xref: /freebsd/sys/dev/cxgbe/common/t4_hw.c (revision 81b22a9892b1047e551fc3f1d6d58031bc59a4c3)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 
34 #include <sys/param.h>
35 #include <sys/eventhandler.h>
36 
37 #include "common.h"
38 #include "t4_regs.h"
39 #include "t4_regs_values.h"
40 #include "firmware/t4fw_interface.h"
41 
42 #undef msleep
43 #define msleep(x) do { \
44 	if (cold) \
45 		DELAY((x) * 1000); \
46 	else \
47 		pause("t4hw", (x) * hz / 1000); \
48 } while (0)
49 
50 /**
51  *	t4_wait_op_done_val - wait until an operation is completed
52  *	@adapter: the adapter performing the operation
53  *	@reg: the register to check for completion
54  *	@mask: a single-bit field within @reg that indicates completion
55  *	@polarity: the value of the field when the operation is completed
56  *	@attempts: number of check iterations
57  *	@delay: delay in usecs between iterations
58  *	@valp: where to store the value of the register at completion time
59  *
60  *	Wait until an operation is completed by checking a bit in a register
61  *	up to @attempts times.  If @valp is not NULL the value of the register
62  *	at the time it indicated completion is stored there.  Returns 0 if the
63  *	operation completes and	-EAGAIN	otherwise.
64  */
65 static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
66 			       int polarity, int attempts, int delay, u32 *valp)
67 {
68 	while (1) {
69 		u32 val = t4_read_reg(adapter, reg);
70 
71 		if (!!(val & mask) == polarity) {
72 			if (valp)
73 				*valp = val;
74 			return 0;
75 		}
76 		if (--attempts == 0)
77 			return -EAGAIN;
78 		if (delay)
79 			udelay(delay);
80 	}
81 }
82 
83 static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
84 				  int polarity, int attempts, int delay)
85 {
86 	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
87 				   delay, NULL);
88 }
89 
90 /**
91  *	t4_set_reg_field - set a register field to a value
92  *	@adapter: the adapter to program
93  *	@addr: the register address
94  *	@mask: specifies the portion of the register to modify
95  *	@val: the new value for the register field
96  *
97  *	Sets a register field specified by the supplied mask to the
98  *	given value.
99  */
100 void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
101 		      u32 val)
102 {
103 	u32 v = t4_read_reg(adapter, addr) & ~mask;
104 
105 	t4_write_reg(adapter, addr, v | val);
106 	(void) t4_read_reg(adapter, addr);      /* flush */
107 }
108 
109 /**
110  *	t4_read_indirect - read indirectly addressed registers
111  *	@adap: the adapter
112  *	@addr_reg: register holding the indirect address
113  *	@data_reg: register holding the value of the indirect register
114  *	@vals: where the read register values are stored
115  *	@nregs: how many indirect registers to read
116  *	@start_idx: index of first indirect register to read
117  *
118  *	Reads registers that are accessed indirectly through an address/data
119  *	register pair.
120  */
121 void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
122 			     unsigned int data_reg, u32 *vals,
123 			     unsigned int nregs, unsigned int start_idx)
124 {
125 	while (nregs--) {
126 		t4_write_reg(adap, addr_reg, start_idx);
127 		*vals++ = t4_read_reg(adap, data_reg);
128 		start_idx++;
129 	}
130 }
131 
132 /**
133  *	t4_write_indirect - write indirectly addressed registers
134  *	@adap: the adapter
135  *	@addr_reg: register holding the indirect addresses
136  *	@data_reg: register holding the value for the indirect registers
137  *	@vals: values to write
138  *	@nregs: how many indirect registers to write
139  *	@start_idx: address of first indirect register to write
140  *
141  *	Writes a sequential block of registers that are accessed indirectly
142  *	through an address/data register pair.
143  */
144 void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
145 		       unsigned int data_reg, const u32 *vals,
146 		       unsigned int nregs, unsigned int start_idx)
147 {
148 	while (nregs--) {
149 		t4_write_reg(adap, addr_reg, start_idx++);
150 		t4_write_reg(adap, data_reg, *vals++);
151 	}
152 }
153 
154 /*
155  * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
156  * mechanism.  This guarantees that we get the real value even if we're
157  * operating within a Virtual Machine and the Hypervisor is trapping our
158  * Configuration Space accesses.
159  *
160  * N.B. This routine should only be used as a last resort: the firmware uses
161  *      the backdoor registers on a regular basis and we can end up
162  *      conflicting with it's uses!
163  */
164 u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
165 {
166 	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
167 	u32 val;
168 
169 	if (chip_id(adap) <= CHELSIO_T5)
170 		req |= F_ENABLE;
171 	else
172 		req |= F_T6_ENABLE;
173 
174 	if (is_t4(adap))
175 		req |= F_LOCALCFG;
176 
177 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
178 	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
179 
180 	/*
181 	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
182 	 * Configuration Space read.  (None of the other fields matter when
183 	 * F_ENABLE is 0 so a simple register write is easier than a
184 	 * read-modify-write via t4_set_reg_field().)
185 	 */
186 	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
187 
188 	return val;
189 }
190 
191 /*
192  * t4_report_fw_error - report firmware error
193  * @adap: the adapter
194  *
195  * The adapter firmware can indicate error conditions to the host.
196  * If the firmware has indicated an error, print out the reason for
197  * the firmware error.
198  */
199 static void t4_report_fw_error(struct adapter *adap)
200 {
201 	static const char *const reason[] = {
202 		"Crash",			/* PCIE_FW_EVAL_CRASH */
203 		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
204 		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
205 		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
206 		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
207 		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
208 		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
209 		"Reserved",			/* reserved */
210 	};
211 	u32 pcie_fw;
212 
213 	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
214 	if (pcie_fw & F_PCIE_FW_ERR) {
215 		adap->flags &= ~FW_OK;
216 		CH_ERR(adap, "firmware reports adapter error: %s (0x%08x)\n",
217 		    reason[G_PCIE_FW_EVAL(pcie_fw)], pcie_fw);
218 		if (pcie_fw != 0xffffffff)
219 			t4_os_dump_devlog(adap);
220 	}
221 }
222 
223 /*
224  * Get the reply to a mailbox command and store it in @rpl in big-endian order.
225  */
226 static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
227 			 u32 mbox_addr)
228 {
229 	for ( ; nflit; nflit--, mbox_addr += 8)
230 		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
231 }
232 
233 /*
234  * Handle a FW assertion reported in a mailbox.
235  */
236 static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
237 {
238 	CH_ALERT(adap,
239 		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
240 		  asrt->u.assert.filename_0_7,
241 		  be32_to_cpu(asrt->u.assert.line),
242 		  be32_to_cpu(asrt->u.assert.x),
243 		  be32_to_cpu(asrt->u.assert.y));
244 }
245 
246 struct port_tx_state {
247 	uint64_t rx_pause;
248 	uint64_t tx_frames;
249 };
250 
251 static void
252 read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state)
253 {
254 	uint32_t rx_pause_reg, tx_frames_reg;
255 
256 	if (is_t4(sc)) {
257 		tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
258 		rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
259 	} else {
260 		tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
261 		rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
262 	}
263 
264 	tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg);
265 	tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg);
266 }
267 
268 static void
269 read_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
270 {
271 	int i;
272 
273 	for_each_port(sc, i)
274 		read_tx_state_one(sc, i, &tx_state[i]);
275 }
276 
277 static void
278 check_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
279 {
280 	uint32_t port_ctl_reg;
281 	uint64_t tx_frames, rx_pause;
282 	int i;
283 
284 	for_each_port(sc, i) {
285 		rx_pause = tx_state[i].rx_pause;
286 		tx_frames = tx_state[i].tx_frames;
287 		read_tx_state_one(sc, i, &tx_state[i]);	/* update */
288 
289 		if (is_t4(sc))
290 			port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL);
291 		else
292 			port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL);
293 		if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN &&
294 		    rx_pause != tx_state[i].rx_pause &&
295 		    tx_frames == tx_state[i].tx_frames) {
296 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0);
297 			mdelay(1);
298 			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN);
299 		}
300 	}
301 }
302 
303 #define X_CIM_PF_NOACCESS 0xeeeeeeee
304 /**
305  *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
306  *	@adap: the adapter
307  *	@mbox: index of the mailbox to use
308  *	@cmd: the command to write
309  *	@size: command length in bytes
310  *	@rpl: where to optionally store the reply
311  *	@sleep_ok: if true we may sleep while awaiting command completion
312  *	@timeout: time to wait for command to finish before timing out
313  *		(negative implies @sleep_ok=false)
314  *
315  *	Sends the given command to FW through the selected mailbox and waits
316  *	for the FW to execute the command.  If @rpl is not %NULL it is used to
317  *	store the FW's reply to the command.  The command and its optional
318  *	reply are of the same length.  Some FW commands like RESET and
319  *	INITIALIZE can take a considerable amount of time to execute.
320  *	@sleep_ok determines whether we may sleep while awaiting the response.
321  *	If sleeping is allowed we use progressive backoff otherwise we spin.
322  *	Note that passing in a negative @timeout is an alternate mechanism
323  *	for specifying @sleep_ok=false.  This is useful when a higher level
324  *	interface allows for specification of @timeout but not @sleep_ok ...
325  *
326  *	The return value is 0 on success or a negative errno on failure.  A
327  *	failure can happen either because we are not able to execute the
328  *	command or FW executes it but signals an error.  In the latter case
329  *	the return value is the error code indicated by FW (negated).
330  */
331 int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
332 			    int size, void *rpl, bool sleep_ok, int timeout)
333 {
334 	/*
335 	 * We delay in small increments at first in an effort to maintain
336 	 * responsiveness for simple, fast executing commands but then back
337 	 * off to larger delays to a maximum retry delay.
338 	 */
339 	static const int delay[] = {
340 		1, 1, 3, 5, 10, 10, 20, 50, 100
341 	};
342 	u32 v;
343 	u64 res;
344 	int i, ms, delay_idx, ret, next_tx_check;
345 	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
346 	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
347 	u32 ctl;
348 	__be64 cmd_rpl[MBOX_LEN/8];
349 	u32 pcie_fw;
350 	struct port_tx_state tx_state[MAX_NPORTS];
351 
352 	if (adap->flags & CHK_MBOX_ACCESS)
353 		ASSERT_SYNCHRONIZED_OP(adap);
354 
355 	if (size <= 0 || (size & 15) || size > MBOX_LEN)
356 		return -EINVAL;
357 
358 	if (adap->flags & IS_VF) {
359 		if (is_t6(adap))
360 			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
361 		else
362 			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
363 		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
364 	}
365 
366 	/*
367 	 * If we have a negative timeout, that implies that we can't sleep.
368 	 */
369 	if (timeout < 0) {
370 		sleep_ok = false;
371 		timeout = -timeout;
372 	}
373 
374 	/*
375 	 * Attempt to gain access to the mailbox.
376 	 */
377 	for (i = 0; i < 4; i++) {
378 		ctl = t4_read_reg(adap, ctl_reg);
379 		v = G_MBOWNER(ctl);
380 		if (v != X_MBOWNER_NONE)
381 			break;
382 	}
383 
384 	/*
385 	 * If we were unable to gain access, report the error to our caller.
386 	 */
387 	if (v != X_MBOWNER_PL) {
388 		t4_report_fw_error(adap);
389 		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
390 		return ret;
391 	}
392 
393 	/*
394 	 * If we gain ownership of the mailbox and there's a "valid" message
395 	 * in it, this is likely an asynchronous error message from the
396 	 * firmware.  So we'll report that and then proceed on with attempting
397 	 * to issue our own command ... which may well fail if the error
398 	 * presaged the firmware crashing ...
399 	 */
400 	if (ctl & F_MBMSGVALID) {
401 		CH_DUMP_MBOX(adap, mbox, data_reg, "VLD", NULL, true);
402 	}
403 
404 	/*
405 	 * Copy in the new mailbox command and send it on its way ...
406 	 */
407 	memset(cmd_rpl, 0, sizeof(cmd_rpl));
408 	memcpy(cmd_rpl, cmd, size);
409 	CH_DUMP_MBOX(adap, mbox, 0, "cmd", cmd_rpl, false);
410 	for (i = 0; i < ARRAY_SIZE(cmd_rpl); i++)
411 		t4_write_reg64(adap, data_reg + i * 8, be64_to_cpu(cmd_rpl[i]));
412 
413 	if (adap->flags & IS_VF) {
414 		/*
415 		 * For the VFs, the Mailbox Data "registers" are
416 		 * actually backed by T4's "MA" interface rather than
417 		 * PL Registers (as is the case for the PFs).  Because
418 		 * these are in different coherency domains, the write
419 		 * to the VF's PL-register-backed Mailbox Control can
420 		 * race in front of the writes to the MA-backed VF
421 		 * Mailbox Data "registers".  So we need to do a
422 		 * read-back on at least one byte of the VF Mailbox
423 		 * Data registers before doing the write to the VF
424 		 * Mailbox Control register.
425 		 */
426 		t4_read_reg(adap, data_reg);
427 	}
428 
429 	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
430 	read_tx_state(adap, &tx_state[0]);	/* also flushes the write_reg */
431 	next_tx_check = 1000;
432 	delay_idx = 0;
433 	ms = delay[0];
434 
435 	/*
436 	 * Loop waiting for the reply; bail out if we time out or the firmware
437 	 * reports an error.
438 	 */
439 	pcie_fw = 0;
440 	for (i = 0; i < timeout; i += ms) {
441 		if (!(adap->flags & IS_VF)) {
442 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
443 			if (pcie_fw & F_PCIE_FW_ERR)
444 				break;
445 		}
446 
447 		if (i >= next_tx_check) {
448 			check_tx_state(adap, &tx_state[0]);
449 			next_tx_check = i + 1000;
450 		}
451 
452 		if (sleep_ok) {
453 			ms = delay[delay_idx];  /* last element may repeat */
454 			if (delay_idx < ARRAY_SIZE(delay) - 1)
455 				delay_idx++;
456 			msleep(ms);
457 		} else {
458 			mdelay(ms);
459 		}
460 
461 		v = t4_read_reg(adap, ctl_reg);
462 		if (v == X_CIM_PF_NOACCESS)
463 			continue;
464 		if (G_MBOWNER(v) == X_MBOWNER_PL) {
465 			if (!(v & F_MBMSGVALID)) {
466 				t4_write_reg(adap, ctl_reg,
467 					     V_MBOWNER(X_MBOWNER_NONE));
468 				continue;
469 			}
470 
471 			/*
472 			 * Retrieve the command reply and release the mailbox.
473 			 */
474 			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
475 			CH_DUMP_MBOX(adap, mbox, 0, "rpl", cmd_rpl, false);
476 			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
477 
478 			res = be64_to_cpu(cmd_rpl[0]);
479 			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
480 				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
481 				res = V_FW_CMD_RETVAL(EIO);
482 			} else if (rpl)
483 				memcpy(rpl, cmd_rpl, size);
484 			return -G_FW_CMD_RETVAL((int)res);
485 		}
486 	}
487 
488 	/*
489 	 * We timed out waiting for a reply to our mailbox command.  Report
490 	 * the error and also check to see if the firmware reported any
491 	 * errors ...
492 	 */
493 	CH_ERR(adap, "command %#x in mbox %d timed out (0x%08x).\n",
494 	    *(const u8 *)cmd, mbox, pcie_fw);
495 	CH_DUMP_MBOX(adap, mbox, 0, "cmdsent", cmd_rpl, true);
496 	CH_DUMP_MBOX(adap, mbox, data_reg, "current", NULL, true);
497 
498 	if (pcie_fw & F_PCIE_FW_ERR) {
499 		ret = -ENXIO;
500 		t4_report_fw_error(adap);
501 	} else {
502 		ret = -ETIMEDOUT;
503 		t4_os_dump_devlog(adap);
504 	}
505 
506 	t4_fatal_err(adap, true);
507 	return ret;
508 }
509 
510 int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
511 		    void *rpl, bool sleep_ok)
512 {
513 		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
514 					       sleep_ok, FW_CMD_MAX_TIMEOUT);
515 
516 }
517 
518 static int t4_edc_err_read(struct adapter *adap, int idx)
519 {
520 	u32 edc_ecc_err_addr_reg;
521 	u32 edc_bist_status_rdata_reg;
522 
523 	if (is_t4(adap)) {
524 		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
525 		return 0;
526 	}
527 	if (idx != MEM_EDC0 && idx != MEM_EDC1) {
528 		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
529 		return 0;
530 	}
531 
532 	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
533 	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
534 
535 	CH_WARN(adap,
536 		"edc%d err addr 0x%x: 0x%x.\n",
537 		idx, edc_ecc_err_addr_reg,
538 		t4_read_reg(adap, edc_ecc_err_addr_reg));
539 	CH_WARN(adap,
540 	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
541 		edc_bist_status_rdata_reg,
542 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
543 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
544 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
545 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
546 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
547 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
548 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
549 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
550 		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
551 
552 	return 0;
553 }
554 
555 /**
556  *	t4_mc_read - read from MC through backdoor accesses
557  *	@adap: the adapter
558  *	@idx: which MC to access
559  *	@addr: address of first byte requested
560  *	@data: 64 bytes of data containing the requested address
561  *	@ecc: where to store the corresponding 64-bit ECC word
562  *
563  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
564  *	that covers the requested address @addr.  If @parity is not %NULL it
565  *	is assigned the 64-bit ECC word for the read data.
566  */
567 int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
568 {
569 	int i;
570 	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
571 	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
572 
573 	if (is_t4(adap)) {
574 		mc_bist_cmd_reg = A_MC_BIST_CMD;
575 		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
576 		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
577 		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
578 		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
579 	} else {
580 		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
581 		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
582 		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
583 		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
584 						  idx);
585 		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
586 						  idx);
587 	}
588 
589 	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
590 		return -EBUSY;
591 	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
592 	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
593 	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
594 	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
595 		     F_START_BIST | V_BIST_CMD_GAP(1));
596 	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
597 	if (i)
598 		return i;
599 
600 #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
601 
602 	for (i = 15; i >= 0; i--)
603 		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
604 	if (ecc)
605 		*ecc = t4_read_reg64(adap, MC_DATA(16));
606 #undef MC_DATA
607 	return 0;
608 }
609 
610 /**
611  *	t4_edc_read - read from EDC through backdoor accesses
612  *	@adap: the adapter
613  *	@idx: which EDC to access
614  *	@addr: address of first byte requested
615  *	@data: 64 bytes of data containing the requested address
616  *	@ecc: where to store the corresponding 64-bit ECC word
617  *
618  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
619  *	that covers the requested address @addr.  If @parity is not %NULL it
620  *	is assigned the 64-bit ECC word for the read data.
621  */
622 int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
623 {
624 	int i;
625 	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
626 	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
627 
628 	if (is_t4(adap)) {
629 		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
630 		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
631 		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
632 		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
633 						    idx);
634 		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
635 						    idx);
636 	} else {
637 /*
638  * These macro are missing in t4_regs.h file.
639  * Added temporarily for testing.
640  */
641 #define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
642 #define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
643 		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
644 		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
645 		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
646 		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
647 						    idx);
648 		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
649 						    idx);
650 #undef EDC_REG_T5
651 #undef EDC_STRIDE_T5
652 	}
653 
654 	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
655 		return -EBUSY;
656 	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
657 	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
658 	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
659 	t4_write_reg(adap, edc_bist_cmd_reg,
660 		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
661 	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
662 	if (i)
663 		return i;
664 
665 #define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
666 
667 	for (i = 15; i >= 0; i--)
668 		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
669 	if (ecc)
670 		*ecc = t4_read_reg64(adap, EDC_DATA(16));
671 #undef EDC_DATA
672 	return 0;
673 }
674 
675 /**
676  *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
677  *	@adap: the adapter
678  *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
679  *	@addr: address within indicated memory type
680  *	@len: amount of memory to read
681  *	@buf: host memory buffer
682  *
683  *	Reads an [almost] arbitrary memory region in the firmware: the
684  *	firmware memory address, length and host buffer must be aligned on
685  *	32-bit boudaries.  The memory is returned as a raw byte sequence from
686  *	the firmware's memory.  If this memory contains data structures which
687  *	contain multi-byte integers, it's the callers responsibility to
688  *	perform appropriate byte order conversions.
689  */
690 int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
691 		__be32 *buf)
692 {
693 	u32 pos, start, end, offset;
694 	int ret;
695 
696 	/*
697 	 * Argument sanity checks ...
698 	 */
699 	if ((addr & 0x3) || (len & 0x3))
700 		return -EINVAL;
701 
702 	/*
703 	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
704 	 * need to round down the start and round up the end.  We'll start
705 	 * copying out of the first line at (addr - start) a word at a time.
706 	 */
707 	start = rounddown2(addr, 64);
708 	end = roundup2(addr + len, 64);
709 	offset = (addr - start)/sizeof(__be32);
710 
711 	for (pos = start; pos < end; pos += 64, offset = 0) {
712 		__be32 data[16];
713 
714 		/*
715 		 * Read the chip's memory block and bail if there's an error.
716 		 */
717 		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
718 			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
719 		else
720 			ret = t4_edc_read(adap, mtype, pos, data, NULL);
721 		if (ret)
722 			return ret;
723 
724 		/*
725 		 * Copy the data into the caller's memory buffer.
726 		 */
727 		while (offset < 16 && len > 0) {
728 			*buf++ = data[offset++];
729 			len -= sizeof(__be32);
730 		}
731 	}
732 
733 	return 0;
734 }
735 
736 /*
737  * Return the specified PCI-E Configuration Space register from our Physical
738  * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
739  * since we prefer to let the firmware own all of these registers, but if that
740  * fails we go for it directly ourselves.
741  */
742 u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
743 {
744 
745 	/*
746 	 * If fw_attach != 0, construct and send the Firmware LDST Command to
747 	 * retrieve the specified PCI-E Configuration Space register.
748 	 */
749 	if (drv_fw_attach != 0) {
750 		struct fw_ldst_cmd ldst_cmd;
751 		int ret;
752 
753 		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
754 		ldst_cmd.op_to_addrspace =
755 			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
756 				    F_FW_CMD_REQUEST |
757 				    F_FW_CMD_READ |
758 				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
759 		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
760 		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
761 		ldst_cmd.u.pcie.ctrl_to_fn =
762 			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
763 		ldst_cmd.u.pcie.r = reg;
764 
765 		/*
766 		 * If the LDST Command succeeds, return the result, otherwise
767 		 * fall through to reading it directly ourselves ...
768 		 */
769 		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
770 				 &ldst_cmd);
771 		if (ret == 0)
772 			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
773 
774 		CH_WARN(adap, "Firmware failed to return "
775 			"Configuration Space register %d, err = %d\n",
776 			reg, -ret);
777 	}
778 
779 	/*
780 	 * Read the desired Configuration Space register via the PCI-E
781 	 * Backdoor mechanism.
782 	 */
783 	return t4_hw_pci_read_cfg4(adap, reg);
784 }
785 
786 /**
787  *	t4_get_regs_len - return the size of the chips register set
788  *	@adapter: the adapter
789  *
790  *	Returns the size of the chip's BAR0 register space.
791  */
792 unsigned int t4_get_regs_len(struct adapter *adapter)
793 {
794 	unsigned int chip_version = chip_id(adapter);
795 
796 	switch (chip_version) {
797 	case CHELSIO_T4:
798 		if (adapter->flags & IS_VF)
799 			return FW_T4VF_REGMAP_SIZE;
800 		return T4_REGMAP_SIZE;
801 
802 	case CHELSIO_T5:
803 	case CHELSIO_T6:
804 		if (adapter->flags & IS_VF)
805 			return FW_T4VF_REGMAP_SIZE;
806 		return T5_REGMAP_SIZE;
807 	}
808 
809 	CH_ERR(adapter,
810 		"Unsupported chip version %d\n", chip_version);
811 	return 0;
812 }
813 
814 /**
815  *	t4_get_regs - read chip registers into provided buffer
816  *	@adap: the adapter
817  *	@buf: register buffer
818  *	@buf_size: size (in bytes) of register buffer
819  *
820  *	If the provided register buffer isn't large enough for the chip's
821  *	full register range, the register dump will be truncated to the
822  *	register buffer's size.
823  */
824 void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
825 {
826 	static const unsigned int t4_reg_ranges[] = {
827 		0x1008, 0x1108,
828 		0x1180, 0x1184,
829 		0x1190, 0x1194,
830 		0x11a0, 0x11a4,
831 		0x11b0, 0x11b4,
832 		0x11fc, 0x123c,
833 		0x1300, 0x173c,
834 		0x1800, 0x18fc,
835 		0x3000, 0x30d8,
836 		0x30e0, 0x30e4,
837 		0x30ec, 0x5910,
838 		0x5920, 0x5924,
839 		0x5960, 0x5960,
840 		0x5968, 0x5968,
841 		0x5970, 0x5970,
842 		0x5978, 0x5978,
843 		0x5980, 0x5980,
844 		0x5988, 0x5988,
845 		0x5990, 0x5990,
846 		0x5998, 0x5998,
847 		0x59a0, 0x59d4,
848 		0x5a00, 0x5ae0,
849 		0x5ae8, 0x5ae8,
850 		0x5af0, 0x5af0,
851 		0x5af8, 0x5af8,
852 		0x6000, 0x6098,
853 		0x6100, 0x6150,
854 		0x6200, 0x6208,
855 		0x6240, 0x6248,
856 		0x6280, 0x62b0,
857 		0x62c0, 0x6338,
858 		0x6370, 0x638c,
859 		0x6400, 0x643c,
860 		0x6500, 0x6524,
861 		0x6a00, 0x6a04,
862 		0x6a14, 0x6a38,
863 		0x6a60, 0x6a70,
864 		0x6a78, 0x6a78,
865 		0x6b00, 0x6b0c,
866 		0x6b1c, 0x6b84,
867 		0x6bf0, 0x6bf8,
868 		0x6c00, 0x6c0c,
869 		0x6c1c, 0x6c84,
870 		0x6cf0, 0x6cf8,
871 		0x6d00, 0x6d0c,
872 		0x6d1c, 0x6d84,
873 		0x6df0, 0x6df8,
874 		0x6e00, 0x6e0c,
875 		0x6e1c, 0x6e84,
876 		0x6ef0, 0x6ef8,
877 		0x6f00, 0x6f0c,
878 		0x6f1c, 0x6f84,
879 		0x6ff0, 0x6ff8,
880 		0x7000, 0x700c,
881 		0x701c, 0x7084,
882 		0x70f0, 0x70f8,
883 		0x7100, 0x710c,
884 		0x711c, 0x7184,
885 		0x71f0, 0x71f8,
886 		0x7200, 0x720c,
887 		0x721c, 0x7284,
888 		0x72f0, 0x72f8,
889 		0x7300, 0x730c,
890 		0x731c, 0x7384,
891 		0x73f0, 0x73f8,
892 		0x7400, 0x7450,
893 		0x7500, 0x7530,
894 		0x7600, 0x760c,
895 		0x7614, 0x761c,
896 		0x7680, 0x76cc,
897 		0x7700, 0x7798,
898 		0x77c0, 0x77fc,
899 		0x7900, 0x79fc,
900 		0x7b00, 0x7b58,
901 		0x7b60, 0x7b84,
902 		0x7b8c, 0x7c38,
903 		0x7d00, 0x7d38,
904 		0x7d40, 0x7d80,
905 		0x7d8c, 0x7ddc,
906 		0x7de4, 0x7e04,
907 		0x7e10, 0x7e1c,
908 		0x7e24, 0x7e38,
909 		0x7e40, 0x7e44,
910 		0x7e4c, 0x7e78,
911 		0x7e80, 0x7ea4,
912 		0x7eac, 0x7edc,
913 		0x7ee8, 0x7efc,
914 		0x8dc0, 0x8e04,
915 		0x8e10, 0x8e1c,
916 		0x8e30, 0x8e78,
917 		0x8ea0, 0x8eb8,
918 		0x8ec0, 0x8f6c,
919 		0x8fc0, 0x9008,
920 		0x9010, 0x9058,
921 		0x9060, 0x9060,
922 		0x9068, 0x9074,
923 		0x90fc, 0x90fc,
924 		0x9400, 0x9408,
925 		0x9410, 0x9458,
926 		0x9600, 0x9600,
927 		0x9608, 0x9638,
928 		0x9640, 0x96bc,
929 		0x9800, 0x9808,
930 		0x9820, 0x983c,
931 		0x9850, 0x9864,
932 		0x9c00, 0x9c6c,
933 		0x9c80, 0x9cec,
934 		0x9d00, 0x9d6c,
935 		0x9d80, 0x9dec,
936 		0x9e00, 0x9e6c,
937 		0x9e80, 0x9eec,
938 		0x9f00, 0x9f6c,
939 		0x9f80, 0x9fec,
940 		0xd004, 0xd004,
941 		0xd010, 0xd03c,
942 		0xdfc0, 0xdfe0,
943 		0xe000, 0xea7c,
944 		0xf000, 0x11110,
945 		0x11118, 0x11190,
946 		0x19040, 0x1906c,
947 		0x19078, 0x19080,
948 		0x1908c, 0x190e4,
949 		0x190f0, 0x190f8,
950 		0x19100, 0x19110,
951 		0x19120, 0x19124,
952 		0x19150, 0x19194,
953 		0x1919c, 0x191b0,
954 		0x191d0, 0x191e8,
955 		0x19238, 0x1924c,
956 		0x193f8, 0x1943c,
957 		0x1944c, 0x19474,
958 		0x19490, 0x194e0,
959 		0x194f0, 0x194f8,
960 		0x19800, 0x19c08,
961 		0x19c10, 0x19c90,
962 		0x19ca0, 0x19ce4,
963 		0x19cf0, 0x19d40,
964 		0x19d50, 0x19d94,
965 		0x19da0, 0x19de8,
966 		0x19df0, 0x19e40,
967 		0x19e50, 0x19e90,
968 		0x19ea0, 0x19f4c,
969 		0x1a000, 0x1a004,
970 		0x1a010, 0x1a06c,
971 		0x1a0b0, 0x1a0e4,
972 		0x1a0ec, 0x1a0f4,
973 		0x1a100, 0x1a108,
974 		0x1a114, 0x1a120,
975 		0x1a128, 0x1a130,
976 		0x1a138, 0x1a138,
977 		0x1a190, 0x1a1c4,
978 		0x1a1fc, 0x1a1fc,
979 		0x1e040, 0x1e04c,
980 		0x1e284, 0x1e28c,
981 		0x1e2c0, 0x1e2c0,
982 		0x1e2e0, 0x1e2e0,
983 		0x1e300, 0x1e384,
984 		0x1e3c0, 0x1e3c8,
985 		0x1e440, 0x1e44c,
986 		0x1e684, 0x1e68c,
987 		0x1e6c0, 0x1e6c0,
988 		0x1e6e0, 0x1e6e0,
989 		0x1e700, 0x1e784,
990 		0x1e7c0, 0x1e7c8,
991 		0x1e840, 0x1e84c,
992 		0x1ea84, 0x1ea8c,
993 		0x1eac0, 0x1eac0,
994 		0x1eae0, 0x1eae0,
995 		0x1eb00, 0x1eb84,
996 		0x1ebc0, 0x1ebc8,
997 		0x1ec40, 0x1ec4c,
998 		0x1ee84, 0x1ee8c,
999 		0x1eec0, 0x1eec0,
1000 		0x1eee0, 0x1eee0,
1001 		0x1ef00, 0x1ef84,
1002 		0x1efc0, 0x1efc8,
1003 		0x1f040, 0x1f04c,
1004 		0x1f284, 0x1f28c,
1005 		0x1f2c0, 0x1f2c0,
1006 		0x1f2e0, 0x1f2e0,
1007 		0x1f300, 0x1f384,
1008 		0x1f3c0, 0x1f3c8,
1009 		0x1f440, 0x1f44c,
1010 		0x1f684, 0x1f68c,
1011 		0x1f6c0, 0x1f6c0,
1012 		0x1f6e0, 0x1f6e0,
1013 		0x1f700, 0x1f784,
1014 		0x1f7c0, 0x1f7c8,
1015 		0x1f840, 0x1f84c,
1016 		0x1fa84, 0x1fa8c,
1017 		0x1fac0, 0x1fac0,
1018 		0x1fae0, 0x1fae0,
1019 		0x1fb00, 0x1fb84,
1020 		0x1fbc0, 0x1fbc8,
1021 		0x1fc40, 0x1fc4c,
1022 		0x1fe84, 0x1fe8c,
1023 		0x1fec0, 0x1fec0,
1024 		0x1fee0, 0x1fee0,
1025 		0x1ff00, 0x1ff84,
1026 		0x1ffc0, 0x1ffc8,
1027 		0x20000, 0x2002c,
1028 		0x20100, 0x2013c,
1029 		0x20190, 0x201a0,
1030 		0x201a8, 0x201b8,
1031 		0x201c4, 0x201c8,
1032 		0x20200, 0x20318,
1033 		0x20400, 0x204b4,
1034 		0x204c0, 0x20528,
1035 		0x20540, 0x20614,
1036 		0x21000, 0x21040,
1037 		0x2104c, 0x21060,
1038 		0x210c0, 0x210ec,
1039 		0x21200, 0x21268,
1040 		0x21270, 0x21284,
1041 		0x212fc, 0x21388,
1042 		0x21400, 0x21404,
1043 		0x21500, 0x21500,
1044 		0x21510, 0x21518,
1045 		0x2152c, 0x21530,
1046 		0x2153c, 0x2153c,
1047 		0x21550, 0x21554,
1048 		0x21600, 0x21600,
1049 		0x21608, 0x2161c,
1050 		0x21624, 0x21628,
1051 		0x21630, 0x21634,
1052 		0x2163c, 0x2163c,
1053 		0x21700, 0x2171c,
1054 		0x21780, 0x2178c,
1055 		0x21800, 0x21818,
1056 		0x21820, 0x21828,
1057 		0x21830, 0x21848,
1058 		0x21850, 0x21854,
1059 		0x21860, 0x21868,
1060 		0x21870, 0x21870,
1061 		0x21878, 0x21898,
1062 		0x218a0, 0x218a8,
1063 		0x218b0, 0x218c8,
1064 		0x218d0, 0x218d4,
1065 		0x218e0, 0x218e8,
1066 		0x218f0, 0x218f0,
1067 		0x218f8, 0x21a18,
1068 		0x21a20, 0x21a28,
1069 		0x21a30, 0x21a48,
1070 		0x21a50, 0x21a54,
1071 		0x21a60, 0x21a68,
1072 		0x21a70, 0x21a70,
1073 		0x21a78, 0x21a98,
1074 		0x21aa0, 0x21aa8,
1075 		0x21ab0, 0x21ac8,
1076 		0x21ad0, 0x21ad4,
1077 		0x21ae0, 0x21ae8,
1078 		0x21af0, 0x21af0,
1079 		0x21af8, 0x21c18,
1080 		0x21c20, 0x21c20,
1081 		0x21c28, 0x21c30,
1082 		0x21c38, 0x21c38,
1083 		0x21c80, 0x21c98,
1084 		0x21ca0, 0x21ca8,
1085 		0x21cb0, 0x21cc8,
1086 		0x21cd0, 0x21cd4,
1087 		0x21ce0, 0x21ce8,
1088 		0x21cf0, 0x21cf0,
1089 		0x21cf8, 0x21d7c,
1090 		0x21e00, 0x21e04,
1091 		0x22000, 0x2202c,
1092 		0x22100, 0x2213c,
1093 		0x22190, 0x221a0,
1094 		0x221a8, 0x221b8,
1095 		0x221c4, 0x221c8,
1096 		0x22200, 0x22318,
1097 		0x22400, 0x224b4,
1098 		0x224c0, 0x22528,
1099 		0x22540, 0x22614,
1100 		0x23000, 0x23040,
1101 		0x2304c, 0x23060,
1102 		0x230c0, 0x230ec,
1103 		0x23200, 0x23268,
1104 		0x23270, 0x23284,
1105 		0x232fc, 0x23388,
1106 		0x23400, 0x23404,
1107 		0x23500, 0x23500,
1108 		0x23510, 0x23518,
1109 		0x2352c, 0x23530,
1110 		0x2353c, 0x2353c,
1111 		0x23550, 0x23554,
1112 		0x23600, 0x23600,
1113 		0x23608, 0x2361c,
1114 		0x23624, 0x23628,
1115 		0x23630, 0x23634,
1116 		0x2363c, 0x2363c,
1117 		0x23700, 0x2371c,
1118 		0x23780, 0x2378c,
1119 		0x23800, 0x23818,
1120 		0x23820, 0x23828,
1121 		0x23830, 0x23848,
1122 		0x23850, 0x23854,
1123 		0x23860, 0x23868,
1124 		0x23870, 0x23870,
1125 		0x23878, 0x23898,
1126 		0x238a0, 0x238a8,
1127 		0x238b0, 0x238c8,
1128 		0x238d0, 0x238d4,
1129 		0x238e0, 0x238e8,
1130 		0x238f0, 0x238f0,
1131 		0x238f8, 0x23a18,
1132 		0x23a20, 0x23a28,
1133 		0x23a30, 0x23a48,
1134 		0x23a50, 0x23a54,
1135 		0x23a60, 0x23a68,
1136 		0x23a70, 0x23a70,
1137 		0x23a78, 0x23a98,
1138 		0x23aa0, 0x23aa8,
1139 		0x23ab0, 0x23ac8,
1140 		0x23ad0, 0x23ad4,
1141 		0x23ae0, 0x23ae8,
1142 		0x23af0, 0x23af0,
1143 		0x23af8, 0x23c18,
1144 		0x23c20, 0x23c20,
1145 		0x23c28, 0x23c30,
1146 		0x23c38, 0x23c38,
1147 		0x23c80, 0x23c98,
1148 		0x23ca0, 0x23ca8,
1149 		0x23cb0, 0x23cc8,
1150 		0x23cd0, 0x23cd4,
1151 		0x23ce0, 0x23ce8,
1152 		0x23cf0, 0x23cf0,
1153 		0x23cf8, 0x23d7c,
1154 		0x23e00, 0x23e04,
1155 		0x24000, 0x2402c,
1156 		0x24100, 0x2413c,
1157 		0x24190, 0x241a0,
1158 		0x241a8, 0x241b8,
1159 		0x241c4, 0x241c8,
1160 		0x24200, 0x24318,
1161 		0x24400, 0x244b4,
1162 		0x244c0, 0x24528,
1163 		0x24540, 0x24614,
1164 		0x25000, 0x25040,
1165 		0x2504c, 0x25060,
1166 		0x250c0, 0x250ec,
1167 		0x25200, 0x25268,
1168 		0x25270, 0x25284,
1169 		0x252fc, 0x25388,
1170 		0x25400, 0x25404,
1171 		0x25500, 0x25500,
1172 		0x25510, 0x25518,
1173 		0x2552c, 0x25530,
1174 		0x2553c, 0x2553c,
1175 		0x25550, 0x25554,
1176 		0x25600, 0x25600,
1177 		0x25608, 0x2561c,
1178 		0x25624, 0x25628,
1179 		0x25630, 0x25634,
1180 		0x2563c, 0x2563c,
1181 		0x25700, 0x2571c,
1182 		0x25780, 0x2578c,
1183 		0x25800, 0x25818,
1184 		0x25820, 0x25828,
1185 		0x25830, 0x25848,
1186 		0x25850, 0x25854,
1187 		0x25860, 0x25868,
1188 		0x25870, 0x25870,
1189 		0x25878, 0x25898,
1190 		0x258a0, 0x258a8,
1191 		0x258b0, 0x258c8,
1192 		0x258d0, 0x258d4,
1193 		0x258e0, 0x258e8,
1194 		0x258f0, 0x258f0,
1195 		0x258f8, 0x25a18,
1196 		0x25a20, 0x25a28,
1197 		0x25a30, 0x25a48,
1198 		0x25a50, 0x25a54,
1199 		0x25a60, 0x25a68,
1200 		0x25a70, 0x25a70,
1201 		0x25a78, 0x25a98,
1202 		0x25aa0, 0x25aa8,
1203 		0x25ab0, 0x25ac8,
1204 		0x25ad0, 0x25ad4,
1205 		0x25ae0, 0x25ae8,
1206 		0x25af0, 0x25af0,
1207 		0x25af8, 0x25c18,
1208 		0x25c20, 0x25c20,
1209 		0x25c28, 0x25c30,
1210 		0x25c38, 0x25c38,
1211 		0x25c80, 0x25c98,
1212 		0x25ca0, 0x25ca8,
1213 		0x25cb0, 0x25cc8,
1214 		0x25cd0, 0x25cd4,
1215 		0x25ce0, 0x25ce8,
1216 		0x25cf0, 0x25cf0,
1217 		0x25cf8, 0x25d7c,
1218 		0x25e00, 0x25e04,
1219 		0x26000, 0x2602c,
1220 		0x26100, 0x2613c,
1221 		0x26190, 0x261a0,
1222 		0x261a8, 0x261b8,
1223 		0x261c4, 0x261c8,
1224 		0x26200, 0x26318,
1225 		0x26400, 0x264b4,
1226 		0x264c0, 0x26528,
1227 		0x26540, 0x26614,
1228 		0x27000, 0x27040,
1229 		0x2704c, 0x27060,
1230 		0x270c0, 0x270ec,
1231 		0x27200, 0x27268,
1232 		0x27270, 0x27284,
1233 		0x272fc, 0x27388,
1234 		0x27400, 0x27404,
1235 		0x27500, 0x27500,
1236 		0x27510, 0x27518,
1237 		0x2752c, 0x27530,
1238 		0x2753c, 0x2753c,
1239 		0x27550, 0x27554,
1240 		0x27600, 0x27600,
1241 		0x27608, 0x2761c,
1242 		0x27624, 0x27628,
1243 		0x27630, 0x27634,
1244 		0x2763c, 0x2763c,
1245 		0x27700, 0x2771c,
1246 		0x27780, 0x2778c,
1247 		0x27800, 0x27818,
1248 		0x27820, 0x27828,
1249 		0x27830, 0x27848,
1250 		0x27850, 0x27854,
1251 		0x27860, 0x27868,
1252 		0x27870, 0x27870,
1253 		0x27878, 0x27898,
1254 		0x278a0, 0x278a8,
1255 		0x278b0, 0x278c8,
1256 		0x278d0, 0x278d4,
1257 		0x278e0, 0x278e8,
1258 		0x278f0, 0x278f0,
1259 		0x278f8, 0x27a18,
1260 		0x27a20, 0x27a28,
1261 		0x27a30, 0x27a48,
1262 		0x27a50, 0x27a54,
1263 		0x27a60, 0x27a68,
1264 		0x27a70, 0x27a70,
1265 		0x27a78, 0x27a98,
1266 		0x27aa0, 0x27aa8,
1267 		0x27ab0, 0x27ac8,
1268 		0x27ad0, 0x27ad4,
1269 		0x27ae0, 0x27ae8,
1270 		0x27af0, 0x27af0,
1271 		0x27af8, 0x27c18,
1272 		0x27c20, 0x27c20,
1273 		0x27c28, 0x27c30,
1274 		0x27c38, 0x27c38,
1275 		0x27c80, 0x27c98,
1276 		0x27ca0, 0x27ca8,
1277 		0x27cb0, 0x27cc8,
1278 		0x27cd0, 0x27cd4,
1279 		0x27ce0, 0x27ce8,
1280 		0x27cf0, 0x27cf0,
1281 		0x27cf8, 0x27d7c,
1282 		0x27e00, 0x27e04,
1283 	};
1284 
1285 	static const unsigned int t4vf_reg_ranges[] = {
1286 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1287 		VF_MPS_REG(A_MPS_VF_CTL),
1288 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1289 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1290 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1291 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1292 		FW_T4VF_MBDATA_BASE_ADDR,
1293 		FW_T4VF_MBDATA_BASE_ADDR +
1294 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1295 	};
1296 
1297 	static const unsigned int t5_reg_ranges[] = {
1298 		0x1008, 0x10c0,
1299 		0x10cc, 0x10f8,
1300 		0x1100, 0x1100,
1301 		0x110c, 0x1148,
1302 		0x1180, 0x1184,
1303 		0x1190, 0x1194,
1304 		0x11a0, 0x11a4,
1305 		0x11b0, 0x11b4,
1306 		0x11fc, 0x123c,
1307 		0x1280, 0x173c,
1308 		0x1800, 0x18fc,
1309 		0x3000, 0x3028,
1310 		0x3060, 0x30b0,
1311 		0x30b8, 0x30d8,
1312 		0x30e0, 0x30fc,
1313 		0x3140, 0x357c,
1314 		0x35a8, 0x35cc,
1315 		0x35ec, 0x35ec,
1316 		0x3600, 0x5624,
1317 		0x56cc, 0x56ec,
1318 		0x56f4, 0x5720,
1319 		0x5728, 0x575c,
1320 		0x580c, 0x5814,
1321 		0x5890, 0x589c,
1322 		0x58a4, 0x58ac,
1323 		0x58b8, 0x58bc,
1324 		0x5940, 0x59c8,
1325 		0x59d0, 0x59dc,
1326 		0x59fc, 0x5a18,
1327 		0x5a60, 0x5a70,
1328 		0x5a80, 0x5a9c,
1329 		0x5b94, 0x5bfc,
1330 		0x6000, 0x6020,
1331 		0x6028, 0x6040,
1332 		0x6058, 0x609c,
1333 		0x60a8, 0x614c,
1334 		0x7700, 0x7798,
1335 		0x77c0, 0x78fc,
1336 		0x7b00, 0x7b58,
1337 		0x7b60, 0x7b84,
1338 		0x7b8c, 0x7c54,
1339 		0x7d00, 0x7d38,
1340 		0x7d40, 0x7d80,
1341 		0x7d8c, 0x7ddc,
1342 		0x7de4, 0x7e04,
1343 		0x7e10, 0x7e1c,
1344 		0x7e24, 0x7e38,
1345 		0x7e40, 0x7e44,
1346 		0x7e4c, 0x7e78,
1347 		0x7e80, 0x7edc,
1348 		0x7ee8, 0x7efc,
1349 		0x8dc0, 0x8de0,
1350 		0x8df8, 0x8e04,
1351 		0x8e10, 0x8e84,
1352 		0x8ea0, 0x8f84,
1353 		0x8fc0, 0x9058,
1354 		0x9060, 0x9060,
1355 		0x9068, 0x90f8,
1356 		0x9400, 0x9408,
1357 		0x9410, 0x9470,
1358 		0x9600, 0x9600,
1359 		0x9608, 0x9638,
1360 		0x9640, 0x96f4,
1361 		0x9800, 0x9808,
1362 		0x9810, 0x9864,
1363 		0x9c00, 0x9c6c,
1364 		0x9c80, 0x9cec,
1365 		0x9d00, 0x9d6c,
1366 		0x9d80, 0x9dec,
1367 		0x9e00, 0x9e6c,
1368 		0x9e80, 0x9eec,
1369 		0x9f00, 0x9f6c,
1370 		0x9f80, 0xa020,
1371 		0xd000, 0xd004,
1372 		0xd010, 0xd03c,
1373 		0xdfc0, 0xdfe0,
1374 		0xe000, 0x1106c,
1375 		0x11074, 0x11088,
1376 		0x1109c, 0x11110,
1377 		0x11118, 0x1117c,
1378 		0x11190, 0x11204,
1379 		0x19040, 0x1906c,
1380 		0x19078, 0x19080,
1381 		0x1908c, 0x190e8,
1382 		0x190f0, 0x190f8,
1383 		0x19100, 0x19110,
1384 		0x19120, 0x19124,
1385 		0x19150, 0x19194,
1386 		0x1919c, 0x191b0,
1387 		0x191d0, 0x191e8,
1388 		0x19238, 0x19290,
1389 		0x193f8, 0x19428,
1390 		0x19430, 0x19444,
1391 		0x1944c, 0x1946c,
1392 		0x19474, 0x19474,
1393 		0x19490, 0x194cc,
1394 		0x194f0, 0x194f8,
1395 		0x19c00, 0x19c08,
1396 		0x19c10, 0x19c60,
1397 		0x19c94, 0x19ce4,
1398 		0x19cf0, 0x19d40,
1399 		0x19d50, 0x19d94,
1400 		0x19da0, 0x19de8,
1401 		0x19df0, 0x19e10,
1402 		0x19e50, 0x19e90,
1403 		0x19ea0, 0x19f24,
1404 		0x19f34, 0x19f34,
1405 		0x19f40, 0x19f50,
1406 		0x19f90, 0x19fb4,
1407 		0x19fc4, 0x19fe4,
1408 		0x1a000, 0x1a004,
1409 		0x1a010, 0x1a06c,
1410 		0x1a0b0, 0x1a0e4,
1411 		0x1a0ec, 0x1a0f8,
1412 		0x1a100, 0x1a108,
1413 		0x1a114, 0x1a130,
1414 		0x1a138, 0x1a1c4,
1415 		0x1a1fc, 0x1a1fc,
1416 		0x1e008, 0x1e00c,
1417 		0x1e040, 0x1e044,
1418 		0x1e04c, 0x1e04c,
1419 		0x1e284, 0x1e290,
1420 		0x1e2c0, 0x1e2c0,
1421 		0x1e2e0, 0x1e2e0,
1422 		0x1e300, 0x1e384,
1423 		0x1e3c0, 0x1e3c8,
1424 		0x1e408, 0x1e40c,
1425 		0x1e440, 0x1e444,
1426 		0x1e44c, 0x1e44c,
1427 		0x1e684, 0x1e690,
1428 		0x1e6c0, 0x1e6c0,
1429 		0x1e6e0, 0x1e6e0,
1430 		0x1e700, 0x1e784,
1431 		0x1e7c0, 0x1e7c8,
1432 		0x1e808, 0x1e80c,
1433 		0x1e840, 0x1e844,
1434 		0x1e84c, 0x1e84c,
1435 		0x1ea84, 0x1ea90,
1436 		0x1eac0, 0x1eac0,
1437 		0x1eae0, 0x1eae0,
1438 		0x1eb00, 0x1eb84,
1439 		0x1ebc0, 0x1ebc8,
1440 		0x1ec08, 0x1ec0c,
1441 		0x1ec40, 0x1ec44,
1442 		0x1ec4c, 0x1ec4c,
1443 		0x1ee84, 0x1ee90,
1444 		0x1eec0, 0x1eec0,
1445 		0x1eee0, 0x1eee0,
1446 		0x1ef00, 0x1ef84,
1447 		0x1efc0, 0x1efc8,
1448 		0x1f008, 0x1f00c,
1449 		0x1f040, 0x1f044,
1450 		0x1f04c, 0x1f04c,
1451 		0x1f284, 0x1f290,
1452 		0x1f2c0, 0x1f2c0,
1453 		0x1f2e0, 0x1f2e0,
1454 		0x1f300, 0x1f384,
1455 		0x1f3c0, 0x1f3c8,
1456 		0x1f408, 0x1f40c,
1457 		0x1f440, 0x1f444,
1458 		0x1f44c, 0x1f44c,
1459 		0x1f684, 0x1f690,
1460 		0x1f6c0, 0x1f6c0,
1461 		0x1f6e0, 0x1f6e0,
1462 		0x1f700, 0x1f784,
1463 		0x1f7c0, 0x1f7c8,
1464 		0x1f808, 0x1f80c,
1465 		0x1f840, 0x1f844,
1466 		0x1f84c, 0x1f84c,
1467 		0x1fa84, 0x1fa90,
1468 		0x1fac0, 0x1fac0,
1469 		0x1fae0, 0x1fae0,
1470 		0x1fb00, 0x1fb84,
1471 		0x1fbc0, 0x1fbc8,
1472 		0x1fc08, 0x1fc0c,
1473 		0x1fc40, 0x1fc44,
1474 		0x1fc4c, 0x1fc4c,
1475 		0x1fe84, 0x1fe90,
1476 		0x1fec0, 0x1fec0,
1477 		0x1fee0, 0x1fee0,
1478 		0x1ff00, 0x1ff84,
1479 		0x1ffc0, 0x1ffc8,
1480 		0x30000, 0x30030,
1481 		0x30100, 0x30144,
1482 		0x30190, 0x301a0,
1483 		0x301a8, 0x301b8,
1484 		0x301c4, 0x301c8,
1485 		0x301d0, 0x301d0,
1486 		0x30200, 0x30318,
1487 		0x30400, 0x304b4,
1488 		0x304c0, 0x3052c,
1489 		0x30540, 0x3061c,
1490 		0x30800, 0x30828,
1491 		0x30834, 0x30834,
1492 		0x308c0, 0x30908,
1493 		0x30910, 0x309ac,
1494 		0x30a00, 0x30a14,
1495 		0x30a1c, 0x30a2c,
1496 		0x30a44, 0x30a50,
1497 		0x30a74, 0x30a74,
1498 		0x30a7c, 0x30afc,
1499 		0x30b08, 0x30c24,
1500 		0x30d00, 0x30d00,
1501 		0x30d08, 0x30d14,
1502 		0x30d1c, 0x30d20,
1503 		0x30d3c, 0x30d3c,
1504 		0x30d48, 0x30d50,
1505 		0x31200, 0x3120c,
1506 		0x31220, 0x31220,
1507 		0x31240, 0x31240,
1508 		0x31600, 0x3160c,
1509 		0x31a00, 0x31a1c,
1510 		0x31e00, 0x31e20,
1511 		0x31e38, 0x31e3c,
1512 		0x31e80, 0x31e80,
1513 		0x31e88, 0x31ea8,
1514 		0x31eb0, 0x31eb4,
1515 		0x31ec8, 0x31ed4,
1516 		0x31fb8, 0x32004,
1517 		0x32200, 0x32200,
1518 		0x32208, 0x32240,
1519 		0x32248, 0x32280,
1520 		0x32288, 0x322c0,
1521 		0x322c8, 0x322fc,
1522 		0x32600, 0x32630,
1523 		0x32a00, 0x32abc,
1524 		0x32b00, 0x32b10,
1525 		0x32b20, 0x32b30,
1526 		0x32b40, 0x32b50,
1527 		0x32b60, 0x32b70,
1528 		0x33000, 0x33028,
1529 		0x33030, 0x33048,
1530 		0x33060, 0x33068,
1531 		0x33070, 0x3309c,
1532 		0x330f0, 0x33128,
1533 		0x33130, 0x33148,
1534 		0x33160, 0x33168,
1535 		0x33170, 0x3319c,
1536 		0x331f0, 0x33238,
1537 		0x33240, 0x33240,
1538 		0x33248, 0x33250,
1539 		0x3325c, 0x33264,
1540 		0x33270, 0x332b8,
1541 		0x332c0, 0x332e4,
1542 		0x332f8, 0x33338,
1543 		0x33340, 0x33340,
1544 		0x33348, 0x33350,
1545 		0x3335c, 0x33364,
1546 		0x33370, 0x333b8,
1547 		0x333c0, 0x333e4,
1548 		0x333f8, 0x33428,
1549 		0x33430, 0x33448,
1550 		0x33460, 0x33468,
1551 		0x33470, 0x3349c,
1552 		0x334f0, 0x33528,
1553 		0x33530, 0x33548,
1554 		0x33560, 0x33568,
1555 		0x33570, 0x3359c,
1556 		0x335f0, 0x33638,
1557 		0x33640, 0x33640,
1558 		0x33648, 0x33650,
1559 		0x3365c, 0x33664,
1560 		0x33670, 0x336b8,
1561 		0x336c0, 0x336e4,
1562 		0x336f8, 0x33738,
1563 		0x33740, 0x33740,
1564 		0x33748, 0x33750,
1565 		0x3375c, 0x33764,
1566 		0x33770, 0x337b8,
1567 		0x337c0, 0x337e4,
1568 		0x337f8, 0x337fc,
1569 		0x33814, 0x33814,
1570 		0x3382c, 0x3382c,
1571 		0x33880, 0x3388c,
1572 		0x338e8, 0x338ec,
1573 		0x33900, 0x33928,
1574 		0x33930, 0x33948,
1575 		0x33960, 0x33968,
1576 		0x33970, 0x3399c,
1577 		0x339f0, 0x33a38,
1578 		0x33a40, 0x33a40,
1579 		0x33a48, 0x33a50,
1580 		0x33a5c, 0x33a64,
1581 		0x33a70, 0x33ab8,
1582 		0x33ac0, 0x33ae4,
1583 		0x33af8, 0x33b10,
1584 		0x33b28, 0x33b28,
1585 		0x33b3c, 0x33b50,
1586 		0x33bf0, 0x33c10,
1587 		0x33c28, 0x33c28,
1588 		0x33c3c, 0x33c50,
1589 		0x33cf0, 0x33cfc,
1590 		0x34000, 0x34030,
1591 		0x34100, 0x34144,
1592 		0x34190, 0x341a0,
1593 		0x341a8, 0x341b8,
1594 		0x341c4, 0x341c8,
1595 		0x341d0, 0x341d0,
1596 		0x34200, 0x34318,
1597 		0x34400, 0x344b4,
1598 		0x344c0, 0x3452c,
1599 		0x34540, 0x3461c,
1600 		0x34800, 0x34828,
1601 		0x34834, 0x34834,
1602 		0x348c0, 0x34908,
1603 		0x34910, 0x349ac,
1604 		0x34a00, 0x34a14,
1605 		0x34a1c, 0x34a2c,
1606 		0x34a44, 0x34a50,
1607 		0x34a74, 0x34a74,
1608 		0x34a7c, 0x34afc,
1609 		0x34b08, 0x34c24,
1610 		0x34d00, 0x34d00,
1611 		0x34d08, 0x34d14,
1612 		0x34d1c, 0x34d20,
1613 		0x34d3c, 0x34d3c,
1614 		0x34d48, 0x34d50,
1615 		0x35200, 0x3520c,
1616 		0x35220, 0x35220,
1617 		0x35240, 0x35240,
1618 		0x35600, 0x3560c,
1619 		0x35a00, 0x35a1c,
1620 		0x35e00, 0x35e20,
1621 		0x35e38, 0x35e3c,
1622 		0x35e80, 0x35e80,
1623 		0x35e88, 0x35ea8,
1624 		0x35eb0, 0x35eb4,
1625 		0x35ec8, 0x35ed4,
1626 		0x35fb8, 0x36004,
1627 		0x36200, 0x36200,
1628 		0x36208, 0x36240,
1629 		0x36248, 0x36280,
1630 		0x36288, 0x362c0,
1631 		0x362c8, 0x362fc,
1632 		0x36600, 0x36630,
1633 		0x36a00, 0x36abc,
1634 		0x36b00, 0x36b10,
1635 		0x36b20, 0x36b30,
1636 		0x36b40, 0x36b50,
1637 		0x36b60, 0x36b70,
1638 		0x37000, 0x37028,
1639 		0x37030, 0x37048,
1640 		0x37060, 0x37068,
1641 		0x37070, 0x3709c,
1642 		0x370f0, 0x37128,
1643 		0x37130, 0x37148,
1644 		0x37160, 0x37168,
1645 		0x37170, 0x3719c,
1646 		0x371f0, 0x37238,
1647 		0x37240, 0x37240,
1648 		0x37248, 0x37250,
1649 		0x3725c, 0x37264,
1650 		0x37270, 0x372b8,
1651 		0x372c0, 0x372e4,
1652 		0x372f8, 0x37338,
1653 		0x37340, 0x37340,
1654 		0x37348, 0x37350,
1655 		0x3735c, 0x37364,
1656 		0x37370, 0x373b8,
1657 		0x373c0, 0x373e4,
1658 		0x373f8, 0x37428,
1659 		0x37430, 0x37448,
1660 		0x37460, 0x37468,
1661 		0x37470, 0x3749c,
1662 		0x374f0, 0x37528,
1663 		0x37530, 0x37548,
1664 		0x37560, 0x37568,
1665 		0x37570, 0x3759c,
1666 		0x375f0, 0x37638,
1667 		0x37640, 0x37640,
1668 		0x37648, 0x37650,
1669 		0x3765c, 0x37664,
1670 		0x37670, 0x376b8,
1671 		0x376c0, 0x376e4,
1672 		0x376f8, 0x37738,
1673 		0x37740, 0x37740,
1674 		0x37748, 0x37750,
1675 		0x3775c, 0x37764,
1676 		0x37770, 0x377b8,
1677 		0x377c0, 0x377e4,
1678 		0x377f8, 0x377fc,
1679 		0x37814, 0x37814,
1680 		0x3782c, 0x3782c,
1681 		0x37880, 0x3788c,
1682 		0x378e8, 0x378ec,
1683 		0x37900, 0x37928,
1684 		0x37930, 0x37948,
1685 		0x37960, 0x37968,
1686 		0x37970, 0x3799c,
1687 		0x379f0, 0x37a38,
1688 		0x37a40, 0x37a40,
1689 		0x37a48, 0x37a50,
1690 		0x37a5c, 0x37a64,
1691 		0x37a70, 0x37ab8,
1692 		0x37ac0, 0x37ae4,
1693 		0x37af8, 0x37b10,
1694 		0x37b28, 0x37b28,
1695 		0x37b3c, 0x37b50,
1696 		0x37bf0, 0x37c10,
1697 		0x37c28, 0x37c28,
1698 		0x37c3c, 0x37c50,
1699 		0x37cf0, 0x37cfc,
1700 		0x38000, 0x38030,
1701 		0x38100, 0x38144,
1702 		0x38190, 0x381a0,
1703 		0x381a8, 0x381b8,
1704 		0x381c4, 0x381c8,
1705 		0x381d0, 0x381d0,
1706 		0x38200, 0x38318,
1707 		0x38400, 0x384b4,
1708 		0x384c0, 0x3852c,
1709 		0x38540, 0x3861c,
1710 		0x38800, 0x38828,
1711 		0x38834, 0x38834,
1712 		0x388c0, 0x38908,
1713 		0x38910, 0x389ac,
1714 		0x38a00, 0x38a14,
1715 		0x38a1c, 0x38a2c,
1716 		0x38a44, 0x38a50,
1717 		0x38a74, 0x38a74,
1718 		0x38a7c, 0x38afc,
1719 		0x38b08, 0x38c24,
1720 		0x38d00, 0x38d00,
1721 		0x38d08, 0x38d14,
1722 		0x38d1c, 0x38d20,
1723 		0x38d3c, 0x38d3c,
1724 		0x38d48, 0x38d50,
1725 		0x39200, 0x3920c,
1726 		0x39220, 0x39220,
1727 		0x39240, 0x39240,
1728 		0x39600, 0x3960c,
1729 		0x39a00, 0x39a1c,
1730 		0x39e00, 0x39e20,
1731 		0x39e38, 0x39e3c,
1732 		0x39e80, 0x39e80,
1733 		0x39e88, 0x39ea8,
1734 		0x39eb0, 0x39eb4,
1735 		0x39ec8, 0x39ed4,
1736 		0x39fb8, 0x3a004,
1737 		0x3a200, 0x3a200,
1738 		0x3a208, 0x3a240,
1739 		0x3a248, 0x3a280,
1740 		0x3a288, 0x3a2c0,
1741 		0x3a2c8, 0x3a2fc,
1742 		0x3a600, 0x3a630,
1743 		0x3aa00, 0x3aabc,
1744 		0x3ab00, 0x3ab10,
1745 		0x3ab20, 0x3ab30,
1746 		0x3ab40, 0x3ab50,
1747 		0x3ab60, 0x3ab70,
1748 		0x3b000, 0x3b028,
1749 		0x3b030, 0x3b048,
1750 		0x3b060, 0x3b068,
1751 		0x3b070, 0x3b09c,
1752 		0x3b0f0, 0x3b128,
1753 		0x3b130, 0x3b148,
1754 		0x3b160, 0x3b168,
1755 		0x3b170, 0x3b19c,
1756 		0x3b1f0, 0x3b238,
1757 		0x3b240, 0x3b240,
1758 		0x3b248, 0x3b250,
1759 		0x3b25c, 0x3b264,
1760 		0x3b270, 0x3b2b8,
1761 		0x3b2c0, 0x3b2e4,
1762 		0x3b2f8, 0x3b338,
1763 		0x3b340, 0x3b340,
1764 		0x3b348, 0x3b350,
1765 		0x3b35c, 0x3b364,
1766 		0x3b370, 0x3b3b8,
1767 		0x3b3c0, 0x3b3e4,
1768 		0x3b3f8, 0x3b428,
1769 		0x3b430, 0x3b448,
1770 		0x3b460, 0x3b468,
1771 		0x3b470, 0x3b49c,
1772 		0x3b4f0, 0x3b528,
1773 		0x3b530, 0x3b548,
1774 		0x3b560, 0x3b568,
1775 		0x3b570, 0x3b59c,
1776 		0x3b5f0, 0x3b638,
1777 		0x3b640, 0x3b640,
1778 		0x3b648, 0x3b650,
1779 		0x3b65c, 0x3b664,
1780 		0x3b670, 0x3b6b8,
1781 		0x3b6c0, 0x3b6e4,
1782 		0x3b6f8, 0x3b738,
1783 		0x3b740, 0x3b740,
1784 		0x3b748, 0x3b750,
1785 		0x3b75c, 0x3b764,
1786 		0x3b770, 0x3b7b8,
1787 		0x3b7c0, 0x3b7e4,
1788 		0x3b7f8, 0x3b7fc,
1789 		0x3b814, 0x3b814,
1790 		0x3b82c, 0x3b82c,
1791 		0x3b880, 0x3b88c,
1792 		0x3b8e8, 0x3b8ec,
1793 		0x3b900, 0x3b928,
1794 		0x3b930, 0x3b948,
1795 		0x3b960, 0x3b968,
1796 		0x3b970, 0x3b99c,
1797 		0x3b9f0, 0x3ba38,
1798 		0x3ba40, 0x3ba40,
1799 		0x3ba48, 0x3ba50,
1800 		0x3ba5c, 0x3ba64,
1801 		0x3ba70, 0x3bab8,
1802 		0x3bac0, 0x3bae4,
1803 		0x3baf8, 0x3bb10,
1804 		0x3bb28, 0x3bb28,
1805 		0x3bb3c, 0x3bb50,
1806 		0x3bbf0, 0x3bc10,
1807 		0x3bc28, 0x3bc28,
1808 		0x3bc3c, 0x3bc50,
1809 		0x3bcf0, 0x3bcfc,
1810 		0x3c000, 0x3c030,
1811 		0x3c100, 0x3c144,
1812 		0x3c190, 0x3c1a0,
1813 		0x3c1a8, 0x3c1b8,
1814 		0x3c1c4, 0x3c1c8,
1815 		0x3c1d0, 0x3c1d0,
1816 		0x3c200, 0x3c318,
1817 		0x3c400, 0x3c4b4,
1818 		0x3c4c0, 0x3c52c,
1819 		0x3c540, 0x3c61c,
1820 		0x3c800, 0x3c828,
1821 		0x3c834, 0x3c834,
1822 		0x3c8c0, 0x3c908,
1823 		0x3c910, 0x3c9ac,
1824 		0x3ca00, 0x3ca14,
1825 		0x3ca1c, 0x3ca2c,
1826 		0x3ca44, 0x3ca50,
1827 		0x3ca74, 0x3ca74,
1828 		0x3ca7c, 0x3cafc,
1829 		0x3cb08, 0x3cc24,
1830 		0x3cd00, 0x3cd00,
1831 		0x3cd08, 0x3cd14,
1832 		0x3cd1c, 0x3cd20,
1833 		0x3cd3c, 0x3cd3c,
1834 		0x3cd48, 0x3cd50,
1835 		0x3d200, 0x3d20c,
1836 		0x3d220, 0x3d220,
1837 		0x3d240, 0x3d240,
1838 		0x3d600, 0x3d60c,
1839 		0x3da00, 0x3da1c,
1840 		0x3de00, 0x3de20,
1841 		0x3de38, 0x3de3c,
1842 		0x3de80, 0x3de80,
1843 		0x3de88, 0x3dea8,
1844 		0x3deb0, 0x3deb4,
1845 		0x3dec8, 0x3ded4,
1846 		0x3dfb8, 0x3e004,
1847 		0x3e200, 0x3e200,
1848 		0x3e208, 0x3e240,
1849 		0x3e248, 0x3e280,
1850 		0x3e288, 0x3e2c0,
1851 		0x3e2c8, 0x3e2fc,
1852 		0x3e600, 0x3e630,
1853 		0x3ea00, 0x3eabc,
1854 		0x3eb00, 0x3eb10,
1855 		0x3eb20, 0x3eb30,
1856 		0x3eb40, 0x3eb50,
1857 		0x3eb60, 0x3eb70,
1858 		0x3f000, 0x3f028,
1859 		0x3f030, 0x3f048,
1860 		0x3f060, 0x3f068,
1861 		0x3f070, 0x3f09c,
1862 		0x3f0f0, 0x3f128,
1863 		0x3f130, 0x3f148,
1864 		0x3f160, 0x3f168,
1865 		0x3f170, 0x3f19c,
1866 		0x3f1f0, 0x3f238,
1867 		0x3f240, 0x3f240,
1868 		0x3f248, 0x3f250,
1869 		0x3f25c, 0x3f264,
1870 		0x3f270, 0x3f2b8,
1871 		0x3f2c0, 0x3f2e4,
1872 		0x3f2f8, 0x3f338,
1873 		0x3f340, 0x3f340,
1874 		0x3f348, 0x3f350,
1875 		0x3f35c, 0x3f364,
1876 		0x3f370, 0x3f3b8,
1877 		0x3f3c0, 0x3f3e4,
1878 		0x3f3f8, 0x3f428,
1879 		0x3f430, 0x3f448,
1880 		0x3f460, 0x3f468,
1881 		0x3f470, 0x3f49c,
1882 		0x3f4f0, 0x3f528,
1883 		0x3f530, 0x3f548,
1884 		0x3f560, 0x3f568,
1885 		0x3f570, 0x3f59c,
1886 		0x3f5f0, 0x3f638,
1887 		0x3f640, 0x3f640,
1888 		0x3f648, 0x3f650,
1889 		0x3f65c, 0x3f664,
1890 		0x3f670, 0x3f6b8,
1891 		0x3f6c0, 0x3f6e4,
1892 		0x3f6f8, 0x3f738,
1893 		0x3f740, 0x3f740,
1894 		0x3f748, 0x3f750,
1895 		0x3f75c, 0x3f764,
1896 		0x3f770, 0x3f7b8,
1897 		0x3f7c0, 0x3f7e4,
1898 		0x3f7f8, 0x3f7fc,
1899 		0x3f814, 0x3f814,
1900 		0x3f82c, 0x3f82c,
1901 		0x3f880, 0x3f88c,
1902 		0x3f8e8, 0x3f8ec,
1903 		0x3f900, 0x3f928,
1904 		0x3f930, 0x3f948,
1905 		0x3f960, 0x3f968,
1906 		0x3f970, 0x3f99c,
1907 		0x3f9f0, 0x3fa38,
1908 		0x3fa40, 0x3fa40,
1909 		0x3fa48, 0x3fa50,
1910 		0x3fa5c, 0x3fa64,
1911 		0x3fa70, 0x3fab8,
1912 		0x3fac0, 0x3fae4,
1913 		0x3faf8, 0x3fb10,
1914 		0x3fb28, 0x3fb28,
1915 		0x3fb3c, 0x3fb50,
1916 		0x3fbf0, 0x3fc10,
1917 		0x3fc28, 0x3fc28,
1918 		0x3fc3c, 0x3fc50,
1919 		0x3fcf0, 0x3fcfc,
1920 		0x40000, 0x4000c,
1921 		0x40040, 0x40050,
1922 		0x40060, 0x40068,
1923 		0x4007c, 0x4008c,
1924 		0x40094, 0x400b0,
1925 		0x400c0, 0x40144,
1926 		0x40180, 0x4018c,
1927 		0x40200, 0x40254,
1928 		0x40260, 0x40264,
1929 		0x40270, 0x40288,
1930 		0x40290, 0x40298,
1931 		0x402ac, 0x402c8,
1932 		0x402d0, 0x402e0,
1933 		0x402f0, 0x402f0,
1934 		0x40300, 0x4033c,
1935 		0x403f8, 0x403fc,
1936 		0x41304, 0x413c4,
1937 		0x41400, 0x4140c,
1938 		0x41414, 0x4141c,
1939 		0x41480, 0x414d0,
1940 		0x44000, 0x44054,
1941 		0x4405c, 0x44078,
1942 		0x440c0, 0x44174,
1943 		0x44180, 0x441ac,
1944 		0x441b4, 0x441b8,
1945 		0x441c0, 0x44254,
1946 		0x4425c, 0x44278,
1947 		0x442c0, 0x44374,
1948 		0x44380, 0x443ac,
1949 		0x443b4, 0x443b8,
1950 		0x443c0, 0x44454,
1951 		0x4445c, 0x44478,
1952 		0x444c0, 0x44574,
1953 		0x44580, 0x445ac,
1954 		0x445b4, 0x445b8,
1955 		0x445c0, 0x44654,
1956 		0x4465c, 0x44678,
1957 		0x446c0, 0x44774,
1958 		0x44780, 0x447ac,
1959 		0x447b4, 0x447b8,
1960 		0x447c0, 0x44854,
1961 		0x4485c, 0x44878,
1962 		0x448c0, 0x44974,
1963 		0x44980, 0x449ac,
1964 		0x449b4, 0x449b8,
1965 		0x449c0, 0x449fc,
1966 		0x45000, 0x45004,
1967 		0x45010, 0x45030,
1968 		0x45040, 0x45060,
1969 		0x45068, 0x45068,
1970 		0x45080, 0x45084,
1971 		0x450a0, 0x450b0,
1972 		0x45200, 0x45204,
1973 		0x45210, 0x45230,
1974 		0x45240, 0x45260,
1975 		0x45268, 0x45268,
1976 		0x45280, 0x45284,
1977 		0x452a0, 0x452b0,
1978 		0x460c0, 0x460e4,
1979 		0x47000, 0x4703c,
1980 		0x47044, 0x4708c,
1981 		0x47200, 0x47250,
1982 		0x47400, 0x47408,
1983 		0x47414, 0x47420,
1984 		0x47600, 0x47618,
1985 		0x47800, 0x47814,
1986 		0x48000, 0x4800c,
1987 		0x48040, 0x48050,
1988 		0x48060, 0x48068,
1989 		0x4807c, 0x4808c,
1990 		0x48094, 0x480b0,
1991 		0x480c0, 0x48144,
1992 		0x48180, 0x4818c,
1993 		0x48200, 0x48254,
1994 		0x48260, 0x48264,
1995 		0x48270, 0x48288,
1996 		0x48290, 0x48298,
1997 		0x482ac, 0x482c8,
1998 		0x482d0, 0x482e0,
1999 		0x482f0, 0x482f0,
2000 		0x48300, 0x4833c,
2001 		0x483f8, 0x483fc,
2002 		0x49304, 0x493c4,
2003 		0x49400, 0x4940c,
2004 		0x49414, 0x4941c,
2005 		0x49480, 0x494d0,
2006 		0x4c000, 0x4c054,
2007 		0x4c05c, 0x4c078,
2008 		0x4c0c0, 0x4c174,
2009 		0x4c180, 0x4c1ac,
2010 		0x4c1b4, 0x4c1b8,
2011 		0x4c1c0, 0x4c254,
2012 		0x4c25c, 0x4c278,
2013 		0x4c2c0, 0x4c374,
2014 		0x4c380, 0x4c3ac,
2015 		0x4c3b4, 0x4c3b8,
2016 		0x4c3c0, 0x4c454,
2017 		0x4c45c, 0x4c478,
2018 		0x4c4c0, 0x4c574,
2019 		0x4c580, 0x4c5ac,
2020 		0x4c5b4, 0x4c5b8,
2021 		0x4c5c0, 0x4c654,
2022 		0x4c65c, 0x4c678,
2023 		0x4c6c0, 0x4c774,
2024 		0x4c780, 0x4c7ac,
2025 		0x4c7b4, 0x4c7b8,
2026 		0x4c7c0, 0x4c854,
2027 		0x4c85c, 0x4c878,
2028 		0x4c8c0, 0x4c974,
2029 		0x4c980, 0x4c9ac,
2030 		0x4c9b4, 0x4c9b8,
2031 		0x4c9c0, 0x4c9fc,
2032 		0x4d000, 0x4d004,
2033 		0x4d010, 0x4d030,
2034 		0x4d040, 0x4d060,
2035 		0x4d068, 0x4d068,
2036 		0x4d080, 0x4d084,
2037 		0x4d0a0, 0x4d0b0,
2038 		0x4d200, 0x4d204,
2039 		0x4d210, 0x4d230,
2040 		0x4d240, 0x4d260,
2041 		0x4d268, 0x4d268,
2042 		0x4d280, 0x4d284,
2043 		0x4d2a0, 0x4d2b0,
2044 		0x4e0c0, 0x4e0e4,
2045 		0x4f000, 0x4f03c,
2046 		0x4f044, 0x4f08c,
2047 		0x4f200, 0x4f250,
2048 		0x4f400, 0x4f408,
2049 		0x4f414, 0x4f420,
2050 		0x4f600, 0x4f618,
2051 		0x4f800, 0x4f814,
2052 		0x50000, 0x50084,
2053 		0x50090, 0x500cc,
2054 		0x50400, 0x50400,
2055 		0x50800, 0x50884,
2056 		0x50890, 0x508cc,
2057 		0x50c00, 0x50c00,
2058 		0x51000, 0x5101c,
2059 		0x51300, 0x51308,
2060 	};
2061 
2062 	static const unsigned int t5vf_reg_ranges[] = {
2063 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2064 		VF_MPS_REG(A_MPS_VF_CTL),
2065 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2066 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2067 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2068 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2069 		FW_T4VF_MBDATA_BASE_ADDR,
2070 		FW_T4VF_MBDATA_BASE_ADDR +
2071 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2072 	};
2073 
2074 	static const unsigned int t6_reg_ranges[] = {
2075 		0x1008, 0x101c,
2076 		0x1024, 0x10a8,
2077 		0x10b4, 0x10f8,
2078 		0x1100, 0x1114,
2079 		0x111c, 0x112c,
2080 		0x1138, 0x113c,
2081 		0x1144, 0x114c,
2082 		0x1180, 0x1184,
2083 		0x1190, 0x1194,
2084 		0x11a0, 0x11a4,
2085 		0x11b0, 0x11c4,
2086 		0x11fc, 0x123c,
2087 		0x1254, 0x1274,
2088 		0x1280, 0x133c,
2089 		0x1800, 0x18fc,
2090 		0x3000, 0x302c,
2091 		0x3060, 0x30b0,
2092 		0x30b8, 0x30d8,
2093 		0x30e0, 0x30fc,
2094 		0x3140, 0x357c,
2095 		0x35a8, 0x35cc,
2096 		0x35ec, 0x35ec,
2097 		0x3600, 0x5624,
2098 		0x56cc, 0x56ec,
2099 		0x56f4, 0x5720,
2100 		0x5728, 0x575c,
2101 		0x580c, 0x5814,
2102 		0x5890, 0x589c,
2103 		0x58a4, 0x58ac,
2104 		0x58b8, 0x58bc,
2105 		0x5940, 0x595c,
2106 		0x5980, 0x598c,
2107 		0x59b0, 0x59c8,
2108 		0x59d0, 0x59dc,
2109 		0x59fc, 0x5a18,
2110 		0x5a60, 0x5a6c,
2111 		0x5a80, 0x5a8c,
2112 		0x5a94, 0x5a9c,
2113 		0x5b94, 0x5bfc,
2114 		0x5c10, 0x5e48,
2115 		0x5e50, 0x5e94,
2116 		0x5ea0, 0x5eb0,
2117 		0x5ec0, 0x5ec0,
2118 		0x5ec8, 0x5ed0,
2119 		0x5ee0, 0x5ee0,
2120 		0x5ef0, 0x5ef0,
2121 		0x5f00, 0x5f00,
2122 		0x6000, 0x6020,
2123 		0x6028, 0x6040,
2124 		0x6058, 0x609c,
2125 		0x60a8, 0x619c,
2126 		0x7700, 0x7798,
2127 		0x77c0, 0x7880,
2128 		0x78cc, 0x78fc,
2129 		0x7b00, 0x7b58,
2130 		0x7b60, 0x7b84,
2131 		0x7b8c, 0x7c54,
2132 		0x7d00, 0x7d38,
2133 		0x7d40, 0x7d84,
2134 		0x7d8c, 0x7ddc,
2135 		0x7de4, 0x7e04,
2136 		0x7e10, 0x7e1c,
2137 		0x7e24, 0x7e38,
2138 		0x7e40, 0x7e44,
2139 		0x7e4c, 0x7e78,
2140 		0x7e80, 0x7edc,
2141 		0x7ee8, 0x7efc,
2142 		0x8dc0, 0x8de0,
2143 		0x8df8, 0x8e04,
2144 		0x8e10, 0x8e84,
2145 		0x8ea0, 0x8f88,
2146 		0x8fb8, 0x9058,
2147 		0x9060, 0x9060,
2148 		0x9068, 0x90f8,
2149 		0x9100, 0x9124,
2150 		0x9400, 0x9470,
2151 		0x9600, 0x9600,
2152 		0x9608, 0x9638,
2153 		0x9640, 0x9704,
2154 		0x9710, 0x971c,
2155 		0x9800, 0x9808,
2156 		0x9810, 0x9864,
2157 		0x9c00, 0x9c6c,
2158 		0x9c80, 0x9cec,
2159 		0x9d00, 0x9d6c,
2160 		0x9d80, 0x9dec,
2161 		0x9e00, 0x9e6c,
2162 		0x9e80, 0x9eec,
2163 		0x9f00, 0x9f6c,
2164 		0x9f80, 0xa020,
2165 		0xd000, 0xd03c,
2166 		0xd100, 0xd118,
2167 		0xd200, 0xd214,
2168 		0xd220, 0xd234,
2169 		0xd240, 0xd254,
2170 		0xd260, 0xd274,
2171 		0xd280, 0xd294,
2172 		0xd2a0, 0xd2b4,
2173 		0xd2c0, 0xd2d4,
2174 		0xd2e0, 0xd2f4,
2175 		0xd300, 0xd31c,
2176 		0xdfc0, 0xdfe0,
2177 		0xe000, 0xf008,
2178 		0xf010, 0xf018,
2179 		0xf020, 0xf028,
2180 		0x11000, 0x11014,
2181 		0x11048, 0x1106c,
2182 		0x11074, 0x11088,
2183 		0x11098, 0x11120,
2184 		0x1112c, 0x1117c,
2185 		0x11190, 0x112e0,
2186 		0x11300, 0x1130c,
2187 		0x12000, 0x1206c,
2188 		0x19040, 0x1906c,
2189 		0x19078, 0x19080,
2190 		0x1908c, 0x190e8,
2191 		0x190f0, 0x190f8,
2192 		0x19100, 0x19110,
2193 		0x19120, 0x19124,
2194 		0x19150, 0x19194,
2195 		0x1919c, 0x191b0,
2196 		0x191d0, 0x191e8,
2197 		0x19238, 0x19290,
2198 		0x192a4, 0x192b0,
2199 		0x19348, 0x1934c,
2200 		0x193f8, 0x19418,
2201 		0x19420, 0x19428,
2202 		0x19430, 0x19444,
2203 		0x1944c, 0x1946c,
2204 		0x19474, 0x19474,
2205 		0x19490, 0x194cc,
2206 		0x194f0, 0x194f8,
2207 		0x19c00, 0x19c48,
2208 		0x19c50, 0x19c80,
2209 		0x19c94, 0x19c98,
2210 		0x19ca0, 0x19cbc,
2211 		0x19ce4, 0x19ce4,
2212 		0x19cf0, 0x19cf8,
2213 		0x19d00, 0x19d28,
2214 		0x19d50, 0x19d78,
2215 		0x19d94, 0x19d98,
2216 		0x19da0, 0x19de0,
2217 		0x19df0, 0x19e10,
2218 		0x19e50, 0x19e6c,
2219 		0x19ea0, 0x19ebc,
2220 		0x19ec4, 0x19ef4,
2221 		0x19f04, 0x19f2c,
2222 		0x19f34, 0x19f34,
2223 		0x19f40, 0x19f50,
2224 		0x19f90, 0x19fac,
2225 		0x19fc4, 0x19fc8,
2226 		0x19fd0, 0x19fe4,
2227 		0x1a000, 0x1a004,
2228 		0x1a010, 0x1a06c,
2229 		0x1a0b0, 0x1a0e4,
2230 		0x1a0ec, 0x1a0f8,
2231 		0x1a100, 0x1a108,
2232 		0x1a114, 0x1a130,
2233 		0x1a138, 0x1a1c4,
2234 		0x1a1fc, 0x1a1fc,
2235 		0x1e008, 0x1e00c,
2236 		0x1e040, 0x1e044,
2237 		0x1e04c, 0x1e04c,
2238 		0x1e284, 0x1e290,
2239 		0x1e2c0, 0x1e2c0,
2240 		0x1e2e0, 0x1e2e0,
2241 		0x1e300, 0x1e384,
2242 		0x1e3c0, 0x1e3c8,
2243 		0x1e408, 0x1e40c,
2244 		0x1e440, 0x1e444,
2245 		0x1e44c, 0x1e44c,
2246 		0x1e684, 0x1e690,
2247 		0x1e6c0, 0x1e6c0,
2248 		0x1e6e0, 0x1e6e0,
2249 		0x1e700, 0x1e784,
2250 		0x1e7c0, 0x1e7c8,
2251 		0x1e808, 0x1e80c,
2252 		0x1e840, 0x1e844,
2253 		0x1e84c, 0x1e84c,
2254 		0x1ea84, 0x1ea90,
2255 		0x1eac0, 0x1eac0,
2256 		0x1eae0, 0x1eae0,
2257 		0x1eb00, 0x1eb84,
2258 		0x1ebc0, 0x1ebc8,
2259 		0x1ec08, 0x1ec0c,
2260 		0x1ec40, 0x1ec44,
2261 		0x1ec4c, 0x1ec4c,
2262 		0x1ee84, 0x1ee90,
2263 		0x1eec0, 0x1eec0,
2264 		0x1eee0, 0x1eee0,
2265 		0x1ef00, 0x1ef84,
2266 		0x1efc0, 0x1efc8,
2267 		0x1f008, 0x1f00c,
2268 		0x1f040, 0x1f044,
2269 		0x1f04c, 0x1f04c,
2270 		0x1f284, 0x1f290,
2271 		0x1f2c0, 0x1f2c0,
2272 		0x1f2e0, 0x1f2e0,
2273 		0x1f300, 0x1f384,
2274 		0x1f3c0, 0x1f3c8,
2275 		0x1f408, 0x1f40c,
2276 		0x1f440, 0x1f444,
2277 		0x1f44c, 0x1f44c,
2278 		0x1f684, 0x1f690,
2279 		0x1f6c0, 0x1f6c0,
2280 		0x1f6e0, 0x1f6e0,
2281 		0x1f700, 0x1f784,
2282 		0x1f7c0, 0x1f7c8,
2283 		0x1f808, 0x1f80c,
2284 		0x1f840, 0x1f844,
2285 		0x1f84c, 0x1f84c,
2286 		0x1fa84, 0x1fa90,
2287 		0x1fac0, 0x1fac0,
2288 		0x1fae0, 0x1fae0,
2289 		0x1fb00, 0x1fb84,
2290 		0x1fbc0, 0x1fbc8,
2291 		0x1fc08, 0x1fc0c,
2292 		0x1fc40, 0x1fc44,
2293 		0x1fc4c, 0x1fc4c,
2294 		0x1fe84, 0x1fe90,
2295 		0x1fec0, 0x1fec0,
2296 		0x1fee0, 0x1fee0,
2297 		0x1ff00, 0x1ff84,
2298 		0x1ffc0, 0x1ffc8,
2299 		0x30000, 0x30030,
2300 		0x30100, 0x30168,
2301 		0x30190, 0x301a0,
2302 		0x301a8, 0x301b8,
2303 		0x301c4, 0x301c8,
2304 		0x301d0, 0x301d0,
2305 		0x30200, 0x30320,
2306 		0x30400, 0x304b4,
2307 		0x304c0, 0x3052c,
2308 		0x30540, 0x3061c,
2309 		0x30800, 0x308a0,
2310 		0x308c0, 0x30908,
2311 		0x30910, 0x309b8,
2312 		0x30a00, 0x30a04,
2313 		0x30a0c, 0x30a14,
2314 		0x30a1c, 0x30a2c,
2315 		0x30a44, 0x30a50,
2316 		0x30a74, 0x30a74,
2317 		0x30a7c, 0x30afc,
2318 		0x30b08, 0x30c24,
2319 		0x30d00, 0x30d14,
2320 		0x30d1c, 0x30d3c,
2321 		0x30d44, 0x30d4c,
2322 		0x30d54, 0x30d74,
2323 		0x30d7c, 0x30d7c,
2324 		0x30de0, 0x30de0,
2325 		0x30e00, 0x30ed4,
2326 		0x30f00, 0x30fa4,
2327 		0x30fc0, 0x30fc4,
2328 		0x31000, 0x31004,
2329 		0x31080, 0x310fc,
2330 		0x31208, 0x31220,
2331 		0x3123c, 0x31254,
2332 		0x31300, 0x31300,
2333 		0x31308, 0x3131c,
2334 		0x31338, 0x3133c,
2335 		0x31380, 0x31380,
2336 		0x31388, 0x313a8,
2337 		0x313b4, 0x313b4,
2338 		0x31400, 0x31420,
2339 		0x31438, 0x3143c,
2340 		0x31480, 0x31480,
2341 		0x314a8, 0x314a8,
2342 		0x314b0, 0x314b4,
2343 		0x314c8, 0x314d4,
2344 		0x31a40, 0x31a4c,
2345 		0x31af0, 0x31b20,
2346 		0x31b38, 0x31b3c,
2347 		0x31b80, 0x31b80,
2348 		0x31ba8, 0x31ba8,
2349 		0x31bb0, 0x31bb4,
2350 		0x31bc8, 0x31bd4,
2351 		0x32140, 0x3218c,
2352 		0x321f0, 0x321f4,
2353 		0x32200, 0x32200,
2354 		0x32218, 0x32218,
2355 		0x32400, 0x32400,
2356 		0x32408, 0x3241c,
2357 		0x32618, 0x32620,
2358 		0x32664, 0x32664,
2359 		0x326a8, 0x326a8,
2360 		0x326ec, 0x326ec,
2361 		0x32a00, 0x32abc,
2362 		0x32b00, 0x32b18,
2363 		0x32b20, 0x32b38,
2364 		0x32b40, 0x32b58,
2365 		0x32b60, 0x32b78,
2366 		0x32c00, 0x32c00,
2367 		0x32c08, 0x32c3c,
2368 		0x33000, 0x3302c,
2369 		0x33034, 0x33050,
2370 		0x33058, 0x33058,
2371 		0x33060, 0x3308c,
2372 		0x3309c, 0x330ac,
2373 		0x330c0, 0x330c0,
2374 		0x330c8, 0x330d0,
2375 		0x330d8, 0x330e0,
2376 		0x330ec, 0x3312c,
2377 		0x33134, 0x33150,
2378 		0x33158, 0x33158,
2379 		0x33160, 0x3318c,
2380 		0x3319c, 0x331ac,
2381 		0x331c0, 0x331c0,
2382 		0x331c8, 0x331d0,
2383 		0x331d8, 0x331e0,
2384 		0x331ec, 0x33290,
2385 		0x33298, 0x332c4,
2386 		0x332e4, 0x33390,
2387 		0x33398, 0x333c4,
2388 		0x333e4, 0x3342c,
2389 		0x33434, 0x33450,
2390 		0x33458, 0x33458,
2391 		0x33460, 0x3348c,
2392 		0x3349c, 0x334ac,
2393 		0x334c0, 0x334c0,
2394 		0x334c8, 0x334d0,
2395 		0x334d8, 0x334e0,
2396 		0x334ec, 0x3352c,
2397 		0x33534, 0x33550,
2398 		0x33558, 0x33558,
2399 		0x33560, 0x3358c,
2400 		0x3359c, 0x335ac,
2401 		0x335c0, 0x335c0,
2402 		0x335c8, 0x335d0,
2403 		0x335d8, 0x335e0,
2404 		0x335ec, 0x33690,
2405 		0x33698, 0x336c4,
2406 		0x336e4, 0x33790,
2407 		0x33798, 0x337c4,
2408 		0x337e4, 0x337fc,
2409 		0x33814, 0x33814,
2410 		0x33854, 0x33868,
2411 		0x33880, 0x3388c,
2412 		0x338c0, 0x338d0,
2413 		0x338e8, 0x338ec,
2414 		0x33900, 0x3392c,
2415 		0x33934, 0x33950,
2416 		0x33958, 0x33958,
2417 		0x33960, 0x3398c,
2418 		0x3399c, 0x339ac,
2419 		0x339c0, 0x339c0,
2420 		0x339c8, 0x339d0,
2421 		0x339d8, 0x339e0,
2422 		0x339ec, 0x33a90,
2423 		0x33a98, 0x33ac4,
2424 		0x33ae4, 0x33b10,
2425 		0x33b24, 0x33b28,
2426 		0x33b38, 0x33b50,
2427 		0x33bf0, 0x33c10,
2428 		0x33c24, 0x33c28,
2429 		0x33c38, 0x33c50,
2430 		0x33cf0, 0x33cfc,
2431 		0x34000, 0x34030,
2432 		0x34100, 0x34168,
2433 		0x34190, 0x341a0,
2434 		0x341a8, 0x341b8,
2435 		0x341c4, 0x341c8,
2436 		0x341d0, 0x341d0,
2437 		0x34200, 0x34320,
2438 		0x34400, 0x344b4,
2439 		0x344c0, 0x3452c,
2440 		0x34540, 0x3461c,
2441 		0x34800, 0x348a0,
2442 		0x348c0, 0x34908,
2443 		0x34910, 0x349b8,
2444 		0x34a00, 0x34a04,
2445 		0x34a0c, 0x34a14,
2446 		0x34a1c, 0x34a2c,
2447 		0x34a44, 0x34a50,
2448 		0x34a74, 0x34a74,
2449 		0x34a7c, 0x34afc,
2450 		0x34b08, 0x34c24,
2451 		0x34d00, 0x34d14,
2452 		0x34d1c, 0x34d3c,
2453 		0x34d44, 0x34d4c,
2454 		0x34d54, 0x34d74,
2455 		0x34d7c, 0x34d7c,
2456 		0x34de0, 0x34de0,
2457 		0x34e00, 0x34ed4,
2458 		0x34f00, 0x34fa4,
2459 		0x34fc0, 0x34fc4,
2460 		0x35000, 0x35004,
2461 		0x35080, 0x350fc,
2462 		0x35208, 0x35220,
2463 		0x3523c, 0x35254,
2464 		0x35300, 0x35300,
2465 		0x35308, 0x3531c,
2466 		0x35338, 0x3533c,
2467 		0x35380, 0x35380,
2468 		0x35388, 0x353a8,
2469 		0x353b4, 0x353b4,
2470 		0x35400, 0x35420,
2471 		0x35438, 0x3543c,
2472 		0x35480, 0x35480,
2473 		0x354a8, 0x354a8,
2474 		0x354b0, 0x354b4,
2475 		0x354c8, 0x354d4,
2476 		0x35a40, 0x35a4c,
2477 		0x35af0, 0x35b20,
2478 		0x35b38, 0x35b3c,
2479 		0x35b80, 0x35b80,
2480 		0x35ba8, 0x35ba8,
2481 		0x35bb0, 0x35bb4,
2482 		0x35bc8, 0x35bd4,
2483 		0x36140, 0x3618c,
2484 		0x361f0, 0x361f4,
2485 		0x36200, 0x36200,
2486 		0x36218, 0x36218,
2487 		0x36400, 0x36400,
2488 		0x36408, 0x3641c,
2489 		0x36618, 0x36620,
2490 		0x36664, 0x36664,
2491 		0x366a8, 0x366a8,
2492 		0x366ec, 0x366ec,
2493 		0x36a00, 0x36abc,
2494 		0x36b00, 0x36b18,
2495 		0x36b20, 0x36b38,
2496 		0x36b40, 0x36b58,
2497 		0x36b60, 0x36b78,
2498 		0x36c00, 0x36c00,
2499 		0x36c08, 0x36c3c,
2500 		0x37000, 0x3702c,
2501 		0x37034, 0x37050,
2502 		0x37058, 0x37058,
2503 		0x37060, 0x3708c,
2504 		0x3709c, 0x370ac,
2505 		0x370c0, 0x370c0,
2506 		0x370c8, 0x370d0,
2507 		0x370d8, 0x370e0,
2508 		0x370ec, 0x3712c,
2509 		0x37134, 0x37150,
2510 		0x37158, 0x37158,
2511 		0x37160, 0x3718c,
2512 		0x3719c, 0x371ac,
2513 		0x371c0, 0x371c0,
2514 		0x371c8, 0x371d0,
2515 		0x371d8, 0x371e0,
2516 		0x371ec, 0x37290,
2517 		0x37298, 0x372c4,
2518 		0x372e4, 0x37390,
2519 		0x37398, 0x373c4,
2520 		0x373e4, 0x3742c,
2521 		0x37434, 0x37450,
2522 		0x37458, 0x37458,
2523 		0x37460, 0x3748c,
2524 		0x3749c, 0x374ac,
2525 		0x374c0, 0x374c0,
2526 		0x374c8, 0x374d0,
2527 		0x374d8, 0x374e0,
2528 		0x374ec, 0x3752c,
2529 		0x37534, 0x37550,
2530 		0x37558, 0x37558,
2531 		0x37560, 0x3758c,
2532 		0x3759c, 0x375ac,
2533 		0x375c0, 0x375c0,
2534 		0x375c8, 0x375d0,
2535 		0x375d8, 0x375e0,
2536 		0x375ec, 0x37690,
2537 		0x37698, 0x376c4,
2538 		0x376e4, 0x37790,
2539 		0x37798, 0x377c4,
2540 		0x377e4, 0x377fc,
2541 		0x37814, 0x37814,
2542 		0x37854, 0x37868,
2543 		0x37880, 0x3788c,
2544 		0x378c0, 0x378d0,
2545 		0x378e8, 0x378ec,
2546 		0x37900, 0x3792c,
2547 		0x37934, 0x37950,
2548 		0x37958, 0x37958,
2549 		0x37960, 0x3798c,
2550 		0x3799c, 0x379ac,
2551 		0x379c0, 0x379c0,
2552 		0x379c8, 0x379d0,
2553 		0x379d8, 0x379e0,
2554 		0x379ec, 0x37a90,
2555 		0x37a98, 0x37ac4,
2556 		0x37ae4, 0x37b10,
2557 		0x37b24, 0x37b28,
2558 		0x37b38, 0x37b50,
2559 		0x37bf0, 0x37c10,
2560 		0x37c24, 0x37c28,
2561 		0x37c38, 0x37c50,
2562 		0x37cf0, 0x37cfc,
2563 		0x40040, 0x40040,
2564 		0x40080, 0x40084,
2565 		0x40100, 0x40100,
2566 		0x40140, 0x401bc,
2567 		0x40200, 0x40214,
2568 		0x40228, 0x40228,
2569 		0x40240, 0x40258,
2570 		0x40280, 0x40280,
2571 		0x40304, 0x40304,
2572 		0x40330, 0x4033c,
2573 		0x41304, 0x413c8,
2574 		0x413d0, 0x413dc,
2575 		0x413f0, 0x413f0,
2576 		0x41400, 0x4140c,
2577 		0x41414, 0x4141c,
2578 		0x41480, 0x414d0,
2579 		0x44000, 0x4407c,
2580 		0x440c0, 0x441ac,
2581 		0x441b4, 0x4427c,
2582 		0x442c0, 0x443ac,
2583 		0x443b4, 0x4447c,
2584 		0x444c0, 0x445ac,
2585 		0x445b4, 0x4467c,
2586 		0x446c0, 0x447ac,
2587 		0x447b4, 0x4487c,
2588 		0x448c0, 0x449ac,
2589 		0x449b4, 0x44a7c,
2590 		0x44ac0, 0x44bac,
2591 		0x44bb4, 0x44c7c,
2592 		0x44cc0, 0x44dac,
2593 		0x44db4, 0x44e7c,
2594 		0x44ec0, 0x44fac,
2595 		0x44fb4, 0x4507c,
2596 		0x450c0, 0x451ac,
2597 		0x451b4, 0x451fc,
2598 		0x45800, 0x45804,
2599 		0x45810, 0x45830,
2600 		0x45840, 0x45860,
2601 		0x45868, 0x45868,
2602 		0x45880, 0x45884,
2603 		0x458a0, 0x458b0,
2604 		0x45a00, 0x45a04,
2605 		0x45a10, 0x45a30,
2606 		0x45a40, 0x45a60,
2607 		0x45a68, 0x45a68,
2608 		0x45a80, 0x45a84,
2609 		0x45aa0, 0x45ab0,
2610 		0x460c0, 0x460e4,
2611 		0x47000, 0x4703c,
2612 		0x47044, 0x4708c,
2613 		0x47200, 0x47250,
2614 		0x47400, 0x47408,
2615 		0x47414, 0x47420,
2616 		0x47600, 0x47618,
2617 		0x47800, 0x47814,
2618 		0x47820, 0x4782c,
2619 		0x50000, 0x50084,
2620 		0x50090, 0x500cc,
2621 		0x50300, 0x50384,
2622 		0x50400, 0x50400,
2623 		0x50800, 0x50884,
2624 		0x50890, 0x508cc,
2625 		0x50b00, 0x50b84,
2626 		0x50c00, 0x50c00,
2627 		0x51000, 0x51020,
2628 		0x51028, 0x510b0,
2629 		0x51300, 0x51324,
2630 	};
2631 
2632 	static const unsigned int t6vf_reg_ranges[] = {
2633 		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2634 		VF_MPS_REG(A_MPS_VF_CTL),
2635 		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2636 		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2637 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2638 		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2639 		FW_T6VF_MBDATA_BASE_ADDR,
2640 		FW_T6VF_MBDATA_BASE_ADDR +
2641 		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2642 	};
2643 
2644 	u32 *buf_end = (u32 *)(buf + buf_size);
2645 	const unsigned int *reg_ranges;
2646 	int reg_ranges_size, range;
2647 	unsigned int chip_version = chip_id(adap);
2648 
2649 	/*
2650 	 * Select the right set of register ranges to dump depending on the
2651 	 * adapter chip type.
2652 	 */
2653 	switch (chip_version) {
2654 	case CHELSIO_T4:
2655 		if (adap->flags & IS_VF) {
2656 			reg_ranges = t4vf_reg_ranges;
2657 			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2658 		} else {
2659 			reg_ranges = t4_reg_ranges;
2660 			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2661 		}
2662 		break;
2663 
2664 	case CHELSIO_T5:
2665 		if (adap->flags & IS_VF) {
2666 			reg_ranges = t5vf_reg_ranges;
2667 			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2668 		} else {
2669 			reg_ranges = t5_reg_ranges;
2670 			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2671 		}
2672 		break;
2673 
2674 	case CHELSIO_T6:
2675 		if (adap->flags & IS_VF) {
2676 			reg_ranges = t6vf_reg_ranges;
2677 			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2678 		} else {
2679 			reg_ranges = t6_reg_ranges;
2680 			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2681 		}
2682 		break;
2683 
2684 	default:
2685 		CH_ERR(adap,
2686 			"Unsupported chip version %d\n", chip_version);
2687 		return;
2688 	}
2689 
2690 	/*
2691 	 * Clear the register buffer and insert the appropriate register
2692 	 * values selected by the above register ranges.
2693 	 */
2694 	memset(buf, 0, buf_size);
2695 	for (range = 0; range < reg_ranges_size; range += 2) {
2696 		unsigned int reg = reg_ranges[range];
2697 		unsigned int last_reg = reg_ranges[range + 1];
2698 		u32 *bufp = (u32 *)(buf + reg);
2699 
2700 		/*
2701 		 * Iterate across the register range filling in the register
2702 		 * buffer but don't write past the end of the register buffer.
2703 		 */
2704 		while (reg <= last_reg && bufp < buf_end) {
2705 			*bufp++ = t4_read_reg(adap, reg);
2706 			reg += sizeof(u32);
2707 		}
2708 	}
2709 }
2710 
2711 /*
2712  * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2713  * header followed by one or more VPD-R sections, each with its own header.
2714  */
2715 struct t4_vpd_hdr {
2716 	u8  id_tag;
2717 	u8  id_len[2];
2718 	u8  id_data[ID_LEN];
2719 };
2720 
2721 struct t4_vpdr_hdr {
2722 	u8  vpdr_tag;
2723 	u8  vpdr_len[2];
2724 };
2725 
2726 /*
2727  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2728  */
2729 #define EEPROM_DELAY		10		/* 10us per poll spin */
2730 #define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2731 
2732 #define EEPROM_STAT_ADDR	0x7bfc
2733 #define VPD_SIZE		0x800
2734 #define VPD_BASE		0x400
2735 #define VPD_BASE_OLD		0
2736 #define VPD_LEN			1024
2737 #define VPD_INFO_FLD_HDR_SIZE	3
2738 #define CHELSIO_VPD_UNIQUE_ID	0x82
2739 
2740 /*
2741  * Small utility function to wait till any outstanding VPD Access is complete.
2742  * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2743  * VPD Access in flight.  This allows us to handle the problem of having a
2744  * previous VPD Access time out and prevent an attempt to inject a new VPD
2745  * Request before any in-flight VPD reguest has completed.
2746  */
2747 static int t4_seeprom_wait(struct adapter *adapter)
2748 {
2749 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2750 	int max_poll;
2751 
2752 	/*
2753 	 * If no VPD Access is in flight, we can just return success right
2754 	 * away.
2755 	 */
2756 	if (!adapter->vpd_busy)
2757 		return 0;
2758 
2759 	/*
2760 	 * Poll the VPD Capability Address/Flag register waiting for it
2761 	 * to indicate that the operation is complete.
2762 	 */
2763 	max_poll = EEPROM_MAX_POLL;
2764 	do {
2765 		u16 val;
2766 
2767 		udelay(EEPROM_DELAY);
2768 		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2769 
2770 		/*
2771 		 * If the operation is complete, mark the VPD as no longer
2772 		 * busy and return success.
2773 		 */
2774 		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2775 			adapter->vpd_busy = 0;
2776 			return 0;
2777 		}
2778 	} while (--max_poll);
2779 
2780 	/*
2781 	 * Failure!  Note that we leave the VPD Busy status set in order to
2782 	 * avoid pushing a new VPD Access request into the VPD Capability till
2783 	 * the current operation eventually succeeds.  It's a bug to issue a
2784 	 * new request when an existing request is in flight and will result
2785 	 * in corrupt hardware state.
2786 	 */
2787 	return -ETIMEDOUT;
2788 }
2789 
2790 /**
2791  *	t4_seeprom_read - read a serial EEPROM location
2792  *	@adapter: adapter to read
2793  *	@addr: EEPROM virtual address
2794  *	@data: where to store the read data
2795  *
2796  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2797  *	VPD capability.  Note that this function must be called with a virtual
2798  *	address.
2799  */
2800 int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2801 {
2802 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2803 	int ret;
2804 
2805 	/*
2806 	 * VPD Accesses must alway be 4-byte aligned!
2807 	 */
2808 	if (addr >= EEPROMVSIZE || (addr & 3))
2809 		return -EINVAL;
2810 
2811 	/*
2812 	 * Wait for any previous operation which may still be in flight to
2813 	 * complete.
2814 	 */
2815 	ret = t4_seeprom_wait(adapter);
2816 	if (ret) {
2817 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2818 		return ret;
2819 	}
2820 
2821 	/*
2822 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2823 	 * for our request to complete.  If it doesn't complete, note the
2824 	 * error and return it to our caller.  Note that we do not reset the
2825 	 * VPD Busy status!
2826 	 */
2827 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2828 	adapter->vpd_busy = 1;
2829 	adapter->vpd_flag = PCI_VPD_ADDR_F;
2830 	ret = t4_seeprom_wait(adapter);
2831 	if (ret) {
2832 		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2833 		return ret;
2834 	}
2835 
2836 	/*
2837 	 * Grab the returned data, swizzle it into our endianness and
2838 	 * return success.
2839 	 */
2840 	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2841 	*data = le32_to_cpu(*data);
2842 	return 0;
2843 }
2844 
2845 /**
2846  *	t4_seeprom_write - write a serial EEPROM location
2847  *	@adapter: adapter to write
2848  *	@addr: virtual EEPROM address
2849  *	@data: value to write
2850  *
2851  *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2852  *	VPD capability.  Note that this function must be called with a virtual
2853  *	address.
2854  */
2855 int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2856 {
2857 	unsigned int base = adapter->params.pci.vpd_cap_addr;
2858 	int ret;
2859 	u32 stats_reg;
2860 	int max_poll;
2861 
2862 	/*
2863 	 * VPD Accesses must alway be 4-byte aligned!
2864 	 */
2865 	if (addr >= EEPROMVSIZE || (addr & 3))
2866 		return -EINVAL;
2867 
2868 	/*
2869 	 * Wait for any previous operation which may still be in flight to
2870 	 * complete.
2871 	 */
2872 	ret = t4_seeprom_wait(adapter);
2873 	if (ret) {
2874 		CH_ERR(adapter, "VPD still busy from previous operation\n");
2875 		return ret;
2876 	}
2877 
2878 	/*
2879 	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2880 	 * for our request to complete.  If it doesn't complete, note the
2881 	 * error and return it to our caller.  Note that we do not reset the
2882 	 * VPD Busy status!
2883 	 */
2884 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2885 				 cpu_to_le32(data));
2886 	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2887 				 (u16)addr | PCI_VPD_ADDR_F);
2888 	adapter->vpd_busy = 1;
2889 	adapter->vpd_flag = 0;
2890 	ret = t4_seeprom_wait(adapter);
2891 	if (ret) {
2892 		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2893 		return ret;
2894 	}
2895 
2896 	/*
2897 	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2898 	 * request to complete. If it doesn't complete, return error.
2899 	 */
2900 	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2901 	max_poll = EEPROM_MAX_POLL;
2902 	do {
2903 		udelay(EEPROM_DELAY);
2904 		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2905 	} while ((stats_reg & 0x1) && --max_poll);
2906 	if (!max_poll)
2907 		return -ETIMEDOUT;
2908 
2909 	/* Return success! */
2910 	return 0;
2911 }
2912 
2913 /**
2914  *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2915  *	@phys_addr: the physical EEPROM address
2916  *	@fn: the PCI function number
2917  *	@sz: size of function-specific area
2918  *
2919  *	Translate a physical EEPROM address to virtual.  The first 1K is
2920  *	accessed through virtual addresses starting at 31K, the rest is
2921  *	accessed through virtual addresses starting at 0.
2922  *
2923  *	The mapping is as follows:
2924  *	[0..1K) -> [31K..32K)
2925  *	[1K..1K+A) -> [ES-A..ES)
2926  *	[1K+A..ES) -> [0..ES-A-1K)
2927  *
2928  *	where A = @fn * @sz, and ES = EEPROM size.
2929  */
2930 int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2931 {
2932 	fn *= sz;
2933 	if (phys_addr < 1024)
2934 		return phys_addr + (31 << 10);
2935 	if (phys_addr < 1024 + fn)
2936 		return EEPROMSIZE - fn + phys_addr - 1024;
2937 	if (phys_addr < EEPROMSIZE)
2938 		return phys_addr - 1024 - fn;
2939 	return -EINVAL;
2940 }
2941 
2942 /**
2943  *	t4_seeprom_wp - enable/disable EEPROM write protection
2944  *	@adapter: the adapter
2945  *	@enable: whether to enable or disable write protection
2946  *
2947  *	Enables or disables write protection on the serial EEPROM.
2948  */
2949 int t4_seeprom_wp(struct adapter *adapter, int enable)
2950 {
2951 	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2952 }
2953 
2954 /**
2955  *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2956  *	@vpd: Pointer to buffered vpd data structure
2957  *	@kw: The keyword to search for
2958  *	@region: VPD region to search (starting from 0)
2959  *
2960  *	Returns the value of the information field keyword or
2961  *	-ENOENT otherwise.
2962  */
2963 static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2964 {
2965 	int i, tag;
2966 	unsigned int offset, len;
2967 	const struct t4_vpdr_hdr *vpdr;
2968 
2969 	offset = sizeof(struct t4_vpd_hdr);
2970 	vpdr = (const void *)(vpd + offset);
2971 	tag = vpdr->vpdr_tag;
2972 	len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2973 	while (region--) {
2974 		offset += sizeof(struct t4_vpdr_hdr) + len;
2975 		vpdr = (const void *)(vpd + offset);
2976 		if (++tag != vpdr->vpdr_tag)
2977 			return -ENOENT;
2978 		len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2979 	}
2980 	offset += sizeof(struct t4_vpdr_hdr);
2981 
2982 	if (offset + len > VPD_LEN) {
2983 		return -ENOENT;
2984 	}
2985 
2986 	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2987 		if (memcmp(vpd + i , kw , 2) == 0){
2988 			i += VPD_INFO_FLD_HDR_SIZE;
2989 			return i;
2990 		}
2991 
2992 		i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
2993 	}
2994 
2995 	return -ENOENT;
2996 }
2997 
2998 
2999 /**
3000  *	get_vpd_params - read VPD parameters from VPD EEPROM
3001  *	@adapter: adapter to read
3002  *	@p: where to store the parameters
3003  *	@vpd: caller provided temporary space to read the VPD into
3004  *
3005  *	Reads card parameters stored in VPD EEPROM.
3006  */
3007 static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
3008     uint16_t device_id, u32 *buf)
3009 {
3010 	int i, ret, addr;
3011 	int ec, sn, pn, na, md;
3012 	u8 csum;
3013 	const u8 *vpd = (const u8 *)buf;
3014 
3015 	/*
3016 	 * Card information normally starts at VPD_BASE but early cards had
3017 	 * it at 0.
3018 	 */
3019 	ret = t4_seeprom_read(adapter, VPD_BASE, buf);
3020 	if (ret)
3021 		return (ret);
3022 
3023 	/*
3024 	 * The VPD shall have a unique identifier specified by the PCI SIG.
3025 	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
3026 	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
3027 	 * is expected to automatically put this entry at the
3028 	 * beginning of the VPD.
3029 	 */
3030 	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
3031 
3032 	for (i = 0; i < VPD_LEN; i += 4) {
3033 		ret = t4_seeprom_read(adapter, addr + i, buf++);
3034 		if (ret)
3035 			return ret;
3036 	}
3037 
3038 #define FIND_VPD_KW(var,name) do { \
3039 	var = get_vpd_keyword_val(vpd, name, 0); \
3040 	if (var < 0) { \
3041 		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
3042 		return -EINVAL; \
3043 	} \
3044 } while (0)
3045 
3046 	FIND_VPD_KW(i, "RV");
3047 	for (csum = 0; i >= 0; i--)
3048 		csum += vpd[i];
3049 
3050 	if (csum) {
3051 		CH_ERR(adapter,
3052 			"corrupted VPD EEPROM, actual csum %u\n", csum);
3053 		return -EINVAL;
3054 	}
3055 
3056 	FIND_VPD_KW(ec, "EC");
3057 	FIND_VPD_KW(sn, "SN");
3058 	FIND_VPD_KW(pn, "PN");
3059 	FIND_VPD_KW(na, "NA");
3060 #undef FIND_VPD_KW
3061 
3062 	memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3063 	strstrip(p->id);
3064 	memcpy(p->ec, vpd + ec, EC_LEN);
3065 	strstrip(p->ec);
3066 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3067 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3068 	strstrip(p->sn);
3069 	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3070 	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3071 	strstrip((char *)p->pn);
3072 	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3073 	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3074 	strstrip((char *)p->na);
3075 
3076 	if (device_id & 0x80)
3077 		return 0;	/* Custom card */
3078 
3079 	md = get_vpd_keyword_val(vpd, "VF", 1);
3080 	if (md < 0) {
3081 		snprintf(p->md, sizeof(p->md), "unknown");
3082 	} else {
3083 		i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3084 		memcpy(p->md, vpd + md, min(i, MD_LEN));
3085 		strstrip((char *)p->md);
3086 	}
3087 
3088 	return 0;
3089 }
3090 
3091 /* serial flash and firmware constants and flash config file constants */
3092 enum {
3093 	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3094 
3095 	/* flash command opcodes */
3096 	SF_PROG_PAGE    = 2,	/* program 256B page */
3097 	SF_WR_DISABLE   = 4,	/* disable writes */
3098 	SF_RD_STATUS    = 5,	/* read status register */
3099 	SF_WR_ENABLE    = 6,	/* enable writes */
3100 	SF_RD_DATA_FAST = 0xb,	/* read flash */
3101 	SF_RD_ID	= 0x9f,	/* read ID */
3102 	SF_ERASE_SECTOR = 0xd8,	/* erase 64KB sector */
3103 };
3104 
3105 /**
3106  *	sf1_read - read data from the serial flash
3107  *	@adapter: the adapter
3108  *	@byte_cnt: number of bytes to read
3109  *	@cont: whether another operation will be chained
3110  *	@lock: whether to lock SF for PL access only
3111  *	@valp: where to store the read data
3112  *
3113  *	Reads up to 4 bytes of data from the serial flash.  The location of
3114  *	the read needs to be specified prior to calling this by issuing the
3115  *	appropriate commands to the serial flash.
3116  */
3117 static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3118 		    int lock, u32 *valp)
3119 {
3120 	int ret;
3121 
3122 	if (!byte_cnt || byte_cnt > 4)
3123 		return -EINVAL;
3124 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3125 		return -EBUSY;
3126 	t4_write_reg(adapter, A_SF_OP,
3127 		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3128 	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3129 	if (!ret)
3130 		*valp = t4_read_reg(adapter, A_SF_DATA);
3131 	return ret;
3132 }
3133 
3134 /**
3135  *	sf1_write - write data to the serial flash
3136  *	@adapter: the adapter
3137  *	@byte_cnt: number of bytes to write
3138  *	@cont: whether another operation will be chained
3139  *	@lock: whether to lock SF for PL access only
3140  *	@val: value to write
3141  *
3142  *	Writes up to 4 bytes of data to the serial flash.  The location of
3143  *	the write needs to be specified prior to calling this by issuing the
3144  *	appropriate commands to the serial flash.
3145  */
3146 static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3147 		     int lock, u32 val)
3148 {
3149 	if (!byte_cnt || byte_cnt > 4)
3150 		return -EINVAL;
3151 	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3152 		return -EBUSY;
3153 	t4_write_reg(adapter, A_SF_DATA, val);
3154 	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3155 		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3156 	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3157 }
3158 
3159 /**
3160  *	flash_wait_op - wait for a flash operation to complete
3161  *	@adapter: the adapter
3162  *	@attempts: max number of polls of the status register
3163  *	@delay: delay between polls in ms
3164  *
3165  *	Wait for a flash operation to complete by polling the status register.
3166  */
3167 static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3168 {
3169 	int ret;
3170 	u32 status;
3171 
3172 	while (1) {
3173 		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3174 		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3175 			return ret;
3176 		if (!(status & 1))
3177 			return 0;
3178 		if (--attempts == 0)
3179 			return -EAGAIN;
3180 		if (delay)
3181 			msleep(delay);
3182 	}
3183 }
3184 
3185 /**
3186  *	t4_read_flash - read words from serial flash
3187  *	@adapter: the adapter
3188  *	@addr: the start address for the read
3189  *	@nwords: how many 32-bit words to read
3190  *	@data: where to store the read data
3191  *	@byte_oriented: whether to store data as bytes or as words
3192  *
3193  *	Read the specified number of 32-bit words from the serial flash.
3194  *	If @byte_oriented is set the read data is stored as a byte array
3195  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3196  *	natural endianness.
3197  */
3198 int t4_read_flash(struct adapter *adapter, unsigned int addr,
3199 		  unsigned int nwords, u32 *data, int byte_oriented)
3200 {
3201 	int ret;
3202 
3203 	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3204 		return -EINVAL;
3205 
3206 	addr = swab32(addr) | SF_RD_DATA_FAST;
3207 
3208 	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3209 	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3210 		return ret;
3211 
3212 	for ( ; nwords; nwords--, data++) {
3213 		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3214 		if (nwords == 1)
3215 			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3216 		if (ret)
3217 			return ret;
3218 		if (byte_oriented)
3219 			*data = (__force __u32)(cpu_to_be32(*data));
3220 	}
3221 	return 0;
3222 }
3223 
3224 /**
3225  *	t4_write_flash - write up to a page of data to the serial flash
3226  *	@adapter: the adapter
3227  *	@addr: the start address to write
3228  *	@n: length of data to write in bytes
3229  *	@data: the data to write
3230  *	@byte_oriented: whether to store data as bytes or as words
3231  *
3232  *	Writes up to a page of data (256 bytes) to the serial flash starting
3233  *	at the given address.  All the data must be written to the same page.
3234  *	If @byte_oriented is set the write data is stored as byte stream
3235  *	(i.e. matches what on disk), otherwise in big-endian.
3236  */
3237 int t4_write_flash(struct adapter *adapter, unsigned int addr,
3238 			  unsigned int n, const u8 *data, int byte_oriented)
3239 {
3240 	int ret;
3241 	u32 buf[SF_PAGE_SIZE / 4];
3242 	unsigned int i, c, left, val, offset = addr & 0xff;
3243 
3244 	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3245 		return -EINVAL;
3246 
3247 	val = swab32(addr) | SF_PROG_PAGE;
3248 
3249 	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3250 	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3251 		goto unlock;
3252 
3253 	for (left = n; left; left -= c) {
3254 		c = min(left, 4U);
3255 		for (val = 0, i = 0; i < c; ++i)
3256 			val = (val << 8) + *data++;
3257 
3258 		if (!byte_oriented)
3259 			val = cpu_to_be32(val);
3260 
3261 		ret = sf1_write(adapter, c, c != left, 1, val);
3262 		if (ret)
3263 			goto unlock;
3264 	}
3265 	ret = flash_wait_op(adapter, 8, 1);
3266 	if (ret)
3267 		goto unlock;
3268 
3269 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3270 
3271 	/* Read the page to verify the write succeeded */
3272 	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3273 			    byte_oriented);
3274 	if (ret)
3275 		return ret;
3276 
3277 	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3278 		CH_ERR(adapter,
3279 			"failed to correctly write the flash page at %#x\n",
3280 			addr);
3281 		return -EIO;
3282 	}
3283 	return 0;
3284 
3285 unlock:
3286 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3287 	return ret;
3288 }
3289 
3290 /**
3291  *	t4_get_fw_version - read the firmware version
3292  *	@adapter: the adapter
3293  *	@vers: where to place the version
3294  *
3295  *	Reads the FW version from flash.
3296  */
3297 int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3298 {
3299 	return t4_read_flash(adapter, FLASH_FW_START +
3300 			     offsetof(struct fw_hdr, fw_ver), 1,
3301 			     vers, 0);
3302 }
3303 
3304 /**
3305  *	t4_get_fw_hdr - read the firmware header
3306  *	@adapter: the adapter
3307  *	@hdr: where to place the version
3308  *
3309  *	Reads the FW header from flash into caller provided buffer.
3310  */
3311 int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr)
3312 {
3313 	return t4_read_flash(adapter, FLASH_FW_START,
3314 	    sizeof (*hdr) / sizeof (uint32_t), (uint32_t *)hdr, 1);
3315 }
3316 
3317 /**
3318  *	t4_get_bs_version - read the firmware bootstrap version
3319  *	@adapter: the adapter
3320  *	@vers: where to place the version
3321  *
3322  *	Reads the FW Bootstrap version from flash.
3323  */
3324 int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3325 {
3326 	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3327 			     offsetof(struct fw_hdr, fw_ver), 1,
3328 			     vers, 0);
3329 }
3330 
3331 /**
3332  *	t4_get_tp_version - read the TP microcode version
3333  *	@adapter: the adapter
3334  *	@vers: where to place the version
3335  *
3336  *	Reads the TP microcode version from flash.
3337  */
3338 int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3339 {
3340 	return t4_read_flash(adapter, FLASH_FW_START +
3341 			     offsetof(struct fw_hdr, tp_microcode_ver),
3342 			     1, vers, 0);
3343 }
3344 
3345 /**
3346  *	t4_get_exprom_version - return the Expansion ROM version (if any)
3347  *	@adapter: the adapter
3348  *	@vers: where to place the version
3349  *
3350  *	Reads the Expansion ROM header from FLASH and returns the version
3351  *	number (if present) through the @vers return value pointer.  We return
3352  *	this in the Firmware Version Format since it's convenient.  Return
3353  *	0 on success, -ENOENT if no Expansion ROM is present.
3354  */
3355 int t4_get_exprom_version(struct adapter *adapter, u32 *vers)
3356 {
3357 	struct exprom_header {
3358 		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3359 		unsigned char hdr_ver[4];	/* Expansion ROM version */
3360 	} *hdr;
3361 	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3362 					   sizeof(u32))];
3363 	int ret;
3364 
3365 	ret = t4_read_flash(adapter, FLASH_EXP_ROM_START,
3366 			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3367 			    0);
3368 	if (ret)
3369 		return ret;
3370 
3371 	hdr = (struct exprom_header *)exprom_header_buf;
3372 	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3373 		return -ENOENT;
3374 
3375 	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3376 		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3377 		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3378 		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3379 	return 0;
3380 }
3381 
3382 /**
3383  *	t4_get_scfg_version - return the Serial Configuration version
3384  *	@adapter: the adapter
3385  *	@vers: where to place the version
3386  *
3387  *	Reads the Serial Configuration Version via the Firmware interface
3388  *	(thus this can only be called once we're ready to issue Firmware
3389  *	commands).  The format of the Serial Configuration version is
3390  *	adapter specific.  Returns 0 on success, an error on failure.
3391  *
3392  *	Note that early versions of the Firmware didn't include the ability
3393  *	to retrieve the Serial Configuration version, so we zero-out the
3394  *	return-value parameter in that case to avoid leaving it with
3395  *	garbage in it.
3396  *
3397  *	Also note that the Firmware will return its cached copy of the Serial
3398  *	Initialization Revision ID, not the actual Revision ID as written in
3399  *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3400  *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3401  *	it's best to defer calling this routine till after a FW_RESET_CMD has
3402  *	been issued if the Host Driver will be performing a full adapter
3403  *	initialization.
3404  */
3405 int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3406 {
3407 	u32 scfgrev_param;
3408 	int ret;
3409 
3410 	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3411 			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3412 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3413 			      1, &scfgrev_param, vers);
3414 	if (ret)
3415 		*vers = 0;
3416 	return ret;
3417 }
3418 
3419 /**
3420  *	t4_get_vpd_version - return the VPD version
3421  *	@adapter: the adapter
3422  *	@vers: where to place the version
3423  *
3424  *	Reads the VPD via the Firmware interface (thus this can only be called
3425  *	once we're ready to issue Firmware commands).  The format of the
3426  *	VPD version is adapter specific.  Returns 0 on success, an error on
3427  *	failure.
3428  *
3429  *	Note that early versions of the Firmware didn't include the ability
3430  *	to retrieve the VPD version, so we zero-out the return-value parameter
3431  *	in that case to avoid leaving it with garbage in it.
3432  *
3433  *	Also note that the Firmware will return its cached copy of the VPD
3434  *	Revision ID, not the actual Revision ID as written in the Serial
3435  *	EEPROM.  This is only an issue if a new VPD has been written and the
3436  *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3437  *	to defer calling this routine till after a FW_RESET_CMD has been issued
3438  *	if the Host Driver will be performing a full adapter initialization.
3439  */
3440 int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3441 {
3442 	u32 vpdrev_param;
3443 	int ret;
3444 
3445 	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3446 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3447 	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3448 			      1, &vpdrev_param, vers);
3449 	if (ret)
3450 		*vers = 0;
3451 	return ret;
3452 }
3453 
3454 /**
3455  *	t4_get_version_info - extract various chip/firmware version information
3456  *	@adapter: the adapter
3457  *
3458  *	Reads various chip/firmware version numbers and stores them into the
3459  *	adapter Adapter Parameters structure.  If any of the efforts fails
3460  *	the first failure will be returned, but all of the version numbers
3461  *	will be read.
3462  */
3463 int t4_get_version_info(struct adapter *adapter)
3464 {
3465 	int ret = 0;
3466 
3467 	#define FIRST_RET(__getvinfo) \
3468 	do { \
3469 		int __ret = __getvinfo; \
3470 		if (__ret && !ret) \
3471 			ret = __ret; \
3472 	} while (0)
3473 
3474 	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3475 	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3476 	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3477 	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3478 	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3479 	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3480 
3481 	#undef FIRST_RET
3482 
3483 	return ret;
3484 }
3485 
3486 /**
3487  *	t4_flash_erase_sectors - erase a range of flash sectors
3488  *	@adapter: the adapter
3489  *	@start: the first sector to erase
3490  *	@end: the last sector to erase
3491  *
3492  *	Erases the sectors in the given inclusive range.
3493  */
3494 int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3495 {
3496 	int ret = 0;
3497 
3498 	if (end >= adapter->params.sf_nsec)
3499 		return -EINVAL;
3500 
3501 	while (start <= end) {
3502 		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3503 		    (ret = sf1_write(adapter, 4, 0, 1,
3504 				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3505 		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3506 			CH_ERR(adapter,
3507 				"erase of flash sector %d failed, error %d\n",
3508 				start, ret);
3509 			break;
3510 		}
3511 		start++;
3512 	}
3513 	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3514 	return ret;
3515 }
3516 
3517 /**
3518  *	t4_flash_cfg_addr - return the address of the flash configuration file
3519  *	@adapter: the adapter
3520  *
3521  *	Return the address within the flash where the Firmware Configuration
3522  *	File is stored, or an error if the device FLASH is too small to contain
3523  *	a Firmware Configuration File.
3524  */
3525 int t4_flash_cfg_addr(struct adapter *adapter)
3526 {
3527 	/*
3528 	 * If the device FLASH isn't large enough to hold a Firmware
3529 	 * Configuration File, return an error.
3530 	 */
3531 	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3532 		return -ENOSPC;
3533 
3534 	return FLASH_CFG_START;
3535 }
3536 
3537 /*
3538  * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3539  * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3540  * and emit an error message for mismatched firmware to save our caller the
3541  * effort ...
3542  */
3543 static int t4_fw_matches_chip(struct adapter *adap,
3544 			      const struct fw_hdr *hdr)
3545 {
3546 	/*
3547 	 * The expression below will return FALSE for any unsupported adapter
3548 	 * which will keep us "honest" in the future ...
3549 	 */
3550 	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3551 	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3552 	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3553 		return 1;
3554 
3555 	CH_ERR(adap,
3556 		"FW image (%d) is not suitable for this adapter (%d)\n",
3557 		hdr->chip, chip_id(adap));
3558 	return 0;
3559 }
3560 
3561 /**
3562  *	t4_load_fw - download firmware
3563  *	@adap: the adapter
3564  *	@fw_data: the firmware image to write
3565  *	@size: image size
3566  *
3567  *	Write the supplied firmware image to the card's serial flash.
3568  */
3569 int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3570 {
3571 	u32 csum;
3572 	int ret, addr;
3573 	unsigned int i;
3574 	u8 first_page[SF_PAGE_SIZE];
3575 	const u32 *p = (const u32 *)fw_data;
3576 	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3577 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3578 	unsigned int fw_start_sec;
3579 	unsigned int fw_start;
3580 	unsigned int fw_size;
3581 
3582 	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3583 		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3584 		fw_start = FLASH_FWBOOTSTRAP_START;
3585 		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3586 	} else {
3587 		fw_start_sec = FLASH_FW_START_SEC;
3588  		fw_start = FLASH_FW_START;
3589 		fw_size = FLASH_FW_MAX_SIZE;
3590 	}
3591 
3592 	if (!size) {
3593 		CH_ERR(adap, "FW image has no data\n");
3594 		return -EINVAL;
3595 	}
3596 	if (size & 511) {
3597 		CH_ERR(adap,
3598 			"FW image size not multiple of 512 bytes\n");
3599 		return -EINVAL;
3600 	}
3601 	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3602 		CH_ERR(adap,
3603 			"FW image size differs from size in FW header\n");
3604 		return -EINVAL;
3605 	}
3606 	if (size > fw_size) {
3607 		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3608 			fw_size);
3609 		return -EFBIG;
3610 	}
3611 	if (!t4_fw_matches_chip(adap, hdr))
3612 		return -EINVAL;
3613 
3614 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3615 		csum += be32_to_cpu(p[i]);
3616 
3617 	if (csum != 0xffffffff) {
3618 		CH_ERR(adap,
3619 			"corrupted firmware image, checksum %#x\n", csum);
3620 		return -EINVAL;
3621 	}
3622 
3623 	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3624 	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3625 	if (ret)
3626 		goto out;
3627 
3628 	/*
3629 	 * We write the correct version at the end so the driver can see a bad
3630 	 * version if the FW write fails.  Start by writing a copy of the
3631 	 * first page with a bad version.
3632 	 */
3633 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3634 	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3635 	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3636 	if (ret)
3637 		goto out;
3638 
3639 	addr = fw_start;
3640 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3641 		addr += SF_PAGE_SIZE;
3642 		fw_data += SF_PAGE_SIZE;
3643 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3644 		if (ret)
3645 			goto out;
3646 	}
3647 
3648 	ret = t4_write_flash(adap,
3649 			     fw_start + offsetof(struct fw_hdr, fw_ver),
3650 			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3651 out:
3652 	if (ret)
3653 		CH_ERR(adap, "firmware download failed, error %d\n",
3654 			ret);
3655 	return ret;
3656 }
3657 
3658 /**
3659  *	t4_fwcache - firmware cache operation
3660  *	@adap: the adapter
3661  *	@op  : the operation (flush or flush and invalidate)
3662  */
3663 int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3664 {
3665 	struct fw_params_cmd c;
3666 
3667 	memset(&c, 0, sizeof(c));
3668 	c.op_to_vfn =
3669 	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3670 			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3671 				V_FW_PARAMS_CMD_PFN(adap->pf) |
3672 				V_FW_PARAMS_CMD_VFN(0));
3673 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3674 	c.param[0].mnem =
3675 	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3676 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3677 	c.param[0].val = (__force __be32)op;
3678 
3679 	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3680 }
3681 
3682 void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3683 			unsigned int *pif_req_wrptr,
3684 			unsigned int *pif_rsp_wrptr)
3685 {
3686 	int i, j;
3687 	u32 cfg, val, req, rsp;
3688 
3689 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3690 	if (cfg & F_LADBGEN)
3691 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3692 
3693 	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3694 	req = G_POLADBGWRPTR(val);
3695 	rsp = G_PILADBGWRPTR(val);
3696 	if (pif_req_wrptr)
3697 		*pif_req_wrptr = req;
3698 	if (pif_rsp_wrptr)
3699 		*pif_rsp_wrptr = rsp;
3700 
3701 	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3702 		for (j = 0; j < 6; j++) {
3703 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3704 				     V_PILADBGRDPTR(rsp));
3705 			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3706 			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3707 			req++;
3708 			rsp++;
3709 		}
3710 		req = (req + 2) & M_POLADBGRDPTR;
3711 		rsp = (rsp + 2) & M_PILADBGRDPTR;
3712 	}
3713 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3714 }
3715 
3716 void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3717 {
3718 	u32 cfg;
3719 	int i, j, idx;
3720 
3721 	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3722 	if (cfg & F_LADBGEN)
3723 		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3724 
3725 	for (i = 0; i < CIM_MALA_SIZE; i++) {
3726 		for (j = 0; j < 5; j++) {
3727 			idx = 8 * i + j;
3728 			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3729 				     V_PILADBGRDPTR(idx));
3730 			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3731 			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3732 		}
3733 	}
3734 	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3735 }
3736 
3737 void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3738 {
3739 	unsigned int i, j;
3740 
3741 	for (i = 0; i < 8; i++) {
3742 		u32 *p = la_buf + i;
3743 
3744 		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3745 		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3746 		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3747 		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3748 			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3749 	}
3750 }
3751 
3752 /**
3753  *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3754  *	@caps16: a 16-bit Port Capabilities value
3755  *
3756  *	Returns the equivalent 32-bit Port Capabilities value.
3757  */
3758 static uint32_t fwcaps16_to_caps32(uint16_t caps16)
3759 {
3760 	uint32_t caps32 = 0;
3761 
3762 	#define CAP16_TO_CAP32(__cap) \
3763 		do { \
3764 			if (caps16 & FW_PORT_CAP_##__cap) \
3765 				caps32 |= FW_PORT_CAP32_##__cap; \
3766 		} while (0)
3767 
3768 	CAP16_TO_CAP32(SPEED_100M);
3769 	CAP16_TO_CAP32(SPEED_1G);
3770 	CAP16_TO_CAP32(SPEED_25G);
3771 	CAP16_TO_CAP32(SPEED_10G);
3772 	CAP16_TO_CAP32(SPEED_40G);
3773 	CAP16_TO_CAP32(SPEED_100G);
3774 	CAP16_TO_CAP32(FC_RX);
3775 	CAP16_TO_CAP32(FC_TX);
3776 	CAP16_TO_CAP32(ANEG);
3777 	CAP16_TO_CAP32(FORCE_PAUSE);
3778 	CAP16_TO_CAP32(MDIAUTO);
3779 	CAP16_TO_CAP32(MDISTRAIGHT);
3780 	CAP16_TO_CAP32(FEC_RS);
3781 	CAP16_TO_CAP32(FEC_BASER_RS);
3782 	CAP16_TO_CAP32(802_3_PAUSE);
3783 	CAP16_TO_CAP32(802_3_ASM_DIR);
3784 
3785 	#undef CAP16_TO_CAP32
3786 
3787 	return caps32;
3788 }
3789 
3790 /**
3791  *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3792  *	@caps32: a 32-bit Port Capabilities value
3793  *
3794  *	Returns the equivalent 16-bit Port Capabilities value.  Note that
3795  *	not all 32-bit Port Capabilities can be represented in the 16-bit
3796  *	Port Capabilities and some fields/values may not make it.
3797  */
3798 static uint16_t fwcaps32_to_caps16(uint32_t caps32)
3799 {
3800 	uint16_t caps16 = 0;
3801 
3802 	#define CAP32_TO_CAP16(__cap) \
3803 		do { \
3804 			if (caps32 & FW_PORT_CAP32_##__cap) \
3805 				caps16 |= FW_PORT_CAP_##__cap; \
3806 		} while (0)
3807 
3808 	CAP32_TO_CAP16(SPEED_100M);
3809 	CAP32_TO_CAP16(SPEED_1G);
3810 	CAP32_TO_CAP16(SPEED_10G);
3811 	CAP32_TO_CAP16(SPEED_25G);
3812 	CAP32_TO_CAP16(SPEED_40G);
3813 	CAP32_TO_CAP16(SPEED_100G);
3814 	CAP32_TO_CAP16(FC_RX);
3815 	CAP32_TO_CAP16(FC_TX);
3816 	CAP32_TO_CAP16(802_3_PAUSE);
3817 	CAP32_TO_CAP16(802_3_ASM_DIR);
3818 	CAP32_TO_CAP16(ANEG);
3819 	CAP32_TO_CAP16(FORCE_PAUSE);
3820 	CAP32_TO_CAP16(MDIAUTO);
3821 	CAP32_TO_CAP16(MDISTRAIGHT);
3822 	CAP32_TO_CAP16(FEC_RS);
3823 	CAP32_TO_CAP16(FEC_BASER_RS);
3824 
3825 	#undef CAP32_TO_CAP16
3826 
3827 	return caps16;
3828 }
3829 
3830 static bool
3831 is_bt(struct port_info *pi)
3832 {
3833 
3834 	return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
3835 	    pi->port_type == FW_PORT_TYPE_BT_XFI ||
3836 	    pi->port_type == FW_PORT_TYPE_BT_XAUI);
3837 }
3838 
3839 static int8_t fwcap_to_fec(uint32_t caps, bool unset_means_none)
3840 {
3841 	int8_t fec = 0;
3842 
3843 	if ((caps & V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC)) == 0)
3844 		return (unset_means_none ? FEC_NONE : 0);
3845 
3846 	if (caps & FW_PORT_CAP32_FEC_RS)
3847 		fec |= FEC_RS;
3848 	if (caps & FW_PORT_CAP32_FEC_BASER_RS)
3849 		fec |= FEC_BASER_RS;
3850 	if (caps & FW_PORT_CAP32_FEC_NO_FEC)
3851 		fec |= FEC_NONE;
3852 
3853 	return (fec);
3854 }
3855 
3856 /*
3857  * Note that 0 is not translated to NO_FEC.
3858  */
3859 static uint32_t fec_to_fwcap(int8_t fec)
3860 {
3861 	uint32_t caps = 0;
3862 
3863 	/* Only real FECs allowed. */
3864 	MPASS((fec & ~M_FW_PORT_CAP32_FEC) == 0);
3865 
3866 	if (fec & FEC_RS)
3867 		caps |= FW_PORT_CAP32_FEC_RS;
3868 	if (fec & FEC_BASER_RS)
3869 		caps |= FW_PORT_CAP32_FEC_BASER_RS;
3870 	if (fec & FEC_NONE)
3871 		caps |= FW_PORT_CAP32_FEC_NO_FEC;
3872 
3873 	return (caps);
3874 }
3875 
3876 /**
3877  *	t4_link_l1cfg - apply link configuration to MAC/PHY
3878  *	@phy: the PHY to setup
3879  *	@mac: the MAC to setup
3880  *	@lc: the requested link configuration
3881  *
3882  *	Set up a port's MAC and PHY according to a desired link configuration.
3883  *	- If the PHY can auto-negotiate first decide what to advertise, then
3884  *	  enable/disable auto-negotiation as desired, and reset.
3885  *	- If the PHY does not auto-negotiate just reset it.
3886  *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3887  *	  otherwise do it later based on the outcome of auto-negotiation.
3888  */
3889 int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3890 		  struct link_config *lc)
3891 {
3892 	struct fw_port_cmd c;
3893 	unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
3894 	unsigned int aneg, fc, fec, speed, rcap;
3895 
3896 	fc = 0;
3897 	if (lc->requested_fc & PAUSE_RX)
3898 		fc |= FW_PORT_CAP32_FC_RX;
3899 	if (lc->requested_fc & PAUSE_TX)
3900 		fc |= FW_PORT_CAP32_FC_TX;
3901 	if (!(lc->requested_fc & PAUSE_AUTONEG))
3902 		fc |= FW_PORT_CAP32_FORCE_PAUSE;
3903 
3904 	if (lc->requested_aneg == AUTONEG_DISABLE)
3905 		aneg = 0;
3906 	else if (lc->requested_aneg == AUTONEG_ENABLE)
3907 		aneg = FW_PORT_CAP32_ANEG;
3908 	else
3909 		aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
3910 
3911 	if (aneg) {
3912 		speed = lc->pcaps &
3913 		    V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
3914 	} else if (lc->requested_speed != 0)
3915 		speed = speed_to_fwcap(lc->requested_speed);
3916 	else
3917 		speed = fwcap_top_speed(lc->pcaps);
3918 
3919 	fec = 0;
3920 	if (fec_supported(speed)) {
3921 		if (lc->requested_fec == FEC_AUTO) {
3922 			if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC) {
3923 				if (speed & FW_PORT_CAP32_SPEED_100G) {
3924 					fec |= FW_PORT_CAP32_FEC_RS;
3925 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3926 				} else {
3927 					fec |= FW_PORT_CAP32_FEC_RS;
3928 					fec |= FW_PORT_CAP32_FEC_BASER_RS;
3929 					fec |= FW_PORT_CAP32_FEC_NO_FEC;
3930 				}
3931 			} else {
3932 				/* Set only 1b with old firmwares. */
3933 				fec |= fec_to_fwcap(lc->fec_hint);
3934 			}
3935 		} else {
3936 			fec |= fec_to_fwcap(lc->requested_fec &
3937 			    M_FW_PORT_CAP32_FEC);
3938 			if (lc->requested_fec & FEC_MODULE)
3939 				fec |= fec_to_fwcap(lc->fec_hint);
3940 		}
3941 
3942 		if (lc->pcaps & FW_PORT_CAP32_FORCE_FEC)
3943 			fec |= FW_PORT_CAP32_FORCE_FEC;
3944 		else if (fec == FW_PORT_CAP32_FEC_NO_FEC)
3945 			fec = 0;
3946 	}
3947 
3948 	/* Force AN on for BT cards. */
3949 	if (is_bt(adap->port[adap->chan_map[port]]))
3950 		aneg = lc->pcaps & FW_PORT_CAP32_ANEG;
3951 
3952 	rcap = aneg | speed | fc | fec;
3953 	if ((rcap | lc->pcaps) != lc->pcaps) {
3954 #ifdef INVARIANTS
3955 		CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x, removed 0x%x\n", rcap,
3956 		    lc->pcaps, rcap & (rcap ^ lc->pcaps));
3957 #endif
3958 		rcap &= lc->pcaps;
3959 	}
3960 	rcap |= mdi;
3961 
3962 	memset(&c, 0, sizeof(c));
3963 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3964 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3965 				     V_FW_PORT_CMD_PORTID(port));
3966 	if (adap->params.port_caps32) {
3967 		c.action_to_len16 =
3968 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
3969 			FW_LEN16(c));
3970 		c.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
3971 	} else {
3972 		c.action_to_len16 =
3973 		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3974 			    FW_LEN16(c));
3975 		c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
3976 	}
3977 
3978 	lc->requested_caps = rcap;
3979 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3980 }
3981 
3982 /**
3983  *	t4_restart_aneg - restart autonegotiation
3984  *	@adap: the adapter
3985  *	@mbox: mbox to use for the FW command
3986  *	@port: the port id
3987  *
3988  *	Restarts autonegotiation for the selected port.
3989  */
3990 int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3991 {
3992 	struct fw_port_cmd c;
3993 
3994 	memset(&c, 0, sizeof(c));
3995 	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3996 				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3997 				     V_FW_PORT_CMD_PORTID(port));
3998 	c.action_to_len16 =
3999 		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
4000 			    FW_LEN16(c));
4001 	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
4002 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
4003 }
4004 
4005 struct intr_details {
4006 	u32 mask;
4007 	const char *msg;
4008 };
4009 
4010 struct intr_action {
4011 	u32 mask;
4012 	int arg;
4013 	bool (*action)(struct adapter *, int, bool);
4014 };
4015 
4016 #define NONFATAL_IF_DISABLED 1
4017 struct intr_info {
4018 	const char *name;	/* name of the INT_CAUSE register */
4019 	int cause_reg;		/* INT_CAUSE register */
4020 	int enable_reg;		/* INT_ENABLE register */
4021 	u32 fatal;		/* bits that are fatal */
4022 	int flags;		/* hints */
4023 	const struct intr_details *details;
4024 	const struct intr_action *actions;
4025 };
4026 
4027 static inline char
4028 intr_alert_char(u32 cause, u32 enable, u32 fatal)
4029 {
4030 
4031 	if (cause & fatal)
4032 		return ('!');
4033 	if (cause & enable)
4034 		return ('*');
4035 	return ('-');
4036 }
4037 
4038 static void
4039 t4_show_intr_info(struct adapter *adap, const struct intr_info *ii, u32 cause)
4040 {
4041 	u32 enable, fatal, leftover;
4042 	const struct intr_details *details;
4043 	char alert;
4044 
4045 	enable = t4_read_reg(adap, ii->enable_reg);
4046 	if (ii->flags & NONFATAL_IF_DISABLED)
4047 		fatal = ii->fatal & t4_read_reg(adap, ii->enable_reg);
4048 	else
4049 		fatal = ii->fatal;
4050 	alert = intr_alert_char(cause, enable, fatal);
4051 	CH_ALERT(adap, "%c %s 0x%x = 0x%08x, E 0x%08x, F 0x%08x\n",
4052 	    alert, ii->name, ii->cause_reg, cause, enable, fatal);
4053 
4054 	leftover = cause;
4055 	for (details = ii->details; details && details->mask != 0; details++) {
4056 		u32 msgbits = details->mask & cause;
4057 		if (msgbits == 0)
4058 			continue;
4059 		alert = intr_alert_char(msgbits, enable, ii->fatal);
4060 		CH_ALERT(adap, "  %c [0x%08x] %s\n", alert, msgbits,
4061 		    details->msg);
4062 		leftover &= ~msgbits;
4063 	}
4064 	if (leftover != 0 && leftover != cause)
4065 		CH_ALERT(adap, "  ? [0x%08x]\n", leftover);
4066 }
4067 
4068 /*
4069  * Returns true for fatal error.
4070  */
4071 static bool
4072 t4_handle_intr(struct adapter *adap, const struct intr_info *ii,
4073     u32 additional_cause, bool verbose)
4074 {
4075 	u32 cause, fatal;
4076 	bool rc;
4077 	const struct intr_action *action;
4078 
4079 	/*
4080 	 * Read and display cause.  Note that the top level PL_INT_CAUSE is a
4081 	 * bit special and we need to completely ignore the bits that are not in
4082 	 * PL_INT_ENABLE.
4083 	 */
4084 	cause = t4_read_reg(adap, ii->cause_reg);
4085 	if (ii->cause_reg == A_PL_INT_CAUSE)
4086 		cause &= t4_read_reg(adap, ii->enable_reg);
4087 	if (verbose || cause != 0)
4088 		t4_show_intr_info(adap, ii, cause);
4089 	fatal = cause & ii->fatal;
4090 	if (fatal != 0 && ii->flags & NONFATAL_IF_DISABLED)
4091 		fatal &= t4_read_reg(adap, ii->enable_reg);
4092 	cause |= additional_cause;
4093 	if (cause == 0)
4094 		return (false);
4095 
4096 	rc = fatal != 0;
4097 	for (action = ii->actions; action && action->mask != 0; action++) {
4098 		if (!(action->mask & cause))
4099 			continue;
4100 		rc |= (action->action)(adap, action->arg, verbose);
4101 	}
4102 
4103 	/* clear */
4104 	t4_write_reg(adap, ii->cause_reg, cause);
4105 	(void)t4_read_reg(adap, ii->cause_reg);
4106 
4107 	return (rc);
4108 }
4109 
4110 /*
4111  * Interrupt handler for the PCIE module.
4112  */
4113 static bool pcie_intr_handler(struct adapter *adap, int arg, bool verbose)
4114 {
4115 	static const struct intr_details sysbus_intr_details[] = {
4116 		{ F_RNPP, "RXNP array parity error" },
4117 		{ F_RPCP, "RXPC array parity error" },
4118 		{ F_RCIP, "RXCIF array parity error" },
4119 		{ F_RCCP, "Rx completions control array parity error" },
4120 		{ F_RFTP, "RXFT array parity error" },
4121 		{ 0 }
4122 	};
4123 	static const struct intr_info sysbus_intr_info = {
4124 		.name = "PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS",
4125 		.cause_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4126 		.enable_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_INTERRUPT_ENABLE,
4127 		.fatal = F_RFTP | F_RCCP | F_RCIP | F_RPCP | F_RNPP,
4128 		.flags = 0,
4129 		.details = sysbus_intr_details,
4130 		.actions = NULL,
4131 	};
4132 	static const struct intr_details pcie_port_intr_details[] = {
4133 		{ F_TPCP, "TXPC array parity error" },
4134 		{ F_TNPP, "TXNP array parity error" },
4135 		{ F_TFTP, "TXFT array parity error" },
4136 		{ F_TCAP, "TXCA array parity error" },
4137 		{ F_TCIP, "TXCIF array parity error" },
4138 		{ F_RCAP, "RXCA array parity error" },
4139 		{ F_OTDD, "outbound request TLP discarded" },
4140 		{ F_RDPE, "Rx data parity error" },
4141 		{ F_TDUE, "Tx uncorrectable data error" },
4142 		{ 0 }
4143 	};
4144 	static const struct intr_info pcie_port_intr_info = {
4145 		.name = "PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS",
4146 		.cause_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4147 		.enable_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_INTERRUPT_ENABLE,
4148 		.fatal = F_TPCP | F_TNPP | F_TFTP | F_TCAP | F_TCIP | F_RCAP |
4149 		    F_OTDD | F_RDPE | F_TDUE,
4150 		.flags = 0,
4151 		.details = pcie_port_intr_details,
4152 		.actions = NULL,
4153 	};
4154 	static const struct intr_details pcie_intr_details[] = {
4155 		{ F_MSIADDRLPERR, "MSI AddrL parity error" },
4156 		{ F_MSIADDRHPERR, "MSI AddrH parity error" },
4157 		{ F_MSIDATAPERR, "MSI data parity error" },
4158 		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error" },
4159 		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error" },
4160 		{ F_MSIXDATAPERR, "MSI-X data parity error" },
4161 		{ F_MSIXDIPERR, "MSI-X DI parity error" },
4162 		{ F_PIOCPLPERR, "PCIe PIO completion FIFO parity error" },
4163 		{ F_PIOREQPERR, "PCIe PIO request FIFO parity error" },
4164 		{ F_TARTAGPERR, "PCIe target tag FIFO parity error" },
4165 		{ F_CCNTPERR, "PCIe CMD channel count parity error" },
4166 		{ F_CREQPERR, "PCIe CMD channel request parity error" },
4167 		{ F_CRSPPERR, "PCIe CMD channel response parity error" },
4168 		{ F_DCNTPERR, "PCIe DMA channel count parity error" },
4169 		{ F_DREQPERR, "PCIe DMA channel request parity error" },
4170 		{ F_DRSPPERR, "PCIe DMA channel response parity error" },
4171 		{ F_HCNTPERR, "PCIe HMA channel count parity error" },
4172 		{ F_HREQPERR, "PCIe HMA channel request parity error" },
4173 		{ F_HRSPPERR, "PCIe HMA channel response parity error" },
4174 		{ F_CFGSNPPERR, "PCIe config snoop FIFO parity error" },
4175 		{ F_FIDPERR, "PCIe FID parity error" },
4176 		{ F_INTXCLRPERR, "PCIe INTx clear parity error" },
4177 		{ F_MATAGPERR, "PCIe MA tag parity error" },
4178 		{ F_PIOTAGPERR, "PCIe PIO tag parity error" },
4179 		{ F_RXCPLPERR, "PCIe Rx completion parity error" },
4180 		{ F_RXWRPERR, "PCIe Rx write parity error" },
4181 		{ F_RPLPERR, "PCIe replay buffer parity error" },
4182 		{ F_PCIESINT, "PCIe core secondary fault" },
4183 		{ F_PCIEPINT, "PCIe core primary fault" },
4184 		{ F_UNXSPLCPLERR, "PCIe unexpected split completion error" },
4185 		{ 0 }
4186 	};
4187 	static const struct intr_details t5_pcie_intr_details[] = {
4188 		{ F_IPGRPPERR, "Parity errors observed by IP" },
4189 		{ F_NONFATALERR, "PCIe non-fatal error" },
4190 		{ F_READRSPERR, "Outbound read error" },
4191 		{ F_TRGT1GRPPERR, "PCIe TRGT1 group FIFOs parity error" },
4192 		{ F_IPSOTPERR, "PCIe IP SOT buffer SRAM parity error" },
4193 		{ F_IPRETRYPERR, "PCIe IP replay buffer parity error" },
4194 		{ F_IPRXDATAGRPPERR, "PCIe IP Rx data group SRAMs parity error" },
4195 		{ F_IPRXHDRGRPPERR, "PCIe IP Rx header group SRAMs parity error" },
4196 		{ F_PIOTAGQPERR, "PIO tag queue FIFO parity error" },
4197 		{ F_MAGRPPERR, "MA group FIFO parity error" },
4198 		{ F_VFIDPERR, "VFID SRAM parity error" },
4199 		{ F_FIDPERR, "FID SRAM parity error" },
4200 		{ F_CFGSNPPERR, "config snoop FIFO parity error" },
4201 		{ F_HRSPPERR, "HMA channel response data SRAM parity error" },
4202 		{ F_HREQRDPERR, "HMA channel read request SRAM parity error" },
4203 		{ F_HREQWRPERR, "HMA channel write request SRAM parity error" },
4204 		{ F_DRSPPERR, "DMA channel response data SRAM parity error" },
4205 		{ F_DREQRDPERR, "DMA channel write request SRAM parity error" },
4206 		{ F_CRSPPERR, "CMD channel response data SRAM parity error" },
4207 		{ F_CREQRDPERR, "CMD channel read request SRAM parity error" },
4208 		{ F_MSTTAGQPERR, "PCIe master tag queue SRAM parity error" },
4209 		{ F_TGTTAGQPERR, "PCIe target tag queue FIFO parity error" },
4210 		{ F_PIOREQGRPPERR, "PIO request group FIFOs parity error" },
4211 		{ F_PIOCPLGRPPERR, "PIO completion group FIFOs parity error" },
4212 		{ F_MSIXDIPERR, "MSI-X DI SRAM parity error" },
4213 		{ F_MSIXDATAPERR, "MSI-X data SRAM parity error" },
4214 		{ F_MSIXADDRHPERR, "MSI-X AddrH SRAM parity error" },
4215 		{ F_MSIXADDRLPERR, "MSI-X AddrL SRAM parity error" },
4216 		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error" },
4217 		{ F_MSTTIMEOUTPERR, "Master timeout FIFO parity error" },
4218 		{ F_MSTGRPPERR, "Master response read queue SRAM parity error" },
4219 		{ 0 }
4220 	};
4221 	struct intr_info pcie_intr_info = {
4222 		.name = "PCIE_INT_CAUSE",
4223 		.cause_reg = A_PCIE_INT_CAUSE,
4224 		.enable_reg = A_PCIE_INT_ENABLE,
4225 		.fatal = 0xffffffff,
4226 		.flags = NONFATAL_IF_DISABLED,
4227 		.details = NULL,
4228 		.actions = NULL,
4229 	};
4230 	bool fatal = false;
4231 
4232 	if (is_t4(adap)) {
4233 		fatal |= t4_handle_intr(adap, &sysbus_intr_info, 0, verbose);
4234 		fatal |= t4_handle_intr(adap, &pcie_port_intr_info, 0, verbose);
4235 
4236 		pcie_intr_info.details = pcie_intr_details;
4237 	} else {
4238 		pcie_intr_info.details = t5_pcie_intr_details;
4239 	}
4240 	fatal |= t4_handle_intr(adap, &pcie_intr_info, 0, verbose);
4241 
4242 	return (fatal);
4243 }
4244 
4245 /*
4246  * TP interrupt handler.
4247  */
4248 static bool tp_intr_handler(struct adapter *adap, int arg, bool verbose)
4249 {
4250 	static const struct intr_details tp_intr_details[] = {
4251 		{ 0x3fffffff, "TP parity error" },
4252 		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages" },
4253 		{ 0 }
4254 	};
4255 	static const struct intr_info tp_intr_info = {
4256 		.name = "TP_INT_CAUSE",
4257 		.cause_reg = A_TP_INT_CAUSE,
4258 		.enable_reg = A_TP_INT_ENABLE,
4259 		.fatal = 0x7fffffff,
4260 		.flags = NONFATAL_IF_DISABLED,
4261 		.details = tp_intr_details,
4262 		.actions = NULL,
4263 	};
4264 
4265 	return (t4_handle_intr(adap, &tp_intr_info, 0, verbose));
4266 }
4267 
4268 /*
4269  * SGE interrupt handler.
4270  */
4271 static bool sge_intr_handler(struct adapter *adap, int arg, bool verbose)
4272 {
4273 	static const struct intr_info sge_int1_info = {
4274 		.name = "SGE_INT_CAUSE1",
4275 		.cause_reg = A_SGE_INT_CAUSE1,
4276 		.enable_reg = A_SGE_INT_ENABLE1,
4277 		.fatal = 0xffffffff,
4278 		.flags = NONFATAL_IF_DISABLED,
4279 		.details = NULL,
4280 		.actions = NULL,
4281 	};
4282 	static const struct intr_info sge_int2_info = {
4283 		.name = "SGE_INT_CAUSE2",
4284 		.cause_reg = A_SGE_INT_CAUSE2,
4285 		.enable_reg = A_SGE_INT_ENABLE2,
4286 		.fatal = 0xffffffff,
4287 		.flags = NONFATAL_IF_DISABLED,
4288 		.details = NULL,
4289 		.actions = NULL,
4290 	};
4291 	static const struct intr_details sge_int3_details[] = {
4292 		{ F_ERR_FLM_DBP,
4293 			"DBP pointer delivery for invalid context or QID" },
4294 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4295 			"Invalid QID or header request by IDMA" },
4296 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4297 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4298 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4299 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4300 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4301 		{ F_ERR_TIMER_ABOVE_MAX_QID,
4302 			"SGE GTS with timer 0-5 for IQID > 1023" },
4303 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4304 			"SGE received CPL exceeding IQE size" },
4305 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4306 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4307 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4308 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4309 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4310 		  "SGE IQID > 1023 received CPL for FL" },
4311 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4312 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4313 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4314 		{ F_ERR_ING_CTXT_PRIO,
4315 			"Ingress context manager priority user error" },
4316 		{ F_ERR_EGR_CTXT_PRIO,
4317 			"Egress context manager priority user error" },
4318 		{ F_DBFIFO_HP_INT, "High priority DB FIFO threshold reached" },
4319 		{ F_DBFIFO_LP_INT, "Low priority DB FIFO threshold reached" },
4320 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4321 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4322 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4323 		{ 0x0000000f, "SGE context access for invalid queue" },
4324 		{ 0 }
4325 	};
4326 	static const struct intr_details t6_sge_int3_details[] = {
4327 		{ F_ERR_FLM_DBP,
4328 			"DBP pointer delivery for invalid context or QID" },
4329 		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4330 			"Invalid QID or header request by IDMA" },
4331 		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4332 		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4333 		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4334 		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4335 		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4336 		{ F_ERR_TIMER_ABOVE_MAX_QID,
4337 			"SGE GTS with timer 0-5 for IQID > 1023" },
4338 		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4339 			"SGE received CPL exceeding IQE size" },
4340 		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4341 		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4342 		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4343 		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4344 		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4345 			"SGE IQID > 1023 received CPL for FL" },
4346 		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4347 			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4348 		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4349 		{ F_ERR_ING_CTXT_PRIO,
4350 			"Ingress context manager priority user error" },
4351 		{ F_ERR_EGR_CTXT_PRIO,
4352 			"Egress context manager priority user error" },
4353 		{ F_DBP_TBUF_FULL, "SGE DBP tbuf full" },
4354 		{ F_FATAL_WRE_LEN,
4355 			"SGE WRE packet less than advertized length" },
4356 		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4357 		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4358 		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4359 		{ 0x0000000f, "SGE context access for invalid queue" },
4360 		{ 0 }
4361 	};
4362 	struct intr_info sge_int3_info = {
4363 		.name = "SGE_INT_CAUSE3",
4364 		.cause_reg = A_SGE_INT_CAUSE3,
4365 		.enable_reg = A_SGE_INT_ENABLE3,
4366 		.fatal = F_ERR_CPL_EXCEED_IQE_SIZE,
4367 		.flags = 0,
4368 		.details = NULL,
4369 		.actions = NULL,
4370 	};
4371 	static const struct intr_info sge_int4_info = {
4372 		.name = "SGE_INT_CAUSE4",
4373 		.cause_reg = A_SGE_INT_CAUSE4,
4374 		.enable_reg = A_SGE_INT_ENABLE4,
4375 		.fatal = 0,
4376 		.flags = 0,
4377 		.details = NULL,
4378 		.actions = NULL,
4379 	};
4380 	static const struct intr_info sge_int5_info = {
4381 		.name = "SGE_INT_CAUSE5",
4382 		.cause_reg = A_SGE_INT_CAUSE5,
4383 		.enable_reg = A_SGE_INT_ENABLE5,
4384 		.fatal = 0xffffffff,
4385 		.flags = NONFATAL_IF_DISABLED,
4386 		.details = NULL,
4387 		.actions = NULL,
4388 	};
4389 	static const struct intr_info sge_int6_info = {
4390 		.name = "SGE_INT_CAUSE6",
4391 		.cause_reg = A_SGE_INT_CAUSE6,
4392 		.enable_reg = A_SGE_INT_ENABLE6,
4393 		.fatal = 0,
4394 		.flags = 0,
4395 		.details = NULL,
4396 		.actions = NULL,
4397 	};
4398 
4399 	bool fatal;
4400 	u32 v;
4401 
4402 	if (chip_id(adap) <= CHELSIO_T5) {
4403 		sge_int3_info.details = sge_int3_details;
4404 	} else {
4405 		sge_int3_info.details = t6_sge_int3_details;
4406 	}
4407 
4408 	fatal = false;
4409 	fatal |= t4_handle_intr(adap, &sge_int1_info, 0, verbose);
4410 	fatal |= t4_handle_intr(adap, &sge_int2_info, 0, verbose);
4411 	fatal |= t4_handle_intr(adap, &sge_int3_info, 0, verbose);
4412 	fatal |= t4_handle_intr(adap, &sge_int4_info, 0, verbose);
4413 	if (chip_id(adap) >= CHELSIO_T5)
4414 		fatal |= t4_handle_intr(adap, &sge_int5_info, 0, verbose);
4415 	if (chip_id(adap) >= CHELSIO_T6)
4416 		fatal |= t4_handle_intr(adap, &sge_int6_info, 0, verbose);
4417 
4418 	v = t4_read_reg(adap, A_SGE_ERROR_STATS);
4419 	if (v & F_ERROR_QID_VALID) {
4420 		CH_ERR(adap, "SGE error for QID %u\n", G_ERROR_QID(v));
4421 		if (v & F_UNCAPTURED_ERROR)
4422 			CH_ERR(adap, "SGE UNCAPTURED_ERROR set (clearing)\n");
4423 		t4_write_reg(adap, A_SGE_ERROR_STATS,
4424 		    F_ERROR_QID_VALID | F_UNCAPTURED_ERROR);
4425 	}
4426 
4427 	return (fatal);
4428 }
4429 
4430 /*
4431  * CIM interrupt handler.
4432  */
4433 static bool cim_intr_handler(struct adapter *adap, int arg, bool verbose)
4434 {
4435 	static const struct intr_action cim_host_intr_actions[] = {
4436 		{ F_TIMER0INT, 0, t4_os_dump_cimla },
4437 		{ 0 },
4438 	};
4439 	static const struct intr_details cim_host_intr_details[] = {
4440 		/* T6+ */
4441 		{ F_PCIE2CIMINTFPARERR, "CIM IBQ PCIe interface parity error" },
4442 
4443 		/* T5+ */
4444 		{ F_MA_CIM_INTFPERR, "MA2CIM interface parity error" },
4445 		{ F_PLCIM_MSTRSPDATAPARERR,
4446 			"PL2CIM master response data parity error" },
4447 		{ F_NCSI2CIMINTFPARERR, "CIM IBQ NC-SI interface parity error" },
4448 		{ F_SGE2CIMINTFPARERR, "CIM IBQ SGE interface parity error" },
4449 		{ F_ULP2CIMINTFPARERR, "CIM IBQ ULP_TX interface parity error" },
4450 		{ F_TP2CIMINTFPARERR, "CIM IBQ TP interface parity error" },
4451 		{ F_OBQSGERX1PARERR, "CIM OBQ SGE1_RX parity error" },
4452 		{ F_OBQSGERX0PARERR, "CIM OBQ SGE0_RX parity error" },
4453 
4454 		/* T4+ */
4455 		{ F_TIEQOUTPARERRINT, "CIM TIEQ outgoing FIFO parity error" },
4456 		{ F_TIEQINPARERRINT, "CIM TIEQ incoming FIFO parity error" },
4457 		{ F_MBHOSTPARERR, "CIM mailbox host read parity error" },
4458 		{ F_MBUPPARERR, "CIM mailbox uP parity error" },
4459 		{ F_IBQTP0PARERR, "CIM IBQ TP0 parity error" },
4460 		{ F_IBQTP1PARERR, "CIM IBQ TP1 parity error" },
4461 		{ F_IBQULPPARERR, "CIM IBQ ULP parity error" },
4462 		{ F_IBQSGELOPARERR, "CIM IBQ SGE_LO parity error" },
4463 		{ F_IBQSGEHIPARERR | F_IBQPCIEPARERR,	/* same bit */
4464 			"CIM IBQ PCIe/SGE_HI parity error" },
4465 		{ F_IBQNCSIPARERR, "CIM IBQ NC-SI parity error" },
4466 		{ F_OBQULP0PARERR, "CIM OBQ ULP0 parity error" },
4467 		{ F_OBQULP1PARERR, "CIM OBQ ULP1 parity error" },
4468 		{ F_OBQULP2PARERR, "CIM OBQ ULP2 parity error" },
4469 		{ F_OBQULP3PARERR, "CIM OBQ ULP3 parity error" },
4470 		{ F_OBQSGEPARERR, "CIM OBQ SGE parity error" },
4471 		{ F_OBQNCSIPARERR, "CIM OBQ NC-SI parity error" },
4472 		{ F_TIMER1INT, "CIM TIMER0 interrupt" },
4473 		{ F_TIMER0INT, "CIM TIMER0 interrupt" },
4474 		{ F_PREFDROPINT, "CIM control register prefetch drop" },
4475 		{ 0}
4476 	};
4477 	static const struct intr_info cim_host_intr_info = {
4478 		.name = "CIM_HOST_INT_CAUSE",
4479 		.cause_reg = A_CIM_HOST_INT_CAUSE,
4480 		.enable_reg = A_CIM_HOST_INT_ENABLE,
4481 		.fatal = 0x007fffe6,
4482 		.flags = NONFATAL_IF_DISABLED,
4483 		.details = cim_host_intr_details,
4484 		.actions = cim_host_intr_actions,
4485 	};
4486 	static const struct intr_details cim_host_upacc_intr_details[] = {
4487 		{ F_EEPROMWRINT, "CIM EEPROM came out of busy state" },
4488 		{ F_TIMEOUTMAINT, "CIM PIF MA timeout" },
4489 		{ F_TIMEOUTINT, "CIM PIF timeout" },
4490 		{ F_RSPOVRLOOKUPINT, "CIM response FIFO overwrite" },
4491 		{ F_REQOVRLOOKUPINT, "CIM request FIFO overwrite" },
4492 		{ F_BLKWRPLINT, "CIM block write to PL space" },
4493 		{ F_BLKRDPLINT, "CIM block read from PL space" },
4494 		{ F_SGLWRPLINT,
4495 			"CIM single write to PL space with illegal BEs" },
4496 		{ F_SGLRDPLINT,
4497 			"CIM single read from PL space with illegal BEs" },
4498 		{ F_BLKWRCTLINT, "CIM block write to CTL space" },
4499 		{ F_BLKRDCTLINT, "CIM block read from CTL space" },
4500 		{ F_SGLWRCTLINT,
4501 			"CIM single write to CTL space with illegal BEs" },
4502 		{ F_SGLRDCTLINT,
4503 			"CIM single read from CTL space with illegal BEs" },
4504 		{ F_BLKWREEPROMINT, "CIM block write to EEPROM space" },
4505 		{ F_BLKRDEEPROMINT, "CIM block read from EEPROM space" },
4506 		{ F_SGLWREEPROMINT,
4507 			"CIM single write to EEPROM space with illegal BEs" },
4508 		{ F_SGLRDEEPROMINT,
4509 			"CIM single read from EEPROM space with illegal BEs" },
4510 		{ F_BLKWRFLASHINT, "CIM block write to flash space" },
4511 		{ F_BLKRDFLASHINT, "CIM block read from flash space" },
4512 		{ F_SGLWRFLASHINT, "CIM single write to flash space" },
4513 		{ F_SGLRDFLASHINT,
4514 			"CIM single read from flash space with illegal BEs" },
4515 		{ F_BLKWRBOOTINT, "CIM block write to boot space" },
4516 		{ F_BLKRDBOOTINT, "CIM block read from boot space" },
4517 		{ F_SGLWRBOOTINT, "CIM single write to boot space" },
4518 		{ F_SGLRDBOOTINT,
4519 			"CIM single read from boot space with illegal BEs" },
4520 		{ F_ILLWRBEINT, "CIM illegal write BEs" },
4521 		{ F_ILLRDBEINT, "CIM illegal read BEs" },
4522 		{ F_ILLRDINT, "CIM illegal read" },
4523 		{ F_ILLWRINT, "CIM illegal write" },
4524 		{ F_ILLTRANSINT, "CIM illegal transaction" },
4525 		{ F_RSVDSPACEINT, "CIM reserved space access" },
4526 		{0}
4527 	};
4528 	static const struct intr_info cim_host_upacc_intr_info = {
4529 		.name = "CIM_HOST_UPACC_INT_CAUSE",
4530 		.cause_reg = A_CIM_HOST_UPACC_INT_CAUSE,
4531 		.enable_reg = A_CIM_HOST_UPACC_INT_ENABLE,
4532 		.fatal = 0x3fffeeff,
4533 		.flags = NONFATAL_IF_DISABLED,
4534 		.details = cim_host_upacc_intr_details,
4535 		.actions = NULL,
4536 	};
4537 	static const struct intr_info cim_pf_host_intr_info = {
4538 		.name = "CIM_PF_HOST_INT_CAUSE",
4539 		.cause_reg = MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4540 		.enable_reg = MYPF_REG(A_CIM_PF_HOST_INT_ENABLE),
4541 		.fatal = 0,
4542 		.flags = 0,
4543 		.details = NULL,
4544 		.actions = NULL,
4545 	};
4546 	u32 val, fw_err;
4547 	bool fatal;
4548 
4549 	fw_err = t4_read_reg(adap, A_PCIE_FW);
4550 	if (fw_err & F_PCIE_FW_ERR)
4551 		t4_report_fw_error(adap);
4552 
4553 	/*
4554 	 * When the Firmware detects an internal error which normally wouldn't
4555 	 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4556 	 * to make sure the Host sees the Firmware Crash.  So if we have a
4557 	 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4558 	 * interrupt.
4559 	 */
4560 	val = t4_read_reg(adap, A_CIM_HOST_INT_CAUSE);
4561 	if (val & F_TIMER0INT && (!(fw_err & F_PCIE_FW_ERR) ||
4562 	    G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH)) {
4563 		t4_write_reg(adap, A_CIM_HOST_INT_CAUSE, F_TIMER0INT);
4564 	}
4565 
4566 	fatal = false;
4567 	fatal |= t4_handle_intr(adap, &cim_host_intr_info, 0, verbose);
4568 	fatal |= t4_handle_intr(adap, &cim_host_upacc_intr_info, 0, verbose);
4569 	fatal |= t4_handle_intr(adap, &cim_pf_host_intr_info, 0, verbose);
4570 
4571 	return (fatal);
4572 }
4573 
4574 /*
4575  * ULP RX interrupt handler.
4576  */
4577 static bool ulprx_intr_handler(struct adapter *adap, int arg, bool verbose)
4578 {
4579 	static const struct intr_details ulprx_intr_details[] = {
4580 		/* T5+ */
4581 		{ F_SE_CNT_MISMATCH_1, "ULPRX SE count mismatch in channel 1" },
4582 		{ F_SE_CNT_MISMATCH_0, "ULPRX SE count mismatch in channel 0" },
4583 
4584 		/* T4+ */
4585 		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error" },
4586 		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error" },
4587 		{ 0x007fffff, "ULPRX parity error" },
4588 		{ 0 }
4589 	};
4590 	static const struct intr_info ulprx_intr_info = {
4591 		.name = "ULP_RX_INT_CAUSE",
4592 		.cause_reg = A_ULP_RX_INT_CAUSE,
4593 		.enable_reg = A_ULP_RX_INT_ENABLE,
4594 		.fatal = 0x07ffffff,
4595 		.flags = NONFATAL_IF_DISABLED,
4596 		.details = ulprx_intr_details,
4597 		.actions = NULL,
4598 	};
4599 	static const struct intr_info ulprx_intr2_info = {
4600 		.name = "ULP_RX_INT_CAUSE_2",
4601 		.cause_reg = A_ULP_RX_INT_CAUSE_2,
4602 		.enable_reg = A_ULP_RX_INT_ENABLE_2,
4603 		.fatal = 0,
4604 		.flags = 0,
4605 		.details = NULL,
4606 		.actions = NULL,
4607 	};
4608 	bool fatal = false;
4609 
4610 	fatal |= t4_handle_intr(adap, &ulprx_intr_info, 0, verbose);
4611 	fatal |= t4_handle_intr(adap, &ulprx_intr2_info, 0, verbose);
4612 
4613 	return (fatal);
4614 }
4615 
4616 /*
4617  * ULP TX interrupt handler.
4618  */
4619 static bool ulptx_intr_handler(struct adapter *adap, int arg, bool verbose)
4620 {
4621 	static const struct intr_details ulptx_intr_details[] = {
4622 		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds" },
4623 		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds" },
4624 		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds" },
4625 		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds" },
4626 		{ 0x0fffffff, "ULPTX parity error" },
4627 		{ 0 }
4628 	};
4629 	static const struct intr_info ulptx_intr_info = {
4630 		.name = "ULP_TX_INT_CAUSE",
4631 		.cause_reg = A_ULP_TX_INT_CAUSE,
4632 		.enable_reg = A_ULP_TX_INT_ENABLE,
4633 		.fatal = 0x0fffffff,
4634 		.flags = NONFATAL_IF_DISABLED,
4635 		.details = ulptx_intr_details,
4636 		.actions = NULL,
4637 	};
4638 	static const struct intr_info ulptx_intr2_info = {
4639 		.name = "ULP_TX_INT_CAUSE_2",
4640 		.cause_reg = A_ULP_TX_INT_CAUSE_2,
4641 		.enable_reg = A_ULP_TX_INT_ENABLE_2,
4642 		.fatal = 0xf0,
4643 		.flags = NONFATAL_IF_DISABLED,
4644 		.details = NULL,
4645 		.actions = NULL,
4646 	};
4647 	bool fatal = false;
4648 
4649 	fatal |= t4_handle_intr(adap, &ulptx_intr_info, 0, verbose);
4650 	fatal |= t4_handle_intr(adap, &ulptx_intr2_info, 0, verbose);
4651 
4652 	return (fatal);
4653 }
4654 
4655 static bool pmtx_dump_dbg_stats(struct adapter *adap, int arg, bool verbose)
4656 {
4657 	int i;
4658 	u32 data[17];
4659 
4660 	t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, &data[0],
4661 	    ARRAY_SIZE(data), A_PM_TX_DBG_STAT0);
4662 	for (i = 0; i < ARRAY_SIZE(data); i++) {
4663 		CH_ALERT(adap, "  - PM_TX_DBG_STAT%u (0x%x) = 0x%08x\n", i,
4664 		    A_PM_TX_DBG_STAT0 + i, data[i]);
4665 	}
4666 
4667 	return (false);
4668 }
4669 
4670 /*
4671  * PM TX interrupt handler.
4672  */
4673 static bool pmtx_intr_handler(struct adapter *adap, int arg, bool verbose)
4674 {
4675 	static const struct intr_action pmtx_intr_actions[] = {
4676 		{ 0xffffffff, 0, pmtx_dump_dbg_stats },
4677 		{ 0 },
4678 	};
4679 	static const struct intr_details pmtx_intr_details[] = {
4680 		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large" },
4681 		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large" },
4682 		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large" },
4683 		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd" },
4684 		{ 0x0f000000, "PMTX icspi FIFO2X Rx framing error" },
4685 		{ 0x00f00000, "PMTX icspi FIFO Rx framing error" },
4686 		{ 0x000f0000, "PMTX icspi FIFO Tx framing error" },
4687 		{ 0x0000f000, "PMTX oespi FIFO Rx framing error" },
4688 		{ 0x00000f00, "PMTX oespi FIFO Tx framing error" },
4689 		{ 0x000000f0, "PMTX oespi FIFO2X Tx framing error" },
4690 		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error" },
4691 		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error" },
4692 		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error" },
4693 		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error" },
4694 		{ 0 }
4695 	};
4696 	static const struct intr_info pmtx_intr_info = {
4697 		.name = "PM_TX_INT_CAUSE",
4698 		.cause_reg = A_PM_TX_INT_CAUSE,
4699 		.enable_reg = A_PM_TX_INT_ENABLE,
4700 		.fatal = 0xffffffff,
4701 		.flags = 0,
4702 		.details = pmtx_intr_details,
4703 		.actions = pmtx_intr_actions,
4704 	};
4705 
4706 	return (t4_handle_intr(adap, &pmtx_intr_info, 0, verbose));
4707 }
4708 
4709 /*
4710  * PM RX interrupt handler.
4711  */
4712 static bool pmrx_intr_handler(struct adapter *adap, int arg, bool verbose)
4713 {
4714 	static const struct intr_details pmrx_intr_details[] = {
4715 		/* T6+ */
4716 		{ 0x18000000, "PMRX ospi overflow" },
4717 		{ F_MA_INTF_SDC_ERR, "PMRX MA interface SDC parity error" },
4718 		{ F_BUNDLE_LEN_PARERR, "PMRX bundle len FIFO parity error" },
4719 		{ F_BUNDLE_LEN_OVFL, "PMRX bundle len FIFO overflow" },
4720 		{ F_SDC_ERR, "PMRX SDC error" },
4721 
4722 		/* T4+ */
4723 		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd" },
4724 		{ 0x003c0000, "PMRX iespi FIFO2X Rx framing error" },
4725 		{ 0x0003c000, "PMRX iespi Rx framing error" },
4726 		{ 0x00003c00, "PMRX iespi Tx framing error" },
4727 		{ 0x00000300, "PMRX ocspi Rx framing error" },
4728 		{ 0x000000c0, "PMRX ocspi Tx framing error" },
4729 		{ 0x00000030, "PMRX ocspi FIFO2X Tx framing error" },
4730 		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error" },
4731 		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error" },
4732 		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error" },
4733 		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error"},
4734 		{ 0 }
4735 	};
4736 	static const struct intr_info pmrx_intr_info = {
4737 		.name = "PM_RX_INT_CAUSE",
4738 		.cause_reg = A_PM_RX_INT_CAUSE,
4739 		.enable_reg = A_PM_RX_INT_ENABLE,
4740 		.fatal = 0x1fffffff,
4741 		.flags = NONFATAL_IF_DISABLED,
4742 		.details = pmrx_intr_details,
4743 		.actions = NULL,
4744 	};
4745 
4746 	return (t4_handle_intr(adap, &pmrx_intr_info, 0, verbose));
4747 }
4748 
4749 /*
4750  * CPL switch interrupt handler.
4751  */
4752 static bool cplsw_intr_handler(struct adapter *adap, int arg, bool verbose)
4753 {
4754 	static const struct intr_details cplsw_intr_details[] = {
4755 		/* T5+ */
4756 		{ F_PERR_CPL_128TO128_1, "CPLSW 128TO128 FIFO1 parity error" },
4757 		{ F_PERR_CPL_128TO128_0, "CPLSW 128TO128 FIFO0 parity error" },
4758 
4759 		/* T4+ */
4760 		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error" },
4761 		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow" },
4762 		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error" },
4763 		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error" },
4764 		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error" },
4765 		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error" },
4766 		{ 0 }
4767 	};
4768 	static const struct intr_info cplsw_intr_info = {
4769 		.name = "CPL_INTR_CAUSE",
4770 		.cause_reg = A_CPL_INTR_CAUSE,
4771 		.enable_reg = A_CPL_INTR_ENABLE,
4772 		.fatal = 0xff,
4773 		.flags = NONFATAL_IF_DISABLED,
4774 		.details = cplsw_intr_details,
4775 		.actions = NULL,
4776 	};
4777 
4778 	return (t4_handle_intr(adap, &cplsw_intr_info, 0, verbose));
4779 }
4780 
4781 #define T4_LE_FATAL_MASK (F_PARITYERR | F_UNKNOWNCMD | F_REQQPARERR)
4782 #define T5_LE_FATAL_MASK (T4_LE_FATAL_MASK | F_VFPARERR)
4783 #define T6_LE_PERRCRC_MASK (F_PIPELINEERR | F_CLIPTCAMACCFAIL | \
4784     F_SRVSRAMACCFAIL | F_CLCAMCRCPARERR | F_CLCAMINTPERR | F_SSRAMINTPERR | \
4785     F_SRVSRAMPERR | F_VFSRAMPERR | F_TCAMINTPERR | F_TCAMCRCERR | \
4786     F_HASHTBLMEMACCERR | F_MAIFWRINTPERR | F_HASHTBLMEMCRCERR)
4787 #define T6_LE_FATAL_MASK (T6_LE_PERRCRC_MASK | F_T6_UNKNOWNCMD | \
4788     F_TCAMACCFAIL | F_HASHTBLACCFAIL | F_CMDTIDERR | F_CMDPRSRINTERR | \
4789     F_TOTCNTERR | F_CLCAMFIFOERR | F_CLIPSUBERR)
4790 
4791 /*
4792  * LE interrupt handler.
4793  */
4794 static bool le_intr_handler(struct adapter *adap, int arg, bool verbose)
4795 {
4796 	static const struct intr_details le_intr_details[] = {
4797 		{ F_REQQPARERR, "LE request queue parity error" },
4798 		{ F_UNKNOWNCMD, "LE unknown command" },
4799 		{ F_ACTRGNFULL, "LE active region full" },
4800 		{ F_PARITYERR, "LE parity error" },
4801 		{ F_LIPMISS, "LE LIP miss" },
4802 		{ F_LIP0, "LE 0 LIP error" },
4803 		{ 0 }
4804 	};
4805 	static const struct intr_details t6_le_intr_details[] = {
4806 		{ F_CLIPSUBERR, "LE CLIP CAM reverse substitution error" },
4807 		{ F_CLCAMFIFOERR, "LE CLIP CAM internal FIFO error" },
4808 		{ F_CTCAMINVLDENT, "Invalid IPv6 CLIP TCAM entry" },
4809 		{ F_TCAMINVLDENT, "Invalid IPv6 TCAM entry" },
4810 		{ F_TOTCNTERR, "LE total active < TCAM count" },
4811 		{ F_CMDPRSRINTERR, "LE internal error in parser" },
4812 		{ F_CMDTIDERR, "Incorrect tid in LE command" },
4813 		{ F_T6_ACTRGNFULL, "LE active region full" },
4814 		{ F_T6_ACTCNTIPV6TZERO, "LE IPv6 active open TCAM counter -ve" },
4815 		{ F_T6_ACTCNTIPV4TZERO, "LE IPv4 active open TCAM counter -ve" },
4816 		{ F_T6_ACTCNTIPV6ZERO, "LE IPv6 active open counter -ve" },
4817 		{ F_T6_ACTCNTIPV4ZERO, "LE IPv4 active open counter -ve" },
4818 		{ F_HASHTBLACCFAIL, "Hash table read error (proto conflict)" },
4819 		{ F_TCAMACCFAIL, "LE TCAM access failure" },
4820 		{ F_T6_UNKNOWNCMD, "LE unknown command" },
4821 		{ F_T6_LIP0, "LE found 0 LIP during CLIP substitution" },
4822 		{ F_T6_LIPMISS, "LE CLIP lookup miss" },
4823 		{ T6_LE_PERRCRC_MASK, "LE parity/CRC error" },
4824 		{ 0 }
4825 	};
4826 	struct intr_info le_intr_info = {
4827 		.name = "LE_DB_INT_CAUSE",
4828 		.cause_reg = A_LE_DB_INT_CAUSE,
4829 		.enable_reg = A_LE_DB_INT_ENABLE,
4830 		.fatal = 0,
4831 		.flags = NONFATAL_IF_DISABLED,
4832 		.details = NULL,
4833 		.actions = NULL,
4834 	};
4835 
4836 	if (chip_id(adap) <= CHELSIO_T5) {
4837 		le_intr_info.details = le_intr_details;
4838 		le_intr_info.fatal = T5_LE_FATAL_MASK;
4839 	} else {
4840 		le_intr_info.details = t6_le_intr_details;
4841 		le_intr_info.fatal = T6_LE_FATAL_MASK;
4842 	}
4843 
4844 	return (t4_handle_intr(adap, &le_intr_info, 0, verbose));
4845 }
4846 
4847 /*
4848  * MPS interrupt handler.
4849  */
4850 static bool mps_intr_handler(struct adapter *adap, int arg, bool verbose)
4851 {
4852 	static const struct intr_details mps_rx_perr_intr_details[] = {
4853 		{ 0xffffffff, "MPS Rx parity error" },
4854 		{ 0 }
4855 	};
4856 	static const struct intr_info mps_rx_perr_intr_info = {
4857 		.name = "MPS_RX_PERR_INT_CAUSE",
4858 		.cause_reg = A_MPS_RX_PERR_INT_CAUSE,
4859 		.enable_reg = A_MPS_RX_PERR_INT_ENABLE,
4860 		.fatal = 0xffffffff,
4861 		.flags = NONFATAL_IF_DISABLED,
4862 		.details = mps_rx_perr_intr_details,
4863 		.actions = NULL,
4864 	};
4865 	static const struct intr_details mps_tx_intr_details[] = {
4866 		{ F_PORTERR, "MPS Tx destination port is disabled" },
4867 		{ F_FRMERR, "MPS Tx framing error" },
4868 		{ F_SECNTERR, "MPS Tx SOP/EOP error" },
4869 		{ F_BUBBLE, "MPS Tx underflow" },
4870 		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error" },
4871 		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error" },
4872 		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error" },
4873 		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error" },
4874 		{ 0 }
4875 	};
4876 	static const struct intr_info mps_tx_intr_info = {
4877 		.name = "MPS_TX_INT_CAUSE",
4878 		.cause_reg = A_MPS_TX_INT_CAUSE,
4879 		.enable_reg = A_MPS_TX_INT_ENABLE,
4880 		.fatal = 0x1ffff,
4881 		.flags = NONFATAL_IF_DISABLED,
4882 		.details = mps_tx_intr_details,
4883 		.actions = NULL,
4884 	};
4885 	static const struct intr_details mps_trc_intr_details[] = {
4886 		{ F_MISCPERR, "MPS TRC misc parity error" },
4887 		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error" },
4888 		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error" },
4889 		{ 0 }
4890 	};
4891 	static const struct intr_info mps_trc_intr_info = {
4892 		.name = "MPS_TRC_INT_CAUSE",
4893 		.cause_reg = A_MPS_TRC_INT_CAUSE,
4894 		.enable_reg = A_MPS_TRC_INT_ENABLE,
4895 		.fatal = F_MISCPERR | V_PKTFIFO(M_PKTFIFO) | V_FILTMEM(M_FILTMEM),
4896 		.flags = 0,
4897 		.details = mps_trc_intr_details,
4898 		.actions = NULL,
4899 	};
4900 	static const struct intr_details mps_stat_sram_intr_details[] = {
4901 		{ 0xffffffff, "MPS statistics SRAM parity error" },
4902 		{ 0 }
4903 	};
4904 	static const struct intr_info mps_stat_sram_intr_info = {
4905 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM",
4906 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4907 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM,
4908 		.fatal = 0x1fffffff,
4909 		.flags = NONFATAL_IF_DISABLED,
4910 		.details = mps_stat_sram_intr_details,
4911 		.actions = NULL,
4912 	};
4913 	static const struct intr_details mps_stat_tx_intr_details[] = {
4914 		{ 0xffffff, "MPS statistics Tx FIFO parity error" },
4915 		{ 0 }
4916 	};
4917 	static const struct intr_info mps_stat_tx_intr_info = {
4918 		.name = "MPS_STAT_PERR_INT_CAUSE_TX_FIFO",
4919 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4920 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_TX_FIFO,
4921 		.fatal =  0xffffff,
4922 		.flags = NONFATAL_IF_DISABLED,
4923 		.details = mps_stat_tx_intr_details,
4924 		.actions = NULL,
4925 	};
4926 	static const struct intr_details mps_stat_rx_intr_details[] = {
4927 		{ 0xffffff, "MPS statistics Rx FIFO parity error" },
4928 		{ 0 }
4929 	};
4930 	static const struct intr_info mps_stat_rx_intr_info = {
4931 		.name = "MPS_STAT_PERR_INT_CAUSE_RX_FIFO",
4932 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4933 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_RX_FIFO,
4934 		.fatal =  0xffffff,
4935 		.flags = 0,
4936 		.details = mps_stat_rx_intr_details,
4937 		.actions = NULL,
4938 	};
4939 	static const struct intr_details mps_cls_intr_details[] = {
4940 		{ F_HASHSRAM, "MPS hash SRAM parity error" },
4941 		{ F_MATCHTCAM, "MPS match TCAM parity error" },
4942 		{ F_MATCHSRAM, "MPS match SRAM parity error" },
4943 		{ 0 }
4944 	};
4945 	static const struct intr_info mps_cls_intr_info = {
4946 		.name = "MPS_CLS_INT_CAUSE",
4947 		.cause_reg = A_MPS_CLS_INT_CAUSE,
4948 		.enable_reg = A_MPS_CLS_INT_ENABLE,
4949 		.fatal =  F_MATCHSRAM | F_MATCHTCAM | F_HASHSRAM,
4950 		.flags = 0,
4951 		.details = mps_cls_intr_details,
4952 		.actions = NULL,
4953 	};
4954 	static const struct intr_details mps_stat_sram1_intr_details[] = {
4955 		{ 0xff, "MPS statistics SRAM1 parity error" },
4956 		{ 0 }
4957 	};
4958 	static const struct intr_info mps_stat_sram1_intr_info = {
4959 		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM1",
4960 		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM1,
4961 		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM1,
4962 		.fatal = 0xff,
4963 		.flags = 0,
4964 		.details = mps_stat_sram1_intr_details,
4965 		.actions = NULL,
4966 	};
4967 
4968 	bool fatal;
4969 
4970 	fatal = false;
4971 	fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info, 0, verbose);
4972 	fatal |= t4_handle_intr(adap, &mps_tx_intr_info, 0, verbose);
4973 	fatal |= t4_handle_intr(adap, &mps_trc_intr_info, 0, verbose);
4974 	fatal |= t4_handle_intr(adap, &mps_stat_sram_intr_info, 0, verbose);
4975 	fatal |= t4_handle_intr(adap, &mps_stat_tx_intr_info, 0, verbose);
4976 	fatal |= t4_handle_intr(adap, &mps_stat_rx_intr_info, 0, verbose);
4977 	fatal |= t4_handle_intr(adap, &mps_cls_intr_info, 0, verbose);
4978 	if (chip_id(adap) > CHELSIO_T4) {
4979 		fatal |= t4_handle_intr(adap, &mps_stat_sram1_intr_info, 0,
4980 		    verbose);
4981 	}
4982 
4983 	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
4984 	t4_read_reg(adap, A_MPS_INT_CAUSE);	/* flush */
4985 
4986 	return (fatal);
4987 
4988 }
4989 
4990 /*
4991  * EDC/MC interrupt handler.
4992  */
4993 static bool mem_intr_handler(struct adapter *adap, int idx, bool verbose)
4994 {
4995 	static const char name[4][5] = { "EDC0", "EDC1", "MC0", "MC1" };
4996 	unsigned int count_reg, v;
4997 	static const struct intr_details mem_intr_details[] = {
4998 		{ F_ECC_UE_INT_CAUSE, "Uncorrectable ECC data error(s)" },
4999 		{ F_ECC_CE_INT_CAUSE, "Correctable ECC data error(s)" },
5000 		{ F_PERR_INT_CAUSE, "FIFO parity error" },
5001 		{ 0 }
5002 	};
5003 	struct intr_info ii = {
5004 		.fatal = F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE,
5005 		.details = mem_intr_details,
5006 		.flags = 0,
5007 		.actions = NULL,
5008 	};
5009 	bool fatal;
5010 
5011 	switch (idx) {
5012 	case MEM_EDC0:
5013 		ii.name = "EDC0_INT_CAUSE";
5014 		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 0);
5015 		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 0);
5016 		count_reg = EDC_REG(A_EDC_ECC_STATUS, 0);
5017 		break;
5018 	case MEM_EDC1:
5019 		ii.name = "EDC1_INT_CAUSE";
5020 		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 1);
5021 		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 1);
5022 		count_reg = EDC_REG(A_EDC_ECC_STATUS, 1);
5023 		break;
5024 	case MEM_MC0:
5025 		ii.name = "MC0_INT_CAUSE";
5026 		if (is_t4(adap)) {
5027 			ii.cause_reg = A_MC_INT_CAUSE;
5028 			ii.enable_reg = A_MC_INT_ENABLE;
5029 			count_reg = A_MC_ECC_STATUS;
5030 		} else {
5031 			ii.cause_reg = A_MC_P_INT_CAUSE;
5032 			ii.enable_reg = A_MC_P_INT_ENABLE;
5033 			count_reg = A_MC_P_ECC_STATUS;
5034 		}
5035 		break;
5036 	case MEM_MC1:
5037 		ii.name = "MC1_INT_CAUSE";
5038 		ii.cause_reg = MC_REG(A_MC_P_INT_CAUSE, 1);
5039 		ii.enable_reg = MC_REG(A_MC_P_INT_ENABLE, 1);
5040 		count_reg = MC_REG(A_MC_P_ECC_STATUS, 1);
5041 		break;
5042 	}
5043 
5044 	fatal = t4_handle_intr(adap, &ii, 0, verbose);
5045 
5046 	v = t4_read_reg(adap, count_reg);
5047 	if (v != 0) {
5048 		if (G_ECC_UECNT(v) != 0) {
5049 			CH_ALERT(adap,
5050 			    "%s: %u uncorrectable ECC data error(s)\n",
5051 			    name[idx], G_ECC_UECNT(v));
5052 		}
5053 		if (G_ECC_CECNT(v) != 0) {
5054 			if (idx <= MEM_EDC1)
5055 				t4_edc_err_read(adap, idx);
5056 			CH_WARN_RATELIMIT(adap,
5057 			    "%s: %u correctable ECC data error(s)\n",
5058 			    name[idx], G_ECC_CECNT(v));
5059 		}
5060 		t4_write_reg(adap, count_reg, 0xffffffff);
5061 	}
5062 
5063 	return (fatal);
5064 }
5065 
5066 static bool ma_wrap_status(struct adapter *adap, int arg, bool verbose)
5067 {
5068 	u32 v;
5069 
5070 	v = t4_read_reg(adap, A_MA_INT_WRAP_STATUS);
5071 	CH_ALERT(adap,
5072 	    "MA address wrap-around error by client %u to address %#x\n",
5073 	    G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4);
5074 	t4_write_reg(adap, A_MA_INT_WRAP_STATUS, v);
5075 
5076 	return (false);
5077 }
5078 
5079 
5080 /*
5081  * MA interrupt handler.
5082  */
5083 static bool ma_intr_handler(struct adapter *adap, int arg, bool verbose)
5084 {
5085 	static const struct intr_action ma_intr_actions[] = {
5086 		{ F_MEM_WRAP_INT_CAUSE, 0, ma_wrap_status },
5087 		{ 0 },
5088 	};
5089 	static const struct intr_info ma_intr_info = {
5090 		.name = "MA_INT_CAUSE",
5091 		.cause_reg = A_MA_INT_CAUSE,
5092 		.enable_reg = A_MA_INT_ENABLE,
5093 		.fatal = F_MEM_PERR_INT_CAUSE | F_MEM_TO_INT_CAUSE,
5094 		.flags = NONFATAL_IF_DISABLED,
5095 		.details = NULL,
5096 		.actions = ma_intr_actions,
5097 	};
5098 	static const struct intr_info ma_perr_status1 = {
5099 		.name = "MA_PARITY_ERROR_STATUS1",
5100 		.cause_reg = A_MA_PARITY_ERROR_STATUS1,
5101 		.enable_reg = A_MA_PARITY_ERROR_ENABLE1,
5102 		.fatal = 0xffffffff,
5103 		.flags = 0,
5104 		.details = NULL,
5105 		.actions = NULL,
5106 	};
5107 	static const struct intr_info ma_perr_status2 = {
5108 		.name = "MA_PARITY_ERROR_STATUS2",
5109 		.cause_reg = A_MA_PARITY_ERROR_STATUS2,
5110 		.enable_reg = A_MA_PARITY_ERROR_ENABLE2,
5111 		.fatal = 0xffffffff,
5112 		.flags = 0,
5113 		.details = NULL,
5114 		.actions = NULL,
5115 	};
5116 	bool fatal;
5117 
5118 	fatal = false;
5119 	fatal |= t4_handle_intr(adap, &ma_intr_info, 0, verbose);
5120 	fatal |= t4_handle_intr(adap, &ma_perr_status1, 0, verbose);
5121 	if (chip_id(adap) > CHELSIO_T4)
5122 		fatal |= t4_handle_intr(adap, &ma_perr_status2, 0, verbose);
5123 
5124 	return (fatal);
5125 }
5126 
5127 /*
5128  * SMB interrupt handler.
5129  */
5130 static bool smb_intr_handler(struct adapter *adap, int arg, bool verbose)
5131 {
5132 	static const struct intr_details smb_intr_details[] = {
5133 		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error" },
5134 		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error" },
5135 		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error" },
5136 		{ 0 }
5137 	};
5138 	static const struct intr_info smb_intr_info = {
5139 		.name = "SMB_INT_CAUSE",
5140 		.cause_reg = A_SMB_INT_CAUSE,
5141 		.enable_reg = A_SMB_INT_ENABLE,
5142 		.fatal = F_SLVFIFOPARINT | F_MSTRXFIFOPARINT | F_MSTTXFIFOPARINT,
5143 		.flags = 0,
5144 		.details = smb_intr_details,
5145 		.actions = NULL,
5146 	};
5147 
5148 	return (t4_handle_intr(adap, &smb_intr_info, 0, verbose));
5149 }
5150 
5151 /*
5152  * NC-SI interrupt handler.
5153  */
5154 static bool ncsi_intr_handler(struct adapter *adap, int arg, bool verbose)
5155 {
5156 	static const struct intr_details ncsi_intr_details[] = {
5157 		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error" },
5158 		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error" },
5159 		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error" },
5160 		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error" },
5161 		{ 0 }
5162 	};
5163 	static const struct intr_info ncsi_intr_info = {
5164 		.name = "NCSI_INT_CAUSE",
5165 		.cause_reg = A_NCSI_INT_CAUSE,
5166 		.enable_reg = A_NCSI_INT_ENABLE,
5167 		.fatal = F_RXFIFO_PRTY_ERR | F_TXFIFO_PRTY_ERR |
5168 		    F_MPS_DM_PRTY_ERR | F_CIM_DM_PRTY_ERR,
5169 		.flags = 0,
5170 		.details = ncsi_intr_details,
5171 		.actions = NULL,
5172 	};
5173 
5174 	return (t4_handle_intr(adap, &ncsi_intr_info, 0, verbose));
5175 }
5176 
5177 /*
5178  * MAC interrupt handler.
5179  */
5180 static bool mac_intr_handler(struct adapter *adap, int port, bool verbose)
5181 {
5182 	static const struct intr_details mac_intr_details[] = {
5183 		{ F_TXFIFO_PRTY_ERR, "MAC Tx FIFO parity error" },
5184 		{ F_RXFIFO_PRTY_ERR, "MAC Rx FIFO parity error" },
5185 		{ 0 }
5186 	};
5187 	char name[32];
5188 	struct intr_info ii;
5189 	bool fatal = false;
5190 
5191 	if (is_t4(adap)) {
5192 		snprintf(name, sizeof(name), "XGMAC_PORT%u_INT_CAUSE", port);
5193 		ii.name = &name[0];
5194 		ii.cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
5195 		ii.enable_reg = PORT_REG(port, A_XGMAC_PORT_INT_EN);
5196 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5197 		ii.flags = 0;
5198 		ii.details = mac_intr_details;
5199 		ii.actions = NULL;
5200 	} else {
5201 		snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port);
5202 		ii.name = &name[0];
5203 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
5204 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_INT_EN);
5205 		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5206 		ii.flags = 0;
5207 		ii.details = mac_intr_details;
5208 		ii.actions = NULL;
5209 	}
5210 	fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5211 
5212 	if (chip_id(adap) >= CHELSIO_T5) {
5213 		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE", port);
5214 		ii.name = &name[0];
5215 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE);
5216 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN);
5217 		ii.fatal = 0;
5218 		ii.flags = 0;
5219 		ii.details = NULL;
5220 		ii.actions = NULL;
5221 		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5222 	}
5223 
5224 	if (chip_id(adap) >= CHELSIO_T6) {
5225 		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE_100G", port);
5226 		ii.name = &name[0];
5227 		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE_100G);
5228 		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN_100G);
5229 		ii.fatal = 0;
5230 		ii.flags = 0;
5231 		ii.details = NULL;
5232 		ii.actions = NULL;
5233 		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5234 	}
5235 
5236 	return (fatal);
5237 }
5238 
5239 static bool plpl_intr_handler(struct adapter *adap, int arg, bool verbose)
5240 {
5241 	static const struct intr_details plpl_intr_details[] = {
5242 		{ F_FATALPERR, "Fatal parity error" },
5243 		{ F_PERRVFID, "VFID_MAP parity error" },
5244 		{ 0 }
5245 	};
5246 	static const struct intr_info plpl_intr_info = {
5247 		.name = "PL_PL_INT_CAUSE",
5248 		.cause_reg = A_PL_PL_INT_CAUSE,
5249 		.enable_reg = A_PL_PL_INT_ENABLE,
5250 		.fatal = F_FATALPERR | F_PERRVFID,
5251 		.flags = NONFATAL_IF_DISABLED,
5252 		.details = plpl_intr_details,
5253 		.actions = NULL,
5254 	};
5255 
5256 	return (t4_handle_intr(adap, &plpl_intr_info, 0, verbose));
5257 }
5258 
5259 /**
5260  *	t4_slow_intr_handler - control path interrupt handler
5261  *	@adap: the adapter
5262  *	@verbose: increased verbosity, for debug
5263  *
5264  *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
5265  *	The designation 'slow' is because it involves register reads, while
5266  *	data interrupts typically don't involve any MMIOs.
5267  */
5268 int t4_slow_intr_handler(struct adapter *adap, bool verbose)
5269 {
5270 	static const struct intr_details pl_intr_details[] = {
5271 		{ F_MC1, "MC1" },
5272 		{ F_UART, "UART" },
5273 		{ F_ULP_TX, "ULP TX" },
5274 		{ F_SGE, "SGE" },
5275 		{ F_HMA, "HMA" },
5276 		{ F_CPL_SWITCH, "CPL Switch" },
5277 		{ F_ULP_RX, "ULP RX" },
5278 		{ F_PM_RX, "PM RX" },
5279 		{ F_PM_TX, "PM TX" },
5280 		{ F_MA, "MA" },
5281 		{ F_TP, "TP" },
5282 		{ F_LE, "LE" },
5283 		{ F_EDC1, "EDC1" },
5284 		{ F_EDC0, "EDC0" },
5285 		{ F_MC, "MC0" },
5286 		{ F_PCIE, "PCIE" },
5287 		{ F_PMU, "PMU" },
5288 		{ F_MAC3, "MAC3" },
5289 		{ F_MAC2, "MAC2" },
5290 		{ F_MAC1, "MAC1" },
5291 		{ F_MAC0, "MAC0" },
5292 		{ F_SMB, "SMB" },
5293 		{ F_SF, "SF" },
5294 		{ F_PL, "PL" },
5295 		{ F_NCSI, "NC-SI" },
5296 		{ F_MPS, "MPS" },
5297 		{ F_MI, "MI" },
5298 		{ F_DBG, "DBG" },
5299 		{ F_I2CM, "I2CM" },
5300 		{ F_CIM, "CIM" },
5301 		{ 0 }
5302 	};
5303 	static const struct intr_info pl_perr_cause = {
5304 		.name = "PL_PERR_CAUSE",
5305 		.cause_reg = A_PL_PERR_CAUSE,
5306 		.enable_reg = A_PL_PERR_ENABLE,
5307 		.fatal = 0xffffffff,
5308 		.flags = 0,
5309 		.details = pl_intr_details,
5310 		.actions = NULL,
5311 	};
5312 	static const struct intr_action pl_intr_action[] = {
5313 		{ F_MC1, MEM_MC1, mem_intr_handler },
5314 		{ F_ULP_TX, -1, ulptx_intr_handler },
5315 		{ F_SGE, -1, sge_intr_handler },
5316 		{ F_CPL_SWITCH, -1, cplsw_intr_handler },
5317 		{ F_ULP_RX, -1, ulprx_intr_handler },
5318 		{ F_PM_RX, -1, pmrx_intr_handler},
5319 		{ F_PM_TX, -1, pmtx_intr_handler},
5320 		{ F_MA, -1, ma_intr_handler },
5321 		{ F_TP, -1, tp_intr_handler },
5322 		{ F_LE, -1, le_intr_handler },
5323 		{ F_EDC1, MEM_EDC1, mem_intr_handler },
5324 		{ F_EDC0, MEM_EDC0, mem_intr_handler },
5325 		{ F_MC0, MEM_MC0, mem_intr_handler },
5326 		{ F_PCIE, -1, pcie_intr_handler },
5327 		{ F_MAC3, 3, mac_intr_handler},
5328 		{ F_MAC2, 2, mac_intr_handler},
5329 		{ F_MAC1, 1, mac_intr_handler},
5330 		{ F_MAC0, 0, mac_intr_handler},
5331 		{ F_SMB, -1, smb_intr_handler},
5332 		{ F_PL, -1, plpl_intr_handler },
5333 		{ F_NCSI, -1, ncsi_intr_handler},
5334 		{ F_MPS, -1, mps_intr_handler },
5335 		{ F_CIM, -1, cim_intr_handler },
5336 		{ 0 }
5337 	};
5338 	static const struct intr_info pl_intr_info = {
5339 		.name = "PL_INT_CAUSE",
5340 		.cause_reg = A_PL_INT_CAUSE,
5341 		.enable_reg = A_PL_INT_ENABLE,
5342 		.fatal = 0,
5343 		.flags = 0,
5344 		.details = pl_intr_details,
5345 		.actions = pl_intr_action,
5346 	};
5347 	bool fatal;
5348 	u32 perr;
5349 
5350 	perr = t4_read_reg(adap, pl_perr_cause.cause_reg);
5351 	if (verbose || perr != 0) {
5352 		t4_show_intr_info(adap, &pl_perr_cause, perr);
5353 		if (perr != 0)
5354 			t4_write_reg(adap, pl_perr_cause.cause_reg, perr);
5355 		if (verbose)
5356 			perr |= t4_read_reg(adap, pl_intr_info.enable_reg);
5357 	}
5358 	fatal = t4_handle_intr(adap, &pl_intr_info, perr, verbose);
5359 	if (fatal)
5360 		t4_fatal_err(adap, false);
5361 
5362 	return (0);
5363 }
5364 
5365 #define PF_INTR_MASK (F_PFSW | F_PFCIM)
5366 
5367 /**
5368  *	t4_intr_enable - enable interrupts
5369  *	@adapter: the adapter whose interrupts should be enabled
5370  *
5371  *	Enable PF-specific interrupts for the calling function and the top-level
5372  *	interrupt concentrator for global interrupts.  Interrupts are already
5373  *	enabled at each module,	here we just enable the roots of the interrupt
5374  *	hierarchies.
5375  *
5376  *	Note: this function should be called only when the driver manages
5377  *	non PF-specific interrupts from the various HW modules.  Only one PCI
5378  *	function at a time should be doing this.
5379  */
5380 void t4_intr_enable(struct adapter *adap)
5381 {
5382 	u32 val = 0;
5383 
5384 	if (chip_id(adap) <= CHELSIO_T5)
5385 		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
5386 	else
5387 		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
5388 	val |= F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC |
5389 	    F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 |
5390 	    F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 |
5391 	    F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
5392 	    F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_DBFIFO_LP_INT |
5393 	    F_EGRESS_SIZE_ERR;
5394 	t4_set_reg_field(adap, A_SGE_INT_ENABLE3, val, val);
5395 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
5396 	t4_set_reg_field(adap, A_PL_INT_ENABLE, F_SF | F_I2CM, 0);
5397 	t4_set_reg_field(adap, A_PL_INT_MAP0, 0, 1 << adap->pf);
5398 }
5399 
5400 /**
5401  *	t4_intr_disable - disable interrupts
5402  *	@adap: the adapter whose interrupts should be disabled
5403  *
5404  *	Disable interrupts.  We only disable the top-level interrupt
5405  *	concentrators.  The caller must be a PCI function managing global
5406  *	interrupts.
5407  */
5408 void t4_intr_disable(struct adapter *adap)
5409 {
5410 
5411 	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
5412 	t4_set_reg_field(adap, A_PL_INT_MAP0, 1 << adap->pf, 0);
5413 }
5414 
5415 /**
5416  *	t4_intr_clear - clear all interrupts
5417  *	@adap: the adapter whose interrupts should be cleared
5418  *
5419  *	Clears all interrupts.  The caller must be a PCI function managing
5420  *	global interrupts.
5421  */
5422 void t4_intr_clear(struct adapter *adap)
5423 {
5424 	static const u32 cause_reg[] = {
5425 		A_CIM_HOST_INT_CAUSE,
5426 		A_CIM_HOST_UPACC_INT_CAUSE,
5427 		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
5428 		A_CPL_INTR_CAUSE,
5429 		EDC_REG(A_EDC_INT_CAUSE, 0), EDC_REG(A_EDC_INT_CAUSE, 1),
5430 		A_LE_DB_INT_CAUSE,
5431 		A_MA_INT_WRAP_STATUS,
5432 		A_MA_PARITY_ERROR_STATUS1,
5433 		A_MA_INT_CAUSE,
5434 		A_MPS_CLS_INT_CAUSE,
5435 		A_MPS_RX_PERR_INT_CAUSE,
5436 		A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
5437 		A_MPS_STAT_PERR_INT_CAUSE_SRAM,
5438 		A_MPS_TRC_INT_CAUSE,
5439 		A_MPS_TX_INT_CAUSE,
5440 		A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
5441 		A_NCSI_INT_CAUSE,
5442 		A_PCIE_INT_CAUSE,
5443 		A_PCIE_NONFAT_ERR,
5444 		A_PL_PL_INT_CAUSE,
5445 		A_PM_RX_INT_CAUSE,
5446 		A_PM_TX_INT_CAUSE,
5447 		A_SGE_INT_CAUSE1,
5448 		A_SGE_INT_CAUSE2,
5449 		A_SGE_INT_CAUSE3,
5450 		A_SGE_INT_CAUSE4,
5451 		A_SMB_INT_CAUSE,
5452 		A_TP_INT_CAUSE,
5453 		A_ULP_RX_INT_CAUSE,
5454 		A_ULP_RX_INT_CAUSE_2,
5455 		A_ULP_TX_INT_CAUSE,
5456 		A_ULP_TX_INT_CAUSE_2,
5457 
5458 		MYPF_REG(A_PL_PF_INT_CAUSE),
5459 	};
5460 	int i;
5461 	const int nchan = adap->chip_params->nchan;
5462 
5463 	for (i = 0; i < ARRAY_SIZE(cause_reg); i++)
5464 		t4_write_reg(adap, cause_reg[i], 0xffffffff);
5465 
5466 	if (is_t4(adap)) {
5467 		t4_write_reg(adap, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
5468 		    0xffffffff);
5469 		t4_write_reg(adap, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
5470 		    0xffffffff);
5471 		t4_write_reg(adap, A_MC_INT_CAUSE, 0xffffffff);
5472 		for (i = 0; i < nchan; i++) {
5473 			t4_write_reg(adap, PORT_REG(i, A_XGMAC_PORT_INT_CAUSE),
5474 			    0xffffffff);
5475 		}
5476 	}
5477 	if (chip_id(adap) >= CHELSIO_T5) {
5478 		t4_write_reg(adap, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
5479 		t4_write_reg(adap, A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 0xffffffff);
5480 		t4_write_reg(adap, A_SGE_INT_CAUSE5, 0xffffffff);
5481 		t4_write_reg(adap, A_MC_P_INT_CAUSE, 0xffffffff);
5482 		if (is_t5(adap)) {
5483 			t4_write_reg(adap, MC_REG(A_MC_P_INT_CAUSE, 1),
5484 			    0xffffffff);
5485 		}
5486 		for (i = 0; i < nchan; i++) {
5487 			t4_write_reg(adap, T5_PORT_REG(i,
5488 			    A_MAC_PORT_PERR_INT_CAUSE), 0xffffffff);
5489 			if (chip_id(adap) > CHELSIO_T5) {
5490 				t4_write_reg(adap, T5_PORT_REG(i,
5491 				    A_MAC_PORT_PERR_INT_CAUSE_100G),
5492 				    0xffffffff);
5493 			}
5494 			t4_write_reg(adap, T5_PORT_REG(i, A_MAC_PORT_INT_CAUSE),
5495 			    0xffffffff);
5496 		}
5497 	}
5498 	if (chip_id(adap) >= CHELSIO_T6) {
5499 		t4_write_reg(adap, A_SGE_INT_CAUSE6, 0xffffffff);
5500 	}
5501 
5502 	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
5503 	t4_write_reg(adap, A_PL_PERR_CAUSE, 0xffffffff);
5504 	t4_write_reg(adap, A_PL_INT_CAUSE, 0xffffffff);
5505 	(void) t4_read_reg(adap, A_PL_INT_CAUSE);          /* flush */
5506 }
5507 
5508 /**
5509  *	hash_mac_addr - return the hash value of a MAC address
5510  *	@addr: the 48-bit Ethernet MAC address
5511  *
5512  *	Hashes a MAC address according to the hash function used by HW inexact
5513  *	(hash) address matching.
5514  */
5515 static int hash_mac_addr(const u8 *addr)
5516 {
5517 	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
5518 	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
5519 	a ^= b;
5520 	a ^= (a >> 12);
5521 	a ^= (a >> 6);
5522 	return a & 0x3f;
5523 }
5524 
5525 /**
5526  *	t4_config_rss_range - configure a portion of the RSS mapping table
5527  *	@adapter: the adapter
5528  *	@mbox: mbox to use for the FW command
5529  *	@viid: virtual interface whose RSS subtable is to be written
5530  *	@start: start entry in the table to write
5531  *	@n: how many table entries to write
5532  *	@rspq: values for the "response queue" (Ingress Queue) lookup table
5533  *	@nrspq: number of values in @rspq
5534  *
5535  *	Programs the selected part of the VI's RSS mapping table with the
5536  *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5537  *	until the full table range is populated.
5538  *
5539  *	The caller must ensure the values in @rspq are in the range allowed for
5540  *	@viid.
5541  */
5542 int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5543 			int start, int n, const u16 *rspq, unsigned int nrspq)
5544 {
5545 	int ret;
5546 	const u16 *rsp = rspq;
5547 	const u16 *rsp_end = rspq + nrspq;
5548 	struct fw_rss_ind_tbl_cmd cmd;
5549 
5550 	memset(&cmd, 0, sizeof(cmd));
5551 	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
5552 				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5553 				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
5554 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5555 
5556 	/*
5557 	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
5558 	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
5559 	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
5560 	 * reserved.
5561 	 */
5562 	while (n > 0) {
5563 		int nq = min(n, 32);
5564 		int nq_packed = 0;
5565 		__be32 *qp = &cmd.iq0_to_iq2;
5566 
5567 		/*
5568 		 * Set up the firmware RSS command header to send the next
5569 		 * "nq" Ingress Queue IDs to the firmware.
5570 		 */
5571 		cmd.niqid = cpu_to_be16(nq);
5572 		cmd.startidx = cpu_to_be16(start);
5573 
5574 		/*
5575 		 * "nq" more done for the start of the next loop.
5576 		 */
5577 		start += nq;
5578 		n -= nq;
5579 
5580 		/*
5581 		 * While there are still Ingress Queue IDs to stuff into the
5582 		 * current firmware RSS command, retrieve them from the
5583 		 * Ingress Queue ID array and insert them into the command.
5584 		 */
5585 		while (nq > 0) {
5586 			/*
5587 			 * Grab up to the next 3 Ingress Queue IDs (wrapping
5588 			 * around the Ingress Queue ID array if necessary) and
5589 			 * insert them into the firmware RSS command at the
5590 			 * current 3-tuple position within the commad.
5591 			 */
5592 			u16 qbuf[3];
5593 			u16 *qbp = qbuf;
5594 			int nqbuf = min(3, nq);
5595 
5596 			nq -= nqbuf;
5597 			qbuf[0] = qbuf[1] = qbuf[2] = 0;
5598 			while (nqbuf && nq_packed < 32) {
5599 				nqbuf--;
5600 				nq_packed++;
5601 				*qbp++ = *rsp++;
5602 				if (rsp >= rsp_end)
5603 					rsp = rspq;
5604 			}
5605 			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
5606 					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
5607 					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
5608 		}
5609 
5610 		/*
5611 		 * Send this portion of the RRS table update to the firmware;
5612 		 * bail out on any errors.
5613 		 */
5614 		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5615 		if (ret)
5616 			return ret;
5617 	}
5618 	return 0;
5619 }
5620 
5621 /**
5622  *	t4_config_glbl_rss - configure the global RSS mode
5623  *	@adapter: the adapter
5624  *	@mbox: mbox to use for the FW command
5625  *	@mode: global RSS mode
5626  *	@flags: mode-specific flags
5627  *
5628  *	Sets the global RSS mode.
5629  */
5630 int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5631 		       unsigned int flags)
5632 {
5633 	struct fw_rss_glb_config_cmd c;
5634 
5635 	memset(&c, 0, sizeof(c));
5636 	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
5637 				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5638 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5639 	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5640 		c.u.manual.mode_pkd =
5641 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5642 	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5643 		c.u.basicvirtual.mode_keymode =
5644 			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5645 		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5646 	} else
5647 		return -EINVAL;
5648 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5649 }
5650 
5651 /**
5652  *	t4_config_vi_rss - configure per VI RSS settings
5653  *	@adapter: the adapter
5654  *	@mbox: mbox to use for the FW command
5655  *	@viid: the VI id
5656  *	@flags: RSS flags
5657  *	@defq: id of the default RSS queue for the VI.
5658  *	@skeyidx: RSS secret key table index for non-global mode
5659  *	@skey: RSS vf_scramble key for VI.
5660  *
5661  *	Configures VI-specific RSS properties.
5662  */
5663 int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5664 		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
5665 		     unsigned int skey)
5666 {
5667 	struct fw_rss_vi_config_cmd c;
5668 
5669 	memset(&c, 0, sizeof(c));
5670 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
5671 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5672 				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
5673 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5674 	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5675 					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
5676 	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
5677 					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
5678 	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
5679 
5680 	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5681 }
5682 
5683 /* Read an RSS table row */
5684 static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5685 {
5686 	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
5687 	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
5688 				   5, 0, val);
5689 }
5690 
5691 /**
5692  *	t4_read_rss - read the contents of the RSS mapping table
5693  *	@adapter: the adapter
5694  *	@map: holds the contents of the RSS mapping table
5695  *
5696  *	Reads the contents of the RSS hash->queue mapping table.
5697  */
5698 int t4_read_rss(struct adapter *adapter, u16 *map)
5699 {
5700 	u32 val;
5701 	int i, ret;
5702 	int rss_nentries = adapter->chip_params->rss_nentries;
5703 
5704 	for (i = 0; i < rss_nentries / 2; ++i) {
5705 		ret = rd_rss_row(adapter, i, &val);
5706 		if (ret)
5707 			return ret;
5708 		*map++ = G_LKPTBLQUEUE0(val);
5709 		*map++ = G_LKPTBLQUEUE1(val);
5710 	}
5711 	return 0;
5712 }
5713 
5714 /**
5715  * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5716  * @adap: the adapter
5717  * @cmd: TP fw ldst address space type
5718  * @vals: where the indirect register values are stored/written
5719  * @nregs: how many indirect registers to read/write
5720  * @start_idx: index of first indirect register to read/write
5721  * @rw: Read (1) or Write (0)
5722  * @sleep_ok: if true we may sleep while awaiting command completion
5723  *
5724  * Access TP indirect registers through LDST
5725  **/
5726 static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5727 			    unsigned int nregs, unsigned int start_index,
5728 			    unsigned int rw, bool sleep_ok)
5729 {
5730 	int ret = 0;
5731 	unsigned int i;
5732 	struct fw_ldst_cmd c;
5733 
5734 	for (i = 0; i < nregs; i++) {
5735 		memset(&c, 0, sizeof(c));
5736 		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5737 						F_FW_CMD_REQUEST |
5738 						(rw ? F_FW_CMD_READ :
5739 						      F_FW_CMD_WRITE) |
5740 						V_FW_LDST_CMD_ADDRSPACE(cmd));
5741 		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5742 
5743 		c.u.addrval.addr = cpu_to_be32(start_index + i);
5744 		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5745 		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5746 				      sleep_ok);
5747 		if (ret)
5748 			return ret;
5749 
5750 		if (rw)
5751 			vals[i] = be32_to_cpu(c.u.addrval.val);
5752 	}
5753 	return 0;
5754 }
5755 
5756 /**
5757  * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5758  * @adap: the adapter
5759  * @reg_addr: Address Register
5760  * @reg_data: Data register
5761  * @buff: where the indirect register values are stored/written
5762  * @nregs: how many indirect registers to read/write
5763  * @start_index: index of first indirect register to read/write
5764  * @rw: READ(1) or WRITE(0)
5765  * @sleep_ok: if true we may sleep while awaiting command completion
5766  *
5767  * Read/Write TP indirect registers through LDST if possible.
5768  * Else, use backdoor access
5769  **/
5770 static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5771 			      u32 *buff, u32 nregs, u32 start_index, int rw,
5772 			      bool sleep_ok)
5773 {
5774 	int rc = -EINVAL;
5775 	int cmd;
5776 
5777 	switch (reg_addr) {
5778 	case A_TP_PIO_ADDR:
5779 		cmd = FW_LDST_ADDRSPC_TP_PIO;
5780 		break;
5781 	case A_TP_TM_PIO_ADDR:
5782 		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5783 		break;
5784 	case A_TP_MIB_INDEX:
5785 		cmd = FW_LDST_ADDRSPC_TP_MIB;
5786 		break;
5787 	default:
5788 		goto indirect_access;
5789 	}
5790 
5791 	if (t4_use_ldst(adap))
5792 		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5793 				      sleep_ok);
5794 
5795 indirect_access:
5796 
5797 	if (rc) {
5798 		if (rw)
5799 			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5800 					 start_index);
5801 		else
5802 			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5803 					  start_index);
5804 	}
5805 }
5806 
5807 /**
5808  * t4_tp_pio_read - Read TP PIO registers
5809  * @adap: the adapter
5810  * @buff: where the indirect register values are written
5811  * @nregs: how many indirect registers to read
5812  * @start_index: index of first indirect register to read
5813  * @sleep_ok: if true we may sleep while awaiting command completion
5814  *
5815  * Read TP PIO Registers
5816  **/
5817 void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5818 		    u32 start_index, bool sleep_ok)
5819 {
5820 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
5821 			  start_index, 1, sleep_ok);
5822 }
5823 
5824 /**
5825  * t4_tp_pio_write - Write TP PIO registers
5826  * @adap: the adapter
5827  * @buff: where the indirect register values are stored
5828  * @nregs: how many indirect registers to write
5829  * @start_index: index of first indirect register to write
5830  * @sleep_ok: if true we may sleep while awaiting command completion
5831  *
5832  * Write TP PIO Registers
5833  **/
5834 void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5835 		     u32 start_index, bool sleep_ok)
5836 {
5837 	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5838 	    __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5839 }
5840 
5841 /**
5842  * t4_tp_tm_pio_read - Read TP TM PIO registers
5843  * @adap: the adapter
5844  * @buff: where the indirect register values are written
5845  * @nregs: how many indirect registers to read
5846  * @start_index: index of first indirect register to read
5847  * @sleep_ok: if true we may sleep while awaiting command completion
5848  *
5849  * Read TP TM PIO Registers
5850  **/
5851 void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5852 		       u32 start_index, bool sleep_ok)
5853 {
5854 	t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5855 			  nregs, start_index, 1, sleep_ok);
5856 }
5857 
5858 /**
5859  * t4_tp_mib_read - Read TP MIB registers
5860  * @adap: the adapter
5861  * @buff: where the indirect register values are written
5862  * @nregs: how many indirect registers to read
5863  * @start_index: index of first indirect register to read
5864  * @sleep_ok: if true we may sleep while awaiting command completion
5865  *
5866  * Read TP MIB Registers
5867  **/
5868 void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5869 		    bool sleep_ok)
5870 {
5871 	t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5872 			  start_index, 1, sleep_ok);
5873 }
5874 
5875 /**
5876  *	t4_read_rss_key - read the global RSS key
5877  *	@adap: the adapter
5878  *	@key: 10-entry array holding the 320-bit RSS key
5879  * 	@sleep_ok: if true we may sleep while awaiting command completion
5880  *
5881  *	Reads the global 320-bit RSS key.
5882  */
5883 void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5884 {
5885 	t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5886 }
5887 
5888 /**
5889  *	t4_write_rss_key - program one of the RSS keys
5890  *	@adap: the adapter
5891  *	@key: 10-entry array holding the 320-bit RSS key
5892  *	@idx: which RSS key to write
5893  * 	@sleep_ok: if true we may sleep while awaiting command completion
5894  *
5895  *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5896  *	0..15 the corresponding entry in the RSS key table is written,
5897  *	otherwise the global RSS key is written.
5898  */
5899 void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5900 		      bool sleep_ok)
5901 {
5902 	u8 rss_key_addr_cnt = 16;
5903 	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5904 
5905 	/*
5906 	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5907 	 * allows access to key addresses 16-63 by using KeyWrAddrX
5908 	 * as index[5:4](upper 2) into key table
5909 	 */
5910 	if ((chip_id(adap) > CHELSIO_T5) &&
5911 	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5912 		rss_key_addr_cnt = 32;
5913 
5914 	t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5915 
5916 	if (idx >= 0 && idx < rss_key_addr_cnt) {
5917 		if (rss_key_addr_cnt > 16)
5918 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5919 				     vrt | V_KEYWRADDRX(idx >> 4) |
5920 				     V_T6_VFWRADDR(idx) | F_KEYWREN);
5921 		else
5922 			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5923 				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5924 	}
5925 }
5926 
5927 /**
5928  *	t4_read_rss_pf_config - read PF RSS Configuration Table
5929  *	@adapter: the adapter
5930  *	@index: the entry in the PF RSS table to read
5931  *	@valp: where to store the returned value
5932  * 	@sleep_ok: if true we may sleep while awaiting command completion
5933  *
5934  *	Reads the PF RSS Configuration Table at the specified index and returns
5935  *	the value found there.
5936  */
5937 void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5938 			   u32 *valp, bool sleep_ok)
5939 {
5940 	t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5941 }
5942 
5943 /**
5944  *	t4_write_rss_pf_config - write PF RSS Configuration Table
5945  *	@adapter: the adapter
5946  *	@index: the entry in the VF RSS table to read
5947  *	@val: the value to store
5948  * 	@sleep_ok: if true we may sleep while awaiting command completion
5949  *
5950  *	Writes the PF RSS Configuration Table at the specified index with the
5951  *	specified value.
5952  */
5953 void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5954 			    u32 val, bool sleep_ok)
5955 {
5956 	t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5957 			sleep_ok);
5958 }
5959 
5960 /**
5961  *	t4_read_rss_vf_config - read VF RSS Configuration Table
5962  *	@adapter: the adapter
5963  *	@index: the entry in the VF RSS table to read
5964  *	@vfl: where to store the returned VFL
5965  *	@vfh: where to store the returned VFH
5966  * 	@sleep_ok: if true we may sleep while awaiting command completion
5967  *
5968  *	Reads the VF RSS Configuration Table at the specified index and returns
5969  *	the (VFL, VFH) values found there.
5970  */
5971 void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5972 			   u32 *vfl, u32 *vfh, bool sleep_ok)
5973 {
5974 	u32 vrt, mask, data;
5975 
5976 	if (chip_id(adapter) <= CHELSIO_T5) {
5977 		mask = V_VFWRADDR(M_VFWRADDR);
5978 		data = V_VFWRADDR(index);
5979 	} else {
5980 		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5981 		 data = V_T6_VFWRADDR(index);
5982 	}
5983 	/*
5984 	 * Request that the index'th VF Table values be read into VFL/VFH.
5985 	 */
5986 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5987 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5988 	vrt |= data | F_VFRDEN;
5989 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5990 
5991 	/*
5992 	 * Grab the VFL/VFH values ...
5993 	 */
5994 	t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5995 	t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5996 }
5997 
5998 /**
5999  *	t4_write_rss_vf_config - write VF RSS Configuration Table
6000  *
6001  *	@adapter: the adapter
6002  *	@index: the entry in the VF RSS table to write
6003  *	@vfl: the VFL to store
6004  *	@vfh: the VFH to store
6005  *
6006  *	Writes the VF RSS Configuration Table at the specified index with the
6007  *	specified (VFL, VFH) values.
6008  */
6009 void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
6010 			    u32 vfl, u32 vfh, bool sleep_ok)
6011 {
6012 	u32 vrt, mask, data;
6013 
6014 	if (chip_id(adapter) <= CHELSIO_T5) {
6015 		mask = V_VFWRADDR(M_VFWRADDR);
6016 		data = V_VFWRADDR(index);
6017 	} else {
6018 		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
6019 		data = V_T6_VFWRADDR(index);
6020 	}
6021 
6022 	/*
6023 	 * Load up VFL/VFH with the values to be written ...
6024 	 */
6025 	t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
6026 	t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
6027 
6028 	/*
6029 	 * Write the VFL/VFH into the VF Table at index'th location.
6030 	 */
6031 	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
6032 	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
6033 	vrt |= data | F_VFRDEN;
6034 	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
6035 }
6036 
6037 /**
6038  *	t4_read_rss_pf_map - read PF RSS Map
6039  *	@adapter: the adapter
6040  * 	@sleep_ok: if true we may sleep while awaiting command completion
6041  *
6042  *	Reads the PF RSS Map register and returns its value.
6043  */
6044 u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
6045 {
6046 	u32 pfmap;
6047 
6048 	t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6049 
6050 	return pfmap;
6051 }
6052 
6053 /**
6054  *	t4_write_rss_pf_map - write PF RSS Map
6055  *	@adapter: the adapter
6056  *	@pfmap: PF RSS Map value
6057  *
6058  *	Writes the specified value to the PF RSS Map register.
6059  */
6060 void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
6061 {
6062 	t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6063 }
6064 
6065 /**
6066  *	t4_read_rss_pf_mask - read PF RSS Mask
6067  *	@adapter: the adapter
6068  * 	@sleep_ok: if true we may sleep while awaiting command completion
6069  *
6070  *	Reads the PF RSS Mask register and returns its value.
6071  */
6072 u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
6073 {
6074 	u32 pfmask;
6075 
6076 	t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6077 
6078 	return pfmask;
6079 }
6080 
6081 /**
6082  *	t4_write_rss_pf_mask - write PF RSS Mask
6083  *	@adapter: the adapter
6084  *	@pfmask: PF RSS Mask value
6085  *
6086  *	Writes the specified value to the PF RSS Mask register.
6087  */
6088 void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
6089 {
6090 	t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6091 }
6092 
6093 /**
6094  *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
6095  *	@adap: the adapter
6096  *	@v4: holds the TCP/IP counter values
6097  *	@v6: holds the TCP/IPv6 counter values
6098  * 	@sleep_ok: if true we may sleep while awaiting command completion
6099  *
6100  *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
6101  *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
6102  */
6103 void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
6104 			 struct tp_tcp_stats *v6, bool sleep_ok)
6105 {
6106 	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
6107 
6108 #define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
6109 #define STAT(x)     val[STAT_IDX(x)]
6110 #define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
6111 
6112 	if (v4) {
6113 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6114 			       A_TP_MIB_TCP_OUT_RST, sleep_ok);
6115 		v4->tcp_out_rsts = STAT(OUT_RST);
6116 		v4->tcp_in_segs  = STAT64(IN_SEG);
6117 		v4->tcp_out_segs = STAT64(OUT_SEG);
6118 		v4->tcp_retrans_segs = STAT64(RXT_SEG);
6119 	}
6120 	if (v6) {
6121 		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6122 			       A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
6123 		v6->tcp_out_rsts = STAT(OUT_RST);
6124 		v6->tcp_in_segs  = STAT64(IN_SEG);
6125 		v6->tcp_out_segs = STAT64(OUT_SEG);
6126 		v6->tcp_retrans_segs = STAT64(RXT_SEG);
6127 	}
6128 #undef STAT64
6129 #undef STAT
6130 #undef STAT_IDX
6131 }
6132 
6133 /**
6134  *	t4_tp_get_err_stats - read TP's error MIB counters
6135  *	@adap: the adapter
6136  *	@st: holds the counter values
6137  * 	@sleep_ok: if true we may sleep while awaiting command completion
6138  *
6139  *	Returns the values of TP's error counters.
6140  */
6141 void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
6142 			 bool sleep_ok)
6143 {
6144 	int nchan = adap->chip_params->nchan;
6145 
6146 	t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
6147 		       sleep_ok);
6148 
6149 	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
6150 		       sleep_ok);
6151 
6152 	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
6153 		       sleep_ok);
6154 
6155 	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
6156 		       A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
6157 
6158 	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
6159 		       A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
6160 
6161 	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
6162 		       sleep_ok);
6163 
6164 	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
6165 		       A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
6166 
6167 	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
6168 		       A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
6169 
6170 	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
6171 		       sleep_ok);
6172 }
6173 
6174 /**
6175  *	t4_tp_get_err_stats - read TP's error MIB counters
6176  *	@adap: the adapter
6177  *	@st: holds the counter values
6178  * 	@sleep_ok: if true we may sleep while awaiting command completion
6179  *
6180  *	Returns the values of TP's error counters.
6181  */
6182 void t4_tp_get_tnl_stats(struct adapter *adap, struct tp_tnl_stats *st,
6183 			 bool sleep_ok)
6184 {
6185 	int nchan = adap->chip_params->nchan;
6186 
6187 	t4_tp_mib_read(adap, st->out_pkt, nchan, A_TP_MIB_TNL_OUT_PKT_0,
6188 		       sleep_ok);
6189 	t4_tp_mib_read(adap, st->in_pkt, nchan, A_TP_MIB_TNL_IN_PKT_0,
6190 		       sleep_ok);
6191 }
6192 
6193 /**
6194  *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
6195  *	@adap: the adapter
6196  *	@st: holds the counter values
6197  *
6198  *	Returns the values of TP's proxy counters.
6199  */
6200 void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
6201     bool sleep_ok)
6202 {
6203 	int nchan = adap->chip_params->nchan;
6204 
6205 	t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
6206 }
6207 
6208 /**
6209  *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
6210  *	@adap: the adapter
6211  *	@st: holds the counter values
6212  * 	@sleep_ok: if true we may sleep while awaiting command completion
6213  *
6214  *	Returns the values of TP's CPL counters.
6215  */
6216 void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
6217 			 bool sleep_ok)
6218 {
6219 	int nchan = adap->chip_params->nchan;
6220 
6221 	t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
6222 
6223 	t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
6224 }
6225 
6226 /**
6227  *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
6228  *	@adap: the adapter
6229  *	@st: holds the counter values
6230  *
6231  *	Returns the values of TP's RDMA counters.
6232  */
6233 void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
6234 			  bool sleep_ok)
6235 {
6236 	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
6237 		       sleep_ok);
6238 }
6239 
6240 /**
6241  *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
6242  *	@adap: the adapter
6243  *	@idx: the port index
6244  *	@st: holds the counter values
6245  * 	@sleep_ok: if true we may sleep while awaiting command completion
6246  *
6247  *	Returns the values of TP's FCoE counters for the selected port.
6248  */
6249 void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
6250 		       struct tp_fcoe_stats *st, bool sleep_ok)
6251 {
6252 	u32 val[2];
6253 
6254 	t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
6255 		       sleep_ok);
6256 
6257 	t4_tp_mib_read(adap, &st->frames_drop, 1,
6258 		       A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
6259 
6260 	t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
6261 		       sleep_ok);
6262 
6263 	st->octets_ddp = ((u64)val[0] << 32) | val[1];
6264 }
6265 
6266 /**
6267  *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
6268  *	@adap: the adapter
6269  *	@st: holds the counter values
6270  * 	@sleep_ok: if true we may sleep while awaiting command completion
6271  *
6272  *	Returns the values of TP's counters for non-TCP directly-placed packets.
6273  */
6274 void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
6275 		      bool sleep_ok)
6276 {
6277 	u32 val[4];
6278 
6279 	t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
6280 
6281 	st->frames = val[0];
6282 	st->drops = val[1];
6283 	st->octets = ((u64)val[2] << 32) | val[3];
6284 }
6285 
6286 /**
6287  *	t4_tp_get_tid_stats - read TP's tid MIB counters.
6288  *	@adap: the adapter
6289  *	@st: holds the counter values
6290  * 	@sleep_ok: if true we may sleep while awaiting command completion
6291  *
6292  *	Returns the values of TP's counters for tids.
6293  */
6294 void t4_tp_get_tid_stats(struct adapter *adap, struct tp_tid_stats *st,
6295 		      bool sleep_ok)
6296 {
6297 
6298 	t4_tp_mib_read(adap, &st->del, 4, A_TP_MIB_TID_DEL, sleep_ok);
6299 }
6300 
6301 /**
6302  *	t4_read_mtu_tbl - returns the values in the HW path MTU table
6303  *	@adap: the adapter
6304  *	@mtus: where to store the MTU values
6305  *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
6306  *
6307  *	Reads the HW path MTU table.
6308  */
6309 void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
6310 {
6311 	u32 v;
6312 	int i;
6313 
6314 	for (i = 0; i < NMTUS; ++i) {
6315 		t4_write_reg(adap, A_TP_MTU_TABLE,
6316 			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
6317 		v = t4_read_reg(adap, A_TP_MTU_TABLE);
6318 		mtus[i] = G_MTUVALUE(v);
6319 		if (mtu_log)
6320 			mtu_log[i] = G_MTUWIDTH(v);
6321 	}
6322 }
6323 
6324 /**
6325  *	t4_read_cong_tbl - reads the congestion control table
6326  *	@adap: the adapter
6327  *	@incr: where to store the alpha values
6328  *
6329  *	Reads the additive increments programmed into the HW congestion
6330  *	control table.
6331  */
6332 void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
6333 {
6334 	unsigned int mtu, w;
6335 
6336 	for (mtu = 0; mtu < NMTUS; ++mtu)
6337 		for (w = 0; w < NCCTRL_WIN; ++w) {
6338 			t4_write_reg(adap, A_TP_CCTRL_TABLE,
6339 				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
6340 			incr[mtu][w] = (u16)t4_read_reg(adap,
6341 						A_TP_CCTRL_TABLE) & 0x1fff;
6342 		}
6343 }
6344 
6345 /**
6346  *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
6347  *	@adap: the adapter
6348  *	@addr: the indirect TP register address
6349  *	@mask: specifies the field within the register to modify
6350  *	@val: new value for the field
6351  *
6352  *	Sets a field of an indirect TP register to the given value.
6353  */
6354 void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
6355 			    unsigned int mask, unsigned int val)
6356 {
6357 	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
6358 	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
6359 	t4_write_reg(adap, A_TP_PIO_DATA, val);
6360 }
6361 
6362 /**
6363  *	init_cong_ctrl - initialize congestion control parameters
6364  *	@a: the alpha values for congestion control
6365  *	@b: the beta values for congestion control
6366  *
6367  *	Initialize the congestion control parameters.
6368  */
6369 static void init_cong_ctrl(unsigned short *a, unsigned short *b)
6370 {
6371 	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
6372 	a[9] = 2;
6373 	a[10] = 3;
6374 	a[11] = 4;
6375 	a[12] = 5;
6376 	a[13] = 6;
6377 	a[14] = 7;
6378 	a[15] = 8;
6379 	a[16] = 9;
6380 	a[17] = 10;
6381 	a[18] = 14;
6382 	a[19] = 17;
6383 	a[20] = 21;
6384 	a[21] = 25;
6385 	a[22] = 30;
6386 	a[23] = 35;
6387 	a[24] = 45;
6388 	a[25] = 60;
6389 	a[26] = 80;
6390 	a[27] = 100;
6391 	a[28] = 200;
6392 	a[29] = 300;
6393 	a[30] = 400;
6394 	a[31] = 500;
6395 
6396 	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
6397 	b[9] = b[10] = 1;
6398 	b[11] = b[12] = 2;
6399 	b[13] = b[14] = b[15] = b[16] = 3;
6400 	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
6401 	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
6402 	b[28] = b[29] = 6;
6403 	b[30] = b[31] = 7;
6404 }
6405 
6406 /* The minimum additive increment value for the congestion control table */
6407 #define CC_MIN_INCR 2U
6408 
6409 /**
6410  *	t4_load_mtus - write the MTU and congestion control HW tables
6411  *	@adap: the adapter
6412  *	@mtus: the values for the MTU table
6413  *	@alpha: the values for the congestion control alpha parameter
6414  *	@beta: the values for the congestion control beta parameter
6415  *
6416  *	Write the HW MTU table with the supplied MTUs and the high-speed
6417  *	congestion control table with the supplied alpha, beta, and MTUs.
6418  *	We write the two tables together because the additive increments
6419  *	depend on the MTUs.
6420  */
6421 void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
6422 		  const unsigned short *alpha, const unsigned short *beta)
6423 {
6424 	static const unsigned int avg_pkts[NCCTRL_WIN] = {
6425 		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
6426 		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
6427 		28672, 40960, 57344, 81920, 114688, 163840, 229376
6428 	};
6429 
6430 	unsigned int i, w;
6431 
6432 	for (i = 0; i < NMTUS; ++i) {
6433 		unsigned int mtu = mtus[i];
6434 		unsigned int log2 = fls(mtu);
6435 
6436 		if (!(mtu & ((1 << log2) >> 2)))     /* round */
6437 			log2--;
6438 		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
6439 			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
6440 
6441 		for (w = 0; w < NCCTRL_WIN; ++w) {
6442 			unsigned int inc;
6443 
6444 			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
6445 				  CC_MIN_INCR);
6446 
6447 			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
6448 				     (w << 16) | (beta[w] << 13) | inc);
6449 		}
6450 	}
6451 }
6452 
6453 /**
6454  *	t4_set_pace_tbl - set the pace table
6455  *	@adap: the adapter
6456  *	@pace_vals: the pace values in microseconds
6457  *	@start: index of the first entry in the HW pace table to set
6458  *	@n: how many entries to set
6459  *
6460  *	Sets (a subset of the) HW pace table.
6461  */
6462 int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
6463 		     unsigned int start, unsigned int n)
6464 {
6465 	unsigned int vals[NTX_SCHED], i;
6466 	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
6467 
6468 	if (n > NTX_SCHED)
6469 	    return -ERANGE;
6470 
6471 	/* convert values from us to dack ticks, rounding to closest value */
6472 	for (i = 0; i < n; i++, pace_vals++) {
6473 		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
6474 		if (vals[i] > 0x7ff)
6475 			return -ERANGE;
6476 		if (*pace_vals && vals[i] == 0)
6477 			return -ERANGE;
6478 	}
6479 	for (i = 0; i < n; i++, start++)
6480 		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
6481 	return 0;
6482 }
6483 
6484 /**
6485  *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
6486  *	@adap: the adapter
6487  *	@kbps: target rate in Kbps
6488  *	@sched: the scheduler index
6489  *
6490  *	Configure a Tx HW scheduler for the target rate.
6491  */
6492 int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
6493 {
6494 	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
6495 	unsigned int clk = adap->params.vpd.cclk * 1000;
6496 	unsigned int selected_cpt = 0, selected_bpt = 0;
6497 
6498 	if (kbps > 0) {
6499 		kbps *= 125;     /* -> bytes */
6500 		for (cpt = 1; cpt <= 255; cpt++) {
6501 			tps = clk / cpt;
6502 			bpt = (kbps + tps / 2) / tps;
6503 			if (bpt > 0 && bpt <= 255) {
6504 				v = bpt * tps;
6505 				delta = v >= kbps ? v - kbps : kbps - v;
6506 				if (delta < mindelta) {
6507 					mindelta = delta;
6508 					selected_cpt = cpt;
6509 					selected_bpt = bpt;
6510 				}
6511 			} else if (selected_cpt)
6512 				break;
6513 		}
6514 		if (!selected_cpt)
6515 			return -EINVAL;
6516 	}
6517 	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
6518 		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
6519 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6520 	if (sched & 1)
6521 		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
6522 	else
6523 		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
6524 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6525 	return 0;
6526 }
6527 
6528 /**
6529  *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
6530  *	@adap: the adapter
6531  *	@sched: the scheduler index
6532  *	@ipg: the interpacket delay in tenths of nanoseconds
6533  *
6534  *	Set the interpacket delay for a HW packet rate scheduler.
6535  */
6536 int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
6537 {
6538 	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
6539 
6540 	/* convert ipg to nearest number of core clocks */
6541 	ipg *= core_ticks_per_usec(adap);
6542 	ipg = (ipg + 5000) / 10000;
6543 	if (ipg > M_TXTIMERSEPQ0)
6544 		return -EINVAL;
6545 
6546 	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
6547 	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6548 	if (sched & 1)
6549 		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
6550 	else
6551 		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
6552 	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6553 	t4_read_reg(adap, A_TP_TM_PIO_DATA);
6554 	return 0;
6555 }
6556 
6557 /*
6558  * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
6559  * clocks.  The formula is
6560  *
6561  * bytes/s = bytes256 * 256 * ClkFreq / 4096
6562  *
6563  * which is equivalent to
6564  *
6565  * bytes/s = 62.5 * bytes256 * ClkFreq_ms
6566  */
6567 static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
6568 {
6569 	u64 v = (u64)bytes256 * adap->params.vpd.cclk;
6570 
6571 	return v * 62 + v / 2;
6572 }
6573 
6574 /**
6575  *	t4_get_chan_txrate - get the current per channel Tx rates
6576  *	@adap: the adapter
6577  *	@nic_rate: rates for NIC traffic
6578  *	@ofld_rate: rates for offloaded traffic
6579  *
6580  *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
6581  *	for each channel.
6582  */
6583 void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
6584 {
6585 	u32 v;
6586 
6587 	v = t4_read_reg(adap, A_TP_TX_TRATE);
6588 	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
6589 	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
6590 	if (adap->chip_params->nchan > 2) {
6591 		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
6592 		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
6593 	}
6594 
6595 	v = t4_read_reg(adap, A_TP_TX_ORATE);
6596 	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
6597 	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
6598 	if (adap->chip_params->nchan > 2) {
6599 		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
6600 		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
6601 	}
6602 }
6603 
6604 /**
6605  *	t4_set_trace_filter - configure one of the tracing filters
6606  *	@adap: the adapter
6607  *	@tp: the desired trace filter parameters
6608  *	@idx: which filter to configure
6609  *	@enable: whether to enable or disable the filter
6610  *
6611  *	Configures one of the tracing filters available in HW.  If @tp is %NULL
6612  *	it indicates that the filter is already written in the register and it
6613  *	just needs to be enabled or disabled.
6614  */
6615 int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
6616     int idx, int enable)
6617 {
6618 	int i, ofst = idx * 4;
6619 	u32 data_reg, mask_reg, cfg;
6620 	u32 multitrc = F_TRCMULTIFILTER;
6621 	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
6622 
6623 	if (idx < 0 || idx >= NTRACE)
6624 		return -EINVAL;
6625 
6626 	if (tp == NULL || !enable) {
6627 		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
6628 		    enable ? en : 0);
6629 		return 0;
6630 	}
6631 
6632 	/*
6633 	 * TODO - After T4 data book is updated, specify the exact
6634 	 * section below.
6635 	 *
6636 	 * See T4 data book - MPS section for a complete description
6637 	 * of the below if..else handling of A_MPS_TRC_CFG register
6638 	 * value.
6639 	 */
6640 	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
6641 	if (cfg & F_TRCMULTIFILTER) {
6642 		/*
6643 		 * If multiple tracers are enabled, then maximum
6644 		 * capture size is 2.5KB (FIFO size of a single channel)
6645 		 * minus 2 flits for CPL_TRACE_PKT header.
6646 		 */
6647 		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
6648 			return -EINVAL;
6649 	} else {
6650 		/*
6651 		 * If multiple tracers are disabled, to avoid deadlocks
6652 		 * maximum packet capture size of 9600 bytes is recommended.
6653 		 * Also in this mode, only trace0 can be enabled and running.
6654 		 */
6655 		multitrc = 0;
6656 		if (tp->snap_len > 9600 || idx)
6657 			return -EINVAL;
6658 	}
6659 
6660 	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
6661 	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
6662 	    tp->min_len > M_TFMINPKTSIZE)
6663 		return -EINVAL;
6664 
6665 	/* stop the tracer we'll be changing */
6666 	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
6667 
6668 	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
6669 	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
6670 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
6671 
6672 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6673 		t4_write_reg(adap, data_reg, tp->data[i]);
6674 		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
6675 	}
6676 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
6677 		     V_TFCAPTUREMAX(tp->snap_len) |
6678 		     V_TFMINPKTSIZE(tp->min_len));
6679 	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
6680 		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
6681 		     (is_t4(adap) ?
6682 		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
6683 		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
6684 
6685 	return 0;
6686 }
6687 
6688 /**
6689  *	t4_get_trace_filter - query one of the tracing filters
6690  *	@adap: the adapter
6691  *	@tp: the current trace filter parameters
6692  *	@idx: which trace filter to query
6693  *	@enabled: non-zero if the filter is enabled
6694  *
6695  *	Returns the current settings of one of the HW tracing filters.
6696  */
6697 void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6698 			 int *enabled)
6699 {
6700 	u32 ctla, ctlb;
6701 	int i, ofst = idx * 4;
6702 	u32 data_reg, mask_reg;
6703 
6704 	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
6705 	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
6706 
6707 	if (is_t4(adap)) {
6708 		*enabled = !!(ctla & F_TFEN);
6709 		tp->port =  G_TFPORT(ctla);
6710 		tp->invert = !!(ctla & F_TFINVERTMATCH);
6711 	} else {
6712 		*enabled = !!(ctla & F_T5_TFEN);
6713 		tp->port = G_T5_TFPORT(ctla);
6714 		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
6715 	}
6716 	tp->snap_len = G_TFCAPTUREMAX(ctlb);
6717 	tp->min_len = G_TFMINPKTSIZE(ctlb);
6718 	tp->skip_ofst = G_TFOFFSET(ctla);
6719 	tp->skip_len = G_TFLENGTH(ctla);
6720 
6721 	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
6722 	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
6723 	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
6724 
6725 	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6726 		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6727 		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6728 	}
6729 }
6730 
6731 /**
6732  *	t4_pmtx_get_stats - returns the HW stats from PMTX
6733  *	@adap: the adapter
6734  *	@cnt: where to store the count statistics
6735  *	@cycles: where to store the cycle statistics
6736  *
6737  *	Returns performance statistics from PMTX.
6738  */
6739 void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6740 {
6741 	int i;
6742 	u32 data[2];
6743 
6744 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6745 		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
6746 		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
6747 		if (is_t4(adap))
6748 			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
6749 		else {
6750 			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
6751 					 A_PM_TX_DBG_DATA, data, 2,
6752 					 A_PM_TX_DBG_STAT_MSB);
6753 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6754 		}
6755 	}
6756 }
6757 
6758 /**
6759  *	t4_pmrx_get_stats - returns the HW stats from PMRX
6760  *	@adap: the adapter
6761  *	@cnt: where to store the count statistics
6762  *	@cycles: where to store the cycle statistics
6763  *
6764  *	Returns performance statistics from PMRX.
6765  */
6766 void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6767 {
6768 	int i;
6769 	u32 data[2];
6770 
6771 	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6772 		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
6773 		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
6774 		if (is_t4(adap)) {
6775 			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
6776 		} else {
6777 			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
6778 					 A_PM_RX_DBG_DATA, data, 2,
6779 					 A_PM_RX_DBG_STAT_MSB);
6780 			cycles[i] = (((u64)data[0] << 32) | data[1]);
6781 		}
6782 	}
6783 }
6784 
6785 /**
6786  *	t4_get_mps_bg_map - return the buffer groups associated with a port
6787  *	@adap: the adapter
6788  *	@idx: the port index
6789  *
6790  *	Returns a bitmap indicating which MPS buffer groups are associated
6791  *	with the given port.  Bit i is set if buffer group i is used by the
6792  *	port.
6793  */
6794 static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
6795 {
6796 	u32 n;
6797 
6798 	if (adap->params.mps_bg_map)
6799 		return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
6800 
6801 	n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6802 	if (n == 0)
6803 		return idx == 0 ? 0xf : 0;
6804 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6805 		return idx < 2 ? (3 << (2 * idx)) : 0;
6806 	return 1 << idx;
6807 }
6808 
6809 /*
6810  * TP RX e-channels associated with the port.
6811  */
6812 static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
6813 {
6814 	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6815 	const u32 all_chan = (1 << adap->chip_params->nchan) - 1;
6816 
6817 	if (n == 0)
6818 		return idx == 0 ? all_chan : 0;
6819 	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6820 		return idx < 2 ? (3 << (2 * idx)) : 0;
6821 	return 1 << idx;
6822 }
6823 
6824 /*
6825  * TP RX c-channel associated with the port.
6826  */
6827 static unsigned int t4_get_rx_c_chan(struct adapter *adap, int idx)
6828 {
6829 	u32 param, val;
6830 	int ret;
6831 
6832 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
6833 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_TPCHMAP));
6834 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
6835 	if (!ret)
6836 		return (val >> (8 * idx)) & 0xff;
6837 
6838         return 0;
6839 }
6840 
6841 /**
6842  *      t4_get_port_type_description - return Port Type string description
6843  *      @port_type: firmware Port Type enumeration
6844  */
6845 const char *t4_get_port_type_description(enum fw_port_type port_type)
6846 {
6847 	static const char *const port_type_description[] = {
6848 		"Fiber_XFI",
6849 		"Fiber_XAUI",
6850 		"BT_SGMII",
6851 		"BT_XFI",
6852 		"BT_XAUI",
6853 		"KX4",
6854 		"CX4",
6855 		"KX",
6856 		"KR",
6857 		"SFP",
6858 		"BP_AP",
6859 		"BP4_AP",
6860 		"QSFP_10G",
6861 		"QSA",
6862 		"QSFP",
6863 		"BP40_BA",
6864 		"KR4_100G",
6865 		"CR4_QSFP",
6866 		"CR_QSFP",
6867 		"CR2_QSFP",
6868 		"SFP28",
6869 		"KR_SFP28",
6870 	};
6871 
6872 	if (port_type < ARRAY_SIZE(port_type_description))
6873 		return port_type_description[port_type];
6874 	return "UNKNOWN";
6875 }
6876 
6877 /**
6878  *      t4_get_port_stats_offset - collect port stats relative to a previous
6879  *				   snapshot
6880  *      @adap: The adapter
6881  *      @idx: The port
6882  *      @stats: Current stats to fill
6883  *      @offset: Previous stats snapshot
6884  */
6885 void t4_get_port_stats_offset(struct adapter *adap, int idx,
6886 		struct port_stats *stats,
6887 		struct port_stats *offset)
6888 {
6889 	u64 *s, *o;
6890 	int i;
6891 
6892 	t4_get_port_stats(adap, idx, stats);
6893 	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6894 			i < (sizeof(struct port_stats)/sizeof(u64)) ;
6895 			i++, s++, o++)
6896 		*s -= *o;
6897 }
6898 
6899 /**
6900  *	t4_get_port_stats - collect port statistics
6901  *	@adap: the adapter
6902  *	@idx: the port index
6903  *	@p: the stats structure to fill
6904  *
6905  *	Collect statistics related to the given port from HW.
6906  */
6907 void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6908 {
6909 	struct port_info *pi = adap->port[idx];
6910 	u32 bgmap = pi->mps_bg_map;
6911 	u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6912 
6913 #define GET_STAT(name) \
6914 	t4_read_reg64(adap, \
6915 	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
6916 	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
6917 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6918 
6919 	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
6920 	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
6921 	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
6922 	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
6923 	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
6924 	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
6925 	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
6926 	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
6927 	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
6928 	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
6929 	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
6930 	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
6931 	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
6932 	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
6933 	p->tx_drop		= GET_STAT(TX_PORT_DROP);
6934 	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
6935 	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
6936 	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
6937 	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
6938 	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
6939 	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
6940 	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
6941 	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
6942 
6943 	if (chip_id(adap) >= CHELSIO_T5) {
6944 		if (stat_ctl & F_COUNTPAUSESTATTX) {
6945 			p->tx_frames -= p->tx_pause;
6946 			p->tx_octets -= p->tx_pause * 64;
6947 		}
6948 		if (stat_ctl & F_COUNTPAUSEMCTX)
6949 			p->tx_mcast_frames -= p->tx_pause;
6950 	}
6951 
6952 	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
6953 	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
6954 	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
6955 	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
6956 	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
6957 	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
6958 	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
6959 	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
6960 	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
6961 	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
6962 	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
6963 	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
6964 	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
6965 	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
6966 	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
6967 	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
6968 	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
6969 	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
6970 	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
6971 	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
6972 	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
6973 	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
6974 	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
6975 	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
6976 	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
6977 	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
6978 
6979 	if (pi->fcs_reg != -1)
6980 		p->rx_fcs_err = t4_read_reg64(adap, pi->fcs_reg) - pi->fcs_base;
6981 
6982 	if (chip_id(adap) >= CHELSIO_T5) {
6983 		if (stat_ctl & F_COUNTPAUSESTATRX) {
6984 			p->rx_frames -= p->rx_pause;
6985 			p->rx_octets -= p->rx_pause * 64;
6986 		}
6987 		if (stat_ctl & F_COUNTPAUSEMCRX)
6988 			p->rx_mcast_frames -= p->rx_pause;
6989 	}
6990 
6991 	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6992 	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6993 	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6994 	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6995 	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6996 	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6997 	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6998 	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6999 
7000 #undef GET_STAT
7001 #undef GET_STAT_COM
7002 }
7003 
7004 /**
7005  *	t4_get_lb_stats - collect loopback port statistics
7006  *	@adap: the adapter
7007  *	@idx: the loopback port index
7008  *	@p: the stats structure to fill
7009  *
7010  *	Return HW statistics for the given loopback port.
7011  */
7012 void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
7013 {
7014 
7015 #define GET_STAT(name) \
7016 	t4_read_reg64(adap, \
7017 	(is_t4(adap) ? \
7018 	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
7019 	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
7020 #define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
7021 
7022 	p->octets	= GET_STAT(BYTES);
7023 	p->frames	= GET_STAT(FRAMES);
7024 	p->bcast_frames	= GET_STAT(BCAST);
7025 	p->mcast_frames	= GET_STAT(MCAST);
7026 	p->ucast_frames	= GET_STAT(UCAST);
7027 	p->error_frames	= GET_STAT(ERROR);
7028 
7029 	p->frames_64		= GET_STAT(64B);
7030 	p->frames_65_127	= GET_STAT(65B_127B);
7031 	p->frames_128_255	= GET_STAT(128B_255B);
7032 	p->frames_256_511	= GET_STAT(256B_511B);
7033 	p->frames_512_1023	= GET_STAT(512B_1023B);
7034 	p->frames_1024_1518	= GET_STAT(1024B_1518B);
7035 	p->frames_1519_max	= GET_STAT(1519B_MAX);
7036 	p->drop			= GET_STAT(DROP_FRAMES);
7037 
7038 	if (idx < adap->params.nports) {
7039 		u32 bg = adap2pinfo(adap, idx)->mps_bg_map;
7040 
7041 		p->ovflow0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
7042 		p->ovflow1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
7043 		p->ovflow2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
7044 		p->ovflow3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
7045 		p->trunc0 = (bg & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
7046 		p->trunc1 = (bg & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
7047 		p->trunc2 = (bg & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
7048 		p->trunc3 = (bg & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
7049 	}
7050 
7051 #undef GET_STAT
7052 #undef GET_STAT_COM
7053 }
7054 
7055 /**
7056  *	t4_wol_magic_enable - enable/disable magic packet WoL
7057  *	@adap: the adapter
7058  *	@port: the physical port index
7059  *	@addr: MAC address expected in magic packets, %NULL to disable
7060  *
7061  *	Enables/disables magic packet wake-on-LAN for the selected port.
7062  */
7063 void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
7064 			 const u8 *addr)
7065 {
7066 	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
7067 
7068 	if (is_t4(adap)) {
7069 		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
7070 		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
7071 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7072 	} else {
7073 		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
7074 		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
7075 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7076 	}
7077 
7078 	if (addr) {
7079 		t4_write_reg(adap, mag_id_reg_l,
7080 			     (addr[2] << 24) | (addr[3] << 16) |
7081 			     (addr[4] << 8) | addr[5]);
7082 		t4_write_reg(adap, mag_id_reg_h,
7083 			     (addr[0] << 8) | addr[1]);
7084 	}
7085 	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
7086 			 V_MAGICEN(addr != NULL));
7087 }
7088 
7089 /**
7090  *	t4_wol_pat_enable - enable/disable pattern-based WoL
7091  *	@adap: the adapter
7092  *	@port: the physical port index
7093  *	@map: bitmap of which HW pattern filters to set
7094  *	@mask0: byte mask for bytes 0-63 of a packet
7095  *	@mask1: byte mask for bytes 64-127 of a packet
7096  *	@crc: Ethernet CRC for selected bytes
7097  *	@enable: enable/disable switch
7098  *
7099  *	Sets the pattern filters indicated in @map to mask out the bytes
7100  *	specified in @mask0/@mask1 in received packets and compare the CRC of
7101  *	the resulting packet against @crc.  If @enable is %true pattern-based
7102  *	WoL is enabled, otherwise disabled.
7103  */
7104 int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
7105 		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
7106 {
7107 	int i;
7108 	u32 port_cfg_reg;
7109 
7110 	if (is_t4(adap))
7111 		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
7112 	else
7113 		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7114 
7115 	if (!enable) {
7116 		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
7117 		return 0;
7118 	}
7119 	if (map > 0xff)
7120 		return -EINVAL;
7121 
7122 #define EPIO_REG(name) \
7123 	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
7124 	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
7125 
7126 	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
7127 	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
7128 	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
7129 
7130 	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
7131 		if (!(map & 1))
7132 			continue;
7133 
7134 		/* write byte masks */
7135 		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
7136 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
7137 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7138 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7139 			return -ETIMEDOUT;
7140 
7141 		/* write CRC */
7142 		t4_write_reg(adap, EPIO_REG(DATA0), crc);
7143 		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
7144 		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7145 		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7146 			return -ETIMEDOUT;
7147 	}
7148 #undef EPIO_REG
7149 
7150 	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
7151 	return 0;
7152 }
7153 
7154 /*     t4_mk_filtdelwr - create a delete filter WR
7155  *     @ftid: the filter ID
7156  *     @wr: the filter work request to populate
7157  *     @qid: ingress queue to receive the delete notification
7158  *
7159  *     Creates a filter work request to delete the supplied filter.  If @qid is
7160  *     negative the delete notification is suppressed.
7161  */
7162 void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
7163 {
7164 	memset(wr, 0, sizeof(*wr));
7165 	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
7166 	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
7167 	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
7168 				    V_FW_FILTER_WR_NOREPLY(qid < 0));
7169 	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
7170 	if (qid >= 0)
7171 		wr->rx_chan_rx_rpl_iq =
7172 				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
7173 }
7174 
7175 #define INIT_CMD(var, cmd, rd_wr) do { \
7176 	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
7177 					F_FW_CMD_REQUEST | \
7178 					F_FW_CMD_##rd_wr); \
7179 	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
7180 } while (0)
7181 
7182 int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
7183 			  u32 addr, u32 val)
7184 {
7185 	u32 ldst_addrspace;
7186 	struct fw_ldst_cmd c;
7187 
7188 	memset(&c, 0, sizeof(c));
7189 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
7190 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7191 					F_FW_CMD_REQUEST |
7192 					F_FW_CMD_WRITE |
7193 					ldst_addrspace);
7194 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7195 	c.u.addrval.addr = cpu_to_be32(addr);
7196 	c.u.addrval.val = cpu_to_be32(val);
7197 
7198 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7199 }
7200 
7201 /**
7202  *	t4_mdio_rd - read a PHY register through MDIO
7203  *	@adap: the adapter
7204  *	@mbox: mailbox to use for the FW command
7205  *	@phy_addr: the PHY address
7206  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7207  *	@reg: the register to read
7208  *	@valp: where to store the value
7209  *
7210  *	Issues a FW command through the given mailbox to read a PHY register.
7211  */
7212 int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7213 	       unsigned int mmd, unsigned int reg, unsigned int *valp)
7214 {
7215 	int ret;
7216 	u32 ldst_addrspace;
7217 	struct fw_ldst_cmd c;
7218 
7219 	memset(&c, 0, sizeof(c));
7220 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7221 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7222 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7223 					ldst_addrspace);
7224 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7225 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7226 					 V_FW_LDST_CMD_MMD(mmd));
7227 	c.u.mdio.raddr = cpu_to_be16(reg);
7228 
7229 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7230 	if (ret == 0)
7231 		*valp = be16_to_cpu(c.u.mdio.rval);
7232 	return ret;
7233 }
7234 
7235 /**
7236  *	t4_mdio_wr - write a PHY register through MDIO
7237  *	@adap: the adapter
7238  *	@mbox: mailbox to use for the FW command
7239  *	@phy_addr: the PHY address
7240  *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7241  *	@reg: the register to write
7242  *	@valp: value to write
7243  *
7244  *	Issues a FW command through the given mailbox to write a PHY register.
7245  */
7246 int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7247 	       unsigned int mmd, unsigned int reg, unsigned int val)
7248 {
7249 	u32 ldst_addrspace;
7250 	struct fw_ldst_cmd c;
7251 
7252 	memset(&c, 0, sizeof(c));
7253 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7254 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7255 					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7256 					ldst_addrspace);
7257 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7258 	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7259 					 V_FW_LDST_CMD_MMD(mmd));
7260 	c.u.mdio.raddr = cpu_to_be16(reg);
7261 	c.u.mdio.rval = cpu_to_be16(val);
7262 
7263 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7264 }
7265 
7266 /**
7267  *
7268  *	t4_sge_decode_idma_state - decode the idma state
7269  *	@adap: the adapter
7270  *	@state: the state idma is stuck in
7271  */
7272 void t4_sge_decode_idma_state(struct adapter *adapter, int state)
7273 {
7274 	static const char * const t4_decode[] = {
7275 		"IDMA_IDLE",
7276 		"IDMA_PUSH_MORE_CPL_FIFO",
7277 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7278 		"Not used",
7279 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7280 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7281 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7282 		"IDMA_SEND_FIFO_TO_IMSG",
7283 		"IDMA_FL_REQ_DATA_FL_PREP",
7284 		"IDMA_FL_REQ_DATA_FL",
7285 		"IDMA_FL_DROP",
7286 		"IDMA_FL_H_REQ_HEADER_FL",
7287 		"IDMA_FL_H_SEND_PCIEHDR",
7288 		"IDMA_FL_H_PUSH_CPL_FIFO",
7289 		"IDMA_FL_H_SEND_CPL",
7290 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7291 		"IDMA_FL_H_SEND_IP_HDR",
7292 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7293 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7294 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7295 		"IDMA_FL_D_SEND_PCIEHDR",
7296 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7297 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7298 		"IDMA_FL_SEND_PCIEHDR",
7299 		"IDMA_FL_PUSH_CPL_FIFO",
7300 		"IDMA_FL_SEND_CPL",
7301 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7302 		"IDMA_FL_SEND_PAYLOAD",
7303 		"IDMA_FL_REQ_NEXT_DATA_FL",
7304 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7305 		"IDMA_FL_SEND_PADDING",
7306 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7307 		"IDMA_FL_SEND_FIFO_TO_IMSG",
7308 		"IDMA_FL_REQ_DATAFL_DONE",
7309 		"IDMA_FL_REQ_HEADERFL_DONE",
7310 	};
7311 	static const char * const t5_decode[] = {
7312 		"IDMA_IDLE",
7313 		"IDMA_ALMOST_IDLE",
7314 		"IDMA_PUSH_MORE_CPL_FIFO",
7315 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7316 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7317 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7318 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7319 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7320 		"IDMA_SEND_FIFO_TO_IMSG",
7321 		"IDMA_FL_REQ_DATA_FL",
7322 		"IDMA_FL_DROP",
7323 		"IDMA_FL_DROP_SEND_INC",
7324 		"IDMA_FL_H_REQ_HEADER_FL",
7325 		"IDMA_FL_H_SEND_PCIEHDR",
7326 		"IDMA_FL_H_PUSH_CPL_FIFO",
7327 		"IDMA_FL_H_SEND_CPL",
7328 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7329 		"IDMA_FL_H_SEND_IP_HDR",
7330 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7331 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7332 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7333 		"IDMA_FL_D_SEND_PCIEHDR",
7334 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7335 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7336 		"IDMA_FL_SEND_PCIEHDR",
7337 		"IDMA_FL_PUSH_CPL_FIFO",
7338 		"IDMA_FL_SEND_CPL",
7339 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7340 		"IDMA_FL_SEND_PAYLOAD",
7341 		"IDMA_FL_REQ_NEXT_DATA_FL",
7342 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7343 		"IDMA_FL_SEND_PADDING",
7344 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7345 	};
7346 	static const char * const t6_decode[] = {
7347 		"IDMA_IDLE",
7348 		"IDMA_PUSH_MORE_CPL_FIFO",
7349 		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7350 		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7351 		"IDMA_PHYSADDR_SEND_PCIEHDR",
7352 		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7353 		"IDMA_PHYSADDR_SEND_PAYLOAD",
7354 		"IDMA_FL_REQ_DATA_FL",
7355 		"IDMA_FL_DROP",
7356 		"IDMA_FL_DROP_SEND_INC",
7357 		"IDMA_FL_H_REQ_HEADER_FL",
7358 		"IDMA_FL_H_SEND_PCIEHDR",
7359 		"IDMA_FL_H_PUSH_CPL_FIFO",
7360 		"IDMA_FL_H_SEND_CPL",
7361 		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7362 		"IDMA_FL_H_SEND_IP_HDR",
7363 		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7364 		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7365 		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7366 		"IDMA_FL_D_SEND_PCIEHDR",
7367 		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7368 		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7369 		"IDMA_FL_SEND_PCIEHDR",
7370 		"IDMA_FL_PUSH_CPL_FIFO",
7371 		"IDMA_FL_SEND_CPL",
7372 		"IDMA_FL_SEND_PAYLOAD_FIRST",
7373 		"IDMA_FL_SEND_PAYLOAD",
7374 		"IDMA_FL_REQ_NEXT_DATA_FL",
7375 		"IDMA_FL_SEND_NEXT_PCIEHDR",
7376 		"IDMA_FL_SEND_PADDING",
7377 		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7378 	};
7379 	static const u32 sge_regs[] = {
7380 		A_SGE_DEBUG_DATA_LOW_INDEX_2,
7381 		A_SGE_DEBUG_DATA_LOW_INDEX_3,
7382 		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
7383 	};
7384 	const char * const *sge_idma_decode;
7385 	int sge_idma_decode_nstates;
7386 	int i;
7387 	unsigned int chip_version = chip_id(adapter);
7388 
7389 	/* Select the right set of decode strings to dump depending on the
7390 	 * adapter chip type.
7391 	 */
7392 	switch (chip_version) {
7393 	case CHELSIO_T4:
7394 		sge_idma_decode = (const char * const *)t4_decode;
7395 		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
7396 		break;
7397 
7398 	case CHELSIO_T5:
7399 		sge_idma_decode = (const char * const *)t5_decode;
7400 		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
7401 		break;
7402 
7403 	case CHELSIO_T6:
7404 		sge_idma_decode = (const char * const *)t6_decode;
7405 		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
7406 		break;
7407 
7408 	default:
7409 		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
7410 		return;
7411 	}
7412 
7413 	if (state < sge_idma_decode_nstates)
7414 		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
7415 	else
7416 		CH_WARN(adapter, "idma state %d unknown\n", state);
7417 
7418 	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
7419 		CH_WARN(adapter, "SGE register %#x value %#x\n",
7420 			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
7421 }
7422 
7423 /**
7424  *      t4_sge_ctxt_flush - flush the SGE context cache
7425  *      @adap: the adapter
7426  *      @mbox: mailbox to use for the FW command
7427  *
7428  *      Issues a FW command through the given mailbox to flush the
7429  *      SGE context cache.
7430  */
7431 int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox, int ctxt_type)
7432 {
7433 	int ret;
7434 	u32 ldst_addrspace;
7435 	struct fw_ldst_cmd c;
7436 
7437 	memset(&c, 0, sizeof(c));
7438 	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(ctxt_type == CTXT_EGRESS ?
7439 						 FW_LDST_ADDRSPC_SGE_EGRC :
7440 						 FW_LDST_ADDRSPC_SGE_INGC);
7441 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7442 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7443 					ldst_addrspace);
7444 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7445 	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
7446 
7447 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7448 	return ret;
7449 }
7450 
7451 /**
7452  *      t4_fw_hello - establish communication with FW
7453  *      @adap: the adapter
7454  *      @mbox: mailbox to use for the FW command
7455  *      @evt_mbox: mailbox to receive async FW events
7456  *      @master: specifies the caller's willingness to be the device master
7457  *	@state: returns the current device state (if non-NULL)
7458  *
7459  *	Issues a command to establish communication with FW.  Returns either
7460  *	an error (negative integer) or the mailbox of the Master PF.
7461  */
7462 int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
7463 		enum dev_master master, enum dev_state *state)
7464 {
7465 	int ret;
7466 	struct fw_hello_cmd c;
7467 	u32 v;
7468 	unsigned int master_mbox;
7469 	int retries = FW_CMD_HELLO_RETRIES;
7470 
7471 retry:
7472 	memset(&c, 0, sizeof(c));
7473 	INIT_CMD(c, HELLO, WRITE);
7474 	c.err_to_clearinit = cpu_to_be32(
7475 		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
7476 		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
7477 		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
7478 					mbox : M_FW_HELLO_CMD_MBMASTER) |
7479 		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
7480 		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
7481 		F_FW_HELLO_CMD_CLEARINIT);
7482 
7483 	/*
7484 	 * Issue the HELLO command to the firmware.  If it's not successful
7485 	 * but indicates that we got a "busy" or "timeout" condition, retry
7486 	 * the HELLO until we exhaust our retry limit.  If we do exceed our
7487 	 * retry limit, check to see if the firmware left us any error
7488 	 * information and report that if so ...
7489 	 */
7490 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7491 	if (ret != FW_SUCCESS) {
7492 		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
7493 			goto retry;
7494 		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
7495 			t4_report_fw_error(adap);
7496 		return ret;
7497 	}
7498 
7499 	v = be32_to_cpu(c.err_to_clearinit);
7500 	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
7501 	if (state) {
7502 		if (v & F_FW_HELLO_CMD_ERR)
7503 			*state = DEV_STATE_ERR;
7504 		else if (v & F_FW_HELLO_CMD_INIT)
7505 			*state = DEV_STATE_INIT;
7506 		else
7507 			*state = DEV_STATE_UNINIT;
7508 	}
7509 
7510 	/*
7511 	 * If we're not the Master PF then we need to wait around for the
7512 	 * Master PF Driver to finish setting up the adapter.
7513 	 *
7514 	 * Note that we also do this wait if we're a non-Master-capable PF and
7515 	 * there is no current Master PF; a Master PF may show up momentarily
7516 	 * and we wouldn't want to fail pointlessly.  (This can happen when an
7517 	 * OS loads lots of different drivers rapidly at the same time).  In
7518 	 * this case, the Master PF returned by the firmware will be
7519 	 * M_PCIE_FW_MASTER so the test below will work ...
7520 	 */
7521 	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
7522 	    master_mbox != mbox) {
7523 		int waiting = FW_CMD_HELLO_TIMEOUT;
7524 
7525 		/*
7526 		 * Wait for the firmware to either indicate an error or
7527 		 * initialized state.  If we see either of these we bail out
7528 		 * and report the issue to the caller.  If we exhaust the
7529 		 * "hello timeout" and we haven't exhausted our retries, try
7530 		 * again.  Otherwise bail with a timeout error.
7531 		 */
7532 		for (;;) {
7533 			u32 pcie_fw;
7534 
7535 			msleep(50);
7536 			waiting -= 50;
7537 
7538 			/*
7539 			 * If neither Error nor Initialialized are indicated
7540 			 * by the firmware keep waiting till we exhaust our
7541 			 * timeout ... and then retry if we haven't exhausted
7542 			 * our retries ...
7543 			 */
7544 			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
7545 			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
7546 				if (waiting <= 0) {
7547 					if (retries-- > 0)
7548 						goto retry;
7549 
7550 					return -ETIMEDOUT;
7551 				}
7552 				continue;
7553 			}
7554 
7555 			/*
7556 			 * We either have an Error or Initialized condition
7557 			 * report errors preferentially.
7558 			 */
7559 			if (state) {
7560 				if (pcie_fw & F_PCIE_FW_ERR)
7561 					*state = DEV_STATE_ERR;
7562 				else if (pcie_fw & F_PCIE_FW_INIT)
7563 					*state = DEV_STATE_INIT;
7564 			}
7565 
7566 			/*
7567 			 * If we arrived before a Master PF was selected and
7568 			 * there's not a valid Master PF, grab its identity
7569 			 * for our caller.
7570 			 */
7571 			if (master_mbox == M_PCIE_FW_MASTER &&
7572 			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
7573 				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
7574 			break;
7575 		}
7576 	}
7577 
7578 	return master_mbox;
7579 }
7580 
7581 /**
7582  *	t4_fw_bye - end communication with FW
7583  *	@adap: the adapter
7584  *	@mbox: mailbox to use for the FW command
7585  *
7586  *	Issues a command to terminate communication with FW.
7587  */
7588 int t4_fw_bye(struct adapter *adap, unsigned int mbox)
7589 {
7590 	struct fw_bye_cmd c;
7591 
7592 	memset(&c, 0, sizeof(c));
7593 	INIT_CMD(c, BYE, WRITE);
7594 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7595 }
7596 
7597 /**
7598  *	t4_fw_reset - issue a reset to FW
7599  *	@adap: the adapter
7600  *	@mbox: mailbox to use for the FW command
7601  *	@reset: specifies the type of reset to perform
7602  *
7603  *	Issues a reset command of the specified type to FW.
7604  */
7605 int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7606 {
7607 	struct fw_reset_cmd c;
7608 
7609 	memset(&c, 0, sizeof(c));
7610 	INIT_CMD(c, RESET, WRITE);
7611 	c.val = cpu_to_be32(reset);
7612 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7613 }
7614 
7615 /**
7616  *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7617  *	@adap: the adapter
7618  *	@mbox: mailbox to use for the FW RESET command (if desired)
7619  *	@force: force uP into RESET even if FW RESET command fails
7620  *
7621  *	Issues a RESET command to firmware (if desired) with a HALT indication
7622  *	and then puts the microprocessor into RESET state.  The RESET command
7623  *	will only be issued if a legitimate mailbox is provided (mbox <=
7624  *	M_PCIE_FW_MASTER).
7625  *
7626  *	This is generally used in order for the host to safely manipulate the
7627  *	adapter without fear of conflicting with whatever the firmware might
7628  *	be doing.  The only way out of this state is to RESTART the firmware
7629  *	...
7630  */
7631 int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7632 {
7633 	int ret = 0;
7634 
7635 	/*
7636 	 * If a legitimate mailbox is provided, issue a RESET command
7637 	 * with a HALT indication.
7638 	 */
7639 	if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) {
7640 		struct fw_reset_cmd c;
7641 
7642 		memset(&c, 0, sizeof(c));
7643 		INIT_CMD(c, RESET, WRITE);
7644 		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
7645 		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
7646 		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7647 	}
7648 
7649 	/*
7650 	 * Normally we won't complete the operation if the firmware RESET
7651 	 * command fails but if our caller insists we'll go ahead and put the
7652 	 * uP into RESET.  This can be useful if the firmware is hung or even
7653 	 * missing ...  We'll have to take the risk of putting the uP into
7654 	 * RESET without the cooperation of firmware in that case.
7655 	 *
7656 	 * We also force the firmware's HALT flag to be on in case we bypassed
7657 	 * the firmware RESET command above or we're dealing with old firmware
7658 	 * which doesn't have the HALT capability.  This will serve as a flag
7659 	 * for the incoming firmware to know that it's coming out of a HALT
7660 	 * rather than a RESET ... if it's new enough to understand that ...
7661 	 */
7662 	if (ret == 0 || force) {
7663 		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
7664 		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
7665 				 F_PCIE_FW_HALT);
7666 	}
7667 
7668 	/*
7669 	 * And we always return the result of the firmware RESET command
7670 	 * even when we force the uP into RESET ...
7671 	 */
7672 	return ret;
7673 }
7674 
7675 /**
7676  *	t4_fw_restart - restart the firmware by taking the uP out of RESET
7677  *	@adap: the adapter
7678  *
7679  *	Restart firmware previously halted by t4_fw_halt().  On successful
7680  *	return the previous PF Master remains as the new PF Master and there
7681  *	is no need to issue a new HELLO command, etc.
7682  */
7683 int t4_fw_restart(struct adapter *adap, unsigned int mbox)
7684 {
7685 	int ms;
7686 
7687 	t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
7688 	for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7689 		if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
7690 			return FW_SUCCESS;
7691 		msleep(100);
7692 		ms += 100;
7693 	}
7694 
7695 	return -ETIMEDOUT;
7696 }
7697 
7698 /**
7699  *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7700  *	@adap: the adapter
7701  *	@mbox: mailbox to use for the FW RESET command (if desired)
7702  *	@fw_data: the firmware image to write
7703  *	@size: image size
7704  *	@force: force upgrade even if firmware doesn't cooperate
7705  *
7706  *	Perform all of the steps necessary for upgrading an adapter's
7707  *	firmware image.  Normally this requires the cooperation of the
7708  *	existing firmware in order to halt all existing activities
7709  *	but if an invalid mailbox token is passed in we skip that step
7710  *	(though we'll still put the adapter microprocessor into RESET in
7711  *	that case).
7712  *
7713  *	On successful return the new firmware will have been loaded and
7714  *	the adapter will have been fully RESET losing all previous setup
7715  *	state.  On unsuccessful return the adapter may be completely hosed ...
7716  *	positive errno indicates that the adapter is ~probably~ intact, a
7717  *	negative errno indicates that things are looking bad ...
7718  */
7719 int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7720 		  const u8 *fw_data, unsigned int size, int force)
7721 {
7722 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7723 	unsigned int bootstrap =
7724 	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
7725 	int ret;
7726 
7727 	if (!t4_fw_matches_chip(adap, fw_hdr))
7728 		return -EINVAL;
7729 
7730 	if (!bootstrap) {
7731 		ret = t4_fw_halt(adap, mbox, force);
7732 		if (ret < 0 && !force)
7733 			return ret;
7734 	}
7735 
7736 	ret = t4_load_fw(adap, fw_data, size);
7737 	if (ret < 0 || bootstrap)
7738 		return ret;
7739 
7740 	return t4_fw_restart(adap, mbox);
7741 }
7742 
7743 /**
7744  *	t4_fw_initialize - ask FW to initialize the device
7745  *	@adap: the adapter
7746  *	@mbox: mailbox to use for the FW command
7747  *
7748  *	Issues a command to FW to partially initialize the device.  This
7749  *	performs initialization that generally doesn't depend on user input.
7750  */
7751 int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7752 {
7753 	struct fw_initialize_cmd c;
7754 
7755 	memset(&c, 0, sizeof(c));
7756 	INIT_CMD(c, INITIALIZE, WRITE);
7757 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7758 }
7759 
7760 /**
7761  *	t4_query_params_rw - query FW or device parameters
7762  *	@adap: the adapter
7763  *	@mbox: mailbox to use for the FW command
7764  *	@pf: the PF
7765  *	@vf: the VF
7766  *	@nparams: the number of parameters
7767  *	@params: the parameter names
7768  *	@val: the parameter values
7769  *	@rw: Write and read flag
7770  *
7771  *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7772  *	queried at once.
7773  */
7774 int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7775 		       unsigned int vf, unsigned int nparams, const u32 *params,
7776 		       u32 *val, int rw)
7777 {
7778 	int i, ret;
7779 	struct fw_params_cmd c;
7780 	__be32 *p = &c.param[0].mnem;
7781 
7782 	if (nparams > 7)
7783 		return -EINVAL;
7784 
7785 	memset(&c, 0, sizeof(c));
7786 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7787 				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
7788 				  V_FW_PARAMS_CMD_PFN(pf) |
7789 				  V_FW_PARAMS_CMD_VFN(vf));
7790 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7791 
7792 	for (i = 0; i < nparams; i++) {
7793 		*p++ = cpu_to_be32(*params++);
7794 		if (rw)
7795 			*p = cpu_to_be32(*(val + i));
7796 		p++;
7797 	}
7798 
7799 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7800 	if (ret == 0)
7801 		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7802 			*val++ = be32_to_cpu(*p);
7803 	return ret;
7804 }
7805 
7806 int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7807 		    unsigned int vf, unsigned int nparams, const u32 *params,
7808 		    u32 *val)
7809 {
7810 	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
7811 }
7812 
7813 /**
7814  *      t4_set_params_timeout - sets FW or device parameters
7815  *      @adap: the adapter
7816  *      @mbox: mailbox to use for the FW command
7817  *      @pf: the PF
7818  *      @vf: the VF
7819  *      @nparams: the number of parameters
7820  *      @params: the parameter names
7821  *      @val: the parameter values
7822  *      @timeout: the timeout time
7823  *
7824  *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7825  *      specified at once.
7826  */
7827 int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7828 			  unsigned int pf, unsigned int vf,
7829 			  unsigned int nparams, const u32 *params,
7830 			  const u32 *val, int timeout)
7831 {
7832 	struct fw_params_cmd c;
7833 	__be32 *p = &c.param[0].mnem;
7834 
7835 	if (nparams > 7)
7836 		return -EINVAL;
7837 
7838 	memset(&c, 0, sizeof(c));
7839 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7840 				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7841 				  V_FW_PARAMS_CMD_PFN(pf) |
7842 				  V_FW_PARAMS_CMD_VFN(vf));
7843 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7844 
7845 	while (nparams--) {
7846 		*p++ = cpu_to_be32(*params++);
7847 		*p++ = cpu_to_be32(*val++);
7848 	}
7849 
7850 	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7851 }
7852 
7853 /**
7854  *	t4_set_params - sets FW or device parameters
7855  *	@adap: the adapter
7856  *	@mbox: mailbox to use for the FW command
7857  *	@pf: the PF
7858  *	@vf: the VF
7859  *	@nparams: the number of parameters
7860  *	@params: the parameter names
7861  *	@val: the parameter values
7862  *
7863  *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7864  *	specified at once.
7865  */
7866 int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7867 		  unsigned int vf, unsigned int nparams, const u32 *params,
7868 		  const u32 *val)
7869 {
7870 	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7871 				     FW_CMD_MAX_TIMEOUT);
7872 }
7873 
7874 /**
7875  *	t4_cfg_pfvf - configure PF/VF resource limits
7876  *	@adap: the adapter
7877  *	@mbox: mailbox to use for the FW command
7878  *	@pf: the PF being configured
7879  *	@vf: the VF being configured
7880  *	@txq: the max number of egress queues
7881  *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7882  *	@rxqi: the max number of interrupt-capable ingress queues
7883  *	@rxq: the max number of interruptless ingress queues
7884  *	@tc: the PCI traffic class
7885  *	@vi: the max number of virtual interfaces
7886  *	@cmask: the channel access rights mask for the PF/VF
7887  *	@pmask: the port access rights mask for the PF/VF
7888  *	@nexact: the maximum number of exact MPS filters
7889  *	@rcaps: read capabilities
7890  *	@wxcaps: write/execute capabilities
7891  *
7892  *	Configures resource limits and capabilities for a physical or virtual
7893  *	function.
7894  */
7895 int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7896 		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7897 		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7898 		unsigned int vi, unsigned int cmask, unsigned int pmask,
7899 		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7900 {
7901 	struct fw_pfvf_cmd c;
7902 
7903 	memset(&c, 0, sizeof(c));
7904 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7905 				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7906 				  V_FW_PFVF_CMD_VFN(vf));
7907 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7908 	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7909 				     V_FW_PFVF_CMD_NIQ(rxq));
7910 	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7911 				    V_FW_PFVF_CMD_PMASK(pmask) |
7912 				    V_FW_PFVF_CMD_NEQ(txq));
7913 	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7914 				      V_FW_PFVF_CMD_NVI(vi) |
7915 				      V_FW_PFVF_CMD_NEXACTF(nexact));
7916 	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7917 				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7918 				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7919 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7920 }
7921 
7922 /**
7923  *	t4_alloc_vi_func - allocate a virtual interface
7924  *	@adap: the adapter
7925  *	@mbox: mailbox to use for the FW command
7926  *	@port: physical port associated with the VI
7927  *	@pf: the PF owning the VI
7928  *	@vf: the VF owning the VI
7929  *	@nmac: number of MAC addresses needed (1 to 5)
7930  *	@mac: the MAC addresses of the VI
7931  *	@rss_size: size of RSS table slice associated with this VI
7932  *	@portfunc: which Port Application Function MAC Address is desired
7933  *	@idstype: Intrusion Detection Type
7934  *
7935  *	Allocates a virtual interface for the given physical port.  If @mac is
7936  *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7937  *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7938  *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7939  *	stored consecutively so the space needed is @nmac * 6 bytes.
7940  *	Returns a negative error number or the non-negative VI id.
7941  */
7942 int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7943 		     unsigned int port, unsigned int pf, unsigned int vf,
7944 		     unsigned int nmac, u8 *mac, u16 *rss_size,
7945 		     uint8_t *vfvld, uint16_t *vin,
7946 		     unsigned int portfunc, unsigned int idstype)
7947 {
7948 	int ret;
7949 	struct fw_vi_cmd c;
7950 
7951 	memset(&c, 0, sizeof(c));
7952 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7953 				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7954 				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7955 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7956 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7957 				     V_FW_VI_CMD_FUNC(portfunc));
7958 	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7959 	c.nmac = nmac - 1;
7960 	if(!rss_size)
7961 		c.norss_rsssize = F_FW_VI_CMD_NORSS;
7962 
7963 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7964 	if (ret)
7965 		return ret;
7966 	ret = G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7967 
7968 	if (mac) {
7969 		memcpy(mac, c.mac, sizeof(c.mac));
7970 		switch (nmac) {
7971 		case 5:
7972 			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7973 		case 4:
7974 			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7975 		case 3:
7976 			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7977 		case 2:
7978 			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7979 		}
7980 	}
7981 	if (rss_size)
7982 		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
7983 	if (vfvld) {
7984 		*vfvld = adap->params.viid_smt_extn_support ?
7985 		    G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16)) :
7986 		    G_FW_VIID_VIVLD(ret);
7987 	}
7988 	if (vin) {
7989 		*vin = adap->params.viid_smt_extn_support ?
7990 		    G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16)) :
7991 		    G_FW_VIID_VIN(ret);
7992 	}
7993 
7994 	return ret;
7995 }
7996 
7997 /**
7998  *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
7999  *      @adap: the adapter
8000  *      @mbox: mailbox to use for the FW command
8001  *      @port: physical port associated with the VI
8002  *      @pf: the PF owning the VI
8003  *      @vf: the VF owning the VI
8004  *      @nmac: number of MAC addresses needed (1 to 5)
8005  *      @mac: the MAC addresses of the VI
8006  *      @rss_size: size of RSS table slice associated with this VI
8007  *
8008  *	backwards compatible and convieniance routine to allocate a Virtual
8009  *	Interface with a Ethernet Port Application Function and Intrustion
8010  *	Detection System disabled.
8011  */
8012 int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
8013 		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
8014 		u16 *rss_size, uint8_t *vfvld, uint16_t *vin)
8015 {
8016 	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
8017 				vfvld, vin, FW_VI_FUNC_ETH, 0);
8018 }
8019 
8020 /**
8021  * 	t4_free_vi - free a virtual interface
8022  * 	@adap: the adapter
8023  * 	@mbox: mailbox to use for the FW command
8024  * 	@pf: the PF owning the VI
8025  * 	@vf: the VF owning the VI
8026  * 	@viid: virtual interface identifiler
8027  *
8028  * 	Free a previously allocated virtual interface.
8029  */
8030 int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
8031 	       unsigned int vf, unsigned int viid)
8032 {
8033 	struct fw_vi_cmd c;
8034 
8035 	memset(&c, 0, sizeof(c));
8036 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
8037 				  F_FW_CMD_REQUEST |
8038 				  F_FW_CMD_EXEC |
8039 				  V_FW_VI_CMD_PFN(pf) |
8040 				  V_FW_VI_CMD_VFN(vf));
8041 	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
8042 	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
8043 
8044 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8045 }
8046 
8047 /**
8048  *	t4_set_rxmode - set Rx properties of a virtual interface
8049  *	@adap: the adapter
8050  *	@mbox: mailbox to use for the FW command
8051  *	@viid: the VI id
8052  *	@mtu: the new MTU or -1
8053  *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
8054  *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
8055  *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
8056  *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
8057  *	@sleep_ok: if true we may sleep while awaiting command completion
8058  *
8059  *	Sets Rx properties of a virtual interface.
8060  */
8061 int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
8062 		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
8063 		  bool sleep_ok)
8064 {
8065 	struct fw_vi_rxmode_cmd c;
8066 
8067 	/* convert to FW values */
8068 	if (mtu < 0)
8069 		mtu = M_FW_VI_RXMODE_CMD_MTU;
8070 	if (promisc < 0)
8071 		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
8072 	if (all_multi < 0)
8073 		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
8074 	if (bcast < 0)
8075 		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
8076 	if (vlanex < 0)
8077 		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
8078 
8079 	memset(&c, 0, sizeof(c));
8080 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
8081 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8082 				   V_FW_VI_RXMODE_CMD_VIID(viid));
8083 	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
8084 	c.mtu_to_vlanexen =
8085 		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
8086 			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
8087 			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
8088 			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
8089 			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
8090 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8091 }
8092 
8093 /**
8094  *	t4_alloc_encap_mac_filt - Adds a mac entry in mps tcam with VNI support
8095  *	@adap: the adapter
8096  *	@viid: the VI id
8097  *	@mac: the MAC address
8098  *	@mask: the mask
8099  *	@vni: the VNI id for the tunnel protocol
8100  *	@vni_mask: mask for the VNI id
8101  *	@dip_hit: to enable DIP match for the MPS entry
8102  *	@lookup_type: MAC address for inner (1) or outer (0) header
8103  *	@sleep_ok: call is allowed to sleep
8104  *
8105  *	Allocates an MPS entry with specified MAC address and VNI value.
8106  *
8107  *	Returns a negative error number or the allocated index for this mac.
8108  */
8109 int t4_alloc_encap_mac_filt(struct adapter *adap, unsigned int viid,
8110 			    const u8 *addr, const u8 *mask, unsigned int vni,
8111 			    unsigned int vni_mask, u8 dip_hit, u8 lookup_type,
8112 			    bool sleep_ok)
8113 {
8114 	struct fw_vi_mac_cmd c;
8115 	struct fw_vi_mac_vni *p = c.u.exact_vni;
8116 	int ret = 0;
8117 	u32 val;
8118 
8119 	memset(&c, 0, sizeof(c));
8120 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8121 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8122 				   V_FW_VI_MAC_CMD_VIID(viid));
8123 	val = V_FW_CMD_LEN16(1) |
8124 	      V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC_VNI);
8125 	c.freemacs_to_len16 = cpu_to_be32(val);
8126 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8127 				      V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8128 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8129 	memcpy(p->macaddr_mask, mask, sizeof(p->macaddr_mask));
8130 
8131 	p->lookup_type_to_vni = cpu_to_be32(V_FW_VI_MAC_CMD_VNI(vni) |
8132 					    V_FW_VI_MAC_CMD_DIP_HIT(dip_hit) |
8133 					    V_FW_VI_MAC_CMD_LOOKUP_TYPE(lookup_type));
8134 	p->vni_mask_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_VNI_MASK(vni_mask));
8135 
8136 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8137 	if (ret == 0)
8138 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8139 	return ret;
8140 }
8141 
8142 /**
8143  *	t4_alloc_raw_mac_filt - Adds a mac entry in mps tcam
8144  *	@adap: the adapter
8145  *	@viid: the VI id
8146  *	@mac: the MAC address
8147  *	@mask: the mask
8148  *	@idx: index at which to add this entry
8149  *	@port_id: the port index
8150  *	@lookup_type: MAC address for inner (1) or outer (0) header
8151  *	@sleep_ok: call is allowed to sleep
8152  *
8153  *	Adds the mac entry at the specified index using raw mac interface.
8154  *
8155  *	Returns a negative error number or the allocated index for this mac.
8156  */
8157 int t4_alloc_raw_mac_filt(struct adapter *adap, unsigned int viid,
8158 			  const u8 *addr, const u8 *mask, unsigned int idx,
8159 			  u8 lookup_type, u8 port_id, bool sleep_ok)
8160 {
8161 	int ret = 0;
8162 	struct fw_vi_mac_cmd c;
8163 	struct fw_vi_mac_raw *p = &c.u.raw;
8164 	u32 val;
8165 
8166 	memset(&c, 0, sizeof(c));
8167 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8168 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8169 				   V_FW_VI_MAC_CMD_VIID(viid));
8170 	val = V_FW_CMD_LEN16(1) |
8171 	      V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
8172 	c.freemacs_to_len16 = cpu_to_be32(val);
8173 
8174 	/* Specify that this is an inner mac address */
8175 	p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx));
8176 
8177 	/* Lookup Type. Outer header: 0, Inner header: 1 */
8178 	p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
8179 				   V_DATAPORTNUM(port_id));
8180 	/* Lookup mask and port mask */
8181 	p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
8182 				    V_DATAPORTNUM(M_DATAPORTNUM));
8183 
8184 	/* Copy the address and the mask */
8185 	memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
8186 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
8187 
8188 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8189 	if (ret == 0) {
8190 		ret = G_FW_VI_MAC_CMD_RAW_IDX(be32_to_cpu(p->raw_idx_pkd));
8191 		if (ret != idx)
8192 			ret = -ENOMEM;
8193 	}
8194 
8195 	return ret;
8196 }
8197 
8198 /**
8199  *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
8200  *	@adap: the adapter
8201  *	@mbox: mailbox to use for the FW command
8202  *	@viid: the VI id
8203  *	@free: if true any existing filters for this VI id are first removed
8204  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8205  *	@addr: the MAC address(es)
8206  *	@idx: where to store the index of each allocated filter
8207  *	@hash: pointer to hash address filter bitmap
8208  *	@sleep_ok: call is allowed to sleep
8209  *
8210  *	Allocates an exact-match filter for each of the supplied addresses and
8211  *	sets it to the corresponding address.  If @idx is not %NULL it should
8212  *	have at least @naddr entries, each of which will be set to the index of
8213  *	the filter allocated for the corresponding MAC address.  If a filter
8214  *	could not be allocated for an address its index is set to 0xffff.
8215  *	If @hash is not %NULL addresses that fail to allocate an exact filter
8216  *	are hashed and update the hash filter bitmap pointed at by @hash.
8217  *
8218  *	Returns a negative error number or the number of filters allocated.
8219  */
8220 int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
8221 		      unsigned int viid, bool free, unsigned int naddr,
8222 		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
8223 {
8224 	int offset, ret = 0;
8225 	struct fw_vi_mac_cmd c;
8226 	unsigned int nfilters = 0;
8227 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8228 	unsigned int rem = naddr;
8229 
8230 	if (naddr > max_naddr)
8231 		return -EINVAL;
8232 
8233 	for (offset = 0; offset < naddr ; /**/) {
8234 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8235 					 ? rem
8236 					 : ARRAY_SIZE(c.u.exact));
8237 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8238 						     u.exact[fw_naddr]), 16);
8239 		struct fw_vi_mac_exact *p;
8240 		int i;
8241 
8242 		memset(&c, 0, sizeof(c));
8243 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8244 					   F_FW_CMD_REQUEST |
8245 					   F_FW_CMD_WRITE |
8246 					   V_FW_CMD_EXEC(free) |
8247 					   V_FW_VI_MAC_CMD_VIID(viid));
8248 		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
8249 						  V_FW_CMD_LEN16(len16));
8250 
8251 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8252 			p->valid_to_idx =
8253 				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8254 					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8255 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8256 		}
8257 
8258 		/*
8259 		 * It's okay if we run out of space in our MAC address arena.
8260 		 * Some of the addresses we submit may get stored so we need
8261 		 * to run through the reply to see what the results were ...
8262 		 */
8263 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8264 		if (ret && ret != -FW_ENOMEM)
8265 			break;
8266 
8267 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8268 			u16 index = G_FW_VI_MAC_CMD_IDX(
8269 						be16_to_cpu(p->valid_to_idx));
8270 
8271 			if (idx)
8272 				idx[offset+i] = (index >=  max_naddr
8273 						 ? 0xffff
8274 						 : index);
8275 			if (index < max_naddr)
8276 				nfilters++;
8277 			else if (hash)
8278 				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
8279 		}
8280 
8281 		free = false;
8282 		offset += fw_naddr;
8283 		rem -= fw_naddr;
8284 	}
8285 
8286 	if (ret == 0 || ret == -FW_ENOMEM)
8287 		ret = nfilters;
8288 	return ret;
8289 }
8290 
8291 /**
8292  *	t4_free_encap_mac_filt - frees MPS entry at given index
8293  *	@adap: the adapter
8294  *	@viid: the VI id
8295  *	@idx: index of MPS entry to be freed
8296  *	@sleep_ok: call is allowed to sleep
8297  *
8298  *	Frees the MPS entry at supplied index
8299  *
8300  *	Returns a negative error number or zero on success
8301  */
8302 int t4_free_encap_mac_filt(struct adapter *adap, unsigned int viid,
8303 			   int idx, bool sleep_ok)
8304 {
8305 	struct fw_vi_mac_exact *p;
8306 	struct fw_vi_mac_cmd c;
8307 	u8 addr[] = {0,0,0,0,0,0};
8308 	int ret = 0;
8309 	u32 exact;
8310 
8311 	memset(&c, 0, sizeof(c));
8312 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8313 				   F_FW_CMD_REQUEST |
8314 				   F_FW_CMD_WRITE |
8315 				   V_FW_CMD_EXEC(0) |
8316 				   V_FW_VI_MAC_CMD_VIID(viid));
8317 	exact = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_EXACTMAC);
8318 	c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8319 					  exact |
8320 					  V_FW_CMD_LEN16(1));
8321 	p = c.u.exact;
8322 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8323 				      V_FW_VI_MAC_CMD_IDX(idx));
8324 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8325 
8326 	ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8327 	return ret;
8328 }
8329 
8330 /**
8331  *	t4_free_raw_mac_filt - Frees a raw mac entry in mps tcam
8332  *	@adap: the adapter
8333  *	@viid: the VI id
8334  *	@addr: the MAC address
8335  *	@mask: the mask
8336  *	@idx: index of the entry in mps tcam
8337  *	@lookup_type: MAC address for inner (1) or outer (0) header
8338  *	@port_id: the port index
8339  *	@sleep_ok: call is allowed to sleep
8340  *
8341  *	Removes the mac entry at the specified index using raw mac interface.
8342  *
8343  *	Returns a negative error number on failure.
8344  */
8345 int t4_free_raw_mac_filt(struct adapter *adap, unsigned int viid,
8346 			 const u8 *addr, const u8 *mask, unsigned int idx,
8347 			 u8 lookup_type, u8 port_id, bool sleep_ok)
8348 {
8349 	struct fw_vi_mac_cmd c;
8350 	struct fw_vi_mac_raw *p = &c.u.raw;
8351 	u32 raw;
8352 
8353 	memset(&c, 0, sizeof(c));
8354 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8355 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8356 				   V_FW_CMD_EXEC(0) |
8357 				   V_FW_VI_MAC_CMD_VIID(viid));
8358 	raw = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_RAW);
8359 	c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8360 					  raw |
8361 					  V_FW_CMD_LEN16(1));
8362 
8363 	p->raw_idx_pkd = cpu_to_be32(V_FW_VI_MAC_CMD_RAW_IDX(idx) |
8364 				     FW_VI_MAC_ID_BASED_FREE);
8365 
8366 	/* Lookup Type. Outer header: 0, Inner header: 1 */
8367 	p->data0_pkd = cpu_to_be32(V_DATALKPTYPE(lookup_type) |
8368 				   V_DATAPORTNUM(port_id));
8369 	/* Lookup mask and port mask */
8370 	p->data0m_pkd = cpu_to_be64(V_DATALKPTYPE(M_DATALKPTYPE) |
8371 				    V_DATAPORTNUM(M_DATAPORTNUM));
8372 
8373 	/* Copy the address and the mask */
8374 	memcpy((u8 *)&p->data1[0] + 2, addr, ETHER_ADDR_LEN);
8375 	memcpy((u8 *)&p->data1m[0] + 2, mask, ETHER_ADDR_LEN);
8376 
8377 	return t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c, sleep_ok);
8378 }
8379 
8380 /**
8381  *	t4_free_mac_filt - frees exact-match filters of given MAC addresses
8382  *	@adap: the adapter
8383  *	@mbox: mailbox to use for the FW command
8384  *	@viid: the VI id
8385  *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
8386  *	@addr: the MAC address(es)
8387  *	@sleep_ok: call is allowed to sleep
8388  *
8389  *	Frees the exact-match filter for each of the supplied addresses
8390  *
8391  *	Returns a negative error number or the number of filters freed.
8392  */
8393 int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
8394 		      unsigned int viid, unsigned int naddr,
8395 		      const u8 **addr, bool sleep_ok)
8396 {
8397 	int offset, ret = 0;
8398 	struct fw_vi_mac_cmd c;
8399 	unsigned int nfilters = 0;
8400 	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8401 	unsigned int rem = naddr;
8402 
8403 	if (naddr > max_naddr)
8404 		return -EINVAL;
8405 
8406 	for (offset = 0; offset < (int)naddr ; /**/) {
8407 		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8408 					 ? rem
8409 					 : ARRAY_SIZE(c.u.exact));
8410 		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8411 						     u.exact[fw_naddr]), 16);
8412 		struct fw_vi_mac_exact *p;
8413 		int i;
8414 
8415 		memset(&c, 0, sizeof(c));
8416 		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8417 				     F_FW_CMD_REQUEST |
8418 				     F_FW_CMD_WRITE |
8419 				     V_FW_CMD_EXEC(0) |
8420 				     V_FW_VI_MAC_CMD_VIID(viid));
8421 		c.freemacs_to_len16 =
8422 				cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(0) |
8423 					    V_FW_CMD_LEN16(len16));
8424 
8425 		for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
8426 			p->valid_to_idx = cpu_to_be16(
8427 				F_FW_VI_MAC_CMD_VALID |
8428 				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE));
8429 			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8430 		}
8431 
8432 		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8433 		if (ret)
8434 			break;
8435 
8436 		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8437 			u16 index = G_FW_VI_MAC_CMD_IDX(
8438 						be16_to_cpu(p->valid_to_idx));
8439 
8440 			if (index < max_naddr)
8441 				nfilters++;
8442 		}
8443 
8444 		offset += fw_naddr;
8445 		rem -= fw_naddr;
8446 	}
8447 
8448 	if (ret == 0)
8449 		ret = nfilters;
8450 	return ret;
8451 }
8452 
8453 /**
8454  *	t4_change_mac - modifies the exact-match filter for a MAC address
8455  *	@adap: the adapter
8456  *	@mbox: mailbox to use for the FW command
8457  *	@viid: the VI id
8458  *	@idx: index of existing filter for old value of MAC address, or -1
8459  *	@addr: the new MAC address value
8460  *	@persist: whether a new MAC allocation should be persistent
8461  *	@smt_idx: add MAC to SMT and return its index, or NULL
8462  *
8463  *	Modifies an exact-match filter and sets it to the new MAC address if
8464  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
8465  *	latter case the address is added persistently if @persist is %true.
8466  *
8467  *	Note that in general it is not possible to modify the value of a given
8468  *	filter so the generic way to modify an address filter is to free the one
8469  *	being used by the old address value and allocate a new filter for the
8470  *	new address value.
8471  *
8472  *	Returns a negative error number or the index of the filter with the new
8473  *	MAC value.  Note that this index may differ from @idx.
8474  */
8475 int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8476 		  int idx, const u8 *addr, bool persist, uint16_t *smt_idx)
8477 {
8478 	int ret, mode;
8479 	struct fw_vi_mac_cmd c;
8480 	struct fw_vi_mac_exact *p = c.u.exact;
8481 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
8482 
8483 	if (idx < 0)		/* new allocation */
8484 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8485 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8486 
8487 	memset(&c, 0, sizeof(c));
8488 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8489 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8490 				   V_FW_VI_MAC_CMD_VIID(viid));
8491 	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
8492 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8493 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
8494 				      V_FW_VI_MAC_CMD_IDX(idx));
8495 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8496 
8497 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8498 	if (ret == 0) {
8499 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8500 		if (ret >= max_mac_addr)
8501 			ret = -ENOMEM;
8502 		if (smt_idx) {
8503 			if (adap->params.viid_smt_extn_support)
8504 				*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
8505 			else {
8506 				if (chip_id(adap) <= CHELSIO_T5)
8507 					*smt_idx = (viid & M_FW_VIID_VIN) << 1;
8508 				else
8509 					*smt_idx = viid & M_FW_VIID_VIN;
8510 			}
8511 		}
8512 	}
8513 	return ret;
8514 }
8515 
8516 /**
8517  *	t4_set_addr_hash - program the MAC inexact-match hash filter
8518  *	@adap: the adapter
8519  *	@mbox: mailbox to use for the FW command
8520  *	@viid: the VI id
8521  *	@ucast: whether the hash filter should also match unicast addresses
8522  *	@vec: the value to be written to the hash filter
8523  *	@sleep_ok: call is allowed to sleep
8524  *
8525  *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8526  */
8527 int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8528 		     bool ucast, u64 vec, bool sleep_ok)
8529 {
8530 	struct fw_vi_mac_cmd c;
8531 	u32 val;
8532 
8533 	memset(&c, 0, sizeof(c));
8534 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8535 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8536 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8537 	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
8538 	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
8539 	c.freemacs_to_len16 = cpu_to_be32(val);
8540 	c.u.hash.hashvec = cpu_to_be64(vec);
8541 	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8542 }
8543 
8544 /**
8545  *      t4_enable_vi_params - enable/disable a virtual interface
8546  *      @adap: the adapter
8547  *      @mbox: mailbox to use for the FW command
8548  *      @viid: the VI id
8549  *      @rx_en: 1=enable Rx, 0=disable Rx
8550  *      @tx_en: 1=enable Tx, 0=disable Tx
8551  *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8552  *
8553  *      Enables/disables a virtual interface.  Note that setting DCB Enable
8554  *      only makes sense when enabling a Virtual Interface ...
8555  */
8556 int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8557 			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8558 {
8559 	struct fw_vi_enable_cmd c;
8560 
8561 	memset(&c, 0, sizeof(c));
8562 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8563 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8564 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8565 	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
8566 				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
8567 				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
8568 				     FW_LEN16(c));
8569 	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8570 }
8571 
8572 /**
8573  *	t4_enable_vi - enable/disable a virtual interface
8574  *	@adap: the adapter
8575  *	@mbox: mailbox to use for the FW command
8576  *	@viid: the VI id
8577  *	@rx_en: 1=enable Rx, 0=disable Rx
8578  *	@tx_en: 1=enable Tx, 0=disable Tx
8579  *
8580  *	Enables/disables a virtual interface.  Note that setting DCB Enable
8581  *	only makes sense when enabling a Virtual Interface ...
8582  */
8583 int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8584 		 bool rx_en, bool tx_en)
8585 {
8586 	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8587 }
8588 
8589 /**
8590  *	t4_identify_port - identify a VI's port by blinking its LED
8591  *	@adap: the adapter
8592  *	@mbox: mailbox to use for the FW command
8593  *	@viid: the VI id
8594  *	@nblinks: how many times to blink LED at 2.5 Hz
8595  *
8596  *	Identifies a VI's port by blinking its LED.
8597  */
8598 int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8599 		     unsigned int nblinks)
8600 {
8601 	struct fw_vi_enable_cmd c;
8602 
8603 	memset(&c, 0, sizeof(c));
8604 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8605 				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8606 				   V_FW_VI_ENABLE_CMD_VIID(viid));
8607 	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
8608 	c.blinkdur = cpu_to_be16(nblinks);
8609 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8610 }
8611 
8612 /**
8613  *	t4_iq_stop - stop an ingress queue and its FLs
8614  *	@adap: the adapter
8615  *	@mbox: mailbox to use for the FW command
8616  *	@pf: the PF owning the queues
8617  *	@vf: the VF owning the queues
8618  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8619  *	@iqid: ingress queue id
8620  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8621  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8622  *
8623  *	Stops an ingress queue and its associated FLs, if any.  This causes
8624  *	any current or future data/messages destined for these queues to be
8625  *	tossed.
8626  */
8627 int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8628 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8629 	       unsigned int fl0id, unsigned int fl1id)
8630 {
8631 	struct fw_iq_cmd c;
8632 
8633 	memset(&c, 0, sizeof(c));
8634 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8635 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8636 				  V_FW_IQ_CMD_VFN(vf));
8637 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
8638 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8639 	c.iqid = cpu_to_be16(iqid);
8640 	c.fl0id = cpu_to_be16(fl0id);
8641 	c.fl1id = cpu_to_be16(fl1id);
8642 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8643 }
8644 
8645 /**
8646  *	t4_iq_free - free an ingress queue and its FLs
8647  *	@adap: the adapter
8648  *	@mbox: mailbox to use for the FW command
8649  *	@pf: the PF owning the queues
8650  *	@vf: the VF owning the queues
8651  *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8652  *	@iqid: ingress queue id
8653  *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8654  *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8655  *
8656  *	Frees an ingress queue and its associated FLs, if any.
8657  */
8658 int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8659 	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8660 	       unsigned int fl0id, unsigned int fl1id)
8661 {
8662 	struct fw_iq_cmd c;
8663 
8664 	memset(&c, 0, sizeof(c));
8665 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8666 				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8667 				  V_FW_IQ_CMD_VFN(vf));
8668 	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
8669 	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8670 	c.iqid = cpu_to_be16(iqid);
8671 	c.fl0id = cpu_to_be16(fl0id);
8672 	c.fl1id = cpu_to_be16(fl1id);
8673 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8674 }
8675 
8676 /**
8677  *	t4_eth_eq_stop - stop an Ethernet egress queue
8678  *	@adap: the adapter
8679  *	@mbox: mailbox to use for the FW command
8680  *	@pf: the PF owning the queues
8681  *	@vf: the VF owning the queues
8682  *	@eqid: egress queue id
8683  *
8684  *	Stops an Ethernet egress queue.  The queue can be reinitialized or
8685  *	freed but is not otherwise functional after this call.
8686  */
8687 int t4_eth_eq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8688                    unsigned int vf, unsigned int eqid)
8689 {
8690 	struct fw_eq_eth_cmd c;
8691 
8692 	memset(&c, 0, sizeof(c));
8693 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8694 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8695 				  V_FW_EQ_ETH_CMD_PFN(pf) |
8696 				  V_FW_EQ_ETH_CMD_VFN(vf));
8697 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_EQSTOP | FW_LEN16(c));
8698 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8699 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8700 }
8701 
8702 /**
8703  *	t4_eth_eq_free - free an Ethernet egress queue
8704  *	@adap: the adapter
8705  *	@mbox: mailbox to use for the FW command
8706  *	@pf: the PF owning the queue
8707  *	@vf: the VF owning the queue
8708  *	@eqid: egress queue id
8709  *
8710  *	Frees an Ethernet egress queue.
8711  */
8712 int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8713 		   unsigned int vf, unsigned int eqid)
8714 {
8715 	struct fw_eq_eth_cmd c;
8716 
8717 	memset(&c, 0, sizeof(c));
8718 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8719 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8720 				  V_FW_EQ_ETH_CMD_PFN(pf) |
8721 				  V_FW_EQ_ETH_CMD_VFN(vf));
8722 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
8723 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8724 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8725 }
8726 
8727 /**
8728  *	t4_ctrl_eq_free - free a control egress queue
8729  *	@adap: the adapter
8730  *	@mbox: mailbox to use for the FW command
8731  *	@pf: the PF owning the queue
8732  *	@vf: the VF owning the queue
8733  *	@eqid: egress queue id
8734  *
8735  *	Frees a control egress queue.
8736  */
8737 int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8738 		    unsigned int vf, unsigned int eqid)
8739 {
8740 	struct fw_eq_ctrl_cmd c;
8741 
8742 	memset(&c, 0, sizeof(c));
8743 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
8744 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8745 				  V_FW_EQ_CTRL_CMD_PFN(pf) |
8746 				  V_FW_EQ_CTRL_CMD_VFN(vf));
8747 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
8748 	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
8749 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8750 }
8751 
8752 /**
8753  *	t4_ofld_eq_free - free an offload egress queue
8754  *	@adap: the adapter
8755  *	@mbox: mailbox to use for the FW command
8756  *	@pf: the PF owning the queue
8757  *	@vf: the VF owning the queue
8758  *	@eqid: egress queue id
8759  *
8760  *	Frees a control egress queue.
8761  */
8762 int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8763 		    unsigned int vf, unsigned int eqid)
8764 {
8765 	struct fw_eq_ofld_cmd c;
8766 
8767 	memset(&c, 0, sizeof(c));
8768 	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
8769 				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8770 				  V_FW_EQ_OFLD_CMD_PFN(pf) |
8771 				  V_FW_EQ_OFLD_CMD_VFN(vf));
8772 	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
8773 	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
8774 	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8775 }
8776 
8777 /**
8778  *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8779  *	@link_down_rc: Link Down Reason Code
8780  *
8781  *	Returns a string representation of the Link Down Reason Code.
8782  */
8783 const char *t4_link_down_rc_str(unsigned char link_down_rc)
8784 {
8785 	static const char *reason[] = {
8786 		"Link Down",
8787 		"Remote Fault",
8788 		"Auto-negotiation Failure",
8789 		"Reserved3",
8790 		"Insufficient Airflow",
8791 		"Unable To Determine Reason",
8792 		"No RX Signal Detected",
8793 		"Reserved7",
8794 	};
8795 
8796 	if (link_down_rc >= ARRAY_SIZE(reason))
8797 		return "Bad Reason Code";
8798 
8799 	return reason[link_down_rc];
8800 }
8801 
8802 /*
8803  * Return the highest speed set in the port capabilities, in Mb/s.
8804  */
8805 unsigned int fwcap_to_speed(uint32_t caps)
8806 {
8807 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8808 		do { \
8809 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8810 				return __speed; \
8811 		} while (0)
8812 
8813 	TEST_SPEED_RETURN(400G, 400000);
8814 	TEST_SPEED_RETURN(200G, 200000);
8815 	TEST_SPEED_RETURN(100G, 100000);
8816 	TEST_SPEED_RETURN(50G,   50000);
8817 	TEST_SPEED_RETURN(40G,   40000);
8818 	TEST_SPEED_RETURN(25G,   25000);
8819 	TEST_SPEED_RETURN(10G,   10000);
8820 	TEST_SPEED_RETURN(1G,     1000);
8821 	TEST_SPEED_RETURN(100M,    100);
8822 
8823 	#undef TEST_SPEED_RETURN
8824 
8825 	return 0;
8826 }
8827 
8828 /*
8829  * Return the port capabilities bit for the given speed, which is in Mb/s.
8830  */
8831 uint32_t speed_to_fwcap(unsigned int speed)
8832 {
8833 	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8834 		do { \
8835 			if (speed == __speed) \
8836 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8837 		} while (0)
8838 
8839 	TEST_SPEED_RETURN(400G, 400000);
8840 	TEST_SPEED_RETURN(200G, 200000);
8841 	TEST_SPEED_RETURN(100G, 100000);
8842 	TEST_SPEED_RETURN(50G,   50000);
8843 	TEST_SPEED_RETURN(40G,   40000);
8844 	TEST_SPEED_RETURN(25G,   25000);
8845 	TEST_SPEED_RETURN(10G,   10000);
8846 	TEST_SPEED_RETURN(1G,     1000);
8847 	TEST_SPEED_RETURN(100M,    100);
8848 
8849 	#undef TEST_SPEED_RETURN
8850 
8851 	return 0;
8852 }
8853 
8854 /*
8855  * Return the port capabilities bit for the highest speed in the capabilities.
8856  */
8857 uint32_t fwcap_top_speed(uint32_t caps)
8858 {
8859 	#define TEST_SPEED_RETURN(__caps_speed) \
8860 		do { \
8861 			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8862 				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8863 		} while (0)
8864 
8865 	TEST_SPEED_RETURN(400G);
8866 	TEST_SPEED_RETURN(200G);
8867 	TEST_SPEED_RETURN(100G);
8868 	TEST_SPEED_RETURN(50G);
8869 	TEST_SPEED_RETURN(40G);
8870 	TEST_SPEED_RETURN(25G);
8871 	TEST_SPEED_RETURN(10G);
8872 	TEST_SPEED_RETURN(1G);
8873 	TEST_SPEED_RETURN(100M);
8874 
8875 	#undef TEST_SPEED_RETURN
8876 
8877 	return 0;
8878 }
8879 
8880 /**
8881  *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8882  *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8883  *
8884  *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8885  *	32-bit Port Capabilities value.
8886  */
8887 static uint32_t lstatus_to_fwcap(u32 lstatus)
8888 {
8889 	uint32_t linkattr = 0;
8890 
8891 	/*
8892 	 * Unfortunately the format of the Link Status in the old
8893 	 * 16-bit Port Information message isn't the same as the
8894 	 * 16-bit Port Capabilities bitfield used everywhere else ...
8895 	 */
8896 	if (lstatus & F_FW_PORT_CMD_RXPAUSE)
8897 		linkattr |= FW_PORT_CAP32_FC_RX;
8898 	if (lstatus & F_FW_PORT_CMD_TXPAUSE)
8899 		linkattr |= FW_PORT_CAP32_FC_TX;
8900 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
8901 		linkattr |= FW_PORT_CAP32_SPEED_100M;
8902 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
8903 		linkattr |= FW_PORT_CAP32_SPEED_1G;
8904 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
8905 		linkattr |= FW_PORT_CAP32_SPEED_10G;
8906 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
8907 		linkattr |= FW_PORT_CAP32_SPEED_25G;
8908 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
8909 		linkattr |= FW_PORT_CAP32_SPEED_40G;
8910 	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
8911 		linkattr |= FW_PORT_CAP32_SPEED_100G;
8912 
8913 	return linkattr;
8914 }
8915 
8916 /*
8917  * Updates all fields owned by the common code in port_info and link_config
8918  * based on information provided by the firmware.  Does not touch any
8919  * requested_* field.
8920  */
8921 static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p,
8922     enum fw_port_action action, bool *mod_changed, bool *link_changed)
8923 {
8924 	struct link_config old_lc, *lc = &pi->link_cfg;
8925 	unsigned char fc;
8926 	u32 stat, linkattr;
8927 	int old_ptype, old_mtype;
8928 
8929 	old_ptype = pi->port_type;
8930 	old_mtype = pi->mod_type;
8931 	old_lc = *lc;
8932 	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8933 		stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
8934 
8935 		pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
8936 		pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
8937 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
8938 		    G_FW_PORT_CMD_MDIOADDR(stat) : -1;
8939 
8940 		lc->pcaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap));
8941 		lc->acaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap));
8942 		lc->lpacaps = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap));
8943 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
8944 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
8945 
8946 		linkattr = lstatus_to_fwcap(stat);
8947 	} else if (action == FW_PORT_ACTION_GET_PORT_INFO32) {
8948 		stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32);
8949 
8950 		pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat);
8951 		pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat);
8952 		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ?
8953 		    G_FW_PORT_CMD_MDIOADDR32(stat) : -1;
8954 
8955 		lc->pcaps = be32_to_cpu(p->u.info32.pcaps32);
8956 		lc->acaps = be32_to_cpu(p->u.info32.acaps32);
8957 		lc->lpacaps = be32_to_cpu(p->u.info32.lpacaps32);
8958 		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0;
8959 		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat);
8960 
8961 		linkattr = be32_to_cpu(p->u.info32.linkattr32);
8962 	} else {
8963 		CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action);
8964 		return;
8965 	}
8966 
8967 	lc->speed = fwcap_to_speed(linkattr);
8968 	lc->fec = fwcap_to_fec(linkattr, true);
8969 
8970 	fc = 0;
8971 	if (linkattr & FW_PORT_CAP32_FC_RX)
8972 		fc |= PAUSE_RX;
8973 	if (linkattr & FW_PORT_CAP32_FC_TX)
8974 		fc |= PAUSE_TX;
8975 	lc->fc = fc;
8976 
8977 	if (mod_changed != NULL)
8978 		*mod_changed = false;
8979 	if (link_changed != NULL)
8980 		*link_changed = false;
8981 	if (old_ptype != pi->port_type || old_mtype != pi->mod_type ||
8982 	    old_lc.pcaps != lc->pcaps) {
8983 		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE)
8984 			lc->fec_hint = fwcap_to_fec(lc->acaps, true);
8985 		if (mod_changed != NULL)
8986 			*mod_changed = true;
8987 	}
8988 	if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed ||
8989 	    old_lc.fec != lc->fec || old_lc.fc != lc->fc) {
8990 		if (link_changed != NULL)
8991 			*link_changed = true;
8992 	}
8993 }
8994 
8995 /**
8996  *	t4_update_port_info - retrieve and update port information if changed
8997  *	@pi: the port_info
8998  *
8999  *	We issue a Get Port Information Command to the Firmware and, if
9000  *	successful, we check to see if anything is different from what we
9001  *	last recorded and update things accordingly.
9002  */
9003  int t4_update_port_info(struct port_info *pi)
9004  {
9005 	struct adapter *sc = pi->adapter;
9006 	struct fw_port_cmd cmd;
9007 	enum fw_port_action action;
9008 	int ret;
9009 
9010 	memset(&cmd, 0, sizeof(cmd));
9011 	cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
9012 	    F_FW_CMD_REQUEST | F_FW_CMD_READ |
9013 	    V_FW_PORT_CMD_PORTID(pi->tx_chan));
9014 	action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 :
9015 	    FW_PORT_ACTION_GET_PORT_INFO;
9016 	cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) |
9017 	    FW_LEN16(cmd));
9018 	ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd);
9019 	if (ret)
9020 		return ret;
9021 
9022 	handle_port_info(pi, &cmd, action, NULL, NULL);
9023 	return 0;
9024 }
9025 
9026 /**
9027  *	t4_handle_fw_rpl - process a FW reply message
9028  *	@adap: the adapter
9029  *	@rpl: start of the FW message
9030  *
9031  *	Processes a FW message, such as link state change messages.
9032  */
9033 int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
9034 {
9035 	u8 opcode = *(const u8 *)rpl;
9036 	const struct fw_port_cmd *p = (const void *)rpl;
9037 	enum fw_port_action action =
9038 	    G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
9039 	bool mod_changed, link_changed;
9040 
9041 	if (opcode == FW_PORT_CMD &&
9042 	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
9043 	    action == FW_PORT_ACTION_GET_PORT_INFO32)) {
9044 		/* link/module state change message */
9045 		int i;
9046 		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
9047 		struct port_info *pi = NULL;
9048 		struct link_config *lc;
9049 
9050 		for_each_port(adap, i) {
9051 			pi = adap2pinfo(adap, i);
9052 			if (pi->tx_chan == chan)
9053 				break;
9054 		}
9055 
9056 		lc = &pi->link_cfg;
9057 		PORT_LOCK(pi);
9058 		handle_port_info(pi, p, action, &mod_changed, &link_changed);
9059 		PORT_UNLOCK(pi);
9060 		if (mod_changed)
9061 			t4_os_portmod_changed(pi);
9062 		if (link_changed) {
9063 			PORT_LOCK(pi);
9064 			t4_os_link_changed(pi);
9065 			PORT_UNLOCK(pi);
9066 		}
9067 	} else {
9068 		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
9069 		return -EINVAL;
9070 	}
9071 	return 0;
9072 }
9073 
9074 /**
9075  *	get_pci_mode - determine a card's PCI mode
9076  *	@adapter: the adapter
9077  *	@p: where to store the PCI settings
9078  *
9079  *	Determines a card's PCI mode and associated parameters, such as speed
9080  *	and width.
9081  */
9082 static void get_pci_mode(struct adapter *adapter,
9083 				   struct pci_params *p)
9084 {
9085 	u16 val;
9086 	u32 pcie_cap;
9087 
9088 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
9089 	if (pcie_cap) {
9090 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
9091 		p->speed = val & PCI_EXP_LNKSTA_CLS;
9092 		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
9093 	}
9094 }
9095 
9096 struct flash_desc {
9097 	u32 vendor_and_model_id;
9098 	u32 size_mb;
9099 };
9100 
9101 int t4_get_flash_params(struct adapter *adapter)
9102 {
9103 	/*
9104 	 * Table for non-standard supported Flash parts.  Note, all Flash
9105 	 * parts must have 64KB sectors.
9106 	 */
9107 	static struct flash_desc supported_flash[] = {
9108 		{ 0x00150201, 4 << 20 },	/* Spansion 4MB S25FL032P */
9109 	};
9110 
9111 	int ret;
9112 	u32 flashid = 0;
9113 	unsigned int part, manufacturer;
9114 	unsigned int density, size = 0;
9115 
9116 
9117 	/*
9118 	 * Issue a Read ID Command to the Flash part.  We decode supported
9119 	 * Flash parts and their sizes from this.  There's a newer Query
9120 	 * Command which can retrieve detailed geometry information but many
9121 	 * Flash parts don't support it.
9122 	 */
9123 	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
9124 	if (!ret)
9125 		ret = sf1_read(adapter, 3, 0, 1, &flashid);
9126 	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
9127 	if (ret < 0)
9128 		return ret;
9129 
9130 	/*
9131 	 * Check to see if it's one of our non-standard supported Flash parts.
9132 	 */
9133 	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
9134 		if (supported_flash[part].vendor_and_model_id == flashid) {
9135 			adapter->params.sf_size =
9136 				supported_flash[part].size_mb;
9137 			adapter->params.sf_nsec =
9138 				adapter->params.sf_size / SF_SEC_SIZE;
9139 			goto found;
9140 		}
9141 
9142 	/*
9143 	 * Decode Flash part size.  The code below looks repetative with
9144 	 * common encodings, but that's not guaranteed in the JEDEC
9145 	 * specification for the Read JADEC ID command.  The only thing that
9146 	 * we're guaranteed by the JADEC specification is where the
9147 	 * Manufacturer ID is in the returned result.  After that each
9148 	 * Manufacturer ~could~ encode things completely differently.
9149 	 * Note, all Flash parts must have 64KB sectors.
9150 	 */
9151 	manufacturer = flashid & 0xff;
9152 	switch (manufacturer) {
9153 	case 0x20: /* Micron/Numonix */
9154 		/*
9155 		 * This Density -> Size decoding table is taken from Micron
9156 		 * Data Sheets.
9157 		 */
9158 		density = (flashid >> 16) & 0xff;
9159 		switch (density) {
9160 		case 0x14: size = 1 << 20; break; /*   1MB */
9161 		case 0x15: size = 1 << 21; break; /*   2MB */
9162 		case 0x16: size = 1 << 22; break; /*   4MB */
9163 		case 0x17: size = 1 << 23; break; /*   8MB */
9164 		case 0x18: size = 1 << 24; break; /*  16MB */
9165 		case 0x19: size = 1 << 25; break; /*  32MB */
9166 		case 0x20: size = 1 << 26; break; /*  64MB */
9167 		case 0x21: size = 1 << 27; break; /* 128MB */
9168 		case 0x22: size = 1 << 28; break; /* 256MB */
9169 		}
9170 		break;
9171 
9172 	case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */
9173 		/*
9174 		 * This Density -> Size decoding table is taken from ISSI
9175 		 * Data Sheets.
9176 		 */
9177 		density = (flashid >> 16) & 0xff;
9178 		switch (density) {
9179 		case 0x16: size = 1 << 25; break; /*  32MB */
9180 		case 0x17: size = 1 << 26; break; /*  64MB */
9181 		}
9182 		break;
9183 
9184 	case 0xc2: /* Macronix */
9185 		/*
9186 		 * This Density -> Size decoding table is taken from Macronix
9187 		 * Data Sheets.
9188 		 */
9189 		density = (flashid >> 16) & 0xff;
9190 		switch (density) {
9191 		case 0x17: size = 1 << 23; break; /*   8MB */
9192 		case 0x18: size = 1 << 24; break; /*  16MB */
9193 		}
9194 		break;
9195 
9196 	case 0xef: /* Winbond */
9197 		/*
9198 		 * This Density -> Size decoding table is taken from Winbond
9199 		 * Data Sheets.
9200 		 */
9201 		density = (flashid >> 16) & 0xff;
9202 		switch (density) {
9203 		case 0x17: size = 1 << 23; break; /*   8MB */
9204 		case 0x18: size = 1 << 24; break; /*  16MB */
9205 		}
9206 		break;
9207 	}
9208 
9209 	/* If we didn't recognize the FLASH part, that's no real issue: the
9210 	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
9211 	 * use a FLASH part which is at least 4MB in size and has 64KB
9212 	 * sectors.  The unrecognized FLASH part is likely to be much larger
9213 	 * than 4MB, but that's all we really need.
9214 	 */
9215 	if (size == 0) {
9216 		CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid);
9217 		size = 1 << 22;
9218 	}
9219 
9220 	/*
9221 	 * Store decoded Flash size and fall through into vetting code.
9222 	 */
9223 	adapter->params.sf_size = size;
9224 	adapter->params.sf_nsec = size / SF_SEC_SIZE;
9225 
9226  found:
9227 	/*
9228 	 * We should ~probably~ reject adapters with FLASHes which are too
9229 	 * small but we have some legacy FPGAs with small FLASHes that we'd
9230 	 * still like to use.  So instead we emit a scary message ...
9231 	 */
9232 	if (adapter->params.sf_size < FLASH_MIN_SIZE)
9233 		CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
9234 			flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
9235 
9236 	return 0;
9237 }
9238 
9239 static void set_pcie_completion_timeout(struct adapter *adapter,
9240 						  u8 range)
9241 {
9242 	u16 val;
9243 	u32 pcie_cap;
9244 
9245 	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
9246 	if (pcie_cap) {
9247 		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
9248 		val &= 0xfff0;
9249 		val |= range ;
9250 		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
9251 	}
9252 }
9253 
9254 const struct chip_params *t4_get_chip_params(int chipid)
9255 {
9256 	static const struct chip_params chip_params[] = {
9257 		{
9258 			/* T4 */
9259 			.nchan = NCHAN,
9260 			.pm_stats_cnt = PM_NSTATS,
9261 			.cng_ch_bits_log = 2,
9262 			.nsched_cls = 15,
9263 			.cim_num_obq = CIM_NUM_OBQ,
9264 			.filter_opt_len = FILTER_OPT_LEN,
9265 			.mps_rplc_size = 128,
9266 			.vfcount = 128,
9267 			.sge_fl_db = F_DBPRIO,
9268 			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
9269 			.rss_nentries = RSS_NENTRIES,
9270 		},
9271 		{
9272 			/* T5 */
9273 			.nchan = NCHAN,
9274 			.pm_stats_cnt = PM_NSTATS,
9275 			.cng_ch_bits_log = 2,
9276 			.nsched_cls = 16,
9277 			.cim_num_obq = CIM_NUM_OBQ_T5,
9278 			.filter_opt_len = T5_FILTER_OPT_LEN,
9279 			.mps_rplc_size = 128,
9280 			.vfcount = 128,
9281 			.sge_fl_db = F_DBPRIO | F_DBTYPE,
9282 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
9283 			.rss_nentries = RSS_NENTRIES,
9284 		},
9285 		{
9286 			/* T6 */
9287 			.nchan = T6_NCHAN,
9288 			.pm_stats_cnt = T6_PM_NSTATS,
9289 			.cng_ch_bits_log = 3,
9290 			.nsched_cls = 16,
9291 			.cim_num_obq = CIM_NUM_OBQ_T5,
9292 			.filter_opt_len = T5_FILTER_OPT_LEN,
9293 			.mps_rplc_size = 256,
9294 			.vfcount = 256,
9295 			.sge_fl_db = 0,
9296 			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
9297 			.rss_nentries = T6_RSS_NENTRIES,
9298 		},
9299 	};
9300 
9301 	chipid -= CHELSIO_T4;
9302 	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
9303 		return NULL;
9304 
9305 	return &chip_params[chipid];
9306 }
9307 
9308 /**
9309  *	t4_prep_adapter - prepare SW and HW for operation
9310  *	@adapter: the adapter
9311  *	@buf: temporary space of at least VPD_LEN size provided by the caller.
9312  *
9313  *	Initialize adapter SW state for the various HW modules, set initial
9314  *	values for some adapter tunables, take PHYs out of reset, and
9315  *	initialize the MDIO interface.
9316  */
9317 int t4_prep_adapter(struct adapter *adapter, u32 *buf)
9318 {
9319 	int ret;
9320 	uint16_t device_id;
9321 	uint32_t pl_rev;
9322 
9323 	get_pci_mode(adapter, &adapter->params.pci);
9324 
9325 	pl_rev = t4_read_reg(adapter, A_PL_REV);
9326 	adapter->params.chipid = G_CHIPID(pl_rev);
9327 	adapter->params.rev = G_REV(pl_rev);
9328 	if (adapter->params.chipid == 0) {
9329 		/* T4 did not have chipid in PL_REV (T5 onwards do) */
9330 		adapter->params.chipid = CHELSIO_T4;
9331 
9332 		/* T4A1 chip is not supported */
9333 		if (adapter->params.rev == 1) {
9334 			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
9335 			return -EINVAL;
9336 		}
9337 	}
9338 
9339 	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
9340 	if (adapter->chip_params == NULL)
9341 		return -EINVAL;
9342 
9343 	adapter->params.pci.vpd_cap_addr =
9344 	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
9345 
9346 	ret = t4_get_flash_params(adapter);
9347 	if (ret < 0)
9348 		return ret;
9349 
9350 	/* Cards with real ASICs have the chipid in the PCIe device id */
9351 	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
9352 	if (device_id >> 12 == chip_id(adapter))
9353 		adapter->params.cim_la_size = CIMLA_SIZE;
9354 	else {
9355 		/* FPGA */
9356 		adapter->params.fpga = 1;
9357 		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
9358 	}
9359 
9360 	ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
9361 	if (ret < 0)
9362 		return ret;
9363 
9364 	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
9365 
9366 	/*
9367 	 * Default port and clock for debugging in case we can't reach FW.
9368 	 */
9369 	adapter->params.nports = 1;
9370 	adapter->params.portvec = 1;
9371 	adapter->params.vpd.cclk = 50000;
9372 
9373 	/* Set pci completion timeout value to 4 seconds. */
9374 	set_pcie_completion_timeout(adapter, 0xd);
9375 	return 0;
9376 }
9377 
9378 /**
9379  *	t4_shutdown_adapter - shut down adapter, host & wire
9380  *	@adapter: the adapter
9381  *
9382  *	Perform an emergency shutdown of the adapter and stop it from
9383  *	continuing any further communication on the ports or DMA to the
9384  *	host.  This is typically used when the adapter and/or firmware
9385  *	have crashed and we want to prevent any further accidental
9386  *	communication with the rest of the world.  This will also force
9387  *	the port Link Status to go down -- if register writes work --
9388  *	which should help our peers figure out that we're down.
9389  */
9390 int t4_shutdown_adapter(struct adapter *adapter)
9391 {
9392 	int port;
9393 
9394 	t4_intr_disable(adapter);
9395 	t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
9396 	for_each_port(adapter, port) {
9397 		u32 a_port_cfg = is_t4(adapter) ?
9398 				 PORT_REG(port, A_XGMAC_PORT_CFG) :
9399 				 T5_PORT_REG(port, A_MAC_PORT_CFG);
9400 
9401 		t4_write_reg(adapter, a_port_cfg,
9402 			     t4_read_reg(adapter, a_port_cfg)
9403 			     & ~V_SIGNAL_DET(1));
9404 	}
9405 	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
9406 
9407 	return 0;
9408 }
9409 
9410 /**
9411  *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9412  *	@adapter: the adapter
9413  *	@qid: the Queue ID
9414  *	@qtype: the Ingress or Egress type for @qid
9415  *	@user: true if this request is for a user mode queue
9416  *	@pbar2_qoffset: BAR2 Queue Offset
9417  *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9418  *
9419  *	Returns the BAR2 SGE Queue Registers information associated with the
9420  *	indicated Absolute Queue ID.  These are passed back in return value
9421  *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9422  *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9423  *
9424  *	This may return an error which indicates that BAR2 SGE Queue
9425  *	registers aren't available.  If an error is not returned, then the
9426  *	following values are returned:
9427  *
9428  *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9429  *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9430  *
9431  *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9432  *	require the "Inferred Queue ID" ability may be used.  E.g. the
9433  *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9434  *	then these "Inferred Queue ID" register may not be used.
9435  */
9436 int t4_bar2_sge_qregs(struct adapter *adapter,
9437 		      unsigned int qid,
9438 		      enum t4_bar2_qtype qtype,
9439 		      int user,
9440 		      u64 *pbar2_qoffset,
9441 		      unsigned int *pbar2_qid)
9442 {
9443 	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9444 	u64 bar2_page_offset, bar2_qoffset;
9445 	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9446 
9447 	/* T4 doesn't support BAR2 SGE Queue registers for kernel
9448 	 * mode queues.
9449 	 */
9450 	if (!user && is_t4(adapter))
9451 		return -EINVAL;
9452 
9453 	/* Get our SGE Page Size parameters.
9454 	 */
9455 	page_shift = adapter->params.sge.page_shift;
9456 	page_size = 1 << page_shift;
9457 
9458 	/* Get the right Queues per Page parameters for our Queue.
9459 	 */
9460 	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9461 		     ? adapter->params.sge.eq_s_qpp
9462 		     : adapter->params.sge.iq_s_qpp);
9463 	qpp_mask = (1 << qpp_shift) - 1;
9464 
9465 	/* Calculate the basics of the BAR2 SGE Queue register area:
9466 	 *  o The BAR2 page the Queue registers will be in.
9467 	 *  o The BAR2 Queue ID.
9468 	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9469 	 */
9470 	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9471 	bar2_qid = qid & qpp_mask;
9472 	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9473 
9474 	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9475 	 * hardware will infer the Absolute Queue ID simply from the writes to
9476 	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9477 	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9478 	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9479 	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9480 	 * from the BAR2 Page and BAR2 Queue ID.
9481 	 *
9482 	 * One important censequence of this is that some BAR2 SGE registers
9483 	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9484 	 * there.  But other registers synthesize the SGE Queue ID purely
9485 	 * from the writes to the registers -- the Write Combined Doorbell
9486 	 * Buffer is a good example.  These BAR2 SGE Registers are only
9487 	 * available for those BAR2 SGE Register areas where the SGE Absolute
9488 	 * Queue ID can be inferred from simple writes.
9489 	 */
9490 	bar2_qoffset = bar2_page_offset;
9491 	bar2_qinferred = (bar2_qid_offset < page_size);
9492 	if (bar2_qinferred) {
9493 		bar2_qoffset += bar2_qid_offset;
9494 		bar2_qid = 0;
9495 	}
9496 
9497 	*pbar2_qoffset = bar2_qoffset;
9498 	*pbar2_qid = bar2_qid;
9499 	return 0;
9500 }
9501 
9502 /**
9503  *	t4_init_devlog_params - initialize adapter->params.devlog
9504  *	@adap: the adapter
9505  *	@fw_attach: whether we can talk to the firmware
9506  *
9507  *	Initialize various fields of the adapter's Firmware Device Log
9508  *	Parameters structure.
9509  */
9510 int t4_init_devlog_params(struct adapter *adap, int fw_attach)
9511 {
9512 	struct devlog_params *dparams = &adap->params.devlog;
9513 	u32 pf_dparams;
9514 	unsigned int devlog_meminfo;
9515 	struct fw_devlog_cmd devlog_cmd;
9516 	int ret;
9517 
9518 	/* If we're dealing with newer firmware, the Device Log Paramerters
9519 	 * are stored in a designated register which allows us to access the
9520 	 * Device Log even if we can't talk to the firmware.
9521 	 */
9522 	pf_dparams =
9523 		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
9524 	if (pf_dparams) {
9525 		unsigned int nentries, nentries128;
9526 
9527 		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
9528 		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
9529 
9530 		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
9531 		nentries = (nentries128 + 1) * 128;
9532 		dparams->size = nentries * sizeof(struct fw_devlog_e);
9533 
9534 		return 0;
9535 	}
9536 
9537 	/*
9538 	 * For any failing returns ...
9539 	 */
9540 	memset(dparams, 0, sizeof *dparams);
9541 
9542 	/*
9543 	 * If we can't talk to the firmware, there's really nothing we can do
9544 	 * at this point.
9545 	 */
9546 	if (!fw_attach)
9547 		return -ENXIO;
9548 
9549 	/* Otherwise, ask the firmware for it's Device Log Parameters.
9550 	 */
9551 	memset(&devlog_cmd, 0, sizeof devlog_cmd);
9552 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9553 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9554 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9555 	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9556 			 &devlog_cmd);
9557 	if (ret)
9558 		return ret;
9559 
9560 	devlog_meminfo =
9561 		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9562 	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
9563 	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
9564 	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9565 
9566 	return 0;
9567 }
9568 
9569 /**
9570  *	t4_init_sge_params - initialize adap->params.sge
9571  *	@adapter: the adapter
9572  *
9573  *	Initialize various fields of the adapter's SGE Parameters structure.
9574  */
9575 int t4_init_sge_params(struct adapter *adapter)
9576 {
9577 	u32 r;
9578 	struct sge_params *sp = &adapter->params.sge;
9579 	unsigned i, tscale = 1;
9580 
9581 	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
9582 	sp->counter_val[0] = G_THRESHOLD_0(r);
9583 	sp->counter_val[1] = G_THRESHOLD_1(r);
9584 	sp->counter_val[2] = G_THRESHOLD_2(r);
9585 	sp->counter_val[3] = G_THRESHOLD_3(r);
9586 
9587 	if (chip_id(adapter) >= CHELSIO_T6) {
9588 		r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
9589 		tscale = G_TSCALE(r);
9590 		if (tscale == 0)
9591 			tscale = 1;
9592 		else
9593 			tscale += 2;
9594 	}
9595 
9596 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
9597 	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
9598 	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
9599 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
9600 	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
9601 	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
9602 	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
9603 	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
9604 	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
9605 
9606 	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
9607 	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
9608 	if (is_t4(adapter))
9609 		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
9610 	else if (is_t5(adapter))
9611 		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
9612 	else
9613 		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
9614 
9615 	/* egress queues: log2 of # of doorbells per BAR2 page */
9616 	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
9617 	r >>= S_QUEUESPERPAGEPF0 +
9618 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9619 	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
9620 
9621 	/* ingress queues: log2 of # of doorbells per BAR2 page */
9622 	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
9623 	r >>= S_QUEUESPERPAGEPF0 +
9624 	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9625 	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
9626 
9627 	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
9628 	r >>= S_HOSTPAGESIZEPF0 +
9629 	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
9630 	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
9631 
9632 	r = t4_read_reg(adapter, A_SGE_CONTROL);
9633 	sp->sge_control = r;
9634 	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
9635 	sp->fl_pktshift = G_PKTSHIFT(r);
9636 	if (chip_id(adapter) <= CHELSIO_T5) {
9637 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9638 		    X_INGPADBOUNDARY_SHIFT);
9639 	} else {
9640 		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9641 		    X_T6_INGPADBOUNDARY_SHIFT);
9642 	}
9643 	if (is_t4(adapter))
9644 		sp->pack_boundary = sp->pad_boundary;
9645 	else {
9646 		r = t4_read_reg(adapter, A_SGE_CONTROL2);
9647 		if (G_INGPACKBOUNDARY(r) == 0)
9648 			sp->pack_boundary = 16;
9649 		else
9650 			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
9651 	}
9652 	for (i = 0; i < SGE_FLBUF_SIZES; i++)
9653 		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
9654 		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
9655 
9656 	return 0;
9657 }
9658 
9659 /* Convert the LE's hardware hash mask to a shorter filter mask. */
9660 static inline uint16_t
9661 hashmask_to_filtermask(uint64_t hashmask, uint16_t filter_mode)
9662 {
9663 	static const uint8_t width[] = {1, 3, 17, 17, 8, 8, 16, 9, 3, 1};
9664 	int i;
9665 	uint16_t filter_mask;
9666 	uint64_t mask;		/* field mask */
9667 
9668 	filter_mask = 0;
9669 	for (i = S_FCOE; i <= S_FRAGMENTATION; i++) {
9670 		if ((filter_mode & (1 << i)) == 0)
9671 			continue;
9672 		mask = (1 << width[i]) - 1;
9673 		if ((hashmask & mask) == mask)
9674 			filter_mask |= 1 << i;
9675 		hashmask >>= width[i];
9676 	}
9677 
9678 	return (filter_mask);
9679 }
9680 
9681 /*
9682  * Read and cache the adapter's compressed filter mode and ingress config.
9683  */
9684 static void
9685 read_filter_mode_and_ingress_config(struct adapter *adap)
9686 {
9687 	int rc;
9688 	uint32_t v, param[2], val[2];
9689 	struct tp_params *tpp = &adap->params.tp;
9690 	uint64_t hash_mask;
9691 
9692 	param[0] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9693 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
9694 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
9695 	param[1] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9696 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
9697 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
9698 	rc = -t4_query_params(adap, adap->mbox, adap->pf, 0, 2, param, val);
9699 	if (rc == 0) {
9700 		tpp->filter_mode = G_FW_PARAMS_PARAM_FILTER_MODE(val[0]);
9701 		tpp->filter_mask = G_FW_PARAMS_PARAM_FILTER_MASK(val[0]);
9702 		tpp->vnic_mode = val[1];
9703 	} else {
9704 		/*
9705 		 * Old firmware.  Read filter mode/mask and ingress config
9706 		 * straight from the hardware.
9707 		 */
9708 		t4_tp_pio_read(adap, &v, 1, A_TP_VLAN_PRI_MAP, true);
9709 		tpp->filter_mode = v & 0xffff;
9710 
9711 		hash_mask = 0;
9712 		if (chip_id(adap) > CHELSIO_T4) {
9713 			v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3));
9714 			hash_mask = v;
9715 			v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4));
9716 			hash_mask |= (u64)v << 32;
9717 		}
9718 		tpp->filter_mask = hashmask_to_filtermask(hash_mask,
9719 		    tpp->filter_mode);
9720 
9721 		t4_tp_pio_read(adap, &v, 1, A_TP_INGRESS_CONFIG, true);
9722 		if (v & F_VNIC)
9723 			tpp->vnic_mode = FW_VNIC_MODE_PF_VF;
9724 		else
9725 			tpp->vnic_mode = FW_VNIC_MODE_OUTER_VLAN;
9726 	}
9727 
9728 	/*
9729 	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9730 	 * shift positions of several elements of the Compressed Filter Tuple
9731 	 * for this adapter which we need frequently ...
9732 	 */
9733 	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
9734 	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
9735 	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
9736 	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
9737 	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
9738 	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
9739 	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
9740 	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
9741 	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
9742 	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
9743 }
9744 
9745 /**
9746  *      t4_init_tp_params - initialize adap->params.tp
9747  *      @adap: the adapter
9748  *
9749  *      Initialize various fields of the adapter's TP Parameters structure.
9750  */
9751 int t4_init_tp_params(struct adapter *adap)
9752 {
9753 	int chan;
9754 	u32 tx_len, rx_len, r, v;
9755 	struct tp_params *tpp = &adap->params.tp;
9756 
9757 	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
9758 	tpp->tre = G_TIMERRESOLUTION(v);
9759 	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
9760 
9761 	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9762 	for (chan = 0; chan < MAX_NCHAN; chan++)
9763 		tpp->tx_modq[chan] = chan;
9764 
9765 	read_filter_mode_and_ingress_config(adap);
9766 
9767 	if (chip_id(adap) > CHELSIO_T5) {
9768 		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
9769 		tpp->rx_pkt_encap = v & F_CRXPKTENC;
9770 	} else
9771 		tpp->rx_pkt_encap = false;
9772 
9773 	rx_len = t4_read_reg(adap, A_TP_PMM_RX_PAGE_SIZE);
9774 	tx_len = t4_read_reg(adap, A_TP_PMM_TX_PAGE_SIZE);
9775 
9776 	r = t4_read_reg(adap, A_TP_PARA_REG2);
9777 	rx_len = min(rx_len, G_MAXRXDATA(r));
9778 	tx_len = min(tx_len, G_MAXRXDATA(r));
9779 
9780 	r = t4_read_reg(adap, A_TP_PARA_REG7);
9781 	v = min(G_PMMAXXFERLEN0(r), G_PMMAXXFERLEN1(r));
9782 	rx_len = min(rx_len, v);
9783 	tx_len = min(tx_len, v);
9784 
9785 	tpp->max_tx_pdu = tx_len;
9786 	tpp->max_rx_pdu = rx_len;
9787 
9788 	return 0;
9789 }
9790 
9791 /**
9792  *      t4_filter_field_shift - calculate filter field shift
9793  *      @adap: the adapter
9794  *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9795  *
9796  *      Return the shift position of a filter field within the Compressed
9797  *      Filter Tuple.  The filter field is specified via its selection bit
9798  *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9799  */
9800 int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9801 {
9802 	const unsigned int filter_mode = adap->params.tp.filter_mode;
9803 	unsigned int sel;
9804 	int field_shift;
9805 
9806 	if ((filter_mode & filter_sel) == 0)
9807 		return -1;
9808 
9809 	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9810 		switch (filter_mode & sel) {
9811 		case F_FCOE:
9812 			field_shift += W_FT_FCOE;
9813 			break;
9814 		case F_PORT:
9815 			field_shift += W_FT_PORT;
9816 			break;
9817 		case F_VNIC_ID:
9818 			field_shift += W_FT_VNIC_ID;
9819 			break;
9820 		case F_VLAN:
9821 			field_shift += W_FT_VLAN;
9822 			break;
9823 		case F_TOS:
9824 			field_shift += W_FT_TOS;
9825 			break;
9826 		case F_PROTOCOL:
9827 			field_shift += W_FT_PROTOCOL;
9828 			break;
9829 		case F_ETHERTYPE:
9830 			field_shift += W_FT_ETHERTYPE;
9831 			break;
9832 		case F_MACMATCH:
9833 			field_shift += W_FT_MACMATCH;
9834 			break;
9835 		case F_MPSHITTYPE:
9836 			field_shift += W_FT_MPSHITTYPE;
9837 			break;
9838 		case F_FRAGMENTATION:
9839 			field_shift += W_FT_FRAGMENTATION;
9840 			break;
9841 		}
9842 	}
9843 	return field_shift;
9844 }
9845 
9846 int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
9847 {
9848 	u8 addr[6];
9849 	int ret, i, j;
9850 	struct port_info *p = adap2pinfo(adap, port_id);
9851 	u32 param, val;
9852 	struct vi_info *vi = &p->vi[0];
9853 
9854 	for (i = 0, j = -1; i <= p->port_id; i++) {
9855 		do {
9856 			j++;
9857 		} while ((adap->params.portvec & (1 << j)) == 0);
9858 	}
9859 
9860 	p->tx_chan = j;
9861 	p->mps_bg_map = t4_get_mps_bg_map(adap, j);
9862 	p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
9863 	p->rx_c_chan = t4_get_rx_c_chan(adap, j);
9864 	p->lport = j;
9865 
9866 	if (!(adap->flags & IS_VF) ||
9867 	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
9868  		t4_update_port_info(p);
9869 	}
9870 
9871 	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &vi->rss_size,
9872 	    &vi->vfvld, &vi->vin);
9873 	if (ret < 0)
9874 		return ret;
9875 
9876 	vi->viid = ret;
9877 	t4_os_set_hw_addr(p, addr);
9878 
9879 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9880 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
9881 	    V_FW_PARAMS_PARAM_YZ(vi->viid);
9882 	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
9883 	if (ret)
9884 		vi->rss_base = 0xffff;
9885 	else {
9886 		/* MPASS((val >> 16) == rss_size); */
9887 		vi->rss_base = val & 0xffff;
9888 	}
9889 
9890 	return 0;
9891 }
9892 
9893 /**
9894  *	t4_read_cimq_cfg - read CIM queue configuration
9895  *	@adap: the adapter
9896  *	@base: holds the queue base addresses in bytes
9897  *	@size: holds the queue sizes in bytes
9898  *	@thres: holds the queue full thresholds in bytes
9899  *
9900  *	Returns the current configuration of the CIM queues, starting with
9901  *	the IBQs, then the OBQs.
9902  */
9903 void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9904 {
9905 	unsigned int i, v;
9906 	int cim_num_obq = adap->chip_params->cim_num_obq;
9907 
9908 	for (i = 0; i < CIM_NUM_IBQ; i++) {
9909 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
9910 			     V_QUENUMSELECT(i));
9911 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9912 		/* value is in 256-byte units */
9913 		*base++ = G_CIMQBASE(v) * 256;
9914 		*size++ = G_CIMQSIZE(v) * 256;
9915 		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
9916 	}
9917 	for (i = 0; i < cim_num_obq; i++) {
9918 		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9919 			     V_QUENUMSELECT(i));
9920 		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9921 		/* value is in 256-byte units */
9922 		*base++ = G_CIMQBASE(v) * 256;
9923 		*size++ = G_CIMQSIZE(v) * 256;
9924 	}
9925 }
9926 
9927 /**
9928  *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9929  *	@adap: the adapter
9930  *	@qid: the queue index
9931  *	@data: where to store the queue contents
9932  *	@n: capacity of @data in 32-bit words
9933  *
9934  *	Reads the contents of the selected CIM queue starting at address 0 up
9935  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9936  *	error and the number of 32-bit words actually read on success.
9937  */
9938 int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9939 {
9940 	int i, err, attempts;
9941 	unsigned int addr;
9942 	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9943 
9944 	if (qid > 5 || (n & 3))
9945 		return -EINVAL;
9946 
9947 	addr = qid * nwords;
9948 	if (n > nwords)
9949 		n = nwords;
9950 
9951 	/* It might take 3-10ms before the IBQ debug read access is allowed.
9952 	 * Wait for 1 Sec with a delay of 1 usec.
9953 	 */
9954 	attempts = 1000000;
9955 
9956 	for (i = 0; i < n; i++, addr++) {
9957 		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
9958 			     F_IBQDBGEN);
9959 		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
9960 				      attempts, 1);
9961 		if (err)
9962 			return err;
9963 		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
9964 	}
9965 	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
9966 	return i;
9967 }
9968 
9969 /**
9970  *	t4_read_cim_obq - read the contents of a CIM outbound queue
9971  *	@adap: the adapter
9972  *	@qid: the queue index
9973  *	@data: where to store the queue contents
9974  *	@n: capacity of @data in 32-bit words
9975  *
9976  *	Reads the contents of the selected CIM queue starting at address 0 up
9977  *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9978  *	error and the number of 32-bit words actually read on success.
9979  */
9980 int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9981 {
9982 	int i, err;
9983 	unsigned int addr, v, nwords;
9984 	int cim_num_obq = adap->chip_params->cim_num_obq;
9985 
9986 	if ((qid > (cim_num_obq - 1)) || (n & 3))
9987 		return -EINVAL;
9988 
9989 	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9990 		     V_QUENUMSELECT(qid));
9991 	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9992 
9993 	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
9994 	nwords = G_CIMQSIZE(v) * 64;  /* same */
9995 	if (n > nwords)
9996 		n = nwords;
9997 
9998 	for (i = 0; i < n; i++, addr++) {
9999 		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
10000 			     F_OBQDBGEN);
10001 		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
10002 				      2, 1);
10003 		if (err)
10004 			return err;
10005 		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
10006 	}
10007 	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
10008 	return i;
10009 }
10010 
10011 enum {
10012 	CIM_QCTL_BASE     = 0,
10013 	CIM_CTL_BASE      = 0x2000,
10014 	CIM_PBT_ADDR_BASE = 0x2800,
10015 	CIM_PBT_LRF_BASE  = 0x3000,
10016 	CIM_PBT_DATA_BASE = 0x3800
10017 };
10018 
10019 /**
10020  *	t4_cim_read - read a block from CIM internal address space
10021  *	@adap: the adapter
10022  *	@addr: the start address within the CIM address space
10023  *	@n: number of words to read
10024  *	@valp: where to store the result
10025  *
10026  *	Reads a block of 4-byte words from the CIM intenal address space.
10027  */
10028 int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
10029 		unsigned int *valp)
10030 {
10031 	int ret = 0;
10032 
10033 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
10034 		return -EBUSY;
10035 
10036 	for ( ; !ret && n--; addr += 4) {
10037 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
10038 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
10039 				      0, 5, 2);
10040 		if (!ret)
10041 			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
10042 	}
10043 	return ret;
10044 }
10045 
10046 /**
10047  *	t4_cim_write - write a block into CIM internal address space
10048  *	@adap: the adapter
10049  *	@addr: the start address within the CIM address space
10050  *	@n: number of words to write
10051  *	@valp: set of values to write
10052  *
10053  *	Writes a block of 4-byte words into the CIM intenal address space.
10054  */
10055 int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
10056 		 const unsigned int *valp)
10057 {
10058 	int ret = 0;
10059 
10060 	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
10061 		return -EBUSY;
10062 
10063 	for ( ; !ret && n--; addr += 4) {
10064 		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
10065 		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
10066 		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
10067 				      0, 5, 2);
10068 	}
10069 	return ret;
10070 }
10071 
10072 static int t4_cim_write1(struct adapter *adap, unsigned int addr,
10073 			 unsigned int val)
10074 {
10075 	return t4_cim_write(adap, addr, 1, &val);
10076 }
10077 
10078 /**
10079  *	t4_cim_ctl_read - read a block from CIM control region
10080  *	@adap: the adapter
10081  *	@addr: the start address within the CIM control region
10082  *	@n: number of words to read
10083  *	@valp: where to store the result
10084  *
10085  *	Reads a block of 4-byte words from the CIM control region.
10086  */
10087 int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
10088 		    unsigned int *valp)
10089 {
10090 	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
10091 }
10092 
10093 /**
10094  *	t4_cim_read_la - read CIM LA capture buffer
10095  *	@adap: the adapter
10096  *	@la_buf: where to store the LA data
10097  *	@wrptr: the HW write pointer within the capture buffer
10098  *
10099  *	Reads the contents of the CIM LA buffer with the most recent entry at
10100  *	the end	of the returned data and with the entry at @wrptr first.
10101  *	We try to leave the LA in the running state we find it in.
10102  */
10103 int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
10104 {
10105 	int i, ret;
10106 	unsigned int cfg, val, idx;
10107 
10108 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
10109 	if (ret)
10110 		return ret;
10111 
10112 	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
10113 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
10114 		if (ret)
10115 			return ret;
10116 	}
10117 
10118 	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
10119 	if (ret)
10120 		goto restart;
10121 
10122 	idx = G_UPDBGLAWRPTR(val);
10123 	if (wrptr)
10124 		*wrptr = idx;
10125 
10126 	for (i = 0; i < adap->params.cim_la_size; i++) {
10127 		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
10128 				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
10129 		if (ret)
10130 			break;
10131 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
10132 		if (ret)
10133 			break;
10134 		if (val & F_UPDBGLARDEN) {
10135 			ret = -ETIMEDOUT;
10136 			break;
10137 		}
10138 		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
10139 		if (ret)
10140 			break;
10141 
10142 		/* Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
10143 		 * identify the 32-bit portion of the full 312-bit data
10144 		 */
10145 		if (is_t6(adap) && (idx & 0xf) >= 9)
10146 			idx = (idx & 0xff0) + 0x10;
10147 		else
10148 			idx++;
10149 		/* address can't exceed 0xfff */
10150 		idx &= M_UPDBGLARDPTR;
10151 	}
10152 restart:
10153 	if (cfg & F_UPDBGLAEN) {
10154 		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
10155 				      cfg & ~F_UPDBGLARDEN);
10156 		if (!ret)
10157 			ret = r;
10158 	}
10159 	return ret;
10160 }
10161 
10162 /**
10163  *	t4_tp_read_la - read TP LA capture buffer
10164  *	@adap: the adapter
10165  *	@la_buf: where to store the LA data
10166  *	@wrptr: the HW write pointer within the capture buffer
10167  *
10168  *	Reads the contents of the TP LA buffer with the most recent entry at
10169  *	the end	of the returned data and with the entry at @wrptr first.
10170  *	We leave the LA in the running state we find it in.
10171  */
10172 void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
10173 {
10174 	bool last_incomplete;
10175 	unsigned int i, cfg, val, idx;
10176 
10177 	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
10178 	if (cfg & F_DBGLAENABLE)			/* freeze LA */
10179 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
10180 			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
10181 
10182 	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
10183 	idx = G_DBGLAWPTR(val);
10184 	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
10185 	if (last_incomplete)
10186 		idx = (idx + 1) & M_DBGLARPTR;
10187 	if (wrptr)
10188 		*wrptr = idx;
10189 
10190 	val &= 0xffff;
10191 	val &= ~V_DBGLARPTR(M_DBGLARPTR);
10192 	val |= adap->params.tp.la_mask;
10193 
10194 	for (i = 0; i < TPLA_SIZE; i++) {
10195 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
10196 		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
10197 		idx = (idx + 1) & M_DBGLARPTR;
10198 	}
10199 
10200 	/* Wipe out last entry if it isn't valid */
10201 	if (last_incomplete)
10202 		la_buf[TPLA_SIZE - 1] = ~0ULL;
10203 
10204 	if (cfg & F_DBGLAENABLE)		/* restore running state */
10205 		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
10206 			     cfg | adap->params.tp.la_mask);
10207 }
10208 
10209 /*
10210  * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
10211  * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
10212  * state for more than the Warning Threshold then we'll issue a warning about
10213  * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
10214  * appears to be hung every Warning Repeat second till the situation clears.
10215  * If the situation clears, we'll note that as well.
10216  */
10217 #define SGE_IDMA_WARN_THRESH 1
10218 #define SGE_IDMA_WARN_REPEAT 300
10219 
10220 /**
10221  *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
10222  *	@adapter: the adapter
10223  *	@idma: the adapter IDMA Monitor state
10224  *
10225  *	Initialize the state of an SGE Ingress DMA Monitor.
10226  */
10227 void t4_idma_monitor_init(struct adapter *adapter,
10228 			  struct sge_idma_monitor_state *idma)
10229 {
10230 	/* Initialize the state variables for detecting an SGE Ingress DMA
10231 	 * hang.  The SGE has internal counters which count up on each clock
10232 	 * tick whenever the SGE finds its Ingress DMA State Engines in the
10233 	 * same state they were on the previous clock tick.  The clock used is
10234 	 * the Core Clock so we have a limit on the maximum "time" they can
10235 	 * record; typically a very small number of seconds.  For instance,
10236 	 * with a 600MHz Core Clock, we can only count up to a bit more than
10237 	 * 7s.  So we'll synthesize a larger counter in order to not run the
10238 	 * risk of having the "timers" overflow and give us the flexibility to
10239 	 * maintain a Hung SGE State Machine of our own which operates across
10240 	 * a longer time frame.
10241 	 */
10242 	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
10243 	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
10244 }
10245 
10246 /**
10247  *	t4_idma_monitor - monitor SGE Ingress DMA state
10248  *	@adapter: the adapter
10249  *	@idma: the adapter IDMA Monitor state
10250  *	@hz: number of ticks/second
10251  *	@ticks: number of ticks since the last IDMA Monitor call
10252  */
10253 void t4_idma_monitor(struct adapter *adapter,
10254 		     struct sge_idma_monitor_state *idma,
10255 		     int hz, int ticks)
10256 {
10257 	int i, idma_same_state_cnt[2];
10258 
10259 	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
10260 	  * are counters inside the SGE which count up on each clock when the
10261 	  * SGE finds its Ingress DMA State Engines in the same states they
10262 	  * were in the previous clock.  The counters will peg out at
10263 	  * 0xffffffff without wrapping around so once they pass the 1s
10264 	  * threshold they'll stay above that till the IDMA state changes.
10265 	  */
10266 	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
10267 	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
10268 	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10269 
10270 	for (i = 0; i < 2; i++) {
10271 		u32 debug0, debug11;
10272 
10273 		/* If the Ingress DMA Same State Counter ("timer") is less
10274 		 * than 1s, then we can reset our synthesized Stall Timer and
10275 		 * continue.  If we have previously emitted warnings about a
10276 		 * potential stalled Ingress Queue, issue a note indicating
10277 		 * that the Ingress Queue has resumed forward progress.
10278 		 */
10279 		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
10280 			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
10281 				CH_WARN(adapter, "SGE idma%d, queue %u, "
10282 					"resumed after %d seconds\n",
10283 					i, idma->idma_qid[i],
10284 					idma->idma_stalled[i]/hz);
10285 			idma->idma_stalled[i] = 0;
10286 			continue;
10287 		}
10288 
10289 		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
10290 		 * domain.  The first time we get here it'll be because we
10291 		 * passed the 1s Threshold; each additional time it'll be
10292 		 * because the RX Timer Callback is being fired on its regular
10293 		 * schedule.
10294 		 *
10295 		 * If the stall is below our Potential Hung Ingress Queue
10296 		 * Warning Threshold, continue.
10297 		 */
10298 		if (idma->idma_stalled[i] == 0) {
10299 			idma->idma_stalled[i] = hz;
10300 			idma->idma_warn[i] = 0;
10301 		} else {
10302 			idma->idma_stalled[i] += ticks;
10303 			idma->idma_warn[i] -= ticks;
10304 		}
10305 
10306 		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
10307 			continue;
10308 
10309 		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
10310 		 */
10311 		if (idma->idma_warn[i] > 0)
10312 			continue;
10313 		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
10314 
10315 		/* Read and save the SGE IDMA State and Queue ID information.
10316 		 * We do this every time in case it changes across time ...
10317 		 * can't be too careful ...
10318 		 */
10319 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
10320 		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10321 		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
10322 
10323 		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
10324 		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
10325 		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
10326 
10327 		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
10328 			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
10329 			i, idma->idma_qid[i], idma->idma_state[i],
10330 			idma->idma_stalled[i]/hz,
10331 			debug0, debug11);
10332 		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
10333 	}
10334 }
10335 
10336 /**
10337  *     t4_set_vf_mac - Set MAC address for the specified VF
10338  *     @adapter: The adapter
10339  *     @pf: the PF used to instantiate the VFs
10340  *     @vf: one of the VFs instantiated by the specified PF
10341  *     @naddr: the number of MAC addresses
10342  *     @addr: the MAC address(es) to be set to the specified VF
10343  */
10344 int t4_set_vf_mac(struct adapter *adapter, unsigned int pf, unsigned int vf,
10345 		  unsigned int naddr, u8 *addr)
10346 {
10347 	struct fw_acl_mac_cmd cmd;
10348 
10349 	memset(&cmd, 0, sizeof(cmd));
10350 	cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_MAC_CMD) |
10351 				    F_FW_CMD_REQUEST |
10352 				    F_FW_CMD_WRITE |
10353 				    V_FW_ACL_MAC_CMD_PFN(pf) |
10354 				    V_FW_ACL_MAC_CMD_VFN(vf));
10355 
10356 	/* Note: Do not enable the ACL */
10357 	cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
10358 	cmd.nmac = naddr;
10359 
10360 	switch (pf) {
10361 	case 3:
10362 		memcpy(cmd.macaddr3, addr, sizeof(cmd.macaddr3));
10363 		break;
10364 	case 2:
10365 		memcpy(cmd.macaddr2, addr, sizeof(cmd.macaddr2));
10366 		break;
10367 	case 1:
10368 		memcpy(cmd.macaddr1, addr, sizeof(cmd.macaddr1));
10369 		break;
10370 	case 0:
10371 		memcpy(cmd.macaddr0, addr, sizeof(cmd.macaddr0));
10372 		break;
10373 	}
10374 
10375 	return t4_wr_mbox(adapter, adapter->mbox, &cmd, sizeof(cmd), &cmd);
10376 }
10377 
10378 /**
10379  *	t4_read_pace_tbl - read the pace table
10380  *	@adap: the adapter
10381  *	@pace_vals: holds the returned values
10382  *
10383  *	Returns the values of TP's pace table in microseconds.
10384  */
10385 void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
10386 {
10387 	unsigned int i, v;
10388 
10389 	for (i = 0; i < NTX_SCHED; i++) {
10390 		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
10391 		v = t4_read_reg(adap, A_TP_PACE_TABLE);
10392 		pace_vals[i] = dack_ticks_to_usec(adap, v);
10393 	}
10394 }
10395 
10396 /**
10397  *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
10398  *	@adap: the adapter
10399  *	@sched: the scheduler index
10400  *	@kbps: the byte rate in Kbps
10401  *	@ipg: the interpacket delay in tenths of nanoseconds
10402  *
10403  *	Return the current configuration of a HW Tx scheduler.
10404  */
10405 void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
10406 		     unsigned int *ipg, bool sleep_ok)
10407 {
10408 	unsigned int v, addr, bpt, cpt;
10409 
10410 	if (kbps) {
10411 		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
10412 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10413 		if (sched & 1)
10414 			v >>= 16;
10415 		bpt = (v >> 8) & 0xff;
10416 		cpt = v & 0xff;
10417 		if (!cpt)
10418 			*kbps = 0;	/* scheduler disabled */
10419 		else {
10420 			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
10421 			*kbps = (v * bpt) / 125;
10422 		}
10423 	}
10424 	if (ipg) {
10425 		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
10426 		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
10427 		if (sched & 1)
10428 			v >>= 16;
10429 		v &= 0xffff;
10430 		*ipg = (10000 * v) / core_ticks_per_usec(adap);
10431 	}
10432 }
10433 
10434 /**
10435  *	t4_load_cfg - download config file
10436  *	@adap: the adapter
10437  *	@cfg_data: the cfg text file to write
10438  *	@size: text file size
10439  *
10440  *	Write the supplied config text file to the card's serial flash.
10441  */
10442 int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
10443 {
10444 	int ret, i, n, cfg_addr;
10445 	unsigned int addr;
10446 	unsigned int flash_cfg_start_sec;
10447 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10448 
10449 	cfg_addr = t4_flash_cfg_addr(adap);
10450 	if (cfg_addr < 0)
10451 		return cfg_addr;
10452 
10453 	addr = cfg_addr;
10454 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10455 
10456 	if (size > FLASH_CFG_MAX_SIZE) {
10457 		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
10458 		       FLASH_CFG_MAX_SIZE);
10459 		return -EFBIG;
10460 	}
10461 
10462 	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
10463 			 sf_sec_size);
10464 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10465 				     flash_cfg_start_sec + i - 1);
10466 	/*
10467 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10468 	 * with the on-adapter Firmware Configuration File.
10469 	 */
10470 	if (ret || size == 0)
10471 		goto out;
10472 
10473 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10474 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10475 		if ( (size - i) <  SF_PAGE_SIZE)
10476 			n = size - i;
10477 		else
10478 			n = SF_PAGE_SIZE;
10479 		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
10480 		if (ret)
10481 			goto out;
10482 
10483 		addr += SF_PAGE_SIZE;
10484 		cfg_data += SF_PAGE_SIZE;
10485 	}
10486 
10487 out:
10488 	if (ret)
10489 		CH_ERR(adap, "config file %s failed %d\n",
10490 		       (size == 0 ? "clear" : "download"), ret);
10491 	return ret;
10492 }
10493 
10494 /**
10495  *	t5_fw_init_extern_mem - initialize the external memory
10496  *	@adap: the adapter
10497  *
10498  *	Initializes the external memory on T5.
10499  */
10500 int t5_fw_init_extern_mem(struct adapter *adap)
10501 {
10502 	u32 params[1], val[1];
10503 	int ret;
10504 
10505 	if (!is_t5(adap))
10506 		return 0;
10507 
10508 	val[0] = 0xff; /* Initialize all MCs */
10509 	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10510 			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
10511 	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
10512 			FW_CMD_MAX_TIMEOUT);
10513 
10514 	return ret;
10515 }
10516 
10517 /* BIOS boot headers */
10518 typedef struct pci_expansion_rom_header {
10519 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
10520 	u8	reserved[22]; /* Reserved per processor Architecture data */
10521 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
10522 } pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
10523 
10524 /* Legacy PCI Expansion ROM Header */
10525 typedef struct legacy_pci_expansion_rom_header {
10526 	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
10527 	u8	size512; /* Current Image Size in units of 512 bytes */
10528 	u8	initentry_point[4];
10529 	u8	cksum; /* Checksum computed on the entire Image */
10530 	u8	reserved[16]; /* Reserved */
10531 	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
10532 } legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
10533 
10534 /* EFI PCI Expansion ROM Header */
10535 typedef struct efi_pci_expansion_rom_header {
10536 	u8	signature[2]; // ROM signature. The value 0xaa55
10537 	u8	initialization_size[2]; /* Units 512. Includes this header */
10538 	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
10539 	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
10540 	u8	efi_machine_type[2]; /* Machine type from EFI image header */
10541 	u8	compression_type[2]; /* Compression type. */
10542 		/*
10543 		 * Compression type definition
10544 		 * 0x0: uncompressed
10545 		 * 0x1: Compressed
10546 		 * 0x2-0xFFFF: Reserved
10547 		 */
10548 	u8	reserved[8]; /* Reserved */
10549 	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
10550 	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
10551 } efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
10552 
10553 /* PCI Data Structure Format */
10554 typedef struct pcir_data_structure { /* PCI Data Structure */
10555 	u8	signature[4]; /* Signature. The string "PCIR" */
10556 	u8	vendor_id[2]; /* Vendor Identification */
10557 	u8	device_id[2]; /* Device Identification */
10558 	u8	vital_product[2]; /* Pointer to Vital Product Data */
10559 	u8	length[2]; /* PCIR Data Structure Length */
10560 	u8	revision; /* PCIR Data Structure Revision */
10561 	u8	class_code[3]; /* Class Code */
10562 	u8	image_length[2]; /* Image Length. Multiple of 512B */
10563 	u8	code_revision[2]; /* Revision Level of Code/Data */
10564 	u8	code_type; /* Code Type. */
10565 		/*
10566 		 * PCI Expansion ROM Code Types
10567 		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
10568 		 * 0x01: Open Firmware standard for PCI. FCODE
10569 		 * 0x02: Hewlett-Packard PA RISC. HP reserved
10570 		 * 0x03: EFI Image. EFI
10571 		 * 0x04-0xFF: Reserved.
10572 		 */
10573 	u8	indicator; /* Indicator. Identifies the last image in the ROM */
10574 	u8	reserved[2]; /* Reserved */
10575 } pcir_data_t; /* PCI__DATA_STRUCTURE */
10576 
10577 /* BOOT constants */
10578 enum {
10579 	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
10580 	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
10581 	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
10582 	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
10583 	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
10584 	VENDOR_ID = 0x1425, /* Vendor ID */
10585 	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
10586 };
10587 
10588 /*
10589  *	modify_device_id - Modifies the device ID of the Boot BIOS image
10590  *	@adatper: the device ID to write.
10591  *	@boot_data: the boot image to modify.
10592  *
10593  *	Write the supplied device ID to the boot BIOS image.
10594  */
10595 static void modify_device_id(int device_id, u8 *boot_data)
10596 {
10597 	legacy_pci_exp_rom_header_t *header;
10598 	pcir_data_t *pcir_header;
10599 	u32 cur_header = 0;
10600 
10601 	/*
10602 	 * Loop through all chained images and change the device ID's
10603 	 */
10604 	while (1) {
10605 		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
10606 		pcir_header = (pcir_data_t *) &boot_data[cur_header +
10607 			      le16_to_cpu(*(u16*)header->pcir_offset)];
10608 
10609 		/*
10610 		 * Only modify the Device ID if code type is Legacy or HP.
10611 		 * 0x00: Okay to modify
10612 		 * 0x01: FCODE. Do not be modify
10613 		 * 0x03: Okay to modify
10614 		 * 0x04-0xFF: Do not modify
10615 		 */
10616 		if (pcir_header->code_type == 0x00) {
10617 			u8 csum = 0;
10618 			int i;
10619 
10620 			/*
10621 			 * Modify Device ID to match current adatper
10622 			 */
10623 			*(u16*) pcir_header->device_id = device_id;
10624 
10625 			/*
10626 			 * Set checksum temporarily to 0.
10627 			 * We will recalculate it later.
10628 			 */
10629 			header->cksum = 0x0;
10630 
10631 			/*
10632 			 * Calculate and update checksum
10633 			 */
10634 			for (i = 0; i < (header->size512 * 512); i++)
10635 				csum += (u8)boot_data[cur_header + i];
10636 
10637 			/*
10638 			 * Invert summed value to create the checksum
10639 			 * Writing new checksum value directly to the boot data
10640 			 */
10641 			boot_data[cur_header + 7] = -csum;
10642 
10643 		} else if (pcir_header->code_type == 0x03) {
10644 
10645 			/*
10646 			 * Modify Device ID to match current adatper
10647 			 */
10648 			*(u16*) pcir_header->device_id = device_id;
10649 
10650 		}
10651 
10652 
10653 		/*
10654 		 * Check indicator element to identify if this is the last
10655 		 * image in the ROM.
10656 		 */
10657 		if (pcir_header->indicator & 0x80)
10658 			break;
10659 
10660 		/*
10661 		 * Move header pointer up to the next image in the ROM.
10662 		 */
10663 		cur_header += header->size512 * 512;
10664 	}
10665 }
10666 
10667 /*
10668  *	t4_load_boot - download boot flash
10669  *	@adapter: the adapter
10670  *	@boot_data: the boot image to write
10671  *	@boot_addr: offset in flash to write boot_data
10672  *	@size: image size
10673  *
10674  *	Write the supplied boot image to the card's serial flash.
10675  *	The boot image has the following sections: a 28-byte header and the
10676  *	boot image.
10677  */
10678 int t4_load_boot(struct adapter *adap, u8 *boot_data,
10679 		 unsigned int boot_addr, unsigned int size)
10680 {
10681 	pci_exp_rom_header_t *header;
10682 	int pcir_offset ;
10683 	pcir_data_t *pcir_header;
10684 	int ret, addr;
10685 	uint16_t device_id;
10686 	unsigned int i;
10687 	unsigned int boot_sector = (boot_addr * 1024 );
10688 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10689 
10690 	/*
10691 	 * Make sure the boot image does not encroach on the firmware region
10692 	 */
10693 	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10694 		CH_ERR(adap, "boot image encroaching on firmware region\n");
10695 		return -EFBIG;
10696 	}
10697 
10698 	/*
10699 	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10700 	 * and Boot configuration data sections. These 3 boot sections span
10701 	 * sectors 0 to 7 in flash and live right before the FW image location.
10702 	 */
10703 	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
10704 			sf_sec_size);
10705 	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10706 				     (boot_sector >> 16) + i - 1);
10707 
10708 	/*
10709 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10710 	 * with the on-adapter option ROM file
10711 	 */
10712 	if (ret || (size == 0))
10713 		goto out;
10714 
10715 	/* Get boot header */
10716 	header = (pci_exp_rom_header_t *)boot_data;
10717 	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
10718 	/* PCIR Data Structure */
10719 	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
10720 
10721 	/*
10722 	 * Perform some primitive sanity testing to avoid accidentally
10723 	 * writing garbage over the boot sectors.  We ought to check for
10724 	 * more but it's not worth it for now ...
10725 	 */
10726 	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10727 		CH_ERR(adap, "boot image too small/large\n");
10728 		return -EFBIG;
10729 	}
10730 
10731 #ifndef CHELSIO_T4_DIAGS
10732 	/*
10733 	 * Check BOOT ROM header signature
10734 	 */
10735 	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
10736 		CH_ERR(adap, "Boot image missing signature\n");
10737 		return -EINVAL;
10738 	}
10739 
10740 	/*
10741 	 * Check PCI header signature
10742 	 */
10743 	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
10744 		CH_ERR(adap, "PCI header missing signature\n");
10745 		return -EINVAL;
10746 	}
10747 
10748 	/*
10749 	 * Check Vendor ID matches Chelsio ID
10750 	 */
10751 	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
10752 		CH_ERR(adap, "Vendor ID missing signature\n");
10753 		return -EINVAL;
10754 	}
10755 #endif
10756 
10757 	/*
10758 	 * Retrieve adapter's device ID
10759 	 */
10760 	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
10761 	/* Want to deal with PF 0 so I strip off PF 4 indicator */
10762 	device_id = device_id & 0xf0ff;
10763 
10764 	/*
10765 	 * Check PCIE Device ID
10766 	 */
10767 	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
10768 		/*
10769 		 * Change the device ID in the Boot BIOS image to match
10770 		 * the Device ID of the current adapter.
10771 		 */
10772 		modify_device_id(device_id, boot_data);
10773 	}
10774 
10775 	/*
10776 	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
10777 	 * we finish copying the rest of the boot image. This will ensure
10778 	 * that the BIOS boot header will only be written if the boot image
10779 	 * was written in full.
10780 	 */
10781 	addr = boot_sector;
10782 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10783 		addr += SF_PAGE_SIZE;
10784 		boot_data += SF_PAGE_SIZE;
10785 		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
10786 		if (ret)
10787 			goto out;
10788 	}
10789 
10790 	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10791 			     (const u8 *)header, 0);
10792 
10793 out:
10794 	if (ret)
10795 		CH_ERR(adap, "boot image download failed, error %d\n", ret);
10796 	return ret;
10797 }
10798 
10799 /*
10800  *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
10801  *	@adapter: the adapter
10802  *
10803  *	Return the address within the flash where the OptionROM Configuration
10804  *	is stored, or an error if the device FLASH is too small to contain
10805  *	a OptionROM Configuration.
10806  */
10807 static int t4_flash_bootcfg_addr(struct adapter *adapter)
10808 {
10809 	/*
10810 	 * If the device FLASH isn't large enough to hold a Firmware
10811 	 * Configuration File, return an error.
10812 	 */
10813 	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10814 		return -ENOSPC;
10815 
10816 	return FLASH_BOOTCFG_START;
10817 }
10818 
10819 int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
10820 {
10821 	int ret, i, n, cfg_addr;
10822 	unsigned int addr;
10823 	unsigned int flash_cfg_start_sec;
10824 	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10825 
10826 	cfg_addr = t4_flash_bootcfg_addr(adap);
10827 	if (cfg_addr < 0)
10828 		return cfg_addr;
10829 
10830 	addr = cfg_addr;
10831 	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10832 
10833 	if (size > FLASH_BOOTCFG_MAX_SIZE) {
10834 		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
10835 			FLASH_BOOTCFG_MAX_SIZE);
10836 		return -EFBIG;
10837 	}
10838 
10839 	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
10840 			 sf_sec_size);
10841 	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10842 					flash_cfg_start_sec + i - 1);
10843 
10844 	/*
10845 	 * If size == 0 then we're simply erasing the FLASH sectors associated
10846 	 * with the on-adapter OptionROM Configuration File.
10847 	 */
10848 	if (ret || size == 0)
10849 		goto out;
10850 
10851 	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10852 	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10853 		if ( (size - i) <  SF_PAGE_SIZE)
10854 			n = size - i;
10855 		else
10856 			n = SF_PAGE_SIZE;
10857 		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
10858 		if (ret)
10859 			goto out;
10860 
10861 		addr += SF_PAGE_SIZE;
10862 		cfg_data += SF_PAGE_SIZE;
10863 	}
10864 
10865 out:
10866 	if (ret)
10867 		CH_ERR(adap, "boot config data %s failed %d\n",
10868 				(size == 0 ? "clear" : "download"), ret);
10869 	return ret;
10870 }
10871 
10872 /**
10873  *	t4_set_filter_cfg - set up filter mode/mask and ingress config.
10874  *	@adap: the adapter
10875  *	@mode: a bitmap selecting which optional filter components to enable
10876  *	@mask: a bitmap selecting which components to enable in filter mask
10877  *	@vnic_mode: the ingress config/vnic mode setting
10878  *
10879  *	Sets the filter mode and mask by selecting the optional components to
10880  *	enable in filter tuples.  Returns 0 on success and a negative error if
10881  *	the requested mode needs more bits than are available for optional
10882  *	components.  The filter mask must be a subset of the filter mode.
10883  */
10884 int t4_set_filter_cfg(struct adapter *adap, int mode, int mask, int vnic_mode)
10885 {
10886 	static const uint8_t width[] = {1, 3, 17, 17, 8, 8, 16, 9, 3, 1};
10887 	int i, nbits, rc;
10888 	uint32_t param, val;
10889 	uint16_t fmode, fmask;
10890 	const int maxbits = adap->chip_params->filter_opt_len;
10891 
10892 	if (mode != -1 || mask != -1) {
10893 		if (mode != -1) {
10894 			fmode = mode;
10895 			nbits = 0;
10896 			for (i = S_FCOE; i <= S_FRAGMENTATION; i++) {
10897 				if (fmode & (1 << i))
10898 					nbits += width[i];
10899 			}
10900 			if (nbits > maxbits) {
10901 				CH_ERR(adap, "optional fields in the filter "
10902 				    "mode (0x%x) add up to %d bits "
10903 				    "(must be <= %db).  Remove some fields and "
10904 				    "try again.\n", fmode, nbits, maxbits);
10905 				return -E2BIG;
10906 			}
10907 
10908 			/*
10909 			 * Hardware wants the bits to be maxed out.  Keep
10910 			 * setting them until there's no room for more.
10911 			 */
10912 			for (i = S_FCOE; i <= S_FRAGMENTATION; i++) {
10913 				if (fmode & (1 << i))
10914 					continue;
10915 				if (nbits + width[i] <= maxbits) {
10916 					fmode |= 1 << i;
10917 					nbits += width[i];
10918 					if (nbits == maxbits)
10919 						break;
10920 				}
10921 			}
10922 
10923 			fmask = fmode & adap->params.tp.filter_mask;
10924 			if (fmask != adap->params.tp.filter_mask) {
10925 				CH_WARN(adap,
10926 				    "filter mask will be changed from 0x%x to "
10927 				    "0x%x to comply with the filter mode (0x%x).\n",
10928 				    adap->params.tp.filter_mask, fmask, fmode);
10929 			}
10930 		} else {
10931 			fmode = adap->params.tp.filter_mode;
10932 			fmask = mask;
10933 			if ((fmode | fmask) != fmode) {
10934 				CH_ERR(adap,
10935 				    "filter mask (0x%x) must be a subset of "
10936 				    "the filter mode (0x%x).\n", fmask, fmode);
10937 				return -EINVAL;
10938 			}
10939 		}
10940 
10941 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10942 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
10943 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_MODE_MASK);
10944 		val = V_FW_PARAMS_PARAM_FILTER_MODE(fmode) |
10945 		    V_FW_PARAMS_PARAM_FILTER_MASK(fmask);
10946 		rc = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param,
10947 		    &val);
10948 		if (rc < 0)
10949 			return rc;
10950 	}
10951 
10952 	if (vnic_mode != -1) {
10953 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10954 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FILTER) |
10955 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_FILTER_VNIC_MODE);
10956 		val = vnic_mode;
10957 		rc = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param,
10958 		    &val);
10959 		if (rc < 0)
10960 			return rc;
10961 	}
10962 
10963 	/* Refresh. */
10964 	read_filter_mode_and_ingress_config(adap);
10965 
10966 	return 0;
10967 }
10968 
10969 /**
10970  *	t4_clr_port_stats - clear port statistics
10971  *	@adap: the adapter
10972  *	@idx: the port index
10973  *
10974  *	Clear HW statistics for the given port.
10975  */
10976 void t4_clr_port_stats(struct adapter *adap, int idx)
10977 {
10978 	unsigned int i;
10979 	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
10980 	u32 port_base_addr;
10981 
10982 	if (is_t4(adap))
10983 		port_base_addr = PORT_BASE(idx);
10984 	else
10985 		port_base_addr = T5_PORT_BASE(idx);
10986 
10987 	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
10988 			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
10989 		t4_write_reg(adap, port_base_addr + i, 0);
10990 	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
10991 			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
10992 		t4_write_reg(adap, port_base_addr + i, 0);
10993 	for (i = 0; i < 4; i++)
10994 		if (bgmap & (1 << i)) {
10995 			t4_write_reg(adap,
10996 			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
10997 			t4_write_reg(adap,
10998 			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
10999 		}
11000 }
11001 
11002 /**
11003  *	t4_i2c_io - read/write I2C data from adapter
11004  *	@adap: the adapter
11005  *	@port: Port number if per-port device; <0 if not
11006  *	@devid: per-port device ID or absolute device ID
11007  *	@offset: byte offset into device I2C space
11008  *	@len: byte length of I2C space data
11009  *	@buf: buffer in which to return I2C data for read
11010  *	      buffer which holds the I2C data for write
11011  *	@write: if true, do a write; else do a read
11012  *	Reads/Writes the I2C data from/to the indicated device and location.
11013  */
11014 int t4_i2c_io(struct adapter *adap, unsigned int mbox,
11015 	      int port, unsigned int devid,
11016 	      unsigned int offset, unsigned int len,
11017 	      u8 *buf, bool write)
11018 {
11019 	struct fw_ldst_cmd ldst_cmd, ldst_rpl;
11020 	unsigned int i2c_max = sizeof(ldst_cmd.u.i2c.data);
11021 	int ret = 0;
11022 
11023 	if (len > I2C_PAGE_SIZE)
11024 		return -EINVAL;
11025 
11026 	/* Dont allow reads that spans multiple pages */
11027 	if (offset < I2C_PAGE_SIZE && offset + len > I2C_PAGE_SIZE)
11028 		return -EINVAL;
11029 
11030 	memset(&ldst_cmd, 0, sizeof(ldst_cmd));
11031 	ldst_cmd.op_to_addrspace =
11032 		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
11033 			    F_FW_CMD_REQUEST |
11034 			    (write ? F_FW_CMD_WRITE : F_FW_CMD_READ) |
11035 			    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C));
11036 	ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
11037 	ldst_cmd.u.i2c.pid = (port < 0 ? 0xff : port);
11038 	ldst_cmd.u.i2c.did = devid;
11039 
11040 	while (len > 0) {
11041 		unsigned int i2c_len = (len < i2c_max) ? len : i2c_max;
11042 
11043 		ldst_cmd.u.i2c.boffset = offset;
11044 		ldst_cmd.u.i2c.blen = i2c_len;
11045 
11046 		if (write)
11047 			memcpy(ldst_cmd.u.i2c.data, buf, i2c_len);
11048 
11049 		ret = t4_wr_mbox(adap, mbox, &ldst_cmd, sizeof(ldst_cmd),
11050 				 write ? NULL : &ldst_rpl);
11051 		if (ret)
11052 			break;
11053 
11054 		if (!write)
11055 			memcpy(buf, ldst_rpl.u.i2c.data, i2c_len);
11056 		offset += i2c_len;
11057 		buf += i2c_len;
11058 		len -= i2c_len;
11059 	}
11060 
11061 	return ret;
11062 }
11063 
11064 int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
11065 	      int port, unsigned int devid,
11066 	      unsigned int offset, unsigned int len,
11067 	      u8 *buf)
11068 {
11069 	return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, false);
11070 }
11071 
11072 int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
11073 	      int port, unsigned int devid,
11074 	      unsigned int offset, unsigned int len,
11075 	      u8 *buf)
11076 {
11077 	return t4_i2c_io(adap, mbox, port, devid, offset, len, buf, true);
11078 }
11079 
11080 /**
11081  * 	t4_sge_ctxt_rd - read an SGE context through FW
11082  * 	@adap: the adapter
11083  * 	@mbox: mailbox to use for the FW command
11084  * 	@cid: the context id
11085  * 	@ctype: the context type
11086  * 	@data: where to store the context data
11087  *
11088  * 	Issues a FW command through the given mailbox to read an SGE context.
11089  */
11090 int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
11091 		   enum ctxt_type ctype, u32 *data)
11092 {
11093 	int ret;
11094 	struct fw_ldst_cmd c;
11095 
11096 	if (ctype == CTXT_EGRESS)
11097 		ret = FW_LDST_ADDRSPC_SGE_EGRC;
11098 	else if (ctype == CTXT_INGRESS)
11099 		ret = FW_LDST_ADDRSPC_SGE_INGC;
11100 	else if (ctype == CTXT_FLM)
11101 		ret = FW_LDST_ADDRSPC_SGE_FLMC;
11102 	else
11103 		ret = FW_LDST_ADDRSPC_SGE_CONMC;
11104 
11105 	memset(&c, 0, sizeof(c));
11106 	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
11107 					F_FW_CMD_REQUEST | F_FW_CMD_READ |
11108 					V_FW_LDST_CMD_ADDRSPACE(ret));
11109 	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
11110 	c.u.idctxt.physid = cpu_to_be32(cid);
11111 
11112 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11113 	if (ret == 0) {
11114 		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
11115 		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
11116 		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
11117 		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
11118 		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
11119 		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
11120 	}
11121 	return ret;
11122 }
11123 
11124 /**
11125  * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
11126  * 	@adap: the adapter
11127  * 	@cid: the context id
11128  * 	@ctype: the context type
11129  * 	@data: where to store the context data
11130  *
11131  * 	Reads an SGE context directly, bypassing FW.  This is only for
11132  * 	debugging when FW is unavailable.
11133  */
11134 int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
11135 		      u32 *data)
11136 {
11137 	int i, ret;
11138 
11139 	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
11140 	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
11141 	if (!ret)
11142 		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
11143 			*data++ = t4_read_reg(adap, i);
11144 	return ret;
11145 }
11146 
11147 int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
11148     int sleep_ok)
11149 {
11150 	struct fw_sched_cmd cmd;
11151 
11152 	memset(&cmd, 0, sizeof(cmd));
11153 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11154 				      F_FW_CMD_REQUEST |
11155 				      F_FW_CMD_WRITE);
11156 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11157 
11158 	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
11159 	cmd.u.config.type = type;
11160 	cmd.u.config.minmaxen = minmaxen;
11161 
11162 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11163 			       NULL, sleep_ok);
11164 }
11165 
11166 int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
11167 		    int rateunit, int ratemode, int channel, int cl,
11168 		    int minrate, int maxrate, int weight, int pktsize,
11169 		    int burstsize, int sleep_ok)
11170 {
11171 	struct fw_sched_cmd cmd;
11172 
11173 	memset(&cmd, 0, sizeof(cmd));
11174 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11175 				      F_FW_CMD_REQUEST |
11176 				      F_FW_CMD_WRITE);
11177 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11178 
11179 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11180 	cmd.u.params.type = type;
11181 	cmd.u.params.level = level;
11182 	cmd.u.params.mode = mode;
11183 	cmd.u.params.ch = channel;
11184 	cmd.u.params.cl = cl;
11185 	cmd.u.params.unit = rateunit;
11186 	cmd.u.params.rate = ratemode;
11187 	cmd.u.params.min = cpu_to_be32(minrate);
11188 	cmd.u.params.max = cpu_to_be32(maxrate);
11189 	cmd.u.params.weight = cpu_to_be16(weight);
11190 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
11191 	cmd.u.params.burstsize = cpu_to_be16(burstsize);
11192 
11193 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11194 			       NULL, sleep_ok);
11195 }
11196 
11197 int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
11198     unsigned int maxrate, int sleep_ok)
11199 {
11200 	struct fw_sched_cmd cmd;
11201 
11202 	memset(&cmd, 0, sizeof(cmd));
11203 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11204 				      F_FW_CMD_REQUEST |
11205 				      F_FW_CMD_WRITE);
11206 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11207 
11208 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11209 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11210 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
11211 	cmd.u.params.ch = channel;
11212 	cmd.u.params.rate = ratemode;		/* REL or ABS */
11213 	cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
11214 
11215 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11216 			       NULL, sleep_ok);
11217 }
11218 
11219 int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
11220     int weight, int sleep_ok)
11221 {
11222 	struct fw_sched_cmd cmd;
11223 
11224 	if (weight < 0 || weight > 100)
11225 		return -EINVAL;
11226 
11227 	memset(&cmd, 0, sizeof(cmd));
11228 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11229 				      F_FW_CMD_REQUEST |
11230 				      F_FW_CMD_WRITE);
11231 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11232 
11233 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11234 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11235 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
11236 	cmd.u.params.ch = channel;
11237 	cmd.u.params.cl = cl;
11238 	cmd.u.params.weight = cpu_to_be16(weight);
11239 
11240 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11241 			       NULL, sleep_ok);
11242 }
11243 
11244 int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
11245     int mode, unsigned int maxrate, int pktsize, int sleep_ok)
11246 {
11247 	struct fw_sched_cmd cmd;
11248 
11249 	memset(&cmd, 0, sizeof(cmd));
11250 	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
11251 				      F_FW_CMD_REQUEST |
11252 				      F_FW_CMD_WRITE);
11253 	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
11254 
11255 	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
11256 	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
11257 	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
11258 	cmd.u.params.mode = mode;
11259 	cmd.u.params.ch = channel;
11260 	cmd.u.params.cl = cl;
11261 	cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
11262 	cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
11263 	cmd.u.params.max = cpu_to_be32(maxrate);
11264 	cmd.u.params.pktsize = cpu_to_be16(pktsize);
11265 
11266 	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
11267 			       NULL, sleep_ok);
11268 }
11269 
11270 /*
11271  *	t4_config_watchdog - configure (enable/disable) a watchdog timer
11272  *	@adapter: the adapter
11273  * 	@mbox: mailbox to use for the FW command
11274  * 	@pf: the PF owning the queue
11275  * 	@vf: the VF owning the queue
11276  *	@timeout: watchdog timeout in ms
11277  *	@action: watchdog timer / action
11278  *
11279  *	There are separate watchdog timers for each possible watchdog
11280  *	action.  Configure one of the watchdog timers by setting a non-zero
11281  *	timeout.  Disable a watchdog timer by using a timeout of zero.
11282  */
11283 int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
11284 		       unsigned int pf, unsigned int vf,
11285 		       unsigned int timeout, unsigned int action)
11286 {
11287 	struct fw_watchdog_cmd wdog;
11288 	unsigned int ticks;
11289 
11290 	/*
11291 	 * The watchdog command expects a timeout in units of 10ms so we need
11292 	 * to convert it here (via rounding) and force a minimum of one 10ms
11293 	 * "tick" if the timeout is non-zero but the conversion results in 0
11294 	 * ticks.
11295 	 */
11296 	ticks = (timeout + 5)/10;
11297 	if (timeout && !ticks)
11298 		ticks = 1;
11299 
11300 	memset(&wdog, 0, sizeof wdog);
11301 	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
11302 				     F_FW_CMD_REQUEST |
11303 				     F_FW_CMD_WRITE |
11304 				     V_FW_PARAMS_CMD_PFN(pf) |
11305 				     V_FW_PARAMS_CMD_VFN(vf));
11306 	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
11307 	wdog.timeout = cpu_to_be32(ticks);
11308 	wdog.action = cpu_to_be32(action);
11309 
11310 	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
11311 }
11312 
11313 int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
11314 {
11315 	struct fw_devlog_cmd devlog_cmd;
11316 	int ret;
11317 
11318 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
11319 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
11320 					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
11321 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
11322 	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
11323 			 sizeof(devlog_cmd), &devlog_cmd);
11324 	if (ret)
11325 		return ret;
11326 
11327 	*level = devlog_cmd.level;
11328 	return 0;
11329 }
11330 
11331 int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
11332 {
11333 	struct fw_devlog_cmd devlog_cmd;
11334 
11335 	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
11336 	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
11337 					     F_FW_CMD_REQUEST |
11338 					     F_FW_CMD_WRITE);
11339 	devlog_cmd.level = level;
11340 	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
11341 	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
11342 			  sizeof(devlog_cmd), &devlog_cmd);
11343 }
11344 
11345 int t4_configure_add_smac(struct adapter *adap)
11346 {
11347 	unsigned int param, val;
11348 	int ret = 0;
11349 
11350 	adap->params.smac_add_support = 0;
11351 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11352 		  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_ADD_SMAC));
11353 	/* Query FW to check if FW supports adding source mac address
11354 	 * to TCAM feature or not.
11355 	 * If FW returns 1, driver can use this feature and driver need to send
11356 	 * FW_PARAMS_PARAM_DEV_ADD_SMAC write command with value 1 to
11357 	 * enable adding smac to TCAM.
11358 	 */
11359 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11360 	if (ret)
11361 		return ret;
11362 
11363 	if (val == 1) {
11364 		ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
11365 				    &param, &val);
11366 		if (!ret)
11367 			/* Firmware allows adding explicit TCAM entries.
11368 			 * Save this internally.
11369 			 */
11370 			adap->params.smac_add_support = 1;
11371 	}
11372 
11373 	return ret;
11374 }
11375 
11376 int t4_configure_ringbb(struct adapter *adap)
11377 {
11378 	unsigned int param, val;
11379 	int ret = 0;
11380 
11381 	param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
11382 		  V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RING_BACKBONE));
11383 	/* Query FW to check if FW supports ring switch feature or not.
11384 	 * If FW returns 1, driver can use this feature and driver need to send
11385 	 * FW_PARAMS_PARAM_DEV_RING_BACKBONE write command with value 1 to
11386 	 * enable the ring backbone configuration.
11387 	 */
11388 	ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11389 	if (ret < 0) {
11390 		CH_ERR(adap, "Querying FW using Ring backbone params command failed, err=%d\n",
11391 			ret);
11392 		goto out;
11393 	}
11394 
11395 	if (val != 1) {
11396 		CH_ERR(adap, "FW doesnot support ringbackbone features\n");
11397 		goto out;
11398 	}
11399 
11400 	ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, &param, &val);
11401 	if (ret < 0) {
11402 		CH_ERR(adap, "Could not set Ringbackbone, err= %d\n",
11403 			ret);
11404 		goto out;
11405 	}
11406 
11407 out:
11408 	return ret;
11409 }
11410 
11411 /*
11412  *	t4_set_vlan_acl - Set a VLAN id for the specified VF
11413  *	@adapter: the adapter
11414  *	@mbox: mailbox to use for the FW command
11415  *	@vf: one of the VFs instantiated by the specified PF
11416  *	@vlan: The vlanid to be set
11417  *
11418  */
11419 int t4_set_vlan_acl(struct adapter *adap, unsigned int mbox, unsigned int vf,
11420 		    u16 vlan)
11421 {
11422 	struct fw_acl_vlan_cmd vlan_cmd;
11423 	unsigned int enable;
11424 
11425 	enable = (vlan ? F_FW_ACL_VLAN_CMD_EN : 0);
11426 	memset(&vlan_cmd, 0, sizeof(vlan_cmd));
11427 	vlan_cmd.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_ACL_VLAN_CMD) |
11428 					 F_FW_CMD_REQUEST |
11429 					 F_FW_CMD_WRITE |
11430 					 F_FW_CMD_EXEC |
11431 					 V_FW_ACL_VLAN_CMD_PFN(adap->pf) |
11432 					 V_FW_ACL_VLAN_CMD_VFN(vf));
11433 	vlan_cmd.en_to_len16 = cpu_to_be32(enable | FW_LEN16(vlan_cmd));
11434 	/* Drop all packets that donot match vlan id */
11435 	vlan_cmd.dropnovlan_fm = (enable
11436 				  ? (F_FW_ACL_VLAN_CMD_DROPNOVLAN |
11437 				     F_FW_ACL_VLAN_CMD_FM)
11438 				  : 0);
11439 	if (enable != 0) {
11440 		vlan_cmd.nvlan = 1;
11441 		vlan_cmd.vlanid[0] = cpu_to_be16(vlan);
11442 	}
11443 
11444 	return t4_wr_mbox(adap, adap->mbox, &vlan_cmd, sizeof(vlan_cmd), NULL);
11445 }
11446 
11447 /**
11448  *	t4_del_mac - Removes the exact-match filter for a MAC address
11449  *	@adap: the adapter
11450  *	@mbox: mailbox to use for the FW command
11451  *	@viid: the VI id
11452  *	@addr: the MAC address value
11453  *	@smac: if true, delete from only the smac region of MPS
11454  *
11455  *	Modifies an exact-match filter and sets it to the new MAC address if
11456  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
11457  *	latter case the address is added persistently if @persist is %true.
11458  *
11459  *	Returns a negative error number or the index of the filter with the new
11460  *	MAC value.  Note that this index may differ from @idx.
11461  */
11462 int t4_del_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
11463 	       const u8 *addr, bool smac)
11464 {
11465 	int ret;
11466 	struct fw_vi_mac_cmd c;
11467 	struct fw_vi_mac_exact *p = c.u.exact;
11468 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
11469 
11470 	memset(&c, 0, sizeof(c));
11471 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
11472 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
11473 				   V_FW_VI_MAC_CMD_VIID(viid));
11474 	c.freemacs_to_len16 = cpu_to_be32(
11475 					V_FW_CMD_LEN16(1) |
11476 					(smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0));
11477 
11478 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
11479 	p->valid_to_idx = cpu_to_be16(
11480 				F_FW_VI_MAC_CMD_VALID |
11481 				V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_MAC_BASED_FREE));
11482 
11483 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11484 	if (ret == 0) {
11485 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
11486 		if (ret < max_mac_addr)
11487 			return -ENOMEM;
11488 	}
11489 
11490 	return ret;
11491 }
11492 
11493 /**
11494  *	t4_add_mac - Adds an exact-match filter for a MAC address
11495  *	@adap: the adapter
11496  *	@mbox: mailbox to use for the FW command
11497  *	@viid: the VI id
11498  *	@idx: index of existing filter for old value of MAC address, or -1
11499  *	@addr: the new MAC address value
11500  *	@persist: whether a new MAC allocation should be persistent
11501  *	@add_smt: if true also add the address to the HW SMT
11502  *	@smac: if true, update only the smac region of MPS
11503  *
11504  *	Modifies an exact-match filter and sets it to the new MAC address if
11505  *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
11506  *	latter case the address is added persistently if @persist is %true.
11507  *
11508  *	Returns a negative error number or the index of the filter with the new
11509  *	MAC value.  Note that this index may differ from @idx.
11510  */
11511 int t4_add_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
11512 	       int idx, const u8 *addr, bool persist, u8 *smt_idx, bool smac)
11513 {
11514 	int ret, mode;
11515 	struct fw_vi_mac_cmd c;
11516 	struct fw_vi_mac_exact *p = c.u.exact;
11517 	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
11518 
11519 	if (idx < 0)		/* new allocation */
11520 		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
11521 	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
11522 
11523 	memset(&c, 0, sizeof(c));
11524 	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
11525 				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
11526 				   V_FW_VI_MAC_CMD_VIID(viid));
11527 	c.freemacs_to_len16 = cpu_to_be32(
11528 				V_FW_CMD_LEN16(1) |
11529 				(smac ? F_FW_VI_MAC_CMD_IS_SMAC : 0));
11530 	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
11531 				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
11532 				      V_FW_VI_MAC_CMD_IDX(idx));
11533 	memcpy(p->macaddr, addr, sizeof(p->macaddr));
11534 
11535 	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
11536 	if (ret == 0) {
11537 		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
11538 		if (ret >= max_mac_addr)
11539 			return -ENOMEM;
11540 		if (smt_idx) {
11541 			/* Does fw supports returning smt_idx? */
11542 			if (adap->params.viid_smt_extn_support)
11543 				*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
11544 			else {
11545 				/* In T4/T5, SMT contains 256 SMAC entries
11546 				 * organized in 128 rows of 2 entries each.
11547 				 * In T6, SMT contains 256 SMAC entries in
11548 				 * 256 rows.
11549 				 */
11550 				if (chip_id(adap) <= CHELSIO_T5)
11551 					*smt_idx = ((viid & M_FW_VIID_VIN) << 1);
11552 				else
11553 					*smt_idx = (viid & M_FW_VIID_VIN);
11554 			}
11555 		}
11556 	}
11557 
11558 	return ret;
11559 }
11560