mac: the MAC addresses of the VI
6922  *	@rss_size: size of RSS table slice associated with this VI
6923  *	@portfunc: which Port Application Function MAC Address is desired
6924  *	@idstype: Intrusion Detection Type
6925  *
6926  *	Allocates a virtual interface for the given physical port.  If @mac is
6927  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
6928  *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
6929  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
6930  *	stored consecutively so the space needed is @nmac * 6 bytes.
6931  *	Returns a negative error number or the non-negative VI id.
6932  */
6933 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
6934 		     unsigned int port, unsigned int pf, unsigned int vf,
6935 		     unsigned int nmac, u8 *mac, u16 *rss_size,
6936 		     unsigned int portfunc, unsigned int idstype)
6937 {
6938 	int ret;
6939 	struct fw_vi_cmd c;
6940 
6941 	memset(&c, 0, sizeof(c));
6942 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
6943 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
6944 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
6945 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
6946 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
6947 				     V_FW_VI_CMD_FUNC(portfunc));
6948 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
6949 	c.nmac = nmac - 1;
6950 	if(!rss_size)
6951 		c.norss_rsssize = F_FW_VI_CMD_NORSS;
6952 
6953 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6954 	if (ret)
6955 		return ret;
6956 
6957 	if (mac) {
6958 		memcpy(mac, c.mac, sizeof(c.mac));
6959 		switch (nmac) {
6960 		case 5:
6961 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6962 		case 4:
6963 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6964 		case 3:
6965 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6966 		case 2:
6967 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
6968 		}
6969 	}
6970 	if (rss_size)
6971 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
6972 	return G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
6973 }
6974 
6975 /**
6976  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
6977  *      @adap: the adapter
6978  *      @mbox: mailbox to use for the FW command
6979  *      @port: physical port associated with the VI
6980  *      @pf: the PF owning the VI
6981  *      @vf: the VF owning the VI
6982  *      @nmac: number of MAC addresses needed (1 to 5)
6983  *      @mac: the MAC addresses of the VI
6984  *      @rss_size: size of RSS table slice associated with this VI
6985  *
6986  *	backwards compatible and convieniance routine to allocate a Virtual
6987  *	Interface with a Ethernet Port Application Function and Intrustion
6988  *	Detection System disabled.
6989  */
6990 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6991 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6992 		u16 *rss_size)
6993 {
6994 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
6995 				FW_VI_FUNC_ETH, 0);
6996 }
6997 
6998 /**
6999  * 	t4_free_vi - free a virtual interface
7000  * 	@adap: the adapter
7001  * 	@mbox: mailbox to use for the FW command
7002  * 	@pf: the PF owning the VI
7003  * 	@vf: the VF owning the VI
7004  * 	@viid: virtual interface identifiler
7005  *
7006  * 	Free a previously allocated virtual interface.
7007  */
7008 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7009 	       unsigned int vf, unsigned int viid)
7010 {
7011 	struct fw_vi_cmd c;
7012 
7013 	memset(&c, 0, sizeof(c));
7014 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
7015 				  F_FW_CMD_REQUEST |
7016 				  F_FW_CMD_EXEC |
7017 				  V_FW_VI_CMD_PFN(pf) |
7018 				  V_FW_VI_CMD_VFN(vf));
7019 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
7020 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
7021 
7022 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7023 }
7024 
7025 /**
7026  *	t4_set_rxmode - set Rx properties of a virtual interface
7027  *	@adap: the adapter
7028  *	@mbox: mailbox to use for the FW command
7029  *	@viid: the VI id
7030  *	@mtu: the new MTU or -1
7031  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7032  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7033  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7034  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7035  *	@sleep_ok: if true we may sleep while awaiting command completion
7036  *
7037  *	Sets Rx properties of a virtual interface.
7038  */
7039 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7040 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7041 		  bool sleep_ok)
7042 {
7043 	struct fw_vi_rxmode_cmd c;
7044 
7045 	/* convert to FW values */
7046 	if (mtu < 0)
7047 		mtu = M_FW_VI_RXMODE_CMD_MTU;
7048 	if (promisc < 0)
7049 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
7050 	if (all_multi < 0)
7051 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
7052 	if (bcast < 0)
7053 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
7054 	if (vlanex < 0)
7055 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
7056 
7057 	memset(&c, 0, sizeof(c));
7058 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
7059 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7060 				   V_FW_VI_RXMODE_CMD_VIID(viid));
7061 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7062 	c.mtu_to_vlanexen =
7063 		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
7064 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
7065 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
7066 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
7067 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
7068 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7069 }
7070 
7071 /**
7072  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7073  *	@adap: the adapter
7074  *	@mbox: mailbox to use for the FW command
7075  *	@viid: the VI id
7076  *	@free: if true any existing filters for this VI id are first removed
7077  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7078  *	@addr: the MAC address(es)
7079  *	@idx: where to store the index of each allocated filter
7080  *	@hash: pointer to hash address filter bitmap
7081  *	@sleep_ok: call is allowed to sleep
7082  *
7083  *	Allocates an exact-match filter for each of the supplied addresses and
7084  *	sets it to the corresponding address.  If @idx is not %NULL it should
7085  *	have at least @naddr entries, each of which will be set to the index of
7086  *	the filter allocated for the corresponding MAC address.  If a filter
7087  *	could not be allocated for an address its index is set to 0xffff.
7088  *	If @hash is not %NULL addresses that fail to allocate an exact filter
7089  *	are hashed and update the hash filter bitmap pointed at by @hash.
7090  *
7091  *	Returns a negative error number or the number of filters allocated.
7092  */
7093 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7094 		      unsigned int viid, bool free, unsigned int naddr,
7095 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7096 {
7097 	int offset, ret = 0;
7098 	struct fw_vi_mac_cmd c;
7099 	unsigned int nfilters = 0;
7100 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
7101 	unsigned int rem = naddr;
7102 
7103 	if (naddr > max_naddr)
7104 		return -EINVAL;
7105 
7106 	for (offset = 0; offset < naddr ; /**/) {
7107 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7108 					 ? rem
7109 					 : ARRAY_SIZE(c.u.exact));
7110 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7111 						     u.exact[fw_naddr]), 16);
7112 		struct fw_vi_mac_exact *p;
7113 		int i;
7114 
7115 		memset(&c, 0, sizeof(c));
7116 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7117 					   F_FW_CMD_REQUEST |
7118 					   F_FW_CMD_WRITE |
7119 					   V_FW_CMD_EXEC(free) |
7120 					   V_FW_VI_MAC_CMD_VIID(viid));
7121 		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
7122 						  V_FW_CMD_LEN16(len16));
7123 
7124 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7125 			p->valid_to_idx =
7126 				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7127 					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
7128 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7129 		}
7130 
7131 		/*
7132 		 * It's okay if we run out of space in our MAC address arena.
7133 		 * Some of the addresses we submit may get stored so we need
7134 		 * to run through the reply to see what the results were ...
7135 		 */
7136 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7137 		if (ret && ret != -FW_ENOMEM)
7138 			break;
7139 
7140 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7141 			u16 index = G_FW_VI_MAC_CMD_IDX(
7142 						be16_to_cpu(p->valid_to_idx));
7143 
7144 			if (idx)
7145 				idx[offset+i] = (index >=  max_naddr
7146 						 ? 0xffff
7147 						 : index);
7148 			if (index < max_naddr)
7149 				nfilters++;
7150 			else if (hash)
7151 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
7152 		}
7153 
7154 		free = false;
7155 		offset += fw_naddr;
7156 		rem -= fw_naddr;
7157 	}
7158 
7159 	if (ret == 0 || ret == -FW_ENOMEM)
7160 		ret = nfilters;
7161 	return ret;
7162 }
7163 
7164 /**
7165  *	t4_change_mac - modifies the exact-match filter for a MAC address
7166  *	@adap: the adapter
7167  *	@mbox: mailbox to use for the FW command
7168  *	@viid: the VI id
7169  *	@idx: index of existing filter for old value of MAC address, or -1
7170  *	@addr: the new MAC address value
7171  *	@persist: whether a new MAC allocation should be persistent
7172  *	@add_smt: if true also add the address to the HW SMT
7173  *
7174  *	Modifies an exact-match filter and sets it to the new MAC address if
7175  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
7176  *	latter case the address is added persistently if @persist is %true.
7177  *
7178  *	Note that in general it is not possible to modify the value of a given
7179  *	filter so the generic way to modify an address filter is to free the one
7180  *	being used by the old address value and allocate a new filter for the
7181  *	new address value.
7182  *
7183  *	Returns a negative error number or the index of the filter with the new
7184  *	MAC value.  Note that this index may differ from @idx.
7185  */
7186 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7187 		  int idx, const u8 *addr, bool persist, bool add_smt)
7188 {
7189 	int ret, mode;
7190 	struct fw_vi_mac_cmd c;
7191 	struct fw_vi_mac_exact *p = c.u.exact;
7192 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
7193 
7194 	if (idx < 0)		/* new allocation */
7195 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7196 	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7197 
7198 	memset(&c, 0, sizeof(c));
7199 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7200 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7201 				   V_FW_VI_MAC_CMD_VIID(viid));
7202 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
7203 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7204 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
7205 				      V_FW_VI_MAC_CMD_IDX(idx));
7206 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7207 
7208 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7209 	if (ret == 0) {
7210 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
7211 		if (ret >= max_mac_addr)
7212 			ret = -ENOMEM;
7213 	}
7214 	return ret;
7215 }
7216 
7217 /**
7218  *	t4_set_addr_hash - program the MAC inexact-match hash filter
7219  *	@adap: the adapter
7220  *	@mbox: mailbox to use for the FW command
7221  *	@viid: the VI id
7222  *	@ucast: whether the hash filter should also match unicast addresses
7223  *	@vec: the value to be written to the hash filter
7224  *	@sleep_ok: call is allowed to sleep
7225  *
7226  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
7227  */
7228 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7229 		     bool ucast, u64 vec, bool sleep_ok)
7230 {
7231 	struct fw_vi_mac_cmd c;
7232 	u32 val;
7233 
7234 	memset(&c, 0, sizeof(c));
7235 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7236 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7237 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7238 	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
7239 	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
7240 	c.freemacs_to_len16 = cpu_to_be32(val);
7241 	c.u.hash.hashvec = cpu_to_be64(vec);
7242 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7243 }
7244 
7245 /**
7246  *      t4_enable_vi_params - enable/disable a virtual interface
7247  *      @adap: the adapter
7248  *      @mbox: mailbox to use for the FW command
7249  *      @viid: the VI id
7250  *      @rx_en: 1=enable Rx, 0=disable Rx
7251  *      @tx_en: 1=enable Tx, 0=disable Tx
7252  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7253  *
7254  *      Enables/disables a virtual interface.  Note that setting DCB Enable
7255  *      only makes sense when enabling a Virtual Interface ...
7256  */
7257 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7258 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7259 {
7260 	struct fw_vi_enable_cmd c;
7261 
7262 	memset(&c, 0, sizeof(c));
7263 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7264 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7265 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7266 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
7267 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
7268 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
7269 				     FW_LEN16(c));
7270 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7271 }
7272 
7273 /**
7274  *	t4_enable_vi - enable/disable a virtual interface
7275  *	@adap: the adapter
7276  *	@mbox: mailbox to use for the FW command
7277  *	@viid: the VI id
7278  *	@rx_en: 1=enable Rx, 0=disable Rx
7279  *	@tx_en: 1=enable Tx, 0=disable Tx
7280  *
7281  *	Enables/disables a virtual interface.  Note that setting DCB Enable
7282  *	only makes sense when enabling a Virtual Interface ...
7283  */
7284 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7285 		 bool rx_en, bool tx_en)
7286 {
7287 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7288 }
7289 
7290 /**
7291  *	t4_identify_port - identify a VI's port by blinking its LED
7292  *	@adap: the adapter
7293  *	@mbox: mailbox to use for the FW command
7294  *	@viid: the VI id
7295  *	@nblinks: how many times to blink LED at 2.5 Hz
7296  *
7297  *	Identifies a VI's port by blinking its LED.
7298  */
7299 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7300 		     unsigned int nblinks)
7301 {
7302 	struct fw_vi_enable_cmd c;
7303 
7304 	memset(&c, 0, sizeof(c));
7305 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7306 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7307 				   V_FW_VI_ENABLE_CMD_VIID(viid));
7308 	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
7309 	c.blinkdur = cpu_to_be16(nblinks);
7310 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7311 }
7312 
7313 /**
7314  *	t4_iq_stop - stop an ingress queue and its FLs
7315  *	@adap: the adapter
7316  *	@mbox: mailbox to use for the FW command
7317  *	@pf: the PF owning the queues
7318  *	@vf: the VF owning the queues
7319  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7320  *	@iqid: ingress queue id
7321  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7322  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7323  *
7324  *	Stops an ingress queue and its associated FLs, if any.  This causes
7325  *	any current or future data/messages destined for these queues to be
7326  *	tossed.
7327  */
7328 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7329 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7330 	       unsigned int fl0id, unsigned int fl1id)
7331 {
7332 	struct fw_iq_cmd c;
7333 
7334 	memset(&c, 0, sizeof(c));
7335 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7336 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7337 				  V_FW_IQ_CMD_VFN(vf));
7338 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
7339 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7340 	c.iqid = cpu_to_be16(iqid);
7341 	c.fl0id = cpu_to_be16(fl0id);
7342 	c.fl1id = cpu_to_be16(fl1id);
7343 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7344 }
7345 
7346 /**
7347  *	t4_iq_free - free an ingress queue and its FLs
7348  *	@adap: the adapter
7349  *	@mbox: mailbox to use for the FW command
7350  *	@pf: the PF owning the queues
7351  *	@vf: the VF owning the queues
7352  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7353  *	@iqid: ingress queue id
7354  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7355  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7356  *
7357  *	Frees an ingress queue and its associated FLs, if any.
7358  */
7359 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7360 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7361 	       unsigned int fl0id, unsigned int fl1id)
7362 {
7363 	struct fw_iq_cmd c;
7364 
7365 	memset(&c, 0, sizeof(c));
7366 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7367 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7368 				  V_FW_IQ_CMD_VFN(vf));
7369 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
7370 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7371 	c.iqid = cpu_to_be16(iqid);
7372 	c.fl0id = cpu_to_be16(fl0id);
7373 	c.fl1id = cpu_to_be16(fl1id);
7374 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7375 }
7376 
7377 /**
7378  *	t4_eth_eq_free - free an Ethernet egress queue
7379  *	@adap: the adapter
7380  *	@mbox: mailbox to use for the FW command
7381  *	@pf: the PF owning the queue
7382  *	@vf: the VF owning the queue
7383  *	@eqid: egress queue id
7384  *
7385  *	Frees an Ethernet egress queue.
7386  */
7387 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7388 		   unsigned int vf, unsigned int eqid)
7389 {
7390 	struct fw_eq_eth_cmd c;
7391 
7392 	memset(&c, 0, sizeof(c));
7393 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
7394 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7395 				  V_FW_EQ_ETH_CMD_PFN(pf) |
7396 				  V_FW_EQ_ETH_CMD_VFN(vf));
7397 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
7398 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
7399 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7400 }
7401 
7402 /**
7403  *	t4_ctrl_eq_free - free a control egress queue
7404  *	@adap: the adapter
7405  *	@mbox: mailbox to use for the FW command
7406  *	@pf: the PF owning the queue
7407  *	@vf: the VF owning the queue
7408  *	@eqid: egress queue id
7409  *
7410  *	Frees a control egress queue.
7411  */
7412 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7413 		    unsigned int vf, unsigned int eqid)
7414 {
7415 	struct fw_eq_ctrl_cmd c;
7416 
7417 	memset(&c, 0, sizeof(c));
7418 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
7419 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7420 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
7421 				  V_FW_EQ_CTRL_CMD_VFN(vf));
7422 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
7423 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
7424 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7425 }
7426 
7427 /**
7428  *	t4_ofld_eq_free - free an offload egress queue
7429  *	@adap: the adapter
7430  *	@mbox: mailbox to use for the FW command
7431  *	@pf: the PF owning the queue
7432  *	@vf: the VF owning the queue
7433  *	@eqid: egress queue id
7434  *
7435  *	Frees a control egress queue.
7436  */
7437 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7438 		    unsigned int vf, unsigned int eqid)
7439 {
7440 	struct fw_eq_ofld_cmd c;
7441 
7442 	memset(&c, 0, sizeof(c));
7443 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
7444 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7445 				  V_FW_EQ_OFLD_CMD_PFN(pf) |
7446 				  V_FW_EQ_OFLD_CMD_VFN(vf));
7447 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
7448 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
7449 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7450 }
7451 
7452 /**
7453  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
7454  *	@link_down_rc: Link Down Reason Code
7455  *
7456  *	Returns a string representation of the Link Down Reason Code.
7457  */
7458 const char *t4_link_down_rc_str(unsigned char link_down_rc)
7459 {
7460 	static const char *reason[] = {
7461 		"Link Down",
7462 		"Remote Fault",
7463 		"Auto-negotiation Failure",
7464 		"Reserved3",
7465 		"Insufficient Airflow",
7466 		"Unable To Determine Reason",
7467 		"No RX Signal Detected",
7468 		"Reserved7",
7469 	};
7470 
7471 	if (link_down_rc >= ARRAY_SIZE(reason))
7472 		return "Bad Reason Code";
7473 
7474 	return reason[link_down_rc];
7475 }
7476 
7477 /**
7478  *	t4_handle_fw_rpl - process a FW reply message
7479  *	@adap: the adapter
7480  *	@rpl: start of the FW message
7481  *
7482  *	Processes a FW message, such as link state change messages.
7483  */
7484 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7485 {
7486 	u8 opcode = *(const u8 *)rpl;
7487 	const struct fw_port_cmd *p = (const void *)rpl;
7488 	unsigned int action =
7489 			G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
7490 
7491 	if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7492 		/* link/module state change message */
7493 		int speed = 0, fc = 0, i;
7494 		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
7495 		struct port_info *pi = NULL;
7496 		struct link_config *lc;
7497 		u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
7498 		int link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
7499 		u32 mod = G_FW_PORT_CMD_MODTYPE(stat);
7500 
7501 		if (stat & F_FW_PORT_CMD_RXPAUSE)
7502 			fc |= PAUSE_RX;
7503 		if (stat & F_FW_PORT_CMD_TXPAUSE)
7504 			fc |= PAUSE_TX;
7505 		if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
7506 			speed = 100;
7507 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
7508 			speed = 1000;
7509 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
7510 			speed = 10000;
7511 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
7512 			speed = 25000;
7513 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
7514 			speed = 40000;
7515 		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
7516 			speed = 100000;
7517 
7518 		for_each_port(adap, i) {
7519 			pi = adap2pinfo(adap, i);
7520 			if (pi->tx_chan == chan)
7521 				break;
7522 		}
7523 		lc = &pi->link_cfg;
7524 
7525 		if (mod != pi->mod_type) {
7526 			pi->mod_type = mod;
7527 			t4_os_portmod_changed(adap, i);
7528 		}
7529 		if (link_ok != lc->link_ok || speed != lc->speed ||
7530 		    fc != lc->fc) {                    /* something changed */
7531 			if (!link_ok && lc->link_ok)
7532 				lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
7533 			lc->link_ok = link_ok;
7534 			lc->speed = speed;
7535 			lc->fc = fc;
7536 			lc->supported = be16_to_cpu(p->u.info.pcap);
7537 			lc->lp_advertising = be16_to_cpu(p->u.info.lpacap);
7538 			t4_os_link_changed(adap, i, link_ok);
7539 		}
7540 	} else {
7541 		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
7542 		return -EINVAL;
7543 	}
7544 	return 0;
7545 }
7546 
7547 /**
7548  *	get_pci_mode - determine a card's PCI mode
7549  *	@adapter: the adapter
7550  *	@p: where to store the PCI settings
7551  *
7552  *	Determines a card's PCI mode and associated parameters, such as speed
7553  *	and width.
7554  */
7555 static void get_pci_mode(struct adapter *adapter,
7556 				   struct pci_params *p)
7557 {
7558 	u16 val;
7559 	u32 pcie_cap;
7560 
7561 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7562 	if (pcie_cap) {
7563 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
7564 		p->speed = val & PCI_EXP_LNKSTA_CLS;
7565 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7566 	}
7567 }
7568 
7569 /**
7570  *	init_link_config - initialize a link's SW state
7571  *	@lc: structure holding the link state
7572  *	@pcaps: supported link capabilities
7573  *	@acaps: advertised link capabilities
7574  *
7575  *	Initializes the SW state maintained for each link, including the link's
7576  *	capabilities and default speed/flow-control/autonegotiation settings.
7577  */
7578 static void init_link_config(struct link_config *lc, unsigned int pcaps,
7579     			     unsigned int acaps)
7580 {
7581 	unsigned int fec;
7582 
7583 	lc->supported = pcaps;
7584 	lc->lp_advertising = 0;
7585 	lc->requested_speed = 0;
7586 	lc->speed = 0;
7587 	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
7588 	lc->link_ok = 0;
7589 	lc->link_down_rc = 255;
7590 
7591 	fec = 0;
7592 	if (acaps & FW_PORT_CAP_FEC_RS)
7593 		fec |= FEC_RS;
7594 	if (acaps & FW_PORT_CAP_FEC_BASER_RS)
7595 		fec |= FEC_BASER_RS;
7596 	if (acaps & FW_PORT_CAP_FEC_RESERVED)
7597 		fec |= FEC_RESERVED;
7598 	lc->requested_fec = lc->fec = fec;
7599 
7600 	if (lc->supported & FW_PORT_CAP_ANEG) {
7601 		lc->advertising = lc->supported & ADVERT_MASK;
7602 		lc->autoneg = AUTONEG_ENABLE;
7603 		lc->requested_fc |= PAUSE_AUTONEG;
7604 	} else {
7605 		lc->advertising = 0;
7606 		lc->autoneg = AUTONEG_DISABLE;
7607 	}
7608 }
7609 
7610 struct flash_desc {
7611 	u32 vendor_and_model_id;
7612 	u32 size_mb;
7613 };
7614 
7615 int t4_get_flash_params(struct adapter *adapter)
7616 {
7617 	/*
7618 	 * Table for non-Numonix supported flash parts.  Numonix parts are left
7619 	 * to the preexisting well-tested code.  All flash parts have 64KB
7620 	 * sectors.
7621 	 */
7622 	static struct flash_desc supported_flash[] = {
7623 		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
7624 	};
7625 
7626 	int ret;
7627 	u32 info = 0;
7628 
7629 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
7630 	if (!ret)
7631 		ret = sf1_read(adapter, 3, 0, 1, &info);
7632 	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
7633 	if (ret < 0)
7634 		return ret;
7635 
7636 	for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
7637 		if (supported_flash[ret].vendor_and_model_id == info) {
7638 			adapter->params.sf_size = supported_flash[ret].size_mb;
7639 			adapter->params.sf_nsec =
7640 				adapter->params.sf_size / SF_SEC_SIZE;
7641 			return 0;
7642 		}
7643 
7644 	if ((info & 0xff) != 0x20)		/* not a Numonix flash */
7645 		return -EINVAL;
7646 	info >>= 16;				/* log2 of size */
7647 	if (info >= 0x14 && info < 0x18)
7648 		adapter->params.sf_nsec = 1 << (info - 16);
7649 	else if (info == 0x18)
7650 		adapter->params.sf_nsec = 64;
7651 	else
7652 		return -EINVAL;
7653 	adapter->params.sf_size = 1 << info;
7654 
7655 	/*
7656 	 * We should ~probably~ reject adapters with FLASHes which are too
7657 	 * small but we have some legacy FPGAs with small FLASHes that we'd
7658 	 * still like to use.  So instead we emit a scary message ...
7659 	 */
7660 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
7661 		CH_WARN(adapter, "WARNING!!! FLASH size %#x < %#x!!!\n",
7662 			adapter->params.sf_size, FLASH_MIN_SIZE);
7663 
7664 	return 0;
7665 }
7666 
7667 static void set_pcie_completion_timeout(struct adapter *adapter,
7668 						  u8 range)
7669 {
7670 	u16 val;
7671 	u32 pcie_cap;
7672 
7673 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7674 	if (pcie_cap) {
7675 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
7676 		val &= 0xfff0;
7677 		val |= range ;
7678 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
7679 	}
7680 }
7681 
7682 const struct chip_params *t4_get_chip_params(int chipid)
7683 {
7684 	static const struct chip_params chip_params[] = {
7685 		{
7686 			/* T4 */
7687 			.nchan = NCHAN,
7688 			.pm_stats_cnt = PM_NSTATS,
7689 			.cng_ch_bits_log = 2,
7690 			.nsched_cls = 15,
7691 			.cim_num_obq = CIM_NUM_OBQ,
7692 			.mps_rplc_size = 128,
7693 			.vfcount = 128,
7694 			.sge_fl_db = F_DBPRIO,
7695 			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
7696 		},
7697 		{
7698 			/* T5 */
7699 			.nchan = NCHAN,
7700 			.pm_stats_cnt = PM_NSTATS,
7701 			.cng_ch_bits_log = 2,
7702 			.nsched_cls = 16,
7703 			.cim_num_obq = CIM_NUM_OBQ_T5,
7704 			.mps_rplc_size = 128,
7705 			.vfcount = 128,
7706 			.sge_fl_db = F_DBPRIO | F_DBTYPE,
7707 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
7708 		},
7709 		{
7710 			/* T6 */
7711 			.nchan = T6_NCHAN,
7712 			.pm_stats_cnt = T6_PM_NSTATS,
7713 			.cng_ch_bits_log = 3,
7714 			.nsched_cls = 16,
7715 			.cim_num_obq = CIM_NUM_OBQ_T5,
7716 			.mps_rplc_size = 256,
7717 			.vfcount = 256,
7718 			.sge_fl_db = 0,
7719 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
7720 		},
7721 	};
7722 
7723 	chipid -= CHELSIO_T4;
7724 	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
7725 		return NULL;
7726 
7727 	return &chip_params[chipid];
7728 }
7729 
7730 /**
7731  *	t4_prep_adapter - prepare SW and HW for operation
7732  *	@adapter: the adapter
7733  *	@buf: temporary space of at least VPD_LEN size provided by the caller.
7734  *
7735  *	Initialize adapter SW state for the various HW modules, set initial
7736  *	values for some adapter tunables, take PHYs out of reset, and
7737  *	initialize the MDIO interface.
7738  */
7739 int t4_prep_adapter(struct adapter *adapter, u8 *buf)
7740 {
7741 	int ret;
7742 	uint16_t device_id;
7743 	uint32_t pl_rev;
7744 
7745 	get_pci_mode(adapter, &adapter->params.pci);
7746 
7747 	pl_rev = t4_read_reg(adapter, A_PL_REV);
7748 	adapter->params.chipid = G_CHIPID(pl_rev);
7749 	adapter->params.rev = G_REV(pl_rev);
7750 	if (adapter->params.chipid == 0) {
7751 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
7752 		adapter->params.chipid = CHELSIO_T4;
7753 
7754 		/* T4A1 chip is not supported */
7755 		if (adapter->params.rev == 1) {
7756 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
7757 			return -EINVAL;
7758 		}
7759 	}
7760 
7761 	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
7762 	if (adapter->chip_params == NULL)
7763 		return -EINVAL;
7764 
7765 	adapter->params.pci.vpd_cap_addr =
7766 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
7767 
7768 	ret = t4_get_flash_params(adapter);
7769 	if (ret < 0)
7770 		return ret;
7771 
7772 	ret = get_vpd_params(adapter, &adapter->params.vpd, buf);
7773 	if (ret < 0)
7774 		return ret;
7775 
7776 	/* Cards with real ASICs have the chipid in the PCIe device id */
7777 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
7778 	if (device_id >> 12 == chip_id(adapter))
7779 		adapter->params.cim_la_size = CIMLA_SIZE;
7780 	else {
7781 		/* FPGA */
7782 		adapter->params.fpga = 1;
7783 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
7784 	}
7785 
7786 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7787 
7788 	/*
7789 	 * Default port and clock for debugging in case we can't reach FW.
7790 	 */
7791 	adapter->params.nports = 1;
7792 	adapter->params.portvec = 1;
7793 	adapter->params.vpd.cclk = 50000;
7794 
7795 	/* Set pci completion timeout value to 4 seconds. */
7796 	set_pcie_completion_timeout(adapter, 0xd);
7797 	return 0;
7798 }
7799 
7800 /**
7801  *	t4_shutdown_adapter - shut down adapter, host & wire
7802  *	@adapter: the adapter
7803  *
7804  *	Perform an emergency shutdown of the adapter and stop it from
7805  *	continuing any further communication on the ports or DMA to the
7806  *	host.  This is typically used when the adapter and/or firmware
7807  *	have crashed and we want to prevent any further accidental
7808  *	communication with the rest of the world.  This will also force
7809  *	the port Link Status to go down -- if register writes work --
7810  *	which should help our peers figure out that we're down.
7811  */
7812 int t4_shutdown_adapter(struct adapter *adapter)
7813 {
7814 	int port;
7815 
7816 	t4_intr_disable(adapter);
7817 	t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
7818 	for_each_port(adapter, port) {
7819 		u32 a_port_cfg = PORT_REG(port,
7820 					  is_t4(adapter)
7821 					  ? A_XGMAC_PORT_CFG
7822 					  : A_MAC_PORT_CFG);
7823 
7824 		t4_write_reg(adapter, a_port_cfg,
7825 			     t4_read_reg(adapter, a_port_cfg)
7826 			     & ~V_SIGNAL_DET(1));
7827 	}
7828 	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
7829 
7830 	return 0;
7831 }
7832 
7833 /**
7834  *	t4_init_devlog_params - initialize adapter->params.devlog
7835  *	@adap: the adapter
7836  *	@fw_attach: whether we can talk to the firmware
7837  *
7838  *	Initialize various fields of the adapter's Firmware Device Log
7839  *	Parameters structure.
7840  */
7841 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
7842 {
7843 	struct devlog_params *dparams = &adap->params.devlog;
7844 	u32 pf_dparams;
7845 	unsigned int devlog_meminfo;
7846 	struct fw_devlog_cmd devlog_cmd;
7847 	int ret;
7848 
7849 	/* If we're dealing with newer firmware, the Device Log Paramerters
7850 	 * are stored in a designated register which allows us to access the
7851 	 * Device Log even if we can't talk to the firmware.
7852 	 */
7853 	pf_dparams =
7854 		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
7855 	if (pf_dparams) {
7856 		unsigned int nentries, nentries128;
7857 
7858 		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
7859 		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
7860 
7861 		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
7862 		nentries = (nentries128 + 1) * 128;
7863 		dparams->size = nentries * sizeof(struct fw_devlog_e);
7864 
7865 		return 0;
7866 	}
7867 
7868 	/*
7869 	 * For any failing returns ...
7870 	 */
7871 	memset(dparams, 0, sizeof *dparams);
7872 
7873 	/*
7874 	 * If we can't talk to the firmware, there's really nothing we can do
7875 	 * at this point.
7876 	 */
7877 	if (!fw_attach)
7878 		return -ENXIO;
7879 
7880 	/* Otherwise, ask the firmware for it's Device Log Parameters.
7881 	 */
7882 	memset(&devlog_cmd, 0, sizeof devlog_cmd);
7883 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
7884 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
7885 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
7886 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7887 			 &devlog_cmd);
7888 	if (ret)
7889 		return ret;
7890 
7891 	devlog_meminfo =
7892 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
7893 	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
7894 	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
7895 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
7896 
7897 	return 0;
7898 }
7899 
7900 /**
7901  *	t4_init_sge_params - initialize adap->params.sge
7902  *	@adapter: the adapter
7903  *
7904  *	Initialize various fields of the adapter's SGE Parameters structure.
7905  */
7906 int t4_init_sge_params(struct adapter *adapter)
7907 {
7908 	u32 r;
7909 	struct sge_params *sp = &adapter->params.sge;
7910 	unsigned i;
7911 
7912 	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
7913 	sp->counter_val[0] = G_THRESHOLD_0(r);
7914 	sp->counter_val[1] = G_THRESHOLD_1(r);
7915 	sp->counter_val[2] = G_THRESHOLD_2(r);
7916 	sp->counter_val[3] = G_THRESHOLD_3(r);
7917 
7918 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
7919 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r));
7920 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r));
7921 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
7922 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r));
7923 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r));
7924 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
7925 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r));
7926 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r));
7927 
7928 	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
7929 	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
7930 	if (is_t4(adapter))
7931 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
7932 	else if (is_t5(adapter))
7933 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
7934 	else
7935 		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
7936 
7937 	/* egress queues: log2 of # of doorbells per BAR2 page */
7938 	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
7939 	r >>= S_QUEUESPERPAGEPF0 +
7940 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
7941 	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
7942 
7943 	/* ingress queues: log2 of # of doorbells per BAR2 page */
7944 	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
7945 	r >>= S_QUEUESPERPAGEPF0 +
7946 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
7947 	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
7948 
7949 	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
7950 	r >>= S_HOSTPAGESIZEPF0 +
7951 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
7952 	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
7953 
7954 	r = t4_read_reg(adapter, A_SGE_CONTROL);
7955 	sp->sge_control = r;
7956 	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
7957 	sp->fl_pktshift = G_PKTSHIFT(r);
7958 	if (chip_id(adapter) <= CHELSIO_T5) {
7959 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
7960 		    X_INGPADBOUNDARY_SHIFT);
7961 	} else {
7962 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
7963 		    X_T6_INGPADBOUNDARY_SHIFT);
7964 	}
7965 	if (is_t4(adapter))
7966 		sp->pack_boundary = sp->pad_boundary;
7967 	else {
7968 		r = t4_read_reg(adapter, A_SGE_CONTROL2);
7969 		if (G_INGPACKBOUNDARY(r) == 0)
7970 			sp->pack_boundary = 16;
7971 		else
7972 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
7973 	}
7974 	for (i = 0; i < SGE_FLBUF_SIZES; i++)
7975 		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
7976 		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
7977 
7978 	return 0;
7979 }
7980 
7981 /*
7982  * Read and cache the adapter's compressed filter mode and ingress config.
7983  */
7984 static void read_filter_mode_and_ingress_config(struct adapter *adap)
7985 {
7986 	struct tp_params *tpp = &adap->params.tp;
7987 
7988 	if (t4_use_ldst(adap)) {
7989 		t4_fw_tp_pio_rw(adap, &tpp->vlan_pri_map, 1,
7990 				A_TP_VLAN_PRI_MAP, 1);
7991 		t4_fw_tp_pio_rw(adap, &tpp->ingress_config, 1,
7992 				A_TP_INGRESS_CONFIG, 1);
7993 	} else {
7994 		t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
7995 				 &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP);
7996 		t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
7997 				 &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG);
7998 	}
7999 
8000 	/*
8001 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
8002 	 * shift positions of several elements of the Compressed Filter Tuple
8003 	 * for this adapter which we need frequently ...
8004 	 */
8005 	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
8006 	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
8007 	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
8008 	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
8009 	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
8010 	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
8011 	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
8012 	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
8013 	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
8014 	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
8015 
8016 	/*
8017 	 * If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
8018 	 * represents the presence of an Outer VLAN instead of a VNIC ID.
8019 	 */
8020 	if ((tpp->ingress_config & F_VNIC) == 0)
8021 		tpp->vnic_shift = -1;
8022 }
8023 
8024 /**
8025  *      t4_init_tp_params - initialize adap->params.tp
8026  *      @adap: the adapter
8027  *
8028  *      Initialize various fields of the adapter's TP Parameters structure.
8029  */
8030 int t4_init_tp_params(struct adapter *adap)
8031 {
8032 	int chan;
8033 	u32 v;
8034 	struct tp_params *tpp = &adap->params.tp;
8035 
8036 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
8037 	tpp->tre = G_TIMERRESOLUTION(v);
8038 	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
8039 
8040 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
8041 	for (chan = 0; chan < MAX_NCHAN; chan++)
8042 		tpp->tx_modq[chan] = chan;
8043 
8044 	read_filter_mode_and_ingress_config(adap);
8045 
8046 	/*
8047 	 * Cache a mask of the bits that represent the error vector portion of
8048 	 * rx_pkt.err_vec.  T6+ can use a compressed error vector to make room
8049 	 * for information about outer encapsulation (GENEVE/VXLAN/NVGRE).
8050 	 */
8051 	tpp->err_vec_mask = htobe16(0xffff);
8052 	if (chip_id(adap) > CHELSIO_T5) {
8053 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
8054 		if (v & F_CRXPKTENC) {
8055 			tpp->err_vec_mask =
8056 			    htobe16(V_T6_COMPR_RXERR_VEC(M_T6_COMPR_RXERR_VEC));
8057 		}
8058 	}
8059 
8060 	return 0;
8061 }
8062 
8063 /**
8064  *      t4_filter_field_shift - calculate filter field shift
8065  *      @adap: the adapter
8066  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
8067  *
8068  *      Return the shift position of a filter field within the Compressed
8069  *      Filter Tuple.  The filter field is specified via its selection bit
8070  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
8071  */
8072 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
8073 {
8074 	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
8075 	unsigned int sel;
8076 	int field_shift;
8077 
8078 	if ((filter_mode & filter_sel) == 0)
8079 		return -1;
8080 
8081 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
8082 		switch (filter_mode & sel) {
8083 		case F_FCOE:
8084 			field_shift += W_FT_FCOE;
8085 			break;
8086 		case F_PORT:
8087 			field_shift += W_FT_PORT;
8088 			break;
8089 		case F_VNIC_ID:
8090 			field_shift += W_FT_VNIC_ID;
8091 			break;
8092 		case F_VLAN:
8093 			field_shift += W_FT_VLAN;
8094 			break;
8095 		case F_TOS:
8096 			field_shift += W_FT_TOS;
8097 			break;
8098 		case F_PROTOCOL:
8099 			field_shift += W_FT_PROTOCOL;
8100 			break;
8101 		case F_ETHERTYPE:
8102 			field_shift += W_FT_ETHERTYPE;
8103 			break;
8104 		case F_MACMATCH:
8105 			field_shift += W_FT_MACMATCH;
8106 			break;
8107 		case F_MPSHITTYPE:
8108 			field_shift += W_FT_MPSHITTYPE;
8109 			break;
8110 		case F_FRAGMENTATION:
8111 			field_shift += W_FT_FRAGMENTATION;
8112 			break;
8113 		}
8114 	}
8115 	return field_shift;
8116 }
8117 
8118 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
8119 {
8120 	u8 addr[6];
8121 	int ret, i, j;
8122 	struct fw_port_cmd c;
8123 	u16 rss_size;
8124 	struct port_info *p = adap2pinfo(adap, port_id);
8125 	u32 param, val;
8126 
8127 	memset(&c, 0, sizeof(c));
8128 
8129 	for (i = 0, j = -1; i <= p->port_id; i++) {
8130 		do {
8131 			j++;
8132 		} while ((adap->params.portvec & (1 << j)) == 0);
8133 	}
8134 
8135 	if (!(adap->flags & IS_VF) ||
8136 	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
8137 		c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) |
8138 				       F_FW_CMD_REQUEST | F_FW_CMD_READ |
8139 				       V_FW_PORT_CMD_PORTID(j));
8140 		c.action_to_len16 = htonl(
8141 			V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
8142 			FW_LEN16(c));
8143 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8144 		if (ret)
8145 			return ret;
8146 
8147 		ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
8148 		p->mdio_addr = (ret & F_FW_PORT_CMD_MDIOCAP) ?
8149 			G_FW_PORT_CMD_MDIOADDR(ret) : -1;
8150 		p->port_type = G_FW_PORT_CMD_PTYPE(ret);
8151 		p->mod_type = G_FW_PORT_CMD_MODTYPE(ret);
8152 
8153 		init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap),
8154 		    		 be16_to_cpu(c.u.info.acap));
8155 	}
8156 
8157 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
8158 	if (ret < 0)
8159 		return ret;
8160 
8161 	p->vi[0].viid = ret;
8162 	if (chip_id(adap) <= CHELSIO_T5)
8163 		p->vi[0].smt_idx = (ret & 0x7f) << 1;
8164 	else
8165 		p->vi[0].smt_idx = (ret & 0x7f);
8166 	p->tx_chan = j;
8167 	p->rx_chan_map = t4_get_mps_bg_map(adap, j);
8168 	p->lport = j;
8169 	p->vi[0].rss_size = rss_size;
8170 	t4_os_set_hw_addr(adap, p->port_id, addr);
8171 
8172 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8173 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
8174 	    V_FW_PARAMS_PARAM_YZ(p->vi[0].viid);
8175 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
8176 	if (ret)
8177 		p->vi[0].rss_base = 0xffff;
8178 	else {
8179 		/* MPASS((val >> 16) == rss_size); */
8180 		p->vi[0].rss_base = val & 0xffff;
8181 	}
8182 
8183 	return 0;
8184 }
8185 
8186 /**
8187  *	t4_read_cimq_cfg - read CIM queue configuration
8188  *	@adap: the adapter
8189  *	@base: holds the queue base addresses in bytes
8190  *	@size: holds the queue sizes in bytes
8191  *	@thres: holds the queue full thresholds in bytes
8192  *
8193  *	Returns the current configuration of the CIM queues, starting with
8194  *	the IBQs, then the OBQs.
8195  */
8196 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
8197 {
8198 	unsigned int i, v;
8199 	int cim_num_obq = adap->chip_params->cim_num_obq;
8200 
8201 	for (i = 0; i < CIM_NUM_IBQ; i++) {
8202 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
8203 			     V_QUENUMSELECT(i));
8204 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8205 		/* value is in 256-byte units */
8206 		*base++ = G_CIMQBASE(v) * 256;
8207 		*size++ = G_CIMQSIZE(v) * 256;
8208 		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
8209 	}
8210 	for (i = 0; i < cim_num_obq; i++) {
8211 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8212 			     V_QUENUMSELECT(i));
8213 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8214 		/* value is in 256-byte units */
8215 		*base++ = G_CIMQBASE(v) * 256;
8216 		*size++ = G_CIMQSIZE(v) * 256;
8217 	}
8218 }
8219 
8220 /**
8221  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
8222  *	@adap: the adapter
8223  *	@qid: the queue index
8224  *	@data: where to store the queue contents
8225  *	@n: capacity of @data in 32-bit words
8226  *
8227  *	Reads the contents of the selected CIM queue starting at address 0 up
8228  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8229  *	error and the number of 32-bit words actually read on success.
8230  */
8231 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8232 {
8233 	int i, err, attempts;
8234 	unsigned int addr;
8235 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
8236 
8237 	if (qid > 5 || (n & 3))
8238 		return -EINVAL;
8239 
8240 	addr = qid * nwords;
8241 	if (n > nwords)
8242 		n = nwords;
8243 
8244 	/* It might take 3-10ms before the IBQ debug read access is allowed.
8245 	 * Wait for 1 Sec with a delay of 1 usec.
8246 	 */
8247 	attempts = 1000000;
8248 
8249 	for (i = 0; i < n; i++, addr++) {
8250 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
8251 			     F_IBQDBGEN);
8252 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
8253 				      attempts, 1);
8254 		if (err)
8255 			return err;
8256 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
8257 	}
8258 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
8259 	return i;
8260 }
8261 
8262 /**
8263  *	t4_read_cim_obq - read the contents of a CIM outbound queue
8264  *	@adap: the adapter
8265  *	@qid: the queue index
8266  *	@data: where to store the queue contents
8267  *	@n: capacity of @data in 32-bit words
8268  *
8269  *	Reads the contents of the selected CIM queue starting at address 0 up
8270  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8271  *	error and the number of 32-bit words actually read on success.
8272  */
8273 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8274 {
8275 	int i, err;
8276 	unsigned int addr, v, nwords;
8277 	int cim_num_obq = adap->chip_params->cim_num_obq;
8278 
8279 	if ((qid > (cim_num_obq - 1)) || (n & 3))
8280 		return -EINVAL;
8281 
8282 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8283 		     V_QUENUMSELECT(qid));
8284 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8285 
8286 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
8287 	nwords = G_CIMQSIZE(v) * 64;  /* same */
8288 	if (n > nwords)
8289 		n = nwords;
8290 
8291 	for (i = 0; i < n; i++, addr++) {
8292 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
8293 			     F_OBQDBGEN);
8294 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
8295 				      2, 1);
8296 		if (err)
8297 			return err;
8298 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
8299 	}
8300 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
8301 	return i;
8302 }
8303 
8304 enum {
8305 	CIM_QCTL_BASE     = 0,
8306 	CIM_CTL_BASE      = 0x2000,
8307 	CIM_PBT_ADDR_BASE = 0x2800,
8308 	CIM_PBT_LRF_BASE  = 0x3000,
8309 	CIM_PBT_DATA_BASE = 0x3800
8310 };
8311 
8312 /**
8313  *	t4_cim_read - read a block from CIM internal address space
8314  *	@adap: the adapter
8315  *	@addr: the start address within the CIM address space
8316  *	@n: number of words to read
8317  *	@valp: where to store the result
8318  *
8319  *	Reads a block of 4-byte words from the CIM intenal address space.
8320  */
8321 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
8322 		unsigned int *valp)
8323 {
8324 	int ret = 0;
8325 
8326 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8327 		return -EBUSY;
8328 
8329 	for ( ; !ret && n--; addr += 4) {
8330 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
8331 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8332 				      0, 5, 2);
8333 		if (!ret)
8334 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
8335 	}
8336 	return ret;
8337 }
8338 
8339 /**
8340  *	t4_cim_write - write a block into CIM internal address space
8341  *	@adap: the adapter
8342  *	@addr: the start address within the CIM address space
8343  *	@n: number of words to write
8344  *	@valp: set of values to write
8345  *
8346  *	Writes a block of 4-byte words into the CIM intenal address space.
8347  */
8348 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8349 		 const unsigned int *valp)
8350 {
8351 	int ret = 0;
8352 
8353 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8354 		return -EBUSY;
8355 
8356 	for ( ; !ret && n--; addr += 4) {
8357 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
8358 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
8359 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8360 				      0, 5, 2);
8361 	}
8362 	return ret;
8363 }
8364 
8365 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8366 			 unsigned int val)
8367 {
8368 	return t4_cim_write(adap, addr, 1, &val);
8369 }
8370 
8371 /**
8372  *	t4_cim_ctl_read - read a block from CIM control region
8373  *	@adap: the adapter
8374  *	@addr: the start address within the CIM control region
8375  *	@n: number of words to read
8376  *	@valp: where to store the result
8377  *
8378  *	Reads a block of 4-byte words from the CIM control region.
8379  */
8380 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
8381 		    unsigned int *valp)
8382 {
8383 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
8384 }
8385 
8386 /**
8387  *	t4_cim_read_la - read CIM LA capture buffer
8388  *	@adap: the adapter
8389  *	@la_buf: where to store the LA data
8390  *	@wrptr: the HW write pointer within the capture buffer
8391  *
8392  *	Reads the contents of the CIM LA buffer with the most recent entry at
8393  *	the end	of the returned data and with the entry at @wrptr first.
8394  *	We try to leave the LA in the running state we find it in.
8395  */
8396 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8397 {
8398 	int i, ret;
8399 	unsigned int cfg, val, idx;
8400 
8401 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
8402 	if (ret)
8403 		return ret;
8404 
8405 	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
8406 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
8407 		if (ret)
8408 			return ret;
8409 	}
8410 
8411 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8412 	if (ret)
8413 		goto restart;
8414 
8415 	idx = G_UPDBGLAWRPTR(val);
8416 	if (wrptr)
8417 		*wrptr = idx;
8418 
8419 	for (i = 0; i < adap->params.cim_la_size; i++) {
8420 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8421 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
8422 		if (ret)
8423 			break;
8424 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8425 		if (ret)
8426 			break;
8427 		if (val & F_UPDBGLARDEN) {
8428 			ret = -ETIMEDOUT;
8429 			break;
8430 		}
8431 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
8432 		if (ret)
8433 			break;
8434 
8435 		/* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
8436 		idx = (idx + 1) & M_UPDBGLARDPTR;
8437 		/*
8438 		 * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
8439 		 * identify the 32-bit portion of the full 312-bit data
8440 		 */
8441 		if (is_t6(adap))
8442 			while ((idx & 0xf) > 9)
8443 				idx = (idx + 1) % M_UPDBGLARDPTR;
8444 	}
8445 restart:
8446 	if (cfg & F_UPDBGLAEN) {
8447 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8448 				      cfg & ~F_UPDBGLARDEN);
8449 		if (!ret)
8450 			ret = r;
8451 	}
8452 	return ret;
8453 }
8454 
8455 /**
8456  *	t4_tp_read_la - read TP LA capture buffer
8457  *	@adap: the adapter
8458  *	@la_buf: where to store the LA data
8459  *	@wrptr: the HW write pointer within the capture buffer
8460  *
8461  *	Reads the contents of the TP LA buffer with the most recent entry at
8462  *	the end	of the returned data and with the entry at @wrptr first.
8463  *	We leave the LA in the running state we find it in.
8464  */
8465 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8466 {
8467 	bool last_incomplete;
8468 	unsigned int i, cfg, val, idx;
8469 
8470 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
8471 	if (cfg & F_DBGLAENABLE)			/* freeze LA */
8472 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8473 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
8474 
8475 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
8476 	idx = G_DBGLAWPTR(val);
8477 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
8478 	if (last_incomplete)
8479 		idx = (idx + 1) & M_DBGLARPTR;
8480 	if (wrptr)
8481 		*wrptr = idx;
8482 
8483 	val &= 0xffff;
8484 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
8485 	val |= adap->params.tp.la_mask;
8486 
8487 	for (i = 0; i < TPLA_SIZE; i++) {
8488 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
8489 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
8490 		idx = (idx + 1) & M_DBGLARPTR;
8491 	}
8492 
8493 	/* Wipe out last entry if it isn't valid */
8494 	if (last_incomplete)
8495 		la_buf[TPLA_SIZE - 1] = ~0ULL;
8496 
8497 	if (cfg & F_DBGLAENABLE)		/* restore running state */
8498 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8499 			     cfg | adap->params.tp.la_mask);
8500 }
8501 
8502 /*
8503  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8504  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
8505  * state for more than the Warning Threshold then we'll issue a warning about
8506  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
8507  * appears to be hung every Warning Repeat second till the situation clears.
8508  * If the situation clears, we'll note that as well.
8509  */
8510 #define SGE_IDMA_WARN_THRESH 1
8511 #define SGE_IDMA_WARN_REPEAT 300
8512 
8513 /**
8514  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8515  *	@adapter: the adapter
8516  *	@idma: the adapter IDMA Monitor state
8517  *
8518  *	Initialize the state of an SGE Ingress DMA Monitor.
8519  */
8520 void t4_idma_monitor_init(struct adapter *adapter,
8521 			  struct sge_idma_monitor_state *idma)
8522 {
8523 	/* Initialize the state variables for detecting an SGE Ingress DMA
8524 	 * hang.  The SGE has internal counters which count up on each clock
8525 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
8526 	 * same state they were on the previous clock tick.  The clock used is
8527 	 * the Core Clock so we have a limit on the maximum "time" they can
8528 	 * record; typically a very small number of seconds.  For instance,
8529 	 * with a 600MHz Core Clock, we can only count up to a bit more than
8530 	 * 7s.  So we'll synthesize a larger counter in order to not run the
8531 	 * risk of having the "timers" overflow and give us the flexibility to
8532 	 * maintain a Hung SGE State Machine of our own which operates across
8533 	 * a longer time frame.
8534 	 */
8535 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8536 	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
8537 }
8538 
8539 /**
8540  *	t4_idma_monitor - monitor SGE Ingress DMA state
8541  *	@adapter: the adapter
8542  *	@idma: the adapter IDMA Monitor state
8543  *	@hz: number of ticks/second
8544  *	@ticks: number of ticks since the last IDMA Monitor call
8545  */
8546 void t4_idma_monitor(struct adapter *adapter,
8547 		     struct sge_idma_monitor_state *idma,
8548 		     int hz, int ticks)
8549 {
8550 	int i, idma_same_state_cnt[2];
8551 
8552 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
8553 	  * are counters inside the SGE which count up on each clock when the
8554 	  * SGE finds its Ingress DMA State Engines in the same states they
8555 	  * were in the previous clock.  The counters will peg out at
8556 	  * 0xffffffff without wrapping around so once they pass the 1s
8557 	  * threshold they'll stay above that till the IDMA state changes.
8558 	  */
8559 	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
8560 	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
8561 	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8562 
8563 	for (i = 0; i < 2; i++) {
8564 		u32 debug0, debug11;
8565 
8566 		/* If the Ingress DMA Same State Counter ("timer") is less
8567 		 * than 1s, then we can reset our synthesized Stall Timer and
8568 		 * continue.  If we have previously emitted warnings about a
8569 		 * potential stalled Ingress Queue, issue a note indicating
8570 		 * that the Ingress Queue has resumed forward progress.
8571 		 */
8572 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8573 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
8574 				CH_WARN(adapter, "SGE idma%d, queue %u, "
8575 					"resumed after %d seconds\n",
8576 					i, idma->idma_qid[i],
8577 					idma->idma_stalled[i]/hz);
8578 			idma->idma_stalled[i] = 0;
8579 			continue;
8580 		}
8581 
8582 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8583 		 * domain.  The first time we get here it'll be because we
8584 		 * passed the 1s Threshold; each additional time it'll be
8585 		 * because the RX Timer Callback is being fired on its regular
8586 		 * schedule.
8587 		 *
8588 		 * If the stall is below our Potential Hung Ingress Queue
8589 		 * Warning Threshold, continue.
8590 		 */
8591 		if (idma->idma_stalled[i] == 0) {
8592 			idma->idma_stalled[i] = hz;
8593 			idma->idma_warn[i] = 0;
8594 		} else {
8595 			idma->idma_stalled[i] += ticks;
8596 			idma->idma_warn[i] -= ticks;
8597 		}
8598 
8599 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
8600 			continue;
8601 
8602 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8603 		 */
8604 		if (idma->idma_warn[i] > 0)
8605 			continue;
8606 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
8607 
8608 		/* Read and save the SGE IDMA State and Queue ID information.
8609 		 * We do this every time in case it changes across time ...
8610 		 * can't be too careful ...
8611 		 */
8612 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
8613 		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8614 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8615 
8616 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
8617 		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8618 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8619 
8620 		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
8621 			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8622 			i, idma->idma_qid[i], idma->idma_state[i],
8623 			idma->idma_stalled[i]/hz,
8624 			debug0, debug11);
8625 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8626 	}
8627 }
8628 
8629 /**
8630  *	t4_read_pace_tbl - read the pace table
8631  *	@adap: the adapter
8632  *	@pace_vals: holds the returned values
8633  *
8634  *	Returns the values of TP's pace table in microseconds.
8635  */
8636 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
8637 {
8638 	unsigned int i, v;
8639 
8640 	for (i = 0; i < NTX_SCHED; i++) {
8641 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
8642 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
8643 		pace_vals[i] = dack_ticks_to_usec(adap, v);
8644 	}
8645 }
8646 
8647 /**
8648  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
8649  *	@adap: the adapter
8650  *	@sched: the scheduler index
8651  *	@kbps: the byte rate in Kbps
8652  *	@ipg: the interpacket delay in tenths of nanoseconds
8653  *
8654  *	Return the current configuration of a HW Tx scheduler.
8655  */
8656 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
8657 		     unsigned int *ipg)
8658 {
8659 	unsigned int v, addr, bpt, cpt;
8660 
8661 	if (kbps) {
8662 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
8663 		t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
8664 		v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
8665 		if (sched & 1)
8666 			v >>= 16;
8667 		bpt = (v >> 8) & 0xff;
8668 		cpt = v & 0xff;
8669 		if (!cpt)
8670 			*kbps = 0;	/* scheduler disabled */
8671 		else {
8672 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
8673 			*kbps = (v * bpt) / 125;
8674 		}
8675 	}
8676 	if (ipg) {
8677 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
8678 		t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
8679 		v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
8680 		if (sched & 1)
8681 			v >>= 16;
8682 		v &= 0xffff;
8683 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
8684 	}
8685 }
8686 
8687 /**
8688  *	t4_load_cfg - download config file
8689  *	@adap: the adapter
8690  *	@cfg_data: the cfg text file to write
8691  *	@size: text file size
8692  *
8693  *	Write the supplied config text file to the card's serial flash.
8694  */
8695 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
8696 {
8697 	int ret, i, n, cfg_addr;
8698 	unsigned int addr;
8699 	unsigned int flash_cfg_start_sec;
8700 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
8701 
8702 	cfg_addr = t4_flash_cfg_addr(adap);
8703 	if (cfg_addr < 0)
8704 		return cfg_addr;
8705 
8706 	addr = cfg_addr;
8707 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
8708 
8709 	if (size > FLASH_CFG_MAX_SIZE) {
8710 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
8711 		       FLASH_CFG_MAX_SIZE);
8712 		return -EFBIG;
8713 	}
8714 
8715 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
8716 			 sf_sec_size);
8717 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
8718 				     flash_cfg_start_sec + i - 1);
8719 	/*
8720 	 * If size == 0 then we're simply erasing the FLASH sectors associated
8721 	 * with the on-adapter Firmware Configuration File.
8722 	 */
8723 	if (ret || size == 0)
8724 		goto out;
8725 
8726 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
8727 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
8728 		if ( (size - i) <  SF_PAGE_SIZE)
8729 			n = size - i;
8730 		else
8731 			n = SF_PAGE_SIZE;
8732 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
8733 		if (ret)
8734 			goto out;
8735 
8736 		addr += SF_PAGE_SIZE;
8737 		cfg_data += SF_PAGE_SIZE;
8738 	}
8739 
8740 out:
8741 	if (ret)
8742 		CH_ERR(adap, "config file %s failed %d\n",
8743 		       (size == 0 ? "clear" : "download"), ret);
8744 	return ret;
8745 }
8746 
8747 /**
8748  *	t5_fw_init_extern_mem - initialize the external memory
8749  *	@adap: the adapter
8750  *
8751  *	Initializes the external memory on T5.
8752  */
8753 int t5_fw_init_extern_mem(struct adapter *adap)
8754 {
8755 	u32 params[1], val[1];
8756 	int ret;
8757 
8758 	if (!is_t5(adap))
8759 		return 0;
8760 
8761 	val[0] = 0xff; /* Initialize all MCs */
8762 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8763 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
8764 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
8765 			FW_CMD_MAX_TIMEOUT);
8766 
8767 	return ret;
8768 }
8769 
8770 /* BIOS boot headers */
8771 typedef struct pci_expansion_rom_header {
8772 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
8773 	u8	reserved[22]; /* Reserved per processor Architecture data */
8774 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
8775 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
8776 
8777 /* Legacy PCI Expansion ROM Header */
8778 typedef struct legacy_pci_expansion_rom_header {
8779 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
8780 	u8	size512; /* Current Image Size in units of 512 bytes */
8781 	u8	initentry_point[4];
8782 	u8	cksum; /* Checksum computed on the entire Image */
8783 	u8	reserved[16]; /* Reserved */
8784 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
8785 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
8786 
8787 /* EFI PCI Expansion ROM Header */
8788 typedef struct efi_pci_expansion_rom_header {
8789 	u8	signature[2]; // ROM signature. The value 0xaa55
8790 	u8	initialization_size[2]; /* Units 512. Includes this header */
8791 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
8792 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
8793 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
8794 	u8	compression_type[2]; /* Compression type. */
8795 		/*
8796 		 * Compression type definition
8797 		 * 0x0: uncompressed
8798 		 * 0x1: Compressed
8799 		 * 0x2-0xFFFF: Reserved
8800 		 */
8801 	u8	reserved[8]; /* Reserved */
8802 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
8803 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
8804 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
8805 
8806 /* PCI Data Structure Format */
8807 typedef struct pcir_data_structure { /* PCI Data Structure */
8808 	u8	signature[4]; /* Signature. The string "PCIR" */
8809 	u8	vendor_id[2]; /* Vendor Identification */
8810 	u8	device_id[2]; /* Device Identification */
8811 	u8	vital_product[2]; /* Pointer to Vital Product Data */
8812 	u8	length[2]; /* PCIR Data Structure Length */
8813 	u8	revision; /* PCIR Data Structure Revision */
8814 	u8	class_code[3]; /* Class Code */
8815 	u8	image_length[2]; /* Image Length. Multiple of 512B */
8816 	u8	code_revision[2]; /* Revision Level of Code/Data */
8817 	u8	code_type; /* Code Type. */
8818 		/*
8819 		 * PCI Expansion ROM Code Types
8820 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
8821 		 * 0x01: Open Firmware standard for PCI. FCODE
8822 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
8823 		 * 0x03: EFI Image. EFI
8824 		 * 0x04-0xFF: Reserved.
8825 		 */
8826 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
8827 	u8	reserved[2]; /* Reserved */
8828 } pcir_data_t; /* PCI__DATA_STRUCTURE */
8829 
8830 /* BOOT constants */
8831 enum {
8832 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
8833 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
8834 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
8835 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
8836 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
8837 	VENDOR_ID = 0x1425, /* Vendor ID */
8838 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
8839 };
8840 
8841 /*
8842  *	modify_device_id - Modifies the device ID of the Boot BIOS image
8843  *	@adatper: the device ID to write.
8844  *	@boot_data: the boot image to modify.
8845  *
8846  *	Write the supplied device ID to the boot BIOS image.
8847  */
8848 static void modify_device_id(int device_id, u8 *boot_data)
8849 {
8850 	legacy_pci_exp_rom_header_t *header;
8851 	pcir_data_t *pcir_header;
8852 	u32 cur_header = 0;
8853 
8854 	/*
8855 	 * Loop through all chained images and change the device ID's
8856 	 */
8857 	while (1) {
8858 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
8859 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
8860 			      le16_to_cpu(*(u16*)header->pcir_offset)];
8861 
8862 		/*
8863 		 * Only modify the Device ID if code type is Legacy or HP.
8864 		 * 0x00: Okay to modify
8865 		 * 0x01: FCODE. Do not be modify
8866 		 * 0x03: Okay to modify
8867 		 * 0x04-0xFF: Do not modify
8868 		 */
8869 		if (pcir_header->code_type == 0x00) {
8870 			u8 csum = 0;
8871 			int i;
8872 
8873 			/*
8874 			 * Modify Device ID to match current adatper
8875 			 */
8876 			*(u16*) pcir_header->device_id = device_id;
8877 
8878 			/*
8879 			 * Set checksum temporarily to 0.
8880 			 * We will recalculate it later.
8881 			 */
8882 			header->cksum = 0x0;
8883 
8884 			/*
8885 			 * Calculate and update checksum
8886 			 */
8887 			for (i = 0; i < (header->size512 * 512); i++)
8888 				csum += (u8)boot_data[cur_header + i];
8889 
8890 			/*
8891 			 * Invert summed value to create the checksum
8892 			 * Writing new checksum value directly to the boot data
8893 			 */
8894 			boot_data[cur_header + 7] = -csum;
8895 
8896 		} else if (pcir_header->code_type == 0x03) {
8897 
8898 			/*
8899 			 * Modify Device ID to match current adatper
8900 			 */
8901 			*(u16*) pcir_header->device_id = device_id;
8902 
8903 		}
8904 
8905 
8906 		/*
8907 		 * Check indicator element to identify if this is the last
8908 		 * image in the ROM.
8909 		 */
8910 		if (pcir_header->indicator & 0x80)
8911 			break;
8912 
8913 		/*
8914 		 * Move header pointer up to the next image in the ROM.
8915 		 */
8916 		cur_header += header->size512 * 512;
8917 	}
8918 }
8919 
8920 /*
8921  *	t4_load_boot - download boot flash
8922  *	@adapter: the adapter
8923  *	@boot_data: the boot image to write
8924  *	@boot_addr: offset in flash to write boot_data
8925  *	@size: image size
8926  *
8927  *	Write the supplied boot image to the card's serial flash.
8928  *	The boot image has the following sections: a 28-byte header and the
8929  *	boot image.
8930  */
8931 int t4_load_boot(struct adapter *adap, u8 *boot_data,
8932 		 unsigned int boot_addr, unsigned int size)
8933 {
8934 	pci_exp_rom_header_t *header;
8935 	int pcir_offset ;
8936 	pcir_data_t *pcir_header;
8937 	int ret, addr;
8938 	uint16_t device_id;
8939 	unsigned int i;
8940 	unsigned int boot_sector = (boot_addr * 1024 );
8941 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
8942 
8943 	/*
8944 	 * Make sure the boot image does not encroach on the firmware region
8945 	 */
8946 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
8947 		CH_ERR(adap, "boot image encroaching on firmware region\n");
8948 		return -EFBIG;
8949 	}
8950 
8951 	/*
8952 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
8953 	 * and Boot configuration data sections. These 3 boot sections span
8954 	 * sectors 0 to 7 in flash and live right before the FW image location.
8955 	 */
8956 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
8957 			sf_sec_size);
8958 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
8959 				     (boot_sector >> 16) + i - 1);
8960 
8961 	/*
8962 	 * If size == 0 then we're simply erasing the FLASH sectors associated
8963 	 * with the on-adapter option ROM file
8964 	 */
8965 	if (ret || (size == 0))
8966 		goto out;
8967 
8968 	/* Get boot header */
8969 	header = (pci_exp_rom_header_t *)boot_data;
8970 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
8971 	/* PCIR Data Structure */
8972 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
8973 
8974 	/*
8975 	 * Perform some primitive sanity testing to avoid accidentally
8976 	 * writing garbage over the boot sectors.  We ought to check for
8977 	 * more but it's not worth it for now ...
8978 	 */
8979 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
8980 		CH_ERR(adap, "boot image too small/large\n");
8981 		return -EFBIG;
8982 	}
8983 
8984 #ifndef CHELSIO_T4_DIAGS
8985 	/*
8986 	 * Check BOOT ROM header signature
8987 	 */
8988 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
8989 		CH_ERR(adap, "Boot image missing signature\n");
8990 		return -EINVAL;
8991 	}
8992 
8993 	/*
8994 	 * Check PCI header signature
8995 	 */
8996 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
8997 		CH_ERR(adap, "PCI header missing signature\n");
8998 		return -EINVAL;
8999 	}
9000 
9001 	/*
9002 	 * Check Vendor ID matches Chelsio ID
9003 	 */
9004 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
9005 		CH_ERR(adap, "Vendor ID missing signature\n");
9006 		return -EINVAL;
9007 	}
9008 #endif
9009 
9010 	/*
9011 	 * Retrieve adapter's device ID
9012 	 */
9013 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
9014 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
9015 	device_id = device_id & 0xf0ff;
9016 
9017 	/*
9018 	 * Check PCIE Device ID
9019 	 */
9020 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
9021 		/*
9022 		 * Change the device ID in the Boot BIOS image to match
9023 		 * the Device ID of the current adapter.
9024 		 */
9025 		modify_device_id(device_id, boot_data);
9026 	}
9027 
9028 	/*
9029 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
9030 	 * we finish copying the rest of the boot image. This will ensure
9031 	 * that the BIOS boot header will only be written if the boot image
9032 	 * was written in full.
9033 	 */
9034 	addr = boot_sector;
9035 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
9036 		addr += SF_PAGE_SIZE;
9037 		boot_data += SF_PAGE_SIZE;
9038 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
9039 		if (ret)
9040 			goto out;
9041 	}
9042 
9043 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
9044 			     (const u8 *)header, 0);
9045 
9046 out:
9047 	if (ret)
9048 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
9049 	return ret;
9050 }
9051 
9052 /*
9053  *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
9054  *	@adapter: the adapter
9055  *
9056  *	Return the address within the flash where the OptionROM Configuration
9057  *	is stored, or an error if the device FLASH is too small to contain
9058  *	a OptionROM Configuration.
9059  */
9060 static int t4_flash_bootcfg_addr(struct adapter *adapter)
9061 {
9062 	/*
9063 	 * If the device FLASH isn't large enough to hold a Firmware
9064 	 * Configuration File, return an error.
9065 	 */
9066 	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
9067 		return -ENOSPC;
9068 
9069 	return FLASH_BOOTCFG_START;
9070 }
9071 
9072 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
9073 {
9074 	int ret, i, n, cfg_addr;
9075 	unsigned int addr;
9076 	unsigned int flash_cfg_start_sec;
9077 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9078 
9079 	cfg_addr = t4_flash_bootcfg_addr(adap);
9080 	if (cfg_addr < 0)
9081 		return cfg_addr;
9082 
9083 	addr = cfg_addr;
9084 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9085 
9086 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
9087 		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
9088 			FLASH_BOOTCFG_MAX_SIZE);
9089 		return -EFBIG;
9090 	}
9091 
9092 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
9093 			 sf_sec_size);
9094 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9095 					flash_cfg_start_sec + i - 1);
9096 
9097 	/*
9098 	 * If size == 0 then we're simply erasing the FLASH sectors associated
9099 	 * with the on-adapter OptionROM Configuration File.
9100 	 */
9101 	if (ret || size == 0)
9102 		goto out;
9103 
9104 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9105 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9106 		if ( (size - i) <  SF_PAGE_SIZE)
9107 			n = size - i;
9108 		else
9109 			n = SF_PAGE_SIZE;
9110 		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
9111 		if (ret)
9112 			goto out;
9113 
9114 		addr += SF_PAGE_SIZE;
9115 		cfg_data += SF_PAGE_SIZE;
9116 	}
9117 
9118 out:
9119 	if (ret)
9120 		CH_ERR(adap, "boot config data %s failed %d\n",
9121 				(size == 0 ? "clear" : "download"), ret);
9122 	return ret;
9123 }
9124 
9125 /**
9126  *	t4_set_filter_mode - configure the optional components of filter tuples
9127  *	@adap: the adapter
9128  *	@mode_map: a bitmap selcting which optional filter components to enable
9129  *
9130  *	Sets the filter mode by selecting the optional components to enable
9131  *	in filter tuples.  Returns 0 on success and a negative error if the
9132  *	requested mode needs more bits than are available for optional
9133  *	components.
9134  */
9135 int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map)
9136 {
9137 	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
9138 
9139 	int i, nbits = 0;
9140 
9141 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
9142 		if (mode_map & (1 << i))
9143 			nbits += width[i];
9144 	if (nbits > FILTER_OPT_LEN)
9145 		return -EINVAL;
9146 	if (t4_use_ldst(adap))
9147 		t4_fw_tp_pio_rw(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, 0);
9148 	else
9149 		t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, &mode_map,
9150 				  1, A_TP_VLAN_PRI_MAP);
9151 	read_filter_mode_and_ingress_config(adap);
9152 
9153 	return 0;
9154 }
9155 
9156 /**
9157  *	t4_clr_port_stats - clear port statistics
9158  *	@adap: the adapter
9159  *	@idx: the port index
9160  *
9161  *	Clear HW statistics for the given port.
9162  */
9163 void t4_clr_port_stats(struct adapter *adap, int idx)
9164 {
9165 	unsigned int i;
9166 	u32 bgmap = t4_get_mps_bg_map(adap, idx);
9167 	u32 port_base_addr;
9168 
9169 	if (is_t4(adap))
9170 		port_base_addr = PORT_BASE(idx);
9171 	else
9172 		port_base_addr = T5_PORT_BASE(idx);
9173 
9174 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
9175 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
9176 		t4_write_reg(adap, port_base_addr + i, 0);
9177 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
9178 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
9179 		t4_write_reg(adap, port_base_addr + i, 0);
9180 	for (i = 0; i < 4; i++)
9181 		if (bgmap & (1 << i)) {
9182 			t4_write_reg(adap,
9183 			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
9184 			t4_write_reg(adap,
9185 			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
9186 		}
9187 }
9188 
9189 /**
9190  *	t4_i2c_rd - read I2C data from adapter
9191  *	@adap: the adapter
9192  *	@port: Port number if per-port device; <0 if not
9193  *	@devid: per-port device ID or absolute device ID
9194  *	@offset: byte offset into device I2C space
9195  *	@len: byte length of I2C space data
9196  *	@buf: buffer in which to return I2C data
9197  *
9198  *	Reads the I2C data from the indicated device and location.
9199  */
9200 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
9201 	      int port, unsigned int devid,
9202 	      unsigned int offset, unsigned int len,
9203 	      u8 *buf)
9204 {
9205 	u32 ldst_addrspace;
9206 	struct fw_ldst_cmd ldst;
9207 	int ret;
9208 
9209 	if (port >= 4 ||
9210 	    devid >= 256 ||
9211 	    offset >= 256 ||
9212 	    len > sizeof ldst.u.i2c.data)
9213 		return -EINVAL;
9214 
9215 	memset(&ldst, 0, sizeof ldst);
9216 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9217 	ldst.op_to_addrspace =
9218 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9219 			    F_FW_CMD_REQUEST |
9220 			    F_FW_CMD_READ |
9221 			    ldst_addrspace);
9222 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9223 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9224 	ldst.u.i2c.did = devid;
9225 	ldst.u.i2c.boffset = offset;
9226 	ldst.u.i2c.blen = len;
9227 	ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9228 	if (!ret)
9229 		memcpy(buf, ldst.u.i2c.data, len);
9230 	return ret;
9231 }
9232 
9233 /**
9234  *	t4_i2c_wr - write I2C data to adapter
9235  *	@adap: the adapter
9236  *	@port: Port number if per-port device; <0 if not
9237  *	@devid: per-port device ID or absolute device ID
9238  *	@offset: byte offset into device I2C space
9239  *	@len: byte length of I2C space data
9240  *	@buf: buffer containing new I2C data
9241  *
9242  *	Write the I2C data to the indicated device and location.
9243  */
9244 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
9245 	      int port, unsigned int devid,
9246 	      unsigned int offset, unsigned int len,
9247 	      u8 *buf)
9248 {
9249 	u32 ldst_addrspace;
9250 	struct fw_ldst_cmd ldst;
9251 
9252 	if (port >= 4 ||
9253 	    devid >= 256 ||
9254 	    offset >= 256 ||
9255 	    len > sizeof ldst.u.i2c.data)
9256 		return -EINVAL;
9257 
9258 	memset(&ldst, 0, sizeof ldst);
9259 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9260 	ldst.op_to_addrspace =
9261 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9262 			    F_FW_CMD_REQUEST |
9263 			    F_FW_CMD_WRITE |
9264 			    ldst_addrspace);
9265 	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9266 	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9267 	ldst.u.i2c.did = devid;
9268 	ldst.u.i2c.boffset = offset;
9269 	ldst.u.i2c.blen = len;
9270 	memcpy(ldst.u.i2c.data, buf, len);
9271 	return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9272 }
9273 
9274 /**
9275  * 	t4_sge_ctxt_rd - read an SGE context through FW
9276  * 	@adap: the adapter
9277  * 	@mbox: mailbox to use for the FW command
9278  * 	@cid: the context id
9279  * 	@ctype: the context type
9280  * 	@data: where to store the context data
9281  *
9282  * 	Issues a FW command through the given mailbox to read an SGE context.
9283  */
9284 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
9285 		   enum ctxt_type ctype, u32 *data)
9286 {
9287 	int ret;
9288 	struct fw_ldst_cmd c;
9289 
9290 	if (ctype == CTXT_EGRESS)
9291 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
9292 	else if (ctype == CTXT_INGRESS)
9293 		ret = FW_LDST_ADDRSPC_SGE_INGC;
9294 	else if (ctype == CTXT_FLM)
9295 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
9296 	else
9297 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
9298 
9299 	memset(&c, 0, sizeof(c));
9300 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9301 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
9302 					V_FW_LDST_CMD_ADDRSPACE(ret));
9303 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9304 	c.u.idctxt.physid = cpu_to_be32(cid);
9305 
9306 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9307 	if (ret == 0) {
9308 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
9309 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
9310 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
9311 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
9312 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
9313 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
9314 	}
9315 	return ret;
9316 }
9317 
9318 /**
9319  * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
9320  * 	@adap: the adapter
9321  * 	@cid: the context id
9322  * 	@ctype: the context type
9323  * 	@data: where to store the context data
9324  *
9325  * 	Reads an SGE context directly, bypassing FW.  This is only for
9326  * 	debugging when FW is unavailable.
9327  */
9328 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
9329 		      u32 *data)
9330 {
9331 	int i, ret;
9332 
9333 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
9334 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
9335 	if (!ret)
9336 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
9337 			*data++ = t4_read_reg(adap, i);
9338 	return ret;
9339 }
9340 
9341 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
9342     		    int sleep_ok)
9343 {
9344 	struct fw_sched_cmd cmd;
9345 
9346 	memset(&cmd, 0, sizeof(cmd));
9347 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9348 				      F_FW_CMD_REQUEST |
9349 				      F_FW_CMD_WRITE);
9350 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9351 
9352 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
9353 	cmd.u.config.type = type;
9354 	cmd.u.config.minmaxen = minmaxen;
9355 
9356 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9357 			       NULL, sleep_ok);
9358 }
9359 
9360 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
9361 		    int rateunit, int ratemode, int channel, int cl,
9362 		    int minrate, int maxrate, int weight, int pktsize,
9363 		    int sleep_ok)
9364 {
9365 	struct fw_sched_cmd cmd;
9366 
9367 	memset(&cmd, 0, sizeof(cmd));
9368 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9369 				      F_FW_CMD_REQUEST |
9370 				      F_FW_CMD_WRITE);
9371 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9372 
9373 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9374 	cmd.u.params.type = type;
9375 	cmd.u.params.level = level;
9376 	cmd.u.params.mode = mode;
9377 	cmd.u.params.ch = channel;
9378 	cmd.u.params.cl = cl;
9379 	cmd.u.params.unit = rateunit;
9380 	cmd.u.params.rate = ratemode;
9381 	cmd.u.params.min = cpu_to_be32(minrate);
9382 	cmd.u.params.max = cpu_to_be32(maxrate);
9383 	cmd.u.params.weight = cpu_to_be16(weight);
9384 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9385 
9386 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9387 			       NULL, sleep_ok);
9388 }
9389 
9390 /*
9391  *	t4_config_watchdog - configure (enable/disable) a watchdog timer
9392  *	@adapter: the adapter
9393  * 	@mbox: mailbox to use for the FW command
9394  * 	@pf: the PF owning the queue
9395  * 	@vf: the VF owning the queue
9396  *	@timeout: watchdog timeout in ms
9397  *	@action: watchdog timer / action
9398  *
9399  *	There are separate watchdog timers for each possible watchdog
9400  *	action.  Configure one of the watchdog timers by setting a non-zero
9401  *	timeout.  Disable a watchdog timer by using a timeout of zero.
9402  */
9403 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
9404 		       unsigned int pf, unsigned int vf,
9405 		       unsigned int timeout, unsigned int action)
9406 {
9407 	struct fw_watchdog_cmd wdog;
9408 	unsigned int ticks;
9409 
9410 	/*
9411 	 * The watchdog command expects a timeout in units of 10ms so we need
9412 	 * to convert it here (via rounding) and force a minimum of one 10ms
9413 	 * "tick" if the timeout is non-zero but the conversion results in 0
9414 	 * ticks.
9415 	 */
9416 	ticks = (timeout + 5)/10;
9417 	if (timeout && !ticks)
9418 		ticks = 1;
9419 
9420 	memset(&wdog, 0, sizeof wdog);
9421 	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
9422 				     F_FW_CMD_REQUEST |
9423 				     F_FW_CMD_WRITE |
9424 				     V_FW_PARAMS_CMD_PFN(pf) |
9425 				     V_FW_PARAMS_CMD_VFN(vf));
9426 	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
9427 	wdog.timeout = cpu_to_be32(ticks);
9428 	wdog.action = cpu_to_be32(action);
9429 
9430 	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
9431 }
9432 
9433 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
9434 {
9435 	struct fw_devlog_cmd devlog_cmd;
9436 	int ret;
9437 
9438 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9439 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9440 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9441 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9442 	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9443 			 sizeof(devlog_cmd), &devlog_cmd);
9444 	if (ret)
9445 		return ret;
9446 
9447 	*level = devlog_cmd.level;
9448 	return 0;
9449 }
9450 
9451 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
9452 {
9453 	struct fw_devlog_cmd devlog_cmd;
9454 
9455 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9456 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9457 					     F_FW_CMD_REQUEST |
9458 					     F_FW_CMD_WRITE);
9459 	devlog_cmd.level = level;
9460 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9461 	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9462 			  sizeof(devlog_cmd), &devlog_cmd);
9463 }
9464